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Abstract

Despite all the different technological innovations and advances in the automotive field, autonomous vehicles are

still in the testing phase. Many actors are working on several improvements in many domains to make autonomous

cars the safest option. One of the important dimension is cybersecurity. Autonomous vehicles will be prone to

cyberattacks, and criminals might be motivated to hack into the vehicles operating systems and steal essential

passenger data or disrupt its operation and jeopardize the passenger’s safety. Thus, cybersecurity remains one of

the biggest obstacles to overcome to ensure vehicles safety and the contribution that this technology can bring to

society.

Indeed, the actual and future design and implementation of Autonomous Vehicles imply many communication

interfaces, In-vehicle communication of the embedded system, Vehicle-to-X (V2X) communications between the

vehicle and other connected vehicles and structures on the roads. Even though the cybersecurity aspect is incor-

porated by design, meaning that the system needs to satisfy security standards (anti-virus, firewall, etc.), we can

not be sure that all possible breaches are covered. The Intrusion Detection System (IDS) has been introduced in

the Information Technology (IT) world to assess the state of the network and detect if a violation occurs. Many

experiences and history of IT have inspired the cybersecurity for autonomous vehicles. Nevertheless, autonomous

vehicles exhibits their own needs and constraints.

The current state of vehicles evolution has been made possible through successive innovations in many industrial

and research fields. Artificial Intelligence (AI) is one of them. It enables learning and implementing most fundamen-

tal self-driving tasks. This thesis aims to develop an intelligent in-vehicle Intrusion Detection System (IDS) using

Machine Learning (ML) from an automotive perspective, to assess and evaluate the impact of machine learning on

enhancing the security of future vehicles. Our primary focus is on In-vehicle communication security. We conduct

an empirical investigation to determine the underlying needs and constraints that in-vehicle systems require. First,

we review the deep learning literature for anomaly detection and studies on autonomous vehicle intrusion detec-

tion system using deep learning. We notice many works on in-vehicle intrusion detection systems, but not all of

them consider the constraints of autonomous vehicle systems. In such applications, the data is unbalanced: the

rate of normal examples is much higher than the anomalous examples. The emergence of the Generative Ad-

versarial Network (GAN) has recently brought new algorithms for anomaly detection. We develop an adversarial
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approach for anomaly detection, based on an Encoding AdversarialNetwork (EAN). Considering the behaviour and

the light-weight nature of in-vehicle networks, we show that EAN remains robust to the increase of normal examples

modalities, and only a sub-part of the neural network is used for the detection phase.

Controller Area Network (CAN) is one of the most used vehicle bus standard designed to allow microcontrollers

and devices to communicate with each others. We propose a Deep CAN intrusion detection system framework.

We introduce a Multi-Variate Time Series representation for asynchronous CAN data. We show that this represen-

tation enhances the temporal modelling of deep learning architectures for anomaly detection. We study different

deep learning tasks (supervised/unsupervised) and compare several architectures to design an in-vehicle intrusion

detection system that fits in-vehicle computational constraints.

Future In-vehicle network architecture is composed of different subsystems formed of different Electronic Control

Units (ECUs). Each subsystem is responsible for specific services that ensure the autonomous functioning of the

vehicle. For functional and security reasons, separate subsystems are isolated, forming a hierarchical architecture

of the system. In this thesis, we design a Distributed IDS that fit this in-vehicle architecture system and its constraints

and reduces the communication overhead rate induced by the IDS processing.
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Résumé

De nombreuse avancés et innovations technologiques sont introduites dans le monde de l’automobile. Plusieurs

domaine scientifiques et applicatives contribuent à l’amélioration de ces avancées. L’une des dimensions impor-

tantes est la cybersécurité. Effectivement, les véhicules autonomes seront sujets aux cyberattaques et les cybers

criminels pourraient pirater les systèmes d’exploitation des véhicules et perturber leur fonctionnement et mettre

en danger la sureté des passagers. Ainsi, la cybersécurité reste un obstacle à surmonter pour sécuriser les

véhicules et permettre aux innovations technologiques dans le domaine des transports d’apporter des solutions

aux problèmes de la société et éviter leur détournement à des fin malicieuses. En effet, la conception actuelles

et futures des véhicules autonomes implique de nombreuses interfaces de communication, la communication dans

le véhicule entre les différents systèmes embarqués, les communications Vehicle-to-X (V2X) entre le véhicule et

d’autres véhicules et structures connectés sur les routes. Plusieurs mécanismes de défense sont implémentés

pour répondre aux normes de sécurité (antivirus, pare-feu, etc.), mais nous ne pouvons pas être sûrs que toutes

les failles possibles sont couvertes, spécialement dans des systèmes complexes comme les voitures autonomes.

Le système de détection d’intrusion a été introduit dans le monde Information Technology (IT) pour évaluer l’état

du réseau et détecter tous comportement malveillant. Le mon de l’IT a connus beaucoup plus d’expérience en

termes de mécanisme de défense qui peut inspirer la cybersécurité des transports intelligent (voiture autonomes),

néanmoins, ces dernières requirent leurs propres besoins et contraintes lié à la sureté et aussi à leur architecture

system. L’état actuel de l’évolution des véhicules a été rendu possible grâce à des innovations successives dans

de nombreux domaines industriels et de recherche. L’intelligence artificielle en fait partie, ces diffèrent technique

permettent d’apprendre et de mettre en œuvre des tâches complexe tel que la conduite autonome. Cette thèse vise

à développer un system intelligent de détection d’intrusion en utilisant l’apprentissage automatique dans un con-

texte automobile. L’objective est d’évaluer l’impact de l’apprentissage automatique sur l’amélioration de la sécurité

des véhicules futurs (autonomes). Notre objectif principal est la sécurité des communications entres les différents

systèmes dans la voiture. Dans ce but, nous menons une enquête empirique pour déterminer les besoins sous-

jacents et les contraintes qu’exigent les systèmes embarqués. Nous passons en revue la littérature d’apprentissage

profond pour la détection d’anomalie, on note qu’il y a un manque d’étude personnalisée sur le système de détection

d’intrusion de véhicule autonome utilisant l’apprentissage profond. Dans de telles applications, les données sont
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déséquilibrées : le taux d’exemples normaux est beaucoup plus élevé que les exemples anormaux. L’émergence

du Generative Adversarial Network (GAN) a récemment apporté de nouveaux algorithmes pour la détection des

anomalies. Nous développons une approche antagoniste (adversarial) pour la détection des anomalies, basée sur

un Encoding AdversarialNetwork (EAN). Compte tenu du comportement et de la légèreté des réseaux embarqués,

nous montrons que EAN reste robuste à l’augmentation des modalités d’exemples normaux, et seule une sous-

partie du réseau neuronal est utilisée pour la phase de détection.

Controller Area Network (CAN) est l’une des normes de bus de données très répandu dans les véhicules,

conçue pour permettre aux microcontrôleurs de communiquer entre eux. Nous proposons un système de détection

d’intrusion Deep CAN. Nous introduisons une représentation de séries temporelles à variables multiples pour les

données asynchrones CAN. Nous montrons que cette représentation améliore la modélisation temporelle des archi-

tectures d’apprentissage profond pour la détection d’anomalies. Nous étudions différentes tâches d’apprentissage

profond (supervisées / non supervisées) et comparons plusieurs architectures pour concevoir un système de

détection d’intrusion embarqué qui s’adapte aux contraintes de calcul des systèmes faible en ressource. L’architecture

future des réseaux embarqués dans les véhicules sont composées de différents sous-systèmes. Chaque sous-

système est responsable de services spécifiques qui assurent le fonctionnement autonome du véhicule. Pour

des raisons fonctionnelles et de sécurité, les sous-systèmes sont isolés, formant une architecture de communica-

tion hiérarchique de l’ensemble du système. Dans cette thèse, nous concevons un IDS distribué qui s’adapte à

l’architecture embarquée et à ses contraintes et réduit le taux de surcharge de communication induit par le traite-

ment de l’IDS.
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Chapter 1

Introduction

1.1 Intelligent Transportation Systems (ITSs)

A long time ago, human beings did not have any means of transportation; they were used to travel only on their foot

and carrying their goods either on their backs or using animals. Until the invention of the wheel, it was a starting of

a long series of transportation innovation. We overcame natural obstacles like water and seas; we replaced animal

power in 1776 when James Watt invented the steam engine. This innovation was a revolution in transportations,

which brought a lot to the evolution of today’s society. From empowering the ships and locomotives to increase the

efficiency of the human operations to achieve the goal of flying and reach the moon. We never stopped since then,

we have come across a lot of innovation in transportation, and today’s society is more dependent on its transportation

systems, which represents a vital element for the proper and safe functioning of society. The transportations systems

have always been deeply affected by major technologies shifts. These last years, a lot of efforts have been made to

make the transportation more intelligent and enabling them to offer different services through applications, ranging

from automation and driver assistance to infotainment applications. The growth of cities and the rise of the urban

population brought challenges like congestion, air pollution, and road accidents. To deal with these issues, full

automation for transportations systems arises ITS ( intelligent transportation system). The advance in Artificial

Intelligence (AI), more precisely machine learning by using deep learning methods, has drawn a lot of attention

in both scientific and industrial actors. It enables many functionalities that rely on accurate decision making, from

trying to learn traffic rules to coping with human pedestrian unpredictability in many different contexts (autonomous

vehicles, drones and autonomous train). ITS aims to reach a certain level of autonomy that allows the scalability of

mobility more smartly and optimally. Indeed, if all the cars are driverless and connected, everything is predictable.

The reaction time is at its minimum and guarantees a well-distributed and resource-efficient system, which means

lowering the numbers of vehicles. Some study estimate Autonomous Vehicle can reduce the number of accident by

40% Fagnant und Kockelman (2015). The current state of the motivation is clear, ITS will save lives and enables an

1









1.3 In-vehicle cybersecurity

Although ITS are relatively new, especially autonomous vehicles (automotive transportation), many research and

industrial areas have integrated and tested cybersecurity methods by conducting many experiments on conventional

ITS. It is ranging from strong authentification, regular auditing, encrypted communication to a private network and se-

cure routing Qiang Hu (2018); Hahn u. a. (2019); Jadoon u. a. (2018). The conventional methods, like Cryptographic

approaches, are not entirely suitable for ITS. They need to meet a set of requirement like low latency, lightweight

encryption and communication overhead. We note that the ITS architecture can differ in terms of implementation de-

tails depending on the constructors, where nowadays, many actors are working on in-vehicle architectures systems

that are reliable in terms of cybersecurity. These architectures and their implementations are still in their prototyping

phase (See Fig 1.3).

In autonomous vehicles, the external interfaces gradually increase, as well as the cybersecurity threats. For

example, in Charlie Miller (2015) the authors achieved the invasion of Toyota Prius and Ford Escape and remotely

invaded a Jeep Cherokee. Furthermore, in Smith (2015) the authors demonstrated possible paths of vehicle cyber

attacking using penetration test. Researchers analyze the security issues in vehicles by experimental attacking

Checkoway u. a. (2011); Koscher u. a. (2010a), the results show the severity of vehicular cyberattacks. In Petit und

Shladover (2014), the authors investigates potential network attacks and vulnerabilities for autonomous vehicles,

the possible attack targets include traffic signs, machine vision, GPS signals, sensors, radar signals, lidar signals,

navigation). Attacks against vehicles can be divided into logical attacks (password attacks, software attacks, com-

munications attacks, etc.), physical attacks (side channel attacks, denial of service attacks, interference attacks,

penetration attacks, tamper attacks, etc.) and other attacks Wolf (2009).

The embedded cyber defence architecture of automotive transportation aims to protect the information transfer,

sensor signals and critical passengers data by monitoring the communications among ECUs, sensors, and gateways

in the in-vehicle networks by including message authentication, data encryption, and intrusion protection.

1.3.1 In-vehicle network communication system

It represents an extensive system where many computers unsure functionalities by interacting and communicating

with each other, using different automotive field busses like CAN (Controller Area Network), FlexRay, LIN(Local

Interconnect Network). Mainly, those automotive systems lack security, and they handle many features such as

real-time communication between controllers, engine management. The Intrusion Detection System primary role is

to monitor those systems and detect malicious attempts or attacks and alert the system’s user.

In-vehicles communications are mainly signals and data transfer carried by automotive network protocols; some

typical networks protocols are introduced in the following:
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• Controller Area Network (CAN): CAN bus is the most widely used bus field in the automotive industry. It

plays a significant role in the automotive power system and comfort system. The maximum speed of a high-

speed CAN bus can reach 1 Mbps. The data field length of the CAN frame is 8 bytes. The cyclic redundancy

check (CRC) is used to ensure the correctness of transmission. (In Chapter 2, we will introduce a detailed

functional description of CAN.)

• Local Interconnect Network (LIN): LIN bus is mainly used for controlling the vehicles seats, doors, wipers,

sunroof, and so on. For LIN bus, the maximum of the data field in a frame is 8 bytes. The checksum is

calculated to verify that the integrity of the message has been preserved during transmission operation. Unlike

CAN bus, LIN bus uses the master/slave node mode for communication.

• FlexRay: FlexRay bus has a higher transferring speed than CAN bus and mainly used the automotive power

control system. The maximum speed of FlexRay can be up to 10 Mbps. Time-division multiple access (TDMA)

and flexible time division multiple access (FTDMA) are used in FlexRay to ensure the real-time requirements

of network communication. The data field length of FlexRay frame is 254 bytes. The CRC is used to check

errors during bus communication. This protocol differs from CAN by its performance in terms of throughput and

higher reliability. The cost of a FlexRay node is currently higher than that of a CAN node, which is programmed

to be the de facto replacement in automotive electrical and electronic architectures.

• Ethernet: The Ethernet plays a significant role in the new automotive architecture. The IEEE 802.1 AVB

(Garner et al., 2007) and TTEthernet (AS6802) (SAE, 2016b) based on the automotive Ethernet have been

used for infotainment application. The Ethernet is also the foundation of the Internet protocol. With the

Internet protocol, remote calibration, remote diagnosis and remote update between vehicle and server can be

achieved. For the automotive Ethernet, transmission speed can be 100/1000 Mbps, the data field length of

Ethernet frame can be more than a thousand bytes. The CRC is used in Ethernet frame to check to ensure

the accuracy of data transmission Matheus und Königseder (2015).

1.3.2 Basic in-vehicle security network architecture

Compared with traditional vehicles, connected vehicles require more information transfer. Sensor signals and critical

data must be protected to ensure the safety of connected vehicles Qiang Hu (2018). In-vehicle networks connect

the communications among ECUs, sensors, and gateways. The design of each layer must take security into con-

sideration as in the following:

• Individual ECU Layer: This layer contains software trusted execution and data protection provides hardware

foundation for upper layers security mechanism.
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• In-vehicle Network Layer: Cryptography related mechanisms can be used to encrypt the transferring data in

the network.

• Gateway Layer: Gateway layer has the critical security functions, including access control and intrusion

detection, this layer helps the data exchange in different network domain Seifert und Obermaisser (2014).

• Firewall Layer: Firewall layer is used in general to protect the outside communication interfaces of vehicles,

such as OBD-II interface, V2X on-board unit, and infotainment system (it also can be implemented for the

in-vehicle network communication based on the architecture design and isolation)Luo und Hou (2019).

• Intrusion Detection: Intrusion detection layer is used to monitor all the network communication in the in-

vehicle system and detect any misbehaviour or anomalies in the network. (The misbehaviour could be a result

of an attack or an intrusion attempt).

The technological advance enables automated driving features and many others like infotainment. But, it brings

a substantial rise in functional complexity regarding utilized algorithms—also, the number of processed information

increases over several Electronic Control Units (ECUs). The increase of complex features is challenging to handle

with the existing architectures. The introduction of many hierarchy levels in the logical system facilitates functional

elements with wide internal variety and distribution over several subsystems. In-vehicle IDS need to meet the

constraints of that hierarchical architecture. Also, the resources induced by the IDS are limited in the embedded

systems. Today, most attacks targeting IT are well represented in the literature, but cybersecurity in an embedded

system is relatively new, especially for future Autonomous Vehicle.

The expansive and broad definition of AI and ML can and should be applied in cybersecurity, encompassing

various methods that have developed over many decades have demonstrated effectiveness in many other applica-

tion domains. AI/ML is viewed as a necessary response to the continuing growth in the number and complexity of

threats, the evolving nature of threats, and the need for rapid (and therefore substantially automatic) responses to

detected threats. We discuss this point in the following section.

7









1.4.2 Machine learning utility for Cybersecurity

Cybersecurity is a very broad term referring to everything related to the protection of cyber resources. As much

as any other domain, cybersecurity had a lot of interest in using ML approaches. It’s considered as a necessary

response to face the continuous growth of the number of threats, and the need for rapid, substantially automatic

responses to detected threats. The primary targets for ML application in cybersecurity are Intrusion Detection Sys-

tems that we will review in the chapter 2, characterization (malicious code), user behavioural modelling, automated

vulnerability testing and intrusion defence. Indeed, ML is beneficial to cut through the large volume of data and

find indicators of compromisation and unwanted behaviour using correlations across data sources. These sys-

tems would assist human analysts by elevating or alerting them to significant events that require responses without

overwhelming the organization with false alarms or other unnecessary indicators Loaiza u. a. (2019).

However, in general, ML has had promising results in improving the efficacy of cybersecurity technologies such

as endpoint security to detect and prevent new and previously unseen malware. Machine learning intends to be

incorporated into seemingly every new cybersecurity defence applications to avoid any compromisation since at-

tackers are evolving and adapting at the same scale and at a faster pace than defenders. The primary benefits

anticipated are:

• Improvements to the investigation of security alerts.

• Improvements in accuracy and reduced false-positive rates.

• The elimination of more compute-intensive detection techniques.

• detection of zero-day threats.

The most practical applications reside in the Information Technology word (IT) where the most data and experi-

ence coping with cybersecurity threats and attacks are available. It’s recent that data related to network information

and cybersecurity are starting to be leveraged for public research and analysis in competition platforms like Kaggel.

But, mainly, companies that have a requirement to train machine learning algorithms, especially DL algorithms that

are data-hungry are those who benefit more from DL technologies in their private research. In fact, more than half of

the respondents report they are using machine learning technology for cybersecurity purposes to some degree, up

from 47% in 2018, per the 29% of those companies leveraging machine learning extensively. This level of adoption

has made machine learning a foundational cybersecurity technology and mostly applicable for specific use cases

oraclAIcs.

The lack of datasets for research in this area is a problem. Some vendors have large volumes of data avail-

able (for example, network switch/infrastructure vendors, and providers of anti-virus and network/computer monitor

software and systems). However, the most studied available datasets are dated (DARPA 1998 and 1999, and KDD

1999 data), and the characteristics and volume of attacks have significantly changed since that time.
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1.5 Machine learning for a future in-vehicle intrusion detection system

Intrusion detection systems (IDSs) are common to defend against Cyber-Physical system (CPS) attacks, especially

the Controller Area Network vulnerabilities. These systems monitor the ECUs networks such as CAN and report

malicious activities. In the CPS domain, an IDS can detect attackers attempting to modify or misrepresent physical

processes. In other words, if an attacker intends to cause the driver to speed, he may choose to inject packets

detailing a lower speed, which would cause the speedometer to display incorrect information. In this case, an

effective IDS will notice that the data for speed does not conform to the expected behaviour indicated by the data

for the related physical processes (e.g., engine and wheel rotational velocities, fuel consumption). So, the IDS will

notice that the speed readings are anomalous. As explained, the example seems simple, and this case can be hand-

coded in a set of rules to prevent this specific attack. But as soon as we start enumerating the number of information

that can be changed while corrupting the in-vehicle system, it leads to an explosion and intractable scenarios. As

another example, if an IDS knows that a substantial increase in an automobile’s brake pressure likely precedes a

relative decrease in velocity, the IDS can assert that no change, a small change, or an increase in velocity (after

significant brake pressure) is abnormal. Of course, this requires an IDS capable of determining expected behaviour

and identifying anomalies.

In a nutshell, to design such an IDS for a vulnerable CPS, embryonic IDS architects require the following:

• An ample quantity of knowledge under normal operating conditions to establish normal behaviour.

• Capture the dynamics or patterns of a CPS, to include an understanding of the current system state or be-

haviour enables predictions concerning a future state.

• Solid understanding of a system dynamic, how one signal affects another AND how the historical state defines

the current state (causality).

• A process to determine whether new traffic conforms to normal behaviour.

• An alert system to report to the administrator the traffic that does not conform.

In-vehicle networks are traditionally simpler than IT networks, yet, CAN is crucial to ensure message transmis-

sion by eliminating conflicts and be resilient to noise. As the number of electronic components penetrating vehicle

subsystems increases, the in-vehicle networks are given significance as a medium for exchanging information. As

mentioned above in the Sub-section 1.3.2, the distributed functions among different subsystems triggered the com-

plexity level of networks and transformed in-vehicle networks into advanced controller area networks. Upcoming

autonomous driving abilities and ITS applications that require the collaboration of several subsystems force auto-

motive manufacturers and equipment suppliers to add new hardware and software layers to their products, making
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in-vehicle networks a source of data. By increasing connectivity surfaces of vehicles to support ITS, vehicles are

becoming vulnerable against malice and misbehaviours.

