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Although Additive Manufacturing is the best tool to achieve these aims, quality assurance remains the main barrier which limit the full integration of this technology in the industrial sector. These issues are attributed to hardware-related causes such as the machine and the material selection or are attributed to softwarerelated causes such as parameters configuration. For these reasons, numerous academic and industrial entities have been collaborating and contributing to increase the maturity and the industrial readiness of Additive Manufacturing. In this context, this work represents an effort to overcome these problems. In this Chapter, we give a detailed explanation of our proposed research roadmap to tackle the defined scientific problem and the main research questions.

N eed for A dditive M anufacturing

Smart Manufacturing or Industry 4.0 is defined as "real-time, high data volume, multilateral communication and interconnectedness between cyber-physical systems and people" [SAG + 17]. The vision of Industry 4.0 is one of the long-term objectives of the industrial sector, and approaching this vision depends on developing several technologies, as illustrated in Figure 1.1, including Additive Manufacturing (AM). In fact, the existence of industry 4.0 depends on the capabilities of AM for testing new materials, configurating new processes, and examining new design methodologies with no significant increase in the cost or in the material usage compared to Traditional Manufacturing (TM). For this reason, the industrial sector is racing to increase the level of application of AM from simple concept and functional prototyping to accurate direct manufacturing and tooling [START_REF] Gebhardt | Understanding additive manufacturing[END_REF]. One example of using AM is the development of new responsive smart materials or advanced structured materials, which can be integrated in biomedical implants, textiles, and robotics. Also, the applications of AM encouraged industries to search for alternative manufacturing techniques. This is derived by the need to obtain the optimal geometry given certain requirements such as minimum volume and low material usage. These [TMV + 16].

Powder Bed Fusion Process

AM is a process in which an object is produced by joining several layers with specific thickness. It can be divided based on the type of the joining mechanism into 4 groups: binding agent, polymerization, material extrusion, and thermal fusion. Powder Bed Fusion (PBF) regroups several variants of the thermal fusion-based process including Selective Laser Sintering (SLS), Selective Laser Melting (SLM), and Electron Beam Melting (EBM). In this work we will focus on this category of processes, especially SLM process. SLM is used for several types of applications such as rapid prototyping, rapid tooling, and rapid manufacturing. The ability to manufacture near dense parts make SLM a popular choice to build components for the automotive, the aerospatiale, and the dentistry sector [START_REF] Gebhardt | Understanding additive manufacturing[END_REF][WS16].

1.2. Sofia Project and Scientific Research 1.2. Sofia P roject and Scientific R esearch Emerging from the need to develop productive machines, more adaptive materials, and more sophisticated manufacturing chain, a national project was created. The project entitled "SOlutions pour la Fabrication Industrielle Additive métallique" aims to contribute to the development of AM technology and to increase the knowledge related to its different aspects. Started on 2015, with a budget of 50M€ and for a period of 6 years, SOFIA treats the subject of Metallic Additive Manufacturing, from powder preparation and product design to the end-product validation. The project assembles and uses the expertise of several industrial and academic partners, as illustrated in Figure 1.2. They range from research organizations, material experts, software developers, and machine manufacturers to the users of the technology and production experts. Under this initiative, several academic subprojects are carried simultaneously and in parallel. These subprojects carry specific tasks, which are diverse and range from material characterization, numerical development, topological optimization, laser source modeling and adaptive trajectory optimization, insitu monitoring and calibration, etc. The work presented in this report is under the subproject "Sources design, modeling and simulation, material and numerical integration". The main objectives are detailed in the following Section.

R esearch P roblem and Scientific A pproach

AM is a disruptive technology, and a decision regarding any implementation of this technology will face several strategic, organizational, technical, methodological, and operational related challenges. In this work, we will focus more on the technical side of these challenges, especially those which have a direct or non-direct impact on the end quality of additively manufactured parts, which is represented by three aspects: mechanical performance, dimensional accuracy, and surface roughness (Figure 1.3).

Variations in Additive Manufacturing

Industrials and academics attest that one main problem that can affect the quality level of metallic additively manufactured parts is the lack of traceability and repeatability.

No two manufactured parts are the same, and this is due to the existence of numerous build-to build variabilities, and the sum of all these variations constitute the difference in quality between any two additively manufactured parts.

Variability is expressed as the accuracy of the obtained result compared to the nominal specifications, and the associated precision range. This variability can be the result of external and internal factors such as material deterioration, improper preparation of the machine, inconsistencies between parts due to equipment calibration and measurement, or because of environmental factors. The effects of theses variabilities can be observed in geometrical inaccuracies, inappropriate and inhomogeneous layering, thermal distortion, impurities, etc. The elimination of the effects of variability on the additively manufactured parts is not always possible. However, reducing this variability by controlling the dispersion of values is possible and necessary because a process with low variability is preferred as it reflects a higher end quality predictability and precision.

How to address this issue?

Uncontrolled variability affect quality which is the main problem facing a transition from prototyping to full certified production mode. This can be difficult given the complex coupled nature of PBF materials/machines, the broad range of build conditions, and the underlying physical phenomenon that can be examined using simulation and modeling.

Counteracting high variability depends on the location in which they are observed or generated, and on the tools that can help observe them, such as in process monitoring, data analysis, improving post-processing, and metrological measurement.

We will limit the work of this thesis around improving the end quality of additively manufactured parts through creating an optimal parametric window using statistical predictive modeling, where quality-related defects are controlled. Also, in this work, one of these quality defects is prioritized, namely the internal porosity.

Research Questions

The main objectives of this work can be formulated as research questions. These questions will guide the methodology of research and narrow the type of study conducted.

The main research questions are formulated as follows:

o How can the optimal parametric window be selected so that the additively manufactured parts are produced will low rate of defects, and predict the areas where low level of quality variability may exist based on the historical data?

To better address this question, several elements must be determined. These elements are formulated as sub-questions as follow:

o How to select and identify the parameters which contributes to the high level of variability on the product features?

o What modeling approach can be used to statistically predict the level of quality of additively manufactured parts, given specific building conditions?

o What approach can be used to collect the experimental data with minimum experimental trails?

The Proposed Approach

To answer the above questions, our aim is summarized as follows: "the development of a computational approach to estimate the porosity of parts in SLM process". The main elements to achieve this goal are illustrated in Figure 1.4. The proposed approach requires the selection of three elements: the modeling strategy, the parameters contributing to high level of porosity variability, and the data acquisition method.

Many Design of Experiment (DOE) approaches are commonly used to identify the optimal operational window and to propose the proper tuning for the parameters ranges to reduce the manufacturing inconsistencies. However, DOE rely heavily on trial-and-error approach. Several iterative manufacturing processes are necessary to narrow down the viable range of each parameter, which can reduce the efficiency of the process. Also, this approach does not prioritize the selection of the experimental parameters based on their influence on the process/product.

Figure 1.4 Elements of the Proposed Computational Approach
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Here, we will integrate a computational approach which combines a preliminary statistical analysis of data with a predictive modeling approach. This will predict the behavior of the process in unmeasured areas in the experimental design space based on measured data. Also, we will use an adaptive algorithm to predict the future behavior of the process, thus reducing the number of iterative experimentations. Furthermore, the performance of the statistical modeling depends on correctly identifying the parameters with high statistical significance. To reduce the size of any experimentation and to increase the predictive accuracy, all the parameters are filtered and only those with high statistical influence on the porosity are considered. Using a statistical approach will allow us to benefit from analyzing the data and identify the hidden patterns, which can give indications to the selection of the proper DOE method, or if a certain experimental parameter is not influential and should be removed from the experimental planning.

Research Roadmap

In this work, we propose to combine experimentation and simulation though constructing predictive statistical modeling approach. Figure 1.5 illustrates the main tasks performed in each chapter. This manuscript is divided into different chapters, where each chapter present one step of the proposed methodology. 

Chapters Organization

In Chapter 2, we investigate the current challenges facing AM. These challenges are grouped into categories. More focus is given to the end quality-related challenges, and more specifically to the formation of internal pores in additively manufactured parts.

Several approaches are used to improve the overall quality of additively manufactured parts. These approaches are categorized based on what quality aspect they affect. Finally, we introduce the concept of Value Chain (VC). A detailed process workflow is constructed based on the type of value they can add to the product. In this context, the value is represented by manufacturing parts with a controlled level of porosity. This will allow to limit the area of study to the process stages which directly influence the generation of internal porosity.

In Chapter 3, the concept of Key Characteristics (KCs) is presented. We give a brief history on the usage of KCs in the industrial sector as a method to reduce waste work and to optimize the development phase. Several cases of KCs implementation are presented, and the associated practices and management options are listed. Following this presentation, we propose the implementation of KCs in the context of AM. This is discussed and a framework is constructed to determine which process parameters can be the most decisive in influencing the end quality. This decision is based on specific formulated rules such as process knowledge, correlation to the targeted response, and statistical analysis.

In Chapter 4, a three-stage framework for statistical modeling is proposed based on experimental data acquisition, model construction, and performance evaluation. The objective of this model is to predict future behaviour of the manufacturing process, given certain conditions, based on the previous recorded behaviour. The statistical model is based on Gaussian Process (GP) Model. Bayesian Statistical Inference (BSI) coupled with Markov Chain (MC) are used to estimate the parameters of the model. A predictive iterative protocol, which adapt Cross Validation method (CV), is used as well. Finally, the performance of this model is measured using several evaluation tools. A detailed explanation of the model is given with a detailed study case using historical data related to the level of porosity of additively manufactured parts. The prediction results are discussed and the factors affecting the model accuracy are listed.

In Chapter 5, the different experimental designs approaches used in the context of AM are reviewed. Based on this, a detailed explanation of the different elements of the experimental plan is presented. The objective is to generate a local set of experimental data to examine the performance of the statistical model and to study the behaviour of the machine/material and the manufacturing conditions on the level of porosity. Also, a three-stage porosity measurement analysis protocol is proposed. This allows the analysis of the CT scanned additively manufactured specimens to evaluate the different characteristics of the internal porosity. A case study is presented as well.

In Chapter 6, we draw several conclusions based on the work done in this thesis. Also, several fields of improvements are proposed, and future research paths are listed as well.

Chapter 2. Value Chain for Additive Manufacturing

Summary| AM is seen as a core to manufacture high-value versatile products, and to bring forth the era of industry 4.0. For this reason, several entities are investing in AM and driving to achieve its full potential. Yet, several fields of challenges still compromise the capacity of a full integration of the technology in the industrial sector. A special attention is given to the improvement of the end quality of additively manufactured parts, which is dependent on the inter-layers' properties. It is becoming imperative to reduce any causes that lead to defective parts through implementing effective modifications to the value chain. This is because AM is disruptive in nature to the traditional value chain, and especially regarding the infrastructure, the labor, the tooling, the level of responsiveness to new demands, the agility to redesigns, and the associated costs, time, and the obtained quality.

In this Chapter, we discuss some of the fields of challenge facing AM, while giving a specific attention to the challenges facing the end quality of additively manufactured parts. Also, the concept of value chain for AM is proposed to define the succession of processes which comprises the predefined value, and to pinpoint the areas where cost saving, time optimization, and quality improvements are possible. 

A dditive M anufacturing

Manufacturing Techniques

The manufacturing techniques can be divided into Subtractive, Formative, and Additive. Based on the characteristics of the part to be manufactured, the best technique can be selected, as illustrated in Figure 2.2. Of course, a compromise between the different characteristics is made in most cases [START_REF] Attaran | The rise of 3-d printing: The advantages of additive manufacturing over traditional manufacturing[END_REF][Gro07] [START_REF] Wahlstrom | Additive manufacturing in production-for the automotive industry[END_REF].

For example, the ability to digitally customize any part is one area where AM shines. This is especially true in sectors where the part needs to be tailored to a specific usage or to a person, such as in the medical implants sector. Also, the aerospace and automotive sectors benefit hugely from light-weighted topologically optimized parts produced by AM, since manufacturing customizable products or single prototypes using Subtractive Manufacturing (SM) or Formative Manufacturing (FM) is not practical nor cost effective. Yet, one downside that limits the widespread of AM is the end part certification. An approval step is required before the usage of additively manufactured parts in highly regulated industries. Given the numerous combinations of materials, parameters settings, machines that can be implemented, establishing uniform standards for AM is still challenging, unlike SM or FM where several norms have already been developed.

SM, FM, and AM can use a large variety of materials. An additional advantage of

AM is that it can access a big set of bio and edible materials. Also, AM enables material customization to obtain specific thermal or mechanical properties. One limitation facing AM maybe related to the size of the manufactured parts. Powder based AM is limited regarding the dimensions of non-assembled parts that can be built at a single time. This limitation is mainly due to the machine building chamber size and layering time. Fortunately, the micro manufacturing industry found a huge advantage in using AM to achieve micro level precision, which are unachievable in most cases using TM.

FM techniques such as injection molding is a suitable technique for large production volume. However, this is the case if the parts' geometry is simple, and the additional processes cost is low. This cost can be reduced if the tooling is made using AM. If the cost is the main concerns, AM can be very cost effective, especially for geometrically complex parts, where the cost increases exponentially with production complexity.

SM and FM techniques are suitable to produce large volume and high precision parts. But AM reduces considerably the number of processes required. Several processes can be removed from the supply chain, such a painting, inventory, assembly, tooling, etc.

However, these reduced costs are replaced by other costs such as the machine/ raw material costs. This may include a series of post-processes, which are necessary to increase density, to improve surface roughness, and to remove support structures.

Fields of Challenge

Figure 2.3 illustrates several technical challenges facing PBF process. These challenges are categorized into the following groups.

Process Traceability

Before AM becomes a viable option for manufacturing, traceability is an important issue that need to be addressed. Ensuring traceability for key data can give insight into any non-conformities that can affect the overall process performance or the product quality. A full traceability in a production system, such as AM, requires identifying the product and the process related information, including real-time errors, and comparing the anticipated and the real process performance.

This can be difficult to execute, especially if the supply chain contains several subprocesses that require their own traceability protocol, or if the number of processes, or process iterations, is large and the traceability is only limited to certain activities. For AM, the lack of process automation and traceability-related software results in a poor data reporting. Also because of the large amount of data, the manufacturer must identify 

Process Modeling and Simulation

One of the major challenges facing AM is the lack of proper process control.

Reaching a fully optimized process required devising proper modeling approaches. The layering process exhibits several underlining physical phenomena when the heat source is projected on the material inside the build chamber. These phenomena can be observed using real-time monitoring. However, and as explained above, the insitu observations focus on one aspect (for example the meltpool temperature), where modeling allows to obtain information about the associated parameters (for example the meltpool flow, heat distribution, temperature gradient).

Current models and simulations suffer from low accuracy in describing the relation between the process performance/structure formation/part properties. The numerical methods used when building these models carries a level of assumptions, which decreases the accuracy of the results (experimental results compared to the simulation results). Also, several models that use different mathematical formulations and different input parameters can obtain different results. More focus should be directed to identify and obtain the key process data and the proper algorithms to model any specific AM behavior

[BSC16][SF18].

Design for Additive Manufacturing

With the rise of rapid prototyping in 1980, designers tried to take advantage of the possibilities this technology offers and explore new regions of complex design spaces. 

Material Availability and Sustainability

Materials availability and suitability for industrial applications is a big hinder facing a wider adoption of AM in the industrial sector. In theory, a large range of materials can be used, and yet the number of certified materials is still limited, compared to those used in the case of TM. The main challenge is to select the suitable material and the suitable production method based on the desired quality, particles size range, and morphology. This is because if the powder consistency is compromised during the building process, this can lead to a non-homogenous fusion of particles and can introduce defects such as porosity [START_REF] Dawes | Introduction to the additive manufacturing powder metallurgy supply chain[END_REF].

After the build is finished, recycling the remaining powder holds several risks. In this state, the powder may have been contaminated, and this is reflected as lower particles cohesion, higher oxygen exposure, and changed morphology. As a result, and after a certain number of recycles, the reused powder may underperform compared to the virgin powder. Finally, smart materials can give insight to integrating new functionalities in manufactured parts. Yet, the commercial applications of these materials are still restricted, and the cost of production is high [CSTPS19] [START_REF] Quinn | The effect of metal eos 316l stainless steel additive manufacturing powder re-cycling on part characteristics and powder reusability[END_REF].

Part Quality

No matter how well the part is designed, the finish surface quality can still be less uniform compared to its traditionally manufactured counterparts. For example, powderbased AM cannot create defined edges and may introduce voids inside the structure.

Depending on the surface finish desired, a postprocessing step is required after removing the part from the chamber. However, this can be problematic if the part contains inaccessible internal features or thin walls. Non-machining-based finishing such as chemical or ultrasonic-based postprocessing can be used in this case [START_REF] Nn Kumbhar | Post processing methods used to improve surface finish of products which are manufactured by additive manufacturing technologies: A review[END_REF]. This category of challenges is discussed in the following Subsection.

