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INTRODUCTION

Sous sa forme la plus générale, un problème de décision se définit par la recherche d'une suite d'actions appliquées de manière séquentielle à un système,qui soit optimale pour un critère donné. Dans un modèle probabiliste de décision, l'information que possède le décideur joue un rôle fondamental. Tout d'abord elle résume à un instant donné tout ce que le décideur connait du système. Mais l'information a aussi une caractéristique dynamique: en effet, au fur et à mesure que le temps s'écoule, l'information du décideur s'améliore -au moins s'il a une mémoireses prévisions sur l'avenir se précisent, ou se modifent. C'est donc dans l'articulation dans le temps du couple information-action que réside la difficulté du problème ainsi posé.

Ce travail ne traite que certains aspects de ce problème, dans le formalisme de la théorie du contrôle. Avant de préciser les méthodes mathématiques utilisées, j'exposerai brièvement les objectifs que j'ai poursuivis dans cette recherche. 000 J'ai dit précédemment que le problème de décision résidait dans l'articulation dans le temps du couple information-action. On peut alors se demander s'il y a effectivement interaction des dynamiques de l'information et de l'action; plus précisément, dans un tel modèle, doit-on admettre que l'action du décideur peut modifier l'information que celui-ci possède sur l'environnement J.u système qu'il contrôle, environnement qui échappe lui-même à cette action? Encore qu'il soit facile de donner des exemples simples de modèles où une telle condition est réalisée, la résolution du problème devient elle-même extrêmement complexe, car le décideur doit évaluer les conséquences d'un acte pris à un instant donné non seulement sur la situation du système qu'il contrôle, mais aussi sur la qualité de l'information dont il disposera ultérieurement sur l'environnement du système. Par contre, si l'on admet que la génération de l'information est en un sens "indépendante" de l'action du décideur, on est ramené à un problème complexe certes, mais plus aisément formalisable, puisque mathématiquement, il s'exprime par une optimisation pour un certain critère sur l'ensemble des suites d'actions qui sont "fonction" de l'information dont dispose le décideur. Après que j'ai exhibé un exemple très simple de problème sans solution, lorsque l'information dépend du contrôle je devais montrer qu'une théorie supposant une génération fixe d'information pouvait être développée, et qu'elle englobait toutes les théories existantes, qui avaient donné des résultats satisfaisants.

Une seconde difficulté est liée à l'information que possède le décideur sur l'état du système qu'il contrôle. On peut admettre en effet qu'il connait parfaitement cet état, ou qu'il ne le connait qu'imparfaitement. Pour des raisons méthodologiques, nous avons admis que l'observation sur l'état du système était parfaite. Mais il fallait là encore montrer que tous les problèmes qui avaient eu une solution cet exemple fera l'objet d'une publication. lorsque l'observation sur l'état est incomplète peuvent se ramener à des problèmes où l'observation sur l'état est complète.

Une fois ces difficultés résolues, il devenait alors possible de poser le problème de contrôle sous forme de programme , et en particulier de rechercher comment s'effectue le lien entre prévision et programmation, c'est-à-dire entre les anticipations effectuées à chaque instant par le décideur et ses actions: autrement dit , il faut pouvoir estimer l'impact d'une action prise à un instant donné sur tout l'avenir du système. En particulier, le choix d'une action pouvant modul er l es ri sques que court le décideur dans l'avenir, il faut pouvoir réaliser une allocation intertemporel1e optimale des risques. C'est dire que les méthodes de dualité se prêtent particulièrement bien à une telle approche. Il était donc logique d'appliquer les méthodes de programmation convexe à un tel problème, de définir la notion de programme dual d'un problème de contrôle stochastique, et d'en déduire les règles de décentralisation des décisions dans le temps. Ces règles devaient en particulier permettre de définir l'information minimale nécessaire pour la recherche de la chaîne optimale d'actions.

De même, il était important de savoir comment certaines actions passées pouvaient déterminer de manière irréversible la suite des actions ultérieures; il est en effet facile d'exhiber un modèle possédant de telles caractéristiques: il suffit d'imaginer que l'on ne dispose que d'une "quantité" limitée de moyens d'action, et que l'on ne peut en aucun cas dépasser cette quantité. Dans ce dernier exemple, on conçoit que deux tendances contraires apparaissent. La première pousse le décideur à utiliser le plus rapidement possible les ressources existantes, pour profiter au maximum des "gains" présents; la seconde au contraire tend à différer l'utilisation, des moyens d'action dans l'attente de gains ultérieurs plus élevés, en particulier grâce à une information meilleure.

Enfin, il convenait aussi de considérer des systèmes sans passé, des systèmes où l'état présent résume toute l'information qui expliquera l'évolution ultérieure de l'environnement du système. Ce sont évidemment les systèmes markoviens . La distinction entre les systèmes sans passé et les systèmes ayant un passé est d'ailleurs forme 11 ement peu rigoureuse car il suffira it de considérer l 'i nformati on sur le système comme une "composante" de l'état pour transformer un système quelconque en système sans passé. La distinction a une valeur essentiellement méthodologique, et le traitement mathématique clarifie cette question. 000 Pour résoudre ces différents problèmes, des méthodes de l'analyse convexe sont utilisées dans un cadre probabiliste.

Les différentes difficultés liées à l'information du décideur sont traitées dans A, J et E. A donne une méthode qui ramène un problème élémentaire d'optimisation avec information incomplète à un problème avec information complète. Après le traitement de cer taines difficultés techniques dans J , ces résultats sont appliquées dans E , où on ramène certains problèmes de contrôle à information incomplète à un problème avec information complète générée d'une manière ne dépendant pa s du contrôle choisi .

Les méthodes de la programmation convexe sont utilisées dans B,C, D, F, et K . DansB , nous définissons un problème de contrôle stochastique et son problème dual, en suivant les travaux effectués par dans un contexte déterministe. Les conditions permettant d'effectuer la décentralisation des décisions dans le temps y sont exprimées. On trouve alors que l'état dual est, dans les cas classiques, solution d'une équation différentielle stochastique avec une condition terminale. Pour prouver des résultats d'existence et d'unicité des solutions de ces équations, nous sommes amenés à démontrer certaines propriétés fonctionnelles des équations différentielles stochastiques linéaires dans 1, et à les appliquer dans C pour obtenir les résultats d'existence et d'unicité des éqaations à condition terminale. Les résultats de l et C sont appliqués dans D pour obtenir des résultats d'existence dans le formalisme de B . Il apparait d'ailleurs que les conditions d'existence de contrôles optimaux données dans D exigent des hypothèses de linéarité très fortes. Ces conditions sont vérifiées dans le cas linéaire -quadratique, qui est développé indépendemment également dans C : les méthodes utilisées par J.L.LIONS pour le contrôle des équations aux dérivées partielles y sont utilisées pour la démonstration de l'existence et de l'unicité des solutions de certaines équations. de RICCATI stochastiques, qui sont d'ailleurs déterministes quand les coefficients du problème sont déterministes. Bien qu'il soit probable que des méthodes de démonstration plus directes eXlstent pour ce dernier cas, il y a là un exemple intéressant d'utilisation de méthodes probabilistes pour la démonstration de résultats strictement déterministes.

Pour comprendre l'influence qu'exercent des actions passées lorsque la "quantité" de moyens d'actions est limitée, un problème de formulation très simple est traité dans F . Une application d'une forme élémentaire du théorème de HAHN -BANACH permet de définir une multiplicateur de Lagrange qui est une martingale locale et qui possède des propriétés bien précises liées à une décomposition de certains processus. Les résultats sont immédiatement généralisés dans K à des probl èmes pl us généraux .

Cependant, ces méthodes sont peu adaptées à des problèmes trop fortement non linéaires -encore que cette inadaptation soit compensée mais en partie seulement dans N -et de plus, elles ne permettent en aucun cas de démontrer des résultats d'existence de contrôles optimaux "markoviens", c'est-à-dire qui ne dépendent que de l'état présent, pour les systèmes markoviens . Il fallait donc employer des méthodes différentes qui utilisent de manière plus fine les propriétés probabilistes des processus considérés. C'est l'objet de G et H . Le plan de la démonstration de G est simplifié en H. J'ai d'ailleurs donné dans un troisième article des résultats plus généraux, où la démonstration d'existence évite certains problèmes de théorie du potentiel évoqués dans G et H , en utilisant la topologie fine. Cependant l'interprétation des résultats par la théorie du potentiel est singulièrement éclairante.

L etM sont de simples annexes techniques de G etH. Il faut remarquer que les hypothèses de convexité jouent aussi un rôle important dans G et H, bien quà priori, le problème posé ne soit pa s un problème de programmation convexe. Un lien partiel est cependant établi dans N entre les méthodes de la programmation convexe et les méthodes de G et H. 000 sur Examinons enfin la forme même du travail. Pour des raisons multiples lesquelles il serait vain d'épiloguer, j'ai été amené à passer d'une rédaction unifiée à une rédaction par articles; celle-ci a l'avantage de faciliter la lecture des différents chapitres, puisque les résultats d'un chapitre sont presque toujours rappelés dans un autre chapitre qui fait appel à eux. Chaque article a de plus sa propre bibliographie. (1) En plus des répétitions internes au travail lui-même, j'ai été conduit à redémontrer certains résultats dont les démonstrations que je pouvais connaitre me paraissaient insuffisantes ou mal adaptées à 1 'utilisation qui devait en être faite: clest par exemple le cas de J Proposition I.De même M étend de manière élémentaire le résultat cité en référence sous une hypothèse légèrement plus restrictive. Un autre exemple est le chapitre 1 : il ne s'agit pas d'y prouver de résultats d'existence d'équations linéaires, mais d'établir à leur sujet des résultats simples d'analyse fonctionnelle. En règle générale, nous avons mis les parties qui ne sont pas centrales en Annexes.

Sans doute, une telle étude est-elle incomplète. Elle est d'abord partielle dans la mesure où elle aborde les problèmes évoqués par des méthodes essentiellement probabilistes, en évitant d'autres approches possibles: c'est ainsi que les méthodes d'équations aux dérivées partielles ne sont jamais pour la résolution des problèmes de contrôle de diffusions. Indépendemment du fait que ces dern i ères méthodes avaient déjà été utilisées avec succès, il semble que l'outil probabiliste permette d'obtenir des résultats plus forts et plus généraux. De plus, cette étude ne traite que certaines classes de problèmes de contrôle. Il apparait cependant que l'extension des résultats à des problèmes plus généraux, ou à des problèmes dérivés, t els les problèmes de jeux ne présente guère de difficultés.

Enfin, je niai indiqué aucune méthode dedéterminationpratique des solutions optimales, faute de temps, et sans doute de compétence . Il ne faut toutefois pas se dissimuler que certains des problèmes posés requièrent, pour leur solution pratique, une masse vertigineuse de calculs.

Il reste que, bien que les objectifs initiaux fussent assez précis, un tel travail représente une marche au hasard difficilement contrôlée. Sans analyse convexe ni probabilités.

Les articles présentés ici sont des versions préliminaires dont les versions définitives doivent être publiés dans revues. L'approche qui en avait é t é f aite par _ WCKAFELLAR dans D 3] E 4] avait esse ntiellement pour objectif de s a pplications à de s problèmes déterministes où "l'observation" n'intervient pas de façon essentielle.

-Pour les utilisations que en vue-contrôle stochastique, problèmes de décision-il est nécessaire de s'inttre s ser à l'observation et en conséquence Alors 'f r(.) (.) est aussi un intégrant normal défini sur .n. x V • r est donc de graphe mesurable.

E) Si r est une multiapplication mesurable à valeurs fermées non vides dans V '" r est mesurable.

On applique C) et D) successivement.

l A -5 --I:L Dans toute la suite, (n, a, p) désigne un espace de probabilité oomplet, % une sous cr-algèbre oOllplète de a.

On notera par V un espaoe de Banach séparable réflexif, et par V' son dual -< > est le orochet de dualité.

Espaoes décomposables.

SUivant ROCKAFELLAR dans [13] et on pose la définition suivante : t"E:L,a(V') • On en déduit que <x,t)est dans L 1

x est bien dans , et rie , et si E = 0 alors x.,. 0 à L,a{V') est bien la forme nulle.

p.s. et x appliqué

V' étant réflexif, onbbtient les mêmes résultats pour L,B (V')

A -6 --I"-Si n'était pas dense dans L (V) , i l existerait OC dans L ,a (V') non nul, a avec :

x t:L!Ev)

;> E(<.OC , x> ) =0

Or OC t I l y a contradiction.

Définition 2

Si La (V) est un espace décomposable, on note l'ensemble des éléments de La(V ) qui sont Remarquons que 5) étant complète, il n' y a pas de difficulté d'identifications de classes de variables aléatoires a ou 5) mesurable coïncidant p. s.

Lemme 2

Si La (V) et L,a (V' ) sont deux espaces (V.,). est un espace fermé dans La(V) compatible avec la dualité ) et décomposable. Son dual L,a (V' )/ker et est également décomposable.

-----------------décomposables en dualité, (pour toute topologie L'% (V') s'identifie à En effet comme L;;(V ) CL:"(V) , Soit x€.Lcn (V) et Alors 1 B x CL a (V) et de plus 1 B x est CO mesurable. Donc 1 BXE: L9;, (V)

De plus est fermé dans La (V) . En effet la t opologie faible de La (V) est plus forte que la topologie induite par la topologie faible de sur La (V) • Or est faiblement fermé dans , et L'h(V) = La (V)

• Soit ft une forme linéaire continue sur L <n (v) . ë''l (V) étant fermé dans La (V) , il eXisteft dans L,a (V' ) , tel que en ,v (V)

<.AX) = E( <).>, x) )

Or montrons qu'alors: E <J3, x,"> = E < E"P, alors les formes linéaires sont distinctes: cela résulte de (V). L''t:>(V') peut donc s'identifier à qui s'identifie lui-m3àe à L,a(V')jker • est bien un espace de fonctionstJ:) mesurables à valeurs dans V' . Ces deux lemmes sont de nature purement technique, mais ils seront utilisés dans la suite de l'étude.

Quelques propriétés de multiapplications mesurables. 

Quelques résultats

Rappelons la définition par ROCKAFELLAR d'un intégrant normal ( Q (2) Si la duale j* est propre pour tout W alors j* est un intégrant normal.

Q -i J ' Q 6J )
( 

La (V) = L!(V) , L,a (V') =
, si l est continu en un point pour la topologie de MACKEY, il est continu partout.

On peut supposer que l est c ontinu en 0 pour la topologie de MACKEY • On va encore montrer que l est fini partout.

l étant continu en 0 , il existe un voisinage de 0 pour la t opologie de MACKEY, V, tel que si XE:l', I (x ).:s 1 (0) + 1 •

Les polaires dbs parties faiblement relativement compacts étant une base fondamenta.l e •de voisinages de 0, il existe une partie 1( faiblement relative.mt compacte dans telle que: 

sup j<x (W) , h«(,)) :> dp 1 >l (x) + 1 - -+ 'V' étant de dimension finie, h s'écrit h. v', + •••• + h v' Î n n que:lf est faiblement relativement compact si et seulement si et on en déduit (h•l l, h c: d( h = L. h. v!
= b (W) 1 o V 1
Soit r! la multiapplication à valeurs convexes fermées non vides w ----> ); (0 , ift (W) ) définie pour i EN. Or comme j5b(.' Yi) CEq)j(., Yi) , on aura: 

În J §!>({,J, yi)dp = În j(W,

Alors pc

On note ji l'intégrant défini par:

,oc ) = j* (W,<X:) +lY 

-f.>(w) 1Ix11-j*«(J, (w)) j(W, x (w)) + i(\(Q) (11xll + n + 1) o 1. o ) V
Puis on constate qu'on peut reprendre sur chaque!l la méthode de construction n . de l'espérance conditionnelle du théorème précédent mais avec certaines précautions 1 on remarque en effet que la construction de l'espérance conditionnelle de ji sur.o.. n dépend : a) De la partition dénombrable de choisie.

b) Des relèvements choisis.

On procèdera alors de la manière suivante n On note h en , n n h 2 5)des versions des espérances conditionnelles deft ' j* ( • , oC 0 ( • )) , j ( ., x 0 ( x cL9:> (V)

Or :

Donc : Et comme i l vient
On en déduit: PREUVE -----------------, avec X. (.) 11 (.».

A -34 - 9J fi = E a:' IgJ3) = sup <cx:.' , x> -(1 9.> ) (x) L (V) (1 + \j) )* = 1* 'V UJ IL <D(V) , 1 (L<)\ (V))..L = inf 1* (oc ) Floc=]J -III - Rem&!9ue

= jt

Gb (•,J3, (.» En effet :

1

* (E'j) n 1\ 1) = sup P.
l ( ) The methods and the expositions of the re sults are very similar to the corresponding methods used by R ockafellar in [13], to which we will refer constantly.

)J <. t'
One of the apparent shortcomings of the method is that, using strictly variational methods, it must suppose that the information cr-fields are fixed. In sorne cases, where the information cr-fields are generated by the state variable, it is possible to apply the duality methods to a modified problem. But they will not give us the strong results it is possible to obtain, by studying more specialized problems, like existence of optimal Markov controls. We develop other methods in [2] for this type of problem. The obvious reason is that, by developing a formalism applicable to purely deterministic cases as to stochastic cases, it does not use the stochastic features of the problem in sorne purely stochastic cases.

B

-2-Due to their very technica1 nature, existence resu1ts will not be given here, but are deve10ped extensive1y in [1] and [2].

The results of probability theory which we use can be found in [7] and [8], which we will take as references. This last as sumption is not strictly nece s sary, but we make it to simplify the re sults.

/!7 is the cr-field of n lt [0, + oc[ of the well-measurable sets ( [7] VIII D.14). /!7* is its completion for the measure dP 0 dt (*) .

V is a n dimensional vector space (n 1)

w is a m dimensional Brownian motion on (n, $, P), non anticipating relative to tE: R+ w may be defined equivalently as a square-integrable a. s. continuous martingale on (n, $ , P) with value s in R m , such that, by writing w = (w l , . . . , w m ) , one has, with the notations of [8] :

(1. 1)

d(w.,w.) = 5 .. dt 1 ) 1)
This definition is correct by the result of P. Levy ([8] p.l10). Moreover, we extend the definitions for m = a , by ta king conventionally w as the one dimensional null process.

(*) For our purpose /!7 could have been only the cr-field of non-anticipating sets.

w having continuous paths, formula (1. 1) and the results of [8] show that it is possible to define unambiguously the stochastic integral of a /1'* class of ff-measurable processes H such that for any t, one has:

(1. 2)
One can use for that purpose the "classical" definitions of the stochastic integral of [8] L21 is the space of the dl? 0 dt classes u of ff*-rneasurable functions with values in V , such that:

(1. 3) < + co B -5-
We define then a norm on L 21 by:

(1. 4) 1 ( S )2)1/2 Ilull21 = E 1 utl dt >:< L 2co
is the space of the dP @ dt classes y of f!7 -measurab1e functions with value s in Y , such that:

(1. 5) 2 E( sup ess I xt l ) < +co 0 < t < S
We define then a norm on L 2 co by:

(1. 6) ! 2 1 1 / 2 = E( sup ess Ixtl ) 0< t < S L 22
is the space of the dP ® dt classes H of .o/*-measurable functions with value s in ym such that:

(1. 7) S E f 1 H t l 2 dt < +co o
We define then a norm on L 22 by:

(1. 8)

B -6-

By convention, we assume that the elements of L 2l , L 2al , LZZ are equal to 0 for t> S.

Duality brackets are then defined: a) between and by the standard scalar product.

b) between L Z1 and LZ al by:

(1. 9) c) between L Z2 and LZZ by:

(

We consider on the previous space s only locally convex topologie s compatible with the duality previously defined. In particular, cr LZ and L Z2 being Hilbert spaces, the norm topology is compatible with the duality, L is the space of square-integrable martingales with values in V stopped at S , null at 0 . S L can be identified to a closed subspace of LZ ' on which we put the induced topology.

W is the subspace of .!: generated by the stochastic integrals relative to w of elements of L 22

. W is a stable space, in the sense of [8.] (p. 80 no. 4). Let WJ.. be the orthogonal of W in L in the sense of [8] (p.81 Theorem 5).

We suppose then that WJ. is decomposed in the sum of two orthogonal subspaces of martingalesW l and W 2 :

(1. 11) wJ-= W l El) W Z B -7-
Practically W 1 will be either either [O}. This decomposition will be justified afterwards .

cr-fields generated by w

In particular, if t E:R + is the family of R emark 2 of VI in [7] prove s that:

E ( sup 1 Mt l 2) :::. 4EI M 1 2 ü<t<T s (1. 15) t 2 2 E ( sup 1 J H . dw 1 ) :::. 4\\H\\22 0< t < T 0 s s ( t 2) E sup 1 J H' • dw 1 < 0< t < T 0 s s B -9-
One deduces immediately that:

< +00 0< t< T (1,16) f E( sup 1 Xt l 2) E( sup 1 ptl 2 ) < +00 0< t< T
One has then:

(1, 17)

In the same way, one has:

t IJ(p,X)dsl o s s t 1 J (p , x ) dsl o S s (1, 18) t 1 J (H , HI ) o S s < - < - sup 1 pul 0< u< T t Ipsl dS) t ({Iisi dS) sup lx 0< u< T u sup 1 x 0 < u< T u sup 1 p 0< u< T u sup 1 M 1 0< u< T u sup 1 MIl 0< u< T u
The assumptions that we have made prove then that each of the random variables on the right-hand side of (1. 18) is integrable, (1 , 17) and (1, 18) prove then that:

(1, 19)

E ( sup 1 NI) < +00 0< u< T u
The re suIt is then proved _ B -10-Corollary: Under the assumptions of proposition 1-1, one has: Let L be a normal convex integrand in the sense of [la], defined Let M be defined by:

s = E«PO'x O ») + EJ «Pt'x t ) dt o s + EJ (Ht,H t ) dt + E«MS,M S »)
on (n)( [0, +ClO[ ) x v x V X v m , n x [0,
(

M(w, t, p, s, H') = t, s, p, HI)

Let ta and t s be two convex lower semi-continuous functionals defined re spectively on and with values in RU ( +ClO} , and non identically +ClO. Let tù and t s be their duals. One define stand m on by:

(2. 2) ft(Co'C s ) = (m(c o ' cS) =
We make the following assumptions on Land M : II-l: One can find (PO' s 0' HO) in L 2ClO x L 21 )( L 22 such that:

(2. 3) S E l M(W, t, PO(W, t), sO(W, t), HÜ(W, t) ) dt < +0:> a (2, 4) B -12- S E J L(W, t, xO(W, t), Y O(W, t), HO(W, t) )dt < +00 o
Let us notice here that aIl the spaces of rneasurable functions which have been introduced are decornposable in the sense of [10] , and this will entitle us to use the results of RockafeIlar in [10] and [Il]

B The Eroblern of control

We define R, RI and R 2 by: R 0 1.

= L 2 x L 21 x L 22 x W (2, 5) RI 0 x L 22 x W 1 = L2x R 2 = x L 21 li L 22 x W 2
To any (x O ' X, H, M) in R we associate the process x by: t t t

x t = Xo + J x ds + J H dw + Mt 0 s 0 s s

The proof of proposition 1-1 shows that:

x define s then an elernent of L 2 co • B -13-Moreover, the general propertie s of stochastic proce sse s say that decomposition (2,6) is unique, We can identify then R to a space of right-continuous stochastic proce s se s,

In the same way, RI and R 2 will be identified to the stochastic processes that their elements define.

Definition II-1:

.p t, L is the functional defined on R by:

(2, 6) The dual problem of co ntrol consists in the m inimizatio n of

x = (x O ' x, H, M)--. <Pt, L s +E f L(w,
q: on R , • m,M
The distinction between a problem. of control and its dual is . arbitrary. The reader will see easily that the dual problem. of the dual problem. of control is the initial problem. of control.

Exam.ple II-l:

We assume that {S;;}teR+ is the family of cr-algebras generated by w. The continuity of the m.artingales relative to eR+ proved in [8] (p. 135), provel'that the assum.ptions made in lare satisfied.

Moreover, the sam.e results show that W.l = [a} .

Let (A, B, C, D) be a family of measurable family of matrice s bounded on n x [0, T]

Let U d be a compact convex set of a finite- dimensional space U.
For u ff':' measurable with value s in U d' let Z be the solution of:

(2. 8) fdZ = (AZ +Cu) dt + (BZ + Du).dw {Zo = a (For general existence and uniqueness results see [1].)

Let K be a positive norm.al finite convex integrand on )[ being considered as the m.easured space

(n x [0, +co[ ) x Vx U nx [0,+0
(n x [0, +co[, ff'l", dP dt )
One wants to m.inim.ize:

(2.9 )

T E f K(W, t, Z(w, t), u(w, t) ) dt a B -15-
Let (L,t) be defined by: ExaITlple II-2:

1 L(W, t, x, y, H) (2. la) ) \ t(x O ) = = } K(w, t, x, u) if f y = Ax + Bu H = Cx + Du t + co elsewhere with usU d if X o = 0 a. s elsewhere It is then equivalant to ITliniITlize t, L on R: this COITle s frOITl the fact that it is proved in [l]that if Z is a solution of (2.
In exaITlple II-l, let us aSSUITle now that w is replaced by il, where il is a square integrable ITlartingale such that:

(2. 11)

d( il., il.) = r .. (t) dt 1 J IJ
By the adjunction procedure (generaliz ed to the ITlulti -diITlensional case) given in [4] (p. 449), one can find HO defined on [0, +co[ , with values in V ITl , and a Brownian ITlotion w such that:

(2.12) -for any T> 0,

-TI t = B -16-One change s then the definition of L into:

(2. 14) { L(W,t'X'Y'H) = + 00 e1sewhe re K(w, t, x, u) when !Y = Ax + Cu ° H = (Bx + Du). H
will be the family of cr -fields generated by w.

