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Abstract 
Oral delivery of drugs and biologics has challenged the development of hybrid delivery devices that 
combine nanoparticles and polymeric systems. Such combination allows to merge the technological 
advantages of the two formulations and to improve their pharmaceutical performance which is usually 
limited by multifaceted biological challenges.  
The aim of the present work was the development of hybrid polymeric-lipid systems based on 
nanoemulsions (NEs) loaded into a chitosan sponges and supersaturable self-microemulsifying drug 
delivery systems (S-SMEDDS). Both systems were designed for improving intestinal residence time 
following oral administration and to increase local or systemic drug absorption. 
In the first part of this thesis, mucopenetrating NEs have been designed and optimized by mean of an 
experimental design. Stable NEs showing a droplet size of 100 nm and a neutral surface charge were 
obtained. NEs were efficiently dried using spray-drying and freeze-drying overcoming major challenges 
related with the production of dry powders from oil based systems. Then, an original structural 
characterization of NEs, with an in-depth focus on the NE shell crystalline and fluid nature was 
performed via X-ray diffraction, differential scanning calorimetry (DSC) and a novel polarity-sensitive 
fluorophore. NEs proved to be non-toxic on Caco-2 cells at concentration higher than 1 mg/mL, while 
a time- and concentration-dependent inhibition of cell viability was observed on HCT 116 cells being 
the threshold of toxicity at 313 µg·mL1 after 24 h. The NEs mucopenetrating potential was confirmed 
by the absence of surface affinity and thermodynamic interactions with mucins, together with the rapid 
diffusion in a preformed mucins network. The natural polymer chitosan was used as mucoadhesive 
macrosystem to load mucopenetrating NEs and prepare nanocomposite sponges by freeze-drying. The 
sponge matrix allowed to sustainably release NEs in simulated biorelevant fluids (FaSSIF-V2) showing 
28% release in 2 h followed by a plateau at 50% until 72 h. Moreover, in vivo intestinal residence time 
was enhanced for sponges compared to NE alone when orally administered to mice. 
As a second part of this work, SMEDDS intended for the solubility and bioavailability enhancement of 
a hydrophobic anticancer model benzoimidazole drug were formulated and optimized. The 
hydroxypropyl cellulose (HPC) polymer was added as precipitation inhibitor to create supersaturable 
SMEDDS (S-SMEDDS). S-SMEDDS improved drug loading and system stability in simulated 
intestinal fluids compared to SMEDDS. Systems enhanced epithelial permeability in intestinal Caco-2 
cell monolayers via a transient and reversible opening of tight junctions. Moreover, plasmatic drug 
concentrations in mice after oral gavage indicated that S-SMEDDS provided sustained drug absorption 
up to 24 h, 4.5-fold higher AUC and slower elimination rate compared to free drug dispersion in HPC, 
thanks to their ability in maintaining the drug in a supersaturated state over time. 
Overall, this thesis provided an extensive investigation on hybrid formulation strategies aimed at 
overcoming the biological hurdles for intestinal delivery. The combination of nanosystems with 
additional delivery approaches proved to be a winning strategy for a complete control over oral 
administration in view of both local and systemic treatment. 
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Résumé
L'administration orale de médicaments a nécessité le développement de systèmes de délivrance 
hybrides, qui combinent des nanoparticules avec des systèmes polymériques. Une telle association 
permet de combiner les avantages technologiques des deux formulations et ainsi d'améliorer leurs 
performances pharmaceutiques. 
Ce travail de thèse a pour objectif de développer deux types de systèmes hybrides polymères-lipides. Le 
premier système incorpore des nanoémulsions (NE) au sein d’une éponge de chitosan. Le second repose 
sur les systèmes auto-émulsionnables sursaturables (S-SMEDDS). Les deux systèmes ont été conçus 
pour prolonger la durée de rétention intestinale et ainsi augmenter l'absorption localeou systémique des 
médicaments. 
La première partie de ces travaux de thèse met en avant les études de formulation des NE et leur 
optimisation au moyen d’un plan d’expériences. Les NE obtenues étaient stables et mesuraient 100 nm 
en taille. Les NE ont été efficacement séchées en utilisant les technologies de spray-drying et de 
lyophilisation. Ensuite, une caractérisation physico-chimique de la structure des NE a été effectuée 
(diffraction à rayons X, calorimétrie à balayage différentiel et par le biais d’un nouveau fluorophore 
sensible à la polarité). La couche de surfactants était fluide, sa nature cristalline ou amorphe dépendant 
des conditions environnementales. Les NE se sont révelées cytocompatibles sur cellules Caco-2 à une 
concentration supérieure à 1 mg.mL−1. L'absence d'affinité de surface avec les mucines, ainsi que la 
diffusion rapide dans un réseau de mucines préformées ont confirmé que les NE possèdent des propriétés 
muco-pénétrantes. Les NE ont ensuite été mélangées avec du chitosan, un polymère naturel qui possède 
des propriétés muco-adhésives, et des éponges hybrides chitosane-NE ont été préparées par 
lyophilisation. La matrice de l’éponge a permis la libération soutenue des NE dans des fluides 
intestinaux simulés (FaSSIF-V2). De plus, les études de biodistribution in vivo ont démontré que les 
éponges prolongeaient la durée de rétention intestinale des NE par rapport aux NE seules, lorsqu'elles 
étaient administrées par voie orale à des souris. 
La deuxième partie de la thèse visait à formuler et optimiser des SMEDDS destinés à améliorer la 
solubilité d’un médicament anticancéreux hydrophobe modèle, appartenant à la classe des 
benzimidazoles. Le polymère hydroxypropylcellulose (HPC) a été ajouté comme inhibiteur de 
précipitation pour créer des SMEDDS sursaturables (S-SMEDDS). Les S-SMEDDS augmentent le taux 
d’encapsulation du médicament et la stabilité du système dans les liquides intestinaux simulés comparé 
aux SMEDDS. Les systèmes augmentent la perméabilité intestinale grâce à l’ouverture réversible des 
jonctions serrées, comme observé sur des monocouches de cellules Caco-2. Enfin, l’administration par 
gavage oral à des souris a démontré que les S-SMEDDS augmentaient le temps de circulation 
plasmatique, grâce à leur capacité à maintenir le médicament dans un état sursaturé au fil du temps.  
Dans l’ensemble, cette thèse présente une étude approfondie des systèmes de délivrance hybrides pour 
le ciblage intestinal. La combinaison de nanosystèmes et de polymères s’est avérée une stratégie 
intéressante pour permettre un contrôle complet de l’administration orale des médicaments dans la 
perspective d’un traitement local ou systémique.
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from –80 °C to 80 °C at a 10 °C·min-1 rate. Data corresponding to the second cooling (1) and third 
heating (2) steps. (3) DSC thermogram of blank NE. Step 1: heating scan from +20 °C to +160 °C; 
step 2: cooling scan from +80 °C to -80 °C; step 3: heating scan from -80 °C to +80 °C. (4) XRPD 
patterns of: (A) S1 as powder, (B) S1 in water, (C) mixture of dry S1 and S2 (SMR = 2.5), (D) blank 
NE in colloidal suspension, (E) blank NE after complete water evaporation, (F) freeze-dried blank NE 
powder. 
Fig. 9 (A) Effect of temperature on fluorescence emission of Dioll-NE; (B) Generalized Polarization of 
probes inserted in Dioll-NE as a function of temperature. 
Fig. 10 Representation of the NE structure. 

Chapter III 
Fig. 1 A) Z-stacks of NE penetration (red) in the mucin layer (10% w/v, 600 µm thickness) at time point 
10 and 180 min; B) total fluorescence signal of NE in the mucin layer (10% w/v) as a function of time 
as determined by image analysis software. 
Fig. 2 Formulation process of A) chitosan (CH) sponges and B) nanoemulsion-loaded chitosan (CH-
NE) sponges and their aspect after re-hydration. CH-NE A: sponge at low CH concentration (CH 0.1%- 
NE 2.5% w/w), CH-NE C: sponge at high CH concentration (CH 1%- NE 10% w/w). CH: chitosan 
(550 kg·mol‒1, DA 4%); NE: nanoemulsion. 
Fig. 3 SEM images of CH and CH-NE sponges. I: CH A; II: CH-NE A; III: CH B; IV: CH-NE C as 
defined in Table 1. 1: sample surface at low magnification (scale bar:400 µm); 2: sample surface at 
higher magnification (scale bar:100 µm); 3: Bulk of the sponge sample at intermediate magnification 
(scale bar:200 µm); 4 Bulk of the sponge sample at high magnification (scale bar:20 µm). 
Fig. 4 Optical images of CH B and CH-NE sponges (CH-NE B and CH-NE C). The z-axis values 535 
µm, 146 µm and 90 µm represent the maximum depth of the pores on the sponge surface. 
Fig. 5 A) Water uptake capacity of CH A sponge at pH 5, 5.5 and 7.5 in both PBS and FaSSIF-V2; B) 
Water uptake capacity of CH-NE A sponge at pH 5, 5.5 and 7.5 in both PBS and FaSSIF-V2. 
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Fig. 6 Variation of G’ and G’’ moduli and loss tangents of rehydrated CH and CH-NE sponges (PBS 
pH 7.5) at different CH and NE concentrations at an angular frequency ω = 1 rad·s1. 
Fig. 7 A) NEs release (Nile Red-loaded NE (NR-NE), 20 μg·mL1) from the nanocomposite sponge CH-
NE A in PBS and FaSSIF-V2 at pH 5, 5.5 and 7.5 up to 24 h; destructive release study to evaluate the 
effect of pH and release medium; B) NEs release (curcumin-loaded NEs (CCM-NEs), CCM 
50 μg·mL1) from nanocomposite sponges at different NEs and CH concentrations in FaSSIF-V2 at pH 
7.5 up to 24 h, pH 5.5 up to 48 h and pH 5 up to 72 h; cumulative release study to evaluate the effect of 
chitosan and nanoemulsions concentration. 
Fig. 8 Cell viability of HCT-116 and Caco-2 cells after exposure to blank NE for 3h and 24h. Statistical 
data analysis: p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***; ≥ 0.05 = not significant. 
Fig. 9 A) Fluorescent images of mice whole body; B) representative ex vivo fluorescence images of 
intestines of mice sacrificed at 1, 2, 3, 4 and 6 h after oral administration of nanoemulsions (NE), CH-
NE mixture (Mixture), CH-NE sponge (Sponge). 
Fig. 10 A) Contents of nanoemulsion (NE), NE-loaded chitosan mixture (Mixture), NE-loaded chitosan 
sponge (Sponge) in different parts of the intestinal tract following oral administration at time 1, 2, 3, 4 
and 6 h; B) Dissection scheme of the mouse GI tract. Statistical data analysis in supplementary 
information Fig. S6. 

Chapter IV 
Fig. 1 A) BI chemical structure and pKa values; B) Maximum solubility of BI in various excipients 
expressed in mg·mL‒1. 
Fig. 2 A) Ternary phase diagram of SMEDDS composed of Miglyol® 812, Kolliphor® RH40 and 
Transcutol® HP/ EtOH (50/50). Red dots correspond to unsuitable formulations. Blue dots correspond 
to formulations having a nanometric size and PdI lower than 0.3. Green dots correspond to the feasibility 
domain showing microemulsion droplets of around 20 nm and PdI lower than 0.1. The selected 
formulation is highlighted with a black circle (F12, size 19 nm, PdI 0.1); B) Pseudoternary phase 
diagram. Contour plots of the predicted droplet mean size in the triangle defined by the lower and upper 
bounds of mass fractions of oil, surfactant and co-solvents with the selected optimized formulation (F12) 
indicated by a black circle. 
Fig. 3 A) Formulation of S-SMEDDS; B) Physicochemical properties of blank supersaturable SMEDDS 
(S-SMEDDS).  
Fig. 4 Stability studies of BI-loaded SMEDDS c, S-SMEDDS I and S-SMEDDS II microemulsions in 
A) simulated gastric fluids (SGF) and B) simulated intestinal fluids (SIF) up to 3h. Stability was
evaluated by mean of DLS analysis.
Fig. 5 Physicochemical properties of BI-loaded SMEDDS c and S-SMEDDS I and II following pH
adjustment from acid (time point 0 min) to alkaline (from time point 10 min to 360 min).
Fig. 6 A) Viability of Caco-2 cells after incubation with blank SMEDDS, blank S-SMEDDS, drug-
loaded SMEDDS, drug-loaded S-SMEDDS, free drug solution in EtOH for 24 h. Data are shown as
mean ± SD, n = 3. Statistical data analysis: p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***; ≥ 0.05 = not
significant. B) TEER values of Caco-2 monolayer after incubation with DiD-labelled SMEDDS and S-
SMEDDS (1 mg·mL‒1). C) Confocal microscope images of fixed and stained Caco-2 cell monolayers
grown on transwell membranes for 21 days prior to 2 h and 4 h exposure to DiD-labelled SMEDDS and
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DiD-labelled S-SMEDDS I (red). Fixed cells were stained with DAPI (blue nuclei) and Phalloidin-
iFluor™ 488 Conjugate (green tight junctions). Scale bar: 30 µm. 
Fig. 7 Plasma concentrations vs time profile after oral administration of A) drug dispersion in HPC and 
SMEDDS c (up to 6 h) and B) S-SMEDDS I and S-SMEDDS II (up to 24 h). 

Chapter V 
Fig. 1 Comparison between the two developed nanosystems, nanoemulsions (NE) and SMEDDS, as for 
their formulation process, composition and physicochemical attributes. 
Fig. 2 Comparison between the two developed hybrid nanosystems, nanocomposite sponges and 
supersaturable SMEDDS, as for their formulation process, composition, physicochemical and structural 
attributes. 
Fig. 3 Characteristics of the NE shell. 
Fig. 4 Suggestion of the loading of nanoemulsion (NE), nanocomposite sponge and S-SMEDDS in 
enteric capsules. 
Fig. 5 Summary of the mechanisms of NE release from the nanocomposite sponges of different 
composition, expressed as NE/CH ratio (CH-NE A: NE/CH ratio 25, CH-NE C: NE/CH ratio 10, CH-
NE B: NE/CH ratio 2.5). 
Fig. 6 Combination of mucoadhesion and mucopenetration properties in nanocomposite sponges. 
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General introduction 
Oral delivery is considered the favoured route of administration for both local and systemic delivery of 
a wide range of Active Pharmaceutical Ingredients (APIs). Advantages arise from the intestinal 
extensive surface area for drug absorption and induction of mucosal immunity, the possibility of self-
administration which ameliorate patient compliance, and the low production costs [1–3].  
However, oral drug delivery faces major obstacles related to drug precipitation or degradation in the 
harsh gastric medium, and low intestinal residence time and inefficient absorption due to intestinal 
peristalsis, rapid clearance, digestion process, mucus and epithelial barriers [4].  
In this frame, the use of nanoparticles proved to be a promising approach to modulate drug absorption 
or enhance drug local therapeutic efficacy following oral administration. By leveraging mechanism of 
passive (mucopenetration, bioadhesion to the inflamed intestinal area, enhanced paracellular or 
transcellular transport) or active targeting, a variety of nanosystems have been developed [5]. 
Among them, lipid-based drug delivery systems (LBDDS), namely nanoemulsions (NE) and self-
emulsifying drug delivery systems, are attractive candidates because of their ability to increase solubility 
and permeability of poorly water soluble drugs thus enhancing bioavailability [6–8]. NE are 
thermodynamically unstable colloidal dispersions consisting of two immiscible liquids (water and oil), 
with one of the liquids being dispersed as nanometric droplets in the other liquid and stabilized by a 
surfactant shell [9,10]. NE can be produced by both high and low energy methods and their stability can 
be improved by conversion in solid dosage forms trough freeze- or spray-drying [11,12]. Self-
emulsifying drug delivery systems are anhydrous pre-concentrates of NEs and microemulsions able to 
spontaneously form nano- (SNEDDS) or microemulsions (SMEDDS) upon dispersion in intestinal 
intraluminal fluids [13]. As with NE, their conversion in solid dosage form has been proposed to improve 
their stability [14]. 
Despite the several technological advances, some biological challenges, such as poor stability, 
improvable drug loading, modulation of drug release, short intestinal residence time, are still preventing 
these delivery strategies from meeting the many therapeutic requirements [15]. 
The pressing need for improved technologies to serve clinical needs has led to design of novel delivery 
platforms based on the combination of conventional delivery systems [16]. Notably, nanoparticles and 
polymers were combined in a single delivery device as a hybrid nanosystem. The polymer was integrated 
in the form of 3D network in which the nanoparticles were embedded as in the case of the matrix 
structured hybrid systems, also referred to as polymeric nanocomposites, or in the form of 
solution/dispersion in which the nanodroplets were suspended as in the case of the self-emulsifying 
polymer hybrid systems. The synergy between nanosystem and polymer offers the possibility of a 
precise control over drug delivery enhancing drug therapeutic efficacy and minimising side effects [17].
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Hypothesis and aim of the thesis 
In the present work, hybrid polymeric nanosystems have been tailored to improve intestinal delivery.  
Firstly, we assumed that the intestinal mucus barrier could be targeted to refine and prolong intestinal 
delivery. By designing mucopenetrating nanoparticles able to efficiently cross the mucus layer, the 
associated drug will attain the underlying epithelium. By embedding such nanoparticles inside chitosan 
sponges able to adhere to the mucus layer, the intestinal residence time of the active will be increased.  
This will lead to enhanced drug therapeutic efficacy in a future systemic or local delivery. 
Secondly, we hypothesized that the use of precipitation inhibitor associated to SMEDDS will increase 
drug loading and stability in the GI tract. By adding such PI to SMEDDS also the intestinal permeability 
can be altered resulting in an increase of the transcellular and/or the paracellular drug transport. The 
intestinal absorption will be maximised and the drug blood circulation will be prolonged. 

The main aim of this PhD work was to design hybrid polymeric nanosystems to improve intestinal drug 
delivery. Two different hybrid nanosystems were designed: i) polymeric nanocomposites made of 
nanoemulsions (NEs) loaded into chitosan (CH) sponges and ii) supersaturable S-SMEDDS by 
combination of conventional SMEDDS with the polymeric precipitation inhibitor 
hydroxypropylcellulose (HPC).  

To reach this aim, specific objectives were: 
1. to prepare, optimize and physicochemically characterize the nanosystems, NE and SMEDDS;
2. to combine the nanosystems with polymers (CH or HPC) to obtain their hybrid counterparts,

nanocomposite sponge and S-SMEDDS;
3. to evaluate in vitro stability and release profile in simulated GI fluids, mucopenetrating ability,

cytocompatibility and intestinal permeability on Caco-2 cells;
4. to study in vivo biodistribution and pharmacokinetic profile after oral administration to mice.

The manuscript is divided in two parts: a bibliographical review (Chapter I) and an experimental section 
that is further divided in 3 chapters (Chapter II, III and IV). 

Chapter I includes a bibliographic report describing the main challenges in the oral administration of 
drug and biologics and the advantages offered by delivery devices. A focus on the technological aspects 
of lipid-based drug delivery systems and in particular of nanoemulsions and self-emulsifying drug 
delivery systems (SEDDS) is provided. Then, the role of hybrid formulations in ameliorating the 
technological and pharmacological performance of the conventional delivery strategies is discussed. 

Chapter II is dedicated to the formulation aspects of nanoemulsions. The process of nanoemulsion 
preparation, optimisation and physicochemical characterisation is presented. A proof-of-concept of the 
feasibility of converting NE in solid dosage forms is provided. Lastly, the influence of the NE 
composition on its structure is highlighted. This part includes an original research article published in 
the journal Colloids and Surfaces A, https://doi.org/10.1016/j.colsurfa.2020.124614. 

https://fr.pons.com/traduction/français-anglais/l’hydroxypropylcellulose
https://doi.org/10.1016/j.colsurfa.2020.124614
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Chapter III focuses on the design of nanocomposite sponges. Firstly, the in vitro evaluation of the NE 
mucopenetrating performance and cytocompatibility is presented. Then, the NE loading in chitosan 
sponges loading of NE in chitosan sponges and the in vivo evaluation of the nanocomposite ability to 
increase the residence time in the mouse intestine are described. Results were submitted to the Journal of 
Controlled Release. 

