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Despite all the different technological innovations and advances in the automotive field, autonomous vehicles are still in the testing phase. Many actors are working on several improvements in many domains to make autonomous cars the safest option. One of the important dimension is cybersecurity. Autonomous vehicles will be prone to cyberattacks, and criminals might be motivated to hack into the vehicles operating systems and steal essential passenger data or disrupt its operation and jeopardize the passenger's safety. Thus, cybersecurity remains one of the biggest obstacles to overcome to ensure vehicles safety and the contribution that this technology can bring to society.

Indeed, the actual and future design and implementation of Autonomous Vehicles imply many communication interfaces, In-vehicle communication of the embedded system, Vehicle-to-X (V2X) communications between the vehicle and other connected vehicles and structures on the roads. Even though the cybersecurity aspect is incorporated by design, meaning that the system needs to satisfy security standards (anti-virus, firewall, etc.), we can not be sure that all possible breaches are covered. The Intrusion Detection System (IDS) has been introduced in the Information Technology (IT) world to assess the state of the network and detect if a violation occurs. Many experiences and history of IT have inspired the cybersecurity for autonomous vehicles. Nevertheless, autonomous vehicles exhibits their own needs and constraints.

The current state of vehicles evolution has been made possible through successive innovations in many industrial and research fields. Artificial Intelligence (AI) is one of them. It enables learning and implementing most fundamental self-driving tasks. This thesis aims to develop an intelligent in-vehicle Intrusion Detection System (IDS) using Machine Learning (ML) from an automotive perspective, to assess and evaluate the impact of machine learning on enhancing the security of future vehicles. Our primary focus is on In-vehicle communication security. We conduct an empirical investigation to determine the underlying needs and constraints that in-vehicle systems require. First, we review the deep learning literature for anomaly detection and studies on autonomous vehicle intrusion detection system using deep learning. We notice many works on in-vehicle intrusion detection systems, but not all of them consider the constraints of autonomous vehicle systems. In such applications, the data is unbalanced: the rate of normal examples is much higher than the anomalous examples. The emergence of the Generative Adversarial Network (GAN) has recently brought new algorithms for anomaly detection. We develop an adversarial i approach for anomaly detection, based on an Encoding AdversarialNetwork (EAN). Considering the behaviour and the light-weight nature of in-vehicle networks, we show that EAN remains robust to the increase of normal examples modalities, and only a sub-part of the neural network is used for the detection phase.

Controller Area Network (CAN) is one of the most used vehicle bus standard designed to allow microcontrollers and devices to communicate with each others. We propose a Deep CAN intrusion detection system framework.

We introduce a Multi-Variate Time Series representation for asynchronous CAN data. We show that this representation enhances the temporal modelling of deep learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational constraints.

Future In-vehicle network architecture is composed of different subsystems formed of different Electronic Control Units (ECUs). Each subsystem is responsible for specific services that ensure the autonomous functioning of the vehicle. For functional and security reasons, separate subsystems are isolated, forming a hierarchical architecture of the system. In this thesis, we design a Distributed IDS that fit this in-vehicle architecture system and its constraints and reduces the communication overhead rate induced by the IDS processing.

R ésum é

De nombreuse avanc és et innovations technologiques sont introduites dans le monde de l'automobile. Plusieurs 1.6 Historical developement of AI. [START_REF] Bayes | An essay towards solving a problem in the doctrine of chances[END_REF]; Mcculloch und Pitts (1943); [START_REF] Fukushima | Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position[END_REF]; Brooks (1990); [START_REF] Cortes | [END_REF]; Bostrom (2014) A long time ago, human beings did not have any means of transportation; they were used to travel only on their foot and carrying their goods either on their backs or using animals. Until the invention of the wheel, it was a starting of a long series of transportation innovation. We overcame natural obstacles like water and seas; we replaced animal power in 1776 when James Watt invented the steam engine. This innovation was a revolution in transportations, which brought a lot to the evolution of today's society. From empowering the ships and locomotives to increase the efficiency of the human operations to achieve the goal of flying and reach the moon. We never stopped since then, we have come across a lot of innovation in transportation, and today's society is more dependent on its transportation systems, which represents a vital element for the proper and safe functioning of society. The transportations systems have always been deeply affected by major technologies shifts. These last years, a lot of efforts have been made to make the transportation more intelligent and enabling them to offer different services through applications, ranging from automation and driver assistance to infotainment applications. The growth of cities and the rise of the urban population brought challenges like congestion, air pollution, and road accidents. To deal with these issues, full automation for transportations systems arises ITS ( intelligent transportation system). The advance in Artificial Intelligence (AI), more precisely machine learning by using deep learning methods, has drawn a lot of attention in both scientific and industrial actors. It enables many functionalities that rely on accurate decision making, from trying to learn traffic rules to coping with human pedestrian unpredictability in many different contexts (autonomous vehicles, drones and autonomous train). ITS aims to reach a certain level of autonomy that allows the scalability of mobility more smartly and optimally. Indeed, if all the cars are driverless and connected, everything is predictable.

The reaction time is at its minimum and guarantees a well-distributed and resource-efficient system, which means lowering the numbers of vehicles. Some study estimate Autonomous Vehicle can reduce the number of accident by 40% Fagnant und [START_REF] Fagnant Und Kockelman | Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations[END_REF]. The current state of the motivation is clear, ITS will save lives and enables an

In-vehicle cybersecurity

Although navigation). Attacks against vehicles can be divided into logical attacks (password attacks, software attacks, communications attacks, etc.), physical attacks (side channel attacks, denial of service attacks, interference attacks, penetration attacks, tamper attacks, etc.) and other attacks Wolf (2009).

The embedded cyber defence architecture of automotive transportation aims to protect the information transfer, sensor signals and critical passengers data by monitoring the communications among ECUs, sensors, and gateways in the in-vehicle networks by including message authentication, data encryption, and intrusion protection.

In-vehicle network communication system

It represents an extensive system where many computers unsure functionalities by interacting and communicating with each other, using different automotive field busses like CAN (Controller Area Network), FlexRay, LIN(Local Interconnect Network). Mainly, those automotive systems lack security, and they handle many features such as real-time communication between controllers, engine management. The Intrusion Detection System primary role is to monitor those systems and detect malicious attempts or attacks and alert the system's user.

In-vehicles communications are mainly signals and data transfer carried by automotive network protocols; some typical networks protocols are introduced in the following:

• Controller Area Network (CAN): CAN bus is the most widely used bus field in the automotive industry. It plays a significant role in the automotive power system and comfort system. The maximum speed of a highspeed CAN bus can reach 1 Mbps. The data field length of the CAN frame is 8 bytes. The cyclic redundancy check (CRC) is used to ensure the correctness of transmission. (In Chapter 2, we will introduce a detailed functional description of CAN.)

• Local Interconnect Network (LIN): LIN bus is mainly used for controlling the vehicles seats, doors, wipers, sunroof, and so on. For LIN bus, the maximum of the data field in a frame is 8 bytes. The checksum is calculated to verify that the integrity of the message has been preserved during transmission operation. Unlike CAN bus, LIN bus uses the master/slave node mode for communication.

• FlexRay: FlexRay bus has a higher transferring speed than CAN bus and mainly used the automotive power control system. The maximum speed of FlexRay can be up to 10 Mbps. Time-division multiple access (TDMA)

and flexible time division multiple access (FTDMA) are used in FlexRay to ensure the real-time requirements of network communication. The data field length of FlexRay frame is 254 bytes. The CRC is used to check errors during bus communication. This protocol differs from CAN by its performance in terms of throughput and higher reliability. The cost of a FlexRay node is currently higher than that of a CAN node, which is programmed to be the de facto replacement in automotive electrical and electronic architectures. 

Basic in-vehicle security network architecture

Compared with traditional vehicles, connected vehicles require more information transfer. Sensor signals and critical data must be protected to ensure the safety of connected vehicles Qiang [START_REF] Hu | [END_REF]. In-vehicle networks connect the communications among ECUs, sensors, and gateways. The design of each layer must take security into consideration as in the following:

• Individual ECU Layer: This layer contains software trusted execution and data protection provides hardware foundation for upper layers security mechanism.

• In-vehicle Network Layer: Cryptography related mechanisms can be used to encrypt the transferring data in the network.

• Gateway Layer: Gateway layer has the critical security functions, including access control and intrusion detection, this layer helps the data exchange in different network domain Seifert und Obermaisser (2014).

• Firewall Layer: Firewall layer is used in general to protect the outside communication interfaces of vehicles, such as OBD-II interface, V2X on-board unit, and infotainment system (it also can be implemented for the in-vehicle network communication based on the architecture design and isolation)Luo und Hou (2019).

• Intrusion Detection: Intrusion detection layer is used to monitor all the network communication in the invehicle system and detect any misbehaviour or anomalies in the network. (The misbehaviour could be a result of an attack or an intrusion attempt).

The technological advance enables automated driving features and many others like infotainment. But, it brings a substantial rise in functional complexity regarding utilized algorithms-also, the number of processed information increases over several Electronic Control Units (ECUs). The increase of complex features is challenging to handle with the existing architectures. The introduction of many hierarchy levels in the logical system facilitates functional elements with wide internal variety and distribution over several subsystems. In-vehicle IDS need to meet the constraints of that hierarchical architecture. Also, the resources induced by the IDS are limited in the embedded systems. Today, most attacks targeting IT are well represented in the literature, but cybersecurity in an embedded system is relatively new, especially for future Autonomous Vehicle.

The expansive and broad definition of AI and ML can and should be applied in cybersecurity, encompassing various methods that have developed over many decades have demonstrated effectiveness in many other application domains. AI/ML is viewed as a necessary response to the continuing growth in the number and complexity of threats, the evolving nature of threats, and the need for rapid (and therefore substantially automatic) responses to detected threats. We discuss this point in the following section.

Machine learning utility for Cybersecurity

Cybersecurity is a very broad term referring to everything related to the protection of cyber resources. As much as any other domain, cybersecurity had a lot of interest in using ML approaches. It's considered as a necessary response to face the continuous growth of the number of threats, and the need for rapid, substantially automatic responses to detected threats. The primary targets for ML application in cybersecurity are Intrusion Detection Systems that we will review in the chapter 2, characterization (malicious code), user behavioural modelling, automated vulnerability testing and intrusion defence. Indeed, ML is beneficial to cut through the large volume of data and find indicators of compromisation and unwanted behaviour using correlations across data sources. These systems would assist human analysts by elevating or alerting them to significant events that require responses without overwhelming the organization with false alarms or other unnecessary indicators Loaiza u. a. (2019).

However, in general, ML has had promising results in improving the efficacy of cybersecurity technologies such as endpoint security to detect and prevent new and previously unseen malware. Machine learning intends to be incorporated into seemingly every new cybersecurity defence applications to avoid any compromisation since attackers are evolving and adapting at the same scale and at a faster pace than defenders. The primary benefits anticipated are:

• Improvements to the investigation of security alerts.

• Improvements in accuracy and reduced false-positive rates.

• The elimination of more compute-intensive detection techniques.

• detection of zero-day threats.

The most practical applications reside in the Information Technology word (IT) where the most data and experience coping with cybersecurity threats and attacks are available. It's recent that data related to network information and cybersecurity are starting to be leveraged for public research and analysis in competition platforms like Kaggel.

But, mainly, companies that have a requirement to train machine learning algorithms, especially DL algorithms that are data-hungry are those who benefit more from DL technologies in their private research. In fact, more than half of the respondents report they are using machine learning technology for cybersecurity purposes to some degree, up from 47% in 2018, per the 29% of those companies leveraging machine learning extensively. This level of adoption has made machine learning a foundational cybersecurity technology and mostly applicable for specific use cases oraclAIcs.

The lack of datasets for research in this area is a problem. Some vendors have large volumes of data available (for example, network switch/infrastructure vendors, and providers of anti-virus and network/computer monitor software and systems). However, the most studied available datasets are dated (DARPA 1998and 1999, and KDD 1999 data), and the characteristics and volume of attacks have significantly changed since that time.

Machine learning for a future in-vehicle intrusion detection system

Intrusion detection systems (IDSs) are common to defend against Cyber-Physical system (CPS) attacks, especially the Controller Area Network vulnerabilities. These systems monitor the ECUs networks such as CAN and report malicious activities. In the CPS domain, an IDS can detect attackers attempting to modify or misrepresent physical processes. In other words, if an attacker intends to cause the driver to speed, he may choose to inject packets detailing a lower speed, which would cause the speedometer to display incorrect information. In this case, an effective IDS will notice that the data for speed does not conform to the expected behaviour indicated by the data for the related physical processes (e.g., engine and wheel rotational velocities, fuel consumption). So, the IDS will notice that the speed readings are anomalous. As explained, the example seems simple, and this case can be handcoded in a set of rules to prevent this specific attack. But as soon as we start enumerating the number of information that can be changed while corrupting the in-vehicle system, it leads to an explosion and intractable scenarios. As another example, if an IDS knows that a substantial increase in an automobile's brake pressure likely precedes a relative decrease in velocity, the IDS can assert that no change, a small change, or an increase in velocity (after significant brake pressure) is abnormal. Of course, this requires an IDS capable of determining expected behaviour and identifying anomalies.

In a nutshell, to design such an IDS for a vulnerable CPS, embryonic IDS architects require the following:

• An ample quantity of knowledge under normal operating conditions to establish normal behaviour.

• Capture the dynamics or patterns of a CPS, to include an understanding of the current system state or behaviour enables predictions concerning a future state.

• Solid understanding of a system dynamic, how one signal affects another AND how the historical state defines the current state (causality).

• A process to determine whether new traffic conforms to normal behaviour.

• An alert system to report to the administrator the traffic that does not conform.

In-vehicle networks are traditionally simpler than IT networks, yet, CAN is crucial to ensure message transmission by eliminating conflicts and be resilient to noise. As the number of electronic components penetrating vehicle subsystems increases, the in-vehicle networks are given significance as a medium for exchanging information. As mentioned above in the Sub-section 1.3.2, the distributed functions among different subsystems triggered the complexity level of networks and transformed in-vehicle networks into advanced controller area networks. Upcoming autonomous driving abilities and ITS applications that require the collaboration of several subsystems force automotive manufacturers and equipment suppliers to add new hardware and software layers to their products, making in-vehicle networks a source of data. By increasing connectivity surfaces of vehicles to support ITS, vehicles are becoming vulnerable against malice and misbehaviours.

In that context, we have two primary assumptions. i) The system behaviour is well defined; it uses deterministic communication between distinct components. ii) The system can behave differently depending on various context (for example, monitoring a car behaviour can change following the area and the state of the road). It is tough to develop an IDS by explicitly coding all rules for each specific context. After the aforementioned ML success and their ability to learn specific tasks without being explicitly programmed, the straightforward application of ML methods for In-vehicle IDS system is well expected (we review those methods in the Chapter3). Deep learning has been used successfully in many domains and task, and cybersecurity also got inspired by machine learning in general to develop an intelligent Intrusion Detection System. To have an intelligent in-vehicle IDS, we need to take into consideration the following constraints:

• Modeling the normal behaviour of a vehicle following different context.

• In the automotive context, many cyber physical systems are computationally limited by available hardware or by standards and regulations.

• Ensure high accuracy and reduce false alarm rate.

• A distributed intrusion detection system should fit the actual network and system design.

• Monitoring of the system and real-time detection.

• Detection process with low resource consumption.

• Reduce the communication overhead induced by the integration of IDS in the In-vehicle network.

However, systems that incorporate advanced algorithms such as AI and ML must be properly designed to accept and process the high arrival rates of network and measurement data, as must the software-based sensors (Probes) that collect data from ECUs attached to the network, to ensure that the performance network is not unduly compromised.

Contribution and Outline

As Introduced above, this thesis mainly came across three significant domains, Intelligent transportation systems (ITS) represent our study's context, Artificial intelligence as the central technology used and explored to solve Cybersecurity problem and challenges related to the ITS application. So we can position precisely the scope and the purpose of our contribution in this thesis in the following.

Research question and constraints

As the research presented in this thesis developed above, it naturally formed four main parts: Intelligent intrusion detection system STATE-OF-THE-ART, Adversarial Learning for Anomaly Detection, Empirical Time series evaluation of In-vehicle Intrusion detection system, Distributed anomaly detection based In-vehicle IDS. Specific aims and objectives related to each of these parts of the thesis are presents in their respective chapters, whilst general research questions are presented here at a high level.

• How machine learning can enhance the existing IDS systems?

• What are the constraints, requirements fixed by the ITS domains to assess the utility of ML in in-vehicle context?

• What are the most suitable ML approaches that fit the IDS objective while respecting the requirement and constraint?

• How to deal with the lack of data to validate the proposal?

• How to build a ML model tailored for the in-vehicle system?

• If data available, how to cope with an imbalanced rate between normal examples and the lack of attacks examples?

• The technologies emerging for the in-vehicle network are new and still evolving, how to avoid the obsolescence?

• Major of data sets in this domain are not in clear (encoded or encrypted), how the model can use those data?

• How the model takes into consideration the topology of this data?

• How we can integrate the model by respecting the logical architecture of future in-vehicle systems? This thesis's scope is determined by several pragmatic conditions, which have been applied to ensure a focused investigation without compromising the ability to answer the research questions and respond to the project's finding expectation that embraces this research. It is necessary since the thesis considers several large research domains and works as part of an R&D project. First, this thesis's empirical work only considers network-based anomaly detection as the main path of contribution. However, the review of the domain considers all the main methods of intrusion detection. Although some challenges and concepts apply to other domain applications like healthcare and fraud detection, these applications are excluded as an application, but the related theoretical work has been considered. Furthermore, since this investigation focuses on machine learning, other, conventional techniques applied to intrusion detection are not considered. However, the review does consider a broad range of different AI techniques applied to intrusion detection.

There are several aspects of intrusion detection that are not considered here, although they would require attention when developing an IDS to be deployed in real life, such as:

Architecture: the focus here is on what could be referred to as a detection module that would exist in a larger IDS framework that takes in consideration many others method (Hybrid). Especially in-vehicle networks, the architecture is very important. This includes determining where to deploy the IDS and considering the local information, and it's safety impact, which is considered a general challenge.

Data collection: since the KDD data set (is more IT and old dataset) is adopted in this work to benchmark the ML methods, data collection is required. However, it would be necessary to collect data from the environment in which an IDS is to be employed (real autonomous car in real life). In our case, the data collection has been done to better understand the environment of the in-vehicle network and analyse the data topology and characteristics (This also includes labelling data for supervised learning.).

Data preprocessing: some data preprocessing is necessary for this work, adopted, enumerating and scaling feature values. However, In this domain, it was a lack of specific analysis of CAN data, so a convenient and custom Data preprocessing is required to fit the ML inputs.

Performance: there are several mechanisms that can be adopted to help achieve a better performing IDS, in terms of detection rates, speed and memory usage, and also communication overhead. This thesis focuses on the issues and challenges posed by the research questions and helps develop an optimal and practical in-vehicle IDS prototype.