Example II-3: Let f, cr , and K be functions defined on rp [0, T]xvxU m with values respectively in V, V and R. U is assum.ed here to be a compact metrisable space. We assume moreove r that:

-For a. s. w (f(w,'), cr (w,'), K(W,.)) are continuous on [0, T]xvx U .

-For every (x, u) in Vx U, (f(• ,x, u), cr (• ,x, u), K(• ,x, u)) are /!7* measurable proce sse s.

-One can find k::: ° such that for every (x, u) in V x U, one has a. s. :

(2. 15) 1,.

2 If(w,t,x,u)1 +lcr(W,t,x,u)1 -One can find k'::: ° such that for any (x, Xl, u) in Vx Vx U, one has a. s. :

(2.16) 1 f(w, t, x, u) -f(w, t, X, u) 1 + 1 cr (w, t , x, u) -cr(w, t, u', u) 1::. K'I Xl _x! -k' is positive B -17-For u §'*rneasurable, let x be the only solution of:

(2. 17)

{ dx = f(w,t,x,ut)dt + cr(w, t,x, Ut) dw x( 0) = x a
By using the rnethods of Gikhrnan -Shorokhod in [5], existence and uniqueness of the solution of (2. 17) follow irnrnediately. Moreover one will have:

(2.18) E ( sup 1 Xtl 2) < + 00 0 < t< T
Then (2.15) will prove that f(w, t, x(w, t), u(w, t) ), cr (w, t, x(w, t), u(w, t) ) are in L 21 and L 22 re spectiveI y.

The goal of the problern of control is to find u rninirnizing:

(2. 19)

T E J K(W , t, x(W, t), u(w, t) ) dt a
We change the problern in the following way (the rnethod is very sirnilar to the treatrnent of Exarnple 3 in [13] ): let L be defined by:

L(W, t, x, y, H) = inf K(W, t , x, u) (2. 20) {1(W, t, x, ul = y cr (w, t, x, u) = H
giving to this expression the value + 00 if there is no u such tha : for any (w, t) , then:

(2.
(2. 22) L(W, t, x, y, H) = inf K(w, t, x(w, t), u (w, t) n n
because of the continuity of K .

Besides,

(W, t) 1 (x, f(w, t, x, u), cr(w, t, x, u): u E: U d } !:;. is a measurable correspondance, because, if (x u} is a n' n nE:N dense countable family in VX U , {x, f(w,t,x ,u), cr(w,t,x ,u} N n n n n n nE:
is dense in !:;. (w, t) for every (w, t) .

B -19-

By writing: W 1 :0: [O}, the given control problem is equivalent to minimizing the integral:

(2. [START_REF] Bismut | Analyse convexe et Probabilites[END_REF])

T E J L(W,t,x(w,t), x(w,t), H(w,t)) dt o
for the x of RI satisfying x( 0) = Xo .

Indeed, the integral is well-defined, by the measurability of L(W, t, x(w, t), x(W, t), H(w, t) ) and its positivity. Moreover, by using the criteria of theorem 2 of [Il], it can be seen tha t the integral is finite

if and only if one can find u 27:1,< measurable with values in U such that:

(2.24) dP ® dt a. s. : f(w,t,x(w,t), u(w,t)) = x (w ,t) a (w , t, x (w, t), u(w, t)) = H(W, t)
If for dP 0 dt almost every (w , t), L(W, t, .) is convex, then L is a normal convex integrand, by the measurability of t:,., because we can apply the criteria a) and b) of 1- [11] .

In this case, the approach that we have taken can be used: one checks in particular that assumptions II-l and II-2 are satisfied; this follow s from the inequalitie s:

(2. 25) o < L(w, t, x, y, H) < k( 1 + 1 X1 2 )
The first part of the inequalitygive s then:

(2.26) M(W, t, 0, 0, 0) < 0 (2.25) and (2.26) prove that II -l and II-2 are satisfied.

B
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III Perturbation rnethods

One define s a duality between R (which we have identified to a space of right continuous stochastic processes) and RI = LZo::> x by:

(3. 1) Definition III-l:

(x = (xO,x,H,M), s (y, b) } -E f (x t , Yt) dt + E(x S
For ( y, b) in RI, we define the functional qi y, b t,L on R by:

(3. Z) (3, 21) S x = (x O ' x, H, M ) ---. Xs -b) + E f L(W,t,(x+y)(W,t), x (W ,t),H(W ,t))dt p y, b a t, L 'f " R
t 00 elsew:e:e.' S ' " 1

We define in the sarne way the functional on R by: 

p = (PO' p, HI, M ) --- qi y, b m,M S m(PO' Ps -b) +E J M(w,
(3. 3) inf xeR if J, b (x) t,L M( Yt b) = m, inf psR b () -m,M p
Theor em III-l:

Land CPm ,M are convex functionals on RI and their duals are d efined by:

(

\.L

In the same way one has:

(3 . 5) di >!' ( y b) -{.,L ' = liminfcp M ( yl,b l ) m, (yI, bl)-(y, b)
except in the case where t, L is identically +00, and where is equal to +00 on a neighborhood of ( y, b) (the topology is any topology compatible with the duality (R, R ')). One has the corre sponding result for cp':'

• m,M B -22- Proof:
This re suIt is closely related to theoreIn 3 of [13], given by Rockafellar, We will prove only its first part, the second following frOIn general convex analysis results as used in [13J, For p in R, one Inust calculate:

(3, 6) cp* (p) = t,L sup xeRI (y, b) eR ' S E J (Pt' y t> dt + E( PS' b> a s -E J L(w, t, (x+y)(w, t), x (W, t), H(w, t) ) dt a But x defining an eleInent of L 2 <Xl'
one has then:

(3, 7) s S sup xeR 1 E l \>dt-E f (Pt' x t > dt -E(PS' b ' > a a (z, b ' )eL 2co x s + E (ps, xS > -E J L(w, t, z(w, t), x (w, t), H(w, t) ) dt a .
But x in RI and p in R • Inay be written:

(3, 8) B -23- t t x t = X o + J x s ds + l H s .dw s + Mit a a p = p + t a t f P ds + s a t f HI.dw + MI + MI a S s

It 2t

By proposition 1-1, and the definition of R, RI and R 2' one has:

S S (3,9) E(PS'x S ) = E(PO'X O ) + El (pt,X t ) dt + E f (Pt':K t ) dt a a S +E l (Ht'Hi:> dt + E(M 1S ,M 1S ) a
One deduce s then:

(3 , 10) S (' f)>:C (p) = t,L sup E( MIS' MIS) + . sup E f (Pt' Zt) dt M1sWI (x,H,z) a S S +Ef (p ,:Kt) dt + Ef (HI,H) dt a t o t t S -E f L(W, t, z(w, t), x(W, t), H(w, t) ) dt a + sup E(PO'x O ) -E(PS' b l ) -to(x o ) -tS(H) , (x o ' bl)e: x (3. 11) if if M' = O. 1
Moreove r the results of R ockafellar in [10], which can be a pplied, because aU the considered space sare decomposable, and because of assumptions II-l and II-2, prove that:

(

S dt + E l (Pt' x t ) dt o + E f (H', H t ) dt -E f L(w, t, z(w, t), x(W, t), H(W, t) ) dt o t 0 s = E f t, p(w, t), p(w, t), H '(w, t) ) dt o 3.12) s s 
and this last quantity is never -0 0 . Finally, one has:

(3. 13) sup E( PO' X o > -E( Ps' b') -.{,o(x o ) -.{,S(b') ( x o ' = .{,>:' (p ) + t*( -p ) o 0 s s
and this last quantity is neverco By adding (3. 11), (3. 12) and (3. 13), one finds:

(3. 14) = B -25-
The second part of (3.4) will be proved in the same way. 

B
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In particular:

(4. 5) -inf M(P) !Tl, Theore!Tl IV-1: If '" t,L or
are not identically +00, the following as sertions are equivalent:

(4. 6) (4. 7) 
(4. 8) a) inf 'Î't,L(x) xsR = -inf q; !Tl,M(P) psR b) inf ifl t,L(x) xsR = c) inf !Tl,M( p) = psR lim inf (y,b) -+ (O,O) li!Tl inf (y, b) -+ (O, 0) inf xsR inf psR b (x) t,L b (p) !Tl,M Proof:
Each of the stated relations is equivalent to the lower se!Tlicontinuity at (0, 0) of CPt, L and cP M' !Tl,

•

Re!Tlark: All the proofs concerning purely convex analysis results are for!Tlally the sa!Tle as the ones in the purely deter!Tlinistic case. We refer to [13] for !Tlore detaHed proofs of these points .

Definition IV -1: x in RI and p in R 2 will be said to be coextre!Tla l if: •

(4.
The conditions of coextremality may be written:

(4, 9') a') dP @ dt a, s, (x(w, t) ,x(w, t), H(w, t) ) € oM( w, t,p(w, t),p( w, t),H '(w, t)) b ') (4, la')
The definition of coextremality is then symetrie with respect to the two control problems .

Theorem IV -2: The following assertions are equivalent:

a)

x and pare coextremal.

b)

x minimizes on R, p minimizes iD on R, and

'V >m,M
the equivalent conditions of theorem IV -1 are satisfied The dual problem consists then in the minimization of:

(4.15) S E f L*(w, t, k(w, t), (C*p+D*H)(W, t) ) dt o
The coextremality conditions can be written:

(4. 16) (k(W, t), (C>:'p + D>:<H)(w, t
) ) E: oL(w, t, x (w, t), u(w, t)) dP 0 dt a. s.

For an extensive analysis, especially of the linear-quadratic case with random coefficients, we refer to [1] .

B

-31-V A Pontryagin -type principle for !to equations

We consider again example II-3. In the same way than in [13],

we are going to deduce a generalized Pontryagin principle for !to equations. We assume that the convexity assumptions given in

Example II-3 are satisfied.

We have here:

(

Let us then write that x in RI and p in R 2 are coextremal. We willhave:

dP @ dt a. s.:

( x ( w, t). p( w, t) ) +( x( w, t). p( w, t) ) + ( H( w, t), H' (w , t) )

(5. 2)

-L(w,t,x(W,t),x (w ,t),H(w,t)) = L>:« w,t,p(W,t),p(W,t),H'(w,t))

But (5. 3) L(W , t, x(w, t), t), H(w, t) ) = inf K(w, t, x(w, t), u) { x(w. t), u) : x( w, t)
a (w, t, x(w, t), u) -H(w, t)

Then:

(5. 4)

L>:«w,t,p(W,t),p(W,t),H'(w,t)) = sup sup r(x,p(W,t) + x E: V (v, H) E: VX V m +(v,p(W,t)+(H,H'(w , t) -L(W,t,x,V,H)} Equivalently: (5. 5) B -32- L>!«w, t, p(w, t), p(w, t), H'(w, t) ) = sup max (x, p(w, t) + xeV usU (f(w, t, x, u), p(w, t)+(cr(w,t, x, u),H'(w,t)-K(w,t,x,u)
By comparing with (5.2), one sees there must exist u(w, t) with values in U such that:

-u is mea su rable.

-dP dt a. s. :

(

H( w, t)

= f(w, t, x (w, t). u(w, t) )

= cr (w, t, x(w, t), u(w, t) )

(5.7) -dP dt a. s. the" sup max" in (5. 5) is attained at x (w, t) ,u (W ,t) .

The pos sibility of a /y':' measurable choice of u follow s from the ,o/":'measurabilityof the set -value d function 6' defined by:

(5.8) (W,t)-[u eU; (f(w,t,x(w,t),u ),p(""t» +(tr(W,t,x(W,t),u) ,H'(W;t» 6' -K(w, t, x (fII,t) ,u) =Cf (w, t)}
being precisely the maximum in u of the left-hand member of the equality def ining A' (w, t) .

cp is then /Y':< measurabl e, because one can tak e the "maximum" on a countable dense subset of U .

6' is measurable (with non empty value s), because its graph is measurable. One applie s then theorem 2 of [11].

B
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(5. This result allows us to make very clearly the connection between deterministic optimization and stochastic optimization. Moreover aIl the various necessary and sufficient conditions for optimality of a given control derive from these conditions. For various applications of this principle, e specially to the linear quadratic case with random coefficients, we refer to [1 J. It is a remarkable feature of the dual problem that the dual state variable p can have jumps, corresponding to the jumpfof M.

Relation between the stochastic Pontryagin principle and the dynamic programming equation

We assume here that (f, OE,K ) do not depend on w, and that {&l"t}tsR+ -35is the family of cr-algebras generated by w. Moreover, to simplify the calculations, we suppose that n = l .

If we assume (without having any justification other than a purely intuitive approach) that p(w, t) = p(t, x (w, t) ), p being a sufficiently smooth func tion of (t, x), then by the !to formula, theorem V -1 can be written, knowing that here WJ.. = [a} È.E. 1 2 

+ f + 4-l cr l 2 od(
eV et eV 1 2 e 2 V = -max ( f(t , x, u) ex + "' 2 1 cr i (t , x, u) -=--z -K(t, x, u) ) usU ex
we see that by comparing the right-hand side of (5 .12 ) and (5 ,2 0) , by writing formally:

( 5. 22) eV ex = p then (5 .17 ) is the derivative in x of (S , 21 ) . •

The se calculations are purely formaI. In particular, we must remember that in the general duality approach, we optimize with respect to the controis nonanticipating with respect to w, whereas in the partial differential equation approach, we optimize with pure Mar kov controls.

More generally, it is in most cases not true that x generates the same cr-fields as w; this prevents us in general to identify the two problems.

For a general case in which the actual soluti on is Markov, we refer to [2].

For existence results in the general case, we refer tà [1], The purpose of this paper is to apply the methods developed in [1] and [2] to solve the problem of optimal stochastic control with random coefficients.

After having proved some preliminary existence results on stochastic differential equations, the existence of an optimal control is shown.

The introduction of an adjoint variable enables us to derive extremality conditions: the control is thus obtained in random "feedback" form. By using a method closed to the corresponding one used by Lions in [4] for the control of partial differential equations, a priori majorations are obtained.

A formaI Riccati equation is then written, and the existence of its solution is proved under rather general assumptions.

For a more detailed treatment of sorne examples, the reader is referred to [l] . w is a rn dirnensio l1 al Brownian motion on (0, g:, Pi, non anticj [6] show that it is possible ta define unambiguou81y the stochastic integral of a ,Ofi,c c1ass of ff-rneasurable processe .:-H such that for any t, one has:

(

. t

E f 1 H 1 2 ds < + co • o s
One can use for that purpose the "classica1" d(; finit -;ons (jf th ' :! stochastic integral of [G] (p. 80 R e ma r k) or the definition of [6] (p. 86 Theorern 7)

For any stopping tinlC cr, 18 th e s pace of square-integrahle §-lneasurable randarn variabl,::; s, with v a ill es in V .

cr

T is â strictly positive constant.

L 2l is the space of the dl? ® dt classes u cf illnc..tions with values in V , such that:

(1. 3) c -5- W E' define'hen a .norm on L Z1 by: (1.4) f (T- )Z l l/Z IIuI121 = lE 1 utl dt ) * LZo:
. is the space of the dP 0 dt classes y of fY -measurable funcHons with value , ", in V , such that:

(1. 5) Z E ( sup es s 1 xtl ) < + 00 0::::. t ::. T

We define then a dorrn on L 200 by:

(1. 6) ' 1 l' Il x 1• f 1 ( Z, )1/2 = sup ess Ixtl ) \ 0< t < T )
L 22 ie tbe Spd.:-::' of the dP ® dt classes H of S*-rrlea8Ul'able funcHons witl: va lue in V m such that:

(1. 7)
We define th011 a norm on L 22 by:

( 1. T C 2d is the space of right-continuous processes x adapted to and such that:

(

A norm is defined on by:

(2. 2)

Il xll d

Theorem II-l:

For (ZO' u, v, M) in o .L L 2 X L 21 X L 22
xW , the equation: 

(2. 3) f dZ = (A Z + u) dt + (B Z + v). dw + dM l Z(O) = Zo
is continuous, C 9 (ZO' u, v, M ) ---.. • Z f Proof:
The proof is merely technical, and follows from a simple (1 ) fixed point theorem, We refer the reader to [1], • Let <:p be the operator, which associates to

(ZO' v, M) in O i T L 2 X L 22 X W ZT in L 2
through the equation:

(2, 4)

Let l\J be the operator which associates to (PO' v', M') in through the equation:

(2, 5)

{ d P = p(O) = Po -(A*p + B*v') dt + v', dw + dM'
Theorem II-2:

<:p and l\J are both continuous one -to-one operators, and one has:

(2, 6) -l l\J = cP* Proof: If v' is in L 22 , B* v' is in L 22
and then in L 2l , One applies then Proposition 1-1 to the processes Z and p defined in (2 . 4) and (2, 5):

(1) Voir l'Annexe 1.

(2. 7)

Then (2. 7) can be written:

(

= E (PO' ZO> + E f (Pt'AtZt> dt o T + E f (-A t Pt -Bt Zt> dt o T + E f < v t + B t Z t > dt + E < MT' MT> o T = E (PO' Z 0 > + E f ( {, v t > dt + E <. MT' MT> 2. 8) c 10 T 
From (2.8) one deduces necessarily that if ZT = 0 then:

(2. 9)

( Z 0 ' v, M) = ( 0, 0, 0)
cp is then an injection.

Let us prove that for any ZT in Li one can find (ZO' v, M) such that:

(2. 

x being given by:

(3. 3) with Xo in { dx = (Ax + Cu + f) x( 0) = x o dt + (Bx + Du + g). dw
Theo rem III-1:

The problem LQC has one unique solution.

Proof:. The result is proved according to classical methods. By theorem II-l, the mapping:

u _ x
is affine and continuous from in (here x is a. s. continuous).

This proves easily that l is continuous and convex.

Moreover, when 1\ u\\ -+ + (Xl, I(u) -+ + (Xl by (3.1).

U L 22 being a

Hilbert space, these facts prove that l attains Hs minimum. l being strictly convex, this optimum is unique (for more details for the formaI reasoning, we refer to the methods used by Lions in [4]) •

We are now going to introduce a dual variable p.

TheorenL III-2: A necessary and sufficient condition for u to be optimal is: if p is the unique solution of: with (PO' H, M) in L 2 X L 22 X W, then:

(3. 5) Nu = C*p + D*H Proof:
The proof can be done very rapidly by using the general duality results of [2 J. We give here a direct proof.

If is easily checked that l is derivable. l being convex, u is a solution to the problem LQC iff l'(u) = O.

But one has: Let us prove then that the system:

(3.
(3. 7) fdP (M*Mx u -uA'P -B*R) dt + R' dw + dM {PT --Mi Ml x T o .L
has a unique solution with (PO' H, M) in L 2 X L 22 X W .

Let q be the unique solution of:

(3. 8)

j dq = (M* Mx u -A*q) dt lqo = 0 Theorem II-1 shows that qT is in Li u T because x is in C 2d .
It is then equivalent to prove that the system:

(3. 9) ( d q , = q' = T (-A*q' -B*H)' dt + H' dw + dM o .L
has a unique solution, with (,'la, H, M) in L 2 X L 22 X W . But theorem II-2 says precisely that (3. 9) has a unique solution.

By applying proposition 1-1, one has:

c 18 = E r o ( u v u) M*Mx -A*p-B *H,x 'x dt t t l-t t T + E J (Pt' At(X; -+ C t(v t -Ut» dt o (3. 10
) may be written: 

(M *M u v u)+E(M*M u v u) t t x t ,x t -x t 1 l "r . -x-y T = -E . l (Ct Pt + Dt He V t -Ut) dt

IV

The "feedback " problem.

The purpose of this part is to find t le dual variable in feedback forme Proposition IV -1: For any s in [0 T j and h s i n LZ' the sys t em:

(4. 1) C 19 dl/J = (M*Mcp -A*l/J -B*X) dt + x• dw + dM (4. II) .L with (X, M) in L 22 X W l CP(S) = h l/J(T) = -Mi MICP(T)
has a unique solution.

Proof: By using the methods of [4] One has:

s s s a) (4. 2) b) c) 
P (W ") € P(V, V) s r (w) € V S 4J
(4.13) / C 23 l d"h =Axhdt + B"h . dw l "h(8) = h T F s(h, h) s: E f s 2 2 1 M"h 1 dt + E 1 MI "h 1 t T But it is proved in [1] that the mapping h -x is continuo us T s n from
in Cid and rnoreover one can find CO> ° such that for any s in [0, T], then: Proof: This is obvious from the previous results . •

Remark:

The previous theorem says nothing on the trajectories of P V The Riccati equation: a formaI approach.

A naturai idea is to write formally that Pt can be decomposed in the following wa y: Moreover, if we assume that P can be written in the fo 'm (5.1), (5. 4) implies that the right-continuous processes p and" P x are equal. 

t ( 5 
(Pg + h) -Pf -.J't'gJ dt + h. dw + dM' r = 0 T with (h, M') in L 22
X wl:

Proof: We write in the same wa y:

(5. 10)

r = t t r ds + f s 0 t h . dw s s +I o dM' with (h, M') in L 22 X WJ...
We take now the complete system (3. 3), (3.4), and we know here that:

(5 The proof of the existence of the solution of equation ( 5. 2) is not straightforward in the general case. We will prove existence and uniqueness in a particular case, which applies especially when the coefficients of the equation, the coefficients of the criteria on the one hand, and the Brownian motion on the other hand, are independent.

Theorern VI-l: The Riccati equation: vit is then a martingale of self-adjoint operators, and P is a process of self-adjoint positive operators.

Proof: For P in IR (V, V), let CPt(P) be formally defined by: (6. 3)

(N + D* PD )-1 (D* PB + C* P) + M* M } t t t t t t t t
We want to solve the equation: ) is also proved.

A

We notice here that the different majorations are not related only to the fact that pl is self adjoint and positive.

Let R be defined by:

(6.14) R = 2 supess IIDI12
For a> 0, and for fi/J function $t measurable and a. M < +00

In the 8ame way, the calculation of the derivative in P of CPt will prove that one can find k > 0 such that if P and pl are in with self-adjoint, positive, and with C 2 , then:

. (6.19) dP dt a. s.

Let us notice finally th at 14.;' te a metrizable complete space.

We take here: (6. 20)

From (4. 9), one has necessarily:

(6. 21)
We take for a the value:

(6. 22) a =
Let G the mapping which to îS in associates by: (

Then we prove that Q is in . x.; . We prove first that (6.37) has a solution. T hi s i s obvious, becau se all the lin e ar ope rators appea r ing in (6. Uniqueness is easily proved under the given assumption: if pl is a second solution of (6 .1) on [0, '1], right-continuous andbounded, one will have:

T $( f ds ) (6. 43 ) pl = E t M! Ml q:> (Pl) t t s s
/ with q:>s(P s ) uniformly bounded by a constant MI. Then if t> T R , one has: -MI ( 6 . 44) We define then a. 1 by: 0. Remark: In the case where all the coefficients ' ,are deterministic, the restriction on the boundedness of P and of q:>(P) is unnecessary to prove the uniqueness of the solution. To prove this point, one needs only to see that converging necessarily to M! Ml when t T, for t close enough to T, one has: AU the operators are ' supposed to be constant.

w is l-dimensional. We suppose:

C = (C, 0) D = (O,D)
The Riccati equation is then:

dP + PA + A*P + B>:<PB -PCN- 1 c*p -B*PD dt 1 (6.49) (N 2 +D*PD)-1 D *PB +M*M = 0
The optimal control is given by: The purpose of this paper is to apply the duality methods to obtain existence results in stochastic control. The approach is very similar to the approach of R ockafellar in [9]. Conditions for existence are given. The methods developed here are implicitly used in [4],

(6. 50) { -1 u 1 = -N 1 C >!< Px u 2 --(N 2 +D*PD)-1 D *PBx
and results are obtained from them in [1]. Nous supposons connus les principaux résultats de [2]. Les rappels qui sont donnés ici ne servent qu"a clarifier la suite de l'exposé.

(n, 

(nX [O,+oo[)X Vx Vx V m
au sens de [10] n X [0, + 00 [ étant considéré comme l'espace mesuré:

( 1. (1.13) (2. 2) .Et! l I A X {W. tlll dt r < +al On va maintenant chercher sous quelles conditions (0,0) est dans l'intérieur ou dans l'intérieur relatif de dom q:lt, L Soit t et les récessions au sens de [13] x appartient à L2r' c'est à dire: (6. Ces resLlltats vont etre Lltilisés dans la partie sLlivante.

D 5 { t(CO''S'> " -I-O(c O ) m( cO' cS) = t b ( cO) + t s ( -cS) On pose: R o = LZ X L Z1 X LZZ X W R = 0 1 LZ X L Z1 X LZZ X W 1 (1. 14) R - Z- 0 LZX LZ1XLZZXW Z R' = L ZCD X L S Z A x = H, M) dans R,
x n =
(3. 3) S •E f 1IBx(w, t)

VII Exemples

On suppose qu e le couple (L, M) satisfait l'hypothèse H 1-1.

