Elie Gozlan 
  
David Polizzi 
  
Antoine Heidmann 
  
Laetitia Morel 
  
Romain Rybka 
  
Nora Aissous 
  
Valérie Stéphanie Dubois 
  
Léo Morel 
  
Tom Darras 
  
Tamara Bardon-Brun 
  
Ferhat Loubat 
  
  
  
  
  

We present the generation of multimode continuous-variable entangled states featuring spatio-spectral correlations at a repetition rate of 156 MHz via a single-pass and non-collinear spontaneous parametric down conversion (SPDC) process in a bulk BBO crystal pumped by an optical frequency comb. The states are building blocks of highly entangled states called dual-rail cluster states and are useful for measurement-based quantum computation. It is a protocol for quantum information based on the successive measurement of the modes of a cluster state. We characterize the states generated in our experiment with a mode-selective homodyne detection where we shape the spectrum and spatial prole of a reference beam to unveil the multimode structure of the parametric light. This way, we measured squeezing in several spectral modes and and revealed non-classical correlations between spatio-spectral modes. Because of the conguration of the parametric process, the states generated are highly multimode both spatially and spectrally and they display a low level of squeezing par mode, i.e. just above the resolution of our homodyne detector. As squeezing is an important resource for measurement-based quantum computation, we decided to develop a new SPDC setup based on wavguides of periodically-poled KTP to replace the bulk BBO crystal. Thanks to the increased nonlinearity, light connement inside the waveguide and the use of quasi-phase matching, the squeezing per mode of the generated states should be increased. In the meantime, we developed a wideband homodyne detector operating with pulsed light in order to perform pulse-by-pulse homodyne measurements.
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Introduction

The quantum properties of light are known since 1900 when M. Planck published his work on black body radiation [Planck 00, Planck 01]. He suggested that radiations were emitted and absorbed in discrete quanta. In 1905, A. Einstein suggested in [Einstein 05, Arons 65] that the light energy was carried in discrete quantities to explain the experimental data from the photoelectric eect and introduced the photon as a constituent of light. He suggested that the energy in each quantum of light was equal to the frequency of the light multiplied by a constant, which would be later called the Planck's constant h. This was an important step in the development of quantum mechanics. In the years 1920, renowned physicists such as M. Born, W. Heisenberg, L. de Broglie or E. Schrödinger contributed to develop the theory of quantum mechanics. In a paper published in 1935, A. Einstein, B. Podolsky and N. Rosen introduced a counter-intuitive property of compound quantum systems, later known as entanglement [Einstein 35, Horodecki 09].

In 1960, T. Maiman implemented the rst laser, which generated light pulses from a silver-coated slab of ruby pumped with an intense ash lamp [Maiman 60]. The laser exploits the process of stimulated emission introduced by A. Einstein in 1916 [Einstein 16, Einstein 17]. It emits light unidirectionally and has well dened spectral properties, which we call coherence. The properties of the laser beam encouraged the development of new experiments and the formulation of a quantum theory of light. Shortly after, the eld of nonlinear optics emerged with the discovery of second-harmonic generation by P. [START_REF] Franken | Generation of Optical Harmonics[END_REF] [Franken 61], while T. Siegman formulated a quantum mechanical description of parametric processes [Louisell 61]. The rst experimental realisation of parametric down conversion was presented by D. Burnham and D. Weinberg [Burnham 70,Zel'Dovich 69]. This technique rapidly became the major source of photon pairs featuring non-classical correlations in numerous degrees of freedom including time [Hong 86], space [Heidmann 87] or polarization [ Kwiat 95]. Parametric down conversion (PDC) allowed for the development of quantum optical applications starting from the implementation by C. Bennett and G. Brassard in 1984 of the rst quantum protocol for secure communication using single photons for quantum key distribution [Bennett 84]. This was the emergence of quantum information. The rst realization of the quantum squeezing of eld quadratures, i.e. amplitude and 1 phase, was presented in [Slusher 85] in 1985. It found interest in the eld of quantum metrology [Caves 81] and motivated the development of experiments aiming at increasing the level of quantum squeezing. Quantum squeezing also promoted the development of quantum information protocols in continuous variables, including quantum teleportation [Braunstein 98,Furusawa 98,Grosshans 01b]. Additionally, it motivated the implementation of the oscillator parametric oscillator (OPO) [Brosnan 79,Wu 87] and the characterization of various nonlinear materials such as Barium borate (BBO) [Chen 87], Potassium titanyl phosphate (KTP) [Porta 89] and lithium niobate (LN) [Byer 81]. In 2001, S. Tanzilli et al. [Tanzilli 01] presented the rst demonstration of parametric down conversion inside nonlinear waveguides. They generated parametric photons with unprecedented brightness thanks to the connement of light inside a waveguide of periodically poled LN. Waveguides also allow the development of compact schemes for ber-based setups.

In the meantime, other research elds in physics, chemisty or biology required sources of pulsed light with high peak energy. Although the rst generation of a short coherent pulse was performed in 1964 [ Hargrove 64], several developments were needed to produce shorter pulses in a reproducible way and to achieve emission stability. The rst experimental implementation of Kerr-Lens mode locking in 1991 in a titanium sapphire laser enabled the stable emission of 60-femtosecond pulses [ Spence 91]. In the spectral domain, these sources, called frequency combs, presented a spectrum composed of regularly spaced frequency components of narrow linewidth. Nowadays, the improvement of stabilization techniques allows to produce sources which nd applications in spectroscopy [Udem 99, Udem 02] and allowed the emergence of the eld of ultrafast quantum optics. Researchers used pulsed sources to pump nonlinear processes, this included the implementation of synchronously pumped OPO [Powers 93, Esteban-Martin 09, Pinel 12], as well as the improvement of waveguidebased experiments [Mondain 19,Luo 20] in order to increase the level of squeezing generated in laboratory [ Vahlbruch 16].

In 2000, M. A. Nielsen and I. L. Chuang did the rst description of a quantum computer in [ Nielsen 00]. Shortly after, H. J. Briegel and R. Raussendorf proposed a quantum-computing protocol based on the measurement of highly entanglement states called cluster states [Raussendorf 01, Raussendorf 03]. These cluster states are multipartite entangled states [Gerke 16], in which the nodes are modes of the eld connected to eachother by entanglement links according to a specic graphical pattern such that the removal of one link following the measurement of one node does not destroy other links. In the following years, experimental realizations of cluster states of various shapes were published by our group [Roslund 14,Cai 17], the group of O. Pster and the group of A. Furusawa, who proposed realizations of large clusters [Chen 14, Yokoyama 13].

In the meantime, one-way quantum computation with continuous-variable states was proposed in [Menicucci 06, Gu 09].

An other important element of the development of quantum optics experiments is the improvement of state-characterization techniques. From the years 1980, homodyne detection, proposed in the work published by H. P. Yuen [Yuen 83], was used for the measurement of quadrature squeezing [Mandel 82, Zavatta 02]. At the beginning, homodyne detectors were designed with a bandwidth above 10 MHz in order to get rid of the low-frequency noise, such as the 1/f noise [Yurke 85]. In more recent years, the development of ultrafast quantum optics encouraged the development of wideband detectors, such as A. Zavatta et al. in [Zavatta 02] or R. Kumar et al. in [Kumar 12], suited for the characterization of pulsed quantum sources. Today, the advances in quantum information impose to improve detectors and we approach the performance limits of electronic-based devices. As increasing the bandwidth is dicult, some groups proposed detectors operating in a restricted bandwidth around a high central frequency, they are called resonant detectors [ Serikawa 18].

The work done during this thesis is motivated by all these advances and aims at the implementation of a measurement-based quantum computation system with optical pulses. It is a protocol based on the successive measurement of quantum states from a highly entangled network, the cluster state. We want to develop an experiment to generate large continuous-variable cluster states. Large clusters allow for the implementation of longer and more elaborate protocols. In this case, the diculty of MBQC is on the one hand to produce such states and on the other hand to be able to maintain them stable over the duration of the protocol, i.e. protected from environmental perturbations. The advantage of the continuous-variable cluster state proposed by the group of A. Furusawa in [ Yokoyama 13] is that it is not necessary to generate the whole state before starting the protocol. Our work is inspired by the one of A. Furusawa's group. The experiment relies on a spontaneous parametric down conversion process pumped with an optical frequency comb. The output states are multimode squeezed states of light. The long term goal of our experiment is to combine the multimode squeezed pulsed light with diering time delays on two beamsplitters to produce a dual-rail cluster state featuring time and frequency entanglement. Each mode of the cluster is an optical pulse emitted at 156 MHz, i.e. the laser repetition rate. During my thesis, we built an experiment of single-pass non-collinear SPDC using a bulk BBO crystal and pumped with pulsed light. In this conguration, the generated states are two-mode squeezed states featuring non-classical spatio-spectral correlations. They correspond to building blocks of a dual-rail cluster states, which emission rate is xed by the repetition rate of our laser. Due to the single-pass and non-collinear conguration of our experiment, the generated states are highly multimode spectrally and spatially and display a low squeezing level per mode, i.e. just above the resolution of our homodyne detector. For that reason, we developed a SPDC setup using waveguides of periodically poled KTP to replace the bulk BBO crystal. The higher nonlinearity associated to light connement should allow us to produce states with a higher squeezing per mode. In the meantime, we also worked on the improvement of a wideband homodyne detector operating with pulsed light in order to perform measurements at the repetition rate of our laser (156 MHz). The outline of the manuscript is the following.

Outline of the manuscript

The chapter 1 deals with the classical description of light. We describe the modal structure of the electric eld as well as the mode bases that we use to describe the structure of the states we produce in our experiments. In a nal part, we give a mathematical description of our pulsed light source.

In chapter 2, we focus on the description of quantum light. We recall the operators associated to the discrete-and continuous-variable descriptions of quantum states of light. Then, we give the representation of squeezed states and introduce the basis changes that allow to unveil the modal structure of the states generated via parametric down conversion.

In chapter 3, we describe the properties of the nonlinear crystals and the dierent phase-matching congurations we use in our experiment. We also calculate the nonlinear polarization and the interaction hamiltonian associated to a parametric down conversion process.

The chapter 4 presents the necessary tools for the implementation of an ultrafast pulse shaper. It is used to shape the reference beam of a homodyne detection, called local oscillator, and allows to perform mode-selective homodyne detection.

In chapter 5, we recall the principle of homodyne detection. We describe a non-ideal detection and introduce the parameters that are used to assess the performances of a homodyne detector.

In chapter 6, we describe our experimental setup and present the generation of multimode squeezed states of light via a single-pass non-collinear PDC through a bulk BBO crystal. We also investigated the spatio-spectral correlations in the produced states and give the results. In a second part, we describe the design of a waveguide-based experiment using PPKTP crystals. We present the numerical simulations of the process and the implementation of the experiment. The chapter 7 is about the design of a wideband homodyne detector. We describe the general structure of a detector and we present the development of a printed circuit board.

Finally, in chapter 8, we present the characterization of some of the homodyne detectors we built in the laboratory as well as the prospects of improvement. 

Modal Description of the Classical Field

Light propagation in vacuum is described by Maxwell's equations from which derives the wave equation. For simplicity, we will restrict ourselves to a plane-wave description of light. In this case, the electric eld is a superposition of plane waves of frequencies close to a central frequency ω 0 and wavevectors close to a mean value k 0 according to the narrow-band and paraxial approximations [ Fabre 20]. Moreover, we assume that k 0 is parallel to the z axis. Thus, the electric eld E is a complex quantity dened by: E( r, t) = m E m f m ( r, t) e -i(ω 0 t + k• r) + c.c.

(1.1) E( r, t) = E (+) ( r, t) + E (-) ( r, t)

(1.2)

Where E (+) and E (-) are complex conjugates. The bold and vector notations indicate vector quantities. The functions f m are modes dened as normalized solutions of the Maxwell's equations, which means that they satisfy the following equations:

1 V V d 3 r f * m ( r, t) f m ( r, t) = δ m ,m (1.3) 
Where V is the volume of the physical system in which light propagates. The modes evolve in space and time and to simplify we separate their spatial and temporal features as we consider a context in which these parameters are not intertwined. First, we write f m as the product of a propagation part f T (z, t) and a transverse envelop f (x, y, z) varying slowly with time:

f m ( r, t) = m f (x, y, z) × f T (z, t) (1.4)
Where f T and f are scalar functions and m is the direction of the eld polarization. In the paraxial approximation, the spatial envelop of the modes vary slowly in the transverse place (x, y) so the mode function f (x, y, z) at any position z can be deduced from its value at z = 0 according to the Huygens-Fresnel integral accounting for diraction. This allows us to simplify the equation 1.4 and write the mode functions as the factorization of a temporal mode function f T and a spatial one f : f m ( r, t) = m f (x, y, z) × f T (τ )

(1. 5) Where τ = t -z c . In the following, we assume to be at z = 0, such that τ = t. Via Fourier transform, it is possible to access modes in the conjugate space, such as spectral modes f T (ω) and spatial wavevector modes f ( k).

f T (ω) = 1 √ 2π dt f T (t) e -iωt (1.6) f ( k) = 1 √ 2π d r f ( r) e -i k• r (1.7)
Temporal-spectral modes are particularly useful in the description of pulsed light (section 1.4). The complex amplitudes E m of eq. 1.1 are composed by a real and an imaginary part E mq and E mp that are in quadrature.

E m = E mq + i E mp
(1.8)

In the following section, we focus on the mathematical description of the eld amplitude.

Hermite-Gauss Mode Basis 1.2.1 Hermite-Gauss Function in the Spatial Domain

In the previous section, we described the electric eld as the product of two parts: a propagation one, along the z direction and a transverse prole describing the eld amplitude in the (x,y) plane at a given z. The most common spatial prole of laser sources can be described with a Gaussian function. At z = z 0 and ignoring the y direction:

g(x) = 1 w(z 0 ) √ π e - (x-x 0 ) 2 w(z 0 ) 2
(1.9)

= 1 σ(z 0 ) √ 2π e - (x-x 0 ) 2 2σ(z 0 ) 2
(1.10)

Where the factor before the exponential is a normalization constant, x 0 is the coordinate of the beam center corresponding to the point of maximal intensity, w(z 0 ) is the beam width and σ(z 0 ) is the standard deviation. All these quantities vary with the propagation distance and are linked by the following equations, where we also dene the Full Width at Half Maximum (FWHM): Gaussian beams are dened with a waist w 0 which indicates the narrowest crosssection of the beam. Away from its waist, the evolution of the beam width along the direction of propagation is given by:

w(z) = √ 2 σ(z) ( 
w(z) = w 0 1 + z z R 2 (1.14)
Where,

z R = πw 2 0 λ (1.15)
Along the Rayleigh length z R , the beam width evolves from w 0 to w(z R ) = √ 2 w 0 . It is the distance over which the beam divergence θ is close to zero. It is dened by:

tan(θ) = w(z) z R (1.16)
Moreover, away from the waist position, Gaussian beams acquire a Gouy phase shift φ(z) dened as follows:

φ(z) = arctan z z R (1.17)
Gaussian functions are useful to describe the spatial prole of the modes in optical cavities, the TEM mn mode basis [ Siegman 86]. In particular, playing with the length L of an optical cavity allows to reveal dierent TEM mn modes, which are modeled by bidimensional Hermite-Gauss (HG) functions H mn (x, y). These functions are composed of a normalized Gaussian function, weighted by a Hermite polynomial H m , with m being the mode index. Here, we consider the Hermite polynomials commonly used by physicists:

H m (x) = (-1) m e x 2 d m
dx m e -x 2 (1.18)

From this general expression, we derive the rst polynomials: Bi-dimensional HG functions are weighted by bi-dimensional Hermite polynomials H mn , which are separable functions of the polynomials in both directions H mn (x, y) = H m (x) × H n (y) (g.1.2). Using equation 1.9 we have:

H 0 (x) = 1 (1.19) H 1 (x) = 2x (1.
HG mn (x, y, z) = π 2 m+n+1 m! n! H m √ 2 (x -x 0 ) w(z) H n √ 2 (y -y 0 ) w(z) ×
g(x -x 0 ) g(y -y 0 ) e i φ m (z) e i φ n (z) (1.23)

Where φ m (z) and φ n (z) are the Gouy phase for the mn th HG mode. 

Hermite-Gauss Function in the Temporal Domain

In this manuscript, we will work with one dimensional HG functions to describe the spectral modes associated to a parametric process (see section 2.3.5). In the temporal and spectral domains, the Hermite-Gaussian basis can be used to describe the light in terms of its temporal/spectral modes. The general expression of the HG functions is given below (g. 1.3).

HG m (t) = 1 √ π2 m+1 m! H m t -t 0 σ t e - (t-t 0 ) 2 2σ 2 t (1.24)
Where σ t = ∆t 2 √ ln 2 is linked to the mode duration ∆t. The temporal description of light is discussed more thoroughly in section 1.4.

The expression of the HG function in the spectral domain is linked to the temporal one by a Fourier transform, from which we dene the spectrum ∆ω = 2 σ ω √ ln 2 and central angular frequency ω 0 .

HG m (ω) = 1 √ π2 m+1 m! H m ω -ω 0 σ ω e - (ω-ω 0 ) 2 2σ 2 ω
(1.25) 

Modes in a Rectangular Waveguide

In chapter 6, we will consider nonlinear processes inside waveguides. In free space, all frequencies or longitudinal modes can propagate. In an optical cavity, the number of frequency which can resonate in it depends on the dimensions of the cavity. Thus, by reducing the propagation volume in one or two dimensions, it is possible to restrict the number of wavelengths which can still propagate. Here, we consider the propagation of a eld inside a rectangular waveguide of cross-section ∆x × ∆y = a × b. Light is thus conned in two dimensions of space x and y, and propagates along the z direction. In this section, we calculate the modes of a rectangular waveguide. First, let us consider a case where the light is conned in the x direction only. Thus, we will describe an electric eld E(x). Along the x direction, the boundary conditions are:

E(0) = E(a) = 0 (1.26)
As light propagates along z only, the electric eld can be dened in this section as the product of a propagation factor and an envelope E, which does not depend on the propagation distance z. E(x) is the function we want to estimate.

E(x, z, t) = E(x) e -i(ωt-kzz) (1.27)
As any wave, guided light satises the wave equation:

∇ 2 E + n 2 med c 2 ∂ 2 E ∂t 2 = 0 (1.28)
Where n med is the refractive index of the medium. One solution usually considered for the wave equation is a sinusoidal function, such that the eld (eq. 1.27) reads:

E(x, z, t) = sin(k x x) e -i(ωt-kzz)
(1.29)

Applying the boundary conditions 1.26 to this solution, we infer the wavenumbers which can propagate in the waveguide:

k x a = nπ (1.30)
Where n ∈ N refers to the mode number.

From the wave equation we nd:

k 2 x E + k 2 z E - n 2 med ω 2 c 2 E = 0 (1.31) k 2 x + k 2 z - n 2 med ω 2 c 2 = 0 (1.32)
The dispersion relation related to light propagation inside a waveguide can be inferred as well as the wavevector k z associated to the guided modes.

ω = c n med k 2 x + k 2 z (1.33) k z = n 2 med ω 2 c 2 - nπ a 2
(1.34)

Extension to 2D Field Amplitude

The same derivation can be done for the vertical direction y. It gives the following equations:

E(y, t) = sin(k y y) e -i(ωt-kzz) (1.35)

k y b = mπ (1.36)
Then, the equation 1.32 becomes:

k 2 x + k 2 y + k 2 z - n 2 med ω 2 c 2 = 0 (1.37)
And gives the following dispersion relations:

ω = c n med k 2 x + k 2 y + k 2 z (1.38) k z = n 2 med ω 2 c 2 - nπ a 2 - mπ b 2 (1.39)
which can be linked to an eective refractive index n e (ω) = c ω k z perceived by the light inside the waveguide.

As it was done previously, we consider no coupling between the vertical and horizontal directions, so that the guided mode amplitude is considered as the product of a vertical and a horizontal mode: The spatial mode basis of a rectangular waveguide is dierent from the basis of an optical cavity. In a rectangular waveguide, the spatial mode basis is described by Transverse Electric TE or Transverse Magnetic TM mode basis. In section 1.2, we presented the TEM modes basis of an optical cavity although we will describe in chapter 6 nonlinear processes occurring inside rectangular waveguides. The goal was to compare both mode basis, whose fundamental modes are similar, to highlight that it is possible to eciently couple light in the fundamental TE 00 mode of a rectangular waveguide with an incoming TEM 00 mode. This section presents a simplied description of the modes of a rectangular waveguide, especially for the refractive index of the waveguides. A more complete description can be found in [Roman- Rodriguez 20]. Finally, we described a TE eld and will not give a mathematical description of the magnetic eld, which circulates in the (x, z) plane. 

E(r, t) = sin(k x x) × sin(k y y) exp -i ωt -z n 2 med ω 2 c 2 - nπ a 2 - mπ b 2 (1.40)

Pulsed Light

f m = f CEO + m × f r (1.41)
Where f CEO describes a frequency-independent shift of the spectrum. In the temporal domain, it corresponds to an oset between the carrier and the envelope of the pulses as shown in gure 1.5. It is linked to what is called the carrier-envelope phase φ CEO . It is a constant phase, which shifts all the teeth of the comb by a quantity f CEO . Dispersion inside the laser cavity leads to a relative uctuation of the group and phase velocities. It is at the origin of a dephasing between the carrier and the envelope, which accumulates from pulse to pulse but does not aect the temporal shape. It can be dened as:

φ CEO = 1 v g - 1 v φ ω 0 L cav (1.42)
where ω 0 = 2πf 0 is the carrier frequency. It is the central frequency of the frequency comb. v g and v φ are the group and phase velocities respectively. The phase velocity is given by the dispersion relation:

v φ = ω k (1.43)
In a mode-locked laser, it corresponds to the velocity of the frequency components. The group velocity is the one associated to the propagation of the overall envelope of the pulse through space. It is obtained from the dispersion relation as:

v g = dω dk (1.44)
In a regular laser cavity, several frequency modes co-exist and resonate in the cavity. Mode-locking is a technique used to generate pulsed laser light through the phase synchronization of laser cavity modes [ Haus 20]. In this case, the period τ r is the sum of a time ∆τ τ r during which high intensity light is emitted -this is the pulse duration -and a dark time τ r -∆τ , during which light of least intensity is emitted. It is also dened as the time necessary for a pulse to travel inside the cavity:

τ r = L cav c n med (1.45)
Where L cav is the length of the laser-cavity and c n med = c n med is the speed of light in the cavity. The pulse duration is linked to the width of the light spectrum ∆f . In the model of Gaussian pulses, it reads:

∆τ = 0.441 ∆f = 2π × 0.441 ∆ω (1.46)
Where ω = 2πf is the angular frequency. This relation stands for Fourier limitednoiseless -pulses [ Sorokin 00].

Theoretically, the train of pulse is described as a convolution between a temporal Dirac comb C τ (t) and the eld of one pulse E pulse ( r, t). For a transverse mode m, the eld reads:

E( r, t) = E pulse ( r, t) * C τ (t) (1.47) = E m f m ( r, t) e -i(ω 0 t-k• r) * n δ(t -nτ r ) (1.48) = n E m f m ( r, t -nτ r ) e -i(ω 0 (t-nτr)-k• r) (1.49)
Where f m ( r, t -nτ r ) contains information about the pulse duration. A Fourier transform of 1.49 gives the spectrum of the frequency comb, i.e. a Dirac comb in frequency C ν (f ) weighted by an envelope:

E( r, f ) = E pulse ( r, f ) × C ν (f ) (1.50) E( r, f ) = E pulse ( r, f ) × n δ(f -nf r ) (1.51) 1.4.1 Pulsed Light in the Spectral Domain
The electric eld of an optical pulse E(ω) can be described by an amplitude E(ω) and a phase ϕ(ω) such that:

E(ω) = E(ω) e ϕ(ω) (1.52)
Where we consider one mode of the eld only, with the spectral amplitude being E(ω) = E f(ω), where E is the eld amplitude dened in eq. 1.8 and f(ω) is the normalized mode function. The spectral phase ϕ(ω) can be decomposed in a Taylor expansion to reveal its constituents:

ϕ(ω) = ϕ(ω 0 ) + (ω -ω 0 ) dϕ dω ω 0 + 1 2 (ω -ω 0 ) 2 d 2 ϕ dω 2 ω 0 + 1 6 (ω -ω 0 ) 3 d 3 ϕ dω 3 ω 0 + O[(ω -ω 0 ) 4 ] (1.53) = φ 0 (ω 0 ) + (ω -ω 0 )φ 1 (ω 0 ) + 1 2 (ω -ω 0 ) 2 φ 2 (ω 0 ) + 1 6 (ω -ω 0 ) 3 φ 3 (ω 0 ) + O[(ω -ω 0 ) 4 ]
(1.54) φ 0 is a constant phase, which manifests itself as a dephasing between the eld carrier at ω 0 and its envelope, without distorting the pulse shape. The CEO phase φ CEO mentioned in the previous section is a constant phase accumulated inside the laser cavity.

φ 1 is the linear phase, usually expressed in femtoseconds and dened as:

φ 1 (ω) = dϕ(ω) dω = 2π L cav λ dn med (ω) dω (1.55) φ 1 (λ) = λ L cav c dn med (λ) dλ (1.56)
The linear phase results in a global time delay of the pulse, i.e. uctuations of the laser repetition rate.

