Keywords: cryptographie, post-quantique, Multivariée, cryptage à clé publique, base de Gröbner, cryptanalyse algébrique, système polynomial avec erreurs, NIST Post-quantum, Cryptography, Multivariate, Public-key Encryption, Gröbner basis, Algebraic Cryptanalysis, Polynomial systems with Errors, NIST Function Pre-quantum sec. level Post-quantum sec. level

La résolution de systèmes polynomiaux est l'un des problèmes les plus anciens et des plus importants en Calcul Formel et a de nombreuses applications. C'est un problème intrinsèquement difficile avec une complexité, en générale, au moins exponentielle en le nombre de variables. Dans cette thèse, nous nous concentrons sur des schémas cryptographiques basés sur la difficulté de ce problème. Cependant, les systèmes polynomiaux provenant d'applications telles que la cryptographie multivariée, ont souvent une structure additionnelle cachée. En particulier, nous donnons la première cryptanalyse connue du crypto-système « Extension Field Cancellation ». Nous travaillons sur le schéma à partir de deux aspects, d'abord nous montrons que les paramètres de challenge ne satisfont pas les 80 bits de sécurité revendiqués en utilisant les techniques de base Gröbner pour résoudre le système algébrique sous-jacent. Deuxièmement, en utilisant la structure des clés publiques, nous développons une nouvelle technique pour montrer que même en modifiant les paramètres du schéma, le schéma reste vulnérable aux attaques permettant de retrouver le secret. Nous montrons que la variante avec erreurs du problème de résolution d'un système d'équations est encore difficile à résoudre. Enfin, en utilisant ce nouveau problème pour concevoir un nouveau schéma multivarié d'échange de clés nous présentons un candidat qui a été soumis à la compétition Post-Quantique du NIST.

First and foremost, I thank my mother and my heavenly father, it is because of them I am where I am. Without their thankless efforts for all these years nothing of this would have been possible. I am in your debt for my entire life.

I thank my advisors Jean-Charles Faugère and Ludovic Perret for their guidance throughout this journey. I learned an incredible amount of things from them, but in particular how to do research and, more importantly how to deal with roller coaster of emotions that is associated with PhD. They inspired my love for the subjects on which I worked and my decision to pursue an academic career. They are the role models for the scientists that I would like to become. I would like to thank Jacques Patarin and Deleram Kahrobaei for reviewing this manuscript and for their comments that helped me to improve it. I thank Stef Graillant and Mohan Safey El Din for accepting to be part of the jury of my thesis. Additionally I thank Stef and Jacques again for being a part of my mid PhD evaluation committees and their advice on many topics. I thank the members of the PolSys, both present and past, for their companionship all these years. In particular, my heartiest thanks to Mohab Safey El Din for his invaluable advice every time I went to him, whether it be academic, administrative or personal. To Jérémy Berthomieu for his unconditional help with every possible thing I can think of (especially teaching me French). I thank my fellow PhD mates, Huu-Phuoc, Xuan, Jocelyn, Eliane, Solane, Nagarjun, Andrew, Jorge and Hieu, for their time shared. I thank the secretaries of our team, lab and école doctoral, for their help all these years. I would like to thank the CROUS and its staffs who took care of our health providing delicious and healthy food, which I consider is one of the crucial things that allowed me to carry on with my work without worrying about food.

iii Chapter 1

Introduction

The word cryptography derives its roots from the two Greek words "κρυπτ óς" (hidden) and "γραϕή" (writing). Cryptography combines both the science of designing cryptosystems and the science of analyzing the security of the cryptosystems with an effort to break them. Historically, the use of cryptography was limited to ensuring the secrecy of communication. This means guaranteeing two users can communicate over an insecure channel such that no third party can either understand or modify the message. The principal idea of designing a cryptosystem is to modify the message, also called the plaintext, such that no one other than the intended receiver can recover the plaintext message from the modified message, which is also known as ciphertext.

Over time, cryptography has become the most integral component in information security with such a wide range of applications: secrecy of data, ensuring anonymity, ensuring authenticity of communications and data, etc. Currently, some of the most prominent examples where the use of cryptography is fundamental are web-encryption (HTTPS), end-to-end message encryption (OpenPGP and Whatsapp-Signal protocol), e-money (Bitcoins, Ethereum etc.), ATM and Sim cards (RFIDs) and secure digital-key storage (Hardware Security Module), to name a few.

Cryptography in general can be broadly classified in two types: symmetric (or secret-key) and asymmetric (or public-key) cryptography. Consider a case when Alice wants to send some message to Bob over some insecure channel. In symmetric cryptography, Alice and Bob initially agree on a shared secret-key. This key is used in both encryption and decryption processes. Some of the famous examples of symmetric cryptosystems include One Time Pads [START_REF] Shannon | Communication theory of secrecy systems[END_REF], AES [START_REF] Daemen | The rijndael block cipher: Aes proposal[END_REF]. One limitation of such cryptosystems is the prior establishment of a secure secret-key that allows for a secure channel of communication. This is answered by public-key cryptography. The idea of such an asymmetric protocol is to securely share the secret-key to the intended recipient such that no third party can get hold of the secret-key even when the information is shared over an insecure channel. The first example of such a scheme can be credited to Diffie and Hellman, who proposed the Diffie-Hellman Key-exchange protocol [START_REF] Diffie | New directions in cryptography[END_REF].

In the asymmetric case, Bob generates two sets of keys, a public-key and a secret-key. For encrypting a message, Alice uses Bob's public-key and sends the encrypted message, i.e. the ciphertext, over some channel to Bob. Finally, Bob uses his secret-key to decrypt the ciphertext and recovers the hidden message. Only Bob can recover the message since only Bob has the correct secret-key corresponding to the public-key which generates the ciphertext. This has been depicted in Figure 1.1. Public-key cryptosystem includes a function, which is easy to compute in one way, however, it is hard to invert, unless provided with an additional information, known commonly as trapdoor. Such functions are therefore known as trapdoor oneway functions. This idea was first introduced by Merkle, Diffie and Hellman in 1976 [START_REF] Diffie | New directions in cryptography[END_REF][START_REF] Ralph C Merkle | Secure communications over insecure channels[END_REF]. This concept was also proposed independently by Ellis [START_REF] James | The possibility of secure non-secret digital encryption[END_REF] at GCHQ, under the name "non-secret encryption", however, it was not made public until much later. One of the earliest and most important example of public-key cryptosystem is RSA [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF] which was invented by Rivest, Shamir and Adleman in 1978 (it is essentially the same scheme was also designed by Cocks [START_REF] Clifford | A note on non-secret encryption[END_REF] at GCHQ in 1973). Currently, there are many standardized public-key schemes which are available. Majority of the such schemes in practice depend on only three problems:

1. The Integer Factorization Problem (IFP) [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF][START_REF] Peter | A survey of modern integer factorization algorithms[END_REF] : Given n = pq, where p and q are primes, find p and q.

2. The Discrete Logarithm Problem (DLP) [START_REF] Mccurley | The discrete logarithm problem[END_REF] : Given α, m and β = α a mod n, find a.

3. The Elliptic Curve Discrete Logarithm Problem (ECDLP) [START_REF] Joseph | Elliptic curve discrete logarithms and the index calculus[END_REF] : Given an elliptic curve E over the finite field F q where q = p n and two points P, Q ∈ E(F q) such that both have the same order, the problem is to find the integer a such that Q = aP .

Currently, on a classical computer, there are some algorithms which are known to solve these problems. The General number field sieve algorithm factorizes an integer in time that is sub-exponential in the size of the integer [START_REF] Carl | Tale of two sieves[END_REF]. There exists another algorithm that takes quasi-polynomial time to solve the discrete logarithm problem over finite fields of small characteristics [START_REF] Barbulescu | A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic[END_REF]. The best known algorithm which solve the ECDLP are based on the parallelized versions of Pollard's Rho algorithm [START_REF] John | Monte carlo methods for index computation[END_REF][START_REF] Oorschot | Parallel collision search with cryptanalytic applications[END_REF][START_REF] John | Kangaroos, monopoly and discrete logarithms[END_REF]. The expected running time is dependent on the order of the group, more specifically, O(√ r), where r is the order of the points P, Q on the elliptic curve [START_REF] Steven | Recent progress on the elliptic curve discrete logarithm problem[END_REF]. However, the general assumption is that no algorithm exists that can solve all instances of IFP,DLP and ECDLP in polynomial time on a classical (non-quantum) computer.

Classical computers have existed for a long time, however the idea of quantum computing was developed in the 1980's by Paul Benioff, when he proposed while mounting brute force attacks against cryptosystems to recover any hidden secret on a quantum computer. The impact of quantum algorithms (such as Shor's and Grover's algorithm) on the security of the current cryptographic standards is detailed in Table 1.1. Even though, so much progress has been made in quantum computing, design and construction of a quantum computer that could replace today's classical computers are not possible as of yet. Nevertheless, in the cryptographic community huge strides are being made in preparation for a time in the future, when such quantum computers become a reality.

Therefore, in 2016 the National Institute of Standards and Technology (NIST) announced a call for new post-quantum cryptographic candidates [CCJ + 16] with the goal of declaring new standards, to replace the current standardized publickey cryptosystems used in practice e.g., RSA [START_REF] Ronald L Rivest | A method for obtaining digital signatures and public-key cryptosystems[END_REF], DSA [START_REF] Corporate Nist | The digital signature standard[END_REF] etc. There are mainly five classes of public-key cryptography that are believed to be quantumresistant: Multivariate-based cryptography, Lattice-based cryptography, Code-based cryptography, Hash-based cryptography and Super-singular Elliptic Curve Isogenybased cryptography. In the first round (December 2017) there were 69 submissions of cryptographic primitives. At the time of writing this thesis, 26 submissions have survived through to the second round of the competition.

Table 1.1 -Security levels shown are against the best pre-quantum and post-quantum attacks known. Security level b implies that the best attacks use approximately 2 b operations. For hash functions, 'security' in this table refers to pre-image security [START_REF] Daniel | Post-quantum cryptography[END_REF].

A very important aspect of narrowing down the field of viable quantum-safe cryptographic primitives involve measuring the hardness for an adversary to break the cryptosystem, or more simply understanding the security of the cryptosystem through cryptanalysis. Over time, various cryptanalysis techniques have been developed such as linear cryptanalysis [START_REF] Matsui | Linear cryptanalysis method for des cipher[END_REF], differential cryptanalysis [START_REF] Biham | Differential cryptanalysis of des-like cryptosystems[END_REF][START_REF] Fouque | Differential cryptanalysis for multivariate schemes[END_REF], side-channel cryptanalysis [START_REF] Kelsey | Side channel cryptanalysis of product ciphers[END_REF], etc. Algebraic cryptanalysis is another method to perform security analysis by reducing the security of the problem to the hardness of solving a polynomial system of equations. Overall, it can be divided into two steps: The first step involves transforming the cryptosystem's algorithms into a system of multivariate polynomial equations that allows us to recover the secret. After building the system, one estimates the hardness of solving this system. A practical algebraic attack against the cryptosystem if a solution is found to the system of equations.

This problem of solving a multivariate polynomial system of equations, known as the Polynomial System Solving (PoSSo) problem, is NP-Complete [START_REF] Michael | Computers and intractability[END_REF]. Typically, a random non-linear multivariate system of equations is hard to solve (has exponential complexity). However, in practice, system of equations derived from algebraic modelling of cryptosystems are in general, not random. Algebraic cryptanalysis techniques focus on exploiting the hidden structures of such system of equations, and has resulted in a lot of success over the years [FJ03, CB07, FPS09, BFP08, FJPT10, SK99]. The goal of this thesis is to explore the aspects of algebraic cryptanalysis over multivariate encryption cryptographic primitives and further try designing a new multivariate scheme that are safe from such algebraic attacks.

Organization and Contributions of the thesis

To present our work, the thesis has been divided into two parts. In the first part, we present the preliminaries for the work of this thesis. In Chapter 2, we present the PoSSo problem on which multivariate cryptography is based. We introduce some state-of-the-art methods to solve this problem. In particular, we focus on algebraic techniques that take use of a mathematical object called Gröbner basis.

In Chapter 3, we give an overview of multivariate cryptography. We introduce the Matsumoto-Imai cryptosystem [START_REF] Matsumoto | Public quadratic polynomialtuples for efficient signature-verification and message-encryption[END_REF], which is one of the first known examples of a multivariate scheme. We also introduce the Hidden Field Equations (HFE) [START_REF] Patarin | Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new families of asymmetric algorithms[END_REF]. HFE has provided with the foundation for most of the current multivariate primitives which we also discuss in quite some detail. In particular, we are also interested in one such multivariate encryption scheme, the Extension Field Cancellation cryptosystem [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF].

In the second part of the thesis, we present our contributions. More precisely, we address the following topics.

Algebraic cryptanalysis of EFC. The Extension Field Cancellation scheme (EFC) is a recent multivariate public-key cryptosystem that was presented at PQCrypto in 2016. It proposes a new trapdoor for multivariate quadratic cryptographic primitive that allows for encryption, in contrast to most time-tested multivariate trapdoors, like Unbalanced Oil and Vinegar and Hidden Field Equations, which only allow for digital signatures. Numerous multivariate encryption schemes, pro-posed over the years, have been either broken or have been cryptanalyzed, however, EFC has stood untouched. This motivates us to look at the security of the scheme.

In Chapter 4, we present algebraic attacks against EFC. We report the results of a hybrid Gröbner basis attack [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF] on all three challenge parameters of EFC. Using this message recovery attack, for the first and the second challenge parameter we recover the hidden secret message in 2 65 and 2 77 operations respectively, which is contrary to the claims of 80 bits of security for these parameters. As previously mentioned, like other multivariate cryptographic schemes, the public-key of EFC also possesses a hidden structure. We provide experimental evidence of the nonrandom behavior of the public polynomials of EFC. On the EFC scheme with no disregarded public-key polynomials (which we shall see later is called a minus version of a multivariate scheme), denoted below as EFC(0), we show that there is a polynomial time attack, polynomial in the number of variables n. This has been stated informally in Theorem 1 below: Theorem 1 (informal). Given a public-key (f 1 , . . . , f 2n) ∈ F 2n q [x 1 , . . . , x n] and the ciphertext (c 1 , . . . , c 2n) ∈ F 2n q from an instance of EFC(0) using Gröbner basis, we can recover the hidden secret message in O(n 3ω) which is polynomial in n and where 2 ≤ ω < 3 is the linear algebra constant.

We present the full version of Theorem 1 as well as the proof in Section 4.2.4. Extending the idea of this theorem, we explain how a degree 3 linear combination of the public-keys of EFC(0) yield linear equations (see Section 4.2.4 for more details).

We extend this methodology to the minus variant of EFC, denoted as EFC -, where we recover quadratic equations from a high degree (degree ≥ 3) combinations of the public-keys. This technique is quite similar to the approach used against the HFE scheme [START_REF] Faugere | Algebraic cryptanalysis of hidden field equation (hfe) cryptosystems using gröbner bases[END_REF] where the authors show the public-keys exhibiting some algebraic properties are easier to solve than a random system of quadratic equations of the same sizes. We introduce a new technique of explicitly computing and recovering low-degree relations from the public-keys of EFC -. To do so, we consider the initial public-keys and their Frobenius powers. The following Claim 1 informally describes the basic idea.

Claim 1 (informal). Given the public-keys equations for an instance of EFC -, we can always find some combinations of the public-keys and their Frobenius powers which produce new low-degree relations.

Using this technique, we can recover the quadratic relations from degree 3 combinations in 151 minutes for the first challenge parameter and 110 minutes for the second challenge parameter. This computation is polynomial-time in the number of variables. Furthermore, we show that adding these new equations along with the public equations make the Gröbner basis computation much more efficient as well as reducing the time complexity by a huge factor. For instance, in the case of EFC -with n = 75 and 2 public-key polynomials excluded, adding such intermediate equations reduces the run time of F4 from more than a day to 66.05 seconds to compute the Gröbner basis. Thus, this scheme has structural weaknesses that can be easily exploited by an adversary to recover secret messages and thus making the scheme unsuitable for encryption.

The PoSSoWN problem. The Leaning With Errors (LWE) problem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF], proposed by Regev in 2009, can be modelled as a problem solving a system of noisy linear equations. Results from [Reg09, BLP + 13] have shown that the hardness of this problem can be reduced to the hardness of some of the worst case lattice problems. Naturally, this leads us to the question, whether one can generalize the LWE problem to a non-linear system of noisy equations. In this thesis, we try to answer this exact problem. The non-linear generalization of the LWE problem leads to a noisy variant of the PoSSo problem that we discussed in Chapter 2. We call this problem as the Polynomial System Solving With Noise (PoSSoWN) problem. Particularly, some work in this direction was made in [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF] by introducing the noisy version of the ideal membership problem and the Gröbner basis problem, however, since then not much progress has been made.

In Chapter 5, we describe the PoSSoWN problem. Recalling from Chapter 2 Gröbner bases are mathematical objects that are useful in solving a system of nonlinear equations. Interestingly, an algorithm that solves the Gröbner basis problem, which is the problem of computing a Gröbner basis of a system of equations, also solves the PoSSo problem. A variant of the Gröbner basis problem, i.e. the Gröbner basis with Noise problem (GBN), was also introduced and has already been shown to be as hard as the LWE problem [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF]. Naturally, one question arises: can an algorithm that solves the Gröbner basis with Noise (GBN) problem be modelled as an algorithm to solve the PoSSoWN problem ? Or, in other terms, is the PoSSoWN problem NP-Hard?

In this work, we reduce the hardness of PoSSoWN to the LWE problem and the GBN problem for the linear and the non-linear instance of PoSSoWN. To our knowledge, this is the first work which also present the algorithms and the techniques to solve this problem. To solve the problem, one can employ algorithms that solve the PoSSo problem. However, we due to the presence of errors, algorithms presented in Chapter 2 cannot be directly applied. One contribution of this thesis is that we present algorithms to solve any instance of the PoSSoWN problem.

The CFPKM scheme. Since the first multivariate cryptosystem C * [START_REF] Matsumoto | Public quadratic polynomialtuples for efficient signature-verification and message-encryption[END_REF] was proposed, many schemes based on the PoSSo problem have been designed. In Chapter 5 we presented another hard problem based on solving a polynomial system, called the PoSSoWN. This problem is relatively new in comparison to the PoSSo problem and therefore, hasn't been looked into from the point of view of designing multivariate cryptosystems. The PoSSoWN problem, like the PoSSo problem is another candidate for post-quantum cryptography. This motivated us to design a cryptosystem which relies on the hardness of the PoSSoWN problem. We build a multivariate public-key cryptosystem for key-exchange, which can be naturally transformed into a public-key Key encapsulation scheme.

In Chapter 6, we present a key-encapsulation scheme, called as CFPKM. This scheme was submitted to the NIST PQC Standardization competition as a candidate for Public-key Encryption / Key-Encapsulation scheme. We proposed two sets of parameters, CFPKM128 and CFPKM182 addressing two security strengths suggested by NIST. Unfortunately, this scheme was broken in the second round due to a fault in the design structure of the scheme. Some efforts were made to correct the vulnerability, however, not much progress was made and hence the scheme was dropped.

Publications

The contribution of Chapter 4 was a joint work with Jean-Charles Faugère and Ludovic Perret. Our results will be appearing in the paper:

• Olive Chakraborty, Jean-Charles Faugère and Ludovic Perret. Cryptanalysis of The Extension Field Cancellation Cryptosystem. In Design, Codes and Cryptography (Submitted with minor revisions.)

The contribution of Chapter 6 was also a joint work with Jean-Charles Faugère and Ludovic Perret and was submitted for the NIST Standardization Competition. The whole package of the scheme along with the description and implementation of the scheme is available on the NIST webpage (https://csrc.nist.gov/Projects/postquantum-cryptography/Round-1-Submissions).

Chapter 2

Polynomial System Solving Abstract Solving a system of polynomial equations is a fundamental problem in mathematics with a wide range of applications. Cryptography is one such field and is the main focus of this work. Multivariate cryptography relates to cryptosystems which are based on the hardness of solving a system of multivariate polynomial equations over a finite field (the PoSSo q problem, which is NP-Hard). It is therefore important to understand the cost of solving PoSSo q . In particular, Gröbner basis are mathematical objects that are very useful in solving PoSSo q , which we introduce and describe in great detail. Also in this chapter, we consider combinatorial techniques (such as exhaustive search) for solving PoSSo q .

General Framework

Throughout this thesis, we use some common notations. Let F be a field and F[x 1 , . . . , x n] be the polynomial ring in n variables x 1 , . . . , x n . In this chapter, we focus our attention to the problem of finding -if any -solution(s) to a system of m algebraic equations in n unknowns over F:

     f 1 (x 1 , . . . , x n) = 0 . . . f m (x 1 , . . . , x n) = 0     
This problem of finding the roots of a system of multivariate polynomials is most commonly known as the PoSSo problem. In this work, we deal with system of equations which are defined over finite field of order q ∈ N elements (denoted by F q) where q is some positive power of a prime number. Consequently, we denote this problem as PoSSo q .

PoSSo q Input: f 1 , . . . , f m ∈ F q [x 1 , . . . , x n] Goal: Find -if any -a vector (z 1 , . . . , z n) ∈ F n q such that      f 1 (z 1 , . . . , z n) = 0 . . .

f m (z 1 , . . . , z n) = 0     
For linear systems, i.e. degree of each f i is 1, the problem can be solved in polynomial time, thanks to Gaussian elimination. However, for non-linear cases, the problem is significantly harder to solve and is an NP-Complete [START_REF] Aviezri | Complexity of problems in games, graphs and algebraic equations[END_REF]. When the system of equations is quadratic, this problem is also known as the MQ q problem, and is still NP-Complete [START_REF] Aviezri | Complexity of problems in games, graphs and algebraic equations[END_REF]. In the following sections we shall present some techniques to solve the PoSSo q in general and the MQ q problem in particular.

Combinatorial Methods

Classical Setting

Since we work with polynomials over a finite field, exhaustive search or brute force search is the most obvious and natural choice for solving a system of polynomials f 1 , . . . , f m ∈ F q [x 1 , . . . , x n]. This type of combinatorial technique exhaustively searches for values of the variables (x 1 , . . . , x n) ∈ F n q such that they satisfy each of the polynomial equations. The complexity of such an algorithm is exponential in the number of variables. Particularly, [BCC + 10] details the complexity of a brute force algorithm which computes the solution to a system of quadratic equations in F 2 . This has a complexity of 2 n+2 • log 2 n bit operations.

Example 2.2.1. We want to compute the common roots of a system of 90 generic quadratic equations over 80 variables in F 2 [x 1 , . . . , x 80]. Using the exhaustive search method of [BCC + 10], the total complexity is 2 85 binary operations.

Remark 2.2.2 (A brief remark about the time complexity analysis). Complexity of algorithms are generally given in terms of Big-Oh notation (O())

. For a given positive function g(x), one can denote O(g(x)) the set of functions [START_REF] Thomas H Cormen | Introduction to algorithms[END_REF] O(g(x)) = {f (x) : there exists positive constants M and x 0 such that 0 ≤ f (x) ≤ Mg(x) for all x ≥ x 0 }.

This constant M depends mainly on the algorithm itself. The implementation of algorithm as well as the architecture of the machine on which the algorithm has been implemented also impacts the constant. Some algorithms have large overheads in their actual run time on a particular machine, which in turn are reflected in this constant. Therefore in general, the constant M is not easy to determine. However, estimating the running time without the constants gives an overview of how algorithms compare to each other asymptotically. Thus, even though the constant is not completely precise, as a conservative choice we assume the constant M to be 1. proposed a new algorithm for solving a system of non-linear equations which is faster than standard exhaustive search, i.e. O(q n). In particular, Theorem 2.2.3. Let p be a prime, and q = p k for k ≥ 1. There is a randomized algorithm that, given an instance of m polynomial equations of degree at most d in n variables, computes the zeros of the system correctly with high probability. The complexity of the algorithm is

• O * (2 0.8765n) when q = d = 2, • O * q 1-1 5d n • n 3d when p = 2, but q > 2 or d > 2, • O * q 1-(1/200d
) n • n 3dq when p > 2 and log p < 4ed,

• O * q n • log q ekd -kn when p > 2 and log p ≥ 4ed, where e = 2.718 is the Napier's constant.

Given a system of polynomial equations (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n], the idea is to replace the above system by a single high degree polynomial Q over n ′ (< n) variables, such that the polynomial Q vanishes on the same zeros as that of the system f 1 , . . . , f m . The intuition is that one can perform an exhaustive search over a smaller number of variables n ′ instead of n and checks the satisfiability of Q. This gives the algorithm an advantage of not having to guess on a large fraction of possible values. Briefly, the algorithm can be described as follows:

1. Select an integer n ′ = ⌊δ • n⌋ where 0 < δ < 1 depending on d and q.

Define a function

P : F n q → F q such that P (x) = 1 -m i=1 (1 -p i (x) q-1) where x = (x 1 , . . . , x n) ∈ F n q .
Thus for all a ∈ F n q , P (a) = 0 if and only if p 1 (a) = • • • = p m (a) = 0 and P (a) = 1 otherwise.

Define a function

Q : F n-n ′ q → F q such that Q(x 1 , . . . , x n-n ′) = a∈F n ′ q P (x 1 , . . . , x n-n ′ , a),
4. We note that there is some c ∈ F n q satisfying P (c) = 0 if and only if there is some

b ∈ F n-n ′ q such that Q(b) = 0.
Performing an exhaustive search on Q allows to recover the same zeros of the initial system with high probability. For more details, we direct the reader to the original paper [LPT + 17].

Example 2.2.4. Following Remark 2.2.2 we approximate O * (2 0.8765n) to be 2 0.8765n . Taking the same example as Example 2.2.1, using this algorithm, the complexity for determining the roots is 2 71 bit operations.

Quantum Setting

Similar to the classical case, in the quantum setting the first obvious way to solve a system of polynomial equations is exhaustive search. Thanks to Grover's algorithm [START_REF] Lov | A fast quantum mechanical algorithm for database search[END_REF], a quantum search algorithm, one can achieve a square-root speed up over the classical brute force.

Before we proceed with describing the brute force approach on a quantum computer we need to look at the working of quantum computer very briefly. In the quantum setting, the computations are based on behaviour of subatomic particles. Unlike the classical setting, where information can be represented by two logical states (or bits): either 1 or 0, quantum information is naturally represented by electronic states of an atom [START_REF] Adrien | A new notation for quantum mechanics[END_REF]. The two main states are the ground state, |0 and excited state, |1 . However, as an atom follows laws of quantum mechanics, the general electronic state of an atom is a superposition of the two basic states |Ψ = a|0 + b|1 , called the quantum bit or qubit [START_REF] Schumacher | Quantum coding[END_REF]. Thus {|0 , |1 } spans the two dimensional linear vector space for qubit. Similar to logical gates in the classical setting, the quantum analog in quantum computing are the quantum gates, eg. Pauli-X gate (which is the quantum equivalent of classical NOT gate but over the inputs |0 , |1). Such gates are reversible 1 , unlike some of their their classical counterparts. There are various types of quantum gates that exists which take either one or more qubits as input. Any quantum algorithm is usually represented by a sequence of quantum gates and is known as a quantum circuit.

In [START_REF] Schwabe | Solving binary mq with grover's algorithm[END_REF], the authors proposed a quantum algorithm for solving MQ 2 problem. The main principle is to perform a fast exhaustive search by using Grover's algorithm. One can solve (m-1) binary quadratic equations in (n-1) binary variables with the Grover's algorithm using a circuit consisting of (m + n + 2) qubits and requiring the evaluation of 2 n/2 2m(n 2 + 2n) + 1 quantum gates. They also propose a variant for the quantum circuit which in comparison uses 3 + n + ⌈log 2 m⌉ qubits but with twice as many quantum gates required.

Example 2.2.5. Solving 90 binary quadratic equations over 80 variables by exhaustive search with Grover's algorithm thus has expected cost of 174 qubits and requires a use of minimum 2 60 quantum gates. Using the variant the expected cost is 90 qubits using 2 61 quantum gates.

Gröbner Basis

In this thesis, the mathematical object that we use most frequently is Gröbner basis [START_REF] Buchberger | An algorithm for finding the base elements of the residual class ring after a zero-dimensional polynomial ideal[END_REF]. We will see how the calculation of such a basis makes it possible to solve the PoSSo problem. In this section, we present the notations and the essentials around Gröbner bases that are going to be used in the second part of this thesis.

Preliminary Definitions and Properties

We start by defining two mathematical objects naturally associated with Gröbner bases: ideals and varieties.

Definition 2.3.1 (Ideal). [CLO15] An ideal I ⊆ F q [x 1 , . . . , x n] is a set of elements such that • 0 ∈ I, • If f, g ∈ I, then f + g ∈ I, • If f ∈ I and g ∈ F q [x 1 , . . . , x n], then f g ∈ I.
We define the ideal generated by the polynomials

(f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] as f 1 , . . . , f m := m i=1 g i f i : (g 1 , . . . , g m) ∈ F m q [x 1 , . . . , x n] .
We define the affine algebraic variety of I ⊆ F q [x 1 , . . . , x n], denoted by V(I), as the set of the common zeros of all the polynomials in I, over the algebraically closed finite field F q :

V(I) = {(a 1 , . . . , a n) ∈ (F q) n |∀f ∈ I : f (a 1 , . . . , a n) = 0}.
When the variety is finite, i.e. |V(I)| < ∞, then the ideal is called zero-dimensional. In this work, we are interested in the set of solutions which belong to F q ⊂ F q (not in its algebraic closure F q). The set of solutions to the equation x q = x is the entirety of the field F q . Thus by appending x q 1x 1 , . . . , x q nx n ∈ F q [x 1 , . . . , x n] to the input ideal I = f 1 , . . . , f m , we have

V(f 1 , . . . , f m , x q 1 -x 1 , . . . , x q n -x n) = V(I) ∩ F n q ,
the variety consisting of solutions to the system which lie only in F q . To solve a system of equations (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n], we calculate the variety, which is denoted by V Fq (f 1 , . . . , f m). Any solution to the system of equations also cancels all the polynomials in the ideal f 1 , . . . , f m . Therefore, the variety V(f 1 , . . . , f m) does not depend on the exact choice of the polynomials f 1 , . . . , f m , rather, it depends only on the ideal generated by these polynomials. Thus, one can try to find another system of polynomial equations that generates the same ideal I = f 1 , . . . , f m and are easier to solve than the system f 1 , . . . , f m . Thanks to Gröbner basis, we are able to do so. Informally, Gröbner basis is the generating basis for an ideal that allows to identify in particular the roots of a system as well as deduce many properties of an ideal. Thus, Gröbner basis computation provides us with tools to solve a system of multivariate system of equations. We now look into Gröbner basis in some detail.

We shall recall that a monomial in the polynomial ring F q [x 1 , . . . , x n] is a power-product of variables. We write a monomial x α 1 1 • • • x αn n as x α where α = (α 1 , . . . , α n) ∈ N n . The degree of a monomial is deg(x α) = i α i . We say that a monomial x α divides another monomial x β if and only if for all 1 ≤ i ∈ n, we have α i ≤ β i . This is also denoted as x α |x β .

In the case of polynomial ideals with one variable, the largest term is considered with respect to the order

x d > x d-1 > • • • > x 2 > x > 1.
Choosing any other term leads to an infinite division process. While dealing with multiple variables, we consider a particular type of total order relation2 on the set of monomials of F q [x 1 , . . . , x n], which we define as follows: Definition 2.3.2 (Monomial Ordering [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]). A monomial ordering on a polynomial ring

F q [x 1 , . . . , x n] is a binary relation ≻ on N n such that • ≻ is a total ordering on N n .
• For a triplets of monomials (x α , x β , x γ);

x α ≻ x β , implies x α x γ ≻ x β x γ , where α, β, γ ∈ N n .
• ≻ is a well-ordering [CLO15, Lem. 2.2.2] on N n , that is every non-empty subset of N n has a minimal element with respect to ≻.

For instance, the Lexicographic (Lex) and Degree Reverse Lexicographic (GRevLex) -which are widely used in practice-are defined as follows:

Definition 2.3.3. Let ≻ be a monomial ordering such that x 1 ≻ x 2 ≻ • • • ≻ x n . Let α = (α 1 , . . . , α n) ∈ N n and β = (β 1 , . . . , β n) ∈ N n • Lexicographic ordering (LEX): we say x α ≻ LEX x β , if and only if there is 1 ≤ k ≤ n such that (∀ 1 ≤ i < k) α i = β i , α k > β k .
• Graded Reverse Lexicographic ordering (GREVLEX): given two monomials x α and x β , we say x α ≻ GREVLEX x β , if and only if,

|α| = n i=1 α i > |β| = n i=1 β i , or, |α| = |β| and ∃ k such that (∀ i > k) α i = β i and α k < β k . Example 2.3.4. Consider the LEX ordering ≻ Lex on F q [x, y], such that x ≻ Lex y. Then x 3 ≻ Lex xy 2 , x ≻ Lex y 50 and xy 3 ≻ Lex xy 2 .
Example 2.3.5. Consider the GREVLEX ordering ≻ GRevLex on F q [x, y, z], such that x ≻ GRevLex y and y ≻ GRevLex z. Then xy 2 ≻ GrevLex x 2 z, and y 50 ≻ GRevLex x .

There are many other monomial orderings which exist and refer the reader to [START_REF] Cox | Ideals, varieties, and algorithms[END_REF] for more details. Now, that we have defined ordering amongst monomials, it is easy to note that any polynomial f ∈ F q [x 1 , . . . , x n] has a unique leading term. Hereby, we provide its formal definition: Definition 2.3.6 (Leading Monomial, Coefficient and Term). Let f = α∈N n c α x α ∈ F q [x 1 , . . . , x n] be a non zero polynomial and let ≻ be the monomial ordering, then

• The leading monomial of f with respect to ≻, denoted by LM ≻ (f), is the largest monomial (with respect to ≻), i.e.

LM ≻ (f) := max{x α : c α = 0},
• The leading coefficient of f with respect to ≻, denoted by LC ≻ (f), is the coefficient associated to the leading monomial of f , i.e.

LC ≻ (f) := c α such that LM ≻ (f) = x α ,
• The leading term of f , denoted by LT ≻ (f), is the product of the leading monomial and coefficient of f , i.e.

LT ≻ (f) := LC ≻ (f)LM ≻ (f).
Next, we shall define the notion of a particular type of ideal which can be generated by a set of monomials. This is known as monomial ideal.

Definition 2.3.7 (Monomial Ideal). We say that an ideal I ′ ⊂ F q [x 1 , . . . , x n] is a monomial ideal if I ′ can be generated by a family of monomials, i.e.

I ′ = x α () , • • • , x α (m) where α (i) ∈ N n .
Example 2.3.8. An example of monomial ideal is given by I = x 4 y 2 , x 3 y 4 , x 2 y 5 ⊂ F q [x, y].

A monomial x β belongs to the monomial ideal

I ′ = x α () , • • • , x α (m)
, if and only if x β is divisible by x α (i) . Additionally, a polynomial f belongs to monomial ideal I ′ , if and only if all monomials that occur in f with non-zero coefficient also belong to I ′ .

A special kind of monomial ideal is the ideal generated by the leading monomials of the polynomials (see Definition 2.3.6). This ideal is called the initial ideal and we formally define it as follows: Definition 2.3.9 (Initial Ideal). Let ≻ be a monomial ordering and I ⊆ F q [x 1 , . . . , x n] be an ideal. Then the initial ideal of I, denoted by LM ≻ (I), is the monomial ideal generated by the leading monomials of the all the polynomials in I, i.e.,

LM ≻ (I) := LM ≻ (f) : f ∈ I .
When I is already a monomial ideal then LM ≻ (I) = I. Now, from definition, LM ≻ (I) is generated by the monomials LM ≻ (f) for f ∈ I -{0}. Dickson's Lemma [CLO15, Theorem 2.4.5] states that a monomial ideal I has a finite basis. Using this property, one can show that for any polynomial ideal, I ⊆ F q [x 1 , . . . , x n], there exists a finite basis (g 1 , . . . , g m) ∈ F m q [x 1 , . . . , x n] of I, which has the property, LM ≻ (I) = LM(g 1), . . . , LM(g m) . This is most famously known as the Hilbert Basis Theorem [CLO15, Theorem 2.5.4]. Any basis which satisfies such a property is called the Gröbner basis of the ideal I. We define it more formally as follows: Definition 2.3.10 (Gröbner basis). Let ≻ be a monomial ordering on the polynomial ring F q [x 1 , . . . , x n]. A finite subset G of an ideal I ⊆ F q [x 1 , . . . , x n] is a Gröbner basis of I with respect to ≻ if and only if

LM ≻ (I) = {LM ≻ (g) : g ∈ G} .
Equivalently, we also say that G is a Gröbner basis if, for every f ∈ I, there exist some g ∈ G such that LM(g) | LM(f).