Chapter IV is devoted to the design of SMEDDS and S-SMEDDS. The work presents the process 
of system optimisation, the evaluation of stability in the gastrointestinal environment, the effect on 
the intestinal permeability and the evaluation of the pharmacokinetic profile in vivo after oral 
administration to mice. The work was submitted to the Drug Delivery and Translational Research 
journal. 
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Chapter I: The oral route of administration: 
physiological barriers and drug delivery technologies 

I.1 Oral drug delivery
Oral delivery is considered the preferred route of administration, encompassing over 50% of FDA
approvals [1] since it offers several advantages, such as the possibility of self-administration, flexibility
in dosage regimen which ameliorate patient compliance, and the avoidance of sterile conditions for oral
products manufacture reducing production costs [2]. The oral route is of interest for physiological
reasons, offering an extensive surface area (300-400 m2) for drug absorption and induction of mucosal
immunity [3,4]. Regardless of the clear advantages offered by the oral route, the therapeutic efficacy of
several hydrophobic and hydrophilic drugs and biologics (peptides, proteins and nucleic acids) is limited
by their poor aqueous solubility and/or permeability and chemical/enzymatic stability [5].
In an attempt to overcome these challenges, APIs have been encapsulated within orally administrable
delivery devices, namely macro-scaffolds, micro- and nanoparticulate systems. The objective was to
protect APIs from the harsh conditions of the gastrointestinal (GI) environment and to release them at
the target site [6,7].
Oral drug delivery can target stomach, small intestine and colon. The interest in gastric delivery lies in
the enhancement in efficacy of drugs that are mainly absorbed in the stomach and in the treatment of
Helicobacter pylori infections that can lead to gastric ulcers or chronic gastritis [8,9]. When the target
is the small intestine, the goal is to achieve enhanced API absorption through the mucosal wall into the
systemic circulation [10,11]. Finally, drug delivery to the colon aims at improving local delivery to
colorectal tissues or at providing macromolecules systemic uptake by minimising previous absorption
in the GI tract [12,13].
In the design of delivery systems for an effective intestinal delivery, the main biological barriers to
overcome can be divided into biochemical-luminal, cellular, immune and absorption-activity related
barriers [14] (Fig. 1).  In the following paragraphs, an introduction to the structure, physiology and
biological barriers of the intestinal tract is presented. The main strategies to challenge them are also
described.

I.1.1 Structure of the intestine
The intestine, or bowel, is a winding muscular tube extending from the stomach to the anus, grossly
divided in small and large intestine [15]. Throughout its length four tissue layers can be identified: the
mucosa, the submucosa, the muscularis externa and the serosa. The mucosa is in turn subdivided into
epithelium, lamina propria and muscolaris mucosae [16].
The small intestine includes duodenum, jejunum, and ileum. [17]. Its lumen is arranged in plicae
circulares, villi and microvilli that together increase the absorptive surface of the small intestine by 600-
to 1000-fold for a total of 250 to 400 m2. Within each villus are an arteriole and a venule that contribute
to a network of capillaries for blood uptake and a lacteal, a lymphatic capillary aimed at the absorption
of lipid components. In between the villi are the crypts of Lieberkühn, invaginations where pluripotent
intestinal epithelial stem cells reside, responsible for the replacement of the epithelium every 3 to 6 days
[18]. The small intestine predominant cell type are the enterocytes, goblet cells, M cells,
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enteroendocrine, Paneth and stem cells [18-22].  Besides, the large intestine is divided into four main 
regions: cecum, colon, rectum, and anus. The cecum represents a small portion of the large intestine; 
the peculiarity is the small appendix that attaches to it, which contains lymphoid tissue, suggesting an 
immunological function. In contrast with the small intestine, the colon epithelium does not present villi 
and microvilli but invaginations named intestinal glands. The colon mucosa is a simple columnar 
epithelium made mostly of enterocytes and goblet cells [23,24]. The normal colonic microflora of 
humans is extremely large and complex. The composition of this bacterial population is affected by 
host-mediated factors, microbial factors, microbial interactions, and environmental factors [25].  

I.1.2 Biological barriers to intestinal delivery
I.1.2.1 Biochemical-luminal barriers
The biochemical-luminal barriers of stomach and intestine are the first biological hurdle for orally
administered drugs. In the stomach these barriers are represented by the harsh gastric medium where the
low pH (pH 1–2.5) can affect drug solubility causing precipitation [26], and the gastric enzymes such
as pepsin and gelatinase that can degrade active compounds [27,28]. Once in the intestine, the peristalsis
and rapid clearance can prevent complete drug absorption and affect the permanence of delivery devices.
During the fed state, segmentation and peristalsis propel the food bolus through the small intestine and
into the colon for a mean transit time of 84 min in small intestine and 14-24 h in the large one. When
food is ingested, the transit is interrupt, thus increasing mucosal contact time and allowing more efficient
absorption of nutrients, electrolytes and water [18,21]. The drug intake in fed conditions could thus seem
advantageous to enhance oral bioavailability, particularly in the case of highly lipophilic
Biopharmaceutical Classification System (BCS) Class II drugs. However, co-administration with food
has to be monitored to avoid sub-therapeutic plasma drug concentrations or problematic effects for the
drugs with a narrow therapeutic index [29].
Luminal fluids can constitute a further obstacle for oral drug delivery [18]. If on one side the overall
availability of fluids is a prerequisite for dissolution and absorption of hydrophilic molecules, it is also
the main cause for drug precipitation and reduced pharmacological activity of poorly water-soluble
drugs administered at high doses [30]. Instead, the colon has a reduced luminal fluid volume in an almost
neutral environment, supplemented by a higher viscosity of the luminal content, due to the higher water-
absorbing capacity [31]. This limit drug absorption representing a further obstacle.
The impact of digestion is essential to the understanding of the fate of delivery devices, especially lipid-
based ones. Lipid nanosystems composed of digestible excipients are processed in the intestine by
biliary salts and pancreatic enzymes, and the loaded active is absorbed together with dietary fats.
Conversely, non-digestible nanoparticles are transported intact across the intestinal epithelium [32].
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Fig. 1 Physiological barriers to oral delivery. 

I.1.2.2 Mucins layer barrier
Mucins are glycosylated proteins produced by epithelial cells which line the entirety of the intestinal
tract to protect the mucosa from pathogens and mechanical stresses [33]. They can be divided into
secreted and transmembrane mucins. The transmembrane mucins are present in the small intestine where
they form a coating layer on the enterocytes surface known as the glycocalyx [34]. The glycocalyx
enables the attachment of normal flora, limits colonisation by pathogens and acts as size-selective
diffusion barrier for bacteria, viruses and nanoparticles [35]. Besides, the secreted mucins constitute the
lubricant mucus layer. Mucus is secreted by the goblet cells and typically contains up to 95% of water,
mucins, sloughed cells, bacteria, lipids, salts, proteins, macromolecules and cellular debris [20]. Mucins
form the skeleton of the intestinal mucus and give it its gel-like properties. They are mainly composed
of negatively charged glycoproteins that take turn to hydrophobic cysteine-rich domains creating a
structured network with mesh size of 200-500 nm in which pathogens are trapped via multiple low-
affinity interactions [34]. The overall mucus surface is anionic, fostering interactions with polycations.
Mucus thickness, turnover and pH vary depending on their location in the GI tract of mucus membrane.
The pH ranges between 5.5 and 7.5 in the small intestine, while values around 7 are normally recorded
in the colon [36,37]. Thickness is highly dependent on digestive activity, dietary and physio-pathological
conditions. If the colon has a two-layered system with an inner mucus layer of around 100-400 µm in
thickness and an outer one 300-700 µm thick, the small intestine possess one single and discontinuous
layer of around 50 to 450 µm [21]. The small intestinal mucus is not anchored to the epithelial surface
and moves with the peristaltic waves in a distal direction. While, the inner firm mucus layer of the colon
adheres firmly to the epithelium surface by transmembrane domain and cannot be remove by simple



24 

shear [22].  By acting as a size-exclusion filter, the mucus constitutes a barrier for poorly soluble drugs 
and nanosystems, challenging the quest for smarter delivery devices [37,38]. 

I.1.2.3 Immune barrier
The small intestine provides the largest immune barrier between epithelial surface and body interior,
making the induction of mucosal immunity by oral administration convenient, highly efficient and long-
lasting [39]. Both the small and large intestines have essential immunological roles. In the small intestine
the M cells in Peyer’s patches sample antigens from the gut lumen, while the large intestine is rich in
innate immune cells such as macrophages and neutrophils that enable the immune system activation
occurring through the production of mucosal antibodies immunoglobulin A (IgA) and systemic
antibodies and T-cell-mediated response [14,21]. Because of these reasons oral vaccination is an
attractive therapeutic strategy, counting seven live oral vaccines approved by the FDA [40].

I.1.2.4 Cellular barrier
Mucosal cells form a continuous monolayer regulating the passage of molecules and particles from the
apical surface facing the lumen to the basolateral compartment. Several cell types can compose the
mucosa. Enterocytes, aimed at nutrients absorption, are the predominant cell type. In the small intestine,
each enterocyte presents at its luminal surface thousands of microvilli, actin-based membrane
protrusions which appear as a striated brush border, serving at increasing the absorptive surface area
[18]. M cells in Peyer’s patches which are relatively less protected by mucus secretions and drug efflux
transporters like P-glycoprotein (PgP), are a common delivery target for nanoparticles [19]. Paracellular
transport between adjacent cells is restricted by tight-junction protein complexes, adherent junctions and
desmosomes [41,42]. Transport across the cellular barrier, referred to as transcellular transport, is a
passive mechanism for highly lipophilic molecules, while large molecules and nanoparticles are actively
internalized by enterocytes or M cells via a pinocytosis mechanism resulting from either
micropinocytosis, clathrin-mediated endocytosis, caveolae-mediated endocytosis or clathrin- and
caveolae-independent processes [43]. Further hurdle is the expulsion back in the lumen by efflux pumps
expressed on the apical membrane of enterocytes, as the PgP, reducing drug absorption and
bioavailability [44].

I.1.2.5 Absorption-related barriers
The absorption of APIs and/or delivery systems into systemic circulation occurs through the portal vein
or the lymphatic system [29]. The lumen of the small intestine is arranged in plicae circulares, villi and
microvilli that together increase the absorptive surface of the small intestine by 600- to 1000-fold for a
total of 250 to 400 m2. Within each villus are an arteriole and a venule that contribute to a network of
capillaries for blood uptake and a lacteal, a lymphatic capillary that is mainly aimed at the absorption of
lipid-containing chylomicrons, lipid-soluble vitamins and lipid-based systems. In between the villi are
the crypts of Lieberkühn, invaginations where pluripotent intestinal epithelial stem cells reside,
responsible for the replacement of the epithelium every 3 to 6 days [18]. While the colon epithelium
does not present villi, but has invaginations (intestinal glands) and hence the available area for the
absorption is much smaller [45]. Shortcomings deriving from the enterohepatic circulation of APIs,
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namely first-pass metabolism, bile secretion/elimination, altered pharmacokinetics and 
pharmacodynamics, make the lymphatic the preferred route of absorption [17].  

I.2 Biological challenges in oral drug delivery: how to overcome intestinal barriers
Several systems presenting different degrees of complexity have been developed to target specific
intestinal portions. The main approach exploit peculiarities of the intestinal tract and distinctive features
of small and large intestine for smart drug delivery.
One of the major goals in drug delivery to the small intestine is to increase the efficiency absorption and
systemic bioavailability. In parallel with technology solutions for the treatment of systemic diseases, the
small intestine can be targeted for oral local vaccination purposes and for the management of local
conditions such as infection, chronic inflammations, diarrhoea, enzyme deficiency and injury [46].
Instead, colon targeted drug delivery is highly desirable for the local treatment of several disorders such
as inflammatory bowel diseases (IBD) and colon cancer and for systemic delivery due to the presence
of lower levels of digestive enzymes and bile salts than small intestine and the protracted residence time
(up to 24 h) [46]. Initially, for a more efficient intestinal delivery, macro-scaled like enteric capsules
and pellets were developed to simply avoid degradation in the gastric acidic environment and to
modulate the release of the loaded active at desired pH in duodenum (pH 4–5.5.0), jejunum (pH 5.5–
7.0), ileum (pH 7.0–7.5) or colon (pH 6‒6.7) [47]. Other commonly exploited GI features intended
mostly for a smart colon targeting were i) transit time via time-controlled release system releasing the
drug after a predetermined lag time, ii) pressure as the intense colonic peristalsis can promote drug
release, and iii) microflora for the enzyme-controlled degradation by colonic anaerobic bacteria of
polymer-based delivery platforms [48–50]. Then, further insight into intestinal barriers allowed the
design of delivery approaches with additional functionalities including facilitation of paracellular and
transcellular transport, enzyme inhibition, mucopenetration, mucoadhesion and physical insertion [51]
(Fig. 2).
One of the first reported strategies to promote transcellular transport has been the creation of prodrugs
[52]. By conjugating propranolol to dendrimers the drug solubility was increased and PgP efflux protein
transporters was bypassed leading to an enhancement in absorption and bioavailability [53]. Prodrugs
have also been exploited as colon-targeting strategies. Thanks to the covalent linkage to a carrier (amino
acids, polysaccharides, polymers, cyclodextrins), the prodrug remained intact through stomach and
small intestine and released the active moieties in the colon, following enzymatic hydrolysis [54]. An
exemplary case is that of sulfasalazine, a prodrug consisting of mesalazine as active ingredient linked
through an azo-bound to the carrier molecule sulfapyridine, for the treatment of inflammatory bowel
disease (IBD) [55].
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Fig. 2 Mechanisms of action of delivery devices used for oral drug delivery. Common approaches 
include facilitation of transcellular transport, opening up of paracellular transport, mucopenetration, 
mucoadhesion, physical insertion and enzyme inhibition. Fig. adapted from Brown et al. (2020) [38]. 

Nanoparticles, such as polymeric, inorganic, micellar and liposomial nanosystems, offered several 
advantages for the oral delivery of drugs and biologics [51]. Among them, lipid based nanosystems can 
increase the paracellular or transcellular permeability by opening tight junctions or by increasing 
membrane fluidity notably when they contain medium chain fatty acids and lysophospholipids [56,57]. 
Moreover, the presence of specific surfactants as vitamin E TPGS (d-α-Tocopheryl polyethylene glycol 
1000 succinate), Pluronic (poloxamer) and Kolliphors (Polyoxyl castor oil) in their shell, enable them 
to inhibit efflux transporters by altering the transporter structure or by changing the transporter 
expression [58]. Further formulation strategies have been addressed to exploit intraluminal fluids as 
aqueous phase for nano- and microemulsion formation in situ trough self-emulsifying drug delivery 
systems (SEDDS) [59]. Also several vehicles have been developed for oral vaccination purposes aiming 
at delivering vaccines to the inductive site in gut-associated lymphoid tissue (GALT) [39,40,60,61]. 
However, the efficient targeting of the intestinal epithelium is often hampered by the presence of the 
mucus layer [4]. To overcome the mucus barrier the nanoparticle surface has been coated with 
hydrophilic neutrally charged polymers such as polyethylene glycol (PEG) [62], poly(2-alkyl-2-
oxazolines) (POZ) [63], polydopamine (PDA) [64], dextran-containing polymers [65] and poly-(N-(2-
hydroxypropyl) methacrylamide) (PHPMA) [66] in order to minimize interactions with mucus. Also 
nanoemulsions have been rendered mucopenetrating by incorporation of PEGylated surfactants in the 
NE shell [67,68]. Alternatively, oppositely charged polyelectrolytes such as polyacrylic acid (PAA) and 
chitosan (CH) [69] or zwitterionic polymers such as dilauroylphosphatidylcholine lipids [70] has been 
included to create nanoparticles that mimic viruses mucopenetrating attitude. Further mucopenetrating 
strategy is particle decoration with mucolytic enzymes like papain, however the disintegration of the 
mucus resulting in a temporary loss of mucus protective activity and in pathogens free entry make it not 
ideal for oral drug delivery [71]. 
Nanoparticles for colon delivery have been designed to passively target the site of inflammation [72]. 
Nanoemulsions were coated with mucoadhesive polymers such as pectin and carrageenan to maximise 
interactions with mucins [73]. Cationic nanosystems were designed to adhere to the negatively charged 
mucus, whose production is increased in Crohn's disease, leading to a thicker mucus layer in ulcerated 
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areas [74]. While anionic nanoparticles were designed to adhere to inflamed tissue via electrostatic 
interaction with positively charged proteins, namely eosinophil protein and transferrin, that are 
overexpressed in inflamed colon sections of IBD patients [75]. Site-specific delivery into the colon was 
also achieved via nanoparticles that disintegrated preferentially at high colonic pH levels. Budesonide-
loaded nanospheres prepared using polymeric mixtures of poly(lactic-co-glycolic acid (PLGA) and pH-
sensitive polymer Eudragit® S100 (Poly (methyl methacrylate) derivative) showed higher colon levels 
and specific adhesion to the ulcerated and inflamed mucosal tissue of the rat colon [76]. Further colon 
delivery strategy took advantage of the high levels of reactive oxygen species (ROS) produced at the 
site of colonic inflammation by designing nanoparticles that degrades selectively in response to ROS 
[77]. Together with all abovementioned strategies based on a passive targeting mechanism, nanosystem 
(and loaded-drug) absorption has been achieved through active targeting by functionalising the particle 
surface with ligands which specifically interact with different cells, transporters and disease sites [78]. 
Neonatal Fc receptors (FcRn), lectins, vitamins present on enterocytes have been explored as targets for 
nanoparticles delivery of insulin or paclitaxel, while M cells and dendritic cells have been targeted for 
oral vaccination purposes [78]. Recently, nanostructured lipid carrier (NLC) has been proved to have an 
inherent targeting potential for enteroendocrine cells without external ligand modification, offering a 
novel platform for the treatment of diabetes [79]. Lastly, nanoparticles were prepared to actively target 
the inflamed colon by using ligands coupled to their surface since the expression of receptors, adhesion 
molecules and proteins can be altered on the cellular surface of colonic tissues under inflammatory 
conditions [80]. 
As an alternative to nanoparticle, several macrosystems have been developed. Wafers, also referred to 
as thin films or intestinal patches, are mucoadhesive platform intended to increase the retention time of 
delivered actives specifically in the upper small intestine. In recent years, water-insoluble, enteric and 
pH-sensitive polymers, fragrances, absorption enhancer, buffer substances and preservatives have been 
included in their design to create multi-layered intelligent tunable platforms [81]. pH-responsive 
hydrogels and beads have been developed for protecting the cargo in the stomach and release it in 
intestinal basic pH [82]. These systems are frequently composed of polysaccharides such as 
carboxymethyl cellulose, alginate, pectin, and chitosan that confer them mucoadhesive or bioadhesive 
properties for enhanced residence time and sustained API release [14,33]. pH sensitive hydrogels made 
of cross-linked polymers able to shrink at low pH and to swell at higher pH such as alginate hydrogels 
were specifically used for colon targeting purposes [83]. Alternatively, hydrogels and scaffolds were 
designed as enzyme-controlled delivery platforms that are specifically degraded by colonic anaerobic 
bacteria, notably azoreductase, glycosidases, esterases and amidases [84]. Microneedles, primarily 
intended for transdermal and intradermal applications [85,86], have recently seen application in 
intestinal drug delivery. Examples are the ‘robotic’ RaniPill™ to delivery biologic therapies developed 
by Rani Therapeutics that successfully completed phase 1 of the first-in-human safety study [87] and 
the luminal unfolding microneedle injector for macromolecule drugs as insulin designed by Traverso et 
al. that proved its efficacy in ex vivo human and in vivo swine studies [88]. 
Among all oral delivery systems able to cope with the abovementioned barriers, lipid-
based nanoparticles have received much attention in recent decades. In the next sections the 
advantages and technological challenges of these lipid based system and in particular of 
nanoemulsion and self-emulsifying drug delivery systems will be presented.
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I.3 Lipid-based drug delivery systems
Lipid-based drug delivery systems (LBDDS) is a wide-ranging designation for formulations containing
a dissolved or suspended drug in lipid excipients. These excipients are oils to improve drug dissolution,
surfactants to aid emulsification/solubilisation and co-solvents to favour solvation/dispersion. They are
usually composed of fatty acids or lipophilic hydrocarbon chains linked to a hydrophilic group like
glycerol, polyglycerol or polyalcohol. The melting range, solubilisation capacity, and miscibility
properties of the excipient are defined by the fatty acid chain length and degree of unsaturation. The
amphiphilicity or dual polar and non-polar nature of oils and surfactants is characterized by the
Hydrophilic Lipophilic Balance (HLB), a measure of the degree to which they are hydrophilic or
lipophilic. The relative proportions of each of these materials dictate both solubility and metabolic
effects of the drug and stability of the formulation [89].
LBDDS confer a range of biopharmaceutical, pharmaceutical and commercial advantages. The primary
benefit is in increases in dissolution and intestinal solubility for lipophilic, poorly water soluble drugs,
but it is also becoming increasingly clear that they may provide advantages in enhancing permeability
and, under some circumstances, in avoiding first pass metabolism [90]. Hence they have become
attractive candidates for the preparation of pharmaceuticals, as well as diagnostics, vaccines, and
nutraceuticals [91–94]. They can be administered in a with a range of different finished dose forms
(softgels, hard capsules or lipid multiparticulates) and also provide a platform for product life extension.