φ 2 is the chirp expressed in femtosecond squared. This phase evolves quadratically with frequency and impacts the phase velocity (dened in eq. 1.43) of the comb teeth. Depending on its sign, the instantaneous frequency, dened as the evolution in time of the carrier frequency ω 0 (t), increases (up-chirp) or decreases (down-chirp) with time. Both lead to longer pulses (∆τ chirped ∆τ ). From [Weiner 09], the spectral/temporal chirp is dened as:

φ 2 (ω) = d 2 ϕ(ω) dω 2 = d 2 k(ω) dω L cav = ω c d 2 n(ω) dω 2 L cav (1.57) φ 2 (λ) = λ 3 L cav 2πc 2 d 2 n(λ) dλ 2 (1.58)
As quadratic phase is acquired through propagation in dispersive media, it can be compensated with materials adding negative group velocity dispersion, e.g. prisms or spatial light modulators (SLM). The maximal compensation corresponds to no chirp, for which the pulses are Fourier limited. N.B.: Chirp can also be angular/spatial: frequency components are emitted at a dierent angle, resulting in a frequency-dependent optical path. If the divergence is corrected with a converging lens (e.g.), the beam becomes collimated and frequency components propagate approximately parallel to each other. The chirp is then referred to as spatial chirp.

Another term of the spectral phase is cubic phase φ 3 , on which we will not extend on. It results in the apparition of repulses of lower intensity following the main pulse [Weiner 11,Thiel 15].

Description of a Noisy Frequency Comb

The noise in an optical frequency comb (OFC) originates notably from mechanical and thermal cavity drifts, spontaneous emission or pump intensity noise [Haus 93]. It is distributed on few parameters being the uctuation of the pulse amplitude δE, the central frequency δω, the arrival time δτ e and the uctuation of the carrier-envelope oset (CEO) phase δτ CEO . Compared to equation 1.49, the eld of the noisy frequency comb reads [ De 19]:

E comb (t) = E(1 + δE) f(t -δτ e ) e -i(ω 0 -δω)(t-δτ CEO ) * n δ(t -nτ r ) (1.59) = n E(1 + δE) f(t -nτ r -δτ e ) e -i(ω 0 -δω)(t-nτr-δτ CEO ) (1.60)
To access the dierent noise parameters, the OFC can be described with a modal approach and the electric eld can be decomposed into its dierent noise sources. With this approach, the rst mode corresponds to the noiseless OFC and the high-order modes are the noise components. Thus, it is possible to map the noise modes to a basis, whose elements are normalized solutions of the Maxwell's equation [Thiel 15,Schmeissner 14]. In this work, we are interested in the modal decomposition of quantum noise of the eld, i.e. squeezing (see section 2.3), in nonlinear optical processes pumped by an optical frequency comb. We will see that the Hermite-Gaussian basis presented in section 1.2 (g. 1.3) will play a major role in the modal description of the generated quantum states.

Pulse Energy and Power

Light power P and energy W are dened as:

P (t) = S d 2 r |E(r, t)| 2 (1.61) W = τ dt P (t) (1.62)
The pulsed regime allows the emission of high-intensity light in a short period of time. This is the peak power P peak . When a photo-sensor is placed in front of the light beam, the displayed value corresponds to an average light power P avg over the integration time of the detector. However, light is emitted preferentially during over the fraction δτ τr of the repetition rate:

P avg ∼ P peak δτ τ r + ε τ r -δτ τ r (1.63)
Where ε ∼ 0 corresponds to residual light power emitted over the fraction τr-δτ τr and can be neglected. By considering Gaussian pulses, the expression of P avg becomes:

P avg = √ 2π P peak × δτ × f r (1.64) = √ π 2 ln(2) P peak × ∆τ × f r (1.65) ∼ P peak × ∆τ × f r (1.66)
Where the pulse duration ∆τ = 2 δτ 2 ln(2) is a full width at half maximum (FWHM). 

Electric Field Operator

In the quantum regime, light is better described by the statistics of number of photons impinging on a detector. We can then describe the light eld in the Fock basis [Grynberg 10, Loudon 00], i.e. quantum states with a xed number of photons, which represent the allowed and discrete excited levels of a quantized harmonic oscillator (g. 2.1). The last is associated with each mode of the electromagnetic eld and the transition between the energy levels involves the addition or the subtraction of a photon of energy ω from the eld, with ω being the angular frequency of the photon. These 

Ĥ = m ω m â † m âm + 1 2 (2.1)
Where Nm = â † m âm is the photon-number operator of one mode. The vacuum state, dened by a mean-photon number N = 0, is the fundamental state of the quantum harmonic oscillator with the energy ω 2 associated with what are called vacuum uctuations. The photon numbers are discrete variables representing the quantum state but it is possible to use another description of quantum states based on the amplitude and phase quadratures. They are called continuous variables and are particularly useful to describe eld uctuations. In the case of a monomode eld, the quadrature operators q and p (which we write without an index m), are linked by the commutation relation:

[q, p] = 2i (2.2)
and are dened by the linear combination of â and â † such as:

q = â + â † (2.3) p = i â † -â (2.4)
They are the rescaled adimensional form of the position and momentum variables of a harmonic oscillator, according to the convention used in this manuscript. In this convention, the Heisenberg inequality reads: ∆q∆p 1

(2.5)

where ∆ describes the standard deviation of the quadratures. It is the square-root of the variance written ∆ 2 . In the multimode case, the electric elds reads:

Ê(r, t) = Ê(+) (r, t) + Ê(-) (r, t) (2.6) With Ê(+) (r, t) = m E m f m (r, t) âm e -i(ωmt-k• r) (2.7) = m E m 2 f m (r, t) (q m + ip m ) e -i(ωmt-k• r) (2.8)
Where E m reads:

E m = ω m 2 0 V
(2.9)

The bold notation denotes vectors and Ê(+) and Ê(-) are hermitian conjugate. In the following section we will present the continuous-variables (CV) description of quantum states of light that is the most appropriate to describe the states generated in our setup.

Description of Light in the Phase Space

The state of a quantum system can be described by a state vector, denoted |ψ or a more general representation, the density matrix ρ dened, for a pure state, by:

ρ = |ψ ψ| (2.10)
And for a mixed state:

ρ = k p k ρk (2.11) = k p k |ψ k ψ k | (2.12)
It is the statistical mixture of pure states |ψ k where p k is the probability for the system to be in the state |ψ k and |ψ k ψ k | is an outer-product written in bra-ket notation [Fano 57,Nielsen 00]. The state purity P = tr(ρ 2 ) can be used to distinguish pure states characterized by P = 1, from the mixed states for which P < 1 [ Leonhardt 97]. Quantum states of light can be also represented in a plane by their complex amplitude and in particular by the statistics of their components, the quadratures q and p, constituting the abscissa and ordinate of the phase space. The electromagnetic modes excited by the annihilation operator â experience amplitude uctuations, i.e. quadrature uctuations, which cannot be reduced to zero according to the Heisenberg inequality. It is possible to associate eigenstates to the quadratures q and p, called quadrature states |q and |p [ Leonhardt 97] such that q|q = q|q and p|p = p|p . Both states are related to each other by Fourier transform but do not describe experimentally accessible states. However, they are used to dene quadrature wavefunctions ψ(q) = q|ψ and ψ(p) = p|ψ , which are probability amplitudes of a state |ψ [ Leonhardt 97]. Depending on the system under consideration, several representations can be used like quasiprobability distributions. In this section, after recalling the expression of the wave functions for coherent light, we will present the Wigner function, one of the quasiprobability distributions used to represent coherent and squeezed states of light.

Coherent State

The monomode coherent state is dened as the eigenstate of the annihilation operator â with the eigenvalue α ∈ C, such that â|α = α|α . It corresponds to the light emitted by a laser well above threshold and it is described as a ux of photons impinging on a detector with a Poissonian statistics. The state can represented in the phase space as in gure 2.2 where q = q and p = p are respectively proportional to the real and imaginary parts of the eld. The diameter of the blue disks represents the standard deviation of the quadratures, which follow a Gaussian distribution. |α| = 1 2 q 2 + p 2 is the amplitude of the state and θ its phase such that α = |α|e iθ . The vacuum is also a coherent state with α = 0 and we use in this manuscript the standard deviation of its uctuations as a reference [Bachor 04]. Indeed, according to equations 2.2 to 2.4

∆q |0 = ∆p |0 = 1 (2.13)
Which minimizes the Heisenberg inequality:

∆q∆p = 1 (2.14)
Moreover, the coherent states |α are linked to the vacuum by a displacement operation such that: (2.15)

Where the displacement operator is dened as follows:

D(α) = e i(αâ † -α * â) (2.16)
In the following sections, we will present the representations of other states and in particular the squeezed states of light.

The Wave Function of Gaussian States

The wave function of quantum states with Gaussian statistics in continuous variables is dened as [ Lvovsky 14]:

ψ(q) = 1 √ 2π∆q e - (q -q ) 2 2∆ 2 q
(2.17)

ψ(p) = 1 √ 2π∆p e - (p -p ) 2 2∆ 2 p (2.18)
where q and p denote the mean value of the quadrature. For a vacuum state, the mean amplitude â = 0 and mean quadratures q = p = 0. In this case, the equations 2.17 and 2.18 are simplied as such:

ψ 0 (q) = 1 √ 2π e - q 2 2 (2.19) ψ 0 (p) = 1 √ 2π e - p 2 2 (2.20)

The Wigner Function

The Wigner function is a quasiprobability distribution dened to take into account that the quadratures q and p do not commute (equation 2.2) [Wigner 32]. It is one of the possible representations of light in continuous variables, which contrary to the classical joint probability distribution, can be negative [ Leonhardt 97]. Hence the naming of quasi-probability distribution. It is dened as:

W (q, p) = 1 2π dq q -q | ρ |q + q e ipq (2.21)
As for a probability distribution, W is normalized:

+∞ -∞ dq dp W (q, p) = 1 (2.22)
And the probability to measure q and p is given by the reduced distributions, called marginal distributions dened as:

|ψ(q)| 2 = q|ρ|q = +∞ -∞ dp W (q, p) (2.23) |ψ(p)| 2 = p|ρ|p = +∞ -∞ dq W (q, p) (2.24)
The Wigner function can be dened using the wave function 2.17, giving

W (q, p) = 1 2π +∞ -∞
dq ψ * (q + q )ψ(q -q ) e ipq (2.25)

From which we deduce the Wigner function of a coherent state:

W |α (q, p) = 1 2π e - (q -q ) 2 2 - (p -p ) 2 2 (2.26)
And in particular, the Wigner of the vacuum:

W 0 (q, p) = 1 2π e -q 2 -p 2 2 (2.27)

Representation of Squeezed Light

As mentioned in the previous section, the uctuations of the quadratures are governed by the Heisenberg inequality. Nevertheless, in specic cases, the variance of the uctuations of a quadrature can be reduced below that of the vacuum. This is quantum squeezing. This phenomenon goes along with the increase of the variance of the uctuations of the orthogonal quadrature according to the Heisenberg inequality 2.5. Then, the representation of light in the phase space is rescaled, as shown on gure 2.3 with the Heisenberg limit ∆q∆p remaining unchanged.

Figure 2.3 Squeezed vacua in the phase space. The uctuations of one quadrature are reduced, but they are increased for the conjugate quadrature according to the uncertainty principle.

Similarly to the previous sections, we can write the wave function:

Ψ R (q) = R √ 2π e - R 2 (q -q ) 2 2 (2.28) Ψ R (p) = 1 R √ 2π e - (p -p ) 2 2R 2 (2.29)
And the Wigner function:

W 0 (q, p) = 1 2π e - R 2 (q -q ) 2 2 - (p -p ) 2 2R 2 (2.30)
Where the uctuations of the amplitude quadrature q are reduced by the squeezing factor R = e r , while the uctuations of the phase quadrature p are increased by the same amount. From the previous equations, we can infer the expression of the quadrature variances:

∆ 2 q = 1 R 2 = e -2r
(2.31)

∆ 2 p = R 2 = e 2r
(2.32)

And we can verify that the Heisenberg inequality is respected, because ∆q∆p = 1. In the two following sections we will present the dierence between the single-mode and two-mode squeezing.

Single-mode Squeezing

In this section, we consider the time evolution of the annihilation and creation operators through parametric down conversion. The parametric down conversion (PDC) is a nonlinear process occuring when light of high intensity, the pump, is shined on a birefringent medium with χ (2) susceptibility. One photon of the pump generates two photons called signal and idler, whose properties rely on energy and momentum conservation. Further details on this process will be given in the second part of this manuscript. The process can be mathematically described by a hamiltonian. In this section, let us consider a simplied single-mode hamiltonian for a degenerate type-I PDC, where signal and idler share the same polarization and are indistinguishable elds described with the annihilation operator â. Also, we treat the pump as a classical eld of amplitude α p [Grynberg 10]:

Ĥ χ (2) α p (â † 2 + â2 ) (2.33) Ĥ g (â † 2 + â2 ) (2.34)
Where g represents the gain of the nonlinear process. We can now write the time evolution of the bosonic operators â(t) and â † (t) and for simplicity we will use the notation â = â(t):

i dâ dt = [â, Ĥ] (2.35) i dâ † dt = [â † , Ĥ] (2.36)
We develop the expression of the hamiltonian and obtain the two following equations,

dâ dt = - 2ig â † (2.37) dâ † dt = 2ig â (2.38)
We derive the equations 2.37 and 2.38 again:

d 2 â dt 2 = 4g 2 2 â (2.39) d 2 â † dt 2 = 4g 2 2 â † (2.40)
The resolution of the second order equations gives the following solutions γ = ± 2g . Taking the boundary conditions into account, we obtain the following operator functions â(t):

â(t) = 1 2 [â(0) + â † (0)]e γt + 1 2 [â(0) -â † (0)]e -γt
(2.41)

We set the quantity r = γt as the squeezing parameter, we rearrange the previous expressions and obtain the Bogoliubov transformations of the input operators of the PDC:

â = â(0) cosh(r) -â † (0) sinh(r) (2.42) â † = â † (0) cosh(r) -â(0) sinh(r) (2.43)
Where we removed the interaction time t, which is xed by the length of the nonlinear crystal. The Bogoliubov transformations preserve the commutation relations, as illustrated in the following calculation.

[â, â † ] = (cosh 2 (r) -sinh 2 (r)) [â(0), â † (0)] (2.44) = 1 (2.45)
The mean photon number N in one mode can be inferred from the previous calculation:

N = sinh 2 (r) (2.46) = 1 4 e 2r + 1 e 2r -2 (2.47)
As well as the evolution of the position and momentum operators:

q = â + â † = q(0) e -r
(2.48)

p = i â † -â = p(0) e r (2.49)
As well as the evolution of their variance:

∆ 2 q(t) = ∆ 2 q(0) e -2r
(2.50)

∆ 2 p(t) = ∆ 2 p(0) e 2r (2.51) 
The parametric down conversion conserves the product of variances but aects the noise distribution in the state. As can be seen in the equations 2.50, 2.51, the noise of the q+ quadrature is reduced by a factor e 2r while the noise of the p quadrature is increased by the same amount. In general, this reasoning applies to any orthogonal quadratures qθ and qθ+ π 2 , where qθ = q cos(θ) + p sin(θ) is the general eld quadrature, dened such that when θ = 0, q0 = q and when θ = π 2 , q π 2 = p.

Two-Mode Squeezed States

The two-mode squeezed state (TMSS) is an entangled state [ Lvovsky 14]. It is the result of the combination of two single-mode squeezed states (SMSS), one squeezed along q and the other squeezed along p, on a balanced beam splitter (BS) [Lvovsky 14]. This basis change is described mathematically by a beamsplitter operator B, such that:

B = 1 √ 2 1 1 -1 1 (2.52)
When, two SMSS of quadratures qa,b and pa,b are sent to the BS inputs the beams are partially transmitted and reected and the quadratures Q± and P± of the output state read:

Q- Q+ = 1 √ 2 1 -1 1 1 qa qb (2.53) P- P+ = 1 √ 2 1 -1 1 1 pa pb (2.54)
We can develop the previous equations to obtain the expression of the output quadratures with respect to the mode quadratures:

Q± = 1 √ 2 (q a ± qb ) (2.55) P± = 1 √ 2 (p a ± pb ) (2.56)
The output state is a two-mode squeezed state. Thus, we have the following equations for Q+ and P-:

∆ 2 Q+ = ∆ 2 (q a + qb ) = e -2r (2.57) 
∆ 2 P-= ∆ 2 (p a -pb ) = e -2r (2.58) 
Which corresponds to the squeezing of a two-mode state, i.e. a bipartite entangled state [ Einstein 35], which can also be generated from a PDC in a non-degenerate conguration (see chapter 6). When r → ∞, ∆ 2 (q a + q b ) → 0 and ∆ 2 (p a -p b ) → 0 such that q a = -q b and p a = p b . In the following section, we will present the multimode squeezed states (MMSS) corresponding to a collection of m independently single-mode squeezed states, with m ≥ 2.

Multimode Squeezing

In the multimode case, the output electric eld is expressed as dened in chapter 1 as the linear combination of modal electric elds E m (r, t). The squeezing of each mode occurs according to the same process and is described by a Bogoliubov transformation. Depending on the congurations, the modes can either share a same squeezing parameter r or display dierent levels of squeezing. In the second case, a parameter r m is attached to each mode and the quadratures read similarly to the previous section:

qm (t) = qm (0) e rm
(2.59)

pm (t) = pm (0) e -rm (2.60)
It follows the expressions of the variance:

∆ 2 qm (t) = ∆ 2 qm (0) e 2 rm (2.61) ∆ 2 pm (t) = ∆ 2 pm (0) e -2 rm (2.62)
Experimentally, the measurement of multimode squeezed states requires to be able to separate the modes experimentally and to be able to access the modal squeezing parameters. The techniques involved in such experiment can be found in chapters 4, 6 and 5.

Description of Correlations with Covariance Matrices

2.3.4.1 Covariance in the Classical Domain Correlations in a Multimode Electric Field As light propagates, the classical electric eld experiences amplitude and phase uctuations, which can be modeled by the laws of probability. In general, the eld can be associated to a continuous random variable E and the modes of the eld to the variables {E m } (chapter 1), which evolution can be described with a probability density function [Ash 08, Billingsley 95]. In particular, their mean and variance can be calculated with the rst and second moments of the probability distribution. The variance Var(E m ) = V m describes the uctuations of the eld and corresponds to the expectation of the squared deviation of a eld E m from its mean E m . It is dened as [Mood 01]:

V m (E m ) = [E m -E m ] 2 (2.63) = E 2 m -E m 2 (2.64)
Correlations between modes E m and E n of the eld can be revealed by calculating

their covariance Cov(E m , E n ) = V mn [Opatrný 02]. Cov(E m , E n ) = [E m -E m ] [E n -E n ]
(2.65)

= E m E n -E m E n (2.66)
The correlation Corr(E m ,E n ) is a dimensionless coecient obtained by dividing the covariance with the standard deviation σ m = √ V m . It expresses the mutual inuence of the variables.

Corr(E m , E n ) = Cov(E m , E n ) σ m σ n (2.67)
The existence of correlations between eld modes strongly relies on the presence of uctuations. In particular, even in absence of mean eld, E = 0, the uctuations alone can generate correlations. In the remaining of the manuscript, we will refer equally to covariance and correlations.

Correlations between Field Quadratures The electric eld can be described in terms of its quadratures corresponding to the real and imaginary parts of the eld in the complex plane. Thus, any uctuations of the eld corresponds to uctuations of the quadratures, which can be described with the equations dened in the previous section.

Correlations in the Quantum Domain

In the quantum domain, the electric eld is a linear combination of complex modes with quadratures qm and pm (chapter 2). The variance of the measured quadratures describe their uctuations and can be labeled ∆ 2 q m or V q m for the q quadrature and similar for p. The notation V q m = q2 m can be used in the particular case of vacuum where qm = 0. The covariance V mn between modes can be represented in a matrix. Let us dene a quadrature vector QT = [q 1 , ..., qm , p1 , ..., pm ] containing 2N elements such that the covariance matrix V = 1 2 Q QT T . It is a 2N × 2N real and positive semi-denite matrix composed of four blocks.

V = V q V qp V qp T V p (2.68)
Where the diagonal elements of each block V j of the matrix are the quadratures variances while the o-diagonal elements are the covariances between q quadratures, p quadratures and between q and p. The expression of the covariance in the quantum case is symmetric for quadratures. For qm and qn , it reads:

V q mn = (q m -qm ) (q n -qn ) + (q n -qn ) (q m -qm ) 2 (2.69) = 1 2 {q m , qn } -qm qn (2.70)
Where {q m , qn } = qm qn + qn qm is the anticommutator of qm and qn . Similar expres- sions can be written for the elements of V p and V qp .

Schmidt Decomposition

In chapter 3, we will derive the hamiltonian of the PDC process in the non-degenerate condition, i.e. when the signal and idler channels are distinguishable, as:

Ĥint = K dω s dω i Φ(ω s , ω i ) â † s â † i + h.c. (2.71)
Where K is a constant dened in equation 3.72. We can simplify this expression via a Schmidt decomposition. The Schmidt decomposition was introduced in 1957 by Hugh Everett to describe the decomposition of a bipartite quantum system [ Everett 57]. In particular, for parametric down conversion (PDC), it is used to decompose the joint spectral amplitude (JSA) Φ(ω s , ω i ), which contains the correlations between the generated photons (see chapter 3). In the general form, the Schmidt decomposition involves two sets of basis functions {g k } and {h k } sharing pairwise correlations [Brecht 14,:

Φ(ω s , ω i ) = k λ k g k (ω s ) h k (ω i ) (2.72)
Where the Schmidt coecients λ k are real, non-negative and respect the normalization condition k λ 2 k = 1. Then, we can dene broadband operators corresponding to the signal and idler photons of the PDC:

ĉ † k = dω s g k (ω s ) â † s (2.73) d † k = dω i h k (ω i ) â † i (2.74)
And the hamiltonian can be written as:

Ĥint = K k λ k ĉ † k d † k + h.c. (2.75)
This is the hamiltonian associated to the generation of a two-mode-squeezed state. The functions g k and h k are dened as the Schmidt mode functions of the signal and idler photons respectively and the squared Schmidt coecient λ 2 k corresponds to the probability to generate a particular pair k of biphoton state. We will see that in our case, g k and h k can be approximated by Hermite-Gaussian functions (section 1.2.2). The Schmidt decomposition gives an additional parameter K, called the Schmidt number or cooperativity [Christ 11,Brecht 14], given by:

K = 1 j λ 4 j (2.76)
which corresponds to the number of entangled modes generated by the PDC. The hamiltonian above indicates that in the Schmidt mode basis, the generated state is a collection of TMSS, one for each pair of Schmidt modes.

Bloch-Messiah Decomposition

The Schmidt decomposition is useful to give a compact description of the parametric process in the non-degenerate case as a collection of two-mode-squeezed states (TMSS). Moreover, we saw in section 2.3.2, that a beamsplitter allows to perform a basis change from two squeezed states to an entangled state and vice versa. Thus, it is possible to express the states generated by the PDC as a set of squeezed states. This is called the Bloch-Messiah (BM) decomposition [ Braunstein 05] and we will see in section 2.3.7 that it is linked to the Schmidt decomposition by a beamsplitter transformation. We discretize Φ(ω s , ω im ) of equation 2.71 so we obtain a discretized hamiltonian such that:

Ĥint = ,m Φ(ω s , ω im ) â † â † m + h.c. (2.77)
We can write QT = [q 1 , ..., qm , p1 , ..., pm ] the quadratures operators associated with the annihilation and creation operators at dierent frequencies as it was done in the single mode case in the equations 2.48 and 2.49. The transformation of the quadratures can be written in a compact form as Qout = S Qin , where S is a symplectic matrix, which conserves the commutation relations [ Fabre 20]. S can be decomposed with a Bloch-Messiah reduction as:

S = R 1 ∆ sq R † 2 (2.78)
Where R 1 and R 2 are orthogonal matrices describing a basis change, i.e. linear optics transformations and ∆ sq is a squeezing matrix. It is diagonal and dened as ∆ sq = {e r 1 , e r 2 , ...e -r 1 , e -r 2 ...}.

If the input modes Q in are in the vacuum state, then R 2 can be ignored and R 1 denes the basis change between the basis of the Schmidt modes and the squeezedmodes basis. This basis change allows to write the equation 2.77 in a diagonal form:

Ĥint = i g i (ŝ † i ) 2 + h.c. (2.79)
Where {ŝ † i } are the creation operators of the squeezed modes and {g i } are the squeezing eigenvalues dened as g i = 2 t r i , with t the interaction time. As in section 2.3.1, we can remove the interaction time, which is xed by the length of the nonlinear crystal. We dene the vectors ŝ = [ŝ 1 , ..., ŝm , ŝ † 1 , ..., ŝ † m ] T for the operators associated to the squeezed modes and â = [â 1 , ..., âm , â † 1 , ..., â † m ] T for the operators associated to plane waves. They are linked by:

ŝ † = U â † (2.80)
U can be dened as: U = X + iY where X and Y come from the block form of the matrix R 1 dened as:

R 1 = X Y -Y X
(2.81)

The matrix U also gives the squeezed modes S k (ω) dened as a combination of plane-wave components:

S k (ω) = i U ki g i (ω)
(2.82)

The covariance matrix 2.68 is related to the symplectic matrix S by

V = 1 2 SS T (2.83)
And in the basis of the annihilation operators ŝ, it is diagonal and reads:

V = 1 2 (∆ sq ) 2 (2.84)

Relation between Schmidt and Squeezed Modes

To nd the relation between the Schmidt and Bloch-Messiah decompositions we compare the equations 2.75 and 2.79. We have the following identity [Horoshko 19]: Patera 12]. This corresponds to a beam splitter operation. Moreover, the squeezed modes S k can be derived from the Schmidt modes as follows:

exp r k ĉ † k d † k + h.c. = exp r k 2 ŝ † k+ 2 + h.c. × exp r k 2 ŝ † k- 2 + h.c. (2.85) When, ŝ † k± = ĉ † k ± d † k √ 2 (2.86) If g i = λ i 2 ,
S k,± (ω) = 1 √ 2 (g k (ω) ± h k (ω)) (2.87)
Finally, the squeezing parameters are linked to the Schmidt coecients by:

r i = λ i t (2.88)
It is possible to include the integration time t and the constant in the denition of the Schmidt coecients, such that: Spontaneous parametric down conversion (SPDC) is a nonlinear process occurring in birefringent media featuring a signicant second-order susceptibility χ (2) , such as Beta-Barium Borate (BBO), Bismuth Borate (BiBO), Potassium titanyl phosphate (KTP) or Lithium Niobate (LN) [ Klyshko 69,Harris 67]. This process converts a photon of energy ω p from an intense pump beam into two photons called signal and idler of lower energy ω s and ω i respectively, according to energy conservation ω p = ω s + ω i . The generation of the biphoton also respects momentum conservation, referred to as phase-matching (PM) k p = k s + k i . SPDC is a popular nonlinear process used to generate single photons [ Mosley 07], pairs of entangled photons [Hong 86] or in our case quadrature-squeezed light. In this chapter, we will present the tools necessary to design an experiment of generation of multimode squeezed states of light, starting with the study of the nonlinear media we used in our experiment, i.e. the BBO and the KTP (section 3.1 to 3.3). Then, we will describe the evolution of the light eld inside 3.1. BIREFRINGENCE a nonlinear medium as well as the evolution of the amplitudes of the elds involved in the PDC process, i.e. the pump, signal and idler (section 3.5.1). Afterward, we will use the quantum-optics formalism to describe the same process and write the Hamiltonian associated to it (section 3.5.2). Finally, in section 3.5.3, we will focus on the dierent types of phase-matching and their inuence on the down-converted light.

r i = λ i (2.