In that context, we have two primary assumptions. i) The system behaviour is well defined; it uses deterministic

communication between distinct components. ii) The system can behave differently depending on various context

(for example, monitoring a car behaviour can change following the area and the state of the road). It is tough

to develop an IDS by explicitly coding all rules for each specific context. After the aforementioned ML success

and their ability to learn specific tasks without being explicitly programmed, the straightforward application of ML

methods for In-vehicle IDS system is well expected (we review those methods in the Chapter3). Deep learning

has been used successfully in many domains and task, and cybersecurity also got inspired by machine learning in

general to develop an intelligent Intrusion Detection System. To have an intelligent in-vehicle IDS, we need to take

into consideration the following constraints:

• Modeling the normal behaviour of a vehicle following different context.

• In the automotive context, many cyber physical systems are computationally limited by available hardware or

by standards and regulations.

• Ensure high accuracy and reduce false alarm rate.

• A distributed intrusion detection system should fit the actual network and system design.

• Monitoring of the system and real-time detection.

• Detection process with low resource consumption.

• Reduce the communication overhead induced by the integration of IDS in the In-vehicle network.

However, systems that incorporate advanced algorithms such as AI and ML must be properly designed to ac-

cept and process the high arrival rates of network and measurement data, as must the software-based sensors

(Probes) that collect data from ECUs attached to the network, to ensure that the performance network is not unduly

compromised.

1.6 Contribution and Outline

As Introduced above, this thesis mainly came across three significant domains, Intelligent transportation systems

(ITS) represent our study’s context, Artificial intelligence as the central technology used and explored to solve

Cybersecurity problem and challenges related to the ITS application. So we can position precisely the scope and

the purpose of our contribution in this thesis in the following.
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1.6.1 Research question and constraints

As the research presented in this thesis developed above, it naturally formed four main parts: Intelligent intrusion

detection system STATE-OF-THE-ART, Adversarial Learning for Anomaly Detection, Empirical Time series evalu-

ation of In-vehicle Intrusion detection system, Distributed anomaly detection based In-vehicle IDS. Specific aims

and objectives related to each of these parts of the thesis are presents in their respective chapters, whilst general

research questions are presented here at a high level.

• How machine learning can enhance the existing IDS systems?

• What are the constraints, requirements fixed by the ITS domains to assess the utility of ML in in-vehicle

context?

• What are the most suitable ML approaches that fit the IDS objective while respecting the requirement and

constraint?

• How to deal with the lack of data to validate the proposal?

• How to build a ML model tailored for the in-vehicle system?

• If data available, how to cope with an imbalanced rate between normal examples and the lack of attacks

examples?

• The technologies emerging for the in-vehicle network are new and still evolving, how to avoid the obsoles-

cence?

• Major of data sets in this domain are not in clear (encoded or encrypted), how the model can use those data?

• How the model takes into consideration the topology of this data?

• How we can integrate the model by respecting the logical architecture of future in-vehicle systems?

This thesis’s scope is determined by several pragmatic conditions, which have been applied to ensure a focused

investigation without compromising the ability to answer the research questions and respond to the project’s finding

expectation that embraces this research. It is necessary since the thesis considers several large research domains

and works as part of an R&D project. First, this thesis’s empirical work only considers network-based anomaly

detection as the main path of contribution. However, the review of the domain considers all the main methods of

intrusion detection. Although some challenges and concepts apply to other domain applications like healthcare

and fraud detection, these applications are excluded as an application, but the related theoretical work has been

considered. Furthermore, since this investigation focuses on machine learning, other, conventional techniques
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applied to intrusion detection are not considered. However, the review does consider a broad range of different AI

techniques applied to intrusion detection.

There are several aspects of intrusion detection that are not considered here, although they would require atten-

tion when developing an IDS to be deployed in real life, such as:

Architecture: the focus here is on what could be referred to as a detection module that would exist in a larger IDS

framework that takes in consideration many others method (Hybrid). Especially in-vehicle networks, the architecture

is very important. This includes determining where to deploy the IDS and considering the local information, and it’s

safety impact, which is considered a general challenge.

Data collection: since the KDD data set (is more IT and old dataset) is adopted in this work to benchmark the

ML methods, data collection is required. However, it would be necessary to collect data from the environment in

which an IDS is to be employed (real autonomous car in real life). In our case, the data collection has been done to

better understand the environment of the in-vehicle network and analyse the data topology and characteristics (This

also includes labelling data for supervised learning.).

Data preprocessing: some data preprocessing is necessary for this work, adopted, enumerating and scaling

feature values. However, In this domain, it was a lack of specific analysis of CAN data, so a convenient and custom

Data preprocessing is required to fit the ML inputs.

Performance: there are several mechanisms that can be adopted to help achieve a better performing IDS, in

terms of detection rates, speed and memory usage, and also communication overhead. This thesis focuses on the

issues and challenges posed by the research questions and helps develop an optimal and practical in-vehicle IDS

prototype.

Other pragmatic considerations: detecting new intrusions will always be a challenge; there will always be new

software, which inevitably has vulnerabilities that can be exploited. Therefore, re-training is necessary once new

data is available. When and how this is done is considered here by adopting a general framework that combines

supervised learning and unsupervised learning.

1.6.2 Research Methodology and routing

There are three main contributions to this thesis. These parts have made contributions to both the intrusion detection

for in-vehicle systems and machine learning domains. However, the focus of this thesis is on applying machine

learning to the in-vehicle intrusion detection system. We propose practical solutions to tackle some challenges

presented above with a customization effort to developpe tailored deep learning architectures that respond to the

constraint of the future in-vehicle network. This study starts with an extensive literature review of the following areas:

• Intrusion detection system.

• Machine learning for anomaly detection with a focus on deep adversarial learning.
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• In-vehicle CAN data analysis.

• Supervised and Unsupervised DL for time series analysis

• Distributed DL architectures

We present the flow of the thesis work as follows:

In the Part I (Chapter 2 and Chapter 3) , we provide the literature survey on the existing state-of-the-art methods,

taxonomy related to the area mentioned above. It inspires ideas and hypotheses to build the problematics that guide

our research. Each problem is defined in their respective contribution chapter.

In the Chapter 4, we propose our first contribution, based on the SOA analysis, we start with a contribution to the

anomaly detection area. Anomaly detection is a standard problem in Machine Learning with various applications

such as health-care, predictive maintenance, and cyber-security. In such applications, the data is unbalanced: the

rate of regular examples is much higher than the anomalous examples. The emergence of the Generative Adver-

sarial Networks (GANs) has recently brought new algorithms for anomaly detection. Most of them use the generator

as a proxy for the reconstruction loss. The idea is that the generator cannot reconstruct an anomaly. We develop

an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN), which maps

the data to a latent space (decision space), where the detection of anomalies is done directly by calculating a score.

Our encoder is learned by adversarial learning, using two loss functions, the first constraining the encoder to project

regular data into a Gaussian distribution and the second, to project anomalous data outside this distribution. We

conduct a series of experiments on several standard bases and show that our approach outperforms the state of

the art when using 10% anomalies during the learning stage, and detects unseen anomalies.

In the Chapter 5, In this work, we propose a Deep CAN intrusion detection system framework. We introduce

a multivariate time series representation for asynchronous CAN data, enhancing the temporal modelling of deep

learning architectures for anomaly detection. We study different deep learning tasks (supervised/unsupervised) and

compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational

constraints. Our system is time window wise: any given time frame is labelled either anomalous or normal. We

conduct experiments with many types of attacks on an in-vehicle CAN using SynCAn Dataset. We show that our

system yields good results and allows us to detect many kinds of attacks.

In Chapter 6 : In this contribution, the in-vehicle network architecture is hierarchically distributed where the

different sub-network are monitored with various and independent probes. We propose a Distributed Anomaly

detection IDS (DAD) that fits the distributed in-vehicle architecture. To this end, we use multi-modal deep learning

architecture. The model captures each probe view pattern as a feature vector representation of the input through a
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sequence modelling transformation using a Temporal Convolutional Neural Network (TCN). Our proposed method

brings two optimisations compared to central models. First, it reduces the transmitted vector’s size between the

probes and the central probe (Bastion). Second, we introduced a new flag ei related to each probe that lower the

computational inference time and the intrusion detection system’s communication overhead.

1.6.3 Publications

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Construction d’espace latentpour

la détection d’anomalies par apprentissage adversarial. Conférence sur l’Apprentissage automatique (CAP

2019), Jul 2019, Toulouse, France.

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. An Encoding Adversarial Network for

Anomaly Detection. 11th Asian Conference on Machine Learning (ACML 2019), Nov 2019, Nagoya, Japan.

pp.1–16.

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Deep Learning for In-Vehicle Intru-

sion Detection System. Neural Information Processing. ICONIP 2020. Communications in Computer and

Information Science, vol 1332. Springer, Nov 2020, Bangkok, Thailand.
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Part I

Context: Would you entrust your life to

your car?
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Chapter 2

The cybersecurity of autonomous vehicles

As introduced in the Chapter 1, the automotive industry has undergone a paradigm change towards increasingly

connected and autonomous cars. Smart cars available today are vehicles equipped with systems providing con-

nected and added-value features to enhance car users experience and improve car safety. Within the next few years,

smart cars connectivity is expected to expand, and smart cars will become connected to other vehicles, pedestrians

and their surrounding infrastructure through information exchanges via V2X communications ENISA (2019). Cyber-

security is a crucial aspect that will affect the evolution of smart cars. There have already been several research

publications on attacks targeting intelligent vehicles. In Fig 2.1 More than 70% of the industrial control system (ICS)

vulnerabilities disclosed in the first half of 2020 can be exploited remotely claroty (2020). The Transportation sec-

tor looks particularly exposed in the top five most vulnerable sectors. The expectations are that the numbers of

transportations vulnerabilities will increases when the ITS are deployed at a large scale.

In this thesis, our main focus is to study the in-vehicle network intrusion detection system. The primary function

we want to secure is the In-vehicle network communication and its functionalities, as it is mainly one of the most

used ways to perform intrusions and attacks. This chapter review the literature of cybersecurity gradually applied

to the IT domain to its application in the ITS, more specifically for the vehicle and future autonomous vehicles (the

in-vehicle security part). We review the IDS literature and its taxonomy from the In-vehicle perspective.

2.1 In-vehicle Network communication and architectures

ITS is often associated with intelligent cars, whether they possess driver-assistance technology, or semi-autonomous,

or even fully autonomous. Intelligent cars are a major component of ITS due to the sheer volume of personal ve-

hicles on the roadway. Several elements bind the scope of this research. The first element is limiting this research

to cars. The term “vehicles” would be too broad because it includes cars, drones, trains and a wide variety of other

devices. In the following, we use the term car and vehicle interchangeably to designate an automotive car. We
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Figure 2.1: Industrial Control System (ICS) vulnerabilities disclosed in the first half of 2020. Credit claroty (2020)

will discuss and consider the assumptions and definitions related to all forms of connected cars. In chapter 1 we

gave an introduction on ITS cybersecurity and in-vehicle network architecture. We extend the understanding of this

introduction while defining this thesis’s scope according to a taxonomy gathered from the literature review on con-

nected vehicles, in-vehicle architectures, investigate the different attack vector and cybersecurity defence applied to

the vehicle in general and the transferability of security from IT to automotive domain in the below sections.

We are interested in network security for in-vehicle systems. The vehicular network communication role is to

support the required cooperation of different components of the vehicle.

We refer to all communications between the internal components of the vehicle as internal vehicular commu-

nication. Other communication technologies exist that provide a communication interface for external devices to

perform diagnostic or firmware updates and future applications such as ITS, enabling connected cars to perform
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traffic optimisation activities by exchanging messages between different autonomous vehicles. Moreover, function-

alities that give passengers the ability to stay connected to the internet are getting more popular. We refer to this

kind of communications and all communications that include an outside party as external communication.

2.1.1 External communication

External communication technologies are used to control several features of the car remotely, and connectivity in

modern vehicles has become a necessity. Manufacturers are trying to give the consumer more ways to remotely

control several aspects of the vehicle Koscher u. a. (2010a) using more than the traditional radio-controlled door

unlocking functionality. For example, WiFi (IEEE 802.11) and Cellular communication such as GSM, 3G, 4G even

the recent 5G are becoming a more standard option. These communication technologies are used for turning on air

conditioning and even starting the engine. GPS for navigation and Bluetooth for hands-free smartphones usage has

been used in the past decade Lee und Gerla (2010). Additionally, from the manufacturers’ point-of-view, diagnostics

messages are required to push a remote Firmware update to ensure that the customer gets the best aftermarket

experience. The manufacturer may also request to receive a periodical report about the vehicles to provide remote

support. These communications are usually done through VPNs provided by the manufacture or third-party services

Shavit u. a. (2007).

More sophisticated services and communications features are incorporated into vehicles. On-Board Diagnos-

tics (OBD-II) port provides direct, standard access to internal automotive networks for user-upgradable subsystems

such as audio players who are routinely attached to these same internal networks. Telematics systems provide

value-added features such as automatic crash response, remote diagnostics, and stolen vehicle recovery over a

long-range wireless link. To do so, these telematics systems integrate internal automotive subsystems with a remote

command centre via a wide area cellular connectionKoscher u. a. (2010a). Increased external communication be-

tween Autonomous Vehicles and the external environment: One main type of communications is the inter-vehicular,

Vehicle-to-Vehicle (V2V) communications on the road Vehicular Adhoc Networks (VANETs). It allows information-

sharing among nearby autonomous vehicles so that each car is better aware of its rapidly-changing surroundings

Kumar u. a. (2012); Thing und Wu (2016). In future, V2I and vehicle-to-Internet of Things (V2IoT) communications

will also become more prevalent on the roads. V2I communication is a wireless and bidirectional exchange of infor-

mation between vehicles and road infrastructures, such as overhead RFID (Radio-Frequency Identification) readers

and cameras, lane markers, traffic lights, street lights, road signs, and parking meters. As smart vehicles travel

along roadways, On-Board Units (OBUs) within intelligent vehicles communicate with Road-Side Units (RSUs), IOT

devicesHahn u. a. (2019); Poudel und Munir (2021); Lu u. a. (2014); Sun u. a. (2016).
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and actuators different functionalities can share those would be grouped as one domain. This topology can support

more complex intelligent driving functions, as each domain ECU has more power in both communication and com-

putationHaas und Langjahr (2016). 3) In a centralized architecture, most of the computation tasks are realized in

the central computation entity. Most of the components are connected to the central computation entity to access all

sensors and actuators data. This topology enables the combination of more information, thus enhance the potential

of making a better decision. However, a centralized topology has higher demands on the data communication ca-

pacity, so it needs to group the components into different sub-networks according to their physical placement or the

network properties to improve the efficiency of communication Brunner u. a. (2017).

2.1.3 Controller Area Network (CAN)

As mentioned above, one of the most critical challenges for the next generation in-vehicle architectures is managing

the high-speed communication among vehicles electronic components with a limited cost. The most successful

communication network in the current automotive industry is the Controller Area Network (CAN) protocol. CAN is

without any doubt the most widely used standard in the field of vehicle hardware communication since its publica-

tion in 1986. CAN is a network protocol developed by Robert Bosch for vehicle systems Szydlowski (1992). The

original specification paper from Szydlowski (1992) points out many proprieties that led to the widespread adoption

of this protocol standard (Prioritization of messages, Guarantee of latency times, Multicast reception with time syn-

chronization, System-wide data consistency, Multimaster, Error detection and signalling, Automatic re-transmission

of corrupted messages). Compared to other network technologies, CAN have two outstanding advantages: cost

efficiency and flexibility Zeng u. a. (2016); Afsin u. a. (2017); Hartwich und Bosch (2012). Effectively, CAN is a

priority-based bus implemented by using two wires. The Medium Access Control (MAC) protocol of CAN uses car-

rier sense multiple access with collision detection (CSMA/CD). Up to 8 bytes of data can be carried by one CAN

frame, and a cyclic redundancy check (CRC) of 16 bits is used for transmission error detection. CAN facilitates bit

by bit non-destructive arbitration over the identifier which also serves as a priority flag.

In the following, we will present a brief explanation of CAN, which was designed to be extremely reliable and

flexible because it’s meant to work in harsh environments such as vehicles. CAN operates in two layers of the OSI

model. The physical layer which is used for signalling, and data link layer that handle several aspects of the

transmission of CAN frames, the message filtering and recovery management.

The physical layer

The physical layer of CAN is concerned with defining how to send signals and the correct encoding of bits. Thus,

several concepts are specified in the original CAN specification :
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(A) Dominant and recessive logical bus states : CAN use two distinct wires to transmit signals: the CAN High

(CANH) and CAN Low (CANL) wire. When no signals are transmitted on the bus, these wires are set into an

idle state; the voltage amounts to 2.5V . After the first bit has been sent, the CANH wire increases its voltage

to 3.75V , and the CANL wire decreases its voltage to 1.25V . So, the transmission of data in the CAN bus

is through differential signalling and what this means is that we use both wires (CAN high and CAN low) to

transmit data at the same time. Because the objective is the difference in voltage between these two wires as

you can see from the Fig 2.4, the recessive level means that both of the wires will stay at around 2.5V , so the

difference between the two wires is close to zero. The dominant level means that the CAN high wire goes to

a higher voltage, whereas the CAN low wire goes to a lower voltage, creating a 2.5V difference between the

two wires. We note that the recessive level is the logical one, and the dominant level is the logical zero Natale

u. a. (2012).

Figure 2.4: Dominant and recessive logical bus states pico technology

(B) Bit representation : CAN uses Non-Return-to-Zero (NRZ) bit encoding. This encoding describes that after a

value of 1 is detected in the bitstream, the next bit does not have to be changed to a 0 immediately and the

voltage can be maintained for a longer period (See Fig 2.5). This encoding can lead to a desynchronization

of the communication. All participating nodes are synchronized and adjusted to the same clock rate to ensure

the accurate transfer of data. A sovereign clock signal does not achieve the clocks synchronization, but the

CAN frames on the bus are utilized. All nodes connected to the CAN bus listen for frames and synchronize

their internal clocks to the transmitting node clock Natale u. a. (2012).
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2.2.2 Network Threats, Attacks and Security Properties

In the purpose of network security, we assume that a system function is to provide information. In general, there is

a flow of data from a source (e.g., a host, a file, memory, subsystem, node in distributed systems) to a destination

(e.g., a remote host, another file, a user or a subsystem ) over a communication channel (e.g., a wire, a data

bus, WIFI) mainly governed by a communication protocol. The security system’s task is to restrict access to this

information to only those parties that are authorized to have access to achieve a specific functionality, according to

the security policy in use Kruegel (2004). A regular course of communication is a legitimate flow of data between

the concerned source and destination while respecting security proprieties.

Threats

In general terms, an intrusion threat is an unauthorized attempt to access valuable assets, manipulate information,

and alter a systems state into instability or unreliability. Those it causes a deviation from the expected use of the

system Koscher u. a. (2010b).

We show the regular communication flow and several types of threats models that target it in Figure 2.10 and

their description below.

• Interruption: An asset of the system gets destroyed or becomes unavailable. This attack targets the source

or communication channel. It prevents the information from reaching its intended target. Attacks in this

category attempt to perform a kind of Denial Of Service (DoS)Peng u. a. (2007); Kruegel (2004); Loukas und

Öke (2010); Mahjabin u. a. (2017).

• Interception: An unauthorized party gets access to the information by eavesdropping into the communication

channel to capture data being transmitted on a network (performing sniffing or snooping attack) while it can

keep traffic flowing efficiently Anu und Vimala (2017); Philip Baczwewski (2000); Prowell u. a. (2010).

• Modification: The information is not only intercepted but modified by an unauthorized party while in transit

from the source to the destination. Man-In-The-Middle (MITM) attacks occur when unauthorized individuals

or parties are placing themselves in the path of communication to eavesdrop, intercept, and possibly modify

legitimate communications. Prowell u. a. (2010); Kruegel (2004)

• Fabrication: An attacker inserts counterfeit objects into the system without having the sender doing anything.

When a previously intercepted object is inserted, this processes is called replaying Patil und Kamble (2018).

When the attacker pretends to be the legitimate source and inserts her desired information, we call it mas-

querades. Counterfeiting attack takes place when an attacker forges the message that can be scanned and

received by authorized readersPhilip Baczwewski (2000); Rong u. a. (2013); Patil und Kamble (2018); Kruegel

(2004).
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Network attacks

It is essential to describe a threat model to implement a layered and holistic security mechanism. Once a threat

model is defined, attacker types and attack vectors can be derived according to the capabilities of adversaries, their

possible intentions and the valuable assets in the target network. The threat models are valuable abstraction of

possible attacks, yet, it is nearly impossible to cover the complete space of attack types in real life.

We present various types of network attack classified into following three categories given by Bijone (2016a).

• Denial Of Service (DoS) : A Denial of Service attack attempts to slow down or completely shut down a target

to disrupt the service and deny the legitimate and authorized access for users or applications. Peng u. a.

