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Résumé en français

L’échocardiographie est une technique d’imagerie médicale, employant les ul-
trasons, couramment utilisées pour le diagnostic, la prise en charge et le suivi de pa-
tients insuffisants cardiaques. Le «speckle-tracking echocardiography» (STE) permet la quan-
tification de l’asynchronisme ventriculaire en produisant des signaux de ‘strain’ asso-
ciés à la déformation. Cependant, la majorité des méthodes existantes d’analyse du
‘strain’ est basée sur l’étude des valeurs optimales et des instants associés à celles-ci.
Ces méthodes négligent notamment la morphologie des signaux même si des valeurs
identiques des pics de ‘strain’ peuvent être associées à des dynamiques très différentes.
De nouvelles méthodes sont donc nécessaires pour analyser conjointement la morpho-
logie des signaux de ‘strain’ acquis simultanément dans différentes régions du myo-
carde. Cette tâche est particulièrement difficile à cause de la multi-dimensionnalité du
problème et des nombreux processus impliqués dans la génération de la contraction
ventriculaire (interactions mécano-hydrauliques, activation et propagation électrique,
etc.), qui doivent être considérées conjointement.

L’objectif du travail de thèse est de proposer une approche à base de modèles
afin d’améliorer l’analyse des signaux de ‘strain’ issus de l’échocardiographie. Cette
approche semble particulièrement adaptée car cela permet d’intégrer des connaissances
physiologiques dans le traitement des données et d’analyser les mécanismes sous-
jacents qui sont difficiles ou impossibles à observer en clinique avec des méthodes
non-invasives (propriétés passives dumyocarde, activation électromécanique, ...). L’ap-
proche proposée dans la thèse nécessite donc la définition demodèles cardiaques dont
la résolution spatio-temporelle doit être adaptée à l’échocardiographie. Par ailleurs, il
est nécessaire d’intégrer une description des activités électriques, mécaniques et hy-
drauliques cardiaques afin de prendre en compte les différents processus qui mènent
à la contraction du myocarde. L’approche globale repose sur le couplage entre les mo-
dèles et des méthodes appropriées d’analyse de sensibilité et d’identification. Le dé-
veloppement des modèles, proposés dans la thèse, pourront notamment bénéficier de
l’environnement de modélisation et de simulation multiformalisme (M2SL), précé-
demment développé par l’équipe SEPIA du LTSI. Deux applications cliniques sont vi-
sées par nos travaux : la sténose aortique et la thérapie de resynchronisation car-
diaque.

La sténose aortique (SA) est un rétrécissement de l’ouverture de la valve aor-
tique qui bloque le flux sanguin du ventricule gauche (VG) vers l’aorte, en provoquant
une surcharge de la pression du VG. Même si la sévérité de la stenose aortiques est
principalement basée sur des indices échocardiographiques liés à la valve, les déci-

ii



sions thérapeutiques reposent également sur l’évaluation de la fonction ventriculaire
et la présence de symptômes. Dans ce contexte, il est essentiel de proposer des mé-
thodes robustes et indépendantes des conditions de charge afin d’estimer l’atteinte du
myocarde. Récemment, des indices de travail myocardique ont été proposés afin d’éva-
luer la fonction cardiaque à partir des signaux de strain et de pression ventriculaire.
Les indices de travail cardiaque ont pu être validés dans diverses application, notam-
ment liées aux désynchronisations ventriculaires. Cependant, leur évaluation chez les
patients SA est difficile car la mesure par cathétérisme de la pression VG est contre-
indiquée et l’estimation à partir des méthodes non invasives, actuellement proposées
dans la littérature, n’est pas possible à cause du gradient de pression transaortique.
Une première application de cette thèse consiste à proposer une nouvelle approche
à base de modèle pour 1) estimer la courbe de pression ventriculaire de manière
non-invasive et 2) évaluer les indices de travail cardiaque à partir des signaux de
strain obtenus par échocardiographie. Le modèle proposé est composé de : i) l’acti-
vité électrique cardiaque, ii) une représentation de l’activité mécanique basée sur des
élastances, iii) les circulations systémique et pulmonaire et iv) les valves cardiaques.
Une stratégie d’identification utilisant une technique de cross-validation en 2 étapes a
d’abord été appliquée sur une première base de données de 12 patients SA, puis la stra-
tégie d’identification a été appliquée de manière prospective sur une seconde base de
données de 23 patients SA. Les résultats montrent globalement un bon accord entre les
indices de travail cardiaque obtenus à partir des simulations spécifiques au patient et
des mesures expérimentales. À notre connaissance, ce projet présent la première mé-
thode d’estimation du travail cardiaque, basée sur unmodèle physiologique. L’évalua-
tion du travail cardiaque est prometteuse car elle pourrait être une alternative simple
et physiologique à des investigations plus complexes et coûteuses (IRM cardiaque, ...)
pour l’évaluation de la fonction myocardique.

La thérapie de resynchronisation cardiaque (CRT) est une option thérapeutique
chez les patients atteints d’insuffisance cardiaque (IC) avec un bloc de branche gauche
(BBG). Le BBG est un trouble du système électrique cardiaque dans lequel les impul-
sions électriques sont bloquées au niveau de la branche gauche du faisceau de His
avant d’arriver au ventricule gauche. La propagation et distribution des impulsions
électriques sur le VG génère une contraction du myocarde inefficace et asynchrone.
La CRT est une technique de stimulation électrique générée par un dispositif implan-
table permettant d’améliorer la coordination ventriculaire. Néanmoins, jusqu’à 30%
des patients sélectionnés en fonction des recommandations utilisées en Europe et aux
Etats-Unis, ne s’améliorent pas cliniquement après l’implantation dudispositif de CRT.
Une relation entre les morphologies des signaux de strain et les réponses au CRT a été
montré. Cependant, l’analyse des morphologies des strain associées au BBG est par-
ticulièrement difficile car les déformations du myocarde sont associées à la fois aux
retards de conduction électrique et aux activités cardiaques mécaniques. La seconde
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application de cette thèse consiste à proposer une nouvelle approche à base de mo-
dèles afin d’améliorer l’analyse des signaux de strain. Le modèle proposé intègre
quatre sous-modèles principaux : i) le système électrique cardiaque, ii) les activités
mécaniques de l’oreillette droite et gauche, iii) une representation multi-segment des
activités mécaniques ventriculaires gauche et droite iv) les circulations systémiques et
pulmonaires. Après une étape d’analyse de sensibilité, les paramètres du modèle ont
été identifiés spécifiquement pour chaque patient. Ce modèle est capable de fournir
des simulations des principales variables hémodynamiques (pression et débit ventri-
culaires. . . ) et des signaux de strain caractéristiques. L’approche a été appliquée sur
une base de données constituée de 10 sujets sains et 10 patients BBG, intégrant 5 pa-
tients avec une ischémie myocardique diagnostiquée et 5 patients sans ischémie. Les
paramètres patient-spécifiques, déduits des modèles, ont été analysés afin de mettre
en évidence les niveaux de retard électrique et de contractilité dans les différentes ré-
gions du ventricule gauche. Ainsi, l’approche à base des modèles permet d’analyser
et d’interpréter la morphologie des signaux de strain en apportant des informations
supplémentaires sur la fonction électrique et mécanique régionale du VG. Les résul-
tats proposés mettent en évidence la complexité intrinsèque de la mécanique VG chez
les candidats à la CRT, et présentent un pas en avant dans le développement de la mo-
délisation VG personnalisée dans le domaine de la CRT.

L’une des principales contributions de cette thèse concerne l’intégration des mé-
thodes d’analyse de sensibilité et d’identification de paramètres pour la création des
modèles spécifiques au patient et la proposition d’indices physiologiques pour l’in-
terprétation des mécanismes liés à la fonction cardiaque. L’évaluation des paramètres
cliniques, spécifiquement pour chaque patient, a l’avantage de prendre en compte les
caractéristiques associées au sujet et à la pathologie. La proposition des modèles com-
putationnels, l’intégration de connaissances dans l’analyse de données, l’application
d’intelligence artificielle à la santé, sont les différents aspects abordés dansma thèse de
doctorat qui est fortement soutenue par le caractère multidisciplinaire des chercheurs
impliqués dans le projet.

Le premier chapitre de ce manuscrit présente le contexte physiologique et cli-
nique dans lequel s’inscrit cette thèse. Après une brève revue de la physiologie et de
l’anatomie cardiovasculaire, une description générale de la sténose aortique et du bloc
de branche gauche est présentée. Enfin, l’échocardiographie, en tant qu’outil important
pour le diagnostic, la prise en charge et le suivi en cardiologie ; ainsi que les paramètres
basés sur l’écho pour l’évaluation de la fonction cardiaque sont également présentés.

Le chapitre 2 se concentre sur les stratégies et outils mis en œuvre pour la mo-
délisation et la simulation des systèmes. L’environnement de modélisation et de simu-
lation multiformalisme (M2SL) et les stratégies d’analyse des paramètres du modèle
sont décrites. Nous présentons des méthodes d’analyse de sensibilité des paramètres
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qui peuvent être utiles pour simplifier le temps de calcul lors de la simulation. Nous
présentons également les algorithmes évolutionnaires et la bibliothèque d’optimisa-
tion parallèle (PAGMO) utilisés pour l’identification des paramètres afin de proposer
des simulations spécifiques au patient.

Dans le chapitre 3, une estimation à base desmodèles de la pression VG est déve-
loppée dans le cas de la SA afin de proposer un nouvel outil pour estimer des indices de
travail myocardiques fiables pour cette population. Par unmodèlemultiformalisme du
système cardiovasculaire et une stratégie d’identification des paramètres, les courbes
de pression VG spécifiques au patient et les indices de travail myocardique ont été es-
timés par des procédures non invasives. L’approche à base des modèles proposée est
une première étape essentielle pour l’estimation du travail cardiaque chez les patients
SA.

Le dernier chapitre propose une approche à base de modèles permettant l’ana-
lyse de lamorphologie des courbes de strainmyocardiquedemanière spécifique-patient,
afin d’améliorer l’interprétabilité des paramètres issus de l’échocardiographie. Unmo-
dèlemulti-segment du système cardiovasculaire, intégrant des interactions électriques,
mécaniques et hydrauliques, et une méthode d’identification des paramètres utilisant
des algorithmes évolutionnaires ont été mis en œuvre afin d’obtenir des indices de
contractilité et des délais d’activation électrique chez les patients BBG ischémiques et
non ischémiques et chez les sujets sains.
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Introduction

According to the World Health Organization, cardiovascular diseases are the
leading cause of death in the world, representing around 17.9 million death each year
[1]. Heart failure (HF) is a pathological state characterized by the inability for the heart
to provide a sufficient pump action to maintain the blood flow necessary for the needs
of the body. About 1 to 2% of the general adult population in developed countries suf-
fers from heart failure, which corresponds in Europe to about 10 million people [2].
The HF prognosis remains poor when clinical signs appear. An estimated 32 000 an-
nual deaths are associatedwith heart failure in France. Although non-invasive imaging
techniques such as cardiac CT, cardiac MRI and PET (Positron emission tomography)
are developing rapidly and are emerging as major diagnostic tools, echocardiography
remains the initial examination tool for studying the morphology and function of the
heart because of its versatility, mobility, high spatiotemporal resolution and low cost.

Strain imaging method using speckle-tracking echocardiography (STE) has been
introduced as a complementary tool for the assessment of myocardial function [3, 4, 5].
STE is used to acquire regional strain traces representing regional tissue deformation
and is mathematically defined as the change in the myocardial fiber length relative to
its original length presented at end-diastole. Although, previous studies [6, 7, 8, 9] have
suggested that the analysis of strain traces obtained by STE might be an alternative for
quantifying cardiac function compared to other measures such as left ventricle ejec-
tion fraction (LVEF), guidelines still neglect the value of these methods for different
medical conditions. In fact, most of the analysis methods proposed in the literature are
based on peak timings and values of strain signals. These methods neglect the dynam-
ics of strain signals, since the same values of strain peaks or timings can be observed
with different strain curve morphologies. As a consequence, new methods are needed
to jointly analyze the morphology of strain signals acquired concurrently at different
regions of themyocardium. However, this is a very difficult task, partly due to themul-
tidimensionality of the problem and the fact thatmany different processes are involved
in the generation of ventricular contraction (mechano-hydraulic interactions, electrical
activation and propagation, etc.), which should be jointly considered for an appropri-
ate interpretation.

In this context, amodel-based approach seems particularly promising because: i)
it allows the integration of physiological knowledge on data processing tasks, ii) it per-
mits the analysis of underlying mechanisms that are difficult or impossible to observe,
iii) it could help to improve the therapy planning by evaluating hypothesis or config-
uration scenarios of the system. Although modelling of cardiac activity is increasingly
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used in research field and the state-of-art is wide and very active [10, 11], only few
patient-specific cardiovascular system (CVS) models have been proposed for the as-
sessment of cardiac function. Most of the proposed personalized human heart models
are based on the Finite Elementmethod (FEM) [12, 13, 14, 15] and consist inmulti-scale
models that consider different features of the heart such as anatomy, electrical activa-
tion, myocardial conductivity, afterload, active contraction, circulatory systems, etc. As
technology advances and more data becomes available, these approaches tend to in-
crease the level of detail and complexity of the models, requiring high computational
resources which impose an important challenge for personalizing therapy. Particularly,
several FEM based approaches [16, 12, 17, 18, 19] have proposed customized and vali-
dated computational models to assess the response to cardiac resynchronization ther-
apy. Nevertheless, the findings were generated in a small number of patients due to
the high quality and detailed experimental measurements required that might even
be difficult to obtain in a clinical setting, which limited the development of a greater
number of personalized models.

In 2008, our teamproposed the firstmodel-based approachused to analyze echocar-
diography imaging [20]. This model is recognized in the literature as the first patient-
specific model that could help the interpretation of Tissue Doppler Imaging (TDI) and
provides physiological markers of electromechanical activation of the myocardium
[21, 22]. This ventricular model has also been used to reproduce and interpret left
ventricular pressure waveforms by taking into account electro-mechanical desynchro-
nizations of one part of the myocardium [23]. Since the publication of this paper, the
modelling methodology proposed by our team was improved in several ways. A mul-
tiformalism modeling and simulation environment (M2SL) was proposed in order to
ease the integration of models representing different biological or physiological func-
tions, at different resolutions, spanning through different scales [24]. A formalization
of the model integration problem was further proposed and new coupling methods
were presented in [25]. Sensitivity analysis methods were implemented to study in-
put/output relationship [26, 27] and define a rank of importance in model parameters
[28]. Identificationmethods have also been improved by using evolutionary algorithms
[29], multi-objective optimization [28], and recursive identification [30]. Based on this
methodological framework, a number of integrated models have been proposed in the
cardiovascular field [29, 31], including neuromodulation applications [32] and for the
analysis of the respiratory system [33, 34]. In parallel to these model-based analysis
contributions, our team proposed the first data processing methods to take into ac-
count the dynamics of strain signals acquired from HF patients, by characterizing the
integrals of regional strain traces [35] and recent works integrate these different ap-
proaches into complete data-processing and machine learning chains for the evalua-
tion of HF patients [36, 37, 38].

Other teams have worked, more recently, on the development of such model-
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based methods, applied to HF [39, 40, 41], based on the CircAdapt closed-loop cardio-
vascular system model. Although Walmsley et al. [39] were able to simulate cardiac
deformation patterns with generally correct magnitudes, efforts are still required to
reproduce myocardial strain curves specifically to each patient. New methodological
contributions are therefore needed in order to bring model-based approaches to the
clinical field and provide patient-specific interpretation of strain curves.

The main objective of this thesis is to propose a new model-based method for
the analysis of cardiac regional strain data, obtained from cardiac echocardiogra-
phy. This includes a first phase of proposal and integration of a set of sub-models of
the CVS, presenting low computational costs and adapted for model analysis and pa-
rameter identification. A second phase of this work targets two clinical applications of
the proposed model-based method. This thesis is in direct continuity with the previ-
ous contributions of our team. All the methodological developments mentioned above
were essential to the proposal of a new, integrated CVSmodel that could be used to an-
alyze STE strain curves. Moreover, the sensitivity analysis and identification methods,
proposed in our laboratory, were highly important to create a patient-specific model
and to produce accurate physiological markers to the interpretation of cardiac strain.
The results and tools developed in this thesis were performedwithin the framework of
French ANR MAESTRo project (ANR-16-CE19-0008-01), which aims to provide novel
tools for the analysis of echocardiography strains.

The first application of this thesis consists of the proposal of a non-invasive
model-based estimation of the LV pressure curve in the case of aortic stenosis (AS)
to obtain reliable myocardial work indices. AS is characterized by a narrowing of
the aortic valve opening, which induces a LV pressure overload. Although AS severity
evaluation is primarily based on echocardiographic characteristics of the valve, treat-
ment decisions are also based on assessment of ventricular function and the presence
of symptoms. In this context, it is essential to propose robust methods independent of
the loading conditions in order to evaluate the impairment of myocardial diastolic and
systolic functions. Myocardial work assessment was recently introduced [42, 43] as an
interesting afterload-independent alternative to evaluate accurate cardiac function us-
ing strain signals and LV pressure curve. Because of the transaortic pressure gradient,
non-invasive LVP estimation, proposed by [42], cannot be used. Moreover, the inva-
sive measurement, by catheterization, is not recommended in AS patients. The first
challenge was to propose a model-based estimation of LV pressure using non-invasive
parameters, and the second challenge was to propose a novel tool to estimate myocar-
dial work in AS.

The second application of the thesis concerns a novelmodel-based approach for
the analysis of myocardial strains in patients presenting a left bundle branch block
(LBBB). Cardiac resynchronization therapy (CRT) usually causes reverse LV remodel-
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ing and has shown a major favorable impact on the care of heart failure patients with
LBBB. Despite the great success of randomized clinical trials, 25% to 35% of patients
undergoing CRT are non-responders to treatment and can even be harmed by biven-
tricular stimulation [44]. Observational studies of patients with LBBB have shown a
relation between strain curve morphologies and responses to CRT [8, 45, 46]. How-
ever, the assessment of desynchrony patterns in LBBB appears as particularly complex
because strains morphologies reflect dynamics associated with both electrical conduc-
tion delays and mechanical cardiac activities. A model-based approaches could help
to improve the interpretation of myocardial deformations observed in LBBB, before
CRT implantation. The main challenge was to propose a CVSmodel that integrates the
mechanisms involved in the generation of ventricular contraction (mechano-hydraulic
interactions, electrical activation and propagation, etc.) and the multidimensionality
of the problem. We intend to propose a model-based approach that could bring addi-
tional information on regional LV electrical andmechanical function, as well as help to
disclose the intrinsic complexity of LV mechanics in CRT candidates.

This thesis is organized as follows:

Chapter 1 provides the clinical context inwhich this thesis is framed. After a brief
review about cardiovascular physiology and anatomy, a general overview of AS and
LBBB is presented. Finally, the echocardiography, as an important tool for diagnosis,
management and follow up in cardiology; as well as echo-based parameters for cardiac
function assessment are also presented.

The chapter 2 focuses on the strategies and tools implemented for computermod-
eling and simulation. The Multi-Formalism Modeling and Simulation Library (M2SL)
and the strategies for model parameter analysis are described.

In chapter 3, a model-based estimation of the LV pressure is developed in the
case of AS in order to propose a novel tool to estimate reliable myocardial work indices
for this population. By a multiformalism model of the cardiovascular system and a
parameter identification strategy, patient-specific LV pressure waveforms andmyocar-
dial work indices were estimated by non-invasive procedures. The proposed approach
is a first essential step for the proposition of work estimation based on computational
modeling that could improve the prognostic significance in AS population.

The chapter 4 proposes innovative tools, including both data analysis methods
andmodel-based approaches, in order to assist the analysis ofmyocardial strain curves
and improve the interpretability of echo-based parameters. A multi-segment model
of the cardiovascular system, integrating electrical, mechanical and hydraulic inter-
actions, and a parameter identification method using evolutionary algorithms were
implemented in order to obtain patient-specific regional myocardial strain and echo-
based parameters in ischemic and non-ischemic LBBB patients and in healthy patients.
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Evaluation of the Cardiac

Function

1
The evaluation of the cardiac function is crucial to estimate the heart’s ability to

satisfy all themetabolic requirements that an organism demands. The volume of blood
entering the heart, the volume of blood ejected by the heart, the vascular resistance,
and the myocardial contractility are some of the factors that affect the cardiac function.
Pathologies as restrictive cardiomyopathies and valvular insufficiency could affect the
aforementioned factors, producing a deficient cardiac function.

Understanding the physiology of the cardiovascular system, as well as the dif-
ferent intertwinedmechanisms involved to meet the demands of the body, is of utmost
importance to perform an adequate evaluation of cardiac function. Therefore, in this
chapter, a brief andgeneral description of the physiology and anatomyof the cardiovas-
cular system will be presented, highlighting the electrical, mechanical and hydraulic
mechanisms underlying the cardiovascular function. In addition, the physiology of
two particular conditions, the left bundle branch block and the aortic stenosis, will be
detailed. These cardiac pathologies significantly affect cardiac function, hence our in-
terest to study and understand their underlying physiology. Finally, echocardiography,
a tool providing reliable and accurate solutions for cardiac function evaluation, will be
briefly presented, showing the advantages that this technology proposes.

1.1 The cardiovascular system

The cardiovascular system (CVS), also called circulatory system or vascular sys-
tem is a transportation, protection and regulation system of the body. This system i)
protect the body from diseases, ii)maintain a stable temperature and pH, and iii) trans-
port oxygen, nutrients, hormones and cellular waste products throughout the body [1].

The CVS consists of three major components: the blood, the blood vessels and
the heart.

1.1.1 Circulatory physiology

There are two primary circulatory loops in the human body (Fig. 1.1), which
work together in a closed circulatory system: i) the pulmonary circulation loop and ii)
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the systemic circulation loop. In pulmonary circulation, the pulmonary artery trans-
ports deoxygenated blood from the right side of the heart to the lungs, where the blood
is oxygenated. Then, pulmonary veins brings this oxygen-rich blood back to the heart
by the left side. In systemic circulation, the aorta receives the oxygenated blood from
the left side of the heart and transport it throughout the body. Systemic veins remove
wastes from all the tissues of the body and bring oxygen-poor blood back to the heart
by the right side. As previously mentioned, the circulatory loops form a closed system
where the blood never leaves the blood vessels networks.

Figure 1.1: Circulatory system. The heart, the pulmonary circulation loop and the sys-
temic circulation loop work together in a closed circulatory system. "Blood
flow from the heart" by OpenStax is licensed under CC BY 4.0.

Blood is a connective tissue composed of: i) plasma, a liquid that carries cells and
proteins; ii) red blood cells that transport oxygen to the body tissues; iii) white blood
cells that protect the body from external threats; and iv) platelets that produce a blood
clot as a response for bleeding. Blood is responsible for the transport of substances,
immunological functions, heat distribution, and maintenance of homeostasis in the
human body. Blood is transported trough the hole body by the blood vessels, starting
in the heart, with the arterial vessels [2].

Arteries are subdivided into arterioles, which further connect with the smallest
blood vessel in the body: the capillaries. As the arteries divide their elasticity decrease,
increasing their compliance. Arterial walls contract or expand to regulate the flow of
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blood, affecting the blood pressure. At the capillaries, gas exchange occurs, the oxygen
and nutrients are delivered to the cells and carbon dioxide with other wastes are col-
lected by the venules (small venous blood vessels). Blood flows back from the body to
the heart through the veins. Due to the low blood pressures that veins and venules are
subjected, venous blood vessels walls are much thinner, less elastic, and less muscular
than arterial blood vessels walls.

1.1.2 Anatomy of the heart

The heart is a muscular organ whose function is to pumps out the blood to the
whole body in order to move nutrients and remove the metabolic wastes.

The heart (Fig.1.2) has four hollow chambers: two upper chambers known as left
and right atrium and two lower chambers known as left and right ventricle. The right
atrium (RA) and right ventricle (RV) support the pulmonary circulation loop. Likewise,
the left atrium (LA) and left ventricle (LV) assist the systemic circulation loop. The atria
receive the blood that returns to the heart and then blood flows to the ventricles to be
pumped out of the heart. A wall known as septum separates the left and right sides of
the heart.

Bloodflowsunidirectionally through the heart chambers due to the cardiac valves
[2]. The heart has 4 valves: i) the mitral valve, located between the LA and the LV; ii)
the tricuspid valve, located between the RA and the RV; iii) the aortic valve, located
between the LV and the aorta; and iv) the pulmonary valve, located between the RV
and the pulmonary artery [3]. Valves situated between atria and ventricles are known
as atrioventricular valves and those located between the ventricles and the arteries are
known as semilunar valves. Each valve has flaps (cusps or leaflets) that open and close
(causing the sound of a heartbeat) to allow blood to flow in one direction. Opening and
closing depends on the differential blood pressure on each side of the cardiac valve.
Cardiac valve opens to minimize any obstruction and allows blood to flow freely in the
right direction. In addition, the valve closes completely to not allowing the backward
flow of blood.

The heart is made up of three layers of tissue: i) the innermost layer called the en-
docardium, that consists in a thin membrane located inside of the heart chambers and
forms the surfaces of the valves; ii) the myocardium, the middle layer, is the muscular
wall of the heart; and iii) the pericardium that consists in a tough and fibrous double
layer that covers the whole heart [3].
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Figure 1.2: Heart anatomy: heart chambers and cardiac valves. LA: left atria. RA: right
atria. LV: left ventricle. RV: right ventricle. "Diagram of the human heart
(cropped)" by Wikipedia is licensed under CC BY-SA: Attribution-ShareAlike.

1.1.3 Cardiac electrical system

The heart, as amuscular organ,must contract to ensure the flowof blood through
the blood vessels. The heart has its own independent electrical conduction system that
provides the energy necessary for cardiac contraction. Contrary to the skeletal mus-
cle, the cardiac muscle does not require nervous stimulation to cause depolarization
of muscle fibers, the heart itself is able to send electrical signals to contract the my-
ocardium [1].

The heart is composed of twokinds of cells: the cardiomyocytes (specializedmus-
cle cells) and the cardiac pacemaker cells. The cardiac myocytes form the atria and the
ventricles, and the pacemaker cells have the ability to stimulate the heart.

The automaticity of the heart’s electrical system is due to the three clumps of
cardiac pacemaker cells: i) the sinoatrial (SA) or sinus node; ii) the atrioventricular (AV)
node; and iii) the bundle of His and Purkinje fibers.

The contraction of the cardiac cells is initiated by electrical impulses known as
action potentials, which exhibit different forms depending on the type of cell. A type of
cell junction, known as GAP junctions, connect adjacent cells ensuring electrical cou-
pling and ions transmission between them. Thus, an action potential in a cell triggers
another action potential in its neighbor. Thanks to these cellular bridges all the cardiac
cells are able to act in synchrony as a single coordinated unit.
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1.1.3.1 Action potential in cardiomyocytes

As long as the cells of the body are not subjected to any type of stimulation, they
maintain a restingmembrane potential that is characterized by a negative charge inside
the cell relative to the outside [4]. The unequal distribution of charges generated in the
intra and extracellular space is due to the selective permeability of the cell membrane
that allows positively charged inorganic ions diffusion to the extracellular space and
leaves negatively charged molecules trapped inside the cell.

The resting potential is measured by the difference in the voltage between the
inside and outside of the cell. In a cardiac cell, the resting membrane potential is about
-90 mV (the sign indicates the charge of the inner surface of the cell).

The entrance of positive charges into the cell by an appropriate stimulus is called
depolarization. The cardiac cell usually reaches values of +50 mV during depolariza-
tion. The recovery to the resting membrane potential is called repolarization. The flow
of charged ions through the cell membrane produces a current and, consequently, an
alteration of the cell membrane potential. This change inmembrane potential is known
as action potential. The cardiac action potential constitutes the electrical impulse that
allow the pumping of the heart.

One of the differences between the action potential of a skeletal muscle cell and
a cardiac myocyte is the duration. The cardiac action potential lasts approximately 200
milliseconds, which is up to 15 times longer than the duration of the skeletal muscle
action potential. This is due to the different types of ion channels that skeletal and
cardiac cells possess.