Birefringence

In chapter 1, we wrote the expression of the electric eld 1.1. Let us rst consider a monomode eld, which we recall the expression:

E( r, t) = A( r, t) e -i(ω 0 t -k• r) + c.c. (3.1)
Where indicates the direction of the eld polarization, c.c. denotes the complex conjugate and A( r, t) is the amplitude of the eld. Light propagation is impacted by the properties of the medium. Isotropic media are characterized by a unique refractive index n(λ) depending on the wavelength of the light. The light path inside the medium involves refraction and absorption due to this index. On the contrary, birefringent materials are anisotropic, i.e. their refractive index n(λ) experienced by the light in the medium depends on its polarization. We distinguish uniaxial and biaxial crystals. 

(λ) = n e (λ) -n o (λ) (3.2)
which can be either positive or negative. One consequence of birefringence is double refraction of light, when light energy is distributed between two polarizations components, one part traveling along the ordinary direction and the other along the extraordinary one [ Boyd 08]. Biaxial crystals have two optical axes and are characterized by three refractive indices n x , n y and n z corresponding to the three principal axes of the crystal.

They are referred to as fast and slow indices, the smallest being the fastest as light travels faster in low-index materials such as air. Parametric down conversion is often performed in bulk crystals such as BBO, KTP or LN [Vitelli 13,Harder 13,Christ 09]. In the experiment described in chapter 6, we used a bulk BBO crystal, which is negative uniaxial, to generate two-mode squeezed states of light in a non-collinear conguration. The design of this experiment involved the study of BBO properties, in particular the evolution of the refractive index with the direction of propagation of the pump beam. This can be done using an index ellipsoid discussed in the next section. We also studied the properties of the KTP, which is a biaxial material, for the development of a waveguide-based PDC experiment.

Index Ellipsoid

The index ellipsoid (g. 3.1) describes the dependence between the polarization and the refractive index n(λ) experienced by the light. In the case of an uniaxial crystal described in section 3.1, according to its polarization, the light propagates in a medium of refractive index n(λ, θ), which is a function of n e and n o . The corresponding index ellipsoid reads: 

2 x + n 2 y n 2 o + n 2 z n 2 e = 1 (3.3)
Where n x and n y are the projections on the axis of length n o of the ellipsoid and n z the projection on the axis of length n e . For a given wavelength λ 0 , let us consider a light beam propagating with an angle θ with respect to the optical axis as illustrated in the gure 3.1. For example, when θ = π 2 , the beam propagates along the x direction and the corresponding ellipse is in the plane (y, z) orthogonal to the direction of propagation. In the general case, the equation of the ellipse reads:

n 2 (θ) cos 2 (θ) n 2 o + n 2 (θ) sin 2 (θ) n 2 e = 1 (3.4)
from which the expression of n(θ) can be inferred:

1 n(θ) 2 = cos(θ) 2 n 2 o + sin(θ) 2 n 2 e (3.5)
Considering the central wavelength λ 0 = 795 nm of our laser and the phase-matching of the PDC, this angle is θ = 29.62 • in BBO.

In biaxial crystals, the index ellipsoid reads:

x 2 n 2 x + y 2 n 2 y + z 2 n 2 z = 1 (3.6)
Where the refractive indices, as well as those of the BBO, can be calculated with the Sellmeier's equations. This will be the subject of the following section.

Sellmeier's Equations

The Sellmeier's equations are empirical relations between wavelength and the index of refraction of a medium [Sellmeier 72]. In the most general form, they are dened as:

n 2 (λ) = 1 + i A i λ 2 λ 2 -B 2 i (3.7)
Where {A i } and {B i } are the Sellmeier coecients, usually expressed in µm and obtained experimentally. Therefore, the function n(λ) is an approximation of the evolution of the refractive index and its expression diers depending on the material under consideration. For the BBO, we used the coecients measured at 20 • C from [Eimerl 87]:

n 2 o (λ) = 2.7405 + 0.0184 λ 2 -0.0179 -0.0155λ 2 (3.8) n 2 e (λ) = 2.3730 + 0.0128 λ 2 -0.0156 -0.0044λ 2 (3.9)
These refractive indices are valid for wavelengths between 212.8 nm and 1064 nm. For the KTP, we used the equations from [Kato 02]: Where the coecients were also measured at 20 • C. These refractive indices are valid for wavelengths between 430 nm and 3.54 µm. The gures 3.2 and 3.3 show the indices of the BBO and the KTP around two dierent wavelengths, the one of our laser at 795 nm and its second harmonic at 397.5 nm.

n 2 x = 3.
We plotted the refractive indices over a 200-nm range and we see that depending on the wavelength range, the evolution of n(λ) is not the same on the two plots as well as the discrepancy between the indices. In addition, the material properties can vary with the temperature, a parameter not taken into consideration in equations 3.8 to 3.12. In the next section, we will consider the inuence of temperature variation on the refractive index. 

Inuence of the Temperature

The inuence of the temperature on the refractive index is estimated experimentally at several temperatures between 20 • C and 80 • C. For the BBO, the obtained values are called thermo-optic coecients. They are similar in the [400,1014] nm range, so the authors of [Eimerl 87] worked with the following averaged values:

dn o dT = -16.6 × 10 -6 ( • C) -1 (3.13
)

dn e dT = -9.3 × 10 -6 ( • C) -1 (3.14)
For the KTP, we used the thermo-optic dispersion formulas from [Kato 02]: We can see from the equations 3.13 and 3.14 and from the plots of gure 3.4, that the thermo-optic coecients are very small. Thus, it is possible to add the inuence of the temperature to the evolution of the refractive indices in the form of a rst-order perturbation, such that the refractive index function n(λ, T ) reads:

n i (λ, T ) = n i (λ) + (T -T 0 ) ∂n i ∂T (λ, T 0 ), i ∈ {x, y, z} (3.18) 
Where T 0 = 20 • C is the reference temperature.

Polarization in a Nonlinear Medium

Electric Susceptibility

Let us introduce the electric displacement D:

D(ω) = 0 E(ω) + P(ω) (3.19)
Where bold notations designate vector quantities and 0 = 8.854 × 10 -12 F.m -1 is the vacuum permittivity. P(ω) is the electric polarization dened as the density of electric dipole moments in a material in the presence of an electric eld. In linear media, the vectors E, P and D are parallel. We have:

P(ω) = 0 χ (1) (ω) E(ω) (3.20)
where χ(ω) is the electric susceptibility. It may take complex values and it is frequency dependent. It is related to the permittivity of the medium r , i.e. its refractive index r (ω) = n 2 (ω):

r (ω) = n 2 (ω) = 1 + Re[χ (1) (ω)] (3.21)
Giving another expression of the electric displacement eld:

D(ω) = 0 r E(ω) (3.22)
In nonlinear media, the electric eld is not always parallel to the polarization but the electric displacement remains parallel to the polarization and orthogonal to the direction of propagation of the light. The polarization evolves as a power function of the electric eld. In most cases, nonlinear interactions involve elds with frequencies much lower than the resonance frequency of the medium. Consequently, the nonlinear susceptibility is mostly independent of frequency and in particular, it is approximately constant over the spectrum of the input light. The Taylor expansion of the polarization reveals the combination of a linear component P (L) , dened in equation 3.20 and a nonlinear part P (N L) comprising higher-order susceptibilities:

P(ω) = P (L) (ω) + P (N L) (ω) (3.23)
With,

P (N L) (ω) = 0 χ (2) (ω)E 2 (ω) + 0 χ (3) (ω)E 3 (ω) + ... (3.24)
Where χ (2) (ω) is a second-order tensor and χ (3) (ω) is a third-order tensor, with 1) . The nonlinear polarization is added to the electric displacement eld, modifying the equation 3.22 as follows:

χ (3) χ (2) χ ( 
D(ω) = 0 r E(ω) + P (N L) (ω) (3.25)
Nonlinear processes occur in centrosymmetric or non-centrosymmetric media. The rst ones possess a center of symmetry inversion. When an electric eld is applied to the medium, its atomic structure feels a polarization to which it responds by a restoring force. The associated potential energy presents the symmetry U(x) = U(-x), with x being the electron displacement in the atom. In these materials, the lowest-order nonlinearity is χ (3) (χ (2) = 0). Four-wave mixing (FWM) processes occur preferably in centrosymmetric media [ Owyoung 71]. In non-centrosymmetric media, the potential energy is not symmetric and contains even and odds powers of the displacement. Therefore, susceptibilities of all orders are present, with χ (2) being the strongest. These materials support three-wave mixing processes such as parametric down conversion (PDC), second-harmonic generation (SHG) or dierence-frequency generation (DFG) [ Boyd 08], which are the processes we are interested in.

Kleinman Symmetry

In the previous section, we mentioned that nonlinear processes involve frequencies much lower than the resonance of the media. For that reason, we can consider that the susceptibility does not depend on the frequency. For a nonlinear process involving the interaction of three waves, such as second-harmonic generation (SHG) or parametric down conversion (PDC), the components of the second-order susceptibility are labeled χ

(2) ijk , where i, j and k refer to the polarization of the pump, the signal and the idler respectively. Therefore, i, j and k can be x, y or z. Moreover, χ (2) displays symmetries because of which the susceptibility remains unchanged when the indices i, j and k, especially the two last ones, are permuted. We also place ourselves in the case of a lossless medium, i.e. when there is no exchange of energy between the interacting elds and the medium, so the components of the nonlinear susceptibility are real. The permutation of the last two indices allows to use a contracted notation of the χ (2) elements according to the following table: And to introduce the nonlinear coecient d i dened by:

d i = 1 2 χ (2) ijk (3.27)
Where i still refers to the pump polarization and is a function of the indices j and k. The nonlinear coecients for a nonlinear material can be gathered in a matrix d as presented below for the BBO:

d BBO =   0 0 0 0 d 15 d 16 d 21 d 22 0 d 24 0 0 d 31 d 32 d 33 0 0 0   (3.28) =   0 0 0 0 0.08 2.2 2.2 -2.2 0 0.08 0 0 0.08 0.08 d 33 0 0 0   (3.29)
Where each coecient, expressed in pm/V corresponds to a dierent phase-matching. For example, the type-I phase-matching, with a pump vertically polarized and signal and idler horizontally polarized, corresponds to the coecient d 21 = 2.2 pm/V. This matrix was given in [Eckardt 90], in which the coecient d 33 had not be estimated. For the KTP, the matrix on the nonlinear coecients reads [Pack 04, Brecht 14]:

d KT P =   0 0 0 0 d 15 0 0 0 0 d 24 0 0 d 31 d 32 d 33 0 0 0   (3.30) =   0 0 0 0 1.95 0 0 0 0 3.9 0 0 1.95 3.9 15.3 0 0 0   (3.31)
We notice that the strongest interaction is achieved for d i = d 33 = 15.3 pm/V. It corresponds to a type-0 phase-matching, where pump, signal and idler beams share the same polarization, along the z direction. This phase-matching cannot be achieved in a bulk birefringent material and is only encountered when quasi-phase-matching, described in section 3.5.3.3, is performed.

Building the Parametric Process

Let us describe the evolution of the electric eld in a nonlinear medium. From now on, we will replace the polarization vector by the indices i, j and k from section 3.4.2 in the equation 3.1. The electric eld can also be dened as the Fourier transform of a eld E(r, ω):

E(r, t) = dω √ 2π E(r, ω)e iωt + c.c. (3.32) = dω √ 2π A(ω)e iωt+ik•r + c.c. (3.33)
If we consider three elds, pump E i , signal E j and idler E k , where i, j and k denote their directions in the Cartesian frame, the nonlinear polarization associated to their interaction reads:

P i (ω) = 0 dω m χ (2) ijk E j (ω m ) E k (ω -ω m ) (3.34) = 2 0 dω m d i E j (ω m ) E k (ω -ω m ) (3.35)
where χ

(2)

ijk is the nonlinear susceptibility linked to the nonlinear coecient d i by the equation 3.27, with being a contracted notation of the indices j, k. Finally, ω, ω m and ω n = ω -ω m are the angular frequencies involved in the nonlinear process dened according to the energy conservation ω = ω p = ω m + ω n .

Let us now consider the dierent processes, which can occur in the nonlinear medium, e.g. the KTP, according to the polarization of the pump. We use the Kleinman matrix d KT P (eq. 3.31) for the KTP. We write the derivatives δP j (ω) for a set of frequencies

ω p , ω m , ω n = ω -ω m :   δP x (ω m , ω n ) δP y (ω m , ω n ) δP z (ω m , ω n )   = 4   0 0 0 0 d 15 0 0 0 0 d 24 0 0 d 31 d 32 d 33 0 0 0           E x (ω m )E x (ω n ) E y (ω m )E y (ω n ) E z (ω m )E z (ω n ) E y (ω m )E z (ω n ) + E y (ω n )E z (ω m ) E x (ω m )E z (ω n ) + E x (ω n )E z (ω m ) E x (ω m )E y (ω n ) + E x (ω n )E y (ω m )        
(3.36) Which we develop to get:

δP x (ω m , ω n ) = 4 d 15 {E x (ω m )E z (ω n ) + E x (ω n )E z (ω m )} (3.37) δP y (ω m , ω n ) = 4 d 24 {E y (ω m )E z (ω n ) + E y (ω n )E z (ω m )} (3.38) δP z (ω m , ω n ) = 4 {d 31 E x (ω m )E x (ω n ) + d 32 E y (ω m )E y (ω n ) + d 33 E z (ω m )E z (ω n )}
(3.39) When the pump is polarized along the x or y direction, it means that it experiences the refractive indices n x or n y of the KTP crystal. The signal and idler photons are generated with orthogonal polarization: this is called type-II phase-matching. On the contrary, when the pump polarization is aligned with the z direction, it experiences the n z index of the KTP and the generated signal and idler share the same polarization.

In the latter case, we can distinguish two congurations: the type-I phase-matching, when the signal/idler polarization is orthogonal to the one of the pump and the type-0 phase-matching, when all three waves share the same polarization. All phase-matching congurations are associated to a nonlinear coecient d i (section 3.4.2). Thus, we can write the equations 3.37 to 3.39 in a general form as follows:

P i (ω) = 0 dω m j,k χ (2) ijk E j (ω m ) E k (ω -ω m ) (3.40) = 2 0 dω m j,k d ijk E j (ω m ) E k (ω -ω m ) (3.41) 3.5.1 Coupled-Wave Equations 3.5.1.1 Monomode Case
The propagation of light is described by the wave equation (1.32). In a nonlinear medium, considering the relation 3.25 between the electric displacement D, the electric eld E and the polarization P, the wave equation reads:

∇ 2 E(r, t) - r c 2 ∂ 2 ∂t 2 E(r, t) = 1 0 c 2 ∂ 2 ∂t 2 P (N L) (r, t) (3.42)
To simplify the derivation, we will use the notation P from now on to designate the nonlinear polarization. We derive equation 3.42 and simplify the temporal factor to obtain,

∇ 2 E(r) + r ω 2 s c 2 E(r) = - ω 2 s 0 c 2 P(r) (3.43)
We consider a propagation along the x direction. In this case, the nonlinear polarization can be along the y or the z direction. In particular, for the PDC in KTP, we are interested in a pump eld polarized along z because it is associated to the highest nonlinear coecient d 33 (see equation 3.39).

In this section, we write the monomode eld as follows:

E j (x, t) = E j (x)e -iωst (3.44) E j (x) = A j (x) e iksx (3.45)
With A j (x) the amplitude of the eld. As a result, the polarization reads:

P j (x, t) = P j (x) e -iωst
(3.46)

P j (x) = 4 d i A i (x)A k (x) * e i(kp-k i )x (3.47)
We stress that in this section, we use the index i to denote the polarization of the pump eld A i (x) and to designate the idler wavevector k i . We replace P j (x) and E j (x) by their expressions in equation 3.43 and obtain the general expression of the coupledwave equations for the PDC process. Details about this calculation can be found in [ Boyd 08].

dA j (x) dx = 2i ω s d i n(ω s )c A i (x)A k (x) * e i∆kx (3.48) dA k (x) dx = 2i ω i d i n(ω i )c A i (x)A j (x) * e i∆kx (3.49)
Where ∆k = k p -k i -k j and (ω s , ω i ) are the angular frequencies of the signal and idler. In the low-gain regime, the PDC process occurs rarely and few down-converted photons are produced. Thus, the pump intensity does not vary much and can be considered undepleted A i (x) ∼ A i . We introduce the quantity κ, called the coupling constant, corresponding to the gain per unit distance of the nonlinear process. It is dened as:

κ 2 = 4 d 2 i ω s ω i n(ω s ) n(ω i ) c 2 |A i | 2 (3.50)
The nonlinear coecient d i should be replaced according to the chosen phasematching as well as the refractive index. For example, for a type-I PDC in a BBO crystal, d i = d 21 and the refractive index experienced by the signal and idler beams is n o (ω) (section 3.1). For a PDC in KTP, d i = d 24 in type II and

d i = d 33 in type- 0 phase-matching while the couple of refractive indices is (n y (ω s ), n z (ω i )) in type II conguration and (n z (ω s ), n z (ω i )) in type 0.
The general solutions of the coupled equations 3.48 and 3.49 are the classical version of the Bogoliubov equations (chapter 2):

A j (x) = C sinh(κx) + D cosh(κx) (3.51)
In our experiment, we use parametric down conversion to produce squeezed states of light (chapters 2 and 6). In the section 2.3.1, we introduced a squeezing parameter r, which can also be dened as r = κ c , where c is the crystal length.

Multimode Case

The parametric beams can be multimode either spatially or spectrally. In the latter case, for example, the coupled-wave equations 3.48 and 3.49 are modied as follows [Gatti 15]:

dA s (ω s , x) dx = 2i ω s d i n(ω s )c dω i A p (ω s + ω i ) A * i (ω i ) e i∆kx (3.52) dA i (ω i , x) dx = 2i ω i d i n(ω i )c dω s A p (ω s + ω i ) A * s (ω s ) e i∆kx (3.53)
where the energy conservation ω p = ω s + ω i sets the frequencies in the previous equation. The solutions of these equations are found by integrating 3.52 and 3.53 along the length c of the nonlinear crystal. To simplify the derivation we can set the position x = 0 at the center of the nonlinear crystal:

c 2 -c 2 dx dA s (ω s , x) dx = A s (ω s , c 2 ) -A s (ω s , - c 2 ) (3.54)
Where A s (ω s ,c 2 ) denotes the down-converted beam at the input of the crystal. While this term is important in stimulated PDC congurations, it is null for spontaneous PDC, which is the case of our experiments. Thus, at the crystal output, the amplitude of the signal and idler beams read:

A s (ω s , c 2 ) = A s (ω s , - c 2 ) + 2i ω s d i n(ω s )c c 2 -c 2 dx e i∆kx dω i A p (ω s + ω i ) A * i (ω i ) (3.55) A i (ω i , c 2 ) = A i (ω i , - c 2 ) + 2i ω i d i n(ω i )c c 2 -c 2 dx e i∆kx dω s A p (ω s + ω i ) A * s (ω s ) (3.56) Then, A s (ω s , c 2 ) = A s (ω s , - c 2 ) + 2i ω s d i n(ω s )c dω i sinc ∆k c 2 A p (ω s + ω i ) A * i (ω i ) (3.57) A i (ω i , c 2 ) = A i (ω i , - c 2 ) + 2i ω i d i n(ω i )c dω s sinc ∆k c 2 A p (ω s + ω i ) A * s (ω s ) (3.58)
We denote:

Φ(ω s , ω i ) = A p (ω s + ω i ) sinc ∆k c 2 (3.59)
which is the joint spectral amplitude (JSA). As we will see in the next section, its square modulus, called the joint spectral intensity (JSI), corresponds to the probability to generate a biphoton state at the frequencies (ω s , ω i ). We include the JSA in the previous equations and we nd:

A s (ω s , c 2 ) = A s (ω s , - c 2 ) + 2i ω s d i n(ω s )c dω i Φ(ω s , ω i ) A * i (ω i ) (3.60) A i (ω i , c 2 ) = A i (ω i , - c 2 ) + 2i ω i d i n(ω i )c dω s Φ(ω s , ω i ) A * s (ω i ) (3.61)
The same development can be done for a quantum eld. In this case, the eld amplitude A(r, t) would be replaced by the annihilation operator â.

Interaction Hamiltonian

In the quantum domain, parametric down conversion is a source of twin photons correlated according to energy and momentum conservation. It is often used as a source of entangled photon pairs, EPR states [ Einstein 35] or heralded single photons [ Mosley 07]. Let us consider the general hamiltonian Ĥ dened as:

Ĥ(t) = Ĥ0 + Ĥint (t) (3.62)
Ĥ is a hermitian operator, meaning that its eigenvalues are real. Ĥ0 is the free radiation hamiltonian dened in eq. 2.1 and Ĥint is the time-dependent part of the hamiltonian due to the interaction between light and a material, in our case a nonlinear crystal. It is dened by [Ou 07, La Volpe 19, Horoshko 19]:

Ĥint (t) = 1 4π d 3 r P • Ê(r, t) (3.63)
where the notation Ê denotes the operator for the pump eld and P denotes the operator for the nonlinear polarization induced by the light in the crystal. We consider the parametric down conversion process, assuming that all other nonlinear processes have a low probability compared to that of the PDC, for which it is phase-matched (see section 3.5.3). In this case, we only keep the terms associated to the PDC and we have:

Pi (r, t) = 0 j,k χ (2) (ω s , ω i ) Ê(-) j (r, t) Ê(-) k (r, t) + h.c. (3.64)
Where j,k is the sum over the combinations of polarizations and Ê(r, t) = Ê(+) (r, t)+ Ê(-) (r, t). The polarization operator can also be dened as the Fourier transform of a polarization operator Pi (r, ω p ), which expression is given by the equation 3.40 where the classical electric elds are replaced by quantum operators. Thus,

Pi (r, t) = dω p √ 2π Pi (r, ω p ) e iωpt (3.65) = 0 √ 2π dω p dω s j,k χ (2) (ω s , ω p -ω s ) Ê(-) j (r, ω s ) Ê(-) k (r, ω p -ω s ) e iωpt + h.c.
(3.66)

where ω p and ω s denote the frequency of the pump and signal elds respectively. We recall the Fourier transforms of equation 3.32 to 3.33:

Ê(-) (r, t) = dω √ 2π Ê(-) (r, ω)e iωt (3.67) = dω √ 2π â † (ω)e iωt-ik•r (3.68)
For a given set of frequencies ω p , ω s , ω p -ω s and a given combination of polarizations i, j, k, the equation 3.66 has now four terms.

Pi (r, t) = 0 E 2 2π √ 2π dω p dω s j,k χ (2) (ω s , ω p -ω s ) â † j (ω s ) â † k (ω p -ω s )
e iωpt e -i(ks+k k(ωp-ωs)) •r + h.c.

(3.69) where E ∈ R and â † j,k denotes the creation operators of the signal and idler photons at the frequencies ω s and ω i = ω p -ω s . From now on we replace ω p -ω s by ω i in the previous equation and we compute Pi Êi (r, t):

Pi Êi (r, t) = 0 E 2 4π 2 dω s dω i j,k χ (2) (ω s , ω i ) â † j (ω s ) â † k (ω i ) âi (ω p ) e -i∆k•r + h.c. (3.70)
where again we kept the terms associated to the PDC and ∆k • r = k p -k s -k i is the phase mismatch. In practice, the intensity of the pump beam is a lot bigger than the one of the down-converted beams. In this case, we consider the pump as a classical eld and we replace the annihilation operator of the pump âi (ω p ) by its mean value α p (ω p ) which is the one of a coherent state. Finally, we integrate the previous equation over the length of the nonlinear crystal c and obtain the following hamiltonian:

Ĥint = 0 E 2 α p (ω p ) 16π 3 dω s dω i j,k χ (2) (ω s , ω i ) â † j (ω s ) â † k (ω i ) sinc ∆k c 2 + h.c. (3.71) = 0 E 2 χ (2) 16π 3 dω s dω i j,k Φ(ω s , ω i ) â † j (ω s ) â † k (ω i ) + h.c. (3.72)
Where, the nonlinear susceptibility is considered constant

χ (2) (ω s , ω i ) ∼ χ (2)
because it slowy varies with frequency (section 3.4.1) and:

Φ(ω s , ω i ) = α p (ω p ) sinc ∆k c 2 (3.73)
We retrieve the joint spectral amplitude (JSA) from equation 3.59. We can see in gure 3.5, that the highest probability for biphoton generation can be obtained when ∆k c 2 is close to zero and especially when ∆k ∼ 0. In bulk crystals like BBO, this conguration can be approached via critical phase-matching (section 3.5.3.1) by slightly changing the index of refraction n(θ) perceived by the pump beam (section 3.2).