(2007); Loukas und Öke (2010); Mahjabin u. a. (2017). Such attacks are widespread on the Internet where a

collection of hosts are often used to bombard web servers with dummy requests. There are several different

kinds of DoS attacks Bijone (2016a) we present some of them. Flooding DoS Attacks an attacker sends more

requests to a target that it can handle. Such attacks can either exhaust the target’s processing capability or

exhaust the network bandwidth of the target, either way leading to a denial of service to other usersPeng u. a.

(2007).

Distributed Denial of Service attack (DDoS), is using a large pool of hosts to target a given victim host. Once

an important number of hosts are compromised, the intruder instructs them to launch various flooding attacks

against a specified target Mirkovic und Reiher (2004); Kumar und Vajpayee (2016).

• Penetration Attacks : In penetration attack, an attacker gains an unauthorized control of a system and can

modify/alter system state. Generally, such attacks exploit certain software flaws, enabling the attacker to install

viruses and malware in the system. The most common types of penetration attacks are:

User to Root (U2R), U2R is an attack that aims to gain superuser access to the system. Attacker gains

superuser access by exploiting vulnerabilities in the operating system or application software. The attacker

starts with access to a normal user account on the system and can exploit some vulnerability to gain root

access to the system Bijone (2016a); Kendall (1999). Improving the detection rate of U2R attack classes is an

open research problem. The most common attack in this class of attack is Buffer overflows. Buffer overflows

occur when a program copies too much data into a static buffer without checking to ensure that the data will

fit Kendall (1999).

Remote to Local (R2L), R2L is an attack in which the attacker tries to gain unauthorized access from a remote

machine into the local target system. Hence, gains access to the inaccessible files stored locally on the host.

There are some similarities between this class of intrusion and U2R, as similar attacks may be carried out.

However, in this case, the intruder does not account for the host and attempts to obtain local access across a

network connection. To achieve this, the intruder can execute buffer overflow attacks, exploit misconfigurations
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in security policies or engage in social engineering Kendall (1999); Bijone (2016a)

• Scanning Attack : In such attacks, an attacker sends various kinds of packets to probe a system or network

for a vulnerability that can be exploited. When probe packets are sent, the target system responds; the

responses’ analysis determines the target system’s characteristics and vulnerabilities. Thus scanning attack

essentially identifies a potential victim.Bijone (2016a); Kendall (1999); Engen (2010). An attacker with a map of

which machines and services are available on a network (network topology, type of firewall, identifying hosts

that respond, operating systems and server applications running) can use this information to look for weak

points. Some of these scanning tools enable even a very unskilled attacker to very quickly check hundreds or

thousands of machines on a network for known vulnerabilitiesKendall (1999). Scanning is typically considered

a legal activity and there are a number of examples and applications that employ scanning. The most well-

known scanning applications are Web search engines.

Security Properties

Before one can evaluate attacks against a system and decide on appropriate mechanisms to defend these threats,

it is necessary to specify a security policy Tanenbaum und van Steen (2002). A security policy defines the desired

properties for each part of a secure computer system. It is a decision that has to consider the value of the assets

that should be protected, the expected threats, and the cost of proper protection mechanisms Kruegel (2004);

Tanenbaum und van Steen (2002). A sufficient security policy for a regular computer user’s data may not be

sufficient for a bank. The security policy that is sufficient for a bank may also not be sufficient for an ITS or an

in-vehicle network system. Indeed, the context of future autonomous transportation could be the more likely target

and has to protect vital resources and passenger’s safety (Section 2.1).

The threat mentioned above violates the different security policies of the computer system. A security property

describes a convenient feature of a system concerning a certain type of threat. A common classification is given by

Kruegel (2004); Coulouris u. a. (2011); Northcutt (1999); Tanenbaum und van Steen (2002) listed below:

• Confidentiality: This property covers the protection of transmitted data against its release to unauthorized

parties. In addition to protecting the content itself, information communication should also be resistant against

traffic scanning and whereby its information is disclosed only to authorized parties.

• Integrity: Is the policy that protects the information transfer against modifications. This property guarantees

that a single message arrives the receiver as it has transmitted by the sender, but integrity also extends to a

stream of messages. It means that no messages are lost, duplicated, or reordered, and it makes sure that

the messages cannot be replayed. As destruction is also covered under this property, all data must arrive at

the receiver. Integrity is essential as a security property and as a property for network protocols. It must also

34



ensure the message integrity in case of random faults, not only in malicious modifications, which means that

any improper alterations in the communication flow should be detectable and recoverable.

• Availability: It defines a system whose resources are always available for usage in the limit of their capacity.

Whenever information needs to be transmitted, the communication channel is available, and the receiver can

cope with the incoming data. This property makes sure that threats cannot prevent resources from being used

for their intended purpose. A highly available communication system will the most likely working at a given

instant in time.

• Authentication: Is about making sure that the information is authentic, which means that it verifies the

sender’s claimed identity. Authentication property assures the receiver that the message is from the source

that it claims to be. So, it makes sure that no third party cannot pretend successfully being another source.

• Non-repudiation: This property describes how to prevents either sender or receiver from denying a trans-

mitted message. When a message has been transferred, the sender can prove that it has been received.

Similarly, the receiver can prove that the message has actually been sent Kruegel (2004).

2.2.3 Security Defences and mechanisms

To defend against the threat mentioned above, and respect the security policy, different security mechanisms can

enforce the security properties defined. Depending on the anticipated attacks, different means have to be applied

to satisfy the desired properties. Kruegel (2004); Tanenbaum und van Steen (2002) propose three main classes of

measures against attacks: attack prevention, attack avoidance, and attack detection.

Attack Prevention

Attack prevention is a way of preventing certain attacks before reaching and affecting the target. An essential factor

in this class is access control, a mechanism which can be applied at different levels such as the operating system,

the network, or the application layerTanenbaum und van Steen (2002). Access control limits and regulates access

to critical resources. A firewall Cheswick u. a. (2003) is a vital access control system at the network layer. It prevents

attacks from the outside against the inside network machines by denying connection attempts from unauthorized

parties located outside.

Attack Avoidance

Based on the possibility that an intruder may access the target resources, to protect the confidentiality and the in-

tegrity of the information, attack avoidance mechanism modifies the information to make it unusable for the attacker.

The data is preprocessed at the sender before transmitted over the communication channel and post-processed
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at the receiver. It resists attacks by being nearly useless for an intruder. If no modification occurs, the receiver’s

information is identical to the sender’s one before the preprocessing step. The most important tool used in this class

is cryptography Schneier (1995). It allows the sender to transform information into what may seem like a random

data stream to an attacker but can be easily decoded by an authorized receiver.

Attack Detection

Attack detection assumes that an attacker can obtain access to the desired targets and successfully violate a given

security policy. When undesired actions occur, attack detection has the task of reporting that something went wrong

appropriately. Also, it is often desirable to identify the exact type of attack. An essential aspect of attack detection

is recovery. Often it is enough to report that malicious activity has been detected. Still, some systems require that

an attack be reverted or stopped. The attack detection operates under the worst-case assumption that the attacker

gains access to the communication channel and can use or modify the resource. The most used tool of the attack

detection class are intrusion detection systems Kruegel (2004). Because this thesis focus on intrusion detection

systems, the remaining sections of this chapter are dedicated to a more detailed introduction to intrusion detection,

and its applications in the ITS domain.

2.3 Intelligent In-vehicle network Cybersecurity

2.3.1 Objective

We present two separate vehicle security concerns (In-vehicle security and VANETs security), In this work, the

external communication is considered as an attacking interface.The VANETs securiy network Bariah u. a. (2015);

Engoulou u. a. (2014); Hasrouny u. a. (2017) is getting a lot of attention in the research era. Nonetheless, this thesis

scope is in-vehicle network intrusion detection (See Fig 2.11).

The same as security in internet and communication technologies IT, In-vehicle network security objective is

facing the threats by meeting the underlying standard security requirements introduced above (See in Section

2.2.2). The preservation of these objectives intends to secure the in the in-vehicle network communication. These

security principles are defined in the following with the perspective of vehicle networks El-Rewini u. a. (2020); Hahn

u. a. (2019); Dibaei u. a. (2019); Chattopadhyay u. a. (2020); Qiang Hu (2018).

• Confidentiality : Confidentiality requires the content of a message not to be disclosed to any parties other

than the intended ones. Lightweight Encryption mechanisms are proposed for in-vehicle networks to satisfy

this objective Mundhenk u. a. (2017); Radu und Garcia (2016). Recent works in steganography and covert

channels have investigated how those methods can conceal information when malicious actors have access

to the communication channel Manchanda und Singh (2015).
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• Authenticity :

One of the primary objectives in-vehicle communication is to ensure only trustworthy entities in the networks.

Authenticity is being able to verify the sender of any message in the system, so the data can only be accessed

by authorized ECU, in the case where an attacker has access to the network with an external device Koscher

u. a. (2010a); Forest und Jochim (2011); Groll und Ruland (2009).

• Integrity :

To maintain the accuracy and completeness of message content is the objective of Integrity principle. Public

Key Infrastructure (PKI) solutions are proposed for vehicle communication to verify whether the received data

is corrupted or legitimateOthmane u. a. (2015).

• Availability :

Availability ensures timely and reliable access to and use of information for nodes in the in-vehicle network. To

preserve the functional state of ECUs in a vehicle network and complement the security requirements.

• Non-Repudiation : Any broadcasting node should not deny the right to authenticate. This property is funda-

mental in the case of an accident. After the accident, the driver must be rightly identified during the investiga-

tion, and before the accident, every message should be transmitted reliably El-Rewini u. a. (2020).

• Real-Time constraints : Outdated information is of no use in the high mobility environment of a VANET or in-

vehicle communication. Ancient weather or traffic information is not useful, especially for autonomous driving

systems; therefore, it must be prevented from delayed transmission El-Rewini u. a. (2020).

In-vehicle communication occurs within automotive bus systems, enabling message transmission between ve-

hicle ECUs. Vulnerabilities exploitation of an in-vehicle network can lead to severe issues such as critical ECU

reprogramming and taking control of the vehicle over the Controller Area Network. Those attempts cause the viola-

tion of the in-vehicle security principles listed above.

We consider the different step of an intrusion introduced in Section 2.2.1. The kill chain consists of four stages

Fig (See 2.9). The attacker must pass all four steps to achieve a successful attack on the connected vehicle; to this

end, the attacker uses three necessary elements. The first element is finding Point access. The second element is

compromising an ECU, and the third element is finding a control feature that could be compromised. The number

of technical vulnerabilities indicates the feasibility of different kind of attacks. In Checkoway u. a. (2011); Avatefipour

und Malik (2017); Thing und Wu (2016); Dibaei u. a. (2019); Petit und Shladover (2014); Petit u. a. (2015); Toyama

u. a. (2018) the authors present a broader view how an attacker can compromise vehicle security.
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Figure 2.12: Overview of Threat and attack interfaces of an in-vehicle network system.credit Sheehan u. a. (2019)

2.3.2 Threat and attack interfaces of an in-vehicle network system

The first step of an automotive attack is to exploit an external interface to access the vehicle’s internal systems. In

the Section 2.1.1 several external interfaces have been described, in this part, we describe how an attacker can

leverage these interfaces to gain access to the in-vehicle network. The interfaces present on modern cars have

different ranges, from physical access to remote access. The Fig 2.12 shows the identified attack interfaces. The

first class is the direct physical attack possibility. In that case, the attacker has direct access to all parts of the

vehicle. The second class is about the remote attacks on a connected car. Interfaces with a longer range generally

have a convenient aspect for an attacker as it is easier for the attacker to preserve the connection during the full

attack.

Physical Access

Inside a modern and future automotive vehicle, there are multiple physical interfaces, and some are directly con-

nected to the internal network.

OBD-II is the most well-known connector and is used by many security researchers to find and execute automo-

tive attacks. In addition to monitoring electrical failures, the second-generation OBD also monitored emission-related

systems and provided standardization across different manufacturers Carsten u. a. (2015). OBD-II ports are vulner-

able to in-vehicle network access attacks and dongle exploitation attacks.Miller und Valasek (2014) were able to

transmit and receive messages over CAN using an ECOM cable and homemade connectors to connect to the

OBD-II port.
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USB ports have become prevalent in modern-day vehicles, since they can connect phones, navigation systems,

and USB devices to the vehicleOnishi u. a. (2017). Cai u. a. (2019) found that attackers could use the USB port to

create a backdoor within the BMW Next Best Thing (NBT) vehicle entertainment system.

For electric vehicles, another physical entry point to the in-vehicle network is the charging infrastructure. Even-

tually, the charging infrastructure could be used to conduct attacks Bernardini u. a. (2017). Many attacks on electric

vehicle charging have been identified. Mustafa u. a. (2013); El-Rewini u. a. (2020) charging is susceptible to mas-

querading, tampering, eavesdropping, and denial of service attacks, in addition to privacy concerns and charging

thievery. In Fries und Falk (2012), the author discussed the man-in-the-middle and tampering attacks on the pay-

ment price and the amount of energy that the meter believes the electric vehicles has received. many other threats

related to electric cars has been demonstrated and discussed in Sun u. a. (2015); Alcaraz u. a. (2017); Vaidya und

Mouftah (2018); Lee u. a. (2014).

The infotainment system inside a car provides the other physical access points, through discs and USB drives.

Often the infotainment system is connected to the CAN bus. The information supplied by infotainment systems

can include (voice calls, text messages, emails, social networking, personal contacts) and other forms of data that

can be received by connecting to a mobile phone. Infotainment system vulnerabilities were demonstrated when

the BMW ConnectedDrive infotainment system was hacked because of its corresponding in-vehicle Network gate-

wayEl-Rewini u. a. (2020); Robinson-Mallett und Hansack (2015).

The attacks requiring physical access can be both invasive and non-invasive, sidee-channel attacks are non-

invasive attacks that refer to revealing useful information regarding the transmitted data in the in-vehicle network.

On the other hand, invasive attacks are allowed through physical access that enables the intrusion to the vehicle

bus system and its ECUs, resulting in code modification, code injection, packet-sniffing and fuzzing Thing und Wu

(2016).

Remote Access

Remote access is more convenient for the attacker. Some remote access interface (short-range) requires the

attacker to be nearby the vehicle during the attack’s entire duration. The range of these kinds of access points is

typically about 10 metres to 300 metres for some access points(Bluetooth, Pressure Monitoring System(TPMS),

Wi-Fi hotspot, V2X). Long-range interfaces (radio, GPS, Cellular) has a more extended range superior to 10km

Francillon u. a. (2010); Rouf u. a. (2010). Although this requires enhancement misappropriation techniques.

Telematics systems complement infotainment systems by providing information on internal vehicular systems,

which includes (fuel efficiency, engine failures, brake pad wear, transmission). Jo u. a. (2017) identifies security risks

in Android OS-based telematics systems that enabled drivers to remotely unlock and lock car doors, start and stop

the car engine using low-speed CAN, and access diagnostic information using high-speed CAN.
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requirements.

CAN broadcast messages on the bus, where the receiver node selects the message based on IDs it is configured

to receive. This enables attacks such as message interception (as illustrated in Fig 2.10) that violate the confiden-

tiality. Also, lack of information about the sender in the message like signatures, an attacker can send arbitrary CAN

frames to any node in the network and violate the authenticity and non-repudiation. The other case is, suppose an

attacker manages to take over a gateway (See Fig 2.3) that forwards messages from one domain to another. In that

case, the attacker can add, remove or change any data that the relayed message carries, meaning the violation of

integrity. Besides this, since an attacker can send any data on the bus by sending high-priority messages (Section

2.1.3) or messages with error flags can cause nodes to stop responding causing a Denial of Service (DoS), thus

affecting the availability of the system.

Our review analysis with the CAN bus’s effects conclude that a cyber-attack, when observed at the CAN bus

level, looks like a modification of CAN packets, i.e. CAN packet, is inserted, deleted or modified. Thus, yielding a

categorization into three groups fabrication, suspension, and masquerades attack.

• Fabrication Attack (Injection): Fabrication attack is carried out by fabricating messages with a forged ID on a

corrupted ECU and inserting them on the network, resulting in conflicting the ECU supposed to receive this ID

Liu u. a. (2017); Choi u. a. (2018); Choi u. a. (2016). Fabricated messages are inserted with a higher frequency

than the original message, and the original message is not taken into account. The fabricated messages can

also be inserted either immediately before, or immediately after the occurrence of the original message.

• suspension attack (Bus-off attack): This attack consists of stoping the ECU from sending messages. When

attackers continually send bits both in the identifier field and in other fields (See Fig 2.7), which causes the

ECUs transmit error counter (TEC) then be incremented. When the TEC value is greater than 255, the

corresponding ECU has to shut down Choi u. a. (2018).An other way is when attackers continually send high

priority messages that block legitimate low priority messages (DoS attack) Liu u. a. (2017)

• masquerading attack : An attacker masquerades as a legitimate node. Liu u. a. (2017); Choi u. a. (2018);

Tomlinson u. a. (2018a) identify two CAN vulnerabilities that facilitate masquerading attacks. First, CAN frame

are not encrypted and can be studied by attackers to locate system entry points. Second, CAN does not

support message authentication. The receiver of messages has no information about the source’s validity,

meaning that illegitimate messages are captured without being detected. This allows other action for the

attacker like Replay attack, consisting of continually resend a valid message to prevent the vehicle real-time

functioning Liu u. a. (2017); Nowdehi u. a. (2017); Mundhenk u. a. (2015); Tomlinson u. a. (2018b).

By reviewing the knowledge about the potential security vulnerabilities, threats and attacks, the research commu-

nity had proposed many defence mechanisms to secure the in-vehicle architecture network. Thing und Wu (2016)

proposed three main categories for in-vehicles defence: preventive defence, passive defence, active defence.
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(A) Preventive defence : In preventive defence, securing the systems mainly focuses on protection measures to

defend and attempt to stop an attack from happening or make them useless for the attacker. To this end, many

methods had been proposed to rectify the lack of secure communication for the in-vehicle network. Mundhenk

u. a. (2015); Kang u. a. (2017); Tashiro u. a. (2017) suggest a lightweight authentication using asymmetric

cryptography, one-way hash chain and sending a partial MAC in each frame. Luo und Hou (2019) proposed

Automotive Gateway Firewall.

(B) Passive defence : Attackers who can intrude on the in-vehicle system and bypass preventive defences can

harm or cause damages. Thus, the passive defence should provide another layer of protection against the

adversaries when the attack is happening. Intrusion Detection Systems (IDSs) are one of those defence

mechanisms, different models of Intrusion Detection System (IDS) for in-vehicle network security have been

proposed and tested under computational simulation scenarios Choi u. a. (2016); Choi u. a. (2018); Groza

und Murvay (2018); Vuong u. a. (2015); Kang und Kang (2016). Anti-malware, also as a passive defence

solutions for in-vehicle network should be capable of defending from harmful software that attempt to infiltrate

the system. As malwares against vehicle are still in its early stage, there may not be a high number of

malwares database available. Nonetheless, signature based detection can be put in place, by first considering

these malwares Zhang u. a. (2014).

(C) Active defence : Countering advanced and determined adversaries would require an active approach to

security. Using Continuous Security Monitoring critical components and interfaces. Besides this, Vehicles are

considered vital systems, networks, and critical infrastructure that continue to evolve at a fast pace. Therefore,

it becomes necessary to design and deploy defence measure such that they are themselves, moving targets.

Adaptive reconfiguration of attack targets and deception tactics can be employed to enable better control and

flip the balance during an attack. Also, detection models should also evolve through self-learning during their

operation lifecycle to adapt to detect new forms of aggression.

This section provides an overview of in-vehicle network security characteristics, discussing its merits and short-

comings, ranging from intrusions and threats to specific CAN bus attacks. We point about several existing research

work proposal that treats many security issues subject with recommendations for addressing and improving con-

nected cars cybersecurity. Many challenges encounter developing a secured connected vehicle, due to its external

connectivity and limited computational resources, lack of attack and threat database and the critical risk for pas-

sengers, including their lives. Network security solutions and situational awareness tools are essentially defensive

strategies, and even the best defences can fail. Hence it is necessary to have a fallback solution that would prevent

the vehicle from worst scenarios (taking unreasonable decisions that would endanger the vehicle’s occupants). A

fallback solution would prevent such an attack because the vehicle would know how to differentiate between normal

and derivative state of it inners network system. Hence the Intrusion Detection system is a fundamental component
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of the general in-vehicle security system.

In the following sections, we will review the IDS definition and its taxonomy related to the in-vehicle network;

we will define the multiple constraint and challenges that bind the development of practical IDS for the in-vehicle

network system. This knowledge will provide the basics challenges and questions that will serve as problems that

we will tackle in our next chapters.

2.4 In-vehicle Intrusion Detection System

As discussed above, and based on researcher and experts in cybersecurity, connected systems in general, will never

be absolutely secure Bellovin (2001). Besides this, finding and fixing the system’s security flaws is not feasible for

technical and economic reasons. In the case of vehicles, it demands the recall of all carsDenning (1987). We

also discussed that the attackers might bypass standard security mechanism. Even if the attack is not active or

successful, it is always useful to be aware of the intrusion attempts. Thus, developing a mechanism that can deal

with threats while they are in action is valuable for any system’s security, especially dynamic system like connected

vehicles, where such a mechanism is independent of the system’s functionalities and defences.

