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Abstract

Despite all the different technological innovations and advances in the automotive field, autonomous vehicles are
still in the testing phase. Many actors are working on several improvements in many domains to make autonomous
cars the safest option. One of the important dimension is cybersecurity. Autonomous vehicles will be prone to
cyberattacks, and criminals might be motivated to hack into the vehicles operating systems and steal essential
passenger data or disrupt its operation and jeopardize the passenger’s safety. Thus, cybersecurity remains one of
the biggest obstacles to overcome to ensure vehicles safety and the contribution that this technology can bring to
society.

Indeed, the actual and future design and implementation of Autonomous Vehicles imply many communication
interfaces, In-vehicle communication of the embedded system, Vehicle-to-X (V2X) communications between the
vehicle and other connected vehicles and structures on the roads. Even though the cybersecurity aspect is incor-
porated by design, meaning that the system needs to satisfy security standards (anti-virus, firewall, etc.), we can

not be sure that all possible breaches are covered. The Intrusion Detection System (IDS) has been introduced in

the Information Technology] (IT) world to assess the state of the network and detect if a violation occurs. Many

experiences and history of [T have inspired the cybersecurity for autonomous vehicles. Nevertheless, autonomous
vehicles exhibits their own needs and constraints.

The current state of vehicles evolution has been made possible through successive innovations in many industrial

and research fields. [Artificial Intelligence] (Al) is one of them. It enables learning and implementing most fundamen-

tal self-driving tasks. This thesis aims to develop an intelligent in-vehicle [Intrusion Detection System| (IDS) using

[Machine Learning| (ML) from an automotive perspective, to assess and evaluate the impact of machine learning on

enhancing the security of future vehicles. Our primary focus is on In-vehicle communication security. We conduct
an empirical investigation to determine the underlying needs and constraints that in-vehicle systems require. First,
we review the deep learning literature for anomaly detection and studies on autonomous vehicle intrusion detec-
tion system using deep learning. We notice many works on in-vehicle intrusion detection systems, but not all of
them consider the constraints of autonomous vehicle systems. In such applications, the data is unbalanced: the

rate of normal examples is much higher than the anomalous examples. The emergence of the

[versarial Network| (GAN) has recently brought new algorithms for anomaly detection. We develop an adversarial




approach for anomaly detection, based on an[Encoding AdversarialNetwork| (EAN). Considering the behaviour and

the light-weight nature of in-vehicle networks, we show that[EAN|remains robust to the increase of normal examples

modalities, and only a sub-part of the neural network is used for the detection phase.

[Controller Area Network| (CAN) is one of the most used vehicle bus standard designed to allow microcontrollers

and devices to communicate with each others. We propose a Deep [CAN|intrusion detection system framework.
We introduce a Multi-Variate Time Series representation for asynchronous [CAN|data. We show that this represen-
tation enhances the temporal modelling of deep learning architectures for anomaly detection. We study different
deep learning tasks (supervised/unsupervised) and compare several architectures to design an in-vehicle intrusion

detection system that fits in-vehicle computational constraints.

Future In-vehicle network architecture is composed of different subsystems formed of different|[Electronic Control|

(ECUs). Each subsystem is responsible for specific services that ensure the autonomous functioning of the
vehicle. For functional and security reasons, separate subsystems are isolated, forming a hierarchical architecture
of the system. In this thesis, we design a Distributed[[DS|that fit this in-vehicle architecture system and its constraints

and reduces the communication overhead rate induced by the [DS] processing.



Réesume

De nombreuse avancés et innovations technologiques sont introduites dans le monde de I'automobile. Plusieurs
domaine scientifiques et applicatives contribuent a 'amélioration de ces avancées. Lune des dimensions impor-
tantes est la cybersécurité. Effectivement, les véhicules autonomes seront sujets aux cyberattaques et les cybers
criminels pourraient pirater les systémes d’exploitation des véhicules et perturber leur fonctionnement et mettre
en danger la sureté des passagers. Ainsi, la cybersécurité reste un obstacle a surmonter pour sécuriser les
véhicules et permettre aux innovations technologiques dans le domaine des transports d’apporter des solutions
aux probléemes de la société et éviter leur détournement a des fin malicieuses. En effet, la conception actuelles
et futures des véhicules autonomes implique de nombreuses interfaces de communication, la communication dans
le véhicule entre les différents systemes embarqués, les communications Vehicle-to-X (V2X) entre le véhicule et
d’autres véhicules et structures connectés sur les routes. Plusieurs mécanismes de défense sont implémentés
pour répondre aux normes de sécurité (antivirus, pare-feu, etc.), mais nous ne pouvons pas étre sirs que toutes

les failles possibles sont couvertes, spécialement dans des systemes complexes comme les voitures autonomes.

Le systeme de détection d’intrusion a été introduit dans le monde [Information Technologyl pour évaluer I'état

du réseau et détecter tous comportement malveillant. Le mon de I{IT| a connus beaucoup plus d’expérience en
termes de mécanisme de défense qui peut inspirer la cybersécurité des transports intelligent (voiture autonomes),
néanmoins, ces dernieres requirent leurs propres besoins et contraintes lié a la sureté et aussi a leur architecture
system. Létat actuel de I'évolution des véhicules a été rendu possible grace a des innovations successives dans
de nombreux domaines industriels et de recherche. Lintelligence artificielle en fait partie, ces différent technique
permettent d’apprendre et de mettre en ceuvre des taches complexe tel que la conduite autonome. Cette thése vise
a développer un system intelligent de détection d’intrusion en utilisant I'apprentissage automatique dans un con-
texte automobile. Lobjective est d’évaluer I'impact de I'apprentissage automatique sur 'amélioration de la sécurité
des véhicules futurs (autonomes). Notre objectif principal est la sécurité des communications entres les différents
systemes dans la voiture. Dans ce but, nous menons une enquéte empirique pour déterminer les besoins sous-
jacents et les contraintes qu’exigent les systemes embarqués. Nous passons en revue la littérature d’apprentissage
profond pour la détection d’anomalie, on note qu'’il y a un manque d’étude personnalisée sur le systeéme de détection

d’intrusion de véhicule autonome utilisant 'apprentissage profond. Dans de telles applications, les données sont



déséquilibrées : le taux d’exemples normaux est beaucoup plus élevé que les exemples anormaux. Lémergence

du [Generative Adversarial Network| (GAN) a récemment apporté de nouveaux algorithmes pour la détection des

anomalies. Nous développons une approche antagoniste (adversarial) pour la détection des anomalies, basée sur

un [Encoding AdversarialNetwork| (EAN). Compte tenu du comportement et de la légéreté des réseaux embarqués,

nous montrons que [EAN] reste robuste & 'augmentation des modalités d’exemples normaux, et seule une sous-

partie du réseau neuronal est utilisée pour la phase de détection.

[Controller Area Network| (CAN) est 'une des normes de bus de données trés répandu dans les véhicules,

congue pour permettre aux microcontréleurs de communiquer entre eux. Nous proposons un systeme de détection
d’intrusion Deep Nous introduisons une représentation de séries temporelles a variables multiples pour les
données asynchrones[CAN| Nous montrons que cette représentation améliore la modélisation temporelle des archi-
tectures d’apprentissage profond pour la détection d’'anomalies. Nous étudions différentes taches d’apprentissage
profond (supervisées / non supervisées) et comparons plusieurs architectures pour concevoir un systéeme de
détection d’intrusion embarqué qui s’adapte aux contraintes de calcul des systémes faible en ressource. Larchitecture
future des réseaux embarqués dans les véhicules sont composées de différents sous-systemes. Chaque sous-
systéme est responsable de services spécifiqgues qui assurent le fonctionnement autonome du véhicule. Pour
des raisons fonctionnelles et de sécurité, les sous-systemes sont isolés, formant une architecture de communica-
tion hiérarchique de I'ensemble du systeme. Dans cette thése, nous concevons un distribué qui s’adapte a
I'architecture embarquée et a ses contraintes et réduit le taux de surcharge de communication induit par le traite-

ment de ITDS]
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Chapter 1

Introduction

1.1 Intelligent Transportation Systems (ITSs)

A long time ago, human beings did not have any means of transportation; they were used to travel only on their foot
and carrying their goods either on their backs or using animals. Until the invention of the wheel, it was a starting of
a long series of transportation innovation. We overcame natural obstacles like water and seas; we replaced animal
power in 1776 when James Watt invented the steam engine. This innovation was a revolution in transportations,
which brought a lot to the evolution of today’s society. From empowering the ships and locomotives to increase the
efficiency of the human operations to achieve the goal of flying and reach the moon. We never stopped since then,
we have come across a lot of innovation in transportation, and today’s society is more dependent on its transportation
systems, which represents a vital element for the proper and safe functioning of society. The transportations systems
have always been deeply affected by major technologies shifts. These last years, a lot of efforts have been made to
make the transportation more intelligent and enabling them to offer different services through applications, ranging
from automation and driver assistance to infotainment applications. The growth of cities and the rise of the urban
population brought challenges like congestion, air pollution, and road accidents. To deal with these issues, full
automation for transportations systems arises ( intelligent transportation system). The advance in Atrtificial
Intelligence (Al), more precisely machine learning by using deep learning methods, has drawn a lot of attention
in both scientific and industrial actors. It enables many functionalities that rely on accurate decision making, from
trying to learn traffic rules to coping with human pedestrian unpredictability in many different contexts (autonomous
vehicles, drones and autonomous train). aims to reach a certain level of autonomy that allows the scalability of
mobility more smartly and optimally. Indeed, if all the cars are driverless and connected, everything is predictable.
The reaction time is at its minimum and guarantees a well-distributed and resource-efficient system, which means
lowering the numbers of vehicles. Some study estimate Autonomous Vehicle can reduce the number of accident by

40% |[Fagnant und Kockelman| (2015). The current state of the motivation is clear, will save lives and enables an



optimal and safer ecosystem for the future cities, if and only if well defended, especially on cybersecurity threats.

The technology has the decision making control, if the [[TS|are prone to cyberattack, the results can be disastrous.

Figure 1.1: Schema describing the synopsis of Intelligent transportation systems.Sedjelmaci u. a.| (2019)

1.2 Cybersecurity in Intelligent Transportation Systems

The [Intelligent Transportation Systems| (ITSs) could be subject to a variety of cyberattacks. If a physical device

connects to the Internet, it exposes the vehicle to intrusions attempts via its connection interfaces. Therefore, the
implementation and the design must survive attacks if an intrusion occurs. Attacking the transportation infrastructure
can now be accomplished by attacking these[[TSs|information systems in the same manner that computer hackers

attempt to break into other information systems[Sedjelmaci u.a.| (2019).

For example, in railways, classified as critical infrastructures, If something goes wrong in signalling technology,
it may have massive consequences: (i) Trains stop (emergency braking, system failures), (ii) Negative economic
effects and loss of trust, (iii) in the worst case, accident casualties. Recently, a couple of cyberattacks target rail
transport. In 2008, a teenager wreaked havoc by derailing four tram-trains in Lodz, Poland using an adapted TV
remote. There were several injuries. In 2011, hackers remotely attacked computers in the north-western USA,
stopping railway signals for two days. In 2015, North Korea was suspected of hacking a subway operator in Seoul,

South Korea, over several months. Dozens of terminals were infected with malware.

Drones, parts of the [[TSs| also represent an attractive target for attackers. Recently, an Iranian hacker used a

jamming attack to interrupt the communication signals between a controller and a drone so that the drone switches



to autopilot mode. The latter relied on GPS coordinates to guide itself back to its home base. Afterwards, the hacker
launched a GPS spoofing attack to falsify GPS coordinates and led the drone to think it was close to the home base.
Furthermore, with vehicle composed of numerous intelligence components that control the different functions, the

massive introduction of electronics units requests a rigorous approach to the overall security of those parts.

Besides, the emergence of the connected vehicle concept, threats to the safety and privacy of motorists and
passengers already exist and are set to grow substantially. At the Black Hat security conference, automotive cy-
bersecurity researchers presented a new arsenal of attacks against the Jeep Cherokee through WIFI connection

[Charlie Miller! (2015). These new threats require the setup of new architectures, access control mechanisms and

particularly monitoring facilities to detect suspicious behaviours (potentially intrusions) and if necessary to take
defensive actions to eliminate or limit the impact of these cyberattacks in the origin of these misbehaviours.
[TSs|are complex, time-critical systems in which the physical safety of road users and the efficiency of the trans-
portation services directly depend on the provision of cybersecurity. A comprehensive standard and the creation of
a security strategy are not yet a fact. Some of the security technologies are in the initial stage of research regarding
their application in[[TSs| We can summarize that [TSs| innovation is an application of information and communi-
cation technologies to the transportation domain. As such, [[TS| reuse existing technologies to create innovative
services that can be applied in every transportation mode used by passenger or freight service. [TSs|architectures
and challenges are different from the application of information and technologies to the [[T|word. Indeed, they do
not meet the same standard and safety requirement, especially in terms of resources (memory, computation and

communication), and they do not operate in the same context.

An[ITS|can be framed as a part ofInternet Of Things| (IOT) and so it can be outlined using the same architecture

Fig In the [ITS| perspective, it gives each layer a more propoer functions.

Figure 1.2: loT architecture outlines

» Perception layer: It encompasses all the sensors that can gather information, even the infrastructure devices.



It is more related to the internal vehicular network design, and many security issues are concerned.

+ Network layer: In the [[TS| systems, the network layer is a complex mesh of wired and wireless technologies.
One of this layer’s main security objective and challenges is to provide node authentification in VANET with
constraints, such as protecting personnel data and authentification. To this end, many technologies and

standards are proposed. V2X has been widely explored to fulfil the requirement for duplication protection,

integrity, confidentiality [Mandy und Mahgoub (2018).

» Support layer: With the emergence of technologies like Fog or Cloud computing, the data is processed based

on their time-sensitive function and spatial need consideration [Khan u. a.| (2017). So, challenges like protect-

ing operations distributed in the Fog systems appear, while the existing security and privacy measurement

designed for cloud systems cannot be directly applied.

« Application layer: It's the interface of the interaction with the final user (mainly in[ITS]it could be the passen-
ger). The interaction can be expressed differently, depending on the final aim of the specific application. The
data acquired in the perception layer can be analyzed and processed in multiple ways (local, cloud), depend-
ing on the data semantics and its time constraint. Therefore, the security actions toward those applications
need to feet the time constraint calculation and the topology of the data flow in the vehicle. Note that a major

attack aims at the layer because it can interact with the passenger if blackmail is the goal.

We define two separate cybersecurity concerns for [[TS] In-vehicle cybersecurity and external vehicle cyberse-
curity. Both need to be considered at the implementation of the security layer for [TS] In this thesis, our work’s
primary focus is on the in-vehicle network system (autonomous cars)(See Fig [1.3). The external cybersecurity

(communication between the vehicles and things) is not taken into account in the scope of this thesis.
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1.3 In-vehicle cybersecurity

Although [ITS] are relatively new, especially autonomous vehicles (automotive transportation), many research and
industrial areas have integrated and tested cybersecurity methods by conducting many experiments on conventional
It is ranging from strong authentification, regular auditing, encrypted communication to a private network and se-
cure routing Qiang Hu|(2018);|Hahn u. a.|(2019); Jadoon u. a.| (2018). The conventional methods, like Cryptographic
approaches, are not entirely suitable for [TS| They need to meet a set of requirement like low latency, lightweight
encryption and communication overhead. We note that the architecture can differ in terms of implementation de-
tails depending on the constructors, where nowadays, many actors are working on in-vehicle architectures systems
that are reliable in terms of cybersecurity. These architectures and their implementations are still in their prototyping
phase (See Fig[1.3).

In autonomous vehicles, the external interfaces gradually increase, as well as the cybersecurity threats. For
example, in|Charlie Miller (2015) the authors achieved the invasion of Toyota Prius and Ford Escape and remotely
invaded a Jeep Cherokee. Furthermore, in[Smith| (2015) the authors demonstrated possible paths of vehicle cyber
attacking using penetration test. Researchers analyze the security issues in vehicles by experimental attacking
Checkoway u. a.|(2011); |Koscher u. a.|(2010a), the results show the severity of vehicular cyberattacks. In|Petit und
Shladover| (2014), the authors investigates potential network attacks and vulnerabilities for autonomous vehicles,
the possible attack targets include traffic signs, machine vision, GPS signals, sensors, radar signals, lidar signals,
navigation). Attacks against vehicles can be divided into logical attacks (password attacks, software attacks, com-
munications attacks, etc.), physical attacks (side channel attacks, denial of service attacks, interference attacks,

penetration attacks, tamper attacks, etc.) and other attacks |Wolf| (2009).

The embedded cyber defence architecture of automotive transportation aims to protect the information transfer,
sensor signals and critical passengers data by monitoring the communications among ECUs, sensors, and gateways

in the in-vehicle networks by including message authentication, data encryption, and intrusion protection.

1.3.1 In-vehicle network communication system

It represents an extensive system where many computers unsure functionalities by interacting and communicating
with each other, using different automotive field busses like CAN (Controller Area Network), FlexRay, LIN(Local
Interconnect Network). Mainly, those automotive systems lack security, and they handle many features such as
real-time communication between controllers, engine management. The Intrusion Detection System primary role is
to monitor those systems and detect malicious attempts or attacks and alert the system’s user.

In-vehicles communications are mainly signals and data transfer carried by automotive network protocols; some

typical networks protocols are introduced in the following:



» Controller Area Network (CAN): CAN bus is the most widely used bus field in the automotive industry. It
plays a significant role in the automotive power system and comfort system. The maximum speed of a high-
speed CAN bus can reach 1 Mbps. The data field length of the CAN frame is 8 bytes. The cyclic redundancy
check (CRC) is used to ensure the correctness of transmission. (In Chapter [2| we will introduce a detailed

functional description of CAN.)