Finally, we use the singular-value decomposition dened in section 2.3.6 and express the Hamiltonian in the basis of squeezed modes:

Ĥint = 0 E 2 χ (2) 16π 3 j Λ j ( ŝ † j ) 2 + h.c. (3.74)
Where Λ j is a matrix containing squeezing eigenvalues and { ŝ † j } are the bosonic operators associated to the squeezed modes. In the following sections, we will focus on the phase-matching and its inuence on the down-converted light.

PDC Phase-Matchings

For three-wave mixing processes, we dened the phase mismatch ∆k as:

∆k = k p (ω p ) -k s (ω m ) -k i (ω n ) (3.75) ∆k = n i (ω p ) ω p c -n j (ω s ) ω s c -n k (ω i ) ω i c (3.76)
Where, c is the speed of light in vacuum, n i,j,k are the refractive indices in the nonlinear medium depending on the polarization of the eld and ω p,s,i are the angular frequencies of the pump, signal and idler. In the previous section, we introduced the joint spectral amplitude Φ(ω s , ω i ) (eq. 3.73), whose square modulus corresponds to the probability to generate a biphoton state at the frequencies (ω s , ω i ). This probability is the highest when the phase mismatch is close to zero, ∆k ∼ 0. We distinguish three types of phase-matching according to the polarization of the elds: The type II Signal and idler have orthogonal polarizations, with the pump sharing the polarization of one of the down-converted beams as presented in equations 3.37 and 3.38.

The type 0 Pump, signal and idler share the same polarization. This conguration cannot be achieved with critical phase-matching (see below). The nonlinear crystal needs to be manufactured so as to compensate the phase mismatch. This corresponds to Quasi-Phase-Matching (section 3.5.3.3). In KTP, this phase-matching can only be achieved with a pump polarization along the z direction (section 3.4.2)

Critical Phase-Matching

Contrary to the frequency-matching, which is xed by the energy conservation, the phase-matching often needs adjustments. In uniaxial bulk crystals (section 3.1), the phase-matching requires to control the angle between the optical axis of the crystal and the polarization of the pump. This is called critical phase-matching. It allows to determine the refractive index n(θ) 3.5 involved in the process.

Non-Collinear Phase-Matching

Additional phase-matching congurations can be found with non-collinear down-converted beams. In the latter case, signal and idler are not parallel to the pump direction, their angle can be used to adjust the phase-matching conditions. We dene α s and α i , the angles between the direction of propagation of the pump and the direction of propagation of the signal and idler respectively. In this conguration, the phase-matching reads:

k e (ω p , θ) = k o (ω s ) cos(α s ) + k o (ω i ) cos(α i ) (3.77) k o (ω s ) sin(α s ) = k o (ω i ) sin(α i ) (3.78)
Where θ is the critical angle, i.e. the angle between the crystal optical axis and the direction of the pump (section 3.2). We emphasize the fact that the non-degenerate case leads to dierent PM angles α according to 3.78. In bulk uniaxial crystals like BBO, the refractive index experienced by the down-converted beams is n o while the pump experiences an index depending on its orientation with respect to the crystal axis n e (θ). This is recalled in equation 3.77 where we substitute k p , k s and k i by k e (θ), k o and k o respectively. However, degenerate non-collinear phase-matching can also be achieved. This is the conguration we chose for our experiment with BBO (chapter 6)[La Volpe 19]. In this case, signal and idler are emitted apart from the pump direction with the same angle, which is smaller than in the non-degenerate case [ Ou 07]. In our experiment with BBO, this angle was α = 1.8 • .

Quasi-Phase Matching

Sometimes, the phase mismatch is to big to be compensated with critical phase-matching. Below, we give examples of phase-mismatchs in KTP, at λ pump = 397.5 nm and λ signal,idler = 795 nm, for the type 0 (d 33 ), type I (d 32 ) and type II (d 24 ) congurations:

∆k d 33 = n z (ω p ) ω p c -n z (ω s ) ω s c -n z (ω i ) ω i c = 1.92 µm -1 (3.79) ∆k d 32 = n z (ω p ) ω p c -n y (ω s ) ω s c -n y (ω i ) ω i c = 3.32 µm -1 (3.80) ∆k d 24 = n y (ω p ) ω p c -n y (ω s ) ω s c -n z (ω i ) ω i c = 0.7 µm -1 (3.81)
In these cases, the probability to generate a biphoton at (ω s , ω i ) is very low. Also, when light propagates inside the crystal, the JSA is even more reduced with the propagation distance. Quasi-Phase-Matching aims at preventing the reduction of the JSA inside the nonlinear medium. The most common technique is periodic poling, which consists in a periodic inversion of the nonlinearity in the birefringent material [Risk 96]. This is modeled by modulating the χ (2) tensor with a periodic sign-ip function g such that [Franken 63]. The ip funtion is also dened by its Fourier series:

χ (2) = g(x) × χ (2) with g(x) = sgn sin 2πx Λ [Armstrong 62],
g(x) = ± p=2n+1 n∈N 1 p e ip k Λ x (3.82)
Where x is the direction of propagation, k Λ = 2π Λ and p ∈ N * is called the phasematching order. Each domain is of width Λ, determined so as to compensate the phasemismatch and is specic to the chosen conguration 0, I or II. According to equation 3.82, several poling periods are available for a same phase mismatch 3.76. However, the rst order is often preferred, because smaller periods are more dicult to manufacture and the nonlinearity evolves in 1 p . When the modulated χ (2) is added to the interaction hamiltonian, the phase-mismatch gains an additional term:

∆k i , m = n i (ω p ) ω p c -n j (ω s ) ω s c -n k (ω i ) ω i c -p 2π Λ i (3.83)
The type-0 and type-II KTP crystals used in our experiment are periodically poled with a poling period Λ 0 = 3.19 µm and Λ II = 8.39 µm respectively.

Phase-Matching of SPDC in a Rectangular Waveguide

As discussed in 1.3, the bi-dimensional connement of light in a rectangular waveguide limits the wavelengths, which can be coupled in it. The waves of the parametric processes propagate along the same direction inside the waveguide and the spatial constraints are added to the phase mismatch:

∆k = k p -k s -k i -p 2π Λ i -n 2π λ ny -m 2π λ mz (3.84) = n i (ω p ) ω p c -n j (ω s ) ω s c -n k (ω i ) ω i c -p 2π Λ i -n 2π λ ny -m 2π λ mz (3.85)
Where m and n refer to the coupled-mode number. Palomo 17]. Most of these experiments rely on pulse shaping. Amplitude modulation can be performed with a grating. Indeed, a grating diracts light in various orders of diraction, so if we collect only the 0 th order, its amplitude depends on the periodic structure of the grating. Then, if we can modulate the number of grooves per mm of the grating, e.g. with a spatial light modulator, we can modulate the amplitude of the 0 th order. Phase modulation implies to be able to modulate the refractive index n(λ) of the medium in which light propagates. We can use birefringent materials, Acousto-Optic Modulators (AOM) or Electro-Optic Modulators (EOM) as well as Spatial Light Modulators (SLM). Phase masks that can imprint arbitrary amplitude and spectral shapes can be displayed on a SLM screen. Pulse shaping is an essential tool for mode-selective homodyne detection as it allows to unveil the multimode character of the quantum states we produce via 

Zero-dispersion Line

A folded pulse-shaper setup is a 4f line (g. 4.1), also called zero-dispersion line [Monmayrant 10, Weiner 11] composed of three major elements: a blazed grating, a lens (a cylindrical mirror in our case) and a SLM. In a zero-dispersion line, the distance between the optical elements is rigorously f , the focal length of the cylindrical mirror. The incoming light is diracted by the blazed grating (see section 4.4), collimated by the cylindrical mirror and reaches the SLM placed at the Fourier plane. If a mirror is placed in the Fourier plane instead of the SLM, this setup is dispersion free, meaning that the incoming and outgoing pulses are identical [ Froehly 83]. The light shaped by the SLM is reected back to the cylindrical mirror with a small vertical angle, before being focused back on the grating. That way, incoming and outcoming beams can be separated. When we work with ultrafast light, the spectrum is wide and very sensitive to dispersion. Thus, the folded conguration, using cylindrical mirrors instead of lenses and reective grating, allows to avoid unwanted dispersion in the shaped pulses. The spectral resolution depends on the g-parameter, i.e. the number of grooves per mm, of the diraction grating (section 4.4.1) and the spatial resolution relies on the coverage of the SLM screen, i.e. the beam waist at the Fourier plane. The waist size of a monochromatic beam should in fact be compatible with the pixels size on the SLM. I took care of the design of the pulse shaper setup of our experiment. The chosen parameters for our conguration are f = 25 cm and g = 600 gr/mm. In the following, we will comment on the dierent components of the pulse shaper. 

Focal Length and Reecting Telescope

The focal length f has been chosen as short as possible such that the beam waist in the focal plane matches the size of the SLM screen. A short f implies a smaller optical setup, which is not easy to align, we chose f = 25 cm as a good compromise. The waist can be further reduced by increasing the beam waist before the cylindrical mirror so we expanded the size of the laser beam with a reecting telescope (g. 4.2). It is composed of three curved mirrors of radius of curvature R 1 = -800 mm, R 2 = -1000 mm and R 3 = 750 mm. Distances between the mirrors were nely adjusted and angles of incidence kept close to 0 • , so as to limit the ellipticity in the beam shape and obtain a collimated TEM 00 beam. In our case, the distance between the rst and the second curved mirrors was 16 cm and the second and third curved mirrors were placed 12 cm apart. We measured the beam waist with a video camera connected to a LabVIEW program. In this conguration, the beam waist was expanded from 1.34 mm to 2.62 mm. 

Spatial Light Modulator

The spatial light modulator (SLM) is based on liquid crystals. We used a LCOS-SLM X10468 (Liquid Crystal On Silicon) from Hamamatsu (g. 4.3), in which liquid crystals lie between a covering glass and a dielectric mirror, in such a way that when no phase modulation is sent, the SLM operates like a plane mirror. Liquid crystals behave as a birefringent material 3.1, whose refractive-index dierence between the ordinary and extraordinary axes ∆n = n e -n o 3.2 can be modulated with a voltage V . Therefore, the dephasing (between 0 and 2π) applied to a light eld writes [ Engström 13]:

φ(λ, V ) = 4π ∆n(λ, V ) e λ (4.1)
Where e is the thickness of the liquid-crystals chip, c the speed of light in vacuum and λ is the wavelength of the incoming light. Because the SLM is reective, the beam is dephased twice, hence the factor 4 in 4.1 instead of 2. Behind the dielectric mirror, lies a 792 × 600 pixel matrix allowing to locally apply voltage in the liquid crystals. The SLM can be interfaced with a computer that generates phase masks. The phase values of the computer-generated masks are converted into 8-bit values between 0 and 255 and the masks are sent to the SLM. In section 4.6, we will present some useful phase masks for our experiment.

Blazed Grating

Blazed gratings are diraction gratings designed to achieve maximum diraction at an angle θ B called the blazed angle. Thus, most of the optical power is concentrated in a given diraction order, usually the rst one. Blazed gratings are based on the Littrow conguration [Popov 90, Zorabedian 95, Loewen 90], in which the angle of incidence of light α is identical to the angle of diraction β. For a reection grating, this means that the diracted beam is reected back into the rst order of diraction only and in the direction of the incident beam (the blue beam in gure 4.4). The beams are then perpendicular to the sawtooth step and parallel to its normal. If the angle of incidence is slightly dierent than the blazed angle, the angle of departure of the light is slightly dierent than the blazed angle as well, but most of the light power is still concentrated in a given diraction order. This corresponds to a near Littrow conguration. We choose to work in this conguration so as to be able to separate the incoming beam and the rst order. The blazed angle θ B can be calculated with the grating equation in the Littrow conguration and is wavelength dependent (see section 4.4.1). 

Choose a Blazed Grating

To determine the number of grooves per millimeter g needed in the pulse-shaping setup, we start from equations 4.2 to 4.4. For a reection grating, the grating equation reads:

sin(θ out ) -sin(θ in ) = m λ d g ; (m = 1) (4.2)
where, θ in and θ out are the angle of incidence of the beam on the grating and the angle of departure respectively. In a reection grating, the incoming and outgoing beams propagate on either sides of the sawtooth normal. Therefore, in a blazed conguration, θ in = θ B and θ out = -θ B and equation 4.2 becomes:

sin(θ B ) = m λ d g 2 (4.3)
where λ d is called the design wavelength of the grating and corresponds to the wavelength for which the blaze condition is achieved. After the grating, the beam size after the grating ∆l is given by:

∆l = f × tan ∆θ out 2 (4.4)
where f = 25 cm is the focal length of the cylindrical mirror and ∆θ out represents the angles over which the angle of departure varies.

The blaze condition is achieved for the design wavelength only, so when we work with multimode light, the other wavelengths are diracted with an angle θ out (λ) given by the grating equation. In this case, the grating equation reads:

sin θ B + ∆θ out 2 + sin θ B - ∆θ out 2 = ∆λ g (4.5)
in which ∆λ denotes the spectrum. Then, by replacing θ B and ∆θ out by their expression, we can deduce an equation for g:

g = 2 ∆λ sin arctan ∆l f × cos arcsin λ d g 2 (4.6)
Which can be resolved graphically. From the graphical resolution of this equation (g. 4.5) we obtained g = 600 gr/mm and θ B = 13 • at 800 nm for the blazed angle. 

Shaping Performances

On the SLM screen, the performances of the pulse shaper depend on how well the incoming beam spreads on the screen. Horizontally, the beam is spread spectrally and covers the SLM screen area. The size ∆x k of a light spot at a given wavelength λ k is dened by [Danailov 89,Monmayrant 10]:

∆x k = 2 ln(2) × cos(θ in ) f λ k cos(θ out ) π∆x in (4.7)
In our conguration, θ in = θ B +3 = 16 • and θ out = θ B -3 = 10 • . ∆x in = w in 2 ln(2) is the full width at half maximum (FWHM) of the incoming beam, which depends on the beam waist w in . In our case, the width on the SLM screen of a light spot at λ k=0 = 795 nm is ∆x k=0 = 27.7 µm. The size of one SLM pixel being 20 µm, ∆x 0 is slightly less than the size of two pixels. Vertically, the coverage ratio allows better spatial shaping of the beam and a better modulation of its amplitude. Thus, the initial size of the beam is an important parameter for the shaping eciency. The frequency resolution is given by:

δω = ∆x 0 α (4.8)
where α is a coecient set by the geometry 4f line. It is dened in [Monmayrant 10] as:

α = λ 2 0 f g 2πc cos(θ out ) (4.9)
In our case, the spectrum of a light spot at λ 0 = 795 nm is δω = 5.42 × 10 11 Hz, which corresponds to approximately 3479 teeth of our frequency comb. This resolution corresponds approximately to 0.13 nm per pixel. Finally, let us consider the distribution of the light spots at dierent wavelengths in the Fourier plane. Thanks to α, the relation between the frequency ω k and the position x k of the spot can be determined:

x k = α ω k (4.10)
The gure 4.6 gives an example of the spacing between two light spots.

Useful Phase Masks for Multimode Squeezing

The phase masks are images of size 800×600 pixels coded on a computer and displayed on the SLM screen. The phase masks presented in this section were coded in LabVIEW, but they can be coded in Python as well. The SLM is handled as a second screen by the computer so any image can be displayed on it as long as its size is 800×600. Arbitrary phase and amplitude modulations can be applied to the light. Our masks all shared the same basis, i.e. a sawtooth grating as depicted on g. 4.7, which diracts the light preferentially in the rst order and is used for ecient amplitude modulation and to separate the incoming beam from the shaped one. Indeed, the shaped beam is diracted at a slight vertical angle above the incoming beam. The separation angle between the two beams is tuned with the sawtooth period, i.e. the number of grooves per mm dened in section 4.4.1. Also, by shifting the sawtooth grating vertically, we can implement phase shifts to the beam.

Horizontally, we shape the light spectrum by multiplying the grating with a function corresponding to the desired spectrum. We use it to perform mode-selective homodyne detection (see below). 

Masks for Homodyne Detection

In homodyne detection, which is the subject of chapter 5, the interference between the signal and a reference called local oscillator (LO) allows to measure the quadratures of the signal by scanning the phase of the LO [ Schumaker 84]. In the spectral domain, shaping the LO spectrum allows to measure parameters associated to a specic spectral mode. In particular, the measurement of a multimode squeezed state gives access to the level of squeezing per mode and allows to unveil the squeezing distribution between the modes. As mentioned in previous chapters 1.2.2 and 2.3.5, the basis of squeezed modes can be approached by the Hermite-Gaussian (HG) basis, so the latter was included in our phase masks. The gures 4.8 and 4.9 show the phase masks of the rst four spectral modes of the HG basis superposed with a sawtooth grating. The vertical shifts in the sawtooth gratings of the modes HG 1 to HG 3 correspond to phase shifts. The light spectrum after the pulse shaper is measured with a spectrometer from Avantes. The measured spectra are in good agreement with the parameters of the phase masks, i.e. central wavelength and spectrum. Nevertheless, we can see an asymmetry in the measured spectra compared to the phase masks when the spectrum chosen for the shaped mode is close to the spectrum of the incoming light, i.e. before the pulse shaper. This eect is further increased if the chosen central wavelength diers from the central wavelength of the incoming light. We show this eect in the modes HG 1 to HG 3 from gures 4.8 and 4.9.

Correction of Dispersion

Despite all precautions, it can be necessary to implement additional corrections of dispersion within a phase mask in order to compensate for the dispersion accumulated by the light during its propagation in free space. The gure 4.10 shows a temporal-chirpcompensation mask on the left. It is done by multiplying the mask of the HG 0 mode with a quadratic function. On the right of the gure 4.10 we implement a wavelengthdependent phase shift to the sawtooth grating to compensate for angular chirp. Additionally, Hamamatsu provided us with a correction pattern (g. 4.11), which helps correcting the physical imperfections of the device when it is displayed on the SLM screen. 

â1 = tâ -râ LO = 1 √ 2 (â -âLO ) (5.1) â2 = râ + tâ LO = 1 √ 2 (â + âLO ) (5.2) 
Where â and âLO are the annihilation operators for the signal and the LO eld respectively. The number of photons Nj = â † j âj (section 2.1) can be derived:

N1 = 1 2 (|â LO | 2 + |â| 2 -â † LO â -â † âLO ) (5.3) N2 = 1 2 (|â LO | 2 + |â| 2 + â † LO â + â † âLO ) (5.4) 
In this section, we use the notation |â| 2 to denote the photon numbers â † â to lighten the notation.

Each photodiode generates a photocurrent i j , which is proportional to the ux of photons. Its magnitude depends on the photodiode photosensitivity S given in A/W. i j = S j × P LO (5.5)

Where j = 1, 2 denotes a photodiode and P LO is the LO power on one photodiode. We assume the photosensitive area of the PD to be larger than the size of the beam. After the detector, the photocurrents generated by each photodiode are subtracted giving a signal proportional to N2 -N1 , where the subtraction of the photon number reads:

N21 = N2 -N1 (5.6) = â † LO â + â † âLO (5.7)
Additionally, in the hypothesis that â † LO âLO â † â and that the uctuations of the LO are negligible with respect to the mean eld, we replace the bosonic operators of the local oscillator with their mean value âLO = α LO with α LO ∈ R being the eld amplitude. Therefore, N21 writes:

N21 = α LO âe -iθ + â † e iθ
(5.8)

N21 = α LO qθ (5.9)
where qθ = âe -iθ + â † e iθ = q cos(θ) + p sin(θ) is the general eld quadrature. The angle θ describes the phase shift in respect to the quadratures q and p in the phase space. It is dened such that when θ = 0, q0 = q and when θ = π 2 , q π 2 = p. Thus, by scanning the phase of the local oscillator, one can access states quadratures and derived quantities, such as the mean and the variance, and measure quadrature squeezing:

N21 = α LO âe -iθ + â † e iθ = α LO qθ (5.10) ∆ 2 N21 = N 2 21 -N21 2 (5.11) ∆ 2 N21 = α 2 LO ∆ 2 qθ (5.12)
In practice, the retrieved homodyne signal N τ 21 corresponds to the subtraction of the photocurrents i j generated by each detector integrated over the time response of the detector [Cooper 13,Raymer 95]:

N τ 21 = τ 0 dt î2 -î1 (5.13)
Where τ is the response time of the detector. If we want to measure a signal corresponding to the time of a single pulse, the integration time should be shorter than the time between consecutive pulses.

Noise and Losses in Homodyne detection

Non-Ideal Photodetection

The subtraction of the photocurrents allows to cancel the classical noise of the LO if the balanced-detection setup is properly aligned. But let us consider the case of a nonideal homodyne detection. The simplest derivation consists in modeling a non-ideal photodetection by a leaking beam splitter (BS) of transmission η placed on the signal path (â in g. 5.1) before the beamsplitter of the homodyne [ Leonhardt 97]. One port of the leaking BS receives the signal eld and the other one receives vacuum â0 such that:

â = √ η â + 1 -η â0 (5.14)
We adapt the homodyne operators dened in equations 5.1 and 5.2 using the equation 5.14 and we compute the photon numbers:

N 1 = 1 2 (|â LO | 2 + | â | 2 -â † LO â -â † âLO ) (5.15) N 2 = 1 2 (|â LO | 2 + | â | 2 + â † LO â + â † âLO ) (5.16)
We replace â by its expression and make the hypothesis that â † LO âLO â † â to replace âLO with its mean α LO . We obtain the following photon-number subtraction:

N 21 = α LO √ η âe -iθ + â † e iθ + α LO 1 -η â0 e -iθ + â † 0 e iθ (5.17) = α LO √ η qθ + 1 -η q0,θ (5.18) 
The vacuum is a state of mean q0,θ = 0 and variance ∆ 2 q0,θ = 1 (eq. 2.13) for all values of θ. We nd the same equation as in 5.9 with an added term that takes into account the vacuum contribution. When the quantum eciency is large, i.e. η > 90%, the added vacuum noise can be neglected. This derivation does not take into account the fact that the photodiodes are not identical. In a more complete description, we can model the losses by two leaking BS placed before each photodiode (â 1 and â2 in g. 5.1). In this case, we have:

â 1 = √ η 1 â1 + 1 -η 1 âv1 (5.19) â 2 = √ η 2 â2 + 1 -η 2 âv2 (5.20) (5.21)
where âv1 and âv2 are the annihilation operators of the vacuum interfering with the signals impinging on the photodiodes. η 1 = η 2 indicates that the losses at the PD are not necessarily the same and the operators â 1 and â 2 are dened in order to conserve the commutation relations. We compute the photon numbers:

N 1 = η 1 N1 + (1 -η 1 ) |â v1 | 2 + η 1 (1 -η 1 ) 2 â † -â † LO âv1 + â † v1 (â -âLO ) (5.22) N 2 = η 2 N2 + (1 -η 2 ) |â v2 | 2 + η 2 (1 -η 2 ) 2 â † + â † LO âv2 + â † v2 (â + âLO ) (5.23)
and the photon-number subtraction:

N 21 = η 2 N2 -η 1 N1 + (1 -η 2 )|â v2 | 2 -(1 -η 1 )|â v1 | 2 + η 2 (1 -η 2 ) 2 â † + â † LO âv2 + â † v2 (â + âLO ) - η 1 (1 -η 1 ) 2 â † -â † LO âv1 -â † v1 (â -âLO ) (5.24)
We can see that in this case, the signal is not simply the sum of the contributions of the vacuum and the signal of interest. But, here also, the contribution of the vacuum noise can be neglected when the quantum eciency is large, i.e. η > 90%. In general, η 1 η 2 and we retrieve the equation 5.17.

The overall detection eciency depends not only on the photodiode eciency but also on the electronic noise of the detector as well as the quality of the interference between the beams before the photodiodes, such that:

η = η mod × η 2 P D × η elec (5.25)
Where η mod , which we will dene in section 5.2.3, depends on the visibility of the interference between the signal of interest and the LO. η P D is the photodiode eciency corresponding to the eciency of the photon-to-electron conversion. It depends on the photosensitivity S of the photodiode by the following equation:

η P D (ω) = S P D × ω e (5.26) 
Where = 1.054×10 -34 J.s is the reduced Planck constant and e = 1.602×10 -19 C is the elementary charge. The photodiode eciency also depends on the angular frequency ω of the incoming light and is limited by the photodiode material. Silicon (Si) gives the best performances around 800 nm.

Finally, we need to take into account the electronic noise of the detector. In [ Appel 07], it is shown that the eect of the electronic noise on the detector performances is equivalent to that of optical losses. Thus, it can be associated to an eciency and reads [ Kumar 12]:

η elec = 1 - σ 2 en σ 2 o (5.27)
Where σ 2 en is the variance of the measured electronic noise and σ 2 o is the variance of the output signal. In the next section, we will describe the major contributions to the electronic noise in our detector.

Electronic Noise

The electronic noise (EN) is the accumulation of the noise generated by the electrical components of the circuit and perturbations from the detector environment. A direct consequence of EN is to reduce the signal-to-noise ratio of the circuit and so reduce the eciency η elec . In this section, we will focus on the two main sources of noise in our homoyne circuit, being the thermal noise and the noise of operational ampliers.

Thermal noise Also called Johnson-Nyquist noise, it depends on the intrinsic impedance of an electrical component and results from the thermal agitation of charge carriers. Resistors are the main source of thermal noise in an electronic circuit. The thermal voltage ∆v and current ∆i noises are dened by:

∆v = 4 k B T R (5.28) ∆i = 4 k B T R (5.29)
Where k B = 1.3806 × 10 -23 J.K -1 is the Boltzmann constant, R is the resistance and T is the temperature in Kelvin. The voltage noise is usually expressed in nV/ √ Hz and the current noise in nA/ √ Hz. As an example, considering the resistance values in our circuits and a 200-MHz bandwidth, the thermal voltage is comprised between 1 and 6 nV/ √ Hz and the current noise between 2 and 3 pA/ √ Hz. To consider the thermal noise over a given bandwidth ∆f , we multiply equations 5.28 and 5.29 by √ ∆f .