From a practical point of view, computing a Lex Gröbner basis much slower than computing a Gröbner basis with respect to another monomial ordering. On the other hand, it is quite well known that computing GRevLex Gröbner bases is much faster in practice.

One might encounter a case where there exists a polynomial in the Gröbner basis g ∈ G, such that its leading monomial can be generated by the leading monomials of the other elements in the basis G. Then the basis G-{g} is also a Gröbner basis for the same ideal I [CLO15, Lemma 2.7.4]. Removing all such dependent g ∈ G having this property leads us to the notion of a minimal Gröbner basis. However, for an ideal I, one can encounter multiple minimal Gröbner bases. Fortunately, we can find a minimal basis, with the additional property that for any element g ∈ G, no monomial of g lie in monomial ideal LM(G -{g}) . This is the notion of reduced Gröbner basis that we formally define below.

Definition 2.3.11 (Reduced Gröbner basis [CLO15]).

A Gröbner basis G for some ideal in the polynomial ring F q [x 1 , . . . , x n] is said to be reduced Gröbner basis if and only if

• every polynomial in G is monic, i.e. ∀g ∈ G, LC ≻ (g) = 1, and

• ∀g ∈ G, no monomial appearing in g belongs to LM ≻ (G -{g})
For any ideal I = 0, such a reduced Gröbner basis is always unique [CLO15, Proposition 2.7.6].

While working with Gröbner bases, broadly two types of polynomial systems are encountered: homogeneous and affine system of equations. Definition 2.3.12. Given a multivariate polynomial f ∈ F q [x 1 , . . . , x n], it is said to be homogeneous if and only if all the monomials of f with non-zero coefficients have the same total degree, i.e., with (α 1 , . . . , α n) ∈ N, all monomials of f are of the form x α 1 1 x α 2 2 • • • x αn n such that n i=1 α i is a constant value for the polynomial f . Otherwise its called an affine polynomial.

As we shall see in Section 2.3.2, one of the most common aspect in Gröbner basis algorithms is the idea of incremental degree by degree computation of the basis. More precisely, such algorithms consider all polynomials at a certain degree in order to find the generating elements for the Gröbner basis at that degree before proceeding to the next degree. This is made possible by considering the ideal subset, I ≤d ⊆ I ⊆ F q [x 1 , . . . , x n], such that I ≤d consists of all the polynomials in the ideal whose degree is less than or equal to d. We also call this as the degree d-truncated ideal. Using this notion of degree truncated ideal, we define the generating Gröbner basis for this ideal I ≤d as follow: Definition 2.3.13 (d-Gröbner basis). Let ≻ be a monomial ordering, d ∈ N be an integer and I ⊆ F q [x 1 , . . . , x n] be an ideal. A degree d truncated Gröbner basis for I with respect to the monomial ordering ≻ is a finite set

G d ⊂ I ≤d ⊆ I such that for every f ∈ I d with deg(f) ≤ d, we have LM ≻ (f) ∈ {LM ≻ (g) : g ∈ G d }
And as a direct consequence of the Ascending Chain condition [CLO15, Theorem 2.5.7] and Hilbert Basis theorem [CLO15, Theorem 2.5.4], we have the following theorem.

Theorem 2.3.14. Let G d ⊂ F q [x 1 , . . . , x n] be a degree d-Gröbner basis of a system of homogeneous polynomials in the polynomial ring F q [x 1 , . . . , x n] with respect to some monomial ordering ≻. Then we have the inclusion of truncated Gröbner bases with incremental degree and we can find a D such that

G 2 ⊂ G 3 ⊂ • • • ⊂ G D = G D+1 = G,
where G ⊂ F q [x 1 , . . . , x n] is the Gröbner basis of input system of polynomials with respect to ≻.

The step of computing the basis is usually the most difficult step as generally the input polynomials have no mathematical structure. This notion of truncated Gröbner basis comes in handy to provide some kind of structure to this [START_REF] Faugere | A new efficient algorithm for computing gröbner bases (f4)[END_REF]. We shall see later (Section 2.3.2), state-of-the-art Gröbner basis algorithms such as Buchberger and F4 incrementally solve a system of equations by computing Gröbner basis degree by degree.

Gröbner Basis and Ideal Membership

One of the important applications of Gröbner basis is that it allows to solve the Ideal Membership Problem. Formally, given a polynomial and an ideal, the decision Ideal Membership Problem decides whether the polynomial belongs to the ideal. The testing for ideal membership requires an understanding of the notion of the polynomial division with respect to a set of polynomials. One might recall, division of a polynomial by another polynomial iterates the process of division by the divisor polynomial until the leading term of the remainder in each step of division is not divisible by the leading term of the divisor. The following theorem gives the general form of the division algorithm of a polynomial by an ordered set by building on the previous algorithm.

Theorem 2.3.15. [START_REF] Cox | Ideals, varieties, and algorithms[END_REF]Theorem 2.3.3

] Let F = (f 1 , . . . , f m) ∈ F m q [x 1 , . . . ,
x n] be a m-tuple of polynomials and let ≻ be a fixed monomial ordering. Then every f ∈ F q [x 1 , . . . , x n] can be written as

f = a 1 f 1 + • • • + a m f m + r,
where a i , r ∈ F q [x 1 , . . . , x n]. We call r the remainder of the division of f by F . The remainder is either r = 0 or a linear combination, with coefficients in F q , of monomials none of which are divisible by any of

LM ≻ (f 1), . . . , LM ≻ (f m). Example 2.3.16. Let f = xy 2 + x 2 y ∈ F q [x, y] where q is a large prime. Dividing f by f 1 = xy -1, f 2 = y + 1 ∈ F q [x, y], the division algorithm described above gives us f = (y + x) • f 1 + 1 • f 2 + x
Having r = 0 is a sufficient condition for testing the ideal membership of a polynomial f ∈ F q [x 1 , . . . , x n] in an ideal I ⊆ F q [x 1 , . . . , x n]. However, it is not a necessary condition. Consider the following example.

Example 2.3.17.

Let f = xy 2 -x ∈ F q [x, y] and let f 1 = xy + 1, f 2 = y 2 -1 ∈ F q [x, y] be the two divisors. Dividing f by F = (f 1 , f 2) in this particular order gives us xy 2 -x = y • (xy + 1) + 0 • (y 2 -1) + (-x -y).
While with the choice of F = (f 2 , f 1) we have

xy 2 -x = x • (y 2 -1) + 0 • (xy + 1) + 0.
From this above example we see that r = 0 when the choice of divisors is (f 2 , f 1) and thus f ∈ f 1 , f 2 . However, the with the choice of order of divisors as (f 1 , f 2), we have r = 0. Therefore, one might look for a better generator set of the ideal such that with just r = 0 we have a necessary and sufficient condition for ideal membership testing. Gröbner basis properties allow the remainder of a polynomial division by the ideal to be uniquely determined [CLO15, Proposition 2.6.1], thus making r = 0 a necessary as well as a sufficient condition for ideal membership.

Definition 2.3.18 (Normal Form). [CLO15, Page 82] Let I ⊆ F q [x 1 , x n] be an ideal and G be a Gröbner basis of I. Then any polynomial f ∈ F q [x 1 , . . . , x n] can be represented as f = h + r where h ∈ I and r ∈ F q [x 1 , . . . , x n] has no monomials that are divisible by any of LM ≻ (g 1), . . . , LM ≻ (g m) for G = (g 1 , . . . , g m) ∈ F m q [x 1 , . . . , x n]. This polynomial r is called the normal form of f with respect to I and ≻. We denote it as f G .

Now, with this we can represent any polynomial uniquely by their normal form. Since this normal form is unique for any polynomial, we now have a necessary and sufficient condition to test the ideal membership. More formally we have the following:

Corollary 2.3.19 (Test for Ideal Membership). Let G be a Gröbner basis for an ideal I ⊆ F q [x 1 , . . . , x n]. A polynomial f ∈ F q [x 1 , . . . , x n] belongs to the ideal I, if and only if the normal form of f with respect to the Gröbner basis is 0, i.e. f G = 0.

Now, that we have discussed the testing for ideal membership, we now focus on the problem of deciding whether an input generating set of an ideal is a Gröbner basis. A generating set (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] for an ideal cannot be a Gröbner basis if the leading term of any polynomial combination of the generator polynomials is not in the ideal LM ≻ (f i) for some fixed monomial ordering ≻. This can occur in cases when the leading terms in the combination cancel, leaving only smaller terms, which are not divisible by any of LM ≻ (f 1), . . . , LM ≻ (f m). Such a combination of two polynomials is known as the S-polynomial of a pair of polynomials:

Definition 2.3.20 (S-polynomial). Let f, g ∈ F q [x 1 , . . . , x n] be two non-zero polynomials. Let us denote the least common multiple of LM ≻ (f) and LM ≻ (g) by x γ . The S-polynomial of f and g is the combination

Spol ≻ (f, g) := LT ≻ (g) x γ • f - LT ≻ (f) x γ • g.
Using S-polynomials, Buchberger proposes the following decision criteria to determine if the basis (the generating set) of an ideal is a Gröbner basis.

Theorem 2.3.21 (Buchberger's Criterion). [START_REF] Buchberger | A theoretical basis for the reduction of polynomials to canonical forms[END_REF]Theorem 3.3

] Consider a polynomial ideal I ⊆ F q [x 1 , . . . , x n]. Then a basis G = (g 1 , • • • , g m) ⊂ I is a
Gröbner basis of I with respect to monomial ordering ≻ if and only if for all pairs (g i , g j) ∈ F 2 q [x 1 , . . . , x n] with i = j, the remainder on division of Spol ≻ (g i , g j) ∈ F q [x 1 , . . . , x n] by G is zero.

Thus using this previous criterion one can test whether a given basis is a Gröbner basis. In the following section, we can now describe the state-of-the-art algorithms to compute Gröbner bases for a system of polynomials.

Gröbner Basis Algorithms

Buchberger Algorithm

Buchberger [START_REF] Buchberger | A theoretical basis for the reduction of polynomials to canonical forms[END_REF] proposed the first general algorithm to compute the Gröbner basis by using the criterion of Theorem 2.3.21. Now we present the algorithm in brief. Given a system of polynomials, say L ⊂ F q [x 1 , . . . , x n], belonging to an ideal, the goal is to decide whether this set, L is a Gröbner basis for the ideal, and if not, then compute the Gröbner basis. The idea of the algorithm is as follows:

1. Find all S-polynomials (see Definition 2.3.20) for every pair of polynomials in the list.

2. For each S-polynomial, compute the remainder on its division by L. If the remainder is non-zero, then append the remainder to L.

Use

Gröbner basis G of f 1 , . . . , f k with respect to ≻ . 1: G ← {f 1 , . . . , f k } 2: G ′ ← {(f i , f j) ∈ G such that f i = f j }; 3: while G ′ = ∅ do 4: (f, g) ← Select(G ′) 5: G ′ ← G ′ \{(f, g)} 6:
r ← Remainder of the division of Spol ≻ (f, g) with respect to G. G ′ ← G ′ ∪ {(g i , r) : ∀g i ∈ G\{r}} 11: end while 12: return G

Macaulay Matrices

Macaulay matrices are mathematical objects that are useful in representing the bases of an ideal represented as a vector space. In particular, the basis elements are represented in a matrix form, which allows to takes use of linear algebra methods for manipulating the elements of the basis and obtain a Gröbner basis. Before we proceed, we shall formally define a Macaulay matrix. To define Macaulay matrices [START_REF] Sowerby | Some formulae in elimination[END_REF], we shall use the following notations. Let F q [x 1 , . . . , x n] be a polynomial ring and ≻ be a monomial order. We denote M (d) to be the set of all the monomials of degree less than or equal to d and µ ≤d i be the i th element of M (d) ordered with respect to the ordering ≻. We denote ℓ d = n+d d as the total number of monomials in M (d). Finally, for f ∈ F q [x 1 , . . . , x n], we denote Coeff(f, µ ≤d i) the coefficient of f associated with the monomial µ ≤d i .

Definition 2.3.22 (Macaulay Matrix). Let ≻ be a monomial ordering. Let F = (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] be a list of polynomials of degrees d 1 , . . . , d m respectively. The Macaulay matrix of

F in degree d ∈ N is the matrix M ≻,d (F) ∈ F m i (n+d-d i d-d i) ×(n+d d)
q where

• Each of the n+d d columns of M ≻,d is indexed by a monomial of F q [x 1 , . . . , x n] d of degree less than d. The columns are sorted in decreasing order with respect to the monomial ordering ≻.

• We denote by µ ≤d as the ordered set of monomials of degree less than or equal to d, occurring in F q [x 1 , . . . , x n] and µ ≤d j as the j th element of that set. Each row of the Macaulay matrix M ≻,d (F) is indexed by a pair (f i , µ ≤d-d i k), where i ∈ {1, . . . , m} and µ ≤d-

d i k ∈ F q [x 1 , . . . , x n] where 1 ≤ k ≤ ℓ d-d i where ℓ d-d i is the number of monomials of degree d -d i .
• The element in the row indexed by (f i , µ ≤d-d i k

) and the column indexed by µ ≤d j corresponds to the coefficient of the monomial µ ≤d j in the polynomial µ ≤d-d i k f i . d-d

µ ≤d 1 ≻ µ ≤d 2 ≻ • • • µ ≤d l d                                 µ ≤(
Let F = (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n].
We can see that linear combination of the rows of M ≻,d (F) represents a polynomial f ∈ F q [x 1 , . . . , x n] of degree at most d in the ideal I ≤d generated by F , i.e. f ∈ F d . Also row and column operations on M ≻,d (F) represents elements from the degree d truncated ideal F . For instance, multiplying a non zero constant c by the row with indexed by (f i , µ j), we obtain a row which corresponds to the coefficients of cµ j f i ∈ F q [x 1 , . . . , x n]. Similarly adding two rows indexed by (f i , µ j) and (f k , µ l), we obtain a row that corresponds to the coefficients of the polynomial µ j f i + µ l f k ∈ F q [x 1 , . . . , x n]. Thus we can say that the matrix M ′ ≻,d (F) resulting from some linear algebra operations on the rows of M ≻,d (F) represents polynomials in F d .

A connection between the degree d Macaulay matrices M ≻,d and truncated d-Gröbner basis for an ideal I ≤d was first provided by Lazard in [START_REF] Lazard | Gröbner bases, gaussian elimination and resolution of systems of algebraic equations[END_REF]. For a matrix M ∈ F m×n q , we denote by M the Gauss-Jordan elimination of M . It is also known as the row echelon form of the matrix M . Lemma 2.3.23 [START_REF] Lazard | Gröbner bases, gaussian elimination and resolution of systems of algebraic equations[END_REF]). Given a system of homogeneous polynomials F = (f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n], then M ≻,d (F) represents a degree d truncated (nonreducible) Gröbner basis of F . Additionally, for any system of polynomials

F ′ = (f ′ 1 , . . . , f ′ m) ∈ F q [x 1 , . . . , x n]
, there exists a d ∈ N, such that the rows of M ≻,d (F ′) form a Gröbner basis for F ′ .

Using this lemma, Lazard's algorithm successively computes the truncated nonreducible Gröbner basis from M ≻,1 (F), . . . , M ≻,D (F), where D is the degree at which the truncated basis is the Gröbner basis for F .

Algorithm 2 Lazard's Algorithm

Input: A list of homogeneous polynomials F := (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] and a monomial ordering ≻ and a degree D. Output: Truncated degree D-Gröbner basis G D of f 1 , . . . , f k with respect to ≻.

G d ← G d-1 ∪ {g ∈ P d : (∀h ∈ G d-1)LM ≻ (h) does not divide LM ≻ (g)} 7: end for 8: return G D

Faugère's F4 Algorithm

The Buchberger's algorithm involves making the following choices :

1. the choice of a pair of polynomials from the list of pairs of polynomials in the input.

2. the choice of a divisor from a list of divisors while dividing the Spol ≻ by a list of polynomials.

The choices made during the process of Buchberger's algorithm although does not impact the correctness of the algorithm, but greatly dominates the running time of the Gröbner basis computation [START_REF] Buchberger | An algorithm for finding the base elements of the residual class ring after a zero-dimensional polynomial ideal[END_REF]. Thus the problem of making a decision on the selection strategy becomes important. Jean-Charles Faugère proposed a new algorithm, called the F4 [START_REF] Faugere | A new efficient algorithm for computing gröbner bases (f4)[END_REF], which rather than considering just one pair, the algorithm takes into account a set of polynomials pairs at the same time. These pair of polynomials are known as critical pairs, which we formally define as follows:

Definition 2.3.24 (Critical Pairs). A critical pair of two polynomials

(f i , f j) ∈ F 2 q [x 1 , . . . , x n] is an element Pair(f i , f j) := (lcm i,j , t i , f i , t j , f j) ∈ T 2 × F q [x 1 , . . . , x n] × T × F q [x 1 , . . . , x n],
where

lcm i,j = lcm(f i , f j) = LT(t i f i) = LT(t j f j) = lcm(LT(f i), LT(f j)),
and T is the set of all terms over F q [x 1 , . . . , x n].

The degree of a critical pair p i,j = Pair(f i , f j) is deg(p i,j) which is equal to deg(lcm i,j). Finally we use two other functions which are defined as Left(p i,j) := (t i , f i) and Right(p i,j) := (t j , f j), where t i , t j ∈ T, the set of all terms over F q [x 1 , . . . , x n]. With these we can now describe F4 in Algorithm 3. Algorithm Algorithm 3 F4 Algorithm Input: A list of polynomials F ∈ F q [x 1 , . . . , x n] and a selection function SEL from a list of critical pairs to another list of critical pairs. Output: Gröbner basis G of f 1 , . . . , f k with respect to GREVLEX .

F + d := Reduction(L d , G) 9:
for h ∈ F + d do 10:

P := P ∪ {Pair(h, g)|g ∈ G} 11: G ← G ∪ {h} 12:
end for 13: end while 14: return G 3 uses another algorithm Reduction in line 8. This algorithm generalizes or extends the idea of dividing a polynomial by a list of polynomials to idea of dividing a list of polynomials by another list of polynomials. Thus, unlike the Buchberger's algorithm, the Reduction algorithm proposes to reduce a set of critical pairs with respect to some polynomials by using the algorithm of Symbolic Processing (Algorithm 5). The Reduction is described in Algorithm 4.

Algorithm 4 Reduction

Input: Sets L ⊂ T × F q [x 1 , . . . , x n] and G ⊂ F q [x 1 , . . . , x n] Output: A finite subset of F q [x]. 1: F := SymbolicPreprocessing(L, G) 2: F := Row echelon form of F 3: F + := {f ∈ F |LT(f) / ∈ LT(F)} 4: return F + Algorithm 5 SymbolicPreprocessing Input: Sets L ⊂ T × F q [x 1 , . . . , x n] and G ⊂ F q [x 1 , . . . , x n] Output: A finite subset of F q [x]. 1: F := {t × f |(t, f) ∈ L} 2: Done := LT(F) 3: while T(F) = Done do 4:
Choose m an element of T(F)\Done

F := F ∪ {m ′ × f } 9:
end if 10: end while 11: return F The Sel function applies the normal strategy for F4 which outputs all the critical pairs from the set of critical pairs P , whose degree is the equal to the minimal degree amongst all such pairs [START_REF] Faugere | A new efficient algorithm for computing gröbner bases (f4)[END_REF].

The algorithm terminates only when all the critical pairs have been processed. Faugère also proposed certain improvements on the F4 algorithm, such as incorporating Buchberger's criterion (Theorem 2.3.21). F4 uses this criterion to get rid of all such pairs which will not lead to a change in the Gröbner basis, i.e. those which have disjoint head pairs (Buchberger's first criterion) [START_REF] Becker | Gröbner bases: a computational approach to commutative algebra[END_REF]Lemma 5.66]. This allows for making updates to the set of critical pairs as well as the basis elements which act as the divisors in the Reduction algorithm [START_REF] Becker | Gröbner bases: a computational approach to commutative algebra[END_REF][START_REF] Faugere | A new efficient algorithm for computing gröbner bases (f4)[END_REF]. An advantage of this strategy is that it does not require the input of a degree D, which is unlike Lazard's algorithm.

In Figure 2.1, we show a model run of the F4 algorithm on MAGMA. We generate a generic system of 30 quadratic equations over 20 variables. From line 4 of Algorithm 2.3.2.3, we see that the Gröbner basis computation proceeds degree by degree, considering critical pairs in each degree from the set of critical pairs. In Figure 2.1, this degree is displayed by the "step degree" (see line 17,35,53). Each run of the while loop (line 3, Algorithm 3) computes the Gröbner basis for the corresponding step degree d. Another critical observation is the dimensions of the matrix that is considered at each step degree in the Reduction function. The number of columns of the matrix (see line 27,40, Figure 2.1) that the algorithm deals within each step degree is the total number of possible monomials up to the step degree. For example, in step degree 3, the total number of monomials up to degree 3 is given by

n + 3 -1 3 + n + 2 -1 2 + n 1 + 1.
For n = 20 we obtain number of columns= 1771 and is easily verifiable from the Figure 2.1. While the number of columns is easy to determine and verify theoretically, the same cannot be said for the number of rows of the matrix. However, the log of the F4 algorithms (i.e. Figure 2.1) gives the exact number of rows. For example, in step degree 3, after symbolic processing of the list of polynomials the number of reductors (from the set L) and the number of reductees (given in G), it is observed that the number of rows is 629. Finally, after computing the row echelon form of this matrix of 629 rows and 1771 columns, we obtain 126 new polynomials that are added to the queue for the next while loop for degree 4.

The main advantage of using F4 is the size of the matrices involved is much smaller than that considered by Lazard's Macaulay matrix-based algorithm. For the Macaulay matrix approach, at degree 3, the number of rows of the matrix before Gaussian elimination of the matrix is 1040. These come from rows of the form x i f j . Comparing this to the previous example, at step degree 3, the number of rows in the matrix is 629. Another aspect of F4 which makes it more efficient than the previous methods, is the utilization of sparse linear algebra [START_REF] Faugere | A new efficient algorithm for computing gröbner bases (f4)[END_REF]. During the computation of Gröbner basis, the systems that are encountered are in general sparse, consequently so are the Macaulay matrices involved. This is evident from the previous example provided in Figure 2.1 and 2.2. Observe as the step degree increases, the density of the matrices involved decreases. For example, at step degree 2 (Line 23,fig 2.1) the matrix has on average ≈ 50.26% (116 out of 231 total columns) non zero columns per row, while at step degree 3 (Line 41), this reduces to ≈ 5.72% (101 out of 1769 total columns). This decreases to ≈ 2.83% and ≈ 3.06% for step degree 5 and 6 respectively. Thus sparse matrix solving techniques give F4 the upper hand in comparison to algorithms by Buchberger and Lazard from efficiency point of view .

Faugère's F5 Algorithm

In the previous sections, we looked at some of the algorithms for computing Gröbner basis. Even though these are efficient algorithms however, these algorithms share a common aspect. Recalling Buchberger's algorithm, computing the remainder of the S-polynomial division is redundant when the remainder is zero.

Similarly in Lazard's algorithm, it is seen that a large fraction of the polynomials that are constructed reduces to zero. Thus a large fraction of the running time of these algorithms is spent in computing and reducing these polynomials which are discarded. Hence this part of the process is redundant.

From the Gröbner basis point of view, when an algorithm considers polynomials, which after performing some linear algebra operations reduces to zero, we say that the algorithm performs reductions to zero. These "reductions to zero" are also known as syzygies. The practical efficiency of Gröbner basis algorithms are greatly impacted by such reductions to zero [Fau02, Table 9]. Thus it is important to avoid them as much as we can. There are several ways to predict such reductions to zero [START_REF] Gebauer | On an installation of buchberger's algorithm[END_REF][START_REF] Charles | A new efficient algorithm for computing gröbner bases without reduction to zero (f 5)[END_REF][START_REF] Eder | A survey on signature-based gr\" obner basis computations[END_REF]. We shall focus on one such method, the F5 criterion [START_REF] Charles | A new efficient algorithm for computing gröbner bases without reduction to zero (f 5)[END_REF].

Assume we have two polynomials f 1 , f 2 in the commutative polynomial ring F[x] of degrees d 1 and d 2 . Constructing the matrix which contains all the multiples up to degree d 1 + d 2 , the relation f 1 f 2f 2 f 1 = 0 induces reduction to zero during the linear algebra. These special reductions to zero are called trivial syzygies. The idea of the F5 criterion is to use the index of the rows of the Macaulay matrix to prevent these reductions.

Proposition 2.3.25 (Matrix-F5 Criterion). [START_REF] Charles | A new efficient algorithm for computing gröbner bases without reduction to zero (f 5)[END_REF] Given a system F := (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] of homogeneous polynomials of degree d 1 , . . . , d m respectively. Let a row in M ≻,d (F) be indexed by (f i , x α), such that x α ∈ LM ≻ (f 1 , . . . , f i-1). Then this row is a linear combination of the rows in M ≻,d (F) with smaller index, see Def 2.3.22.

Algorithm 6 Matrix-F5 Algorithm Input: A list of polynomials (f 1 , . . . , f m) ∈ F m q [x 1 , . . . ,
M F5 ≻,d (f 1 , . . . , f i) ← Empty matrix 6: for each (f j , x α) index of M ≻,d (f 1 , . . . , f i) do 7: if (d j > d) or for all g ∈ F j-1.d-d j , LM g | x α then 8: Add to M F5 ≻,d (f 1 , . . . , f i) the row with index (f j , x α) 9:
end if

Complexity of Gröbner Basis Computation

Computing Gröbner basis is at least as hard as solving a system of polynomials. The worst case time complexity of Gröbner basis methods is known to be doubly exponential in the number of variables, even for quadratic systems [START_REF] Ernst | The complexity of the word problems for commutative semigroups and polynomial ideals[END_REF]. This was achieved for a positive dimensional system where the complexity is precisely the 2 2 n/10 , where n is the number of variables. However, in cryptography we deal with systems which are zero-dimensional. Hence we do not encounter such doubly exponential complexity of computing Gröbner basis. For instance, given a regular (see Definition 2.3.28) and square polynomial system with degrees (d 1 , . . . , d n)

having only a finite number of roots, then computing its GRevLex Gröbner basis has a time complexity which is polynomial in n i d i (the Bézout's bound) [START_REF] Lazard | Gröbner bases, gaussian elimination and resolution of systems of algebraic equations[END_REF][START_REF] Faugère | Polynomial systems solving by fast linear algebra[END_REF].Specifically for Degree reverse lexicographic ordering (GrevLex), the highest degree of the Gröbner basis elements is bounded by The Macaulay Bound:

1 + n i=1 (d i -1).
Revisiting the idea of using Macaulay matrices to compute Gröbner bases, we know that a Macaulay matrix M ≻,d at degree d, has). Now this process is performed for each step of the degrees from min(d 1 , . . . , d m), . . . , d max , where d max is the maximal degree up to which Gröbner basis computation continues. Hence we have the following upper bound on the complexity of Gröbner basis computation.

C d := n + d -1 d , R d := |ℓ d-d 1 | + • • • + |ℓ d-dm |,
(
Proposition 2.3.26. Let f 1 , . . . , f m be a system of homogeneous polynomials in F q [x 1 , . . . , x n]. The number of operation required to compute the Gröbner basis of the ideal I dmax := f 1 , . . . , f m D for some graded monomial ordering and a degree bound D is given by

O mD n + D -1 D ω , where 2 ≤ ω ≤ 3 is the exponent of matrix multiplication over F q [Wil12].
Example 2.3.27. Le us revisit the example 2.2.1, where we have 90 quadratic equations in 80 variables. Assuming that the degree D to be the Macaulay bound, we have D := 81, the complexity of computing the GREVLEX Gröbner basis has a complexity approximately 2 325 bit operations.

Note 2.3.1. It is worth mentioning here that the computation of Gröbner basis is generally more efficient for some monomial ordering than others. Typically, for the GREVLEX order Gröbner basis computation is more efficient while LEX ordering being the least efficient. LEX ordering provides the easiest way of recovering all the common zeros of the system, thanks to the shape position formation. To change a Gröbner basis from a GREVLEX ordering to LEX ordering, the best known algorithm is FGLM, which was proposed by Faugère et al. [START_REF] Jc Faugere | Efficient computation of zero dimensional gröbner bases by change of ordering[END_REF]. To recover the Gröbner basis for LEX ordering from another graded monomial ordering GREVLEX, the complexity of algorithm FGLM for computing the Gröbner basis of a zero-dimensional ideal with degree D is O(nD ω) where ω is the linear algebra constant.

This Macaulay bound may be the highest possible degree for the elements that might occur in the Gröbner basis, however, in the example provided (90 quadratic equations over 80 variables), the number of equations is more than the number of variables. Hence in this case (and practically for most multivariate encryption, as well shall see later), for the highest degree occurring in the Gröbner basis computation, the Macaulay bound is not sharp. Thus, this complexity of computing the Gröbner basis is not optimal. To improve on this complexity, we need to compute a tighter upper bound of D and for that reason, we look into the notion of "regular" and "semi-regular" systems for which the bound on the degree is quite well defined and is much sharper than the Macaulay bound.

Definition 2.3.28 (Regular Sequence

). A sequence f 1 , . . . , f m ∈ F q [x 1 , . . . , x n] of non-zero homogeneous polynomials (where m ≤ n) is called a regular sequence if forall i ∈ {1, .., m} and forall g ∈ F[x 1 , . . . , x n] gf i ∈ f 1 , . . . , f i-1 =⇒ g ∈ f 1 , . . . , f i-1 .
Proposition 2.3.29. [BFS15, Thm 9.] If (f 1 , . . . , f m) is a regular sequence, then the Matrix-F5 algorithm performs no reduction to zero. Definition 2.3.30 (Hilbert Function and Series). Given a homogeneous ideal I ⊂ F q [x 1 , . . . , x n], we denote the the set of homogeneous polynomials (along with the zero polynomial) of total degree d as F q [x 1 , . . . , x n] d . We consider the subset

I d = I ∩ F q [x 1 , . . . , x n] d . This I d is a vector subspace of F q [x 1 , . . . , x n] d . The Hilbert function HF I of I is defined as HF I (d) = dim(F q [x 1 , . . . , x n] d \I d).
The Hilbert Series H I is the generated series of the Hilbert function

H I (t) = ∞ i=0 HF I (i)t i .
This series is a power series which can be written as

H I (t) = P (t) (1 -t) d ,
where P (t) is a polynomial and d is the dimension of the ideal I.

Property 2.3.31. [BFS04]

• A sequence of homogeneous polynomials (f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n], of degrees d 1 , . . . , d m , is regular if and only if its Hilbert series

H(t) := m i=1 (1 -t d i) (1 -t) n ,
• The highest degree of elements of a Gröbner basis for the GREVLEX ordering is less than the Macaulay bound,i.e. n i=1

(d i -1) + 1.
When the number of polynomials is greater than the number of variables (i.e. m > n), this notion of regular system doesn't hold. However, a weak notion of regular system can be introduced.

Definition 2.3.32 (d-regular system). [BFS04] A zero-dimensional over-determined

(m ≥ n) sequence of homogeneous equations (f 1 , . . . , f m) is called d-regular, if for all i = 1, . . . , m there exists a g such that deg(g) < d -d i and gf i ∈ f 1 , . . . , f i-1 , then g ∈ f 1 , . . . , f i-1 .
Definition 2.3.33 (Degree of regularity). For a zero-dimensional ideal I := f 1 , . . . , f m (m ≥ n), the degree of regularity is given by

D reg = min d ≥ 0 | dim Fq ({f ∈ I, deg(f) = d}) = n + d -1 d .
Thus the monomials in degree D reg are the leading terms for the elements in the ideal. Thus this value is clearly an upper bound on the degree of the elements occurring in the Gröbner basis for any monomial ordering.

Remark 2.3.34. The degree of regularity for regular sequences

(m ≤ n) is given by the Macaulay bound m i=0 (d i -1) + 1 [Laz83, Mac02
]. Definition 2.3.35 (Semi-regular system). [BFS04] If a system of equations is D reg -regular, then it is also called as semi-regular system.

From the Definition 2.3.33 we can compute the degree of regularity, however, the following proposition gives another more efficient quantitative approach to compute this degree of regularity for a system of semi-regular system.

Proposition 2.3.36. A system of equations

(f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] of respec- tive degrees (d 1 , . . . , d m) is semi-

regular if and only if the degree of regularity is given by index of the first non-positive coefficient of the series

H(t) = m i=1 (1 -t d i) (1 -t) n , when m > n and q > 2.
When we restrict the solutions to the system of equations to the finite field F q , we add field equations x q ix i to the ideal. In that case, the degree of regularity is given by the index of first non-positive coefficient of the series

H(t) := (1 -t q) n (1 -t) n m i=1 1 -t d i 1 -t qd i .
In particular, when q = 2, the Hilbert series is

H(t) := (1 + t) n m i=1 (1 + t d i)
.

Example 2.3.37. Under the semi-regularity assumption on a system of 90 quadratic equations in F 2 [x 1 , . . . , x n] over 80 variables, the Hilbert series is given by The index of the first non positive coefficient in this series is 11. Thus the the degree of regularity, for this case is 11. This maximal degree occurring in computation, predicted under the semi-regular assumption is a much sharper upper bound than the Macaulay bound as considered in example 2.3.27. Hence for computing the Gröbner basis for this case, one needs at approximately 2 100 bit operations.

H(t) := (1 + t) 80 (1 + t 2) 90 , H (
M. Bardet, in his PhD thesis [Bar04], provided the asymptotic estimates of the degree of regularity for a system of semi-regular sequence of equations. In particular, for quadratic equations, [Bar04] we have the following estimate for the degree of regularity.

Proposition 2.3.38. [Bar04, Prop 4.1.4] The degree of regularity of a semiregular sequence of αn homogeneous quadratic polynomials in n variables, where α ≥ 1 is a constant, behaves asymptotically as

D reg ∼ α - 1 2 -α(α -1) n + O(n 1/3), n → ∞.
Example 2.3.39. We continuing with the same example of 90 homogeneous quadratic polynomials in 80 variables. Asymptotically, using Proposition 2.3.38, the estimated degree of regularity for such a system is approximately 20. One should note that this is an asymptotic estimate, hence one cannot expect this to be sharper upper bound for the degree of regularity than the one computed in Example 2.3.37, where the degree of regularity (which was 11) was computed explicitly from the Hilbert series.

Definition 2.3.40 (Affine degree of regularity).

Let (f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n]
be a sequence of affine polynomials and I := f 1 , . . . , f m . For each polynomial f i , let f h i denote the homogeneous part of f i of the largest degree. The sequence f 1 , . . . , f m are said to be semi-regular if the homogeneous sequence f h 1 , . . . , f h m is semi-regular over F q . We define the degree of regularity of this affine ideal I to be the degree of regularity of the homogeneous ideal

I h := f h 1 , . . . , f h m , i.e. D reg (I) = D reg (I h).

Hybrid Combinatorial-Algebraic methods

Classical Hybrid Algorithms

In this section, we present two classical hybrid algorithms to solve the PoSSo q problem. The first method was proposed by Luk Bettale et al. [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF][START_REF] Bettale | Solving polynomial systems over finite fields: improved analysis of the hybrid approach[END_REF] which mixes exhaustive search and Gröbner basis technique. The core idea is to fix a certain fraction of the variables. Thus given a system of m polynomial equation in F q [x 1 , . . . , x n] over n variables, one fixes k < n variables to obtain m new polynomial equations over nk variables. Now instead of computing one single Gröbner basis, one computes q k subsystems over nk variables. Choosing an appropriate value of k, which gives us a gain in the complexity by computing Gröbner basis over a lesser number of variables allows us to overcome the loss of doing an exhaustive search. This is the main rationale of this approach.

