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Résumé xi

Modèles de tissus vivants, simulations numériques et immunothérapie des can-
cers

Résumé

Nous étudions deux types de modèles couramment utilisés pour la représentation en temps et en es-
pace des tumeurs : l’équation de Cahn-Hilliard pour les tissus vivants et le modèle de Keller-Segel. Les
méthodes numériques que nous développons cherchent à représenter de manière précise et efficace ces
équations tout en préservant leurs propriétés. Pour l’équation de Cahn-Hilliard, notre étude s’appuie sur
une méthode de relaxation dont nous prouvons la convergence vers le modèle initial. Même si elles repré-
sentent mathématiquement des phénomènes physiques proches de ceux étudiés en dynamique des fluides,
les équations utilisées pour les tissus vivants sont souvent différentes pour rendre compte du caractère
actif des cellules. Les équations résultantes contiennent de nombreuses singularités et dégénérescences
qui sont difficiles à analyser théoriquement et simuler numériquement de manière efficace. La méthode
de relaxation a été introduite pour faciliter l’implémentation de nos schémas numériques ; nous propo-
sons ainsi des schémas numériques éléments finis simples à adapter dans les codes pré-existants. Afin
de préserver les propriétés des équations continues lors des simulations numériques, nous proposons des
schémas numériques basés sur la Méthode de Variable Auxiliaire. L’adaptation de cette méthode pour
les équations des tissus vivants n’ayant pas été réalisée, nous proposons dans cette thèse d’y remédier et
d’étudier les propriétés analytiques de ces schémas numériques. Sur la base de ces travaux numériques,
nous présentons l’étude de deux phénomènes biologiques. En collaboration avec des biologistes de l’Uni-
versité de Nantes, nous étudions la compactification des sphéroïdes de glioblastome in-vitro en réponse
à un médicament utilisé en chimiothérapie. Notre deuxième application s’intéresse à l’étude des effets
physiques jouant un rôle dans l’émergence d’instabilités à la surface de certaines tumeurs invasives.

Mots clés : Modèles de tissus vivants, Analyse numérique, Équation de Cahn-Hilliard dégénérée, Mo-
dèle de Keller-Segel

Abstract

We study two classes of mathematical models currently used for the modeling in time and space of tumors:
the Cahn-Hilliard equation for living tissues and the Keller-Segel model. The numerical methods we
propose aim to represent these equations efficiently and accurately while preserving their properties. For
the Cahn-Hilliard equation, our study is based on a relaxation method for which we prove the convergence
to the original model. Even though the physical effects modeled by these equations are close to the ones
studied in fluid dynamics, the equations used to model living tissues are different in order to represent
the active behavior of cells. The resulting equations contain numerous singularities and degeneracies,
which result in technical difficulties to analyze and simulate them efficiently. Our relaxation method
has been introduced to facilitate the implementation of our numerical schemes. Hence, we propose
numerical schemes that are easy to implement in already existing finite element software. In order
to preserve the properties of the equations during numerical simulations, we design numerical schemes
based on the Scalar Auxiliary Variable method. However, since this method has never been used in the
context of models of living tissues, we study the analytical properties of our schemes. Based on these
numerical works, we present two studies of biological phenomena. In collaboration with biologists from
the Université de Nantes, we study the shrinking of in-vitro tumor aggregates of glioblastoma due to
a certain chemotherapeutic drug. Our second study focuses on understanding the physical effects that
play a role in the emergence of instabilities at the borders of certain invasive tumors. Therefore, this
work aims at providing mathematical tools to biologists that give insights into underlying biological
phenomena based on the Physics of cells and living matter.

Keywords: Living tissues models, Numerical analysis, Degenerate Cahn-Hilliard equation, Keller-Segel
model

Laboratoire Jacques-Louis Lions
Sorbonne Université – Campus Pierre et Marie Curie – 4 place Jussieu – 75005 Paris – France
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Chapter 1

Introduction

1.1 Motivations

Mechanobiology is the science that focuses on the mechanics of biological systems. This is a
science at the interface of Biology, Mechanics, and Mathematics. This manuscript focuses on the
design, analysis and numerical simulation of mathematical models of living tissues. Thereby, this
work belongs in the active research field of the mathematics of Mechanobiology. These models
describe the evolution of cells in time and space. In the present study, we focus on the repre-
sentation of living matter as a continuum, adopting a macroscopic point of view. The structures
depicted are referred to as tissues but under this definition falls many cells’ arrangements as long
as they are observable with the naked eye. These models do not aim to give a precise description
of the microbiology of cells but are focusing on average quantities and phenomena occurring at
the scale of the structure. Therefore, the tissue mechanics that affect its shape, organization,
and growth are the main focus of these models. Phenomena that can be represented are the
collective movement of cells, the growth of the tissue, the formation of patterns, etc. The main
objective of researches in mathematical Mechanobiology is to propose to biologists mathematical
tools that give insights into underlying biological phenomena based on the Physics of cells and
living matter in general. The models of living tissues are also used to study pathologies such as
inflammations and cancer. Indeed, the previous definition of living tissue encompasses tumors.
A tumor is a collective organization of cells, and the mechanical effects exerted by and on it are
of primary importance. Furthermore, the effect of treatment on tumors can also be included
in the model. A second objective of the work in mathematical Mechanobiology is to provide
medical teams with tools for predicting the behavior of a specific tissue (healthy or tumorous)
under certain constraints such as mechanical stresses or drugs.

Due to cells’ active behavior, mathematical models of living tissues often pose technical diffi-
culties both for analytical and numerical works. They are often of nonlinear type and sometimes
exhibit a hyperbolic behavior, i.e., forming discontinuous interfaces even if the initial solution is
smooth. Other effects such as backward diffusion or degeneracy of a mobility coefficient lead to
additional analytical difficulties. On the numerical side, the main issue is to keep the properties
of the solution of the continuous model during numerical simulations. Indeed, the mathematical
model is an approximated representation of the biological tissue, and the numerical method is
another approximation level. To make reliable predictions from the numerical simulations, it is
necessary to design a numerical scheme that is the best approximation possible of the continuous
model. Therefore, the design of the numerical scheme must be oriented to preserve the essential
properties of models of living tissues that are: the monotonic decay of the associated energy,

1
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the preservation of the positivity of the densities, the conservation of the initial mass of cells if
proliferation does not occur, etc.

However, accuracy must not be the only focus. To apply a mathematical model to a concrete
study in relation with Biology or Medicine, it is necessary to test many scenarios and, hence,
run many numerical simulations. To do so, the numerical method must be efficient, and its
computational cost must be reduced to its minimum for each simulation. The tradeoff question
between accuracy and efficiency is at the center of every numerical work with the aim of concrete
applications.

Based on these observations, in this manuscript, we focus on the design of accurate and
efficient novel numerical methods for some nonlinear partial differential equations used for the
mathematical representation of living tissues. Mainly, we work with models used to represent in
vivo and in vitro tumors that are a pathology of living tissue.

1.2 Mathematical representation of living tissues

1.2.1 First steps of mathematical modelling

We present the formulation of a prototypal model of N ∈ N∗ components from which we can
derive models that include precise effects. We define the domain Ω(t) ⊂ Rd as the tissue or a
part of it, and where d = 1, 2, 3 is the dimension and t is time. The boundary of Ω(t) is denoted
by ∂Ω(t) and is assumed to be sufficiently regular. In the following, we adopt the Eulerian point
of view: for a fixed point in space, we observe what happens without moving x. The second
point of view (that we will not consider in this manuscript) is the Lagrangian or material point
of view, where the observer follows the flow i.e. the material point X ∈ Ω(t) of the domain moves
with respect to the flow given by a certain velocity. To describe how the different forces act on
the tissue, we take an arbitrary volume V (t) ⊂ Ω(t). We define Br(x) as the ball of center x and
of radius r ≥ 0. We define the mass density of the i-th component at (t, x) ∈ R+×Ω in Eulerian
coordinates by

ρi(t, x) = lim
r→0

Mi(Br(x))

V (Br(x))
,

where Mi(Br(x)) is the mass of the i-th component inside the ball Br(x) and V (Br(x)) is the
volume of the latter. We also define relative quantities such as the relative mass densities

ρ̃i(t, x) = lim
r→0

Mi(Br(x))

Vi(Br(x))
,

where Vi(Br(x)) is the volume occupied by the i-th component inside the ball Br(x), and the
volume fraction of the i-th component

ni(t, x) = lim
r→0

Vi(Br(x))

V (Br(x))
.

We also consider the mass fraction ci defined by

ci(t, x) = lim
r→0

Mi(Br(x))

M(Br(x))
.

Therefore, it is easy to verify the relation

ρci = ρ̃ini, for i = 1, . . . , N.
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The starting point of the mathematical models that we study is the conservation equation in
integral form ∫

V (t)

∂ρi(t, x)

∂t
+∇ · Ji(t, x) dx =

∫
V (t)

Si(t, x) dx, (1.1)

where Ji(t, x) = Ji(ρ,∇ρ,v) is the net flow of the components across the boundary of the
arbitrary volume V (t). This flux is defined as a function of the density of the i-th component, of
its gradient and of a velocity field vi(t, x) which needs to be defined using a constitutive relation
or given by an equation. However, to be able to represent the Physics of the tissue, one needs to
use laws of mechanics and thermodynamics to derive a set of physically relevant equations and
explain the different constitutive relations. In (1.1), the term Si(t, x) represents the growth of the
tissue but also its degradation. This proliferation effect depends on many aspects occurring both
at the scale of the cells and the tissue, such as the stress in the tissue, the amount of available
nutrients, or the available space in the neighborhood of dividing cells.

The integral form of the continuity equation is useful to give a description of the different
forces acting on the arbitrary volume V (t). However, since the equation (1.1) is satisfied for any
volume V (t), we use the local form of this equation

∂ρi(t, x)

∂t
+∇ · Ji(t, x) = Si(t, x), (1.2)

In the following, we present the derivation of two essential models of living tissues—the Cahn-
Hilliard model for Biology and the Keller-Segel model. The first one is used to represent tissues
as a multiphase fluid and describes the attractive and repulsive interactions of cells. As a result,
the model can reproduce the formation of patterns and is used to represent tumors as fluids. The
second is modeling chemotaxis: a type of movement that cells exhibit in nature. Indeed, cells
have the capacity to sense their micro-environment, and their migration is driven by signals. The
Keller-Segel model represents cells’ movement toward zones of a large concentration of certain
chemicals called chemoattractants and due to random Brownian motion.

1.2.2 The Cahn-Hilliard model for modelling of tissues and tumours

Derivation. A detailed description of the derivation of the Cahn-Hilliard equation (CH in short)
from the different mechanics and thermodynamics laws requires lengthy calculations. For the
sake of simplicity, we give here a simple description of the Cahn-Hilliard equation for the mixture
of two incompressible fluids. We also assume that the tissue under investigation is not growing
nor degrading. This model is relatively simple and focuses only on the organization of two types
of cells. However, as we will see in the following of this manuscript, it already gives a good
description of tissues (especially tumors) and is at the center of many research pieces.

To satisfy the previous assumptions, we set N = 2 and Si(t, x) = 0 (for i = 1, 2). For the
representation of tissues, we can assume that cells inside the phase i = 1 are cells constituting
the tissue of interest (or the tumor), and the phase i = 2 is used to represent the rest of the cells
of the micro-environment. From the incompressibility assumption, the continuity equation (1.2)
can be simplified and written to follow the evolution of the mass fraction ci or the volume fraction
ni. We present the case where we focus on volume fractions, and since these quantities satisfy

n1 + n2 = 1,

we define the order parameter n = n1. Hence, in order to obtain the evolution of both volume
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fractions, it is now only necessary to solve the continuity equation

∂n

∂t
+ div (h) = 0, (1.3)

where we have used the fact that J in (1.2) was equal to J = ρihi along with the fact that
the fluids are incompressible, i.e. div (ρi) = 0 for all i = 1, 2. Before giving the constitutive
relation for the flux h, we first describe the energy associated to this model and use some of
basic thermodynamics quantities.

Indeed, the formulation of the free energy associated to the system is often considered the
starting point to give a simple derivation of the Cahn-Hilliard model. As in its original descrip-
tion, the Ginzburg-Landau free energy is given by

E [n](t) :=

∫
Ω

(γ
2
|∇n|2 + ψ(n)

)
dx.

The free energy density is the sum of two important terms. The surface tension γ
2 |∇n|

2 is a force
occurring at the interface between the two phases. This terms has the effect to penalize large
gradient of the order parameter and tends to make the interface between the two phases smooth.
Hence, the length of this diffuse interface is given by √γ. The second term ψ(n) is related to the
mechanical interactions between the cells, and is called the homogeneous free energy. Attractive
and repulsive forces for the two cell types are represented by this term. Therefore, attraction
occurs when ψ′′(n) < 0 and repulsion when ψ′′(n) > 0. For volume fractions such that ψ′′(n) = 0,
we say that the mixture is at equilibrium, i.e. attractive and repulsive forces balance out.

We define µ = µ(n,∇n) the chemical potential as the variational derivative of the free energy
with respect to the order parameter

µ =
δE
δn

Going back to the definition of the net flux h, and using a generalized Fick’s law, we obtain

h = −b(n)∇µ,

where b(n) is a mobility coefficient to represent the active movement of cells. Altogether, and
assuming zero-flux boundary conditions, the original Cahn-Hilliard equation for diphasic fluids
reads {

∂n
∂t = div (b(n)∇ (−γ∆n+ ψ′(n))) , t > 0, x ∈ Ω,
∂µ
∂ν = ∂n

∂ν = 0, t > 0, x ∈ ∂Ω,
(1.4)

where ν is the outward normal vector to the boundary ∂Ω.

The Cahn-Hilliard for Biology. This equation found its original application in the context
of material sciences. Cahn and Hilliard [48, 47] first proposed the equation to represent the
separation of phases occurring in binary alloys during a sudden cooling, assuming isotropy and
constant temperature. Indeed, the equation can model the different stages of phase separation:
from the formation of microscopic structures (i.e. spinodal decomposition) to the coarsening of
them to form large arrangements. Later, the Cahn-Hilliard equation has been used to represent
many phenomena in Physics, such as dealloying occurring in corrosion [81], thin films [191],
image processing [53], or even about the formation of the rings of Saturn [196]. The previous
references do not cover the extensive literature that exists for each of these subjects. However,
the interested reader can find more references in the review book of Miranville [147].
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In this manuscript, we are interested in its application to Biology, especially to represent
tissues and tumors. Due to qualitative similarities between the formation of patterns in nature
and the processes of phase separation occurring in materials, researchers started to use the Cahn-
Hilliard equation as a phenomenological model for biological applications, such as population
dynamics [62], wound healing [126], tumor growth [203, 90] or even the organization of mussel
banks [138]. In the previous references, a source term g(n) is often considered inside the equation
to represent growth of the tissue or its degradation, leading to the generalized Cahn-Hilliard
equation [59]

∂n

∂t
= div (b(n)∇ (−γ∆n+ ψ′(n))) + g(n), t > 0, x ∈ Ω. (1.5)

Both [62] and [126] used the Cahn-Hilliard to produce results close to observed phenomenon with-
out focusing on the consistency of the model with their system thermodynamics. The first work
that proposed a mechanically and thermodynamically consistent derivation of the CH equation
for Biology is [203]. The authors derived a system of CH-type equations using thermodynamics
laws to derive constraints for the constitutive relations of their model. Their model is capable
of representing multi-species systems, and they considered as a test case the representation of a
system with four species: viable tumor cells, dead tumor cells (necrotic core), healthy cells, and
the rest of the micro-environment. In the previous references that propose a CH model for living
tissues, the mobility coefficient (i.e. b(n) in (1.5)) is taken to be a constant and the potential
ψ(n) is double-welled and logarithmic, i.e. it describes the segregation of the two different types
of cells. For this application, a thermodynamically consistent potential used in many research
pieces is

ψ(n) =
1

2
n lnn+ (1− n) ln(1− n)− (n− 1

2
)2,

but is often approximated by a polynomial function for simplicity.
Later, other forms for the mobility and potential have been proposed to give a better rep-

resentation of the mechanics of cells inside tissues. Considering a constant mobility in the CH
model does not seem biologically relevant. Indeed, to represent the clustering of cells, a degener-
ate mobility is more relevant as pointed in [8, 6], and consists in taking the mobility to be zero in
pure phase i.e. in zones where cells are too overcrowded (n = 1 and n = 0). A possible example
is

b(n) = n(1− n)2.

Featuring this kind of mobility the CH is often referred to as the degenerate Cahn-Hilliard model
(DCH in short). Another modification that renders the model biologically relevant for certain
applications, concerns the potential ψ(n). As said previously, this potential is often taken to
be a double-well logarithmic function with singularity points at the pure phases. However, as
proposed in [46], a single-well logarithmic potential seems to be more relevant for the modeling
of cancer. Indeed, tumor cells have the capacity to spontaneously form aggregates, and are
often the only active cells in the experiments. For example, modelling the formation of in-vitro
spheroids of cancerous cells, one can consider the two phases of the fluid to be the tumor cells
and the other phase is the inactive gel that serves as the culture medium. For this kind of study,
a phenomenological potential is

ψ(n) = −(1− n∗) ln(1− n)− n3

3
− (1− n∗)n

2

2
− (1− n∗)n,

in which 0 < n? ≤ 1 is a parameter used to represent the maximal density at which aggregates
are stable, i.e. attraction and repulsion forces balance out.
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Preview. In Part I, we work with the DCH model with a single-well logarithmic poten-
tial. Compared with the CH model original form (with constant mobility and a double-well
logarithmic potential), these modifications induce numerous difficulties on both the analyti-
cal and numerous sides. To tackle the resulting issues, we propose a relaxation of the model
and design a structure-preserving numerical method to simulate it.

The DCH with a single-well logarithmic homogeneous free energy has been used for the
modelling of skin cancer [55, 56, 61], and of glioblastoma [9]. In both of these studies, the results
of numerical simulations of the model were in good agreement with biological observations and
experimental results. Furthermore, in [10], the authors used their mathematical and algorithm
framework, which involves the DCH model in a concrete study with data coming from a patient
suffering from glioblastoma. The numerical simulations were able to represent the evolution of
the tumor of the patient even under treatment. The mathematical model was able to match
the volume and boundaries of the tumor observed in images realized by Magnetic Resonance
Imaging (MRI).

Although the previous Cahn-Hilliard framework provides a good representation of a tumor
in a healthy tissue or in vitro, as a diphasic fluid, it is necessary to consider a larger number of
cell types and include particular mechanical effects in some applications. To this end, in [98] the
authors derived a system of equations that comprises a CH-type equation to represent healthy
and tumor cells, coupled to an equation for the diffusion of the nutrients in the tissue. This
model is derived based on simple thermodynamics principles and represents nutrient diffusion,
chemotaxis, active transport, adhesion between cells, apoptosis (i.e., death of the cells), and
proliferation. Therefore, in the equation for the chemical potential, the effect of nutrients is
taken into account to represent the chemotactic movement. A velocity field is also taken into
account to represent non-active movement (i.e., advection). It is given by Darcy’s law which
states that the movement is towards zones of lower pressure. The extension of the model for
multispecies systems has been proposed in [97]. Numerical simulations of this model give a good
qualitative representation of biological phenomena, such as the emergence of a necrotic core
inside the tumor. In the two previous models, the transport due to the fluid movement was given
by Darcy’s law. However, to account for the fluid viscosity, a Cahn-Hilliard-Brinkman model has
been proposed for tumor growth [72].

Preview. In the CH-type models discussed so far, tissues are considered components of
an incompressible fluid. This assumption leads to a good representation of Biology, as we
have seen. However, in some cases, it could be interesting to keep compressible effects. In
Chapter 5, we derive a model for a compressible diphasic fluid to represent two populations of
cells or two different tissues. The compressibility of the cells is maintained, and the complete
system that we derive is a Cahn-Hilliard equation coupled with a compressible Navier-Stokes
equation for the velocity field

1.2.3 The Keller-Segel model and the volume-filling approach

Derivation. As for the original proposition of the Cahn-Hilliard equation, the Keller-Segel
model (KS in short) has first been introduced as a phenomenological model to describe cells’
movement toward a specific signal called the chemoattractant. This type of motion for cells and



1.2. Mathematical representation of living tissues 7

Qualitative comparison between biological experiments and numerical simulation of the de-
generate Cahn-Hilliard model.
Since the same processes occur during phase separation in materials and pattern formation
for self-organization of cells, the CH model has been considered as a good model for biological
applications. As an example, we present the results of experiments for the formation of
spheroids of tumor cells and compared them qualitatively with numerical experiments of
the CH model (the numerical simulations have been performed with the scheme proposed in
[166]). Figure 1.1 is taken from [5] and shows the formation of structures for glioma cells of
rats. From a random distribution (Figures 1.1a and 1.1b), cells tend to form rapidly small
aggregates. The second phase consists of the merging of some of these small aggregates to
form larger structures (Figure 1.1c).

(a) T = 0 (b) T = 6h (c) T = 12h

Figure 1.1 – Aggregation of glioma cells from rat during time reproduced from [5] (CC
BY-NC 3.0).

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 1.2 – Simulation of the Cahn-Hilliard equation from the numerical method proposed
in [167]
Figure 1.2 depicts three states during a numerical simulation of the DCH model with a
single-well logarithmic potential. This model has been used in its non-dimensionalized form
and, hence, time is rescaled and t ∈ [0, 1]. Figure 1.2a shows the initial condition, a uniform
distribution of the order parameter n (i.e., relative cell density or volume fraction) around
the value n0 = 0.3. Figure 1.2b is a plot of the order parameter at t = 0.5, and we see that
small structures are formed already. At the end of the simulation (Figure 1.2c), these small
aggregates have merged to form larger structures.
Comparing the experiments in Figure 1.1 with the numerical simulations on Figure 1.2, we
clearly observe a qualitative match in terms of behavior of cells and structures formed.
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bacteria is called chemotaxis. Starting from the prototypal model (1.2), we define the flux for
each population by

Ji = −Di(ρi)∇ρi + χ(ρi)vi, (1.6)

whereDi(ρi) is a density-dependent diffusion coefficient, χ(ρi) a function which gives the strength
of the chemotactic movement. Therefore, chemotaxis is described mathematically by a specific
velocity field vi. Hence, vi is a function of one or many other component j 6= i. For a single
cell population, if we consider a flux of the form (1.6) and the chemoattractant is given by a
known function F (x), the model (1.2) reduces to the Fokker-Planck equation. Generally, the
concentration of chemoattratant is given by a diffusion equation. To simplify the derivation, we
consider in the following the biological situation of a unique cell population i = 1, and a single
chemoattractant i = 2. The movement of the cells is a combination of random Brownian motion
and chemotaxis. We designate by u = ρ1 the density of cells and by c = ρ2 the concentration of
the chemoattractant that diffuses in the domain. The two fluxes (1.6) are given by

J1 = −D1(u, c)∇u+ χ(u, c)∇c,
J2 = −D2(u, c)∇c.

Therefore, the general Keller-Segel model reads{
∂u
∂t = div (D1(u, c)∇u)− div (χ(u, c)∇c) + S1(u, c),
∂c
∂t = div (D2(u, c)∇c) + S2(u, c),

(1.7)

and is often supplemented by zero-flux boundary conditions

∂u

∂ν
=
∂c

∂ν
= 0. (1.8)

Function S1(u, c) describes the growth of the proliferating cell population that depends on the
local cell density (since the proliferation of existing cells gives growth) and, possibly, on the
chemoattractant concentration. The second source term S2(u, c) represents the production and
decay of the chemoattractant. Both functions D1(u, c) and D2(u, c) are diffusion coefficients of
respectively the cells and the chemoattractant. These two latter functions are often considered to
be constant coefficients. Particular attention will be given in the following to the function χ(u, c)
referred to as the chemosensitivity and describes the strength of chemotaxis. This function can
depend both on the density of cells (as for the mobility in the CH model case that we have
seen before) and on the concentration of chemoattractant. In the form (1.7), the KS model is a
system of two parabolic equations and is often referred to as the parabolic-parabolic Keller-Segel
model. If the diffusion of the chemoattractant is very fast compared to the Brownian motion of
the cells i.e. D1(u,c)

D2(u,c) ≡ 0, then the parabolic-parabolic KS model is approximated by{
∂u
∂t = div (D1(u, c)∇u) + div (χ(u, c)∇c) + S1(u, c),

0 = div (D2(u, c)∇c) + S2(u, c),
(1.9)

and is called the parabolic-elliptic Keller-Segel model (since the second equation is now of elliptic
type). Further approximations of this system are possible, but are not covered in this manuscript.

The Keller-Segel model. In the article [164], Patlak studied the effect of an external bias on
the movement of particles. From a model that describes the cells individually, Patlak obtained
a modified Fokker-Planck equation. Independently, Keller and Segel, in the 70’s [123, 122, 124]
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worked on the modeling of the aggregation of cellular slime mold called acrasiales. Indeed, biolo-
gists observed a long-range effect in the morphogenesis of these aggregates depending on chemical
cues present in the environment. Therefore, incorporating the different reactions for their appli-
cation, they wrote a four equations system that they reduced to the general system (1.7). This
was the first time this model was proposed in this form. Since then, mathematicians have started
to analyze its analytical properties, and find new ways to simulate it efficiently.

One of the simplest version of the general model (1.7), is the minimal Keller-Segel model,
and is obtained by taking D1(u, c) = D1 ≥ 0, D2(u, c) = D2 ≥ 0, and χ(u, c) = u. Altogether,
the model reads {

∂u
∂t = D1∆u+ div (u∇c) ,
τ ∂c∂t = D2∆c+ u− c,

(1.10)

where τ = D1

D2
describes how fast the chemoattractant diffuses compared to the Brownian motion

of the cells. This relatively simple model is capable to represent the aggregation of a constant
mass of cells due to a chemical signal c produced by the cells themselves. The properties of the
solutions of this model have been studied by many authors. One of the most important results
concerns the potential blow-up of the solution u in finite time. Indeed, from [158] we know that
if d = 1, the model (1.10) has a global weak solution, and u remains bounded. However, for
dimension d ≥ 2, it exists a critical mass M such that a global weak solution exists if∫

Ω

u(0, x) dx ≤M.

The precise value of this critical mass has been found for d = 2 [158], and is M = 4π. For d ≥ 3
[51], if ‖u0‖

L
d
2 (Ω)

, ‖∇c0‖Ld(Ω) ≤ ε where ε > 0, it exists a global and bounded weak solution
{u, c}. From numerical simulations, we observe that the system forms patterns that appear in
Turing-type instabilities. Mainly, from a uniform initial cell density, spikes of large cell density
will form, and if the simulation is run long enough, all the cells aggregates in a single sharp
peak. However, it is easy to understand that this behavior is not biologically relevant. Indeed,
the formation of overcrowded zones is a scenario that cells tend to avoid. To solve this issue and
represent chemotaxis in living organisms, variants of the KS model (1.7) have been proposed.

To avoid the blow-up of the solution, particular forms of the functions D1(u, c), D2(u, c), and
χ(u, c) can be chosen. Indeed, in [162], Painter and Hillen proposed modifying the functions for
chemosensitivity to take into account the effects of "volume-filling" and "quorum-sensing". The
first effect is motivated by the fact that cells have a finite size. Hence, they cannot aggregate
indefinitely at a certain point, i.e. the space available for new cells to move at a specific location
decreases as the density increases. Therefore, taking into account this assumption, cells tend to
form aggregates that have a finite saturation value. The second effect, which is "quorum-sensing",
captures how cells behave to achieve homeostasis. Indeed, biological tissues organize themselves
in such a way as to avoid excessive cell densities that may result in a depletion of important
nutrients and, hence, necrosis. To model this effect, a supplementary chemical w is introduced in
the system to allow the cells to sense if the zones are overcrowded and change, consequently the
chemosensitivity. In [162], the authors started from a model with continuous-time and discrete
space. The domain is divided into discrete locations, and cells have a probability to jump to
a neighboring location depending on the chemoattractant. The authors added a set of rules to
take into account the effect of volume-filling and quorum-sensing. Then, they formally derived a
PDE model and retrieved a Keller-Segel system with a particular form for the chemosensitivity.

Indeed, a simple modification of the original system (1.10) can prevent the blow of the so-
lution. Taking χ(u) = χcu(1 − u/u) (where χc is a positive constant and u is the saturation
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density at which aggregates are stable) instead of χ(u) = u, takes into account the effect of
volume-filling. This model reads{

∂u
∂t = Du∆u+ χcdiv (u(1− u)∇c) ,
τ ∂c∂t = Dc∆c+ u− c.

(1.11)

Preview. In Chapter 6, we work with the volume-filling parabolic-parabolic KS
model (1.11). This nonlinear system represents the aggregation of cells with a saturation
value u = 1. This system induces difficulties at the discrete level, and we propose in Chap-
ter 6 a novel numerical method.

Qualitative comparison between biological experiments and numerical simulation of the
volume-filling Keller-Segel model.
As explored in [45], chemotaxis could be an explanation of the self-organization of tumor
cells and to the formation of in-vitro spheroids. As an example, we redo the numerical
experiments of [45] using our code from [13]. The biological experiments are taken from
[45] as well. Figure 1.3a shows the spheroids of tumor cells from breast cancer (MCF-7) in
hydrogel. Figure 1.3b is the end state of a simulation of the KS model with volume-filling,
and we see round zones where the cell density is large and between these aggregates zones
where no cells are present. We can conclude of a qualitative good agreement between the
experiments and the numerical simulations.

(a) (b)

Figure 1.3 – Spheroids of MCF-7 taken from [45] (left, with permission from the journal to
reproduce the figure), and numerical simulation of the Keller-Segel model with volume-filling
(right)

Analytical properties of the Keller-Selel model with volume-filling. Apart from the
prevention of the blow-up of the solution, the KS model (1.11) has other interesting properties.
This model has been analyzed by Hillen and Painter [162] in which they prove the existence of
non-negative global weak solutions using the theory of semi-groups. In our case, and as for the
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Cahn-Hilliard model, we are interested into the gradient-flow structure of the KS model. Indeed,
the energy associated to the model and its dissipation are given by

E [u, c](t) =

∫
Ω

Du

χc
[u log u− (u− 1) log(1− u)]− uc+

1

2

(
|∇c|2 + αc2

)
+ C dx,

dE [u, c](t)

dt
= −

∫
Ω

χ(u)

∣∣∣∣δEδu
∣∣∣∣2 +

∣∣∣∣δEδc
∣∣∣∣ dx.

In its gradient-flow formulation, the model reads{
∂u
∂t = ∇ ·

(
χcϕ(u)∇ δE

δu

)
,

τ∂tc = − δEδc .
(1.12)

This formulation of the KS model will be useful when designing a numerical scheme that preserves
its structure and analytical properties.

1.3 General assumptions and preliminaries

Assumptions on the domain Ω. To set our problems and to define the numerical schemes
for these models, we first give details about the domain Ω. For dimension d = 1, Ω is an open,
bounded interval i.e. Ω ⊂ R. For dimension d ≥ 2, Ω is an open, bounded and connected set of
Rd. Generally, in our biological applications, we take d = 1, 2, 3. For d = 2, 3, we need to give
some assumptions on the domain boundary ∂Ω. We assume that the domain has a Lipschitz
boundary (see Definition 1) or has a Ck boundary with k ≥ 1, which is a necessary condition to
use important results such as Sobolev injections or Poincaré-Wirtinger inequality.

Definition 1 (Lipschitz domain [4]) A domain Ω is said to be a Lipschitz domain if: there
are α, β > 0, a finite number of coordinate systems xr = (xr′, xrd), 1 ≤ r ≤ R, where xr′ ∈ Rd−1,
and xrd ∈ R. There are also R local maps φr that are Lipschitz continuous on their definition
domain {xr′ ∈ Rd−1; |xr′| < α} such that

∂Ω

R⋃
1

{(xr′, xrd);xrd = φr(xr′); |xr′| ≤ α},

{(xr′, xrd);φr(xr′) < xrd < φr(xr′) + β; |xr′| ≤ α} ⊂ Ω, ∀r,

{(xr′, xrd);φr(xr′)− β < xrd < φr(xr′); |xr′| < α} ⊂ Rd \ Ω, ∀r,

where |xr′| ≤ α means that |xr′i | ≤ α for all 1 ≤ i ≤ d− 1.

The above definition is a precise description of a Lipschitz boundary, that formally means that
every x ∈ ∂Ω has a neighborhood Ux whose intersection with ∂Ω is the graph of a Lipschitz
continuous function (i.e. the domain has locally a Lipschitz boundary). Definition 1 also requires
that the domain is located on one side of its boundary, and therefore, we exclude domains with
cracks or slits.

Therefore, in the rest of this manuscript, when the boundary of the domain is referred to as
being "smooth enough", we implicitly assume that it satisfies at least Definition 1. A stronger
assumption is to define the domain to be of class Ck, which means that its boundary is the graph
of a Ck function.
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Notations. We indicate the usual Lebesgue and Sobolev spaces by respectively Lp(Ω),Wm,p(Ω)
with Hm(Ω) := Wm,2(Ω), where 1 ≤ p ≤ +∞ and m ∈ N. For a general function f , the
corresponding norms are denoted by

‖f‖Wm,p(Ω) = ‖f‖m,p,Ω , ‖f‖Hm(Ω) = ||f ||m,Ω,

with the semi-norms

‖Dmf‖Lp(Ω) = |f |Wm,p(Ω) = |f |m,p,Ω , ‖Dmf‖L2(Ω) = |f |Hm(Ω) = |f |m,Ω ,

where Dm denotes the m-th derivative of f .
The standard L2 inner product will be denoted by (·, ·)Ω and the duality pairing between

(H1(Ω))′ and H1(Ω) by < ·, · >Ω.

Inequalities and compactness in Banach spaces. We recall important inequalities that will
be used throughout this manuscript. Here, we give their statement without giving their proof
which could be out of the scope of this manuscript (details can be found in [4, 134]). We assume
that the domain Ω satisfies the assumptions of Definition 1.

Proposition 2 (Poincaré-Wirtinger inequality) Let 1 ≤ p <∞, for a function u ∈W 1,2(Ω),
we have

‖u− uΩ‖L2(Ω) ≤ C ‖∇u‖L2(Ω) ,

where uΩ is the average value of u on Ω i.e.

uΩ =
1

|Ω|

∫
Ω

u(x) dx,

and |Ω| is the measure of the domain.

Proposition 3 (Continuous embeddings of Sobolev spaces [4]) For 1 ≤ p, q < ∞, and
k, l being positive integers such that k > l such that

1

p
− k

d
=

1

q
− l

d
,

and we have W k,p(Ω) ↪→W l,q(Ω).
A particular case is k = 1 and l = 0, for which we have W 1,p(Ω) ↪→ Lq(Ω).
Furthermore, for µ = 1− d

p , we have W 1,p(Ω) ↪→ C0,µ(Ω).

Proposition 4 (Compact embeddings of Sobolev spaces [4]) For 1 ≤ p, q < ∞, and for
j,m being positive integers, we have

W j+m,p(Ω) ⊂⊂W j,q(Ω), if 0 < n−mp, and j +m− n

p
≥ j − n

q
,

and
W j+m,p(Ω) ⊂⊂ Cj(Ω), if mp > n.

Proposition 5 (Lions-Aubin Lemma [182, 134]) Let X,Y, Z be Banach spaces with a com-
pact embedding X ⊂⊂ Y , and a continuous embedding Y ↪→ Z. Then, we have the compact
embedding

{u ∈ L2(0, T ;X)|∂u
∂t
∈ L2(0, T ;Z)} ⊂⊂ L2(0, T ;Y ),
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and
{u ∈ L∞(0, T ;X)|∂u

∂t
∈ L2(0, T ;Z)} ⊂⊂ C([0, T ];Y ).

1.4 Numerical simulation: foundations

To obtain some insights on the behavior of the solution of the partial differential equations,
numerical simulations can be useful. In our application to living tissues, numerical simulations
can illustrate key cellular processes and allow for a better understanding of key cellular processes
that underpin the dynamics of cells in living organisms and may allow for reliable qualitative
and quantitative predictions to be made.

This section aims to describe the mathematical foundations of the numerical methods that we
use for our applications. For each of the models described in the previous section, the unknowns
are functions of time and space (t, x) ∈ ΩT = [0, T ]× Ω.

We use the method of lines to discretize the continuous PDE model in time and space inde-
pendently.

Time discretization. We define NT ∈ N∗, let ∆t := T/NT be the constant time-step
and tk := k∆t, for k = 0, . . . , NT − 1. We consider a partitioning of the time interval
[0, T ] =

⋃NT−1
k=0 [tk, tk+1], and we denote by uk = u(tk, x) For a general continuous function

u(t, x), we approximate the time derivative by

∂u

∂t
≈ uk+1 − uk

∆t
.

In the following, we often use a semi-implicit discretization of the PDE models to simplify our
discrete problems. Indeed, some terms are taken at the previous time step to avoid solving
nonlinear systems by iterative algorithms. However, a careful discretization must be made to
prove that the discrete systems have the same properties as their continuous counterparts. Our
goal is to linearize the discrete equations while preserving essential quantities such as preserving
mass or the dissipation of the energy associated with the continuous model at the discrete level.

Finite element method. In this manuscript, we mainly focus on the design of efficient nu-
merical methods that use the finite element framework. We aim at propose schemes that can be
featured easily in already existing finite element software by making modifications in standard
assembling algorithms.

First of all, let us define the spatial discretization of our domain Ω. Let T h, h > 0 be a
quasi-uniform mesh of the domain Ω which is defined by disjoint piecewise linear mesh elements,
denoted by T ∈ T h, such that Ω ≈ Ωh =

⋃
T∈Th T . These mesh elements are triangles for d = 2

and tetrahedra for d = 3. Obviously, it exists other types of element such as quadrangles for
d = 2, and hexahedra for d = 3, however, in this manuscript, we only work with triangular and
tetrahedral discretization of Ω. We also denote by Nh, the total number of nodes of T h, and
indicate the set of nodes of T h by Jh with {xj}j=1,...,Nh the set of their coordinates. If Ω is
polyhedral then we have Ω = Ωh, however, if for example Ω has a curved boundary, then a small
interpolation error is made and Ω 6= Ωh.

We let h := maxT hT refers to level of refinement of the mesh, where hT := diam(T ) for
T ∈ T h, and we define by κT the minimal perpendicular length of T and κh = minT∈T h κT .
Furthermore, we assume that the mesh is quasi-uniform, which means it is shape-regular and
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there exists a constant C > 0 such that

hT ≥ Ch, ∀T ∈ T h.

We further assume that the mesh is acute, i.e. for d = 2 the angles of the triangles can not
exceed π

2 and for d = 3 the angle between two faces of the same tetrahedron can not exceed π
2 .

The acuteness hypothesis is a necessary assumption to have a less restrictive stability criterion
for our schemes.

To further improve the stability criteria of the finite element numerical schemes for the PDE
models under study, we use a mix of the finite element method with some terms treated as in
the finite volume method. To do so, we define the barycentric dual mesh associated to T h.

First, for an element T with vertices P1, . . . , PnT (nT being the number of vertices of the
element T ), we define λi (for i = 1, . . . , nT ), the barycentric coordinates of an arbitrary point X
inside the element T to be the real numbers satisfying

nT∑
i=1

λi = 1, and X =

nT∑
i=1

λiPi.

Hence, the barycenter of an element T is the only point for which we have

λi = λj , for i = 1, . . . , nT , and ∀j 6= i.

From these barycentric coordinates, we can define a subdivision of an element into barycentric
subdomains. To denote an element in the domain, we use an index k ∈ [1, Nel] where Nel is the
total number of elements in T h. Therefore, for any element Tk ∈ T h, we define the barycentric
subdomain associated to the vertex Pi ∈ Tk, by

Dk
i :=

nT⋂
j=1
j 6=i

{x;x ∈ Tk and λj(x) ≤ λi(x)}.

Graphically, Dk
i is colored in green in Figure 1.4 for a triangular element. The barycentric dual

Figure 1.4 – Barycentric subdomain in 2D for the vertex Pi

mesh is defined by these barycentric subdomains. We associate to each node xi of the mesh T h
a cell composed of the union of each barycentric subdomains associated to xi in the elements
that share this node. Thus, for each node xi ∈ Jh, we have the associated cell of the barycentric
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dual mesh
Di :=

⋃
k

{Dk
i ; Tk ∈ T h such thatxi ∈ T k}.

Figure 1.5 shows an example of triangular mesh for a domain Ω ⊂ R2 and its barycentric dual.

Figure 1.5 – Triangular mesh (solid lines) and its barycentric dual (dotted lines)

We define the P-1 finite element space associated to the mesh T h by

Vh := {χ ∈ C(Ω) : χ
∣∣
T
∈ P1(T ), ∀T ∈ T h} ⊂ H1(Ω),

where P1(T ) denotes the space of polynomials of order 1 on T . For each node xi ∈ Jh, we denote
by χi = χ(xi), the basis function evaluated at the node. Therefore, {χj}j=1,...,Nh is the standard
Lagrangian basis functions associated with the spatial mesh, and we define the approximation
of a general function f ∈ C0(Ω) by πhf = fh(x) =

∑Nh
i=1 f(xi)χi(x).

We combine this basis defined on each element of T h with a basis defined on the dual mesh.
Let χ̂i ∈ L∞(Ω) be the characteristic function of the barycentric domain Di associated with each
node xi (for i = 1, . . . , Nh). We define the lumped space V̂h as

V̂h := {χ̂ : piecewise constant over barycentric domains i.e. χ̂(x) = χ̂(xi), ∀x ∈ Di}.

This new finite element space is the standard P-0 finite element space on the barycentric dual
mesh. We can easily see that the functions {χ̂j}j=1,...,Nh form a basis of V̂h and we set that they
are associative to the functions {χj}j=1,...,Nh i.e. χ(xi) = χ̂(xi) for all xi ∈ Jh.

We also define the lumped scalar product by

(v1, v2)
h

=

∫
Ω

πh(v1(x)v2(x)) dx = (v̂1, v̂2) , ∀v1, v2 ∈ C0(Ω),

with v̂1 =
∑
xi∈Jh v1(xi)χ̂i.

The finite element method is applied on the weak formulation of PDEs. Our problem is to
find a solution of the PDE model in a certain space V such that its variational form is satisfied
for any test function v ∈ V . The Galerkin method consists into approximating the infinite
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dimensional space V by Vh of finite dimension. In our case, we use an approximation of the
space H1(Ω) with Vh, but also an approximation of the space L2(Ω) with V̂h.

Using the previous definitions, we can present the standard finite element matrices that are
encountered in the manuscript. We denote the standard and lumped mass matrices, associated
to the standard L2 scalar product and to the lumped scalar product, respectively by

Mij =

∫
Ω

χiχj dx, for i, j = 1, . . . , Nh,

Ml,ij =

∫
Ω

χ̂iχ̂j dx, for i, j = 1, . . . , Nh.

Therefore, we have that Ml is a diagonal matrix with

Ml,ii = |Di| =
1

3

∣∣∣{⋃T ∈ T h such that xi ∈ T
}∣∣∣ , for i = 1, . . . , Nh.

The stiffness matrix is defined by

Kij =

∫
Ω

∇χi∇χj dx, for i, j = 1, . . . , Nh.

Other finite element matrices are defined in the next chapters and are related to specific problems.
Combining the time and space discretizations, we define the approximation of a general

function u(t, x) as

u(tk, x) ≈ ukh(x) =

Nh∑
i=1

χi(x)uki , or ûkh(x) =

Nh∑
i=1

χ̂i(x)uki ,

where the nodal values are defined by uki = u(tk, xi).
Upwind method. Let us describe the multi-dimensional upwind approach that we use in the
numerical schemes. This method can be easily implemented in standard finite element assembling
routines. To explain this upwind method, we use the example of a P− 1 finite element method
for the first equation of the Keller-Segel model (1.11)

∂u

∂t
= Du∆u−∇ · (χ(u)∇c) ,

with zero-flux boundary conditions. We assume that the concentration of the chemoattractant is
known. In this model, χ(u) = χcu (1− u)

α is a degenerate chemosensitivity function with α ≥ 0.
A P-1 finite element scheme for this model can be(

un+1
h − unh

∆t
, χ

)h
= −Du (∇unh,∇χ) + (χ̃(unh)∇cnh,∇χ) , (1.13)

where χ̃(unh) is the upwind mobility that we are going to describe. The key idea of our up-
wind method is to define an approximation of this mobility function that allows to preserve the
non-negativity of the solution. Using the previous structures that we defined above, we approx-
imate the mobility function on each element by a piece-wise constant function χ̃(unh). Using the
barycentric coordinates, we subdivise each element T k ∈ T h in d+ 1 subdomains, for i = 1, 2, 3,
j = 2, 3, and i 6= j

D̃T
ij = {x ∈ T |λi, λj ≥ λk, k 6= i, j}.
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Figure 1.6 – Illustration of the subdomain D̃T
ij for d = 2.

To illustrate what are these subdomains, we represent graphically what is D̃T
1,2 on Figure 1.6 for

d = 2.
Then, for each x ∈ T , we know that x is in a subdomain D̃T

ij , therefore, for x ∈ D̃T
ij we

approximate the mobility function by

(χ̃(unh))(x) = χij =

{
unh(xi)(1− unh(xj))

α, if cnh(xi)− cnh(xj) ≥ 0,

unh(xj)(1− unh(xi))
α, otherwise.

Then, we compute the finite element matrix associated to the right-hand side of (1.13),

Aij =

∫
Ω

χ̃(unh)∇χi∇χj dx

=
∑
T∈T h

∫
T

χ̃(unh)∇χi∇χj dx.

Then, to approximate the last integral, we use a one-point quadrature and choose our quadrature
point in the subdomain D̃T

ij to obtain∫
T

χ̃(unh)∇χi∇χj dx ≈ χijKij .

As we will see in the following of the manuscript, the combination of the lumping of the
mass matrix defined from the barycentric dual mesh and this upwind method for finite element
stabilizes the numerical scheme and produces physically relevant solutions for the discrete systems
under study.

1.5 Summary of the thesis

In this thesis, we develop, analyze and simulate mathematical models representing pattern
formation, and self-organization for cells of living tissues. The manuscript follows a three-part
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organization:

— Part I is about the Cahn-Hilliard equation for biological application, especially tumor
growth. Aiming at designing an efficient structure-preserving numerical method for the
Cahn-Hilliard model with degenerate mobility and single-well logarithmic potential, in
Chapter 2, we start with a relaxation of the model. This latter reduces to solving of a
coupled system of two second-order equations of parabolic and elliptic type. Based on
this relaxation, we propose, study and simulate, in Chapter 3, two upwind finite-element
schemes for the relaxed degenerate Cahn-Hilliard model.

— Part II focuses on deriving new mathematical models for specific applications in Biology.
In Chapter 4, we study the effect of the Temozolomide drug on aggregates of glioma cells.
We assume that the cells change their mechanical properties in response to the drug, and, as
a result, the aggregates shrink. We use a non-linear volume-filling Keller-Segel model to give
a mathematical representation of this effect. Then, we simulate our model numerically, and
recover a qualitatively good agreement with what is observed in the biological experiments.
Then, in Chapter 5, we study the biological scenario of the invasion of a proliferating
population of cells in another tissue. We assume that the two populations have different
mechanical properties. Since we are convinced that the effects of attraction and repulsion
between cells play a crucial role in this scenario, we propose a compressible two-phase
Cahn-Hilliard model that is consistent with basic thermodynamics. We also show under
which assumptions we can retrieve previous models of the literature that represent this
biological scenario.

— Part III is about the application of a recent structure-preserving numerical method to non-
linear models. In Chapter 6, we use the Scalar Auxiliary Variable method for the simulation
of the volume-filling Keller-Segel model. The complete numerical scheme combines both
the upwind method inside the finite element framework that we propose in Chapter 3,
and the SAV method. We explore the analytical properties of this numerical scheme and
present some numerical simulations that seem to indicate a potential advantage of the
SAV method compared to other numerical methods. To investigate the changes induced
by the SAV method, in Chapter 7, we apply the method to a simpler model that arise
in Quantum Physics. After reviewing the critical analytical properties of the scheme, we
present a comparison between the SAV methods and numerical methods of reference for
this problem. This allows us to discuss the advantages of the SAV method for specific
applications.

In the following of this section, we summarize the main contributions of our work.

1.5.1 Towards an efficient numerical scheme for the degenerate Cahn-
Hilliard model for Biology

The degenerate Cahn-Hilliard model (1.4) with a single-well logarithmic potential induces
numerous difficulties both at the analytical and at the numerical level. Indeed, for our order
parameter n ∈ [0, 1), degeneracy of the mobility coefficient in n = 0 and n = 1 as well as
the singularity of the potential ψ(1) = +∞ makes the theoretical analysis substantially harder
compared to the constant mobility case with a smooth polynomial potential. Furthermore, the
fact that the degeneracy and singularity sets do not coincide, i.e. the single-well potential is
degenerate in n = 0 but not singular, produces instabilities at the discrete level. Indeed, the
solution of a standard discretization of the DCH model with single-well potential can become
negative, which is not physically consistent. Our work aims at solving this issue while designing
an efficient numerical scheme.
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Relaxation of the degenerate Cahn-Hilliard model

Based on analytical results on the degenerate Cahn-Hilliard with double-well singular poten-
tial [76], Agosti et. al. [8] analyzed the model properties when the potential is single-welled
and logarithmic. The authors show the existence of global weak solutions from compactness
properties and energy apriori estimates. Based on this work and aiming to design an efficient
numerical scheme for this model, we propose modifying the equation. A common approach to
reduce the difficulty induced by the equation order is to split the equation into a system of two
second-order equations. Based on this idea and using the fact that the single-well potential can
be decomposed as the sum of a convex and a non-convex part, we propose the model ∂tnσ = ∇ ·

(
b(nσ)∇

(
ϕσ + ψ′+(nσ)

))
in Ω× (0,+∞),

−σ∆ϕσ + ϕσ = −γ∆nσ + ψ′−
(
nσ −

σ

γ
ϕσ
)

in Ω× (0,+∞),
(1.14)

that we complete with zero-flux boundary conditions

∂(γnσ − σϕσ)

∂ν
= b(nσ)

∂
(
ϕσ + ψ′+(nσ)

)
∂ν

= 0 on ∂Ω× (0,+∞). (1.15)

In this form, the backward diffusion (aggregation part of the potential) is contained inside the new
variable ϕ. We further added a diffusion term in the equation for this new variable to regularize
the model. As a result, the original fourth-order equation is transformed into a system of two
second-order equations that features an extra regularization in space of the variable containing
the unstable term of backward diffusion. The decomposition of the potential in a convex and a
non-convex part will also be useful for the design of our numerical scheme. This idea originates
from the work of Eyre [82].

In Chapter 2 and [165], we are interested in proving the existence of global weak solutions
{nσ, ϕσ} for (1.14), and also check if we can prove that we recover the original Cahn-Hilliard
model in the limit σ → 0. We investigate also the behavior in the long-time of the solutions
and compare it to the one of the original equation. All the proofs in this work rely on apriori
estimates and compactness results. Mainly, an energy associated to the system (1.14) with
boundary conditions (1.15) can be found

Eσ[nσ] =

∫
Ω

[
ψ+(nσ) +

γ

2
|∇(nσ −

σ

γ
ϕσ)|2 +

σ

2γ
|ϕσ|2 + ψ−(nσ −

σ

γ
ϕσ)

]
,

and we also know that it dissipates i.e.

d

dt
Eσ[nσ(t)] = −

∫
Ω

b(nσ)
∣∣∇(ϕσ + ψ′+(nσ))

∣∣2 6 0.

However, from the energy, we cannot find an apriori estimate on ∇ϕσ. To tackle this issue,
we calculate the entropy of the system. Indeed, definition a convex function φ(·) such that
φ′′(nσ) = 1

b(nσ) , we find the entropy estimate

dΦ[nσ(t)]

dt
= −

∫
Ω

γ

∣∣∣∣∆(nσ − σ

γ
ϕσ

)∣∣∣∣2 +
σ

γ
|∇ϕσ|2 + ψ′′−(nσ −

σ

γ
ϕσ)

∣∣∣∣∇(nσ −
σ

γ
ϕσ)

∣∣∣∣2
+ ψ′′+(nσ)|∇nσ|2.

To show the existence of global weak solutions for the relaxed problem (1.15), we use a
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regularization method. Indeed, using a positive parameter ε, we define a positive mobility and a
non-singular potential. On this regularized model, we are able to compute the same energy and
entropy functionals. Then, from these two apriori estimates, and due to the fact that they are
bounded uniformly in ε, we are able to show the existence of global weak solutions for model
(1.14)–(1.15) from compactness results (Proposition 5). We also show that these weak solutions
satisfy 0 ≤ nσ < 1. The proof of this result is based on a contradictory argument obtained
from the boundedness of the entropy. Indeed, since in the case of the degenerate mobility
b(nσ) = nσ(1− nσ)2, the entropy behaves as

φ(nσ) = nσ log(nσ), for nσ ≈ 0+,

φ(nσ) = − log(1− nσ), for nσ ≈ 1−,

and, assuming proper initial conditions in H1(Ω), we know that the entropy functional
Φ[nσ(t, x)] =

∫
Ω
φ(nσ(t)) dx is bounded, and we conclude that the solutions nσ remain in [0, 1).

Using the fact that entropy and energy estimates are uniformly bounded in σ, we are able to
present the main theorem of Chapter 2

Theorem 6 (Limit σ = 0) Let (nσ,ε, ϕσ,ε) be a sequence of weak solutions of the regularized-
relaxed degenerate CH model. Then, assuming initial conditions {u0, ϕ0} ∈ H1(Ω)×H1(Ω) with
0 ≤ n0 < 1, we can extract a subsequence of (nσ,ε, ϕσ,ε) as ε, σ → 0, such that

ϕσ,ε ⇀ −γ∆n+ ψ′−(n) weakly in L2(ΩT ),

nσ,γ −
σ

γ
ϕσ,ε → n strongly in L2(0, T ;H1(Ω)),

nσ,ε, ∇nσ,ε → n, ∇n strongly in L2(ΩT ), and 0 6 n < 1,

and n < 1 a.e. if b vanishes fast enough at 1 so that φ(1) =∞.

∂tnσ,ε ⇀ ∂tn weakly in L2
(
0, T ; (H1(Ω))′

)
.

The limit n satisfies the DCH system (1.4) in the weak sense.

Therefore, from this result, we can confirm that the relaxed-degenerate Cahn-Hilliard model
(RDCH in short) is good approximation of the original DCH model. We propose a proof of that
in the complicated context of the single-well logarithmic potential. Obviously, this result also
extends to the case of double-well smooth and logarithmic potentials.

Then, in the end of Chapter 2, based on the control provided by energy and entropy es-
timates, we explore the behavior of the solutions of the RDCH in the long-time. Defining
nk(t, x) = n(t+ k, x), and ϕk(t, x) = ϕ(t+ k, x), we explore the large time limit k → ∞. Nu-
merically, we observe that the long-time behavior of the solutions of the RDCH model meets the
analytical description of the steady-states given by Songmu [183]: n varies smoothly in space
from plateaus of maximum value n = 1 to zones where n = 0 (see Figure 1.7). Analytically, we
retrieve the convergence of the solutions of the RDCH model to steady-states

Proposition 7 (Long term convergence along subsequences) Let (n, ϕ) be a weak solu-
tion of the RDCH model with initial condition n0 with 0 ≤ n0 < 1, and finite energy and
entropy. Then, we can extract a subsequence, still denoted by index k, of (nk, ϕk) such that

lim
k→∞

nk(x, t) = n∞(x), lim
k→∞

ϕk(x, t) = ϕ∞(x) strongly in L2
(
(−T, T )× Ω

)
, ∀T > 0,
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where (n∞, ϕ∞) are solutions of (2.83) satisfying

b(n∞)∇
(
ϕ∞ + ψ′+(n∞)

)
= 0.

Lastly, we conclude Chapter 2 by arguing that the RDCH model can be easily implemented in
standard finite element software, the only difficulty to be tackled being the loss of the positivity
of n at the discrete level.

Upwind finite-element scheme

Based on the work of Barrett et. al. [28], Agosti et. al. [8] proposed to use a finite ele-
ment scheme to simulate the DCH model that solves a variational inequality in order to enforce
positivity of the relative cell density n and the dissipation of the energy at the discrete level.
However, this non-linear numerical scheme is rather complicated to use since it requires an itera-
tive algorithm and a slight twist of the total mass to preserve the other quantities. Furthermore,
the scheme requires a lot of computational power. Indeed, even though the scheme is non-linear,
it is not entirely implicit and suffers restrictions for choosing the time step to remain stable and
accurate. To tackle the non-preservation of the initial mass, Agosti [7] proposed a discontinuous
Galerkin discretization of the DCH model. However, this has not solved the computational cost
issue since the discontinuous Galerkin method is well-known to be a computationally expen-
sive method. However, the numerical simulations conducted from [8] were applied in a concrete
study with patient data [10] showing a good agreement in evolution and volume of the tumor
even considering the effect of treatment in the model.

Based on the relaxation of the model made in Chapter 2, and to tackle some issues experienced
with previous numerical schemes for the DCH model, we conduct in Chapter 3 the design of a
P-1 finite element scheme for the relaxed-degenerate Cahn-Hilliard model. We use the finite
element framework presented in the previous section. Two different classes of numerical schemes
are presented in this chapter, the main difference between the two being the approximation of
the continuous mobility function b. In the first class of schemes, we follow the idea of Grün
and Rumpf [108] and use a piecewise constant matrix defined for each element of the mesh to
approximate the mobility. The advantage of this method is that it allows to obtain an entropy
estimate at the discrete level. However, this method requires the mesh to be composed of right-
angled elements for d = 2, 3. For this method, the solutions of the discrete scheme converge to
the solutions of the continuous RDCH model as ∆t, h→ 0. To perform the convergence analysis,
we used the discrete version of the entropy estimate since the mobility is defined to satisfy the
Definition 8. Then, we can use the projection of the derivative of the entropy on V h to compute
the entropy functional.

Definition 8 (mobility-entropy pair) An admissible entropy-mobility pair {M,φ} with re-
spect to the triangulation T h satisfies the following axioms

i) M : V h → ⊗|T
h|

k=1 Rd×d is continuous;

ii) M(s)
∣∣
K

= b(s)Id if s is constant on the element K ∈ T h;

iii) MT (s)∇πh(φ′(s)) = ∇s;
iv) on each element K ∈ T h, the matrix M(s)

∣∣
K

is symmetric and positive semidefinite.

Then, from the energy and entropy estimates obtained on the regularized discrete problem and
using compactness results, we are able to show the existence of a solution {nk+1

h , ϕk+1
h } ∈ Vh×Vh

with 0 ≤ nk+1
h < 1 for the non-regularized problem, and to perform a convergence analysis.
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To relax the previous constraint on the mesh (i.e. the mesh is composed of right-angled
elements), we propose an adaptation of the upwind method to compute the mobility at the
discrete level. This method allows to preserve the physical bounds of the cell density and dissipate
the energy for a non-linear semi-implicit time discretization.

The upwind method plays a role only in the calculation of the non-constant finite element
matrix U associated with the right-hand side of the first equation of the model (1.14). From
our multi-dimensional upwind method, we know that each entry of this matrix is given for i, j =
1, . . . , Nh, by

Uij =

∫
Ω

b̃(nk+1
h )∇χi∇χj dx,

≈ Bk+1
ij

∫
Ω

∇χi∇χj dx.

This upwind mobility b̃(nk+1
h ) is defined for every pair of nodes {xi, xj} as a constant in the

domain D̃T
ij defined in the section 1.4. Then, as in the finite volume method, defining

ξk+1
i :=

(
ϕk+1
h + ψ′+(nk+1

h )
)

(xi),

which is constant on each cell of the barycentric dual mesh Di, we look at the sign of the
difference ξk+1

j − ξk+1
i . This sign give us an information on the direction of the transport.

Therefore, inspired by the calculation of the upwind chemosensitivity in [45], we propose to take

Bk+1
ij :=

{
nk+1
i (1− nk+1

j )2, if ξk+1
i − ξk+1

j > 0,

nk+1
j (1− nk+1

i )2, otherwise,
i, j = 1, . . . , Nh.

In Chapter 3, we propose two schemes based on two different implicit-explicit time discretiza-
tions: a nonlinear scheme

(
nk+1
h −nkh

∆t , χ
)h

+
(
b̃(nk+1

h )∇
(
ϕk+1
h + πh(ψ′+(nk+1

h ))
)
,∇χ

)
= 0,

σ
(
∇ϕk+1

h ,∇χ
)

+
(
ϕk+1
h , χ

)h
= γ

(
∇nk+1

h ,∇χ
)

+
(
ψ′−(nkh − σ

γϕ
k
h), χ

)h
,

and a linear one
(
nk+1
h −nkh

∆t , χ
)h

+
(
b(nkh)ψ′′+(nkh)∇nk+1

h ,∇χ
)

= −
(
b̃(nkh)∇ϕk+1

h ,∇χ
)
,

σ
(
∇ϕk+1

h ,∇χ
)

+
(
ϕk+1
h , χ

)h
= γ

(
∇nkh,∇χ

)
+
(
ψ′−(nkh − σ

γϕ
k
h), χ

)h
.