Noise of an Operational Amplier Balanced homodyne detectors use operational ampliers (op-amp) to perform a current-to-voltage conversion of the subtracted photocurrent. The noise of the op-amp comes from the noise of the elements constituting the op-amp, such as transistors, as well as the impedances of the amplier's inputs, which contrary to the ideal case are not innite and can display a discrepancy. We worked with three models of ampliers: the OPA847, OPA855 and LMH6624. The homodyne measurements presented in the chapter 6 were performed with a low-bandwidth detector using a LMH6624 amplier. Subsequently, we used the op-amps OPA847 and OPA855 from Texas Instrument in the development of higher-bandwidth detectors. This will be the subject of the chapter 7. We give here the noise parameters of these ampliers: Thus, if we compare the thermal noise calculated in the previous paragraph to the noise of the operational ampliers, we see that the thermal voltage noise is larger than the voltage noise of the op-amps, but the current noises are of the same order of magnitude.

LMH6624

Mode-Matching Losses

In section 2.3.7, we introduced the mode functions S(r, ω) and the annihilation operators ŝ associated to the squeezed states. In this basis, the monomode electric eld reads:

Ê(+)

sq (r, ω) = E S(r, ω) ŝ e ik•r (5.30)

Where E ∈ R is dened by eq. 2.9. In homodyne detection, low interferometric visibility is another source of losses, which can be modeled by a leaking beamsplitter of transmission η mod placed on the signal phase (â in g. 5.1). It is commonly referred to as mode matching losses and depends on the overlap between the signal mode S(r, ω) and the mode of the LO. We write g LO (r, ω) the mode function of the LO and we dene an overlap coecient O [La Volpe 19, Aichele 02]:

O = dr dω g LO (r, ω) S * (r, ω) (5.31)
The quantity O is the measure of the mode matching and it is equal to the quantum eciency η mod (eq. 5.25), see for instance [Aichele 02, Grosshans 01a]. It corresponds to the square of the visibility of the interferences between the two elds. In this case, the homodyne signal N21 is given by the equation 5.18 with η = η mod = O.

Unbalanced Beamsplitter We consider the equations 5.1 and 5.2 with an unbalanced homodyne BS, i.e. r = t with r < t and rt < 1

N21 = 2rt â † âLO + â † LO â + t 2 -r 2 |â LO | 2 -|â| 2 (5.32)
As â † LO âLO â † â , the subraction can leave a parasitic term if the homodyne beamsplitter is misaligned. Especially, when we work with pulsed light, this term can be very high at the laser repetition rate and saturate the detector.

Detector Performances

Shot-Noise Clearance

When we characterize a detector with a spectrum analyzer, we rst look at the signal when no light is shined on the photodiodes. In this case, the signal is the electronic noise σ 2 en corresponding to the noise of the electronic components constituting the detector and the noise of the detection device, in our case a spectrum analyzer or an oscilloscope. Then, we illuminate the photodiodes with the local oscillator. In this case, we measure an output signal σ 2 o corresponding to the sum of the shot noise of the local oscillator σ 2 SN and the electronic noise such that σ 2 o = σ 2 SN +σ 2 en . To assess the electronic performances of the homodyne detection, we evaluate the fraction of the electronic noise in the output signal. Usually, it is done by computing the ratio between the variance of the output signal σ 2 o and the variance of the electronic noise σ 2 en . This quantity is called the shotnoise clearance (SNC) and is dened as [Raaelli 18, Kumar 12]:

SN C = σ 2 o σ 2 en (5.33)
In the previous sections, we mentioned that the electronic noise could be modeled as an additional loss channel of eciency η elec (section 5.2.1). From the equation 5.27, we can write the following relation between the shot-noise clearance of the detector and the electronic eciency:

η elec = 1 - 1 SN C (5.34)
In practice, we measure the power spectrum of the signal and of the noise with a spectrum analyzer and we dene the subtraction of the measured signals as a shot-noise clearance in dB:

SN C dB = 10 × Log 10 (SN C) (5.35)
The SNC is a very important parameter of a homodyne detector. The higher it is, the better the measurement, as we can see from equation 5.34.

Common-Mode Rejection Ratio

In homodyne detection, the light detected by the photodiodes is converted into photocurrents which are then subtracted. This dierence signal is the one we are interested in, it is proportional to the quadrature of the eld we want to measure. To assess the quality of the subtraction, we shine light on each PD individually. We call the corresponding signal the common mode (CM). Then, we compare the CM with the signal we measure when both PDs are illuminated at the same time. The ratio between the two quantities is called the common-mode rejection ratio (CMRR):

CMRR = σ 2 CM σ 2 d (5.36)
where σ CM denotes the common mode signal and σ d denotes the dierence signal. In the pulsed regime, the laser source emits a train of pulses at the repetition rate f rep . In the spectral domain, this means that the signal features a peak at f rep . In this case, we need to reduce the light power on each PD in order not to saturate the electronic of the detector when we measure the signal from one PD. Often, in this conguration, the signal is very low at all frequencies except at the repetition rate, so we dene the CMRR as the ratio between the common mode at f rep , i.e. when one PD is illuminated, and the dierence signal at the same frequency. In practice, we measure the power spectrum with a spectrum analyzer so we retrieve signals in dB scale. In this case, we dene a CMRR dB as:

CMRR dB = 10 Log 10 σ 2 CM σ 2 ref -10 Log 10 σ 2 d σ 2 ref (5.37)
where

P ref = σ 2 ref R
is the reference electric power used by the spectrum analyzer to compute the gain and σ ref is the inferred voltage. Its value depends on the measuring device scale (usually P ref = 1 mW for a dBm scale and R = 50 Ω). In the pulse regime, a good CMRR should be in the order of 30 dB [ Kumar 12].

Noisy Squeezing Levels

When we characterize a homodyne detector, we use the local oscillator only, so the mode-matching eciency η mod is not part of the total quantum eciency η, i.e. η mod = 1.

As we mentioned in section 5.3.1, we measure the SNC to assess the performances of the detector in term of η elec . The gure 5.2 shows the relation between the eciency η elec and the shot-noise clearance (SNC). We stress that even in the case where η mod = η P D = 1, it exists a minimum value of SN C dB for which η elec > 90%.

In gure 5.3, we show the impact of the detector clearance on the measured squeezing. All curves reach a plateau at some point, indicating the minimum SNC required for good homodyne measurements according to the expected level of squeezing. The mode-selective homodyne detection allows to measure the quadratures of a selected mode of a multimode eld by shaping the local oscillator. In chapter 6, we will present the generation of multimode squeezed states by parametric down conversion and use pulse shaping (presented in chapter 4) to shape the spectrum of the LO and measure dierent squeezed modes. In this case, the number of squeezed modes that we can measure is limited by the spectrum of the LO and the homodyne signal depends on the overlap of the squeezed eld with the mode of the LO. As an example, we consider in this section the squeezed-mode basis introduced in section 2.3.7. In section 5.2.3, we wrote the monomode eld. In the multimode case, we have:

Ê(+) sq (r, ω) = E j S j (r, ω) ŝj e ik•r (5.38)
Where ŝj is the annihilation operator associated to the mode j and S j is the mode function. We write g LO (r, ω) the mode function of the LO as in section 5.2.3 and we use the overlap coecient O j (eq. 5.31) describing the interference between the local oscillator and the mode S j as:

O j = dr dω g LO (r, ω) S * j (r, ω) (5.39)
If, e.g., the LO mode matches the mode S 1 , the overlap with the other modes S j of the basis is null and we measure the quadrature associated to this mode. But, if the LO mode function overlaps with several modes, then we would perform a homodyne measurement of a superposition of modes.

Multipixel Homodyne Detection

Multipixel homodyne detection was introduced in [Beck 00] for quantum state tomography in the spatial domain. It allows for the simultaneous measurement of modes of an electric eld. This technique requires the dierent modes to be physically separated prior to the detection, hence it is not suitable for all mode basis. The modes are indeed separated in the case of, e.g., a diraction grating when the targeted modes are the frequency modes. The measurement is then a spectrally-resolved homodyne detection. This technique is interferometric and corresponds to several homodyne detections performed simultaneously. The signal light is combined with the local oscillator at a 

Towards the Generation of Dual-Rail Cluster States

Optical cluster states [Briegel 01] are quantum networks, in which the nodes are different modes of the eld in quantum states connected to each other by entanglement links according to a specic graphical pattern determining the shape of the cluster (g. 6.2). They are at the basis of measurement-based quantum computation (MBQC) [Raussendorf 01, Raussendorf 03]. Such states have already been produced experimentally, in our group [Cai 17] and by several other groups in the world [Chen 14, Yokoyama 13]. Here, we are particularly interested in the scheme developed by the group of A. Furusawa that generated the largest cluster by using temporal modes [ Yokoyama 13]. Figure 6.1 shows the experimental setup used to generate such dual-Figure 6.1 Schematics of the experimental setup used in [ Yokoyama 13] to generate dual-rail cluster states rail cluster states. First, two OPO (Optical Parametric Oscillators) are pumped with a continuous-wave (CW) laser and generate two squeezed vacua. The squeezed beams are divided in time bins of duration T , corresponding to the lifetime of the OPO cavity, so that the time bins dene independent squeezed states. The squeezed states are combined at a balanced beamsplitter (BS) to generate a series of EPR states separated by T (see sections 2.3.1 and 2.3.2). At this stage, the correlations between the nodes are represented by blue lines. To generate the dual-rail shape, an optical ber is used to delay the time bins with respect to each other of a duration T . Afterwards, the beams are interfered on another 50/50 beamsplitter to create additional entanglement links (step iv). The output state, shown on gure 6.2, is measured by homodyne detection. It consists of more than 10 4 entangled time bins multiplexed in the time domain. In the following sections, we will describe two dierent sources of multimode squeezed states of light. First, we will present the non-collinear and single-pass generation of entangle pulses via spontaneous parametric down conversion (SPDC) in a bulk nonlinear crystal (section 6.3). Then, we will present the development in parallel of two experiments of SPDC inside waveguides of PPKTP, in type 0 and type II congurations (section 6.4). The general idea behind our schemes for future experiments is not only to reproduce the dual-rail cluster by using our pulses as time modes, but also to exploit larger sets of modes that correspond to the Hermite-Gaussian basis of our source.

Laser Source

Our light source is a Femtosource Synergy+ from Spectra-Physics. It is a femtosecond Titanium-Sapphire (Ti:Sa) laser delivering 25-fs pulses at a repetition rate f rep = 156 MHz (τ rep 6 ns). In the spectral domain it corresponds to a spectrum of about 40 nm FWHM centered at 795 nm, the carrier wavelength. The laser cavity shown Figure 6.3 Captioned picture of the Synergy laser cavity. in gure 6.3 is pumped with 5W of a horizontally polarized continuous-wave (CW) Finesse-Pure-CEP laser from Laser Quantum at 532 nm. At the cavity output, the light is horizontally polarized as well and the average IR power is about 0.9 W. Details about the cavity components, alignement and dispersion compensation can be found in [La Volpe 19].

Bulk Non-Collinear Parametric Down Converter

This setup was developed during the Ph.D. of L. La Volpe [La Volpe 19] and I have been involved in the design and the experiment. The IR beam is divided in two parts at the laser output. As shown in gure 6.4, one part (40 %) goes to an Ultrafast Pulse Shaper (see chapter 4) and is used as a reference while the rest (60%) is the pump for the experiment. 

Second Harmonic Generation

The spectrum of the pump of the PDC is 1.9 nm FWHM centered at 397.5 nm. It is set by a second harmonic generation (SHG) process through a 1-mm long BiBO crystal (Bismuth Triborate) pumped with the 45-nm spectrum Ti:Sa laser. The positive biaxial crystal (section 3.1) is pumped by the horizontally-polarized IR laser. The phasematching associated to this process is critical, depending on an angle θ between the beam polarization and the optical axis of the nonlinear medium (see section 3.5.3.1).

Moreover, the incoming beam undergoes spatial walk-o. Indeed, when its polarization is parallel to the optical axis of the nonlinear crystal, the birefringence of the medium causes the intensity distribution, described by the Poynting vector S, to drift away from the propagation direction k of an incoming beam. This is the spatial or birefringent walk-o (see chapter 3), described by an angle ρ between S and k [ Gehr 98] and dened by:

ρ(θ, ω) = - 1 n(θ, ω) ∂ n(θ, ω) ∂θ (6.1)
Where n(θ = 0, ω) = n e (ω) is the extraordinary index 3.1. Even if, the spatial walk-o is usually of a few milliradians, the second-harmonic beam has an elliptical shape, which is compensated with a pair of anamorphic prisms.

Type-I Parametric Down Conversion in Free Space

The up-converted pulses are injected into a linear optical cavity with a bow-tie geometry to enhance the pump power and so the gain of the PDC process. In order to adjust the size of the beam at the cavity input, we use a telescope on its path. We built it with curved mirrors to avoid additional dispersion that can be caused by lenses. The cavity is composed of four mirrors including two curved mirrors M 1 and M 2 with radius R = 200 mm that have been chosen to reach a beam waist of 50 µm (see g. 6.5) [La Volpe 19, Siegman 86]. The length of the optical cavity selects the spectral components that can resonate in it and, for pulsed light, it is linked to the repetition rate f rep of the laser (see section 1.4). The cavity being linear, we tune its length such that the free spectral range is Inside the cavity, the light accumulates group delay dispersion (GDD = 876 f s 2 ) in a round trip, which we compensate by placing o-the-shelf negatively chirped mirrors in the beam path. This way, we do not need to use additional optical elements, such as prisms, inside the cavity. We chose M 1, M 2 and M out to be negatively chirped mirrors with a suitable compensation per reection. The correction of the dispersion aims at maintaining Fourier-limited pulses inside the cavity.

F SR = c 2 L cav f rep ,
The SPDC process occurs in a 2-mm long BBO crystal (β-Barium Borate) placed between M 1 and M 2, at the cavity waist. As mentioned in section 3.5.3.2, the phase- matching is degenerate and non-collinear with an angle α = 1.8 • between the direction of each down converted beam and the pump. In this conguration, the down converted light centered at 795 nm does not resonate in the cavity. Squeezed light (single or multimode) is usually generated in OPOs, where the generated light resonates into the cavity in order to increase the parametric gain. In such congurations the limited cavity bandwidth usually prevents the generation of uncorrelated quantum states belonging to consecutive pulses. On the contrary, the single-pass non-collinear conguration of our setup allows for the generation of two-mode entangled states at the laser repetition rate. For that reason, we say that our setup generates a train of entangled pulses, one belonging to the signal channel and the other belonging to the idler channel. As shown in g. 6.6 and 6.4, the signal and idler pulses are combined on a 50/50 beamsplitter to perform a basis change producing two single-mode squeezed vacua (SMSV, section 2.3.1). A delay line is inserted in the idler path to match the arrival time of the signal and idler pulses on the BS.

Role of the Seed Beam

A small fraction (7 %) of the laser light, the seed beam, is picked up before the SHG and it follows a distinct path to the PDC crystal. A delay line is installed on its path in order to synchronize the arrival time of the pump and seed pulses inside the nonlinear crystal, thus stimulating the single-pass PDC process. After the BBO, the seed follows the path of the signal beam and is used for alignment in the homodyne detection setup (see gure 6.6). For the measurements of squeezed light, the seed beam is blocked.

Spectrally-Multimode Squeezed States

To unveil the spectral multimode structure of the down-converted light, we spectrally shape the local oscillator (LO) beam in the homodyne detection with the pulse shaper (chapter 4). As shown in g. 6.6, we combine the shaped LO with the squeezed vacuum on a balanced beamsplitter (BS) and send the interference light to a homodyne detector. The LO power is 10 mW at the BS corresponding to 5 mW on each homodyne photodiode. The homodyne signal from the detector is sent to a MXA spectrum analyzer from Agilent Technologies. The number of modes we can access is limited by the spectrum of the LO being 36 nm FMWH. If we consider the phase matching of the PDC and do a Schmidt decomposition as described in section 2.3.5, we nd a Hermite-Gaussian basis with a rst mode of width ∆λ = 15 nm [La Volpe 19]. On gure 6.7, we show the overlap of the LO spectrum (in red) with the rst and fth HG modes. We see that the spectrum of the LO is wider than the spectrum of the rst mode, indicating that it is possible to shape the LO spectrum to overlap with it. However, we cannot shape the spectrum of the fth mode with our LO. Although the LO spectrum is wide enough, the spectral intensity of the LO at around 780 nm and 815 nm is too low compared to the level required to shape a HG 4 mode.

In the experiment, we measured quadrature squeezing in only four spectral modes, i.e. the modes HG 0 to HG 3 . This is due to the low level of squeezing generated in our experiment that beyond the fourth mode is hidden by the noise of our homodyne detector (see sections 5.2 and 5.4). The measured quadrature variances are shown in gure 6.8. The blue curve indicates the shot-noise level corresponding to the noise of the vacuum state. The orange curve is the homodyne signal when the LO phase is scanned thanks to a piezoelectric actuator placed on the LO path. The amplitude of oscillations depends on the frequency of the ramp signal, here 300 mHz, on the piezo actuator. Each curve is the mean of ve measurements traces, corresponding to 5000 data points. To perform these measurements, the pump cavity length is stabilized with a Pound-Drever-Hall lock so as to maximize the PDC emission (g. 6.5). Details on cavity locking can be found in [Pinel 10, La Volpe 19]. The maximum squeezing is measured in the fundamental mode HG 0 , where it is 0.31 dB and approximately the same anti-squeezing. This suggests that the amount of available squeezing is low not because of signicant losses in the experiment but rather because we have a low parametric gain associated to the single-pass conguration of our experiment. 

Spatio-Temporal Correlations

In the previous section, we presented the measurement of spectrally squeezed modes although the phase-matching of our experiment is non-collinear. In this case, the phasematching function has spatial and spectral parameters and if we do a Schmidt decomposition as described in section 2.3.5, we obtain a new spatio-spectral Schmidt basis revealing that signal and idler have spectral and spatial correlations. Then, we do a Bloch-Messiah decomposition to calculate the squeezed modes and obtain a basis of spatio-spectral functions, whose rst modes are shown on g. 6.9. The details of this calculation can be found in the thesis of L. La Volpe [La Volpe 19]. The measurement , , ... Figure 6.9 Theoretical spatial-mode basis from the numerical simulation of the experiment [La Volpe 19]. The abscissa is the frequency ω in fs -1 and the ordinate is the wavenumber q x in µm -1 .

of such modes would require two shapers, one for the LO spectrum and another one for the spatial shape the LO. In the absence of a shaper for the spatial modes, we used a razor blade so as to approach the spatial shape of the rst and second modes of g. 6.9, while the spectrum was shaped with our pulse shaper. We considered a basis of four spatio-spectral modes (g. 6.10) being distinct to the PDC eigenstates and made from the combination of the HG 0 and HG 1 spectra and two spatial modes, top and bottom beams. We performed homodyne measurements on these modes and constructed a covariance matrix (see chapter 2 eq. 2.68) to unveil quantum correlations (g. 6.11 and 6.12).

Figure 6.10 Schematic of the spatio-spectral modes that we measured in our experiment.

The abscissa and the ordinate of the spatial shapes is in µm. The abscissa of the associated spectral amplitude is the frequency in fs -1 and the ordinate is the amplitude in arbitrary units. Although the level of squeezing we measured is low (0.5 dB maximum), the results are promising, revealing the spatially and spectrally multimode structure of the downconverted light. Moreover, the non-zero o-diagonal terms of the covariance matrix (g. 6.12) suggest the existence of bipartite quantum correlations between the spatiospectral modes.

In the following section, we will present the development and implementation of parametric down conversion inside a waveguide of periodically-poled KTP.

Guided Parametric Down Conversion

Although the experiment presented in the last section allowed to generate multimode squeezed states of light at a high rate, the level of available squeezing is low so we can only measure few squeezed spectral modes. Moreover, the maximum level of squeezing measured is lower than that of an OPO experiment [ Roslund 14]. Indeed, in the singlepass conguration, the down-converted light does not resonate inside a cavity reducing the gain of the PDC process in the BBO crystal. Additionally, because of the noncollinear phase-matching, the down-converted light is highly multimode in the spatial domain as well, reducing the squeezing per mode.

In order to increase the level of squeezing in our experiment, we chose to replace the bulk BBO crystal with a guided periodically poled KTP (Potassium Titanyl Phosphate). Amoung others, the gain of the PDC depends on the crystal nonlinearity and the intensity of the pump (eq. 3.50). As presented in the section 3.4.2, for most phasematching congurations the nonlinearity of the KTP is bigger than that of the BBO. Thus, we decided to develop in parallel two dierent setups with KTP crystals that explore the collinear type-0 and type-II phase matching congurations respectively. The setups are built on two separate breadboards so that they can be interchangeable and they can replace the BBO setup. While the cross-section of the BBO was 3 × 3 mm 2 with a pump waist of 50 µm in it, we work with waveguides of 4-µm width, corresponding to an increase of the pump intensity of a factor of 100 if the input pump power is kept the same.

In the type 0 conguration, the signal and idler pulses share the same polarization (section 3.5.3). The output state is a multimode squeezed state in the spectral domain. If we want to produce a train of entangled pulses with a structure similar to the [ Yokoyama 13], we would use two type-0 PPKTP waveguides and combine the squeezed output states on a balanced beamsplitter as shown on gure 6.13. The type-II phase-matching allows the compact and collinear generation of signal and idler beams in orthogonal polarizations. They can be separated with a polarizing beam splitter as shown on gure 6.14. In this conguration, the output state is already a train of entangled pulses, emitted at the repetition rate of our laser, similarly to our experiment with BBO. In practice, we consider using a Glan-Taylor polarizer for the beam separation, to achieve eective 50/50 separation and avoid to have a mixture of H polarized light inside the V polarized one. They are thinner and feature a higher damage threshold than the Glan-Thomson polarizer and the Wollaston prism.

Numerical Analysis

We use a code developed by our collaborators in Paberborn [ Brecht 14] to design the waveguides for our experiments. In this section, we will review the parameters inuencing the structure of the down-converted light. We do a Schmidt decomposition of the PDC process in KTP to determine the eigenmodes of the signal and the idler. We nd a mode basis which we can approximate with Hermite-Gaussian functions and whose spectrum depends on the phase-matching. In gure 6.15, we show the rst Schmidt modes of types 0 and II PDC. In type 0 phase-matching, signal and idler share the same polarization, they also share the same basis of Schmidt modes. We see in gure 6.15 that the spectrum of the rst Schmidt modes perfectly overlap. On the contrary, in the type-II conguration, the spectra of the rst modes of signal and idler are slightly dierent. The dierence between their central frequency is ∆λ 0 = 2 nm. Moreover, the idler mode is wider than the signal one, the dierence between the two spectra is ∆λ = 3.5 nm. Indeed, as signal and idler beams are generated in dierent polarizations in KTP, they experience dierent refractive indices (eq. 3.81) due to the birefringence of the KTP, which impacts the mode structure. Thus, their mode basis is intrinsically dierent. However, a possible solution to modify the mode spectrum is proposed in [Roman- Rodriguez 20].

Compared to the spectral modes of the BBO squeezed states, which rst mode had a 15-nm spectral FWHM, the rst modes from the waveguides would be narrower with ∆λ type0 ∼ 9 nm and ∆λ typeII ∼ 3 nm. We compared the spectrum of the LO with the HG modes from the Schmidt decomposition for the type 0 and type II phase matchings. Considering the spectra ∆λ type0 and ∆λ typeII of the rst modes, the goal is to determine how many high-order HG modes we can shape with our local oscillator (section 5.5.1). This would give us an idea of the number of squeezed modes we could measure. In gure 6.16, we show the overlap of the local oscillator spectrum with one Hermite-Gaussian mode of the Schmidt decomposition, HG 10 , in type 0 and II congurations. We can see that in type-II phase matching, the spectrum of the LO is much larger than that of HG 10 , but this is not the case in type-0 phase matching, indicating that it is not possible to reproduce this mode with the spectrum of the LO. 

Waveguide Poling Length

Periodic poling consists in the periodic inversion of the nonlinearity of the birefringent medium. It is used to achieve quasi-phase matching and increase the gain of the PDC (see section 3.5.3.3). The poling length of a nonlinear crystal corresponds to the interaction length. When we increase , we increase the intensity of the parametric process [Boyd 08, Ou 07]. From the results of numerical simulations, this gives a larger Schmidt number K (section 2.3.5), i.e. the number of Schmidt modes, which here, we will assimilate to the squeezed ones (g. 6.17). However, we observe the inverse evolution for the spectral width of the Schmidt modes. Indeed, when the interaction length is increased, the phase-matching function sinc ∆k(ω) 2 becomes narrower. There are more modes but each one is spectrally narrower, as can be seen on gure 6.18, where only the rst Schmidt modes are plotted for signal and idler in type-0 phasematching. Although the interaction length contributes to increase the gain of the parametric process (see section 3.5.1), the overall squeezing is distributed among a larger number of modes, which can lead to a lower squeezing level per mode. Therefore, we have to nd a trade-o between the number of modes, linked to the level of squeezing per mode, and their spectral width, which xes the number of modes we can measure by homodyne detection. In the simulations, the interaction length was varied from 500 µm to 3 mm with a xed pump spectrum.

Pump Spectrum

When the pump is a frequency comb, its spectrum is wider than in the continuous wave regime and the range of pump frequencies experiencing parametric down conversion with the same phase-matching is increased (g. 6. 19). As a result, the down-converted light is also a frequency comb, which spectrum depends on the pump one. Thus, when the pump spectrum is increased, dierent frequency-matching are possible, according to the energy conservation, resulting in dierent multimode structure of squeezing (g. 6.20). From the simulations, it appears that the spectral width of the generated modes evolves inversely to the pump spectrum. Experimentally, this means that we could tune the pump spectrum to slightly increase the number of modes that are accessible via homodyne detection. The reasoning is similar in type-II phase-matching, except the fact that because signal and idler modes are dierent (section 6.4.1.1), tuning the pump spectrum can also change their relative central frequency (g. 6.20 bottom).