In 1985, Dorothy und Neumann (1985) was one of the earliest research work on Intrusion Detection System

(IDS), he introduced IDS under the name a real-time intrusion-detection expert system (IDES). Under the hypoth-

esis of an intrusion or exploitation of a system’s vulnerabilities involves a deviation or abnormal system usage

patternsDenning (1987). The IDS task is to detect and identify those malicious activities by monitoring the sys-

tem’s activity independently from any particular subsystem, application or type of intrusion, thereby aiming for

general-purpose abnormality detection. The IDS monitors and analyses the system’s events and employs mod-

elling techniques to recognise intrusive behaviour in a system. IDS have been classified in the literature using

different taxonomies. Our work will present a brief taxonomy grouping the leading dimension criteria to build and

in-vehicle IDS. depending on the different context and fields Bijone (2016b); Liao u. a. (2013); Veeramrddy u. a.

(2011); Garc2́a-Teodoro u. a. (2009); Buczak und Guven (2016); Lazarevic u. a. (2005)

To build such a system, many dimensions need to be considered. Indeed, the assets that might have a value

or power in their context require specific monitoring sources and the use of tailored methods. Also, infrastruc-

ture architecture may require a particular computation location with its resources constraint. The evaluation of the

IDS output demand informative metrics to assess its performances, based on this output, the usage and experts

decision-making needs to be considered. We describe below a taxonomy of the different part and their relation in

building an IDS.
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Monitoring source

Whether a probe monitors a particular machine’s activity or the activity at a specific point in the communication net-

work, IDSs are classified into three main classes: HIDS (Host-based Intrusion Detection System) NIDS (Network-

based Intrusion Detection System), and Hybrid IDS. A host-based IDS monitors the local behaviour on a single

operating system host, generally analysing system performance, program process, and the operating system logs

Debar u. a. (1999); Guha und Kachirski (2003); Kruegel (2004). Network-based IDS monitors network traffic (the

metadata and content of the packets sent into the network) to observe network activity and detect if it may be a

part of an attack process. The hybrid IDS monitors both host and network sources jointly to capture their corre-

lated information since both sources complement each other, mainly concerning achieving a broader coverage for

detection.

Methods

The Signature-based (misuse/Knowledge) Approach: the signature-based approach relies on the apriori knowledge

of some possible attacks and attempts to encode this knowledge as rules to define malicious traffic/activity patterns

to compare to current samples. If a match occurs, an alarm is raised. In that case, the signature-based approach

has the advantage of causing very few false positives if the attack’s correlation rules are sufficiently accurate. In

the other hand, this method can only detect a known attack. A new attack or even a new instance of known attack

(Homomorphe attack) are not detected (0-day exploit). Moreover, detecting a known attack occurs if the probes are

well placed to cover all the system data required and correctly configured Kruegel und Toth (2003); Krügel und Toth

(2002). Recently, misuses detection incorporates techniques allowing more flexibility to deal against the variations

of attacks, using Machine Learning and augment the rule-based by using Fuzzy Logic.

The anomaly-based (behaviour) approach: This method start first by defining the pattern of normality, the method

analyses whether the current activity samples deviate from the established model of normality and if so, an alarm

is raised. This approach is more exposed to false alarms. Indeed, The network traffic is susceptible to perturbation

and sometimes to evolutions. The anomaly-based approach Tsai u. a. (2009); Wu und Banzhaf (2010); Hamed u. a.

(2018); Buczak und Guven (2016) interprets those events as anomalous, even though they are intrinsic network

behaviour. One of the benefits of anomaly detection is detecting new attacks since the system is modelled according

to normal behaviour. Anomaly-based IDS challenge is keeping up to date with environmental changes by retraining,

or continuous updating is required to avoid an increase in false alarms, referred to as behavioural drift Kruegel

(2004). Many works have proposed the hybridisation of techniques to improve the detection rates by combining

both misuses and anomaly detection for IDS since they found that different methods performed better on different

intrusion Ozcelik u. a. (2017); Garg und Maheshwari (2016); Bostani und Sheikhan (2017).

The Specification-based approach: Specification-based intrusion and attack detection systems generate speci-
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fications from the intended target features, e.g., protocol state machines and security-related behaviour. The use of

security specifications to detect malicious activity has been proposed and investigated in several contexts Larson

u. a. (2008); Ko u. a. (1994); Majeed und Altaf (2019); Cheung u. a. (2006).

Usage and role

A real-time intrusion detection tools analyse the activity of the system to be protected and enable defensive actions.

Audit data is examined as soon as it is produced based on different granularities in time. The advantage of this

approach is that system activities can be analysed timely. Thus, a proper response can be issued when an attack

is detected, which defines the IDS (responding with a passive notification or active reaction). However, real-time

collection and analysis of audit data may introduce significant overhead in the communication network. offline tools

are run offline at specific intervals. They analyse a snapshot of the system state and produce an evaluation of the

security of that state. They do not provide any protection between two consecutive runs. Therefore, in case of a

successful attack, they can be used only for postmortem analysis or to improve and update the IDS dynamic model.

However, they may perform a more thorough investigation by occasionally running without an unacceptable impact

on the monitored system performance. As explained above, IDS can be distributed following different location in

the system. To this end, a decision about the system state can be made collaborative between separate local and

complement each other’s coverage analysis or an independent fashion analysis specific for each probe.

Evaluation

For an IDS to be considered effective, high detection rate and low false-positive rate are important aspects to

consider. Multiple metrics could be used for an IDS evaluation Hodo u. a. (2017). These metrics are discussed

subsequently showing the significance and purpose of each. It is essential to mention that an evaluation metric

doesn’t reflect an IDS performance depending only on the detection rate. Indeed, we need other important evalua-

tion factors, including the transparency and safety of the overall system, memory requirements, power consumption,

CPU consumption and throughput via communication overhead, should be considered. Specifically, these metrics

are essential for IDSs running on different hardware or specific settings such as high-speed networks, or hardware

with limited resources. The result’s clarity and explainability are also important aspects of an IDS, which helps the

forensic analysis and speed-up the decision-making process.

The term accuracy is defined in the following :

• True Positive (TP): Number of intrusions correctly detected

• True Negative (TN): Number of non-intrusions correctly detected

• False Positive (FP): Number of non-intrusions incorrectly detected
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• False Negative (FN): Number of intrusions incorrectly detected

In the IDS terms, false-positive refers to security systems incorrectly detecting legitimate requests as misbe-

haviour or security breaches. In other words, the IDS detect something that not supposed to. Alternatively, IDS is

prone to false-negatives where the system fails to detect something it should. False-negative imply missing detec-

tion of attacks that will not be mitigated and give a false sense of security. From the IDS perspective accuracy, many

metrics are used:

OverallAccuracy =
TP+TN

TP+TN+ FP+ FN
(2.1)

Equation 2.1 provides the overall accuracy. It returns the probability that an item is correctly classified by the IDS.

Precision =
TP

TP+ FP
(2.2)

Equation 2.2 provides the percentage of positively classified incidents that are truly positive.

recall =
TP

TP+ FN
(2.3)

Equation 2.3 provides the percentage of positively classified incidents based on the model positive prediction

and it is also called Sensitivity.

To visualize the performance of an IDS, The trade-off between recall (true positive rate) and precision (true

negative rate), AUC (Area Under The Curve) is used. Also, Equation 2.4 represents the harmonic mean of precision

and recall. F1 is better suited to describe the performance of an IDS, especially when dealing with imbalanced

classes.

F1 =
2TP

2TP+ FP+ FN
(2.4)

in-vehicle network Constraints and Limits

Building IDS limitation and constraints depend on several dimensions; the context and topology of the studied

system, its architecture, Deployment to its evaluation and the used methodology. The in-vehicle intrusion detection

48



system can be considered as an embedded system, a computing system with a combination of hardware and

software designed to perform one or a few dedicated functions with some vehicular domain specifications. We

separate those concerns into Four elements:

1) The data and knowledge: One of the general questions is about the quality of the data and the knowledge

experience about attacks and threats, compared to the IT system, that has more history and experience dealing

with a different type of attack, the in-vehicle network was a closed system, and the threats exposed now are mostly

subject of research efforts. What kind of data attack systems need to observe, while the in-vehicle system has

various data sources. The more data can be monitored and obtained for evaluation, the better the overall picture of

the system’s current situation. However, the more information needs to be observed, gathered and evaluated, the

more complex and costly the development and analysis process becomes.

2) Ressources and optimisation: An attack detection system needs to fulfil real-time performance requirements

Kargl u. a. (2008); Carsten u. a. (2015); Robinson-Mallett und Hansack (2015); Lee u. a. (2014) with the capacity of

reducing the false-positive while being accurate. Especially attacks that target the vehicle’s safety, e.g., by sending

false messages to the brakes, engine, etc. can only be tackled if this requirement is fulfilled. However, the automotive

environment is a network of embedded systems, including highly specialised and cost-optimised components, which

offer only limited computational power but are designed to work reliably under very different physical conditions Kargl

u. a. (2008); Müter u. a. (2010).

3) Deployment and toplogy : As explained above, the in-vehicle system also require a particular type of Deploy-

ment to fit the topology and the architecture of the in-vehicle network, this includes a strategy to handle the different

data sources and how to implement the IDS model while respecting the two previous concerns.

4) Industrial needs: The in-vehicle network architecture is fixed after the client’s purchase. The IDS automation

needs to consider the cost of the inclusion of the ECUs that will be part of the IDS Hindy u. a. (2020); Zhou u. a.

(2015). Also, a practical solution is a solution that takes into consideration the industrial needs in terms of usage

and role (See Fig 2.14).

2.5 Conclusion

This chapter has provided the context of this research study concerning in-vehicle network security. We present a

consistent background development of security from IT to the recent advanced vehicles architectures. We briefly

discussed the several defence classes and solution while highlighting a focus on Intrusion Detection System in

general. We extend the Intrusion detection system survey to a taxonomy specific to in-vehicle network demand and

constraints.
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Chapter 3

The anomaly detection problem :

state-of-the-art

Vehicles have a very long life span and are in use for decades in different conditions and locations. As discussed

above In Chapter 2, to protect the car over this long period, only preventive measures are insufficient, and the

vehicles security system has to work autonomously without a necessity for user interaction. To this end, IDSs are

a good candidate to complete the security architecture of vehicles, with the capability to monitor the traffic on the

vehicular networks and continually evaluate abnormal events to classify them as an attack or not. If appropriate, an

alarm is raised as soon as a threat is detected, countermeasures to respond to attacks are considered, if reactive

components have been integrated into the car’s security system. This thesis presents an IDS scheme for in-vehicle

networks that respect automotive networks’ typical characteristics, and its protocols like the Controller Area Network

(CAN). One central question is how exactly the IDS should identify attacks for the in-vehicle network, which method

detection is suitable for the automotive area. Signature-based and Specification-based approaches and detection

Dupont u. a. (2019); Ji u. a. (2018); Olufowobi u. a. (2020); Larson u. a. (2008); Dupont u. a. (2019) promises a low

false-positive rate, which is important as numerous false alerts could question the usability of the entire concept in

the vehicle and may negatively affect the driver’s awareness. However, as cited above, one major constraint of that

method is dealing with unknown attacks and the lack of attack database specific for in-vehicle systems and need a

rule for every single intrusion and variation thereof. For specification-based, handling the different components of

the cars made with various providers makes it not practical to define explicitly the system normal behaviour limits.

Anomaly detection promises to detect attacks, including novel attack patterns that result in a system state which

differs from the normal specification. However, in the past, anomaly detection systems were typically prone to

high false-positive rates, and the specification of the system’s normal behaviour has turned out to be challenging.
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are detected) Chalapathy u. a. (2019).

3.1.2 Anomaly detection models output

Anomaly score describes how far each data point is from the normal pattern. According to the anomaly score,

the subject matter expert will select a domain-specific threshold (commonly known as decision score) to identify

the anomalies. In general, decision scores reveal more information than binary labels depending on the type of

methods used. For instance, in OC-SVM, the decision score measures the distance of data point from the centre of

the sphere; the data points that are farther away from the centre are considered anomalous. The anomaly score is

used after setting a threshold to automate the model’s decision to assign a category label as normal or anomalous

to each data instance. AD model can also return a multi-class label (normal/anomalous-A/anomalous-B/...).

3.1.3 Anomaly detection challenges

The main advantage of systems based on this approach is that, in theory, they can detect previously unknown

attacks. On the other hand, anomaly-based systems are prone to many challenges:

• The amount of time required to train the system the normal behaviour might be long.

• There is no universal procedure to model normal data. The concept of normality is still subjective and difficult

to validate.

• The anomalous examples in datasets are not often available, and when they are the classes (normal/anomalies)

are generally imbalanced. Besides, the data may contain noise which makes the distinction between normal

and abnormal data more difficult.

• The monitored environment’s behaviour might change during a period, requiring the system to updated to

avoid false alarms.

• Performance of traditional algorithms in detecting outliers is sub-optimal on the image (e.g. images or dis-

tributed topology network) and sequence datasets since it fails to capture complex structures in the data.

• Need for large-scale anomaly detection: As the volume of data increases, it becomes nearly impossible for

the traditional methods to scale to such large scale data to find outliers.

• Solve the problem end-to-end taking raw input data in domains with automatic feature learning and eliminates

the manual developing of features by domain experts, especially in a closed system like vehicles systems.

• The boundary between normal and anomalous behaviour is often not precisely defined in several data domains

and is continually evolving. This lack of well-defined representative normal boundary poses challenges. For

instance, it may be possible to perform an attack within the boundaries of normality.
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network-based on a particular feature: recurring patterns within the sequence of message IDs observed in the CAN

Bus by modelling the CAN bus’s normal behaviour in the form of transition matrix. This data structure identifies all

the legit transitions between the message IDs of two consecutive CAN messages. This model will then be used as

a reference to identify anomalies in the CAN traffic.

3.2.2 Statistical based Techniques

In statistical-based techniques Chandola u. a. (2009), the network traffic activity is captured, and a profile repre-

senting its stochastic behaviour is created. This profile is based on metrics such as the traffic rate, the number

of packets for each protocol, the rate of connections, the number of different IP addresses, etc. Two datasets of

network traffic are considered during the anomaly detection process: one corresponds to the currently observed

profile over time, and the other is for the previously trained statistical profile. As the network events occur, the

current profile is determined, and an anomaly score is estimated by comparing the two behaviours. The score

indicates the degree of irregularity typically for a specific event, such that the intrusion detection system will flag the

occurrence of an anomaly when the score surpasses a certain threshold. In other words, anomaly detection meth-

ods in these categories are based on estimating the probability densities of the data using statistical models and

assuming that normal data will fall in high probability regions. In contrast, anomalies will fall in low probability ones

Chandola u. a. (2009); Pimentel u. a. (2014); Basora u. a. (2019). In Chandola u. a. (2009); Chandola und Kumar

(2007); Hawkins (1980); Aggarwal (2013); Miljković (2010); Pimentel u. a. (2014); Song u. a. (2007); Basora u. a.

(2019) categorise further methods both parametric and non-parametric techniques with a multitude of applications.

As our work focuses more on Deep Learning approaches, we will review a few techniques that have been widely

used.

• chi-square test statistic: Ye und Chen (2001) use chi-square theory for anomaly detection, according to this

technique, a profile of normal events in an information system is created, and the idea in this approach is to

detect the large departure of events from the normal profile as anomalous or intrusion. To this end, a distance

measure based on the chi-square test statistic is developed as :

χ2 =

n
∑

i=1

(Xi − Ei)
2

Ei
(3.1)

Where Xi is the observed value of the ith variable, Ei is the expected value of the ith variable and n the

number of variables.

The X2 has a low value when observing the variables is near the expected value. So, following the µ ± 3σ

rule, an anomaly is raised when X2 value is higher than X2 +3S2
x. In Krügel u. a. (2002), the author proposed
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a statistical processing unit for detecting anomalous network traffic to detect rare events like R2L or U2R (See

Section 2.2.2). The metric aim to search identical characteristics of different service requests. The anomaly

score is calculated based on the type and the length of the request and the payload distribution. In Moore u. a.

(2017) exploit the regularity in the timing of CAN communication. For each CAN ID, the NIDS stores the time

differences between two successive messages and computes the mean arrival time. It will also register the

maximum time difference from the mean, which will be used to define a threshold. An alert will be raised if the

time between two packets differs from the expected time by more than the maximum time difference plus 15%

of the mean.

• Mixture model: In the category of parametric techniques Chandola u. a. (2009) assume that the normal data

is generated by a mixture of parametric distributions with parameters and probability density function f(x,Θ),

where x is an observation. Such techniques use a mixture of parametric statistical distributions to model the

data. We find Gaussian Mixture Models (GMM) based on the assumption that the data is generated from a

weighted mixture of Gaussian distributions. We find two subcategories. The first subcategory of techniques

models the normal instances and anomalies as separate parametric distributions. The testing phase involves

determining which distribution the test instance belongs Chandola u. a. (2009); Chandola und Kumar (2007);

ABRAHAM und BOX (1979). In contrast, the second subcategory of techniques models only the normal

instances as a mixture of parametric distributions. A test instance that does not belong to any learned models

is declared an anomaly Chandola u. a. (2009); Agarwal (2006).

In Eskin (2000), the author proposed an IDS based on mixture models. The approach estimates a probability

distribution over the data and applies a statistical test to detect the anomalies in UNIX system. The set

of system calls having a probability of 1 − λ is a legitimate use of the system, and the intrusions have the

probability of λ. The two probability distributions which generate the data are called the majority (M), and

anomalous (A) distributions Ahmed u. a. (2016b). In Liang u. a. (2020), the author proposes a novel filter model

based on a hidden generalized mixture transition distribution model (HgMTD) in VANETs, which can quickly

filter the messages from neighbouring vehicles. It adopts a well-known multi-objective optimization (NSGA-

II) algorithm combined with an expectation-maximization (EM) algorithm to forecast neighbouring vehicles’

future states and then filter out malicious messages by monitoring the change of the state pattern of each

neighbouring vehicle.

In Hamada u. a. (2018), The proposed method learns the Probability Density Function (PDF) of the Gaussian

mixture model, from the reception cycle periods of the monitored CAN-ID using the sequentially discounting

expectation and maximization(SDEM) algorithm. These reception cycle periods are calculated from the arrival

time of each CAN frame of the monitored CAN-ID. The learner continuously estimates each PDF from the

reception cycle periods in each slot. The anomaly detector assesses each CAN frame using the PDF that was
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estimated in the previous slot. A threshold is used to assess the frame in the anomaly detector.

• Classical regression with statistics:

The regression model-based anomaly detection is a subcategory of the parametric techniques identified

inChandola u. a. (2009). This approach is based on the principle of forecasting. A regression model is first

fitted on the training data. The resulting model is then used on test sequences to compute the residuals (the

difference between the predicted value and the real value). The residuals determine the anomaly scores. In

classical statistic approaches for the regression task, we can include anomaly detection techniques based

on traditional time series forecasting models such as Vector Auto-Regressive (VAR) Melnyk u. a. (2016), and

Autoregressive Integrated Moving Average (ARIMA) Bianco u. a. (2001); CHEN u. a. (2005); Zhu und Sastry

(2011). In Tomlinson u. a. (2018c) two methods, ARIMA and Z-score, were using broadcast time-intervals to

detect injected packets in the highest priority and regular broadcast CAN packets. The author showed similar

results to the supervised method using prior average times.

Statistical approaches have several advantages to enhance Anomaly Detection process. Firstly, they do not

require prior knowledge about the target system’s normal activity; instead, they can learn the system’s expected

behaviour from observations. Secondly, statistical methods can accurately notify malicious activities occurring over

long periods with tasks like regression. However, many drawbacks pointed out Garc3́a-Teodoro u. a. (2009); Basora

u. a. (2019); Chandola u. a. (2009). First, an attacker so that the network traffic generated during the attack is con-

sidered normal. Second, setting the different parameters/metrics’ values is a difficult task, especially because the

balance between false positives and false negatives is affected. Moreover, a statistical distribution per variable is as-

sumed, but not all behaviours can be modelled using stochastic methods. Furthermore, most of these schemes rely

on the assumption of a quasi-stationary process, which is not always realistic. And in more large scale computation,

classical methods have their limitation.

