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Introduction

Parkinson's disease (PD) is a slow, progressive, and chronic neurodegenerative disorder. It affects the human central nervous system by destroying dopaminergic neurons which produce dopamine, a neurotransmitter that sends messages to the brain to control the human movement. PD is the second most common neurological disease (after Alzheimer's disease) and affects an enormous portion of the elderly population worldwide. Globally, nearly 5 million people1 are affected by this disease; this number could double by 2030. In France, 200 000 people 2 suffer from PD and about 25 000 new cases 3 are diagnosed each year. The disease begins 5 to 10 years before any clinical symptoms appear. Four main characteristics or motor symptoms of PD, referred by the acronym TRAP (Tremor, Rigidity, Akinesia, Postural instability), characterise the PD disease. In addition, there are other symptoms and motor signs that can appear with the progress of PD, including gait and posture disorders such as festination (rapid shuffling step and walking with a forward-flexed posture), freezing of gait, and short gait step. The Parkinson's disease diagnosis is a difficult and subjective task, mainly in the early stages, and there is no available biomarker or specific test for such a diagnosis.

Statistics show that the PD misdiagnosis rate is around 25 % and 40 % of the PD cases are finally found to be related to other pathologies. It should be noted that each PD patient shows specific signs; the evolution of the disease and the progression of the symptoms are subject to each patient. For example, some symptoms such as speaking difficulty may appear after several years or may remain insignificant. In addition, 70 % of PD patients have resting tremors at the beginning of the disease while other patients have gait disorders or action tremor. According to clinicians, PD is diagnosed after the occurrence of one or more of the main motor symptoms (TRAP). For a better treatment and a more efficient control of the symptoms effects of the disease, it is necessary to carry out an accurate and early diagnosis. This thesis exploits gait cycle analysis to diagnose PD. Gait disturbances are often observed with the PD evolution. Therefore, the main objective of this thesis is to provide an efficient machine learning tool that aims at supporting physiotherapists in the diagnosis process by exploiting the most relevant features extracted from gait cycles. The challenge is to achieve an accurate classification between healthy and PD subjects, and also, between subjects with different levels of severity of the disease. For this purpose, two possible improvements of the diagnosis accuracy are explored. The first one consists of considering only the most relevant spatio-temporal features from the clinical point of view among those extracted from vGRFs signals during walking. The second possible improvement is to exploit the repeatability of gait cycle in PD subjects and more precisely the similarity of stance phases time-series in unidimensional and multidimensional cases. This manuscript is organized as follows:

Chapter 2 describes the general context of the thesis, which is related to the diagnosis of the Parkinson's disease. PD and its symptoms are first described and analysed. The second part of the chapter presents the different approaches used for the diagnosis of this neurodegenerative disease. Before analysing the diagnosis approach based on the analysis of human gait, a description of the gait cycle phases is presented. A review of the sensors commonly used for gait phases recognition is then shown. The positioning and objectives of the thesis are discussed in the last part of the chapter.

Chapter 3 proposes a data-driven approach for Parkinson's disease diagnosis. The first part of the chapter presents the general background including data pre-processing (features computation, feature extraction and feature selection) followed by a presentation of the main supervised and unsupervised classification approaches used in this chapter. An online dataset of vertical Ground Reaction Forces (vGRFs) data collected from gait cycles of healthy subjects and PD patients is used. The next part of the chapter presents the methodological background in particular, [START_REF] Davie | review of Parkinson's disease[END_REF] the feature extraction and feature selection processes, (2) the supervised and unsupervised classification approaches, as well as (3) the performance evaluation metrics. The remaining parts of the chapter are dedicated to the related works and the implementation of the above-mentioned methodology for the PD diagnosis. 

Introduction

The chapter describes the general context of the thesis, which concerns the diagnosis of the Parkinson's disease (PD). PD and its symptoms are first described and analysed.

The second part of the chapter presents the different approaches used for the diagnosis of this neurodegenerative disease. Before analysing the diagnosis approach based on the analysis of human gait, a description of the gait cycle phases is presented. Finally, a review of the sensors commonly used for gait phases recognition is presented.

Parkinson's Disease

Parkinson's disease (PD) is a slow, progressive, and chronic neurodegenerative disorder.

It affects the human central nervous system by destroying dopaminergic neurons which produce dopamine. Dopamine is a neurotransmitter that sends messages to the brain in order to control the human movement [START_REF] Davie | review of Parkinson's disease[END_REF][2][3]. PD is the second most common neurological disease (after Alzheimer's disease) and affects an enormous portion of the elderly population worldwide [4][5][START_REF] Pan | Parkinsons Disease tremor clas-sificationA comparison between Support Vector Machines and neural networks[END_REF]. Globally, nearly 5 million people are affected by this disease [START_REF] Dorsey | Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030[END_REF]; this number could double by 2030. In France, 200 000 people [START_REF] Circulaire | R4/DGS/MC3/DGCS/3A/CNSA no 2015-281 du 7 Septembre 2015 Relative la Mise en Oeuvre du Plan Maladies Neuro-DGNRatives 2014-2019[END_REF] suffer from PD and about 25 000 new cases [START_REF] Parkinson | Un Accord de MCNat Pour Faire Connaitre la Maladie dans le Milieu de L'entreprise[END_REF] are diagnosed each year (Fig. 2.1 ). Chapter 2

The average age of diagnosis is 58 years [START_REF] Parkinson | [END_REF], but 20 % are under 50 years old at diagnosis.

However, rare genetic forms (approximately 5 %) can lead to an early occurrence before the age of 40 [START_REF] Beyene | Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013[END_REF][START_REF] Vos | Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: A systematic analysis for the Global Burden of Disease Study 2013[END_REF][START_REF] Mosley | The Encyclopedia of Parkinson's Disease[END_REF]. The disease begins 5 to 10 years before any clinical symptoms appear; at this point, approximately half of the dopaminergic neurons have already disappeared. Four main characteristics or motor symptoms of PD can appear, referred by the acronym TRAP and described in the following:

1. Tremor: rest tremor is the most common symptom of PD and the easily recognized one; the tremor frequency ranges between 4 and 6 Hz. It can involve the chin, jaw, lips and legs, and rarely involves the neck (head) or voice [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF].

2. Rigidity: it characterises the resistance to limb movement caused to an increment in muscle tone, and continuous and excessive muscles contraction [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF]. In the disease early stages, rigidity is usually asymmetrical and typically affects proximal muscles first as the shoulders and neck muscles, and then, it progresses to affect muscles of the face and extremities [START_REF] O'sullivan | Physical Rehabilitation: 5th ed[END_REF]. As the disease progress, rigidity affects the entire body and decreases the ability to move easily.

3. Akinesia: or Bradykinesia, is the typical PD clinical symptom characterising the movement slowness. It is a hallmark of basal ganglia disorder, which results in planning difficulties, starting and performing movements, and achieving sequential and synchronized tasks [START_REF] Berardelli | Pathophysiology of bradykinesia in Parkinson's disease[END_REF]. The initial signs are the slowness in performing daily living activities, with relatively long reaction times [START_REF] Cooper | Slowed central processing in simple and go/no-go reaction time tasks in Parkinson's disease[END_REF][START_REF] Giovannoni | Bradykinesia akinesia incoordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function[END_REF]. 4. Postural instability: it appears in the late stages of the disease, leading to equilibrium disorders and increased falls [START_REF] Adkin | Fear of falling and postural control in Parkinson's disease[END_REF] and bone fractures [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF]. However, no instability is observed in the early stages of the disease, especially among young people [START_REF] Samii | Parkinson's disease[END_REF]. Up to 40 % of PD subjects may be subject to falls and approximately 10 % of them may have falls weekly with a correlation between the number of falls and the severity of the disease [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF].

In addition, there are other symptoms and motor signs that can be appear with the progress of PD, including gait and posture disorders such as festination (rapid shuffling step and walking with a forward-flexed posture) [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF], freezing gait, and short gait step.

Furthermore, other signs such as the appearance of disturbances in speech, swallowing and voice disorders are also recognized as symptoms of PD progression [START_REF] Russell | Targeted exercise therapy for voice and swallow in persons with Parkinson's disease[END_REF]. All these Chapter 2 typical symptoms can make diagnosis easier, while the existence of various non-typical signs such as depression, pain, fatigue, etc. can render the diagnosis more difficult.

Diagnosis of Parkinson's Disease

The Parkinson's disease (PD) diagnosis is difficult, mainly in the early stages, and there is no available biomarker or specific test for such a diagnosis. Usually, to confirm the presence of PD, neurologists perform many clinical evaluations and analyse the patient's entire medical history. Moreover, in order to exclude the affections causing the Parkinsonism 1 and that are not necessarily due to PD, several imaging techniques and lab tests are carried out. Furthermore, a routinely used diagnostic method is to assess the patient's response to levodopa therapy ; the levodopa is a synthetic dopamine medication used to treat the PD. If the patient's response is positive to this treatment, it means that the patient's symptoms are related to PD, and that the patient is probably suffering from PD. Nevertheless, neurologists sometimes consider that, during the early stages of the disease, taking medication may be unnecessary [2,[START_REF] Perumal | Gait and Tremor Monitoring System for Patients with Parkinson's Disease Using Wearable Sensors[END_REF]. Sometimes, the diagnosis may take up to a year after a careful analysis of the patient's neurological history and clinical assessments. Despite these careful assessments, there is a strong possibility of misdiagnosis of PD for other neurological affections responsible for Parkinsonism.

Statistics given in [START_REF] Perumal | Gait and tremor assessment for patients with Parkinson's disease using wearable sensors[END_REF] show that the PD misdiagnosis rate is around 25 % and 40 % cases of PD are confused with other neurological affections [2]. It should be noted that each PD patient has specific signs; the evolution of the disease and the progression of symptoms are specific to each patient. For example, some symptoms such as speaking difficulty may appear after several years or may remain insignificant. According to clinicians, PD is diagnosed after the occurrence of one or more of the main motor symptoms. For a better treatment and a more efficient control of the symptoms effects of the disease, it is necessary to carry out an accurate and early diagnosis [START_REF] Perumal | Gait and Tremor Monitoring System for Patients with Parkinson's Disease Using Wearable Sensors[END_REF].

PD diagnosis approaches

Currently, the diagnosis made by specialists (neurologist, movement disorder specialist, speech disorder specialist, etc.) to assess the severity level of PD is conducted using various methods from several fields including Cognitive deficit [START_REF] Fah | Members of the UPDRS Development Committee[END_REF][START_REF] Hoehn | Parkinsonism onset, progression, and mortality[END_REF][START_REF] Schwab | Projection technique for evaluating surgery in Parkinson's disease[END_REF][START_REF] Mahoney | The Barthel Index[END_REF][START_REF] Folstein | Mini-mental state. A practical method for grading the cognitive state of patients for the clinician[END_REF][START_REF] Schmand | Dutch Adult Reading Test[END_REF][START_REF] Lezak | Neuropsychological Assessment[END_REF], speech disorder 1 a group of neurological disorders causing movement problems similar to those observed in PD

Chapter 2 [START_REF] Peker | Computer-aided diagnosis of Parkinson's disease using complex-valued neural networks and mRMR feature selection algorithm[END_REF][START_REF] Kenneth | Feature selection in Parkinson's disease: A rough sets approach[END_REF][START_REF] Yadav | Predication of Parkinson's disease using data mining methods: A comparative analysis of tree, statistical and support vector machine classifiers[END_REF], human stability [START_REF] Safi | Non-linear analysis of human stability during static posture[END_REF][START_REF] Prieto | Characterization and modeling of postural steadiness in the elderly: A review[END_REF], gait cycle [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF][START_REF] Hausdorff | Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[END_REF][START_REF] Frenkeltoledo | Effect of gait speed on gait rhythmicity in Parkinson's disease: Variability of stride time and swing time respond differently[END_REF] and others [START_REF] Peran | Magnetic resonance imaging markers of Parkinson's disease nigrostriatal signature[END_REF][START_REF] Solomon | Strength, endurance, and stability of the tongue and hand in Parkinson disease[END_REF] (Fig. 2.2). The approaches commonly used for diagnosing PD are briefly described below. any characteristic that impedes the cognitive process. In order to evaluate the disability and motor impairment in PD patients, several rating scales are used, such as the Unified Parkinson's Disease Rating Scale (UPDRS) [START_REF] Fah | Members of the UPDRS Development Committee[END_REF], and the Hoehn and Yahr (H & Y) rating scale [START_REF] Hoehn | Parkinsonism onset, progression, and mortality[END_REF]. Other scales are based on the evaluation of the psychiatric manifestations [START_REF] Schrag | Depression rating scales in Parkinson's disease: critique and recommendations[END_REF] and quality of life [START_REF] Schrag | Depression rating scales in Parkinson's disease: critique and recommendations[END_REF][START_REF] Ebersbach | Scales in Parkinson's disease[END_REF]. The UPDRS is a commonly used scale to assess impairment and disability [START_REF] Ramaker | Systematic evaluation of rating scales for impairment and disability in Parkinson's disease[END_REF][START_REF] Goetz | Movement Disorder Societysponsored revision of the Unified Parkinson's Disease Rating Scale (MDSUPDRS): process, format, and clinimetric testing plan[END_REF]. Studies using UPDRS to monitor the PD progression suggest that this progression is not linear and that the rate of deterioration is variable and faster in the early stage of PD and in PD patients suffering from Postural Instability and Gait Difficulty (PIGD) [START_REF] Jankovic | Functional decline in Parkinson disease[END_REF][START_REF] Lang | The progression of Parkinson disease A hypothesis[END_REF][START_REF] Post | Prognostic factors for the progression of Parkinson's disease: a systematic review[END_REF]. The H & Y scale ranging from 0 (no disease signs) to 5 (confinement to bed or wheelchair unless aided), is used to compare patients and provides a rough 2. Speech disorders or speech difficulties such as dysarthria (speech articulation difficulties) and dysphonia (impaired speech production) [START_REF] Kenneth | Feature selection in Parkinson's disease: A rough sets approach[END_REF]. The most commonly used techniques to extract features that characterize alterations of vocalization in patients with PD are: the acoustic analysis that is based on spectrograms (visual representation of the spectrum of frequencies of sounds) and electroglottographic (EGG) recordings 2 [START_REF] Kenneth | Feature selection in Parkinson's disease: A rough sets approach[END_REF]. The PD diagnosis based on speech disorders has been addressed in different studies [START_REF] Peker | Computer-aided diagnosis of Parkinson's disease using complex-valued neural networks and mRMR feature selection algorithm[END_REF][START_REF] Kenneth | Feature selection in Parkinson's disease: A rough sets approach[END_REF][START_REF] Yadav | Predication of Parkinson's disease using data mining methods: A comparative analysis of tree, statistical and support vector machine classifiers[END_REF].

3. Maintaining postural stability is a difficult task for patients suffering from PD.

The analysis of human stability can be carried out using the Center of Pressure (CoP) displacements in the anteroposterior (AP) and mediolateral (ML) directions.

Usually, many parameters and statistical measures are used to study the human motion in static posture, such as the maximum radius, mean radius, swept area, centroid, average CoP velocity, and maximum difference among all ML points and AP points [START_REF] Safi | Human static postures analysis using empirical mode decomposition[END_REF]. 

Human gait analysis and gait cycle phases description

This section presents an analysis of human gait and describes the gait cycle phases.

Human gait analysis

Gait analysis is the systematic study of bipedal locomotion in human. This analysis encompasses quantification as well as interpretation of measurable parameters characterizing the human bipedal locomotion from a given gait pattern [START_REF] Tao | Gait analysis using wearable sensors[END_REF].

Spatio-temporal parameters are generally used to characterise the human walking [START_REF] Zong | Système embarqué de capture et analyse du mouvement humain durant la marche[END_REF].

The spatial parameters are:

Step length: is the distance measured from the contact with the floor of one foot to the same contact of the other foot. It can also be defined as the distance between the two heels during double support.

Stride length: is the distance measured between the initial contact of one foot and the next initial contact of the same foot. The stride corresponds to a two-step succession.

Step width: is the distance between the axis of progression and the middle part of the heel.

The temporal parameters are:

Heel strike: when the initial contact is with the heel. The initial contact is the instant in the gait cycle when the foot initially contacts the ground. Double and Single stance support: the first one implies a period of bilateral contact of the two feet with the ground while the second one corresponds to one contact with a single foot.
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Step period: is the time period for a step, and is measured from a specific event of a foot (usually the heel strike) to the same next event of the opposite foot.

Cadence: is the rhythm of a person's walk, measured in number of steps per minute.

Gait speed: is the product of the average step length by the cadence.

Gait analysis is an open and competitive topic that is attracting increasing interest in various multidisciplinary fields. In sport, such an analysis is a very useful tool in coaching for improving the performances of athletes and preventing injuries. Gait analysis can also aid clinicians in gait recovery process monitoring in subjects following operations or in course of processes of rehabilitation. In the rehabilitation, events distinguishing gait phases may be used as functional electrical stimulation control variables. Moreover, gait analysis can be exploited in the design and control of wearable assistive devices such as exoskeletons, prostheses and orthoses, used for walking assistance for elderly and subjects with paretic lower limbs. Gait analysis can also be used in healthcare monitoring for the detection of abnormal gait and estimation of fall risk. An abnormal gait can be seen as a symptom indicating neurodegenerative diseases progression. For example, the presence of gait abnormalities in the elderly, is frequently an important predictor of the risk of dementia development. Finally, the generation of walking models for human gait imitation based humanoid robots, is another potential application field of the human gait analysis [START_REF] Attal | Automatic Recognition of Gait phases Using a Multiple Regression Hidden Markov Model[END_REF].

The early work on gait analysis was conducted at the end of the 19th century and the first applications in biomedical engineering arisen with the availability of video camera systems [START_REF] Gavrila | 3-D Model-based tracking of humans in action: A multiview approach[END_REF][START_REF] Karaulova | Tracking people in three dimensions using a hierarchical model of dynamics[END_REF][START_REF] Furnée | Real-time motion capture systems[END_REF][START_REF] Cappozzo | Human movement analysis using stereophotogrammetry: Part 1: theoretical background[END_REF][START_REF] Chiari | Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors[END_REF]. Numerous gait laboratories have successfully developed and implemented a standard gait analysis method based on a force platform with the capability of measuring Ground Reaction Forces (GRFs) and on a multi-camera motion capture system [START_REF] Kim | Magnitude and pattern of 3D kinematic and kinetic gait profiles in persons with stroke: relationship to walking speed[END_REF][START_REF] Casadio | Direct measurement of ankle stiffness during quiet standing: implications for control modelling and clinical application[END_REF]. Yet, this standard method of gait analysis necessitates expensive equipment, specialized locomotion laboratories, and long-time of installation and post-processing.

In addition, limitations have been observed in terms of the moving area and gait cycles for the observed subject. To overcome these limitations, other methods of gait analysis based on wearable sensors were proposed.

Human gait cycle description

Walking is a form of movement that represents the most important human physical activity because it is at the basis of several daily living activities. It represents a cyclical activity in which each stride (gait cycle) follows the other one continuously. The gait cycle describes how subjects walk; it represents a pattern of movement that is specific to each individual [START_REF] Attal | Automatic Recognition of Gait phases Using a Multiple Regression Hidden Markov Model[END_REF]. A gait cycle starts when the toe of the Right Foot (RFo) and the heel of the Left Foot (LFo) touch the ground simultaneously and ends with the same configuration.