For the first, we are able to prove that this scheme preserves the dissipation of the energy at the
discrete level, and we can derive an energy estimate. However, compared to the continuous case,
we can not define the entropy in a standard way at the discrete level and control the last terms
that we needed to make a convergence analysis.

For the practical and efficient linear scheme that we use for the numerical simulations, we can
show that it admits a unique solution and preserves the positivity of nk+1

h . Then, we present 1D
and 2D numerical simulations and compare them to the numerical experiments made by Agosti
[8]. We observe that even if we are simulating the RDCH model instead of the original DCH
model, the solutions given by the simulations are comparable. We cannot prove analytically
that the linear scheme dissipates the energy. However, we can see that this property is satisfied
during the simulations. Then, to explain the advantage of our relaxation that we have made at
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Figure 1.7 – Numerical simulation for d = 1 of the RDCH model. From the initial condition
(left), through the first stage (middle), to the stable steady-state (right).

the continuous level, we test the stability of our scheme for various values of σ by calculating
the spectral radius of the amplification matrix, and we observe that the relaxation allows to take
larger time steps.

1.5.2 Modelling of specific scenarios in Biology

Undertaking numerous biological experiments to unveil the mechanisms that cells of tissues
use in specific processes is costly in terms of time and money. Mathematical models provide
a framework in which different hypotheses can be tested and compared to the experiments.
If a model reproduces the behavior of the cells well, it gives an idea in which direction the
biologists may orient their research. The Cahn-Hilliard equation and the Keller-Segel model are
general models in which more physical effects can be added to represent particular scenarios in
Biology. In this manuscript, we present two mathematical models that can help biologists since
the numerical simulations are qualitatively in good agreement with the experiments.

Our first study comes from a collaboration with biologists from the Centre de Recherche en
Cancérologie et Immunologie Nantes-Angers to understand the possible change in mechanical
properties of glioblastoma cells in response to a chemotherapeutic treatment. The second one
aims at understanding the role of multiple mechanical effects such as viscosity or friction in the
unstable invasion of tumor cells in healthy tissue.

Change in mechanical properties of tumor cells due to treatment

From the biological observation during in-vitro experiments that spheroids of glioblastoma
cells shrink in response to chemotherapeutic treatment, biologists wonder what cells are under-
going in this process. In Chapter 4, we assume that spheroids of glioblastoma cells are formed
due to chemotaxis. This hypothesis was studied by mathematicians in [45], and is supported by
biologists since the tumor cells release chemical components, such as cytokines, in their micro-
environment known to drive the movement of cells. To understand the shrinking of these in-vitro
aggregates in response to a particular concentration of the chemotherapeutic drug Temozolomide
(TMZ), we propose to study the hypothesis that cells change their mechanical properties. When
the concentration of TMZ increases, the tumor cells switch from hard spheres to semi-elastic
bodies, and, therefore, in the presence of TMZ, tumor cells can squeeze. As a consequence, the
spheroids decrease in volume, i.e., the aggregates shrink.

To represent this effect in a mathematical model, we use the framework provided by the non-
linear volume-filling Keller-Segel model, and modify both the chemosensitivity and the diffusion
terms associated to the cells. We propose a two-part modelling: in the first part, the TMZ is not
introduced yet, and the model is the standard volume-filling Keller-Segel model with a logistic
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proliferation term for the cells, whereas, for the second part, we add a supplementary diffusion
equation for the TMZ that is coupled in a nonlinear manner to the equation for the cells.

Let us consider a domain with a smooth boundary (see Definition 1). For u(t, x) the density
of glioblastoma cells, c(t, x) the concentration of chemoattractant and M(t, x) the concentraton
of TMZ, the model for the first part of our study is{

∂tu = ∇ · (d1∇u− χuφ1(u)∇c) + f(u) ,

∂tc = d2∆c+ αu− βc ,
(1.16)

and for the second part (i.e. the effect of TMZ on already formed spheroids) is
∂tu = ∇ · (d3D2(u,M)∇u− χuφ2(u,M)∇c) + f(u) ,

∂tc = d2∆c+ αu− βc ,
∂tM = d4∆M − δu ,

(1.17)

where d1, d3, d2, d4, χu, α, β, δ are constant parameters, the chemosensitivity for the first part is
φ1(u) = u(1− u/umax) and f(u) is a logistic growth function

f(u) = r0u

(
1− u

umax

)
,

with umax denoting the carrying capacity i.e. the critical value of cell density above which cells
do not proliferate anymore. This model is supplemented by zero-flux boundary conditions i.e.
the walls of the domain are not permeable. The functions related to the non-constant part of
the diffusion coefficient, and to the strength of the chemotactic effect are given respectively by

D2(u,M) = 1 + (γM − 1)
(u
ū

)γM
and φ2(u,M) = u

(
1−

(u
ū

)γM)
,

with u ≥ umax being the packing capacity above which cells repel each other to avoid over-
crowding. We denote by γM ≥ 1 the squeezing parameter, which is a function of the TMZ
concentration M . This term is related to the elasticity of the cells. The larger γM is, the more
cells are elastic.

To understand the patterns we can expect from different values for the parameters, we conduct
a linear stability analysis. This analysis gives what value should take the ratio between the
chemotactic strength and the diffusion of the cells to see the emergence of aggregates as a
function of the other parameters that drive the cells’ proliferation and packing capacity. On
Figure 1.8, we present for different values of r0 and γM , what are the values of

A =
χu
d1
, and B =

χu
d3
,

such that, we see the emergence of patterns. This formation of structures is observed when
1

kmax
≤ kc, where kmax is the maximal wavefunction and kc the critical value such that the

perturbed linearized system is unstable.
After this linear stability analysis, we present numerical simulations based on the numerical

scheme presented in Chapter 3. We explore the effect of the length of the domain through different
scenarios such as introducing the drug at different times or for different initial conditions for M .
Then, we show the shrinking of the aggregates due to the TMZ in 2D numerical simulations.
Indeed, considering a Gaussian located at the center of a circular domain Ω as the initial condition
for M , and the initial condition for the cell density and chemoattractant being the result of the
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Figure 1.8 – Wavenumbers for different values of γM when (a) r0 = 0.1, umax = u0 = 0.5; and
for (b) r0 = 0.05, umax = u0 = 0.1 . Circles indicate the values of kc.

simulation of the first model (without TMZ), we observe the evolution depicted in Figure 1.9.
This figure shows the difference between the initial condition for u and the new cell density
at different times. We observe that the aggregates are shrinking, and this numerical result
is in qualitatively good agreement with the biological experiments. Therefore, based on these
numerical results, we propose that the reason for the shrinking of the aggregates of glioblastoma
cells in response to TMZ is the changes of mechanical properties of the cells.

(a) (b) (c)

Figure 1.9 – Difference between the solutions when the initial concentration of the treatment is
a Gaussian function centered in the domain. (a) T = 210, (b) T = 230 (c) T = 300 for T1 = 200,
r0 = 0.05 and u0 = 0.1.

Instabilities at the border of invasive tumors

The invasion of a tumor in healthy tissue is often associated with the emergence of irregu-
larities at the tumor surface. To understand the relevant physical effects playing a role in these
structural instabilities, we propose a general model based on the theory of mixture. We propose
to represent two populations of cells with different properties using a mixture composed of two
different components. We also specify that one population is proliferating while the other is not.
Let population 1 be the proliferating population, and let us denote ρi the relative density of the
i-th component, v = v1 + v2 the velocity of the mixture, c the mass fraction of component 1.

We assume the following:
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— the mixture is compressible, and the proliferation of the cells G(·) depends on the pressure
inside the mixture, that we denote in our model by p;

— the mixture is viscous and it exists an interfacial force between the two populations where
the width of the diffuse interface is proportional to √γ;

— to take into account the role of the extracellular matrix, which is assumed to be a lattice
of stiff fibers, we consider the velocity of the mixture to depend on a friction force κ(·),
which can be different in function of the cell type;

— cells exert attraction and repulsion forces depending on their type and relative density,
modeled by the potential ψ0.

Therefore, from general conservation laws for the two components of the mixture, and using
basic mechanics, we derive a generalized Navier-Stokes-Cahn-Hilliard model (generalized NSCH
in short)

∂ρ

∂t
+ div (ρv) = ρcG(p), (continuity equation for total density),

ρ
Dc

Dt
= div (b(c)∇µ) + ρc(1− c)G(p), (continuity equation for mass fraction of component 1),

ρµ = −γdiv (ρ∇c) + ρ
∂ψ0

∂c
, (definition of chemical potential),

ρ
Dv

Dt
=− [∇p+ γdiv (ρ∇c⊗∇c)] + div

(
ν(c)

(
∇v +∇vT

))
− 2

3
∇ (ν(c) (div (v)))− κ(c)v − ρcvG(p), (equation for the velocity of the fluid)

supplemented by homogeneous Neumann boundary conditions

∂µ

∂n
=
∂v

∂n
=
∂ρc

∂n
=
∂ρ

∂n
= 0,

where n is the outward normal vector to the boundary ∂Ω. From a set of constraints based
on thermodynamics laws, we derive a physically relevant model. Altogether, this model is a
generalization of previous researches about the compressible Cahn-Hilliard model. However, this
kind of models has never been applied to biological applications.

To understand the link with previous mathematical representations of invasion from the
literature, we change our model using simplifying assumptions. Mainly, we assume that friction
on the extra-cellular matrix is the preponderant effect. By formal asymptotical limits, we recover
models of the type of that considered in [139], which describes the dynamics of two populations
of cells with different mobilities and different proliferation rates{

∂ρ1
∂t − µ1div (ρ1∇p) = ρ1G(p),
∂ρ2
∂t − µ2div (ρ2∇p) = 0.

Here, ρ1 and ρ2 are the densities of the two populations, and µ1 and µ2 are the different mobility
coefficients of cells in the two populations. Since p = (ρ1 + ρ2)α (α ≥ 1), the two equations are
nonlinear and coupled. Numerical simulations of the this model show the formation of finger-like
instabilities if the proliferating population is moving faster (see Figure 1.10 where we reproduce
the results of Lorenzi et. al. [139]).

Our study indicates that the model from [139] is physically relevant even though it was
presented as a phenomenological representation of two cell populations. Indeed, in a certain
regime, our NSCH model, which is fully consistent with thermodynamics and mechanics laws,
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Figure 1.10 – Numerical simulation of the model from [139] with µ1 > µ2.

converges to the model (1.5.2). This asymptotic limit is obtained assuming that the friction of
cells on the ECM is the predominant effect. We plan to explain the role of the other effects such as
attraction-repulsion and viscosity of the fluids (with a possible contrast for the two components)
using numerical simulations. Our ultimate goal is to give a list of the possible physical effects
that play a role in the formation of instabilities at the surface of a growing tumor.

1.5.3 Structure-preserving numerical method for nonlinear models

Preserving the properties of the continuous form of the PDE models for their numerical
schemes often requires an implicit discretization since it is closer in some sense to the continuous
equation. However, for nonlinear PDE models, the preserving of the properties at the discrete
level requires to solve nonlinear ODE systems and, hence, to use costly iterative solver. Even
though implicit methods allow for larger time steps, one must often take a fine temporal grid
for reasons of accuracy. Therefore, in Part III we aim to find a structure-preserving method for
living tissue PDE models that allows for an implicit-explicit discretization such that the resulting
scheme is linear. To solve this problem, Shen et. al. [181, 179, 180] proposed a method initially
designed for nonlinear equations with a gradient-flow structure: the Scalar Auxiliary Variable
method. This method is designed to treat the nonlinear terms explicitly in the discrete model.
Even though the resulting scheme is linear, we are able to prove analytically that it dissipates
a modified energy. However, this method has been applied only on models involving constant
coefficients and models that do not induce instabilities at the discrete level.

Numerical method for the nonlinear volume-filling Keller-Segel model

In Chapter 6, we apply the SAV method to design a structure-preserving method for the
volume-filling KS model (1.11). This model is nonlinear and has a gradient flow structure.
Indeed, for u(t, x) the cell density, and c(t, x) the chemoattractant produced by the cells, the
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energy is given by

E [u, c](t) =

∫
Ω

Du

χc
[u log u− (u− 1) log(1− u)]− uc+

1

2

(
|∇c|2 + αc2

)
+ C dx,

with C ≥ 0 a constant such that the energy is positive. The gradient-flow form of the model is
then given by {

∂tu = ∇ ·
(
χcϕ(u)∇ δE

δu

)
,

τ∂tc = − δEδc .

The SAV method introduces a new unknown r =
√
E1[u] that "hides" the nonlinear terms such

that 

∂tu = ∇ · (χcϕ(u)∇µ1) ,

µ1 = B r√
E1[u]

g(u)− c,

τ∂tc = −µ2,

µ2 = −∆c+ αc− u,
dr
dt = 1

2
√
E1[u]

∫
Ω
g(u)∂u∂t dx,

is equivalent to the previous system.
From this SAV-KS model, we apply a P-1 finite element method and stabilize the scheme

using the multi-dimensional upwind method designed for the relaxed-degenerate Cahn-Hilliard
model. Altogether, our numerical scheme is an implicit-explicit linear finite element discretization
of the volume-filling KS model. We are able to show the existence of a unique solution to the
discrete system. Using results from mass-lumping stabilization of finite element discretization for
parabolic equation [94], we also show that our scheme preserves the positivity of the cell density
u, and its upper bound. Since we used the SAV method, we prove analytically that the scheme
dissipates a modified version of the energy.

An interesting observation is made while presenting our numerical results: the combination
of the SAV method with the multi-dimensional upwind method enhances the spatial order of
accuracy. Indeed, it is well-known that using upwinding, we expect to recover a method that is
less than first-order accurate in space. Computing the order of accuracy numerically, we recover
a slope between first and second order. Comparing the results obtained with a standard finite
element discretization of the scheme, a classical upwind method, and our SAV-upwind numerical
scheme, we observe that our scheme can remain accurate even in sharp zones (see Figure 1.11).

Long-time behavior of the Scalar Auxiliary Variable method for dispersive equations

Understanding the properties of numerical schemes designed from the Scalar Auxiliary Vari-
able remains unclear. Several applications of this method have been proposed for nonlinear
gradient-flow models and dispersive equations. For these latter, the conservation properties are
now well understood. A SAV scheme for a nonlinear dispersive equation allows for an uncondi-
tional conservation of a modified Hamiltonian energy. However, for the Nonlinear Schrödinger
(NLS in short) equation, it remains unclear how the error on the real Hamiltonian evolves,
especially for longtime simulations. For a smooth domain Ω, the NLS equation reads

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + f
(
|u(t, x)|2

)
u(t, x), t ∈ (0, T ], x ∈ Ω

In Chapter 7, we propose a SAV numerical scheme for the NLS equation using its Hamiltonian
formulation. We use a Crank-Nicholson temporal discretization, and a Fourier pseudo-spectral
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(a) Stable case (b) Top of an aggregate for stable case

(c) Unstable case (d) Top of an aggregate for unstable case

Figure 1.11 – End state of the simulations of the volume-filling KS model for a standard finite
element discretization, a classical upwind method in finite element, the SAV-upwind method.

method for the space discretization. Our scheme reads
pk+1−pk

∆t = −∆qk+1/2 + rk+1/2g̃
k+1/2
1 ,

qk+1−qk
∆t = ∆pk+1/2 − rk+1/2g̃

k+1/2
2 ,

rk+1 − rk = 1
2

[(
g̃
k+1/2
1 , qk+1 − qk

)
+
(
g̃
k+1/2
2 , pk+1 − pk

)]
,

(1.18)

with p and q being the unknowns of the Hamiltonian formulation of the NLS equation (made
from the decomposition u = p + iq). With g̃k+1/2

1 and g̃k+1/2
2 being second-order extrapolation

of
g1(p, q) =

1√
E1[t]

δE1[t]

δq
, g2(p, q) =

1√
E1[t]

δE1[t]

δp
.

Altogether, we expect our scheme to be second-order accurate in time and first-order in space.
We prove that our scheme conserves a modified Hamiltonian energy unconditionally, and we are
able to show that it also preserves the L2 norm of the solution through time up to an error of
order ∆t3.
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From these conservation properties, and some simple inequalities derived from the scheme
(and the conservation of the Hamiltonian), we present a standard convergence analysis and
conduct an estimation of the error committed by the scheme

Theorem 9 (Error analysis) Assuming that the solution of the SAV scheme with initial con-
dition satisfying

u0 ∈ H3(Ω).

The discrete solution {P k+1, Qk+1} of the scheme satisfies the error estimate∥∥∇ek+1
q

∥∥2

0
+
∥∥∇ek+1

p

∥∥2

0
+
∣∣ek+1
r

∣∣2 ≤ C exp
(

[1− Cτ ]
−1
tk+1

) (
τ4 +N−2

)
. (1.19)

We verify this analytical result with numerical simulations of solitary waves. We also compare
the orders of convergence and the errors committed on the Hamiltonian and the solution with
well-known numerical methods for this equation: the Lie and Strang splitting methods. The SAV
method can simulate solitons correctly, and we recover the correct orders of convergence. Using
the solution given by the SAV scheme to compute numerically the value of the Hamiltonian (not
the modified one), the Strang splitting method gives a better result. However, for the soliton
test case, the modified Hamiltonian given by the SAV scheme is closer to the real Hamiltonian
compared to the results given by both splitting techniques. This result holds even for long-time
simulations.

We then conduct numerical experiments to observe how the solution of the SAV scheme
behaves compared to the ones given by splitting techniques for particular choice of nonlinearities
and for different regularities of the initial condition. For the latter, the SAV scheme presents a
behavior close to the splitting techniques i.e. decreasing the regularity of the initial condition, the
order of convergence in time decreases. However, for non-integer exponent on the nonlinearity
f(|u|2) = β |u|

2
γ , we observe that the SAV scheme preserves its second-order convergence in time

whereas splitting techniques fail (see Figure 1.12).
Therefore, our study illustrates the favorable energy conservation of the SAV method com-

pared to classical splitting schemes in certain applications.

1.6 Discussion and perspectives

Mathematical models can help to unveil crucial mechanisms behind biological phenomena.
Our work aims to propose new mathematical models obtained from revisiting well-established
models to add particular effects and analyze these equations that are often nonlinear and induce
numerous difficulties. Then, to compare the models with biological experiments, numerical simu-
lations are needed. However, to rely on the numerical results, the time and space discretizations
must lead to a correct approximation of the continuous models. Therefore, structure-preserving
methods must be the first choice. However, due to their complexity and computational cost, nu-
merical schemes often used in Mathematical Biology are too many times oversimplifying methods.
To solve this issue, we propose in this manuscript different methods to simulate efficiently and
correctly mathematical models of living tissues.

1.6.1 Simulation of the relaxed-degenerate Cahn-Hilliard model and
effect of the relaxation

To solve the computational cost issue of previous numerical methods for the Cahn-Hilliard
equation with a biologically relevant choice of potential, we proposed a relaxation of the equation.
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Figure 1.12 – Error on the Hamiltonian for various values of ∆t for the nonlinear Schrödinger
equation with different non-integer exponent (γ = 2 top-left, γ = 8

3 top-right, γ = 4 bottom left
and γ = 8 bottom-right). The dotted lines represent the order ∆t (green) and ∆t2 (purple).

For this new model, we designed two structure-preserving numerical schemes. For the nonlinear
scheme, we were able to show analytically that it retrieves the properties of the relaxed model. For
the efficient linear scheme, the preservation of the structure of the model is observed during the
numerical simulations. Still, we can not prove analytically that the discrete energy is dissipating.
This property is essential to minimize the approximation error and is required to prove that the
solution of the discrete scheme converges to one solution of the continuous model.

We aim to adapt the Scalar Auxiliary Variable method to our relaxed-degenerate Cahn-
Hilliard model to solve this problem. Indeed, the RDCH model can be formulated as a gradient-
flow of its associated energy, and the SAV method can thus be applied. We adapted the SAV
method for the volume-filling Keller-Segel model, and showed that it allows to design an efficient
linear scheme that preserves the dissipation of a modified energy. To make sure that the modified
energy is close to the original one, we evaluated the error for a well-known nonlinear dispersive
equation analytically and numerically. Our results for the Keller-Segel model and the Nonlinear
Schrödinger equation show that the SAV method is robust, efficient, and if combined with an
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upwind stabilization, enhances the spatial accuracy.
However, it remains unclear at the moment how to evaluate the error between the solutions of

the RDCH model and of the DCH model due to the relaxation parameter σ. Indeed, understand-
ing quantitatively the error introduced by the relaxation remains an open question. Furthermore,
the comparison of our numerical scheme for the RDCH model with results of simulations of the
original DCH model was only qualitative. To allow for a quantitative comparison, we need to
identify a relevant quantity. We propose to compare the phase-ordering dynamics in two dimen-
sions for simulations of the original model performed in [8] and the ones given in Chapter 3. We
know from the literature that the coarsening domains follow a growth law of the form L(t) ∼ tα.
This law is estimated from the inverse of the first moment of the spherically averaged structure
factor [41]

L(t) =< k >−1=

∫
kS(k, t) dk∫
S(k, t) dk

,

with S(k, t) is the spherically averaged time-dependent structure factor, and k being the wavevec-
tors of the Fourier transform of the time-equal correlation function

C(r, t) =< n(x+ r, t)n(x, t) > .

where < · > denotes ensemble averaging. For the DCH model with a single-well logarithmic
potential, Agosti et. al. [8] indicated that the growth law is given by L(t) ∼ t0.3. Therefore, we
doing the same computations, we will be able to compare quantitatively the numerical results
for the DCH model and its relaxation.

1.6.2 Support a deeper understanding of key mechanisms in tumor
progression

In this manuscript, we investigated the role of mechanical effects in the progression and
organization of tumors. In particular, we proposed to give an explanation for two observed
phenomena in the organization of tumor cells. On the one hand, to understand the shrinking
of tumor cells due to a chemotherapeutic drug, we studied the assumption that tumor cells
change their mechanical properties: from a solid to a semi-elastic body. Our work relies on the
derivation and numerical simulations of a nonlinear volume-filling Keller-Segel model that takes
into account the effect of the drug. On the other hand, to explain the formation of irregularities
at the border of tumors during invasion processes, we proposed a mathematical model consistent
with basic mechanics and thermodynamics. Our mathematical model is rather complicated but
considers the effects of friction on the extracellular matrix, viscosity, attraction and repulsion
between the cells, and proliferation. These two works proposed mathematical models that focus
on physical effects as an explanation of the organization of tumor cells. In consequence, they are
coarse approximations of the reality, and to get closer to the biological reality, it is necessary to
take into account more effects.

Building upon the results of these two previous works, we are interested in investigating a
particular scenario for in-vivo tumors that can help the development of a recent therapy. Indeed,
recent researches in Medicine indicates that immunotherapy is a promising cure for malignant
tumors. Different immunotherapy treatments exist: targeted antibodies, cancer vaccines, adop-
tive cell transfer, tumor-infecting viruses, checkpoint inhibitors, cytokines, and adjuvants. The
response to this treatment depends on many factors, but one of the most important is the T
lymphocytes’ infiltration inside the tumor before the treatment. The different types of infiltra-
tion of tumors by lymphocytes is an indicator of the prognosis. Galon et. al. [96] proposed a
classification in four categories (see Figure 1.13). The hot tumors are inflamed and infiltrated
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with activated T cells even in the center of it. The category "altered-immunosuppressed" denotes
tumors with a small amount of infiltrated T cells. Tumors that enter the "altered-excluded" cat-
egory present different regions: their border is infiltrated by activated T cells while the center is
deprived from lymphocytes. The last category is "cold" tumors and they are often correlated to
a poor response to immunotherapy since no T cells are inside the tumor. However, very little is
known about T cells’ mechanisms and their different regulators to obtain the different observed
patterns.

(a) hot (b) cold

(c) altered-excluded (d) altered-immunosuppressed

Figure 1.13 – Classification of tumors in function of T cells infiltration [96] (permission to repro-
duce the figures has been asked to the journal and we are waiting for their answer).)

Based on the development of multiphase Cahn-Hilliard system [38, 39, 37, 127, 97], and
following the same approach as for the understanding of the irregularities during tumor invasion,
we will propose a general three-phase Cahn-Hilliard model representing the interaction between
tumor cells, immune cells, and the micro-environment. This model will consider the effect of cell-
cell adhesion and repulsion through a physically relevant choice of potential. Based on the works
of Boyer [38, 37], we will choose biologically relevant potentials for three-phase systems that
remain physically consistent, i.e., no artificial emergence of a third phase within the interface
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separating two phases. Indeed, our choice to add this effect of interaction between cells is
motivated by biological observations indicating that adhesion between tumor cells exists, and
adhesion between immune cells plays a central role in the recruiting and activation processes.
Chemotaxis for the immune cells will also be taken into account since it is well-known that
activated T cells release cytokines in the micro-environment that guide other T cells and play
an activating or inhibitory effect on the recruiting and activation. Then, two source terms
must be taken into account for the proliferation and death of the tumor cells, and the other
for recruiting activated T cells. These two source terms must be carefully chosen to represent
the different scenarios that can occur. For example, at a particular stage, the tumor cells are
expected to escape immune-surveillance, and therefore inactivate T cells, having the consequence
of decreasing their amount.

Our first calculations show that our mathematical model will be composed of two coupled
Cahn-Hilliard equations: one for the evolution of the tumor cells and the other for the evolution of
the immune cells (the micro-environment being determined from the two previous). To conduct
numerical experiments, we will adapt our relaxation method, and structure-preserving numerical
schemes. Other mechanical effects will be taken into account to understand their effects on the
observed patterns of infiltration.
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Chapter 2

Relaxation of the Cahn-Hilliard
equation for Biology

Abstract
The degenerate Cahn-Hilliard equation is a standard model to describe living tissues. It takes into
account cell populations undergoing short-range attraction and long-range repulsion effects. In this
framework, we consider the usual Cahn-Hilliard equation with a singular single-well potential and de-
generate mobility. These degeneracy and singularity induce numerous difficulties, in particular for its
numerical simulation. To overcome these issues, we propose a relaxation system formed of two second
order equations which can be solved with standard packages. This system is endowed with an energy and
an entropy structure compatible with the limiting equation. Here, we study the theoretical properties
of this system; global existence and convergence of the relaxed system to the degenerate Cahn-Hilliard
equation. We also study the long-time asymptotics which interest relies on the numerous possible steady
states with given mass.

This chapter is taken from Benoît Perthame, A. P., Relaxation of the Cahn-Hilliard equation with
singular single-well potential and degenerate mobility, European Journal of applied mathematics
(2020). Journal.

2.1 Introduction

The Degenerate Cahn-Hilliard equation (DCH in short) is a standard model, widely used in
the mechanics of living tissues, [29, 203, 61, 8, 6, 92]. It is usual to set this problem in a smooth
bounded domain Ω ⊂ Rd with the zero flux boundary condition

∂tn = ∇ · (b(n)∇ (−γ∆n+ ψ′(n))) in Ω× (0,+∞), (2.1)

∂n

∂ν
= b(n)

∂ (−γ∆n+ ψ′(n))

∂ν
= 0 on ∂Ω× (0,+∞), (2.2)

where ν is the outward normal vector to the boundary ∂Ω and n = n1

n1+n2
represents the relative

density or volume fraction of one of the two cell types.
Degeneracy of the coefficient b(n) and singularity of the potential ψ(n) make this problem par-

ticularly difficult to solve numerically and in particular, to preserve the apriori bound 0 6 n < 1.
Motivated by the use of standard software for elliptic or parabolic equations, we propose to study

37
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the following relaxed degenerate Cahn-Hilliard equation (RDHC in short) ∂tn = ∇ ·
(
b(n)∇

(
ϕ+ ψ′+(n)

))
in Ω× (0,+∞),

−σ∆ϕ+ ϕ = −γ∆n+ ψ′−
(
n− σ

γ
ϕ
)

in Ω× (0,+∞).
(2.3)

supplemented with zero-flux boundary conditions

∂(γn− σϕ)

∂ν
= b(n)

∂
(
ϕ+ ψ′+(n)

)
∂ν

= 0 on ∂Ω× (0,+∞). (2.4)

Our purpose is to study existence for this system, to prove that as σ → 0, the solution of RDCH
system converges to the solution of the DCH equation and study the possible long term limits
to steady states.

We make the following assumptions for the different inputs of the system (2.3). For the
mechanics of living tissues, the usual assumption is that the potential ψ is concave degenerate
near n = 0 (short-range attraction) and convex for n not too small (long-range repulsion).
Additionally, a singularity at n = 1 is desired to represent saturation by one phase [46]. For
these reasons, we call the potential single-well logarithmic and we decompose it in a convex and
a concave part ψ±

ψ(n) = ψ+(n) + ψ−(n), ±ψ′′±(n) > 0, 0 6 n < 1. (2.5)

The singularity is contained in the convex part of the potential and we assume that

ψ+ ∈ C2
(
[0, 1)

)
, ψ′+(1) =∞, (2.6)

and we extend the smooth concave part on [0, 1] to the full line with

ψ− ∈ C2(R) ψ−, ψ
′
−, ψ

′′
− are bounded and

σ

γ
||ψ′′−||∞ < 1. (2.7)

In practice, typical examples of potentials are, for some n∗ ∈ (0, 1), see [63, 56]

ψ(n) = −(1− n∗) ln(1− n)− n3

3
− (1− n∗)n

2

2
− (1− n∗)n+ k, (2.8)

ψ(n) =
1

2
n lnn+ (1− n) ln(1− n)− (n− 1

2
)2. (2.9)

The potential (2.8) fulfills our assumptions and the convex/concave decomposition reads for
n ∈ [0, 1)

ψ+(n) = −(1− n∗) log(1− n)− n3

3
, ψ−(n) = −(1− n∗)n

2

2
− (1− n∗)n+ k.

In this case ψ+ is convex if n∗ ≤ 0.7. Potential (2.9) does not satisfy our assumptions because of
the additional singularity at 0 (and thus is not treated here), however, it can also be decomposed
as needed with

ψ+(n) =
1

2
n lnn+ (1− n) ln(1− n), ψ−(n) = −(n− 1

2
)2.

To satisfy the assumptions (2.6) and (2.7), we need to extend the potential ψ− to all R since the
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above examples are defined for n ∈ [0, 1), which is an immediate task.
The potential (2.8) has been used to model the interaction between cancer cells from a

glioblastoma multiforme and healthy cells by Agosti et al. [9] and promising results have been
obtained. We also use the degeneracy assumption on b ∈ C1([0, 1];R+),

b(0) = b(1) = 0, b(n) > 0 for 0 < n < 1. (2.10)

The typical expression in the applications we have in mind is b(n) = n(1 − n)2. Consequently,
when considered as transport equations, both (2.1) and (2.3) impose formally the property that
0 6 n 6 1. However, we need an additional technical assumption, namely that there is some
cancellation at 1 such that

b(·)ψ′′(·) ∈ C([0, 1];R). (2.11)

We implicitly assume (2.5)–(2.11) in this paper. Also, we always impose an initial condition
satisfying

n0 ∈ H1(Ω), 0 ≤ n0 < 1 a.e. in Ω. (2.12)

The assumption n0 ∈ [0, 1) is consistent with the degeneracy of mobility at 0 which allows
solutions to vanish on open sets. But the singularity of the potential at 1 and the energy
bound make that n = 1 cannot be achieved except of a negligible set. Thanks to the boundary
condition (2.2), the system conserves the initial mass∫

Ω

n(x, t)dx =

∫
Ω

n0(x)dx =: M, ∀t ≥ 0.

We denote the flux associated with the RDCH system by

Jσ(n, ϕ) := −b(n)∇
(
ϕ+ ψ′+(n)

)
. (2.13)

The system (2.3) comes with energy and entropy structures, namely, the energy is defined as

Eσ[nσ] =

∫
Ω

[
ψ+(nσ) +

γ

2
|∇(nσ −

σ

γ
ϕσ)|2 +

σ

2γ
|ϕσ|2 + ψ−(nσ −

σ

γ
ϕσ)

]
. (2.14)

The energy is bounded from below thanks to the assumptions above and satisfies

d

dt
Eσ[nσ(t)] = −

∫
Ω

b(nσ)
∣∣∇(ϕσ + ψ′+(nσ))

∣∣2 6 0. (2.15)

For the entropy, we set for 0 < n < 1 the singular function

φ′′(n) =
1

b(n)
, Φ[n] =

∫
Ω

φ
(
n(x)

)
dx. (2.16)

The entropy functional behaves as follows in the case b(n) = n(1− n)2

φ(n) = n log(n), n ≈ 0+, φ(n) = − log(1− n), n ≈ 1−.

The relation holds

dΦ[nσ(t)]

dt
= −

∫
Ω

γ

∣∣∣∣∆(nσ − σ

γ
ϕσ

)∣∣∣∣2 +
σ

γ
|∇ϕσ|2 + ψ′′−(nσ −

σ

γ
ϕσ)

∣∣∣∣∇(nσ −
σ

γ
ϕσ)

∣∣∣∣2
+ ψ′′+(nσ)|∇nσ|2.

(2.17)
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Notice that entropy equality does not provide us with a direct a priori estimate because of the
term ψ′′− can be negative. Therefore we have to combine it with the energy dissipation to write

Φ[nσ(T )] +

∫
ΩT

[
γ

∣∣∣∣∆(nσ − σ

γ
ϕσ

)∣∣∣∣2 +
σ

γ
|∇ϕσ|2 + ψ′′+(nσ)|∇nσ|2

]

6 Φ[n0] +
2T

γ
‖ψ′′−‖∞ Eσ[n0].

The first use of the Cahn-Hilliard equation is to model the spinodal decomposition occurring
in binary materials during a sudden cooling [48, 47]. The bilaplacian −γ∆2n is used to represent
surface tension and the parameter γ is the square of the width of the diffuse interface between the
two phases. In both equations (2.1) and (2.3), n = n(x, t) is a relative quantity: for our biological
application this represents a relative cell density as derived from phase-field models [46] and for
this reason the property n ∈ [0, 1) is relevant. The biological explanation of the fact that 1 is
excluded from the interval of definition of n is due to the observation that cells tend to not form
aggregates that are too dense. For instance, the two phases can be the relative density of cancer
cells and the other component represents the extracellular matrix, liquid, and other cells. This
binary mixture tends to form aggregates in which the density of one component of the binary
mixture is larger than the other component. The interest of the Cahn-Hilliard equation stems
from solutions that reproduce the formation of such clusters of cells in vivo or on dishes. Several
variants are also used. A Cahn-Hilliard-Hele-Shaw model is proposed by Lowengrub et al [142]
to describe the avascular, vascular and metastatic stages of solid tumor growth. They proved the
existence and uniqueness of a strong solution globally for d ≤ 2 and locally for d = 3 as well as
the long term convergence to steady-state. The case with a singular potential is treated in [102].
Variants can include the coupling with fluid equations and chemotaxis, see for instance [71] and
the references therein.

The analysis of the long-time behavior of the solution of the Cahn-Hilliard equation has also
attracted much attention since the seminal paper [35]. A precise description of the ω-limit set has
been obtained in one dimension for the case of smooth polynomial potential and constant mobility
in [183]. In this work, the effect of the different parameters of the model such as the initial mass,
the width of the diffuse interface are investigated. In fact, the authors show that when γ is large,
the solution converges to a constant as t→∞. The same happens when the initial mass is large.
However when γ is positive and small enough, the system admits nontrivial steady-states. For
logarithmic potentials and constant mobility, Abels and Wilke [2] prove that solutions converge to
a steady-state as time goes to infinity using the Lojasiewicz–Simon inequality. Other works have
been made on the long term behavior of the solutions of some Cahn-Hilliard models including
a source term [59], with dynamic boundary conditions [101], coupled with the Navier-Stokes
equation [95], for non-local interactions and a reaction term [121].

Many difficulties, both analytical and numerical, arise in the context of Cahn-Hilliard equation
and its variants. Because of the bilaplacian term, most of the numerical methods require to
change the equation (2.1) into a system of two coupled equations{

∂tn = ∇ · (b(n)∇v) ,

v = −γ∆n+ ψ′(n).
(2.18)

This system of equations has been analyzed in the case where the mobility is degenerate and the
potential is a logarithmic double-well functional by Elliott and Garcke [76]. They establish the
existence of weak solutions of this system. Agosti et al [8] establish the existence of weak solutions
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when ψ is a single-well logarithmic potential which is more relevant for biological applications
(see [46]). They also prove that this system preserves the positivity of the cell density and the
weak solutions belong to

n ∈ L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω))∩H1(0, T ; (H1(Ω))′), J ∈ L2((0, T )×Ω,Rd) ∀T > 0,

The Cahn-Hilliard equation can be seen as an approximation of the famous microscopic model
in [99, 100]. With our notations, it reads

∂tn = ∇ ·
[
b(n)∇

(
Kσ ? n+ ψ′(n)

)]
,

with a symmetric smooth kernel Kσ −→
σ→0

∆δ. The convergence to the DCH equation has been
answered recently in [67] in the case of periodic boundary conditions. Although, very similar
in its form, our relaxation model undergoes different a priori estimates which allow us to study
differently the limit σ → 0 for (2.3).

For a full review about the mathematical analysis of the Cahn-Hilliard equation and its
variants, we refer the reader to the recent book of Miranville [147].

Numerical simulations of the DCH system have been also performed in the context of double-
well potentials in [77, 28]. To keep the energy inequality is a major concern in numerical methods
and the survey paper by Shen et al [180] presents a general method applied to the present context.

Numerics is also our motivation to propose a relaxation of equation (2.1) in a form close to the
writing (2.18). We recover the system (2.3) by introducing a new potential ϕ and a regularizing
equation which defines v through ∇ϕ. We use the decomposition (2.5) of the potential to keep
the convex and stable part in the main equation for n, rejecting the concave and unstable part
in the regularized equation. The relaxation parameter is σ and we need to verify that, in the
limit σ → 0, we recover the original DCH equation (2.1). This is the main purpose of the present
paper.

As a first step towards the existence of solutions of (2.3), in section 2.2, we introduce a
regularized problem which is not anymore degenerate and we prove the existence of weak solutions
for this regularized-relaxed Cahn-Hilliard system. We show energy and entropy estimates from
which we obtain a priori estimates which are used later on. In section 2.3, we pass to the limit
in the regularization parameter ε and show the existence of weak solutions of the RDCH system.
Then, in section 2.4, we prove the convergence as σ → 0 to the full DCH model. Section 2.5 is
dedicated to the study of the long term convergence of the solutions to steady-states. We end
the paper with some conclusions and perspectives.

2.2 The regularized problem
To prove that the system (2.3), admits solutions and to precise the functional spaces, we first

define a regularized problem. Then we prove the existence of solutions and estimates based on
energy and entropy relations.

2.2.1 Regularization procedure
We consider a small positive parameter 0 < ε� 1 and define the regularized mobility

Bε(n) =


b(1− ε) for n ≥ 1− ε,
b(ε) for n ≤ ε,
b(n) otherwise.

(2.19)
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Then, there are two positive constants b1 and B1, such that

b1 < Bε(n) < B1, ∀n ∈ R. (2.20)

Thus, the regularized mobility satisfies

Bε ∈ C(R,R+). (2.21)

To define a regular potential, we smooth out the singularity located at n = 1 which only occurs
in ψ+, see (2.6)–(2.7), and preserve the assumption (2.11) by setting

ψ′′+,ε(n) =


ψ′′+(1− ε) for n ≥ 1− ε,

ψ′′+(ε) for n ≤ ε,

ψ′′+(n) otherwise.

(2.22)

It is useful to notice that, for some positive constants D1 independent of 0 < ε 6 ε0 and Dε, we
have

ψ+,ε(n) ∈ C2(R,R) ψ+,ε(n) > −D1, |ψ′ε(n)| ≤ Dε(1 + |n|), ∀n ∈ R. (2.23)

See also [8] for details about the extensions needed for the potential (2.8).
We can now define the regularized problem ∂tnσ,ε = ∇ ·

[
Bε(nσ,ε)∇(ϕσ,ε + ψ′+,ε(nσ,ε))

]
,

−σ∆ϕσ,ε + ϕσ,ε = −γ∆nσ,ε + ψ′−(nσ,ε −
σ

γ
ϕσ,ε),

(2.24)

with zero-flux boundary conditions

∂(nσ,ε − σ
γϕσ,ε)

∂ν
=
∂
(
ϕσ,ε + ψ′+,ε(nσ,ε)

)
∂ν

= 0 on ∂Ω× (0,+∞). (2.25)

It is convenient to define the flux of the regularized system as

Jσ,ε = −Bε(nσ,ε)∇
(
ϕσ,ε + ψ′+,ε(nσ,ε)

)
.

2.2.2 Existence for the regularized problem

We can now state the existence theorem for the regularized problem (2.24).

Theorem 10 (Existence for ε > 0) Assuming n0 ∈ H1(Ω), there exists a pair of functions
(nσ,ε, ϕσ,ε) such that for all T > 0,

nσ,ε ∈ L2(0, T ;H1(Ω)), ∂tnσ,ε ∈ L2(0, T ; (H1(Ω))′),

ϕσ,ε ∈ L2(0, T ;H1(Ω)),

nσ,ε −
σ

γ
ϕσ,ε ∈ L2(0, T ;H2(Ω)), ∂t

(
nσ,ε −

σ

γ
ϕσ,ε

)
∈ L2(0, T ; (H1(Ω))′),

which satisfies the regularized-relaxed degenerate Cahn-Hilliard equation (2.24), (2.25) in the
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following weak sense: for all test function χ ∈ L2(0, T ;H1(Ω)), it holds∫ T

0

< χ, ∂tnσ,ε > =

∫
ΩT

Bε(nσ,ε)∇
(
ϕσ,ε + ψ′+,ε(nσ,ε)

)
∇χ,

σ

∫
ΩT

∇ϕσ,ε∇χ+

∫
ΩT

ϕσ,εχ = γ

∫
ΩT

∇nσ,ε∇χ+

∫
ΩT

ψ′−(nσ,ε −
σ

γ
ϕσ,ε)χ.

(2.26)

Proof. We adapt the proof of the theorem 2 in [76] where the authors prove the existence
of solutions of the Cahn-Hilliard system with positive mobilities. Since the regularized mobility
here is positive due to (2.20), we can apply the same theorem. The proof of existence follows the
following different stages

Step 1. Galerkin approximation. Firstly, we make an approximation of the regularized problem
(2.24). We define the family of eigenfunctions {φi}i∈N of the Laplace operator subjected to zero
Neumann boundary conditions.

−∆φi = λiφi in Ω with ∇φi · ν = 0 on ∂Ω.

The family {φi}i∈N form an orthogonal basis of both H1(Ω) and L2(Ω) and we normalize them,
i.e. (φi, φj)L2(Ω) = δij to obtain an orthonormal basis. We assume that the first eigenvalue is
λ1 = 0 (which does not introduce a lack of generality).

We consider the following discretization of (2.24)

nN (t, x) =

N∑
i=1

cNi (t)φi(x), ϕN (t, x) =

N∑
i=1

dNi (t)φi(x), (2.27)∫
Ω

∂tn
Nφj = −

∫
Ω

Bε(n
N )∇

(
ϕN + ΠN

(
ψ′+,ε(n

N )
))
∇φj , for j = 1, ..., N, (2.28)∫

Ω

ϕNφj = γ

∫
Ω

∇
(
nN − σ

γ
ϕN
)
∇φj +

∫
Ω

ψ′−(nN − σ

γ
ϕN )φj , for j = 1, ..., N, (2.29)

nN (0, x) =

N∑
i=1

(n0, φi)L2(Ω) φi. (2.30)

We have used the L2 projection ΠN : L2(Ω) → V , where V = span{φ1, ..., φN}. This gives the
following initial value problem for a system of ordinary differential equations, for all j = 1, ..., N ,

∂tc
N
j = −

∫
Ω

Bε(

N∑
i=1

cNi φi)∇

(
ϕN + ΠN

(
ψ′+,ε(

N∑
i=1

cNi φi)

))
∇φj , (2.31)

dNj = γλjc
N
j − σλjdNj +

∫
Ω

ψ′−(

N∑
k=1

(cNk −
σ

γ
dNk )φk)φj , (2.32)

cNj (0) = (n0, φj)L2(Ω) . (2.33)

Since the right-hand side of equation (2.31) depends continuously on the coefficients cNj , the
initial value problem has a local solution.

Step 2. Inequalities and convergences. Multiplying equation (2.31), by φi
(
ϕN + ψ′+(nN )

)
, then
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summing over i and integrating over the domain leads to

d

dt

∫
Ω

ψ+,ε(n
N ) +

∫
Ω

∂t(n
N )ϕN

=

∫
Ω

∑
i

(ϕN + ψ′+,ε(n
N ))φi

∫
Ω

∇φi
(
Bε(n

N )∇
(
ϕN + ΠN

(
ψ′+,ε(n

N )
)))

dy dx.

(2.34)
Let us focus on the left-hand side with∫

Ω

∂t(n
N )ϕN =

∫
Ω

∂t(n
N − σ

γ
ϕN )ϕN +

1

2

σ

γ

d

dt

∫
Ω

|ϕN |2.

Then, using the equation (2.29), we have that∫
Ω

∂t(n
N − σ

γ
ϕN )ϕN =

γ

2

d

dt

∫
Ω

|∇(nN − σ

γ
ϕN )|2 +

d

dt

∫
Ω

ψ−(nN − σ

γ
ϕN ).

The right-hand side of equation (2.34) gives

−
∫

Ω

∑
i

(ϕN + ψ′+,ε(n
N ))φi

∫
Ω

∇φi
(
Bε(n

N )∇
(
ϕN + ΠN

(
ψ′+,ε(n

N )
)))

dy dx

= −
∫

Ω

Bε(n
N )
∣∣∇ (ϕN + ΠN

(
ψ′+,ε(n

N )
))∣∣2 .

Altogether, we obtain

d

dt
E(t) +

∫
Ω

Bε(n
N )
∣∣∇ (ϕN + ΠN

(
ψ′+,ε(n

N )
))∣∣2 ≤ 0, (2.35)

where

E(t) =

∫
Ω

ψ+,ε(n
N ) +

γ

2

∫
Ω

|∇(nN − σ

γ
ϕN )|2 +

1

2

σ

γ

∫
Ω

|ϕN |2 +

∫
Ω

ψ−(nN − σ

γ
ϕN ).

Next, to prove the compactness in space of ∇nN , we write

min
nN

(
1 + σ

γψ
′′
+,ε

ψ′′+,ε

)2 ∫
Ω

∣∣∇ψ′+,ε(nN )
∣∣2 ≤ ∫

Ω

(
1 + σ

γψ
′′
+,ε

ψ′′+,ε

)2 ∣∣∇ψ′+,ε(nN )
∣∣2

≤
∫

Ω

∣∣∣∣∇(nN +
σ

γ
ψ′+,ε(n

N )

)∣∣∣∣2 .
Therefore, for some θ > 0, we have((

σ

γ

)2

+ θ

)∫
Ω

∣∣∇ψ′+,ε(nN )
∣∣2 ≤∫

Ω

∣∣∇(nN − σ

γ
ϕN
)

+
σ

γ
∇
(
ϕN + ΠN

(
ψ′+,ε(n

N )
))

+
σ

γ
∇
(
ψ′+,ε(n

N )−ΠN
(
ψ′+,ε(n

N )
)) ∣∣2.
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Finally, we obtain((
σ

γ

)2

+ θ

)∫
Ω

∣∣∇ψ′+,ε(nN )
∣∣2 ≤ C(T ) +

(
σ

γ

)2 ∫
Ω

∣∣∇ (ψ′+,ε(nN )−ΠN
(
ψ′+,ε(n

N )
))∣∣2

≤ C(T ) +

(
σ

γ

)2 ∫
Ω

∣∣∇ψ′+,ε(nN )
∣∣2 ,

and we proved that

θ

∫
Ω

∣∣∇ψ′+,ε(nN )
∣∣2 ≤ C(T ).

Therefore, we can obtain from the previous inequalities the following

γ

2

∫
Ω

|∇(nN − σ

γ
ϕN )|2 ≤ C, (2.36)

σ

2γ

∫
Ω

|ϕN |2 ≤ C, (2.37)∫
ΩT

Bε(n
N )
∣∣∇ (ϕN + ΠN

(
ψ′+,ε(n

N )
)) ∣∣2 ≤ C, (2.38)

θmin
r∈R

(
ψ′′+,ε(r)

) ∫
Ω

|∇nN |2 ≤ C(T ), (2.39)

which hold for positive values of γ, σ, θ and also for all finite time T ≥ 0. Therefore, from these
inequalities we can extract subsequences of (nN , ϕN ) such that the following convergences hold
for any time T ≥ 0 and small positive values of γ, σ.

Taking j = 1 in (2.28), gives the results that d
dt

∫
nN = 0. Then, using the inequality (2.39)

and the Poincaré-Wirtinger inequality, we obtain

nN ⇀ nσ,ε weakly in L2(0, T ;H1(Ω)). (2.40)

This result, in turn, implies that the coefficients cNj are bounded and a global solution to (2.31)–
(2.33) exists. Choosing j = 1 in (2.29) gives∫

Ω

ϕN =

∫
Ω

ψ−

(
nN − σ

γ
nN
)
,

and combining (2.36), (2.40) and the Poincaré-Wirtinger inequality gives

ϕN ⇀ ϕσ,ε weakly in L2(0, T ;H1(Ω)). (2.41)

We also obtain from (2.40) and (2.41)

nN − σ

γ
ϕN ⇀ nσ,ε −

σ

γ
ϕσ,ε weakly in L2(0, T ;H1(Ω)). (2.42)

From the previous convergence, we conclude that ϕσ,ε ∈ L2(0, T ;H1(Ω)), therefore, using elliptic
regularity we know that

nσ,ε −
σ

γ
ϕσ,ε ∈ L2(0, T ;H2(Ω)). (2.43)

To be able to prove some strong convergence in L2(0, T ;L2(Ω)) of nN , we need an information
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about the temporal derivative ∂tnN . From the first equation of the system, we have for all test
functions φ ∈ L2(0, T ;H1(Ω))∣∣∣∣∫

ΩT

∂tn
Nφ

∣∣∣∣ =

∣∣∣∣∫
ΩT

∂tn
NΠNφ

∣∣∣∣
=

∣∣∣∣∫
ΩT

b(nN )∇
(
ϕN + ΠN

(
ψ′+,ε(n

N )
))
∇ΠNφ

∣∣∣∣
≤
(
B1

∫
ΩT

Bε(n
N )
∣∣∇ (ϕN + ΠN

(
ψ′+,ε(n

N )
))∣∣2) 1

2
(∫

ΩT

|∇ΠNφ|2
) 1

2

.

(2.44)

Using (2.38), we obtain ∣∣∣∣∫
ΩT

∂tn
Nφ

∣∣∣∣ ≤ C (∫
ΩT

|∇ΠNφ|2
) 1

2

. (2.45)

Thus we can extract a subsequence such that

∂tn
N ⇀ ∂tnσ,ε weakly in L2(0, T ; (H1(Ω))′). (2.46)

From (2.40) and (2.46) and using the Lions-Aubin Lemma, we obtain the strong convergence

nN → nσ,ε strongly in L2(0, T ;L2(Ω)). (2.47)

Next, we need to prove the strong convergence of nN − σ
γϕ

N in L2(0, T ;H1(Ω)). In order to
do that we must bound the L2(0, T ; (H1(Ω))′) norm of its time derivative. Starting from the
equation (2.32), multiplying it by −σγ , adding c

N
j and calculating its time derivative, we obtain

d

dt

(
cNj −

σ

γ
dNj

)
=

d

dt
cNj − σλj

d

dt

(
cNj −

σ

γ
dNj

)
− σ

γ

d

dt

∫
Ω

ψ′−

(
nN − σ

γ
ϕN
)
φj .

Multiplying the previous equation by φj∂t
(
nN − σ

γϕ
N
)
, summing over j and integrating over

Ω, we obtain∫
Ω

(
∂t

(
nN − σ

γ
ϕN
))2

+ σ

∫
Ω

∣∣∇(∂t(nN − σ

γ
ϕN
)) ∣∣2 =

∫
Ω

∂tn
N∂t

(
nN − σ

γ
ϕN
)

−
∑
j

∫
Ω

φj∂t

(
nN − σ

γ
ϕN
)
σ

γ

d

dt

∫
Ω

ψ′−

(
nN − σ

γ
ϕN
)
φj dx dy.

Let us define UN = ∂t

(
nN − σ

γϕ
N
)
and rewrite the previous equation

σ

∫
Ω

|∇UN |2 +

∫
Ω

|UN |2 =

∫
Ω

∂tn
NUN − σ

γ

∫
Ω

|UN |2ψ′′−(nN − σ

γ
ϕN ).

From the Cauchy-Schwarz inequality, we obtain

0 ≤ ||∇UN ||2L2(Ω) +

(
1− σ

γ
||ψ′′−||∞

)
||UN ||2L2(Ω) ≤ ||∂tn

N ||L2(Ω)||UN ||L2(Ω). (2.48)
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Finally, from the (2.7) we obtain that

||UN ||L2(0,T ;(H1(Ω))′) ≤ C.

Therefore, we can extract a subsequence such that

∂t

(
nN − σ

γ
ϕN
)
⇀ ∂t

(
nσ,ε −

σ

γ
ϕσ,ε

)
weakly in L2(0, T ; (H1(Ω))′). (2.49)

Using (2.49) and (2.43) and the Lions-Aubin lemma we obtain the following strong convergence

nN − σ

γ
ϕN → nσ,ε −

σ

γ
ϕσ,ε strongly in L2(0, T ;H1(Ω)). (2.50)

Step 3. Limiting equation. The main difficulty to pass to the limit in the equation (2.29) relies
mainly on the convergence of the term

∫
Ω
ψ′−(nN − σ

γϕ
N )φj which is solved using the strong

convergence (2.50) and the properties (2.7). Therefore, we obtain

ψ′−(nN − σ

γ
ϕN )→ ψ′−(nσ,ε −

σ

γ
ϕσ,ε) a.e. in ΩT . (2.51)

Then combining the convergences (2.42), (2.41), (2.51) and the Lebesgue dominated convergence
theorem, we pass to the limit in the equation (2.29). We can also pass to the limit in the first
equation (2.28) by the standard manner (see [134]), using the strong convergence (2.47), the
properties of the mobility (2.21) and the potential (2.23). Altogether, we obtain the limiting
system (2.26).

2.2.3 Energy, entropy and a priori estimates

The relaxed and regularized system (2.24) comes with an energy and an entropy. These
provide us with estimates which are useful to prove the existence of global weak solutions of (2.24)
and their convergence to the weak solutions of the original DHC equation or to the RDHC as ε
and/or σ → 0.

Being given a solution (nσ,ε, ϕσ,ε) satisfying Theorem 10, we define the energy associated with
the regularized potential ψ+,ε and relaxed system as

Eσ,ε[nσ,ε] =

∫
Ω

[
ψ+,ε(nσ,ε) +

γ

2
|∇(nσ,ε −

σ

γ
ϕσ,ε)|2 +

σ

2γ
|ϕσ,ε|2 + ψ−(nσ,ε −

σ

γ
ϕσ,ε)

]
, (2.52)

where ϕσ,ε is obtained from nσ,ε by solving the elliptic equation in (2.24). Notice that Eσ,ε[nσ,ε]
is lower bounded, uniformly in ε and σ, thanks to the assumptions on ψ− in (2.7) and the
construction of ψε,+ in (2.23).

Proposition 11 (Energy) Consider a solution (nσ,ε, ϕσ,ε) of (2.24)–(2.25) defined by Theo-
rem 10, then, the energy of the system Eσ,ε satisfies

d

dt
Eσ,ε[nσ,ε(t)] = −

∫
Ω

Bε(nσ,ε)
∣∣∇(ϕσ,ε + ψ′+,ε(nσ,ε))

∣∣2 6 0. (2.53)
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As a consequence, we obtain a first a priori estimate

Eσ,ε[nσ,ε(T )] +

∫ T

0

∫
Ω

Bε(nσ,ε)
∣∣∇(ϕσ,ε + ψ′+,ε(nσ,ε))

∣∣2 = Eσ,ε[n0]. (2.54)

Proof. To establish the energy of the regularized system, we begin with multiplying the first
equation of (2.24) by ϕσ,ε +ψ′+,ε(nσ,ε). Then, we integrate on the domain Ω and use the second
boundary condition (2.25) to obtain∫

Ω

[ϕσ,ε + ψ′+,ε(nσ,ε)]∂tnσ,ε = −
∫

Ω

Bε(nσ,ε)|∇(ϕσ,ε + ψ′+,ε(nσ,ε))|2.

Since ψ′+,ε(nσ,ε)∂tnσ,ε = ∂tψ+,ε(nσ,ε), to retrieve the energy equality (2.53) we need to focus on
the calculation of

∫
Ω
ϕσ,ε∂tnσ,ε. We write∫

Ω

ϕσ,ε∂tnσ,ε =

∫
Ω

ϕσ,ε∂t[nσ,ε −
σ

γ
ϕσ,ε] +

d

dt

∫
Ω

σ

2γ
|ϕσ,ε|2,

and using the second equation of (2.24), we rewrite the first term as∫
Ω

ϕσ,ε∂t[nσ,ε −
σ

γ
ϕσ,ε] =

∫
Ω

[−γ∆(nσ,ε −
σ

γ
ϕσ,ε) + ψ′−(nσ,ε −

σ

γ
ϕσ,ε)]∂t[nσ,ε −

σ

γ
ϕσ,ε]

=
d

dt

∫
Ω

γ

2
∇(nσ,ε −

σ

γ
ϕσ,ε)|2 + ψ−(nσ,ε −

σ

γ
ϕσ,ε),

where we have used the first boundary condition (2.25).
Altogether, we have recovered the expression (2.52) and the equality (2.53).

We can now turn to the entropy inequality. It is classical to define the mapping φε : [0,∞) 7→
[0,∞)

φ′′ε (n) =
1

Bε(n)
, φε(0) = φ′ε(0) = 0, (2.55)

which is well defined because Bε ∈ C(R,R+) from (2.20). For a nonnegative function n(x), we
define the entropy as

Φε[n] =

∫
Ω

φε
(
n(x)

)
dx.

Proposition 12 (Entropy) Consider a solution of (2.24)–(2.25) defined by Theorem 10, then
the entropy of the system satisfies

dΦε[nσ,ε(t)]

dt
= −

∫
Ω

γ

∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 +
σ

γ
|∇ϕσ,ε|2 + ψ′′−(nσ,ε −

σ

γ
ϕσ,ε)

∣∣∣∣∇(nσ,ε −
σ

γ
ϕσ,ε)

∣∣∣∣2
+ ψ′′+,ε(nσ,ε)|∇nσ,ε|2.

(2.56)

Notice that the dissipation terms are all well defined by our definition of solution in Theorem 10.
However, the equality (2.56) does not provide us with a direct a priori estimate because of the
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negative term ψ′′−, therefore we have to combine it with the energy identity to write

Φε[nσ,ε(T )] +

∫
ΩT

[
γ

∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 +
σ

γ
|∇ϕσ,ε|2 + ψ′′+,ε(nσ,ε)|∇nσ,ε|2

]

6 Φε[n
0] +

2T

γ
‖ψ′′−‖∞ Eσ,ε[n0].

Proof. We compute, using the definition of φ′′ε ,∫
Ω

∂tφε(nσ,ε) =

∫
Ω

∂tnσ,εφ
′
ε(nσ,ε)

=

∫
Ω

∇ ·
[
Bε(nσ,ε)∇(ϕσ,ε + ψ′+,ε(nσ,ε))

]
φ′ε(nσ,ε)

= −
∫

Ω

Bε(nσ,ε)∇(ϕσ,ε + ψ′+,ε(nσ,ε))φ
′′
ε (nσ,ε)∇nσ,ε

= −
∫

Ω

∇(ϕσ,ε + ψ′+,ε(nσ,ε))∇nσ,ε

= −
∫

Ω

∇ϕσ,ε∇(nσ,ε −
σ

γ
ϕσ,ε) + ψ′′+,ε(nσ,ε)|∇nσ,ε|2 +

σ

γ
|∇ϕσ,ε|2.

(2.57)

To rewrite the term
∫

Ω
∇ϕσ,ε∇(nσ,ε − σ

γϕσ,ε), we use the second equation of the regularized
system (2.24)

ϕσ,ε = −γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
+ ψ′−(nσ,ε −

σ

γ
ϕσ,ε). (2.58)

Using (2.58) and the boundary condition (2.25), we can rewrite the term under consideration as∫
Ω

ϕσ,ε∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
=

∫
Ω

−γ
∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 + ψ′−(nσ,ε −
σ

γ
ϕσ,ε)∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
= −

∫
Ω

γ

∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 + ψ′′−(nσ,ε −
σ

γ
ϕσ,ε)

∣∣∣∣∇(nσ,ε −
σ

γ
ϕσ,ε)

∣∣∣∣2 .
Injecting this equality into (2.57), we obtain the identity (2.56).