3.2.3 Classical Machine learning approaches

Due to the thesis scope, some techniques and methods are not considered in this brief ML review. How ever, a

broad range of ML and pattern matching methods are reviewed in Chandola u. a. (2009); Chandola und Kumar

(2007); Hawkins (1980); Song u. a. (2007); Wu und Yen (2009). We focus on the main methods that have been

applied to Anomaly detection and in-vehicle IDS. In Fig 3.3 we defined the main categories of Machine Learning

tasks that we will review, from which we will mention the appropriate algorithm and techniques.
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• Multi-class Anomaly Detection:

Multi-class classification based anomaly detection techniques assume that the training data contains labelled

instances belonging to multiple normal classes Chandola u. a. (2009). The method used teaches a classifier to

distinguish between a normal class and anomalous examples (In most of the cases, anomalous instances do

not form a class) in such a setting. Several variants of the basic neural network technique have been proposed

using different types of neural networks Hawkins u. a. (2002); Williams u. a. (2002) (concerning those methods,

an in depth review is presented below in the section 3.3). Also, much of previous research motivated the study

of Anomaly detection, including Decision Trees (DT) that have been successfully applied to intrusion detection

to discover known and unknown attacks. DT is a common classification method based on divide and conquers

strategy. A DT comprises decision nodes and leaf nodes, and they represent a decision test over one of the

features, and the result class, respectively Safavian und Landgrebe (1991). In Yang u. a. (2019), the authors

propose selected ML algorithms based on a tree structure, including decision tree, random forest, extra trees,

and XGBoost. In Kalkan und Sahingoz (2020) compared machine learning classifiers for the CAN security. As

a result of the study, it has been observed that the decision tree-based ensemble learning models result in the

best performance in the tested models. however, suffer from a number of drawbacks. One is that they cannot

generalise to new attacks in the same manner as certain other machine learning approaches. They are not

suitable for anomaly detection since homomorphic attacks and new attacks are a promising use of anomaly

detection. Empirical findings also demonstrate that DTs are very sensitive to the training data and do not learn

well from imbalanced data Chawla (2003); Gharibian und Ghorbani (2007).

Support Vector Machines (SVMs) have been applied increasingly to anomaly detection in the research in many

application domains. SVM is one of the supervised learning models used classification problems. It uses each

data’s nearest training points to build one or more hyperplanes to classify high-dimensional data. It maximizes

the margin between them as much as possible. The margin is defined as the perpendicular distance between

the decision boundary and the closest of the data points. The decision boundary is chosen to be the one for

which the margin is maximized Bishop (2006); Cortes und Vapnik (1995). An important property of support

vector machines is that the model parameters’ determination corresponds to a convex optimization problem,

so any local solution is also a global optimum Schölkopf u. a. (2002).SVM classifiers have been used widely

for intrusion detection to distinguish between normal and intrusive data Mukkamala u. a. (2002). And in Duan

und Keerthi (2005) presented a common approach is to combine several two-class SVMs, and in Mukkamala

u. a. (2005) applied this paradigm, to network-based intrusion detection, adopting the five class, thus requiring

five SVMs. For each SVM, the training data is partitioned into two classes. One represents an original class,

and the other class represents the remaining, e.g., Normal and all intrusions, or Probing and Normal and the

other attacks. The combination technique adopted is a winner-takes-all strategy Duan und Keerthi (2005), in
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which the SVM with the highest output value is taken as the final output.

Intrusion detection systems apply different SVM types to benefit from their capabilities, such as conducting

multiclass classification. Moreover, in some approaches, to boost the ADS detection rate and accuracy, SVM

parameters and its applied kernel functions are trained through using meta-heuristic algorithms. Also, to in-

crease the detection rate, some of the ADS approaches have exploited the SVM with other classifiers such

as decision trees, ANN, and na3ive byes. Furthermore, some of the outlined schemes have applied feature

extraction methods or utilized meta-heuristic algorithms for feature selection. Finally, some other ADS ap-

proaches have tried to handle the imbalanced datasets, making the SVM training process faulty and biased.

In Alshammari u. a. (2018), the authors propose an intrusion detection method for CAN bus IDS in vehicles.

It detects DoS and the Fuzzy attacks which occur on CAN Bus. And in Tanksale (2019), propose a support

vector machines based intrusion detection system that can detect anomalous behaviour with high accuracy. At

the same time, they treated three overall types of anomalies (point anomaly, contextual anomaly, and collective

anomaly). With respect to the CAN, each type of anomaly requires different message types and parameters to

create the needed feature vectors. They grouped the CAN traffic features into groups based on the message’s

functionality as the SVM input feature vector.

• One-class Anomaly Detection:

In a one-class problem, the training set only contains observations describing one class, and the classifier

constructs a model that captures this class. For each new observation in the classification phase, the classifier

decides if it falls inside this model or that it is an anomaly. A situation where one-class classification algorithms

are practical is monitoring normal systems behaviour. In that case, Data describing normal behaviour can

be gathered easily. Data relating to errors, attacks and security issues, cannot be collected easily and cost-

effectively. Even with simulation, we cannot approach a sufficient distribution of anomalous examples that will

encompass the behaviour of many types of attacks. We can collect CAN network traffic from cars under normal

driving conditions, but traffic containing attacks is much more challenging to obtain. A one-class classifier is

trained on the available Data and thus constructs a model describing the in-vehicle network behaviour under

normal circumstances. The classifier decides for each new observation in the monitoring phase, whether it

fits the class representing normal behaviour or anomaly. The Machine learning methods used for One-Class

classification rely on the normal traffic activity profile that builds the knowledge base and consider activities

deviate from the baseline profile as anomalous. The advantage lies in their capability to detect completely

novel attacks, assuming that they exhibit ample deviations from the normal profile. One-class Support Vector

Machine (OC-SVM), introduced Schölkopf u. a. (1999). aims to create a function that returns +1 in a region

representing the training set’s observations and -1 elsewhere. To achieve this, the same concepts apply as

for the described binary problem, but now the distance between the origin and the hyperplane is maximised
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(in the feature space F). Then, decision function f(x) returns +1 for observations located on one side of the

hyperplane and -1 for observations on the other side.

The process of automatically constructing models from data is not trivial, especially for intrusion detection prob-

lems. It’s because intrusion detection faces problems, such as huge network traffic volumes, highly imbalanced data

distribution, difficulty realizing decision boundaries between normal and abnormal behaviour, and a requirement for

continuous adaptation to a constantly changing environment. This demonstrates a system that can only detect what

it knows, and vulnerable to new attacks appearing in different versions. Additionally, the normal traffic not included

in the knowledge base is considered as an attack. Thus, it generates unintentional false alarms. Continuous training

is required for anomaly detection techniques to build a normal activity profile that is time-consuming and depends

on the availability of a completely normal traffic instance. Furthermore, it is challenging to keep a normal profile up-

to-date in today’s dynamic and evolving network environment. Among a large pool of classification-based network

anomaly detection techniques, we discussed four major classical methods and their related application to Intrusion

detection for the in-vehicle network. The following section reviews the more recent and advanced technique for

anomaly detection using Deep Learning.

3.3 Deep learning for Anomaly Detection

Deep learning for anomaly detection, deep anomaly detection for short, aim at learning feature representations or

anomaly scores via neural networks for the sake of anomaly detection. Many deep anomaly detection methods have

been introduced, demonstrating significantly better performance than conventional anomaly detection on address-

ing challenging detection problems in various real-world applications. Deep Learning methods enable end-to-end

optimization of the whole anomaly detection pipeline, compared to traditional modelling(See Section 3.2) depends

on feature engineering, which relies on expert and external knowledge to create features relevant to a given prob-

lem. Besides, they also allow the learning of representations specifically tailored for anomaly detection. These

two capabilities are crucial to tackling the Anomaly Detection challenges, where traditional methods can fail. This

subsequently results in more informed models and thus better recall-rate. For the anomaly explanation challenge,

DL methods are black-box models; but they offer options to unify anomaly detection and explanation into single

frameworks, resulting in explanation of the anomalies spotted by specific models (Deep Learning explainability is

well-studied research, but not studied in this work). Deep Learning methods also excel at learning complex struc-

tures and relations from diverse data types, such as high-dimensional data, image data, video data, graph data,

etc. This capability is important to address various challenges, multimodel-inputs, and an environment with many

sensors like an autonomous vehicle. Further, they offer many practical and easy-to-use network architectures and

frameworks to learn unified representations of heterogeneous data sources seamlessly. However, shallow meth-
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ods for handling those complex data are generally substantially weaker and less adaptive than the Deep Learning

techniques.

3.3.1 Deep Learning for Anomaly detection: Categorization and formulation

Deep neural networks leverage complex compositions of linear/non-linear functions that a computational graph can

represent to learn expressive representations Goodfellow u. a. (2016). The two basic building blocks of deep learn-

ing are activation functions and layers. Activation functions determine the output of computational graph nodes (i.e.,

neurons in neural networks). They can be linear or non-linear functions. Some popular activation functions include

linear, sigmoid,tanh, ReLU (Rectified Linear Unit) and its variants. A layer in neural networks refers to neurons

stacked in some forms to adapt the type of input data. Commonly-used layers include fully connected, convolutional

& pooling, and recurrent layers. One can leverage those layers to build different popular neural networks architec-

tures. For example, multilayer perceptron (MLP) networks are composed of fully connected layers, convolutional

neural networks (CNN) are featured by varying groups of convolutional & pooling layers, and recurrent neural net-

works (RNN), and long short term memory (LSTM), are built upon recurrent layers Goodfellow u. a. (2016); Pang

u. a. (2021). And more recent advanced architecture can combine many layers types to enhance the performance

of the model.

Given a dataset X = {x1, x2, ..., xN} with xi ∈ R
p , let Z ∈ R

d(d < p) be a representation space, then deep

anomaly detection aims at learning a feature representation mapping function fRM (.) : Rp → R
d or an anomaly

score learning function fAS(.) : R
p → R where anomalies can be easily differentiated from the normal data instances

in the space yielded by the fRM or fAS function, where both are a neural network. In the case of learning the

feature mapping fRM , an additional step is required to calculate the anomaly score of each data instance in the

new representation space or an additional feature reconstruction fRec(.) : Rd → R
p in the case of Auto-Encoders

Rumelhart u. a. (1986); Baldi (2011); Goodfellow u. a. (2016) as an example. While fAS can directly infer the

anomaly scores with raw data inputs, binary calssifier for example. An overview of the deep anomaly detection

consists of three conceptual paradigms ( See Fig 3.7).

In (a) Fig 3.7, The task of representation Learning using Deep learning is not directly related to anomaly detec-

tion, where this method is used as some independent feature extractor only Dara und Tumma (2018); Rumelhart

u. a. (1986). This category of methods aims at leveraging deep learning to extract low-dimensional feature represen-

tations from high-dimensional and/or non-linearly separable data for downstream anomaly detection. The feature

extraction and the anomaly scoring are fully disjointed and independent from each other. Thus, the deep learning

components work purely as dimensionality reduction only Pang u. a. (2021). Compared to traditional dimension

reduction like principal component analysis (PCA) Candès u. a. (2011); Schölkopf u. a. (1997), deep learning tech-
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In the third category (c) in Fig 3.7, neural network directly learns the anomaly scores. Novel loss functions

are often required to drive the anomaly scoring network. Formally, this approach aims at learning an end-to-end

anomaly score learning network in which the methods are dedicated to learning anomaly scores via neural networks

in an end-to-end fashion binary classification (softmax likelihood models) or one-class classification. In Saxe u. a.

(2019) provides an explanation for representation learning as the trade-off between finding a minimal compression

Z of the input X while retaining the informativeness of Z for predicting the label Y . Put formally, supervised deep

learning seeks to minimize the mutual information I(X;Z) between the input X and the latent representation Z

while maximizing the mutual information I(Z;Y ) between Z and the classification task Y .

3.3.2 Deep Anomly Detection Challenges

The above complex general problem discussed in Section 3.1.3 leads to several Deep Anomaly detection chal-

lenges. Some challenges, such as scalability data size, have been well addressed in recent years Pang u. a. (2021);

Bulusu u. a. (2020); Chalapathy und Chawla (2019), while the following are remaining as challenges, to which deep

anomaly detection can play some essential roles.

• Anomaly Detection recall rate: Since anomalies are infrequent and heterogeneous, it is difficult to identify

all anomalies. Many normal instances are wrongly reported as anomalies (False-positive) while not reporting

sophisticated abnormalities. Although plenty of anomaly detection methods has been introduced over the

years, the current state of the art methods, especially unsupervised methods, still often produce high false

positives on real-world datasets. Reducing false positives and enhancing detection recall rates is one of the

most critical yet complex challenges, particularly for the future in-vehicle network anomalies.

• Anomaly detection in high-dimensional and not-independent data: Anomalies often exhibit evident ab-

normal characteristics in a low-dimensional space yet become hidden and unnoticeable in a high-dimensional

space. High-dimensional anomaly detection has been a problem, especially in an environment with large

amounts and modalities like intelligent vehicles. Performing anomaly detection in a reduced lower-dimensional

space spanned by a small subset of original features or newly constructed features is a straightforward so-

lution or feature selection-based method Keller u. a. (2012); Lazarevic und Kumar (2005); Liu u. a. (2012);

Azmandian u. a. (2012); Pang u. a. (2018, 2017). However, identifying complex feature interactions and cor-

relation in an end-to-end fashion may be essential in high-dimensional data and avoiding additional feature

extraction process is important in the environment as embedded systems. Still, it remains a significant chal-

lenge for anomaly detection. Further, guaranteeing the new feature space preserved useful information for

specific detection methods is critical to downstream accurate anomaly detection, but it is challenging due to

the aforementioned unknowns and heterogeneities of anomalies.
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• Data Topology: It is also challenging to detect anomalies from instances that may depend on each other,

such as by temporal, spatial, graph-based, multi-modal, distributed and other interdependency relationships.

Thus, Deep Learning architecture must fit the data topology needs.

• Data-efficient learning while leveraging the small amount of anomalies: Utilizing those labelled data to

learn expressive representations of normality/abnormality is crucial for accurate anomaly detection. Weakly-

supervised anomaly detection assumes we have some labels for anomaly classes and the class labels are

partial (they do not represent the entire set of anomaly class), inexact (Noises and system fault instead of

attacks). Two significant challenges are how to learn expressive normality/abnormality representations with

a small amount of labelled anomaly data and how to learn detection models that are generalized to novel

anomalies uncovered by the given labelled anomaly data.

Our main studies and contributions are motivated by the challenges mentioned above. In the following chapters

4,5,6 we take into consideration the different constraint related to the in-vehicle network system (Section 2.4.1).

3.4 Discussion

As our objective is an Anomaly detection based Intrusion detection system, we review the various efforts and re-

search works relative to Anomaly Detection. Thus, including the emerging field of Deep Learning and its applications

to Anomaly detection in many domains. Based on the SOA information, we will discuss the hypothesis and problem-

atics that led us to our actual contributions. Our objective in the following chapters is to present our contributions in

addressing the In-vehicle IDS challenges with Deep Anomaly Detection. We present our focus and work positioning

compared to state of the art established in this chapter in Fig 3.8.
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Part II

Contributions: May we help your car to

save your life?
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Chapter 4

Encoding Adversarial Network for anomaly

detection (AnoEAN)

In this chapter, we review the Generative Adversarial Networks (GANs) in detail by discussing the strength of the

GANs compared to other generative models, how GANs works, and some of the significant problems with training,

tuning and evaluating GANs. We also present some major GANs based architectures to show how a specific

design helps solve various applications issues. All this is done to develop an Adversarial Learning approach to

respond to the Anomaly detection-based IDS challenges (Introduced in the previous chapter in Section 3.3.2), more

specifically, a lightweight memory-based approach. The emergence of the Generative Adversarial Networks (GANs)

has recently brought new algorithms for anomaly detection. Most of them use the generator as a proxy for the

reconstruction loss. We review the different GANs based architectures and processes used for Anomaly Detection.

We will point out the major constraints of those approaches applied as a model for the Intrusion Detection system.

We develop an alternative approach for anomaly detection, based on an Encoding Adversarial Network (AnoEAN),

which maps the data to a latent space (decision space). The detection of anomalies is done directly by calculating

a score. Our encoder is learned by adversarial learning, using two loss functions, which constrain the encoder to

project regular data into a Gaussian distribution. The second is to project anomalous data outside this distribution.

We conduct a series of experiments on several standard bases, network data and image data. This work has led to

the publication of two conference papers:

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. An Encoding Adversarial Network for

Anomaly Detection. 11th Asian Conference on Machine Learning (ACML 2019), Nov 2019, Nagoya, Japan.

pp.1–16.

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Construction d’espace latentpour

la détection d’anomalies par apprentissage adversarial. Conférence sur l’Apprentissage automa-tique (CAP
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2019), Jul 2019, Toulouse, France.

4.1 Introduction

In the previous chapter Section 3.3, we introduce Anomaly detection as a well-established topic in Machine Learn-

ing, with many applications in domains such as fraud detection, cybersecurity, video surveillance, and predictive

maintenance (Chandola u. a., 2009; Kiran u. a., 2018; Hodge und Austin, 2004; Chalapathy und Chawla, 2019).

Moreover, the recent advances in Artificial Intelligence bring insight into future applications, as autonomous trans-

portation like self-driving cars. Many cyber-security threats can impact the usability of those systems (Chapter 1).

The problem of anomaly detection highlights many risks related to those threats and can help the standard security

systems to face new threats.

We present three main settings for anomaly detection. The first is the unsupervised case, where an algorithm

has to discover the data’s intrinsic properties to detect the anomalies without any label guidance(Campello u. a.,

2015; Kiran u. a., 2018); The training set contains both normal and anomalous examples, but the labels are not

available. The second is the supervised case, where an algorithm must usually face unbalanced datasets, with

significant rates of normal data and few anomalous examples. The third is the one-class classification, where the

algorithm has access only to a large set of normal data. Unlike the unsupervised case, there are no anomalous

examples in the training set. In this chapter, we focus on both the supervised (unbalanced) and one-class anomaly

detection problems. Notice that even though few anomalous examples may exist in the data, supervised learning

algorithms are still challenging because the set of anomalies often does not form a homogeneous class. The

boundary between normal and anomalous examples is blurred and continuously evolving (the system’s normal

behaviour changes depending on the context). This boundary problem is a challenge in the anomaly detection

problem.

We can formulate the anomaly detection problem as follows. Let D be a data set containing a large number of

normal examples (the normal states of the system) Xn, and a relatively small number of anomalous examples Xa. A

model M must learn the distribution function pX over the normal data during training. Then, given any test example

x, it must determine whether x deviates from the learned distribution pX by using an anomaly score function a(x).

The model M also needs to consider its number of parameters θM that represents the memory size of a Deep

Learning model.

The balance of the instance numbers among classes in a dataset impacts Machine learning and Deep Learning-

based classification performance. Indeed, in the cases of suffering from the data imbalance problem, the number

of training samples belonging to a normal class is larger than anomalous classes. It’s a common issue in Anomaly

Detection, especially for cybersecurity. This data related problem impacts the machine learning algorithms and

deteriorates the classifiers effectiveness Kozik und Choraś (2016). Typically, classifiers will achieve higher predictive
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accuracy over the majority class but more insufficient predictive accuracy over the minority class. Utilizing unsuitable

evaluation metrics for the classifier trained with the imbalanced data can lead to wrong conclusions about the

classifier’s effectiveness. As most machine learning algorithms do not operate very well with imbalanced datasets,

the commonly observed scenario would be the classifier ignoring the minority class. This happens because the

classifier is not sufficiently penalized for the misclassification of the data samples belonging to the minority class.

Unbalanced data is well studied in our experiments. The goal is to develop a method that can benefit from the

availability of a low rate of anomalies to enhance the model’s capacity to detect different variant of anomalous

examples and even unknown attacks.

Deep neural networks performs well in learning highly complex and large data representations.A large number

of papers propose Deep Learning-based anomaly detection models (Goodfellow u. a., 2016; Hodge und Austin,

2004; Pimentel u. a., 2014; Bulusu u. a., 2020; Pang u. a., 2021; Chalapathy u. a., 2019; Chalapathy und Chawla,

2019; Kiran u. a., 2018). The recent advances in Deep Learning have made it possible to revise this problem

and in many application domains like intrusion detection system Galinina u. a. (2018). In particular, Generative

Adversarial Networks (GANs) (Goodfellow u. a., 2014), which were proved very efficient in many application fields

(Creswell u. a., 2018), have also been adopted in recent works on anomaly detection (Schlegl u. a., 2017; Zenati

u. a., 2018b,a; Akcay u. a., 2019; Golan und El-Yaniv, 2018; Sabokrou u. a., 2018; Deecke u. a., 2018; Mattia u. a.,

2019; Zenati u. a., 2018a; Schlegl u. a., 2019).

In this chapter, we investigate several problems related to GAN-based anomaly detection methods. We propose

a new method, called AnoEAN (Encoding Adversarial Network for Anomaly Detection). The principle of AnoEAN is

to learn a function (Encoder) that projects the original dataset into a small dimension latent space so that the normal

examples are projected in a restricted region of the latent space and the anomalies outside this region. This latent

representation allows us to identify anomalies directly in the latent space by using a Mahalanobis distance on the

distribution induced by the normal examples. We thus eliminate all the problems related to the reconstruction loss

function. To do so, we develop a new approach that trains an encoder by adversarial learning. We assume that we

have a large amount of normal data and a small number of anomalies, which is a common framework for anomaly

detection. We finally conduct a series of experiments proving that AnoEAN performs better than conventional

anomaly detection techniques, including those based on GANs, using both the MNIST base of handwritten digits

(LeCun, 1998) and two standard network intrusion detection databases (KDD’99, NSL-KDD).