The gait cycle is mainly divided into two phases: the stance phase and the swing phase.

The stance phase represents the period during which the foot is in contact with the ground while the swing phase corresponds to the period during which the foot is in the air for the advancement of the leg. The initial contact is the beginning of the stance phase and the swing phase starts when the foot is lifted from the ground (Fig. 2.4) [START_REF] Perry | Observational gait analysis handbook[END_REF]. Concerning the time percentage of each phase, the stance phase represents 60 % of the gait cycle time while the swing phase represents 40 % [START_REF] Murray | Walking patterns of normal men[END_REF][START_REF] Bzner | Assessment of gait in subcortical vascular encephalopathy by computerized analysis: A cross-sectional and longitudinal study[END_REF][START_REF] Hausdorff | Gait variability and basal ganglia disorders: Stridetostride variations of gait cycle timing in parkinson's disease and Huntington's disease[END_REF]. The exact duration of each phase changes according to the subject's walking velocity [START_REF] Andriacchi | Walking speed as a basis for normal and abnormal gait measurements[END_REF][START_REF] Otis | Evaluation of the VA-Rancho gait analyzer, Mark 1[END_REF]. In a normal walking pace (80 m/min), the stance and the swing phases represent, respectively, 62 % and 38 % of the gait cycle time. Furthermore, it can be noted that the walking speed Chapter 2 and the two phases durations have an inverse relationship ; swing and stance phases durations are shortened when the gait speed increases, and vice-versa.

The stance phase is generally subdivided into three intervals according to the sequence of contact between the two feet and the ground. The first and third intervals imply a period of bilateral contact of the two feet with the ground (double stance) while the second interval corresponds to one contact with a single foot (single stance) (Fig. 2.4) [START_REF] Perry | Observational gait analysis handbook[END_REF]. In the following, a brief description of these intervals is presented. Initial double stance occurs after initial contact when both feet are in contact with the ground.

Single stance starts when the left foot is lifted from the ground to initiate its swing phase.

Final double stance starts when the left foot touches the ground, and ends when the right foot is lifted from the ground to initiate its swing phase.

The timing for the stance intervals is as follows: 10 % for each double stance sub-phase and 40 % for the single stance. Since the single stance of one foot and the swing phase of the second one occur at the same time, they have the same duration (see Fig. 2.4).

As presented above, the stance phase and the swing phase are the main phases of the gait cycle, but in practice, the cycle can be divided up to eight sub-phases (functional patterns): five sub-phases in the stance phase and three sub-phases in the swing phase [START_REF] Perry | Observational gait analysis handbook[END_REF] (see Fig. Mid-Swing: it starts with the toe-off of the right foot and continues until the right foot is forward and the tibia3 is in a vertical position. The duration of this sub-phase is estimated at 73 -87 % of the gait cycle.

Terminal Swing: it starts when the tibia is vertical and ends when the right foot touches the floor. The duration of this sub-phase represents from 87 to 100 % of the gait cycle.

The number of sub-phases studied varies from one study to another. In [START_REF] Kerrigan | Gait analysis[END_REF][START_REF] Inman | [END_REF], the authors take into consideration the eight gait cycle sub-phases. In [START_REF] Nordin | Basic biomechanics of the musculoskeletal system: 3rd[END_REF], Nordin and Frankel consider a seven sub-phases gait cycle: initial contact, mid-stance, terminal stance, pre-swing, initial swing, mid-swing and terminal swing. In some early literature ( [START_REF] Perry | Pathological gait[END_REF]), the initial contact is considered as a part of the loading response sub-phase. In [START_REF] Attal | Automatic Recognition of Gait phases Using a Multiple Regression Hidden Markov Model[END_REF], authors take into consideration six sub-phases, by eliminating the initial contact and the initial swing sub-phases. In [START_REF] Williamson | Gait event detection for FES using accelerometers and supervised machine learning[END_REF], Williamson and Andrews consider four stance sub-phases (the loading response, the mid-stance, the terminal stance and the pre-swing) and the swing phase. In [START_REF] Pappas | A Reliable Gait Phase Detection System[END_REF], the gait cycle is divided into stance, heel-off, swing and heel-strike sub-phases. Finally, several researchers only consider the stance and swing phases in their studies, as in [START_REF] Wu | Statistical analysis of gait rhythm in patients with Parkinson's disease[END_REF][START_REF] Joshi | An automatic non-invasive method for Parkinson's disease classification[END_REF].

Gait cycle of Parkinsonian subjects

Parkinson's disease (PD) subjects usually suffer from gait alterations that increase with progression of the disease.

Freezing of gait: Freezing of gait is defined as a brief, episodic absence or marked reduction of forward progression of the feet despite the intention to walk. This phenomenon is, in general, temporary, and the gait may be at a normal pace after few steps. This gait alteration can be triggered by contextual (eg. emotional, cognitive) and environmental factors, such as: walking through a doorway or a narrow passageway, changing directions, approaching one's destination (such as a chair or couch), crossing a street, and simply when a patient feels like he/she is being rushed [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF]. For PD patients, gait freezing induces increased risk and frequency of falls [2].

Shuffling gait: Subjects with PD may walk slowly with their chest bent forward, with short fast shuffling steps. This results in reduced stride length and walking speed. Subjects show also less arm and body movement which gives them a stiff appearance [START_REF]Concise Dictionary of Modern Medicine[END_REF].

Festinating gait: characterized by a short and fast stride. Short stride and fast step lead to a quite inefficient gait, which makes the walking person tired and frustrated [START_REF]Festinating gait[END_REF].

Hypokinesia: characterized by a small amplitude movements [START_REF] Hausdorff | Gait dynamics in Parkinsons disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling[END_REF]. This alteration is associated with difficulties throughout the walking process, from preparing to initiation and finally performing walking. Execution of simultaneous and sequential of the walking movements is hampered [START_REF] Jankovic | Parkinson's disease: clinical features and diagnosis[END_REF]. These gait alterations increase the risk and the rate of fall. Falls may lead to severe injuries and fractures. The fear of falling is another consequence which results in a restriction of daily activities that in turn lead to a loss of independence and increased mortality. The fear of falling has psychological consequences, such as isolation with less social interactions and depression risk [START_REF] Hausdorff | Gait dynamics in Parkinsons disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling[END_REF]. The effects of PD on the evolution of the stride-to-stride variability during a gait cycle have been extensively studied in the literature [START_REF] Hausdorff | Gait dynamics, fractals and falls: Finding meaning in the stride-tostride fluctuations of human walking[END_REF]. Yogev et al. [START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF] studied the cognitive function and the effects of different Chapter 2 types of dual tasks on the gait of subjects with PD. The outcomes of this study show that the executive function [START_REF] Macleod | Half a century of research on the Stroop effect: An integrative review[END_REF][START_REF] Langenecker | fMRI of healthy older adults during Stroop interference[END_REF][START_REF] Dwolatzky | Validity of a novel computerized cognitive battery for mild cognitive impairment[END_REF] is deteriorated in the subjects with PD. In [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF], the authors discuss gait asymmetry (GA) in subjects with PD. The outcomes of this study show that when gait becomes impaired and less automatic, Gait Asymmetry apparently relies on cognitive input and attention. In the same context, Hausdorff et al. [START_REF] Hausdorff | Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[END_REF] focused on the gait dynamics to evaluate the effect of Rhythmic Auditory Stimulation (RAS), which consists of using musical stimuli to enhance the gait performance of neurological conditions subjects (e.g., subjects with PD). It has been shown that RAS promotes more automatic movement and reduces stride-to-stride variability in subjects with PD.

The study conducted in [START_REF] Hausdorff | Gait variability and basal ganglia disorders: Stridetostride variations of gait cycle timing in parkinson's disease and Huntington's disease[END_REF], showed that the ability to maintain a steady gait with low stride-to-stride variability decreases in subjects with PD. In [START_REF] Frenkeltoledo | Effect of gait speed on gait rhythmicity in Parkinson's disease: Variability of stride time and swing time respond differently[END_REF], the authors showed that swing time variability is independent of gait speed in subjects with PD; therefore, this can be used as a marker of rhythmicity and gait steadiness. The obtained results

show also an increase in the variability of stride time and swing time at comfortable walking speeds for the subjects with PD compared to control subjects.

Gait assessment techniques

This section presents the semi-subjective and objective techniques used for gait analysis, as well as the different types of sensors used for measuring and estimating gait parameters.

Semi-subjective techniques

The tests and measurements traditionally used for analyzing gait parameters in clinical conditions are carried out by therapists by observing and evaluating the patient's gaitrelated parameters while he/she walks along a pre-determined circuit. Several semisubjective techniques are traditionally used in clinics [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF]: Timed 25-Foot Walk (T25-FW): known as the 25 foot walk test. During this test, therapist measures the time taken by the patient to walk a distance of 7.5 m in a straight line [START_REF] Cutter | Development of a multiple sclerosis functional composite as a clinical trial outcome measure[END_REF].
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Multiple Sclerosis Walking Scale (MSWS-12): is a self-assessment scale which measures the impact of multiple sclerosis on walking. It consists of 12 questions concerning the walking difficulties due to multiple sclerosis during the past 2 weeks [START_REF] Hobart | Measuring the impact of MS on walking ability: The 12-Item MS Walking Scale (MSWS-12)[END_REF].

Tinetti Performance-Oriented Mobility Assessment (POMA): the protocol used in this assessment is as follows, (1) the patient is seated in a chair without armrests;

(2) the patient is asked to stand up, if possible without leaning on the armrests, a balance test in the standing position is then performed; (3) the patient must turn 360 • ; (4) the patient must walk at least 3 meters forward, turn around and return back quickly to the chair. He must use his usual technical assistance (cane or walker); (5) the patient must sit on the chair [START_REF] Tinetti | Performance-oriented assessment of mobility problems in elderly patients[END_REF]. This test allows to precisely evaluate gait disorders and elderly subjects' balance in daily life situations [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF].

Timed Get up and Go (TUG): in this test, the clinician measures the time taken by the subject to get up from a sitting position, walk a short distance, turn 180 • , then return back to the chair and sit down again [START_REF] Mathias | Balance in elderly patients: "The-get-up and go" test[END_REF].

Gait Abnormality Rating Scale (GARS): is a video-based analysis used to rate the subjects' gait according to 16 variables using a 4-point scale (0 = normal, 1 = mildly impaired, 2 = moderately impaired, 3 = severely impaired). These variables can be classified into: general categories (5 variables), lower extremity categories (4 variables), and trunk, head, and upper extremity categories (7 variables). The GARS is obtained by summing each of the individual variables. More impaired gait is characterized by a higher score [START_REF] Wolfson | Gait assessment in the elderly: A gait abnormality rating scale and its relation to falls[END_REF].

Extra-Laboratory Gait Assessment Method (ELGAM): is a method to quantify gait in the community or home. In this method several parameters are studied such as initial starting style of walking, walking speed, step length, static balance and ability to turn head during walking [START_REF] Fried | ELGAM-extra-laboratory gait assessment method: Identification of risk factors for falls among the elderly at home[END_REF].

Tests and measurements used in semi-subjective techniques are usually followed by a self-assessment step in which the patient is asked to give a subjective evaluation of his/her gait quality. The aformentioned methods have the disadvantage of relying on subjective measurements that may have an incidence on the quality of diagnosis and treatment [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF].

Objective techniques of gait analysis

With advances of sensor technologies, new techniques have been introduced as an alternative to semi-subjective techniques. These techniques have the advantage to provide a more reliable information related to gait parameters, and therefore, a more objective evaluation of gait quality as well as a more reliable diagnosis. The objective techniques of gait analysis differ from the semi-subjective ones by the use of different sensors for measuring and estimating the gait parameters. Sensors used for gait analysis can be classified into two main categories: non-wearable or wearable (Fig. 2.5). Non-wearable sensors can be classified into two sub-categories. The first sub-category includes floor sensors such as force platforms and pressure-measurement systems; pressure sensors and Ground Reaction Force (GRF) sensors are used to extract gait information by measuring the force exerted by the subjects feet on the floor during walking. The second sub-category includes mainly vision-based systems such as optical motion capture (OMC) systems (Fig. 2.6). An OMC system consists of multiple optoelectronic cameras and allows an objective and accurate measurement of gait parameters. As alternative non-wearable sensors for gait analysis, infrared sensors, Time-of-Flight (ToF) cameras, laser range finders (LRF) placed at predefined positions [START_REF] Palleja | Measuring gait using a ground laser range sensor[END_REF] or mounted on robotic rollators are also used [START_REF] Papageorgiou | Hidden markov modeling of human normal gait using laser range finder for a mobility assistance robot[END_REF]. Non-wearable sensors are generally expensive and present several constraints that limit their use to instrumented and indoor environments. Among wearable sensors, foot pressure insoles or foot switches are the most commonly used since each specific pattern of the used sensor output can be associated with a gait phase [START_REF] De Rossi | Gait segmentation using bipedal foot pressure patterns[END_REF][START_REF] Kong | Smooth and continuous human gait phase detection based on foot pressure patterns[END_REF][START_REF] Pappas | A reliable gyroscope-based gait-phase detection sensor embedded in a shoe insole[END_REF][START_REF] Agostini | Segmentation and classification of gait cycles[END_REF]. Several other wearable sensors including inertial measurement units (IMUs) are also commonly used for gait analysis. An IMU typically includes 3D accelerometer, 3D gyroscope and 3D magnetometer. Placed at different key points of the human body, such as the feet, knees or hips, these sensors provide inertial quantities, i.e. linear accelerations and angular velocities that allow the estimation of different features of the gait cycle [START_REF] Williamson | Gait event detection for FES using accelerometers and supervised machine learning[END_REF][START_REF] Nickel | Using hidden markov models for accelerometer-based biometric gait recognition[END_REF][START_REF] Rampp | Inertial sensor-based stride parameter calculation from gait sequences in geriatric patients[END_REF][START_REF] Mannini | A hidden markov model-based technique for gait segmentation using a foot-mounted gyroscope[END_REF]. Other types of sensors such as goniometers, ultrasonic sensors and EMG sensors, are also used. Wearable sensors are low-cost and do not require complex signal conditioning and post-processing. They are well-suited for long-term measurements and ambulatory gait analysis. Table 2.1 reports the wearable and non-wearable sensors commonly used in the study of PD.

Non-Wearable sensors

As mentioned above, the non-wearable sensors category can be divided into two subcategories: the first one includes floor sensors while the second one includes mainly vision-based systems. The interest of these sensors for quantifying and analysing the different human gait aspects, has been demonstrated in numerous studies [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF]. In the following, a brief description of the two sub-categories of non-wearable sensors is presented.
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Wearable sensors

In-shoe foot pressure system [START_REF] Jeon | Classification of Parkinson gait and normal gait using spatial-temporal image of plantar pressure[END_REF] Goniometer [START_REF] Andrews | Comparison of stretch reflexes and shortening reactions in activated normal subjects with those in Parkinson's disease[END_REF][START_REF] Latash | Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson's disease[END_REF] Electromyograph (EMG) [START_REF] Andrews | Comparison of stretch reflexes and shortening reactions in activated normal subjects with those in Parkinson's disease[END_REF][START_REF] Nieuwboer | Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinsons disease[END_REF][START_REF] Hong | A kinematic and electromyographic analysis of turning in people with Parkinson disease[END_REF][START_REF] Halliday | The initiation of gait in young, elderly, and Parkinson's disease subjects[END_REF] 3D sensor detector [START_REF] Halliday | The initiation of gait in young, elderly, and Parkinson's disease subjects[END_REF] Ultrasonic sensors [START_REF] Ashhar | A wearable ultrasonic sensor network for analysis of bilateral gait symmetry[END_REF] Accelerometer [START_REF] Latash | Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson's disease[END_REF][START_REF] Saito | A new device for the long-term monitoring of motor activities for Parkinsons disease[END_REF][START_REF] Hoff | Accelerometric assessment of levodopainduced dyskinesias in Parkinson's disease[END_REF][START_REF] Mariani | On-shoe wearable sensors for gait and turning assessment of patients with Parkinson's disease[END_REF] Gyroscope [START_REF] Salarian | Gait assessment in Parkinson's disease: Toward an ambulatory system for long-term monitoring[END_REF][START_REF] Salarian | a sensitive and reliable measure of mobility[END_REF] Non-wearable sensors CCD camera [START_REF] Cho | A vision-based analysis system for gait recognition in patients with Parkinsons disease[END_REF] Kinect sensors [START_REF] Galna | Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease[END_REF] Infrared camera Vicon systems [START_REF] Galna | Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease[END_REF] Panasonic NV-GS500 camcorders [START_REF] Pachoulakis | Building a gait analysis framework for Parkinson's disease patients: Motion capture and skeleton 3D representation[END_REF] Microsoft 3D camera sensor based on ToF [START_REF] Dror | Automatic assessment of Parkinson's Disease from natural hands movements using 3D depth sensor[END_REF] Microsoft Kinect [START_REF] Dyshel | Quantifying Levodopa-Induced Dyskinesia Using Depth Camera[END_REF] ThermoVision Infrared Camera [START_REF] Antonio-Rubio | Abnormal thermography in Parkinson's disease[END_REF] Motion analysis system [START_REF] Song | Altered dynamic postural control during step turning in persons with early-stage Parkinsons disease[END_REF] Camera motion analysis system [START_REF] Foreman | Improved dynamic postural task performance without improvements in postural responses: The blessing and the curse of dopamine replacement[END_REF] Force platform [START_REF] Latash | Anticipatory postural adjustments during self inflicted and predictable perturbations in Parkinson's disease[END_REF][START_REF] Song | Altered dynamic postural control during step turning in persons with early-stage Parkinsons disease[END_REF][START_REF] Foreman | Improved dynamic postural task performance without improvements in postural responses: The blessing and the curse of dopamine replacement[END_REF][START_REF] Muniz | Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait[END_REF][START_REF] Vaugoyeau | Coordination of axial rotation and step execution: Deficits in Parkinson's disease[END_REF] 1. Vision-based systems: Typically, these systems are constituted by numerous analog or digital cameras that can be used to collect information related to the human gait (See Fig. 2.7). In [START_REF] Cho | A vision-based analysis system for gait recognition in patients with Parkinsons disease[END_REF], the authors propose a vision-based diagnostic system for recognizing gait patterns of PD subjects. Gait videos of PD and healthy subjects are used to evaluate the feasibility of the system in PD gait recognition.

In [START_REF] Galna | Accuracy of the Microsoft Kinect sensor for measuring movement in people with Parkinson's disease[END_REF], the authors use a Vicon three-dimensional motion analysis system (goldstandard) and a Kinect to detect simultaneously the movements of PD and healthy subjects.

Figure 2.7: Different non-wearable sensors for gait analysis [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF] In the following, a summary of the different technologies used in vision-based system is presented:

Stereoscopic vision: it can be used to determine the points depth in the scene from for example the midpoint of the line connecting their focal points.

For this purpose, it is necessary to find the corresponding points in different images [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF]. In [START_REF] Pachoulakis | Building a gait analysis framework for Parkinson's disease patients: Motion capture and skeleton 3D representation[END_REF], Pachoulakis et al. use motion capture techniques and a stereoscopic vision to obtain 3D skeletal motion data of PD and healthy subjects.