The action potential in cardiomyocytes consists of 5 phases (Fig. 1.3):

• Phase 4: The cardiomyocyte is in the resting membrane potential (-90 mV) until
a stimulus is generated.

• Phase 0 or depolarization: Occurs only when cardiac cells are stimulated. The
membrane potential goes from -90 mV to +50 mV. The membrane voltage must
reaches a minimal value (threshold) of -70 mV to produce an action potential.
The fast sodium (Na+) channels open creating a rapid Na+ influx and a sharp
rise in voltage.

• Phase 1: L-type or slow. The calcium (Ca2+) channels open causing a slow but
steady influx of Ca2+. The Na+ channels close quickly and the potassium (K+)
channels open causing a little efflux of K+. This result in a small decrease inmem-
brane potential known as early repolarization phase.

• Phase 2: The calcium channels remain open and the K+ efflux is eventually bal-
anced by the Ca2+ influx. The output and input of positive charges from the in-
tracellular compartment result in a net charge flow approaching to zero. This
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keeps the membrane potential relatively stable for about 200 milliseconds result-
ing in the plateau phase, characteristic of cardiac action potentials. This phase
ends when the calcium channels are closed.

• Phase 3 or repolarization: K+ efflux predominates and causes the membrane po-
tential to rapidly returns to its resting value.

Figure 1.3: Action potential phases in cardiac myocytes. Phase 0: depolarization. Phase
1: early repolarization phase. Phase 2: plateau phase. Phase 3: repolariza-
tion. Phase 4: resting membrane potential. "The action potential of a ventricu-
lar myocyte" by Wikipedia is licensed under CC BY-SA: Attribution-ShareAlike.

The absolute refractory period, which is the period that regardless of the power
of the stimulus no new action potential will occur, is much longer in cardiac muscle.
It ranges from phase 0 to mid-phase 3. This is essential in preventing summation and
tetanus. The relative refractory period comprises the last half of phase 3. During this
period, in which the cell has not yet been completely repolarized, a stronger stimulus
than normal can lead to an action potential.

1.1.3.2 Action potential in pacemaker cells

The action potential in pacemaker cells consists of 3 phases (Fig. 1.4):

• Pacemaker potential phase (Phase 4): Funny channels, which are only present
in pacemaker cells, open when membrane potential becomes lower than -40mV
and allow slow influx of Na+. The voltage of the cell starts at about -60mV and
spontaneously moves upward until it reaches the threshold of -40mV.

• Rising phase (Phase 0): At the threshold the calcium channels are enable to open
creating a rapid influx of Ca2+.

• Falling phase (Phase 3): At the peak of depolarization (around +10mV), K+

channels open and Ca2+ channels close. Potassium ions leave the cell and the
voltage returns to -60mV. At this point, K+ channels close and the original ionic
gradient is restored to starts again the cycle.
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Figure 1.4: Action potential phases in pacemaker cells. Phase 0: rising phase. Phase 3:
falling phase. Phase 4: Pacemaker potential phase. "Pacemaker potential" by
Wikipedia is licensed under CC BY-SA: Attribution-ShareAlike.

It is important to remark that although the phases of the two different types of
cardiac cells are intended to be matched, pacemaker cells do not have a really rest-
ing membrane potential [4]. There is not a phase when this type of cells are precisely
resting, the action potential is always rising or falling.

1.1.3.3 Electrical conduction system

The heart’s electrical conduction system consists of a sequence of electrical sig-
nals transmission that causes myocardial contraction (Fig. 1.5).

The SA node, which is located in the right atrium of the heart, starts the sequence
by generating an action potential. This first electrical stimulus contracts the two upper
chambers of the heart (atria) passing blood to the ventricles. Then, the electrical im-
pulse travels from the SA node to the AV node, which is located on the back wall of
the heart between the right atria and the right ventricle. Thanks to the AV node, the
electrical signal reaches the ventricles, the major pumping chambers of the heart. The
electrical impulse continues to the Bundle of His, which is located in the heart’s sep-
tum. The Bundle of His is divided into right and left conduction pathways in order to
provide electrical stimulation to both ventricles. The electrical impulse then travels to
the Purkinje fibers that send out the signal to contract the ventricles muscles allowing
blood to pump into the arteries.

Normally, the heart contracts about 60 to 100 times in a minute. Each contraction
represents one heartbeat.

1.1. The cardiovascular system 17



Figure 1.5: Electrical conduction system of the heart. A sequence of electrical signals
transmission, starting at the sinoatrial node and finishing in the Purkinje
fibers. This Photo by Unknown Author is licensed under CC BY-NC.

1.1.3.4 Electrocardiogram

Changes in the electrical activity of the heart can bemeasured using surface elec-
trodes on the thorax. These measurements can be represented by a voltage versus time
graph, known as electrocardiogram (ECG). The ECG is generally used to detect irreg-
ularities or any cardiac problem.

To perform a standard 12-lead ECG, 10 electrodes divided into two groups are
placed: the peripheral electrodes and the precordial electrodes [1]. There are four pe-
ripheral electrodes and they are placed on the patient’s extremities. The other six elec-
trodes are placed in the precordial region as follows (Fig. 1.6):

• V1: Fourth intercostal space, at the right border of the sternum.

• V2: Fourth intercostal space, at the left border of the sternum.

• V3: Midway between V2 and V4.

• V4: Fifth intercostal space, at the mid-clavicular line.

• V5: The same horizontal line as V4, but at the anterior axillary line.

• V6: The same horizontal line as V4 and V5, but at the mid-axillary line.

The heart’s electrical conduction system is translated by the ECG through a se-
quence of waves superimposed on a zero potential line, called the isoelectric line [5].

There are three main waves in an ECG (Fig. 1.7):
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Figure 1.6: Precordial electrodes placement on the thorax to perform a standard 12-
lead ECG. This Photo by Unknown Author is licensed under CC BY-NC.

• The P-wave, which is associated with the atria depolarization. The atria repolar-
ization is usually not visible in the ECG because of its low amplitude.

• The QRS complex, which represents the depolarization of the ventricles. The
amplitude of the QRS complex is significantly larger than the amplitude of the
P-wave since the ventricles havemore depolarizing cells comparedwith the atria.
Not every QRS complex will contain Q, R, and S waves.

• The T-wave, which represents the ventricles repolarization.

Sometimes is possible to observe a smallwave betweenT-wave andP-wave, called
U-wave, but the biological explanation for a U wave is unknown.

In addition, the following intervals can also be measured in the ECG (Fig. 1.7):

• RR interval: separates the vertices of two consecutive R waves which define the
instantaneous heart rate (HR).

• PR interval: ismeasured between the start of the P-wave and the beginning of the
QRS complex. This interval represents the time that the electrical impulse takes
to travel from the SA node through the AV node.

• QT interval: represents the time between the start of the QRS complex and the
end of the T-wave. It is an indicator of the length of the ventricular depolarization
and repolarization phases.

1.1.4 Mechanical properties of the heart
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Figure 1.7: Main intervals and waves measured in a normal ECG waveform. "ECG
of a heart in normal sinus rhythm" by Wikipedia is licensed under CC BY-SA:
Attribution-ShareAlike.

1.1.4.1 Cardiac muscle anatomy

Cardiac muscle or myocardium is made up of striated uninucleated cells. Car-
diac muscle cells or cardiomyocytes are composed of one nucleus, a cytoplasm called
sarcoplasm and a plasma membrane called sarcolemma (Fig. 1.8).

The cardiomyocytes are composed of cylindrically shaped structures called my-
ofibrils that contains several sarcomeres connected one to another. The sarcomeres are
contractile units that consist of alternating thick (myosin) and thin (actin) protein fil-
aments. Each sarcomere is composed of dark bands (A), where myosin is found, and
light bands (I), where actin is found. Z disk delimits the ends of each sarcomere and the
middle area of the sarcomere is known as theM line. The thin actin bands are attached
to the Z-disks, and the thick myosin bands are located at the middle of the sarcomere.

Inside the cell, surrounding the myofibrils, there is also the sarcoplasmic reticu-
lum (SR) that contains a high concentration of calcium needed for the proper muscle
contraction. Relatively large mitochondria are also presented in the cell to provide the
energy used for force generation.

In the sarcolemma, we can find deep invaginations called T-tubules that begin in
the plasma membrane and extend throughout the cell. They are basically responsible
for allowing the action potential to propagate quickly and uniformly throughout the
entire cardiac muscle cell.

Cardiomyocytes are connected by intercalated discs, which contains two types
of junction (Fig. 1.9):

• GAP junction: ensure a rapid communication between adjacent cardiac muscle
cells, allowing a uniform propagation of the action potential and the movement
of ions between them.

• Desmosomes: intracellular junction that holds two adjacent cardiac muscle cells
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Figure 1.8: Composition of cardiac muscle cells or cardiomyocytes (top). Myofibrils
composition (bottom)

and allows them to stay together during a contraction.

1.1.4.2 Cardiac contraction

The action potential is responsible for triggering a cardiac contraction that ex-
tends through the cell and passes to the sarcolemma surface by a GAP junction. There,
the action potential produce voltage-gated calcium channels activation, allowing extra-
cellular calcium to pass inside the cardiac cell. The free calcium present intracellularly
then activates the voltage-gated calcium channels of the sarcoplasmic reticulum, in a
process known as “calcium-induced calcium release", diffusing calcium from SR into
the sarcoplasm. The resulting free calcium in the sarcoplasm is led to the sarcomeres
(Fig. 1.10).

When a contraction occurs, the myosin head attaches to a binding site on the
actin, forming a cross-bridge and exerting a force to move the actin along the myosin
[6]. This action is known as the sliding filament mechanism of muscle contraction. It
is important to highlight that the actin is associated with regulatory proteins called
troponin and tropomyosin, and that in the base configuration tropomyosin blocks the
cross-bridge binding sites on actin.However, troponin,which is attached to tropomyosin,
contains binding sites for calcium. Therefore, the free calcium present in sarcomeres
interacts with troponin and causes tropomyosin to move, exposing the actin binding
sites and allowing the muscle contraction.
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Figure 1.9: The junctions connect the cells and enable electrical coupling and ions
transmission between adjacent cardiomyocytes. Thanks to these cellular
bridges all the cardiac cells are able to act in synchrony as a single coor-
dinated unit.

1.1.5 Cardiac cycle

The cardiac cycle refers to the sequence of events (electrics,mechanics, hydraulics,
. . . ) that occurs in repeat with each heartbeat. The cardiac cycle is divided in five phases
(Fig. 1.11):

1. Active ventricular filling (atrial systole)

2. Isovolumic contraction

3. Ejection

4. Isovolumic relaxation

5. Passive ventricular filling

The isovolumic contraction and ejection phases correspond to the systole or con-
traction of ventricles and the other three phases to the diastole or relaxation of ventri-
cles.

At the beginning of the cardiac cycle, all the heart cavities are relaxed, the AV
valves are open and the semilunar valves are closed. The cycle is initiated in the atrial
systole phase with the firing of the SA node that stimulates and produce atria depo-
larization. As mentioned before, the atrial depolarization is represented by the P-wave
in the ECG. Atrial contraction starts shortly after the P-wave begins and causes an in-
crease in the atria pressure ejecting the blood into the ventricles [7].

When atrial contraction is completed, atrial pressure becomes lower than ventric-
ular pressure, reversing the pressure gradient across the AV valves and closing them.

22 Chapter 1 Evaluation of the Cardiac Function



Figure 1.10: Cardiac contraction process: 1) extracellular Ca+2 pass inside the cardiac
cell; 2) the free Ca+2 present intracellularly activates the Ca+2 channels of
the sarcoplasmic reticulum; 3) the resulting free Ca+2 in the sarcoplasm is
led to the sarcomeres allowing a muscle contraction.

AV valves closing produces the first heart sound, S1, and indicates the beginning of
systole.

The cycle continues with the isovolumic contraction phase. The wave of depo-
larization reaches the ventricles, represented by the QRS complex in the ECG. In the
halfway of the QRS complex, the ventricles begin to contract, causing an increase in
ventricular pressure. This phase is referred as isovolumetric contraction since all the
heart valves are closed and no blood is ejected from the ventricles, leaving the ventric-
ular volume unchanged.

Then the ejection phase is presented in the cardiac cycle. Ventricular pressure
exceeds the pressure within the aorta and the pulmonary artery, causing the open-
ing of the semilunar valves. Consequently, blood is rapidly ejected from the ventricles,
and the ventricular pressure begins to decrease while the blood vessels pressure in-
creases. This ends up equalizing both pressures, which causes that part of the blood
does not pass by pressure gradient towards the aorta and pulmonary trunk. The vol-
ume of blood that is retained in the heart at the end of the ejection is called residual
volume, end-systolic volume or final stroke volume; while the volume of blood ejected
is called the stroke volume or beat volume.

Subsequently, the ventricles begin to repolarize, reflected by the T-wave in the
ECG. Ventricular pressure starts to decrease until it becomes lower than aortic and
pulmonary pressures. This causes the semilunar valves closure, marking the end of
systole and the beginning of diastole. Semilunar valves closure produces the second
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Figure 1.11: Cardiac cycle representation indicating the five phases and the heart
valves closing and opening. The main pressure signals of the left side of
the heart, the left ventricular volume curve and the ECG waveform in a
normal case are illustrated: aortic pressure (red), LV pressure (black), LA
pressure (green), LV volume (blue) and ECG (magenta). "AWiggers diagram"
by Wikipedia is licensed under CC BY-SA: Attribution-ShareAlike.

heart sound, S2.

Diastole beginswith the isovolumic relaxation phase, where all valves are closed.
Ventricular pressure drops rapidly but the volume remain unchanged. Meanwhile, the
atria are being filled with blood and the atrial pressure is slowly starting to rise.

Finally, the atrial pressure becomes higher than ventricular pressure, causing the
opening of AV valves and the beginning of the passive ventricular filling phase. A new
atrial contraction originated in the SA node will end this phase and initiate the atrial
systole of the next cycle.

1.2 Pathological states

1.2.1 Left bundle branch block

Left bundle branch block (LBBB) is a disorder of the heart’s electrical system in
which electrical impulses are partially or completely blocked in the left branch of the
His bundle before reaching the left ventricle (Fig. 1.12). The electrical signal should
spread from the right bundle branch through the heart muscle and slowly activate the
LV. When this happens, the heartbeat (contraction) is slower than normal and the left
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ventricle contracts later than the right ventricle. As a result, a dyssynchronousmyocar-
dial contraction is generated and the ventricles may eject blood less efficiently [8].

Figure 1.12: Left Bundle Branch Block (LBBB). Electrical impulses are blocked in the
left branch of theHis bundle before reaching the LV. This Photo byUnknown
Author is licensed under CC BY-NC.

The main causes of LBBB can include [9, 10, 11]:

• Heart attacks (myocardial infarction).

• Thickened, stiffened or weakened heart muscle (cardiomyopathy).

• A viral or bacterial infection of the heart muscle (myocarditis).

• High blood pressure (hypertension)

• Heart valve disease.

Usually, LBBB by itself does not cause symptoms [12]. However, LBBB can be of
great consequence and importance, especially in patients with acute chest pain, syn-
cope and in those suffering from heart failure with reduced ejection fraction. Approx-
imately 25% of patients with heart failure present LBBB [13, 14].

LBBB is often detected on the ECG waveform (Fig. 1.13). The following ECG cri-
teria are commonly used to diagnose LBBB [15]:

• QRS duration greater than 120 ms.

• Lead V1 should have either a QS or a small R-wave with large S-wave. It should
present positive T-wave.

• Lead V6 should have a notched R-wave and no Q-wave. It should present T-wave
inversions.
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Figure 1.13: ECG waveform of leads V1 to V6 for a normal conduction and a typical
LBBB case. "Figure 1, Section 4, Chapter 8" by ECGWaves is licensed under CC
BY 4.0.

LBBB itself appears to have little effect and has no specific treatment. However,
patients who also present heart failure may have an increased risk of death.

The cardiac resynchronization therapy is used as a treatment of choice in patients
with systolic heart failure and LBBB with wide QRS (>120 ms), who remain symp-
tomatic despite optimized medical therapy.

1.2.1.1 Heart failure

Heart failure (HF) is a chronic anddegenerative disease of the heart characterized
by a low capacity to pump blood and, therefore, to carry enough oxygen and nutrients
to the rest of the body organs. It usually occurs because the heart has become too weak
or stiff due to certain conditions. Heart failure is a long-term condition that tends to
get gradually worse over time [16].

The main signs and symptoms of HF may include:

• Breathlessness after activity or at rest.

• Fatigue and weakness.
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• Swelling (edema) in legs, ankles and feet.

• Reduced ability to exercise

According to the form of manifestation, HF is classified as: chronic, when the
disease gradually manifests; and acute, when the symptoms appear suddenly and are
serious from the beginning.

The ejection fraction (EF) is an important measurement of how well the heart
pumps blood, and is used to help classify heart failure and guide treatment. Patients
with heart failure may have a low ventricular ejection fraction (systolic dysfunction)
or normal ejection fraction (diastolic dysfunction, when heart muscle becomes stiff for
conditions such as high blood pressure).

HF can involve one or both ventricles of the heart. Generally, heart failure begins
with the left ventricle, the heart’s main pumping chamber.

Coronary artery disease and heart attack, high blood pressure (hypertension),
faulty heart valves, damage to the heart muscle (cardiomyopathy), myocarditis, con-
genital heart defects, and abnormal heart rhythms are some of the most common con-
ditions that can damage or weaken the heart causing HF.

1.2.1.2 Cardiac resynchronization therapy

Cardiac resynchronization therapy (CRT), also known as biventricular pacing, is
a device-based intervention that tries to promote ventricular synchrony by pacing the
ventricles from two different sites (Fig. 1.14). The device emits small painless electrical
signals that serve to stabilize the electromechanical system [17, 18]. This treatement
is adressed to symptomatic patients who have systolic heart failure, with severely re-
duced LV ejection fraction (below 35% versus a normal value above 55%) and signifi-
cant intraventricular conduction delay, defined by a QRS duration >120 msec [19].

The CRT has been shown to improve HF symptoms in adults, such as shortness
of breath, and may decrease both mortality and hospitalization rates. However, a sig-
nificant (approximately 30%) patients selected according to the recommendations used
in Europe and theUnited States do not improve clinically after implantation of the CRT
device [20].

1.2.2 Aortic stenosis

Healthy heart valves allow blood flows in the one-way correct direction through
the heart, avoiding a backward leakage. In heart valve disease, one ormore of the valves
does not work properly, causing disruption in the blood flow.
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Figure 1.14: Cardiac resynchronization therapy (CRT). The CRT device emits small
painless electrical signals to stimulate the ventricles from different sites,
promoting the stabilization of the cardiac electromechanical system. "Di-
agram of the human heart (cropped)" by Wikipedia is licensed under CC BY-SA:
Attribution-ShareAlike.

There are two different type of valve disease: valvular regurgitation where the
valve does not close completely; andvalvular stenosiswhere the valve opening is smaller
than normal. When cardiac valves fail to open and close properly, the implications for
the heart can be serious, possibly hampering the heart’s ability to pump blood ade-
quately through the body.

Aortic stenosis (AS) is the most common valvular heart disease (VHD) in West-
ern countries, with a prevalence that increases progressively with age up to 9.8% in
octogenarians [21]. AS is characterized by a reduction of the size of the aortic valve
orifice (Fig. 1.15) which reduces the blood flow from the left ventricle to the aorta. This
reduction in aortic valve area induces the development of a pressure gradient across
the valve and the development of chronic LV pressure overload.

A heart suffering AS needs extra work to pump sufficient amount of blood, and
eventually, this weakens the heart muscle, and it can ultimately lead to heart failure
[22]. Some people suffering AS not experience symptoms until the narrowing of the
valve is severe.

From a clinical point of view, a distinctive systolic heart murmur is usually the
first clue that leads a doctor to suspect aortic valve stenosis. Then, the key tool to con-
firm diagnosis is transthoracic echocardiography, which allows the quantification of
aortic valve area and trans-aortic gradient as far as the assessement of LV morphology
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Figure 1.15: Aortic stenosis (AS). The aortic valve, located between the LV and the
aorta, does not open completely. In the case of AS, the aortic valve opening
is smaller than in the healthy case.

and function [23].

Treatment for AS depends on the severity of the condition, the signs and symp-
toms, and the condition of the heart and lungs. Early treatment can help to reverse or
slow down the progress of this disease. Possible treatments may include surgical aor-
tic valve replacement (SAVR), usingmechanical or biological prostheses, by heart-open
surgery or transcatheter aortic valve implantation (TAVI).

1.3 Echocardiography

Anechocardiography is a test that uses ultrasound (high frequency soundwaves)
to produce amoving image of the heart. Soundwaves are transmitted through the body
by a transducer. The sound waves bounce off the heart and return to the transducer in
the form of echoes. The echoes become electrical signals that produce images of the
heart that can be observed on a screen.

Echocardiogramsprovide information about the shape, size, function, and strength
of the heart. The movement and thickness of the walls and the cardiac valves function
are also evaluated.

The echocardiogram images can be obtained in these main ways:

• M or one-dimensional mode: a narrow portion of the heart is detected.
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• 2Dmode: offers an image of the anatomyof the heart, allowing to see the different
structures during the movement (Fig. 1.16).

• Color Doppler: allows to see and measure the flow of blood in the heart and
arteries.

• 3Dmode: the images that are achieved are in 3 dimensions. A 3D image is created
from multiple images in 2 dimensions.

Figure 1.16: Example of a 2D echocardiography image obtained from a healthy subject.

The echocardiography is one of the most widely used techniques for the diagno-
sis of heart diseases since it provides images of excellent quality and is non-invasive,
harmless, relatively cheap and widely available.

All patients with heart failure should undergo an echocardiogram at least once
in order to be able to make the diagnosis. It not only allows to confirm the diagnosis,
but also to establish what type of HF the patient has. Similarly, the echocardiogram can
also detect the stenosis and/or the insufficiency of the cardiac valves.

1.3.1 Myocardial strain

Traditionally, the global systolic function is assessed by the left ventricle ejection
fraction (LVEF), which indicates the percentage of blood that leaves the LV in each
contraction. Echocardiography is widely used to measure LVEF, however, analysis is
qualitative, subjective and dependent on the available image quality. In addition, the
results are very susceptible to change depending on the loading conditions, heart rate,
etc. Another important limitation is that LVEF is not sensitive enough to detect sub-
tle changes in the contractile function, which would help to detect early myocardial
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damage. Even if contractility is reduced, compensatory mechanisms as ventricular di-
latation, geometry changes, etc., can still assure that LV function remains normal.

Tissue Doppler imaging (TDI) is an echocardiographic technique that measures
the velocity of the myocardial tissues, therefore, it indicates the rate at which a particu-
lar point in the heart moves relative to the echocardiogram transducer. TDI is designed
to characterize the lower-velocity, higher-amplitude signals of myocardial tissue mo-
tion. Although TDI measurements are useful to quantify global and regional systolic
and diastolic myocardial function, a dependence on the angle of Doppler movement
relative to myocardial motion is presented. In addition, TDI measures are not able to
discriminate translational motions from fiber shortening or lengtheningmotions. Con-
sequently it has been found that TDI assessment do not present good reproducibility.

Strain imaging method using speckle-tracking echocardiography (STE) has been
introduced as an alternative to quantify regional systolic function andpromises to over-
come many of the limitations of LVEF [24, 25]. STE is used to acquire regional strain
curves that represent tissue deformation in 3 spatial directions: longitudinal, radial,
and circumferential. The strain is expressed as a percentage and is mathematically de-
fined as the change in the myocardial fiber length relative to its original length pre-
sented at end-diastole. Thus, negative longitudinal strain indicates fiber shortening or
contraction and positive longitudinal strain represents fiber elongation or relaxation
(Fig. 1.17).

STE technique uses several speckle artifacts in the echocardiography image pro-
duced by the reflections, refractions, and scattering of the ultrasound beam. The STE
software identifies these speckles and then tracks them frame-by-frame during the
whole cardiac cycle. Spatial movement of these speckles allows strain calculation [26].

Myocardial strain obtained by 2D STE has demonstrated to be an accurate tool
for assessing ventricular function in early myocardial diseases. For example, reduced
LV global longitudinal strain can be observed in asymptomatic patients with AS, show-
ing a higher risk for developing symptoms and requiring aortic intervention [27]. Strain
assessment has also contributed to improved understanding of left ventricular dyssyn-
chrony in order to predict cardiac resynchronization therapy response [28, 29, 30]. Nev-
ertheless, in spite of the different methods proposed to evaluate LV dyssynchrony,
there is still a lack of reliability in these methods. The routine use of LV mechanical
delay as an adjunct to the electrocardiographic criteria for the selection of CRT candi-
dates has not gained clinical acceptance and has been shown to even be detrimental
in patients with normal QRS. The main limitation is that they neglect the dynamics of
strain signals, since the same values of strain peaks or timings can be observed with
different strain curve morphologies. As a consequence, new methods are needed to
jointly analyze the morphology of strain signals acquired concurrently at different re-
gions of the myocardium.
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Figure 1.17: Example of myocardial strain signals obtained by speckle-tracking
echocardiography (STE) in a healthy subject. Each curve represents dif-
ferent regions of the myocardium. Negative longitudinal strain indicates
fiber shortening or contraction and positive longitudinal strain represents
fiber elongation or relaxation.

1.3.2 Indices deduced from strain signals

Integral-derived longitudinal strain and myocardial work are two promising in-
dices deduced from strain signals to quantify cardiac function.

1.3.2.1 Calculation of strains integrals

Researchers from the team proposed a new approach based on the automatic
quantification of the integrals of regional longitudinal strain signals [31, 32], which
takes into account the accumulated strain during different parts of the cardiac cycle to
evaluate LV mechanics. By quantifying the areas under the segmental strain curves,
the variation in myocardial contractility could be evaluated.

The area under each curve (integrals) is calculated over two time intervals: i) from
the start of the QRS complex to the minimum value of the strain curve and ii) from
the start of the QRS complex to the closure of the aortic valve. Measurement of these
indices and other derived indices such as the standard deviation, the mean and the
difference can provide important and complementary information for LV mechanical
dyssynchrony assessment.
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Strain integrals calculation could be fully automatically computed and there-
fore, suitable to machine-learning approaches. In a recent study [33], integral-derived
longitudinal strain in a multiparametric application, such as what could be done in a
machine-learning approach, has shown promising results and a good performance for
the prediction of the CRT-response.

1.3.2.2 Myocardial work

Myocardial work, in turn, is an extension of the concept of strain integrals eval-
uated from mitral valve closure until mitral valve opening in which estimation of LV
pressure is required.

The assessment of themyocardial workwas recently introduced as an interesting
alternative to evaluate accurate LV function [34, 35, 36] since it considers load condi-
tions that methods such as strain imaging and LVEF do not take into account. As pro-
posed by Russell et al. [37], based on the LV pressure dynamic and the strain curves we
are able to calculate myocardial work indices as the Constructive Work (CW), which
represents the productivework, and theWastedWork (WW), that quantifies the energy
loss, and likewise, the Work Efficiency (WE) index.

In addition, the LV pressure–strain loop area reflects myocardial or stroke work.
In particular, Russell et al [34] have shown that regional differences inmyocardial work
have a strong correlation with regional myocardial glucose metabolism, evaluated us-
ing PET imaging. The LV pressure-strain loop area showed a pattern of regional work
distribution, which was very similar to the distribution of glucose uptake.

Results from preliminary studies [34, 35, 37, 38, 39] concluded that the evalua-
tion of the distribution and related indices of myocardial work could give additional
information to assess patients with different cardiac pathologies.

1.4 Conclusion

The early diagnosis of diseases, the correct classification of pathological condi-
tions, the prediction of treatments, are some of the challenges that are currently in-
tended to be overcome in the bio-engineering field. Particularly, for cardiovascular
pathologies, such as AS or LBBB with HF, knowledge of anatomy and physiological
processes for the proper functioning of the cardiovascular system are essential and
are the first step for understanding the different mechanisms (electrical, mechanical,
hydraulic,...) involved in cardiac function.