4.2 Generative Adversarial Network : Background and related works

Research in Deep neural networks has resulted in the design and development of different deep neural networks

classes (Discriminative, Generative). The goal of the generative model is to learn the density function that describes

the original sample data and then uses this estimated density to generate fake yet realistic-looking data similar
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because of the finite size of the training set, our experiments showed that the projection distribution of normal

examples could diverge slightly from pz. Therefore, at the end of the learning, we represent this distribution by a

Gaussian distribution N (µ,Σ) whose parameters are assessed with a validation base. The anomaly score is finally

the Mahalanobis distance between E(x) and µ:

a(x) =
√

(E(x)− µ)TΣ−1(E(x)− µ) (4.4)

4.3.2 Theoretical analysis

In this section, we develop the loss functions LD and LE (see Eq. (4.2) and (4.3)) in order to identify the optimal

discriminator and encoder. We begin with the discriminator. The formulas of LD can be rewritten by introducing the

integrals instead of the expectations:

LD =

∫

z

−pz(z) logD(z)dz −

∫

x

pxn
(z) log(1−D(E(x)))dx−

∫

x

pxa
(x) log(1−D(E(x)))dx

=

∫

z

−pz(z) logD(z)− pzn(z) log(1−D(z))− pza(z) log(1−D(z))dz

where pzn (resp. pza ) is the distribution of the projection of normal (resp. anomalous) examples into the decision

space. We can express the optimal discriminator D given the encoder E. Let f(D(z)) be the function in the integral

above such that LD =
∫

z
f(D(z))dz. To find the discriminator that minimized LD , we set the derivative of f(D(z))

to 0 :

∂f(D(z))

∂D(z)
= −

pz(z)

D(z)
+

pn(z)

1−D(z)
+

pa(z)

1−D(z)
= 0

⇒ D(z) =
pz(z)

pz(z) + pzn(z) + pza(z)

(4.5)

if pz(z) + pzn(z) + pza(z) 6= 0, we can compute the second derivative to check that this extremum is a minimum :

∂f(D(z))

∂D(z)
=

pz(z)

D(z)2
+

pn(z)

(1−D(z))2
+

pa(z)

(1−D(z))2
> 0 (4.6)

Hence the optimal discriminator is D∗(z) = pz(z)
pz(z)+pzn

(z)+pza
(z) . It corresponds to the Bayes classifier predicting if z

comes from the distribution pz or from the encoder.
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Let us see what the encoder does when the optimal discriminator is plugged into loss function LE . We have:

LE =

∫

z

pzn(z) log(1−D∗(z)) + pza(z) log(D
∗(z))dz

=

∫

z

pzn(z) log

(

pzn(z) + pza(z)

pz(z) + pzn(z) + pza(z)

)

+ pza(z) log

(

pz(z)

pz(z) + pzn(z) + pza(z)

)

dz

=

∫

z

pzn(z) log

(

pzn(z) + pza(z)

pzn(z)

pzn(z)

pz(z) + pzn(z) + pza(z)

)

+ pza(z) log

(

pz(z)

pza(z)

pza(z)

pz(z) + pzn(z) + pza(z)

)

dz

=−

∫

z

pzn(z) log

(

pzn(z)
pzn

(z)+pza
(z)

2

)

dz − log 2 +

∫

z

pzn(z) log

(

pzn(z)
pz(z)+pzn

(z)+pza
(z)

3

)

dz − log 3

−

∫

z

pza(z) log

(

pza(z)

pz(z)

)

dz +

∫

z

pza(z) log

(

pza(z)
pz(z)+pza

(z)+pza
(z)

3

)

dz − log 3

=−KL

(

pzn

∣

∣

∣

∣

∣

∣

∣

∣

pzn + pza
2

)

+KL

(

pzn

∣

∣

∣

∣

∣

∣

∣

∣

pz + pzn + pza
3

)

−KL (pza ||pz) +KL

(

pza

∣

∣

∣

∣

∣

∣

∣

∣

pz + pzn + pza
3

)

− 2 log 3− log 2

(4.7)

Clearly, the optimal encoder minimizes an expression composed by 4 Kullback-Leibler divergences. The mini-

mization of the both terms KL
(

pzn

∣

∣

∣

∣

∣

∣

pz+pzn
+pza

3

)

and KL
(

pza

∣

∣

∣

∣

∣

∣

pz+pzn
+pza

3

)

implies that the encoder tends to the

solution where the three distribution are equal pz = pzn = pza . By maximizing KL (pza ||pz), the encoder maximizes

the divergence between pza and pz i.e. it tries to project the anomalies outside pz. To maximize KL
(

pzn

∣

∣

∣

∣

∣

∣

pzn
+pza

2

)

,

the encoder has to maximize the divergence between pzn and pza , thus it aims at separating the projection of the

normal examples from the projection of the anomalies. By optimizing all of these four divergences together the

encoder tries to project the normal examples into pz and to project the anomalies outside pz and pxn
.

4.3.3 Learning algorithm

Algorithm 1 AnoEAN. Adam hyper-parameters (α = 0.0002, β = 0.5), Learning rate 10−3

Require: batch size m, discriminator step nD, m = ma +mn

Initialize the discriminator parameters wD, the generator parameters θG.

for number of training iteration do

sample batches of {x
(i)
n }mn ∼ Pxn

, {x
(i)
a }ma ∼ Pxa

, {z(i)}m ∼ N (µ, σ2)).
for k = 0, ..., nD do

δw ← ∇w[−
1
m

∑m

i=1 logDw(z
(i))− 1

mn

∑mn

i=1 log(1−Dw(Eθ(x
(i)
n )))− 1

ma

∑ma

i=1 log(1−Dw(Eθ(x
(i)
a )))]

wD ← Adam(δw, α, β)
end for
δθ ← ∇θ[−

1
mn

∑mn

i=1 logDw(Eθ(x
(i)
n ))− 1

ma

∑ma

i=1 log(1−Dw(Eθ(x
(i)
a )))]

θG ← Adam(δθ, α, β)
end for

In Algo. 1, we show the training procedure of our model. We take random examples xn and anomalies xa from

the training set and project them into the decision space with the encoder (i.e., we calculate each E(xa) and E(xn)).
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We add random vectors from the pz distribution to these projected examples, and get the batch that is presented

at the input of the discriminator. The discriminator is modified by a gradient descent to minimize LD( See Eq 4.2);

the encoder is frozen during this step. Then, it is the encoder’s turn to be modified in order to minimize LE(See

Eq 4.3), the discriminator being frozen during this step. This procedure is iterated until convergence. Notice that

to seed up the gradient descent, we modify the loss function of the encoder : LE = −Exn∼pxn
[log(D(E(xn)))] −

Exa∼pxa
[log(1 −D(E(xa)))]. The minimization of this function is theoretically equivalent of the previous one, but it

has larger gradient for bad encoders.

4.4 Experiments

This section evaluates our method’s performance (AnoEAN) on the anomaly detection task and compares it against

other GANs methods and Classical OC-SVM. We describe our experimental protocol, the algorithms used to com-

pare our model, the datasets, and our technique’s implementation details.

The purpose of the evaluation is to show the performance of EAN on the anomaly detection task, especially in

a different setting, where the anomalies are rare. Also, the ability to detect unknown attacks while dealing with a

normal class with many modalities to demonstrate our model’s efficiency compared to state of the art.

4.4.1 Experimental setup

In our experiments, we used three datasets: MNIST, KDD99, and NSL-KDD.

MNIST (LeCun, 1998) is a database of handwritten digits commonly used for image classification problems.

Despite that MNIST does not initially contain normal classes and anomalies, it is often used in anomaly detection to

analyze algorithms’ behaviour and visualize their predictions. In our experiments, we used this dataset in two ways:

1) 1 against all: we consider that a certain number represents the normal class and the remaining nine numbers

represent the anomaly class. For the OCSVM, AnoGAN, ALAD, EGBAD methods, the training set consists of 5000

normal data; the test set includes 1700 examples, of which 80% of normal data and 20% of anomalies randomly

selected among the other nine classes. For AnoEAN and SVM, we additionally inject 10% anomalies into the

learning set; these are chosen among four classes out of nine so that certain figures (anomalies) do not appear

during the learning.

2) n against m: it is based on the same principle as the ”1 against all”, the only difference being that the normal

class is composed of several digits. We group n classes of digits into one normal class and treat the remaining m

digits as abnormal examples. We use the same sample apportionment in the learning and test sets as in ”1 against

all”. The objective is to analyze the algorithms’ behaviour in the case where the normal class is heterogeneous and

can be separated into several subclasses.
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results.

SVM. Although the SVMs often produce efficient solutions for balanced data sets, they are sensitive to un-

balanced data sets (Veropoulos u. a., 1999; Wu und Chang, 2003; Akbani u. a., 2004). The main reason is that

the objective function assigns the same cost C for positive and negative classification errors in terms of penalty

(Veropoulos u. a., 1999). We used a cost-sensitive learning solution by adding a weight for each class that penal-

izes errors (giving a higher weight to the least frequent class corresponding to the anomalies class).

AnoGAN was the first published anomaly detection method based on GAN (Schlegl u. a., 2017). The model

learns a generator able to project random points from a low-dimensional multivariate Gaussian distribution (latent

space) to the distribution of the training data set. The model adversarially learns a discriminator that must separate

the generated data from the real data. After the training stage, we sample a latent space variable using a generator,

followed by gradient descent on this latent variable, to estimate the inverse projection for each element of the test

set. The anomaly criterion combines the reconstruction loss and the feature match loss (distance computed with

the discriminator’s last hidden layer). For each test element, if the optimization cannot find a latent variable that

minimizes the criterion, we obtain a high score.

EGBAD takes advantage of the BiGAN/ALI network structure. EGBAD has an encoder that projects the data into

in the latent space (Donahue u. a., 2016; Dumoulin u. a., 2016). The adversarial training process is driven through a

discriminator that takes as an input the pair (data, latent variable) and must determine which pair constitutes a real

pair consisting of a sample of real data and its coding (x,E(x)), or a false data sample and the corresponding latent

space input of the generator (G(z), z). For a given test input x, EGBAD (Zenati u. a., 2018a) uses the encoder to

infer the latent variable z = E(x) that will be used as input for the generator to reconstruct the test input G(E(x)).

The anomaly criterion is the same as that of Schlegl u. a. (2017).

ALAD is a bidirectional GAN, based on the ALICE architecture (Li u. a., 2017). It directly infers the reconstruction

of data in the test phase using an encoder and the generator G(E(x)). In ALAD (Zenati u. a., 2018b), the authors

regularize the conditional distribution by adding another discriminant Dxx(x,G(z)) to approximate a conditional

entropy constraint. The aim is to enhance EGBAD by explicitly forcing the encoder and generator during the training

so that both are inverse. The authors also apply the spectral normalization (Miyato u. a., 2018) to regularize the

training. The anomaly score is the L1 reconstruction error in the discriminant space Gxx between the actual data

and the sample generated using the discriminant hidden layer before the logit layer.

OCSVM, ALAD, AnoGAN and EGBAD are one-class methods: Only normal data is used in the learning phase.

In AnoEAN and SVM, we use few additional anomalies, leading to unbalanced classes.
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Chapter 5

Empirical Time Series Evaluation Of

In-Vehicle Intrusion Detection System

In this chapter, we study the application of anomaly detection for in-vehicle Intrusion Detection System. To this

end, we focus on CAN data as the primary data representing the In-vehicle’s network behaviour. We simulate and

analyse automotive CAN data to understand its nature and inner structure (functionally and statistically). We will

present in this chapter a brief analysis of CAN data as Time series and discuss the impact of the various attacks

on data. We review the related work on anomaly detection for CAN IDS, followed by our contribution. We introduce

a multivariate time series representation for asynchronous CAN data, enhancing the temporal modelling of deep

learning architectures for anomaly detection. We study different deep learning tasks (supervised/One-class) and

compare several architectures to design an in-vehicle intrusion detection system that fits in-vehicle computational

constraints. Our system is time window wise: any given time frame is labelled either anomalous or normal. We

conduct experiments with many types of attacks on an in-vehicle CAN using the public SynCAn Dataset. We show

that our system yields good results and allows us to detect many kinds of attacks. This work has led to the publication

of a conference paper:

• Elies Gherbi, Blaise Hanczar, Jean-Christophe Janodet, Witold Klaudel. Deep Learning for In-Vehicle Intrusion

Detection System. International Conference on Neural Information Processing (ICONIP 2020), Nov 2020,

Thailand. pp.50–58.

5.1 Introduction

In recent years, a lot of effort has been made to build more intelligent vehicles and enable them to offer different ser-

vices, ranging from automation and driver assistance to infotainment applications. To achieve this, microcontrollers

95



ECUs (Electronic Control Units) are deployed over the vehicle. They communicate with each other on the automo-

tive bus system using various bus field busses (see Section.1.3.1), the main one being the Controller Area Network

(CAN). Future applications like autonomous transportation require various technologies that allow the vehicles to

interact with other vehicles (VANETs), pedestrians and road infrastructure. These controllers make the vehicles

more connected with the external world, allowing new functionalities and dramatically increasing the security risk as

exposed in the first chapter 2.3.

In this work, we focus on the CAN bus, which is de facto standard for in-vehicle communication. In-vehicle

networks technologies must ensure a set of requirements, some of which are time-critical and safety-related. CAN

protocol uses broadcast communication techniques. Each node in the network can send and receive a packet

to/from the bus. CAN protocol increases the network elasticity and guarantees the latency time, and meets the real-

time systems requirements Avatefipour und Malik (2017); It was designed to be lightweight, robust, and fast to meet

the different in-vehicle systems and safety requirement. However, the CAN bus contains several vulnerabilities. It

does not include the different security criteria in its design. It lacks security facilities like message authentication that

prevents an unauthorised node from joining the communication and broadcast malicious messages to other nodes.

It also lacks encryption because it would make overhead for real-time communication. The protocol’s weaknesses

are as many possibilities left to hackers to attack, as shown in the cyber-security literature Nilsson u. a. (2008);

Avatefipour und Malik (2017). Several attacks scenarios have been demonstrated on vehicles. E.g., Koscher u. a.

(2010a) has performed four different tests on the control window lift, warning light, airbag control system and central

gateway. Hoppe u. a. (2011) gives an experimental analysis of vehicle attack surface and wireless access; They

inject an attack when the CD is played by the victim vehicle. Due to this, in-vehicle security has been paid more and

more attention, and extensive research has been done to develop In-Vehicle intrusion detection systems, most of

them using rule-based and statistical approaches.

We focus on anomaly detection based intrusion detection using the advances in deep-learning architectures

to handle the CAN data structure. To do so, we define three levels for the in-vehicle IDS framework: 1) CAN

data level, 2) sequence modelling level and 3) detection level. The CAN data level selects the information that the

intrusion detection system is monitoring and how it is structured and organised to fit the sequence modelling. The

sequence modelling level consists of the deep-learning models that can learn complex representations and hidden

characteristics from the first level’s time series data. The detection level uses this representation to detect anomalies

by establishing a trust score for the actual events. The detection phase depends on the aim of the IDS and also on

the type of available data. If we have times series labelled with known attacks, then we are in a supervised learning

setting, and the goal of the model is to discriminate the attack patterns from the normal behaviour patterns. In the

other case, the type of attacks is unknown, and no labels are available. In the One-class learning setting, the IDS

has to learn the normal behaviour, and the goal is to detect any behaviour that deviates from the normal patterns.

This research aims to propose a general in-vehicle IDS using deep learning; we propose a representation for
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the same emission flow but contains wrong information.

5.2.2 CAN Intrusion detection System : related works

In-vehicle IDS may be either knowledge-based or anomaly-based (see Section 2.4). In knowledge-based ap-

proaches, the IDS use information about the attack and define a signature so that if a new event matches this

signature, then an alarm is raised. These approaches are very efficient to deal with known attacks. As for anomaly-

based approaches, the method starts by defining a model (profile) that specifies the system actual normal behaviour.

Any behaviour that does not conform to the normal profile is considered an anomaly. The anomaly-based IDS have

many advantages: there is no need to maintain a database of signatures, and they can detect unknown attacks

since, at least from a theoretical standpoint, each attack compromises the normal behaviour of a system.

Dupont u. a. (2019) has provided an exhaustive survey about the actual CAN IDS and derived a comprehensive

taxonomy from CAN data perspectives. The authors have proposed a well-fitting CAN IDS categorization by sep-

arating 1) the frame level (by message or sequential data), 2) the data source, and 3) the detection phase. The

frame-level refers to the number of messages needed to build a model and detect an attack. A single message-

based CAN IDS learns whether a frame is normal by using the information contained in this frame only. Kang und

Kang (2016) uses deep belief networks to learn about normal packets’ statistical properties and abnormal packets

to discriminate between them. In Martinelli u. a. (2017), the payload of the message is used to classify a message

as normal or abnormal. Other CAN IDS use information that can be retrieved from consecutive messages due to

the regularity of ECUs communication; The time interval and ID’s meta-data can be used as the frequency of IDs.

In Young u. a. (2019), the authors propose a simple IDS based on time intervals, assuming that they are regular for

each CAN ID. In Moore u. a. (2017), they also use time interval and frequency analysis, and they have shown that

false-positive could increase due to some fluctuation caused by bus access negotiation.

With the advances of deep learning for time series, many deep learning architectures have been used to solve

sequential modelling problems, and anomaly detection based CAN IDS is one of them. In Song u. a. (2020), the

authors propose a deep convolutional network classifier IDS, a supervised approach designed to learn about traffic

patterns and detect different malicious behaviours. They reduce the unnecessary complexity in the architecture of

inception-resnet. They have tested their model on different types of attacks using bit-level CAN dataset where each

input consists of 29 sequential CAN IDS. In Hanselmann u. a. (2020), the authors tackle a large dataset with an

extensive type of attacks (SynCAN dataset). They propose a deep learning architecture that handles CAN data

structure; It is composed of independent recurrent neural networks, one for each ID in the input. The goal of those

separated LSTM is to learn about the state of each ID. The whole state of the network is represented by a joint

vector of the outputs of all separated LSTM. The second part of the architecture takes the joint latent vector as an

input for an autoencoder (fully connected network) that enables One-class learning; the autoencoder’s task is to

98



reconstruct the signals for each possible input message based on the joint vector. The attack detection occurs by

observing the deviation between the signal value of a message at the current time step with its reconstruction.

In Seo u. a. (2018), the author proposes a combination of two networks using only the IDs of CAN data: A normal

discriminator (Binary classifier) to detect known attacks and a GAN-based IDS to detect the unknown attacks.

Besides, they transform the input into a sparse image representation of CAN payload with one hot-encoding. Both

networks’ architecture is composed of a convolutional network, and the anomaly detection process has two steps.

The first is to use the classifier to detect if the actual image (representation of successive CAN IDs) is abnormal,

and if it is not, the CAN image representation is received by the discriminator learnt with the GAN to detect if the

CAN image is a fake (Anomaly). Pawelec u. a. (2019) proposes an IDS by analyzing bit-level CAN message, using

LSTM to predict the next message based on the history size of 10 messages; If the distance between the predicted

message and the actual message is bigger than a threshold, then the message is an anomaly.

We note that, in the literature, many dimensions can be considered to design the CAN IDS. The used data

highly impacts the type of detectable attacks and the building of the model that can learn about a broad range of

situations to ensure that the model encompasses the exhaustive space of normality and decreases the false positive

rate. There is also another dimension, which is the In-Vehicle context, where the memory and computation power

is limited, so the practical feasibility of a given CAN IDS needs to be evaluated in front of the constraints of the

in-vehicle context.

5.2.3 Contribution focus and positioning

In summary, the literature of CAN bus IDS strategy and methods are proposed based on how the attack manifest into

the CAN bus network with manipulation on CAN frequency and CAN packet payload. In section 2.3 of the second

chapter, we presented the recent studies concerning the different attack surfaces within the CAN network and its

vulnerabilities Lee u. a. (2017); Taylor u. a. (2015); Lee u. a. (2015). Briefly, the CAN bus traffic is targetted in two

ways, attack on CAN packet frequency and attack on CAN packet payload. The first one affects the flow of the traffic

network, and the second affects the content and the semantic of the message. Indeed, the time interval between the

CAN packet IDs is fixed and periodic (see Fig 5.2). Thus, the attacks that are involved in the CAN packet frequency

is made by inserting an extra packet or erasing a legitimate packet from the CAN bus traffic by hijacking the timing

of the transmission of the packets. On the other hand, attacks on the payload are made by manipulating or spoofing

CAN IDs content. This kind of attack aims at changing the values within a packet content while maintaining the

content valid, meaning that it would not produce any effects on the vehicle flow communication.
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CAN data level

Concerning the CAN data level most techniques illustrated above in terms of inspection level are flow-based and

use mainly the frequency as the main feature. This approach of detecting attacks is straightforward and legitimate

due to the predictability of regular CAN bus traffic, which broadcasts packets at a fixed time interval. This approach

can only detect attacks that alternate this fixed time interval, and also, technical issues in the network can occur,

which will lead to false positives. The other methods that consider the payload feature inspection uses a specific

feature (like speed engine pressure and engine speed, steering wheel, etc ...). In reality, most of those packets

are encoded, and the message specification to obtain the values and features from the packet message is kept

confidential by the constructors, and the available public datasets are encoded.

Most methods in the discussed studies focus on improving the core model by using Deep learning but neglect

the examination of pre-processing parts. The input data need to consider the two inspection level so the core model

can learn about the flow and the semantic content of the in-vehicle network. Also, The IDS overall performance is

greatly influenced by the size of the data, primarily for CAN, as it broadcasts a large number of packets per second.