Other pragmatic considerations: detecting new intrusions will always be a challenge; there will always be new software, which inevitably has vulnerabilities that can be exploited. Therefore, re-training is necessary once new data is available. When and how this is done is considered here by adopting a general framework that combines supervised learning and unsupervised learning.

Research Methodology and routing

There are three main contributions to this thesis. These parts have made contributions to both the intrusion detection for in-vehicle systems and machine learning domains. However, the focus of this thesis is on applying machine learning to the in-vehicle intrusion detection system. We propose practical solutions to tackle some challenges presented above with a customization effort to developpe tailored deep learning architectures that respond to the constraint of the future in-vehicle network. This study starts with an extensive literature review of the following areas:

• Intrusion detection system.

• Machine learning for anomaly detection with a focus on deep adversarial learning.

• In-vehicle CAN data analysis.

• Supervised and Unsupervised DL for time series analysis

• Distributed DL architectures

We present the flow of the thesis work as follows:

In the Part I (Chapter 2 and Chapter 3) , we provide the literature survey on the existing state-of-the-art methods, taxonomy related to the area mentioned above. It inspires ideas and hypotheses to build the problematics that guide our research. Each problem is defined in their respective contribution chapter.

In the Chapter 4, we propose our first contribution, based on the SOA analysis, we start with a contribution to the anomaly detection area. Anomaly detection is a standard problem in Machine Learning with various applications such as health-care, predictive maintenance, and cyber-security. In such applications, the data is unbalanced: the rate of regular examples is much higher than the anomalous examples. The emergence of the Generative Adversarial Networks (GANs) has recently brought new algorithms for anomaly detection. Most of them use the generator as a proxy for the reconstruction loss. The idea is that the generator cannot reconstruct an anomaly. We develop an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN), which maps the data to a latent space (decision space), where the detection of anomalies is done directly by calculating a score.

Our encoder is learned by adversarial learning, using two loss functions, the first constraining the encoder to project regular data into a Gaussian distribution and the second, to project anomalous data outside this distribution. We conduct a series of experiments on several standard bases and show that our approach outperforms the state of the art when using 10% anomalies during the learning stage, and detects unseen anomalies.

In the Chapter 5, In this work, we propose a Deep CAN intrusion detection system framework. We introduce a multivariate time series representation for asynchronous CAN data, enhancing the temporal modelling of deep learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational constraints. Our system is time window wise: any given time frame is labelled either anomalous or normal. We conduct experiments with many types of attacks on an in-vehicle CAN using SynCAn Dataset. We show that our system yields good results and allows us to detect many kinds of attacks.

In Chapter 6 : In this contribution, the in-vehicle network architecture is hierarchically distributed where the different sub-network are monitored with various and independent probes. We propose a Distributed Anomaly detection IDS (DAD) that fits the distributed in-vehicle architecture. To this end, we use multi-modal deep learning architecture. The model captures each probe view pattern as a feature vector representation of the input through a sequence modelling transformation using a Temporal Convolutional Neural Network (TCN). Our proposed method brings two optimisations compared to central models. First, it reduces the transmitted vector's size between the probes and the central probe (Bastion). Second, we introduced a new flag e i related to each probe that lower the computational inference time and the intrusion detection system's communication overhead. 

Publications

The cybersecurity of autonomous vehicles

As introduced in the Chapter 1, the automotive industry has undergone a paradigm change towards increasingly connected and autonomous cars. Smart cars available today are vehicles equipped with systems providing connected and added-value features to enhance car users experience and improve car safety. Within the next few years, smart cars connectivity is expected to expand, and smart cars will become connected to other vehicles, pedestrians

and their surrounding infrastructure through information exchanges via V2X communications ENISA (2019). Cybersecurity is a crucial aspect that will affect the evolution of smart cars. There have already been several research publications on attacks targeting intelligent vehicles. In In this thesis, our main focus is to study the in-vehicle network intrusion detection system. The primary function we want to secure is the In-vehicle network communication and its functionalities, as it is mainly one of the most used ways to perform intrusions and attacks. This chapter review the literature of cybersecurity gradually applied to the IT domain to its application in the ITS, more specifically for the vehicle and future autonomous vehicles (the in-vehicle security part). We review the IDS literature and its taxonomy from the In-vehicle perspective.

In-vehicle Network communication and architectures

ITS is often associated with intelligent cars, whether they possess driver-assistance technology, or semi-autonomous, or even fully autonomous. Intelligent cars are a major component of ITS due to the sheer volume of personal vehicles on the roadway. Several elements bind the scope of this research. The first element is limiting this research to cars. The term "vehicles" would be too broad because it includes cars, drones, trains and a wide variety of other devices. In the following, we use the term car and vehicle interchangeably to designate an automotive car. We will discuss and consider the assumptions and definitions related to all forms of connected cars. In chapter 1 we gave an introduction on ITS cybersecurity and in-vehicle network architecture. We extend the understanding of this introduction while defining this thesis's scope according to a taxonomy gathered from the literature review on connected vehicles, in-vehicle architectures, investigate the different attack vector and cybersecurity defence applied to the vehicle in general and the transferability of security from IT to automotive domain in the below sections.

We are interested in network security for in-vehicle systems. The vehicular network communication role is to support the required cooperation of different components of the vehicle.

We refer to all communications between the internal components of the vehicle as internal vehicular communication. Other communication technologies exist that provide a communication interface for external devices to perform diagnostic or firmware updates and future applications such as ITS, enabling connected cars to perform traffic optimisation activities by exchanging messages between different autonomous vehicles. Moreover, functionalities that give passengers the ability to stay connected to the internet are getting more popular. We refer to this kind of communications and all communications that include an outside party as external communication. 

External communication

Controller Area Network (CAN)

As mentioned above, one of the most critical challenges for the next generation in-vehicle architectures is managing In the following, we will present a brief explanation of CAN, which was designed to be extremely reliable and flexible because it's meant to work in harsh environments such as vehicles. CAN operates in two layers of the OSI model. The physical layer which is used for signalling, and data link layer that handle several aspects of the transmission of CAN frames, the message filtering and recovery management.

The physical layer

The physical layer of CAN is concerned with defining how to send signals and the correct encoding of bits. Thus, several concepts are specified in the original CAN specification : 

Network Threats, Attacks and Security Properties

In the purpose of network security, we assume that a system function is to provide information. In general, there is a flow of data from a source (e.g., a host, a file, memory, subsystem, node in distributed systems) to a destination (e.g., a remote host, another file, a user or a subsystem ) over a communication channel (e.g., a wire, a data bus, WIFI) mainly governed by a communication protocol. The security system's task is to restrict access to this information to only those parties that are authorized to have access to achieve a specific functionality, according to the security policy in use [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF]. A regular course of communication is a legitimate flow of data between the concerned source and destination while respecting security proprieties.

Threats

In general terms, an intrusion threat is an unauthorized attempt to access valuable assets, manipulate information, and alter a systems state into instability or unreliability. Those it causes a deviation from the expected use of the system Koscher u. a. (2010b).

We show the regular communication flow and several types of threats models that target it in Figure 2.10 and their description below.

• Interruption: An asset of the system gets destroyed or becomes unavailable. This attack targets the source • Fabrication: An attacker inserts counterfeit objects into the system without having the sender doing anything.

When a previously intercepted object is inserted, this processes is called replaying [START_REF] Patil | [END_REF].

When the attacker pretends to be the legitimate source and inserts her desired information, we call it masquerades. Counterfeiting attack takes place when an attacker forges the message that can be scanned and received by authorized readersPhilip [START_REF] Baczwewski | [END_REF]; Rong u. a. ( 2013); Patil und Kamble (2018); [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF].

Network attacks

It is essential to describe a threat model to implement a layered and holistic security mechanism. Once a threat model is defined, attacker types and attack vectors can be derived according to the capabilities of adversaries, their possible intentions and the valuable assets in the target network. The threat models are valuable abstraction of possible attacks, yet, it is nearly impossible to cover the complete space of attack types in real life.

We present various types of network attack classified into following three categories given by Bijone (2016a).

• • Penetration Attacks : In penetration attack, an attacker gains an unauthorized control of a system and can modify/alter system state. Generally, such attacks exploit certain software flaws, enabling the attacker to install viruses and malware in the system. The most common types of penetration attacks are:

User to Root (U2R), U2R is an attack that aims to gain superuser access to the system. Attacker gains superuser access by exploiting vulnerabilities in the operating system or application software. The attacker starts with access to a normal user account on the system and can exploit some vulnerability to gain root access to the system Bijone (2016a); Kendall (1999). Improving the detection rate of U2R attack classes is an open research problem. The most common attack in this class of attack is Buffer overflows. Buffer overflows occur when a program copies too much data into a static buffer without checking to ensure that the data will fit Kendall (1999).

Remote to Local (R2L), R2L is an attack in which the attacker tries to gain unauthorized access from a remote machine into the local target system. Hence, gains access to the inaccessible files stored locally on the host.

There are some similarities between this class of intrusion and U2R, as similar attacks may be carried out.

However, in this case, the intruder does not account for the host and attempts to obtain local access across a network connection. To achieve this, the intruder can execute buffer overflow attacks, exploit misconfigurations in security policies or engage in social engineering Kendall (1999); Bijone (2016a)

• Scanning Attack : In such attacks, an attacker sends various kinds of packets to probe a system or network for a vulnerability that can be exploited. When probe packets are sent, the target system responds; the responses' analysis determines the target system's characteristics and vulnerabilities. Thus scanning attack essentially identifies a potential victim. Bijone (2016a); Kendall (1999); Engen (2010). An attacker with a map of which machines and services are available on a network (network topology, type of firewall, identifying hosts that respond, operating systems and server applications running) can use this information to look for weak points. Some of these scanning tools enable even a very unskilled attacker to very quickly check hundreds or thousands of machines on a network for known vulnerabilitiesKendall (1999). Scanning is typically considered a legal activity and there are a number of examples and applications that employ scanning. The most wellknown scanning applications are Web search engines.

Security Properties

Before one can evaluate attacks against a system and decide on appropriate mechanisms to defend these threats, it is necessary to specify a security policy Tanenbaum und van [START_REF] Tanenbaum Und Van Steen | Distributed Systems: Principles and Paradigms[END_REF]. A security policy defines the desired properties for each part of a secure computer system. It is a decision that has to consider the value of the assets that should be protected, the expected threats, and the cost of proper protection mechanisms [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF];

Tanenbaum und van [START_REF] Tanenbaum Und Van Steen | Distributed Systems: Principles and Paradigms[END_REF]. A sufficient security policy for a regular computer user's data may not be sufficient for a bank. The security policy that is sufficient for a bank may also not be sufficient for an ITS or an in-vehicle network system. Indeed, the context of future autonomous transportation could be the more likely target and has to protect vital resources and passenger's safety (Section 2.1).

The threat mentioned above violates the different security policies of the computer system. A security property describes a convenient feature of a system concerning a certain type of threat. A common classification is given by [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF]; Coulouris u. a. (2011); Northcutt (1999); Tanenbaum und van Steen (2002) listed below:

• Confidentiality: This property covers the protection of transmitted data against its release to unauthorized parties. In addition to protecting the content itself, information communication should also be resistant against traffic scanning and whereby its information is disclosed only to authorized parties.

• Integrity: Is the policy that protects the information transfer against modifications. This property guarantees that a single message arrives the receiver as it has transmitted by the sender, but integrity also extends to a stream of messages. It means that no messages are lost, duplicated, or reordered, and it makes sure that the messages cannot be replayed. As destruction is also covered under this property, all data must arrive at the receiver. Integrity is essential as a security property and as a property for network protocols. It must also ensure the message integrity in case of random faults, not only in malicious modifications, which means that any improper alterations in the communication flow should be detectable and recoverable.

• Availability: It defines a system whose resources are always available for usage in the limit of their capacity.

Whenever information needs to be transmitted, the communication channel is available, and the receiver can cope with the incoming data. This property makes sure that threats cannot prevent resources from being used for their intended purpose. A highly available communication system will the most likely working at a given instant in time.

• Authentication: Is about making sure that the information is authentic, which means that it verifies the sender's claimed identity. Authentication property assures the receiver that the message is from the source that it claims to be. So, it makes sure that no third party cannot pretend successfully being another source.

• Non-repudiation: This property describes how to prevents either sender or receiver from denying a transmitted message. When a message has been transferred, the sender can prove that it has been received.

Similarly, the receiver can prove that the message has actually been sent [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF].

Security Defences and mechanisms

To defend against the threat mentioned above, and respect the security policy, different security mechanisms can enforce the security properties defined. Depending on the anticipated attacks, different means have to be applied to satisfy the desired properties. [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF]; Tanenbaum und van [START_REF] Tanenbaum Und Van Steen | Distributed Systems: Principles and Paradigms[END_REF] propose three main classes of measures against attacks: attack prevention, attack avoidance, and attack detection.

Attack Prevention

Attack prevention is a way of preventing certain attacks before reaching and affecting the target. An essential factor in this class is access control, a mechanism which can be applied at different levels such as the operating system, the network, or the application layerTanenbaum und van [START_REF] Tanenbaum Und Van Steen | Distributed Systems: Principles and Paradigms[END_REF]. Access control limits and regulates access to critical resources. A firewall Cheswick u. a. ( 2003) is a vital access control system at the network layer. It prevents attacks from the outside against the inside network machines by denying connection attempts from unauthorized parties located outside.

Attack Avoidance

Based on the possibility that an intruder may access the target resources, to protect the confidentiality and the integrity of the information, attack avoidance mechanism modifies the information to make it unusable for the attacker.

The data is preprocessed at the sender before transmitted over the communication channel and post-processed at the receiver. It resists attacks by being nearly useless for an intruder. If no modification occurs, the receiver's information is identical to the sender's one before the preprocessing step. The most important tool used in this class is cryptography Schneier (1995). It allows the sender to transform information into what may seem like a random data stream to an attacker but can be easily decoded by an authorized receiver.

Attack Detection

Attack detection assumes that an attacker can obtain access to the desired targets and successfully violate a given security policy. When undesired actions occur, attack detection has the task of reporting that something went wrong appropriately. Also, it is often desirable to identify the exact type of attack. An essential aspect of attack detection is recovery. Often it is enough to report that malicious activity has been detected. Still, some systems require that an attack be reverted or stopped. The attack detection operates under the worst-case assumption that the attacker gains access to the communication channel and can use or modify the resource. The most used tool of the attack detection class are intrusion detection systems [START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF]. Because this thesis focus on intrusion detection systems, the remaining sections of this chapter are dedicated to a more detailed introduction to intrusion detection, and its applications in the ITS domain.

Intelligent In-vehicle network Cybersecurity

Objective

We • Authenticity :

One of the primary objectives in-vehicle communication is to ensure only trustworthy entities in the networks.

Authenticity is being able to verify the sender of any message in the system, so the data can only be accessed by authorized ECU, in the case where an attacker has access to the network with an external device Koscher u. a. (2010a); Forest und Jochim (2011); Groll und Ruland (2009).

• Integrity :

To maintain the accuracy and completeness of message content is the objective of Integrity principle. Public Key Infrastructure (PKI) solutions are proposed for vehicle communication to verify whether the received data is corrupted or legitimateOthmane u. a. ( 2015).

• Availability :

Availability ensures timely and reliable access to and use of information for nodes in the in-vehicle network. To preserve the functional state of ECUs in a vehicle network and complement the security requirements.

• Non-Repudiation : Any broadcasting node should not deny the right to authenticate. This property is fundamental in the case of an accident. After the accident, the driver must be rightly identified during the investigation, and before the accident, every message should be transmitted reliably El-Rewini u. a. ( 2020).

• 

Threat and attack interfaces of an in-vehicle network system

The first step of an automotive attack is to exploit an external interface to access the vehicle's internal systems. In the Section 2.1.1 several external interfaces have been described, in this part, we describe how an attacker can leverage these interfaces to gain access to the in-vehicle network. The interfaces present on modern cars have different ranges, from physical access to remote access. The Fig 2 .12 shows the identified attack interfaces. The first class is the direct physical attack possibility. In that case, the attacker has direct access to all parts of the vehicle. The second class is about the remote attacks on a connected car. Interfaces with a longer range generally have a convenient aspect for an attacker as it is easier for the attacker to preserve the connection during the full attack.

Physical Access

Inside a modern and future automotive vehicle, there are multiple physical interfaces, and some are directly connected to the internal network.

OBD-II is the most well-known connector and is used by many security researchers to find and execute automo- The infotainment system inside a car provides the other physical access points, through discs and USB drives.

Often the infotainment system is connected to the CAN bus. The information supplied by infotainment systems can include (voice calls, text messages, emails, social networking, personal contacts) and other forms of data that can be received by connecting to a mobile phone. Infotainment system vulnerabilities were demonstrated when the BMW ConnectedDrive infotainment system was hacked because of its corresponding in-vehicle Network gate-wayEl-Rewini u. a. (2020); Robinson-Mallett und [START_REF] Hansack | [END_REF].

The attacks requiring physical access can be both invasive and non-invasive, sidee-channel attacks are noninvasive attacks that refer to revealing useful information regarding the transmitted data in the in-vehicle network.

On the other hand, invasive attacks are allowed through physical access that enables the intrusion to the vehicle bus system and its ECUs, resulting in code modification, code injection, packet-sniffing and fuzzing [START_REF] Thing | [END_REF].

Remote Access

Remote access is more convenient for the attacker. Some remote access interface (short-range) requires the attacker to be nearby the vehicle during the attack's entire duration. The range of these kinds of access points is typically about 10 metres to 300 metres for some access points(Bluetooth, Pressure Monitoring System(TPMS), Adaptive reconfiguration of attack targets and deception tactics can be employed to enable better control and flip the balance during an attack. Also, detection models should also evolve through self-learning during their operation lifecycle to adapt to detect new forms of aggression.

This section provides an overview of in-vehicle network security characteristics, discussing its merits and shortcomings, ranging from intrusions and threats to specific CAN bus attacks. We point about several existing research work proposal that treats many security issues subject with recommendations for addressing and improving connected cars cybersecurity. Many challenges encounter developing a secured connected vehicle, due to its external connectivity and limited computational resources, lack of attack and threat database and the critical risk for passengers, including their lives. Network security solutions and situational awareness tools are essentially defensive strategies, and even the best defences can fail. Hence it is necessary to have a fallback solution that would prevent the vehicle from worst scenarios (taking unreasonable decisions that would endanger the vehicle's occupants). A fallback solution would prevent such an attack because the vehicle would know how to differentiate between normal and derivative state of it inners network system. Hence the Intrusion Detection system is a fundamental component of the general in-vehicle security system.

In the following sections, we will review the IDS definition and its taxonomy related to the in-vehicle network;

we will define the multiple constraint and challenges that bind the development of practical IDS for the in-vehicle network system. This knowledge will provide the basics challenges and questions that will serve as problems that we will tackle in our next chapters.