Inuence of Temperature and Dispersion

The temperature has an inuence on the inner structure of the nonlinear material. It slightly changes the poling length, modifying the phase-matching. In general, we increase the temperature of the nonlinear crystal to reduce losses due to the Blue-Light Induced InfraRed Absorption (BLIIRA) and so increase the gain of the PDC.

BLIIRA Eect Crystals are characterized by the regular arrangement of elements at the nodes of a network. Potassium Titanyl Phosphate (KTP) is a ionic crystal of formula KTIOPO 4 , i.e. composed of potassium, titanium, phosphate and oxygen ions. However, real crystals exhibit irregularities of various forms. These irregularities, also called impurities or defects, can be extended, which includes linear, planar and bulk defects or punctual. In the latter case, the volume occupied by the point defect is inferior to the lattice constant and is of the order of one or two atom radii. The most common point defects are the Schottky ones. They correspond to the vacancy of an element at a network node. As crystals are neutral in charge, the vacancies carry charges. In the case of an ionic crystal such as NaCl or KTP, vacancy always form in pairs, cationic and ionic vacancies, so that the overall charge of the crystal is conserved. Impurities are sparse and are found in every crystal. They form during crystal growth and their quantity can be adjusted at this stage. Additionally, they are associated to the crystal properties, notably higher electrical resistivity and reduced enthalpy [Laulhé 18,Fleury 83]. When the crystals are placed in particular environments, the vacancies can be lled with new elements being of the same species or not, modifying the crystal properties. In the case of colored centers [ Schulman 62], a vacancy can be lled with a free electron. The absorption spectrum is modied and the crystal shows a specic color associated to the nature of the color center.

In the case of KTP, depending on the ionic decomposition of the crystal, vacancies can be formed from Ti 3+ /Ti 4+ , O -/O 2-and K + ions. This corresponds to dierent types of traps for charge carriers. Additionally, the traps are associated to dierent energy levels, designated as shallow and deep traps. In particular, the occupancy rate of the shallow traps depends on thermal ionization, i.e. thermal agitation contributes to pull charge carriers o the more shallow traps, keeping them empty. When blue light is shined on a KTP crystal, it generates ionizations and contributes to ll in shallow traps in such a way that thermal ionization becomes insucient to keep them empty. Filled-up traps are colored centers, which can interact with infrared (IR) photons. This phenomenon leads to BLIIRA characterized by a brutal increase of IR absorption, possibly up to crystal deterioration. The coecient of IR absorption α IR evolves with the blue-light intensity [Wang 17, Fleury 83]. Furthermore, for blue-light intensities below 1 kW/cm 2 , the study of the inuence of the absorption coecient for the IR light presented in [ Wang 17], reveals that it evolves quadratically with the pump power. The usual measurement protocols rely on the comparison of the IR-absorption coecient with and without BLIIRA. They consist in measuring the increase of temperature of the crystal or to monitor the variation of the IR-light intensity exiting the crystal. To prevent the BLIIRA eect, one method is to increase the temperature of the nonlinear crystal, typically from 20 • C to 90 • C approximately, to promote thermal ionization and keep the shallow traps empty. Working with pulsed light is a way to limit BLIIRA, as long as the pulse duration and the laser repetition rate remain inferior to the response time of the phenomenon. Another method is to increase the working wavelength of the IR above 800 nm, at which the phenomenon is reduced [ Mabuchi 94]. However, this last option was not considered because we do not have such laser source. Moreover, the simulations show that the increase of the working wavelength, which we set by modifying the central wavelength of the pump, goes with a signicant increase of the spectral width of the Schmidt modes (g. 6.21), reducing the amount of squeezed modes measurable via LO-shaped homodyne detection 5.5.1. We work with KTP waveguides provided by AdvR (g. 6.22). The company tested the waveguides for the SHG at dierent temperatures between 20 • C and 90 • C. However, they did not characterized the BLIIRA in them, so we do not have any information on this phenomenon and only experimental tests of the waveguides will give us information about its eect on our experiment. Figure 6.22 Picture of the PPKTP waveguide chip on its mount.

Waveguide Chips

We performed numerical simulations of the PDC process to determine the poling period of KTP associated to each phase-matching, namely Λ 0 = 3.19 µm and Λ II = 8.39 µm, as well as the poling length or interaction length being 0 = 1 mm and II = 1.5 mm. However, for manufacturing reasons, the KTP crystals provided by AdvR Inc. could not be shorter than 5 mm, the minimal length guaranteeing the quality of the crystal input and output facets. Therefore, the waveguides we use in our experiment are the one shown in g. 6.23, with a periodically-poled portion of PPKTP, where the nonlinear process occurs and a portion of bulk KTP which is not phase-matched. AdvR provided us with a 5-mm long and 1.5-mm wide chip containing 30 waveguides arranged in 5 groups of 6 waveguides of cross-section 2 µm, 3 µm and 4 µm -two of each size (g. 6.24). All 30 waveguides have dierent performances, which need to be assessed before doing experiment. Figure 6.24 Schematic of the waveguide chip provided by AdvR. Each group contains 6 waveguides of cross-section 2 µm, 3 µm and 4 µm.

Waveguide Characterization

The red beam at 795 nm is coupled inside each waveguide with a lens of focal f = 11 mm and a numerical aperture NA = 0.2. The numerical aperture NA describes the range of angles over which an optical device can collect or emit light. For a lens, it is dened as NA = n sin θ, where n is the refractive index of the medium in which light propagates and θ delimits a cone of acceptance of the emitted or collected light. θ is dened as θ = D 2 f , with D being the diameter of the lens and f the focal length. In our case, the NA is chosen to match the one of the waveguides (NA wg = 0.2 from the datasheet) to focus the maximum light power at the waveguide input. On the contrary, the collimation lens at the waveguide output is chosen with a higher numerical aperture, NA = 0.3, to make sure to collect all the light from the waveguide. Because of the manufacturing process [Bierlein 87], it is dicult to produce two waveguides with the same performances. Thus, we couple light inside each waveguide of the chip to identify the ones featuring the best performances for our application. We measure the coupling eciency of each waveguide and the output spectrum to verify that it is not changed by the guide. We also observe the shape of the output mode with a video camera. The waveguides we designed with AdvR are monomode for the near infrared light, so the targeted output mode should resemble a fundamental TE mode (see section 1.3). Fig. 6.26 shows the distribution of intensity of a beam getting out of one of the best waveguides of the chip, where the coupling eciency reaches 86 % (input light intensity compared to output light intensity). Fig. 6.25 is a picture of the setup we used to test the waveguide chips. For our experiment, we are interested in the 4-µm waveguides, which are the ones giving the best performances. The lenses are installed on a XY-translation mount from Thorlabs and the mount itself is xed on a one-axis translation stage to allow adjustments in the three directions of space. The chip is positioned on a metallic mount connected to an oven from Covesion which allows to control the temperature of the waveguides. The chip and oven are installed on an Elliot Martock XYZ exure stage from Elliot Scientic. It is composed of a XYZ exure stage on which an additional two-axes stage is mounted to allow orientation adjustments.

Additionally to the coupling eciency measurement, we use a spectrometer AvaSpec-ULS3648 from Avantes to measure the input and output spectra of the IR beam. The curves are displayed on gure 6.27. The top curve represents the targeted spectrum which is similar to the one measured at the laser output. The bottom curve also represents an IR spectrum at the output of a waveguide. Its shape recalls an interference pattern and could indicate that several TE modes were coupled inside the waveguide. In a second time, we turn the polarization of the beam from the horizontal to vertical. For a vertically polarized input beam centered at 795 nm, second harmonic generation (SHG) takes place, producing a blue beam with a spectrum centered at 397.5 nm. We measure the spectrum of the light exiting each waveguide and identify those for which the output light spectrum has a sinc shape (the joint spectral intensity is dened in chapter 3), indicating that the proper process occurs (g. 6.28).

For our experiment, we are interested in the reciprocal process, spontaneous parametric down conversion. To do so, the blue beam produced by SHG through our BiBO crystal 6.3.1 should be eciently coupled in our chip. In practice, the coupling of our blue beam revealed to be very dicult with an eciency around 15 %, much lower than that of the IR light. This is mainly due to the fact that at theses wavelengths, the waveguides are multimode and the coupling of higher-order modes is critical to the beam size and alignment, i.e. the angle of incidence of the beam on the waveguide input. On the one hand, this makes it dicult to transmit the entire spectrum through the guide and on the other hand, high-order modes do not contribute much to the down-conversion process [ Christ 09]. On gure 6.29, a high-order TE blue mode at the output of one waveguide is displayed.

Reveal SPDC in PPKTP waveguides

To reveal the generation of down-converted photons inside the PPKTP waveguides, we used a COUNT-100C single-photon counter from Laser Components. We inject a Figure 6.26 Picture of the output mode from waveguide 1.6 of 4-µm cross-section.

vertically-polarized blue light centered at 397.5 nm inside a type-0 PPKTP waveguide. This is the pump beam for the SPDC process. At the waveguide output, the blue pump is transmitted through a dichroic mirror while the red light is reected and sent to the single-photon counter whose eciency is 80 % (g. 6.30). Two additional density lters of transmission T = 80% are placed before the counter to lter out residual pump photons. Then we change the polarization of the blue light and measure the number of detected IR photons. When the pump is horizontally polarized, the number of detected photons is 3.5 in average in a time window of 2 µs for an input blue power of 9 mW, this is the reference signal where we take account for the dark counts (2.5 photons). Then, we change the polarization to vertical and measured 14.5 photons in average, which corresponds to an increase of 11 photons in the IR radiation. The measurements are done in a time window of 2 µs, which corresponds to approximately 300 pulses, according to the laser repetition rate. Thus, this measurement corresponds to an emission rate of 14.2 MHz, i.e. 0.091 photons per pulse, and corresponds to an estimation of 2.58 dB of squeezing per pulse calculated with the equation 2.46. These preliminary results would indicate that the generated level of squeezing should be larger than in the bulk conguration

Squeezing Measurements

We use the technique described in section 6.3.2.2 to unveil the spectrally multimode structure of the parametric light at the output of a type-0 waveguide of 4-µm crosssection. We combine the PDC signal with a 10 mW local oscillator (LO) at a 50/50 beam splitter. We scan the phase of the LO with a piezoelectric actuator and we set the frequency of the ramp signal to 300 mHz. To measure squeezing in dierent spectral modes, we shape the LO spectrum with the pulse shaper (see chapter 4 for details on Bottom: from the same waveguide when more than one mode is coupled.

pulse shaping). We rst set the spectrum of the Hermite-Gaussian to ∆λ = 15 nm and we tune the spectrum and the central wavelength of the LO mode to optimize the squeezing measurement. In gure 6.31, we display the squeezing measurements of the modes HG 0 , HG 1 and HG 2 . On each graph, the green curve corresponds to the shot noise and the orange curve is the quadrature variance measured with a MXA spectrum analyzer with a resolution bandwidth (RBW) of 200 kHz and a video bandwidth (VBW) of 10 Hz. Data is acquired during one second, which corresponds to 1000 data points.

In the rst two modes, i.e. HG 0 and HG 1 , the levels of squeezing and anti-squeezing are similar, indicating a low level of loss in the experiment. In HG 0 , the maximum measured squeezing is approximately 0.4 dB and in HG 1 it is 0.2 dB. We could measure squeezing in seven spectral modes, i.e. up to HG 6 where the squeezing level is 0.2 dB. It is more modes than in the experiment using a bulk BBO crystal which is very promising. Cooper 13]. In our case, we have to design a large-bandwidth homodyne detector to be able to measure quadrature squeezing pulse-by-pulse, at a repetition of rate 156 MHz (see section 6.1), which goes beyond the bandwidth limit of all already implemented schemes, to the best of our knowledge. I have been working on the design and adaptation of fast homodyne circuits based on previous literature to build our homodyne detector. A homodyne detector is generally composed of a photocurrent-subtraction stage followed by a current-to-voltage conversion (called transimpedance amplier) and an additional signal-amplication stage (g. 7.1). In this chapter, we will present the details of signal processing and the characteristics of the detector we focused on. The detector allows time and frequency analysis within a bandwidth set by the detector parameters. In general, good care is taken of the photodetection and transimpedance stages. 

Light Detection

The signal light interferes with the local oscillator at a balanced beamsplitter and the output light is sent to two s3883 PIN photodiodes (see section 7.1.2) from Hamamatsu.

Each photodiode generates a current with conversion eciency η P D (section 5.2.1). In this section, we will compare PN and PIN junctions to describe the functioning of photodiodes for homodyne detectors.

P-N junction

A PN junction is a semiconductor material at the interface between two regions of opposite doping, named P and N [ Hook 01]. In the P-doped region, the charge carriers are holes in atoms such as boron or gallium, while in the N-doped region they are electrons in atoms such as arsenic or phosphorus. When the two regions are put in contact, the charge carriers travel spontaneously towards the junction and electron-hole pairs recombine. This phenomenon creates, both in N and P regions, areas depleted in charge because of recombinations [Sah 57]. This region near the junction is called the depletion zone. Contrary to the N and P regions, which are electrically neutral, the depletion zone is composed of anions and cations, resulting from the charge-carrier movement from the P and N regions. As a consequence, a potential dierence sets up on each side of the junction and generates a electric eld E d oriented from N to P. When important enough, this eld blocks the movement of electrons towards the PN junction. Therefore, the depletion zone acts as an insulating region or a high electrical resistance, which value can be modulated by applying a voltage dierence on each side of the material. We distinguish between two kinds of bias: the forward biasing and the reverse one. of a voltage generator is connected to the P region and the negative pole (anode) to the N region. As a consequence, the movement charge carriers is encouraged towards the junction, which reduces the depletion zone and its associated resistance. In this conguration, the PN junction operates as a diode. When a voltage superior than a threshold is applied, ∆V ≥ ∆V T , a current can ow through the junction.

Reverse biasing In this case, the N zone is connected to the cathode, the P zone to the anode and the movement of charge carriers is encouraged away from the junction. As pair recombination still occurs, the depletion region is expanded and the associated resistance increases. In this conguration, electrical current hardly ows through the junction and the residual current is called dark current. however, a current can be generated if enough energy is brought to the depletion zone to create an electron-hole pair. This is the operating principle of a photodetection where the photon-absorption generates a current according to the photon energy [ Weckler 67].

PIN photodiode

In the previous section, we saw that reversely-biased PN junctions can be used for photodetection. However, the functioning of most photodiodes is based on PIN junctions.

In a P-I-N structure, there is an intrinsic I region between the N and P zones (g. 7.3).

This region is ooded with positive and negative charge carriers in equal concentration but superior to that of N and P. As the I zone contains an excess of charges, the movement of charge carriers from N and P is not blocked, thus allowing the creation of a wider depletion zone. In this case, the depletion zone is only within the intrinsic region and its width can be set arbitrarily. Thus, the PIN structure allows to reach higher photon-to-electron conversion eciency. In our detectors, we used s3883 PIN photodiodes from Hamamatsu. We report their parameters in a table: The photodiodes s3883 feature a Watt-to-Ampere conversion coecient of S = 0.58 A/W, which corresponds to a quantum eciency η P D = 0.91 at 795 nm. The bias voltage applied to their bounds allows to adjust their terminal capacitance (g. 7.4).

Photocurrent subtraction To perform a current subtraction, the photodiodes are connected in series such that the current generated by each photodiode is of opposite sign (g. 7.1). Thus, the current at their connection point is i P D = i 1 -i 2 according to Kirchho's laws [ Masalov 17]. 

Transimpedance amplier

A transimpedance amplier (TIA) is an electrical circuit used to convert a current into a voltage with an adjustable gain. The functioning of a TIA relies on an operational amplier (op-amp) as it is displayed in g.7.5. The amplier is characterized by a gainbandwidth product GBP , which sets the limits of its performances and is provided in the datasheet of the device. The gain of the current-to-voltage conversion is set by a feedback resistor R F , called the transimpedance gain, such that the output voltage V P D reads: 

V P D = R F × i P D (7.1)
Where, i P D is the subtracted photocurrent. Moreover, the TIA gain is linked to the cuto frequency of the circuit by the following relation:

f T IA = GBP 2π R F (C F + 2C P D + C A1 ) (7.2)
Where C P D is the intrinsic capacitance of the photodiodes and C A1 the intrinsic capacitance of the operational amplier, both indicated in the datasheet of the components. In practice, a feedback capacitor C F is wired in parallel to R F (g. 7.5) and allows to atten the gain curve of a Bode plot and can slightly increase the bandwidth of the circuit. On the gure 7.6, an example of Bode plot is presented. When the feedback capacitance C F is too small, a peak can appear towards the highest frequencies of the Bode curve. This is a conguration in which the circuit could easily oscillate. On the contrary, if C F is too big, the gain curve is damped and the bandwidth is reduced. Thus, the feedback capacitor is linked to the parameters of a TIA and can be estimated by [Masalov 17]:

C F = 2 C P D + C A1 π × GBP × R F (7.3)
To design a high-bandwidth detector, we need to take into account that the performance of the op-amp may not be the same at all frequencies. Therefore, the conditions of stability are not the same at low and high frequencies. While a feedback resistor R F sets the TIA gain at low frequencies (eq. 7.1), at higher frequencies it depends on the noise gain such that [Ramus 09]: than the optimal values. The gain increase at higher frequencies indicates that the circuit may display parasitic oscillations.

V P D = R F G(f ) × i P D (7.4)
where,

G(f ) = 1 1 + G N G G OA (f ) (7.5)
G N G is the noise gain of the operational amplier. Its value is xed by the parameters of the TIA and is chosen such that G N G ≥ G N G,min , with G N G,min being the minimum noise-gain value below which the op-amp is unstable (see paragraph 7.2 below). G OA (f ) is the frequency-dependent gain of the operational amplier (OA). It is a measure of the gain achieved when there is no feedback implemented in the circuit. It depends on the gain-bandwidth product (GBP) of the op-amp and is dened by [Ramus 09]:

G OA (f ) = GBP f + f max (7.6)
where f max is the maximum bandwidth achievable with an operational amplier. It is dened by:

f max = GBP G N G,min (7.7) 
Stability of Decompensated Op-Amps Regular operational ampliers are designed to be stable for a noise gain G N G,min = 1, which limits the maximum available bandwidth of the transimpedance amplier. Decompensated op-amps oer a larger gain-bandwidth product because they can be operated at minimum gains higher than 1 and specied in the datasheet of the device. They are more suited for large-bandwidth applications [ Instruments 13]. The noise gain of the op-amp is dened by:

G N G = 1 + R F R C (7.8)
Where R C is a compensation resistor used to adjust the gain of a decompensated op-amp. In practice, R C is placed in parallel to the feedback resistor R F as shown in gure 7.7. In a homodyne circuit, the TIA follows the photocurrent-subtraction stage and corresponds to an innite impedance. Thus, if no compensated resistor is used, the noise gain is very small (G N G → 1) and the circuit is unstable. At high frequencies, the noise gain depends on the capacitances of the transimpedance amplier such that:

G N G,HF = 1 + 2C P D + C A1 C F (7.9)
Experimentally, unstable op-amps cause high oscillations at high frequencies (f ≥ 500 MHz), i.e. beyond our working frequency range. The oscillation acts as an oset in the electronic noise, which can be problematic especially if we need to measure signals of low amplitude. It is possible to damp this parasitic oscillation by increasing the transimpedance gain R F , but it comes at a price of lowering the detector bandwidth. We conclude this section with the table containing the parameters of the op-amps we considered in the development of our homodyne detector:

Separate DC and AC Signals

We design a high-bandwidth detector to be able to measure quadrature squeezing at the repetition rate of our laser (156 MHz). While we use the DC signal to align the detector, the AC signal is much lower but contains the signal of interest. It needs to be amplied. To avoid saturating the detector, we can separate the DC and AC signals at the TIA output. This allows to amplify the AC signal separately. Thus, we retrieve the low-frequency signal with a low-pass lter (LPF) and the high-frequency part with a high-pass lter (HPF). We choose the lower cuto frequency of the HPF such that we eliminate most of the noise at low frequencies while being able to discriminate the signal coming from dierent pulses at the AC output when we send pulsed light on the detector. In gure 7.9, we show a numerical simulation of the transformation of light pulses after a TIA and a HPF of lower cuto frequency f 0 = 8 MHz. On the left, the initial pulses in arbitrary units and the output pulses on the right. It is possible to lter and amplify the AC signal simultaneously by designing an active high-pass lter with an operational amplier 7.3.2.

Active High-Pass Filter

Passive high-pass lters (HPF), composed of a resistor R and a capacitor C in parallel, are used to lter out frequency components of a signal, which are inferior to a cuto frequency f 0 . The input-output relation of such circuit, i.e. the transfer function H(ω), reads:

H(ω) = V out V in = 1 1 + jRCω (7.12) H(ω) = Re[H(ω)] + j Im[H(ω)] (7.13) With, Re[H(ω)] = 1 1 + R 2 C 2 ω 2 (7.14)
Where, the angular frequency ω and the cuto frequency f 0 are dened by: ω = 2π f 0 (7.15)

f 0 = 1 2π R C (7.16)
In an active high-pass lter, an operational amplier is used to amplify the ltered signal as shown on gure 7.10. In this conguration, R 1 and C are the parameters of the HPF while R 2 is used to set the gain of the amplication. Thus, the transfer function reads: 

H(ω) = - R 2 R 1 1 1 + jR 1 Cω (7.17) Re[H(ω)] = - R 2 R 1 1 1 + R 2 1 C 2 ω 2 (7.18)
We use this setup in our detectors to separate and amplify the feeble high frequency part (AC) of the homodyne signal from the low-frequency part (DC). The gure 7.11 shows the active high-pass lter of one detector where we used an OPA855 amplier and wired a feedback capacitor C 21 to stabilize the circuit. The capacitors C 12 to C 17 are used to lter the power supply of the op-amp. In the early stage of the project, we also collaborated a lot with Xavier Solinas from Laboratoire d'Optique et Biosciences (LOB), who helped us design our rst operational circuit.

We worked with EAGLE which is a software dedicated to printed-circuit-board (PCB) design and developed by CadSoft Computer GmbH and Autodesk. It stands for Easily Applicable Graphical Layout Editor. An EAGLE program comprises a circuitdiagram editor associated to a simulator of PCB. Developing electronics at high frequencies is quite dierent than at low frequencies. One needs to adapt the routing of the circuit to the bandwidth of the signal to be processed. This includes adjusting the board thickness 7.4.1, the size and positioning of the electronic components 7.4.2 as well as the track dimensions 7.4.3. In this section, we will review these parameters.

Multiple-layer Boards

The main focus when developing a PCB is to protect the signal traveling inside from perturbations, i.e. to maintain the electromagnetic compatibility (EMC) of the circuit [ Charoy 06]. The perturbations correspond to electromagnetic noise and consist essentially in modulations coming from an exterior source, i.e. outside of the board, or coming from neighboring conductive tracks, e.g. the ones carrying the power supply. To isolate the signal, one method is to divert critical tracks from the signal path on the PCB layout. This is done often in the design of 2-layer boards but it is possible to choose a 4-layer conguration and distribute the tracks between the layers [ Shukla 09]. Typically, the top layer will be used for the signal path, the second layer would be the ground (GND) reference, and the third layer will be dedicated to the power-supply tracks. The fourth layer would be an another layer for the signal or would be kept empty. This is dened as the stack-up of the PCB [ Shukla 09]. The track thickness and their spacing can be adjusted as well to reduce radiations, crosstalks between tracks and improve the performances of the board. In our case, we started designing bi-layered PCBs and consider designing 4-layer circuits for future projects. Therefore, all the PCBs we will present in this chapter are bi-layered.

Choosing the Size of Electronic Components

Circuit optimization goes with the reduction of the electronic components. Each components brings a level of noise, which contributes to the overall electronic noise of the circuit. We use components of CMS dimensions 0603. This allows to bring the components closer and reduce the circuit size, thus reducing the length of the signal path. This is particularly relevant when working with RF signals and designing a bi-layered circuit. At these dimensions, the PCBs are soldered in an oven, which allows to produce circuits of reproducible quality but makes it more dicult to replace components on the board for tests.

Characteristics of Conductive Tracks

Track Length

The track length depends on the the signal path inside the circuit, including the number of transformation the signal will undergo. The signal travels inside conductive tracks, commonly in copper, in which dispersion and loss can occur through dissipation, heat and absorption. Therefore, good care should be taken to restrict the track length between electronic components to the minimum.

Track Width

The track width depends on the nature of the signal traveling in it. In particular, the width should be estimated considering the current, which will ow in the tracks in order to avoid signal loss and device deterioration due to heat dissipation. This is the case for power-supply tracks for example, which can carry high electric current. Therefore, the tracks carrying the power supply could be wider than those carrying the signal. On the contrary, the signals containing high-frequency components are very sensitive and can interact easily with the environment [ Charoy 06]. Therefore, the conductive tracks carrying such signal are commonly narrower. The estimation of the track width consists in nding a trade-o between the reduction of material heating and low signal dissipation. In our case, we essentially apply voltage on our device so the current owing in our circuits is low. Thus, we chose to set the same track size everywhere on the board. Theoretically, the track width w can be determined with the following equation [IPC2221A 03]:

I max = k × A 0.725 × ∆T 0.44 (7.19) S = w × t (7.20)
Where I max is the maximum current expected to ow inside the track, typically I max = 1 A, S is the track cross-section in mils 2 (1 mil = 0.0254 mm) and is the product of the track thickness t and the track width w. ∆T = 100 • C is the temperature variation the track should be able to tolerate. Finally, the coecient k has a dierent value depending on the position of the track in the PCB because the heat dissipation is dierent. k = 0.048 for an outer track and k = 0.024 for an inner track. Thus, for a surface track of typical thickness 35 µm, the track width on our PCB is w = 0.3048 mm. This is the width of the conductive tracks on our circuits.