» Local Interconnect Network (LIN): LIN bus is mainly used for controlling the vehicles seats, doors, wipers,
sunroof, and so on. For LIN bus, the maximum of the data field in a frame is 8 bytes. The checksum is
calculated to verify that the integrity of the message has been preserved during transmission operation. Unlike

CAN bus, LIN bus uses the master/slave node mode for communication.

» FlexRay: FlexRay bus has a higher transferring speed than CAN bus and mainly used the automotive power
control system. The maximum speed of FlexRay can be up to 10 Mbps. Time-division multiple access (TDMA)
and flexible time division multiple access (FTDMA) are used in FlexRay to ensure the real-time requirements
of network communication. The data field length of FlexRay frame is 254 bytes. The CRC is used to check
errors during bus communication. This protocol differs from CAN by its performance in terms of throughput and
higher reliability. The cost of a FlexRay node is currently higher than that of a CAN node, which is programmed

to be the de facto replacement in automotive electrical and electronic architectures.

» Ethernet: The Ethernet plays a significant role in the new automotive architecture. The IEEE 802.1 AVB
(Garner et al., 2007) and TTEthernet (AS6802) (SAE, 2016b) based on the automotive Ethernet have been
used for infotainment application. The Ethernet is also the foundation of the Internet protocol. With the
Internet protocol, remote calibration, remote diagnosis and remote update between vehicle and server can be
achieved. For the automotive Ethernet, transmission speed can be 100/1000 Mbps, the data field length of
Ethernet frame can be more than a thousand bytes. The CRC is used in Ethernet frame to check to ensure

the accuracy of data transmission Matheus und Konigseder| (2015).

1.3.2 Basic in-vehicle security network architecture

Compared with traditional vehicles, connected vehicles require more information transfer. Sensor signals and critical
data must be protected to ensure the safety of connected vehicles Qiang Hu| (2018). In-vehicle networks connect
the communications among ECUs, sensors, and gateways. The design of each layer must take security into con-

sideration as in the following:

+ Individual ECU Layer: This layer contains software trusted execution and data protection provides hardware

foundation for upper layers security mechanism.



* In-vehicle Network Layer: Cryptography related mechanisms can be used to encrypt the transferring data in

the network.

» Gateway Layer: Gateway layer has the critical security functions, including access control and intrusion

detection, this layer helps the data exchange in different network domain |Seifert und Obermaisser| (2014).

+ Firewall Layer: Firewall layer is used in general to protect the outside communication interfaces of vehicles,
such as OBD-Il interface, V2X on-board unit, and infotainment system (it also can be implemented for the

in-vehicle network communication based on the architecture design and isolation)Luo und Hou| (2019).

* Intrusion Detection: Intrusion detection layer is used to monitor all the network communication in the in-
vehicle system and detect any misbehaviour or anomalies in the network. (The misbehaviour could be a result

of an attack or an intrusion attempt).

The technological advance enables automated driving features and many others like infotainment. But, it brings
a substantial rise in functional complexity regarding utilized algorithms—also, the number of processed information
increases over several Electronic Control Units (ECUs). The increase of complex features is challenging to handle
with the existing architectures. The introduction of many hierarchy levels in the logical system facilitates functional
elements with wide internal variety and distribution over several subsystems. In-vehicle IDS need to meet the
constraints of that hierarchical architecture. Also, the resources induced by the IDS are limited in the embedded
systems. Today, most attacks targeting [IT| are well represented in the literature, but cybersecurity in an embedded
system is relatively new, especially for future Autonomous Vehicle.

The expansive and broad definition of Al and ML can and should be applied in cybersecurity, encompassing
various methods that have developed over many decades have demonstrated effectiveness in many other applica-
tion domains. AI/ML is viewed as a necessary response to the continuing growth in the number and complexity of
threats, the evolving nature of threats, and the need for rapid (and therefore substantially automatic) responses to

detected threats. We discuss this point in the following section.



1.4 Artificial intelligence for Cybersecurity

1.4.1 Artificial intelligence

Since the rise of homo sapiens, millions of years ago, our ancestors always achieved abstract thinking, commu-
nicated complex thought, and accumulated and transmits information. That led our primary communities into a
continues evolution through time and their surrounding environment better than any other species. Biologically com-
pared to apes, we have some crucial and minor changes in brain size and some neurological organisations that
somehow enhances our cognitive ability. So, as a human on this planet, we name this distinguishing ability Intelli-
gence. We always used this ability, so with science development in its different fields, it is logical to understand this
intelligence to develop efficient, productive technologies [Bostrom| (2014); [McCorduck| (2004). With the advanced
research in neuroscience and biological systems, with continuous growth after both agricultural and industrial revo-
lution, especially after the invention of computers in the 1940s, we have been expecting machine matching humans
in general intelligence by possessing a common sense and an effective ability to learn. We plan to meet complex
information-processing challenges across a wide range of natural and abstract domains/Bostrom| (2014). In the

following Fig[1.6] we highlight some significant events that led us to Artificial Intelligence nowadays.

Taking a look at the succession of events in Fig[1.6] Th Al thinking mindset goes from making machines as good

as human or even much better, from where the hypothesis of "The singularity ” arises:

“Let an ultraintelligent machine be defined as a machine that can far surpass all the intellectual activities of any
man however clever. Since the design of machines is one of these intellectual activities, an ultraintelligent machine
could design even better machines; there would then unquestionably be an ’intelligence explosion, and the intel-
ligence of man would be left far behind. Thus the first ultraintelligent machine is the last invention that man need ever

make.” — Irving John [Good] (1966))

ARTIFICIAL GENERAL
INTELLIGENCE

IDEA IDEA
Machine's ability to — Machines can be made
perform a single task to think and function
extremely well, even as human mind.
better than humans.

Figure 1.4: Narrow Al vs General Al - Credit India Analytics Magazine



Next, it had some downfall "Al winter”, the Al thinking mindest get less ambitious, the expert system had
success, and brought another wave of interest to the domain. These expert system focused on much narrower
tasks. They were rule-based programs that make an inference on the knowledge defined by experts and after
hand-coded in a formal language. Those approaches were expensive, and needed continues update. In general,
they were not practical (2014). Then, a newly popular technique grouped under the umbrella of Machine
learning(ML) including neural network (NN) and genetic algorithm promised to overcome some of the shortcomings
of the Good Old Fashion Atrtificial intelligence (GOFAI). Researchers had shown that a neural network could learn
from experience, finding ways of generalizing from examples and discovering hidden statistical patterns in their

data input [Fukushimal (1980); [Lecun u.a.| (1998); [Hinton und Salakhutdinov| (2006). They demonstrated that NN

could accurately tackle the classification task and pattern recognition problems without an explicit definition of the

features extracted or manual weighting thanks to the backpropagation algorithm. NN along with other algorithms
like K-nearest-neighbors, support vector machines (SVM), naive bayes among others have been successful; One
of the reason is their ability to learn hight level abstraction concepts given raw data input data. (Figure classical ML
based on handcrafted features VS NN workflow). In general, Al goes from Artificial General Intelligence to Artificial
narrow Intelligence(See Fig[1.4).

The Fig[1.5 shows machine learning segmentation per their learning paradigm and their eventual applications.
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Broadly speaking, Ml is a field of study that gives computers the ability to learn without being explicitly pro-
grammed [Arthur Samuel, 1959]. ML has achieved a rapid growth and has drawn lots of attention thanks to recent

advances of Deep Learning (DL) which is a sub-filed of ML based on Artificial Neural Network (ANNs).
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1.4.2 Machine learning utility for Cybersecurity

Cybersecurity is a very broad term referring to everything related to the protection of cyber resources. As much
as any other domain, cybersecurity had a lot of interest in using ML approaches. It's considered as a necessary
response to face the continuous growth of the number of threats, and the need for rapid, substantially automatic
responses to detected threats. The primary targets for ML application in cybersecurity are Intrusion Detection Sys-
tems that we will review in the chapter [2] characterization (malicious code), user behavioural modelling, automated
vulnerability testing and intrusion defence. Indeed, ML is beneficial to cut through the large volume of data and
find indicators of compromisation and unwanted behaviour using correlations across data sources. These sys-
tems would assist human analysts by elevating or alerting them to significant events that require responses without
overwhelming the organization with false alarms or other unnecessary indicators|Loaiza u. a.[(2019).

However, in general, ML has had promising results in improving the efficacy of cybersecurity technologies such
as endpoint security to detect and prevent new and previously unseen malware. Machine learning intends to be
incorporated into seemingly every new cybersecurity defence applications to avoid any compromisation since at-
tackers are evolving and adapting at the same scale and at a faster pace than defenders. The primary benefits

anticipated are:
 Improvements to the investigation of security alerts.
» Improvements in accuracy and reduced false-positive rates.
» The elimination of more compute-intensive detection techniques.
+ detection of zero-day threats.

The most practical applications reside in the Information Technology word (IT) where the most data and experi-
ence coping with cybersecurity threats and attacks are available. It’s recent that data related to network information
and cybersecurity are starting to be leveraged for public research and analysis in competition platforms like Kaggel.
But, mainly, companies that have a requirement to train machine learning algorithms, especially DL algorithms that
are data-hungry are those who benefit more from DL technologies in their private research. In fact, more than half of
the respondents report they are using machine learning technology for cybersecurity purposes to some degree, up
from 47% in 2018, per the 29% of those companies leveraging machine learning extensively. This level of adoption
has made machine learning a foundational cybersecurity technology and mostly applicable for specific use cases
oraclAlcs.

The lack of datasets for research in this area is a problem. Some vendors have large volumes of data avail-
able (for example, network switch/infrastructure vendors, and providers of anti-virus and network/computer monitor
software and systems). However, the most studied available datasets are dated (DARPA 1998 and 1999, and KDD

1999 data), and the characteristics and volume of attacks have significantly changed since that time.
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1.5 Machine learning for a future in-vehicle intrusion detection system

Intrusion detection systems (IDSs) are common to defend against Cyber-Physical system (CPS) attacks, especially
the Controller Area Network vulnerabilities. These systems monitor the ECUs networks such as CAN and report
malicious activities. In the CPS domain, an IDS can detect attackers attempting to modify or misrepresent physical
processes. In other words, if an attacker intends to cause the driver to speed, he may choose to inject packets
detailing a lower speed, which would cause the speedometer to display incorrect information. In this case, an
effective IDS will notice that the data for speed does not conform to the expected behaviour indicated by the data
for the related physical processes (e.g., engine and wheel rotational velocities, fuel consumption). So, the IDS will
notice that the speed readings are anomalous. As explained, the example seems simple, and this case can be hand-
coded in a set of rules to prevent this specific attack. But as soon as we start enumerating the number of information
that can be changed while corrupting the in-vehicle system, it leads to an explosion and intractable scenarios. As
another example, if an IDS knows that a substantial increase in an automobile’s brake pressure likely precedes a
relative decrease in velocity, the IDS can assert that no change, a small change, or an increase in velocity (after
significant brake pressure) is abnormal. Of course, this requires an IDS capable of determining expected behaviour
and identifying anomalies.

In a nutshell, to design such an IDS for a vulnerable CPS, embryonic IDS architects require the following:

» An ample quantity of knowledge under normal operating conditions to establish normal behaviour.

Capture the dynamics or patterns of a CPS, to include an understanding of the current system state or be-

haviour enables predictions concerning a future state.

+ Solid understanding of a system dynamic, how one signal affects another AND how the historical state defines

the current state (causality).

* A process to determine whether new traffic conforms to normal behaviour.

An alert system to report to the administrator the traffic that does not conform.

In-vehicle networks are traditionally simpler than[IT| networks, yet, CAN is crucial to ensure message transmis-
sion by eliminating conflicts and be resilient to noise. As the number of electronic components penetrating vehicle
subsystems increases, the in-vehicle networks are given significance as a medium for exchanging information. As
mentioned above in the Sub-section the distributed functions among different subsystems triggered the com-
plexity level of networks and transformed in-vehicle networks into advanced controller area networks. Upcoming
autonomous driving abilities and applications that require the collaboration of several subsystems force auto-

motive manufacturers and equipment suppliers to add new hardware and software layers to their products, making
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in-vehicle networks a source of data. By increasing connectivity surfaces of vehicles to support[ITS] vehicles are
becoming vulnerable against malice and misbehaviours.

In that context, we have two primary assumptions. i) The system behaviour is well defined; it uses deterministic
communication between distinct components. ii) The system can behave differently depending on various context
(for example, monitoring a car behaviour can change following the area and the state of the road). It is tough
to develop an IDS by explicitly coding all rules for each specific context. After the aforementioned ML success
and their ability to learn specific tasks without being explicitly programmed, the straightforward application of ML
methods for In-vehicle IDS system is well expected (we review those methods in the Chapter3). Deep learning
has been used successfully in many domains and task, and cybersecurity also got inspired by machine learning in
general to develop an intelligent Intrusion Detection System. To have an intelligent in-vehicle IDS, we need to take

into consideration the following constraints:

Modeling the normal behaviour of a vehicle following different context.

In the automotive context, many cyber physical systems are computationally limited by available hardware or

by standards and regulations.

Ensure high accuracy and reduce false alarm rate.

A distributed intrusion detection system should fit the actual network and system design.

» Monitoring of the system and real-time detection.

Detection process with low resource consumption.

Reduce the communication overhead induced by the integration of IDS in the In-vehicle network.

However, systems that incorporate advanced algorithms such as Al and ML must be properly designed to ac-
cept and process the high arrival rates of network and measurement data, as must the software-based sensors
(Probes) that collect data from ECUs attached to the network, to ensure that the performance network is not unduly

compromised.

1.6 Contribution and Outline

As Introduced above, this thesis mainly came across three significant domains, Intelligent transportation systems
(ITS) represent our study’s context, Artificial intelligence as the central technology used and explored to solve
Cybersecurity problem and challenges related to the [[TS] application. So we can position precisely the scope and

the purpose of our contribution in this thesis in the following.
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1.6.1 Research question and constraints

As the research presented in this thesis developed above, it naturally formed four main parts: Intelligent intrusion
detection system STATE-OF-THE-ART, Adversarial Learning for Anomaly Detection, Empirical Time series evalu-
ation of In-vehicle Intrusion detection system, Distributed anomaly detection based In-vehicle IDS. Specific aims
and objectives related to each of these parts of the thesis are presents in their respective chapters, whilst general

research questions are presented here at a high level.

» How machine learning can enhance the existing IDS systems?

* What are the constraints, requirements fixed by the domains to assess the utility of ML in in-vehicle

context?

» What are the most suitable ML approaches that fit the IDS objective while respecting the requirement and

constraint?
» How to deal with the lack of data to validate the proposal?
* How to build a ML model tailored for the in-vehicle system?

« If data available, how to cope with an imbalanced rate between normal examples and the lack of attacks

examples?

» The technologies emerging for the in-vehicle network are new and still evolving, how to avoid the obsoles-

cence?
» Major of data sets in this domain are not in clear (encoded or encrypted), how the model can use those data?
» How the model takes into consideration the topology of this data?

» How we can integrate the model by respecting the logical architecture of future in-vehicle systems?

This thesis’s scope is determined by several pragmatic conditions, which have been applied to ensure a focused
investigation without compromising the ability to answer the research questions and respond to the project’s finding
expectation that embraces this research. It is necessary since the thesis considers several large research domains
and works as part of an R&D project. First, this thesis’s empirical work only considers network-based anomaly
detection as the main path of contribution. However, the review of the domain considers all the main methods of
intrusion detection. Although some challenges and concepts apply to other domain applications like healthcare
and fraud detection, these applications are excluded as an application, but the related theoretical work has been

considered. Furthermore, since this investigation focuses on machine learning, other, conventional techniques
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applied to intrusion detection are not considered. However, the review does consider a broad range of different Al
techniques applied to intrusion detection.

There are several aspects of intrusion detection that are not considered here, although they would require atten-
tion when developing an IDS to be deployed in real life, such as:

Architecture: the focus here is on what could be referred to as a detection module that would exist in a larger IDS
framework that takes in consideration many others method (Hybrid). Especially in-vehicle networks, the architecture
is very important. This includes determining where to deploy the IDS and considering the local information, and it's
safety impact, which is considered a general challenge.

Data collection: since the KDD data set (is more[[T|and old dataset) is adopted in this work to benchmark the
ML methods, data collection is required. However, it would be necessary to collect data from the environment in
which an IDS is to be employed (real autonomous car in real life). In our case, the data collection has been done to
better understand the environment of the in-vehicle network and analyse the data topology and characteristics (This
also includes labelling data for supervised learning.).

Data preprocessing: some data preprocessing is necessary for this work, adopted, enumerating and scaling
feature values. However, In this domain, it was a lack of specific analysis of CAN data, so a convenient and custom
Data preprocessing is required to fit the ML inputs.

Performance: there are several mechanisms that can be adopted to help achieve a better performing IDS, in
terms of detection rates, speed and memory usage, and also communication overhead. This thesis focuses on the
issues and challenges posed by the research questions and helps develop an optimal and practical in-vehicle IDS
prototype.

Other pragmatic considerations: detecting new intrusions will always be a challenge; there will always be new
software, which inevitably has vulnerabilities that can be exploited. Therefore, re-training is necessary once new
data is available. When and how this is done is considered here by adopting a general framework that combines

supervised learning and unsupervised learning.

1.6.2 Research Methodology and routing

There are three main contributions to this thesis. These parts have made contributions to both the intrusion detection
for in-vehicle systems and machine learning domains. However, the focus of this thesis is on applying machine
learning to the in-vehicle intrusion detection system. We propose practical solutions to tackle some challenges
presented above with a customization effort to developpe tailored deep learning architectures that respond to the

constraint of the future in-vehicle network. This study starts with an extensive literature review of the following areas:
* Intrusion detection system.

» Machine learning for anomaly detection with a focus on deep adversarial learning.
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* In-vehicle CAN data analysis.
» Supervised and Unsupervised DL for time series analysis
+ Distributed DL architectures

We present the flow of the thesis work as follows:

In the Part[l| (Chapter 2 and Chapter 3) , we provide the literature survey on the existing state-of-the-art methods,
taxonomy related to the area mentioned above. It inspires ideas and hypotheses to build the problematics that guide

our research. Each problem is defined in their respective contribution chapter.