Information acquired by echocardiography, such as strain signals and different
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echo-based parameters, are innovative tools that help to interpret cardiac mechanisms
and LV function. Although, previous studies have suggested that the analysis of strain
traces obtained by STE might be an alternative for quantifying LV function, guidelines
still neglect, for example, the value of the assessment of LV mechanical dyssynchrony
for the prediction of CRT-response. As a consequence, new methods are needed to
analyze LV function and novel approaches for the prognosis, diagnosis and treatment
of various cardiovascular pathologies still need to be proposed.
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Model Simulation and Analysis 2
This chapter presents state-of-the-art of modeling and simulation methods and

tools required to develop, evaluate and analyze patient-specific model-based applica-
tions in clinical contexts. For this thesis, we proposed multiformalism and multiscale
computational models of the cardiovascular system (CVS) for the study of specific
cardiovascular pathologies. Hence, different processes involved in the genesis of the
cardiac function and different anatomical levels of detail were considered. The Multi-
Formalism Modeling and Simulation Library (M2SL), is the framework used to create
and simulate such models. M2SL is briefly presented in the first section of this chap-
ter. Model parameter analysis is a fundamental step to better understand the charac-
teristics and behaviors of both the model and the system under study. Therefore, the
next section will focus on the methods applied for evaluating parameters sensitivity
and the strategies implemented for parameter identification, detailing the evolution-
ary algorithms and the parallel optimization library (PAGMO) used in order to propose
specific-patient simulations.

2.1 Modeling and simulation framework

Computer simulations are useful for reproducing, interpreting and predicting
the behavior of real-world processes or systems in response to various assigned con-
ditions. Modeling consists in the simplified representation of the functioning of a real
system,which permits to describe such system as a structure that receives an input and
generates a corresponding output.

There are several goals that can be achieved usingmodeling and simulation, such
as interpretation, explanation or understanding of experimental observations, formal
representation and description of current knowledge, prediction of unobserved behav-
iors, evaluation of hypothesis or configuration scenarios of the system, design of con-
trollers, or just provide a simplified approach to a problem whose analytical solution
is too complex.

Briefly, a modelM could be defined as a tuple denotedM (F, I,O,E,P) where
I, O and E denote the input, output and state variable sets, P denotes the parameter
set of the model, and F is the formalism in which the model is described [2].
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2.1.1 Modeling and simulation concepts

— An input is a variable that triggers and influences the behavior of the model or
system. Inputs have a defined range from which they can take a value.

— Correspondingly, an output is the exit variable of a model or system. Outputs
are also defined within a range.

— A state variable is a value intrinsic to the system, which is not necessarily ob-
servable since it is not a part of the system. Yet, it represents some knowledge
of an internal mechanism of the system. Indeed, the set of state variables of a
system is a sufficient description of the status of the system to determine its cur-
rent and future behavior. Output variables are usually calculated as a function
of state variables, parameters and input variables. In the case of a model based
on ordinary differential equations, the system is typically described through the
variations (time derivatives) of the state variables.

— A parameter is a special kind of input variable that characterizes, defines or sets
the conditions of a particular element of a system. As with input, output and
state variables, parameters are defined in a range, but they are often used as a
constant value for a given simulation. The behavior of a system can be drastically
different according to the value of its parameters. Moreover, slight modifications
of some parameters may evoke significant modifications on the state and output
variables, while significant modifications of some parameters may have negligi-
ble effect on these variables. Hence, the exploration and analysis of the param-
eters of a model, as well as their relative importance on their effect on state and
output variables (parameter sensitivity) is very important to the modeling and
simulation process.

— A formalism is the group of rules, structures and tools that permits to define a
model: they express how the input and outputs are related and how the internal
states change with respect to the inputs, parameters, etc.

2.1.2 Model-based design process

The creation of a model and its simulationmust be done in an organizedmanner
and following certain steps, described in [3], that will lead to the successful fulfillment
of the stated objectives:

1. The first step is to define precisely the system that is going to be modeled and the
reasonswhy it is going to bemodeled. It is important to characterize the elements
of the system and define the available knowledge about it in order to identify the
inputs and outputs, recognize which elements must be manipulated and which
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elements must be measured, define the conditions that should be assumed and,
consequently, the possible limitations of the system.

2. Once the system has been specified, the next step consists in selecting a range of
mathematical tools that help to describe the system. The objective of the descrip-
tion of the system is to create a model M that represents the system dynamics
under a certain formalism F . The type of formalism chosen to create a model
will depend on what was stipulated in the previous step: the system definition
and the goals of the modeling application.

3. The third step consists in simulating the complete model created in the previous
step. In general, a simulation is the process that interprets themodel definition to
generate its output. Simulation process controls the trajectories of the input vari-
ables, the values of each parameter, the initial values of internal states, and the
specific definitions of each function according to the model formalism. The sim-
ulation process tackles two distinct problems: i) the interpretation of the model
specification under its formalism F , and ii) the simultaneous simulation of all the
sub-systems defined within the model.

4. The model can be parametrized, it means that is possible to control the output
response by changing the input and parameters of the model. The next step is
to implement a parameter analysis in order to better understand the character-
istics and behavior of the model. The analysis of parameters deserves a detailed
description, which will be presented in section 2.3.

5. Finally, the last stage in the modeling and simulation framework is the valida-
tion analysis. Vangheluwe et al. [4] present four different validation schemes: be-
havioral validation, structural validation, conceptual validation, and simulation
verification. i) Behavioral validation is the evaluation of the simulated model be-
haviorwith respect to the system observations. The experimental data andmodel
output must agree within an acceptable tolerance. ii) Structural validation is the
evaluation of the structure of the model with respect to the structure observed
in the system. iii) Conceptual validation is the relation between the system and
the model in a conceptual level; it evaluates the realism of the model description
with respect to the system and the experimental frame. iv) Verification refers to
the consistency between the model description and the interpretation provided
by the simulator. It ensures that the simulation correctly generates themodel out-
puts and that the model implementation is correct and does not contain errors.

2.1. Modeling and simulation framework 41



2.2 Simulation tool: Multi-formalism Modeling
and Simulation Library (M2SL)

All the computationalmodels proposed in this thesiswere simulated in theMulti-
formalism Modeling and Simulation Library (M2SL). This library has been designed,
adapted and progressively improved due to different studies developed by LTSI labo-
ratory researchers [2, 3, 5, 6].

2.2.1 Model representation

A model in M2SL is a set of interconnected components; a combination of two
types of model objects: atomic models (Ma) and coupled models (M coup). An atomic
modelMa is a model with a specific component of a system using one particular for-
malism. A coupled model M c (F, I,O,E,P, {Mi}) is a model composed of a set of
components ({Mi}), i.e. sub-models, which can be either atomic or coupled as well.
Coupled models may be defined under different formalisms and the connections be-
tween them. A graphical representation of atomic and coupledmodels, including their
organization, is presented as the model hierarchy in the left part of Figure 2.1.

Hierarchical structure

Coupled Model
Mcoup

Atomic Model
Ma

Coupled Model
Mcoup

Atomic Model
Ma

Atomic Model
Ma

Root-Coordinator
S

Coordinator
Scoup

Coordinator
Scoup

Simulator
Sa

Simulator
Sa

Simulator
Sa

Figure 2.1: Hierarchical structure of models and their corresponding simulators.
Schema based on [7], adpated from [3].

When a computationalmodel is defined inM2SL, a global simulator S, called the
root coordinator, is first created. This object analyses the model hierarchy and creates a
simulator Sai for each atomic modelMa

i . The choice of the appropriate simulator type
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is automatically handled by the library. In this way, a model with formalism Fi is asso-
ciated with a simulator designed for the same formalism Fi. For each coupled model
M coup
i , a coordinator Scoupi is created. Coordinators are a special kind of simulator that

handle the connection of the internal components of a complex model and computes
model outputs at the coupled level (Fig. 2.1, right side).

Using an object-oriented methodology, models in M2SL are represented with
different abstract classes, which define the structural elements of a model and its be-
haviors. The development of amodel inM2SL consists in choosing a base abstract class,
defining its data structures and then the programming of its behavior. The available
data structures and behaviors of amodel depends on the formalismof themodel. How-
ever, it always follows the definition introduced previously: amodel is represented as a
tupleM (F, I,O,E,P). The relation between each element of this tuple and the structures
of M2SL is explained below:

Variables I,O,E,P: The variables of a model are organized in four different groups
according to their semantic definition: inputs, outputs, states, and parameters. Each
single variable or parameter can be represented by any data structure provided by the
C++ language.

Components: As explained before, inM2SL,models can be either atomic or complex.
To permit the creation of complex models, the submodels container is also included in
the definition of a model, which accommodates a list of references to other models.

Behaviors: The behavioral definition of amodel comprises four different procedures:

• Initialization: the calculation or simple assignment of initial values to all variables
of the model.

• Variable synchronization: the update or modification of the internal state of the
model due to a change in the input variables.

• Output calculation: the computation of the output variables from the current in-
ternal state and the input variables.

• Termination: the final procedure executed when the simulation ends.

Formalism F : The formalism of a model is defined by the abstract class chosen as
base class for its implementation. In other words, for each formalism, M2SL provides
an abstract class. The available formalisms are summarized in Table 2.1. Following an
object-oriented paradigm, a model in M2SL must inherit from one of these classes.
Moreover, each formalism requires the implementation of particular behaviors, repre-
sented by the methods of each class.

2.2. Simulation tool: Multi-formalism Modeling and Simulation Library
(M2SL)
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Table 2.1: Formalisms supported in M2SL and their corresponding class. Adapted
from [3].

Formalism F Class

Algebraic equations GenericModel
Ordinary differential equations OdeModel
Algebraic equations with discrete time DiscreteTimeModel

2.2.2 The simulation loop

All the objects, procedures and relations defined by M2SL are brought together
in the simulation loop. A simulation in M2SL is conducted by a root coordinator, rep-
resented by the RootCoordinator class. This crucial element defines and updates the
global time of the simulation, while coordinating the underlying simulators and their
local simulation time. It consists of three procedures executed in a sequential fashion:
initialization, simulation loop and finalization (Fig. 2.2, left side).

First, the initialization stepprepares allmodels and simulators for the simulation,
which includes the following activities:

1. Creation of a simulator for each model, according to its formalism.

2. Association and linking of all simulators in a hierarchical structure that follows
the model hierarchy, as illustrated before in Fig. 2.1.

3. Initialization of all simulators and models.

4. Override of variable values, if the user has manually set values to some model
variables.

5. Initialization of the global time to its initial value, usually 0.

After the initialization step, the simulation loop repeats the following steps, il-
lustrated in Fig. 2.2 (right side):

1. Synchronization ofmodels: at this point, all models have updated values for each
of their output variables, calculated from the initialization phase or from a pre-
vious iteration of the simulation loop. This step performs the transformation of
these output values to new input values. Once the input variables have been as-
signed with new values, all internal values of the model that depend on the in-
puts should be updated as well.

2. Simulation of models: it calculates the internal transitions of the model in order
to advance the local simulation time of one or several time steps, depending on
the temporal synchronization procedure. For instance, the adaptive strategies can
iterate in this step several times until a target time is achieved, as shown in Fig.
2.2.
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Figure 2.2: General execution flow of a simulation in M2SL (left) and its detailed sim-
ulation loop with adaptive simulation steps (right). Gray boxes denote the
steps that are different from the general simulation loop. Adapted from [3].

3. Calculation of outputs: since the previous step modifies the state variables of
the model to a new point in time, this step calculates new values of the output
variables for all models.

4. Advance global time: this step increments the global simulation time according
to the results of the current iteration. Depending on the temporal synchroniza-
tion procedure, this step can be as simple as an addition, but it may calculate an
optimal time step for the next iteration.

5. Stopping condition: at the end of each iteration, the target simulation time is eval-
uated to determine if the simulation should stop. Other elements may be taken
into account as well, such as stopping conditions introduced by an external tool
like the user interface.

Lastly, when the simulation loop meets the stopping condition, the finalization
step releases all resources acquired during the simulation.

2.2. Simulation tool: Multi-formalism Modeling and Simulation Library
(M2SL)
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2.3 Parameter analysis

The analysis of parameters is highly important to better understand the charac-
teristics and behavior of the model; to acquire knowledge on the relation between the
parameters and the outputs of the model. Parameter analysis encompasses two differ-
ent activities: i) the characterization of the effect of a parameter on themodel dynamics,
particularly its outputs, and ii) the identification or estimation of meaningful parame-
ter values to the model. These two activities are conceptually independent but related
since they can benefit from the information obtained from each other.

2.3.1 Sensitivity Analysis

Model parameters represent an element of the real system, or rather, a simplifica-
tion of such element. These parameters can sometimes be measured directly from the
system, estimated from the observable data, or even guessed from prior knowledge.
In any case, it is highly likely that the parameter value contains an intrinsic error or a
level of uncertainty. Then, some questions arise regarding these parameters: What is
the effect of this incertitude on the model outputs? Is it possible to measure quanti-
tatively or qualitatively the effect of changes in parameter values on the outputs? The
field of sensitivity analysis, along with the highly related area of uncertainty analysis,
provides a set of tools that can answer this questions.

In the context of the modeling applications presented in this manuscript, sensi-
tivity analysis is defined as the measurement of the effect of changes in input values
and model parameters on the outputs of a system. In other words, sensitivity analysis
methods are applied to determine howmuch the parameters involved in amodel affect
one or more outputs.

Sensitivity analysis can provide important information for modeling and simu-
lation applications. The objectives include:

• Factor prioritization: it can determine which inputs or parameters are more im-
portant, which can help guide the parameter estimation or motivate further at-
tention in the observation of certain inputs.

• Model simplification: it can identifywhich elements of themodel have little effect
and can be replaced with a simpler definition.

• Parameter regions identification: it can pinpoint critical or interesting ranges in
the parameter or input spaces.

• Parameter interaction: not only it can measure the effect of changes of one pa-
rameter, it can also measure the effect of the interaction of parameters, i.e. the
outcome of changes in two or more parameters.
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This information is highly useful since it facilitates the analysis of the cardiovas-
cular system models used in this thesis, which are complex multi-scale models. Based
on this information, the number of parameters to analyze for a specific phenomenon
can be minimized, reducing computational costs. Factor prioritization is particularly
important for patient-specific simulations, which is also interesting for the thesis ob-
jective.

The approach followed by most sensitivity analysis methods is summarized in
Fig. 2.3. It consists in:

1. The definition of the distribution for each source of uncertainty, each input or
parameter Xi, or the definition of the relevant parameter space P. For simplicity
it will be assumed that there are k parameters denoted [X1, X2, . . . , Xk].

2. The creation of an experimental design, which will be denoted D, consisting of n
sets of input values:

D =


x

(1)
1 x

(1)
2 . . . x

(1)
k

x
(2)
1 x

(2)
2 . . . x

(2)
k

...
... . . . ...

x
(n)
1 x

(n)
2 . . . x

(n)
k

 , (2.1)

where a row represents the values for each parameter.

3. The evaluation of each row of the experimental design D, which yields a vector
of outputs

Y =
[
y(1), y(2), . . . , y(n)

]T
. (2.2)

4. The analysis of the outputs Y , identifying and associating the source of the vari-
ations in the outputs, with respect to the variations in the parameters.

The variety of the existing methods in sensitivity analysis lies on the diverse
schemes to produce an experimental design and to analyze the variability of the evalu-
ated outputs. However, the choice of the sensitivity analysis depends on several factors,
such as the assumptions on the parameters of f(X) (linearity, independence or inter-
action) and the available computational resources for the evaluation of this function.
Existing methods can be divided into three groups: local sensitivity methods, global
sensitivity methods and screening methods. This categorization is not strict, consider-
ing that some methods can be considered as part of more than one of these groups.

2.3.1.1 Local sensitivity analysis

Local methods represent the most simple form of sensitivity analysis. The term
local emphasizes the fact that the sensitivity of the parameters are studied in a small
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Figure 2.3: Simplified diagram of the process of uncertainty and sensitivity analysis,
based on [8], adapted from [3].

region of the parameter space P. A natural approach consists in the selection of a work-
ing pointX(0) = [x(0)

0 , x
(0)
1 , . . . , x

(0)
k ], followed by the evaluation of the function f(X(0))

and at other points close to X(0). When the variations are introduced only in one pa-
rameterXi at a time, the approach is termed a one-at-time (OAT) analysis. For example,
a typical OAT experimental design for Xi would be:

Di =



x
(0)
0 . . . x

(0)
i . . . x

(0)
k

x
(0)
0 . . . x

(0)
i + δ . . . x

(0)
k

x
(0)
0 . . . x

(0)
i + 2δ . . . x

(0)
k

...
...

...
x

(0)
0 . . . x

(0)
i + (n− 1)δ . . . x

(0)
k


, (2.3)

where δ is a predefined perturbation of parameter Xi. In this example, only the varia-
tions in [x0

i , x
0
i + (n− 1)δ] are explored, but this range can be defined as evenly spaced

variations from theminimum andmaximumvalues of parameterXi, or as an arbitrary
variation of δ.

Once Y is obtained from the evaluation of matrix Di (Eq. 2.3), the results can be
analyzed in several ways. On one hand, the partial derivatives ∂Y/∂Xi can be estimated
or averaged, which can be normalized and compared to the partial derivatives of other
parameters ∂Y/∂Xj . On the other hand, the results of the evaluation can be plotted with
respect to the different values of the varyingparameter, as shown in Fig. 2.4. In this case,
the effect of the parameter variation can be identified visually, or directly quantified
using a linear regression and its coefficient of determination R2.
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Figure 2.4: An example of one-at-time sensitivity analysis for three parametersX1,X2
andX3 over an output Y = f(X). The left plot shows little effect ofX1 over
the output, the middle plot shows a linear effect of X2, and the right plot
shows a non-linear effect of X3. Adapted from [3].

Local sensitivity analyses are practical for their simplicity and reduced number
of evaluations. However, as their name imply, the parameter space is not fully explored,
since it does not consider simultaneous variations of parameters. Consequently, local
OAT approaches cannot detect interactions between parameters. Moreover, the linear
regression analysis mentioned above supposes a linearity of the relation between the
parameters and the outputs, which will fail to identify nonlinear relationships as illus-
trated in Fig.2.4.

2.3.1.2 Global sensitivity analysis

In contrast with local methods, global sensitivity analysis focuses on the study
of the effect of the parameters but it does not constrain their values to the small region
around a working point. Instead, it permits the parameters to take any value in a large
region of interest.

The most popular family of global sensitivity analysis methods is the variance-
based approach. This approach tries to identify what part of the variability of Y can be
attributed to the variability of each parameterXi (or groups of parameters) [9, 10, 11].
All the input factors are varied simultaneously and the sensitivity is measured across
the whole input space.

In most of the global sensitivity analysis methods, the amount of evaluations, or
model simulations, necessary to calculate the sensitivity indices is very high, which
limits the application of global sensitivity analysis to models where the number of pa-
rameter is reduced andwhen one counts with a significant computational budget. This
is the main reason that drives another type of global sensitivity analysis that permits
to cheaply identify and exclude unimportant parameters: screening methods.
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2.3.1.3 Screening methods

In contrast to previous global sensitivity methods, screening methods do not
quantify the sensitivity of a parameter. Instead, they permit to identify qualitatively
which parameters of a function are relatively influent on the function’s output and
which parameters can be ignored. This information can help to reduce the dimension-
ality of future analysis or estimation phases.

The most common screening method is the Morris elementary effects method
[12]. This method is well suited in large dimension models, where the mathematical
model is computationally cost. The Morris method uses the one-step-at-a-time (OAT)
technique, which means that in each execution only one input parameter changes its
value to measure the variation in the model’s output.

Morris methodology starts with a first execution of the algorithm using the es-
tablished initial values of the input parametersX . Then, the value of a single parame-
ter xi is changed and the resulting change in the model output Y compared with the
previous execution is calculated by the elementary effect (Eq. 2.4). The same process
continues until all parameters values are changed. Before applyingMorris method, the
ranges of values must be defined for the k input parameters.

The algorithm is repeated r times (where r is usually taken between 5 and 15),
each time with a different set of initial values. In conclusion, the method is based on
calculating for each input parameter a number of incremental ratios, called elementary
effects EEi,j (i = 1, ..., r.j = 1, ..., k).

EEi,j = Y (x1, x2, ..., xi + ∆i, ..., xk)− Y (x1, x2, ..., xi, ..., xk)
∆i

, (2.4)

where ∆ is a predefined multiple of 1/k−1, and (x1, x2, . . . , xk) is a randomly selected
point, such that each xi takes a value in {0, 1/(k−1), 2/(k−1), . . . , 1−∆}.

Finally, basic statistics are computed to derive sensitivity information. Two sen-
sitivity measures for each input parameter is calculated:

• The standard deviation, σ : estimates the non-linear effects and the interactions
with other parameters.

σj =

√√√√1
r

r∑
i=1

(
EEi,j −

1
r

r∑
i=1

(EEi,j)
)2

, (2.5)

• Themean of the absolute values, µ* : assesses the overall influence of the param-
eter on the output. This measure is an improvement ofMorris method developed
by [13]. The use of µ* solves the problem of the effects of opposite signs that occur
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when the model is non-monotonic canceling each other output.

µj∗ = 1
r

r∑
i=1
|EEi,j |, (2.6)

The results of Morris methodology implemented in the model are represented
by the µ* vs. σ plane, illustrated in Fig. 2.5, which provides the following information:

• Parameters with low µ* and σ have negligible effect on the output.

• Parameters with large µ* but low σ reveal a significant and linear effects on the
output.

• Parameters with large µ* and σ are considered to have significant and nonlinear
effects on the output, or important interactions with other parameters.

Figure 2.5: Example of the results of the Morris elementary effects method. The ele-
mentary effects of all parameters are analyzed in the µ∗−σ plane, identify-
ing negligible effects, parameters with a linear effects and parameters that
have a non-linear or interaction-related effect. Adapted from [3].

The Morris elementary method is an advantageous tool to examine and identify
important parameters of a function or model. Due to its relative low computational
requirements, it can be used prior to any heavy sensitivity analysis or extensive pa-
rameter exploration such as during a parameter estimation method. This method can
quickly point out linear relations between parameters and outputs. On the other hand,
the elementary effect method presents two specific disadvantages: it does not quan-
tify the effect of a parameter, and it cannot discern between nonlinear relations and
parameter interactions.

In order to complement the qualitative identification of the nature of the param-
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Figure 2.6: Identification of important and negligible parameters from the elementary
effects. The right plot shows the same results of a Morris analysis, but
ranked according to the SMi index (Eq. 2.7). Adapted from [3].

eter effects provided by Morris’ method, the following sensitivity index was used:

SMi =
√

(µ∗i )2 + (σi)2 , (2.7)

applied to all parameters Xi. Then, parameters are sorted according to their SMi, as
illustrated in Fig. 2.6. This index, which has been used in other modeling applications
[14, 15] provides a rank of the parameter effects; parameters with a high sensitivity or
strong interactions will have a high SMi, while unimportant ones are associated with
a low SMi.

2.3.2 Parameter Identification

The parameter identification or optimization is a process that consists in the se-
lection of the best estimation of the parameters’ values Popt, from some set of avail-
able boundaries, that minimize a specific cost function gε in order to obtain an output
Osim(P) that well agrees with the clinical data Oobs:

Popt = arg min
P∈P

gε(Osim(P), Oobs) (2.8)

The field of mathematical optimization offers a vast choice of methods and algo-
rithms that solve this kind of problems: analytic approaches, iterativemethods, gradient-
based methods, deterministic and stochastic approaches, among others [16]. However,
not all of these methods are appropriate for the problem of parameter identification
because: i) for the clinical applications of this manuscript, the dimensionality of the
problem is high enough to forbid the employment of methods whose computational
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complexity is exponential with respect to the number of parameters, ii) the nature of
the underlying equations are either non-linear, discontinuous or not well understood,
and iii) the objective functions and constraints are the result of complex model equa-
tions which complicate the calculation of their derivatives or partial derivatives.

These limitations quickly discard classical optimization methods, such as New-
ton’s method, or Lagrange multipliers; linear programming approaches, such as the
simplex algorithm [17]; and exhaustive exploration approaches, such as branch-and-
bound methods [18]. The remaining methods include approaches that approximate
numerically the derivatives of the objective function, methods that use an heuristic to
select interesting points in the parameter space, and methods based on a stochastic
process.

2.3.2.1 Deterministic approaches

In this categorization of optimization techniques, deterministic approaches are
defined to provide a contrast to stochastic approaches: these methods find the opti-
mal or a sub-optimal solution to Eq. 2.8 with a process that does not rely on a random
behavior. Algorithms that calculate or approximate derivatives and gradients fall into
this category, as the gradient descent method. The hill-climbing algorithm [19] and
the Nelder-Mead algorithm [20] are also popular methods that use deterministic ap-
proaches.

In general, deterministic methods are interesting because they eventually con-
verge to a solution and do not need much information regarding the objective func-
tions. However, the main disadvantages of these methods are: i) the gradient esti-
mations and the heuristics used require several evaluations of the objective function,
which becomes problematic when the dimensionality of the parameter space is con-
siderable, and ii) the convergence of these methods is not guaranteed: it depends on
the initial point, which yields a convergence towards a local minimum, where the al-
gorithm remains stuck.

2.3.2.2 Stochastic approaches

Stochastic search approaches are interesting when the parameter space and ob-
jective function are not well understood, or when the parameter exploration requires
random perturbations in order to avoid local minima.

A notable and popular stochastic approach is the particle swarm optimization
[21]: an iterative procedure where a list of solutions is maintained and each candidate
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solution wanders the parameter space with a behavior that mixes exploration and at-
traction to good solutions. The converge of approaches that constantly evolve a list of
candidate solutions is not guaranteed either; it mostly depends on a good choice of
the algorithm parameters, principally the size of the candidate solution list and the
number of iterations. However, stochastic approaches are praised for their ability to
constantly explore the parameter space and avoid local minima.

2.3.2.3 Evolutionary algorithms

Within the stochastic approaches, evolutionary algorithms stand out for their
original foundations. Evolutionary algorithms (EA) follow the approach of maintain-
ing a set of candidate solutions, termed population, and repeatedly evolving this pop-
ulation with processes inspired by biological evolution: selection of the fittest, repro-
duction, recombination and mutation.

Evolutionary algorithms (EA) are methods of optimization and search for solu-
tions based on the postulates of biological evolution established by Darwin in 1859.
They are mainly used in problems with extensive and non-linear search spaces (do-
main of the function to be optimized), where other methods are not able to find solu-
tions in a reasonable time. These algorithms are modeled computationally simulating
the natural selection and cross-linking of species through genetic recombination and
mutation [22].

Among the wide range of algorithms classified as EA, the most popular group
used in optimization is the genetic algorithms (GA), initially conceived in [23] and
thoroughly formalized in [24].

These algorithms are characterized by the existence of individuals or chromo-
somes in a population. These individuals represent the candidate solutions to the opti-
mization problem in the form of genetic information, or alleles.

The fitness function determines the quality of the solutions or in other words the
degree of adaptation of an individual to its environment. Based on this fitness, some of
the better candidates are chosen to seed the next generation by applying recombination
and/or mutation to them.

The recombination is an operator that mixes the information of two or more se-
lected candidates generating one or more new candidates. And the mutation consists
of a random change applied to a candidate to generate a new one. Executing recombi-
nation andmutation leads to a set of new candidates that competewith the old ones for
a place in the next generation. Given that individuals who represent the most appro-
priate solutions (best fitness) to the problem are more likely to survive, the population
gradually improves.
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The population evolves as a result of the following procedure, illustrated in Fig.
2.7:

1. An initial population with N individuals is initialized, where each individual
contains a random value for each one of its alleles. This generates a first genera-
tion of possible solutions.

2. Each individual of the population is assigned with a value that measures its fit-
ness, a quantification of how good the individual is. The fitness value of an indi-
vidual directly affects its chances to survive and reproduce. The calculation of the
fitness requires the evaluation of the target function gε, but it can also be affected
by other variables.

3. An internal variable that counts the number of generation is incremented. This
variable can be useful for the stopping criteria.

4. According to their fitness and a stochastic process, a selection of individuals is
performed. This phase designates pairs of individuals that will reproduce.

