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Chapter 1

Introduction

1.1 A brief history of quantitative finance

Quantitative finance, also known as financial mathematics, is a transdisciplinary branch of knowledge that sits at

the intersection of economics, mathematics, management science, and decision science. Its main objective is to

solve mathematical problems arising from finance, with a particular focus on applications to financial markets and

derivative securities: options, futures, and complex transactions known as “structured products”. Other notable

domains of application include investment management and risk management.

The foundational lineaments of quantitative finance may be traced back to 1900 with the publication of Louis

Bachelier’s thesis under the title “Théorie de la Spéculation”. However, important concepts such as compound

interest, discounting, arbitrage and utility theory were known well ahead. Bachelier introduced advanced probability

concepts such as random walks and Brownian motions for the purpose of option pricing, which are still in use today.

Five decades later, modern portfolio theory was initiated by Harry Markowitz (1952) while Kenneth Arrow and

Gérard Debreu (1954) formalized complete market economies using state-price securities to prove the existence

of general economic equilibrium. During the 1960s, Paul Samuelson (1965) and others proposed option valuation

formulas that were very close to those proved by Fisher Black and Myron Scholes (1973) and Robert Merton (1973).

In 1997, Scholes and Merton received the economics prize in memory of Alfred Nobel for their work (Black died just

a few months before the Nobel committee’s meeting).

Today, quantitative finance typically posits that the prices of certain financial assets such as stocks, bonds, or

even a class of derivatives, are known, and proceeds to value other assets consistently with this information. This

approach differs from the cornucopia of valuation methods, models and theories that are based on structural or
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fundamental factors — for example: DCF1 methods, CAPM2 and other factor models of asset pricing, GARCH3 and

other related econometric models, the microeconomic theory of supply and demand, utility theory, game theory.

The latter are often grouped as “P”-type approaches based on objective or historical factors, in constrast with the

“Q”-type approach used in quantitative finance that takes dynamic hedging and arbitrage techniques into account.

The Q versus P terminology comes from financial probability theory whereby P is the objective probability

measure satisfying the empirical principle that more risk is rewarded by higher expected returns; whereas Q is the

“risk-neutral” probability measure under which investors expect no risk premium. The latter approach is particularly

adapted to derivatives pricing without creating any arbitrage opportunity. Since the 1970s, the volume of derivatives

transactions has soared a hundred times over and a myriad of new “exotic” contracts were created, necessitating

ever more sophisticated Q-type models for their valuation.

In this context, a wide range of multi-asset options whose value depends on the prices of several underlying

assets, have been designed and traded. While the pricing methodology of some contracts such as basket call

options has become relatively consensual4, the valuation of many other multi-asset contracts, including best-of

and worst-of options and dispersion options, requires complex and sophisticated probabilistic models, such as

Gaussian and non-Gaussian copula, local volatility and correlation models, stochastic volatility and correlation, and

their variants with jumps.

The main conclusion of this thesis is that this probabilistic sophistication may not be justified for a large class of

multi-asset options that turn out to be decomposable as a static portfolio of basket calls whose valuation is simpler.

This central theoretical result is demonstrated in Chapters 3 and 4 for dispersion options and all European multi-

asset options with homogeneous payoff, including best-of and worst-of options. Further research will extend this

result to all European multi-asset options regardless of homogeneity, and investigate the case of path-dependent

options whose value depends on the time series of underlying asset prices.

1.2 Organization of this thesis and main results

Chapters 2 to 4 are directly related to the seminal work of Breeden and Litzenberger (1978) and Carr and Madan

(1998) on the pricing and static replication of an exotic option with an ad hoc portfolio of simpler options. This

line of work does not properly fall within the P-Q typology but rather into a third, “model-free” type valid for any

choice of probability measure consistent with the no-arbitrage principle. Below is a summary of our main scientific

contributions:
1Discounted Cash Flow
2Capital Asset Pricing Model
3Generalized Auto-Regressive Conditional Heteroskedasticity
4To this end, large issuers contribute basket call prices to the private “IHS Markit Totem” database on a regular basis, and receive summary

statistics
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Ch.2: The one-dimensional inverse problem of replicating any option with a static portfolio of other options may be

formulated as a first-kind integral equation. Subject to certain mathematical conditions, a solution exists,

is unique, and may be calculated by means of spectral decomposition techniques. The truncated spectral

decomposition possesses interesting properties for fast option pricing.

Ch.3: The multidimensional inverse problem of replicating a dispersion option with a static portfolio of basket

calls may be reformulated as a fractional integral equation. Subject to regularity conditions, a solution

exists, is unique and may be calculated as a fractional derivative of the dispersion payoff. In particular, we

derived solutions for the dispersion call and put options.

Ch.4: The multidimensional inverse problem of replicating a European multi-asset option with homogeneous

payoff by a static portfolio of basket calls may be converted to a Radon transform inverse problem. Subject

to regularity conditions, a solution exists, is unique and may be calculated as an inverse Radon transform.

In particular, we derived solutions for two-asset best-of and worst-of options. In addition, we derived a novel

mathematical formula to calculate the inverse Radon transform, which we applied to generalize the Breeden

and Litzenberger (1978) formula to the joint implied distribution across multiple assets.

Finally, Chapter 5 collates earlier publications that squarely fit within the Q category and explore the linkages

between several sophisticated derivative transactions, namely: the variance swap, whose floating leg is the square

of an asset’s realized volatility; the correlation swap whose floating leg is the average realized correlation between

the returns of multiple assets; and variance dispersion trades that play on the volatility gap between an index and its

constituent assets. In particular, we proved that the correlation swap may be approximately replicated by dynamically

trading zero-cost variance dispersion trades.

1.3 Connection with other theories and scholarly work in management

science

1.3.1 Arbitrage pricing and replication theory

Chapters 2 to 4 are very much related to the fundamental work done by Arrow and Debreu (1954), Ross (1976) and

of course Breeden and Litzenberger (1978), among others. In a finite-state economy with finitely many securities,

Arrow and Debreu proved the existence in complete markets of portfolios replicating state-price securities that each

pay off $1 in a single state of the world and 0 otherwise. In this framework, any state-contingent asset with payoff

vector f may be replicated by a unique portfolio of the primitive securities in quantities φ “ A´1f , where A is the

matrix of payoff vectors of the primitive securities. In the same finite framework Ross showed how an incomplete
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market of primitive assets such as stocks and bonds can be completed by including call and put options written on

these assets.

For the financial mathematician, a natural question here is whether these results may be extended to infinitely

many states of the world. This question is not a purely gratuitous academic exercise: the issue of whether the

world is finite or infinite remains open and the subject of debate among economists, philosophers of physics and

mathematics (e.g., Finetti, 1970). In addition, it is worth noting that even if the world were finite, most scientists

agree that the concept of infinity is fertile for modelling, approximating, simplifying, and generally enhancing our

understanding of the finite world.

With regards to the subject at hand, theoretical studies on infinite-state complete market economies were led by

Bewley (1972) in the countable case, and Green and Jarrow (1987), Mas-Colell (1986) and Nachman (1988) in the

continuous case. It is in this context that Breeden and Litzenberger (1978) showed how the prices of Arrow-Debreu

state-price securities5 may be calculated from call option prices in a one-asset economy with continuous state space

— a key result known in quantitative finance as the implied distribution. Twenty years later, Carr and Madan (1998)

formally proved that virtually any single-asset contingent claim F may be replicated by a continuum of calls and

puts in quantities φ “ F 2. In parallel, many researchers have been investigating the case of incomplete markets

with countably infinite or continuous state space — see Duffie (1996) for an excellent summary of their results and

challenges. Jarrow (1988) and others have also investigated the relationship between APT and CAPM.

Chapter 2 of this thesis shows how the Breeden and Litzenberger and Carr and Madan results may be general-

ized to a continuum of arbitrary “replicant” options augmenting a one-asset economy with continuous state space,

and analyzed and solved within the mathematical theory of integral equations. Remarkably, a necessary condition

for market completeness is that the integral operator G induced by the replicant options must not be compact. How-

ever, partial completeness may be achieved with a compact kernel and, for a potentially large class of contingent

claims F , a unique replicating portfolio φ “ G´1F may then be calculated by spectral decomposition of G.

Chapters 3 and 4 further expand this theoretical approach to multi-asset economies with continuous state space

that are augmented by a continuum of vanilla basket calls6. Work in this direction was initiated by Baxter (1998),

Lipton (2001) and Carr and Laurence (2011). We showed that completeness is achieved for a large class of multi-

asset contingent claims whose payoff is either a radial or a multivariate homogeneous function. More importantly,

for radial payoff we showed that the unique replicating portfolio up to first-order terms and a multiplicative constant

is φprq “
ˆ

d

dr2

ṅ´1
2

rnF 2prq (ch. 3, eq. 7). For homogeneous payoff, it is φ “ R´1 B2F

Bk2 (ch. 4, eq. 1b) where

R´1 is an inverse Radon transform, and in odd dimension7 we showed that it may alternatively be calculated as

φ “ Rpn´1q
1

B2F

Bk2 where Rpn´1q
1 is a differentiation of the direct Radon transform (ch 4, eq. 7). Our novel formula for

5In continuous state space, Arrow-Debreu securities take the more elusive form of Dirac’s delta functions.
6Ross (1976) uses the term “portfolio options” instead of “basket calls” which was coined by practitioners.
7In even dimension, the same formula applies followed by a Hilbert transform.
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R´1 was established by calculating the fundamental solution for R, which is the replicating portfolio for a multi-asset

Arrow-Debreu security (multidimensional Dirac delta function). As an application, we obtained a generalization of

the Breeden and Litzenberger formula for the joint implied distribution across multiple assets (ch. 4, eq. 13).

In addition to all these theoretical contributions, we also derived closed-form formulas for the replication of

standard dispersion calls and puts (radial options), as well as two-asset best-of or worst-of calls and puts. Here, an

important technical caveat is that these particular solutions φ involve generalized functions, such as derivatives of

Dirac’s delta function or pseudofunctions subject to integral regularization.

1.3.2 Multi-asset option pricing

Early work in this area was led by Margrabe (1978) and Longstaff (1990) for exchange options, Stulz (1982), John-

son (1987) and Rubinstein (1991) for two-asset best-of and worst-of options, Kirk (1995) for spread options8. In

terms of numerical methods, finite difference grids for partial differential equations (PDE), Monte-Carlo simulations

and binomial trees were respectively introduced to price single-asset options by Brennan and Schwartz (1977),

Boyle (1977) and Cox, Ross, and Rubinstein (1979). Boyle (1988), Boyle, Evnine, and Gibbs (1989), Kamrad and

Ritchken (1991), Rubinstein (1994b) subsequently extended these methods to multiple underlying assets. Other

popular numerical methods are quadrature techniques, fast fourier transforms (Carr and Madan, 1999), and re-

cently machine learning (e.g. Lokeshwar, Bhardawaj, and Jain, 2019; E, Han, and Jentzen, 2017; Buehler et al.,

2019).

Specifically, Boyle (1988) priced two-asset American worst-of puts using a trinomial tree together with approxi-

mations of the bivariate joint lognormal distribution of terminal asset prices. Kamrad and Ritchken (1991) developed

a more general methodology for any number of state variables based on a multinomial tree. Rubinstein (1994b)

proposed to price two-asset options using binomial pyramids, which he applied to best-of and worst-of options.

Many multi-asset option pricing articles have since been published. Today, the dominant numerical method

to price multi-asset options is Monte-Carlo simulations, particularly in dimensions higher than 3 where PDE grid

and binomial tree methods are stalled by the curse of dimensionality. Recently, machine learning techniques have

gained in popularity for pricing, hedging and trading strategies involving multi-asset options.

1.3.3 Implied distribution and market anticipations

The seminal paper of Breeden and Litzenberger (1978) is cited by 2700 publications and has inspired thousands

more. Notable applications include monetary policy (Malz, 1995; Bates, 1996; Malz, 1997; Söderlind and Svensson,

8On commodities markets, spread options are also known as basis options
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1997); estimation of risk aversion in utility theory (Bliss and Panigirtzoglou, 2004); implied binomial trees and nu-

merical estimates of option-implied probabilities (Rubinstein, 1994a; Jackwerth and Rubinstein, 1996; Dupire, 1994;

Derman and Kani, 1994). We refer the reader to the excellent article by Figlewski (2018) for a thorough review of

scholarly work accomplished on this topic.

1.3.4 Portfolio theory and asset correlation

Chapter 5 is connected to modern portfolio theory spearheaded by Markowitz (1952) and enhanced by many other

influential contributors, including Treynor (1962), Sharpe (1964), Mossin (1966), Lintner (1969), Jorion (1986),

Michaud (1989), Black and Litterman (1992), to name only a few. Prior work on average financial correlation may be

traced back to Aneja, Chandra, and Gunay (1989) who published an early version of the “shortcut formula” (1.5) as

c̄ “ ps2y´Nq{rNpN´1qs where s2y is the variance of a portfolio of N assets in quantities inversely proportional to their

respective volatilities. In financial econometrics, Engle (2002) proposed a dynamic conditional correlation model for

multivariate GARCH processes, while Solnik and Roulet (2000) developed a formula for average correlation that

has an inverse relationship with cross-sectional dispersion.

1.3.5 Implied volatility skew and equity correlation

Chpater 5 is also connected to a large body of research on implied volatility skew in relation to equity correlation.

On the modelling side, Heston (1993) is credited with the first successful option pricing model featuring a correlation

parameter between the underlying asset and its instant volatility. The Heston model produces implied volatility skew

when this parameter is negative, as empirically observed for equities. In empirical studies, Driessen, Maenhout,

and Vilkov (2009) found evidence of high implied correlation versus realized correlation and investigated a corre-

lation trading strategy aiming to monetize the correlation risk premium. The reader is invited to consult their list of

references for further perspective on the scholarly relevance of this topic.

The following paragraphs describe my research interests, their motivation and challenges, together with my

contributions and achievements.

1.4 Static option replication theory (chapters 2 to 4)

Breeden and Litzenberger (1978) and Carr and Madan (1998) have shown that, subject to mild differentiability

conditions, any single-asset option with payoff function F pxq where x ě 0 is the terminal underlying asset price can
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be replicated with a weighted sum of call options paying off maxp0, x´Kq indexed by a continuum of exercise prices

K ě 0. Specifically, they indirectly solved the integral equation:

F pxq a.e.”
ż 8

0

φpKqmaxp0, x ´ KqdK, x P R`. (1.1)

Mathematically this means that ramp functions px ÞÑ maxp0, x ´ KqqKPR` form a spanning set of the space of dif-

ferentiable functions (possibly in a generalized sense), except perhaps for certain values of x whose set has zero

measure. The solution turns out to be simply φpyq “ F 2pyq as recovered by differentiating the integral equation

twice, or integrating by parts, or by means of Taylor’s theorem with remainder in integral form.

1.4.1 Dimension 1

In my 2021 article co-authored with Peter and Andrew and published in Quantitative Finance, presented in Chapter

2 of this thesis, we show how the one-dimensional replication inverse problem (1.1) may be generalized to other

integral kernels Gpx, yq:
F pxq a.e.”

ż 8

´8
Gpx, yqφpyqdy, x P R,

with particular focus on the “straddle kernel” Gpx, yq :“ |x ´ y| which better lends itself to spectral decomposition

as a symmetric and injective kernel. In L2 Hilbert space a solution φ exists and the eigenbasis turns out to be a

modified Fourier basis with interesting properties for fast numerical pricing, particularly in the context of large option

books. Another benefit is that closed-form formulas for the basis options may be derived from the characteristic

function of the underlying asset when the latter is known.

I also investigated the case when the integral kernel corresponds to butterflies Gpx, yq :“ maxp0, c ´ |x ´ y|q
where c ą 0 is a constant. This case turned out to be very technical with many block matrix calculations, but I

ultimately succeeded to derive the eigenbasis.

1.4.2 Dimension n

In my latest two working papers presented in Chapters 3 and 4 of this thesis, I consider the following generalization

to R
n:

F pxq a.e.”
ż
Rn

ϕpyqmaxp0,x ¨ y ´ kqdy, x P R
n, (1.2)

where k is an external parameter, F pxq is the payoff function of a multi-asset option, maxp0,x ¨ y ´ kq is a basket

call option, i.e. a call option on the terminal value of a hypothetical portfolio of the assets with weights y P R
n. This

is a difficult inverse problem due to its multidimensional nature. A major consequence when a solution exists is that
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the price of the multi-asset option is independent from any probabilistic model beyond the pricing of basket calls of

arbitrary weights y, for which there is industry consensus.

Various differentiation techniques allow to convert integral equation (1.2) to a Radon transform inverse prob-

lem of the form

fpxq a.e.”
ż
Rn

φpyqδpx ¨ y ´ kqdy, x P R
n, (1.3)

where δ is Dirac’s delta function and f, φ are functions related to F,ϕ. General inverse formulas exist for the Radon

transform (e.g. Rubin, 2015, pp 175–204), but they involve multidimensional Fourier transforms or spherical integrals

that can be hard to solve. During my investigations, I found out that for a solution to exist at all we must often venture

outside of the realm of absolutely integrable L1 functions posited by standard theory. For example, we may extend

the solution space to generalized functions and pseudofunctions subject to integral regularizations such as Cauchy

principal values or Hadamard finite part.

Solution for radial functions

When the multi-asset option payoff is a radial function F pxq :“ F0p|x|q, I showed how the replication problem (1.2)

may be converted to Radon form (1.3) by radial differentiation with fpxq “ f0p|x|q, f0psq :“ F 2
0 psqs2{k2, s :“ |x|. The

left-hand side being a radial function, the solution φ can be shown to be radial as well and the Radon transform on

the right-hand side collapses to a one-dimensional fractional integral. The solution φ0p|y|q may then be recovered

by fractional differentiation techniques as

φ0prq “

$’’’&’’’%
1

πpn´1q{2

ˆ
d

dr2

˙n´1
2

rnF 2
0 prq, n odd,

2

πn{2
d

dr2

ż r

0

s?
r2 ´ s2

ˆ
d

ds2

˙n´2
2 “

snF 2
0 psq‰

ds, n even.

(1.4)

The above solution is valid for a large class of well-behaved payoff functions F0 that cancel around the origin,

including dispersion calls with payoff F0p|x|q “ maxp0, |x| ´ Kq, but excluding dispersion puts with payoff F0p|x|q “
maxp0,K´|x|q. I overcame this limitation by isolating first-order terms which turn out to be replicable by a continuous

portfolio of zero-strike basket calls with normalized basket weights, and obtained explicit solutions for the dispersion

put.
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Solution for multi-asset options with absolutely homogeneous payoff

When the multi-asset payoff function F px; kq is absolutely homogeneous and also depends on external parameter

k, I showed that the solution φ may be calculated by Fourier transform methods as

φpyq “
«

|t|n´1
~B2F

Bk2 pty; kq
ff^

pλq
ˇ̌̌̌
ˇ
k“λ“1

where the ^,_ symbols respectively denote the one-dimensional direct and n-dimensional inverse Fourier trans-

forms. I applied this formula to successfully derive replication identities for two-asset best-of call and put options,

as well as worst-of. I also derived an analytical formula for the Radon transform inverse which I used to obtain an

explicit formula for the implied joint distribution.

1.5 Fundamentals of correlation matrices and dynamic replication of cor-

relation swaps with variance dispersion trades (Chapter 5)

1.5.1 Mean correlation

In various pieces of research (2004, 2005, 2014) collated in Chapter 5 of this thesis, I studied correlation matrices

R “ pρi,jq1ďi,jďn and two associated entry-wise means frequently used in econometrics and finance, respectively

the off-diagonal and full-matrix mean coefficient defined as

$’’&’’%
ρpxq :“ }x}2R ´ |x|2

px ¨ eq2 ´ |x|2 , cos zpx, eq ‰ 1{n;

ρ̂pxq :“ }x}2R
px ¨ eq2 , x M e,

x P R
n,

where }x}R :“ ?
x ¨ Rx is the quadratic norm induced by the correlation matrix R, and e :“ p1, ¨ ¨ ¨ , 1q is the first

diagonal vector of Rn. A special case of interest in finance is when the weights x are market capitalizations multiplied

by asset volatilities, giving the “shortcut formula”

ρpxq “ σ2
P ´ ř

i w
2
i σ

2
i

př
i wiσiq2 ´ ř

i w
2
i σ

2
i

, xi “ wiσi, (1.5)

where σP is portfolio volatility and
ř

i wi “ 1. Remarkably, the computational complexity of the formula is only Opnq
compared to the original definition of ρpxq which is Opn2q.

Mathematically, correlation matrices are characterized by being symmetric, positive-semidefinite with unit diago-

nal coefficients. In the context of finance and economics, they are often structured around one very large eigenvalue
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with transversal eigenvector (“the market”), while all other eigenvalues are small (“random noise”) — e.g. Potters,

Bouchaud, and Laloux (2005). During my initial empirical investigations I observed that, for large enough n ě 20

and non-pathological weights x, the difference between the two correlation means ρ and ρ̂ was small. I then showed

that ρpxq „ ρ̂pxq as n Ñ 8 by various methods. From a practitioner’s perspective, this property translates into the

correlation proxy formula that I found in January 2004 as a young analyst at J.P. Morgan in London:

ρ « σ2
P

σ̄2

where σP is portfolio volatility and σ̄ :“ ř
i wiσi is average volatility of constituents. Impact of this result on the

financial industry can be observed by its subsequent dissemination in specialist literature9.

Mathematically, I found that mean correlation is straightforwardly related to Rayleigh’s quotient Rpxq :“
}x}2R{|x|2. Specifically,

ρ̂pxq “
1
nRpxq
cos2 θ

, ρpxq “
1
nRpxq ´ 1

n

cos2 θ ´ 1
n

,

where θ :“ arccos x¨e
|x||e| is the angle in r0, πq between vectors x and e. Based on the above, I obtained that the speed

of convergence of ρ to ρ̂ is at least Op1{nq.

In ongoing research I use spectral decomposition to investigate the difference ρpxq ´ ρ̂pxq which can be re-

expressed as ρ̂pxq ´ ρ̂pyq for a suitable choice of y P R
n. Specifically, I proved that

ˇ̌̌̌
ˇρ̂pxq ´ ρ̂pyq ´ λn

n

˜
cos2 {px, vnq
cos2 zpx, eq

´ cos2 {py, vnq
cos2 zpy, eq

¸ˇ̌̌̌
ˇ ď λn´1|a||b| sin {pa, vnq sin {pb, vnq

where λ1 ď ¨ ¨ ¨ ď λn are the eigenvalues of R with associated orthonormal eigenvectors v1, . . . , vn, and a, b :“
x{x ¨ e ˘ y{y ¨ e. I believe this inequality can be further improved.

1.5.2 Arbitrage pricing and dynamic replication of correlation swaps

In various industry papers and in my book (2005, 2007, 2014), I showed how correlation swaps may be dynamically

replicated by continuously trading zero-cost variance dispersion trades. Specifically, a correlation swap is a forward

contract on mean correlation with payoff (equal to profit or loss, p/l):

p/lcorrel :“ ρ ´ K “
ř

iăj wiwjρi,jř
iăj wiwj

´ K

9Citation standards are relatively informal in the industry, and as a result my 2004 proxy formula is often stated without attribution, or attributed
to other authors of posterior publications such as the 2005 marathon report on “Correlation vehicles” written by my J.P. Morgan colleagues Nick
Granger and Peter Allen. As a matter of fact, there is no intellectual property on specific mathematical formulas or their derivations, which is
probably for the better of research productivity.
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where K P R is a fixed strike price, w P p0, 1qn is a vector of weights summing to 1, and ρi,j is Pearson’s correlation

coefficient of daily returns between any two underlying assets 1 ď i, j ď n. The p/l on variance dispersion trades,

on the other hand, is

p/lvardisp “ σ2
P ´ ρ1 ˆ

ÿ
i

wiσ
2
i ´ Kρ1 (1.6)

where σP is portfolio volatility,
ř

i wiσ
2
i is average constituent variance, ρ1 ą 0 is a constant corresponding to a “leg

ratio” and Kρ1 P R is a fixed residual cost. A zero-cost trade is thus obtained by choosing

ρ1˚ “ σ˚2
Př

i wiσ
˚2
i

where σ˚̈ :“ a
Epσ2¨ q denotes the fair price of variance. The above formula defines a variance-based alternative

metric for mean correlation which satisfies 0 ď ρ1 ď ρ by Jensen’s inequality. Substituting σ2
P “ ρ1 ˆ ř

i wiσ
2
i into

equation (1.6) and factoring yields

p/lvardisp “ pρ1 ´ ρ1˚q ˆ
ÿ
i

wiσ
2
i

which is positive (profit) if historical correlation ρ1 is greater than the price of correlation ρ1˚, and negative otherwise

(loss). As such, the p/l of a zero-cost variance dispersion trade is simply that of a correlation swap10 multiplied by

mean constituent variance
ř

i wiσ
2
i . Figure 1.1 shows how the correlation alpha has been historically attractive and

persistent for the Dow Jones EuroStoxx 50 and S&P 500 indices.

Based on this observation, I showed that a correlation swap can be dynamically replicated by continuous trad-

ing of zero-cost variance dispersions. In essence, my dynamic trading strategy cancels the exposure to mean

constituent variance in order to isolate pure correlation exposure.

Figure 1.1: Historical correlation alpha. Data sources: OptionMetrics, Bloomberg, Ogee Group.

1.1a. 6-month variance-based implied correlation (blue) versus real-
ized correlation 6 months later (orange), EuroStoxx 50, 2002–2013

1.1b. 12-month at-the-money implied correlation (blue)
versus realized correlation 12 months later (orange), S&P
500, 2001–2017

10In practice, correlation swaps trade at a substantial discount against implied correlation, in large part because they are very difficult to
replicate. Correlation arbitrageurs looking to sell correlation will typically prefer to trade variance dispersion.
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1.6 Other research themes (not included in this thesis)

1.6.1 Delta of variance swaps

In a short working paper and conference presentation I investigated the “delta” of a variance swap, that is, the price

sensitivity of variance against the underlying asset. By Carr and Madan (1998) theory, the variance swap has a

“model-free” price based on vanilla calls and puts, and its delta may be calculated accordingly; but note however

that the call and put delta calculation is model-dependent. Remarkably, the variance delta can be shown to vanish for

a wide class of option pricing models, namely scale-invariant models. This counter-intuitive result that goes against

the well-known empirical principle that “when stock prices go down, volatility goes up” suggests that scale-invariant

models should not be used to calculate the delta of a variance swap.

1.6.2 Multidimensional scale invariance

In ongoing research I extended the concept of scale-invariance to a multidimensional setting, and made a minor

correction to a theorem by Alexander and Nogueira (2007) for which I offered a new proof.

Definition. pXtqtě0 is a scale-invariant process when its joint cumulative distribution function is homogeneous of

degree zero, that is, for all a,x P R
n` and λ, t ą 0,

PpXt ď λx |X0 “ λaq “ PpXt ď x |X0 “ aq.

Theorem. Given a European option with maturity T and homogeneous payoff GpXT ,Kq of degree11 k P R with

value gtpa,x,Kq :“ ErGpXT ,Kq |Xt “ x,X0 “ as , 0 ď t ď T ,

1. If pXtq is scale-invariant, then the option value gtpa,x,Kq is also homogeneous of degree k for all 0 ď t ď T .

2. Conversely, if the option value gtpa,x,Kq is homogeneous of degree k for all 0 ď t ď T and the payoff function

Gpx,Kq induces an injective adjoint integral operator, i.e. the homogeneous integral equation of the first kind

0 “
ż
Rn`

Gpx,Kqφpxqdx, K P R
n`,

only has the trivial solution φ ” 0, then pXtq0ďtďT is a scale-invariant process.

11That is, for all λ ą 0, GpλXT , λKq “ λkGpXT ,Kq.
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1.6.3 Spreadsheet compiler

I created an algorithm to compile a spreadsheet into a procedural language such as C or VBA, which can be used to

considerably speed up the Monte-Carlo method compared to iterated spreadsheet recalculation. A demo is available

from my company website. A conspicuous application in finance is the pricing of multi-asset options, but there are

other possible applications12. The example below illustrates my procedure.

In the spreadsheet shown in Figure 1.2a, cell C4 depends on three parents cells B3, A2 and C2; cell B3 itself

depends on A2 and C2; and so forth. This type of interdependence is best modelled by a simple graph, as shown in

Figure 1.2b. With a recursive algorithm I assign a computation rank so as to translate the graph into a step-by-step

procedural script. It is worth emphasizing that “real-life” spreadsheets can have very complex cell dependencies

whose computation ranks cannot simply be read from left to right as in the example.

Figure 1.2: A sample spreadsheet and the graph of its cell dependencies
1.2a. Spreadsheet

1.2b. Dependency graph

12Applications of graph theory in economic and social sciences include optimal transport costs and economic networks (e.g., Naimzada,
Stefani, and Torriero, 2009).
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Bossu, Sébastien (2005). Arbitrage pricing of equity correlation swaps. Tech. rep. J.P. Morgan.

— (2007). A New Approach For Modelling and Pricing Correlation Swaps. Tech. rep. Dresdner Kleinwort.

— (2014). Advanced Equity Derivatives. Volatility & Correlation. John Wiley & Sons.
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The replication of any European contingent claim by a static portfolio of calls and puts with strikes
forming a continuum, formally proven by Carr and Madan [Towards a theory of volatility trading.
In Volatility: New Estimation Techniques for Pricing Derivatives, edited by R.A. Jarrow, Vol. 29,
pp. 417–427, 1998 (Risk books)], is part of the more general theory of integral equations. We use
spectral decomposition techniques to show that exact payoff replication may be achieved with a
discrete portfolio of special options. We discuss applications for fast pricing of vanilla options that
may be suitable for large option books or high frequency option trading, and for model pricing when
the characteristic function of the underlying asset price is known.

Keywords: Derivatives; Options; Static replication; Payoff; Integral equation; Functional analysis;
Spectral theorem; Breeden-Litzenberger formula; Implied distribution

1. Introduction

We consider the general problem of replicating a target Euro-
pean option† with a static portfolio of cash, the underlying
asset and a selection of ‘replicant’ European options. Repli-
cation problems arise in many areas of finance, such as in
asset pricing theory where an asset is replicated with a finite
number of other assets (e.g. Černý 2016, ch. 1, 2) using the
techniques of finite-dimensional linear algebra, or option pric-
ing theory, where Carr and Madan (1998) formally proved that
any European option may be replicated with a portfolio of
cash, forward contracts, and European call and/or put options
with a continuum of strike prices. A key consequence of pay-
off replication is that if the prices of the replicating options
are known, then the price of the target European option is also
known and enforced by no-arbitrage considerations.

Specifically, given a target European option’s payoff F(x)
to be replicated, where x ∈ X ⊆ R+ is the terminal price of
the option’s underlying asset, and a family of replicating Euro-
pean options’ payoffs G(x, y) indexed by y ∈ Y ⊆ R, we are
looking for portfolio quantities or weights such that, for all
x ∈ X ,

F(x) = c + q x +
∫

y∈Y
G(x, y)φ(y) dμ(y), (1)

*Corresponding author. Email: sbossu@nyu.edu
† We use the term ‘option’ to designate any derivative contract, also
known as ‘contingent claim’, on a single underlying asset

where c, q and φ(y) are the respective quantities of cash,
underlying asset and replicating option with index y, and
μ is an appropriate measure. In particular, if Y is discrete
and μ is the counting measure, the above equation becomes
F(x) = c + q x +∑y∈Y G(x, y)φ(y) or, with the more habit-
ual subscript notation for discrete sums,

F(x) = c + q x +
∑
n∈Y

φnGn(x).

We will especially focus on the case where both variables x, y
belong to a continuous interval such as [a, b] or (a, b) where
a, b ∈ R ∪ {−∞, ∞} may be infinite, and μ is the Lebesgue
measure, so that we may write equation (1) as

f (x) =
∫ b

a
G(x, y)φ(y) dy, (2)

where f (x) := F(x) − c − q x is the target payoff function
F(x) up to affine terms. Observe that the second and higher
derivatives of f and F coincide.

The origin of the Carr-Madan replication formula may be
traced back to the seminal paper of Breeden and Litzen-
berger (1978) who showed that the terminal distribution of
the underlying asset implicit in option prices, also known as
the implied distribution, could be recovered by differentiat-
ing call prices twice with respect to the strike price. This
elegant theoretical result allowed pricing any other Euro-
pean option payoff consistently with existing vanilla options.

© 2020 Informa UK Limited, trading as Taylor & Francis Group
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However, it was not until the 1990s that practitioners and
researchers became particularly interested in replication and
hedging strategies for non-vanilla option payoffs, on the back
of the expansion of option markets and the search for option
contract innovation. Evidence of such interest can be found in
the work of Dupire (1993), as well as Derman et al. (1994)
who discuss especially static replication of barrier options.

Much research (e.g. Demeterfi et al. 1999) has been
devoted to the static replication of the log-contract first intro-
duced by Neuberger (1990), leading to the development of
volatility and variance swap markets. In this context, Carr and
Madan (1998) offered a general replication result that did not
solely apply to the log-contract and was also probability- and
model-free. To this day, option practitioners refer to the idea
that any European option payoff can be replicated with a con-
tinuous portfolio of vanilla calls and puts as the ‘Carr–Madan
result’. Its most visible impact may be seen in the new cal-
culation methodology of the VIX (see The CBOE volatility
index–VIX 2009), which was adopted in 2002 by the Chicago
Board Options Exchange.

In other related literature, Carr and Wu (2013) consider the
static hedging of a longer-dated vanilla option using a con-
tinuum of shorter-term options. Balder and Mahayni (2006)
expand on this work and explore various discretization strate-
gies when the strikes are pre-specified and the underlying
price dynamics are unknown, and recently Wu and Zhu (2017)
propose a model-free strategy of statically hedging options
with nearby options in strike and maturity dimensions. Madan
and Milne (1994) price options under a Gaussian measure
using Hermite polynomials as a basis. Carton de Wiart and
Dempster (2011) use wavelet theory for partial differential
equations used in derivatives pricing. Papanicolaou (2018)
expresses a consistency condition between SPX Stochastic
Volatility and VIX Market Models as an integral equation
and solves it using an eigen series decomposition. Di Tella et
al. (2019) find a sparse set of tradeable assets for semi-static
hedging under a variance-optimal loss criterion.

Our ambition for this paper is to show the relevance and
usefulness of functional analysis tools and concepts in the
context of payoff replication. We establish that perfect repli-
cation can be achieved with a discrete portfolio of special
options forming an orthogonal eigensystem, rather than a con-
tinuous portfolio of vanilla options with overlapping payoffs.
In practice, a satisfactory approximation may be achieved
with a smaller number of these special options compared with
integral discretization schemes, and for some target options
including vanillas our approach is more accurate than existing
Fourier series methods.

The remainder of our paper is organized as follows: In
section 2, we show that the Carr–Madan result is part of the
general theory of integral equations. In section 3, we present
key results of the theory about the existence and uniqueness
of solutions, with particular focus on spectral decomposition
within Hilbert spaces. In section 4, we proceed with the spec-
tral decomposition of the ‘straddle kernel’, and we interpret
our results in terms of option replication in section 5. In
section 6, we propose a numerical application for fast pric-
ing of vanilla options. In section 7, we propose a theoretical
application to derive pricing formulas when the characteris-
tic function of the underlying asset price is known. Finally,

in section 8 we consider the case of the ‘butterfly kernel’
and derive equations for its eigensystem that may be solved
numerically. Section 9 concludes.

2. Carr–Madan as part of the theory of integral
equations

In functional analysis, equation (2) is known as a Fredholm
linear integral equation of the first kind, and G(x, y) is called
the integral kernel or, with slight abuse of terminology, the
integral operator. A shorthand notation for the equation is
often f = 〈G, φ〉 or simply f = Gφ. When f (x) is identi-
cally zero the equation is called homogeneous; otherwise it
is called inhomogeneous. Many authors further categorize
an integral equation as singular when it has a convergent
improper integral, as in equation (2) when either bound a, b is
infinite.

Many integral kernels that are relevant to finance vanish
for y ≥ x or y ≤ x, in which case equation (2) respectively
simplifies to

f (x) =
∫ x

a
G(x, y)φ(y) dy, or f (x) =

∫ b

x
G(x, y)φ(y) dy.

These equations are known as a Volterra integral equations
of the first kind and they have special properties and methods
(e.g. Polyanin and Manzhirov 2008, ch. 10, 11).

We will see in section 3 that solving equation (2) is con-
siderably easier when the integral kernel G(x, y) is symmetric
and injective, as defined later. Table 1 lists several examples
of kernels that are relevant to quantitative finance and indi-
cates whether they are symmetric and/or injective. Note that,
to a degree, log contracts and options trade on derivatives
markets as options, futures and swaps on VIX and real-
ized variance. Note also that, thanks to the development of
electronic option markets, many option strategies combining
vanilla options, such as straddles or butterfly spreads, quote
and trade directly on dedicated platforms usually known as
complex order books.

2.1. Carr–Madan kernel

The kernel G(x, y) := (x − y)+ corresponds to the payoff
replication problem with call options of various strike prices
y ∈ Y . When all strike prices form the continuum Y = R+,
the solution to equation (2) is then φ(y) = f ′′(y) as shown by
Carr and Madan (1998) using standard calculus techniques.
In fact, this solution can be viewed as a corollary of Taylor’s
theorem with remainder in integral form,

F(x) = F(0) + F ′(0)x +
∫ x

0
(x − t)F ′′(t) dt.

Substituting (x − t)+ which is identically zero for t > x yields
the Carr–Madan formula at origin:

F(x) = F(0) + F ′(0)x +
∫ ∞

0
(x − t)+F ′′(t) dt.
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Table 1. Examples of integral kernels†

European option payoff kernels
Kernel G(x, y), x, y > 0 Symmetric Injective

Forward contracts x − y No No
Calls and puts (x − y)+, (y − x)+ No Yes
Straddles |x − y| Yes Yes
Powers of the above G(x, y)c

Strangles (|x − y| − c)+ Yes Yes (1/c ∈ 2N)

Butterfly spreads (c − |x − y|)+ Yes Yes
Binary options H(x − y), H(y − x) No Yes
Risk reversals (x − y − c)+ − (y − x − c)+ No Yes (1/c ∈ 2N)
Log contracts ln x/y No No
Log calls and puts (ln x/y)+, (ln y/x)+ No Yes

Mathematical kernels
Kernel G(x, y), x, y ∈ R Symmetric Injective

Power xy, x, y > 0 No Yes

Gaussian
1√
2π

e−(x−y)2/2 Yes Yes

Laplace transform e−xy Yes Yes
Fourier transform e−2iπxy Yes Yes

† c > 0 is a constant parameter, H(·) is Heaviside’s step function, and i is the imaginary number.

The general Carr–Madan formula involves both call and put
options whose strike prices are respectively above or below
an arbitrary split level x0 ≥ 0:

F(x) = F(x0) + F ′(x0)(x − x0) +
∫ x0

0
F ′′(y)(y − x)+ dy

+
∫ ∞

x0

F ′′(y)(x − y)+ dy. (3)

Observe how the second term F′(x0)(x − x0) corresponds to
a long or short position in forward contracts with deliv-
ery price x0. A convenient choice for practical applications
is to set x0 to the underlying asset’s current forward price
(respectively its current spot price), in which case all call
and put options are out-of-the-money-forward (respectively
out-of-the-money-spot).