In-vehicle Intrusion Detection System

As discussed above, and based on researcher and experts in cybersecurity, connected systems in general, will never be absolutely secure Bellovin (2001). Besides this, finding and fixing the system's security flaws is not feasible for technical and economic reasons. In the case of vehicles, it demands the recall of all carsDenning (1987). We also discussed that the attackers might bypass standard security mechanism. Even if the attack is not active or successful, it is always useful to be aware of the intrusion attempts. Thus, developing a mechanism that can deal with threats while they are in action is valuable for any system's security, especially dynamic system like connected vehicles, where such a mechanism is independent of the system's functionalities and defences.

In To build such a system, many dimensions need to be considered. Indeed, the assets that might have a value or power in their context require specific monitoring sources and the use of tailored methods. Also, infrastructure architecture may require a particular computation location with its resources constraint. The evaluation of the IDS output demand informative metrics to assess its performances, based on this output, the usage and experts decision-making needs to be considered. We describe below a taxonomy of the different part and their relation in building an IDS.

Monitoring source

Whether a probe monitors a particular machine's activity or the activity at a specific point in the communication net- 

Methods

The Signature-based (misuse/Knowledge) Approach: the signature-based approach relies on the apriori knowledge of some possible attacks and attempts to encode this knowledge as rules to define malicious traffic/activity patterns to compare to current samples. If a match occurs, an alarm is raised. In that case, the signature-based approach has the advantage of causing very few false positives if the attack's correlation rules are sufficiently accurate. In the other hand, this method can only detect a known attack. A new attack or even a new instance of known attack (Homomorphe attack) are not detected (0-day exploit). Moreover, detecting a known attack occurs if the probes are well placed to cover all the system data required and correctly configured [START_REF] Kruegel Und Toth | Thomas: Using Decision Trees to Improve Signature-Based Intrusion Detection[END_REF]; [START_REF] Ügel | Distributed Pattern Detection for Intrusion Detection[END_REF]. Recently, misuses detection incorporates techniques allowing more flexibility to deal against the variations of attacks, using Machine Learning and augment the rule-based by using Fuzzy Logic.

The anomaly-based (behaviour) approach: This method start first by defining the pattern of normality, the method analyses whether the current activity samples deviate from the established model of normality and if so, an alarm is raised. This approach is more exposed to false alarms. Indeed, The network traffic is susceptible to perturbation and sometimes to evolutions. The anomaly-based approach Tsai u. a. ( 2009); Wu und Banzhaf (2010); Hamed u. a.

(2018); Buczak und Guven (2016) interprets those events as anomalous, even though they are intrinsic network behaviour. One of the benefits of anomaly detection is detecting new attacks since the system is modelled according to normal behaviour. Anomaly-based IDS challenge is keeping up to date with environmental changes by retraining, or continuous updating is required to avoid an increase in false alarms, referred to as behavioural drift Kruegel 

Usage and role

A real-time intrusion detection tools analyse the activity of the system to be protected and enable defensive actions.

Audit data is examined as soon as it is produced based on different granularities in time. The advantage of this approach is that system activities can be analysed timely. Thus, a proper response can be issued when an attack is detected, which defines the IDS (responding with a passive notification or active reaction). However, real-time collection and analysis of audit data may introduce significant overhead in the communication network. offline tools are run offline at specific intervals. They analyse a snapshot of the system state and produce an evaluation of the security of that state. They do not provide any protection between two consecutive runs. Therefore, in case of a successful attack, they can be used only for postmortem analysis or to improve and update the IDS dynamic model.

However, they may perform a more thorough investigation by occasionally running without an unacceptable impact on the monitored system performance. As explained above, IDS can be distributed following different location in the system. To this end, a decision about the system state can be made collaborative between separate local and complement each other's coverage analysis or an independent fashion analysis specific for each probe.

Evaluation

For an IDS to be considered effective, high detection rate and low false-positive rate are important aspects to consider. Multiple metrics could be used for an IDS evaluation Hodo u. a. ( 2017). These metrics are discussed subsequently showing the significance and purpose of each. It is essential to mention that an evaluation metric doesn't reflect an IDS performance depending only on the detection rate. Indeed, we need other important evaluation factors, including the transparency and safety of the overall system, memory requirements, power consumption, CPU consumption and throughput via communication overhead, should be considered. Specifically, these metrics are essential for IDSs running on different hardware or specific settings such as high-speed networks, or hardware with limited resources. The result's clarity and explainability are also important aspects of an IDS, which helps the forensic analysis and speed-up the decision-making process.

The term accuracy is defined in the following :

• In the IDS terms, false-positive refers to security systems incorrectly detecting legitimate requests as misbehaviour or security breaches. In other words, the IDS detect something that not supposed to. Alternatively, IDS is prone to false-negatives where the system fails to detect something it should. False-negative imply missing detection of attacks that will not be mitigated and give a false sense of security. From the IDS perspective accuracy, many metrics are used:

OverallAccuracy = TP + TN TP + TN + FP + FN
(2.1) Equation 2.1 provides the overall accuracy. It returns the probability that an item is correctly classified by the IDS. and it is also called Sensitivity.

Precision = TP TP + FP (2.
To visualize the performance of an IDS, The trade-off between recall (true positive rate) and precision (true negative rate), AUC (Area Under The Curve) is used. Also, Equation 2.4 represents the harmonic mean of precision and recall. F1 is better suited to describe the performance of an IDS, especially when dealing with imbalanced classes.

F1 = 2TP 2TP + FP + FN (2.4)

in-vehicle network Constraints and Limits

Building IDS limitation and constraints depend on several dimensions; the context and topology of the studied system, its architecture, Deployment to its evaluation and the used methodology. The in-vehicle intrusion detection system can be considered as an embedded system, a computing system with a combination of hardware and software designed to perform one or a few dedicated functions with some vehicular domain specifications. We separate those concerns into Four elements:

1) The data and knowledge: One of the general questions is about the quality of the data and the knowledge experience about attacks and threats, compared to the IT system, that has more history and experience dealing with a different type of attack, the in-vehicle network was a closed system, and the threats exposed now are mostly subject of research efforts. What kind of data attack systems need to observe, while the in-vehicle system has various data sources. The more data can be monitored and obtained for evaluation, the better the overall picture of the system's current situation. However, the more information needs to be observed, gathered and evaluated, the more complex and costly the development and analysis process becomes.

2) Ressources and optimisation: An attack detection system needs to fulfil real-time performance requirements 

Conclusion

This chapter has provided the context of this research study concerning in-vehicle network security. We present a consistent background development of security from IT to the recent advanced vehicles architectures. We briefly discussed the several defence classes and solution while highlighting a focus on Intrusion Detection System in general. We extend the Intrusion detection system survey to a taxonomy specific to in-vehicle network demand and constraints.

Chapter 3

The anomaly detection problem :

state-of-the-art

Vehicles have a very long life span and are in use for decades in different conditions and locations. As discussed above In Chapter 2, to protect the car over this long period, only preventive measures are insufficient, and the vehicles security system has to work autonomously without a necessity for user interaction. To this end, IDSs are a good candidate to complete the security architecture of vehicles, with the capability to monitor the traffic on the vehicular networks and continually evaluate abnormal events to classify them as an attack or not. If appropriate, an alarm is raised as soon as a threat is detected, countermeasures to respond to attacks are considered, if reactive components have been integrated into the car's security system. This thesis presents an IDS scheme for in-vehicle networks that respect automotive networks' typical characteristics, and its protocols like the Controller Area Network false-positive rate, which is important as numerous false alerts could question the usability of the entire concept in the vehicle and may negatively affect the driver's awareness. However, as cited above, one major constraint of that method is dealing with unknown attacks and the lack of attack database specific for in-vehicle systems and need a rule for every single intrusion and variation thereof. For specification-based, handling the different components of the cars made with various providers makes it not practical to define explicitly the system normal behaviour limits.

Anomaly detection promises to detect attacks, including novel attack patterns that result in a system state which differs from the normal specification. However, in the past, anomaly detection systems were typically prone to high false-positive rates, and the specification of the system's normal behaviour has turned out to be challenging.

are detected) Chalapathy u. a. (2019).

Anomaly detection models output

Anomaly score describes how far each data point is from the normal pattern. According to the anomaly score, the subject matter expert will select a domain-specific threshold (commonly known as decision score) to identify the anomalies. In general, decision scores reveal more information than binary labels depending on the type of methods used. For instance, in OC-SVM, the decision score measures the distance of data point from the centre of the sphere; the data points that are farther away from the centre are considered anomalous. The anomaly score is used after setting a threshold to automate the model's decision to assign a category label as normal or anomalous to each data instance. AD model can also return a multi-class label (normal/anomalous-A/anomalous-B/...).

Anomaly detection challenges

The main advantage of systems based on this approach is that, in theory, they can detect previously unknown attacks. On the other hand, anomaly-based systems are prone to many challenges:

• The amount of time required to train the system the normal behaviour might be long.

• There is no universal procedure to model normal data. The concept of normality is still subjective and difficult to validate.

• The anomalous examples in datasets are not often available, and when they are the classes (normal/anomalies) are generally imbalanced. Besides, the data may contain noise which makes the distinction between normal and abnormal data more difficult.

• The monitored environment's behaviour might change during a period, requiring the system to updated to avoid false alarms.

• Performance of traditional algorithms in detecting outliers is sub-optimal on the image (e.g. images or distributed topology network) and sequence datasets since it fails to capture complex structures in the data.

• Need for large-scale anomaly detection: As the volume of data increases, it becomes nearly impossible for the traditional methods to scale to such large scale data to find outliers.

• Solve the problem end-to-end taking raw input data in domains with automatic feature learning and eliminates the manual developing of features by domain experts, especially in a closed system like vehicles systems.

• The boundary between normal and anomalous behaviour is often not precisely defined in several data domains and is continually evolving. This lack of well-defined representative normal boundary poses challenges. For instance, it may be possible to perform an attack within the boundaries of normality.

network-based on a particular feature: recurring patterns within the sequence of message IDs observed in the CAN Bus by modelling the CAN bus's normal behaviour in the form of transition matrix. This data structure identifies all the legit transitions between the message IDs of two consecutive CAN messages. This model will then be used as a reference to identify anomalies in the CAN traffic.

Statistical based Techniques

In statistical-based techniques Chandola u. a. ( 2009), the network traffic activity is captured, and a profile representing its stochastic behaviour is created. This profile is based on metrics such as the traffic rate, the number of packets for each protocol, the rate of connections, the number of different IP addresses, etc. Two datasets of network traffic are considered during the anomaly detection process: one corresponds to the currently observed profile over time, and the other is for the previously trained statistical profile. As the network events occur, the current profile is determined, and an anomaly score is estimated by comparing the two behaviours. The score indicates the degree of irregularity typically for a specific event, such that the intrusion detection system will flag the occurrence of an anomaly when the score surpasses a certain threshold. In other words, anomaly detection methods in these categories are based on estimating the probability densities of the data using statistical models and assuming that normal data will fall in high probability regions. In contrast, anomalies will fall in low probability ones (2019) categorise further methods both parametric and non-parametric techniques with a multitude of applications.

As our work focuses more on Deep Learning approaches, we will review a few techniques that have been widely used.

• chi-square test statistic: Ye und Chen (2001) use chi-square theory for anomaly detection, according to this technique, a profile of normal events in an information system is created, and the idea in this approach is to detect the large departure of events from the normal profile as anomalous or intrusion. To this end, a distance measure based on the chi-square test statistic is developed as :

χ 2 = n i=1 (X i -E i ) 2 E i (3.1)
Where X i is the observed value of the ith variable, Ei is the expected value of the ith variable and n the number of variables.

The X 2 has a low value when observing the variables is near the expected value. So, following the µ ± 3σ

rule, an anomaly is raised when X 2 value is higher than X 2 + 3S 2

x . In [START_REF] Kr | [END_REF], the author proposed a statistical processing unit for detecting anomalous network traffic to detect rare events like R2L or U2R (See Section 2.2.2). The metric aim to search identical characteristics of different service requests. The anomaly score is calculated based on the type and the length of the request and the payload distribution. In Moore u. a.

(2017) exploit the regularity in the timing of CAN communication. For each CAN ID, the NIDS stores the time differences between two successive messages and computes the mean arrival time. It will also register the maximum time difference from the mean, which will be used to define a threshold. An alert will be raised if the time between two packets differs from the expected time by more than the maximum time difference plus 15% of the mean.

• In Eskin (2000), the author proposed an IDS based on mixture models. The approach estimates a probability distribution over the data and applies a statistical test to detect the anomalies in UNIX system. The set of system calls having a probability of 1λ is a legitimate use of the system, and the intrusions have the (2009). First, an attacker so that the network traffic generated during the attack is considered normal. Second, setting the different parameters/metrics' values is a difficult task, especially because the balance between false positives and false negatives is affected. Moreover, a statistical distribution per variable is assumed, but not all behaviours can be modelled using stochastic methods. Furthermore, most of these schemes rely on the assumption of a quasi-stationary process, which is not always realistic. And in more large scale computation, classical methods have their limitation.

Classical Machine learning approaches

Due to the thesis scope, some techniques and methods are not considered in this brief ML review. How ever, a (1999). aims to create a function that returns +1 in a region representing the training set's observations and -1 elsewhere. To achieve this, the same concepts apply as for the described binary problem, but now the distance between the origin and the hyperplane is maximised (in the feature space F). Then, decision function f (x) returns +1 for observations located on one side of the hyperplane and -1 for observations on the other side.

The process of automatically constructing models from data is not trivial, especially for intrusion detection problems. It's because intrusion detection faces problems, such as huge network traffic volumes, highly imbalanced data distribution, difficulty realizing decision boundaries between normal and abnormal behaviour, and a requirement for continuous adaptation to a constantly changing environment. This demonstrates a system that can only detect what it knows, and vulnerable to new attacks appearing in different versions. Additionally, the normal traffic not included in the knowledge base is considered as an attack. Thus, it generates unintentional false alarms. Continuous training is required for anomaly detection techniques to build a normal activity profile that is time-consuming and depends on the availability of a completely normal traffic instance. Furthermore, it is challenging to keep a normal profile upto-date in today's dynamic and evolving network environment. Among a large pool of classification-based network anomaly detection techniques, we discussed four major classical methods and their related application to Intrusion detection for the in-vehicle network. The following section reviews the more recent and advanced technique for anomaly detection using Deep Learning.

Deep learning for Anomaly Detection

Deep learning for anomaly detection, deep anomaly detection for short, aim at learning feature representations or anomaly scores via neural networks for the sake of anomaly detection. Many deep anomaly detection methods have been introduced, demonstrating significantly better performance than conventional anomaly detection on addressing challenging detection problems in various real-world applications. Deep Learning methods enable end-to-end optimization of the whole anomaly detection pipeline, compared to traditional modelling(See Section 3.2) depends on feature engineering, which relies on expert and external knowledge to create features relevant to a given problem. Besides, they also allow the learning of representations specifically tailored for anomaly detection. These two capabilities are crucial to tackling the Anomaly Detection challenges, where traditional methods can fail. This subsequently results in more informed models and thus better recall-rate. For the anomaly explanation challenge, DL methods are black-box models; but they offer options to unify anomaly detection and explanation into single frameworks, resulting in explanation of the anomalies spotted by specific models (Deep Learning explainability is well-studied research, but not studied in this work). Deep Learning methods also excel at learning complex structures and relations from diverse data types, such as high-dimensional data, image data, video data, graph data, etc. This capability is important to address various challenges, multimodel-inputs, and an environment with many sensors like an autonomous vehicle. Further, they offer many practical and easy-to-use network architectures and frameworks to learn unified representations of heterogeneous data sources seamlessly. However, shallow meth-ods for handling those complex data are generally substantially weaker and less adaptive than the Deep Learning techniques.

Deep Learning for Anomaly detection: Categorization and formulation

Deep neural networks leverage complex compositions of linear/non-linear functions that a computational graph can represent to learn expressive representations Goodfellow u. a. ( 2016). The two basic building blocks of deep learning are activation functions and layers. Activation functions determine the output of computational graph nodes (i.e., neurons in neural networks). They can be linear or non-linear functions. Some popular activation functions include linear, sigmoid,tanh, ReLU (Rectified Linear Unit) and its variants. A layer in neural networks refers to neurons (2019) provides an explanation for representation learning as the trade-off between finding a minimal compression Z of the input X while retaining the informativeness of Z for predicting the label Y . Put formally, supervised deep learning seeks to minimize the mutual information I(X; Z) between the input X and the latent representation Z while maximizing the mutual information I(Z; Y ) between Z and the classification task Y .

Deep Anomly Detection Challenges

The above complex general problem discussed in Section 3. • Anomaly Detection recall rate: Since anomalies are infrequent and heterogeneous, it is difficult to identify all anomalies. Many normal instances are wrongly reported as anomalies (False-positive) while not reporting sophisticated abnormalities. Although plenty of anomaly detection methods has been introduced over the years, the current state of the art methods, especially unsupervised methods, still often produce high false positives on real-world datasets. Reducing false positives and enhancing detection recall rates is one of the most critical yet complex challenges, particularly for the future in-vehicle network anomalies.

• Anomaly detection in high-dimensional and not-independent data: Anomalies often exhibit evident abnormal characteristics in a low-dimensional space yet become hidden and unnoticeable in a high-dimensional space. High-dimensional anomaly detection has been a problem, especially in an environment with large amounts and modalities like intelligent vehicles. Performing anomaly detection in a reduced lower-dimensional space spanned by a small subset of original features or newly constructed features is a straightforward so- (2018,2017). However, identifying complex feature interactions and correlation in an end-to-end fashion may be essential in high-dimensional data and avoiding additional feature extraction process is important in the environment as embedded systems. Still, it remains a significant challenge for anomaly detection. Further, guaranteeing the new feature space preserved useful information for specific detection methods is critical to downstream accurate anomaly detection, but it is challenging due to the aforementioned unknowns and heterogeneities of anomalies.

• Data Topology: It is also challenging to detect anomalies from instances that may depend on each other, such as by temporal, spatial, graph-based, multi-modal, distributed and other interdependency relationships.

Thus, Deep Learning architecture must fit the data topology needs.

• Data-efficient learning while leveraging the small amount of anomalies: Utilizing those labelled data to learn expressive representations of normality/abnormality is crucial for accurate anomaly detection. Weaklysupervised anomaly detection assumes we have some labels for anomaly classes and the class labels are partial (they do not represent the entire set of anomaly class), inexact (Noises and system fault instead of attacks). Two significant challenges are how to learn expressive normality/abnormality representations with a small amount of labelled anomaly data and how to learn detection models that are generalized to novel anomalies uncovered by the given labelled anomaly data.