5. For each pair of selected individuals a reproduction operation generates two new
individuals whose alleles are a combination of the two progenitors. This repro-
ductive process occurs with a predefined probability pc for each pair of individ-
uals. Newly generated individuals may go through a mutation process, with an-
other predefined probability pm, which slightly modifies one or more of its alle-
les. The probabilities pc and pm directly control the exploration of new solutions.
At the end of this stage, 2N individuals exist: the parent population of size N
and a new offspring population of the same size.

6. All new generated individuals are evaluated; their fitness is determined as well.

7. At this point, different strategies are possible: either the new population com-
pletely replaces the old population, or a replacement procedure that accounts
for each individual fitness selects and discards all individuals to produce the
next generation, a population of size N .

8. Finally, if a stopping criteria is met, the algorithm stops or, in the contrary, the al-
gorithm restarts from step 3. Possible stopping criteria include amaximum num-
ber of generations (i.e. iterations) or when the individuals of the population have
reached a certain fitness value.

As other stochastic approaches, EAs cannot assure convergence toward the op-
timal solution and their performance depend on a good choice of the EA parameters.
Nevertheless, they present an interesting compromise of space exploration, number of
evaluations and quality of the solutions found, and they has been successfully used for
parameter identification in other application [25].
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Figure 2.7: General scheme of genetic algorithms. Adapted from [3].

2.3.2.4 Proposed approach

Identification strategies, based on evolutionary algorithms, were implemented
in this thesis in order to obtain patient-specific simulations. Based on the results of
the sensitivity analysis, a reduced group of parameters are selected for patient-specific
model identification, reducing computational cost and calculation time.

The objective function gε(Osim(P), Oobs) used for the parameter identification
will be defined in the next two chapters where patient-specific identification is per-
formed for the two clinical applications addressed in this thesis. To implement the
parameter identification in an efficient way, parallel optimization library PAGMOwas
used.

Parallel optimization library PAGMO

PAGMO is a scientific library for massively parallel optimization that can be
used in C++ environments. PAGMO uses efficient implementations of bio-inspired and
evolutionary algorithms in order to solve constrained, unconstrained, single objective,
multiple objective, continuous and integer optimization problems.
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For the implementation of an optimization problem, first, the user must define
the parameters P that wish to be identified in order to minimize a cost function gε also
proposed by the user. The optimization problem is subject to the boundary parameters
values fixed by the user [lb, ub].

The optimization problem (Fig. 2.8) is then evaluated in the island Ii. Each island
is an instance of the optimization problem and it contains i) the type (evolutionary al-
gorithms,...) and properties (number of generations, ...) of the algorithm used to solve
the optimization problem and ii) a population of N individuals. The population of in-
dividuals are considered potential candidates to solve the optimization problem. Each
individual is determined by: i) a unique ID used to track it across generations and mi-
grations, ii) a chromosome, which is the vector that contains the identified parameters,
and iii) the fitness that determines the quality of the chromosome.

The collection of islands represents an archipelago A, which provides a conve-
nient way to perform multiple optimizations in parallel. The connections between is-
lands are denominated migrations. From each island the individual with the best fit-
ness is chosen to replace the worst individual of the contiguous island. Then the pop-
ulation continuously evolve for generations and migrations until the stopping criteria
is met.

Figure 2.8: General scheme for PAGMO. Each island Ii, i = 1, ...k contains an algorithm
and a population of N individuals. In a migration, the individual with the
best fitness is chosen to replace the worst individual of the contiguous is-
land.

For thiswork,M2SLwas integrated in the optimization problem class of PAGMO,
in order to include the model simulation in the identification algorithm.
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2.4 Conclusion

Decisions such as the type of model, the algorithms implemented and the tools
usedmust be studied and chosen according to the specific application and the different
processes desired to interpret.

Both the modeling and simulation tools and the analysis of parameters are es-
sential for proposing a computational model capable of reproducing and predicting
the mechanisms and functions, in this case, of the cardiovascular system. Sensitivity
analysis and parameter identification are complementary and widely used techniques
to improve the efficiency and predictions of the computational models. They are also
practical for patient-specific simulations, where simulated data seeks to approximate
clinical data.

M2SL is a powerful environment that allows submodels coupling, which is par-
ticularly interesting in this work since different mechanisms are involved in cardiac
function. Moreover, M2SL allows a simple coupling of the model with methods of
analysis of the model parameters using PAGMO, which makes it a very useful tool,
and therefore, the chosen tool to simulate the CVS and achieve the objectives of this
thesis.
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Model-based Estimation of Left

Ventricular Pressure and

Myocardial Work in Aortic

Stenosis

3
Aortic stenosis (AS) is characterised by a narrowing of the aortic valve open-

ing, which induces a left ventricular (LV) pressure overload. The development of LV
hypertrophy in AS is accompanied by coronary microcirculatory dysfunction [1] that
may gradually affect systolic and diastolic function [2]. LV ejection fraction (LVEF) is
used routinely to assess LV systolic function and is an important parameter for prog-
nosis stratification [3]. However, LVEF depends not only upon the contractility of LV,
but also on loading conditions. In fact, ejection fraction may appear to be preserved
despite underlying reduced contractility.

The characterisation ofmyocardial dysfunction is of primary importance to iden-
tify patients with reduced contractility. Speckle-tracking echocardiography (STE) as-
sessment of myocardial strain usually provides a better quantification of systolic func-
tion than global LVEF [4]. Although strain echocardiography can provide prognostic
information in patients with AS [5], the shortening indices, calculated from cardiac
strains, do not reflect myocardial work or oxygen demand. As opposed to the nor-
mal LV, where all segments contract almost synchronously and myocardial energy is
used effectively, regional dysfunction, that could be induced bymyocardial fibrosis [6],
could bring a significant loss of efficient work. For instance, the impairment of myocar-
dial diastolic and systolic function, due to fibrosis [7], have shown to induce significant
mechanical dispersion in patients with severe AS [8].

Recently, Russell et al [9, 10] have proposed a non-invasive method for LV work
analysis, which is based upon an estimated LV pressure curve. Since strain is largely
influenced by LV afterload [11], model-based myocardial work might be a robust com-
plementary tool, taking into account AS severity and arterial pressures values. In pre-
vious works of our team, we have shown that the non-invasive estimation of global
myocardial work, when using an LV pressure curve estimation as proposed in [9], is
correlated with that obtained when using the observed invasive LV pressure curve, in
the context of cardiac resynchronization therapy [12]. However, the accuracy of esti-
mated LV pressure has never been evaluated in the case of aortic stenosis, where high
pressure gradients could be observed between LV and the aorta [13]. The experimental
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observation of LV pressure is notably difficult to perform clinically because it requires
an invasive, intraventricular measurement. As a consequence, it is necessary to pro-
pose novel tools to assess non-invasive LV pressure and to calculate myocardial work
in the case of AS.

The first objective of this chapter is to propose a model-based estimation of LV
pressure in the case of AS. Previous works [14, 15] have already shown that lumped-
parameter models of ventricular-vascular coupling are able to provide a good agree-
ment between the estimated and the measured left ventricular and aortic pressure
waveforms. Based on these papers andpreviousworks of our team [16, 17, 18], amodel-
based approach is proposed here, including a multiformalism model of the cardiovas-
cular system and a parameter identification strategy in order to: 1) estimate the LV
pressure waveform from the experimental LV pressure curve as well as systolic and
diastolic aortic pressure values, 2) assess LV pressure waveform from only systolic and
diastolic aortic pressure values.

The second objective of this chapter is to propose a novel tool to estimatemyocar-
dial work in AS. Work indices, as proposed in [9, 10] and validated in [12], were calcu-
lated from non-invasive model-based LV pressure and compared with indices evalu-
ated from experimental signals.
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3.1 Materials and methods

3.1.1 Experimental data

3.1.1.1 Study population

We included 35 adults (≥18 years old) with severe (aortic valve area (AVA) ≤
1cm2, n=33) and moderate (n=2) aortic stenosis who underwent a coronary angiogra-
phy with left heart catheterization. Table 3.1 summarizes patients’ clinical character-
istics for the two methods used in this study. We excluded patients with concomitant
significant aortic regurgitation and mitral stenosis. The study was carried out in accor-
dance with the principles outlined in the Declaration of Helsinki on research in human
subjects and with the procedures of the local Medical Ethics Committee (Person Pro-
tection Committee West V—CPP Ouest V, authorization number: 2014-A01331-456).
All patients were informed and a written consent was obtained.

Table 3.1: AS patients’ clinical characteristics.

Age Male sex BSA NYHA class
years old n (%) (body surface area) I/II/III, n

Database 1 (n=12) 78.16 ± 5.50 7 (58.3%) 1.75 ± 0.10 0/8/4
Database 2 (n=23) 82.7 ± 3.57 10 (43.5%) 1.78 ± 0.18 2/9/12

3.1.1.2 Echocardiography

All patients underwent a standardTrans-Thoracic Echocardiography (TTE) using
a Vivid S6, E7 or E9 ultrasound system (General Electric Healthcare, Horten, Norway).
Images were recorded on a remote station for off-line analysis by dedicated software
(EchoPAC PC, version BT 202, General Electric Healthcare, Horten, Norway). The anal-
ysis of aortic and mitral valve events during a complete TTE loop [mitral valve closure
(MVC), aortic valve opening (AVO), aortic valve closure (AVC), mitral valve opening
(MVO)] was performed in apical long-axis view and individual valvular events were
manually segmented. Standard STE analysis was applied in order to extract regional
myocardial strain curves. Also aortic stenosis analysis was performed to estimate the
AVA (cm2).

3.1.1.3 Experimental pressure

The left heart catheterization (LHC) was performed via a retrograde access from
the radial artery with a 5 French Judkin R4 catheter (ICU Medical, San Clemente, CA,
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USA) placed at the mid LV cavity using fluoroscopic screening. Before coronary an-
giography, transducers were calibrated, with a 0-level set at the mid-axillary line. In
a second time, the instantaneous systolic and diastolic arterial pressure values were
estimated by a brachial artery cuff. The experimental data set includes the invasive
measured ventricular pressure P expLV , and the systolic P expao,sys and diastolic P expao,dias arte-
rial pressures non-invasively estimated.

3.1.2 Computational model

Four main sub-models were created and coupled: i) cardiac electrical system, ii)
elastance-based cardiac cavities, iii) systemic and pulmonary circulations and iv) heart
valves. The first three submodels are strongly based on our previous works [19, 20, 21,
16, 17, 18]. The model of the heart valves was adapted from [22].

3.1.2.1 Cardiac electrical system

The proposed model of the cardiac electrical activity, is based on a set of cou-
pled automata [19, 20] (Fig. 3.1). Each automaton represents the electrical activation
state of a given myocardial tissue, covering the main electrophysiological activation
periods: slow diastolic depolarisation (SDD), upstroke depolarization (UDP), absolute
refractory (ARP) and relative refractory (RRP). Briefly, the state of the cellular automata
cycles through these four stages, sending an output stimulation signal to neighboring
cells when a given cell is activated (end of UDP phase).

The whole simplified model consists of nine automata representing: the sinoa-
trial node (SAN), right and left atria (RA and LA), the atrioventricular node (AVN),
upper bundle of His (UH), bundle branches (RBB and LBB), and both ventricles (RV
andLV). The electrical activation of the automata is used to synthesize an electrocardio-
gram (ECG), fromwhich the QRS peak was extracted to synchronize the experimental
and simulated signals.

3.1.2.2 Elastance-based cardiac cavities

Although the literature offers a wide range of cardiovascular models, elastance-
basedmodels offer a good compromise between complexity and number of parameters
[23, 16, 17, 18]. Ventricle pressures are represented by a combination of the end-systolic
(es) and end-diastolic (ed) pressure-volume relationships [24]:

Pes,lv(V, t) = Ees,lv(V (t)− Vd,lv), (3.1)
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Figure 3.1: Left panel: State diagram of the cellular automata that represent nodal cells
(yellow, botton) and myocardial cells (orange, top) and diagrams show-
ing the correspondence of the automata’s transition parameters with the
myocardial action potential dynamics. Right panel: Closed-loop model of
the cardiovascular system. E: elastance; R: resistance; P: pressure; V: vol-
ume; pul: pulmonary; sys: systemic; pv: pulmonary vein; pa: pulmonary
artery; ao: aorta; sa: systemic artery; sv: systemic veins; vc: vena cava; LA:
left atrium; LV: left ventricle; RA: right atrium; RV: right ventricle. In the
middle, a representation of the cardiac electrical system. On the right, a
representation of the heart valve model.
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Ped,lv(V, t) = P0,lv
(
eλlv(V (t)−V0,l) − 1

)
(3.2)

In Eq. 3.1, systolic pressure Pes,lv is defined as a linear relationship with the ven-
tricular volume V , determined by the systolic elastanceEes,lv and the volume intercept
Vd,lv. Eq 3.2 also describes the nonlinear diastolic pressure defined by a gradient P0,lv,
curvature λlv and volume intercept V0,lv.

The instantaneous pressure of the ventricle is then calculated as :

Plv(V, t) = elv(t)Pes,lv(V, t) + (1− elv(t))Ped,lv(V, t) (3.3)

where elv(t) is the driver function that controls time-variant elastance. In this work we
have selected a “double Hill" driver function [25] that best fits our observed data:

elv(t) = k ·


(

t
α1T

)n1

1 +
(

t
α1T

)n1

 ·
 1

1 +
(

t
α2T

)n2

 (3.4)

The first and second terms in Eq. 3.4 represent ventricle contraction and relax-
ation, respectively. k is a scaling factor that defines the maximal value of elastance, T
is the heart period, α1, α2 are shape parameters, and n1,n2 control the steepness of the
curve.

To account for themechanical function of the atria, the atrial pressurePla is repre-
sented as a linear function of its instantaneous volume Vla, whose slope Ela represents
the elastic properties of the atrial wall:

Pla(Va, t) = Ela(t) · (Vla(t)− Vd,la), (3.5)

Ela(t) = Ela,max

(
ela(t) + Ela,min

Ela,max

)
(3.6)

where ela(t) is a Gaussian driving function that cycles between atrial diastole and
systole:

ela(t) = exp
(
−Bla · (t− Cla)2

)
(3.7)

Using Bla and Cla, it is possible to control the rise and peak of the atrial systole.
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3.1.2.3 Systemic and pulmonary circulations

Concerning the circulatory models [21], the volume of each cardiac or vessel
chamber is calculated from the net flow: ∆V (t) =

∫
(Qin − Qout) dt. The flows are

defined by the pressure gradient across chambers and a resistance: Q = ∆P/R. The
pressure of arterial and venous vessels are defined as an elastance dependent linear
relationship, similar to Eq. 3.1. The circulatory model allows for the simulation of sys-
tolic and diastolic aortic pressures (Pmodelao,sys and Pmodelao,dias).

3.1.2.4 Cardiac Valves

The CVS model was coupled to a detailed representation of the heart valves dy-
namics (mitral, aortic, tricuspid and pulmonary) according to [22]. The relation be-
tween the pressure gradient (∆P ) and the fluid flow (Q) across an open valve is ap-
proximated by the Bernoulli equation (Eq. 3.8):

∆P = BQ|Q|+ L
dQ

dt
, (3.8)

B = ρ

2A2
eff

, L = ρleff
Aeff

(3.9)

where B and L are respectively the Bernoulli resistance and the blood inertance. Pa-
rameter ρ stands for the blood density, Aeff is the effective cross-sectional area of the
valve (eq.3.10) and leff is the effective length of the valve:

Aeff (t) = [Aeff,max(t)−Aeff,min(t)] ξ(t) +Aeff,min(t) (3.10)

dξ

dt
=
{

(1− ξ)Kvo∆P, if∆P > 0
ξKvc∆P, if∆P ≤ 0

(3.11)

Aeff,max and Aeff,min are the maximum and minimum effective areas. The rate
of opening ξ(t) describes the dynamic of the valve position (Eq. 3.11), in response to
∆P .Kvo andKvc are the rate coefficients for valve opening and closure, respectively.

3.1.3 Estimation of myocardial work

Segmentalmyocardialwork, as proposed byRussell et al [10], could be calculated
from 1) the clinical strain signals, deduced from TTE, and 2) the LV pressure obtained
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invasively by catheterization (P expLV ) or the patient-specific pressure (PmodelLV ) from the
model-based approach. The instantaneous power was first obtained by multiplying
the strain rate, obtained by differentiating the strain curve, and the instantaneous LV
pressure. Then, segmental myocardial work was calculated by integrating the power
over time, during the cardiac cycle frommitral valve closure until mitral valve opening.

LVP
(mmHg)

Strain
(%)

Work
(mmHg.%)

Differentiation, 
change of sign, 
multiplication 
by LVP and 
integration 

𝑃"#
𝑁%#

S IVR

𝑃"&'(
𝑁%&'(

MVC

AVO AVC
MVO

Figure 3.2: Calculation of positive and negative segmental work. Positive (Pj) and neg-
ative (Ni) work are marked respectively as red and black. Phase S corre-
sponds to isovolumic contraction and ejection. IV R is the isovolumic re-
laxation. S phase is defined by the time interval spanning from MVC to
AVC, whereas the IVR phase is defined between AVC and MVO.

Positive and negative work [12] were determined as the ascending and descend-
ingparts of the curves (Figure 3.2), during isovolumic contraction and ejection (S phase)
and isovolumic relaxation (IV R phase). Then, positive segmental work Wp (respec-
tivelyWn) is defined as the sum of positive (respectively negative) variations for each
segment k and for each phase (S and IV R) :

WS
p,k =

∑
i

PSi,k, W
S
n,k =

∑
j

NS
j,k, (3.12)

W IV R
p,k =

∑
i

P IV Ri,k , W IV R
n,k =

∑
j

N IV R
j,k (3.13)

wherePi (respectivelyNj) is the variation associatedwith each ascending (respectively
descending) parts i (respectively j) of the segmentalwork (Figure 3.2). The indices i (re-
spectively j) are comprised between 1 and the total number of ascending (respectively
descending) parts. Finally, global constructive (GCW ) and wasted (GWW ) work are
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defined as mean values over all segments:

GCW = 1
k

K∑
k=1

(WS
p,k +W IV R

n,k ), (3.14)

GWW = 1
k

K∑
k=1

(WS
n,k +W IV R

p,k ) (3.15)

whereK is the total number of segments.GCW represents segmental shortening dur-
ing the systole, i.e. effective energy for blood ejection, and lengthening during IV R,
whereas GWW corresponds to segmental stretching during the systole, i.e. energy
loss for blood ejection and shortening during the isovolumic relaxation phase. GWE
is defined as the global work efficiency:

GWE = GCW

GCW +GWW
(3.16)

3.1.4 Model-based, patient-specific LV pressure estimation

3.1.4.1 Sensitivity analysis

The objective of the sensitivity analysis is to determine the sets of ventricular
{XLV } and circulatory {Xart} parameters that have themost important influence on the
gradient of pressure (∆Pmodel = max(PmodelLV )− Pmodelao,sys ) between LV and aorta. Using
the Morris elementary effects method [26], described in section 4.5, the sensitivity of
each parameter is estimated by repeated measurements of a simulation output Y with
parameters X, while changing one parameter Xj at a time. Analysis were performed
withY = ∆Pmodel and, for each parameterXj , the range of possible valueswas defined
as ±30% of the initial values.

3.1.4.2 Parameter identification

3.1.4.2.1 Database 1: The parameter identification process is included into aMonte-
Carlo cross-validation approach (Fig.3.3). Cross-validation methods consist on statis-
tical techniques, mainly used in predictive models, to improve the estimation of the
parameter values. Different cross-validation strategies exist to reduce the variability in
the results. We implemented a K-fold cross-validation approach where the dataset is
randomly divided into training and test subsets N times. Each time the training and
the test sets are distributed in a different way and the validation process is repeatedN
times for each different pair of training and test subsets. Finally, the average measure
across all N trials is computed. These methods avoid overfitting (the model performs
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well for the training set but poorly on the test set) and underfitting (themodel performs
poorly in the training and the test set) problems.

Hence, available data from the 12 patientswere divided randomly into two sets of
6 patients (training and test sets). This random selection processwas appliedN times (n
6N ) and for each realization n a two-step procedure was applied. For all patients, the
maximum effective area Aeff,max parameter was fixed to the observed AVA, measured
from TTE.

The following sections provide more details on the two steps.

12 patients

Parameter Identification

{𝑋#$∗ , 𝑋'()∗ } = argmin	
345,3678

𝐽:);<= 𝑋

(evolutionary algorithms)

Mean ventricular 
parameters

𝑋>#$∗ =	mean(𝑋#$∗ )

repeated N times

6 Training patients 6 Test patients

Step 1 Step 2

Parameter identification

{𝑋'()∗ } = argmin
3678

	𝐽:);<? 𝑋>#$∗ , 𝑋'()

(evolutionary algorithms)

Estimation	of	LV	pressure	from	
non-invasive	data	

(𝑃'A,:B: and	𝑃'A,CD':)	
for	each	patient	

Estimation	of	LV	pressure
from	invasive	data	

(𝑃#$
;E<,	𝑃'A,:B: and	𝑃'A,CD':)	

for	each	patient	

𝑷𝑳𝑽𝒎𝒐𝒅𝒆𝒍	

Figure 3.3: Two steps of the identification process. Step 1 consists in the minimization
of Jstep1 for the identification of {XLV ,Xart} from invasive LV pressure and
non-invasive arterial pressure. Step 2 consists in the minimization of Jstep2
for the identification of {Xart} from non-invasive arterial pressure. Finally,
PmodelLV is estimated for each patient from X∗LV and X∗art.

Step 1: For each training patient, a parameter identification stage was implemented to
find the best set of parameters {X∗LV ,X∗art} that minimises the error function between
simulation outputs and experimental signals:

Jstep1 = JPLV + JPao,sys + JPao,dias (3.17)

JPao,sys, JPao,dias and JPLV could be defined as:

JPao,sys =| P expao,sys − Pmodelao,sys |, (3.18)

JPao,dias =| P expao,dias − P
model
ao,dias |, (3.19)
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JPLV = 1
Tc

Tc−1∑
te=0
| P expLV (te)− PmodelLV (te) | (3.20)

where te corresponds to the time elapsed since the onset of the identification period
and Tc is the duration of a cardiac cycle. The error function Jstep1 wasminimised using
evolutionary algorithms (EA). These stochastic search methods are founded on the-
ories of natural evolution, such as selection, crossover and mutation [27]. After this
identification step, ventricular parameters were fixed equal to the average values over
all the training patients (X∗LV = mean(X∗LV )).

Step 2 : For each test patient, only circulatory parameters {Xart} were identified by
minimising the error function:

Jstep2 = JPao,sys + JPao,dias (3.21)

From the best set of parameters {X∗art}, LV pressure Pmodel,iLV was simulated for each test
patient and for each iteration i of the 2-step identification algorithm. Then,GCWmodel,i

andGWWmodel,i were calculated from Pmodel,iLV of each patient. Therefore, at the end of
theN iterations, a set of i simulated pressure and work indices was generated for each
patient and averagedmarkers were determined :GCWmodel =GCWmodel,i,GCWmodel

= GCWmodel,i and GWEmodel = GWEmodel,i.

3.1.4.2.2 Database 2: The step 2, implemented on database 1, was also applied in the
23 patients (Fig. 3.4). For all patients, the maximum effective area Aeff,max parameter
was fixed to the observed AVA,measured from TTE. Ventricular parameters were fixed
equal to the average values over the 12 patients (considered as training patients) from
the database 1 (X∗LV =mean(X∗LV )). For each patient, circulatory parameters {Xart}were
identified and from the best set of parameters {X∗art}, the LV pressure PmodelLV was sim-
ulated. Then,GCWmodel,GWWmodel andGWEmodel were calculated for each patient.
This process was applied once.

3.1.5 Comparison between simulations and experimental data
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Figure 3.4: The identified mean ventricular parameters were calculated from the
database 1. Step 2 was applied for the identification of {Xart} from non-
invasive arterial pressures. Finally,PmodelLV is estimated for each patient from
X∗LV and X∗art.

3.1.5.1 Comparison of estimated and measured pressures:

Inspired form [14], estimated PLV , Pao,sys and Pao,dias were compared with mea-
sured pressures by calculating the total relative error defined as:

e% = 50
(
‖P expLV − PmodelLV ‖

‖P expLV ‖

)
+50

(
| P expao,sys − Pmodelao,sys |

| P expao,sys |
+
| P expao,dias − Pmodelao,dias |

| P expao,dias |

)
(3.22)

where ‖.‖ stands for the vectorial 1-norm. A linear regression was performed on all
the points from experimental and simulated pressure waveforms. The slope (β) and
coefficient of determination (R2) were deduced from a linear regression.

3.1.5.2 Comparison of estimated and measured work indices:

In this study,GCW ,GWW , andGWEwere calculated in two differentmanners :
1)GCW exp,GWW exp andGWEexp using the invasive experimental pressureP expLV , and
2)GCWmodel,GWWmodel andGWEmodel using the proposed patient-specific pressure
PmodelLV from the model-based approach.
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The goodness of work estimations was evaluated by performing a linear regres-
sion using indices calculated from invasive experimental and the proposed model-
based pressures. The shape of the pattern that the data points form on the diagram
obtained from the linear regression determines the degree of correlation. The more
the data points shape resembles a straight line, the higher is the degree of relationship.
The correlation is also represented by a quantitative measure r2, which varies from
−1 to +1. The closer the coefficient r2 is to +1, the greater is the strength of the lin-
ear relationship. The degree of correlation is high when the points plotted is close to
the straight line and is positive when they show a rising tendency from the lower left-
hand corner to the upper right-hand corner. The degree of correlation is small when
the points are randomly distributed in spacewith any particular pattern and r2 tending
to 0.

It is important that twomethods that are designed tomeasure the same property
have a good correlation. However, a high correlation between the two methods does
not necessarily imply that there is good agreement between them.

Therefore, Bland-altman (BA) plots were also presented for the three work in-
dices. BlandAltman analysis assesses and quantifies the agreement between twometh-
ods ofmeasurements.AXY graphical plot can represent BlandAltman analysis,where
the X-axis express the mean of the two quantities ((A + B)/2) and Y -axis the differ-
ences between them (A − B). After the graph approach is obtained, the mean bias
(mean(A − B)) is quantified and the limits of agreement are defined using the mean
and standard deviation of the differences between the two measurements. The mean
difference between the quantities allows identifying the estimated bias, and the stan-
dard deviation of the differences measures the random fluctuations around this mean.
Finally, mean ± 1.96 standard deviation is used to define a 95% confidence interval. It
means that if the data points are located between the 95% limits of agreement, this in-
dicates that the two assaymethods are systematically producing similar results. There-
fore, Bland-Altman analysis is an appropriate way to evaluate the comparison between
twomeasurements techniques and presents quantifiedmeasures to decidewhether the
new method is acceptable or not [28].

3.2 Results

3.2.1 Hemodynamic simulations

Fig. 3.5 illustrates the hemodynamic simulation results of the proposed compu-
tational model; the LV and aortic pressures in healthy and AS subjects. Concerning the
healthy subject, systolic LV pressure is equal to 120 mmHg, and the aortic pressure
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varies between 50 and 120 mmHg. AS was represented as a decrease in the Aeff,max
parameter (from 2.5 to 0.75 cm2). In Fig. 3.5, it is observed an important gradient pres-
sure between LV (0-150 mmHg) and aorta (50-110 mmHg), characteristic of an AS, in
which the narrowing of the aortic valve opening evokes an LV pressure overload.

Figure 3.5: Example simulated LV and arterial pressure for a healthy (top) and an aortic
stenosis subject (bottom).

3.2.2 Sensitivity analysis

Sensitivity results evaluated on the gradient of systolic pressure between LV and
aorta (∆Pmodel), are presented in Fig. 3.6, only showing those parameters having the
highest sensitivities. Fig. 3.6 shows the 25 most relevant parameters based on their Dj

index
(
Dj =

√
(µ∗i )2 + (σi)2

)
; µj∗ and σj are also represented. The most influential

parameter corresponds to the effective area of the aortic valve (Aeff,max). In fact, a
decrease of the effective area causes an increase in the ventricular systolic pressure, and
consequently, on the gradient of systolic pressure between LV and aorta. Parameters
related to the elastance of the LV (Ees,lv and α2) have also a high sensitivity on the
gradient of systolic pressures. Ees,lv corresponds to the maximum LV elastance and is
related to myocardial contractility. α2 represents the shape parameters related to the
LV relaxation phase.