The Carr–Madan formula (3) may be viewed as the solution
φ(y) = f ′′(y) to the integral equation (2) with target func-
tion f (x) := F(x) − F(x0) − F ′(x0)(x − x0) and Carr-Madan
kernel

G(x, y; x0) := (x − y)+H(y − x0) + (y − x)+H(x0 − y), (4)

where H(·) is Heaviside’s step function. An alternative proof
to Taylor’s theorem is to carefully differentiate both sides
of equation (2) twice, either with the help of Dirac’s delta
functions or by invoking Leibniz’s integral rule.

2.2. Alternative expression

It is worth noting that the Carr–Madan kernel (4) may be
rewritten as

G (x, y; x0) = (x − y) [H(x − y) − H(x0 − y)] ,

by substituting H(y − x0) = 1 − H(x0 − y) and then (x −
y)+ − (y − x)+ = x − y into equation (4). Substituting the

above into (2), we obtain the Volterra equation of the first
kind,

f (x) =
∫ x

x0

(x − y)φ(y) dy,

which is forward for x > x0 and backward for x < x0.

2.3. Limitations

The Carr–Madan formula has two major limitations:

(1) In practice, only a finite number of vanilla option
strikes are available and the formula must be dis-
cretized accordingly. Hedging is imperfect and approx-
imation errors get in the way.

(2) In the theory of integral equations, the Carr–Madan
kernel G(x, y; x0) (equation (4)) is not symmetric and
does not have an orthonormal decomposition.

In this paper we address the above limitations by substi-
tuting the ‘better’ straddle kernel G(x, y) := |x − y| which
is symmetric and therefore admits an orthonormal decom-
position. This kernel remains tractable in terms of practical
applications as it corresponds to the family of all straddles
with a continuum of strikes y ∈ R+. Moreover, the follow-
ing identity shows that the straddle kernel has a one-to-one
correspondence with the Carr–Madan kernel:

G(x, y; x0) = |x − y|
2

+ x − y

2
[H(y − x0) − H(x0 − y)] .

This identity is straightforwardly established by substituting
(±u)+ = (|u| ± u)/2 into equation (4).
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3. Existence and uniqueness of solutions

3.1. Solving first-kind Fredholm equations

Early theory for integral equations was developed by
Volterra (1896), Fredholm (1903), Hilbert (1904), Schmidt
(1907), Riesz (1916). It turns out that first-kind Fredholm
equations are very much related to second-kind equations,

f (x) = λφ(x) −
∫ b

a
G(x, y)φ(y) dy,

where λ is a nonzero complex parameter† .
Much of the literature about integral equations is dedicated

to the theoretical and numerical resolution of second-kind
equations with a continuous kernel operating on continuous
or square-integrable functions. Famously, the Fredholm alter-
native states that, for any λ �= 0, either the homogeneous
Fredholm integral equation of the second kind,

0 = λφ(x) −
∫ b

a
G(x, y)φ(y) dy,

has a nontrivial solution φ �≡ 0 and λ is called an eigenvalue,
or the inhomogeneous equation,

f (x) = λφ(x) −
∫ b

a
G(x, y)φ(y) dy,

always has a unique solution for any f (x) and λ is called a reg-
ular value. Note that when λ is an eigenvalue, the second-kind
inhomogeneous equation has either no solution or infinitely
many solutions.

First-kind equations can be significantly more challenging
to solve. It is worth emphasizing that there may be no solution
at all, and that the theory about the existence and uniqueness
of solutions is very limited compared to the Fredholm alter-
native available for second-kind equations. Fundamentally,
the difficulty for finding a solution results from the smooth-
ing property of integration. To illustrate this point, consider
a well-behaved continuous kernel G(x, y) and an input func-
tion φ(y) that is only piecewise continuous. The resulting
output

∫ b
a G(x, y)φ(y) dy will be smoother than φ(y). There-

fore, if f (x) is a continuous target function, it is very possible
that solutions φ(y) are all discontinuous, and that no solution
exists within the class of continuous functions (e.g. section 8
and figure 6.

This observation is relevant to our payoff replication prob-
lem wherein a continuous solution is neither required nor
expected; in fact, we will be mostly interested in square-
integrable solutions.

3.2. Formal framework

Let E denote the infinite-dimensional vector space of the
payoff functions under consideration, such as C([a, b]) or

† Observe that when λ = 0 we have a first-kind equation.

L2([a, b]). Define the linear operator:

G : E → E
φ �→ Gφ : x �→ ∫ b

a G(x, y)φ(y) dy.

With these notations, the first-kind linear integral equation (2)
may be written as Gφ = f . The existence of solutions for all
f ∈ E then corresponds to G being a surjective operator, i.e.
G(E) = E, while the uniqueness of any solution corresponds
to G being an injective operator, i.e. G−1(0E) = {0E} where 0E

is the null function of E.
A standard theoretical requirement is for G to be a com-

pact operator (see Kress 2014, pp. 25—6, for a formal
definition). It turns out that compact operators are never sur-
jective (Kress 2014, pp. 297—8), and thus there always are
infinitely many target functions f ∈ E for which the first-kind
equation has no solution at all. In contrast, the identity oper-
ator I : E → E, φ �→ φ is trivially surjective and thus never
compact (Kress 2014, p. 27), and it can be shown that the
second-kind operator λI − G, λ �= 0 is surjective if and only
if it is injective (Kress 2014, p. 38). Within this framework,
the Fredholm alternative translates into a discussion whether
λI − G is injective.

On the topic of eigenvalues, it is worth noting that three
classic important properties from finite-dimensional linear
algebra extend to infinite-dimensional Hilbert spaces E:

(1) For a large class of integral operators, the series of
eigenvalues

∑
λn converges to the operators’s trace∫ b

a G(x, x) dx (Lax 2002, p. 329).
(2) Perron-Frobenius theorem: if the integral operator G

is positive‡ , it has a positive eigenvalue which is the
largest in absolute value among all eigenvalues, and its
eigenfunction is positive (Lax 2002, p. 253).

(3) Mercer’s theorem: if the integral operator G is sym-
metric and satisfies

∫ b
a

∫ b
a φ(x)G(x, y)φ(y) dx dy ≥ 0

then it is a positive-semidefinite operator and all its
eigenvalues are nonnegative (Lax 2002, p. 343).

3.3. Spectral decomposition of continuous symmetric
kernels

When the vector space of payoff functions is the Hilbert
space of square-integrable functions on a finite segment E =
L2([a, b]), the linear map G corresponding to the square-
integrable kernel G ∈ L2([a, b] × [a, b]) is called a Hilbert-
Schmidt integral operator. If the kernel G(x, y) is continuous,
the operator G is always compact and therefore never surjec-
tive, i.e. there always are target functions f ∈ L2([a, b]) for
which the first-kind integral equation Gφ = f has no solution
at all.

By Hilbert-Schmidt theory, when the kernel G(x, y) is con-
tinuous and symmetric, all eigenvalues of G are real and form
a finite or countable subset of R and there is an orthonor-
mal system of eigenfunctions (φn). In practical applications,
we can find all nonzero eigenvalues λn of G and their asso-
ciated eigenfunctions φn by solving the homogeneous inte-
gral equation of the second kind (λnI − G)φn ≡ 0, for which

‡ Here, an operator is positive when the function Gφ is positive for
any nonnegative and nonnull function φ.

26



A functional analysis approach to the static replication of European options 5

numerous methods exist. Moreover, we have the spectral
decomposition (Eidelman et al. 2004, p. 94),

G(x, y) =
∑

n

λnφn(x)φn(y), (5)

where the convergence of the series is understood in
the sense of L2([a, b] × [a, b]). As a corollary,

∑
n λ2

n =∫ b
a

∫ b
a G(x, y)2 dx dy. Substituting the above spectral decom-

position identity (5) into equation (2) we obtain that, when a
solution φ exists, the target function f is attained by a linear
combination of all eigenfunctions φn,

f (x) =
∑

n

λnφn(x)
∫ b

a
φn(y)φ(y) dy.

The financial interpretation of the above equation is that the
target option payoff F(x) discussed in section 1 is perfectly
replicated by a combination of cash and underlying asset
together with a discrete portfolio of independent ‘spectrorepli-
cant’ options, i.e.

F(x) = c + q x +
∑

n

wnφn(x), (6)

where c, q are the quantities of cash and underlying asset, and
wn := λn

∫ b
a φn(y)φ(y) dy is the weight or quantity of the nth

spectroreplicant option paying off φn(x).

3.4. Unique square-integrable solution for continuous,
symmetric and injective kernels

In some cases an explicit solution φ(y) to a first-kind equation
with symmetric kernel may be obtained using non-spectral
techniques, such as the convolution method for difference ker-
nels (e.g. Srivastava and Buschman 2013, ch. 3). However,
many equations do not solve in this manner. Fortunately, the-
ory provides for a criterion about the existence of a unique
solution when the continuous and symmetric kernel G(x, y)
induces an injective integral operator G on the Hilbert space of
square-integrable functions E = L2([a, b]) or E = L2((a, b)).

Indeed, when G is symmetric and injective the orthonor-
mal eigensystem (φn) is complete and therefore a basis of E,
and all eigenvalues are real. Denoting fn := ∫ b

a f (x)φn(x) dx
the coordinates of any target function f ∈ E in the basis, it is
then easy to see that the function

φ(y) :=
∑

n

fn
λn

φn(y)

is a well-defined element of E if and only if the series
∑

f 2
n /λ2

n
converges, in which case it is the unique solution to the first-
kind integral equation f = Gφ.

Note that if G is symmetric but not injective, solutions
exist if and only if the series

∑
λn �=0 f 2

n /λ2
n converges. The

solution set is then the affine space φ̂ + G−1(0E) where
φ̂ :=∑λn �=0 fnφn/λn is unique. In the context of payoff repli-
cation it is worth emphasizing that the nullspace portfolios
φ ∈ G−1(0E) replicate the null payoff and thus always have

zero cost. As such, they do not change the economics of
replicating the target payoff and may be ignored. For ease of
exposition we only consider injective kernels.

4. Spectral decomposition of the straddle kernel

In this section and the following three, we focus on payoff
replication with straddles as replicant options. The corre-
sponding straddle kernel G(x, y) := |x − y|, where y is the
strike price, is continuous and symmetric and thus admits a
spectral decomposition over any finite segment [a, b]. More-
over, there must be at least one negative and one positive
eigenvalue since the kernel trace vanishes:

∫ b
a |x − x| dx = 0.

In fact, since the straddle kernel induces a positive operator,
it must have a positive eigenvalue which is the largest among
all absolute eigenvalues.

For ease of exposure, and without loss of generality, we
first derive the spectral decomposition of the straddle kernel
on the unit interval [a, b] = [0, 1] with corresponding integral
equation

f (x) =
∫ 1

0
|x − y|φ(y) dy, 0 ≤ x ≤ 1.

The decomposition for an arbitrary interval [a, b] is then
straightforwardly obtained through the affine map x �→ a +
(b − a)x and similarly for y. Note that differentiating the
above integral equation twice against x yields the solution
φ(x) = 1

2 f ′′(x) which is unique† . In particular, the homoge-
neous equation only has the trivial solution and thus the kernel
is injective. Furthermore, we can see that when f (x) ≡ 0, i.e.
the target payoff function F(x) is purely affine, the integral
equation only has the trivial solution.

To find the eigensystem we must solve the homogeneous
second-kind equation

λφ(x) =
∫ 1

0
|x − y|φ(y) dy, (7)

for λ �= 0. Again, differentiating twice against x yields that
eigenfunctions must satisfy the homogeneous second-order
linear differential equation

λφ′′(x) = 2φ(x), 0 ≤ x ≤ 1,

whose general solution is of the form{
φ(x) =αe2ωx + βe−2ωx if λ > 0, (8a)

α cos 2ωx + β sin 2ωx if λ < 0, (8b)

where α, β are real coefficients and ω := 1/
√

2|λ| is the semi-
angular frequency associated with λ.

Following the notations of section 3.3 we index eigenele-
ments by nonnegative integers n ∈ N from largest to smallest

† For a formal proof of uniqueness, suppose that φ̃ is another solu-
tion; then

∫ 1
0 |x − y|(φ(y) − φ̃(y)) dy = 0 and differentiating twice

against x yields φ̃ ≡ φ.
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absolute eigenvalue |λn|. In the next section 4.1 we will see
that there is only one positive eigenvalue λ0 which is the
largest among all absolute eigenvalues.

4.1. Eigenfunction associated with the positive eigenvalue

Substituting (8) into equation (7) and simplifying, the strad-
dle integral operator maps an eigenfunction φ0 with positive
eigenvalue λ0 > 0 to

∫ 1

0
|x − y|φ0(y) dy

= λ0

[
φ0(x) + (β − αe2ω

) (
1 + e−2ω

)
ωx

− α

2
e2ω
(
1 − 2ω + e−2ω

)− β

2
e−2ω

(
1 + 2ω + e2ω

) ]
.

(9)

For the remainder terms which are affine in x to vanish we
must have β = αe2ω. After substitution into equation (9) and
simplifications, we obtain that ω must be the only fixed point
of the hyperbolic cotangent ω0 ≈ 1.19968; equivalently, the
only positive eigenvalue of the straddle kernel is

λ0 = 1

2ω2
0

≈ 0.34741.

Finally, solving
∫ 1

0 φ2
0(y) dy = 1 for α we obtain the normal-

ized eigenfunction

φ0(x) =
√

2

cosh ω0
cosh ω0(1 − 2x)

≈ 0.78126 × cosh[1.19968 × (1 − 2x)], (10)

which is a positive function as expected from the Perron-
Frobenius theorem.

4.2. Eigenfunctions associated with negative eigenvalues

Substituting (8b) into equation (7) and simplifying through
trigonometric identities, the straddle integral operator maps
an eigenfunction φn, n ≥ 1 with negative eigenvalue λn < 0
to ∫ 1

0
|x − y|φn(y) dy

= λn

[
φn(x) + 2ω cos ω (α sin ω − β cos ω) x

+
(
βω − α

2

)
cos 2ω −

(
αω + β

2

)
sin 2ω − α

2

]
.

(11)

The remainder terms affine in x vanish when either

(a) β = 0 and ω = (π/2) + kπ , k ∈ Z; or
(b) β = α tan ω, where ω �= (π/2) + kπ , k ∈ Z satisfies

cos ω + ω sin ω = 0, i.e. it is an opposite fixed point
of the cotangent function.

Solving
∫ 1

0 φ2
n(y) dy = 1 for α and simplifying through

trigonometric identities, we obtain the alternating system of
normalized eigenfunctions

φn(x) =

⎧⎪⎨
⎪⎩

√
2 cos nπx if n ≥ 1 is odd,
√

2

cos ωn
cos ωn(1 − 2x) if n ≥ 2 is even,

(12)

where ωn is the only opposite fixed point of the cotangent
function in the interval ((n − 1)π/2, nπ/2) when n ≥ 2 is
even. With the convention ωn := nπ/2 when n ≥ 1 is odd, the
negative eigenvalues λn are indexed from largest to smallest
in absolute value:

λn = − 1

2ω2
n

, n ≥ 1.

4.3. Remarks about the straddle eigensystem

The straddle eigensystem derived in sections 4.1 and 4.2 may
be viewed as a modified Fourier basis of the Hilbert space
L2([0, 1]), with the benefit that the basis is ordered by mag-
nitude of eigenvalues. Additionally, we have the following
properties:

(a) The eigenfunctions φn, n ≥ 1 take positive and nega-
tive values. This may have a numerical benefit when
replicating a target payoff f (x) which is small in
absolute value.

(b) The eigensystem is consistent with the spectral decom-
position of linear and symmetric Toeplitz matrices
(Bünger 2014) which are a discrete version of the
straddle kernel.

(c) All eigenfunctions satisfy φn(0) = √
2 and φn(1) =

(−1)n
√

2.
(d) Since the kernel trace vanishes, we have:

∞∑
k=0

λ2k+2 = 2

π2

∞∑
k=0

1

(2k + 1)2
− λ0

= 2

π2

π2

8
− λ0 ≈ −0.09741.

(e) By definition, for each eigenfunction we have φ′′
n =

2
λn

φn = −4ω2
nφn for n ≥ 1 and φ′′

0 = 4ω2
0φ0.

(f) Asymptotically, when n ≥ 2 is even, we have ωn ∼
nπ/2 as n → ∞. Indeed, inverting the opposite
fixed point equation cot ωn = −ωn produces ωn =
− arccot ωn + (nπ/2), and the inverse cotangent func-
tion is bounded. Therefore, for large n, we have ωn =
nπ/2 if n is odd and ωn ∼ nπ/2 if n is even.

4.4. Spectral decomposition on the unit interval

Substituting the normalized eigenfunction expressions of
equations (10) and (12) into the spectral decomposition
equation (5), and then simplifying, the spectral decomposition
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Table 2. Top 20 eigenvalues and related coefficients of the strad-
dle kernel

n λn (×10−3) ωn cn Err. Norm

0 + 347.4082690 1.199678640 + 0.212046516 0.214416
1 − 202.6423673 1.570796327 − 0.405284735 0.070073
2 − 63.84909579 2.798386046 − 0.144005020 0.028871
3 − 22.51581859 4.712388980 − 0.045031637 0.018071
4 − 13.34411279 6.121250467 − 0.027400487 0.012186
5 − 8.105694691 7.853981634 − 0.016211389 0.009099
6 − 5.758866886 9.317866462 − 0.011650392 0.007045
7 − 4.135558516 10.99557429 − 0.008271117 0.005703
8 − 3.206946639 12.48645440 − 0.006455031 0.004716
9 − 2.501757621 14.13716694 − 0.005003515 0.003998
10 − 2.042994806 15.64412837 − 0.004102685 0.003437
11 − 1.674730308 17.27875959 − 0.003349461 0.003001
12 − 1.415208556 18.79640437 − 0.002838428 0.002646
13 − 1.199067262 20.42035225 − 0.002398135 0.002359
14 − 1.038184585 21.94561288 − 0.002080680 0.002118
15 − 0.900632744 23.56194490 − 0.001801265 0.001917
16 − 0.794086718 25.09291041 − 0.001590696 0.001745
17 − 0.701184662 26.70353756 − 0.001402369 0.001598
18 − 0.627008356 28.23893658 − 0.001255589 0.001470
19 − 0.561336198 29.84513021 − 0.001122672 0.001359

of the straddle kernel on the unit interval [0, 1] is

|x − y| = c0 cosh ω0(1 − 2x) · cosh ω0(1 − 2y)

+
∞∑

k=0

c2k+1 cos[(2k + 1)πx] · cos[(2k + 1)πy]

+
∞∑

k=0

c2k+2 cos ω2k+2(1 − 2x) · cos ω2k+2(1 − 2x),

(13)

where cn are the scaling coefficients:

cn :=

⎧⎪⎨
⎪⎩

1/(ω0 cosh ω0)
2 if n = 0,

−4/(nπ)2 if n ≥ 1 is odd,

−1/(ωn cos ωn)
2 if n ≥ 2 is even.

In table 2, we report numerical estimates of λn, ωn, cn together
with the L2 norm of the running spectral decomposition error†
|x − y| −∑n−1

k=0 λkφk(x)φk(y). Figure 1 illustrates the good-
ness of fit using 1, 2 and 6 eigenfunctions associated with
top eigenvalues. As predicted by the rapidly decaying error
norm, we can see that few eigenfunctions are needed to obtain
a visually excellent fit.

4.5. Spectral decomposition on a finite segment [a, b]

Using affine transformations, it is easy to show that an
orthonormal eigensystem for the straddle kernel defined over

† In the orthonormal eigensystem the error norm is ‖∑∞
k=n λkφk‖ =√∑∞

k=n λ2
k

an arbitrary finite segment [a, b] is simply

(
1√

b − a
φn

(
x − a

b − a

))
, a ≤ x ≤ b, n ≥ 0,

with associated eigenvalues (b − a)2λn, where φn, λn are
defined in sections 4.1 and 4.2. The corresponding spectral
decomposition is then given as

|x − y| = (b − a)c0 cosh ω0

(
1 − 2

x − a

b − a

)

· cosh ω0

(
1 − 2

y − a

b − a

)

+ (b − a)

∞∑
k=0

c2k+1 cos

[
(2k + 1)π

x − a

b − a

]

· cos

[
(2k + 1)π

y − a

b − a

]

+ (b − a)

∞∑
k=0

c2k+2 cos ω2k+2

(
1 − 2

x − a

b − a

)

· cos ω2k+2

(
1 − 2

y − a

b − a

)
,

where the coefficients cn are given in equation (13).

5. Consequences for option replication and pricing

Because equation (2) with straddle kernel has the unique solu-
tion φ(y) = 1

2 f ′′(y) = 1
2 F ′′(y) when it exists, the weights of

the spectroreplicant options in equation (6) may be further
specified as

wn = b − a

2
λn

∫ b

a
φn

(
x − a

b − a

)
F′′(x) dx. (14)

A proxy of order n ≥ 1 for the target payoff is then simply
obtained by the truncation

F̂n(x) := c + qx +
n−1∑
k=0

wkφk(x)

and the L2 norm of the replication error is then given as

||F − F̂n||2 :=
(∫ b

a
[F(x) − F̂n(x)]

2 dx

)1/2

=
√√√√ ∞∑

k=n

w2
k .

To determine the cash and underlying asset quantities c, q we
need two independent conditions. For instance, integrating the
right-hand side of equation (1) by parts and evaluating at the
boundaries x = a, b with straddle kernel G(x, y) := |x − y|,
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Figure 1. Straddle kernel fit with top eigenfunctions. (a) Top eigenfunction. (b) Top two eigenfunctions and (c) Top six eigenfunctions

we obtain

F(a) = c + q a + 1

2

∫ b

a
(y − a)F ′′(y) dy

= c + q a + 1

2

[
(b − a)F′(b) − (F(b) − F(a))

]
,

F(b) = c + q b + 1

2

∫ b

a
(b − y)F ′′(y) dy

= c + q b − 1

2

[
(b − a)F′(a) − (F(b) − F(a))

]
.

Solving for c, q yields

c = 1

2

[
F(a) + F(b) − aF ′(a) − bF ′(b)

]
,

q = 1

2

[
F ′(a) + F ′(b)

]
.

5.1. Benefits for option replication and hedging

Given that the spectroreplicant options induced by the straddle
kernel do not trade, the practical benefits of equation (6) in

terms of hedging are limited in this case. However, our general
framework is not confined to the straddle kernel and leaves
the door open to other symmetric kernels G(x, y) that might
decompose into more practical spectroreplicant options.

Nevertheless, in terms of approximation accuracy, we
found that our spectroreplication approach tends to perform
better than a classical Fourier series decomposition such as
the COS method of Fang and Oosterlee (2009), for at least
two European target payoffs of high practical relevance: the
log contract and vanilla calls. This is a useful property in
view of the pricing applications discussed in the following
sections. For the log contract F(x) := ln x, figure 2(a) shows
that the L2 norm of the error decays more rapidly in our
method than the Fourier series method as the number of terms
n grows, and is more accurate for n ≥ 16 terms. For vanilla
calls F(x) := (x − K)+, figure 2(b) shows that the error norm
of our method is about 42% lower across all strikes with only
n = 10 terms, while table 3 below reports a consistently lower
error norm at various truncation orders n.

We provide below some arguments analyzing the compara-
tive performance of our spectroreplication method against the
Fourier COS series expansion over the unit interval [0, 1]. Let
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(b)

(a)

Figure 2. Comparison of proxy error norms between the spectroreplication and Fourier basis methods. (a) Error norm decay for the log
contract as the truncation order n increases, using [a, b] = [0.01, 1.01] and (b) Error norm at order n = 10 for vanilla calls as a function of
strike 0 ≤ K ≤ 1, using [a, b] = [0, 1].

ψn(x) := cos(nπx) for n ≥ 0, and denote the scalar product of
two functions by 〈f , g〉 = ∫ 1

0 f (x)g(x) dx. The proxies at order
n are

F̂n(x) := c + qx +
n−1∑
k=0

λk

2
〈F ′′, φk〉φk(x),

F̆n(x) := 〈F, ψ0〉 + 2
n−1∑
k=1

〈F, ψk〉ψk(x).

By orthogonality of Fourier basis functions we have
〈F, F̆n〉 = ‖F̆n‖2 and thus ‖F − F̆n‖2 = ‖F‖2 − 〈F, F̆n〉 =

〈F, F − F̆n〉. Similarly, ‖F − F̂n‖2 = 〈F(x) − c − qx, F(x) −
F̂n(x)〉, so that

‖F − F̂n‖2 − ‖F − F̆n‖2

= 〈F(x) − c − qx, F(x) − F̂n(x)〉 − 〈F, F − F̆n〉
= 〈F(x) − c − qx, F̆n(x) − F̂n(x)〉

− 〈c + qx, F(x) − F̆n(x)〉
= 〈F(x) − c − qx, F̆n(x) − F̂n(x)〉

− q〈x, F(x) − F̆n(x)〉, (15)

31



10 S. Bossu et al.

Table 3. Comparison of proxy error norms for
vanilla calls on the domain [a, b] = [0, 1], averaged
across all strikes 0 ≤ K ≤ 1 spaced 0.01 apart, at

various truncation orders n

n Spectroreplication Fourier series Ratio

5 0.0061372 0.010485 0.59
10 0.0018960 0.003265 0.58
15 0.0010996 0.0020171 0.55
20 0.00071673 0.0011074 0.65
25 0.00051208 0.00061407 0.83
30 0.00039795 0.00052633 0.76
35 0.00031651 0.00041700 0.76
40 0.00026859 0.00031527 0.85

whose sign will depend on the particular choice of target
payoff F. In Appendix we show that, for large enough n,

F̆n(x) − F̂n(x) ≈ 〈F, ψ0〉 − c − qx

−
∫ 1

0

[
1

3
+ x2 − (x + y) + y2

2

]
F ′′(y) dy

+ 2
n−1∑
k=1

(−1)kF ′(1) − F ′(0)

(kπ)2
ψk(x).

Substituting into equation (15) and rearranging we get ‖F −
F̂n‖2 − ‖F − F̆n‖2 ≈ A + Bn where

A :=
∫ 1

0
(F(x) − c − qx) (〈F, ψ0〉 − c − qx) dx

−
∫ 1

0

∫ 1

0
(F(x) − c − qx)

×
[

1

3
+ x2 − (x + y) + y2

2

]
F ′′(y) dx dy,

Bn := 2
n−1∑
k=1

(−1)kF ′(1) − F ′(0)

(kπ)2

×
∫ 1

0
(F(x) − c − qx) ψk(x) dx

− q
∫ 1

0
x
(
F(x) − F̆n(x)

)
dx.

Note that the approximate criterion A + Bn is easy to calculate
for any n as it only involves the Fourier proxy F̆n and basis
functions ψk(x) := cos(kπx) and does not require to calculate
the spectroreplicant proxy F̂n(x).

For the log-contract F(x) := ln(x + 0.01) we find A ≈
199.63027 and B30 ≈ −199.63170 giving ‖F − F̂30‖2 −
‖F − F̆30‖2 ≈ A + B30 ≈ −0.00143. This further suggests
that, for large enough n, our spectroreplication approach is
more accurate than the Fourier cosine series.

For the vanilla call F(x) := (x − K)+ we find A =
−(K4/24) + (K2/12) − 1

48 and

B10 = −K3

12
+ K2

8
− 1

24
+ 2.16387

π4

+ 4

π4

[
cos(Kπ) + cos(3Kπ)

81
+ cos(5Kπ)

625

+ cos(7Kπ)

2401
+ cos(9Kπ)

6561

]

− 1

π4

[
cos(2Kπ)

8
+ cos(4Kπ)

128

+ cos(6Kπ)

648
+ cos(8Kπ)

2048

]
.

Figure 3 gives the signed square root of the relative squared
error ‖F − F̂10‖2 − ‖F − F̆10‖2 versus its proxy A + B10 as
functions of strike 0 ≤ K ≤ 1. We can see that both mea-
sures are negative, suggesting again that the spectroreplication
approach is more accurate than the Fourier cosine series.

5.2. Benefits for option pricing

When equation (6) holds and all relevant quantities converge
in L2, the price of the target option is simply given as

F = c + qX +
∞∑

n=0

wn	n, (16)

where F, X are the respective prices of the target option and
underlying asset, 	n is the price of the nth spectroreplicant
option, and all prices are forward (i.e. paid on the common
maturity date.) The above pricing equation can be established
using classical arbitrage arguments under the assumptions that
short-selling and the instant trading of infinitely many securi-
ties are both feasible. In practice, just as with the Carr–Madan
formula, the latter assumption is not realistic and must be mit-
igated by selecting a finite number of replicant options. For
example, a proxy of order n ≥ 1 based on the largest absolute
eigenvalues would be

F̂n := c + qX +
n−1∑
k=0

wk	k . (17)

The key benefit of equation (17) compared to a discretization
of the Carr–Madan formula is that spectroreplicant options
are orthogonal in the sense of the scalar product 〈f , g〉 =∫

f (x)g(x) dx. In contrast, the continuum of call and put
replicants in Carr–Madan are very codependent due to their
overlapping payoff functions. This suggests that, for non-
pathological target payoff F(x), a limited number n of spec-
troreplicant options is enough to achieve satisfactory pricing
accuracy.

An obvious practical disadvantage of equation (17) is that
the fair prices (	k)0≤k≤n of spectroreplicant options must
be discovered by another method. In this regard, we may
distinguish between:

32



A functional analysis approach to the static replication of European options 11

Figure 3. Comparison between exact and proxy relative squared error at order n = 10 for the vanilla call F(x) := (x − K)+, as functions of
strike 0 ≤ K ≤ 1

(1) A model-based option pricing method, as shown in
section 7;

(2) A model-free option pricing method, such as the Carr–
Madan formula for option prices, either discretized
along listed option strikes as shown in section 6 or
using a numerical integration scheme together with the
Black and Scholes (1973) formula and a model of the
implied volatility smile.

Here, we must pause to dissipate any concern of circu-
larity within the second approach: if we price spectrorepli-
cant options using the Carr–Madan formula, do we not end
up where we started and effectively price the target option
using the Carr–Madan kernel? This would be true if we
used infinitely many spectroreplicants, but the key benefit
of equation (17) is that only a small number n of spec-
troreplicants is required to achieve satisfactory accuracy. In
a practical implementation, the fixed weights wk and the fair
spectroreplicant prices 	k need only be precomputed once;
then, for each target option in the book with specific pay-
off F(x), computing the proxy price F̂n only requires n + 3
multiplications and additions.

As an illustration, consider a vanilla option market with
200 listed strikes, and an option book of 1000 exotic Euro-
pean options. Pricing each exotic option individually costs
200 operations using the discretized Carr–Madan formula, for
a total of 200,000 operations for the entire book. In contrast,
precomputing 20 spectroreplicant option prices costs 4000
operations, and then pricing all exotic options in the book
using equation (17) only costs 20,000 operations, for a grand
total of 24,000 operations — an 88% gain in efficiency.

This gain of speed is likely to be very relevant for elec-
tronic market-making, risk management of large portfolios
of options or high frequency option trading. Moreover, the
computational cost of refreshing the prices 	k throughout the
trading day can be mitigated using Greek sensitivities.

6. Numerical application: fast vanilla option pricing

6.1. Proxy formula for vanilla option prices

For the vanilla call target payoff F(x) := (x − K)+ where K
is the strike price, the second-order derivative is Dirac’s delta
function F′′(x) = δ(x − K); substituting into equation (14) we
obtain the proxy formula for the call price

ĉn(K) = X − K

2
+

n−1∑
k=0

wk(K)	k , (18)

with weights

wk(K) = b − a

2
λkφk

(
K − a

b − a

)
.

Similarly, the put proxy formula is given as

p̂n(K) = K − X

2
+

n−1∑
k=0

wk(K)	k

with the same weights wk(K).

Table 4. Spectroreplicant option prices for the
S&P 500 option market as of 20 November 2018

n 	n n 	n

0 0.9636258443 10 − 0.2156408037
1 − 1.010953323 11 0.2308846696
2 − 0.08605859769 12 − 0.1771790305
3 0.562828561 13 0.09907369714
4 − 0.8733519895 14 − 0.02579248218
5 0.682335075 15 − 0.03158846323
6 − 0.3531713684 16 0.05740449608
7 0.08321391368 17 − 0.06505514540
8 0.1384173306 18 0.05272523143
9 − 0.2156408037 19 − 0.03139028403
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6.2. Numerical results

We repriced 30-day out-of-the-money options on the S&P
500 index using the top 20 spectroreplicant options, based
on sample bid and offer data as of 20 November 2018.
We report the spectroreplicant option prices 	k in table 4
obtained with a VIX-style discretization of the Carr–Madan
formula (3). Then, we compute the proxy option prices for
strike prices ranging from a = 1225 to b = 3075 using the
formulas above.

In figure 4(a) we plot our results for listed strikes between
1225 and 3075 on a scale from 0 to 1, where 0 corresponds
to the market bid and 1 corresponds to the market offer price.
Remarkably, all but two proxy option prices lie within the bid-
offer range.

A valuable additional benefit of the spectral decomposition
method is to provide a natural ‘fit’ of the implied volatility
smile for arbitrary strikes a ≤ K ≤ b. In figure 4(b), we show
our results in the slightly extended range [1000, 3300]. We can
see that the fit is visually pleasing and the extrapolated values
on the left and right regions of the chart look plausible.

6.3. Arbitrage considerations

It is worth emphasizing that the proxy formula of
equation (18) is not theoretically free of arbitrage due to
the oscillatory nature of the spectroreplicant options. Indeed,
the tails of the corresponding implied distribution hn+1(K) :=
ĉ′′

n+1(K) can become negative as shown in figure 5, indicating

(a)

(b)

Figure 4. Proxy OTM option prices and corresponding proxy implied volatility smile. (a) Proxy prices on a market bid-offer 0-1 scale and
(b) Proxy implied volatility smile
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Figure 5. Implied distribution tails corresponding to proxy call prices

the theoretical existence of butterfly arbitrages. However,
our empirical results shown in figure 4(a) suggest that such
arbitrages are unlikely to have any practical relevance once
bid-offer spreads are taken into account.

As expected, in the limit as n → ∞, the proxy for-
mula is arbitrage-free as long as all spectroreplicant prices
	n are known and priced off a valid implied distribu-
tion h(K). This can be verified by substituting 	n =∫ b

a φn((x − a)/(b − a))h(x) dx into (18) to get

c(K) := X − K

2
+

∞∑
n=0

wn(K)	n

= X − K

2
+
∫ b

a
h(x) dx

∞∑
n=0

wn(K)φn

(
x − a

b − a

)
.

Substituting into the above the expression for wn(K), recog-
nizing the spectral decomposition (5) of the straddle kernel
|x − K|, and differentiating both sides twice against K we
recover the implied distribution c′′(K) = h(K). In addition,
note that the truncated implied distribution hn+1(K) has the
simple expression

hn+1(K) := ĉ′′
n+1(K) =

n∑
k=0

	kφk

(
K − a

b − a

)
,

which is obtained by differentiating (18) twice against K using
φ′′

n (y) = (2/λn)φn(y).

7. Theoretical application: formulas for spectroreplicant
option prices when the characteristic function is
known

Consider an option pricing model where the characteristic
function ϕ(z) := E(eizXT ), z ∈ C of the terminal underlying

value XT at time T is known in closed form. The characteristic
function for X̃T := (XT − a)/(b − a) is then

ϕ̃(z) = e−i(a/(b−a))zϕ

(
z

b − a

)
,

and we may recover pricing formulas for spectroreplicant
options through the identities

E cosh ω(1 − 2X̃T ) = 1

2
eω[ϕ̃(2iω) + ϕ̃(−2iω)], (19a)

E cos ωX̃T = 1

2
[ϕ̃(ω) + ϕ̃(−ω)], (19b)

E cos ω(1 − 2X̃T ) = 1

2
eiωϕ̃(−2ω) + 1

2
e−iωϕ̃(2ω). (19c)

At this point, we are faced with two technical issues.
In many classical pricing models such as Black and
Scholes (1973), Heston (1993), Merton (1976), the price XT

belongs to the entire real half-line rather than a finite interval
[a, b]. In addition, the characteristic function is only known
for the log-price. The second issue may be resolved by rewrit-
ing the target payoff in log-price space as F̄(x) := F(ex), so
that x now corresponds to ln XT , without changing the ker-
nel G(x, y) := |x − y| which now corresponds to log straddles.
The coefficients wn in equation (14) then become

wn = b − a

2
λn

∫ b

a
φn

(
x − a

b − a

)
F̄′′(x) dx

= b − a

2
λn

∫ b

a
φn

(
x − a

b − a

)
[exF ′(ex) + e2xF ′′(ex)] dx

and may be used in the pricing equations (16) and (17).
The finite domain issue is harder to address. Fang and Oost-

erlee (2009) propose a somewhat arbitrary formula (eq.(49))
for the range [a, b] based on the cumulants of XT . We derive
an alternative approach in the following paragraphs. Note that
once a suitable range [a, b] has been found, both the spec-
troreplicant prices 	n obtainable from equations (19) and the

35



14 S. Bossu et al.

resulting target option price F of equation (16) will have the
required numerical accuracy for the chosen model.

Let F̆ denote the model price of the target option, while F
remains its price over the restricted domain [a, b] :

F̆ := E[F(XT )] =
∫ ∞

−∞
F(ex)p(x) dx

≈
∫ b

a
F(ex)p(x) dx =: F,

where p(x) is the probability density function of ln XT . An
upper bound for the absolute error is then

|F̆ − F| ≤
∫
R\[a,b]

|F(ex)| p(x) dx.

If the payoff function F(ex) is bounded we have the trivial
upper bound

|F̆ − F| ≤ [1 − (P(b) − P(a))] sup
x∈R\[a,b]

|F(ex)|,

where P(x) is the cumulative distribution function of
ln XT . Otherwise, if the payoff function is unbounded but
square-integrable under measure P, we may apply Cauchy-
Schwartz’s inequality to the product F(ex)

√
p(x) ×√p(x) to

write

|F̆ − F|2 ≤
∫
R\[a,b]

F(ex)2p(x) dx
∫
R\[a,b]

p(x) dx

≤ [1 − (P(b) − P(a))]
∫
R\[a,b]

F(ex)2p(x) dx

≤ [1 − (P(b) − P(a))]E
[
F(XT )2] ,

where the last bound above is loose. Typically the value of
E[F(XT )2] is not known but in practice we may use an estimate
obtained from an analytically tractable model such as Black
and Scholes (1973).

Finally, if the probability range P(b) − P(a) is not avail-
able in closed form, we may use the classical Bienaymé-
Chebyshev’s inequality

1 − (P(m1 + L) − P(m1 − L)) ≤ m2 − m2
1

L2

where L > 0 is arbitrary and mk := E(lnk XT ), k ∈ {1, 2} are
moments recoverable from the characteristic function. Alter-
natively, a tighter bound could be obtained from the formula
(e.g. Durrett 2019, p.115)

1 − (P(L) − P(−L)) ≤ L

2

∫ 2/L

−2/L
[1 − ϕ(x)] dx.