Proposition 2.4.1. [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF][START_REF] Bettale | Solving polynomial systems over finite fields: improved analysis of the hybrid approach[END_REF] Let F q be a finite field and (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] be polynomial system of degree d. Let D reg be the maximal degree of regularity of all the systems

f 1 (x 1 , . . . , x n-k , v 1 , . . . , v k), . . . , f m (x 1 , . . . , x n-k , v 1 , . . . , v k) : (v 1 , . . . , v k) ∈ F k q .
If the systems are zero-dimensional, the complexity of the hybrid approach, C hyb , is bounded from above by

O min 0≤k≤n q k • m • n -k + D reg -1 D reg ω .
where d is the maximal degree of the ideal (i.e. number of solutions counted with multiplicities in the algebraic closure of F q) generated by the each q k subsystem and 2 ≤ ω ≤ 3 is a linear algebra constant.

Proposition 2.4.1 does not give any method to compute the best trade-off for the number of fixed variables, k, such that the gain in the hybrid Gröbner basis algorithm can be maximized with respect to generic Gröbner basis algorithms. However, for a semi-regular system (see Definition 2.3.35), knowing sharp estimates of the degree of regularity allows us to directly compute this trade-off. As seen earlier, Proposition 2.3.38 gives us an asymptotic estimate to the degree of regularity. Powered with this asymptotic estimate the idea is to find the value of k for which the C hyb has a global minimum. The value of the k depends on m and q. Putting it more formally,

Theorem 2.4.2. [BFP09, BFP12] Let F = (f 1 , . . . , f m) ⊂ F q [x 1 , . . . ,
x n] be a semiregular sequence of quadratic equations with m = αn (α > 0) and where for all values of 0 ≤ k ≤ n and all possible vectors

(v 1 , . . . , v k) ∈ F k q , the quadratic equations f 1 (x 1 , x n-k , v 1 , . . . , v k), . . . , f m (x 1 , x n-k , v 1 , . . . , v k), are semi-regular. Let A(β) A(β) = log q + ω(log n + log(1 -β)) - ω 2 1 + α α + β -1 log n + log α + 1 -β 2 -α(α + β -1) - ω 2 1 - α α + β -1 log n + log α - 1 -β 2 -α(α + β -1) ,
and let β 0 be a non negative real root of A(β). The best trade off is to fix k = ⌊β 0 n⌋ variables.

The values of this root β 0 can be computed explicitly (see Table 4.1 of [START_REF] Bettale | Cryptanalyse algébrique: outils et applications[END_REF]). For example, over a finite field of F 2 , with 2n quadratic equations over n variables, fixing k = ⌊0.51n⌋ variables gives the best complexity for the hybrid approach. However, with the same number of equations but over a finite field F 2 2 , the most optimal value of k is ⌊0.042n⌋.

Example 2.4.3. We again revisit the example 2.2.1, where we have 90 quadratic equations over 80 variables in F 2 [x 1 , . . . , x n]. According to [START_REF] Bettale | Cryptanalyse algébrique: outils et applications[END_REF], in this case we have k = ⌊0.7n⌋. The degree of regularity of the subsystems is bounded by index of the first non positive coefficient of the Hilbert series

H(t) := (1 + t) 24 (1 + t 2) 90 ,
which turn out to be 3. Thus by Proposition 2.4.1, the complexity of the hybrid Gröbner basis in this case is 2 87 bit operations. The following Table 2.1 lists the complexity of the Gröbner basis computation for one subsystem, the hybrid complexity for k subsystems and the degree of regularity that is observed while computing the solutions to the system of equations for various values of k. The GB and Hybrid columns implies that the number of bit operations is 2 b , where b is the column entry. The complexity of the Hybrid column is the addition of the entries in column k and GB.

In 2013, a second algorithm was proposed by Bardet et al. [START_REF] Bardet | On the complexity of solving quadratic boolean systems[END_REF] in order to solve the MQ 2 problem in specific. They proposed a deterministic algorithm BooleanSolve (and its probabilistic variant) which fixes k variables to all possible values and then checks the consistency of the new over-determined system of equations. Given a system of Boolean quadratic equations

(f 1 , . . . , f m) ∈ F m 2 [x 1 , x n], one can search for polynomials h 1 , . . . , h m+n-k ∈ F 2 [x 1 , . . . , x n-k] ⊂ F 2 [x 1 , x n] in variables x 1 , . . . , x n-k such that h 1 f1 + • • • + h m fm + h m+1 x 1 (1 -x 1) + • • • + h m+n-k x n-k (1 -x n-k) = 1 (2.1)
where (f i) are derived equations from f i after fixing k variables. Given a degree bound D, existence of such polynomials can be easily checked using linear algebra. Satisfaction of the above equation implies that the input system is inconsistent. This follows directly from Hilbert Nullstellensatz theorem [START_REF] David A Cox | Using algebraic geometry[END_REF], which states that a system is inconsistent if and only if 1 belongs to the ideal generated by the polynomials.

Like the hybrid approach of [START_REF] Bettale | Cryptanalyse algébrique: outils et applications[END_REF], this approach also demands a trade off for degree bound D and the number of fixed variables k. Specifically for the case of Boolean system under certain hypothesis [BFSS13, Proposition 6], the degree D is bounded by the degree of the polynomial [BFSS13, Corollary 1]

HS n,m (t) = (1 + t) n-k (1 -t)(1 + t 2) m .
The method to compute the value of k is mostly dependent on the complexity of the linear algebra stage of finding the polynomials h i 's. Hence the approach taken here is quite similar to that of [START_REF] Bettale | Cryptanalyse algébrique: outils et applications[END_REF], in order to optimize the overall cost. In the following theorem [START_REF] Bardet | On the complexity of solving quadratic boolean systems[END_REF] give us a complexity estimate of the algorithm in terms of the ratio of the number of equations to the number of variables and n, such that the complexity of an exhaustive search is minimum with the choice of k.

Theorem 2.4.4. [BFSS13, Theorem 2] Let f 1 , . . . , f m be a system of quadratic polynomials in F 2 [x 1 , . . . , x n] with m = ⌈αn⌉ and α ≥ 1. Then deterministic variant of BooleanSolve finds all the roots in F n 2 with the number of arithmetic operations in

F 2 in O(2 (1-0.112α)n),
if the system is semi-regular and k = (1 -0.27α)n. The number of expected operations for the Las-Vegas variant (probabilistic) of BooleanSolve is bounded by

O(2 (1-0.208α)n),
taking an optimal number of k = (1 -0.55α)n fixed variables.

The probabilistic variant of BooleanSolve behaves like the deterministic variant with the choice of linear algebra constant is ω = 2, i.e. the linear algebra step of the algorithm performs in quadratic complexity.

Example 2.4.5. Using the method of [START_REF] Bardet | On the complexity of solving quadratic boolean systems[END_REF], for 90 quadratic equations and 80 variables, the deterministic BooleanSolve algorithm takes nearly 2 70 bit operations and involves fixing 56 variables. This value of k is optimal from both the theoretical as well as practical point of view for BooleanSolve. The value of k = 56 for this specific example is backed by the idea that both, deterministic BooleanSolve and hybrid method of [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF] take similar approaches for computing the optimal k. Using the probabilistic variant of BooleanSolve, the complexity takes approximately 2 62 bit operations with k = 31 and assuming the linear algebra ω = 2.

Quantum Hybrid Approach

In similar lines to the combinatorial approaches, [START_REF] Hülsing | From 5-pass mq-based identification to mq-based signatures[END_REF] derives a quantum variant of hybrid approach from [Bet11,BFP12] by explicitly using Grover's algorithm [START_REF] Lov | A fast quantum mechanical algorithm for database search[END_REF] to accelerate the exhaustive search over the fixed variables. However, they do not provide any asymptotic complexity of this approach. [FHK + 17] goes a step further, firstly it builds a new (inspired) algorithm called QuantumBooleanSolve on top of the state-of-the-art BooleanSolve algorithm [START_REF] Bardet | On the complexity of solving quadratic boolean systems[END_REF] and secondly, proposes an asymptotic complexity of QuantumBooleanSolve. This algorithm is different from the one proposed in [START_REF] Hülsing | From 5-pass mq-based identification to mq-based signatures[END_REF]. In QuantumBooleanSolve, the authors instantiate a non-trivial quantum oracle which has a specific quantum circuit required for simplified Gröbner basis computation using Macaulay matrices. In this work, our main interest lies in the complexity of such algorithms and thus the algorithms themselves have been discussed. However, for more detailed working of the QuantumBooleanSolve we invite the reader to have a look at [FHK + 17].

Theorem 2.4.6. [FHK + 17, Theorem 1] There is a quantum algorithm which solves the MQ 2 problem and requires

• evaluation of O(2 0.47n) quantum gates for the deterministic variant,

• evaluation of expected O(2 0.462n) quantum gates for the probabilistic version.

This algorithm beats the Quantum exhaustive search (see 2.2) which is O(2 n/2).

Example 2.4.7. Continuing with the same example as before, the deterministic QuantumBooleanSolve algorithm solve the system of equations requires the evaluation of at least ≈ 2 38 quantum gates, which is much faster than the Quantum exhaustive search which requires the evaluation of minimum 2 59 quantum gates.

Example 2.4.8. Let us again take the example of 90 quadratic equations over 80 variables in F 2 [x 1 , . . . , x n]. Using Grover's approach along with hybrid Gröbner basis technique [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF], we can estimate that this process takes 2 59 arithmetic operations.

Conclusion

In this chapter, we discussed the NP-Hard problem of PoSSo. We also describe various algorithms for solving an instance of the PoSSo problem, broadly classifying into three types: combinatorial-based, algebraic algorithms and a combination of these which we call as hybrid algorithms. We also describe some state-of-theart quantum algorithms which solve instances of this problem. In this following chapter, we shall discuss one application area of the PoSSo problem, namely Multivariate cryptography.

Chapter 3

Quantum-Safe Public-key Cryptography

Abstract Public-key cryptography is based on certain problems that are known to be hard to solve. Unfortunately, with the advent of quantum computers, some of these hard problems are solvable. Although, a subset of such problems are known to be still safe from quantum attacks. Thus, quantum-safe public-key cryptography has become major field of interest for security researchers and is exhibited by the strong steps taken by NIST to standardize new quantum-safe cryptosystems. In this chapter, we present some historical as well as current cryptosystems that are quantum safe. In particular, we focus on multivariate based cryptography which is also the main focus of this thesis.

In the following sections we take special interest in one category of post-quantum cryptosystems: Multivariate based cryptography. We start with discussions on some of the most prominent state-of-the-art multivariate cryptosystems and also list the known attacks on such systems in some detail. The final part of the chapter discusses lattice based cryptography briefly, where we list one of the main lattice based hard problems that forms the security foundation of lattice based cryptosystems. In addition, we also present a lattice based scheme: Frodo, that influenced the design of a multivariate key-exchange scheme by us, the details of which have been discussed in great detail in Chapter 6.

Multivariate Public-Key Cryptography

Multivariate Public-Key Cryptography (MPKC) is a subclass of asymmetric cryptography that deals with the cryptographic schemes whose hardness are based on the PoSSo q problem (see Section 2.1). MPKC is a very active area of research that culminated with the NIST Post-Quantum Cryptography standardization process [CCJ + 16]. As mentioned previously in Chapter 1, it is one of the candidate areas for design of post-quantum cryptosystems. About 10% out of 69 submissions were multivariate. In the following section, we give an overview of the most prominent multivariate schemes.

General Structure

A special subclass of MPKC is Multivariate Quadratic (MQ) cryptography, that relies on the hardness of solving the MQ problem (see Chapter 2). The design principle of a MQ cryptosystem can be traced back to the first ever known example, C * , that was proposed by Matsumoto Imai [START_REF] Matsumoto | Public quadratic polynomialtuples for efficient signature-verification and message-encryption[END_REF]. Before we discuss the public and the private keys, we give a few prerequisites. Definition 3.1.1. Let E be a simple extension field of F q of degree n, ω ∈ E be the primitive element E/F q and let F n q be the corresponding vector space. Then E can be considered as a vector space over F n q through a vector space isomorphism φ :

E = F q n → F n q such that for any element v = v 1 + v 2 ω + • • • + v n ω n-1 ∈ E, we have φ(v) = (v 1 , v 2 , . . . , v n) ∈ F n q .
With these definitions we can now enlist the secret-key of the C * scheme. It includes a function F : F n q → F n q such that ∀ w ∈ F n q we have,

F (w) = φ • (φ -1 (w)) 1+q α ,
where φ is a map from F q n to F n q (see Definition 3.1.1). The choice of α ∈ N is such that gcd(1 + q α , q n -1) = 1. The polynomials resulting from F are of degree 2 and have a certain structure. Therefore, it becomes imperative to mask the system of polynomials. We define Aff n (F q) ≃ F n×n q × F n q as the collection of the invertible affine transformations over F n q . The secret-key also comprises of two transformations S = (S, s) ∈ Aff n (F q) and T = (T, t) ∈ Aff n (F q) where n is a positive integer.

The public-key is given by the construction

P = T • F • S where • function composes two maps. Thus public-key is a system of polynomials (p 1 , . . . , p n) ∈ F n q [x 1 , . . . , x n] such that (p 1 , . . . , p n) = T • (f 1 (x ′ 1 , . . . , x ′ n), . . . , f n (x ′ 1 , . . . , x ′ n)) + t,
where

F = (f 1 , . . . , f n) ∈ F n q [x 1 , . . . , x n] and (x ′ 1 , . . . , x ′ n) = S •(x 1 , . . . , x n)+s.
The main idea is to mask the polynomial system F with the application of the affine transformations S and T .

The number of public-key equations is equal to the number of variables in the case of C * , however, for other multivariate schemes, it is not always the case. Hence from now on, we shall denote the number of public-key equations as m and the number of variables as n.

Most current multivariate cryptosystems employ the same design principle as C * to construct the public-key P : composing a m-tuple quadratic polynomials F : F n q → F m q , which we call as a central trapdoor, with two invertible affine transformations S ∈ Aff n (F q) and T ∈ Aff m (F q). These schemes differ in the construction of the central map F as we shall see in Section 3.1.2. We point out that we can also use linear transformations S, T instead of the affine transformations S, T . This restriction may be used for ease of notation.

Encryption and Decryption

To encrypt a message a = (a 1 , . . . , a n) ∈ F n q , one computes the ciphertext c ∈ F m q by evaluating the public-key (p 1 , . . . , p m) ∈ F m q [x 1 , . . . , x n] over the message a, i.e. c = (c 1 , . . . , c m) = (p 1 (a 1 , . . . , a n), . . . , p m (a 1 , . . . , a n)) ∈ F m q . The number of operations required for encryption is effectively upper bounded by n+2 2 multiplications and n+2

2

-1 additions for each of the m quadratic polynomials in the public-key. Thus, overall we have O(mn 2) arithmetic operations over F q .

The holder of the secret-key can then decrypt the ciphertext c ∈ F m q by inverting each polynomial map that composes the public-key. It should be noted that the central trapdoor F in general is not a bijection. Inverting the map F implies the application of the decryption procedure. For ease of notation, we denote this decryption process by F -1 . Hence we have

a ′ = S -1 • F -1 • T -1 (c) ∈ F n
q , where • is the composition map previously defined. For decryption to output a unique plaintext, one requires the public-key to be an injective map. Thus we need m ≥ n. The number of operations for decryption depends on the choice of the trapdoor chosen for constructing the map F .

Signature

A digital signature can also be constructed using similar ideas. Digital signature involves two processes: signature generation and signature verification. To generate a signature s ∈ F n q for a message a ∈ F m q , one can apply the decryption process to find a solution. However, unlike the decryption process in encryption schemes, signature generation need not be unique. Thus one can have m < n. So any s ∈ F n q which is a solution to

s = S -1 • F -1 • T -1 (a),
is a possible signature to the message a, where • is the composition map. Signature verification is simply the process of evaluating the public-key P = T •F •S over the signature s. The signature s is a correct signature for the corresponding message a if P (s) = a.

Historical Cryptosystems

Amongst the current cryptosystems, the most significant multivariate primitive, which was proposed by Patarin, is Hidden Field Equations (HFE) [START_REF] Patarin | Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new families of asymmetric algorithms[END_REF]. The central trapdoor of HFE is quite different from C * . For HFE, it is a degree bounded extended Dembowski-Ostrom polynomial [DO68, CM97] map

g : X ∈ F q n → y = 0≤i,j≤d α ij X q i +q j + 0≤i≤d β i X q i + γ 0 ,
where

    
α ij X q i +q j with α ij ∈ F q n are the quadratic terms, β i X q i with β i ∈ F q n are the linear terms, γ 0 with γ 0 ∈ F q n is the constant term, for i, j ∈ N and some degree d ∈ N. Inverting g implies solving a univariate equation of high degree over F q n . This inversion has been quite extensively studied in [START_REF] Berlekamp | Factoring polynomials over finite fields[END_REF][START_REF] David | A new algorithm for factoring polynomials over finite fields[END_REF]. The expected cost of computing using the algorithm of [START_REF] Berlekamp | Factoring polynomials over finite fields[END_REF] is O(nD 2 log q + D 3), where D is the maximal degree of g. For efficient inversion of g, the degree D should be small, which in turn implies d should be small. In HFE, it is important to note that the central trapdoor is defined as a polynomial map over some extension field F q n and has a univariate representation. However, this polynomial also has an equivalent multivariate representation over the field F q . Note 3.1.1. Due to Frobenius automorphism, X → X q is a linear mapping in the finite field F q as well as the extension field F q n . Therefore, all sums of monomials that are of the form

X q i ∈ F q n [X], 0 ≤ i < n are also linear over F q [x 1 , . . . , x n] [SK99], where X = φ -1 (x 1 , . . . , x n).
Lemma 3.1.2. Let F q be the base field and F q n , a degree n extension. Then for a polynomial

F ∈ F q n [X] F(X) = 0≤i,j≤n-1 α i,j X q i +q j + n-1 i=0 β i X q i + γ 0 , with α i,j .β i , γ 0 ∈ F q n ,
there exists a unique system of quadratic polynomials

F = (f 1 , . . . , f n) ∈ F n q [x 1 , . . . , x n], such that F(X) = φ -1 (F (φ(X)))
, where φ : F q n → F n q is a isomorphism as defined in Definition 3.1.1.

The Oil and Vinegar construction is another family of MQ schemes that was proposed by Patarin [Pat97]. This construction of the central trapdoor uses two sets of variables, called oil and vinegar. Let o ∈ N be the number of oil variables while v ∈ N be the number of vinegar variables, such that n = (o + v). We represent the oil variables as {x 1 , . . . , x o } and the vinegar variables are represented as {x ′ 1 , . . . , x ′ v }. We say that the polynomial f (x 1 , . . . , x o , x ′ 1 , . . . , x ′ v) : F o q ×F v q → F q below has a Oil and Vinegar shape if it has the following structure

f (x 1 , . . . , x o , x ′ 1 , . . . , x ′ v) = 0≤i,j≤v α ij x ′ i x ′ j + 0≤i≤v,0≤j≤o α ′ ij x ′ i x j + 0≤i≤v β i x ′ i + 0≤i≤o β ′ i x i + γ 0 .
(3.1)

where α ij , α ′ ij , β i , β ′ i , γ 0 ∈ F q .
The vinegar variables (x ′ 1 , . . . , x ′ v) can combine quadratically while the oil variables (x 1 , . . . , x o) do not mix with the oil variables.

To construct the cryptographic trapdoor based on this structure, one constructs a map F :

F o+v q → F o q , F (x 1 , . . . , x o , x ′ 1 , . . . , x ′ v) = (f 1 (x 1 , . . . , x o , x ′ 1 , . . . , x ′ v), . . . , f o (x 1 , . . . , x o , x ′ 1 , . . . , x ′ v)),
where the polynomials

(f 1 , . . . , f o) ∈ F o q [x 1 , . . . , x o , x ′ 1 , . . . , x ′ v]
have the structure of Equation (3.1). This scheme is mostly useful in the design of digital signatures. Given a message a ∈ F o q , one sets the vinegar variables to some random value (b 1 , . . . , b v) ∈ F v q and solve the resulting system of linear equations

F (x 1 , . . . , x o , b 1 , . . . , b v) = a.
A non-zero solution to this system of equation is a candidate signature for the message a. A variant of this scheme was suggested with an unequal number of oil and vinegar variables (o = v), most famously known as the Unbalanced Oil and Vinegar signature (UOV) scheme [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF] after Kipnis and Shamir broke the balanced Oil and Vinegar scheme [START_REF] Kipnis | Cryptanalysis of the oil and vinegar signature scheme[END_REF], which fixed o = v = n/2. This attack by Kipnis and Shamir also works on UOV in a probabilistic manner and has a complexity of O(q n-2o-1 o 4). So this scheme should have v ≥ 3o for a secure construction. The latest security evaluations for UOV can be found in [START_REF] Braeken | A study of the security of unbalanced oil and vinegar signature schemes[END_REF]. The Rainbow signature scheme [START_REF] Ding | Rainbow, a new multivariable polynomial signature scheme[END_REF] is another derivative of the UOV construction with multiple layers of oil and vinegar variables. Lifted-UOV (LUOV) [START_REF] Beullens | Luov. Csrc. nist[END_REF] is a multivariate signature scheme that slightly modifies on the existing structure of UOV to reduce the size of public-keys. The scheme accomplishes this by lifting the public-key to an extension field. More specifically, instead of working over F 2 , LUOV works over an extension field F 2 r keeping the coefficients unchanged. Thus even though the public-key have the same coefficients, solving the system for some ciphertexts in F m 2 r is more difficult than that for some ciphertext over F m 2 . However, very recently an attack against LOUV was proposed [DZD + 19]. The attack takes use of the fact that the coefficients of the quadratic terms of the public-key polynomials are contained in a subfield F 2 d of F 2 r . Taking use of a polynomial map from F n 2 d to F o 2 r , the public-key can be transformed into another equivalent map over the subfield F 2 d over which it is easier to work. Therefore, the attack reduces forging a signature to solving an under-determined system of equations over the sub-field over which it is easier to find a solution. The attack broke the proposed parameters of LOUV and therefore required reparameterization.

Building on HFE and its variants, recently some new multivariate signatures were proposed in the NIST competition, that gathered some attention. Some multivariate signatures which have progressed through to the second round of the competition include GeMSS [CFMR + 17], LUOV, and Rainbow, which we described before. Amongst the encryption candidates, there were only two multivariate based submissions: Giophantus [AGO + 17] and CFPKM [START_REF] Chakraborty | Cfpkm: A key encapsulation mechanism based on solving system of non-linear multivariate polynomials[END_REF], which was submitted by us. In Chapter 6, we describe CFPKM in great detail.

Generic Modifications on MQ-schemes

In the previous sections, we presented a variety of trapdoors that have served as foundation for most of the multivariate cryptographic schemes that have been proposed in the recent past. However, most of these trapdoors suffer from some vulnerabilities. Fortunately, many modifications are available, which can be used along with these. The general goal of these modifiers is to protect the design of such trapdoors from some commonly known attacks against multivariate schemes, which we shall discuss in the following sections.

Minus Modifier: "-"

This modifier, which was first witnessed in [START_REF] Shamir | Efficient signature schemes based on birational permutations[END_REF], removes polynomials from the public-keys. In general one fixes m ′ = m-a where a ∈ N. The public-key is defined as the map P := π • T • F • S where π : F m q → F m ′ q denotes a projection function, S ∈ Aff n (F q), T ∈ Aff m (F q). The function π disregards the last a components of the output vector (T • F • S) ∈ F m q . The idea of introducing this modifier was a countermeasure against Patarin's linearization attack [START_REF] Patarin | C-+* and hm: Variations around two schemes of t. matsumoto and h. imai[END_REF] on C * . We discuss the linearization attack in Section 3.5. C * with the minus modifier, written as C * -, was introduced by the name of Flash [START_REF] Patarin | Flash, a fast multivariate signature algorithm[END_REF] in 2001. Flash along with a variant, named Sflash [PCG01a], were submitted to the European Nessie competition in 2001. The minus modifier was also seen as an answer to render the attacks [SK99, FJ03] against HFE useless.

It is important to note that, for a multivariate encryption scheme, on one hand, application of minus modifier increases the security of the scheme, on the other hand, it makes the decryption process inefficient. Removing a polynomials requires guessing q a possible missing ciphertexts, where q is the size of the finite field over which the public-keys are defined. Once we have all the possible solutions, one requires pruning through this solution set. Hence for efficient decryption, a must be small.

For digital signatures, a can be much larger. However, one must have enough public-keys in order that the underlying PoSSo q for this instance is still hard. In general, the choice of a ≤ n/2 is efficient in practice.

Unfortunately, even with the application of this modifier, C * -and its variants have broken in [START_REF] Dubois | Practical cryptanalysis of sflash[END_REF][START_REF] Bouillaguet | Practical key-recovery for all possible parameters of sflash[END_REF][START_REF] Gilbert | Cryptanalysis of sflash[END_REF]. Application of this modifier on HFE (HFE -) [START_REF] Patarin | C-+* and hm: Variations around two schemes of t. matsumoto and h. imai[END_REF] with some appropriate parameters renders the attacks of [SK99, FJ03] ineffective.

Plus Modifier: "+"

By the suggestion of the name, this modifier adds polynomials to the public-keys. This method was first observed in [START_REF] Patarin | C-+* and hm: Variations around two schemes of t. matsumoto and h. imai[END_REF]. A legitimate user adds a ∈ N random quadratic equations to the public-keys. For the construction, one sets m ′ = m + a and then defines the public-key as

P := T • (F + || F) • S where F + ∈ F a q [x] and T ∈ F m ′ ×m ′ q
. This idea was used as a technique to thwart differential attacks in [START_REF] Ding | Inoculating multivariate schemes against differential attacks[END_REF].

For a multivariate signature scheme, a must be small. This is because, given a signature, the probability of satisfying the additional a public-keys is 1/q a . For small q and a, after at most q a tries, we obtain the signature.

For an encryption scheme, a can be larger. However, the number of publickeys m + a must be such that the problem of solving the system of equations is intractable. That is the number of equations must be less than n(n+1) 2 since Gaussian elimination solves this system by re-linearization. In general, a < n/2 is efficient in practice. Additionally, this modifier is also used in conjunction with the minus modifier to make cryptosystems behave close to generic systems [START_REF] Patarin | C-+* and hm: Variations around two schemes of t. matsumoto and h. imai[END_REF].

Projection Modifier: "p"

The idea of this modifier is to fix a certain fraction of variables in the public-keys. The projection modifier projects the n-dimensional input vector onto a (nk) dimensional space before passing through the central map, i.e., we take (nk) blocks of plaintext and then evaluate the public-key values over P = (p 1 (x 1 , . . . , x n-k , 0, . . . , 0), . . . , p m (x 1 , . . . , x n-k , 0, . . . , 0)), where (p 1 , . . . , p m) ∈ F m q [x 1 , . . . , x n]. Dubios showed that just adding minus modifier was not enough to make the C * secure as there exists some kind of differential symmetry [START_REF] Dubois | Practical cryptanalysis of sflash[END_REF]. Therefore, this idea of projecting the public-keys to a lower dimensional subspace was proposed [DYC + 07]. This modifier is used in conjunction with other modifiers, e.g., the minus modifier.

Vinegar variables: "v"

This perturbation was introduced for HFE in [START_REF] Kipnis | Unbalanced oil and vinegar signature schemes[END_REF]. The main idea of this perturbation was to hide the structure of the HFE map by introducing additional variables, known as vinegar variables. The way the modification works is as follows: One chooses v ∈ N vinegar variables, (x ′ 1 , . . . , x ′ v) in addition to the already existing variables (x 1 , . . . , x n). A HFEv polynomial is defined over F q [x 1 , . . . , x n , x ′ 1 , . . . , x ′ v] and has the following structure

P (x 1 , . . . , x n , x ′ 1 , . . . , x ′ v) = 0≤i,j<n α ij x i x j + 0≤i<n 0≤j<v β ij x i x ′ j + 0≤i,j<v γ ij x ′ i x ′ j ,
where α ij , β ij , γ ij ∈ F q . Consider a cryptosystem which applies the vinegar modifier on its central trapdoor polynomials. Inverting the new central trapdoor equation for a fixed y ∈ F n q , requires inversion of the original trapdoor for q v different values of the vinegar variables (x ′ 1 , . . . , x ′ v). For a multivariate signature scheme, this is not an issue as finding any solution will produce a valid signature. Unfortunately, in the case of encryption, this design is not suitable.

This modifier served as a foundation for the previously described oil and vinegar construction. The Vinegar perturbation has also been used in conjunction with the minus modifier over HFE (denoted as HFEv -) and has been used extensively for constructing multivariate signature schemes, e.g., Quartz [START_REF] Patarin | Quartz, 128bit long digital signatures[END_REF], GUI [PCY + 15, PCY + 17] and GeMSS [CFMR + 17]. Table 3.1 gives an assortment of some of the famous as well as newly proposed multivariate encryption and signature primitives whose constructions are based on the above discussed modifiers applied to the basic multivariate constructions. In the following section, we shall discuss the design of a multivariate encryption scheme known as Extension Field Cancellation [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. One of the major contributions of this thesis is the detailed cryptanalysis of this scheme, the details of which can be found in Chapter 4.

EFC Scheme

The Extension Field Cancellation scheme [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] is a MQ based encryption scheme which was proposed by Alan Szepieniec et al. at PQCrypto 2016. EFC scheme mixes the arithmetic over F q along with arithmetic over degree n extension field F q n . Let ϕ : F n q → F q n be a F q -vector space isomorphism. Let A, B ∈ F n×n q and denote x = (x 1 , . . . , x n) as a vector of variables over F q [x]. We can represent the multivariate polynomial ring F q n [x] as a univariate polynomial ring F q n [χ] where, using ϕ one can create the extension field variable χ = ϕ(x) from a vector of intermediates

x ∈ F n q . Let α(x) = ϕ(Ax) ∈ F q n [x] and β(x) = ϕ(Bx) ∈ F q n [x]
. The square matrix that represents multiplication by ϕ(Ax) is denoted by α m (x) ∈

Flash, Sflash

A signature scheme [START_REF] Patarin | Flash, a fast multivariate signature algorithm[END_REF][START_REF] Patarin | C-+* and hm: Variations around two schemes of t. matsumoto and h. imai[END_REF] based on C * -also submitted to Nessie. Was broken extensively in [DFSS07, BFMR11, GM02]

Pflash

A secure signature scheme for smart cards based on C * with projection and minus modifications [START_REF] Chen | Pflashsecure asymmetric signatures on smart cards[END_REF][START_REF] Cartor | An updated security analysis of pflash[END_REF].

Eflash

An encryption scheme [START_REF] Cartor | Eflash: A new multivariate encryption scheme[END_REF] based on HFE with the idea of evading the standard attacks of MinRank and differential attacks. Was broken recently using Gröbner basis techniques [START_REF] Øygarden | Cryptanalysis of the multivariate encryption scheme eflash[END_REF].

Quartz

A 128 bit signature scheme based on HFEv -, submitted to the European Nessie call for cryptographic schemes [START_REF] Patarin | Quartz, 128bit long digital signatures[END_REF]. [START_REF] Nicolas T Courtois | On the security of hfe, hfev-and quartz[END_REF] discusses the security of the scheme against "inversion" attacks.

GeMSS, GUI

Signature schemes [CFMR + 17] and [PCY + 17], based on HFEv - recently proposed to the NIST standardization competition.

ZHFE

An encryption scheme [START_REF] Porras | Zhfe, a new multivariate public key encryption scheme[END_REF] that utilizes a combination of pair of high degree HFE style polynomials to find a third low degree polynomial. Decryption requires the inversion of this low degree polynomial. [CSTV] proposed a low rank equivalent key recovery attack, extracting a private key from the ZHFE public-key.

HFERP

An encryption scheme [IPST + 18] that combines the HFE and Rainbow to compose the central trapdoor.

Simple Matrix, Cubic Simple Matrix

Encryption schemes [START_REF] Tao | Simple matrix scheme for encryption[END_REF] and [START_REF] Ding | The cubic simple matrix encryption scheme[END_REF] introduce polynomial matrix arithmetic for construction of the pubic key polynomials. The decryption involves inverting (invertible with high probability) the polynomial matrices. [START_REF] Gu | Cryptanalysis of simple matrix scheme for encryption[END_REF] proposed a key recovery attacks against [START_REF] Tao | Simple matrix scheme for encryption[END_REF]. Similar key recovery attack on [START_REF] Ding | The cubic simple matrix encryption scheme[END_REF] was proposed by [START_REF] Moody | Key recovery attack on the cubic abc simple matrix multivariate encryption scheme[END_REF].

Table 3.1 -List of multivariate cryptosystems.

F n×n q (See Appendix C for an example to compute α m (x)) . The central map for EFC [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] can be defined in two equivalent forms F and F as

F : F n q → F 2n q : x → (α m (x)x , β m (x)x), F : F q n → F 2 q n : χ → (α(χ)χ , β(χ)χ). (3.2)
where

F = (ϕ -1 , ϕ -1)•F •ϕ.
The public-key of EFC P : F n q → F 2n q is a composition of this central map F along with two external invertible affine transformations S ∈ Aff n (F q) and T ∈ Aff 2n (F q), i.e.,

P = T • F • S. Now let us assume (c 1 , . . . , c 2n) = P (s 1 , . . . , s n) ∈ F 2n q be the encryption of a secret message s = (s 1 , . . . , s n) ∈ F n q . Let d ′ 1 = (c 1 , . . . , c n) ∈ F n q and d ′ 2 = (c n+1 , . . . , c 2n) ∈ F n q . So P (s) = (d ′ 1 , d ′ 2). Let (d 1 , d 2) = T -1 (d ′ 1 , d ′ 2
). Decryption for EFC involves solving the system of linear equations

β m (x)d 1 -α m (x)d 2 = 0. (3.3)
The design of the above secret-key of EFC from the public-keys and ciphertexts ensures that Gaussian elimination on this system of linear equations will find at least one solution. Now this solution may not be unique, but according to [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF], they expect the set of solutions to be small.

Minus with projection modifier (EFC -

q (a)) [SDP16] takes use of the "minus" modifier as discussed previously in Section 3.1.3.1. Also in anticipation of differential symmetry attacks [START_REF] Dubois | Practical cryptanalysis of sflash[END_REF][START_REF] Bouillaguet | Practical key-recovery for all possible parameters of sflash[END_REF], EFC use the "projection" variant (see Section 3.1.3.3) in conjunction with minus modifier. The EFC -system with projection of one variable has public-keys as the system of 2na quadratic polynomials in n -1 variables.

P -= p 1 (x 1 , . . . , x n-1 , 0), . . . , p 2n-a (x 1 , . . . , x n-1 , 0) .
We denote the minus modifier as EFC - q (a) where the EFC is defined over F q and a equations are removed.

Frobenius Tail modifier (EFC F

q) Another modifier proposed with the central map of EFC was the Frobenius tail modifier. This modifier adds an extra quadratic term β 3 (χ) ∈ F q n [χ] and α 3 (χ) ∈ F q n [χ] to α(χ)χ and β(χ)χ respectively.

F ′ : F 2 n → F 2 2 n : χ → (α(χ)χ + β 3 (χ) , β(χ)χ + α 3 (χ)).
For the Frobenius modified EFC central map, the decryption is very similar to that of non-perturbed case of EFC. We saw that the public-keys over the extension field

F q n [
χ] are represented as α(χ)χ + β 3 (χ) and β(χ)χ + α 3 (χ) and let the corresponding ciphertext be represented as D 1 , D 2 ∈ F q n . The decryption for EFC F q involves solving a system of linear equations over F n q that, over the extension field F q n , is represented by the following univariate polynomial equation

β(χ)D 1 -α(χ)D 2 = β 4 (χ) -α 4 (χ).
(3.4)

The problem with the minus modifier is that the decryption complexity is exponential to the number of polynomials removed, hence higher the a, more time decryption takes while on the other hand decreasing a, reduces security of the scheme. The rationale suggested behind adding this modifier is to achieve the same level of security for an EFC instance but with a low value of a, allowing efficient decryption.

Proposed Challenge Parameters

To ensure at least 80 bits of security, [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] proposed the following three parameters. The first and the third parameter sets have the projection modifier added to it, while the second parameter has the projection as well as the Frobenius tail modifier in the definition of the public-keys.