2.2.4 Inequalities

From the energy and entropy properties, we can conclude the following a priori bounds, where
we assume that the initial data has finite energy and entropy,

σ

2γ

∫
Ω

|ϕσ,ε(t)|2 6 Eσ,ε[n0], ∀t > 0, (2.59)

σ

γ

∫ T

0

∫
Ω

|∇ϕσ,ε|2 6 Φε[n
0] +

2T

γ
‖ψ′′−‖∞Eσ,ε[n0], ∀T > 0, (2.60)

γ

2

∫
Ω

∣∣∣∣∇(nσ,ε(t)− σ

γ
ϕσ,ε(t)

)∣∣∣∣2 6 Eσ,ε[n0], ∀t > 0, (2.61)



50 CHAPTER 2. Relaxation of the Cahn-Hilliard equation for Biology

∫ T

0

∫
Ω

∣∣∣∣∆(nσ,ε − σ

γ
ϕσ,ε

)∣∣∣∣2 6 Φε[n
0] +

2T

γ
‖ψ′′−‖∞Eσ,ε[n0], ∀T > 0, (2.62)

∫ T

0

∫
Ω

Bε(nσ,ε)
∣∣∇(ϕσ,ε + ψ′+,ε(nσ,ε))

∣∣2 ≤ Eσ,ε[n0], ∀T > 0. (2.63)

Proposition 13 (Compactness of time derivatives) Consider a solution (nσ,ε, ϕσ,ε) of (2.24)–
(2.25) defined by Theorem 10, then, the following inequalities hold for σ small enough

||∂tnσ,ε||L2(0,T ;(H1(Ω))′) ≤ C, (2.64)

||∂t
(
nσ,ε −

σ

γ
ϕσ,ε

)
||L2(0,T ;(H1(Ω))′) ≤ C(σ). (2.65)

Proof. For any test function χ ∈ L2(0, T ;H1(Ω)) we obtained from (2.63)∣∣∣∣∫
ΩT

∂tnσ,εχ

∣∣∣∣ =

∣∣∣∣∫
ΩT

Bε(nσ,ε)∇
(
ϕσ,ε + ψ′+,ε(nσ,ε)

)
∇χ
∣∣∣∣

≤
(∫

ΩT

∣∣Bε(nσ,ε)∇ (ϕσ,ε + ψ′+,ε(nσ,ε)
)∣∣2)1/2

||∇χ||L2(ΩT ),

≤ C||∇χ||L2(ΩT ).

This proves (2.64).
To prove (2.65), we compute the time derivative of equation for ϕσ,ε in the distribution sense

σ

∫
ΩT

∇Uσ,ε∇χ+

∫
ΩT

Uσ,εχ =

∫
ΩT

∂tnσ,εχ−
σ

γ

∫
ΩT

Uσ,εψ
′′
−(nσ,ε −

σ

γ
ϕσ,ε)χ,

where Uσ,ε = ∂t

(
nσ,ε − σ

γϕσ,ε

)
and we have used the fact that

(
nσ,ε − σ

γϕσ,ε

)
, nσ,ε and ψ′−(nσ,ε−

σ
γϕσ,ε) are smooth. Then, we can choose χ = Uσ,ε, to obtain

σ

∫
ΩT

|∇Uσ,ε|2 +

∫
ΩT

|Uσ,ε|2 =

∫
ΩT

∂tnσ,εUσ,ε −
σ

γ

∫
ΩT

|Uσ,ε|2ψ′′−(nσ,ε −
σ

γ
ϕσ,ε).

Using the fact that σ
γ ||ψ

′′
−||∞ < 1 from (2.7), the Cauchy-Schwarz inequality gives

σ||∇Uσ,ε||2L2(ΩT ) + α||Uσ,ε||2L2(ΩT ) ≤ ||∂tnσ,ε||L2(ΩT )||Uσ,ε||L2(ΩT ),

where α = 1− σ
γ ‖ψ

′′
−‖∞ > 0. Altogether, we obtain the bound (2.65) which is not uniform in σ.

2.3 Existence: convergence as ε→ 0

The next step is to prove the existence of global weak solutions for the RDCH system (2.3)
by letting ε vanish. This means that for all test functions χ ∈ L2(0, T ;H1(Ω)) ∩ L∞(ΩT ) with
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∇χ · ν = 0 on ∂Ω× (0, T ), it holds∫ T

0

< χ, ∂tnσ > =

∫
ΩT

b(nσ)∇
(
ϕσ + ψ′+(nσ)

)
∇χ,

σ

∫
ΩT

∇ϕσ∇χ+

∫
ΩT

ϕσχ = γ

∫
ΩT

∇nσ∇χ+

∫
ΩT

ψ′−(nσ −
σ

γ
ϕσ)χ.

We establish the following

Theorem 14 (Existence for σ > 0, ε = 0) Assume an initial condition satisfying 0 6 n0 6 1,
with finite energy and entropy. Then, for σ small enough, there exists a global weak solution
(nσ, ϕσ) of the RDCH equation (2.3), (2.4) such that

nσ ∈ L2(0, T ;H1(Ω)), ∂tnσ ∈ L2
(
0, T ; (H1(Ω))′

)
. (2.66)

ϕσ ∈ L2(0, T ;H1(Ω)), (2.67)

nσ −
σ

γ
ϕσ ∈ L2(0, T ;H2(Ω)), ∂t

(
nσ −

σ

γ
ϕσ

)
∈ L2

(
0, T ; (H1(Ω))′

)
. (2.68)

0 ≤ nσ 6 1, a.e. in ΩT , (2.69)

and nσ < 1 a.e. if b vanishes fast enough at 1 so that φ(1) =∞ (see (2.16)).

Proof. The proof relies on compactness results and the inequalities presented in section 2.2.4.
From these inequalities, we can extract subsequences of (nσ,ε, ϕσ,ε) such that the following con-
vergences for ε→ 0 hold for all T > 0.
Step 1. Weak limits. From (2.59) and (2.60), we immediately have

ϕσ,ε ⇀ ϕσ in L2
(
(0, T );H1(Ω)

)
. (2.70)

Next, from (2.61), and the above convergence, we conclude

nσ,ε ⇀ nσ weakly in L2
(
0, T ;H1(Ω)

)
, (2.71)

Finally from (2.64) and (2.65), we have

∂tnσ,ε ⇀ ∂tnσ weakly in L2
(
0, T ; (H1(Ω))′

)
,

∂t

(
nσ,ε −

σ

γ
ϕσ,ε

)
⇀ ∂t

(
nσ −

σ

γ
ϕσ

)
weakly in L2

(
0, T ; (H1(Ω))′

)
.

Step 2. Strong convergence. Therefore, from the Lions-Aubin lemma and Proposition 13 we
obtain the strong convergences

nσ,ε → nσ ∈ L2(0, T ;L2(Ω)). (2.72)

nσ,ε −
σ

γ
ϕσ,ε → nσ −

σ

γ
ϕσ ∈ L2(0, T ;H1(Ω)). (2.73)

Step 3. Bounds 0 6 nσ ≤ 1. To prove these bounds on nσ, several authors have used the entropy
relation. In the context of DCH equation with double-well potentials featuring singularities at
n = 1 and n = −1, the solution lies a.e. in the interval −1 < n < 1. Elliott and Garcke [76]
prove this result using the definition of the regularized entropy and by a contradiction argument.
For single-well potential, Agosti et al. [8] used a reasoning on the measure of the set of solutions
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outside the set 0 ≤ n < 1 and find contradictions with the boundedness of the entropy. This is
the route we follow here. In the following, all functions are defined almost everywhere.

We begin by the upper bound . For α > 0, we consider the set

V εα = {(t, x) ∈ ΩT |nσ,ε(t, x) ≥ 1 + α}.

For A > 0, there exists a small ε0 such that the following estimate holds for every ε ≤ ε0

φ′′ε (n) =
1

b(1− ε)
> 2A ∀n > 1, ∀ε > 0.

Thus, integrating this quantity twice, we obtain

φε(n) > A(n− 1)2 ∀n > 1.

Also, from (2.56), we know that the entropy is uniformly bounded in ε. Therefore, we obtain

|V εα |Aα2 6
∫

ΩT

φε(nσ,ε(t, x)) 6 C(T ), |V εα | 6
C(T )

Aα2
.

In the limit ε→ 0, using Fatou’s lemma and the strong convergence of nσ,ε, we conclude that

∣∣{(t, x) ∈ ΩT |nσ(t, x) ≥ 1 + α}
∣∣ 6 C(T )

Aα2
, ∀A > 0.

In other words nσ(t, x) ≤ 1 + α for all α > 0, which means nσ(t, x) ≤ 1.
The same argument also gives nσ > 0 and we do not repeat it.
The second statement, nσ < 1 under the assumption φ(1) = +∞, is a consequence of the

bound ∫
ΩT

φ(nσ(t, x)) 6 C(T ),

which holds true by strong convergence of nσ,ε and because φε ↗ φ as ε↘ 0.
Step 4. Limiting equation. Finally, it remains to show that the limit of subsequences satisfies
the RDCH equation in the weak form. Firstly, using the weak convergences (2.70)–(2.71), the
strong convergence (2.73) and the properties of ψ′− gathered from (2.7), we can pass to the limit
in the standard way to obtain the second equation of the limit system.
To conclude the proof, we need to prove the following weak convergence, recalling that (2.63)
provides a uniform L2 bound over ΩT , on Jσ,ε

Jσ,ε := −Bε(nσ,ε)∇(ϕσ,ε + ψ′+,ε(nσ,ε)) ⇀ −b(nσ)∇(ϕσ + ψ′+(nσ)) weakly in L2(ΩT ). (2.74)

The convergence of Bε(nσ,ε)∇ϕσ,ε follows from the weak convergence in L2(ΩT ) of ∇ϕσ,ε and
the strong convergence Bε(nσ,ε) → b(nσ) in all Lp(ΩT ), 1 6 p < ∞ which follows from (2.72)
and the fact that Bε(.)→ b(.) uniformly.

Because of the singularity ψ′+(1) =∞, we use the assumption (2.11) and that Bε(·)ψ′′+,ε(·)→
b(·)ψ′′+(·) uniformly and thus Bε(nσ,ε)ψ′′+,ε(nσ,ε) → b(nσ,ε)ψ

′′
+(nσ,ε) a.e. in ΩT This achieve the

proof.

It is easy to check that the energy and entropy relations (2.14), (2.17) hold, at least as
inequalities. In the sequel we only use the a priori bounds coming from the limiting procedure.
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2.4 Convergence as σ → 0

We are now ready to study the limit of the relaxed solution nσ towards a solution of the DCH
equation, Our main result is as follows.

Theorem 15 (Limit σ = 0) Let (nσ,ε, ϕσ,ε) be a sequence of weak solutions of the RDHC sys-
tem (2.24) with initial conditions n0, 0 6 n0 < 1, with finite energy and entropy. Then, as
ε, σ → 0, we can extract a subsequence of (nσ,ε, ϕσ,ε) such that

ϕσ,ε ⇀ −γ∆n+ ψ′−(n) weakly in L2(ΩT ), (2.75)

nσ,γ −
σ

γ
ϕσ,ε → n strongly in L2(0, T ;H1(Ω)), (2.76)

nσ,ε, ∇nσ,ε → n, ∇n strongly in L2(ΩT ), and 0 6 n 6 1, (2.77)

and nσ < 1 a.e. if b vanishes fast enough at 1 so that φ(1) =∞.

∂tnσ,ε ⇀ ∂tn weakly in L2
(
0, T ; (H1(Ω))′

)
. (2.78)

This limit n satisfies the DCH system (2.1) in the weak sense.

We recall the definition of weak solutions; for all χ ∈ L2(0, T ;H2(Ω))∩L∞(ΩT ) with∇χ·ν = 0
on ∂Ω× (0, T ),{∫ T

0
< χ, ∂tn > =

∫
ΩT

J · ∇χ,∫
ΩT

J · ∇χ = −
∫

ΩT
γ∆n [b′(n)∇n · ∇χ+ b(n)∆χ] + (bψ′′)(n)∇n · ∇χ.

(2.79)

Proof. We gathered, from the energy and entropy estimates of section 2.2.3, the a priori bounds
of the section 2.2.4.

Step 1. Weak limits. From the above mentioned inequalities, we can extract subsequences of
(nσ,ε, ϕσ,ε) such that the following convergences hold for all T > 0. From (2.59) and (2.60), we
immediately have

σϕσ,ε → 0 in L2
(
(0, T );H1(Ω)

)
. (2.80)

Next, from (2.61), and the above convergence, we conclude

nσ,ε ⇀ n weakly in L2
(
0, T ;H1(Ω)

)
,

and (2.62) gives directly

∆(nσ,ε −
σ

γ
ϕσ,ε) ⇀ ∆n weakly in L2(ΩT ). (2.81)

This latter convergence is obtained in the distribution sense using integration per parts, for all
test function χ ∈ D(ΩT )∫

ΩT

∆
(
nσ,ε −

σ

γ
ϕσ,ε

)
χ = −

∫
ΩT

∇
(
nσ,ε −

σ

γ
ϕσ,ε

)
∇χ.

Then using (2.80), we obtain (2.81). The system of equations can also be used to complement
these results. We find

ϕσ,ε ⇀ ϕ weakly in L2(ΩT ),
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using the second equation of the system (2.24) and triangular inequality,

‖ϕσ,ε‖L2(ΩT ) ≤ γ‖∆(nσ,ε −
σ

γ
ϕσ,ε)‖L2(ΩT ) + ‖ψ′−(nσ,ε −

σ

γ
ϕσ,ε)‖L2(ΩT ).

Finally from (2.63) and the equation on nσ,ε itself, we conclude (2.78).

Step 2. Strong convergence. We continue with proving the strong convergences in (2.77). From
the inequality (2.62), we know that ∆

(
nσ,ε − σ

γϕσ,ε

)
is uniformly bounded in L2(ΩT ). We also

have the boundary conditions, ∇
(
nσ,ε − σ

γϕ
)
· ν = 0 and the conservation of both quantities.

Therefore elliptic regularity theory gives us

‖nσ,ε −
σ

γ
ϕσ,ε‖L2(0,T ;H2(Ω)) ≤ C.

Therefore strong compactness in space holds for the quantities nσ,ε − σ
γϕ and ∇[nσ,ε − σ

γϕ].
Furthermore, from the limit (2.80), it means that both nσ,ε and ∇nσ,ε are compact in space.
Compactness in time is also obtained for the quantity nσ,ε from (2.64). Again from Lions-Aubin
lemma, we have the strong convergence (2.77). The conclusions (2.76) and (2.75) follows from
this results.

The bounds 0 6 n < 1 can be obtained as in the case ε→ 0 , see Theorem 14 and we do not
repeat the argument.

Step 3. Limiting equation. Next, we need to verify that the limit of the subsequence nσ,ε satisfies
the DCH equation. The argument is different from the case ε → 0 because we do not control
∇ϕσ,ε in the case at hand. From the L2 bound in (2.63), we need to identify the weak limit

Jσ,ε := −Bε(nσ,ε)∇(ϕσ,ε + ψ′+,ε(nσ,ε)) ⇀ −b(n)∇(ϕ+ ψ′+(n)) weakly in L2(ΩT ). (2.82)

For a test function η ∈ L2(0, T ;H1(Ω,Rd)) ∩ L∞(ΩT ,Rd) and η · µ = 0 on ∂Ω × (0, T ), we
integrate the left-hand side to obtain∫

ΩT

Jσ,ε · η = −
∫

ΩT

[
γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
∇ · (Bε(nσ,ε)η)

+Bε(nσ,ε)∇
(
ψ′+,ε(nσ,ε) + ψ′−(nσ,ε −

σ

γ
ϕσ,ε)

)
· η
]
.

We have mainly two types of terms on the right-hand side
∫

ΩT
γ∆
(
nσ,ε − σ

γϕσ,ε

)
∇·(Bε(nσ,ε)η)

and
∫

ΩT
Bε(nσ,ε)∇

(
ψ′+,ε(nσ,ε) + ψ′−(nσ,ε − σ

γϕσ,ε)
)
· η. Let us focus on the first term∫

ΩT

γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
∇ · (Bε(nσ,ε)η) =

∫
ΩT

γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
Bε(nσ,ε)∇ · η

+

∫
ΩT

γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
B′ε(nσ,ε)∇nσ,ε · η.

From the strong convergence (2.77) and the weak one (2.81) with the fact that Bε(·) → b(·)
uniformly, we obtain the convergence of the first term of the right-hand side∫

ΩT

γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
Bε(nσ,ε)∇ · η →

∫
ΩT

γ∆n b(n)∇ · η,
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as σ, ε → 0 and thus we have passed to the limit in the first term of the right hand side. For
the second term, we use that the derivative B′ε(·) → b′(·) uniformly. We also use the strong
convergence of ∇nσ,ε from (2.77). From the results above and a generalized version of the
Lebesgue dominated convergence theorem we obtain∫

ΩT

γ∆

(
nσ,ε −

σ

γ
ϕσ,ε

)
B′ε(nσ,ε)∇nσ,ε · η →

∫
ΩT

γ∆nb′(n)∇n · η,

as σ, ε→ 0.
Let us now pass to the limit in

∫
ΩT

Bε(nσ,ε)∇
(
ψ′+,ε(nσ,ε) + ψ′−(nσ,ε − σ

γϕσ,ε)
)
· η. As in the

case of the convergence ε→ 0, we have that∫
ΩT

Bε(nσ,ε)∇
(
ψ′+,ε(nσ,ε)

)
· η,

using the fact that Bε(·)ψ′′+,ε(·)→ b(·)ψ′′+(·) uniformly and the strong convergence (2.77). Since
Bε(·)→ b(·), we have

(
Bεψ

′′
−
)

(·)→
(
bψ′′−

)
(·).

Therefore, we pass to pass to the limit in
∫

ΩT
Bε(nσ,ε)∇

(
ψ′−(nσ,ε − σ

γϕσ,ε)
)
· η using the con-

vergence (2.76). Altogether, we obtain the following convergence∫
ΩT

Bε(nσ,ε)∇
(
ψ′+,ε(nσ,ε) + ψ′−(nσ,ε −

σ

γ
ϕσ,ε)

)
· η →

∫
ΩT

b(n)∇
(
ψ′+(n) + ψ′−(n)

)
· η

This finishes the proof of (2.82), i.e. that the limit solution n satisfies the weak formulation
of the DCH equation (2.1), and also the proof of Theorem 15.

2.5 Long-time behavior

To complete our study of the RDCH model, we give some insights concerning the long-time
behavior and convergence to steady states, (n∞, ϕ∞) determined by the steady problem

∇ ·
(
b(n∞)∇

(
ϕ∞ + ψ′+(n∞)

))
= 0 in Ω,

−σ∆ϕ∞ + ϕ∞ = −γ∆n∞ + ψ′−(n∞ − σ
γϕ∞) in Ω,

∂(n∞−σγ ϕ∞)
∂ν = b(n∞)

∂(ϕ∞+ψ′+(n∞))
∂ν = 0 on ∂Ω.

(2.83)

The analysis of the steady-states is not performed in this paper, however, numerical simula-
tions can help us to have an idea of their shape for different initial situations.

The steady-states of the RDCH model present a configuration which minimizes the energy
of the system. The solution obtained at the end of the simulation depends mainly on three pa-
rameters: the initial mass M , the width of the diffuse interface √γ and the relaxation parameter
σ.

In fact, if the initial mass is large enough, saturated aggregates are formed and we can describe
two regions in the domain: the aggregates and the absence of cells. Between these two regions,
the transition is smooth and the length of this interface is √γ. If the initial mass is small,
aggregates are still formed but they are thicker and their maximum concentration does not reach
1 or the critical value n? as in the definition of the potential (2.8).

The formation of aggregates happens only if γ is small enough. If γ, the initial mass M or
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the relaxation parameter σ is too large, the solution converges to the constant one

n∞ =
1

|Ω|

∫
Ω

n0dx, a.e. in Ω.

A surprizing fact about these observations is that the long-time behavior of the solutions of the
RDCH system seems to follow the analytical description of the steady-states made by Songmu
[183].

To state our convergence result of the weak solutions of the RDCH model to steady-states, we
consider a global weak solution (n, ϕ) of the RDCH system with σ > 0, according to Theorem 14.
The initial condition satisfies 0 ≤ n0 < 1 and has finite energy and entropy. so that we can use
the a priori estimates from the transport structure, the energy and entropy dissipations (2.53)
and (2.56) (or (2.14)–(2.17)), in particular

0 ≤ n < 1 a.e. (0,∞)× Ω. (2.84)

Based on the controls provided by these relations, and using a standard method, we are going
to study the large time behavior as the limit for large k of the sequence of functions

nk(t, x) = n(t+ k, x), and ϕk(t, x) = ϕ(t+ k, x).

Proposition 16 (Long term convergence along subsequences) Let (n, ϕ) be a weak solu-
tion of (2.3), (2.4) and initial condition n0 with 0 ≤ n0 < 1, finite energy and entropy. Then,
we can extract a subsequence, still denoted by index k, of (nk, ϕk) such that

lim
k→∞

nk(x, t) = n∞(x), lim
k→∞

ϕk(x, t) = ϕ∞(x) strongly in L2
(
(−T, T )× Ω

)
, ∀T > 0,

(2.85)
where (n∞, ϕ∞) are solutions of (2.83) satisfying

b(n∞)∇
(
ϕ∞ + ψ′+(n∞)

)
= 0. (2.86)

Proof. The proof uses the energy and entropy inequalities to obtain both uniform (in k) a
priori bounds and zero entropy dissipation in the limit, which imply the result. We write these
arguments in several steps.
1st step. A priori bounds from energy. Energy decay implies that E [nk(t)] remains bounded in
k for t > −k. As a consequence, the sequence (nk, ϕk) satisfies

σ

2γ

∫
Ω

|ϕk(t)|2 6 E [n0], ∀t > 0, (2.87)

γ

2

∫
Ω

∣∣∣∣∇(nk(t)− σ

γ
ϕk(t)

)∣∣∣∣2 6 E [n0], ∀t > 0, (2.88)

∫ T

−T

∫
Ω

b(nk)
∣∣∇(ϕk + ψ′+(nk))

∣∣2 := Lk(T ), Lk(T )→ 0 as k →∞, (2.89)

and this last line is because∫ ∞
0

∫
Ω

b(n)
∣∣∇(ϕ+ ψ′+(n))

∣∣2 ≤ E [n0], Lk(T ) 6
∫ ∞
k−T

∫
Ω

b(n)
∣∣∇(ϕ+ ψ′+(n))

∣∣2] −→
k→∞

0.
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2nd step. A priori bounds from entropy. Because the right hand side in the entropy balance has
a positive term (since ψ′′−(n) ≤ 0,∀n ∈ [0, 1]), it cannot be used as easily as the energy. However,
we can integrate (2.17) from k−T to k+T , and, using the control of the negative term including
ψ− as after (2.17), we obtain the inequality∫ T

−T

[∣∣∣∣∆(nk − σ

γ
ϕk

)∣∣∣∣2 +
σ

γ
|∇ϕk|2 + ψ′′+(nk)|∇nk|2

]

≤ Φ[n(k − T )]− Φ[n(k + T )] + ‖ψ′′−‖∞
∥∥∥∥∇(nk − σ

γ
ϕk

)∥∥∥∥2

L2((−T,T )×Ω)

≤ Φ[n(k − T )]− Φ[n(k + T )] + ‖ψ′′−‖∞
4T

γ
E [n(k − T )]

≤ Φ[n(k − T )]− Φ[n(k + T )] + ‖ψ′′−‖∞
4T

γ
E [n0].

3rd step. Extracting subsequences. From these inequalities, we can extract subsequences of
(nk, ϕk) such that for k → ∞, the following convergences hold toward some functions n∞(x, t)
and ϕ∞(x, t).

We can conclude from inequalities (2.87) and the entropy control that, as k →∞,

ϕk ⇀ ϕ∞ weakly in L2
(
− T, T ;H1(Ω)

)
. (2.90)

From the gradient bound (2.88), the L2 bound in (2.87) and 0 6 nk < 1, we obtain

nk −
σ

γ
ϕk ⇀ n∞ −

σ

γ
ϕ∞ weakly in L2

(
0, T ;H1(Ω)

)
, (2.91)

and thus
nk ⇀ n∞ weakly in L2

(
0, T ;H1(Ω)

)
. (2.92)

Finally, we obtain from (2.89) and the Cauchy-Schwarz inequality,

∂tnk ⇀ ∂tn∞ = 0 weakly in L2
(
0, T ; (H1(Ω))′

)
. (2.93)

Indeed, for any test function φ ∈ C∞0 ((−T, T )× Ω), it holds∫ T

−T

∫
Ω

∂tnkφdxdt = −
∫ T

−T

∫
Ω

b(nk)∇
(
ϕk + ψ′+(nk)

)
· ∇φ,

∣∣∣∣∣
∫ T

−T

∫
Ω

∂tnkφdxdt

∣∣∣∣∣
2

6 2T |Ω|‖b‖∞‖∇φ‖2∞
∫ T

−T

∫
Ω

b(nk)
∣∣∇ (ϕk + ψ′+(nk)

)∣∣2 → 0

as k →∞. This also shows that n∞ only depends on x.

4th step. Strong limits. The strong compactness of nk and ϕk follows from (2.88) and the entropy
control. Then, time compactness of nk, stated in (2.85) follows from the Lions-Aubin lemma,
thanks to (2.93). The strong convergence of ϕk is a consequence of the elliptic equation for ϕk
and of (2.65) which gives compactness in time of the quantity nk− σ

γϕk. And we also have, from
the strong convergence of nk and (2.91), thanks to the above argument,

b(nk)∇
(
ϕk + ψ′+(nk)

)
→ b(n∞)∇

(
ϕ∞ + ψ′+(n∞)

)
= 0, (2.94)
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which establishes the zero-flux equality (2.86).

2.6 Conclusion
The proposed relaxation system of the degenerate Cahn-Hilliard equation with single-well

potential reduces the model to two parabolic/elliptic equations which can be solved by standard
numerical solvers. The relaxation uses a regularization in space of the new unknown used to
transform the original fourth-order equation into two second-order equations. This new system
is a non-local relaxation of the original equation which is similar in a sense to the Cahn-Hilliard
equation with a spatial interaction kernel derived in [99, 100]. We proved that in the limit of
vanishing relaxation, we retrieve the original weak solutions of the DCH equation using com-
pactness methods and estimates borrowed from energy and entropy functionals. The long-time
behavior of the solutions of the RDCH system can also be studied along the same lines. We
showed that a global solution of the system converges to a steady-state as time goes to infinity,
with zero flux.

The stationary states exhibit some interesting properties due to the degeneracy of the mobil-
ity. More precisely, they are split into two distinct zones: whether the mobility is zero, which is
possible only in the pure phases, or the flux is null.

The RDCH system aims at the design of a numerical method to simulate the DCH equation
using only second order elliptic problems. Such a numerical scheme may depend on details of
the relaxed model. For example, the solution represents a density and its numerical positivity is
a desired property. Also, the discrete stability is useful and a change of unknown in the RDCH
system might be better adapted, using U = ϕ− γ

σn,

∂tn = ∇ ·
(
b(n)∇

(
U +

γ

σ
n+ ψ′+(n))

))
,

−σ∆U + U = −γ
σ
n+ ψ′−(−σ

γ
U).

Even though this model also consists of a parabolic transport equation coupled with an elliptic
equation, the regularity is enhanced. On the one hand, in the first equation, the term γ

σn
increases the diffusion for n. On the other hand, the second equation regularizes for the new
variable U because it depends on n rather than ∆n. In a forthcoming work, we will propose
a numerical scheme based on the RDCH system, that preserves the physical properties of the
solutions.



Chapter 3

Structure-preserving numerical
method for the relaxed-degenerate
Cahn-Hilliard model

Abstract
We propose and analyze two finite element approximations of the relaxed Cahn-Hilliard equation [165]
with singular single-well potential of Lennard-Jones type and degenerate mobility that are energy stable
and nonnegativity preserving. The Cahn-Hilliard model has recently been applied to model evolution
and growth for living tissues: although the choices of degenerate mobility and singular potential are
biologically relevant, they induce difficulties regarding the design of a numerical scheme. We propose
finite element schemes and we show that they preserve the physical bounds of the solutions thanks
to two different suitable approximations of the mobility. Indeed, in the first scheme, the mobility is
approximated by a piecewise constant matrix on each element of the mesh, and for the second one, we
propose an adaptation of the upwind method to improve the efficiency of the simulations. Moreover,
we analyze well-posedness, energy stability properties, and convergence of solutions for the different
numerical schemes. Finally, we validate our numerical method by presenting numerical simulations in
one and two dimensions.

This chapter is taken from Federica Bubba, A. P., A nonnegativity preserving scheme for the re-
laxed Cahn-Hilliard equation with single-well potential and degenerate mobility, (2020), submitted
for publication.

3.1 Introduction

Being of fourth order, the Cahn-Hilliard equation does not fit usual softwares for finite el-
ements. To circumvent this difficulty a relaxed version has been proposed in [165] and the
presentation of two finite element numerical schemes that preserve the physical properties of the
solutions is the purpose of the present work. The relaxed version of the Cahn-Hilliard equation
reads 

∂n

∂t
= ∇ ·

(
b(n)∇

(
ϕ+ ψ′+(n)

))
,

−σ∆ϕ+ ϕ = −γ∆n+ ψ′−

(
n− σ

γ
ϕ

)
,

t > 0, x ∈ Ω, (3.1)

59
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and is set in a regular bounded domain Ω ⊂ Rd with d = 1, 2, 3. It describes the evolution
in time of the (relative) volume fraction n ≡ n(t, x) of one of the two components in a binary
mixture. The system is equipped with nonnegative initial data

n(0, x) = n0(x) ∈ H1(Ω), 0 ≤ n0(x) < 1, x ∈ Ω,

and with zero-flux boundary conditions on the boundary ∂Ω of Ω

∂(n− σ
γϕ)

∂ν
= b(n)

∂
(
ϕ+ ψ′+(n)

)
∂ν

= 0, t > 0, x ∈ ∂Ω,

where ν is the unit normal vector pointing outward ∂Ω.

System (3.1) was proposed in [165] as an approximation, in the asymptotic regime whereby
the relaxation parameter σ vanishes (i.e., σ → 0), of the fourth order Cahn-Hilliard equation [47,
48]. The Cahn-Hilliard (CH) equation describes spinodal decomposition phenomena occurring
in binary alloys after quenching: an initially uniform mixed distribution of the alloy undergoes
phase separation and a two-phase inhomogeneous structure arises. In its original form, the
Cahn-Hilliard equation is written in the form of an evolution equation for n:

∂tn = ∇ · (b(n)∇ (ψ′(n)− γ∆n)) , t > 0, x ∈ Ω, (3.2)

with n ∈ [−1, 1], where the states n ≡ −1 and n ≡ 1 denote the two pure phases arising after the
mixture has undergone the phase separation process. Writing the flux as J = −b(n)∇

(
δE[n]
δn

)
,

Equation (3.2) can be interpreted as the conservative gradient flow of the free energy functional

E [n](t) :=

∫
Ω

(γ
2
|∇n|2 + ψ(n)

)
dx.

The homogeneous free energy ψ describes repulsive and attractive interactions between the two
components of the mixture while the regularizing term γ

2 |∇n|
2 accounts for partial mixing be-

tween the pure phases, leading to a diffuse interface separating the states n ≡ −1 and n ≡ 1,
of thickness proportional to √γ. The parameter γ > 0 is related to the surface tension at the
interface (see, e.g., [146]) and the function b is called mobility.
In most of the literature, ψ is a double-well logarithmic potential, often approximated by a
smooth polynomial function, with minimums located at the two attraction points that represent
pure phases n = ±1 (see, e.g., [60, 77, 75]). The mobility can be either constant [77, 75] or
degenerate at the pure phases [28, 76]. We refer to the introductory chapters [74, 154] and to the
recent review [146] for an overview of the derivation of the Cahn-Hilliard equation, its analytical
properties and its variants.

Recently, the Cahn-Hilliard equation has been considered as a phenomenological model for
the description of cancer growth; see, for instance, [6, 55, 203]. In this context, n represents
the volume fraction of the tumor in a two-phase mixture containing cancerous cells and a liquid
phase, such as water and other nutrients. In biological contexts, a double-well potential appears
to be nonphysical. In fact, as suggested by Byrne and Preziosi in [46], a single-well potential
of Lennard-Jones type allows for a more suitable description of attractive and repulsive forces
acting in the mixture. Following this intuition and building upon previous works [8, 55], in this
paper we consider a single-well homogeneous free energy ψ : [0, 1)→ R, defined as

ψ(n) = −(1− n?) log(1− n)− n3

3
− (1− n?)n

2

2
− (1− n?)n+ k, n? > 0, (3.3)
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where k ∈ R is an arbitrary constant. In the above form, ψ models cell-cell attraction at small
densities (ψ′(·) < 0 for 0 < n 6 n? and ψ′(0) = 0) and repulsion in overcrowded zones (ψ′(·) > 0
for n > n?); cf. Figure 3.1. The quantity n? > 0 represents the value of the cellular density at
which repulsive and attractive forces are at equilibrium. With a potential of the form (3.3), the
pure phases are represented by the states n = 0 and n = 1, where n = 1 is a singularity for ψ is
such a way to avoid overcrowding. Moreover, we consider a degenerate mobility b, that has to
vanish at n = 0 and n = 1. For instance, as in [8], we choose

b(n) := n (1− n)2. (3.4)

The Cahn-Hilliard equation (3.2) with the logarithmic single-well potential defined in (3.3) and
a mobility given by (3.4) has been studied by Agosti et al. in [8], where the authors prove
well-posedness of the equation for d ≤ 3.

Summary of previous results and specific difficulties. Numerous numerical methods
have been developed to solve the Cahn-Hilliard equation (3.2) with smooth and/or logarithmic
double-well potential as well as with constant or degenerate mobility. Generally, a numerical
scheme for the Cahn-Hilliard equation is evaluated by several aspects: i) its capacity to keep
the energy dissipation (energy stability) and the physical bounds of the solutions; ii) if it is
convergent, and if error bounds can be established; iii) its efficiency; iv) its implementation
simplicity. To meet the first point concerning the energy stability, several implicit schemes have
been proposed. The main drawback of these methods is the necessity to use an iterative method
to solve the resulting nonlinear system. To circumvent this issue, unconditionally energy-stable
schemes have been proposed based on the splitting of the potential in a convex and a non-convex
part. This idea comes from Eyre [82] and leads to unconditionally energy-stable explicit-implicit
(i.e. semi-implicit) approximations of the model. For references on all the previous numerical
methods discussed above, we refer the reader to the review paper [193].

For finite element approximations, most of these results are based on the second-order splitting{
∂tn = ∇ · (b(n)∇w) ,

w = −γ∆n+ ψ′(n),
(3.5)

where, w is called chemical potential; see, e.g., [8, 28, 75].
In [77], Elliot and Songmu propose a finite element Galerkin approximation for the resolution
of (3.2) with a smooth double-well potential and constant mobility. The more challenging case
of a degenerate mobility and singular potentials has been considered by Barrett et al. in [28],
where the authors propose a finite element approximation which employs the second-order split-
ting (3.5). In particular, the authors provide well-posedness of the finite element approximation
as well as a convergence result in the one-dimensional case. Numerical methods to solve the
Cahn-Hilliard equation without the splitting technique (3.5) have also been suggested. For in-
stance, in [42] Brenner et al. propose a C0 interior penalty method, a class of discontinuous
Galerkin-type approximations.

Even though a single-well potential seems more relevant for biological applications of the
Cahn-Hilliard equation, very few works focus on this case. In the already mentioned [8], Agosti
and collaborators propose a finite element method to solve Equation (3.2) with the homogeneous
energy given by (3.3) and a degenerate mobility of the form (3.4). As the authors remark, the
main issues arising when considering a single-well logarithmic potential is that the positivity of
the solution is not ensured at the discrete level, since the mobility degeneracy set {0; 1} does
not coincide with the singularity set of the potential, i.e., n = 1. Therefore, the absence of
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Figure 3.1 – Single-well potential of Lennard-Jones type as in (3.6) with n? = 0.6.

cells represents an unstable equilibrium of the potential. In [8], the authors design a finite
element scheme which preserves positivity by the means of a discrete variational inequality, as
also suggested in [28]. More recently, in [7], Agosti has presented a discontinuous Galerkin finite
element discretization of the equation where, again, the positivity of the discrete solution is
ensured thanks to a discrete variational inequality.

Contents of the paper. The aim of this paper is to present and analyze two finite element
approximations of the relaxed Cahn-Hilliard equation (3.1) with single-well potential (3.3) and
degenerate mobility (3.4) in dimensions d = 1, 2, 3. More in details, we prove: (i) well-posedness
of the numerical approximation; (ii) nonnegativity of discrete solutions ensured by a suitable
approximation of the mobility function b; (iii) discrete energy and entropy bounds; (iv) conver-
gence of discrete solutions in dimension d = 1.
In System (3.1), ψ+ and ψ− are, respectively, the convex and concave part of ψ, defined as

ψ+(n) := −(1− n?) log(1− n)− n3

3
, and ψ−(n) := −(1− n?)n

2

2
− (1− n?)n, (3.6)

where ψ+ is convex whenever n? ≤ 1−
(

2
3

)3.
The main novelty of our work is to propose an alternative to the second-order splitting (3.5)

by replacing the chemical potential w by its relaxed approximation ϕ, solution to a second order
elliptic equation with diffusivity 0 < σ � γ. The relaxed system is based on the analysis per-
formed in [165], where the authors prove well-posedness of the system as well as the convergence,
as σ → 0, of weak solutions of (3.1) to the ones of the original Cahn-Hilliard equation (3.2). For
the analysis that follows, it is worth noticing that System (3.1) admits the energy functional

Eσ[n](t) :=

∫
Ω

{
γ

2

∣∣∣∣∇(n− σ

γ
ϕ

)∣∣∣∣2 +
σ

2γ
|ϕ|2 + ψ+(n) + ψ−

(
n− σ

γ
ϕ

)}
dx, (3.7)

that, as proved in [165], is decreasing in time, i.e.,

dEσ[n]

dt
= −

∫
Ω

b(n)
∣∣∇ (ϕ+ ψ′+(n)

)∣∣2 dx 6 0, t > 0.
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We also notice that the convex/concave splitting of ψ is different from the one employed, e.g.,
in [8] and is motivated by the need to retrieve energy dissipation as well as by the fact that
we can take advantage of the linearity of ψ′− to achieve regularity results on ϕ. Furthermore,
we observe that the relaxed Cahn-Hilliard system bears some similarities with the Keller-Segel
model with additional cross diffusion, proposed and analyzed in [32, 52].

In this work we aim to describe two finite element schemes that preserve the physical bounds
of the solutions of the relaxed-degenerate Cahn-Hilliard model (RDCH in short).

This paper is organized as follows. We start in Section 3.2 by giving details about the fi-
nite element framework we are using. Then in Section 3.3, we recall the regularized version
of the relaxed-degenerate Cahn-Hilliard model (3.1). In Section 3.4, we introduce a non-linear
semi-implicit finite element approximation of the regularized-relaxed model. The definition of
the mobility coefficient follows the idea of Grün and Rumpf [108] that requires the mesh to be
composed of right-angled elements for d = 2, 3. Later, in Section 3.4 we prove well-posedness of
this numerical scheme and give stability bounds. These results allow us to pass to the limit ε→ 0
in the regularized finite element problem and prove the existence of nonnegative global solutions
of the non-regularized problem. We also prove the convergence of the discrete solutions to the
weak solutions of the continuous relaxed Cahn-Hilliard model in dimension one. Then, aiming
at designing a fully practical structure-preserving numerical scheme and based on the idea of the
piecewise reconstruction of the mobility used in section 3.4, we propose a new adaptation of the
upwind method inside the finite element method in Section 3.5. This allows us to design a new
nonlinear semi-implicit scheme for the regularized problem. Then, we prove well-posedness and
stability for this upwind scheme (i.e. we show the non-negativity preserving property and energy
stability). We are able to prove for this numerical scheme the convergence in dimension one to
the continuous regularized-relaxed model. Section 3.6 is devoted to the description of an efficient
linear semi-implicit upwind scheme. Existence and non-negativity of a global solution is given
using again the upwind approximation of the mobility coefficient. Finally, in Section 3.7, we
present numerical simulations using our linear semi-implicit upwind scheme in one and two di-
mensions that are in good agreement with previous numerical results obtained for the degenerate
Cahn-Hilliard equation with single-well logarithmic potential.

3.2 Notations

We first set up the notations we will use in the numerical discretization and recall some
well-known properties we employ in the analysis of the scheme.

Geometric and functional setting. Let Ω ⊂ Rd with d = 1, 2, 3 be a polyhedral do-
main. We indicate the usual Lebesgue and Sobolev spaces by respectively Lp(Ω), Wm,p(Ω)
with Hm(Ω) := Wm,2(Ω), where 1 ≤ p ≤ +∞ and m ∈ N. We denote the corresponding norms
by || · ||m,p,Ω, || · ||m,Ω and semi-norms by | · |m,p,Ω, | · |m,Ω. The standard L2 inner product will
be denoted by (·, ·)Ω and the duality pairing between (H1(Ω))′ and H1(Ω) by < ·, · >Ω.
Let T h, h > 0 be a conformal mesh on the domain Ω which is defined by Nel disjoint piecewise
linear mesh elements, denoted by K ∈ T h, such that Ω =

⋃
K∈Th K. The elements are triangles

for d = 2 and tetrahedra for d = 3. We let h := maxK hK refers to the level of refinement of the
mesh, where hK := diam(K) for K ∈ T h. We define by κK the minimal perpendicular length of
K and κh = minK∈T h κK . We assume that the mesh is quasi-uniform, i.e., it is shape-regular
and there exists a constant C > 0 such that

hK ≥ Ch, ∀K ∈ T h.
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Moreover, we assume that the mesh is acute, i.e., for d = 2 the angles of the triangles do not
exceed π

2 and for d = 3 the angle between two faces of the same tetrahedron do not exceed π
2 .

We define the set of nodal points J = {xj}j=1,...,Nh of cardinality Nh := card(J) and we assume
that each xj is a vertex of a simplex K ∈ T h. Furthermore, in Section 3.4, we need to add an
additional assumption about the mesh: the elements are right-angled.

We also define the barycentric dual mesh associated to T h. On every element K ∈ T h, the
barycentric coordinates of an arbitrary point x ∈ K are defined by the real numbers λi with
i = 1, . . . , nK such that

nK∑
i=1

λi = 1, and x =

nK∑
i=1

λiPi,

where nK is the number of nodes of the element K. We define the barycentric subdomains
associated to the vertex Pi ∈ Kk (where Kk refers to the k-th element of T h and k = 1, . . . , Nel),
by

Dk
i :=

nK⋂
j=1
j 6=i

{x;x ∈ Kk and λj(x) ≤ λi(x)}.

Therefore, for every node of the mesh T h, we define the barycentric cell of the dual mesh

Di :=
⋃
k

{Dk
i ; Kk ∈ T h such thatxi ∈ Kk}.

Therefore, we define these cells for all nodes of the mesh to define the barycentric dual mesh.

We introduce the set of piecewise linear functions χj ∈ C(Ω) associated with the nodal point
xj ∈ J , that satisfies χj(xi) = δij , where δij is the Kronecker’s delta function. We introduce
the P1 conformal finite element space V h associated with T h, where P1(K) denotes the space of
polynomials of order 1 on K:

V h :=
{
χ ∈ C(Ω) : χ

∣∣
K
∈ P1(K), ∀K ∈ T h

}
⊂ H1(Ω).

Furthermore, we let Kh be the subset containing the nonnegative elements of V h, namely

Kh := {χ ∈ V h : χ > 0 in Ω}.

We denote by πh : C(Ω) → V h the Lagrange interpolation operator corresponding to the dis-
cretized domain T h, defined as

πhf(x) =

Nh∑
j=1

f(xj)χj(x), f ∈ C(Ω).

We also use the lumped space V̂h defined by

V̂h := {χ̂ : piecewise constant over barycentric domains i.e. χ̂(x) = χ̂(xi), ∀x ∈ Di}.

Defining χ̂i ∈ L∞(Ω) the characteristic function of the barycentric domain Di associated with
each node xi (for i = 1, . . . , Nh) of the mesh, we easily see that {χ̂j}j=1,...,Nh forms a basis of
V̂h. Adding the property χ̂i(xj) = δij , we see that the two basis {χ̂j}j=1,...,Nh and {χj}j=1,...,Nh

are associative i.e. χ(xi) = χ̂(xi) for all xi ∈ J . Therefore, we also define the lumped operator



3.2. Notations 65

π̂h : C(Ω)→ V̂ h by

π̂hf(x) =

Nh∑
j=1

f(xj) χ̂j(x), f ∈ C(Ω).

On C(Ω) we define the approximate scalar product as

(f, g)h :=

∫
Ω

πh (f(x) g(x)) dx, f, g ∈ C(Ω).

Furthermore, since ∀f, g ∈ C(Ω), we have∫
Ω

πh (f(x) g(x)) dx =
∑
K∈T h

∫
K

πh (f(x) g(x)) dx,

=
1

d+ 1

∑
K∈T h

|K|
∑
xi∈K

f(xi) g(xi),

=

∫
Ω

π̂h (f(x) g(x)) dx.

where xi ∈ K denotes the vertices of the element K. We denote the corresponding discrete

semi-norm as |·|h =
[
(·, ·)h

] 1
2

.

Continuous and discrete functionals. We denote by Ph : L2(Ω) → V h the L2 projection
operator and by P̂h : L2(Ω)→ V h its lumped version, defined by

(Phv, χ) = (v, χ) ∀v ∈ L2(Ω) and ∀χ ∈ V h,(
P̂hv, χ

)h
= (v, χ) ∀v ∈ L2(Ω) and ∀χ ∈ V h.

Furthermore, we introduce the inverse Laplacian operator G : F → S as an application from
F = {v ∈

(
H1(Ω)

)′
:< v, 1 >= 0} to S = {v ∈ H1(Ω) : (v, 1) = 0}, that satisfies

(∇Gv,∇η) =< v, η > ∀η ∈ H1(Ω). (3.8)

The well-posedness of (3.8) follows immediately from the Lax-Milgram theorem and the Poincaré
inequality. Therefore, a norm on F can be defined via

‖v‖F := |Gv|1 ≡ 〈v,Gv〉
1
2 ∀v ∈ F .

The discrete counterpart of G is denoted by Ĝh : Fh → Sh and satisfies(
∇Ĝhv,∇χ

)
= (v, χ)

h ∀χ ∈ V h,

where Sh := {vh ∈ V h :
(
vh, 1

)
= 0} and Fh := {v ∈ C(Ω) : (v, 1)

h
= 0}.

Inequalities. We summarize important inequalities that will be used later on for the analysis
of the numerical schemes. We start by recalling the well-known Sobolev interpolation result.
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Letting p ∈ [1,∞], m ≥ 1,

r ∈


[p,∞] if m− d

p > 0,

[p,∞) if m− d
p = 0,

[p,− d
m−(d/p) ] otherwise,

and µ = d
m

(
1
p −

1
r

)
, there exists a constant C = C(Ω, p, r,m) > 0 such that

‖v‖0,r ≤ C ‖v‖
1−µ
0,p ‖v‖

µ
m,p ∀v ∈Wm,p(Ω). (3.9)

Moreover, we will use the following inequalities (see, e.g., [168]):

|χ|m,p2 ≤ Ch
−d
(

1
p1
− 1
p2

)
|χ|m,p1 ∀χ ∈ V h, 1 ≤ p1 ≤ p2 ≤ +∞,m = 0, 1; (3.10)

‖χ‖20 ≤ (χ, χ)
h ≤ (d+ 2) ‖χ‖20 ∀χ ∈ V h. (3.11)

Concerning the interpolation operator, the following results hold [43]:

lim
h→0

∥∥v − πh(v)
∥∥

0,∞ = 0 ∀v ∈ C(Ω), (3.12)

and we have [192], ∣∣∣(v, η)
h − (v, η)

∣∣∣ ≤ Ch2 ‖∇v‖0 ‖∇η‖0 , v, η ∈ V h. (3.13)

Furthermore, if d = 1 (see for example [192]),∣∣v − πh(v)
∣∣
m,p
≤ Ch1−m |v|1,p ∀v ∈W 1,p(Ω), m = 0, 1, 1 ≤ p < +∞; (3.14)∥∥v − πh(v)

∥∥
L∞(Ω)

+ h
∣∣v − πh(v)

∣∣
1,∞ ≤ Ch

2 |v|1,∞ ∀v ∈ H1(Ω), (3.15)∣∣∣(v, η)
h − (v, η)

∣∣∣ ≤ C (∣∣v − πhv∣∣
0

+ h |v|0
)
‖η‖1 , for v ∈ C

(
Ω
)
, η ∈ H1(Ω). (3.16)

For the L2 projection operator the following inequalities hold

|v − Phv|0 + h |v − Phv|1 ≤ Ch
m ‖v‖m v ∈ Hm(Ω), m = 1, 2, (3.17)

and for the lumped version∣∣∣v − P̂hv∣∣∣
0

+ h
∣∣∣v − P̂hv∣∣∣

1
≤ Ch ‖v‖1 v ∈ H1(Ω).

Finally, the discrete inverse laplacian operator satisfies

(v, χ)
h ≡

(
∇Ĝhv,∇χ

)
≤
∣∣∣Ĝhv∣∣∣

1
|χ|1 ∀v ∈ Fh, χ ∈ V h. (3.18)

Finite element matrices. We define M and Q respectively the mass and stiffness matrix.
Ml is the lumped mass matrix, that is the diagonal matrix where each coefficient is the sum of
the associated row of M

Mij =

∫
Ω

χiχj dx, for i, j = 1, . . . , Nh,
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Qij =

∫
Ω

∇χi∇χj dx, for i, j = 1, . . . , Nh,

Ml,ii :=

Nh∑
j=1

Mij , for i, j = 1, . . . , Nh.

3.3 Definition of the regularized problem

As for the continuous case (see [165]), we use a regularization of the model. The resulting
problem is easier to analyze since the singularity contained in the potential ψ+ is smoothed out
and the mobility is no longer degenerate.

Regularization of the mobility and potential. We define the regularized problem similarly
to [165]. We consider a small positive parameter 0 < ε� 1 and define the regularized mobility

bε(n) :=


b(1− ε) for n ≥ 1− ε,
b(ε) for n ≤ ε,
b(n) otherwise.

(3.19)

Therefore, there are two positive constants b1 and B1 such that

b1 < bε(n) < B1, ∀n ∈ R, (3.20)

and the regularized mobility satisfies

bε ∈ C(R,R+). (3.21)

To define the regularized potential, we smooth out the singularity contained in ψ+ and located
at n = 1, see (3.6). We define for all n ∈ R

ψ′′+,ε(n) :=


ψ′′+(1− ε) for n ≥ 1− ε,
ψ′′+(ε) for n ≤ ε,
ψ′′+(n) otherwise.

(3.22)

We can easily prove that for all n ≥ 1 − ε, ψ+,ε is bounded from below. Therefore, it exists a
positive finite constant C1 such that

ψ+,ε(n) >
1− n?

2ε2

(
[n− 1]+

)2 − C1, ∀n ∈ R, (3.23)

where [·]+ = max{·, 0}.
Then, denoting by ψ−(n) the extension of ψ− given in (3.6) on all R, it exists a constant C2 > 0

such that the regularized potential ψε(n) = ψ+,ε(n) + ψ−(n) satisfies

ψε(n) ≥ 1− n?

2ε2

(
[n− 1]+

)2 − C2, ∀n ∈ R. (3.24)

Altogether, we obtain
ψε ∈ C2(R,R). (3.25)
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Regularized problem. The regularized-relaxed degenerate Cahn-Hilliard model reads
∂tnε = ∇ ·

[
bε(nε)∇(ϕε + ψ′+,ε(nε))

]
,

−σ∆ϕε + ϕε = −γ∆nε + ψ
′
−(nε − σ

γϕε),

t > 0, x ∈ Ω, (3.26)

with zero-flux boundary conditions

∂(nε − σ
γϕε)

∂ν
= bε(nε)

∂
(
ϕε + ψ′+,ε(nε)

)
∂ν

= 0 on ∂Ω× (0,+∞). (3.27)

3.4 Nonlinear semi-implicit scheme

In this section, we assume that the mesh is composed of right-angled elements for d = 2, 3.

3.4.1 Description of the nonlinear numerical scheme.

The finite element problem associated with (3.26) is: For each k = 0, . . . , NT − 1,
find {nk+1

h,ε , ϕ
k+1
h,ε } in V h × V h such that ∀χ ∈ V h we have



(
nk+1
h,ε − nkh

∆t
, χ

)h
+
(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh(ψ′+,ε(n

k+1
h,ε ))

)
,∇χ

)
= 0 , (3.28a)

σ
(
∇ϕk+1

h,ε ,∇χ
)

+
(
ϕk+1
h,ε , χ

)h
= γ

(
∇nk+1

h,ε ,∇χ
)

+

(
ψ
′
−(nkh −

σ

γ
ϕkh), χ

)h
, (3.28b)

where nk+1
h,ε =

∑
i=1,...,Nh

nε(xi, t
k+1)χi, and ϕk+1

h,ε =
∑
i=1,...,Nh

ϕε(xi, t
k+1)χi.

The initial condition n0
h ∈ V h is given by{

n0
h = πhn0(x), if d = 1,

n0
h = P̂hn

0(x), if d = 2, 3,

and ϕ0
h is the solution of

σ
(
∇ϕ0

h,∇χ
)

+
(
ϕ0
h, χ

)h
= γ

(
∇n0

h,∇χ
)

+

(
ψ′−(n0

h −
σ

γ
ϕ0
h), χ

)h
, ∀χ ∈ V h. (3.29)

The well-posedness of equation (3.29) follows the Lax-Milgram theorem.
For k = 0, . . . , NT − 1, let nk and ϕk be the vectors

nk := [nk1 , . . . , n
k
Nh

]T , ϕk := [ϕk1 , . . . , ϕ
k
Nh

]T .

We can then rewrite the problem in its matrix form

Mln
k+1 = Mln

k −∆tUψ′
+
−∆tUϕk+1, (3.30)

(σQ+Ml)ϕ
k+1 = γQnk+1 +Mlψ

′
−, (3.31)
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where ψ′
+
and ψ′− are the two vectors containing the values at the nodes of the functionals

(
ψ′

+

)
i

=
1− n?

1− nk+1
i

−
(
nk+1
i

)2
i = 1, . . . , Nh,(

ψ′−

)
i

= −(1− n?)
(
nki −

σ

γ
ϕk
i

)
− (1− n?) i = 1, . . . , Nh.

We denote by U the finite element matrix corresponding to the term
(
M̃ε(n

k+1
h )∇·,∇·

)
.

We define the d × d matrix M̃ε that approximates the continuous mobility. To do so, we
define the entropy functional φε : R→ R+ such that

φ′′ε (s) =
1

bε(s)
, ∀s ∈ R. (3.32)

Then, we define the following properties for the mobility M̃ε : V h → ⊗|T
h|

k=1 Rd×d:

i) M̃ε : V h → ⊗|T
h|

k=1 Rd×d is continuous;

ii) M̃ε(s)
∣∣∣
K

= bε(s)Id if s is constant on the element K ∈ T h;

iii) M̃T
ε (sh)∇πh(φ′ε(sh)) = ∇sh, ∀sh ∈ V h;

iv) on each element K ∈ T h, the matrix M̃ε(s)
∣∣∣
K

is symmetric and positive semidefinite.

For each element K ∈ T h, M̃ε(sh) is a d × d matrix. For d ≤ 3, we consider a reference
element K̂ = K̂(α1,...,αd) where the corners of this element are defined by

x̂0 = 0 and x̂i = αiei, ∀i = 1, . . . , d and αi ∈ R.

Here, ei denotes the i-th unit vector. In the following, we denote by p0 and pi the nodes in
the physical space that correspond to x̂0 and x̂i. For each element K of the triangulation T h
it exists an orthogonal matrix A such that the linear affine mapping H : K̂ → K defined by
x̂→ x = p0 +Ax̂ is a bijection. Then, we set for any element K ∈ T h and sh ∈ V h

M̃ε(sh)
∣∣∣
K

= AM̂ε(ŝh)A−1, with ŝh(x̂) = sh(Hx̂).

Then, we define M̂ε on the element K to be a diagonal matrix with

M̂ε,ii(ŝh) =
ŝh(x̂i)− ŝh(x̂0)

φ′ε(ŝh(p̂i))− φ′ε(ŝh(p̂0))
=

sh(pi)− sh(p0)

φ′ε(sh(pi))− φ′ε(sh(p0))
=

1

φ′′ε (sh(η))
, (3.33)

for some η between p0 and pi, if sh(pi) 6= sh(p0). Then, if sh(pi) = sh(p0) we set

M̂ε,ii(ŝh) =
1

φ′′ε (sh(p0))
. (3.34)

Altogether, we obtain the following result

Proposition 17 The previous definitions of the mobility M̃ε and entropy φε satisfies the axioms
i)–iv).
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Proof. From the definition of the mobility M̃ε, if the quantity nk+1
h,ε ∈ V h is constant on the

element, we have Mε(n
k+1
h,ε )

∣∣∣
K̂

= bε(n
k+1
h,ε )Id. Then, using the definition of the second derivative

of the entropy, we have

φ′ε(n
k+1
h,ε (xi))− φ′ε(nk+1

h,ε (x0)) =

∫ nk+1
h,ε (xi)

nk+1
h,ε (x0)

φ′′ε (s) ds

=

∫ nk+1
h,ε (xi)

nk+1
h,ε (x0)

1

bε(s)
ds.

Therefore, from the definition of M̂ε, we have that

M̂T
ε ∇x̂πh(φ′ε(n

k+1
h,ε )) = ∇x̂nk+1

h,ε ,

where ∇x̂ denotes the gradient on the reference element K̂.
Therefore, defining Mε = AM̂εA

−1, the axioms ii), iii) and iv) (because A is orthogonal) are
satisfied on any K ∈ T h. To conclude, since the same procedure can be applied for any element
of T h, the axiom i) is satisfied.

3.4.2 Well-posedness of the regularized problem and stability bounds

Existence of discrete solutions and energy dissipation.

Theorem 18 Let d ≤ 3, the system (3.28a)–(3.28b) with an initial condition satisfying
n0
h ∈ Kh, has a solution {nk+1

h,ε , ϕ
k+1
h,ε } ∈ V h × V h.

Furthermore, the solutions satisfy the inequality

E(nk+1
h,ε , ϕ

k+1
h,ε ) + ∆t

NT−1∑
k=0

∫
Ω

M̃ε(n
k+1
h,ε )

∣∣∣∇(ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))∣∣∣2 dx 6 E(n0
h, ϕ

0
h) ,

(3.35)
where

E(nk+1
h,ε , ϕ

k+1
h,ε ) :=

γ

2

∣∣∣∣nk+1
h,ε −

σ

γ
ϕk+1
h,ε

∣∣∣∣2
1

+
σ

2γ

∥∥∥ϕk+1
h,ε

∥∥∥2

0

+

(
ψ+,ε(n

k+1
h,ε ) + ψ−

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
, 1

)h
.

(3.36)

Proof. Step 1. Existence of global in time solutions. To prove existence of discrete solutions
to (3.28a) and (3.28b), we use the Brouwer fixed point theorem and we adapt the proof from
[108]. In the following, all vector quantities are denoted using the convention

sh ∈ V h ⇒ s = (sh(x1), . . . , sh(xNh)).
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We define wkh = nkh−α, where α := 1
|Ω|
∫

Ω
n0
h. The system of equations (3.28a)–(3.28b) becomes

(
wk+1
h,ε − w

k
h, χ

)h
= −∆t

(
M̃ε(w

k+1
h,ε + α)∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(w

k+1
h,ε + α)

))
,∇χ

)
,(

ϕk+1
h,ε , χ

)h
= γ

(
∇
(
wk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
,∇χ

)
+

(
ψ
′
−(wkh + α− σ

γ
ϕkh), χ

)h
.