As an illustration we show how [a, b] may be determined
within the Black and Scholes (1973) model, for which the
characteristic function of the log-price x ≡ ln XT is known to
be

ϕBS(x) = eix[ln X0+(r−σ 2/2)T]−x2σ 2T/2,

where X0 is the underlying asset spot price, r is the continuous
interest rate and σ is the volatility parameter. The probability

range P(b) − P(a) is also well known in closed form as

P(b) − P(a) = P(a ≤ ln XT ≤ b)

= N

(
b − m1

σ
√

T

)
− N

(
a − m1

σ
√

T

)
,

where m1 = ln X0 + (r − σ 2/2)T . Choosing b = m1 + Lσ√
T , a = m1 − Lσ

√
T , L > 0, the above simplifies to

P(b) − P(a) = N(L) − N(−L) = 1 − 2N(−L).

For a bounded target payoff such as a call spread with strikes
spaced K apart, a given precision target ε is achieved by
choosing L such that 2N(−L)K ≤ ε, i.e. L ≥ N−1(ε/2K).
Using X0 = 1, r = 0.05, T = 1, σ = 0.2, K = 1 and a tar-
get precision ε = 0.01 we find L ≈ 2.58 giving [a, b] =
[−0.4851, 0.5452].

For an unbounded payoff such as the log contract F(XT ) :
= ln(XT ) ≡ x, we have E[F(XT )2] = ∫∞

−∞ x2p(x) dx = m2 =
m2

1 + σ 2T and a given precision target ε is achieved by choos-
ing L ≥ −N−1(ε2/2m2). Using the same parameters as above
we find L ≈ 3.03 and [a, b] = [−0.5760, 0.6361].

8. Spectral decomposition of the butterfly kernel

To further underscore the generality of our approach, in this
final section we consider the butterfly kernel

G(x, y; c) := (c − |x − y|)+
= (x − y + c)+ − 2(x − y)+ + (x − y − c)+

for finite domain [a, b] and fixed call spread parameter 0 <

c ≤ 1
3 (b − a). As stated in table 1, this kernel is symmet-

ric and injective. Indeed, we can write G(x, y; c) = cK(x −
y) where K(z) := (1 − |z|/c)+, and G is a positive-definite
kernel if and only if K is a positive-definite function. By
Bochner’s theorem (Lax 2002, p. 144) a function is positive-
definite if and only if it is the Fourier transform of a
probability density, and it is easy to verify that

K̂(u) := 1

cπ
· 1 − cos cu

u2

is such a density. Indeed, by Fubini and then the property that
the real number φ(y) is equal to its conjugate, we may write

∫ b

a

∫ b

a
φ(x)K(x − y)φ(y) dx dy

=
∫ b

a

∫ b

a
φ(x)φ(y)

∫ ∞

−∞
ei(x−y)uK̂(u) du dx dy

=
∫ ∞

−∞
K̂(u) du

∫ b

a
φ(x)eiux dx

∫ b

a
φ(y)eiuy dy ≥ 0,

and equality implies φ ≡ 0. Therefore, the butterfly kernel
only has strictly positive eigenvalues and it is injective.
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For ease of exposure, and without loss of generality, we
assume [a, b] = [0, 1], 0 < c ≤ 1

3 as we did in section 4. Dif-
ferentiating the integral equation (2) with butterfly kernel
G(x, y; c) twice against x we obtain the linear recurrence
equation for φ

f ′′(x) = φ(x − c) − 2φ(x) + φ(x + c),

with the convention φ(x) ≡ 0 for x < 0 or x > 1. When c =
1/N , N ∈ N \ {0, 1, 2}, the solution is

φ(x) = −N − n

N + 1

n∑
k=0

(n + 1 − k)f ′′(x − kc)

− n + 1

N + 1

N−n−1∑
k=1

(N − n − k)f ′′(x + kc),

x = nc + r, 0 ≤ r < c, n ∈ {0, 1, . . . , N − 1},
(20)

wherein n is the Euclidean quotient of x by c with remainder
r (i.e. x modulo c). In particular, the homogeneous equation
with f (x) ≡ 0 only has the trivial solution φ(x) ≡ 0, thereby
confirming that the butterfly kernel is injective when c = 1/N .

It is worth noting that the solution (20) is typi-
cally discontinuous at every step c, and that the integral∫ 1

0 G(x, y; c)φ(y) dy matches f (x) up to affine terms. Figure 6
shows the solution obtained for F(x) = ex and c = 1/6.

In the fashion of section 4, it is possible to identify the
general form of eigenfunctions φ(x) satisfying

λφ′′(x)

=

⎧⎪⎨
⎪⎩

−2φ(x) + φ(x + c) for 0 ≤ x < c,

φ(x − c) − 2φ(x) + φ(x + c) for c ≤ x ≤ 1 − c,

φ(x − c) − 2φ(x) for 1 − c < x ≤ 1,

for an eigenvalue λ > 0. This may be done by splitting the
domain [0, 1] at every step c and solving the system of second-
order ordinary linear differential equations

λu′′(x) = −A.u(x), 0 ≤ x < c,

where u(x) := (φ(x), φ(x + c), . . . , φ(x + 1 − c))T is a vector
of length N and A is the familiar N × N tridiagonal matrix

A :=

⎡
⎢⎢⎢⎣

2 −1 (0)

−1 2 −1
. . .

. . .
(0) −1 2

⎤
⎥⎥⎥⎦ ,

which is positive-definite with principal square root A1/2;
formulas for the spectral elements of A can be found in
e.g.Smith (1985), pp. 55, 154–156. The homogeneous second-
kind integral equation with butterfly kernel may then be
written in terms of u as

λu(x) =
∫ c

0
G(x, y).u(y) dy (21)

where G(x, y) := ((c − |x − y + (n − p)c|)+)0≤n,p≤N−1 is a
N × N matrix defined for 0 ≤ x, y < c.

The general solution to the system of second-order ordinary
linear differential equations λu′′ = −A.u is known to be

u(x) = cos

(
x√
λ

A1/2

)
.k1 + sin

(
x√
λ

A1/2

)
.k2,

where k1, k2 are two column vectors of N constant coeffi-
cients. Substituting into (21) and integrating by parts twice

Figure 6. Solution to integral equation with butterfly kernel G(x, y; c), c = 1
6 , target function F(x) = ex, domain [a, b] = [0, 1]
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(a)

(b)

Figure 7. Comparison of top eigenfunctions of the butterfly kernel G(x, y; c), c = 1/N over the domain [a, b] = [0, 1]. (a) Top normalized
eigenfunction for N = 3 and N = 10. (b) Difference after rescaling

we obtain†

λu(x) = − λ
[
G(x, y)A−1u′(y) − Gy(x, y)A−1u(y)

]y→c−

y=0

− λ

∫ c

0
Gyy(x, y)A−1u(y) dy,

where Gy, Gyy are the first- and second-order partial deriva-
tives of G(x, y) against y. Substituting the identities G(x, c) =
xI + (c − x)L, G(x, 0) = (c − x)I + xLT , Gy(x, c) = −I + L,
Gy(x, 0) = I − LT , where L is the lower shift matrix with
ones on the subdiagonal, we may rewrite the bracket in the

† Observe that the matrix versions of cos, sin commute with any
power of the argument matrix, and that −λA−1u′(x), −λA−1u(x) are
respectively first- and second-order antiderivatives of u(x).

above equation as the block matrix expression

bλ(x) := [I − L x(I − L) + cL
]

×
⎡
⎣ Cλ Sλ

− 1√
λ

A1/2Sλ

1√
λ

A1/2Cλ

⎤
⎦[A−1k1

A−1k2

]

+
[

I − LT x√
λ

(I − LT )A1/2 − c√
λ

A1/2
]

×
[

A−1k1

A−1k2

]

where Cλ := cos((c/
√

λ)A1/2) and Sλ := sin((c/
√

λ)A1/2).
The vector bλ(x) is affine in x and will vanish if and only
if the intercept and slope vectors bλ(0), b′

λ are zero, leading to
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the homogeneous block matrix equation in k1, k2

[
0
0

]
=

⎛
⎜⎝[I − L cL

O I − L

]⎡⎣ Cλ Sλ

− 1√
λ

A1/2Sλ

1√
λ

A1/2Cλ

⎤
⎦

+

⎡
⎢⎣I − LT − c√

λ
A1/2

O (I − LT )
1√
λ

A1/2

⎤
⎥⎦
⎞
⎟⎠[A−1k1

A−1k2

]
,

where 0 is the null column vector of R
N and O is the null

matrix of RN×N . It is worth noting that solving the above
equation is difficult: we need to find λ such that the 2N × 2N
block matrix between parentheses is singular, and then find
the corresponding nullspace to identify non-trivial solutions
k1, k2. However, with some algebra we can simplify this
problem for some eigenvalues λ, as detailed below.

Left-multiplying both sides of the previous equation by[
I O
O

√
λA−1/2

] [
I−L cL

O I−L

]−1
, we obtain

[
0
0

]
=

⎛
⎜⎝[ Cλ Sλ

−Sλ Cλ

]
+
[

I O
O

√
λA−1/2

]

×
[

I − L cL
O I − L

]−1

⎡
⎢⎣I − LT − c√

λ
A1/2

O (I − LT )
1√
λ

A1/2

⎤
⎥⎦
⎞
⎟⎠

×
[

A−1k1

A−1k2

]
. (22)

It is easy to show that the second term above between
parentheses simplifies to

[
evT − LT O

O A−1/2(evT − LT )A1/2

]
− c√

λ

[
w
0

] [
0

A1/2v

]T

,

where e := (1, . . . , 1)T is the first diagonal vector of R
N ,

v := (1, 0, . . . , 0)T is the first coordinate vector, and w :=
(1, 2, . . . , N)T . Equation (22) may thus be rewritten as

[
0
0

]
=
(

Mλ − c√
λ

[
w
0

] [
0

A1/2v

]T
)[

A−1k1

A−1k2

]
,

where

Mλ :=
[

Cλ Sλ

−Sλ Cλ

]

+
[

evT − LT O
O A−1/2(evT − LT )A1/2

]
.

When Mλ is invertible, the Sherman-Morrison formula
(e.g. Golub and Loan 1996, p. 51) states that

Mλ − c√
λ

[
w
0

] [
0

A1/2v

]T

is singular if and only if λ satisfies the scalar equation

1 − c√
λ

[
0

A1/2v

]T

M−1
λ

[
w
0

]
= 0, (23)

and in this case M−1
λ [ w

0 ] is in the nullspace, giving a nontriv-
ial solution [

k1

k2

]
=
[

A O
O A

]
M−1

λ

[
w
0

]
.

In figure 7 we plot the top eigenfunction that we obtained
by numerically solving equation (23) for N = 3 and N = 10
and then computing k1, k2 as written above. As expected, the
eigenfunctions are continuous and smooth. Note that there
may be eigenvalues λ for which Mλ is not invertible, in which
case equation (23) cannot be relied upon.

9. Summary and conclusions

Integral equations and theory from functional analysis can be
used to generalize the formula of Carr and Madan (1998) and
allow from some improvements for the replication of Euro-
pean contingent claims. The results in this paper show how
replication can be achieved with a discrete portfolio of special
options forming an orthogonal eigensystem, which is easier
to manage numerically when compared to a continuous port-
folio of vanilla options. Our approach considers a general
class of symmetric kernels, including the straddle and but-
terfly kernels, which have spectral decompositions allowing
for replication with a discrete portfolio in the form of a series
of special option payoffs. Truncation of this series provides
a numerical method for fast pricing of vanilla options. An
advantage of this method is that it may be possible to use
a smaller number of special options rather than integral dis-
cretization schemes. For kernels having eigenfunctions given
by the Fourier basis elements, the replicating series can take
advantage of probability densities with explicit Fourier trans-
forms. Overall, the results presented in this paper are part of
a greater potential generalization, which in future work will
extend to multivariate European payoffs and some families of
exotic payoffs.
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Appendix. Derivation of proxy formula for the difference
between the truncated Fourier series and
spectroreplicant methods

Keeping the notations of section 5.1 with [a, b] = [0, 1], a double
integration by parts on 〈F, ψn〉, n ≥ 1 yields

〈F, ψn〉 = − 1

(nπ)2 〈F′′, ψn〉 − 1

(nπ)2 F′(0) + (−1)n

(nπ)2 F′(1),

so that

F̆n(x) = 〈F, ψ0〉 − 2
n−1∑
k=1

〈F′′, ψk〉
(kπ)2 ψk(x)

+ 2
n−1∑
k=1

[
(−1)k

(kπ)2 F′(1) − F′(0)

(kπ)2

]
ψk(x).

The above decomposition gives us an insight into the type of integral
equation solved by a Fourier series. Specifically, we may reconstruct
the corresponding integral kernel at order n ≥ 1 as

Kn(x, y) := −
n−1∑
k=1

1

(kπ)2 [
√

2ψk(x)][
√

2ψk(y)],

so that

F̆n(x) = 〈F, ψ0〉 +
∫ 1

0
Kn(x, y)F′′(y) dy

+ 2
n−1∑
k=1

[
(−1)k

(kπ)2 F′(1) − F′(0)

(kπ)2

]
ψk(x).

As n → ∞, the Fourier expansion kernel Kn(x, y) converges point-
wise to

K(x, y) := −
∞∑

k=1

1

(kπ)2 [
√

2ψk(x)][
√

2ψk(y)]
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= − 1

2π2

[
Li2
(

eıπ(x+y)
)

+ Li2
(

e−ıπ(x+y)
)

+ Li2
(

eıπ(x−y)
)

+ Li2
(

e−ıπ(x−y)
)]

,

where Li2(z) :=∑∞
k=1 zk/k2 is the complex dilogarithm func-

tion. From the identity Li2(z) + Li2(z−1) = −(π2/6) − 1
2 ln2(−z)

(e.g. Zagier 2007, p.8) we further obtain

K(x, y) = 1

6
+ 1

4π2

[
ln2
(
−eıπ(x+y)

)
+ ln2

(
−eıπ(x−y)

)]

= 1

6
− 1

4

[
(x + y − 1)2 + min

(
(x − y − 1)2, (x − y + 1)2

)]

= −1

3
− 1

2

(
x2 − 2 max(x, y) + y2

)

= |x − y|
2

−
(

1

3
+ x2 − (x + y) + y2

2

)
.

The above identity establishes that the straddle kernel G(x, y) := |x −
y| is embedded within the Fourier expansion kernel together with a
residual kernel:

K ≡ 1

2
G + R, R(x, y) := −

(
1

3
+ x2 − (x + y) + y2

2

)
.

Writing Kn = 1
2 Gn + (Kn − 1

2 Gn) where Gn(x, y) :=∑n−1
k=0 λk

φk(x)φk(y) is the truncated straddle kernel at order n, and noting that∫ 1
0 Gn(x, y)(F′′(y)/2) dy = F̂n(x) − c − qx, we have

F̆n(x) = F̂n(x) + (〈F, ψ0〉 − c − qx)

+
∫ 1

0

[
Kn(x, y) − 1

2
Gn(x, y)

]
F′′(y) dy

+ 2
n−1∑
k=1

[
(−1)k

(kπ)2 F′(1) − F′(0)

(kπ)2

]
ψk(x),

with Kn − 1
2 Gn −−−→

n→∞ R pointwise, so that, for large n,

F̆n(x) − F̂n(x) ≈ (〈F, ψ0〉 − c − qx)

+
∫ 1

0
R(x, y)F′′(y) dy

+ 2
n−1∑
k=1

[
(−1)k

(kπ)2 F′(1) − F′(0)

(kπ)2

]
ψk(x).

41



42



Chapter 3

“Static replication of European standard

dispersion options”, Quantitative Finance,

forthcoming

Note: This version was accepted for publication conditionally upon minor revisions.

43



STATIC REPLICATION OF EUROPEAN STANDARD DISPERSION OPTIONS

SÉBASTIEN BOSSU*, PETER CARR†, AND ANDREW PAPANICOLAOU‡

Abstract. The replication of any European contingent claim by a static portfolio of calls and
puts with strikes forming a continuum, formally proven by Carr and Madan (1998), extends to

“standard dispersion” options written on the Euclidean norm of a vector of n asset performances.

With the help of integral equation techniques we derive replicating portfolios for calls, puts and
indeed any claim contingent on standard dispersion using vanilla basket calls whose basket weights

span an n-dimensional continuum. Consequently multi-asset standard dispersion options admit a

model-free price enforced by arbitrage, just as single-asset European claims do.

1. Introduction

Over the past few decades, an array of derivative instruments and trading strategies have ap-
peared where the payoff is based on some measure of statistical dispersion of one or more underlying
assets. In the single-asset category, realized volatility and variance swaps appeared in the 1990s,
then VIX futures and options in the 2000s as well as other volatility-related exotic options. In the
multi-asset category, examples include vanilla price dispersion trades, realized variance dispersion
trades, correlation swaps, or call and put options written on cross-sectional price dispersion1 as illus-
trated in figure 1. Significant market activity for dispersion instruments can be observed in annual
reports of many large quantitative hedge funds2. Accurate pricing and hedging of these instruments
is notoriously more complex compared to other multi-asset options such as basket options (e.g. Brigo
et al., 2004) or worst-of and best-of options.

In our preceding publication (2021) we considered the inverse problem of replicating a single-asset
European option with cash, the asset and a “continuous portfolio” of arbitrary “replicant” options
indexed by a single real variable such as a strike price. In this paper we extend our framework to
the multi-asset class of “standard dispersion” options written on the Euclidean norm of a vector of
n asset performances, which we seek to replicate with cash and a continuous portfolio of replicant
basket calls indexed along n real variables corresponding to basket levers or weights.

Specifically, given a target payoff function F (s) written on standard dispersion s :=
√∑

i x
2
i of

n ≥ 2 asset performances x1, x2, . . . , xn, we wish to find quantities ϕ(y1, y2, · · · , yn) of vanilla basket

Date: October 15, 2021.
* NYU Courant. This corresponding author thanks Hao Lu and Yucheng Wang for their help with Appendices B

and C. All remaining errors are his.

† NYU Tandon. ‡ North Carolina State University.
1In the financial industry, price dispersion is more commonly defined as mean absolute deviation corresponding to

the “taxicab” �1-norm, whereas our approach is based on the Euclidean �2-norm for ease of mathematics. We do not
discuss to what extent our �2 approach may approximate �1 instruments because an exact replication of the latter

will be derived in a follow-up paper using different mathematical methods.
2For example: Infinity Q Alpha Fund SEC Form N-CSR 31 Aug. 2020, pp. 5, 8–, Assenagon Alpha Annual Report

31 Jan. 2020, p. 7.

1
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2 SÉBASTIEN BOSSU*, PETER CARR†, AND ANDREW PAPANICOLAOU‡

Figure 1. Sample terms of an industry dispersion option. Source: large investment
bank.

Interactive Bankers, N.A. “Bankers you can talk to”
Sample Term sheet 

3-year Dispersion Warrant on five shares in USD quanto 
The following product is a warrant where the investor receives a Bonus linked to the performance of five 
stocks compared to the basket minus a Strike Level.  The product has no capital protection at any time 
and there can be a partial or total loss of any capital invested.  Investment is therefore highly speculative 
and should only be considered by investors who can afford to lose their entire investment amount. 

Issuer & Guarantor Interactive Bankers, N.A. (credit rating Aa3, unsecured) 
Issue Type Warrant 
Issue Amount USD 3,000,000 
Number of Warrants 3,000 
Notional Amount per 
Warrant (N) 

1 Warrant = USD 1,000 

Settlement Currency USD quanto 
Issue Price per Warrant USD 60 
Listing None 
Trade Date (T) [today] 
Strike Date T 
Issue Date T + 5 days 
Redemption Date T + 3 years 
Underlying Shares i Name Ticker  Weight  

1 Apple  AAPL [114] 20% 
2 Microsoft MSFT [210] 20% 
3 Airbus AIR [64] 20% 
4 Yamaha 7951 [5000] 20% 
5 Beyond Meat BYND [170] 20% 

 

Settlement Amount On the Redemption Date, the Issuer will pay to the holder the following 
amount in U.S. dollars: 

 
Where  

 

With Strike = 20% 
Basketinitial = 1 

Basketfinal =  

 with i from 1 to 5 is the official closing price of Underlying 
Share i on the Strike Date 

 with i from 1 to 5 is the official closing price of Underlying 
Share i on the Redemption Date 

Business Day Convention Following Business Day 
Governing law U.S. law 
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calls3 across all possible basket weights y1, y2, . . . , yn that replicate the target payoff up to a fixed
amount of cash c:

F

(√∑n
i=1 x

2
i

)
= c+

∫
· · ·
∫ (∑n

i=1 xiyi − k
)+

ϕ(y1, · · · , yn) dy1 · · · dyn,

where k > 0 is a fixed moneyness parameter, t+ := max(0, t) denotes the positive part of a real
number t and

∫ · · · ∫ denotes a multiple integral over a suitable domain. For maximum generality
we let all our variables xi, yi be positive or negative real numbers and we leave the definition of asset
performance unspecified with the important caveat that the replicant option payoffs (

∑
i xiyi − k)

+

are defined accordingly. A typical definition would be the gross returns to maturity or the price
ratios of n underlying assets4.

Switching to vector notations, in the language of functional analysis5 we want to solve the
multidimensional integral equation of the first kind

F (|x|)− c =

∫
Rn

(x · y − k)+ϕ(y) dy, x ∈ R
n, (1)

for the unknown function ϕ(y) and constant c. Here, x · y :=
∑

i xiyi denotes the canonical dot
product of Euclidean space R

n with associated norm |x| := √
x · x, and (x · y − k)+ is the known

integral kernel. This inverse problem is mathematically nontrivial and may be viewed as a mul-
tidimensional generalization of the Breeden and Litzenberger (1978) and Carr and Madan (1998)
inverse problems for a particular class of sophisticated, multi-asset options.

1.1. Background and review. Growing interest from practitioners and academics alike in disper-
sion trading strategies and options can be observed in e.g. Bossu (2005), Jacquier and Slaoui (2007),
Driessen, Maenhout, and Vilkov (2009), Bouzoubaa and Osseiran (2010), Bossu (2014), Schofield
(2017, pp. 475–477). Evidence of research interest in static option replication strategies can be
found in the work of Dupire (1993), Derman, Ergener, and Kani (1994), Pelsser (2003), Baldeaux
and Rutkowski (2010), to name just a few.

Interest in static replication is justified by the resulting model-free price for the target instru-
ment, even if actual arbitrage enforcement could be difficult to implement due to liquidity and
transaction cost issues. The most successful illustration of this approach is the decomposition of the
log-contract into a continuous portfolio of out-of-the-money calls and puts on the S&P 500 index,
whose discretization underpins the calculation of the VIX (see The CBOE volatility index—VIX
2009, for details). While the majority of such calls and puts are illiquid and do not trade very often,
the VIX is widely regarded as an excellent, model-free gauge of aggregate implied volatility and
estimate of the fair price of a variance swap.

Further practical motivations for decomposing a dispersion option as a sum of basket calls
may include technical limitations of risk systems which are often designed to work with simpler
instruments, in which case having a payoff equivalence can save a lot of time and reprogramming

3This includes basket call options on all n underlying assets, as well as any subset: single-asset calls (case where

all weights yi but one are zero), two-asset calls (case where all weights yi but two are zero), and so forth.
4Another possible definition of asset performances could be the time series of n daily returns x1, . . . , xn with

respect to a single asset, in which case s would be the asset’s realized volatility. However, the corresponding replicant
options would then be based on various weighted sums of daily returns resembling cliquet options which are less
compelling than basket calls in terms of practical applications.

5We refer to our 2021 publication for further background in functional analysis.
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4 SÉBASTIEN BOSSU*, PETER CARR†, AND ANDREW PAPANICOLAOU‡

costs; as well as specific hedging needs of large derivatives issuers to offload excess covariance or
correlation risk accumulated by selling simpler multi-asset options6.

In other related literature, Baxter (1998, p. 13) mentions a generalization of the Breeden and
Litzenberger formula to a vector of assets in R

n based on Fourier transforms, while Lipton (2001,
pp. 291–292) proposes a generalization of the Carr and Madan formula for two assets using Radon
transforms. Expanding on the latter approach, Carr and Laurence (2011) derive a multi-asset version
of the Dupire (1993) local volatility formula, while Austing (2011) uses standard calculus tools
to replicate basket options using best-of and worst-of options. Recently, Pötz (2020) investigates
efficient basket option pricing with Chebyshev quadrature techniques, and Cui and Xu (2021) derive
a multi-asset extension of the Carr and Madan formula as multiple integrals of products of call
options.

1.2. Results and organization of this paper. Our main contribution is to establish that any
standard dispersion option with sufficiently regular payoff is replicated by a continuous portfolio of
vanilla basket calls, and consequently admits a model-free arbitrage price so long as the prices of
basket call options of arbitrary basket weights are known. We also provide closed-form solutions
to replicate the dispersion call, zero-strike dispersion call, and dispersion put. To achieve this
result, we relied on a fair amount of technical machinery presented in Appendix A, leveraging on
existing fractional calculus techniques in relation to Radon transforms which we adapted to our
needs. In addition, we overcame a substantial mathematical limitation that the payoff function
satisfy F ′(0) = 0 by isolating the first-order term which we proved to be replicable with zero-strike
basket calls.

The remainder of our paper is organized as follows: In section 2 we discuss the concept of
constrained and unconstrained continuous portfolios of vanilla basket calls. In sections 3 and 4 we
derive solutions for the replication of standard dispersion calls and puts. In section 5 we extend
our results to arbitrary target payoff functions. In section 6 we consider a numerically tractable
application for the “Mexican hat” dispersion straddle. In section 7 we show how the dispersion
call decomposition may be expanded as continuous portfolios of various basket securities in finite
quantities, before discussing the consequences of our results for the pricing of dispersion options in
our concluding section 8.

2. Continuous portfolios of vanilla basket calls

In this opening section, we discuss the financial interpretation of the multiple integral
∫
Rn(x ·

y − k)+ϕ(y) dy to the right-hand side of integral equation (1) as a continuous portfolio of vanilla
basket calls indexed by basket weights y. For maximum generality the basket weights y in equation
(1) are unconstrained, contrary to industry practice where they typically sum to 1. As a result, the
moneyness control parameter k is not interpreted as a direct strike price. When the sum of weights
is positive, correspondence is easily obtained by simple standardization:

(x · y − k)+ =

(
n∑

i=1

yi

)(
x · y∑

i yi
− k∑

i yi

)+

,
∑

i yi > 0,

which is a quantity
∑

i yi of basket calls with standardized basket weights y/
∑

i yi summing to
1 and strike price k/

∑
i yi. Another consequence of letting basket weights unconstrained within

6An interesting price property of dispersion calls and puts is that they are short correlation instruments which
help issuers reduce their correlation risk exposure.

47



STATIC REPLICATION OF EUROPEAN STANDARD DISPERSION OPTIONS 5

R
n is that some weights may be negative, resulting in a long-short basket7 which is uncommon in

the derivatives industry. However, a long-short basket may be viewed as a “spread” between two
long-only baskets:

(x · y − k)+ =

(∑
yi>0

xiyi −
∑
yi<0

xi|yi| − k

)+

,

in which case k is interpreted as a “residual” strike price. Such call and put options on the per-
formance spread between two assets, also known outperformance options, are well understood by
practitioners. Again, weights may be standardized to sum to 1 within each basket for better corre-
spondence with industry practice.

It is possible to introduce constraints on basket weights as alternative formulations of our repli-
cation problem (1), at the greater risk of finding no solution. For example, a long-only constraint can
be expressed as an integral over Rn

+ rather than R
n. More complex types of constraints y ∈ S ⊆ R

n,
such as weights summing to 1, are best expressed as a surface integral∫

S
(x · y − k)+ϕ(y) dy,

where dy now denotes the infinitesimal change in surface area. Two particularly important types of
constraints encountered in this paper are

• Unit sum of weights corresponding to the hyperplane S := {y ∈ R
n :

∑
i yi = 1} with surface

integral∫
∑

i yi=1

(x · y − k)+ϕ(y) dy =

∫
y·e=1

(x · y − k)+ϕ(y) dy =

∫
Rn

δ(y · e− 1)(x · y − k)+ϕ(y) dy,

where e := (1, · · · , 1) is the first diagonal vector of R
n and δ is Dirac’s delta function. This

type of surface integral is known as a Radon transform and may be financially interpreted as a
standardized continuous portfolio of basket calls.

• Unit sum of squares of weights :
∑

i y
2
i = 1, or |y| = 1 in vector notation. While this type of

constraint is uncommon in the industry, it is well known to mathematicians as a surface integral
over the unit hypersphere8∫

|u|=1

(x · u− k)+ϕ(u) du =

∫
Sn−1

(x · u− k)+ϕ(u) du,

where we use the letter u instead of y to emphasize it is a unit vector. From a quantitative finance
perspective we may name the above a normalized continuous portfolio of basket calls.

7Short-only basket calls are also possible and better interpreted as long-only basket puts with negative moneyness

parameter −k.
8The n-dimensional unit hypersphere, or simply unit sphere, is an object of algebraic dimension n as subset of

vector space Rn. In the academic literature, it is often denoted Sn−1 in reference to its geometric dimension n− 1 as
easily visualized for n = 2 or 3. Unlike the n exponent in Rn which denotes the Cartesian product R × · · · × R, the
n− 1 superscript in Sn−1 does not appear to have a particular meaning and some authors indeed prefer the subscript

notation Sn−1.
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3. Replication of standard dispersion calls

Throughout this paper we handle the parameter k, which appears to the right-hand side of
integral equation (1) but not to the left-hand side, as a constant parameter susceptible to appear in
the solution ϕ(y), which we denote ϕ(y; k) every so often to emphasize its parametric dependence.
In contrast, other authors tend to assume that ϕ is independent from k, which is more restrictive.
We begin with a pair of technical definitions about the regularity of the payoff function F that can
be replicated under our theory, and the regularity of the solution ϕ:

Definition. (D1) A payoff function F (s) is sufficiently regular if it is twice continuously differen-
tiable at the origin and the associated function φ(r) defined in formula (A.7) exists as a regular
generalized function9 with φ(r) = O(r3) as r → 0.

(D2) A solution ϕ(y) to the replication problem (1) is regular if there is a regular generalized

function φ such that ϕ(y; k) =
φ(k/|y|)
|y|n+1

and φ(r) = O(r3) as r → 0. Otherwise it is singular.

Remark. In odd dimension n, if F is bounded and piecewise-differentiable of order (n+ 3)/2, then
φ(r) exists as a regular generalized function.

Based on these definitions, the standard dispersion call with payoff F (|x|) := (|x| −K)+,K > 0
qualifies as sufficiently regular and satisfies F ′(0) = 0. Following proposition A.4, the replication
problem (1) has a regular solution, as outlined below:

Proposition 1. The standard dispersion call is replicable with vanilla basket calls as per equation
(1) with c = 0 and

ϕC

(
y;

k

K

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

π(n−1)/2
δ(

n−1
2 )
(

k2

K2
− |y|2

)
, n odd,

(−1)n/2
2 Γ
(
n−1
2

)
π(n+1)/2

H( k2

K2 − |y|2)(
k2

K2 − |y|2
)(n+1)/2

¶ , n even,
(2)

where δ is Dirac’s delta function, H is Heaviside’s step function, Γ is Euler’s gamma function, and
the pilcrow symbol ¶ indicates a pseudofunction subject to Hadamard regularization (Kanwal, 2004,
pp. 71–74).

Remark. The solution vanishes as K → 0 and thus cannot be used to replicate the zero-strike
dispersion call with payoff |x|, as predicted by proposition A.4.

9(See e.g. Kanwal, 2004, p.22) for a definition
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Proof. Substituting F ′′(s) = δ(s−K) into equation (A.7), then sifting and simplifying,

φC(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

π(n−1)/2

(
d

dr2

)n−1
2

rnδ(r −K), n odd,

2

πn/2

(
d

dr2

)n/2 ∫ r

0

sn+1δ(s−K)√
r2 − s2

ds, n even;

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Kn

π(n−1)/2

(
d

dr2

)n−1
2

δ(r −K), n odd,

2Kn+1

πn/2

(
d

dr2

)n/2
H(r −K)√
r2 −K2

, n even.

Substituting H(r−K) = H(r2−K2) together with its chain rule version δ(r−K) = 2Kδ(r2−
K2) into the above expression,

φC(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Kn+1

π(n−1)/2

(
d

dr2

)n−1
2

δ(r2 −K2), n odd,

2Kn+1

πn/2

(
d

dr2

)n/2
H(r2 −K2)√

r2 −K2
, n even;

=

⎧⎪⎨
⎪⎩

2Kn+1

π(n−1)/2
δ(

n−1
2 )(r2 −K2), n odd,

2Kn+1

πn/2

(
−1

2

)(
−3

2

)
· · ·
(
−n− 1

2

)
H(r2 −K2)

(r2 −K2)(n+1)/2
¶ , n even.

Substituting k �→ k/r, dividing both sides by rn+1, homogenizing the delta function and sim-
plifying yields expression (2) as stated for ϕ(y; k) = φ(k/|y|)/|y|n+1. �

Corollary. By the chain rule for the derivative of the delta function (Kanwal, 2004, p. 50) we have
in dimensions 2 and 3:

ϕC

(
y;

k

K

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2

π
δ′
(

k2

K2
− |y|2

)
= −K3/k3

2π
δ

(
|y| − k

K

)
− K2/k2

2π
δ′
(
|y| − k

K

)
, n = 3,

− 2

π

H( k2

K2 − |y|2)(
k2

K2 − |y|2
)3/2 ¶ , n = 2.

(3)

Remark. We may validate the solution for n = 3 by inserting it into equation (A.10) together with
c = F (0) = 0; substituting r �→ √

r and simplifying; then integrating by parts and sifting to obtain

F (|x|) = 2

∫ ∞

0

r3δ′
(
k2/K2 − r2

) (|x| − k/r)
+2

|x| dr

=

∫ ∞

0

δ′
(
k2/K2 − r

) (|x|√r − k)
+2

|x| dr

=

∫ ∞

0

δ
(
k2/K2 − r

) 2 (r|x| − k)
+

2
√
r

dr = (|x| −K)+,

as required.

The solutions of equations (2) and (3) call for several comments. At first glance, the formulas
in odd and even dimensions may look very different; however, a careful examination of the proof
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will reveal that they only differ by a half integral. The true nature of the solution is thus best
investigated in odd dimension. In addition, as esoteric as Dirac’s delta functions might perhaps
seem, their presence is hardly surprising: in dimension 1, the Carr-Madan solution to replicate a
call-type payoff with vanilla calls, say F (s) := (s2−K)+, would be F ′′(s) = 2H(s2−K)+8Kδ(s2−
K) + 4s2(s2 −K)δ′(s2 −K) which involves the delta function and its derivative. This is due to the
piecewise nature of the payoff function, as is often the case in finance.

The delta function in the solution ϕC is activated over the hypersphere of radius k/K. This
tells us that the basket weights spanned by the replicating continuous portfolio are constrained to
be normalized, as defined in section 2. Interpreting derivatives of the delta function is more subtle.

Informally, they may be represented using finite differences: δ′(t) = limε→0
δ(t+ε)−δ(t−ε)

ε , δ′′(t) =

limε→0
δ(t+ε)−2δ(t)+δ(t−ε)

ε2 , and so forth. Under this representation, δ′ translates into infinitely lever-
aged call spreads, δ′′ translates into infinitely leveraged butterfly spreads, etc. Formally, integration
by parts may be used to expand the solution into finite quantities of basket calls, binary basket calls
and higher-order derivatives of basket calls, as explained in section 7.

4. Replication of standard dispersion puts

As noted in the remark to proposition 1, the zero-strike standard dispersion call with payoff |x|
does not admit a regular solution. By put-call parity, this issue applies to standard dispersion puts
as well. Fortunately, this limitation may be circumvented by including zero-strike basket calls with
payoff (x · y)+ in the replicant kernel, in which case we have the decompositions given below.

Proposition 2. The zero-strike standard dispersion call is replicated with an equally weighted
normalized portfolio of zero-strike basket calls, as follows:

|x| = Γ(n+1
2 )

π(n−1)/2

∫
|u|=1

(x · u)+ du. (4)

Proof. By slice integration (Rubin, 2015, p. 29),∫
|u|=1

(x · u)+ du =
∣∣Sn−2

∣∣|x| ∫ 1

−1

t+(1− t2)(n−3)/2 dt,

where
∣∣Sn−2

∣∣ = 2π(n−1)/2/Γ[(n−1)/2] is the surface area of the (n−1)-dimensional unit sphere.
Solving the integral, simplifying and rearranging yields the identity as stated. �

Corollary. By put-call parity, the standard dispersion put with payoff F (|x|) := (K − |x|)+ is
replicated by a combination of cash, a short normalized continuous portfolio of zero-strike basket calls
replicating the zero-strike dispersion call, and a long continuous portfolio of basket calls replicating
the standard dispersion call:

(K − |x|)+ = K − Γ(n+1
2 )

π(n−1)/2

∫
|u|=1

(x · u)+ du+

∫
Rn

ϕC

(
y;

k

K

)
(x · y − k)+ dy, (5)

where ϕC(y; k/K) is given by formula (2).
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5. General replication of standard dispersion options

Having established that standard dispersion calls and puts are replicable with vanilla basket
calls, it follows from the Carr and Madan formula that any standard dispersion option with well-
behaved payoff F (|x|) is replicable as well:

F (|x|) = F (s0) + F ′(s0)(|x| − s0) +

∫ s0

0

F ′′(K) (K − |x|)+ dK +

∫ ∞

s0

F ′′(K) (|x| −K)
+
dK,

where s0 ≥ 0 is an arbitrary split level. The following pair of theorems gives the general solution to
replication problem (1) for any sufficiently regular payoff function.

Theorem 1 (general decomposition). Any standard dispersion option paying off F (|x|), where
F is a sufficiently regular payoff function, is replicated with a combination of cash, a normalized
continuous portfolio of zero-strike basket calls, and a continuous portfolio of positive-strike basket
calls, as follows:

F (|x|) = F (0) + F ′(0)
Γ(n+1

2 )

π(n−1)/2

∫
|u|=1

(x · u)+ du+

∫
Rn

(x · y − k)+
φ(k/|y|)
|y|n+1

dy, (6)

where

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

π(n−1)/2

(
d

dr2

)n−1
2

rnF ′′(r), n odd,

2

πn/2

d

dr2

∫ r

0

s√
r2 − s2

(
d

ds2

)n−2
2

[snF ′′(s)] ds, n even.

(7)

Proof. Let F1(s) := F (s)−F ′(0)s. Then F1 is sufficiently regular with F1(0) = F (0), F ′
1(0) = 0,

and F ′′
1 coincides with F ′′. By proposition A.4, a regular solution ϕ exists for F1. By proposition

A.2 this solution is given as ϕ(y; k) =
φ(k/|y|)
|y|n+1

, and we have

F1(|x|) = F (0) +

∫
Rn

(x · y − k)+ϕ(y; k) dy.