Challenge

Standard attacks on MPKCs

Having looked at some of the state of the art multivariate primitives, in this section, we will have a brief look at some standard line of attacks that have been used by cryptographers in order to find vulnerabilities of these cryptosystems. Broadly, attacks on multivariate schemes can be classified into Key Recovery attacks and Message Recovery attacks. In the following sections, we shall give a brief overview of some of the most prominent key and message recovery attacks that are generally the primary form of attacks on multivariate schemes.

Key Recovery Attacks

The first class of attacks focuses on recovering the secret-keys of a multivariate scheme. Recall from Section 3.1.1, the public-key is a composition of three transformations: two invertible linear transformations S ∈ F n×n q , T ∈ F m×m q and a quadratic map F : F n q → F m q . Key recovery attacks focus on retrieving these maps by exploiting the hidden structural vulnerabilities in the design of the public-keys of the multivariate schemes. In the following subsection, we shall describe three major types of key-recovery attacks.

Linearization attack

We recall that the central map equation of the Matsumoto-Imai scheme C * is given by y = x q α +1 , for some α ∈ N. However, an algebraic implication of this equation is that y q α - = x q α - =⇒ xy q α = yx q α . (3.5)

Hence over F q , these are equations of the form

n i=1 n j=1 β ij x i y j + n i=1 γ i x i + n i=1 δ i y i + ζ = 0, (3.6)
where β ij , γ i , δ i , ζ ∈ F q , (x 1 , . . . , x n) and (y 1 , . . . , y n) are the equivalent base field vector representations of x and y respectively (all x i and y i are elements of F q). These equations hold for all pairs of plaintexts x and ciphertexts y. Hence given enough plaintexts-ciphertexts pairs (x, y), we obtain linear equations in (n + 1) 2 variables β ij , γ i , δ i and ζ, which are the coefficients of equation (3.6). These coefficients can be obtained by Gaussian elimination over these linear equations.

Once the equations are recovered, we can substitute the value of ciphertexts into (y 1 , . . . , y n) yielding a linear system of equations in variables (x 1 , . . . , x n). Gaussian elimination allows us to recover the kernel whose size depends on the number of independent equations. This attack was proposed by Patarin in [START_REF] Patarin | Cryptanalysis of the matsumoto and imai public key scheme of eurocrypt'88[END_REF].

Differential Attacks

For a MQ central map

F ∈ F q n [x], consider the differential dF k (x) = F (x+k)-F (x),
where k ∈ F q n . Now, let us consider the operation DF = dF k (x) -dF k (0). Since F is quadratic over the base field F n q , hence the differential is linear and so is the operation DF . We can also write

DF = F (x + k) -F (x) -F (k) + F (0).
This differential proves handy for cryptanalysis of many multivariate cryptosystems. Even so, the previously mentioned Patarin's linearization attack can be seen as a form of a differential attack. For f (x) = x q α , the differential Df is a symmetric bilinear function Df (y, x q α +1) = yx q 2α +q α + y q α x q α +1 = x q α yx q 2α + xy q α = 0.

Dividing both sides by x q α , we get Equation (3.5). Fouque et al. [START_REF] Fouque | Differential cryptanalysis for multivariate schemes[END_REF] show that C * and C * -exhibit multiplicative symmetry in their bilinear differential which when further analyzed on their rank or kernel gave insights of the secret-key. This attack also works on the Perturbed C * [Din04] which was proposed by Jintai Ding.

Another example of the differential attack is the differential cryptanalysis of the Hidden Matrix (HM) cryptosystem by Faugère et al. [START_REF] Faugere | Cryptanalysis of the hidden matrix cryptosystem[END_REF]. The central map of HM is given by

F (X) = X 2 + M • X, with X, M ∈ M n (F q),
where M n (F q) is the set of matrices of size n × n over F q . Applying the differential gives us

DF (X, Y) = X • Y + Y • X. Fixing X = X 0 ∈ M n (F q)
we get a system of n 2 linear equations in n 2 coefficients of Y . Depending on the number of solutions to this system, they show that the system of polynomials in the public-key of HM has a behavior that is totally unlike a random system of equations. We refer the reader to [START_REF] Faugere | Cryptanalysis of the hidden matrix cryptosystem[END_REF] for more details.

Rank attacks

In order to understand rank based attacks on such central maps, one quantity which is most vital is the quadratic rank of the public-key. Definition 3.2.1 (Quadratic rank). The quadratic rank (or Q-rank) of a multivariate quadratic map f :

F n q → F n q is the rank of the quadratic form Q on F q n [X], defined by Q = φ • f • φ -1 (X), under the identification X = φ -1 (x).
This term is important from a cryptanalytic point of view is because Q-rank is not invariant under a linear transformation. However, the minimum Q-rank, which is minimum possible rank observed amongst all linear images of the quadratic map f , remains invariant. Consider the external linear transformations S and T lifted from F n q to F q n and thus have the form

S(X) = n-1 i=0 s i X q i , T -1 (X) = n-1 i=0 t i X q i ,
where s i , t i ∈ F q n . This allows representing the public-key P of the HFE cryptosystem over the extension field F q n , P (X) = T (F (S(X))) with a univariate representation. Now consider the public-key polynomial P (X) in the matrix form written as follows:

P (X) = n-1 i=0 n-1 j=0 p ij X q i +q j = XPX t ,
where P = [p ij] is a n × n matrix over F q n , X = (X, X q , . . . , X q n-1) is a vector over F q n and X t is its transpose. This implies that

T -1 (P (X)) = n-1 k=0 t k n-1 i=0 n-1 j=0 (p i-k,j-k) q k X q i +q j , F (S(X)) = XWFW t X t ,
where F denotes the HFE central map in matrix form and W = [s q i j-i] is another matrix. Let P * k be the matrix obtained from P by raising all entries of P to their q k power and cyclically rotating all rows and columns of P forward by k steps. Thus we obtain

T -1 (P (X)) = XP ′ X t
where,

P ′ = n-1 k=0 t k P * k = WFW t . (3.7)
Considering HFE, the homogeneous quadratic part of central map F can be written as

X X q • • • X q n-1            α 0,0 α ′ 0,1 • • • α ′ 0,D-1 0 • • • 0 α ′ 0,1 α 1,1 • • • α ′ 1,D-1 0 • • • 0 . α ′ 0,D-1 α 1,1 • • • α D-1,D-1 0 • • • 0 0 0 • • • 0 0 • • • 0 . 0 0 • • • 0 0 • • • 0                 X X q . . . X q n-1     
where α ′ i,j = 1 2 α i,j and D = ⌈log q d⌉. The rank of P is bounded by r = D + 1, and thus the quadratic rank of the HFE polynomial. As said this quadratic rank is invariant under isomorphism of polynomials, hence the rank of WFW t is also bounded by r. [START_REF] Shamir | Cryptanalysis of the hfe public key cryptosystem[END_REF] showed that given the correct choices of the values of t o , . . . , t n-1 , the rank of P ′ is bounded by r. Since the rank is not more than r, therefore the left kernel of P ′ is at least a n-r dimensional vector subspace. Assigning random values to the n-r entries and creating new variables for the rest of r variables, one obtains n(nr) quadratic equations over n + (nr)r variables. [START_REF] Shamir | Cryptanalysis of the hfe public key cryptosystem[END_REF] proposed to solve this by re-linearization techniques that was later improved by another linearization technique, XL [START_REF] Courtois | Efficient algorithms for solving overdefined systems of multivariate polynomial equations[END_REF]. Later Nicolas Courtois [START_REF] Courtois | The security of hidden field equations (hfe)[END_REF] showed that there is an equivalence between this attack and that of a MinRank kernel attack. Additionally, he also proposed converting the problem of recovering the linear transformation T into the solution of a MinRank problem (which is NP-Complete) over F q n . Taking (t 0 , . . . , t n-1) as variables, one considers all the (r + 1) × (r + 1) minors of P ′ that have determinant 0. One can solve these system of n r+1 2 equations with n r+1 monomials and this can be solved by Gaussian elimination.

An improvement to this previous attack was proposed by Luk Bettale et al. [START_REF] Bettale | Cryptanalysis of hfe, multi-hfe and variants for odd and even characteristic[END_REF]. Instead of solving the equations from (r + 1)-minors by linearization and Gaussian elimination, [START_REF] Bettale | Cryptanalysis of hfe, multi-hfe and variants for odd and even characteristic[END_REF] proposed using Gröbner basis techniques to solve these equations over the variables (t 0 , . . . , t n-1). [BFP13] also differs from the original method of using the univariate polynomial representation of the public-keys by using the multivariate representation of the public-keys with the coefficients represented over the base field. This is known as the minors modeling of the Kipnis-Shamir attack. The asymptotic complexity of this attack is O(n (D+1)ω) where ω is the linear algebra constant.

This approach also works with the minus variants of HFE. Removing one equation from the public-key leads to an increase in the quadratic rank by one. Until the number of removed equation is small enough compared to n, the minors modeling attack still holds, but the asymptotic complexity increases to O(n (log q d+1+a)ω) where a is the number of public equations removed.

Message Recovery Attacks

From Chapter 2, we recall the discussions of the various methods to solve PoSSo q . Naturally, such techniques are useful in mounting attacks to recover the hidden secret from the multivariate schemes, since from Section 3.1 we know such cryptosystems are based on PoSSo q .

Exhaustive Search

In Section 2.2.1, we presented the state of the art combinatorial algorithms for the PoSSo q problem. The total number of possible values that the variables in public-key equations can have is q n . For each possible value, the corresponding ciphertext is evaluated and checked against the input ciphertext. The candidate solution with matching ciphertext is the correct solution. However, such attacks are usually exponential in the number of variables. As seen earlier in Section 2.3.1, this technique can be used in combination with other message recovery attacks, such as Gröbner basis attacks.

Gröbner Basis Algorithms

Recalling from Chapter 2, Gröbner basis computation also provides us with a method to compute the solution to a system of polynomial equations. Hence multivariate cryptographic primitives are vulnerable to direct algebraic attacks by computing the Gröbner basis.

One common observation from the previously discussed multivariate cryptosystems is that the public-keys are far more structured than a generic or random system of polynomials. We know that the degree of regularity for a regular system is given by the index of the first non-positive coefficient of the Hilbert series (see property 2.3.31). For a structured semi-regular system, the above defined degree of regularity works as an upper bound for the maximal degree observed in the Gröbner basis computation. However, more accurate computations of this degree of regularity for multivariate schemes have made some advances in recent years.

A prime example is the new upper bound for the degree of regularity for HFE and HFE -proposed by Ding et al. [START_REF] Ding | Degree of regularity for hfe minus (hfe-)[END_REF].

Theorem 3.2.2. [START_REF] Ding | Degree of regularity for hfe minus (hfe-)[END_REF] Let Q be the quadratic map of HFE. If the Q-rank(Q) > 1, the degree of regularity of the system is upper bounded by

(q -1)(⌊log q (d -1)⌋ + 1) 2 + 2. If Q-rank(Q) = 1
, then the degree of regularity is less than equal to q. Let r = ⌊log q (d-1)⌋+1. The degree of regularity for HFE -with a equations removed is upper bounded by

(q -1)(⌊log q (d -1)⌋ + 1 + a) 2 + 2,
if q is odd or if q is even and r + a is even,

(q -1)(⌊log q (d -1)⌋ + a) 2 + 2,
if q is even and r + a is odd.

Although these upper bounds do give an idea about the degree of regularity for a system of public-keys, however, these are not always tight, as we have encountered in the cryptanalysis of EFC (see Chapter 3.1.4). Now, let us see why is this important for any multivariate cryptosystem. When any such multivariate scheme is designed, the complexity of algebraic attacks plays the most important role in setting the secure parameters for the scheme. This is because, in event of any such algebraic attacks being launched, the hardness of recovering the secret message without the use of the private key remains intact. We shall also recall that the complexity of the algebraic attack on such systems is directly related to the degree of regularity of the public-keys.

Unfortunately, most of the current multivariate schemes use non-tight upper bounds, such as the one in Theorem 3.2.2, for the degree of regularities. Thus from a cryptanalytic point of view, it becomes quite imperative to get the exact degree of regularities of the multivariate schemes. Accurate measurement of the degree of regularity leads us to determine the complexity of algebraic attacks with good accuracy. Hence experimental analysis is a modus operandi for this.

As discussed in Chapter 2, MAGMA proves quite useful to gather the degree of regularity from standard Gröbner basis algorithms. Especially, the F4 algorithm on MAGMA provides an incremental degree by degree computation of bases until no new relations are recovered. In Figures 3.1 and 3.2, we provide a snippet of a Gröbner basis computation on MAGMA. Here there are certain observations, firstly for each degree, the F4 algorithm enumerates the number of new relations observed, indicating the total degrees of such new relations. Secondly, the Gröbner basis computation terminates after it has recovered linearly independent linear equations that belong to the same ideal of the public-keys. The degree of regularity is the highest degree that is reached during this process before we recover close to full rank set of linear equations. This is because it is the maximal degree after which there are no new polynomials that are discovered and thus no new basis elements add to the already recovered Gröbner basis elements for any degree greater than this degree.

For the case of an non-homogeneous or affine system of polynomials, there is an apparition of lower degree relations at some particular step degree. For example, looking at Figure 3.1, in line 46, we observe 43 new quadratic polynomials in step degree 3. Similarly in Figure 3.2, line 31 shows that in degree 4, there is apparition of 41 linear polynomials. In this thesis, we use these experimental observations to perform cryptanalysis of a multivariate scheme. Thus, from this section, we have a general idea about multivariate cryptography: state of the art design of schemes, new ways of designing schemes from the pre-existing schemes using modifiers and the attacks on multivariate primitives.

In this thesis, we have present a new multivariate key encapsulation scheme, namely CFPKM. It has been presented in great detail in Chapter 6. The design of the scheme is loosely based on a lattice-based key exchange primitive called Frodo. Therefore, for understanding the working of the information exchange, it is important to have a look at this scheme. This scheme is based on a lattice based problem, the Learning With Errors problem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. In this following section we shall very briefly present the LWE problem and the Frodo key-exchange scheme.

Lattice Based Cryptosystems

Among all the post-quantum computational problems, lattice-based problems have received a bulk of the attention from researchers in the past decade. Lattice problems have the advantage of worst-case to average-case reduction. This informally means that private keys in the easiest case are as hard to break as in the worst case. For example, take an instance of RSA, where the choice of the keys involves choosing two large random primes and expect that this yields a hard instance of integer factorization problem. However, there is a probability of choosing the wrong pair, resulting in a lower level of security. In lattice based cryptosystem, all possible key choices are equally hard to solve.

There are several NP hard lattice problems, namely, Shortest (Approximate) Vector problem (SVP and SVP γ) [START_REF] Ajtai | Generating hard instances of lattice problems[END_REF], Bounded Distance Decoding (BDD) [START_REF] Lyubashevsky | On bounded distance decoding, unique shortest vectors, and the minimum distance problem[END_REF] and Closest Vector Problem (CVP) [START_REF] Goldreich | Approximating shortest lattice vectors is not harder than approximating closest lattice vectors[END_REF] whose hardness assumptions acts as a security for lattice based cryptographic primitives against classical as well as quantum adversaries. One of the most recent lattice problem is Learning With The LWE problem is defined as follows: Definition 3.3.1 (LWE problem). [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF] For positive integers n and q ≥ 2, a vector s ∈ Z n q , and a probability distribution χ on Z q , we define A s,χ to be the distribution over Z n q ×Z q obtained by choosing a vector a ∈ Z n q uniformly at random, an error term, e ← χ, and that outputs (a, a, s + e). For a dimension n, an integer q and an error distribution χ over Z q , the learning with errors problem LWE n,q,χ is defined as follows: given samples from A s,χ for some arbitrary s ∈ Z n q , recover s with probability exponentially close to 1.

This problem has been quite extensively studied in the past few years in [ACPS09, LP11, BLP + 13] to name a few. The hardness of the LWE problem is known to be based on the worst-case hardness of standard lattice problems such as Decision Shortest Vector Problem (GapSVP) [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF][START_REF] Peikert | Public-key cryptosystems from the worst-case shortest vector problem[END_REF]. Particularly, Piekert showed that when the modulus q is exponential, LWE has a classical reduction from GapSVP [START_REF] Peikert | Public-key cryptosystems from the worst-case shortest vector problem[END_REF]. Thus the hardness is based on the standard assumption that GapSVP is hard to approximate to within polynomial factors. For the case when the modulus q is polynomial in n, [BLP + 13] gave a classical reduction from the GapSVP in dimension √ n to an LWE instance in dimension n.

Lattices have been heavily used in designing both encryption/decryption as well as signature schemes in the recent past. Based on LWE and its variants many encryption/decryption schemes have been proposed, for example NewHope [AAB +]. Recently, numerous proposals based on lattice based problems and especially LWE were submitted to the NIST competition: Crystal-Kyber-Dilithium [ABD + 17], Round5 [BGML + 18], Saber [START_REF] Anvers | Saber: Module-lwr based key exchange, cpasecure encryption and cca-secure kem[END_REF], NewHope [AAB +] to name a few. In this following subsection, we shall describe Frodo [BCD + 16]. This scheme was also submitted as a Key-encapsulation/ Encryption scheme (FrodoKEM [ABD + 18]) in the NIST competition, however, we must mention that FrodoKEM differs slightly from the version adapted in the following subsection. For more information on the FrodoKEM scheme, we redirect the reader to [ABD + 18].

Frodo Key Exchange

Notation

Matrices are denoted by bold capital letters, e.g A, B. For a distribution χ, A ← χ(S n×m) defines a matrix with each component chosen independently according to the distribution χ(S). As seen previously, the LWE problem is characterized by three parameters: the modulus q, the dimensions of the matrix n, and an error distribution χ. For designing this scheme, the authors of [BCD + 16] choose a discrete Gaussian distribution that is defined as follows.

Definition 3.3.2 (Discrete Gaussian Distribution). Let α be a real number and q ∈ N. A Gaussian distribution is a continuous probability distribution function that centers around a mean value with a standard deviation αq. The discrete Gaussian distribution χ α,q is a Gaussian distribution rounded to the nearest integer and reduced modulo q.

Reconciliation method

In a key-exchange protocol, reconciliation refers to the methodology and the collection of procedures utilized by two communicating parties allowing them to arrive at exactly the same keys without having to exchange the key directly. The reconciliation mechanism used by Frodo is a generalised version of the Piekert's key agreement mechanism [START_REF] Peikert | Lattice cryptography for the internet[END_REF]. Unlike Piekert's mechanism, which extracts a single bit, this allows a larger but fixed number of bits to be extracted. This increases in the number of extracted bits also lead to an increased failure of reconciliation. However, this rate of failure is small for practical applications [BCD + 16]. Now we shall give a short description of functions that help in exact key agreement using this new reconciliation method. Let B be the number of bits that one aims to extract from one coefficient in Z q be such that B < (log 2 q -1) Let B = (log 2 q -B). For any v ∈ Z q the rounding function ⌊•⌉ 2 B is defined as

⌊v⌉ 2 B := ⌊2 -B • v⌉ mod 2 B .
This returns the B most significant bits of (v + 2 B-1) mod q. The crossround function • 2 B is defined as

v 2 B := ⌊2 -B+1 • v⌋ mod 2.
This function returns the (B + 1)th most significant bit of v. Now with these two function, we finally define the function Rec. This function is built on the foundations of the reconciliation function proposed by Piekert [START_REF] Peikert | Lattice cryptography for the internet[END_REF]. The function works as follows: on input of some w ∈ Z q and a bit b ∈ {0, 1}, the Rec outputs ⌊v⌉ 2 B where v is the closest element to w such that v 2 B = b. It is important to note that the bit b acts as a hint for the element w to compute the element v.

Example 3.3.3. In Figure 3.4, we show a sample example of the functioning of the Rec function. The figure shows three adjacent intervals such that the two intervals from the left have the same top B bits however, they differ by their (B + 1)th bit, while the third interval has the different Bth bit, however the (B + 1)th bit is the same as the first interval on the left. Now, given the input of the element w ∈ Z q and a hint vector b = 0, Rec computes the closest vector v ∈ Z q such that v 2 B = b = 0.

Description of Key Exchange

The key exchange protocol is described in Figure 3.5 works as follows: both Alice and Bob generate the same large matrix A ∈ Z n×n q . Alice generates two further matrices S, E ∈ χ(Z n×n q) and finally computes the public vector

B = AS + E.
Bob similarly computes two secret matrices S ′ , E ′ ∈ χ(Z m×n q) and another public vector

B ′ = S ′ A + E ′ .
Bob computes the secret matrix V ∈ Z m×n q where V = S ′ B + E ′′ . Bob then proceeds to compute the shared secret Key B ∈ Z m×n q by

Key B := ⌊V⌉ 2 B = (⌊2 -B V ij ⌉ mod 2 B), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Bob sends the vector V along with a hint vector C = V 2 B where the function • B works on each component as

v 2 B := ⌊2 -B+1 v⌋ mod 2.
Now for Alice to compute the secret Key A , she computes the vector B ′ S ∈ Z m×n q and takes in the hint vector C. Once this has been computed, Alice then proceeds to compute the nearest vector W of B ′ S such that for each component,

W ij B = C ij Alice Bob seed A $ ← -{0, 1} s A ← Gen(seed A) S, E $ ← -χ(Z n×n q) B ← (AS) + E seed A ,B --------→ ∈{0,1} s ×Z n×n q seed A $ ← -{0, 1} s S ′ , E ′ $ ← -χ(Z m×n q) B ′ ← (S ′ A) + E ′ E ′′ $ ← -χ(Z m×n q) V ← S ′ B + E ′′ C ← V 2 B B ′ ,C ←-------- ∈Z m×n q ×Z m×n 2 Key A ← Rec(B ′ S, C) Key B ← ⌊V⌉ 2 B
Key A := ⌊W⌉ B = (⌊2 -B W ij ⌉ mod 2 B), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The correctness of the basic key reconciliation is based on the fact that the vectors computed by both Alice (B ′ S) and Bob (S ′ B + E ′′) differ only by small amount, thus not influencing their most significant bits.

B ′ S = (S ′ A + E ′) • S = S ′ • A • S + E ′ • S = S ′ • (AS) + E ′ S = S ′ • (B -E) + E ′ S = S ′ B -S ′ E + E ′ S.
Thus, the reconciliation holds true if and only if each component of the vector

E ′ S -S ′ E -E ′′ is small than 2 log 2 q-B-2 [BCD + 16, Claim 3.2].

Parameter Choice

There are some key exchange mechanisms, for example [AAB +] and [START_REF] Joppe W Bos | Post-quantum key exchange for the tls protocol from the ring learning with errors problem[END_REF], that use Piekert's key reconciliation method with one bit extraction for making the session key. This was because the number of such reconciliations needed was far greater than the number of bits required to make the session key. In this case, we have a total of m • n reconciliations. So to achieve a post-quantum security of 128 bits, one requires mn • B > 256. With a larger number of bits extracted, one can achieve smaller parameters of m and n, which in turn implies smaller sizes of LWE matrices. Finally, we redirect the reader to [BCD + 16] for more information and therefore the detailed working of the scheme has been omitted.

Failure rate

The probability of reconciliation is 1 when the distance between the two vectors: is less than q/2 B+2 , whereas, when it is larger than 3q/2 B+2 , the scheme fails every time [BCD + 16]. The success probability decreases from 1 to 0 in between these two extremes. This is described in the figure of example 3.3.2. the Rec function can find another vector v ′ in the interval to the right of the interval containing w. However, it should be noted that this interval does not have the same B most significant bits even though v ′ = b = 0. Thus the function doesn't choose v ′ . However for some cases, especially when w lies in the exact middle of the sub-interval, there is a choice to be made, that determines the success of the reconciliation.

Introduction

In this chapter, we investigate a new encryption scheme: Extension Field Cancellation (EFC) [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] which is based on using high degree polynomials over an extension field as a part of public-key construction. We presented the working of this scheme briefly in Section 3.1.4. As seen before, on one hand, most of the multivariate encryption schemes proposed have been subjected to cryptanalysis, on the other hand, EFC has stood so far with no cryptanalysis yet.

Main Results and Organization

This chapter is organized as follows. Section 4.2.2 reports the results of a hybrid Gröbner basis attack [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF] on all three challenge parameters of EFC. Using this message recovery attack, for the first and the second challenge parameter we recover the hidden secret message in 2 65 and 2 77 operations respectively, contrary to the claims of 80 bits of security for these parameter. For the third parameter, although the worst-case hybrid Gröbner basis attack takes 2 80 operations, in an average case, we expect it to be about 2 79 . Section 4.2.3 provides experimental evidence of the non-random behavior of the public polynomials of EFC. In Section 4.2.4, we show why EFC q (0), the scheme without any modifiers, is weak. Particularly, we show that a polynomial-time attack exists on EFC q (0) and EFC F q (0), which has been stated informally in Theorem 1 below: Theorem 4.1.1 (informal). Given a public-key (f 1 , . . . , f 2n) ∈ F 2n q [x 1 , . . . , x n] and the ciphertext (c 1 , . . . , c 2n) ∈ F 2n q from an instance of EFC q (0) or EFC F q (0), using Gröbner basis, we can recover the hidden secret message in O(n 3ω) which is polynomial in n and where 2 ≤ ω < 3 is the linear algebra constant.

We present the full version of Theorem 4.1.1 as well as the proof in Section 4.2.4. We explain how a degree 3 linear combination of the public-keys of EFC q (0) or EFC F q (0) yield linear equations (see Section 4.2.4 for more details). We extend this methodology to EFC - q as well, where we recover quadratic equations from a high degree (degree ≥ 3) combinations of the public-keys. This has been discussed in some details in Sections 4.2.5, 4.2.6, and 4.2.7. This technique is quite similar to the approach used against HFE [FJ03] and the Hidden Matrix scheme [?] schemes where the authors show the public-keys exhibiting some algebraic properties are easier to solve than a random system of quadratic equations of the same sizes. We introduce a new technique of explicitly computing and recovering low-degree relations from the public-keys of EFC - q . To do so, we consider the initial public-keys and their Frobenius powers. The following Claim 4.1.1 informally describes the basic idea. We refer to Section 4.3 for further details.

Claim 4.1.1 (informal). Given the public-keys equations for an instance of EFC -

q , we can always find some combinations of the public-keys and their Frobenius powers which produce new low-degree relations.

Using this technique, we can recover the quadratic relations from degree 3 combinations in 151 minutes for the first challenge parameter and 110 minutes for the second challenge parameter. This computation is polynomial-time in the number of variables. Furthermore, we show that adding these new equations along with the public equations make the Gröbner basis computation much more efficient as well as reducing the time complexity by a huge factor. For instance, in case of EFC - q (2) with n = 75, adding such intermediate equations reduces the run time of F4 from more than a day to 66.05 seconds to compute the Gröbner basis. Thus, this scheme has structural weaknesses that can be easily exploited by an adversary to recover secret messages and thus making the scheme unsuitable for encryption.

Algebraic Cryptanalysis of EFC

In this section, we show how Gröbner basis (see Section 2.3) and Gröbner basis algorithms can be utilized to attack the EFC scheme. To break the EFC q scheme, as described in section 3.1.4, the underlying problem is to find a solution to the system of equations given by public-key ciphertext pairs. In this section, firstly we present a polynomial time key recovery attack on EFC q (0), Secondly, we report the results of a Gröbner basis based message recovery attack on the proposed parameters of EFC. Finally, we show why a system of public-keys arising from EFC is much easier to solve than a random system of algebraic equations with the same size. This is supported by both theoretical and experimental observations.

A Key Recovery Attack

In section 3.2.1.1, we presented Patarin's affine multiple attack [START_REF] Patarin | Hidden fields equations (hfe) and isomorphisms of polynomials (ip): Two new families of asymmetric algorithms[END_REF] on C * where due to an algebraic property, one can find a bi-linear relation between the plaintexts and the ciphertexts. EFC q (0), like C * , is vulnerable to a form of linearization attack, which recovers the secret-key equations. Recall that decryption of EFC q (0) requires solving a system of linear equations which are derived from Equation (3.3). As said earlier, given the ciphertexts (c 1 , . . . , c 2n) ∈ F 2n q , these decryption equations have an equivalent univariate representation over the extension field F q n , which is of the following form

β(χ)C 1 -α(χ)C 2 = 0,
where C 1 = ϕ(c 1 , . . . , c n) ∈ F q n , C 2 = ϕ(c n+1 , . . . , c 2n) ∈ F q n , while α(χ) ∈ F q n [χ] and β(χ) ∈ F q n [χ] are defined as in Equation (3.2). This is a bi-linear relation between the plaintext, χ (since both α(χ) and β(χ) are linear over the base field F q) and the ciphertexts C 1 and C 2 . So choosing enough plaintexts and corresponding ciphertexts, one can recover the coefficients of α(χ) and β(χ), which were unknown to the attacker. Hence, using the public-key P ∈ F q [x 1 , . . . , x n], we can generate several plaintextciphertext pairs. For each pair of plaintext-ciphertext

(x ′ 1 , . . . , x ′ n) ∈ F n q , (y ′ 1 , . . . , y ′ 2n) ∈ F 2n
q given by P (x ′ 1 , . . . , x ′ n) = (y ′ 1 , . . . , y ′ 2n), we can substitute

X = ϕ(x ′ 1 , . . . , x ′ n), Υ 1 = ϕ(y ′ 1 , . . . , y ′ n), Υ 2 = ϕ(y ′ n , . . . , y ′ 2n) ∈ F q n ,
into the following linearization equation

Ψ (X, Υ 1 , Υ 2) = n-1 i=0 g i X q i-1 • Υ 2 - n-1 i=0 h i X q i-1 • Υ 1 = 0,
to get a linear equation in 2n unknowns g i , h i ∈ F q n . Therefore, choosing roughly 2n plaintext-ciphertext pairs, we can very likely solve the resulting system for the unknown coefficients in O(n 3) time complexity. Once we have the resulting linear system of equations, for a given ciphertext (c 1 , . . . , c 2n) ∈ F 2n q , we can recover the actual secret message by solving the univariate equation Ψ (X) = 0, which over the base field F q represents a system of n linear equations in n variables (x 1 , . . . , x n). Solving this system has O(n 3) complexity. This attack was known to the authors of [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. This idea of recovering the secret-key from the public-keys to obtain the hidden message can also be realised using Gröbner bases. This has been presented in great detail in Section 4.2.4.

For the case of a > 0, an attacker needs to guess the correct ciphertext for each of the a public-keys for every choice of 2n plaintexts such that these 2n plaintextciphertext pairs solve for the unknown coefficients of the linear equation Ψ . In worst-case, the complexity is O(q 2na), which is exponential in n and the number of missing public-keys, a. Therefore, choosing appropriate value of the parameter a can foil such a key-recovery attack using linearization techniques on EFC - q (a).

A Message Recovery Attack

In this part, we show that the challenge parameters of EFC (see Table 3.2) can be attacked thanks to the hybrid Gröbner basis algorithm [START_REF] Bettale | Hybrid approach for solving multivariate systems over finite fields[END_REF][START_REF] Bettale | Cryptanalyse algébrique: outils et applications[END_REF] which we discussed in Section 2.4. This attack combines both exhaustive search as well as Gröbner basis computation by fixing k out of the n variables and then computing Gröbner basis. The complete set of solutions is recovered from the computation of all q k Gröbner bases. The attack relies on the idea that the cost of computing Gröbner basis decreases when the ratio between the number of equations and the number of variables increases [START_REF] Bardet | Asymptotic behaviour of the index of regularity of quadratic semi-regular polynomial systems[END_REF]. Table 4.1 lists the number of fixed variables and the expected number of operations of the message recovery attack for EFC parameters. The expected number of operations for the hybrid attack is calculated explicitly and is given by:

N hyb = log 2 (t • q k • 2.93 × 10 9),
where t is the time taken for computing a Gröbner basis over the public-keys in which we fix k variables. In our experiments, we take this time t to be the average time over 100 runs. The number of expected operations, N hyb , is not an asymptotic estimate as we do not use the expected degree of regularity for computing the complexity of the hybrid Gröbner basis attack. From Table 4.1, we see that the first parameter EFC - 2 (10) with n = 83 is broken just by using 2 65 bit operations, while the second parameter EFC F - 2 (8) with n = 83 is broken by using 2 77 bit operations. We have not been able to find an attack with number of operations strictly less than 2 80 on the third challenge parameter of EFC - 3 (6) with n = 56, however, fixing 25 variables gives us a sharp upper bound of 2 80 . Therefore, if this parameter is used, in the worst case instance, the hybrid attack will take 2 80 bit operations, however, in average case, we expect the number of operations to be about 2 79 . This is simply because, the total number of steps required to search for every possible combination is given by 3 25 (3 25 +1)/2. Therefore, the average search time for any combination is simply (3 25 + 1)/2 ≈ 2 39 . This result leads us to estimate 2 79 to be the number of operations taken by the hybrid Gröbner basis attack on an average when the third parameter is chosen. In Table 4.1 we also list the degree of regularity for a semi-regular system, D SR with the same parameters. The time (Time) and the memory (Mem) column represent the time and space required for one instance of running the Gröbner basis computation. We use the Magma [BCP97] 2.19 implementation of F4 algorithm on a quad-core Intel(R) Xeon(R) CPU E7-4820 v4 2.93 GHz computer with 1 Tb of memory, which is facilitated by the GroebnerBasis function. In Figure 4.1, we show the complexity of the hybrid Gröbner basis attack to recover the secret message with respect to increasing value of the number of variables (n) and fixing various fraction of variables (Frac) for a = 10. It clearly shows that increasing the value of n will not help as still the hybrid Gröbner basis attack recovers the secret message in time complexity less than 2 80 . Even if n or a is increased to the extent that algebraic attack complexity is more than 2 80 , this will sufficiently increase the decryption time, thus making the scheme unsuitable for use. In the following sections, we show why EFC is easier to solve than a random system of algebraic equations. We show with experimental evidence that the degree of regularities observed for EFC - q show non-random behavior. Also, we explain the apparition of many quadratic or linear polynomials during the computation of a Gröbner basis of the ideal generated by the public polynomials of EFC.

Lower Degree of Regularity

In this section, we provide the first experimental evidence of a bound on the degree of regularity of EFC which is much less than that of semi-regular degree of regularity bound. Figure 4.2 depicts how the maximal degree reached during Gröbner basis computation varies with an increasing value of n and also how it varies with the parameter a, the number of equations removed from the public-keys.

In our experimentation, we also observe that the maximal degree of computation is actually smaller than that was used by the designers of EFC to derive their parameters [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. The theoretical degree of regularity D T heo in [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] is given by

D T heo ≤ (q -1)(r + a) 2 + 2. (4.1)
It is important to note that [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] do mention this degree to be an upper bound, but on the other hand, consider this degree to fix their challenge parameters. We represent this as theoretical degree of regularity in Figure 4.2 depicted as D T heo . As seen in the Figure 4.2, the graph of D T heo grows more than the graph of D Obs which is the observed degree of regularity for EFC during the experiments. The complexity of an algebraic attack varies exponentially with the degree of regularity (refer Chapter 2). Hence even a drop in this degree by a value of 1 can decrease the bit-security level of the parameters by a significant number of bits.

4.2.4

Analysis of the EFC q (0) and EFC F q (0) instances Recall from Section 3.1.4, the set of possible solutions for Equation (3.3) is expected to be small [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. The number of solutions obtained depends on the rank of the linear system of equation (3.3). Over F q , if the rank of the above system is nr for r > 0, this implies that the kernel of this linear map, is a subspace of co-dimension r in F n q . Therefore there are q r solutions in F n q . If r is close to n then the scheme is not efficient as the decryption then involves pruning through all solutions in the set by computing their corresponding ciphertext and matching it amounting to

q r • O(n 3) = O(n ζ+3), ζ = r log q n
operations. In practice we found the rank of the system of linear equations from equation (3.3) is (n -1) in more than half of the cases while it is (n -2) for almost We show that these linear equations also appear during the Gröbner basis computation. In this case, one proceeds by generating Macaulay matrix (Definition 2.3.22) of degree 3 from the 2n quadratic public-key equations in F q [x 1 , . . . , x n]. These 2n public-keys can also be represented by the set

{α m (x)x -C 1 } ∪ {β m (x)x -C 2 }. Now each row of the matrix α m (x) • (F 2 -C 2) has the following form: 1≤i,j≤n a ij x i • (β m (x)x -C 2) j , a ij ∈ F q . (4.3) Similarly each row of β m (x) • (α m (x)x -C 1) has the form 1≤i,j≤n b ij x i • (α m (x)x -C 1) j , b ij ∈ F q . (4.4)
Macaulay matrix of degree 3 for the ideal I also has rows of the form 1≤i≤n 1≤j≤2n

γ ij x i • (f j -c j) , (4.5)
where

(f j -c j) ∈ {F 1 -C 1 ∪ F 2 -C 2 }. Hence, α m (x) • (β m (x)x -C 2) and β m (x) • (α m (x)x -C 1)
, each represent vectors of n cubic polynomials which occur in the Macaulay matrix of degree 3. Consequently, β m (x)C 1α m (x)C 2 also appear during computation. These n linear equations, given by β m (x)C 1α m (x)C 2 , are the same set of n linear equations present in the decryption module (refer (3.3)).