(3.37)

Given wkh ∈ V h with −α ≤ wkh ≤ 1−α, we want to prove the existence of a solution wk+1
h,ε ∈ V h

such that R(wk+1) = wk+1 with

−R(w) = F (w) =
[(

∆tM−1
l Uε(w + α) (Ml + σQ)

−1
(γQ))

]
w

+ ∆tM−1
l Uε(w + α)

(
ψ′+,ε(w + α)

)
+ ∆tM−1

l Uε(w + α) (Ml + σQ)
−1
rk − wk,

where rk is the vector associated with Ml

(
ψ
′
−(wkh + α− σ

γϕ
k
h
)
)
. To apply the Brouwer fixed

point theorem, we want to prove that F : K̃h → K̃h is a Lipschitz continuous mapping on

K̃h = {w ∈ V h|Mlw · (1, . . . , 1) = 0},

which is a convex subspace of V h. This constraint on the space K̃h reflects the conservation of
the mass. Let us compute

F (w)− F (wk) =
(

∆tM−1
l

(
Uε(w + α)− Uε(wk + α)

)
(Ml + σQ)

−1
(γQ)

)
(w − wk)

+∆tM−1
l

(
Uε(w + α)− Uε(wk + α)

) (
ψ′+,ε(w + α)− ψ′+,ε(wk + α)

)
+∆tM−1

l

(
Uε(w + α)− Uε(wk + α)

)
(Ml + σQ)

−1 (
rk − rk−1

)
+(wk − wk−1).

Using the continuity of ψ
′
− and the fact that wk ∈ K̃h is bounded, we have that it exists a

positive constant C such that∥∥F (w)− F (wk)
∥∥ ≤ ∆t

∥∥∥M−1
l

(
Uε(w + α)− Uε(wk + α)

)
(Ml + σQ)

−1
(γQ)

∥∥∥∥∥w − wk∥∥
+∆t

∥∥M−1
l

(
Uε(w + α)− Uε(wk + α)

)∥∥ ∥∥ψ′+,ε(w + α)− ψ′+,ε(wk + α)
∥∥+ C.

Then, from the continuity of ψ′+,ε, we know that∥∥ψ′+,ε(w + α)− ψ′+,ε(wk + α)
∥∥ ≤ C ∥∥w − wk∥∥ .

Since Ml + σQ is a M-matrix, the norm of its inverse is bounded from Varah’s bound [197].
Altogether and using the fact that the mobility M̃ε(sh) is bounded for all sh ∈ V h, we obtain∥∥F (w)− F (wk)

∥∥ ≤ C(∆t, h)
∥∥w − wk∥∥ ,

which proves that the mapping F is Lipschitz continuous, and hence R is also Lipschitz
continuous on the convex set K̃h. Therefore, applying the Brouwer fixed point theorem, the
mapping R admits a fixed point. Consequently, the system (3.28a) and (3.28b) admits a solution
nk+1
h,ε = wk+1

h,ε + α globally in time. Then, since ϕk+1
h,ε is uniquely defined by nk+1

h,ε , ϕ
k
h, n

k
h from
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the equation of (3.28b), it exists a pair of functions {nk+1
h,ε , ϕ

k+1
h,ε } ∈ V h × V h solution of the

problem.

Step 2. Energy estimate. We prove that the discrete solutions of the regularized problem
satisfy the energy inequality (3.35). Let us start by rewriting equation (3.28a) for j = 1, . . . , Nh,(

nk+1
h,ε − n

k
h, χj

)h
= −∆t

(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇χj

)
. (3.38)

Using the definition of the lumped scalar product, we have(
nk+1
h,ε − n

k
h, χj

)h
=
∑
xi∈Jh

(1, χi)
(
nk+1
h,ε − n

k
h

)
(xi)χj(xi),

= (1, χj)
(
nk+1
h,ε − n

k
h

)
(xj).

Multiplying the previous equation by
(
ϕk+1
h,ε + ψ′+,ε(n

k+1
h,ε )

)
(xj) and summing over xj ∈ J , we

obtain ∑
xj∈J

(1, χj)
(
nk+1
h,ε − n

k
h

)
(xj)

(
ϕk+1
h,ε + ψ′+,ε(n

k+1
h,ε )

)
(xj)

=
(
nk+1
h,ε − n

k
h, ϕ

k+1
h,ε + ψ′+,ε(n

k+1
h,ε )

)h
.

Repeating the same operations on the right-hand side of (3.38) gives

−
∑
xj∈Jh

∆t
(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇χj

)(
ϕk+1
h,ε + ψ′+,ε(n

k+1
h,ε )

)
(xj)

= −∆t

∫
Ω

M̃ε(n
k+1
h,ε )

∣∣∣∇(ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))∣∣∣2 .
We now focus on the term

(
nk+1
h,ε − nkh, ψ′+,ε(n

k+1
h,ε )

)h
. We observe that, for a convex function g,

the following property holds
g(y)− g(x) 6 g′(y)(y − x).

Thus, since ψ+,ε(·) is the convex part of the potential, we have(
nk+1
h,ε − n

k
h, ψ

′
+,ε(n

k+1
h,ε )

)h
=
∑
xj∈J

(1, χj)
(
nk+1
h,ε − n

k
h

)
(xj)ψ

′
+,ε(n

k+1
h,ε (xj))

≥
∑
xj∈J

(1, χj)
(
ψ+,ε(n

k+1
h,ε (xj))− ψ+,ε(n

k
h(xj))

)
=
(
ψ+,ε(n

k+1
h,ε )− ψ+,ε(n

k
h), 1

)h
.

(3.39)

We need now to bound from below the term
(
nk+1
h,ε − nkh, ϕ

k+1
h,ε

)h
. First, using the symmetry of
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the scalar product, we observe that

(
nk+1
h,ε − n

k
h, ϕ

k+1
h,ε

)h
=

(
ϕk+1
h,ε ,

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

))h
+
σ

γ

(
ϕk+1
h,ε − ϕ

k
h, ϕ

k+1
h,ε

)h
.

Taking χ =
(
nk+1
h,ε −

σ
γϕ

k+1
h,ε

)
−
(
nkh − σ

γϕ
k
h

)
, which is an admissible test function since all the

quantities are in the correct space Sh, we obtain(
ϕk+1
h,ε ,

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

))h
= γ

(
∇
(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
,∇
((

nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

)))
+

(
ψ
′
−

(
nkh −

σ

γ
ϕkh

)
,

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

))h
.

Using the elementary property

a(a− b) > 1

2

(
a2 − b2

)
, (3.40)

we obtain
γ

(
∇
(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
,∇
((

nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

)))
≥ γ

2

(∣∣∣∣nk+1
h,ε −

σ

γ
ϕk+1
h,ε

∣∣∣∣2
1

−
∣∣∣∣nkh − σ

γ
ϕkh

∣∣∣∣2
1

)
,

(3.41)

and
σ

γ

(
ϕk+1
h,ε − ϕ

k
h, ϕ

k+1
h,ε

)h
≥ σ

2γ

(∣∣∣ϕk+1
h,ε

∣∣∣2
h
−
∣∣ϕkh∣∣2h) . (3.42)

Then, noting that ψ−(·) is concave, we obtain the inequality(
ψ
′
−

(
nkh −

σ

γ
ϕkh

)
,

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
−
(
nkh −

σ

γ
ϕkh

))h
≥
(
ψ−

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
− ψ−

(
nkh −

σ

γ
ϕkh

)
, 1

)h
.

(3.43)

Combining the inequalities (3.39), (3.41), (3.42), (3.43) and using the definition of the discrete
energy (3.36) yields to

Eh(nk+1
h,ε , ϕ

k+1
h,ε ) + ∆t

∫
Ω

M̃ε(n
k+1
h,ε )

∣∣∣∇(ϕk+1
h,ε + πh

(
ψ′+(nk+1

h,ε )
))∣∣∣2 dx 6 E(nkh, ϕ

k
h).

Then summing the previous equation from k = 0→ NT − 1, we obtain (3.35).

Discrete entropy inequality. We managed to obtain bounds for important quantities but we
still need to find an inequality for

∣∣∣ϕk+1
h,ε

∣∣∣
1
and

∣∣∣nk+1
h,ε

∣∣∣
1
. To tackle this issue, we use the previously
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defined entropy-mobility pair.

Therefore, we can state the following result.

Theorem 19 (Entropy estimate) The solutions {nk+1
h,ε , ϕ

k+1
h,ε } of the system (3.28a)–(3.28b)

with the mobility defined by (3.33)–(3.34) and the entropy defined by (3.32), satisfy the inequality(
φε(n

k+1
h,ε ), 1

)h
+ min

(
ψ′′+,ε

) ∣∣∣nk+1
h,ε

∣∣∣2
1

+
σ

γ

∣∣∣ϕk+1
h,ε

∣∣∣2
1
≤
(
φε(n

k
h), 1

)h
+ C. (3.44)

Proof. We use as a test function χ = πh(φ′ε(n
k+1
h,ε )) in (3.28a), we have(

nk+1
h,ε − n

k
h, π

h(φ′(nk+1
h,ε ))

)h
= −

(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇πh(φ′(nk+1

h,ε ))
)
.

(3.45)

Let us focus on the left-hand side. Using the convexity of φε, we obtain(
nk+1
h,ε − n

k
h, π

h(φ′(nk+1
h,ε ))

)h
=
(
nk+1
h,ε − n

k
h, φ
′
ε(n

k+1
h,ε )

)h
≥
(
φε(n

k+1
h,ε )− φε(nkh), 1

)h
.

Then, let us rewrite the right-hand side of (3.45) using the axiom iii) by

−
(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇πh(φ′ε(n

k+1
h,ε ))

)
=

−
(
∇
(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇nk+1

h,ε

)
.

Combining the definition of the Lagrange interpolation operator and the regularized potential,
we have

πh
(
ψ′+,ε(n

k+1
h,ε )

)
=
∑
xj∈Jh

ψ′+,ε(n
k+1
h,ε (xj))χj .

Consequently, we have

πh(ψ′+,ε(n
k+1
h,ε )) = f(nk+1

h,ε ), for ε ≤ nk+1
h,ε ≤ 1− ε,

where f(nk+1
h,ε ) is a strictly positive function which increases monotonically with nk+1

h,ε . We also
have

πh
(
ψ′+,ε(n

k+1
h,ε )

)
=
∑
xj∈J

ψ′′+,ε(n
k+1
h,ε (xj))n

k+1
h,ε for nk+1

h,ε (xj) ≤ ε and nk+1
h,ε (xj) ≥ 1− ε.

Therefore, we obtain that ∇πh(nk+1
h,ε ) behaves as ∇nk+1

h,ε . Altogether, we obtain(
∇πh

(
ψ′+,ε(n

k+1
h,ε )

)
,∇nk+1

h,ε

)
≥ min

(
f ′(nk+1

h,ε )
) ∣∣∣nk+1

h,ε

∣∣∣2
1
,

and we know that min
(
f ′(nk+1

h,ε )
)

is positive. The last term to handle is
(
∇ϕk+1

h,ε ,∇n
k+1
h,ε

)
.
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Using the equation (3.28b) with χ = ϕk+1
h,ε , we obtain

(
∇nk+1

h,ε ,∇ϕ
k+1
h,ε

)
=

1

γ

[
σ
∣∣∣ϕk+1
h,ε

∣∣∣2
1

+
∣∣∣ϕk+1
h,ε

∣∣∣2
h
−
(
ψ
′
−

(
nkh −

σ

γ
ϕkh

)
, ϕk+1

h,ε

)h]

≤ σ

γ

∣∣∣ϕk+1
h,ε

∣∣∣2
1

+

(
1

2γ

) ∣∣∣ϕk+1
h,ε

∣∣∣2
h
,

where the last inequality is obtained using Young’s inequality and the energy inequality. Alto-
gether, we obtain the inequality (3.44).

Convergence ε→ 0, h > 0

Theorem 20 For every sequence ε→ 0, we can extract subsequences such that we have

nk+1
h,ε′ → nk+1

h and ∇nk+1
h,ε′ → ∇n

k+1
h , (3.46)

where nk+1
h ∈ Kh. Similarly, we also have

ϕk+1
h,ε′ → ϕk+1

h and ∇ϕk+1
h,ε′ → ∇ϕ

k+1
h , (3.47)

where ϕk+1
h ∈ V h.

Proof. From the inequalities (3.35) and (3.44), we have that both
∣∣∣nk+1
h,ε

∣∣∣2
1
and

∣∣∣ϕk+1
h,ε

∣∣∣2
1
are

bounded. Then, from the Poincaré-Wirtinger inequality, we obtain the following convergences of
subsequences

nk+1
h,ε′ → nk+1

h and ∇nk+1
h,ε′ → ∇n

k+1
h in V h,

ϕk+1
h,ε′ → ϕk+1

h and ∇ϕk+1
h,ε′ → ∇ϕ

k+1
h in V h.

We now prove that the limit belongs to Kh. Using (3.24) and (3.35), we obtain([
nk+1
h,ε − 1

]2
, 1

)
≤ Cε2,

from which we can conclude using (3.11) and (3.10)∥∥∥[nk+1
h,ε − 1

]∥∥∥2

0,∞
≤ Ch−d/2ε.

Next, we want to prove the existence of a small parameter ε0 such that nk+1 < 1 for each ε ≤ ε0.
This result can be obtained from the fact that ψ+,ε(n

k+1
h,ε ) ≥ 0 for nk+1

h,ε ≥ 0 and from (3.35)
leading to (

ψ+,ε(n
k+1
h,ε ), ψ+,ε(n

k+1
h,ε )

)h
≤ C

(
ψ+,ε(n

k+1
h,ε ), 1

)h
≤ C.

Again from (3.11) and (3.10) we have the bound∥∥∥ψ+,ε(n
k+1
h,ε )

∥∥∥
0,∞
≤ Ch−d/2, (3.48)

which is independent on ε. Hence, we conclude that nk+1
h,ε < 1 because if it was not the case
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(3.48) will yield to a contradiction due to the logarithmic term in ψ+(·). Consequently,

nk+1
h < 1.

To prove that 0 ≤ nk+1
h,ε in Ω we use the discrete analogue of the argument from the continuous

setting [165]. For α > 0, we define the following set

V εα = {xi nodal point | − nk+1
h,ε (xi) ≥ α}.

Thus, we have that for A > 0, it exists a small ε0 such that

φ′′ε (nk+1
h,ε ) ≥ 2A, ∀nk+1

h,ε ≤ 0, ∀ε ≤ ε0.

Integrating the previous inequality twice, we obtain

φε(n
k+1
h,ε ) ≥ A(nk+1

h,ε )2.

Since the discrete entropy is bounded uniformly in ε, we have

Aα2 |V εα | ≤
(
φε(n

k+1
h,ε ), 1

)h
≤ C.

Therefore, the measure of the set V εα is bounded and using the strong convergence nk+1
h,ε → nk+1

h

(which is obtained from the fact that both entropy and energy bounds are uniform in ε) as well
as Fatou’s lemma, we obtain∣∣{xi nodal point | − nk+1

h (xi) ≥ α}
∣∣ ≤ C

Aα2
∀A > 0.

Consequently, we obtain that nk+1
h ≥ 0. Altogether, we have proved that the limit solution

belongs to
{nk+1

h , ϕk+1
h } ∈ Kh × V h.

3.4.3 Well-posedness of the non regularized problem and stability

The results we established for the regularized problem allow us to study the degenerate system
by passing to the limit as epsilon vanishes. Therefore, we set the non-regularized finite element
problem:

For each k = 0, . . . , NT − 1, find {nk+1
h , ϕk+1

h } in V h × V h such that ∀χ ∈ V h we have



(
nk+1
h − nkh

∆t
, χ

)h
+
(
M̃(nk+1

h )∇
(
ϕk+1
h + πh(ψ′+(nk+1

h ))
)
,∇χ

)
= 0 , (3.49a)

σ
(
∇ϕk+1

h ,∇χ
)

+
(
ϕk+1
h , χ

)h
= γ

(
∇nk+1

h ,∇χ
)

+

(
ψ
′
−(nkh −

σ

γ
ϕkh), χ

)h
, (3.49b)

where nk+1
h =

∑
i=1,...,Nh

n(xi, t
k+1)χi, and ϕk+1

h =
∑
i=1,...,Nh

ϕ(xi, t
k+1)χi.

Then, we establish the following theorem
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Theorem 21 (Well-posedness and stability bound) Let Ω ⊂ Rd, d = 1, 2, 3, the system
(3.49a)–(3.49b) with initial condition n0

h ∈ Kh admits a solution {nk+1
h , ϕk+1

h } ∈ Kh × V h .

Furthermore, the solution {nk+1
h , ϕk+1

h } of problem (3.49a)–(3.49b) satisfies

max
k=0→NT−1

( ∥∥nk+1
h

∥∥2

1
+
∥∥ϕk+1

h

∥∥2

1

)
+ (∆t)

2
NT−1∑
k=0

∥∥∥∥∥nk+1
h − nkh

∆t

∥∥∥∥∥
2

1

+

∥∥∥∥∥ϕk+1
h − ϕkh

∆t

∥∥∥∥∥
2

1


+

NT−1∑
k=0

∆t

∣∣∣∣(M̃(nk+1
h )

) 1
2 ∇

(
ϕk+1
h + πh

(
ψ′+(nk+1

h )
))∣∣∣∣2

0

+

NT−1∑
k=0

∆t
(
B̃max

)−1
∣∣∣∣∣Ĝh

[
nk+1
h − nkh

∆t

]∣∣∣∣∣
2

1

≤ C(n0),

(3.50)

where B̃max =
∥∥∥M̃(nk+1

h )
∥∥∥
∞
.

Proof. Step 1. Well-posedness. Going back to the regularized problem (3.28a)–(3.28b), we
can pass to the limit using the strong convergences (3.46)–(3.47) to obtain

lim
ε→0

(
nk+1
h,ε − nkh

∆t
, χ

)h
=
nk+1
h − nkh

∆t
, (3.51)

lim
ε→0

(
M̃ε(n

k+1
h,ε )∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
,∇χ

)
=
(
M̃(nk+1

h )∇
(
ϕk+1
h + πh

(
ψ′+(nk+1

h )
))
,∇χ

)
,

(3.52)

lim
ε→0

(
∇ϕk+1

h,ε ,∇χ
)

+
(
ϕk+1
h,ε , χ

)h
=
(
∇ϕk+1

h ,∇χ
)

+
(
ϕk+1
h , χ

)h
, (3.53)

lim
ε→0

(
∇nk+1

h,ε ,∇χ
)

+

(
ψ
′
−(nkh −

σ

γ
ϕkh,ε), χ

)h
=
(
∇nk+1

h ,∇χ
)

+

(
ψ′−(nkh −

σ

γ
ϕkh), χ

)h
.

(3.54)

Step 2. Stability bound. First of all, we state the energy inequality for the non-regularized
problem using the fact that (3.35) is independent of ε. Hence, we have

γ

2

∣∣∣∣nk+1
h − σ

γ
ϕk+1
h

∣∣∣∣2
1

+
σ

2γ

∥∥ϕk+1
h

∥∥2

0
+

(
ψ+(nk+1

h ) + ψ−

(
nk+1
h − σ

γ
ϕk+1
h

)
, 1

)h
+ ∆t

NT−1∑
k=0

∫
Ω

M̃(nk+1
h )

∣∣∇ (ϕk+1
h + πh

(
ψ′+(nk+1

h )
))∣∣2 dx ≤ C, (3.55)

where we assumed that the initial energy has a finite value. Similarly, we have the entropy
inequality

NT−1∑
k=0

∣∣nk+1
h

∣∣2
1

+
σ

γ

∣∣ϕk+1
h

∣∣2
1
≤ C. (3.56)
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Let us now use χ = 2∆tnk+1
h in (3.49a) to obtain

(
nk+1
h − nkh, 2nk+1

h

)h
= −2∆t

∫
Ω

M̃(nk+1
h )∇

(
ϕk+1
h + πh

(
ψ′+(nk+1

h )
))
∇nk+1

h dx.

Using the relation 2a(a−b) = a2−b2 +(a−b)2, the fact that nk+1
h ∈ Kh and the Cauchy-Schwarz

inequality, we have

∣∣nk+1
h

∣∣2
h
−
∣∣nkh∣∣2h + (∆t)

2

∣∣∣∣∣nk+1
h − nkh

∆t

∣∣∣∣∣
2

h

≤ 2

(
(∆t)

2
B̃max

∫
Ω

M̃(nk+1
h )

∣∣∇ (ϕk+1
h + πh

(
ψ′+(nk+1

h )
))∣∣2) 1

2 ∣∣nk+1
h

∣∣
1

≤ C,

(3.57)

where the upper bound is obtained from the energy inequality (3.55) and the entropy inequality
(3.56). Moreover, taking χ = nk+1

h − nkh in (3.49a) and using the identity 2a(a− b) = a2 − b2 +
(a− b)2, we have

γ

2

(∣∣nk+1
h

∣∣2
1
−
∣∣nkh∣∣21 +

∣∣nk+1
h − nkh

∣∣2
1

)
= σ

(
ϕk+1
h , nk+1

h − nkh
)

+
(
ϕk+1
h , nk+1

h − nkh
)h − (ψ′−(nkh −

σ

γ
ϕkh), nk+1

h − nkh
)h

.

However, we know by definition that

−
(
ψ′−(nkh −

σ

γ
ϕkh), nk+1

h − nkh
)h

= (1− n?)

((
nkh −

σ

γ
ϕkh, n

k+1
h − nkh

)h
+
(
1, nk+1

h − nkh
)h)

,

which is bounded from above using Cauchy-Schwarz inequality, (3.57) and (3.56). Therefore,
using Young’s inequality and (3.11), we obtain

(γ − σ)

2

∣∣nk+1
h − nkh

∣∣2
1
≤ γ

2

(∣∣nk+1
h

∣∣2
1
−
∣∣nkh∣∣21)

+
σ

2

∣∣ϕk+1
h

∣∣2
1

+
d+ 2

2

(∥∥ϕk+1
h

∥∥2

0
+
∥∥nk+1

h − nkh
∥∥2

0

)
+ C.

Then, subtracting equation (3.49b) at the two times tk+1 and tk, we get(
∇
(
ϕk+1
h − ϕkh

)
,∇χ

)
+
(
ϕk+1
h − ϕkh, χ

)h
=
(
∇
(
nk+1
h − nkh

)
, χ
)

+

(
ψ′−

(
nkh −

σ

γ
ϕkh

)
− ψ′−

(
nk−1
h − σ

γ
ϕk−1
h

)
, χ

)h
.

Then, taking χ = ϕk+1
h − ϕkh and using Young’s inequality, there are two positive constants κ1
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and κ2 chosen such that σ − γκ1

2 > 0, and 1− κ2

2 > 0.(
σ − γ2κ1

2

) ∣∣ϕk+1
h − ϕkh

∣∣2
1

+
(

1− κ2

2

) ∣∣ϕk+1
h − ϕkh

∣∣2
h

=
1

2κ1

∣∣nk+1
h − nkh

∣∣2
1

+
1

2κ2

∣∣∣∣ψ′−(nkh − σ

γ
ϕkh

)
− ψ′−

(
nk−1
h − σ

γ
ϕk−1
h

)∣∣∣∣2
h

.

(3.58)

Using the fact that ψ′−(·) is linear and the L2(Ω) norms of nkh, ϕ
k
h, n

k−1
h and ϕk−1

h are finite,
together with the energy inequality (3.55), we obtain an upper bound for the right-hand side of
(3.58). Then, using (3.11), we have the existence of a positive constant such that∥∥ϕk+1

h − ϕkh
∥∥2

1
≤ C.

Finally, taking χ = Ĝh
[
nk+1
h −nkh

∆t

]
in (3.49a), we have

(
nk+1
h − nkh

∆t
, Ĝh

[
nk+1
h − nkh

∆t

])h
=

∣∣∣∣∣Ĝh
[
nk+1
h − nkh

∆t

]∣∣∣∣∣
2

1

,

and ∣∣∣∣∣Ĝh
[
nk+1
h − nkh

∆t

]∣∣∣∣∣
2

1

= −

(
M̃(nk+1

h )∇
(
ϕk+1
h + πh(ψ′+(nk+1

h ))
)
,∇Ĝh

[
nk+1
h − nkh

∆t

])

≤
∣∣∣M̃(nk+1

h )∇
(
ϕk+1
h + πh(ψ′+(nk+1

h )
)∣∣∣2

0

≤ B̃max

∣∣∣∣(M̃(nk+1
h )

) 1
2 ∇

(
ϕk+1
h + πh(ψ′+(nk+1

h )
)∣∣∣∣2

0

.

Altogether and summing from k = 0→ NT − 1, we obtain (3.50).

3.4.4 Convergence analysis

In order to study the convergence of the scheme as h,∆t → 0, we follow [28] and define for
k = 0, . . . , NT − 1

Uh(t, x) :=
t− tk

∆t
nk+1
h +

tk+1 − t
∆t

nkh, t ∈ (tk, tk+1],

and
U+
h := nk+1

h , U−h := nkh.

First we remark that, thanks to (3.50), Uh ∈ L2(0, T ;H1(Ω)). Moreover, simple calculations
show that for t ∈ (tk, tk+1]

∂Uh
∂t

=
nk+1
h − nkh

∆t
t ∈ (tk, tk+1], k ≥ 0,



80 CHAPTER 3. Structure-preserving numerical method for the RDCH model

and

Uh − U+
h = (t− tk+1)

∂Uh
∂t

, as well as Uh − U−h = (t− tk)
∂Uh,ε
∂t

t ∈ (tk, tk+1], k ≥ 0.

We also have the analogous definition for Wh,ε which is

Wh(t, x) :=
t− tk

∆t
ϕk+1
h +

tk+1 − t
∆t

ϕkh, t ∈ (tk, tk+1],

and we also have
W+
h := ϕk+1

h , W−h := ϕkh.

We can state the following theorem:

Theorem 22 (Convergence) Let d = 1, 2, 3 and n0 ∈ H1(Ω), with 0 ≤ n0 < 1 a.e. Ω. We
assume that {T h, n0

h,∆t}h>0 satisfy

i) n0
h ∈ V h with 0 ≤ n0

h < 1, given by n0
h = πh(n0) if d = 1, and P̂h(n0) if d = 2, 3.

ii) Let Ω ⊂ Rd be a polyhedral domain and T h a quasi-uniform acute mesh of it into N
right-angled mesh elements.

Therefore, for ∆t, h→ 0, it exists a subsequence of solutions {Uh,Wh} and a pair of function

{n, ϕ} ∈ L∞
(
0, T ;H1 (Ω)

)
∩ C

1
2 ,

1
8

x,t (ΩT ) ∩H1(0, T ; (H1(Ω))′)× L∞
(
0, T ;H1 (Ω)

)
if d = 1,

{n, ϕ} ∈ L∞
(
0, T ;H1 (Ω)

)
∩H1(0, T ; (H1(Ω))′)× L∞

(
0, T ;H1 (Ω)

)
if d = 2, 3,

with
0 ≤ n < 1, a.e. in ΩT ,

such that

Uh, U
+
h , U

−
h → n, uniformly on ΩT , if d = 1, (3.59)

Uh, U
+
h , U

−
h → n, strongly in L∞

(
0, T ;L2 (Ω)

)
, if d = 2, 3, (3.60)

Uh, U
+
h , U

−
h ⇀ n, weakly in L∞

(
0, T ;H1 (Ω)

)
, (3.61)

∂Uh
∂t

⇀
∂n

∂t
, weakly in L2

(
0, T ;

(
H1 (Ω)

)′)
, (3.62)

Wh,W
+
h ,W

−
h ⇀ ϕ, weakly in L∞

(
0, T ;H1 (Ω)

)
. (3.63)

Moreover, for d = 1, {n, ϕ} is a solution of the relaxed-degenerate Cahn-Hilliard equation under
the weak form{∫ T

0
< χ, ∂tn > = −

∫
ΩT

b(n)∇
(
ϕ+ ψ′+(n)

)
· ∇χ, ∀χ ∈ L2(0, T ;H1(Ω)),∫

ΩT
ϕχ =

∫
ΩT

γ∇
(
n− σ

γϕ
)
· ∇χ+ ψ′−

(
n− σ

γϕ
)
χ, ∀χ ∈ L2(0, T ;H1(Ω)).

(3.64)

Proof. Step 1. Weak and strong convergences. From the inequality (3.50), we know that

‖Uh‖2L∞(0,T ;H1(Ω)) + ∆t ‖Uh‖2H1(0,T ;H1(Ω))

+

∥∥∥∥[M̃(Uh)
]1/2
∇
(
Wh + πh

(
ψ′+(Uh)

))∥∥∥∥2

L2(ΩT )

≤ C,
(3.65)
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and
‖Wh‖2L∞(0,T ;H1(Ω)) + ∆t ‖Wh‖2H1(0,T ;H1(Ω)) ≤ C. (3.66)

Since
Uh − U±h = (t− t±,k)

∂Uh
∂t

,

with t+,k = tk+1 and t−,k = tk, we have from (3.65),

∥∥Uh − U±h ∥∥2

L2(0,T ;H1(Ω))
≤ ∆t2

∥∥∥∥∂Uh∂t
∥∥∥∥2

L2(0,T ;H1(Ω))

≤ C∆t. (3.67)

Using (3.66), the same can be applied with Wh,W
±
h to obtain

∥∥Wh −W±h
∥∥2

L2(0,T ;H1(Ω))
≤ ∆t2

∥∥∥∥∂Wh

∂t

∥∥∥∥2

L2(0,T ;H1(Ω))

≤ C∆t. (3.68)

The weak convergences (3.61), (3.62), (3.63) are obtained from the use of the inequalities (3.65),
(3.66), (3.67), (3.68), and standard compactness results. Then, the strong convergence (3.60) is
obtained from (3.61), (3.62) and by application of the Lions-Aubin lemma. Let us show that the
discrete solution Uh is Hölder continuous for d = 1. From (3.65) and by Sobolev embeddings, we
have

|Uh(x2, t)− Uh(x1, t)| ≤ C |x2 − x1|
1
2 ∀x1, x2 ∈ Ω,∀t ≥ 0. (3.69)

Furthermore, from (3.9), (3.11), (3.18), (3.50) and (3.65), we get

‖Uh(x, t2)− Uh(x, t1)‖0,∞ ≤ C ‖Uh(x, t2)− Uh(x, t1)‖
1
2
0 ‖Uh(x, t2)− Uh(x, t1)‖

1
2
1

≤ C
∣∣∣Ĝh (Uh(x, t2)− Uh(x, t1))

∣∣∣ 14
1
‖Uh(x, t2)− Uh(x, t1)‖

3
4
1

≤ C
∣∣∣∣Ĝh [∫ t2

t1

∂Uh
∂t

(x, t) dt

]∣∣∣∣
1
4

1

(
2 ‖Uh‖L∞(0,T ;H1(Ω))

)
≤ C

∣∣∣∣∫ t2

t1

Ĝh ∂Uh
∂t

(x, t) dt

∣∣∣∣
1
4

1

≤ C(t2 − t1)
1
8

(∫ t2

t1

∣∣∣∣Ĝh ∂Uh∂t (x, t)

∣∣∣∣2
1

dt

) 1
8

≤ C(t2 − t1)
1
8 ∀x ∈ Ω, t1, t2 ≥ 0.

(3.70)

Then, from (3.65), (3.69) and (3.70), we obtain that the C
1
2 ,

1
8

x,t (ΩT ) norm is bounded indepen-
dently of ∆t, h and T . Therefore, every sequence {Uh}h is uniformly bounded and equicontinuous
on ΩT with T > 0. Hence, from the use of the Arzelà-Ascoli theorem we obtain the convergence
(3.59).

Step 2. Limiting equation for d = 1. We start by considering η ∈ L2(0, T ;H1(Ω)), and we
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take χ = πhη in (3.28b) to obtain∫ T

0

[
σ
(
∇W+

h ,∇π
hη
)

+
(
W+
h , π

hη
)h ]

dt

=

∫ T

0

[
γ
(
∇U+

h ,∇π
hη
)

+

(
ψ′−(U−h −

σ

γ
W−h ), πhη

)h]
dt.

Then, combining the weak convergences (3.61) and (3.63) with the properties (3.13), and (3.15),
we can pass to the limit in the left-hand side and the first term of the right-hand side. Since ψ′−
is a linear functional, the two convergences (3.61) and (3.63) together with (3.13) are sufficient
to pass to the limit.

Secondly, we show that for all η ∈ L2(0, T ;H1(Ω)), we have∫
Ω

(
M̃(U+

h )− b(U+
h )Id

)
∇
(
W+
h + πh

(
ψ′+,ε(U

+
h )
))
∇πhη dx→ 0, as h→ 0. (3.71)

Since, M̃ is a piecewise constant approximation of b on all K ∈ T h, we know that M̃(·)→ b(·)Id
uniformly and we obtain the previous convergence using a generalized version of the Lebesgue
dominated convergence theorem. Therefore, combining the previous convergence (3.71), the
strong convergence (3.60), the weak convergence (3.63), and (3.15), we obtain∫

Ω

M̃(U+
h )∇W+

h ∇π
hη dx→

∫
Ω

b(n)∇ϕ∇η dx.

Then, from combining the convergence (3.71), the strong convergence (3.60), and (3.15), we
obtain ∫

Ω

M̃(U+
h )∇πhψ′+(U+

h )∇πhη dx→
∫

Ω

b(n)ψ′′+(n)∇n∇η dx.

From the previous results, we show that if we take χ = πhη with η ∈ H1
(
0, T ;H1(Ω)

)
in (3.28a),

the right-hand side converges to the right-hand side of the first equation of the expected limit
system.

Finally, we focus on the left hand side of (3.28a) with χ = πhη and η ∈ H1
(
0, T ;H1(Ω)

)
.

From integration by parts we obtain∫ T

0

(
∂Uh
∂t

, πhη

)h
dt = −

∫ T

0

(
Uh,

∂πhη

∂t

)h
dt+

(
Uh(T ), πhη(T )

)h−(Uh(0), πhη(0)
)h
. (3.72)

Furthermore, since
{
M̃(U+

h )∇
(
W+
h + πhψ′+(U+

h )
)}

h>0
is uniformly bounded in L2(ΩT ), we

know that u ∈ H1
(
0, T ; (H1(Ω))′

)
Therefore, from (3.13), the weak convergence (3.61), equation

(3.72) converges to the left-hand side of the first equation of the limit system.

Altogether, we recover the limit system (3.64).
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3.5 Non-linear semi-implicit multi-dimensional upwind nu-
merical scheme

As we have seen in the previous section, to preserve the non-negativity of the discrete so-
lutions, a particular approximation of the mobility function is needed. Based upon the results
obtained on finite volume schemes for nonlinear parabolic models, we propose an adaptation of
the upwind method within the finite element method.

Upwind approximation of mobility. We approximate the continuous mobility b(uk+1
h ) by

a piecewise continuous function B̃(nk+1
h ). This latter is constant on specific subdomains that

we define for each element. We consider for each element K ∈ T h, the decomposition of K in
(d+ 1) subdomains defined by

D̃K
ij = {x ∈ K|λi, λj ≥ λk, k 6= i, j},

for i = 1, 2, 3, j = 2, 3, and i 6= j. Setting ξk+1
i :=

(
ϕk+1
h + ψ′+(nk+1

h )
)

(xi), we define on each of
the subdomains D̃K

ij (for each K ∈ T h)

Bkij :=

{
nki (1− nkj )2, if ξk+1

i − ξk+1
j > 0,

nkj (1− nki )2, otherwise.
(3.73)

Each entries of the finite element matrix is approximated by

Uij =

∫
Ω

B̃(ukh)∇χi∇χj dx ≈ BkijQij , ∀i, j = 1, . . . , Nh.

The previous approximation is equivalent to a one point quadrature where the quadrature
node is chosen to be part of the subdomain D̃ij . In our case, the quadrature error of the multi-
dimensional upwind method is∫

Ω

∣∣∣Bkij − B̃(uk)
∣∣∣ dx ≤ C

∑
xj∈

⋃
K∈T h

xi,xj∈K
xj 6=xi

∣∣ukh(xi)− ukh(xj)
∣∣ . (3.74)

The computation of the mobility coefficient (3.73) is similar to the one used in [12] for the one-
dimensional finite volume discretization of the Keller-Segel system. Indeed, in one dimension,
our method reduces exactly to a finite volume method. However, in higher dimensions the
computation presents some differences. Definition (3.73) in the finite element context is also close
in spirit to the one proposed by Baba and Tabata in [19], where the authors used barycentric
coordinates to define the basis functions.
Our method is well suited for an assembling procedure and, as a result, is simpler to implement
in already existing finite element software since it requires only the adaptation of the calculation
of a non-constant matrix. This method can also be adapted for the simulation of other advection-
diffusion equations to preserve the nonnegativity of solutions.

Non-linear semi-implicit upwind discretization for the regularized problem. As in
the previous section, we start by describing the finite element problem associated to the regular-
ized problem (3.26).
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For each k = 0, . . . , NT − 1, find {nk+1
h,ε , ϕ

k+1
h,ε } in V h × V h such that ∀χ ∈ V h we have

(
nk+1
h,ε − nkh

∆t
, χ

)h
+
(
B̃ε(n

k
h,ε)∇

(
ϕk+1
h,ε + πh(ψ′+,ε(n

k+1
h,ε ))

)
,∇χ

)
= 0 , (3.75a)

σ
(
∇ϕk+1

h,ε ,∇χ
)

+
(
ϕk+1
h,ε , χ

)h
= γ

(
∇nk+1

h,ε ,∇χ
)

+

(
ψ
′
−(nkh −

σ

γ
ϕkh), χ

)h
, (3.75b)

where B̃ε is defined by the above upwind method for the regularized mobility. Indeed, for the
definition of the upwind coefficient Bkε,ij involved in the calculation of the matrix Uε associated

with
(
B̃ε(n

k
h,ε)∇·,∇·

)
a slight modification has to be made compared to (3.73). The regularized

upwind mobility Bkε,ij is given by (3.73) if nkε,i and nkε,j are in ]ε, 1 − ε[. For nkε,i ≤ ε, it is
replaced in (3.73) by ε and if nkε,i ≥ 1− ε, it is then replaced by 1− ε (the same applies for nkε,j).
Altogether, we obtain that there are two positive constants b1 and B1, such that for each pair of
nodes

b1 < Bkε,ij < B1,

and s ∈ V h, we have
b1 < B̃ε(s) < B1.

The principal difference with the scheme (3.28a)–(3.28b) is that here we compute the ap-
proximation of the mobility using the previously described upwind approach and this mobility
is computed from the solution at the previous time step.

We now prove that this scheme is well-posed, preserves the non-negativity of the discrete
solution, is energy stable and, for the regularized case, the discrete solutions converge to the
solution of the continuous regularized problem (3.26).

Well-posedness, non-negativity preserving property. We state the following theorem.

Theorem 23 (Existence of non-negative solution and energy stability) Let d ≤ 3, and
let T h be an quasi-uniform acute mesh of the domain Ω. We write the condition

(d+ 1)Gh ∆t

κ2
h

max
xi∈J
xj∈Λi

(
∣∣ξk+1
j − ξk+1

i

∣∣) < 1, (3.76)

where Λi is the set of nodes connected to the node xi ∈ J by an edge, Gh = maxxi∈J |Λi|, and
ξk+1
i =

(
πh
(
ψ′+,ε(n

k+1
h,ε )

)
+ ϕk+1

h,ε

)
(xi).

If the previous condition is satisfied, the system (3.75a)–(3.75b) with an initial condition
satisfying n0

h ∈ Kh, has a solution {nk+1
h,ε , ϕ

k+1
h,ε } ∈ V h × V h where 0 ≤ nk+1

h,ε < 1.

Furthermore, the solutions satisfy the energy inequality

E(nk+1
h,ε , ϕ

k+1
h,ε ) + ∆t

NT−1∑
k=0

∫
Ω

B̃ε(n
k
h,ε)

∣∣∣∇(ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))∣∣∣2 dx 6 E(n0
h, ϕ

0
h) , (3.77)
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where

E(nk+1
h,ε , ϕ

k+1
h,ε ) :=

γ

2

∣∣∣∣nk+1
h,ε −

σ

γ
ϕk+1
h,ε

∣∣∣∣2
1

+
σ

2γ

∥∥∥ϕk+1
h,ε

∥∥∥2

0

+

(
ψ+,ε(n

k+1
h,ε ) + ψ−

(
nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
, 1

)h
.

(3.78)

Proof. 1. Existence of solutions. To prove the existence of discrete solutions for the
system (3.75a)–(3.75b), it is just necessary to adapt the analysis made in Theorem 18. Therefore,
we start by defining wkh = nkh − α, where α := 1

|Ω|
∫

Ω
n0
h. Using this notation, we rewrite the

system of equations (3.75a)–(3.75b) to obtain(
wk+1
h,ε − w

k
h, χ

)h
= −∆t

(
B̃ε(w

k
h,ε + α)∇

(
ϕk+1
h,ε + πh

(
ψ′+,ε(w

k+1
h,ε + α)

))
,∇χ

)
,(

ϕk+1
h,ε , χ

)h
= γ

(
∇
(
wk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
,∇χ

)
+

(
ψ
′
−(wkh + α− σ

γ
ϕkh), χ

)h
.

Then, we define the application R : K̃h → K̃h, where

K̃h = {w ∈ V h|Mlw · (1, . . . , 1) = 0},

and is a convex subspace of V h. Then, we give the application R that reads for w ∈ K̃h

−R(w) = F (w) =
[(

∆tM−1
l Uε(w + α) (Ml + σQ)

−1
(γQ))

]
w

+ ∆tM−1
l Uε(w + α)

(
ψ′+,ε(w + α)

)
+ ∆tM−1

l Uε(w + α) (Ml + σQ)
−1
rk − wk,

where rk is the vector associated with Ml

(
ψ
′
−(wkh + α− σ

γϕ
k
h
)
)
. Then, at this state the proof

is exactly the same as in the proof of Theorem 18 since B̃(sh) is bounded for all sh ∈ V h.
Therefore, we refer the reader to the other proof for the details of the calculations to prove
that R is a Lipschitz continuous application defined on a convex set, and, hence, applying the
Brouwer fixed point theorem, we obtain the existence of a solution {nk+1

h,ε , ϕ
k+1
h,ε } ∈ V h × V h of

(3.75a)–(3.75b).

2. Proof of 0 ≤ nk+1
h,ε < 1. To prove the non-negativity of the discrete solution nk+1

h,ε , we must
have

nk+1
ε = nk −M−1

l ∆tU
(
ψ′

+,ε
+ ϕk+1

ε

)
≥ 0.

Then, using the fact that U is a zero row sum matrix, the previous condition reads for every
node xi ∈ J

nk+1
ε,i = nki −

∆t

|Di|
∑
j∈Λi

Uij
(
ξk+1
j − ξk+1

i

)
≥ 0,

where we recall that ξk+1
i =

(
πh
(
ψ′+,ε(n

k+1
h,ε )

)
+ ϕk+1

h,ε

)
(xi), |Di| denotes the volume of the

barycentric cell associated to the node xi, and Λi is the set of node connected to the node xi
by an edge. Then, from the fact that the mesh is acute and the mobility is positive, we know
that each non-diagonal entry Uij is non-positive. Using the definition of the upwind mobility Bkij
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defined by (3.73), we have

Uij
(
ξk+1
j − ξk+1

i

)
= Qij

(
nki (1− nkj )2 min(0, ξj − ξi) + nkj (1− nki )2 max(0, ξj − ξi)

)
.

Therefore, to preserve the non-negativity, we only need to focus on the case ξj − ξi < 0, leading
to the condition

nki −
∆t

|Di|
Gh |Qij | max

xi∈J
xj∈Λi

(
∣∣ξk+1
j − ξk+1

i

∣∣) ≥ 0,

where Gh is the maximum number of connected nodes, i.e. Gh = maxxi∈J |Λi|. Then, from [94],
we know that

|Qij |
Ml,ii

≤ Qii
Ml,ii

≤ (d+ 1)

κ2
h

,

where we recall that κh is the minimal perpendicular length found for all elements K ∈ T h .
Using this property, we recover the condition to obtain the non-negativity of the discrete solution

(d+ 1)Gh ∆t

κ2
h

max
xi∈J
xj∈Λi

(
∣∣ξk+1
j − ξk+1

i

∣∣) ≤ 1.

Then, the upper bound for nk+1
h can be found using the same approach. Indeed, we search to

satisfy the condition

nki −
∆t

|Di|
∑
j∈Λi

Uij
(
ξk+1
j − ξk+1

i

)
< 1,

for all node xi ∈ J . Repeating the same kind of calculations as for the lower bound, we find

∆t

|Di|
Gh |Qij | max

xi∈J
xj∈Λi

(
∣∣ξk+1
j − ξk+1

i

∣∣) < 1− nki .

Using the definition of the upwind mobility in the case ξk+1
j − ξk+1

i ≥ 0, we obtain the condition

(d+ 1)Gh ∆t

κ2
h

max
xi∈J
xj∈Λi

(
∣∣ξk+1
j − ξk+1

i

∣∣) < 1,

and we retrieve the strict inequality in the stability condition (3.76).
3. Energy stability. The energy (3.78) and its dissipation (3.77) are found from the same
calculation as in the proof of Theorem 18, and we do not repeat them here.

Remark 24 We want to highlight the fact that even if we presented the proof of the existence of
solutions, the non-negativity preservation, and the energy stability in the regularized case, these
results hold for the non-regularized case.

Stability and convergence. Since we work in the regularized context for the upwind scheme,
the energy estimate (3.78)–(3.77) provide us sufficient inequalities to analyze the convergence of
the scheme toward the continuous regularized model. We state the following stability inequality
established from the energy estimate.

Proposition 25 (Stability bounds for the implicit upwind scheme) The solution
{nk+1

h,ε , ϕ
k+1
h,ε } of problem (3.75a)–(3.75b) defined by Theorem 23 satisfies
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max
k=0→NT−1

( ∥∥∥nk+1
h,ε

∥∥∥2

1
+
∥∥∥ϕk+1

h,ε

∥∥∥2

1

)
+ (∆t)

2
NT−1∑
k=0

∥∥∥∥∥n
k+1
h,ε − nkh

∆t

∥∥∥∥∥
2

1

+

∥∥∥∥∥ϕ
k+1
h,ε − ϕkh

∆t

∥∥∥∥∥
2

1


+

NT−1∑
k=0

∆t

∣∣∣∣(B̃ε(nkh)
) 1

2 ∇
(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))∣∣∣∣2
0

+

NT−1∑
k=0

∆t
(
B̃ε,max

)−1
∣∣∣∣∣Ĝh

[
nk+1
h,ε − nkh

∆t

]∣∣∣∣∣
2

1

≤ C(n0),

(3.79)

where B̃ε,max = maxs∈[0,1) B̃ε(s).

Proof. The first two terms of the inequality (3.79) are obtained from the energy inequality
(3.77) and the fact that the upwind mobility is strictly positive. Indeed, to prove that

∣∣∣∇nk+1
h,ε

∣∣∣
1

is bounded, we compute

min
nk+1
h,ε

(
1 + σ

γψ
′′
+,ε(n

k+1
h,ε )

ψ′′+,ε(n
k+1
h,ε )

)2 ∣∣∣ψ′+,ε(nk+1
h,ε )

∣∣∣2
1
≤
∫

Ω

(
1 + σ

γψ
′′
+,ε(n

k+1
h,ε )

ψ′′+,ε(n
k+1
h,ε )

)2 ∣∣∣∇ψ′+,ε(nk+1
h,ε )

∣∣∣2
≤
∣∣∣∣nk+1
h,ε +

σ

γ
ψ′+,ε(n

k+1
h,ε )

∣∣∣∣2
1

.

Therefore, for using an arbitrarily positive parameter θ > 0, we have((
σ

γ

)2

+ θ

)∣∣ψ′+,ε(nk+1
h,ε )

∣∣2
1
≤
∫

Ω

∣∣∇(nk+1
h,ε −

σ

γ
ϕk+1
h,ε

)
+
σ

γ
∇
(
ϕk+1
h,ε + πh

(
ψ′+,ε(n

k+1
h,ε )

))
+
σ

γ
∇
(
ψ′+,ε(n

k+1
h,ε )− πh

(
ψ′+,ε(n

k+1
h,ε )

)) ∣∣2.
Then, we use the argument that the mobility is positive and, hence, using the energy estimate
(3.77), we obtain((

σ

γ

)2

+ θ

)∣∣ψ′+,ε(nk+1
h,ε )

∣∣2
1
≤ C +

(
σ

γ

)2 ∣∣∣(ψ′+,ε(nk+1
h,ε )− πh

(
ψ′+,ε(n

k+1
h,ε )

))∣∣∣2
1

≤ C +

(
σ

γ

)2 ∣∣∣ψ′+,ε(nk+1
h,ε )

∣∣∣2
1
,

and we proved that ∣∣∇ψ′+,ε(nk+1
h,ε )

∣∣2
1
≤ C,

from which we obtain
min

(
ψ′′+,ε(n

k+1
h,ε )

) ∣∣∣nk+1
h,ε

∣∣∣2
1
≤ C.
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The previous inequality is useful since we know that minψ′′+,ε(n
k+1
h,ε ) > 0. Therefore, since we

have a bound for
∣∣∣nk+1
h,ε

∣∣∣2
1
alone and using the energy estimate, we obtain

∣∣∣ϕk+1
h,ε

∣∣∣2
1
≤ C.

Then, since the previous two inequalities hold for any k = 0, . . . , NT − 1, we obtain the first two
terms in (3.79).

The other terms are obtained in the same way as in the proof of Theorem 21, the only
difference being to replace the matrix mobility M̃ε by the upwind mobility B̃ε. Since the steps
of the calculations are the same, we do not repeat the proof here.

We now have everything to state our result of convergence. We borrow the notation from sec-
tion 3.4.4 to define the time interpolants Uh,ε,Wh,ε, and the piecewise constant-in-time functions
U+
h,ε, U

−
h,ε,W

+
h,ε,W

−
h,ε.

Theorem 26 (Convergence h,∆t→ 0, ε > 0) Let d = 1, 2, 3 and n0 ∈ H1(Ω), with
0 ≤ n0 < 1 a.e. Ω. We assume that {T h, n0

h,∆t}h>0 satisfy

i) n0
h ∈ V h with 0 ≤ n0

h < 1, given by n0
h = πh(n0) if d = 1, and P̂h(n0) if d = 2, 3.

ii) Let Ω ⊂ Rd be a polyhedral domain and T h a quasi-uniform acute mesh.

Therefore, for ∆t, h→ 0 and ε > 0, it exists a subsequence of solutions {Uh,ε,Wh,ε} and a pair
of function, such that if d = 1

{nε, ϕε} ∈ L∞
(
0, T ;H1 (Ω)

)
∩ C

1
2 ,

1
8

x,t (ΩT ) ∩H1(0, T ; (H1(Ω))′)× L∞
(
0, T ;H1 (Ω)

)
,

and if d = 2, 3

{nε, ϕε} ∈ L∞
(
0, T ;H1 (Ω)

)
∩H1(0, T ; (H1(Ω))′)× L∞

(
0, T ;H1 (Ω)

)
,

such that

Uh,ε, U
+
h,ε, U

−
h,ε → nε, uniformly on ΩT , if d = 1, (3.80)

Uh,ε, U
+
h,ε, U

−
h,ε → nε, strongly in L∞

(
0, T ;L2 (Ω)

)
, if d = 2, 3, (3.81)

Uh,ε, U
+
h,ε, U

−
h,ε ⇀ nε, weakly in L∞

(
0, T ;H1 (Ω)

)
, (3.82)

∂Uh,ε
∂t

⇀
∂nε
∂t

, weakly in L2
(

0, T ;
(
H1 (Ω)

)′)
, (3.83)

Wh,ε,W
+
h,ε,W

−
h,ε ⇀ ϕε, weakly in L∞

(
0, T ;H1 (Ω)

)
. (3.84)

Moreover, for d = 1, {nε, ϕε} is a solution of the regularized-relaxed degenerate Cahn-Hilliard
model under the weak form{∫ T

0
< χ, ∂tnε > = −

∫
ΩT

bε(nε)∇
(
ϕε + ψ′+,ε(nε)

)
· ∇χ, ∀χ ∈ L2(0, T ;H1(Ω)),∫

ΩT
ϕεχ =

∫
ΩT

γ∇
(
nε − σ

γϕε

)
· ∇χ+ ψ′−

(
nε − σ

γϕε

)
χ, ∀χ ∈ L2(0, T ;H1(Ω)).

(3.85)

Proof. The proof of the weak and strong convergences (3.80)–(3.84) follows from the same
arguments as in Theorem 22 and using the stability inequality (3.79).
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Then, to obtain the limit system, the difference with the proof of Theorem 22 is the conver-
gence of the approximation of the continuous mobility. Indeed, since, B̃ is a piecewise constant
approximation of b on all D̃ij on all elements of the mesh, we know that B̃(·) → b(·) uniformly
and we obtain∫

Ω

(
B̃ε(U

+
h )− bε(U+

h )
)
∇
(
W+
h,ε + πh

(
ψ′+,ε(U

+
h,ε)
))
∇πhη dx→ 0, as h→ 0, (3.86)

using a generalized version of the Lebesgue dominated convergence theorem. Therefore, combin-
ing (3.74), the previous convergence (3.86), the strong convergence (3.81), the weak convergence
(3.84), and (3.15), we obtain∫

Ω

B̃(U+
h )∇W+

h ∇π
hη dx→

∫
Ω

b(n)∇ϕ∇η dx.

Then, from combining again (3.74), the convergence (3.86), the strong convergence (3.81), and
(3.15), we obtain ∫

Ω

B̃(U+
h )∇πhψ′+(U+

h )∇πhη dx→
∫

Ω

b(n)ψ′′+(n)∇n∇η dx.

From the previous results, we show that if we take χ = πhη with η ∈ H1
(
0, T ;H1(Ω)

)
in (3.49a),

the right-hand side converges to the right-hand side of the first equation of the expected limit
system.

The rest of the proof is the same as the proof of Theorem 22, and we do not repeat the
calculations here.

Remark 27 Our result of convergence for the upwind scheme is restricted to the regularized case
since we do not have an entropy estimate for this definition of the discrete mobility. However, this
result is not pessimistic since we know that the regularized model converges to the non-regularized
problem as ε→ 0. Furthermore, we want to stress that the non-negativity property and the energy
stability is also retrieved for the same scheme applied to the non-regularized version of the model.

3.6 Linearized semi-implicit numerical scheme
To restrain the computational time of the simulation of the RDCH model within reasonable

bounds, we propose a linearized semi-implicit version of our numerical scheme. We linearize the
problem using a particular time discretization. The problem now reads:

For each k = 0, . . . , NT − 1, find {nk+1
h , ϕk+1

h } in Kh × V h such that(
nk+1
h − nkh

∆t
, χ

)h
+
(
b(nkh)ψ′′+(nkh)∇nk+1

h ,∇χ
)

= −
(
B̃(nkh)∇ϕk+1

h ,∇χ
)
, ∀χ ∈ V h, (3.87a)

σ
(
∇ϕk+1

h ,∇χ
)

+
(
ϕk+1
h , χ

)h
= γ

(
∇nkh,∇χ

)
+

(
ψ′−(nkh −

σ

γ
ϕkh), χ

)h
, ∀χ ∈ V h. (3.87b)

We define the following finite elements matrices

Uij =

∫
Ω

Bkij∇χi∇χj dx, for i, j = 1, . . . , Nh, (3.88)
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and
Dij =

∫
Ω

b(nkh,ε)ψ
′′
+(nkh)∇χi∇χj dx, for i, j = 1, . . . , Nh. (3.89)

We write the matrix form of the equation (3.87a)

(Ml + ∆tD)nk+1 = −∆tUϕk+1 +Mln
k,

and since U has zero row sum, we can rewrite the previous equation for each node i

Ml,iin
k+1
i = Ml,iin

k
i −∆t

∑
xj∈Λi

[
Dij(n

k+1
j − nk+1

i ) + Uij(ϕ
k+1
j − ϕk+1

i )
]
, (3.90)

where Λi is the set of nodes connected to the node i by an edge. In the definition of (3.88) we
compute the mobility coefficient in function of the direction of ∇ϕkh. As for the nonlinear case,
the mobility coefficient is given by

Bkij =

{
nki (1− nkj )2, if ϕk+1

i − ϕk+1
j > 0,

nkj (1− nki )2, otherwise.

Even though we cannot redo the same analysis as for the nonlinear scheme and derive the
discrete energy, we can establish the existence and the nonnegativity of discrete solutions of
(3.87a) and (3.87b).

Theorem 28 (Well-posedness of linear upwind scheme) Let Ω ⊂ Rd, d = 1, 2, 3, and as-
sume that T h is a quasi-uniform acute mesh of Ω, and the condition

(d+ 1)Gh ∆t

κ2
h

max
xi∈J
xj∈Λi

(
ϕkj − ϕki

)
< 1, (3.91)

(where Λi is the set of node connected to the node xi by an edge) is satisfied. Then, the
linear finite element scheme (3.87a)–(3.87b) with initial condition n0

h ∈ Kh admits a solution
{nk+1

h , ϕk+1
h } ∈ Kh × V h satisfying

0 6 nk+1
h < 1.

Proof. Step 1. Existence of a unique solution. Assuming that {nkh, ϕkh} ∈ Kh × V h, from
the Lax-Milgram theorem, it exists a unique solution ϕk+1

h ∈ V h of (3.87b) and equation (3.87a)
admits a unique solution nk+1

h ∈ V h. Therefore, it exists a unique pair of discrete solutions
{nk+1

h , ϕk+1
h } ∈ V h × V h for the system (3.87a)–(3.87b). Next, we need to prove that nk+1

h is
nonnegative and bounded from above by 1.

Step 2. Nonnegativity and upper bound on nk+1
h for d = 1, 2, 3. First, from the fact that

(Ml + ∆tD) is a M-matrix, we know that its inverse is non-negative, i.e. (Ml + ∆tD)−1 ≥ 0.
Therefore, to preserve the non-negativity of nk+1

h , we need that

Mln
k −∆tUϕk+1 ≥ 0.

For every node xi in T h, the previous condition reads

|Di|nki −∆t
∑
j∈Λi

BkijQij
(
ϕk+1
i − ϕk+1

j

)
≥ 0,
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where Λi is the set of node connected to the node xi by an edge. From the fact that the mesh
is acute, we know that Qij is negative. Therefore, using the definition of the mobility coefficient
(3.73), we need to focus on the case ϕk+1

j − ϕk+1
i < 0. In that situation, we have

nki −
∆t

|Di|
∑
j∈Λi

nki
(
1− nkj

)2
Qij

(
ϕkj − ϕki

)
≥ 0.

However, we know that [94],
|Qij |
Ml,ii

≤ Qii
Ml,ii

≤ (d+ 1)

κ2
h

.

Hence, we find the following condition to ensure the non-negativity of uk+1
h

(d+ 1)Gh ∆t

κ2
h

max
xi∈J
xj∈Λi

(
ϕkj − ϕki

)
≤ 1.

Then, we need to prove that for every node xi ∈ J we have nk+1
i , we use Varah’s bound [197],

and write ∥∥∥∥∥
(
Ml

∆t
+D

)−1
∥∥∥∥∥
∞

≤ ∆t

Ml,ii
.

Therefore, to retrieve the upper bound on the discrete solution, the condition

nki −
∆t

|Di|
∑
j∈Λi

nkj
(
1− nki

)2
Qij

(
ϕkj − ϕki

)
< 1,

as to be satisfied. Note in the previous equation that we have considered the case ϕkj − ϕki > 0

since in the other case the bound will be satisfied trivially. Then, subtracting nki to both sides
of the previous inequality, we obtain

− ∆t

|Di|
∑
j∈Λi

nkj
(
1− nki

)
Qij

(
ϕkj − ϕki

)
< 1,

and we retrieve the same condition than before with a strict inequality.
Altogether, we proved the existence a unique solution {nk+1

h , ϕkh} ∈ Kh × Sh for the system
(3.87a)–(3.87b) with 0 ≤ nk+1

h < 1 if the stability condition (3.91) is satisfied.

3.7 Numerical simulations

Even though we are presenting numerical results obtained using the linear scheme (3.87a)–
(3.87b), the evolution of the energy during the simulations is given from the computation of the
discrete formulation of the continuous energy

E(nk+1
h , ϕk+1

h ) :=

∫
Ω

γ

2

∣∣∣∣∇(nk+1
h − σ

γ
ϕk+1
h

)∣∣∣∣2 +
σ

2γ
|ϕk+1
h |2

+ ψ+(nk+1
h ) + ψ−

(
nk+1
h − σ

γ
ϕk+1
h

)
dx.
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Table 3.1 – Parameters of the 1D test case

Parameters
γ (0.014)2

∆t 0.1γ
δx 0.01
n0 {0.05, 0.3, 0.36}
n? 0.6
σ 5.10−5

First of all, we present test cases in one and two dimensions to validate our method. The
physical properties of the solutions such as the shape of the aggregates, the energy decay, the
mass preservation and the non-negativity of the solution are the key characteristics we need to
observe to validate our method. A comparison with previous results from the literature is also
of main importance. The reference used for this study is the work of Agosti et al. [8]. The
analysis of the long-time behavior of the solutions of the RDCH equation [165] gives us some
insights about what we should observe at the end of the simulations. The solutions should evolve
to steady-states that are minimizers of the energy functional. Depending on the initial mass,
three regions of the cell density should appear. The first being the region of absence of cells, the
second the continuous interface linking the bottom and the third, the top of the aggregates. If
the initial mass is large enough, the third region is a plateau of the cell density close to the value
n = n?. The study of the effect of the regularization on the numerical scheme is the purpose of
the last subsection.