Time-of-Flight Systems (ToF): these systems exploit cameras using signal modulation. The principle of phase-shift is used for distances measurement [START_REF] Kolb | Time-of-Flight Sensors in Computer Graphics[END_REF]. In [START_REF] Dror | Automatic assessment of Parkinson's Disease from natural hands movements using 3D depth sensor[END_REF], Dror et al. propose an automatic assessment approach of PD from natural hands movements using a Microsoft 3D camera sensor based on Time of Flight (ToF) technology.

Structured Light: is the process of projecting a light pattern (grid, plane, coded light, etc.) onto a scene. Depth and surface information of the objects in the scene are calculated by analysing the projection deformation of the pattern with respect to the initial projected pattern [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF]. In [START_REF] Dyshel | Quantifying Levodopa-Induced Dyskinesia Using Depth Camera[END_REF], authors propose a method to detect and assess the severity of Levodopa-Induced Dyskinesia in PD using Kinect recordings of the patients. A depth image is produced by a standard structured light based Kinect camera.

Infrared Thermography (IRT): Its principle consists of creating visual images based on surface temperatures. This technique is used to measure precisely the infrared thermal intensity of the human body. In [START_REF] Antonio-Rubio | Abnormal thermography in Parkinson's disease[END_REF], the authors use a ThermoVision infrared camera to differentiate PD subjects from healthy subjects using hands thermographic recordings (Fig. 2.8).

2. Floor Sensors: Two types of systems can be distinguished: forces platforms and pressure-measurement platforms. These platforms are used to extract gait information by measuring the force and the pressure exerted by the subjects feet on the floor during walking. Pressure measurement platforms allow in addition to determine the location of the Center of Pressure (CoP). The force platform AMTI series OR6-7 of Biometrics France, shown in Fig. 2.9, is an example of commercial force platform [START_REF] Muro-De-La-Herran | Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications[END_REF]. This type of systems is used in PD diagnosis based on gait analysis [START_REF] Song | Altered dynamic postural control during step turning in persons with early-stage Parkinsons disease[END_REF][START_REF] Foreman | Improved dynamic postural task performance without improvements in postural responses: The blessing and the curse of dopamine replacement[END_REF][START_REF] Muniz | Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait[END_REF][START_REF] Vaugoyeau | Coordination of axial rotation and step execution: Deficits in Parkinson's disease[END_REF]. 2. Ultrasonic Sensors: these sensors are generally used to measure spatial parameters such as stride length, step length, the separation distance between feet, and the distance between feet and the ground. This type of sensor is used in the assessment of human gait symmetry in PD patients [START_REF] Ashhar | A wearable ultrasonic sensor network for analysis of bilateral gait symmetry[END_REF]. In [START_REF] Qi | Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network[END_REF], authors use a foot-mounted ultrasonic sensor for extracting the following gait phases: heel-strike, heel-off, toe-off and mid-swing (see Fig. 2.12). To carry out the gait analysis, the feet accelerations can be then measured during the walk, by attaching these accelerometers to the feet [START_REF] Tao | Gait analysis using wearable sensors[END_REF]. Accelerometers are used in PD assessments and monitoring in [START_REF] Saito | A new device for the long-term monitoring of motor activities for Parkinsons disease[END_REF][START_REF] Hoff | Accelerometric assessment of levodopainduced dyskinesias in Parkinson's disease[END_REF]. Gyroscope are used for gait cycle detection in subject with PD in [START_REF] Hundza | Accurate and reliable gait cycle detection in Parkinson's disease[END_REF]. In the category of inertial sensors, MTx units series from Xsens company are well known commercial products (see Fig. 2.15). Each unit includes typically a tri-axial accelerometer, a gyroscope and a magnetometer, to measure respectively, the 3D acceleration, the 3D angular velocity and the local Earth magnetic field vector.

These units can be connected in series using the Xbus Master [START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF].

5. Force and Pressure Sensors: These sensors are generally in-shoe measurement systems that are based on the same principle as floor sensors, but have the advantage that they are well-suited for long-term measurements and ambulatory gait analysis. In the category of force and pressure sensors, F-scan from Tescan is a well-known commercial in-shoe pressure measurement system that allows wireless recording of pressure and force measurements during walking (Fig. 2.16 and 2.17).

F-scan quantifies the subject's plantar pressure from 960 sensels4 , arranged in columns and rows on the sensor. The F-scan operates at a scan rate of up to 100

Hz for each sensor. Likewise, the vertical and horizontal Ground Reaction Forces were used in [START_REF] Su | Characterizing gait asymmetry via frequency sub-band components of the ground reaction force[END_REF][START_REF] Zeng | Parkinson's disease classification using gait analysis via deterministic learning[END_REF][START_REF] Daliri | Automatic diagnosis of neuro-degenerative diseases using gait dynamics[END_REF]. Other studies exploiting vertical Ground Reaction Forces (vGRFs) will be presented in the next chapter (Fig. 2.18). 

Positioning of the thesis

In this chapter, we presented the general context of the thesis. We first gave a brief description of Parkinson's disease, its symptoms, along with the approaches commonly used for the diagnosis. Currently, the diagnosis made by doctors to assess the severity level of PD is conducted using various methods based on the assessment of cognitive deficits, speech disorders, human stability, gait cycle, etc. [START_REF] Khoury | Data-Driven Based Approach to Aid Parkinson's Disease Diagnosis[END_REF]. The absence of specific test for the Parkinson's disease makes it challengeable to diagnose subjects suffering from this disease. In addition, signs and symptoms similar to those of Parkinson's disease may have other causes, such as dementia with Lewy bodies, progressive supranuclear palsy, and certain types of stroke. Similar symptoms can also be observed in the case of exposure to some toxins, intake of some antipsychotic medication, as well as a head injury. This might further complicate the PD diagnosis using only qualitative criteria such as bradykinesi, hypertonia, depression, pain, fatigue, etc. Hence, machine learning based tools have been recently the subject of great interest to assist physical doctors in their daily diagnosis process. Furthermore, the study of gait parameters such as step length, step frequency and velocity is useful in understanding the mechanism of human motor control and in recognizing neurological disease progression. In this context, the Chapter 3 study of the gait cycle has been strongly applied to evaluate gait pattern disorders [START_REF] Khoury | Data-Driven Based Approach to Aid Parkinson's Disease Diagnosis[END_REF]. This thesis exploits gait cycle analysis to diagnose PD. Gait disturbances are often observed with the PD progression. Therefore, the main objective of this thesis is to provide an efficient machine learning tool that aims at supporting physiotherapists 

Introduction

In this chapter, we propose a data-driven approach for Parkinson's disease diagnosis.

We present firstly the general background including data pre-processing (features computation, feature extraction and feature selection) followed by presentation of the main supervised and unsupervised classification approaches used in this study. An online dataset of vertical Ground Reaction Forces (vGRFs) data collected from gait cycle is used 1 .

The rest of this chapter is organized as follows: Section 3.2 presents the methodological background of the study, in particular, ( 1) the feature extraction and feature selection processes, (2) the supervised and unsupervised classification approaches, as well as (3) the performance evaluation metrics. Section 3.3 is dedicated to the related works. Sections 3.4 and 3.5 present the implementation of the above-mentioned methodology for the PD diagnosis.

General background

This section presents the standard phases that are commonly used in the machine learning process. These phases include: data acquisition and preprocessing, feature extraction and selection, classification and performance evaluation. In the following, a systematic review of the feature extraction/selection, classification and performance evaluation methods is presented.

Pre-processing

Data pre-processing is one of the most important steps in the data mining process. It 

Features Selection

Feature selection consists of selecting a subset of relevant features from the original feature set [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. To differentiate between samples, classification algorithms need representative features. Using inappropriate or redundant features may deteriorate the performance of a classification algorithm. This may result in a curse of the dimensionality problem and a decrease of classifier performance, therefore, selecting a reduced number of features, which have optimal discriminative power between classes, is a significant phase in data mining. The feature selection is defined as a process of searching a subset of appropriate features from the original set. Feature selection is an important step in the use of machine-learning algorithms as it reduces computation time and complexity while improving the overall classification rate.

Liu et al. [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF] categorized the feature selection process in a three-dimensional framework into a data mining task, an evaluation criterion, and a search strategy. The feature selection process is generally categorized into three categories: filter methods [START_REF] Liu | Toward integrating feature selection algorithms for classification and clustering[END_REF],

wrapper methods [START_REF] Kohavi | Wrappers for feature subset selection[END_REF] and hybrid methods [START_REF] Das | Filters, wrappers and a boosting-based hybrid for feature selection[END_REF]. Filter methods operate directly on the dataset by exploiting the intrinsic properties of the features. These methods rank a set of selected features according to the estimated weights of each feature. It should be noted that filter methods do not use any classifier in the selection process. Unlike filter methods, wrapper methods, which often yield better results, use a classifier to evaluate the selected subsets based on their predictive accuracies. Finally, the hybrid methods select the most relevant subset based on the use of some internal parameters of the machine-learning algorithm. In these methods, no validation step is required in the process of feature selection.

Features Extraction

The combination of original features is an alternative way of selecting a subset of relevant features. This technique consists of combining the original features set in order to define a new relevant features set. In other words, feature extraction is the transformation of high-dimensional data into a meaningful representation data of reduced dimensionality. The main advantage of feature extraction is that it facilitates classification and visualization of high-dimensional data.

The most popular technique for feature extraction is principal component analysis (PCA) [START_REF] Chau | A review of analytical techniques for gait data. Part 1: fuzzy, statistical and fractal methods[END_REF], which is a linear technique that consists of transforming the original features (generally inter-correlated) into new mutually uncorrelated features. These new features are the so-called principal components. The main idea behind PCA is to remap the original features into a low dimensional space in which the principal components are arranged according to their variance (from largest to lowest). The principal components that contribute to very low variance are omitted.
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Linear Discriminant Analysis (LDA) allows also extracting features through a linear transformation. LDA is closely associated to principal component analysis (PCA) since these two methods try to find linear combinations of variables, which best represent the data [START_REF] Martnez | Pca versus lda[END_REF]. The LDA method projects the original features points into a new space of lower dimension that maximizes the between-class separability while minimizing their within-class variability unlike PCA which, does not take into account any difference in classes.

The independent component analysis (ICA) [START_REF] Duda | Pattern Classification[END_REF] is another feature extraction technique commonly used on non-Gaussian data. This technique was initially developed to provide solution to the Blind Source Separation (BSS) problem. ICA searches for projections of original features such that the probability distributions of the projected data are statistically independent. The ICA algorithm aims at finding independent components, such as the original features that can be expressed as a linear combination of those components.

Another feature extraction method used in data mining is Factors Analysis (FA). In the FA method, the original features can be grouped according to their correlation.

However, FA determines the group of features that are highly correlated but have small correlations with features in other groups by some factors.

Classification Techniques

The features extracted/selected from the raw sensor data are used as inputs of the classification algorithms. In general, the classification task requires learning a decision rule or a function associating the inputs data to the classes. There are two main directions in machine learning techniques: supervised and unsupervised approaches [START_REF] Duda | Pattern Classification[END_REF][START_REF] Webb | Statistical Pattern Recognition[END_REF][START_REF] Theodoridis | Introduction to Pattern Recognition: A Matlab Approach[END_REF]. Supervised learning approaches for classification such as Artificial Neural Networks [START_REF] Webb | Statistical Pattern Recognition[END_REF],

Support Vector Machines (SVM) [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], require entirely labeled activity data. The unsupervised learning approaches, such as those based on Gaussian Mixture Models (GMM) allow to infer automatically the labels from the data.

In The distance of the neighbors of an observation is calculated using a distance measurement called similarity function such as Euclidean distance. Moreover, one should note that when using the k-NN approach and a new sample is assigned to a class, the computation of distances (i.e., the computation time) increases as a function of the existing examples in the dataset [START_REF] Trabelsi | An unsupervised approach for automatic activity recognition based on hidden Markov model regression[END_REF].

Decision Trees (DT)

The decision trees is a supervised classification method [START_REF] Breiman | Classification and Regression Trees[END_REF] that is simple, effective and easy to interpret. A DT finds nonlinear relationships between the inputs and outputs of the classifier. A DT is an iterative classifier that separates variables into branches and nodes. The nodes are composed of one root node and diverse inertial nodes and leaves. Several algorithms have been used for DT construction including the Classification and Regression Tree (CART) [START_REF] Breiman | Classification and Regression Trees[END_REF], Iterative Dichotomiser (ID3) [START_REF] Quinlan | Induction of decision trees[END_REF] and C4.5 [START_REF] Quinlan | 4.5: Programs for Machine Learning[END_REF], etc.

Random Forests (RF)

Random Forests (RF) [START_REF] Breiman | Classification and Regression Trees[END_REF] consists of a combination of decision trees. It improves the classification performance of a single-tree classifier by combining the bootstrap aggregating (bagging) method and randomization in the selection of partitioning data nodes in the construction of decision trees. The assignment of a new observation vector to a class is based on a majority vote of the different decisions provided by each tree constituting the forest. However, RF needs huge amount of labeled data to achieve good performances.
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Naive Bayes (NB)

Naive Bayes (NB) is another simple supervised machine learning model based on the Bayes theorem [START_REF] Neapolitan | Learning Bayesian Networks[END_REF][START_REF] Nielsen | Bayesian Networks and Decision Graphs[END_REF] with independence assumptions between observation data. NB's main advantage is that its learning model is simple and does not require any complicated iterative parameter estimation. Despite its simplicity, the NB model can outperform more sophisticated machine learning models.

Support Vector Machines (SVM)

Support Vector Machines (SVM), introduced by Vapnik [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF], is a classifier derived from statistical learning theory. This well-known machine learning technique minimizes an empirical risk (as a cost function) and at the same time, maximizes the margin between the so-called separating hyperplane and the data.

In their standard formulation, SVM are linear classifiers. However, non-linear classification can be achieved by extending SVM by using kernels methods [START_REF] Scholkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF].

The key idea of kernels methods is to project the data from the original data space to a high dimensional space called feature space by using a given non-linear kernel function. A linear separation in the resulting feature space can then be achieved by using the Cover's theorem [START_REF] Cover | Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition[END_REF]. Moreover, SVM is a binary classifier; therefore, to ensure a multi-class classification, pairwise classifications can be used (one SVM is defined by a class against all a convex others, for all optimization classes), which makes it time-consuming especially in the case of a large amount of data.

Gaussian Mixture Models (GMM)

A Gaussian Mixture Models (GMM) is a probabilistic approach, generally used in an unsupervised classification. Unlike standard probabilistic models based on approximating the data by a single Gaussian component density, GMM uses a weighted sum of finite Gaussian component densities. The parameters of GMM (the proportions, the mean vectors and the covariance matrices of the Gaussian components) are estimated using the expectation-maximization (EM) algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF]. One of the drawbacks of this model is that in many cases the GMM does not guarantee the convergence to the global minimum and a particular attention needs to be given to the initialization of the EM algorithm. 

Performance evaluation

Generalization performance

The validation consists of the model evaluation derived from the learning step. It is important to measure the generalization error on examples that were not used in the learning process. Thus, it is necessary to divide all available data into two sets [START_REF] Attal | Classification de Situations de Conduite et Dtection des vnements Critiques d'un Deux Roues Motoris[END_REF]:

Learning set (S) whose data will be used to build the model.

Test set (V) whose data will be used only to evaluate the performance of the obtained model.

There are several methods (called re-sampling techniques) that are used to assess the generalization ability of the obtained model. These techniques are applied with the assumption that the dataset used consists of independent and identically distributed (i.i.d) realizations:

1. Hold out: this validation technique consists of dividing the available data into two subsets (the learning set (S) and the test set (V)) without any common data.

A fairly large number of data is required in the test set to estimate the generalization error with good accuracy, thereby reducing the number of data available for learning [START_REF] Lennar | System identification: theory for the user[END_REF]. Often 70% of the data are kept for the learning and 30% are used for the test. All the learning and test sets are randomly selected from the available data.

2. K-fold cross-validation: the initial set is divided into K disjointed subsets of approximately identical size (N/K), where N represents the total number of samples of the whole available data [START_REF] Stone | Cross validation choice and assessment of statistical predictions[END_REF]. Each of these subsets is used as a test set while the others (K -1) subsets are used for learning. The optimal value of K is the one that yields the highest score (minimum generalization error) of cross-validation.

3. Stratified K-fold cross-validation: several works have introduced the stratified re-sampling scheme in cross-validation, in order to respect the distribution of classes in each iteration. The underlying idea is to reduce the variability of the models produced after each learning step. Nevertheless, some authors [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF] believe that this strategy is only truly effective if the initial data sample was extracted in a stratified manner from the initial dataset, i.e. the probabilities of occurrence of each class were explicitly respected when constructing the sample.

4.

Leave One Out: this method is a special case of cross-validation in which K = N [START_REF] Kohavi | A study of cross-validation and bootstrap for accuracy estimation and model selection[END_REF][START_REF] Efron | An introduction to the Bootstrap, ser. Monographs on Statistics and Applied Probability[END_REF]. This technique requires repeating N times the classification method on (N -1) observations making it prohibitive in terms of computation time but necessary when the number of samples is not high.

Bootstrap [161]:

The Bootstrap is a relatively recent method compared to the other methods mentioned above. This method was initially developed to estimate certain statistical parameters such as mean, variance, etc. In the case of model selection, the parameter that is estimated is the generalization error. However, what is specific to the Bootstrap is that the generalization error is not estimated directly: but rather is estimated using the difference between the generalization error and the learning error on a subset of data extracted from the initial dataset.

Classifier performance evaluation

To evaluate the performance of the different classification techniques, the following metrics are commonly used:

Confusion matrix: in the field of statistical learning, a confusion matrix is a table that allows the visualization of the performance of a classification method.

It also makes it easy to see if the classification method confuses several classes.

Each column of the confusion matrix represents the instances of an estimated class while each row represents instances of a true class. Accuracy: The accuracy measure is used to evaluate the classifiers performances.

In fact, this metric measures the proportion of correctly classified examples. In the case of binary classification, the accuracy can be expressed as follows:

Accuracy = T p + T n T p + T n + F p + F n (3.1)
The accuracy measure does not take into account the unbalanced datasets. In this case, the accuracy is particularly biased to favour the majority classes. Thus the following evaluation criteria are considered: the average of the accuracy rate and its standard deviation (STD), precision, recall, and F-measure.

F-measure: The F-measure is defined as the combination of two criteria, the precision and the recall, which are defined as follows:

P recision = T p T p + F p (3.2) Recall = T p T p + F n (3.3)
The F-measure is calculated as follows:

F -measure = (1 + β 2 ).Recall.P recision (β 2 .Recall + P recision) (3.4)
Where β is a weighting factor that controls the degree of importance of recall/precision. This parameter is a positive real number. In this study, β is set to 1 to give the same importance to both recall and precision.

Related works

Classification of patients with PD has been extensively studied based on the use of ground reaction force sensors placed in shoes [START_REF] Su | Characterizing gait asymmetry via frequency sub-band components of the ground reaction force[END_REF][START_REF] Zeng | Parkinson's disease classification using gait analysis via deterministic learning[END_REF][START_REF] Daliri | Automatic diagnosis of neuro-degenerative diseases using gait dynamics[END_REF]. For example, the PD classification in [START_REF] Su | Characterizing gait asymmetry via frequency sub-band components of the ground reaction force[END_REF] is based on vGRFs and uses a simple threshold-based classifier. However, this method has disadvantages due to its sensitivity to the choice and tuning of the threshold values [START_REF] Attal | Classification de Situations de Conduite et Dtection des vnements Critiques d'un Deux Roues Motoris[END_REF]. In [START_REF] Su | Characterizing gait asymmetry via frequency sub-band components of the ground reaction force[END_REF], Su et al. introduced measures of gait asymmetry by comparing the ground reaction force (GRF) features of both the left and right limbs.