During decryption with the original decryption module if there is exactly one solution (i.e. the system is full rank), then in exactly one step of Gröbner basis computation using Macaulay matrix at degree 3, we are able to get n linearly independent linear equations from which we recover the secret. And thus the degree of regularity, D is 3. We can therefore recover the hidden secret in O(n 3ω). Now consider the case when the linear equations in the original decryption module is not of full rank, i.e. let's say we have nr linearly independent linear equations with r > 0. As already stated earlier, the n linear equations represented by β m (x)C 1α m (x)C 2 occur in the Macaulay matrix of degree 3 and these equations are exactly the same set of linear equations from equation (3.3), therefore the n linear equations of β m (x)C 1 -α m (x)C 2 also have rank n-r and produce the same set of solutions as we derive from the decryption process. Hence to find the hidden secret message, we need to prune this solution set of dimension q r which has a complexity of O(n 3+ζ), where ζ is previously defined in Section 2.2. According to Assumption 4.2.1, we have ζ ≤ 4 log q n and n > q 4/3 , thus the total complexity of computing the hidden secret is

O(n 3ω) + O(n 3+ζ) ≈ O(n 3ω).
For EFC F q (0), each central map polynomial α(χ)χ ∈ F q n [χ] and β(χ)χ ∈ F q n [χ] have an extra quadratic term β 3 (χ) and α 3 (χ) added to them respectively (while working over a finite field of characteristic two). Addition of these terms doesn't change the structure of the polynomials in the Macaulay matrix of degree 3. Let α ′ (x), β ′ (x) ∈ F n q be the equivalent base field vector representation of α 3 (χ) and β 3 (χ). Therefore, left multiplication of α ′ (x) by α m (x) ∈ F n×n q [x 1 , . . . , x n] is an equivalent base field representation of α(χ)α 3 (χ) ∈ F q n [χ] , which over the base field of order q = 2 represents a linear system of equations in F q [x 1 , . . . , x n].

Hence like EFC q (0), for EFC F q (0), each row of the matrices α m (x)

• (F 2 -C 2) and β m (x) • (F 1 -C 1) can be written as, 1≤i,j≤n a ij x i • ((β m (x)x + α ′ (x) -C 2) j k 1≤i,j≤n b ij x i • ((α m (x)x + β ′ (x) -C 1) j k (4.6)
for 1 ≤ k ≤ n. The polynomials from equation (4.6) represent vectors of 2n polynomials and these occur in the Macaulay matrix of degree 3. This implies the polynomials from the following

α m (x)C 1 -β m (x)C 2 -α m (x)α ′ (x) + β m (x)β ′ (x),
also appear during the Gröbner basis computation which represents a system of n linear equations and are the same linear equations in the decryption module of the scheme with the Frobenius modifier. Thus similar to the previous case, we can thus recover the hidden secret by solving these n linear equations with high probability. Hence, some combination of the central map polynomials again yields a system of linear equations observed in the degree 3 Macaulay matrix. Therefore, we conclude that we have a polynomial-time, O(n 3ω), message recovery attack on EFC q (0) and EFC F q (0). In Table 4.3, we list the time (average time taken over 5000 Gröbner basis computations using F4 with the same parameters) and the experimental maximal degree observed (denoted by D) for different values of 15 ≤ n ≤ 100 during the Gröbner basis computation over the public-keys of EFC q (0) and EFC F q (0). As can been seen, the behavior of the public-keys is unlike a random system of quadratic equations, in which case the degree increases linearly with the number of variables, as depicted in column Semi-reg of Table 4.3. Therefore, we have a experimental proof of the existence of such a polynomial-time attack over the public-keys of EFC q (0) and EFC F q (0).

Extending to EFC - q (a)

As seen earlier, EFC q (0) can be broken in polynomial-time by a direct Gröbner basis attack. However, in the case of EFC - q (a) we do not necessarily obtain linear n EFC q (0) EFC F q (0) D SR D Time D Time 15 3 0.00 3 0.00 4 20 3 0.00 3 0.00 4 25 3 0.00 3 0.00 4 30 3 0.01 3 0.01 5 35 3 0.02 3 0.02 5 40 3 0.02 3 0.03 5 45 3 0.04 3 0.04 6 50 3 0.05 3 0.06 6 55 3 0.09 3 0.09 7 60 3 0.12 3 0.13 7 65 3 0.18 3 0.20 7 70 3 0.27 3 0.28 8 75 3 0.35 3 0.35 8 80 3 0.5 3 0.51 8 90 3 0.88 3 0.9 9 100 3 1.33 3 1.37 10 Table 4.3 -Maximal degree observed for Gröbner basis computation in F4 on Magma for EFC q (0) and EFC F q (0). Column D SR represents the degree of regularity for a random (semi-regular) system of polynomials with same parameters. equations from the public-keys directly at degree 3 as in the case of EFC q (0) (Section 4.2.4). Nevertheless, we show that many lower degree equations (generally quadratic) can be computed from combinations of the public-keys at higher degree (at degree 3, 4 or 5 depending on the characteristic of the base field and the parameter a). Before we proceed, we derive an equivalent EFC representation of the EFC - system for the central map. EFC uses two HFE like polynomials as a part of the central map construction. Vates and Smith-Tone in [START_REF] Vates | Key recovery attack for all parameters of hfe[END_REF] propose a technique of converting a HFE -scheme into an equivalent HFE system representation. Using the same idea we can now build an equivalent EFC system for EFC -. Definition 4.2.3 (Embedded forgetting map). Let ℓ, a ∈ N and F q be a finite field. We call φ a : F ℓ q → F ℓ q an embedded forgetting map if it maps a vector v ∈ F ℓ q to another vector v ′ ∈ F ℓ q such that

v ′ i = v i if 1 ≤ i ≤ ℓ -a, 0 if ℓ -a + 1 ≤ i ≤ ℓ.
This φ a can be written as a composition of a forgetting map, F ℓ q → F ℓ-a q , forgetting the last a vectors and an embedding map F ℓ-a q ֒→ F ℓ q , appending a zeros to a (ℓa)-dimensional vector. Hence, for clarity of notation, we shall denote such a embedding map φ a as follows

φ a : F ℓ q → F ℓ-a q ֒→ F ℓ q .
The minus modifier of EFC is formed by removing 'a' polynomials from the publickeys. So

P -= (p 1 , . . . , p 2n-a) = E ′ • T • F • S ∈ F 2n-a q [x 1 , . . . , x n]
, where E ′ : F 2n q → F 2n-a q and S ∈ F n×n q , T ∈ F 2n×2n q are invertible linear transformations. We can now define φ a : F 2n q → F 2n-a q ֒→ F 2n q , an embedded forgetting map such that it φ a (G) = (E ′ (G), 0, . . . , 0) for any G ∈ F 2n q [x 1 , . . . , x n]. Thus, building a new system P 0 ∈ F 2n q [x 1 , . . . , x n] by appending zero polynomials to P -, we get P 0 = (p 1 , . . . , p 2n-a , 0, . . . , 0) = φ a • T • F • S. One should note that the map φ a maps a vector in F 2n q to another vector in F 2n q . This is a linear map and can also be written as a matrix Φ a ∈ F 2n×2n q . Thus for an embedded forgetting map φ a , we shall interchangeably use its matrix representation Φ a .

Before proceeding further, we recall that the central map F of EFC (Section 3.1.4) is composed of two polynomial sets

F 1 = ϕ -1 (α(χ)χ), F 2 := ϕ -1 (β(χ)χ),
where ϕ : F q n → F n q is the natural isomorphism as defined in Section 3.1.4.

Proposition 4.2.4. Let F 1 , F 2 ∈ F n q [x 1 , . . . , x n] represent the central map polynomials of EFC q and T ∈ F 2n×2n q be the linear transformation that composes with the central map F ∈ F 2n q [x 1 , . . . , x n] to form the public-key of EFC. Suppose there is a embedded forgetting map φ a : F 2n q → F 2n-a q ֒→ F 2n q . Then for the publickeys of EFC -, there is an equivalent representation of the linear transformation Φ a • T using two distinct embedded forgetting maps φ a 1 : F n q → F n-a 1 q ֒→ F n q and φ a 2 : F n q → F n-a 2 q ֒→ F n q such that a 1 + a 2 = a and φ a 1 acts in composition with F 1 while φ a 2 composes with F 2 of the central map, where • is the composition map.

Proof. The composition Φ a • T ∈ F 2n×2n q represents a 2n × 2n matrix. This matrix has a co-rank of a. Now the rows of the this matrix which on composition with the central map F ∈ F 2n q produces a vector of polynomials of which a polynomials are zero polynomials. Now consider the first n rows of

Φ a •T •F ∈ F 2n q [x 1 , . . . , x n].
We have supposed that out of these n rows a 1 rows are zero rows. This can be represented as a composition of a n × n matrix Φ a 1 , comprising the same exact a 1 zero rows, with F 1 ∈ F n q [x 1 , . . . , x n] giving out the same equations as the first n rows of Φ a • T • F . Similarly take the last n rows of Φ a • T • F . We can have another n × n matrix Φ a 2 with a 2 zero rows which on composition with F 2 ∈ F n q [x 1 , . . . , x n] results in the same last n rows of Φ a • T • F .

Recall that the public-key is made from the composition of two invertible linear transformations S ∈ F n×n q and T ∈ F m×m q along with the central map polynomial F . So, composition T • F can be written as

T • F = T 1 T 2 T 3 T 4 • F 1 F 2 = I n 0 0 I n • F ′ 1 F ′ 2 = I 2n • F ′ 1 F ′ 2 ,
where

F ′ 1 = T 1 •F 1 +T 2 •F 2 ∈ F n q [x 1 , . . . , x n] and F ′ 2 = T 3 •F 1 +T 4 •F 2 ∈ F n q [x 1 , . . . , x n]. These new polynomials F ′
1 and F ′ 2 are linear combinations of the previous central map polynomials. Hence, without loss of generality, from now we consider the linear transformation T as I 2n , where I 2n is an identity matrix of size 2n. Lemma 4.2.5. Let Φ a ∈ F 2n×2n q be a linear transformation of co-rank 'a'. Also let T ∈ F 2n×2n q be a linear transformation that composes with the central map polynomials (F 1 , F 2) ∈ F 2n q [x 1 , . . . , x n]. Using Proposition 4.2.4, consider there exists equivalent forgetting maps, Φ a 1 ∈ F n×n q and Φ a 2 ∈ F n×n q . Also consider, the linear transformation T ∈ F 2n×2n q to be the identity matrix. There exist a nonsingular linear transformation U ∈ F 2n×2n q and polynomials π 1 , π 2 ∈ F q n [X] of degrees q a 1 and q a 2 respectively, such that a 1 + a 2 = a and

Φ a • T = Φ a • I 2n = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ)
, where I 2n is the identity matrix, ϕ : F n q → F q n and the composition function • works component wise.

Proof. As stated earlier, we shall consider the linear transformation T to be the identity matrix I 2n . Using Proposition 4.2.4, the linear transformation Φ a • T = Φ a • I 2n ∈ F 2n×2n q can be considered as collection of two separate embedded forgetting maps, Φ a 1 , Φ a 2 ∈ F n×n q , each acting on the first n, F 1 ∈ F n q [x 1 . . . , x n] and last n polynomials, F 2 ∈ F n q [x 1 . . . , x n] of the central map, respectively. Suppose we have a 1 polynomials removed from F 1 and a 2 removed from F 2 . Thus, we have a

= a 1 + a 2 . Let V 1 ∈ F q n be the kernel of Φ a 1 • I n ∈ F n×n q and similarly V 2 ∈ F q n be the kernel of Φ a 2 • I n ∈ F n×n q . Let π 1 ∈ F q n [
X] be the minimal polynomial of the algebraic set V 1 and π 2 ∈ F q n [X] be the minimal polynomial for V 2 . Now removing a 1 polynomials implies that nullity of V 1 is q a 1 and similarly |V 2 | = q a 2 . Thus π 1 and π 2 have degrees q a 1 and q a 2 respectively and are of the form

π 1 = a 1 i=0 c i X q i , π 2 = a 2 i=0 c ′ i X q i ,
where c i , c ′ i ∈ F q n Taking the same approach as Vates and Smith-Tone [VST17, Lemma 1], we argue that there exists linear transformations

U 1 , U 2 ∈ F n×n q such that Φ a 1 • I = U 1 • ϕ -1 • π 1 • ϕ , Φ a 2 • I = U 2 • ϕ -1 • π 2 • ϕ. (4.7)
Using (D.1), we have

Φ a • I 2n = Φ a 1 • I n Φ a 2 • I n = U 1 • ϕ -1 • π 1 • ϕ U 2 • ϕ -1 • π 2 • ϕ = U 1 0 0 U 2 • ϕ -1 • π 1 • ϕ ϕ -1 • π 2 • ϕ .
This above matrix representation can be also written as

Φ a • I 2n = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ), where U = U 1 0 0 U 2 .
We can now prove the following result:

Proposition 4.2.6. Let F 1 ∈ F q n [χ] and F 2 ∈ F q n [
χ] be the central map polynomials of EFC q (0) in the extension field representation. Let there be two polynomials π 1 , π 2 ∈ F q n [X] of degrees q a 1 and q a 2 respectively, as defined in Lemma 4.2.5. Additionally, we also have a = a 1 + a 2 . Then the central map polynomials

F ′ 1 , F ′ 2 ∈ F q n [χ]
for an instance of EFC - q (a) can be written as

F ′ 1 = π 1 • F 1 = a 1 i=0 c i (α(χ)χ) q i , F ′ 2 = π 2 • F 2 = a 2 i=0 c ′ i (β(χ)χ) q i . (4.8)
Proof. The public-keys for an instance of EFC - q is derived from the following composition of maps

P -= Φ a • T • (ϕ -1 , ϕ -1) • (F 1 , F 2) • (ϕ, ϕ) • S, (4.9)
where Φ a , T ∈ F 2n×2n q and S ∈ F n×n q are linear transformations, and the central map comprises of the two quadratic polynomials F 1 , F 2 ∈ F q n [χ]. Assuming T = I 2n to be the identity matrix, from Lemma 4.2.5, we have

Φ a • I 2n = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ).
Thus, replacing this in Equation (4.9), we have

P -= Φ a • I 2n • (ϕ -1 , ϕ -1) • (F 1 , F 2) • (ϕ, ϕ) • S = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ) • (ϕ -1 , ϕ -1) • (F 1 , F 2) • (ϕ, ϕ) • S = U • (ϕ -1 , ϕ -1) • (π 1 • F 1 , π 2 • F 2) • (ϕ, ϕ) • S
This is an EFC equivalent public-key representation of the public-keys of EFC -, whose central map polynomials are given by π 1 • F 1 and π 2 • F 2 .

From here on we shall denote the ciphertexts from the evaluation of the central map polynomials

F ′ 1 , F ′ 2 ∈ F q n [
χ] over some secret message as C 1 ∈ F q n and C 2 ∈ F q n respectively. Now that we have built an extension field representation of EFC -central map polynomials, we show how we can recover lower degree relations from these equations. First, we illustrate our approach for small values of a. For ease of notation, from now on we shall denote the polynomial α(χ) as α and similarly β(χ) as β. Hence the product α(χ)χ has been represented as αχ (and βχ for β(χ)χ similarly). Now that we have build an equivalent EFC key representation of EFC -, we show using examples how for various values of a, we can recover lower degree relations.

Analysis on the case EFC -

2 (1)

Now we look at the behavior of the public-keys with one equation removed over F 2 [x 1 , . . . , x n] and analyze the Gröbner basis over these equations. Before proceeding, we revisit the definition of a Frobenius power of a polynomial.

Definition 4.2.7. For any element z of a finite field F q of some prime characteristic p, the Frobenius function maps z to its p th power. Extending this to commutative ring, i.e F q [χ], the Frobenius morphism maps a polynomial g ∈ F q [χ] to g p , where q is some positive power of a prime p.

For a = 1, the central map polynomials (using Equation 4.8) can be written as

F ′ 1 = α 2 χ 2 + c 0 αχ, F ′ 2 = βχ.
As said earlier, we shall denote the evaluations of the polynomials over a secret message as C 1 ∈ F q n and C 2 ∈ F q n respectively. We write two polynomials H 1 and

H 2 in F q n [χ] as H 1 : F ′ 1 -C 1 , H 2 : F ′ 2 -C 2 .
For simplicity let us consider c 0 = 1. As shown below, we are able to find 4 different combinations of H 1 and H 2 and their Frobenius powers H 2 1 , H 2 2 , H 4 1 , H 4 2 , which represent degree fall from degree 3 to 2. The 4 distinct equations over the extension field F 2 n represent 4n quadratic equations in the base field F 2 are as follows:

1. H 1 • β -H 2 • α 2 χ -H 2 • α 2. H 1 • β 2 -H 2 2 • α 2 -H 2 • αβ 3. (H 2 1 • β 4 -H 4 2 • α 4) • χ 2 -H 4 2 • α 2 4. (H 2 1 • β 4 -H 4 2 • α 4 -H 1 • β 4) • χ -H 2 2 • αβ 2
Experimental evidence of a direct Gröbner basis attack on the public-key equations shows exactly 4n quadratic equations (highlighted in bold) at step degree 3, as can be seen in Table 4.4. For n = 50, at the first step degree (SD) 3, we observe 200 quadratic equations while the same for n = 75 exhibits 300 quadratic equations. It is also interesting to note that for such small value of a = 1, we can recover the secret message from in the very next step of the Gröbner basis computation at degree 3, implying such instances of EFC - 2 (1) are weak. We also note in both the cases, the first step of F4 computes new quadratic polynomials at degree 2, for instance, for n = 50 we observe 93 new quadratic polynomials, while we have 142 new quadratic polynomials for n = 75. This number is always less than 2n -1, which is the number of public-keys. One can explain such behavior by the system of public-keys not being full rank, i.e., one can find some public-key equation using a linear combination of the other equations.

Step

Analysis on the case EFC - 2 (2)

For a = 2, there are two sub-cases: a 1 = 1, a 2 = 1 and a 1 = 2, a 2 = 0. First let us consider the sub-case, a 1 = 1, a 2 = 1. So the we have the following polynomials

H 1 : α 2 χ 2 + αχ -C 1 , H 2 : β 2 χ 2 + c 1 βχ -C 2 .
Again we see that taking the following degree 3 combination of the public-keys gives a degree 2 polynomial.

H 1 (β 2 χ + β) + H 2 (α 2 χ + α).
Now consider the other sub-case a 1 = 2, a 2 = 0 where we have the following polynomials

H 1 : α 4 χ 4 + α 2 χ 2 + αχ -C 1 , H 2 : βχ -C 2 .
The following degree 3 combination of H 1 , H 2 and H 2 2 ,

β 2 H 1 + (α 4 χ 2 + α 2)H 2 2 + αβH 2 ,
is a quadratic polynomial. Thus this represents a degree drop. Thus we see that, from the structure of the public-keys for a = 1 or a = 2, we can explicitly recover algebraic combinations of the public-polynomials leading to a degree drop. Table 4.5 gives the experimental evidence of the existence of such lower degree polynomials for n = 45 and n = 50. As seen earlier, for a = 2, we have two further sub-cases, i.e. (a 1 = 2, a 2 = 0) and (a 1 = 1, a 2 = 1), hence for ease of notation, we shall denote these sub-cases as (a 1 , a 2) replaced by their values. For example, a = 2 with a 1 = 1 and a 2 = 1 is denoted as (1, 1). From the table, we observe that for the case of (1, 1) the experiments clearly show the existence of 3n quadratic equations at the first step degree 3. Thus, if we are able to find combinations of the public-keys and their Frobenius powers that represent a degree drop from degree 3 to degree 2 over the base field, we can easily recover these above 3n quadratic equations.

Step

Analysis on the case EFC -

3 (1) and EFC - 3 (2)

Similar to the instance of q = 2, while working over a finite field of characteristic 3, the EFC -public-keys are vulnerable to this attack. We can again write the minus modified central map polynomials for EFC - 3 (a) in an extension field equivalent key representation. In particular, for a = 1, with a 1 = 1, a 2 = 0, we have

H 1 : α 3 χ 3 + αχ -C 1 , H 2 : βχ -C 2 .
Using the same approach of taking combinations of the Frobenius powers of the public-keys over the extension field, we show that there exists multiple systems of quadratic equations from combinations at degree 4 4.6 show apparition of quadratic polynomials at step degree 4 for n = {10, 20, 30} for a = 1 during Gröbner basis computation in Magma using F4. It is an interesting observation that the number of low-degree quadratic equations is not linear in the number of variables n, as was the case in even characteristic. According to our estimate, there is a quadratic relationship with the number of variables.

1. βH 1 -(α 3 βχ 2 + αβ -α 3 χC 2)H 2 , 2. (β 3 H 1 -α 3 H 3 2 -αβ 2 H 2)χ -C 2 αβH 2 . Table
Step Similarly, for a = 2, we have

H 1 : α 3 χ 3 + αχ -C 1 , H 2 : β 3 χ 3 + βχ -C 2 .
One can always find the following equation representing quadratic polynomials (over the base field F n q) from the following combination of H 1 and H 2 such that it represents a degree drop from degree 4 to degree 2.

β 3 • H 1 -α 3 H 2 • χ 3 -(αχ -C 1) • H 2 -(βχ -C 2) • H 1 .
Clear evidence of such quadratic equations can be found in a Gröbner basis computation of EFC - 3 (2) instance. For example, at step degree 4, with n = 20, we find 97 quadratic equations, while n = 30 yields 376 quadratic equations. In case of n = 40, one observes 741 such quadratic equations at step degree 4. For a = 2, one can also find cubic equations at degree 5. At degree 5, the following combination represents a degree 3 polynomial:

(α 3 χ 2 + α)H 2 -(β 3 χ 2 + β)H 1 .
Such equations are observed only when n > 40. However, for small n, experimentally these equations are not observed as the Gröbner basis computation doesn't need to proceed beyond degree 4. Thus in this case of q = 3, we observe some quadratic equations (at degree 4) and cubic equations (at degree 5), which is unlike the behavior of EFC over q = 2. Thus, over an odd characteristic finite field, although the scheme exhibits a higher degree of regularity, the scheme still suffers from the same vulnerability of recoverable intermediate low-degree equations.

A common observation in the previous sections is that as a increases, it becomes increasingly difficult to compute such combinations of public-keys which represent degree fall equations theoretically. This is mainly because increasing the value of a increases the degree of the corresponding public-key equations in their equivalent key representation over the extension field F q n . However, we now present an algorithm which can discover such equations for any value of a and discuss in great details in the following section.

A Method to Find Degree Fall Equations

Previously, we theoretically showed how various combinations of the pubic keys at degree 3,4 and 5 produces lower degree polynomials for EFC - q (a) and EFC - qF (a). In this section, we show an explicit method of recovering such combinations of the public polynomials and their Frobenius powers for any parameter choice of number of variables n and number of removed public polynomials 'a' over any finite field F q .

Claim 4.3.1. Given the equivalent extension field representation of the public-keys

P 1 , P 2 ∈ F q n [x 1 , . . . , x n] and ciphertexts C 1 , C 2 ∈ F q n of EFC -, let H 1 = P 1 - C 1 ∈ F q n [x 1 , . . . , x n] and H 2 = P 2 -C 2 ∈ F q n [x 1 , . . . , x n].
We can always find some combination of H 1 , H 2 and their Frobenius powers which produce lower degree relations in I ≤3 (I ≤4 or I ≤5 if q = 3) where I is the ideal generated by H 1 and H 2 .

Let us consider the case of EFC - 2 (a). Denote the multiplicands of H 1 and its Frobenius powers H q 1 , . . . , H q n-1 1 with p i . Similarly for H 2 and its Frobenius powers H q 2 , . . . , H q n-1 2 we denote the multiplicands with g i . So at degree 3, any element T in the ideal I can be represented as

T = p 1 • H 1 + • • • + p n-1 • H q n-1 1 + g 1 • H 2 + • • • + g n-1 • H q n-1 2 (4.10)
where for all i, deg(p i), deg(g i) are of the form 2 k with k ≥ 1. The polynomials p i and g i are of the following form

p i = ⌊log q D 1 ⌋ j=0 p j+1,i χ q j + p i0 , g i = ⌊log q D 2 ⌋ j=0 g j+1,i χ q j + g i0 (4.11)
where D 1 = D 2 = q n-1 . The coefficients of p j+1,i , p i0 , g j+1,i and g i0 's are unknown. Now to show that quadratic polynomials occur in the ideal I ≤3 , let us consider that T represents a degree 2 polynomial in the base field F q . Hence we consider all the coefficients in T , whose monomial are of the form χ q i +q j +q k , i.e the monomials of degree 3, where (i = j = k). Thus the coefficients of these cubic monomials are all 0. As a result we get an over-determined system of n 3 linear equations in 2n 2 + 2n unknowns. This system of equations is consistent since there exists a trivial solution of all zeros.

KernelMatrix function in Magma allows us to do Gaussian elimination and compute the solution set. The solution set is returned as a basis matrix. The number of solutions is related to the rank of this matrix. We have not been able to show theoretically prove that the rank of the above system is less than the number of variables. However, experimental observations show that the rank is equal to 7n for EFC - 2 (a), which is strictly less than number of unknowns, (2n 2 + 2n). Thus we have a polynomial time process to recover non-zero lower degree relations from the combination of the public-keys and their Frobenius powers.

A similar approach can be applied for an EFC instance in odd characteristic. Especially for the case of q = 3, one can find some combination of H 1 and H 2 and their Frobenius powers in their degree 4 truncated ideal which produces quadratic equations. We construct this combination exactly in the same way as earlier (see equation 4.10). However, now we consider polynomials p i and g i of the following form

p i = p i0 + ⌊log q D 1 ⌋ j=0 p j+1,i χ q j + ⌊log q D 1 ⌋ j=0 j k=0 p j+1,k+1,i χ q j +q k , g i = g i0 + ⌊log q D 2 ⌋ j=0 g j+1,i χ q j + ⌊log q D 2 ⌋ j=0 j k=0 g j+1,k+1,i χ q j +q k
where D 1 = D 2 = q n-1 + q n-2 . We consider all the coefficients of the polynomial T whose monomials are of the form χ q i +q j +q k and χ q i +q j +q k +q l , i.e the monomials of degree 3 and 4, where (i = j = k = l). The coefficients of such monomials are all 0 since we consider the polynomial T to be quadratic. As a result we get an over-determined system of n 3 + n 4 linear equations in n 3 + 3n 2 + 2n unknowns.

An improvement on the method

As we very well know, the complexity of computing the kernel for this is directly related to the size of the coefficient matrix of the system of linear equations which we derive from the monomials with zero coefficients. This leads to one natural question: whether the size of the matrix can be reduced which can make the computation of the kernel more efficient. Let us look at the structure of the polynomials H 1 and H 2 .

H 1 = a 1 j=0 n-1 i=0 A ij χ q i +1 q j +A 0 = n-1 i=0 A ia 1 χ q i+a 1 +q a 1 +• • •+ n-1 i=0 A i0 χ q i +1 +A 0 H 2 = a 2 j=0 n-1 i=0 B ij χ q i +1 q j +B 0 = n-1 i=0 B ia 2 χ q i+a 2 +q a 2 +• • •+ n-1 i=0 B i0 χ q i +1 +B 0
In the previous section, the idea of constructing the polynomial T in equation (4.10) is to achieve cancellation of cubic terms by multiplying linear polynomials p i 's and g i 's of the form of equation (4.11). Multiplying p 1 and g 1 to H 1 and H 2 respectively produces cubic monomials of the form χ q i+j +q j +q k with coefficients contributed by p j,1 , g j,1 and H i 's. Similarly multiplying p 2 and g 2 to H q 1 and H q 2 respectively produces cubic monomials whose coefficients are contributed by p j,2 , g j,2 and H q i 's. However, there are two interesting observations in this case: 1. Either the monomials which have p 2,2 or g 2,2 as coefficients are either linear or quadratic, or 2. The monomials which have the unknowns as coefficients are all cubic or of higher degree over the base field.

To exhibit this we present the following example.

Example 4.3.2. Let us consider an EFC instance, where q = 2, n = 3 and a = 1. Without loss of generality, we consider that all the coefficients of the central trapdoor maps are all 1. Hence, we have

H 1 = 2 i=0 χ q i +1 -c 1 = χ 2 + χ 3 + χ 5 -c 1 H 2 = 2 i=0 χ q i+1 +q + 2 i=0 χ q i +1 -c 2 = χ 2 + χ 3 + χ 4 + χ 5 + χ 6 + χ 10 -c 2
Consider the polynomials p i 's and g i 's are represented as following

p 1 = p 1,1 + p 2,1 χ + p 3,1 χ 2 + p 4,1 χ 4 , g 1 = g 1,1 + g 2,1 χ + g 3,1 χ 2 + g 4,1 χ 4 p 2 = p 1,2 + p 2,2 χ + p 3,2 χ 2 + p 4,2 χ 4 , g 2 = g 1,2 + g 2,2 χ + g 3,2 χ 2 + g 4,2 χ 4 p 3 = p 1,3 + p 2,3 χ + p 3,3 χ 2 + p 4,3 χ 4 , g 3 = g 1,3 + g 2,3 χ + g 3,3 χ 2 + g 4,3 χ 4
Now, in the polynomial T , constructed similar to equation (4.10), the monomials which take contribution from the "variables" p 2,2 and g 2,2 are as follows:

p 2,2 → χ • (χ 3 + χ 4 + χ 6) = χ 4 + χ 5 + χ 7 = χ 4 + χ 5 + 1 g 2,2 → χ • (χ + χ 3 + χ 4 + χ 5) = χ 2 + χ 4 + χ 5 + χ 6
We observe that none of the monomials involving p 2,2 and g 2,2 are cubic.

We shall recall that we are considering coefficients of all the possible cubic monomials from T . These coefficients form a system of linear equations with p i,j and g i,j as variables. Hence, ignoring those variables which either do not occur in these linear equations does not effect our process of computing the intermediate equations. Consequently, for constructing the polynomial T , we can ignore the "variables" p 2,2 and g 2,2 from the polynomials p 2 and g 2 respectively. This can be extended for polynomials p k and g k . More specifically, for the polynomials p k one can ignore the variables {p 2,k , . . . , p k,k }. Similarly for polynomials g k , one can ignore the variables {g 2,k , . . . , g k,k }. Ignoring such variables, reduces the number of unknowns from (2n 2 + 2n) to (n 2 + 3n). This process has an advantage of smaller dimension of the kernel basis, increasing the probability of recovering a useful intermediate quadratic equation.

Similar to the even characteristic case, in the case of q = 3, there are some unknowns which either have no contribution to quadratic monomials (i.e all the monomials involving the unknowns are either cubic or of degree 4) or all the monomials involving the unknowns are quadratic. More specifically, such unknowns do not have monomials which are a mix of both quadratic and cubic or higher. Hence, we can ignore such unknowns from our construction of the quadratic polynomial T . The following example exhibits such a case.

Example 4.3.3. Let us consider an EFC instance, where q = 3, n = 3 and a = 1. Without loss of generality, we consider that all the coefficients of the central trapdoor maps are all 1. Hence, we have

H 1 = 2 i=0 χ q i +1 -c 1 = χ 2 + χ 4 + χ 10 -c 1 H 2 = 2 i=0 χ q i+1 +q + 2 i=0 χ q i +1 -c 2 = χ 2 + 2χ 4 + χ 6 + χ 10 + χ 12 -c 2
Consider the polynomials p i 's and g i 's are represented as following

p 2 = p 1,2 + p 2,2 χ + p 3,2 χ 2 + • • • + p 10,2 χ 18 g 2 = g 1,2 + g 2,2 χ + g 3,2 χ 2 + • • • + g 10,2 χ 18
Now, in the polynomial T , constructed similar to equation (4.10), the monomials which take contribution from the "variables" p 2,2 and g 2,2 are as follows:

p 2,2 → χ • (χ 4 + χ 6 + χ 12) = χ 5 + χ 7 + χ 13 g 2,2 → χ • (χ 4 + χ 6 + 8χ 12 + χ 10 + χ 18) = χ 5 + χ 7 + 8χ 13 + χ 11 + χ 19
We see that all the monomials which take p 2,2 and g 2,2 are cubic. Since the polynomial T represents a quadratic polynomial, hence unknowns p 2,2 and g 2,2 have no contribution in quadratic part of the polynomial T . Therefore, in this case, we can ignore such variables.

In this case, we can decrease the number of variables from n 3 + 3n 2 + 2n to

4n 3 + 12n 2 + 20n 6
by ignoring variables {p 2,k , . . . , p (k 2 +k)/2,k } and {g 2,k , . . . , g (k 2 +k)/2,k } from polynomials p k and g k respectively.

Are the Degree Fall Equations Useful?

In the previous sections, we showed how we recover the intermediate lower degree equations. Now we shall show how such added intermediate equations are useful to a Gröbner basis computation from an efficiency point of view. It is a well-known fact that having more equations make Gröbner basis computation easier. Sometimes, adding the equations which are useful for the algorithm reduces the maximal degree reached during computation. As mentioned earlier, this maximal degree, also known as the degree of regularity, is the key parameter for understanding the complexity of Gröbner basis computation. We have seen that the complexity of computing Gröbner basis is exponential in the degree of regularity, D. Take the case of a = a 1 = 1, a 2 = 0. In Section 4.2.6, we found four relations between the public-key equations which shows a degree drop from 3 to 2. Let us consider one of these equations

C 2 (α 2 χ + α) + C 1 β = 0. (IR-1)
In Table 4.7, we present the experiments for n = 75 and q = 2 by adding the quadratic equations represented by the equation (IR-1) over the base field F q [x 1 , . . . , x n] to the public-key equations of the corresponding EFC - 2 system. The left table represents the computation of Gröbner basis with the input of only the public-keys while the right table represents that of public-keys with the new equations (from (IR-1)). Appending these equations helps the Gröbner basis computation as the time for computing the Gröbner basis reduces from 37 seconds for the left table to 7.5 seconds for the right in Table 4.7. Interestingly, with these additional equations, one complete step degree is skipped yielding the n linear equations in just 2 steps of the F4 algorithm. Now let us take the case of a = 2 such that a 1 = a 2 = 1 (i.e. one equation is removed from each of the set F 1 and F 2). In Section 4.2.7, we observed the following combination which represents a degree fall from 3 to 2.

C 2 (α 2 χ + α) + C 1 (β 2 χ + β) = 0.
(IR-2)

In Table 4.8 we demonstrate the degree and the number of equations at each step of F4 for an EFC - 2 (2) instance with n = 75. On the left table, the maximal degree reached at which linear equations were observed was 4, but as soon as we add the Equation (IR-2) to the public-keys, this maximal degree reduces to 3. So these polynomials are some of the intermediate equations that are observed during the Gröbner basis computation and these are useful to reduce the computation complexity. To compute the Gröbner basis, F4 took 66.05 seconds for Case 2, while for Case 1, F4 took about more than a day. So with a drop in D from 4 to 3, the complexity reduces significantly. Tables 4.9, 4.10 and 4.11 list the times (in seconds taken average over 5000 runs) taken for message recovery from the public-keys equations using the Gröbner basis approach (represented in the tables as "Pub. Keys") and compare with the time taken for message recovery when the new equations to the Gröbner basis computation (represented as "Pub. Keys + New eqs.") are added. From the tables we observe that with an increase in the number of variables, adding the intermediate low-degree equations becomes much more useful from the Gröbner basis computation point of view. For example, in Table 4.9, for n = 30 adding the intermediate equations decreases the time from 0.04 seconds to 0.02 seconds, while for n = 80, the decrease by almost 7 times. Similarly in Table 4.10, for n = 30 adding the corresponding intermediate equations reduces the time 3 folds while for n = 60, the drop in the timings is almost 400 times. This observation is consistent even for the Frobenius case (see Table 4.11), where for n = 20 the time decreases from 0.15 seconds to 0.08 seconds while for n = 50, the decrease is almost 5 folds.