3.7.1 Numerical results: test cases

1D test cases

The table 3.1 summarizes the parameters used for the one dimensional test cases. The initial
cell density is a uniformly distributed random perturbation around the value n0. Figures 3.2
show the evolution in time of the solutions nh for the three different initial masses.

We can observe that the solution for each of the three test cases remains nonnegative and
the mass is conserved throughout the simulations. From figure 3.3, we observe that the energies
decrease monotonically for the three simulations but at different speeds. They all display at
the end of the simulation a stable (or metastable) state that is a global (or respectively a local)
minimizer of the discrete energy.

For the initial condition n0 = 0.3 (Figures 3.2 b1), b2), b3) and Figure 3.3 in the middle),
the energy decreases rapidly and reaches a plateau showing that the solution evolves rapidly to
a steady state. The solution at t = 10 is organized in aggregates that are not saturated (i.e. the
maximum density is below n?). The explanation behind this observation is that the initial mass
is not sufficient for the system to produce saturated aggregates. However, the clusters appear to
be of similar thickness and are relatively symmetrically distributed in the domain.

For n0 = 0.36 > n?/2 (Figures 3.2 c1), c2), c3)), aggregates are thicker. The top of the
aggregate located at the center of the domain is flat and reach the maximal value n? (which is
not the case for the other test cases). Likewise, the symmetry in the domain is respected. Using
Figure 3.3 on the right, we observe that at different times, the energy evolves through several
meta-stable equilibria. This reflects the fact that the solution reached different meta-stable states
before a stable equilibrium that minimizes more the energy.

For the initial condition n0 = 0.05 (Figures 3.2 a1), a2), a3)), the shape of the final solution
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Figure 3.2 – Solution nh at 3 different times with n0 = 0.05(a1,a2,a3), n0 = 0.3 (b1,b2,b3) and
n0 = 0.36 (c1,c2,c3).

is different. The aggregates appear to be thinner and far from each other. The symmetry is
not retrieved in the domain. Furthermore, from Figure 3.3 (on the left), we can observe that
the evolution of the solution is slow compared to the two other test cases. The evolution of
the energy in the first moments of the simulation is slow. This first moments correspond to the
spinodal decomposition phase. The slow evolution of the solution is explained from the fact that
the mobility is degenerate and the amount of mass available in the domain is small. Using Figure
3.3, we can also see that the energy continues to decrease even at the end of the simulation. To
keep comparable simulation times, we did not reach the complete steady state.

Let us compare qualitatively these results with the ones obtained in [8]. For the two test cases
n0 = 0.3 and n0 = 0.36, there is no differences in the shape of the aggregates or in the distribution
of the mass in the domain. For n0 = 0.05, some small discrepancies with the final solutions are
observed. In particular, the symmetry of the aggregates in the domain is not respected in our case
whereas it is in the reference work. We must stress that doing other simulations, the symmetry
was sometimes reached at the time t ≈ 100 for the initial condition n0 = 0.05. The reason is that
the system will evolve to respect the symmetry but the time at which this stable-steady state is
reached depends on the initial distribution of the cell density.

Altogether, the solutions obtained at the end the three simulations are in accordance with the
description of the steady-states made in [165]. The three regions of interest are indeed retrieved
at the end on each simulation.
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Figure 3.3 – Evolution of discrete energy through time for the 3 initial conditions (from left to
right n0 = {0.05, 0.3, 0.36})

Table 3.2 – Parameters of the test cases

Parameters
γ 0.0142

∆t 2γ
∆x 1/64
n0 [0.05, 0.3, 0.36]
n? 0.6
σ 10−5

2D test cases

For the two-dimensional test cases, the domain is a square of length L = 1. The initial density
is computed in the same way as for the one-dimensional test cases, i.e. a random uniformly
distributed perturbation around n0. The summary of the parameters can be found in table
3.2. Figures 3.4, depict the results of three test cases with different initial masses. The three
simulations satisfy the nonnegativity of the cell density, the conservation of the initial mass and
the monotonic decay of the discrete energy. However, different shapes can be observed for the
aggregates.

Figures 3.4 a1),a2),a3) show the evolution of the solution through time for the small initial
mass n0 = 0.05. Starting from a uniform random distribution of the cell density in the domain,
the solution evolves into a more organized configuration. Progressively, a separation of the two
phases of the mixture occurs. At the end of the simulation, small clusters are formed. They
display a circular shape and are of similar width. The organization of the clusters in the domain
tries to maximize the distance between each others. Using the Figure 3.5 (left), we observe a drop
of the energy in the first moments of the simulation denoting a fast reorganization of the random
distributed initial condition. Then, the solution appears to evolve very slowly, i.e. a meta-stable
state was reached. A second drop of the energy follows around t ≈ 15, the system enters the
"coarsening" phase: the small aggregates become more dense and merge with others. At the
end, the evolution is very slow. The system continues to rearrange but due to the degeneracy of
the mobility and the small amount of initial mass this process is very slow.

Figures 3.4 b1),b2),b3) show the evolution of the solution for n0 = 0.3. The two successive
processes that are the spinodal decomposition and the coarsening are observed. Between the
Figures 3.4 b1) and 3.4 b2), we observe that the solution evolves from a random uniform con-
figuration to an organization in small aggregates that are not saturated. Then (Figure 3.4 b3)),
the cell density is distributed in elongated and saturated aggregates. The separation of the two
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Figure 3.4 – Solution nh at 3 different times with n0 = 0.05 (a1,a2,a3), n0 = 0.3 (b1,b2,b3) and
n0 = 0.36 (c1,c2,c3).

phases is clear. However, using Figure 3.5 (middle), we observe that at the end of the simulation
the cell density continues to rearrange. Due to the degeneracy of the mobility, this evolution is
again very slow.

On Figures 3.4 c1),c2),c3), we can observe the evolution of the solution for n0 = 0.36. Again,
the solution goes through the spinodal decomposition and coarsening phases. The only difference
that needs to be highlighted for this simulation is the shape of the aggregates at the end. Indeed,
the initial mass being n0 = 0.36 > n?/2, aggregates are wider and more connected to each others.

Therefore, depending on the initial mass of cells in the domain, the 2D simulations of the
model show very different spatial organizations of the cell density.

Compared to the reference work [8], the organizations of the cells for the different initial cell
densities are the same. No clear difference can be established regarding the simulation involving
the relaxed model and the original one.

The three regions corresponding to a steady-state described in [165] are retrieved at the end
of the simulations for these 2D test cases.

3.7.2 Effect of the relaxation parameter σ

In this section we evaluate the effect of the relaxation parameter σ for the stability of the
scheme, and in particular to satisfy the CFL-like condition (3.91). This conditions is necessary
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Figure 3.5 – Evolution of discrete energy through time for the 3 initial conditions (from left to
right n0 = {0.05, 0.3, 0.36})

to preserve the nonnegativity of the solutions of the linear discrete scheme. To evaluate the
effect of this parameter on the choice of the time step ∆t, we compute the amplification matrix
H defined by

Xk+1 = HXk, with Xk =

[
nk

ϕk

]
.

Here, Xk is called the state vector. Using the matrix form of the scheme (3.30)–(3.31) we can
decomposed the amplification matrix by H = H−1

1 H2 with

H1 =

[
0 σA+M

M + ∆tD ∆tU

]
, H2 =

[
γA− (1− n?)M σ

γ (1− n?)M
M 0

]
.

We denote by λi, i = 1, . . . , N , the eigenvalues of the amplification matrix H.
To analyze the stability of the numerical scheme due to the relaxation parameter, we compute

the spectral radius of the amplification matrix

ρ(H(∆t)) = max
i

(|λi|),

for a smooth initial conditions. The scheme is stable when the maximum value of the modulus
of the eigenvalues is less or equal to 1. The figure 3.6 represents the spectral radius in function
of the time step ∆t for two values of σ (the other parameters are the ones taken from the one
dimensional test cases with n0 = 0.3). We can observe that the scheme remains stable when
∆t is small for the two test cases. However, we see that increasing σ allows to take larger
time steps while remaining stable. This result can be explained due to the fact that increasing σ
diminishes the value max xi∈J

xj∈Λi

(
ϕkj − ϕki

)
present in the stability condition (3.91). Therefore, the

regularization induced by the relaxation parameter allows for faster simulations, but it has an
effect on the accuracy of the solution compared to the solution given by the non-relaxed model.
However, at the moment it remains unclear how to compare the solution given by a simulation
of the relaxed model and a solution of the original degenerate model (without relaxation). This
will be the subject of a further work.

3.8 Conclusion

We described and studied two finite element schemes to solve the relaxed degenerate Cahn-
Hilliard equation with single-well logarithmic potential. The difference between the two is in the
approximation of the continuous mobility function. The first scheme uses the idea proposed in
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(a) σ = 10−5 (b) σ = 10−4

Figure 3.6 – Spectral radius in function of ∆t for σ = 10−5(left) and σ = 10−4 (right).

[108] and allows to obtain an entropy estimate from the discrete scheme. The second aims to
recover an efficient and practical discretization of the relaxed degenerate Cahn-Hilliard model.
The mobility in this scheme is computed from an adaptation of the upwind method in the finite
element framework. Even though we cannot prove that the solutions of the upwind scheme con-
vergence to the solutions of the continuous relaxed degenerate Cahn-Hilliard model, we showed
that it preserves the non-negativity of the order parameter and the dissipation of the energy.
For the scheme that uses the upwind method, we considered two different time discretizations
leading to a nonlinear semi-implicit scheme and a linear semi-implicit one.

The linear semi-implicit scheme allows for faster simulations and we proved that it is well-
posed and preserves the nonnegativity of the solutions as well. We presented some numerical
simulations using this linear scheme in one and two dimensions. The numerical simulations vali-
dated the nonnegativity-preserving and energy decaying properties of the scheme. The numerical
solutions of the finite element approximation of the RDCH model are in good agreement with
previous works dealing with the non-relaxed model. We showed that the relaxation parameter σ
allows us to take a larger time step in the scheme (as long as the condition for the nonnegativity is
preserved and σ < γ). We point out that thanks to the spatial relaxation, our numerical scheme
can be easily implemented and simulations of the relaxed degenerate Cahn-Hilliard model can
be computed efficiently using standard softwares.
In a work in preparation, we will study the phase-ordering dynamics of the system and the error
analysis of the discrete solutions. An emphasis will be put on the effect of the regularization
parameter because, so far, we lack a clear explanation on how it affects the accuracy of solutions
compared to the original system.

3.A Proof of M-matrix properties in the 1D and 2D cases

Proposition 29 For d = 1, 2, the matrix (Ml

∆t +D) is a M-matrix.

Proof. If the mass matrix is lumped, the all matrix is a Z-matrix due to the fact that the
non-diagonal terms of Lbψ′′+ are negative. Therefore, the sum of the lumped mass matrix Ml and
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D is a Z-matrix. Furthermore, we can write

Ml

∆t
+D = cI −B,

where I is the identity matrix, c is a constant and B is a matrix with bij ≥ 0, 1 ≤ i, j ≤ N . Let
us choose c = max(

Ml,ii

∆t + (D)ii) and consequently the matrix B can be deduced and contains
only positive terms. Therefore, we have proved that (Ml

∆t +D) is a M-matrix.
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Chapter 4

Treatment-induced shrinking of
tumour aggregates: A nonlinear
volume-filling chemotactic approach

Abstract
Motivated by experimental observations in 3D/organoid cultures derived from glioblastoma, we develop
a mathematical model where tumour aggregate formation is obtained as the result of nutrient-limited
cell proliferation coupled with chemotaxis-based cell movement. The introduction of a chemotherapeutic
treatment induces mechanical changes at the cell level, with cells undergoing a transition from rigid bodies
to semi-elastic entities. We analyse the influence of these individual mechanical changes on the properties
of the aggregates obtained at the population level by introducing a nonlinear volume-filling chemotactic
system of partial differential equations. The elastic properties of the cells are taken into account through
the so-called squeezing probability, which allows us to change the packing capacity of the aggregates,
depending on the concentration of the treatment in the extracellular microenvironment. We explore two
scenarios for the effect of the treatment: firstly, the treatment acts only on the mechanical properties of
the cells and, secondly, we assume it also prevents cell proliferation. A linear stability analysis enables
us to study the ability of the system to create patterns. We provide numerical simulations in 1D and
2D that illustrate the shrinking of the aggregates due to the presence of the treatment.

This chapter is taken from Luís Almeida, Gissell Estrada-Rodriguez, Lisa Oliver, Diane
Peurichard, A. P., Francois Vallette, Treatment-induced shrinking of tumour aggregates: A non-
linear volume-filling chemotactic approach, Journal of Mathematical Biology, 83, 29 (2021). Jour-
nal.

4.1 Introduction

Cell migration in the extracellular microenvironment (ECM) and the organisation of cells in
response to chemical and mechanical cues are successfully studied using continuum descriptions
based on differential equations [6, 163]. In a continuous setting, the chemotactic behaviour
of cells (i.e. the ability to move along a chemical gradient) is often modelled using a Keller-
Segel system of equations [122]. This model was originally proposed for pattern formation in
bacterial populations but turned out to be pertinent to describe a wide variety of self-organisation
behaviours [54, 30, 206, 125, 202]. Different variations of the Keller-Segel model have been
adopted in order to better understand the way cells aggregate [44, 14, 160, 184, 69].

101

https://doi.org/10.1007/s00285-021-01642-x
https://doi.org/10.1007/s00285-021-01642-x


102 CHAPTER 4. Treatment-induced shrinking of tumour aggregates

Cancer cells have been shown to respond to chemical and mechanical signals from compo-
nents of the tumour micro-environment (TME) and vice versa, cells in the TME acquire a more
tumourigenic phenotype, which would sustain tumour growth. The interaction of tumour cells
with the TME has been the subject of recent biological surveys [113, 88]. Many in vitro (and
ex vivo) experiments have shown that cells that are cultured on ECM often have a tendency to
form aggregate patterns that are dependent on the particular cell lines and physical properties of
the media [91]. The exact consequences of the dynamic interplay between heterogeneous cellular
entities and their response to alterations in the TME have not yet been elucidated. In particular,
little is known about the role of mechanics in the spatial organization of the tumour spheroids.
Biological evidence presented in [144, 128, 57] suggests that the formation of aggregates in glioma
cells can be explained through a chemotaxis process, rather than, e.g., cell-cell adhesion. In this
paper, we follow the chemotactic approach to explain the formation of glioma aggregates. For
the case of breast cancer cells, a recent report [45] has proposed a chemotaxis-based explanation
for spheroid formation based on theoretical analysis and numerical simulations of the Turing
instabilities of such systems.

Inspired by experimental observations in 3D/organoid cultures derived from freshly operated
Glioblastoma (GBM), which reproduce in vivo behaviours as described in [155] (see Section 4.2
for more details), in this paper we explore a simple setting where GBM aggregate formation is the
result of nutrient-limited cell proliferation coupled with a chemotaxis-based cell movement. A
chemotherapeutic treatment introduced after the formation of the aggregates induces mechanical
changes at the cell level. We study the influence of these individual mechanical changes on the
characteristics of the aggregates obtained at the population level.

GBM are solid tumours characterised by intra- and inter-tumoural heterogeneity and resis-
tance to conventional treatments that result in a poor prognosis [140]. They are the most common
and aggressive primary brain tumour in adults. Standard treatments include surgical resection
(when possible), combined with radiotherapy and chemotherapy using the DNA alkylating agent
Temozolomide (TMZ) [187]. In fact, the overall survival of treated patients is about 15 months
versus 3 months without treatment, with fewer than 5% of patients surviving longer than 5 years
[186].

One reason behind this relative therapeutic failure is the poor response of GBM tumours
to this chemotherapeutic treatment due to their plasticity. Several studies have looked at the
genetic compounds of TMZ-resistant cells focusing on the genes responsible for DNA mismatch
repair protein [189], while other studies focused on spatial and temporal variations in signalling
pathways, which lead to functional and phenotypic changes in GBM [157]. The communication
between the tumour cells and the TME as well as the properties of the ECM have a large impact
on tumour evolution and invasion, as shown in recent studies [68, 40, 205]. From a biological
and medical perspective, it is difficult to investigate the connections between clinically observ-
able glioma behaviour and the underlying molecular and cellular processes. The challenge is to
integrate the theoretical and empirical acquired knowledge to better understand the mechanisms
and factors that contribute to GBM resistance to treatment. In this context, mathematical mod-
els provide useful tools towards identifying dependencies between different phenomena and how
they are affected by the different therapeutic strategies.

Much effort has been dedicated to the modelling of GBM formation and invasion of the
surrounding tissue, as well as to improving diagnosis and treatment. The exhaustive review
[11] discusses different modelling approaches as well as some of the main mechanisms that are
observed in GBM formation and invasion.

In this work, we explore two scenarios: the case where the treatment only acts on the me-
chanical properties of the cells, and the case where it also prevents cell proliferation [130]. We
adopt a macroscopic approach where cells are represented by their macroscopic density and are
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supposed to move in the environment via chemotaxis, i.e. towards zones of high concentrations
of a chemoattractant that is produced by the tumour cells. Moreover, cell proliferation is as-
sumed to depend on the local concentration of nutrients available. Finally, we suppose that
when the treatment - represented by its continuous concentration - is introduced, it diffuses in
the environment and is naturally consumed by the cells.

Under these hypotheses, which are motivated by the experimental results discussed in Section
4.2, we obtain a nonlinear volume-filling Keller-Segel model for the cell density, coupled with
reaction diffusion equations for the chemoattractant and treatment concentrations. Moreover,
we provide a linear stability analysis that enables us to study the ability of the system to generate
patterns, and we provide numerical simulations in 1D and 2D.

The paper is organised as follows. In Section 4.2 we describe the in vitro experiments and
the main experimental observations that motivated our model. Section 4.3 is devoted to the
description of the model for the first part of the experiments (without the treatment, Section
4.3.1) and the second part, when the treatment is introduced (Section 4.3.2). In Section 4.4, we
present the stability analysis for each of these two parts, and Section 4.5 is devoted to numerical
simulations. Section 4.5.2 presents the results in 1D including a discussion on the comparison
between numerical experiments and theoretical predictions of the stability analysis. Section 4.5.3
shows the 2D simulations. Finally, we discuss the results and give some perspectives in Section
4.6.

4.2 Description of the experiments

To address the question of the response of GBM cells to TMZ treatment, we took advantage
of recently developed 3D biosphere experiments, using GBM patient-derived cultures in a simple
3D scaffold composed of alginate and gelatin [156]. GBMG5 cells were cultured at a concen-
tration of 4 × 106 cells/ml for 14 days until the formation of cell aggregates could be observed,
corresponding to the first part of the experiments (P1). After that, the cultures were treated
with 100 µM TMZ for two hours once every week (second part of the experiments, P2). Over
the 30 days, the proliferation was determined counting 3 representative samples, and the cell
number was determined as follows. The biospheres were dissociated by incubation for 3 min in
100 mM Na-Citrate and the cell number and cell viability were determined using the Countess
optics and image automated cell counter (Life Technologies). In addition the aggregates were
photographed to analyse their morphology, and the diameter of the cell aggregates were measured
from pictographs using FIJI. To determine the diameters of these cell structures, more than 200
cell aggregates were measured.

We show in Figure 4.1 (I) the mean length (in µm) of the cell aggregates computed from the
microscopic images without TMZ treatment (round markers), and with TMZ weekly adminis-
tered (squared markers). Figures 4.1 A and B show typical microscopic images of the spheroids
at day 24, without and with weekly TMZ treatment respectively. In Figure 4.1 (II), we show the
evolution of the cell number as a function of time, where we do not observe big changes in cell
number with and without TMZ, once the carrying capacity of the system is reached.

Using clinically relevant concentrations [170] the total number of cells in the biospheres does
not seem to be significantly impacted by the TMZ treatment. However, the mean size of the
GBMG5 cell aggregates decreases when TMZ is introduced weekly as compared to control cul-
tures (Figure 4.1 (I)), suggesting that in the presence of the treatment, GBMG5 cells tend to
self-organize into smaller and more compact cell clusters.

Another observation supporting a tendency for GBM cells to form more compact structures
with higher intracelluar adhesion under this type of treatment is the increased expression of
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Figure 4.1 – Biological experiments of GBMG5 cells cultured in 3D scaffolds with or without
100µMTMZ. (I) Evolution of the mean cell aggregates diameter determined from the microscopic
images as function of time, without treatment (circle markers) and with a weekly TMZ (square
markers). (A) Typical microscopic image on day 24 of control cell aggregates without treatment,
(B) microscopic image at day 24 with 100µM of TMZ administrated weekly for 2 hours. (II)
Evolution of the total cell number in the biospheres as function of time, without treatment (circle
markers) and with weekly TMZ (square markers).

Figure 4.2 – Claudin expression marking the tight junctions between the cells.
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claudin, a marker of tight junctions formed between cells (Figure 4.2). In Figure 4.2 we have
GBMG5 cells that were cultured for 14 days until the formation of cell aggregates could be
observed, and the cultures were treated with different doses of TMZ until day 23. Furthermore,
cell aggregates were fixed then labeled with an anti-claudin antibody. The degree of staining
was determined in a double-blind experiment. As one can observe from the images of Figure 4.2
(left), the cell aggregates seem to be smaller and more compact when TMZ is present compared
to the control group (top left figure), and these cultures are associated with higher levels of
claudin (see Figure 4.2 (right)).

Inspired by these observations and results presented in [144, 128, 57], we propose a general
model for the chemotaxis-driven formation of cell clusters and shrinking of the aggregates via the
action of a non-cytotoxic drug whose effect would be characterised by a change in the mechanical
properties of cells that would just modify their packing properties. Moreover, we also consider a
second scenario where the treatment would also affect cell proliferation and compare the results
obtained.

4.3 Mathematical model

Motivated by the experiments described in Section 4.2, we assume that glioma cells have a
chemotactic behavior, i.e. they move in response to some signaling chemical (chemoattractant),
which is secreted by themselves and diffuses in the environment. The chemotactic movement
of cell populations plays a fundamental role for example in gastrulation [70], during embryonic
development; it directs the movement of immune cells to sites of infection and it is crucial to
understand tumour cell invasion [64] and cancer development [206]. Motivated by these appli-
cations, chemotaxis and related phenomena have received significant attention in the theoretical
community, see the reviews [117, 118].

We suppose that in normal conditions (first part of the experiments described in Section
4.2, where there is no treatment), tumour cells proliferate and move via chemotaxis as described
before. We suppose that cell proliferation is limited by the nutrients available in the environment,
i.e. cell proliferation is only active as long as the local density does not exceed a given threshold
corresponding to the carrying capacity of the environment. Moreover, in order to take into
account the finite size of cells and volume limitations, cell motion is only allowed in locations
where the local cell density is much smaller than another threshold value corresponding to the
tight packing state. In normal conditions, cells are supposed to behave as rigid bodies. In stressed
conditions however, (second part of the experiments described in Section 4.2) we suppose that
cells respond to the chemotherapeutic stress (induced by the presence of the treatment) by
changing their mechanical properties and behaving as a semi-elastic material.

These hypotheses are modelled via a system of partial differential equations (PDE) which
corresponds to a volume-filling chemotaxis equation [162] for the first part (to describe the self-
organization of cells into aggregates), and a “semi-elastic” volume-filling chemotaxis approach
[201] for the second part, when the treatment is introduced.

For convenience we denote the density of the population of cancer cells in the first part of
the experiments by u(x, t) and that of the second part by w(x, t). Here x ∈ Ω ⊂ R2 where Ω is a
bounded domain. The time t ∈ [0, T ] where T = T1 +T2 represents the total time corresponding
to the first and second parts. The main difference between these two populations is the change
in the elastic properties of the cells due to the presence of the treatment. If the concentration
of the treatment is zero, u(x, t) = w(x, t). Cells follow a biased random walk according to the
distribution of the chemoattractant of concentration c(x, t) that is secreted by the cells. We start
by detailing the different components of the mathematical models corresponding to the two parts
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of the experiments described in Section 4.2.

Logistic growth model for cell proliferation As previously described, in order to take into
account the nutrient-limited population growth, cell proliferation is modelled by a logistic growth
process. At the population level, we consider a source term f(u) in the PDE for the evolution
of the cell density which depends nonlinearly on the local cell density u and reads:

f(u) = ru
(

1− u

umax

)
. (4.1)

Here, r > 0 is the proliferation rate and umax corresponds to the maximum density of the
population, also referred to as the carrying capacity of the environment. Alternative cell kinetics
could be considered. For example, we can assume that the proliferation is also mediated by the
chemoattractant concentration such that f(u, c) = ruc(1−u/umax) [162]. In this paper we focus
on the case given by (4.1).

Chemoattractant dynamics As described before, we suppose that cell aggregates sponta-
neously emerge as the result of a self-organization phenomenon of chemotaxis type. To this
aim, we suppose that the cells themselves produce the signaling chemical (chemoattractant) that
drives their motion. The chemical secreted is therefore supposed to be continuously produced
by the cells at rate α > 0 and diffuses in the surrounding environment with diffusion coeffi-
cient d2 > 0. It is further assumed that the chemical has a finite lifetime and degrades at rate
β > 0. The evolution of the chemical concentration c(x, t) is therefore given by the following
reaction-diffusion equation

∂tc = d2∆c+ αu− βc , (4.2)

where u is the cell density.

Treatment dynamics We suppose that the treatment is introduced at the beginning of P2.
This treatment is supposed to diffuse in the environment with diffusion coefficient d4, and to be
consumed by the cells at rate δ. This is modelled by a reaction-diffusion equation for the drug
concentration M(x, t):

∂tM = d4∆M − δw ,

where w(x, t) represents the cell density corresponding to the second part of the experiments. We
consider different initial conditions for the drug: either uniformly distributed in the simulation
domain, or introduced in the center as a very steep Gaussian function (see Section 4.5).

4.3.1 Volume-filling approach for chemotaxis: first part P1

The classical Keller-Segel system of equations [122] describes how cells move along the gradient to
local maxima of the chemoattractant. At the same time, this chemical, which is produced by the
cells, promotes aggregation leading to the so-called “overcrowding scenarios”, and eventually, the
cell density may blow up in finite time (see the comprehensive reviews [117, 188] and references
therein).

In this paper, in order to take into account volume limitations and the finite cell size, we
consider a modified version of the Keller-Segel model called the volume-filling approach for cell
motion. This approach was introduced in [162], where the authors provided a detailed derivation
in one dimension as well as a comprehensive numerical study of the model.
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Figure 4.3 – Squeezing probability for different values of γM for ū = 1.

Moreover, we introduce the so-called squeezing probability, which describes the probability
that a cell finds an empty space at a neighbouring location before moving (see [201]). It takes
the form

q(u(x, t)) =

{
1−

(
u
ū

)γM
, for 0 6 u 6 ū ,

0, otherwise ,
(4.3)

where u(x, t) is the cell density, γM > 1 is the squeezing parameter,M ≡M(x, t) > 0 denotes the
concentration of the treatment, and ū is the crowding capacity which corresponds to the tight
packing state of the cells. The function q(u) satisfies the following properties,

q(ū) = 0 , 0 < q(u) 6 1 , and q′(u) 6 0 for 0 6 u < ū . (4.4)

Moreover, |q′(u)| is bounded and q′′(u) 6 0.
The exponent γM is chosen to be

γM = (γ̄ − 1)M + 1 , (4.5)

where γ̄ is a positive constant, M = 0 when there is no drug in the environment (part P1 of the
experiments), and M ≡M(x, t) when the drug is introduced (part P2, described bellow). Such
choice of γM enables to take into account different forms of squeezing probability, corresponding
to different mechanical behaviors of the cells. In Figure 4.3, we plot the squeezing probabilities
as a function of the cell density, corresponding to different values of γM . We see that when
there is no treatment present in the environment (M = 0, γM = 1, blue curve of Figure 4.3),
the squeezing probability decreases linearly with the local cell density, corresponding to cells
modelled as solid particles.

However for larger values of γM (when the treatment is present, M > 0 and γM > 1, red and
yellow curves in Figure 4.3), the squeezing probability becomes a nonlinear function of the cell
density, modelling the fact that in the presence of a drug, cells change their mechanical state to
behave as semi-elastic entities that can squeeze into empty spaces. We refer to [200] for more
details on the link between the cells elastic properties and the squeezing probability.

For convenience of notation, we distinguish the case without treatment (M = 0) for P1 and
define

q1(u(x, t)) = 1− u

ū
. (4.6)
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The Keller-Segel model built with this specific squeezing probability (4.6) has been widely studied
in the literature, from modelling [162, 200], analytic [204, 112, 143, 69] and numerical [120]
perspectives.

Complete PDE system for the first part P1 Taking into account all the previous ingredi-
ents, the complete PDE system for part P1 (when no treatment is present in the environment)
reads:

∂tu = ∇ · (d1D1(u)∇u− χuφ1(u)∇c) + f(u) ,

∂tc = d2∆c+ αu− βc ,
(4.7)

where the first equation describes the evolution of the cell density u and the second is the
reaction-diffusion equation for the chemoattractant, previously introduced. The equation for
u describes the volume-filling chemotactic motion associated with the squeezing probability q1.
This equation has been obtained as the hydrodynamic limit of the continuous space-time biased
random walk model that corresponds to the squeezing probability q1 (see Appendix 4.A for more
details on the derivation). In the hydrodynamic limit, the cell density evolves according to a
nonlinear transport diffusion equation with source term, which corresponds to a volume filling
Keller-Segel model with logistic growth. As shown in Appendix 4.A, the density-dependent
diffusion coefficient D1(u) and the chemotactic sensitivity φ1(u) relate to q1 via

D1(u) = q1 − q′1u , φ1(u) = q1u .

For this part P1, where q1 is given by (4.6), these coefficients take the values D1 = 1 and
φ1(u) = u(1 − u/ū). In equation (4.7), d1, χu, α, β are all positive parameters (see Appendix
4.A for the computation of d1 and χu), and f(u) is the logistic growth source term previously
mentioned and defined by (4.1).

The PDE system is supplemented with the following zero-flux boundary conditions

(d1D1(u)∇u− χuφ1(u)∇c) · η = 0 , d2∇c · η = 0 , (4.8)

where η is the outer unit normal at ∂Ω. The initial conditions are given by

u(x, 0) = u0 , c(x, 0) = c0 . (4.9)

4.3.2 PDE system including the treatment: Part P2

We now describe the dynamics of the cell population when the drug is introduced (part P2 of
the experiments described in Section 4.2). As previously mentioned in Section 4.2 and motivated
by the observations in [156], where the treatment TMZ does not seem to induce cell death, we
suppose that the drug only affects the elastic properties of the cells. For a cell density w(x, t)
the squeezing probability of part P2 is

q2(w(x, t),M) = 1−
(w
ū

)γM
. (4.10)

Note that we have supposed that the crowding capacity ū which corresponds to the tight packing
state remains unchanged from P1 to P2. This corresponds to the hypothesis that the treatment
does not modify the volume of the cells but only change their elastic properties.

The complete PDE system corresponding to the second part of the experiments therefore
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reads:
∂tw = ∇ · (d3D2(w,M)∇w − χwφ2(w,M)∇c) + f(w) ,

∂tc = d2∆c+ αw − βc ,
∂tM = d4∆M − δw ,

(4.11)

where f(w) is again the logistic growth source term given by (4.1), and the first equation has been
derived using the squeezing probability q2 defined by (4.10). Note that the carrying capacity umax
remains unchanged in the two parts of the experiments: we have supposed here that the drug
does not interact with the nutrients. Analogous to (4.7), the movement of the cells is described
by a chemotactic system where, in this case, the diffusion and chemosensitive coefficients depend
also on the concentration of the treatment. These modified coefficients will lead to changes in
the size of the aggregates as shown in the numerical experiments in Section 4.5. The evolution of
the concentration c is the same as in (4.7) where, in this case, the chemoattractant is produced
by the new population w. Including proliferation also in this second part allows us to assess the
effect of the treatment in the population at earlier times, while the population of cells is still
growing and aggregates are still forming.

Different initial conditions for the cell density and concentration of the treatment will be
considered as described in Section 4.5. Each initial condition for P2 will correspond to a density
profile solution of the system P1 at a given time (solution of (4.16)), i.e. w(x, 0) = u(x, T1)
for some given T1. We will consider cases where the treatment is introduced on already formed
and stable aggregates (steady state of (4.16)), but also cases where it is introduced at earlier
times (during the formation of the aggregates, see Section 4.5). The initial condition for the
concentration of the drug is considered to be either homogeneously distributed in the simulation
domain or introduced in the center.

Remark 30 In both parts of the experiments, we assume that the crowding capacity ū is larger
than the carrying capacity umax. The carrying capacity is defined as the maximum population
density beyond which there are not enough nutrients to support growth, while the crowding ca-
pacity describes the maximum density in an aggregate depending on the space available.

4.4 Linear stability analysis and pattern formation

The system for partP1 (4.7) without source term is well known in the literature as the volume-
filling Keller-Segel model, for which emergence of patterns has been characterised and is now well
documented. Pattern formation refers to the phenomenon by which, after varying a bifurcation
parameter, the spatially homogeneous steady state loses stability and inhomogeneous solutions
appear. In the following, we investigate in which parameter region we can expect instability of
homogeneous solutions, corresponding to the formation of patterns. The linear stability analysis
followed here is classical and follows the lines of [162, 201, 149].

We first recall the two systems associated with the dynamics described in parts P1 and P2
of the model. Using the fact that in the first part of the experiments, the squeezing probability
is chosen to be q1(u) = 1− u

ū , we have

∂tu = ∇ · (d1∇u− χuφ1(u)∇c) + ru
(

1− u

umax

)
,

∂tc = d2∆c+ αu− βc ,
(4.12)

where
D1 = 1 , and φ1(u) = u

(
1− u

ū

)
. (4.13)
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For part P2, when the squeezing probability function is given by (4.10), the system writes

∂tw = ∇ · (d3D2(w,M)∇w − χwφ2(w,M)∇c) + r̃w
(

1− w

umax

)
,

∂tc = d2∆c+ αw − βc ,
∂tM = d4∆M − δw ,

(4.14)

with diffusion and chemotactic coefficients given by

D2(w,M) = 1 + (γM − 1)
(w
ū

)γM
and φ2(w,M) = w

(
1−

(w
ū

)γM)
. (4.15)

4.4.1 Dimensionless model

To get a deeper insight to the behaviour of the system we introduce the characteristic values
of the physical quantities appearing in the models. Denoting by X and T the macroscopic units
of space and time, respectively, such that x̄ = x

X , t̄ = t
T , then we choose

(x̄, t̄) =

(√
β

d2
x,

βd1

d2
t

)
.

Using these new variables, the dimensionless systems write for part P1

∂tu = ∇ · (∇u−Aφ1(u)∇c) + r0u

(
1− u

umax

)
,

ζ∂tc = ∆c+ u− c .
(4.16)

Similarly, we obtain for P2

θ∂tw = ∇ · (D2(w,M)∇w −Bφ2(w,M)∇c) + r̃0n
(

1− w

umax

)
,

ζ∂tc = ∆c+ n− c ,
m∂tM = ∆M − δ0w ,

(4.17)

where

A =
χu
d1

, r0 =
d2r

d1β
, ζ =

d1

d2
, θ =

d1

d3
, B =

χw
d3

, r̃0 =
d2r̃

d3β
, m =

d3

d4
, δ0 =

δ

d1
. (4.18)

The parameters ζ andm are assumed to be small since the chemoattractant and the chemother-
apeutic treatment diffuse faster than the cells. On the other hand, θ ' 1 since both population
densities u and w are assumed to be diffusing at similar rates. In the following, we state the
linear stability for both systems in separate sections.

4.4.2 First part: Formation of the aggregates

We first consider the system (4.16), which can be re-written in a more general form as

∂tu = ∇ · (∇u−Aφ1(u)∇c) + f(u) ,

ζ∂tc = ∆c+ g(u, c) ,
(4.19)
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where φ1(u) is given in (4.13), f(u) = r0u(1− u
umax

) and g(u, c) = u− c. This system is subject
to uniformly distributed initial conditions and zero-flux boundary conditions as in (4.8).

The main result in this section is the following theorem, which gives the conditions for pattern
formation for the system (4.19).

Theorem 31 Consider (u∗, c∗) a spatially homogeneous steady state. Then pattern formation
for the system (4.19) with zero flux boundary conditions (4.8) and initial data (4.9) is observed
if the following conditions are satisfied,

f∗u + ζ−1g∗c < 0 , f∗ug
∗
c > 0 , ζ−1g∗c + f∗u − ζ−1g∗uAφ1(u∗) > 0 ,

g∗c + f∗u + g∗uAφ1(u∗) > 2
√
f∗ug
∗
c .

(4.20)

The critical chemosensitivity is given by

Ac =
2
√
r0 + 1 + r0

umax
(
1− umax

ū

) , (4.21)

and for A > Ac patterns can be expected. The wavemodes k2 are in the interval defined by

k2
1 =
−m−

√
m2 − 4f∗ug

∗
c

2
< k2 < k2

2 =
−m+

√
m2 − 4f∗ug

∗
c

2
, (4.22)

where m = −(g∗c + f∗u + g∗uAφ1(u∗)).

Proof. See Appendix 4.B for the proof of this theorem.

4.4.3 Second part: Treatment
We now consider the system (4.17) which corresponds to the second part of the experiments,

when the treatment is introduced. The parameter range where patterns are observed is sum-
marised in the following theorem.

Theorem 32 Consider (w∗, c∗,M∗) a spatially homogeneous steady state. Also, consider (4.17)
with zero flux boundary conditions given by

(d3D2(w,M)∇w − χwφ2(w,M)∇c) · η = 0 , d2∇c · η = 0 , d4∇M · η = 0 ,

and initial conditions
w(x, 0) = u(x, T1) ,

c(x, 0) of P2 is equal to c(x, T1) from P1 ,

M(x, 0) =

{
constant in Ω , or

Ce
(x−x0)2

2σ2 ,

(4.23)

where C is the amplitude, x0 is the centre of the Gaussian and σ is the width. Then, the critical
chemosensitivity is given by

Bc =
2
√
r̄0D2(umax,Ms) +D2(umax,Ms) + r̃0

umax

(
1−

(
umax
ū

)γMs) ,

where
D2(umax,Ms) = 1 + (γMs − 1)

(umax

ū

)γMs
.
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Patterns can be expected if B > Bc and the wavemodes k2 are in the interval defined by

k2
1 =
−m̄−

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
< k2 < k2

2 =
−m̄+

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
,

for m̄ = −(D2(umax,Ms)g
∗
c + g∗wBφ2(umax,Ms) + f∗w).

Proof. The proof of this theorem can also be found in Appendix 4.B.

Remark 33 For the case of 2 dimensions, we can rewrite the systems (4.16) and (4.17) using
polar coordinates (ρ, θ) where we use the transformation x = ρ sin θ, y = ρ cos θ and the Laplace
operator is now given by ∆p = 1

R
∂
∂ρ

(
ρ ∂
∂ρ

)
+ ρ2 ∂2

∂θ2 where R is the radius of the domain. The
eigenvalue problem (4.40) is now written as −∆pψk = k2ψk with boundary conditions ∂ψk/∂ρ = 0
at ρ = R.

The eigenfunctions are obtained by separation of variables and are given by ψk(x, y) =
R(ρ)Θ(θ). Here Θ(θ) = eisθ = A cos(sθ) + B sin(sθ) for some s ∈ Z. The radial part R(ρ)
is given in terms of Bessel functions R(ρ) = Js(kρ) (see [177]) where k =

cs,p
R and cs,p denotes

the the pth zero derivative of Js, which is a first kind Bessel function of order m. Finally we
can write ψs,pk (ρ, θ) = J

( cs,p
R ρ

)
(A cos(sθ) +B sin(sθ)) .

The stability analysis reveals that several competing effects control the system’s ability to
create patterns (aggregates). The criteria obtained both in P1 or P2 show that the chemotactic
sensitivity must be large enough to compensate the smoothing effect of the diffusion term and
of the logistic growth. On the other hand, one can observe from the bifurcation formulae that
the ratio umax

ū (carrying capacity vs density of the tight packing state) plays an important role
in the emergence of patterns: larger values lead to more aggregated states. These results show
that the logistic growth term has an intrinsic smoothing property, i.e., it tends to force the
density to equate the carrying capacity, while the chemotactic term acts as a attractive force
and creates zones of higher density (recall that umax < ū). The aggregates are an expression
of a balance in between these two competing effects, which are completely characterised by the
stability criterion.
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Figure 4.4 – Wavenumbers for different values of γM when (a) r0 = 0.1, umax = u0 = 0.5; and
for (b) r0 = 0.05, umax = u0 = 0.1 . Circles indicate the values of kc.

In order to give more insights about the size of the emerging patterns, we show in Figure 4.4
the values of the inverse of the maximal wavenumber as function of the chemotactic sensitivity
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(denoted by A for part P1 and B for part P2), for different values of the exponent γM . We
recall that γM = 1 in P1 (blue curve) where cells act as rigid bodies and γM > 1 in the presence
of the treatment, where cells behave as semi-elastic entities (P2). Figure 4.4a shows the results
for growth rate r0 = 0.1 and carrying capacity umax = 0.5, Figure 4.4b for r0 = 0.05 (slower
growth) and umax = 0.1 (lower carrying capacity). In both figures, the black circles indicate
the critical values for the chemotactic sensitivity above which the system is unstable. Here,
the tight packing density is set to ū = 1. The maximal wavenumber corresponds to the most
unstable mode, i.e. the perturbed wave that will grow the fastest. Therefore, the inverse of
this maximal wavenumber is directly related to the size of the emerging patterns. As one can
observe, an increase in the chemotactic sensitivity parameter correlates with a decrease in the
observed pattern size, suggesting that the aggregates are smaller: larger chemotactic sensitivity
leads to more aggregated clusters. Moreover, the aggregate size also decreases as cells pass from
rigid bodies to semi-elastic entities (when γM increases). This is due to the fact that for larger
values of γM , cells are more easily deformed and can aggregate more efficiently than when they
behave as rigid spheres.

When we increase the ratio umax

ū (compare Figure 4.4a and 4.4b), we observe that the critical
value of the chemosensitivity above which patterns are generated is larger than for smaller ratios
umax

ū . These results highlight once again the smoothing effect of the logistic growth: When the cell
tight packing density is unchanged, decreasing the carrying capacity of the environment enhances
cell death in the aggregates formed by chemotaxis, where cells try to reach the tight packing
state. In this case, the critical chemosensitivity value must be large enough to compensate for
the cell death induced by the logistic growth. Moreover, we observe that larger ratios umax

ū
induce less influence of the parameter γM . The cell aggregation abilities are mainly driven by
the chemosensitivity intensity and not so much by the cell mechanical properties for large values
of umax

ū .

4.5 Numerical simulations

In addition to the analytic results obtained in Section 4.4, we present numerical simulations
for the two problems (4.16) and (4.17). This allows us to investigate the behavior of the solution
of the models for different scenarios and range of parameters. It is well-known that a standard
discretization of the Keller-Segel models can lead to nonphysical solutions due to the convective
term. Here, we focus on a numerical method that preserves the non-negativity of the cell density
using the upwind finite element method described in [166] for the simulation of the Cahn-Hilliard
equation.

The calculation of the chemotactic coefficient follows the lines of [12]. Indeed, the finite
volume scheme proposed in [12] is identical to the numerical method presented in this paper in
dimension one. However, in higher dimensions, and since we also use a finite element method, the
numerical scheme presented in [12] differs from the one in this section as detailed in Appendix
4.C.

4.5.1 Biological relevance of the model parameters

Here, we comment on the choice of the model parameters that we will use for the numerical
simulations and how they relate to experimental known data. In [89, 63], the proliferation rate
for well oxygenated glioma cells in vitro r was shown to lie between 0.5 and 1 day−1. As the
proliferation rate relies significantly on the nutrient, also smaller value seems to be biologically
admissible in real conditions and following [63] we choose r = 0.4 day−1 and r = 0.8 day−1
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(corresponding to the non-dimensionalised parameter r0 = 0.05 and r0 = 0.1). As hypoxia-
inducible factors (HIF) are supposed to be responsible for the chemotaxis motion of GBM cells,
we suppose that the diffusion coefficient d2 and consumption rate β for the chemoattractant are
linked to biological measurements of the oxygen diffusion in human brain which were estimated
in [194, 89] to d2 = 86.4 mm2 day−1 and β = 8640 day−1. However, we chose to consider
slightly lower values d2 = 8.64 mm2 day−1 and β = 864 day−1 owing to the large variability
of this parameter according to the type of tissue (see [190]). For such values and using the
scaling of Section 4.4.1, one unit of time of our model corresponds to approximately 0.1 day and
one unit of space is 0.1 mm. As we found no experimental data on the chemotactic coefficient
χu of glioma cells in response to chemoattractant concentration, the choice of this parameter
is driven by the stability analysis and we find that the interesting regimes are obtained for a
dimensionless chemosensitivity in between 7 and 70, corresponding to a chemotactic coefficient
χu ∈ [0.6, 6] mm2 day−1. Moreover, as no measurements for glioma cells diffusion coefficient
are available in the literature, the parameter d1 is arbitrarily chosen to be 100 times smaller
than the chemoattratant diffusion speed and we choose d1 = d3 = 0.086 mm2 day−1, i.e the
non-dimensionalised parameter ζ = d1

d2
= 0.01.

4.5.2 Numerical results for a one dimensional case

For all numerical computations we choose the packing capacity ū = 1. We consider different
proliferation rates r0 = 0.1, 0.05 and different initial conditions and carrying capacities umax =
u0 = 0.1, 0.5. The nondimensional parameters given in (4.18) are ζ = m = 0.01 and θ = 1 since
we assume that the chemoattractant c and the treatment diffuse much faster than the cells, while
the motility of the cells is not affected by the treatment, so d1 ≈ d3. The initial condition for
the cell density u0 is assumed to be randomly distributed in space. Similarly, we can also define
the initial chemoattractant concentration c0.

In this section we start by solving the systems (4.16) and (4.17) on the interval [0, L] with
homogeneous non-flux boundary conditions using the method described in Appendix 4.C. In
Appendix 4.D we investigate the effect of the size of the domain as well as the effect of the
parameters A and B on the formation and evolution of patterns. Moreover, using (4.17) we study
the effect of the treatment using the solution of (4.16) at the final time T1 as initial condition.
We explore the case when we introduce the treatment at earlier stages of the formation of the
aggregates.

We consider two different scenarios for the evolution of the concentration of the treatment.
First, we assume that the treatment diffuses very fast in the whole domain so that the concen-
tration is homogeneous from time T2 = 0. The other case we consider, which is closer to real
experiments, starts with a high concentration of the drug in the centre of the domain and this
concentration diffuses over time according to the third equation in (4.17).

Comparison with the linear stability analysis In order to quantify the aggregate sizes
and compare it to the ones predicted by the stability analysis, we use the Fourier transform of
the numerical solution and extract the frequency that corresponds to the maximal Fourier mode.
For the sake of this analysis, periodic boundary conditions are therefore considered. To this aim,
we compute the discrete Fourier transform F [u](x, t) = û(λ, t) and define

kmax = arg max
λ

(|û(λ)|) = arg max
λ

(√
Re(û(λ))2 + Im(û(λ))2

)
,
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which corresponds to the frequency of the largest Fourier mode. The inverse (kmax)
−1 of this

maximal frequency relates to the pattern size. This maximal frequency of the Fourier transform
of the solution is expected to correspond to the maximal wavenumber predicted by the stability
analysis. We show in Figure 4.5 the values of (kmax)

−1 computed from the numerical solution
(blue dotted line) compared to the predictions of the stability analysis (red curve), as function of
the chemosensitivity, for γM = 1 (left figure) and γM = 5 (right figure). As one can observe, we
obtain a very good agreement between the numerical values and the predictions of the stability
analysis, and we recover the critical value of the chemosensitivity parameter above which the
system generates patterns.
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Figure 4.5 – Comparison of the wavelength obtained analytically, using (4.50) and (4.51), and
numerically, using the Fourier transform of the solution for (a) γM = 1 and (b) γM = 5.

Introduction of the treatment on already-formed aggregates In this part, we aim to
study the influence of the treatment on already formed aggregates. For this, we let the system
run in P1 (without treatment,M = 0, γM = 1) until time T1 = 200 and introduce the treatment
uniformly in the domain (M = 1, γM = 5).

In Figure 4.6 left and middle panels, we choose values of the chemosensitivity very close to
the critical values corresponding to kc, where the wavenumbers are very different for the cases
γM = 1 and γM = 5 as we see in Figure 4.4a. In Figure 4.6, the blue curves describe the formation
of aggregates for a time T1 = 200 without the treatment, while the cells are proliferating with
rate r0 = 0.1. We consider two different scenarios when introducing the treatment: either cells
stop proliferating (red curves), or they continue with the same rate as before r0 = 0.1 (yellow
curves).

When we introduce the treatment for values of A and B close to the instability threshold
(A = B = 7, left figure), we observe that the aggregates become steeper and the density in each
aggregate reaches the packing capacity ū = 1. This clearly leads to more compact aggregates
as a result of the nonlinearity introduced in (4.11) by the parameter γM . The main physical
difference between changing the parameter γM and changing the chemosensitivity coefficients A
or B is the following. By changing A or B depending on the concentration of the treatment,
we are enhancing aggregation over diffusion, essentially we are changing the motility of cells.
By changing γM the motility, as well as the elastic properties of the cells in the aggregates are
affected. When we introduce the treatment while cells keep proliferating, aggregates tend to
merge together since the density is growing, as we see in Figure 4.6 middle panel.

It is noteworthy that for large values of the chemosensitivity parameter (A = B = 70, right
panel in Figure 4.6), the treatment does not impact the aggregate dynamics. In this case, cell
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aggregation is mainly driven by the chemotactic term and the cell mechanical properties have
little influence. These observations are in agreement with the stability analysis, which shows that
the parameter γM has more influence when the chemotactic sensitivity is close to the instability
threshold.
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Figure 4.6 – Aggregation pattern when A = B for A = 7 (left), A = 12 (middle) and A = 70
(right). Blue curve: solution at T1 = 200 without treatment, red curves: solution at T = T1 +200
when the treatment is introduced uniformly with γM = 5 and proliferation is stopped, yellow
curves: solution with the same parameters as the red curves when proliferation goes on with
r0 = 0.1.

Finally, by comparing the red and yellow curves of Figure 4.6, it is clear that cell proliferation
has a major impact on the size of the aggregates. If the treatment has the double effect to stop
proliferation as well as modifying the cell mechanical properties, cell aggregates will become very
dense and well-separated, while merging aggregates are still observed if the treatment has the
sole effect to change the cell mechanical properties. Here, we chose to introduce the treatment
at time T1 = 200, we now aim to study the effect of the treatment introduced at different times
in the aggregation process.

Introduction of the treatment at different times Here, we consider the case when the
treatment is introduced at different times in the aggregation process. As before, we let the
system run in P1 (without drug, M = 0, γM = 1) until time t = T1 and introduce the treatment
uniformly in the domain (M = 1, γM = 5). We consider the cases when the treatment has the
ability to stop proliferation, and when the treatment only acts on the cell mechanical properties.
In Figure 4.7, we show the results at time T = T1 + 200 (red curve), when the treatment is
introduced at times T1 = 50 (left plots), T1 = 100 (middle plots) and T1 = 300 (right plots).
Figures 4.7a show the results when the treatment stops proliferation, Figures 4.7b when the
treatment only changes the mechanical properties of the cells. For each, the blue curves are the
density profiles before introducing the treatment. As one can observe, in Figures 4.7a and 4.7b,
introducing the treatment at different times of the aggregation process have a major impact on
the size of the aggregated patterns formed at a latter time. Introducing the treatment at an
earlier time (T1 = 50, left figures) enables to obtain smaller aggregates compared to when the
treatment is introduced on already formed aggregates (T1 = 300, right figures). This effect is
more visible when the treatment has the double effect of blocking cell proliferation and changing
the elasticity (compare red curves in Figures 4.7a and 4.7b). In this case, the earlier the treatment
is introduced, the smaller the aggregated patterns. When the treatment stops proliferation as
well as the cell mechanical properties and is introduced at later times (right panel of Figure 4.7a)
we recover the observation of the real systems, where the treatment induces a shrinking of the
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aggregate and favors the formation of more compact cell structures. This effect is not observed
when proliferation is active with the treatment, (right panel of Figure 4.7b) where aggregates
are merging and they are larger than before the treatment introduction. This suggests indeed
that the treatment has the double effect of blocking cell proliferation as well as changing the
cell mechanical properties. The model suggests that introducing the treatment at earlier times
of the tumour development could enable us to control the size and separation of the tumour
aggregates.
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Figure 4.7 – Introduction of the the treatment at different times T1 = 50, 100, 300 when
u0 = 0.5 and A = B = 12. The blue curves gives the initial condition for the part P2 of the
experiment with the treatment, represented by the red curve. (a) Without proliferation. (b)
With proliferation, r0 = 0.1. The red curves are at T = T1 + 200.

Introduction of the treatment in the middle of the domain Finally, we aim to study the
case when the treatment is introduced in the center of the domain and diffuses in the environment.
Here we assume that the treatment is not consumed or escapes the domain, therefore δ0 = 0
in (4.17). In Figure 4.8, we show the density profiles of the solution before introducing the
treatment (blue curves), and when the treatment is present (red curves), at times T2 = 0 (left),
T2 = 5 (center) and T2 = 30 (right). The distribution of the treatment follows a Gaussian of the

form M(x, 0) = Ce
(x−x0)2

2σ2 , where C = 40 is the amplitude, x0 is the center of the Gaussian and
σ = 0.5 describes the spread. As one can observe, the large concentration of the treatment in the
middle immediately sharpens the interface between already-formed aggregates, and favors the
separation of the cell clusters. As the treatment diffuses (middle figure), the clusters interfaces
which sense a high concentration of the treatment sharpen, creating denser and well-separated
cell clusters.
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Figure 4.8 – Evolution of the pattern when the treatment is introduced in the center of the
domain with amplitude 40. The blue curves correspond to the solution without treatment at
T1 = 200 and the red curves are the solution with the treatment at T = T1 + 5 and T = T1 + 30.

4.5.3 Numerical results for a two dimensional case

For the 2D simulations we consider that Ω is a disk of radius R which can be defined as Ω =
{(x, y) ∈ R2 : x2 +y2 < R2} where the boundary is given by ∂Ω = {(x, y) ∈ R2 : x2 +y2 = R2}.
The proliferation rate is chosen to be r0 = 0.05 and the initial homogeneous density as well as
the carrying capacity are set to umax = u0 = 0.1 or umax = u0 = 0.5. The other parameters can
be found at the beginning of Section 4.5.2.

In Figure 4.9 we show the formation of aggregates for different values of A without the
treatment, for u0 = 0.1 and r0 = 0.05. We observe that for A = 10 (Figure 4.9a) we do not
have patterns, in agreement with the analytic results obtained in Figure 4.7b since this value of
A is less than Ac ≈ 16.7. As we increase the chemosensitivity parameter, the aggregates become
more compact. From Figure 4.9b we observe the phenomena of two aggregates merging together,
analogous to the one dimensional results in Figure 4.15. As expected, by changing the carrying
capacity and the initial density of cells to u0 = umax = 0.5, the patterns change shape. We
observe a transition from spot-like patterns in Figure 4.9 to maze-like structures in Figure 4.10.
This behaviour has been widely studied experimentally [161], numerically [145, 150] and more
recently, also including a volume-filling approach [162].

Analogous to the one dimensional case, we consider two different initial conditions for the
treatment: (i) we first include the treatment uniformly in the domain with M = 5, and (ii) we
introduce the treatment in the middle of the domain and let it diffuses in space. In these simu-
lations, the treatment is supposed to block proliferation as well as changing the cell mechanical
properties.

In order to compare the change in size of the aggregates before and after the treatment, we
compute the difference between the solution of the first part of the experiments u(x, T1) coming
from (4.16), when the aggregates are formed (at T1 = 200), and the solution w(x, t) of (4.17),
once the treatment has been inserted (at time T = 200 + T2). In Figure 4.11, we show the
results for different values of the chemosensitivity parameter A = B, when the aggregates have
been exposed to a uniform distribution of the treatment for a time T2 = 30. We notice that
the aggregates without the treatment are bigger and therefore the treatment induces a shrinking
in the size of the pattern, as described in Section 4.3. When we compare the results in Figure
4.11a and 4.11b for different values of A and B we observe that the effect of the treatment is
stronger when the value of the chemosensitivity parameter B is closer to its critical value (see
Figure 4.4b). This is in accordance with the results of the stability analysis. The cell mechanical
properties (controlled by the parameter γM ) have less influence on the cell cluster sizes when the
chemosensitivity parameter A = B is increased (see Figure 4.4b).

We now study the case when the treatment is introduced in the middle of the domain and
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(a) (b) (c)

Figure 4.9 – Formation of aggregates at T1 = 200 when u0 = 0.1, r0 = 0.05 and (a) A = 10, (b)
A = 20 and (c) A = 70.

(a) (b) (c)

Figure 4.10 – Formation of aggregates at T1 = 200 without the treatment and when umax = u0 =
0.5, r0 = 0.05 and (a) A = 7, (b) A = 12 and (c) A = 50.

(a) (b)

Figure 4.11 – Difference between the solutions u(x, 200) − w(x, 230) when (a) A = B = 20 and
(b) A = B = 70. Here γM = 11, r0 = 0.05 and umax = u0 = 0.1.
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(a) (b) (c)

Figure 4.12 – Difference between the solutions when the initial concentration of the treatment is
a Gaussian function centered in the domain. (a) T = 210, (b) T = 230 (c) T = 300 for T1 = 200,
r0 = 0.05 and u0 = 0.1.

diffuses in the environment. To this aim, the initial concentration of the treatment is supposed
to be a Gaussian function with width 5 centered in the middle of the domain. We assume
that the treatment is not consumed by the cells in the time scales we are interested in, and
choose δ0 = 0. In Figure 4.12 we show the evolution of the difference between the two solutions
u(x, T1)−w(x, t), where T1 = 200 is the time at which the treatment is introduced and T is the
duration of the treatment. We explore different times T2 = 10, 30, 100. For short times, the
effect of the treatment is only noticed by the aggregates at the center of the domain and therefore
the difference between the two solutions close to the boundaries is zero. As time increases, the
concentration of the treatment reaches the whole domain as is observed in Figure 4.12c.

(a) (b) (c)

(d) (e) (f)

Figure 4.13 – Effect of the treatment at different times while the aggregates are forming. Top
row: Cell aggregates for A = 20 without treatment at (a) T1 = 30, (b) T1 = 50 and (c) T1 = 100.
Bottom row: Cell aggregates at time T = T1 + 200, when the treatment has been introduced at
times (d) T1 = 30, (e) T1 = 50 and (f) T1 = 100.
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Finally, we also study the effect of the treatment at earlier stages of the formation of the
aggregates. Figure 4.13 shows the different patterns obtained during the formation of the aggre-
gates at different times, top row, and the corresponding effect of the treatment, bottom row. For
example, introducing the treatment at T1 = 50 leads to a significant reduction of the size of the
pattern with a reasonably low concentration of the treatment. Identifying this specific time in
real patients could make the treatment much more effective and reduce the spread of the cancer
cells.

4.6 Discussion of results and perspectives

In this paper we propose a mechanism for the effect of certain treatments on tumours formed
by a chemotaxis type self-organization phenomenon. Inspired by the experiments concerning the
action of TMZ on Glioblastoma cells mentioned in Section 4.2, we considered the particular case
of treatments that do not act as cytotoxic agents but rather induce stress in the environment,
which may induce changes in the mechanical properties of individual tumour cells by making
them pass from rigid bodies to semi-elastic entities. We explored two scenarios: a first one where
only cell’s plasticity is impacted by the treatment, and a second one where the treatment has a
double effect of preventing cell proliferation as well as changing cell mechanics.

Under these hypotheses, we obtained a modified version of the Keller-Segel model, known as
the nonlinear volume-filling approach for cell motion, where the cell mechanical properties are
taken into account in the form of the so-called squeezing probability. In the nonlinear volume-
filling Keller-Segel model, this squeezing probability function could be related to the amplitude
of the transport term towards zones of high chemoattractant density (chemosensitivity), as well
as with the (nonlinear) diffusion coefficient.