I.3.1 Classification LBDDS
LBDDS include a wide range of nanosystems that can be classified as: i) vesicular systems such as
liposomes and niosomes, ii) fluid emulsified systems such as nanoemulsions (NE), microemulsions and
self-emulsifying drug delivery systems (SEDDS), and iii) solid lipid particulate systems such as solid
lipid nanoparticles (SLN), nanostructured lipid carrier (NLC) and lipid nanocapsules (LNC) (Fig. 3).

Fig. 3 LBDDS types. 

https://en.wikipedia.org/wiki/Hydrophilic
https://en.wikipedia.org/wiki/Lipophilic
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The several LBDDS differ from their structural properties [95]. Liposomes and niosomes are vesicles 
made of a lipid bilayer of phospholipids and of non-ionic surfactants, respectively. SLN, also known as 
nanosphere, are nanostructures composed of lipids which are solid at room and physiological 
temperature and surfactants [96]. NLC share similar structures to SLN, except that the solid lipid core 
is replaced by a mixture of solid lipids and liquid oil [97]. While LNC exhibit a typical core-shell 
structure, being the external shell made of solid lipids and emulsifying agents, and the core of liquid oils 
[98]. Nanoemulsions are thermodynamically unstable colloidal dispersion consisting of two immiscible 
liquids, with one of the liquids being dispersed as small spherical droplets in the other liquid (oil-in-
water, O/W or water-in-oil, W/O). NE droplets size in the nm range (generally below 300 nm) provides 
numerous advantages regarding stability towards aggregation compared to conventional emulsions, 
whose droplets are in the µm range [99]. Microemulsions are thermodynamically stable, monophasic 
and optically clear isotropic colloidal dispersions consisting of small particles (comprised of oil, 
surfactant, co-surfactant) dispersed within an aqueous medium [100]. Lastly, self-emulsifying 
nano- and microemulsions are a further category of lipid based systems, as discussed in detail in 
section I.5. 

I.3.2 LBDDS in the clinic
LBDDS accounts for 2–4% of commercialised pharmaceutical formulations [101]. The LBDDS transfer 
to the clinic dates back to 1983 with Sandimmune (Sandoz) containing cyclosporine A, the first self-
emulsifying microemulsion formulation approved by the FDA for transplant rejection. From then 
onwards, several LBDDS formulations have been marketed for a total of 36 different self-emulsifying 
formulations FDA approved for the oral route [101] (table 1). Clinical trials studying SEDDS, 
liposomes, lipid crystal nanoparticle and NE are ongoing showing promising results (table 1) as 
highlighted by the recent success of a Phase 1b clinical study of iCo's oral Amphotericin B delivery 
system (iCo 019) which began on December 9 2019 and will be an alternative to the marketed parenteral 
liposomal and emulsion formulations (AmBisome®, Amphomul®) [102,103].
Orally administered NE and SEDDS, being the subject of this thesis, will be described in detail in the 
next sections (I.4 and I.5).

Table 1 Marketed or in clinical trials oral LBDDS.
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Type of LBDDS API Indication Product/Company Phase/ ClinicalTrial.gov identifier 
SEDDS in soft gelatin capsule Cyclosporin Immunosuppressant Sandimmune®/Novartis Marketed (1983) 
SMEDDS in soft gelatin capsule Cyclosporin Immunosuppressant Neoral®/Novartis Marketed (1995) 
SEDDS IV in hard gelatin capsule Cyclosporin Immunosuppressant Gengraf®/AbbVie Marketed (2000) 
SNEDDS in soft gelatin capsule Ritonavir HIV antiviral Norvir®/AbbVie Marketed (1996) 
SEDDS in Soft gelatin capsule Saquinavir HIV antiviral Fortovase®/Roche Marketed (1997). Discontinued 
SEDDS IV in soft gelatin capsule Amprenavir HIV antiviral Agenerase®/GlaxoSmithKline Marketed (1999). Discontinued 
oil in soft gelatin capsule Valproic acid Antiepileptic Depakene®/AbbVie Marketed (1978) 
oil in soft gelatin capsule Calcitriol Calcium regulator Rocaltrol®/Roche Marketed (1978) 
SEDDS IV in soft gelatin capsule Bexarotene Antineoplastic Targretin®/Ligand Marketed (1999) 
oil in soft gelatin capsule Tretinoin Acute promyelocytic leukemia Vesanoid®/Roche Marketed (1995) 
SEDDS in soft gelatin capsule Tipranavir HIV antiviral Aptivus®/Boehringer Ingelheim Marketed (2005) 
SMEDDS as oral solution Sirolimus Immunosupressant Rapamune®/ Pfizer Marketed (1999) 
SMEDDS in hard gelatin capsule Fenofibrate Anti-Hyper Lipoproteinemic Lipofen®/ Kowa Pharmaceuticals Marketed (2006) 

SEDDS in soft gelatin capsule Nintedanib Pulmonary fibrosis Ofev®/ Boehringer Ingelheim 
Pharmaceuticals Marketed (2014) 

SMEDDS in soft gelatin capsule Calcifediol Hyperparathyroidism Rayaldee™/ OPKO Health Marketed (2016) 
Liposome Iron Iron deficiency and anemia Sucrosomial® iron/ Alesco srl Marketed (2010) 

Liposome Insulin Type 1 and 2 Diabetes HDV-I/ Diasome Pharmaceuticals 
Type 2: Phase 3/ NCT00521378 
(Completed 2009); Type 1: Phase 2b/ 
NCT02794155 (Completed 2019) 

Liposomal gel Lidocaine Anesthetic Brazilian University of Campinas Phase 1/ NCT01425840 
(completed 2011) 

Lipid-crystal nanoparticle Amphotericin B Vulvovaginal Candidiasis CAMB/MAT2203/ Matinas BioPharma 
Nanotechnologies 

Phase 2/ NCT02971007 
(completed 2018) 

Lipid crystal nanoparticle Amphotericin B Mucocutaneous candidiasis CAMB/MAT2203/ Matinas BioPharma 
Nanotechnologies 

Phase 2/ NCT02629419 
(Active, not recruiting 2019) 

Nanoemulsion Curcumin Reduction in aromatase inhibitor-
induced symptoms City of Hope Medical Center Phase -/ NCT03865992 (Recruting 2020) 

Nanoemulsion Methotrexate Left Ventricular Remodeling 
After STEMI ddMTX-LDE/InCor Heart Institute Phase 2-3/ NCT03516903 (Recruting 

2020) 

SEDDS Amphotericin B Visceral Leishmaniasis iCo 010/019/ iCo Therapeutics Phase 1-2/ ACTRN12619001762145 
(Suspended 2019) 

Emulsion Elemene Antitumoral BeiJing Yijiayi Medicine Techonoloy Co. Phase -/ NCT03166553(Recruting 2016) 

https://care.diabetesjournals.org/lookup/external-ref?link_type=CLINTRIALGOV&access_num=NCT02794155&atom=%2Fdiacare%2F42%2F11%2F2154.atom
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I.4 Nanoemulsions
Since their first article using the term “nanoemulsion” appeared in 1996 [104], NE have been widely
exploited as delivery systems for oral administration because of: i) high entrapment efficiency of
hydrophobic drugs, ii) characteristic dynamic microstructure which results in better drug solubilizing
capacity and rapid and free drug diffusion, iii) possibility to be formulated into different dosage forms
with ease of manufacture and scale-up [94,95,105].
NE applications range from food [106] to pharmaceutical industry. They are ideal vehicles for
hydrophobic drugs like antiosteoporotics [107], antidiabetics [108,109], antivirals [110,111], anti-
inflammatories [112] and antihypertensives [113]. In addition, NE have been developed for the oral
delivery of hydrophilic proteins as insulin in the form of insulin-phospholipid complex and bovine serum
albumin (BSA). The encapsulation within these systems did not alter the bioactivity, specificity and
conformational structure of the protein [114,115]. Vaccine delivery via NE has been explored by
targeting receptors on intestinal epithelial M cells to induce anti-tumor immune protection. [39].
Because of all these reasons, the design of NE is an attractive field of research. In the following
paragraphs we will sheds light on the current state of NE as for their formulation process,
physicochemical and structural characteristics and related technological challenges.

I.4.1 Formulation methods
The adequate selection of manufacturing techniques and system components allows the formulation of
NE with required physicochemical characteristics [116]. NE can be formulated by either high- or low-
energy approaches (Fig. 4). The high-energy approaches exploit mechanical devices, while in the low-
energy ones no external energy is furnished to the system and the droplets formation is spontaneous
under precise system conditions [117].

Fig. 4 Methods of nanoemulsion formulation : Low energy methods: phase inversion temperature (PIT), 
phase inversion composition (PIC), emulsion phase inversion (EPI). High energy methods: high-
pressure homogenization, microfluidization and ultrasonication.  
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I.4.1.1 High energy
High energy approaches rely on the generation of extreme disruptive forces to facilitate the oil phase
disruption in smaller droplets and to exceed the restorative tendency that would lead to droplet
coalescence. The size of the formed NE droplets is highly dependent on homogenizer type, energy
intensity, temperature and system composition (surfactant type, viscosity, interfacial tension) [118].
High-pressure homogenization, microfluidization and ultrasonication are the most commonly used high
energy methods for O/W NE production [119–122]. Major limitations to the exploitation of high energy
approaches are the extreme heat generated that may cause decomposition of actives or surfactants and
the high cost of the equipment, that are currently restricting industrial scale-up and commercialization
[123]. Worthy of mention is the use of high shear mixers notably the Ultra-Turrax®, as economic, easy
and rapid alternative approach for nanoemulsion formulation. This technique is the classic procedure
for the emulsion and microemulsion preparation, but if applied to nanoemulsion having an optimized
oil and surfactant amount (surfactant to oil ratio, SOR) it can lead to fine NE droplet size refinement
[112,124].

I.4.1.2 Low energy
Low energy methods can be classed as spontaneous emulsification or phase inversion methods.
The process of spontaneous emulsification, also referred to as self-emulsification, implies the rapid
diffusion of water-miscible solvent and surfactant molecules from the organic to the aqueous phase
without changes in the surfactant spontaneous curvature [125]. Self-micro- and nanoemulsifying drug
delivery systems (SMEDDS and SNEDDS) rely on this mechanism to generate oil in water (O/W) micro
or nanoemulsions, in which hydrophobic drugs are dispersed, upon direct dispersion in the GI tract
[126]. Insights will be given in section I.5. Besides, if modifications of the surfactant spontaneous
curvature during emulsification are involved the methods are referred to as transitional phase inversion
ones. The surfactant curvature inversion depends on a change in formulation parameters, notably the
temperature in the phase inversion temperature (PIT) method, or the composition of oil and aqueous
phases in the phase inversion composition (PIC).
In the PIT method the phase inversion involves the transformation of an emulsion from the W/O to the
O/W type or vice-versa through an intermediate bi-continuous phase thanks to changes in the surfactant
physicochemical properties with temperature [127,128]. In recent years several NE have been
formulated by PIT aiming at the delivery of hydrophobic actives such as isohexadecane [129] and
mineral oil [130]. Moreover, the PIT method has been used as a template for the production of other
nanoparticles, namely the LNC by Benoit research group [131]. A limitation of the technique is the
range of exploitable surfactants that is usually restricted to thermosensitive polyoxyethylene non-ionic
surfactants, in which the temperature variation modifies the hydration of the poly(oxyethylene) chains,
consequently increasing their solubility and changing their curvature [116].
In the PIC method an alteration in the composition such as the salt concentration leads to the phase
inversion. An example of NE preparation by the PIC is the one of lidocaine-loaded NE. Initially, a W/O
emulsion containing a high salt concentration is prepared. Upon dilution with water the ionic strength is
reduced and the salt ions are not sufficient enough to screen electrical charge on the surfactant head
groups leading to changes in the surfactant curvature from negative to positive and transition from W/O
to O/W system [132].
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Further method for NE production is the emulsion phase inversion (EPI) method. The EPI relies on a 
different type of phase inversion called catastrophic, in which the NE formation is triggered by changes 
in conditions such as the ratio between dispersed and continuous phases. Water is progressively titrated 
over a mixture of oil and hydrophilic surfactants under continuous stirring leading to the transformation 
of a W/O in a hydrogel-like intermediate multiple emulsion and finally in a stable O/W emulsion [94]. 
The method has been widely explored for the delivery of natural products having antitumor activity, 
nutraceutics, vitamins and for the formulation of NE composed of food-grade ingredients [94,133,134]. 
The main drawbacks associated with low energy methods are the limited types of oils and emulsifiers 
that can be used and the need for large amount of surfactants for droplet stabilization that can cause 
biomembrane fluidization [123]. Sometimes formulating nanoemulsions by low-energy approaches 
requires the presence of co-surfactants (such as short and medium-chain alcohols) or co-solvents (such 
as polyols like propylene glycol, glycerol, and sorbitol). Organic solvents are usually removed by 
evaporation, but residuals can remain in the final product, causing potential toxic effects and limiting 
the NE large-scale production and wide application [117].  

I.4.1.3 Novel formulation approaches
In addition to traditional methods, novel approaches for the nanoemulsion production include bubble
bursting, evaporative ripening, microfluidic and High-Gravity Rotating Packed Bed methods.
The bubble bursting method, in which nanosized oil droplets are formed by bubble collapse following
the bubbling of a gas through an oil/water/surfactant mixture, has been proved to be adaptable to NE
production providing an energy-efficient platform with potential up-scalability for applications in drug
delivery, food production and materials science [135].
Microfluidics by making use of intersecting microchannels induce the precipitation of components as
nanoparticles on the base of the ‘anti-solvent approach’, offering the advantages of high reproducibility,
ease of optimization and scalability under Good Manufacturing Practices (GMP) conditions [136]. In a
recent work a staggered herringbone micromixer was used to develop castor oil nanoemulsions showing
excellent dispersion quality and reproducibility [137].
Lastly, High-Gravity Rotating Packed Bed (RPB) has been proposed as an alternative to facilitate the
industrial production of drug-loaded NE by decreasing the surfactant content in the formulation. In the
preparation of NE made of glycerol triacetate/RH-40/1, 2-propanediol, the use of RPB allowed to reduce
the amount of mixed surfactants of 75% compared to self-emulsification method and to obtain stable
and highly monodispersed 13 nm droplets able to efficiently permeate Caco-2 cells [123].

I.4.2 Stability in nanoemulsions
Emulsions and nanoemulsions are kinetically stable but thermodynamically unstable systems that are
prone to separation over time. The physicochemical mechanisms causing destabilization of emulsions
include flocculation, coalescence, gravitational separation and Ostwald ripening (Fig. 5).
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Fig. 5 Schematic diagram of most common instability mechanisms that occur in food emulsions: 
creaming, sedimentation, flocculation, coalescence, Ostwald ripening and phase inversion. 
  
Flocculation is a reversible process in which droplets come closer to each other due to attractive 
interactions, while coalescence implies the irreversible merging of several droplets in a bigger one. In 
contrast to conventional emulsions, nanoemulsions have much better stability to coalescence and 
flocculation because of the small droplet size and the steric stabilisation which minimize colloidal 
interactions [138]. The small-sized droplets together with Brownian motion also slow down 
nanoemulsion gravitational separation, occurring through creaming or sedimentation [133].  
Accordingly, Ostwald ripening is the main mechanism of NE instability. Ostwald ripening is the process 
of mass transfer from small to large droplets driven by the magnitude of Laplace pressure [139]. An 
increase in the system polydispersity typically leads to higher tendency for Ostwald ripening. Also, 
instability increases at higher temperature due to changes in solubility and diffusivity and at higher ionic 
strength of the continuous phase since ions shield the nanoparticle surface charge reducing the Debye 
length for significant repulsion between droplets [139,140]. Ostwald ripening rate can be slowed down 
by selecting oil phase components with a very low water-solubility, such as long chain triglycerides 
[141]. The use of mixed emulsifiers has been recently suggested to retard the rate of Ostwald ripening 
by i) decreasing the interfacial tension, ii) decreasing the diffusion coefficient of the oil molecules 
through the shell by increasing the shell thickness, iii) increasing the mechanical strength or lastly iv) 
opposing the state of thermodynamical instability that creates when droplets have a different interfacial 
composition via the restriction of emulsifier transfer. The last usually occurs when using a highly water 
soluble surfactant, able to migrate between droplets, and a highly lipophilic one, which always stays 
attached to the NE core [142]. Moreover, a negative or positive surface charge confers nanoparticle 
stability thanks to enhanced electrostatic repulsive forces [143]. When non-ionic surfactants are used, 
the steric stabilisation of droplets has to be maximized through the fine control over system composition 
and formulation process [144].  
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I.4.3 Conversion in solid dosage forms
Further to the physicochemical processes of destabilisation previously discussed, chemical hurdles such
as microbiological contamination, degradation by hydrolysis, loss of the drug pharmacological activity
and technological hurdles such as reduced shelf-life, difficulty in transport, storage, scalability can affect
the NE full-scale exploitation. Therefore, the stability improvement is a primary concern for these drug
delivery systems. The most promising strategy to achieve preparations with shelf life of several years is
to eliminate the water out of the aqueous suspensions to obtain dry powders, that can be easily
reconstituted in water at a later stage/time or directly in vivo at the site of administration.
The development of solid dosage form using drying process can be conducted by various technologies,
namely oven/tray, fluidized bed, band, turbo tray, centrifugation, pneumatic, cyclone, drum, vacuum,
filter, spray-drying and freeze-drying methods [145].

I.4.3.1 Spray-drying
Spray-drying is a method for the production of powders from solutions, suspensions or dispersions by
atomization into a hot drying gas medium, usually air [146]. Spray-drying is mostly considered as a
dehydration process aimed to prolong the lifespan of the product, but it can also be used as a method of
formulation itself as it allows the micro-and nano-encapsulation of drugs, biologics, chemicals and food
bioactive ingredients within a protective matrix [121,147–149].
Several dispersed systems such as emulsions, liposomes or nanocapsules were successfully spray-dried
with preservation of their structure using drying auxiliaries such as hydroxypropylmethylcellulose
(HPMC) and lactose [150,151]. In more recent years, the feasibility of spray-drying NE has started to
be explored, highlighting the benefits of dehydrating the nanodroplets compared to conventional
emulsions in terms of dry powder physical properties [152,153] and therapeutic efficacy [154].
The spray-drying process involves the atomization of the feed liquid into the dry chamber through an
atomizer or a nozzle that breaks it in fine droplets, followed by the droplets dispersion in a flowing air
stream for drying, with the aid of a compressed gas (Fig 6). As soon as the contact with the drying air
occurs, the liquid starts evaporate from the droplet surface, developing a significant gradient
concentration that is counterbalanced by the movement of nanoparticles and additives from the edge of
the droplet to its centre. Consequently, a dried crust is formed at the droplet surface and the surface
becomes immobilized. The dry particles are then separated from the drying gas by means of a cyclone
that deposes them in a glass collector situated in the bottom of the device [146].
The main advantages of this technique are its being rapid, continuous, single-step, reproducible, scalable
and cost-effective. Moreover, it allows the fine control of particle size, shape, morphology and release
of the loaded active, it is applicable to both hydrophilic and hydrophobic molecules and provides high
encapsulation efficiency [146].
Major challenges are the complete collection of dry particles that leads to low process yields and the
obtainment of dry particles having regular spherical shape, low surface fat content, small size that easily
re-dispersed in water while maintaining the original physicochemical properties and guarantying the
active chemical stability and biological activity.
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Fig. 6 The spray-drying process. 

Both formulation parameters, such as feed composition, viscosity, solvent type, solids concentration and 
processing parameters, such as inlet and outlet temperature, sample feed rate, atomizer pressure, drying 
gas flow rate can be tuned to obtain dry products with desired properties, namely smooth and spherical 
morphology, minimisation of powder stickiness, small dry particle size and to ensure the recovery of 
NE physicochemical properties after re-hydration [147,152,155]. 
Feed nanoemulsions can be supplemented with drying excipients, also referred to as wall materials, to 
protect against drying stress, facilitate powder collection and improve powder re-dispersion.  
Exploitable excipients include sugars as sucrose, lactose, mannitol, maltodextrin and polysaccharides 
namely gum arabic, whey protein, modified starch, hydroxypropyl beta cyclodextrins, polyvinyl alcohol 
(PVA), polyvinylpyrrolidone (K30-PVP and K90-PVP), hydroxypropylcellulose (HPC), 
hydroxypropylmethylcellulose (HPMC) [152,153,155–157].  
Li et al. evaluated the impact of modified starch, maltodextrin, hydroxypropyl beta cyclodextrins, arabic 
gum and whey protein at several concentrations and NE: excipient ratio on dry particle morphology, 
homogeneity and size. When using arabic gum or whey protein at concentration of 15% in ratio 4:1 of 
NE: excipient, dry nanoparticles with spherical shape and smooth surfaces were obtained. These 
particles were rapidly re-dispersed in about 5 min with minimal alteration of NE size (< 150 nm) and 
PdI (< 0.2) [156]. 
The use of high atomization pressure, small nozzle diameter and low solid concentration feed generally 
renders smaller dry particles [147]. However, conventional spray-drying is limited for producing 
particles with characteristic dimension below 1 μm because of the atomization technology employed 
and the generation of a turbulent gas flow. The production of dry particles in the nanometer range is 
feasible when using newer technologies such as the nano-spray-dryer [153,158,159]. Nano–spray drying 
has been used for encapsulation of vitamin E–loaded NE in presence of whey protein leading to dry 
particles in the nm range completely recovering their physicochemical attributes when re-hydrated [153] 
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and for the solidification of eugenol-loaded NE in absence of drying excipient obtaining spray-dried 
particles of 200–500 nm which rapidly rehydrated without adversely affecting the antimicrobial activity 
of eugenol [159]. Examples of spray-dry NE are listed in table 2. 
 