End Quality in A dditive M anufacturing

The quality of end-parts will be the focus of this work. Any manufacturer that can produce high quality parts will gain a competitive advantage compared to other manufacturers who suffer from quality inconsistencies. The level of quality of any additively manufactured part is evaluated through measuring three aspects: the mechanical performance, the dimensional accuracy, and the surface quality (Figure 2.4).

A large set of factors can compromise these aspects such as raw material properties, layer deformation during manufacturing, misidentified petameters, non-uniform material deposition, machine components miscalibration, etc.

Quality Improvement Approaches for Additive Manufacturing

Improving the quality of additively manufactured parts can be performed using several approaches. These approaches can be different based on the desired improvements and on the target quality defects. In this Subsection, several examples of these approaches are discussed.

Improving end quality through optimizing the mechanical performance

The mechanical performance of additively manufactured parts is one of the most important quality aspects, especially for parts used for load-related applications. The mechanical performance of additively manufactured parts is estimated through measuring several properties. One of the most important mechanical properties is the tensile strength.

For Ti-6Al-4V alloyed specimens, the tensile strength can be controlled during PBF process by controlling the solidification rate and by stabilizing the microstructural morphology [START_REF] Facchini | Microstructure and mechanical properties of ti-6al-4v produced by electron beam melting of pre-alloyed powders[END_REF]. Also, and for the same material, this tensile strength can be future improved through the selection of the manufacturing conditions, such as the building orientation [START_REF] Hrabe | Effects of processing on microstructure and mechanical properties of a titanium alloy (ti-6al-4v) fabricated using electron beam melting (ebm), part 2: Energy input, orientation, and location[END_REF][RSS13] and the energy density [START_REF] Hrabe | Effects of processing on microstructure and mechanical properties of a titanium alloy (ti-6al-4v) fabricated using electron beam melting (ebm), part 2: Energy input, orientation, and location[END_REF].

Fatigue life is another important mechanical property, especially in loads and safety-related applications, where an increase in the likelihood of cracks initiation is always present. This property can be controlled in PBF process by controlling the build Additionally, the selection of the feedstock material affects the fatigue life of the manufactured specimens because different materials exhibit different fatigue-related behaviour [START_REF] Khalid Rafi | A comparison of the tensile, fatigue, and fracture behavior of ti-6al-4v and 15-5 ph stainless steel parts made by selective laser melting[END_REF]. Other mechanical properties, such as the ductility and the elongation, are used to evaluate the mechanical performance. They can be controlled, Ti-6AI-4V manufactured specimens, though using heat treatment [START_REF] Wang | Microstructure and mechanical properties of wire and arc additive manufactured ti-6al-4v[END_REF], the microstructural stability [FMR + 10], and the build orientation [START_REF] Hrabe | Effects of processing on microstructure and mechanical properties of a titanium alloy (ti-6al-4v) fabricated using electron beam melting (ebm), part 2: Energy input, orientation, and location[END_REF].

Improving end quality through reducing geometrical deviations and surface quality

These geometric deviations are attributed to several factors that introduce deviations to the additively manufactured part. The cumulative residual stress is the main cause for the geometrical deviations, which takes the form of delamination and shrinkage.

To overcome this issue, Finite Element Method (FEM) were developed to study the thermal cycle distortion in the build specimen and the effect of process parameters on the

heat transfer [DIM14][ZC06][ZC08].
Other type of errors related to the geometrical quality and the slicing algorithms were researched as well. Reducing these types of errors will allow the reduction of the profile error. This includes reding the staircase effect through developing an adaptive slicing [START_REF] Panhalkar | Increasing Part Accuracy in Additive Manufacturing Processes Using a k-d Tree Based Clustered Adaptive Layering[END_REF], reducing the chordal error without increasing the file data size [START_REF] Navangul | Error Minimization in Layered Manufacturing Parts by Stereolithography File Modification Using a Vertex Translation Algorithm[END_REF],

and reducing machine control-related errors and their effect on the shape repeatability [DHG + 17]. PBF process parameters have a non-negligible effect on the shape accuracy and the geometrical tolerance. Multiple statistical models were used to predict the cylindricity and the flatness errors given a specific range of parameters. This includes models used to predict the cylindricity and the flatness errors [START_REF] Senthilkumaran | Statistical modeling and minimization of form error in sls prototyping[END_REF]. These deviations were further modeled using gaussian process to represent in-plan and out-of-plane

deviations [ZAM18][ZAM19].

Main Quality Challenge: Porosity

Although PBF process can produce nearly full dense parts, the existence of pores cannot be avoided. Porosity in additively manufactured parts can be attributed to several factors. Some of these factors include melt pool's solidification rate, the existence of unmelted particles, the inconsistencies in temperature gradient, the poor layer adhesion, the inhomogeneity of layers, post-treatment, etc. [START_REF] Fulga | Identification of in-line defects and failures during additive manufacturing powder bed fusion processes[END_REF]. The porosity can result in several internal and external defects as they act as nuclei for cracks and interlayers deformations, thus hindering the quality aspects, and as a result reducing the overall quality of the product.

For example, the existence of internal pores during the layer deposition is shown to decrease material hardness [CDM + 15] and decrease the fatigue life by being concentrators of internal stress [ER14] [START_REF] Wang | Microstructure and mechanical properties of wire and arc additive manufactured ti-6al-4v[END_REF]. Also, when the porosity reaches 1%, it can decrease the tensile strength [START_REF] Rf Ashton | The effect of porosity on 5086-h116 aluminum alloy welds[END_REF]. The porosity, alongside the surface roughness, was experimentally determined to be a contributor to cracks propagation in laser AM [WSS + 14].

The sources of internal pores are either material-related or process-related sources.

Here, we will focus only on process-related porosity. In the next Section, we introduce the concept of value chain for AM. We will examine where the quality is most vulnerable along this chain, with more attention given to the sequence of processes related to the porosity formation. where the predefined targeted value can be maximized, and to improve the critical activities in this system. This type of analysis allows the decomposition of the product's lifecycle into small sets of activities, where each activity is studied and the associated costs, wastes, and performance level are identified. As the name suggests, the construction of VC depends on defining 2 elements: the value and the chain.

V alue C hain for

What constitute a "Value"?

A "value" remains a qualitative term and is perceived based on the predefined aims.

Several definitions are proposed and studied in the literature [START_REF] Daaboul | Modélisation et simulation de réseau de valeur pour l'aide à la décision stratégique du passage de la production de masse a la customisation de masse[END_REF]. These definitions view and measure the value differently. But these definitions agree on one point: the proposed added value must satisfy a specific clients' need and must correspond to a reasonable gain given the resources used to create it.

Perception and Evaluation of Value

Since the profiles of clients and their priorities are different, the perception of what constitutes a value differs greatly and can be situational. For example, while the value is usually related to the intrinsic features of the product such as quality and performance, several extrinsic factors can increase or decrease the said value. This includes marketing campaign, the urgency of the product, the judgment of the benefiting parties, and the personal sentiment.

Whether this value is subjective or objective, its effect on the competitiveness can be evaluated by various performance indicators. Nowadays, new indicators can be used to evaluate this value, such as the environmental impact, the uniqueness, the innovation level, iterative integration of the customer's vision during the design and development phase, better execution of the desired tasks, recyclability, etc. The three most used measurable indicators are the cost, the time, and the quality.

Chain Construction

The activities along the lifecycle of the product can be classified based on their effect on the targeted value. Those which contribute to the maximization of the said value are used to construct the value chain. However, entities that supply complex products can have a more sophisticated activities classification. Also, the definition of a value chain may be problematic as today's industries are highly interconnected. Other difficulties may stem from data gathering and value perception. Additionally, what constitutes a value should be clearly defined from the perspectives of all actors and customers, as nobody wants to manufacture a product that nobody wants. Finally, and given the shift in the manufacturing strategies in the era of Industry 4.0, the VC may need continuous and iterative improvements.

Value in the Manufacturing Phase

Here we will only focus on the manufacturing phase. This phase is crucial as it conditions how the product is distributed, used, and disposed of in the next phases. Several research efforts tried to propose an end-to-end model implementation of the manufacturing phase. They are based on activity-modeling approaches which decompose the manufacturing process into sub-processes and trace the manufactured components history

[BVB + 18][FWAK17][HPH11][HR97][LCW15].
Along the manufacturing phase, many actors (designers, manufacturers, technicians, inspectors) intervene and add to the cumulative value of the product. This makes it essential to clearly identify what the client considers valuable and what activities can help the actors to create a specific form of value. For example, value can be represented as an improved quality, reduced overall cost, faster time to market, better process performance, or additional functionalities. Then, any activity that generated this value or have influence on it is considered as an added-value activity (Figure 2.5) [START_REF] Michael | Competitive advantage of nations: creating and sustaining superior performance[END_REF].

Added Value by the Designer

As the design is the first step towards transforming the raw material to the final product, many opportunities present themselves to add value to the product. These opportunities can allow the designer to modify the product's attributes with minimum effort and cost. In this stage, the 3D model can be redesigned by reducing the number of components by using simulation to improve its functionalities. This can decrease the assembly-related costs during the manufacturing and the disassembly-related costs during the end-of-life phase. Also, by taking in consideration the distribution phase, the product geometry can be optimized to facilitate and increase the storage and displacement capacity. Furthermore, the designer may take in consideration the inspection process and eliminate any impossible shapes that are difficult to build or cannot be accessed by inspection tools.
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Value Chain for Additive Manufacturing

The value created by optimizing the digital model quality can add a great advantage. Controlling the 3D model quality can be achieved using several approaches.

One example is to make the digital format suitable for other actors along the manufacturing chain. Assuring data interoperability can eliminate several problems related to path generation and the formation of geometrical inaccuracies.

Performing topological analysis will allow the designer to eliminate the excess material and any unnecessary functions. Another way is to simplify the model profile and integrate the client's modifications rapidly. This can accelerate the development iteration and allow the introduction of the product to market ahead of competitors. 

Added Value by the Manufacturer

The result of the design step is a validated 3D CAD file which contains the geometrical data of the product. Here, this model is transformed into a format that can be understood and used by the AM machine. One method to add value to the product in this stage is to optimize the manufacturing job time by selecting an adaptive slicing strategy, where each slice thickness is calculated based on the complexity of the local geometry. Another option is to increase the number of parts that can be manufactured at a time, either by increasing the build chamber dimensions or by selecting the proper parts nesting strategy.

The manufacturer can add value by selecting the proper process parameters. Any AM process is complex and involves several independent and interconnected parameters.

Selecting these parameters and their ranges will change the added value level.

Additionally, the quality of the virtual product file can be optimized by modifying the tessellated model and by removing any deviations in the digital shape which may result in surface errors during the layering process. Furthermore, the manufacturer can use historical data and simulations to add value by improving the cost/time ratio and to tighten the process operational window range. Finally, trying to identify the best operational window will allow the production of solid products rapidly, without the need of a trial-and-error stage.

Added Value by the Operator

The operator must prepare the machine (add material, keeping the build chamber sanitary, preheat the powder, etc.) and this task takes time, which can reduce the added value. However, several options present themselves to the operator to add value to the product. For example, the manufacturing job data can be transmitted to the manufacturer, which can be used to improve the parameters range selection. Also, after the build is finished, the operator can separate the clean powder from the sintered powder and use it for the next manufacturing iteration, which reduced the overall material cost.

Added Value by the Inspector

The inspector can add value to the product by performing an accurate, fast, and effective measurement of the product attributes. An automated inspection infrastructure can accelerate the part approval. In the case of AM, measurement analysis is still subjected to hinders such as precision and repeatability. Inspectors that can overcome these hinders using new measurement techniques can meet the market demands faster. One method to achieve this is to employ test artifacts. Form one hand, they can be used to select the best calibration parameters, and from another hand they can be used as an input to increase the process capability for the next manufacturing iteration.

Another option is to perform a sampling inspection instead of a full inspection to reduce the time to market, thus provide a competitive advantage. Also, the feedback provided by the inspector to the other actors can reduce quality-related inconsistencies in the next development iterations.

V alue C hain A nalysis: A pplication

As explained in Subsection 2.2.2, the porosity is one of the major defects that can compromise the additively manufactured parts and lead to the parts failure during usage.

Thus, manufacturing parts while eliminating this defect is considered a big advantage for manufacturers. In the context of this work, the derived value we wish to gain is the ability to control the level of internal porosity. To achieve this, 2 steps are required: identification of porosity formation mechanism in PBF process, then identifying which stage contributes to the formation of pores (Figure 2.5).

Porosity in Powder Bed Fusion Process

The porosity represents the percentage of internal voids inside additively manufactured parts. The need to control this phenomenon is due to the concern that porous parts are most likely will exhibit low mechanical performance such as fatigue, hardness, and strength.

Porosity Formation Mechanism

The formation of the pores is the result of either the material intrinsic characteristics (powder material properties) or the manufacturing process parameters (scan strategy and the selection of layering parameters. Material-based porosities are the result of gaseous voids inside the feedstock, which are generated during the powder atomization process. Purchasing powder from reliable suppliers or optimizing the powder production process can reduce this type of pores. If these pores are process-based porosities, they can be reduced by tuning the process settings. In this case, the morphology of the pores can be an indicator to the parameter to adjust.

Process-based porosity is the result of energy-material interaction, as illustrated in Figure 2.6. This interaction depends on selecting the proper parametric operational windows. If a suitable amount of energy is projected on the powder, a stable and turbulent meltpool is formed, where the spatter particles are melted or ejected by the gas flow. If the projected energy is excessive, keyholes pores are formed. The smoke resulted from powder evaporation will scatter material projectiles on to the meltpool. Also, the excessive penetration will create cavities forming gas pores. If the projected energy is not enough to fully melt the powder, then the formed meltpool will be less stable, resulting in weak adhesion between successive layers. In this case, the flowability of the meltpool is compromised, and due to the high surface tension gradients, the meltpool breaks in to separated zones.

Chain Construction

In Subsection 2.3.3, we listed several contributions by the process actors to add value to the process/product. This is measured through 3 aspects: quality, cost, and time. Balling

Lack of Fusion Optimal Density Keyholes Insufficient Energy Density Excessive Energy Density

The added value is proportional to the level of mastery over these aspects. As the end quality is treated as the targeted value to be optimized, several approaches can be implemented to add value to the part through reducing the level of porosity. Figure 2.7 illustrates the parameters used in each process stage. However, it is efficient to pinpoint the set of parameters in the manufacturing phase which can help maximize this value.

Several hypotheses are considered to narrow down the list of parameters sets, illustrated in Figure 2.7, given we are only interested on the cumulative effect on the porosity, not the entire quality aspects. Since we are considering only simple geometries, then we will disregard the design/analysis/tessellation parameters. Also, we will consider that the inspection process is optimal, thus we will disregard the inspection parameters.

Finally, the simulation parameters are disregarded as well, since we will consider a black box approach. we have taken a special interest in the challenges related to the end quality. Several approaches that academics and industrials have undertaken to improve the end quality of manufactured parts were listed. More focus is given to the porosity as the main end quality defect. To better identify the optimization paths to reduce the porosity in additively manufactured parts, we introduced the concept of value chain for AM, as it allows to focus our research and efforts on improving the stages of the manufacturing phase which have a prominent effect on the formation of the porosity. We identified three sets of parameters of interest: layering parameters, machine parameters, and post-processing parameters.

However, more than 50 parameters are involved in these 3 parameters sets. It can be futile and cost exhausting if all these parameters are involved when implementing the end-quality optimization strategy. Thus, it is imperative to identify which of these parameters contribute the most to the variation in the endquality. In the next Chapter, we introduce and implement the notion of "Key Characteristics for Additive Manufacturing". given the process parameters/build conditions/material requirements/physical phenomena. In the previous chapter, we decomposed the manufacturing phase into several stages, where each stage is conditioned by a specific set of parameters. The level of control of these parameters will reflect the level of quality that can be obtain. Key Characteristics is a concept that emerged in the late 90s. The main reason for this attention is reflective of the need of manufacturers to reduce wastes and optimize product development by identifying where variability is generated in the manufacturing process. This is followed by an optimization plan while taking the sources of variability in consideration.

In this Chapter, we introduce the concept of Key Characteristics as depicted in literature. A summary on the implementation of this concept is presented as well. Then, we explore how Key Characteristics can be implemented in the context of Additive Manufacturing. An implementation protocol is proposed in the case of SLM process.

K ey C haracteristics: Introduction and C oncept

History and Context

The performance of a manufactured product is highly correlated to its internal and external features. Any deviation from the predetermined manufacturing specifications can be the main cause for several defects that can hinder the performance of the final product.

Because a product is the sum of all its parts, any unplanned interactions between these parts can result in the product failure in the client's hand. Therefore, manufacturers strive to make robust products that can tolerate a certain number of variations during manufacturing, which is not straightforward and expensive in most cases. Of course, this can be achieved only if the sources of these variations, their effect on the functional requirements, and the product's attributes the most impacted by these variations are clearly identified [START_REF] Taguchi | Taguchi on robust technology development: bringing quality engineering upstream[END_REF].