Step-degree Public-keys 2 Deg 2: 142 3 Deg 2: 300 ,Deg 3:1566 3 Deg 1: 75

Step-degree Public-keys+ (IR-1) 2 Deg 2: 216 3 Deg 1: 75

Thus, we see for EFC - q (a) how we can obtain equations of a lower degree from the public equations in polynomial-time, which when added along with the public equations make the Gröbner basis computation much more efficient as well as reducing the time complexity by a huge factor. Now that we have shown the underlying weakness of the minus modified scheme, we shall extend these attacks to the challenge parameters.

Experimental Results and Observations

In this section we present the experimental results when we mount a Gröbner basis attack against EFC and its variants. We show that the equations that we recovered can be useful in certain cases for more efficient Gröbner basis attack. We take the following example of n = 40, q = 2 and a = 5. A direct Gröbner basis computation exhibit the following behaviour with intermediate low degree 4.12 -Gröbner Basis computation on EFC - 2 (5) public-keys for n = 40 using F4. SD represents the step degree in the F4. The number of polynomials observed of degree are represented as "degree : number" of section 4.3, explicitly computing the degree drop equations requires solving a system of 9880 linear equations in 3280 unknowns. This takes approximately 64 seconds on a Intel Xeon CPU E7-4820 v4 machine taking a space of approximately 2 Gb. The kernel has a basis of dimension 7n. Using the improved method of section 4.3.1, we solve 9880 linear equations in 1720 variables which takes 128 seconds and recover the intermediate relations.

Attack on Challenge Parameters

For the first challenge parameter, computing a degree 3 truncated Gröbner basis also shows the presence of 3n quadratic equations as seen in Table 4.13. Recovering the intermediate equations involves solving a system of 91881 linear equations over 7138 variables which we were able to solve in ≈ 151 minutes using approximately 36 Gb of memory. In Table 4.14 we represent the behavior of Gröbner basis computation when the intermediate equations are added (represented in the table with header "Pub. Keys + New eqs"). Adding 3 good combinations allows the F4 algorithm to not spend time in recovering such polynomials during Reduction and SymbolicProcessing procedure. In Table 4.14, the tables on the right represent the computation of the Gröbner basis on set of public-keys along with the intermediate equations, which we represent as "Pub. keys + New eqs", while the table on the left represents the Gröbner basis computation only on the public-keys (represented in the table as "Pub. Keys").

A similar attack on the second parameter can be mounted. Even with the Frobenius modifier, the idea is to determine the intermediate quadratic equations at step degree 3. Especially for the case of a 1 = 5, a 2 = 3, we observe 4n quadratic equations (see Table 4.13). Recovering the quadratic equations takes 110 minutes and 32 Gb of memory for solving a system of 82160 linear equations in 6880 variables. The dimension of the basis of the kernel is 168. Experimental timings show that adding these intermediate equations reduces the Gröbner basis computation timings from 15 seconds to 1.5 seconds and we can recover all the linear equations in just a single step of F4 in Magma.

As we have already said, direct Gröbner basis attacks were not possible due to limitation of memory, therefore the actual degree of regularity could for the first and the second challenge parameters could not be determined. However, experimental results for parameter values close to first parameter (see Figure 4.2) show that the expected degree of regularity is 5, which is much smaller than that 8, which was assumed while setting the parameter [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. Therefore, using our technique for all degrees, in the best case, we estimate that the degree of regularity would be improve by 1, taking the complexity of Gröbner basis computation to around 2 76 (with the choice of ω = 3). Choosing a more practical value for the constant ω = 2.37, the Gröbner basis attack complexity is 2 60 . Similar experiments for the second challenge parameter show the estimated degree of regularity is 6, as oppose to 8 [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF]. Therefore, one can estimate that the complexity of the direct Gröbner basis attack to be approximately, 83 6ω ≈ 2 76 (with the choice of ω = 2). As seen for smaller parameters, adding new intermediate relations to the Gröbner basis is expected to reduce the degree of regularity to 5, thus reducing the complexity of the Gröbner basis attack to about 2 63 . For a more practical choice of the constant ω = 2.37, the complexity is about 2 75 , which is still less than the security strength claimed by [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF].

In this case of the second challenge parameter with (a 1 , a 2) = (5, 3), one interesting observation is that the degree of regularity is 3, i.e. adding the Frobenius modifier weakens the EFC scheme to some level, however this demands further research. Experiments for the third challenge parameter were not possible because of memory limitations. However, according to our estimates, computing the kernel requires solving 395010 linear equations in 123536 unknowns.

Experiments on EFC - 3 (6) with n = 20 show that the degree of regularity is 5 while for n = 30, the degree of regularity is at least 6. Therefore, for the third challenge parameter, utilizing such intermediate relations along with the publickeys to compute the Gröbner basis, our estimate for the degree of regularity is 6. Assuming this estimate to be correct, we can estimate the complexity of Gröbner basis computation as n ωD = 59 12 ≈ 2 71 (with the choice of ω = 2). One must still note that with a choice of ω = 2.37, the complexity is 2 83 . This complexity is slightly higher than the current computational limit of 2 80 operations on a classical computer, however, NIST recommends at least 112 bits of security strength [START_REF] Barker | Transitions: Recommendation for transitioning the use of cryptographic algorithms and key lengths[END_REF] for any cryptographic algorithm in practice. Table 4.13 -Degree 3 truncated Gröbner basis computation on EFC - 2 (10) public-keys and EFC F - 2 (8) public-keys with new equations with n = 83 using F4.

Step-degree Pub. Keys 2 2: 156 3 2: 249, 3: 1898 3 3: 8059

Step-degree Pub. Keys + New eqs 2 2: 156 3 3: 1898 3 3: 8059 Table 4.14 -Degree 3 truncated Gröbner basis computation on EFC - 2 (10) public-keys and public-keys with new equations with n = 83 using F4.

Conclusion

In this chapter, we showed that Extension Field Cancellation scheme [START_REF] Szepieniec | Extension field cancellation: A new central trapdoor for multivariate quadratic systems[END_REF] is vulnerable to algebraic attacks using Gröbner basis techniques. The main results include: first an explanation of the fixed degree of regularity for EFC q (0) from its structure, secondly for EFC - q (a) and EFC F - q (a) how we are able to obtain equations of lower degree from the public equations in polynomial time, which when added along with the public equations make the Gröbner basis computation much more efficient as well as reducing the time complexity by a huge factor. Finally we also show that the challenge parameter using hybrid Gröbner basis attack is broken. Thus this scheme has structural weaknesses which can be easily exploited by any adversary to recover secret messages. of all the terms which lie below the Gröbner basis staircase. The plaintext space is a vector space spanned by the terms of T . Decryption involves computing a normal form over the ciphertexts, which removes all the terms in the ideal G , yielding the plaintext message. [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF] extended this idea of a scheme to design a secure and somewhat homomorphic Polly Cracker-like encryption primitive based on noisy ideal hard problems. In the same year, Albrecht et al. proposed a family of closely related problem known as Max-PoSSo which is the problem of finding any vector that satisfies the maximum number of polynomials in the input system [START_REF] Albrecht | Cold boot key recovery by solving polynomial systems with noise[END_REF].

Even though these problems have been proposed for quite some time, not much attention has been paid to them since then. The goal of this chapter, is to have a detailed look at the one common underlying problem of all these family of problems discussed above, which is the problem of solving a noisy polynomial system (PoSSoWN). This is unlike [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF], where the goal was to formalize a particular class of hard problems that are suitable for the design of a Polly Cracker scheme. In addition to it, we also present the current state of the art algorithms that solve this problem. The PoSSoWN problem can be defined as follows Definition 5.1.1 (PoSSoWN). Let F q be a finite field, P = (f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n] m be a system of polynomials and χ be some probability distribution on F q . The problem of PoSSoWN is to find -if any-(s 1 , . . . , s n) ∈ F n q such that for all f i ∈ P , we have f i (s 1 , . . . , s n) = e i , where e i ∈ F q is some error chosen uniformly from the distribution χ.

Hardness of the PoSSoWN Problem

In this section, we investigate the hardness of the PoSSoWN problem. We first consider the PoSSoWN problem in the linear case and relate it to the well established LWE problem [START_REF] Regev | On lattices, learning with errors, random linear codes, and cryptography[END_REF]. Then we deal with the non-linear case of PoSSoWN and relate it to another problem which has been proved to be NP hard.

Notation. We shall write x := a for assigning value a to a variable x, and x ← $ χ for sampling x from a set χ. We also denote F q [x 1 , . . . , x n] as a polynomial ring with n variables (x 1 , . . . , x n) over a finite field F q . F q [x 1 , . . . , x n] ≤d denotes the set of polynomials in the polynomial ring with degree less than or equal to d. Finally, we call an algorithm to PPT if it runs in probabilistic polynomial time.

In complexity theory, to prove the hardness of any mathematical problem, a technique which is very commonly used is reduction. Reduction is an algorithm that allows transformation of a problem to another problem. Game-based formalization of computational problems [START_REF] Bellare | The security of triple encryption and a framework for code-based game-playing proofs[END_REF] is one method which allows us to perform such reductions. Game-based reductions conceptualize an adversary's interaction with a problem as a kind of game. The interaction of these games is highlighted by an advantage that the adversary has in finding the correct outcome of the game. Now, using such games, if one can find an algorithm that transforms one computational problem to another, we can subsequently compute the advantage an adversary has over one problem with respect to another problem.

Hence, a problem 1 is as hard as problem 2, if an adversary against problem 1 has an advantage which is at most that enjoyed by another adversary against problem 2. Therefore, in this section, we shall use this approach to describe the hardness of PoSSoWN. Every game includes Initialize and Finalize procedures. The game also has specifications of procedures for responding to an adversary's other oracle queries. For any adversary A, the Initialize procedure runs and are passed to A. Other procedures answer to the oracle queries of A. Upon termination of A, the output is passed to Finalize, which returns the outcome y of the game. This is denoted by Game A =⇒ y.

Let us now look at the hardness of the problem of solving a system of noisy equations. Using Definition 5.1.1, we understand the PoSSoWN game as follows:

Game 5.2.1. The problem of solving a system of equations with noise can be understood through a game PoSSoWN Fq,d,χ (λ) as shown in Figure 5.1. The advantage of a PPT algorithm A in solving the PoSSoWN problem is defined by

Adv possown

Fq,d,χ,A (λ) := P r PoSSoWN A Fq,d,χ (λ) =⇒ T rue

Initialize(1 λ) begin n ← n(λ) s ← $ F n q ; return (1 λ , n); end Sample() begin f ← $ Fq[x 1 , . . . , xn] ≤d ; e ← $ χ f ′ ← f (s) + e; return (f ′ , f); end Finalize(s ′) begin return (s ′ = s) end Figure 5.1 -Game PoSSoWN

Hardness of PoSSoWN: The Linear Case

We begin with an instance of PoSSoWN, where we sample elements from F q [x 1 , . . . , x n] of degree 1. We also recall the LWE problem, which we defined in Definition 3.3.1, and formalize it into an LWE game. Game 5.2.2. LWE is defined through a game LWE n,q,χ as shown in Figure 5.2. The advantage of a PPT adversary A in solving the LWE problem is defined by Adv lwe n,q,χ,A (λ) := P r LWE A n,q,χ (λ) =⇒ T rue

Initialize(1 λ) begin n ← n(λ) s ← $ Z n q ; return (1 λ , n); end Sample() begin a ← $ Z n q ; e ← $ χ b ← i a i s i + e; return (a, b); end Finalize(s ′) begin return (s ′ = s) end Figure 5.2 -Game LWE n,q,χ
From the definition of LWE (see definition 3.3.1), it is easy to see that there is an equivalence of PoSSoWN when we consider the input system to be a system of linear equations. We formalize this in the following lemma.

Lemma 5.2.3 (LWE hard =⇒ PoSSoWN hard for d = 1). Let q be a prime. Then for any PPT adversary A against the PoSSoWN problem, there exists a PPT adversary B against the LWE problem such that

Adv possown

Fq,1,χ,A (λ) = Adv lwe n,q,χ,B (λ) Proof. We shall construct an adversary B against the LWE problem based on an adversary A against the PoSSoWN problem for b = 1. Algorithm B initializes A with λ. When A calls its Sample procedure, B queries its own Sample oracle to obtain (a, b) ∈ Z n q × Z q where a = (a 1 , . . . , a n) ∈ Z n q . It returns i a i x ib to A. This is a valid PoSSoWN sample of degree 1. When A calls Finalize on s, B also calls Finalize on s = (s 1 , . . . , s n). B succeeds whenever A succeeds. We see that for a s from PoSSoWN, i a i x ib gives i a i s i = e, which is a valid LWE sample (a, i a i s i + e).

Hardness of PoSSoWN: The Non-Linear Case

For degree d > 1, the hardness of PoSSoWN problem can be related to an ideal-based hard problem, the Gröbner basis with Noise (GBN) problem. The GBN problem was proposed by Albrecht et al. in [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF]. To formally define the problem, we use a few algorithms which we define as follows. The first algorithm is the algorithm to generate a reduced Gröbner basis which we derive directly from Definition 2.3.11. We denote this algorithm as ReduceGB [AFFP11, Algorithm 1] and is represented here in Algorithm 7. Using this algorithm, we proceed to describe another algorithm which generates a Gröbner basis given a polynomial ring defined over a finite field with prime characteristic. We denote this algorithm as GBGen(1 λ , F q [x 1 , . . . , x n], d, ≻) [AFFP11, Algorithm 2] and is described in Algorithm 8. The algorithm takes in a polynomial ring F q [x 1 , . . . , x n] and a degree bound d and outputs a reduced Gröbner basis [AFFP11, Lemma 6].

Using the algorithm GBGen, we are now ready to formally describe the GBN problem.

Game 5.2.4. [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF] The Gröbner basis with noise problem is defined through game GBN Fq,n,d,χ,GBGen(•) as shown in Figure 5.3. The advantage of a PPT adversary A in solving the GBN problem is

Adv gbn

Fq,n,d,χ,GBGen,A (λ) := P r GBN A Fq,n,d,χ,GBGen(•) (λ) =⇒ T rue

Initialize(1 λ , Fq[x 1 , . . . , xn], d) begin G ← $ GbGen(1 λ , Fq[x], d); return (1 λ , Fq[x]); end Sample() begin f ← $ Fq[x] ≤b ; e ← $ χ f ′ ← f -(f mod G) + e; return f ′ ; end Finalize(G ′) begin return (G ′ = G) end Figure 5.3 -Game GBN Algorithm 7 ReduceGB(G) 1: G ← {} 2: while G = ∅ do 3:
f ← smallest element of G wrt some ordering 4:

G ← G\{f } ; 5: if LM(f) / ∈ LM(G) then 6: G ← Ḡ ∪ {LC(f) -1 • f } ; 7:
end if 8: end while

9: return [h mod G\{h} | h ∈ G]
The GBN problem has been shown to be at least as hard as the well established LWE problem [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF]Lemma 11,12]. Now, we proceed with the GBN and relate the PoSSOWN problem to it, which we formalize in the following lemma.

Lemma 5.2.5 (GBN hard =⇒ PoSSoWN hard). Let F q be a finite field. Then for any PPT adversary A against the PoSSoWN problem, there exists a PPT adversary B against the GBN problem such that

Adv possown

Fq,d,χ,A (λ) ≤ Adv gbn Fq,n,d,χ,GBGen,B (λ)

Proof. Let us construct an adversary B for the PoSSoWN problem from an adversary A against the GBN problem. Algorithm A initializes B with s = (s 1 , . . . , s n) ∈ F n q such that for A, the Gröbner basis is initialized as {x 1s 1 , . . . , x ns n } ∈ F q [x 1 , . . . , x n]. When B calls Sample, A queries its own procedure Sample to get Algorithm 8 GBGen(1 λ , F q [x 1 , . . . , x n], d, ≻)

c ij ← F q ; 9:
g i ← g i + c ij m j ; 10: end for 11: return ReduceGB({g 0 , . . . , g n-1 })

f ′ ∈ F q [x 1 , . . . , x n]. B then returns (f -(f mod G), f ′ (s))
to A. This is a valid PoSSoWN sample. When A calls Finalize on some s ′ , B calls its own Finalize procedure on the basis G ′ = {x 1s ′ 1 , . . . , x ns ′ n }. From the previous lemma, we see that there is a polynomial time reduction from the GBN problem to the PoSSoWN problem. Therefore, any algorithm which can solve the GBN problem, can be transformed into an algorithm to solve the PoSSoWN. We can also demonstrate that if one can solve some instances of the PoSSoWN problem, then there exists an algorithm which solves all instances of PoSSoWN. This is generally referred to as the average-case to worst-case reduction for a problem and for PoSSoWN this has been formalized in the following lemma. Lemma 5.2.6 (Average-case to Worst-case reduction for PoSSoWN q). Let A be a PPT adversary against PoSSoWN Fq,d,A,χ that is successful for a fixed polynomial fraction of secrets in F n q with overwhelming probability. Then there exists a PPT adversary B that solves PoSSoWN Fq,d,B,χ on all possible secrets over F n q with sufficiently high confidence. More precisely, provided we have Adv possown Fq,d,χ,A > 1/p(λ) for some polynomial p, then Adv possown Fq,d,χ,B > (1/p -1/q n .) Proof. This proof is very similar to the proof of [AFFP11, Lemma 10]. The idea of the proof is to find a class of linear transformations that allow randomization a specific value of a secret s. We can denote a reduced Gröbner basis G s with respect to the fixed secret value s ∈ F n q that is of the form G s = {x 1s 1 , . . . , x ns n } ∈ F q [x 1 , . . . , x n] where s = (s 1 , . . . , s n) ∈ F n q . We denote the degree d truncated ideal generated by G s as I s,≤d ⊂ F q [x 1 , . . . , x n].

Let χ be an error distribution which samples from F q . We represent the erroneous ideal J s,χ = I s,≤d + χ. The implication of this notation is that any choice of polynomial g ∈ J s can be written as g = g ′ + e where g ′ ∈ I s and e ← $ χ. We consider a linear transformation L t : F q [x 1 , . . . , x n] → F q [x 1 , . . . , x n] such that L t (f) = f (t) where t = [x 1t 1 , . . . , x nt n] with t i ∈ F q . Thus the image of the ideal I s under L t is denoted by I s+t , which is also the ideal generated by the basis G s+t = [x 1s 1t 1 , . . . , x ns nt n]. Clearly, there is a one to one correspondence between the ideal I s and I s+t and the variety of the ideal I s+t contains only s + t ∈ F n q . Thus, G s+t is a reduced Gröbner basis for the ideal I s+t . Now, for any error distribution χ, the image of the map J s,χ under the transformation L t is J s+t,χ . We use A a polynomial number of times on L t (J s), each with freshly chosen t ← $ F n q . Therefore, the adversary A will output the correct s + t at least once with overwhelming probability, from which we can recover s. Now, this verification process is a PPT process. Therefore the success probability of the algorithm B is either > 1/p or exactly equal to 1/q n (which is the success probability of the adversary randomly choosing the correct secret value). Hence, the advantage of B is at least (1/p -1/q n).

Hence, given any PPT adversarial algorithm A, which solves the PoSSoWN problem only over a polynomial fraction of secrets, one can always find an PPT adversary B that solve the PoSSoWN problem for any the possible values of the secret over F q .

It is not hard to see that the PoSSo problem described in Chapter 2 is a very special instance of the PoSSoWN problem, where the choice of the error for each polynomial in the system of equations is zero. Since, PoSSo is already proven to be a NP-Complete [START_REF] Michael | Computers and intractability[END_REF], it is not hard to see conclude that PoSSoWN is at least as hard as PoSSo. To prove this more formally, we first present the PoSSo problem (see Section 2.1) as a game based problem like the PoSSoWN problem. Proof. As previously mentioned, the PoSSo is a special case of PoSSoWN where all the errors are chosen to be specifically 0. When the noise is chosen from a uniform distribution, the probability of choosing zero error is same as choosing any other error. Thus, any algorithm which solves the PoSSoWN problem, can solve any instance of PoSSo and there is a polynomial time reduction between these two algorithms. Since PoSSo is NP-Hard, any instance of PoSSoWN with uniform noise is also NP-Hard.

Initialize(1 λ) begin n ← n(λ) s ← $ F n q ; return (1 λ , n); end Sample() begin f ← $ Fq[x 1 , . . . , xn] ≤d ; f ′ ← f (s); return (f ′ , f); end Finalize(s ′) begin return (s ′ = s) end
In the next section, we shall look at some of the algorithms which can solve this PoSSoWN problem.

Algorithms to Solve PoSSoWN

In the following sections, we discuss the possible methods of solving this problem and thus provide the hardness results, which relates to our problem.

Arora-Ge Gröbner Basis Method

An algorithm to solve the LWE problem with small Gaussian noise was proposed by Sanjeev Arora and Rong Ge in [START_REF] Arora | New algorithms for learning in presence of errors[END_REF]. They rely on constructing a higher degree univariate polynomial from a given public key equation, such that it takes into consideration all the possible values of error the noisy public key could have, irrespective of the noise distribution. Consider an LWE instance, where the errors are chosen uniformly from a distribution Ψ k , which has a range [-k, k] of integers. Additionally, the value of k ∈ Z is such that 2k + 1 < q, i.e., the error is always an integer in the range (-(q -1)/2, (q -1)/2), where q is a prime. The algorithm constructs the following polynomial P ∈ Z q [x 1 , . . . , x n] such that P (η) = 0, where η is the error.

P (η) = η k j=1 (η -j)(η + j).
This polynomial P is of degree 2k + 1. Recall from Section 3.3, an LWE instance could be written as a system of equations of the form b = a•z+e where a, b ∈ F n q , e ∈ Ψ k and z is an n-dimensional variable vector. So substituting the error variable η with a • z + b in the polynomial P (η), we obtain a degree 2k + 1 polynomial in the variables z = (z 1 , z n). Linearization of the polynomial produces a linear equation from P but over N = n+(2k+1) n new variables. If we query the LWE oracle ≈ O(N log q) number of times and apply this above described technique, we obtain a system of linear equations, which one can solve with Gaussian elimination with some high probability. We can apply a similar approach to solve PoSSoWN and thus also holds true for a system of noisy quadratic equations.

An instance of PoSSoWN q involves equations which are of the form f ib i = f if i (s)e i ∈ F q [x 1 , . . . , x n], where f i ∈ F q [x 1 , . . . , x n], s ∈ F n q and e i ∈ Ψ k is an error.

Alternatively, we can represent the error (η) by the following error polynomial:

η = b -f (x), (5.1)
where x is vector of variables (x 1 , . . . , x n). We construct the polynomial P (η) ∈ F q [x 1 , . . . , x n] such that

P (η) = η k j=1 (η -j)(η + j).
(5.2)

An instance of PoSSoWN comprises of a system F ∈ F m q [x 1 , . . . , x n] of m quadratic noisy equations. Therefore, corresponding to each polynomial f i ∈ F , we can construct a polynomial P i ∈ F q [x 1 , . . . , x n] of degree 4k + 2. It is quite intuitive to see that the polynomial P i equals zero when x = s. In addition to our system of polynomials 6.6, we have another set of n equations of the form

(x 1 + k) • • • (x 1 + 1)x 1 (x 1 -1) • • • (x 1 -k) = 0, (x 2 + k) • • • (x 2 + 1)x 2 (x 2 -1) • • • (x 2 -k) = 0, . . . (x n + k) • • • (x n + 1)x n (x n -1) • • • (x n -k) = 0.
So if we are able to find a Gröbner basis of this system of equations along with system P i (x) = 0, then we will recover s.

Recall from Chapter 2, Gröbner basis algorithms such as F4 and F5 are techniques to recover solutions to a system of equations. The complexity of F5 algorithm [START_REF] Charles | A new efficient algorithm for computing gröbner bases without reduction to zero (f 5)[END_REF] over a system of m polynomials in F q is upper bounded by

O m ′ D reg n + D reg D reg ω ,
where D reg is the degree of regularity of P 1 , P 2 , ...P m ′ and 2 ≤ ω < 3 is the linear algebra constant. Before, we proceed, we present some assumptions, which are important for the results of this section.

Assumption 5.3.1. For our problem, the instance of PoSSoWN q consists of a system of noisy quadratic polynomials denoted by F = (f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n] where each f i are of the form

f (x 1 , . . . , x n) = 1≤i,j≤n a ij x i x j + 1≤i≤n b i x i + e,
where a ij , b i ∈ F q and e ← $ Ψ k .

Assumption 5.3.2. Let (G 1 , G 2 , ij G 1 ij,k x i x j + i G 2 k x i + e k) = (G 1 , G 2 , c) ∈ F n 2 ×m q × F n×m q
× F m q be such that G 1 , G 2 are sampled uniformly at random and e is chosen uniformly from the distribution Ψ k . Let P (x) be the polynomial as defined in Equation (5.2). We define

P 1 = P (c 1 - ij G 1 ij,1 x i x j - i G 2 1 x i) = 0 . . . P m = P (c m - ij G 1 ij,m x i x j - i G 2m x i) = 0.
It holds that P 1 , . . . , P m is semi-regular (See Definition 2.3.35).

Using Assumption 5.3.2, we consider the system of polynomials {P 1 . . . , P m } as semi-regular. Therefore, its Hilbert polynomial [START_REF] David A Cox | Using algebraic geometry[END_REF] is given by

H(z) = (1 -z 2k+1) n (1 -z d) m (1 -z) n , (5.3)
where d = 4k + 2 and m is the number of available equations and n is the number of variables. The degree of regularity D reg is given by the index of the first nonpositive coefficient in the expansion of the Hilbert polynomial (Equation 5.3).

Note 5.3.1. The results of complexity in this section rely majorly on the assumption that the system of equations occurring from the Arora-Ge style construction are semi-regular. The semi-regularity assumption essentially states that solving this system of polynomials is as hard as solving a random system of equations. If this were to the contrary, one might deduce that the degree of regularity bound provided by the Hilbert series is not tight, and hence a sharper bound could be found. This would imply that the complexity analysis could be improved and thus possibly might lead towards a classical algorithm for solving the PoSSoWN problem that is not exponential to the very least.

Arora-Ge

Method with Linearization (For q = 2 and m = O(n 2)

In this subsection we consider the particular sub-case of the PoSSoWN q when q = 2 and the number of samples available m = O(n 2). Given a system of ǫn 2 quadratic polynomials in n variables, we can use linearization techniques in conjunction with the above mentioned Arora-Ge technique to solve PoSSoWN 2 . The product P (η) = η(η -1) produces an equation of degree 4. We have ǫn 2 such equations. Using linearization, we can produce a system of ǫn 2 quadratic equations in n 2 /2 variables y ij = x i x j . Additionally, a monomial x a x b x c x d be written in three possible manner.

(x a x b)(x c x d) = (x a x c)(x b x d) = (x a x d)(x b x c) =
(ǫn 2 + n 4 /12) ≥ ((1/2 -ǫ)n 2) 2 /2.
If this previous condition holds true, then the system of equations originating from the Arora-Ge method can be solved by linearization, however, in the other case, the previously proposed method from Section 5.3.1 of using Gröbner basis techniques still holds.

Exhaustive Search

We also consider the class of combinatorial attacks on the PoSSoWN problem. Such attacks can be mounted on either the secret directly, or could be used to recover the noise in order to recover the PoSSo instance from the PoSSoWN instance. We present the two algorithms as follows.

The first type of exhaustive search is over all the possible values of the secret s ∈ F n q . Since s is a vector with dimension n, hence in the worst-case scenario, the attacker has to compute q n possible solutions. For an instance of PoSSo, evaluating the public-key polynomials over q n candidate solutions and comparing with the ciphertexts is the method of pruning. However, for the case of PoSSoWN, without the knowledge of the error, such an attack is not possible. This can be used in conjunction with other attacks such as the previously mentioned Arora-Ge approach (see Section 5.3.1) that proposes a method of disregarding the error by constructing a higher degree polynomial. The complexity of such an attack depends on the degree of the polynomial P as defined in Equation (5.2). In particular, from the complexity results of enumerating the common zeros of a system of multivariate polynomials over F 2 [x 1 , . . . , x n] [BCC + 10], the expected number of operations is 4(4k + 2) log 2 n • 2 n where k is the upper bound on the magnitude of the error.

Another possible way to look at a system of m noisy quadratic equations over n variables is to consider it as a system of m equations over n + m variables, i.e counting the errors as unknown variables. Thus enumerating the errors with exhaustive search, the problem reduces to just solving a system of m quadratic equations in n variables. Recall from Section 2.2, [LPT + 17] introduces such a method that allows us to solve the system of equations. Once the error values have been recovered, substituting them back into the system of noisy polynomials yields an instance of PoSSo. Now [LPT + 17] states the time complexity is

O q n • log q 2e -n
, where e = 2.718 . . . the Napier constant, for finding the satisfiability of a system of equations where the solutions are in F q . So the total time complexity of performing an exhaustive search over the error and then the proposed algorithm of [LPT + 17] is therefore

k m • O q n • log q 2e -n
.

In this previous approach, instead of performing exhaustive search or a fast brute force attack of [LPT + 17], one can use Gröbner basis to solve the system of equations. Using F5 [START_REF] Charles | A new efficient algorithm for computing gröbner bases without reduction to zero (f 5)[END_REF], the expected number of operations is upper bounded by

O m • D reg n + D reg D reg ω .
Hence, the total complexity including the exhaustive search over the errors is

k m • m • D reg n + D reg D reg ω ,
where D reg is the degree of regularity over the system of m quadratic equations in n variables (Refer to Proposition 2.3.36 from Section 2.3.3).

Max-PoSSo Gröbner Basis Attack

In this section, we propose an algorithm which solves an instance of the Max-PoSSo problem (see Section 5.1), and whose solution can be turned into a solution for an instance PoSSoWN problem. Previously, we performed a Gröbner basis attack on the input system of equations which were erroneous. Without loss of generality, we can assume that only a certain fraction of the equations is non-noisy. So if we select only such non-noisy equations and then solve the Gröbner basis just over these non noisy equations gives us a solution (or a set of solutions) to the system of equations.

Suppose we are given a system of m equations in n variables. Let us assume that only t < m equations are error-free. Therefore, one can perform Gröbner basis computation over this subsystem of t quadratic equations over n variables, whose complexity is upper bounded by

tD reg n + D reg D reg ω
Since, we perform this for a particular correct choice of t equations, the number of expected operations for the entire attack is upper bounded by

m t • tD reg n + D reg D reg ω
Furthermore, one can also perform an exhaustive search for this fraction of t equations and then compute the Gröbner basis of the corresponding subsystem. This formalization of the problem differs from the attack presented in the previous Section 5.3.2. It should be noted that, the degree of regularity of the two systems in consideration vary since in the previous approach, the number of equations m > n, while now we consider only a fraction t of these m polynomials.

Conclusion

In this chapter, we provide the first complete state-of-the-art of the PoSSoWN problem, the noisy variant of the well known NP-Hard PoSSo problem. We show that the hardness of the PoSSoWN can be reduced to some well known hard problems. We also define the decision and the search variants of the problem and show that there is an equivalence between these variants when the number of samples is bounded by some polynomial factor of the number of variables. Additionally, we provide a survey of all known algorithms which solve the PoSSoWN problem which include some techniques to solve the LWE problem modified as algorithms for PoSSoWN. We conclude that the PoSSoWN problem is a good candidate to construct multivariate cryptosystems that are guaranteed post-quantum security via the hardness of the hard problem.

Chapter 6 CFPKM: A Submission to NIST

Abstract

The problem of solving a system of noisy polynomial equations has been shown to be a NP-Hard problem. As a submission to the NIST Post-quantum standardization completion, we designed a new multivariate key encapsulation scheme based on this hard problem. We provided a new design which takes use of errors in polynomials in order to blind the information passed over open channels. We describe the scheme along with security analysis and complete analysis of the potential algebraic attacks on it along with a proposal of two security parameters satisfying various security strengths. Finally we show why because of structural defect, the scheme was broken.

Background

In Chapter 3, we discussed Public-key cryptosystems in great detail. However, public-key algorithms are generally very slow as compared to symmetric cryptographic algorithms, one of the main reasons being a large key size resulting in a larger requirement of computation power. Therefore, it is not efficient to use public-key algorithms when Bob wants to send large amounts of data. But if public-key encryption techniques are used to exchange a shared key between Alice and Bob, by using a fast symmetric mechanism with the shared key, Bob can send large amounts of data to Alice much more efficiently.

However, as mentioned previously, symmetric cryptosystems suffer from an "issue". The parties need to exchange the secret-key before the cryptosystem is ready for use. A key-exchange mechanism provides a method to do this. A keyexchange scheme works as follows: two parties exchange a sequence of information, without exchanging the actual secret key. The key-exchange is also equipped with a reconciliation mechanism such that both users can agree to the same key.

Previously in Chapter 1, we also talked about another possible way a keyexchange can be done: via public-key algorithms. These types of public-key algorithms are also commonly known as Key Encapsulation Mechanisms (KEM). It is not hard to see that using such techniques, one can convert any encryptiondecryption public-key cryptosystem into a key encapsulation scheme.

Recently many key-exchange schemes have been published, most famously by Ding et. al in [START_REF] Ding | A simple provably secure key exchange scheme based on the learning with errors problem[END_REF], Chris Peikert in [START_REF] Peikert | Lattice cryptography for the internet[END_REF] and Costello et al [BCD + 16] to name a few. Peikert in his paper [START_REF] Peikert | Lattice cryptography for the internet[END_REF] detailed the construction of a passively secure KEM based on the key exchange using an innovative key reconciliation mechanism.

As already mentioned, the NIST PQC standardization process involved the call of proposals for post-quantum key exchange schemes. Amongst all the submissions, the majority of the key-exchange cryptosystems that have been proposed are based on the hard problem of LWE, which are lattice-based. In this chapter, we present a KEM, that is based on the hard problem of PoSSoWN, which we discussed in great detail in Chapter 5.

Passively Secure KEM

In this section we construct a KEM, based on problem of solving a system of polynomials with error, i.e PoSSoWN. First we describe the design an un-authenticated key exchange protocol.

Parameter Space

The scheme involves the following parameters :

1. q, a large positive prime power, which defines the finite field F q for the Polynomial Ring P, where we define our system of equations. It is taken of the form of 2 k for some k ∈ Z + , 2. Z q defines the field of integers modulus q, 3. n, the number of variables which defines the Polynomial Ring P, 4. m, number of equations in the system of equations, 5. s, is an integer which defines the range of values from where the secret and errors are chosen uniformly, 6. B, is the number of most significant bits which are chosen to create a session key,

Construction

Secret-key and Public-key

The secret-key is a concatenation of a random seed value and a secret vector sa ∈ [0, s] n chosen randomly from a uniform distribution U n s . The seed is used to generate a sequence of coefficients over F q from the range [0, q α] which are used to build a system of generic quadratic polynomials f ′ 1 , . . . , f ′ m ∈ F q [x 1 , . . . , x n]. The secret-key has the following structure, SK = (seed || sa).

The public-key in CPFKM is a concatenation of the same seed value and a vector b1 ∈ F m q . This vector b1 is result of evaluating the set of quadratic polynomials (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n] over the chosen secret vector sa, where each f i is given by the following

f i (x 1 , . . . , x n) := f ′ i (x 1 , . . . , x n) + e i , e i ∈ 0, s .
Therefore, each i th component of the vector is defined as b1 i = f i (sa). The publickey has the following structure PK = (seed || b1).

The Algorithm

The Key Encapsulation is defined by three main algorithms namely KeyGen, Encaps and Decaps. The protocol has been has been summarized in Figure 6.1.

KeyPair Generation

Function : Keygen()

Code Function : crpto_kem_keypair(PK,SK).