In the Chapter 4] we propose our first contribution, based on the SOA analysis, we start with a contribution to the
anomaly detection area. Anomaly detection is a standard problem in Machine Learning with various applications
such as health-care, predictive maintenance, and cyber-security. In such applications, the data is unbalanced: the
rate of regular examples is much higher than the anomalous examples. The emergence of the Generative Adver-
sarial Networks (GANSs) has recently brought new algorithms for anomaly detection. Most of them use the generator
as a proxy for the reconstruction loss. The idea is that the generator cannot reconstruct an anomaly. We develop
an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN), which maps
the data to a latent space (decision space), where the detection of anomalies is done directly by calculating a score.
Our encoder is learned by adversarial learning, using two loss functions, the first constraining the encoder to project
regular data into a Gaussian distribution and the second, to project anomalous data outside this distribution. We
conduct a series of experiments on several standard bases and show that our approach outperforms the state of

the art when using 10% anomalies during the learning stage, and detects unseen anomalies.

In the Chapter [5} In this work, we propose a Deep CAN intrusion detection system framework. We introduce
a multivariate time series representation for asynchronous CAN data, enhancing the temporal modelling of deep
learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and
compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational
constraints. Our system is time window wise: any given time frame is labelled either anomalous or normal. We
conduct experiments with many types of attacks on an in-vehicle CAN using SynCAn Dataset. We show that our
system yields good results and allows us to detect many kinds of attacks.

In Chapter [ : In this contribution, the in-vehicle network architecture is hierarchically distributed where the
different sub-network are monitored with various and independent probes. We propose a Distributed Anomaly
detection IDS (DAD) that fits the distributed in-vehicle architecture. To this end, we use multi-modal deep learning

architecture. The model captures each probe view pattern as a feature vector representation of the input through a
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sequence modelling transformation using a Temporal Convolutional Neural Network (TCN). Our proposed method
brings two optimisations compared to central models. First, it reduces the transmitted vector’s size between the
probes and the central probe (Bastion). Second, we introduced a new flag e; related to each probe that lower the

computational inference time and the intrusion detection system’s communication overhead.

1.6.3 Publications

+ Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Construction d’espace latentpour
la détection d’anomalies par apprentissage adversarial. Conférence sur I'’Apprentissage automatique (CAP

2019), Jul 2019, Toulouse, France.

+ Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. An Encoding Adversarial Network for
Anomaly Detection. 11th Asian Conference on Machine Learning (ACML 2019), Nov 2019, Nagoya, Japan.
pp.1-16.

+ Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Deep Learning for In-Vehicle Intru-
sion Detection System. Neural Information Processing. ICONIP 2020. Communications in Computer and

Information Science, vol 1332. Springer, Nov 2020, Bangkok, Thailand.
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Chapter 2

The cybersecurity of autonomous vehicles

As introduced in the Chapter [1} the automotive industry has undergone a paradigm change towards increasingly
connected and autonomous cars. Smart cars available today are vehicles equipped with systems providing con-
nected and added-value features to enhance car users experience and improve car safety. Within the next few years,
smart cars connectivity is expected to expand, and smart cars will become connected to other vehicles, pedestrians
and their surrounding infrastructure through information exchanges via communications ENISA|(2019). Cyber-
security is a crucial aspect that will affect the evolution of smart cars. There have already been several research
publications on attacks targeting intelligent vehicles. In Fig[2.1]More than 70% of the industrial control system (ICS)
vulnerabilities disclosed in the first half of 2020 can be exploited remotely [claroty| (2020). The Transportation sec-
tor looks particularly exposed in the top five most vulnerable sectors. The expectations are that the numbers of
transportations vulnerabilities will increases when the ITS are deployed at a large scale.

In this thesis, our main focus is to study the in-vehicle network intrusion detection system. The primary function
we want to secure is the In-vehicle network communication and its functionalities, as it is mainly one of the most
used ways to perform intrusions and attacks. This chapter review the literature of cybersecurity gradually applied
to the[IT] domain to its application in the more specifically for the vehicle and future autonomous vehicles (the

in-vehicle security part). We review the [[DS]literature and its taxonomy from the In-vehicle perspective.

2.1 In-vehicle Network communication and architectures

[TSis often associated with intelligent cars, whether they possess driver-assistance technology, or semi-autonomous,
or even fully autonomous. Intelligent cars are a major component of [TS due to the sheer volume of personal ve-
hicles on the roadway. Several elements bind the scope of this research. The first element is limiting this research
to cars. The term “vehicles” would be too broad because it includes cars, drones, trains and a wide variety of other

devices. In the following, we use the term car and vehicle interchangeably to designate an automotive car. We
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YEAR-OVER-YEAR COMPARISON OF VULNERABILITY COUNT BY INFRASTRUCTURE SECTOR
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Figure 2.1: Industrial Control System (ICS) vulnerabilities disclosed in the first half of 2020. Credit (2020)

We are interested in network security for in-vehicle systems. The vehicular network communication role is to
support the required cooperation of different components of the vehicle.

We refer to all communications between the internal components of the vehicle as internal vehicular commu-
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will discuss and consider the assumptions and definitions related to all forms of connected cars. In chapter [1] we
gave an introduction on[[TS|cybersecurity and in-vehicle network architecture. We extend the understanding of this
introduction while defining this thesis’s scope according to a taxonomy gathered from the literature review on con-
nected vehicles, in-vehicle architectures, investigate the different attack vector and cybersecurity defence applied to

the vehicle in general and the transferability of security from IT to automotive domain in the below sections.

nication. Other communication technologies exist that provide a communication interface for external devices to

perform diagnostic or firmware updates and future applications such as[[TS] enabling connected cars to perform



traffic optimisation activities by exchanging messages between different autonomous vehicles. Moreover, function-
alities that give passengers the ability to stay connected to the internet are getting more popular. We refer to this

kind of communications and all communications that include an outside party as external communication.

2.1.1 External communication

External communication technologies are used to control several features of the car remotely, and connectivity in
modern vehicles has become a necessity. Manufacturers are trying to give the consumer more ways to remotely
control several aspects of the vehicle [Koscher u.a. (2010a) using more than the traditional radio-controlled door
unlocking functionality. For example, WiFi (IEEE 802.11) and Cellular communication such as GSM, 3G, 4G even
the recent 5G are becoming a more standard option. These communication technologies are used for turning on air
conditioning and even starting the engine. GPS for navigation and Bluetooth for hands-free smartphones usage has
been used in the past decade Lee und Gerla| (2010). Additionally, from the manufacturers’ point-of-view, diagnostics
messages are required to push a remote Firmware update to ensure that the customer gets the best aftermarket
experience. The manufacturer may also request to receive a periodical report about the vehicles to provide remote
support. These communications are usually done through VPNs provided by the manufacture or third-party services
Shavit u. a.[(2007).

More sophisticated services and communications features are incorporated into vehicles. On-Board Diagnos-
tics (OBD-Il) port provides direct, standard access to internal automotive networks for user-upgradable subsystems
such as audio players who are routinely attached to these same internal networks. Telematics systems provide
value-added features such as automatic crash response, remote diagnostics, and stolen vehicle recovery over a
long-range wireless link. To do so, these telematics systems integrate internal automotive subsystems with a remote
command centre via a wide area cellular connectionKoscher u. a.[ (2010a). Increased external communication be-

tween Autonomous Vehicles and the external environment: One main type of communications is the inter-vehicular,

[Vehicle-to-Vehicle] (V2V) communications on the road [Vehicular Adhoc Networks| (VANETS). It allows information-

sharing among nearby autonomous vehicles so that each car is better aware of its rapidly-changing surroundings
Kumar u. a.|(2012);Thing und Wu| (2016). In future, V2] and vehicle-to-Internet of Things (V2loT) communications
will also become more prevalent on the roads. [V2] communication is a wireless and bidirectional exchange of infor-
mation between vehicles and road infrastructures, such as overhead RFID (Radio-Frequency Identification) readers
and cameras, lane markers, traffic lights, street lights, road signs, and parking meters. As smart vehicles travel
along roadways, On-Board Units (OBUs) within intelligent vehicles communicate with Road-Side Units (RSUs), [[OT]
devicesHahn u. a.| (2019); [Poudel und Munir| (2021)); [Lu u. a.|(2014);/Sun u. a.| (2016).
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Figure 2.2: External vehicle communication

2.1.2 Internal communication

The in-vehicle network involves communications among different [Electronic Control Units| (ECUs), sensors and

actuators. Almost all functions in the modern car are controlled by one or more. The number of in an
automobile ranges from 30 for simple cars to approximately more than 100 for modern vehicles. The expectation
of the gradual introduction of Autonomous vehicle from no automation, to conditional automation to full automation
will take over more functions. When automation levels grow, the need for more processing power and sensors
increases, also associated network bandwidth. It certainly may also lead to new car networks architecture and

associated future ECUs|

[ETectronic Control Units| (ECUs)

Nowadays, [ECUs|are cost-effective solutions. This technology implies a voltage rating of the microcontroller of 5 V
or 3.3 V for the interface signalling and evens lower for the core supply. The motivation for these types of products
is system cost reduction. It is technically feasible since the integrated function requirement uses the same high
voltage technology, such as engine control, window lifter, or electronic power steering. There is some combination
like braking and airbag [ECU] Moderns and future in-vehicle networks call for multiple domains functionalities. In
this case, the communication must support applications with data ranging from 125Kb/s to 1Mb/s, application de-
manding high bandwidth and strict latency constraint like high-resolution video entertainment system and Advanced
Driving Assistance System (ADAS) (10Mb/s to 30Mb/s).

In-vehicle networks were realized through point-to-point wiring between electronic components, resulting in bulky,

expensive, complicated harnesses Nilsson u. a.| (2008);|G. Leen u.a.| (1999). With increasing scale and complexity

of the in-vehicle network and the grow where volume, weight, and reliability become real problems. As a result,

several automobile communication bus protocols are developed (See Section|1.3.1). By connecting a number of the
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electronic components to the same in-vehicle communication bus, sharing the communications medium and wiring
can thus be saved. Meanwhile, the in-vehicle architecture can be more hierarchical and structural, simplifying the
automobile design procedure. Many standards are used in the automobile industry, particularly the networks and
their protocols based on their local requirement and needs while keeping it cost-effective. Due to different cost,
reliability, bandwidth, latency requirements imposed by different automobile applications classifications, specific

communication protocols, and networks have been developed (LIN, CAN, FlexRay, Ethernet) and many network

architectures have been proposedDibaei u. a. (2019);

In-vehicle network architectures
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Figure 2.3: Intelligent Vehicle System Architecture Dibaei u. a. (2019)

Integrating all the new modern cars functionalities is not feasible by putting them together using traditional auto-
motive architecture design. Indeed, those functionalities can be classed into different application types based on
safety, priority, and other resources required. In Fig we show three topology design of in-vehicle network ar-
chitecture, 1) The traditional topology is based on the controller area network (CAN). Due to the characteristics of
CAN, every node in the network must share the bandwidth. The bandwidth is like a bottleneck that limits the data
processing ability of each ECU on the network. The traditional architectures core problem is the lack of space for
the high computation power unit, which is necessary for intelligent driving. 2) Domain-based topology concept is to
divide the autonomous driving system into several ECUs|domains based on each domain’s core computation. The

vehicle components can be classified into different domains according to their functionalities. Usually, the sensors
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and actuators different functionalities can share those would be grouped as one domain. This topology can support
more complex intelligent driving functions, as each domain [ECU| has more power in both communication and com-
putationHaas und Langjahr (2016). 3) In a centralized architecture, most of the computation tasks are realized in
the central computation entity. Most of the components are connected to the central computation entity to access all
sensors and actuators data. This topology enables the combination of more information, thus enhance the potential
of making a better decision. However, a centralized topology has higher demands on the data communication ca-
pacity, so it needs to group the components into different sub-networks according to their physical placement or the

network properties to improve the efficiency of communication Brunner u. a.| (2017).

2.1.3 Controller Area Network (CAN)

As mentioned above, one of the most critical challenges for the next generation in-vehicle architectures is managing

the high-speed communication among vehicles electronic components with a limited cost. The most successful

communication network in the current automotive industry is the [Controller Area Network| (CAN) protocol. is

without any doubt the most widely used standard in the field of vehicle hardware communication since its publica-
tion in 1986. CAN is a network protocol developed by Robert Bosch for vehicle systems [Szydlowski| (1992). The
original specification paper from |Szydlowski| (1992) points out many proprieties that led to the widespread adoption
of this protocol standard (Prioritization of messages, Guarantee of latency times, Multicast reception with time syn-
chronization, System-wide data consistency, Multimaster, Error detection and signalling, Automatic re-transmission
of corrupted messages). Compared to other network technologies, CAN have two outstanding advantages: cost
efficiency and flexibility |[Zeng u.a. (2016); |Afsin u.a. (2017); [Hartwich und Bosch| (2012). Effectively, is a
priority-based bus implemented by using two wires. The Medium Access Control (MAC) protocol of[CAN|uses car-
rier sense multiple access with collision detection (CSMA/CD). Up to 8 bytes of data can be carried by one
frame, and a cyclic redundancy check (CRC) of 16 bits is used for transmission error detection. [CAN|facilitates bit

by bit non-destructive arbitration over the identifier which also serves as a priority flag.

In the following, we will present a brief explanation of [CAN] which was designed to be extremely reliable and
flexible because it's meant to work in harsh environments such as vehicles. [CAN| operates in two layers of the OSI
model. The physical layer which is used for signalling, and data link layer that handle several aspects of the

transmission of CAN frames, the message filtering and recovery management.

The physical layer

The physical layer of CAN is concerned with defining how to send signals and the correct encoding of bits. Thus,

several concepts are specified in the original CAN specification :
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(A) Dominant and recessive logical bus states : CAN use two distinct wires to transmit signals: the CAN High
(CANH) and CAN Low (CANL) wire. When no signals are transmitted on the bus, these wires are set into an
idle state; the voltage amounts to 2.5V. After the first bit has been sent, the CANH wire increases its voltage
to 3.75V, and the CANL wire decreases its voltage to 1.25V. So, the transmission of data in the CAN bus
is through differential signalling and what this means is that we use both wires (CAN high and CAN low) to
transmit data at the same time. Because the objective is the difference in voltage between these two wires as
you can see from the Fig[2.4] the recessive level means that both of the wires will stay at around 2.5V, so the
difference between the two wires is close to zero. The dominant level means that the CAN high wire goes to
a higher voltage, whereas the CAN low wire goes to a lower voltage, creating a 2.5V difference between the
two wires. We note that the recessive level is the logical one, and the dominant level is the logical zero [Natale

u.al (2012).

Volts High Speed CAN Voltage Levels ISO 11898-2

3.75 = ==== Dominant
CAN High

Tl T — T TE—" Recessive
CAN Low

1.25 = ==== Dominant

Data 0 1 0 1

v

Figure 2.4: Dominant and recessive logical bus states |pico technology

(B) Bit representation : CAN uses Non-Return-to-Zero (NRZ) bit encoding. This encoding describes that after a
value of 1 is detected in the bitstream, the next bit does not have to be changed to a 0 immediately and the
voltage can be maintained for a longer period (See Fig [2.5). This encoding can lead to a desynchronization
of the communication. All participating nodes are synchronized and adjusted to the same clock rate to ensure
the accurate transfer of data. A sovereign clock signal does not achieve the clocks synchronization, but the
CAN frames on the bus are utilized. All nodes connected to the CAN bus listen for frames and synchronize

their internal clocks to the transmitting node clock Natale u. a.[(2012).
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Figure 2.5: Non-Return-to-Zero encoding example with clock synchronized on the transmitting

(C) Bit stuffing : To prevent the communication desynchronization as mentioned above, the CAN uses a practice
called Bit stuffing. The central idea behind bit stuffing is to inject a bit of reversed polarity, after five bits of
equal polarity have been determined in the communication, thus enforcing the correct synchronization (See

Fig[2.6). It important to mention that not all fields become stuffed, for instance, the CRC and the ACK (See
Fig[2.7) have a fixed size and can not be stuffed [Natale u. a|(2012).

1 0O 0 0 0 0 1 1 1 1 0 0 1

dominant

1 0 0 0 0 0 n 1 1 1 1 I:I » B 1
dominant

stuff bit stuff bit

Figure 2.6: Bit stuffing example mbedlabs| (2016)

Data link layer

CAN data link layer protocols have some features; we highlight some of them; any node has the right to request
transmission rights at any time. The necessary bus arbitration method to avoid transmission conflicts. Broadcast

transmission of the CAN data frame.

(A) CAN frames : The majority of the communication proceeds through data frames that constitute the data field,
the arbitration field, Cyclic Redundancy Check (CRC) field, and the acknowledge field. The arbitration field

further contains an 11-bit identifier field and a Remote Transmission Request (RTR) field used in the arbitration

and must be set to a dominant bit in case of a data frameSzydlowski| (1992). The data field then follows, which

can be 8 bytes in total, followed by the cyclic redundancy check field. The structure of the data frame is

illustrated in Fig[2.7]
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Figure 2.7: CAN frame [Navet und Simonot-Lion| (2013)

(B) Message Arbitration : Each message has been assigned an identifier frame to define the message priority.
The lower number of message identification value, the higher priority it has to gain the bus (See Fig [2.8).
This prioritization feature has also solved the bus access conflict so that if two nodes want to send data
simultaneously, each ECU with a lower ID value will first publish it JAvatefipour und Malik| (2017); [Corrigan|
(2002);[Navet und Simonot-Lion| (2013).
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Figure 2.8: Arbitration process in CAN-Bus protocol/Avatefipour und Malik| (2017)

2.2 Network Cybersecurity: A brief taxonomy

2.2.1 Intrusions

In order to provide useful services and allow a system (backed by people usage or autonomous) to perform tasks
more conveniently, computer systems are linked to networks; the result is a worldwide collection of local and wide-
area networks known as the Internet. While ease of use and convenience are tradeoffs with security, we often look
at it as a risk challenge to overcome or mostly to minimize instead of renouncing to the services provided by remote

machines and applications. Therefore, we have to deal with a loss of security.