Substituting F1(|x|) := F (|x|)− F ′(0)|x|, then equation (4) and rearranging yields the decom-
position (6) as stated. �

Mathematically, including zero-strike basket calls in the replicant kernel is equivalent to extend-
ing the solution space to singular solutions (see definition (D2)):

Theorem 2 (general solution). Any standard dispersion option with payoff F (|x|), where F is
sufficiently regular, is replicated with vanilla basket calls as per equation (1) with⎧⎨

⎩
c = F (0),

ϕF(y; k) =
φ(k/|y|)
|y|n+1

+ F ′(0)
Γ(n+1

2 )

π(n−1)/2

δ(1/|y|)
|y|n+2

,
(8)

where φ(r) is given by formula (7).

Remark. The singular term in
δ(1/|y|)
|y|n+2

may be viewed as a corrective term to inversion formula

(A.7) when allowing for singular solutions. When F ′(0) = 0, both formulas coincide and the solution
is regular, as for the standard dispersion call.
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Proof. Plugging the proposed solution (8) into the right-hand side of equation (1) and splitting
the integral,∫

Rn

(x · y − k)+ϕ(y) dy = F (0) + F ′(0)
Γ(n+1

2 )

π(n−1)/2

∫
Rn

δ(1/|y|)
|y|n+2

dy +

∫
Rn

φ(k/|y|)
|y|n+1

dy. (9)

Switching to cylindrical coordinates in the first integral, simplifying, and homogenizing the
delta function ; substituting r �→ k/r; then sifting,∫

Rn

(x · y − k)+
δ(1/|y|)
|y|n+2

dy =

∫ ∞

0

δ

(
k

r

)
k

r2
dr

∫
|u|=1

(
x · u− k

r

)+

du

=

∫ ∞

0

δ(r) dr

∫
|u|=1

(x · u− r)
+
du

=

∫
|u|=1

(x · u)+ du =
Γ(n+1

2 )

π(n−1)/2
|x|,

where we used identity (4) in the last step. Substituting the above into equation (9) and then
decomposition (6) yields F (|x|) as required. �

Corollary. The replication problem (1) admits singular solutions for the following dispersion op-
tions:

(a) For the zero-strike standard dispersion call with payoff F (|x|) := |x|,

ϕC(y;∞) =
Γ(n+1

2 )

π(n−1)/2

δ(1/|y|)
|y|n+2

.

(b) For the standard dispersion put with payoff F (|x|) := (K − |x|)+,⎧⎨
⎩
c = K,

ϕP(y; k/K) = ϕC(y; k/K)− Γ(n+1
2 )

π(n−1)/2

δ(1/|y|)
|y|n+2

,

where ϕC(y; k/K) is given by formula (2).

6. Numerical application: replication of the “Mexican hat” dispersion straddle

The “Mexican hat” dispersion straddle option with payoff F (|x|) := 1−e−|x|2 is a good example
of a continuous and bounded payoff function for which the replication problem has a “nice”, nu-

merically tractable continuous solution. The payoff function F (s) := 1 − e−s2 is clearly sufficiently

regular and satisfies F (0) = F ′(0) = 0. Substituting F ′′(s) = 2(1− 2s2)e−s2 into formula (7),

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

π(n−1)/2

(
d

dr2

)n−1
2

e−r2(rn − 2rn+2), n odd,

4

πn/2

d

dr2

∫ r

0

s√
r2 − s2

(
d

ds2

)n−2
2 [

e−s2(sn − 2sn+2)
]
ds, n even.
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For ease of exposure we merely proceed with the cases n = 2, 3 whereby

φ(r) =

⎧⎪⎨
⎪⎩

2

π

d

dr2
e−r2(r3 − 2r5), n = 3,

4

π

d

dr2

∫ r

0

s√
r2 − s2

e−s2(s2 − 2s4) ds, n = 2.

As shown in Appendix C, the integral above solves to r + r3 − (1 + r2 + 2r4)D(r) wherein D(r) :=

e−r2
∫ r

0
et

2

dt is Dawson’s function. Substituting this expression together with d
dr2 = 1

2r
d
dr into the

above equation,

φ(r) =

⎧⎪⎨
⎪⎩

1

rπ

d

dr
e−r2(r3 − 2r5), n = 3,

2

rπ

d

dr

[
r + r3 − (1 + r2 + 2r4)D(r)

]
n = 2;

=

⎧⎨
⎩

r

π
(3− 12r2 + 4r4)e−r2 , n = 3,

4

π

[
r − r3 + (2r4 − 3r2)D(r)

]
, n = 2.

The solution ϕ to replication problem (1) is thus

ϕ(y; k) =
φ(k/|y|)
|y|n+1

=

⎧⎪⎪⎨
⎪⎪⎩

k

π|y|5
(
3− 12k2

|y|2 +
4k4

|y|4
)
e−k2/|y|2 , n = 3,

4k

π|y|4
(
1− k2

|y|2
)
− 8k2

π|y|5
(
3

2
− k2

|y|2
)
D

(
k

|y|
)
, n = 2.

Figure 2 shows the payoff F and its replicating solution φ for n = 2 assets. For n = 3, the solution
may be verified by inserting it into equation (A.10) to obtain

F (|x|) = c+

∫ ∞

0

k

r2

(
3− 12k2

r2
+

4k4

r4

)
e−k2/r2 (|x| − k/r)

+2

|x| dr,

which solves to the target payoff 1− e−|x|2 as required after substituting r �→ k/r and c = F (0) = 0.

7. Theoretical application: tractable expansion of the dispersion call

decomposition

Solution formula (2) for replicating a dispersion call is mathematically correct but it involves
generalized functions that present a singularity at |y| = k/K implying infinite quantities of basket
calls to buy or sell. This would typically not be an issue in theoretical pricing applications thanks
to the dampening effect of the expectation operator, but it is an issue for discretization, numerical
integration, and of course trading. There is a well-known parallel in the single-asset case whereby a
binary option with payoff F (x) = H(x −K) may be represented as the limit-case of a levered call
spread with strikes K − ε and K:

H(x−K) =
d

dx
(x−K)+ = lim

ε→0

1

ε

[
(x+ ε−K)+ − (x−K)+

]
.

An equivalent mathematical representation of the above is

H(x−K) =

∫ ∞

0

δ(κ−K) d(x− κ)+ =

∫ ∞

0

δ′(κ−K)(x− κ)+ dκ,
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Figure 2. Two-asset “Mexican hat” straddle dispersion payoff F (x1, x2) = 1 −
e−x2

1−x2
2 and its replicating solution φ(y1, y2) as quantity of basket calls with mon-

eyness parameter k = 1.

2a. Payoff function

2b. Replicating solution
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where the second expression stems from integration by parts and is consistent with the Carr and
Madan formula at origin. Similarly, standard dispersion calls may be replicated with ad hoc continu-
ous portfolios of vanilla basket calls, binary basket calls and so forth in finite quantities, as discussed
below.

7.1. Odd dimension. We begin with the case n = 3 before discussing the general case. Substituting
solution (3) into equation (A.9) and switching the order of integration, then sifting, we get

(|x| −K)
+
= − K2

2πk2

∫
|u|=1

∫ ∞

0

r2
[
K

k
δ

(
r − k

K

)
+ δ′

(
r − k

K

)]
(rx · u− k)

+
dr du

= − K2

2πk2

∫
|u|=1

[
k

K

(
k

K
x · u− k

)+

+

∫ ∞

0

r2δ′
(
r − k

K

)
(rx · u− k)

+
dr

]
du

=

∫
|u|=1

[
1

π
(x · u−K)

+ − K

2π
H(x · u−K)

]
du, n = 3,

where we integrated by parts, sifted and simplified terms in the last step. Thus, in dimension n = 3,
the standard dispersion call option with dispersion strike K is replicated by a normalized continuous
portfolio of long basket calls in quantity 1/π and short binary basket calls in quantity K/2π, with
fixed moneyness parameter K and basket weights u = (u1, u2, u3) subject to the constraint u2

1 +
u2
2 + u3

3 = 1.

It is worth observing that the presence of binary options in the above decomposition provides
some insight into the dynamic hedging challenges for dispersion calls: for every binary option near
the money, its delta price sensitivity becomes very large and the delta-hedging strategy prescribed
by standard option theory is not feasible. In practice this issue can be mitigated by replacing binary
options with tight call spreads so as to obtain an “overhedge” for the issuer — see e.g. Demeterfi
et al. (1999, pp. 37–39), Taleb (1997, pp. 286–290), Bossu (2014, pp. 1, 2, 37–39) for further details.
The following proposition gives the general form of the expansion:

Proposition 3. In odd dimension n ≥ 3, the standard dispersion call is replicated by a normalized
continuous portfolio of vanilla basket calls and their payoff derivatives up to order (n − 1)/2, such
as binary basket calls (step function), basket Arrow-Debreu securities10 (delta function) and higher-
order derivatives, as follows:

(|x| −K)
+
=

1

π(n−1)/2

∫
|u|=1

(
d

dr

)n−1
2 [

r
n−2
2

(√
rx · u−K

)+]∣∣∣∣∣
r=1

du, n odd,

where
(

d
dr

)n−1
2

[
r

n−2
2 (

√
rx · u−K)

+
]
may be further expanded using Leibniz’s product rule.

10Alternatively, δ(x · u − K) may be interpreted as the limit-case of a levered butterfly spread

limε→0
1
ε2

[
(x · u−K + ε)+ − 2(x · u−K)+ + (x · u−K − ε)+

]
.
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Proof. Substituting the solution formula (2) into equation (A.9) and switching the order of
integration; then substituting r �→ k

K

√
r and simplifying,

(|x| −K)
+
=

2

π(n−1)/2

∫
|u|=1

∫ ∞

0

δ(
n−1
2 )
(

k2

K2
− r2

)
rn−1 (rx · u− k)

+
dr du

=
1

π(n−1)/2

∫
|u|=1

∫ ∞

0

δ(
n−1
2 )(1− r) r

n−2
2

(√
rx · u−K

)+
dr du, n odd.

Integrating by parts (n− 1)/2 times and sifting yields the decomposition as stated. �

Corollary. For n = 5 the decomposition expands as

(|x| −K)
+
=

1

π2

∫
|u|=1

d2

dr2

[
r3/2

(√
rx · u−K

)+]∣∣∣∣
r=1

du

=

∫
|u|=1

[
2

π2
(x · u−K)+ +

5K

4π2
H(x · u−K) +

1

4π2
δ(x · u−K)

]
du, n = 5.

7.2. Even dimension. In even dimension the standard dispersion call also decomposes into contin-
uous portfolios of vanilla basket calls, binary basket calls and higher-order payoff derivatives, after
ad hoc Hadamard regularization of the pseudofunction written in solution formula (2). We illustrate
below how this is done in dimension n = 2.

Proposition 4. In dimension n = 2, the standard dispersion call is replicated by a normalized
continuous portfolio of vanilla and binary basket calls together with a constrained portfolio of basket
Arrow-Debreu securities, as follows:

(|x| −K)
+
=

1

2

∫
|u|=1

[
(x · u−K)

+
+KH(x · u−K)

]
du

− K2

π

∫
|y|≤1

arcsin|y|
|y|3 δ(x · y −K) dy, n = 2.

Proof. Substituting solution formula (3) into equation (A.9),

(|x| −K)
+
= − 2

π

∫ ∞

0

r
H(k2/K2 − r2)

(k2/K2 − r2)
3/2

¶ dr

∫
|u|=1

(rx · u− k)
+
du, n = 2,

subject to Hadamard regularization of the singularity at r = k/K. Substituting r �→ k
K

√
1− r

and simplifying; regularizing; and then integrating by parts,

(|x| −K)
+
= − 1

π

∫ 1

0

H(r)

r3/2
¶ dr

∫
|u|=1

(√
1− rx · u−K

)+
du

= − 1

π
lim
ε→0

[∫ 1

ε

dr

r3/2

∫
|u|=1

(√
1− rx · u−K

)+
du− 2√

ε

∫
|u|=1

(x · u−K)
+
du

]

=
1

2π

∫ 1

0

dr√
r(1− r)

∫
|u|=1

(x · u)H(√1− rx · u−K
)
du, n = 2,
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which is a convergent improper integral. Substituting r �→ 1− r2 and then integrating by parts
and sifting,

(|x| −K)
+
=

1

π

∫ 1

0

dr√
1− r2

∫
|u|=1

(x · u)H(rx · u−K) du

=
1

2

∫
|u|=1

(x · u)H(x · u−K) du

− K2

π

∫ 1

0

arcsin r

r2
dr

∫
|u|=1

δ(rx · u−K) du, n = 2.

The second term above may be rewritten as the surface integral over the unit disk {(y1, y2) ∈
R

2 : y21 + y22 ≤ 1},
−K2

π

∫
|y|≤1

arcsin|y|
|y|3 δ(x · y −K) dy.

Substituting the above together with (x · u)H(x · u−K) = (x · u−K)
+
+ KH(x · u−K)

+

into the prior expression, we obtain the decomposition as stated. �

8. Consequences for arbitrage pricing and conclusions

It is standard industry practice to price a given European multi-asset option with an ad hoc
model capturing the option’s idiosyncratic risks in terms of dynamic hedging, together with empirical
“street adjustments” compensating for certain unavoidable risks such as payoff discontinuities. In
the early days, a wide range of multi-asset options would typically be priced using a multi-asset
Black-Scholes or local volatility model with constant correlation (e.g. Bossu, 2014, pp. 82–84) —
for instance: basket calls or puts, best-of and worst-of calls or puts, quanto options. Recently,
the derivatives industry appears to have shifted toward local correlation and stochastic correlation
models that better reflect complex joint dynamics between asset prices, particularly for best-of and
worst-of options. Evidence of this shift can be found in the works of Langnau (2010), Reghai (2010),
Austing (2011), among others.

Dispersion options are typically viewed as risky instruments to hedge that require a sophisticated
pricing model, perhaps featuring stochastic volatility and correlation, and jumps. The replication
results in this paper indicate that this view may not be entirely justified. Instead, the existence of
a static replicating portfolio suggests standard dispersion options should be priced with the same
model used for vanilla basket calls, under penalty of arbitrage. However, the presence of potentially
discontinuous payoffs such as binary baskets calls in the replicating portfolio, as found for the
dispersion call in section 7, together with the dynamic hedging challenges associated with negative
basket weights, might still justify some street adjustments not accounted for by our theory.

Overall, the results presented in this paper constitute a first step toward extending the seminal
work of Carr and Madan (1998) and Breeden and Litzenberger (1978) to the static replication and
pricing of multi-asset options, leveraging on advanced mathematical tools and theory such as Radon
transforms that have vast potential for further applications in quantitative finance and indeed other
scientific fields.
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Appendix A. Classical solution formulas

General references for this section are especially Rubin (2015, pp. 26–68, 127–143), as well as
Deans (1983) and Natterer (2001).

A.1. Conversion to one-dimensional fractional integral equation of the first kind.

Proposition A.1. If the target dispersion payoff function F (s) is twice differentiable (possibly in a
generalized sense), the multidimensional inverse problem (1) of replicating a dispersion option with
basket calls converts to the one-dimensional fractional integral equation of the first kind:

f(s) =
2

Γ[(n− 1)/2]

∫ s

0

rφ(r)
(
s2 − r2

)n−3
2 dr, (A.1)

where Γ is Euler’s gamma function, f(s) :=
snF ′′(s)
π(n−1)/2

and ϕ(y; k) ≡ φ(k/|y|)
|y|n+1

.

Proof. Writing integral equation (1) in cylindrical coordinates x �→ sv where s := |x| ≥ 0 is a
nonnegative real number and v := x/|x| is a unit vector of Rn yields

F (s)− c =

∫
Rn

(sv · y − k)+ϕ(y) dy, s ≥ 0, |v| = 1. (A.2)

Differentiating both sides twice against s and then sifting,

F ′′(s) =
∫
Rn

(v · y)2δ(sv · y − k)ϕ(y) dy

=
k2

s2

∫
Rn

δ(sv · y − k)ϕ(y) dy.

Multiplying both sides by s2/k2 and switching back to Cartesian coordinates,

|x|2
k2

F ′′(|x|) =
∫
Rn

δ(x · y − k)ϕ(y) dy, x ∈ R
n,

which is a Radon transform inverse problem of the target radial function s �→ F ′′(s) s2/k2 with
Cartesian parameters (x, k) ∈ R

n+1. Conversion of the transform with cylindrical parameters
(x, k) ∈ S

n−1 × R into a modified Erdélyi-Kober fractional integral is covered in Rubin (2015,
pp. 140–142). In particular the solution ϕ, if it exists, is also radial, i.e. ϕ(y) = ψ(|y|)
where ψ(r) is a function of a single variable. The case at hand with Cartesian parameters is
straightforwardly adapted as follows. Rewriting the integral to the right-hand side of the above
equation in cylindrical coordinates y �→ ru, |u| = 1,

|x|2
k2

F ′′(|x|) =
∫ ∞

0

rn−1ψ(r) dr

∫
|u|=1

δ(rx · u− k) du, (A.3)

where the inner integral is a surface integral over the n-dimensional unit sphere S
n−1 := {u ∈

R
n : |u| = 1} introduced in section 2. By slice integration (Rubin, 2015, p. 29), this spherical
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integral collapses to∫
|u|=1

δ(rx · u− k) du =
∣∣Sn−2

∣∣ ∫ 1

−1

δ(r|x|t− k)
(
1− t2

)n−3
2 dt

=

∣∣Sn−2
∣∣

r|x|n−2

(
|x|2 − k2

r2

)n−3
2

H

(
r − k

|x|
)
,

where
∣∣Sn−2

∣∣ = 2π(n−1)/2/Γ[(n−1)/2] is the surface area of the (n−1)-dimensional unit sphere,
and H is Heaviside’s step function. Substituting into equation (A.3) and simplifying,

|x|2
k2

F ′′(|x|) =
∣∣Sn−2

∣∣
|x|n−2

∫ ∞

k/|x|
rn ψ(r)

(
|x|2 − k2

r2

)n−3
2 dr

r2
,

which, for fixed k > 0, is a radial equation as both sides are functions of |x| only. Substituting
r �→ k/r and

∣∣Sn−2
∣∣ = 2π(n−1)/2/Γ[(n− 1)/2], simplifying and rearranging,

|x|nF ′′(|x|)
π(n−1)/2

=
2

Γ[(n− 1)/2]

∫ |x|

0

r

(
k

r

)n+1

ψ

(
k

r

)(|x|2 − r2
)n−3

2 dr. (A.4)

The above integral is a left-sided modified Erdélyi-Kober fractional integral of the function
φ(r) := (k/r)

n+1
ψ(k/r). Finally, substituting s := |x|, f(s) := snF ′′(s)/π(n−1)/2 and φ(r) into

the above and then simplifying yields the fractional integral equation (A.1) as stated. �

A.2. Inversion formulas.

Proposition A.2. Provided that the following standard and fractional derivatives exist (possibly
in a generalized sense), the solution to the fractional integral equation (A.1) is given as

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d

dr2

)n−1
2

f(r), n odd,

2√
π

d

dr2

∫ r

0

s√
r2 − s2

(
d

ds2

)n−2
2

f(s) ds, n even.

(A.5)

Proof. See Rubin (2015, pp. 65–68) for inversion of modified Erdélyi-Kober fractional integral
operators with particular focus on right-sided operators in theorem 2.44, and pp. 142–143 for
an application to the Radon transform of radial functions. The case of left-sided operators is
similar and illustrated in appendix B. �

Remark. A variant of the above formula for n even has the differential operator taken out of the
integral:

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
d

dr2

)n−1
2

f(r), n odd,

2√
π

(
d

dr2

)n/2 ∫ r

0

sf(s)√
r2 − s2

ds, n even.

(A.6)
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Corollary. The solution ϕ(y) to the replication problem (1), if it exists, is given as ϕ(y; k) =
φ(k/|y|)
|y|n+1

with

φ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

π(n−1)/2

(
d

dr2

)n−1
2

rnF ′′(r), n odd,

2

πn/2

d

dr2

∫ r

0

s√
r2 − s2

(
d

ds2

)n−2
2

[snF ′′(s)] ds, n even,

(A.7)

where the differential operator may be taken out of the integral as remarked above for n even.

Proof. Immediate from substituting f(s) := snF ′′(s)/π(n−1)/2 into equation (A.5). �

A.3. Existence and uniqueness of solutions. In function spaces of interest, fractional integrals
are injective linear operators11 and thus if a solution φ to equation (A.1) exists, it is unique almost
everywhere. For example, consider the left-sided half-integral operator J : φ �→ Jφ where

Jφ(s) :=

∫ s

0

φ(r)√
s− r

dr, s > 0.

Half-differentiating against s,

J ′Jφ(s) =
d

ds

∫ s

0

Jφ(t)√
s− t

dt =
d

ds

∫ s

0

∫ t

0

φ(r)√
(s− t)(t− r)

dr dt.

Provided the function space is compatible with integral reordering (such as the space of L1 functions),

J ′Jφ(s) =
d

ds

∫ s

0

φ(r)

∫ s

r

1√
(s− t)(t− r)

dr dt = π
d

ds

∫ s

0

φ(r) dr = πφ(s).

Consequently, the nullspace of J is just the null function, and J is an injective operator. However,
it is worth emphasizing that a solution φ to equation (A.1) may not always exist, particularly if we
impose smoothness or regularity requirements such as continuity over (0,∞), as shown below.

Proposition A.3. For n ≥ 3, the left-sided modified Erdélyi-Kober fractional integral operator
I : φ �→ Iφ where

Iφ(s) :=
2

Γ[(n− 1)/2]

∫ s

0

rφ(r)(s2 − r2)(n−3)/2 dr, s > 0,

is an endomorphism of the space of continuous functions over (0,∞).

Proof. Substituting r �→ s
√
r and simplifying,

Iφ(s) = sn−3 1

Γ[(n− 1)/2]

∫ 1

0

φ(s
√
r) (1− r)

n−3
2 dr, (A.8)

which is continuous in s for n ≥ 3 if φ(r) is continuous in r (see also Luchko and Trujillo, 2007,
th. 2.2). �

Corollary. (a) If the payoff function F is not twice continuously differentiable over (0,∞), then
the replication problem (1) has no continuous solution ϕ.

(b) If φ(r) = O(r3) then F ′′ is continuous at the origin.

11See e.g. Kress (2014, p.2) for a definition.
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Proof. (a) Contraposition of proposition A.3 when Iφ(s) = f(s) := snF ′′(s)/π(n−1)/2.
(b) Replace Iφ(s) with f(s) := snF ′′(s)/π(n−1)/2 into equation (A.8), divide both sides by sn

and let s → 0.

�

Here, it is worth emphasizing that many payoff functions that are relevant to finance, beginning
with calls and puts, are not twice continuously differentiable over the entire domain (0,∞); we must
therefore look for solutions outside of classical theory such as generalized functions. Fortunately,
the inversion formulas of Section A.2 are compatible with generalized functions and yield a solution
for standard dispersion calls with payoff F (s) := (s − K)+ as shown in Section 3. However, the
following proposition shows that the zero-strike call F (s) := s (and thus puts F (s) := (K − s)+ by
reason of put-call parity) is not replicable in this manner. We resolve this impasse in Sections 4 and
5 by including singular generalized functions in the solution space.

Proposition A.4. Let F be a sufficiently regular payoff function. The replication problem (1) has
a regular solution if and only if F ′(0) = 0.

Proof. If ϕ(y) is a regular solution to the replication problem (1), we may differentiate both sides
of equation (A.2) against s and let s → 0 to get F ′(0) = 0. Conversely, assume that F ′(0) = 0.
The solution φ given in (A.7) is known to solve equation (A.1); integrate the latter twice to
retrace our steps and retrieve equation (A.2) up to a linear term λs where λ = F ′(0) = 0.
Hence, ϕ(y; k) = φ(k/|y|)/|y|n+1 is a regular solution to the replication problem. �

Corollary. There is no regular solution to the replication problem (1) for the class of affine standard
dispersion options with payoff F (|x|) := c+ λ|x|, λ �= 0.

Proof. Immediate from F ′(0) = λ �= 0. Alternatively, substitute F ′′(s) = 0 into formula (A.7)
to obtain a degenerate φ ≡ 0. �

A.4. Another one-dimensional conversion. In the spirit of our previous paper (2021), we
present another conversion of the multidimensional integral equation (1) with basket call kernel
(x · y − k)+ to a one-dimensional equation with integral kernel G(|x|, r) indexed by r ∈ (0,∞).
This alternative expression can be handy to validate a solution ϕ obtained by the fractional calculus
methods used earlier.

Proposition A.5. The replication problem (1) converts to the Fredholm integral equation of the
first kind

F (s)− c =

∫ ∞

0

G(s, r)ψ(r) dr, s ≥ 0,

with integral kernel

G(s, r) =
∣∣Sn−2

∣∣ [ rs

n− 1

(
r2 − k2

s2

)(n−1)/2

− k

2
rn−1B

(
1− k2

r2s2
; n−1

2 , 1
2

)]
H(rs− k),

where s := |x|, ϕ(y) ≡ ψ(|y|), and B(x; a, b) :=
∫ x

0
ta−1(1− t)b−1 dt is the incomplete beta function.
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Proof. Switching to cylindrical coordinates y �→ ru, |u| = 1 and rearranging, equation (1)
becomes

F (|x|)− c =

∫ ∞

0

ψ(r) dr

∫
|u|=1

rn−1 (rx · u− k)
+
du. (A.9)

By slice integration the sphere integral collapses to∫
|u|=1

rn−1(rx · u− k)+ du = rn|x|∣∣Sn−2
∣∣ ∫ 1

−1

(
t− k

r|x|
)+ (

1− t2
)(n−3)/2

dt.

Denoting α := k/(rs) for k < rs, splitting the integral at t = α, applying the reverse chain rule
to one split integral and substituting t �→ √

1− t inside the other,∫ 1

−1

(t− α)+
(
1− t2

)(n−3)/2
dt =

∫ 1

α

t
(
1− t2

)(n−3)/2
dt− α

∫ 1

α

(
1− t2

)(n−3)/2
dt

=
1

n− 1

(
1− α2

)(n−1)/2 − α

2

∫ 1−α2

0

t(n−3)/2(1− t)−1/2 dt

=
1

n− 1

(
1− α2

)(n−1)/2 − α

2
B(1− α2; n−1

2 , 1
2 ),

where we recognized the incomplete beta function B(x; a, b) in the last step. Substituting
α := k/(rs), multiplying both sides by rns

∣∣Sn−2
∣∣ and simplifying yields the formula for G(s, r)

as stated. �

Corollary. For n = 3 we have the simpler expression

G(s, r) =
πr3

s

(
s− k

r

)+2

, n = 3.

Proof. By slice integration, the sphere integral in equation (A.9) simplifies to∫
|u|=1

rn−1(rx · u− k)+ du = r3|x|∣∣S1∣∣ ∫ 1

−1

(
t− k

r|x|
)+

dt = 2πr3|x| 1
2

(
1− k

r|x|
)+2

,

which simplifies to
πr3

s

(
s− k

r

)+2

as stated. �

In other words, a dispersion option payoff F (|x|) on three underlying assets may be replicated
with cash and a continuous portfolio of “smooth dispersion calls” indexed by r ∈ (0,∞) as

F (|x|) = c+

∫ ∞

0

πr3ψ(r)
(|x| − k/r)

+2

|x| dr, n = 3, (A.10)

provided that a solution ϕ(y) ≡ ψ(|y|) to integral equation (1) exists in the first place.

Appendix B. Inversion of modified Erdélyi-Kober fractional integral equation

We show how the left-sided modified Erdélyi-Kober fractional integral equation

f(x) = 2

∫ x

0

yg(y)(x2 − y2)
n−3
2 dy, x ≥ 0, (B.1)
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is solved for g(y) by repeated differentiation against x2, together with further analysis when n is
even. When n ≥ 5 is odd, the exponent m := n−3

2 is a positive integer and we may differentiate

both sides against x2 to obtain

d

dx2
[f(x)] = 2xg(x)(x2 − x2)m

dx

dx2
+ 2m

∫ x

0

yg(y)(x2 − y2)m−1 dy,

where we used Leibniz’s integral rule. Since m > 0 when n ≥ 5 the first term vanishes, and we may
iterate this process to write (

d

dx2

)m

[f(x)] = 2m!

∫ x

0

yg(y) dy,

which is also satisfied when n = 3,m = 0 with the conventions (d/ dx2)0 = id and 0! = 1. Differen-
tiating against x, dividing both sides by 2m!x and substituting 1

2x
d
dx = d

dx2 we recover

1

m!

(
d

dx2

)m+1

[f(x)] = g(x), n odd,

which solves the integral equation for n ≥ 3 odd. For n ≥ 2 even, the exponent n−3
2 is now an

integer and a half, and equation (B.1) is a proper fractional integral equation. Half-integrating both
sides yields ∫ x

0

f(s)
s√

x2 − s2
ds = 2

∫ x

0

s√
x2 − s2

∫ s

0

yg(y)(s2 − y2)
n−3
2 dy ds.

Switching the order of integration12, then substituting s �→√
y2 + (x2 − y2)s and simplifying,

∫ x

0

f(s)
s√

x2 − s2
ds = 2

∫ x

0

yg(y)

∫ x

y

s
(s2 − y2)

n−3
2√

x2 − s2
ds dy

=

∫ x

0

yg(y)(x2 − y2)
n−2
2

∫ 1

0

s
n−3
2 (1− s)−1/2 ds dy

= B
(
n−1
2 , 1

2

) ∫ x

0

yg(y)(x2 − y2)
n−2
2 dy,

where we recognized the inner integral as a beta function B(a, b) = Γ(a)Γ(b)/Γ(a + b) in the last
step. The exponent n−2

2 in the above expression being an integer, we may repeatedly differentiate

both sides against x2 as we did in odd dimension to obtain

(
d

dx2

)n/2 ∫ x

0

f(s)
s√

x2 − s2
ds = n−2

2 ! B
(
n−1
2 , 1

2

)
g(x).

Simplifying and rearranging yields the solution

g(x) =
1

Γ[(n− 1)/2]
√
π

(
d

dx2

)n/2∫ x

0

f(s)
s√

x2 − s2
ds, n even.

12By Fubini’s theorem this is licit if g is absolutely integrable, but not only.
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Appendix C. Calculation of the solution for the “Mexican hat” payoff in

dimension n = 2

Substituting s �→ r sin θ and simplifying, then substituting sin2 θ = 1− cos2 θ and simplifying,∫ r

0

s√
r2 − s2

e−s2(s2 − 2s4) ds

=

∫ π/2

0

r sin θ e−r2 sin2 θ(r2 sin2 θ − 2r4 sin4 θ) dθ

=

∫ π/2

0

r sin θ er
2 cos2 θ−r2

[
r2 − r2 cos2 θ − 2

(
r2 − r2 cos2 θ

)2]
dθ.

Substituting t = r cos θ and simplifying; expanding the square; separating terms; integrating by
parts twice and simplifying,∫ r

0

s√
r2 − s2

e−s2(s2 − 2s4) ds = e−r2
∫ r

0

et
2 [

r2 − t2 − 2(r2 − t2)2
]
dt

= (r2 − 2r4)D(r) + e−r2
∫ r

0

2tet
2 (

2r2t− t/2− t3
)
dt

= r + r3 − (1 + r2 + 2r4)D(r),

where D(r) := e−r2
∫ r

0
et

2

dt.
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STATIC REPLICATION OF EUROPEAN MULTI-ASSET OPTIONS WITH

HOMOGENEOUS PAYOFF

SÉBASTIEN BOSSU*

Abstract. The replication of any European contingent claim by a static continuous portfolio of calls and

puts, formally proven by Carr and Madan (1998), extends to multi-asset claims with absolutely homogeneous

payoff. Using sophisticated tools from integral geometry, we show how such claims may be replicated with a
continuum of vanilla basket calls and derive closed-form solutions to replicate two-asset best-of and worst-of
options. We also derive a novel mathematical formula to invert the Radon transform which we apply to
obtain a tractable expression of the joint implied distribution. Consequently, a large class of multi-asset

options admit a model-free price enforced by arbitrage, just as single-asset European claims do.

1. Introduction

In dimension n ě 2 the general European payoff replication problem takes the following form: given a
target multi-asset European payoff F px1, x2, ¨ ¨ ¨ , xnq, where x1, ¨ ¨ ¨ , xn are n asset performances, and given
a family of “replicant” multi-asset European options with payoffs Gpx1, ¨ ¨ ¨ , xn, y1, ¨ ¨ ¨ , ynq indexed along
n continuums of variables y1, y2, ¨ ¨ ¨ , yn that typically correspond to asset levers or weights, find a static
“continuous portfolio” of the basic options in quantities φpy1, ¨ ¨ ¨ , ynq that replicate the target payoff:

F px1, ¨ ¨ ¨ , xnq “
ż

¨ ¨ ¨
ż
Gpx1, ¨ ¨ ¨ , xn, y1, ¨ ¨ ¨ , ynqφpy1, ¨ ¨ ¨ , ynqdy1 ¨ ¨ ¨ dyn,

where
ş ¨¨¨ ş

denotes a multiple integral against the index variables y1, ¨ ¨ ¨ , yn over a suitable domain. For
maximum generality we let all our variables xi, yi be positive or negative real numbers and we leave the
definition of asset performance unspecified with the important caveat that the replicant option payoffs
Gp¨ ¨ ¨ q are defined accordingly. A typical definition would be the gross returns to maturity or the price
ratios of n underlying assets.

This paper covers replication with vanilla basket calls that pay off Gp¨ ¨ ¨ q :“ přn
i“1 xiyi ´ kq`

where
t` :“ maxp0, tq denotes the positive part of a real number t and k is a moneyness parameter. We further
postulate that the target payoff F also depends on parameter k and write F px1, ¨ ¨ ¨ , xn; kq, and that it is
absolutely homogeneous, that is, F pλx1, ¨ ¨ ¨ , λxn;λkq “ |λ|F px1, ¨ ¨ ¨ , xn; kq for any real number λ. Switching
to vector notations, in the language of functional analysis we want to solve the multidimensional integral
equation of the first kind

F px; kq “
ż
Rn

px ¨ y ´ kq`φpyq dy, px, kq P R
n`1, (1a)

for an unknown function φpyq that is independent from k. Here, x ¨y :“ řn
i“1 xiyi denotes the canonical dot

product of Euclidean space R
n with associated norm |x| :“ ?

x ¨ x. This integral equation may be viewed

Date: April 27, 2021.
* NYU Courant. The author thanks Guillaume Bal and Paul Garrett for useful discussions about Radon transforms and

integral regularizations. All remaining errors are his.
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2 SÉBASTIEN BOSSU*

as a multi-asset generalization of the Breeden and Litzenberger (1978) and Carr and Madan (1998) inverse
problems. When a solution φpyq exists, the target option admits a model-free arbitrage price so long as
basket call prices of arbitrary basket weights y are known.

Differentiating both sides twice against k, equation (1a) converts to the Radon transform inverse problem

fpx; kq “
ż
Rn

δpx ¨ y ´ kqφpyqdy “: Rφpx, kq, px, kq P R
n`1, (1b)

where f “ B2F

Bk2 , δ denotes Dirac’s delta function, and Rφpx, kq is the Radon transform of φ with n ` 1

Cartesian parameters px, kq P R
n`1. From a quantitative finance perspective, the above integral equation

may be interpreted as a replication problem of the ersatz payoff function f with basket Arrow-Debreu
securities Gpx,yq :“ δpx ¨ y ´ kq.

In Bossu, Carr, and Papanicolaou (2020) integral equation (1a) was solved for “standard dispersion
options” whose payoff is a radial function F pxq :“ F0p|x|q, F0 P R

R, in which case the Radon transform
inverse problem (1b) collapses to a one-dimensional fractional integral equation and solves as a fractional
derivative of F0. We refer to Sections 1 and 2 of this prior paper for a discussion of motivations behind the
replication problem (1a), and we shall adopt the same notations.

Our main theoretical contribution is to show how multi-asset European options with absolutely homo-
geneous payoff can be replicated by a continuous portfolio of vanilla basket calls, and consequently admit
a “model-free” arbitrage price so long as the prices of basket call options of arbitrary basket weights are
known. We also derive a novel mathematical formula for the inverse Radon transform which we use to obtain
a tractable expression of the joint implied distribution based on vanilla basket call prices. Finally, we apply
our theory to obtain the first replication identities for best-of and worst-of options on two assets.

In related literature, Henkin and Shananin (1990) study a similar inverse problem arising from mathe-
matical economics over the domain R

n`. Lipton (2001, pp. 291–292) proposes a generalization of the Carr and
Madan formula for two assets using Radon transforms, while Carr and Laurence (2011) derive a multi-asset
version of the Dupire (1993) local volatility formula. Recently, Cui and Xu (2021) use standard multivariate
calculus techniques to derive a multi-asset version of the Carr and Madan formula as multiple integrals of
products of call options.

The remainder of this paper is organized as follows: In Section 2 we review the Radon transform with
Cartesian parameterization and its mathematical properties, and derive inverse formulas. In Section 3
we discuss how equations (1a) and (1b) are related and how the replication problem may be solved. In
Section 4 we apply our framework for best-of and worst-of options in dimension n “ 2. In Section 5 we
present as theoretical application a new formula for the joint implied distribution, before discussing general
consequences for arbitrage pricing in our concluding Section 6.

2. The Radon transform with Cartesian parameterization and its inverse

General references for this section are especially Rubin (2015, pp. 26–68, 127–143), and Deans (1983),
Natterer (2001). A fair body of theoretical and applied research has been published on the Radon transform
and its inverse with particular focus on cylindrical parameters, that is for unit vectors x. This section
summarizes some key results from existing theory which we adapted to our Cartesian parameterization
px, kq P R

n`1, together with some original theoretical extensions.
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STATIC REPLICATION OF EUROPEAN MULTI-ASSET OPTIONS WITH HOMOGENEOUS PAYOFF 3

2.1. Existence and elementary properties of the Radon transform. A standard requirement for
integral transforms is that φ be absolutely or square integrable in the first place so that the transform Rφ
be well defined. If k ‰ 0, the behavior of φ at origin does not matter too much and it is enough to requireż

|y|ąa

|φpyq|
|y| dy ă 8

for any a ą 0 (see Rubin, 2015, pp. 132–133 and 145–147 for a detailed discussion of existence). Note that
the Radon transform may also exist for other types of functions that do not meet the above criterion. If φ
is good enough for Rφ to be well defined, the transform Rφpx, kq satisfies:

(P1) Scaling property: by linear change of variable,

Rφpλx, kq “ 1

|λ|nR
”
φ

´y

λ

¯ı
px, kq,

and more generally for any invertible matrix A with inverse transpose A´T ,

RφpAx, kq “ 1

|detA|RrφpA´Tyqspx, kq.

(P2) Absolute homogeneity of degree -1: by the same property of Dirac’s delta function,

Rφpλx, λkq “ 1

|λ|Rφpx, kq.

Property (P2) yields the following alternative parameterizations:

‚ Cylindrical parameters: Rφpx, kq “ 1

|x|Rφ

ˆ
x

|x| ,
k

|x|
˙
. This is the classic parameterization used in integral

geometry which we denote Rφpu, tq where pu, tq P S
n´1 ˆ R .