The effectiveness of the proposed measures was evaluated by differentiating between the walking patterns of patients with PD and healthy subjects, respectively. The differentiation was done through threshold-based and Multi-Layer Perceptron (MLP) models.

A classical cross-validation procedure has been used to estimate the classifier performances; the dataset has been randomly divided into three subsets that are: training (80%), validation (10%) and test (10%) subsets.

Machine learning based approaches to classify patients with PD can be divided into two learning approaches: supervised and unsupervised [START_REF] Russell | Artificial Intelligence: A Modern Approach[END_REF]. In [START_REF] Zeng | Parkinson's disease classification using gait analysis via deterministic learning[END_REF], patients with PD and healthy control subjects were classified using gait analysis through deterministic learning theory. This classification approach consists of two phases: a training phase and a classification phase. In the classification phase, a bank of dynamic estimators was constructed from all the training data. The results show that this approach achieves an accuracy rate of 96.39%. In [START_REF] Lee | Parkinsons disease classification using gait characteristics and wavelet-based feature extraction[END_REF], to classify subjects with PD, vGRFs obtained from idiopathic subjects with PD were used to extract wavelet-based features, which, in turn, were used as inputs of a neural network with weighted fuzzy membership functions (NEWFM). In [START_REF] Daliri | Chi-square distance kernel of the gaits for the diagnosis of Parkinson's disease[END_REF], extracted features from gait signal measurements acquired through eight ground-reaction force sensors placed underneath each foot, and SVM-based algorithm were used to classify 93 subjects with PD and 73 healthy control subjects. The Chapter 3 results show that the proposed approach achieved an accuracy of 91.20% at diagnosing the subjects with PD. In [START_REF] Daliri | Automatic diagnosis of neuro-degenerative diseases using gait dynamics[END_REF], SVM-based algorithm and extracted/selected feature form time series-based information such as stride intervals, swing intervals' measurements acquired through force-sensitive resistor sensors were used. The classification accuracy for patients with PD was approximately 89.33%. In [START_REF] Wu | Statistical analysis of gait rhythm in patients with Parkinson's disease[END_REF], the stride interval density and its sub-phases (swing and stance intervals) were estimated using the nonparametric Parzen-window method and least squares SVM (LS-SVM). The obtained classification rate was approximately 90.32%.

Khorasani et al. [START_REF] Khorasani | HMM for classification of Parkinsons disease based on the raw gait data[END_REF] used a hidden Markov model (HMM) with Gaussian mixtures to classify patients with PD and healthy subjects. The proposed method allows achieving an accuracy of 90.3%. In [START_REF] Sarbaz | Modeling the gait of normal and Parkinsonian persons for improving the diagnosis[END_REF], to classify subjects with PD and healthy subjects, a nearest-mean scaled classifier was used, with the following features as classifier inputs:

variance of the stride signal, mean of phase signal, variance of phase signal, regression error, and Petrosian dimension for both feet. This approach resulted in a classification accuracy of 95.6%. In [START_REF] Cuzzolin | Metric learning for Parkinsonian identification from IMU gait measurements[END_REF], IMU gait measurement sequences sampled during walking are encoded as hidden Markov models (HMMs) to extract their dynamics. The distance between HMMs is learned and employed in a standard nearest neighbour classifier. This approach achieved an accuracy of 85.51%. A Q-back propagated time delay neural network classifier was proposed in [START_REF] Jane | A Q-backpropagated time delay neural network for diagnosing severity of gait disturbances in Parkinson's disease[END_REF] to monitor and predict the severity of gait disturbances in subjects with PD by analyzing the instability in their walking patterns.

The dataset used includes data from three PD research studies [169]. The results show that the classification accuracy on the three sub-datasets reached 91.49%, 92.19% and 90.91%, respectively. In [START_REF] Erturul | Detection of Parkinson's disease by shifted one dimensional local binary patterns from gait[END_REF], Ertugrul et al. proposed an approach built using shifted one-dimensional local binary patterns and machine learning. The statistical features extracted as: energy, skewness, correlation, coefficient of variation, entropy and kurtosis.

These features were classified using Naive Bayes, multilayer perceptron, partial C4.5 decision trees (PART), random forests, Bayes Network, logistic regression, a rule learner method and functional tree methods. The best accuracy rate was 88.88% obtained using the multilayer perceptron classifier. In [START_REF] Aici | A Random Forest Method to Detect Parkinsons Disease via Gait Analysis[END_REF], an RF algorithm was used for classification, and a set of features in the time and frequency domains were extracted. The classification accuracy when all features subsets were used reached 98.04%.

Joshi et al. [START_REF] Joshi | An automatic non-invasive method for Parkinson's disease classification[END_REF] presented an approach that combined wavelet analysis and an SVM to distinguish Parkinson's subjects from healthy ones using gait cycle variability. The Chapter 3 results showed that adopting the wavelet transform approach resulted in a classification rate of 90.32%. In [START_REF] Wu | Measuring signal fluctuations in gait rhythm time series of patients with Parkinson's disease using entropy parameters[END_REF], the parameters of approximate entropy, normalized symbolic entropy, and signal turn counts were computed to measure stride fluctuations in patients with PD. To implement gait pattern classification, Wu et al. employed generalized linear regression analysis and an SVM. The experimental results showed that the SVM achieved an accuracy of 84.48%. In [START_REF] Alam | Vertical ground reaction force marker for Parkinson's disease[END_REF], several supervised classifier methods including SVM, RF, k-NN and DT were compared in terms of the classification performances.

Furthermore, this study compared different kernel functions, including linear, Gaussian, quadratic and cubic. The results show that the SVM with the cubic kernel outperformed the other classifiers and achieved an accuracy of 93.6%. In [START_REF] Bhoi | Classification and Clustering of Parkinson's and Healthy Control Gait Dynamics Using LDA and K-means[END_REF], linear discriminant The vGRF signals are sampled at a frequency of 100 Hz. To create the different subdatasets, the participants were asked to walk at their typical walking pace on level ground for periods ranging from 25 min for distances ranging from 25 m to 77 m. These three studies differ in their measurement protocols. Subjects in [START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF] were asked to walk under different dual tasking conditions. Subjects in [START_REF] Hausdorff | Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[END_REF] were asked to walk with and without Rhythmic auditory stimulation (RAS) condition, while, in study [START_REF] Frenkeltoledo | Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease[END_REF], subjects were asked to walk with and without assistance by using a wheeled walker on a motorized treadmill. It should be noticed that the subjects who participated in the three studies 

Data preprocessing

In this study, we used the two signals representing the sums of the 8 sensor outputs from each foot. Rather than using each sensor signal, the use of these two signals allows the detection of the stance and swing phase in high precision. Moreover, these two signals can reflect the overall conditions of fluctuation from one aspect of gait dynamics [START_REF] Zeng | Parkinson's disease classification using gait analysis via deterministic learning[END_REF]. As described in [START_REF] Hausdorff | Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[END_REF], the subjects were asked to perform a round trip along a walkway, which can reveal the presence of outliers in gait parameters. The recorded gait Chapter 3 data during the turn-around phase were removed manually. This phase was removed manually, because the duration of this phase and the duration between two phases are different in the same subject, making its automatically removed more difficult. In addition to the turn, the first and last 20 seconds were removed to ignore starting and stopping effects. An analysis of the collected vGRFs shows signal fluctuations in some cases. Sensors used during the experimentation are not ideal sensors, which makes these fluctuations more important during the swing phase by recording non-zero vGRF values.

To address this issue, a 10-point median filter is applied. Fig. 3.5 shows the application of the pre-processing phase on the vGRFs signal for one of the subjects. 

Results of feature extraction process

In this study, the most relevant spatiotemporal features from the clinical point of view are extracted from vGRF signals [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF][START_REF] Frenkeltoledo | Effect of gait speed on gait rhythmicity in Parkinson's disease: Variability of stride time and swing time respond differently[END_REF][START_REF] Hausdorff | Gait variability and basal ganglia disorders: Stridetostride variations of gait cycle timing in parkinson's disease and Huntington's disease[END_REF][START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF][START_REF] Hausdorff | Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis[END_REF][START_REF] Hausdorff | Gait variability and fall risk in community-living older adults: A 1-year prospective study[END_REF]. The extracted features are:

Duration (s) of the Stride Time: the amount of time from initial contact of the foot, to the next contact of the same foot with the same configuration [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF][START_REF] Frenkeltoledo | Effect of gait speed on gait rhythmicity in Parkinson's disease: Variability of stride time and swing time respond differently[END_REF][START_REF] Hausdorff | Gait variability and fall risk in community-living older adults: A 1-year prospective study[END_REF]].

Duration (s) of the Swing Time: the amount of time when the foot is in the air [START_REF] Frenkeltoledo | Effect of gait speed on gait rhythmicity in Parkinson's disease: Variability of stride time and swing time respond differently[END_REF][START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF][START_REF] Hausdorff | Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis[END_REF][START_REF] Hausdorff | Gait variability and fall risk in community-living older adults: A 1-year prospective study[END_REF]. Short swing time: For each subject, we determine which foot had the shorter swing times by comparing the swing durations of each foot [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF].

Long swing time: For each subject, we determine which foot had the longer swing times by comparing the swing durations of each foot [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF].

Gait asymmetry: 100 × |ln( Short Swing T ime Long Swing T ime )| according to this definition, a gait asymmetry value of 0 implies a perfect gait symmetry, and the more the value is higher the more the degree of gait asymmetry is greater [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF].

Mean: the average of each previous feature. . This measure reflects the potential left-right differences in the stride-to-stride variability of each leg [START_REF] Yogev | Gait asymmetry in patients with Parkinson's disease and elderly fallers: When does the bilateral coordination of gait require attention?[END_REF].

Coefficient of variations (CV

A total of nineteen features are considered (see Table 3.4). 

Results and Discussion

In this section, different classification methods have been implemented for the purposes of the classification of subjects with PD. Moreover, the results of the features selection method as well as the performance of the different classification algorithms are presented and discussed. Note that in this study, the three sub-datasets are used separately.

Five supervised classification methods, namely k-Nearest Neighbours (k-NN), Support Vector Machines (SVM), Decision Trees (CART), Random Forests (RF), and Naive Bayes (NB), as well as two unsupervised techniques, namely Gaussian Mixture Models (GMM), and k-Means, are compared using standard evaluation metrics. Both supervised and unsupervised methods, take as inputs the extracted and selected features from raw data. These results will be used as standard results to compare them with results that will be obtained in the next contribution.

Parameters settings

Each classification technique requires one or several parameters that control (affect) the prediction outcome of the classifier. Choosing the best values for these parameters is difficult and involves finding a trade-off between the model's complexity and its generalization ability. In this study, finding parameter settings is conducted using a grid search. A grid search consists of adapting a grid of values (2D or 3D, depending on the number of model parameters) and incrementing each parameter by a fixed interval until the optimal values of the parameters are found. For example, for a model with two parameters a and b, the procedure consists of varying parameter a in a predefined interval [a min , a max ] using an increment of a and parameter b in the interval [b min , b max ] with an increment of b. For each vector of values (a, b), the models performance in terms of recognition rate is evaluated, and the vector that yields the best accuracy is selected.

The advantage of this method is that it allows the optimal parameters within the chosen intervals to be selected, but it is expensive in terms of computation time.

The selected parameters for each model are described below: Chapter 3

Supervised methods

A k-NN with Euclidean distance is applied to the three sub-datasets (Yogev, Hausdorff and Frenkel-Toledo). The number of neighbours is determined by varying k from 2 to 10. The optimal k values for the Yogev, Hausdorff and Frenkel-Toledo sub-datasets are, respectively, 5, 3 and 7.

The CART algorithm is used for the DT model. The CART uses the Gini index to find the best construction and the best partition of the tree.

For the RF model, the number of trees is varied between 10 and 200. The optimal numbers of trees for the Yogev, Hausdorff and Frenkel-Toledo sub-datasets are, respectively, 110, 100 and 100.

For the NB model, a normal distribution is used to model the conditional probability of the observation data and classes for the three sub-datasets.

For the SVM model, a non-linear model with polynomial kernel function (degree 3) is used for the two first sub-datasets, and a linear model is used for the third sub-dataset.

Unsupervised methods

For the GMM model, the diagonal Gaussian function is used for the Frenkel-Toledo sub-dataset, and the full Gaussian function is used for the other two sub-datasets.

For k-Means, the only parameter to tune is the number of classes. The number of classes is equal to two (Healthy and PD subject classes) Each sub-dataset is divided into training and testing sets according to a 10-fold crossvalidation procedure. For the supervised approaches, the labels are used during the Chapter 3 learning phase. Then, during the testing phase, the labels estimated by each classifier are matched with the reference labels (true labels) to evaluate the classification performance. Unlike the supervised models, the unsupervised models are trained using only the extracted features; no reference labels are used; instead, the labels are used only for classification evaluation purposes. Note that all extracted features and just the selected features are used as classifier input. As described above, a wrapper approach using an RF classifier [START_REF] Breiman | Classification and Regression Trees[END_REF] is used. This algorithm allows reordering the extracted features according to their relevance percentage. In this study, a set of 5 features representing 80% of the cumulative relevance is selected for each sub-dataset.

Parkinson's disease classification results

Results of feature selection process

In this subsection, the performance of the different classification techniques are presented and discussed. Note that, in this study, the three sub-datasets are analyzed separately. Table 3.5 summarizes the results of the feature selection process by presenting the five selected features for each sub-dataset. In the following sections, we use references to the features listed in Table 3.5 as substitutes for their names. These features are used as the input of each classifier. The features referred to as 6, 7 and 13 are included in the feature combination obtained from the Yogev and Hausdorff sub-datasets. We found that this combination was the most effective in achieving the highest correct classification rate for these two sub-datasets. A combination of the features referred to as 7 and 11 are obtained from the first and third sub-datasets. Moreover, the combination of the features referred to as 7, 8 and 19 (derived from the former two) yields good performance on the Frenkel-Toledo sub-dataset. Table 3.6 shows the obtained results in terms of accuracy for the different classifiers with and without feature selection. This table presents the obtained accuracy and its standard deviation from the three sub-datasets (Yogev, Hausdorff and Frenkel-Toledo). Table 3.6 also shows, that using only the features obtained from the feature selection process as classifier inputs leads to improving the overall accuracy rate with respect to the case where all the extracted features were used. For the Yogev sub-dataset, improvements of approximately 5%, 4%, 2%, 3%, 2%, 10% and 3% can be observed when improvements can be observed for the Hausdorff (3%, 5%, 3%, 10%, 4%, 4% and 6%, respectively) and Frenkel-Toledo (5%, 4%, 3%, 3%, 2%, 3% and 8%, respectively) subdatasets. This outcome can be explained by the fact that the feature selection process, by providing the best combination of relevant features for the classification algorithm, improves the classification performance with respect to both healthy subjects and PD subjects. Moreover, by analyzing the performance of each classifier with and without feature selection, it can be noted that, in the case of k-NN and CART with selected features, an improvement of 5% for the three sub-datasets is observed compared to the results obtained when using all extracted features. In the case of RF and SVM with selected features, an improvement of 3% can be observed for the three sub-datasets compared to the results obtained using all features. However, a greater improvement can be observed in the case of the Hausdorff sub-dataset (10%). Regarding the unsupervised Chapter 3 classifiers, k-Means shows an improvement of 3% in the case of Hausdorff and Frenkel-Toledo sub-datasets. Regarding the Yogev sub-dataset, using k-Means with selected features allows achieving a significant improvement about 10%. A significant improvement can be also noted in the case of GMM when using Hausdorff and Frenkel-Toledo.

Finally, there is also a slight improvement in the case of the Yogev sub-dataset. GMM using selected features achieves an improvement about 3%. These results show that the selected features can further increase the discriminative capability of the different classifiers (supervised and unsupervised). It is worth noting that using selected features as classifier inputs allows not only the improvement of the classification performance but also a significant reduction of the computational time both in the training and testing steps. 

Classification results

Tables 3.7-3.9 show the classifier performances in terms of accuracy with standard deviation, precision, recall and F-measure when using the selected features with the Yogev, To analyse the confusion that can occur in the classification step, global confusion matrices obtained using the different classifiers under 10-fold cross-validation on each subdataset (Yogev, Hausdorff and Frenkel-Toledo) are given in Table 3.10.

In most cases, the classifiers recognize subjects with PD better than they do with healthy subjects, particularly on the Yogev and Hausdorff sub-datasets. This can be explained by the fact that the number of healthy subjects in Yogev and Hausdorff sub-datasets is smaller than the number of subjects with PD (see Table 3.10). This imbalance in terms of the number of subjects may have affected the classifier performances because they cannot capture the specificities of the under-represented classes. On the Yogev sub-dataset (Table 3.10), the biggest percentage of misclassified healthy subjects is between 13% and 21%, which means that, among the 18 healthy subjects, three were classified as having PD. Most of the supervised methods classified 10 to 15% of subjects with PD as healthy, which means that, among the 29 subjects with PD, only four were misclassified. On the Hausdorff sub-dataset (Table 3.10), the percentage of misclassified healthy subjects varies from 14% to 27%, i.e., that, among 25 healthy subjects, 6 subjects were classified as having PD, whereas, in the case of supervised classifiers (except NB), 1 to 8% of subjects with PD were classified as healthy. This result means that, among the 29 subjects with PD, only two subjects were misclassified. In the Frenkel-Toledo subdataset, the number of healthy subjects is 29, whereas the number of PD ones is 35. Note that, in almost all cases, the healthy subjects are better recognized than are subjects with PD. Table 3.10 shows that the percentage of misclassified healthy subjects is between 14% and 23%, which means that, among the 29 healthy subjects, six subjects were classified as having PD. In contrast, 13 to 25% of subjects with PD were classified as healthy, which means that, among the 35 subjects with PD, eight subjects were misclassified. To explain this outcome, we observed that most of the subjects with PD It is clear that comparing algorithm performance across different studies is a difficult task for many reasons. This difficulty is mainly related to: (i) the type of sensors used to quantify PD activities, (ii) the performance evaluation criteria (specificity, recall, precision, F-measure, accuracy, etc.), and (iii) the validation procedure (leave one out, P-fold, bootstrap). In this study, we have limited the comparison to the studies in literature considering the Physionet dataset. Table 3.11 summarizes the most relevant works for PD diagnosis using Physionet dataset. It can be noticed that almost all related studies use statistical features (time-domain and frequency-domain features) as classifier inputs. It can be also observed that the proposed methodology outperforms major stateof-the-art performances. Certainly, using time-domain and frequency-domain features may lead, in certain studies, to a higher accuracy rate; however, such features could not be easily linked to a clinical indicator. As such tools are devoted to being used in a clinical environment to support doctors in the PD diagnosis process, it is necessary to use clinical-based features. Therefore, the main advantage of the proposed method is the use of only clinical-based gait features. On the other hand, we can notice a drawback related to the fact of not considering the family history and the medical history of the different subjects. Such information could lead to a more accurate PD diagnosis. 