(LI' Ml) désigne un deuxième couple d'intégrants construit comme précedemment.

Proposition Alors: 

_ CI:) =-inf <P (x) R r --t

'

1\ ,

Nous allons voir commeqt ce resultat pourra etre utilise pour transformer des problèmes non observables enproblèmes observables. normal défini sur n X [0, +00 [X V X V X V ,n X [0, +00 [ étant considéré comme l'espace mesuré (nx [0,+00 [, f7®f:iJ( [0,+00 [), dP @dt).

Soit L' l'intégrant espérance conditionnelle de L. Il est remarquable que malgré le caractére "évident" de cette opération, elle est à la base de tous les résultats qu'on peut obtenir lorsque l'observation est incomplète.

Nous donnons pour cela l'exemple suivant:

Exemple: U est un espace vectoriel de dimension finie.

A est un de P(V, V), B un de il (U, V)

west un mouvemçnt Brownien n-dimensionnel.

Z est pa r: The procedure is pre sented in a more general duality framework for optimal stochastic control in [3]. In particular, by transforming very easily the problem which we solve into a very simple problem of optimal stochastic control, we show in [3] that a certain type of state constraint changes the Lagrange multiplier associated to some problems of optimal stochastic control, which is in many case s a semi-martingale, into a local semi-martingale. This is to compare with the results of deterministic control given in [11], where the Lagrange multiplier, whiCh is generally an absolutely continuous function, is changed into a right continuous bounded variation function, when state constraints are introduced.

( dZ Z(O) = (AZ +Bu)• dt + dw C est
To avoid excessive notational difficulties, we give none of these generalizations, and we refer to [3] for a more general treatment of this AlI the basi.c results in probability theory which we will use can be found in [5], [6], [7J and [8]. Let V be a finite-dimensional space.

Let (0, $, P) be a complete probability space.

Let {$t}t eR+ be an increasing right-continuous sequence of complete sub-cr -fields of $' ([5] IV 30).

Let f7 be the cr -field in Ox [0, +0)[ of the well-measurable sets ([5] VIII-D14), the completion of :!T for the measure dP 0 dt.

For our purpose, and using the modification theorems of Meyer, we could have used for .0/ the cr -field of measurable adapted sets ([5] IV D45), progressive sets ([5] IV D45), or predictable sets ([7] no . 203), which have the same completion for dP @ dt by [7] no. 210-212-214 and 215.

Let X t be a measurable proc e s s with value s in V, such that:

(1. 1) < +0) (2. 9) prove s then that: +00

I( u 0) < l () ( [ u + \J."
(2.10) Let A be a • fJ7 0 measurab1e set of st .

. J 1 1 2 -1> = 0 o (u 1 
t/\Sn Let uA be defined by:

r:o. • < t A A 0 u = u (3. 5) 0 A ICA 0 t/\ S < s < +00 u = u n-

Th

A" "1 en u lS necessarl y :!T* measurab1e.

Moreover, one has:

(3. 6)
A 2

1 Ut 1 dt = + uA is then in H. By using inequality (2.9) in the corollary of theorem II-l, Qne has:

(3. 7) o A )+(\..l,
But one knows that:

(3. 8) o (JO!)
< l a. s. But one has then:

(3. 12)
Moreover, is an integrable randorn. variable.

(3. Il) proves then that is absolutely continuous with respect to P. Mor e over:

(3 . 13) 

ASJ = °
A being stopped at SO, A is the null process. Then:

(3. 40) g = M
and g is a local martingale.

R emark: The end of the proof is inspired of the proof given by Meyer in [9], for the multiplicative decomposition of right-continuous positive although the origin of the problern is cornpletely different, The relationship with this decornposition will be proved in the next parts.

Let us notice also that, even if \J. is not directly re1ated to a particular u 0 , SO depending on u 0 , g depends, at 1east at first sight, But one has:

(

L cr SO ln (Xl' We can then take the limit in (3 , 52 ' 1, 

a a

For t S , u is neces sarily nu Il. • Let the process defined by: (

By writing:

t (4. 5) < a 1 f a X , u > ds + -2 < X , u > ds s s O s s F 22
and by noticing that by (4. 1):

(4. 6)
is then a right-continuous supermartingale.

Proposition IV -2: For any n, we can identify the processes Proof: Proposition IV -1 proves that:

E n o 87 t I\SO < X • u > ds + 2 E n s s (4. 7) From (4. 7), one deduces: (4. 8) 
By using (4. 5) and [5] VI T 13 and R 14 a), one sees that: o 

< 1 A (1 -cr Sa) ) o 1 -cr sa ) But (2. 8) sa ys that: (4,14) o 0) = a 
Moreover, by Fatou 1 s lernrna, one has: being null for t> EfJ comparing(4.1 0) and (4, 24), one g e ts:

(4.
(4, 25)

The processes ° zu,sg and "SO (1 -cr )

n n being right-continuous, the result follows from (4, 25), •

TheoremIV-1: Wecanidentifytheprocesses ZO and (l-crO)g t t t

Proof:

For any n , one has:

(4, 26)
Then necessarily: Moreover:

(4. 30)
or equivalently:

(4.31)
There is a contradiction. •

One defines then Z: by: Moreover, let u be defined by: (4. 48) u = -(sgn X ) e-s s s 

(4. 32) < +00 E$O J o < +00 J < Ot X ,
• Proposition IV -4:

We can identify the processes and Proof: Necessarily:

(4. 51)
If is defined by: (

one has necessarily:

(4.

53)

Then: ) proves that T is the first time at which one knows that the distribution 1 T} X t is null: this follows from:

""t u s = +00 f lu!1
(4. 64)
The result of Ito-Watanabe-Meyer given in [9] says then that the right-continuo us positive supermartingale Z: can be decomposed in a unique way into the product of M and B, M and B being such that:

.M is a local martingale stopped at T, such that if the additive decomposition of Z 1 is written

(4. 65) Zl = N -A t t t
Nt being a local martingale and At an increasing natural process, if we define: 

1 v = inf (t: Z t-= a} c (4.66) 1 VI = inf {t: Z t--6.A = a 6.A t > a} t v' = vcÂv l M is continuous at v' .
B' = B M' = M , ' t t' t t
But theorem IV -2 gives precisely such a decomposition.

One has then the theorem:

The o rem IV -3: For u O to minimize l on K, it is necessary and sufficient that u 0 satisfies the following properties: o

In particular, it is possible to choose u such that if ZT-f. 0 , +00

f o 2 1 Ut 1 dt < 1 o Proof:
Theorem IV -2 proves that T SO. Moreover the previous result states that gt = Mt on t < T. By proposition IV -1, for t < T , one has:

(4. 67) F 35 X t + 2 M uO = a t t
Moreover Mt is non null for t < T, and one can write:

Besides, by proposition IV -5, It T X t = O. For t T, we can then choose a,ny ua compatible with the constraints, without changing the value of the criteria. In particular we can tak:e ua null for t T .

a

For such a choice of u , if ZT-f: 0, necessarily: +00

J 1 2 dt < 1 • a Corollary 1• g = M
:Proof: g is stopped at T. To prove this, we know that T SA. If T = sa, g being stopped at SA is also stopped at T. If T < Sa, {l -1 / 2> a . Theorem IV -2 proves then that gT = O.

g being a right-continuous positive supermartingale, by [5] ( VII T 15), g is stopped at T.

By using the formula of change of variables given in [8],

being a continuous decreasing process, one has: To prove that g is continuo us at \i l , we will prove only that it is continuous at \i ,

t (4. 68) Z: = + f Bs
C If T = SO, \i C = SO,
and by construction, g is continuous at SO, If T < $J, let us suppose that ZT-= ° . Then, because 1 -cr T > ° .

gT-is necessarily nu1l.

Moreover, by writing: Remark: BI is precisely associated to the particular uO defined in the proof of theorem IV -3, Moreover this corollary gives the important result that g, which could have depended on the particular u 0 , was actuaUy a fixed process,

Corollary 2: An expression of M is: t X 2 o t < T Mt Z1 1 f s ds = exp] ? t 0 s (4. 72) t T if Z1 = 0 Mt = M T - T - if 1 -1= 0 Mt 0 ZT - = Proof:
This result can be deduced from [9]. Let us prove it directly.

On t< T, one has, If ZT _ = 0, M is continuous at T.

If ZT-> 0, o 1 -OET > 0 and
R emarK:: Formula (4. 77) allows us to give an intuitive explanation of sorne of the results.

If ZT _ > 0, it is easily proved that each trajectory has a strictly positive lower bound, and

> o

But even if ZT-= 0, it may happen that 1 -> 0, in particular in the case where X is a. e. equal to zero on a left-hand neighborhood s of T.

This corresponds to the case where, although the predictions were " optimistic" (Z > 0 for s < T), X has in fact taK:en null values s s before T.

There is intuitively (and mathematically) a basic difference between these two cases: in the first case, the "bad lUCK:" was unpredictable or was just instantaneous betting. In the second case, the facts have contradicted optimistic predictions. In the two cases, there a r e idle resources left, or useless resources.

Conclusion:

We can notice that the first three parts are almost complete ly independent of the linear nature of the criteria, and of the quadratic nature of the constraint.

In parts IV and V on the contrary, these properties are constantly used. One of the most striking features of the problem is its close relationship with the multiplicative decomposition of positive rightcontinuous supermartingales, the properties of which are very muc l used.

(

We refer for applications to [3 J .

(1) Voir l'Annexe K. f3 being a Brownian ITlotion, is it pos sible to find u such that the functional:

T u E [L(t, u (t, 
•s o Moreover, we want to prove that a choice of u is possible, which does not depend explicitly on the origin (s, x) .

This probleITl has already been solved by FlenlÎng in [6], under rather stringent Lipschitz hypothesis on the coefficients and the controls.

Beties has proved in [1], the existence of an optiITlal non-anticipating controllaw, when the equation is led by a Brownian ITlotion, under growth conditions on the drift and on the payoff under convexityassuITlptions.

We have here no convexity or Lipschitz assUITlptions; we prove that the optiITlal control ITlay be chosen as a Markov control (i. e., does not depend on the past values of the state) and prove that this choice can be ITlade independently of the origin.

The report is entirely based on the approach of Stroock and Varadhan

given in [13] on diffusLm processes. It uses the results of Freidlin on the dependence of a diffusion process relatively to its coefficients, in [8]. This result has been extended by Stroock and Varadhan, in an unpublished version of their paper (see [13], "note added in proof", page 500). A proof of this extension, based on a private communication of S. R. S. Varadhan is given first.

It is then proved that, under convexity assumptions, starting from (s, x), an optimal Markov control exists, which may depend explicitly on (s, x). Necessary and sufficient conditions, similar to the condition given by Davis and Varaiya in [4] are derived. The dynamic programming function q is proved to depend continuously on .

Moreover it is proved that the difference between any of the payoff potentials and q is an exceSSlve function relative to the diffusion corresponding to the given payoff potential .. This result is equivalent to adynamie programming inequality(which must be proved here) , Under convexity assumptions, this proves the existence of a Markov control independent of the starting point (s, x).

The results are then extended to the non-convex case,

The main result is stated in theorem IV-1.

Remark: For all the general definitions and resuIts on Markov processes which are used here, the reader is referred to [3], [9], [10], [11] .

1.

A Basic Result n is the space of continuous functions defined On [0, + 00 [ with value s ID Rd. For (0.,(3) in [O,+oo[ x [O,+oo], with isthe cr-field of n generated by the functions defined on n:

x s When f3 = + 00 , the simplified notation will be MO. , a is a mapping defined on [0,+ 00 [x R d , with values in Rd 0 Rd, such that:

1-1: a is continuous. 

1-2: For (t,x) in [O,+oo[ x R d ,
P T '/tn (t, y) = E (t, y) { 'lt (t, y) P T = E (t, y) f b (a-, x ) da- n a- b(a-,x ) da- a- (1. 2) 
Let P(t,y, dz) be the family of probabilities of transition associated to the Markov process P.

Let U the family of functions defined by: n

The proof of this result, given without proof in [13], is based on a private communication of S. R . S. Varadhan. We have then :

"'n(t, y) = T J U (t, y, cr-) dCT t n (1. 4)
Moreover, if M is a bound for {b n }, {Un} is also bounded by M. Then if t and t'are two eleInents of [s, T [, with t' < t, one has:

T Mit' -tl + Jiu (t, y, CT) -U (t', y', cr-) IdCT t n n (1. 5) 
Then for E > 0, sufficiently sInaU (t is strictly inferior to T), one has :

T M i t' -tl + 2 ME + 1 1 U (t, y, CT) -U (t', y', CT ) 1 dCT t+E n n (1. 6) 
This inequality proves, with theoreIn 7. 1 of [13], the uniforIn continuity of { tPn} at any point (t, 'J) with t < T . Moreover, one has:

The uniforIn continuity is then proved at any point (t, y). Writing 1J;. as: 

n ( 1. 7) 

This

We have then

T P P E (s, x) f 2 2E (s,x) (b (CJ , X ) -b( CJ ,x ) ) dCJ 1 = n CJ CJ s T -b{CJ ,x)) dcr f (b(u, x ) -b( u, x ) du CJ n u u CJ
equality can be written:

T p P E (s, x) f 2 2E (s, x) (b (cr , x ) -b( Ci ,x ) ) dCJ 1 = n cr CJ s -b( CJ ,x ) ) ( ljJ (cr , x ) -ljJ( cr ,x ) ) dCJ CJ n cr cr
But this last equatity is identical to:

P E (s, x) T f s T (b (CJ , X ) -b( CJ ,x ) ) 1 2 = 2 f n CJ CJ s -b( CJ ,x)) (ljJ (CJ ,x) -ljJ( CJ , x )) p(s, x , CJ ,z) dz CJ n CJ CJ T f (b( CJ, x) n CJ s ( l , 9) T f (b(CJ,x) n CJ s (1. 10) (b(CJ,x) n CJ (1. 11)
This last result is not strictly necessary fo r this proof, but it is used implicitly in the p r oof of theorem 1-2 , Knowing that the sequence (b} N is uniformly bounded, that n nE: the sequence (ljJn} nE:N stays uniformly bounded, and that ljJn converges simply to ljJ. one deduces that

P E (s, x) T If s 2 (b (0" , X ) -b( 0" ,x ) ) dO" 1 n 0" 0"
converges to 0, and then, one sees that

T f s . b (0" , X ) dO" n 0"
converges in probability to Theorem 2.3 and lemma 3.2 of [13] prove that the sequence of measures b . b

{ } n Q n is weakly compact. Let Q be a weaK limit of a subsequence Q K ) . (s, x) {s, x
Let Z be the density of

T b (s, x) s ",n K relative to p( s, x) on MT' ZT the density of 2b n K Q( s, x) relative to p( s, x) s on MT .
Then the uniform boundedness of (b } proves by lemma 3. 1 of [13J n the uniform majoration:

2 dP( ) ==:;; C exp -ct s, x (L 12)
Moreover, if At is the upp er bound oflla -lion [s, TJ X ( y ; 1 y -xl ==:;; t}, one ha s :

s<a-<T G -8 - 2 .-exp M Al (T -s) (1. 13) 
The sequence {z;K}nk € N is then weakly cOIllpact in the set of cl p(s, x) integrable randoIll variables. It follows iIllIllediately that Q has a density ZT relative to p(s, x) on weak liIllit of the sequence {z;K}nk € N.

One has necessarily:

Then:

b n K Q[x = x] > liIll sup Q (x = x) s - s Q(x = x) = 1 s What is 1eft to prove is that: is a Illartinga1e for Q. 8n K If X t
is clefined by: one needs only to prove that for any A M; Illeasurable, for t < T:

( It follows that when N ----t + (X)

f 1 Xe -xe ANI Z d P ° A t t T (s, x) - is then a ITlartingale for Q. (1. 19) (1. 20) (1. 21) (1. 22) (1. 23 
) compact sets.

By theoreITl 6.2 of [13], Q is equal to Qb Q is then necessarily b (s, x)' the weak lirnit of Q( n )' • s, x
Proof: By using again theorem 7. 1 of [13] and noticing that the different majoration in the proofs of 1emma 7.2, 1emma 7.3 and theorem 7.1 of [13] b are re1ated on1y to the bounds of band <I>, it follows that {v Ln } 11. € N is a 11. family of continuous function s which is bounded and equicontinous. We on1y need to prove that V: converges simply to 11.

By the proof of theorem 1, we know that I L (IJ ,X )dIJ (8) MS measurable ,bounded and s non-anticipating. This result is not given explicitly in [13], but its proof is very similar to the proof given in theorem 6. 2 of [13]. The density x) relative to p(s, x ) is given by: dQb (s, x) dP (s, x) 

= exp lit s -1 <b(o-,x ),a (o-, x )dx > 0- 0- 0- Remark:

Representations of Processes and Changes of Measures

In corollary 3. 2 of [13], it is proved that if a-l is bounded, and if

Qb(

) is solution of the martingale prob1em a.Jsociated to (a , b), then one s, x can find a unique Brownian motion f3b for Qb(

) such that x has the s, x representation:

t x t = x + l b(u, x ll ) du + s t l cr( u, x ) . è f3 s (1) (2. 1) 
-1

This result is extended in [2] with no restriction on a . Moreover it is al so proved that if b is defined on (0, t-{ X Rd ,bounded and measurabl" then 13 b defines a square integrable martingale which is an additive functional b the process Q. The proof being technical, we refer to [2].

The theorems 6 and 6 1 of [11] 

(2. 5)

(2 . 6)
One can then write:

tAT AR X t AT AR Rernark: It is essential to notice that a square integrable martingale for p(

) rnay be only a local martingale fo r Qb( ) ' In particular, even if s, x s , x • X t is an additive functional square integrabl e martingal e , its representation on does not define directly an additive functional. One of the difficulties we will have is to prove that a given additive functional has simultaneously for a given c1ass of Qb a system of which are unarnbiguol'sly additive functionalf'.

III-l': K has non-empty compact values.

III-2' : K is Borel-measurable (see [12] ).

III-3': K is uniformly bounded.

III-4': For any (t,x) in [0, T))(R d , if (b, L) belongs to K(t,x), then L> O.

The new definition of the problem of control is: 

• •

We add here the following hypothesis, which will not be kept in part IV.

III-5': K(t, x) is convex for any (t, x) in [0, T]xR d .

Let q be defined by: q(s, x) = inf .#' (s, x, c) ceg;

Proposition llI-2: q (s , x) = min ce g;

.Ye ( s, x, c) Proof: Suppose (s ,x ) -(s, x). One can write:

n n q(s ,x ) = .Jff(s ,x ,c ) n n n n n (3. 5)
Let c be a converging subsequence of c in.Il!, and let c• be the limit

n K n (.Il! is metrisable). Then
But one has: Then q(s, x) 2:..#(s, x, '

.#(s, x, '2') = lim q(s ,x ) n n n K -H ooK K q ( s, x) < lim inf q (s , x )

- n n nK-+oo K K
More generally, one will have as a consequence:

B ut one can write: and q(s, x) 2:. lim inf n-+oo q(s ,x \)

n n q(s, x) = .#(s, x, c) .#(s,x, c) := lim.J't'(s ,x ,c) 'ft.,. 

Qb

Then, necessarily:

(s, x )'

1 • nf fdQb l T """L ( ) d ( ) u, Xu u 2. q s, x (s, x ) s (b, L)€ p ( ) s, x
Proposition III-6: q(s, x) = min fdQ b( ) "'" """ "' .,., s, X (b,L)€SI!( ) s,x Let ,, = ([3, À.) be a Borel section of r t defined in the corollary of proposition UI-3. Such a section exists, because rt is upper-semicontinuous with values in a metrizable compact space. rt will be then

Borel measurable, and one can apply theorem 1 of [12].

"-'

Let c = (b ,L ) be defined by: s < T < t c (r, x ) 

1 H ( ) . d Ab -1 d A b Q b a . s. q ,x t = q s, x + u , Xu t-' U U (s , x ) s s E b (s, x)
Let us represent then the process q(t, x t )

By proposition II-l, one has: But this is necessarily the unique decomposition of the process q(t,x t ) into the sum of a continuous bounded variation process and of a martingale. The additive functional l H(u,x ) . di3 b' is then well defined for Qb ' . . have the same extremal points. Moreover, 6. is Lebesgue measurable:

to prove this, one checks that it has a d d+l $(R) ® $(R ) 0 $(R ) measurable graph, and one applies theorem 2 of [12] (a proof that 6. is Borel measurable is not possible directly in this case, because K is not convexvalued). To study more general cases where.!!: depends on the control, convex analysis type methods on the stochastic processes can be used. They can be partially applied for the solutions of this problem. We refer the reader to [2 J.

Moreover the problem of optimal control with incomplete observation seems to have solutions in this framework only under stringent assumptions.

ACknow1edgment

The T is a strictly positive constant. We can as well define this process on any (n, MT ' Q(s , x».

(tt\ DA ' xtt\ D ) wiU be in the same way a strong Markov process. A

AU the next results are given for any of the considered measures .

We define now a new space in which this process takes its values.

If M (CA) is the cr -aigebras of the universally measurable sets of u ([ 4] II-38), we define the measurable space (E,@,,) by (CA,$ (CA) ) .

u E has aiso the topology of GA .

We associate to E a ô as in [4] X -16, w hi ch wiU be identified t o

A. E' will be the set EU( t)} and @' " the cr-a i g e b r a genera ted b y 8 a n d AU functions defined on E will be extended to functions defined on El, by giving them the value 0 on ô. Proof: We check tha t the as sumptions A l' A 3' A 5 of [5] are satisfied by the semi-group defined on the measurable functions by:

(1. * Let f be the Borel function equal to 0 on A and to f on CA. Then:

(1. 7) E b (s, x) +00 f s e- pa 1(a,x) da a + E b (s, x)
Let vb'f be the ab p-potential of f. . b (V P f) being p-excesslve for Q , we know that if we define TA by:

TA = inf {t > s; (t, x t ) € A} • b ( -pT A)
then by [5] 

E n V n (D ) (s, x) L A ' x D n A E b b converges to (s,x) V L (DA' x D ) . A
The result is proved. •

III

The problem of control: the convex case.

We do the same assumptions as in [2]. K is a set valued mapping defined on [0, T] X Rd with values in Rd x• R such that: III-l: K has non-empty compact values.

1II-2: K is Borel measurable (see [ 7]).

III-3: K is uniformly bounded.

III-4: For any (t,x) in [O,T]X Rd, if (b,L) belongs to K(t, x), We take here an assumption which will be removed: III-5: K has convex values.

We define q by: (

3. 1) q(s,x) = inf (b, L) e!Z Proposition III-l: q( s, x) = niin (s, x) (b, L) €2
q is a Borel funct ion.

Proof: !R being compact, the first assertion follows from Theorem II-l.

Moreover, P is metrisable. If (b ,L ) is a countable dense subset n n of f/!, one has:

b (3. 2) q(s,x) = inf U L n (s,x) n n b q ls then Borel by Proposition 1-1, because U L n is excessive for b n (tA DA' x tAD ) on (S1,Q n) • A Corollary:
The set-valued mapping defined by

x -( b , L ) e:P; q(s,x) r s has non empty values, and its graph is Borel.

Proof: q is Borel measurable. being continuous in (b, L) and Borel in (s, x) by Proposition 1-1, is jointly Borel. • One derives then necessary and sufficient conditions for (b, L) to be in r (x) as in Proposition II1-5 of [2], and by the same procedure as s for Proposition II1-6 of [2], an optimal Markov control is proved to be better than any non anticipating control, for any starting point in Proposition II1-2: q is finely upper semicontinuous relative to P. with the difference that here rt has only a Borel graph instead of being Borel measurable.

We need to find a selection of r which will be measurable with s respect to the cr -algebra completed for the measure induced on Rd by Xt l\ D A Such a selection exists, because r s has a Borel graph, by [ 7 ] Theorem 2.

The proof goes then the same way as in [2] . 
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We remove the convexity assumption III-5. By using the same methods as in [2], Theorem III-2 will prove the existence of an optimal control.

Theorem IV-1: One can find (b o ' La) in !}? such that for any "initial" probability measure \.J. on [0, T] X Rd, then:

, D

f b fA min dQ (b, L) €!R \..1. t L(u,x ) du u • V Conclusion:
The results given here are rather strong and require methods very similar to the methods of [2].

There is moreover, no partial differential equation associated easily to this problem.

This approach can be immediately applied to the problem of reaching a given target in minimal expected time of movement. 

y test bien-Inesurable, et COInIne

par le théorèIne de Lebesgue,

= E@"t X t On ver r a en particulier que la variable duale devient, sous certaines conditions, une semi-martingale locale lorsque des contraintes sur l'étr.t primaI apparaissent.

Les notations seront celles de 0 et F. 

F. •

Definition: On dit que l'hypothèses H3 est verifiée si:

(2. 

T K

On en déduit: De plus, on a: Nous reprenons ici les notations de G.

K est une multiapplication dtfinie sur n X [0, T] à valeurs dans R m .

On fait les hypothèses suivantes sur K :

(1-1 ) K est à valeurs non vides et compact eS •

(1-2) K est ff* mesurable.