When a computer system is attached to a network, one can identify three areas of increased risk: First, the
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number of points that can potentially serve as the source of an attack against a computer increases
(2003). For a stand-alone system, physical access to the machine is a prerequisite to an intrusion. When a system
is connected to a network, each host can be utilized by an intruder to send packets to the system. Certain services
(such as web servers or name servers) need to be publicly available, each machine on the Internet might be the
originator of malicious activity Kruegel (2004).

Second, the physical perimeter of the system is extended. For a single machine, everything is considered to
be inside a box. The data is protected from tampering while transferred between the different components of the
computer hardware. The same assumption is not valid for data transmitted over the network. Packets on the wire
often pass areas and are forwarded by infrastructure devices that are entirely out of the control of the receiver
Kregel| 2004)

Third, networked machines typically offer a more significant number of services than the single authentication
service provided by a stand-alone system. All service processes implementing remote access may contain ex-

ploitable program bugs or configuration errors that can lead to a security compromise (2004).

There are many types of intrusion, making it difficult to give a single definition of the term. [Asaka u.a. (1999);
(2004); (2010) offers the following processes of a successful intrusion:

Surveillance stage : The intruder attempts to learn and gather as much information as possible about the

potential target by scanning communication, software’s and tries to discover vulnerable services and configurations
errors that can be exploited.

Exploitation stage: Once the attacker identifies weaknesses in the previous stage, they can elevate the privi-
leges. Then, the intruder will have free access to abuse the system targe{Engen| (2010).

Mark stage: After the exploitation stage, the attacker may be free to implement the action(s) wanted, steal
information from the system, destroy data, plant a virus or spyware software, change values or use the host as
a medium for conducting further attacks. After which, this marks the stage where the attacker has achieved his

goal(sjAsaka u.a.(1999).

Masquerading stage: Finally, the masquerading stage covers all activity performed by an intruder after the

successful break-in (e.g., deleting log entries or patching the vulnerability used to get access).

Surveillance stage Exploitation stage Mark stage Masquerading stage

J S N -/

L

Figure 2.9: Schema showing the different steps of an intrusion.
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2.2.2 Network Threats, Attacks and Security Properties

In the purpose of network security, we assume that a system function is to provide information. In general, there is
a flow of data from a source (e.g., a host, a file, memory, subsystem, node in distributed systems) to a destination
(e.g., a remote host, another file, a user or a subsystem ) over a communication channel (e.g., a wire, a data
bus, WIFI) mainly governed by a communication protocol. The security system’s task is to restrict access to this
information to only those parties that are authorized to have access to achieve a specific functionality, according to
the security policy in use [Kruegel| (2004). A regular course of communication is a legitimate flow of data between

the concerned source and destination while respecting security proprieties.

Threats

In general terms, an intrusion threat is an unauthorized attempt to access valuable assets, manipulate information,
and alter a systems state into instability or unreliability. Those it causes a deviation from the expected use of the
system [Koscher u. a.[(2010b).

We show the regular communication flow and several types of threats models that target it in Figure and

their description below.

* Interruption: An asset of the system gets destroyed or becomes unavailable. This attack targets the source

or communication channel. It prevents the information from reaching its intended target. Attacks in this

category attempt to perform a kind of [Denial Of Service| (DoS)Peng u. a.| (2007); [Kruegel (2004); [Loukas und
Oke| (2010); Mahjabin u. a. (2017).

* Interception: An unauthorized party gets access to the information by eavesdropping into the communication
channel to capture data being transmitted on a network (performing sniffing or snooping attack) while it can

keep traffic flowing efficiently |[Anu und Vimalal (2017); [Philip Baczwewski (2000); |Prowell u. a.| (2010).

* Modification: The information is not only intercepted but modified by an unauthorized party while in transit

from the source to the destination. [Man-In-The-Middle] (MITM) attacks occur when unauthorized individuals

or parties are placing themselves in the path of communication to eavesdrop, intercept, and possibly modify

legitimate communications. [Prowell u. a.| (2010); [Kruegel| (2004)

» Fabrication: An attacker inserts counterfeit objects into the system without having the sender doing anything.
When a previously intercepted object is inserted, this processes is called replaying |Patil und Kamble| (2018).
When the attacker pretends to be the legitimate source and inserts her desired information, we call it mas-
querades. Counterfeiting attack takes place when an attacker forges the message that can be scanned and
received by authorized readersPhilip Baczwewski| (2000);|Rong u. a./(2013); Patil und Kamble|(2018); [Kruegel
(2004).
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Network attacks

It is essential to describe a threat model to implement a layered and holistic security mechanism. Once a threat
model is defined, attacker types and attack vectors can be derived according to the capabilities of adversaries, their
possible intentions and the valuable assets in the target network. The threat models are valuable abstraction of
possible attacks, yet, it is nearly impossible to cover the complete space of attack types in real life.

We present various types of network attack classified into following three categories given by |Bijone| (2016a).

« [Denial Of Service|(DoS) : A Denial of Service attack attempts to slow down or completely shut down a target

to disrupt the service and deny the legitimate and authorized access for users or applications. |Peng u.a.
(2007); Loukas und Oke| (2010); Mahjabin u. a. (2017). Such attacks are widespread on the Internet where a
collection of hosts are often used to bombard web servers with dummy requests. There are several different
kinds of [DoS| attacks [Bijone| (2016a) we present some of them. Flooding DoS Attacks an attacker sends more
requests to a target that it can handle. Such attacks can either exhaust the target’s processing capability or
exhaust the network bandwidth of the target, either way leading to a denial of service to other usersPeng u. a.

(2007).

[Distributed Denial of Service attacK (DDoS), is using a large pool of hosts to target a given victim host. Once

an important number of hosts are compromised, the intruder instructs them to launch various flooding attacks

against a specified target Mirkovic und Reiher| (2004); Kumar und Vajpayee| (2016).

Penetration Attacks : In penetration attack, an attacker gains an unauthorized control of a system and can
modify/alter system state. Generally, such attacks exploit certain software flaws, enabling the attacker to install

viruses and malware in the system. The most common types of penetration attacks are:

User to Rooi (U2R), [U2R is an attack that aims to gain superuser access to the system. Attacker gains

superuser access by exploiting vulnerabilities in the operating system or application software. The attacker
starts with access to a normal user account on the system and can exploit some vulnerability to gain root
access to the systemBijone] (2016a); [Kendall (1999). Improving the detection rate of[U2R]attack classes is an
open research problem. The most common attack in this class of attack is Buffer overflows. Buffer overflows
occur when a program copies too much data into a static buffer without checking to ensure that the data will

fit Kendall| (1999).

[Remote to Local (R2L),[R2Lis an attack in which the attacker tries to gain unauthorized access from a remote

machine into the local target system. Hence, gains access to the inaccessible files stored locally on the host.
There are some similarities between this class of intrusion and U2R, as similar attacks may be carried out.
However, in this case, the intruder does not account for the host and attempts to obtain local access across a

network connection. To achieve this, the intruder can execute buffer overflow attacks, exploit misconfigurations
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in security policies or engage in social engineering |[Kendall| (1999); [Bijone| (2016a)

» Scanning Attack : In such attacks, an attacker sends various kinds of packets to probe a system or network
for a vulnerability that can be exploited. When probe packets are sent, the target system responds; the
responses’ analysis determines the target system’s characteristics and vulnerabilities. Thus scanning attack
essentially identifies a potential victim/Bijone| (2016a);(Kendall| (1999);[Engen|(2010). An attacker with a map of
which machines and services are available on a network (network topology, type of firewall, identifying hosts
that respond, operating systems and server applications running) can use this information to look for weak
points. Some of these scanning tools enable even a very unskilled attacker to very quickly check hundreds or
thousands of machines on a network for known vulnerabilitiesKendall| (1999). Scanning is typically considered
a legal activity and there are a number of examples and applications that employ scanning. The most well-

known scanning applications are Web search engines.

Security Properties

Before one can evaluate attacks against a system and decide on appropriate mechanisms to defend these threats,
it is necessary to specify a security policy [Tanenbaum und van Steen|(2002). A security policy defines the desired
properties for each part of a secure computer system. It is a decision that has to consider the value of the assets
that should be protected, the expected threats, and the cost of proper protection mechanisms |Kruegel| (2004);
Tanenbaum und van Steen| (2002). A sulfficient security policy for a regular computer user's data may not be
sufficient for a bank. The security policy that is sufficient for a bank may also not be sufficient for an [ITS] or an
in-vehicle network system. Indeed, the context of future autonomous transportation could be the more likely target
and has to protect vital resources and passenger’s safety (Section[2.1).

The threat mentioned above violates the different security policies of the computer system. A security property
describes a convenient feature of a system concerning a certain type of threat. A common classification is given by

Kruegel| (2004); |Coulouris u. a.| (2011)); Northcutt| (1999); Tanenbaum und van Steen| (2002) listed below:

+ Confidentiality: This property covers the protection of transmitted data against its release to unauthorized
parties. In addition to protecting the content itself, information communication should also be resistant against

traffic scanning and whereby its information is disclosed only to authorized parties.

« Integrity: Is the policy that protects the information transfer against modifications. This property guarantees
that a single message arrives the receiver as it has transmitted by the sender, but integrity also extends to a
stream of messages. It means that no messages are lost, duplicated, or reordered, and it makes sure that
the messages cannot be replayed. As destruction is also covered under this property, all data must arrive at

the receiver. Integrity is essential as a security property and as a property for network protocols. It must also
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ensure the message integrity in case of random faults, not only in malicious modifications, which means that

any improper alterations in the communication flow should be detectable and recoverable.

+ Availability: It defines a system whose resources are always available for usage in the limit of their capacity.
Whenever information needs to be transmitted, the communication channel is available, and the receiver can
cope with the incoming data. This property makes sure that threats cannot prevent resources from being used
for their intended purpose. A highly available communication system will the most likely working at a given

instant in time.

+ Authentication: Is about making sure that the information is authentic, which means that it verifies the
sender’s claimed identity. Authentication property assures the receiver that the message is from the source

that it claims to be. So, it makes sure that no third party cannot pretend successfully being another source.

* Non-repudiation: This property describes how to prevents either sender or receiver from denying a trans-
mitted message. When a message has been transferred, the sender can prove that it has been received.

Similarly, the receiver can prove that the message has actually been sent|Kruegel| (2004).

2.2.3 Security Defences and mechanisms

To defend against the threat mentioned above, and respect the security policy, different security mechanisms can
enforce the security properties defined. Depending on the anticipated attacks, different means have to be applied
to satisfy the desired properties. [Kruegel (2004); Tanenbaum und van Steen| (2002) propose three main classes of

measures against attacks: attack prevention, attack avoidance, and attack detection.

Attack Prevention

Attack prevention is a way of preventing certain attacks before reaching and affecting the target. An essential factor
in this class is access control, a mechanism which can be applied at different levels such as the operating system,
the network, or the application layerTanenbaum und van Steen|(2002). Access control limits and regulates access
to critical resources. A firewall|[Cheswick u. a./(2003) is a vital access control system at the network layer. It prevents
attacks from the outside against the inside network machines by denying connection attempts from unauthorized

parties located outside.

Attack Avoidance

Based on the possibility that an intruder may access the target resources, to protect the confidentiality and the in-
tegrity of the information, attack avoidance mechanism modifies the information to make it unusable for the attacker.

The data is preprocessed at the sender before transmitted over the communication channel and post-processed
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at the receiver. It resists attacks by being nearly useless for an intruder. If no modification occurs, the receiver’s
information is identical to the sender’s one before the preprocessing step. The most important tool used in this class
is cryptography [Schneier| (1995). It allows the sender to transform information into what may seem like a random

data stream to an attacker but can be easily decoded by an authorized receiver.

Attack Detection

Attack detection assumes that an attacker can obtain access to the desired targets and successfully violate a given
security policy. When undesired actions occur, attack detection has the task of reporting that something went wrong
appropriately. Also, it is often desirable to identify the exact type of attack. An essential aspect of attack detection
is recovery. Often it is enough to report that malicious activity has been detected. Still, some systems require that
an attack be reverted or stopped. The attack detection operates under the worst-case assumption that the attacker
gains access to the communication channel and can use or modify the resource. The most used tool of the attack
detection class are intrusion detection systems [Kruegel (2004). Because this thesis focus on intrusion detection
systems, the remaining sections of this chapter are dedicated to a more detailed introduction to intrusion detection,

and its applications in the [T domain.

2.3 Intelligent In-vehicle network Cybersecurity

2.3.1 Objective

We present two separate vehicle security concerns (In-vehicle security and security), In this work, the
external communication is considered as an attacking interface.The securiy network Bariah u.a.| (2015);
Engoulou u. a./(2014); Hasrouny u. a.|(2017) is getting a lot of attention in the research era. Nonetheless, this thesis
scope is in-vehicle network intrusion detection (See Fig [2.17).

The same as security in internet and communication technologies [T} In-vehicle network security objective is
facing the threats by meeting the underlying standard security requirements introduced above (See in Section
[2.2.2). The preservation of these objectives intends to secure the in the in-vehicle network communication. These
security principles are defined in the following with the perspective of vehicle networks [EI-Rewini u. a.| (2020); Hahn

u.a. (2019);|Dibaei u. a.| (2019); |Chattopadhyay u. a.| (2020); Qiang Hu| (2018).

+ Confidentiality : Confidentiality requires the content of a message not to be disclosed to any parties other
than the intended ones. Lightweight Encryption mechanisms are proposed for in-vehicle networks to satisfy
this objective Mundhenk u. a.| (2017); |Radu und Garcial (2016). Recent works in steganography and covert
channels have investigated how those methods can conceal information when malicious actors have access

to the communication channel Manchanda und Singh| (2015).
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 Authenticity :

One of the primary objectives in-vehicle communication is to ensure only trustworthy entities in the networks.
Authenticity is being able to verify the sender of any message in the system, so the data can only be accessed
by authorized [ECU] in the case where an attacker has access to the network with an external device [Koscher

u. a.|(2010a); |[Forest und Jochim| (2011)); Groll und Ruland| (2009).

* Integrity :

To maintain the accuracy and completeness of message content is the objective of Integrity principle. Public
Key Infrastructure (PKI) solutions are proposed for vehicle communication to verify whether the received data

is corrupted or legitimateOthmane u. a.| (2015).

+ Availability :

Availability ensures timely and reliable access to and use of information for nodes in the in-vehicle network. To

preserve the functional state of ECUs in a vehicle network and complement the security requirements.

* Non-Repudiation : Any broadcasting node should not deny the right to authenticate. This property is funda-
mental in the case of an accident. After the accident, the driver must be rightly identified during the investiga-

tion, and before the accident, every message should be transmitted reliably [EI-Rewini u. a.| (2020).

» Real-Time constraints : Outdated information is of no use in the high mobility environment of a VANET or in-
vehicle communication. Ancient weather or traffic information is not useful, especially for autonomous driving

systems; therefore, it must be prevented from delayed transmission [EI-Rewini u. a.| (2020).

In-vehicle communication occurs within automotive bus systems, enabling message transmission between ve-
hicle Vulnerabilities exploitation of an in-vehicle network can lead to severe issues such as critical [ECU|
reprogramming and taking control of the vehicle over the Controller Area Network. Those attempts cause the viola-

tion of the in-vehicle security principles listed above.

We consider the different step of an intrusion introduced in Section The kill chain consists of four stages
Fig (See[2.9). The attacker must pass all four steps to achieve a successful attack on the connected vehicle; to this
end, the attacker uses three necessary elements. The first element is finding Point access. The second element is
compromising an [ECU] and the third element is finding a control feature that could be compromised. The number
of technical vulnerabilities indicates the feasibility of different kind of attacks. In|Checkoway u. a.|(2011); Avatefipour
und Malik| (2017); Thing und Wu| (2016); Dibaei u. a.| (2019); |Petit und Shladover| (2014); |Petit u. a.| (2015); [Toyama

u.a.|(2018) the authors present a broader view how an attacker can compromise vehicle security.
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2.3.2 Threat and attack interfaces of an in-vehicle network system

The first step of an automotive attack is to exploit an external interface to access the vehicle’s internal systems. In
the Section [2.7.1] several external interfaces have been described, in this part, we describe how an attacker can
leverage these interfaces to gain access to the in-vehicle network. The interfaces present on modern cars have
different ranges, from physical access to remote access. The Fig[2.72 shows the identified attack interfaces. The
first class is the direct physical attack possibility. In that case, the attacker has direct access to all parts of the
vehicle. The second class is about the remote attacks on a connected car. Interfaces with a longer range generally
have a convenient aspect for an attacker as it is easier for the attacker to preserve the connection during the full

attack.

Physical Access

Inside a modern and future automotive vehicle, there are multiple physical interfaces, and some are directly con-
nected to the internal network.

OBD-Il is the most well-known connector and is used by many security researchers to find and execute automo-
tive attacks. In addition to monitoring electrical failures, the second-generation OBD also monitored emission-related

systems and provided standardization across different manufacturers|Carsten u. a.|(2015). OBD-Il ports are vulner-

able to in-vehicle network access attacks and dongle exploitation attacks/Miller und Valasek| (2014) were able to

transmit and receive messages over CAN using an ECOM cable and homemade connectors to connect to the
OBD-II port.
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USB ports have become prevalent in modern-day vehicles, since they can connect phones, navigation systems,
and USB devices to the vehicleOnishi u. a.[(2017). |(Cai u. a.| (2019) found that attackers could use the USB port to
create a backdoor within the BMW Next Best Thing (NBT) vehicle entertainment system.