‚ Standard Cartesian parameters: Rφpx, kq “ 1

|k|Rφ
´x

k
, 1

¯
. We shall denote this parameterization R1φpxq.

Note that the operators R and R1 are not absolutely homogeneous in their respective parameters; however
R is even symmetric: Rφp´u,´tq “ Rφpu, tq.

2.2. Fourier slice theorem. Inversion by Fourier method.

2.2.1. Cylindrical parameters. A well-known key result is that the n-dimensional Fourier transform may be
decomposed as a Radon transform followed by a one-dimensional Fourier transform (e.g., Rubin, 2015, p.
157):

φ̂pλuq “ rRφpu, tqs^pλq, pu, λq P S
n´1 ˆ R, (2)

where φ̂ is the n-dimensional Fourier transform of y ÞÑ φpyq and rgptqs^p¨q denotes the one-dimensional
Fourier transform of a function t ÞÑ gptq. Substituting u “ x{|x|, λ “ |x| into the above and taking n-
dimensional inverse Fourier transforms of both sides gives the classic Radon transform inverse formula by
Fourier method (Rubin, 2015, p. 176),

φpyq “
„„

Rφ

ˆ
x

|x| , t
˙j^

p|x|q
j_

pyq, y P R
n,

where rgpxqs_p¨q denotes the n-dimensional inverse Fourier transform of a function x ÞÑ gpxq.
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4 SÉBASTIEN BOSSU*

2.2.2. Standard Cartesian parameters. The Fourier slice theorem is straightforwardly converted to standard
Cartesian parameterization by substituting Rφpu, tq “ |t|´1R1φpu{tq, and u “ x{|x|, λ ÞÑ λ|x| into equation
(2) to obtain

φ̂pλxq “
„
1

|t|R1φ

ˆ
x

t|x|
˙j^

pλ|x|q “
„
1

|t|R1φpx{tq
j^

pλq, px, λq P R
n`1, (3)

where we used the scaling property of the Fourier transform and simplified in the last step. Substituting
λ “ 1, taking n-dimensional inverse Fourier transforms of both sides and switching the order of Fourier
transforms yields the inversion formula

φpyq “
„
1

|t| rR1φpx{tqs_pyq
j^

p1q “
”
|t|n´1~R1φptyq

ı^p1q, y P R
n, (4)

where we used the scaling property of the n-dimensional inverse Fourier transform in the last step.

2.3. Inversion by backprojection. For completeness, as an alternative to the aforementioned Fourier
method, we discuss a popular method of inversion known as backprojection.

2.3.1. Cylindrical backprojection. Subject to regularity conditions, the Radon transform Rφpu, tq ” hpu, tq
with cylindrical parameters pu, tq P S

n´1 ˆ R is inverted as (e.g. Natterer, 2001, ch. II, eq. (2.5))

φpyq “

$’’’&’’’%
p´1qpn´2q{2

2p2πqn´1

ż
|u|“1

Hhpn´1qpu,u ¨ yqdu, n even,

p´1qpn´1q{2

2p2πqn´1

ż
|u|“1

hpn´1qpu,u ¨ yqdu, n odd.

(5)

where the pn ´ 1qst derivative of the target function hpu, tq is taken against the radial argument t, and H
denotes the Hilbert transform operator

Hgpτq ” Htrgptqspτq :“ 1

π

ż 8

´8
gptq
τ ´ t

¶ dt

whose convergence is understood as Cauchy principal value, as we emphasized by the pilcrow symbol ¶. In

integral geometry, integrals of the form

ż
|u|“1

hpu,u ¨ yqdu are known as dual Radon transform (Rubin,

2015, pp. 138–140), adjoint operator or backprojection operator.

2.3.2. Cartesian backprojection. In the remainder of this section we derive a backprojection formula to invert
the Radon transform with Cartesian parameters, which we did not see in our reference literature and present
as a novel mathematical result. To do so, we propose to extend the concept of fundamental solution or
Green’s function to the Radon transform operator R1, which is a linear operator. In other words, we wish
to solve the multidimensional integral equation

δpx ´ Kq “
ż
Rn

δpx ¨ y ´ 1qϕKpyqdy “: pR1ϕKqpxq, x P R
n,

where K is a constant vector and ϕK is the fundamental solution. From a quantitative finance perspective,
this corresponds to replicating the multi-asset Arrow-Debreu security δpx ´ Kq with a continuous porfolio
of basket Arrow-Debreu securities δpx ¨ y ´ kq. With the fundamental solution in hand, we may formally
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STATIC REPLICATION OF EUROPEAN MULTI-ASSET OPTIONS WITH HOMOGENEOUS PAYOFF 5

invert the Radon transform R1 as φpyq “ ş
Rn fpKqϕKpyqdK, provided that this integral converge in some

sense. As shown in Appendix A, the fundamental solution is given as

ϕKpyq “ p´1qn´1

p2πqn´1

´
Hn´1δpn´1q

¯
p1 ´ y ¨ Kq, (6)

where Hn´1 denotes the composition of order n ´ 1 of the Hilbert transform. Substituting, commuting the
Hilbert transform with the translation t ÞÑ t ´ y ¨ K, then taking it outside of the integral,

φpyq “ p´1qn´1

p2πqn´1
Hn´1

t

„ż
Rn

fpKqδpn´1qpt ´ y ¨ KqdK
j

p1q.
Recognizing the partial derivative against t of the Radon transformRfpy, tq we obtain the remarkable inverse
formula

φpyq “ p´1qn´1

p2πqn´1
Hn´1

t

„ Bn´1

Btn´1
Rfpy, tq

j
p1q “

$’’&’’%
p´1qn{2

p2πqn´1
Ht

”
Rpn´1qfpy, tq

ı
p1q, n even,

p´1qpn´1q{2

p2πqn´1
Rpn´1q

1 fpyq, n odd;

(7)

“

$’’’’&’’’’%
p´1qn{2

p2πqn´1

8ż
´8

1

1 ´ t
¶ Bn´1

Btn´1

ż
Rn

δpx ¨ y ´ tqfpxqdx dt, n even,

p´1qpn´1q{2

p2πqn´1

Bn´1

Btn´1

ˇ̌̌̌
t“1

ż
Rn

δpx ¨ y ´ tqfpxqdx, n odd,

where we introduced the notations Rpn´1qfpy, tq :“ Bn´1

Btn´1Rfpy, tq and Rpn´1q
1 fpyq :“ Rpn´1qfpy, 1q. Thus,

in Cartesian parameterization the inverse Radon transform R´1
1 f turns out to be straightforwardly related

to the partial derivative of order n ´ 1 of the direct transform Rf against the second argument. Compared
to the classic backprojection formula (5) under cylindrical parameterization, our method presents some
important differences and advantages:

‚ Formula (7) fits the natural Cartesian coordinate system of the original integral equation (1b). No con-
version from Cartesian to cylindrical coordinates is needed.

‚ In practice, spherical integrals can be hard to calculate. In contrast our formula (7) is based on the Radon
transform of the target function f which may be easier to calculate as an integral over Rn.

‚ The classic backprojection formula (5) requires high-order differentiation of the target function inside the
spherical integral, which tends to exacerbate singularities. In our inversion formula (7), differentiation is
performed after integration.

3. Solving the replication problem

If a solution φ to the replication problem (1a) exists, it must solve the Radon transform inverse problem

(1b) with f “ B2F
Bk2 . Conversely, if φ solves equation (1b), by double integration against k it also solves the

replication problem (1a) up to an additive term h1pxq ` k h2pxq, where h1, h2 are two functions that are
independent from k. Asymptotic considerations yield

h2pxq “ lim
kÑ8

BF
Bk px; kq, h1pxq “ lim

kÑ8rF px; kq ´ k h2pxqs,
provided both limits exist and are finite. Depending on the target multi-asset payoff F , the additive term
h1pxq ` k h2pxq may vanish and the replication problem (1a) is solved as is. If it does not vanish, it might
still be replicable with a combination of cash, underlying assets and perhaps single-asset options. Otherwise,
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6 SÉBASTIEN BOSSU*

other methods beyond the scope of this paper would need to be employed to further break it down into
replicable securities.

Observe that if the payoff function F is absolutely homogeneous, then f “ B2F
Bk2 is absolutely homogeneous

of degree -1, thereby satisfying property (P2) of the Radon transform operator R. Homogenizing both sides
of equation (1b) with respect to k ‰ 0 and simplifying, it is easily converted to standard Cartesian form

fpx; 1q “: f1pxq “ R1φpxq :“ Rφpx, 1q, x P R
n,

whose solution φ “ R´1
1 f1 may be calculated by Fourier methods as discussed in Section 2.2.2, that is,

φpyq “ “|t|n´1f̌1ptyq‰ p̂1q “
«

|t|n´1
~B2F

Bk2 pty; kq
ff^

pλq
ˇ̌̌̌
ˇ
k“λ“1

wherein the ^,_ symbols respectively denote the one-dimensional direct and n-dimensional inverse Fourier
transforms. Alternatively, our backprojection formula (7) may be used.

4. Application: Replication of two-asset best-of and worst-of options

Consider a best-of option payoff F px1, x2; kq :“ F0px1 _ x2; kq where F0ps; kq is an arbitrary wrapper
function of the best-of asset x1 _ x2 :“ maxpx1, x2q. By the well-known even-odd decomposition x1 _ x2 “
x1 ` x2

2
` |x1 ´ x2|

2
, the best-of asset x1 _x2 is replicated with a 50-50 portfolio on the assets together with

a long at-the-money straddle on the spread x1 ´ x2, also known as an exchange or Margrabe straddle.

It is worth emphasizing that the best-of function px1, x2q ÞÑ x1 _ x2 is positively homogeneous but not
absolutely homogeneous. In what follows, we circumvent this issue by taking absolute values |x1| _ |x2|.
From a financial perspective, this does not pose any problem as long as x1, x2 correspond to positive asset
prices or price ratios.

4.1. General solution for two-asset best-of options. If the wrapper function F0ps; kq is absolutely
homogeneous in s, k, then the absolute best-of option payoff F px1, x2; kq :“ F0p |x1| _ |x2| ; kq is absolutely
homogeneous in x1, x2, k and we may deploy solution formula (4) as

φ_py1, y2q “
8ż

´8
|t|e´it|f_pty1, ty2qdt (8)

with

f_px1, x2q ” R1φpx1, x2q :“ f0p |x1| _ |x2| q, f0psq :“ B2F0

Bk2 ps, 1q.
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STATIC REPLICATION OF EUROPEAN MULTI-ASSET OPTIONS WITH HOMOGENEOUS PAYOFF 7

Decomposing f0p |x1| _ |x2| q “ f0p|x1|qHp|x1| ´ |x2|q ` f0p|x2|qHp|x1| ´ |x2|q, it is enough to calculate the
bidimensional inverse Fourier transform of the first term:

“
f0p|x1|qHp|x1| ´ |x2|q‰_py1, y2q “ 1

p2πq2
8ĳ

´8
eipx1y1`x2y2qf0p|x1|qHp|x1| ´ |x2|qdx1 dx2

“ 1

p2πq2
8ż

´8
eix1y1f0p|x1|q

|x1|ż
´|x1|

eix2y2 dx2 dx1

“ 1

2π2y2

8ż
´8

eix1y1f0p|x1|q sinp|x1|y2qdx1,

“ 1

π2y2

8ż
0

f0psq cospy1sq sinpy2sqds,

which holds by continuity at y2 “ 0 through sinpsy2q{y2 „ s. By symmetry,

|f_py1, y2q “ 1

π2

8ż
0

f0psq
”

1
y2

cospy1sq sinpy2sq ` 1
y1

sinpy1sq cospy2sq
ı
ds, y1, y2 ‰ 0.

Substituting into equation (8), simplifying and switching the order of integration,

φ_py1, y2q “ 1

π2

8ż
0

f0psq
8ż

´8
e´itpsgn tq

”
1
y2

cospty1sq sinpty2sq ` 1
y1

sinpty1sq cospty2sq
ı
ds, y1, y2 ‰ 0.

After calculations and simplifications of the inner direct Fourier transform with respect to t, we obtain that
the solution for the best-of option is

φ_py1, y2q “ ´ 4

π2

8ż
0

sf0psq`
1 ´ py1 ´ y2q2s2˘`

1 ´ py1 ` y2q2s2˘¶ ds (9)

“ ´ 2

π2

8ż
´8

s
`
f0psq ´ f0p´sq˘`

1 ´ py1 ´ y2q2s2˘`
1 ´ py1 ` y2q2s2˘¶ ds.

where the pilcrow symbol ¶ indicates the integral needs regularization. It is worth noting that, by partial
fraction decomposition, the above integral may be decomposed into a sum of Hilbert transforms of the odd
part of f0, that is the function s ÞÑ pf0psq ´ f0p´sqq.

4.2. Replication of two-asset best-of call and put. The payoff function of the absolute best-of call,
F px1, x2; kq :“ p |x1| _ |x2| ´ |k| q` , is absolutely homogeneous with second-order derivative

B2F0

Bk2 p|x1| _ |x2|; kq “ 2δpkqHp |x1| _ |x2| ´ |k| q ` δp |x1| _ |x2| ´ |k| q.
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8 SÉBASTIEN BOSSU*

Evaluating at k “ 1, we obtain f0psq :“ B2F0Bk2 ps; 1q “ δps ´ 1q. Substituting into formula (9) and sifting, we
obtain that the solution for the best-of call is

φC_py1, y2q “ ´4{π2`
1 ´ py1 ´ y2q2˘`

1 ´ py1 ` y2q2˘¶, (10)

as verified in Appendix B. It is worth emphasizing that this solution is a pseudofunction subject to regular-
ization of its singularities along the diagonals y1 ´ y2 “ ˘1 and antidiagonals y1 ` y2 “ ˘1, as we indicated
by the pilcrow symbol ¶. The corresponding replication identities are then given as:

‚ For the best-of call,

px1 _ x2 ´ kq` “ ´ 4

π2

8ĳ
´8

px1y1 ` x2y2 ´ kq``
1 ´ py1 ´ y2q2˘`

1 ´ py1 ` y2q2˘¶ dy1 dy2, x1, x2, k ą 0; (11)

‚ For the best-of put,

pk ´ x1 _ x2q` “ k ´ x1 ` x2

2
´ |x1 ´ x2|

2

` 4

π2

8ĳ
´8

px1y1 ` x2y2 ´ kq``
1 ´ py1 ´ y2q2˘`

1 ´ py1 ` y2q2˘¶ dy1 dy2,
x1, x2, k ą 0, (12)

which stems from put-call parity together with even-odd decomposition of x1 _ x2.

4.3. Two-asset worst-of options. The results in this section straightforwardly extend to worst-of options
by means of the maximum-minimum identity

F0px1 ^ x2; kq “ F0px1; kq ` F0px2; kq ´ F0px1 _ x2; kq.
where x1 ^ x2 :“ minpx1, x2q. For example, the worst-of call is replicated as

px1 ^ x2 ´ kq` “ px1 ´ kq` ` px2 ´ kq` ` 4

π2

8ĳ
´8

px1y1 ` x2y2 ´ kq``
1 ´ py1 ´ y2q2˘`

1 ´ py1 ` y2q2˘¶ dy1 dy2, x1, x2, k ą 0,

which is long vanilla calls on each single asset together with a long continuous portfolio of vanilla basket
calls.

5. Theoretical application: Multi-asset generalization of Breeden-Litzenberger formula

In the manner of Breeden and Litzenberger (1978), we may write the undiscounted price of a vanilla
basket call option as the risk-neutral expectation of its payoff

cpw, kq :“ Erpw ¨ S ´ kq`s “
ż
Rn

pw ¨ y ´ kq`πpyqdy,
where S is the random vector of terminal underlying asset prices with risk-neutral density πpyq :“ PpS “ yq.
Recognizing an integral equation of the form (1a), we may again differentiate both sides twice against k to
convert this equation into Radon form (1b),

ckkpw, kq :“ B2c

Bk2 pw, kq “
ż
Rn

δpw ¨ y ´ kqπpyq dy “: Rπpw, kq.
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Here, it is worth noting that ckkpw, kq “ Erδpw ¨S´kqs is absolutely homogeneous of order -1 as required by
property (P2), even though cpw, kq is merely positively homogeneous. The risk-neutral density implied by
basket call prices is thus recovered as the inverse Radon transform of ckk, that is, πpyq “ `R´1ckk

˘ pyq, in
agreement with Carr and Laurence (2011, p. 26) who proved this result under cylindrical parameterization.
This result may be further explicated by substituting our Cartesian backprojection formula (7) to obtain

πpyq :“ PpS “ yq “

$’’&’’%
p´1qn{2

p2πqn´1

´
Ht

”
Rpn´1qckkpy, tq

ı¯
p1q, n even,

p´1qpn´1q{2

p2πqn´1

´
Rpn´1q

1 ckk

¯
pyq, n odd.

(13)

This new formula for the implied risk-neutral density makes the Carr and Laurence result more explicit, is
more analytically tractable and also allows to combine all differentiation inside the Radon transform thanks
to the linearity of all integro-differential operators involved:

πpyq :“ PpS “ yq “

$’’&’’%
p´1qn{2

p2πqn´1

ˆ
Ht

„
R Bn`1c

Bkn`1
py, tq

j˙
p1q, n even,

p´1qpn´1q{2

p2πqn´1

ˆ
R1

Bn`1c

Bkn`1

˙
pyq, n odd.

6. Consequences for arbitrage pricing and conclusions

It is standard industry practice to price a given European multi-asset option with an ad hoc model
capturing the option’s idiosyncratic risks in terms of dynamic hedging, together with empirical “street
adjustments” compensating for certain unavoidable risks such as payoff discontinuities. In the early days,
a wide range of multi-asset options would typically be priced using a multi-asset Black-Scholes or local
volatility model with constant correlation (e.g. Bossu, 2014, pp. 82–84) — for instance: basket calls or
puts, best-of and worst-of calls or puts, quanto options. Recently, the derivatives industry appears to have
shifted toward local correlation and stochastic correlation models that better reflect complex joint dynamics
between asset prices, particularly for best-of and worst-of options. Evidence of this shift can be found in the
works of Langnau (2010), Reghai (2010), Austing (2011), among others.

European multi-asset options are often viewed as risky instruments to hedge that need a sophisticated
pricing model, perhaps featuring stochastic volatility and correlation, and jumps. The replication results in
this paper indicate that this view may not be entirely justified. Instead, the existence of a static replicating
portfolio suggests multi-asset options should be priced with the same model used for vanilla basket calls, under
penalty of arbitrage. However, the potential presence of singularities corresponding to infinite quantities for
some vanilla basket calls, as found for the best-of call in Section 4, together with the dynamic hedging
challenges that may be associated with negative basket weights, might still justify some street adjustments
not accounted for by our theory.

Overall, the results presented in this paper constitute a major step toward a comprehensive extension of
the seminal work by Carr and Madan (1998) and Breeden and Litzenberger (1978) to the static replication
and pricing of multi-asset options, leveraging on the advanced mathematical tools and theory of integral
geometry and Radon transforms that have vast potential for further applications in quantitative finance
and beyond. Future research in this direction is projected to cover all European multi-asset options with
sufficiently regular payoff, with applications to include best-of and worst-of options on any number of assets,
�1 dispersion options, correlation swaps and options, to name a few.
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Appendix A. Derivation of the fundamental solution for the Radon transform operator

By the Fourier slice theorem,

xϕKpλxq “
„
1

|t| pR1ϕKqpx{tq
j^

pλq “
„
1

|t|δpx{t ´ Kq
j^

pλq “ “|t|n´1δpx ´ tKq‰^pλq
where we used the homogeneity of the delta function in the last step. Rescaling the left-hand side with respect
to λ before taking the inverse multidimensional Fourier transform of both sides against x, and switching the
order of Fourier transforms to the right-hand side,

|λ|´nϕKpy{λq “ 1

p2πqn
„

|t|n´1

ż
Rn

eix¨yδpx ´ tKqdx
j^

pλq

“ 1

p2πqn
ż 8

´8
|t|n´1e´itpλ´K¨yq dt

“ 1

p2πqn
“ |t|n´1

‰^pλ ´ K ¨ yq. (14)

The Fourier transform of t ÞÑ |t|n´1 is classically represented as

“ |t|n´1
‰^pνq “

$&% 2π p´1qn´1
2 δpn´1qpνq, n odd,

2 p´1qn{2 pn ´ 1q!
νn

¶, n even,

wherein the pilcrow symbol ¶ indicates a pseudofunction subject to Hadamard regularization1. Substituting
the above into equation (14) for ν “ λ´y ¨K, homogenizing both sides against λ and simplifying yields the
fundamental solution

ϕKpyq “

$’’&’’%
p´1qpn´1q{2

p2πqn´1
δpn´1qp1 ´ y ¨ Kq n odd,

2
p´1qn{2

p2πqn
pn ´ 1q!

p1 ´ y ¨ Kqn ¶ n even,

which is singular over the hyperplane y ¨K “ 1. We may further unify the above expression by means of the
Hilbert transform as

ϕKpyq “ p´1qn´1

p2πqn´1

´
Hn´1δpn´1q

¯
p1 ´ y ¨ Kq,

wherein Hn´1 is the composition of order n ´ 1 of the Hilbert transform.

Appendix B. Verification of solution for best-of call

The Radon transform of solution (10) is

R1φ
C_px1, x2q “ ´ 4

π2

8ĳ
´8

δpx1y1 ` x2y2 ´ 1q`
1 ´ py1 ´ y2q2˘`

1 ´ py1 ` y2q2˘¶ dy1 dy2,

which is a singular integral needing regularization. As this can be a difficult endeavor when two variables
are involved, we shall use the Fourier slice theorem whereby

R1φpxq “ rφ̂pλxqs_p1q
1In other words, the function ν ÞÑ 1{νn for n even should be construed as a tempered distribution (a type of generalized

function), just we have a generalized function in odd dimension. See Hadamard (1923, pp. 133–143) and Riesz (1938).
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Partial fraction decomposition of φ yields

φC_py1, y2q “ ´ 1

2π2

ˆ
1

y1
` 1

y2

˙ ˆ
1

1 ´ py1 ` y2q ´ 1

1 ` y1 ` y2

˙
´ 1

2π2

ˆ
1

y1
´ 1

y2

˙ ˆ
1

1 ´ py1 ´ y2q ´ 1

1 ` y1 ´ y2

˙
.

By the convolution theorem,

φ̂C_ “ ´ 1

2π2

1

p2πq2
`´2iπ2δpz1q sgn z2 ´ 2iπ2δpz2q sgn z1

˘
˙˙

`
4iπ2δpz1 ´ z2q cos z1 sgn z1

˘
´ 1

2π2

1

p2πq2
`
2iπ2δpz1q sgn z2 ´ 2iπ2δpz2q sgn z1

˘
˙˙

`
4iπ2δpz1 ` z2q cos z1 sgn z1

˘
wherein the double asterisk ˙̇ denotes bidimensional convolution. Convoluting and simplifying,

φ̂C_px1, x2q “ psgnpx1 ` x2q ´ sgnpx1 ´ x2qq cosx2 sgnx2 psgnpx1 ` x2q ` sgnpx1 ´ x2qq cosx1 sgnx1

The inverse Fourier transform of λ ÞÑ φ̂C_pλx1, λx2q is then

rφ̂C_s_ptq “ psgnpx1 ` x2q ´ sgnpx1 ´ x2qq sgnx2
cospλx2qptq

` psgnpx1 ` x2q ` sgnpx1 ´ x2qq sgnx1
cospλx1qptq

“ 1

2
psgnpx1 ` x2q ´ sgnpx1 ´ x2qq sgnx2 pδpt ´ x2q ` δpt ` x2qq

` 1

2
psgnpx1 ` x2q ` sgnpx1 ´ x2qq sgnx1 pδpt ´ x1q ` δpt ` x1qq

Substituting psgnpx1 ` x2q ` sgnpx1 ´ x2qq sgnx1 “ 2Hp|x2| ´ |x1|q, δpt ´ x2q ` δpt ` x2q “ δpt ´ |x2|q into
the first term and similarly for the second term,

rφ̂pλx1, λx2qs_ptq “ δpt ´ |x1|qHp|x1| ´ |x2|q ` δpt ´ |x2|qHp|x2| ´ |x1|q “ δpt ´ |x1| _ |x2|q,
which evaluates to δp1 ´ |x1| _ |x2|q as required for t “ 1. Following Section 3, the best-of call is replicated
as per equation (1a) up to an additive term h1px1, x2q ` k h2px1, x2q with$&%

h2px1, x2q “ psgn kq lim
kÑ8Hp |x1| _ |x2| ´ |k|q “ 0

h1px1, x2q “ lim
kÑ8

“p |x1| _ |x2| ´ |k|q` ´ k h2px1, x2q‰ “ 0,

which completes the proof that φ̂C_ solves the best-of call replication problem.
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Chapter 5

Dynamic replication of correlation swaps

5.1 Excerpts from Advanced Equity Derivatives, Wiley, 2014
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“As for the expense,” gravely declared
the deputy Haffner who never opened his mouth

except on great occasions, “our children will pay for it,
and nothing will be more just.”

Emile Zola, La Curée (The Kill)
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Foreword

I
am pleased to introduce Sébastien Bossu’s new book, Advanced Equity
Derivatives, which is a great contribution to the literature in our field. Years

of practical experience as an exotics structure, combined with strong theo-
retical skills, allowed Sébastien to write a condensed yet profound text on a
variety of advanced topics: volatility derivatives and volatility trading, cor-
relation modelling, dispersion trading, local and stochastic volatility models,
to name just a few.

This book not only reviews the most important concepts and recent
developments in option pricing and modelling, but also offers insightful
explications of great relevance to researchers as well as traders. For instance,
readers will find formulas to overhedge convex payoffs, the derivation of
Feller conditions for the Heston model, or an exposition of the latest local
correlation models to correctly price basket options.

Perhaps the most exciting aspect of this book is its treatment of the latest
generation of equity derivatives, namely volatility and correlation deriva-
tives. Readers will find a wealth of information on these new securities,
including original analyses and models to approach their valuation. The
chapters on correlation are particularly commendable, as they shed light on
an otherwise still obscure area.

The content quality, selection of topics, and level of insight truly set this
book apart. I have no doubt that equity derivatives practitioners around the
world, be they traders, quants or investors, will find it extremely pertinent,
and I wish this book every success.

Peter Carr

Dr. Peter Carr has over 18 years of experience in the derivatives industry
and is currently Global Head of Market Modeling at Morgan Stanley, as well
as Executive Director of the Math Finance program at NYU’s Courant Insti-
tute. He has over 70 publications in academic and industry-oriented journals
and serves as an associate editor for eight journals related to mathemati-
cal finance. Dr. Carr is also the Treasurer of the Bachelier Finance Society,
a trustee for the Museum of Mathematics in New York, and has received
numerous awards, including Quant of the Year by Risk magazine in 2003,
the ISA Medal for Science in 2008, and Financial Engineer of the Year in
2010.

92



93



Preface

I
n 2004, while working as an equity derivatives analyst at J.P. Morgan in
London, I came upon an esoteric trade: someone was simultaneously sell-

ing correlation and buying it back for a (risky) profit using two different
methods. I became obsessed with the rationale behind this trade, and, after
writing down the math, I discovered with excitement that with some cor-
rections this trade led to a pure dynamic arbitrage strategy—the kind you
normally find only in textbooks.

I could see, however, that transaction costs and other market frictions
made the strategy very hard to implement in practice, especially for price
takers on the buy side. But the fact remained that correlation could be bought
and sold at very different prices, and that didn’t make sense to me. So I
developed a simple “toy” model to see how this gap might be accounted for,
and as I suspected I found that there should be little difference. What this
meant is that one of the two correlation instruments involved in the trade,
namely the correlation swap, was not priced at “fair value” according to my
analysis.

Later on I refined my model, which I introduce in the last chapter of this
book among other topics, and reached similar conclusions. I am very pleased
that the topic of equity correlation has gained tremendous momentum since
2004, and it is one of this book’s ambitions to introduce the work of others
in this highly specialized field. I have no doubt that many new exciting results
are yet to be discovered in the coming years.

I also wanted to cover other key advanced concepts in equity derivatives
that are relevant to traders, quantitative analysts, and other professionals.
Many of these concepts, such as implied distributions and local volatilities,
are now well-known and established in the field, while others, such as local
and stochastic correlation, lie at the forefront of current research.

To get the most out of this book, readers must already be familiar with
the terminology and standard pricing theory of equity derivatives, which
can be found in my textbook Introduction to Equity Derivatives: Theory &
Practice, second edition, also published by John Wiley & Sons.

I relied on a fair amount of advanced mathematics, and therefore a grad-
uate scientific education is a prerequisite here, especially for those readers
who want to solve the problems included at the end of each chapter.
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xiv PREFACE

The book is made of nine chapters, which are meant to be read sequen-
tially, starting with an exposition of the most widespread exotic derivatives
and culminating with cutting-edge concepts on stochastic correlation, which
are necessary to correctly price the next generation of equity derivatives such
as correlation swaps.

Some simplifications, such as zero interest rates and dividends, were
often necessary to avoid convoluted mathematical expressions. I strongly
encourage readers to check the particular assumptions used for each formula
before transposing it into another context.

I hope this book will prove insightful and useful to its target audience.
I am always interested to hear feedback; please do not hesitate to contact me
to share your thoughts.
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CHAPTER 1
Exotic Derivatives

Strictly speaking, an exotic derivative is any derivative that is not a plain
vanilla call or put. In this chapter we review the payoff and properties of the
most widespread equity derivative exotics.

1-1 SINGLE-ASSET EXOTICS

1-1.1 Digital Options

A European digital or binary option pays off $1 if the underlying asset price
is above the strike K at maturity T, and 0 otherwise:

Digital Payoff =

{
1 if ST > K
0 otherwise

In its American version, which is more uncommon, the option pays off
$1 as soon as the strike level is hit.

The Black-Scholes price formula for a digital option is simply:

e−rTN(d2) = e−rTN

(
ln (F∕K) − 1

2
𝜎2T

𝜎
√

T

)

where F is the forward price of S for maturity T, r is the continuous interest
rate, and 𝜎 is the volatility parameter. When there is an implied volatility
smile this formula is inaccurate and a corrective term must be added (see
Section 2-1.3).

Digital options are not easy to dynamically hedge because their delta
can become very large near maturity. Exotic traders tend to overhedge them
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2 ADVANCED EQUITY DERIVATIVES

with a tight call spread whose range may be determined according to several
possible empirical rules, such as:

■ Daily volatility rule: Set the range to match a typical stock price move
over one day. For example, if the annual volatility of the underlying
stock is 32% annually; that is, 32%/

√
252 ≈ 2% daily, a digital option

struck at $100 would be overhedged with $98–$100 call spreads.
■ Normalized liquidity rule: Set the range so that the quantity of call
spreads is in line with the market liquidity of call spreads with 5%
range. The quantity of call spreads is N/R where N is the quantity of
digitals and R is the call spread range. If the tradable quantity of call
spreads with range 5% is V, the normalized tradable quantity of
call spreads with range R would be V × R / 0.05. Solving for R gives

R =
√
0.05 × N

V
. In practice V is either provided by the option trader

or estimated using the daily trading volume of the stock.

1-1.2 Asian Options

In an Asian call or put, the final underlying asset price is replaced by an
average:

Asian Call Payoff = max(0, AT −K)

Asian Put Payoff = max(0, K−AT)

where AT = 1
n

n∑
i=1

Sti for a set of pre-agreed fixing dates t1 < t2 < · · · < tn ≤ T.

For example, a one-year at-the-money Asian call on the S&P 500 index with
quarterly fixings pays off max

(
0, S0.25+S0.5+S0.75+S1

4
− S0

)
, where S0 is the cur-

rent spot price and S0.25,… , S1 are the future spot prices observed every three
months.

On occasion, the strike may also be replaced by an average, typically
over a short initial observation period.

Fixed-strike Asian options are always cheaper than their European
counterparts, because AT is less volatile than ST.

There is no closed-form Black-Scholes formula for arithmetic
Asian options. However, for geometric Asian options where AT =
exp

[
1
T
∫ T
0 ln St dt

]
, the Black-Scholes formulas may be used with adjusted

volatility ⌢𝜎 = 𝜎∕
√
3 and dividend yield ⌢q = 1

2

(
r + q + 𝜎2

6

)
, as shown in

Problem 1.3.
A common numerical approximation for the price of arithmetic Asian

options is obtained by fitting a lognormal distribution to the actual risk-
neutral moments of AT.
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Exotic Derivatives 3

1-1.3 Barrier Options

In a barrier call or put, the underlying asset price must hit, or never hit, a
certain barrier level H before maturity:

■ For a knock-in option, the underlying must hit the barrier, or else the
option pays nothing.

■ For a knock-out option, the underlying must never hit the barrier, or
else the option pays nothing.

Barrier options are always cheaper than their European counterparts,
because their payoff is subject to an additional constraint. On occasion, a
fixed cash “rebate” is paid out if the barrier condition is not met.

Similar to digital options, barrier options are not easy to dynamically
hedge: their delta can become very large near the barrier level. Exotic traders
tend to overhedge them by shifting the barrier a little in their valuation
model.

Continuouslymonitored barrier options have closed-formBlack-Scholes
formulas, which can be found, for instance, in Hull (2012). The preferred
pricing approach is the local volatility model (see Chapter 4).

In practice the barrier is often monitored on a set of pre-agreed fixing
dates t1 < t2 < · · · < tn ≤ T. Monte Carlo simulations are then commonly
used for valuation.

Broadie, Glasserman, and Kou (1997) derived a nice result to switch
between continuous and discrete barrier monitoring by shifting the barrier
level H by a factor exp (±𝛽𝜎

√
Δt) where 𝛽 ≈ 0.5826, σ is the underlying

volatility, and Δt is the time between two fixing dates.

1-1.4 Lookback Options

A lookback call or put is an option on the maximum or minimum price
reached by the underlying asset until maturity:

Lookback call payoff = max (0, max
0≤t≤T

St − K);

Lookback put payoff = max (0,K − min
0≤t≤T

St).

Lookback options are always more expensive than their European coun-
terparts: about twice as much when the strike is nearly at the money, as
shown in Problem 1.5.

Continuously monitored lookback options have closed-form Black-
Scholes formulas, which can be found, for instance, in Hull (2012). The
preferred pricing approach is the local volatility model (see Chapter 4).

In practice the maximum or minimum is often monitored on a set of
pre-agreed fixing dates t1 < t2 < · · · < tn ≤ T. Monte Carlo simulations are
then commonly used for valuation.
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4 ADVANCED EQUITY DERIVATIVES

1-1.5 Forward Start Options

In a forward start option the strike is determined as a percentage k of the
spot price on a future start date t0 > 0:

Forward start call payoff = max(0, ST − kSt0 );

Forward start put payoff = max(0,kSt0 − ST).

At t = t0 a forward start option becomes a regular option. Note that the
forward start feature is not specific to vanilla options and can be added to
any exotic option that has a strike.

Forward start options have closed-form Black-Scholes formulas. The
preferred pricing approach is to use a stochastic volatility model (see
Chapter 4).

1-1.6 Cliquet Options

A cliquet or ratchet option consists of a series of consecutive forward start
options, for example:

Monthly cliquet option payoff = max

[
0,

12∑
i=1

min

(
5%,

Si∕12
S(i−1)∕12

− 1

)]
where 5% is the local cap amount. In other words, this particular cliquet
option pays off the greater of zero and the sum of monthly returns, each
capped at 5%.

Cliquet options can be very difficult to value and especially hedge.

1-2 MULTI-ASSET EXOTICS

Multi-asset exotics are based on several underlying stocks or indices, and
thus their fair value depends on the level of correlation between the under-
lying assets. They are typically priced on a Monte Carlo simulation engine
with local volatilities (see Chapter 4 and Chapter 6, Section 6-5).

1-2.1 Spread Options

The payoff of a spread option is based on the difference in gross return
between two underlying assets:

Spread option payoff = max

(
0,

S(1)
T

S(1)0

−
S(2)
T

S(2)0

− k

)

101



Exotic Derivatives 5

where k is the residual strike level (in %). For example, a spread option on
Apple Inc. vs Google Inc. with 5% strike pays off the outperformance of
Apple over Google in excess of 5%: if Apple’s return is 13% and Google’s
is 4%, the option pays off 13%− 4%−5% = 4%.

The value of a spread option is very sensitive to the level of correlation
between the two assets. Specifically the option value increases as correlation
decreases: the lower the correlation, the wider the two assets are expected
to spread apart.

In practice hedging spread options can be difficult because the spread
S(1)
T

S(1)
0

−
S(2)
T

S(2)
0

is often nearly orthogonal to the basket 1
2

[
S(1)
T

S(1)
0

+
S(2)
T

S(2)
0

]
− 1.

When k = 0 a spread option is also known as an exchange option. A
closed-form Black-Scholes formula is then available which can be found, for
instance, in Hull (2012).

1-2.2 Basket Options

A basket call or put is an option on the gross return of a portfolio of n
underlying assets:

Basket call payoff = max

(
0,

n∑
i=1

wi

S(i)
T

S(i)0
− k

)
;

Basket put payoff = max

(
0,k −

n∑
i=1

wi

S(i)
T

S(i)0

)
,

where the weights w1,… , wn sum to 100% and the strike k is expressed as
a percentage (e.g., 100% for at the money).

EXAMPLE

Equally-Weighted Stock Basket Call

Option seller: ABC Bank Co.
Notional amount: $20,000,000
Issue date: [Today]
Maturity date: [Today + 3 years]

(Continued)
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6 ADVANCED EQUITY DERIVATIVES

EXAMPLE (Continued)

Equally-Weighted Stock Basket Call

Underlying stocks: IBM (IBM), Microsoft (MSFT), Google (GOOG)
Payoff:

Notional ×max
(
0, 1
3

(
IBMfinal

IBMinitial
+

MSFTfinal

MSFTinitial
+

GOOGfinal

GOOGinitial

)
− 1

)
Option price: 17.4%

The value of a basket option is sensitive to the level of pairwise corre-
lations between the assets. The lower the correlation, the less volatile the
portfolio and the cheaper the basket option.

Basket options do not have closed-form Black-Scholes formulas. A com-
mon approximation technique is to fit a lognormal distribution to the actual
moments of the basket and then use formulas for the single-asset case.

1-2.3 Worst-Of and Best-Of Options

A worst-of call or put is an option on the lowest gross return between n
underlying assets:

Worst-of call payoff = max

(
0, min

1≤i≤n

S(i)
T

S(i)0
− k

)
;

Worst-of put payoff = max

(
0,k − min

1≤i≤n

S(i)
T

S(i)0

)
,

where the strike k is expressed as a percentage (e.g., 100% for at the money).
For example, a worst-of at-the-money call on Apple, Google, and Microsoft
pays off the worst stock return between the three companies, if positive.

Similarly, a best-of call or put is an option on the highest gross return
between n underlying assets.