(1-3 ) K e st uniformément bor.née.

(1-4) K est à valeurs convexes.

(1-4) n'est utilisée que dans les trois premières parties. 

2 -

 2 Conditions de continuité et de semi-continuité inférieure 3 -Sous-différentiation des intégrants convexes III -ESPER.A:NCE CONDITIONNELLE D'UN INTEGRANT CONVEXE 1 -Espérance conditionnelle d'un intégrant régulier 2 -Espérance conditionnelle d'intégrants convexes généraux 3 -Espérance conditionnelle d'un intégrant convexe sur un espace de ce travail es t l' étude d'un certain nombre de propriét és des int égrales convexes d'un point de vue probabili s te.

  de pouvoir définir l'espérance conditionnelle d'une intégrale convexe, et par dualité son inf. convoluée par rapport à une 0 -algèbre A fi YIl' dp < + . 00 • p = + oc espace des :su:p esa ty l < + 00 des classes de v.a.r. Y telles que classes de v.a.r. y telles que ensemble des éléments positifs de espace des classes de fonctions a L P mesurables X à valeurs dans V définis sur A a mesmrable, telles que Il E: espace des classes de v.a.r. Y définies sur A a mesurable telles que : p < + 0<> p dp .( + oG conjugué de P = + 00 sup ess IYI<+ 00 A espaces de v.a.r. Y définies sur A a mesurable telles que sup \Y I <+ 00 A X est une version de l'espérance conditionnelle de Y max (a,b ) .boule fermée de centre x et de rayon r .

  ) désigne un espace de probabilité complet, V un espace de Banach séparable réflexif. On se réfèrera à [2J ' [6J ' E4] , OE6] pour les démonstrations. A) Soit r une multiapplication à valeurs fermées dans V définie Alors r est dite mesurable si l'une des trois propriétés équivalentes suivantes est vérifiée : a) lest de graphe a (V) mesurable b) r-1 (C) est mesurable pour tout fermé C de V • c) D(r) ={ C.ù; r (c".) 1= est mesurable, et i l existe une famille dénombrable de sections mesurables de r définies sur D( r) et notée ff} telle que pour tout W de D (r) , l n nE: N B) Si r C) Si r alors En effet { f «J)J est dense dans r (w) n n€N On en déduit est une multiapplication mesurable à valeurs fermées non vides dans Il r(w) Il est mesurable. mesurable, à valeurs fermées non vides dans la fonction définie sur 1L x V' . .

  r est une multiapplication mesurable à valeurs convexes fermées non vides dans V, si «(,), v') i (v'l r (w» est (V') mesurable, r est mesurable. • -•0 -En effet <f (.1 r (. ) ) e st un intégrant normal au sens de ROCKAFELLAR (voir G et II-1-(2) )

Définition 1 1 (

 11 On dit qu'un espace La(V) de classes de fonction mesurables à valeurs dans V est décomposable si: a) L!(V) C L a(V) Soient La(V) et L,a(V') deux espaces décomposables, mis en dualité par : (x, 0(.) E <x,oC> (resp. PREUVE . _ _ _ _ _ _ _ _ _ En effet montrons que si xE: L a(V), alors X€ Pour tout élément v de V, il existe v' dans V' , avec Ilv'll = 1 , tel que <v' ,v) = Ilvll • En identifiant x à l'une de ses versions, on peut définir une multiapplication de Cl à valeurs fermées non vides dans la boule unité de V' (qui est aussi réflexif et séparable) U> {v'; Ilv'll = 1 , <v' ,x(W» = Ilx(W)Il } • Or (.) ---) lx (CJ)II est mesurable. r. étant de graphe a

  x> = <fi, 1.n. n x> et de plus : On en déduit que , 1.n x> a une limite p.s. et dans x> = E <E , x> -I:-Réciproquement il est évident que des éléments de L,a(V') restreints à définisse.nt des formes linéaires continues sur L <)':)(V) De plus si J ,

1 n"

 1 I lx ( • ) I l ) M n x est 'bien dans étant borné, i l existe M > 0 , tel que pour tout n • Comme Un. :::.n Soit {ln} une famille dénombrable de sections mesurables telles que pour tout (J , { f n (Q)} est dense dans r (w ) . (voir O.A.C ) pour ce résultat ) . Pour tout m, E sup Iif i ( . ) Il M • En effet .o.::: Ô.n avec , J , !lj :::{W; Ii f/W)Il ::: sup Il fi (CJ)/I } et on sait que f j ( .) I l En faisant tendre IR vers l'infini, la sui te sup 1\ fi (. ) 1\ étant croissante, on aura: K sup Il fi ( . ) Il M i Or I lr(w)ll ::: sup I l fi (l.l ) est mesurable d'après O.E et I I f (w)lI : : : ; • On appliq •• alors le théorème de CASTAING ( [4J ) Les sections de r formeront un ensemble faiblement compact dans Remarque 2: On aurait pu aussi condidérer l'intégrant fonction indicatrice ,.. des sections intégrables de r et appliquer ensuite le résultat de ROCKAFELLAR ( 6J ; voir II-1-(4)) pour démontrer la oompacité faible des ,... La(V) et L,a(V') deux espaoes décomposables en dualité. Si une multiapplication mesurable à v aleurs fermées non dans V est telle que l'ensemble des sections aesurable s de r appartenant à La(V) forment un ensemble non vide faiblement compact dans La(V) , alors toutes les sections mesurables de r sont dans L a(V) • De plus Ilr (. ) I l est dans L,a(V') = (V') , Ir est dans L; En effet on sait que La(V) C S0it ,;:.x une section mesurable de r inclllse dans L a(V) o et x une section mesurable de r . fin = {(.,); I lx(e.)) I l n] • On pose x = 1.n. x , + \1Cn x • Alors x n est une section mesurable de r La(V) • La suite rx } l' n n E: N est donc faiblement relativement compacte dans La(V) , et en conséquence dans Lf(v) • Par ( [8J p ;430 ) , i l existe une sous-suite, notée ment vers t dans Lf(V) . . le théorème d' EBERLEIN-8MULIAN (x ) , convergeant faiblen s Montrons que t = x • En effet pour tout Vi de V' , <v',i:> est limite de faible. De plus <v', x > c onverge p.s. vers <Vi ,x> n s On applique alors le théorème T 21 de QO] (p . 37) et (,v' a(LQ(V), et é t a nt équiva l ente s sur l'ensemble de s sections mesurables de r appar+;enant à La (V), l e cor ollaire en résulte. Lorsque La(V) = La(V) , on appliquera méthode identique à celle du théorème 1 p en !Mp Il fi (.) P pour démontrer que I l r(.) I l est da.ns L;

)( 4 )

 4 Si un espace décomposable La(V) est en dualité avec un espace de fonctions mesurables à valeurs dans V' L,a(V') on pose pour x€:LCI. (V) , pour CC C L,a(V') I(x) = j j ( (.) , .x«(.)))dp I*(OC) = j' j* (W,oC (U) )dp en égalant ces quantités +00 si il n'y a pas d'espérance généralisée • . 'Alors : s'il existe xCLa(V) avec I(x) <:+ ()D, 1* est la duale de 1. Si L,a(V') est décomposable, si j est convexe sur V pour tout GV , et s'il existe OC dans L,a(V') avec 1* (oc) <+ (ID, l et 1* sont duales l'une de Enfin on a le résultat suivant quand J est un intégrant convexe normal: Si La(V) = , L,a(V') = , s'il existe x et OC respectiveae.t dans et avec l (x) <. + 00 I*(OC) < + 00 , alors la duale de 1* (L:JV))* s'écrit si r E:: (L:JV))* si x est sa partie totalement continue, et sa partie singulière (voir . 06J ) *(y*) = l(x) + <P (X. 1 dom 1*) Dans toute la suite, on supposera (sauf exception) a) Que La(V) et L,a(V') sont décomposables. b) Que l et 1* sont convexes, propres, et donc en dualité. + Proposition Si 10 est la fonction de recession de l alors _ _ _ _ _ _ (:...-10+) (y) =/JO+((,J , y(G.») dp • En effet soit x€:La(V) , avec l(x) <+ 00 Alors (10+) (y) = supJj(W ,x(c.» +Ày((J» -j(t.>, x(W») dp )\ En utilisant le fait que le tenne sous l'intégrale crott quand À -+: 00 et possède une intégrale généralisée, la proposition en résulte. Conditions de continuité et de Remi-continuitA infAriAure. Il est important d'étudier sous quelles conditions la continuité d'un intégrant convexe en un point entratne la continuité en tout point. Proposition 2 Si.D. es t sans atomes, s i LD(V) = LC,(V) , L,R(V') =-L ,(V'), et si p p p< ...... ,si l est continu en un point ,il est continu partout. Par (1 D p. lJ6 , il suffit de démontrer que l est fini partout. On peut supposer l continu en O. Alors on sait qu'il existe CC::>O ,tel que si I/xJI . <cC alors l(x) < 1(0) + 1 L: (V) Soit maintenant x quelconque dans La(V) • On sait alors qu'il existe 5">0 p tel que pour tout a tel que p(A) Ô , ...n. I §taat sans atome, il existe une partition finie de lLpar des ensembles n mesurables de mesure inférieure à [; • On pose donc f i = y.n i , avec pour i=I .•.

1 L 2 :

 12 Yi)dP et en conséquence, si Y est étagée, 1 1 (y) = 12(Y) o Or les fonctions étagées sont denses dans Loo(B ; V) pour la topologie de Mackey. n Donc, pour tout y de V) , on aura: 1 1 (y) = 12(Y) • Cela entra!ne bien h j (lJ , x (W) ) d P = h j9J (w, x ( (J) ) d P n n Le résultat est bien démontré. Remarque L'hypothèse de convexité à joué un rôle essentiel mais on peut lever cette hypothèse en choisissant un intégrant qui est, par exemple, uniformément LIPSCHITZIEN, tout en possédant la propriété p • La continuité de l'espérance conditionnelle se démontre alors en utilisant l'isométrie des relèvements. Espérance conditionnelle d'intecrants convexes généraux. On considère ici un intégrant convexe normal j tel que a) Il existe x mesurable à valeurs dans V avec o b) Il existe oc €: La(V') avec o 'ensemble de ceB deux propriétés sera désigné par (Propriété Q) Si un intégrant convexe normal possède la propriété Q , il existe un intégrant convexe normal j tel que pour tout x Cj':) mesurable à valeurs dans V , si j (., x(.)) a une espéraoee condi tioncp nelle généMlisée, j9;>( . ' x(.)) e: E j(., x(.)). l'unique intégrant convexe normal possédant cette propriété (en identifiant deux intégrants coIncidant P.s.)--------------On identifie x (resp. OC) à l'une de ses versions.

-

  On reoolle les j % pour obtenir j<)l)i Or -SUr chaque nn ' donc sur tout.n.., j en i possède les pr opriét és a) et b) du théorème 1 • -p.s., pour tout x, la suite jPJi «(J , x) crott. En effet le relèvement de IOMESCU-TULCEA conserve l'ordre, et on a eu la précaution de choisir pour tout i la famille de relèvements. p.t. (J, j5)(W ,. ) étant un sup de fonctions convexes s.c.i. est convexe s.c. i • Soit alors -%tp mesurable, tel que j(., x(. » possède une espérance conditionnelle sééralisée. Soit ;: (W ; n Ix (w) Il <:n+1} x étant identifié à une de ses versions. Alors j. possède une espérance conditionnelle généralisée puisque: n -A«J ) h l lj* ( W , c<: (W» <;j. ( W, x) )'" 0 ji possédant les propriétés a ) et b) du théorème 2 sur tout .nIes possède INI' ..a.

al•

  Icp (r ) les sous-différentiels de l et dans (L!(V) )* et (V) )* Alors de la même manière, pour t out x de flDgQ (v) on aura S al = rest9) al l (x ) (en notant par rest'F y* la restriction à (V) d lun élément y* de (L.! (V»* • Or en x , par le cor ollaire du théorème 1-2-2, 0 1 l (x) On montre le résultat sur l a multiapplication sous-différenti el comme précé-deDllllent. De lII"e, en reprenant l e s ca l culs du corollaire du théorème 1-2-2 on aura : ft CêH9.>(x) avec b) ft = ? oC + restj) X-

  $, P) is a complete probability space . is an increasing sequence of complete sub cr -fields of $, which has the following prope rties: a) It is right-continuous. ([7] IV -30) b) It has no time of discontinuity ([7] VII -D39)

oProof:

  Nt being a martingale, NT has a null mean, ' and NT = N S . The re suIt follows • •

  +ClO[ being considered as the measured space: Let L* be the dual integrand of L. L* is then normal by [la] .

  8), then Consequently (AZ + Cu) and (BZ + Du) are respectively in L 2l and L 22 .

' b)a

  This duality defines on Rand Ria locally convex topology, which is Hausdorff: -indeed if for any (y, b) in RI, (x, ( y, b) = a then obviously x = a xs = O. Then x being a martingale stopped at S is null and x o = 0, H = a and M = O. -ifforany x in R, (x, ( y,b) =0, then y=O. Moreover, the $; process E t b is in R. Then, obviously, b = O.

B 4 .

 4 Il) and (4.12), and using the same argument as for proposition IV -i-, one has: taking nowhere the valueco,(4. 13) proves that are both finlte, and propo sition IV prove s that x minimize s -1' t, L on R, and p minimize s condition a) of theorem IV -1 are satisfied. if condition b) is satisfied, by proposition IV -1 and theorem IV -l, one will have: The same proof as the one used to prove proposition IV -1 shows then that (4. Il) and (4.12) are satisfied. But (4, Il) and (4,12) are precisely the coextremality conditions, • Example IV-l: We take again example II-l, For k in L 21 , let p the unique solution of: (4, 14) = (k -A * P -B >:<H) dt + H' dw + dM 1 dp l's = 0 with (PO' H, M) in x L 22 x -wL: existence and uniquenes sare genera lly non trivial in the c as e , a n d ar e prove d in [1] ,

  0 FRANCE This paper has been written after the third part of a Thesis to be submitted at the Faculté des Sciences of Paris. It has been partially supported by Institut de Recherches en Informatique et Automatique. (Domaine de Voluceau 78 Rocquencourt FRANCE)

  $, P) is a • complete probability sp'1.ce. n+ is an increasing scqllence of comIJlete sub -:;-fields of :Y, which has the follo'-",ing propc rtic s: a) It is right-continuous. (r 5] IV -3 0) b) It has no t1.rne of d1.scontinuity ([5] VII• D39) This last 18 not strlctly neccss<l.ry, but we rnake it to sirnpl.ify the re Bults. f!T is the cr-field of 0'-' [0, + cor of the \ . . . . •ell-rneasurablesets ( [' 5] VIII D.14). f!j'''' "ls Hs com.pletion for the dP 0 dt (*) .

V 1 .

 1 s a n dirnensional vector spa ce (n:::' 1)

  C:' ) For our purposc ff c 0 uld h&.ve been onl y the cr -field of non-anticipa hn , ::: sets.

c - 4 -

 4 w having continuous paths, iorrnula (1. 1) and the ref;ults of

  has one and only one solution with right-continuous paths. Moreover these paths have no oscillatory discontinuities ([5]-IV -20) Z is then in cId and the linear mapping defined on o .L T L 2 X L 21 X L 22 X W with values in C 2d by:

U

  A norm is defined on L 22 by: is then a Hilbert space Definition 1II-2: The problem of linear quadratic control (LQC) consists U in the minimization of the criteria defined on L 22 by:

  Mx -A*p -B*H) dt + H• dw + dM o .L

  (u), v -u) = 2lE Z (Mi MtX;. x; -x;) dtt T +E J (Ntut'v t -ut>dt+E(MiMlx;,x;-x;>.

  o

oFrom ( 3 . 6 )

 36 and (3.10), the relation l'(u) = 0 is equivalent to: (3. 11) Nu = C ".cp + D*H . •

( 4

 4 . 14) From (4.11), (4.13) and (4.14), one deduces that one can find Cl> ° such that for any s in [0, T], for any h in , one has: (4.15 ) P being self-adjoint and positive, one deduces that one can find s c 2 ' such that:

(4. 16 )

 16 This implies that sup ess 1 P s(• ')1 is bounded by a constant independent of s . • Theorem IV -1: The solution p of the system (3.4) is such that for any s, one has:

.

  Yt' = (yt'l"" , d'tm) being such that: T E I l .Yt's 1 2 ds o and .At being in Wl. .

  Proposition V-l: The formaI Riccati equation determining Pis: dP + {PA + A *p + B*PB + B*.Yt' +.n"B -(B*PD + PC +.J'iD) (N + D* PD)-l (D*PB + C*p + D*.Yt') + M*M} dt (5. 2) -.Yt'. dw -d.At = 0 c 25 where .Yt' = (.Yt'I" •• .Km) is a family of self-adjoints operators depending of (w, t) and /Y* measurable, where .At is a martingale of self adjoint operators element of WJ., and with the conventions: ' = LB. $.

( 5

 5 and the corresponding conventionS for aU the other terms.Proof: In (5.1), if we write that P is self-adjoint, necessarily P, .ye,.At are self-adjoint, by the uniquenes s of the decomposition (5. 1) . Ifweconsiderthe system (3. 3), (3.4), with f and g null, wehave: dx = (Ax + Cu) dt + (Bx + Du)' dw x( 0) = xo (5. 3) dp = (M>.'<Mx -B*H -A*p) dt + H• dw + dM Nu = C*p + D*H But by theorem IV -l, one has for any s

  x + P(Ax + Cu) +.Y{'. (Bx + Du)} = M*Mx -B*• H + A*Px From (5. 3) and (5.6), one gets: (5. 7) (N + D*PD) u --(D*PB + c*p + D>!<'.Y{') x P being positive, N + D*PD is positive definite, . One can write from (5.7): -1 u = -(N + (D*PB + C,:, p + D':<.Yf') x By replacing u and H by their values, one gets: (5 , 8) (P + PA + A*P + + B ':',./t' + .Y{', B -(B>!<PD + PC +.Y{'D) (N + D':' PD) -1 (D>!<PB + C*p + D*.Y{') + x = 0 By writing that the previous result is true for any x, we get equation (5, 2), • Proposition V -2: r is the for m a I so l utio n o f: = [(PC + B*PD + .J't'D)(N + D*PD) C* -A *} r dt + [[(PC + B*PD + .J't'D)(N + D*PD) -1 D* -B*}

u

  (N + D*PD) -1 (C*r + (C* p + D*PB + x + D*Pg + D*h } One gets the n: (5.14) r = (( PC + B * P D + .J't'D)( N + D* PD) -1 C * -A *} r + (PC + B*PD + .J't'D)(N + D>:cPD) -1 D* -B*)} (Pg + h) -Pf -.Yt'g • Cor o1 lary: The formaI expression of the optimal control is: = -(N + [(C*p + D*PB + D*,7(') x + C*r + D* (Pg + h)} VI The Riccati equation: existence of the solution.

  PA + A*P + B*PB -(B*PD + PC)(N + D*PD)-I (6. I) (D*PB + C*P) + M*M} dt -dvl( = 0 where vit is a square integrable martingale of linear operators, has a unique solution in the space of adapted a. s. right continuous processes PT with values in IR(V, V) such that one can find CI> 0 with: (6. 2) supess suplPtl CI T supess \\(N + D>:<PD)-I" CI (w, t)

2 N( 6 . 6 )( 6 . 7 )

 26667 be a self-adjoint positive operator. Then if P is a linea r operator such that: + D*PD has dP dt a. s. an inverse, and moreover: To prove the first part of this assertion, N + D*P'D having an inve r s e dP dt a. s. one needs only to prove that, under (6. 5): (6.7) IID* (P -P') DII < II(N + D*P'D)-1 11 -1 But OJ'le has necessarily: follows from (6. Il), (6 . 12) and (6. 10). Then necessarily: (6.13) II(N + D*PD)-1 11 s: II(N + D*P I D)-l l i!(l -I\D*(P -pl) ' DII (6.6

  ., Let then (n , $ t' P) be the space of continuous functions defined on [0, + co[ w ith values in R m, on which one has put the Brownia n measure P relative to a m dimensional Brownian motion w sta r ting from 0 at time O. Let (n ' Pl) be the probability spa ce: (6. 34) with t T -c .

  s space, the process .AIt defined for t T-a by: (6.35)vlt t = E$t [M'i Ml -J <il (P ) da]T -a s s is a martingale: this follows from the independence of and §' t-T+a. is a martingale which is orthogonal to w.P is then a solution on [T -a, T] of:r p = cp (P ) ds + dvlt s s (6.36) PT = M*M 1 1 vlt t -vlt T -a is in w.l..If we corne back to the problem of control, we check now tha t Pt is precisely the operator defined in proposition IV -3.To prove this property, we need only to prove that for any s in [T-a, T] s and any h in L 2, then if x is a solution of: dx = {A -1 } C(N + (C*P + D*PB) x dt (6.37) + (B -D(N + D*PD)-l (C*P + D*PB)} x dw x = h s then (x, -Px) is the solution of the system (4. 1) with f and g nu Il.

  3 7) a re b o und e d (this follows in particular from (6. 6) ). One a pplies th e n th eorem II -1.

c 36 ByT

 36 doing the sarne calculations as are in the p ro of of p rop os iti o n V -1 , we find easily that (x, -Px) corresponds to (cp,ljJ ) in (4.1) w ith:(6. 38) f PjB -D(N + D*PDf 1 (D*PB + C*Pl!x t -= --J ( dAt • x ) T-a. s S Tx being in C Zd ' X is necessarily in LZZ . Moreov e r , by pr oposition 1-1, -a . T -a.J cps(Ps)x s ds -Ta.T hen P be i ng bounded, o ne has (6 . 40) E(: su? Iptxt l Z < + 00

( 6 .

 6 40) proves that the local martingale M is a square integrable martinga le. (x,-Px) i5 then the unique solution of the system (4 .1),,[....,(4,1' )J' One then applies proposition IV -4: a. s., for any s ln .l -o., T, P is s se lf-adjoint positive, and: can then start again the procedure from time T -o., and in a finite number of steps reach O.

1 pl

 1 is necessarily a fixed point of G on X,M! Ml. pl is then equal to P on [T-o.l,T], because G has a unique fixed point. One iterates the procedure a finite number of steps, to reach O.

  equation defined by (6. 1) with .A(= 0 has then a unique solution.Theorem V1-2: Under the assumptions of theorem VI-l, the equation:dr = [(PC + B>:<PD)(N + D*PD) -1 C* -A*} r dt + [[(PC + B*PD)(N + D*PD)-l D* -B*} (Pg + h) -Pf]dt (6.45) + h• dw + dM'has a unique solution with (h, M') in L 22 X W.L.Proof: One must solve an equation of type: (6. 46)(JI*r + $*h + CPI dt) + (h + CPZ)• dw + dM'with tA and al bounded and (cp 1 ,CP2) in L 2IX L 22 . Let rI be the solution of: (6.47) T By theorem 1-1, rI (T) is in LZ. One needs to find the solution of:

Example 2 : 2 Example 3 :l

 223 We consider the equation with the criteria: dt + E f < Ntut' Ut) dt + E 1 Mlx112 o We suppose that the operators are constant. Then P is a solution of: + PA + A*P + B*PB -PC (N + D*PD)-I C *p + M*M = 0 (6. 52) PT = Mi Ml u is given by: (6. 53) u = -(N + D*PD)-1 c* Px These formulas are the same as the ones given by Wonham in [8J. We take the general case with: "1 0 * g. = 0 Then the solution of (6. 45) is r = o . The "random" feedback has no "constant!! terme of constant operators having the properties given in III.Let y a positive random variable defined on R +, the density of which is Àe -Àtdt.Let {$ t}te:R+ the family of cr -algebras defined on R by: c 41 Then by the results of[5] (VII-54-6), {$t}teR+ is a right-continuousfamily of O'-algebras, with no times of discontinuity, and y is a totally inaccessible stopping time.Let T a positive constant, y T the stopping time y J\ T. We consider the system:

o 6 Par l 'IIUn ré s ultat préliminaire o 7 L

 6l7 introduction d'une classe convenable de perturbations, on 1\ montre dans [2 J que le problème dual du problème de controle est la minimisation de M sur R. m, Pour les définitions de CPt, L ' (y, b) CPm,M' ' et la dérivation des conditions de coextrémalité, nous renvoyons à [2J. Il désigne l'espace des classes de fonctions z /T* mesurables (1) )* est le dual fort de L 200 ' Proposition II-1: Preuve: L ,espace des classes de fonctions fij"* mesurables et = dP ® dt essentiellement est dense dans L 200 ' En effet si x est un élément de L 200 ' on pose:

  Nous ne précisons pas l'espace des valeurs, qui sera soit V, soit R. Il sera toujours évident dants le contexte.

o 8 Montrons( 2 . 4 )

 824 que l'égalité est vraie pour x dans L 200 • En raisonnant composante par compas ante, on se ramène à la dimension l pour V. + On definit alors y dans (L 200 )* n LII par On definit de y-On peut donc se ramenerldèmontrer l'égalité (2.3) pour y positif.