Conclusion

We firstly presented the general background including data pre-processing (features com- 

Introduction

This chapter presents the Continuous Dynamic Time Warping (CDTW) technique for

Parkinson's Disease (PD) diagnosis classification using gait cycle similarities. The proposed approach exploits the principle of the repetition of gait cycle patterns to discriminate healthy subjects from PD subjects. To evaluate the repeatability of a given gait cycle, it is first necessary to extract a gait feature that better characterize the walking activity. Such feature can be expressed either in a global framework (the whole gait cycle is described using a feature vector (chapter 3)) or using a temporal description (i.e. the gait cycle is represented using time-series). The repetition of gait cycles is evaluated using the similarity of the time-series corresponding to stance phases estimated by applying the CDTW technique. The CDTW distances, extracted from gait cycles, are used as inputs of a binary classifier discriminating healthy subjects from PD subjects. 

Time series similarity measures

Different measures of similarity (or metrics) between time series exist. Depending on the context of use, a simple Euclidean distance (or other standard Lp) may be effective [START_REF] Yi | Fast time sequence indexing for arbitrary Lp norms[END_REF], but is limited to comparing time series of the same size and without time deformation. In this section, several techniques of time series similarity measures are Chapter 4

presented: lock-step measures (Euclidean distance), feature-based measures (Fourier coefficients), model-based measures (auto-regressive), and elastic measures (DTW, EDR 1 , and TWED 2 ). For more details about time series similarity, the reader is invited to refer to the following references [START_REF] Serra | An empirical evaluation of similarity measures for time series classification[END_REF][START_REF] Gusfield | Algorithms on strings, trees, and sequences: computer science and computational biology[END_REF][START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF][START_REF] Han | Data mining: concepts and techniques[END_REF][START_REF] Liao | Clustering of time series data: a survey[END_REF][START_REF] Marteau | Time warp edit distance with stiffness adjustment for time series matching[END_REF][START_REF] Fu | A review on time series data mining[END_REF].

Euclidean: Dissimilarity between two examples of time series can be estimated using any L n norm such that:

d Ln (u, v) = M i=1 (u i -v i ) n 1 n (4.1)
where n is a positive integer, M denotes the time series length, while u i and v i represent respectively the i -th element of time series u and v. Measures based on L n norms correspond to the lock-step measures group [START_REF] Wang | Experimental comparison of representation methods and distance measures for time series data[END_REF]. It consists of comparing samples having exactly the same temporal location. In addition, the size of the time-series u i and v i should be the same, otherwise, one time-series should be re-sampled to match the other one. Note that for n = 2, we obtain the Euclidean distance.

Fourier Coefficients: A simple extension of the Euclidean distance consists in representing the time series by their Fourier Coefficients (FC) as follows:

d F c (u, v) = θ i=1 ( u i -v i ) 2 1 2 (4.2) 
Where u i and v i are pairs of complex values designating the i -th Fourier coefficient of u and v, the discrete Fourier transforms (DFT) of the raw time-series.

θ represents the actual number of the considered coefficients. Due to DFT symmetry, only half of the coefficients (θ = M/2) are required. According to Parseval theorem [START_REF] Oppenheim | Discrete-time signal processing[END_REF], the Euclidean distance between FCs is equivalent to the standard Euclidean distance between the raw time series [START_REF] Agrawal | Efficient similarity search in sequence databases[END_REF].

Learning-models: Another alternative to compute feature-based time series similarities is to use time series models [START_REF] Liao | Clustering of time series data: a survey[END_REF][START_REF] Fu | A review on time series data mining[END_REF]. The idea here is to compute a

1 EDR: Edit Distance on Real sequences 2 TWED: Time-Warped Edit Distance similarity value based on the parameters of the two time series learned model. In the literature, several studies have exploited the idea of using learning model to estimate the similarity between time series [START_REF] Serra | An empirical evaluation of similarity measures for time series classification[END_REF][START_REF] Maharaj | Cluster of time series[END_REF][START_REF] Ramoni | Bayesian clustering by dynamics[END_REF][START_REF] Povinelli | Time series classification using Gaussian mixture models of reconstructed phase spaces[END_REF][START_REF] Serra | Predictability of music descriptor time series and its application to cover song detection[END_REF].

Edit Distance on Real sequences (EDR): EDR corresponds to the extension of the original Levensthein distance [START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] to real-valued time series. EDR has the ability to handle local time shifting and removes the noise effects by quantizing the distance between a pair of elements to two values, 0 and 1. Moreover, assigning penalties to the unmatched parts improves its accuracy [START_REF] Chen | Robust and fast similarity search for moving object trajectories[END_REF] Dynamic Time Warping (DTW): Dynamic time warping (DTW) [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF][START_REF] Berndt | Using dynamic time warping to find patterns in time series[END_REF] is one of the well known used approach to assess the similarity between two time series. It has been used in different applications [START_REF] Rodrguez | Interval and dynamic time warping-based decision trees[END_REF], [START_REF] Bartolini | Accurate retrieval of shapes using phase of fourier descriptors and time warping distance[END_REF], [START_REF] Tormene | Matching incomplete time series with dynamic time warping: an algorithm and an application to post-stroke rehabilitation[END_REF], [START_REF] Kholmatov | Identity authentication using improved online signature verification method[END_REF], etc.

DTW is based on an optimal alignment (or 'warping') of the time series in the temporal domain while minimizing the accumulated cost of this alignment that can be obtained using dynamic programming. More details about the formalization of the DTW are given in section 4.

Several techniques derived from DTW are used in the literature. For instance, the Derivative DTW (DDTW) technique, that overcomes the limitations of DTW minimization criterion [START_REF] Keogh | Derivative dynamic time warping[END_REF]: (1) the Piecewise Dynamic Time Warping (PDTW), that effectuates warping on a reduced dimensionality representation of the data [START_REF] Chu | Iterative deepening dynamic time warping for time series[END_REF]; (2) the Iterative Deepening Dynamic Time Warping (IDDTW) [START_REF] Tavenard | Improving the efficiency of traditional DTW accelerators[END_REF], that aims at calculating DTW only for candidate sequences in the dataset that are likely to be similar to the considered query [START_REF] Chu | Iterative deepening dynamic time warping for time series[END_REF]; (3) the Weighted DTW (WDTW), which is a DTW based on penalties; the WDTW penalizes points with higher phase difference between reference/ testing point to avoid minimum distance distortion caused by outliers [START_REF] Jeong | Weighted dynamic time warping for time series classification[END_REF]; (4) the FastDTW, that uses a multi-level approach, in which a solution is projected recursively from a coarse resolution and refines the projected solution [START_REF] Fu | A review on time series data mining[END_REF]; (5) the Continuous DTW (CDTW) technique, that allows the matching between sample point of one of the two time-series and another point between two samples of the other time-series [START_REF] Khoury | CDTW-based classification for Parkinson's Disease diagnosis[END_REF].

Time-warped edit distance (TWED): TWED is slightly different from Dynamic Time Warping or Edit Distance on real sequences algorithms. In particular, TWED comprises a mismatch penalty parameter and introduces a parameter that controls a kind of stiffness of the elastic measure [START_REF] Marteau | Time warp edit distance with stiffness adjustment for time series matching[END_REF]. It is worth noting that TWED is able to take into account, in its original formulation, the time stamp differences. As a result, TWED allows dealing with time series having different sampling rates [START_REF] Serra | An empirical evaluation of similarity measures for time series classification[END_REF]. W is the warping (corresponding path) between u and v, which could be expressed as follows:

W =   w u (k) w v (k)   , k = 1, 2, ..., p (4.3) 
Where w u (k) and w v (k) are the indexes in time-series u and v respectively, and p is the length of the warping path. (w u (k), w v (k)) indicates that the w u (k) th element in time series u corresponds to the w v (k) th element in time series v (mapping between w u (k) th and w v (k) th). The warping path will be generated under the following constraints:

It is worthy noting that there are several warping paths that could satisfy the above constraints. DT W (u, v) is used to represents the optimal warping path, which is the minimal distance between time series u and v that could be found through a dynamic programming algorithm.

   D(i, j) = d global (i, j) + min{D(i -1, j -1), D(i -1, j), D(i, j -1)} DT W (u, v) = min{D(m, n)} (4.4) 
D(i, j) denotes the minimal cumulated distance in matrix D from (0, 0) to (i, j).

Once the optimal warping path has been computed based on the above dynamic programming equation, the time series u and v can be formulated using the following equations u and v:

   u(k) = u(w u (k)) v(k) = v(w v (k)) , k = 1, 2, ..., p (4.5) 
Where u and v represent the warped time-series u and v, respectively. The DTW Euclidean distance between u and v could be expressed using the two new time series u and v as follows: In the DTW technique, a discrete solution is provided for the warping function W; i.e.

DT W(u, v) = p k=1 (u(k) -v(k)) 2 (4.6) 
the warping functions w u (k) and w v (k) take discrete values in k = 1, ..., p. Moreover, this technique allows for the warping path to pass only through the points of the grid.

By using the recursion equation (4.4), the optimal path could be easily computed. For each node of the plane (i, j), the minimum cumulated cost is calculated sequentially by column-wise or row-wise. The previous node that yields to the minimum cost is saved.

The node with minimum cost is searched in the last column or row. By backtracking the saved nodes, the optimum warping path is then generated.

Continuous Dynamic Time Warping (CDTW) formulation

The major limitation of the DTW technique is the use of discrete points in the mapping of the two time-series. Furthermore, this technique does not give the best 'optimal' warping path. To improve this technique, Munich et al. [START_REF] Munich | Continuous dynamic time warping for translationinvariant curve alignment with applications to signature verification[END_REF], proposed the Continuous DTW (CDTW) technique by applying the process of mapping in the continuous domain.

In this case, the distortion function W can take non-integer values as the solution of the approaches to recognize daily living activities such as walking, climbing and descending stairs using accelerometer data.

Data pre-processing for PD classification

This section shows the data pre-processing and consists of two subsections: (1) Feature extraction step achieved using the CDTW technique to evaluate, for each foot, the similarity between the stance phase of each gait cycle and those of the other cycles.

( The intensity of the gray color represents the value of the CDTW distance; the more the gray is darker the more the distance is higher, and vice-versa. The black lines represent the 'optimal' warping paths in the case of two identical stance phases. In the case of a healthy subject, the 'optimal' warping path is very close to the one obtained with two identical stance phases (figures 4.6(a)). Conversely, for a subject with PD, the 'optimal' warping path is highly deformed and relatively far from the one obtained in the case of two identical stance phases (figures 4.6(b)). 

Features selection

Four features that represent the mean and the STD of the CDTW distance of each of both feet, are considered in addition to nineteen standard (spatio-temporal) features, to form a set of twenty three features (see Table 4.1). From this set, a wrapper-based method is used to derive an optimal subset of 4-selected features. This wrapper method consists of two steps: subset generation step using exhaustive search method and evaluation step using k-NN algorithm to assess the classification performance of the generated subset. 

Results and discussion

In this section, the results of the classification between healthy and PD subjects are presented and discussed. Four supervised classifiers are considered: k-Nearest Neighbours (k-NN), Support Vector Machines (SVM), Decision Trees (CART), Random Forests (RF), and Naive Bayes (NB). Two unsupervised classifiers were also evaluated: Gaussian Mixture Models (GMM), and k-Means.

The tuning of the classifier parameters used in this section is similar to the one applied 

Conclusion

In this chapter, we proposed a new approach for the aid of the diagnosis of Parkinson's Disease (PD). This approach exploits the fact that usually the walking of healthy subject is characterised by repetition of gait cycles, whereas that of PD ones show significant 

Introduction

This chapter describes the extension of the CDTW technique, proposed in chapter 4, to calculate the similarity between time-series during the stance phases in the multidimensional domain.

The formulation of the CDTW in multidimensional domain is presented firstly and then applied to the PD subjects classification. Several supervised/unsupervised classification methods have been implemented and evaluated. Different cases were considered with respect to the number of classes in each sub-dataset, which correspond to the severity degree of PD according to H & Y scale.

Multidimensional CDTW formulation

In 

U =                u 1 (1) u 1 (2) ... u 1 (i) ... u 1 (m) u 2 (1)
(i) ... u d (m)                V =                v 1 (1) v 1 (2) ... v 1 (j) ... v 1 (n) v 2 (1) v 2 (2) ... v 2 (j) ... v 2 (n) . . . . . . . . . . . . . . . . . . v l (1) v l (2) ... v l (j) ... v l (n) . . . . . . . . . . . . . . . . . . v d (1) v d (2) ... v d (j) ... v d (n)               
By generalizing the formulation of the local distance in the unidimensional case to the multidimensional case, the local distance d local (U (i), V (j)) between the time-series elements in the multidimensional domain, is calculated using the squared Euclidean distance as follows:

d local (U (i), V (j)) = d l=1 (u l (i) -v l (j)) 2 (5.1) 
Where U (i) and V (j) represent the i th and the j th columns of U and V respectively.

Then the optimal alignment path between the two time series U and V corresponds to the minimum distance warping path that is calculated based on the d local (U (i), V (j)).

In the multidimensional case, the cumulated distance could be expressed as follows:

D(i, j) = d local (U (i), V (j)) + min          D(i -1, j -1) D(i -1, j) D(i, j -1) 
(5.2)

Where D(1, 1) = d local (U (1), V (1)) represents the initial condition.

Chapter 5

The optimal warping path W corresponds to the minimum sum of distance from [START_REF] Davie | review of Parkinson's disease[END_REF][START_REF] Davie | review of Parkinson's disease[END_REF] to (m, n), which indicates how the two multidimensional time series U and V stretch or shrink along the time axis [START_REF] Mei | Learning a mahalanobis distance-based dynamic time warping measure for multivariate time series classification[END_REF]. In the following, two new multivariate time-series U and V are calculated as follows:

   U (k) = U (w u (k)) V (k) = V (w v (k)) , k = 1, 2, ..., p (5.3) 
Where p denotes the length of the warping path.

Using the warping path W, the original U and V will be mapped to U and V . Thus, the multidimensional DTW distance measure can be expressed as follows [START_REF] Mei | Learning a mahalanobis distance-based dynamic time warping measure for multivariate time series classification[END_REF]: 

DT W (U, V ) = p k=1 d local (U (w u (k)), V (w v (k))) = p k=1 d local (U (k), V (k)) = p k=1 (U (k) -V (k)) 2

Parameter settings

The tuning of the classifier' parameters used in this section is similar to the one applied in section 3.5-chapter 3. 10-fold cross-validation technique is used to evaluate the performances of the classifiers. The classifier parameters were tuned using a grid search based method. Tables 5.2, 5.3 , 5.4 show the optimal parameters for each of the used classifier. Tables 5.12, 5.13 and 5.14 show the classifiers performances (accuracy and its standard deviation, precision, recall and f-measure) in the third case in Yogev's, Hausdorff's and

Frenkel-Toledo's sub-datasets, respectively (section 5.3). Results in tables 5.12 and 5.13 show that k-NN outperforms both supervised and unsupervised classifiers with an accuracy rate ranging between 70.58 % and 78.31 % regardless of the type of distance.

A similar observation can be drawn when considering the other classification metrics.

Results Several supervised and unsupervised classification methods have been implemented and evaluated. The obtained results showed clearly significant improvements when using multidimensional CDTW based features with respect to the case when using unidimensional ones. As it can be noticed from the obtained results, a more accurate measure of similarity between stance phases times-series, allows a better discrimination between healthy subjects and PD subjects, as well as among the subjects having different disease PD severities.

Conclusion

This thesis deals with the diagnosis of PD subjects from gait cycle analysis. The obtained results showed clearly significant improvements when using multidimensional CDTW based features with respect to the case when using unidimensional ones.

As it can be noticed from the obtained results, a more accurate measure of similarity between stance phases times-series, allows a better discrimination between healthy subjects and PD subjects, as well as among the subjects having different PD disease severities.

Perspectives

The perspectives resulting from this thesis can be summarized as follows:

In this thesis, we have considered exclusively the features extracted from the stance phase of the gait cycle. One possible perspective to have a more finer analysis of the gait cycle similarities, would be to explore more sub-phases of both stance and swing phases such as Initial contact, Loading response, Mid-stance, Terminal stance, Pre-swing, Initial swing, Mid-swing and Terminal swing.

From an algorithmic point of view, different perspectives could be addressed to improve the PD diagnosis accuracy:

The fusion of different classifiers could be further implemented to exploit the complementarity that may exists among the classifiers.

In this thesis, the PD subjects classification is based on the similarity measurements of the stance phase time-series. A potential perspective would be to formulate the classification problem as a curve clustering one. In this case, vGRF data are considered as functional data characterizing a pathology pattern of each subject.

Other alternatives to the linear interpolation model used in the CDTW formulation can be explored for better assessment of the time-series similarity and better data modelling. The computation of the intermediate matching points resulting from the orthogonal projection is a difficult task and is directly related to the choice of the interpolation model.

Other machine learning models can also be considered such as deep learning models, however, the application of such models requires large amounts of data or the use of methods such as transfer learning or data augmentation.

Finally, an interesting perspective would be to build in collaboration with the Mondor University Hospital a large-scale dataset including walking data from patients suffering from different neurodegenerative diseases such as Parkinsons disease, Huntington's disease (HD) and Amyotrophic lateral sclerosis (ALS). Such diseases are related to movement disorders and their diagnosis could be addressed using the proposed methodology.
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Chapter 4

 4 presents the Continuous Dynamic Time Warping (CDTW) technique for Parkinson's Disease (PD) diagnosis classification using gait cycle similarities. The first part of the chapter presents a brief synthesis on the time-series similarity evaluation techniques and focuses then on the Dynamic Time Warping technique and its extension to the Continuous Dynamic Time Warping (CDTW). The next part of the chapter is dedicated to the state of the art related to the use of DTW to analyse the gait cycle. The last parts present and discuss the data pre-processing process as well as the obtained results in terms of PD classification. Chapter 5 describes the extension of the CDTW technique, proposed in chapter 4, to calculate the similarity between time-series during the stance phases in the multidimensional domain. The formulation of the CDTW in multidimensional domain is presented firstly and then applied to the PD subjects classification. Several supervised/unsupervised classification methods have been implemented and evaluated. Different cases were considered with respect to the number of classes in each sub-dataset, which correspond to the severity degree of PD according to H & Y scale.Chapter 6 provides a general synthesis of the contributions of the thesis along with a discussion on perspectives for future work.
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 21 Figure 2.1: Projections of the number of Parkinsonian cases over 45 years in France between 2010 and 2030 (by sex) [10]

Figure 2 . 2 :

 22 Figure 2.2: Different approaches of PD diagnosis

  assessment of the evolution of the disease. A modified version of the H & Y scale, including stages 1.5 and 2.5, is used to take into account the intermediate progress of PD.Figure 2.3, summarizes the different stages of the H & Y and Modified H & Y scales.

Figure 2 . 3 :

 23 Figure 2.3: PD stages according to H & Y and Modified H & Y scales[START_REF] Goetz | Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations the Movement Disorder Society Task Force on rating scales for Parkinson's disease[END_REF] 

4 .