Worst-of calls and best-of puts are always cheaper than any of their
single-asset European counterparts, while best-of calls and worst-of puts are
always more expensive.
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Exotic Derivatives 7

1-2.4 Quanto Options

The payoff of a quanto option is paid out in a different currency from the
underlying assets, at a guaranteed exchange rate. For example, a call on the
S&P 500 index quanto euro pays off max(0, ST −K) in euros instead of
dollars, thereby guaranteeing an exchange rate of 1 euro per dollar.

The actual exchange rate between the asset currency and the quanto cur-
rency is in fact an implicit additional underlying asset. The value of quanto
options is very sensitive to the correlation between the primary asset and the
implicit exchange rate.

Quanto options are an example of hybrid exotic options involving dif-
ferent asset classes—here equity and foreign exchange.

In terms of pricing, the quanto feature is often approached using a tech-
nique called change of numeraire. In summary, this technique says that the
risk-neutral dynamics of an asset quantoed in a different currency from its
natural currency has the same volatility coefficient but an adjusted drift
coefficient.

FOCUS ON CHANGE OF NUMERAIRE

This technique builds upon the concepts of change of measure and
Girsanov’s theorem, which are explained in Appendix 1.A.

Consider a world with two currencies, say dollars and euros, and
a non-income-paying asset S with dollar price S$ and euro price S€.
DenoteX the exchange rate of one dollar into euros, so that S€t = S$t Xt.
Assume that S$ andX both follow a geometric Brownian motion under
the dollar risk-neutral measure ℚ$, specifically:

For S$∶ dS$t ∕S
$
t = r$dt + 𝜎dWt

For X∶ dXt∕Xt = 𝜈dt + 𝜂dZt

whereW,Z are standard Brownian motions underℚ$ with correlation
𝜌, r$ is the dollar interest rate, and all other parameters are free.

Because the original Girsanov theorem applies to independent
Brownianmotions, we rewriteZ = 𝜌W + 𝜌W⟂ whereW⟂ is a standard
Brownian motion under ℚ$ independent from W and 𝜌 =

√
1 − 𝜌2 is

the orthogonal complement of 𝜌. The diffusion equation for X then
becomes:

dXt∕Xt = 𝜈dt + 𝜂𝜌dWt + 𝜂𝜌dW⟂
t
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8 ADVANCED EQUITY DERIVATIVES

Applying the Ito-Doeblin theorem to the product S€t = S$t Xt we
obtain after simplifying:

dS€t ∕S
€
t = (r$ + 𝜈 + 𝜌𝜎𝜂)dt + (𝜎 + 𝜌𝜂)dWt + 𝜂𝜌dW⟂

t (1.1)

Because S€ is a euro tradable asset we must also have:

dS€t ∕S
€
t = r€dt + (𝜎 + 𝜌𝜂)dW̃t + 𝜂𝜌dW̃⟂

t (1.2)

where W̃, W̃⟂ are independent standard Brownian motions under the
euro risk-neutral measureℚ€. This is the diffusion equation of the com-
posite asset S after conversion from dollars to euros.

The processes W̃, W̃⟂ are affine transformations of the original
processes W,W⟂; specifically:{

W̃t = Wt + 𝛾1t
W̃⟂

t = W⟂
t + 𝛾2t

where 𝛾1 and 𝛾2 are particular coefficients. Substituting into Equation
(1.1) and connecting with Equation (1.2) we obtain that 𝛾1, 𝛾2 must
satisfy:

r$ + 𝜈 + 𝜌𝜎𝜂 = r€ + 𝛾1(𝜎 + 𝜌𝜂) + 𝛾2𝜂𝜌

In order to determine 𝛾1, 𝛾2 uniquely, we need another equation.
This is provided by the dynamics of X, which is a euro-tradable asset
(it is the price in euros of $1):

dXt∕Xt = (r€ − r$)dt + 𝜂𝜌dW̃t + 𝜂𝜌dW̃⟂
t

Following the same reasoning we find that 𝛾1, 𝛾2 must also satisfy:

𝜈 = r€ − r$ + 𝛾1𝜂𝜌 + 𝛾2𝜂𝜌

Solving for 𝛾1, 𝛾2 we find:

⎧⎪⎨⎪⎩
𝛾1 = 𝜂𝜌

𝛾2 =
𝜈 + r$ − r€ − 𝜂2𝜌2

𝜂𝜌

The dynamics of S$ may thus be rewritten as:

dS$t ∕S
$
t = r$dt + 𝜎dWt = r$dt + 𝜎(dW̃t − 𝛾1dt) = (r$ − 𝜌𝜎𝜂)dt + 𝜎dW̃t
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Exotic Derivatives 9

This is the diffusion equation for S$ quanto euro. In particular, the
forward price of S$ quanto euro is:

𝔼ℚ€(S$
T
) = S$0e

(r$−𝜌𝜎𝜂)T

1-3 STRUCTURED PRODUCTS

Structured products combine several securities together, especially
exotic options. They are typically sold as equity-linked notes (ELN)
or mutual funds to small investors as well as large institutions. These
notes and funds are sometimes traded on exchanges.

EXAMPLE

Capital Guaranteed
Performance Note Reverse Convertible Note

Issuer: ABC Bank Co. Issuer: ABC Bank Co.
Notional amount: $10,000,000 Notional amount: €2,000,000
Issue date: [Today] Issue date: [Today]
Maturity date: [Today + 5 years] Maturity date: [Today + 3 years]
Underlying index: S&P 500 (SPX) Underlying stock: Kroger Co.

(KR)
Payoff:

Notional ×
[
100%+Participation

×max
(
0,

SPXfinal

SPXinitial
− 1

)]
Payoff:

(a) If, between the start and matu-
rity dates, Kroger Co. always
trades above the Barrier level,
Issuer will pay:

Notional ×max
(
115%,

Sfinal
Sinitial

)
(b) Otherwise, Issuer will pay:

Notional ×
Sfinal
Sinitial

Participation: 50% Barrier level: 70%
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10 ADVANCED EQUITY DERIVATIVES

In the Capital Guaranteed Performance Note, investors are guaranteed1

to get their $10mn capital back after five years. This is much safer than a
direct $10mn investment in the S&P 500 index, which could result in a loss.
In exchange for this protection, investors receive a smaller share in the S&P
500 performance: 50% instead of 100%.

In the Reverse Convertible Note, investors may lose on their €2mn cap-
ital if Kroger Co. ever trades below the 70% barrier, but never more than
a direct investment in the stock (ignoring dividends). Otherwise, investors
receive at least €2.3mn after three years, and never less than a direct invest-
ment in the stock (again, ignoring dividends).

In some cases it is possible to break down a structured product into
a portfolio of securities whose prices are known and find its value. In all
other cases the payoff is typically programmed on aMonte Carlo simulation
engine.

Multi-asset structured products significantly expand the payoff possi-
bilities of exotic options. They allow investors to play on correlation and
express complex investment views.

EXAMPLE

Worst-Of Reverse Convertible Note Quanto CHF

Issuer: ABC Bank Co.
Notional amount: CHF 5,000,000
Issue date: [Today]
Maturity date: [Today + 3 years]
Underlying indexes: S&P 500 (SPX), EuroStoxx-50 (SX5E), Nikkei
225 (NKY)

Payoff:

(a) If, between the start and maturity dates, all underlying indexes
always trade above the Barrier level, Issuer will pay:

Notional ×max
(
120%,min

(
SPXfinal

SPXinitial
,
SX5Efinal

SX5Einitial
,
NKYfinal

NKYinitial

))
(Continued)

1Provided the issuer does not go bankrupt.
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Exotic Derivatives 11

EXAMPLE (Continued)

Worst-Of Reverse Convertible Note Quanto CHF

(b) Otherwise, Issuer will pay:

Notional ×min
(

SPXfinal

SPXinitial
,
SX5Efinal

SX5Einitial
,
NKYfinal

NKYinitial

)
Barrier level: 50% of Initial Price

Multi-asset structured product valuation is almost always done using
Monte Carlo simulations. Hedging correlation risk is often difficult or
expensive, and exotic trading desks tend to accumulate large exposures,
which can cause significant losses during a market crash.

REFERENCES

Baxter, Martin, and Andrew Rennie. 1996. Financial Calculus: An Introduction to
Derivative Pricing. New York: Cambridge University Press.

Broadie, Mark, Paul Glasserman, and Steven Kou. 1997. “A Continuity Correction
for Discrete Barrier Options.” Mathematical Finance 7 (4): 325–348.

Hull, John C. 2012. Option, Futures, and Other Derivatives, 8th ed. New York:
Prentice Hall.

PROBLEMS

1.1 “Free” Option

Consider a European call option on an underlying asset S with strike K and
maturity T where “you only pay the premium if you win,” that is, if ST >
K.

(a) Draw the diagram of the net P&L of this “free” option at maturity. Is it
really “free”?

(b) Find a replicating portfolio for the “free” option using vanilla and exotic
options.

(c) Calculate the fair value of the “free” option premium using the Black-
Scholes model with 20% volatility, S0 = K = $100, one-year maturity,
zero interest and dividend rates.
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12 ADVANCED EQUITY DERIVATIVES

1.2 Autocallable

Consider an exotic option expiring in one, two, or three years on an under-
lying asset S with the following payoff mechanism:

■ If after one year S1 > S0 the option pays off 1 + C and terminates;
■ Else if after two years S2 > S0 the option pays off 1 + 2C and terminates;
■ Else if after three years S3 > 0.7 × S0 the option pays off max(1 + 3C,

S3∕S0);
■ Otherwise, the option pays off S3/S0.

Assuming S0 = $100, zero interest and dividend rates, and 25% volatil-
ity, estimate the level of C so that the option is worth 1 using Monte Carlo
simulations.

1.3 Geometric Asian Option

Consider a geometric Asian option on an underlying S with payoff f(AT)

where AT = exp
(
1
T
∫ T
0 ln St dt

)
. Assume that S follows a geometric Brown-

ian motion with parameters (r−q, 𝜎) under the risk-neutral measure.

(a) Using the Ito-Doeblin theorem, show that

AT = S0 exp

(
1
2

(
r − q − 1

2
𝜎2

)
T + 𝜎

T∫
T

0
Wtdt

)

(b) Using the Ito-Doeblin theorem, show that ∫ T
0 Wtdt = ∫ T

0 (T − t)dWt.
What is the distribution of this quantity?

(c) Show that AT is lognormally distributed with parameters
(
ln S0 +(

r − ⌢q − 1
2
⌢𝜎2

)
T,⌢𝜎√

T
)
where ⌢𝜎 = 𝜎∕

√
3 and ⌢q = 1

2

(
r + q + 𝜎2

6

)
.

1.4 Change of Measure

In the context of Appendix 1.A, verify that 𝔼ℚ(ST) = S0e
rT using the expres-

sion for dℚ/dℙ.

1.5 At-the-Money Lookback Options

The Black-Scholes closed-form formula for an at-the-money lookback call
is given as:

Lookback0 = e−rTS0(N(−𝛼2) − 1) + S0N(𝛼1)
(
1 + 𝜎2

2r

)
− e−rT 𝜎

2

2r
S0N(𝛼3)

where 𝛼1,2 =
(

r
𝜎
± 1

2
𝜎
) √

T and 𝛼3 =
(
− r

𝜎
+ 1

2
𝜎
) √

T.
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Using a first-order Taylor expansion of the cumulative normal distribu-
tion N(⋅) show that for reasonable rates and maturities we have the proxy:

Lookback0 ≈
4S0𝜎

√
T√

2𝜋

which is twice as much as the European call proxy: c0 ≈ 2S0𝜎
√

T√
2𝜋

.

1.6 Siegel’s Paradox

This problem is about foreign exchange rates and goes beyond the scope of
equity derivatives.

Consider two currencies, say dollars and euros, and suppose that
their corresponding interest rates, r$ and r€, are constant. Let X be the
euro–dollar exchange rate defined as the number of dollars per euro. The
traditional risk-neutral process for X is thus:

dXt = (r$ − r€)Xtdt + 𝜎XtdWt

where W is a standard Brownian motion.

(a) Using the Ito-Doeblin theorem, show that the risk-neutral dynamics for
the dollar-euro exchange rate, that is, the number 1/X of euros per dol-
lar, is:

d
1
Xt

= (r€ − r$ + 𝜎2) 1
Xt

dt + 𝜎
1
Xt

dWt

(b) Symmetry suggests that the drift of 1/X should be r€ − r$ instead—this
is Siegel’s paradox. Use your knowledge of quantos (see Section 1-2.4)
to resolve the paradox.

APPENDIX 1.A: CHANGE OF MEASURE

AND GIRSANOV’S THEOREM

Recall that the Black-Scholes model assumes that the underlying asset price
process follows a geometric Brownian motion:

dSt∕St = 𝜇dt + 𝜎dWt

where W is a standard Brownian motion under some objective probability
measure ℙ, 𝜇 is the objective drift coefficient, and 𝜎 is the objective volatility
coefficient.

However, the drift coefficient 𝜇 disappears from option pricing
equations as a result of delta-hedging, and option prices may equivalently
be calculated as discounted expected payoffs under a special probability
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14 ADVANCED EQUITY DERIVATIVES

measure ℚ called risk-neutral. Under ℚ, the underlying asset price process
follows the geometric Brownian motion:

dSt∕St = rdt + 𝜎dW′
t

whereW′ is a standard Brownian motion under ℚ, r is the continuous inter-
est rate, and 𝜎 is the same volatility coefficient.

To understand how ℙ and ℚ relate, consider the undiscounted expected
payoff:

𝔼ℚ(f (ST)) = ∫
∞

0
f (s)ℚ{ST = s}ds

= ∫
∞

0
f (s)

ℚ{ST = s}
ℙ{ST = s}

ℙ{ST = s}ds

If we define the ratio of densities h(s) = ℚ{ST=s}
ℙ{ST=s} then we can write:

𝔼ℚ(f (ST)) = ∫
∞

0
f (s)h(s)ℙ{ST = s}ds = 𝔼ℙ(f (ST)h(ST)).

The change of measure from ℙ to ℚ is thus equivalent to multiplying by
the random variable h(ST) called a Radon-Nikodym derivative and properly
denoted dℚ

dℙ . Girsanov’s theorem states that ℚ exists and is properly defined
by a Radon-Nikodym derivative of the form:

dℚ
dℙ

= exp
(
r − 𝜇

𝜎
WT − 1

2

( r − 𝜇

𝜎

)2
T

)
Furthermore, W′

t = Wt +
r−𝜇
𝜎

t is then a Brownian motion under ℚ.
Problem 1.4 verifies that 𝔼ℚ(ST) = S0e

rT .
For a rigorous yet accessible exposition of the change of measure tech-

nique and Girsanov’s theorem we refer the reader to Baxter and Rennie
(1996).
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CHAPTER 6
Introducing Correlation

Correlation is almost as ubiquitous as volatility in quantitative finance.
For example the downward-sloping volatility smile observed in equities
may be explained by the negative correlation between stock prices and
volatility. In this chapter we introduce various measures of correlation
between assets, investigate their properties, and present simple multiasset
extensions of the Black-Scholes and Local Volatility models.

6-1 MEASURING CORRELATION

Correlation is the degree to which two quantities are linearly associated.
A correlation of +1 or −1 means that the linear relationship is perfect, while
a correlation of 0 typically1 indicates independence.

There are two kinds of correlation between two financial assets:

1. Historical correlation, based on historical returns;
2. Implied correlation, derived from option prices.

6-1.1 Historical Correlation

Historical correlation between two assets S(1) and S(2) is usually measured
as the Pearson’s correlation coefficient between their N historical returns
observed at regular intervals:

𝜌†1,2 =
Cov†1,2

𝜎†
1𝜎

†
2

=

N∑
i=1

(
r(1)i − r(1)

) (
r(2)i − r(2)

)
√√√√ N∑

i=1

(
r(1)i − r(1)

)2
×

N∑
i=1

(
r(2)i − r(2)

)2

1Recall that if two random variables X, Y are independent their correlation must be
zero; however, the converse is not necessarily true.
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FIGURE 6.1 Historical correlation of daily returns between Apple and Microsoft
over a three-month rolling window since 2000.

where Cov†1,2 is historical covariance, 𝜎†’s are historical standard devia-

tions, r(j)i is the return on asset S(j) for observation i, and r(j) = 1
N

∑N
i=1 r

(j)
i is

the mean return on asset S(j). Returns may be computed on an arithmetic or
logarithmic basis; occasionally the mean returns are assumed to be zero.

Figure 6.1 shows the evolution of the historical correlation between
Microsoft and Apple over a three-month rolling window since 2000. We
can see that this correlation has varied quite significantly over time.

Note that using daily returns can produce misleading results for assets
trading within different time zones; in this case it is preferable to estimate
correlation using weekly returns. Figure 6.2 compares the two methods
for the S&P 500 and Nikkei 225 indexes. We can see that the correlation
observed on weekly returns is significantly higher.

6-1.2 Implied Correlation

Implied correlation between two assets S(1) and S(2) is derived from an option
price, such as a quote for an over-the-counter (OTC) basket option. Typically
the quote is converted into an implied basket volatility 𝜎∗

Basket
from which

implied correlation may be extracted through the formula:

𝜎∗
Basket

=
√

w2
1𝜎

∗2
1 +w2

2𝜎
∗2
2 + 2w1w2𝜎

∗
1𝜎

∗
2𝜌

∗
1,2, that is,

𝜌∗1,2 =
𝜎∗2
Basket

−w2
1𝜎

∗2
1 −w2

2𝜎
∗2
2

2w1w2𝜎
∗
1𝜎

∗
2

=
𝜎∗2
Basket

− (w2
1𝜎

∗2
1 +w2

2𝜎
∗2
2 )

(w1𝜎
∗
1 +w2𝜎

∗
2)

2 − (w2
1𝜎

∗2
1 +w2

2𝜎
∗2
2 )

wherewj is the weight on asset S
(j) and 𝜎∗

j is the implied volatility of asset S
(j).
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FIGURE 6.2 Historical correlation of daily and weekly returns between S&P 500
and Nikkei 225 over a three-month rolling window since 2000.

Conventionally all implied volatilities are for the same moneyness level
k (strike over spot) and maturity T, and weights are equal.

6-2 CORRELATION MATRICES

Very often we are interested in correlation for a selection of n ≥ 2 assets.
This leads to a correlation matrix of the form:

R =

⎛⎜⎜⎜⎜⎜⎜⎝

1 𝜌1,2 𝜌1,3 · · · 𝜌1,n
𝜌2,1 1 𝜌2,3 · · · 𝜌2,n
𝜌3,1 𝜌3,2 1 · · · 𝜌3,n
⋮ ⋮ ⋮ ⋱ ⋮

𝜌n,1 𝜌n,2 𝜌n,3 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝜌i,j is the pairwise correlation coefficient between assets S(i) and S(j),
which may either be historical or implied. Note that R is symmetric because
𝜌i,j = 𝜌j,i.

Not every symmetric matrix with entries in [−1, 1] and a diagonal of
1’s is a candidate for a correlation matrix R. This is because the correlation
between assets S(i) and S(j) and assets S(j) and S(k) says something about the
correlation between assets S(i) and S(k)—intuitively, if Microsoft and Apple
are highly correlated, and Apple and IBM are also highly correlated, then
Microsoft and IBM must also have some positive correlation.
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FIGURE 6.3 Envelope of admissible correlation values when n = 3.

Figure 6.3 shows the envelope of admissible correlation values when
n = 3. We can see that certain regions, such as around the corner (−1, −1,
−1) are not admissible.

Specifically, correlation matrices must be positive-semidefinite; that is,
their eigenvalues must all be nonnegative. This property is always verified
for historical correlation but not necessarily for implied correlation. Addi-
tionally the sum of all eigenvalues must equal the trace, that is, n.

A common fix for an indefinite candidate matrixM is to replace its neg-
ative eigenvalues with zeros and adjust its positive eigenvalues to maintain
a sum of n:

R = ΩDadjΩT

where Ω is the orthogonal matrix of eigenvectors of M with eigenvalues
(λ1,… , λn) and Dadj is the diagonal matrix of adjusted eigenvalues with

entries 𝜆
adj
i =

𝜆+i∑n
j=1 𝜆

+
j
. Alternatively one may use the method proposed by

Higham (2002).
In equities correlation matrices have other empirical properties. Plerou

et al. (2002) and Potters, Bouchaud, and Laloux (2005) found for U.S. stocks
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that the top eigenvalue typically dominates all the other ones. Furthermore,
the corresponding eigenvector is more or less an equally weighted portfolio
of all the stocks. This suggests that one factor (“the market”) strongly drives
the behavior of each stock.

6-3 CORRELATION AVERAGE

To summarize the overall level of correlation across n assets, it is common
practice to compute the average of the correlation matrix, excluding the
diagonal of 1’s. The formula for a given weighting vector x is then:

𝜌(x) =

∑
i<j

xixj𝜌i,j∑
i<j

xixj

= xTRx − xTx
(xTe)2 − xTx

(6.1)

where e is the vector of 1’s. In the main case of interest where all the weights
are nonnegative we have:

−1 ≤ − xTx
(xTe)2 − xTx

≤ 𝜌(x) ≤ (n − 1) xTx
(xTe)2 − xTx

≤ 1

but in general 𝜌(x) could lie outside of these bounds. In practice, when apply-
ing sensible weights to a large equity correlation matrix, 𝜌(x) can safely be
assumed to be positive.

Common choices for x are:

■ Equal weights: x = e. In this case the average correlation formula
simplifies to:

𝜌(e) = 2
n(n − 1)

∑
i<j

𝜌i,j

and we have the bounds:

− 1
n − 1

≤ 𝜌(e) ≤ 1

■ Market capitalization weights: x = w. This is particularly relevant
when the n stocks are the constituents of an equity index such as the
S&P 500.
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78 ADVANCED EQUITY DERIVATIVES

■ Volatility and market capitalization weights: x = (w1𝜎1,… ,wn𝜎n)T ,
where 𝜎’s may either be historical or implied volatilities. This case is
particularly appealing because of the identity2 or shortcut formula:

𝜌
⎛⎜⎜⎝
w1𝜎1
⋮

wn𝜎n

⎞⎟⎟⎠ =

𝜎2
Basket

−
n∑

i=1
w2

i 𝜎
2
i(

n∑
i=1

wi𝜎i

)2

−
n∑

i=1
w2

i 𝜎
2
i

where 𝜎Basket is the volatility of the all-stock portfolio with weights w.
Assimilating an equity index to a portfolio of stocks with fixed weights,3

this formula allows us to compute the average implied correlation using
only listed option prices.

In practice, for large baskets (n > 30), these various choices for x tend
to produce similar results within a few correlation points, as observed by
Tierens and Anadu (2004) and illustrated in Figure 6.4.
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FIGURE 6.4 Realized average correlation for the EuroStoxx 50 index over a
six-month rolling window using market capitalization weights and volatility and
market capitalization weights.

2Note that the identity is exact for arithmetic returns but only approximate for log-
arithmic returns.
3Note that in reality equity index weights continuously change with stock prices.
However, these variations tend to be limited, especially over short time horizons.
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6-3.1 Correlation Proxy

Equation (6.1) is related to a mathematical quantity known as the Rayleigh
quotient ℜ(x) = xTRx

xTx
; specifically, dividing both numerator and denomina-

tor by nxTx = (xTx)(eTe):

𝜌(x) =

1
n
ℜ(x) − 1

n
(xTe)2

(xTx)(eTe)
− 1

n

=

1
n
ℜ(x) − 1

n

cos2𝜃 − 1
n

where θ is the angle between vectors x and e.
As n → ∞ we have the proxy formula:

𝜌(x) ∼

1
n
ℜ(x)

cos2𝜃
= xTRx

(xTe)2

subject to certain technical conditions, which are met in practice. In par-
ticular, for volatility and market capitalization weights, the proxy formula
equates the now well-known squared ratio of basket volatility to average
stock volatility:

𝜌(x) ∼
⎛⎜⎜⎜⎝
𝜎Basket∑
i

wi𝜎i

⎞⎟⎟⎟⎠
2

FOCUS ON THE PROXY FORMULA

It is easy to establish the proxy formula when all correlation coeffi-
cients are positive (see, e.g., Bossu and Henrotte (2012)). However,
when some correlation coefficients are negative we must use a more
elaborate proof. Specifically, using the spectral decomposition of R,
we may write:

ℜ(x) =
n∑

i=1
𝜆i

(xTvi)2

(xTx)(vTi vi)

where v’s form an orthogonal basis of eigenvectors and 𝜆’s are their
associated eigenvalues.
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80 ADVANCED EQUITY DERIVATIVES

Therefore ℜ(x) ≥ n∑
i=1

𝜆imin1≤j≤n

(xTvj)2

(xTx)(vTj vj)
= nmin

1≤j≤n

(xTvj)2

(xTx)(vTj vj)
since all

eigenvalues must sum to n. Assuming that x is never orthogonal
to any eigenvector vi (also in the limit) then ℜ(x) → ∞ and thus
1
n
ℜ(x) − 1

n
∼ 1

n
ℜ(x). Furthermore, if x is also never orthogonal to e

(also in the limit) then cos2𝜃 − 1
n
∼ cos2𝜃, which completes the proof

that 𝜌(x) ∼
1
n
ℜ(x)

cos2𝜃
= xTRx

(xTe)2 .

6-3.2 Some Properties of the Correlation Proxy

We now focus on some fundamental properties of the proxy formula �̂�(x) =
xTRx
(xTe)2 . In what follows it is assumed that the eigenvalues of R are sorted by
ascending order.

First, a property of the Rayleigh quotient is that it must be comprised
between the top and bottom eigenvalues, which implies that:

0 ≤ 𝜆1∕n
cos2𝜃

≤ �̂�(x) ≤ 𝜆n∕n
cos2𝜃

≤ 1
cos2𝜃

Note that the lower bound 𝜆1∕n
cos2𝜃

can be slightly improved in the uncon-
strained case (see Problem 6.1) and that tighter numerical bounds can be
computed through quadratic optimization methods in the constrained case
where x ≥ 0.

Second, another quantity of interest is the distance between two average
correlation measuresΔ = |�̂�(x) − �̂�(y)|. Restricting ourselves to vectors x and
y such that xTe = yTe = 1 we may rewrite without loss of generality:

Δ = |||xTRx − yTRy||| = |||(x + y)TR(x − y)|||
The Cauchy-Schwarz inequality then gives the general upper bound Δ ≤

𝜆n‖x + y‖‖x − y‖ but in practice it is not satisfactory. To find a better upper
bound we must look at the spectral decomposition of R:

R =
n∑

i=1
𝜆i

viv
T
i

vTi vi
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where vi is an eigenvector with associated eigenvalue 𝜆i. Thus, for any vec-
tors a and b:

aTRb√
aTa bTb

=
n∑

i=1
𝜆i

aTvi√
aTa vTi vi

vTi b√
vTi vi bTb

=
n∑

i=1
𝜆i cos (̂a, vi) cos (̂vi,b)

where (̂u, v) denotes the absolute angle in [0, π] between any two vectors u
and v.

Recalling that the top eigenvalue of stock correlation matrices domi-
nates all other eigenvalues, we are induced to split the sum accordingly:

aTRb√
aTa bTb

=
n−1∑
i=1

𝜆i cos (̂a, vi) cos (̂vi,b) + 𝜆n cos (̂a, vn) cos (̂vn,b)

Furthermore cos 𝛼 cos 𝛽 = cos(𝛼 + 𝛽) + sin 𝛼 sin 𝛽, so that:

aTRb√
aTa bTb

=
n−1∑
i=1

𝜆i cos (̂a, vi) cos (̂vi,b) + 𝜆n sin (̂a, vn) sin (̂vn,b)

+ 𝜆n cos[(̂a, vn) + (̂vn,b)]

We now invoke the fifth property of the Euclidean metric4 to get|cos (̂a, vi)| ≤ sin (̂a, vn), |cos (̂vi,b)| ≤ sin (̂vn,b) and for (̂a, vn) + (̂vn,b) ≤ 𝜋

2
:

0 ≤ cos[(̂a, vn) + (̂vn,b)] ≤ cos (̂a,b), so that:|||||| aTRb√
aTa bTb

|||||| ≤ n sin (̂a, vn) sin (̂vn,b) + 𝜆n cos (̂a,b)

because the eigenvalues sum to n.
Taking a = x + y, b = x − y and rearranging terms we get:

Δ ≤ n‖x + y‖‖x − y‖ [
sin ̂(

x + y, vn
)
sin ̂(vn,x − y) +

𝜆n

n
cos ̂(x + y,x − y)

]

4See Dattorro (2008) who cites Blumenthal (1933). See also Laurence et al. (2008)
who cite De Finetti (1937).
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82 ADVANCED EQUITY DERIVATIVES

In practice the quantity between brackets is usually small because x, y
are “close” to vn and x + y, x − y are nearly orthogonal.

FOCUS ON THE FIFTH PROPERTY

The fifth property of the Euclidean metric is a triangle inequality for
angles in three dimensions, which is surprisingly not documented in
mainstream geometry textbooks. Specifically it states that for any three
vectors u, v, and w we have:

|(̂u, v) − (̂v,w)| ≤ (̂u,w) ≤ (̂u, v) + (̂v,w)

where all angles are measured between 0 and 𝜋. Taking cosines we
equivalently have:

cos[(̂u, v) + (̂v,w)] ≤ cos (̂u,w) ≤ cos[(̂u, v) − (̂v,w)].

As a corollary if e.g. (̂v,w) = 𝜋∕2 then |cos (̂u,w)| ≤ cos
(
𝜋

2
− (̂u, v)

)
= sin (̂u, v)

6-4 BLACK-SCHOLES WITH CONSTANT CORRELATION

Extending Black-Scholes to a basket of n underlying assets S(1),… , S(n) with
constant correlation is fairly straightforward, except perhaps notation-wise.

Given a vector of volatilities (σ1,… , σn) and a correlation matrix (ρi,j),
assume that the prices of the underlying assets follow n correlated geometric
Brownian motions:

dS(1)t = 𝜇1S
(1)
t dt + 𝜎1S

(1)
t dW(1)

t

dS(2)t = 𝜇2S
(2)
t dt + 𝜎2S

(2)
t dW(2)

t

⋮

dS(n)t = 𝜇nS
(n)
t dt + 𝜎nS

(n)
t dW(n)

t
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where dW(i)
t dW(j)

t ≡ 𝜌i,jdt. If the derivative’s value only depends on time

and the n spot prices, we have Dt = f (t, S(1)t ,… , S(n)t ) and we can apply the
multidimensional version of the Ito-Doeblin theorem to get:

dDt = df =
𝜕f
𝜕t

dt +
n∑

i=1

𝜕f

𝜕S(i)
dS(i)t + 1

2

n∑
i=1

n∑
j=1

𝜕2f

𝜕S(i)𝜕S(j)
𝜎i𝜎j𝜌i,jS

(i)
t S(j)t dt

=
𝜕f
𝜕t

dt + ∇f TdSt +
1
2
dSTt ∇

2f dSt

where ∇f and ∇2f are the gradient and Hessian of f, respectively.
A portfolio long one unit of derivative and short 𝛿i =

𝜕f
𝜕S(i)

units of each
asset S(i) is then riskless, and by the same reasoning as in the single-asset case
we obtain a multidimensional partial differential equation for f whose only
parameters are the interest rate r, the volatility vector and the correlation
matrix:

rf =
𝜕f
𝜕t

+ r
n∑

i=1

𝜕f

𝜕S(i)
S(i)t + 1

2

n∑
i=1

n∑
j=1

𝜕2f

𝜕S(i)𝜕S(j)
𝜎i𝜎j𝜌i,jS

(i)
t S(j)t

Solving partial differential equations in high dimension is very hard
mathematically and computationally. In practice, the numerical method of
choice to implement the multiasset Black-Scholes model is Monte Carlo sim-
ulation under the risk-neutral measure. The Cholesky decomposition of the
correlation matrix is then typically used to generate correlated Brownian
motions from uncorrelated ones.

FOCUS ON THE CHOLESKY DECOMPOSITION

The Cholesky decomposition of a symmetric, positive-definite matrix
A is the lower triangular matrixCwith strictly positive diagonal entries
such that A = CCT. It can be computed with a short algorithm of com-
plexity O(n3).

The Cholesky decomposition C of a correlation matrix R may be
used to generate correlated standard normals Y = XCT from a sam-
ple X of uncorrelated ones with m rows and n columns. Indeed the
covariance estimate for Y up to a multiplicative factor is:

YTY = CXTXCT ≈ CCT = R

where we used XTX ≈ I, which is true for large m.
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84 ADVANCED EQUITY DERIVATIVES

6-5 LOCAL VOLATILITY WITH

CONSTANT CORRELATION

Another straightforward extension of a popular model is local volatility
with constant correlation (LVCC). Keeping the notations of Section 6-4, this
model assumes dynamics of the form:

dS(1)t = 𝜇1S
(1)
t dt + 𝜎loc1 (t, S(1)t )S(1)t dW(1)

t

dS(2)t = 𝜇2S
(2)
t dt + 𝜎loc2 (t, S(2)t )S(2)t dW(2)

t

⋮

dS(n)t = 𝜇nS
(n)
t dt + 𝜎locn (t, S(n)t )S(n)t dW(n)

t

where 𝜎loci (t, S) is the local volatility function for asset S(i) (see Chapter 4)

and dW(i)
t dW(j)

t ≡ 𝜌i,jdt as before.
The same reasoning as in Section 6-4 then applies, with identical results

after substituting local volatilities. Again Monte Carlo simulations are over-
whelmingly preferred to other numerical methods such as multidimensional
binomial trees or finite difference lattices.

Until recently the local volatility model with constant correlation was
widely used to price a broad range of multiasset exotic options. In Chapter 8,
we introduce the next generation of models where correlation is allowed
to vary.
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PROBLEMS

6.1 Lower Bound for Average Correlation

Let R be a n × n correlation matrix. For any n × n positive-definite matrix A

define �̂�A(x) =
xTAx
(xTe)2 where e is the vector of 1’s and x is an arbitrary vector

which is nonorthogonal to e.

(a) Show that �̂�R(e) ≤ 1
n
𝜆n where λn is the top eigenvalue of R.

(b) Show that �̂�R(x) ≥ [
�̂�R−1 (e)

]−1
. Hint: This can be formulated as a

constrained optimization problem and solved with; for example, the
Lagrangian method.

(c) We want to approximate the distance d = �̂�R(e) − [�̂�R−1 (e)]−1 when R
is an equity correlation matrix with top eigenvalue λn ≫ λn–1 and the
corresponding top eigenvector vn is an all-stock portfolio close to e/n (up
to a scaling factor).
i. Show that d may be rewritten as d = 1

n
(A −H) where A, H are

respectively the arithmetic and harmonic weighted averages of the
eigenvalues of R, with weights 𝛼i = cos2(̂e, vi). Hint: Use Parseval’s
identity to show that

∑n
i=1 𝛼i = 1.

ii. Argue that d ≈
[
1−𝛼n
n−1

(
1 − 𝜆n

n

)
+ 𝛼n

𝜆n
n

]
− 1

1−𝛼n
n−1

∑n−1
i=1

n
𝜆i
+𝛼n

n
𝜆n

6.2 Geometric Basket Call

Consider a call option with payoff max(0,bT − k) on a geometric basket

calculated as bT =
n∏

i=1

(
S(i)
T

S(i)
0

)wi

where S(i)t is the price of the underlying asset

S(i) at time t and the nonnegative basket weights (wi) sum to 1.
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(a) In the Black-Scholes model with constant correlation, show that under
the risk-neutral measure bT is lognormally distributed and find the dis-
tribution parameters as functions of volatilities and correlations.

(b) Find a closed-form formula for the price of the call.

6.3 Worst-Of Put Pricing

Using the Black-Scholes model with constant correlation and Monte Carlo
simulations, calculate the price of a one-year at-the-money worst-of put
option (see Section 1-2.3) on Apple, Microsoft, and Google, in accordance
with the following parameters:

■ Interest rate: 1%
■ Dividend rates: Apple 3%, Microsoft 2.8%, Google 0%
■ Volatilities: Apple 30%, Microsoft 26%, Google 23%
■ Correlations: Apple-Google: 35%, Apple-Microsoft: 30%, Google-
Microsoft: 50%

6.4 Continuously Monitored Correlation

Consider the LVCC model for two assets S(1) and S(2). Define the continu-
ously monitored realized correlation coefficient as:

c =
∫

T

0

dS(1)t

S(1)t

dS(2)t

S(2)t√√√√√∫
T

0

[
dS(1)t

S(1)t

]2

× ∫
T

0

[
dS(2)t

S(2)t

]2
.

Show that c ≤ 𝜌1,2
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CHAPTER 7
Correlation Trading

With the development of multiasset exotic products it became possible, and
at times necessary, to trade correlation more or less directly. The first corre-
lation trades were actually dispersion trades where a long or short position
on a multi-asset option is offset by a reverse position on single-asset options.
Recently pure correlation trades appeared in the form of correlation swaps.

7-1 DISPERSION TRADING

The payoff of a dispersion trade is of the form:

Basket Option Payoff − 𝛽 ×
∑

i
Weighti × Single Option Payoffi

where 𝛽 is an arbitrary coefficient or leg ratio, which is typically deter-
mined so that the trade has zero initial cost, and all other notations are
self-explanatory.

The intuition behind dispersion trades is that the basket option’s leg
provides exposure to volatility and correlation. To isolate the correlation
exposure, it is necessary to hedge, if only approximately, the volatility expo-
sure: this is precisely the purpose of the short single options’ leg.

The two most popular types of dispersion trades are vanilla dispersions,
based on vanilla options (typically straddles), and variance dispersions,
based on variance swaps.

7-1.1 Vanilla Dispersion Trades

The payoff formula for a vanilla dispersion trade on a selection of n stocks
S(1),… , S(n) with weights w1,… , wn is given as:||||||

n∑
i=1

wi

S(i)
T

S(i)0
− k

|||||| − 𝛽

n∑
i=1

wi

||||||
S(i)
T

S(i)0
− k

||||||
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CHAPTER 9
Stochastic Correlation

Stochastic correlation models may provide a more realistic approach to the
pricing and hedging of certain types of exotic derivatives, such as worst-of
and best-of options and correlation swaps and correlation options. In this
chapter, we review various types of stochastic correlation models and pro-
pose a framework for the pricing of realized correlation derivatives that is
consistent with variance swap markets.

9-1 STOCHASTIC SINGLE CORRELATION

Consider the following general model framework for two assets S(1) and S(2):

⎧⎪⎨⎪⎩
dS(1)t ∕S(1)t = 𝜇1(t,…)dt + 𝜎1(t,…)dW(1)

t

dS(2)t ∕S(2)t = 𝜇2(t,…)dt + 𝜎2(t,…)dW(2)
t

(dW(1)
t )(dW(2)

t ) = 𝜌(t,…)dt

where 𝜇’s are instant drift coefficients, 𝜎’s are instant volatility coefficients,
and 𝜌 is the instant correlation coefficient between the driving Brownian
motions W’s. Here all the coefficients may be stochastic, and we focus on 𝜌.

There are some simple ways tomake 𝜌 stochastic and comprised between
−1 and 1; for example, take 𝜌t = sin(𝛼 + 𝛽Zt) where Z is an independent
Brownian motion. The dynamics of d𝜌t may then be found by means of the
Ito-Doeblin theorem. One issue with this approach is that the parameters
may not be very intuitive.