(3. 5 ) 2 S-

 52 CPt,L(s,a) = +00 En effet . on a, comme pour le théo rème II1-1 de [2 J : y) +E(a,b) -E J o L(w, t, (x + y) (W, t), x(w, t), H(W, t) ) dt = s up ( s, z) -( s, x) -E ( a, b') + E ( a, xS)x e:R 1 S (z, br) e:L 2coX L E f L(w, t, z(w, t), x(w, t), H(w, t) ) dt -tO(x O ) -tS(b') .

  ( Y + y, a + a) < K dom CPt, L contient donc un voisinage de (yO, b 0) . S'il existe (Y,b) dans dom CPt, L tel que CJt, L(Y:,b) = -CD la convexité de CPt, L fait que CPt, L est identiquement égal à -ex> sur int dom CPt, L . Sinon CPt L étant finie et majorée sur un ouvert , . de int dom CPt, L y est continue par [7] (p. 26) • • Théorème IV -2: On suppose que:

f 2 b

 2 dx = (A (x + y) + BH) dt + H• dw + dM tX(O) théorème II-2 de [4] prouve de plus que (y, a) -+ x et (y,a) -+ Xo 0 0 0 Soit enfin x , y , b sont continus de , . dt + b' dw En raisonnant comme précedemment, on en déduira le théorème •• Théorème IV-3: On suppose que: hypothèse H IV -2 est verifiée. c) $'0 est la tribu gros sière. Alors le plus petit sous-espace de R' engendré par dom CPt, L est de codimension finie. au plus égale à la dimension de V. ri dom CPt, Lest non vide et CPt. L est continue sur ri dom CPt, L pour la topol.?gie forte.

  reprend la démonstration du théorème IV-3, mais en se limitant à l'espace de codimension finie des (y, a) tels que si x est donné par (4. 30) = 0 • • Corollaire IV-l: Si l'hypothèse H III-2 et les hypothèses des théorèmes IV-l, ou IV-2, (resp. IV-3) sontverifiées, pour tout (y,b) de intdomCPt,L (resp. ri dom CPt, L)' tel que CPt. L (y, b) > -GO, CI CPt, L est non vide et continu dans effet grace aux resultats des theoremes IV -l, IV -(resp. IV-3), CPt,L étant continu en (y,b) sur intdomCPt,L (resp. ridomCPt,L et ce dernier ensemble engendrant un sous-espace de codimension finie), CI CPt , L(y, b} est non vide dans R I , dual fort de R '. De plus si pest dans CI CPt, L (y, b), cPt, L (p) < + GO. Le théorème III-i montre que pest dans R. Sachant que cPt, L coïncide avec M sur R, P est dans R 2 . • Corollaire IV-2: Si l'hypothèse H 1II-2 et les hypothèses des théorèmes IV-l ou IV-2 (resp. IV-3) sont satisfaites, si CPt, L ne prend pas la valeur -GO, <l i M est convexe et propre. De plus ip * , L sauf peut-etre en des points du bord (resp. du bord relatif) de dom CPt, L' Si CPt, L prend la valeur -GO, ip m, M est identiquement égal à + GO • Preuve: La preuve est formellement identique à celle du corollaire 4 du théor'eme 2 de [9 J ••

Remarque:

  Si dans l'énoncé de la proposition V -3 f on remplace le par les theoremes IVou IV-, on trouve ien que l'arc nul est le seul arc de récession. En effet dans le premier cas on aura Zs = 0 puisque t s est continu en cS. Le théorème II-2 de [4] z = o. De dans le deuxième cas, z = 0 et donc o z = o. Théorème V -1: Si l'hypothèse III-2 et les hypothèses des théorèmes IV-1 ou IV -2 (resp. IV -3) sont verifiées, les conditions suivants sont équivalent.S' a) 0 € int dom CPt, L (resp. 0 € ri dom CPt, L). b) Il n'existe aucun z dans R 2 sa uf l'arc nul (resp. un arc de récession) tel que:

  int dom CPt, L est non vide (resp. puisque ri dom CPt, L est non vide et puisque la codimension de l'espace engendré par cet ensemble est finie), pour que 0 appartienne à int dom CPt, L (resp. ri dom CPt, L)' il faut et il suffit qu'il n'existe aucun z de R '* séparant o et dom CPt, L "proprement" au sens de[13]. Or un z .separant proprement dom CPt, L) donc appartiendrait à R 2 Sachant que: dom CPt, L et 0 serait majoré sur par le corollaire Ill-l.

  1\ .1\_ ( -z) < 1\ A( z) m,M m,M Pour que a) soit satisfaite, il faut et il suffit donc que pour tout z de R 2 non nul t {:n, > 0 (resp. t 1\ ./'-{z» n'est négatif que si m,M z est un arc de réces sion et alors 1\ A (z) = o. • m,M Corollaire V -1: Sous les hypothèses du théorème V -l, si la condition b) est verifiée, a un minimum sur R , et de plus, on a: CPt, L prend la valeur -ex> sur int dom CPt, L (resp. ri dom CPt, L), sachant que O . est dans cet ensemble, CPt,L(O) = -ex> , et le résultat est vrai. Sinon CPt, L est fini et continu en O. De plus, sa duale sur R 1* est égale à t m, M' Enfin le corollaire IV -1 montre que à CPt, L (0, 0) est non vide et contenu dans R 2' Le corollaire en résulte. • ici à la régularité de x et p, en temps, r désigne un réel tel que 1:5: r:5: 2 Defini tions: r On note R l'ensemble des x=(xO,x,H,M) de R tels que

1

 1 Pour alléger les notations, on indexera le numéro d'une reférence par r chaque fois que les hypothèses doivent indexées par r. Proposition VI-1: Si H r III-2 et les hypothèses des théorèmes IV -1-r ou IV-2-r (resp. IV-3-r) sont vérifiées, les conclusions des théorèmes IV -1 ou IV -2 (resp. IV -3) sont vraiespour cp!, L. De plus CPt, L et CP;, L coincident sauf en des points du bord (resp. du bord relatif) de dom CPt, L . Preuve: Si H r III-2 est vérifiée, H r I-2 est vérifiée, et on peut refaire les calculs du théorème III-1 de [2] pour montrer que la duale de " r coincide avec cp M sur R. De meme H 1II-2 permettra de m, r* montrer que CPt, L prend la valeur + 00 sur R 1* IR, comme pour le théorème III-l. Enfin, comme pour les théorèmes IV -1 ou IV-2 (resp. IV-3), on montrera que int dom CP;, L (resp. ri dom CP;, L est non vide (resp. est non vide et engendre un espa ce d e codiITlension r finie) et que CPt, L est continue su r cet enseITlbl e . Or CPt , L e t -----1\ ont ITleITle duale su r R '*. Donc De plus cOITlITle COITlITle dOITl CP:, L a un intérieur non vide (resp. un intérieur relatif non vide de codiITlension finie), est convexe et a adhérence que dOITl cp, T on en déduit (par une application du théorèITle de Hs.hn-Bsnach) '\J, .LoI que int dOITl CPt, L r = int dOITl CPt, L r A lors CPt, L et CPt, L coïncident sur int dOITl CPt, L (resp. ri dOITl CPt, L) ' En effet si cpf, L prend la valeurco sur un des points de cet enseITlble, elle la prend partout sur lui, et coïncide avec CPt , L' Sinon par le coronaire IV -2-r, cf> M est convexe et propre. ITl, CPt, Layant pour duale <l i M ne peut prendre la valeur ITl, _ co sont continues sur int dOITl CPt, L (resp. ri dOITl CPt, L ), et coïncident ave c leur cr (R ' ,R'*) régularisée qui est cf>* M sur cet enseITlble . • ITl, Corollaire VI-l: Sous les hypothèses de la proposition V-l, s'il n'existe aucun éléITlent z de R 2 sauf 0 (resp. un arc de récession) tel que ili I\A(z)S:O, théorème V -1 impliqLle qLle 0 est dans int dom CPt, L (resp. ri dom CPt, L ) et la proposition V-l, CPt,L(O) =CPI,L(O) On Lltilise alors le corollaire V -1 . • , 1\

Ârf

  Grace à b), pa r la proposition VI-l, CPt, L' et CPt, L' coïncident  sur dom CPt, L' sauf peut-etre en des points du bord. CP:, L' (y, bl (CPt,L' (y,b) = CPt, L (y + y, b + b ) cpl, L (y + y, b + b ) donc s ur dom ctl t , L sa uf peut-etre au bord. Or l'hypothèse b) du théorème V -1 garantit que 0 est intérieur à dom ctlt, L' On applique alors le corollaire V -1 . • Théorème VII-2: On suppose satisfaites les hypothèses suivantes: a) les hypothèses de la proposition VII-2 sont vérifiées avec y c) des théorèmes IV-2 (resp. IV-3) sont satisfaites c) l'hypothèse b) du théorème V -1 est vérifiée (resp. relativement aux hypothèses du théorème IV -3 ).

2 -

 2 Application de l'espérance conditionnelle au On reprend l' e nsemble des hypothèses de B à l' exc eption de la première hypothèse d e II-A: on suppos e ici que L es t un intégrant c o n exe. m

  Le couple (L', M') verifie alors les rr!emes hypothèses que le couple (L, M), et on peut utiliser les résultats de [ B ] .

6 par 1 Z

 61 On se ramène dans ces conditions, en partant d'un problème où l'observation est bruitée à un problème où l'observation est totale (ce qui est manifestemen t contraire à •l'origine physique du problème): e n effet " le controle w suivant les m composantes supplémentaires n'a pas d'action sur le système. L 'interprétation résulte donc d'une convention et ne peut démontrée. On se ramène en conséquence à un problème de "1 ' t contro e canonlque en posan : @" = (H s t) U .A', .A' désignant les t s négligeables de n. En effet Z 1 étant un processus de Markov à trajectoires continues, par [8 ] Exemple II -l (@"t} tER + possède les propriétés a), b) de . B-Partie 1.5 En utilisant une transformation de Girsanov, on pourra montrer comme .[2] (p. 232) qu'il existe une mesure de probabilité absolument continue par rapport à P pour laquelle Z 1 est un mouvement Brownien. en E la proposition 1 de [ J] Mt est une martingale continue. De plus, par [1] Théorème 2 p. 92, on a : = ô .. t IJ Par [1] (proposition 5 p. 110), Mt est un mouvement Brownien. De plus Z 1 est donné' par le filtre de Kalman qui a la forme (voir par exemple [2] p. 126): { dZ' = A Z' dt + k dM 1

  est ramene a un probleme de controle classique avec observation complète. Les théorèmes du type "principe de séparation" n'ont alors rien d'étonnant dans ce contexte (on remarquera que toutes ces opèrations sont possibles à la linéarité des équations considérées , sans hypothèse de convexité sur le critère) .
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  ABSTRACTThe purpose of this paper is to apply a very simple form of the Hahn-Banach theorem to a problem of stochastic optimization with a supply constraint. The Lagrange multiplier associated to the constraint defines a stochastic process, the properties of which are extensively studied.The purpose of this paper is to solve an apparently very simple problem of optimal stochastic control. More specifically, we are going to find an explicit solution for a problem of minimization of a linear functional with a quadratic supply constraint on the control.To solve the problem, a stochastic Lagrange multiplier is introduced, in the space of additive measures. It is then proved that this multiplier defines a local martingale which appears in the Ito-Watanabe-Meyer multiplicative decomposition of the right-continuous supermartingale defined by the dynamic programming proce ss. (See[9]) The solution of the problem is then expressed very simply by means of this local martingale.

F 2 type

 2 of constraints. This will also enable us to concentrate on the probabilistic difficulties of the problem which are far more serious here .

4 :

 4 The problem of control which we want to solve is the minimization of l on K . This problem is trivial in the deterministic case. The problem cornes entirely from the stochastic nature of the problem, and more particularly from the information constraint.(*) L is the space of real random variables, which are essentially 00 bounded.

1 If 1 I

 11 from the definition of a saddle point . • Remark: u is also an optimum of l on K. one has: o (u ) = I(u ).

= 1 n

 1 • ) is then aiso a saddie-point of $. This prove s that the set of saddle-points of $ may be written as KI X MI. KI being the set of minimums of l on K .IIILocal m.artingale associated to a Lagrange m.ultipler be Let (uO,1-l ) a saddle point of cr is the continuous process defined by: real function defined on n by:(3.2) SO = inf ( t: cr = 1}Proposition III-1: SO is a predictable stopping tim.e ([7J p. 145 no. 105) Proof: SO is a stopping tim.e by [5 J IV -53. of stopping tim.es defined by: sa = inf { t. cr a > 1 _ 1. } and m.oreover on (SO < + co) for any n, (Sa < Sa). sa is then predictable • n W ' " '.: " ep the definition of the fam.i1y eN given in the proof 1) [ p roposition Ill-l. For any t in [0, +co[ and any n in N, the restriction of ( 1 -cr a 0) I-l tA S an element of LI n. Moreover, tqe restriction of foL 1i:O to St S & is also defined by an element of LI Sn Proof:

F 10 \

 10 .l being a positive additive rn.easure, one has then: 10) rn.ay be written:(3. 11) 

F 11 By

 11 the Radon-Nikodym theorem, the first part of the theorem follows. The second part is proved in the same way. • Let be the R adon-Nikodym density of the restriction of to 6 u \SO . One has necessarily: the re striction of IJ. to , and is n then necessarily positive and integrable. In the same way, we define fn,

F 12 For

 12 any n in N, gr able martingale, stopped at SO .

  positive uniformly inte-Proof: We need only to prove that for any t in [0, +=[ : (3. 15) Let A be $tl\SO measurable, Then: n But one has also: meaurable, (3. 16) and (3. 1 7) prove Ha t (3. 15) is true. n n gt is then a positive uniformly integrable martingale . • We consider only the right continuous version of the martingales which we study. Theorem 1II-2: One can find one and only one local martingale g, stopped at SO and left-continuous at Sa such that : (3. 18) = Proof: Let us prove first the foUowing relation:

°°( 3

 3 on u (see corollary 1 of theorern IV -3) Proposition IIl-3: For any n, for any u in H, one has: is g ° by theorern III-i and proposi-Sn By using T 16 of [5] -VII, one has, because of the uniforrn integrability of the martingale gtl\SO: n lt: fa 1 utl2 dt = ni ' Then 1{t<R}U isinH . Weapplythen(3.41)to 1{t<R }u.

  When n increases to infinity, by taking the limit in (3, 50) one gets:(3,51) Moreover, gt ASO being a uniformly integrable martingale, one ha s :

  _' > = < \-L, 1;:0

  Proof: (3.47) says that the functional defined on L 22 sa (4. 2) u --" E f <Xe Ut> dt + Il a a has a minimum at u . By using the result of R ockafellar on the subdifferential of convex integrands in [la], one gets immediately:

  Let A be &\I\ S O Ineasur a bl e. T h e n:

SCOInparing ( 4 .

 4 Il),(4, 13) and (4. 14) , one gets: By using (4. 15), one gets:.

  deduces then, because of the contïnuity of \.l. with respect to the Loo topo 10 gy: (4. 19) But by theorern III-l, one has for n : 2, and [5]-VII T 16 prove then:

( 4 .: o 1 ( 4

 414 27) On (SJ< +OQ), we have necessarily: g having a left hand limit at EP, one deduces, for (SO < + OQ) = ° By [5J (VII T 15), Z ° is necessarily stopped at (4, 26) and (4. 27) prove the result, • The relation given in theorem IV -I is not completely satisfactory, o because Z depends, at least apparently on a particular optimal solution o u. But one has: Lemma IV -I: Z does not depend on a particular optimal solution. ProofLet u and u two elements of K minimizing I. Let us suppose that on a non negligible set A

F 30 -

 30 Then u is in L 22 ' and m or eover:

  This is a contradiction, The result follows by the right-continuity of the processes which we consider, • Theorem IV-2: We can identify the processes and (1 -crp)1 /2 gt' Proof: By theorem IV -1 and proposition IV -4, one has: lin, one has then: (4,61) = The proof continue s as in the proof of theorem IV -1. • Let T now be the stopping time defined by:

eB

  is a decreasing natural right-continuous positive process s uch that BO = 1, stopped at T , continuous at V c' Moreover if B is any other decomposition of z; into the product of a local martingale M'and a decreasing right-continuous natural process BI such that BOl = l on t< T

  = 0 dP ® dt a. s.

A

  is then continuous, and \i 1 = + (Xl

  have aU the properties of M and B, By the uniqueness result, they are equal respectively to M and B.

a is positive definite. 1 - 3 : 1 )Theorem 1 - 1 :

 13111 a is uniformly bounded. For (s, x) in [0, + 00 [ x Rd, p( ) is the unique probability mea sure s, x on n, solution of the martingale problem of for the couple (a, 0): existence and uniqueness follow fi•om [13] -Theorem 5.6. For (s, x) in [0 , + 00 [ x Rd, and for b Borel measurabl e and bo unded on [0, + 00 [x Rd, with values in Rd, let Qb( ) be the solution of the s, x martingale problem of SV, for the couple (a , b): existence and uniquen e ss follow from [13] -Theorem 6Stroock and Varadha n Theorem 8. l of [13] proves that ab defines a strong Feller process, whose probabilities of transition are for a.e. t absolutely continuous relative to the Lebesgue measure of Rd. P being equal to a 0, (1. 1) proves that if b d and b 1 are two Borel functions on [0, + 00 [x R , equivalent relative to the Lebesgue measure on [0, + 00 [ x Rd, ab and abl are equivalent. If L 00 is the space of the Lebesgue equivalence classes of Borel functions bounded on [0, + 00 [ x Rd with values in Rd, it is then possible to define ab unambiguously for b in L .00 If b n converges to b for the a-(L oo ' LI) topology, converges weakly ta ab b (s, x)" Moreover for any T larger than s, :, x) relative ta p(s, x) on converges in the weak topology of the p(s, x) integrable random variables ta the density ZT of relative ta p(s,x) on . ab (s, x) Proof: d Let Ij.tn and 'lt be the family of function defined on [s, T] xR by:

(1. 3 ) - 5 -n

 35 By theoreIn 7. 1 of[13], U is continuo us in (t, y) when t stays away froIn CT , n and the Inodulus of continuity depends only on the bound of b . Let us prove then that { ./, } is a bounded and equicontinuous faInily 'f n of functions. b converging to b weakly, the faInily b stays uniforInly n n bounded, alInost everywhere. By Inodifying the functions b on a Lebesgue n null Ineasure set, we can aSSUIne it stays bounded everywhere.

  to ljJ, The sequence ljJ being bounded and n n equicontinuous, ljJ converges to ljJ uniform1y on each compact subset n of [O,T]X Rd, (*)

T But 1 b 2 Q

 12 (a-, x )das n K a-converges in probability to 1 b( a-, xa-)da-. Then for s every N > 0, one has: Moreover, one has the uniforITl bound: {x;suplxa--xl >l} s<a-<t being an open set, one ha3: (sup 1 xa--xl> 1) .:s C expcl s<a-<T

For b inV

  Loo' we will write the expectation operator for Qfs, x) b E b Y (s, x) For L defined on [0, + co [ x Rd, measurab1e and bounded, we defin e , L) in the IJ(L ,LI) topo10gy, b co the sequence of continuous functions y 11. converges to yb uniform1y on L L 11.

  b

(

  (s,x) probability to l L(IJ,xIJ)dIJ s Moreover the famil}' of measures jCl b n l is uniform1y integrab1e witL

(1. 25 )•

 25 Moreover by theorem 1, one has, because of the boundedness of ' !Ln} (1. 26) Then: We will also need a result on existence and uniquenes s of the solution of the martingale problem with (s, x) as a starting point, associated to (a , b ) when b is a function defined on [s, + 00 [xO,.%'([s, + 00 [)

2 )

 2 Another feature of the problem is that, because of the mutual absolute continuity of all the Qb( )' then any non-anticipating stochastic process, on (Il", Q( ) ,M ) has a representation on (n, Q( )' M ).

( 1 )

 1 Voir l'Annexe M

  , xu) > du -At AT AR Q ,because cr (u, x ) stays bounded when u varies s, x u between s and tATAR ,and rnoreov e r: to infinity, the propo3ition follows .

Definition 2 : 1 )

 21 The problem of control is th e search of a Lebesgue class of a measurable selection of K, c = (b,L) such th"\t, for any (s, x) in [0, T)xR C1 , by calling g; the set of Lebesgue classes of measurable selections of K, one has: T r dO b J ( (s, x) min IdOb(') f V(cr,x )dcr. ( b', L') dl?J u One puts on g; the topology induced by cr(L oo ' L J)'P is then bounded, and metrisable. Let.#' the mapping defined on [0, T] xR d ' )( g; by : T (s, x, c) -:;;--x) l L(cr, xcr)dcr wi th c = (b, L) . (3. 2) Proposition III-l: ,ye is continuous. Proof: Theorem 1 -2 proves that if c --c, then n b V: converges to n uniforIrÙY on compact sets of [0, T] xR d. The result follows.

(3. 3 )

 3 Proof: Under assurnption Ill-S', .Il! is now compact for the o-(L oo ' LI) topology. The result follows immediately from proposition Ill-l.Proposition I11-3: q is a positive, bounded and continuous function on [0, T]xR d . Moreover, for any x in Rd, one has:

  ,x) -E(s,x) 1 LI(u,x) du> 0 s and this would have been a contradiction to the optiznality of c. (3. 26) Conversely, let us assuzne that the stated relation is true. Let (b',V)

  Proof: Let c be an e1ement of r (x). The condition of proposition III-5 s is b then satisfied. Withpropofiition II-l,one represents the process V L(t, x t )for the rneasure Qb (s, x)" The calculations go exactly the sarne way,We are going now to prove a result which has close connections with the the classical dynamic inequality. is an excessive functien relative L Proof: One has to prove that q is exces sive.being the pot ential of a continuous functional, and q being continuous, one has only to prove that for any (s, x)d in [0, T]xR and any t in [s, T), then:

r

  JI.(s, x) -4 L '(u,x )du u By joining (3.41),(3.42) and (3.45), one gets: c = (b ,L) for the moment. By theorem III-i and theorem IV-3 . 8 of[3], V b -q is the Qb potential of an increasing continuous additive L functional A 'c • Moreover Pemark 59 of vrr(9]proves that we can find a constant C such that for any (s,x,c) then:If we define the continuous bounded variation process Ab by:

  s,x) + 1 H(u,x ) . + 1 < H(u,x ),o--l(u,x ) (b'(u, x )

T 11 H

 11 (u, xu) 1 2 du < + 00 s previous decomposition is necessarily (3 .51 ) the decomposition (3.49) relative t

s

  One has then the following theorezn: Theorezn III -2: One can find Ir Borel on [0, T] xR d , such that: a) For any c = (b,L) in 2, for any (s,x) in [O,T]xR d , T E b l [ H (u, x )[ 2 du < + 00 (s, x) s u (3. 52) b) . For any c = (b ,L) in 2, one canfind an increasing positive continuous additive functional Ab such that for any (s, x) in [0, T]xR d : (s,x) + [ H(u,x u ) . d i3 u -Id Au p.

  any c = (b,L) in 2, for Cl = (b',L') in fi!, one can choose b

G

  c t inequality on a Qb( r ) non nul1 set. By using then theorern s ,x y ., . . . . . , 0 0 b r b r III-3 , w hich says that H (u, x ) • d !3 has a Q( ) null rnean, and s u u so'x o 1 dA: + 1 < II(u, Xu)' -1 (u, xu) (b(u, xu) joining (3.63 ) and (3.64) one would have for any (b', LI) in 2:b' q(s ,x ) < V L , (s ,x ) this is a contradiction to proposition 1II-2. The additive functional t l is then identical to then easily that one has for (s, x ) in [0, T] xR d : b q(s,x) = V L o (s ,x) o One can write now the essential result of this part. Let a probability measure on [0, T] )( Rd. Let ab be the Markov process with "initial"probability measure as constructed in [3] 1-5.

Theorem IV - 1 : 1 ) 3 ÂK:

 113 the r sult given in[3] -1 (5.9), one has: the previous assumptions on K except III-5'. Â A K(t, x) is the closed convex hull of K(t, x). K is then a Borel set-Â valued mapping by [12] corollary 3. 3. Pis then the set of Lebesgue clas ses /\ associated to K. One can find (b ,L ) in P, such that for any "initial" o 0 d probability measure IJ. on [0, T) x R , then: fi b T dO 0 l L (u, x ) du = Proof: K satisfies all the hypothesis of III. Let us apply theorem III-Let 6. be the set-valued mapping defined by (t, x) .. l(b,L) € K(t,x); = L + < H(t,x),a--l(t,x) b >1 (4. 2) Â 6. has non-empty values, because K has compact values, and K and K

1 = 0 ( 4 , 4 )f

 1044 of Let (b', L) be a Lebesgue measurable selection 6., (bl,L I ) a Borel measurable function, Lebesgue equivalent to (b, L'). Let (b ,L) a Borel o 0 measurable function, Lebesgue equivalent to (b l ,L 1)' such that: (b (t,x), L (t,x» E: K(t,x) o is possible, by changing (b l' LI) into one of the Borel sections of K on the null measure set {(t,x) :(b l (t,x),L 1 (t,x» ri K(t,x)} which is Borel by corollary 3, 1 of [12], d Then, a, e. on [0, T) X R , one has: ""' -L (t, x) +< H(t,x), (J (t ,x) b (t,x) > o By the corollary of theorem III-3 one deduces that for any "initial" probability measure on d [0 , T) X R , one has: b T TfdQ\J.° J L (u, x ) du = min 1\ fdQb f L(u,x)du(4, 5) L (u, x ) du = min fdQb f L(u,x)du •(4, 6) the problem of optimal stochastic control has under relatively weak assumption far better properties than the corresponding one in deterministic control. Of course, one rnight think of a limiting process. Unfortunately, the convergence takes place only under the convexity assumptions, where the results are well-known.

d

  We will limit ourselves to the couples (s, x ) in [0, T] X R .A is a closed subset of that CA is non empty.d [O,T]X R ,For p( s, x)' we define DA by: Markov process. In the same way, (tt\ DA ' x t t\ D ) will be a strong A Markov process. s b

  analyze the two terms:

  , x ) da a (* ) Because aIl the potential measures are absolutely continuous with respect to the Lebesgue measure, we can limit ourselves to the potentials of Borel functions instead of taking the potentials of universally measurable functions. The same argument will be implicitly used for the proces s (t /1. DA xt/l.D ).A f)(s,x)We know that e -ps(V 7)(s, x) is continuous, and is then neces sarily p right continuous on (t  DA' x t D ), A We have now two cases:• (s,x) € A, Then DA = s and the first term of (1. 8) is null • • (s,x) ri A. CA being an open set DA> s .