For electric vehicles, another physical entry point to the in-vehicle network is the charging infrastructure. Even-
tually, the charging infrastructure could be used to conduct attacks |Bernardini u. a.| (2017). Many attacks on electric
vehicle charging have been identified. Mustafa u. a.| (2013); [EI-Rewini u. a.| (2020) charging is susceptible to mas-
querading, tampering, eavesdropping, and denial of service attacks, in addition to privacy concerns and charging
thievery. In|Fries und Falk (2012), the author discussed the man-in-the-middle and tampering attacks on the pay-
ment price and the amount of energy that the meter believes the electric vehicles has received. many other threats
related to electric cars has been demonstrated and discussed in|Sun u. a.| (2015); |Alcaraz u. a.| (2017); Vaidya und
Mouftah| (2018);|Lee u. a.[(2014).

The infotainment system inside a car provides the other physical access points, through discs and USB drives.
Often the infotainment system is connected to the CAN bus. The information supplied by infotainment systems
can include (voice calls, text messages, emails, social networking, personal contacts) and other forms of data that
can be received by connecting to a mobile phone. Infotainment system vulnerabilities were demonstrated when
the BMW ConnectedDrive infotainment system was hacked because of its corresponding in-vehicle Network gate-

way|El-Rewini u. a.| (2020); |Robinson-Mallett und Hansack| (2015).

The attacks requiring physical access can be both invasive and non-invasive, sidee-channel attacks are non-
invasive attacks that refer to revealing useful information regarding the transmitted data in the in-vehicle network.
On the other hand, invasive attacks are allowed through physical access that enables the intrusion to the vehicle
bus system and its resulting in code modification, code injection, packet-sniffing and fuzzing [Thing und Wu
(2076).

Remote Access

Remote access is more convenient for the attacker. Some remote access interface (short-range) requires the
attacker to be nearby the vehicle during the attack’s entire duration. The range of these kinds of access points is
typically about 10 metres to 300 metres for some access points(Bluetooth, Pressure Monitoring System(TPMS),
Wi-Fi hotspot, [V2X). Long-range interfaces (radio, GPS, Cellular) has a more extended range superior to 10km
Francillon u. a.| (2010); |Rouf u. a.[ (2010). Although this requires enhancement misappropriation techniques.
Telematics systems complement infotainment systems by providing information on internal vehicular systems,
which includes (fuel efficiency, engine failures, brake pad wear, transmission). |Jo u. a.|(2017) identifies security risks
in Android OS-based telematics systems that enabled drivers to remotely unlock and lock car doors, start and stop

the car engine using low-speed CAN, and access diagnostic information using high-speed CAN.
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In short-range communication, Bluetooth is often used to pair smartphones to vehicles infotainment and telem-

atics systems. in [Onishi u. a. (2017) the author demonstrates a listening vulnerability on Bluetooth, that enables

buffer-overflow attacks. in|Seri und Vishnepolsky|identified a new attack vector known as BlueBorne, which spreads

wirelessly and attacks devices by exploiting their Bluetooth vulnerabilities.

Wi-Fi and WiIMAX (IEEE 802.16 standard) is also a candidate for V2V and V2| communication, with low-latency,
Quality of Service (QoS), security features and all-IP core network support citeinvecsec24. In (2017), the
authors could remotely hack a Tesla Model S vehicle, by exploiting the fact that the password to an embedded Wi-Fi
Service Set Identifier (SSID) was saved in plain-text. They were then able to fake a hotspot and redirect traffic to

their domain.

Attackers may exploit the vehicles enhanced connectivity vulnerabilities, to gain access to the in-vehicle net-
work system remotely. Especially the wireless connection and external-facing sensor interfaces such as its LiDAR,

camera and GPS. But it also enables the attacker to perform attacks on the external communication [VANETs

2.3.3 In-vehicle Defence Mechanism

Once the attacker had succeeded in taking over the entry point via physical or remote access, the second element
is to compromise an ECU or the in-bus vehicle network. Indeed, the existing in-vehicle communication systems are

not secured by design. Thus, the in-vehicle network encounters many issues that don’t meet the vehicular security
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requirements.

CAN broadcast messages on the bus, where the receiver node selects the message based on IDs it is configured
to receive. This enables attacks such as message interception (as illustrated in Fig that violate the confiden-
tiality. Also, lack of information about the sender in the message like signatures, an attacker can send arbitrary CAN
frames to any node in the network and violate the authenticity and non-repudiation. The other case is, suppose an
attacker manages to take over a gateway (See Fig that forwards messages from one domain to another. In that
case, the attacker can add, remove or change any data that the relayed message carries, meaning the violation of
integrity. Besides this, since an attacker can send any data on the bus by sending high-priority messages (Section
2.1.3) or messages with error flags can cause nodes to stop responding causing a Denial of Service (DoS), thus
affecting the availability of the system.

Our review analysis with the CAN bus’s effects conclude that a cyber-attack, when observed at the CAN bus
level, looks like a modification of CAN packets, i.e. CAN packet, is inserted, deleted or modified. Thus, yielding a

categorization into three groups fabrication, suspension, and masquerades attack.

 Fabrication Attack (Injection): Fabrication attack is carried out by fabricating messages with a forged ID on a
corrupted ECU and inserting them on the network, resulting in conflicting the ECU supposed to receive this ID
Liu u.a./(2017);/Choi u. a.|(2018);|Choi u. a.[(2016). Fabricated messages are inserted with a higher frequency
than the original message, and the original message is not taken into account. The fabricated messages can

also be inserted either immediately before, or immediately after the occurrence of the original message.

+ suspension attack (Bus-off attack): This attack consists of stoping the ECU from sending messages. When
attackers continually send bits both in the identifier field and in other fields (See Fig[2.7), which causes the
transmit error counter (TEC) then be incremented. When the TEC value is greater than 255, the
corresponding ECU has to shut down|Choi u. a.| (2018).An other way is when attackers continually send high

priority messages that block legitimate low priority messages (DoS attack) |Liu u. a.[(2017)

masquerading attack : An attacker masquerades as a legitimate node. Liu u.a.| (2017); |Choi u. a.| (2018);
Tomlinson u. a.| (2018a) identify two CAN vulnerabilities that facilitate masquerading attacks. First, CAN frame
are not encrypted and can be studied by attackers to locate system entry points. Second, CAN does not
support message authentication. The receiver of messages has no information about the source’s validity,
meaning that illegitimate messages are captured without being detected. This allows other action for the
attacker like Replay attack, consisting of continually resend a valid message to prevent the vehicle real-time

functioning [Liu u. a.[(2017); Nowdehi u. a.| (2017);Mundhenk u. a.| (2015); Tomlinson u. a.| (2018b).

By reviewing the knowledge about the potential security vulnerabilities, threats and attacks, the research commu-
nity had proposed many defence mechanisms to secure the in-vehicle architecture network. [Thing und Wu| (2016)

proposed three main categories for in-vehicles defence: preventive defence, passive defence, active defence.
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(A)

Preventive defence : In preventive defence, securing the systems mainly focuses on protection measures to
defend and attempt to stop an attack from happening or make them useless for the attacker. To this end, many
methods had been proposed to rectify the lack of secure communication for the in-vehicle network. Mundhenk
u.a.l (2015); [Kang u.a.| (2017); [Tashiro u.a.| (2017) suggest a lightweight authentication using asymmetric
cryptography, one-way hash chain and sending a partial MAC in each frame. |Luo und Hou| (2019) proposed

Automotive Gateway Firewall.

Passive defence : Attackers who can intrude on the in-vehicle system and bypass preventive defences can
harm or cause damages. Thus, the passive defence should provide another layer of protection against the
adversaries when the attack is happening. Intrusion Detection Systems (IDSs) are one of those defence
mechanisms, different models of Intrusion Detection System (IDS) for in-vehicle network security have been
proposed and tested under computational simulation scenarios |Choi u. a.| (2016); |Choi u.a. (2018); |Groza
und Murvay| (2018); [Vuong u. a/ (2015); Kang und Kang| (2016). Anti-malware, also as a passive defence
solutions for in-vehicle network should be capable of defending from harmful software that attempt to infiltrate
the system. As malwares against vehicle are still in its early stage, there may not be a high number of
malwares database available. Nonetheless, signature based detection can be put in place, by first considering

these malwares Zhang u. a.| (2014).

Active defence : Countering advanced and determined adversaries would require an active approach to
security. Using Continuous Security Monitoring critical components and interfaces. Besides this, Vehicles are
considered vital systems, networks, and critical infrastructure that continue to evolve at a fast pace. Therefore,
it becomes necessary to design and deploy defence measure such that they are themselves, moving targets.
Adaptive reconfiguration of attack targets and deception tactics can be employed to enable better control and
flip the balance during an attack. Also, detection models should also evolve through self-learning during their

operation lifecycle to adapt to detect new forms of aggression.

This section provides an overview of in-vehicle network security characteristics, discussing its merits and short-

comings, ranging from intrusions and threats to specific CAN bus attacks. We point about several existing research

work proposal that treats many security issues subject with recommendations for addressing and improving con-

nected cars cybersecurity. Many challenges encounter developing a secured connected vehicle, due to its external

connectivity and limited computational resources, lack of attack and threat database and the critical risk for pas-

sengers, including their lives. Network security solutions and situational awareness tools are essentially defensive

strategies, and even the best defences can fail. Hence it is necessary to have a fallback solution that would prevent

the vehicle from worst scenarios (taking unreasonable decisions that would endanger the vehicle’s occupants). A

falloack solution would prevent such an attack because the vehicle would know how to differentiate between normal

and derivative state of it inners network system. Hence the Intrusion Detection system is a fundamental component
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of the general in-vehicle security system.

In the following sections, we will review the IDS definition and its taxonomy related to the in-vehicle network;
we will define the multiple constraint and challenges that bind the development of practical IDS for the in-vehicle
network system. This knowledge will provide the basics challenges and questions that will serve as problems that

we will tackle in our next chapters.

2.4 In-vehicle Intrusion Detection System

As discussed above, and based on researcher and experts in cybersecurity, connected systems in general, will never
be absolutely secure Bellovin| (2001). Besides this, finding and fixing the system’s security flaws is not feasible for
technical and economic reasons. In the case of vehicles, it demands the recall of all carsDenning (1987). We
also discussed that the attackers might bypass standard security mechanism. Even if the attack is not active or
successful, it is always useful to be aware of the intrusion attempts. Thus, developing a mechanism that can deal
with threats while they are in action is valuable for any system’s security, especially dynamic system like connected

vehicles, where such a mechanism is independent of the system’s functionalities and defences.

In 1985, Dorothy und Neumann| (1985) was one of the earliest research work on [Intrusion Detection System|

(IDS), he introduced IDS under the name a real-time intrusion-detection expert system (IDES). Under the hypoth-
esis of an intrusion or exploitation of a system’s vulnerabilities involves a deviation or abnormal system usage
patternsDenning| (1987). The [IDS]task is to detect and identify those malicious activities by monitoring the sys-
tem’s activity independently from any particular subsystem, application or type of intrusion, thereby aiming for
general-purpose abnormality detection. The IDS monitors and analyses the system’s events and employs mod-
elling techniques to recognise intrusive behaviour in a system. [[DS| have been classified in the literature using
different taxonomies. Our work will present a brief taxonomy grouping the leading dimension criteria to build and
in-vehicle IDS. depending on the different context and fields Bijone| (2016b); |Liao u. a.| (2013); |Veeramrddy u. a.
(2011); Garc2a-Teodoro u. a.| (2009); Buczak und Guven| (2016); |Lazarevic u. a.| (2005)

To build such a system, many dimensions need to be considered. Indeed, the assets that might have a value
or power in their context require specific monitoring sources and the use of tailored methods. Also, infrastruc-
ture architecture may require a particular computation location with its resources constraint. The evaluation of the
output demand informative metrics to assess its performances, based on this output, the usage and experts

decision-making needs to be considered. We describe below a taxonomy of the different part and their relation in

building an[DS]

44



Usage and Role

‘606 Constraints &

et Evaluation
Q\D“‘v‘ OQ*

o?

Limits

Meonitoring
source

Figure 2.14: Different dimensions of In-vehicle Intrusion detection system.

2.4.1 A Brief Taxonomy
Architecture and deployment

The IDS performs its analysis based on local data provided by a set of independent probes deployed in different
monitored distributed systems. These observation devices are responsible for monitoring a small, well-defined part
of the entire system. The reported information either corresponds to a raw observation of activity (Local data) sent
to a centralised method for a global analysis or results from a first low-level analysis of distributed or a hierarchical
method that identifies the local state (suspicious local behaviour or normal behaviour). Depending on the configu-
ration, the method used for the detection needs to fit the architecture deployment. In both cases, the IDS usually
sends the results to a global analysis tool (Security Information and Event Management (SIEM)) responsible for ag-
gregating the different security mechanisms deployed on the system for further mitigation and analysis using some

aggregation and correlation engine.
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Monitoring source

Whether a probe monitors a particular machine’s activity or the activity at a specific point in the communication net-
work, IDSs are classified into three main classes: HIDS (Host-based Intrusion Detection System) NIDS (Network-
based Intrusion Detection System), and Hybrid IDS. A host-based IDS monitors the local behaviour on a single
operating system host, generally analysing system performance, program process, and the operating system logs
Debar u. a.| (1999); |Guha und Kachirski| (2003); |Kruegel| (2004). Network-based IDS monitors network traffic (the
metadata and content of the packets sent into the network) to observe network activity and detect if it may be a
part of an attack process. The hybrid IDS monitors both host and network sources jointly to capture their corre-
lated information since both sources complement each other, mainly concerning achieving a broader coverage for

detection.

Methods

The Signature-based (misuse/Knowledge) Approach: the signature-based approach relies on the apriori knowledge
of some possible attacks and attempts to encode this knowledge as rules to define malicious traffic/activity patterns
to compare to current samples. If a match occurs, an alarm is raised. In that case, the signature-based approach
has the advantage of causing very few false positives if the attack’s correlation rules are sufficiently accurate. In
the other hand, this method can only detect a known attack. A new attack or even a new instance of known attack
(Homomorphe attack) are not detected (0-day exploit). Moreover, detecting a known attack occurs if the probes are
well placed to cover all the system data required and correctly configured |Kruegel und Toth (2003); [Krugel und Toth
(2002). Recently, misuses detection incorporates techniques allowing more flexibility to deal against the variations
of attacks, using Machine Learning and augment the rule-based by using Fuzzy Logic.

The anomaly-based (behaviour) approach: This method start first by defining the pattern of normality, the method
analyses whether the current activity samples deviate from the established model of normality and if so, an alarm
is raised. This approach is more exposed to false alarms. Indeed, The network traffic is susceptible to perturbation
and sometimes to evolutions. The anomaly-based approach|Tsai u. a.|(2009); Wu und Banzhaf| (2010);([Hamed u. a.
(2018); [Buczak und Guven| (2016) interprets those events as anomalous, even though they are intrinsic network
behaviour. One of the benefits of anomaly detection is detecting new attacks since the system is modelled according
to normal behaviour. Anomaly-based IDS challenge is keeping up to date with environmental changes by retraining,
or continuous updating is required to avoid an increase in false alarms, referred to as behavioural drift [Kruegel
(2004). Many works have proposed the hybridisation of techniques to improve the detection rates by combining
both misuses and anomaly detection for IDS since they found that different methods performed better on different
intrusion [Ozcelik u. a.| (2017);|Garg und Maheshwari| (2016); [Bostani und Sheikhan| (2017).

The Specification-based approach: Specification-based intrusion and attack detection systems generate speci-
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fications from the intended target features, e.g., protocol state machines and security-related behaviour. The use of
security specifications to detect malicious activity has been proposed and investigated in several contexts [Larson

u.a.| (2008);|Ko u. a.[(1994); [Majeed und Altaf| (2019);/Cheung u. a.| (2006).

Usage and role

A real-time intrusion detection tools analyse the activity of the system to be protected and enable defensive actions.
Audit data is examined as soon as it is produced based on different granularities in time. The advantage of this
approach is that system activities can be analysed timely. Thus, a proper response can be issued when an attack
is detected, which defines the IDS (responding with a passive notification or active reaction). However, real-time
collection and analysis of audit data may introduce significant overhead in the communication network. offline tools
are run offline at specific intervals. They analyse a snapshot of the system state and produce an evaluation of the
security of that state. They do not provide any protection between two consecutive runs. Therefore, in case of a
successful attack, they can be used only for postmortem analysis or to improve and update the IDS dynamic model.
However, they may perform a more thorough investigation by occasionally running without an unacceptable impact
on the monitored system performance. As explained above, IDS can be distributed following different location in
the system. To this end, a decision about the system state can be made collaborative between separate local and

complement each other’s coverage analysis or an independent fashion analysis specific for each probe.

Evaluation

For an IDS to be considered effective, high detection rate and low false-positive rate are important aspects to
consider. Multiple metrics could be used for an IDS evaluation [Hodo u.a. (2017). These metrics are discussed
subsequently showing the significance and purpose of each. It is essential to mention that an evaluation metric
doesn’t reflect an IDS performance depending only on the detection rate. Indeed, we need other important evalua-
tion factors, including the transparency and safety of the overall system, memory requirements, power consumption,
CPU consumption and throughput via communication overhead, should be considered. Specifically, these metrics
are essential for IDSs running on different hardware or specific settings such as high-speed networks, or hardware
with limited resources. The result’s clarity and explainability are also important aspects of an IDS, which helps the
forensic analysis and speed-up the decision-making process.

The term accuracy is defined in the following :
+ True Positive (TP): Number of intrusions correctly detected
+ True Negative (TN): Number of non-intrusions correctly detected

+ False Positive (FP): Number of non-intrusions incorrectly detected
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+ False Negative (FN): Number of intrusions incorrectly detected

In the IDS terms, false-positive refers to security systems incorrectly detecting legitimate requests as misbe-
haviour or security breaches. In other words, the IDS detect something that not supposed to. Alternatively, IDS is
prone to false-negatives where the system fails to detect something it should. False-negative imply missing detec-
tion of attacks that will not be mitigated and give a false sense of security. From the IDS perspective accuracy, many

metrics are used:

TP + TN

(2.1)
TP + TN 4+ FP + FN

OverallAccuracy =

Equation [2.1] provides the overall accuracy. It returns the probability that an item is correctly classified by the IDS.