 4 Gait cycle or the way a human walks can also be affected by the Parkinson's disease. Gait alterations in patients with PD can strongly affect their ability to work, exercise, and engage in daily activities. A description of the human gait cycle 2 EGG is a device used for the measurement of the degree of contact between the vibrating vocal folds during voice production, and therefore estimate the voice quality Chapter 2 along with the diagnosis of PD based on gait cycle are presented in the following sections.
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 24 Figure 2.4: Gait cycle sub-phases [61]

  2.4). The eight gait cycle sub-phases are defined hereafter : Initial Contact (heel strike): is a short sub-phase that includes the moment the right foot contacts the floor. The duration of this sub-phase represents from 0 to 2 % of the gait cycle. Loading Response (foot flat): represents the initial double stance interval. It begins when the right foot touches the floor (heel strike) and continues until the left foot is lifted from the floor to initiate its swing phase. The sub-phase duration varies from 0 to 10 % of the gait cycle. Chapter 2 Mid-Stance: It starts when the left foot leaves the floor and continues until the body center of gravity is aligned over the right foot. The duration of this sub-phase corresponds to 10 -30 % of the gait cycle. Terminal Stance: It starts with heel rise and ends when the left foot touches the floor. The duration interval represents from 30 to 50 % of the gait cycle. Pre-Swing: It starts with initial contact (heel strike) of the left foot and ends with the toe-off of the right foot. The sub-phase duration corresponds to 50 -60 % of the gait cycle. Initial Swing: It starts with lift of the right foot from the ground and continues until the swinging (right) foot is opposite to the stance (left) foot. The duration interval represents from 60 to 73 % of the gait cycle.
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 25 Figure 2.5: Sensors used for gait analysis: Wearable and Non-Wearable sensors.

Figure 2 . 6 :

 26 Figure 2.6: Example of an optical motion capture (OMC) system[START_REF] Georgiou | Rhythmic Haptic Cueing for Gait Rehabilitation of Hemiparetic Stroke and Brain Injury Survivors[END_REF] 

Figure 2 . 8 :

 28 Figure 2.8: Hands thermographic recordings of (A) Healthy subjects and (B) PD subjects. The PD patient shows in (B) a thermal asymmetry between the two hands [118].
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 291 Figure 2.9: AMTI Force Plateforms
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 210211 Figure 2.10: Placement of wearable sensors[START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF] 

Figure 2 . 12 :

 212 Figure2.12: Hardware system of the foot-mounted Ultrasonic sensor system[START_REF] Qi | Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network[END_REF] 
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 2132 Figure 2.13: Electromyography (EMG) sensors

Figure 2 . 14 :

 214 Figure 2.14: Gyroscopes for kinematic measurment[START_REF] Tao | Gait analysis using wearable sensors[END_REF] 

Figure 2 . 15 :

 215 Figure 2.15: Xsens (MTx) inertial tracker and sensors placement[START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF] 
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 2162217 Figure 2.16:The Tekscan F-scan Force Sensitive Resistors (FSR) insoles[START_REF]F-Scan In-Shoe Analysis System[END_REF] 

Figure 2 . 18 :

 218 Figure 2.18: Vertical, longitudinal, and lateral components of the Ground Reaction Forces (GRF) during gait cycle [132].

  in the diagnosis process by exploiting the most relevant features extracted from gait cycle. The challenge is to achieve an accurate classification between healthy and PD subjects, and also, between subjects with different levels of severity of the disease. For this purpose, two possible improvements of the diagnosis accuracy are investigated. The first one consists of considering only the most relevant spatio-temporal features from the clinical point of view among those extracted from vGRFs signals during walking. The second possible way of improvement is to exploit the repeatability of gait cycle in PD subjects and more precisely the similarity of stance phases time-series in unidimensional and multidimensional cases.

Figure 3 . 1 :

 31 Figure 3.1: Time-domain and frequency-domain features [135].

  the following sections, we briefly describe the classification techniques used in this study (k-Nearest Neighbours (k-NN), Decision Trees (DT), Random Forests (RF), Naive Chapter 3 Bayes (NB), Support-vector machines (SVM), Gaussian Mixture Methods (GMM) and k-Means). k-Nearest Neighbours (k-NN) k-Nearest Neighbours (k-NN) [142, 144] is a supervised classification technique that can be seen as a direct classification method because it does not require a learning process. It just requires the storage of the whole data. To classify a new observation, the k-NN algorithm uses the principle of similarity (distance) between the training set and a new observation to classify. The new observation is assigned to the most common class through a majority vote of its k-Nearest Neighbours.

  is a well-known unsupervised classification technique that can cluster n objects into k classes. k-Means clustering minimizes the distortion measure the total intra-cluster variance as a cost function. This consists of iteratively finding the cluster centroids, and then assigning the data according to their distance (e.g., Euclidean) to the cluster centroids, until convergence. One of the known limitations of k-Means is that it may have poor performance in the case of overlapping clusters (classes) and it does not define a density on the data and cannot therefore measure the uncertainty regarding the data classification, particularly in the overlap regions.

F

  n (false negatives) and F p (false positives) represent, respectively the positive examples incorrectly classified into the negative classes and the negative examples incorrectly classified into the positive classes.

  analysis and k-Means were used to classify and cluster subjects with PD and healthy control subjects. The goal of the authors was to study the effect of neurodegenerative diseases (i.e., Parkinson's disease) on mobility and gait in comparison with healthy control subjects. In [175], k-Means was used with the objective of discriminating patients with PD from control subjects. Finally, in [165, 176], Parkinson's disease diagnosis was made based on gait recognition using GMM. Table 3.2 presents a synthetic review of studies on PD diagnosis. The most of aforementioned studies are mainly based on the use of time-domain and frequency-domain features to diagnose Parkinson's disease. However, such features could not be easily linked to a clinical indicator. In this chapter, the main objective is to develop a useful tool to aid the diagnosis of Parkinson's disease using clinical-based features extracted from vertical Ground Reaction Forces (vGRFs). This tool is mainly devoted to being used in a clinical environment to support physiotherapists in the PD diagnosis process. Hence, in this study, only clinical-based features are considered.

  's disease classification In this section, we present the implementation of the above-mentioned methodology for the PD diagnosis. An online dataset of vertical Ground Reaction Forces (vGRFs) data collected from gait cycle is used. A classification engine assigns subjects to healthy or Parkinsonian classes. The diagnosis process involves four steps: data pre-processing, feature extraction and selection, data classification and performance evaluation.

Figure 3 . 2 shows

 32 the synopsis of this methodology by presenting the steps involved in Parkinson's Disease classification.

Figure 3 . 2 :

 32 Figure 3.2: Synopsis of the used methodology.
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 41 Dataset DescriptionThe gait dataset used in this study was obtained from the PhysioNet web site[169].It contains gait data of 93 patients suffering from Parkinson's disease and 72 healthy subjects. The average age of both categories is approximately 66 years. Males constitute 63% of the subjects with PD and 55% of the healthy subjects. This dataset contains three different sub-datasets. The first one, provided by Yogev et al.[START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF], contains the gait data of 29 people with PD and 18 healthy subjects. The second one, provided by Hausdorff et al.[START_REF] Hausdorff | Rhythmic auditory stimulation modulates gait variability in Parkinson's disease[END_REF], includes the gait data of 29 people with PD and 25 healthy Chapter 3 individuals. The third one, provided by Frenkel-Toledo et al.[START_REF] Frenkeltoledo | Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease[END_REF], contains the gait data of 35 people with PD and 29 healthy people.

  Each dataset includes vGRF measurements collected from eight force sensors (Ultraflex Computer DynoGraphy, Infotronic Inc., Hong Kong, China) placed under each foot of the subjects as shown in Figure 3.3.

Figure 3 . 3 :

 33 Figure 3.3: Placement of the 16 sensors under both feet.

[ 38 ,

 38 [START_REF] Yogev | Dual tasking, gait rhythmicity, and Parkinson's disease: Which aspects of gait are attention demanding?[END_REF][START_REF] Frenkeltoledo | Treadmill walking as an external pacemaker to improve gait rhythm and stability in Parkinson's disease[END_REF] were either healthy subjects or subjects suffering from PD, excluding any other walking pathologies. In addition to the sixteen signals provided by the vGRFs sensors, the dataset also includes two signals that represent the sums of the eight sensor outputs for each foot. Demographic information, measures of disease severity on the Hoehn and Yahr (H & Y) scale, the Unified Parkinson's Disease Rating Scale (UPDRS) and the Time Up and Go test (TUG) are also included in this sub-dataset. Figure 3.4 presents the sum of the signals from the eight left and eight right superposed sensors of two subjects, one healthy and one diseased.
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 34 Figure 3.4: vGRFs measured on left foot (blue) and right foot (red); (a) healthy subject, (b) subject with PD.

Figure 3 . 5 :

 35 Figure 3.5: Example of vGRF data pre-processing; (a) raw vGRFs data; (b) processed vGRF data.

  Percentage (%) of the Swing Time: 100 × Duration (s) of Swing T ime Duration (s) of Stride T ime . [64, 79] Duration (s) of the Double Stance Time: the time when both feet are in contact with the ground [64]. Percentage (%) of the Double Stance Time: 100 × Duration (s) of Double Stance T ime Duration (s) of Stride T ime [64].

): 100 ×

 100 ST D of each f eature M ean of each f eature (calculated for each previous feature) Standard Deviation (STD): calculated for the following features: duration (s) of the stride time, duration (s) of the swing time, percentage (%) of the swing time, short swing time, and long swing time. Coefficient of variation of the gait asymmetry: 100 × |ln( CV of the Short Swing T ime CV of the Long Swing T ime )|

[ 37 ] 7 Coefficients of Variation of the 100 ×

 377100 of the Swing Time of the left foot 3 Coefficients of Variation in duration (s) 100 × Standard Deviation in duration (s) of the Stride T ime of the lef t f oot M ean in duration (s) of the Stride T ime of the lef t f oot [79] of the Stride Time of the left foot 4 Coefficients of Variation in percentage (%) 100 × Standard Deviation in percentage (%) of the Swing T ime of the right f oot M ean in percentage (%) of the Swing T ime of the right f oot [64, 79] of the Swing Time of the right foot 5 Coefficients of Variation in duration (s) 100 × Standard Deviation in duration (s) of the Swing T ime of the right f oot M ean in duration (s) of the Swing T ime of the right f oot [37] of the Swing Time of the right foot 6 Coefficients of Variation in duration (s) 100 × Standard Deviation in duration (s) of the Stride T ime of the right f oot M ean in duration (s) of the Stride T ime of the right f oot [79] of the Stride Time of the right foot Standard Deviation of the Short Swing T ime M ean of the Short Swing T ime Standard Deviation of the Long Swing T ime M ean of the Long Swing T ime Coef f icient of V ariation of the Short Swing T ime Coef f icient of V ariation of the Long Swing T ime | Duration (s) of Swing T ime of the lef t f oot Duration (s) of Stride T ime of the lef t f oot of the Swing Time of the left foot (M ean of the P ercentage (%) of the Swing T ime of the lef t f oot) [64, 79] (s) of the Swing Time T ime of the lef t f oot was in the air of the left foot (M ean of the duration (s) of the Swing T ime of the lef t f oot) [37, 39, 179] 12 Mean in duration (s) of the Stride Time T ime f rom initial contact of the Lef t f oot to subsequent contact of the same f oot of the left foot (M ean of the duration (s) of the Stride T ime of the lef t f oot) [39, 79, 178, 179] 13 Mean in percentage (%) 100 × Duration (s) of Swing T ime of the right f oot Duration (s) of Stride T ime of the right f oot of the Swing Time of the right foot (M ean of the P ercentage (%) of the Swing T ime of the right f oot) [64, 79] 14 Mean in duration (s) of the Swing Time T ime of the right f oot was in the air of the right foot (M ean of the duration (s) of the Swing T ime of the right f oot) [37, 39, 179] 15 Mean in duration (s) of the Stride Time T ime f rom initial contact of the right f oot to subsequent contact of the same f oot of the right foot (M ean of the duration (s) of the Stride T ime of the right f oot) [39, 79, 178, 179] 16 Mean in percentage (%) 100 × Duration (s) of Double Stance T ime Duration (s) of the Stride T ime of the Double Stance Time (M ean in percentage (%) of the Double Stance T ime) [64] 17 Mean of the compare Swing T ime between the Right and the Lef t f oot, then distribut it according Short Swing Time to the Short Swing T ime Criteria (M ean of the Short Swing T ime) [37] 18 Mean of the compare Swing T ime between the Right and the Lef t f oot, then distribut it according Long Swing Time to the Long Swing T ime Criteria (M ean of the Long Swing T ime) Short Swing time Long Swing time |(averaged of the Gait Asymmetry) [37] Gait Asymmetry

13

  Mean in percentage (%) of the Swing Time of the right foot 7 Coefficient of Variation of the Short Swing Time 10 Mean in percentage (%) of the Swing Time of the left foot 6 Coefficient of Variation in duration (s) of the Stride Time of the right foot 11 Mean in duration (s) of the Swing Time of the left foot Hausdorff et al. 7 Coefficient of Variation of the Short Swing Time 5 Coefficient of Variation in duration of the Swing Time of the right foot 4 Coefficient of Variation in percentage (%) of the Swing Time of the right foot 13 Mean in percentage (%) of the Swing Time of the right foot 6 Coefficient of Variation in duration (s) of the Stride Time of the right foot Frenkel-Tol. et al. 7 Coefficient of Variation of the Short Swing Time 19 Mean of the Gait Asymmetry 11 Mean in duration (s) of the Swing Time of the left foot 8 Coefficient of Variation of the Long Swing Time 9 Coefficient of Variation of the Gait Asymmetry using k-NN, CART, RF, NB, SVM, k-Means and GMM respectively. Almost the same

Chapter 3 Hausdorff

 3 and Frenkel-Toledo sub-datasets. A comparison of the classifier performances shows that RF, k-NN and SVM achieve almost similar accuracy while outperforming the other classifiers with the Yogev and Frenkel-Toledo sub-datasets. The same observation can be made when considering the F-measure metric. On the Yogev sub-dataset, k-NN achieves the best recall performance followed by SVM, NB, RF, k-Means and CART.However, in terms of precision, the RF classifier provides the best rate, followed by SVM, CART, k-NN, NB and k-Means. GMM exhibits the worst rate. On the Frenkel-Toledo sub-dataset, k-NN, SVM and k-Means have similar recall performances, followed by NB, RF, CART and GMM. In terms of precision, RF achieves a higher rate, followed by SVM, NB, k-NN and CART, all with similar rates. Again, GMM and k-Means exhibit the worst performances. Finally, on the Hausdorff sub-dataset, k-NN achieves the highest accuracy, followed by RF, SVM, CART and NB. Regarding the F-measure metric, k-NN and SVM achieve almost similar performance, similar to RF and NB. In terms of recall, k-NN and SVM provides the best rates. In contrast, in terms of precision, k-NN shows the highest rate, followed by SVM, RF, CART and NB. The worst precision, recall and F-measure rates were obtained in the case of k-Means and GMM. By comparing supervised and unsupervised methods, it can be noted that supervised ones outperform unsupervised methods.

Chapter 3 who

 3 were misclassified as healthy subjects were in the beginning stage of the illness, according to the H & Y scale. The Yogev sub-dataset includes six subjects among 15 with a severity of 2 according to the H & Y scale, while the Hausdorff and Frenkel-Toledo sub-datasets include four and seven subjects among 12 and 28, respectively, with a severity of 2. Considering the misclassified healthy subjects, they were in the three sub-datasets mostly elderly, overweight, or had levels similar to that of PD on the TUG test.

  putation, feature extraction and feature selection) as well as the main supervised and unsupervised classification approaches in this study. We implemented several classification methods used to recognize PD based on vGRFs collected from gait cycles. This chapter discusses the complete structure of the PD recognition process: from data acquisition to performance evaluation. First, data acquisition and sensor placement are addressed. Then, feature extraction and selection processes are presented. Finally, we presented a comparison of five supervised methods (k-NN, CART, RF, NB and SVM) and two unsupervised methods (k-Means and GMM). The five selected features were used as classifier inputs. The classifiers are compared in terms of classification rate (accuracy) and its standard deviation (STD), precision, recall and F-measure. Their generalization performance is then assessed using the 10-fold cross-validation. The supervised classification approaches yield more efficient results, as it can be expected since they use labeled data in the learning phase. k-NN, RF and SVM provide good results in terms of accuracy and F-measure.

  Euclidean and squared Euclidean distances are used to express the CDTW. Different classification methods are evaluated, including four supervised methods: k-Nearest Neighbours (k-NN), Decision Tree (DT), Random Forest (RF), and Support Vector Machines (SVM), and two unsupervised ones: Gaussian Mixture Model (GMM), and k-Means. The rest of this chapter is organized as follows: Section 4.2 presents a brief synthesis on the time-series similarity evaluation techniques. Section 4.3 focuses particularly on the Dynamic Time Warping technique and its extension to the Continuous Dynamic Time Warping (CDTW). Section 4.4 shows the state of the art related to the use of DTW to analyze the gait cycle. Section 4.5 shows the data pre-processing for PD classification. In section 4.6, the obtained results in terms of PD classification are presented and discussed.

4. 3

 3 Dynamic Time Warping (DTW) 4.3.1 Dynamic Time Warping (DTW) formulation This subsection describes the Dynamic Time Warping (DTW) technique used to calculate the similarity between two time-series. Let u(i), i = 1, 2, ..., m and v(j), j = 1, 2, ..., n be two univariate time-series. An m×n matrix d global is calculated whose ij -th element being d local (i, j) = (u(i) -v(j)) 2 . d local (i, j) is the local distance between elements u(i) and v(j) (Figure 4.1).

Figure 4 . 1 :

 41 Figure 4.1: An example of DTW for two univariate time-series u and v [207].

Figure 4 .

 4 Figure 4.2(c) illustrates the matching process on the 'warping plane', by representing w u (k) on the x-axis, and w v (k) on the y-axis. The path on this warping plane is represented by the warping function W. The set of sample points on u and v defines a grid on the warping plane. When the warping path crosses one vertex (i, j) of the grid, it means that the point u(i) corresponds to the point v(j).

equation 4 . 4 .

 44 The CDTW differs from the standard DTW by the fact that a sample point in one of the time-series could match a point in-between two samples in the other time-series (see Fig. 4.2(b)). Therefore, the warping path could go through points between the grid nodes (see Fig. 4.2(d)). As it regards the recursion equation 4.4, the only difference lies in the fact that if w u (k) takes integer values in the set {1, ..., m}, then w v (k) could take non-integer values, and vice-versa.The intermediate matching points are obtained using interpolation model for the two time-series[START_REF] Munich | Continuous dynamic time warping for translationinvariant curve alignment with applications to signature verification[END_REF]. To obtain a closed and simple form of the equations for the recursion, a linear interpolation model between sample points is used in this study. As shown in

Figure 4 .

 4 Figure 4.2(b), the sample point v(2) is mapped to a new point u (1) which is obtained using an orthogonal projection of v(2) onto the segment [u(1), u(2)]. The linear model has the interest of greatly simplifying the computation of the intermediate matching points resulting from the orthogonal projection. It's worth noting that the similarity measurement used in CDTW is similar to that of the standard DTW [208].Figure 4.2

Figure 4 . 2 illustratesFrom Figure 4 . 3 ,

 4243 the principle of the DTW and CDTW. using the orthogonal projection of sample point u(i -1) of the timeseries u onto the segment [v(j -1), v(j)], and conversely the orthogonal projection of sample point v(j) of the time-series v onto the segment [u(i -1), u(i)], the coordinates of the intermediate matching points v(f ), u(e) can be expressed as follows:

Figure 4 . 3 :

 43 Figure 4.3: An example of the linear interpolation between samples of time-series using the CDTW.

) 4 . 5 . 1

 451 Feature selection step where CDTW-based features and standard spatio-temporal features, as computed in chapter 3, are used to select the optimal subset of the features Chapter 4 that allow obtaining the best classification rate. These steps are briefly described in the following : Features extraction Before assessing the similarity of the gait cycles, a threshold-based approach is applied to each of the recorded gait time-series of the left foot and the right foot taken separately, to extract swing and stance phases. Only stance phases have been considered since vGRFs values in swing phases are equal to zero (see Fig. 4.4).