In CAN data level we propose a new representation that can handle the issues mentioned by grouping both

content and frequency information. We will discuss the data construction in more detail in the section below 5.3.1.

Sequence modelling level

In this work, we focus on Deep learning for sequence modelling of time series. Thus our input is a sequence of

different messages represented by their IDs. We define two modelling scenarios (point-wise and window-wise). The

point-wise scenarios is when the model output score related to a single message or ID. The Window-wise is when

the model’s output is related to a sequence of messages IDs. the window-wise approach is more about giving the

state of the network given a time-frame, and point-wise is about labelling each packet in the network if it normal or

malicious. Obtaining an output for each data point is impractical, especially from a real-time CAN which generates

a considerable volume of data in milliseconds.

We use both One-class and classification modelling to deal with both know and unknown attacks. We analyze in

section 5.3.2 different deep learning architecture in terms of accuracy metrics and memory constraints. The results

are discussed in the experimentation section 5.4.

Detection level

For the detection level, the window-wise modelling enables detecting attacks intervals. To detect the source and

the main concerned ID or messages, it more of a forensic task. The proposed detection is about defining if the

actual time frame is legitimate behaviour of the overall system or malicious behaviour.

101







final architectures layer in the supervised task.

Fully-connected network (FCN)

FCN is a standard architecture for deep learning models Bagnall u. a. (2017). FCN is a generic architecture usable

for any type of data. All the neurons in layer li receive the signal from every neuron in the layer li−1 and send their

output to every neurons of the layer li+1 with i ∈ [1, L] (L number of layers in the architecture). The elements of the

time series are treated independently from each other. Thus the temporal dimension of the data is ignored with this

architecture.

Recurrent neural network (LSTM)

Recurrent neural networks are explicitly devoted to sequence modelling Hochreiter und Schmidhuber (1997). They

avoid the long-term dependency vanishing problem using a cells state that is used as internal memory. At each time,

the network learns which information to add, forget, and update into the cells state. Based on the cells state, inputs,

previously hidden state, the LSTM learn a vector representation (hidden state) of the time series a the current time.

1D Convolutional neural network (CNN)

Motivated by CNN’s success in various domains, researchers have also adopted them for time series and sequence

modelling. In the context of time series, convolution is a sliding filter over the time series. The time series exhibits

only one dimension. Thus this convolution will result in a moving average with a sliding window. Therefore, applying

several filters results in learning several discriminative features which are useful for sequence modelling. Besides,

the same convolution is used to find the result for all timestamps t ∈ [1, T ] (weight sharing). This is a valuable

property, as it enables the model to learn filters that are invariant across the time dimension. 1DCNN for time series

is characterized with a causal convolution; It means that the output at time t is convolved only with elements from

time t or earlier in the previous layers. This characteristic ensures that the sequence input must have a one-to-one

causal relationship in chronological order. The result of convolution can be considered as a time series whose

dimension is equal to the number of these filters used. 1DCNN has another layer with pooling operation, which

achieves dimension reduction of feature maps while preserving most information B.Zhao u. a. (2017).

Temporal convolution network (TCN)

TCN with dilated convolution is designed to combine simplicity, and long-term memory Bai u. a. (2018). There are

many differences with 1DCNN described above. In addition to the causal convolution, the architecture can take a

sequence of any length and map it to an output sequence with the same length. To achieve this, zero-padding of

length (kernel size - 1) is added. Moreover, the TCN architecture can look very far into the past using a combination
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Figure 5.6: 1-D Convolution for Time Series.

of residual layers and dilated convolution. The dilated convolution van den Oord u. a. (2016) enables an exponentially

sizeable receptive field using dilation factor d and the filter size k. When using dilated convolutions, we increase d

exponentially with the network’s depth, allowing a very large history using deep networks.

Figure 5.7: Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d= 1,2,4 (when

d=1, regular convolution) and filter size k= 3. The receptive field is able to cover all values from the input sequence.

Discussion

In-vehicle IDS require the model to have good detection results despite strong constraints on computational re-

sources. For FCN, the number of parameters increases exponentially with the input sequence’s size, thus increasing

the size of the model. CNN and TCN benefit from parallelism; convolutions can be done in parallel since the same

filter is used in each layer, unlike in LSTM, where the predictions for later timestamps must wait for their predeces-

sors. LSTM and TCN both include in their architectures a way to deal with the history size, while CNN is limited to
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the filter size.

5.3.3 Anomaly detection models

Detecting anomalies raises many difficulties. The major problem is that few or even no anomaly labels are available

in the historical data. The goal is to build a system that can face unknown attacks and be able to use the few

anomalous examples when available. Therefore, analyzing both One-class and supervised anomaly detection is

relevant to design novel IDS. We consider deep learning architectures that are relevant for sequence modelling

for each task. We compare those architectures on a one-class feature learning task using an autoencoder and a

supervised task using an FCN.

Deep one-class IDS

In this work, the autoencoder aims to reconstruct the input sequence (a multivariate time series). Formally, given

a sequence T = (t1, ..., tK) where Ti ∈ R
n and n is the number of variables, the autoencoder aims at predicting

T̂ = (t̂1, ..., t̂K) at each time (sequence-to-sequence problem). The autoencoder that performs a nonlinear mapping

from the current state to its identity decomposes into two parts: the encoder and the decoder. The encoder projects

the temporal pattern dependencies and trends of the time series in latent space h. The latent vector is given

by hi = f(T.W i + bi), where W i and bi respectively denote the weight matrix and bias up to the bottleneck i-th

layer. The decoder, considered as the transposed network of the encoder, uses the information of latent space h

to reconstruct the input sequence: T̂ = f(hi.W i
d + bd). The mean square loss error (MSE) is used to perform an

end-to-end learning objective: L(T, T̂ ) = 1
K
Σn

i (ti − t̂i)
2. At the inference phase, the MSE is used as an anomaly

score. The idea is that the autoencoder learnt to reconstruct only the normal data and will obtain a high MSE on the

anomaly.

Deep Supervised IDS

Supervised IDS use a FCN to make anomaly prediction from the vector representation of the time series learnt from

the sequence modelling level. In this case, we suppose that the training dataset contains labelled attack examples

and these attacks from a homogenous class. These requirements are generally reached when we construct a

model that detects well-known types of attack. Formally, we assume two classes: Normal (0) and Anomaly (1). The

learning set is a collection of pairs {(T1, Y1), ..., (TK , YK)} where Ti is a multivariate sequence and Yi ∈ {0, 1} is

the corresponding label. The classifier training is performed by minimization of the cross-entropy between the true

class and predicted class. Notice that the classes are highly unbalanced, and the anomaly is much smaller than

the normal class; the classes are therefore weighted in the cross-entropy in function on their prior. At the inference

phase, the MLP returns the probability of anomaly.
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only be detected if we consider a set of signals with some correlation between them.

Continuous change attack: A signal is overwritten so that it slowly drifts away from its true value. This assumes

that the attacker wishes to set a signal to a concrete value while trying to fool the IDS with realistic small changes in

the signal.

Playback attack: A signal value is overwritten over a period of time with a recorded time series of values of

that signal. The attacker hopes to trick the IDS by sending completely real looking signal values of a different traffic

situation.

Suppress attack: The attacker prevents an ECU from sending messages, for example, by turning it off. This

kind of attack means that some particular ID messages do not appear in the CAN traffic for a period of time.

Flooding attack: The attacker sends messages of a particular ID with high frequency to the CAN bus. This

attack is easier to perform in practice than the ones mentioned above since the attacker does not need to control an

ECU. It only requires sending additional messages to the CAN bus to “overwrite” the real message values.

Overall, most attack in the test data last 4s (See Fig 5.8). Also, we can categorise the attack impact as flow or

payload based. Flooding and suppress are visible when we look at the flow behaviour, while plateau, playback, and

continuous attack types are more visible when we look at the payload signal values. The below section will give the

matrix construction’s different parameters that yield a representation allowing the sequence modelling to consider

both flow and payload information.

Occurrence matrix settings

We set five seconds as an estimated time-frame for the intrusion detection system to monitor the vehicle. Thus,

the sampling window is fixed to ∆ = 50ms, and each sequence is composed of K = 100 consecutive elements.

From a general standpoint, K and ∆ are hyperparameters which depend on the domain expert requirement (the

maximum memory size, forensic analysis and safety protocol to enable the prevention actions). The feature matrix

size is (100*30) where 30 is the sum of 20 signal features and 10 occurrence features. We scale the data between

[0, 1] using min-max normalization.

A sequence is labelled normal if all elements in the sequence are normal. If a sequence contains at least one

anomaly, the sequence is considered as an anomaly. We are trying to assess whether the IDS can detect the

attacks even at an early stage. SynCAN database is a collection of ∼ 2′000′000 normal sequences. 70% of them

are used for training and 10% for validation. The last 20% are mixed with anomalous sequences to build the test

data. We have 5 test databases, one per attack, made of 70% normal examples and 30% anomalous examples.
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5.4.2 Models training and Results

We use four different architectures (FNN, CNN, TCN and LSTM)with two experiment settings: One-class anomaly

detection and supervised anomaly detection.

We have trained the models on 500 epochs for all architecture, with a batch size of 100. We used adam Kingma

u. a. (2014) as the optimizer for the gradient descent with learning rate decay when a metric has stopped improving.

Models often benefit from reducing the learning rate by a factor of 0.2 after 100 epochs. And we shuffle the data in

each epoch. For these experiments, we have used Keras and TensorFlow (Chollet u. a., 2015; Abadi u. a., 2015) as

the main deep learning framework. We used Nvidia Tesla M40 and Nvidia Tesla P100 GPUs.

We evaluate the model’s performance with F-measure, Precision and Recall metrics. Those metrics are re-

lated to basic metric, True positives (TP) and true negative (TN), both measure the number of attack and normal

example respectively that were correctly predicted by the model. False Positive and False-negative represent the

proportion of attack and normal example that were incorrectly predicted. So, Precision Prc = TP/(TP + FP )

and Recall Rec = TP/(TP + FN), respectively, describe the percentage of correctly identified attacks versus

all predicted attacks and all actual existing attacks. F-measure is the weighted average of Precision and Recall.

F1 = (Prc+Rec)/(Prc+Rec).

In Table 5.1, we show the metrics on the One-class task using autoencoders with different architectures. All

architectures show excellent performances for all types of attack. TCN is slightly better on most attack cases and

comparable with LSTM on Plateau attack. Notice that on the Suppress attack, the models perform worse than on

the other attacks, while the CNN collapses with a lot of false positive. It shows that Suppress attack is unobtrusive.

Moreover, in the representation matrix M , there is no explicit mention of the missing values. Nevertheless, TCN

and LSTM still have good results. Thus they can implicitly retrieve the information in the learning stage from the

representation matrix.

TCN LSTM CNN FCN

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Continues 0.997 0.991 0.994 0.991 0.988 0.990 0.996 0.988 0.992 0.993 0.978 0.985

Plateau 0.995 0.984 0.990 0.996 0.985 0.991 0.993 0.979 0.986 0.990 0.981 0.987

Suppress 0.986 0.957 0.971 0.984 0.954 0.969 0.951 0.554 0.700 0.951 0.862 0.904

Flooding 0.995 0.986 0.991 0.996 0.988 0.991 0.996 0.989 0.992 0.996 0.988 0.991

Playback 0.996 0.989 0.992 0.996 0.986 0.991 0.994 0.989 0.991 0.995 0.988 0.991

Table 5.1: Autoencoder based architectures results

In Fig 5.9 we show the visualization of the latent representation using the t-Distributed Stochastic Neighbor

Embedding (t-SNE) technique for dimensionality reduction that is particularly well suited for the visualization of high-

dimensional datasets van der Maaten und Hinton (2008). The latent space contains a compressed representation

of the CAN data input (Occurrence matrix), which is the only information that the decoder can use to reconstruct
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matrix M . We notice for the Flooding attack, the performances of all the models decreases dramatically. Indeed, this

attack impacts the CAN data flow, and this information is encoded through the occurrences in the matrix. We also

observe that the performances are slightly worse on the Playback and Plateau attacks. Therefore, payload-based

attacks are also easier to detect when the occurrence features are present in the matrix. Hence full matrix with both

signal features and occurrence features contributes to the detection of both payload and flow-based attacks.

TCN CNN LSTM

Precision Recall F1 Precision Recall F1 Precision Recall F1

Continues 0.995 0.994 0.994 0.983 0.990 0.986 0.945 0.957 0.950

Plateau 0.973 0.978 0.975 0.995 0.998 0.996 0.959 0.984 0.971

Suppress 0.986 0.996 0.990 0.990 0.971 0.980 0.939 0.969 0.953

Flooding 0.985 0.978 0.981 0.971 0.915 0.928 0.927 0.972 0.913

Playback 0.992 0.998 0.994 0.992 0.772 0.868 0.935 0.924 0.929

Table 5.3: Classification using the standard sampling without occurrence features

Finally, in Table 5.4, we have compared the models in terms of training time and size of parameters. The latter

reflects the memory needed by the IDS to work. Remind that the IDS are embedded in-vehicle where memory

and computational resources are limited. TCN is good both in terms of training time and model size. TCN benefits

from filters shared weight, so it dramatically reduces the number of parameters. When the size of the input data is

increasing, the number of parameters does not explode exponentially. Unlike LSTM, TCN convolutions can be done

in parallel since the same filter is used in the layer. Therefore, even though the series is long in both the training and

inference phase, it can be processed as a whole, whereas with LSTM, they must be processed sequentially.

Models Training time Number of parameters model size (32-bits floats)

FCN 8022s 75238 0,3 MB

CNN 10011s 9518 0.03 MB

TCN 7969s 3822 0.01 MB

LSTM 92714s 2920 0.01 MB

Table 5.4: models Computational resources

5.5 Conclusion

In this chapter, we discussed our second contribution towards developing an in-vehicle Intrusion Detection System.

We introduce a novel in-vehicle intrusion detection system based on an extensive series of experiments that validate

the different levels of the system: 1) At the data level, we use a representation matrix to structure the CAN data

information that groups both flow and payload information. 2) At the sequence modelling level, we use a TCN ar-

chitecture since we have shown that it performs well concerning the detection metrics and computational resources

consumption. 3) At the detection level, we jointly use a classifier and an autoencoder so that the IDS can deal with

both known and unknown attacks. Notice that our results were established by using the SynCAN Dataset, which is
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the only available public dataset as far as we know.

The in-vehicle system has many components, and we have implicitly assumed that the monitoring of the data was

centralized. Nonetheless, in new secured in-vehicle architectures, the system’s parts are isolated, so the CAN data

topology changes, and we need to think about a distributed framework for IDS. Another important issue concerns

deep learning models’ compression to fit the in-vehicle system’s embedded capacity better.
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Chapter 6

Distributed anomaly detection based

in-vehicle intrusion detection system

In this chapter, we focus on the in-vehicle network infrastructure and deployment. Future in-vehicle (autonomous

vehicles) network architectures will consider many aspects of modern network security by design. The general

system contains many sub-systems related to different tasks with specific functional priorities and dedicated security

mechanisms. For example, a decision pilot sub-system is responsible for the functions related to autonomous

driving. The infotainment sub-system is related to different operations associated with passengers’ entertainment;

both systems are parts of the global system. Still, for security reason, both sub-systems are isolated, and no

communication is possible between the sub-systems as the infotainment, since infotainment sub-system is more

exposed to external communication (internet) (see Chapter 2 Section 2.1.1). In this work, we propose a Distributed

Anomaly Detection IDS (DAD) using a deep learning model that fits the in-vehicle network architecture. DAD aims

to model the complex correlations among different views (sub-systems) while adopting the same isolation constraint

on the sub-systems. On top of that, we introduce a new optimisation scheme that lowers both the computational

inference time and the IDS’s communication overhead.

6.1 Introduction

Future In-vehicle network architecture is composed of different subsystems (ECUs). Each subsystem is responsible

for specific services that ensure the autonomous functioning of the vehicle. For functional and security reason,

separate subsystems are isolated, forming a hierarchical architecture of the whole system. In that context, data

is represented with different views and can include multiple modalities or various features. These views may be

obtained from multiple sources or different feature subsets. In this work, each subsystem contains a probe (S) that
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6.2 Related works

Multi-view learning and multi-modal Deep learning architectures have been concerned in many anomaly detec-

tions problems, especially in network environments forming many swarms like VANet’s, cloud computing and edge

computing areas. In those cases, most data is collected from different sources, or different features extractors Xu

u. a. (2013); Peng u. a. (2018); Ding u. a. (2019); Marcos Alvarez u. a. (2013); Ji u. a. (2019). In other words, data

instances are usually depicted by heterogeneous feature spaces in the form of multiple views. Several multi-view

learning approaches can be considered to develop an anomaly detection model based IDS. Multi-view representa-

tion learning is concerned with learning representations (or features) of the multi-view data that facilitate extracting

readily useful information when developing prediction models. Data from different views usually contains com-

plementary information, and multi-view representation learning exploits this point to learn more comprehensive

representations than single-view learning methods Li u. a. (2019); Xu u. a. (2013). There has been increasing re-

search applied to multi-view learning using Deep Learning, deep architecture based methods including multi-modal

deep Boltzmann machines Srivastava und Salakhutdinov (2014), multi-modal deep autoencoders Feng u. a. (2014);

Wang u. a. (2015), and multi-modal recurrent neural networks Donahue u. a. (2017). In the existing literature, most

in-vehicle IDS neglect the inherent multi-view property of data due to the lack of IDS problem modelisation con-

cerning future in-vehicle architectures. The lack of datasets related to it is mainly the reason. Thus, building and

IDS’s challenges and constraints for future in-vehicle architectures are not implemented in most in-vehicle IDS lit-

erature. Few works tackle building an in-vehicle IDS that monitors the CAN bus network by proposing a structure

of distributed anomaly detection system. In Wang u. a. (2018) the author propose a distributed IDS based on hi-

erarchical temporal memory (HTM). The input at each detector in the sequence is the bits from the packet’s data

field related to each ID. Then the model using the HTM algorithm learns to predict the next data field of each ID.

An overall score within a time window for the full input sequence groups the different IDs scores. InHanselmann

u. a. (2020) the authors also tackled the problem in the same manners in terms of distributed modelling, where the

data input modalities are sequences related to a specific ID. The authors proposed multi-view architecture based

on independent recurrent neural networks (LSTM for each ID that gets sequence associated with this ID as inputs).

The joint latent vector is fed into a subnetwork of consecutive linear layers in an autoencoder setting. At each time

step, this subnetwork’s task is to reconstruct the signal values of each possible input message solely based on the

current joint latent vector. The drawback in the IDs based distribution is that both propose several independent sub-

network equal to the number of IDs. In other terms, those architectures and algorithms don’t consider the restrained

resources available in the in-vehicle systems. The communication overhead is augmented with a number of signals

and processing equal to the number of IDs available on CAN data. In this work, we formulate the problem related to

this new type of in-vehicle architectures and propose a general framework that can be extended to fit autonomous

vehicles network systems.
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6.3 Method and modelling

6.3.1 Problem Statement

We consider a distributed architecture for network intrusion detection system. Firstly, we assume that we have p

probes (S1, S2, ..., Sp) that monitors the vehicle’s different subnetworks (CAN bus communication between different

ECUs). Each probe Si hosts a local anomaly detector Di. The input of detector Di is a multivariate time series Ti.

The aim of Di is to distinguish between the normal pattern and the attack pattern based on the features extracted

from Ti only. Formally Di(Ti) ≈ P(yi = 1|Ti) where yi ∈ [0, 1] (with 1 for normal example and 0 for anomalous

examples).

The probes are not allowed to exchange information between them. They exchange information only with the

bastion B. We want to limit this exchange of information as much as possible to reduce the communication over-

head. To achieve this goal, we use two levers. On one hand, the detectors do not send information at each step of

time: it assesses the probability of an attack Di(Ti) and raises an intrusion alarm ei ∈ {0, 1} if this value is larger

than a given threshold τi. Formally,

ei =











0, if Di(xi) ≥ τi

1

(6.1)

If no probe raises the alarm, then no information is sent to the bastion by any probe. On the other hand, if only

one of the probes raises the alarm, the bastion asks all the probes to transmit information about their status and

local data. This is the second lever where we act: as we shall see below, the detectors are based on deep learning

and designed to provide a condensed (summarized) representation of the data using a function Gi. Therefore, the

detector Di does not transmit raw input data Ti but a condensed representation denoted vi, vi = Gi(Ti). The bastion

hosts an anomaly detector DB that groups the different representation vi to decide on the global system behaviour

DB(V ) ≈ P(yB = 1|V ).

This allows reducing the communication overhead dramatically. To quantify this, let us introduce the following,

communication cost function ζ: Given any vector W , let |W | denote the size of the vector; then

ζ(W ) = k|W |+H (6.2)

where H is the incompressible cost of initiating a message sending and k is a parameter that allows adjusting the

importance of both criteria.