TP
ision = ————— 2.2
Precision TP TP (2.2)

Equation provides the percentage of positively classified incidents that are truly positive.

TP
- 2.3
recall TP L FN (2.3)

Equation provides the percentage of positively classified incidents based on the model positive prediction

and it is also called Sensitivity.

To visualize the performance of an IDS, The trade-off between recall (true positive rate) and precision (true
negative rate), AUC (Area Under The Curve) is used. Also, Equation[2.4]represents the harmonic mean of precision
and recall. F1 is better suited to describe the performance of an IDS, especially when dealing with imbalanced

classes.

2TP

F1=
2TP + FP + FN

in-vehicle network Constraints and Limits

Building IDS limitation and constraints depend on several dimensions; the context and topology of the studied

system, its architecture, Deployment to its evaluation and the used methodology. The in-vehicle intrusion detection
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system can be considered as an embedded system, a computing system with a combination of hardware and
software designed to perform one or a few dedicated functions with some vehicular domain specifications. We
separate those concerns into Four elements:

1) The data and knowledge: One of the general questions is about the quality of the data and the knowledge
experience about attacks and threats, compared to the IT system, that has more history and experience dealing
with a different type of attack, the in-vehicle network was a closed system, and the threats exposed now are mostly
subject of research efforts. What kind of data attack systems need to observe, while the in-vehicle system has
various data sources. The more data can be monitored and obtained for evaluation, the better the overall picture of
the system’s current situation. However, the more information needs to be observed, gathered and evaluated, the
more complex and costly the development and analysis process becomes.

2) Ressources and optimisation: An attack detection system needs to fulfil real-time performance requirements
Kargl u. a. (2008);|Carsten u. a.| (2015); |Robinson-Mallett und Hansack! (2015);[Lee u. a.| (2014) with the capacity of
reducing the false-positive while being accurate. Especially attacks that target the vehicle’s safety, e.g., by sending
false messages to the brakes, engine, etc. can only be tackled if this requirement is fulfilled. However, the automotive
environment is a network of embedded systems, including highly specialised and cost-optimised components, which
offer only limited computational power but are designed to work reliably under very different physical conditions [Karg|
u.a.|(2008); Muter u.a.|(2010).

3) Deployment and toplogy: As explained above, the in-vehicle system also require a particular type of Deploy-
ment to fit the topology and the architecture of the in-vehicle network, this includes a strategy to handle the different
data sources and how to implement the IDS model while respecting the two previous concerns.

4) Industrial needs: The in-vehicle network architecture is fixed after the client’s purchase. The IDS automation
needs to consider the cost of the inclusion of the ECUs that will be part of the IDS Hindy u. a. (2020); |Zhou u. a.

(2015). Also, a practical solution is a solution that takes into consideration the industrial needs in terms of usage

and role (See Fig[2.14).

2.5 Conclusion

This chapter has provided the context of this research study concerning in-vehicle network security. We present a
consistent background development of security from IT to the recent advanced vehicles architectures. We briefly
discussed the several defence classes and solution while highlighting a focus on Intrusion Detection System in
general. We extend the Intrusion detection system survey to a taxonomy specific to in-vehicle network demand and

constraints.
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Chapter 3

The anomaly detection problem :

state-of-the-art

Vehicles have a very long life span and are in use for decades in different conditions and locations. As discussed
above In Chapter [2] to protect the car over this long period, only preventive measures are insufficient, and the
vehicles security system has to work autonomously without a necessity for user interaction. To this end, IDSs are
a good candidate to complete the security architecture of vehicles, with the capability to monitor the traffic on the
vehicular networks and continually evaluate abnormal events to classify them as an attack or not. If appropriate, an
alarm is raised as soon as a threat is detected, countermeasures to respond to attacks are considered, if reactive
components have been integrated into the car’s security system. This thesis presents an IDS scheme for in-vehicle
networks that respect automotive networks’ typical characteristics, and its protocols like the Controller Area Network
(CAN). One central question is how exactly the IDS should identify attacks for the in-vehicle network, which method
detection is suitable for the automotive area. Signature-based and Specification-based approaches and detection
Dupont u. a.| (2019); i u. a.| (2018); [Olufowobi u. a.| (2020); [Larson u. a.| (2008); [Dupont u. a.| (2019) promises a low
false-positive rate, which is important as numerous false alerts could question the usability of the entire concept in
the vehicle and may negatively affect the driver's awareness. However, as cited above, one major constraint of that
method is dealing with unknown attacks and the lack of attack database specific for in-vehicle systems and need a
rule for every single intrusion and variation thereof. For specification-based, handling the different components of

the cars made with various providers makes it not practical to define explicitly the system normal behaviour limits.

Anomaly detection promises to detect attacks, including novel attack patterns that result in a system state which
differs from the normal specification. However, in the past, anomaly detection systems were typically prone to

high false-positive rates, and the specification of the system’s normal behaviour has turned out to be challenging.
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Figure 3.1: lllustration of Anomalies VS Novelty in two-dimensional data-set.

Nevertheless, with the advance in machine learning approaches and the data-driven approaches, we suppose the
vehicular networks’ normal behaviour can successfully be defined and adopted. In that case, we consider anomaly
detection to be the more promising approach to start within the automotive domain as unknown attacks may be
detected. A challenge to either approach is updating the system. For rule-based systems, this involves adding new
rules and potentially updating old rules. The drawback of rule-based systems is that the knowledge base of rules
may grow very large with time and does not scale well [Jiang und Cybenko| (2004). For some machine learning
techniques, updating may involve complete re-training, including gathering data concerning new intrusions or the
system’s new normal states. Some methods can learn continuously online, and in our case, we consider an update
as an offline process because the danger is that intrusive behaviour can also be learned.

It is clear that either approach exhibits specific pros and cons, and that neither method can be said to be ‘better’
than the other, but complement each other. In the future, hybrid practices can be advantageous when mature

experience related to vehicle attacks and threats are available.

3.1 Problem statement

When analyzing monitored network datasets, a common need determines which instances stand out as being
dissimilar to all others. Such instances are known as anomalies. The goal of anomaly detection (also known as
outlier detection or novelty detection in some works) is to determine all such instances in a data-driven fashion
Chandola u. a| (2009); [Chandola und Kumar| (2007). Errors in the data can cause anomalies. In many cases, it
indicates a new and previously unknown pattern in the data. An outlier is an observation that deviates so significantly
from other observations to stimulate suspicion that a different mechanism generated it[Hawkins|(1980) due to several
reasons such as malicious actions, system failures, intentional fraud or cyber-attacks. Anomalies also referred to as
abnormalities, outliers or misbehaviour in the literature [Aggarwal| (2013), are considered from a data perspective as

points or regions which are located further away from bulk areas consisting a majority of observations considered
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as normal data instance region (See Fig [3.1). Novelty is not always considered an anomaly; it is an unobserved

pattern. They are used to set a novel score for the threshold. The points that significantly deviate from this decision

threshold may be considered anomalies or outliers Miljkovic (2010); Pimentel u. a.| (2014). Novelty Detection and

Anomaly Detection have a slightly different meaning, where the difference resides in how far the deviation is from a

normal pattern (See Fig[3.2).
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Figure 3.2: lllustration of Anomaly VS Novelty in the image data set.

Chandola u.a. (2009); [Chandola und Kumar| (2007) classifies Anomalies into three types: point anomalies,

contextual anomalies and collective anomalies.

3.1.1 Anomalies Types

(A)

(B)

Point anomalies: Often represent an irregularity or deviation that happens randomly and may have no par-
ticular interpretation; the point deviates significantly from the rest of the data points. This point represents a

single occurrence of an event that does not fit the ordinary ( See Fig[3.7).

Contextual Anomalies: A contextual anomaly known as the conditional anomaly is a data instance that

could be considered anomalous in some specific context (context-sensitive Anomalies) [Song u. a.| (2007).

Contextual anomaly is identified by considering both contextual and behavioural features. The contextual
features, normally used are time and space. Simultaneously, the behavioural features may be the pattern of
spending money, system log events or any feature used to describe the normal behaviour. For example, the

speed of a car can be considered abnormal, given the road traffic state.

Collective or Group Anomalies: Collections of individual data points are known as collective or group
anomalies. Each point appears as normal data instances while observed in a group exhibit unusual char-

acteristics. Group anomaly detection is irregular group distributions (e.g., irregular mixtures of image pixels
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are detected) Chalapathy u. a.| (2019).

3.1.2 Anomaly detection models output

Anomaly score describes how far each data point is from the normal pattern. According to the anomaly score,
the subject matter expert will select a domain-specific threshold (commonly known as decision score) to identify
the anomalies. In general, decision scores reveal more information than binary labels depending on the type of
methods used. For instance, in OC-SVM, the decision score measures the distance of data point from the centre of
the sphere; the data points that are farther away from the centre are considered anomalous. The anomaly score is
used after setting a threshold to automate the model’s decision to assign a category label as normal or anomalous

to each data instance. AD model can also return a multi-class label (normal/anomalous-A/anomalous-B/...).

3.1.3 Anomaly detection challenges

The main advantage of systems based on this approach is that, in theory, they can detect previously unknown

attacks. On the other hand, anomaly-based systems are prone to many challenges:
» The amount of time required to train the system the normal behaviour might be long.

 There is no universal procedure to model normal data. The concept of normality is still subjective and difficult

to validate.

+ The anomalous examples in datasets are not often available, and when they are the classes (normal/anomalies)
are generally imbalanced. Besides, the data may contain noise which makes the distinction between normal

and abnormal data more difficult.

» The monitored environment’s behaviour might change during a period, requiring the system to updated to

avoid false alarms.

» Performance of traditional algorithms in detecting outliers is sub-optimal on the image (e.g. images or dis-

tributed topology network) and sequence datasets since it fails to capture complex structures in the data.

* Need for large-scale anomaly detection: As the volume of data increases, it becomes nearly impossible for

the traditional methods to scale to such large scale data to find outliers.

» Solve the problem end-to-end taking raw input data in domains with automatic feature learning and eliminates

the manual developing of features by domain experts, especially in a closed system like vehicles systems.

» The boundary between normal and anomalous behaviour is often not precisely defined in several data domains
and is continually evolving. This lack of well-defined representative normal boundary poses challenges. For

instance, it may be possible to perform an attack within the boundaries of normality.
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3.2 Machine learning & Computational intelligence for AD

Studied in this thesis

Anomaly Detection

Dimensionality
Reduction

Machine Learning

Classification & Deep Learning
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Figure 3.3: Research area used for anomaly detection

Given large content of the literature on anomaly detection techniques, these approaches differ in many aspects,
such as the applicability scope, the execution mode (offline/online), and domain knowledge requirements. An es-
sential element of anomaly detection is the nature of the data input. Input represents the record, points or pattern
of events with many characteristics and types, from univariate points to time series (sequential data), spatial and
graph data, images and videos, and multi-modal inputs combining different types. Many research fields proposed
and explore many techniques and methods (See Fig[3.3) to cope with anomaly detection process and the different
natures of data.

We have grouped works in a few common threads: a rule-based, Machine learning and Deep learning and
statistical-based. We explain the different techniques and enumerate their pros and cons based on literature appli-
cations. We not that our primary focus is on applying Deep Learning for in-vehicle IDS based on anomaly detection.
Nonetheless, we review the standard and classical approaches of the literature that tackled anomaly detection and

we review the the application of Deep learning techniques for anomaly detection below in (Section [3.3).

3.2.1 Knowledge and Expertise

It's an extension of specification-based with using Information theory, decision-tree or Fuzzy theory to enhance

the actual manually developed characteristics of legitimate CAN network behaviours [Dupont u. a.| (2019); Weber]

[u.a] (2018);|Linda u.a. (2011). Those approaches assumes that there exists a set of rules that allows identifying

anomalies in a deterministic way. This approach requires labelled data. It learns rules that capture the normal
behaviour of a system. A test instance that is not covered by any such rule is considered an anomaly. Many
techniques allow rule induction, such as decision trees and association rules [Brauckhoff u.a.| (2009); [Chandolal
lu.a.|(2009); Yang u.a|(2019). In|Marchetti und Stabili| (2017), propose a model of the normal behaviour of a CAN
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network-based on a particular feature: recurring patterns within the sequence of message IDs observed in the CAN
Bus by modelling the CAN bus’s normal behaviour in the form of transition matrix. This data structure identifies all
the legit transitions between the message IDs of two consecutive CAN messages. This model will then be used as

a reference to identify anomalies in the CAN ftraffic.

3.2.2 Statistical based Techniques

In statistical-based techniques |Chandola u. a.| (2009), the network traffic activity is captured, and a profile repre-
senting its stochastic behaviour is created. This profile is based on metrics such as the traffic rate, the number
of packets for each protocol, the rate of connections, the number of different IP addresses, etc. Two datasets of
network traffic are considered during the anomaly detection process: one corresponds to the currently observed
profile over time, and the other is for the previously trained statistical profile. As the network events occur, the
current profile is determined, and an anomaly score is estimated by comparing the two behaviours. The score
indicates the degree of irregularity typically for a specific event, such that the intrusion detection system will flag the
occurrence of an anomaly when the score surpasses a certain threshold. In other words, anomaly detection meth-
ods in these categories are based on estimating the probability densities of the data using statistical models and
assuming that normal data will fall in high probability regions. In contrast, anomalies will fall in low probability ones
Chandola u. a.[ (2009); Pimentel u. a.| (2014); [Basora u. a. (2019). In|Chandola u.a. (2009); |Chandola und Kumar
(2007); [Hawkins| (1980); Aggarwal (2013); [Miljkovic (2010); |Pimentel u. a. (2014); Song u. a.| (2007); Basora u. a.
(2019) categorise further methods both parametric and non-parametric techniques with a multitude of applications.
As our work focuses more on Deep Learning approaches, we will review a few techniques that have been widely

used.

+ chi-square test statistic: Ye und Chen| (2001) use chi-square theory for anomaly detection, according to this
technique, a profile of normal events in an information system is created, and the idea in this approach is to
detect the large departure of events from the normal profile as anomalous or intrusion. To this end, a distance

measure based on the chi-square test statistic is developed as :

n

2
XQ:Z% (3.1)

i=1

Where X; is the observed value of the ith variable, Fi is the expected value of the ith variable and n the

number of variables.

The X? has a low value when observing the variables is near the expected value. So, following the u + 30

rule, an anomaly is raised when X2 value is higher than X2 + 352. In Krlgel u. a.[(2002), the author proposed
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a statistical processing unit for detecting anomalous network traffic to detect rare events like R2L or U2R (See
Section[2.2.2). The metric aim to search identical characteristics of different service requests. The anomaly
score is calculated based on the type and the length of the request and the payload distribution. In|Moore u. a.
(2017) exploit the regularity in the timing of CAN communication. For each CAN ID, the NIDS stores the time
differences between two successive messages and computes the mean arrival time. It will also register the
maximum time difference from the mean, which will be used to define a threshold. An alert will be raised if the
time between two packets differs from the expected time by more than the maximum time difference plus 15%

of the mean.

Mixture model: In the category of parametric techniques|Chandola u. a. (2009) assume that the normal data
is generated by a mixture of parametric distributions with parameters and probability density function f(x, ©),
where x is an observation. Such techniques use a mixture of parametric statistical distributions to model the
data. We find Gaussian Mixture Models (GMM) based on the assumption that the data is generated from a
weighted mixture of Gaussian distributions. We find two subcategories. The first subcategory of techniques
models the normal instances and anomalies as separate parametric distributions. The testing phase involves
determining which distribution the test instance belongs |Chandola u. a.| (2009); |(Chandola und Kumar| (2007);
ABRAHAM und BOX| (1979). In contrast, the second subcategory of techniques models only the normal
instances as a mixture of parametric distributions. A test instance that does not belong to any learned models

is declared an anomaly |Chandola u. a.| (2009); |Agarwal (2006).

In [Eskin| (2000), the author proposed an IDS based on mixture models. The approach estimates a probability
distribution over the data and applies a statistical test to detect the anomalies in UNIX system. The set
of system calls having a probability of 1 — X is a legitimate use of the system, and the intrusions have the
probability of \. The two probability distributions which generate the data are called the majority (M), and
anomalous (A) distributions Ahmed u. a.|(2016b). InLiang u. a.[(2020), the author proposes a novel filter model
based on a hidden generalized mixture transition distribution model (HgMTD) in VANETS, which can quickly
filter the messages from neighbouring vehicles. It adopts a well-known multi-objective optimization (NSGA-
II) algorithm combined with an expectation-maximization (EM) algorithm to forecast neighbouring vehicles’
future states and then filter out malicious messages by monitoring the change of the state pattern of each

neighbouring vehicle.

In[Hamada u. a.| (2018), The proposed method learns the Probability Density Function (PDF) of the Gaussian
mixture model, from the reception cycle periods of the monitored CAN-ID using the sequentially discounting
expectation and maximization(SDEM) algorithm. These reception cycle periods are calculated from the arrival
time of each CAN frame of the monitored CAN-ID. The learner continuously estimates each PDF from the

reception cycle periods in each slot. The anomaly detector assesses each CAN frame using the PDF that was
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estimated in the previous slot. A threshold is used to assess the frame in the anomaly detector.