Aeff,max presents the highest sensitivity. Fortunately, this parameter can be non-
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Figure 3.6:Most influential parameters on the gradient of systolic pressure between LV
and aorta according to Morris sensitivity results. For each parameter, the
distanceDi (green bars), the absolute mean µi∗ (purple bars) and the stan-
dard deviation σj (yellow bars) of the elementary effects are represented.

invasively observed and has been fixed to the AVA value measured from TTE specifi-
cally to each patient. The ventricular and circulatory parameters with the highest sen-
sitivities were selected for ventricular and circulatory parameter estimations:

• XLV = {Ees,lv, λlv, P0,lv, α1, α2, n1, n2}

• Xart = {Eao, Evc, Esa, Esv, V dao, V dvc, V dsa, V dsv, Rao, Rsys, Rvc}.

Except for {XLV ,Xart}, model parameter values were selected from the publi-
cations from which each model was originally based on: ventricular and circulatory
parameters were taken from [23, 16, 17, 18], heart valve parameters were adapted from
[22], and cardiac electrical conduction system from [19].

3.2.3 Patient-specific model-based pressure

3.2.3.1 Database 1

Step 1: Estimation of LV pressure from invasive data

Concerning step 1 of the parameter identification, there was a good agreement
between estimated and measured pressure waveforms (Fig.3.7). MeanR2 was equal to

3.2. Results 75



0.96 (min: 0.91, max: 0.99). Mean slope and intercept of the regression line between the
simulated and themeasured pressure datawere 1.04 (95% confidence interval: 1.0,1.09)
and -8.48 (-8.52,-8.44) mmHg respectively. Mean total relative error was equal to 11.9%
and ranged from 6.4% to 17.3%.

Figure 3.7: Step 1 for database 1: LV pressure of the 12 AS patients: i) experimental
(black) and ii) simulated (red) curves.

Step 2: Estimation of LV pressure from systolic and diastolic pressure values

Concerning step 2 of the parameter identification, LV pressure waveforms are
only estimated from systolic and diastolic pressure values and Aeff,max has been fixed
to the AVA value measured from TTE specifically to each patient (Fig.3.8) . Slope and
intercept of the regression line were 1.03 (0.92, 1.14) and -7.74 (-7.63, -7.85) mmHg re-
spectively, andmeanR2 was 0.91. Total relative error ranged between 5.9% and 17.40%
and average value is 12.27%.

3.2.3.2 Database 2

LV pressure waveforms were estimated by a parameter identification procedure,
using only systolic and diastolic arterial pressure values and theAeff,max fixed specifi-
cally to each patient (Fig 3.9). Slope and intercept of the regression line were 0.91 (0.55,
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Figure 3.8: Step 2 for database 1: LV pressure of the 12AS patients: i) experimental curve
(black), ii) average and standard deviation of simulated curve (red).

1.42) and -13.02 (-29.71, 2.27) mmHg respectively, and mean R2 was 0.85. Total relative
error ranged between 9.93% and 36.97% and average value is 18.42%.

3.2.4 Comparison of global cardiac work indices

3.2.4.1 Database 1

Figure 3.10 presents scatter and BA plots for GCW, GWWandGWE indices. Cor-
relations between measures and model-based estimations were respectively 0.81 (p <
0.0001) and 0.62 (p < 0.003) for GCW and GWW. When considering both constructive
and wasted work indices, global correlation was equal to 0.96 (p< 0.0001). In BA anal-
ysis, mean bias was -140 mmHg.% and -12 mmHg.% respectively for GCW and GWW,
which correspond to relative bias equal to 3.47% and 2.93% with respect to maximum
GCW and GWW values. For global work efficiency, correlation was 0.80 (p < 0.0001)
and mean bias was equal to 0. For GWE, one patient is outside the 95% limits of agree-
ment and corresponds to the third patient of the first row on Fig 3.7 and Fig 3.8. For this
patient, the synchronisation, between peaks of simulated and experimental pressures,
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Figure 3.9: Step 2 for database 2: LV pressure of the 23AS patients: i) experimental curve
(black) and ii) simulated (red) curves.
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is less good, showing the importance of time corresponding to peak pressure for work
evaluation.

a)	GCW

b)	GWW

c)	GWE

Figure 3.10: Database 1: Results of global work indices comparison, on all patients.
Scatter plots and Bland–Altman analysis of: a) Global Constructive Work
(GCW), b) Global Wasted Work (GWW) and c) Global Work Efficiency
(GWE).

3.2.4.2 Database 2

Figure 3.11 presents scatter and BA plots for GCW, GWW and GWE indices ob-
tained from the database 2 analysis. Correlations between measures and model-based
estimations were respectively 0.89 (p < 0.000004) and 0.76 (p < 0.005) for GCW and
GWW. When considering both constructive and wasted work indices, global corre-
lation was equal to 0.93 (p < 0.0001). In BA analysis, mean bias was -390 mmHg.%
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and -66 mmHg.% respectively for GCW and GWW, which correspond to relative bias
equal to 8.30% and 8.86%with respect tomaximumGCWandGWWvalues. For global
work efficiency, correlation was 0.89 (p< 0.0003) and mean bias was equal to 0.02, cor-
responding to relative bias equal to 2.02% with respect to maximum GWE value. In
GWE diagrams, we noticed an isolated patient. In fact, this patient presents close val-
ues of GCWandGWWand consequently a low value of GWE comparedwith the other
patients. However, this result still have a good correlation with the experimental data.

a) GCW

b) GWW

c) GWE

Figure 3.11: Database 2 analysis: Results of global work indices comparison, on all pa-
tients. Scatter plots and Bland–Altman analysis of: a) Global Constructive
Work (GCW), b) Global Wasted Work (GWW) and c) Global Work Effi-
ciency (GWE).
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3.3 Discussion

In this chapter, a patient-specific model-based estimation method was proposed
in order to evaluate constructive, wasted myocardial work and global work efficiency
on patients diagnosed with aortic stenosis. The main contributions of this chapter con-
cern: i) the proposition of an integrated model of cardiovascular system model, ii) the
analysis of this cardiovascular model in order to select themost sensitive parameters to
be identified in a patient-specific manner, iii) a parameter identification approach able
to reproduce LV pressure specifically to each patient, iv) the experimental validation
of the proposed method through a cross-validation technique applied to database 1 of
12 AS patients, in order to quantitatively evaluate GCW, GWW and GWE indices and
v) the database 2 analysis of the proposed model-based approach on a database of 23
AS patients.

The heart valve model, proposed by [22], was coupled to a CVS model that in-
cludes representations of cardiac electrical activity, cardiac cavities and the circulation,
developed by our group [19, 20, 16, 17, 18, 21]. The integrated model is able to predict
the influence of valvemotion on hemodynamics in both normal and stenosis cases. The
sensitivity analysis, performed on the integrated model, highlights the importance of
effective area of the aortic valve and parameters related with LV elastance on the pres-
sure gradient between LV and aorta. In fact, modifications of valve effective area, ob-
served in stenosis, lead to an increased aortic resistance and to an elevated pressure
gradient across the valve [13]. When the blood flows through a narrowed aortic valve,
the hemodynamic conditions could also lead to modifications of ventricular elastance
[29].

The most influential LV and aortic parameters found after sensitivity analysis
were then identified for each one of the patients. In order to build the cost function, ex-
perimental and simulated pressures were synchronised on QRS peaks of synthesized
and experimental ECG.

One of the main originalities of the approach was to apply a Monte-Carlo cross-
validation approach for the patient-specific estimations of LVpressures using the database
1. In the first step of the identification process, model parameters were identified from
invasive measured LV pressures, as well as systolic and diastolic arterial pressure val-
ues. Results show a good agreement between estimated and measured pressure wave-
forms. Concerning the second step of the identification, only systolic, diastolic arterial
pressure values and AVA echocardiography estimations were used to identify some
model parameters and to estimate LV pressure waveform. Although errors slightly in-
crease compared to step 1, the approach has the advantage of using only non-invasive
data for the estimation of LV pressure waveforms.

In the database 2 analysis, model parameters were identified once in each pa-
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tient using only non-invasive data as the systolic and diastolic arterial pressure val-
ues and AVA echocardiography estimations. The model-based LV pressure waveforms
obtained show less precision respect to the experimental curves in some patients com-
paredwith the database 1 analysis.However, in general, a good agreementwas observed
between experimental and simulated GCW, GWW and specially GWE indices. We be-
lieve that the implementation of new methods and strategies can further improve the
estimation of the LV curves and consequently the estimation of myocardial work in-
dices.

As shown in previous work of our team [12], although LV pressure is imprecise,
the estimation of LV work can provide sufficiently accurate results. In the database 1
analysis, errors between model-based and measured pressures are around 12%, mean
relative bias in BA analysis were 3.47%, 2.93% and 0.0% respectively for GCW, GWW
and GWE. In the database 2 analysis, the mean error between model-based and mea-
sured pressures is around 19%, however, 8.30%, 8.86% and 2.02% were found for the
mean relative bias in BA in GCW, GWW and GWE respectively.

The consistency of LV work estimation could be explained by: i) the temporal
integration, which induces a smoothing of the difference between measured and esti-
mated works and ii) relative precision of the estimation of the pressure between AVO
and AVC. Although the estimation of the LV pressure is imperfect, the non-invasive es-
timation of globalmyocardialwork indices obtained frommodelling approach strongly
correlates with invasive measurements and the proposed estimation of LV myocardial
work appears as clinically relevant.

Myocardial work indices are novel tools that have been validated in a variety of
pathologies, including the response to cardiac resynchronization therapy (CRT) [30].
In particular, Russell et al. have shown that regional differences in myocardial work
have a strong correlation with regional myocardial glucose metabolism, as evaluated
using PET imaging [9]. However, the assessment of constructive and wasted work, in
the case of AS is difficult because the estimation of peak LV pressure is complicated
without any invasive measurement. To our knowledge, this study presents the first
method for the estimation of myocardial work, based on a physiological model, rather
than a template-based estimate, such as in [9]. In this case, the model-based method
allows for the integration of physiological knowledge in the evaluation of myocardial
work indices. In silico assessment of clinical parameters, specifically to each patient,
has the advantage of taking into account characteristics associatedwith the subject and
pathology. For instance, by integrating a representation of the pathophysiology of the
aortic valves within this physiological model, it becomes adapted to the case of aortic
stenosis.

Results show globally a good agreement between work index estimations from
LV pressure obtained with patient-specific simulations and with experimental mea-
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surements. The evaluation of cardiac work, in the case of AS, is promising because
it could be a simple and physiological alternative to more complex and costly inves-
tigations (cardiac MRI,..) for the evaluation of myocardial contractility and residual
myocardial viability [31]. The assessment of regional myocardial work might be par-
ticularly important for the prognosis of patients with severe asymptomatic AS with-
out LV dysfunction. In fact, the timing and indications for surgical intervention in this
population remain controversial as the aortic-valve replacement is not recommended
despite in the increased risk of cardiovascular mortality [32]. Indeed, as LVEF remains
imperfect in asymptomatic AS to determine the optimal delay for the surgery, global
longitudinal strain appears to have a better prognostic significance [33] and we can
suppose that myocardial work will be robust complementary indices independent of
afterload condition. In fact, because afterload data are included in the calculation of
myocardial work in the form of LV pressure, the assessment of myocardial work might
represent a more robust parameter with respect to the assessment of LV strain or other
strain-derived parameters [34]. Although it will be important to confirm these assump-
tions and to validate the approach in a cohort of AS patients, this study is a first essen-
tial step for the proposition of work estimation based on computationalmodelling. The
proposed methodology should be evaluated on a larger prospective clinical database
in the future and we believe that model-based work indices, especially GWE, could be
promising to improve the assessment of LV mechanical efficiency in AS.

One limitation of this work concerns the number of patients included. Although
it appears to be low, it is necessary to recognise that measurement of invasive LV pres-
sure is particularly difficult in AS. In fact, current guidelines discourage catheteriza-
tion measurement techniques in AS before aortic valve replacement [35]. In this case,
catheterization was realised for clinical reasons and all patients were informed. An-
other limitation is related to the estimation of LV filling pressure, which is not precisely
estimated in step 2. In fact, myocardial work is considered in the period from mitral
valve closure to mitral valve opening, so inaccuracies before mitral valve closure and
after mitral valve opening has no impact on the results [12].

3.4 Conclusion

In this chapter, an original model-based approach to assess constructive and
wasted work in AS patients was proposed. The global method is based on a novel
approach involving: i) a physiological model of the cardiovascular system, including
heart valves and ii) a 2-step identification procedure, based on a monte-carlo cross-
validationmethod. Theproposedmodel-based approachwas evaluatedwith data from
12 AS patients and subsequently assessed in 23 more patients, for which LV pressure
data was acquired invasively. Results show a close match between experimental and
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simulated LV and aortic pressures. Themodel-based approach is especially efficient for
the evaluation of LV pressure from non-invasive data (systolic, diastolic pressures and
aortic valve area). Moreover, estimations of constructive, wasted work and global work
efficiency were consistent with indices calculated from measured experimental pres-
sures, showing the model ability to produce realistic LV pressure for the calculation of
work indices.

More extensive evaluations including a greater population of patients should
be performed in the future. Nevertheless, this thesis presents the first model-based
approach towards the evaluation of myocardial work indices in AS patients and, thus,
provide a step forward the characterisation of the complex LV mechanics of patients
with AS.
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Model-based Analysis of

Myocardial Strains in Left

Bundle Branch Block

4
Left bundle branch block (LBBB) is a common electrocardiographic abnormality

that causes intra- and interventricular conduction delay and leads to uncoordinated
contraction of the ventricle, alterations in LV mechanical activity and LV dysfunction
[1]. Cardiac resynchronization therapy (CRT) usually causes reverse left ventricular
(LV) remodeling and has shown a major favorable impact on the care of heart failure
patients with LBBB. Despite the great success of randomized clinical trials, 25% to 35%
of patients undergoing CRT are non-responders to treatment and can even be harmed
by biventricular stimulation [2]. Although, previous studies have suggested that the
analysis of strain traces obtained by speckle-tracking echocardiography (STE)might be
an alternative for quantifying LV mechanical dyssynchrony and identifying patients
suitable for CRT [3, 4, 5], guidelines still neglect the value of the assessment of LV
mechanical dyssynchrony for the prediction of CRT-response.

Observational studies of patientswith LBBBhave showna relation between strain
curve morphologies and responses to CRT [3, 6, 7]. However, the regional distribution
patterns of dyssynchrony in LBBB is highly heterogeneous as it involves differently
septal and lateral walls [8, 9]. Moreover, strain morphologies could also be affected by
mechanical dysfunctions, such as those observed in ischemia [10]. Therefore, the as-
sessment of dyssynchrony patterns in LBBB appears as particularly complex because
strain morphologies reflect dynamics associated with both electrical conduction de-
lays and mechanical cardiac activities. Previous studies have shown that only the me-
chanical dysfunction attributable to an electrical conduction delay can be corrected by
CRT [11]. The possibility of using strain-derived data to disclose the complex interplay
between electrical conduction delay and the specific mechanical substrate associated
with LV dyssynchrony is particularly interesting and might have a pivotal role in the
selection of CRT-candidates.

In this context, model-based approaches could be proposed to provide a bet-
ter understanding of myocardial deformations observed in LBBB curves, as it allows
the analysis of underlying physiological mechanisms. Computational modeling ap-
pears as efficient tools to integrate knowledge, concerning cardiac electrical activa-
tion, mechanical properties and hemodynamic conditions, in the data processing. A
variety of cardiac electro-mechanical models have been proposed in the literature, at

88



many different levels of detail, including the cardiac electrical activity [12, 13, 14], the
excitation-contraction coupling [15, 16], the mechanical activity [17] and the mechano-
hydraulic coupling [18]. Most of proposed human heart models are based on the Fi-
nite Element (FE) method [19, 20, 21] for the simulation of cardiac mechanical activity.
These models require high computational resources, and they are still difficult to per-
sonalize. Moreover, dynamic loading conditions and interventricular interactions are
usually not taken into account in these models and their integration is possible only
at the expenses of an increasing amount of model complexity. Alternative approaches
have been proposed for the analysis of myocardial strains [22, 23, 24, 25], which are
associated with lower computational costs, and allows for the haemodynamic incor-
poration of the heart within the entire circulation. Although, these models have been
successfully used to characterizemyocardial deformation in function of the underlying
physiological mechanisms, efforts are still necessary to develop personalized models
specifically to each patient.

In [26], our team has proposed the first model-based approach for the analysis of
Tissue Doppler Imaging (TDI). Model parameters for the LV were estimated by min-
imizing strain signals between the computational model and strain signals obtained
with TDI in several myocardial segments. However, this model does not integrate in-
teractions with the right ventricle and the approach was not validated in the case of
LV dyssynchrony. The objective of this chapter is to propose a novel model-based ap-
proach for the analysis of myocardial strains in LBBB patients. Therefore, a novel ap-
proach was developped based on the patient-specific identification of a multi-segment
model of left and right ventricles coupled to atria, systemic and pulmonary circula-
tions [27, 28]. Interestingly, this process took into account not only the electrical activa-
tion delay of each segment but also the differences in regional contractility, which are
known to largely contribute to strain morphology and global cardiac mechanics.

4.1 Materials and Methods

4.1.1 Experimental data

4.1.1.1 Study population

We prospectively included 10 healthy adults and 10 LBBB patients, including
ischaemic (n = 5) and non-ischaemic (n = 5) cardiomyopathies. Table 4.1 summa-
rizes patients’ clinical characteristics. The study was carried out in accordance with
the principles outlined in the Declaration of Helsinki on research in human subjects
and received specific ethical approval from the local Medical Ethical Committee. All
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patients signed a written informed consent before the participation to the study pro-
tocol.

Table 4.1: Patients’ clinical characteristics.

Age Male sex BSA NYHA class
years old n (%) (body surface area) I/II/III

LBBB ischemia (n=5) 68.8 ± 13.37 5 (100%) 1.91 ± 0.19 1/4/0
LBBB non-ischemia (n=5) 67.8 ± 6.42 4 (80%) 1.68 ± 0.16 0/3/2
Healthy (n=10) 48.8 ± 14.44 7 (70%) 1.88 ± 0.12 —

4.1.1.2 Echocardiography

All patients underwent a standardTrans-Thoracic Echocardiography (TTE) using
a Vivid S6, E7 or E9 ultrasound system (General Electric Healthcare, Horten, Norway).
Images were recorded on a remote station for off-line analysis by dedicated software
(EchoPAC PC, version BT 202, General Electric Healthcare, Horten, Norway). The ex-
perimental dataset includes the measured regional myocardial strain curves obtained
by STE at transthoracic echocardiography in apical 4-chamber, 2-chamber and 3- cham-
ber views.

4.1.1.3 Magnetic resonance image (MRI)

For the patients with ischemic cardiomyopathy, the location of the scar was per-
formed by cardiac magnetic resonance imaging (MRI) and then confirmed by echocar-
diography.

Prior to CRT implantation, cardiac magnetic resonance was performed on a 3-T
clinicalmagnetic resonance system (Ingenia, PhilipsMedical Systems, Best, theNether-
lands)with a 32-channel cardiovascular array coil. Late gadoliniumenhancement (LGE)
images were acquired 10–15 minutes after intravenous administration of 0.2 mmol/kg
of gadolinium (Gadoterate meglumine, Dotarem, Guerbet, Aulnay-sous-bois,France),
using 2D breath-hold inversion-recovery and phase-sensitive inversion-recovery se-
quences in short-axis plane (spoiled gradient-echo, slice thickness 8 mm, repetition
time 6.1 ms, echo time 2.9 ms, flip angle 25◦, inversion time adjusted to null normal
myocardium, typical breath-hold 11 seconds). The localization of myocardial scar was
performed by a trained radiologist and the regional LGE extent was semiquantitatively
assessed on a per-segment basis [29].
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4.1.2 Computational model

The model of the cardiovascular system (CVS) integrates four main sub-models
: 1) cardiac electrical system, 2) right and left atria, 3) multi-segment representation of
the right and the left ventricles and 4) systemic and pulmonary circulations.

Compared to the model proposed in Chapter 3, this model includes a multi-
segment sub-model of the right and left ventricles capable of simulating strain-derived
data from all the ventricle segments. Moreover, this model contains a muchmore com-
plex cardiac electrical system that includes differentiated automata for each ventricular
segment and not just an automaton representing the entire ventricle, as is the case in
the model proposed in Chapter 3. Indeed, for this clinical application we are interested
in evaluating the mechanical and electrical dynamic within the myocardium since in
LBBB patients different deformation morphologies may occur in all the ventricular re-
gions due to electrical and/or mechanical dysfunction. Therefore, the possibility of
having a specific electrical and mechanical parameter values and a strain curve associ-
ated with a specific ventricular region could help to interpret the deformation patterns
and disclose the interaction between electrical activation delay and cardiac contractil-
ity.

4.1.2.1 Cardiac electrical system

The proposed model of the cardiac electrical activity, is based on a set of cou-
pled automata, adapted from [26]. Each automaton represents the electrical activation
state of a given myocardial tissue, covering the main electrophysiological activation
periods: slow diastolic depolarization (SDD), upstroke depolarization (UDP), absolute
refractory (ARP) and relative refractory (RRP). Briefly, the state of the cellular automata
cycles through these four stages, sending an output stimulation signal to neighboring
cells when a given cell is activated (end of UDP phase).

In order to perform comparisons between simulations and clinical data, the left
ventricle wall was divided into 16 segments according to the standardized segmen-
tation of the AHA [32]. The base (Bas) and medium (Mid) layers are separated in six
components: anterior (Ant), anteroseptal (AntSep), inferoseptal (InfSep), inferior (Inf),
inferolateral (InfLat) and anterolateral (AntLat) walls. The apex (Ap) layer is divided in
four components: anterior, septal, inferior, lateral. Right ventricle wall is divided into
three layers (base, medium, and apex) (Fig. 4.2). The whole model consists of 26 au-
tomata representing: the sinoatrial node (NSA), right and left atria (RA and LA), the
atrioventricular node (NAV), upper bundle of His (UH), bundle branches (RBB and
LBB), 3 segments of right ventricle (RV) and 16 segments of left ventricle (LV). The
distribution of the electrical activation between automata is represented in Fig. 4.1.
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(a) State diagram of the generalized automaton that represents nodal cells (yel-
low, left) and myocardial cells (orange, right) and diagrams showing the corre-
spondence of the transition parameters with the myocardial action potential
dynamics.

(b) The whole heart represented by 26 cellular automata and their se-
quence of electrical activation.

Figure 4.1: Cardiac electrical system model
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4.1.2.2 Right and left atrium

To account for the mechanical function of the atria, the right and left atrial pres-
sures (Pra and Pla) are defined as linear functions of instantaneous volumes (Vra and
Vla), whose slopes (Era and Ela) represents the elastic properties of the atrial wall:

Px(Vx, ta) = Ex(Vx(ta)− Vx,d)

Ex(ta) = ex(t) (Ex,max − Ex,min) + Ex,min
(4.1)

where x ∈ {ra,la} and ex(t) is a Gaussian driving function that cycles between
atrial diastole and systole:

ex(t) = Ax · exp
(
−Bx · (ta − Cx)2

)
. (4.2)

where ta is the time elapsed since the atrial activation by the automata corresponding
to the right and left atriums. ParametersAx,Bx andCx could be used to control the rise
and peak of the atrial systole.

4.1.2.3 Right and left ventricles

EachLVandRVautomaton triggers an electro-mechanical driving function (EMDF)
[33, 34], which represents in a simplified manner, the complex processes involved in
the electro-mechanical coupling at the tissue-level:

fa,s(ts) =


(

ts
α1T

)n1

1 +
(

ts
α1T

)n1

 ·
 1

1 +
(

ts
α2T

)n2

 ·Amax, (4.3)

The onset of the cardiac cycle, denoted ts, is determined by the activation instant
of the corresponding segment in the cardiac electrical model presented in the previous
section. The first and second terms in Eq. 4.3 represent ventricle segment contraction
and relaxation presented after an electrical activation, respectively. T is the heart pe-
riod, α1, α2 are shape parameters, and n1,n2 control the steepness of the curve.Amax is
the maximum EMDF value, and s ∈ {Slv, Srv} with Slv = {BasAnt, BasAntSep, BasInfSep,
BasInf, BasInfLat, BasAntLat, MidAnt, MidAntSep, MidInfSep, MidInf, MidInfLat, MidAnt-
Lat, ApAnt, ApSep, ApInf, ApLat} and Srv = {BasRV, MidRV, ApRV}.

Concerning each segment s, cardiac mechanical activity can be separated into active
and passive components:

Ts = Ts,pass + Ts,act. (4.4)
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Passive myocardial tension depends on myocardial strain (εmodels = (ls−ls,ref )/ls,ref ) ac-
cording to [35]:

Ts,pass = Kpass · (36 ·max(0, εs − 0.1)2 + 0.1(εs − 0.1) + 0.0025e10εs) (4.5)

where Kpass is a parameter related to passive stiffness that is comprised between 0
and 1, ls and ls,ref are current and reference fiber lengths. Active myocardial tension is
represented by a non-linear law inspired from [36]:

Ts,act = Kact · Tref · (1 + β(εs − 1)) · fa,s
2

f2
a,s + C2

a

(4.6)

whereKact is a parameter related tomyofiber contractility, Tref is the reference tension
at εs = 1, and β,Ca are constants related with the muscle kinetic. The relation between
pressure Ps and tension Ts in each segment is approximated by the Laplace law (Eq.
4.7)

Ps = e · Ts

(
cos(Θ)
εs ·Rm

+ sin(Θ)
εs ·Rp

)
(4.7)

In Eq. 4.7, Θ is themean angle of themuscular fibers.Rm andRp are the radii of curva-
ture in the meridian and parallel directions, while e is the mean wall thickness. As the
ventricle was assumed to be an ellipsoid of revolution, Rp and Rm could be calculated
analytically. Length variation is obtained by a power conservation: Ps ·Qs = Fs · dls/dt.
Where the force is Fs = Ts ·Ss, and Ss is the area of each segment. The hydraulic behav-
ior of the blood volume in contact with the wall segment are represented by its inertial
(Is) and resistive (Rs) effects:

Py − Ps = Is
dQs

dt
, Qs = Py − Ps

Rs
(4.8)

with y ∈ {lv,rv}. Ventricular flow is calculated taking into account the contribution of
the flow of each one of the segments and of the intra-ventricular cavity :

Qy(t) = Qc,y(t) +
∑
sy

Qs,y(t) (4.9)

where Py and Qy are respectively cavity center pressure and flow. Segments, as-
sociated with the septum, are treated separately since their pressure depends of the
pressure gradient across the septal wall:

Psept = Plv − Prv (4.10)

4.1.2.4 Systemic and pulmonary circulations

The arteries, veins and capillaries of systemic and pulmonary circulations were
included (Fig 4.2). The volume change, ∆V (t), of each compartment is computed from
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the integral of their respective net flow: ∆V (t) =
∫

(Qin − Qout) dt, while the flow, Q,
is defined by the pressure gradient, ∆P , across chambers and a resistance, R: Q =
∆P/R. Pressures on venous and arterial vessels are defined as an elastance dependent
relationship: P = E · (V −Vd), whereE is the elastance and Vd refers the dead volume.
The heart valves are modelled as perfect diodes.
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Figure 4.2: Closed-loop model of the cardiovascular system and representation of a
myocardial segment. Vascular network: ao: aorta, vc: vena cava, pa: pul-
monary artery, pu: pulmonary veins. Heart valves: mt: mitral, av: aortic,
tc: tricuspide, pv: pulmonary. Left ventricle segmentation: 1: BasAnt; 2:
BasAntSep; 3: BasInfSep; 4: BasInf; 5: BasInfLat; 6: BasAntLat; 7: MidAnt;
8: MidAntSep; 9: MidInfSep; 10: MidInf; 11: MidInfLat; 12: MidAntLat; 13:
ApAnt; 14: ApSep; 15: ApInf; 16: ApLat. Right ventricle segmentation: 1:
BasRV; 2: MidRV; 3: ApRV

4.1.3 Patient-specific adaptation

4.1.3.1 Sensitivity analysis

The first step of patient-specific adaptation corresponds to the sensitivity analy-
sis of the model in order to provide insight into the relation between parameters and
outputs and to allow a characterization of the relative significance of each parameter.
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Using the Morris elementary effects method described in section 4.5, a set of parame-
ters, with the highest sensitivity to the outputs Y was determined. For each parameter
Xj , the range of possible values was defined as ±30% of the initial values, except for
the electrical depolarization time parameter that the range was defined between 2 and
150 ms.