Several approaches can be used to correlate the sources of variations to the performance of the product and predict their effects on the properties of the product.

These approaches include Taguchi Method, Statistical Process Control (SPC), Design of Experiment (DOE), and Variation Analysis (VA) [START_REF] Ac Thornton | Key characteristics to cut variation and manufacturing costs, focus on key characteristics[END_REF]. These tools are used to understand the relations between product features and the affecting variation sources.

However, the degree of success of these tools depends on correctly and clearly identifying the correct sources. This can be a challenge for companies that engage in manufacturing structurally complex products [HLW + 18].

Introduction of Key Characteristics (KCs)

The introduction of the concept of Key characteristics (KCs) started in 1980 in some companies, especially by automobile manufacturers [CS + 95]. It was introduced and first used in the assembly domain, as a better assemblibility can lead to a better

producibility. An assembly depends on parts alignments and gaps, and as the number of parts in an assembly increases, the probability that variations may flow through the product increases as well. This is because these variations are transmitted to other subassemblies, and they can lead to assembly failure if they exceed the permitted tolerance limits. The manufacturers can either improve the modularity of the assembly by selecting the optimal assembly sequence or reduce the number of assembled parts. The term KCs is applied to both sensitive product properties and part dimensions that have high sensitivity to these variations [MM01][Nin14].

Definition and Classification

Several definitions for KCs are proposed [START_REF]Advanced quality system tools[END_REF][Tho99][ZML + 08]. The need to give a precise definition for KCs emerges mostly from the need to focus resources and efforts on features with the highest level of influence, to suggest more adaptable improvement plans, and to reduce the time and cost of product rework. Table 3.1 summarizes some of these definitions.

Identification and Implementation

When identifying KCs, different entities adopt different approaches for this purpose. These approaches are divided into either reactive or active. A reactive approach is used when problems arise during the production, and the proactive approach is used before the production starts. The main objective of both approaches is to increase the communication level between different process actors, to reduce the size of important data generated, and to correlate the loss in production's cost, measurement time, and quality level to the manufacturing capabilities. capability cannot be demonstrated.

[Tho99]

Key Characteristics are the product, subassembly, part, and process feature that significantly affect the final cost, performance, or safety of a product when the KCs vary from nominal. Special control should be applied to those KCs where the cost of variation justifies the cost of control.

[Tho99]

Key Characteristics are designated to identify those part or assembly features/interfaces where variation from nominal results in the greatest loss. A feature becomes a Key Characteristic if the variation from its nominal value has significant effect on fit, performance, or service life of the product.

[Boe98]

The Boeing advanced quality system standard D1-9000 defines a key characteristic as a feature whose variation has the greatest impact on the fit, performance, or service life of the finished product from the perspective of the customer.

[ZML + 08] KCs are the product, subassembly, part, and process features that significantly impact the final cost, performance, or safety of a product when the KCs vary from nominal determined value. 

Key Characteristics Flowdown

In this step we define a traceable thread of the process and the product decomposition, as illustrated in Figure 3.1. There exist two approaches to construct a KCs flowdown: Top Down or Bottom Up. A top-down approach is implemented usually in the design phase when the initial product design is proposed. Here, the designer translates the client's requirements from functional level to the product features level, and the associated acceptable variation for each level is defined as well. A bottom-up approach is implemented after the manufacturing and assembly processes are finished. Here, the objective is to measure the final products features and compare them to their nominal state. This is followed by implementing the necessary process control to reduce the anomalies in the next manufacturing iterations 

Key Characteristics Management

When the KCs are assigned by their importance, then some options are available.

The main objective of assigning KCs based on their importance is to reduce cost and resource usage. Based on the features that have low ranking or high sensitivity to variations, the manufacturer can prioritize the implementation of improvements protocols and allocate the proper resources to the manufacturing phase stages which contributes to the creation of these features [TDE00] [START_REF] Thornton | Quantitative selection of variation reduction plans[END_REF].

Since most manufactured products are assembled form several parts, the manufacturer must assure the dimensional integrity of assemblies where the parts must fit perfectly. One strategy is to optimize the adjustability of the product [START_REF] Lyu | Optimal sub-assembly partitioning of space frame structures for in-process dimensional adjustability and stiffness[END_REF]. Also, the designer can add smart design features to the product that has no functional necessity but can absorb variations and free the assembly KCs from over-constrains [START_REF] Downey | An introduction to smart assemblies for robust design[END_REF]. In the planning stage, if the KCs are identified, the manufacturer can select the proper planning strategies which maximizes the process capability and achieve the said KCs 

K ey C haracteristics for A dditive M anufacturing

Need for Key Characteristics for Additive Manufacturing

Many old and recent research efforts investigated how to optimize the additive manufacturing process. For AM, more than 100 parameters are involved during the layering process, which determine the manufacturing performance and the capability of the process to obtain the specified quality level [START_REF] Thomas | In-process sensing in selective laser melting (slm) additive manufacturing[END_REF]. There is a need to identify the correct parameters to be controlled and studied, and consequently, reduce the challenge related to optimizing and understanding the process.

From a statistical modeling point of view, increasing the number of parameters (or model dimensions) will exponentially increase the complexity of the model, and consequently will undermine its capacity to represent reality. For AM, implementing sophisticated experimental designs, which examines multiple parameters, is expensive.

Thus, studying a limited number of parameters will allow to examine the relative importance of each individual parameter on the specified quality aspect. In this section, we try to implement the concept of KCs in the context of AM, specifically for SLM process.

Key Characteristics Main Properties

In Table 3.1, we selected a handful of established definitions of KCs in literature.

Each definition of KCs tries to answer these questions: What is the nature of KCs?, Which tools are used to identify them?, From where in the product' lifecycle these KCs can be extracted?, and What type of impact can they have on the product/process if they exhibit any variations?. These definitions identified several common properties of KCs, as explained below, and as illustrated in Figure 3.2.

Nature and Type

KCs represent a set of features/properties/parameters/conditions, which are overly sensitive to any internal or external factor. These can be in different forms. For example, KCs can refer to critical tolerance for assembly. For chemical products, KCs refer to critical chemical ingredient and portions mixture quantities. When evaluating the mechanical performance of precision products, KCs may refer to hardness and resistance to fatigue metrics. 

Detection Strategy

Two strategies exist when searching for KCs: proactive and reactive detection.

Proactive detection takes place during the design phase and used to make the structural and functional design insensitive to variations, or to assign acceptable variation limits.

Reactive detection takes place during the development phase to improve assembly, planning, and inspection strategies, and takes place after the manufacturing phase to determine the root causes of occurred problems in the product and to improve the following production iterations.

Impact on Product/Process

The type of impact on the process or on the product when KCs are not achieved can be different. The most obvious impact is the dissatisfaction and the compromised safety of the user if the product fails. Consequently, this can generate additional cost for repair, wasted resources, or lead to ineffective process planning and inspection. Finally, not respecting the defined range of KCs can generate a type of loss in quality consistency. Previously, we attempted to examine the concept of KC in the context of AM [START_REF] Al-Meslemi | Modeling key characteristics in the value chain of additive manufacturing[END_REF]. There are several differences between the implementation of KCS in TM and in AM. Firstly, we will not consider the case of assembly. Our main focus will be on the quality aspects (as mentioned in Subsection 2.2.1) of a single additively manufactured part. We will be focusing on establishing cause/effect relationships between these aspects and proper process parameters. As explained in Subsection 3.2.1, multiple parameters are implicated in the additive layering process, compared to the subtractive process. Yet, only a few of these parameters are necessary to achieve optimal process parametric configuration.

Key Characteristics in Traditional and Additive Manufacturing

Product/Process Key Characteristics

As shown on Subsection 3.2.2, KCs are characterized by several main properties.

These properties are also true when applying KCs in the case of AM. We distinguish between 2 types of KCs: those related to the additively manufactured part, and those related to the additive manufacturing process. The reason for this distinction is that the formalization of a cause/effect relation between the parts features and the process parameters will allow the prioritization of the important part features and the 
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Functional Design corresponding manufacturing conditions to achieve the desired level of said features. The selection of KCs part conditions the selection of KCs process .

Figure 3.3 illustrates a typical manufacturing situation. KCs part may include any functional or structural feature of the part that is required to ensure several aspects such manufacturability, robustness, and resource optimization. For example, the mechanical performance indicators in the case of precision parts, or the surface deviation in case of assembly. The selection of KCs part is highly dependent on the desired added value to be achieved. In the next step, we will extract the KCs process from the established value chain.

They represent a set of parameters/calibrations/conditions, which have a specific level of impact of the previously selected KCs part . Based on explanation above and in the context of this work, we propose the following definitions.

KCs part are defined as "a set of features that describe the quality aspects of an additively manufactured part. They are selected based on their importance for achieving the defined value and the associated structural and functional requirements. If these features are not maintained, the target added value can be compromised". KCs process are defined as "a set of parameters that are selected based on specific criteria, and that conditions the defined value chain, which have a statistically detectable effect of the defined KCs part . A small defective selection of these parameters may compromise the integrity and the functionality of the targeted part. These are defined from a limited list of previously selected candidates to prioritize their effect on the KCs part ".

Key Characteristics Identification Protocol

In this Subsection, we propose a systematic approach for KCs identification in the context of AM, as illustrated in Figure 3.4. This approach identifies the product's features, traces them from the functional level to the manufacturing level, establishes specific conditions to narrow the selection of critical process conditions, then collects data and statically and hierarchically identifies the priority of each process parameter to achieve the specific product's feature. 

Design Objectives

This is the first step in the proposed protocol. The functional analysis allows defining and translating the client's requirements to technical requirements. Based on these technical requirements, a structural form and a manufacturable decomposition of the different parts is selected. Although this decomposition is formed of several parts, we will focus only on additively manufactured parts for the following steps. Naturally, after this step, we should be able to identify clearly the KCs part . This includes the type of defects that can hinder the said KCs part .

Correlation Formation

This step requires the establishment of a comprehensive process-related knowledge.

The proposed protocol can be applied on any of the categories of AM, but we will focus only on SLM process. Following this, a flowdown is established such as the example presented in Figure 3.3. In general, a product is composed of several parts. As explained above, we will focus only on additively manufactured parts. This flowdown identifies relationship between the product's structural, functional, and geometrical features and all the sets of parameters during the manufacturing phase.

Candidate Characteristics (CCs)

One of the main properties of KCs is their few number and their high impact on the product/process. We establish, in this step, a set of selection criteria. One factor that can defies the efficacity of KCs method is not correctly identifying the target parameters, or if a large number of parameters are identified. These criteria are required to reduce the number of the studied parameters before deciding their proper hierarchical order based on the impact on a given quality aspect. Afterwards, this will allow the formulation of a mathematical model or an effective experimental plan.

Categorization of Candidate Characteristics (CCs): Controllability

As illustrated in Figure 2.7, the manufacturing phase of additively manufactured parts requires the definition of a large set of parameters. To identify the statistical significance of a certain parameter, the said parameter must be controllable. Here we define controllability as the ability to change the state of a certain parameters during the layering process. However, the level of controllability is different from one parameter to another.

In this context, we identify three levels of controllability of process parameters.

The first level includes the parameters can be changes during a single build. A build is defined by the start and end of the layering process in the build chamber. This level of controllability covers the scanning and the exposure strategies. This includes scan power and spot size, hatching distance, scanning speed and pattern, part orientation, etc. These parameters can be changes during one build, and each part in the chamber can be built with different combinations of these parameters. This level of controllability is the most level investigated in literature.

The second level includes the parameters that cannot be changed during one build.

These parameters are usually predefined for the entire build chamber. Thus, to investigate the statistical effect of these parameters, more than one build must be realized, and for this reason these parameters are less investigated than those in the first level. An example of these parameters is the layer thickness, the number of layers and the recoating speed, the inert gas flow rate, the powder bed distribution, etc.

The third level of controllability includes parameters related to the material properties or to the machine specifications. To investigate these parameters, the material or a part of the machine must be modified or replaced. This type of parameters is usually related to intrinsic properties of material/machine. This includes the powder material morphological, optical, chemical, metallurgical, and thermal-related parameters. Also, this includes shape of coating blade, powder delivery speed, projected laser type and the intrinsic laser properties such as the wavelength, spectral bandwidth, and absorption coefficient.

Categorization of Candidate Characteristics (CCs): Dependability

From a statistical modeling point of view, a model that uses dependent variables as input variables can suffer from correlation issues, and as a result, this can underestimate or overestimate the effect of a certain parameter in the model on the output variable.

We refer to the dependent parameters as those that are related mathematically or can be expressed as a function of other variables. This includes parameters such as the energy density, which can be expressed as a function of scan power, scan speed, hatching distance, and layer thickness. Also, laser beam diameter and the projected spot size on the powder bed are considered as dependent parameters. Parameters that cannot be measured directly but are estimated using numerical and finite element analysis, such as meltpool properties, are considered as dependent parameters.

Categorization of Candidate Characteristics (CCs): CCs list

Here and following the above steps, we can acquire a list of Candidate Characteristics (CCs). These characteristics are a list of parameters that need to be examined to identify their level of priority. The definition of this list is conditioned by the chosen selection criteria (controllability and dependability). A set of data is collected to identify this level of priority.

Data Collection and Analysis

After the list of CCs is established, the prioritization and hierarchization of these characteristics is the next step, and this requires collecting data. Several factors are considered at this step such as the expense in terms of time and cost, the availability of measurement equipment, and the reliability of the gathered data.

The first source of data is from scientific published literature and journal articles.

These are normally reviewed by expert and used as input knowledge to validate and test models. A special attention is given to the restrictions regarding data transferability and the range of applicability of the data. Also, the quality of this type of data can be difficult to evaluate if the material or the method's documentation are missing. If the expense in terms of cost/material/equipment is acceptable, a more reliable source of data is independent experimentation and measurement. Finally, a validated surrogate model can be used to generate simplified data for testing.

After the data is collected from a defined source, a hierarchical organization of these parameters based on their impact on the level of change in the response behaviour.

This can be done thought a sensitivity analysis and main effect analysis. A second method is to use a correlation matrix and Analysis of Variance (ANOVA) to determine the variance of each parameter.

Porosity Characterization: Application

We tried to apply the proposed protocol (Figure 3.4) on a simple case using the laboratory resources. The objective is to determine, based on the target value, the list of KCs part /KCs process . As mentioned in Subsection 2.2.2, the porosity is chosen as the main challenge that we wish to reduce in additively manufactured parts. The modeling approach (Chapter 4) and the experimental plan (Chapter 5) are very dependent on selecting the system response, represented by KCs part , and the target factors or the system predictors, represented by KCs process . While we can formulate a list of CCs, the prioritization of which characteristic has the highest influence can only be achieved statistically through organizing design of experiment using the CCs. This is followed by using the extracted data to predict the future behaviour of the combination machine/material.

Design Objective

Here, we will consider a simple scenario where we design a geometrically simple specimen for this objective. The proposed added value is the manufacturing of porositycontrolled specimens. Based on this we can identify the KCs part which is the density of the manufactured specimens. The next step requires the identification of the main hinders that affect the density, mainly the porosity, and the factors affecting the propagation of porosity in additively manufactured specimens. In Subsection 2.2.2 and in Subsection 2.4.1, the factors affecting the level of porosity are presented.

Correlations Formulation

Figure 3.5 illustrates the main sources of variation that can impact the density of manufactured specimens. Although we previously defined several sets of parameters that can affect the end-quality (Figure 3.3), we will focus only on the layering parameters and the machine parameters. We will refer to these 2 sets of parameters as process parameters.

The other parameters have less impact on the porosity, or they are out of the scope of our analysis. The process parameters will be categorized based on the type of variation they can generate.

Candidate Characteristics

In this step, we perform a screening for all the selected set of process parameters.

First, we classify these parameters into categories based on the sources of generated variations in the process. We listed a couple of criteria that allow us to limit the number of CCs. These criteria are selected based on the required properties of the statistical system's predictors, including controllability and dependability. However, other criteria can be used to limit the number of process parameters and their ranges, such as technical For our case and based on the dependability criteria (Subsection 3.2.5), we can eliminate any process parameters that share a mathematical relationship or can be calculated based on other parameter. This includes beam diameters and the meltpool properties that can be numerically simulated as a function of the interaction laser/material. Concerning the controllability criteria (Subsection 3.2.5), we chose to consider only parameters that belong to the first level of controllability, namely the parameters that can be varied within the same build. This includes scanning strategy and energy projection properties. The material related properties are excluded since we only dispose of one type of powder (Incone718) with fixed properties. Finally, further constraints regarding the possible ranges were considered given the machine operator recommendations. The final CCs list included 3 parameters related to the exposure strategy: Scan power, speed and spacing.

Data Collection and Analysis

In this step, we require a set of data, a data analysis, and a predictive modeling approach. For data acquisition, a Design of Experiment (DOE) is proposed to verify the level of priority of the selected CCs, and their effect on the KCs part defined previously.