A better approach is to specify diffusion dynamics for 𝜌 and examine
the Feller conditions at bounds −1 and 1 (see Section 2-4.2.2). A popular
process here is the affine Jacobi process, also known as a Wright-Fisher
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FIGURE 9.1 Sample path of an affine Jacobi process with parameters 𝜌0 = 0.65,
𝜌 = −0.1, 𝜅 = 10.6, 𝛼 = 1.

process, which is very similar to Heston’s stochastic volatility process
(see Section 2-4.2.2):

d𝜌t = 𝜅(𝜌 − 𝜌t)dt + 𝛼
√
1 − 𝜌2t dZt

where 𝜌 is the long-term mean, 𝜅 is the mean reversion speed, and 𝛼 is
the volatility of instant correlation. The Feller condition is then 𝛼2

𝜅
− 1 <

𝜌 < 1 − 𝛼2

𝜅
. A technical analysis of this type of process can be found in van

Emmerich (2006).
Figure 9.1 shows the path obtained for an affine Jacobi process with

parameters 𝜌0 = 0.65, 𝜌 = −0.1, 𝜅 = 10.6, 𝛼 = 1. Observe how all values are
comprised between −1 and 1.

9-2 STOCHASTIC AVERAGE CORRELATION

We now shift our focus to average correlation measures 𝜌(x) =

∑
i<j

xixj𝜌i,j∑
i<j

xixj
as

introduced in Section 6-3. Because the correlation matrix R = (𝜌i,j)1≤i,j≤n
must be positive-definite at all times we cannot naively extend the single
correlation case with, for instance, n(n − 1)/2 affine Jacobi processes and
take their average. Note that as a consequence of positive-definiteness 𝜌(x)
is actually comprised between 0 and 1 for large n.

Before we go into further detail we must distinguish between non-
tradable correlation, such as rolling historical or implied correlations, and
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tradable correlation, such as the historical correlation observed over a fixed
time period [0, T]:

■ Nontradable average correlation can be modeled quite freely, using, for
example, a standard Jacobi process between 0 and 1 or econometric pro-
cesses such as Constant and Dynamic Conditional Correlation models
(see, e.g., Engle (2009)).

■ Tradable average correlation requires special consideration to be con-
sistent with other related securities such as variance swaps.

The rest of this section is devoted to the study of tradable average
correlation.

9-2.1 Tradable Average Correlation

Consider ⌢𝜌 =
𝜎2
Basket∑n

i=1 wi𝜎
2
i

which was introduced in Section 7-1.2 and is related

to the proxy formula 𝜌 =
(

𝜎Basket∑n
i=1 wi𝜎i

)2

introduced in Section 6-3.1. Because
⌢𝜌 is the ratio of two tradable assets—namely, basket variance and average
constituent variance—we can derive its dynamics from those of the two
tradable assets. For example, suppose we have:

⎧⎪⎨⎪⎩
dXt∕Xt = ft

(
Xt,Yt

)
dWt

dYt∕Yt = gt(Xt,Yt)dZt

(dWt)(dZt) = ht(Xt,Yt)dt

where Xt is the price of basket variance at time t, Yt ≥ Xt is the price of
average constituent variance at time t, and the driving Brownian motions
W, Z are taken under the forward-neutral measure.

Using the Ito-Doeblin theorem the resulting dynamics for ⌢𝜌 = X
Y
are

then:
d⌢𝜌 t∕

⌢𝜌 t = (g2t − ftgtht)dt +
√

f 2t − 2ftgtht + g2t dBt (9.1)

where B is another standard Brownian motion constructed from W and Z.
Note that, as the ratio of two prices, ⌢𝜌 t is not the price of correlation at

time t, which is why the drift coefficient in Equation (9.1) is nonzero under
the forward-neutral measure:

⌢𝜌 t =
Xt

Yt
=

𝔼t(XT)
𝔼t(YT)

≠ 𝔼t

(
XT

YT

)
= 𝔼t(

⌢𝜌T)
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Because ⌢𝜌 is invariant when multiplying X and Y by the same scalar
𝜆, we may further focus on one-dimensional reductions of the model (see
Section 7-2.3) and assume that f, g, h are functions of X/Y:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

dXt∕Xt = ft

(
Xt

Yt

)
dWt

dYt∕Yt = gt

(
Xt

Yt

)
dZt

(dWt)(dZt) = ht

(
Xt

Yt

)
dt

In this case Equation (9.1) becomes one-dimensional; that is, the drift
and volatility coefficients depend only on time and ⌢𝜌 t. This makes the fol-
lowing Feller analysis considerably easier.

Omitting the time subscript for ease of exposure and using x to denote
the state variable we may rewrite Equation (9.1) as:

dx =
[
g2 (x) − f (x)g(x)h(x)

]
xdt + x

√
f 2(x) − 2f (x)g(x)h(x) + g2(x)dB

(9.2)
The Feller conditions at bounds 0 and 1 are then:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
x↓0 ∫

x0

x
s (y) dy = ∞

lim
x↑1 ∫

x

x0

s(y)dy = ∞

s(y) = exp

(
−∫

y

y0

2
[
g2 (u) − f (u)g(u)h(u)

]
u[f 2(u) − 2f (u)g(u)h(u) + g2(u)]

du

)

Dividing both the numerator and denominator by g2(u), the integrand

in s(y) may be rewritten as 1
u

[
1 + 1−p2(u)

p2(u)−2p(u)h(u)+1

]
with p(u) = f (u)

g(u) . Further-
more,

■ As x → 0 a sufficient condition is that lim
0

1−p2

p2−2ph+1 = 𝓁 ≥ 0 in which

case we have s(y) ≈ exp
(
−∫ y

y0
1+𝓁
u

du
)
=

(
y0
y

)1+𝓁
for y0 and y close to

0, and thus lim
x↓0

∫ x0
x s(y)dy = ∞. A formal proof of sufficiency is proposed

in Appendix 9.A.
■ As x → 1 a necessary condition is that s(y) → ∞, which in turn implies

that 1−p2

p2−2ph+1 diverges (see Appendix 9.B for a formal proof). An analysis

of this quantity over the domain p ≥ 0 and | h | ≤ 1 reveals that the only
singularity is at (1, 1). Thus, as a corollary we have the weak necessary
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condition f (u) ∼ g(u) and h(u) → 1 as u → 1. This configuration intu-
itively makes sense: if average correlation is close to 1, there is almost
no diversification effect, and basket variance and average constituent
variance become almost identical.

Additionally, we want f≥ g because basket variance is more volatile than
average constituent variance, which unfortunately makes the sufficient con-
dition stated above ineffective, since p ≥ 1. We must keep all these properties
in mind when researching suitable functions f, g, and h.

9-2.2 The B-O Model

The following model, which we call the B-O model (for beta-omega), is a
further step towards a suitable stochastic average correlation model:⎧⎪⎪⎪⎨⎪⎪⎪⎩

dXt∕Xt = 2T − t
T

[
𝜔 + 𝛽

(
1 −

Xt

Yt

)]
dWt

dYt∕Yt = 2𝜔T − t
T

dZt

(dWt)(dZt) =
[
Xt

Yt
+ 𝜔

𝜔 + 𝛽

(
1 −

Xt

Yt

)]
dt

(9.3)

where 𝜔 is the instant volatility of constituent volatility and 𝛽 is the “ad-
ditional” volatility of basket volatility.1 The corresponding dynamics for
the average correlation ⌢𝜌 ≡ x are then given by Equation (9.2) using the
functions: ⎧⎪⎪⎨⎪⎪⎩

ft (x) = 2T − t
T

[𝜔 + 𝛽(1 − x)]

gt(x) = 2𝜔T − t
T

ht(x) = x + 𝜔

𝜔 + 𝛽
(1 − x)

Unfortunately, both lower and upper bounds [0,1] turn out to be attract-
ing in the B-O model, making it unsuitable for extreme starting values 𝜌0
and long-term horizons T. However, empirical simulations exhibit plausible
paths. Further research is needed here.

Figure 9.2 shows 10 sample paths obtained with parameters 𝜔 = 70%,
𝛽 = 40% and ⌢𝜌0 = 0.5. Remarkably enough, using Monte Carlo simula-
tions the price of correlation 𝔼(⌢𝜌T) in this model appears to be close to the

initial value ⌢𝜌0 = X0
Y0

=
𝜎⋆2
Basket∑n

i=1 wi𝜎
⋆2
i

, also known as variance-implied correla-

tion. This suggests that the fair strike of a correlation swap on ⌢𝜌T should

1Note that dXt∕Xt = 2(𝜔 + 𝛽) T−t
T

dWt when ⌢𝜌 t = Xt∕Yt is equal to 0, and that

dXt∕Xt = 2𝜔T−t
T

dWt when
⌢𝜌 t is equal to 1.
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FIGURE 9.2 Ten sample paths using the B-O model with parameters 𝜔 = 70%,
𝛽 = 40%, and ⌢𝜌0 = 0.5.

be close to ⌢𝜌0, and by extension a similar result should apply to standard
correlation swaps.

9-3 STOCHASTIC CORRELATION MATRIX

A yet more ambitious endeavor is to devise a model for the evolution of
the entire correlation matrix Rt = (𝜌i,j(t))1≤i,j≤n through time. As pointed
out earlier, the difficulty here is to ensure that Rt is positive-definite at
all times.

It is worth emphasizing that, when correlations are tradable, we should
also ensure that the induced dynamics of average correlation ⌢𝜌 t be consistent
with variance swaps under the forward-neutral measure.

As already pointed out in Section 6-2, equity correlation matrices have
structure—namely, there is typically one large eigenvalue dominating all
others, and the associated eigenvector corresponds to an all-stock portfo-
lio. As such an equity correlation matrix cannot be viewed as any kind of
random matrix.
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Here we need to be more specific about the meaning of a (symmet-
ric) random matrix. This concept was first introduced by Wishart (1928)
in the form M = XXT where X is an n × n matrix of independent and iden-
tically distributed random variables; the special case where X is Gaussian
deserves particular attention since it tends to the identity matrix as n → ∞.
Another approach isWigner’s, wherebyM = 1

2
(X +XT); a remarkable prop-

erty is that the empirical distribution of ordered eigenvalues then follows the
semi-circle law:

1
n
#{i∶ 𝜆i ≤ 𝜆}−−−−−→

n→∞
1
2𝜋∫

𝜆

−2

√
4 − x2dx (|𝜆| ≤ 2)

9-3.1 Spectral Decomposition and the Common

Factor Model

The empirical analysis of equity correlation matrices suggests that they may
be viewed as the sum of a (truly) random matrix and an orthogonal projec-
tor onto the maximal eigenvector. Following the spectral theorem we may
indeed write:

R =

(
n−1∑
i=1

𝜆iviv
T
i

)
+ 𝜆nvnv

T
n

where (v1,… , vn) is an orthonormal basis of eigenvectors with eigenval-

ues 𝜆1 ≤ · · · ≤ 𝜆n. The residual matrix
n−1∑
i=1

𝜆iviv
T
i = R − 𝜆nvnv

T
n may then be

approximated by a Wishart-type matrix.

For large n we could ignore
n−1∑
i=1

𝜆iviv
T
i altogether and write:

R ≈ R̂ = (I − 𝜆nD) + 𝜆nvnv
T
n =

⎛⎜⎜⎜⎝
1 𝜆na1a2 · · · 𝜆na1an

𝜆na2a1 1 𝜆na2an
⋮ ⋱ ⋮

𝜆nana1 𝜆nana2 · · · 1

⎞⎟⎟⎟⎠
where a1,… , an are the entries of the maximal eigenvector vn and D =
diag(a21, … , a2n). Note that R̂ has different eigenelements fromR; however, λn
is related to average correlation because 𝜌(R̂; vn) =

vTn R̂vn−1
(vTn e)2−1

= 𝜆n
n

1−
∑n

i=1 a4i
1
n
(vTn e)2− 1

n

∼
𝜆n∕n

cos2(v̂n,e)
as n → ∞.
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This approach corroborates Boortz’s Common Factor Model (2008)
whereby:

Rt =
⎛⎜⎜⎜⎝

1 𝜉t,1𝜉t,2 · · · 𝜉t,1𝜉t,n
𝜉t,2𝜉t,1 1 𝜉t,2𝜉t,n

⋮ ⋱ ⋮
𝜉t,n𝜉t,1 𝜉t,n𝜉t,2 · · · 1

⎞⎟⎟⎟⎠
where (ξt,1,… , ξt,n) is a vector of correlated stochastic processes in (−1, 1),
such as affine Jacobi processes. One issue with the Common Factor Model
is that the (equally weighted) average realized correlation has a risk-neutral
drift, which has no particular reason to fit in the framework of Section 9-2.1.
In other words the Common Factor Model does not appear to be consistent
with variance swap markets.

9-3.2 The n × n Fischer-Wright Model

Recent work by Ahdida and Alfonsi (2012) alternatively proposes the fol-
lowing stochastic process for the correlation matrix Rt, which is a general-
ization of the Jacobi process:

dRt =
[
𝜅

(
R − Rt

)
+ (R − Rt)𝜅

]
dt

+
n∑

i=1
𝛼i

(√
Rt − RtEi,iRtdWtEi,i + Ei,idW

T
t

√
Rt − RtEi,iRt

)
where the matrix R is the long-term correlation mean, 𝜅 = diag(𝜅1, … , 𝜅n)
is a diagonal matrix of mean-reversion speeds, 𝛼 = diag(𝛼1,… , 𝛼n) is a
diagonal matrix of volatility coefficients, Ei,i = diag(0,… ,0,1,0,… ,0) is the
diagonal matrix with coefficient 1 at position (i,i) and 0 elsewhere,

√
H

denotes the unique square root of a positive-semidefinite matrixH, and (Wt)
is an n × n matrix of independent standard Brownian motions.

Subject to the condition 𝜅R+R𝜅 − (n − 2)𝛼2 being positive-semidefinite,
the Ahdida-Alfonsi process is guaranteed to remain a valid correlation
matrix through time; however, a corrected Euler scheme is required for
simulation.

Unfortunately, Ahdida and Alfonsi have not studied the eigenelements
of their respective correlation matrix processes. and it is difficult to tell how
realistic their model is within the realm of equity correlation matrices. In
particular, there is no guarantee that the induced dynamics of average corre-
lation can be made consistent with realistic dynamics of basket variance and
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average constituent variance in the fashion described early in the chapter.
Further research is thus needed.
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PROBLEMS

9.1

Consider a stock S, which does not pay dividends, with dollar price S$, and
let X be the exchange rate of one dollar into euros. Assume that S$ and
X both follow geometric Brownian motions under the dollar risk-neutral
measure with joint dynamics:{

dS$t ∕S
$
t = r$dt + 𝜎dWt

dXt∕Xt = 𝜈dt + 𝜂dZt

where r$ is the constant dollar interest rate, 𝜎, 𝜈 and 𝜂 are free constant
parameters, and W, Z are standard Brownian motions with stochastic cor-
relation (dWt)(dZt) ≡ 𝜌tdt.

(a) Show that the forward price of S quanto euro for maturity T is
S$0𝔼

[
exp

(
r$T − 𝜎𝜂∫ T

0 𝜌tdt
)]
.

(b) Assume that S0
$ = $100, r$ = 0, 𝜎 = 25%, 𝜂 = 10%, d𝜌t = 𝜅(𝜌 − 𝜌t)dt +

𝛼
√
1 − 𝜌2t dBt with 𝜌0 = −0.65, 𝜌 = −0.2, 𝜅 = 10.6, 𝛼 = 1. Compute the

one-year forward price of S quanto euro using Monte Carlo simulations
over 252 trading days. Answer: €100.60
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9.2

Consider the model for stochastic average correlation:

d⌢𝜌 t∕
⌢𝜌 t = 𝜔2(1 − ⌢𝜌 t)dt + 𝜔

1 − ⌢𝜌 t√
1 − ⌢𝜌 t∕2

dBt

(a) Verify that the process remains within (0,1) and that the lower bound is
non-attracting.

(b) Define h(x) =
√

x(2 − x). Find f(x), g(x) such that ⌢𝜌 ≡ x satisfies
Equation (9.2). Hint: Show that 1−ph

p2−2ph+1 = 1−x∕2
1−x

where p = f/g and

solve for p.
(c) Do you think that this model is suitable?

APPENDIX 9.A: SUFFICIENT CONDITION FOR LOWER

BOUND UNATTAINABILITY

Following the notations of Section 9-2.1, suppose that lim
0

1−p2

p2−2ph+1 = 𝓁 ≥ 0.

By the definition of a limit this means that for arbitrary 𝜀 > 0 there exists an
𝛼 > 0 such that:

for all 0 ≤ u ≤ 𝛼,
1 − p2(u)

p2(u) − 2p(u)h(u) + 1
≤ 𝓁 + 𝜀

Thus, for all 0 < u ≤ 𝛼, −1
u

[
1 + 1−p2(u)

p2(u)−2p(u)h(u)+1

] ≥ −1+𝓁+𝜀
u

. By integra-
tion over [y0, y] ⊂ [0, 𝛼] we get:

−∫
y

y0

du
u

[
1 +

1 − p2 (u)
p2(u) − 2p(u)h(u) + 1

]
≥ −∫

y

y0

1 + 𝓁 + 𝜀

u
du

= −(1 + 𝓁 + 𝜀) ln
y
y0

.

Taking exponentials:

s(y) ≥
(
y0
y

)1+𝓁+𝜀

and thus lim
x↓0

∫ x0
x s(y)dy = ∞ since ∫

x0

0

dy

y1+𝛽
diverges for any 𝛽 ≥ 0.
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APPENDIX 9.B: NECESSARY CONDITION FOR UPPER

BOUND UNATTAINABILITY

Suppose that 1−p2

p2−2ph+1 converges to a finite limit 𝓁. By the definition of a

limit this means that for arbitrary 𝜀 > 0 there exists an 𝛼 < 1 such that:

for all 𝛼 ≤ u ≤ 1,𝓁 − 𝜀 ≤ 1 − p2(u)
p2(u) − 2p(u)h(u) + 1

≤ 𝓁 + 𝜀

Thus, for all 𝛼 ≤ u ≤ 1, 1+𝓁−𝜀
u

≤ 1
u

[
1 + 1−p2(u)

p2(u)−2p(u)h(u)+1

] ≤ 1+𝓁+𝜀
u

. By inte-
gration over [y0, y] ⊂ [𝛼, 1] we get:

(1 + 𝓁 − 𝜀) ln
y
y0

≤ ∫
y

y0

du
u

[
1 +

1 − p2 (u)
p2(u) − 2p(u)h(u) + 1

]
≤ (1 + 𝓁 + 𝜀) ln

y
y0

Taking exponentials:(
y0
y

)1+𝓁+𝜀
≤ s(y) ≤

(
y0
y

)1+𝓁−𝜀

and thus lim
x↑1

∫ x
x0

s(y)dy is finite since ∫ 1
x0

dy
y𝛽

converges for any 𝛽, thereby con-

tradicting the requirement that lim
x↑1

∫ x
x0

s(y)dy = ∞.
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Author’s Note

T
his is a book about finance, intended for professionals and future profes-
sionals. I am not trying to sell you any security, or give you any investment

advice. The views expressed here are solely mine and do not necessarily
reflect those of any entity directly or indirectly related tome. I took great care
in proofreading this book, but I disclaim any responsibility for any remaining
errors and any use to which the contents of this book is put. Some chapters
contain original research material whose accuracy cannot be guaranteed.
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In this report we propose a ‘toy model’ for pricing derivatives on the realized variance of an 
Asset, which we apply for pricing correlation swaps on the components of an equity index. We 
find that the fair strike of a correlation swap is approximately equal to a particular measure of 
implied correlation, and that the corresponding hedging strategy relies upon dynamic trading 
of variance dispersions. 

 

I thank my colleague Manos Venardos for his contribution and comments. All errors are mine. 

 

 

 

 

 

 

 

These analyses are provided for information purposes only and are intended solely for your use.  The analyses 
have been derived from published models, reasonable mathematical approximations, and reasonable estimates 
about hypothetical market conditions.  Analyses based on other models or different assumptions may yield 
different results.  JPMorgan expressly disclaims any responsibility for (i) the accuracy of the models, 
approximations or estimates used in deriving the analyses, (ii) any errors or omissions in computing or 
disseminating the analyses and (iii) any uses to which the analyses are put. 

This commentary is written by the specific trading area referenced above and is not the product of JPMorgan's 
research departments. Research reports and notes produced by the Firm's Research Departments are available from 
your salesperson or at the Firm's website, http://www.morganmarkets.com. Opinions expressed herein may differ 
from the opinions expressed by other areas of JPMorgan, including research.  This commentary is provided for 
information only and is not intended as a recommendation or an offer or solicitation for the purchase or sale of any 
security or financial instrument.  JPMorgan and its affiliates may have positions (long or short), effect transactions or 
make markets in securities or financial instruments mentioned herein (or options with respect thereto), or provide 
advice or loans to, or participate in the underwriting or restructuring of the obligations of, issuers mentioned herein.  
The information contained herein is as of the date and time referenced above and JPMorgan does not undertake any 
obligation to update such information. All market prices, data and other information are not warranted as to 
completeness or accuracy and are subject to change without notice.  Transactions involving securities and financial 
instruments mentioned herein (including futures and options) may not be suitable for all investors.  Clients should 
contact their salespersons at, and execute transactions through, a JPMorgan entity qualified in their home jurisdiction 
unless governing law permits otherwise. Entering into options transactions entails certain risks with which you should 
be familiar.  In connection with the information provided below, you acknowledge that you have received the Options 
Clearing Corporation's Characteristics and Risks of Standardized Option.  If you have not received the OCC documents 
and prior to reviewing the information provided below, contact your JPMorgan representative or refer to the OCC 
website at http://www.optionsclearing.com/publications/riskstoc.pdf 

 

A
R

B
I

T
R

A
G

1 

Copyright 2005 J.P. Morgan Chase & Co. All rights reserved. JPMorgan is the marketing name for J.P. Morgan Chase & 
Co. and its subsidiaries and affiliates worldwide. J.P. Morgan Securities Inc. is a member of NYSE and SIPC. JPMorgan 
Chase Bank is a member of FDIC. J.P. Morgan Futures Inc. is a member of the NFA. J.P. Morgan Securities Ltd. and J.P. 
Morgan plc are authorised by the FSA and members of the LSE. J.P. Morgan Europe Limited is authorised by the FSA. 
J.P. Morgan Equities Limited is a member of the Johannesburg Securities Exchange and is regulated by the FSB. J.P. 
Morgan Securities (Asia Pacific) Limited and Jardine Fleming Securities Limited are registered as investment advisers 
with the Securities & Futures Commission in Hong Kong and their CE numbers are AAJ321 and AAB026 respectively. 
Jardine Fleming Singapore Securities Pte Ltd is a member of Singapore Exchange Securities Trading Limited and is 
regulated by the Monetary Authority of Singapore ("MAS"). J.P. Morgan Securities Asia Private Limited is regulated by 
the MAS and the Financial Supervisory Agency in Japan. J.P.Morgan Australia Limited (ABN 52 002 888 011) is a 
licensed securities dealer.  In the UK and other EEA countries, this commentary is not available for distribution to 
persons regarded as private customers (or equivalent) in their home jurisdiction. 

 

140



  

Introduction 
E

 
P

R
I

C
I

N
G

 
O

F
 

E
Q

U
I

T
Y

 
C

O
R

R
E

L
A

T
I

O
N

 
S

W
A

P
S

 

Volatility and variance modeling has been an active research area within quantitative finance 
since the publication of the Black-Scholes model in 1973. Initially, research efforts have 
mostly focused on extending the Black-Scholes model for pricing calls and puts in the presence 
of implied volatility ‘smile’ (Hull-White 1987, Heston 1993, Dupire 1993a & 1993b, Derman-
Kani 1994.) In the mid 1990’s, new instruments known as variance swaps also appeared on 
equities markets and made squared volatility a tradable asset (Neuberger 1990, Demeterfi-
Derman 1999.) As variance became an asset class of its own, various forms of volatility 
derivatives have appeared, for example volatility swaps, forward contracts and options on the 
new CBOE Volatility Index (VIX.) The modeling of these new instruments is difficult because 
they overlap with certain exotic derivatives such as cliquet options which highly depend on the 
dynamics of the implied volatility surface. 

In recent years the research on volatility and variance modeling has embraced the pricing and 
hedging of these volatility derivatives. Here we must distinguish between two types: 

– Derivatives on realized volatility, where the payoff explicitly involves the historical 
volatility of the underlying Asset observed between the start and maturity dates, e.g. 
volatility swaps. 

– Derivatives on implied volatility, where the payoff will be determined at maturity by 
the implied volatility surface of the underlying asset, e.g. forward-starting variance 
swaps, cliquet options, or options on the VIX. 

It is important to notice that the first category can be seen as derivatives on a variance swap 
of same maturity. Leveraging on this observation and on earlier work by Dupire (1993b), 
Buehler (2004) models a continuous term structure of forward variance swaps, while Duanmu 
(2004), Potter (2004) and Carr-Sun (2005) model a fixed-term variance swap. All these 
approaches are based on dynamic hedging with one or several variance swap instruments. 

The second category is beyond the scope of this report. We refer the interested reader to the 
work on the dynamics of the implied volatility surface carried out by Schonbucher (1998), 
Cont-Fonseca (2002), Brace et al. (2002). 

 

Despite the development of exotic and hybrid markets which offer derivatives on several 
underlying assets, correlation modeling in the context of option pricing theory has been 
relatively under-investigated in the financial literature. 

Correlation swaps appeared in the early 2000’s as a means to hedge the parametric risk 
exposure of exotic desks to changes in correlation. Exotic derivatives indeed frequently 
involve multiple assets, and their valuation requires a correlation matrix for input. Unlike 
volatility, whose implied levels have become observable due to the development of listed 
option markets, implied correlation coefficients are unobservable, which makes the pricing of 
correlation swaps a perfect example of ‘chicken-egg problem.’ 
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In this report, we show how a correlation swap on an equity index can be viewed as a simple 
derivative on two types of tradable variance, and derive a closed-form formula for its 
arbitrage price relying upon dynamic trading of these instruments. For this purpose, we start 
by proposing a ‘toy model’ for tradable variance in Section 1 which we apply for pricing single 
volatility derivatives. In Section 2, we introduce a proxy for the payoff of correlation swaps 
that has the property of involving only tradable variance payoffs, and we extend the toy 
model for variance to derive the theoretical price of a correlation swap. 
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1. A toy model for tradable variance 

Our purpose is to introduce a simplified model which can be used to price derivatives on 
realized volatility. We depart from the traditional stochastic volatility models such as Heston 
(1993) by modeling directly the fair price of a variance swap with the same maturity as the 
derivative. Here, the underlying tradable asset is the variance swap itself which, at any point 
in time, is a linear mixture between past realized variance and future implied variance. 

This approach lacks the sophistication of other methods and does not address the issue of 
possible arbitrage with other derivatives instruments. But its simplicity allows us to find 
closed-form formulas based on a reduced number of intuitive parameters, so that everyone 
can form an opinion on the rationality of our results. 

The Model 
In this section we limit our considerations to a market with two tradable assets: variance and 
cash. We follow in part the guidelines by Duanmu (2004) to introduce a simplified, ‘toy model’ 
for the variance asset which is a straightforward modification of the Black-Scholes model for 
asset prices. We make the usual economic assumptions of constant interest rate r, absence of 
arbitrage, infinite liquidity, unlimited short-selling, absence of transaction costs, and 
continuous flow of information. We have the usual set up of a probability space ( , F, P) with 
Brownian filtration (Ft) and an equivalent risk-neutral pricing measure Q. 

We further assume that only the variance swap is tradable, but not the Asset itself1. Let 
vt(0, T) be the price at time t of the floating leg of a variance swap for the period [0, T] 
where T denotes the maturity or settlement date of the swap. From now on we use the 
reduced notation vt and we use the terms ‘variance’ and ‘variance swap’ interchangeably. 

We specify the dynamics of (vt) through the following diffusion equation under the risk-neutral 
measure Q: 

tttt dWv
T
tTdtrvdv 2  

where r and  are model parameters corresponding to the short-term interest rate and the 
volatility of volatility, and (Wt) is a standard Brownian motion under Q. 

Hence v0 is the price at inception of the variance swap which can be observed on the market 
or calculated using the replicating portfolio of puts and calls described in e.g. Demeterfi-
Derman (1999); and vT is the price of the same variance swap at maturity which coincides with 
the realized variance for the period [0, T]. 

Our toy model for variance is thus a log-normal diffusion whose volatility parameter linearly 
collapses to zero between the start date and the maturity date. Note that by Ito-Doeblin this 
is equivalent to assume that volatility follows a log-normal diffusion with a time-dependent 

volatility parameter 
T
tT

. 

 

Comparison with stochastic volatility models 

We now make the comparison with standard stochastic volatility models of the instantaneous 
asset variance (Xt). The usual mean-reverting model is 
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1 We make this assumption to avoid modeling the Asset price process itself, and escape the debate on model 
consistency with vanilla option prices. Clearly this is not a realistic assumption, hence the expression ‘toy model.’ 
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t
a
ttt dWXdtXdX )(  

where , , , a are constant parameters. In this framework the price at time t of a variance 
swap over the period [0,T] is given by: 

t
tT

t

s
tTr

t

T

t
s

t

s
tTr

t

XetTdsX
T

e

FdsXEdsX
T

ev

)(

0

)(

0

)(

11)(1

1

 

This price is independent of the volatility of volatility specification controlled by the 
parameter . Since the variance swap price is an affine function of the instantaneous variance, 
the dynamics of (vt) are straightforwardly obtained: 

t
a
t

tTtTr
tt dWXe

T
edtrvdv )()( 11

 

We may now use the variance swap price expression to obtain the dynamics of (vt) in terms of 
vt only. When a = 1 this simplifies to: 

t
tT

t

s
tTr

ttt dWetTdsXe
T

vdtrvdv )(

0

)( 11)(1
 

and we can see that the volatility factor between brackets converges to zero as we approach 
maturity. 

 

In contrast to the toy model, the volatility specification of the variance swap in a stochastic 
volatility model is a power of the instantaneous variance, not the variance swap price. For 
short maturities the two models are comparable. 

 

Terminal distribution 

Using the Ito-Doeblin theorem, we can write the diffusion equation for ln v: 

tt dW
T
tTdt

T
tTrvd 22)ln(

2
2  

Thus, for all times 0 < t < t’ < T, we have: 

 
t

t s

t

ttt dWsT
T

dssT
T

ttrvv )(2)(2)(exp 2
2

2

 

Calculating the first integral explicitly we obtain: 

t

t stt dWsT
TT

tT
T
tTTttrvv )(2

3
2)(exp

33
2  
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Furthermore, the stochastic integral  has a normal distribution with zero mean 

and standard deviation 

T

t sdWsT )(

3
)( 2/3tT

. Thus, vT has a conditional lognormal distribution with 

mean 
3t2

3
2)()

T
TTtTrvtln(  and standard deviation 

2/3

3
2

T
tTT . 

 

Application: arbitrage pricing of volatility derivatives 
As an example of an application of our toy model for variance, we derive the arbitrage price 
of a European contingent claim on realized volatility vT at maturity. We denote f(vT) the 

payoff and  the F-adapted price process of such contingent claim. ),( tt vtff

Following the fundamental theorem of asset pricing, the price of the contingent claim equals 
the discounted conditional expectation of its payoff: 

tT
tTr

t FvfEef )()(  

We now proceed to derive closed-form formulas for two contingent claims of particular 
interest: 

– A forward contract on realized volatility, whose payoff is the square root of variance: 

TT vvf )( ; 

– A call option on realized variance struck at level K, whose payoff is: 

. ),0()( KvMaxvf TT

 

Forward contract on realized volatility 

Taking the square root of (1) we can write for all 0 < t < T: 

T

t s
tTr

tT dWsT
TT

tTTevvf )(
3
1exp)(

3
2)(  

Taking conditional expectations and discounting then yields: 

 t

T

t s
tTr

tt FdWsT
T

E
T
tTTevf )(exp

3
1exp

3
2)(  (2) 

But: 
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Substituting this result in (2), we obtain a closed-form formula for the price of the forward 
contract on volatility: 

3
2)(

6
1exp

T
tTTevf tTr

tt  

In particular: 

TrTvf 2
00 6

1
2
1exp  

 

A corollary is that the convexity adjustment c between the fair strikes of newly issued 
variance and volatility swaps can be expressed as a function of volatility of volatility: 

Tevefevc rTrTrT 2
000 6

1exp1  

Which gives the rule of thumb: 

Tevc rT 2
06

1
 

This result has some resemblance with Duanmu’s who finds 2
0 4

1exp1rTevc  

with a time-dependent volatility of volatility 
tT

tT )( . However, we believe our 

result is more consistent with the intuition that the longer the maturity, the higher the 
convexity effect. Exhibit 1.1 below shows how the convexity adjustment behaves as a function 
of volatility of volatility and maturity. 

Exhibit 1.1 
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Convexity Adjustment between Variance and Volatility Swaps 
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Another point of interest is the corresponding dynamic hedging strategy for replicating 

volatility swaps using variance swaps. Following our approach, the quantity t  of variance to 

hold at a given point in time t would be: 

3
2

)( 6
1exp

2
1

T
tTT

evv
f

tTr
t

t  

It is worth noting that at time t = 0 this delta is equal to: 

T
ev rT

2

0

0 6
1exp

2
1

 

which is in line, modulus the convexity adjustment, with the market practice of calculating 
the notional of a newly issued variance swap according to the formula: 

StrikeSwapVariance
NotionalVegaNotionalSwapVariance

2
 

 

Call option on realized variance 

Because vT has a lognormal distribution, the closed-form formula for a call on realized 
variance struck at level K is identical to the Black-Scholes formula for a call on a zero-dividend 

paying stock with a constant volatility parameter2 
T
tT

3
2

. Substitution yields: 

)()( 2
)(

1 dNKedNvf tTr
tt  

where N is the cumulative standard normal distribution and: 

2/3

3
2

)(

1

3
1

3
1ln

T
tTT

T
tTT

K
ev

d

tTr
t

, 
2/3

12 3
2

T
tTTdd . 

Note that the quantity 
K
ev tTr
t

)(

 corresponds to the ratio of implied variance to the option’s 

strike expressed in volatility points. 

Exhibits 1.2 to 1.4 below show how the arbitrage price of a 3-year call on variance struck at 
202 compares to the original Black-Scholes call formula at t = 0, 1 and 2 years. To generate 
these graphs we assumed a volatility of volatility of 20% and a 0% interest rate. Option prices 
are expressed in percentage of the strike. We can see that the call on variance is worth more 
than Black-Scholes at t = 0, and less at t = 1 and t = 2, which indicates a higher time decay or 
theta. 
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2 By ‘constant volatility parameter’ we mean that at time t the call on realized variance has the same price as a call 

on an asset S whose price follows the diffusion dWSdrSdS  where ),[t  is the time 

dimension of the diffusion and  does not depend on . 
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Exhibit 1.2 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 0 
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Exhibit 1.3 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 1 
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Exhibit 1.4 

Call on Realized Variance: Toy Model versus Black-Scholes at t = 2 
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2. Pricing and hedging of quasi-correlation claims 

Correlation Swaps 
A correlation swap is a derivative instrument on a basket of n Stocks whose payoff is given as: 

K
ww

ww
c

nji
ji

nji
jiji

T

1

1
,

 

where w is a vector of arbitrary non-negative weights summing to 1,  a positive-definite 
matrix of pair-wise correlation coefficients, and K a scalar called strike. 

In practice the correlation coefficients are calculated using the canonical statistical formula 
on the time series of the Stocks’ daily log-returns. The first term in the formula corresponds to 
the weighted average of the correlation matrix, excluding the diagonal of 1’s. We call this 
quantity the realized average correlation between the n Stocks for the period [0, T]. 

 

Implied index correlation 

In the case of equity indices, an implied average correlation measure can be backed out from 
implied volatilities: 

nji
jjii

n

i
iiIndex

Implied ww

w

1

1

222

))((2
 

where n is the number of Stocks in the index, Index  is the implied volatility of the index,  is 

the vector of implied volatilities and w is the vector of index weights. 

This measure is justified by the well-known relationship between the variance of a portfolio 
and the covariance of its components, which is the founding block of portfolio theory 
(Markovitz 1952): 

nji
jijiji

n

i
iiPortfolio www

1
,

1

222 2  

There are, however, some minor differences between an equity index and a portfolio of stocks. 
In a portfolio weights are fixed, whereas in an index they vary with stock prices. Additionally 

the formula above is only exact for standard returns ( P
P ), not log-returns. In normal market 

conditions and over reasonable observation periods, these differences can be ignored. 

 

Implied correlation and ‘fair’ correlation 
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Intuitively, one would expect the ‘fair value’ of a correlation swap on an equity index to be 
related to the index implied correlation. However, in the absence of a replication strategy, 
the concept of ‘fair value’ is quite sloppy. This is complicated by the existence of implied 
volatility surfaces that translate into implied correlation surfaces: there is not a single 
measure of implied correlation. 
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Later on we establish the formal existence of a quasi-replication strategy for equity index 
correlation swaps relying upon dynamic trading of variance on the index and its components, 
and show that the ‘fair value’ of a correlation swap is roughly equal to a particular measure of 
implied correlation, after discounting. This dynamic replication strategy is more easily 
exposed using the rules of thumb which we introduce below. 

 

Correlation proxy 

In 2004 several papers (Bossu-Gu, Tierens-Anadu, Statman-Scheid) have investigated the 
relationship between portfolio volatility and average correlation. The conclusion which can be 
drawn is that for a sufficient number of Stocks and in normal conditions3 we have the rule of 
thumb: 

2

1

n

i
ii

Index

w
 

where  denotes either realized or implied average correlation,  a vector of either realized 
or implied volatilities, and w a vector of components’ weights in the index. 

In essence, average correlation is thus the squared ratio of index volatility to the average 
volatility of its components. We push this paradigm one level further by noticing that this 
proxy measure is conceptually close to the ratio of index variance to the average variance of 
its components: 

n

i
ii

Index
n

i
ii

Index

ww
1

2

2

2

1

 

We call the quantity on the left-hand side the volatility-based correlation proxy and that on 
the right-hand side the variance-based proxy. In practice those two proxy measures typically 
differ by a few correlation points for the major equity indices, both for implied and historical 
data. It should also be noted that the variance-based proxy is always lower than or equal to 
the volatility-based one4. 

Our motivation for introducing the variance-based proxy should be clear: in this form, average 
index correlation becomes the ratio of two tradable types of variances: index variance and 
average components’ variance. In fact these variances are frequently traded one against the 
other in the so-called variance dispersion trades, with the objective of taking advantage of the 
gap between implied correlation and realized correlation, as illustrated in Exhibit 2.1 on the 
Dow Jones EuroStoxx 50 index. 
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4 This property is a straightforward consequence of Jensen’s inequality: 
22
iiiiii ww . 
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Exhibit 2.1 

1-year Implied and Realized Correlation of the DJ EuroStoxx 50 index 

 
Source: JPMorgan 

 

Quasi-correlation claims 
We call a quasi-correlation claim a variance derivative whose payoff is: 

T

T
T b

ac  

where aT denotes index realized variance and bT the average components’ realized variance, 
defined as follows: 

TT S
T

a ln1
 

n

i
T

i
iT Sw

T
b

1
ln1

 

with S denoting the price process of the index, (S1 , …, Sn) the vector of price processes of the 
components, and [.] the quadratic variation. 