Change of Direction

Change of direction on a PCB is associated with impedance discontinuities, which can cause the signal to be delayed or experience losses. Smoothing the outer right angle is already enough to limit loss, but it is often preferred to convert an angle at 90 • into two consecutive angles at 45 • . The best option is an arc-of-a-circle type of change of direction. As can be seen on the appendix D, all the changes of direction in our PCBs were smoothed, especially at the photocurrent-subtraction stage to limit signal loss. Vias are metallic holes used to make vertical electrical connections between the layers of a PCB [IPC2226A 03]. Often, they allow to unify the ground reference on the PCB. By adjusting their size and density on a board, they can be used to isolate sensitive signal from noise sources. In principle, there are no limitations to the number of vias on a board. However, to estimate the spacing d between two vias, the most sensitive component of the signal should be taken as a reference, i.e. the highest-frequency component of the signal, similarly to a Faraday cage. Then, the maximum spacing is given by [Harmeling 17]:

d max = λ HF 100 (7.21)
Where λ HF is the wavelength of the signal component of highest frequency. In our case, the spacing between vias is 6 mm maximum.

Via Size

Vias have an intrinsic capacitance and inductance which depend on its size. Thus, narrower vias feature lower capacitance while wider vias have lower inductance. However, the inductance increases with the length of a via. Therefore, the size of the vias need to be considered in the PCB design. It depends on the circuit parameters such that [ Harmeling 17]:

π × (R 2 0 -R 2 1 ) = T × w (7.22) R 0 = R 1 + α (7.23)
Where, R 1 is the inner radius of the via, i.e. the drill size, R 0 is the outer radius and α is the width of the via annular ring. w is the width of a conductive track on the PCB and T is the board thickness setting the length of the via. In our design, the dimensions of the via are: T = 1.55 mm, R 0 = 0.6096 mm and R 1 = 0.25 mm.

Filtering of the Power Supply

In our detectors, we use capacitors to smooth the output of the power supplies in order to deliver a nearly constant voltage to the electronic components. The output signal of a power supply has a DC value, which is the desired voltage and an AC part called ripple voltage, of the order of 0.5 mWrms between 5 Hz and 1 MHz for a GPS-1830D power supply. Capacitors help reducing the amount of ripple in the voltage signal and their value depends on the amplitude and frequency of the ripple noise of the power supply [Mazda 89]. To perform ecient ltering, we use two capacitors in parallel and we place the highest capacitance right at the output of the supply. The lowest capacitance allows to get rid of residual noise. The same scheme is used for every supply in our circuits. Figure 7.12 shows an example of PCB using OPA847 operational ampliers. The detailed schematics of our PCBs can be found in the appendix D. It is possible to combine the lter capacitors with resistors and inductors to improve the ltering, but it should be noted that they increase the overall impedance of the circuit and contribute to increase the thermal noise of the circuit (equation 5.28). The best solution is to work with power supplies with a low input noise.

Analysis of the Detector Response

Noise Characterization with a Spectrum Analyzer

The spectrum analyzer is used to display the noise spectrum of the detector. It allows to identify dierent sources of noise. When no light is shined on the detector, we observe Figure 7.12 Eagle board of the OPA847-based detector. PS: power suppliy; TIA: transimpedance amplier; s3383 is the reference of the photodiodes we use; GND: ground. the distribution of the electronic noise on a chosen frequency range. In particular, we can identify intense noise components, which cannot be noticed with an oscilloscope. When light is shined on the photodiodes, the trace on the spectrum analyzer corresponds to the total noise, i.e. the sum of the shot and electronic noise levels. Independently to any optical or quantum measurement, the shot noise displays the features of the incoming light. As we work with a femtosecond laser of 156-MHz repetition rate, we use the same source for the characterization of the detector. In this case, the shot noise displays an intense component at the repetition rate, which we use to determine the common mode rejection ratio (CMRR) of the detector (section 5.3.2). We also use a spectrum analyzer to measure the shot-noise clearance (SNC) of the detector (section 5.3.1). As the traces are power spectral densities, the SNC corresponds to the dierence between the shotnoise level in dB and the electronic-noise level. In homodyne detection, the shot noise is measured to unveil quantum squeezing (section 2.3.1), thus the SNC indicates the highest level of squeezing which can be measured with the detector (see section 5.3.1). Additionally, the SNC helps determining the eective detector bandwidth, dened as the frequency range over which the SNC is above zero and the shot noise level is high enough to be detected. After the characterization with the spectrum analyzer, we look at the output signal in the time domain with an oscilloscope to verify that the pulses are 6 ns apart, i.e. 1/(156 MHz).

Detector Analysis with a Network Analyzer

A network analyzer can be used to measure the frequency response of an electronic circuit composed of passive components, ampliers or lters among others. After setting the frequency range over which to make the analysis, the network analyzer sends a test signal through the electronic circuit and one can retrieve the S-parameter, i.e. the transfer function corresponding to the comparison of the input signal with the transmitted or reected one. To characterize our detectors, we compared the input and the output of the circuit and observe the Bode plots, corresponding to the S 21 parameter of forward transmission. In particular, we show in gure 7.13 the measured Bode plots of one of our detectors. We see that the Bode plot of the high-frequency part is higher than the one of the low-frequency part because we use an active high-pass lter to amplify the AC signal (section 7.3.2). The network analyzer also allowed us to unveil oscillatory behaviors, other parasitic noise sources and to determine the detector bandwidth at 3 dB from the maximum gain. In this chapter, we describe and compare two kinds of detectors that we developed using dierent operational ampliers, the OPA847 and the OPA855. We present tests that were done during the last period of the thesis and some questions remain that unanswered. We are still developing the detectors and the results that we present here are preliminary. The simplied layout of the circuit is displayed on the gure 8.1. The detailled layout can be seen in appendix C. The photodetection is performed with two s3883 PIN photodiodes from Hamamatsu (see section 7.1.2). They are mounted such that the current between them is the subtraction of the photocurrents from each photodiode. The subtracted photocurrent is converted into a voltage by a transimpedance amplier (section 7.2) based on an OPA847 operational amplier, which feedback parameters were determined according to the targeted bandwidth and gain. In this section, we will present two TIA designs. The rst one with the feedback parameter R F = 680 Ω and the second one with R F = 510 Ω, which we tested to look at the inuence of R F on the detector bandwidth. We call these detectors OPA847-v1 and v2 respectively. In these rst versions, the gain of the rst amplier was not corrected as described in section 7.2, so the transimpedance gain was given by the feedback resistance only and the value of the feedback capacity was calculated with the equation 7.3 and then adjusted experimentally. At the TIA output, the signal at low frequency is much higher than the AC signal, which is the one we are interested in, so we lter out the DC signal and we amplify the AC signal. The low-frequency part (DC) is ltered with a low-pass lter of cuto frequency f LF = 1 MHz and we use it to align the detectors. The high-frequency (AC) part is retrieved with an active high-pass lter (section 7.3.2) based on another OPA847. The lower cuto frequency is f HF = 8 MHz and it was chosen to lter most of the noise at low frequencies while allowing to discriminate the signal coming from dierent pulses at the AC output. In section 7.3.1, we presented the simulation on the inuence of the lower cuto frequency on the output signal. The pulses at the detector output would be wider but they should be still 6 ns apart, corresponding to the laser repetition rate (g. 7.9). We adjusted the gain of the amplication to be above the noise threshold of the spectrum analyzer with which we characterized the detectors. In this conguration, the gain is 16.67 calculated with equation 7.11, where R F = R f 2 and R in = R 1 . At this stage of the development, we expected that the feedback resistor and capacitance were sucient parameters to set the gain of the TIA and to stabilize the op-amp. But as the high-pass lter used a voltage-voltage amplication, we used the formula 7.11 to set the stability gain.

Finally, to limit signal loss at the detector output, a 50Ω resistor is used for impedance matching and the signal is retrieved through a SMA connector, which is more suited to high-frequency signals. Finally, we used separate power supplies for the op-amps and the photodiodes in order to be able to adjust the bias voltage of the photodiodes without changing the supply of the op-amps, and the noise of the power supplies was ltered to protect the homodyne signal as presented in section 7.4.5. 

Dual-Output Detector with OPA855

The circuit layout for the OPA855-based detector is the same as the one used for OPA847-based detectors. We replace the op-amp with an OPA855 amplier which features a higher gain-bandwidth product that the OPA847 amplier, i.e. 8 GHz. The transimpedance gain is R F = 1 kΩ and a feedback capacitance C F = 1 pF is used to avoid parasitic oscillations (g. 8.2). Similarly to the OPA847-based detector of g. 8.1, the DC and AC parts of the output signal are separated with lters and the AC signal is amplied. The gain of the voltage amplication is 8 and is chosen so as to be superior to the minimum noise gain of the OPA855 (see section 7.3). The ampliers are also smaller, which allows to build more compact circuits. The gure 8.3 is a picture of one of our PCBs. The central part of the board corresponds to the TIA and the path of the AC signal. The goal is to reduce the path of the AC signal, which is the most sensitive, to a minimum. Thus, we soldered the photodiodes on the verso of the PCB in order to reduce the length of the tracks connecting the photodetection to the TIA. To protect the signal from perturbations (see section 7.4.4), the conductive tracks are surrounded by vias, which size and spacing was determined according the bandwidth of the AC signal (section 7.4.4).

Detector Characterization in CW Light

To evaluate the performance of a homodyne detector, the best method is to to use the same light source as the one used for the measurements. However, when working with a pulsed laser, the modulations from the repetition rate can saturate the detector. Therefore, preliminary tests can be done in continuous-wave (CW) light in order to discriminate between possible general problems in the circuit and the potential saturation due to the pulsed regime. One option we considered is the use of our femtosecond laser without mode-locking. However, when such lasers are used in the continuous regime, the dierent modes oscillating in the laser cavity can transiently couple. This leads to a brief mode-locking which can saturate a detector. Therefore, it is important to use a stable CW source to evaluate the detector response to increasing light power.

Evaluation of the Saturation Threshold in CW Light

To test the homodyne detector in the continuous regime, we use a compact CW laser LDM785 from Thorlabs, centered at 785 nm and of 20 nm spectrum. The test setup is the same as the one used with pulsed light (g. 8.4). The light is shined on a 50/50 beamsplitter (BS) and both BS outputs are focused on the detector photodiodes with a lens of focal length f = 100 mm. To evaluate the response of the detector and determine its saturation threshold, we gradually double the light power on each photodiode (PD) and record the corresponding shot noise (SN) trace from the spectrum analyzer. Thus, we recorded SN curves for incident light powers from 250 µW to 18 mW, i.e. half power on each PD (g. 8.5).

Shot-Noise Renormalization

When the shot-noise clearance (SNC) is very low, the electronic noise (EN) has a strong inuence on the shot-noise level and needs to be taken into account. Before calculating the clearance, the electronic-noise contribution should be retrieved from the shot-noise data. Considering the following notation:

G SN,dBm = 10 × log P SN P ref (8.1) G EN,dBm = 10 × log P EN P ref (8.2)
We convert the data in linear scale and subtract the electronic noise contribution:

P SN = P SN -P EN = P ref 10 G SN,dBm 10 -10 G EN,dBm 10 
(8.3)
To obtain the corrected data:

G SN,dBm = 10 × log P SN P ref (8.4)

Where P ref = 1 mW because the data were recorded in dBm with the spectrum analyzer. Then, the SNC is calculated again and plotted. In the following paragraphs we will present the results of the tests in CW light of the detectors OPA847-v1, OPA847-v2 and OPA855. Detector OPA847-v1 Let us consider the detector v1 with a transimpedance gain R F = 680 Ω. We looked at the electronic noise (EN) and the shot-noise (SN) of the detector. We measured the traces with a MXA spectrum analyzer from Agilent Technologies with a resolution bandwidth (RBW) of 1.6 MHz and a video bandwidth (VBW) of 2.7 kHz. The results are shown on gure 8.5. From 1 mW to 16 mW, we double the light power each time. The rst thing that we notice is that the SN evolves with the input light power but the clearance (SNC -section 5.3.1) is less than 5 dB at 16 mW. The spacing should be 3 dB between two consecutive curves because ∆G = 10 × log 2 P inc P inc = 3.01 dB. As the clearance of the detector is low, we rescaled the shotnoise curves as presented above and plotted the spacing between the SN at 2 and 4 mW and the one between 8 and 16 mW. This is shown on gure 8.6 where the curves correspond to non-averaged data that we smoothed numerically. We see that on average the spacing between the shot-noise curves is 3 dB up to 60 MHz. We assume that the oscillations around this value could be partially due to the fact that the eciency of the photocurrrent subtraction is not the same at all frequencies.

Let us consider the saturation of the detector. The maximum light power which we could use for our test was 18 mW, being the maximum power delivered by our CW laser. At this power, the shot noise is above the curve at 16 mW but the spacing with the latter rapidly decreases at frequencies above 40 MHz. It is dicult to say if the saturation threshold was reached at this point and it would require to perform tests at higher light power.

Finally, we looked at the bandwidth of this detector. In our case, we call bandwidth the frequency range over which we can distinguish the signal from the electronic noise. If we look at the curve at 16 mW in g. 8.5, the shot-noise curve is above the electronic noise at 100 MHz but the clearance is very low (∼ 3 dB). These results suggest that the detector operates in a regime in which the transimpedance gain of the detector is too low. Increasing R F would drastically reduce the bandwidth but increase the SNC (dened in section 5.3.1). As we want to measure quadrature squeezing at the repetition rate of our laser (156 MHz), we rst chose to reduce the value of R F to 510 Ω to see the eect it has on the detector bandwidth. This corresponds to the OPA847-v2 detector.

Detector OPA847-v2 We compare this detector to the previous one. We do not expect the functioning of the detector to be dierent, but test if we can retrieve the expected inuence of R F on the detector bandwidth. The circuit layout is the same as in gure 8.1, except for the transimpedance gain R F = 510 Ω. We measured the electronic noise and the shot noise from 1 mW to 10 mW. The curves are shown on gure 8.5. As for the v1 detector, the SNC is very low and the signal does not increase much between 8 mW and 10 mW of input power, suggesting that the saturation has been reached. This observation is counter intuitive if we consider the denition of the output voltage of a TIA (eq. 7.1). For the same input light power, the output voltage of v2 is lower (g. 8.7) so it should be possible to send more intense light on the detector before reaching the saturation, i.e. saturation should be higher than for the v1 detector.

If we compare the shot-noise measured at 4 mW with both versions of the detector, we see on g. 8.7 that the signal is higher with the v1 detector than with the v2, which was expected according to equation 7.1. We make the same observation if we compare the electronic noise of the two detectors, the increase of R F is associated to the increase of the thermal voltage noise (see section 5.2.2). As a result, the shot-noise clearance does not increase with the value of R F . Also, the value of R F does not seem to have an inuence on the bandwidth of the detectors. This phenomenon is dicult to explain, but it could indicate that the detectors do not operate correctly when the transimpedance gain is that low. We will see in section 8.3 that this phenomenon is conrmed when we operate with pulsed light.

Detector OPA855 We test the OPA855-based detector with CW light and compare the results with the OPA847-based detectors. The results are displayed in g. 8.8. In this regime, the SNC measured at 4 mW and 40 MHz is 6 dB and we can see that the detector seems to operate linearly up to 4 mW of total input power. The spacing between consecutive SN curves is reduced between 4 and 8 mW suggesting that the saturation was reached. In the following section, we will present the results of the same tests performed with our laser source. We use the same test setup and protocol as in the previous section to evaluate the response of the three detectors and their saturation. The signal of the femtosecond laser features an intense peak at its repetition rate, which we will call the common mode at 156 MHz. When one PD is illuminated, the measured common mode at 156 MHz is more intense than when both PDs are illuminated at the same time due to the subtraction of the photocurrents. The dierence between the height of the two peaks is the common-mode rejection ratio (CMRR, see section 5.3.2) and should be as high as possible. Experimentally, to evaluate the CMRR we reduce the incident light power, such that the shot noise from one PD does not saturate the circuit. In practice, we can measure the CMRR at dierent incident powers from 10 µW to 200 µW (half on each photodiode). The CMRR should increase with the incident power, reach a maximum and decrease again when the SN from 1 PD saturates the detector. The highest rejection value is the CMRR of the detector. We measured similar values for the three detectors so we give as an example the results of the CMRR measurement of the OPA847-v1 detector. A typical measurement is shown in gure 8.9 where we superpose the shot-noise signal from one photodiode and the shot noise when both photodiodes are illuminated. At 75 µW, it is 40 dB indicating that the detector performs an ecient subtraction of the photocurrents.

Improve the CMRR with the PD Bias Voltage At each power, the commonmode rejection ratio can be improved by adjusting the bias voltage of the photodiodes (section 7.1.2). Indeed, the quality of the photosubtraction relies on the fact that the photodiodes are identical. In practice, this cannot be the case for manufacturing reasons. Thus, adjusting the bias voltage of each PD independently allows to modify their terminal capacitance so as to reduce the discrepancies in their performances (section 7.1.2, g. 7.4). detector at several input powers, from 250 µW, which was the lowest light power for which we could see some signal, to 8 mW, being the maximum power we could use in our test setup (g. 8.4). Compared to the measurements in CW light, what was supposed to be the clearance was very high at 500 µW, i.e. around 30 dB, but the signal was very unstable (g. 8.10, left). It displays small peaks arbitrarily distributed all along the 100-MHz measurement bandwidth, which could be caused by badly welded components on the PCB. We increased the input light progressively to reach the saturation threshold but we could never measure a signal which was proportional to the input power. For the v1 detector, the threshold was reached at around 4 mW, beyond which we could witness a drastic decrease of the shot-noise signal. We tried to do the same tests with the v2 detector, but it revealed to be very hard to align. Even at 250 µW of input power, the detector would saturate as can be seen in g. 8.10, where the shot-noise curve is below the level of the electronic noise at some frequencies indicating that the detector is saturated.

Detector OPA855 We tested the OPA855-based detector in the same conditions and measured the curves of g. 8.11. The electronic noise curve displays a small dip around 156 MHz caused by a notch lter. A notch lter is a lter that attenuates the signals within a specic frequency band. It is the opposite of a band-pass lter. We use it to reduce the amplitude of the common mode at 156 MHz. Because the lter is placed at the detector output, it does not aect the dynamic of the detector. Details on the functioning of notch lters can be found in the appendix B. The curves display less uctuations than the OPA847-based detectors but the functioning of these detectors is similar with a large response at low input light power. In order to understand why the performances of the detectors were dierent in CW and pulsed regime, we also analyzed the detectors in the temporal domain.

Analysis in the Temporal Domain

We looked at the shot noise of the detector on a 4-GHz-bandwidth Waverunner-8404M oscilloscope from Teledyne-Lecroy. The results are shown on gure 8.12. We looked at the signal when one photodiode is illuminated and when both PD are illuminated. The signal of 1 PD in g. 8.12 shows large oscillations at the laser repetition rate instead of an always positive signal (or negative depending on which PD we are looking at), which seems to indicate that we are in a saturated regime. Figure 8.12 shows the electronic noise measured with the oscilloscope. It displays large oscillations at around 700 MHz, which we also measured on the spectrum analyzer as a peak of high intensity (g. 8.14). This peak could be an oscillation of the operational amplier, which we did not detect before because it was at a frequency well beyond the bandwidth we were interested in (see appendix A). Finally, we compared the electronic noise with the shot noise when both PD are illuminated. For this measurement, we placed a low-pass lter (LPF) of cuto frequency 250 MHz at the detector output. The LPF was used to smooth the measured curves, but it does not aect the dynamic of the detector. We obtained the curves of gure 8.13. We see that at 500 µW the amplitude of both signals is the same, meaning that the homodyne signal at this power is mostly electronic noise. This measurement tells us that the signal measured at the spectrum analyzer (g. 8.10) does not correspond to a shot-noise clearance. We observed the same phenomenon with the OPA855-based detector, where the oscillation in the electronic noise was at 500 MHz. Therefore, we investigated the origin of this oscillation and tried to get rid of it. So far, we assumed that the transimpedance gain of the detectors was low compared to [ Masalov 17], but we did not consider the noise gain of the op-amp (eq. 7.8) because it was not mentioned in previous schemes. In the next section, we will present the modications we did on our circuits to adjust the noise gain of the TIA amplier and how it aected to output signal. 

Correction of the Amplier Gain

OPA847-based Detector To modify the noise gain of the transimpedance amplier (TIA), we place a resistor R C in parallel with the feedback resistor R F as was presented in the previous chapter (see section 7.2, g. 7.7). In this conguration, the TIA gain is R F = 2.2 kΩ and the noise gain is G N G = 18 V/V according to the denition given in equation 7.8 where we chose R C = 130 Ω. We chose the noise gain to be above the minimum noise gain of the OPA847 amplier, i.e. 12 V/V indicated in the datasheet of the device. The feedback capacitance C F corresponds to the parasitic capacitance of the feedback resistor itself, which is estimated to 0.2 pF, i.e. close to the calculated value (eq. 7.3). First, we removed the second-amplication stage so as to be able to adjust each stage of the circuit independently. Because the gain of the TIA is low, we expect that the output signal would not be dominated by the DC signal. Thanks to this modication, we eliminated the peak at 700 MHz in the electronic noise (g. 8.14). We characterized the detector with pulsed light. We want to stress that the following results are preliminary and that the detector is still under test. We measured the output signal of the detector with the spectrum analyzer for several input powers. The results are shown on gure 8.15. We see that in comparison to g. 8.10, the signal is very low, i.e. 5-6 dB at 4 mW but it evolves as it is supposed to do with the input power. Also, the common-mode rejection ratio is similar to what we previously measured, i.e. 44 dB at 50 µW and the SNC is above zero at least up to 100 MHz. For clarity, we chose to present the results in g. 8.15 on a 100-MHz bandwidth, which does not include the common mode at the laser repetition rate, 156 MHz.

Then, we observed the output signal in the temporal domain. We compared the homodyne signal with the electronic noise (g. 8. 16) and we see that even though the homodyne signal is very low (∼ 5 mW Vpp), it remains superior to the electronic noise We obtained the curves of g. 8.17, which correspond to averaged data measured at 50 MHz. The spacing between consecutive curves is the same, indicating that the shot noise evolves linearly with the incident power, but it is inferior to 3 dB, which we assume is another indication that the shot-noise level is very low compared to the electronic and that the TIA gain of the detector should be increased. Nevertheless, the CMRR = 55 dB at 300 µW which is very encouraging. The previous observations were conrmed by the detector analysis in the temporal domain. We looked at the output signal on the oscilloscope and compared the homodyne signal with the signal from one photodiode. The results are displayed on the gure 8.18. 

Latest Results

We increased the transimpedance gain of the OPA855-based detector, R F = 2.1 kΩ, and we set the noise gain of the circuit to G N G = 16.2. We show the results in gures 8.19 and 8.20.

We measured a common-mode rejection ratio (CMRR) of 64 dB at 300 µW of input light power and the shot-noise clearance (SNC) with a spectrum analyzer. With 3 mW of input light power, i.e. 1.5 mW on each photodiode, SNC = 7 dB at 40 MHz and it is almost 5 dB at 100 MHz.

We can already use this detector to measure squeezing at 156 MHz from our waveguide-based experiment (see section 6.4), which is very promising.

Prospects

The preliminary results of the tests of the OPA855-based detector after correction of the amplier gain are encouraging. Even if the signal is above the electronic noise at 100 MHz, it is low over the measurement bandwidth indicating that the TIA should be further increased. Nevertheless, compared to the version of the OPA855-based detector described is section 8.1.2, the signal we measure with the spectrum analyzer is consistent with what we measure with the oscilloscope and the common-mode rejection ratio is 64 dB at 300 µW.

In future developments, we will focus on this detector, starting with increasing the gain of the transimpedance amplier while taking into account its evolution with the feedback resistance R F , as well as the evolution of the detector bandwidth (g. 8.21).

The goal is to evaluate the maximum SNC that we can have with this detector. In a second time, we want to reconnect the second-amplication stage and see if separating the AC and DC signal improves the performance of the detector. After these tests, we would try to measure quadrature squeezing in our PPKTP waveguide-based experiment (see section 6.4). 

Conclusion

In this manuscript, we presented the generation of two-mode squeezed states of light via single-pass non-collinear parametric down conversion. We measured quadrature squeezing in four spectral modes using mode-selective homodyne detection and we unveiled non-classical correlations between spatio-spectral modes. The results of this work are published in [La Volpe 20]. This experiment, presented in chapter 6, was started during the Ph. D. of L. La Volpe [La Volpe 19]. When I joined the group, I worked on the design and implementation of the pulse shaper we used for the mode-selective homodyne detection. This is the subject of chapter 4. The project was motivated by the work presented in [ Yokoyama 13]. From the pairs of entangled pulses generated at a repetition rate of 156 MHz by our experiment, we wanted to produce dual-rail cluster states, in which the down-converted pulses would be the nodes and the links between them would be entanglement, according to the protocol described in chapter 6 and [ Yokoyama 13]. In our conguration, the states generated by the PDC are highly multimode both spectrally and spatially. For that reason, the squeezing per mode that we measured was very low. As squeezing and entanglement are linked by a basis change which can be performed experimentally by a beam splitter (chapter 2), this corresponded to a low level of entanglement.

Thus, we decided to develop a PDC setup based on PPKTP waveguides. In chapter 6, we presented the numerical simulations that we did using the codes developed by our collaborators at Paderborn and the interactions we had with the company AdvR in order to design the waveguide chips for our experiment. We are developing in parallel two setups based on type-0 and type-II phase-matched waveguides, which would replace the BBO crystal and the pump cavity. Finally, we described the characterization of the waveguides and we presented the progress on our project, in particular the detection of PDC photons produced in a single-pass in a type-0 waveguide, which is encouraging.