Analysiswere performedwith:Y = {mean(εmodelmin,s),mean(tmodelmin,s), std(εmodelmin,s), std(tmodelmin,s)},
where εmodelmin,s and tmodelmin,s correspond respectively to the minimum value of strain and
the corresponding time for each segment s. Mean and standard-deviation values were
calculated over the 16 strain signals.

4.1.4 Parameter identification

The second step of the patient-specific adaptation is the identification of a set
of parameters selected from the sensitivity analysis. For each healthy adult and LBBB
patient, an error function Jerror between simulation outputs and experimental strain
curves was minimized in order to find patient-specific parameters:

Jerror =
16∑
s=1

Js (4.11)

Js = 1
Tc

Tc−1∑
te=0
| εexps (te)− εmodels (te) | + | εexps,min − ε

model
s,min | (4.12)

where εexps and εmodels are the myocardial strain signals obtained from available clini-
cal data and simulated outputs respectively. te corresponds to the time elapsed since
the onset of the identification period and Tc is the duration of a cardiac cycle. The er-
ror function Jerror was minimized using evolutionary algorithms (EA). These stochas-
tic search methods are founded on theories of natural evolution, such as selection,
crossover and mutation [37]. Robustness of the parameter identification method was
assessed by repeating the identification process at least 10 times in healthy subjects
and LBBB patients and relative standard deviations of identified parameters were cal-
culated.

4.2 Results
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4.2.1 Baseline simulations

Fig. 4.3 illustrates the baseline simulation results from the proposed computa-
tional model. Ventricular and arterial pressures as well as ventricular volume are pre-
sented at the top of the figure. Myocardial strain signals corresponding to the 16 LV
segments are presented at the bottom of the figure. The results are presented for a
healthy case. Systolic LV pressure is equal to 120 mmHg and the aortic pressure varies
between 50 and 120 mmHg. The LV volume varies between 70 and 120 mL. The strain
signals present similar morphologies between all the segments due to the mechanical
synchronicity between them. Generally, simulation results agree with the physiologi-
cal values and behaviors of a healthy subject.

A B

C

Figure 4.3:Model simulation results in healthy conditions. A: Left ventricle pressure
(black) and arterial pressure (red). B: Left ventricle volume. C: Myocardial
strain signals for the 16 LV segments.

In order to reproduce experimental lateral and septal strain traces of representa-
tive ischemic and non-ischemic patients with typical LBBB, we varied the value of one
model parameter Xj at a time until we obtained simulated curves that resemble the
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experimental curves. Fig 4.4 illustrates the experimental andmodel-based strain traces
for LBBB patients with non-ischemia, lateral ischemia and anterior ischemia. A typical
LBBBpatient presents a septal strain pattern characterized by a pre-ejection contraction
of the septal wall followed by an immediate re-lengthening (septal rebound stretch) of
the wall. As shown in [9], a reduction in the LV lateral wall contractility reduces the
septal rebound stretch and increases septal shortening, however, the rebound stretch
still present in patients with anterior ischemia. The septal and lateral strain curves ob-
tained from themodel are closewith the experimental curves. Furthermore, the results
agree with the experimental results obtained from [9], which demonstrate that strain
morphologies are determined not only by electrical activation delay, but also by me-
chanical dysfunctions.

No ischemia Lateral ischemia Anterior ischemia

Figure 4.4: Simulated (top) and experimental (bottom) strain traces from representative
LBBB patients with non ischemia (left), lateral ischemia (middle), and ante-
rior ischemia (right).

4.2.2 Sensitivity analysis

Fig. 4.5 shows the 10 parameterswith the highest sensitivity evaluated on Y . Sen-
sitivity results are based on the Dj index, calculated from σj and µj∗. Parameters n1
and n2, which are related with the EMDF, present a greater recurrence on the sensitiv-
ity of the evaluated outputs Y . In fact, these parameters affect the electro-mechanical
coupling at the tissue-level which cause modifications in mechanical contraction and,
consequently, in the deformation of the LV segments. UDP, related with the electrical
depolarization time, is also one of the most influential parameters. Indeed, the electri-
cal andmechanical activities are closely related, therefore the deformation of a segment
is highly dependent on the occurrence of electrical depolarization.Kact andKpass, re-
spectively related with the active and passive components of the cardiac muscle, show
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also high sensitivity.

Results from the sensitivity analysis were used to select the 7 most significant
model parameters to be identified for each segment: parameters relatedwith the EMDF
(n1, n2, α1, α2), the active (Kact) and passive (Kpass) components of the cardiac muscle
and the electrical depolarization time (UDP).

4.2.3 Patient-specific simulations

4.2.3.1 Segmental strain curves

Myocardial strain curves of the 16 LV segments acquired by experimental mea-
surements and patient-specific simulations are presented in one representative healthy
subject (Fig. 4.6), an anterior ischemic (Fig. 4.7) and a non-ischemic (Fig. 4.8) LBBB pa-
tient. All results are included in supplementary materials. For both healthy and LBBB
cases, a good agreement was observed between clinical and simulated strain signals.
Concerning healthy cases, the strain curves present similarmorphologies in all the seg-
ments due to the synchronization in all LV regions when the myocardium contracts.
Mean RMSE between estimated and observed strain signals in the healthy adults was
equal to 5.04± 1.02 (Table 4.2). In LBBB cases, mean RMSEwas equal to 3.38± 0.91 (Ta-
ble 4.2). In these cases, the strain curves obtained in LBBB patients present dissimilar
morphologies between the different segments. Particularly, the septum and the lateral
wall segments of the ventricle present opposite curves, where the shortening of septal
segments occurs at the same time as in the lengthening of lateral segments.

By repeatedly applying 10 times the proposed identification method, we ob-
tained for the identified parameters a mean relative standard deviation of 10,87% for
healthy subjects and 13,09% for LBBB patients. As a consequence, the identified pa-
rameters remain closed for each patient, evidencing the robustness of the method.

4.2.3.2 Bull’s eye representations

From patient-specific simulations, segmental electrical activation delay and the
percentage of myofiber contractility (Kact) were represented on bull’s-eye plots in Figs.
4.6, 4.7, 4.8, for 3 representative cases : 1) Healthy adult, 2) LBBB patient with LV ante-
rior ischemia and 3) Non-ischemic LBBB patient. For the ischemic patient, a bull’s-eye
plot representing the percentage of transmurality, obtained from MRI, was also pre-
sented.

In LBBB cases, electrical activation bull’s-eye shows a significant electrical activa-
tion delay between the lateral and the septal wall of the LV; while in the healthy case,
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Figure 4.5: Most influential parameters on i) the average of the minimum peaks over
all segments (top,left), ii) the standard deviation of theminimumpeaks over
all segments (top, right), iii) the average time associated to each minimum
peak over all segments (bottom,left) and iv) the standard deviation of the
time associated to each minimum peak over all segments (bottom,right); ac-
cording to Morris sensitivity results. For each parameter, the distance Dj

(green bars), the absolute mean µi∗ (purple bars) and the standard devia-
tion σj (yellow bars) of the elementary effects are represented.
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Figure 4.6: Patient-specific simulation results for a healthy subject. Experimental (red)
and simulated (black) strain curves corresponding to the 16 LV segments.
Bull’s-eye representations of segmental electrical activation delay and seg-
mentalmyofiber contractility. Colour scale at the contractility bull’s-eye plot
set between 10 and 50% in order to highlight the segments with low con-
tractility.
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Figure 4.7: Patient-specific simulation results for a LBBB patient with an anterior is-
chemia. Experimental (red) and simulated (black) strain curves correspond-
ing to the 16 LV segments. Bull’s-eye representations of segmental electrical
activation delay and segmental myofiber contractility obtained by patient-
specific simulations. Bull’s eye representation of transmurality obtained by
MRI.
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Figure 4.8: Patient-specific simulation results for a non-ischemic LBBB patient. Exper-
imental (red) and simulated (black) strain curves corresponding to the 16
LV segments. Bull’s-eye representations of segmental electrical activation
delay and segmental myofiber contractility.
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Table 4.2:Mean RMSE between the 16 experimental and simulated LV strain curves of the study pop-
ulation.

Healthy Mean RMSE LBBB (Ischemia) Mean RMSE
Patient 1 4.91 ± 2.16 Patient 1 2.71 ± 1.13
Patient 2 3.89 ± 1.08 Patient 2 2.88 ± 1.0
Patient 3 4.77 ± 1.53 Patient 3 2.5 ± 0.56
Patient 4 4.19 ± 1.13 Patient 4 1.96 ± 0.69
Patient 5 5.41 ± 1.66 Patient 5 3.51 ± 1.1
Healthy Mean RMSE LBBB (Non-ischemia) Mean RMSE
Patient 6 6.23 ± 12.45 Patient 1 3.47 ± 1.03
Patient 7 3.43 ± 0.88 Patient 2 3.63 ± 0.82
Patient 8 5.45 ± 1.84 Patient 3 5.03 ± 1.49
Patient 9 6.72 ± 2.38 Patient 4 4.38 ± 2.06
Patient 10 5.4 ± 2.3 Patient 5 3.73 ± 1.3

all LV segments are activated almost synchronously. Furthermore, the LBBB patient
with LV anterior ischemia presented reduced contractility in anterior segments of the
Bull’s eye representation, corresponding with the areas of high transmurality reported
in MRI (Fig. 4.7). A high percentage of transmurality translates into fibrosis, which is
generally associated with low contractility. Therefore, regional contractility results al-
low ischemic and non-ischemic cases distinction, where reduced contractility could be
associated with damaged tissues.

4.3 Discussion

This chapter presented a novel model-based approach that yields simulations
of patient-specific strain curves in several LV regions for healthy adults and patients
diagnosedwith LBBB. Themain contributions of this study are: i) the proposal of an in-
tegratedmodel of the cardiovascular system coupled tomulti-segment representations
of ventricles ii) the sensitivity analysis of model parameters on myocardial strains, iii)
the identification of model parameters to reproduce myocardial strain curves specifi-
cally to each patient and iv) the analysis of patient-specific identified parameters.

It is worth highlighting the incremental added value of the model proposed in
this chapterwith respect to themodel presented inChapter 3. Bothmodels preserve the
same representation of the vascular circulation, however, the electrical andmechanical
representations differ since the left and right ventricles were divided into segments to
interpret the dynamics in the different LV regions during the cardiac cycle.We propose
amodel not only capable of simulating the complexmechanisms involved in the gener-
ation of ventricular contraction (mechano-hydraulic interactions, electrical activation
and propagation, etc.) but also a model capable of overcoming the multidimension-
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ality of the problem with low computational requirements. It is also noteworthy that
the model-based approaches proposed in both chapters follow the same methodolog-
ical framework: the identification of patient-specific model parameters selected from a
sensitivity analysis to reproduce simulated data consistent with clinical data.

The CVS model proposed in this chapter is based on a functional integration of
interacting physiological systems that takes into account the electro-mechanical cou-
pling, the interventricular interaction and a simplified representation of systemic and
pulmonary circulations. The model includes the main cardiac properties required to
tackle the problemunder study, like the Frank-Starling law and the influence of preload
and afterload. Results illustrate the model ability to simulate jointly the hemodynamic
variables and myocardial deformations. Strain curves notably reflected typical charac-
teristics associated with each phase of the cardiac cycle. In order to personalize models
to patient-specific data, a large number of simulations should be performed. In opposi-
tion to FEM representations [19], the proposed model requires limited computational
resources, as the simulation of one cardiac cycle (1000ms of simulation) takes about 0.5
seconds (Processor : 2,2 GHz Intel Core i7). The low computational cost is of primary
importance to use cardiac modelling in clinical practice and to adapt models to each
patient.

The first step of patient-specific adaptation is the sensitivity analysis of model
parameters, which highlights i) the close relationship between cardiac electrical and
mechanical systems and ii) the importance of active and passive properties of the my-
ocardium during cardiac contraction. In fact, a close relationship exists between exci-
tation and contraction since a synchronous ventricular activation is a prerequisite for
an adequate LV function, whereas the electrical activation delay between opposite LV
walls might lead to dyssynchronous ventricular contraction and LV failure [38]. Never-
theless, it has been shown that typical myocardial strain morphologies in LBBB could
bemodified by the presence of scar and low regional LV contractility [9]. In this context,
the ability of the model to disclose the relationship between electrical activation delay
and LV contractility has pivotal importance because it might ease the identification of
myocardial substrates that more prone to be associated with CRT-response.

In the second step of patient-specific adaptation, evolutionary algorithms were
used to identify the most influential parameters in each patient. Patient-specific simu-
lations have shown satisfactory results since we observed a good agreement between
simulated and experimental myocardial strain curves presenting similar morpholo-
gies. For healthy cases, morphologies of the myocardial strain curves were similar in
all segments due to the synchronous contraction of the entire LV [29]. Associated bull-
eyes show normal electrical activation times and elevated contractile levels.

In most patients with non-ischemic LBBB, the early activation of the LV septum,
followed by the delayed activations of the LV wall [39, 40], causes a typical myocardial
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strain pattern. This pattern is characterized by an early marked shortening of the sep-
tum in the pre-ejection phase, known as “septal flash” [41] followed by an immediate
re-lengthening of the septum, the “septal rebound stretch”. Both the septal flash and
septal rebound are known to be predictors of CRT response [7, 42].

In ischemic patients, the typical activation pattern induced by LBBB can be dis-
rupted by the association of electrical delay and inhomogeneous LV contractility. In
patients with LBBB and lateral scar, hypocontractile regions are localized in the lateral
wall. In this case, deformation patterns are highly modified because the local impair-
ment of contractility in the lateral wall caused the loss of the rebound stretch in the sep-
tum [9]. On the contrary, the presence of anterior scar was associated with a reduced
contractility of the corresponding myocardial segments and had less impact of septal
deformation [9]. The strength of our model was therefore to reproduce the “atypical”
strain patterns observed in patients with LBBB and ischemic cardiomyopathy thought
the correct localization of the hypocontractile segments, which correspond to areas of
myocardial scar identified by clinician based on MRI.

There are several important consequences of our findings. First, the result of our
model-based approach underscores that septal motion and global strain morpholo-
gies are not only explained by electrical conduction delay, but also by the heterogene-
ity of contractile levels within the myocardium and suggests that the evaluation of LV
dyssynchrony should take into account both electrical delay and regional mechanical
function. Second, the application of amodel-based approach could bring additional in-
formation on the regional electrical andmechanical function of the LV from the simple
analysis of echocardiography data. This is particularly important because it can help to
disclose the intrinsic complexity of LV mechanics in CRT candidates, and represents a
step forwards the development of personalized LVmodeling in the field of CRT. Third,
one of the main strengths of the approach was to perform a parameter identification
process for the patient-specific estimations of the segmental strain curves. In order to
build the cost function, experimental and simulated strain curves were synchronised
on QRS peaks of synthesized and experimental ECG. Model parameters were identi-
fied from themyocardial strain curves of the 16 LV segments acquired by STE. For both
healthy and LBBB cases, a good agreement was observed between measured and es-
timated strain signals. Moreover, the identification process was repeatedly applied to
evaluate and demonstrate the robustness of the method. This makes our model partic-
ularly powerful since the capacity to reproduce clinical measurements provides con-
fidence to analyse the LV function for an individual patient and eventually predict
optimal treatments.

Although several studies have successfully used computational models of the
CVS to understand myocardial deformation patterns [43, 44, 45], our approach pro-
vides interesting advantages and originalities. The multi-segment model of the LV al-
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lows not only the analysis of the deformation curves of the septal and lateral walls, but
also the strain signals of all the ventricular regions. Therefore, the proposedmodel res-
olution was adapted to the standardized segmentation of the AHA, keeping a similar
abstraction level as clinicians for the analysis of strain signals. Moreover, our approach
applies a parameter identification process, providing customized models specifically
for each patient and allowing the recognition of hypocontractile areas that could be
associated with the presence of fibrosis.

4.4 Limitations

Theproposedmodel-based approachpresents a number of limitations that should
bementioned. Several hypothesis weremade in order to propose tissue-level represen-
tations of ventricles: i) the ventricular torsionwas neglected, ii) themechanical continu-
ity betweenmyocardial segments was not always assured because ventricles are repre-
sented by a set of sub-pumps controlled by a coordinated electrical activity and coupled
in the hydraulic domain, iii) only mean myocardial fiber orientation was considered,
and iv) electro-mechanical coupling was approximated by an analytic expression.

Despite these hypotheses, themodel definition is in accordancewith the problem
under study and appears to be a useful tool to assist the interpretation of strain data.
Moreover, in order to reduce computational costs, only a small sample of variables was
selected for parameter identification. These parameters may have absorbed changes in
other fixed parameters. For instance, septal segment parameters may have been af-
fected by RV variations. Thus, a wider range of parameters could be included in the
future. Finally, this study is based on a small population of LBBB patients and further
conclusions should be obtained by the extension of our simulations to data obtained
from larger clinical series. Nevertheless, this is the first work providing patient-specific
simulations of strain curves in the case of LBBB in association with ischemia and the
proposed approach is a step forward towards the integration of computational models
in patient selection process before CRT procedures. Future work will be dedicated to
evaluate the proposed model-based indices, in wider multi-parametric approach [46],
for the prediction of CRT response.

4.5 Conclusion

It is important to reiterate the additional value of the model proposed in this
chapter with respect to the Chapter 3. Although the model aimed to LBBB patients is
muchmore complex compared to themodel proposed for patients with AS, both share
a common methodological framework in order to achieve the main objective of this
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thesis: to propose a set of integrated sub-models of the CVS with low computational
requirements, for the analysis of the cardiac function.

In this chapter, a novel model-based approach for the analysis of myocardial
strains in LBBB patients is proposed. The global method is based on i) a physiolog-
ical model of the cardiovascular system that integrates the electrical, mechanical and
hydraulic processes leading to ventricular contraction and ii) a parameter identification
procedure for patient-specific simulations. The proposed model-based approach was
evaluated with echocardiography data from 10 healthy individuals and 10 LBBB pa-
tients. Results show a close match between experimental and simulated strain curves
in all the cases. Furthermore, the approach is able to reproduce electrical activation
delay and segmental myofiber contractility properly.

More extensive evaluations including a greater population of patients, as well as
the analysis on a wider multi-parametric approach should be performed in the future.
Nevertheless, this study presents a first work towards the evaluation of myocardial
strain signals and the assessment of certain echo-based parameters by patient-specific
simulations based on computational models as a useful tool for understanding LVme-
chanical dyssynchrony and identifying patients suitable for CRT.
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Conclusion

Computationalmodeling has become increasingly popular in biomedical research
as it has been shown to be useful for the prediction, diagnosis and risk stratification of
diseases, as well as for the assistance to therapy definition. Moreover, this approach
allows for a better understanding of the different and complex interactions underlying
multifactorial pathologies. Computational modeling appears, therefore, as an efficient
tool to integrate physiological knowledge into a data processing chain. The inherent
need for computational modeling in cardiology is clear and even more the personal-
ized model-based approaches.

The main contribution of this work was thus the proposal of a set of integrated
sub-models of the cardiovascular system, suited for the analysis of the cardiac func-
tion in the case of aortic stenosis (AS) and left bundle branch block (LBBB). The
proposed approach is based on a methodological framework that combines multi-
resolution physiological modelling, parameter sensitivity and identification methods.
Integrated models of the cardiovascular systems were proposed and their resolutions
were adapted in function of each application These hybrid models, including hetero-
geneous and dynamic mathematical formalisms, were developed using the modelling
and simulation environment proposed by our team (M2SL). One major challenge was
to determine patient-specific parameters in order to realize personalized simulations
and model-based interpretations. The proposed parameter analysis includes sensitiv-
ity analysis, and identification of parameter values. Determination of important pa-
rameters with the sensitivity analysis provides key information towards accurate sim-
ulations and patient-specific parameters. Evolutionary Algorithms (EA) were applied
for the identification of patient-specific parameters of each clinical case. This proposed
methodological framework was applied to two clinical applications:

— The first application of this thesis was to propose a non-invasive model-based
estimation of the LVpressure curve in order to obtain reliablemyocardialwork
indices in the case of AS. An integrated model of the CVS was proposed: i) car-
diac electrical activity, ii) elastance-based mechanical activity, iii) systemic and
pulmonary circulations and iv) heart valves. Moreover, an identification strategy
using a 2-step cross-validation technique was applied on a first database of 12
AS patients, and then a 1-step identification strategy was applied on a second
database of 23 AS patients. Results show a good agreement between work in-
dex estimations from LV pressure obtainedwith patient-specific simulations and
with experimental measurements. To our knowledge, this is the first method for
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the estimation of myocardial work, based on a physiological model, rather than
a template-based estimation. The results are promising and the proposed model
can be a simple and physiological, first-line analyses that could be applied before
other more complex and costly investigations (cardiac MRI,..) for the evaluation
of myocardial contractility and residual myocardial viability. The assessment of
regional myocardial work might be particularly important for the prognosis of
patients with severe asymptomatic AS without LV dysfunction, since the timing
and indications for surgical intervention in this population remain controversial.

— The second application of the thesis was to propose a novel model-based ap-
proach for the analysis of myocardial strains in LBBB patients. An integrated
model of the CVS was developed based on representations of: i) cardiac electri-
cal system, ii) right and left atrium, iii) multisegments right and left ventricles
and iv) systemic and pulmonary circulations. The proposed model is an evolu-
tion of the ASmodel as it integrates a multi-segment representation based on the
coupling of multiple, elastance-based elements. After a sensitivity analysis step,
model parameters were identified specifically to each patient. The proposed ap-
proach was evaluated on data obtained from 10 healthy subjects and 10 LBBB
patients, including ischemic (n=5) and non-ischemic (n=5) cardiomyopathy. A
closematchwas observed between estimated and observed strain signals. Results
showed that strain morphologies are related to both electrical conduction delay,
and heterogeneity of contractile levels within the myocardium. Themodel-based
approach brings additional information on the regional electrical and mechan-
ical function of the LV from the analysis of echocardiography data. Our results
can help to disclose the intrinsic complexity of LV mechanics in cardiac resyn-
chronization therapy (CRT) candidates, and represent a step forwards the devel-
opment of personalized LV modeling in the field of CRT.

The approach adopted in this work, combining multi-resolution physiological
modeling, sensitivity analysis andparameter identification appears as particularly promis-
ing. In both clinical applications, the model-approach was used to combine physiolog-
ical knowledge with clinical data, in order to improve the interpretation of echocardio-
graphy strain curves. The explainable methods, proposed in this thesis, illustrates how
computationalmodels could help to i) access physiological variables to provide clinical
indices and ii) maximize the clinical interpretability of markers extracted from data. In
fact, these methods are associated with high level of explicability, since most of the pa-
rameters provide a direct physiological meaning. For instance, the electro-mechanical
parameters, deduced from strain analysis, bring personalized interpretation and ad-
ditional information compared to classical indices. Moreover, in silico assessment of
clinical parameters, specifically to each patient, allows for the evaluation of novel clin-
ical indices, while taking into account characteristics associated with the subject and
pathology. The proposed approach constitutes a step towards explicit knowledge inte-
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grationmethods for the evaluation of cardiac function, in order tomaximize the clinical
interpretability of indices extracted from echocardiography data.

Future works will be mainly dedicated to the evaluation of proposed methods
to larger clinical databases. Although results presented in this thesis are promising,
it is not possible to evaluate the statistical significance because of the low number of
patients. Previous works of our team have shown that multi-parametric approaches,
using machine-learning algorithms, could improve the prediction of response to CRT
[1, 2] and patient outcome [3]. In futureworks, feature extraction could benefit from the
evaluation of electro-mechanical indices extracted from models proposed in this the-
sis, as illustrated in results obtained from LBBB patients. Moreover, the model-based
approach could be used to improve the interpretation of machine-learning results. In
fact, feature selections presented in [1] show the importance of some indices associated
with septal and lateral wall segments. Similarly, in our model-based approaches, the
contractile properties of these segments appeared to be especially influent on strain
morphologies. Further works are then required to evaluate septal and lateral electro-
mechanical indices, deduced fromdata analysis and/ormodellingmethods, as predic-
tors of response to CRT and to improve the interpretation of associated physiological
and pathological mechanisms.
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Equations B
B.1 Aortic stenosis model

B.1.1 Elastance-based cardiac chambers

B.1.1.0.1 Atria:
Pa(Va, t) = Ea(t) · (Va(t)− Vd,a) (B.1)

Ea(t) = Ea,max

(
ea(t) + Ea,min

Ea,max

)
(B.2)

ea(t) = exp
(
−Ba · (t− Ca)2

)
(B.3)

B.1.1.0.2 Ventricles:
Pes,v(V, t) = Ees,v(V (t)− Vd,v) (B.4)

Ped,v(V, t) = P0,v
(
eλv(V (t)−V0,v) − 1

)
(B.5)

Plv(V, t) = ev(t)Pes,v(V, t) + (1− ev(t))Ped,v(V, t) (B.6)

ev(t) = k ·


(

t
α1T

)n1

1 +
(

t
α1T

)n1

 ·
 1

1 +
(

t
α2T

)n2

 (B.7)

B.1.2 Systemic and pulmonary circulations

Pao(V, t) = Eao(Vao(t)− Vd,ao) + Pth (B.8)

Psa(V, t) = Esa(Vsa(t)− Vd,sa) (B.9)
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Psv(V, t) = Esv(Vsv(t)− Vd,sv) (B.10)

Pvc(V, t) = Evc(Vvc(t)− Vd,vc) + Pth (B.11)

Ppa(V, t) = Epa(Vpa(t)− Vd,pa) + Pth (B.12)

Ppv(V, t) = Epv(Vpv(t)− Vd,pv) + Pth (B.13)

Q = ∆P
R

(B.14)

∆V (t) =
∫

(Qin −Qout) dt (B.15)

B.1.3 Cardiac valves

∆P = BQ|Q|+ L
dQ

dt
, (B.16)

B = ρ

2A2
eff

(B.17)

L = ρleff
Aeff

(B.18)

Aeff (t) = [Aeff,max(t)−Aeff,min(t)] ξ(t) +Aeff,min(t) (B.19)

dξ

dt
=
{

(1− ξ)Kvo∆P, if∆P > 0
ξKvc∆P, if∆P ≤ 0

(B.20)

B.1.4 Myocardial work

WS
p,k =

∑
i

PSi,k, W
S
n,k =

∑
j

NS
j,k, (B.21)
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W IV R
p,k =

∑
i

P IV Ri,k , W IV R
n,k =

∑
j

N IV R
j,k (B.22)

GCW = 1
k

K∑
k=1

(WS
p,k +W IV R

n,k ) (B.23)

GWW = 1
k

K∑
k=1

(WS
n,k +W IV R

p,k ) (B.24)

GWE = GCW

GCW +GWW
(B.25)

B.2 Left bundle branch block model

B.2.1 Atria

Pa(Va, ta) = Ea(Va(ta)− Va,d) (B.26)

Ea(ta) = ea(t) (Ea,max − Ea,min) + Ea,min (B.27)

ea(t) = Aa · exp
(
−Ba · (ta − Ca)2

)
(B.28)

B.2.2 Multi-segment ventricles

Ts = Ts,pass + Ts,act. (B.29)

Ts,pass = Kpass · (36 ·max(0, εs − 0.1)2 + 0.1(εs − 0.1) + 0.0025e10εs) (B.30)

Ts,act = Kact · Tref · (1 + β(εs − 1)) · fa,s
2

f2
a,s + C2

a

(B.31)