H 8 is*

 8 then upper sern.i-con inuous and is right continuous on (t /\ DA' x t /By the sarn.e argurn.ent, 1 being excessive, E e is (s, x) lower sern.i-continuous and right continuous on the trajectories. U b f is then Borel rn.easurable and right continuous on the trajectories p of (t /\ DA' x t /\ D ). A3 is proved. A AS: We check irn.rn.ediately that the assurn.ptions of [S] XIV T Sare satisfied: b this is obvious frorn. the Feller property of Q • • The potential rn.easures of Qb being absolutely continuous with respect ta the Lebesgue rn.easure on d [0,+00 [x R , the potential rn.easures of (t /\ DA' x t /\ D ) are absolutely continuous with respect to the A Lebesgue rn.easure on A, and ta the Dirac rn.easure on . A ssurn.ption (L) of Meyer ([S] XV D 43) is then satisfied. In the sarn.e way, one will deduce easily that the nearly Borel functions for (t /\ DA' x t /\ D ) are deduced by restriction frorn. the A b nearly Borel functions for x under Q . II Continuous dependence of the criteria. For b Borel measurable and bounded on d [0, T] X R , and L ' b Borel measurable, bounded and positive, we define UL(s, x) by: If (b , L) converges to (b. L) in the a(L oo ' LI) b n n n b topology, U L (s,x) converges to UL(s,x).nProof: We have again:

b

  We define V L (s, x) by:(2. 3)Then (2. 2) can be written:

= 10 b

 10 U L ( s, x) + E ( s , x) V L ( DA' x D A) b By [2] Theorem 1-2, under the stated assumptions VLn(s,x) n H This implies that V Ln (DA' x D ) converges p( ) of [2], we know that the density of n Q( s, x) with respect to p( s, x) conve r ge • weakly to the density ZT of Qb (s, x) • b Then, the sequence V Ln being uniformly bounded; n b b

Definition 1 :•

 1 The problem of control is the search of a Lebesgue class of a measurable selection of K, c = (b, L) such that for any (s, x) in d [0, T] X R , one has, by calling 2 the set of Lebesgue classes of measurable selections of K: One puts on 2 the OE(LQ)' LI) topology.

  Proof--: Using the definition of the fine topology given in(iO] (p152),each of ' -the U b being finely continuous, q is necessarily finely upper semi-continuous L because it is the infimum of a family of finely continuous functions. Il Propo -Hion 1II-3: For any (b, L) in 2, b (tI\DA'XtI\D) on (n,Q) A i8 supermedian for Proof: The proof i8 identical to the proof of Theorem 1II-2 of [2],

  sur les martingales ([lJ VI T 13 et Remarque a), partie A §'S mesurable et L le processus lAIt> S . LA est et continu à gauche. Il vient alors par [1 J VII T 17: +CXl

  les résultats obtenus dans F .. a une certaine classe de problèmes de avec contraintes sur l'état.

ThéorèITle 1 - 1 :

 11 temps d' arret S est egal a une constante T b) L 'état x peut se mettre sous la forme variant dans un espace de dimension 1. c) Les contraintes suivantes sont supposées implicitement satisfaites: Sous l'hypothèse Hl' la recherche d'un ITliniITluITl de i!ii." L sur K est équivalente à la recherche d'un point selle sur * H X (Loo) + de la fonctionnelle: les rethodes de F (ThéorèITle II-I) II Martingale locale associée à une solution optiITlale. Definition: On dit que l'hypothèse H 2 est vérifiée si: a) i.,T e st finie sur b) Il existe (A, B) !Y* ITlesurable et dP ® dt essentielleITlent borné et (b, bl) dans L 21 X L 22 tels que pour tout x de L 2 oo, si:

TE=

  J L(w,t,x (w,t), x (w,t),H(w,t)) dt < tCXI o On supposera ici que <D i , L a un minirrlUm sur K et que l'hypothèse Hl est verifiée. Si (x, IJ.) désigne un point selle de la fonctionnelle au théorème 1-1, C\ est le processus: I: Sous les hypothèses Hl et Hl' la restriction de (l -cr tt\ S )IJ à $t  S est définie par un élément de L Sn raisonnera comme pour i.e théorème Ill-i de F. lA X s + ICA Xs  . . .

5 -

 5 et continue à gauche en S, à partit des restrictions de IJ aux sr s n K -Théorème 11-2: g est telle que:

  n, pour tout Xl de H tel que x' = 0 pour t S , on a 2t n S (2. 8) ' 1,. L (x) s: ifJ 1" L(x') + E -' gt dt -E(gO) Preuve: On raisonne comme pour la proposition IIl-3 de

  a une solution unique par le théorème 1 de I.

1 -

 1 L(w, t, x,n(w, t), x,n(w, t), H,n(w, t)) dt R n < pour t S , n on applique le théorème II-l:On va alors passer à la limite dans cette relation. En effet, Bx' -b'

Ô

  Ax + Cu) dt + (Bx + Du) . dw x(O) = x o et qu'on veuille minimiser: (w,t,x(w,t),u(w,t)) dt o avec les hypothèses de l'exemple II-l de: B sous la contrainte: étant un intégrant convexe positif les m'cimes hypothèses que K, et tel que x pour tout (w, t)

(4. 5 ) 2 K - 11 -TE

 5211 L(W,t,xl,x2'Xl,X2,Hl) = inf K(w,t,xl,u) u { Xl = AX I + Cu Hl = BX l + Du ô(w,t,u)x Sous des hypothèses convenables, on se ranène ainsi au cas précédent. En particulier sous certaines conditions, on peut montrer que si est une solution optimale, si 50 est le temps d défini par: s, u( . , s» ds = l} , A T o u alors il existe une martingale locale positive g continue à gauche en 50, telle que o u minimise l'expression T E f K(w,t,x(w,t),u(w,t» dt + o J gé ô + tjJ u=O)(w, t, x(w, t). u(w, t» dt o On s'est ramené à un problème de classique . _V ConclusionOn a vu ici comment l'introduction de certaines contra:intes SUI' l'état transforme l'état dual en une semi-martingale locale.Des contraintes plus complexes conduisent vraisemblablement à un problème pratiquement insoluble: en effet, si la contrainte peut saturée plusieurs fois (et une infinité de fois), on aura un inextricable de prévisions sur le premier temps de saturation, le deuxième temps etc . . . .

2 -

 2 Nous étendons ce résultat en supprimant la condition(1), et nous montrons que définit une fonctionnelle additive martingale de carré intégrable pour x . • Extension du résultat Pour k entier, soit aK une application definie sur [0, +00 [ xR d Alors en utilisant les méthodes d u lemme 5. 6 de [2], on montre immédiatement que la restriction de P

  processus à trajectoires continoes PC C' ., ) p. s •• ,.r it,.

1 cette

 1 et(10) impliquent que est une martingale. De plus étant à trajectoires continues,(10) implique que est un mouvement Brownien par(1] (p. 110) • • est une fonctionnelle additive. x t ayant la représentation (2) est une martingale de carré intégrable P our P C'est de plus nécessairement une fonctionnelle additive (s, x)' pour le processus P. Parle théorème 4 (p. l27) de (1], on peutdéfmirla martingale de carré intégrable fonctionnelle additive t En effet, nous savons par le théorème 8 . 1 de (2] que les mesures potentiels sont absolument continues par rapport à la mesure de Lebesgue dans d ( 0, +00 ( X R , et de plus M fonctionnelle additive, on verifie immédiatement qu Ion a bien pour toute mesure initiale I-L sur d [0, +00 [ X R , pour tout s, t avec t s:

• 1 -

 1 On êtendra ces résultats aux mesures Qb avec b mesurable et borné sur d [0, +00 [ X R des densités et dualité L'objet de ce chapitre est de faire le lien entre les méthodes de dualité utilisées dans B et les méthodes utilisées G pour la démonstration de l'existence d 'un optimal markovien.Nous ne ferons qu'esquisser les démonstrations, les résultats obtenus ne servant qu'à faire le lien entre deux approches.Les notations sont celles de B et G Préliminaire s.

,.

  AI désigne l'ensemble des classes de sections ::7* mesurable de K pour la mesure dP 0 dt. Le théorème 1 de[2] montre que.At est non vide.

N - 2 -( 1 . 1 ) 3 )

 2113 Pour m dans vit, soit Z la solution de l'équation: Par le théorème 1 de l , (1. 1) a une solution unique, et ZT Il est classique que Zt s'écrit: quand Z e st donné par (1. 1).

10 -( 5 . 3 )

 1053 {Stt} tER + sera la famille minimisant t x) f L(u, xu) du s On cherche (b, L) sur l'ensemble des classes des sections ff* mesurables de Si désigne la densité de Qb ("fixe", c'est à dire si le seul objet du est bau probleme precedent. Sinon on peut utiliser le procédé de qui consiste à "ajouter" à un mouvement brownien indépendent de x, qu'on note 'l\, qui prend la valeur 0 à l'instant s. s,x,O), si E' (s, x) est l'opérateur d'espérance as socié à p' (s, x) , on a: borné, on est bien ramené au problème précédent. p' (s, x) . Mais on a alors un problème nouveau;en effet, en ajoutant un nouveau mouvement Brownien, on crée une information. supplémentaire. LeN -optiInal trouvé sera alors aussi fonction de cette inforInation. Le trouvé sera en un certain sens "Inixte", ce qui e st un inconvénient grave , sur lequel Beiies ne donne d'ailleurs aucune indication dans [1]. Appliquons • alors la proposition Ill -l. cp(w, t, . , . ) L); (b, L) E k (t, x t ) soit p la solution de: Pour que Z,(b, L) soit optiInal, il faut et il suffit que l'on ait: :: p. s. Si on adInet qu'il existe un optiInal (b, L) non anticip; tif par rapport à la faInille de tribus initiales (* ), alors on peut Inontrer que H Ce qui suppose résolue une bor!ne part:e problèIne •..

  Montrons tout d'abord que toute section x de r qui est mesurable est inté-

	grable. Soit x	o	_e section intégrable de r . On pose 1
					x ::: ln. x + 1(rL x n n -11	0
	Alors x	n	est une section mesurable de r	, et de plus elle est intégrable.
	L'ensemble des sections intégrables
	pour tout n	E Il xn( . )11 M
	0n en déduit	

Théorème 1 : Si une mRltiapplication mesurable r à valeurs fermées non vides dans V est telle que l'ensemble des sections intégrables de r est un vide et borné dans , alors )/1 . appartient à Toute les sections mesurables de r sont dans Lf<V) et forment un ensemble faiblement relativement compact. PREUVE A -8 --1.., t E ( 1n.

Définition 1

 1 Une fonction j définie sur f i x V • à valeurs dans J-+ 00 J

	[1
	[16J )

est dite intégrant normal si a) j est a ')IJ(V) mesurable. b) Pour tout (J, j('-l, .) est s.c.i. sur V et non identiquement + OQ • On a alors les résultats suivants, donnés par ROCKAFELLAR ( Q 3J

(1) j est un intégrant normal si et seulement si Ge) --+ epi jG> est mesurable à valeurs fermées non vides.

  . n

		A
		-12 -
	r.t de plus	Ir j ( W, O) dp Cn. i
	':\n en déduit par somme sur les .n.
	PREUVE	

i < + 00 J(W, x «(j))dp <. + ao -IIproposition 3

Si i1 est sans atome, si V est de dimension finie, si

  Soi t X dans L:'(V) , d.istinot de O. On choisit e =if On fait alors une partition finie de Jl. et on procède comme pour la proposition précédente.

	A	
	-13 -	-II -
		L!(V)
	Alors sup	
	h'1l'	
	PREUVE	
		1. 1.
	est faiblement relativement compact dans L 1 10 p 293) si {Ih(..	' ou encore grâoe à [8J (corollaire
	PREUVE	

est faiblement relativement compact dans L 1 lt '-'J(. Mais grâce à (oorOllaire 11 p 294) pour tout [>0 , i l exist e 0:> 0 , tel que si pCA ) ô alors sup h dp ê ; : <x(w), h(CJ) > dp < 1 quand p(A) < Nous allons maintenant montrer un résultat étendant un résultat de ROCK.A.FELLAR On suppose ici que l est défini par un intégrant normal non nécessairement convexe. On fait les hypothèses suivantes l(x ) < + 00 o l*(OC )<+00

  Soit alors t , oc adhérents faiblement à l'ensemble des sections intégrables de Soit r une multiapplication mesurable à valeurs fermées non vides dans V de dimension finie possédant une section intégrable. Si rL est sans

		A		
		-14 -			-n -
		-15 -		-II-
	(J De la semi-continui té inférieure faible de x --+ epi jw (car les Bj sont disjoints) on a une contradiction, Car j (w , x( (..») )dp , En recollant les x j on trouve un x section de r avec pour tout i
	on déduit :	lj(w,t(W))dP		
	et en conséquence j (W, t(l.)))	p. s.	(t,	est donc une section inté-
	grable de (.J -:> epi jw • Ertfin on a le lemme suivant :		
	Remarque Lemme 3	La dimension finie de V n'est pas encore intervenue.
	Lemme 2			
	PREUVE aucune autre partie) engendrée par C PREUVE Si f n'est pas une section de r , on a : Or est faiblement compact pour tout A famille finie de Ai mesurables tels que Or considérons la famille finie des parties minimales (ne contenant strictement On en déduit il existe une

• Alors x--+h j(W ,x(G.l»dp est également faiblement s.c. i. En effet ft j (Q )dp = l( 1 A x + 1 CA x 6 ) -i (w, w)) J. r Or I( xo) <+ 00 et l'application x-> \x + 1 CA Xo est affine continue de dans lui-JIl"e.

Soit r une multiapplication mesurable à valeura faiblement compactes dans V de dimension finie telle que

(.) 

Il appartient à Si i l est sans atomes, pour que l'ensemble des sections intégrables soit faible .. nt compact dans , il faut et il suffit que 1 soit p.s. à valeurs convexes. La condition suffisante est classique. Nous donnons une démonstration de la nécessité de la condition de convexité. Soit f une section mesurable • (r est mesurable O.E) • Soit A une partie mesurable deA • On note 1) (A) l'ensemble des sections mesurables x de r telles que Par le théorème de LIAPOUNOV, 9'l (A) e st non vicie. et n par les Ai • Sur chacune de ces parties B. par le théorème de LIAPOUNOV, il existe x. section de f, ;avec J J dp = Ir. B. f J atome, pour que l'ensemble des sections intégrables de r soit faiblement fermé dans , il faut et il suffit que r soit p.s. à valeurs convexes. La condition suffisante est classique. Montrons la condition Soit une section intégrable de r On pose :

  Pour que oC* appartieDM à aI(x o ) , il tallt et il ntfit qlle, ai le• -

				X,
	on définir sa restricticm aux fonctions alors 1 dépendant de façon <n _eura.ble de W ?	Msurable par un intégrant oOllvexo
	On a les résultats de ROCKAFELLAR On procède en deux 'étape s 1 ( 5) Si La(V) et L,a(V') sont deux espaces décomposables en [14J et [16] ) -espérance conditionnelle d'un i ntégrant régulier; Cela s'écrit 1 -passage aux intégrants généraux e
			dualité, si l et 1* sont deux intégrants convexes pro-
	pres Espéramce conditionnelle d'un intégrant régulier. en dualité, alors :
	a) Or si 1 est continu pour la topologie forte de L!(V) Pour tout x de L a(V) , Gù àj «(.), x(GJ) est une multiap-plication mesurable ( U 4J corollaire 4.6) en x o dans
		b)	Pour que	appartienne o
	ment compact, et est formé de toutes les classes de sections mesurables de
	GJ -->	, x(W). De plus	Ilaj(., x(.)\\ est dans LT
	SJ l est continu en x o	a1(x o	) est non vide et faiblement compact par [11J
	P. 60	Grâce à (5) , on applique le corollaire du théorème 1-2-1
	Corollaire			si l est continu en
			Xo €	pour la topologie forte, ol(x o	) est non vide et
	faib lement compact dans	• Il est formé de toutes les sections mesurables
	de W--v j(G..l, x«(J» •. et W--> hj(W, x(LJ))11 appartient à LT et on aura:
	La topologie forte de L!(V) n'étant généralement pas compatible avec la dualité,
	ce résultat ne peut	obtenu directement. Nous allons utiliser le résultat
	11-1-(4) de ROCKAFELLAR • Soient t'V he;) et des verSl.ons de E h et E h' • . <n
	Soient		

ri est mesurable. En effet <f(v\ ri(W)) = ift (l.») I l vII et la condition Q-D est bien vérifiée. On pose = r(W)n r! (w) x o r est une multiapplication à valeurs faiblement compactes non vides, et elle est mesurable, Car son graphe est l'intersection des graphes de r et r! L'ensemble des sections intégrables de ri est non vide (il contient xo) et faiblement compact dans (c'est l'intersection d'un ensemble faiblement fermé et d'un ensemble faiblement compact

). Par le lemme 2 , ri est donc p.s. à valeurs convexes. En éliminant une réunion dénombrable d'ensembles de mesure nulle, on voit donc que p.s., pour tout i est convexe. Or comme valeurs convexes • .. ;:" ri(W) est convexe. Donc p.s., U i€N P (<J) 1 r (w) = u r est donc p.s. à ras semule al ors le lemme 1 et le lemme 3. Sous les conditions du théorème (.) ---:> epi je...> est p.s. à valeurs convexes, ce qu'il fallait démontrer. §ous-différential:ion des intégrants convexes. à () I(x) , i l faut et i l suffit que 'l'héorème 2 Si l est continue en x élément de L a(V) (pour une topologie compa tible avec la (1) ,alors aI(x ) est non vide, faible-. La dUa.l., d..: l dantS (L:'( V»* el écrit 1 1*' (oc:; *) = I*(cc) + 1 dom 1) pour ce* ::: oc+ X . (1) Nous ne donnerons plus oette indioation dans la suite. A -17 --II -(L!(V»)* est non vide et faiblement oo.pact. De -plus, x E: int dom 1 , ce qui o entrabe, ai "f.. la 0 t (X\doll. 1) > <x,x o > OB en dMuit 1 81 oC* = C(.+ 'X. est dans a'l(x), = 0 et Le Bous-différentiel de 1 dans est donc non vide et faibleaent compact. On réapplique le corollaire du théorème 1-2-1 _ • ae!argue 2 J Ce dernier résultat n'entratne évidemment pas que les ensembles {oC; -<<1: xo> "P} pour p> inf 1*(cc)x > o sont faible.ent compacts, mais ils sont seulement non vides, fermé. et borné •• -III -III ESPERANCE COIDI'1'l O!1OO.I' !i! D'D Ilft'EGRAIT CONVEXE . PREUVE L'objet de cette partie est 18 sui Tant : atan'!; donné un intégrant cOIlTexe, On considère ici un intégrant convexe normal j tel qu ' il existe h et h' dans L + 1 avec 1 p.s. pour tout x de V • (Propriété p). Théorèae 1: Si un intégrant convexe normal possède la propriété p , i l existe un intégrant convexe normal tel que : a ) il existe des versions h!net h% de E'P h et E'1>h' telles que p.s. pour tout x de V .) Pour tout x <)) mesurable à vale-urs dans V , si j(., x(.» p08dde une espérance conditionnelle généralisée{l) alors, C)l:) j5)(.' x ( .» E j(. , x(.» En effet, on pellt conaidérer pour tout x de V la classe de v.a.r. <n _8Urable s ( ., x) (a.) une partition dénombrable mesurable de .n, telle que sur chaque n l'V N fin' et h '9.> s oient essentiellement b ornés 1 on peut prendre par exemple la partition de .Cl. c onstituée par :

(1) Pour la définitionp voir p 49 • Ici cel a s i gnifi e que j(. ,x(.) )est minorée par une fon@tiofi intégrable.

  .QI", P) désigne un espace de probabilité complet. {STt}t e: R + est une suite croissante de sous-tribus complètes de ST, continue à droite, et dépourvue de temps de discontinuité. /?7 est la tribu de n X [a, + 00 [ , formée des ensembles bien-mesurables. ;y* est sa complétée pour dP (&) dt. West le sous-espace de !:: engendré pa r les intégrales stochastiques par rapport à w. wJ. est l'orthogonal de W dans !:: au sens de [6J (p. 81 Theorème 5). On suppose que W.J.. est décomposé en la somme de

		Une norme est définie sur L 21	(resp.	par:
		(1. 3)				
		(resp. (1.4)			
	1\ De meme L 22	est l'espace des dP @ dt classes H de fonctions.'Y*
	mesurables à valeurs dans	que:
	S	est un temps	d	,	1\ arret majore par une constante poslhve . , ••	T	.
		(1. 5)				
	Une norme est définie sur	L 22 par:
	Pour tout temps d 'a	cr ,	est l'espace des variables aléatoires
		(1. 6)				
	de carré intégrable et § cr	mesurables, à valeurs dans V.
	L 21	(resp. L 2(0 ) est l'espace des dP @ dt classes y de fonctions
	;y* mesurables à valeurs dans V, telles que: 1\ , S et arretees en .
	(1. 1)				
	(1)) (1) En général, pour tout z positif et [7* mesurable, supess Zt est (resp. (1.2)E(supess IY t I 2 ) < +00 Os; ts S ( 1) (cont.) s Zt • la.b[l = 1 w; { I[Zt .Ja. b[ dt > al
								Osts S

V est un espace vectoriel de dimension n. west un mouvement brownien défini sur (n ,sr, P) à valeurs dans R m , et adapté à { J1"t }t e:R+. mesurable. En effet pour tout intervalle ]a, b[ , on a: !:: est l'espace des martingales de carré intégrable, nulles à l'origine s De plus l[Zt S Ja,b[Jétant Of* mesurable, { l[z t E: ]a,b[} dtest mesurable.