I.4.3.2 Freeze-drying 
Freeze-drying, also known as lyophilization, is a dehydration technique based on the removal of water 
from the system by sublimation under vacuum, at low pressure and at low temperature, leading to an 
anhydrous product [160]. In the case of polymeric nanoparticles, lipid-based nanosystems (i.e. NLC and 
liposomes) and macro-emulsions the freeze-drying technique has been widely explored, but its 
application in the NE domain is still laborious and challenging [161]. Some recent unsuccessful attempts 
to prepare freeze-dried NE has suggested the use of better performing approaches, less expensive and 
time consuming, for the production of dry NE [121,162]. However, the benefits of this technique such 
as the possibility of fine control over the process, the superior product quality and the low temperature 
that makes it exploitable for thermosensitive drug, are still making it an attractive research subject [161]. 
A typical freeze-drying cycle consists of three stages: freezing, primary drying and secondary drying.  
Firstly, samples are freeze at a temperature below the product glass transition temperature (Tg) 
concentrating the solid content in between the growing ice crystals. Then, ice is removed by sublimation 
at a pressure below the vapour pressure of the ice and at gradually increasing temperature. Finally, 
secondary drying allows the elimination of the remaining water by desorption and it usually operates at 
low pressure and temperature higher than the primary drying step but always below the excipients 
melting point (Fig. 7). The obtained dried cakes are usually sealed to avoid humidity absorption from 
the environment during storage [161].  
 

 
Fig. 7 Freeze-drying cycle, showing shelf, product and condenser temperatures, chamber pressure and 
product behaviour during the freezing and drying steps. 



38 
 

The main technological challenge is the avoidance of product disruption during the process caused by 
the several type of stress, notably freezing and dehydration stresses. For a dry NE to be alimentary or 
pharmaceutically exploitable, it shall comply with the following prerequisites: i) the preservation of the 
primary chemical and physical characteristics of the product (elegant cake appearance, short 
reconstitution time, nearly unmodified particle size distribution, lack of drug leakage, unchanged 
activity of the encapsulated drug), ii) an acceptable residual moisture content, and iii) long-term stability. 
Droplets aggregation or irreversible fusion and destabilisation caused by the high particulate 
concentration and the mechanical forces generated during ice crystallization and drying can be avoided 
by adding special excipient with a protective role against the freezing (cryoprotectant) or drying stress 
(lyoprotectants) [120]. The exploitable stabilizers range from poly(vinyl alcohol), hydroxypropyl-β-
cyclodextrin, poly(vinyl pyrrolidone), gelatine, glycine to sugars as trehalose, sucrose, glucose, lactose, 
maltose, sorbitol and mannitol [163]. In most published work on NE, an efficient drying was achieved 
while using trehalose, mannitol or lactose at concentrations ranging from 5 to 20% [164–167]. The level 
of stabilization generally depends on cryoprotectant concentrations, sugar/lipid nanosystem ratio [166], 
time and way of the cryoprotectant addition [164], composition and structure of the nanosystem 
[168,169] and freezing-rate [170,171]. The analysis of literature results reports that up to date no 
conventional NE could be freeze-dried in absence of stabilizers without alteration of its physicochemical 
properties after reconstitution [121,162,172] (table 2).  
As final proof of the process performance the freeze-dried cakes are reconstituted in water or in 
biorelevant fluids to assess the re-suspended particles physicochemical characteristics. Reconstitution 
can be done by hand shaking, vortex or sonication. Li et al observed that when sonication was used the 
NE size significantly increased while vortexing and hand-shaking did not have any impact, and they 
concluded that because of its technical convenience hand-shaking should be the method of choice for 
NE reconstitution [164]. 
The different types of freeze-dried NE reported in the literature are summarized in table 2.  
Ledet et al. reported that the lyophilisation of NE composed of corn oil, Span-80, Tween-80 and loaded 
with the γ-tocotrienol (GT3), a radioprotective agent intended for the oral administration in case of 
nuclear accident or axposure to high radiations. The freeze-drying of these NE in presence of lactose 
prevented GT3 degradation without modification of the NE physicochemical properties [167]. Freeze-
drying has also been applied for the solidification of NE loaded with functional food ingredients, as in 
the case of krill oil NE containing long-chain (ω3) polyunsaturated fatty acids (LC-(ω3)-PUFA) [121], 
and hydrophobic drugs like curcumin and paclitaxel [119,166]. Lastly, lyophilized NE has been used in 
the in the biotechnology field, mainly as carriers for genes or as adjuvants for vaccine formulations. 
Studies reported by Orr et al. proved the efficient drying of NE destined be used as an adjuvant for a 
vaccine formulation, without alteration of the system physicochemical properties and maintenance of 
immunological activity and resulting protective efficacy against Mycobacterium tuberculosis [120,165].  
 
Table 2 Examples of spray-dried and freeze-dried NE.
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NE composition and preparation 
method Solid carrier API Size, PdI, ζ-potential) 

before (B) and after (A) Main achieved advantage Ref. 

Spray drying 

Vitamin E acetate, Kolliphor® 
ELP. Spontaneous emulsification 

Maltodextrin (Md), 
whey protein (WP) Vitamin E acetate 

B: 84.9 nm, 0,12 
A: 140.6 nm, 0.17 (Md); 
110.3 nm, 0.27 (WP) 

Efficient encapsulation of NE in dry 800 nm particles 
with preservation of NE hysicochemical properties by 
Nano spray-drying  

[153] 

Vitamin E acetate, Kolliphor® 
ELP. Spontaneous emulsification 

Arabic gum or whey 
protein Vitamin E acetate 

B: 84 nm, 0.11 
A: < 150 nm, < 0.20 

Efficient encapsulation of NE in 2 µm dry particles 
showing fast reconstitution, no alteration of NE 
properties and preservation of vitamin E acetate 
integrity 

[156] 

Sodium caseinate and sunflower 
oil. Microfluidization 

Mixture of lactose or 
70:30 lactose: sucrose 
(23.9% w/w) 

‒ 
B: 154 nm 
A: 151 nm (70:30 lactose: 
sucrose) 

Reduced surface free fat content and better 
morphological properties of NE spray-dried with 
lactose:sucrose than with pure lactose because of lower 
crystallization on dry particle surface 

[152] 

Sodium caseinate and sunflower 
oil. Microfluidization 

Lactose (57.7% w/w) ‒ B: - 
A: around 150 nm 

Dry NE crystallized more quickly than 
emulsions. Lactose increased crystallization rate 
causing particle aggregation and irregular shape. 

[157] 

Vegetable oil, Span® 85, Tween® 
80. High pressure homogenization

Maltodextrin (3% 
w/w) ‒ 

B: 110 nm 
A: 158 nm, PdI low, 
−16.4 mV (110 °C, pump
rate of 30%)

Importance of processing parameters. High 
temperature (130°C) and lower pump rate led to 
increase in droplet size (> 180 nm) 

[155] 

Algae oil, saponin, β-sitosterol, γ-
oryzanol, sodium azide. 
Ultrasonication 

‒ 
Omega-3 (ω-3) 
polyunsaturated 
fatty acids 

B: 158 nm, 0.21 
A: unaffected 

Dry powders showed excellent reconstitution, stability 
over 30-day storage, maximization of fishy off-flavour 
and oxidative stability.  

[122] 

Gum Arabic, ethanol, lecithin. 
UltraTurrax®  ‒ Eugenol 

B: 110 nm, 0.18, −45 mV 
A: 319.2 nm, 0.47, −56.5 
mV 

Spherical, smooth, 300-500 nm NE powders by nano 
spray-drying. No eugenol leakage and preservation of 
antimicrobial efficacy.  

[159] 

Capryol® 90, Kolliphor® RH40 
and Transcutol® P. 
Spontaneous emulsification 

Lactose (2% w/v) Curcumin - 
Spherical agglomerated dry particles with smooth 
surface. Improved oral bioavailability of curcumin in 
dry NE compared to free drug. 

[154] 

Lactoferrin (Lf), Omega-3 (ω-3) 
polyunsaturated fatty acids. High-
pressure homogenization 

‒ 
Omega-3 (ω-3) 
polyunsaturated 
fatty acids  

B: 156.7 nm, 0.14, +41.7 
mV (Lf 4% w/w) 
A: - 

Smooth defined particles smaller than 500 nm. 
Loss of Lf secondary structure after nano spray-drying. [121]
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Maltodextrin, whey protein 
concentrate, gum Arabic, krill oil. 
Microfluidization and 
UltraTurrax®   

— 

Krill oil (Omega-
3 (ω3) 
polyunsaturated 
fatty acids) 

B: 157.3 nm, −25 mV 
(2% oil) and −48 mV 
(4% oil) 
A: - 

Wrinkled, spherical, 1.77 µm dry particles. Good 
encapsulation efficiency (70%) and oxidative stability, 
high in vitro bioaccessibility (80%) during 2 h in vitro 
gastro-intestinal digestion. 

[162] 

Freeze-drying 

Soybean oil, Lipoid E-80®, 
Pluronic® F68, Tween® 80, 
glycerine, sodium oleate. 
High-pressure homogenization. 

Trehalose or maltose 
(20%). Bufadienolides 

B: 43.5 nm, 0.10, −19.7 
mV 
A: unvaried    

Powders stability up to 3 months, no change in particle 
size and no drug leakage. Better reconstitution by 
manual shaking over sonication. 

[164] 

Poloxamer® 188 and glycerol, 
1,2-dimyristoyl-sn-glycero-3- 
phosphocholine (DMPC), 
squalene. Microfluidisation. 

Trehalose (5% w/v) 
Mycobacterium 
tuberculosis (Mtb) 
vaccine 

B: 70 nm, < 0.10, −13 
mV 
A: 80 nm, < 0.10, −15 
mV 

Efficient drying of co-vialed ID93 proteins and 
glucopyranosyl lipid adjuvant (GLA)-NE without 
impairing immunological activity and protective 
efficacy against Mtb. 

[165] 

Gum Arabic, ethanol, lecithin. 
UltraTurrax®  ‒ Eugenol B: 110 nm, 0.18, −45 mV 

A: 528 nm, 0.41, −60 mV 
Comparison with nano spray-drying: freeze-drying bad 
technique for NE stabilisation [159] 

Corn oil, Span® 80, Tween® 80. 
High pressure homogenization 

Lactose (5:1 lactose: 
NE) 

γ-tocotrienol 
(GT3) 

B: 130 nm, 0.10, −30 mV 
A: 150 nm, 0.22, −40 mV Lyophilization  prevented GT3 degradation. [167] 

Dl-α-tocopheryl acetate, soybean 
oil, Polysorbate coated with 
hyaluronic acid. 
Microfluidization 

Mannitol (5% w/v) Paclitaxel 
B: - 
A: 80 nm, 0.20, −37 mV 

Dry NE reduced tumour growth and showed less 
toxicity in tumour-transplanted mice compared to free 
drug. 

[119] 

Miglyol® 812, Epikuron® 145V 
Rotaevaporation of ethanol and 
acetone 

Trehalose (5 and 10% 
w/w) Curcumin 

B: 200 nm, ≤ 0.20, −30 
mV 
A: unvaried  

No loss in effectivity upon reconstitution. Efficient 
prevention of melanoma re-incidence and metastasis. 
Exploitable for the oral route. 

[173] 

Poloxamer® 188 and glycerol, 
1,2-dimyristoyl-sn-glycero-3- 
phosphocholine (DMPC), 
squalene. Microfluidisation. 

Disaccharide, glycine, 
mannitol, trehalose, 
sucrose 

Mtb vaccine B: 89 nm 
A: 108 nm 

Continuation of [165]. Methodical screening of 
stabilizing conditions and drying excipients. Stability 
and maintenance of biological activity of dry NE in 
heat stress condition storage for 30 days at 50°C. 

[120] 

Maltodextrin, whey protein, gum 
arabic, krill oil. Microfluidization 
and UltraTurrax®  

— 
Omega-3 (ω3) 
polyunsaturated 
fatty acids 

B: 157.3 nm, -25 mV 
(2% oil) and −48 mV 
(4% oil) 
A: - 

7-fold increment in particle size, good encapsulation
efficiency (60%) and oxidative stability. Spray-drying
recommended over freeze-drying.

[162] 

Lactoferrin (Lf) and Omega-3 (ω-
3) polyunsaturated fatty acids.
High-pressure homogenization

— 
Omega-3 (ω-3) 
polyunsaturated 
fatty acids 

B: 156.7 nm, 0.134, 
+41.7 mV (at Lf 4% w/w)
A: -

Comparison with nano spray-drying: freeze-drying bad 
technique for NE stabilisation. [121]
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I.5 Self-emulsifying drug delivery systems
Self-emulsifying systems are isotropic mixtures of oils, surfactants and hydrophilic co-solvents which
spontaneously form nano- or microemulsions upon dispersion in an aqueous phase [59,174].
Self-emulsifying systems are broadly classified into four types according to the Lipid Formulations
Classification System (LFCS) proposed by Pouton C.W. et al. [175]. Type I are simple oils that need to
be digested in order to form mixed micelles; type II are mixtures of lipids and water- insoluble
surfactants (HLB <12), known as self-emulsifying drug delivery systems (SEDDS); type III are lipid
formulations containing oil, water- soluble surfactants (HLB >12) and co-solvents; and type IV are lipid
formulations that do not contain oil and are based on water-soluble surfactants and co-solvents.
In this thesis, a major focus on type III formulations, namely self-nanoemulsifying drug delivery systems
(SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS), is given.
SNEDDS correspond to LFCS type III A and generate nanoemulsions, which are two-phases kinetically
stable systems. Instead, SMEDDS correspond to LFCS type III B and form microemulsions, which are
one-phase thermodynamically stable systems. Their main characteristics are summarized in table 3.

Table 3 Comparison and conceptual differences between self-emulsifying drug delivery systems on the 
base of the Lipid Formulations Classification System (LFCS) by Pouton. (PdI : polydispersity index). 

SNEDDS SMEDDS 

Definition 

Anhydrous pre-concentrate of 
nanoemulsion that upon dilution 
with aqueous phase produce 
nanoemulsion droplets of 50-250 
nm 

Anhydrous pre-concentrate of 
microemulsion that upon dilution 
with aqueous phase produce 
microemulsion droplets of <100 nm 

Method of preparation Spontaneous emulsification Spontaneous emulsification 
LFCS type III A III B 

Typical 
composition 
(% w/w) 

Triglycerides 
or mixed 
glycerides 

40-80 <20 

Surfactants 20-40 (HLB > 11) 20-50 (HLB > 11)
Co-solvents 0-40 20-50

Significance of digestibility Possibility of inhibition of digestion Probable absorption without 
digestion 

Nanoemulsion Microemulsion 
Size 50-250 nm 10-100 nm
PdI < 0.2 < 0.1 
Shape Spherical Spherical, lamellar 
Appearance Turbid (Tyndall effect) Transparent 

Stability Thermodynamically unstable, 
kinetically stable Thermodynamically stable 

Destabilizing process Ostwald ripening Dilution, temperature change 

Several advantages can be offered by SMEDDS/SNEDDS compared to conventional emulsified 
systems. 
SMEDDS/SNEDDS are anhydrous pre-concentrates of NEs and microemulsions and consequently they 
can cope up with stability and formulation related issues of colloidal suspensions, such as poor 
palatability, unsuitability for delivery through hard or soft gelatin capsule, physical and chemical 
stability and long-term storage [176]. Besides they offer the benefit of higher solubilisation ability for 
hydrophobic drugs and possibility of higher administration doses than NE [177]. They can inhibit the 
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P-gp efflux and increase the permeability by opening tight junctions [178-181]. Moreover, when 
containing alcohol esters of unsaturated long chain fatty acids they facilitate the drug lymphatic route 
of uptake thus enhancing the bioavailability [182]. 
Their production occurs through the mechanism of self-emulsification, also known as spontaneous 
emulsification, when aqueous and organic phases are brought into contact. The amphiphilic molecules 
initially present in the organic phase rapidly diffuse in the aqueous phase to minimize the interfacial 
tension at monolayer curvatures. This leads to interfacial turbulence and oil droplet formation [116]. 
The proposed mechanism is illustrated in Fig. 8. 

 
Fig. 8 Schematic representation of the proposed mechanism for spontaneous emulsification. 
 
SEDDS were initially designed for the delivery of hydrophobic actives such as antioxidants, alkaloids, 
anticancer, immunosuppressant, anti-hypertensive, antiviral, antifungal and antiprotozoal drugs [183]. 
Then their scope was broadened to hydrophilic macromolecular drugs such as peptides, proteins, 
polysaccharides and DNA-based drugs [184]. For the loading in the lipophilic phase of SEDDS the 
macromolecules were firstly dissolved in amphiphile-like phospholipids, solidified and then the solid 
dispersion was mixed with SEDDS excipients [185]. Alternatively, the drug lipophilicity was increased 
via the hydrophobic ion pairing technique, consisting in the creation of complexes between hydrophilic 
drug and oppositely charged lipophilic auxiliary agents [186]. An example is given by insulin, whose 
complexation with dimyristoyl phosphatidylglycerol (DMPG) by ion paring previous loading in 
SNEDDS led to increased permeability and many folds reduced enzymatic degradation [187]. SEDDS 
have been exploited for oral vaccination purposes. Bernkop-Schnürch A. research group encapsulated 
bovine serum albumin (BSA) as model antigen into SEDDS containing monophosphoryl lipid A 
(MPLA) as adjuvant and demonstrated the ability of the system to induce systemic and mucosal immune 
response following oral administration to mice [92]. SMEDDS have also a potential as colon-targeted 
delivery systems, as proved by the folate-modified SMEDDS which efficiently delivered curcumin on 
colon cancer cells after specific binding to folate receptors [188]. 
 
I.5.1 Technological challenges 
Despite the popularity of SEDDS, there have been some challenges associated with their formulation, 
packaging and stability. The drawbacks related to the formulation process include the small range of 
exploitable excipients, the inadequate solubility of drug in the system components and consequently the 
sub-optimal drug loading [189]. The shortcomings of the packaging reside in the filling in soft gelatine 
capsules in the industrial production that requires expensive machinery and resources, in the transfer of 
volatile co-solvents into the capsule shell causing the precipitation of the drug and in the gelatine itself 
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that if of animal origin can be a medical and religious concern [189]. For all these reasons, substitutes 
for gelatine like HPMC-based capsules might be the best packaging choice [190].  
Furthermore, stability issues, namely the leakage of liquid SEDDS from hard capsules, the oxidation of 
unsaturated lipids and the polymorphism of lipid components, can limit storage and exploitability of 
SEDDS [191]. One of the main reported innovations to pave the way for SEDDS with improved 
technological characteristics is the conversion of liquid SEDDS in solid dosage form, as discussed in 
the next paragraph. 

I.5.2 Solid SEDDS
In the aim of improving SEDDS stability ameliorating drug oral absorption and bioavailability, liquid 
SEDDS can be converted into solid systems through numerous techniques including capsule filling, melt 
granulation, extrusion-spheronization, spray-congealing, spray drying, freeze-drying [192,193] or 
absorbed onto inert carriers and subsequently formulated into free-flowing powders, granules, pellets, 
tablets, microspheres and nanoparticles [194,195]. In addition to the enhanced system stability, 
advantages of solid SEDDS are low production costs, ease of transport, handling and storage, precise 
drug dosing and improved patient compliance [177]. Upon oral administration solid SEDDS firstly 
disintegrate and then self-emulsify following the same fate as liquid SEDDS. It is therefore fundamental 
that the drying step does not impair the system properties and that droplets physicochemical 
characteristics are preserved after re-hydration [196]. 
The different methods used for the conversion of liquid SEDDS to solid SEDDS and exhaustive 
examples of their application are summarized in table 4. Among them the spray-drying is the preferred 
SEDDS solidification method at the industrial scale because of the ease of manufacturing and scale-up. 
Besides, it provides significant amelioration in dissolution rate, physiochemical characteristics, and 
stability of the active leading to enhanced biopharmaceutical performance [197,198]. The freeze-drying 
on the other side is still an open challenge, with only few reported examples in the literature. The 
associated advantages, notably aseptic conditions, high water content removal and applicability to heat-
sensitive compounds, make it a promising solidification alternative to explore [199]. 
Noteworthy, solid SEDDS have recently been prepared using the three-dimensional printing (3DP) 
technology. Advantages are the feasibility of solidify in absence of a solid-phase carrier and the fine 
control of the system geometrical shape (cylindrical, prism, torus and cube) which allows to modulate 
and control dispersion and digestion rates [200]. 