By performing a linear stability analysis, we are able to detect and characterise the parameter
ranges for which the homogeneous distribution is unstable, i.e. the ranges for which patterns ap-
pear as the result of the dynamics. We show that the emergence of patterns without treatment
(i.e. when cells act as rigid bodies) is driven by a fine interplay between the chemotactic sen-
sitivity, which tends to aggregate the cells, and the diffusion, together with the logistic growth,
which tend to smoothen the solution. We are able to compute the critical chemosensitivity value
above which the system self-organizes into aggregates, and characterise the size of the aggregates
as a function of the model parameters.

Under treatment, i.e. when cells behave as semi-elastic entities, we show that the critical
value of the chemosensitivity above which patterns emerge is smaller than that in control cultures,
showing that as cells become more elastic, they tend to aggregate more easily than when they
behave as rigid entities.

We are able to completely characterise the size of the patterns and show that semi-elastic cells
create smaller aggregates than rigid entities for the same value of the chemosensitivity. These
results suggest that the mechanical properties of individual cells have a huge impact on the shape
and size of the aggregated patterns at the population level.

Moreover, we show that the ratio between the tight packing cell density and the carrying
capacity of the TME plays a major role in the size and shape of the obtained patterns. For
large values of this ratio, the aggregation abilities of the system are essentially driven by the
chemotactic transport term while the individual cell mechanical behaviour has little impact on
the shape and size of the patterns. However, for smaller values of this ratio, i.e. when the tight
packing density is closer to the carrying capacity of the environment, cell mechanics has a huge
influence on the behavior of the population.

These results are confirmed by numerical experiments in 1D and 2D for which, given an initial
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perturbation of the homogeneous cell distribution, we observe the emergence of cell aggregates
and we recover the critical values of the chemosensitivity predicted by the stability analysis. We
obtain a very good correspondence between the simulations and the theoretical predictions, for
the appearance of patterns as well as their size.

By performing simulations of the whole system, we recover the experimental observations:
introducing the treatment (TMZ in the experiments mentioned in Section 4.2) on already-formed
aggregates leads to the quick formation, of more compact patterns. As the treatment diffuses in
the domain (changing locally the cell mechanical properties as it goes), it sharpens the border
of the cell aggregates and leads to denser and well-separated clusters.

While the border sharpening of the clusters is independent on whether proliferation is acti-
vated or not during treatment, the shrinking of the clusters is more clear when the treatment
has the double effect of changing the cell mechanical properties as well as blocking cell prolifer-
ation. Indeed, when proliferation is still active in the presence of the treatment, we observe the
merging of existing clusters and this results in aggregates being larger than before treatment.
These results suggest a possible mechanism for the shrinking of the aggregates observed under
the experimental conditions described in Section 4.2: TMZ might not only stop cell proliferation,
but might also generate a stress in the environment to which cells respond to by changing their
mechanical state.

While alterations of mechanical properties, around or inside the tumour, are common in
solid tumours including GBM, the question of the nature and the regulation of cancer cells
through mechano-sensitive pathways are largely unknown. Recently, in a Drosophila model,
glioma progression has been associated to a regulatory loop mediated by the mechano-sensitive
ion channel Piezo1 and tissue stiffness [57]. A direct perspective of these works consists in
verifying the potential mechano-sensing effect of TMZ proposed in the present model, through
direct measures in real systems by studying the mechanical properties of individual GBM cells
which have been exposed to TMZ treatment. The targeting of mechano-sensitive pathways
after TMZ treatment may provide new therapeutic angles in GBM and in more general settings.

Moreover, it would be interesting to identify other clinical settings where the effects of the
treatment are similar to those of TMZ in GBM, and to check if the effects are due to changes
in the tumor cell properties corresponding to the general hypothesis of the model constructed in
this work.

In the future, better quantitative comparison with experiments will allow for systematic
choice of parameters and validation of the mechanisms we propose here. From a biological
point of view, a natural sequel of this work consists in studying the coupled effect of TMZ and
irradiation. Indeed, even if TMZ alone seems not to suffice to decrease the tumour mass, the
coupling of TMZ treatment with irradiation has been shown to have more efficient effects than
irradiation alone [186, 27, 169]. It would also be interesting to introduce a second treatment
with cytotoxic effects in this model, to study whether the mechanical changes of individual cells
induced by TMZ could explain the better response of the system to irradiation treatments.
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4.A Derivation of the general model

The modified Keller-Segel system (4.7), including the squeezing probability (4.3) was derived
in one dimension in [162, 201] from a continuous-time and discrete-space random walk. In this
appendix we give a more general (and formal) derivation in Rn starting from a kinetic equation,
analogous to [160, 176]. For simplicity, we do not include cell proliferation in this derivation.

Let us consider a mesoscopic density h(x, t,v), where x ∈ Rn and v ∈ V = {x ∈ Rn : |x| = 1},
which evolution is described by the following kinetic equation

∂th+ v · ∇h = −ξ(c)h(x, t,v) + q(σ(x, t))

∫
V

T (v,v′, c)h(x, t,v′) dv′ . (4.24)

Equation (4.24) describes a so-called velocity jump model where, individuals moving in an almost
straight line, described by the left hand side, switch velocities after stopping. The right hand side
of (4.24) describes the density of cells that are stopping with a frequency ξ(c) =

∫
V
T (v′,v, c) dv′,

where the operator T (v,v′, c) gives the probability of a velocity jump from v′ to v. Note that
the cells change velocity also depending on the chemoattractant concentration c(x, t).

The second term in the right hand side represents the individuals that start a new trajectory
with a different velocity v′. Note that this term is multiplied by the squeezing probability q since
the change into a new velocity is also determined by the probability of finding a neighbouring
space available.

Now we introduce a parabolic scaling (x, t) 7→ (x̄/ε, t̄/ε2) into (4.24), where the bar denotes
the new variables and ε � 1. Letting T (v,v′, c) be a small perturbation of a random turning
event, T (v,v′, c) = T0 + εT0T1(v′,∇c), we have, after dropping the bars,

ε2∂th
ε + εv · ∇hε = q|V |T0u

ε(x, t) + εqT0

∫
V

T1(v′,∇c)hε(x, t,v′) dv′

− hε(x, t,v)T0|V | − εT0h
ε(x, t,v)|V |T1(v,∇c) , (4.25)

where
uε(x, t) =

1

|V |

∫
V

hε(x, t,v) dv . (4.26)

Dividing by ε we get

ε∂th
ε + v · ∇hε =

T0

ε

(
quε(x, t)|V | − hε(x, t,v)|V |

)
+ T0

(
q

∫
V

T1(v′,∇c)hε(x, t,v′) dv′ − hε(x, t,v)|V |T1(v,∇c)
)
. (4.27)

The leading order terms in (4.27), when ε→ 0, give h(x, t,v) = qu(x, t). Integrating with respect
to v ∈ V in (4.25) we obtain a macroscopic conservation equation

∂tu+∇ · j = 0 , (4.28)

where jε = 1
ε|V |

∫
V
vhε(x, t,v) dv is the mean direction of the cells.

Finally, we have to obtain jε in terms of the macroscopic density uε. For that, we multiply
(4.25) by v and integrate in V to get

ε2|V |∂tjε +∇ ·
∫
V

v ⊗ vhε dv = −T0|V |2jε − |V |T0

∫
V

vT1(v,∇c)hε dv . (4.29)
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Letting hε(x, t,v) = qu+ εh⊥(x, t,v) +O(ε2) we obtain, in the limit as ε→ 0,

j =
−
∫
V
v ⊗ v dv

T0|V |2
∇(qu)−

∫
V
vT1(v,∇c) dv

|V |
uq . (4.30)

Substituting (4.30) into the conservation equation (4.28) we obtain

∂tu−∇ ·
(
d1∇(qu)− χ(c)uq

)
= 0 , (4.31)

where

d1 =

∫
V
v ⊗ v dv

T0|V |2
and χ(c) = −

∫
V
vT1(v,∇c) dv

|V |
. (4.32)

Considering the squeezing probability function q(u) in (4.3) and using the chain rule for
differentiation, ∇(qu) = (q − q′u)∇u where q′ = dq

du we finally have, assuming χ(c) = χu∇c,

∂tu = ∇ · (d1(q − q′u)∇u− χuuq∇c)
= ∇ · (d1D(u)∇u− χuφ(u)∇c) . (4.33)

Remark 34 With the choice (4.3) for the squeezing probability, the diffusion of the cells is
enhanced

(
dD(u)

du > 0
)
. This means that the elastic collisions of the cells may increase, locally,

the random motion component.

4.B Stability analysis

First part of the experiments We first observe that the homogeneous distributions u(x, t) =
u∗ and c(x, t) = c∗ are steady-states solutions of system (4.16) for u∗ and c∗ such that f(u∗) = 0
and g(u∗, c∗) = 0. In order to study their stability, we consider the system without spatial
variations

∂tu = f(u) , ζ∂tc = g(u, c) , (4.34)

and linearize the solution at (u∗, c∗). We obtain

∂tσ = Gσ , where σ =

(
u− u∗
c− c∗

)
and G =

(
f∗u 0

ζ−1g∗u ζ−1g∗c

)
, (4.35)

where the quantities f∗u , g∗u and g∗c are the linearization slopes of f and g: f∗u = f ′(u∗), g∗u =
∂ug(u∗, c∗), g∗c = ∂cg(u∗, c∗). The steady state is linearly stable if tr(G) < 0 and det(G) > 0,
which imposes the following constraints on the kinetic functions f(u) and g(u, c),

f∗u + ζ−1g∗c < 0 and f∗ug
∗
c > 0 . (4.36)

Note that in our case, f∗u = −r0, g
∗
u = 1, g∗c = −1 so the conditions are satisfied.

We now go back to the full chemotactic system (4.19). In order to investigate the stability
of the homogeneous steady-state, i.e. the ability of the system to create patterns, we introduce
a small parameter ε� 1 and write

u = u∗ + εũ(x, t) , c = c∗ + εc̃(x, t) . (4.37)

We substitute (4.37) into (4.19) and, computing the first order terms with respect to ε and
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neglecting higher order terms, the linearized system reads

∂tu = ∆u−Aφ1(u∗)∆c+ uf∗u + cf∗c ,

ζ∂tc = ∆c+ ug∗u + cg∗c ,
(4.38)

where φ1(u∗) = u∗q1(u∗). We now look for perturbations of the form

u(x, t) =
∑
k

ak(t)ψk(x) and c(x, t) =
∑
k

bk(t)ψk(x) , (4.39)

where (ψk)k>1 is an orthonormal basis of L2(Ω) and satisfies the following spatial eigenvalue
problem

−∆ψk = k2ψk ,
∂ψk
∂η

= 0 . (4.40)

Then, the linearized system (4.38) can be written as

∂t(ak) = −akk2 +Aφ1(u∗)bkk
2 + akf

∗
u + bkf

∗
c ,

ζ∂t(bk) = −bkk2 + akg
∗
u + bkg

∗
c ,

(4.41)

where k is the spatial eigenfunction, also called the wavenumber and 1/k is proportional to the
wavelength ω. In matrix form we can write (4.41) as ∂tXk(t) = Pk(t)Xk(t) where

Xk =

(
ak
bk

)
, Pk =

(
−k2 + f∗u Aφ1(u∗)k2 + f∗c
ζ−1g∗u ζ−1(−k2 + g∗c )

)
. (4.42)

Remark 35 Since the solutions of the eigenvalue problem (4.40) are simply sines and cosines,
the “size” of various spatial patterns is measured by the wavelength of the trigonometric functions.
For example, in one dimension when 0 < x < L, ψ ∝ cos(nπx/L) and the wavelength is ω =
1/k = L/nπ, where n ∈ Z.

If the matrix Pk has eigenvalues with positive real part, then the homogeneous steady state
(u∗, c∗) is unstable, resulting in pattern formation. The characteristic polynomial related to
(4.42) is given by `2 + a(k2)`+ b(k2) = 0 where

a(k2) = (1 + ζ−1)k2 − (f∗u + ζ−1g∗c ) , (4.43)

b(k2) = ζ−1k4 − ζ−1(g∗c + f∗u + g∗uAφ1(u∗))k2 + ζ−1f∗ug
∗
c . (4.44)

The eigenvalues ` determine the temporal growth of the eigenmodes, and we require Re(`(k2)) >
0 for the homogeneous steady state to be unstable. Note that we only look for the eigenmodes
k 6= 0 since we already guaranteed that the steady state is stable in the absence of spatial
perturbations, i.e. Re(`(k2 = 0)) < 0 in (4.36).

From the conditions (4.36), we know that a(k2) > 0, hence the instability can only occur if
b(k2) < 0 for some k so that the characteristic polynomial has one positive and one negative
root. This implies

k4 − (g∗c + f∗u + g∗uAφ1(u∗))k2 + f∗ug
∗
c < 0 . (4.45)

We also know from (4.36) that f∗ug∗c > 0, then a necessary (but not sufficient) condition for
b(k2) < 0 is

g∗c + f∗u + g∗uAφ1(u∗) > 0 .
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Remark 36 The bifurcation between spatially stable and unstable modes occurs when the critical
expression bmin(k2

min) = 0 is satisfied.

Moreover, to satisfy (4.45) the minimum bmin must be negative [149]. Differentiation with
respect to k2 in (4.44) leads to

bmin(k2
min) = − (g∗c + f∗u + g∗uAφ(u∗))2

4
+ f∗ug

∗
c . (4.46)

Hence, the condition bmin < 0 implies

g∗c + f∗u + g∗uAφ1(u∗) > 2
√

(f∗ug
∗
c ) . (4.47)

To summarise, we have obtained the following conditions for the generation of spatial patterns
for the chemotaxis system (4.19),

f∗u + ζ−1g∗c < 0 , f∗ug
∗
c > 0 , ζ−1g∗c + f∗u − ζ−1g∗uAφ1(u∗) > 0 ,

g∗c + f∗u + g∗uAφ1(u∗) > 2
√
f∗ug
∗
c .

(4.48)

From the analysis in this section, and using the particular forms of φ1(u), f and g as in (4.19),
it is easy to see that the spatially homogeneous steady states are (0, 0) and (umax, umax). We can
check that (0, 0) is an unstable steady state, therefore we only work with (umax, umax) which, on
the contrary, is stable. The first and second properties in (4.48) are immediately satisfied, i.e.,
−(r0 + ζ−1) < 0 and r0/ζ > 0, respectively. Finally, we have to check that the third and fourth
conditions are satisfied as well. We have that

− 1− r0 +Aφ1(u∗) > 2
√
r0 . (4.49)

Therefore, (4.49) is a necessary condition for pattern formation for the original system (4.12).
Considering A as a bifurcation parameter, we can obtain a critical value Ac, so that we observe
pattern formation if A > Ac. From (4.49) we get

Ac =
2
√
r0 + 1 + r0

umax
(
1− umax

ū

) . (4.50)

The corresponding critical wavenumber k2
c is obtained from (4.46) using (4.49) as follows,

k2
c =

g∗c + f∗u + g∗uA
cφ1(u∗)

2
=
√
f∗ug
∗
c =
√
r0 . (4.51)

This means that, within the unstable range, Re(`(k2)) > 0 has a maximum wavenumber given
by k2

c . The range of linearly unstable modes k2
1 < k2 < k2

2 is obtained from b(k2) = 0,

k2
1 =
−m−

√
m2 − 4f∗ug

∗
c

2
< k2 < k2

2 =
−m+

√
m2 − 4f∗ug

∗
c

2
, (4.52)

where m = −(g∗c + f∗u + g∗uAφ1(u∗)).
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Second part of the experiments Following the same steps as before we linearise the system
(4.17) to get

∂tw = D2(w∗,M∗)∆w −Bφ2(w∗,M∗)∆c+ wf∗w ,

ζ∂tc = ∆c+ wg∗w + cg∗c ,

m∂tM = ∆M − δ0w ,

(4.53)

where
D2(w∗,M∗) = 1 + (γ∗M − 1)

(w∗
ū

)γ∗M
, φ2(w∗,M∗) = w

(
1−

(w∗
ū

)γ∗M)
,

and γ∗M is given by (4.5) evaluated at M∗. As in (4.39), we let

w(x, t) =
∑
k

ak(t)ψk(x) , c(x, t) =
∑
k

bk(t)ψk(x) , M(x, t) =
∑
k

ck(t)ψk(x) , (4.54)

where ψk(x) satisfies (4.40) and we obtain a system ∂tXk(t) = Pk(t)Xk(t) where

Xk =

akbk
ck

 , Pk =

−D2(w∗,M∗)k2 + f∗w Bφ2(w∗,M∗)k2 0
1
ζ g
∗
w

1
ζ (−k2 + g∗c ) 0

− δ0m 0 − 1
mk

2

 . (4.55)

Similar to the previous section, the characteristic polynomial is given by a(k2)`3 + b(k2)`2 +
c(k2)`+ d(k2) = 0 where a(k2) = −1 and

b(k2) = −
(
D2 +

1

ζ
+

1

m

)
k2 + f∗w +

g∗c
ζ
, (4.56)

c(k2) = −
(D2

ζ
+
D2

m
+

1

mζ

)
k4 +

(g∗cD2

ζ
+

g∗c
ζm

+
f∗w
ζ

+
f∗w
m

+
g∗wBφ2

ζ

)
k2

− f∗wg
∗
c

ζ
, (4.57)

d(k2) = −D2

mζ
k6 +

1

mζ
(D2g

∗
c + g∗wBφ2 + f∗w)k4 +

1

mζ
(−f∗wg∗c )k2 . (4.58)

In general, the stability analysis for this cubic polynomial will require the Ruth–Hurwitz
stability criterion [119] which states that the steady state is unstable if the coefficients of a(k2)`3+
b(k2)`2 + c(k2)`+ d(k2) = 0 satisfy the condition

1

(a(k2))2

(
b(k2)c(k2)− a(k2)d(k2)

)
< 0 .

However, from (4.55) we observe that one of the eigenvalues of the matrix Pk is given by `1 =
−k2
m < 0. The remaining two eigenvalues can be computed from the upper-left matrix(

−D2(w∗,M∗)k2 + f∗w Bφ2(w∗,M∗)k2

1
ζ g
∗
w

1
ζ (−k2 + g∗c )

)
, (4.59)

following the same analysis as for the case without TMZ.
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The characteristic polynomial `2 + ā(k2)`+ b̄(k2) = 0 related to (4.59) has coefficients

ā(k2) =
(
D2(w∗,M∗) +

1

ζ

)
k2 − f∗w −

g∗c
ζ
, (4.60)

b̄(k2) =
D2(w∗,M∗)

ζ
k4 −

(D2(w∗,M∗)g∗c
ζ

+
Bφ2(w∗,M∗)g∗n

ζ
+
f∗w
ζ

)
k2

+
f∗wg

∗
c

ζ
. (4.61)

For the steady state to be unstable we require, as before, that Re(`(k2)) > 0. Since ā(k2) > 0

the instability can only occur if b̄(k2) < 0. Computing db̄(k2)
dk2 = 0 from (4.61) we obtain

k2
min =

D2(w∗,M∗)g∗c + g∗wBφ2(w∗,M∗) + f∗w
2D2(w∗,M∗)

. (4.62)

Hence from the condition b̄min(k2
min) < 0 we get

D2(w∗,M∗)g∗c + g∗wBφ2(w∗,M∗) + f∗w >
√

4D2(w∗,M∗)f∗wg
∗
c . (4.63)

The spatially homogeneous steady state is (w∗, c∗, M∗) = (umax, umax, Ms), where
Ms = |Ω|−1

∫
Ω
M(x, 0) dx. Therefore, from (4.63) we obtain a critical constant Bc so that for

any B > Bc we observe pattern formation. This critical constant is given by

Bc =
2
√
r̄0D2(umax,Ms) +D2(umax,Ms) + r̃0

umax

(
1−

(
umax
ū

)γMs) , (4.64)

where
D2(umax,Ms) = 1 + (γMs

− 1)
(umax

ū

)γMs
. (4.65)

The corresponding critical wavemode is given by

k2
c =

D2(umax,Ms)g
∗
c + g∗wB

cφ2(umax,Ms) + f∗w
2D2(umax,Ms)

=

√
D2(umax,Ms)(f∗wg

∗
c )

D2(umax,Ms)
. (4.66)

Finally, the unstable modes are k2 < k2
c , where from b̄(k2) = 0 we get

k2
1 =
−m̄−

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
< k2 < k2

2

=
−m̄+

√
m̄2 − 4D2(umax,Ms)(f∗wg

∗
c )

2D2(umax,Ms)
, (4.67)

for m̄ = −(D2(umax,Ms)g
∗
c + g∗wBφ2(umax,Ms) + f∗w).

4.C Description of the numerics

We denote H1(Ω) = W 1,2(Ω) the usual Sobolev space and the standard L2 inner product
is denoted by (·, ·). Let T h, h > 0, be a quasi-uniform mesh of the domain Ω consisting of N
disjoint piecewise linear mesh elements K such that the discretized domain Ωh =

⋃
K∈T h K.
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Let hK := diam(K) and h = maxK hK and for d = 2, we choose linear triangular elements.
In addition, we assume that the mesh is acute i.e. for d = 2, each angle of the triangles can
not exceed π

2 . We must stress that for d = 2 since the domain Ω is circular, a small error of
approximation is committed using Ωh. We consider the standard finite element space associated
with T h

V h := {χ ∈ C(Ω) : χ
∣∣
K
∈ P1(K), ∀K ∈ T h} ⊂ H1(Ω) , (4.68)

where P1(K) denotes the space of first-order polynomials on K. Let Nh be the total number of
nodes of T h, Jh the set of nodes and {xj}j=1,...,Nh their coordinates. We call {χj}j=1,...,Nh the
standard Lagrangian basis functions associated with the spatial mesh. We define the standard
Lagrangian interpolation operator by πh : C(Ω)→ V h. We also need the lumped scalar product
to define the problem

(η1, η2)h =

∫
Ω

πh (η1(x)η2(x)) dx ≡
∑
xj∈Jh

(1, χj)η1(xj)η2(xj) , η1, η2 ∈ C(Ω) .

We define the standard mass and stiffness finite element matrices as G and K, where

Gij =

∫
Ω

χiχj dx, for i, j = 1, . . . , Nh ,

Kij =

∫
Ω

∇χi∇χj dx, for i, j = 1, . . . , Nh .

In the following finite element approximation of the Keller-Segel problem, the mass matrix is
lumped, i.e. the matrix becomes diagonal with each term being the row-sum of the corresponding
row of the standard mass matrix,

Gl,ii :=

Nh∑
j=1

Gij , for i = 1, . . . , Nh .

Given NT ∈ N?, let ∆t := T/NT be the time-step where T is the time corresponding to the end
of the simulation. Let tn := n∆t, n = 0, . . . , NT − 1 be the temporal mesh. We approximate the
continuous time derivative by ∂uh

∂t ≈
un+1
h −unh

∆t . We define

unh(x) :=

Nh∑
j=1

unj χj(x) , and cnh(x) :=

Nh∑
j=1

cnj χj(x) ,

the finite element approximations of the cell density u and the concentration of chemoattractant
c where {unj }j=1,...,Nh and {cnj }j=1,...,Nh are unknowns and {χj}j=1,...,Nh is the finite element
basis. Then, the finite element problem associated with the system (4.16) reads as follows.
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For each n = 0, . . . , NT − 1, find {un+1
h , cn+1

h } in Sh × Sh, such that for all χ ∈ Sh(
un+1
h − unh

∆t
, χ

)h
+
(
D(unh)∇un+1

h ,∇χ
)

=

(A (φupw(unh))∇cnh,∇χ) + r0

(
unh

(
1− unh

umax

)
, χ

)h
, (4.69)

ζ

(
cn+1
h − cnh

∆t
, χ

)h
= −

(
∇cn+1

h ,∇χ
)

+
(
un+1
h − cn+1

h , χ
)h
. (4.70)

The finite element scheme associated with the system (4.17) including the effect of the treat-
ment is the following

θ
(wn+1

h − wnh
∆t

, χ
)h

+
(
D(wnh ,M

n
h )∇wn+1

h ,∇χ
)

=
(
B
(
φ

upw
2 (wnh ,M

n
h )
)
∇cnh,∇χ

)
+ r̃

(
wnh

(
1− wnh

umax

)
, χ

)h
, (4.71)

ζ

(
cn+1
h − cnh

∆t
, χ

)h
= −

(
∇cn+1

h ,∇χ
)

+
(
wn+1
h − cn+1

h , χ
)h
, (4.72)

m

(
Mn+1
h −Mn

h

∆t
, χ

)h
= −

(
∇Mn+1

h ,∇χ
)
− δ

(
Mn+1
h , χ

)h
. (4.73)

In order to describe how the chemotactic coefficients φuwp and φ
upw
2 are computed, let us

rewrite the discrete equation (4.69) into its matrix form

(GL + ∆tKD)un+1 = GLu
n + ∆tKφc

n + ∆tGLg
n ,

where un and cn are the vectors of coefficients which are the unknowns of the problem and gn is
a vector defined by

[
gn
]
i

=

(
unh

(
1− unh

umax

))
(xi) , for i = 1, . . . , Nh .

We define the finite element matrices associated with the diffusion KD and the advection Kφ

KD,ij =

∫
Ω

D(unh)∇χi∇χj dx for i, j = 1, . . . , Nh , (4.74)

Kφ,ij =

∫
Ω

φupw (unh(xi), u
n
h(xj))∇χi∇χj dx for i, j = 1, . . . , Nh . (4.75)

In (4.74), the integral is computed using Gauss quadrature to deal with a potential choice of
nonlinear functional for D(unh). The exactness of the quadrature is obtained using the adequate
number of Gauss points since D(unh) is a polynomial of order γ(M) + 1.

The chemotactic coefficient is computed using an upwing approach. For each element and
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depending on the direction of the gradient of the chemoattractant we have

φupw (unh(xi), u
n
h(xj)) =

u
n
h(xj)

(
1−

(
unh(xi)
u

))
, if cnh(xj)− cnh(xi) < 0,

unh(xi)
(

1−
(
unh(xj)
u

))
, otherwise.

(4.76)

Therefore, the chemotactic coefficient is chosen as function of the sign of the difference of chemoat-
tractant between nodes connected by an edge. The same method is applied to compute φ

upw
2 in

(4.71). The property of non-negativity of the cell density satisfied by our numerical scheme can
be proved using similar arguments as in [166].

4.D One dimensional numerical results

Influence of the domain size The unstable wavenumbers are discrete values, k = nπ/L,
that satisfy the relation (4.52) from Section 4.4.2. The wavemode n determines the number of
aggregates depending on the length of the domain. For A = 7 and the parameters specified
at the beginning of this section we have 0.25 < nπ/L < 0.4. As shown in Figure 4.14, as we
increase the length of the domain, the number of aggregates also increases. When the domain is
large, as in Figure 4.14c, we observe that some aggregates are merging together while others are
emerging, i.e., they are formed from a zone of low cell density. This process is called coarsening
[162] and is not observed in a small domain such as in Figure 4.14a.
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Figure 4.14 – Relationship between the wavenumber k and the length of the domain L for A = 7.

For the remaining simulations in this section we fix the length of the domain to L = 40, and
all simulations are performed with carrying capacity umax = 0.5.

Comparison of the results with the stability analysis predictions Here, we study the
influence of the chemosensitivity parameter A on the pattern dynamics and size of the aggregates,
in the presence or absence of TMZ. In order to compare the solutions to the predictions of
the stability analysis, the initial condition is a small perturbation around the homogeneous
distribution u0 = 0.5. Results of this section are obtained with a proliferation rate r0 = 0.1.
For such parameters, using the results of Section 4.4, the critical value of the chemosensitivity
parameter without the treatment (in P1, when M = 0 and therefore γM = 1 ) is Ac ≈ 6.92 and
with the treatment uniformly distributed (for γM = 5) is Bc ≈ 3.9.

In the first part of the experiment, i.e. without any treatment, we show in Figure 4.15 the
formation of patterns at different times, for A = 7 (close to the instability threshold, Figure
4.15a), A = 50 (Figure 4.15b) and A = 150 (Figure 4.15c). We observe here the process of
merging and emerging patterns through time.
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Figure 4.15 – Formation of the pattern without the treatment for (a) A = 7, (b) A = 50 and (c)
A = 150 when r0 = 0.1 and umax = u0 = 0.5.
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As predicted by the stability analysis, larger values of the chemotactic sensitivity A favor
the emergence of smaller aggregates (compare Figures 4.15a and 4.15c for A = 7 and A = 150,
respectively). This is due to the fact that for larger chemotactic sensitivity, cells are more
attracted to zones of high concentration of chemoattractant. The creation of patterns instead
of the expansion of a homogeneous cell distribution is due to an instability which results from
a positive feedback loop between the production of the chemical by the cells on one hand, and
their attraction to high density zones of this chemical on the other. The chemotactic sensitivity
A must be large enough to trigger this instability, in order to compensate the competing effects
of diffusion and of the logistic growth term, which on the contrary, tends to regulate the local
cell density to the carrying capacity of the environment umax, and therefore induces cell death
inside the aggregated patterns for which the density is above umax.

When the drug is introduced uniformly in the domain starting from a homogeneous distri-
bution of cells (i.e. for M = 1, γM = 5) at time t = 0, we show in Figure 4.16 the formation of
patterns at different times, for chemosensitivity B = 5 (close to the instability threshold, Figure
4.16a), B = 30 (Figure 4.16b) and B = 150 (Figure 4.16c). Note that in this case we also let
cells to proliferate with rate r0 = 0.1.

As one can see in Figure 4.16, we first observe again that increasing the chemosensitivity
parameter B results in the formation of smaller cell aggregates (compare Figures 4.16a and
4.16b). Very close to the instability threshold (Figure 4.16a), the system converges quickly to
one aggregate, while for larger values of B (Figure 4.16c) a large number of well-separated small
aggregates arises. These clusters merge in time to form bigger clusters as for the case without
the treatment. Moreover, comparing Figures. 4.15c and 4.16c, we clearly observe that varying
the mechanical state of cells (i.e. passing from γM = 1 to γM = 5), leads to a change in the
cell’s aggregate size. When cells are more elastic, they tend to create smaller aggregates than
when they behave as rigid spheres.
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Figure 4.16 – Formation of the pattern with treatment (M = 1, γM = 5), included at t = 0 when
u0 = 0.5, r0 = 0.1 for (a) B = 5, (b) B = 30 and (c) B = 150.



Chapter 5

Compressible
Navier-Stokes-Cahn-Hilliard model
for the modelling of tumor invasion
in healthy tissue.

Abstract
We propose a compressible two-phase Navier-Stokes-Cahn-Hilliard model to represent the biological
situation of two cell populations moving through a fibrous extracellular matrix. To study the emergence
of irregular tumor borders during the invasion of the surrounding healthy tissues, we consider that one
population proliferates and the two cell populations have different mechanical properties. Our generalized
Navier-Stokes-Cahn-Hilliard model is consistent with the laws of mechanics and thermodynamics. From
simple assumptions, we recover a simpler model that is similar to a system of two-porous medium
equations. In this model, the two equations are coupled through a pressure term. Our study shows that
when tumor cells move faster through the ECM than the cells constituting the healthy tissue, irregular
tumor borders may emerge. In a future work, we will investigate the effect of cell-cell adhesion and cell
viscosity on the emergence of these patterns by numerical simulations of different scenarios.

This chapter contains preliminary results of an ongoing work with Tommaso Lorenzi.

5.1 Introduction

We derive and study a mathematical models for the dynamics of two cell populations with
different mechanical properties. We also assume that only one population is proliferating while
the other is in homeostatic equilibrium. To consider the effect of the extracellular matrix, we
assume that the cells are moving and exert adhesion effects on a mesh of hard fibers. We use a
mixture model to represent the two cell populations, and we follow the evolution of their mass
fraction. The mathematical representation of the mechanical interactions is given by a system
composed of a Cahn-Hilliard type model coupled with a compressible Navier-Stokes equation for
a viscous mixture. To consider the adhesion of cells on the ECM, we include a friction term in the
equation for the velocity field. Altogether, our model can take into account possible differences
in mechanical properties between the two cell populations.

We denote by ρ the mass density of the mixture, c the mass fraction of one of the cell phase
and p the hydrostatic pressure. We pose our problem in a smooth bounded domain Ω ⊂ Rd,

135
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d = 1, 2, 3. Our model reads

∂ρ

∂t
= −div (ρv) ρcG(p),

ρ
Dc

Dt
= div (b(c)∇µ) + ρc(1− c)G(p),

ρµ = −γdiv (ρ∇c) + ρ
∂ψ0

∂c
,

ρ
Dv

Dt
= − [∇p+ γdiv (ρ∇c⊗∇c)] + div

(
ν(c)

(
∇v +∇vT

))
− 2

3
∇ (ν(c) (div (v)))− κ(c)v − ρcvG(p),

supplemented by zero-flux Neumann boundary conditions

∂µ

∂n
=
∂v

∂n
=
∂ρc

∂n
=
∂ρ

∂n
= 0,

where n is the outward normal vector to the boundary ∂Ω. Borrowing the terminology of the
Cahn-Hilliard framework, we referred to µ as the chemical potential and ψ0 as the homogeneous
free energy that represents the mechanical interaction between cells. The phases of the fluid are
separated by a smooth transition layer of width √γ. We also have that b(c) is a degenerate mo-
bility functional, G(p) is a pressure-dependent growth function that represents the proliferation
of cells, ν(c) is a viscosity coefficient and κ(c) is a friction coefficient. These two latter functions
are used to take into account the fact that for the two components of the mixture friction and
mobility affects can be different.

Building upon [139], we aim at modelling the dynamics of two cells populations in a scenario
whereby one of them is proliferating while the other is not, and the two populations move with
different velocities. In [139], the authors proposed the model{

∂φ1

∂t − κ1div (φ1∇p) = φ1G(p),
∂φ2

∂t − κ2div (φ2∇p) = 0,
(5.1)

where φ1, φ2 are the relative mass densities of each cell population, κ1, κ2 are the mobility
coefficients that can be different, and p = ρa is the pressure and a ≥ 1 is a parameter controlling
the stiffness of the pressure law. This model is used as a phenomenological representation of
two cell populations with a possible application to the modelling of tumor protrusions in breast
cancer. Numerical simulations of this model present two types of possible patterns depending on
the values of the mobility coefficients. The initial condition that the authors considered represents
a spherical core of cell of population 1 surrounded by cells of population 2. If κ1 < κ2, it appears a
spherical wave of dividing cells pushing the surrounding non-dividing cells. However, if κ1 > κ2,
as the proliferating population grows, finger-like instabilities emerge. These protrusions are
comparable to the viscous figering patterns (i.e., Saffman-Taylor instabilities) seen in Hele-Shaw
cells when a fluid is injected in a thin space contained between two parallel plates that contains
a more viscous fluid [171].

The patterns observed in [139] are qualitatively similar to patterns of tumor cell growth
observed in patients affected by breast cancer. Indeed, Figure 5.1 is a histological examination
of an invasive breast tumor taken from [199]. An irregular invasive front is observed, and the
authors in [139] suggested that a possible explanation of this phenomenon could be a contrast
of motility between cancer cells and adypocytes. Figure 5.1 indicates also an other important
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effect. A differences in size and number of adipocytes is observed close to the tumor protrusions.
This seems to indicate that the physical properties of the adipocytes play an important role in
the emergence of these irregularities of the tumor. Based on these observations, we are interested
in understanding the key physical properties of tumors and cells of the healthy tissue that allow
for the emergence of protrusions of the tumor inside the healthy tissue.

Figure 5.1 – Histological image of a breast tumor taken from [199]. Adipocytes are whites cells
while tumor cells are purple. IF refers to the invasive front, and C to the tumor center. The
dark arrows point to zones close to the protrusions where adipocytes have a smaller size and are
less numerous. (with permission from the journal to reproduce the figure).

We aim to derive a general model that considers the effects of adhesion between cells and on
the extra-cellular matrix, pressure, active motility, and viscosity. A complete description of all
the different cell types present in and around the tumor would lead to a complex and lengthy
system of equations. To simplify our mathematical representation, we focus only on two cell
types: tumor and healthy cells. Our modeling approach relies on the theory of mixture for the
representation of living tissue [46]. To highlight the crucial physical effects, we do not neglect
any effects that can occur in the mixture: we keep inertia and compressibility. Altogether, our
model is a thermodynamically consistent model of two-phase compressible fluid with a source
term and friction term, i.e., a generalized Navier-Stokes-Cahn-Hilliard system. To understand
the derivation of a multiphase fluid model with the theory of mixture within the framework
provided by basic thermodynamics we refer the reader to [114].

This type of compressible Navier-stokes system coupled to a Cahn-Hilliard equation to take
into account the effect of adhesion and repulsion forces between the component have been used
in material sciences. Lowengrub and Truskinovsky [141] derived a model for compressible Cahn-
Hilliard fluids consistent with thermodynamics. They investigated the assumption of incom-
pressibility and showed that the velocity may not be solenoidal in that case, therefore referring
to the mixture as a quasi-impressible fluid. In [1], Abels and Feireisl proved the existence of
global weak solutions for a variant of the compressible model of Lowengrub and Truskinovsky
[141]. Indeed, to use the method of Leray [131] and Lions [136], they used a thermodynamically
consistent modification of the constitutive relation for the homogeneous free energy of the model.

In the present work, our model is a modification of the compressible Navier-Stokes-Cahn-
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Hilliard model found in [141]. Indeed, we add a source term in the mass balance equation for the
population 1 and a friction term in the equation for the velocity field. These two modifications
are considered to take into account the effect of friction on the ECM and of proliferation of
tumor cells. However, we show through a physically rigorous derivation that even with these
modifications, the model remains consistent with thermodynamics. Altogether, this work aims
at using a compressible two-phase Navier-Stokes-Cahn-Hilliard fluid to represent the progression
of a tumor in a healthy tissue and understand what are the crucial mechanical properties of the
tissues to observe the emergence of irregularities at the surface of growing tumors.

Numerous research pieces using the Cahn-Hilliard framework for the modeling of tumors can
be found in the literature. Starting from the work of Khain and Sander [126], which used the
Cahn-Hilliard equation for incompressible diphasic fluids as the continuous equivalent of a dis-
crete model describing two populations of cells that can move, proliferate, and experience cell-cell
adhesion, many authors started to model living tissues and in particular tumors as Cahn-Hilliard
fluids. Indeed, Wise et. al. [203], and Frieboes et. al. [90] presented a Cahn-Hilliard framework
for incompressible diphasic fluids to model tumor growth. In these three previous works, the
potential representing attractive and repulsive forces (i.e., the homogeneous free energy) is a ther-
modynamically relevant double-well logarithmic potential function. Furthermore, the motilities
of the two components inside the mixture are assumed equal and constant.

To better represent the movement of tumor cells using the Cahn-Hilliard framework, Chate-
lain et. al. [56, 55] and Agosti [8] used a logarithmic single-well potential to represent attractive
and repulsive forces occurring between the components and a degenerate mobility function. This
choice of potential is a phenomenological representation of the scenario where tumor cells are
the only active components of the mixture, the other phase being only composed of inactive
matter such as the extracellular fluid or non-active cells. This choice is also explained by the
work of Byrne and Preziosi [46]. The two types of potential are investigated in our work to un-
derstand the effect of the attractive and repulsive forces exerted by the healthy cells. Altogether,
the framework provided by the degenerate Cahn-Hilliard model with a single-well potential has
shown very promising results and retrieves a qualitatively good agreement when compared to
patient data [10, 9].

This type of Cahn-Hilliard model has been modified to include the representation of more
physical effects. To this end, Garcke et. al. proposed a Cahn-Hilliard-Darcy model for two-phase
incompressible fluids [98] (that has been extended to the case of multiphase fluids [97]) in which
active and passive transport is considered as well as death and proliferation of cells. Active
transport is characterized by movement due to attractive and repulsive forces between cells and
chemotaxis due to nutrients that diffuse in the domain. The passive transport is given in the
model by an advection term where a Darcy-type equation defines the velocity field. To take into
account the effect of the fluid viscosity, this model has been modified using a Brinkman-type law
to define the velocity field [71].

However, these two systems neglected an effect that seems to play a crucial role in our
application, the compressibility of tissues. However, even if incompressibility is often assumed in
the modeling, it is well-known that the compressibility of the healthy tissue due to tumor growth
results in the alteration of the physical properties of the micro-environment [85, 153, 111, 152,
115]. Furthermore, it has been argued that compressibility also plays a role in the proliferation
of tumor cells and their motility [132].

Therefore, to study the role of physical mechanisms during the invasion of a tumor in a
healthy tissue, and to understand the emergence of irregular tumor borders, we propose a general
two-phase Cahn-Hilliard fluid model. Our model includes the effects of compressibility of the
tissues, viscosity, adhesion and crawling of cells on the extracellular matrix, attraction and
repulsion between cells. The outline of this chapter is the following: in Section 5.2, we present
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the derivation of our model and show its consistency with basic thermodynamics. This section
gives the constitutive relations for the important functions of our system. Then, Section 5.3
presents the general assumptions on the important functions constituting the model. We also
give some particular choices of functions for our application, and explain their biological relevancy.
To understand the connection of our model to the system (5.1), we conduct in Section 5.4 formal
asymptotic calculations assuming that the adhesion of cells on the ECM (i.e., the friction term
in the equation for the velocity field) is the predominant effect. Section 5.5 presents the finite
volume scheme that we will use in to construct numerical solutions to the model equations.

Remark. This study is undergoing. The numerical experiments are currently conducted.
Many scenarios are tested to identify the crucial physical effects that produce the observed
irregularities.

5.2 Derivation of the model

5.2.1 Notation and definitions
We formulate our problem in Eulerian coordinates and in a smooth bounded domain Ω ⊂ Rd

(where d = {1, 2, 3} is the dimension). The balance laws that are derived in the following sections
are in local form.

We have two cell populations in the model where ρ1, ρ2 are the relative densities of respectively
population 1 and 2. Thus, ρi represents the mass of the population Mi per volume occupied by
the i-th phase Vi i.e.

ρi =
Mi

Vi
.

Then, we define the volume fractions ϕ1, ϕ2 which are defined by the volume occupied by the
i-th phase over the total volume of the mixture

ϕi =
Vi
V
.

Therefore, the mass density of population i which is the mass of population i in volume V is
given by

φi = ρiϕi.

The total density of the mixture is then given by

ρ = φ1 + φ2.

We also introduce the mass fractions ci = Mi/M and we have the relations

ρci = φi, and c1 = (1− c2). (5.2)

We denote by p the hydrostatic pressure of the mixture and v1,v2 are the velocities of the
different phases. We use a mass-average mixture velocity

v =
1

ρ
(φ1v1 + φ2v2) . (5.3)

We define the material derivative for a generic function g (scalar or vector-valued) by

Dg

Dt
=
∂g

∂t
+ v · ∇g, (5.4)
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and indicate the definition of the differential operator

v · ∇g =

d∑
j=1

vj
∂g

∂xj
.

In the rest of this article, we denote vectors by bold roman letters and we use bold greek letters
to denote second order tensors.

5.2.2 Mass balance equations

We assume that each component has its own velocity and the component 1 is proliferating
with rate G that depends on the local pressure inside the mixture p(ρ, c). The constitutive
relation for this pressure term will be given in the following sections, however we just specify
that p is not an unknown but it is a given function of ρ and c. Therefore, we have the mass
balance equations for each component{

∂φ1

∂t + div (φ1v1) = φ1G(p),
∂φ2

∂t + div (φ2v2) = 0.
(5.5)

Summing the two equations, we obtain the continuity equation for the total density of the
mixture and using the mass fractions (denoting c1 = c) and the relations (5.2), we obtain the
balance equation for the density of the mixture

∂ρ

∂t
+ div (ρv) = ρcG(p). (5.6)

To obtain a system analogous to (5.5), we rewrite the first equation of (5.5) using the definition
of the mass fraction (5.2) to obtain

∂ρc

∂t
+ div (ρcv1) = ρcG(p). (5.7)

The mass of the component 1 is transported by the average velocity v and the remaining diffusive
flux J1 = ρc (v − v1). Therefore, we can replace the previous equation by

∂ρc

∂t
+ div (ρcv) = div (J1) + ρcG(p).

Then, using the definition of the material derivative (5.4) and the mass balance equation for the
total mixture (5.6), the left-hand side of the previous equation reads

∂ρc

∂t
+ div (ρcv) = ρ

Dc

Dt
+ c

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dc

Dt
+ ρc2G(p).

Altogether, we obtain the balance equation for the mass fraction of the component 1

ρ
Dc

Dt
= div (J1) + ρc(1− c)G(p). (5.8)

Since c2 = 1− c, solving the equations (5.6) and (5.8) is equivalent to solving the system (5.5).
In the following, we refer to c as the order parameter (terminology often use in the framework
of the Cahn-hilliard model [48, 47]).
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5.2.3 Balance of linear momentum

We write the balance of linear momentum [73], which describes the evolution of the velocity
v due to internal stresses. Indeed, we neglect the effect of any external forces, including gravity.
Following continuum mechanics, the Cauchy stress tensor gives the stresses acting inside the
mixture due to viscous and non-viscous effects. An additional stress must be taken into account
to represent the effect of concentration gradients [80]. Altogether, we assume that the stress
tensor is a function of the total density ρ, the order parameter c (i.e. the mass fraction of
population 1), its gradient ∇c, and the total velocity of the mixture v i.e.

σσσ = σσσ(ρ, c,∇c,v).

The friction around the pores is modeled by a drag term in the balance equation [151] with a
friction coefficient κ(c) = ν(c)/Cp(c), where ν(c) = ν1c + ν2(1 − c) is the weighted viscosity
(with ν1 and ν2 being the viscosities of fluid 1 and 2 respectively) and Cp(c) is the weighted
conductance of the pores. The conductance is given by

Cp(c) =
ξ(c)ρ

ν(c)
, (5.9)

where ξ(c) is the weighted permeability of the porous medium.

For each dimension (for example if d = 3, then j = {x, y, z}), the balance of linear momentum
reads [73]

∂ρvj
∂t

+ div (ρvjv) = div (σσσ)j − κ(c)vj .

Then, using the continuity equation (5.6), we can rearrange the left-hand side to obtain

∂ρvj
∂t

+ div (ρvjv) = ρ
Dvj
Dt

+ vj

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dvj
Dt

+ ρcvjG(p).

Therefore, we have

ρ
Dvj
Dt

= div(σσσ)j − κ(c)vj − ρcvjG(p).

Then, we can rewrite the balance of linear momentum for each direction in a more compact form

ρ
Dv

Dt
= div(σσσ)− κ(c)v − ρcvG(p). (5.10)

5.2.4 Energy balance

The total energy of the mixture is the sum of the kinetic energy ρ 1
2 |v|

2 and of the internal
energy ρu, where u = u(ρ, c,∇c) is a specific internal energy. Comparing to the classical con-
servation law for the total energy, we have an additional energy flux τττ Dc

Dt . Indeed, due to the
interfacial region, surface effects must be taken into account. Following this direction, Gurtin
[109] proposed to include in the second law of thermodynamics, the effect of an additional force
called the microscopic-stress and is related to forces acting at the microscopic scale. We denote
this supplementary stress by τττ .

Since we assume that the system is maintained in an isothermal state, the balance equation
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for the energy is given by [73]

∂

∂t

(
ρ

1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= div

(
σσσTv

)
+ div

(
τττ

Dc

Dt

)
− div (q) + ρg, (5.11)

where q is the heat flux and ρg is the density of heat sources to maintain the temperature
constant. Then, repeating the same calculations on the left-hand side to use the balance of mass
(5.6), we get

∂

∂t

(
ρ

1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= ρ

[
D

Dt

(
1

2
|v|2 + u

)]
+

(
1

2
|v|2 + u

)
ρcG(p)

Applying the chain rule to the kinetic part, we get

ρ
D

Dt

(
1

2
|v|2

)
= ρv · Dv

Dt
,

and using the balance of linear momentum (5.10), we obtain

ρv · Dv

Dt
= v · div(σσσ)− κ(c) |v|2 − ρc |v|2G(p)

Using this previous results inside (5.11), we obtain the balance equation for the internal energy

ρ
Du

Dt
= div

(
σσσTv

)
− v · div (σσσ) + div

(
τττ

Dc

Dt

)
+ κ(c) |v|2 − div (q) + ρg + ρc

(
1

2
|v|2 − u

)
G(p).

However, since
v · (div (σσσ))− div

(
σσσTv

)
= −σσσ ..∇v,

where ∇v =
(
∂xjvi

)
i,j=1,...,d

is the Jacobi matrix and, we have A .. B =
∑
i,j AijBij , for two

matrices A,B. Altogether, we have the balance equation for the internal energy

ρ
Du

Dt
= σσσ ..∇v + div

(
τττ

Dc

Dt

)
+ κ(c) |v|2 − div (q) + ρg + ρc

(
1

2
|v|2 − u

)
G(p). (5.12)

5.2.5 Entropy balance and Clausius-Duhem inequality

We aim at applying the second law of thermodynamics. To do so, we define the entropy
s = s(ρ, c,∇c) and the Helmholtz free energy F = F(ρ, c,∇c), both related through the equation

F = u− Ts, (5.13)

where T denotes the temperature.

From the mass balance equation (5.6), we have the entropy balance equation

∂ρs

∂t
+ div(sρv) = ρ

Ds

Dt
+ s

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Ds

Dt
+ ρcsG(p). (5.14)

Then, using the definition of the Helmholtz free energy (5.13) and the balance of energy (5.12),
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we obtain

ρ
Ds

Dt
= − ρ

T

DF
Dt

+
ρ

T

Du

Dt

= − ρ
T

DF
Dt

+
1

T

[
σσσ ..∇v + div

(
τττ

Dc

Dt

)
+ κ(c) |v|2 − div (q) + ρg + ρc

(
1

2
|v|2 − u

)
G(p)

]
,

(5.15)
where we have replaced the material derivative of the internal energy using its balance equation
(5.12).

The constitutive relations for the functions constituting the Navier-Stokes-Cahn-Hilliard
model are often derived to satisfy the Clausius-Duhem inequality (Coleman-Noll Procedure)
[73]. Indeed, this inequality provides a set of restrictions for the dissipative mechanisms occur-
ring in the system. However, in our case, due to the presence of source terms, we can not ensure
that this inequality holds without some assumptions on the proliferation and the friction of the
fluid around the pores. Therefore, we use here a different method: the Lagrange multipliers
method. Indeed, Liu [137] and Müller [148] method is based on using Lagrange multipliers to
derive a set of restrictions on the constitutive relations that can be applied even in the presence
of source terms.

Following classical Thermodynamics [148], we state the second law as an entropy inequality,
i.e., the Clausius-Duhem inequality in local form [73]

ρ
Ds

Dt
≥ −div

(
~q · v
T

)
+
ρg

T
+ div (J ) + LρρcG(p), (5.16)

where J is the entropy flux and Lρ is an unknown Lagrange multiplier associated to the total
mass increase [110]. The inequality (5.16) results from the fact that the entropy of the mixture
can only increase. Using the equation (5.15), we obtain

ρ

T

DF
Dt
− 1

T

[
σσσ ..∇v + div

(
τττ

Dc

Dt

)
+ κ(c) |v|2 + ρc

(
1

2
|v|2 − u

)
G(p)

]
+div (J )+LρρcG(p) ≤ 0.

(5.17)
Then, using the chain rule

DF
Dt

=
Dρ

Dt

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+
D∇c
Dt

∂F
∂∇c

,

and
D∇c
Dt

= ∇
[
Dc

Dt

]
− (∇v)

T · ∇c, Dρ

Dt
= −ρdiv(v) + ρcG(p),

in the entropy inequality (5.17), we obtain

ρ

[
(−ρdiv(v) + ρcG(p))

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+

(
∇
[
Dc

Dt

]
− (∇v)

T · ∇c
)
∂F
∂∇c

]
−
[
σσσ ..∇v + div

(
τττ

Dc

Dt

)
+ κ(c) |v|2 + ρc

(
1

2
|v|2 − u

)
G(p)

]
+ Tdiv (J ) + LρρcG(p) ≤ 0.

(5.18)
By chain rule, we have

div

(
τττ

Dc

Dt

)
= τττ∇

[
Dc

Dt

]
+

Dc

Dt
div (τττ) .
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Furthermore, we know that

−ρ2div (v)
∂F
∂ρ

= −ρ2 ∂F
∂ρ

1 ..∇v,

and
−ρ
(

(∇v)
T · ∇c

) ∂F
∂∇c

= −ρ
(
∇c⊗ ∂F

∂∇c

)
..∇v.

Gathering the previous three relations and reorganizing the terms of (5.18), we obtain(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c
− σσσ

)
.
.∇v +

(
ρ
∂F
∂c
− div(τττ)

)
Dc

Dt
+

(
ρ
∂F
∂∇c

− τττ
)
∇
[

Dc

Dt

]
+ Tdiv (J ) + ρc

[
Lρ −

(
1

2
+ κ(c)

)
|v|2 + u+ ρ

∂F
∂ρ

]
G(p) ≤ 0.

(5.19)
Then, we use Liu’s Lagrange multipliers method [137]. We denote by Lc the Lagrange

multiplier associated with the mass fraction equation (5.8). The method of Lagrange multipliers
consists in setting the following local dissipation inequality that has to hold for arbitrary values
of (ρ, c,∇ρ,∇c,v, p)

−Diss :=

(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c
− σσσ

)
.
.∇v

+

(
ρ
∂F
∂c
− div(τττ)

)
Dc

Dt
+

(
ρ
∂F
∂∇c

− τττ
)
∇
[

Dc

Dt

]
+ Tdiv (J )

+ ρc

[
cρ −

(
1

2
+ κ(c)

)
|v|2 + u+ ρ

∂F
∂ρ

]
G(p)

− Lc
(
ρ

Dc

Dt
− div (J1)− ρc(1− c)G(p)

)
≤ 0.

(5.20)

Since,
div (LcJ1) = Lcdiv (J1) +∇Lc · J1,

we reorganize the terms of (5.20) to obtain

−Diss :=

(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c
− σσσ

)
.
.∇v

+

(
ρ
∂F
∂c
− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c

− τττ
)
∇
[

Dc

Dt

]
+ div (TJ + LcJ1)

+ ρc

[
Lρ −

(
1

2
+ κ(c)

)
|v|2 + u+ ρ

∂F
∂ρ
− Lc(1− c)

]
G(p)

−∇Lc · J1 ≤ 0.

(5.21)

5.2.6 Constitutive assumptions and model equations

First of all, we assume that the free energy density F is of Ginzburg-Landau type has the
following form [48, 47]

F(ρ, c,∇c) := ψ0(ρ, c) +
γ

2
|∇c|2 , (5.22)
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where ψ0 is the homogeneous free energy accounting for the processes of phase separation and
the gradient term γ

2 |∇c|
2 represents the surface tension between the two phases. This free energy

is the basis of the Cahn-Hilliard model which describes the phase separation occurring in binary
mixtures (see [147] for a complete review on the Cahn-Hilliard model and its variants).

To satisfy the inequality (5.21), we first choose

τττ := ρ
∂F
∂∇c

= γρ∇c.

Then, we define the chemical potential µ(ρ, c,∇c) by

µ :=
∂F
∂c
− 1

ρ
div(τττ) =

∂F
∂c
− 1

ρ
div(ρ

∂F
∂∇c

) =
∂ψ0

∂c
− γ

ρ
div (ρ∇c) ,

which in turn gives a condition for the Lagrange multiplier

Lc = µ. (5.23)

Using these previous constitutive relations, we have already canceled some terms in the entropy
inequality (

ρ
∂F
∂c
− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c

− τττ
)
∇
[

Dc

Dt

]
= 0.

Then, using classical results on isothermal diffusion [141, 73], we have

J := −µJ1

T
, (5.24)

and using a generalized Fick’s law, we have

J1 := b(c)∇µ, (5.25)

where b(c) is a nonnegative motility function that we will specify in the following. The two
constitutive relations for the diffusive fluxes (5.24) and (5.25) together with (5.23), we obtain

div (TJ + LcJ1)−∇Lc · J1 = −b(c) |∇µ|2 ≤ 0.

Following [141, 1], we define the pressure inside the mixture by

p := ρ2 ∂ψ0

∂ρ
. (5.26)

From standard rheology, we assume that the fluid meet Newton’s rheological laws. The stress
tensor is composed of two parts for the viscous P̃ and non-viscous P contributions of stress

σσσ := P + P̃, (5.27)

and we have by standard continuum mechanics [73]{
P = −p1− γρ∇c⊗∇c,
P̃ = ν(c)

(
∇v +∇vT

)
+ λ(c) (div (v))1,

(5.28)

where ν(c) = cν1 + (1 − c)ν2 is the weighted viscosity coefficient and λ(c) = cλ1 + (1 − c)λ2
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is the weighted bulk viscosity with ν(c) positive and |λ(c)| ≤ ν(c). The second term in the
non-viscous part of the stress (namely −γ (ρ∇c⊗∇c)) is representing capillary stresses that act
at the interface of the two populations. Furthermore, we assume that the bulk viscosity is zero
and, consequently, we set λ(c) = − 2

3ν(c). This form for the stress tensor is also the same used
for Navier-Stokes fluids [80].

Using (5.28), we can cancel a new term in (5.21)(
−ρ2 ∂F

∂ρ
1− ρ∇c⊗ ∂F

∂∇c
− σσσ

)
..∇v = 0.

Therefore, the remaining terms of the entropy inequality are the ones associated with proliferation
and friction. The last step to satisfy the entropy inequality is to choose arbitrarily a value for
the Lagrange multiplier cρ, such that

ρc

[
Lρ −

(
1

2
+ κ(c)

)
|v|2 + u+ ρ

∂F
∂ρ
− λc(1− c)

]
G(p) ≤ 0.

The obvious choice is of course

Lρ =

(
1

2
+ κ(c)

)
|v|2 − u− ρ∂F

∂ρ
+ λc(1− c).

From the previous constitutive relations and choices of Lagrange multipliers, we have that the
dissipation inequality (5.21) is satisfied.

5.2.7 Summary of the model equations

Using the previous constitutive relations our model is the following generalized Navier-Stokes-
Cahn-Hilliard (G-NSCH) system

∂ρ

∂t
= −div (ρv) ρcG(p),

ρ
Dc

Dt
= div (b(c)∇µ) + ρc(1− c)G(p),

ρµ = −γdiv (ρ∇c) + ρ
∂ψ0

∂c
,

ρ
Dv

Dt
= − [∇p+ γdiv (ρ∇c⊗∇c)] + div

(
ν(c)

(
∇v +∇vT

))
− 2

3
∇ (ν(c) (div (v)))− κ(c)v − ρcvG(p),

(5.29)

5.3 General assumptions and biologically relevant choice of
the model functions

5.3.1 General forms and assumptions

The motility is a positive function of the order parameter (mass fraction) c. Hence, we assume
that

b ∈ C1([0, 1];R+), and b(c) > 0 for 0 ≤ c ≤ 1. (5.30)

In agreement with the literature (see e.g [58]) the homogeneous free energy ψ0(ρ, c) is assumed
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to be of the form
ψ0(ρ, c) = ψe(ρ) +H(c) log ρ+Q(c), (5.31)

where H(·) and Q(·) satisfy

−H1 ≤ H ′(c), H(c) ≤ H2, c ∈ R, H1, H2 > 0,

Q1 |c| −Q2 ≤ Q′(c) ≤ Q3(1 + |c|), c ∈ R, Q1, Q2, Q3 > 0.
(5.32)

Then, using the constitutive relation for the pressure we have

p(ρ, c) = ρ2 ∂ψ0

∂ρ
= pe(ρ) + ρH(c), (5.33)

where pe = ρ2ψ′e(ρ) and is assumed to satisfy

p1ρ
a−1 − p2 ≤ p′e(ρ) ≤ p3(1 + ρa−1), for a > 3/2, p1, p2, p3 > 0. (5.34)

The growth function G(p) is used to represent the capacity of cells to divide accordingly to
the pressure exerted on them. It is well known that cells are able to divide as long as the pressure
is not too large. Once a certain pressure pmax is reached cells enter a quiescent state. Therefore,
we assume that

G′(p) ≤ 0, and G(p) = 0 for p > pmax. (5.35)

5.3.2 Biologically consistent choice of functions
As said in the derivation of the model, the free energy density F is the sum of two terms:

γ
2 |∇c|

2 taking into account the surface tension effects existing between the phases of the mixture
and the potential ψ0(ρ, c) representing the cell-cell interactions and pressure. The function b(ρ)
is the active motility of the cells of the growing population.

Let us explain how the choices of functions for the free energy density and mobility are
motivated by biological observations.