  De meme, on se limitera à x élément de L 200 à valeurs positives.

				o
				9	
	avec CL à valeurs réelles tel que:	
		(2. 10)	E (supess ICL t I 2 S	..... < +0) /
	on en déduit:			
			S		
	Si x n	est la suite d'approximations (2. 11)		précédemment, la sdte
	l'!> crolt	On a donc:		
	(2. 5)		lim +00	S E J 0	( Y t	' x ) dt nt
	Mais puisque (2. 12) x n	tend vers x dans L2co' on a: E(supess
			Os:: ts:: S		
	(2. 6)				
	On a donc bien: Ut est donc dans L 2 0).		
		On en déduit:		
			S		
	(2. 7)	S (y,x) = Ef (Yt'x t )dt o (2. 13) 1 E Ut 1 y t l dt 1 s::	k' E 1 ul 2
	y étant dans (L 200 )*' on a: Mais. par [5] VII T 16. on a. puisque 1 yi est dans L 11	:
	(2. 8) En posant:	(2. 14)	S E J Ut 1 y tl dt = E U

/\ 1 E { CL t 1 ytl dt 1 s:: Soit alors u une v. a. r. de carré intégrable mesurable. Ut la §t martingale E u . On a. par l'inégalité de Doob ([5] VI Remarque 2): o (1) La fonction sgn est définie par: sgn(Y 1

  ul 1 vi est dans L 11 , De nfeme 1 HI IH'I est dans L 11'

	o > est une forme linéaire continue sur l'espace S X W qui par ailleurs s'identife à L 21 X L 2 par Maisx-? (s,x) -E(a,x S 0 . 1 R = L 2 X L 21 X L 22 l'homéomorphisme: (3. 7) Il existe donc (r,qS) dans tel que: (3. 8) Comme L 22 est dense dans L 21 , (L 21 )>:' est inclus dans L 22 et est un espace décomposable au sens de [9] puisque: a) Lcoco C (L 21 b) Si A est [1/* mesurable et si y est dans (L 21 )*, 1 A y est dans (L 21 »:'. À r est donc dans L 22 , et on aura nécessairement, en utilisant la mEn1e méthode qu'en (2. 5) (3. 9) S (r,x) = El (rt,xt)dt o $t De plus, si qt est la martingale E qs' on peut tro uver o l. (qo' H', M') dans L 2 X L Z2 X W tel que: o 15 (3. la) H' . dw + M' s s t A lors, par la proposition I-l de [Z], on a: (3. Il) Donc: (3. lZ) ... s s dt a a s -E L(w, t, z(w, t), x(w, t), H(w, t) ) dt Le prern.ier et le dernier terrn.e ne posent pas de difficultés, car ils ne . . ' " sont ]arn.als egaux a -ex> • On va rn.ontrer que le second prend la valeur -ko. On pose (3.13) o 16 u est alors dans (L 21 )* . Pour z dans L ,soit f l'intég.rant convexe défini par: coco (3. 14) f(w, t, v, H) = L(w, t, z(w, t), v, H) La proposition III-1 implique qu'il existe (v, H) dans L 21 X L 22 tels que: (3.15) S E f f(w, t, v(w, t), H(w, t) ) dt .< + co Alors: (3. 17) f*(w, t, u, H') = k(w, t, z(w, t), u, H') Deplus, parHI-1, il existe (po,sa,Ho,a.) dans L2coXL21XL22XLl1 m tel que pour tout (z, v, H) dans V X V X V on ait: (3.18) -ü(w, t) A lors néces sairement: (3.19) k(w, t, z(w, t), Pa(w, t), Hb(W, t) ) ü(w, t) -(z(w, t), sa(w, t) Or a. et (z,sa) sontdans L 11 . Donc: (3. 20) S D 17 E J k(w, t, z(w, t), PO(W, t), HÜ(W' t) ) dt < + 0:> o Les espac e s L 21 et (L 21 )* étant décomposables, on peut appliquer le résultat de donné dans [10]! (3.21) s s sup E (x, H) €L 21 X L 22 < ut' :Kt) dt + E < H t ) dt On pose: sup z€L 0:>0:> <S,Z)+E] o k(W, t, z(w, t), u(w, t), H'(w, t) ) dt = +0:> (3.23) g(w,t,z) = -min(k(w,t,z,u,H') lui lu(w,t)1 + \PO(W,t)\ 1 H' 1 1 H'(W, t) \ + 1 HÜ(W' t) 1 } k étant semi-continue inferieurement en (u, H'), le minimum est effectivement atteint. De plus pour tout (u, H'), on v{rifie que k est concave en z parce que L est convexe. g(w, t,') est donc convexe . De plus g(.,., z) est f7* mesurable: en effet k(.,•, Z,' , . ) est un intégrant convexe normal, puisqu'il est conjugué de l'intégrant convexe normal L(•,•, z, . , . ); on applique alors [12] corollaire 4. 3. On a: (3. 24) g(w, t, z) -k(W, t, z, PO(W, t), HÜ(W' t) ) < z, sO(w, t» -OE(W, t) Soit (v, H, S) le triplet construit à l'hypothèse H III-2, corres-pondantà z dans V, tel que: (3. 25) L (w, t, z, v( w, t) , H( w, t) ) S; S (w, t) A lors: (3. 26) k(w,t,z,u,H') (u,v(w,t» + (H',H(w,t» -S(w,t) Donc: (3. 27) g(w,t,z) (3. 28) S E l g*(w, t, so(w, t) ) dt < + Q:) o • Pour tout z de V, on a: (3.29) S E J g(w, t, z) dt < + Q:) o o 19 En effet, par un raisonnement similaire à celui qui est utilisé dans (2,9), on que comme v est dans L 21 et u dans (L 21 )*. La proposition II-l et sa démonstration prouvent alors la relation: (3, 30) Donc: S sup (r,z) -E fo g(w,t,z(w,t)) dt = +IX> ze::L IX>IX> S (3,31) z e:: L 2 1X> 0 sup ze::L IX>OO Le théorème en résulte, • s (r,z)-Ef o g(w, t, z(w, t) ) dt = + IX> Corollaire III-l: Sous l'hypothèse H III-2, tout élément z de RI * majoré sur domCit,L appartientà R 2 , Preuve: Par une méthode semblable à celle qui est pour le corollaire 2 du th"'oreme 2 de [9], en remplacant L par LV 0 et t , par t V 0, on v:rifie que LV 0 et ,t. V 0 satisfont toutes les hypothèses que L et t verifient, On en déduira que C+'tvo, LVO (z) < + IX> , Donc Z est dans R 2 • • D 20 IV Régularité de CPt, L Definitions: On dit que L l'hypothèse H IV -1 si: a) il existe A et B [!7* mesurable à valeurs respectivement dans !}?(V, V) et !J?(V m , V) tels que: est dans L S 00 (4. 1) supess IIB(W,t)11 2 dt < +00 b) il existe (b, br) dans L 2l X L 22 tels que la fonctionnelle Il , definie S (4. 2) Il 0 + b'(w, t) ) dt est finie et continue en un point xl pour la topologie forte . • On dit que L vérifie l'hypothèse H IV -2 si: a) il existe A et B vérifiant les propriétés que précedemment. b) il existe (b, b ' ) dans L 2l X L 22 tels que la fonctionnelle 1 2 d:finie sur L 200 X L 22 par: s (4. 3) (x, H) • E f L(w, t, x(w, t), A (w, t)x(w, t) + B(w, t)H(w, t) 1 2 0 o 21 est finie et continue en un point (x 2 , H 2 ) pour la topologi e forte . • H IV -2 est plu s forte que H IV -1. De plus H III -2 et H IV -l (ou H IV -2) ne sont pas a priori comparables . Cependant on a le résultat suivant: Lemme IV -1: Si H IV -1 est vérifiée, Il est partout finie et continue sur L 2co si l'une des deux conditions suivantes est réalise: a} .q,l" a est sans atomes. b} S est p. s. inferieurement par c > a et west non (m l). la fonctionnelle d /f• . e lnle par: S (4.4) Ir (x) = E f cp(w, t, x(w, t} } dt s (x) est s. c. i. , finie et continue en a. En effet: (4. 5) cp(w, t, a} dt IIxl12co < a., on a: (4. 6) o De plus: (4.9) IlIA i xl1 2co < a. s Preuve: Dans H III-l, on pren;lra: :: Ax + b (4. 14) H = Bx + b' On sait par [1] que y x y S t L 2 • co n tinues de L ., ,r.a:> co da n B LZ• sont de s appli.cations r (4. 22) xy(O) = a { Il existe a.:;> 0 tel que si IIxll2co < a., Il(x} < I(a} + 1 . Donc si o 22 Soit alors x dans L 2co • 2 supess 1 x 1 OS: ts: S t étant intégrable, il > a tel que si A est $S mesurable et si P(A) s: & , alors sup ess Os:ts: S C l t 1\. . A est . '.JI' e a en ralne que Sl ..... S (4. 7) < 2 a. mesurable et si P(A) s: A , on aura: $ étant sans atome, puisque west gaussienne, il existe une s s partition finie $ mesurable de n s notée telle que, pour tout i, ô / 2 s: P(A i ) s: 6 . s m est donc borné par une constante C ne dependant pas de s. s Or: (4. 8) S S E 1 f cp(w, t, x(w, t) ) dt s = E f cp(w, t, 1 x(w, t) ) dt l s -E 1 s f CA. l s cp(w, t, 0) dt s l = e A i x) -E s s J cp(w.t, 0) dt s Donc: s (4.10) (lAi x) < 1(0) + 1 -E s on en S S cp(w, t, 0) dt :: E J cp:w, t, 0) dt + 1 s S (4.11) . E 1 J cp(w, t, x(w, t)) dt < E 1 ob s A. J cp(w,t,O) dt + 1 s l 1 Par sommation, on aura: S (4. 12) (x) < dP dt on en faisant tendre s vers 0: (4. 13) Il (x) < 1(0) + C Il est bien partout finie, donc partout continue par [7J (p. 26) • Corollaire: Si l'une des hypothèses a) ou b) du lemme IV -1 est verifiée, H IV -1 H 1II-2. o 24 (v, H) est alors dans L 2l X L 22 . • Remarque: Ce résultat prouve qu'en fait si H IV-l est verifiée, le problème est fortement linéaire. Remarquons aussi que dans le cas purement déterministe par Rockafellar, H IV-l est vérifiéeavec A tel que (4. 15) Preuve: On a: (4.16) inf xeR l S 2 5 (4. 17) L l (w,t,x,v,H) = L(w,t,x +xl(w,t),v,H) on a: (4.18) cp, L(y,a) = cp, L (y-xl,a) "'" "", 1 De plus LI vérifie l'hypothèse H IV -1 avec xl = O. On supposera donc xl = 0, puisque si on démontre les résultats pour CPt, LI ' seront vrais pour CPt, L . to étant propre, soit Co un élément de tel que (4.19) On pose: t t (4. 20) = Co + f b o s ds + f b' a s a X est alors dans R I et On d6finit a a dans (4. 21) a a o = o s Xs est dans L 2 . par: dw s ils 1 \ , , [ ] , Grace au resultat donne dans 1, soit X la solution unique de l'equation: y dxy = A (x y + y) dt + B(x y + y) . dw On a alors, en posant yo = -x o : (4. 23) L(w, t, (xO + X }(w, t) + (yO + y}(w , t), (:K 0 + x }(w, t), Y Y (HO + H }(w, t) ) y = L(w, t, (x + y}(w, t), A(x + y)(w, t) + b(w, t), B(x + y)(w, t) y Y Y + b'(w, t) ) L(w, t, o (4. 24)

+ E f (qt + rt'x t ) dt + E f a De plus f est trivialement un intêgrant normal. On définit k par: (3. 16) k( w, t, z , u, H') = sup (u,v)+(H',H> -L(w,t,z,v,H). m (v, H) €VXV S E J L(w, t, z(w, t), x(w, t), H(w, t) ) dt = o k(w, t, z(w, t), u(w, t), H'(w, t) ) dt Il suffit alors de démontrer la relation: (3. 22) S; \u(w,t)1 \v(w,t)\ + \H'(w,t)1 IH(w,t)1 . On déduit de (3. 19) et (3. 27): • Pour dP ® dt puisque tout (w, t), g(w, t,•) est finie. Etant convexe, g(w, t,•) est continue. g est donc un intégrant convexe et norma L • Si g* est l'int{grartt convexe normal dual de g, (3.24) montre que: 1 sup (r,z)+E f k(W,t,z(w,t),u(w,t),H'(w,t)) dt x , E J L(w, t, x(w, t), A (w, t)x(w, t) + b(w, t), B(w, t)x(w, t) + b(w, t), H'(w, t) + b'(w, t) } d t Preuve: Nous prouvons ce lemme quand b} est satisfaite. On note par cp(w, t, x} l'intégrant L(w, t, A(W, t}x + b(w, t}, B(w, t}x + b'(w, t}}. On peut supposer xl = a. Pour s tel que a < s < c, soit s < I(a} + l -E J cp(w, t, a} dt E J cp(w, t, 0) dt + C s Comme cp(',', x(. ,.)) est minoré par une fonction H IV -1 correspond en fa it dans le cas déterministe à l'hypothèse de Rockafellar dans [9] (paragraphe 6). H IV -1 et H IV -2 seront utilisées pour résoudre des équations "backward. Il • Théorème IV -1: Si on suppose que: a) H IV -1 est satisfaite b) t s est finie et continue en Cs élément de int dom CJt, L (construit pour la topologie forte de R') est non vide, et C+l.{" L est continue sur int dom C+l.{" L pour la topologie forte de R '. (x + y)(w, t), x(w, t), H(w, t) ) dt On peut supposer Il continue en O. En effet si on pose: Or xO est dans L 2CD , et donc yO est aussi dans L 2CD • Comme Il est continue en 0, et comme t S • est continu en c ,( 4. 23) et (4.24) montrent qu'il existe K, tels que si (y, a) est de norme as sez petite dans R', on a:

  lors int dom CPt, L est non vide, et CPt, L est continue sur int dom CPt, L .

	Preuve: On se ramène au cas: (x 2	, H 2	) = (0,0) .	, t s etant propre, soit
	Cs tel que t s (c S) < + co. Pour y dans L 2co ' soit xl la solution de:
			= A(x	1	+ y) dt
	(4. 26)		
			(0) = 0
	Par le théorème IT-2 de [4] (qui joue un	essentiel ici) (1), il existe	un
	, , et un seul element (x O ' H, M) de L 2 0 . 1 . X L 22 X W	tel que x	2	est
	solution de:		
			(Ax	2 + BH) dt + H dw + dM
	(4.27)		
	avec:			
	(4. 28)	=	
	Posons:			
	(4. 29)	1 x = x + x	2
	x est solution de:	
	l			
	( 1) Il n'est démo ? tré dans [4] qu'avec A et B bor n és . La démonstration H IV -2 est satisfaite dans ce c ' :' . s est ident"que.
	c) t o	est finie et continue en Co	de

A

  Si l'on n'adopte pas cette convention, on arrive rapidement à des absurdités. En effet il suffit par exemple d'augmenter la

	un opérateur de V dans H espace vectoriel de dimension finie. T) est un mouvement Brownien indépendant de w. L'observation est donnée par: t a = J CZ s ds + llt t a On définit alors Z 1 par: = AZ 1 dt + dw = a On veut que u soit "fonction" des observations passés de facon à minimiser T E f K(t, Zt' Ut) dt a , On fera les hypothèses convenables de continuité et de mesurabilité sur K et on supposera K positif. Si l'on pose: t = J C Z 1 s ds + llt a on constate qu'on demande à Ut "fonction" de (H s s t ; s J a u da a s t ) Intuitivement, on s'aperroit que la seule observation "effective" est (H t), lorsque la partie provenant du est supposée extérieure s de m unités et d'appliquer suivant Il . . l "1 ces nouve es dlmenslons e contro e w t. Or on a : t e;--+ 0 w t est donc bien fonction de w dcr cr t-e; au système. dimension de l'espace des = e;>O 0 w ds -s w s dS) .

  The goal of this . report is to prove u.nder very general conditions the existence of an optiITlal Markov control for a certain class of stochastic
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  Using Theorem 1-2, we can prove that when L converges weakly

						(1. 27)
	n the sequence fs Ln (ô , x cr ) d C converges in probability uniformly toI: T for s" t < T "l'o see this, we write	to L, then L(C,x)dô r
		j TL({',X )d{' s n	. L t 6'", x..... n v	)	d" -V	a L n
	But Remark 2 of VI in [9]will prove that the first term converges uniformly in
	probability for s	t ( T . Va L n	converging to v O L	uniformly on compact sets,
	Lenuna 3.1 of	U 3] will then prove	a that VL(t,x t ) converges uniformly in probability to
	o VL(t,x t	) .			

n

II. 

  , of Kunita and Wêtanabe, and the application of page 135 of [d] (which is th.e pro,",f of a rf"mlt of Ventzel)

	will allow us te' say that, wh3n b is defined on Rd x [0, + 00 [, bounded and
	measurable, then:	
	a) For an)'. (s, x) in [0 , + ro [ x Rd, a square integrab1e martingale
	re1aHve to	x ) may be written as a stochastic integral with respect to
	13b.		
	b) If for any (s,x) M is a square integrable martingale for	if	1S an
	additive functional for Qb, then one can find H defined on [O,+oo[ xR	d ,
	nearly Borel, such that:
			t	.
		M-M t	s

  Moreover, when ab is a Markov procef:s, 2..ny additive functional with respect to ab is also an additive f un ctional with respect to P. In the same way, ab and P have the same nearly Borel functions.

	PropositionI.!.:.I:For any (s, x) in [0, + 00 [x Rd, let X t be a stochastic
	process on (n,p(	s, x	)' MS), which is a local semi-martingale, and which
	can be written as:
	H	u	being not anticipative and such that:
								p(	s, x	) a• s
	and At being a bounded variation natural process. Then X t	may be
	represented on (0, a	b ( s, x	)' MS) by the local semi-martingale:
	Proof: Let Rand T n	n	be the sequence of stopping times:
			R	n	=	lin!	t > s	t l IHui 2 du s	n 1
			T	n	=	lin!	t > s	1 x t 1 ? nI
	Then:				
			X tAT AR n	n	tAT AR = J n n Hu s
	for the measure p(	s, x	)

  .., + 00 n n

				G
				-1 8-
				(*)
	But But now fn Corollary: One can find H .Yt'(s ,x ,c »q(s ,x) n n -n n nearly Borel for the Markov process P such (3 . 12) c that for any (s, x) in [0, + 00 [ x Rd, R b b 1 has a Q(;, x) znean w h ich i s null . T hen: xu) . d!3 u s
	Then:	E vt(Rn,X Rn b (s. x) 1 +00 s ) <	. 1 H (u, x )[ d u < + 00 2 R c u [nLt(u,x u )du	(3 . 16)
	q ( s , x) > lim su p q (s ,x ) -n n n-+ 00 By comparing (3.8) and (3. 13), the result follows . Corollary: For s in [0, T], the set valued mapping M{s,x) :: [H (ux ).df3b t c ' u s u and such that M has the representation: t b But V L(R n ) is positive. Then: , x R n	(3. l3) r defined on Rd by: s (3. 17) •
	Proof: This follows from part II , by applying the theorem additive square
	x integrable martingale given in [11] (theorem 6 ' r s q(s, x) = .Jt' (s,X,C)} , p. 135), as applied in para. 3, (3. 14) LI being bounded, by the Lebesgue theorezn, when n -+ 00, one has:
	(3 . 6) p. 135 of [11], and by noticing that Qb and P being mutually absolutely has non-empty closed values. Moreover r is upper semi-continuous. s Proof: This follows immediately from the proof of proposition III-3. Proposition III-4: For any c in.P, one can find M, which is a square continuous, the processes Qb and P have the same nearly Borel functions . • • Proposition III -5: A necessary and sufficient condition for c in!l? to be an
	(3. 7) integrable martingale additive functional for ab, such that, for any couple element of r (x) is: dP( ) a• s. for a• e' t 2: s, one has: s s, x
	(s, x) in [0, T),x Rd, one has on t > S:
					ab (s, x)	a• s .	(3 . 8) (3. 15) (3. 18)
	Proof:	is the ab potential of the additive positive increasing continuous
	Proof: H being nearly Borel, one can find a Borel function H' defined on c c functional: (3. 9) d [O , +oo[ x R, such that the processes Hc(t,x t ) and areP(s,x)a. s'
	equal. We replace then H	c	by H' . c
	(3. 10) Let cl = (b l' LI) an element of SI! such that for every (t, x) in L being bounded, for any (s, x), one gets s, x) by writing the Meyer decomposition of the bounded continuous supermartingale x t )• vt and d [O,+oo[xR,onehas:
	an additive functional for ab. L being bounded, x) is square integrable. Moreover, it is o bviously • (3. 11) For t his definition, see [3] 1-10. 21.

  .-c( 7, x r )

	But the resu1ts of l prove that	x) and	x) have the same restriction
	s on Mt' Then:		
	r J d Q(s, x) f L(u, xu} du = dQ(s, x} l L(u, xu) du t f b t s s	(3.42)
	Moreover the restriction to M	t T	of the conditionalxprobability of Q (j	b (s, x)
	relative to one has:	M;		is by l nothing e1se than Q, t Ct ,X t )	By definition,
					(3. 38)
	Then:			
	(s, x) l t	fi L(u,x ) du -dQb u -(s,x)	I3x fdQ t (t,x t	)
	or:			
	t < 7 < T	,,-. c (T, x ) = " (-t, x r ) x t	(3. 39)
	r> T		,,-c (r, x) = c{r, X r )
	c is then in !Z'	(s, x ) .	But proposition III -6 proves that:
	q(s, x )::: jdQf., x) 1 î: (u, xu) du	(3.40)
	One has then:			
	fdQb J ( (s, x) f L(u,x)du = '"8	(8, x) f dCJ> It L( ) d U, Xu 8	u +
	f d Q b l L (u, x ) du (8, x) t u	(3.41)

  If the stated relation is not true, it is equivalent to write that one can find

	l 't'( u, y} = Lo (u, y } + <H (u,y), cr (u,y} bo(u, y »
	Then necessarily, p (	s, x	) a• s, the process
							> du	(3.6 0)
	is positive and increasing, or equiva1ent1y:
	1 t s	u	) du -	ft b ft dA -u s s	1 < H (u,x },cr-(u,x ) b (u,x } '> du u u u .	(3 . 61)
	is positive and increasing.
	l ( 8 ,x ) in [0, T ] xR A such that: 0 0	d such that, on a P	(s,x) o 0	non null set, one has :
							(3. 54) (3. 62 )
	Proof: Taking into account what has been previously said, the only difficulty with strict inequality on a p( ) non nul! set. But then , for any s ,x o 0
	lies in a Borel choice of H. A priori, one knows that a nearly Borel (b l , L 1) in fJ?, one would have:
	choice of H is possible. H being nearly Borel is universally zneasurable
	([3] p. 2), and then Lebesgue-zneasurable. One znay find then H Borel,
	which differs frozn H on a Lebesgue nul1 zneas ure set. But this set is of
	null potentia1 for all the Qb by theorezn 8. l of [13]. One can then replace
	H by H. Let the function defined [0, T»)( Rd by:	•
	l ,..(t, x) -:: inf (b l, LI )€'K(t, x)	-1 LI + < H (t, x), CT (t, x) b ' >	(3. 55)

By using the result given in the Séminaire de Probabilités 1n nOSl ,Springer Verlag, page 166, one can prove QU a nt1ty is bounded by a constant independent of c,S,x • n02,Lecture Notes that the left-hand

  author is indebted to Professor Y. C. Ho for providing assistance at Harvard University during the Summ.er of 1972, and to Professor S. R. S. Varadhan of the Courant Institute of Mathematica1 Sciences, for providing the proof of an unpublished result.
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  The process (tt\ DA' xtt\ D) will be identified to a process with A values in El by giving to it the value 1) for t:2: DA' Proposition 1-1: (tt\ DA' xtt\D ) defines a Hunt process, whose duration A of life is DA' The p-excessive functions (p:2: 0) for this process are B o rel.

  1\ D ) on ( 11.. , Qb ).