Table 4 Examples of solid SEDDS.
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SEDDS composition Solid carrier Active Main achieved advantage Ref. 

Spherical crystalline technology 

castor oil, Kolliphor® RH40, 1,2-
propanediol - Puerarin No alteration in particle size ( 19.66 nm), rapid re-dispersion within 60 s and 27-fold and 23-

fold improvement of oral bioavailability compared to free drug and liquid SMEDDS. [201] 

castor oil, Kolliphor® RH40, and 
1,2-propylene glycol 

1:2 of ethyl cellulose: 
Eudragit S100 Osthole 

No SMEDDS changes in terms of morphology, particle size, ζ-potential. Sustained drug 
release in rabbits. Bioavailability increase by 205% and 152% compared to free drug and 
liquid SMEDDS 

[202] 
 

Adsorption onto a solid carrier 

Capmul® MCM, Tween® 20, 
tetraglycol 

Mannitol, lactose, 
Sylysia, Aerosil  

Atorvastatin 
calcium Solid SMEDDS improve oral bioavailability (101%) compared to liquid system [203] 

Capmul® MCM, castor oil, 
Kolliphor® EL, Kolliphor® RH 40 

amorphous silica and 
Neusilin® US2 Resveratrol Successful adsorption on Neusilin® US2 and tableting without loss of SMEDDS self-

microemulsifying ability [204] 

Hot melt extrusion 

Capric/caprylic triglycerides, 
Plurol®, Transcutol® HP 

HPMCAS, HPC, MCC, 
talc, colloidal silicon 
dioxide 

Carvedilol pH dependent effect: rapid and complete microemulsion reconstitution and drug release at 
pH 6.8, whereas avoided in acidic conditions. [205] 

Extrusion spheronisation 

Tween® 80, PEG 400,  
Capmul® MCM C8 

microcrystalline 
cellulose Gliclazide Solid SMEDDS pellets released the drug in 20 min and reduced significantly plasma 

glucose levels in albino mice compared to the marketed product. [206] 

Wet granulation 

Capmul® MCM EP, castor oil, 
Kolliphor® RH 40, PEG 400 

Neusilin® US2, HPMC 
and PVP K30 Carvedilol 

Granulation followed by compression into tablets. Preservation of self-microemulsifying 
properties (size 57 nm, PdI 0.4), high drug loading (65% w/w) and complete drug release in 
(45 min at pH 6.8, 10 min at pH 1.2). 

[207] 

Spray-congealing    

Cremophor® EL, Poloxamer 188,  
PEG 4000 as Gelucire® 50/13  Glibenclamide 

Spray congealed microparticles increased the drug solubilisation of five times. These 
microparticles showed self-dispersibility within 60 min and micelles dimensions around 360 
nm.  

[208] 

Spray-drying 
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Cremophor® RH, Labrasol® , 
ethyl oleate 

mannitol, lactose, 
maltodextrin, dextran 
40, PVP K30 and acacia 

Nimodipine Enhanced drug solubilisation and reduced drug precipitation in gastric fluids via SMEDDS 
solidified with dextran 40, maltodextrin and PVP K30 [209] 

sulforaphane, Kolliphor® EL, 
acconon CC6 Soluplus®  Curcumin More favourable release profiles when compared to the conventional hydrophobic 

adsorbents [197] 

castor oil, Tween® 80, and 
Plurol® diisostearique  

calcium 
silicate Metotrexate Significantly increased bioavailability compared to the drug powder and drug protection  

from light-induced degradation  [210] 

Miglyol® 812, Cremophor® EL 
and PEG-600 Aerosil 200  Piperine  Unaltered self-emulsification performance of liquid SMEDDS (size 22.12 ± 0.88 nm, PDI 

0.185 ± 0.03). Improved permeation in rat intestine compared with a pure drug [211] 

Lauroglycol® FCC (320 mg) 
Tween® 80 (1200 mg) and 
Transcutol® P 

Neusilin US2 Canagliflozin Significantly higher drug plasma concentrations via solid SMEDD and enhanced anti-
diabetic activity [198] 

Capryol® 90, Transcutol® HP, 
Cremophor® EL, Soluplus®  Aerosil 200 Dutasteride Solid SMEDDS tablets bioequivalence with commercialized drug soft gelatin capsules in  

beagle dogs [212] 

Freeze-drying 

Kolliphor® HS15, Transcutol® 
HP, Labrafil® M  1944 CS Sucrose Lornoxicam Enhanced drug solubility and bioavailability than marketed tablets [193] 

Capryol™ 90, Miglyol® 812, 
Cremophor® RH 40, Transcutol® 
HP 

Trehalose Febuxostat Rapid redispersion in 20 s and preservation of liquid SNEDDS physicochemical properties   [199] 

Capmul® MCM C8, Tween® 60, 
PEG 200  Mannitol Adefovir 

dipivoxil 
Solid SNEDDS enhanced drug absorption in rat intestine compared to free drug and reduced 
drug pH-dependent variability  [213] 
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I.6 Hybrid nanosystems for intestinal delivery
The design of smart LBDDS, and more in general of advanced nano- and macro-systems, have addressed 
various technological and biological challenges, as highlighted in section I.2.
Despite the achievements of these delivery strategies, the development of a product with the ability of 
delivering drug molecules at a specific target and according to patients' needs is still an avenue to 
explore. Recently, nanoparticles have been combined with polymers to create hybrid nanosystems. 
The different types of hybrid nanosystems can be categorized based on their architecture and surface 
chemistry. The polymer can be integrated in the form of i) a 3D network in which the nanoparticles are 
embedded as in the case of the matrix structured hybrid systems, also referred to as polymeric 
nanocomposites, or ii) a solution/dispersion in which the nanodroplets are suspended as in the case of 
the self-emulsifying polymer hybrid systems (Fig. 9). The integration of two distinct materials into one 
formulation results in unique physicochemical and biological properties that neither one of the two 
building blocks can achieve independently. Advantages arise from the superior capabilities in improving 
system mechanical strength, modulating drug release kinetics, assisting site-specific drug targeting, 
increasing drug stability and enhancing drug loading [214]. The main characteristics and applications of 
polymeric nanocomposites and self-emulsifying polymer hybrids will be presented in the next two 
sections.

Fig. 9 Different types of hybrid nanosystems deriving from the combination of nanoparticles and 
polymers: self-emulsifying polymer hybrid systems and matrix structured hybrid systems or polymeric 
nanocomposites. 

I.6.1 Polymeric nanocomposites
Nanocomposites are hybrid delivery devices composed of at least one nano-scale phase, including a
variety of lipid, polymeric and inorganic nanocarriers, that are dispersed in a polymeric matrix [82].
After the discovery of the first polymer nanocomposites made of nylon-6/clay to be used in the
automobile sector by the Toyota research group back in early 1990s, the nanocomposites’ unique
properties allowed their use in the manufacture of electronics, aeronautics, medical equipment, as
components for solar and fuel cells, electrolytes for batteries, thin-film capacitors, and as biomaterials
for delivery purposes [215]. Their application in the context of oral delivery is fairly new and rather
promising. Orally administered nanocomposites can have a semi-solid or solid nature and present
different shapes and sizes (in the macro or micro scale range) depending on composition and formulation
process used. Nanocomposite macro-systems include hydrogels, aerogels, sponges, films, microneedles,
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tablets and capsules. While micro-systems, defined as microparticles, comprise microspheres, microgels 
and microcapsules (Fig.10). 

Fig. 10 Several types of nanocomposite systems for oral drug delivery, classified on the base of their 
micro- or macro-structure. 

The most know and widely explored type of macro-systems are nanocomposite hydrogels, semi- solid 
dosage forms made of a cross-linked 3D network with the ability to swell and retain a large fraction of 
water within their structure [216]. These hydrogels are commonly made of polymers such as chitosan, 
alginate, cellulose, xanthan, dextran, carrageenan, polycaprolactone (PCL), carboxymethylcellulose 
(CMC) and hydroxypropylmethylcellulose (HPMC) [33,82,214].
Several types of nanostructures, namely polymeric, metallic, carbon-based and lipid nanoparticles have 
been immobilized in hydrogels, resulting in a plethora of composite systems [82]. The embedding of 
nanosystems occurs mostly via post-insertion of the nanoparticles in a pre-formed hydrogel matrix, or 
by mixing the nanoparticles with the monomer solution, followed by gelation in situ [217,218]. 
The huge progress that has been made in the field in recent years has led to the development of hydrogel 
nanocomposites with tailored physical properties and custom-made functionalities. 
The incorporation of nanoparticles allowed hydrogels to transport hydrophobic drugs, to target specific 
parts of the GI tract, to promote the response to a specific physiological-pathological stimulus and to 
release the nanosystem on-demand. On the other hand, the presence of the hydrogel matrix conferred to 
nanoparticles higher stability, ensured protection from physical and enzymatic degradation, and 
guaranteed the sustained release of the loaded cargo, thus providing the attributes necessary for their 
clinical applications [82]. 
Because of the fluid and hydrated nature, hydrogels can face practical concerns such as the limited 
stability during storage, the fast dissolution and burst drug release at certain pH ranges that could lead 
to poor pharmaceutical performance. Thus, hydrogels have been used as building blocks for the 
preparation of solid dosage forms, notably aerogels and films [219–224]. Nanocomposite in the form of 
tablets and capsules have also been developed [10,23]. 

https://context.reverso.net/traduzione/inglese-italiano/the+huge+progress
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Ranging from the macro to the micro scale, formulation scientist attention has focused on the design of 
nanocomposite microparticles, including microsphere, microgels and microcapsules. Thanks to their 
small size, which is commonly lower than 1000 µm, these systems offer the advantage of easy passage 
through the intestine and of better coverage of the wide intestinal surface area compared to conventional 
macrosystems [225]. The loading of the nanoparticles commonly occurs by mixing with the monomer 
solution, followed by gelation. In composite microspheres, the polymeric matrix in which nanoparticles 
are embedded, can possess solid or semi-solid nature depending on the formulation process [226-228]. 
While microgels, also called hydrogel microparticle, possess a semi-solid swollen matrix structure, 
which facilitates the loading of nanocarriers and tunes their release [62,229]. The sustained release is 
achieved via i) stimuli-responsive polymers that change under external signals, notably changes in 
temperature, pH, pressure as for conventional hydrogels, ii) modulation of particle size, since larger 
particles guarantee larger diffusion distances and smaller surface per volume compared to smaller 
particles, iii) adjustment of hydrogel mesh size, being the release profile slower for smaller mesh sizes,  
iv) chemical interactions between particles and matrix, since strong attraction delay the release [225]. 
Microspheres or microgels have been converted into microcapsules by deposition of a surface coating 
layer. The purpose of the coating ranges from the protection against degradation in the acidic pH of the 
stomach, to the avoidance of a burst release particles or loaded-drug, and to the amelioration of system 
mucoadhesive properties aimed at increasing the residence time in the GI tract [11,230,231]. 
Because of the tunability in their structural and physicochemical properties, nanocomposites can be 
designed to target specific portions of the intestinal tract. This has enabled to distinguished between a 
delivery to the small intestinal aiming at increasing systemic drug absorption or allowing for oral local 
vaccination, and a delivery to the colon aiming at the local treatment of inflammatory bowel diseases 
(IBD) and colon cancer. 
 
I.6.1.1 Targeting the small intestine 
Hybrid nanosystems targeting the small intestine have been proposed as a new class of biomaterials 
unleashing unique synergistic properties with significant potential to smartly bypass intestinal barriers 
and improve drug delivery efficiency.  
The main purpose in the design of intestinal-targeted hybrid systems has been to avoid gastric 
degradation and improve systemic bioavailability of hydrophobic APIs [11,232–236]. Besides, 
polymeric nanocomposites have been explored for hydrophilic proteins such as insulin leading to a 
major step forward their oral delivery that may revolutionize diabetes treatment [227,231]. Sodium 
dodecyl sulphate modified-metal-organic framework nanoparticles (Ins@MIL100/SDS) were 
embedded in microsphere composed of the enteric biodegradable methoxy poly(ethylene glycol)-block-
poly(L-lactide) (mPEG-b-PLLA) polymer that protect them from rapid degradation under acidic 
conditions and specifically release them in the small intestine. The double encapsulation technology 
increased insulin intestinal absorption and plasma level while lowering blood glucose level with a 
relative pharmacological availability of 7.8% in diabetic rats [237]. Also antisense oligonucleotide 
loaded in nanoparticles were combined with chitosan-phytic acid multicompartimental capsules for 
cancer therapy or with alginate hydrogels Duchenne muscular dystrophy treatment [10,238]. While 
nanoparticles-in-microsphere oral system (NiMOS) containing the plasmid DNA vectors CMV-β and 
EGFPN1 were design for oral local vaccination purposes allowing prolonged residence in the small 
intestine and good transfection capability following oral administration to rats [239]. 
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The exploitation of the mucus barrier for a targeted and sustain delivery has seen its application in 
mucoadhesive spray-dried HPMC microparticles and chitosan bilaminated films. In a new and more 
sophisticated technology, mucoadhesive alginate microparticles were embedded with mucopenetrating 
PEGylated nanoparticles in a failed attempt to achieve prolonged small intestinal retention while 
guaranteeing the reachment of the epithelium [62].  
Lastly, nanocomposites were designed as functional foods able to locally control the rate of lipid 
digestion within the GI tract of people suffering from obesity or diabetes, opening the way for their use 
in the food industry [240]. 
Examples of nanocomposites targeting the small intestine are summarized in table 5. 
 
Table 5 Nanocomposites targeting the small intestine.  
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SYSTEM 

Interaction with the environment Therapeutic application Ref Nanosystem Matrix 

Type  Size, PdI, ζ-
potential API Material Type 

NLC 85.9 nm, 
0.43 

Amphotericin 
B  Alginate  Beads, 1.2 mm 

pH dependent release in the intestine. 
NLC to enhance solubility and 
permeability, beads to target intestine 

Systemic: fungal 
infections,leishmaniasis  [232] 

NE 205.3 nm Nobiletin  Alginate  Hydrogel 
Hydrogel swelling at pH 7.4 (intestine). 
Enhanced drug loading, no drug 
digestion and precipitation 

Systemic: inflammation, 
cancer, atherosclerosis [233] 

NLC 85.5 nm,  
0.23  Quercetin Alginate 

hydrogel beads Beads,  1 mm  pH-dependent and sustained release in 
the intestine 

Systemic: functional 
food, drug delivery. [229] 

NE 130 nm - Alginate or 
carrageenan  

Microgel, 2.5-3 
mm 

pH-dependent intestinal delivery via 
microgel dissolution. No lipid digestion 
in stomach 

Local: functional foods 
for obesity, diabetes 
patients 

[240] 

Pickering emulsion  45 mm Curcumin Sodium alginate  Hydrogel 
 

pH-dependent intestinal delivery via 
hydrogel collapse 

Systemic: reduce lipid 
digestion [234] 

Cationic core-shell 
NP 156 nm, 0.02     

Antisense 
oligoribonucle
otide  

Alginate Hydrogel Increased intestinal adhesiveness. But 
laxative effect of alginate  

Systemic: Duchenne 
muscular dystrophy  [238] 

Gelatine 
nanoparticles 

around 100 
nm 

Plasmid DNA 
vectors:CMV-
β, EGFPN1 

Poly(epsilon-
caprolactone) 
microspheres 

Microsphere 5.0 
μm 

Intestinal NP release after microsphere 
degradation by lipases. Internalisation of 
NP in enterocytes 

Local and systemic: 
therapeutic and 
vaccination  

[239] 

Chitosan 
nanoparticles 

192.9 nm, 
0.26, +30.9 
mV 

Antisense 
oligonucleotid
e  

Chitosan, phytic 
acid  

Multicompartim
ental capsule, 10 
mm 

Mucoadhesion in the intestine. Small 
capsules for delivery to small intestine, 
and large capsules for colon-targeted 
delivery 

Local and systemic: 
Cancer [10] 

PEG-based lipid-
polymer hybrid 
vesicles  

147 nm, 
0.20, −14 
mV 

- Alginate Microgel,  229 
µm 

Mucopenetration NP, mucoadhesion 
hydrogel  

Systemic: enhance 
bioavailability  [62] 

SLN 117-192 nm, 
0.27 Ibuprofene  Dextran 

methacrylate  Hydrogel Sustained drug release Systemic and/or local [219] 

Nanoparticle (drug 
nanonization)  

724 nm,  
0.14  

Indinavir  
 

Alginate, 
chitosan, 
Eudragit 

Nanoparticle-in-
Microparticle 
Delivery System   

Increased intestinal residence. 
Mucoadhesive microparticles. Time-
controlled NP release 

Systemic: HIV treatment. [235] 

Bovine serum 
albumin NP  

192.7 nm, 
0.37, −39.5 
mV 

Exenatide Eudragit L, 
HPMC 

Microparticles 1 
to 15 μm  

Bioadhesion in intestine (HPMC), 
gastro-resistance (Eudragit L), lymphatic 
uptake (dextran) 

Systemic: Diabetes [226] 
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NP (drug 
nanonization) 

166 nm, 
0.51, -61 
mV. 

Darunavir and 
Ritonavir 

Alginate-
chitosan, 
Eudragit RPLO 
and S100 

Beads gastro-resistance ( Eudragit s100) Systemic: HIV treatment. [11] 

Carboxylation 
chitosan-grafted NP 200 nm Coumarine-6 

and insulin 

Chitosan-EDTA 
and 
ethylcellulose  

Bilaminated 
film, 20 µm 
thick 

Mucoadhesion and pH dependent release 
in intestine. Reversible opening of tight 
junction  

Systemic: protein drugs 
via oral administration [224] 

Graphene quantum 
dot NP  

4–6 nm, -9.6 
mV pH 7.4 Naproxen Carboxymethylc

ellulose  Beads pH-sensitive delivery in intestine, 
reduced GIT irritation induced by NPX 

Systemic and local: anti-
inflammatory  [241] 

Graphene quantum 
dot NP 15.3 nm Sodium 

salicylate 

Chitosan, 
carboxymethylc
ellulose 

Beads pH-sensitive release in the intestine Systemic: anti-
inflammatory [230] 

i) Alginate NP, ii)
alginate-stearic acid
NP, iii) alginate-
C18 NP

522.5 nm, 
0.74, ‒35.7 
mV 

Insulin 
Alginate and 
chitosan-oleic 
acid 

Beads 
Targeted intestinal delivery. Increased 
blood insulin level. Decreased intestinal 
glucose absorption  

Systemic: oral insulin 
delivery [231] 

Benzenetricarboxyli
c acid nanoparticle 

132.8 nm, -
18.3 mV Insulin mPEG-b-PLLA Microsphere,3-5 

µm  

NP release in small intestine. Enhanced 
plasma insulin levels in diabetic rats and 
lowered blood glucose levels 

Systemic: oral insulin 
delivery [237] 

PCEC micelles 20 nm, 
<0.20 Docetaxel MPEGMA,PEC

A  Hydrogel 

pH responsiveness for small intestine 
targeting. 10-fold higher drug 
bioavailability, inhibition of tumour 
growth 

Systemic: breast cancer 
therapy [236] 

Chitosan-coated 
liposomes  

363 nm, 
0.32, +23 
mV 

Insulin 

Hydroxypropyl 
methylcellulose 
acetate 
succinate  

Microparticles,1
9 ± 1 μm  

Mucoadhesion of NP. Gastro-resistance. 
Enhanced intestinal paracellular 
permeability  

Systemic: oral insulin 
delivery [227]
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I.6.1.2 Targeting the colon 
Hybrid nanosystems possessing specific colon targeting attributes were designed to improve the 
biopharmaceutical performance of conventional colonic delivery devices.  
Several hybrid nanosystems were developed for a local drug delivery to treat cancer or for systemic and 
mucosal immunisation, achieving colonic targeted delivery by a pH-dependent dissolution, pH-
dependent swelling or transit time-dependent mechanism [23,242–244]. Alginate coated with Eudragit 
S100 embedded with liposomes were exploited for the local delivery of the anticancer alkaloid capsaicin 
aiming at the local treatment of colon carcinoma. Specific and sustained colonic delivery was ensured 
by specific drug release at pH of 7 thanks to the pH dependent dissolution of the Eudragit coating [245]. 
Besides, systemic absorption trough targeted colon delivery was achieved via the loading of PLGA 
nanoparticle in Eudragit FS30D microspheres intended to induce both rectal and vaginal immunity. 
Thanks to the pH-dependent release mechanism, ascribable to the Eudragit FS30D dissolution in the 
upper colon, the vaccine encapsulated in the nanoparticles was specifically delivered to the large 
intestinal mucosa inducing colorectal immunity in mice [246]. 
Colon-targeted nanocomposites have received significant attention for their potential to treat IBD, which 
predominantly affects the colon [247]. The presence of the macrosystem also ensured the long-term 
delivery, benefit that is fundamental for patients suffering from chronic diseases requiring multiple 
dosage regimes [248]. These nanocomposites mainly exploited the altered physio-pathological 
conditions of the inflamed intestinal tract, achieving a colonic targeted delivery via a passive mechanism 
of bioadhesion, mucoadhesion, specific enzymatic degradation and size-dependent accumulation or via 
an active mechanism based on the interaction with specific receptors [249–253]. Chitosan-alginate 
hydrogel beads containing folate-functionalised nanoparticles for IBD treatment were designed to target 
folate receptors that are over-expressed in inflammatory responses. After oral administration to dextran 
sulfate sodium (DSS)-induced colitis mice colitis symptoms were significantly alleviated and colitis 
wound healing was accelerated [249]. Alternatively, a hierarchical structured (nano-in-nano-in-micro) 
system containing negatively charged hyaluronic acid on the nanoparticle surface was designed to bind 
to positively charged proteins which accumulate on enterocytes due to destruction and increased 
discontinuity of the mucus layer. In vivo studies in DSS-induced colitis mice proved that the 
nanocomposite efficiently protected, transported and released the loaded drug locally to inflamed sites 
of intestine, contributing to superior therapeutic efficacy and significantly reduced systemic drug 
exposure [253]. 
Examples of nanocomposites for colon delivery are enlisted in table 6. 
 