To satisfy the conditions (5.30), we propose to choose

b(ρ) = Cbc(1− c)α, α ≥ 1, (5.36)

where Cb is a positive constant. We use for the pressure a power law such that

pe(ρ) =
1

a− 1
ρa−1. (5.37)

For H(c) and G(c) two cases can be considered depending on the behavior of the cells we want
to represent. If the two cell populations exert attractive forces when they recognize cells of the
same type and repulsion with the other type, this potential has to take a form of a double-well
where the two stable phases are located at the bottom of the two wells (see e.g. Figure 5.2a).
This is a situation close to the phase separation in binary fluids. Thermodynamically consistent
potentials are of Ginzburg-Landau type with presence logarithmic terms. Even though the
double-well form of the potential is originally used for applications dealing with materials, it can
also be motivated for biological purposes. Indeed, considering an application where the mixture
is saturated with two cell types and are of similar compressibility, a double-well potential is
biologically relevant and reflects correctly the expected behavior of cells: they are attracted to
each other respectively to their cell type at low densities and after a certain density they start to
repel each others to avoid the creation of overcrowded zones. A typical example of biologically
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(a) (b)

Figure 5.2 – Double-well logarithmic potential (left) and single-well logarithmic potential (right)

relevant double-well potential is given by

H(c) =
1

2
((1− c) log(1− c) + c log(c)) , G(c) = −θ

2
(c− 1

2
)2 + k, (5.38)

where θ > 1 and k is an arbitrary constant.
To meet the phenomenological observations of interaction between cells when the mixture is

composed of only one cell population (and the other component of the mixture is supposed to
be much more compressible), a single-well potential seems more appropriate [46, 56].

Indeed, when the distance between cells falls below a certain value (i.e. if the cell density
is large enough), cells are attracted to each other. Then, it exists a threshold value called
the mechanical equilibrium for which ρH(ce) + C(ce) = 0 i.e. there is an equilibrium between
attractive and repulsive forces. For larger cell densities, cells are packed too close to each others,
they thus experience a repulsive force. when cells are so packed that they fill the whole control
volume, then the repulsive force becomes infinite due to the pressure. The representation of such
functional is depicted in Figure 5.2b. A typical example of single-well potential which has been
use for the modelling of living tissue and cancer [56, 8] is

H(c) = −(1− ce) log(1− c), G(c) = −c
3

3
− (1− ce)

c2

2
− (1− ce)c+ k, (5.39)

where k is an arbitrary constant.
The growth function

G(p) =
200

π
arctan

(
4 [pmax − p]+

)
,

where pmax = p(ρmax, c), meet the conditions (5.35).

5.3.3 Non-dimensionalized model

We introduce the dimensionless independent variables x = x/L?, t = V ?t/L?, where L? and
V ? are the characteristic scale of length and velocity. Therefore, we rescale the dependent vari-
ables by v = v/V ?, ρ = ρ/ρ?, p = p(ρ?µ?) and ψ0 = ψ0/µ

?, where ρ? and µ? are characteristic
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quantities. Dropping the bar notation, we obtain the non-dimensionalized model

∂ρ
∂t = −div (ρv) + CLV ρcS1(p),

ρDcDt = div
(

1
Pe(c)∇µ

)
+ CLV ρc(1− c)S1(p),

ρµ = −Cεdiv (ρ∇c) + ρ∂ψ0

∂c ,

ρDv
Dt = − 1

M [∇p+ Cεdiv (ρ∇c⊗∇c)] + div
(

1
Re(c)

(
∇v +∇vT

))
− 2

3∇
(

1
Re(c) (∇ · v)

)
− CLV v (κ(c) + ρcS1(p)) ,

(5.40)

where we have used the definition of the concentration dependent of the Peclet and Reynold
number Pe(c) = ρ∗L∗V ∗

b(c) and Re(c) = ρ∗L∗V ∗

ν(c) . The other constants are defined by CLV = L∗

V ∗ ,

Cε = ε
µ?(L∗)2 , and M = (V ∗)2

µ? . In the same manner, we non-dimensionalize the energy of the
fluid

E(t) =

∫
Ω

ρ

[
1

2
v2 + ψ0(ρ, c) +

ε

2
|∇c|2

]
dx,

using the rescaling E = E
(L?)3ρ?(V ?)2 to obtain

E(t) =

∫
Ω

ρ

[
1

2
v2 + CV ψ0(ρ, c) +

Cε
2
|∇c|2

]
dx,

where we have dropped the bar notation.

5.4 Large friction hypothesis

We aim at studying the asymptotic model recovered when we assume that the effects of
friction around the pores and of the pressure inside the fluid are large compared to the other
effects taken into account in the model (5.29). We also assume that the inertia effects of the
total mixture are negligible leading to

ρ
Dv

Dt
= 0.

To account for the fact that friction around and the pressure are the predominant effect, we use
a small positive parameter ε << 1 and define the rescaled coefficients and functions

κ(c) =
κε(cε)

ε
, ν(c) = ε2νε(cε), G(p) = εGε(pε), b(c) = εbε(cε). (5.41)

Then, we rescale time accordingly to

t =
tε
ε
,

which induces for every time dependent variable

∂tρ = ε∂tερε, ∂tc = ε∂tεcε, ∂tv = ε∂tεvε.
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Using this rescaling and neglecting inertia effects, we obtain the following modified momentum
equation

0 = −
[
∇pε + ε2γdiv (ρε∇cε ⊗∇cε)

]
+ ε2div

(
νε(cε)

(
∇vε +∇vTε

))
− ε2 2

3
∇ (νε(cε) (∇ · vε))

− κε(cε)

ε
vε − ερεcεvGε(pε).

Neglecting the second order terms in ε, we obtain the definition of the velocity field

vε = − ∇pε
κε(cε)
ε + ερεcεGε(pε)

. (5.42)

This form of the velocity field bears some resemblance with the well-known Darcy’s Law [66].
The rescaling is also applied to the other equations of system (5.29), so using the definition of
the velocity field (5.42), we obtain for the total density

ε
∂ρε
∂tε
− εdiv

(
ρε

κε(cε) + ε2ρεcεGε(pε)
∇pε

)
= ερεcε(1− cε)Gε(pε),

and simplifying ε on both sides we obtain

∂ρε
∂tε
− div

(
ρε

κε(cε) + ε2ρεcεGε(pε)
∇pε

)
= ρεcε(1− cε)Gε(pε). (5.43)

Then, for the mass fraction equation we have

ερε
∂cε
∂tε
− ε ρ

κε(cε) + ε2ρεcεGε(pε)
∇pε · ∇cε = εdiv (bε(cε)∇µ) + ερεcεGε(pε),

and again simplifying ε on both sides we find

ρε
∂cε
∂tε
− ρ

κε(cε) + ε2ρεcεGε(pε)
∇pε · ∇cε = div (bε(cε)∇µ) + ρεcεGε(pε), (5.44)

Lastly, letting ε → 0 in (5.43) and (5.44), we obtain for the zero order terms of the expansions
for the different terms the limit system

∂ρ
∂t − div

(
ρ
κ(c)∇p

)
= ρcG(p),

ρ∂c∂t −
ρ
κ(c)∇p · ∇c = div

(
b(c)∇∂ψ0

∂c

)
+ ρc(1− c)G(p).

(5.45)

This model is interesting to study because it features two important effects that drive the move-
ment of the two phases. The gradient of the pressure gives the direction of the diffusion movement
while the two components of the mixture experience attraction and repulsion due to the term
∇∂ψ0

∂c .

However, we can also deduce another model using the definition (5.42) and (5.3)

vε = cεv1,ε + (1− cε)v2,ε = − ∇pε
cεκ1+(1−cε)κ2

ε + ερεcεGε(pε)
.
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Multiplying the previous equation by ε(cεκ1+(1−cε)κ2)
ε(cεκ1+(1−cε)κ2) , we have

− ε (cεκ1 + (1− cε)κ2)

(cεκ1 + (1− cε)κ2)
2

+ ε2ρεcεGε(pε) (cεκ1 + (1− cε)κ2)
∇pε.

Hence, we define

v1,ε = − εκ1

(cεκ1 + (1− cε)κ2)
2

+ ε2ρεcεGε(pε) (cεκ1 + (1− cε)κ2)
∇pε,

v2,ε = − εκ2

(cεκ1 + (1− cε)κ2)
2

+ ε2ρεcεGε(pε) (cεκ1 + (1− cε)κ2)
∇pε.

Then, using these definition in the system (5.5) with the previous rescaling, we obtain we get
the system ε

∂φ1,ε

∂tε
− div

(
εκ1φ1,ε

κε(c1,ε)2+ε2φ1,εGε(pε)κε(c1,ε)
∇pε

)
= εφ1,εGε(pε),

ε
∂ρεc2,ε
∂tε

− div
(

εκ2φ2,ε

κε(1−c2,ε)2+ε2φ1,εGε(pε)κε(1−c2,ε)∇pε
)

= 0.

Then, simplifying the factorized ε, letting ε→ 0, we obtain for the zero order terms the system
∂φ1

∂t − κ1div
(

φ1

κ(c1)2∇p
)

= φ1G(p),

∂φ2

∂t − κ2div
(

φ2

κ(c2)2∇p
)

= 0.
(5.46)

If we further assume that κ(c1) = κ1, and κ(c2) = κ2 (therefore assuming that the friction
coefficient is a constant function), we get{

∂φ1

∂t −
1
κ1

div (φ1∇p) = φ1G(p),
∂φ2

∂t −
1
κ2

div (φ2∇p) = 0.
(5.47)

As said in the introduction, the model (5.47) is the same as (5.1), and has been proposed
previously in [139] to model the situation where a cell population is proliferating inside another
non-proliferating one. The model also considers a contrast in mobility for the two populations.
In [139], the authors defined κ−1

1 and κ−1
2 as mobility coefficient i.e., the quotient of permeability

and viscosity. Indeed, coming back to the definition of the friction coefficient κ(c) = ν(c)/Cp(c)
(and assuming again that κ(ci) = κi = νi/Cp,i for i = 1, 2 are constants) and of the conductance
of the pores (5.9), our two coefficients of mobility κ−1

1 and κ−1
2 are defined as

κ−1
1 =

K1

ν1
, and κ−1

2 =
K2

ν2
,

whereK1 andK2 are the permeability coefficients for the two components. Numerical simulations
of the model (5.1) suggests that when the mobility of the proliferating population is larger than
that of the other one then the solution exhibits patterns similar to Saffman-Taylor instabilities.
Therefore, our result indicates that the adhesion on the ECM and its capacity to move inside
(its permeability) plays a crucial role in the emergence of irregularities at the surface of growing
tumors.
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5.5 Finite volume numerical scheme

Let us explain the details of the finite volume numerical scheme. We are using an upwind
method to calculate the convective terms with a MUSCL reconstruction at the interface of the
cells. Let us describe the numerical components of our scheme for the case d = 2.

The mesh. We use a structured grid of N = NiNj cells (where Ni and Nj are
the numbers of cells for each direction x and y). We denote the set of centroids by
JC = {(xi, xj) ∈ Ω | i = 1, . . . , Ni, j = 1, . . . , Nj}. The centroids are equally spaced by a
parameter ∆x in the x direction and ∆y in the y direction.

Calculation of convective terms. To ensure the stability of our scheme and the positivity of
both the fluid density ρ and the order parameter c, we use an upwind method to approximate
the convective terms. A general example of calculation of a convective term is

(v · ∇c)i,j =

(
vx
∂c

∂x
+ vy

∂c

∂y

)
i,j

.

We approximate in each direction by(
vx
∂c

∂x

)
i,j

= max(0,vi)(
∂c

∂x
)i+1/2,j + min(0,vi)(

∂c

∂x
)i−1/2,j ,

and we approximate the gradients at the interface by

(
∂c

∂x
)i+1/2,j =

( ∂c∂x )Li+1/2,j + ( ∂c∂x )Ri+1/2,j

2
,

and

(
∂c

∂x
)Li+1/2,j =

cLi+1,j − cLi−1,j

2∆x
, (

∂c

∂x
)Ri+1/2,j =

cRi+1,j − cRi−1,j

2∆x
.

The other type of convective term that we need to deal with is of the form

div (ρv)i,j =
1

V i,j

∑
σ∈Γi,j

F̃σ(ρ,v)~Sσ,

where Γi,j is the set of faces for the cell that has xi,j as centroid and Vi,j denotes its volume. We
also denoted the flux crossing the interface σ by Fσ and ~Sσ is the surface vector.

To describe how the flux is calculated by the upwind approach, let us take the example of
the right interface of the cell i, j

F̃i+1/2,j(ρ,v) = ρLi+1/2,j max(0,vi+1/2,j) + ρRi+1/2,j min(0,vi+1/2,j).

MUSCL reconstruction. At each cell interface we need to approximate the density of the
fluid ρ, its velocity v and the order parameter c. Since the solution is expected to display large
gradients, we use a high order reconstruction at the interface. We use the MUSCL method that
approximates the solution in each cell by a linear piecewise function. The main ingredients of this
scheme is the use of a slope limiter to reconstruct the variables at both sides of each interface.
If we denote by uLi+1/2,j the variable located the right interface but inside the cell and uRi+1/2,j

the value at the right interface but outside the cell, we have

uLi+1/2,j = ui,j +
1

2
φ(ri,j)(ui+1,j − ui,j), uRi+1/2,j = ui+1,j −

1

2
φ(ri+1,j)(ui+2,j − ui+1,j).
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Discrete scheme for model (5.29). Using a first order approximation of the time derivative
with a time step ∆t and a positive number k = 0, . . . , NT − 1 such that tk = k∆t, we have
∂ρ
∂t ≈

ρk+1−ρk
∆t . Thus, using the finite volume space discretization above, we obtain the fully

discrete linear semi-implicit scheme for centroid xi,j

ρk+1
i,j − ρki,j

∆t
+

1

Vi,j

∑
σ∈Γi

F̃σ(ρk,vk)Sσ = ρkckS1(pk),

ρk+1
i,j

[
ck+1
i,j − cki,j

∆t
+

(
vkx
∂ck

∂x
+ vky

∂ck

∂y

)
i,j

]
=

1

V i,j

∑
σ∈Γi,j

[
F̃σ(ρk,∇µk)~Sσ

]
+ ρkck(1− ck)S1(pk),

pk+1
i,j = (ρk+1

i,j )γ + ρk+1
i,j H(ck+1

i,j ),

ρk+1
i,j µk+1

i,j = −ε
∑
σ∈Γi,j

F̃σ(ρ,∇ck+1) + ρk+1
i,j

(
∂ψ0(c)

∂c

)k+1

i,j

,

ρk+1
i,j

[
vk+1
i,j,x − vki,j,x

∆t
+

(
vkx
∂vkx
∂x

+ vky
∂vkx
∂y

)
i,j

]

= − 1

Vi,j

[ 1

∆x

(
pk+1
i+1/2,j − p

k+1
i−1/2,j

)
+ ερk+1

i,j

1

∆x

((
∂ck+1

∂x

)2

i+1/2,j

−
(
∂ck+1

∂x

)2

i−1/2,j

)

+ ερk+1
i,j

1

∆y

((
∂c

∂y

∂c

∂x

)k+1

i,j+1/2

−
(
∂c

∂y

∂c

∂x

)k+1

i,j−1/2

)]
+

1

∆x

(
F̃i+1/2,j

(
1

Re(ck+1)
,∇vkx

)
− Fi−1/2,j

(
1

Re(ck+1)
,∇vkx

))
+

1

∆y

(
F̃i,j+1/2

(
1

Re(ck+1)
,∇vkx

)
− Fi,j−1/2

(
1

Re(ck+1)
,∇vkx

))
− 2

3

1

∆x

(
F̃i+1/2,j

(
1

Re(ck+1)
,∇ · vk

)
− F̃i−1/2,j

(
1

Re(ck+1)
,∇ · vk

))
− vki,j,xρ

k+1
i,j ck+1

i,j S1(pk+1
i,j ),
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ρk+1
i,j

vk+1
i,j,y − vki,j,y

∆t
+

(
vkx
∂vky
∂x

+ vky
∂vky
∂y

)
i,j


= − 1

Vi,j

[ 1

∆y

(
pk+1
i,j+1/2 − p

k+1
i,j−1/2

)
+ ερk+1

i,j

1

∆y

((
∂ck+1

∂y

)2

i,j+1/2

−
(
∂ck+1

∂y

)2

i,j−1/2

)

+ ερk+1
i,j

1

∆x

((
∂c

∂y

∂c

∂x

)k+1

i+1/2,j

−
(
∂c

∂y

∂c

∂x

)k+1

i−1/2,j

)]
+

1

∆x

(
F̃i+1/2,j

(
1

Re(ck+1)
,∇vky

)
− Fi−1/2,j

(
1

Re(ck+1)
,∇vky

))
+

1

∆y

(
F̃i,j+1/2

(
1

Re(ck+1)
,∇vky

)
− Fi,j−1/2

(
1

Re(ck+1)
,∇vky

))
− 2

3

1

∆y

(
F̃i,j+1/2

(
1

Re(ck+1)
,∇ · vk

)
− F̃i,j−1/2

(
1

Re(ck+1)
,∇ · vk

))
− vki,j,yρ

k+1
i,j ck+1

i,j S1(pk+1
i,j ).
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Chapter 6

The Scalar Auxiliary Variable
method for the volume-filling
Keller-Segel model.

Abstract
We describe and analyze a finite element numerical scheme for the parabolic-parabolic Keller-Segel
model. To prevent the blow-up of the cell density in finite time, we use the volume-filling modification of
the chemosensitivity. The scalar auxiliary variable method is used to retrieve the monotonic decay of the
energy associated with the system at the discrete level. This method relies on the interpretation of the
Keller-Segel model as a gradient flow. The SAV finite-element scheme is stabilized by a simple upwind
method. The resulting numerical scheme is efficient and easy to implement. We show the existence of a
unique non-negative solution and that a modified discrete energy is obtained due to the use of the SAV
method. From numerical simulations, we observe that the SAV-upwind scheme enhances the spatial
accuracy compared to classical upwind methods.

This chapter contains preliminary results from an ongoing work.

6.1 Introduction

Since chemotaxis is observed very widely in various areas of biology and medicine, it becomes
a prolific subject in mathematical biology throughout the past decades. Among the different
mathematical models used to represent chemotaxis of living organisms, the Keller-Segel equation
is one of the most recognized. It has been introduced by Keller and Segel [123] to depict the
movement of the Dictyostelium discoideum toward the location of high concentration of adenosine
3’, 5’-cyclic monophosphate. The parabolic-parabolic Keller-Segel model (KS in short) is often
set in a bounded domain Ω ⊂ Rd, d = 1, 2, 3 with a Lipschitz boundary ∂Ω and reads

∂tu = ∇ · (Du∇u− χcϕ(u)∇c) in Ω× (0,+∞), (6.1)
τ∂tc = ∆c− αc+ u in Ω× (0,+∞), (6.2)

endowed with zero-flux boundary condition

∂ (Du∇u− χcϕ(u)∇c)
∂ν

=
∂c

∂ν
= 0 on ∂Ω× (0,+∞), (6.3)
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where ν is the outward normal vector to the boundary. We assume in the following that the
initial condition satisfies{

{u(0, x), c(0, x)} = {u0, c0} ∈ H1(Ω)×H1(Ω),

0 ≤ u0 ≤ 1 a.e. in Ω, 0 ≤ c0 ≤ c a.e. in Ω,
(6.4)

where c is a positive finite constant.

In the model (6.1)–(6.4), the cell density u(t, x) is attracted by the chemo-attractant given by
c(t, x), its concentration. Cells can move randomly by diffusion (where Du ≥ 0 is the diffusion
coefficient), and by chemotaxis with χc ≥ 0 a coefficient used to represent the strength of the
chemoattraction. A small parameter τ > 0 is used to denote how fast the chemo-attractant is
diffusing compared to the cells. Without a loss a generality, we will assume in the following that
τ = 1.

We denote by ϕ(u) the chemosensitivity and it is given by

ϕ(u) = u(1− u) for 0 ≤ u ≤ 1. (6.5)

This particular form of chemosensitivity prevents the unrealistic scenario of overcrowding of cells
and therefore the blow-up of the solution. Due to this possible behavior of solutions, the Keller-
Segel system exhibits a very interesting mathematical structure and the interested reader can
refer to the review [117] and the work of Blanchet et al. [33]. The volume-filling strategy was
proposed in [162] to take into account the finite size of individual cells, leading to the form (6.5).

The Keller-Segel model (6.1)–(6.2) with chemosensitivity (6.5) has a gradient flow structure
with the associated energy

E [u, c](t) =

∫
Ω

B [u log u− (u− 1) log(1− u)]− uc+
1

2

(
|∇c|2 + αc2

)
+ C dx, (6.6)

where B = Du/χc and we denote the integral of the nonlinear part of the free energy density by

E1[u](t) =

∫
Ω

F (u) dx,

where
F (u) = B (u log u− (u− 1) log(1− u))− uc+ C. (6.7)

Here, C is a positive constant such that F (u) > 0, ∀u ∈ [0, 1]. For latter convenience, we denote
F ′(u) = g(u), and we remark that g′(u) = 1

ϕ(u) . Thus, we can express the Keller-Segel model
using its gradient flow structure [34]

∂tu = ∇ ·
(
χcϕ(u)∇δE

δu

)
, (6.8)

τ∂tc = −δE
δc
, (6.9)

where the variational derivatives of the energy functional with respect to u and c are given
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respectively by

δE
δu

= g(u),

δE
δc

= −∆c+ αc− u.

Generally, numerical schemes for a gradient flow model are evaluated by several aspects:
i) its capacity to keep the energy dissipation; ii) if it is convergent, and if error bounds can be
established; iii) its efficiency; iv) its implementation simplicity. For a large class of gradient flows,
the Scalar Auxiliary Variable (SAV in short) [180] has shown to fullfil all the previous points.
Applying this method to the Keller-Segel model is only possible starting from its gradient flow
formulation (6.8)–(6.9) and gives what we call the SAV Keller-Segel model. To define it, we
denote by r(t) the scalar auxiliary variable, and set r(t) =

√
E1[u](t) at the continuous level, to

get

∂tu = ∇ · (χcϕ(u)∇µ1) , (6.10)

µ1 = B
r√
E1[u]

g(u)− c, (6.11)

τ∂tc = −µ2, (6.12)
µ2 = −∆c+ αc− u. (6.13)

We add to this new model an additional equation for r that reads

dr

dt
=

1

2
√
E1[u]

∫
Ω

g(u)
∂u

∂t
dx. (6.14)

In this article, we propose to study a stabilized finite element scheme to simulate the sys-
tem (6.10)–(6.14) that preserves a modified energy at the discrete level.

Throughout the past decades, the Keller-Segel model as been at the center of many pieces of
research. The analytical properties of the Keller-Segel model without volume-filling have been
extensively studied. One of the most important result was to show that the solution of the model
blows up in finite time if a certain constraint on the initial mass is not satisfied. For the reader
interested into the analytical results about this model without volume filling, we refer to the
review paper [188]. The volume-filling approach prevents this blow-up of the solution in finite
time for any initial condition satisfying (6.4). Moreover, it seems to be more biologically relevant
since it takes into account the finite size of the cells. A more general form of the Keller-Segel
model is {

∂tu−∇ · (Duβ(u)∇u− χcuµ(u)∇c) = 0,

∂tc−Dc∆c = δu− αc,
(6.15)

where the random movement of the cells is given by Duβ(u) (that can be non-linear) and the
chemosensitivity is given by χcµ(u). Particular assumptions on both β(u) and µ(u) can be made
to prevent the blow-up of solutions in finite time. The introduction of the parabolic-parabolic
KS with volume-filling and quorum-sensing is presented in the work of Painter and Hillen [162].
They described a discrete lattice model where the probability for cells to jump to a different
location is dependent on the local density and on the concentration of the chemotactic agent.
Their model takes into account the fact that cells may be already present in the neighboring
locations. Therefore, the chemotactic movement is set to zero in zones that are too overcrowded.
From this discrete model, Painter and Hillen derived the continuous limit model and gave the
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following conditions for β(u) and µ(u)

β(u) := ψ(u)− uψ′(u), µ(u) ≡ ψ(u),

where ψ(u) is a monotonically decreasing function and with the assumptions

ψ(0) > 0, ψ(u) > 0 for 0 < u < umax, and ψ(umax) = 0,

where umax represents the cell density at which chemoattraction stops. The same authors proved
the global existence of classical solutions in [116]. They also presented some numerical simulations
where they were able to make observation of the behavior of the solution for longer times since
the blow-up of the solution is prevented by the model. Many other variations of the Keller-Segel
model have been proposed to take into account the effect of volume filling. For example, more
recently, Bubba et al. [45] proposed to take

ψ(u) = exp

(
− u

umax

)
.

Therefore, in the present work we use the chemosensitivity function (6.5) where the maximum
cell-density is u = 1.

Numerical methods for the Keller-Segel model are numerous. Considering zero-flux boundary
conditions, the conservation of the total mass of the cells, the positivity of the solution and the
capacity to retrieve the energy at the discrete level are the key properties expected from a
numerical scheme. Without indication of the contrary, the following works that we review here
are about the original form of the Keller-Segel model i.e. ϕ(u) = u.

For the parabolic-elliptic Keller-Segel equation where the equation for the chemo-attractant
is given by

−∆c = δu− αc,

Saito and Suzuki proposed a conservative finite-difference scheme [175]. For the parabolic-
parabolic version, Saito proposed for an upwind finite element scheme [173, 172] based on Baba
and Tabata’s method [19] and performed an error analysis [174]. Other methods have been
designed to stabilize the finite element method (i.e. to preserve the positivity of the cell den-
sity). The discontinuous Galerkin method has been used and analyzed for the KS model [79,
78, 133], and these schemes have shown very good results in terms of positivity preserving and
spatial accuracy. For a standard continuous Galerkin discretization, Strehl et. al. [185] used
the flux corrected transport (FCT) method [129] to stabilize the scheme and recover an accurate
scheme. The main idea behind the FCT method is to add an artificial diffusion term to stabilize
the scheme and then correct it to recover a second order scheme in zones where the solution is
smooth while the artificial diffusion is kept in regions where the gradient of the solution is large.
The finite volume method has also been applied for this problem: we can cite the work of Filbet
[86] that deals with the classical Patlak-Keller-Segel model (without volume filling).

The main objective of the previous works that we reviewed so far was to design stable and
accurate numerical methods for the Keller-Segel model. However, none of the previous focusses
on the dissipation of the energy. The work that is the closer to ours is [12] and deals with the
case of the volume-filling chemosensitivity. In the latter, the parabolic-elliptic model is used
and the authors were able to prove the preservation of the important properties that are the
dissipation of the energy and the positivity of u for two implicit nonlinear finite volume schemes.
The difference between the two is that one uses the gradient flow structure of the model while
the user uses an exponential rewriting inspired by the Scharfetter-Gummel discretization. To
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avoid the solving of the nonlinear system, the authors proposed to compute the chemosensitivity
explicitly and use the upwind method to preserve the positivity of the cell density. However, the
capacity to prove the dissipation of the energy is lost with this more efficient scheme. To the best
of our knowledge, there is no work presenting a linear structure-preserving numerical scheme for
the model (6.1)–(6.2).

A recent numerical method to simulate gradient flows that ensures that the energy is preserved
at the discrete level is the Scalar Auxiliary Variable method (SAV in short) [181, 180]. This
method provides a robust framework to simulate gradient flows in an efficient way. Indeed,
the computation of the solution of any gradient flow model requires only the solving of two
decoupled linear systems at each time step. This method has shown very interesting results
for the simulation of the Cahn-Hilliard equation [179] for which the properties concerning the
discrete energy and the conservation of the total mass are of main importance. We must stress
that the energy recovered by the SAV method is a modified version of the energy of the real
system. This is due to the discretization of the equation for the scalar variable. In a recent work
of Bouchriti et al. [36], the authors showed that the use of the SAV method for the damped wave
equation and the Cahn-Hilliard equation leads to the convergence to modified steady states as
well. To the best of our knowledge the SAV method has never been applied to the Keller-Segel
model. The principal difference with previous works on the SAV method is that the mobility in
the first equation of the Keller-Segel system is not constant through time, leading to the necessity
to compute at each time step the associated matrix.

Hence, in this article, we propose to use the SAV method to obtain a new model that we
discretize in space using the finite element method, and stabilize it using the multidimensional
upwind method proposed in [166]. Altogether, we obtain a new way to simulate the parabolic-
parabolic Keller-Segel equation with the certitude to be able to retrieve the positivity of the
solution and a modified energy at the discrete level. First, we describe the method and explain
the strategy to solve the resulting equations. Then, the well-posedness of the scheme is studied.
We show the existence of a unique pair of solution that is non-negative and retrieve the expected
L∞ norm. We also show that the initial mass of the cells is conserved. We prove that a modified
energy is retrieved at the discrete level which is an inherent property of the SAV method. Lastly,
we present numerical simulations in one dimension, and compare our results with standard
numerical techniques for this model.

6.2 Numerical scheme

6.2.1 Finite element framework

Let Lp(Ω),Wm,p(Ω) withHm(Ω) = Wm,2(Ω), where 1 ≤ p ≤ +∞ andm ∈ N, be respectively
the usual Lebesgue and Sobolev spaces. The corresponding norms are respectively || · ||m,p,Ω,
|| · ||m,Ω and semi-norms | · |m,p,Ω, | · |m,Ω. We denote Lp (0, T ;V ) the Bochner spaces i.e. the
spaces with values in Sobolev spaces [3]. The norm in these spaces is defined for all function η
Bochner measurable by

‖η‖Lp(0,T ;V ) =

(∫ T

0

‖η‖pV dt

)1/p

,

and
‖η‖L∞(0,T ;V ) = ess sup

t∈(0,T )

‖η‖V .
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The standard L2 inner product is denoted by (·, ·)Ω and the duality pairing between (H1(Ω))′

and H1(Ω) by < ·, · >Ω.

Let Ω be a polyhedral domain and T h, h > 0, be a quasi-uniform mesh of this domain into∣∣T h∣∣ disjoint open mesh elements T . Let hT := diam(T ) and h = maxT∈T h hT . Since the mesh
is assumed to be quasi-uniform, we know that it is shape-regular and it exists a positive constant
C such that

hT ≥ Ch, ∀T ∈ T h.

Since the domain is assumed to be polyhedral, the discrete domain Ωh exactly coïncides with the
domain Ω. Hence, the closure of the domain can be written as the union of all the mesh elements
Ω = Ωh =

⋃
T∈Th T . We assume that the mesh is acute, i.e. for d = 2 the angles of the triangles

can not exceed π
2 and for d = 3 the angle between two faces of the same tetrahedron can not

exceed π
2 . We define by κT the minimal perpendicular length of T and κh = minT∈T h κT . We

introduce the P-1 finite element space associated with the mesh T h

V h := {χ ∈ C(Ω) : χ
∣∣
T
∈ P1(T ), ∀T ∈ T h} ⊂ H1(Ω),

where P1(T ) denotes the space of polynomials of order 1 on T . For latter convenience, we indicate
the set of nodes of T h by Jh and {xj}j=1,...,Nh is the set of their coordinates (with Nh = |Jh| is
the total number of nodes). We denote by Λi the set of nodes connected to the node xi by an
edge and Gh = maxxi∈Jh |Λi|.

Therefore, {χj}j=1,...,Nh is the standard Lagrangian basis functions associated with the spatial
mesh. The standard interpolation operator is defined by πh : C(Ω)→ V h such that

πhv(x) =

Nh∑
i=1

v(xi)χi(x), ∀v ∈ C0(Ω).

We denote by Ph : L2(Ω)→ V h the L2 projection operator

(Phv, χ) = (v, χ) ∀v ∈ L2(Ω) and ∀χ ∈ V h.

We define by χ̂i ∈ L∞(Ω), the characteristic function of the barycentric domain Di associated
with each node xi (for i = 1, . . . , Nh). The barycentric domain Di is defined as

Di :=
⋃
k

{Dk
i ; Tk ∈ T h such thatxi ∈ T k},

and

Dk
i :=

nT⋂
j=1

{x;x ∈ Tk and λij(x) ≤ λi}

where nT being the number of nodes in the triangle Tk, and λi, λij (for j = 1, . . . , nT ) are the
barycentric coordinates with respect to the vertices of the triangles xi, xj .

We define the lumped space V̂h as

V̂h := {χ̂ : piecewise constant over barycentric domains i.e. χ̂(x) = χ̂(xi), ∀x ∈ Di}.

Therefore, we let the functions {χ̂j}j=1,...,Nh be a basis of the space V̂h and they are associative
with the functions {χj}j=1,...,Nh i.e. χ(xi) = χ̂(xi) for all xi ∈ Jh. We also define the operator
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π̂h : C0(Ω)→ V̂ h given by

π̂hv(x) =

Nh∑
i=1

v(xi)χ̂i(x), ∀v ∈ C0(Ω).

We define the lumped scalar product by

(v1, v2)
h

=

∫
Ω

πh (v1(x)v2(x)) dx = (v̂1, v̂2) , ∀v1, v2 ∈ C0(Ω),

and v̂1 = π̂hv1. For latter convenience, we state here some well-known results for the P-1 finite
element method (see for e.g. [43], [168])

|χ|m,p2 ≤ Ch
−d
(

1
p1
− 1
p2

)
|χ|m,p1 ∀χ ∈ V h, 1 ≤ p1 ≤ p2 ≤ +∞,m = 0, 1; (6.16)

lim
h→0

∥∥v − πh(v)
∥∥

0,∞ = 0 ∀v ∈ C(Ω), (6.17)

|v − Phv|0 + h |v − Phv|1 ≤ Ch
m ‖v‖m v ∈ Hm(Ω), m = 1, 2. (6.18)

Then from [192] (Lemma 15.1) and [94], we know ∀v1, v2 ∈ Vh∣∣∣(v1, v2)
h − (v1, v2)

∣∣∣ ≤ Ch2 ‖∇v1‖0 ‖∇v2‖0 , (6.19)

c1 ‖v1‖0 ≤
(

(v1, v1)
h
)1/2

≤ c2 ‖v1‖0 . (6.20)

We define the standard mass M and stiffness K finite element matrices

Mij =

∫
Ω

χiχj dx, for i, j = 1, . . . , Nh,

Kij =

∫
Ω

∇χi∇χj dx, for i, j = 1, . . . , Nh.

The lumped mass matrix is a diagonal matrix defined by

Ml,ij :=

∫
Ω

χ̂iχ̂j dx, for i, j = 1, . . . , Nh.

From the hypothesis we made on the acuteness of the triangulation, we know that (see [94])

(∇χi,∇χj) ≤ 0, for i 6= j. (6.21)

Therefore, we know that the non-diagonal entries of the stiffness matrix K and of the matrix A
defined below by the equation (6.28) are non-positive.

6.2.2 Fully discrete scheme

Given NT ∈ N∗, let ∆t := T/NT be the constant time-step and tn := n∆t, for
n = 0, . . . , NT − 1. We consider a partitioning of the time interval [0, T ] =

⋃NT−1
n=0 [tn, tn+1].

We approximate the continuous time derivative using a forward Euler method ∂uh
∂t ≈

un+1
h −unh

∆t .
The finite element numerical problem associated with the system (6.10)–(6.14) is:
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Find {un+1
h , cn+1

h } ∈ V h × V h such that ∀χ ∈ V h(
un+1
h − unh

∆t
, χ

)h
= −χc

(
ϕ(unh)∇µn+1

1,h ,∇χ
)
, (6.22)(

cn+1
h − cnh

∆t
, χ

)
= −

(
µn+1

2,h , χ
)
, (6.23)

(
µn+1

1,h , χ
)h

= − (cnh, χ)
h

+B

(
g (unh)√
E1[unh]

, χ

)h
rn+1, (6.24)(

µn+1
2,h , χ

)
=
(
∇cn+1

h ,∇χ
)

+ α
(
cn+1
h , χ

)
−
(
un+1
h , χ

)h
, (6.25)

rn+1 − rn =
1

2

(
g (unh)√
E1[unh]

, (un+1
h − unh)

)h
, (6.26)

where unh(x) =
∑Nh
j=1 u

n
j χj(x), and cnh(x) =

∑Nh
j=1 c

n
j χj(x) are respectively the finite element

approximations of the cell density u, and the concentration of the chemo-attractant c. We add
to this system the following initial conditions{

{u0
h, c

0
h} = {πhu0, πhc0} if d = 1,

{u0
h, c

0
h} = {Phu0, Phc

0} if d = 2, 3.
(6.27)

6.2.3 Matrix formulation

Let us define A the finite element matrix associated with the right-hand side of (6.22)

Anij =

∫
Ω

ϕ(unh)∇χi∇χj dx for i, j = 1, . . . , Nh. (6.28)

and the variable
sn1,h =

gnh√
E1[unh]

,

where gnh(xi) = g(unh(xi)) for all xi ∈ J . We denote in the following by capital letters the vectors
associated with the quantities denoted by small letters in the finite element problem. Therefore,
the system (6.22)–(6.26) can be rewritten into a matrix formulation

Ml
Un+1−Un

∆t = −χcAnWn+1
1 ,

M Cn+1−Cn
∆t = −MWn+1

2 ,

Wn+1
1 = −Cn +BSn1 r

n+1,

MWn+1
2 = KCn+1 + αMCn+1 −MlU

n+1,

rn+1 − rn = 1
2 (Sn1 )

T
Ml

(
Un+1 − Un

)
.

However the simulation of the problem (6.22)–(6.26) by the standard finite element method
is well-known to produce to non-physical solutions. Due to the advection term associated to
the effect of chemotaxis, when the ratio χc/Dn becomes too large, the solution is expected to
oscillate with the apparition of upper and undershoots for unh. To avoid this issue, we propose
to compute the matrix associated with advection using the upwind method.
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6.2.4 Upwind stabilization

The key idea behind the upwind method of finite elements proposed in [166] is to modify each
entry of the matrix An defined by (6.28) such that(

A
n
)
ij

= ϕnijKij . (6.29)

The coefficient ϕnij is a constant (at time tn) along the edge connecting the nodes i and j.
Therefore, for each edge, we evaluate the sign of the gradient ∇cnh and compute

(ϕn)ij =

{
Unj (1− Uni ) if Cni − Cnj −B(gni − gnj ) > 0,

Uni
(
1− Unj

)
otherwise.

(6.30)

Therefore, our new problem now reads: Find {un+1
h , cn+1

h , rn+1} ∈ V h × V h × R such that
∀χ ∈ V h (

un+1
h − unh

∆t
, χ

)h
= −χc

(
ϕ(unh)∇µn+1

1,h ,∇χ
)
, (6.31)(

cn+1
h − cnh

∆t
, χ

)
= −

(
µn+1

2,h , χ
)
, (6.32)(

µn+1
1,h , χ

)h
= − (cnh, χ)

h
+B

(
sn1,h, χ

)h
rn+1, (6.33)(

µn+1
2,h , χ

)
=
(
∇cn+1

h ,∇χ
)

+ α
(
cn+1
h , χ

)
−
(
un+1
h , χ

)h
, (6.34)

rn+1 − rn =
1

2

(
sn1,h, (u

n+1
h − unh)

)h
, (6.35)

and its matrix formulation is

Ml
Un+1 − Un

∆t
= −χcA

n
Wn+1

1 , (6.36)

M
Cn+1 − Cn

∆t
= −MWn+1

2 , (6.37)

Wn+1
1 = −Cn +BSn1 r

n+1, (6.38)

MWn+1
2 = KCn+1 + αMCn+1 −MlU

n+1, (6.39)

rn+1 − rn =
1

2
(Sn1 )

T
Ml

(
Un+1 − Un

)
. (6.40)

6.2.5 Solving Algorithm

To solve the solution of the system (6.36)–(6.40) while avoiding to invert the matrix A
n
at

each time step, we use the decomposition Un+1 = Un+1
1 + rn+1Un+1

2 and solve successively the
following set of equations

Un+1
1 = ∆tχcM

−1
l

(
A
n
Cn
)

+ Un, (6.41)

Un+1
2 = −∆tDuM

−1
l

(
A
n
Sn1

)
, (6.42)
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rn+1 =
rn + 1

2 (Sn1 )
T
Ml

(
Un+1

1 − Un
)

1− 1
2 (Sn1 )

T
MlU

n+1
2

, (6.43)

Un+1 = Un+1
1 + rn+1Un+1

2 , (6.44)

Cn+1 = ((1 + ∆tα)M + ∆tK)
−1 (

M
(
∆tUn+1 + Cn

))
. (6.45)

This algorithm is well suited for problems involving non-constant mobility matrices since only
constant matrices are inverted only once at the beginning of the simulation.

6.3 Existence of a non-negative solution and stability bound

6.3.1 Existence of a discrete non-negative solution

Theorem 37 (Existence of a unique non-negative discrete solution) Let d ≤ 3 and as-
sume that κh > 0, ∆t > 0, Du > 0 such that

(d+ 1)Gh ∆t χc
Dn rn+1 κ2

h

max
i=1,...,Nh
j∈Λi

∣∣Cni − Cnj ∣∣ ≤ 1, (6.46)

and, given an initial condition {u0
h, c

0
h} such that (6.4) and (6.27) are satisfied, the problem (6.31)–

(6.35) admits a unique solution {un+1
h , cn+1

h , rn+1} ∈ V h × V h × R with

0 ≤ un+1
h ≤ 1, and 0 ≤ cn+1

h ≤ cmax,

where cmax is a positive and finite constant.

Proof.

Step 1: Existence of a unique solution in V h×V h×R. As we have seen in the section describing
the numerical scheme, the problem (6.31)–(6.35) reduces to the solving of five decoupled equa-
tions (6.41)–(6.45). From equation (6.43), and the fact that E1[un] is defined up to a constant
C0 that can be defined arbitrary. One must be careful choosing this constant such that rn+1 is
well defined. Then, the existence and uniqueness of a solution {un+1

h , cn+1
h , rn+1} ∈ Vh × Vh ×R

follows from the Lax-Milgram theorem and since {unh, cnh, rn} are known and bounded.

Step 2: Conservation of mass. To prove mass conservation, we use the identity∑
j 6=i
xj∈Ti

∣∣∣Anij∣∣∣ = A
n

ii. (6.47)

Therefore, for each xi ∈ Jh, we have

Nh∑
j=1

(χ̂j , χ̂i)
(
un+1
h − unh

)
(xj) = ∆t

−Dur
n+1

Nh∑
j=1

A
n

ijs
n
1,h(xj) + χc

Nh∑
j=1

A
n

ijc
n
h(xj)

 .
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Summing over the nodes, we get

Nh∑
i=1

Nh∑
j=1

(χ̂j , χ̂i)
(
un+1
h − unh

)
(xj)

= ∆t

−Dur
n+1

Nh∑
i=1

Nh∑
j=1

A
n

ijs
n
1,h(xj) + χc

Nh∑
i=1

Nh∑
j=1

A
n

ijc
n
h(xj)

 .
Using the symmetry of the matrix A, the property (6.47) and the fact that the mesh is acute,
we obtain

Nh∑
i=1

Nh∑
j=1

(χ̂j , χ̂i)
(
un+1
h − unh

)
(xj) = 0,

which implies mass conservation .
Step 3: Positivity and L∞ bound for {un+1

h , cn+1
h }. It is well known that the loss of the positivity

(and the eventual uppershoot) of the solution is associated with the advection term. The diffusion
term on the other hand regularizes the solution and does not lead to instabilities. Therefore, to
examinate the stability of our scheme, we set Du = 0. Therefore, in this case, Un+1 is given
by the equation (6.41) (since rn+1 does not appear anymore in (6.33)). Then, we have for each
node xi ∈ Jh

Un+1
i = Uni +

∆tχc
(Ml)ii

∑
xj∈Λi

ϕnijKij(C
n
j − Cni ).

From (6.21) and the definition of the upwind chemosensitivity (6.30), we know that we could
lose the positivity of the cell density if Cnj > Cni . Thus, to preserve it, we must ensure the
condition

Uni +
∆tχc
(Ml)ii

∑
xj∈Λi

Uni
(
1− Unj

)
Kij max

(
0, Cnj − Cni

)
≥ 0.

The same holds to preserve
∥∥un+1

h

∥∥
L∞
≤ 1, we recover the condition

Uni +
∆tχc
(Ml)ii

∑
xj∈Λi

Unj (1− Uni )Kij min
(
0, Cnj − Cni

)
≤ 1.

However, we know that [94],
|Kij |
Ml,ii

≤ Kii

Ml,ii
≤ (d+ 1)

κ2
h

.

Therefore, to preserve the physical bound of the solution we must ensure that the condition
(6.46) is satisfied. Then, knowing that 0 ≤ un+1

h ≤ 1, the non-negativity and the existence of an
upper bound cmax such that

0 ≤ cn+1
h ≤ cmax,

is trivially found from the properties of M-matrices. This finishes the proof of the existence of
the solution of the problem (6.22)–(6.27).

6.3.2 Discrete energy a priori estimate

Since we are using the SAV method, we can compute a modified version of the energy at the
discrete level.
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Proposition 38 (Discrete energy) Consider a solution {un+1
h , cn+1

h } defined by Theorem 37,
the discrete energy of the system (6.22)–(6.26) is given by

E(un+1
h , cn+1

h ) =
1

2

(∣∣cn+1
h

∣∣2
1

+ α
∥∥cn+1
h

∥∥2

0

)
+B

∣∣rn+1
∣∣2 − (cn+1

h , un+1
h

)h
, (6.48)

and
dE

dt
:=

En+1 − En

∆t
≤ −

(∥∥∥µn+1
2,h

∥∥∥2

0
+ χc

∫
Ω

ϕ(unh)
∣∣∣∇µn+1

1,h

∣∣∣2 dx

)
. (6.49)

Proof. Starting from equation (6.22) with χ = µn+1
1,h , we have(

un+1
h − unh, µn+1

1,h

)h
= −∆tχc

∫
Ω

ϕ(unh)
∣∣∣∇µn+1

1,h

∣∣∣2 dx.

The same can be done starting from equation (6.23) to obtain(
cn+1
h − cnh, µn+1

2,h

)
= −∆t

∥∥∥µn+1
2,h

∥∥∥2

0
.

Therefore, summing the two previous equations, we obtain(
un+1
h − uhn, µn+1

1,h

)h
+
(
cn+1
h − chn, µn+1

2,h

)
= −∆t

(∥∥∥µn+1
2,h

∥∥∥2

0
+ χc

∫
Ω

ϕ(unh)
∣∣∣∇µn+1

1,h

∣∣∣2 dx

)
,

from which we conclude (6.49). Consequently, we already recover the monotonic decay of the
discrete energy. To obtain the expression of the energy, we replace χ = un+1

h − unh in (6.24) to
get (

un+1
h − unh, µn+1

1,h

)h
= −

(
un+1
h − unh, cnh

)h
+Brn+1

(
un+1
h − unh, sn1,h

)h
.

However, using the equation (6.26), we have(
un+1
h − unh, µn+1

1,h

)h
= −

(
un+1
h − unh, cnh

)h
+ 2Brn+1

(
rn+1 − rn

)
.

Moreover, using the inequality a(a− b) ≥ 1
2

(
a2 − b2

)
, we get(

un+1
h − uhn, µn+1

1,h

)h
≥ −

(
cnh, u

n+1
h − uhn

)h
+B

∣∣rn+1
1

∣∣2 −B |rn1 |2 . (6.50)

Then, performing the same calculations starting from the equation (6.25), we obtain(
cn+1
h − chn, µn+1

2,h

)
≥ 1

2

[∣∣cn+1
h

∣∣2
1
− |cnh|

2
1 + α

(∥∥cn+1
h

∥∥2

0
− ‖cnh‖

2
0

)]
−
(
un+1
h , cn+1

h − cnh
)h
. (6.51)

Summing equation (6.50) with (6.51), we obtain the inequality

1

2

[∣∣cn+1
h

∣∣2
1
− |cnh|

2
1 + α

(∥∥cn+1
h

∥∥2

0
− ‖cnh‖

2
0

)]
+B

∣∣rn+1
1

∣∣2 −B |rn1 |2 − (un+1
h , cn+1

h

)h
+ (unh, c

n
h)
h

≤ −∆t

(∥∥∥µn+1
2,h

∥∥∥2

0
+ χc

∫
Ω

ϕ(unh)
∣∣∣∇µn+1

1,h

∣∣∣2 dx

)
,

from which we deduce the definition and the decay of the discrete energy (6.48)–(6.49).
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Parameters Stable Unstable
∆t 0.001 0.0001
∆x 0.1 0.1
u0 0.5 0.5
χc 40 120
Du 1 1
α 0.5 0.5
τ 0.01 0.01

CSAV 1010 1010

Table 6.1 – Parameters of the 1D test cases

Remark 39 From the fact that both un+1
h and cn+1

h are bounded (see Theorem 37), the energy
defined by (6.48) is bounded from below.

6.4 Numerical results

We now present the numerical results obtained by the upwind finite element SAV scheme for
the Keller-Segel model. We first show the dissipation of the discrete energy and the conservation
properties of our scheme in a simple 1D test case. We use this test case to compare the SAV
scheme with other methods. Interestingly, we observe that the SAV-upwind scheme enhances
the spatial accuracy compared to a simple upwind scheme. To verify this effect, we analyze the
convergence of the scheme numerically for different h.

6.4.1 1D numerical results

Stable and unstable test cases

We consider two test cases: in the first we consider a choice of parameter such that even the
consistent finite element method is stable. This standard method gives us our reference high-
order solution. Computing for the same parameters and initial conditions the solution given
by a classical upwind method, and our SAV-upwind scheme, we are able to discuss the spatial
accuracy of our method in the stable regime. Then, we consider a second test case such that the
standard finite element scheme is unstable. The two upwind methods are expected to remain
stable for this choice of parameter, but we will discuss the amount of diffusion added by both
schemes.

Table 6.1 summarizes the parameters used in the one dimensional numerical schemes for the
stable and the unstable test cases. The parameter CSAV in Table 6.1 corresponds to the constant
that needs to be taken in the energy so that the energy remains positive. We choose a very large
value to be sure that we will not have issues coming from the calculation of

√
E1(unh). We precise

that this value can also be modified at each time step. Indeed, knowing the value of E1(unh),
we choose CSAV such that E1(unh) + CSAV > 0. The initial cell density is a uniform distributed
random perturbation around the value u0.

Figure 6.1a shows the solution uh given by the three different schemes at time T = 5 for the
stable case. We observe that the three schemes reach a meta-stable state with well-delineated
aggregates formed in the domain. Figure 6.1b is a zoom of the previous figure on the top of
an aggregate. That way, we clearly observe the discrepancies between our reference solution
given by the standard P-1 finite element method, and the two upwind schemes. The blue curve
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corresponding to the solution of the SAV-upwind method is really close to the reference solution
(yellow curve) while the classical upwind method (red curve) fails to represent the sharpness of
the aggregates. Indeed, in this region, the solution is too smooth for the upwind scheme.

Figure 6.1c depicts the aggregates formed at time T = 5 by the three schemes for the unstable
case. Again, the aggregates are located at the same positions for the three schemes. We see
that the solution given by the standard finite element discretization oscillates in zones of large
variations. Zooming at the top of an aggregate (Figure 6.1d), we clearly see that effect. However,
the two upwind methods remain stable and do not oscillate. We observe that the SAV-upwind
method gives a solution that seems to correspond to the average of the yellow curve. Indeed,
the SAV-upwind method gives a solution that is sharper than the classical upwind method. This
result indicates that the SAV method allows to retrieve a higher order solution compared with a
classical upwind scheme while remaining stable.

(a) Stable case (b) Top of an aggregate for stable case

(c) Unstable case (d) Top of an aggregate for unstable case

Figure 6.1 – End state of the simulations of the volume-filling KS model for a standard finite
element discretization, a classical upwind method in finite element, the SAV-upwind method.

For the unstable test case, Figure 6.2 shows the evolution of the modified energy and of the
scalar variable r given by the SAV-upwind scheme during the simulation. As expected by our
calculations, the modified energy decreases monotonically and converges to a plateau. The scalar
auxiliary variable r increases during time and reaches a plateau as well.
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(a) (b)

Figure 6.2 – Evolution of the modified energy E (left) and the scalar variable r (right) through
time.

Parameters
∆t 10−5

Nh [1000, 750, 500, 200]
u0 0.5
χc 40
Du 1
α 0.5
τ 0.01

CSAV 1010

Table 6.2 – Parameters of the calculation of the convergence order

Based on the observation, made on these two test cases, we are interested to compute the
numerical order of convergence.

Numerical order of convergence

In this section, we use the parameters summarized in Table 6.2.
We compute the error of the SAV-upwind solution using a reference solution at time T = 5

computed using the standard finite element scheme on the fine mesh h = 10−2 corresponding to
1000 nodes in the domain. Then, we vary the number of nodes Nh = [1000, 750, 500, 200], and
for each simulation we compute the L2 error ‖uref − uh‖L2(Ω). The results are shown on Figure
6.3. As a reference, we also show on this figure, the two straight lines representing first-order
(yellow) and second-order (red) convergence. We see that the spatial order of convergence for
our SAV-upwind method is between first and second-order. Knowing that a classical upwind
method is at most-first order accurate, this result indicates that the SAV method enhances the
spatially accuracy.
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Figure 6.3 – L2 norm of the error in function of the number of nodes at time T = 5.

6.5 Conclusion
We presented the application of Scalar Auxiliary Variable method to the parabolic-parabolic

Keller-Segel with volume filling using the gradient flow structure of the model. The resulting
equations were approximated using a simple P − 1 finite element method, and stabilized by a
multi-dimensional upwind method. The system is composed of linear coupled equations that
can be solved efficiently using a decomposition of the solution. We were able to prove for this
system the existence of a unique positive and bounded solution that the preserves the monotonic
decay of the discrete energy. We must stress that from the use of the SAV method, the energy
that we are able to recover is a modified version of the standard one. Finally, we presented
numerical simulations that indicate a better accuracy in space of our method compared to a
classical upwind method.



Chapter 7

Conservation properties and long
time behavior of the Scalar
Auxiliary Variable method for
nonlinear dispersive equations.

Abstract
We carry out the convergence analysis of the Scalar Auxiliary Variable (SAV) method applied to the
nonlinear Schrödinger equation which preserves a modified Hamiltonian on the discrete level. We derive
a weak and strong convergence result, establish second-order global error bounds and present long time
error estimates on the modified Hamiltonian. In addition, we illustrate the favorable energy conservation
of the SAV method compared to classical splitting schemes in certain applications.

This chapter is taken from A. P., Katharina Schratz Convergence, error analysis and longtime
behavior of the Scalar Auxiliary Variable method for the nonlinear Schrödinger equation, Sub-
mitted, (2020).

7.1 Introduction
We consider the Gross-Pitaevskii [107] equation (NLS) set on the d-dimensional torus

Ω = Td = (R/2πZ)d (where d ≤ 3)

i∂tu(t, x) = −∆u(t, x) + V (x)u(t, x) + f
(
|u(t, x)|2

)
u(t, x), t ∈ (0, T ] (7.1)

with initial conditions u(0, x) = u0(x), a real-valued interaction potential V (x) and nonlinearity
f(|u|2).

The Hamiltonian energy associated to equation (7.1) takes the form

H(u, u) =
1

2

∫
Ω

(
|∇u|2 + V (x) |u|2 + F

(
|u|2
))

dx,

where F
(
|u|2
)
is defined by F ′

(
|u|2
)

= f
(
|u|2
)
. Note that the Hamiltonian H(u(t), u(t)) as

well as the probability density ‖u(t, ·)‖2L2(Ω) is preserved by the system (7.1).

173
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In the following we will denote by E1 the sum of the nonlinear and potential part of the
Hamiltonian

E1 =
1

2

∫
Ω

V (x) |u|2 + F
(
|u|2
)

dx.

Using the decomposition u(t, x) = p(t, x) + iq(t, x), equation (7.1) can be furthermore rewrit-
ten as the Hamiltonian system {

∂tp = −∆q + δE1[t]
δq ,

∂tq = ∆p− δE1[t]
δp ,

(7.2)

with the associated Hamiltonian

H(p, q) =
1

2

∫
Ω

|∇p|2 + |∇q|2 + V (x)
(
|p|2 + |q|2

)
+ F

(
|p|2 , |q|2

)
dx. (7.3)

In this notation, E1 takes the form

E1 =
1

2

∫
Ω

V (x)
(
|p|2 + |q|2

)
+ F

(
|p|2 , |q|2

)
dx.

Due to their importance in numerous applications, reaching from Bose-Einstein condensation
over nonlinear optics up to plasma physics, nonlinear Schrödinger equations are nowadays very
well studied numerically. In the last decades a large variety of different numerical schemes has
been proposed [22, 15, 24, 104, 105]. Thanks to their simplicity and accuracy, a popular choice
thereby lies in so-called splitting methods, where the right hand side of (7.1) is split into the
linear and nonlinear part, respectively, see, e.g., [25, 31, 21] and the references therein. The
popularity of splitting methods also stems from their structure preservation. They conserve
exactly the L2 norm of the solution and allow for near energy conservation over long times,
see, e.g., [83]. However, in [159] the authors show that in certain applications splitting methods
suffer from severe order reduction such as in case of non-linearities with non-integer exponents.
The latter arises for instance in context of optical dark and power law solitons with surface
plasmonic interactions [65]. As a solution to that issue, the authors proposed in [159] a new class
of low regularity exponential-type integrators for NLS. In this article we use a different approach
based on the so-called Scalar Auxiliary Variable (SAV) method which was originally proposed to
design structure-preserving numerical schemes for gradient flows [181, 180]. Very recently it also
became popular in context of Hamiltonian systems [18, 93, 49, 84]. The main advantage of the
SAV method lies in the fact that it preserves a modified Hamiltonian on the discrete level. Due
to its generality, it can be applied to a large class of equations involving any kind of nonlinearity.
The resulting numerical schemes are linearly implicit and allow for efficient calculations.

The main idea behind the SAV method is to introduce a scalar variable r(t) =
√
E1 + Ec that

will become an unknown at the discrete level and where the arbitrary constant Ec > 0 is used to
obtain E1 +Ec > 0. We must stress that one as to be very careful with the choice of the constant
Ec. Indeed, it is well known that even for the cubic non-linearity, i.e. f(|p|2 , |q|2) = β

∣∣p2 + q2
∣∣2

with β < 0 (focussing NLSE), the hamiltonian energy (7.3) is not bounded from below a priori.
In the following analysis, we implicit assume that it exists a constant Ec such that E1 + Ec > 0,
which is often the case in the study of Bose-Einstein condensate as pointed out by Antoine et al.
[18]. In practice, we compute the term E1 explicitly and therefore one can adapt the constant
Ec during the simulation. The system is supplemented by an equation describing the time
evolution of r(t). In case of the nonlinear Schrödinger equation (7.1) the continuous SAV model
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takes the form 
∂tp = −∆q + r(t)g1(p, q),

∂tq = ∆p− r(t)g2(p, q),

∂tr(t) = 1
2 [(g1(p, q), ∂tq) + (g2(p, q), ∂tp)] ,

(7.4)

where (·, ·) denotes the standard L2 scalar product and

g1(p, q) =
1√

E1[t] + Ec
δE1[t]

δq
, g2(p, q) =

1√
E1[t] + Ec

δE1[t]

δp
.

Associated to this SAV model we find the Hamiltonian

H̃(p, q) =
1

2

∫
Ω

|∇p|2 + |∇q|2 dx+ |r|2 ,

which is conserved by the SAV model (7.4). In the following, we assume that for i = 1, 2

|g′i(p, q)| ≤ C
(
(|p|+ |q|)β + 1

)
, |g′′i (p, q)| ≤ C

(
(|p|+ |q|)β

′
+ 1
)
, (7.5)

for some β, β′ > 0.

Remark 40 In this paper, we focus on the Gross-pitaevskii equation under the form (7.1). Even
though the choice of the nonlinearity and, therefore, the precise form of E1, depends on the
structure of the considered Schrödinger equation, we highlight that the SAV scheme is, in its
design, general enough to work for a large number of applications. Indeed, as long as there
exists a constant Ec such that for all times t ≥ 0 it holds that E1 + Ec > 0 we can apply the
SAV method. Therefore, modifications such as the effect of dipole-dipole interactions, rotating
GPE (see Antoine et al. [18]), or even time dependent potentials V = V (t, x) can be taken
into account. For an extensive overview on applications and generalisations of the nonlinear
Schrödinger equation, we refer the interested reader to the review article of Bao and Cai [22] and
the references therein.

Following the works of Antoine et al. [18] and Fu et al. [93], we analyze a fully discrete
SAV scheme for the nonlinear Schrödinger equation (7.1) based on a Crank-Nicholson time
discretization of the NLS SAV model (7.4) coupled with a pseudo-spectral discretization for
the spatial discretization. Energy conservation properties of the SAV method for nonlinear
Schrödinger equations were recently derived in [18, 93] and their convergence was extensively
tested numerically. Very recently, Feng et al. [84] use the SAV method to design arbitrary
high order space-time finite element scheme for the nonlinear Schrödinger equation. While
their method uses a finite element discretization in space, we propose in this work to use a
Fourier pseudospectral discretization. The main contribution of this article lies in establishing
global error estimates on the fully discrete Fourier-PseudoSpectral Crank-Nicholson NLS SAV
scheme (CN-SAV-SP in short). More precisely, we derive weak and strong convergence and prove
second order error estimates for the fully discrete scheme. Our theoretical convergence analysis is
inspired by the analysis of the SAV method in the context of gradient flows [179]. We underline
our convergence results with numerical experiments and compare the SAV scheme with classical
splitting methods. Our numerical findings suggest that in certain cases, such as in case of non-
linearities involving a non-integer exponent, the SAV scheme preserves its second order energy
conservation property while classical splitting methods suffer from sever order reduction. We
also conduct numerical experiments showing that the SAV scheme is able to compute correctly
ground states of Bose-Einstein condensates.
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Outline of the paper. In the first part of the paper, we carry out a fully discrete error
analysis of the SAV scheme and establish second order convergence estimates, see Theorem 56.
Our theoretical convergence results are then numerically underlined in the second part of the
paper, see Section 7.6.