	We apply then Theorem (4.22) of IV [3}	-q is the potential of an increasing
	natural additive functional Ale relative to (t" DA-XtI\D then for any (s,x) in [O,T]XR d , one has: IV The general case.	A ) .
	More6ver Remark 59 of	proves that we can find a constant C such that:
				q( s, x)	
	(3.3)				C	
	(s, x) By the same method as in [2], we define the additive bounded variation Corollary: For any probability measure on d [O,T]X R , one has:
	functional by:	b			
	d\4) -(3.8)	=!stt-. DA L(u,x) du -!dQIlO	-min (b,L)eIR )	fdQb Il	L(u, x ) du u
		By using the same method as in [2], one can find H Borel on
	d [O,T]xR, such	thatforP(s,x):
						d in [0, T] X R , one has:
							•
	(3.6)	Theorem III-} : For any b E (s, x) s	c =	( b,L) in	,UL -L b	is excessive relative to
	By using again Proposition III-l, and the methods of [2], one has the theorem:
		(tf\D A ' x t A			
	Proof: Theorem III-2: For any choice (and such a choice is possible) of By Proposition III-2, q being finely upper semicontinuous, U L b	-q
		is finely lower semicontinuous. But Proposition III-3 says that this function
	1S supermedian relative to ( t 1\ DA' Xtt\D (3.7) dt ® dx a. e. LO(t,x) + <H(t,X),cr-1(t,x)bO(t,x» = min ) • It follows innnediately that L + (b, L) € K(t, x)
							A
		this function is necessarily excessive relative to the considere" process.1J + < H(t, x), cr -l(t, x)b)

tA DA = q(s,x) + J s H being such that for any (s, x)

  The reader will check easily that if K is a set valued mapping defined d on [0, +GO [X R , if we replace T by + GO in the previous as sumptions, if P is a strictly positive constant, if A is a clos ed domain of then all the previous results are valid for the criteria:

				l
			2	3
			-1-	
	(2)	Equations différentielles stochastiques linéaires JdZ = (A Z + u) dt + (BZ + v) . dw + dM (5 ) 1 \ 1 Ytl2 "E sup < +00
	Nous allons dans cette partie démontrer un résultat d'existence sur ( Z(O) On note cet espace
	, des equahons differentielles stochastiques. Les notations sont celles . On que cet espace est aussi un espace de Banach pour la possède une solution et une seule à trajectoires p. s. continues à droite et de plus pour tout T fini, on a: de i. norme:
	Theoreme 1: Soit w t E sup un mouvement brownien rn-dimensionnel, Mt (6 ) 1 Ztl 2) < + CD T une martingale à valeurs dans V, de carré intégrable. T . A . En effet, si Y test Or C 2d s'injecte contlnument dans B T [0, +GO [XR , d Soit A et {B• ') .-l une famille de matrices (n,n) dépendant 1 1-••• m Preuve: Nous allons montrer que pour tout T fini positif, la solution dans T C 2d , comme
	existe et est unique sur [0, T]. Le théorème en résulte par
	E recollement. b ( s, x ) +00 f II A{' ,s )11 2 e-pcr L (cr, x ) da cr ds est dans L a (l ) a) Existence: Considérons l'espace des processus X t 00	à valeurs
	In the homo geneous case, where b, L , a on t. one will also pr o ve that the optitnal control can be chosen independent and A d o not " depend " +00 b ) a w J dans V, adaptés (c'est à dire tels que X t est $t mesurable 2 sup ess II B {.,s )11 ds < +00 pour tout t), tels que:
	(3)			
	of t.	Soit u et {v')'-l 1 1-••• m	une famille de fonction	mesurables à
	valeurs dans V, telles que:		
	Soit BT le quotient de cet espace par le sous espace des processus
	équivalents au processus nul. On verifie que BT est un espace de Banach
	pour la norme		
	( 4)			
	Soit enfin 20 une variable aléatoire Considérons également l'espace des processus Y t à valeurs dans mesurable de carré
	integrable à valeurs dans V. V, adaptés, à trajectoires p. s. continues à droite tels q ue
		A lors l' éq ua tion:		

de facon -fT* mesurable de (w, t ) dans n X [0, + 00 [, telles que: ,

  En effet par une transformation de Girsanov (voir [4] p. 232), il existe une mesure de probabilité Po telle que P et Po sont absolument continues l'une par rapport à l'autre et telle que pour PO' Zt est un mouvement brownien.
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	sup la classe de y t (pour la relation d' ElY t l2 processus au processus nul) est dans B T 1 definie par l'espace des . De plus, on sait qu'un processus à trajectoires p. s. continues à droite et équivalent au processus nul est nul p. s. dans B T • Soit ip l'application de Cff Id dans qui à Z associe z' par: (8 ) f dZ' ( Z ' (0) = (AZ + u) dt + (BZ + v). dw + dM = Z' est bien à trajectoires p. s. continues à droite (et dépourvues de discontinuités oscillatoires), car c'est la somme d'un processus absolument es t dans L , on aura: (1) t 2 f T ( T )2} (11) sup 1 f (AZ + u) ds 1 À.d.fo I Z sl2 ds+ " fo 1 ual ds 0 1\ D e meme, p ar l'inégalité de Doob sur les martingales (voir [1] VI-1 R e rnarqu e Z), on aura: t 2 T 2 ( 12) E s u p B Z + v • dw 1 4E 1 f B Z + v . dw 1 s s a a 0 s s s s Z étant dans T ffj 2d est dans B T , et Z' est bien dans L , • , 1" " d t t t.. Inega !te prece en e en raIne: T !(6'2d• T (16) E( sup / K + (f h(s) dS) sup El Zt/ 2 0 une application ctefinie sur à valeurs dans l'espace  , de Banach {!> 2d' continue pour la topologie de B T à l'adhlrence de dans B T , qU'on note <iId. Pour tout Z de Soit alors T le temps defini par: n verifient les hypothèses du théorème 1. /1. /1. De meme, on suppose M arretee en S. ( 1) = On pose: Le corollaire en résulte. • On a: , peut etre prolongee Or on peut itérer t. Comme: T (22) I n n 1 2 f s u P E ( ( Z 2 ) -t (Z 1) ) t h( s ) d s 0 n n h( 1) d E I Z Z 1 1 • 2 s -s -1 . .. sup 2 -n T t On supposera désormais que A et B sont nuls pour (t S.), et On pose ZIf est donc à trajectoires p. s. continues. ment brownien sur H, indépendant de X. t (25) { Z(O) ou encore on a: Z Il ' t = 0 = t ds + J o B Z s s L f unicité est bien démontrée. _ qui est un espace vectoriel de dimension finie, 'li un mouve-et par différence, quand X t est à valeurs positives. dw s à lfunicité du point fixe démontrée dans la partie ffexistence, ff o étant solution de la nouvelle équation, Z ffn est indiscernable du processus nul. Comme quand n tend vers indiscernable du processus nul. T tend vers n Soit C un opérateur linéaire defini sur V à valeurs dans H, Preuve: Il suffit d'établir le quand X t est à valeurs réelles, +00 p. s. Zff est Exemple 2: Soit X t à valeurs dans V. $t mesurable du processus E X t . un processus de Markov, à trajectoires p. s. continues pour tout t, X t soit intégrable. Il existe -une version bien et en consequence: , les hypothèses a) et b) ([ 3] T 13 p. 37, T 36 p. 116). Lemme 1: Soit X t un processus mesurable à valeurs dans V, tel que Il y a donc bien injection continue de T Or: t 2 ( 10) If (A Z + u) ds 1 0 f IIA(•, s)11 2 o (15) E(su P K + fo h(s) E( IZs/2) ds O:S:t:S:T (21 ) T f h( s) El Z 1 2 ds O S dZ = AZ dt + BZ dw Zff est donc dans Id pour toutTet de plus les coefficients de la l /1. nouvelle equationont es memes propnetes que précedennnent • de tribus canonique as sodée à X. A lors {$t} t € R + verifie • , Exemple 1: Soit X t technique, mais qui nous seront utiles dans la suite. un proces sus de Hunt (voir[3]) ,[$ t} t e:: R + la famille ds Z" est solution de Nous allons établir maintenant quelques résultats de nature T T intégrable en t et une constante K telle que: ou encore: Exemples: e t COl nme 2 2a 2 t ds 12) A Z ds 1 + u s s s T 2 IIA(• ,s)11 ds f 0 1 Zs 1 2 ds +(I IUsl dSr) , Or (13) liB Z +v 11 2 ds À 2 (E J IIB(',0)11 2 I Z s l 2 + \\V S \\2d S) S s s , 0 ,-lI oupeoo IIB(" 0)11 2 El Zol2 do . T + E Il v 0 112 ds ) Enfin: (14) E (su p / M 1 2 ) 4E( 1 MT 1 2 t En réunissant les inégalités, et (24) ZIf = Z -Z' aux proprietés de B, il existe h (17) Z = L'inégalité (1.9) montre que: T ( 19) E ( su p 1 Z t 1 2) f h( s) El Z s 1 2 d s 0 , et en consequence: T (20) sup El Z T I 2 f h(s) El zsl2 ds Po ont les ensembles négligeables . 0 Cette relation vraie quand Z est dans I(?Id' se prolonge par densité à Z dans -T 2d Pour n asez grand, il? n est donc une contraction de GO T d l • 1\ Il 1 d . . f . e 2d ans Ul-meme, te e que e rapport e contrachon est ln erleur On pose: n (27) Zif = { Zt' T t< T n o S est continue de L 2 X L 21 X L 22 X L 2 dans .L;:>T {02d . Preuve: Z est en S. Les inégalités démontrées dans la Preuve: En effet (ZO' u, v, M) Z est continu de X L 2l X L 22 X 1\ (p. 150 no. ' 210) tel que pour tout teInps d'arret T, conditionnelle par rapport T dans De plus Z Zs est continu de à la tribu des ensembles bien-mesurables. o (2) dans .. a 1 s trictement. a donc un point fixe unique Z pa r -T Mais comme pour Z dans C(l2d' d?( Z) est dans [2] II, seC. 12 . T 2d ' cela que Z est bien dans et est donc solution de l'équation di 'I-erentielle stochastique du théorème. On pose: Zif T Z ffn est donc solution de t démonstration du théorème l (inégalités (15) et (16)) montrent: Le corollaire en résulte . • f7 = (Z t s s s: t) UA-E J f T n n (28) { dZ = I[t<T }(AZdt + BZ• dw) n Z(O) = 0 il vient: ( [ 1] VII -D 39) (*) et de plus: et aux propriétés de u, v et M (en particulier on a M T = MS) V désigne un espace vectoriel de dimension finie. .At étant l'ensemble des parties négligeable de n. A lors (t'ir} Alors p. s., la suite yn est croissante. n effet t + 07 t teR Soit (n, $, P) un espace probabilisé complet, {$t}t e:: R + une suite croissante de sous-tribus complètes de $. On fait les hypothèses suivantes sur {$t} t e:: R + a) la suite {$t}te::R+ est continue à droite ([1] IV-30) 'd l . . # " ) (3 ) pos se e es propnetes a , b) • On utilise alors l'exemple l, en tenant compte du fait que P et on constate que zn+1 possède les propriétés de
	continu et d'une martingale. De plus: '(j 2d' on definit ainsi HZ) dans !(6' 2d et Z .... = 4E -T T T Soient Z 1 et Z2 dans 2d. On pose: (23) (26) T n = inf {t; n } Corollaire 2: Sous les hypothèses du corollaire l, l'application linéaire T f Il B Z + v 11 2 ds 0 a a s HZ) est affine continue. n! o (ZO' u, v, M) Zs est linéaire continue de L 2 X L 2l X L 22 X L 2 S X n étant borné, soit yn le proc e ssus bien mesurable unique défini dans [2] t t
	S dans L 2	.			

Unicité: Soit Z' une solution de l'équation à trajectoires p. s. cO iï tinue à droite. Corollaire 1: Si Z est solution de lféquation du théorème 1 pour un système (ZO' u , v, Ml, lfapplication lintaire (ZO' u, v, M) -+ Z b) la suite {$t}te:: R+ est dépourvue de temps de discontinuité.. (*) Cette hypothèse n'est en fait pas nécessaire. Nous la faisons pour simplifier les références.

t = J X s ds + 'lît t indistinguable de Soit

  Inesurables ont la IneIne dP fi> dt cOInplétée que f!T. 2 X dP Cà dt = fz X dP Dt. dt f f Soit St une classe de fonctions definies sur n X [0, +oo[ , f!7Q} B([O, +oo[) mesurables à valeurs réelles, telle que < +00 Soit Y l'espérance conditionnelle de X par rapport à fY*. aléatoires qui ne dépendent que X et Y et non des représentants de ces classes (Cela résulte de la remarque 1).On peut donc considérer des représentants X et Y de X et Y,

	J	J	J
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	•• Nous all@ns prolonger l'opérateur défini au leInIne 1 en un opérateur si on pose donc qu'il est d'espérance conditionnelle sur une classe de fonctions mesurables. On va en effet considérer l'espace El = nx [0, +oo[ Inuni soit de la tribu @" ® B([O, +oo[) soit de la tribu des enseInbles bien Inesurables fT, et de la Inesure dP OE> dt. On notera (f7fi> B([O, +oo[))* et fT* les tribus cOInplétéesde @"® B([O, +00 [ ) et fT pour la Ines ure dP ® dt. (>',c) (*) 1\ [ En fait grace à 2] no. s 210-212-214-215, les tribus des enseInbles Inesurables adaptés/des enseInbles Inesurables, des sur El' "::t valeurs réelles. et X t lt un de ses représentants f!7@ B[O, +ee [ m.esurable. On suppose: (7) J 1 1 dP dt < + ee Preuve: Soit Z une classede foect;icrw mesurables par rapport à la tribu des ensembles bien mesurables, essentiellement bornée. Si Z désigne un représentant bien mesurable de la clas se 2, pa r (VIII T 15), Z sera progressivement mesurable, donc adapté aux tribus f!7 t . On a alors: (8) = dt ZtXt dP = fdt fZ t E f!7 t X t dP = Jdt fZ t y t dP = f Z y dP ® dt On a donc pour tout Z: (9) fz X dP Q} dt = f Z y dP dt Le lemme en résulte . • Remarque 1: A Ce résultat ne nous empechera pas de privilégier certaines '" versions de Y t' en particulier celles dont les trajectoires Nous allons maintenant démontrer un résultat dont nous nous servirons constamment ultérieurement. Proposition 1: On pose: '" (la) = X s ds Alors t Z -J y ds t a s est une martingale nulle à l'origine. Preuve: Remarquons tout d'abord que Soient t et t' deux réels positifs, avec t ' > t, et M une v. a. bornée et 3 t mesurable. A lors: ( 11) E(M. On en déduit: t ' J t y s ds) = = = t ' Ef M.Y ds t s t' t ' f E(M. Y ) ds = f E(M. X ) ds t s t s t' E (M. 1 X ds) t s P Z) Comme t' J t t y s t' T S = f t Ys ds X ds s est une martingale . • Corollaire 1: Zt est une semi-martingale, et t Z -t f Y .0 s ds est le processus naturel At unique tel que Zt + At est une martingale nulle à l'origine. Preuve: Remarquons tout d'abord que Cela de ce que El Ytl s: El Xtl. En t f y: ds -o , , on a decompose t J Y ds o s t f y ds o s t = Ys ds ( 14) Preuve: ( 15) = Montrons que z -t t f y o s S J X ds o s ds est une martingale intégrable. En effet: o S +00 J o (16) enseInb1es très bien Soit alors X une dP @ dt classe de fonctions m.esurables d'finie On en déduit que sauf sur un ensemble de mesure de Lebesgue nulle. X t est On annulle X t sur '.J.n ensemble Borélien négligeable le contenant reste un représentant de et pour tout t, X t est intégrable. au St lemme l, on considere alors une ve rsion bien-mesurable de y t = E X t , '" qui definit à son tour une classe Y de fonction mesurables par rapport à la tribu des ensembles bien-mesurables. Lemme 2: La classe Y ne dépend que de la classe X. sont suffisamment régulières. Nous utiliserons aussi le fait que si Y et y' t f X ds a s et t est en une différence de deux processus croissants, nuls à l'origine, 1 mesurable, on a en consequence: J y ds p . s. continus et intégrables. De plus a s t (13) Y ds s t' f x s ds (17) = J Y s ds + E . 0 Cela immédiatement que t t sont des variables :!J' tels que pour tout t, Y t = E t X t . Zt -Ys ds ( 18)	X t

f , . sont dP Q} dt equlvalents, alors p. s., Y. (w) et y'. (w) sont dt-équivalents. Définition 1: A vec les notations du lemme 2, nous dirons que Y est l'espérance conditionnelle de X par rapport à fY*. t Ys ds étant p. s. continu, est naturel. Enfin t Z •t J Y ds o s est nul à l'origine. L 'u nicité de la décomposition résulte du théorème de décomposition de Meyer dans [20J (VII T-31) . • Corollaire 2: 1\ Pour tout temps d'a rret S, on a: t f y dsl o s E BTt(j(r) 1 X 1 ds +

  9) Hl -BX l + b l (A, B) possédant les propriétés données en HZ. t, L(x') + E J gtXZ dt -E(gO)

					K
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	(2. Il)	cr,t, L(x)	o	t
	Preuve: Soit (J" t	le processus
				t f x 2 ds o s
	Soit U	n		
					+00
		(z. lO)		T (x,v,H) -+ E J L(w,t,x(w,t),v(w,t),H(w,t)) dt l 0
	est une fonctionnelle continue sur son domaine.
	tel que		pour t S,	on a:

T E J L(w,t,x(w,t),v(w,t),H(w,t)) dt < o implique: Sur (v 2 = O} on a: ri : AX I + b t Théorème Il-3: Sous les hypothèses Hl' HZ et H3' pour tout Xl de RI' ifl 1\ le temps d'arret:

  Ax 1 n + 1t<R u' 1 + b) dt + (Bx 1 n : Si x'est une autre solution optimale, et si g' est la martingale locale construite à partit de j.L, si S' on siest ramené au problème de minimisation de i f> t, LI. II-2 est vé rifiée, et que comme L 1 L Supposons que le problème dual de ce nouveau problème a des solutions, et que les conditions du théorème B IV -1 sont verifiées.

					K	K
					-8-	-9-
	1\ Grace a H3' ... III Problème dual u' et v' IV Applications. 1 1 Xl Si on pose: Les résultats précédents s'appliquent immédiatement a ux problè m es sont nuls pour t S. ,n est solution de: Xl r ,n ;;: (+ 1t<R v' 1 + b')• dw n n (2.20) de avec contraintes de "consommatO on".
		x 1 n (0) = x ZO Supposons par exemple que l'on controle le système: /\
	Comme Rn	t-. croit Si MI est vers S,	1 t <R u' 1 n associé à L'	tend vers u' 1 comme en	dans L 21 B II, on verifiera 1
	et 1 t <R v' 1 n Par le corollair e 1 de tend vers v' 1 tend vers x lT dans , que H 2 implique que	dans L 22 • l ,n tend vers x' Xl 1	dans L 2co ' et	x lT ,n
		1\ De meme,	tend vers X' 2	dans L 2co ' et	tend vers
	x ZT	dans	Ecrivons alors les conditions de coextrémalité données en
				IV -1) :	
		On passe alors à la limite dans (2.19). • Si P est solution du nouveau problème dual, on aura
		En supposant que S est donné, on s'est ramenéà un problème de
	minimisation sans contrainte sur l'état, mais avec la contrainte
	supplémentaire:	X 2 = 0 pour t S •
						1\ est le temps d'arret
	1 correspondant, on vérifie la relation: La variable duale est définie par le processus
		Alors	(u l ' vp est dans L 2l X L 22	Xl est donc la solution unique de:
		qui est une semi-martingale locale.
		(2.21)		
		(*) .l, 't'x =0	est llindicatrice de (x	2	= O}

Remarque

B H II-l est vérif:,/:c. H

  est Borélienne. En effet si [un}nEN désigne une partie dénombrable dense de U alors [c(t,x,un)}nEN est dense dans K(t,x) gr'ice à 1II-2. En utilisant III -l, on applique le théorème 1 de [1] pout montrer que K est Borélienne. Pour montrer l'équivalence des deux formulations, il suffira de prouver que si '( est une dt dx classe de section Lebesgue mesurable de K, il existe u Borélienne à valeurs dans U telle que: est à valeurs fermées non vides, et son graphe est Borélien, puisque c est Borélien par rapport à toutes les variables . Par le théorème 2 de Il], soit u une section Lebesgue mesurable de r, et soit u une modification Borélienne de u. u répond à Rockafellar: Measurable Dependence of Convex Sets and Functions on Parameters. J. of Math. Anal. and Appl. vol. 28 p. 4-25 (1969). Stroock et Varadhan ont montré dans [2J Théorème 3.3 que si a satisfait aux hypothèses de G l, s'il existe A' > ° tel que:

	L	
	Equivalence des fo r mulations des problèmes de en G Nous montrons ici l'équivalence trés simple des deux formulations données du problème de données dan s G III. Soit . K la multiapplication: (t, x) [c(t, x, u)) dt dx p. s. , c(t, x,u(t, x)) = '((t, x) -2-(t,x) tU; c(t,x,u) = la question. [1] -1 -Ret;ésentatian 'desdiffusions (1) A'lel 2 <e,aS) si p (s, x) est solution du problème des martingales, d'origine (s, x), il existe un mouvement Brownien tel que, si cr est la racine positive R. T. M de a, alors le processus x t a la représentation:
	Soit '( une représentant Borélien de '(. On peut supposer que
	est une section de K en modifiant éventuellement	sur
	[(t,x); '((t,x) ri K(t,x)}	
	qui est un ensemble Borélien, par le corollaire 3. 1 de [1], et en lui
	donnant sur cet ensemble les valeurs d'une section Borélienne de K
	(une telle section existe par la construction	de K).

K

Soit alors r la multiapplication à valeurs dans U: r

  II Forme canonique du problème Soit r la correspondance d'finie sur n X [0, T] à valeurs dans est de plus à valeurs convexes; en effet r (w, t) Le théorème IV -2 de B montre donc que pour que Z et p soient solutions des problèmes primaI et dual, il faut et il suffit -que les conditions de coextrémalité soient vérifiées. Si P est solution de (3.4), gr{ice à (3 . 3) on peut trouver ZII tel que p et Z Il soient coextrémaux. Mais p et Z seront coextrémaux, et p sera identique à p. (3.4) a donc une solution unique. _ IV Relaxation de l'hypothèse de convexité. On supprime l'hypothèse 1-4, et on cherche encore à résoudre le Application aux problemes de controle generaux.

				N	N N	N
				-3--5--6--4--7--8-
	1\ e st le cone de Pour que Z minimise CPt. L , ayan memes pOlnts extremaux, on peut trouver [p,p,H'; P +cp(w,t,H'):5; O} avec (pO,H,M') dans a J. LZ X LZZ X W En particulier: ( ) 1\ { t ) t 1\ . K w, t et !t{ w, sommet ° etdebase (l,O,K(w,t)). sur RI' il faut et il suffit qulon ait: m dans .At tel que:
	Soit L Le problème dual consiste dans la minimisation de E (PO) convexe normal indicatrice de r. sur l'ensemble
	Soit 1,0 et des p de R 2 (3. 5) (H'(w,t),m(w,t» le s fonctionnelles définies par = cp(w,t,H'(w,t» Si sur un ensemble dP 0 dt non négligeable, on a (H'(w,t),m(w,t) = cp(w,t,H'(w,t))	et	par:
	• 1,0 est l'indicatrice de l. -A T On a alors la relation: (3.11) (H(w,t),m(w,t)(Cf)(w,t,H(w,t)) •) z correspondant à m est nécessairement optimal par la proposition III-l .•
		(3. l)	•	est la forme linéaire:
	v	+cp(w,t,H'(w,t)) :5; 0 on modifie m en m' sur cet ensemble de telle façon que: (3. 6) " 1 \ , ,
		Si on pose: (3.12) On reprend les hypothèses et notations de G (Ï1(w,t),m'(w,t) = Cf)(w,t,H(w,t))	On supposera qu'il
	Posons: (2. 2) On aura alors: (3. 2) existe A> ° tel que: (a(t,x)8,8) f W l = (0 }	Alel	2	de l'équation:
	{ W 2 = Le problème de controle est équivalent à la minimisation de WJ. 1\ ce qui prouve que le problèmè de et son dual sont ce qui implique: fi (3. 7) bien duaux au sens de B. de -(fi , m) dt + fi. dw + dM 1 o problème de (s, x) est un élément de d [O,T]X R .	1" L
		sur RI' Théorème IV -1: Le problème de -A T	a une solution.
	On Proposition II-l: que les conditions de coextrémalité ,.,--a J. IV -1 entre Z dans RI et p dans RZ s'écrivent: Preuve: Soit t«(w,t)	en
		Z ne serait pas optimal.
		Preuve: corollaire 3. 3 de [2], On utilisera le s méthodes de l'ensemble des ZT accessibles est faiblement compact. dans [1] pour montrer que p --cp(w,t,H'(w,t)) (3. 3) On a donc bien: On a donc: Soit cp(w, t, .) la fonction d'appui de (w, t), qui co'incide avec
		( (3. 8) (3.15) la fonction d'appui de k(w, t). (H'(w,t),m(w,t) = cp(w,t,H'(w,t)) = (H(w,t),m(w,t) = Cf)(w,t,H(w,t)) Par la proposition III-l, l'équation: dP dt p. s.
	par: (2. 1) III Problème dual (w ,t) -7 [(x,O,xk)[ , Soit L* l'integrant dual de L. Si cp(w, t, .) est la fonction ° k E K(w, t)} d'appui de K(w , t), , on verifie que L* est l'indicatrice de: Proposition III-I: Le problème de minimisation de <l > sur m,M a une solution unique p. p est la solution unique de l'équation: (3.4) f dp = o e qui s 'écrit: (3. 9) Cela implique en particulier par (3. la) (4. 1) -cp(.,.,H'(., . ))dt +H'•dw+dM' f dp = t, T = -AT = La conditions a) du théorème IV -1 de 8 est verifiée • avec (PO,H',M') dans o .1. L 2 X L 22 X W a une solution unique.

r est alors fY* mesurable: 01\ peut en effet appliquer le théorème 2 de [2].

r 1\ Le problème de controle a une solution optimale . M (w,t,p,p,H') = (w,t,p,p,H') on vérifiera que le couple (L, M) satisfait aux hypothèses II-I et II-Z {PT = -cp ( . , . ,H' ( . , . )) dt + H'. dw + dM' = Preuve: Soit Z une solution optimale du problème initial, et soit m 11 élément de .At qui le définit. Soit p la solution unique au sens du théorème II-Z de C avec (po' H ,MI) dans LZ X LZZ X W Par la proposition 1-1 de li on v{rifie que ' 1\ Zt est une martingale.

t (3. 13) E\PO) + E(A T Zl,} + E J (Ht' -m t ) dt = a l'enveloppe ferméeconvexe de k(w, t). Alors par le "" " est iT* mesurable.

Le problème de l'observation incomplète

B

-24-But one has:

-24-Theorem IU-J . For any c = (b ,L) in !Z',
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A bstract

This paper generalizes the results obtained by the author to the control of a diffusion proces s stopped when it enters a given region.

The existence of an optimal Markov control is proved under very mild assumptions . The notations are taken from [2].

Key words: Markov processes, superha rmonic functions, optimal stochastic control, boundary problems.

ABSTRACT

The purpose of this report is ta prove under very general conditions the existence of an optimal Markov control for a certain class of problems of control of diffusions. The method which i s used is entirely probabilistic.

It has basically three steps:

1) Proof of the existence of a Markov control under convexity assurnptions for a given starting point.

2) Proof of the existence of a Markov control under convexity assurnptions for any starting point.

3) From extremality conditions proved in 2), deri vation of the existenc of a Markov control in the general c a se. A method of relaxation is implicitly used here.

Ill .

The Because of IIl-3, the addition of a sufficiently large constant on the last component of c will give us the property:

---T is a finite positive constant.

Definition l:

The problem of control is the search of u defined on [0, T] x Rd,

Borel measurable with values in V, such that for any (s , x ) in [0, T] x Rd, one has:

It is proved in [2 J, by using various version of the Filippov lemma that the as sumptions III-I-2-3-4 :n ay be changed into the following: K is a set-valued tnapping defined on [0 , + 00 [ x Rd with val es in Rd " R such that: 

By corollary 4. 3 of [12],

is Borel meas urable.

Theorem Ill-3 Ab can be defined by: (

dP @ dt p. s.

Le lien est donc fait avec G en particulier qt nlest autre que le proces sus q(t, x t

) défini en G.

Conclusion:

Bien que nous ayons fait le lien entre le s méthodes de dualité et les méthodes utilisées en G . les premières sont moins fortes que secondes.
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