Our main studies and contributions are motivated by the challenges mentioned above. In the following chapters 4,5,6 we take into consideration the different constraint related to the in-vehicle network system (Section 2.4.1).

Discussion

As our objective is an Anomaly detection based Intrusion detection system, we review the various efforts and research works relative to Anomaly Detection. Thus, including the emerging field of Deep Learning and its applications to Anomaly detection in many domains. Based on the SOA information, we will discuss the hypothesis and problematics that led us to our actual contributions. Our objective in the following chapters is to present our contributions in 

Introduction

In the previous chapter Section 3.3, we introduce Anomaly detection as a well-established topic in Machine Learning, with many applications in domains such as fraud detection, cybersecurity, video surveillance, and predictive maintenance [START_REF] Chandola U | Anomaly Detection: A Survey[END_REF][START_REF][END_REF]Hodge und Austin, 2004;[START_REF] Chalapathy Und Chawla | Sanjay: Deep Learning for Anomaly Detection: A Survey[END_REF].

Moreover, the recent advances in Artificial Intelligence bring insight into future applications, as autonomous transportation like self-driving cars. Many cyber-security threats can impact the usability of those systems (Chapter 1).

The problem of anomaly detection highlights many risks related to those threats and can help the standard security systems to face new threats.

We present three main settings for anomaly detection. The first is the unsupervised case, where an algorithm has to discover the data's intrinsic properties to detect the anomalies without any label guidance(Campello u. Adversarial Networks (GANs) [START_REF] Goodfellow U. A | [END_REF], which were proved very efficient in many application fields (Creswell u. a., 2018), have also been adopted in recent works on anomaly detection [START_REF] Schlegl | Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[END_REF]Zenati u. a., 2018b,a;[START_REF] Akcay U | GANomaly: Semisupervised Anomaly Detection via Adversarial Training[END_REF][START_REF] Golan Und El-Yaniv | Ran: Deep Anomaly Detection Using Geometric Transformations[END_REF][START_REF] Sabokrou | Adversarially Learned One-Class Classifier for Novelty Detection[END_REF][START_REF] Deecke U | Image Anomaly Detection with Generative Adversarial Networks[END_REF][START_REF][END_REF]Zenati u. a., 2018a;[START_REF] Schlegl | Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[END_REF].

In this chapter, we investigate several problems related to GAN-based anomaly detection methods. We propose a new method, called AnoEAN (Encoding Adversarial Network for Anomaly Detection). The principle of AnoEAN is to learn a function (Encoder) that projects the original dataset into a small dimension latent space so that the normal examples are projected in a restricted region of the latent space and the anomalies outside this region. This latent representation allows us to identify anomalies directly in the latent space by using a Mahalanobis distance on the distribution induced by the normal examples. We thus eliminate all the problems related to the reconstruction loss function. To do so, we develop a new approach that trains an encoder by adversarial learning. We assume that we have a large amount of normal data and a small number of anomalies, which is a common framework for anomaly detection. We finally conduct a series of experiments proving that AnoEAN performs better than conventional anomaly detection techniques, including those based on GANs, using both the MNIST base of handwritten digits (LeCun, 1998) and two standard network intrusion detection databases (KDD'99, NSL-KDD). 

Generative Adversarial

Theoretical analysis

In this section, we develop the loss functions L D and L E (see Eq. (4.2) and (4.3)) in order to identify the optimal discriminator and encoder. We begin with the discriminator. The formulas of L D can be rewritten by introducing the integrals instead of the expectations: to 0 :

L D = z -p z (z) log D(z)dz - x p xn (z) log(1 -D(E(x)))dx - x p xa (x) log(1 -D(E(x)))dx
∂f (D(z)) ∂D(z) = - p z (z) D(z) + p n (z) 1 -D(z) + p a (z) 1 -D(z) = 0 ⇒ D(z) = p z (z) p z (z) + p zn (z) + p za (z) (4.5)
if p z (z) + p zn (z) + p za (z) = 0, we can compute the second derivative to check that this extremum is a minimum :

∂f (D(z)) ∂D(z) = p z (z) D(z) 2 + p n (z) (1 -D(z)) 2 + p a (z) (1 -D(z)) 2 > 0 (4.6)
Hence the optimal discriminator is D * (z) = pz(z) pz(z)+pz n (z)+pz a (z) . It corresponds to the Bayes classifier predicting if z comes from the distribution p z or from the encoder.

Let us see what the encoder does when the optimal discriminator is plugged into loss function L E . We have: 

L E = z p zn (z) log(1 -D * (z)) + p za (z) log(D * (z))dz = z p zn (z
(i) n } mn ∼ P xn , {x (i) a } ma ∼ P xa , {z (i) } m ∼ N (µ, σ 2 )). for k = 0, ..., n D do δ w ← ∇ w [-1 m m i=1 log D w (z (i) ) -1 mn mn i=1 log(1 -D w (E θ (x (i) n ))) -1 ma ma i=1 log(1 -D w (E θ (x (i) a )))] w D ← Adam(δ w , α, β) end for δ θ ← ∇ θ [-1 mn mn i=1 log D w (E θ (x (i) n )) -1 ma ma i=1 log(1 -D w (E θ (x (i) a )))] θ G ← Adam(δ θ , α, β) end for
In Algo. 1, we show the training procedure of our model. We take random examples x n and anomalies x a from the training set and project them into the decision space with the encoder (i.e., we calculate each E(x a ) and E(x n )).

We add random vectors from the p z distribution to these projected examples, and get the batch that is presented at the input of the discriminator. The discriminator is modified by a gradient descent to minimize L D ( See Eq 4.2); the encoder is frozen during this step. Then, it is the encoder's turn to be modified in order to minimize L E (See Eq 4.3), the discriminator being frozen during this step. This procedure is iterated until convergence. Notice that to seed up the gradient descent, we modify the loss function of the encoder :

L E = -E xn∼px n [log(D(E(x n )))] - E xa∼px a [log(1 -D(E(x a )))
]. The minimization of this function is theoretically equivalent of the previous one, but it has larger gradient for bad encoders.

Experiments

This section evaluates our method's performance (AnoEAN) on the anomaly detection task and compares it against other GANs methods and Classical OC-SVM. We describe our experimental protocol, the algorithms used to compare our model, the datasets, and our technique's implementation details.

The purpose of the evaluation is to show the performance of EAN on the anomaly detection task, especially in a different setting, where the anomalies are rare. Also, the ability to detect unknown attacks while dealing with a normal class with many modalities to demonstrate our model's efficiency compared to state of the art.

Experimental setup

In our experiments, we used three datasets: MNIST, KDD99, and NSL-KDD.

MNIST (LeCun, 1998) is a database of handwritten digits commonly used for image classification problems.

Despite that MNIST does not initially contain normal classes and anomalies, it is often used in anomaly detection to analyze algorithms' behaviour and visualize their predictions. In our experiments, we used this dataset in two ways:

1) 1 against all: we consider that a certain number represents the normal class and the remaining nine numbers represent the anomaly class. For the OCSVM, AnoGAN, ALAD, EGBAD methods, the training set consists of 5000 normal data; the test set includes 1700 examples, of which 80% of normal data and 20% of anomalies randomly selected among the other nine classes. For AnoEAN and SVM, we additionally inject 10% anomalies into the learning set; these are chosen among four classes out of nine so that certain figures (anomalies) do not appear during the learning.

2) n against m: it is based on the same principle as the "1 against all", the only difference being that the normal class is composed of several digits. We group n classes of digits into one normal class and treat the remaining m digits as abnormal examples. We use the same sample apportionment in the learning and test sets as in "1 against all". The objective is to analyze the algorithms' behaviour in the case where the normal class is heterogeneous and can be separated into several subclasses. results.

SVM.

Although the SVMs often produce efficient solutions for balanced data sets, they are sensitive to unbalanced data sets [START_REF] Veropoulos U | [END_REF][START_REF] Wu | Adaptive Feature-Space Conformal Transformation for Imbalanced-Data Learning[END_REF][START_REF] Akbani U | Nathalie: Applying Support Vector Machines to Imbalanced Datasets[END_REF]. The main reason is that the objective function assigns the same cost C for positive and negative classification errors in terms of penalty [START_REF] Veropoulos U | [END_REF]. We used a cost-sensitive learning solution by adding a weight for each class that penalizes errors (giving a higher weight to the least frequent class corresponding to the anomalies class).

AnoGAN was the first published anomaly detection method based on GAN [START_REF] Schlegl | Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[END_REF]. The model learns a generator able to project random points from a low-dimensional multivariate Gaussian distribution (latent space) to the distribution of the training data set. The model adversarially learns a discriminator that must separate the generated data from the real data. After the training stage, we sample a latent space variable using a generator, followed by gradient descent on this latent variable, to estimate the inverse projection for each element of the test set. The anomaly criterion combines the reconstruction loss and the feature match loss (distance computed with the discriminator's last hidden layer). For each test element, if the optimization cannot find a latent variable that minimizes the criterion, we obtain a high score.

EGBAD takes advantage of the BiGAN/ALI network structure. EGBAD has an encoder that projects the data into in the latent space (Donahue u. a., 2016;[START_REF] Dumoulin U | Adversarially Learned Inference[END_REF]. The adversarial training process is driven through a discriminator that takes as an input the pair (data, latent variable) and must determine which pair constitutes a real pair consisting of a sample of real data and its coding (x, E(x)), or a false data sample and the corresponding latent space input of the generator (G(z), z). For a given test input x, EGBAD (Zenati u. a., 2018a) uses the encoder to infer the latent variable z = E(x) that will be used as input for the generator to reconstruct the test input G(E(x)).

The anomaly criterion is the same as that of [START_REF] Schlegl | Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery[END_REF].

ALAD is a bidirectional GAN, based on the ALICE architecture [START_REF] Li | ALICE: Towards Understanding Adversarial Learning for Joint Distribution Matching[END_REF]. It directly infers the reconstruction of data in the test phase using an encoder and the generator G(E(x)). In ALAD (Zenati u. a., 2018b), the authors regularize the conditional distribution by adding another discriminant D xx (x, G(z)) to approximate a conditional entropy constraint. The aim is to enhance EGBAD by explicitly forcing the encoder and generator during the training so that both are inverse. The authors also apply the spectral normalization [START_REF] Miyato U | Spectral Normalization for Generative Adversarial Networks[END_REF] to regularize the training. The anomaly score is the L 1 reconstruction error in the discriminant space G xx between the actual data and the sample generated using the discriminant hidden layer before the logit layer. OCSVM, ALAD, AnoGAN and EGBAD are one-class methods: Only normal data is used in the learning phase.

In AnoEAN and SVM, we use few additional anomalies, leading to unbalanced classes.

ECUs (Electronic Control Units) are deployed over the vehicle. They communicate with each other on the automotive bus system using various bus field busses (see Section.1.3.1), the main one being the Controller Area Network (CAN). Future applications like autonomous transportation require various technologies that allow the vehicles to interact with other vehicles (VANETs), pedestrians and road infrastructure. These controllers make the vehicles more connected with the external world, allowing new functionalities and dramatically increasing the security risk as exposed in the first chapter 2.3.

In this work, we focus on the CAN bus, which is de facto standard for in-vehicle communication. We focus on anomaly detection based intrusion detection using the advances in deep-learning architectures to handle the CAN data structure. To do so, we define three levels for the in-vehicle IDS framework: 1) CAN data level, 2) sequence modelling level and 3) detection level. The CAN data level selects the information that the intrusion detection system is monitoring and how it is structured and organised to fit the sequence modelling. The sequence modelling level consists of the deep-learning models that can learn complex representations and hidden characteristics from the first level's time series data. The detection level uses this representation to detect anomalies by establishing a trust score for the actual events. The detection phase depends on the aim of the IDS and also on the type of available data. If we have times series labelled with known attacks, then we are in a supervised learning setting, and the goal of the model is to discriminate the attack patterns from the normal behaviour patterns. In the other case, the type of attacks is unknown, and no labels are available. In the One-class learning setting, the IDS has to learn the normal behaviour, and the goal is to detect any behaviour that deviates from the normal patterns.

This research aims to propose a general in-vehicle IDS using deep learning; we propose a representation for reconstruct the signals for each possible input message based on the joint vector. The attack detection occurs by observing the deviation between the signal value of a message at the current time step with its reconstruction.

In [START_REF] Seo | GIDS: GAN based Intrusion Detection System for In-Vehicle Network[END_REF], the author proposes a combination of two networks using only the IDs of CAN data: A normal discriminator (Binary classifier) to detect known attacks and a GAN-based IDS to detect the unknown attacks.

Besides, they transform the input into a sparse image representation of CAN payload with one hot-encoding. Both networks' architecture is composed of a convolutional network, and the anomaly detection process has two steps.

The first is to use the classifier to detect if the actual image (representation of successive CAN IDs) is abnormal, and if it is not, the CAN image representation is received by the discriminator learnt with the GAN to detect if the CAN image is a fake (Anomaly). Pawelec u. a. ( 2019) proposes an IDS by analyzing bit-level CAN message, using LSTM to predict the next message based on the history size of 10 messages; If the distance between the predicted message and the actual message is bigger than a threshold, then the message is an anomaly.

We note that, in the literature, many dimensions can be considered to design the CAN IDS. The used data highly impacts the type of detectable attacks and the building of the model that can learn about a broad range of situations to ensure that the model encompasses the exhaustive space of normality and decreases the false positive rate. There is also another dimension, which is the In-Vehicle context, where the memory and computation power is limited, so the practical feasibility of a given CAN IDS needs to be evaluated in front of the constraints of the in-vehicle context.

Contribution focus and positioning

In summary, the literature of CAN bus IDS strategy and methods are proposed based on how the attack manifest into the CAN bus network with manipulation on CAN frequency and CAN packet payload. In section 2.3 of the second chapter, we presented the recent studies concerning the different attack surfaces within the CAN network and its vulnerabilities Lee u. a. ( 2017 

CAN data level

Concerning the CAN data level most techniques illustrated above in terms of inspection level are flow-based and use mainly the frequency as the main feature. This approach of detecting attacks is straightforward and legitimate due to the predictability of regular CAN bus traffic, which broadcasts packets at a fixed time interval. This approach can only detect attacks that alternate this fixed time interval, and also, technical issues in the network can occur, which will lead to false positives. The other methods that consider the payload feature inspection uses a specific feature (like speed engine pressure and engine speed, steering wheel, etc ...). In reality, most of those packets are encoded, and the message specification to obtain the values and features from the packet message is kept confidential by the constructors, and the available public datasets are encoded.

Most methods in the discussed studies focus on improving the core model by using Deep learning but neglect the examination of pre-processing parts. The input data need to consider the two inspection level so the core model can learn about the flow and the semantic content of the in-vehicle network. Also, The IDS overall performance is greatly influenced by the size of the data, primarily for CAN, as it broadcasts a large number of packets per second.

In CAN data level we propose a new representation that can handle the issues mentioned by grouping both content and frequency information. We will discuss the data construction in more detail in the section below 5.3.1.

Sequence modelling level

In this work, we focus on Deep learning for sequence modelling of time series. Thus our input is a sequence of different messages represented by their IDs. We define two modelling scenarios (point-wise and window-wise). The point-wise scenarios is when the model output score related to a single message or ID. The Window-wise is when the model's output is related to a sequence of messages IDs. the window-wise approach is more about giving the state of the network given a time-frame, and point-wise is about labelling each packet in the network if it normal or malicious. Obtaining an output for each data point is impractical, especially from a real-time CAN which generates a considerable volume of data in milliseconds.

We use both One-class and classification modelling to deal with both know and unknown attacks. We analyze in section 5.3.2 different deep learning architecture in terms of accuracy metrics and memory constraints. The results are discussed in the experimentation section 5.4.

Detection level

For the detection level, the window-wise modelling enables detecting attacks intervals. To detect the source and the main concerned ID or messages, it more of a forensic task. The proposed detection is about defining if the actual time frame is legitimate behaviour of the overall system or malicious behaviour. 

Discussion

In-vehicle IDS require the model to have good detection results despite strong constraints on computational resources. For FCN, the number of parameters increases exponentially with the input sequence's size, thus increasing the size of the model. CNN and TCN benefit from parallelism; convolutions can be done in parallel since the same filter is used in each layer, unlike in LSTM, where the predictions for later timestamps must wait for their predecessors. LSTM and TCN both include in their architectures a way to deal with the history size, while CNN is limited to

Models training and Results

We use four different architectures (FNN, CNN, TCN and LSTM)with two experiment settings: One-class anomaly detection and supervised anomaly detection.

We have trained the models on 500 epochs for all architecture, with a batch size of 100. We used adam Kingma u. a. (2014) as the optimizer for the gradient descent with learning rate decay when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 0.2 after 100 epochs. And we shuffle the data in each epoch. For these experiments, we have used Keras and TensorFlow (Chollet u. a., 2015;[START_REF] Abadi U | TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems[END_REF] as the main deep learning framework. We used Nvidia Tesla M40 and Nvidia Tesla P100 GPUs.

We evaluate the model's performance with F-measure, Precision and Recall metrics. Those metrics are related to basic metric, True positives (TP) and true negative (TN), both measure the number of attack and normal example respectively that were correctly predicted by the model. False Positive and False-negative represent the proportion of attack and normal example that were incorrectly predicted. So, Precision P rc = T P/(T P + F P ) and Recall Rec = T P/(T P + F N ), respectively, describe the percentage of correctly identified attacks versus all predicted attacks and all actual existing attacks. F-measure is the weighted average of Precision and Recall.

F 1 = (P rc + Rec)/(P rc + Rec).

In Table 5.1, we show the metrics on the One-class task using autoencoders with different architectures. All architectures show excellent performances for all types of attack. TCN is slightly better on most attack cases and comparable with LSTM on Plateau attack. Notice that on the Suppress attack, the models perform worse than on the other attacks, while the CNN collapses with a lot of false positive. It shows that Suppress attack is unobtrusive.

Moreover, in the representation matrix M , there is no explicit mention of the missing values. Nevertheless, TCN and LSTM still have good results. Thus they can implicitly retrieve the information in the learning stage from the representation matrix. 

Conclusion

In this chapter, we discussed our second contribution towards developing an in-vehicle Intrusion Detection System.

We introduce a novel in-vehicle intrusion detection system based on an extensive series of experiments that validate the different levels of the system: 1) At the data level, we use a representation matrix to structure the CAN data information that groups both flow and payload information. 2) At the sequence modelling level, we use a TCN architecture since we have shown that it performs well concerning the detection metrics and computational resources consumption. 3) At the detection level, we jointly use a classifier and an autoencoder so that the IDS can deal with both known and unknown attacks. Notice that our results were established by using the SynCAN Dataset, which is 

Method and modelling

Problem Statement

We consider a distributed architecture for network intrusion detection system. Firstly, we assume that we have p probes (S 1 , S 2 , ..., S p ) that monitors the vehicle's different subnetworks (CAN bus communication between different ECUs). Each probe S i hosts a local anomaly detector D i . The input of detector D i is a multivariate time series T i .