The public-key and the secret-key are generated as a part of the KeypairGen function. The function generates a random value namely, seed. It makes use of another internal function called PolGen which, using the input of seed, generates a system of m multivariate quadratic polynomials

(f 1 , . . . , f m) ∈ F q [x 1 , . . . , x n].
The seed, which is input to this function, is further input to the random function which pseudo-randomly generates the coefficients.

This PolGen function has been summarized below

• For each of the m quadratic polynomial f i create a structure of three vectors QD ∈ Z n 2 q α , L ∈ Z n q α , C ∈ Z q α . The structure holds the coefficients of the Alice Bob KeyGen() : seed • using a random function and the seed, populate these vectors

$ ← -{0, 1} SEEDSIZE f ← PolGen(seed) sa $ ← -U n s e1 $ ← -U m s b1 ← f (sa) + e1 PK ← pack p k(seed, b1) SK ← pack s k(seed, sa) PK ------------→ ∈Z m×1 q ×{0,1} SEEDSIZE Encaps(): seed, b1 ← unpack_pk(PK) f ← PolGen(seed) sb $ ← -U n s e2 $ ← -U m s b2 ← f (sb) + e2 e3 $ ← -U m s b3 ← f (sb) ⊙ b1 + e3 c ← CrossRound(b3, B) Key B ← Rounding(b3, B) ct ← c||b2 ct ← -------- ∈Z m×1 q ×Z m×1 2 Decaps(): b2, c ← unpack c t(ct) seed, sa ← unpack s k(SK) f ← PolGen(seed) Key A ← Red(f (sa) ⊙ b2, c, B)
• return f i Once the PolGen function creates the polynomials, the KeyGen algorithm randomly generates a secret vector sa of dimension n from the uniform distribution U n s . An error vector e1 ∈ U m s is also generated. Each of the polynomials f i , from the previously generated system of quadratic polynomials using PolGen, are evaluated over the secret vector sa and noise is added to them to generate another vector b1 where b1 i = f i (sa) + e1 i mod q, for i th component of the vector.

Finally the Public Key PK is constructed by concatenating the seed along with this vector b1 using the pack_pk function. The Secret Key SK is formed by concatenating seed and the secret vector sa using the pack_sk function. The function then outputs the PK and SK.

Key Encapsulation

Function : Encaps()

Code Function : crypto_kem_enc()

The encapsulation process encodes the shared secret using the public-key of Alice.

It takes use of some extra functions which have been defined below.

1. CrossRound(w, B): This function takes in an integer w ∈ [0, q) and given B, outputs the (B + 1)'th most significant bit of log q-bit binary representation of w, which has been referred to as the crossround bit.

CrossRound(w, B) = ⌊w • 2 -B+1 ⌋ mod 2.
The function can also be extended to a vector of integers w ∈ [0, q) m . Thus on an input of a vector, CrossRound works independently on each component of vector and outputs another vector carrying the crossround bit.

2. Rounding(w, B): This function takes in an integer w ∈ Z + and given B, outputs the B most significant bits of log q-bit binary representation of (w + 2 B-1) mod q , where B = ⌈log q⌉ -B.

Rounding(w, B) = ⌊((w + 2 B-1) mod q) • 2 -B ⌋,
where ⌊•⌋ is the Floor function. Similar to the previous function, this can also be extended to a vector of integers w ∈ Z m + . Thus on an input of a vector, Rounding works independently on each component of vector and outputs another vector carrying the Rounding value of each component. Thus the function for Key encapsulation follows the following procedure for creation and encapsulation of the shared key.

1. Encaps() takes in the PK and then uses the unpack_pk process to get b 1 and the seed.

2. Uses the seed and the PolGen function to generate the same system of quadratic polynomials (f 1 , . . . , f m) ∈ F m q [x 1 , . . . , x n].

Randomly sample vectors sb

← U n s , e2 ← U m s and e3 ← U m s .
4. Computes b2 i = (f i (sb) + e2 i) mod q for each i th component of the vector.

5. Compute b3 i = f i (sb) ⊙ b1 i + e3 i for each of the i th component.

6. Uses the CrossRound(b3, B) function over the vector b3 to output a hint vector c ∈ Z m 2 .

7. The key for Bob, Key Bob is derived using the Rounding(b3, B) function thus giving the B most significant bits of each of the i th component of b3.

8. Returns ct = pack_ct(b2, c) and SS = Key Bob .

Key Decapsulation

Function : Decaps()

Code function : crypto_kem_dec(SS,ct,SK)

Alice does the decapsulation process, which uses the ciphertext ct from Bob and Alice's secret-key SK, to derive the shared secret-key SS. The kem_dec function calls another function called Red. The function is described below.

Red(w, c, B): On input of vectors w ∈ Z m + and c ∈ Z m 2 , Red(w, c, B) outputs Rounding(v, B), where v is the closest element to w such that CrossRound(v, B) = c. This function takes in w = f (sa) ⊙ b2, and follows the procedure below for each i th component of the vector independently,

• checks if CrossRound(w i mod q, B) is equal to c i or not. If its true, then it returns Rounding(w i , B).

• If the value is false, then it adds 2 B-2 -1 to w i and then checks if CrossRound(w i + 2 B-2 -1 mod q, B) is equal to c i or not. If true then returns Rounding(w i + 2 B-2 -1, B)

• If still false, then subtracts 2 B-2 -1 from w i and checks if CrossRound(w i -2 B-2 + 1 mod q, B) is equal to c i or not. If true then returns Rounding(w i -2 B-2 + 1, B).

• If still false, then it returns 0 .

Overall decapsulation function follows the steps below 1. Uses unpack_sk(SK) to get the secret vector sa and seed used by Alice earlier to generate her public-key PK.

2. Unpacks the ciphertext ct using unpack_ct, to get b2 and the hint vector c

3. Use the seed to generate the same system of polynomials f i .

4. Computes f i (sa) ⊙ b2 i for each ith component.

5. Calls the Red function on the input of f (sa) ⊙ b2, the hint vector c and B, the number of bits over which the key reconciliation has been agreed upon.

The Red function outputs SS= Key Alice .

6. Returns Key Alice .

Correctness

We consider a large modulus q as a power of 2. For a choice of 1 ≤ B < log q -1 let, B = log q -B . We define the following terms just for purpose of our proof.

Definition 6.2.1 (Interval). A set of 2 B consecutive positive integers which is represented as

[i • 2 B , (i + 1) • 2 B -1] for i = 0 to ∞. Definition 6.2.2 (Sub-interval). A set of 2 B-1 consecutive positive integers which is represented as [i • 2 B-1 , (i + 1) • 2 B-1 -1] for i = 0 to ∞.
Thus an interval has positive integers with the same most significant bits except the B least significant bits in their binary representation, whereas a sub-interval has positive integers with the same most significant bits except for the B -1 least significant bits. Thus, a sub-interval splits up an interval equally according to their Bth least significant bit.

Let us denote a simple modulus map

h : Z + → [0, q -1] as h(v) = v mod q.
The idea of this modulus map can also be extended to a set of integers. Therefore, for any set of integers can be mapped to a set of integers in the range [0, q] with the h map. Lemma 6.2.3. Suppose we have a large modulus q being a power of 2. With the definition of the modulus map as above, a sub-interval I ∈ Z + maps to a subinterval in [0, q -1], i.e. h(I) ∈ [0, q -1] is another sub-interval.

Proof. Now we have q = 2 k , such that k is large enough, then q mod 2 B-1 = 0. Thus it is a starting value/point of some sub-interval. So for any sub-interval

I = [i • 2 B-1 , (i + 1) • 2 B-1 -1], h(I) = [i • 2 B-1 mod q, ((i + 1) • 2 B-1 -1) mod q] = [i • 2 B-1 mod 2 k , ((i + 1) • 2 B-1 -1) mod 2 k] = [i • 2 B-1 mod (2 k-B+1 • 2 B-1), ((i + 1) • 2 B-1 -1) mod (2 k-B+1 • 2 B-1)] = [(i mod 2 k-B+1) • 2 B-1 , (((i + 1) mod 2 k-B+1) • 2 B-1 -1) mod 2 k] = [(i mod 2 k-B+1) • 2 B-1 , ((i mod 2 k-B+1 + 1) • 2 B-1 -1) mod 2 k] = [j • 2 B-1 , ((j + 1) • 2 B-1 -1) mod 2 k] Now j < 2 k-B+1 , this implies that (j + 1) • 2 B-1 ≤ 2 k , which means that (j + 1) • 2 B-1 -1 < 2 k . Hence we can write h(I) = [j • 2 B-1 , (j + 1) • 2 B-1 -1],
where j = (i mod 2 k-B+1) is an integer. We see that h(I) is also has a form of an sub-interval. Thus any sub-interval ∈ Z + is mapped to some sub-interval

I ′ = h(I) ⊂ [0, q -1].
Assumption 6.2.4. We assume that any integer in [0, q -1] has a binary representation in log q bits. Lemma 6.2.5. For a large modulus q = 2 k , when two positive integers v and w lie in the same sub-interval, their crossround bits are same, while when in adjacent intervals, then their crossround bits are different.

Proof. Let's assume they lie in the same sub-interval I, then

v, w ∈ I = [i • 2 B-1 , (i + 1) • 2 B-1 -1]
for some particular value of i. From the definition of the mapping h, we see that v mod q ∈ h(I) and w mod q ∈ h(I), i.e. they are in the same sub-interval h(I). This implies that the Bth least significant bit of v mod q and w mod q are the same, since in an sub-interval all the bits except the B -1 least significant bits are same for all integers in the sub-interval (Definition 6.2.2). And from the definition of the CrossRound function, this Bth least significant bit is the crossround bit. Hence when both v and w are in the same sub-interval, their crossround bits are equal. Now let v and w lie in two adjacent sub-intervals. We denote the two subintervals as

v ∈ I 1 = [i • 2 B-1 , (i + 1) • 2 B-1 -1] and w ∈ I 2 = [(i + 1) • 2 B-1 , (i + 2) • 2 B-1 -1] for some i. Then I 1 maps onto some sub-interval I ′ 1 = h(I 1) ⊂ [0, q -1] and I 2 onto I ′ 2 = h(I 2) ⊂ [0, q -1]. Here I ′ 1 = h(I 1) = [j • 2 B-1 , (j + 1) • 2 B-1 -1] I ′ 2 = h(I 2) = [((j + 1) mod 2 k-B+1) • 2 B-1 , ((j + 2) mod 2 k-B+1) • 2 B-1 -1] where j = (i mod 2 k-B+1). As j = ((j + 1) mod 2 k-B+1), hence I ′ 1 = I ′ 2 ,
i.e. they do not map on to the same sub-interval in [0, q -1]. It is also important to note that as h is just a simple modulus map and the modulus q is a power of 2, so for any v ∈ Z + , h(v) is the log q least significant bits of binary representation of v. Hence there is no change in the Bth least significant bit after the modulo operation.

As I 1 and I 2 are two adjacent sub-intervals, they differ by their Bth least significant bit. This implies that h(I 1) and h(I 2) have different Bth least significant bit, as the mapping does not change the log q least significant bits of any integer in I 1 or I 2 . Now v mod q ∈ h(I 1) and w mod q ∈ h(I 2). So their crossround bits, which is the Bth least significant bit are different.

Thus now to prove the correctness of the key reconciliation algorithm, we propose the following Theorem. Theorem 6.2.6. Let the choice of a large modulus q which is a power of 2. Let us represent for any ith component of the vectors b3 and f (sa) • b2 as v = b3 i ∈ Z + and w = f i (sa) • b2 i ∈ Z + . The above Key exchange protocol is correct with a high probability i.e. K Alice = K Bob when for all i components of the vectors of dimension m, w

∈ (v ′ -2 B-2 -1, v] ∪ [v, v ′′ + 2 B-2 + 1) where v ′ = ⌊v • 2 -B+1 ⌋ • 2 B-1 , v ′′ = v ′ + 2
= v ∈ Z + and f 1 (sa) • b2 1 = w ∈ Z + .
Consider the sub-intervals I 1 and I 2 such that v ∈ I 1 and w ∈ I 2 .

1. Case 1 : When v and w lie in the same sub-interval,i.e. I 1 = I 2 . So from Lemma 6.2.5, we conclude that CrossRound(v mod q,B) = CrossRound(w mod q,B). Thus Alice performs Rounding(w, B) as a part of the Red function to get ⌊((w

+ 2 B-1) mod q) • 2 -B ⌋ and Bob does Rounding(v, B)= ⌊((v + 2 B-1) mod q) • 2 -B ⌋.
Since both v and w are in same sub-interval, this implies that v + 2 B-1 and w + 2 B-1 are also in same sub-interval. Now from Lemma 6.2.3,we can infer that both (v + 2 B-1 mod q) and (w + 2 B-1 mod q) lie again in the same sub-interval in [0, q -1]. We assumed that any integer in [0, q -1] has a log q-bit binary representation, Hence the B most significant bits for both are also equal, as in a sub-interval for any two integers all the bits except the B -1 least significant bits are equal. Hence we conclude that

⌊((w + 2 B-1) mod q) • 2 -B ⌋ = ⌊((v + 2 B-1) mod q) • 2 -B ⌋ =⇒ K Alice = K Bob 2.
Case 2: When v and w lie in adjacent intervals. From Lemma 6.2.5, CrossRound(v mod q,B) = CrossRound(w mod q,B). So, according to the Red function, first we add 2 B-2 -1 to w to get w ′ = w + 2 B-2 -1 . Now, as per Lemma 6.2.7, only two sub-cases are possible, either w ′ ∈ I 1 or w ′ ∈ I 2 .

If w ′ ∈ I 1 , then this implies that by Lemma 6.2.5, CrossRound(v mod q,B) = CrossRound(w ′ mod q,B). This is another instance of Case 1. Therefore Alice performs Rounding(w ′ , B) inside the Red function and Bob computes Rounding(v, B). As per Case 1 we conclude, K Alice = K Bob . Now consider the other sub-case, i.e. when w ′ ∈ I 2 . By Lemma 6.2.5 it means that CrossRound(v mod q,B) = CrossRound(w ′ mod q,B). Hence following steps of the Red function, we subtract, 2 B-2 -1 from w to get w ′′ = w -2 B-2 + 1. Now again two sub-cases are possible (Lemma 6.2.7), w ′′ ∈ I 1 or w ′′ ∈ I 2 .

If w ′′ ∈ I 1 , then we have CrossRound(v mod q,B) = CrossRound(w ′′ mod q,B) by Lemma 6.2.5. We thus find another instance of Case 1. Hence, Alice does Rounding(w ′′ , B) and Bob does Rounding(v, B), which gives us K Alice = K Bob . Now let us look at the remaining case of w ′′ ∈ I 2 . At this stage of Red function, we already have that w ′ ∈ I 2 and w ∈ I 2 while v ∈ I 1 and I 1 = I 2 . w ′ ∈ I 2 and w ′′ ∈ I 2 implies that w lies in middle of the sub-interval I 2 . This means that

w / ∈ (v ′ -2 B-2 -1, v ′ -1] ∪ I 1 ∪ [v ′′ + 1, v ′′ + 2 B-2 + 1)
But this is in contradiction to our initial assumption.

3. Case 3: When v and w lie in two different sub-intervals separated by at least one interval. This implies that |w -

v ′ | > 2 B-1 or |w -v ′′ | > 2 B-1 . From our assumption, we have that if w / ∈ I 1 , then either |w -v ′ | < 2 B-2 -1 or |w -v ′′ | < 2 B-2 -1.
We find a clear contradiction to our assumption. So, if the assumption of our theorem holds, after the Rounding operation, the protocol produces the same key for Alice and Bob. Lemma 6.2.7. Suppose we have two sub-intervals I 1 and I 2 such that for two positive integers, v ∈ I 1 and w ∈ I 2 . We also have

w ∈ (v ′ -2 B-2 -1, v ′ -1] ∪ I 1 ∪ [v ′′ + 1, v ′′ + 2 B-2 + 1) where v ′ = ⌊v • 2 -B+1 ⌋ • 2 B-1 and v ′′ = v ′ + 2 B-1 . For w ′ = w + 2 B-2 -1 and w ′′ = w -2 B-2 + 1,
′ -v ′′ | > 2 B-1 . Which further implies that |w -v ′′ | > 2 B-2 -1,
which is in clear contradiction to our initial assumption about w being in the range given. So w ′ must lie in either I 1 or I 2 . The proof is similar for w ′′ . Now the assumption in the Theorem 6.2.6 is dependent on the range s. We would like to determine the range by fixing the rest of the parameters. Let the choice of q be 2 k . The choice of the range from which the error and secret is chosen, let's suppose be s = Round(2 β). From Theorem 6.2.6, we get

|b3 i -f i (sa) • b2 i | < 2 (log q-B-2) =⇒ |e 3i + e1 i • b2 i -e2 i • b1 i | < 2 (log q-B-2) =⇒ s + s • |b1| max + s • |b2| max < 2 (log q-B-2)
If we replace |b1| max and |b2| max by |b| = max(|b1| max , |b2| max) we get

s + 2 • s • |b| < 2 (log q-B-2) (6.1)
The choice of the coefficients is from [0, q α], hence the maximum possible value of a coefficient is q α ≈ 2 αk . First we need to determine the maximum possible value for |b|.

Now, b = f (s) + e b = (n i,j a ij x i x j + n i b i x i + c) + e = O(n 2) • 2 αk • 2 2β + n • 2 αk • 2 β + 2 αk + 2 β
Now that we have a maximum value of |b| in terms of n, we can now look at left-hand-side of Equation 6.1,

s + 2 • s • |b|
Replacing the corresponding values we obtain

LHS = 2 3β 2 2 log n+αk+1 + 2 2β (2 log nαk+1 + 1) + 2 β (2 αk+1 + 1) (6.2)
Right-hand-side of Equation 6.1 is 2 log q-B-2 . Replacing we get

RHS = 2 k 2 B+2
So putting together the LHS and RHS of Eq 6.1, we have

2 3β 2 2 log n+αk+1 + 2 2β (2 log nαk+1 + 1) + 2 β (2 αk+1 + 1) < 2 k 2 B+2
(6.3) Corollary 6.2.8 (Asymptotic Result). With the choice of large modulus q = 2 k , the above proposed protocol succeeds with high probability , if following holds

β < k(1 -α) -B -2 -2 log n 3
Corollary 6.2.8 gives an approximate upper bound for the range s = 2 β . Thus choosing the range accordingly (see Figure 6.2) for sampling our error and secret, our key exchange and agreement works correctly with very high probability. Although for accurate working of the protocol with probability 1, we need a much stricter bound which can be obtained by solving the Equation 6.3 for the variable β, in terms of the other variables α, B and k. Through experiments, we find that a good choice of the other parameters are k > 7 log n, B = 25 and α = 0.3

The choice for B, the number of most significant bits chosen per sample has been set to 4 (for our recommended parameters), as compared to the reconciliation mechanism by Peikert [Pei14] which extracts a single bit per sample. This choice is backed by the fact that an exhaustive search for directly finding the shared secret will take at least 2 4m operations and our goal is that 4m should be larger than at least our initial target of 128 bits of classical security.

Failure Rate

The assumption on which our key agreement works is that

f i (sa)•b2 i lies in a range of integers (v ′ -2 B-2 -1, v]∪[v, v ′′ +2 B-2 +1) , where v = b3 i , v ′ = ⌊v•2 -B+1 ⌋•2 B-1 and v ′′ = v ′ + 2 B-1 . When the difference |b3 i -f i (sa) • b2 i | is less than < q/2 B+2 ,
then it always works with probability 1. When the difference is ≥ 3q/2 B+2 then the probability is 0. In between the two extremes of 2 B-2 and 3•2 B-2 , the probability of success decreases linearly. Let us denote the probability of success for a component of the m dimensional system as p s . So

p s =      1, if |v -w| < 2 B-2 0, if |v -w| ≥ 3 • 2 B-2 3•2 B-2 -|v-w| 2 B-1 if 2 B-2 ≤ |v -w| < 3 • 2 B-2 (6.4)
The probability distribution of the distance |v -w| is uniform, since all the parameters effecting the distance, namely, the error terms e1, e2, e3 and coefficients of f i and the secrets sa and sb all follow an uniform distribution. So, from Equation 6.2, we can see that the error is bounded by

Maxerr(β) = 2 3β 2 2 log n+αk+1 + 2 2β (2 log nαk+1 + 1) + 2 β (2 αk+1 + 1)
So, the total probability of success of the scheme is given by,

P s (β) =    a 0 1 Maxerr(β) m = 1, if Maxerr(β) < 2 B-2 a 0 1 Maxerr(β) + b i=a+1 3•2 B-2 -i 2 B-1 •Maxerr(β) m , otherwise. (6.5) where a = min(2 B-2 -1, Maxerr(β)) , b = min(3 • 2 B-2 -1, Maxerr(β)
) and m = n + 1 is the number of samples that we use for our system/scheme. Thus the probability of failure of the scheme is given by P f (β) = 1 -P s (β).

Analysis of Attacks Considered in Submission

In this section we present a summary of the main algebraic attacks against CFPKM. In Section 6.3.1 we consider the Arora-Ge method of solving a system of noisy equations by removing the error and then using Gröbner basis techniques. In Section 5.3.3, we consider the possibility of an exhaustive search over the secret. We also consider the exhaustive search over the secret and then using Gröbner basis techniques to solve the resultant system of equations with Gröbner basis.

In order to break our protocol, the main goal is to recover the secret sa or sb used by either of Alice or Bob. We have a system of equations

b1 1 = f 1 (x) + e1 1 b1 2 = f 2 (x) + e1 2 . . . b1 m = f m (x) + e1 m
This is a system of non-linear multivariate polynomials, whose solution is x = sa.

The process of finding this solution is the exact hard problem of PoSSoWN. In the following sections, we discuss the possible methods of solving this problem and thus provide the hardness results, which relates to our problem.

Arora-Ge Gröbner Basis Method

CFPKM requires solving a two systems of equations given by b1 = f (sa) + e1 and b2 = f (sb) + e2 where f ∈ F m q [x 1 , . . . , x n] and b1, b2, e1, e2 ∈ F m q . The errors e1, e2 are chosen from a discrete uniform distribution from a range [0, s].

We can rewrite the above polynomial equations as e1 = b1f (sa) and e2 = b2-f (sb). In Section 5.3.1, we presented the approach of using Gröbner basis with the Arora-Ge approach. For our scheme, we can similarly construct the Arora-Ge polynomial (Equation (5.2)) as follows:

P (η) = η s j=1 (η -j),
where η is the error polynomial (See Section 5.3.1). Therefore, for each i th component of the error vectors e1 ∈ F m q and e2 ∈ F m q , we can substitute the error polynomials by b1 if i (x) and b2 if i (x) respectively where x = (x 1 , . . . , x n).

Consequently, we get two system of polynomial equations corresponding to each of e1 and e2 respectively, and whose i th components are given by,

P i (b1 i -f i (x)) = (b1 i -f i (x)) s j=1 (b1 i -f i (x) -j), (6.6)
P i (b2 i -f i (x)) = (b2 i -f i (x)) s j=1 (b2 i -f i (x) -j). (6.7)
We have two systems of m polynomials in n variables of degree d = 2s + 2 , keeping in account of the degree of each f i being 2 (i.e quadratic). It is quite intuitive to see that the polynomial P i from Equation (6.6) equals zero when x = sa, and the same for Equation (6.7) when x = sb. Additional constraints on the set of variables (x 1 , . . . , x n) come from the fact that even the secrets sa and sb are chosen from the range [0, s] n .

x 1 (x 1 -1) • • • (x 1 -s) = 0 x 2 (x 2 -1) • • • (x 2 -s) = 0 . . . x n (x n -1) • • • (x n -s) = 0
So if we are able to find a Gröbner basis of the system of equations along with system P i (x) = 0 of Equation (6.6) (or Equation (6.7)), then we will be able to recover sa (or sb respectively). The minimum number of samples that is assumed the attacker can have and running the F5 is m ′ = n + 1. In Table 6.1 we present the degree of regularities and the bit-complexities of the Arora-Ge Gröbner basis attack with the choice of m ′ = n + 1. The degree of regularity for our system is given by the degree of regularity for a semi-regular system of same parameters. Table 6.2 shows the time complexity of the Arora-Ge Gröbner basis attack on the KEM when different number of equations are made available to the attacker.

Exhaustive Search

In this section, we take use of the combinatorial attacks from Section 5.3.3.

Over the Shared Secret

An adversary can perform an exhaustive search over the shared secret constructed between Alice and Bob. The size of the shared key is determined by the total number of bits chosen for each component of the m-dimensional shared secret. Each component of the shared secret is of size B bits. brute force attack would require a time complexity of 2 Bm bit operations. Since, in our scheme, B has been set to 25 for both the set of proposed challenge parameters and m is at least greater than 4, we thus do not consider this attack anymore as the complexity of the attack is much higher than other algebraic attacks.

Over the Secret

Next we consider the brute force attack by an adversary to recover the hidden secrets sa, sb ∈ F n q , as mentioned in Section 5.3.3. The secrets are chosen from [0, s] n . Therefore, the attacker has to compute s n possible solutions. Also, we assume that the range s ≈ n β , hence the number of operations in exhaustive search turns out to be 2n βn . Once these secrets have been recovered, with high probability the shared secret can be recovered by taking the B most significant bits of the product f i (sa) • f i (sb). Note 6.3.1. If we increase the value of our range s, then the time for exhaustive search increases. But this in turn also increases the degree of regularity and hence also the time complexity of the Arora-Ge GB attack.

Over the Error

Now, we take the other possibility of performing an exhaustive search over the errors. We take use of the technique presented in Section 5.3.3, where we consider the same system of noisy polynomials as a system of m equations over n + m variables, i.e counting the errors as unknown variables. So once the error values have been recovered, for example e1, we have the following system of equations f 1 (x) -b1 ′ 1 = 0, f 2 (x) -b1 ′ 2 = 0, . . .

f m (x) -b1 ′ m = 0,
where f i (x) ∈ F q [x] with x = (x 1 , . . . , x n) and b1 ′ = b1 -e1 ∈ F m q . We can solve this above system using the algorithm of [LPT + 17] which has a complexity of

O s n • log s 2e -n
, where the values of x i are chosen from the range [0, s]. Therefore, the total complexity of doing a exhaustive search of the error followed by the proposed algorithm of [LPT + 17] is expected to be

s m • O s n • log s 2e -n
.

Hybrid Attacks

In this section, we present the hybrid attacks which combines combinatorial methods, like exhaustive search, with algebraic techniques such as Gröbner basis methods. The first algorithm is the hybrid method of exhaustive search over the errors and Gröbner basis algorithms, which was presented in Section 5.3.3. For our scheme, the total complexity of this attack is

s m • m • D reg n + D reg D reg ω ,
where D reg is the degree of regularity over the system of m quadratic equations in n variables (Refer to Equation 5.3 for how to determine the D reg in Section 5.3.1).

In Table 6.3 , we observe that an exhaustive search over the secret or the error is a faster and much efficient attack on our scheme. This is because our search space for both the secret as well as the error is much smaller than the finite field related to the polynomial ring in which the polynomials have been defined.

The next algorithm we present is the Max-PoSSo Gröbner basis attack that was presented in Section 5.3.4. Suppose we are given a system of m equations in n variables. Now the errors can be achieved by doing an exhaustive search. So now assuming that the error distribution is uniform over the range [0, s], we can say that t = m/(s + 1) number of equations may be the exact solutions. That t equations are such that

f 1 = • • • = f t = 0,
where f 1 , . . . , f t ∈ F q [x 1 , . . . , x n]. Now the Gröbner basis attack on this sub-system takes tD reg n + D reg D reg ω , number of operations, where D reg is the degree of regularity of this sub-system. So, the total complexity of this attack turns out to be

m t • tD reg n + D reg D reg ω .
Though comparing the performance of this attack with exhaustive search, we see that for n = 20, we are getting a security of 130 bits. But on the other hand, with n = 30 and the secret vector being chosen from a small range [0, s], the exhaustive search performs much better. It is also important to mention that in case of this attack, the minimum number of equations m will not suffice with n + 1. It has to be much larger than this, big enough such that t > n for the Gröbner basis attack to work. Hence we just report the performance of this attack in Table 6.3.

Table 6.3 -Comparing time complexity with s ≈ n 0.25 , all time complexity values in log . The column AG-GB represents the Arora-Ge style Gröbner basis attack, EX-Sec represents Exhaustive search over the Secret sa, EX-Err represents the Exhaustive search over the errors and then using SODA and Gröbner basis algorithms and finally HYB represents the hybrid approach from Section 6.3.3

Detailed Performance Analysis

The scheme is written in C + + language. In this following table we list the description of the platform on which the scheme has been developed and tested for correctness.

Computer

Time

The following measurements are for the KEM. For the measures, it runs a number of tests such that the global used time is greater than 10 seconds and the global time is divided by the number of tests. For our scheme with CFPKM128 the key generation, takes 72 ms. The key encapsulation scheme takes on an average about 108 ms (over a run of 30 tests). The decapsulation of the shared secret key takes about 143 ms. For CFPKM182 key generation takes 120 ms. The key-encapsulation takes for this parameter 150 ms on an average of 30 tests, while the decapsulation takes about 190 ms.

Space

The key sizes of the parameters are calculated directly (and confirmed in various experiments) from the structure of keys. Recall that the public key was constructed by concatenating the seed value and the public vector b1, while the secret key is a concatenation of the same seed value and the secret sa. The ciphertext comprises of two vectors, the crossround bit vector c and the vector b1.

The total size of public key for CFPKM128 turns out to be 696 bytes. The secret key is 128 bytes for the parameters of CFPKM128. The ciphertexts, which are sent from Bob to Alice, are 729 bytes long, whereas the shared secret is of 81 bytes.

For CFPKM182, the public key size turns out to be 995 bytes which include a 48 byte long seed value. The secret key is 182 bytes long while the shared secret at the end of the key exchange is 116 bytes. The size of the ciphertexts from Bob to Alice amounts to 1044 bytes.

How parameters affect performance

The Key Encapsulation is mainly affected by the number of equations m in our system, the range s and also by the number of most significant bits B that we use in our scheme. From Section 6.2.4, we see that the scheme's failure probability is a function of the range s. This probability is over the m equations used in the scheme. Hence, the efficiency of the scheme is dependent on both s and m. Also from Section 6.3, the fastest attack, exhaustive search over the secret, tells us that the security of the scheme is a factor of both s and m.

Advantages and Limitations

CFPKM, is dependent on small secrets and errors, which is one limitation of the proposed scheme. It has been left a future work for further improving the performance of the scheme. But on the other hand, CFPKM has a lot of advantages.

The hardness of our key exchange can be reduced down to the PoSSoWN problem. The idea of the design for the key-exchange is that to recover the shared secret-key, one needs to solve two systems of noisy quadratic system of equations, and recover the contribution of the secret into the shared secret-key from both Alice and Bob. Recovering these contributions is the problem of PoSSoWN. The key-exchange mechanism has been built in such a way that, it uses input from both the users to get a shared key, rather than the trivial way a Key encapsulation works. The hardness of our key exchange can be reduced down to the PoSSoWN problem. The idea of the design for the key-exchange is that to recover the shared secret-key, one needs to solve two systems of noisy quadratic system of equations, and recover the contribution of the secret into the shared secret-key from both Alice and Bob. Recovering these contributions is the problem of PoSSoWN, which is NP-hard. One of the major advantages that CFPKM has, is the cheap communication costs and key sizes. In comparison to similar KEM's based on Learning with Errors, this protocol is able to achieve similar levels of security with much lower values of comparable parameters.

Why the Scheme Failed

After the first round of submissions, the scheme was broken by Martin Albrecht and his team at Royal Holloway 1 . The main issue that lied in the scheme was not from an algebraic security point of view, but rather a very rudimentary practical fault in the design of the scheme.

Let us have a close look at the design of the shared secret. On Bob's side, the Rounding function computes the shared secret from the B most significant bits of each component of the vector b3. The b3 vector is constructed as follows:

b 3 = f (sb) ⊙ b1 + e3 = f (sb) ⊙ f (sa) + f (sb) ⊙ e1 + e3 (6.8)
By the choice of the parameters, the errors and the coefficients of the polynomials f ∈ F m q [x 1 , . . . , x n] are "small". Now we will show how small are they with respect to evaluations we are dealing with. In particular, we shall demonstrate this for the first set of parameters, i.e., for CFPKM128. The errors are chosen uniformly from a range upper bounded by Range = 7. The coefficients of the polynomials are generated by the seed value but are taken modulo Cofsize = 4096 = 2 12 . Now, we see that evaluation of the polynomial f (sb) is upper bounded by (80) 2 • (2 12 • 7 2) + 80 • (2 12 • 7) + 2 12 ≤ 2 31 Thus, the product f (sb) ⊙ e1 is upper bounded by 2 34 . Since the shared secret are the B = 6 most significant bits of b3, which is an m dimensional vector where each component is log q = 50 bits, the product f (sb) ⊙ e1 has no contribution to the shared secret. Now let us consider the two public values b1 and b2. Taking the special component wise product of these public vectors we have b1 ⊙ b2 = (f (sa) + e1) ⊙ (f (sb) + e2)

= f (sa) ⊙ f (sb) + f (sa) ⊙ e2 + f (sb) ⊙ e1 + e1 ⊙ e2. (6.9)

Consider the B most significant bits of this product b1 ⊙ b2. With the same intuition, the B most significant bits have no influence from f (sb) ⊙ e1 + f (sa) ⊙ e2. Thus, the shared secret is always computed from the product f (sa) ⊙ f (sb).

Hence any adversary who can get access to the public values b1 and b2, they can just compute the product and the B most significant bits of it to recover the shared secret.

Can This Issue be Resolved?

As soon as the scheme was broken, efforts were made to correct the scheme. The first approach taken was to have a fixed support for the polynomials in the public keys. Let us define a square coefficient matrix, say A of size m × m over F q where the columns of the matrix represent the monomials in the fixed support. By this we are fixing the public polynomials to have the same m monomials. Now, we define the construction of the vectors b1, b2 and b3. where sa ′ (and sb ′) is the evaluation of the monomials in the fixed support Sup over the secret value sa (and sb respectively). On one hand this surely solves the issue of any passive adversary, who has access to the public vectors b1 and b2, being able to recover the hidden secret from b2 ⊙ b1.

On the other hand, this reflects another instance of the LWE problem and can be viewed as a parameterization of the NewHope key exchange protocol which is based on Ring-LWE [AAB +]. Thus we had to drop this approach.

Another idea was to increase the bound on the coefficient size of the polynomials (i.e q α) such that we can expect the effect of the product f (sb) ⊙ e1 to also influence the B most significant bits. However, according to Corollary 6.2.8 we already have

β < k(1 -α) -B -2 -2 log n 3 ,
which gives a bound on the range to choose our secret and error required for correct decryption with high probability. Thus increasing the size of the coefficients implies, increasing α. Increasing α, decreases the upper bound on β, which then also decreases the values for the secret and the error. Hence, we don't achieve the expected effect of the product f (sb) ⊙ e1 affecting the shared secret.