εs = ls
ls,ref

(B.32)
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fa,s(ts) =


(

ts
α1T

)n1

1 +
(

ts
α1T

)n1

 ·
 1

1 +
(

ts
α2T

)n2

 ·Amax (B.33)

Ps = e · Ts

(
cos(Θ)
εs ·Rm

+ sin(Θ)
εs ·Rp

)
(B.34)

Ps ·Qs = Fs · dls/dt (B.35)

Fs = Ts · Ss (B.36)

Pv − Ps = Is
dQs
dt

(B.37)

Qs = Pv − Ps
Rs

(B.38)

Qv(t) = Qc,v(t) +
∑
sv

Qs,v(t) (B.39)

Psept = Plv − Prv (B.40)

B.2.3 Systemic and pulmonary circulations

P (V, t) = E(V (t)− Vd) (B.41)

∆V (t) =
∫

(Qin −Qout) dt (B.42)

Q = ∆P
R

(B.43)
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List of parameters C
C.1 Aortic stenosis model

Symbol Description Value Units

Time-varying elastances

Ela,max Maximum systolic elastance of left
atrium

1.6 mmHg/ml

Ela,min Diastolic elastance of the left atrium 0.1 mmHg/ml

Era,max Maximum systolic elastance of right
atrium

1.6 mmHg/ml

Era,min Diastolic elastance of the right
atrium

0.1 mmHg/ml

V0,lv Left ventricle volume at zero
pressure

10 ml

V0,rv Right ventricle volume at zero
pressure

10 ml

λrv Curvature 0.013 1/ml

P0,rv Gradient 1.2001 mmHg

Cla Constant controlling the rise and
peak of the atrial systole

0.32 s

Bla Constant controlling the rise and
peak of the atrial systole

84.375 1/s2

Elastances, volumes, resistances and pressures

Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epv Elastance of the pulmonary vein 0.0062 mmHg/ml

Vd,lv Unstressed volume of the left
ventricle

10 ml

Vd,rv Unstressed volume of the right
ventricle

10 ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right
atrium

3 ml
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Vd,pa Unstressed volume of the
pulmonary artery

160 ml

Vd,pv Unstressed volume of the
pulmonary vein

200 ml

Rpul Pulmonary resistance 0.1425 mmHgs/ml

Rla Left atrium resistance 0.01 mmHgs/ml

Rra Right atrium resistance 0.01 mmHgs/ml

Pth Intrathoracic pressure -4 mmHg

Cardiac valves

ρ Blood density 1.06 g/cm3

Kvc,ao Rate coefficient for aortic valve
closure

0.15 1/Pa·s

Kvo,ao Rate coefficient for aortic valve
opening

0.12 1/Pa·s

leff,ao Effective length for aortic valve 2.2 cm

Kvc,tc Rate coefficient for tricuspid valve
closure

0.4 1/Pa·s

Kvo,tc Rate coefficient for tricuspid valve
opening

0.3 1/Pa·s

leff,tc Effective length for tricuspid valve 2 cm

Kvc,mt Rate coefficient for mitral valve
closure

0.4 1/Pa·s

Kvo,mt Rate coefficient for mitral valve
opening

0.3 1/Pa·s

leff,mt Effective length for mitral valve 1.25 cm

Kvc,pu Rate coefficient for pulmonary valve
closure

0.2 1/Pa·s

Kvo,pu Rate coefficient for pulmonary valve
opening

0.2 1/Pa·s

leff,pu Effective length for pulmonary valve 0.9 cm

Aeff,mt Effective cross-sectional area of
mitral valve

5 cm2

Aeff,tc Effective cross-sectional area of
tricuspid valve

6 cm2

Aeff,pu Effective cross-sectional area of
pulmonary valve

2.8 cm2

Database 1
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Aeff,ao Effective cross-sectional area of
aortic valve. Patient 1

0.75 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 2

0.9 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 3

0.9 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 4

1.3 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 5

0.61 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 6

0.75 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 7

0.9 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 8

0.8 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 9

0.6 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 10

0.5 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 11

0.88 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 12

0.86 cm2

Database 2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 1

0.7 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 2

0.59 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 3

0.38 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 4

0.82 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 5

0.7 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 6

1.1 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 7

0.96 cm2
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Aeff,ao Effective cross-sectional area of
aortic valve. Patient 8

0.72 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 9

0.85 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 10

0.67 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 11

0.54 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 12

0.7 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 13

0.55 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 14

0.71 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 15

0.62 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 16

0.75 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 17

0.6 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 18

0.82 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 19

0.62 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 20

0.95 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 21

0.85 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 22

0.97 cm2

Aeff,ao Effective cross-sectional area of
aortic valve. Patient 23

0.74 cm2

C.1.1 Identified parameters database 1

Arterial parameters

Parameter Patient 1 Patient 2 Patient 3 Patient 4

Rsys(mmHg·s/ml) 0.76 ± 0.07 0.83 ± 0.07 0.87 ± 0.05 0.83 ± 0.07
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Eao(mmHg/ml) 3.66 ± 0.6 3.5 ± 0.75 2.64 ± 0.63 3.15 ± 0.58
Esa(mmHg/ml) 0.88 ± 0.23 0.81 ± 0.19 0.84 ± 0.23 0.82 ± 0.22
Evc(mmHg/ml) 0.017 ± 0.004 0.016 ± 0.004 0.02 ± 0.004 0.02 ± 0.004
Esv(mmHg/ml) 0.012 ± 0.0015 0.012 ± 0.002 0.01 ± 0.002 0.01 ± 0.002
Vd,ao(ml) 211.6 ± 39 219.9 ± 40.98 216.7 ± 48.4 221.2 ± 47.3
Vd,sa(ml) 549.6 ± 133.9 509.1 ± 137.5 565.01 ± 130.8 550.6 ± 134.9
Vd,vc(ml) 2131.7 ± 367 2317.9 ± 380 2298.3 ± 371.3 2224.5 ± 394
Vd,sv(ml) 1893.6 ± 321 2025.7 ± 292 1844.5 ± 334 1791.5 ± 339
Rao(mmHg·s/ml) 0.34 ± 0.05 0.33 ± 0.06 0.32 ± 0.07 0.29 ± 0.06
Rvc(mmHg·s/ml) 0.17 ± 0.04 0.16 ± 0.04 0.15 ± 0.04 0.18 ± 0.05

Parameter Patient 5 Patient 6 Patient 7 Patient 8

Rsys(mmHg·s/ml) 0.8 ± 0.08 0.85 ± 0.07 0.87 ± 0.05 0.66 ± 0.07
Eao(mmHg/ml) 2.86 ± 0.82 2.67 ± 0.76 2.79 ± 0.62 3.77 ± 0.48
Esa(mmHg/ml) 0.79 ± 0.25 0.85 ± 0.27 0.82 ±0.23 0.91 ± 0.22
Evc(mmHg/ml) 0.015 ± 0.003 0.016 ± 0.004 0.016 ± 0.004 0.015 ± 0.003
Esv(mmHg/ml) 0.01 ± 0.002 0.011 ± 0.002 0.012 ± 0.002 0.011 ± 0.0016
Vd,ao(ml) 202.7 ± 47.9 217.9 ± 43.9 209.4 ± 55.01 201.3 ± 51.3
Vd,sa(ml) 526.7 ± 119.1 544.4 ± 137.1 518.5 ± 143.3 519.5 ± 109.2
Vd,vc(ml) 1995.6 ± 452 2267.8 ± 440 2422.3 ± 351 2124.1 ± 317
Vd,sv(ml) 1765.1 ± 361 1811.6 ± 374 1963.2 ±283 1789.3 ± 360
Rao(mmHg·s/ml) 0.29 ± 0.06 0.32 ± 0.07 0.31 ± 0.06 0.33 ± 0.035
Rvc(mmHg·s/ml) 0.19 ± 0.04 0.17 ± 0.05 0.17 ± 0.04 0.17 ± 0.042

Parameter Patient 9 Patient 10 Patient 11 Patient 12

Rsys(mmHg·s/ml) 0.71 ± 0.09 0.78 ± 0.07 0.86 ± 0.07 0.87 ± 0.06
Eao(mmHg/ml) 3.22 ± 0.67 3.13 ± 0.59 1.94 ± 0.44 2.16 ± 0.71
Esa(mmHg/ml) 0.88 ± 0.18 0.86 ± 0.20 0.74 ± 0.21 0.80 ± 0.24
Evc(mmHg/ml) 0.015 ± 0.003 0.02 ± 0.004 0.016 ± 0.004 0.016 ± 0.004
Esv(mmHg/ml) 0.01 ± 0.003 0.01 ± 0.002 0.012 ± 0.002 0.011 ± 0.002
Vd,ao(ml) 202.8 ± 44 211.8 ± 46.5 213.4 ± 50.1 185.3 ± 56.03
Vd,sa(ml) 543.1 ± 117.4 533.9 ± 120.9 529.9 ± 155.1 584.4 ± 129.1
Vd,vc(ml) 2001.8 ± 390 2156.8 ± 357 2259.6 ± 425 2327.7 ± 421
Vd,sv(ml) 1533.2 ± 382 1789.6 ± 364 1828.4 ± 333 1904.7 ± 314
Rao(mmHg·s/ml) 0.29 ± 0.06 0.30 ± 0.05 0.23 ± 0.07 0.26 ± 0.08
Rvc(mmHg·s/ml) 0.19 ± 0.04 0.18 ± 0.05 0.19 ± 0.05 0.17 ± 0.04
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Ventricular parameters

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

Elv(mmHg/ml) 3.4738 2.7828 3.0753 1.8953 3.2923 2.5773
λlv(1/ml) 0.0149 0.0146 0.0189 0.0105 0.0137 0.0127
P0,lv(mmHg) 1.4422 1.3184 0.9674 1.0494 1.5145 0.9559
α1 0.3077 0.3517 0.3523 0.5141 0.3283 0.3238
α2 0.4107 0.42 0.3139 0.3257 0.37 0.3646
n1 1.2798 1.2381 1.3637 1.3934 1.1412 1.2695
n2 24.2611 21.6158 24.9414 15.6806 13.8802 16.7110

Parameter Patient 7 Patient 8 Patient 9 Patient 10 Patient 11 Patient 12

Elv(mmHg/ml) 3.0198 3.2276 3.3745 2.4147 3.1468 3.6446
λlv(1/ml) 0.0172 0.0133 0.0093 0.0188 0.0152 0.0154
P0,lv(mmHg) 1.4185 1.7418 1.13 1.9088 0.7194 1.5269
α1 0.2420 0.4712 0.5210 0.3781 0.3388 0.3359
α2 0.3409 0.4416 0.3898 0.4268 0.3919 0.4237
n1 1.5742 1.5367 1.1278 1.3258 1.8088 1.1276
n2 19.2338 12.0314 20.9134 12.7301 16.6476 24.4148

C.1.2 Identified parameters database 2

Arterial parameters

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

Rsys(mmHg·s/ml) 0.77 0.856 0.819 0.729 0.684 0.821
Eao(mmHg/ml) 4.55 1.759 1.86 3.183 2.326 4.6003
Esa(mmHg/ml) 1.22 0.766 0.587 0.864 0.618 0.5812
Evc(mmHg/ml) 0.0123 0.0152 0.0215 0.0096 0.013 0.01127
Esv(mmHg/ml) 0.0136 0.0123 0.011 0.012 0.0122 0.0137
Vd,ao(ml) 131.98 98.281 227.016 256.65 233.924 98.347
Vd,sa(ml) 556.82 632.332 325.622 512.715 731.248 697.479
Vd,vc(ml) 2757.92 2502.529 2241.399 2206.903 2235.897 1301.53
Vd,sv(ml) 2463.56 2020.738 1685.879 1818.504 1849.083 2109.2007
Rao(mmHg·s/ml) 0.364 0.164 0.173 0.321 0.2797 0.2483
Rvc(mmHg·s/ml) 0.229 0.226 0.223 0.116 0.17095 0.1969

Parameter Patient 7 Patient 8 Patient 9 Patient 10 Patient 11 Patient 12

Rsys(mmHg·s/ml) 0.889 0.8797 0.7433 0.731 0.872 0.804
Eao(mmHg/ml) 1.647 3.3618 4.0036 4.072 4.2048 3.4467
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Esa(mmHg/ml) 0.862 0.7167 1.1308 0.942 0.6236 0.95
Evc(mmHg/ml) 0.0085 0.01587 0.0142 0.0181 0.023 0.0155
Esv(mmHg/ml) 0.0105 0.0122 0.0122 0.0113 0.0098 0.008
Vd,ao(ml) 219.896 234.981 222.039 178.43 125.56 149.389
Vd,sa(ml) 450.057 458.58 654.27 526.17 585.67 426.57
Vd,vc(ml) 1022.145 2513.01 2106.36 1622.78 1379.65 2667.15
Vd,sv(ml) 940.671 2204.41 1274.66 2204.087 2219.57 1089.37
Rao(mmHg·s/ml) 0.262 0.3491 0.2029 0.3196 0.314 0.186
Rvc(mmHg·s/ml) 0.1607 0.1872 0.124 0.2043 0.251 0.187

Parameter Patient 13 Patient 14 Patient 15 Patient 16 Patient 17 Patient 18

Rsys(mmHg·s/ml) 0.761 0.361 0.637 0.668 0.899 0.8288
Eao(mmHg/ml) 2.0498 2.702 2.355 2.0001 2.503 3.0564
Esa(mmHg/ml) 0.667 0.9512 1.012 1.233 1.1327 0.5626
Evc(mmHg/ml) 0.0224 0.0107 0.0203 0.0189 0.0194 0.0196
Esv(mmHg/ml) 0.0086 0.0117 0.0112 0.0106 0.0109 0.01088
Vd,ao(ml) 194.45 252.66 200.45 285.03 149.85 240.51
Vd,sa(ml) 485.55 560.082 511.17 542.67 549.57 698.57
Vd,vc(ml) 1483.12 1701.88 1465.51 2679.97 2453.73 2685.15
Vd,sv(ml) 945.999 1594.045 1678.46 1777.57 2149.19 1086.66
Rao(mmHg·s/ml) 0.222 0.382 0.345 0.371 0.3818 0.3107
Rvc(mmHg·s/ml) 0.284 0.213 0.196 0.2699 0.2656 0.1828

Parameter Patient 19 Patient 20 Patient 21 Patient 22 Patient 23

Rsys(mmHg·s/ml) 0.5794 0.634 0.9087 0.6834 0.9139
Eao(mmHg/ml) 1.9779 1.6453 2.1078 2.1293 2.8641
Esa(mmHg/ml) 0.8467 0.6946 0.8451 0.7711 1.02717
Evc(mmHg/ml) 0.0120 0.0156 0.01087 0.0138 0.0164
Esv(mmHg/ml) 0.0102 0.008 0.0072 0.0083 0.014
Vd,ao(ml) 249.88 222.603 262.996 230.23 222.45
Vd,sa(ml) 703.28 516.82 579.02 663.47 640.5
Vd,vc(ml) 1866.68 2411.58 1114.16 1783.33 2177.3
Vd,sv(ml) 1858.14 1536.96 1320.40 1801.49 2219.7
Rao(mmHg·s/ml) 0.254 0.2535 0.1458 0.2354 0.3919
Rvc(mmHg·s/ml) 0.1692 0.1973 0.1154 0.1953 0.1934

C.2 Left bundle branch block model
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Symbol Description Value Units

Time-varying elastances

Ela,max Maximum systolic elastance of left
atrium

0.5 mmHg/ml

Ela,min Diastolic elastance of the left atrium 0.01 mmHg/ml

Era,max Maximum systolic elastance of right
atrium

0.5 mmHg/ml

Era,min Diastolic elastance of the right
atrium

0.01 mmHg/ml

Aa Constant controlling the rise and
peak of the atrial systole

1 -

Ba Constant controlling the rise and
peak of the atrial systole

120 1/s2

Ca Constant controlling the rise and
peak of the atrial systole

0.2 s

Elastances, volumes, resistances and pressures

Elv Elastance of the left ventricle 3.4053 mmHg/ml

Erv Elastance of the right ventricle 0.6526 mmHg/ml

Epa Elastance of the pulmonary artery 0.3375 mmHg/ml

Epv Elastance of the pulmonary vein 0.0062 mmHg/ml

Eao Elastance of the aorta 3.2906 mmHg/ml

Esa Elastance of the systemic arteries 0.7881 mmHg/ml

Evc Elastance of the vena cava 0.0154 mmHg/ml

Esv Elastance of the systemic veins 0.010 mmHg/ml

Vd,lv Unstressed volume of the left
ventricle

5 ml

Vd,rv Unstressed volume of the right
ventricle

5 ml

Vd,la Unstressed volume of the left atrium 3 ml

Vd,ra Unstressed volume of the right
atrium

3 ml

Vd,pa Unstressed volume of the
pulmonary artery

160 ml

Vd,pv Unstressed volume of the
pulmonary vein

200 ml

Vd,ao Unstressed volume of the aorta 196.5625 ml

Vd,sa Unstressed volume of the systemic
arteries

520.6199 ml
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Vd,vc Unstressed volume of the vena cava 1907.7 ml

Vd,sv Unstressed volume of the systemic
veins

1648 ml

Rpul Pulmonary resistance 0.1425 mmHgs/ml

Rsys Systemic resistance 1.0501 mmHgs/ml

Rla Left atrium resistance 0.2 mmHgs/ml

Rra Right atrium resistance 0.8 mmHgs/ml

Rmt Mitral valve resistance 0.01 mmHgs/ml

Rao Aortic valve resistance 0.0105 mmHgs/ml

Rtc Tricuspid valve resistance 0.01 mmHgs/ml

Rpu Pulmonary valve resistance 0.0105 mmHgs/ml

Rart Arteries resistance 0.2915 mmHgs/ml

Rveins Veins resistance 0.1935 mmHgs/ml

Pth Intrathoracic pressure -4 mmHg

Multi-segment ventricles

β Constant related with the muscle
kinetic

10 −

Ca Constant related with the muscle
kinetic

5.33 −

Tref Reference tension 375.0319 mmHg

ls,ref Reference fiber lengths 0.95 cm

e Thickness 0.7 cm

Θ Mean angle of the muscular fibers π/12 rad

Rm Radii of curvature in the meridian
direction

2.1548 cm

Rp Radii of curvature in the parallel
direction

4.5985 cm

Ss Segmental area 8.8909 cm2

Is Segmental inertia 0.0003 mmHgs/ml

Rs Segmental resistance 0.5 mmHgs/ml

C.2.1 Identified parameters for healthy subjects

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

ApiAnt

Kact 0.579 0.809 0.987 0.723 0.779
Kpass 0.08938 0.04078 0.11469 0.04970 0.04954
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n1 1.1180 1.0908 1.1969 1.0000 1.1992
n2 9.0930 9.9900 13.9885 11.8930 9.4071
α1 0.4217 0.4013 0.4420 0.4042 0.4500
α2 0.4390 0.4007 0.4500 0.4206 0.4342
UDP (ms) 3.3474 2.4348 4.5367 3.7460 3.6180

ApiInf

Kact 0.723 0.909 0.585 1 0.756
Kpass 0.05336 0.03592 0.09464 0.06731 0.02710
n1 1.1605 1.0349 1.1546 1.0142 1.1518
n2 8.0772 14,7496 12.9741 10.8137 10.1274
α1 0.4499 0.4285 0.4150 0.4245 0.4500
α2 0.4331 0.4321 0.4423 0.4107 0.4479
UDP (ms) 2.7676 1.9024 1.4529 3.1424 1.7577

ApiLat

Kact 0.856 0.721 0.745 1 0.735
Kpass 0.05736 0.02854 0.10234 0.05256 0.07058
n1 1.1041 1.0000 1.1958 1.0013 1.0552
n2 9.6071 10.4468 8.7425 9.3507 9.7752
α1 0.4498 0.4001 0.4499 0.4001 0.4212
α2 0.4204 0.4000 0.4086 0.4093 0.4183
UDP (ms) 3.3655 2.5377 1.6209 3.2898 3.4105

ApiSept

Kact 0.965 0.862 0.696 1 0.988
Kpass 0.05396 0.06067 0.12000 0.03559 0.02468
n1 1.1999 1.1132 1.2000 1.1211 1.1999
n2 7.8909 12.8857 12.1747 10.3501 11.4697
α1 0.4500 0.4000 0.4495 0.4003 0.4500
α2 0.4265 0.4298 0.4500 0.4223 0.4500
UDP (ms) 2.8167 1.5761 1.7722 2.2515 2.2508

MidAnt

Kact 0.677 0.955 0.833 0.889 0.520
Kpass 0.11114 0.05938 0.11941 0.11408 0.01643
n1 1.0085 1.0031 1.0007 1.0000 1.0000
n2 9.6887 11.8618 1.0007 11.5388 9.1234
α1 0.4274 0.4001 0.4001 0.4000 0.4001
α2 0.4304 0.4124 0.4231 0.4167 0.4250
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UDP (ms) 3.4711 2.7782 1.8786 4.2174 3.8796

MidAntSept

Kact 0.612 0.817 0.733 0.871 0.940
Kpass 0.06336 0.03426 0.08876 0.02168 0.05016
n1 1.200 1.1297 1.2000 1.2000 1.1998
n2 8.8350 11.3399 1.2000 10.6345 8.7238
α1 0.4498 0.4000 0.4498 0.4497 0.4497
α2 0.4499 0.4198 0.4374 0.4268 0.4390
UDP (ms) 3.3193 4.0754 3.9345 3.6365 3.6775

MidInfSept

Kact 0.550 0.713 0.5 0.820 0.604
Kpass 0.07720 0.06859 0.05924 0.09303 0.01049
n1 1.1692 1.0183 1.1994 1.1014 1.1816
n2 7.6663 11.8558 1.1994 8.9339 9.8855
α1 0.4500 0.4251 0.4441 0.4000 0.4491
α2 0.4500 0.4337 0.4119 0.4248 0.4500
UDP (ms) 2.8335 2.7809 3.1684 3.5595 3.3030

MidInf

Kact 0.894 1 0.783 1 0.701
Kpass 0.1200 0.07709 0.08559 0.03177 0.03637
n1 1.1431 1.0005 1.1020 1.0001 1.0072
n2 10.8518 11.7670 12.3839 10.3622 9.0011
α1 0.4455 0.4265 0.4470 0.4097 0.4462
α2 0.4423 0.4160 0.4329 0.4060 0.4278
UDP (ms) 3.7659 2.6696 4.7740 3.7573 2.7673

MidInfLat

Kact 0.837 0.998 0.896 0.656 0.866
Kpass 0.07671 0.07711 0.11999 0.03184 0.08130
n1 1.0000 1.0000 1.0539 1.0000 1.0014
n2 10.1392 14.5488 10.8922 9.9634 11.6274
α1 0.4232 0.4000 0.4323 0.4004 0.4334
α2 0.4155 0.4079 0.4093 0.4001 0.4224
UDP (ms) 2.6946 3.5069 3.1546 2.5696 4.4477

MidAntLat

Kact 0.683 1 0.911 1 0.849
Kpass 0.11972 0.06345 0.07892 0.11981 0.06437
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n1 1.0000 1.0078 1.0053 1.0000 1.0000
n2 12.4377 11.2565 14.0672 10.9306 11.6215
α1 0.4000 0.4001 0.4000 0.4001 0.4000
α2 0.4177 0.4000 0.4201 0.4165 0.4270
UDP (ms) 4.3818 3.4532 4.3548 1.6781 4.9408

BasalAnt

Kact 0.788 0.845 0.717 0.863 0.845
Kpass 0.1200 0.10882 0.10950 0.05913 0.12000
n1 1.0013 1.0000 1.0015 1.0088 1.0000
n2 11.2108 11.9549 10.4007 11.3881 8.0971
α1 0.4001 0.4015 0.4252 0.4141 0.4141
α2 0.4388 0.4078 0.4079 0.4067 0.4092
UDP (ms) 2.5780 2.1967 2.7356 2.3266 3.2604

BasalAntSept

Kact 0.5 0.745 0.730 0.745 0.890
Kpass 0.1200 0.09621 0.11862 0.06457 0.08831
n1 1.200 1.1345 1.2000 1.1583 1.2000
n2 7.5109 9.9346 7.9300 9.3298 7.9831
α1 0.4400 0.4000 0.4494 0.4025 0.4499
α2 0.4489 0.4238 0.4223 0.4411 0.4344
UDP (ms) 2.3051 3.5609 2.1832 2.4667 2.7232

BasalInfSept

Kact 0.502 0.709 0.619 0.564 0.560
Kpass 0.1200 0.09008 0.11873 0.10745 0.01949
n1 1.200 1.0868 1.2000 1.1348 1.2000
n2 7.5896 10.7703 7.7296 8.6588 7.5040
α1 0.4438 0.4009 0.4500 0.4006 0.4500
α2 0.4500 0.4282 0.4173 0.4294 0.4295
UDP (ms) 3.0275 3.1553 2.4849 3.4653 1.9404

BasalInf

Kact 0.656 0.999 0.570 1 0.776
Kpass 0.11998 0.11919 0.04096 0.05003 0.07767
n1 1.0005 1.0008 1.0042 1.0001 1.0000
n2 7.6654 12.1790 8.7544 10.9536 10.0296
α1 0.4092 0.4098 0.4000 0.4004 0.4000
α2 0.4044 0.4000 0.4092 0.4289 0.4294
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UDP (ms) 2.3691 2.8027 1.7552 2.7057 1.9338

BasalInfLat

Kact 0.696 0.627 0.766 0.995 0.784
Kpass 0.11986 0.09086 0.07100 0.07819 0.07438
n1 1.0000 1.0537 1.0495 1.0006 1.0009
n2 13.3761 12.6828 10.2616 13.0749 9.6903
α1 0.4000 0.4084 0.4132 0.4166 0.4284
α2 0.4285 0.4026 0.4071 0.4000 0.4084
UDP (ms) 2.4729 3.1814 3.7543 4.0662 3.4830

BasalAntLat

Kact 0.582 0.830 0.910 0.619 0.919
Kpass 0.11876 0.07727 0.07900 0.11997 0.07723
n1 1.0000 1.0000 1.0000 1.0002 1.0000
n2 10.3239 12.7176 10.3462 11.3290 11.0134
α1 0.4000 0.4037 0.4010 0.4000 0.4000
α2 0.4099 0.4000 0.4053 0.4061 0.4132
UDP (ms) 2.4654 3.2321 2.7506 3.1054 2.5898
LBBUDP (ms) 4.4518 2.2276 4.3329 2.5755 1.9389

Parameter Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

ApiAnt

Kact 0.511 0.893 0.907 0.516 0.587
Kpass 0.02819 0.07370 0.05708 0.07850 0.07666
n1 1.2000 1.0984 1.1309 1.1877 1.2000
n2 7.5000 9.9463 12.2575 7.9492 10.1337
α1 0.4451 0.4226 0.4455 0.4500 0.4497
α2 0.4500 0.4006 0.4442 0.4310 0.4481
UDP (ms) 2.5533 2.0582 2.9576 4.3085 2.2065

ApiInf

Kact 0.5 0.878 0.832 0.693 0.521
Kpass 0.01002 0.03317 0.06258 0.06511 0.04185
n1 1.2000 1.1055 1.1996 1.1936 1.2000
n2 7.5000 11.0996 10.6434 15.0000 10.4033
α1 0.4490 0.4500 0.4500 0.4500 0.4500
α2 0.4500 0.4132 0.4333 0.4500 0.4500
UDP (ms) 2.9950 3.0363 5.0000 1.5701 1.9387
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ApiLat

Kact 0.596 0.675 0.980 0.971 0.798
Kpass 0.03760 0.10181 0.06857 0.5069 0.3422
n1 1.1242 1.0001 1.0573 1.2000 1.0928
n2 7.5000 12.0185 12.1703 9.5481 8.2054
α1 0.4500 0.4002 0.4407 0.4500 0.4463
α2 0.4304 0.4072 0.4455 0.4357 0.4001
UDP (ms) 3.7781 2.2283 1.3579 2.4872 2.8611