Table 6 Nanocomposites targeting the colon.



53 

SYSTEM 
Interaction with the 
environment 

Therapeutic 
application Ref Nanophase Matrix 

Type Size, PdI, ζ-
potential API Material Type 

Liposomes - Bee Venomon 
Peptide 

Alginate, Eudragit 
S100  Beads 1 mm pH and time dependent release Local delivery: 

several treatments [13] 

Liposomes coated with 
Chitosan. 190 nm 5-ASA Eudragit S100 Microsphere 

100 µm Dissolution-dependent release Local delivery: 
inflammations [242] 

PLGA NP 300-400 nm
FITC-BSA and 
TLR-agonist 
peptides 

Eudragit FS30D or 
L100-55  

Microsphere 50 
µm 

pH dependent release (Eudragit 
FS30D soluble above pH 7 - 
terminal ileum) 

Systemic delivery: 
mucosal 
immunization 

[254] 

AuNP 2-5 nm 5-ASA and
Ornidazole HPMC Tablet release determined by swelling at 

pH higher than 7  
Local delivery: 
inflammations [23] 

Graphene Oxide 
nanosheets  

Curcumin PVA+GO-NN-GO Hydrogel release determined by swelling at 
different pH 

Local delivery: 
colon cancer [244] 

Liposomes 284 nm, ‒61 mV Capsaicin Alginate, Eudragit 
S100  Beads 1 mm release determined by the pH 

thanks to the Eudragit coating 
Local delivery: 
colon carcinoma [243] 

Folate-functionalised 
PLGA-PLA NPs 246 nm, ‒29 mV 6-shogaol Alginate, Chitosan Beads 1 mm 

Active drug targeting to folate 
receptors over-expressed in 
inflammatory responses 

Local delivery: UC 
wound healing [249] 

Nanogels 115 nm, 18 mV 
siRNA-anti 
TNFα 

MAA+NVP 
polymer, tripsin 
GRRRGK peptide 

Microgel 
lyophilized of < 
30 µm 

degradation of microgel by trypsin 
in the intestine. Accumulation of 
nanogel  in inflamed area  

Local delivery: 
inflammation, TNF 
overexpression 

[250] 

DMDDO-Crosslinked 
(Xr), non-crosslinked 
(Non-Xr) micelles  

Xr: 121 nm, 
0.27; Non-Xr: 
115 nm, 0.46 

Resveratrol Chitosan-carballylic 
acid  Hydrogel 

Mucoadhesion and chitosan 
degradation by the colon 
microflora  

Local delivery: 
IBD [251] 

Nanoparticle - antisense 
oligonucleotide Chitosan-Alginate Hydrogel The hydrogel specific release of 

particles in the colon 

Local delivery: 
IBD, Colon- 
targeting 

[252] 

Silicon-NPs coated 
with hyaluronic acid 
(HA) loaded with 
nanogels  

Psi-HA: 200 nm, 
0.11, ‒30 mV Budesonide 

hydroxypropyl 
methylcellulose 
acetate succinate 

Microparticle, 
35 µm 

HA target NP at intestinal 
inflammation site, pH dependent 
degradation of and release  

Local delivery: 
IBD [253] 

Gelatin NPs containing 
siRNA 200 nm 

Plasmid DNA 
expressing 
IL10 

poly(epsilon-
caprolactone) Microparticle Intestine release after PCL 

degradation due to lipase 
Local delivery: 
IBD [228] 

Double emulsion  366 nm Tripeptide Lys-
Pro-Val (KPV) 

Alginate and 
chitosan  Hydrogel Mucoadhesion to inflamed area. 

pH-dependent release  
Local delivery: 
IBD [255]
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I.6.2 Self-emulsifying polymer hybrid systems
During past few years, the exploitation of new functional excipients and the selection of specific 
lipids/surfactant combinations have allowed SEDDS to overcome several biological barriers [256–271]. 
However, despite these several improvements there still are some challenges that can be hardly faced 
by SEDDS alone. Notably, the SEDDS toxicity due to the presence of large quantity of surfactants (60% 
w/w) that can increase the chances of GI irritation and lead to poor toleration during chronic use [196]. 
Secondly, the precipitation of the active in vivo because of the loss of the system solubilisation capacity 
and the creation of a supersaturated drug state as a result of sharp pH changes, dilution of the formulation 
with body fluids, or digestion of the solubilizing excipients [59]. Precipitation occurs in three main steps, 
supersaturation, nucleation, and crystal growth, and results in compromised bioavailability [272]. To 
prevent this, SEDDS can be combined with polymers to create hybrid systems able to cope with 
conventional SEDDS limitations. The main class of self-emulsifying-polymer hybrids are the 
supersaturable SEDDS. 

I.6.2.1 Supersaturable SEDDS
Supersaturable formulations are able to induce a supersaturated drug concentration when exposed to the 
aqueous environment of the GI tract and maintain the supersaturated state for a time long enough to 
guarantee complete drug absorption [273]. A thermodynamically unstable, supersaturated solution of a 
drug is usually generated when the solubility of the drug in the system excipients is exceeded, leading 
to drug precipitation [274]. To benefit from the supersaturated state for increasing absorption, 
precipitation has to be retarded or avoided. This can be achieved by increasing drug solubility by 
addition of solubilizing agents such as surfactants, co-solvents, cyclodextrins that reduce the degree of 
supersaturation [275] or by adding in the formulation precipitation inhibitors that maintain a highly 
supersaturated state of the drug in vivo (Fig. 11) [276].  

Fig. 11 Illustration of the supersaturation mechanism. The drug delivery ability of conventional dosage 
form, which dissolve in the GI fluids, is limited by the drug solubility in the fluids (green line). While 
SMEDDS/SNEDDS disperse the drug in their excipients providing high solubilized drug 
concentrations. Changes in the environmental conditions (pH, dilution, digestion) can reduce their 
solubilisation capacity, letting the drug in a supersaturated state and consequently the drug precipitate 
(red line). The addition of precipitation inhibitors (PI) allows to maintain the drug in its supersaturated 



55 

state for longer time, delaying drug precipitation (blue line). Reproduced with modification from 
Brouwers et al. (2009) [274]. 

The addition of precipitation inhibitors has made SEDDS efficient at overcoming challenges related to 
the harsh intestinal intraluminal environment, notably the dilution-depended drug precipitation [277–
279], the pH-driven supersaturation [280,281] and the degradation by digestion [282], resulting in 
improved drug bioavailability. PI were included in SEDDS to reduce the surfactant amount by replacing 
surfactants thus decreasing the system toxicity [283–285]. Moreover, PI enhanced the intestinal 
permeability, as was the case for the positively charged Eudragit® E PO that provided strong 
electrostatic interactions with epithelial cells improving transcellular transport [181].  
The most commonly used precipitation inhibitors (PI) are polymeric PIs such as D-α-Tocopherol 
polyethylene glycol 1000 succinate (TPGS), Poloxamers, Kolliphor® EL, HPMC, HPMC-AS, HPC, 
CMC, MC, cellulose, acetate phthalate, alginic acid, HEC, Na-CMC, arabic gum, PVP, PVP-VA, PVA, 
PAA, several Eudragit® (polymethacrylate-based copolymers) and Soluplus® (polyvinyl caprolactam–
polyvinyl acetate–polyethylene glycol graft copolymer) [59]. 
Facile synthesis approaches are utilized to fabricate self-emulsifying-polymer hybrids, mainly 
consisting in the addition of the PI to the SEDDS pre-concentrate, followed by gentle physical mixing 
and/or heating to produce a uniform sample [59]. The concentration of PI added is excipient- and 
system-dependent, but frequently ranges from 0.5-5 % w/w.  The different methods of PI addition 
depend upon the solubility of the PI in the S-SEDDS. PIs can be dissolved in the SEDDS lipid phase as 
in the case of soluble PI such as Poloxamer 407 [286] or they can be suspended in the SEDDS lipid 
phase when the PIs are not soluble in lipids as for HPMC [277] and HPC-L [280], Soluplus® [284]. 
Alternatively, PIs can be dissolved in soluble solvent and then mixed with the lipid phase. An example 
is the case of of HPMC or Soluplus® that were firstly suspended in ethanol or a mixture of water and 
ethanol, then added to SEDDS mixture and spray dried [287]. Lastly, the PIs powder can be blended 
with solid SEDDSs, as done by Quan et al. who successfully solidified SEDDS by solvent evaporation 
and then mixed the SEDDS powder with Soluplus® [278]. 
The PIs ability to prevent drug precipitation from lipid formulations has been well established, however 
it still is unknown whether the site of action of the PIs is in the aqueous phase, the lipid phase or at the 
interface. The PI process of stabilisation can involve several mechanisms that can coexist and 
complement each other. H-bonds and hydrophobic interactions between polymers and drugs can inhibit 
nucleation and crystal growth, while the selection of polymers of high rigidity and high molecular weight 
helps to better absorb the drug crystals and prolong the supersaturated state [273]. Furthermore, being 
the rate of crystal growth proportional to the diffusion rate in the medium, an enhancement in the system 
viscosity via PI addition can positively impact drug precipitation [280,282].  
The number of designed S-SEDDS has exponentially increased in the past few years. Some of the most 
representative examples are summarised in table 7. 
For sustained delivery purposes, S-SEDDS were converted in solid dosage forms. The matrix used for 
the solidification acts as release controlling agent and helps in modulating release after re-hydration in 
situ. Some matrix-type solid S-SEDDS such as spherical granules and pellets were developed, offering 
the benefits of both absorption improvement and sustained release of drug [59].  
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As an alternative to the supersaturation approach, SEDDS were formulated as matrix structured systems 
aiming at a sustained and targeted drug delivery at the intestinal site. The formulation method involves 
the addition of the SEDDS pre-concentrate in polymers’ porous matrix. Since the formation of the nano- 
or microparticles occurs in situ in the GI tract, these matrix systems cannot be defined as nanocomposites 
and we mentioned them below as a separate category.  A first strategy relied on the production of matrix-
embedded SMEDDS as solid dosage forms. Baek et al. loaded SMEDDS in a gelatin matrix and spray-
dried them as microparticles leading to controlled dutasteride absorption [288]. These formulations 
differ from conventional SMEDDS solid dosage forms since the polymeric matrix is aimed to a 
technological or biological activity and it does not simply act as solidifying excipient. Matrix structured 
SMEDDS were also formulated as sponges by freeze-drying. SMEDDS were embedded in alginate or 
HPMC porous matrix, allowing to enhance drug loading, to form microemulsion droplets in situ and to 
prolong drug release [289,290]. While in an effort to achieve a targeted delivery composite SMEDDS 
were designed as hydrogels. Examples are offered by the SMEDDS-Eudragit® S100 hydrogels that 
enabled targeted simvastatin release at pH of 7 in the distal ileum region [291] and the SEDDS alginate 
beads that ensured pH-dependent gamma-oryzanol release in the small intestine [292].  
 
Table 7 Examples of supersaturable SEDDS.
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Type Precipitation inhibitor Size, PdI, ζ-
potential API Outcome/advantage Ref 

S-SNEDDS HPMC (5% w/w) 213 nm, 0.47 Trans-
resveratrol 

Reduced drug precipitation, improved intestinal permeability and oral 
bioavailability [277] 

S-SEDDS PVP (5% w/v) 114 nm, < 0.40, ‒
4.2 mV 

Cyclosporine 
A 

Apparent concentration–time profile comparable to that of conventional SEDDS 
with reduced use of oil, surfactant, and co-solvent [283] 

S-SMEDDS HPC-L (5% w/w) 195 nm, 0.22, +57 
mV 

Raloxifene 
hydrochloride 

pH-modified S-SMEDDS formulation B (phosphoric acid): inhibition of drug 
precipitation, increased the solubility and dissolution rate. Compatibility with hard 
gelatin capsule. 

[280] 

S-SEDDS Soluplus® (6% w/v) 68.6 nm, 0.32, ‒1.8 
mV Tacrolimus Four times lower oil, surfactant, and co-solvent content but release rate and 

pharmacokinetic parameters comparable to  SEDDS. 
[284] 

Super-
SSEDDS Soluplus® (15% w/w) 132.8 nm, 0.19 Fenofibrate Suppression of drug precipitation. Improvement of oral relative bioavailability of 

40% compared to conventional solid SEDDS. 
[278] 

S-SEDDS HPMC (5% w/w) 266 nm, 0.36, –
33.8 mV Krill oil Potent hypotriglyceridemic effect, enhanced nutraceutical properties of krill oil. [293] 

SEDDS Vit E TPGS (20% w/w) 18.8 nm (TPGS), 
193 nm (Labrasol) 

Indomethacin 
or probucol 

TPGS inhibit precipitation and achieve high drug supersaturation levels. Raman 
spectroscopy to study precipitation. [294] 

S-SNEDDS PVP/VA 64 (20% w/w) 47.3 nm Simvastatin Drug loading of 200%, precipitation inhibitory effect during in vitro lipolysis 
compared to SNEDDS. 

[282] 

S-SMEDDS Poloxamer 407 (7% 
w/w) 110 nm, 0.31 Valsartan pH-independent, rapid, and high dissolution, in situ permeability and in vivo PK. 

Tween 80: P-gp inhibitory effect. 
[180] 

S-SNEDDS Soluplus®, 
Poloxamer407 (5% w/w) 62.2 nm, 0.25 carvedilol Inhibition of drug precipitation at basic intestinal pH, improved bioavailability 

(397.41%) compared to commercial capsules [281] 

S-SNEDDS HPMC K4M (2% w/w) 25.60 nm, −10.2 
mV Luteolin 

Inhibition of drug precipitation, more excellent in vitro dissolution and in vivo 
drug oral bioavailability in rats  when compared to both SNEDDS and drug 
suspension. 

[279] 

S-SMEDDS PVP K30 (0.5%, w/w) 44.3 nm, −23.1 mV Ellagic acid Enhanced API in vivo antioxidant ability [295] 

S-SEDDS HPMC (5%, w/w) 114 nm, 0.46 Ginger 
extract 

Enhanced dissolution, prolonged systemic exposure with three-fold higher oral 
bioavailability in rats (100 mg/kg) than free extract and hepatoprotective function. 

[285] 

S-SEDDS Poloxamer 407 
(10% w/w) 221.4 nm, 0.51 Silymarin PI effect concentration and type-dependent: Poloxamer 407 > HPβCD, HPMCP, 

Eudragit L100.. Enhanced oral bioavailability in vivo in Rabbits 
[286] 

S-SMEDDS Poloxamer 407 
10%, w/w) 

121.2 nm, 0.21 Valsartan 
Concentration dependent PI effect. Enhanced dissolution in SGF (pH 1.2) of 
granules and Tablets. Improved oral bioavailability in rat (1.8-fold >than 
Diovan®, 10 mg/kg). 

[296] 

S-SMEDDS Eudragit® E PO (1, 3, or 
5% w/w) 21.8 nm, 0.21 Curcumin 

Inhibition of drug precipitation in SGF. Reduction of Caco-2 cell toxicity. Higher 
permeability across the Caco-2 monolayer by paracellular (tight junction opening) 
and transcellular (PI positive charge) transport. Improved bioavailability in rats. 

[181]
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Chapter II: Development and structural 
characterization of dried nanoemulsion for oral drug 
delivery 

Nanoemulsions (NE), as major representative of lipid-based drug delivery systems (LBDDS), are 
excellent candidates for the oral delivery of poorly water-soluble drugs, owing to the ease of preparation, 
high drug loading, enhance solubility and protection of drugs and interaction with the intestinal 
epithelium which maximize drug absorption.  

Main aim 
The aim of this first chapter of the work was the rational development and physicochemical-structural 
characterisation of a novel NE intended for the oral delivery of hydrophobic drugs. 

Specific objectives 
 Prepare NE using a formulation approach based on the emulsion phase inversion (EPI) method

coupled with a high energy input; optimize the formulation process; physicochemically characterize
the system; load the NE with a hydrophobic model drug; assess the stability in simulated
gastrointestinal environment;

 Convert the NE in a solid dosage form by both freeze- and spray-drying;
 Characterise the structure of the NE with a main focus on the NE shell using a new methodology

based on X-ray diffraction, differential scanning calorimetry (DSC) and fluorescent spectroscopy
by labelling NE with the Dioll probe.
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Highlights of the chapter 
 The design and optimization of a NE composed of a medium chain triglyceride (MCT, Miglyol® 

812) oil core stabilized by a mixture of PEGylated hydrophilic (Myrj® 52) and hydrophobic 
(Labrafil® M1944CS) surfactants has been presented. This NE possess a high colloidal stability 
with a size of around 100 nm, PdI of 0.2 and slightly negative surface charge (‒9 mV). 

 The NE obtained were able to efficiently load the hydrophobic model drug tacrolimus.  Moreover, 
upon incubation with simulated gastrointestinal fluids they increased the stability of the associated 
compound and released it in a sustained manner, proving their relevance as oral delivery device. 

 Freeze-drying technique has been identified as the technique of choice to convert NE in a solid 
dosage. Upon re-dispersion, NE maintained their physicochemical attributes with minimal alteration 
of their size.   

 An in depth analyses of the particle shell was proposed. By means of X-ray diffraction, DSC and 
fluorescent spectroscopy studies, the NE was proved to possess a fluid shell which is amorphous 
when in colloidal suspension and crystalline when dried. 

 
The studies presented in this chapter have been published as research article on the journal Colloids and 
Surfaces A, https://doi.org/10.1016/j.colsurfa.2020.124614. 
The text is reproduced below. 

https://doi.org/10.1016/j.colsurfa.2020.124614


81 

Development and structural characterization of a novel nanoemulsion for oral drug delivery 

Annalisa Rosso1, Giovanna Lollo1, Yves Chevalier1, Nam Troung1, Claire Bordes1, Sandrine 
Bourgeois1, Ofelia Maniti2, Thierry Granjon2, Pierre-Yves Dugas3, Sebastien Urbaniak1, Stephanie 
Briançon1 

1 University of Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 bd 11 
Novembre 1918, 69622 Villeurbanne, France. 
2 University of Lyon, Université Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et 
Supramoléculaires, ICBMS UMR 5246, 43 bd 11 Novembre 1918, 69622 Villeurbanne, France. 
3 University of Lyon, Université Lyon 1, CNRS, C2P2 UMR 5265, 43 bd 11 Novembre 1918, 69622 
Villeurbanne, France. 

II. Abstract
The objective of this work has been to develop a template for the design and characterization of dried 
nanoemulsion (NE) for oral administration of hydrophobic compounds. A rational optimization of the 
nanosystem using an experimental design was performed to achieve stable NE of 100 nm with a neutral 
surface potential. NE were able to efficiently encapsulate the model drug tacrolimus, providing a 
sustained drug release in both SGF (simulated gastric fluid) and FaSSIF-V2 fluid (simulated intestinal 
fluid in fasted state). To improve their long-term physical stability, NE were dried using spray-drying 
and freeze-drying. Following reconstitution in water, they maintain their physicochemical properties 
without alteration. The highest process yield was obtained by freeze-drying using very low amount of 
cryoprotectant, overcoming major challenges related with the production of dry powders from oil based 
systems. Then, in order to improve the current structural analysis of nanocarriers an original structural 
characterization of the NE, with an in-depth focus on the NE shell nature was then performed. Through 
X-ray diffraction and differential scanning calorimetry (DSC) measurements we demonstrated that the 
NE shell was amorphous when in colloidal suspension and crystalline upon drying. We also developed 
a novel polarity-sensitive fluorophore to assess the NE shell fluidity when in colloidal suspension.  
Globally, in the work here presented a relationship between the fluidity of the NE shell and the structure 
of used excipients was established. The gained evidences on the NE structure will contribute to a more 
rational design of nanosystems, opening the way to novel applications in oral drug delivery. 