The aim of D i is to distinguish between the normal pattern and the attack pattern based on the features extracted from T i only. Formally D i (T i ) ≈ P(y i = 1|T i ) where y i ∈ [0, 1] (with 1 for normal example and 0 for anomalous examples).

The probes are not allowed to exchange information between them. They exchange information only with the bastion B. We want to limit this exchange of information as much as possible to reduce the communication overhead. To achieve this goal, we use two levers. On one hand, the detectors do not send information at each step of time: it assesses the probability of an attack D i (T i ) and raises an intrusion alarm e i ∈ {0, 1} if this value is larger than a given threshold τ i . Formally,

e i =      0, if D i (x i ) ≥ τ i 1 (6.1)
If no probe raises the alarm, then no information is sent to the bastion by any probe. On the other hand, if only one of the probes raises the alarm, the bastion asks all the probes to transmit information about their status and local data. This is the second lever where we act: as we shall see below, the detectors are based on deep learning and designed to provide a condensed (summarized) representation of the data using a function G i . Therefore, the detector D i does not transmit raw input data T i but a condensed representation denoted v i , v i = G i (T i ). In the presence of detector D i , the number of such messages is dramatically Eq 6.1, based on the threshold of certainty τ i where e i ∈ [0, 1] (1 for sending the message, 0 for preventing sending the message). Each probe S i send its related embedding features v i when its model D i yield a score ŷi lower than the threshold τ i , that defines how much the model is certain about the normality of the local pattern in the probe S i given a sequence T i .

We define y d = f (E, ŷb ) the final anomaly score Eq 6.7, where E : (e 1 , ..., e p ).

y d =     
1, if e i = 0, ∀e i ∈ E ŷb (6.7) y d represents the final anomaly score yield by DAD, if ∀e i ∈ E, e i = 0, y d = 1 it means that all the probes flagged an affirmation of the normal state of the system and no more processing is needed, so the probability score of y d is set to 1. In that case, two optimizations are done, the first is the processing of the model D b , and the second is the communication of the different representation vectors v i . On the other hand, if one probe is not certain about its local state's normality, ∃e i ∈ E, e i = 1, the bastion is requested to launch the model D B and all v i are sent. In that case, the only notable optimization is the size of v i compared to T i in a centralized model.

Experimentation and results

This section presents the different experiments setting and results concerning the workflow used to build the DAD framework. We start with adapting the SynCAN data for a multi-view input. The second part is to train the subnetworks jointly. The third part is to calibrate the different thresholds to obtain good accuracy detection while reducing the communication overhead.

Data and experiment setup

Dataset preparation:

We used the SynCAN dataset that we presented in the previous chapter (Section 5. System. This first leads us to Generative Models, more specifically Adversarial Learning. Our first contribution, Chapter 4 is more general to the domain of Anomaly Detection and adversarial learning methods. Nonetheless, we already expect the need and constraints in memory in this approach that guided our intuitions and sharpened our results toward a lightweight solution. A logic continuation implies the analysis of the context (In-vehicle network).

To this end, we go through the data which represent the system behaviour and topology. We first notice that compared to other application domains, the in-vehicle network data are not available. There is a lack of approved public dataset. This makes the different contributions of the state of the art of in-vehicle intrusion detection system diverge.

The input also differs in terms of the end problem since it consists of solving the same problem using different inputs leading to different models and results that are not comparable. Our contribution Chapter 5 toward this significant issue is to propose a matrix representation for CAN data to improve the detection of different types of attack that impact both the content and the in-vehicle network flow. It also compares the different Deep Sequence modelling architecture to capture the normal behaviours pattern and detect various types of attacks. In the third part of this thesis, Chapter 6, we project further the in-vehicle network context in terms of evolvement to be near the actual prototypes network architecture of autonomous vehicles. The main question is how to fit the IDS using deep learning in this distributed and low resources environment. We proposed a framework (DAD) that matches the distributed and multi-view aspect of future in-vehicle networks. We proposed a framework that reduces the communication overhead without impacting the model's performance in detecting attacks. Abstract : Despite all the different technological innovations and advances in the automotive field, autonomous vehicles are still in the testing phase.

Many actors are working on several improvements in many domains to make autonomous cars the safest option. One of the important dimensions is cybersecurity. Autonomous vehicles will be prone to cyberattacks, and criminals might be motivated to hack into the vehicles' operating systems, steal essential passenger data, or disrupt its operation and jeopardize the passenger's safety. Thus, cybersecurity remains one of the biggest obstacles to overcome to ensure vehicles safety and the contribution that this technology can bring to society. Indeed, the actual and future design and implementation of Autonomous Vehicles imply many communication interfaces, In-vehicle communication of the embedded system, Vehicle-to-X (V2X) communications between the vehicle and other connected vehicles and structures on the roads. Even though the cybersecurity aspect is incorporated by design, meaning that the system needs to satisfy security standards (anti-virus, firewall, etc.), we cannot ensure that all possible breaches are covered. The Intrusion Detection System (IDS) has been introduced in the IT world to assess the state of the network and detect if a violation occurs. Many experiences and the history of IT have inspired the cybersecurity for autonomous vehicles. Nevertheless, autonomous vehicles exhibit their own needs and constraints.

The current state of vehicles evolution has been made possible through successive innovations in many industrial and research fields. Artificial Intelligence (AI) is one of them. It enables learning and implementing the most fundamental self-driving tasks. This thesis aims to develop an intelligent invehicle Intrusion detection system (IDS) using machine learning (ml) from an automotive perspective, to assess and evaluate the impact of machine learning on enhancing the security of future vehicle intrusion detection system that fits in-vehicle computational constraints. Future In-vehicle network architecture is composed of different subsystems formed of other ECUs (Electronic Controller Units). Each subsystem is vehicles. Our primary focus is on In-vehicle communication security. We conduct an empirical investigation to determine the underlying needs and constraints that in-vehicle systems require. First, we review the deep learning literature for anomaly detection and studies on autonomous vehicle intrusion detection systems using deep learning. We notice many works on in-vehicle intrusion detection systems, but not all of them consider the constraints of autonomous vehicle systems.

We conduct an empirical investigation to determine the underlying needs and constraints that in-vehicle systems require. We review the deep learning literature for anomaly detection, and there is a lack of tailored study on autonomous vehicle intrusion detection systems using Deep Learning (DL).

In such applications, the data is unbalanced: the rate of normal examples is much higher than the anomalous examples. The emergence of generative adversarial networks (GANs) has recently brought new algorithms for anomaly detection. We develop an adversarial approach for anomaly detection based on an Encoding adversarial network (EAN). Considering the behaviour and the lightweight nature of in-vehicle networks, we show that EAN remains robust to the increase of normal examples modalities, and only a sub-part of the neural network is used for the detection phase. Controller Area Network (CAN) is one of the most used vehicle bus standards designed to allow microcontrollers and devices to communicate. We propose a Deep CAN intrusion detection system framework. We introduce a Multi-Variate Time Series representation for asynchronous CAN data. We show that this representation enhances the temporal modelling of deep learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and compare several architectures to design an in-
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  ITS are relatively new, especially autonomous vehicles (automotive transportation), many research and industrial areas have integrated and tested cybersecurity methods by conducting many experiments on conventional ITS. It is ranging from strong authentification, regular auditing, encrypted communication to a private network and secure routing Qiang Hu (2018); Hahn u. a. (2019); Jadoon u. a. (2018). The conventional methods, like Cryptographic approaches, are not entirely suitable for ITS. They need to meet a set of requirement like low latency, lightweight encryption and communication overhead. We note that the ITS architecture can differ in terms of implementation details depending on the constructors, where nowadays, many actors are working on in-vehicle architectures systems that are reliable in terms of cybersecurity. These architectures and their implementations are still in their prototyping phase (See Fig 1.3).In autonomous vehicles, the external interfaces gradually increase, as well as the cybersecurity threats. For example, in CharlieMiller (2015) the authors achieved the invasion of Toyota Prius and Ford Escape and remotely invaded a Jeep Cherokee. Furthermore, in[START_REF] Smith | SMITH: Car Hacker's Handbook[END_REF] the authors demonstrated possible paths of vehicle cyber attacking using penetration test. Researchers analyze the security issues in vehicles by experimental attacking Checkoway u. a. (2011); Koscher u. a. (2010a), the results show the severity of vehicular cyberattacks. In Petit und Shladover (2014), the authors investigates potential network attacks and vulnerabilities for autonomous vehicles, the possible attack targets include traffic signs, machine vision, GPS signals, sensors, radar signals, lidar signals,
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 21 More than 70% of the industrial control system (ICS) vulnerabilities disclosed in the first half of 2020 can be exploited remotely claroty (2020). The Transportation sector looks particularly exposed in the top five most vulnerable sectors. The expectations are that the numbers of transportations vulnerabilities will increases when the ITS are deployed at a large scale.
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 2 Figure 2.1: Industrial Control System (ICS) vulnerabilities disclosed in the first half of 2020. Credit claroty (2020)

  External communication technologies are used to control several features of the car remotely, and connectivity in modern vehicles has become a necessity. Manufacturers are trying to give the consumer more ways to remotely control several aspects of the vehicle Koscher u. a. (2010a) using more than the traditional radio-controlled door unlocking functionality. For example, WiFi(IEEE 802.11) and Cellular communication such as GSM, 3G, 4G even the recent 5G are becoming a more standard option. These communication technologies are used for turning on air conditioning and even starting the engine. GPS for navigation and Bluetooth for hands-free smartphones usage has been used in the past decade[START_REF] Und Gerla | A survey of urban vehicular sensing platforms[END_REF]. Additionally, from the manufacturers' point-of-view, diagnostics messages are required to push a remote Firmware update to ensure that the customer gets the best aftermarket experience. The manufacturer may also request to receive a periodical report about the vehicles to provide remote support. These communications are usually done through VPNs provided by the manufacture or third-party services Shavit u. a. (2007).More sophisticated services and communications features are incorporated into vehicles. On-Board Diagnostics (OBD-II) port provides direct, standard access to internal automotive networks for user-upgradable subsystems such as audio players who are routinely attached to these same internal networks. Telematics systems provide value-added features such as automatic crash response, remote diagnostics, and stolen vehicle recovery over a long-range wireless link. To do so, these telematics systems integrate internal automotive subsystems with a remote command centre via a wide area cellular connectionKoscher u. a. (2010a). Increased external communication between Autonomous Vehicles and the external environment: One main type of communications is the inter-vehicular, Vehicle-to-Vehicle (V2V) communications on the road Vehicular Adhoc Networks (VANETs). It allows informationsharing among nearby autonomous vehicles so that each car is better aware of its rapidly-changing surroundings Kumar u. a. (2012);[START_REF] Thing | [END_REF]. In future, V2I and vehicle-to-Internet of Things (V2IoT) communications will also become more prevalent on the roads. V2I communication is a wireless and bidirectional exchange of information between vehicles and road infrastructures, such as overhead RFID (Radio-Frequency Identification) readers and cameras, lane markers, traffic lights, street lights, road signs, and parking meters. As smart vehicles travel along roadways, On-Board Units (OBUs) within intelligent vehicles communicate with Road-Side Units (RSUs), IOT devicesHahn u. a. (2019); Poudel und Munir (2021); Lu u. a. (2014); Sun u. a. (2016).and actuators different functionalities can share those would be grouped as one domain. This topology can support more complex intelligent driving functions, as each domain ECU has more power in both communication and com-putationHaas und[START_REF] Haas | [END_REF]. 3) In a centralized architecture, most of the computation tasks are realized in the central computation entity. Most of the components are connected to the central computation entity to access all sensors and actuators data. This topology enables the combination of more information, thus enhance the potential of making a better decision. However, a centralized topology has higher demands on the data communication capacity, so it needs to group the components into different sub-networks according to their physical placement or the network properties to improve the efficiency of communication Brunner u. a. (2017).

  the high-speed communication among vehicles electronic components with a limited cost. The most successful communication network in the current automotive industry is the Controller Area Network (CAN) protocol. CAN is without any doubt the most widely used standard in the field of vehicle hardware communication since its publication in 1986. CAN is a network protocol developed by Robert Bosch for vehicle systemsSzydlowski (1992). The original specification paper fromSzydlowski (1992) points out many proprieties that led to the widespread adoption of this protocol standard (Prioritization of messages, Guarantee of latency times, Multicast reception with time synchronization, System-wide data consistency, Multimaster, Error detection and signalling, Automatic re-transmission of corrupted messages). Compared to other network technologies, CAN have two outstanding advantages: cost efficiency and flexibility Zeng u. a. (2016); Afsin u. a. (2017); Hartwich und Bosch (2012). Effectively, CAN is a priority-based bus implemented by using two wires. The Medium Access Control (MAC) protocol of CAN uses carrier sense multiple access with collision detection (CSMA/CD). Up to 8 bytes of data can be carried by one CAN frame, and a cyclic redundancy check (CRC) of 16 bits is used for transmission error detection. CAN facilitates bit by bit non-destructive arbitration over the identifier which also serves as a priority flag.

( A )

 A Dominant and recessive logical bus states : CAN use two distinct wires to transmit signals: the CAN High (CANH) and CAN Low (CANL) wire. When no signals are transmitted on the bus, these wires are set into an idle state; the voltage amounts to 2.5V . After the first bit has been sent, the CANH wire increases its voltage to 3.75V , and the CANL wire decreases its voltage to 1.25V . So, the transmission of data in the CAN bus is through differential signalling and what this means is that we use both wires(CAN high and CAN low) to transmit data at the same time. Because the objective is the difference in voltage between these two wires as you can see from the Fig 2.4, the recessive level means that both of the wires will stay at around 2.5V , so the difference between the two wires is close to zero. The dominant level means that the CAN high wire goes to a higher voltage, whereas the CAN low wire goes to a lower voltage, creating a 2.5V difference between the two wires. We note that the recessive level is the logical one, and the dominant level is the logical zero Natale u. a. (2012).
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  or communication channel. It prevents the information from reaching its intended target. Attacks in this category attempt to perform a kind of Denial Of Service (DoS)Peng u. a. (2007); Kruegel (2004); Loukas und Öke (2010); Mahjabin u. a. (2017). • Interception: An unauthorized party gets access to the information by eavesdropping into the communication channel to capture data being transmitted on a network (performing sniffing or snooping attack) while it can keep traffic flowing efficiently Anu und Vimala (2017); Philip Baczwewski (2000); Prowell u. a. (2010).• Modification: The information is not only intercepted but modified by an unauthorized party while in transit from the source to the destination. Man-In-The-Middle (MITM) attacks occur when unauthorized individuals or parties are placing themselves in the path of communication to eavesdrop, intercept, and possibly modify legitimate communications. Prowell u. a. (2010);[START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF] 

  Denial Of Service (DoS) : A Denial of Service attack attempts to slow down or completely shut down a target to disrupt the service and deny the legitimate and authorized access for users or applications. Peng u. a. (2007); Loukas und Öke (2010); Mahjabin u. a. (2017). Such attacks are widespread on the Internet where a collection of hosts are often used to bombard web servers with dummy requests. There are several different kinds of DoS attacks Bijone (2016a) we present some of them. Flooding DoS Attacks an attacker sends more requests to a target that it can handle. Such attacks can either exhaust the target's processing capability or exhaust the network bandwidth of the target, either way leading to a denial of service to other usersPeng u. a. (2007).Distributed Denial of Service attack (DDoS), is using a large pool of hosts to target a given victim host. Once an important number of hosts are compromised, the intruder instructs them to launch various flooding attacks against a specified target Mirkovic und Reiher (2004);[START_REF] Kumar | [END_REF].

  present two separate vehicle security concerns (In-vehicle security and VANETs security), In this work, the external communication is considered as an attacking interface.The VANETs securiy network Bariah u. a. (2015); Engoulou u. a. (2014); Hasrouny u. a. (2017) is getting a lot of attention in the research era. Nonetheless, this thesis scope is in-vehicle network intrusion detection (See Fig 2.11). The same as security in internet and communication technologies IT, In-vehicle network security objective is facing the threats by meeting the underlying standard security requirements introduced above (See in Section 2.2.2). The preservation of these objectives intends to secure the in the in-vehicle network communication. These security principles are defined in the following with the perspective of vehicle networks El-Rewini u. a. (2020); Hahn u. a. (2019); Dibaei u. a. (2019); Chattopadhyay u. a. (2020); Qiang Hu (2018). • Confidentiality : Confidentiality requires the content of a message not to be disclosed to any parties other than the intended ones. Lightweight Encryption mechanisms are proposed for in-vehicle networks to satisfy this objective Mundhenk u. a. (2017); Radu und Garcia (2016). Recent works in steganography and covert channels have investigated how those methods can conceal information when malicious actors have access to the communication channel Manchanda und Singh (2015).

  Fig (See 2.9). The attacker must pass all four steps to achieve a successful attack on the connected vehicle; to this end, the attacker uses three necessary elements. The first element is finding Point access. The second element is compromising an ECU, and the third element is finding a control feature that could be compromised. The number of technical vulnerabilities indicates the feasibility of different kind of attacks. In Checkoway u. a. (2011); Avatefipour und Malik (2017); Thing und Wu (2016); Dibaei u. a. (2019); Petit und Shladover (2014); Petit u. a. (2015); Toyama u. a. (2018) the authors present a broader view how an attacker can compromise vehicle security.
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 2 Figure 2.12: Overview of Threat and attack interfaces of an in-vehicle network system.credit Sheehan u. a. (2019)

  tive attacks. In addition to monitoring electrical failures, the second-generation OBD also monitored emission-related systems and provided standardization across different manufacturersCarsten u. a. (2015). OBD-II ports are vulnerable to in-vehicle network access attacks and dongle exploitation attacks.[START_REF] Miller | [END_REF] were able to transmit and receive messages over CAN using an ECOM cable and homemade connectors to connect to the OBD-II port. USB ports have become prevalent in modern-day vehicles, since they can connect phones, navigation systems, and USB devices to the vehicleOnishi u. a. (2017). Cai u. a. (2019) found that attackers could use the USB port to create a backdoor within the BMW Next Best Thing (NBT) vehicle entertainment system. For electric vehicles, another physical entry point to the in-vehicle network is the charging infrastructure. Eventually, the charging infrastructure could be used to conduct attacks Bernardini u. a. (2017). Many attacks on electric vehicle charging have been identified. Mustafa u. a. (2013); El-Rewini u. a. (2020) charging is susceptible to masquerading, tampering, eavesdropping, and denial of service attacks, in addition to privacy concerns and charging thievery. In Fries und Falk (2012), the author discussed the man-in-the-middle and tampering attacks on the payment price and the amount of energy that the meter believes the electric vehicles has received. many other threats related to electric cars has been demonstrated and discussed in Sun u. a. (2015); Alcaraz u. a. (2017); Vaidya und Mouftah (2018); Lee u. a. (2014).