Conclusion

We presented a new multivariate key exchange scheme based on the problem of solving a system of noisy multivariate equations, as a submission to the NIST Postquantum standardization process. This key encapsulation was the first of its kind using the NP-Hard problem of PoSSoWN. We provided a new design that utilizes the use of an error in polynomials in order to blind the information passed over open channels. We provided the scheme along with security analysis against all potential algebraic attacks on it. Finally, we show why because of a structural defect, the scheme was broken. The following two sections of codes are "randombytes.h" and "rng.h". These are codes as preset by NIST for generating the seed by using a secure Pseudo Random Number (PNR) generator. # include < stdlib .h > # include < stdio .h > # include < stdint .h > # include < stdlib .h > # include < string .h > # include " api . h " # include " KEMheader . h " # include " rng . h " # include " randombytes . h " void allocatemem (Pol *f , int n , int m) { Proof. From the previous proposition 4.2.4, the linear transformation E • I 2n can be considered as collection of two separate forgetting maps each acting on the two sets of first n and last n polynomials, F 1 and F 2 respectively. Suppose we have a 1 polynomials removed from F 1 and a 2 removed from F 2 . So, we have a = a 1 + a 2 . Let V 1 ∈ F q n be the kernel of E 1 • I n and similarly V 2 ∈ F q n be the kernel of E 2 • I n . Let π 1 be the minimal polynomial of the algebraic set V 1 and π 2 be the minimal polynomial for V 2 . Now removing a 1 polynomials implies that nullity of V 1 is q a 1 and similarly |V 2 | = q a 2 . Thus π 1 and π 2 have degrees q a 1 and q a 2 respectively and are of the form

π 1 = a 1 i=0 c i X q i , π 2 = a 2 i=0 c ′ i X q i
where c i , c ′ i ∈ F q n Taking the same approach as Vates and Smith-Tone (Lemma 1) [START_REF] Vates | Key recovery attack for all parameters of hfe[END_REF], we argue that there exists linear transformations U 1 and U 2 such that

E 1 • I = U 1 • ϕ -1 • π 1 • ϕ , E 2 • I = U 2 • ϕ -1 • π 2 • ϕ (D.1)
Using (D.1) , we have

E • I 2n = E 1 • I n E 2 • I n = U 1 • ϕ -1 • π 1 • ϕ U 2 • ϕ -1 • π 2 • ϕ = U 1 0 0 U 2 • ϕ -1 • π 1 • ϕ ϕ -1 • π 2 • ϕ
This above matrix representation can be also written as

E • I 2n = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ)
easily recovered theoretically, 1. β 2 (χ)F 1 + α 4 (χ)χ 2 F 2 2 + α 2 F 2 2 + α(χ)β(χ)F 2 = 0 2. For EFC - 2 (2) with a = (1, 1), the number of quadratic polynomials observed at Step degree 3 is 3n and at least n of those can be given by the following combination change the F1 and F2 to H1 and H2

1. (β 2 (χ)F 1 + α 2 (χ)F 2)χ + α(χ)F 2 + β(χ)F 1 = 0 3. For EFC - 3 (1) with a = (1, 0), the number of quadratic polynomials observed at Step degree 3 is 3n and at least n of those can be given by the following combination 1. β 3 (χ)F 1α 3 (χ)F 3 2α(χ)β 2 (χ)F 2 χ -M 2 α(χ)β(χ)F 2 = 0

Résumé

La résolution de systèmes polynomiaux est l'un des problèmes les plus anciens et des plus importants en Calcul Formel et a de nombreuses applications. C'est un problème intrinsèquement difficile avec une complexité, en générale, au moins exponentielle en le nombre de variables. Dans cette thèse, nous nous concentrons sur des schémas cryptographiques basés sur la difficulté de ce problème. Cependant, les systèmes polynomiaux provenant d'applications telles que la cryptographie multivariée, ont souvent une structure additionnelle cachée. En particulier, nous donnons la première cryptanalyse connue du crypto-système « Extension Field Cancellation ». Nous travaillons sur le schéma à partir de deux aspects, d'abord nous montrons que les paramètres de challenge ne satisfont pas les 80 bits de sécurité revendiqués en utilisant les techniques de base Gröbner pour résoudre le système algébrique sous-jacent. Deuxièmement, en utilisant la structure des clés publiques, nous développons une nouvelle technique pour montrer que même en modifiant les paramètres du schéma, le schéma reste vulnérable aux attaques permettant de retrouver le secret. Nous montrons que la variante avec erreurs du problème de résolution d'un système d'équations est encore difficile à résoudre. Enfin, en utilisant ce nouveau problème pour concevoir un nouveau schéma multivarié d'échange de clés nous présentons un candidat qui a été soumis à la compétition Post-Quantique du NIST. Mots clés : cryptographie, post-quantique, Multivariée, cryptage à clé publique, base de Gröbner, cryptanalyse algébrique, système polynomial avec erreurs, NIST.

Abstract

Polynomial system solving is one of the oldest and most important problems in computational mathematics and has many applications in computer science. It is intrinsically a hard problem with complexity at least single exponential in the number of variables. In this thesis, we focus on cryptographic schemes based on the hardness of this problem. In particular, we give the first known cryptanalysis of the Extension Field Cancellation cryptosystem. We work on the scheme from two aspects, first we show that the challenge parameters don't satisfy the 80 bits of security claimed by using Gröbner basis techniques to solve the underlying algebraic system. Secondly, using the structure of the public keys, we develop a new technique to show that even altering the parameters of the scheme still keeps the scheme vulnerable to attacks for recovering the hidden secret. We show that noisy variant of the problem of solving a system of equations is still hard to solve.

1:

 G 0 ← {} 2: for d from 1 to D do 3: M ≻,d (F) ← Macaulay matrix for F w.r.t ≻ at degree d 4: M ≻,d (F) ← Reduced row echelon form of M ≻,d (F) 5: P d ← Non-zero polynomials represented by the rows of M ≻,d (F) 6:

 1: G := F, F + 0 := F and d := 0 2: P := {Pair(f, g)|f, g ∈ G, f = g} 3: while P = 0 do 4: d := d + 1 5: P d := SEL(P) 6: P := P \P d 7: L d := Left(P d) ∪ Right(P d) 8:

 if m is top reducible modulo G then 7: m = m ′ × LT(f) for some f ∈ G and m ′ ∈ T 8:

Figure 3 Figure 3

 33 Figure 3.2 -A sample of Gröbner basis computation process on MAGMA : part 2

Figure 3 . 4 -

 34 Figure 3.4 -An example of finding closest element with the hint bit b

Figure 3 . 5 -

 35 Figure 3.5 -Frodo Key-exchange Scheme

Figure 4

 4 Figure 4.1 -Complexity of hybrid Gröbner Basis attack for EFC - 2 (10) and various fraction of variables fixed.

Figure 4

 4 Figure 4.2 -Degree of regularity observed in experiments over F 2 , expected by [SDP16] and degree of semi-regularity denoted by black dash.

 4 -Number of new polynomials observed during Gröbner basis computation over the public-keys for parameters n = 50, a = 1, q = 2 and n = 75, a = 1, q = 2.

 Number of new polynomials observed during Gröbner basis computation over the public-keys for EFC - 2 (2) parameters with n = {45, 50}, and cases {(1, 1), (2, 0)}.

 6 -Number of new polynomials observed during Gröbner basis computation over the public-keys for EFC - 3 (1) parameters with n = {10, 20, 30}.

Game 5.2. 7 .

 7 The problem of solving a system of equations with noise can be understood through a game PoSSo Fq,d,χ (λ) as shown in Figure5.4. The advantage of a PPT algorithm A in solving the PoSSo problem is defined by Adv posso Fq,d,χ,A (λ) := P r PoSSo A Fq,d,χ (λ) =⇒ T rue

Figure 5

 5 Figure 5.4 -Game PoSSo

Figure 6

 6 Figure 6.1 -Our KEM Scheme based on POSSOWN

 3. ⊙ : This function takes in two vectors a and b returns a vector y which is a component wise scalar product of a and b. I.e., y i = a i • b i for each i th component of the vectors.

Figure 6

 6 Figure 6.2 -Plot showing the relationship of β, the factor influencing the range s, with n for a choice of k = 8 log n, B = 4 and α = 0.3

 b1 = A × sa ′ + e1. b2 = sb ′ × A + e2. b3 = sb ′ × b1 + e3.

#

 define SEEDSIZE 67 # define LOG2_Q 55 /* log_2 q .*/ # define N 115 /* number of variables .*/ # define B 6/* Number of bits extracted from a element .*/ # define M 116 /* the number of equations */ # define Q 36028797018963968 # define COFSIZE 16384 /* bound on the bitsize of the coeffeicients of the polynomials */ # define SECRETVAL_LENGTH 1 # define SHAREDKEYSIZE (M * B /8) # define ERROR_LENGTH 1 # define PK_LENGTH (M *8) # define RANGE 6 # define B_BAR (LOG2_Q -B) typedef struct { long * QD ; long * L ; long C ; } Pol ; void allocatemem (Pol *f , int n , int m) ; void freealloc (Pol *f , int m) ; void polgen (Pol *f , int m , int n) ; unsigned long long evaluate_poly (Pol unPoly , unsigned char * pValue , int n) ; void Eval_sys (Pol * pSyst , unsigned char * pValue , int m , int n , unsigned long long * result) ; unsigned char rounding (unsigned long long in) ; void kem_rounding (unsigned char * out , unsigned long long * in) ; void kem_rec (unsigned char * key , unsigned long long *b , unsigned char * c) ; int crypto_kem_keypair (unsigned char * pk , unsigned char * sk) ; int crypto_kem_enc (unsigned char * ct , unsigned char * ss , const unsigned char * pk) ; int crypto_kem_dec (unsigned char * ss , const unsigned char * ct , const unsigned char * sk) ; unsigned char kem_crossround1 (unsigned long long in) ; void kem_crossround2 (unsigned char * out , unsigned long long * in) ; void pack_sk (unsigned char * sk , unsigned char * sa , unsigned char * seed) ; void unpack_sk (unsigned char * sa , unsigned char * seed , const unsigned char * sk) ; void pack_pk (unsigned char * pk , unsigned long long * b1 , unsigned char * seed) ; void unpack_pk (unsigned long long * b1 , unsigned char * seed , const unsigned char * pk) ; void pack_ct (unsigned char * ct , unsigned long long * b2 , unsigned char * c) ; void unpack_ct (unsigned long long * b2 , unsigned char *c , const unsigned char * ct) ; # endif

 S 2 5 6 _ C T R _ D R B G _ s t r u c t ; void A E S 2 5 6 _ C T R _ D R B G _ U p d a t e (unsigned char * provided_data , unsigned char * Key , unsigned char * V) ; int seedexpander_init (AES_XOF_struct * ctx , unsigned char * seed , unsigned char * diversifier , unsigned long maxlen) ; int seedexpander (AES_XOF_struct * ctx , unsigned char *x , unsigned long xlen) ; void randombytes_init (unsigned char * entropy_input , unsigned char * personalization_string , int security_strength) ; int randombytes (unsigned char *x , unsigned long long xlen) ; void AES256_ECB (unsigned char * key , unsigned char * ctr , unsigned char * buffer) ; # endif /* rng_h */ This is "kem.c". This is the implementation of the key Encapsulation mechanism of CFPKM[◮oc: nned to mention for which parameter is this].

 In the rest of the work, we analyze the running time of the algorithms with this assumption. In the following theorem (see Theorem 2.2.3), authors of [LPT + 17] denote this by O * , which omits the polynomial factors of the O notation.

Recently, Lokshtanov et al. in [LPT + 17]

for d from 1 to D do 3: for i from 1 to m do 4:

 x n] of degrees d 1 , . . . , d m , a monomial ordering ≻ and a degree D. Output: Gröbner basis G of f 1 , . . . , f k with respect to ≻ . 1: G 0,0 , . . . , G 0,D ← {}, . . . , {}. M ≻,d (f 1 , . . . , f i) ← Macaulay matrix for F w.r.t ≻ at degree d

	5:

2:

 where ℓ is as defined in Definition 2.3.22) where C d and R d represents the number of columns and rows respectively. A basis of the rows is obtained by computing the reduced row echelon form of the matrix M ≻,d . Fast matrix multiplication techniques proposed in[START_REF] Storjohann | Algorithms for matrix canonical forms[END_REF] provides a way to compute this in complexity O(R d C d r ω-1) where r is the rank of the matrix after the reduction. Now, the number of rows R d is upper bounded by mC d and the rank is upper bounded by C d . Thus, the total complexity of doing Gaussian reduction is bounded by O(mC ω d

Table 2

 2

	k	GB	Hybrid Dreg
	52 38.37 90.37	4
	54 37.56 91.56	4
	56 30.76 86.76	3
	58 30.04 88.04	3
	60 29.25 89.25	3

.1 -Example 2.4.5.

 Figure 3.1 -A sample of Gröbner basis computation process on MAGMA : part 1

	* *******
	FAUGERE F4 ALGORITHM STEP 3
	* Basis length : 2300 , queue length : 43383 , step degree : 3 , num pairs
	Coefficient ring : GF (2) : 1428
	Rank : 42 Basis total mons : 4941802 , average length : 2148.610
	Order : Graded Reverse Lexicographical (bit vector) 86 field pair (s)
	Reduced exponents (solution over GF (2)) Number of pair polynomials : 1428 , at 10703 column (s) , 0.120
	Matrix kind : Packed GF (2) Average length for reductees : 1187.00 [1428] , reductors : 837.16
	Datum size : 0 [6068]
	No queue sort Symbolic reduction time : 0.289 , column sort time : 0.000
	Stop at 10 linear (s) 1428 + 6068 = 7496 rows / 10703 columns out of 12384 (86.426%)
	Initial length : 239 Density : 8.4444% / 13.583% (903.81/ r) , total : 6774940 (25.8 MB)
	Inhomogeneous Before ech memory : 160.2 MB (= max)
	Initial queue setup time : 0.009 Row sort time : 0.000
	Initial queue length : 472 0.219 + 0.000 + 0.100 = 0.330 [1428]
	******* After ech memory : 160.2 MB (= max)
	STEP 1 Num new polynomials : 1428 , min deg : 3 [1428] , av deg : 3.0
	Basis length : 156 , queue length : 472 , step degree : 2 , num pairs : Queue insertion time : 2.309
	149 New max step : 3 , time : 3.050
	Basis total mons : 67006 , average length : 429.526 Step 3 time : 3.050 , [3.053] , mat / total : 0.860/5.059 , mem : 160.2 MB
	0 field pair (s) (= max)
	Number of pair polynomials : 149 , at 862 column (s) , 0.000
	Average length for reductees : 429.68 [149] , reductors : 426.14 [7] *******
	Symbolic reduction time : 0.000 , column sort time : 0.000 STEP 4
	149 + 7 = 156 rows / 862 columns out of 904 (95.354%) Basis length : 3728 , queue length : 100252 , step degree : 4 , num
	Density : 49.829% / 49.883% (429.53/ r) , total : 67006 (0.3 MB) pairs : 90708
	Before ech memory : 32.1 MB (= max) Basis total mons : 7216638 , average length : 1935.793
	Row sort time : 0.000 10140 field pair (s)
	0.000 + 0.000 + 0.000 = 0.000 [149] Number of pair polynomials : 90708 , at 84997 column (s) , 24.609
	After ech memory : 32.1 MB (= max) Average length for reductees : 2203.94 [90708] , reductors : 1028.65
	Num new polynomials : 149 , min deg : 2 [149] , av deg : 2.0 [76975]
	******* Symbolic reduction time : 2.990 , column sort time : 0.079
	STEP 2 90708 + 76975 = 167683 rows / 84997 columns out of 124314
	Basis length : 305 , queue length : 2293 , step degree : 3 , num pairs : (68.373%)
	2293 Density : 1.9582% / 3.6994% (1664.4/ r) , total : 279095438 (1064.7 MB)
	Basis total mons : 119696 , average length : 392.446 Before ech memory : 1313.3 MB (= max)
	298 pairs eliminated Row sort time : 0.039
	312 field pair (s) Found 41 linear (s) having done 8192 of 90708
	Number of pair polynomials : 1999 , at 9982 column (s) , 0.079 Linear found
	Average length for reductees : 406.40 [1999] , reductors : 358.23 6.100 + 0.010 + 0.000 = 6.140 [41]
	[4557] Number of unused reductors : 35807
	Symbolic reduction time : 0.089 , column sort time : 0.010 After ech memory : 1392.8 MB (= max)
	1999 + 4557 = 6556 rows / 11522 columns out of 12384 (93.039%) Num new polynomials : 41 , min deg : 1 [41] , av deg : 1.0
	Density : 3.2366% / 6.1727% (372.92/ r) , total : 2444868 (9.3 MB) Queue insertion time : 0.030
	Before ech memory : 64.1 MB (= max) Number of linears : 41
	Row sort time : 0.000 New max step : 4 , time : 33.900
	0.269 + 0.000 + 0.260 = 0.530 [1995] Step 4 time : 33.900 , [33.915] , mat / total : 7.040/38.960 , mem :
	After ech memory : 64.1 MB (= max) 1377.4 MB , max : 1392.8 MB
	Num new polynomials : 1995 , min deg : 2 [43] , av deg : 3.0 STOP at 41 linears

Table 4

 4

	Parameter	n	k	Time (sec) Mem (Gb)	D SR Bit Comp.
	EFC -2 (10) EFC F -2 (8) EFC -3 (6)	83 83 56	18 39 25	48773 265 667	115.03 1.719 0.489	9 9 10	65 77 80

.1 -Hybrid Gröbner basis attack on EFC parameters.

Table 4

 4 Table 4.8 -Number of new polynomials observed during Gröbner basis computation for EFC - 2 (2) with n = 75 and a 1 = a 2 = 1.

	.7 -Number of new polynomials observed during Gröbner basis
	computation for EFC -2 (1) with n = 75.

 y ab y cd = y ac y bd = y ad y bc , There are n 4 /4! different ways to choose the 4-tuples of distinct indices, and each choice gives rise to 2 equations. We thus have about n 4 /12 additional quadratic equations in n 2 /2 y ij variables. This number of variables can be reduced to about (1/2ǫ)n 2 by replacing each of y ij variables by its parametric representation as a linear combination of new variables z k . These (ǫn 2 + n 4 /12) quadratic equations in the new (1/2-ǫ)n 2 can be linearized again by replacing each product z i z j by a new variable v ij . This new system has (ǫn 2 +n 4 /12) linear equations in ((1/2-ǫ)n 2) 2 /2 variables v ij . This new system is uniquely solvable when

 B-1 and B = ⌈log q⌉ -B. B is the number of most significant bits chosen for key agreement such that 1 ≤ B < ⌈log q⌉ -1 and | • | gives the absolute value component wise. Proof. Let us consider the integers, b3 1

 only two cases are possible, w ′ and w ′′ are either in I 1 or I 2 . Proof. To see that this is true, suppose w ′ / ∈ I 1 and w ′ / ∈ I 2 . This means that |w

Table 6 .

 6 Thus for an attacker to mount a n D reg Arora-Ge-GB(ω := 2.35) Arora-Ge-GB(ω := 2) 1 -Complexity of Arora-Ge Gröbner basis algorithm with s ≈ n 0.25 and m = n + 1.

	10 11	51	44
	15 14	70	60
	20 17	88	77
	25 19	104	90
	30 22	122	106
	35 25	141	121
	40 42	195	169
	45 46	217	186
	50 50	238	204
	55 55	262	224
	60 59	283	243
	65 63	304	261
	70 67	325	279
	75 71	346	297
	80 75	367	315
	85 79	389	333
	61	-	57
	88	-	79
	115	128	98
	143	158	119
	168	189	138
	194	219	156
	252	284	208
	314	343	253
	375	411	297

n m = (n(1 + 1/ log n)) m = n(log n) (1/ǫ) m = O(n log log n)

Table 6 .

 6 2 -Complexity of Arora-Ge Gröbner basis algorithm with different m ′ other than n + 1 with ω = 2.

 Finally, using this new problem to design a new multivariate key-exchange scheme as a candidate for NIST Post Quantum Cryptographic Standards. Keywords: Post-quantum, Cryptography, Multivariate, Public-key Encryption, Gröbner basis, Algebraic Cryptanalysis, Polynomial systems with Errors, NIST.

A logic gate G is reversible if for every possible output y there exists a unique input x such that G(x) = y. The input x is a sequence of bits/qubits, whose length is equal to the number of inputs of the gate G.

A total order is a type of binary relation on a set which has three principal properties: antisymmetry (a ≤ b & b ≤ a =⇒ a = b), transitivity (a ≤ b & b ≤ c =⇒ a ≤ c) and connexity (a ≤ b or b ≤ a)

Acknowledgements

My thesis has only been possible because of a lot of effort, help and support of the people that I came across during this process.

I thank the people that this work gave me who now I proudly call as friends. To Matias, Rachel, James, and Kaie for making my time at work and after it memorable. To Elias Tsigaridas, who I can't thank enough for everything he has done for me during this time and treated me like his own. To Mme. Corado, Rahma, Maurice, Alice, Andrina, Rafa, George, Steph for being the best flatmates ever and making this quarantine a little fun for me. I thank Saptaparni for being a constant by my side, for her love and support during all this time.

Part I Preliminaries 0.4% of the cases (see Table 4.2), irrespective of value of n. Hence it is safe to assume that for all of the cases, r ≤ 4.

Rank

n -1 n -2 n -3 n -4 n -5 % 0.5725 0.3904 0.0361 0.001 0.000 Rank n -6 n -7 % 0.000 0.000 Table 4.2 -Percentage of cases where the corresponding rank is observed.

Experimentation data from 10000 runs on n = 20, 30, 45 .

Assumption 4.2.1. The size of the solution set to the system of linear equations is upper bounded by q 4 and n > q 4/3 .

We say that EFC scheme is "well defined" if Assumption 4.2.1 holds true and the decryption takes polynomial time complexity.

We now show how we can recover this equation (3.3) using Gröbner basis in polynomial time. Additionally, we say there is a degree drop when a linear combination of two polynomials f, g ∈ F q [x 1 , . . . , x n] of degree d produces another polynomial h(= 0) ∈ F q [x 1 , . . . , x n] whose degree d ′ < d. Theorem 4.2.2. Given public-keys polynomials (f 1 , . . . , f 2n) ∈ F 2n q [x 1 , . . . , x n] and ciphertexts (c 1 , . . . , c 2n) ∈ F 2n q from a "well defined" instance of EFC q (0) or EFC F q (0), we can recover the hidden secret message in polynomial-time complexity of O(n 3ω) where 2 ≤ ω < 3 is the linear algebra constant.

Proof. The central map of EFC q (0) is given by two n-dimensional vectors of polynomials F 1 , F 2 ∈ F n q [x 1 , . . . , x n]. Let C 1 , C 2 ∈ F n q be the ciphertexts vectors for F 1 and F 2 respectively. We consider the ideal generated by the following:

(4.2)

We have

x where x is the vector (x 1 , . . . , x n). By construction, we have

Subtracting the above two equations, we obtain β m (x)C 1α m (x)C 2 which is a sequence of n linear polynomials, which are also in the ideal I. As we have a well defined instance of EFC, it implies that Gaussian elimination produces n linear equations in F q [x 1 , . . . , x n].

Chapter 5

Solving Polynomials with Noise

Abstract Solving a system of equations (PoSSo q) is already known to be an NP-Hard problem. In this past decade, some research work has been put into understanding the mathematical problem of solving a system of noisy equations. This problem has been shown to be as hard as some of the well known hard problems over lattices. Our goal in this chapter is to provide a latest state of the art on the problem. In addition to that, we provide a survey of all the attacks that are solve this problem of PoSSo q with noise.

Motivation

In Chapter 2, we discussed the problem of solving a system of polynomial equations. Solving a system of polynomials with noise is another variant that has appeared in cryptography recently, however, formally, this problem has not been discussed in texts at all. In this chapter, we formalize this problem of solving a system of polynomial equations which are erroneous, which we call as the Polynomial System Solving With Noise (PoSSoWN).

This problem was briefly introduced (in a poster) as Polynomials With Error (PWE) problem [ALFP] in 2011. [START_REF] Martin R Albrecht | Polly cracker, revisited[END_REF] was the first work which took a step towards formalizing a new class of noisy ideal based problems. Based on these problems, the paper takes a particular focus on a class of multivariate schemes, which are known as "Polly Cracker". Polly Cracker schemes in general are those multivariate schemes whose secret key is a Gröbner basis of a multivariate ideal. In particular, the secret key comprises of the Gröbner basis, say G ⊂ P, where P is a polynomial ring. The public key is comprised of a degree bounded system of polynomials F ⊂ G and a set of terms, say T ⊂ P, which maps to itself bijectively under the normal form map of the Gröber basis G. This set T therefore comprises

Appendices Appendix A EFC-Source Code

This is the MAGMA code for EFC.

// Uncomment to run the challenge parameter /* // Challenge 1 n := 83; q :=2; Frobenius :=0 , a := 10; aa1 := Random (1 , a) ; */ /* // Challenge 2 n := 83; q :=2; Frobenius :=1 , a := 8; aa1 := Random (1 , a) ; */ /* // Challenge 3 n := 56; q :=3; Frobenius :=0 , a := 10; aa1 := Random (1 ,10) ; */ // Some more global variables degmul := 2; // the degree to be set for the degree of the multipliers degreq := 2;// the degree after which we consider the equations for constructing our matrix of coefficients and computing the kernel , Frodeg := n -1;// the degree 2^frodeg upto which which we consider the frobenius powers of the polynomials to consider all solutions frac := 0.35; Hybrid :=0; Tval := Ceiling (n * frac) ; \ oc { move this part to the special part of hybrid approach } SetMemoryLimit (0) ; t1 := Cputime () ;

SetVerbose (" Groebner " ,1) ;

if Hybrid eq 1 then print " Hybrid mode on \ n " ," frac =" , frac ; end if ; print " n =" ,n ," a =" ,a ," aa1 =" , aa1 ," q =" ,q , " Fro =" , Frobenius ," Proj =" , Proj ," degreq =" , degreq ;

print " degmul =" , degmul ," Frodeg =" , Frodeg ; . n] do if (ex [i] mod (q -1)) eq 1 then newmon := newmon * P ! x [i]; elif (ex [i] mod q) eq 0 then while ((ex [i] mod q) eq 0) and (ex [i] ge q) do ex [i] := Integers () !(ex [i]/ q) ; end while ;

// doing linear transformation S over input vector print " time for S map "; time inpvec_enc := LinearTransform (S , main_vec_enc) ; // Generating message to be encrypted if Proj eq 1 then

end while ; end if ; s_mat := Matrix (BaseF , n ,1 , s) ; print " Msg to be encrypted =" , s ; // function to compute power of a ext field multivariate rep of the varaible \ chi Ext_var_pow := function (chi , i) kai := P2 !1; I := Intseq (i , q) ; if q eq 2 then while Index (I ,1) ne 0 do // for j in [1..# I] do i1 := Index (I ,1) -1; // print j , i1 ; F_1Ex := P2 !0; F_2Ex := P2 !0; if Frobenius eq 0 then print " no frobenius "; for i in [0.. n -1] do F_1Ex := F_1Ex + AA [i +1]* Ext_var_pow (chi_x1 ,(q ^i + 1)) ; F_2Ex := F_2Ex + BB [i +1]* Ext_var_pow (chi_x1 ,(q ^i + 1)) ; end for ; else print " frobenius applied "; for i in [0.. n -1] do F_1Ex := F_1Ex + AA [i +1]* Ext_var_pow (chi_x1 ,(q ^i + 1)) + (AA [i +1]) ^3* Ext_var_pow (chi_x1 ,(q ^(i +1) + q ^i)) ; F_2Ex := F_2Ex + BB [i +1]* Ext_var_pow (chi_x1 ,(q ^i + 1)) + (BB [i +1]) ^3* Ext_var_pow (chi_x1 ,(q ^(i +1) + q ^i)) ; if ((a div b) + rem) ge q ^n then return ((((a div b) + rem) mod q ^n) + (((a div b) + rem) div q ^n)) ; else return (a div b) + rem ; end if ; end function ; deg1 := (q ^(n -1) + 1) * q ^(aa1) ;// degree of pi_F1Ex deg2 := (q ^(n -1) + 1) * q ^(aa2) ;// degree of pi_F2Ex maxdeg := (Max (deg1 , deg2)) *(q ^Frodeg) ; mindeg := Min (deg1 , deg2) ; // t1 := Cputime () ; if IsEven (k) then // for the multiplicand of F_2 and its frobenius powers the multipicand is bounded by the degree of deg1 if q eq 2 then tmpdeg1 := q ^(n -1) + q ^(n -2) ; elif q eq 3 then tmpdeg1 := deg1 *(q ^Frodeg) ;

else // for the multiplicand of F_1 and its frobenius powers the multipicand is bounded by the degree of deg2 if q eq 2 then tmpdeg1 := q ^(n -1) + q ^(n -2) ; elif q eq 3 then tmpdeg1 := deg2 *(q ^Frodeg) ;

if DIV (q ^j , q ^n) notin tmpnovar then Append (~tmpnovar , DIV (q ^j , q ^n)) ; end if ; if degmul gt 1 then for i in [0.. j] do if q ^j + q ^i le tmpdeg1 then if DIV (q ^j + q ^i , q ^n) notin tmpnovar then Append (~tmpnovar , DIV (q ^j + q ^i , q ^n)) ; end if ; end if ; end for ; end if ; end for ; else for j in [((k +1) /2 -1) .. Ceiling (Log (q , tmpdeg1))] do if DIV (q ^j , q ^n) notin tmpnovar then Append (~tmpnovar , DIV (q ^j , q ^n)) ; end if ; if degmul gt 1 then for i in [0.. j] do if q ^j + q ^i le tmpdeg1 then if DIV (q ^j + q ^i , q ^n) notin tmpnovar then Append (~tmpnovar , DIV (q ^j + q ^i , q ^n)) ; if (DIV (F_1exS [j]*(q ^i) ,(q ^n))) notin pi_F1exS then Append (~pi_F1exS ,(DIV (F_1exS [j]*(q ^i) , (q ^n)))) ;

end for ; end for ; Append (~pi_F1exS , Degree (P5 ! M1)) ; Append (~pi_F1exSup , P5 ! -M1) ; ParallelSort (~pi_F1exS ,~pi_F1exSup) ; t2 := Cputime (t1) ; print " Time pi_f1 =" , t2 ; t1 := Cputime () ; pi_F2ex := F_2ex ; pi_F2exS := F_2exS ; pi_F2exSup := F_2exSup ; for i in [1.. aa2] do for j in [1..# F_2exS] do if (DIV (F_2exS [j]*(q ^i) , (q ^n))) notin pi_F2exS then Append (~pi_F2exS ,(DIV (F_2exS [j]*(q ^i) ,(q ^n)))) ; for i in [1..# tmpS2] do if (DIV ((tmpS2 [i]*(q ^k)) ,(q ^n))) notin tmpS22 then Append (~tmpS22 ,(DIV ((tmpS2 [i]*(q ^k)) , (q ^n)))) ; print "\ n Doing GB calculation with new eqs \ n "; t1 := Cputime () ; // G1 := GroebnerBasis (C9 cat c1_x1_bas) ; G1 := GroebnerBasis (C9 cat c1_x1_bas ,4) ;// cat c2_x2_bas ,3) ; t2 := Cputime (t1) ; print " new Gb time is =" , t2 ; G1 ; */ // the following is to recover all possible intermediate equations countloop :=0; eqsset :=0; if c1_x eq 0 then print " c1x eq 0"; else eqsset :=1; end if ; while (c1_x eq 0) and (eqsset eq 0) do print " In loop " , countloop ;

Appendix B CFPKM-Source Code

This is the C code for CFPKM. This is "api.h". This defines the global constants needed by the interface which runs the C code for evaluation of the scheme. This header is a common header for every scheme submitted to the NIST competition.

ifndef api_h # define api_h # include " KEMheader . h " # include < math .h > # define C R Y P T O _ S E C R E T K E Y B Y T E S N + SEEDSIZE # define C R Y P T O _ P U B L I C K E Y B Y T E S PK_LENGTH + SEEDSIZE # define CRYPTO_BYTES M # define C R Y P T O _ C I P H E R T E X T B Y T E S PK_LENGTH + M

define CRYPTO_ALGNAME " CFPKM " int crypto_kem_enc (unsigned char * ct , unsigned char * ss , const unsigned char * pk) ; int crypto_kem_keypair (unsigned char * pk , unsigned char * sk) ; int crypto_kem_dec (unsigned char * ss , const unsigned char * ct , const unsigned char * sk) ;

endif /* api_h */ This is "KEMheader.h". This defines the CFPKM specific constants which are used to define the security of the parameters of the scheme. This also defines the scheme specific functions required in key-exchange. Let us consider the case of F 2 , with n = 3. Let us represent a polynomial ring over F 2 as F 2 [x 1 , x 2 , x 3] over the variables x = (x 1 , x 2 , x 3). So the extension field is defined by F 2 3 . Let ω be algebraic over F 2 . Thus we can define κ = z 3 + z + 1 as the irreducible polynomial of ω over F 2 . Now consider that the matrix Ax gives a column vector of three polynomials, say g 1 , g 2 , g 3 ∈ F 2 [x]. Hence

We now show the way to compute α m (x) ∈. We compute ω • ϕ(Ax) = g 3 + ω • (g 1 + g 3) + ω 2 • g 2 ω 2 • ϕ(Ax) = g 2 + ω • (g 2 + g 3) + ω 2 • (g 1 + g 3) Hence the matrix that represents multiplication by ϕ(Ax) with x is given by α m (x) =   g 1 g 2 g 3 g3 (g 1 + g 3) g 2 g 2 (g 2 + g 3) (g 1 + g 3)   Appendix D Proofs from Section 4.2.5 Proposition 4.2.4. Let F 1 , F 2 ∈ F n q [x 1 , . . . , x n] represent the central map polynomials of EFC q and T ∈ F 2n×2n q be the linear transformation that composes with the central map F ∈ F 2n q [x 1 , . . . , x n] to form the public-key of EFC. Suppose there is a embedded forgetting map φ a : F 2n q → F 2n-a q ֒→ F 2n q . Then for the publickeys of EFC -, there is an equivalent representation of the linear transformation Φ a • T using two distinct embedded forgetting maps φ a 1 : F n q → F n-a 1 q ֒→ F n q and φ a 2 : F n q → F n-a 2 q ֒→ F n q such that a 1 + a 2 = a and φ a 1 acts in composition with F 1 while φ a 2 composes with F 2 of the central map, where • is the composition map.

Proof. The composition E • T represents a 2n × 2n matrix. This matrix has a co-rank of a. Now the rows of the this composition matrix which on composition with the central map gives out zero polynomial can be replaced by zero rows. Now consider the first n rows of E • T • F . We have supposed that out of these n rows a 1 rows are zero rows. This can be represented as a composition of a n × n matrix E 1 , which has the same exact a 1 zero rows, with F 1 the central map giving out the same equations as the first n rows of E • T • F .

Similarly take the last n rows of E • T • F . We can have another n × n matrix E 2 with a 2 zero rows which on composition with F 2 result in the same last n rows of E • T • F . Now if E forgetting map removed equations from the end of the list of public keys, a composition of a simple permutation map along with this new defined way of representation gives us the original set of P 0 . Lemma 4.2.5. Let Φ a ∈ F 2n×2n q be a linear transformation of co-rank 'a'. Also let T ∈ F 2n×2n q be a linear transformation that composes with the central map polynomials (F 1 , F 2) ∈ F 2n q [x 1 , . . . , x n]. Using Proposition 4.2.4, consider there exists equivalent forgetting maps, Φ a 1 ∈ F n×n q and Φ a 2 ∈ F n×n q . Also consider, the linear transformation T ∈ F 2n×2n q to be the identity matrix. There exist a nonsingular linear transformation U ∈ F 2n×2n q and polynomials π 1 , π 2 ∈ F q n [X] of degrees q a 1 and q a 2 respectively, such that a 1 + a 2 = a and Φ a • T = Φ a • I 2n = U • (ϕ -1 , ϕ -1) • (π 1 , π 2) • (ϕ, ϕ), where I 2n is the identity matrix, ϕ : F n q → F q n and the composition function • works component wise.

Appendix E Some Additional Intermediate Equations

In each case, let F 1 and F 2 be the public keys represented over the extension field and D 1 and D 2 be the corresponding ciphertext represented over the extension field on the evaluation of F 1 and F 2 . Let H 1 = F 1 -D 1 and H 2 = F 2 -D 2 .

1. For EFC - 2 (1), number of quadratic polynomials observed at Step degree 3 = 4n. We have been able to theoretically find the following 3 extension field equations which represent 3n equations over the base field.

1. (α 2 (χ)χ + α(χ))H 2 + β(χ)H 1 = 0 2. β 2 (χ)H 1 + α 2 (χ)H 2 2 + α(χ)β(χ)H 2 = 0 3. α 4 (χ)χ 2 H 2 2 + β 2 (χ)H 2 1 + α 2 (χ)H 2 2 = 0 2. For EFC F - 2 (1), No quadratic equations are observed at any intermediate equations, but found some intermediate equations though theoretical manner, and then used those equations, found degree of regularity decrease to 3 from 4. 1. β 2 (χ)F 1 + α 2 (χ)F 2 2 + α(χ)β(χ)F 2 = 0 Additionally, we found the following combinations of the public keys and their Frobenius powers for some instances of EFC.

1. For EFC - 2 (2) with a = (2, 0) we observe 3n quadratic polynomials at Step degree 3, while the following combination (referring to n of those) can be