Now, with respect to an input series of raw data Ti, let N be the number of data points in a given dataset; N is

the number of messages that would transit through the network to the bastion B in the absence of local detector Di

(Centralized model see Fig 6.2(b)). In the presence of detector Di, the number of such messages is dramatically
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reduced, so let Ne be the number of messages sent from Di to the bastion B. Moreover, the transmitted information

is vi which is much lighter than Ti, so the communication gain of our techniques is the following:

gain =

N
∑

1

ζ(Ti)−
Ne
∑

1

ζ(vi) (6.3)

We note that the choice of the threshold τi impacts the detection precision of the model. An over optimisation

is when the probes don’t send the features vector representation vi to the bastion, and at the same time, an attack

occurs. In this case, the communication optimisation also reduces the precision of detection and generates an error.

The aim is to maximise the precision of detection and reduces the communication cost. The gain represents the

optimisation rate accomplished without committing an error.

Altogether, these severe communication requirements of having negligible overhead induced by the IDS, re-

serving ample resources for the vehicle’s intended network services. Below, we present the architecture and the

different steps of modelling a distribute anomaly detection IDS (DAD) subject to design a practical solution for the

aforementioned problem.

6.3.2 Proposed model

The overall goal is to build a model that detects attacks in a car when they happen. The model must respect and fit

the in-vehicle network’s distributed architecture and, more precisely, reduce the communication overhead brought

by the detection process. The framework of our approach is summarized in Fig 6.3. The first Block is composed

of a separate sub-network based on the Temporal Convolutional Network to learn the local feature representation

of each input sequence. A Fully Connected Network classifier takes the joint feature representation yielded by the

sub-network models to return the global network system’s state.

We propose a hierarchical Distributed intrusion detection system based on multi-view deep learning architecture

to respond to the problem mentioned above (Section 6.3.1 ). The model has multiple inputs sequences Ti related

to each probe Si. The model returns multiple outputs {ŷi}
P
i=1 and ŷB . ŷi = Di(Ti) represents the local normality

probability for each probe, and ŷB = DB(V ) represents the bastion probability of the normality of the whole system.

We denote yd the final decision based on the combination of ({ŷi}
P
i=1, ŷB , ei).

The model captures each probe Si local pattern as a smaller feature vector representation of the input through

a sequence modelling transformation Gi. Those Features vectors vi are sent to the bastion B to predict the global

system state. We want to optimise the overhead communication induced by embedding our IDS in the in-vehicle

network system. Thus, using a distributed network reduces the size of the information sent from the porobes to the

bastion by sending the feature vector vi representation alternatively of data input sequence Ti. The second point

is to reduce the communication rate between the probes and bastion. The idea is to prevent sending the features
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Model learning

Since dependencies among local labels and models play an important role in extracting hierarchical dependencies,

we privilege the local classification and global classification, meaning that each sub-network model Di learn a local

feature representation relative to each probe. Those representations will then be jointly fed to the upper sub-network

classifier DB to learn about a global pattern based on the join feature representation vector. Hence, giving a second

assessment of the network’s general state with the overall network information’s abstraction. we define the objective

function as Eq 6.4:

LDAD =

p
∑

i

LSi
+ LSB

(6.4)

The first terms is the loss functions of model Di. The next term is the global classifier’s DB loss function, which

analyses dependencies among the feature vectors vi to learn the network system’s global pattern. Both terms

represented with the binary cross entropy loss function (See Eq 6.5, Eq 6.6). We note that Y represent the true

label for a given training sample (T, Y ).

LSi
(Ti, Y ) = −Y log(Di(Ti)))− (1− Y )log(1−Di(Ti))) (6.5)

LSB
(V, Y ) = −Y log(DB(V )))− (1− Y )log(1−DB(V ))) (6.6)

The proposed framework leverages both local label dependencies, and models relations throw feature repre-

sentation to facilitate the learning process. It constructs deep network representation and classifier for each view

and can make a single view prediction for specific local view. For the model learning, we propose to combine the

sub-networks Di and the global classifiers DB together. The backpropagation is used to train the sub-networks and

classifiers jointly.

Threshold optimisation

After the learning phase, the proposed approach has multiple output prediction values. For a given test samples the

following probabilities are yield preds = ({ŷi}
P
i=1, ŷB)

The intrusion detection final decision based on the DAD model is not directly based on the values returned in

preds. Indeed, we add another step that we call the optimization step. As explained above, we aim to make DAD

predictions more economical in terms of communication overhead. To this end, we deduce ei from ŷi according to
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Eq 6.1, based on the threshold of certainty τi where ei ∈ [0, 1] (1 for sending the message, 0 for preventing sending

the message). Each probe Si send its related embedding features vi when its model Di yield a score ŷi lower than

the threshold τi, that defines how much the model is certain about the normality of the local pattern in the probe Si

given a sequence Ti.

We define yd = f(E, ŷb) the final anomaly score Eq 6.7, where E : (e1, ..., ep).

yd =











1, if ei = 0, ∀ei ∈ E

ŷb

(6.7)

yd represents the final anomaly score yield by DAD, if ∀ei ∈ E, ei = 0, yd = 1 it means that all the probes flagged

an affirmation of the normal state of the system and no more processing is needed, so the probability score of yd

is set to 1. In that case, two optimizations are done, the first is the processing of the model Db, and the second is

the communication of the different representation vectors vi. On the other hand, if one probe is not certain about its

local state’s normality, ∃ei ∈ E, ei = 1, the bastion is requested to launch the model DB and all vi are sent. In that

case, the only notable optimization is the size of vi compared to Ti in a centralized model.

6.4 Experimentation and results

This section presents the different experiments setting and results concerning the workflow used to build the DAD

framework. We start with adapting the SynCAN data for a multi-view input. The second part is to train the sub-

networks jointly. The third part is to calibrate the different thresholds to obtain good accuracy detection while

reducing the communication overhead.

6.4.1 Data and experiment setup

Dataset preparation:

We used the SynCAN dataset that we presented in the previous chapter (Section 5.4.1). As the SynCAN dataset’s

capture was mainly done buy indexing only the different messages’ IDs, we don’t have the information of the ECUs

related to each ID. Thus we cannot split to different view according to a semantic locality pattern as shown in the

architecture presented in Fig 6.3. We split the IDs according to each ID’s frequency, so we obtain a balanced

rate number of messages at each probe. We obtain two views referring to two probes S1 and S2, and each probe

monitors five IDs. The following step is to create the sequence matrix for T1 and T2. We obtain two datasets with an

input size is (100*12, 100*8) where 100 is the length of the obtained sequence and 8, 12 are the number of signals

monitored at each probe S1 and S2 respectively.

For the anomalous examples labelling we choose to set y1 = y2 = yb = 0 if y1 = 0 or y2 = 0. This labelling aims
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Chapter 7

Conclusion

This thesis studies the use of Deep learning for in-vehicle Intrusion Detection System. This subject encompasses

many fields, advanced fields like Deep learning for Anomaly Detection and Intrusion Detection systems, both applied

in the relatively closed system (automotive industry) and relatively new, autonomous driving car as a context of the

application. Our study reviewed the main methods used in the literature and the applied context’s relevant character-

istics (In-vehicle network architecture). We investigate Deep Learning as a solution to build an Intrusion Detection

System. This first leads us to Generative Models, more specifically Adversarial Learning. Our first contribution,

Chapter 4 is more general to the domain of Anomaly Detection and adversarial learning methods. Nonetheless, we

already expect the need and constraints in memory in this approach that guided our intuitions and sharpened our

results toward a lightweight solution. A logic continuation implies the analysis of the context (In-vehicle network).

To this end, we go through the data which represent the system behaviour and topology. We first notice that com-

pared to other application domains, the in-vehicle network data are not available. There is a lack of approved public

dataset. This makes the different contributions of the state of the art of in-vehicle intrusion detection system diverge.

The input also differs in terms of the end problem since it consists of solving the same problem using different inputs

leading to different models and results that are not comparable. Our contribution Chapter 5 toward this significant

issue is to propose a matrix representation for CAN data to improve the detection of different types of attack that

impact both the content and the in-vehicle network flow. It also compares the different Deep Sequence modelling

architecture to capture the normal behaviours pattern and detect various types of attacks. In the third part of this

thesis, Chapter 6, we project further the in-vehicle network context in terms of evolvement to be near the actual pro-

totypes network architecture of autonomous vehicles. The main question is how to fit the IDS using deep learning

in this distributed and low resources environment. We proposed a framework (DAD) that matches the distributed

and multi-view aspect of future in-vehicle networks. We proposed a framework that reduces the communication

overhead without impacting the model’s performance in detecting attacks.
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7.1 Future work and improvements

This thesis contributes to different dimensions, theoretical and application domains. The general goal is to work

on a framework that addresses some of the research questions related to building a deep learning-based Intrusion

Detection System, which are not fully addressed by the scientific community. Multiple directions seem to be worth

exploring, first as improving the actual contributions. Second, other research questions can be developed as a

complementary contribution to developing a more general and complete In-vehicle Intrusion Detection System in

terms of an end-to-end solution.

7.1.1 Contribution improvements

In the chapter 4 we introduced a new adversarial method called AnoEAn. The adversarial network is a robust

framework for deep learning, enabling an implicit estimation of the data distribution pX . In this work, we construct a

decision space using a small amount of labelled anomalous examples. We notice that without introducing anoma-

lous examples into the adversarial training process, the encoder tend to project any given data input into the chosen

Gaussian distribution Pz. An improvement of this contribution consists of developing a one-class EAN. Recently,

Chatillon und Ballester (2021) a research track grounded on the learning of the probability distribution Px using a

GAN learning strategy while simultaneously keeping track of the states of the associated generator discriminator

during training. Secondly, they create a probability distribution (denoted as PGhist ) that combines different states

of the previous generator’s history. An inspiration from this track applied to EAN is to use the probability distribution

(PEhist) as an anomalous example.

A current straightforward work objective is to groups the different contribution in one general framework since

the different contributions are independent in terms of problem modelling. At the same time, they all contribute to

develop an in-vehicle intrusion detection system. The next step is to align the different contribution in one pipeline.

The global framework is a distributed AnoEAN that inputs the occurrence matrix representation into a TCN Encoder

for each view.

7.1.2 Interpretable Deep Learning for forensic analysis

In this work, we focus only on the detection step of an Intrusion Detection System. In the security domain, the

forensic analysis of an attack after identifying the incident is critical to define the proper action that an autonomous

system needs to take or a remote operator. Deep neural networks have been well-known for their superb per-

formance, and in this thesis, we intensely studied their application into anomaly detection. However, due to their

over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In

recent years, many interpretation tools have been proposed to explain or reveal the ways that deep models make
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decisions Zhang u. a. (2020, 2021). Also, using attention guided anomaly detection Venkataramanan u. a. (2019) to

augment the actual IDS feedback detection with information that can lead to an attack’s source, aim, and location.

Interpretability is believed to offer a sense of security by involving human in the decision-making process.

7.1.3 Adversarial examples

Due to its data-driven nature, Deep learning prediction is potentially susceptible to malicious manipulations to make

errors on data that are surprisingly similar to examples the learned system handles correctly (Adversarial exam-

ples). The existence of these errors raises a variety of questions about out-of-sample generalization and whether

bad actors might use such examples to abuse deployed systems. As a result of these security concerns, recent

papers have flurry proposing algorithms to defend against such malicious perturbations of correctly handled exam-

ples Gilmer u. a. (2018); Goodfellow (2018); Liu u. a. (2018). It’s essential to consider the adversarial examples

techniques to make Deep Learning based Intrusion detection system more robust to those smart attacks and avoid

introducing ever-increasing security concerns for those intelligent systems.

7.1.4 Common issues

In this work, we studied the applications of Deep learning algorithms, and we show how their usage is beneficial for

the in-vehicle network. This study also highlights several shortcomings, such as the lack of datasets, the inability to

learn from small datasets. Besides this, in-vehicle network data’s complexity translates the complexity of building an

appropriate IDS since Deep Learning are mainly data-driven approaches. A practical In-vehicle intrusion detection

system needs to cope with the evolving aspect of the vehicle environment. To this end, we must construct the model

and derive decision patterns from stream data produced by dynamically changing environments. The methods also

need to develop an online sequential data processing to learn the nature of local subsystems and their interactions

to endure self-organization of the system structure and parameters through time and contexts. Having data that

express all those needs is nearly impossible. Some constructors already started collecting data on their different

vehicles to improve their driving experience. But security-related data are heavy and take a lot of labour to extract

and label since we need real attacks. Thus, it’s important to think about an intrusion detection system’s ability to

develop and update itself to unknown environments and detect potential temporal shifts and drifts in input data.

133



134



Bibliography

[AIseg ] AI literacy fundamentals. – Forschungsbericht

[oraclAIcs ] ORACLE AND KPMG CLOUD THREAT REPORT / ORACLE AND KPMG. – Forschungsbericht.

Accessed: 2019

[Abadi u. a. 2015] ABADI, Martı́n ; AGARWAL, Ashish ; BARHAM, Paul ; BREVDO, Eugene ; CHEN, Zhifeng ; CITRO,

Craig ; CORRADO, Greg S. ; DAVIS, Andy ; DEAN, Jeffrey ; DEVIN, Matthieu ; GHEMAWAT, Sanjay ; GOODFELLOW,

Ian ; HARP, Andrew ; IRVING, Geoffrey ; ISARD, Michael ; JIA, Yangqing ; JOZEFOWICZ, Rafal ; KAISER, Lukasz ;
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Résumé : De nombreuse avancée et innovations 

technologiques sont introduites dans le monde de 

l’automobile. Plusieurs domaines scientifiques et ap-

plicatifs contribuent à l’amélioration de ces avan-
cées. L’une des dimensions importantes est la cyber-

sécurité. Effectivement, les véhicules autonomes se-

ront sujets aux cyberattaques et les cybers criminels 

pourraient pirater les systèmes d'exploitation des 

véhicules et perturber leur fonctionnement et 

mettre en danger la sûreté des passagers. Ainsi, la 

cybersécurité reste un obstacle à surmonter pour 

sécuriser les véhicules et permettre aux innovations 

technologiques dans le domaine des transports 

d’apporter des solutions aux problèmes de la so-
ciété et éviter leur détournement à des fins mali-

cieuses. En effet, la conception actuelle et future des 

véhicules autonomes implique de nombreuses inter-

faces de communication, la communication dans le 

véhicule entre les différents systèmes embarqués, 

les communications Vehicle-to-X (V2X) entre le vé-

hicule et d'autres véhicules et structures connectés 

sur les routes. 

Plusieurs mécanismes de défense sont implémentés 

pour répondre aux normes de sécurité (antivirus, 

pare-feu, etc.), mais nous ne pouvons pas être sûrs 

que toutes les failles possibles sont couvertes, spé-

cialement dans des systèmes complexes comme les 

voitures autonomes. Le système de détection 

d'intrusion a été introduit dans le monde IT pour 

évaluer l'état du réseau et détecter tous les compor-

tements malveillants. Le monde l’IT a connu beau-
coup plus d’expérience en termes de mécanisme de 
défense qui peut inspirer la cybersécurité des trans-

ports intelligent (voiture autonome), néanmoins, ces 

dernières requirent leurs propres besoins et con-

traintes liées à la sûreté et aussi à leur architecture 

system.  L'état actuel de l'évolution des véhicules a 

été rendu possible grâce à des innovations succes-

sives dans de nombreux domaines industriels et de 

recherche. 

 

 

L’intelligence artificielle en fait partie, ses diffé-
rentes techniques permettent d'apprendre et de 

mettre en œuvre des tâches complexe tel que la 
conduite autonome. Cette thèse vise à développer 

un system intelligent de détection d’intrusion en 
utilisant l’apprentissage automatique dans un 
contexte automobile. L’objectif est d’évaluer l'im-
pact de l'apprentissage automatique sur l'amélio-

ration de la sécurité des véhicules futurs (auto-

nomes). Notre objectif principal est la sécurité des 

communications entres les différents systèmes 

dans la voiture. Dans ce but, nous menons une 

enquête empirique pour déterminer les besoins 

sous-jacents et les contraintes qu'exigent les sys-

tèmes embarqués. Nous passons en revue la litté-

rature d'apprentissage profond pour la détection 

d’anomalie, on note qu’il y a un manque d'étude 
personnalisée sur le système de détection d'intru-

sion de véhicule autonome utilisant l’apprentis-
sage profond. Dans de telles applications, les don-

nées sont déséquilibrées : le taux d'exemples nor-

mal est beaucoup plus élevé que les exemples 

anormaux. L'émergence du réseau antagoniste 

(GAN) a récemment apporté de nouveaux algo-

rithmes pour la détection des anomalies. Nous dé-

veloppons une approche antagoniste (adversarial) 

pour la détection des anomalies, basée sur un En-

coding Adversarial Network (EAN).  

L'architecture future des réseaux embarqués dans 

les véhicules est composée de différents sous-sys-

tèmes. Chaque sous-système est responsable de 

services spécifiques qui assurent le fonctionne-

ment autonome du véhicule. Pour des raisons 

fonctionnelles et de sécurité, les sous-systèmes 

sont isolés, formant une architecture de communi-

cation hiérarchiques de l'ensemble du système. 

Dans cette thèse, nous concevons un IDS distribué 

qui s'adapte à l'architecture embarquée et à ses 

contraintes et réduit le taux de surcharge de com-

munication induit par le traitement de l'IDS. 
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Title : Machine Learning for intrusion detection systems in autonomous transportation   
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In-vehicle network, Distributed models.  

Abstract :  Despite all the different technological 

innovations and advances in the automotive field, 

autonomous vehicles are still in the testing phase. 

Many actors are working on several improvements in 

many domains to make autonomous cars the safest 

option. One of the important dimensions is 

cybersecurity. Autonomous vehicles will be prone to 

cyberattacks, and criminals might be motivated to 

hack into the vehicles' operating systems, steal 

essential passenger data, or disrupt its operation and 

jeopardize the passenger's safety. Thus, cybersecurity 

remains one of the biggest obstacles to overcome to 

ensure vehicles safety and the contribution that this 

technology can bring to society. 

Indeed, the actual and future design and 

implementation of Autonomous Vehicles imply many 

communication interfaces, In-vehicle communication 

of the embedded system, Vehicle-to-X (V2X) 

communications between the vehicle and other 

connected vehicles and structures on the roads. Even 

though the cybersecurity aspect is incorporated by 

design, meaning that the system needs to satisfy 

security standards (anti-virus, firewall, etc.), we 

cannot ensure that all possible breaches are covered.  

The Intrusion Detection System (IDS) has been 

introduced in the IT world to assess the state of the 

network and detect if a violation occurs. Many 

experiences and the history of IT have inspired the 

cybersecurity for autonomous vehicles. Nevertheless, 

autonomous vehicles exhibit their own needs and 

constraints. 

The current state of vehicles evolution has been 

made possible through successive innovations in 

many industrial and research fields. Artificial 

Intelligence (AI) is one of them. It enables learning 

and implementing the most fundamental self-driving 

tasks. This thesis aims to develop an intelligent in-

vehicle Intrusion detection system (IDS) using 

machine learning (ml) from an automotive 

perspective, to assess and evaluate the impact of 

machine learning on enhancing the security of future  

vehicle intrusion detection system that fits in-vehicle 

computational constraints. 

Future In-vehicle network architecture is composed 

of different subsystems formed of other ECUs 

(Electronic Controller Units). Each subsystem is 

vehicles. Our primary focus is on In-vehicle 

communication security. We conduct an empirical 

investigation to determine the underlying needs 

and constraints that in-vehicle systems require. 

First, we review the deep learning literature for 

anomaly detection and studies on autonomous 

vehicle intrusion detection systems using deep 

learning. We notice many works on in-vehicle 

intrusion detection systems, but not all of them 

consider the constraints of autonomous vehicle 

systems.  

We conduct an empirical investigation to 

determine the underlying needs and constraints 

that in-vehicle systems require. We review the deep 

learning literature for anomaly detection, and there 

is a lack of tailored study on autonomous vehicle 

intrusion detection systems using Deep Learning 

(DL). 

 In such applications, the data is unbalanced: the 

rate of normal examples is much higher than the 

anomalous examples. The emergence of generative 

adversarial networks (GANs) has recently brought 

new algorithms for anomaly detection.  We 

develop an adversarial approach for anomaly 

detection based on an Encoding adversarial 

network (EAN). Considering the behaviour and the 

lightweight nature of in-vehicle networks, we show 

that EAN remains robust to the increase of normal 

examples modalities, and only a sub-part of the 

neural network is used for the detection phase. 

Controller Area Network (CAN) is one of the most 

used vehicle bus standards designed to allow 

microcontrollers and devices to communicate. We 

propose a Deep CAN intrusion detection system 

framework. We introduce a Multi-Variate Time 

Series representation for asynchronous CAN data. 

We show that this representation enhances the 

temporal modelling of deep learning architectures 

for anomaly detection. We study different deep 

learning tasks (supervised/unsupervised) and 

compare several architectures to design an in-  



 

Maison du doctorat de l’Université Paris-Saclay 

2ème étage aile ouest, Ecole normale supérieure Paris-Saclay           

4 avenue des Sciences,  

91190 Gif sur Yvette, France  

responsible for specific services that ensure the 

autonomous functioning of the vehicle. For 

functional and security reasons, separate subsystems 

are isolated, forming a hierarchical architecture of the 

system. In this thesis, we design a Distributed IDS that 

fit this in-vehicle architecture system and its 

constraints and reduces the communication 

overhead rate induced by the IDS processing. 
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