+ Classical regression with statistics:

The regression model-based anomaly detection is a subcategory of the parametric techniques identified
inChandola u. a. (2009). This approach is based on the principle of forecasting. A regression model is first
fitted on the training data. The resulting model is then used on test sequences to compute the residuals (the
difference between the predicted value and the real value). The residuals determine the anomaly scores. In
classical statistic approaches for the regression task, we can include anomaly detection techniques based
on traditional time series forecasting models such as Vector Auto-Regressive (VAR) [Melnyk u. a.| (2016), and
Autoregressive Integrated Moving Average (ARIMA) Bianco u. a.| (2001); |CHEN u. a.[ (2005); |Zhu und Sastry
(2011). InTomlinson u.a. (2018c) two methods, ARIMA and Z-score, were using broadcast time-intervals to
detect injected packets in the highest priority and regular broadcast CAN packets. The author showed similar

results to the supervised method using prior average times.

Statistical approaches have several advantages to enhance Anomaly Detection process. Firstly, they do not
require prior knowledge about the target system’s normal activity; instead, they can learn the system’s expected
behaviour from observations. Secondly, statistical methods can accurately notify malicious activities occurring over
long periods with tasks like regression. However, many drawbacks pointed out Garc3a-Teodoro u. a.[(2009); Basora
u.a. (2019); Chandola u. a.| (2009). First, an attacker so that the network traffic generated during the attack is con-
sidered normal. Second, setting the different parameters/metrics’ values is a difficult task, especially because the
balance between false positives and false negatives is affected. Moreover, a statistical distribution per variable is as-
sumed, but not all behaviours can be modelled using stochastic methods. Furthermore, most of these schemes rely
on the assumption of a quasi-stationary process, which is not always realistic. And in more large scale computation,

classical methods have their limitation.

3.2.3 Classical Machine learning approaches

Due to the thesis scope, some techniques and methods are not considered in this brief ML review. How ever, a
broad range of ML and pattern matching methods are reviewed in |(Chandola u. a.| (2009); [Chandola und Kumar
(2007); Hawkins (1980); |Song u. a.[ (2007); Wu und Yen| (2009). We focus on the main methods that have been
applied to Anomaly detection and in-vehicle IDS. In Fig [3.3] we defined the main categories of Machine Learning

tasks that we will review, from which we will mention the appropriate algorithm and techniques.
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Anomaly Detection as Clustering Problem

Clustering refers to unsupervised learning algorithms which do not require pre-labelled data to extract rules for
grouping similar data instances Jain u. a. (1999);/Govaert und Nadif  (2014). In Fig[3.4)we show the general process
of clustering. Many techniques and variants of clustering have been used to perform anomaly detection [Chandolal
u.a.(2009);/Chandola und Kumar|(2007); Kiss u. a.|(2014);/Ahmed u. a|(2016a). During the training phase, the data
points are grouped into clusters over many iterations until convergence or attaining predefined criteria (maximum
number of iterations and the used model parameters). In the test phase, a new data point is assigned to the closest
clusters based on the distance/similarity measure used in training based on the type of data. The anomaly detection
as a clustering problem relies on the assumption that any subsequent data that do not fit well with existing clusters
of normal data are considered anomalies. Also, when a cluster contains both normal and abnormal data, it has been
found that the normal data lie close to the nearest clusters centroid, but anomalies are far away from centroids. For
a group of anomalies, the smaller and sparser can be considered anomalous and the thicker normal. Instances

belonging to clusters’ sizes or densities below a threshold are considered anomalous|Ahmed und Mahmood|(2013).

Many approaches algorithms have been used to achieve the clustering phase, K-means is used in many works for
clustering-based anomaly detection. Once clustering is achieved, an instance is classified as normal if it is closer
to the normal cluster and anomalous otherwise. A threshold is defined, representing the distance between the
centroid and the instance Miinz u.a/ (2007). In|[Syarif u.a(2012), the authors investigated the performances of
various clustering algorithms when applied for Network anomaly detection. They used five different approaches, the
k-means, improved k-means, kmedoids, Expectation-Maximization (EM) clustering, and distance-based anomaly
detection algorithms. Advanced techniques for clustering also have been proposed for AD, like blockclustering and
Co-clustering|Govaert und Nadif| (2008} 2014). According to|/Ahmed und Mahmood|(2014);|Papalexakis u. a.|(2012),
co-clustering is beneficial for detecting DoS attacks and collective anomalies in network IDS in general. [Eskin u.a/
(2002) propose a geometric framework for unsupervised anomaly detection. In this framework, data elements are
mapped to a feature space which is typically a vector space. Anomalies are detected by determining which points lie
in sparse regions of the feature space. We present two feature maps for mapping data elements to a feature space.

The first map is a data-dependent normalization feature map applied to network connections. The second feature
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map is a spectrum kernel which applied to system call traces. In|Lotfi Shahreza u.a.|(2011) Neural Network based
technique was proposed, Self-Organizing Maps (SOMs) are among the most well-known, unsupervised neural
network approaches to clustering, which are very efficient in handling large and high dimensional datasets. The
SOM architecture is a feed-forward neural network with a single layer of neurons arranged into a rectangular array.
When an input pattern is presented to the SOM, each neuron calculates how similar it is to its weights. The neuron
whose weights are most similar (minimal distance d in input space) is declared the winner of the competition for the
input pattern, and the weights of the winning neuron are strengthened to reflect the outcome. The winning neuron
receives the most learning at any stage; with neighbours receiving less, they are further away from the winning
neuron. The original Particle Swarm Optimization (PSO) is another algorithm discovered through simplified social
model simulation, which is effective in nonlinear optimization problems and easy to implement. In [Lotfi Shahrezal
u.a. (2011) study, the authors combine these two methods and introduce a new method for anomaly detection for
intrusion detection.

In Barletta u. a|(2020) the authors propose an efficient and high-performing intrusion detection system based
on an unsupervised Kohonen Self-Organizing Map (SOM) network, to detect attack messages sent on a Controller
Area Network (CAN) bus. The SOM network found a wide range of intrusion detection applications because of its
features of high detection rate, short training time, and high versatility. The authors extend the SOM network to
intrusion detection on in-vehicle CAN buses. Many hybrid approaches were proposed to combine the SOM network

with other clustering methods, such as the k-means algorithm, to improve the model’s accuracy (See Fig .
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Figure 3.5: Experimentation process of In-vehicle Anomaly detection based on Clustering techniques Barletta u. a.H
(2020)

input vectors

In summary, the clustering approach is very interesting in anomaly detection. It can operate in an unsupervised
mode and does not require labelled data while allowing the detection of anomalies. The testing phase for new
data is generally fast as it is a simple comparison with clusters predefined in the training phase. Such techniques
can often be adapted to other complex data types by simply plugging in a clustering algorithm that can handle the
particular data type (distance choice). However, depending on the algorithm, the training step may be very long
as some algorithms have slow convergence issues. Besides, clustering-based techniques’ performance relies on

the effectiveness of clustering algorithms in capturing the cluster structure of normal instances based on the used
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distance (or similarity measure). In high dimensional data, the distance significance may be altered by noise which
may lead to poor performance. Also, Several clustering-based techniques are effective only when the anomalies do
not form significant clusters among themselves; (based on the assumption that anomalies don’t form clusters). The

computational complexity for clustering the data is often a bottleneck when dealing with significant data volumes.

Anomaly Detection as Classification Problem

Classification-based techniques rely on experts extensive knowledge of the characteristics of network attacks. When
a network expert provides details of the detection system’s characteristics, an attack with a known pattern can be
detected as soon as itis launched. This depends solely on the attack’s signature as a system capable of detecting an
attack only if its signature has been provided earlier by a network expert. With machine learning techniques, such a
classification task can be performed using different techniques and algorithms. The goal is to learn a model Classifer
represented with a function f(.) from a set of labelled data instances (training) and then, classify a test instance
into one of the classes using the learned model (test or inference). The learning process is about extracting the
discriminative features characteristics that distinguish between normal and anomalous classes in the given feature
space. Depending on the used technique, the goal is to take an input x and assigns it to one of the K classes (Cy).
(In this work, we consider mainly the case of one and two classes, and investigate the extension to K > 2 classes in
the chapter[4). Indeed, Based on the labels available for the training phase, classification-based anomaly detection

techniques can be grouped into two broad categories: multi-class and one-class anomaly detection techniques

Bishop| (2006)); (Chandola u. a.| (2009).
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Figure 3.6: Feature space representation of a Multi-class classifier for Anomaly Detection (a) and One-classe clas-
sifier Anomaly Detection (b) (Chandola u. a.[(2009)
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* Multi-class Anomaly Detection:

Multi-class classification based anomaly detection techniques assume that the training data contains labelled
instances belonging to multiple normal classes|Chandola u. a.[(2009). The method used teaches a classifier to
distinguish between a normal class and anomalous examples (In most of the cases, anomalous instances do
not form a class) in such a setting. Several variants of the basic neural network technique have been proposed
using different types of neural networks Hawkins u. a.[(2002); Williams u. a./(2002) (concerning those methods,
an in depth review is presented below in the section[3.3). Also, much of previous research motivated the study
of Anomaly detection, including Decision Trees (DT) that have been successfully applied to intrusion detection
to discover known and unknown attacks. DT is a common classification method based on divide and conquers
strategy. A DT comprises decision nodes and leaf nodes, and they represent a decision test over one of the
features, and the result class, respectively Safavian und Landgrebe| (1991). In|Yang u.a.[(2019), the authors
propose selected ML algorithms based on a tree structure, including decision tree, random forest, extra trees,
and XGBoost. In|Kalkan und Sahingoz|(2020) compared machine learning classifiers for the CAN security. As
a result of the study, it has been observed that the decision tree-based ensemble learning models result in the
best performance in the tested models. however, suffer from a number of drawbacks. One is that they cannot
generalise to new attacks in the same manner as certain other machine learning approaches. They are not
suitable for anomaly detection since homomorphic attacks and new attacks are a promising use of anomaly
detection. Empirical findings also demonstrate that DTs are very sensitive to the training data and do not learn

well from imbalanced data |Chawlal (2003); \Gharibian und Ghorbani| (2007).

Support Vector Machines (SVMs) have been applied increasingly to anomaly detection in the research in many
application domains. SVM is one of the supervised learning models used classification problems. It uses each
data’s nearest training points to build one or more hyperplanes to classify high-dimensional data. It maximizes
the margin between them as much as possible. The margin is defined as the perpendicular distance between
the decision boundary and the closest of the data points. The decision boundary is chosen to be the one for
which the margin is maximized Bishop| (2006); |(Cortes und Vapnik| (1995). An important property of support
vector machines is that the model parameters’ determination corresponds to a convex optimization problem,
so any local solution is also a global optimum |Schoélkopf u. a.| (2002).SVM classifiers have been used widely
for intrusion detection to distinguish between normal and intrusive data Mukkamala u. a.| (2002). And in [Duan
und Keerthi| (2005) presented a common approach is to combine several two-class SVMs, and in Mukkamala
u. a.[(2005) applied this paradigm, to network-based intrusion detection, adopting the five class, thus requiring
five SVMs. For each SVM, the training data is partitioned into two classes. One represents an original class,
and the other class represents the remaining, e.g., Normal and all intrusions, or Probing and Normal and the

other attacks. The combination technique adopted is a winner-takes-all strategy |[Duan und Keerthi| (2005), in
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which the SVM with the highest output value is taken as the final output.

Intrusion detection systems apply different SVM types to benefit from their capabilities, such as conducting
multiclass classification. Moreover, in some approaches, to boost the ADS detection rate and accuracy, SVM
parameters and its applied kernel functions are trained through using meta-heuristic algorithms. Also, to in-
crease the detection rate, some of the ADS approaches have exploited the SVM with other classifiers such
as decision trees, ANN, and na3ive byes. Furthermore, some of the outlined schemes have applied feature
extraction methods or utilized meta-heuristic algorithms for feature selection. Finally, some other ADS ap-
proaches have tried to handle the imbalanced datasets, making the SVM training process faulty and biased.
In[Alshammari u. a.| (2018), the authors propose an intrusion detection method for CAN bus IDS in vehicles.
It detects DoS and the Fuzzy attacks which occur on CAN Bus. And in Tanksale| (2019), propose a support
vector machines based intrusion detection system that can detect anomalous behaviour with high accuracy. At
the same time, they treated three overall types of anomalies (point anomaly, contextual anomaly, and collective
anomaly). With respect to the CAN, each type of anomaly requires different message types and parameters to
create the needed feature vectors. They grouped the CAN traffic features into groups based on the message’s

functionality as the SVM input feature vector.

One-class Anomaly Detection:

In a one-class problem, the training set only contains observations describing one class, and the classifier
constructs a model that captures this class. For each new observation in the classification phase, the classifier
decides if it falls inside this model or that it is an anomaly. A situation where one-class classification algorithms
are practical is monitoring normal systems behaviour. In that case, Data describing normal behaviour can
be gathered easily. Data relating to errors, attacks and security issues, cannot be collected easily and cost-
effectively. Even with simulation, we cannot approach a sufficient distribution of anomalous examples that will
encompass the behaviour of many types of attacks. We can collect CAN network traffic from cars under normal
driving conditions, but traffic containing attacks is much more challenging to obtain. A one-class classifier is
trained on the available Data and thus constructs a model describing the in-vehicle network behaviour under
normal circumstances. The classifier decides for each new observation in the monitoring phase, whether it
fits the class representing normal behaviour or anomaly. The Machine learning methods used for One-Class
classification rely on the normal traffic activity profile that builds the knowledge base and consider activities
deviate from the baseline profile as anomalous. The advantage lies in their capability to detect completely
novel attacks, assuming that they exhibit ample deviations from the normal profile. One-class Support Vector
Machine (OC-SVM), introduced |Scholkopf u. a. (1999). aims to create a function that returns +1 in a region
representing the training set’s observations and -1 elsewhere. To achieve this, the same concepts apply as

for the described binary problem, but now the distance between the origin and the hyperplane is maximised
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(in the feature space F). Then, decision function f(z) returns +1 for observations located on one side of the

hyperplane and -1 for observations on the other side.

The process of automatically constructing models from data is not trivial, especially for intrusion detection prob-
lems. It’'s because intrusion detection faces problems, such as huge network traffic volumes, highly imbalanced data
distribution, difficulty realizing decision boundaries between normal and abnormal behaviour, and a requirement for
continuous adaptation to a constantly changing environment. This demonstrates a system that can only detect what
it knows, and vulnerable to new attacks appearing in different versions. Additionally, the normal traffic not included
in the knowledge base is considered as an attack. Thus, it generates unintentional false alarms. Continuous training
is required for anomaly detection techniques to build a normal activity profile that is time-consuming and depends
on the availability of a completely normal traffic instance. Furthermore, it is challenging to keep a normal profile up-
to-date in today’s dynamic and evolving network environment. Among a large pool of classification-based network
anomaly detection techniques, we discussed four major classical methods and their related application to Intrusion
detection for the in-vehicle network. The following section reviews the more recent and advanced technique for

anomaly detection using Deep Learning.

3.3 Deep learning for Anomaly Detection

Deep learning for anomaly detection, deep anomaly detection for short, aim at learning feature representations or
anomaly scores via neural networks for the sake of anomaly detection. Many deep anomaly detection methods have
been introduced, demonstrating significantly better performance than conventional anomaly detection on address-
ing challenging detection problems in various real-world applications. Deep Learning methods enable end-to-end
optimization of the whole anomaly detection pipeline, compared to traditional modelling(See Section depends
on feature engineering, which relies on expert and external knowledge to create features relevant to a given prob-
lem. Besides, they also allow the learning of representations specifically tailored for anomaly detection. These
two capabilities are crucial to tackling the Anomaly Detection challenges, where traditional methods can fail. This
subsequently results in more informed models and thus better recall-rate. For the anomaly explanation challenge,
DL methods are black-box models; but they offer options to unify anomaly detection and explanation into single
frameworks, resulting in explanation of the anomalies spotted by specific models (Deep Learning explainability is
well-studied research, but not studied in this work). Deep Learning methods also excel at learning complex struc-
tures and relations from diverse data types, such as high-dimensional data, image data, video data, graph data,
etc. This capability is important to address various challenges, multimodel-inputs, and an environment with many
sensors like an autonomous vehicle. Further, they offer many practical and easy-to-use network architectures and

frameworks to learn unified representations of heterogeneous data sources seamlessly. However, shallow meth-
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ods for handling those complex data are generally substantially weaker and less adaptive than the Deep Learning

techniques.

3.3.1 Deep Learning for Anomaly detection: Categorization and formulation

Deep neural networks leverage complex compositions of linear/non-linear functions that a computational graph can
represent to learn expressive representations |Goodfellow u. a. (2016)). The two basic building blocks of deep learn-
ing are activation functions and layers. Activation functions determine the output of computational graph nodes (i.e.,
neurons in neural networks). They can be linear or non-linear functions. Some popular activation functions include
linear, sigmoid,tanh, ReLU (Rectified Linear Unit) and its variants. A layer in neural networks refers to neurons
stacked in some forms to adapt the type of input data. Commonly-used layers include fully connected, convolutional
& pooling, and recurrent layers. One can leverage those layers to build different popular neural networks architec-
tures. For example, multilayer perceptron (MLP) networks are composed of fully connected layers, convolutional
neural networks (CNN) are featured by varying groups of convolutional & pooling layers, and recurrent neural net-
works (RNN), and long short term memory (LSTM), are built upon recurrent layers |Goodfellow u. a.| (2016); [Pang
u.a. (2021). And more recent advanced architecture can combine many layers types to enhance the performance

of the model.

Given a dataset X = {z,79,....,zxy} With 2; € R? , let Z € R%(d < p) be a representation space, then deep
anomaly detection aims at learning a feature representation mapping function fza/(.) : R? — R< or an anomaly
score learning function f4s(.) : RP — R where anomalies can be easily differentiated from the normal data instances
in the space yielded by the fra or fas function, where both are a neural network. In the case of learning the
feature mapping fras, an additional step is required to calculate the anomaly score of each data instance in the
new representation space or an additional feature reconstruction fr..(.) : R? — R? in the case of Auto-Encoders
Rumelhart u. a.| (1986); [Baldi| (2011); |Goodfellow u.a.| (2016) as an example. While f4s can directly infer the
anomaly scores with raw data inputs, binary calssifier for example. An overview of the deep anomaly detection
consists of three conceptual paradigms ( See Fig[3.7).