The detailed experimental design and the measurement analysis steps are presented in Chapter 5. This is followed by a statistical analysis phase and a model construction phase, where the collected data is used to identify the behaviour of the KC part as a function of the CCs. The proposed modeling approach is presented in Chapter 4. For several reasons mentioned in Subsection 6.1.1, we relied on collecting data from literature for the purpose of the statistical modeling.

Chapter 3. Key Characteristics for Additive Manufacturing

Conclusion| In this Chapter, we explored the utilization of the concept of KCs in literature. This review allowed to establish the main properties of KCs and investigate the context of applications in the case of traditional manufacturing.

Based on this review, a protocol to identify KCs in the context of AM was constructed. This protocol integrates process knowledge, variations sources analysis, experimental design, and statistical analysis. For the purpose of using the proposed protocol, a design of experiments and a statistical modeling approach are developed and discussed in the following chapters. 

M odeling for A dditive M anufacturing

The modeling of the AM process is one of the most studied fields in the literature.

This fact emerges from the need to accurately understand and to resolve some of the drawbacks of the process. These drawbacks are mostly related to the process productivity, part performance, material selection and distribution, the sintering conditions, the associated thermo-mechanical properties, etc. To achieve a full and a comprehensive modeling of the entire AM process, several sub-models need to be developed, which can then be merged into a multi-scale representative model of the process.

Three main type of models exists: analytical, numerical, and empirical models 4.1). The selection of the proper modeling approach depends on several factors. Firstly, is the nature of the modeled aspect. The reason is that some complex phenomena related to the AM process are more easily represented using a specific modeling approach. The second factor is the capability/limit of the selected approach to provide the needed type of knowledge. In this Subsection, we will list some examples of the modeling approaches used in the case of Powder Bed Fusion (PBF) process.

[BSC16][FSK + 17][SF18] (Table

Sintered Zone (Meltpool) Thermal Modeling

PBF consists of building functional parts using a thermal reaction between an energy source and metallic powder to build parts one layer at a time. After the layers are solidified, the powder is spread to form a new layer on the previous one, and this sequence repeats until the part is completed. Modeling the meltpool is one of the main areas where numerical thermal models are implemented. Modeling the meltpool formation has been studied thoroughly. The thermal modeling of the meltpool followed several routes based on the studied attributes. These numerical thermal models are based on finite elements, which describe the progression of the meltpool dynamics overtime during the layering process. All the thermal phenomena that occur because of the energy/material interaction were studied and modeled, as illustrated in 

Correlating process performance to manufactured parts features

Another type of modeling is the correlation of the process performance to the product features. These existing models are used for one objective: identifying the effect of building conditions on the product's features and the optimal ranges to manufacture parts with minimum defects.

For example, an empirical model is established to rank the effect of hatching distance, scan speed, and layer thickness on the mechanical properties [WW12] [START_REF] Khalil | Influence of laser power on tensile properties and material characteristics of laser-sintered uhmwpe[END_REF].

The same empirical approach coupled with ANOVA analysis are used to rank these parameters based on their effect on the shrinkage directions and on the dimensional accuracy [START_REF] Raghunath | Improving accuracy through shrinkage modelling by using taguchi method in selective laser sintering[END_REF], and to examine the effect of process parameters on the flatness/cylindricity properties [START_REF] Senthilkumaran | Statistical modeling and minimization of form error in sls prototyping[END_REF]. Process parameters such as scan power, scan speed, and layer thickness influence the melt flow stability and surface roughness. This was examined using conversion of momentum equations and numerical finite element modeling to predict the interaction between the material and the heat source [QPW + 15].

Finite element modeling was used as well to examine the effect of loadings on the stiffness of manufactured parts [START_REF] Eshraghi | Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering[END_REF], and the different process parameters on the mechanical properties [START_REF] John | Advances in modeling the effects of selected parameters on the sls process[END_REF]. This type of modeling was also used to study the effect of internal residual stress on the distortions affecting the dimensional accuracy [START_REF] Erik R Denlinger | Thermomechanical modeling of additive manufacturing large parts[END_REF][MFM06], and to investigate the effect of layer thickness on these distortions [START_REF] Mukherjee | An improved prediction of residual stresses and distortion in additive manufacturing[END_REF]. Experimental data were collected to validate these models. This numerical approach can be combined with an analytical approach to model the effect of energy density and heat capacity on the topology of manufactured parts [START_REF] Childs | Selective laser sintering of an amorphous polymer simulations and experiments[END_REF]. The tensile stress was modeled based on an analytical approach using force and moment equations as 

a
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Statistical Modeling

Since AM involves complex physical phenomenon's, measuring the impact of the process on the manufactured part's features can become difficult, and thus, the reproducibility of the process can become impaired. A trial-and-error approach can be used to identify the viable region where optimal parts can be manufactured with low risk.

However, this can be ineffective and costly. The need emerges to reduce the manufacturing variability and to accurately predict the part's quality, while keeping the experimentation number at minimum. This requires the development of modeling and simulation capabilities to decrease the real-world testing and to increase the quality predictability of manufactured part. The application of statistical modeling, in the case of AM, will consist of performing minimal number of experimental trials, then by detecting the patterns in the manufacturing data, the likelihood of a specific quality level that can be obtained in the rest of the experimental space is assessed.

Our objective is to apply ML to make predictions based on a given set of data. We will use tools such as DM and SM to analyze the data and based on the statistical report, the data driven model is formulated to obtain the best performance. This requires the selection of an adaptable algorithm and the formulation of the corresponding mathematical expressions. Also, the model parameters are inferred to deduce their probability distribution. The model is trained then tested to evaluate its performance and its generalization capabilities on new data Subsection 4.3 describes the proposed framework and presents a case study for the predictive model application.

Proposed Modeling Roadmap

In this section, we develop a three-stage modeling approach as illustrated in Figure 4.2. The planning starts from gathering the necessary data, performing inference and prediction calculations, and optimizing the model based on the provided accuracy. All programming and coding in this thesis were performed using Matlab R2017b.

Data Treatment

Data is as good as the conclusions that can be drawn from it, and the data collection method can hinder the performance of a statistical model if done wrong. In this stage, we can acquire the needed data from experimentation or from existing historical data. The required data must be representative of the process performance and the measured effect on the parts quality. 

accurate? no yes

Prediction Estimation

The data is divided into target features (system output or system observations or output space) and descriptive features (system input or system predictors or input space).

These features can be of different types (numerical, categorical, qualitative, etc.). Here, we are interested in quantitative, numerical, continuous features. In this context, the descriptive features are the selected process parameters, and the target feature is one of manufactured part features, namely the level of porosity.

Analytical Base Table (ABT) is used to store these features. Firstly, using this table, we can perform several statistical tests to better understand the existing hidden pattern in the data. We will use scatter plot and correlation matrix to reduce the size of ABT by eliminating the irrelevant and the redundant descriptive features. Also, since we are interested in continuous features, a tool such as the histograms will help visualize how the data are distributed, which can help select an adaptable ML algorithm. Secondly, the collected data are examined for any quality-related issues. This includes missing data, inappropriate values, or outliers. Usually, these issues are handled by replacing the missing data with the data mean or the median.

Finally, and after the data is filtered, the usage of data must be optimized. One method to achieve this is to use Cross Validation (CV) [RPL09][WDBK08]. This is a repartition method, where data stored in ABT is divided into multiple sets. Each set is used for a specific purpose during the inference and the predictions calculations. The advantage of using such a method is to avoid overfitting the model, which occurs when all the data is used to train the model, then used to perform predictions. An overfitted model usually leads to overoptimistic results and cannot generalize well on other data sets. Here, we will employ a K-Folds repartition protocol, which is the most popular method used to perform CV. is to draw random non correlated samples that are used to estimate the marginal and the conditional probabilities of the model parameters. In the case of bayesian inference, MCMC is used to identify the mean and confidence interval for each model parameter and update them [START_REF] Brooks | Handbook of markov chain monte carlo[END_REF]. After the inference is finished, the final step in this stage is to use the probability distribution of each parameter to predict the new value of the target feature (system response) given the new proposed values of the descriptive feature (system predictors).

Model Validation

The evaluation of the any model depends on several factors such as calculation speed and deployment ease. Since we are interested in continuous features, we will measure the numerical accuracy of the model as the difference between the predicted values given by the model and the real target values stored in ABT. As discussed above, we will use a randomly generated hold-out data set. This hold-out set is used to test the model, but not to train it. After the calculations are completed, a new hold-out set is selected, and the calculations are repeated in an iterative process until all the data is used to train and test the model. And the total accuracy of the model is average accuracy of each iterative calculations. Several performance metrics are employed to capture the difference between the predicted and the expected performance.

Statistical P redictive M odeling for A dditive M anufacturing

In this section, we will implement the modeling protocol proposed in Figure 4 

We choose to use the data provided by [GRSS13][TE15][TES16][Appendix A].

While Ref [START_REF] Gong | The effects of processing parameters on defect regularity in ti-6al-4v parts fabricated by selective laser melting and electron beam melting[END_REF] only used experimental design to evaluate the effect of process conditions on the porosity, Ref [START_REF] Tapia | Prediction of porosity in slm parts using a mars statistical model and bayesian inference[END_REF][TES16] combined both experimental design and predictive modeling. In our approach, we will focus on the selection of the data driven model based on a preliminary statistical evaluation of data. This will allow the selection of the needed model terms and parameters. Also, an optimized inference is conducted, which is based on a preliminary markov chain convergence analysis, instead of arbitrary choosing the inference parameters, which tends to ignore several elements such as the chain running time, the drawn samples correlations, etc. Additionally, more attention is directed towards the evaluation of the model results, and the effect of multiple factors on the accuracy of the model, such as data size, parameters interaction, data repartition, etc.

Data Treatment: Acquisition

The author did not use a specific experimental design method. 42 observations were conducted and only 2 parameters were varied to construct the input design space: scan power (W) and scan speed (mm/s). The data is represented as a matrix [𝔻], which contains the system input [𝕏] and the system response [𝕐], and the data is expressed as

[𝔻] = [𝕏, 𝕐]
. The total number of observations is denoted an N. The 2D input space is represented as a vector 𝕏; where 𝕏 = [𝑋 𝑖 ] 𝑖=1:𝑁 . Each data point 𝑋 𝑖 is positioned in this space based on 2 coordinates 𝑋 𝑖 = (𝑥 𝑝 , 𝑥 𝑠 ) 𝑖 ; where 𝑥 𝑝 and 𝑥 𝑠 are the scan power and scan speed, respectively. Only the percentage of the measured porosity is used as the system response. The percentage of porosity is represented as a vector 𝕐 = [𝑌 𝑖 ] 𝑖=1:𝑁 .

The energy density was calculated using the following input parameters: scan power (P) ranged from 40 to 50 W, and scan speed (S) ranged from 275 to 400 mm/s. Other parameters were not varied during the experimentation. The experiment was conducted on 17-4 PH stainless steel using a ProX 100 selective laser melting system [TE15][TES16].

Data Treatment: Processing

The correlation matrix in Figure 4.3 [a] indicates a positive correlation between porosity and the scan speed, and a negative correlation between the porosity and the laser power. This means any increase of the scan speed will result in an increase in the porosity and any increase of the power will result in a decrease in the porosity. This is reassuring as it is consistent with the behavior of the energy density which is directly proportional to the power and inversely proportional to the speed. The p-value (in brackets) of less than the significance level of 0.05 indicates a strong correlation between the input space and the porosity. 

Given a first inspection of

Data Treatment: Repartition

As explained above in Subsection 4.2.2, using all data to train the model is not advised. If the model performance depends on the input space structure, then the predictions performed on the same structure will not reflect the true capabilities of the model and will produce overoptimistic results. To avoid this, we will implement the CV method. Implementing CV depends on how the acquired data is divided and when it is used. Two CV scenarios exist: 2-way and 3-ways CV methods. The former method is used to estimate the degree of the predictive accuracy of models, while the latter is used for both parameter tuning and accuracy estimation. Here, we will implement the 2-way CV, as shown in Figure 4.4. Optimizing and tuning our model will be performed separately. However, we will use a variation of this method called Leave-One-Out method (LOO).

This is an iterative method where all data, except for one data point in the input space, is used to train the model. This is repeated until all the data are used to train and to test the model. This method is used to construct a model evaluation protocol in Subsection 4.3.6.

Model Construction: Formulation

There are different algorithms used to build a model including Regression Tree (RT) [START_REF] Breiman | Classification and regression trees[END_REF], Multivariate Adaptive Regression Splines (MARS) [START_REF] Jerome H Friedman | Multivariate adaptive regression splines[END_REF], Support

Vector Machine (SVM) [START_REF] Scholkopf | New support vector algorithms[END_REF], Nearest Neighbor Regression (NNR) [START_REF] Christopher G Atkeson | Locally weighted learning. Lazy learning[END_REF],

Artificial Neural Network (ANN) [START_REF] Shanmuganathan | Artificial neural network modelling: An introduction[END_REF], and Gaussian Process (GP) [START_REF] Christopher | Gaussian processes for machine learning[END_REF]. This selection of the proper algorithm is based on several factors: data nature, distribution, size, the parametric correlations, the modeled aspect, the desired knowledge, the sensitivity to noise, generalization capabilities, etc. In our case, since we possess a limited numerical data that are normally distributed, as illustrated in Figure 4.3, the gaussian process appears to be a suitable choice for data driven model construction.

Gaussian Process (GP)

The multivariate gaussian distribution is defined by a mean vector and covariance matrix [START_REF] Christopher | Gaussian processes for machine learning[END_REF]. The result of this gaussian process is the estimate (the prediction) and the level of confidence in it (uncertainty). Considering the system input 𝑋 = (𝑥 1 , … , 𝑥 𝑁 )

and the system response 𝑓 1 , … , 𝑓 𝑁 , a gaussian process is defined by a covariance function 𝑘 and expressed as

( 𝑓 1 ⋮ 𝑓 𝑁 ) ~ [( 0 ⋮ 0 ) , ( 𝑘 11 ⋯ 𝑘 1𝑁 ⋮ ⋱ ⋮ 𝑘 𝑁1 ⋯ 𝑘 𝑁𝑁 )] (4.1)
where 𝛫 = [𝑘 𝑖𝑗 ] 𝑖,𝑗=1:𝑁 is the covariance matrix. The matrix 𝛫 expresses the dependencies between the data points in the input space. To perform a prediction on new data points in the defined input space, consider a new point 𝑥 * with the corresponding predicted response 𝑓 * that can be calculated as follows

( 𝑓 1 ⋮ 𝑓 𝑁 𝑓 * ) ~ [( 0 ⋮ ⋮ 0 ) , ( 𝑘 11 ⋯ 𝑘 1𝑁 𝑘 1 * ⋮ ⋱ ⋮ ⋮ 𝑘 𝑁1 𝑘 * 1 ⋯ ⋯ 𝑘 𝑁𝑁 𝑘 * 𝑁 𝑘 𝑁 * 𝑘 * * )] (4.2)
Consequently, the estimate and the variance of the predicted response 𝑓 * are where 𝛫 * = [𝑘 * 𝑖 ] 𝑖=1:𝑁 is the vector representing the dependencies between the new data point and the constructed input space, and 𝑘 * * is the variance of the new data point. Also, the GP can accommodate a certain level of uncontrollable variations. A noise function can be modeled as a gaussian process. A diagonally distributed gaussian noise with length 𝜏 is added and Equation (4.2) is modified as

( 𝑓 1 ⋮ 𝑓 𝑁 𝑓 * ) ~ [( 0 ⋮ ⋮ 0 ) , ( 𝑘 𝑦11 ⋯ 𝑘 1𝑁 𝑘 1 * ⋮ ⋱ ⋮ ⋮ 𝑘 𝑁1 𝑘 * 1 ⋯ ⋯ 𝑘 𝑦𝑁𝑁 𝑘 * 𝑁 𝑘 𝑁 * 𝑘 𝑦 * * )] (4.4)
where 𝑘 𝑦 is the modified covariance that integrates the noise factor. The modified predicted estimation and variance of the gaussian system is rewritten as

𝐸(𝑓 * ) = 𝛫 * 𝑇 𝛫 𝑦 -1 𝑓 𝑣𝑎𝑟(𝑓 * ) = 𝑘 * * + 𝜏 2 -𝛫 * 𝑇 𝛫 𝑦 -1 𝛫 * (4.5)
where 𝛫 𝑦 = 𝛫 + 𝜏 2 I 𝑑 , I 𝑑 is the identity matrix. Normally, the mean of the gaussian process is centered at zero, but we can integrate a mean function constructed based on the statistical information drawn from data. This function will serve as the initial guess of the model. The gaussian system in (4.4 is further modified and now expressed as

( 𝑓 1 ⋮ 𝑓 𝑁 𝑓 * ) ~ [( 𝜇 (𝑥1) ⋮ ⋮ 𝜇 (𝑥 * ) ) , ( 𝑘 𝑦11 ⋯ 𝑘 1𝑁 𝑘 1 * ⋮ ⋱ ⋮ ⋮ 𝑘 𝑁1 𝑘 * 1 ⋯ ⋯ 𝑘 𝑦𝑁𝑁 𝑘 * 𝑁 𝑘 𝑁 * 𝑘 𝑦 * * )] (4.6)
where 𝜇 (𝛸) = ∑ 𝛽 𝑗 𝑗 𝑓 𝑗 (𝑥 𝑖 )) is the mean function, and 𝛽 𝑗 is the regression coefficient.