II.1. Introduction
Lipid-based drug delivery systems (LBDDS) have drawn increasing attention in the last decade for their 
great potential to improve oral delivery of poorly water-soluble drugs [1]. Their main advantages rely 
on the ability i) to increase the solubility of hydrophobic compounds, ii) to protect the associated drug 
from the harsh conditions of the GI tract, iii) to prolong drug intestinal residence time and iv) to promote 
interactions with intestinal epithelium resulting in enhanced intestinal absorption [2]. Moreover, they 
can be obtained using easy and transposable techniques of production that allow the translation of 
LBDDS to pre-clinical studies and clinical applications. LBDDS are core-shell structures composed of 
an inner oil core in which the drug is solubilized and an external layer which stabilizes the aqueous 
suspension. They are made of inert, biocompatible and biodegradable FDA-approved materials having 
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well-established safety profiles for oral administration of pharmaceuticals [3]. LBDDS include a wide 
range of nanosystems that can be classified as: vesicular systems (i.e. liposomes, niosomes), fluid 
emulsified systems such as nanoemulsions (NE) and self-emulsifying drug delivery systems (SEDDS), 
and solid lipid particulate systems such as solid lipid nanoparticles (SLN), nanostructured lipid carrier 
(NLC) and lipid nanocapsules (LNC) [4,5]. All these LBDDS are structurally different though they are 
based on emulsion formulation processes. Thus, mastery over emulsion formation phenomena is crucial 
towards the development of nanosystems having definite specifications of their therapeutic properties 
depending on the drug to be loaded [6]. 
NE are thermodynamically unstable emulsions with mean droplet diameters lower than 200 nm made 
of an inner oil core stabilized by an external surfactant shell [7]. Their advantage over other LBDDS 
arises from the large drug loading capacity provided by the high oil content of the system [8–10]. NE 
can be obtained using either high-energy or low-energy approaches. These methods differ for the 
physicochemical mechanisms that govern nanosystem formation. High-energy approaches are based on 
the use of specific equipment (high-pressure homogenizers, ultrasound dispersers) that dissipate intense 
mechanical power into the sample, mixing water and oil phases and breaking droplets down to smaller 
sizes [11]. In contrast, low-energy approaches relying on “spontaneous emulsification” processes, such 
as the phase inversion composition (PIC), emulsion phase inversion (EPI), and phase inversion 
temperature (PIT) techniques which allow the formation of ultrafine droplets [8,12]. Among low-energy 
approaches, EPI method is an isothermal technique in which emulsification is performed by changes in 
system composition [13]. It has been widely studied for the production of NE [6,8,13,14]. However, 
major drawbacks such as the limited types of surfactants which can be used compared to high-energy 
method and the propensity to Ostwald ripening due to the high Laplace pressure inside small NE 
droplets, limits the use of EPI technique for the production of suitable NE [15]. 
Based on the previous background, the present work aims at the rational design and development of a 
novel NE. The EPI technique and homogenization process were combined to broaden the spectra of 
excipients that can be used to formulate NE by low energy methods. A case-specific optimization of the 
system was performed using an experimental design. The influence of composition (surfactant amount 
and surfactant-to-oil ratio SOR) on physicochemical properties of NE was study. The transposability of 
the system was evaluated and the optimized NE formulation was scaled up 10-fold. Tacrolimus, a BCS 
Class II immunomodulatory agent used in the treatment of various diseases, was chosen as hydrophobic 
model drug to be encapsulated into NE. Stability studies and in vitro release behaviour were carried out 
in relevant GI media as simulated gastric fluid (SGF) and simulated intestinal fluid in fasted state 
(FaSSIF-V2). The procedure here presented for nanoemulsion formulation and characterization can be 
used as template for a rational design of lipid nanosystems. Then, NE were dried using spray-drying and 
freeze-drying to preserve their long term stability. While NE formulations have already been reported 
for oral drug delivery, to our knowledge, drying processes to obtain a powder as final product are still 
lacking in the literature [32,33]. The shell surrounding NE droplets was characterized exploiting a 
unique methodology. X-ray diffraction and differential scanning calorimetry (DSC) were used to assess 
the shell crystalline or amorphous state. Finally, an innovative method based on a specific fluorescence 
spectroscopy analysis by labelling NE with a Laurdan derivative, was set up to investigate the shell fluid 
or rigid nature. The ultimate goal was to offer a way of correlating the shell composition and rigidity 
with nanoparticle stability, drug encapsulation efficacy and release behaviour. 
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II.2. Materials and methods
II.2.1. Materials
Medium chain triglycerides, MCT (Miglyol®812) purchased from CREMER OLEO GmbH & Co. KG
(Hamburg, Germany) was used as oil. Polyoxyethylene(40) stearate (Myrj®52) from Sigma-Aldrich (St
Quentin-Fallavier, France) and oleoyl polyoxyl-6 glycerides (Labrafil®M1944CS) from Gattefossé
(Saint-Priest, France) were used as non-ionic surfactants. The aqueous phase used to prepare emulsions
was sodium phosphate buffer solution (5 mM; pH 7.4). Tacrolimus was purchased from LC Laboratories
(Woburn, MA, USA). Hydrochloric acid 37%, AnalaR NORMAPUR® Reag. Ph. Eur. was from VWR
International (Fontenay-sous-Bois, France). Dichloromethane, methanol, acetonitrile (HPLC grade),
dodecyl sulfate sodium salts pure, sodium taurocholate hydrate 96% and sodium hydroxide were
purchased from Fisher Scientific (Illkirch, France). Egg phospholipids with 70% phosphatidylcholine
(Lipoid E80S) was from Lipoid GmbH (Ludwigshafen am Rhein, Germany). Acetic acid was obtained
from Chem-Lab NV (Zedelgem, Belgium). Maltodextrin MD (Glucidex® 12D) from Roquette Frères
(Lestrem, France) and trehalose 100 (TR) as a gift of Hayashibara Co. Ltd (Okayama, Japan) were used
as cryoprotectants in the drying studies. Milli-Q water, used to prepare all solutions and buffers, was
obtained using a Milli-Q Academic System (Millipore, Saint Quentin, Yvelines France).

II.2.2. Nanoemulsion preparation
Nanoemulsions (NE) were prepared by emulsion phase inversion (EPI) technique [13]. The oil phase 
was prepared by mixing the oil (MCT) and surfactants (Polyoxyethylene(40) stearate: S1 and oleoyl 
polyoxyl-6 glycerides: S2) under magnetic stirring (750 rpm) at 80 °C. Then, the aqueous phase (PBS 
5 mM), heated at 80 °C as well, was added into the organic melt phase. Stirring was performed 
using a rotor-stator disperser (T25 digital Ultra-Turrax® equipped with a S25N-8G shaft. IKA®-
Werke GmbH & Co. KG, Staufen, Germany) at 11,000 rpm. Two cycles of stirring of 10 min each 
were performed. The resulting colloidal system was cooled to room temperature under magnetic 
stirring during 30 min. The process was designed so that the final emulsion always had a total mass of 
5 g. Finally, NE were scaled up to 50 g (10 times larger than the optimization step scale) by adaptation 
of the shaft of the rotor-stator disperser.

2.2.1. Influence of formulation: ternary phase diagram and mixture design 
To investigate the NE region, three ternary phase diagrams were designed using 23 formulations for 
each diagram. The ternary mixtures were composed of oil, water and three different surfactant mixtures 
(S1 + S2) called Smix. Smix was characterized by the Surfactant Mass Ratio (SMR) of S1 to S2 𝑆𝑀𝑅 = mass of S1mass of S2 Eq. 1 

The NE area was identified by varying the Smix/Oil/Water amount at fixed SMR of 1, 2.5, and 5. 
Another parameter of the formulation was the Surfactant-to-Oil ratio (SOR) defined as 𝑆𝑂𝑅 = mass of Smixmass of MCT Eq. 2 

II.2.3. Physicochemical and morphological measurements
Electrical conductivity was measured using a portable conductivity meter (CDM210 Conductivity
Meter, MeterLabTM, Radiometer Analytical SAS, Lyon, France). Shear viscosity measurements were

http://www.hayashibara.co.jp/groupinformation.php?lg=en
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performed using a controlled shear-rate rheometer (MCR 302 rheometer, Anton Paar, Les Ulis, France). 
All measurements were carried over a range of different shear rates (0.1–100 s-1) at 25 °C. The 
crystalline characteristics of NE were determined through X-ray powder diffraction (XRPD) analysis at 
the “Centre de Diffractométrie Henri Longchambon” facility of the University Lyon 1 using a Bruker 
AXS D8 Advance X-ray diffractometer operating in the Bragg -2 configuration using Cu K radiation 
(1.54 Å wavelength) in an angular domain from 10° to 70° at scanning rates of 0.25°·min-1.  
Size distribution and surface electrical potential of NE were measured using Malvern Zetasizer® 
NanoZS (Malvern Instruments S.A., Worcestershire, UK). Particle size and polydispersity index (PdI) 
were determined by Dynamic Light Scattering (DLS) diluting all samples with Milli-Q water to ensure 
correct calculation of size distribution by the method of cumulants. Analyses were carried out at 25 °C 
with an angle of detection of 173°. ζ‒potentials were measured by electrophoresis technique after 
dilution of samples in KCl 1 mM. Analyses were performed in triplicate. 
NE morphology was analysed by transmission electron microscopy (TEM), cryogenic-transmission 
electron microscopy (Cryo-TEM) and scanning electron microscopy (SEM) at the “Centre 
Technologique des Microstructures” (CTμ) facility of the University of Lyon. TEM was performed with 
a Philips CM120 microscope. Diluted NE (10 µL) was deposited on a microscope grid (copper support 
coated with carbon) and slowly dried in open air. The dry samples were observed by TEM under 120 kV 
acceleration voltage. For Cryo-TEM analysis diluted samples of NE were dropped onto 300 mesh holey 
carbon films (Quantifoil R2/1) and quench-frozen in liquid ethane using a cryo-plunge workstation 
(made at Laboratoire de Physique des Solides-LPS, Orsay, France). The specimens were then mounted 
on a precooled Gatan 626 sample holder, transferred into the microscope (Phillips CM120) and observed 
at an accelerating voltage of 120 kV. Moreover, TEM microscope grids, on which NE were deposited 
and slowly dried in open air overnight, were plunged frozen in liquid ethane (following the Cryo-TEM 
protocol of sample preparation) and NE were observed by TEM (cold TEM). 
Scanning electron microscopy (SEM) was performed on dried samples following spray-drying with a 
FEI Quanta 250 FEG microscope. A drop of diluted aqueous suspension of re-hydrated spray-dried NE 
was deposited on a flat steel holder and dried at room temperature. Then samples were coated under 
vacuum by cathodic sputtering with copper. The samples were observed by SEM under an accelerating 
voltage of 15 kV. 
The structural characterizations of NE aqueous suspensions and dried NE were performed by differential 
scanning calorimetry (DSC) using a Q200® instrument from TA Instruments (New Castle, DE, USA). 
A nitrogen purge of 50 mL·min-1 was used for all measurements. The temperature range was -80 °C to 
+160 °C. Samples (about 10 mg) were accurately weighed and sealed in 40 µL aluminium pans close
with either a hermetic lid for DSC of excipients and NE powders, or perforated aluminium lids DSC of
NE and S1 in water that gradually released water when heated above 40 °C.
The fluidity of the NE shell was determined by mean of a newly synthesized Laurdan derivative, Dioll
(patent pending EPO19306175.1-1118). The Dioll probe was dissolved in ethanol (263 µM). NE was
diluted 1:100 (0.27% w/v). The Dioll solution (10 µL) was added to 1 mL NE to reach a 2.6 μM final
concentration of Dioll, corresponding to a Dioll-NE ratio of 1:2900 (w/w). The sample was incubated
for 20 min at room temperature. As controls, the fluorescence of Dioll solutions (2.6 μM) in MCT and
in water, and the fluorescence of blank NE (without Dioll) were recorded. For the blank NE control,
10 µL of ethanol were added to 1 mL NE. Fluorescence data were obtained using a FP-8500
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spectrofluorimeter (JASCO applied science, Halifax, Canada). The excitation wavelength was 390 nm 
and the emission spectra were recorded between 400 and 600 nm at several temperatures ranging from 
5 to 27 °C in steps of 2 °C and at 37 °C (2.5 nm bandwidth). The generalized polarization (GP) 
parameter was calculated from emission intensities according to: 𝐺𝑃 = 𝐼440−𝐼490𝐼440+𝐼490 Eq. 3 

where I440 and I490 are recorded fluorescence intensities at wavelengths of 440 nm and 490 nm, 
respectively, as previously described for Laurdan [16]. 

II.2.4. Tacrolimus-loaded nanoemulsion development
II.2.4.1. Solubility study of tacrolimus
Tacrolimus (50 mg) was dissolved in 1 mL of MCT, S2 or S1, stirred (750 rpm) at 80 °C during 3 h and
left overnight to reach equilibrium. Then, samples were centrifuged at 14000 rpm for 20 min and the
supernatant was collected and mixed with 1 mL of a methanol-dichloromethane mixture (1:1) and 2 mL
of acetonitrile. Following filtration with 0.22 μm Nylon syringe filter (Whatman GmbH, Dassel,
Germany), samples were injected into the HPLC system for tacrolimus detection. The apparatus
consisted of Agilent 1200 Series G1311A Quat Pump, Agilent 1200 Series G1367B HIP-ALS High
Performance Autosampler, equipped with Agilent 1200 Series G1315D Dad Diode Array Detector
HPLC (Agilent, Santa Clara, CA, United States). Tacrolimus was separated on a RP-C18 column
(Kinetex 5 μm C18 100 Å, 150 × 4.6 mm, Phenomenex, Torrance, CA, USA), with temperature set to
60 °C, using acetonitrile-deionized water 0.5% acetic acid (70:30) as mobile phase at a flow rate of
1.0 mL·min-1. The injection volume was 20 μL and the detection wavelength was 213 nm [17]. The
retention time of tacrolimus was at 3.99 ± 0.02 min. The system was managed by OpenLab CDS
ChemStation Edition software (Agilent, Santa Clara, CA, United States). The calibration curve was
linear (R2 = 0.999) in the concentration range of 10–250 μg·mL-1. The method was validated according
to ICH Q2(R1) guidelines. Detection and quantification limits (LOD and LOQ) were 7. 6 μg·mL-1 and
23 μg·mL-1, respectively [18].

II.2.4.2. Tacrolimus encapsulation efficiency and drug loading in nanoemulsions
To determine the encapsulation efficiency (EE) of tacrolimus into the system, tacrolimus-loaded NE (2
mg·mL-1) was separated from the aqueous medium by size exclusion chromatography. Separation was
performed on PD-10 Desalting Columns, containing 8.3 mL of Sephadex™ G-25 resin (GE Healthcare
Bio-Sciences AB, Uppsala, Sweden), using BPS 5 mM as the eluent. Fractions containing NE were
identified and collected in microtubes owing to their milky appearance. Tacrolimus was extracted from
fractions containing NE as previously described (section 2.4.1) and analysed by HPLC. Total NE was
analysed to determine the total amount of tacrolimus present in the initial formulation. The encapsulation
efficiency (EE) was calculated following Eq. 4:𝐸𝐸(%) = mass of tacrolimus in NEmass of tacrolimus feeding × 100 Eq. 4 

The drug loading (DL) was calculated as the ratio of the mass of tacrolimus detected in the purified NE 
to the total mass of NE: 𝐷𝐿(%) = mass of tacrolimus in NEmass of NE × 100 Eq. 5 

Analyses were done in triplicate. 
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II.2.5. In vitro NE stability and release study of tacrolimus in simulated GI fluids
The simulated gastric fluid (SGF, pH 1.2, 0.5% Sodium Lauryl Sulfate (SLS)) and simulated intestinal
fluid in fasted state (FaSSIF-V2, pH 6.5) were prepared according to Zhang et al. [19] and Jantratid et
al. [20] respectively. The colloidal stability of tacrolimus-loaded NE in simulated gastric and intestinal
fluids was evaluated by DLS analysis. To this aim, 250 μL of NE were diluted in 1 mL of either
simulated gastric fluid without pepsin (SGF) or simulated intestinal fluid without pancreatin (SIF),
prepared in accordance with the guidelines of the Ph. Eur. 9th ed. and then incubated at 37 °C. The
sample (1 mL) was collected at different time points for the determination of the average hydrodynamic
diameter and polydispersity index by DLS. Each analysis was performed in triplicate in three different
batches.
The in vitro release study of tacrolimus from drug-loaded NE was performed in gastric (SGF-SLS) and
intestinal (FaSSIF-V2) fluids, under sink condition (2 µg·mL-1 tacrolimus concentration), using the
dialysis method. A dialysis bag (Spectrum™ Spectra/Por™ dialysis membrane, MWCO: 6-8 kDa,
Fisher Scientific, Illkirch, France) containing 400 µL of loaded NE (1.0 mg·mL-1) was placed in 200 mL
of release medium and incubated at 37 °C under a stirring rate of 150 rpm. Tacrolimus-loaded NE were
withdrawn from dialysis bags at predetermined time intervals (up to 8 h in SGF and up to 72 h in
FaSSIF-V2) and total tacrolimus content was determined by HPLC. In the case of release into FaSSIF-
V2, analysis was also performed at 50 °C, which is above S1 excipient melting point (43 °C–48 °C).
Tacrolimus dissolved in a mixture of ethanol and water (30:70) at 1 mg·mL-1 was used as control.

II.2.6. Drying techniques
II.2.6.1. Spray-drying of nanoemulsions
The spray-drying technique was used to dry blank NE mixed with Maltodextrin (MD). Concentrations
of maltodextrin of 5, 7.5 and 10% w/w and concentration of nanoemulsion of 5, 10 and 15% w/w were
investigated. Prior to spray-drying, the compatibility of blank NE with MD solutions was examined
visually for checking against possible phase separation, both at room temperature and under
centrifugation acceleration of 2300 g for 5 min. Rheological measurements for the NE/excipients
suspensions were performed using a MCR 302 rheometer (Anton Paar, Les Ulis, France) at controlled
temperature (20 ± 2 oC). Then, 50 g of mixture of NE and MD were spray-dried with a Mini Spray-dryer
Büchi B191 (Büchi, Rungis, France) (NAM: Flawil, Switzerland), which had a two-fluid nozzle with
cap-orifice diameter of 0.7 mm and operated in a co-current mode. The applied process parameters were:
inlet temperature = 120 °C, aspirator setting = 50% of the maximum capacity, pump rate = 3 mL/min.
The spray-dried powder was recovered and kept in closed vials (room temperature) to avoid moisture
sorption.

II.2.6.2. Freeze-drying of nanoemulsions
NE was freeze-dried without or with trehalose (TR) as a cryoprotectant. Concentrations of trehalose of
1, 2.5, 5 and 10% w/w and concentration of nanoemulsion of 3.4, 6.8, 13.5 and 27% w/w were
investigated. Samples (2 mL) were transferred into 6 mL volume glass vials and the lyophilization was
carried out in a Cryonext pilot freeze-dryer (Cryonext, Saint-Aunès, France). The freeze-drying
technology was as follow: freezing at -50 °C for 6 h in the freeze-dryer chamber; primary drying from
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-50 °C to 0 °C in 24 h; secondary drying at 20 °C for 12 h. Finally, the vials were sealed with rubber
caps and stored at 4 °C until further analysis.

II.2.6.3. Dried nanoemulsion physicochemical and morphological characterization and
reconstitution
Residual moisture content was determined by thermogravimetric analysis (TGA) using a TG 209 F1
Libra thermogravimetric analyser (Netzsch, Selb, Germany) at a heating rate of 10 °C·min-1 and
temperature range from 20 °C to 150 °C. Following freeze-drying, the dry powders were re-hydrated by
progressive addition of milli-Q water. The reconstitution time was evaluated and particle size and
polydispersity index (PdI) were measured by DLS. The morphological analysis of freeze-dried NE was
performed by transmission electronic microscopy (TEM). Spray-dried NE were examined by scanning
electron microscopy (SEM). The impact of drying on the loaded NE (2 mg·mL-1) was determined by
HPLC. The drug content and the encapsulation efficiency were measured before and after the freeze-
drying in order to detect any leakage during the process.

II.2.7. Statistical analysis
All data were expressed as mean ± SD. For NE mixture design, data were statistically analysed by
multiple linear regression calculations, analysis of variance (ANOVA) and residual analysis with
Modde® software (Umetrics, Sartorius-Stedim, Sweden). A P-value lower than 0.05 was considered as
indicating statistically significance.