  Wi-Fi hotspot, V2X). Long-range interfaces (radio, GPS, Cellular) has a more extended range superior to 10km Francillon u. a. (2010); Rouf u. a.(2010). Although this requires enhancement misappropriation techniques.Telematics systems complement infotainment systems by providing information on internal vehicular systems, which includes (fuel efficiency, engine failures, brake pad wear, transmission). Jo u. a. (2017) identifies security risks in Android OS-based telematics systems that enabled drivers to remotely unlock and lock car doors, start and stop the car engine using low-speed CAN, and access diagnostic information using high-speed CAN.requirements.CAN broadcast messages on the bus, where the receiver node selects the message based on IDs it is configured to receive. This enables attacks such as message interception (as illustrated in Fig 2.10) that violate the confidentiality. Also, lack of information about the sender in the message like signatures, an attacker can send arbitrary CAN frames to any node in the network and violate the authenticity and non-repudiation. The other case is, suppose an attacker manages to take over a gateway (See Fig 2.3) that forwards messages from one domain to another. In that case, the attacker can add, remove or change any data that the relayed message carries, meaning the violation of integrity. Besides this, since an attacker can send any data on the bus by sending high-priority messages (Section 2.1.3) or messages with error flags can cause nodes to stop responding causing a Denial of Service (DoS), thus affecting the availability of the system.Our review analysis with the CAN bus's effects conclude that a cyber-attack, when observed at the CAN bus level, looks like a modification of CAN packets, i.e. CAN packet, is inserted, deleted or modified. Thus, yielding a categorization into three groups fabrication, suspension, and masquerades attack. • Fabrication Attack (Injection): Fabrication attack is carried out by fabricating messages with a forged ID on a corrupted ECU and inserting them on the network, resulting in conflicting the ECU supposed to receive this ID Liu u. a. (2017); Choi u. a. (2018); Choi u. a. (2016). Fabricated messages are inserted with a higher frequency than the original message, and the original message is not taken into account. The fabricated messages can also be inserted either immediately before, or immediately after the occurrence of the original message. • suspension attack (Bus-off attack): This attack consists of stoping the ECU from sending messages. When attackers continually send bits both in the identifier field and in other fields (See Fig 2.7), which causes the ECUs transmit error counter (TEC) then be incremented. When the TEC value is greater than 255, the corresponding ECU has to shut down Choi u. a. (2018).An other way is when attackers continually send high priority messages that block legitimate low priority messages (DoS attack) Liu u. a. (2017) • masquerading attack : An attacker masquerades as a legitimate node. Liu u. a. (2017); Choi u. a. (2018); Tomlinson u. a. (2018a) identify two CAN vulnerabilities that facilitate masquerading attacks. First, CAN frame are not encrypted and can be studied by attackers to locate system entry points. Second, CAN does not support message authentication. The receiver of messages has no information about the source's validity, meaning that illegitimate messages are captured without being detected. This allows other action for the attacker like Replay attack, consisting of continually resend a valid message to prevent the vehicle real-time functioning Liu u. a. (2017); Nowdehi u. a. (2017); Mundhenk u. a. (2015); Tomlinson u. a. (2018b).By reviewing the knowledge about the potential security vulnerabilities, threats and attacks, the research community had proposed many defence mechanisms to secure the in-vehicle architecture network.[START_REF] Thing | [END_REF] proposed three main categories for in-vehicles defence: preventive defence, passive defence, active defence.(A) Preventive defence : In preventive defence, securing the systems mainly focuses on protection measures to defend and attempt to stop an attack from happening or make them useless for the attacker. To this end, many methods had been proposed to rectify the lack of secure communication for the in-vehicle network. Mundhenk u. a. (2015); Kang u. a. (2017); Tashiro u. a. (2017) suggest a lightweight authentication using asymmetric cryptography, one-way hash chain and sending a partial MAC in each frame. Luo und Hou (2019) proposed Automotive Gateway Firewall. (B) Passive defence : Attackers who can intrude on the in-vehicle system and bypass preventive defences can harm or cause damages. Thus, the passive defence should provide another layer of protection against the adversaries when the attack is happening. Intrusion Detection Systems (IDSs) are one of those defence mechanisms, different models of Intrusion Detection System (IDS) for in-vehicle network security have been proposed and tested under computational simulation scenarios Choi u. a. (2016); Choi u. a. (2018); Groza und Murvay (2018); Vuong u. a. (2015);[START_REF] Kang | [END_REF]. Anti-malware, also as a passive defence solutions for in-vehicle network should be capable of defending from harmful software that attempt to infiltrate the system. As malwares against vehicle are still in its early stage, there may not be a high number of malwares database available. Nonetheless, signature based detection can be put in place, by first considering these malwares Zhang u. a. (2014).(C) Active defence : Countering advanced and determined adversaries would require an active approach to security. Using Continuous Security Monitoring critical components and interfaces. Besides this, Vehicles are considered vital systems, networks, and critical infrastructure that continue to evolve at a fast pace. Therefore, it becomes necessary to design and deploy defence measure such that they are themselves, moving targets.

  [START_REF] Und Neumann | Requirements and Model for IDES -a Real-time Intrusion-detection Expert System: Final Report[END_REF][START_REF] Und Neumann | Requirements and Model for IDES -a Real-time Intrusion-detection Expert System: Final Report[END_REF] was one of the earliest research work on Intrusion Detection System (IDS), he introduced IDS under the name a real-time intrusion-detection expert system (IDES). Under the hypothesis of an intrusion or exploitation of a system's vulnerabilities involves a deviation or abnormal system usage patternsDenning(1987). The IDS task is to detect and identify those malicious activities by monitoring the system's activity independently from any particular subsystem, application or type of intrusion, thereby aiming for general-purpose abnormality detection. The IDS monitors and analyses the system's events and employs modelling techniques to recognise intrusive behaviour in a system. IDS have been classified in the literature using different taxonomies. Our work will present a brief taxonomy grouping the leading dimension criteria to build and in-vehicle IDS. depending on the different context and fields Bijone (2016b); Liao u. a. (2013); Veeramrddy u. a. (2011); Garc 2a-Teodoro u. a. (2009); Buczak und Guven (2016); Lazarevic u. a. (2005)

  work, IDSs are classified into three main classes: HIDS (Host-based Intrusion Detection System) NIDS (Networkbased Intrusion Detection System), and Hybrid IDS. A host-based IDS monitors the local behaviour on a singleoperating system host, generally analysing system performance, program process, and the operating system logs Debar u. a. (1999);Guha und Kachirski (2003);[START_REF] Kruegel | KRUEGEL, Christopher: Intrusion Detection and Correlation: Challenges and Solutions[END_REF]. Network-based IDS monitors network traffic (the metadata and content of the packets sent into the network) to observe network activity and detect if it may be a part of an attack process. The hybrid IDS monitors both host and network sources jointly to capture their correlated information since both sources complement each other, mainly concerning achieving a broader coverage for detection.

(

  2004). Many works have proposed the hybridisation of techniques to improve the detection rates by combining both misuses and anomaly detection for IDS since they found that different methods performed better on different intrusion Ozcelik u. a. (2017); Garg und Maheshwari (2016); Bostani und Sheikhan (2017). The Specification-based approach: Specification-based intrusion and attack detection systems generate speci-fications from the intended target features, e.g., protocol state machines and security-related behaviour. The use of security specifications to detect malicious activity has been proposed and investigated in several contexts Larson u. a. (2008); Ko u. a. (1994); Majeed und Altaf (2019); Cheung u. a. (2006).

  True Positive (TP): Number of intrusions correctly detected • True Negative (TN): Number of non-intrusions correctly detected • False Positive (FP): Number of non-intrusions incorrectly detected • False Negative (FN): Number of intrusions incorrectly detected

2 )

 2 Equation 2.2 provides the percentage of positively classified incidents that are truly positive. the percentage of positively classified incidents based on the model positive prediction

  Kargl u. a. (2008);Carsten u. a. (2015); Robinson-Mallett und[START_REF] Hansack | [END_REF];[START_REF][END_REF] with the capacity of reducing the false-positive while being accurate. Especially attacks that target the vehicle's safety, e.g., by sending false messages to the brakes, engine, etc. can only be tackled if this requirement is fulfilled. However, the automotive environment is a network of embedded systems, including highly specialised and cost-optimised components, which offer only limited computational power but are designed to work reliably under very different physical conditions Kargl u. a. (2008); M üter u. a. (2010).3) Deployment and toplogy: As explained above, the in-vehicle system also require a particular type of Deployment to fit the topology and the architecture of the in-vehicle network, this includes a strategy to handle the different data sources and how to implement the IDS model while respecting the two previous concerns.4) Industrial needs:The in-vehicle network architecture is fixed after the client's purchase. The IDS automation needs to consider the cost of the inclusion of the ECUs that will be part of theIDS Hindy u. a. (2020);[START_REF] Zhou U. A | [END_REF]. Also, a practical solution is a solution that takes into consideration the industrial needs in terms of usage and role (SeeFig 2.14).

(

  CAN). One central question is how exactly the IDS should identify attacks for the in-vehicle network, which method detection is suitable for the automotive area. Signature-based and Specification-based approaches and detection Dupont u. a. (2019); Ji u. a. (2018); Olufowobi u. a. (2020); Larson u. a. (2008); Dupont u. a. (2019) promises a low

  Chandola u. a. (2009); Pimentel u. a. (2014); Basora u. a. (2019). In Chandola u. a. (2009); Chandola und Kumar (2007); Hawkins (1980); Aggarwal (2013); Miljković (2010); Pimentel u. a. (2014); Song u. a. (2007); Basora u. a.

  Mixture model: In the category of parametric techniques Chandola u. a. (2009) assume that the normal data is generated by a mixture of parametric distributions with parameters and probability density function f (x, Θ), where x is an observation. Such techniques use a mixture of parametric statistical distributions to model the data. We find Gaussian Mixture Models (GMM) based on the assumption that the data is generated from a weighted mixture of Gaussian distributions. We find two subcategories. The first subcategory of techniques models the normal instances and anomalies as separate parametric distributions. The testing phase involves determining which distribution the test instance belongs Chandola u. a. (2009); Chandola und Kumar (2007); ABRAHAM und BOX (1979). In contrast, the second subcategory of techniques models only the normal instances as a mixture of parametric distributions. A test instance that does not belong to any learned models is declared an anomaly Chandola u. a. (2009); Agarwal (2006).

  probability of λ. The two probability distributions which generate the data are called the majority (M), and anomalous (A) distributions Ahmed u. a. (2016b). In Liang u. a. (2020), the author proposes a novel filter model based on a hidden generalized mixture transition distribution model (HgMTD) in VANETs, which can quickly filter the messages from neighbouring vehicles. It adopts a well-known multi-objective optimization (NSGA-II) algorithm combined with an expectation-maximization (EM) algorithm to forecast neighbouring vehicles' future states and then filter out malicious messages by monitoring the change of the state pattern of each neighbouring vehicle. In Hamada u. a. (2018), The proposed method learns the Probability Density Function (PDF) of the Gaussian mixture model, from the reception cycle periods of the monitored CAN-ID using the sequentially discounting expectation and maximization(SDEM) algorithm. These reception cycle periods are calculated from the arrival time of each CAN frame of the monitored CAN-ID. The learner continuously estimates each PDF from the reception cycle periods in each slot. The anomaly detector assesses each CAN frame using the PDF that was estimated in the previous slot. A threshold is used to assess the frame in the anomaly detector. • Classical regression with statistics: The regression model-based anomaly detection is a subcategory of the parametric techniques identified inChandola u. a. (2009). This approach is based on the principle of forecasting. A regression model is first fitted on the training data. The resulting model is then used on test sequences to compute the residuals (the difference between the predicted value and the real value). The residuals determine the anomaly scores. In classical statistic approaches for the regression task, we can include anomaly detection techniques based on traditional time series forecasting models such as Vector Auto-Regressive (VAR) Melnyk u. a. (2016), and Autoregressive Integrated Moving Average (ARIMA) Bianco u. a. (2001); CHEN u. a. (2005); Zhu und Sastry (2011). In Tomlinson u. a. (2018c) two methods, ARIMA and Z-score, were using broadcast time-intervals to detect injected packets in the highest priority and regular broadcast CAN packets. The author showed similar results to the supervised method using prior average times.Statistical approaches have several advantages to enhance Anomaly Detection process. Firstly, they do not require prior knowledge about the target system's normal activity; instead, they can learn the system's expected behaviour from observations. Secondly, statistical methods can accurately notify malicious activities occurring over long periods with tasks like regression. However, many drawbacks pointed out Garc 3a-Teodoro u. a. (2009); Basora u. a. (2019); Chandola u. a.

  broad range of ML and pattern matching methods are reviewed in Chandola u. a. (2009); Chandola und[START_REF] Chandola Und Kumar | Vipin: Outlier Detection : A Survey[END_REF];Hawkins (1980);[START_REF] Song | Sanjay: Conditional Anomaly Detection[END_REF];Wu und Yen (2009). We focus on the main methods that have been applied to Anomaly detection and in-vehicle IDS. In Fig 3.3 we defined the main categories of Machine Learning tasks that we will review, from which we will mention the appropriate algorithm and techniques. • Multi-class Anomaly Detection: Multi-class classification based anomaly detection techniques assume that the training data contains labelled instances belonging to multiple normal classes Chandola u. a. (2009). The method used teaches a classifier to distinguish between a normal class and anomalous examples (In most of the cases, anomalous instances do not form a class) in such a setting. Several variants of the basic neural network technique have been proposed using different types of neural networks Hawkins u. a. (2002); Williams u. a. (2002) (concerning those methods,an in depth review is presented below in the section 3.3). Also, much of previous research motivated the study of Anomaly detection, including Decision Trees (DT) that have been successfully applied to intrusion detection to discover known and unknown attacks. DT is a common classification method based on divide and conquers strategy. A DT comprises decision nodes and leaf nodes, and they represent a decision test over one of the features, and the result class, respectively[START_REF] Safavian | [END_REF]. In Yang u. a. (2019), the authors propose selected ML algorithms based on a tree structure, including decision tree, random forest, extra trees, and XGBoost. In Kalkan und Sahingoz (2020) compared machine learning classifiers for the CAN security. As a result of the study, it has been observed that the decision tree-based ensemble learning models result in the best performance in the tested models. however, suffer from a number of drawbacks. One is that they cannot generalise to new attacks in the same manner as certain other machine learning approaches. They are not suitable for anomaly detection since homomorphic attacks and new attacks are a promising use of anomaly detection. Empirical findings also demonstrate that DTs are very sensitive to the training data and do not learn well from imbalanced dataChawla (2003);[START_REF] Gharibian | [END_REF]. Support Vector Machines (SVMs) have been applied increasingly to anomaly detection in the research in many application domains. SVM is one of the supervised learning models used classification problems. It uses each data's nearest training points to build one or more hyperplanes to classify high-dimensional data. It maximizes the margin between them as much as possible. The margin is defined as the perpendicular distance between the decision boundary and the closest of the data points. The decision boundary is chosen to be the one for which the margin is maximizedBishop (2006);[START_REF] Cortes | [END_REF]. An important property of support vector machines is that the model parameters' determination corresponds to a convex optimization problem, so any local solution is also a global optimum Sch ölkopf u. a. (2002).SVM classifiers have been used widely for intrusion detection to distinguish between normal and intrusive data Mukkamala u. a. (2002). And in Duan und Keerthi (2005) presented a common approach is to combine several two-class SVMs, and in Mukkamala u. a. (2005) applied this paradigm, to network-based intrusion detection, adopting the five class, thus requiring five SVMs. For each SVM, the training data is partitioned into two classes. One represents an original class, and the other class represents the remaining, e.g., Normal and all intrusions, or Probing and Normal and the other attacks. The combination technique adopted is a winner-takes-all strategy Duan und Keerthi (2005), in which the SVM with the highest output value is taken as the final output.Intrusion detection systems apply different SVM types to benefit from their capabilities, such as conducting multiclass classification. Moreover, in some approaches, to boost the ADS detection rate and accuracy, SVM parameters and its applied kernel functions are trained through using meta-heuristic algorithms. Also, to increase the detection rate, some of the ADS approaches have exploited the SVM with other classifiers such as decision trees, ANN, and na3ive byes. Furthermore, some of the outlined schemes have applied feature extraction methods or utilized meta-heuristic algorithms for feature selection. Finally, some other ADS approaches have tried to handle the imbalanced datasets, making the SVM training process faulty and biased.In Alshammari u. a. (2018), the authors propose an intrusion detection method for CAN bus IDS in vehicles.It detects DoS and the Fuzzy attacks which occur on CAN Bus. And inTanksale (2019), propose a support vector machines based intrusion detection system that can detect anomalous behaviour with high accuracy. At the same time, they treated three overall types of anomalies (point anomaly, contextual anomaly, and collective anomaly). With respect to the CAN, each type of anomaly requires different message types and parameters to create the needed feature vectors. They grouped the CAN traffic features into groups based on the message's functionality as the SVM input feature vector.• One-class Anomaly Detection:In a one-class problem, the training set only contains observations describing one class, and the classifier constructs a model that captures this class. For each new observation in the classification phase, the classifier decides if it falls inside this model or that it is an anomaly. A situation where one-class classification algorithms are practical is monitoring normal systems behaviour. In that case, Data describing normal behaviour can be gathered easily. Data relating to errors, attacks and security issues, cannot be collected easily and costeffectively. Even with simulation, we cannot approach a sufficient distribution of anomalous examples that will encompass the behaviour of many types of attacks. We can collect CAN network traffic from cars under normal driving conditions, but traffic containing attacks is much more challenging to obtain. A one-class classifier is trained on the available Data and thus constructs a model describing the in-vehicle network behaviour under normal circumstances. The classifier decides for each new observation in the monitoring phase, whether it fits the class representing normal behaviour or anomaly. The Machine learning methods used for One-Class classification rely on the normal traffic activity profile that builds the knowledge base and consider activities deviate from the baseline profile as anomalous. The advantage lies in their capability to detect completely novel attacks, assuming that they exhibit ample deviations from the normal profile. One-class Support Vector Machine (OC-SVM), introduced Sch ölkopf u. a.

  stacked in some forms to adapt the type of input data. Commonly-used layers include fully connected, convolutional & pooling, and recurrent layers. One can leverage those layers to build different popular neural networks architectures. For example, multilayer perceptron (MLP) networks are composed of fully connected layers, convolutional neural networks (CNN) are featured by varying groups of convolutional & pooling layers, and recurrent neural networks (RNN), and long short term memory (LSTM), are built upon recurrent layers Goodfellow u. a. (2016); Pang u. a. (2021). And more recent advanced architecture can combine many layers types to enhance the performance of the model. Given a dataset X = {x 1 , x 2 , ..., x N } with x i ∈ R p , let Z ∈ R d (d < p) be a representation space, then deep anomaly detection aims at learning a feature representation mapping function f RM (.) : R p → R d or an anomaly score learning function f AS (.) : R p → R where anomalies can be easily differentiated from the normal data instances in the space yielded by the f RM or f AS function, where both are a neural network. In the case of learning the feature mapping f RM , an additional step is required to calculate the anomaly score of each data instance in the new representation space or an additional feature reconstruction f Rec (.) : R d → R p in the case of Auto-Encoders Rumelhart u. a. (1986); Baldi (2011); Goodfellow u. a. (2016) as an example. While f AS can directly infer the anomaly scores with raw data inputs, binary calssifier for example. An overview of the deep anomaly detection consists of three conceptual paradigms ( See Fig 3.7). In (a) Fig 3.7, The task of representation Learning using Deep learning is not directly related to anomaly detection, where this method is used as some independent feature extractor only Dara und Tumma (2018); Rumelhart u. a. (1986). This category of methods aims at leveraging deep learning to extract low-dimensional feature representations from high-dimensional and/or non-linearly separable data for downstream anomaly detection. The feature extraction and the anomaly scoring are fully disjointed and independent from each other. Thus, the deep learning components work purely as dimensionality reduction only Pang u. a. (2021). Compared to traditional dimension reduction like principal component analysis (PCA) Cand ès u. a. (2011); Sch ölkopf u. a. (1997), deep learning tech-In the third category (c) in Fig 3.7, neural network directly learns the anomaly scores. Novel loss functions are often required to drive the anomaly scoring network. Formally, this approach aims at learning an end-to-end anomaly score learning network in which the methods are dedicated to learning anomaly scores via neural networks in an end-to-end fashion binary classification (softmax likelihood models) or one-class classification. In Saxe u. a.