Notations. Let Lp(Ω), Wm,p(Ω) with Hm(Ω) = Wm,2(Ω), where 1 ≤ p ≤ +∞ and m ∈ N,
denote the standard Lebesgue and Sobolev spaces equipped with the corresponding norms ||·||m,p,
|| · ||m and semi-norms | · |m,p, | · |m. We also denote by Hm

p (Ω) the subset of Hm(Ω) that consists
of 2π-periodic functions that are in Hm(Ω). We denote by Lp (0, T ;V ) the Bochner spaces i.e.
the spaces with values in Sobolev spaces [3]. The norm in these spaces is defined for all Bochner
measurable functions η by

‖η‖Lp(0,T ;V ) =

(∫ T

0

‖η‖pV dt

)1/p

, ‖η‖L∞(0,T ;V ) = ess sup
t∈(0,T )

‖η‖V .

The standard L2 inner product is denoted by (·, ·)Ω and the duality pairing between
(
H1(Ω)

)′
= H−1(Ω)

and H1(Ω) by < ·, · >Ω. The dual space H−1(Ω) is endowed with the norm

‖φ‖H−1(Ω) = sup
η∈H1(Ω)

{< φ, η >Ω, ‖η‖21 ≤ 1}.

Remark 41 Even though our model problem (7.1) is equipped with periodic boundary conditions,
our analysis holds for homogeneous Dirichlet or Neumann boundary conditions.

7.2 Numerical scheme

7.2.1 Time and space discretisation of the SAV model

We use a standard Fourier pseudospectral method [50, 87, 106] for the spatial discretization
of the SAV model (7.4). We refer the reader to the book of Trefethen [195] for details of the
implementation of such scheme in MATLAB. We emphasize that our paper presents numerical
simulation in dimension d = 1. However, the method can be adapted to higher dimensions. Our
convergence and error analysis holds in dimensions 1 ≤ d ≤ 3.

Thereby, for the sake of clarity, we here give the details of the space discretization for d = 1.
We denote by XN the space spanned by the trigonometric functions up to degree N/2

XN := span{eikx/L : −N/2 ≤ k ≤ N/2− 1}.

For the time discretisation of the SAV system (7.4) we apply a Crank-Nicholson discretisation
with time step τ such that tk = kτ for k ∈ N. At each grid point we thereby approximate the
time derivative by

∂tu(tk+1, x) ≈ u(tk+1, x)− u(tk, x)

τ
.

Let us give the details of the approximation in dimension d = 1, where the domain is defined
by Ω = [−π, π] with a mesh size h. In this case the collocation points are xa = 2πa

N where a ∈ B
with

B :=

{
{−P, . . . , P − 1} if N = 2P is even,
{−P, . . . , P} if N = 2P + 1 is odd.
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We denote by Uk(xa) the approximation of u(tk, xa). The Fourier pseudo-spectral discretization
is given by

Uk(xa) =
∑
p∈B

ûkp exp (2iπap/N)

with the Fourier coefficients defined by

ûkp =
1

N

∑
b∈B

Uk(xb) exp (−2iπbp/N) .

We approximate the Laplacian by the Fourier differentiation matrix D(2) which for j, l =
0, . . . , N − 1 takes the form

(
D(2)

)
jl

=


1
4 (−1)j+1N + (−1)j+l+1

2 sin2( (j−l)π
N )

, if j 6= l

− (N−1)(N−2)
12 , otherwise.

However, to avoid the need to use the symmetric matrix D(2) in the previous form and gain
in computational time, it can be preferable to use the method proposed in [18] that uses the fact
that the previous differentiation matrix is diagonal in Fourier space. Therefore, inverting this
matrix has a very low cost. In our work, since we use the Hamiltonian system (7.2) to analyze
the properties of the SAV scheme we will use the previously defined differentiation matrix D(2).

For the N collocation points xa, we define the interpolation operation IN by

(INu)(x) =
∑
p∈B

ũpe
2iπxp/N .

We have the following interpolation error (see Section 5.8.1 in [50]):

Lemma 42 (Interpolation error) For any u ∈ C(0, T ;Hm
p (Ω) with d ≤ 3, we have{

‖INu− u‖Hlp(Ω)) ≤ CN l−m |u|m , 0 ≤ l ≤ m,
‖IN∂tu− ∂tu‖Hlp(Ω)) ≤ CN l−m |∂tu|m , 0 ≤ l ≤ m.

7.2.2 The fully discrete SAV scheme

Applying the time discretization described in the previous section, for k = 0 → NT , the
semi-discrete model of (7.4) reads

pk+1−pk
τ = −∆qk+1/2 + rk+1/2g̃

k+1/2
1 ,

qk+1−qk
τ = ∆pk+1/2 − rk+1/2g̃

k+1/2
2 ,

rk+1 − rk = 1
2

[(
g̃
k+1/2
1 , qk+1 − qk

)
+
(
g̃
k+1/2
2 , pk+1 − pk

)]
,

(7.6)

where φk+1/2 =
(
φk+1 + φk

)
/2 and g̃

k+1/2
i is a second order extrapolation of gi at time t =

tk+1/2.
Denoting by capital letters the vectors of unknowns P k, Qk that are approximations at each

collocation nodes of the continuous (in space) unknowns pk, qk, the fully discrete space-time
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scheme then takes the form
Pk+1−Pk

τ = −D(2)Qk+1/2 +Rk+1/2G̃
k+1/2
1 ,

Qk+1−Qk
τ = D(2)P k+1/2 −Rk+1/2G̃

k+1/2
2 ,

rk+1 − rk = 1
2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

(7.7)

where G̃1, G̃2 are the vectors associated to the functions g̃1 and g̃2.
Let us now present two algorithms for the efficient solution of the fully discrete SAV system

(7.7). The two methods are equivalent and reduce the problem to the solving of two linear
systems that involves only real variables.

Algorithm 1

The algorithm below was originally proposed for solving the fully discrete SAV system arising
in gradient flows [181].

Let us give the procedure on how to solve the system (7.7). First, we need to replace rk+1 in
the first two equations using the third equation. This yields that

(
P k+1 − P k

)
= −τD(2) (Qk+1 +Qk)

2

+ τ

(
rk +

1

4

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)])
G̃
k+1/2
1 ,(

Qk+1 −Qk
)

= τD(2)

(
P k+1 − P k

)
2

− τ
(
rk +

1

4

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)])
G̃
k+1/2
2 .

Next we set

Zk =

(
P k

Qk

)
, G̃k+1/2 =

(
G̃
k+1/2
2

G̃
k+1/2
1

)
, B̃k+1/2 =

(
−G̃k+1/2

1

G̃
k+1/2
2

)
.

This allows us to rewrite the system into a matrix form

AZk+1 +
τ

4

(
G̃k+1/2, Zk+1

)
B̃k+1/2 = Ck, (7.8)

where

A =

[
I τ

2D
(2)

− τ2D
(2) I

]
and

Ck =

(
I − τ2D

(2)

τ
2D

(2) I

)
Zk − τrkB̃k+1/2 +

τ

4

(
G̃k+1/2, Zk

)
B̃k+1/2,

with I the identity matrix. Multiplying (7.8) by A−1 and taking the discrete inner product with
G̃k+1/2, we finally obtain

(
G̃k+1/2, Zk+1

)
=

(
G̃k+1/2, A−1Ck

)
1 + τ

4

(
G̃k+1/2, A−1B̃k+1/2

) . (7.9)
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Then, knowing
(
G̃k+1/2, Zk+1

)
, Zk+1 is computed using (7.8) and rk+1 is calculated from the

third equation of (7.7). Therefore, solving the fully discrete SAV model (7.7) reduces to solving
the linear system constituted by the equations (7.9) and (7.8).

Algorithm 2

Below we describe a second algorithm recently proposed in [18] for the numerical solution of
the fully discrete NLS SAV scheme (7.7). Rewriting the scheme in its matrix form we have{

Zk+1−Zk
τ = −JZk+1/2 − rk+1/2B̃k+1/2,

rk+1 − rk = 1
2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

(7.10)

where

J =

[
0 D(2)

−D(2) 0

]
.

Using the decomposition
Zk+1/2 = Z

k+1/2
1 + rk+1/2Z

k+1/2
2 , (7.11)

and adding 2
τZ

k on both sides of the first equation of (7.10), we furthermore obtain that

2

τ

[
Zk+1/2 + rk+1/2Z

k+1/2
2

]
=

2

τ
Zk − J

[
Z
k+1/2
1 + rk+1/2Z

k+1/2
2

]
− rk+1/2B̃k+1/2. (7.12)

Applying the same decomposition to the second equation of (7.10) and adding 2rk on both sides,
we get

2rk+1/2 = 2rk +
(
G̃k+1/2,

[
Z
k+1/2
1 + rk+1/2Z

k+1/2
2

]
− Zk

)
. (7.13)

Hence, denoting by I the identity matrix, we first solve the equation (7.12) using the system{[
2
τ I + J

]
Z
k+1/2
1 = 2

τZ
k[

2
τ I + J

]
Z
k+1/2
2 = −B̃k+1/2.

(7.14)

Then we compute rk+1/2 by solving equation (7.13) which yields that

rk+1/2 =
2rk +

(
G̃k+1/2, Z

k+1/2
1 − Zk

)
2−

(
G̃k+1/2, Z

k+1/2
2

) .

From the decomposition (7.11) we get Zk+1/2 from which we compute Zk+1 and rk+1.

Remark 43 Since in practice the computation and storage of the invert of a non-diagonal matrix
has to be avoided, Algorithm 2 is a preferable choice. Indeed, the main step in Algorithm 2 lies
in solving two decoupled linear equations (7.14). To do so, standard tools of linear systems can
be applied such as matrix-free preconditioned Krylov solvers. We refer to Appendix C in [178]
for a description of iterative solvers of linear system and preconditioning.

Even though the previous remark already highlights the main advantage of Algorithm 2, we
emphasize that the inversion of the main matrix in Algorithm 1 can be carried out efficiently.

Remark 44 Referring to [181], we remark that the inversion of the matrix A in the first algo-
rithm and the matrix

[
2
τ + J

]
in the second Algorithm can be carried out efficiently using the
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Sherman-Morrison-Woodbury formula [103]

(A+ UV T )−1 = A−1 −A−1U(I + V TA−1U)−1V TA−1,

where A is a n× n and U, V are n× k matrices, and I is the k × k identity matrix.

Remark 45 Referring to [93], a fast solver for solving the linear system (7.8) (in Algorithm 1)
and (7.14) (in Algorithm 2) exists. It uses the fact that the differentiation matrix D(2) can
be decomposed into D(2) = F−1ΛF where F and F−1 are the corresponding matrices for the
discrete Fourier transformation and Λ is a diagonal matrix with eigenvalues of D(2) as its entries.
Therefore, the matrix A from Equation (7.8) admits the decomposition

A = F−1MF, with M =

[
I τ

2 Λ
− τ2 Λ I

]
.

We note that a similar decomposition exists for the matrix [ 2
τ I + J ] in equation (7.14). Thanks

to the above decomposition, the inverse of the matrix A can be computed explicitly in an efficient
manner since

A−1 = F−1M−1F, and M−1 = MT

[
(I + τ2

4 Λ2)−1 0

0 (I + τ2

4 Λ2)−1

]
,

where (I + τ2

4 Λ2) is a diagonal matrix, such that its inverse is fast to compute.

7.3 Conservation properties and inequalities

In this section we outline the conserved quantities of the SAV method. It is well known that
due to its design the SAV scheme preserves a modified version of the underlying Hamiltonian.
In addition, to the conservation of energy, there is a wide variety of properties in the continuous
equation which is feasible to preserve also on the numerical (discrete) level, we refer to Bao
and Cai [22] as well as Antoine et al. [15]: i) time-reversibility or symmetry, i.e. the system
is unchanged when τ → −τ , ii) gauge-invariance, i.e. if the potential V is changed such that
V → V + α with α a real constant then the density |u|2 remains unchanged, iii) conservation
of mass, i.e. ‖u(t)‖L2(Ω) = ‖u(0)‖L2(Ω), and the Hamiltonian energy, i.e. H(t) = H(0), iv)
preservation of the dispersion relation

ω(k) =
|k|2

2
+ f(|A|2),

for the plane wave solutions u(t, x) = Aeik·x−ωt.
Proving analytically that the SAV scheme for the NLS equation meets the points ii) and iv)

(over long time scales) is up to our knowledge not possible with current techniques. However, the
other points can be verified for a large number of nonlinearities. Here, we briefly recall the proofs
of the conservation properties and refer to [93, 18], where they have been first set in context of
nonlinear Schrödinger equations and our Theorems 46 and 47 are found by a combination of the
results from [93] and [18].

Theorem 46 (Conservation of the modified discrete energy) The scheme (7.6) is asso-
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ciated to the discrete modified Hamiltonian

H̃k+1 =
1

2

(∣∣Qk+1
∣∣2
1

+
∣∣P k+1

∣∣2
1

)
+
∣∣rk+1

∣∣2 , (7.15)

and conserves the modified Hamiltonian energy through time i.e.

H̃k+1 = H̃k. (7.16)

Proof. Taking the inner product with Qk+1 − Qk for the first equation of (7.7) and for the
second with −

(
P k+1 − P k

)
, then summing the results we get

0 =
1

2

(∣∣Qk+1
∣∣2
1
−
∣∣Qk∣∣2

1
+
∣∣P k+1

∣∣2
1
−
∣∣P k∣∣2

1

)
+ rk+1/2

[(
G̃
k+1/2
1 , Qk+1 −Qk

)
+
(
G̃
k+1/2
2 , P k+1 − P k

)]
,

where |·|1 = ‖∇·‖0 is the H1−seminorm. Then, multiplying the third equation of (7.7) by
2Rk+1/2 and using the result in the previous equation, we obtain

0 =
1

2

(∣∣Qk+1
∣∣2
1
−
∣∣Qk∣∣2

1
+
∣∣P k+1

∣∣2
1
−
∣∣P k∣∣2

1

)
+
(∣∣rk+1

∣∣2 − ∣∣rk∣∣2) ,
from which we can conclude both (7.15) and (7.16).

The SAV scheme also preserves the mass up to an error of order O(τ3), where the latter error
is introduced by the second-order extrapolation.

Theorem 47 (Conservation of the L2 norm) The scheme (7.4) conserves the L2 norm of
the solution up to an order O(τ3) i.e.∥∥Uk+1

∥∥2

0
=
∥∥Uk∥∥2

0
+O(τ3), (7.17)

with Uk = P k + iQk.

Proof. Taking the inner product of first equation of (7.7) with 2P k+1/2, the second equation
with 2Qk+1/2, and summing the two we get

1

τ

(∥∥P k+1
∥∥2

0
−
∥∥P k∥∥2

0
+
∥∥Qk+1

∥∥2

0
−
∥∥Qk∥∥2

0

)
= 2rk+1/2

(
−
(
G̃
k+1/2
2 , Qk+1/2

)
+
(
G̃
k+1/2
1 , P k+1/2

))
.

Since G̃k+1/2
i is a second-order approximation of Gk+1/2

i , we can write

1

τ

(∥∥Uk+1
∥∥2

0
−
∥∥Uk∥∥2

0

)
= 2rk+1/2

(
−
(
G
k+1/2
2 , Qk+1/2

)
+
(
G
k+1/2
1 , P k+1/2

))
+O(τ2).

Then, we find that

G
k+1/2
1 =

1√
E1
(
P k+1/2, Qk+1/2

)
+ Ec

∂E1
(
P k+1/2, Qk+1/2

)
∂Qk+1/2

= V (x)Qk+1/2 + f

(∣∣∣P k+1/2
∣∣∣2 , ∣∣∣Qk+1/2

∣∣∣2)Qk+1/2,
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and

G
k+1/2
2 =

1√
E1
(
P k+1/2, Qk+1/2

)
+ Ec

∂E1
(
P k+1/2, Qk+1/2

)
∂P k+1/2

= V (x)P k+1/2 + f

(∣∣∣P k+1/2
∣∣∣2 , ∣∣∣Qk+1/2

∣∣∣2)P k+1/2,

from which we easily obtain

−
(
G
k+1/2
2 , Qk+1/2

)
+
(
G
k+1/2
1 , P k+1/2

)
= 0.

Consequently, we obtain (7.17).
To derive H2-bound for the solution of the SAV scheme, we use the following proposition. The
proof of this technical result can be found in Lemma 2.3 in [179].

Proposition 48 (Bound for
∥∥∥∇Gk+1/2

i

∥∥∥
0
) Assume that the functions gi (i=1,2) satisfy (7.5)

and let ‖U‖1 ≤M for some constant M > 0. Then there exists 0 ≤ σ < 1 such that∥∥∥∇Gk+1/2
i

∥∥∥ ≤ C(M)

(
1 +

∥∥∥∇∆P k+1/2
∥∥∥2σ

0
+
∥∥∥∇∆Qk+1/2

∥∥∥2σ

0

)
. (7.18)

We have the following result on the H2-norm of P k+1/2 and Qk+1/2.

Proposition 49 (H2-bound on the numerical solution) The solution {P k+1, Qk+1} of (7.6)
satisfies

max
k=1,...,NT−1

∥∥∆P k+1
∥∥2

0
+
∥∥∆Qk+1

∥∥2

0
≤ CT +

∥∥∆P 0
∥∥2

0
+
∥∥∆Q0

∥∥2

0
. (7.19)

Proof. First, we multiply the first equation of (7.6) by ∆2(Qk+1/2), the second equation by
∆2(P k+1/2) and integrate over Ω. Then, by summing the two, we obtain, after integration by
parts, that∥∥∥∇∆Qk+1/2

∥∥∥2

0
+
∥∥∥∇∆P k+1/2

∥∥∥2

0
=
(
rk+1/2∇G̃k+ 1

2
1 ,∇∆Qk+1/2)

)
+
(
rk+1/2∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
.

From the conservation of the modified Hamiltonian (7.15)–(7.16) and assuming a finite initial
Hamiltonian, we have(

rk+1/2∇G̃k+ 1
2

1 ,∇∆Qk+1/2
)

+
(
rk+1/2∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
≤ C

2

(∥∥∥∇G̃k+ 1
2

1

∥∥∥2

0
+
∥∥∥∇∆Qk+1/2

∥∥∥2

0
+
∥∥∥∇G̃k+ 1

2
2

∥∥∥2

0
+
∥∥∥∇∆P k+1/2

∥∥∥2

0

)
.

Then, from the result of Proposition 48, for any ε > 0, we have∥∥∥∇G̃k+ 1
2

1

∥∥∥2

0
+
∥∥∥∇G̃k+ 1

2
2

∥∥∥2

0
≤ ε

∥∥∥∇∆Qk+1/2
∥∥∥2

0
+ ε
∥∥∥∇∆P k+1/2

∥∥∥2

0
+ C(ε).

Therefore, combining the two previous inequalities, we obtain∥∥∥∇∆Qk+1/2
∥∥∥2

0
+
∥∥∥∇∆P k+1/2

∥∥∥2

0
≤ C. (7.20)

Secondly, by multiplying the first equation of (7.6) with ∆2(P k+1/2), the second equation with
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∆2(Qk+1/2), integrating over Ω, and summing the two, we obtain after integration by parts that∥∥∆P k+1
∥∥2

0
−
∥∥∆P k

∥∥2

0
+
∥∥∆Qk+1

∥∥2

0
−
∥∥∆Qk

∥∥2

0

= τrk+ 1
2

(
∇G̃k+ 1

2
1 ,∇∆Qk+1/2

)
− τrk+ 1

2

(
∇G̃k+ 1

2
2 ,∇∆P k+1/2

)
.

Then, combining the result of Proposition 48 and the inequality (7.20), we have∥∥∆P k+1
∥∥2

0
−
∥∥∆P k

∥∥2

0
+
∥∥∆Qk+1

∥∥2

0
−
∥∥∆Qk

∥∥2

0
≤ τC,

and summing from k = 0→ NT , we obtain (7.19).

Remark 50 From the fact that H2(Ω) ⊆ L∞(Ω) for d ≤ 3, we can conclude from the previous
proposition that for k = 1, . . . NT − 1,∥∥P k+1

∥∥
L∞

+
∥∥Qk+1

∥∥
L∞
≤ C. (7.21)

Next, we present the stability inequality that will be useful in the convergence analysis.

Proposition 51 (Stability inequality) The solution of (7.6) satisfies the stability inequality

max
k=0,...,NT−1

[∥∥P k+1
∥∥2

0
+
∥∥Qk+1

∥∥2

0

]
+ τ2

NT−1∑
k=0

[

∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

+

∥∥∥∥Qk+1 −Qk

τ

∥∥∥∥2

0

]

≤ C(τ,H0, NT ).

(7.22)

Proof. Multiplying the first equation with 2τP k+1, integrating over Ω and using 2(a − b)a =
a2 − b2 + (a− b)2, we obtain

∥∥P k+1
∥∥2

0
+ τ2

∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

−
∥∥P k∥∥2

0
= −2τ

(
∇Qk+1/2,∇P k+1

)
+ 2τrk+1/2

(
G̃
k+1/2
1 , P k+1

)
.

Using the Cauchy-Schwartz inequality and (7.15)–(7.16), we obtain

−2τ
(
∇Qk+1/2,∇P k+1

)
≤ 2τ

∥∥∥∇Qk+1/2
∥∥∥

0

∥∥∇P k+1
∥∥

0
≤ 4τH0.

Then, from the conservation of the Hamiltonian (7.15)–(7.16), and the conservation of the L2-
norm of the solution (7.17), we obtain using the Cauchy-Schwartz inequality

rk+1/2
(
G̃
k+1/2
1 , P k+1

)
≤ C

(∥∥∥G̃k+1/2
1

∥∥∥
0

∥∥P k+1
∥∥

0

)
≤ C

∥∥∥Gk+1/2
1

∥∥∥
0

+O(τ2).

Since from Proposition 49 and (7.21), we have that
∥∥∥Gk+1/2

i

∥∥∥
0
≤ C with i = 1, 2, for a large

number of nonlinearities. Therefore, combining the previous inequalities for the right-hand side
of (7.3), we obtain ∥∥P k+1

∥∥2

0
+ τ2

∥∥∥∥P k+1 − P k

τ

∥∥∥∥2

0

≤ Cτ +
∥∥P k∥∥2

0
.
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The same can be found for the second equation by repeating the same calculations. Summing
for k = 0→ NT − 1, we find (7.22).

7.4 Convergence analysis

7.4.1 Notations

To study the convergence of the scheme, we introduce the following notation: For k =
0, . . . , NT − 1 we set

U(t, x) :=
t− tk

τ
Uk+1 +

tk+1 − t
τ

Uk, t ∈ (tk, tk+1],

and
∂U

∂t
:=

Uk+1 − Uk

τ
t ∈ (tk, tk+1].

We also define
U+ := Uk+1, U− := Uk,

and
U − U+ = (t− tk+1)

∂U

∂t
, U − U− = (t− tk)

∂U

∂t
t ∈ (tk, tk+1], k ≥ 0.

In addition, we take analogous definitions for P and Q: For k = 0, . . . ,KT − 1 we set

P (t, x) :=
t− tk

τ
P k+1 +

tk+1 − t
τ

P k, t ∈ (tk, tk+1],

∂P

∂t
:=

P k+1 − P k

τ
t ∈ (tk, tk+1],

P+ := P k+1, P− := P k,

and

P − P+ = (t− tk+1)
∂P

∂t
, and P − P− = (t− tk)

∂P

∂t
t ∈ (tk, tk+1], k ≥ 0.

7.4.2 Convergence theorem

Now we are in the position to establish time convergence for the semi discrete SAV scheme
(7.6).

Theorem 52 (Convergence) Let {p, q} be a pair of functions such thatp(t, x) ∈ L2
(
[0, T ];H1(Ω)

)⋂
H1
(

[0, T ];
(
H1(Ω)

)′)
q(t, x) ∈ L2

(
[0, T ];H1(Ω)

)⋂
H1
(

[0, T ];
(
H1(Ω)

)′)
.
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Then for τ → 0 we can extract a subsequence of solutions of (7.6), such that

P, P± → p strongly in L2
(
[0, T ];L2(Ω)

)
, (7.23)

Q,Q± → q strongly in L2
(
[0, T ];L2(Ω)

)
, (7.24)

P, P± ⇀ p weakly in L2
(
[0, T ];H1(Ω)

)
, (7.25)

Q,Q± ⇀ q weakly in L2
(
[0, T ];H1(Ω)

)
, (7.26)

∂P

∂t
⇀

∂p

∂t
weakly in L2

(
[0, T ];

(
H1(Ω)

)′)
, (7.27)

∂Q

∂t
⇀

∂q

∂t
weakly in L2

(
[0, T ];

(
H1(Ω)

)′)
, (7.28)

rk+1 ⇀ r(t) =
√
E1[t] + Ec weak-star in L∞ (0, T ) . (7.29)

The limit {p, q} satisfies the nonlinear Schrödinger model (7.2) in the following weak sense
∫ T

0

〈
∂p
∂t , η

〉
dt =

∫ T
0

∫
Ω
∇q∇η +

(
V (x)q + ∂F (|p|2,|q|2)

∂q

)
η dxdt∫ T

0

〈
∂q
∂t , η

〉
dt =

∫ T
0

∫
Ω
−∇p∇η −

(
V (x)p+ ∂F (|p|2,|q|2)

∂p

)
η dxdt,

(7.30)

for all η ∈ L2
(
[0, T ];H1(Ω)

)
.

Proof.
Step 1: Weak and strong convergences. First, the weak convergences (7.25), (7.26), (7.27)

and (7.28) follow from the assumption that the initial Hamiltonian energy is bounded and the
stability inequality (7.22).

Then, the weak-star convergence (7.29) also holds true by the conservation of the modified
Hamiltonian and the boundedness of the initial state.

From the compact embedding H1(Ω) ⊂ L2(Ω) ≡
(
L2(Ω)

)′, we can apply the Lions-Aubin
Lemma [135] to find both convergences (7.23) and (7.24).

Step 2: Limit system. Let us work on the first equation of the discrete system. We use a
test function η ∈ L2

(
[0, T ];H1(Ω)

)
and analyze the convergence of the terms separately. First,

from the weak convergence (7.26), we have∫ T

0

∫
Ω

∇
(
Q+ +Q−

2

)
∇η dxdt→

∫ T

0

∫
Ω

∇q∇η dx dt.

Secondly, from the fact that G̃k+1/2
1 is a second-order approximation of Gk+1/2

1 , we have∫ T

0

∫
Ω

rk+1/2G̃
k+1/2
1 η dxdt =

∫ T

0

∫
Ω

rk+1/2G
k+1/2
1 η dxdt+

∫ T

0

∫
Ω

rk+1/2O(τ2)η dxdt.

From the inequality ∣∣∣E1(Uk+1/2)− E1(u)
∣∣∣ ≤ C ∥∥∥Uk+1/2

∥∥∥2

L1(Ω)
,

and the fact that
P±, Q± ⇀ p, q weak-star in L∞

(
0, T ;H1(Ω)

)
,

which follows from the conservation of both the Hamiltonian energy and the L2 norm, we have

E1(Uk+1/2) ⇀ E1(u) weak-star in L∞ (0, T ) .
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The same holds true for δE
k+1/2
1

δq and δEk+1/2
1

δp using similar arguments. Then, using also the strong
convergences (7.23) and (7.24), together with the weak-star convergence (7.29), we obtain∫ T

0

∫
Ω

rk+1/2G
k+1/2
1 η dx dt+

∫ T

0

∫
Ω

rk+1/2O(τ2)η dx dt→
∫ T

0

∫
Ω

r(t)g1(t)η dxdt.

Finally, for any η ∈ H1([0, T ];H1(Ω)), by integration by parts we have∫ T

0

(
∂P

∂t
, η

)h
dt = −

∫ T

0

(
P,
∂η

∂t

)h
dt+ (P (T ), η(T ))

h − (P (0), η(0))
h
.

Hence, from the regularity of η and the convergence (7.23) , we obtain∫ T

0

(
P,
∂η

∂t

)h
dt→

∫ T

0

(
p,
∂η

∂t

)
dt as τ → 0 and ∀η ∈ H1([0, T ];H1(Ω)).

Gathering the previous convergences, we have

(p(T ), η(T ))
h−(p(0), η(0))

h−
∫ T

0

(
p,
∂η

∂t

)
dt =

∫ T

0

∫
Ω

∇q∇η+

(
V (x)q +

∂F (|p|2 , |q|2)

∂q

)
η dx dt.

Since∇q+
(
V (x)q + ∂F (|p|2,|q|2)

∂q

)
∈ L2(Ω) which follow from the conservation of the Hamiltonian

energy, we know that p ∈ H1
(
[0, T ];H−1(Ω)

)
. Finally, we find the first equation of the limit

system (7.30) and the same arguments can be applied to the second equation. This yields the
result.

7.5 Error analysis

In this section we analyse the difference between the exact and modified Hamiltonian, and
establish a bound on ∣∣∣H[p(tk), q(tk)]− H̃[P k, Qk]

∣∣∣ .
In addition we prove second-order convergence of the fully discrete SAV scheme (7.7) approx-
imating the solution of the nonlinear Schrödinger equation (7.1). We introduce the following
notation to study the error

eku = θku + ρku, (7.31)

where
θku = Uk − (INu)(tk, x), ρku = (INu)(tk, x)− u(tk, x).

For our convergence result we assume that the solution u of (7.1) is sufficiently smooth satisfying

‖∂tttu‖L∞(0,T ;H1(Ω)) + ‖u‖L∞(0,T ;H2(Ω)) ≤ C. (7.32)
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We define the different truncation errors by

T
k+ 1

2
u =

uk+1 − uk

∆t
− ∂tu(tk+ 1

2 ),

T
k+ 1

2

u = uk+ 1
2 − u(tk+ 1

2 ) =
uk+1 + uk

2
− u(tk+ 1

2 ).

We commence with two important lemma that will be useful in the global error analysis.

Lemma 53 (Boundedness of nonlinear functions) If (p, q) is a solution of (7.4) satisfying
(7.32), we have for i = 1, 2

|gi(p, q)| ,
∣∣∣∣∂gi∂p

∣∣∣∣ , ∣∣∣∣∂gi∂q
∣∣∣∣ , ∣∣∣∣ ∂2gi

∂p∂q

∣∣∣∣ , ∣∣∣∣∂2gi
∂p2

∣∣∣∣ , ∣∣∣∣∂2gi
∂q2

∣∣∣∣ ≤ C.
Proof. This result is found by a combination of the fact that u ∈ L∞(0, T ;H2(Ω)), Re-
mark 7.21, and assumption (7.5).

Remark 54 From Lemma 53, and the hypothesis (7.32), we know that

|∂tttr| ≤ C
(
‖∂tttp‖20 + ‖∂tttq‖20

)
.

We have the following Lemma on the norm of the truncation errors (see Lemma 4.7 in [198] for
example).

Lemma 55 (Truncation errors) For α = −1, 0, 1, 2, we have

∥∥∥T k+ 1
2

ψ

∥∥∥2

Hα(Ω)
≤ τ3

∫ tk+1

tk
‖∂tttψ(s)‖2Hα(Ω) ds,

∥∥∥T k+ 1
2

ψ

∥∥∥2

Hα(Ω)
≤ τ3

∫ tk+1

tk
‖∂tttψ(s)‖2Hα(Ω) ds,

Theorem 56 (Error analysis) Assume that the solution of (7.2) satisfies (7.32) with initial
condition u0 ∈ H3(Ω). Then the discrete solution {P k+1, Qk+1} of the fully discrete SAV scheme
(7.7) satisfies the error estimate

1

2

∥∥∇ek+1
q

∥∥2

0
+

1

2

∥∥∇ek+1
p

∥∥2

0
+
∣∣ek+1
r

∣∣2 ≤ C exp
(

[1− Cτ ]
−1
tk+1

) (
τ4 +N−4

)
,

where the constant C depends on the smoothness of the solution (7.32).

Proof.
Step 1: Error equations. We begin by evaluating the model (7.4) at time tk+1/2

∂tp(t
k+1/2) = −∆q(tk+1/2) + r(tk+1/2)g1(tk+1/2),

∂tq(t
k+1/2) = ∆p(tk+1/2)− r(tk+1/2)g2(tk+1/2),

dr
dt (t

k+1/2) = 1
2

[(
g1(tk+1/2), ∂tq(t

k+1/2)
)

+
(
g2(tk+1/2), ∂tp(t

k+1/2)
)]
.
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Subtracting the above equations from (7.7) yields

ek+1
p −ekp
τ + T

k+1/2
p = −∆

(
e
k+1/2
q + T

k+1/2

q

)
+Rk+1/2G̃

k+1/2
1 − r(tk+1/2)g1(tk+1/2),

ek+1
q −ekq
τ + T

k+1/2
q = ∆

(
e
k+1/2
p + T

k+1/2

p

)
−Rk+1/2G̃

k+1/2
2 + r(tk+1/2)g2(tk+1/2),

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[ (
G̃
k+1/2
1 , Q

k+1−Qk
τ

)
+
(
G̃
k+1/2
2 , P

k+1−Pk
τ

)
−
(
g1(tk+1/2), ∂tq(t

k+1/2)
)
−
(
g2(tk+1/2), ∂tp(t

k+1/2)
) ]
.

(7.33)

We introduce the error
e
k+1/2
g,1 = G̃

k+1/2
1 − g1(tk+1/2).

The rightmost terms of the two first equations of (7.33) can be replaced by

Rk+1/2G̃
k+1/2
1 − r(tk+1/2)g1(tk+1/2) = G̃

k+1/2
1

(
ek+1/2
r + T

k+1/2

r

)
+ r(tk+1/2)e

k+1/2
g,1 , (7.34)

and

Rk+1/2G̃
k+1/2
2 − r(tk+1/2)g2(tk+1/2) = G̃

k+1/2
2

(
ek+1/2
r + T

k+1/2

r

)
+ r(tk+1/2)e

k+1/2
g,2 . (7.35)

Similarly, we have

1

2

[(
G̃
k+1/2
1 ,

Qk+1 −Qk

τ

)
−
(
g1(tk+1/2), ∂tq(t

k+1/2)
)]

=
1

2

[(
G̃
k+1/2
1 ,

ek+1
q − ekq

τ
+ T k+1/2

q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)]

,

(7.36)

and
1

2

[(
G̃
k+1/2
2 ,

P k+1 − P k

τ

)
−
(
g2(tk+1/2), ∂tp(t

k+1/2)
)]

=
1

2

[(
G̃
k+1/2
2 ,

ek+1
p − ekp

τ
+ T k+1/2

p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
)]

.

(7.37)

Plugging (7.34), (7.35),(7.36), and (7.37) into (7.33), we thus obtain

ek+1
p −ekp
τ + T

k+1/2
p = −∆

(
e
k+1/2
q + T

k+1/2

q

)
+ G̃

k+1/2
1

(
e
k+1/2
r + T

k+1/2

r

)
+ r(tk+1/2)e

k+1/2
g,1 ,

ek+1
q −ekq
τ + T

k+1/2
q = ∆

(
e
k+1/2
p + T

k+1/2

p

)
− G̃k+1/2

2

(
e
k+1/2
r + T

k+1/2

r

)
− r(tk+1/2)e

k+1/2
g,2 ,

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[(
G̃
k+1/2
1 ,

ek+1
q −ekq
τ + T

k+1/2
q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+

(
G̃
k+1/2
2 ,

ek+1
p −ekp
τ + T

k+1/2
p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]
.
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Using the decomposition of the error (7.31), we furthermore obtain

θk+1
p −θkp
τ + ∆

(
θk+1
q +θkq

2

)
= −ρ

k+1
p −ρkp
τ −∆

(
ρ
k+1/2
q + T

k+1/2

q

)
+ G̃

k+1/2
1

(
e
k+1/2
r + T

k+1/2

r

)
+r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p ,

θk+1
q −θkq
τ −∆

(
θk+1
p +θkp

2

)
= −ρ

k+1
q −ρkq
τ + ∆

(
ρ
k+1/2
p + T

k+1/2

p

)
− G̃k+1/2

2

(
e
k+1/2
r + T

k+1/2

r

)
−r(tk+1/2)e

k+1/2
g,2 − T k+1/2

q ,

ek+1
r −ekr
τ + T

k+1/2
r = 1

2

[(
G̃
k+1/2
1 ,

ek+1
q −ekq
τ + T

k+1/2
q

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+

(
G̃
k+1/2
2 ,

ek+1
p −ekp
τ + T

k+1/2
p

)
+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]
.

(7.38)

Step 2. Error estimate formula. We use the following notations to make the results more
compact

D1
τθ
k+1
p =

θk+1
p − θkp

τ
, D1θk+1

p = θk+1
p − θkp .

Taking the inner product of the first equation of the system (7.38) with −D1θk+1
q and the

second with D1θk+1
p , and summing the results, we also have,

1

2
D1
∥∥∇θk+1

q

∥∥2

0
+

1

2
D1
∥∥∇θk+1

p

∥∥2

0
=
(
D1
τρ
k+1
p , D1θk+1

q

)
−
(
D1
τρ
k+1
q , D1θk+1

p

)
−
(
∇ρk+1/2

q ,∇D1θk+1
q

)
−
(
∇ρk+1/2

p ,∇D1θk+1
p

)
−
(
∇T k+1/2

q ,∇D1θk+1
q

)
−
(
∇TK+1/2

p ,∇D1θk+1
p

)
−
(
G̃
k+1/2
1

(
ek+1/2
r + T

k+1/2

r

)
, D1θk+1

q

)
−
(
G̃
k+1/2
2

(
ek+1/2
r + T

k+1/2

r

)
, D1θk+1

p

)
−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
.

(7.39)

Multiplying the third equation of (7.38) by 2τe
k+1/2
r , we have

D1
∣∣ek+1
r

∣∣2 + 2τT k+1/2
r ek+1/2

r − τek+1/2
r

[ (
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
+
(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]

= ek+1/2
r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
.

(7.40)
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Using (7.40) in (7.39), we have

1

2
D1
∥∥∇θk+1

q

∥∥2

0
+

1

2
D1
∥∥∇θk+1

p

∥∥2

0
+D1

∣∣ek+1
r

∣∣2
=
(
D1
τρ
k+1
p , D1θk+1

q

)
−
(
D1
τρ
k+1
q , D1θk+1

p

)
−
(
∇
(
ρk+1/2
q + T

k+1/2

q

)
,∇D1θk+1

q

)
−
(
∇
(
ρk+1/2
p + T

k+1/2

p

)
,∇D1θk+1

p

)
− T k+1/2

r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
− 2τT k+1/2

r ek+1/2
r + τek+1/2

r

[ (
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
+
(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
+
(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
) ]

−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
.

(7.41)

Step 3. Inequalities for the terms on the right-hand side of (7.41).

Now, we bound the right-hand side of (7.41). Using Lemma 42, Lemma 55 and Young’s
inequality we have(

D1
τρ
k+1
p , D1θk+1

q

)
≤ 4

∥∥D1
τρ
k+1
p

∥∥2

0
+

1

16

∥∥D1θk+1
q

∥∥2

0
≤ CN−6 +

1

16

∥∥D1θk+1
q

∥∥2

0
,

−
(
D1
τρ
k+1
q , D1θk+1

p

)
≤ 4

∥∥D1
τρ
k+1
q

∥∥2

0
+

1

16

∥∥D1θk+1
p

∥∥2

0
≤ CN−6 +

1

16

∥∥D1θk+1
p

∥∥2

0
.

Then, from Theorem (46), we have

−
(
∇ρk+1/2

q ,∇D1θk+1
q

)
−
(
∇ρk+1/2

p ,∇D1θk+1
p

)
≤
(∥∥∥∇ρk+1/2

q

∥∥∥2

0

∥∥∇D1θk+1
q

∥∥2

0
+
∥∥∥∇ρk+1/2

p

∥∥∥2

0

∥∥∇D1θk+1
p

∥∥2

0

)
≤ CN−4,

and
−
(
∇T k+1/2

q ,∇D1θk+1
q

)
−
(
∇TK+1/2

p ,∇D1θk+1
p

)
≤
(∥∥∥∇T k+1/2

q

∥∥∥2

0

∥∥∇D1θk+1
q

∥∥2

0
+
∥∥∥∇TK+1/2

p

∥∥∥2

0

∥∥∇D1θk+1
p

∥∥2

0

)
≤ Cτ4,

For the rest of the terms on the right-hand side of (7.41), we use Lemma 55, and Proposition 51
together with Lemma 53, and Remark 54, to obtain

−T k+1/2

r

[(
G̃
k+1/2
1 , D1θk+1

q

)
+
(
G̃
k+1/2
2 , D1θk+1

p

)]
≤ 4

∣∣∣T k+1/2

r

∣∣∣2(∥∥∥G̃k+1/2
1

∥∥∥2

0
+
∥∥∥G̃k+1/2

1

∥∥∥2

0

)
+

1

16

(∥∥D1θk+1
q

∥∥2

0
+
∥∥D1θk+1

p

∥∥2

0

)
≤ Cτ4 +

1

16

(∥∥D1θk+1
q

∥∥2

0
+
∥∥D1θk+1

p

∥∥2

0

)
,

(7.42)
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−2τT k+1/2
r ek+1/2

r ≤ Cτ
(∥∥∥T k+1/2

r

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2) ≤ Cτ5 + τ

∣∣ek+1
r

∣∣2 + τ
∣∣ekr ∣∣2 ,

τek+1/2
r

(
G̃
k+1/2
1 , D1

τρ
k+1
q + T k+1/2

q

)
≤ τ

2

∥∥∥G̃k+1/2
1

∥∥∥2

0

(∥∥D1
τρ
k+1
q

∥∥2

0
+
∥∥∥T k+1/2

q

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2)

≤ Cτ
(
N−6 + τ4 +

∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2) ,

τek+1/2
r

(
G̃
k+1/2
2 , D1

τρ
k+1
p + T k+1/2

p

)
≤ τ

2

∥∥∥G̃k+1/2
2

∥∥∥2

0

(∥∥D1
τρ
k+1
p

∥∥2

0
+
∥∥∥T k+1/2

p

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2)

≤ Cτ
(
N−6 + τ4 +

∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2) ,

τek+1/2
r

[(
e
k+1/2
g,1 , ∂tq(t

k+1/2)
)

+
(
e
k+1/2
g,2 , ∂tp(t

k+1/2)
)]

≤ τ

2

∥∥∥∂tq(tk+1/2)
∥∥∥2

0

(∥∥∥ek+1/2
g,1

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2)

+
τ

2

∥∥∥∂tp(tk+1/2)
∥∥∥2

0

(∥∥∥ek+1/2
g,2

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2)

≤ Cτ
(∥∥∥ek+1/2

g,1

∥∥∥2

0
+
∥∥∥ek+1/2
g,2

∥∥∥2

0
+
∣∣ek+1
r

∣∣2 +
∣∣ekr ∣∣2) ,

and

−
(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , D1θk+1
q

)
−
(
r(tk+1/2)e

k+1/2
g,2 + T k+1/2

p , D1θk+1
p

)
≤ 4

∣∣∣r(tk+1/2
∣∣∣2(∥∥∥ek+1/2

g,1

∥∥∥2

0
+
∥∥∥ek+1/2
g,2
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0
+
∥∥∥T k+1/2

p

∥∥∥2

0
+
∥∥∥T k+1/2

q

∥∥∥2

0

)
+

1

16

(∥∥D1θk+1
q
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0
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∥∥D1θk+1

p
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0

)
≤ C

(∥∥∥ek+1/2
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∥∥∥2

0
+
∥∥∥ek+1/2
g,2
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0
+ 2τ4

)
+

1

16

(∥∥D1θk+1
q

∥∥2

0
+
∥∥D1θk+1

p

∥∥2

0

)
.

(7.43)

Step 4. Estimating the terms in the inequalities (7.42)–(7.43). First, we aim to emiminate the
terms

∥∥D1θk+1
p

∥∥2

0
and

∥∥D1θk+1
q

∥∥2

0
in the above inequalities. Taking the inner product of the first

equation of (7.38) with 2τθk+1
p , we obtain(

D1
τθ
k+1
p , 2τθk+1

p

)
= 2τ

(
∇θk+1/2

q ,∇θk+1
p

)
− 2τ

(
D1
τρ
k+1
p , θk+1

p

)
+ 2τ

(
∇
(
ρk+1/2
q + T

k+1/2

q

)
,∇θk+1

p

)
+ 2τ

(
ek+1/2
r + T

k+1/2

r

)(
G̃
k+1/2
1 , θk+1

p

)
+ 2τ

(
r(tk+1/2)e

k+1/2
g,1 − T k+1/2

p , θk+1
p

)
.

Knowing that (
D1
τθ
k+1
p , 2τθk+1

p

)
≥
∥∥D1θk+1

p

∥∥2

0
,
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we have∥∥D1θk+1
p

∥∥2

0
≤ 2τ

(
∇θk+1/2

q ,∇θk+1
p

)
− 2τ

(
D1
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p

)
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∇
(
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q

)
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p

)
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)(
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p

)
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)
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(7.44)
Let us bound the terms on the right-hand side of (7.44). Using Lemma 42 we find that

2τ
(
∇θk+1/2

q ,∇θk+1
p

)
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)
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where we have used the Poincaré inequality to obtain the last inequality. Plugging the previous
inequalities into (7.44), we obtain

∥∥D1θk+1
p

∥∥2

0
≤ τ
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q
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)
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(7.45)

Similarly, taking the inner product of the second equation of (7.38) with 2τθk+1
q and repeating

the same steps as before, we obtain

∥∥D1θk+1
q

∥∥2

0
≤ τ

(∥∥∇θk+1
p

∥∥2

0
+
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)
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(7.46)

Step 5. Estimating
∥∥∥ek+1/2
g,1

∥∥∥2

0
and

∥∥∥ek+1/2
g,2

∥∥∥2

0
. Using the notations

S(p, q) =
√
E1(p, q) + C,

and
N1(p, q) =

δ

δq
E1(p, q), N2(p, q) =

δ

δp
E1(p, q)
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we have that

e
k+1/2
g,1 = G1(P k+1/2, Qk+1/2)− g1(p(tk+1/2), q(tk+1/2))

=
N1(P k+1/2, Qk+1/2)

S(P k+1/2, Qk+1/2)
− N1(p(tk+1/2), q(tk+1/2))
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]
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.

From the smoothness assumption (7.32), Lemma 53, and Remark 50, we have∥∥∥ek+1/2
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Then, using the notation (7.31) and Lemma 55, we obtain∥∥∥ek+1/2
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Similarly, we have∥∥∥ek+1/2
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0
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Step 6. Discrete Gronwall Lemma. The above two estimates together with (7.45) and (7.46)
imply
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Therefore, by the use of Gronwall’s Lemma, we can conclude that

1

2

∥∥∇θk+1
q

∥∥2
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+

1
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p

∥∥2
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+
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) (
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)
.

7.6 Numerical experiments

In this section we numerically confirm our theoretical convergence result given in Theorem
56 and illustrate the long time energy conservation of the SAV method. In the following, the
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Figure 7.1 – Error eu (left) and eH (right) versus step size τ at time T = 10.

numerical results have been obtained from Algorithm 2. However, we want to emphasize that
Algorithm 1 leads to the same results and has a comparable computational cost for d = 1.

Our numerical findings suggest the favorable energy preservation of the SAV method com-
pared to classical splitting methods in certain applications such as for non-linearities with non-
integer exponents which arise for instance in context of optical dark and power law solitons with
surface plasmonic interactions [65]. For the comparison we use the classical first order Lie and
second order Strang splitting which are known for their near energy preservation over long times,
see, e.g., [83].

In the numerical examples we plot the deviation of the exact Hamiltonian and the modified
Hamiltonian H̃, i.e., eH̃ =

∣∣∣H(tk)− H̃k
∣∣∣, the error between the exact Hamiltonian and the

discrete non-modified Hamiltonian eH =
∣∣H(u(tk))−H(Uk)

∣∣, as well as the L2 error eu =∥∥∣∣Uk∣∣− ∣∣u(tk)
∣∣∥∥
L2(Ω)

. We choose the potential V = 0 in the Schrödinger equation (7.1).

7.6.1 First test case: cubic nonlinearity

In a first example we consider the nonlinear Schrödinger equation (7.1) with a cubic nonlin-
earity i.e.

f(|u|2) = β |u|2

on the spatial domain Ω = [−32, 32]. In Figure 7.1 we choose a mesh size h = 1/32 and
approximate the soliton solution [26, 18]

u(x, t) =
a√
−β

sech (a(x− vt)) exp
(
ivx− 0.5(v2 − a2)t

)
,

with the parameters a = 1, β = −1 and v = 1 up to T = 10. Figure 7.1 numerically confirms
the second-order convergence of the SAV method. The numerical findings also suggest that the
error constant of the Strang splitting method is slightly better than the one of the SAV method
in this example. In Figure 7.2 we simulate the solitary wave

u(t, x) =

√
2eit

cosh(x)
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on the domain [− π
0.11 ,

π
0.11 ] with N = 256 collocation points and time step size τ = 0.01. We

illustrate the evolution of the errors eH , eu and eH̃ over long times, i.e., up to T = 1000. Our
numerical findings confirm the conservation of the modified Hamiltonian by the SAV method,
see Figure 7.2. We also observe that the SAV method preserves well the exact energy and L2

norm over long times. Even though, the error eH of the Strang splitting seems favorable in
this example, we have to stress that the modified Hamiltonian is closer to the value of the real
Hamiltonian (see error eH̃ on Figure 7.2).

Figure 7.2 – Left Figure: error eu (left) through time. Right Figure: eH (blue, red, yellow) and
eH̃ (purple) through time.

7.6.2 Second test case: cubic nonlinearity with non-smooth initial con-
dition

In this example we analyse the error behaviour of the SAV scheme in case of non-smooth
initial data. For this purpose we solve the NLS equation with cubic nonlinearity with initial
data of various regularity. More precisely, we choose f(|u|2) = β |u|2 with β = 1 and consider
u0 ∈ Hα with α = 3/2, 2, 3, 5 on the spatial domain Ω = [−π, π] with N = 1024 gridpoints. The
discrete initial data of various regularity is generated as proposed in [159].

Figure 7.3 shows the convergence behaviour of the SAV scheme, and the two splitting methods
for the initial data of different regularity. We find that if α < 3, the SAV method does not
maintain its second order convergence rate and for α = 2, the SAV scheme reduces to first order.
Decreasing the regularity of the initial condition even more, the convergence worsens and becomes
less than order 1. A similar order reduction is observed for the splitting schemes, however, for
the latter the error starts to oscillate for α < 3. Again, the error eH is favorable for the Strang
splitting for all α. However, the modified Hamiltonian is closer to the real Hamiltonian (see
Figure 7.4 for α = 2

3 ).

7.6.3 Third test case: non-integer exponent

In this example we consider the periodic nonlinear Schrödinger equation (7.1) with nonlin-
earities with non-integer exponents ([65])

f(|u|2) = β |u|4/γ , γ > 0
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Figure 7.3 – Error eH versus step size τ for the nonlinear Schrödinger equation starting from
different initial conditions in Hα (α = 2

3 top-left, α = 2 top-right, α = 3 bottom left and α = 5
bottom-right). The dotted lines represent order τ (green) and τ2 (purple), respectively.

where the Hamiltonian takes the form

H(u) =

∫
Ω

1

2
|∇u|2 + β

γ

(4 + 2γ)
|u|

4
γ+2

dx.

We carry out simulations for various exponents γ = 2, 8/3, 4, 8 up to time T = 10 with smooth
initial value

u(0, x) = sin(x) ∈ C∞([−π, π]).

The error eH for different exponents γ is plotted in Figure 7.5. Our numerical findings suggest
that as γ increases the splitting methods suffer from sever order reduction. This loss of con-
vergence of splitting methods was also observed in [159]. The SAV method, on the other hand,
retains its second order energy convergence for non-integer exponents.
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Figure 7.4 – Error eH (blue, red, yellow) through time and eH̃ (purple) through time for initial
condition in H

2
3 .

7.6.4 Computing ground states

We use the SAV scheme to simulate ground states of Bose-Einstein condensates, however,
unlike the work of Antoine et al. [18], we propose here to use a different strategy. Indeed, in [18],
the authors use the SAV scheme presented in Section 7.2 and observe the capacity of the scheme
to preserve the initial mass and Hamiltonian for various strengths of the nonlinearity. In the
present work, we propose to use a different method and compare the numerical results with
reference methods that are designed to simulate the stationary states of the NLS equation for
large nonlinearities.

To do so, we reformulate the problem into the solving of a gradient flow equation to compute
these stationary states: this method is known has the gradient flow with discrete normalization
method [20, 23].

The SAV scheme is well adapted to this formulation since its original purpose was the sim-
ulation of the gradient flow equations. Details of the reformulation and the adaptation of the
SAV scheme to the case can be found in Appendix 7.A.

We here present numerical results obtained choosing d = 1, V (x) = x2/2, β = 400, and
u0(x) = exp(−x2/2)

π1/4 /
∥∥u0
∥∥

0
. We validate our results with the Backward Euler PseudoSpectral

(BEPS in short) scheme implemented in the GPELab code [16, 17].
We denote by E(u) the energy associated to the renormalized system and Ẽ(u) its modified

SAV energy (see Appendix 7.A for details).
Figure 7.6 (left) compares the stationary states obtained with the two schemes for h = 1/8

in space. We clearly see that they both reach the same steady state. Figure 7.6 (right) depicts
the evolution of the energy during the simulation. We observe that the SAV scheme preserves
the monotonic decay of the energy. The steady state reached at the end of the simulation has
an energy Ẽ(φ) ≈ 22.90. However, using the solution φg obtained for the SAV scheme and
computing the "real" energy, we obtain E(φ) ≈ 21.36 which is the value obtained with the BEPS
scheme.

We numerically evaluate the order of convergence in space of the SAV scheme for the simu-
lation of ground states. We choose our reference solution to be the result of a simulation with
h = 1/32. Then, we vary h from 1/2 to 1/16. Figure 7.7 shows that the scheme remains second
order convergent in space as predicted by our error analysis.
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Figure 7.5 – Error eH versus step size τ for the nonlinear Schrödinger equation with different non-
integer exponents (γ = 2 top-left, γ = 8

3 top-right, γ = 4 bottom left and γ = 8 bottom-right).
The dotted lines represent order τ (green) and τ2 (purple), respectively.

7.A Gradient flow with discrete normalization for comput-
ing ground state

A common method to compute stationary states of the NLS equation (7.1) with a cubic
nonlinearity is to write

u(t, x) = φ(x) exp(−iµt),

where µ is defined as the chemical potential of the condensate

µ(φ) =

∫
Ω

(
1

2
|∇φ|+ β |φ|4 + V (x) |φ|2

)
dx.
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Figure 7.6 – (Left) Comparison of stationary solutions of the NLS equation with a large cubic
nonlinearity obtained with the SAV scheme (blue) and the BEPS scheme from GPELab (red).
(Right) Evolution of the energy Ẽ(u) for the SAV scheme during the simulation.

Therefore, using the previous reformulation in Equation (7.1), we obtain

µφ(x) = −1

2
∆φ(x) + β |φ(x)|2 φ(x) + V (x)φ(x).

Denoting by S = {φ| ‖φ‖L2(Ω) = 1} the unit sphere, the ground state φg ∈ S of the Bose-Einstein
condensate is then defined by the solution minimizing the energy functional

E(φ) =

∫
Ω

(
1

2
|∇φ|+ 1

2
β |φ|4 + V (x) |φ|2

)
dx < +∞.

For the proof of the existence of such state and other mathematical properties we refer the reader
to [22].

In the following, we adapt the Scalar Auxiliary Variable method to compute the stationary
solutions of Equation (7.1). Therefore, endowing the equation with the normalization constraint,
and using the projected gradient method [20], the complete system reads{

∂tφ = 1
2∆φ− V (x)u− β |u|2 u(t, x),

‖φ‖2L2(Ω) = 1.

Our SAV scheme can be easily adapted to this case, leading to the discrete system
φ+−φk

τ = 1
2D

(2)φk+1/2 − rk+1/2G̃k+1/2,

rk+1 − rk = 1
2

(
G̃k+1/2, φ+ − φk

)
φk+1 = φ+

‖φ+‖2L(Ω)
,

with φk+1/2 = φ++φk

2 , G̃k+1/2 a second order approximation of δE1[tk+1/2]
δφk+1/2 . We precise that the
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Figure 7.7 – Error eu versus grid size h for the simulation of ground states with a large cubic
nonlinearity.

associated modified SAV energy is

Ẽ(φ) =

∫
Ω

1

2
|∇φ| dx+ r(t)2 < +∞.

Both Algorithm 1 and Algorithm 2 from Section 7.2 can be applied to compute the solution
of the SAV system. Furthermore, using the same calculation as in Section 7.3, we can easily
prove that the scheme dissipates the energy and preserves the normalization constraint.
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Abstract

Nous étudions deux types de modèles couramment utilisés pour la représentation en temps et en es-
pace des tumeurs : l’équation de Cahn-Hilliard pour les tissus vivants et le modèle de Keller-Segel. Les
méthodes numériques que nous développons cherchent à représenter de manière précise et efficace ces
équations tout en préservant leurs propriétés. Pour l’équation de Cahn-Hilliard, notre étude s’appuie sur
une méthode de relaxation dont nous prouvons la convergence vers le modèle initial. Même si elles repré-
sentent mathématiquement des phénomènes physiques proches de ceux étudiés en dynamique des fluides,
les équations utilisées pour les tissus vivants sont souvent différentes pour rendre compte du caractère
actif des cellules. Les équations résultantes contiennent de nombreuses singularités et dégénérescences
qui sont difficiles à analyser théoriquement et simuler numériquement de manière efficace. La méthode
de relaxation a été introduite pour faciliter l’implémentation de nos schémas numériques ; nous propo-
sons ainsi des schémas numériques éléments finis simples à adapter dans les codes pré-existants. Afin
de préserver les propriétés des équations continues lors des simulations numériques, nous proposons des
schémas numériques basés sur la Méthode de Variable Auxiliaire. L’adaptation de cette méthode pour
les équations des tissus vivants n’ayant pas été réalisée, nous proposons dans cette thèse d’y remédier et
d’étudier les propriétés analytiques de ces schémas numériques. Sur la base de ces travaux numériques,
nous présentons l’étude de deux phénomènes biologiques. En collaboration avec des biologistes de l’Uni-
versité de Nantes, nous étudions la compactification des sphéroïdes de glioblastome in-vitro en réponse
à un médicament utilisé en chimiothérapie. Notre deuxième application s’intéresse à l’étude des effets
physiques jouant un rôle dans l’émergence d’instabilités à la surface de certaines tumeurs invasives.

Keywords: Living tissues models, Numerical analysis, Degenerate Cahn-Hilliard equation, Keller-Segel
model

Abstract

We study two classes of mathematical models currently used for the modeling in time and space of tumors:
the Cahn-Hilliard equation for living tissues and the Keller-Segel model. The numerical methods we
propose aim to represent these equations efficiently and accurately while preserving their properties. For
the Cahn-Hilliard equation, our study is based on a relaxation method for which we prove the convergence
to the original model. Even though the physical effects modeled by these equations are close to the ones
studied in fluid dynamics, the equations used to model living tissues are different in order to represent
the active behavior of cells. The resulting equations contain numerous singularities and degeneracies,
which result in technical difficulties to analyze and simulate them efficiently. Our relaxation method
has been introduced to facilitate the implementation of our numerical schemes. Hence, we propose
numerical schemes that are easy to implement in already existing finite element software. In order
to preserve the properties of the equations during numerical simulations, we design numerical schemes
based on the Scalar Auxiliary Variable method. However, since this method has never been used in the
context of models of living tissues, we study the analytical properties of our schemes. Based on these
numerical works, we present two studies of biological phenomena. In collaboration with biologists from
the Université de Nantes, we study the shrinking of in-vitro tumor aggregates of glioblastoma due to
a certain chemotherapeutic drug. Our second study focuses on understanding the physical effects that
play a role in the emergence of instabilities at the borders of certain invasive tumors. Therefore, this
work aims at providing mathematical tools to biologists that give insights into underlying biological
phenomena based on the Physics of cells and living matter.

Keywords: Living tissues models, Numerical analysis, Degenerate Cahn-Hilliard equation, Keller-Segel
model
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