Figure 4 . 4 :

 44 Figure 4.4: Stance phases extraction

Figures 4 .

 4 Figures 4.5(a) and 4.5(b) show the matching between the time-series of two right foot stance phases in the case of a healthy subject and a subject with PD. One can observe that the stance phases of the healthy subject are almost similar (figure 4.5(a)), unlike those of the subject with PD (4.5(b)).

Figure 4 . 5 :

 45 Figure 4.5: Matching between the times-series of two right foot stance phases (a) healthy subject, (b) PD subject.

Figure 4 . 6 :

 46 Figure 4.6: Optimal paths:(a) healthy subject, (b) PD subject.
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 62 PD classification based on feature selectionIn order to study the effect of using the CDTW-based features with respect to the use of standard features, we have applied a feature selection process of the total 23 features including, on one hand, the 4 CDTW-based features as shown in subsection 4.5.1 and calculated based on the Euclidean distance metric, and on the other hand, the 19 standard (spatio-temporal) features. Table4.7 shows the optimal feature parameters for each sub-dataset. In the case of Yogev's sub-dataset, the selected feature parameters include three CDTW-based features (that are Mean of the CDTW distance of the Left foot, Mean of the CDTW distance of the Right foot, and STD of the CDTW distance of the Right foot) and one standard spatio-temporal parameter that is the mean of the gait asymmetry whereas, for the two remaining sub-datasets, the four CDTW-based features were selected exclusively. These results confirm that among the total computed features, the CDTW-based features are the most relevant ones in terms of classification accuracy rates. Gait Asymmetry Mean of the CDTW distance of the left foot Mean of the CDTW distance of the right foot STD of the CDTW distance of the right foot Hausdorff Mean of the CDTW distance of the left foot Mean of the CDTW distance of the right foot STD of the CDTW distance of the left foot STD of the CDTW distance of the right foot Frenkel-Toledo Mean of the CDTW distance of the left foot Mean of the CDTW distance of the right foot STD of the CDTW distance of the left foot STD of the CDTW distance of the right foot

  variations from one gait cycle to another. For this purpose, a measure of similarity between these cycles carried out using the Continuous Dynamic Time Warping (CDTW) technique is proposed. By using the mean and the STD of each CDTW distance vector, four features are considered: Mean of the CDTW distance of the Left foot, Mean of the CDTW distance of the Right foot, STD of the CDTW distance of the Left foot, STD of the CDTW distance of the Right foot. In order to study the effect of using the CDTW based features with respect to the use of standard features, we have applied a feature selection process of the total 23 features including, on one hand, the 4 CDTW based features and on the other hand the 19 standard (spatio-temporal) features. The obtained results showed that the use of CDTW-based features improves significantly the classification accuracy rates for discriminating healthy subjects from subjects with PD.

  the previous chapter, Continuous Dynamic Time Warping (CDTW) based features are introduced to evaluate the gait cycle similarity using unidimensional time-series. Recall that only the mean value of eight force sensors placed under each foot are considered in this case and consequently the estimation of the force interaction between the foot and the ground is limited to only one mean value per foot. Therefore, multidimensional Continuous Dynamic Time Warping (CDTW) based features are introduced in this chapter for a more accurate measure of similarity between stance phases times-series.The aim is to have a better discrimination between subjects according to the H & Y scale. In this chapter, for each foot we consider eight force signals provided by the vGRFs sensors (fig.3.3, chapter 3) as well as their mean value to form in total a vector of nine signals per foot. In the following, we first present the formulation of the DTW in the multidimensional domain[START_REF] Mei | Learning a mahalanobis distance-based dynamic time warping measure for multivariate time series classification[END_REF].Formally, let U = (u 1 , u 2 , ..., u l , ..., u d ) and V = (v 1 , v 2 , ..., v l , ..., v d ) two multidimensional time-series, where u l = (u l (1), u l (2), ..., u l (i), ..., u l (m)) and v l = (v l (1), v l (2) , ..., v l (j), ..., v l (n)) represent the l th unidimensional time-series. d represents the number of signals per foot, i = 1, 2, ..., m, j = 1, 2, ..., n where m and n represent respectively the lengths of the time series U and V that could be represented under the following matrices.

(5. 4 )

 4 Note that the previous formulation concerns the standard multidimensional DTW. In the same way as for the unidimensional CDTW, the Multidimensional Continuous DTW (MCDTW) can be formulated by considering the process of mapping used in multidimensional DTW in the continuous domain. As in the case of unidimensional CDTW, intermediate points are added in the time-series by linear interpolation.

Figure 5 .

 5 Figure 5.1 illustrates the matching process between the multidimensional time-series during the stance phases of the right foot in the case of one healthy subject and one PD subject. In this study, nine signals per foot are considered and correspond to the data collected from the eight sensors placed under each foot as well as their mean value.

Figure 5 .

 5 Figure 5.2 shows the optimal warping paths in the case of one healthy subject and one PD subject. It can be noticed that the obtained warping path for PD subject shows similar deformation curvature of the unidimensional one.

Figure 5 . 1 :

 51 Figure 5.1: Results obtained from the matching between the times-series, in the multidimensional CDTW case, of two right foot stance phases according to: (a) healthy subject, (b) PD subject

Figure 5 . 2 :

 52 Figure 5.2: Optimal paths obtained in the multidimensional CDTW case: (a) healthy subject, (b) PD subject

Figures 5 . 3 , 5 . 4 ,

 5354 Figures 5.3, 5.4, and 5.5 show the performances obtained in the case 1, in terms of accuracy rates of the different classifiers using multidimensional CDTW-based feature, unidimensional CDTW-based features and standard features. We can observe that the supervised classifiers achieved the best classification rates with an improvement in the case of multidimensional CDTW-based features ranging from 7 % to 19 % with respect to the case of standard features. On the other hand, the improvement rates in the case of the unsupervised classifiers ranges from 12 % to 16 % regardless of the distance type.

Figure 5 . 3 :Figure 5 . 4 :Figure 5 . 5 :

 535455 Figure 5.3: Accuracy rates and their STD obtained in the unidimensional CDTWbased features, multidimensional CDTW-based features and standard features, according to the case 1 -Yogev's sub-dataset

Figure 5 . 6 :Figure 5 . 7 :

 5657 Figure 5.6: Accuracy rates and their STD obtained in the unidimensional CDTWbased features, multidimensional CDTW-based features and standard features, according to the case 2 -Yogev's sub-dataset

Figure 5 . 8 :Figure 5 . 9 :Figure 5 . 10 :

 5859510 Figure 5.8: Accuracy rates and their STD obtained in the unidimensional CDTWbased features, multidimensional CDTW-based features and standard features, according to the case 3 -Yogev's sub-dataset

  Most of the existing studies in the literature are mainly based on the use of timedomain and frequency-domain features extracted from walking patterns to diagnose Parkinson's disease. However, such features could not be easily linked to a clinical diagnosis. The main objective of this thesis was to develop a clinical tool to aid the diagnosis of Parkinson's disease using clinical-based features extracted from vertical Ground Reaction Forces (vGRFs). This tool is mainly devoted to being used in a clinical environment as a support tool to physiotherapists in their PD diagnosis process.To achieve an accurate classification, on the one hand, between healthy and PD subjects, and on the other hand, between subjects with different levels of disease severity, clinicalbased features are exploited and more specifically the repeatability of gait cycle in PD subjects by measuring the similarity of stance phases. For evaluation purposes, three gait datasets were used from PhysioNet which is a free web access to large collections of recorded physiologic signals. These datasets contain gait data of 93 patients suffering is characterized by the repetition of gait cycles, while the one of PD subjects show significant variations from one gait cycle to another. For this purpose, a similarity measure between these cycles, carried out using the Continuous Dynamic Time Warping (CDTW) technique, is proposed. By using the mean and the STD of each CDTW distance vector, four features are considered: Mean of the CDTW distance of the Left foot, Mean of the CDTW distance of the Right foot, STD of the CDTW distance of the Left foot, STD of the CDTW distance of the Right foot. To study the effects of applying the CDTW based features with respect to the use of standard features, we have applied a feature selection process of the total 23 features including, on one hand, the 4 CDTW based features, and on the other hand, the 19 standard (spatio-temporal) features. The obtained results showed that the use of CDTW-based features improves significantly the classification accuracy rates for discriminating healthy subjects from PD subjects. Finally, we proposed an extension of the CDTW for feature computation by analysing the similarity between time-series during the stance phases in the multidimensional domain. Different cases were considered with respect to the number of classes of healthy and PD subjects in the three used sub-datasets according to H & Y scale. Several supervised and unsupervised classification methods have been implemented and evaluated.

  

  

  

  

  

  

  

Table 2 . 1 :

 21 List of the wearable and non-wearable sensors commonly used in PD study

	Types	Sensors	Studies

Table 3 . 1 :

 31 Table. 3.1 shows a confusion matrix in the case of a binary classification. Confusion matrix in the case of a binary classification.

		Obtained class
		Positive Negative
	True Positive	T p	F n
	class Negative	F p	T n

where T n (true negatives) represents the correct classifications of negative examples, T p (true positives) represents the correct classifications of positive examples.

Table 3 . 2 :

 32 Synthetic review of studies on PD diagnosis.

	Validation Methods Accuracy	15-fold cross-validation 91.73%	Not specified 95.49%	Bootstrap method 91-94%	Leave-one-out 90.32%	70% (train), 30% (test) 95.6%	50% (train), 50% (test) 89.33%	50% (train), 50% (test) 74-77%	50% (train), 50% (test) 84-91%	Leave-one-out 90.3%	leave-one-out 100%	5-fold cross-validation -	80% (train), 10% 72% (Valid.), 10% (test)	5-fold cross-validation 96.39%	cross-validation 90-92%	10-folds 87-88% cross-validation	cross-validation 85.51%	10-fold cross-validation 74-98%	Leave one-out 90.32%	Leave one-out 84.48%
	Method	SVM	MDC	LR, PNN, SVM	LS-SVM	Nearest mean scaled	SVM	NEWFM	SVM	HMM with GM	SVM	SVM	Threshold-based	and MLP models	RBF NN	Q-BTDNN	BayesNT, NB, LR, MLP,	PART, Jrip, RF, and FT	HMM	RF	SVM	SVM
	Sensors Sensors Type	In-shoe dynamic foot pressure Wearable	CCD camera Non wearable	Force platform Non wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	Microsoft 3D camera sensor Non wearable	Microsoft Kinect For Windows SDK Non wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable	IMU sensors Wearable	Force sensors Wearable	Force sensors Wearable	Force sensors Wearable
	References	Jean et al., 2008 [100]	Cho et al., 2009 [113]	Muniz et al., 2010 [121]	Wu and Krishnan, 2010 [73]	Sarbaz et al., 2011 [166]	Daliri, 2012 [130]	Lee et al., 2012 [163]	Daliri, 2013 [164]	Khorasani et al., 2014 [165]	Dror et al., 2014 [116]	Dyshel et al., 2015 [117]	Su et al., 2015 [128]	Zeng et al., 2016 [129]	Jane et al., 2016 [168]	Ertugrul et al., 2016 [170]	Cuzzolin et al., 2017 [167]	Aici et al., 2017 [171]	Joshi et al., 2017 [74]	Wu et al., 2017 [172]	Alam et al., 2017 [173]

Table 3 .

 3 3 shows the number of subjects in each sub-dataset with respect to the severity level of PD according to the H & Y scale.

	Sub-datasets

Table 3 . 3 :

 33 Number of subjects in each sub-dataset with respect to the severity level of PD according to the H & Y scale.

Table 3 . 4 :

 34 List of the nineteen extracted features.

	Extracted Features
	Features References

Table 3 . 5 :

 35 The five most relevant features from each sub-dataset obtained using the RF feature selection process.

	Features Ref.	Selected Features
	Yogev et al.	

Table 3 . 6 :

 36 Accuracy and its standard deviation (STD) obtained with/ without the use of the feature selection process, for each sub-dataset.

					Supervised			Unsupervised
		Features Selec.						
			Perf.	k-NN CART	RF	NB	SVM k-Means GMM
			Accuracy 85.39% 82.10% 85.6% 75.64% 85.02%	63.72%	64.77%
	Yogev et al.	With Without	STD Accuracy 80.13% 77.94% 83.66% 72.58% 82.44% 3.49% 3.25% 3.23% 2.91% 4.26%	4.20% 53.72%	12.64% 61.39%
			STD	5.50%	4.32%	4.40%	4.10%	1.50%	1.10%	11.55%
	Hausdorff et al.	With Without	Accuracy 91.39% 84.82% 88.77% 77.22% 87.70% STD 2.83% 3.66% 2.30% 4.06% 3.26% Accuracy 88.47% 79.10% 85.57% 67.13% 83.93% STD 2.84% 2.89% 2.35% 3.26% 1.30%	55.12% 3.59% 51.07% 2.09%	65.12% 11.08% 58.93% 8.43%
	Frenkel-Tol. et al.	With Without	Accuracy 81.49% 79.01% 81.98% 78.97% 80.23% STD 4.68% 3.72% 4.19% 4.86% 4.80% Accuracy 76.75% 74.68% 79.51% 75.56% 78.47% STD 4.91% 4.87% 3.91% 5.74% 1.33%	57.19% 3.98% 53.75% 4.61%	65.31% 12.12% 57.34% 3.97%

Table 3 . 7 :

 37 Accuracy and its STD, Precision, Recall and F-measure for each classifier in the case of Yogev et al. sub-dataset.

			Supervised			Unsupervised
	Perf.							
		k-NN CART	RF	NB	SVM k-Means GMM
	Accuracy 85.39% 82.10% 85.65% 75.64% 85.02%	63.72%	64.77%
	STD	3.49%	3.25%	3.23%	2.91%	4.26%	4.20%	12.64%
	Precision 79.88% 80.93% 84.53% 66.99% 82.08%	50.79%	43.18%
	Recall	87.67%	75%	78.33% 80.83% 82.83%	76.87%	49.37%
	F-Measure 83.59% 77.85% 81.31% 73.26% 82.45%	61.17%	46.07%

By analyzing the result differences observed between the different sub-datasets, it can

Table 3 . 8 :

 38 Accuracy and its STD, Precision, Recall and F-measure for each classifier in the case ofHausdorff et al. sub-dataset. 

			Supervised			Unsupervised
	Perf.							
		k-NN CART	RF	NB	SVM k-Means GMM
	Accuracy 91.39% 84.82% 88.77% 77.22% 87.70%	55.12%	65.12%
	STD	2.83%	3.66%	2.30%	4.06%	3.26%	3.59%	11.08%
	Precision 84.85% 77.99% 82.12% 71.56% 82.32%	18.98%	22.17%
	Recall	66.16% 57.83% 51.50% 58.50% 67.33%	42.40%	25.20%
	F-Measure 74.34% 66.41% 63.30% 64.37% 74.07%	26.22%	23.59%

Table 3 . 9 :

 39 Accuracy and its STD, Precision, Recall and F-measure for each classifier in the case of Frenkel-Toledo et al. sub-dataset.number of PD subjects with high severity is more important in the case of the Hausdorff sub-dataset (17 among 29) followed by the Yogev et al. sub-dataset (14 among 29). Finally, the Frenkel-Toledo et al. sub-dataset includes the lower number of PD subjects with high severity(7 among 35). It is worth noting that the subjects with low severity (beginning stage of the disease) may be considered by the classifiers, in some cases, as healthy subjects. However, the PD subjects with high severity can be easily distinguished from healthy subjects.

			Supervised			Unsupervised
	Perf.							
		k-NN CART	RF	NB	SVM k-Means GMM
	Accuracy 81.49% 79.01% 81.98% 78.97% 80.23%	57.19%	65.31%
	STD	4.68%	3.72%	4.19%	4.86%	4.80%	3.98%	12.12%
	Precision 79.53% 78.90% 82.80% 79.68% 79.83%	51.90%	58.27%
	Recall	85.83% 76.33% 78.67% 82.33% 85.50%	85.86%	57.24%
	F-Measure 82.56% 77.59% 80.68% 80.98% 82.56%	64.69%	57.75%
	be noticed that almost all classifiers (supervised and unsupervised) show their best re-
	sults in the case of the Hausdorff et al. sub-dataset. It can be also noticed that the
	results obtained in the case of Yogev et al; sub-dataset. are better than those obtained
	for Frenkel-Toledo et al. sub-dataset. This can be explained by the fact that the num-
	ber of PD subjects with low severity is more important in the case of Frenkel-Toledo
	sub-dataset (28 among 35), followed by the Yogev et al. sub-dataset (15 among 29).

Finally, the Hausdorff et al. sub-dataset includes the lower number of PD subjects with low severity (12 among 29). Unlike the number of PD subjects with low severity, the Chapter 3

Table 3 .

 3 10: Global confusion matrix obtained using the different classifiers in the case of each sub-datasets. True Healthy 85.07 % 14.93 % 77.64 % 22.36 % 78.94 % 21.06 % 72.44 % 27.56 % 82.3 % 17.7 % 51.84 % 48.16 % 54.74 % 45.26 %

	Obtained Classes	Supervised Unsueprvised	k-NN CART RF NB SVM k-Means GMM	Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD	86.68% 13.32% 78.1% 21.9% 81.28% 18.72% 78.6% 21.4% 83.88% 16.12% 71.53% 28.47% 55.64% 44.36%	15.9% 84.1% 13.9% 86.1% 10.0% 90.0% 27.4% 72.6% 13.7% 86.3% 44.07% 55.93% 26.1% 73.9%	Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD	2.29 % 97.71 % 8.0 % 92.0 % 1.4 % 98.6 % 18.0 % 82.0 % 6.9 % 93.1 % 41.6 % 58.4 % 24.5 % 75.5 %	Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD Healthy PD	85.5% 14.5% 76.32% 23.68% 77.44% 22.56% 82.8% 17.2% 85.5% 14.5% 80.95% 19.05% 57.24% 42.76%	22.5% 77.5% 18.3% 81.7% 13.4% 86.6% 24.86% 75.14% 25.06% 74.94% 66.57% 33.43% 26.62% 73.38%
					True Healthy	Classes PD		Classes PD		True Healthy	Classes PD
					et al.		et al.			Tol. et al.
					Yogev		Hausdorff		Frenkel-

Table 3 .

 3 11: Classification accuracy results obtained in recent related studies based on PhysioNet datasets.