 

Arbitrage Pricing 

We now extend our toy model to find the arbitrage price of a quasi-correlation claim. We 
consider a market of two tradable variance assets a and b and cash, and we make the same 
economic assumptions as in Section 1. 

We specify the following dynamics for the F-adapted price processes a and b under a risk-
neutral measure Q: 

 11 A
R

B
I

T
R

A
G ttatt dWa

T
tTdtrada 2  

150



  

tttbtt dZdWb
T
tTdtrbdb 212  

E
 

P
R

I
C

I
N

G
 

O
F

 
E

Q
U

I
T

Y
 

C
O

R
R

E
L

A
T

I
O

N
 

S
W

A
P

S
 

where r is the short-term interest rate, ’s are volatility of volatility parameters for a and b, 
 is the instant correlation parameter between a and b, and (Wt), (Zt) are two independent 

Brownian motions under Q. 

Denoting (ct) the price process for the quasi-correlation claim, and applying the Ito-Doeblin 
theorem on ln(a/b), we find: 

tbtbaab
t

t dZ
T
tTdW

T
tTdt

T
tT

b
a

d 2
2

22 1222ln  

Whence for all 0 < t < T: 

T

t s
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t
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Taking conditional expectations under Q and discounting yields: 

3
22222 )1()(

3
2)(exp

T
tTTtTr

b
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c bbaab
t

t
t  

Expanding the squares and simplifying terms, we obtain: 

3
2

3
4)(exp

T
tTTtTr

b
a

c bab
t

t
t  

In particular, at time t = 0, we have: 

TrT
b
a

c bab
2

0

0
0 3

4exp  

Here, it is worth noting that if the volatility of volatility parameters are of the same order and 

the correlation of variances is high, we have rTe
b
a

c
0

0
0 , which is nothing else but the 

discounted variance-based implied correlation proxy. 

 

Exhibits 2.2 to 2.4 below show how the fair strikes of a 1-year quasi-correlation claim compare 
to the variance-based implied correlation, for various levels of volatility of volatility and 
variance correlation parameters. We can see that when a and b are close the ratio is close 
to 1. This suggests that our result is relatively model-independent in the sense that it does not 
heavily depend on the model parameters. 
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Exhibit 2.2 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for  = 0.5 

 b 
 a 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1.001 1.009 1.023 1.045 1.074 1.112 

10% 1 0.999 1.004 1.016 1.035 1.062 1.096 

15% 1 0.996 0.999 1.009 1.025 1.049 1.081 

20% 1 0.994 0.994 1.002 1.016 1.037 1.065 

25% 1 0.992 0.990 0.995 1.006 1.025 1.051 

30% 1 0.989 0.985 0.988 0.997 1.013 1.036 

Exhibit 2.3 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for  = 1 

 b 
 a 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1 1.007 1.020 1.041 1.069 1.105 

10% 1 0.997 1 1.010 1.027 1.051 1.083 

15% 1 0.993 0.993 1 1.013 1.034 1.062 

20% 1 0.990 0.987 0.990 1 1.017 1.041 

25% 1 0.987 0.980 0.980 0.987 1 1.020 

30% 1 0.983 0.974 0.970 0.974 0.983 1 

Exhibit 2.4 

Ratio of Fair Quasi-Correlation to Variance-Based Implied Correlation for  = 0 

 b 
 a 0% 5% 10% 15% 20% 25% 30% 
0% 1 1.003 1.013 1.030 1.055 1.087 1.127 

5% 1 1.002 1.010 1.025 1.048 1.078 1.116 

10% 1 1.000 1.007 1.020 1.041 1.069 1.105 

15% 1 0.998 1.003 1.015 1.034 1.060 1.094 

20% 1 0.997 1.000 1.010 1.027 1.051 1.083 

25% 1 0.995 0.997 1.005 1.020 1.043 1.073 

30% 1 0.993 0.993 1.000 1.013 1.034 1.062 

 

Dynamic Hedging Strategy 

We now examine in further detail the hedging strategy for quasi-correlation claims. The 
hedging coefficients or deltas for the two variance assets are given as: 

t
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t a
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In practice, this means that if we are short a claim we must hold a long position in index 
variance against a short position in average components’ variance, in dynamic quantities. This 
type of spread trade is known as a variance dispersion. We must emphasize that here the 
weights between the two legs are not equal — in fact, the ratio of deltas is equal to the fair 
value of the claim: 

t
t

t
a
t

b
t c

b
a

 

In particular, at t = 0, this ratio is equal to the variance-based implied correlation proxy, and 
the initial delta-hedge is known as a correlation-weighted variance dispersion trade5. 

Furthermore, the cost of setting up the delta-hedge is nil at all times: 

0t
t

t
t

t

t
t

b
tt

a
t b

b
c

a
a
c

ba  

Thus, the hedging strategy is entirely self-funded. 
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5 For a detailed analysis of dispersion trading, please refer to our 2005 report Correlation Vehicles, JPMorgan 
European Equity Derivatives Strategy, N. Granger and P. Allen. 
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Because standard correlation swaps have a payoff approximately equal to that of a quasi-
correlation claim minus the strike, it follows that the hedging strategy for the latter is a quasi-
replication strategy for the former in the sense that it replicates the payoff modulus the error 
of the correlation proxy. In other words, correlation swaps on an equity index should trade at 
a strike close to the variance-based implied correlation proxy. It should be pointed out that at 
the time of writing, over-the-counter transactions typically take place at a significantly lower 
strike, which may indicate the existence of dynamic arbitrage opportunities. 

The implications are vast from both practical and theoretical standpoints. On the practical 
side, the identification of a quasi-replication strategy is a crucial step for the development of 
the correlation swap market. On the theoretical side, we see at least three research areas 
which should be affected by our results: the pricing and hedging of exotic derivatives on 
multiple equity assets (in particular the long-debated issue of correlation skew), the stochastic 
modeling of volatility and correlation, and the pricing and hedging of options on realized 
correlation as a branch of the pricing theory of derivatives on realized variance. 
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Overview

In this document, we derive and analyse the fundamental relationship between an index’s
volatility and the correlation and average volatility of its components:

)VolatilityComponentAverage(nCorrelatioVolatilityIndex  .

This relationship holds in practice when correlation is above 0.15, and the number of
components is above 202.

Section 1 reviews the definition of realised and implied correlation.

Section 2 derives the relationship from fundamentals.

Section 3 evaluates the strength of the relationship using statistical methods.

Appendix A is a short reference of statistical formulas.

2 Additionally, weights and components’ volatilities must be reasonable to avoid concentration on specific stocks.
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1. Realised and Implied Correlation

In this section, the definition of realised and implied correlation is reviewed.

Realised Correlation
Realised correlation on an index is traditionally defined as the average of the realised
correlation matrix between the index components, excluding the diagonal of 1’s:







 n

ji
ji

n

ji
ijji

Realised

ww

ww ρ
ρ

where n is the number of components, w’s are the component weights, and ’s are the pair-
wise correlations:

ji

ji
ji

COV
σσ

ρ ,
,  .

Hence:
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A slightly different way of defining realised correlation could be given as the ratio of average
covariance to average ‘cross-volatility’:
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jiji
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jijiji

ji
jiji

ji
ijji

Realised
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ww

ww

COVww

σσ

ρσσ

σσ
ρ

,

This is not the market practice, but would be more consistent with the way implied
correlation is defined.

Exhibit 1 below shows the evolution of realised correlation over a one-year rolling window for
two indices: EuroStoxx 50 and S&P 500.

159



C O N F I D E N T I A L

FU
N

DA
M

EN
TA

L 
RE

LA
TI

O
N

SH
IP

 B
ET

W
EE

N
 A

N
 IN

DE
X’

S 
VO

LA
TI

LI
TY

 A
N

D 
TH

E 
CO

RR
EL

AT
IO

N
 A

N
D 

AV
ER

AG
E 

VO
LA

TI
LI

TY
 O

F 
IT

S 
CO

M
PO

N
EN

TS

3

Exhibit 1

1Y Realised Correlation—EuroStoxx 50 and S&P 500

Source: JPMorgan—DataQuery.

Implied Correlation
Implied Correlation is the correlation parameter extracted from market option prices on an
index and its components:











ji
jiji

n

i
iiIndex

Implied ww

w

σσ

σσ
ρ

2
1

222

where n is the number of components, w’s are the component weights, and ’s are implied
volatilities.

This definition is derived from the well-known probability formula (see Appendix):













ji
ji
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i
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n

i
i XXCovXVarXVar ),(2)(

11

which translates as follows in portfolio theory:





ji

jijiji

n

i
iiP www ,

1

222 2 ρσσσσ .

Implied is thus closely connected to Realisedρ  , and commonly interpreted as the market’s

expectation of the future realised correlation. However, the existence of a volatility surface
(skew and term structure) translates into another surface for implied correlation levels. When
it comes to determine the ‘fair strike’ of a correlation swap3, traders will have a look at both
implied and realised levels.

3 A correlation swap is an instrument which pays off the notional multiplied by the realised correlation between
inception and maturity in exchange for a fixed amount.
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4

Exhibit 2 below shows the evolution of ATM 1Y implied correlation for two indices: EuroStoxx
50 and S&P 500.

Exhibit 2

1Y ATM Implied Correlation—EuroStoxx 50 and S&P 500

Source: JPMorgan—DataQuery.
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5

2. Fundamental relationship between an index’s volatility and the
correlation and volatility of its components

In this section, a Proxy for implied and realised correlation is derived from fundamentals,
leading to the relationship.

Correlation Proxy
The following mathematical equation holds for any given numbers x1, …, xn:
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Whence:
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For a sufficiently large number of components (in practice n > 20) and well-behaved weights

and volatilities, the second term on both the numerator and denominator, 


n

i
iiw

1

22σ ,

becomes negligible. This is most straightforwardly observed when the components are equally
weighted:

011 2
max
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2
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The limiting case gives us the proxy:

2

2

Average

Index

σ
σρ 

where 



n

i
iiAverage w

1
σσ  is the average implied volatility of the components. Note that this

proxy will become inaccurate if the true implied correlation becomes low (in practice <0.15).
Since most indices select their components regionally or sectorially, this should rarely be
observed in practice.

The same derivations hold for the second definition of realised correlation, Realisedρ  , once it

has been noticed that:
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by backing out the numerator through the formula for the volatility of a portfolio and its
components (see Section 1.)

Interpretation
In essence, correlation is the squared ratio of index volatility to the average volatility of the
components. In other words:

)VolatilityComponentAverage(nCorrelatioVolatilityIndex 

This relationship means that index volatility is less sensitive to changes in components’
volatility when correlation is low. However, the relationship becomes weaker when correlation
reaches the region 0.15–0.25; and becomes inaccurate below 0.15.

Exhibit 3 below shows the sensitivity of index volatility to average component volatility in
function of correlation.

Exhibit 3

Sensitivity of index volatility to average component volatility.

0%
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20%
30%
40%
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3. Statistical Analysis

In this section, the strength of the relationship derived previously is evaluated using statistical
methods on both implied and realised data.

New functions in DataQuery introduced in January 20044 give access to both implied and
realised data for volatility, correlation and average volatility of the major indices.

Implied Data
Exhibits 4 and 5 below compare the index ATM implied volatility (IVOL) for both one-year and

3-month maturities against AVGIVOLIMPCORR   on the EuroStoxx 50 between 2000
and 2004. The fundamental relationship is so accurate in both cases that the two lines are
almost indistinguishable.

This is confirmed by the regression results in Exhibit 6: the R2 is 0.99873.

Exhibit 4

1Y ATM implied volatility of EuroStoxx50 vs. fundamentals

Source: JPMorgan—DataQuery.

4 Equity Derivatives in DataQuery, EDG Strategy London, 26 January 2004.
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Exhibit 5

3M ATM implied volatility of EuroStoxx50 vs. fundamentals

Source: JPMorgan—DataQuery.

Exhibit 6

1Y ATM implied volatility of EuroStoxx50 vs. fundamentals—Regression

Source: JPMorgan—DataQuery.
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Realised Data
The same methodology is used for realised data. Exhibits 7 and 8 below compare the index
realised volatility (HVOL) for both one-year and 3-month rolling windows against

AVGHVOLAVGCORR   on the EuroStoxx 50 between 2000 and 2004.

The relationship is also very strong (see the regression results in Exhibit 9, with a R2 of
0.9975), but slightly less so for the period starting January 2000 and ending August 2001.
Interestingly, this period coincides with a low realised correlation (see Exhibit 1 in Section 1),
where the fundamental relationship is expected to be weaker.

Exhibit 7

1Y realised volatility of EuroStoxx50 vs. fundamentals

Source: JPMorgan—DataQuery.
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Exhibit 8

3M realised volatility of EuroStoxx50 vs. fundamentals

Exhibit 9

1Y realised volatility of EuroStoxx50 vs. fundamentals—Regression
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Other Indices
The relationship was also tested on the S&P 500. Exhibit 10 displays the results for both
implied and realised data. Again, strong accuracy was observed.

Exhibit 10

1Y implied and realised volatility of S&P 500 vs. fundamentals
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Appendix A—Quick Reference of Statistical Formulas

The following formulas hold for complete statistical series of length N, e.g. X = (xi) = (x1, …,
xN). Please refer to the sub-section on Sample Estimation for formulas on incomplete series.

Mean
The mean of a series X is:





N

i
ix

N
X

1

1

Variance. Standard Deviation
The variance of a complete series X is:





N

i
i Xx

N
XVar

1

2)(1)(

and the standard deviation is the square root of the variance (also called volatility in
finance):

)(XVarX σ

Note: )()( 2 XVarXVar αβα  .

Covariance
The covariance between two complete series X and Y is:





N

i
ii YyXxNYXCov

1
))((),(

Covariance appears in the variance of a sum of two series:

),(2)()()( YXCovYVarXVarYXVar 

and more generally, for n series:













nkj
kj

n

k
k

n

k
k XXCovXVarXVar

111
),(2)(

Note: ),(),(),( ZYCovZXCovZYXCov  αα  (bilinearity)

)(),( XVarXXCov 

Correlation
The coefficient of correlation between two series X and Y is:

)()(
),(),(

, YVarXVar
YXCovYXCov

YX
YX 

σσ
ρ

169



C O N F I D E N T I A L

FU
N

DA
M

EN
TA

L 
RE

LA
TI

O
N

SH
IP

 B
ET

W
EE

N
 A

N
 IN

DE
X’

S 
VO

LA
TI

LI
TY

 A
N

D 
TH

E 
CO

RR
EL

AT
IO

N
 A

N
D 

AV
ER

AG
E 

VO
LA

TI
LI

TY
 O

F 
IT

S 
CO

M
PO

N
EN

TS

13

Correlation appears in the variance of a sum of two series:

YXYXYXYX ,
222 2 ρσσσσσ 

whence:
YX

YXYX
YX σσ

σσσρ
2

)( 222

,


 

and since YXYXYX σσσσσσ 2)( 222  , we also have:

)()(
)(

222

222

,
YXYX

YXYX
YX σσσσ

σσσρ



 

Notes

Correlation is a statistical measure for the level of interdependence between two variables. In
the case of the correlation of returns, it is a measure of the “joint directionality” of two
assets: the higher the correlation, the more frequently the assets move upwards/downwards
together.

A well-known property of correlation is that it is a number comprised between -1 and 1. The
three perfect cases are:

Correlation Interpretation

+1
The two variables are related with 100% certainty by a linear formula:

X = a + bY, where b > 0.

0 The two variables are independent5 from each other.

-1
The two variables are related with 100% certainty by a linear formula:

X = a - bY, where b > 0.

The definition of correlation expands as follows:



















 







 


N

i Y

i

X

i
YX

YyXx
N 1

,
1

σσ
ρ

where N is the length of the series (number of observation dates),

xi, yi are the ith observations of X and Y respectively,

yx, are the means (average returns), and

YX σσ , are the standard deviations (volatilities).

A closer look at this formula yields the following observations:

5 As understood in general language. In mathematics, two independent variables must have zero correlation, but the
converse is not necessarily true.
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 is the number of standard deviations from the mean for observation xi: for

instance, if the mean return is 5%, volatility is 10% and xi = 20%, this observation diverges
by +1.5 standard deviations from its mean
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X
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hence measures the joint deviation of xi and yi: it is a positive number

if xi and yi ‘move’ in the same direction, a negative one if they move in opposite
directions, and close to zero otherwise.

yi : upwards yi : no deviation yi : downwards

xi : upwards Joint deviation >0 Nil Joint deviation <0

xi : no deviation Nil Nil Nil

xi : downwards Joint deviation <0 Nil Joint deviation >0

Thus, correlation is nothing else than the average of joint deviations.

Because a single number cannot summarise the complexity of the dynamics between two
statistical series, it does not replace a thorough pattern analysis, as illustrated below.

xi yi

Observation 1 1 1

Observation 2 -1 -1

Observation 3 1 -1

Observation 4 -1 1

Mean 0 0

Standard Deviation 1 1

Correlation 0

In this example, the first two observations are perfectly correlated, while the last two are
perfectly anti-correlated. This could reflect that some event between observations 2 and 3
had changed the nature of the relationship between X and Y. However, the overall correlation
is 0.

Sample Estimation
The formulas above are valid when the data series are ‘complete’. When dealing with
samples, however, we can only estimate the mean and variance. A Theory of Estimation was
developed accordingly, and the main finding is that an unbiased estimate of the variance of a
sample is:








N

i
i Xx

N
XVar

1

2)(
1

1)(

and similarly for covariance.
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This subtlety has little impact for large N, and has no effect on the correlation coefficient as
the averaging weights cancel out:
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Zero-mean assumption

If the true mean is assumed to be zero, an unbiased estimate of the variance is simply:





N

i
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N
XVar

1
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Notes

Other estimation techniques, such as Maximum Likelihood, may yield different formulas.

The vast majority of estimation formulas are based on the assumption that observations are
independent.

This commentary is written by the specific trading area referenced above and is not the product of JPMorgan’s
research departments.  Opinions expressed herein may differ from the opinions expressed by other areas of
JPMorgan, including research.  This commentary is provided for information only and is not intended as a
recommendation or an offer or solicitation for the purchase or sale of any security or financial instrument.
JPMorgan and its affiliates may have positions (long or short), effect transactions or make markets in securities
or financial instruments mentioned herein (or options with respect thereto), or provide advice or loans to, or
participate in the underwriting or restructuring of the obligations of, issuers mentioned herein.  The information
contained herein is as of the date and time referenced above and JPMorgan does not undertake any obligation to
update such information. All market prices, data and other information are not warranted as to completeness or
accuracy and are subject to change without notice.  Transactions involving securities and financial instruments
mentioned herein (including futures and options) may not be suitable for all investors.  Clients should contact
their salespersons at, and execute transactions through, a JPMorgan entity qualified in their home jurisdiction
unless governing law permits otherwise.

J.P.Morgan Securities Ltd is authorised by the FSA.  In the UK and other EEA countries, this commentary is not
available for distribution to persons regarded as private customers (or equivalent) in their home jurisdiction.
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Sebastien Bossu, Dresdner Kleinwort Wasserstein, 
Equity Derivatives Structuring

Introduction to 
Variance Swaps

4. The notional is specified in volatility terms (here h50,000 per ‘vega’
or volatility point.) The true notional of the trade, called variance no-
tional or variance units, is given as: 

Variance Notional = Vega Notional

2 × Strike

With this convention, if realized volatility is 1 point above the strike at
maturity, the payoff will approximately be equal to the Vega Notional.

Variance Swaps vs. Volatility Swaps
The fair strike of a variance swap is slightly higher than that of a volatility
swap. This is to compensate for the fact that variance is convex in volatility,
as illustrated in Exhibit 2 in the next page. Identical strikes for the two in-
struments would otherwise lead to an arbitrage.

Intuitively, the difference in fair strikes is related to the volatility of
volatility: the higher the ‘vol of vol’, the more expensive the convexity effect
of variance1. This phenomenon is clearly observed when the implied volatil-
ity skew is steep, as skew accounts for the empirical fact that volatility is

Payoff
A variance swap is a derivative contract which allows investors to trade fu-
ture realized (or historical) volatility against current implied volatility. The
reason why the contract is based on variance—the squared volatility—is
that only the former can be replicated with a static hedge, as explained in
the penultimate Section of this article.

Sample terms are given in Exhibit 1 in the next page.
These sample terms reflect current market practices. In particular:

1. Asset returns are computed on a logarithmic basis rather than
arithmetic.

2. The mean return, which appears in the habitual statistics formula
for variance, is ditched. This has the benefit of making the payoff
perfectly additive (i.e. 1-year variance can be split into two 6-month
segments.)

3. The 252 scaling factor corresponds to the standard number of trad-
ing days in a year. The 10,000 = 1002 scaling factor corresponds to
the conversion from decimal (0.01) to percentage point (1%).

Abstract
The purpose of this article is to introduce the properties of variance swaps, and give in-
sights into the hedging and valuation of these instruments from the particular lens of
an option trader.

• Section 1 gives general details about variance swaps and their applications.
• Section 2 explains in ‘intuitive’ financial mathematics terms how variance swaps

are hedged and priced.

Keywords
Variance swap, volatility, path-dependent, gamma risk, static hedge.

Disclaimer
This document has been prepared by Dresdner Kleinwort Wasserstein and is intend-
ed for discussion purposes only. “Dresdner Kleinwort Wasserstein” means Dresdner

Bank AG (whether or not acting by its London Branch) and any of its associated or
affiliated companies and their directors, representatives or employees. Dresdner
Kleinwort Wasserstein does not deal for, or advise or otherwise offer any investment
services to private customers.

Dresdner Bank AG London Branch, authorised by the German Federal Financial
Supervisory Authority and by the Financial Services Authority, regulated by the
Financial Services Authority for the conduct of designated investment business in the
UK. Registered in England and Wales No FC007638. Located at: Riverbank House, 2
Swan Lane, London, EC4R 3UX. Incorporated in Germany with limited liability. A
member of Allianz.
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non constant. In fact, the fair strike of variance is often in
line with the implied volatility of the 30% delta put.

Rule of Thumb
Demeterfi—Derman—Kamal—Zou (1999) derive the follow-
ing rule of thumb when skew is linear in strike:

Kvar ≈ σATMF

√
1 + 3T × skew2

where σATMF is the at-the-money-forward volatility, T is
the maturity, and skew is the slope of the skew curve. For
example, with σATMF = 20%, T = 2 years, and a 90–100
skew of 2 vegas, we have Kvar ≈ 22.3%. In comparison, a
30% delta put would have an implied volatility of 22.2% as-
suming a linear skew.

However, this rule of thumb becomes inaccurate when
skew is steep.

Applications
Bets on Future Realized Volatility
Variance swaps are ideal instruments to bet on volatility:

• Unlike vanilla options, variance swaps do not require
any delta-hedging

• Unlike the P&L of a delta-hedged vanilla option, the pay-
off at maturity of a long variance position will always be
positive when realized volatility exceeds the strike2. (See
the next Section on the path-dependency of vanilla op-
tions for more details.)

• The sensitivity of a variance swap to changes in (squared)
implied volatility linearly collapses through time.

Furthermore, volatility sellers will find variance swaps
more attractive than at-the-money options due to their high-
er variance strike. However this excess profit reflects the
higher risk in case realized volatility jumps well above the
strike.

Bets on Forward Realized Volatility
Forward-starting variance swaps can be synthesized with a
calendar spread of two spot-starting variance swaps, with
appropriate notionals. This is because the variance formula
is designed to be perfectly additive. Taking annualization
into account, we can indeed write:

3 × Realized3Y = Realized1Y + 2 × Forward Realized1Y×2Y

where Realized1Y is the future 1-year realized volatility,
Realized3Y is the future 3-year realized volatility, and Forward
Realized1Yx2Y is the future 2-year realized volatility starting in
1 year.

Thus, for a given forward variance notional, we must
adjust the spot variance notionals as follows:

Variance Notional1Y = 1 × Forward Variance Notional1Y×2Y

2

Variance Notional3Y = 3 × Forward Variance Notional1Y×2Y

2

^
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General Terms

Swap Buyer (Party A) TBD [e.g. Investor]

Swap Seller (Party B) TBD [e.g. Dresdner Bank AG]

Trade date TBD

Expiration Date TBD [e.g. Trade date + 1 year]

Swap Variance Swap on Equity Index

Index .STOXX50E

Currency EUR

Observation Frequency Daily

Approximate Vega Notional EUR 50,000

Variance Units 1157.41 (Approximate Vega Notional divided by 2 x Volatility Strike)

Volatility Strike 21.6

Variance Strike 466.56 (square of the Volatility Strike)

Cash Settlement Date Two business days after the Expiration Date

Payment Amount The Payment Amount is calculated as:

 Variance Units × (σ2 – Variance Strike)

If the Payment Amount is positive, the Swap Seller (B) pays to the
Swap Buyer (A); if the Payment Amount is negative, the Swap Buyer
(A) pays to the Swap Seller (B) the absolute value.

Variance Calculation

NActual

i = 1

NExpected

Return
i
2∑

   
10,000 × 252 × 

σ2 =

Where:

Ei–1

EiReturni  = ln

            NExpected is the expected number of trading days from, but not
including, the Trade Date, up to and including the Expiration Date.

            NActual is the actual number of trading days on which no
market disruption event occurs from, but not including, the Trade
Date, up to and including the Expiration Date.   

E0 is the closing level of the index on Trade Date.

             Ei is the closing level of the index on date i or, at Expiration
Date, the options final settlement level.

σ2 is  the observed  realized  variance of the Index between the
Trade Date and the Expiration Date, given as:

⎛
⎜
⎝ ⎛

⎜
⎝

Exhibit 1—Variance Swap on Dow Jones Euro Stoxx 50 Index: sample terms and conditions
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Once the delta is hedged, an option trader is primarily left with three
risks:

• Gamma: sensitivity of the option delta to changes in the underlying
stock price;

• Theta or time decay: sensitivity of the option price to the passage of
time;

• Vega: sensitivity of the option price to changes in the market’s ex-
pectation of future volatility (i.e. implied volatility.) 

We can break down the daily P&L on a delta-neutral option position
along these risks:

Daily P&L = Gamma P&L + Theta P&L + Vega P&L + Other (Eq. 1)

Here ‘Other’ includes the P&L from financing the reverse delta posi-
tion on the underlying, as well as the P&L due to changes in interest rates,
dividend expectations, and high-order sensitivities (e.g. sensitivity of Vega
to changes in stock price, etc.)

Using Greek letters, we can rewrite Equation 1 as:

Daily P&L = 1
2 � × (�S)2 + � × (�t) + V × (�σ ) + · · ·

where �S is the change in the underlying stock price, �t is the fraction of
time elapsed (typically 1/365), and �σ is the change in implied volatility.

Assuming a zero interest rate, constant volatility and negligible high-
order sensitivities, we can further reduce this equation to the first two
terms:

Daily P&L = 1
2 � × (�S)2 + � × (�t) (Eq. 2)

Equation 2 can be further expanded to be interpreted in terms of real-
ized and implied volatility. This is because in our zero-interest rate world
Theta can be re-expressed with Gamma4:

� = − 1
2 �S2σ 2 (Eq. 3)

Plugging Equation 3 into Equation 2, we obtain a characterization of
the daily P&L in terms of squared return and squared implied volatility:

Daily P&L = 1

2
�S2 ×

[(
�S

S

)2

− σ 2�t

]
(Eq. 4)

The first term in the bracket, �S
S , is the percent change in the stock

price—in other words, the one-day stock return. Squared, it can be inter-
preted as the realized one-day variance. The second term in the bracket,
σ 2�t, is the squared daily implied volatility, which one could name the daily
implied variance. Finally, the factor in front of the bracket, 1

2 �S2, is known
as Dollar Gamma: an adjusted measure for the second-order sensitivity of the
option price to a squared percent change in the stock price.

In short, Equation 4 tells us that the daily P&L of a delta-hedged option
position is driven by the difference between realized and implied variance,
multiplied by the Dollar Gamma.

Path Dependency
One can already see the connection between Equation 4 and variance
swaps: if we sum all daily P&L’s until maturity, we have an expression for
the final trading P&L on a delta-neutral option position:

Final P&L =
n∑

t=0

γt [r
2
t − σ 2�t] (Eq. 5)

Exhibit 2—Variance swaps are convex in volatility

Volatility Swap
struck at 20

Variance Swap
struck at 21.6

–1,000,000

–500,000

–

500,000

1,000,000

1,500,000

– 10 20 30 40

Payoff

Realized Volatility

The resulting implicit fair strike for the forward variance swap is:√
3 × K2

3Y var − 1 × K2
1Y var

2

For example, with K1Y var = 18.5, K3Y var = 19.5, the fair strike of a 2-
year variance swap starting in 1 year would be:√

3 × 19.52 − 1 × 18.52

2
≈ 20.0

The corresponding replication strategy for a long h100,000 forward vega
notional position (equivalent to 2,500 forward variance units) would be to
buy 3 × 2,500/2 = 3,750 variance units of the 3-year variance swap and
sell 2,500/2 = 1,250 variance units of the 1-year.

Correlation Trading
By simultaneously selling a variance swap on an index and buying variance
swaps on the constituents, an investor effectively takes a short position on
realized correlation. This type of trade is known as a variance dispersion. A
proxy for the implied correlation level sold through a variance dispersion
trade is given as the squared ratio of the index variance strike to the average
of constituents’ variance strikes.

Note that in order to offset the vega exposure between the two legs we
must adjust the vega notionals of the constituents by a factor equal to the
square root of implied correlation. It can be shown that by dynamically
trading vega-neutral variance dispersions until maturity we would almost
replicate the payoff of a correlation swap3.

Trading P&L of a Vanilla Option
Daily Trading P&L
Following the theory developed by Black—Scholes and Merton in 1973, the
sensitivity of a vanilla option to changes in the stock price, or delta, can be
completely offset by holding a reverse position in the stock in quantity
equal to the delta. The iteration of this strategy until maturity is known as
delta-hedging.
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where the subscript t denotes time dependence, rt is the stock daily return
at time t, γt is the dollar gamma, and n is the number of trading days until
maturity.

Equation 5 is close to the payoff of a variance swap: it is a weighted
sum of squared realized returns minus a constant that has the same role
as a strike. But in a variance swap the weights are constant, while here
the weights depend on the option gamma through time. This explains an
option trading phenomenon known as path-dependency, illustrated in
Exhibit 3.

Static Replication of Variance Swaps
In the previous section, we saw that a trader who follows a delta-hedging
strategy is basically replicating the payoff of a weighted variance swap,

with weights equal to the dollar gamma. This result also holds for a port-
folio of options. If we could find a combination of calls and puts such
that their aggregate dollar gamma is always constant, we would have a
semi-static hedge for variance swaps5.

Exhibit 4 shows the dollar gamma of options with various strikes in
function of the underlying level. We can see that the contribution of low-
strike options to the aggregate gamma is small compared to high-strike
options. Hence, we need to increase the weights of low-strike options and
decrease the weights of high-strike options.

One ‘naïve’ idea is to use weights inversely proportional to the
strike so as to scale all individual dollar gammas to the same peak
level6, as illustrated in Exhibit 5. We can see that the aggregate dollar
gamma is still non-constant, but we can notice the existence of a linear
region.

This observation is crucial: if we can regionally obtain a linear aggre-
gate dollar gamma with a certain weighting scheme w(K), then the trans-
formed weights w′(K) = w(K)/K will produce a constant dollar gamma
in that region. Since the naïve weights are inversely proportional to the
strike K, the correct weights should be chosen to be inversely proportion-
al to the squared strike, i.e.: w ′(K) = 1/K2 .
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Exhibit 3—Path-dependency of the cumulative P&L for a dynamically hedged
option position

In this simulation a trader issued 25,000 1-year calls struck at h110 for an implied

volatility of 30%, and followed a daily delta-hedging strategy. The 1-year realized

volatility at maturity was 27.6%, yet the cumulative trading P&L was down h60k. In

figure (a) we can see that the strategy was up h100,000 two months before maturity

and suddenly dropped. In figure (b) we can see that in the final two months the 50-

day realized volatility rose well above 30% while the (short) dollar gamma peaked.

Because the daily P&L of an option position is weighted by the dollar gamma, and

because the volatility spread between implied and realized was negative, the final

P&L plunged, even though the 1-year realized volatility was below 30%!
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Exhibit 4—Dollar Gamma of vanilla options with strikes 25 to 200 spaced 
25 apart

Exhibit 5—Weighted Dollar Gamma of vanilla options: weights inversely 
proportional to the strike K
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Exhibit 6 shows the results for the transformed weights: as expected,
we now have a constant region for the aggregate dollar gamma.

To obtain a perfect constant aggregate gamma through all underly-
ing levels would take infinitely many options struck along a continuum
between 0 and infinity.

Interpretation
Having mentioned that a variance swap could be perfectly hedged with
an infinite portfolio of puts and calls of constant Dollar Gamma, one
might want to view this portfolio as a new kind of derivative and specu-
late on its nature. Denoting f the price of the derivative and S that of the
underlying, the Dollar Gamma is given as:

�$(S) = 1

2

∂2 f

∂S2
× S2

It follows that a constant Dollar Gamma derivative satisfies:

∂2 f

∂S2
= a

S2

for some constant a. The solution to this second-order differential equa-
tion is of the form:

f (S) = −a ln(S) + bS + c

where a, b, c are constants and ln(.) is the natural logarithm.
This means that the perfect hedge for a variance swap would be a con-

tract paying the log-price of the underlying stock at maturity, and a com-
bination of the stock and cash. Unfortunately such log-contract does not
trade—or, rather, it trades in the format of a variance swap.

Valuation
In the absence of arbitrage, the fair market value of a variance swap must
equal the price of its replicating portfolio of puts and calls. As such, no
model specification is required: the theoretical price can be calculated for
any reasonable volatility smile. Note, however, that this approach does not
take into account the impact of jumps or discrete dividend payments.

Given a set of N strikes (k1, k2, . . ., kn , . . ., kN ) where kn = 1 denotes the
split between out-of-the-money-forward puts and calls, a quick proxy for

the fair value of a variance swap with $1 variance notional is:

VarSwapFV ≈ 2

T

[
n∑

i=1

(ki − ki−1)

k2
i

put%F(ki)

+
N∑

i=n+1

(ki − ki−1)

k2
i

call%F(ki)

]
− DF(0, T) × K2

var

where T is the maturity, Kvar is the variance strike, DF(0, T) is the present
value of $1 collected at maturity, put%F(k) or call%F(k) is the price of a
European put or call struck at k, and k0 = 0. Note that the strikes and op-
tion prices are expressed in percentage of the forward price.

Exhibit 7 above gives a calculation example with strikes between 50%
and 150% spaced 5% apart.

Conclusion
Looking Forward
Variance swaps have become an increasingly popular type of ‘light exotic’
derivative instrument. Market participants are the major derivatives hous-
es, hedge funds, and institutional investors. An unofficial estimate of the
typical inter-broker trading volume is between $1,000,000 and $7,000,000
total vega notional in the European and American markets every day.

With the commoditization of variance swaps, variance is becoming an
asset class of its own. A number of volatility indices have been launched or
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K = 175 K = 200
Aggregate

0 50 100 150 200 250 300

Dollar Gamma
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Constant Gamma Region

Exhibit 6—Weighted Dollar Gamma of vanillas: weights inversely proportional 
to the square of strike

Exhibit 7—Fair value decomposition of a variance swap through a replicating
portfolio of puts and calls

In this example, we consider a variance swap on the S&P 500 index expiring on 15

December 2006. The time to maturity T is 1.1032 and the discount factor to maturity

is DF = 0.94889. The total cost of the replicating portfolio (i.e. the weighted sum of

put and call prices multiplied by 2/T) is 2.45%, which corresponds to a fair strike of

16.06%. A more accurate model gave 15.83%.

Weight =  
      5%       
Strike%2 

Call 
/ Put 

Strike 
Strike 

(%Forward) 
Price 

(%Forward) 

20.00% Put 629.88 50.0% 24.53 0.02% 
16.53% Put 692.87 55.0% 24.39 0.06% 
13.89% Put 755.86 60.0% 23.91 0.14% 
11.83% Put 818.85 65.0% 23.06 0.28% 
10.20% Put 881.83 70.0% 21.99 0.48% 
8.89% Put 944.82 75.0% 20.81 0.78% 
7.81% Put 1,007.81 80.0% 19.56 1.22% 
6.92% Put 1,070.80 85.0% 18.26 1.84% 
6.17% Put 1,133.79 90.0% 16.92 2.72% 
5.54% Put 1,196.78 95.0% 15.55 3.94% 
2.50% Put 1,259.76 100.0% 14.20 5.64% 
2.50% Call 1,259.76 100.0% 14.20 5.64% 
4.54% Call 1,322.75 105.0% 13.12 3.30% 
4.13% Call 1,385.74 110.0% 12.34 1.73% 
3.78% Call 1,448.73 115.0% 11.83 0.82% 
3.47% Call 1,511.72 120.0% 11.55 0.37% 
3.20% Call 1,574.71 125.0% 11.45 0.16% 
2.96% Call 1,637.69 130.0% 11.40 0.06% 
2.74% Call 1,700.68 135.0% 11.38 0.03% 
2.55% Call 1,763.67 140.0% 11.37 0.01% 
2.38% Call 1,826.66 145.0% 11.38 0.00% 
2.22% Call 1,889.65 150.0% 11.39 0.00% 

Source: DrKW. 

Implied Vol
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adjusted to follow the weighting methodology of the replicating portfolio,
in particular the new Chicago Board Options Exchange SPX Volatility Index
(VIX) and the Deutsche Börse VSTOXX Volatility Index. The current hot de-
velopment is options on realized volatility, with recent research results by
Dunamu (2004) and Carr–Lee (2005).
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4. In a zero interest-rate world the Black-Scholes partial differential equation becomes: 
1
2 S2σ2 ∂ 2 f

∂S2 +
∂ f
∂ t

= 0.

5. The hedge is semi-static because the portfolio of puts and calls still needs to be delta-

hedged. However, no dynamic trading of options is required.

6. This is because the dollar gamma peaks around the strike. Specifically, it can be shown 

that the peak is reached when the stock price is equal to S* = Ke
σ √T − σ2

T/2 ≈ K, with a

peak level proportional to S*.
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1. Readers with a mathematical background will also recall Jensen’s inequality:

E(√variance) ≤ √E(variance).

2. This is because the sign of (R2 – K2) = (R – K)(R + K) is determined by R – K, where R is

the realized volatility and K is the strike.

3. A correlation swap is a derivative contract on several assets where counterparties ex-

change a fixed cash flow against a variable amount equal to the notional multiplied by

the average of the pair-wise correlation coefficients between the assets.
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maines des sciences économiques et de gestion. Le
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plusieurs actifs sous-jascents à l’aide de plusieurs
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summarizes the main theoretical results and explains
how they are connected with asset and arbitrage pric-
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a single underlying asset, spearheaded by Breeden
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