In the meantime, we worked on the development of a large-bandwidth homodyne detector, based on the work done in [Cooper 13,Masalov 17,Zavatta 02], in order to perform pulse-by-pulse measurement, i.e. at a repetition rate of 156 MHz. In chapter 5, we recalled the theory of homodyne detection and presented the parameters we used to characterize the detectors. In chapter 7, we described the structure of the homodyne detectors as well as the development of printed circuit boards. Finally, in chapter 8, we presented the preliminary results of the characterization of some of the detectors we built. The detectors that we presented have a bandwidth close to 100 MHz but their shot-noise clearance is not high enough yet to perform homodyne measurements. 

A.2 Temporal derivation

A TIA is used to convert a current -in our case a photocurrent -into a voltage U with a transimpedance gain R F . The temporal evolution of U is described by the following dierential equation:

LC d 2 U (t) dt 2 + RC dU (t) t + U (t) = 0 (A.2)
from which we can determine ω 0 , the frequency of the oscillations. The resolution of this equation gives: ∆ = R 2 L 2 -4 LC . Because, we want to study the oscillations in this circuit, we consider the conguration in which ∆ < 0. In this case, the equations have two solutions from which we can infer an expression of U (t):

U (t) = 2 e -R 2L cos (ω 0 t) (A.3) with ω 0 = 1 2 R 2
L 2 -4 LC . The expression of U (t) shows that oscillations are damped by R, meaning that with a suciently large value of R no oscillations should be witnessed. Moreover, when considering the reverse case where R = 0 Ω, ω 0 depends only on the capacitance and the inductance :

ω 0 = 1 √ LC . ω 0 = 2πf 0 = 1 √ LC (B.3) f 0 = 1 2π √ LC (B.4)
f 0 is the central frequency of the stop band. We also dene the bandwidth (FWHM):

∆ω = 2π∆f = R L (B.5) ∆f = R 2πL (B.6)
We see that while the inductance L is involved in the denition of both parameters, the resistance acts only on the dip width and the capacitance only on its position.

Quality Factor The transfer function can also be expressed with a quality factor Q, linking notably the center of the stop-band f 0 with its width ∆f . The Q factor describes the resonance behavior. Therefore, for a notch lter, a narrow stop-band corresponds to a high quality factor (resonance). Photodetection The photodiodes (PD) are modeled by a current source in parallel to a capacitance, which value is the intrinsic capacitance of the chosen photodiode. The capacitances C8, C9, C10 and C11 are used to lter the power supply of the PDs. In this conguration, we xed the values of R4 and R5 to zero because the noise of power supplies that we use is very low.

Transimpedance Amplier The OPA847 op-amp has a gain-bandwidth product of 8 GHz and a minimum noise gain for stability is 7 V/V. The capacitances C1 to C4 are used to lter the power supply of the op-amp. The resistor R9 = 10 Ω is used to stabilize the op-amp. Its value is given in the datasheet of the OPA855. 
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 1 Figure 1.1 1D Hermite-Gauss functions HG 0 , HG 1 and HG 2 .
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 1 Figure 1.2 2D Hermite-Gauss function in arbitrary units. From top left to bottom right: HG 00 , HG 10 , HG 11 and HG 20 .
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 13 Figure 1.3 Plot of the temporal-mode basis is arbitrary units. From left to right, HG 0 , HG 1 , HG 2 and HG 3 .
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 14 Figure 1.4 Modes TE 11 , TE 21 and TE 31 of a rectangular waveguide in arbitrary units.
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 15 Figure 1.5 Temporal and spectral representation of a mode-locked laser. Top graph shows the carrier-envelope representation of pulses, the carrier being the red curve and the envelope being the purple dashed curve.
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 22 Figure 2.2 Coherent state in the phase space.
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  Uniaxial crystals are characterized by a main axis called the optical axis k = oa. Light polarized along the optical axis experiences a wavelength-dependent refractive index n e (λ) called the extraordinary index. Light polarized along a direction orthogonal to the optical axis experiences a refractive index n o (λ) called the ordinary index because no birefringent phenomenon occurs. The birefringence is dened as [Bragg 53]: b

Figure 3

 3 Figure 3.1 Schematic of the index ellipsoid of an uniaxial crystal.
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 32 Figure 3.2 Evolution of the refractive indices in BBO according to the wavelength. Top: for the pump light of a PDC process; Bottom: for the signal light.
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 33 Figure 3.3 Evolution of the refractive indices in KTP according to the wavelength. Top: for the pump light of a PDC process; Bottom: for the signal light.
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 3 Figure 3.4 Thermo-optic dispersion in potassium titanyl phosphate (KTP).
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 35 Figure 3.5 Joint Spectral Amplitude for dierent phase-matchings in KTP.

  4.1. ZERO-DISPERSION LINEPDC.
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 41 Figure 4.1 Schematic of a zero-dispersion line or 4f line. Left: unfolded conguration. Right: folded conguration where the lens is replaced by a cylindrical mirror in our case. Pulse shaping occurs in the Fourier plane [Monmayrant 10].
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 42 Figure 4.2 Picture of the pulse shaper setup. The reecting telescope is visible at the top of the image.
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 43 Figure 4.3 Schematic of the LCOS-SLM X10468.
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 44 Figure 4.4 Littrow conguration. θ B is the blazed angle, α and β are respectively the angle of incidence and the angle of diraction, d is the spacing between the sawtooth steps.
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 45 Figure 4.5 Graphical resolution of equation 4.6. The red curve is the equation 4.6 and the blue curve is f (g) = g. In our conguration, g = 600 gr/mm.
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 46 Figure 4.6 Separation of the light spots centered at λ 0 = 795 nm and at λ 1 = 798 nm.
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 4 Figure 4.7 SLM allows displaying phase masks of arbitrary shapes. Here we show a sawtooth grating.
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 44 Figure 4.8 Left: Phase masks used in homodyne detection to measure squeezing in spectral modes HG 0 and HG 1 with a sawtooth grating superposed to it. Right: associated mode spectrum measured with a spectrometer
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 4 Figure 4.10 Phase masks used for dispersion compensation. Left: spectral-chirp correction on a HG 0 mode; right: angular-chirp compensation.
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 4 Figure 4.11 Phase masks used for dispersion compensation. Left: spectral chirp correction on a HG 0 mode; right: Correction pattern provided by Hamamatsu.
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 51 Figure 5.1 Basic schematics of a homodyne setup.
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 52 Figure 5.2 Evolution of the detection eciency η elec with the clearance (SNC).
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 53 Figure 5.3 Evolution of the measured squeezing levels with the SNC considering η P D = 1 and η mod = 1. Each curve corresponds to a dierent expected squeezing level.
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 54 Photodiode Array
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 62 Figure 6.2 Schematic of dual-rail cluster state [Yokoyama 13]. The nodes are the time bins and the lines represent entanglement links.

Figure 6 . 4

 64 Figure 6.4 Schematics of the PDC experiment in bulk BBO. At the output of a mode-locked Titanium Sapphire (Ti:Sa) laser centered at 795 nm the beam is separated in two parts. One part is the reference beam for the homodyne detection and the other part goes through the experiment. At each step, the corresponding states are displayed in the phase space. Homodyne detection is used for state characterization. BS: beam splitter; SHG: second harmonic generation; PDC: parametric down conversion; SLM: spatial light modulator; LO: local oscillator.

  with c the speed of light in vacuum, giving L cav = 0.96 m.
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 65 Figure 6.5 Picture of the PDC cavity with superposed beam paths. The reectivity R of the mirrors are: R IC = 98 % and R M 1 = R M 2 = R out = 99.9454 %. A piezoelectric actuator is xed on M out [La Volpe 19].
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 66 Figure 6.6 Picture with a superposed scheme of the seed path from the PDC cavity to the Homodyne setup. BS1 is a 50/50 beam splitter used to perform the basis change to generate squeezed light. BS2 is the homodyne beam splitter. The squeezed light is interfered with the local oscillator. Detector: homodyne detector.

Figure 6 . 7

 67 Figure 6.7 Overlap of the LO spectrum (red curve) with the rst and fth HG modes (blue curve). Left: HG 0 ; right: HG 4 .
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 68 Figure 6.8 Measurement of four squeezed modes. From top left to bottom right, HG 0 , HG 1 , HG 2 and HG 3 . The blue curve is the shot-noise level, the orange curve is the homodyne signal recorded for 3 seconds while scanning the phase of the LO. The purple line indicates the mean level of squeezing and the green line indicates the mean antisqueezing level [La Volpe 20].
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 6 Figure6.12 Covariance measurements of the spatio-spectral mode basis. The abscissa is the time in s and the ordinate is the quadrature variance in dB. Each trace is the mean of ve measurement traces corresponding to 5000 data points.
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 6 Figure 6.11 Covariance matrix of the spatio-spectral mode basis.
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 6 Figure 6.13 Schematic of the setup for type-0 PDC.
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 6 Figure 6.14 Schematic of the setup for type-II PDC.
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 6 Figure 6.15 Simulated rst Schmidt modes. Left: Type-II phase-matching; Right: Type-0 phase-matching. The signal and idler spectra overlap.
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 6 Figure 6.16 Overlap between Hermite-Gaussian mode HG 10 and the local oscillator (LO) spectrum. Left: type-0 phase-matching; Right: type-II phase-matching.
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 6 Figure 6.17 Comparison of the Schmidt number K at two dierent interaction lengths in type-0 phase-matching. The spectrum of the pump is xed to ∆λ = 1 nm. Left: = 500 µm; Right: = 1 mm.
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 6 Figure 6.18 Evolution with the interaction length of the spectral width of the rst Schmidt modes. Left: = 500 µm; Right: = 1 mm.
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 6 Figure 6.19 Illustration of parametric down conversion with frequency combs. Each frequency component of the comb can undergo parametric down conversion. As a results the signal and idler beams are frequency combs.
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 6 Figure 6.20 Eect of the pump spectrum on the Schmidt decomposition. Top: Type 0; Bottom: Type II.
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 6 Figure 6.21 Comparison of rst Schmidt modes of type-0 PDC in PPKTP at central frequencies 795 nm and 820 nm, imposed by the spectrum of the pump.

Figure 6

 6 Figure 6.23 Schematic of a chip of partially poled waveguides.

Figure 6 .

 6 Figure 6.25 Picture of the waveguide setup with superposed scheme of the red beam.

Figure 6 .

 6 Figure 6.27 Spectrum of the IR light at a waveguide output. Top: from a 4-µm waveguide; Bottom: from the same waveguide when more than one mode is coupled.

Figure 6

 6 Figure 6.28 SHG spectrum from a 3-µm waveguide

Figure 6 .

 6 Figure 6.30 Schematic of the setup used to reveal the SPDC process in the waveguides. ND: neutral density lter and DM: dichroic mirror.

Figure 6 .

 6 Figure 6.31 Squeezing measurements in three spectral modes generated by type-0 parametric down conversion in a PPKTP waveguide. Green curve: shot noise; Orange curve: quadrature variance. Sweep time: 1 s; RBW: 200 kHz; VBW: 10 Hz.
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 71 Figure 7.1 Schematic of a dual-output homodyne circuit.

Figure 7 . 2

 72 Figure 7.2 Schematic of a PN junction

Figure 7 . 3

 73 Figure 7.3 Schematic of a PIN junction. Electronic symbol of a photodiode.

Figure 7 . 4

 74 Figure 7.4 Evolution of the s3883 PIN photodiode with the bias voltage. Curves from the Hamamatsu datasheet of the s3883 photodiode.

Figure 7 . 5

 75 Figure 7.5 Schematic of a transimpedance amplifer of gain R F .

Figure 7

 7 Figure7.6 SPICE simulation. Gain curve of a TIA when the feedback parameters are lower than the optimal values. The gain increase at higher frequencies indicates that the circuit may display parasitic oscillations.

OAFigure 7

 7 Figure 7.7 Schematic of a transimpedance amplier with a gain-adjusting resistor R C .

Figure 7 . 9

 79 Figure 7.9 Expected shape of the pulses at the AC output of the homodyne detector (right) compared to the incoming ones (left). Numerical simulations in arbitrary units.

Figure 7 .

 7 Figure 7.10 Schematic of an active high-pass lter.

7. 4

 4 Development of a Printed Circuit Board with EA-GLE I developed our printed circuit boards (PCB) with Dr. Bérengère Argence and electronics engineers Loïc Garcia and Elie Gozlan at the Laboratoire Kastler Brossel (LKB).

Figure 7 .

 7 Figure 7.11 Schematic of an inverting amplier with a feedback capacitor. The capacitors C 12 , C 13 , C 16 and C 17 are used to lter out the noise from the power supply. This schematic is advised by the OPA855 manufacturer.

  7.4.4 Vias: Role and Characteristics 7.4.4.1 Via Spacing

Figure 7 .

 7 Figure 7.13 Comparison of the output signal from the low and high-pass lters of a homodyne detector.

8. 1

 1 Circuit Layouts 8.1.1 Dual-Output Detector with OPA847

Figure 8 . 1

 81 Figure 8.1 Simplied schematics of the OPA847-based dual-output detector.

Figure 8 . 4

 84 Figure 8.4 Picture of the setup used to test the homodyne detectors with the superposed beam path. VNDF: variable neutral density lter.

Figure 8 . 5

 85 Figure 8.5 Left: OPA847-v1, R F = 680 Ω. Shot-noise curves measured in the CW regime from 1 mW to 18 mW. Right: OPA847-v2, R F = 510 Ω. Shot-noise curves measured in the CW regime from 1 mW to 10 mW and on a 100-MHz frequency range. RBW = 1.6 MHz; VBW = 2.7 kHz.

  Figure 8.6 OPA847-v1, R F = 680 Ω. Shot-noise spacing between 2 and 4 mW and 8 and 16 mW. RBW = 1.6 MHz; VBW = 2.7 kHz.

Figure 8

 8 Figure 8.7 Left: Shot-noise comparison at 4 mW of the OPA847-based detectors. Right: Comparison of the electronic noise (EN) of the OPA847-based detectors.

Figure 8

 8 Figure 8.8 Left: Shot noise curves of an OPA855-based detector in the CW regime. EN: electronic noise. RBW = 750 kHz; VBW = 750 Hz. Right: Shot-noise curves from 1 mW to 8 mW of the OPA855-based detector measured on a 50-MHz frequency range and corrected with the electronic noise. RBW = 820 kHz; VBW = 7.5 kHz.

Figure 8

 8 Figure 8.9 CMRR of the OPA847-v1 detector, R F = 680 Ω, measured at 75 µW. RBW = 820 kHz; VBW = 20 kHz.

Figure 8 .

 8 Figure 8.10 Left: Shot noise measured in the pulsed regime at 500 µW of the detector OPA847-v1 with R F = 680 Ω (purple curve). The black curve is the electronic noise. Right: Comparison of the electronic noise of the detector OPA847-v2 (black curve) and the SN at 250 µW (red curve). RBW = 1.6 MHz; VBW = 33 kHz.

Figure 8 .

 8 Figure 8.11 Shot-noise curves of the OPA855-based detector measured in a pulsed regime. The black curve is the electronic noise (EN). A notch lter was placed at the detector output to reduce the height of the common mode at 156 MHz. RBW = 1.1 MHz; VBW = 7.5 kHz.

02 V

 02 Figure 8.12 Detector OPA847-v1. Left: Comparison of the SN measured with the oscilloscope when one PD is illuminated and when both are. The input power is 500 µW, i.e. half on each PD. Right: Electronic noise measured at the oscilloscope when no notch lter is used at the detector output.

Figure 8 .

 8 Figure8.13 Comparison of the homodyne signal at 500 µW and the electronic noise of the detector OPA847-v1. A low-pass lter was placed at the detector output to eliminate the oscillation at 700 MHz (g. 8.14).

Figure 8 .

 8 Figure 8.14 Left: Electronic noise of the detector OPA847-v1 measured with the spectrum analyzer. RBW = 820 kHz; VBW = 20 kHz. Right: Electronic noise of the OPA847-based homodyne detector after adjustment of the noise gain. A residual peak is visible around 700 MHz. RBW = 3 MHz; VBW = 120 kHz.

Figure 8 .

 8 Figure 8.15 Left: Shot-noise curves of the OPA847-based detector after adjustment of the noise gain. RBW = 3 MHz; VBW = 43 kHz; 100-MHz frequency range. Right: Shot noise of the OPA855-based detector after adjustment of the noise gain of the TIA amplier. RBW = 3 MHz; VBW = 3 MHz; 120-MHz frequency range; average over 10 5 points.

Figure 8 . 17

 817 Figure 8.17 Averaged shot-noise curves measured at 50 MHz and corrected from the electronic noise. RBW = 3 MHz; VBW = 3 MHz; average over 10 5 points.

Figure 8 .

 8 Figure 8.18 Left: Comparison of the SN from each photodiode with the homodyne signal. OPA855-based detector after adjustment of the noise gain of the TIA amplier. Right: Comparison of the homodyne signal with the electronic noise (EN).

Figure 8

 8 Figure 8.19 CMRR measurement of the OPA855-based detector at 300 µW of input light power. The feedback resistor is R F = 2.1 kΩ and the noise gain is G GN = 16.2. CMRR = 64 dB. RBW = 2.7 MHz; VBW = 2.7 MHz.

Figure 8

 8 Figure 8.20 OPA855-based detector with R F = 2.1 kΩ and G GN = 16.2. The black curve is the electronic noise (EN) and the purple curve is the shot noise (SN) at 3 mW of input light power, i.e. 1.5 mW on each photodiode. RBW = 2.7 MHz; VBW = 2.7 MHz.

Figure 8 .

 8 Figure 8.21 Left: Evolution of the TIA gain with the feedback resistor R F calculated with equation 7.9. Right: Evolution of the cuto frequency f T IA (eq. 7.2) with the R F .

Figure A. 1

 1 Figure A.1 Screenshot of the shot-noise trace of an OPA855-based detector measured with a spectrum analyzer. The peak at 500 MHz corresponds to a resonance of the circuit. We can see its rst harmonics at 1 GHz.

Figure C. 1

 1 Figure C.1 Spice schematics of the v1-OPA847 homodyne detector.

Figure C. 2

 2 Figure C.2 Bode curves of the OPA847-v1 detector.

Figure D. 1

 1 Figure D.1 Eagle board of the OPA847-based detector (v1). PS: power suppliy; TIA: transimpedance amplier; s3383 is the reference of the photodiodes we use; GND: ground.

Figure D. 3

 3 Figure D.3 Eagle board of the OPA847-based detector (v1). PS: power suppliy; TIA: transimpedance amplier; s3383 is the reference of the photodiodes we use; GND: ground.

Figure D. 4

 4 Figure D.4 shows the electronic schematics associated to the board in gure D.3.

Figure D. 4

 4 Figure D.4 Eagle schematics of an OPA855-based detector.
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in the case where there are no other losses, i.e. η = 1. The subtracted photon-numbers reads:

quadratures at once.

Remerciements

Part III

Development of a Homodyne

Detector for Light Characterization OPA847 OPA855

Gain-Bandwidth Product (GBP) 3.9 GHz 8 GHz Input Capacitance C A1 3.7 pF 0.8 pF Minimum Noise Gain (G N G,min ) 12 V/V 7 V/V Maximum Bandwidth f max 325 MHz 1.1 GHz

Considering the minimum noise gain of each op-amp, this corresponds to f max = 325 MHz for the OPA847 op-amp and f max = 1.1 GHz for the OPA855.

Voltage Amplication

If the signal of interest is low, voltage amplication can be performed with an operational amplier wired in an inverting or non-inverting setup [Mancini 13, Malvino 98]. After the TIA, it allows to increase the signal level without reducing the bandwidth signicantly. In our detectors, we chose an inverting setup (g.7.8). Dierential oper-Figure 7.8 Schematic of an inverting amplier. ational ampliers are characterized by a high impedance (R → ∞) on each input and ideally V + -V -= 0. In this conguration, the voltage is amplied according to the following relation:

Where R in and R f are set to adjust the gain of the amplier: At this point, we need to increase the SNC of the detector if we want to do homodyne measurements. We have the option to increase the TIA gain, i.e. increase the output signal according to equation 7.1 and/or to decrease to level of the electronic noise by reducing the noise gain. At the same time, we need to take into account the evolution of the detector bandwidth. Indeed, for an OPA847 used with a noise gain of 12 V/V, the maximum bandwidth is 325 MHz, which will be even more reduced in case of a larger TIA gain according to the equations 7.7 and 7.2. For that reason, we considered using OPA855 operational ampliers in our detectors, which features a gain-bandwidth product of 8 GHz (3.9 GHz for the OPA847, see section 7.2). In this case, the maximum available bandwidth with this op-amp is 1 GHz (eq. 7.7). As we are interested in doing homodyne measurement at the repetition rate of our laser, i.e. corresponding approximately to a 200-MHz bandwidth detector, we will be able to use high transimpedance gain R F to increase the output signal.

OPA855-based Detector In order to adjust the noise gain of the rst amplier of the circuit, we placed a resistor R C = 65 Ω in parallel to the feedback resistor. In this conguration, the noise gain G N G is 18 as in the OPA847-based detector and the transimpedance gain is R F = 1.1 kΩ. Here also, the feedback capacitance corresponds to the parasitic capacitance of the feedback resistor (0.2 pF) and we removed the secondamplication stage.

We measured the shot noise for several input light powers and plotted the results (g. 8.15). In this conguration, we see that the SNC is very low so we renormalized the shot-noise levels with the electronic noise to evaluate the response of the detector.

Appendices Appendix A Parasitic Oscillations in Homodyne Detection

The two main sources of noise in our detector are the thermal noise (see chapter 5) and oscillation noise. The rst one is a white noise and depends mainly on the temperature of the electronic components. The seconde one has at least two origins: it can be exterior to the circuit and be detected by it. In this case, we just need to identify the source of oscillation and turning it o. Otherwise, it can be generated by the circuit itself (g. A.1). In high-frequency circuits, the size of the components and their nominal value are critical points, as well as the length and width of the conductive tracks.

A.1 Oscillations in RLC-like circuits

Oscillations can appear in any circuit composed of resistances R, capacitances C and inductances L. The frequency and amplitude of the oscillations depend on the values of R, C and L. This derivation aims at describing how a transimpedance amplier (TIA) can constitute an oscillating circuit. The TIA can be modeled by a RLC circuit, which can be in series or in parallel (g. A.2). It is composed of an inductance L, a capacitance C and total resistance R L = R + r where R corresponds to the value of a resistor and r to the intrinsic resistance of the coil, which we consider here to be ideal (r = 0 Ω). In this conguration, the RLC circuit is composed of the feedback capacitor C F and resistor R F of the TIA and the conductive track between the photodiodes and the operational amplier is modeled by a coil with 1 spire. Its inductance reads:

where µ 0 = 4π × 10 -7 H.m -1 is the magnetic constant, is the length of the coil, i.e. the track length between the PDs and the transimpedance amplier (TIA), S is the section of this coil and N is the number of spires, which we chose to be 1. In our case, the oscillation at 500 MHz was not caused by the TIA parameters. Its amplitude and frequency did not change when we changed the values of the feedback resistor R F and capacitor C F . We think that the oscillation could correspond to an intrinsic resonance of the OPA855 and we observed the same oscillation at 700 MHz in the OPA847-based detectors. To damp the oscillation, we used a compensation resistor R C placed in parallel to R F as descibed in section 7.2 of chapter 7.

Appendix B Notch Filters

The RLC notch lter is a passive circuit composed of a resistance R mounted in parallel to a self (of inductance L) and a capacitance C (g. B.1). It is the combination of a low-pass and a high-pass lter designed to lter out a specic frequency band, the stopband, while leaving the other frequencies unaected. It is the opposite of a pass-band lter, which is designed to lter out all frequencies outside of a specic range. V in (s) , where s is a variable, which here has the dimension of an angular frequency. It is dened as:

where we identify the central angular frequency ω 0 :

Appendix C Detailled LtSpice Schematics of

Dual-Output Detectors

In this appendix, we focus on the elements of the circuits, which we did not mention in the chapter 7.

C.1 OPA847-based Homodyne Detector Transimpedance Amplier We use an OPA847 operational ampler (op-amp) for the current-to-voltage conversion of the photocurrents from the PD. Its gain-bandwidth product is 3.9 GHz and the minimum noise gain of the op-amp for stability is 12 V/V. The capacitances C1 to C4 are used to lter the power supply of the op-amp and their values are the one given in the datasheet of the component. The feedback parameters of the transimpedance amplier (TIA) are R F = 680 Ω and C F = 2 pF. In this conguration, the cuto frequency of the TIA is 250 MHz (g. C.2).

High-Pass Filter We use another OPA847 to implement an active high-pass lter (HPF). This allows to retrieve and amplify the high-frequency components of the signal We can see that the circuit is very compact, the electronic components are placed very close to eachother and their size is 0603. The goal is to reduce the signal path in the circuit and avoid signal loss. In this case, it is easier and more precise to use an oven to weld the components on the board. However, the photodiodes (PD) s3883 from Hamamatsu are sensitive to heat, so they are welded by hand afterwards. The photodiodes are xed on the opposite side of the PCB so as to be able to reduce the length of the track between the photocurrent subtraction stage and the transimpedance amplier (TIA), which is the trickiest portion of the homodyne circuit. We can also see that the junction between the track from each PD is smooth (not at a right angle) to avoid signal loss. For the same reason, all the changes of direction on the PCB are smooth. The track width is w = 0.3048 mm everywhere on the PCB. It depends on the bandwidth of the signal traveling in it and on the electrical current owing in the track.

Vias are metallic holes placed near conductive tracks to protect the signal from perturbations. Their size and spacing also depends on the signal owing in the conductive tracks. Finally, we add a ground (GND) frame around the PCB. When we install a PCB inside a case, we weld it to the case to make sure that the GND plane is uniform. 

D.2 OPA855-based Homodyne Detector

The routing the OPA855-based detectors is similar to the one of the OPA847-based detectors (g. D.3). The electronic components are placed on one side of the PCB except the photodiodes s3883, which are placed on the opposite side of the PCB. As we can see in gure D.3, the OPA855 operational ampliers are much smaller than the OPA847, which allows to design more compact circuits.