ApiSept

Kact 1 0.697 0.654 0.790 0.726
Kpass 0.01590 0.11549 0.01076 0.01462 0.01000
n1 1.2000 1.2000 1.2000 1.2000 1.1996
n2 7.5000 8.9988 8.7709 13.4272 9.9844
α1 0.4500 0.4500 0.4494 0.4500 0.4409
α2 0.4500 0.4064 0.4243 0.4448 0.4386
UDP (ms) 3.1384 3.3103 2.1572 2.8295 2.3607

MidAnt

Kact 0.710 0.731 0.935 0.861 0.701
Kpass 0.11913 0.05976 0.06219 0.04065 0.04388
n1 1.1277 1.0000 1.0651 1.1144 1.0363
n2 7.5000 9.9020 11.1838 12.6331 9.6016
α1 0.4500 0.4216 0.4438 0.4069 0.4024
α2 0.4438 0.4000 0.4295 0.4500 0.4347
UDP (ms) 1.5034 2.1768 3.7657 3.0716 1.7663

MidAntSept

Kact 1 0.620 0.752 0.632 0.690
Kpass 0.01000 0.03683 0.05002 0.03802 0.04312
n1 1.2000 1.1686 1.2000 1.2000 1.2000
n2 7.5000 10.7349 9.8572 8.6211 8.8146
α1 0.4500 0.4102 0.4500 0.4458 0.4500
α2 0.4500 0.4206 0.4496 0.4500 0.4476
UDP (ms) 1.4946 4.0929 2.2421 3.2874 4.0426

MidInfSept

Kact 0.870 0.708 0.964 0.642 0.531
Kpass 0.05857 0.07185 0.09576 0.02639 0.03281
n1 1.2000 1.1951 1.1917 1.2000 1.2000
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n2 7.5000 10.0440 8.6264 8.0050 9.4109
α1 0.4500 0.4419 0.4500 0.4500 0.4428
α2 0.4500 0.4211 0.4286 0.4371 0.4500
UDP (ms) 3.0999 2.5789 2.1961 2.5433 1.7639

MidInf

Kact 0.573 0.859 0.978 1 0.870
Kpass 0.05359 0.05179 0.07551 0.05499 0.11996
n1 1.1104 1.0031 1.1081 1.2000 1.1734
n2 7.5877 9.6427 11.2030 12.5747 8.5890
α1 0.4380 0.4008 0.4500 0.4457 0.4376
α2 0.4500 0.4002 0.4336 0.4500 0.4249
UDP (ms) 2.9198 3.2310 3.3166 2.0656 3.1702

MidInfLat

Kact 0.982 0.777 0.878 0.761 1
Kpass 0.12000 0.05662 0.08793 0.10476 0.06450
n1 1.0000 1.0000 1.0671 1.0060 1.0000
n2 10.9208 11.3896 10.5262 10.7905 13.0905
α1 0.4251 0.4007 0.4500 0.4366 0.4000
α2 0.4500 0.4001 0.4153 0.4386 0.4371
UDP (ms) 2.5705 2.5505 3.6765 5.0000 3.1793

MidAntLat

Kact 0.758 1 0.896 0.692 0.841
Kpass 0.12000 0.11982 0.10323 0.12000 0.08118
n1 1.0625 1.0023 1.0000 1.0411 1.0093
n2 7.5000 13.3793 12.1532 8.3022 11.2307
α1 0.4000 0.4266 0.4434 0.4303 0.4063
α2 0.4261 0.4145 0.4261 0.4203 0.4262
UDP (ms) 1.3167 3.4063 3.3975 1.0927 3.5529

BasalAnt

Kact 1 0.929 1 0.917 0.738
Kpass 0.06185 0.10636 0.10784 0.12000 0.05115
n1 1.0607 1.0001 1.0000 1.0000 1.0000
n2 7.5000 11.4794 9.7867 10.1259 9.7803
α1 0.4500 0.4000 0.4401 0.4000 0.4116
α2 0.4500 0.4000 0.4183 0.4408 0.4206
UDP (ms) 4.3150 4.5049 3.7393 4.2820 2.4385
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BasalAntSept

Kact 0.568 0.641 0.5 0.570 0.668
Kpass 0.05567 0.12000 0.10911 0.04218 0.11687
n1 1.2000 1.1807 1.2000 1.2000 1.1996
n2 8.1483 9.8105 7.5374 8.0941 7.9926
α1 0.4500 0.4488 0.4500 0.4499 0.4500
α2 0.4500 0.4250 0.4307 0.4466 0.4444
UDP (ms) 4.2100 1.9469 1.8435 2.7486 2.8662

BasalInfSept

Kact 0.731 0.628 0.5 0.5 0.5
Kpass 0.09347 0.11755 0.05980 0.01719 0.11996
n1 1.2000 1.1956 1.2000 1.2000 1.2000
n2 7.5000 10.6760 13.0172 7.5000 8.3141
α1 0.4380 0.4256 0.4000 0.4500 0.4500
α2 0.4500 0.4274 0.4500 0.4500 0.4487
UDP (ms) 2.2489 1.6259 2.9608 4.5755 2.1797

BasalInf

Kact 0.553 0.750 0.789 1 0.585
Kpass 0.12000 0.08693 0.06967 0.07407 0.06041
n1 1.0000 1.0000 1.0000 1.0833 1.0000
n2 7.5000 11.6910 11.7870 8.6041 8.5110
α1 0.4169 0.4187 0.4000 0.4500 0.4087
α2 0.4232 0.4000 0.4399 0.4183 0.4141
UDP (ms) 2.8488 2.6474 2.4895 4.3778 1.6436

BasalInfLat

Kact 0.807 0.851 0.584 0.737 1
Kpass 0.12000 0.11952 0.12000 0.04240 0.04127
n1 1.0507 1.0009 1.0001 1.0577 1.0000
n2 7.5000 11.9306 10.5879 9.9400 9.5219
α1 0.4057 0.4161 0.4002 0.4094 0.4000
α2 0.4107 0.4076 0.4040 0.4256 0.4131
UDP (ms) 2.3123 2.4533 3.5748 2.9708 3.7447

BasalAntLat

Kact 0.936 0.781 1 1 1
Kpass 0.03260 0.11982 0.07944 0.06743 0.11937
n1 1.0000 1.0006 1.0000 1.0089 1.0000
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n2 13.1600 11.9351 13.3274 10.7793 12.1036
α1 0.4171 0.4012 0.4053 0.4198 0.4000
α2 0.4426 0.4004 0.4197 0.4213 0.4146
UDP (ms) 2.6985 3.6879 3.2351 1.7301 2.5652
LBBUDP (ms) 3.6182 4.2567 4.7633 1.0321 4.4247

C.2.2 Identified parameters for ischemic LBBB patients

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

ApiAnt

Kact 0.422 0.147 0.249 0.110 0.173
Kpass 0.46500 0.99832 0.92692 0.57291 0.99999
n1 1.0736 1.0622 1.4221 1.4688 1.4142
n2 9.6817 12.3276 11.4785 11.6664 11.9211
α1 0.5181 0.5675 0.3459 0.4217 0.2000
α2 0.4458 0.3760 0.3384 0.3943 0.3180
UDP (ms) 8.5938 20.8217 18.4741 11.1734 4.3110

ApiInf

Kact 0.393 0.183 0.348 0.189 0.458
Kpass 0.55983 1 0.99954 0.72017 0.84556
n1 1.0493 1.1467 1.0603 1.2834 1.5871
n2 10.1396 8.5159 8.1182 9.0422 7.3124
α1 0.3173 0.2382 0.3429 0.2004 0.3722
α2 0.4344 0.3421 0.3502 0.4617 0.4656
UDP (ms) 12.3646 9.5120 11.0313 15.6765 22.5000

ApiLat

Kact 0.302 0.124 0.214 0.148 0.189
Kpass 0.34956 0.92167 1 0.88810 0.66251
n1 1.1271 0.7255 1.3100 1.6636 1.1890
n2 7.9002 10.6977 9.1039 11.8263 5.7918
α1 0.3977 0.4116 0.3297 0.3319 0.2817
α2 0.4365 0.4178 0.3686 0.4221 0.4244
UDP (ms) 19.1731 10.3669 18.3341 14.0303 19.3398

ApiSept

Kact 0.334 0.125 0.202 0.200 0.243
Kpass 0.52116 0.93998 0.47853 0.69365 0.84347
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n1 1.0932 1.5575 1.2746 1.7888 1.0349
n2 11.3788 5.8235 11.7197 8.7152 11.6222
α1 0.3049 0.2504 0.2000 0.3981 0.4240
α2 0.4861 0.3991 0.3842 0.4180 0.4763
UDP (ms) 15.1226 19.2286 15.7248 15.1451 16.1101

MidAnt

Kact 0.260 0.216 0.249 0.205 0.198
Kpass 0.59528 0.99630 0.57858 0.98968 0.98059
n1 0.8194 0.9017 1.2818 0.7541 0.8590
n2 9.0846 9.3443 9.3293 9.2899 12.1482
α1 0.3945 0.4171 0.2003 0.5333 0.4657
α2 0.4693 0.4092 0.3878 0.4095 0.3704
UDP (ms) 7.9211 18.0790 9.6734 19.5805 8.6678

MidAntSept

Kact 0.369 0.217 0.241 0.189 0.436
Kpass 0.68076 0.99712 0.54112 0.91467 0.78075
n1 1.1164 1.3530 1.0228 1.2787 1.6247
n2 7.6949 7.9806 8.8143 10.8452 7.3438
α1 0.5571 0.5051 0.4363 0.3482 0.2000
α2 0.4414 0.4068 0.3781 0.4513 0.4929
UDP (ms) 14.0627 13.6677 20.4416 16.1215 15.5048

MidInfSept

Kact 0.303 0.298 0.207 0.265 0.227
Kpass 0.63557 0.99500 0.99079 0.42414 0.62385
n1 1.5503 1.5085 0.9987 1.4348 1.0466
n2 6.4747 11.0513 9.7881 8.2682 7.0339
α1 0.5665 0.4116 0.2007 0.4379 0.4999
α2 0.4012 0.3964 0.3758 0.4326 0.5173
UDP (ms) 19.9045 12.8543 20.9283 11.4880 14.0138

MidInf

Kact 0.247 0.279 0.339 0.297 0.438
Kpass 0.37212 0.68858 0.99082 0.36360 0.85608
n1 0.7970 1.4656 1.0210 1.3012 0.9150
n2 6.5660 5.4055 9.2144 7.8733 8.3112
α1 0.2061 0.3383 0.2518 0.4869 0.5569
α2 0.4459 0.3669 0.3633 0.4121 0.4948
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UDP (ms) 18.9951 13.3941 10.0505 11.3981 24.9548

MidInfLat

Kact 0.236 0.355 0.155 0.262 0.327
Kpass 0.99748 0.99417 0.50367 0.35807 0.87654
n1 1.9831 1.5373 1.1486 0.9820 1.0706
n2 5.0000 11.5750 9.5768 8.2651 5.8352
α1 0.5366 0.4809 0.2727 0.3336 0.3010
α2 0.3549 0.4365 0.3539 0.4184 0.4470
UDP (ms) 21.9631 10.1356 16.4152 12.2780 26.1445

MidAntLat

Kact 0.166 0.171 0.247 0.29 0.324
Kpass 1 0.93780 0.64845 0.99815 0.86730
n1 0.5484 0.8235 1.1256 1.3104 1.1721
n2 10.7936 8.8525 9.8886 10.9400 5.0036
α1 0.5474 0.3140 0.3806 0.2152 0.5386
α2 0.4708 0.4206 0.3791 0.4000 0.4009
UDP (ms) 12.7706 9.6498 14.7461 21.9183 15.6703

BasalAnt

Kact 0.277 0.242 0.277 0.333 0.299
Kpass 0. 71804 0.64059 0.40773 0.45686 0.51997
n1 1.2573 1.1935 1.0524 1.3141 1.7459
n2 11.9454 8.3235 8.6388 6.0768 5.0120
α1 0.2258 0.2802 0.4672 0.5158 0.5731
α2 0.4415 0.3846 0.3760 0.3597 0.2973
UDP (ms) 14.7852 15.4969 16.9921 12.4219 26.2211

BasalAntSept

Kact 0.285 0.211 0.160 0.138 0.351
Kpass 0.58576 0.80631 0.84812 0.92094 0.71004
n1 1.6560 1.1975 1.2208 1.9770 1.2033
n2 7.7412 9.9320 14.1271 5.0000 8.0959
α1 0.4732 0.4409 0.3989 0.3746 0.3774
α2 0.3933 0.4285 0.4106 0.3220 0.5131
UDP (ms) 23.4235 17.4530 17.1110 12.2390 7.5513

BasalInfSept

Kact 0.205 0.310 0.145 0.256 0.274
Kpass 0.98351 0.84819 0.57491 0.62300 0.28321
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n1 1.1920 1.1906 0.9901 1.1832 1.2903
n2 7.8760 8.2109 6.5232 10.0552 5.0553
α1 0.2871 0.3123 0.2232 0.5990 0.3690
α2 0.4585 0.4195 0.3506 0.4470 0.4552
UDP (ms) 13.6256 14.2649 18.1208 16.0770 22.5825

BasalInf

Kact 0.184 0.5 0.183 0.384 0.457
Kpass 0.49627 0.40479 0.56396 0.74475 0.50401
n1 1.6816 1.1515 1.5164 1.0592 1.1418
n2 6.9446 8.3151 9.3201 13.2578 10.8307
α1 0.3741 0.2414 0.2647 0.2301 0.4686
α2 0.4185 0.3993 0.3443 0.4450 0.4975
UDP (ms) 12.2610 18.7295 18.8316 14.0557 7.4394

BasalInfLat

Kact 0.420 0.470 0.203 0.262 0.497
Kpass 0.99662 0.96055 0.90867 0.60565 0.70504
n1 1.8575 1.1460 1.4084 0.9099 1.0694
n2 7.3810 15.0000 12.2643 9.4703 8.7358
α1 0.4562 0.4826 0.4716 0.2014 0.2001
α2 0.4375 0.4701 0.3896 0.4292 0.4665
UDP (ms) 17.0677 20.1018 15.5268 15.7470 15.6691

BasalAntLat

Kact 0.462 0.465 0.270 0.498 0.351
Kpass 0.58402 0.57477 0.80507 0.49892 0.76991
n1 1.9891 1.5858 1.8315 0.9576 0.5010
n2 8.5605 12.6353 7.4866 10.0581 8.6082
α1 0.3677 0.2786 0.4653 0.3557 0.6000
α2 0.4909 0.4052 0.3397 0.3976 0.4779
UDP (ms) 23.3650 21.0890 19.3492 25.5648 18.4712
LBBUDP (ms) 157.2588 76.9279 106.9720 112.5649 144.0385

C.2.3 Identified parameters for non-ischemic LBBB patients

Parameter Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

ApiAnt

Kact 0.234 0.243 0.344 0.279 0.211
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Kpass 1 0.77836 0.46059 0.64842 0.88830
n1 1.3286 1.0189 0.8918 0.8734 1.2441
n2 7.0179 11.0306 11.6417 7.9574 10.4452
α1 0.3854 0.3792 0.6000 0.3558 0.2693
α2 0.4097 0.4728 0.4856 0.3994 0.3887
UDP (ms) 11.2255 8.6203 16.8675 13.6385 14.3058

ApiInf

Kact 0.295 0.257 0.490 0.307 0.328
Kpass 0.62966 0.91245 0.68277 0.59100 0.79861
n1 1.0178 1.0709 1.4679 0.8184 1.4138
n2 5.9921 10.0690 10.9087 10.2640 5.3737
α1 0.3944 0.2006 0.4145 0.3881 0.3349
α2 0.4055 0.4906 0.4721 0.4452 0.3584
UDP (ms) 2.8755 17.0702 12.1846 18.6732 23.0527

ApiLat

Kact 0.303 0.295 0.447 0.414 0.199
Kpass 0.59393 0.45855 0.52352 0.83455 0.35211
n1 0.8083 1.2424 1.4852 1.1447 1.1093
n2 9.8309 11.9649 10.3279 11.9967 10.8024
α1 0.5986 0.2000 0.3046 0.4147 0.4675
α2 0.4690 0.4128 0.4097 0.4279 0.4293
UDP (ms) 29.1348 22.3668 13.8962 12.6276 20.3639

ApiSept

Kact 0.223 0.474 0.345 0.168 0.339
Kpass 0.55213 1 0.99990 0.55126 0.99976
n1 0.6339 1.3393 1.4969 1.3641 1.2587
n2 5.0000 7.0785 9.4781 13.3680 11.4716
α1 0.4062 0.6000 0.3774 0.3164 0.3715
α2 0.4374 0.4013 0.4291 0.3407 0.4053
UDP (ms) 22.0428 11.5736 8.4838 9.8203 16.2277

MidAnt

Kact 0.264 0.348 0.5 0.312 0.203
Kpass 0.62668 0.63578 0.38070 1 0.60593
n1 1.1666 0.8668 0.7153 0.9776 1.0250
n2 9.2530 11.4351 10.7664 5.0047 10.7099
α1 0.3940 0.3165 0.3419 0.3703 0.4001
α2 0.4313 0.4812 0.4690 0.4569 0.4038
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UDP (ms) 20.1837 19.9733 14.9720 8.7270 19.0571

MidAntSept

Kact 0.216 0.316 0.356 0.128 0.291
Kpass 0.97686 0.61556 0.54065 0.22851 0.54595
n1 0.9069 1.1484 1.1353 0.7213 1.2912
n2 5.0000 9.2304 10.2273 7.5270 7.8979
α1 0.4929 0.2895 0.2141 0.2660 0.3943
α2 0.3957 0.4698 0.3833 0.4062 0.3519
UDP (ms) 25.5342 23.3318 21.9096 17.6623 12.4399

MidInfSept

Kact 0.145 0.290 0.322 0.085 0.269
Kpass 0.39992 0.68190 0.71855 0.16751 0.75807
n1 0.7182 1.0613 0.6446 0.7606 1.2761
n2 8.4446 8.1803 9.0548 5.4258 9.1910
α1 0.2199 0.2000 0.3140 0.3882 0.4296
α2 0.4122 0.4380 0.4424 0.3502 0.3600
UDP (ms) 14.6551 9.3519 25.1486 11.1056 15.2825

MidInf

Kact 0.265 0.228 0.359 0.245 0.317
Kpass 0.99660 0.42263 0.85489 0.50348 0.36966
n1 0.9572 0.6960 0.6528 0.9668 1.4480
n2 7.5274 5.3399 9.5187 9.0416 9.6051
α1 0.2000 0.3876 0.2899 0.2484 0.4146
α2 0.4086 0.4404 0.4596 0.4503 0.3690
UDP (ms) 8.8139 8.8335 13.1994 13.1266 17.6963

MidInfLat

Kact 0.238 0.236 0.5 0.314 0.181
Kpass 0.54952 0.99349 0.99962 0.59237 0.99877
n1 1.1738 1.1716 1.1082 0.8771 1.4745
n2 10.1933 6.2917 11.6265 10.6309 6.5131
α1 0.4540 0.3059 0.2000 0.4589 0.2001
α2 0.4383 0.4529 0.4959 0.5248 0.4418
UDP (ms) 5.5427 6.5093 5.7505 20.0289 15.5443

MidAntLat

Kact 0.242 0.236 0.499 0.314 0.137
Kpass 0.93012 0.60460 1 0.18500 1

C.2. Left bundle branch block model 143



n1 1.2273 1.0899 1.3528 0.9769 1.0159
n2 8.8363 12.3144 9.8488 9.3540 10.1635
α1 0.4204 0.3044 0.2184 0.4167 0.4142
α2 0.4520 0.3999 0.4576 0.4560 0.4525
UDP (ms) 4.5894 11.7797 14.7691 21.5134 12.8569

BasalAnt

Kact 0.317 0.439 0.5 0.298 0.280
Kpass 0.85683 0.32017 0.74675 0.64253 0.61082
n1 1.1219 1.1449 1.4378 1.0595 1.7512
n2 8.2842 9.9701 6.6798 10.4311 5.0098
α1 0.4906 0.4005 0.2000 0.4674 0.3764
α2 0.5037 0.4624 0.4476 0.4337 0.4622
UDP (ms) 27.1332 26.9613 30.0000 14.4901 7.0681

BasalAntSept

Kact 0.184 0.267 0.5 0.138 0.150
Kpass 0.66400 0.69331 0.59515 0.51332 0.70204
n1 1.1892 1.2041 0.9083 1.2639 1.2406
n2 9.2956 11.7314 13.5912 6.6589 7.6256
α1 0.3649 0.3906 0.2868 0.3989 0.2353
α2 0.3413 0.5043 0.3972 0.3315 0.3489
UDP (ms) 4.4761 13.6640 21.3711 8.8365 10.4224

BasalInfSept

Kact 0.285 0.222 0.344 0.182 0.230
Kpass 1 0.64564 0.4.4720 1 0.42383
n1 1.2465 1.2093 0.9036 1.2537 1.3842
n2 9.3015 5.0000 5.4289 5.0000 9.7320
α1 0.2140 0.2518 0.3267 0.2000 0.4768
α2 0.4342 0.3648 0.3983 0.3469 0.3617
UDP (ms) 14.6647 6.6760 16.8010 12.0451 22.3750

BasalInf

Kact 0.226 0.247 0.358 0.236 0.233
Kpass 0.49744 0.52095 0.42762 0.34817 0.86110
n1 1.1475 0.9623 0.5616 1.1805 1.1534
n2 11.4395 5.0544 5.0308 7.8154 10.2866
α1 0.2146 0.5383 0.4899 0.2027 0.2000
α2 0.4528 0.3974 0.3889 0.4715 0.4074
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UDP (ms) 18.7211 15.3442 17.6598 15.0357 21.3351

BasalInfLat

Kact 0.242 0.321 0.5 0.371 0.240
Kpass 0.44589 0.67592 0.49909 0.63081 0.50483
n1 1.0664 1.0106 0.9404 1.1232 1.2515
n2 11.0246 10.9480 9.1593 9.0059 5.0043
α1 0.5544 0.3597 0.3535 0.4382 0.3541
α2 0.4961 0.4749 0.4401 0.5061 0.3650
UDP (ms) 2.8828 23.0425 11.7026 13.9645 15.0578

BasalAntLat

Kact 0.301 0.310 0.4 0.319 0.158
Kpass 0.33578 0.46114 0.21690 0.19736 0.57613
n1 1.3246 1.5132 0.9264 1.0358 1.9932
n2 9.8050 8.4362 7.0887 8.8630 5.1330
α1 0.4574 0.2812 0.5087 0.3702 0.3930
α2 0.4610 0.4521 0.4891 0.4763 0.3875
UDP (ms) 21.7876 21.2621 20.7890 10.7620 20.4348
LBBUDP (ms) 85.5068 131.8916 168.6731 132.8939 132.3611
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Complementary Results D

Figure D.1: Healthy Patient 1. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).
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Figure D.2: Healthy Patient 2. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).

Figure D.3: Healthy Patient 3. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).
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Figure D.4: Healthy Patient 4. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).

Figure D.5: Healthy Patient 5. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).
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Figure D.6: Healthy Patient 6. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).

Figure D.7: Healthy Patient 7. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).
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Figure D.8: Healthy Patient 8. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).

Figure D.9: Healthy Patient 9. Experimental (red) and simulated (black) strain curves
corresponding to the 16 LV segments (left). Bull-eye representations of seg-
mental electrical activation delay (top) and segmental myofiber contractil-
ity (bottom).
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Figure D.10: Healthy Patient 10. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).

Figure D.11: Ischemic LBBB Patient 1. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).
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Figure D.12: Ischemic LBBB Patient 2. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).

Figure D.13: Ischemic LBBB Patient 3. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).
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Figure D.14: Ischemic LBBB Patient 4. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).

Figure D.15: Ischemic LBBB Patient 5. Experimental (red) and simulated (black) strain
curves corresponding to the 16 LV segments (left). Bull-eye representa-
tions of segmental electrical activation delay (top) and segmentalmyofiber
contractility (bottom).
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Figure D.16: Non-ischemic LBBB Patient 1. Experimental (red) and simulated (black)
strain curves corresponding to the 16 LV segments (left). Bull-eye rep-
resentations of segmental electrical activation delay (top) and segmental
myofiber contractility (bottom).

Figure D.17: Non-ischemic LBBB Patient 2. Experimental (red) and simulated (black)
strain curves corresponding to the 16 LV segments (left). Bull-eye rep-
resentations of segmental electrical activation delay (top) and segmental
myofiber contractility (bottom).
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Figure D.18: Non-ischemic LBBB Patient 3. Experimental (red) and simulated (black)
strain curves corresponding to the 16 LV segments (left). Bull-eye rep-
resentations of segmental electrical activation delay (top) and segmental
myofiber contractility (bottom).

Figure D.19: Non-ischemic LBBB Patient 4. Experimental (red) and simulated (black)
strain curves corresponding to the 16 LV segments (left). Bull-eye rep-
resentations of segmental electrical activation delay (top) and segmental
myofiber contractility (bottom).

155



Figure D.20: Non-ischemic LBBB Patient 5. Experimental (red) and simulated (black)
strain curves corresponding to the 16 LV segments (left). Bull-eye rep-
resentations of segmental electrical activation delay (top) and segmental
myofiber contractility (bottom).
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Titre : Approche à base de modèles pour l’analyse du strain myocardique obtenu en échocradiographie.
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Résumé : Le «speckle-tracking echocardiogra-
phy» (STE) permet la quantification de l’asynchro-
nisme ventriculaire en produisant des signaux de
‘strain’ associés à la déformation. Cependant, la
majorité des méthodes existantes d’analyse du
‘strain’ négligent la morphologie des signaux. De
nouvelles méthodes sont donc nécessaires pour
analyser conjointement la morphologie des si-
gnaux de ‘strain’ acquis simultanément dans dif-
férentes régions du myocarde. L’objectif du travail
de thèse est de proposer une approche à base de
modèles afin d’améliorer l’analyse des signaux de
‘strain’ issus de l’échocardiographie. Deux applica-
tions cliniques sont visées par nos travaux : la sté-
nose aortique et la thérapie de resynchronisation
cardiaque. Une première application de cette thèse

consiste à proposer une nouvelle approche à base
de modèle pour 1) estimer la courbe de pression
ventriculaire de manière non-invasive et 2) évaluer
les indices de travail cardiaque à partir des signaux
de strain obtenus par échocardiographie. La se-
conde application de cette thèse consiste à propo-
ser une nouvelle approche à base de modèles afin
d’améliorer l’analyse des signaux de strain. Les ré-
sultats montrent globalement un bon accord entre
les données obtenues à partir des simulations spé-
cifiques au patient et des mesures expérimentales.
Les approches proposées dans cette thèse sont
prometteuses, non seulement pour l’optimisation
du traitement clinique et du développement, mais
aussi pour comprendre les origines de la maladie.

Title: Model-based analysis of myocardial strains for the evaluation of cardiovascular function.

Keywords: Computational modeling, sensitivity analysis, patient-specific identification, cardiac function,

myocardial strain, aortic stenosis, left bundle branch block.

Abstract: Strain imaging by speckle-tracking
echocardiography (STE) has been introduced as
a complementary tool for the assessment of my-
ocardial function. Compared to other measures of
cardiac function, such as left ventricle (LV) ejec-
tion fraction (LVEF), the pathophysiological value
of STE is still neglected in several clinical condi-
tions. As a consequence, new methods are needed
to improve the analysis of echocardiography strain
curves for the evaluation of myocardial function.
In this context, model-based methods appear as
promising alternatives to provide a better under-
standing of the physiological mechanisms related
to the cardiovascular system, as well as to im-
prove diagnosis and therapy support. The main ob-
jective of this thesis is to propose a new model-
based method for the analysis of cardiac regional

strain data, obtained from cardiac echocardiogra-
phy, particularly in two clinical applications: aortic
stenosis (AS) and left bundle branch block (LBBB).
The first application of this thesis was to propose
a non-invasive model-based estimation of the LV
pressure curve in order to obtain reliable myocar-
dial work indices in the case of AS. The second
application of the thesis was to propose a novel
model-based approach for the analysis of myocar-
dial strains in LBBB patients. Results show a good
agreement between data obtained with patient-
specific simulations and with experimental mea-
surements. The approaches proposed in this the-
sis are promising, not only for the optimization of
clinical treatment and development but also for un-
derstanding the origins of disease.
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