In (a) Fig[3.7] The task of representation Learning using Deep learning is not directly related to anomaly detec-
tion, where this method is used as some independent feature extractor only [Dara und Tummal (2018); Rumelhart
u.a./(1986). This category of methods aims at leveraging deep learning to extract low-dimensional feature represen-
tations from high-dimensional and/or non-linearly separable data for downstream anomaly detection. The feature
extraction and the anomaly scoring are fully disjointed and independent from each other. Thus, the deep learning
components work purely as dimensionality reduction only |Pang u.a. (2021). Compared to traditional dimension

reduction like principal component analysis (PCA)|Candes u. a.| (2011);|Schélkopf u. a.| (1997), deep learning tech-
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Figure 3.7: Conceptual Frameworks of Three Main Deep Anomaly Detection Approaches

niques have been demonstrating substantially better capability in extracting semantic features and non-linear feature
relations [Bengio u. a| (2013);[Goodfellow u. a. (2016).

In the second category (b) in Fig the objective is learning expressive representation of normality. This

category of methods can be further divided into three subcategories based on how the representations are learned.
The first category guides the learning with a reconstruction loss on the actual input data, as shown in the figure
(b) The second subcategory is based on Adversarial Learning; This approach aims to learn a latent feature
space of a generative network. The latent space captures the normality underlying the given data. Some form
of residual between the real instance and the generated instance is then defined as the anomaly score. We will
study those approaches in details in the next chapter The Third subcategory is Predictability modelling for
sequence modelling, where the anomaly score is also a reconstruction loss. Still, the input is not given for the model
(Forecasting). Predictability modelling-based methods learn feature representations by predicting the current data
instances using the previous instances’ representations within a temporal window as the context. In this section,
data instances are referred to as individual elements in a sequence, e.g., network frames sequence in In-vehicle
network communication. This technique is widely used for sequence representation learning and prediction. We will
study those approaches in details in the next chapter [4] related to sequence modelling for In-vehicle CAN protocol.

We note that each subcategory is taking a different approach in formulating its objective function.
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In the third category (c) in Fig neural network directly learns the anomaly scores. Novel loss functions
are often required to drive the anomaly scoring network. Formally, this approach aims at learning an end-to-end
anomaly score learning network in which the methods are dedicated to learning anomaly scores via neural networks
in an end-to-end fashion binary classification (softmax likelihood models) or one-class classification. In|Saxe u. a.
(2019) provides an explanation for representation learning as the trade-off between finding a minimal compression
Z of the input X while retaining the informativeness of Z for predicting the label Y. Put formally, supervised deep
learning seeks to minimize the mutual information I(X; Z) between the input X and the latent representation Z

while maximizing the mutual information 7(Z;Y") between Z and the classification task Y.

3.3.2 Deep Anomly Detection Challenges

The above complex general problem discussed in Section leads to several Deep Anomaly detection chal-
lenges. Some challenges, such as scalability data size, have been well addressed in recent years|Pang u. a.| (2021);
Bulusu u. a.| (2020); Chalapathy und Chawlal (2019), while the following are remaining as challenges, to which deep

anomaly detection can play some essential roles.

» Anomaly Detection recall rate: Since anomalies are infrequent and heterogeneous, it is difficult to identify
all anomalies. Many normal instances are wrongly reported as anomalies (False-positive) while not reporting
sophisticated abnormalities. Although plenty of anomaly detection methods has been introduced over the
years, the current state of the art methods, especially unsupervised methods, still often produce high false
positives on real-world datasets. Reducing false positives and enhancing detection recall rates is one of the

most critical yet complex challenges, particularly for the future in-vehicle network anomalies.

» Anomaly detection in high-dimensional and not-independent data: Anomalies often exhibit evident ab-
normal characteristics in a low-dimensional space yet become hidden and unnoticeable in a high-dimensional
space. High-dimensional anomaly detection has been a problem, especially in an environment with large
amounts and modalities like intelligent vehicles. Performing anomaly detection in a reduced lower-dimensional
space spanned by a small subset of original features or newly constructed features is a straightforward so-
lution or feature selection-based method |Keller u. a.| (2012); |Lazarevic und Kumar (2005); [Liu u. a.| (2012);
Azmandian u. a.[(2012); |Pang u. a.[ (2018} 2017). However, identifying complex feature interactions and cor-
relation in an end-to-end fashion may be essential in high-dimensional data and avoiding additional feature
extraction process is important in the environment as embedded systems. Still, it remains a significant chal-
lenge for anomaly detection. Further, guaranteeing the new feature space preserved useful information for
specific detection methods is critical to downstream accurate anomaly detection, but it is challenging due to

the aforementioned unknowns and heterogeneities of anomalies.
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» Data Topology: It is also challenging to detect anomalies from instances that may depend on each other,
such as by temporal, spatial, graph-based, multi-modal, distributed and other interdependency relationships.

Thus, Deep Learning architecture must fit the data topology needs.

 Data-efficient learning while leveraging the small amount of anomalies: Utilizing those labelled data to
learn expressive representations of normality/abnormality is crucial for accurate anomaly detection. Weakly-
supervised anomaly detection assumes we have some labels for anomaly classes and the class labels are
partial (they do not represent the entire set of anomaly class), inexact (Noises and system fault instead of
attacks). Two significant challenges are how to learn expressive normality/abnormality representations with
a small amount of labelled anomaly data and how to learn detection models that are generalized to novel

anomalies uncovered by the given labelled anomaly data.

Our main studies and contributions are motivated by the challenges mentioned above. In the following chapters

4l[5l6] we take into consideration the different constraint related to the in-vehicle network system (Section[2.4.1).

3.4 Discussion

As our objective is an Anomaly detection based Intrusion detection system, we review the various efforts and re-
search works relative to Anomaly Detection. Thus, including the emerging field of Deep Learning and its applications
to Anomaly detection in many domains. Based on the SOA information, we will discuss the hypothesis and problem-
atics that led us to our actual contributions. Our objective in the following chapters is to present our contributions in
addressing the In-vehicle IDS challenges with Deep Anomaly Detection. We present our focus and work positioning

compared to state of the art established in this chapter in Fig
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Chapter 4

Encoding Adversarial Network for anomaly

detection (AnoEAN)

In this chapter, we review the Generative Adversarial Networks (GANSs) in detail by discussing the strength of the
GANs compared to other generative models, how GANs works, and some of the significant problems with training,
tuning and evaluating GANs. We also present some major GANs based architectures to show how a specific
design helps solve various applications issues. All this is done to develop an Adversarial Learning approach to
respond to the Anomaly detection-based IDS challenges (Introduced in the previous chapter in Section|3.3.2), more
specifically, a lightweight memory-based approach. The emergence of the Generative Adversarial Networks (GANSs)
has recently brought new algorithms for anomaly detection. Most of them use the generator as a proxy for the
reconstruction loss. We review the different GANs based architectures and processes used for Anomaly Detection.
We will point out the major constraints of those approaches applied as a model for the Intrusion Detection system.
We develop an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN),
which maps the data to a latent space (decision space). The detection of anomalies is done directly by calculating
a score. Our encoder is learned by adversarial learning, using two loss functions, which constrain the encoder to
project regular data into a Gaussian distribution. The second is to project anomalous data outside this distribution.
We conduct a series of experiments on several standard bases, network data and image data. This work has led to

the publication of two conference papers:

+ Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. An Encoding Adversarial Network for
Anomaly Detection. 11th Asian Conference on Machine Learning (ACML 2019), Nov 2019, Nagoya, Japan.
pp.1-16.

* Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Construction d’espace latentpour

la détection d’anomalies par apprentissage adversarial. Conférence sur I'’Apprentissage automa-tique (CAP
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2019), Jul 2019, Toulouse, France.

4.1 Introduction

In the previous chapter Section[3.3] we introduce Anomaly detection as a well-established topic in Machine Learn-
ing, with many applications in domains such as fraud detection, cybersecurity, video surveillance, and predictive
maintenance (Chandola u.a., |2009; [Kiran u.a., |2018; Hodge und Austin, [2004; |Chalapathy und Chawlal [2019).
Moreover, the recent advances in Artificial Intelligence bring insight into future applications, as autonomous trans-
portation like self-driving cars. Many cyber-security threats can impact the usability of those systems (Chapter[T).
The problem of anomaly detection highlights many risks related to those threats and can help the standard security
systems to face new threats.

We present three main settings for anomaly detection. The first is the unsupervised case, where an algorithm
has to discover the data’s intrinsic properties to detect the anomalies without any label guidance(Campello u.a.}
2015} Kiran u.a., 2018); The training set contains both normal and anomalous examples, but the labels are not
available. The second is the supervised case, where an algorithm must usually face unbalanced datasets, with
significant rates of normal data and few anomalous examples. The third is the one-class classification, where the
algorithm has access only to a large set of normal data. Unlike the unsupervised case, there are no anomalous
examples in the training set. In this chapter, we focus on both the supervised (unbalanced) and one-class anomaly
detection problems. Notice that even though few anomalous examples may exist in the data, supervised learning
algorithms are still challenging because the set of anomalies often does not form a homogeneous class. The
boundary between normal and anomalous examples is blurred and continuously evolving (the system’s normal
behaviour changes depending on the context). This boundary problem is a challenge in the anomaly detection
problem.

We can formulate the anomaly detection problem as follows. Let D be a data set containing a large number of
normal examples (the normal states of the system) X,,, and a relatively small number of anomalous examples X,. A
model M must learn the distribution function px over the normal data during training. Then, given any test example
z, it must determine whether x deviates from the learned distribution px by using an anomaly score function a(zx).
The model M also needs to consider its number of parameters 6,, that represents the memory size of a Deep
Learning model.

The balance of the instance numbers among classes in a dataset impacts Machine learning and Deep Learning-
based classification performance. Indeed, in the cases of suffering from the data imbalance problem, the number
of training samples belonging to a normal class is larger than anomalous classes. It's a common issue in Anomaly
Detection, especially for cybersecurity. This data related problem impacts the machine learning algorithms and

deteriorates the classifiers effectiveness|Kozik und Choras|(2016). Typically, classifiers will achieve higher predictive

74



accuracy over the majority class but more insufficient predictive accuracy over the minority class. Utilizing unsuitable
evaluation metrics for the classifier trained with the imbalanced data can lead to wrong conclusions about the
classifier’s effectiveness. As most machine learning algorithms do not operate very well with imbalanced datasets,
the commonly observed scenario would be the classifier ignoring the minority class. This happens because the
classifier is not sufficiently penalized for the misclassification of the data samples belonging to the minority class.
Unbalanced data is well studied in our experiments. The goal is to develop a method that can benefit from the
availability of a low rate of anomalies to enhance the model’s capacity to detect different variant of anomalous
examples and even unknown attacks.

Deep neural networks performs well in learning highly complex and large data representations.A large number
of papers propose Deep Learning-based anomaly detection models (Goodfellow u. a., 2016} [Hodge und Austin,
2004; |Pimentel u. a., |2014; Bulusu u. a., [2020f |Pang u. a.l 2021}, [Chalapathy u. a., 2019} |(Chalapathy und Chawla,
2019; [Kiran u.a., |2018). The recent advances in Deep Learning have made it possible to revise this problem
and in many application domains like intrusion detection system |Galinina u.a.| (2018). In particular, Generative
Adversarial Networks (GANs) (Goodfellow u. a., [2014), which were proved very efficient in many application fields
(Creswell u.a.l 2018), have also been adopted in recent works on anomaly detection (Schlegl u. a.l 2017} [Zenati
u.a.l [2018blla; |Akcay u. a., 2019; |Golan und El-Yaniv, |2018; Sabokrou u. a., [2018; Deecke u. a., 2018} [Mattia u. a.}
2019; Zenati u. a.,|2018aj;|Schlegl u. a., 2019).

In this chapter, we investigate several problems related to GAN-based anomaly detection methods. We propose
a new method, called AnoEAN (Encoding Adversarial Network for Anomaly Detection). The principle of AnoEAN is
to learn a function (Encoder) that projects the original dataset into a small dimension latent space so that the normal
examples are projected in a restricted region of the latent space and the anomalies outside this region. This latent
representation allows us to identify anomalies directly in the latent space by using a Mahalanobis distance on the
distribution induced by the normal examples. We thus eliminate all the problems related to the reconstruction loss
function. To do so, we develop a new approach that trains an encoder by adversarial learning. We assume that we
have a large amount of normal data and a small number of anomalies, which is a common framework for anomaly
detection. We finally conduct a series of experiments proving that AnoEAN performs better than conventional
anomaly detection techniques, including those based on GANSs, using both the MNIST base of handwritten digits

(LeCun, [1998) and two standard network intrusion detection databases (KDD’99, NSL-KDD).

4.2 Generative Adversarial Network : Background and related works

Research in Deep neural networks has resulted in the design and development of different deep neural networks
classes (Discriminative, Generative). The goal of the generative model is to learn the density function that describes

the original sample data and then uses this estimated density to generate fake yet realistic-looking data similar
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to the original sample [Goodfellow u.a. (2016). The Fig distinguish two main learning process. Generative

models that can learn via the maximum likelihood principle differ concerning how they represent or approximate
the likelihood. On the left branch of this taxonomic tree, models construct an explicit density, maximizing the ex-
plicit likelihood. Among these explicit density models, the density may be computationally tractable, or it may be
intractable, meaning that to maximize the likelihood, it is necessary to make either variational approximations or
Monte Carlo approximations (or both). On the tree right branch, the model does not explicitly represent a probability
distribution over the space where the data lies. Instead, the model provides some way of interacting less directly
with this probability distribution. Typically the indirect means of interacting with the probability distribution is the
ability to draw samples from it. Some of these implicit models that offer the ability to sample from the distribution are
1) MarkovChain; the model defines a way to stochastically transform an existing sample to obtain another sample

from the same distribution. 2) Generative Adversarial Networks (GANS).

The increasing improvement in modern optimization and regulation techniques led to the emerging of Genera-

tive Adversarial Networks (GANs) [Goodfellow u. a.| (2014). GANs directly estimates a density function over a data

distribution using alternative training techniques Adversarial Learning. GAN’s core idea is to train two adversarial
networks, a generator and a discriminator, in the form of a minimax game. The generator’s goal is to generate
realistic images that can fool the discriminator. In contrast, the discriminator tries to classify generated images (gen-
erated by the generator network) as fake and classify the real images from the original sample as real
(2014). The adversarial Learning process aims for the generator to capture the distribution of true examples
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enabling new data example generation. The discriminator is usually a binary classifier, discriminating generated

examples from the true examples as accurately as possible.

4.2.1 GAN algorithm
Adversarial Learning Process

A Generative Adversarial Network (GAN) is composed of two neural networks (See Fig[4.2): a generator G, that
transforms a vector = drawn from simple prior distribution (latent space) into an artificial data space (same dimension
as a real data space), and a discriminator D whose role is to differentiate artificial data from real data. One drives

such a system competitively: the generator must deceive the discriminator by implicitly learning to approximate

the distribution of real data (Goodfellow u.al 2014). More formal, GANs represent a mapping from noise space

to data space as G(z,6,), where G is a differentiable function represented by a neural network with parameters
6,. The Discriminator D(z,6,) is also defined with parameters 6, and the output of D(z) is a single scalar. D(x)
denotes the probability that = was from the data rather than the generator G. The discriminator trained to maximize
the probability of giving the correct label to both training data and fake samples generated from the generator G is

trained to minimize log(1 — D(G(z))) simultaneously.
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Figure 4.2: The Structure of GAN, Given a sampled noise from P, (defined and known distribution), the generator
objective is to convince the discriminator that its fake generated data is real. The discriminator take both real data
and fake data. The role of the discriminator is to classify the real data as real (1) and generated data as fake (0).

If the input data is from the real data =, the discriminator learns to make D(z) close to 1. If the input data is from
the generated data G(z), the discriminator strives to make D(G(z)) close to 0 while the generator G tries to make
it close to 1. Since this is a zero-sum game between G and D, the optimization of GAN can be formulated as a

min-max problem in the following objective function:

minmax V(D, &) =Eonpyq,, [108(D ()] + Eznp, [log(1 = D(G(2)))] (4.1)
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It is possible that the Equation [4.1] cannot provide sufficient gradient for G to learn well in practice. Generally
speaking, G is poor in early learning, and samples are clearly different from the training data. Therefore,D can reject
the generated samples with high confidence. In this situation,log(1—D(G(z))) saturates. We can train G to maximize
log(D(G(z))) rather than minimize log(1 — D(G(z))). Furthermore, there are other possible ways of approximating
maximum likelihood within the GANs framework. A comparison of original zero-sum game, non-saturating game,

and maximum likelihood game is shown in Fig[4.3][Nowozin u.a. (2016);/Gonog und Zhou| (2019).
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Figure 4.3: The three curves of “Original”, “Non-saturating”, and“Maximum likelihood cost”/Gonog und Zhou| (2019)

GANSs Training process

Fig consists of sampling a minibatch from both the training set and the generated samples and then running

the discriminator on those inputs. We begin by sampling the latent vector z from the prior distribution over the latent

variables (noise vector). It allows the generator to output a wide variety of different vectors |Goodfellow u. a.| (2014);

|Goodfellow] (2017). We then apply the generator function to the vector z. The generator outputs a sample that is

then applied to the discriminator. The discriminator outputs a value that is essentially a binary classification of real
or fake. The error loss on the discriminator output is calculated using a cross-entropy cost function. This error is
then backpropagated to both the generator and the discriminator networks. Training stops when the discriminator
can no longer discriminate between generated data and training data. This point is known as the saddle point of the
discriminator loss to describe the equilibrium, and in theory, should be the global minimum.

Training GANSs in practice show some instabilities in reaching the saddle point. Several ways through which

improvements to the GANs performance has been studied [Salimans u.a. (2016). It has been shown that labels
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