Finally, the modified predicted estimate and variance of the gaussian system are rewritten as follows

𝐸(𝑓 * ) = 𝜇 (𝑥 * ) + 𝛫 * 𝑇 𝛫 -1 (𝑓 -𝜇 (𝛸) ) 𝑣𝑎𝑟(𝑓 * ) = 𝑘 * * + 𝜏 2 -𝛫 * 𝑇 𝛫 𝑦 -1 𝛫 * (4.7)

Model Expression

To construct our gaussian model, we will need to define these 3 terms: the mean term, the covariance term, and the noise term. Our gaussian system is defined as

𝕐(𝕏) = 𝐌(𝕏) + 𝐄(𝕏) + 𝛆(𝕏) (4.8)
where 𝕐(𝕏) is the system response at all the data points 𝕏 = [𝑋 𝑖 ] 𝑖=1:𝑁 = [(𝑥 𝑝 , 𝑥 𝑠 ) 𝑖 ] 𝑖=1:𝑁

;

where 𝑥 𝑝 and 𝑥 𝑠 represent the corresponding laser power and scan speed respectively; 𝐌(𝕏) represents the mean term; 𝐄(𝕏) represents the effect term or the covariance term;

and 𝛆(𝕏) is the error term.

In our case, the mean function is a sum of a constant basis function with coefficient 𝛽 0 and a linear basis function with coefficient 𝛽 𝑖 for the corresponding input values 𝑥 𝑖 .

The mean function is expressed as the follows

𝐌(𝕏) = [ 𝛽 0 𝛽 1 𝛽 2 𝛽 3 𝛽 4 𝛽 5 ] [ 1 𝑥 𝑝 𝑥 𝑠 𝑥 𝑝 𝑥 𝑠 𝑥 𝑝 2 𝑥 𝑠 2 ]
(4.9)

Based on results of statistical analysis in Subsection 4.3.2, we can conclude that the interaction terms 𝑥 𝑝 𝑥 𝑠 , and the terms to the second degree 𝑥 𝑝 2 and 𝑥 𝑠 2 are not significant. Then we can reduce the model size by excluding these terms. The mean term is expressed as follows

𝐌(𝕏) = [𝛽 0 𝛽 1 𝛽 2 ] [ 1 𝑥 𝑝 𝑥 𝑠 ] (4.10)
To capture the spatial dependency between any 2 data points (𝑋 𝑖 , 𝑋 𝑗 ) in the input space and the nonlinear effects that cannot be captured by a linear model, we introduce the effect term 𝐄(𝕏), which is defined as a gaussian process with zero mean and a covariance matrix 𝛫 and expressed as

E(𝕏) ~ N(0, 𝛫) (4.11)
where 𝐾 = [𝑘 𝑖𝑗 ] 𝑖,𝑗=1:𝑁 is the covariance matrix. The choice of the proper covariant (kernel) function 𝑘 depends on the knowledge of the process and there is no rule of thumb to select the best function. Several kernels are available and used in spatial modeling, such as squared exponential, exponential, matérn, and rational quadratic kernels. We will follow the recommendation of [START_REF] Michael L Stein | Interpolation of spatial data: some theory for kriging[END_REF] and employ the matern kernel family, which is commonly used in GPs. The matern function is expressed as is the distance equation, 𝑍 = 𝑋 𝑖 -𝑋 𝑗 is the separation vector between 2 data points 𝑋 𝑖 , 𝑋 𝑗 in the input space, 𝑧 𝑝 = 𝑥 𝑝(𝑖) -𝑥 𝑝(𝑗) and 𝑧 𝑠 = 𝑥 𝑠(𝑖) -𝑥 𝑠(𝑗) , 𝜎 2 is the kernel variance, λ 𝑝 and 𝜆 𝑠 are the range parameters for the input data constructing the input space, namely the power 𝑥 𝑝 and the speed 𝑥 𝑠 respectively. Finally, the error term is also a gaussian covariance and expressed as follows

𝑘(𝑥 𝑖 , 𝑥 𝑗 |∅, 𝜌) = ∅ 2 1-𝑣 Γ(𝑣) ( √2𝑣 𝑟 
𝛆(𝕏) ~ N(0, [𝜏 2 I 𝑛 ] ) (4.14)
where 𝜏 2 is the error variance, and I 𝑛 is the identity matrix.

Model Construction: Inference

To solve the system and perform predictions, the model parameters (or hyperparameters) need to be inferred based on the collected data. We denote the model parameters as 𝜃, which is a vector containing all other parameters that must be estimated, where 𝜃 = [ 𝛽 0 𝛽 1 𝛽 2 𝜎 2 𝜏 2 𝜆 𝑝 𝜆 𝑠 ]. To estimate these parameters, 2 approaches are possible: frequential and bayesian approaches. One weakness of the frequential approach is that it does not capture uncertainty in data. Therefore, the bayesian approach is widely used in machine learning applications and is preferable when estimating a probability of hypotheses [START_REF] William | Introduction to Bayesian statistics[END_REF][GCS + 13].

Bayes' Theorem

Bayesian inference expresses the degree of belief in the initial value of 𝜃, then after The prior must reflect our belief and knowledge of these parameters. Since there is no such thing as an ultimate prior, several criteria exist to aide in the selection of a justifiable prior for each parameter 𝜃. Here, we will privilege the computational advantage offered by the prior. This is represented in the form of the conjugacy between the likelihood function and the prior. Also, we will avoid using any flat or vague priors, if possible, since their usage is not recommended [START_REF] Gelman | The prior can often only be understood in the context of the likelihood[END_REF]. The joint prior probability density is expressed as follows

For 𝛽 = [𝛽 0 𝛽 1 𝛽 2 ], we select a weakly informative prior. This choice reflects our knowledge of these parameters since we have no information regarding their limits or signs. Also, this weakly informative prior is a safe and a preferred selection compared to the selection of a precise prior that may heavily influence the posterior distribution and rules out acceptable values. Finally, to respect the conjugacy condition between the likelihood and this prior, we select a multivariant normal prior for 𝛽. For an unknown parameter 𝜇, it can be mathematically shown that for a normal likelihood function 𝑝(𝑥 𝑛 |𝜇, ∅ 2 ) and a normal prior 𝑝(𝜇) with mean 𝜇 0 and variance ∅ 0 2 , the estimated posterior 𝑝(𝜇 𝑝𝑜𝑠𝑡 |𝑥 𝑛 ) is also a normal distribution [START_REF] Murphy | Conjugate bayesian analysis of the gaussian distribution[END_REF] with mean 𝜇 𝑛 and variance ∅ 𝑛 2 such that 𝑝(𝜃) = 𝑝(𝛽 0 ) 𝑝(𝛽 1 ) 𝑝(𝛽 2 ) 𝑝(𝜎 2 ) 𝑝(𝜏 2 ) 𝑝(𝜆 𝑝 ) 𝑝(𝜆 𝑠 ) (4.18)

𝜇 𝑝𝑜𝑠𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝜇 𝑛 = ∅ 𝑛 2 [ 𝑛 ∅ 2 ( 1 𝑛 ∑ 𝑥 𝑖 𝑛 𝑖=1 ) + 𝜇 0 ∅ 0 2 ] , ∅ 𝑛 2 = ∅ 2 ∅ 0 2 ∅ 2 + 𝑛 ∅ 0 2 ) (4.19)
The prior is expressed as follows where 𝜇 0 is the prior mean vector, and 𝛫 0 is the prior covariant matrix. For the variance parameters 𝜎 2 and 𝜏 2 , an inverse gamma prior distribution is selected, which is a common However, since each parameter 𝜑 is strictly positive, the proposal distribution must be skewed towards positive values. Consequently, the proposal correction factor is integrated since 𝑞(𝜑 * |𝜑) ≠ 𝑞(𝜑|𝜑 * ). We define the proposal distribution such that where 𝑧 is the scale factor. The selection of the parameter 𝑧 conditions how fast the parameter convergences. There is no rule of thumb for this selection. However, the best value for 𝑧 can be approached by visualizing the convergence plot and calculating the acceptance ratio using Equation (4.29).

Figure 4.8 illustrates the simulation results using multiple 𝑧 selections. For the variance parameters 𝜎 2 and 𝜏 2 , a default value of 𝑧 = 1 is selected. MH simulations for 2000 iterations (500 burn-ins) was run to test the convergence of the distributions of both parameters. However, the distributions do not seem to converge for either parameters.

The low acceptance ratios (8% and 5% respectively) indicate a poor mixing. Therefore, we can conclude that the jumping distance is high, and a lower value must be tested. As the jumping distance decreases, the chains become better mixed and the acceptance ratio increases. Generally, if the proposal distribution generates a chain with an acceptance between 40% and 60%, then it is considered as optimal [GCS + 13].

The acceptance rates are illustrated in Figure 4.8. We can conclude that a proposal of z = 0.05 is acceptable for both variance parameters. For the range parameters λ p and λ s , a default value of z = 1 is also selected. The same convergence test protocol is employed as for the variance parameters. To achieve the wanted acceptable ratio, a proposal value of 2 is adopted for both range parameters. the inference protocol will continue updating the values for each parameter 𝜃, either by using gibbs sampler or the metropolis hasting sampler. The result of this inference depends on several factors such as the running time, the convergence rate, the warmup period, and the starting value. These factors control the speed and accuracy of convergence of the chain.

[ 𝜎 2 ] 57% 39% 12% 8% - - [ 𝜏 2 ] 48% 32% 11% 5% - - [𝜆 𝑝 ] - - - 76% 71% 60% [ 𝜆 𝑠 ] - - - 61% 50% 

Statistical Inference: start values, burns-ins, and thinning intervals

We select a default 5000 iterations. To start the inference protocol, we set the starting values 𝜃 (0) . Figure 4.10 illustrates difference inference chains for each parameter 𝜃 for different 𝜃 (0) . Inference chains that start from different points converges differently. 

θ (0) = [β 0 (0) β 1 (0) β 2 (0) σ 2 (0) τ 2 (0) λ p (0) λ s (0) ] t < N t ? t = t +1 t = N
(t+1) = [β 0 (t+1) β 1 (t+1) β 2 (t+1) σ 2 (t+1) τ 2 (t+1) λ p (t+1) λ s (t+1) ]
Thus, this requires examining parallel chains with different starting points. Based on the selected convergence plot, the proper burning size to neutralize the effect of starting values is chosen.

For regression coefficients [𝛽 0 𝛽 1 𝛽 2 ], the chains mix violently before reaching 1000 iterations, as shown in Figure 4.10 [b], before stabilizing. For variance parameters [ 𝜎 2 𝜏 2 ], the chains with large starting points converge slowly towards the target distributions. For range parameters [ 𝜆 𝑝 𝜆 𝑣 ], a noticeable change in convergence is not observed between chains with small and with big start values. This is because our selection of the prior distribution was specific and restricted the inference chain. To remove the 

[𝛽 0 ] [𝛽 1 ] [𝛽 2 ] [ 𝜎 2 ] [ 𝜏 2 ] [ 𝜆 𝑝 ] [ 𝜆 𝑠 ] [𝑎] [𝑏]
effect of the starting value, we proposed a burn-in of 15000 iterations. The remaining 3500 iterations are saved as the posterior distribution and illustrated in Figure 4.11 (after discarding the burn-ins). The inference chains produce dependent samples as each iteration depends on the previous state, and as the chain advances, these dependencies become smaller.

Thinning consists of selecting one sampled value at each 𝑘 𝑡ℎ position in the inference chain. As the value of 𝑘 increases, the samples become more independent. Thinning can be proven advantages as it reduces the computational cost, as running unthinned chains can last longer for the same set of inference conditions [START_REF] Owen | Statistically efficient thinning of a markov chain sampler[END_REF]. To determine the level of dependencies between the samples, we calculate the autocorrelation coefficient. Figure 4.12 illustrates the autocorrelation plots for each parameter 𝜃. For regression coefficients [𝛽 0 𝛽 1 𝛽 2 ], the sampling process produces independent samples, which can be noticed from the corresponding plots in Figure 4.12. For the other parameters, we observe that the closer the intervals (lags), the higher the correlation, thus the lower the randomness level. We select a lag value of 50 to remove these dependencies.

[𝛽 0 ] [𝛽 1 ] [𝛽 2 ] [ 𝜎 2 ] [ 𝜏 2 ] [ 𝜆 𝑝 ] [ 𝜆 𝑠 ]
As a result, this will thin the sampled chains by only selecting each 50 th sample and reducing the inference chain size. The important indicators related to the posterior 4.2, and illustrated in Figure 4.11. The negative mean value for 𝛽 1 corresponding to the laser power 𝑥 𝑝 . This is contrary to the positive 𝛽 2 corresponding to the scan speed 𝑥 𝑠 . This is reassuring as it confirms the effect of the ratio power/speed on the porosity (porosity decreases with higher 𝑥 𝑝 and increases with higher 𝑥 𝑠 ).

[𝛽 0 ] [𝛽 1 ] [𝛽 2 ] [ 𝜎 2 ] [ 𝜏 2 ] [ 𝜆 𝑝 ] [ 𝜆 𝑠 ] [𝑎] [𝑏]

Model Construction: Prediction

Here, we will perform porosity predictions using data The objective is to predict the value of a new data point in the input space 𝑌 ( * ) ,

which is positioned at new coordinates 𝛸 * = (𝑥 𝑝( * ) , 𝑥 𝑠( * ) ), using the statistical inference obtained from data, specified in Figure 4.9, for each hyperparameter θ = [β 0 β 1 β 2 σ 2 τ 2 λ p λ s ]. This value of this new data point is estimated using Equation 

Gaussian Prediction Protocol

The protocol is presented in 4.3 illustrates some of these indicators [START_REF] John D Kelleher | Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies[END_REF]. Performing statistical predictions using the proposed protocol in Figure 4.13 is dependent on several factors including the model formulation, number of predictors, the selected CV method, the number of experimental points in the input space.

𝑀𝑆𝐸 = [∑ (𝑌 (𝑖) -𝑃 (𝑖) ) 2 𝑁 𝑖=1 ] 𝑁 𝑅𝑀𝑆𝐸 = √[ [∑ (𝑌 (𝑖) -𝑃 (𝑖) ) 2 𝑁 𝑖=1 ] 𝑁 ] 𝑀𝐴𝐸 = [∑ ⌈𝑌 (𝑖) -𝑃 (𝑖) ⌉ 𝑁 𝑖=1 ] 𝑁 𝑅 2 = 1 - [ [∑ (𝑌 (𝑖) -𝑃 (𝑖) ) 2 𝑁 𝑖=1 ] 𝑁 [∑ (𝑌 (𝑖) -( 𝕐 𝑁 )) 2 𝑁 𝑖=1 ] 𝑁 ] Table 4.

Accuracy Estimation Indicators

Effect of Model Selection on the Predictive Accuracy

The selection of the model terms and the number of predictors in each term has a great impact on the level of predictive accuracy of the model. However, R 2 is dependent on the number of predictors in the model. The higher the number of predictors, the higher the R 2 index. Thus, another indicator is used as well to confirm the observed trend. Mean Square Error (MSE) is a popular choice, which measures the average squared difference between observations and predictions for each data point in the input space. Using MSE indicates a better performance of Model 4, which has the lowest MSE. Since MSE represent an error metric, the accuracy percentage is calculated as (1 -MSE) *100, indicating a precision of 82.36%. For the rest of the analysis, we will only use Model 4.

Performing predictions on unmeasured Input Space

Using the results obtained from the cross validated model, Figure 4.15 illustrates the predictions and the corresponding standard error, which correspond to the reliability in the corresponding predictions. The Standard Error (SE) is calculated as the square root of the gaussian variance calculated in Equation(4.31).

phenomena. Similarly, the increase in laser power and the decrease in scan speed reduces the level of porosity (blue zone), as the laser power is sufficient to melt the powder. The predictions mapping indicated a porosity of less than 0.5% can be anticipated given a scan speed of 300 mm/s and a scan power of 49 W. The standard error is observed to be lower than 0.39 over all the input space. Then it increases gradually when we reach the edges of the designated input space to reach 0.44.

Effect of Cross Validation of the Predictive Accuracy

As explain in Subsection 4.3.6, the holdout portion of the data [𝔻 ℎ𝑜𝑙𝑑𝑜𝑢𝑡 ] is used to test the generalization capabilities of the model. We choose to employ the LOO CV method, where the size of [𝔻 ℎ𝑜𝑙𝑑𝑜𝑢𝑡 ] is one, and the rest that is used to train the model 

Effect of Data Size on the Standard Error

To improve the reliability of the predictions, we supplemented the original data (42 points) with more data provided by [START_REF] Tapia | Prediction of porosity in slm parts using a mars statistical model and bayesian inference[END_REF][TES16][Appendix A]. The simulations illustrate that the standard error decreases with the increase in the data size, as the variability decreases. Figure 4.17 illustrates the difference in SE for different data set sizes.