  1.3 leads to several Deep Anomaly detection challenges. Some challenges, such as scalability data size, have been well addressed in recent years Pang u. a. (2021); Bulusu u. a. (2020); Chalapathy und Chawla (2019), while the following are remaining as challenges, to which deep anomaly detection can play some essential roles.

  lution or feature selection-based method Keller u. a. (2012); Lazarevic und Kumar (2005); Liu u. a. (2012); Azmandian u. a. (2012); Pang u. a.

  addressing the In-vehicle IDS challenges with Deep Anomaly Detection. We present our focus and work positioning compared to state of the art established in this chapter in Fig 3.8. 2019), Jul 2019, Toulouse, France.

  a., 2015; Kiran u. a., 2018); The training set contains both normal and anomalous examples, but the labels are not available. The second is the supervised case, where an algorithm must usually face unbalanced datasets, with significant rates of normal data and few anomalous examples. The third is the one-class classification, where the algorithm has access only to a large set of normal data. Unlike the unsupervised case, there are no anomalous examples in the training set. In this chapter, we focus on both the supervised (unbalanced) and one-class anomaly detection problems. Notice that even though few anomalous examples may exist in the data, supervised learning algorithms are still challenging because the set of anomalies often does not form a homogeneous class. The boundary between normal and anomalous examples is blurred and continuously evolving (the system's normal behaviour changes depending on the context). This boundary problem is a challenge in the anomaly detection problem. We can formulate the anomaly detection problem as follows. Let D be a data set containing a large number of normal examples (the normal states of the system) X n , and a relatively small number of anomalous examples X a . A model M must learn the distribution function p X over the normal data during training. Then, given any test example x, it must determine whether x deviates from the learned distribution p X by using an anomaly score function a(x). The model M also needs to consider its number of parameters θ M that represents the memory size of a Deep Learning model. The balance of the instance numbers among classes in a dataset impacts Machine learning and Deep Learningbased classification performance. Indeed, in the cases of suffering from the data imbalance problem, the number of training samples belonging to a normal class is larger than anomalous classes. It's a common issue in Anomaly Detection, especially for cybersecurity. This data related problem impacts the machine learning algorithms and deteriorates the classifiers effectiveness[START_REF] Kozik | [END_REF]. Typically, classifiers will achieve higher predictive accuracy over the majority class but more insufficient predictive accuracy over the minority class. Utilizing unsuitable evaluation metrics for the classifier trained with the imbalanced data can lead to wrong conclusions about the classifier's effectiveness. As most machine learning algorithms do not operate very well with imbalanced datasets, the commonly observed scenario would be the classifier ignoring the minority class. This happens because the classifier is not sufficiently penalized for the misclassification of the data samples belonging to the minority class.Unbalanced data is well studied in our experiments. The goal is to develop a method that can benefit from the availability of a low rate of anomalies to enhance the model's capacity to detect different variant of anomalous examples and even unknown attacks.Deep neural networks performs well in learning highly complex and large data representations.A large number of papers propose Deep Learning-based anomaly detection models[START_REF] Goodfellow U. A | [END_REF]Hodge und Austin, 2004;[START_REF] Pimentel U. A | [END_REF][START_REF] Bulusu U | Anomalous Instance Detection in Deep Learning: A Survey[END_REF][START_REF] Pang U | Deep Learning for Anomaly Detection: A Review[END_REF][START_REF][END_REF][START_REF] Chalapathy Und Chawla | Sanjay: Deep Learning for Anomaly Detection: A Survey[END_REF][START_REF][END_REF]. The recent advances in Deep Learning have made it possible to revise this problem and in many application domains like intrusion detection system Galinina u. a. (2018). In particular, Generative

  Network : Background and related works Research in Deep neural networks has resulted in the design and development of different deep neural networks classes (Discriminative, Generative). The goal of the generative model is to learn the density function that describes the original sample data and then uses this estimated density to generate fake yet realistic-looking data similar because of the finite size of the training set, our experiments showed that the projection distribution of normal examples could diverge slightly from p z . Therefore, at the end of the learning, we represent this distribution by a Gaussian distribution N (µ, Σ) whose parameters are assessed with a validation base. The anomaly score is finally the Mahalanobis distance between E(x) and µ: a(x) = (E(x)µ) T Σ -1 (E(x)µ) (4.4)

  (z) log D(z)p zn (z) log(1 -D(z))p za (z) log(1 -D(z))dz where p zn (resp. p za ) is the distribution of the projection of normal (resp. anomalous) examples into the decision space. We can express the optimal discriminator D given the encoder E. Let f (D(z)) be the function in the integral above such that L D = z f (D(z))dz. To find the discriminator that minimized L D , we set the derivative of f (D(z))

2 ,

 2 optimal encoder minimizes an expression composed by 4 Kullback-Leibler divergences. The minimization of the both terms KL p zn pz+pz n +pz a 3 and KL p za pz+pz n +pz a 3 implies that the encoder tends to the solution where the three distribution are equal p z = p zn = p za . By maximizing KL (p za ||p z ), the encoder maximizes the divergence between p za and p z i.e. it tries to project the anomalies outside p z . To maximize KL p zn pz n +pz a the encoder has to maximize the divergence between p zn and p za , thus it aims at separating the projection of the normal examples from the projection of the anomalies. By optimizing all of these four divergences together the encoder tries to project the normal examples into p z and to project the anomalies outside p z and p xn . AnoEAN. Adam hyper-parameters (α = 0.0002, β = 0.5), Learning rate 10 -3 Require: batch size m, discriminator step n D , m = m a + m n Initialize the discriminator parameters w D , the generator parameters θ G . for number of training iteration do sample batches of {x

  In-vehicle networks technologies must ensure a set of requirements, some of which are time-critical and safety-related. CAN protocol uses broadcast communication techniques. Each node in the network can send and receive a packet to/from the bus. CAN protocol increases the network elasticity and guarantees the latency time, and meets the realtime systems requirements Avatefipour und Malik (2017); It was designed to be lightweight, robust, and fast to meet the different in-vehicle systems and safety requirement. However, the CAN bus contains several vulnerabilities. It does not include the different security criteria in its design. It lacks security facilities like message authentication that prevents an unauthorised node from joining the communication and broadcast malicious messages to other nodes. It also lacks encryption because it would make overhead for real-time communication. The protocol's weaknesses are as many possibilities left to hackers to attack, as shown in the cyber-security literature Nilsson u. a. (2008); Avatefipour und Malik (2017). Several attacks scenarios have been demonstrated on vehicles. E.g., Koscher u. a. (2010a) has performed four different tests on the control window lift, warning light, airbag control system and central gateway. Hoppe u. a. (2011) gives an experimental analysis of vehicle attack surface and wireless access; They inject an attack when the CD is played by the victim vehicle. Due to this, in-vehicle security has been paid more and more attention, and extensive research has been done to develop In-Vehicle intrusion detection systems, most of them using rule-based and statistical approaches.

  );[START_REF][END_REF];[START_REF][END_REF]. Briefly, the CAN bus traffic is targetted in two ways, attack on CAN packet frequency and attack on CAN packet payload. The first one affects the flow of the traffic network, and the second affects the content and the semantic of the message. Indeed, the time interval between the CAN packet IDs is fixed and periodic (see Fig 5.2). Thus, the attacks that are involved in the CAN packet frequency is made by inserting an extra packet or erasing a legitimate packet from the CAN bus traffic by hijacking the timing of the transmission of the packets. On the other hand, attacks on the payload are made by manipulating or spoofing CAN IDs content. This kind of attack aims at changing the values within a packet content while maintaining the content valid, meaning that it would not produce any effects on the vehicle flow communication.

Figure 5

 5 Figure 5.6: 1-D Convolution for Time Series.

Figure 5 . 7 :

 57 Figure 5.7: Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d= 1,2,4 (when d=1, regular convolution) and filter size k= 3. The receptive field is able to cover all values from the input sequence.
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 2 Related worksMulti-view learning and multi-modal Deep learning architectures have been concerned in many anomaly detections problems, especially in network environments forming many swarms like VANet's, cloud computing and edge computing areas. In those cases, most data is collected from different sources, or different features extractors Xu u. a. (2013); Peng u. a. (2018); Ding u. a. (2019); Marcos Alvarez u. a. (2013); Ji u. a. (2019). In other words, data instances are usually depicted by heterogeneous feature spaces in the form of multiple views. Several multi-view learning approaches can be considered to develop an anomaly detection model based IDS. Multi-view representation learning is concerned with learning representations (or features) of the multi-view data that facilitate extracting readily useful information when developing prediction models. Data from different views usually contains complementary information, and multi-view representation learning exploits this point to learn more comprehensive representations than single-view learning methods Li u. a. (2019); Xu u. a. (2013). There has been increasing research applied to multi-view learning using Deep Learning, deep architecture based methods including multi-modal deep Boltzmann machines Srivastava und Salakhutdinov (2014), multi-modal deep autoencoders Feng u. a. (2014); Wang u. a. (2015), and multi-modal recurrent neural networks Donahue u. a. (2017). In the existing literature, most in-vehicle IDS neglect the inherent multi-view property of data due to the lack of IDS problem modelisation concerning future in-vehicle architectures. The lack of datasets related to it is mainly the reason. Thus, building and IDS's challenges and constraints for future in-vehicle architectures are not implemented in most in-vehicle IDS literature. Few works tackle building an in-vehicle IDS that monitors the CAN bus network by proposing a structure of distributed anomaly detection system. In Wang u. a. (2018) the author propose a distributed IDS based on hierarchical temporal memory (HTM). The input at each detector in the sequence is the bits from the packet's data field related to each ID. Then the model using the HTM algorithm learns to predict the next data field of each ID. An overall score within a time window for the full input sequence groups the different IDs scores. InHanselmann u. a. (2020) the authors also tackled the problem in the same manners in terms of distributed modelling, where the data input modalities are sequences related to a specific ID. The authors proposed multi-view architecture based on independent recurrent neural networks (LSTM for each ID that gets sequence associated with this ID as inputs).The joint latent vector is fed into a subnetwork of consecutive linear layers in an autoencoder setting. At each time step, this subnetwork's task is to reconstruct the signal values of each possible input message solely based on the current joint latent vector. The drawback in the IDs based distribution is that both propose several independent subnetwork equal to the number of IDs. In other terms, those architectures and algorithms don't consider the restrained resources available in the in-vehicle systems. The communication overhead is augmented with a number of signals and processing equal to the number of IDs available on CAN data. In this work, we formulate the problem related to this new type of in-vehicle architectures and propose a general framework that can be extended to fit autonomous vehicles network systems.

  The bastion hosts an anomaly detector D B that groups the different representation v i to decide on the global system behaviour D B (V ) ≈ P(y B = 1|V ). This allows reducing the communication overhead dramatically. To quantify this, let us introduce the following, communication cost function ζ: Given any vector W , let |W | denote the size of the vector; then ζ(W ) = k|W | + H (6.2) where H is the incompressible cost of initiating a message sending and k is a parameter that allows adjusting the importance of both criteria. Now, with respect to an input series of raw data T i , let N be the number of data points in a given dataset; N is the number of messages that would transit through the network to the bastion B in the absence of local detector D i (Centralized model see Fig 6.2(b)).

7 Conclusion

 7 4.1). As the SynCAN dataset's capture was mainly done buy indexing only the different messages' IDs, we don't have the information of the ECUs related to each ID. Thus we cannot split to different view according to a semantic locality pattern as shown in the architecture presented in Fig 6.3. We split the IDs according to each ID's frequency, so we obtain a balanced rate number of messages at each probe. We obtain two views referring to two probes S 1 and S 2 , and each probe monitors five IDs. The following step is to create the sequence matrix for T 1 and T 2 . We obtain two datasets with an input size is (100*12, 100*8) where 100 is the length of the obtained sequence and 8, 12 are the number of signals monitored at each probe S 1 and S 2 respectively.For the anomalous examples labelling we choose to set y 1 = y 2 = y b = 0 if y 1 = 0 or y 2 = 0. This labelling aimsChapterThis thesis studies the use of Deep learning for in-vehicle Intrusion Detection System. This subject encompasses many fields, advanced fields like Deep learning for Anomaly Detection and Intrusion Detection systems, both applied in the relatively closed system (automotive industry) and relatively new, autonomous driving car as a context of the application. Our study reviewed the main methods used in the literature and the applied context's relevant characteristics (In-vehicle network architecture). We investigate Deep Learning as a solution to build an Intrusion Detection
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Table 5 .

 5 We notice for the Flooding attack, the performances of all the models decreases dramatically. Indeed, this attack impacts the CAN data flow, and this information is encoded through the occurrences in the matrix. We also observe that the performances are slightly worse on the Playback and Plateau attacks. Therefore, payload-based attacks are also easier to detect when the occurrence features are present in the matrix. Hence full matrix with both signal features and occurrence features contributes to the detection of both payload and flow-based attacks. 3: Classification using the standard sampling without occurrence features Finally, in Table5.4, we have compared the models in terms of training time and size of parameters. The latter reflects the memory needed by the IDS to work. Remind that the IDS are embedded in-vehicle where memory and computational resources are limited. TCN is good both in terms of training time and model size. TCN benefits from filters shared weight, so it dramatically reduces the number of parameters. When the size of the input data is increasing, the number of parameters does not explode exponentially. Unlike LSTM, TCN convolutions can be done in parallel since the same filter is used in the layer. Therefore, even though the series is long in both the training and inference phase, it can be processed as a whole, whereas with LSTM, they must be processed sequentially.

			TCN			LSTM			CNN		FCN
		Precision Recall F1	Precision Recall F1	Precision Recall F1	Precision Recall F1
	Continues 0.997	0.991	0.994 0.991	0.988	0.990 0.996	0.988	0.992 0.993	0.978	0.985
	Plateau	0.995	0.984	0.990 0.996	0.985	0.991 0.993	0.979	0.986 0.990	0.981	0.987
	Suppress	0.986	0.957	0.971 0.984	0.954	0.969 0.951	0.554	0.700 0.951	0.862	0.904
	Flooding	0.995	0.986	0.991 0.996	0.988	0.991 0.996	0.989	0.992 0.996	0.988	0.991
	Playback	0.996	0.989	0.992 0.996	0.986	0.991 0.994	0.989	0.991 0.995	0.988	0.991
					Table 5.1: Autoencoder based architectures results	
		In Fig 5.9 we show the visualization of the latent representation using the t-Distributed Stochastic Neighbor

Embedding (t-SNE) technique for dimensionality reduction that is particularly well suited for the visualization of highdimensional datasets van der Maaten und

[START_REF] Van Der Maaten Und Hinton | Visualizing Data using t-SNE[END_REF]

. The latent space contains a compressed representation of the CAN data input (Occurrence matrix), which is the only information that the decoder can use to reconstruct matrix M .

  cées. L'une des dimensions importantes est la cybersécurité. Effectivement, les véhicules autonomes seront sujets aux cyberattaques et les cybers criminels pourraient pirater les systèmes d'exploitation des véhicules et perturber leur fonctionnement et mettre en danger la sûreté des passagers. Ainsi, la cybersécurité reste un obstacle à surmonter pour sécuriser les véhicules et permettre aux innovations technologiques dans le domaine des transports d'apporter des solutions aux problèmes de la société et éviter leur détournement à des fins malicieuses. En effet, la conception actuelle et future des véhicules autonomes implique de nombreuses interfaces de communication, la communication dans le véhicule entre les différents systèmes embarqués, les communications Vehicle-to-X (V2X) entre le véhicule et d'autres véhicules et structures connectés sur les routes. Plusieurs mécanismes de défense sont implémentés pour répondre aux normes de sécurité (antivirus, pare-feu, etc.), mais nous ne pouvons pas être sûrs que toutes les failles possibles sont couvertes, spécialement dans des systèmes complexes comme les voitures autonomes. Le système de détection d'intrusion a été introduit dans le monde IT pour évaluer l'état du réseau et détecter tous les comportements malveillants. Le monde l'IT a connu beaucoup plus d'expérience en termes de mécanisme de défense qui peut inspirer la cybersécurité des transports intelligent (voiture autonome), néanmoins, ces dernières requirent leurs propres besoins et contraintes liées à la sûreté et aussi à leur architecture system. L'état actuel de l'évolution des véhicules a été rendu possible grâce à des innovations successives dans de nombreux domaines industriels et de recherche.L'intelligence artificielle en fait partie, ses différentes techniques permettent d'apprendre et de mettre en oeuvre des tâches complexe tel que la conduite autonome. Cette thèse vise à développer un system intelligent de détection d'intrusion en utilisant l'apprentissage automatique dans un contexte automobile. L'objectif est d'évaluer l'impact de l'apprentissage automatique sur l'amélioration de la sécurité des véhicules futurs (autonomes). Notre objectif principal est la sécurité des communications entres les différents systèmes dans la voiture. Dans ce but, nous menons une enquête empirique pour déterminer les besoins sous-jacents et les contraintes qu'exigent les systèmes embarqués. Nous passons en revue la littérature d'apprentissage profond pour la détection d'anomalie, on note qu'il y a un manque d'étude personnalisée sur le système de détection d'intrusion de véhicule autonome utilisant l'apprentissage profond. Dans de telles applications, les données sont déséquilibrées : le taux d'exemples normal est beaucoup plus élevé que les exemples anormaux. L'émergence du réseau antagoniste (GAN) a récemment apporté de nouveaux algorithmes pour la détection des anomalies. Nous développons une approche antagoniste (adversarial) pour la détection des anomalies, basée sur un Encoding Adversarial Network (EAN). L'architecture future des réseaux embarqués dans les véhicules est composée de différents sous-systèmes. Chaque sous-système est responsable de services spécifiques qui assurent le fonctionnement autonome du véhicule. Pour des raisons fonctionnelles et de sécurité, les sous-systèmes sont isolés, formant une architecture de communication hiérarchiques de l'ensemble du système. Dans cette thèse, nous concevons un IDS distribué qui s'adapte à l'architecture embarquée et à ses contraintes et réduit le taux de surcharge de communication induit par le traitement de l'IDS. Machine Learning for intrusion detection systems in autonomous transportation Keywords : Deep Learning, Adversarial learning, Anomaly detection, Time series, Intrusion detection systems, In-vehicle network, Distributed models.
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In this chapter, we review the Generative Adversarial Networks (GANs) in detail by discussing the strength of the GANs compared to other generative models, how GANs works, and some of the significant problems with training, tuning and evaluating GANs. We also present some major GANs based architectures to show how a specific design helps solve various applications issues. All this is done to develop an Adversarial Learning approach to respond to the Anomaly detection-based IDS challenges (Introduced in the previous chapter in Section 3.3.2), more specifically, a lightweight memory-based approach. The emergence of the Generative Adversarial Networks (GANs) has recently brought new algorithms for anomaly detection. Most of them use the generator as a proxy for the reconstruction loss. We review the different GANs based architectures and processes used for Anomaly Detection.