	References	Gait parameters features	Classifiers	Accuracy
	Sarbaz et al. 2012 [166]	Time domain	Nearest mean scaled classifier	95.6%
	Daliri 2012 [130]	Time domain	SVM	89.33%
	Lee et al. 2012 [163]	frequency domain	NEWFM	74-77%
	Daliri 2013 [164]	Time domain	SVM	84-91%
	Khorasani et al. 2014 [165]	Raw gait data	HMM with GM	90.3%
		Entropy, Energy, Correlation, Coefficient	BayesNT, NB, LR, MLP,	
	Ertugrul et al. 2016 [170]			87-88%
		of Variation, Skewness and Kurtosis	PART, Jrip, RF, and FT	
	Jane et al. 2016 [168]	Left and right vGRFs signals	Q-BTDNN	90-92%
	Wu et al. 2017 [172]	ApEn, NSE, STC	SVM	84.48%
	Alam et al. 2017 [173]	Time and Frequency domain	SVM	85-95%
	Aici et al. 2017 [171]	Time and Frequency domain	RF	74-98%
	Proposed methodology	Time domain	k-NN, CART, RF, SVM, k-Means, GMM 80-91%

Table 4 . 1 :

 41 List of the twenty three extracted features.

Table 4 . 3 :

 43 Accuracy rates and their STD, Precision, Recall and F-measure obtained using different distance metrics -Yogev's sub-dataset.

				Supervised		Unsupervised
	Distances	Perf.						
			k-NN	CART	RF	SVM	k-Means	GMM
		Accuracy	92.88 %	82.96 %	89.35 %	93.57 %	67.79 %	65.58 %
	Sq. Euclidean	STD Precision Recall	2.03 % 93.22 % 91.55 %	3.99 % 82.09 % 80.85 %	2.62 % 90.01 % 87.03 %	2.61 % 93.33 % 92.93 %	1.10 % 63.53 % 62.75 %	7.23 % 64.86 % 65.84 %
		F-measure 92.38 %	81.46 %	88.49 %	93.13 %	63.14 %	65.35 %
		Accuracy 97.32 % 92.36 % 96.18 % 98.60 % 74.88 % 77.44 %
	Euclidean	STD Precision Recall	1.60 % 97.23% 97.04 %	3.39 % 92.03 % 91.47 %	1.95 % 96.29 % 95.48 %	0.49 % 98.77 % 98.25 %	1.12 % 74.49 % 76.18 %	7.15 % 78.97 % 80.70 %
		F-measure 97.13 %	91.75 %	95.88 %	98.51 %	75.33 %	79.82 %
				Supervised		Unsupervised
	Distances	Perf.						
			k-NN	CART	RF	SVM	k-Means	GMM
		Accuracy	97.52 %	88.82 %	90.02 %	95.03 %	65.29 %	73.97 %
	Sq. Euclidean	STD Precision Recall	1.04 % 94.73 % 98.29 %	3.09 % 84.01 % 80.2 %	1.98 % 89.62 % 78.46 %	1.85 % 92.12 % 92.75 %	2.13 % 53.55 % 54.46 %	4.90 % 54.46 % 52.97 %
		F-measure 96.48 %	82.05 %	83.67 %	92.44 %	54.01 %	53.71 %
		Accuracy 99.33 % 92.65 % 95.64 % 99.09 % 68.68 % 77.11 %
	Euclidean	STD Precision Recall	0.67 % 98.58 % 99.44 %	2.74 % 88.82 % 88.71 %	1.56 % 97.13 % 89.35 %	0.26 % 98.02 % 99.28 %	0.26 % 57.35 % 59.11 %	8.21 % 65.23 % 65.46 %
		F-measure 99.01 %	88.77 %	93.08 %	98.64 %	58.22 %	65.34 %
	Table 4.4: Accuracy rates and their STD, Precision, Recall and F-measure obtained
		using different distance metrics -Hausdorff's sub-dataset.	

Table 4 . 5 :

 45 Accuracy rates and their STD, Precision, Recall and F-measure obtained using different distance metrics -Frenkel-Toledo's sub-dataset.

		Features	Perf.		Supervised		Unsupervised
				k-NN	CART	RF	SVM	k-Means GMM
		CDTW	Accuracy 97.32 % 92.36 % 96.18 % 98.60 %	74.88 %	77.44 %
	Yogev	Standard	STD Accuracy 85.39 % 82.10 % 85.65 % 85.02 % 1.60 % 3.39 % 1.95 % 0.49 %	1.12 % 63.72 %	7.15 % 64.77 %
			STD	3.49 %	3.25 %	3.23 %	4.26 %	4.20 %	12.64 %
	Hausdorff	CDTW Standard	Accuracy 99.33 % 92.65 % 95.64 % 99.09 % STD 0.67 % 2.74 % 1.56 % 0.26 % Accuracy 91.39 % 84.82 % 88.77 % 87.70 %	68.68 % 0.26 % 55.12 %	77.11 % 8.21 % 65.12 %
			STD	2.83 %	3.66 %	2.30 %	3.26 %	3.59 %	11.08 %
	Frenkel-Toledo	CDTW Standard	Accuracy 98.21 % 92.03 % 94.05 % 99.53 % STD 1.38 % 4.83 % 2.37 % 0.75 % Accuracy 81.49 % 79.01 % 81.98 % 80.23 % STD 4.68 % 3.72 % 4.19 % 4.80 %	71.56 % 3.88 % 57.19 % 3.98 %	73.12 % 4.53 % 65.31 % 12.12 %

Table 4 . 6 :

 46 Accuracy rates and their STD obtained using the CDTW distance features (4 features) and the standard features(5 features) 

Table 4 .

 4 

7:

The four selected features, obtained from the exhaustive selection, for each sub-dataset

  u 2 (2) ... u 2 (i) ... u 2 (m)

	. . .	. . .	. . .	. . .	. . .	. . .
	u l (1) u l (2) ... u l (i) ... u l (m)
	. . .	. . .	. . .	. . .	. . .	. . .
	u d (1) u d (2) ... u d		

Table 5 .

 5 1 shows the classes in each sub-dataset with respect to the severity level of PD according to the H & Y scale.

	Sub-datasets		Yogev			Hausdorff		Frenkel-Toledo
	Severity on H & Y	0	2	2.5	3	0	2	2.5	3	0	2	2.5
	Classes	1	2	3	4	1	2	3	4	1	2	3

Table 5 . 1 :

 51 Classes in each sub-dataset with respect to the severity level of PD according to the H & Y scale.

Table 5 . 5 :

 55 Accuracy and its std, precision, recall and f-measure for each classifier in the multidimensional CDTW (case 1) -Yogev's sub-dataset.

				Supervised		Unsupervised
		Perf.	k-NN	CART	RF	SVM	k-Means GMM
		Accuracy 97.15 % 90.75 % 94.45 % 97.79 %	72.79 %	67.91 %
	Sq. Euclidean	STD Precision 96.47 % 89.85 % 90.08 % 97.50 % 1.66 % 1.71 % 2.36 % 0.86 % Recall 97.49 % 90.43 % 93.96 % 97.80 %	3.01 % 76.87 % 77.38 %	6.08 % 68.96 % 58.91 %
		F-measure 96.98 % 90.14 % 94.02 % 97.65 %	77.12 %	63.54 %
		Accuracy 99.76 % 94.24 % 98.71 % 99.88 %	75.81 %	77.79 %
	Euclidean	STD Precision 99.75 % 93.39 % 98.93 % 99.84 % 0.5 % 2.66 % 1.18 % 0.38 % Recall 99.75 % 94.07 % 98.34 % 99.91 %	7.88 % 77.68 % 79.21 %	12.92 % 80.63 % 81.93 %
		F-measure 99.75 % 93.73 % 98.64 % 99.88 %	78.44 %	81.28 %
				Supervised		Unsupervised
		Perf.	k-NN	CART	RF	SVM	k-Means GMM
		Accuracy	98.10 % 91.23 % 92.36 % 97.52 %	66.53 %	76.78 %
	Sq. Euclidean	STD Precision Recall	1.61 % 97.04 % 97.17 % 82.59 % 84.36 % 94.30 % 1.56 % 1.70 % 0.55 % 89.20 % 91.32 % 98.13 %	1.74 % 48.56 % 48.58 %	6.78 % 57.81 % 53.71 %
		F-measure 97.11 % 85.77 % 87.70 % 96.18 %	48.57 %	55.68 %
		Accuracy	99.92 % 93.39 % 96.03 % 99.75 %	69.42 %	78.93 %
	Euclidean	STD Precision Recall	0.26 % 99.95 % 89.83 % 96.15 % 99.70 % 2.08 % 1.73 % 0.40 % 99.80 % 90.06 % 91.58 % 99.55 %	3.14 % 56.21 % 57.06 %	1.31 % 50.79 % 50.04 %
		F-measure 99.87 % 89.95 % 93.81 % 99.62 %	56.63 %	50.41 %

Table 5 . 6 :

 56 Accuracy and its std, precision, recall and f-measure for each classifier in the multidimensional CDTW (case 1) -Hausdorff's sub-dataset.

Table 5 . 8 :

 58 Global confusion matrix obtained using k-NN and SVM classifiers obtained in the case 1.

	Obtained Classes	k-NN (Multi) k-NN (Uni) SVM(Multi) SVM(Uni)	True 0 99.06 % 0.94 % 92.50 % 7.50 % 97.81 % 2.19 % 90.31 % 9.69 %	Classes 1 4.07 % 95.93 % 6.85 % 93.15 % 2.22 % 97.78 % 4.45 % 95.55 %	True 0 99.69 % 0.31 % 95.94 % 4.06 % 100 % 0 % 96.88 % 3.12 %	Classes 1 0.19 % 99.81 % 1.85 % 98.15 % 0.18% 99.82 % 0.37 % 99.63 %	True 0 95.60 % 4.40 % 93.60 % 6.40 % 88.80 % 11.20 % 88.80 % 11.20 %	Classes 1 1.25 % 98.75 % 1.46 % 98.54 % 0.21 % 99.79 % 3.30 % 96.70 %	True 0 99.60 % 0.40 % 99.60 % 0.40 % 99.20 % 0.80 % 98.80 % 1.20 %	Classes 1 0 % 100 % 0.73 % 99.27 % 0.10% 99.90 % 0.83 % 99.17 %	True 0 100 % 0 % 93.80 % 6.20 % 100 % 0 % 88.30 % 11.70 %	Classes 1 6.86 % 93.14 % 20.30 % 79.70 % 7.71 % 92.29 % 13.40 % 86.60 %	True 0 100 % 0 % 99.31 % 0.69 % 100 % 0 % 99.31 % 0.69 %	Classes 1 2.57 % 97.43 % 2.86 % 97.14 % 0.29% 99.71 % 0.29 % 99.71 %
			Sq. Euc	Euc		Sq. Euc	Euc		Sq. Euc	Euc	
				et al.			et al.			et al.	
				Yogev			Hausdorff		Frenkel-Toledo

Table 5 .

 5 10: Accuracy and its std, precision, recall and f-measure for each classifier in the multidimensional CDTW (case 2) -Hausdorff's sub-dataset.

Table 5 .

 5 11 represents the global confusion matrices obtained according to the second case. These results show that the use of multidimensional CDTW-based features increases the classification accuracy rate that can reach up to 16 % with respect to the unidimensional CDTW-based features. The high rate of misclassified subjects belonging to class 3 (H & Y=3), is due to the fact that the number of subjects in class 3 is smaller than the one in class 2 (H & Y= 2 and 2.5) (see table 3.3, chapter 3). Finally, k-NN shows better performances than SVM in almost all matrices regardless of the distance type.

Table 5 .

 5 11: Global confusion matrix obtained using k-NN and SVM classifiers obtained in the case 2.

		SVM(Uni)	1 2 3	87.19 % 12.81 % 0 %	2.41 % 95.66 % 1.93 %	0 % 90.91 % 9.09 %	91.25 % 8.75 % 0 %	0 % 92.33 % 7.67 %	0 % 87.27 % 12.73 %	61.38 % 38.62 % 0 %	0 % 92.09 % 7.91 %	0 % 97 % 3 %	94.40 % 5.60 % 0%	2.44 % 86.98 % 10.58 %	0 % 61 % 39 %
	Obtained Classes	k-NN (Uni) SVM(Multi)	1 2 3 1 2 3	91.56 % 8.12 % 0.32 % 100 % 0 % 0 %	10.70 % 86.74 % 2.56 % 6.28 % 91.39 % 2.33 %	15.45% 71.83 % 12.72 % 18.18 % 62.73 % 19.09 %	94.69 % 3.44 % 1.87 % 96.56 % 3.44 % 0 %	2.33 % 96.97 % 0.70 % 0.23 % 97.44 % 2.33 %	0 % 91.82 % 8.18 % 0 % 72.73 % 27.27 %	85.20 % 14.80 % 0 % 76.80 % 22 % 1.2 %	6.63 % 93.26 % 0.11 % 2.92 % 95.56 % 1.52 %	0 % 85 % 15 % 3 % 94 % 3 %	88.00 % 11.20 % 0.80 % 96.40 % 3.20 % 0.40 %	0.23 % 97.44 % 2.33 % 0.58 % 92.56 % 6.86 %	6 % 71 % 23 % 2 % 87 % 11 %
		k-NN (Multi)	1 2 3	1 97.50 % 2.50 % 0 %	2 0.93 % 96.74 % 2.33 %	3 18.88 % 60.91 % 20.21 %	1 99.38 % 0.62 % 0 %	2 0.23 % 97.44 % 2.33 %	3 0 % 63.64 % 36.36 %	1 80.40 % 19.60 % 0 %	2 1.05 % 96.86 % 2.09 %	3 10 % 70 % 20 %	1 96.80 % 3.20 % 0 %	2 0 % 97.67 % 2.33 %	3 0 % 69 % 31 %
				Classes		Classes		Classes		Classes	
					True			True			True			True	
				Sq. Euc.			Euc.		Sq. Euc.			Euc.	
						et al.					et al.		
						Yogev				Hausdorff		

Table 5 .

 5 in table5.[START_REF] Mosley | The Encyclopedia of Parkinson's Disease[END_REF] shows that SVM outperforms both supervised and unsupervised classifiers by achieving the highest performances rate. 12: Accuracy and its std, precision, recall and f-measure for each classifier in the multidimensional CDTW (case 3) -Yogev's sub-dataset.

				Supervised		Unsupervised
		Perf.	k-NN	CART	RF	SVM	k-Means GMM
		Accuracy	75.46 % 60.68 % 66.80 % 72.56 %	59.65 %	58.60 %
	Sq. Euclidean	STD Precision Recall	1.99 % 70.45 % 51.16 % 55.55 % 61.38 % 4.40 % 3.64 % 1.91 % 60.17 % 51.39 % 53.23 % 57.90 %	3.88 % 58.78 % 49.18 %	9.48 % 50.43 % 45.92 %
		F-measure 64.91 % 51.28 % 54.37 % 59.59 %	53.55 %	48.07 %
		Accuracy	78.31 % 62.02 % 69.04 % 73.49 %	61.28 %	65.23 %
	Euclidean	STD Precision Recall	3.49 % 77.39 % 48.43 % 56.90 % 71.52 % 4.53 % 4.79 % 1.63 % 64.60 % 48.83 % 55.26 % 57.83 %	1.74 % 56.97 % 57.23 %	1.68 % 58.11 % 56.74 %
		F-measure 70.42 % 48.63 % 56.07 % 63.95 %	57.10 %	57.42 %

Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J. et al. Projected number of people with Parkinson disease in the most populous nations,

through 2030, Neurology 2007, Volume 68, No. 5, pp. 384-386. 2 https://solidarites-sante.gouv.fr/fichiers/bo/2015/15-09/ste_20150009_0000_0056.pdf (accessed on 15 October 2015) 3 https://www.franceparkinson.fr/wp-content/uploads/2016/10/CP-FRANCE-PARKINSON-et-CGE-DISTRIBUTION. pdf) (accessed on 28 June 2018)
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)). j +(u(i -1) -v(j -1)). v 2 = ((i -1) -(j -1)) v + (u(i -1) -v(j -1))

4.4 Gait cycle similarity evaluation using Dynamic Time

Warping (DTW)

DTW technique has been exploited in the literature for gait cycle analysis. For instance, in Helwig et al. [START_REF] Helwig | Methods to temporally align gait cycle data[END_REF], the DTW and DDTW techniques are exploited to temporally align gait cycle data for biomechanical and clinical applications. The ability of these techniques to perform a precise temporal alignment is assessed when mapping a test gait cycle trajectory to a reference trajectory. In [START_REF] Boulgouris | Gait recognition using dynamic time warping[END_REF], authors applied the DTW technique in section 3.5 chapter 3. Also, it should be noted that 10-fold cross-validation technique was applied to evaluate the performances of the classifiers. Two types of distances were evaluated in the application of the CDTW: squared Euclidean and Euclidean [START_REF] Deza | Encyclopedia of distances[END_REF] .

For the performance evaluation of the different classification methods, the following metrics were used: accuracy rates and their STD, precision, recall, and F-measure.

PD classification using CDTW-based features

Each classification technique requires one or several parameters that control (affect) the prediction outcome of the classifier. Choosing the best values for these parameters is difficult and involves finding a trade-off between the model's complexity and its generalization ability. In this study, finding parameter settings is conducted using a grid search. For more details, please refer to chapter 3, section 3.5.1. Better performances are obtained in the case of the Hausdorff's sub-dataset since, as discussed in chapter 3, this dataset is composed in proportion of more subjects with high severity, which makes it possible to obtain a better separability between the PD subjects class and the healthy subjects class.

Regarding the performance of classifiers, the same trends can be observed as in Chapter 3. Indeed, the best accuracy rates are obtained with SVM in the case of Yogev's subdataset (98.60 %), with k-NN in the case of Hausdorff's sub-dataset (99.33 %), and with SVM in the case of Frenkel-Toledo's sub-dataset (99.53 %). The same observation can be made when considering the Precision, Recall and F-measure metrics.

Table 4.6 shows the performances in terms of accuracy rates and their STD, using

Euclidean-based CDTW distance. These performances have been compared to those obtained using 5 features selected among [START_REF] Giovannoni | Bradykinesia akinesia incoordination test (BRAIN TEST): an objective computerised assessment of upper limb motor function[END_REF] To analyse the confusion among the classified subjects in the three cases (section 5. In all matrices (table 5.8), the classifiers recognize subjects with PD better than healthy subjects, particularly in the Hausdorff's sub-dataset, regardless of the type of distance.

Results and discussion

The recognition rate improvement using the multidimensional CDTW-based features may reach up to 7 % in healthy subjects, and 3 % in PD subjects with respect to the classification using unidimensional CDTW-based features.

Chapter 5

Tables 5.9 and 5.10 summarize the classifier performances in terms of accuracy and its standard deviation, precision, recall and f-measure in the second case ( The contributions of this thesis can be summarized as follows:

We firstly presented the general background of the PD recognition process including data pre-processing (features computation, feature extraction and feature selection) as well as the main supervised and unsupervised classification approaches that were used in this study. We implemented and compared several classification methods to recognize PD based on vGRFs collected from gait cycles: five supervised methods (k-NN, CART, RF, NB and SVM) and two unsupervised methods (k-Means and GMM). In this thesis, a total of 19 standard spatio-temporal features were considered from which five features were selected and used as classifier inputs. The classifiers were compared in terms of classification rate (accuracy) and its standard deviation (STD), precision, recall and F-measure. The supervised classification approaches yielded better results, as it can be expected since they use labelled data in the learning phase. k-NN, RF and SVM provide satisfactory results in terms of accuracy and F-measure.

We secondly proposed a new approach to support Parkinson's Disease (PD) diagnosis. This approach exploits the fact that usually the walking of healthy subject