When only 30 experimental data points are used, the standard error value is the highest.

The more data points are added, the SE gradually decrease in the entire input space. We can observe that, and for each case, the SE at the limits of the input space is always higher that the remaining areas.

[GRSS13][Appendix A]. The author followed an experimental approach and measured 52 specimens, and only two targeted features were varied: scan power (P) and scan speed (S). However, contrary to the previous example, the power/speed interaction was not negligible, as seen in Figure 4.18. The energy density was calculated using the following input parameters: scan power ranged from 40 to 160 W and scan speed ranged between 100 to 1600 mm/s. Other parameters were not varied during the experimentation.

The same steps were taken as explained in Subsection 4.3. Of course, the statistical inference protocol was adapted to this set of data (Figure 4.9). The mean function was modified to integrate a new interaction term such that where 𝛽 3 is the regression coefficient of the interaction terms 𝑥 𝑝 𝑥 𝑠 .

As Figure 4.19 illustrates, and for this set of data, the addition of the interaction term allows to map the entire input space based on the limited experimental points. Also, the model can capture the nature of the data in the input space, which displays a quadratic behavior, contrary to the porosity predictions in Figure 4.15, which display a linear behavior. The associated SE exhibit the same behaviour in this data set as the example above, where the edge of the input space is subjected to larger SE. To evaluate the effect of the added interaction term, we compared the coefficient R 2 of a model that integrates this term to another that does not. A higher R 2 of 0.84 is obtained when the interaction The ability to supply fully dense parts that can resist high stress applications is imperative, especially for the medical and the aerospace sectors.

In this Chapter, we propose a detailed experimental design approach to manufacture and measure test specimens. This approach is based on identifying several design elements. Applying Design of Experiment will allow the investigation of the relation between pores characteristics and the process parameters. Also, we implement a tomographic analysis protocol to investigate the internal structure of several specimens to obtain the main characteristics related to the porosity. This includes porosity percentage and the pores internal spatial distribution. A case study is presented as well to test the proposed protocol. 

Target Factors and Measured Response

In experimental designs, the target factors are those factors subjected to variations during the experiment to examine their effect on the specified response. The selected response usually corresponds to a selected specimen attribute such as density and roughness, or to a defined process performance level such as lead time or process capability. This attribute is measurable and quantifiable.

The porosity of SLM-manufactured specimens is investigated in literature using different experimental approaches, which can be divided based on the number of tested factors. Simple one-dimensional experimental design is rarely conducted, where only one factor is varied such as the scan speed to investigate its effect on the porosity [START_REF] Adriaan B Spierings | Comparison of density measurement techniques for additive manufactured metallic parts[END_REF]. 

Specimen Dimensions

The selection of dimensions of the majority of experimental specimens is influenced by the nature of the measured response. For example, when studying the meltpool characteristics, authors usually tend to build simple cords [KEDG + 

Experimental Plan

The selection of the proper experimental plan reflects the need to maximize the information gain and to limit the number of experiments. Based on the desired statistical efficiency, several DOE approaches can be implemented. However, numerous authors do not implement a precise experimental plan, but rather prefer to follow the manufacturer's recommendations or choose to examine the effect of specific factors. The target factors are those factors subjected to change during the experiment to examine their effect on the specified response. Several points are considered when selecting these factors. For example, and in order to not overload the experiment with unnecessary factors that can affect the statistical conclusion, only a limited number of factors are selected. Also, the manufacturer must verify if the ranges for each factor and the combinations of different factors levels can be reached while evading building failure conditions. The selected response usually corresponds to a selected specimen attribute such as density and roughness, or to a defined process performance level such as lead time or process capability. The measured response is the characteristics of the porosity. The level of porosity is evaluated as the ratio of the specimen measured volume to its nominal volume. This ratio is expressed in percentage. Other characteristics of the porosity such as the pores location, size, and shape were also considered.

Three targeted factors were selected: Scan Laser Power (W), Scan Speed (mm/s) and Scan Hatching Distance (µm), and the ranges of each factor are listed in Table 5.2.

All other factors such as layer thickness, bed temperature, and beam size were kept fixed during the experimentation. The selection of these factors and their respective range is selected based on several considerations such as the examination of literature, the technical limitations, and the recommendations of the machine operator. where fixed for each of the three target factors (Table 5.2). Two sets of 8 specimens were manufactured. Both sets were manufactured using the same parametric configuration. The height was 5mm in the first set and 8mm in the second set, respectively.

In the second plan (Figure 5.2 [b]), more specimens were manufactured. We adopted the taguchi's method and defined 5 levels for each of the three selected target factors, and this resulted in a total of 25 specimens. To make sure that the statistical analysis yields a high statistical significance, 2 levels were removed for the hatching factor.

Specimens with the same parametric configuration as the first plan were added to test the repeatability of porosity measurement. More specimens were added afterwards to make sure not to leave empty areas in the experimental design space. The contour of all the specimens were manufactured with a constant scanning power and speed of 190W and 1600mm/s, respectively. Most of additively manufactured specimens are geometrically simple and small in size. The shape and size are selected based for several considerations. Cylindrical-shaped specimens were built. The diameter of all manufactured specimens is 5mm and the height varies between 5mm and 8mm. A small conic-shaped base is added to facilitate the separation from the subtract plate. Manufacturing cylindrical specimens allow to reduce powder usage compared to rectangular specimen. Also, taking into consideration the nature of the CT scanning machine, cylindrical specimens allow to reduce the images acquisition error.

Material/Machine

The specimens were manufactured using Inconel 718 (IN718) with a relative density of 8.35 g/cm 3 . This material is affordable and adaptable to laser sintering and used for diverse applications. Before the layering process, the raw powder was charged in the chamber and the preheating was not required. AddUp Manager Software was used to construct the building file containing the position of each specimen and the corresponding target factors configurations (Figure 5.2). Layer thickness was kept constant at 40µm, and the other process conditions were kept at their default value.

After the layering process is completed, the plates containing the specimens were removed from the build chamber (Figure 5.2). The specimens were numbered, and each number corresponds to the configurations used during the layering process. The excess powder was vacuumed, and the plates were cleaned using water jet. No post-treatment was conducted. To separate them from the plate, Wire Electrical Discharge Machining (EDM) was used. The specifications of the FormUp350 SLM machine are detailed in Figure 5.3.

Measurement Technique

Three measurement techniques were envisioned: Archimedes method as the primary measurement method, Optical Microscopy, and x-ray tomography. However, only CT scan measurement were performed. CT allow the identification of the root causes of structural problems based on their criticalness level. CT scan has been used in many areas including geoscience studies [START_REF] Cnudde | High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications[END_REF], metrological analysis [KBC + 11], building materials [START_REF] Du | A review of x-ray computed tomography of concrete and asphalt construction materials[END_REF], biological materials [START_REF] Du Plessis | Laboratory x-ray micro-computed tomography: a user guideline for biological samples[END_REF], and in several applications in the industrial sector [DCCK + 14]. However, because of the cost and the time-related drawbacks of this technology, it is not used in large series production. Also, CT scan suffers from results comparison and traceability-related challenges [START_REF] Carmignato | Accuracy of industrial computed tomography measurements: experimental results from an international comparison[END_REF].

CT scan tomography generates 2D images at various angles of a sample part placed on a rotating plate. These images are created by registering the constructed projections of the x-rays using a detection device. A 3D virtual volumetric pixel model is rendered using an approximation algorithm to distinguish between the borders of the scanned sample and the surrounding air (segmentation). Each pixel is assigned a grayscale value based on the density of each pixel. The specifications of the CT scan machine are detailed in Figure 5.3.

CT Scanning Tomography Applications in Additive Manufacturing

In the case of AM, CT scan has been used for a variety of applications. This includes dimensional measurement and metrology, especially for evaluating internal geometries or sensitive flexible areas, where the usage of Coordinate Measuring Machine (CMM) is not suitable [START_REF] Villarraga-Gomez | Dimensional metrology with x-ray CT: A comparison with measurements on internal features and compliant structures[END_REF]. Also, CT scan is used to identify the mechanical performance of additively manufactured parts. For example, this includes the determination of the stress resulted from loads and the associated elastic modulus The most prominent use of CT scan in AM is to identify the optimal operational conditions to reduce internal defects. CT scan can give indications to the stability of the process by identifying the characteristics of pores such as shape and position. For example, irregular keyholes porosity is a sign of an excessive energy input and meltpool evaporation [KBC + 14]. If the input energy is not sufficient, then inhomogeneous interlayer pores are produced, which can lead to a difference in melting speed from one region to another.

Additionally, the effect of postprocessing methods such as Hot Isostatic Pressing (HIP) can be observed on pores closure using CT scan [START_REF] Du | Investigation of porosity changes in cast ti6al4v rods after hot isostatic pressing[END_REF]. Also, the layering process conditions such as scanning strategy/orientation/spacing/speed can be tuned to reduce porosity and produce high dense part [START_REF] Nesma T Aboulkhair | Reducing porosity in alsi10mg parts processed by selective laser melting[END_REF]. Other layering conditions such as layer thickness, particle size distribution, powder manufacturing process and their respective ranges have been identified as critical to the shape and formation of pores using CT scan [START_REF] Cacace | Densification mechanism for different types of stainless-steel powders in selective laser melting[END_REF].

P roposed Experim ental D esign for A dditive M anufacturing

The raw data obtained from the CT scanning process cannot be used directly to identify the characteristics of the porosity and must undergo multiple consecutive steps. In this Section, we illustrate the results of the measurements performed using CT scan tomography. Figure 5.4 regroup these tasks into 3 main steps. Each of the following Subsections gives a detailed explanation of each step.

Data Acquisition and 3D Virtual Volume Construction

One specimen was CT scanned. 

Construction

The definition of the Region of Interest (ROI) is an important step. This is because the data in its raw format cannot be used to obtain any information about the internal structure, as we cannot distinguish between the scanned material and its surrounding.

The data is represented as a collection of pixels constructing the 3D virtual volume and its surrounding. ROI is needed to differentiate between the scanned virtual volume and the surrounding noise. All calculations of porosity are limited to this ROI. Three steps are followed to identify ROI as explained below.

Data Preparation

The virtual volume is treated as a succession of images or images stack. As the initial images stack obtained after the scanning process does not provide any usable information, we used the auto brightness function to increase the pixels identification and saturation between the scanned specimen and its surroundings based on the slice's threshold histogram This was applied to the entire images stack. We removed the slices constructing the conic base. This reduced the number of slices to 2190 slice. During the layering process, each build layer has a layer thickness of 40µm. Given the fixed resolution of 2.2µm/pixel chosen during the acquisition stage, each layer is represented by approximately 18 slices, as shown in (Figure 5.

[e]).

Definition of ROI

To define ROI, the surrounding external noise around the 3D volume is removed. Finally, the external noise around the defined boundaries is eliminated. The external noise manifests in each image as any non-black pixels outside the ROI defined by the segmented contour. This is done though identifying each pixel outside ROI with a grey value and reducing the said value to zero. This is equivalent to a void or a non-material region, as shown in Figure 5.6 [e].

Volume Filtering Protocol

To measure the level of porosity, pores inside the 3D volume must be distinguishable from its surrounding inside the area covered with the segmented spline.

The common approach is to assign a certain value to the pixels constructing each pore, then to measure the porosity using pixel counting method. Pores are considered as a lackof-material area with grey value of zero. The total porosity is then estimated as the number of black pixels divided by the overall number of pixels. For this purpose, a volume filtering protocol is proposed and illustrated in Figure 5.7.

After the image is prepared as illustrated in (Figure 5. ). This protocol is applied on the entire images stack. 

Data Analysis and Porosity Estimation

In this subsection we illustrate several key results related to the porosity characterization. This includes the porosity level, morphology, and the spatial distribution inside the scanned specimen.

Pores Spatial Distribution

ImageJ has several plugins and in-built tools that allow the identification of pores characteristics. Each pore is represented by a cluster of black voxels (voids) surrounded by white voxels (material). Pores sphericity and diameter are indicators for pore morphology.

Sphericity Index is calculated as the normalized ratio between the squared volume and the cubic area and expressed as 𝑆𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 36𝜋 𝑉 2 𝐴 3 (5.1)

where 𝑉 = 4 3 𝜋𝑟 3 and 𝐴 = 4 𝜋𝑟 2 . A perfect sphere will have an index of 1.

Figure 5.8 shows that 87% of the pores have a sphericity index between 0.4 and 0.8.

This indicates that most of the pores are irregular in shape. Also, the sphericity of pores provides information concerning the selection of the layering conditions. Given the limited number of pores that exceed an index of 0.8, we can assume that porosity was not the result of trapped gases inside the feedstock material, since these types of pores are usually spherical [STWC + 20]. Consequently, the conditions related to material preparation and disposition on the powder bed were acceptable. The pores between these 2 ranges are those with diameter less than 1µm. Also, we can notice that the larger the diameter of a pore, the lower its sphericity index, thus the more irregular its shape.

Figure 5.9 illustrates the projections of each pore in the three orthogonal views.

These pores are mainly concentrated in 2 regions: the center and the edges of the specimen.

The pores at the center of the specimen extend from the top layer to the bottom layer.

These pores are generated as a result of the layering conditions and the scanning conditions.

At the center of the specimen the high concentration of pores can be explained by the acquisition error, which is the main reason of pores clustering in this area. These pores are not considered as the result of the layering process, and consequently are removed from porosity estimation. The pores at the edges of the specimen can be the result of the difference in parametric configurations between this area and the rest of the internal space.

While the parametric configuration for this specimen is mentioned in Figure 5.5, the edges Pore 1 is not considered as a pore as it represents the acquisition error and is not a real pore. Pores 2,3,9 were not detected by ImageJ and Pore 10 is not detected by VGStudio.

For the rest of the pores, they are detected, and the spatial positions are similar when using both the proposed protocol and VGStudio. However, the number of voxels representing each pore is different. This is mainly due to the intrinsic difference between VGStudio surface determination and ImageJ 3D objects detection algorithms.

Also, we can notice that VGStudio always overestimates the volume of pores by using more representative voxels, and the larger the pores the larger the difference. For large pores such as pore 4 and 5, the difference in volume is around 50%, and for smaller pores such as pores 6,7, and 8, the difference is around 5%.

Porosity Estimation

After the image stacks are processed as illustrated in Figure 5.7, the percentage of porosity is calculated as the ratio between the material volume represented by white voxels and the internal voids represented in black voxels. The porosity is not calculated directly as ImageJ does not consider black voxels when performing volume calculations, and this is done as follows 𝑉 𝑝(%) = (1 -𝑉 𝑚 𝑉 𝑡 ) * 100 (5.2)

where 𝑉 𝑝 is the pores volume; 𝑉 𝑚 is the material volume, and 𝑉 𝑡 is the total volume. 𝑉 𝑡 is calculated by filling all the pores with material to obtain a 3D bulk volume.

Area-based calculation identifies the edges of each image and the volume for an image 𝑖 in the images stack as 𝑉 𝑡(𝑖) = 𝐴 𝑡(𝑖) * ℎ; where h is 2.2µm and corresponds to the thickness of each image, and 𝐴 (𝑖) is the surface area of a pore free specimen. 𝑉 𝑚 is calculated as the 𝑉 𝑡 while considering the internal black voxels. To verify the result using the above method, another Volume-based calculation is also performed using BoneJ plugins 5.9) are of different types based on how they are generated. These pores can either be interlayer pores resulted from the layering process parametric configuration, or they can be generated as a product of the CT scan data acquisition protocol. For the purpose of these calculations, the second type of pores are not considered. This type of pores is characterized by position, size, and morphology. an experimental approach to manufacture test specimens, which were built with different parametric configurations. Our focus was to investigate the effect of a selected target factors on the level of porosity. For this reason, a tomographic scan and a measurement analysis protocol were proposed, which depend on purifying the acquired images and on creating voxel-based representations of the detected pores. A study case of one specimen was carried. The images analysis protocol allowed the identification of internal pores and the associated spatial position, size, and morphology were evaluated.

However, we were not able to continue the measurement of other specimens.

Also, comparing the different measurement techniques, such as Archimedes method to the tomographic measurement results was not possible as well. Also, based on this work, several future research opportunities and improvements can be envisioned.

C onclusion and C ontribution

The work in this thesis is the culmination of multiple tasks that were defined and detailed in each chapter. Firstly, a review and a summary of the challenges facing AM was presented, and a review of the main fields of challenge were listed. A special focus was given to the improvement approaches of the end-quality of additively manufactured parts. The porosity is viewed as one of the major causes of parts failure, and the sources of pores generations were traced to the manufacturing phase. This is done through using the value chain analysis, where the targeted value is the control of the porosity during the layering process. Based on this, the set of parameters affecting the level of porosity in additively manufactured parts were identified.