We will point out the major constraints of those approaches applied as a model for the Intrusion Detection system.

We develop an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN), which maps the data to a latent space (decision space). The detection of anomalies is done directly by calculating a score. Our encoder is learned by adversarial learning, using two loss functions, which constrain the encoder to project regular data into a Gaussian distribution. The second is to project anomalous data outside this distribution.

We conduct a series of experiments on several standard bases, network data and image data. This work has led to the publication of two conference papers:

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. An Encoding Adversarial Network for Anomaly Detection. 11th Asian Conference on Machine Learning (ACML 2019), Nov 2019, Nagoya, Japan.

pp.1-16.

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Construction d'espace latentpour la d étection d'anomalies par apprentissage adversarial. Conf érence sur l'Apprentissage automa-tique (CAP Chapter 5

Empirical Time Series Evaluation Of

In-Vehicle Intrusion Detection System

In this chapter, we study the application of anomaly detection for in-vehicle Intrusion Detection System. To this end, we focus on CAN data as the primary data representing the In-vehicle's network behaviour. We simulate and analyse automotive CAN data to understand its nature and inner structure (functionally and statistically). We will present in this chapter a brief analysis of CAN data as Time series and discuss the impact of the various attacks on data. We review the related work on anomaly detection for CAN IDS, followed by our contribution. We introduce a multivariate time series representation for asynchronous CAN data, enhancing the temporal modelling of deep learning architectures for anomaly detection. We study different deep learning tasks (supervised/One-class) and compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational constraints. Our system is time window wise: any given time frame is labelled either anomalous or normal. We conduct experiments with many types of attacks on an in-vehicle CAN using the public SynCAn Dataset. We show that our system yields good results and allows us to detect many kinds of attacks. This work has led to the publication of a conference paper:

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Deep Learning for In-Vehicle Intrusion Detection System. International Conference on Neural Information Processing (ICONIP 2020), Nov 2020, Thailand. pp.50-58.

Introduction

In recent years, a lot of effort has been made to build more intelligent vehicles and enable them to offer different services, ranging from automation and driver assistance to infotainment applications. To achieve this, microcontrollers the same emission flow but contains wrong information.

CAN Intrusion detection System : related works

In-vehicle IDS may be either knowledge-based or anomaly-based (see Section 2.4). In knowledge-based approaches, the IDS use information about the attack and define a signature so that if a new event matches this signature, then an alarm is raised. These approaches are very efficient to deal with known attacks. As for anomalybased approaches, the method starts by defining a model (profile) that specifies the system actual normal behaviour.

Any behaviour that does not conform to the normal profile is considered an anomaly. The anomaly-based IDS have many advantages: there is no need to maintain a database of signatures, and they can detect unknown attacks since, at least from a theoretical standpoint, each attack compromises the normal behaviour of a system. 2020), the authors tackle a large dataset with an extensive type of attacks (SynCAN dataset). They propose a deep learning architecture that handles CAN data structure; It is composed of independent recurrent neural networks, one for each ID in the input. The goal of those separated LSTM is to learn about the state of each ID. The whole state of the network is represented by a joint vector of the outputs of all separated LSTM. The second part of the architecture takes the joint latent vector as an input for an autoencoder (fully connected network) that enables One-class learning; the autoencoder's task is to final architectures layer in the supervised task.

Fully-connected network (FCN)

FCN is a standard architecture for deep learning models Bagnall u. a. ( 2017). FCN is a generic architecture usable for any type of data. All the neurons in layer l i receive the signal from every neuron in the layer l i-1 and send their output to every neurons of the layer l i+1 with i ∈ [1, L] (L number of layers in the architecture). The elements of the time series are treated independently from each other. Thus the temporal dimension of the data is ignored with this architecture.

Recurrent neural network (LSTM)

Recurrent neural networks are explicitly devoted to sequence modelling Hochreiter und Schmidhuber (1997). They avoid the long-term dependency vanishing problem using a cells state that is used as internal memory. At each time, the network learns which information to add, forget, and update into the cells state. Based on the cells state, inputs, previously hidden state, the LSTM learn a vector representation (hidden state) of the time series a the current time.

1D Convolutional neural network (CNN)

Motivated by CNN's success in various domains, researchers have also adopted them for time series and sequence modelling. In the context of time series, convolution is a sliding filter over the time series. The time series exhibits only one dimension. Thus this convolution will result in a moving average with a sliding window. Therefore, applying several filters results in learning several discriminative features which are useful for sequence modelling. Besides, the same convolution is used to find the result for all timestamps t ∈ [1, T ] (weight sharing). This is a valuable property, as it enables the model to learn filters that are invariant across the time dimension. 1DCNN for time series is characterized with a causal convolution; It means that the output at time t is convolved only with elements from time t or earlier in the previous layers. This characteristic ensures that the sequence input must have a one-to-one causal relationship in chronological order. The result of convolution can be considered as a time series whose dimension is equal to the number of these filters used. 1DCNN has another layer with pooling operation, which achieves dimension reduction of feature maps while preserving most information B.Zhao u. a. (2017).

Temporal convolution network (TCN)

TCN with dilated convolution is designed to combine simplicity, and long-term memory Bai u. a. (2018). There are many differences with 1DCNN described above. In addition to the causal convolution, the architecture can take a sequence of any length and map it to an output sequence with the same length. To achieve this, zero-padding of length (kernel size -1) is added. Moreover, the TCN architecture can look very far into the past using a combination the filter size.

Anomaly detection models

Detecting anomalies raises many difficulties. The major problem is that few or even no anomaly labels are available in the historical data. The goal is to build a system that can face unknown attacks and be able to use the few anomalous examples when available. Therefore, analyzing both One-class and supervised anomaly detection is relevant to design novel IDS. We consider deep learning architectures that are relevant for sequence modelling for each task. We compare those architectures on a one-class feature learning task using an autoencoder and a supervised task using an FCN.

Deep one-class IDS

In this work, the autoencoder aims to reconstruct the input sequence (a multivariate time series). Formally, given a sequence T = (t 1 , ..., t K ) where T i ∈ R n and n is the number of variables, the autoencoder aims at predicting T = ( t1 , ..., tK ) at each time (sequence-to-sequence problem). The autoencoder that performs a nonlinear mapping from the current state to its identity decomposes into two parts: the encoder and the decoder. The encoder projects the temporal pattern dependencies and trends of the time series in latent space h. The latent vector is given by h i = f (T.W i + b i ), where W i and b i respectively denote the weight matrix and bias up to the bottleneck i-th layer. The decoder, considered as the transposed network of the encoder, uses the information of latent space h to reconstruct the input sequence:

The mean square loss error (MSE) is used to perform an end-to-end learning objective:

At the inference phase, the MSE is used as an anomaly score. The idea is that the autoencoder learnt to reconstruct only the normal data and will obtain a high MSE on the anomaly.

Deep Supervised IDS

Supervised IDS use a FCN to make anomaly prediction from the vector representation of the time series learnt from the sequence modelling level. In this case, we suppose that the training dataset contains labelled attack examples and these attacks from a homogenous class. These requirements are generally reached when we construct a model that detects well-known types of attack. Formally, we assume two classes: Normal (0) and Anomaly (1). The learning set is a collection of pairs {(T 1 , Y 1 ), ..., (T K , Y K )} where T i is a multivariate sequence and Y i ∈ {0, 1} is the corresponding label. The classifier training is performed by minimization of the cross-entropy between the true class and predicted class. Notice that the classes are highly unbalanced, and the anomaly is much smaller than the normal class; the classes are therefore weighted in the cross-entropy in function on their prior. At the inference phase, the MLP returns the probability of anomaly. only be detected if we consider a set of signals with some correlation between them.

Continuous change attack:

A signal is overwritten so that it slowly drifts away from its true value. This assumes that the attacker wishes to set a signal to a concrete value while trying to fool the IDS with realistic small changes in the signal.

Playback attack: A signal value is overwritten over a period of time with a recorded time series of values of that signal. The attacker hopes to trick the IDS by sending completely real looking signal values of a different traffic situation.

Suppress attack:

The attacker prevents an ECU from sending messages, for example, by turning it off. This kind of attack means that some particular ID messages do not appear in the CAN traffic for a period of time.

Flooding attack:

The attacker sends messages of a particular ID with high frequency to the CAN bus. This attack is easier to perform in practice than the ones mentioned above since the attacker does not need to control an ECU. It only requires sending additional messages to the CAN bus to "overwrite" the real message values.

Overall, most attack in the test data last 4s (See Fig 5.8). Also, we can categorise the attack impact as flow or payload based. Flooding and suppress are visible when we look at the flow behaviour, while plateau, playback, and continuous attack types are more visible when we look at the payload signal values. The below section will give the matrix construction's different parameters that yield a representation allowing the sequence modelling to consider both flow and payload information.

Occurrence matrix settings

We set five seconds as an estimated time-frame for the intrusion detection system to monitor the vehicle. Thus, the sampling window is fixed to ∆ = 50ms, and each sequence is composed of K = 100 consecutive elements.

From a general standpoint, K and ∆ are hyperparameters which depend on the domain expert requirement (the maximum memory size, forensic analysis and safety protocol to enable the prevention actions). The feature matrix size is (100*30) where 30 is the sum of 20 signal features and 10 occurrence features. We scale the data between [0, 1] using min-max normalization.

A sequence is labelled normal if all elements in the sequence are normal. If a sequence contains at least one anomaly, the sequence is considered as an anomaly. We are trying to assess whether the IDS can detect the attacks even at an early stage. SynCAN database is a collection of ∼ 2 ′ 000 ′ 000 normal sequences. 70% of them are used for training and 10% for validation. The last 20% are mixed with anomalous sequences to build the test data. We have 5 test databases, one per attack, made of 70% normal examples and 30% anomalous examples. the only available public dataset as far as we know.

The in-vehicle system has many components, and we have implicitly assumed that the monitoring of the data was centralized. Nonetheless, in new secured in-vehicle architectures, the system's parts are isolated, so the CAN data topology changes, and we need to think about a distributed framework for IDS. Another important issue concerns deep learning models' compression to fit the in-vehicle system's embedded capacity better.

Chapter 6

Distributed anomaly detection based in-vehicle intrusion detection system

In this chapter, we focus on the in-vehicle network infrastructure and deployment. Future in-vehicle (autonomous vehicles) network architectures will consider many aspects of modern network security by design. The general system contains many sub-systems related to different tasks with specific functional priorities and dedicated security mechanisms. For example, a decision pilot sub-system is responsible for the functions related to autonomous driving. The infotainment sub-system is related to different operations associated with passengers' entertainment; both systems are parts of the global system. Still, for security reason, both sub-systems are isolated, and no communication is possible between the sub-systems as the infotainment, since infotainment sub-system is more exposed to external communication (internet) (see Chapter 2 Section 2.1.1). In this work, we propose a Distributed Anomaly Detection IDS (DAD) using a deep learning model that fits the in-vehicle network architecture. DAD aims to model the complex correlations among different views (sub-systems) while adopting the same isolation constraint on the sub-systems. On top of that, we introduce a new optimisation scheme that lowers both the computational inference time and the IDS's communication overhead.

Introduction

Future In-vehicle network architecture is composed of different subsystems (ECUs). Each subsystem is responsible for specific services that ensure the autonomous functioning of the vehicle. For functional and security reason, separate subsystems are isolated, forming a hierarchical architecture of the whole system. In that context, data is represented with different views and can include multiple modalities or various features. These views may be obtained from multiple sources or different feature subsets. In this work, each subsystem contains a probe (S) that reduced, so let N e be the number of messages sent from D i to the bastion B. Moreover, the transmitted information is v i which is much lighter than T i , so the communication gain of our techniques is the following:

We note that the choice of the threshold τ i impacts the detection precision of the model. An over optimisation is when the probes don't send the features vector representation v i to the bastion, and at the same time, an attack occurs. In this case, the communication optimisation also reduces the precision of detection and generates an error.

The aim is to maximise the precision of detection and reduces the communication cost. The gain represents the optimisation rate accomplished without committing an error.

Altogether, these severe communication requirements of having negligible overhead induced by the IDS, reserving ample resources for the vehicle's intended network services. Below, we present the architecture and the different steps of modelling a distribute anomaly detection IDS (DAD) subject to design a practical solution for the aforementioned problem.

Proposed model

The overall goal is to build a model that detects attacks in a car when they happen. The model must respect and fit the in-vehicle network's distributed architecture and, more precisely, reduce the communication overhead brought by the detection process. The framework of our approach is summarized in Fig 6. We propose a hierarchical Distributed intrusion detection system based on multi-view deep learning architecture to respond to the problem mentioned above (Section 6.3.1 ). The model has multiple inputs sequences T i related to each probe S i . The model returns multiple outputs {ŷ i } P i=1 and ŷB . ŷi = D i (T i ) represents the local normality probability for each probe, and ŷB = D B (V ) represents the bastion probability of the normality of the whole system.

We denote y d the final decision based on the combination of ({ŷ i } P i=1 , ŷB , e i ). The model captures each probe S i local pattern as a smaller feature vector representation of the input through a sequence modelling transformation G i . Those Features vectors v i are sent to the bastion B to predict the global system state. We want to optimise the overhead communication induced by embedding our IDS in the in-vehicle network system. Thus, using a distributed network reduces the size of the information sent from the porobes to the bastion by sending the feature vector v i representation alternatively of data input sequence T i . The second point is to reduce the communication rate between the probes and bastion. The idea is to prevent sending the features

Model learning

Since dependencies among local labels and models play an important role in extracting hierarchical dependencies, we privilege the local classification and global classification, meaning that each sub-network model D i learn a local feature representation relative to each probe. Those representations will then be jointly fed to the upper sub-network classifier D B to learn about a global pattern based on the join feature representation vector. Hence, giving a second assessment of the network's general state with the overall network information's abstraction. we define the objective function as Eq 6.4:

The first terms is the loss functions of model D i . The next term is the global classifier's D B loss function, which analyses dependencies among the feature vectors v i to learn the network system's global pattern. Both terms represented with the binary cross entropy loss function (See Eq 6.5, Eq 6.6). We note that Y represent the true label for a given training sample (T, Y ). 

Threshold optimisation

After the learning phase, the proposed approach has multiple output prediction values. For a given test samples the following probabilities are yield preds = ({ŷ i } P i=1 , ŷB )

The intrusion detection final decision based on the DAD model is not directly based on the values returned in preds. Indeed, we add another step that we call the optimization step. As explained above, we aim to make DAD predictions more economical in terms of communication overhead. To this end, we deduce e i from ŷi according to

Future work and improvements

This thesis contributes to different dimensions, theoretical and application domains. The general goal is to work on a framework that addresses some of the research questions related to building a deep learning-based Intrusion Detection System, which are not fully addressed by the scientific community. Multiple directions seem to be worth exploring, first as improving the actual contributions. Second, other research questions can be developed as a complementary contribution to developing a more general and complete In-vehicle Intrusion Detection System in terms of an end-to-end solution.

Contribution improvements

In A current straightforward work objective is to groups the different contribution in one general framework since the different contributions are independent in terms of problem modelling. At the same time, they all contribute to develop an in-vehicle intrusion detection system. The next step is to align the different contribution in one pipeline.

The global framework is a distributed AnoEAN that inputs the occurrence matrix representation into a TCN Encoder for each view.

Interpretable Deep Learning for forensic analysis

In this work, we focus only on the detection step of an Intrusion Detection System. In the security domain, the forensic analysis of an attack after identifying the incident is critical to define the proper action that an autonomous system needs to take or a remote operator. Deep neural networks have been well-known for their superb performance, and in this thesis, we intensely studied their application into anomaly detection. However, due to their over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In recent years, many interpretation tools have been proposed to explain or reveal the ways that deep models make decisions Zhang u. a. (2020[START_REF] Zhang U. A | [END_REF]. Also, using attention guided anomaly detection Venkataramanan u. a. ( 2019) to augment the actual IDS feedback detection with information that can lead to an attack's source, aim, and location.

Interpretability is believed to offer a sense of security by involving human in the decision-making process.

Adversarial examples

Due to its data-driven nature, Deep learning prediction is potentially susceptible to malicious manipulations to make errors on data that are surprisingly similar to examples the learned system handles correctly (Adversarial exam- 

Common issues

In this work, we studied the applications of Deep learning algorithms, and we show how their usage is beneficial for the in-vehicle network. This study also highlights several shortcomings, such as the lack of datasets, the inability to learn from small datasets. Besides this, in-vehicle network data's complexity translates the complexity of building an appropriate IDS since Deep Learning are mainly data-driven approaches. A practical In-vehicle intrusion detection system needs to cope with the evolving aspect of the vehicle environment. To this end, we must construct the model and derive decision patterns from stream data produced by dynamically changing environments. The methods also need to develop an online sequential data processing to learn the nature of local subsystems and their interactions to endure self-organization of the system structure and parameters through time and contexts. Having data that express all those needs is nearly impossible. Some constructors already started collecting data on their different vehicles to improve their driving experience. But security-related data are heavy and take a lot of labour to extract and label since we need real attacks. Thus, it's important to think about an intrusion detection system's ability to develop and update itself to unknown environments and detect potential temporal shifts and drifts in input data.
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