The following task consists of identifying the Key Characteristics. A review of the concept of key characteristics was conducted. This concept is used by manufacturing entities as method to reduce waste work and to optimize the development phase. After narrowing the area of study regarding the parameters affecting the porosity, we proposed a set of filters and rules which allow to use this concept in the case of Additive

Manufacturing. These rules are based on process knowledge, on identifying the correlations to the targeted response, and based on statistical analysis.

Following this, a detailed approach to construct predictive statistical models was Lastly, we reviewed multiple experimental designs performed in the context of AM.

The objective was to generate a local set of experimental data to examine the performance of the statistical model and to study the behaviour of the machine/material and the manufacturing conditions on the level of porosity. Based on this review, we proposed a design of experiment approach where three target factors were varied, which was conducted in the LURPA laboratory and the specimens were manufactured using FormUp350 SLM machine. The selected specimens were then scanned to examine the properties of pores. A three-stage protocol was proposed, which consist of data acquisition, images filtering and porosity analysis of scanned images.

Research Limitations

Although several efforts contributed in this work, it did not go without some hinders. The experimental measurement was not conducted as planned due to the global sanitary situation (Covid-19) and the inaccessibility to laboratory equipment's. We envisioned comparing the tomographic measurements with other measurement methods such as Archimedes method. However, these experimental measurements coordinated with LNE laboratory were no longer possible due to the lock down. Due to the unpredicted malfunction of the CT scan, the tomographic measurements of other specimens were not conducted. For this reason, only historical data were used for the validation of the statistical model. Also, because of the lack of accuracy of the Archimedes method for such a low porosity rate in the specimens, the measurement using this method was not conducted.

P erspective and Future R esearch P aths

The work done in this report provides a basis for further research paths. Several fields of improvements can be exploited. In this section, 4 areas of improvement are proposed in this Section (Figure 6.1).

Input As we only incorporated numerical descriptive features in our model, the use of indicator parameters is one method to integrate categorical descriptive features such as the build orientation, the type of the powder spreading mechanism (roller or blade), and the metallic powder type. Finally, one last area of exploitation is through modifying the noise terms to incorporate the uncertainty related to the measurement of the descriptive features such as the laser power and the scan speed.

Measurement Comparison

To examine the repeatability of porosity measurements, several specimens were manufactured with the same parametric configurations in both experimental plans, as mentioned in Subsection 5.2.2. These measurements couldn't be carried out in LURPA, To validate the CT scanned images treatment protocol proposed in Chapter 5, more specimens must be scanned using the same protocol. This is followed by a phase of layering parameter optimization based on the collective knowledge obtained from the scanned specimens. Due to CT machine accessibility related issues, only one specimen was scanned. A continuation of this work would be to carry measure on the specimens 2, 3, and 8 in the first experimental plan. These specimens share the same parametric configuration as the scanned specimen 4, but with only one changed target factor's level at a time. This will allow the identification of the effect of each factor on the pore's spatial distribution.

Multi-KCs Identification

As mentioned in Chapter 3, the proposed Key Characteristics for Additive Manufacturing (KCAM) identification protocol is a generic approach that can be applied any category of AM process. In this work, we limited the usage of KCs to the manufacturing phase and only considering the porosity level. A further step would be to consider the material production phase and to consider all the quality aspect of the manufactured part.

Target Factors in the Experimental Plan

One area of improvement that can be incorporated to the experimental design approach proposed in Chapter 5 is the selection of the target factors. Several factors such as the layer thickness and powder size distribution were proven to have a non-negligible impact on the end-quality of additively manufactured parts. However, the selection of target factors in this work was conditioned by several technical limitations related to the machine limits, the availability of the raw material and geometrical simplicity of the specimens. Thus, and because of these limitations, only three target factors. A future and more sophisticated experimental plan integrating more factors can be envisioned.
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  Figure 2.1 illustrates the main steps in which change was brought to the industrial sector. The main points that characterize this revolution are the increase in the production rate, the invention of new machines, and the discovery of new sources of energy. At the end of the 18th century, the invention of the steam engine that burned coal allowed the mechanization of minerals extraction from deep mines. At the same period, the emergence of locomotives and the implementation of metal shaping techniques transformed the structure of the agriculture-based societies to a more industrialized-based economy. One century later, the invention of electricity has accelerated the urbanization and the widespread of factories. In the middle of the 20th century, the need to mechanize and automate production emerged, and the rise of nuclear energy and computers opened the door for integrating high speed machining and programmable control in the industrial sector [All09].
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  Key Characteristics for Additive Manufacturing Summary| In the case of PBF, any optimization attempts to improve the part's attributes or to improve the process performance can be proven difficult

[ Tho99 ]

 Tho99 Key Characteristics are those features that are important to customer satisfaction and require special control. Identifying features as important or critical does not make them good Key Characteristics. If manufacturing cannot economically measure and chart such features, then the basic requirement of a Key Characteristic -statistical control and process

  [START_REF] Pilling | Key characteristics: the key to a robust product design[END_REF][Tho99][ZML + 08].threshold. Identifying which of the product's features can be classified as key can be achieved using several strategies. These strategies depend on how KCs are defined and classified, as summarized in Subsection 3.1.2.If the KCs are not previously identified, then the manufacturing phase actors can address the variation sources in each stage, then monitor how these variations affect the final products. Most variation identification models are based on identifying the relation between a specified set of parameters and the product dimensional measurement. During the design stage, identifying KCs in this early phase can improve the overall assemblibility and productivity [KDS03][START_REF] Mathieu | Integrated design method to improve producibility based on product key characteristics and assembly sequences[END_REF]. For example, one method is to analyze assemblies before manufacturing[START_REF] Mantripragada | The datum ow chain: a systematic approach to assembly design and modeling[END_REF]. While reducing the number of parts can be an option, most work is directed toward identifying the optimal assembly sequence. This is performed using Assembly-Oriented Graph (AOG) and tolerance analysis[START_REF] Mathieu | Integrated design method to improve producibility based on product key characteristics and assembly sequences[END_REF][Nin14], historical data[START_REF] Kern | Forecasting manufacturing quality and optimizing product robustness using process capability data[END_REF], risk assembly analysis[START_REF] Juan D Rodriguez | Sensitivity analysis of k-fold cross validation in prediction error estimation[END_REF], or specific optimization strategies such as genetic algorithm[START_REF] Lee | Assembly synthesis with sub-assembly partitioning for optimal in-process dimensional adjustability[END_REF].To achieve the KCs during the assembly process, the best possible assembly configuration is selected based on variation propagation and on tracing their effect on the product quality [WC05][START_REF] Daniel | Mechanical assemblies: their design, manufacture, and role in product development[END_REF]. Also, a variation mode analysis is used to assign a risk coefficient to any parameter to prioritize the optimization choice [CJB04][JCBB06]. After the manufacturing phase is completed, KCs selection is based on variations reduction approaches, which are based on isolating the major causes of variability [CS + 95][Tho03]. Variation reduction is performed using variation propagation analysis [Tho99] and variation source identification and the corresponding noise factors [CJB04][LZC08].

[

  CZW03][ZMM + 07]. Finally, an adaptive inspection and measurement strategy can be envisioned to prioritize the KCs over other product features [Che99][Tho00].
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 3 Figure 3.1 illustrates a typical example of KCs implementation in the case of TM. KCs is popularly used to identify important surfaces in assembled products and to assure the dimensional integrity. Each surface is evaluated based on several factors, as mentioned in Subsection 3.1.3. These KCs are mostly expressed in the form of gaps tolerance values of the component parts. The next step requires to select the proper parametric configuration of the manufacturing equipment to ensure respecting the previously selected tolerance values of the KCs.
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  Statistical Modeling for Additive ManufacturingSummary| The Importance of predictive modeling emerges from the need to reduce risks and to forecast resources usage. Predictive modeling consists of describing the data and information, perform diagnosis to decode any hidden patterns in the data, make future predictions, and finally recommend corrective actions to avoid any errors and to reduce future failure probability. In the case of AM, statistical predictive modeling can be used to determine the optimal operational window, where the manufactured parts may suffer from low rate of defects.In this Chapter, we reviewed modeling techniques in literature, and categorized them based on the modeling method. Based on this, we propose a three-staged roadmap to construct a predictive statistical model. This includes the selection of the associated model parameters, the prediction protocol, and the evaluation indicators, which are discussed in detail in each section. Also, a case study using historical data is illustrated to predict the level of porosity in additively manufactured test parts.

  Figure 4.1 Thermal Phenomena during the formation of the Meltpool [CM20]

Figure

  Figure 4.2 Proposed Modeling Roadmap

  .2. With the lack of current experimental procedure at this stage, we chose to use historical data from literature. Several authors provided experimental data, which can be used to validate and tune the performance of our model before conducting any experimental design. They had manufactured additively manufactured specimens using different combinations of materials, machines, operational windows, parameters range, etc. Some examples of these efforts are provided in [DPS + 08][GRSS13][KHGR16][TE15][TES16].

Figure 4 . 3

 43 Figure 4.3 Data Treatment. [a] Correlation Matrix, [b] Normal Distribution, [c] Main Effect Plots, [d] Interaction Effect Plot.

  consider k models 𝕄 = [M i ] i=1:k ; model index i; i=0 partition data: [𝔻] = [𝔻 train ] + [𝔻 test ] train model M (i) using [𝔻 train ] test the accuracy of model M (i) using [𝔻 test ] i = i + 1 select model with highest predictive accuracy i < max i = max i ? experimental data [𝔻]
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 44 Figure 4.4 Cross Validation Protocol
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 45 Figure 4.5 Bayes' Theorem

  Figure 4.6 Gibbs Sampler Protocol

Figure 4

 4 Figure 4.9 details the steps taken to perform the statistical inference. Performing inference using markov chain requires selecting a specific number of iterations and a starting value for each parameter 𝜃. If the maximum number of iterations is not reached,

  Figure 4.8 Convergence Simulations for each parameter φ.
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 49 Figure 4.9 Inference Protocol

  save posterior distribution for each parameter: MC = [θ t ] t=1:N [𝔻] = [𝕏, 𝕐]; θ = [β 0 β 1 β 2 σ 2 τ 2 λ p λ s ] start gibbs sampler; start metropolis hasting sampler save θ

Figure 4 .

 4 Figure 4.10 Posterior distribution for each parameter 𝜃.[𝑎] represent chains with small start values, [𝑏] represent chains with large start values

Figure 4 .

 4 Figure 4.11 Posterior Distributions. The horizontal lines represent the quantiles 2.5%, 50%, 97.5% respectively.

Figure 4 .

 4 Figure 4.12 Autocorrelation Plots. [a] represent the dependencies between all the samples, [b] represent the dependencies between each 𝑘 𝑡ℎ position lags

  [𝔻] = [𝕏, 𝕐] collected in Subsection 4.3.1, where 𝕏 is the descriptive feature and 𝕐 is the target feature. We denote the input data as 𝕏 = [𝑋 𝑖 ] 𝑖=1:𝑁 . Each data point 𝑋 𝑖 in the input space is positioned based on 2 coordinates 𝑋 𝑖 = (𝑥 𝑝(𝑖) , 𝑥 𝑠(𝑖) ); where 𝑥 𝑝 and 𝑥 𝑠 are the scan power and speed, respectively. Only the percentage of the measured porosity is the system response and represented as a vector 𝕐 = [𝑌 𝑖 ] 𝑖=1:𝑁 .

  (4.7). By integrating the model terms specified in Subsection 4.3.4, we obtain the following expressions 𝐸(ℙ|𝜃, 𝕐) = 𝛸 * 𝛽 + 𝛫 * 𝑇 𝛫 𝑦 -1 (𝕐 -𝕏𝛽) 𝑣𝑎𝑟(ℙ|𝜃, 𝕐) = 𝑘 * * + 𝜏 2 -𝛫 * 𝑇 𝛫 𝑦 -1 𝛫 * (4.31) where 𝐸(ℙ|𝜃, 𝕐) and 𝑣𝑎𝑟(ℙ|𝜃, 𝕐) are the gaussian mean and variance of the new data point given the hyperparameters inference 𝜃 and the measured response vector 𝕐, 𝛸 * = (𝑥 𝑝( * ) , 𝑥 𝑠( * ) ) are the new point coordinates in the input space, 𝛽 = [ 𝛽 0 𝛽 1 𝛽 2 ] is the vector of regression coefficients, 𝛫 = [𝑘(𝛸 𝑖 , 𝛸 𝑖 |𝜑)] 𝑖=1:𝑁 is the covariance matrix representing dependencies between the data points, 𝜑 = [ 𝜎 2 𝜆 𝑝 𝜆 𝑠 ], 𝛫 𝑦 = 𝛫 + 𝜏 2 I 𝑑 is the diagonal covariance vector, I 𝑑 is the identity matrix and 𝜏 2 is the error variance, 𝛫 * = [𝑘(𝛸 * , 𝛸 𝑖 |𝜑)] 𝑖=1:𝑁 is the covariance vector representing dependencies between the new point and the other points (𝛸 1 ⋯ 𝛸 𝑁 ), and 𝑘 * * = 𝑘(𝛸 * , 𝛸 * |𝜑) is the variance of the new data point.
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 13 Figure 4.13 Prediction Protocol

  Figure 4.14 illustrates different gaussian models. To measure the level of fitness of each model, the Coefficient of Determination R 2 was calculated. R 2 compares the model's MSE to another model that predict only the mean target value. This indicator shows that Model 1 does not fit the data. Even when the model is enriched with the error term 𝛆(𝕏), R 2 indicates a poor performance. Model 4 is the best fit for the data compared to all the other models, as its corresponding R 2 coefficient is the highest. The plot shows the predictions of the Models 3 & 4 are closer to the regression line.

  Figure 4.16 Effect of Cross Validation on the Model Accuracy

Figure 4 .

 4 Figure 4.16 illustrates the difference in predictive accuracy between the model performance when CV is used and when it is not. At first glance, we observe that all the red predictions are better fit and closer to the regression line compared to their blue counterparts. This indicates an overfitted model. All the accuracy indicators, when the model is not cross validated, are better than the results obtained when CV is used. MSE index suggests an accuracy of 91.2% compared to 82.36% of the cross validated model. The RMSE and MAE suggest a lower deviation from the target values. This indicate that the model performs better on the training data than on the holdout data, which indicates an overfitting behavior.
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 4 Figure 4.18 Main Plots, Interaction Plot, and Experimental Data 𝑥 𝑠 𝑥 𝑝

Figure 4 .

 4 Figure 4.19 Porosity estimation and associated standard error
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 1 D esign of Experim ent for A dditive M anufacturing 5.1.1. History and Context The development of Statistical Design of Experiment (SDOE) is the result of the cumulative contributions of scientists, which started at the early 1900s by Fisher [Fis58][Fis66], Box [BL99][BW51], and Taguchi [Tag87][TW80]. Its rules became more robust as its application became widely integrated in the industrial sector. SDOE is the mixture of 2 closely related domains: Design of Experiment (DOE) and Statistical Analysis (SA).DOE and SA are used in many engineering design activities. This is mainly because a well-design experiment can allow the exploration of different alternative solutions. Also, as in most engineering problems, the experiment may require the examination of multiple factors to determine the most influential effects on the process yield. For process optimization purposes, DOE allow the investigation of the best corresponding combinations of factors to obtain a specific performance[START_REF] Douglas | Design and analysis of experiments[END_REF].5.1.2. Application in the case of Additive ManufacturingIn the context of AM, several authors have conducted a wide variety of experimental designs[START_REF] Viktor | Design of experiment methods in manufacturing: basics and practical applications[END_REF]. The experimental conditions are selected based on the investigated objective and the process knowledge. Conducting an experiment require the definition of several elements to ensure the validity of any drawn conclusions. These elements are illustrated in Figure5.1 and some examples are summarized in Table5.1.

Figure 5 . 1

 51 Figure 5.1 Elements of the Design of Experiment

  These experimental plans consist of changing the level of the target factors based on a specific strategy. To gain information regarding one factor, the simplest strategy is to change the levels of said factor while keeping the levels of the other factors at the baseline. This strategy is called One Factor at A Time (OFAT) [GRSS13][KHGR16]. If the data is limited or multiple factors are examined at different levels of other factors, then a factorial 2 k design experiments is most suitable [LJW + 12][TVC + 10][WCZV16]. Finally, Taguchi method is a more sophisticated approach for experimental design [KLF91]. It depends on identifying controllable factors that minimize the noise factors based on selecting orthogonal arrays (OA), which can be constructed in different forms based on the accuracy provided and the cost required. An example of OA implementation in the context of AM is L8 OA [DPS + 08], L9 OA [ICS + 15][KKVV05][PMR + 17][ZFL07],or L16 OA method[START_REF] Raghunath | Improving accuracy through shrinkage modelling by using taguchi method in selective laser sintering[END_REF].

[

  [START_REF] Du Plessis | Snake fangs: 3d morphological and mechanical analysis by microct simulation, and physical compression testing[END_REF], the estimation of the deformation rate in real-time[START_REF] Bay | Digital volume correlation: three-dimensional strain mapping using x-ray tomography[END_REF], and the identification of the pores elongation and the difference in obtained results when using postprocessing [KFY+ 16]. Although other 3D topology measurement techniques already exist, CT scan is used and applied accurately to measure the surface roughness of porous materials and internal structures. Through tuning parameters such as frame averaging and resolution, CT scan can produce comparable results to traditional optical and contact profilometer measurement [KPM+ 13][TSGL17][TSM + 18]. Another usage of CT scan is the qualification of feedstock metallic powder and its morphological structure, which provides information regarding internal pores, powder size distribution, and flowability [BTG18][HBPL16].

  Figure 5.4 Proposed Measurement Protocol

(

  Figure 5.5 [d]). The selection of the proper threshold level is one of the main sources of uncertainty when estimating the percentage of porosity as illustrated in [AP18]. Isodata algorithm [RC + 78] is used to divide the images into 2 areas: a background and an object.

  The surrounding noise is represented by non-black pixels around ROI. The proposed steps are shown in Figure5.6. The objective is to isolate the green region from the surrounding red area, as illustrated in Figure5.6 [a]. To isolate the 3D volume from the surrounding noise, a spline function is used to generate a segmented contour for each image to represent

Figure 5 . 6

 56 Figure 5.6 Definition of ROI. [a] Original Image, [b] Binary Image, [c] Boundary Generation, [d] Supposed Original Image, [e] Noiseless Image.

  7 [a]&[b]), a gaussian filter is applied. This filter employs convolution to smooth the image based on the selected decay radius value and a squared kernel matrix. Each value of each pixel is modified based on the surrounding pixels, thus giving higher weight to pixels that form the edges (Figure 5.7 [c]). An edge detection function is implemented, which uses vertical and horizontal convolution squared kernels to draw boarder around intense changes in pixels intensity (Figure 5.7 [d]). Then, a logical subtraction operation is applied between Figure 5.7 [c] and Figure 5.7 [d] to obtain Figure 5.7 [e]. The final step is to binarize the image and change it into white and black image, where black pixels are representative of the internal pores (Figure 5.7 [f]

Figure 5 . 7

 57 Figure 5.7 Volume Filtering Protocol. [a] Original Noiseless Image, [b] Image Zoom, [c] Gaussian Filter, [d] Edge Detection, [e] Subtracted Image, [f] Binarization.

Figure 5 . 8 Figure 5

 585 Figure 5.8 Pores Morphological Properties

  and Perspective Summary| In this Chapter, we summarize the work presented in this thesis.

  presented in the form of a three-stages roadmap. The model was based on the application of the gaussian process. Statistical bayesian protocol coupled with markov chain was employed to estimate the model parameters. The selection of these parameters was optimized, and the probability density function was calculated based on the data distribution. An iterative prediction protocol was proposed to test the model predictive accuracy. Then the trained model was used to map the entire experimental input space based on experimental data gathered from literature.

  Figure 6.1 Possible Future Research Paths

  and thus a line of communication was established with several entities such as the Laboratoire National de Métrologie et d'Essais (LNE), the AddUp group, and the Laboratoire de Mécanique et Technologie (LMT) to examine the measurement techniques options. However, due the current global sanitary situation this part of the experimental design was not carried. A continuation of this work would be to carry these measurements on the manufactured specimens.

  

  

  

of Challenges Material Availability Process Traceability Modeling and Simulation Standardization Insitu Process Monitoring End Quality Design for Additive Manufacturing

  

	The lack of robust closed-loop control and error detection system during the layering process is still a major challenge field. Since the process parameters are highly correlated to the build quality, monitoring the insitu layering process can give insight into defining an effective parametric range to overcome observable defects such as pores, cracks, or balling [EHS + 16]. However, the current visual and thermal based insitu monitoring equipment, can only focus on one view field and collect data on few input parameters, such as laser intensity and meltpool temperature. Furthermore, the collected data are not used to conduct real-time corrections during the layers construction but used to study and to better understand the existing phenomenon after the part is fully manufactured. Some examples include monitoring radiations emitted from the meltpool, powder consolidation, Figure 2.3 Fields Insitu Process Monitoring and temperature profile for each layer [BBL + 10][BZS + 18][FAU + 12].
	Standardization
	Standardization is a challenge that touches all aspects of AM. The industrial
	community has devised manufacturing guidelines for TM. But in the case of AM, the lack
	of related standards can largely reduce the efficiency of any collaborative work needed to
	ensure a reliable process and a consistent part quality that can be compared to
	traditionally manufactured parts. An example of these efforts is the collaboration between
	ASTM F42 and ISO TC261 to jointly develop international technical standards related
	and track only the key data. Any future work on traceability in the context of AM must to AM implementation. Other committees related to NIST, ISO, and ASME are working
	focus on creating accurate and flexible methods to capture these key data on developing similar standards, includes standards for testing methods, manufacturing
	[CH06][CM06][DPMA09]. protocols, reference materials, etc. [AST14a][AST14b][MC17][NIS12].

Table 3

 3 Key Characteristics are geometrical characteristics on the product for which any deviation from nominal specifications has a significant impact on the product's functions and on the producibility.A specific feature selection as a KC is based on whether extra attention is needed to keep it in the specification range. Also, if the client's concerns are satisfied based on this feature and if the repeatability of maintaining it is compromised, then it can be considered as a KC. Finally, if this specific feature is more likely to face failure or

	Literature
	in
	Definitions
	Characteristics
	Key
	of
	.1 Examples

assembly-related misfits, it is considered as a KC. A KC can be identified during any phase of the Product Life Cycle (PLC). However, this requires the actors to have a keen knowledge of the process stages and the product composition. To achieve this selection, two steps are imperative: KCs flowdown & KC Selection & Management.

Table 4

 4 

	.1 Modeling Examples for Additive Manufacturing

Several tools are necessary to execute ML: Data Mining (DM) and Statistical Modeling (SM). While DM allows the identification of hidden patterns in collected data, SM allows to formalize relations between variables in the form of mathematical equations

[START_REF] John D Kelleher | Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies[END_REF]

.

  choice for variance parameters in a gaussian model [G + 06]. Also, the inverse gamma prior is conjugate to the selected normal likelihood function. For an unknown parameter ∅ 2 , it can be mathematically shown that for a normal likelihood function 𝑝(𝑥 𝑛 |𝜇, ∅ 2 ) and an inverse gamma (IG) prior distribution 𝑝(∅ 2 ) with a shape 𝛼 0 and scale 𝛾 0 the estimated 𝑝𝑜𝑠𝑡 has a shape 𝛼 𝑛 and scale 𝛾 𝑛 such that The priors are expressed as follows where 𝛼 1 = 𝛼 2 = 2 are the shape parameters and 𝛾 1 = 𝛾 2 = 1 are the scale parameters for 𝜎 2 and 𝜏 2 respectively. For the range parameters 𝜆 𝑝 and 𝜆 𝑠 , which are strictly positive and are limited by the size of the input space, a flat uniform prior is the default choice 𝑎 𝑝 , 𝑏 𝑝 , 𝑎 𝑠 , 𝑏 𝑠 are determined by the upper and the lower limits 𝑈 𝑝 , 𝐿 𝑝 , 𝑈 𝑠 , 𝐿 𝑠 for each dimension 𝑥 𝑝 and 𝑥 𝑠 respectively. After recalling both ranges, the priors are expressed as follows where 𝑎 𝑝 = 𝑎 𝑠 = 0, 𝑏 𝑝 = 2.9, 𝑏 𝑠 = 1.38. However, we can substitute this prior with an informative conjugate normal prior such that

	posterior 𝑝(∅ 𝑝𝑜𝑠𝑡 2 parameter ∅ 2 ∅ 2 |𝛼, 𝛾) is also an inverse gamma distribution [Mur07] and the estimated 𝑝(𝛽) ~ 𝑀𝑉𝑁 (𝜇 0 , 𝛫 0 ) (4.20) 𝑝𝑜𝑠𝑡 ~ 𝐼𝐺 (𝛼 𝑛 = (𝛼 0 + 𝑛 2 ) , 𝛾 𝑛 = 𝛾 0 + ∑ (𝑥 𝑖 -𝜇) 2 2 𝑛 𝑖=1 ) (4.21) 𝑝(𝜆 𝑝 )~𝑈𝑛𝑖𝑓(𝑎 𝑝 , 𝑏 𝑝 = 𝑈 𝑝 -𝐿 𝑝 ) 𝑝(𝜆 𝑠 ) ~ 𝑈𝑛𝑖𝑓 (𝑎 𝑠 , 𝑏 𝑠 = 𝑈 𝑠 -𝐿 𝑠 ) (4.24) where Markov Chain Monte Carlo (MCMC) 𝑝(𝜆 𝑝 )~𝑁𝑜𝑟𝑚𝑎𝑙 ( 𝑏 𝑝 +𝑎 𝑝 2 , 𝑏 𝑝 -𝑎 𝑝
	𝑝(𝜎 2 )~𝐼𝐺(𝛼 1 , 𝛾 1 )
	(4.22)
	𝑝(𝜏 2 ) ~ 𝐼𝐺(𝛼 2 , 𝛾 2 )
	selected for both parameters such that
	𝑝(𝜆 𝑝 )~𝑈𝑛𝑖𝑓(𝑎 𝑝 , 𝑏 𝑝 )
	(4.23)
	𝑝(𝜆 𝑠 ) ~ 𝑈𝑛𝑖𝑓 (𝑎 𝑠 , 𝑏 𝑠 )

MCMC is a general method used for drawing values for certain parameters from approximated probability distributions. The objective is to draw random non correlated samples that are used to estimate the marginal and the conditional probabilities of each parameter 𝜃. As this can be difficult to compute analytically, MCMC is used to generate the desired posterior distribution. Two basic MCMC methods are used: Gibbs sampling and Metropolis-Hasting. The result is a sampled markov chain for each parameter 𝜃 representing the posterior distribution

[START_REF] Brooks | Handbook of markov chain monte carlo[END_REF]

.

MCMC: Conditional Distribution for 𝛽

GS is a simple Markov Chain algorithm, and it is considered as a special case of Metropolis-Hasting algorithm. It is a good choice for parameters with a conditional

  14][TGM + 19]. For studying other aspects such as the surface roughness and geometric deviation, authors tend to build simple thin walls [MH10], or custom specimen are envisioned [ICS + 15]. For studying internal defects and for microstructural analysis, cylindrical [LTR + 13][PMR + 17]

	Several commercial machines are used to conduct these experimentations. This
	includes commercial machines such as EOS Machines [GRSS13], Arcam Machines
	[GRSS13], and SLM Solutions Machines [LTR + 13][WCZV16]. Other experimental
	machines are used, which are built using available set-ups. This option is used mostly to
	investigate specific aspects of the process or modify the setup by adding insitu monitoring
	devices [TVC + 10][ZFL07].
	and cubic/rectangular [DPS + 08][KHGR16][LJW + 12][SSE11][TE15][TVC + 10] specimens
	are more suitable for this purpose. If the objective is to quantify the mechanical
	performance such as resistance to traction and fatigue, bar-shaped specimens are built
	[WCZV16].
	Materials/Machines
	A main advantage of AM is its capability to use a wide range of materials
	[BKL + 17]. Many authors experimented on different materials which exhibit high
	performance such as strength, resistance to fatigue behavior, biocompatibility, and
	ductility. Some of these investigated materials include titanium alloys TiAl6V4
	[GRSS13][KHGR16][LTR + 13][TGM + 19][TVC + 10][WCZV16], Stainless Steel powders
	[KEDG + 14][LJW + 12][PMR + 17][SSE11][TE15], Inconel [MH10], Iron-based powders
	[DPS + 08] [KKVV05], and Cupper-based powders [ZFL07].
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	.2 Selected Target Factors

Table 5 .

 5 [DKAC + 10]. This is a black-box algorithm which is integrated in ImageJ and used for nondestructive examination of skeletons and tubercular bone and bone measurement.𝑉 𝑡 (µm 3 ) 𝑉 𝑚 (µm 3 ) 𝑉 𝑝(%) 3 lists the obtained results. The Area-based and BoneJ calculations yielded virtually similar results. Before performing these calculations, several assumptions were established. The internal detected pores (Figure

	Area-based	89.2163 E09	89.1861 E09	0.0338
	BoneJ	89.2164 E09	89.1864 E09	0.0336

Table 5 .

 5 3 Porosity Estimation Firstly, they are accumulating at the center of the specimen (Figure 5.9). Secondly, the pores resulted from measurement acquisition error are characterized by irregular shape and large diameter and volume (Figure 5.8). Chapter 5. Porosity Measurement and Analysis for Additive Manufacturing Conclusion| In this Chapter, we reviewed several examples of experimental designs applied in the case of porosity characterization in AM. To acquire experimental data to test the predictive model proposed in Chapter 4, we proposed

1.1. Need for Additive Manufacturing

1.3. Research Problem and Scientific Approach

2.3. Value Chain for Additive Manufacturing

Chapter 2. Value Chain for Additive Manufacturing

2.4. Value Chain Analysis: ApplicationFrom Subsection 2.4.1, we can conclude that the formation of the internal pores is contributed primary to the interaction energy-material. This interaction is firstly predetermined through setting the layering process parameters before the build starts.Optimizing the choice of these parameters will allow the manufacturer to create a scanning strategy which controls the accuracy of the building process. These parameters include the energy projection power, the scan pattern and velocity, the orientation of parts, etc.During the build process, the machine parameters such as the powder deposition mechanism controls the conditions inside the chamber and have an influence on the interaction energy-material. After the build is completed, and based on the post treatment selected, optimizing the post processing parameters can reduce the porosity by adjusting the level of heat and pressure treatment.

5.3. Proposed Experimental Design for Additive Manufacturing

Key Characteristics Selection

Here, we identify the proper filtering protocols to separate the product features/process performance indicators based on their importance and the risk of potential failure. Then the corresponding proper process control or the product's redesign are proposed, either to reduce these variations or to modify the allowable variation 

Model Construction

In this stage, we will formalize a model to represent the reality of the observed data. In the case of statistical modeling, the main objective is to predict future system behavior based on the patterns in the collected data. In the context of this work, we will implement a gaussian model. The Gaussian Process (GP) is a stochastics modeling process that represents a collection of joint distributions of the model parameters and provides the predictions and the corresponding uncertainty level. This gaussian distribution is defined by a mean and a variance. The mean in most cases is treated as zero and the model is fitted using a kernel function to predict the value of unseen data points in the input space. GP is a popular choice when applying supervised learning, machine learning, pricing and stock predictions, weather forecasting, image resolution analysis, etc.

[ESP01][WR06].

To perform inference, we will employ a probabilistic-based learning approach. This approach treats the model parameters as random variables, then based on the data distribution, it computes the Probability Density Function (PDF). The most popular method used for probabilistic-based learning is the bayesian method. Bayesian method is used in a wide range of domains and capable of coping with multiple parameters and complex models [START_REF] William | Introduction to Bayesian statistics[END_REF][GCS + 13]. Simply, it allows to fit a probability model on a set of data to obtain the PDF of the model parameters. The bayes' theorem is an application of the bayesian method and consists of giving points estimation using information gathered from a specific target distribution. This target (or posterior distribution) is calculated based on the prior condition of the gaussian system, and the likelihood of the specific result to be obtained given the collected data. The predictions over the entire input space correspond to the behavior of a typical PBF process. With the increase in scan speed and the decrease in laser power, the porosity level increases (red zones), and this is because the projected energy is not sufficient to melt the powder completely and properly. This leads to the formation of balling 

Effect of target factors interactions on predictive behaviour

In the examples discussed above, the interactions between the target features were not considered in the model, given the nature of data itself (Figure 4.3). To investigate the effect of interactions on the predictive behaviour, we used the data collected from Abstract: Quality control remains the main barrier for broader adoption of Additive Manufacturing processes. Data analytics, physical process modelling, part measurement and metrological assessment, are more and more used to achieve better quality. However, there are still significant modeling, computational, and measurement challenges stemming from the broad range of the involved parameters affecting the quality of the final part.

In this thesis, we focus on overcoming some of these quality-related limits. We propose a predictive modeling approach to perform porosity characterization and to determine the range of manufacturing working conditions based on a limited set of previously collected data.

The proposed systematic modeling approach uses Gaussian Process (GP) to map the entire experimental space based on limited predetermined measured points. GP integrates a covariant function, which uses statistical bayesian inference coupled with Markov Chain to estimate model parameters, based on the collected data. These data are generated based on a proposed experimental design and CT scan image analysis protocol. Finally, and for an efficient implementation of approach, we benefit from establishing correlations between the manufacturing process conditions and the product's features, based on Key Characteristics (KCs) while considering the whole value chain in AM. These KCs are evaluated based on their importance and ordered hierarchically from a statistical point of view.