II.3. Results and discussion
II.3.1. Design and development of nanoemulsion
NE were prepared using the emulsion phase inversion (EPI) technique and homogenization process
(using a rotor-stator disperser). The principle of EPI technique is based on the catastrophic phase
inversion that occurs when water is titrated over the organic phase constituted by the mixture of oil and
surfactants. In our case the organic phase was made of medium chain caprylic/capric triglycerides
(MCT) stabilized by a mixture of non-ionic hydrophilic and hydrophobic surfactants,
polyoxyethylene(40) stearate (S1) (HLB 16.9) and oleoyl polyoxyl-6 glycerides (S2) (HLB 4). The
hydrophilic surfactant, S1, was chosen among PEGylated stearates to form a steric barrier against droplet
coalescence and allow formation of small particle size [12]. S2 was used as hydrophobic surfactant [21].
The selected NE components are common lipid ingredients available in the market, approved by FDA
for the oral route. Worthy of mention is that for the first time they were combined in this study to create
a delivery system in the nanometric range. The emulsion phase inversion region for the O/W to W/O
transition was studied in selected NE prepared by adding the aqueous phase to the oil phase (Fig. 1).
The oil phase had a transparent appearance, a low electrical conductivity (0.39 µS·cm-1) and a relatively
low shear viscosity (52 mPa·s). After the first water addition (14%), the formulation became turbid.
Then the addition of more water (20%) led to formation of a milky suspension that quickly turned into
a viscous gel. At this point the electrical conductivity slightly increased and the viscosity increased
steeply, reaching its maximum value (12000 mPa·s) at a water content of 28%. The increase in
conductivity was less pronounced (from 30 to 800 µS·cm-1) in the range of maximum viscosity value,
supporting the formation of an intermediate gel-like material. Then, when more water was added (>
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28%), the viscosity strongly decreased (3200 mPa·s), the conductivity increased (up to 3000 µS·cm-1) 
and the formulation presented the milky white aspect typical of O/W emulsions [13]. The intermediate 
highly viscous gel might be a multiple emulsion (W/O/W). At this stage, additional water made the 
catastrophic phase inversion to take place (W/O/W to O/W) when the small internal water droplets 
coalesced at the external surface of the double emulsion. The formation of a highly viscous double 
emulsion during formulation of NE using EPI method has previously been described [14,35]. 

Fig. 12 Effect of water titration (phosphate buffer 5 mM, pH 7.4) on the viscosity (black line) and 
electrical conductivity (grey line) of NE at 80 °C. 

II.3.2. Influence of formulation: ternary diagram and mixture design
An exhaustive study on the influence of NE composition and method of preparation on NE
physicochemical properties, drug loading, structure and stability was developed. The design of the NE
formulation was carried out using ternary phase diagrams.
The apices of the phase diagram were oil (MCT), water and surfactant mixture (Smix). Three different
Smix compositions (1, 2.5 and 5) were studied (data can be found in the Supplementary Information
file). For all diagrams, three domains were identified: solid state, liquid-gel state, and liquid state in
which the domain of interest for NE formation was found. The area of the solid state domain increased
with respect to SMR (from 1 to 5), which was attributed to the high content of S1. High viscosity is
related to the large amount of hydrophilic PEG chains swollen by water via hydrogen bonding. This
effect was correlated with an increase in the liquid-gel state formation observed at SMR of 2.5 and 1. A
NE domain was present for all SMR. It was attained when the water content ranged from 0.7 to 0.95, the
oil ranged from 0.02 to 0.15 and Smix ranged from 0.02 to 0.30. At SMR = 5 the NE area was smaller
than at SMR = 1 and 2.5 and NE were highly viscous, which made the formation of NE more difficult
[8, 23]. At SMR = 1 and 2.5, the extent of the NE area was higher; it was the largest at SMR = 2.5.



89 

Fig. 2 A) Ternary phase diagram at SMR=2.5. The green area corresponds to formulations in the solid 
state, the two blue areas to formulations in the liquid state. The dark blue region corresponds to 
formulations containing NE. The trapezoid-shaped area is the selected reduced region of interest (ROI) 
for refined analysis. B and C) Pseudoternary phase diagram at SMR=2.5. Contour plots of the predicted 
droplet mean size (B) and PdI (C) in the triangle defined by the lower bounds of mass fractions of oil, 
water and Smix (SMR=2.5) with design points (●), check points (▲) and optimized formulations (□). 
The composition of the selected optimized formulation (formulation number 14) is indicated by black 
lines. The red line corresponds to SOR=2.  

The system at SMR = 2.5 was selected for optimization purpose (Fig. 2). Thus, the relation between the 
organic phase composition and the size characteristics of the resulting NE was more in-depth 
investigated by means of an experimental design in a pseudo-ternary phase diagram. Upper and lower 
bounds on the proportions of the NE components were defined according to the ternary phase diagram 
results (trapezoid-shaped area in Fig. 2A). The resulting set of constraints on the component mass 
fractions was: 0.03 < xoil < 0.1, 0.05 < xSmix < 0.2 and 0.7 < xwater < 0.92. The constrained experimental 
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domain consisting of four vertices and four edges is shown in Fig. 2A. It is represented in the triangle 
whose vertices were obtained from the lower bounds of the NE components. 
The eight design points corresponding to the 4 extreme vertices and the midpoints of the four edges of 
the constrained region (runs 1 to 8 in Table 1) were chosen in order to fit the second-degree Scheffé 
polynomial: 
Y = ∑ 𝑏𝑖𝑥𝑖3𝑖=1 + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗3𝑖<𝑗  Eq. 6
According to Scheffé [22], the vertices of the experimental domain are the most useful points for 
estimating the coefficients of the linear blending terms bi, while the midpoints of the edges are better 
useful for estimating the binary blending parameters bij [22,23]. The overall centroid of the constrained 
experimental domain (run 9) was used as a validation point to check the predictive performance of the 
developed model (Table 1). 

Table 1 Mixture design and size distribution results. 
Run xoil xSmix xwater SOR d (nm) PdI 
1 Design Point (vertex) 0.030 0.050 0.920 1.7 193 0.51 
2 Design Point (vertex) 0.100 0.050 0.850 0.5 1500 0.82 
3 Design Point (vertex) 0.030 0.200 0.770 6.7 108 0.27 
4 Design Point (vertex) 0.100 0.200 0.700 2.0 245 0.42 
5 Design Point (edge midpoint) 0.065 0.050 0.885 0.8 507 0.66 
6 Design Point (edge midpoint) 0.030 0.125 0.845 4.2 124 0.30 
7 Design Point (edge midpoint) 0.100 0.125 0.775 1.3 596 0.77 
8 Design Point (edge midpoint) 0.065 0.200 0.735 3.1 141 0.23 
9 Check point (centroid) 0.065 0.125 0.810 1.9 199 0.58 
10 Check point 0.048 0.088 0.865 1.8 182 0.42 
11 Check point 0.083 0.163 0.755 2.0 185 0.43 
12 Optimized formulation 0.030 0.180 0.790 6.0 107 0.30 
13 Optimized formulation 0.050 0.190 0.760 3.8 131 0.25 
14 Optimized formulation 0.070 0.200 0.730 2.9 137 0.20 

The results (Table 1) showed very large variations of NE size distribution with a mean size ranging from 
about 100 to 1500 nm and PdI comprised between 0.23 and 0.82. The eight first experiments were used 
to determine the regression model coefficients in Equation 6. Only the regression coefficients significant 
at the 5% level (t-test) were kept in the model. The ANOVA results indicated the high significance of 
the developed model (p < 0.05). The determination coefficients (R² and R² adjusted) above 0.9 also 
proved the satisfactory adequacy of the model. Moreover, runs 9, 10 and 11 were used as a check points 
to evaluate the model predictive performance: as example, the estimated mean size and PdI for run 9 
were 173 nm and 0.48 respectively, which were similar to the experimental values (199 nm and 0.58) 
indicating adequacy of model. 
The estimated surface contours for the mean size (Fig. 2B) and PdI were plotted in pseudoternary phase 
diagrams (Fig. 2C). The region of interest corresponding to a mean diameter less than 140 nm is 
coloured in dark blue in Fig. 2B. The area where PdI < 0.3 (Fig. 2C) was larger than that where D < 
140 nm, so that the whole dark blue region of Fig. 2A corresponded to satisfactory formulations with 
regards to the PdI criterion. The amounts of Smix and oil in the formulations greatly influenced both the 
mean size and PdI. As expected, low PdI's were obtained at large xSmix and low xoil and small droplet 
mean diameters required xoil less than 0.08. From these results, three optimized formulations were 
identified on the basis of two selection criteria: i) stability, ii) high oil content: runs 12, 13 and 14. The 



91 

optimized NE that had maximum oil content was run 14 (indicated by black lines in Fig. 2B and 2C); 
its composition contained oil, Smix and water mass fractions of 0.07, 0.2 and 0.73, respectively. 
Besides, the surfactant-to-oil ratio (SOR) was studied for SMR = 2.5. Nanometric droplets smaller than 
200 nm were formed at SOR ≥ 2. High surfactant concentrations allowed the formation of smallest 
droplets. However, at the highest surfactant concentrations tested (SOR = 6), a bimodal particle size 
distribution was observed. 
The stability of formulations was estimated using homogeneity and size measurements as readouts. After 
4 days of storage at 20 °C, stable and monodispersed NE (PdI < 0.2) were obtained at SMR = 2.5 and 
SOR = 2.86, 4.04 and 5. The results confirmed the interdependency between SOR and overall surfactant 
amount in NE. In fact, stability was achieved when there was a sufficient surfactant amount to cover 
droplet surfaces [24]. 
Overall, the goal of developing a stable NE, maximizing the oil content (7%), was achieved by setting 
SMR = 2.5 (HLB 13.2) and SOR = 2.86 (Fig. 2B and 2C). The use of an experimental design provided 
a rigorous methodology for optimization of formulation, which is much more suitable than the 
“classical” method based on trial-and-error. The full region of interest, expressed in terms of practical 
formulation parameters such as SMR, xoil and SOR, was disclosed. Then, the optimum formulation with 
regards to stability, size and polydispersity criteria was selected by a minimum number of experiments. 
Previous studies demonstrated that the development, physicochemical attributes and stability of NE may 
be improved by using associations of two or more different emulsifiers, rather than an individual type 
[25]. TEM observations of emulsions prepared with S1 alone showed that droplets exhibited a clear 
tendency to aggregate (images can be found in the supplementary section). Thus, the presence of a 
hydrophobic surfactant (S2) in Smix (SMR = 2.5, SOR = 2.86) was mandatory for ensuring stability. 
The Smix that yielded stable NE had a hydrophilic-lipophilic balance (HLB) close to the required HLB 
of the oil phase (13.2) [26]. The HLB values of the surfactant mixture were 10.5, 13.2 and 14.3 at SMR 
= 1, 2.5 and 5, respectively. Based on this assumption, the NE at SMR = 2.5 matched the required HLB 
of MCT. 
The stability of NE in colloidal suspension was assessed at 20 °C and 37 °C, over 28 days 
(supplementary materials). No creaming or sample degradation were observed during the studied period 
and the mean size and polydispersity index (PdI) measured by DLS remained stable. 
The robustness of the formulation process was evaluated by scaling up the NE. A batch 10 times bigger 
than the optimized one was produced. NE (scaled  10) maintained their initial physicochemical 
properties in terms of size and polydispersity (data not shown), indicating that the process can be 
transposed to a larger scale production. 

II.3.3. Physicochemical and morphological characterization of optimized nanoemulsions
Optimized NE had mean droplet size of around 104 ± 3 nm, a low PdI (0.2) and a neutral/slightly
negative ζ‒potential (-9 ± 1 mV). This neutral surface charge derived from the PEGylated surfactant
(S1) shell hinders interactions with intestinal contents and mucus layer, thus enhancing NE diffusion to
the epithelium and translocation through the mucosa [52].
Transmission electron microscopy (TEM) and Cryo-TEM observations (Fig. 3A to 3D) were performed
to study their morphology. TEM images showed a monodispersed population of spherical droplets with
a smooth surface. However, to perform TEM observations, samples were dried on the grid and the
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interaction of NE with the electron beam may cause structural alteration of particles, leading to a 
misinterpretation of results. Cryo-TEM was thus performed to directly investigate NE in the frozen-
hydrated state, very close to their native state [27]. Moreover, Cryo-TEM observation allows the 
discrimination of smaller and bigger particles. Finally, it confirmed that NE formulations presented quite 
monodispersed population of spherical droplets. 

Fig. 3 A and B) TEM of blank NE, C and D) Cryo-TEM of blank NE, E and F) Cold TEM of tacrolimus-
loaded NE. All images are at magnification of 200 nm and 100 nm. 

II.3.4. Tacrolimus-loaded nanoemulsion formulation and physicochemical characterization
Tacrolimus, an immunomodulatory agent used in the treatment of various diseases [19], was
encapsulated into the NE as hydrophobic model drug. The fundamental prerequisite to obtain a high
encapsulation efficiency of the drug in nanosystems is a high solubility of the active compound in
excipients. The solubility of tacrolimus was 11.9 ± 0.01 mg·mL-1 in MCT, 29.9 ± 0.003 mg·mL-1 in S2
and 30.6 ± 0.01 mg·mL-1 in S1, suggesting the feasible encapsulation of the drug in NE.
Thus, tacrolimus was mixed with the NE oil phase (2 mg·mL-1, SMR = 2.5, SOR = 2.86) by magnetic
stirring (750 rpm) at 80 °C for 2 h to reach equilibrium, and NE were prepared performing two cycles
of 10 min stirring at 80 °C. Physicochemical characteristics of tacrolimus-loaded NE and blank NE were
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the same: mean diameter was 96 nm against 104 nm, PdI was 0.23 vs 0.22 and ζ‒potential was -8.7 mV 
vs -9.1 mV. Moreover, owing to the high lipophilic character of tacrolimus, encapsulation efficiency 
was close to 100% (99.5% was measured), with a drug loading of around 0.74%. This encapsulation 
efficiency is higher than for tacrolimus-loaded ethosomes (around 80%) [28] and lipid nanocapsules 
(over 90%) [29]. Moreover, the drug content (2 mg·mL-1) was higher when compared to lipid system 
previously developed for the oral delivery of tacrolimus (0.79 ± 0.05 mg·mL-1 in lipid-core nanocapsules 
[53]) highlighting the interest of exploiting such formulation to further enhance drug deliver across the 
oral absorption barrier. DLS measurements were confirmed by “cold TEM” observations (Fig. 3E and 
3F). After preparing TEM grids and let sample dry overnight, TEM grids were frozen in liquid ethane 
and observed by Cryo-TEM. Cold TEM images showed that loaded NE formed monodispersed 
population with a spherical shape. 
The stability of loaded NE in colloidal suspension, upon storage at both at 20 °C and 37 °C, was 
followed over 28 days (supplementary materials). Three parameters were assessed at different time 
points: i) macroscopic aspect (presence of aggregates, cream formation or changes in colour); ii) particle 
size, polydispersity and ζ‒potential; and iii) tacrolimus concentration in the preparation and leakage of 
the drug. No sample degradation was observed and mean size, polydispersity index (PdI) and surface 
potential remained stable during the studied period. Moreover, 75% of encapsulated tacrolimus was 
retained in the NE upon 28 days of storage at 20 °C. 

II.3.5. Stability and in vitro release of tacrolimus-loaded nanoemulsion in simulated GI fluids
The stability of loaded NE in terms of size evolution was assessed upon incubation during 3 h in SGF
and 8 h in SIF media (data presented in the supplementary materials). Results indicated that loaded NE
maintained their initial size in the experimental conditions tested.
Release behaviour of loaded NE was evaluated in vitro under sink conditions in SLS-SGF and in
FaSSIF-V2 (Fig. 4). Tacrolimus dissolved in a mixture of ethanol and water (30:70) was used as a
control.

Fig. 4 In vitro release profiles of tacrolimus from ethanol/water solution and loaded NE in SGF (pH 1.2) 
or FaSSIF-V2 (pH 6.5). Mean ± SD, n=3. SGF: simulated gastric fluid in presence of sodium lauryl 
sulfate (SLS 0.5% w/v); FaSSIF-V2: simulated intestinal fluid in fasted state.
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Upon 30 min of incubation in SLS-SGF, 25% of the drug was released from the NE, reaching 50% 
during 2 h. Then, no further release was detected in the following 8 h. In FaSSIF-V2, 39% of tacrolimus 
was released during the first 30 min, then, 45% until 2 h. A plateau was reached following 10 h of 
incubation, with 75% of tacrolimus released up to 72 h (data shown in the supplementary section). 
Controls showed that the release rate was not due to diffusion through the dialysis membrane. 
Tacrolimus solubilized in ethanol/water mixture was rapidly released in SGF, reaching 40% in 30 min 
followed by 60% of release in 8 h. In FaSSIF-V2, the release was faster, reaching 70% in 30 min, and 
94% in 8 h. Tacrolimus was released in a sustained manner once encapsulated in the NE compared to 
drug solutions. This behaviour was correlated to the high affinity of the drug with the oil core of NE, 
which resulted from the high hydrophobicity of tacrolimus. Overall, around 40% of drug would be 
available upon 1 h of oral administration and the complement would be released within 24 h in a 
controlled sustained manner, thereby acting as maintenance dose. In accordance with previous studies, 
this profile might be beneficial to overcome fluctuations in drug plasma levels [54]. 

II.3.6. Conversion into dry solid powders
To increase the stability of the system both spray-drying and freeze-drying techniques were exploited. 
The drying of nanosystems allows to overcome limitations of conventional (liquid) formulations (as 
storage instability, particle aggregation, drug leakage and microorganism growth over time [30]) and 
favor the oral administration of dry NE in a powder form (i.e. capsules, Tablets).
Spray-drying is a single step procedure for drying liquid formulations by rapid water evaporation in a 
hot gas flow [31]. While, in the case of freeze-drying, the conversion into a solid powder involves 
removal of water by sublimation of ice crystals from frozen material at low pressure and low temperature 
[32]. The use of heat is avoided, therefore making the freeze-drying the most common processing 
method for removing moisture from biopharmaceuticals and for producing high quality powder for 
thermosensitive drugs. However, freeze-drying is still challenging for the production of dry emulsions 
and NE due to several critical steps (cryoprotectant choice, freezing rate and conditions, primary and 
secondary drying process) which need to be controlled [32].
The use of drying excipients (trehalose, maltose, sucrose, glucose, maltodextrin or mannitol) is highly 
recommended in both processes. During the spray drying process, excipients are added to provide a 
matrix to the dry product while it is heated to high temperatures [31]. Using specific excipients such as 
lactose or maltodextrin, several dispersed systems, as emulsions, liposomes and nanocapsules, have 
been successfully spray-dried with preservation of their initial properties that allows reconstitution of 
an aqueous suspension [31]. While, in freeze-drying, cryoprotectants and lyoprotectants (i.e. trehalose, 
sucrose, lactose) are used to prevent the disruption of the droplets during freezing and drying steps [32]. 
Both spray-drying and freeze-drying technologies were evaluated with regards to obtain dry powders of 
NE. Firstly, the feasibility of both processes was assessed and maltodextrin (MD) and trehalose (TR) 
were rationally selected as drying excipients to improve spray-drying and freeze-drying performance, 
respectively. The dry powders were characterized in terms of moisture content, product yield and 
macroscopic properties. Then, following reconstitution by rehydration, NE physicochemical properties 
were assessed.
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II.3.6.1. Nanoemulsions spray-drying and characterization
During the spray-drying process, the prevention of phase separation between NE and excipients before
the feed pumping step is crucial to prepare homogeneous powders and to ensure effective NE protection
[31,33]. In this study, NE were spray-dried in presence of maltodextrin (MD) as drying excipient based
on both maltodextrin finest attributes, as from the literature [31], and on preliminary studies comparing
the homogenization properties of NE with maltodextrin, lactose and hydroxypropyl methylcellulose
(HPMC) (results not shown). Phase separation of NE/MD mixtures was studied at equilibrium as well
as under centrifugal forces. When the MD solution was mixed with the NE at different ratios (Table 2),
no spontaneous phase separation occurred in all studied samples up to 2 h. However, after 6 h, creaming
occurred in samples whose MD concentration exceeded 7.5%. Creaming was also observed after
centrifugation of samples at high MD concentrations (MD > 7.5%).

Table 2 Compatibility of NE with different concentration of maltodextrin (MD) “– “No separation; “+” 
Light separation, with very thin upper cream layer; “+++” Obvious separation, with upper creamed 
layer. % expressed as% w/v. 

NE (% 
w/v) 

MD (% 
w/v) 

Equilibrium Centrifugation (2300 g, 
5 min) 

Viscosity at 20 °C 
(mPa·s) 15 min 2 h 6 h 

5 5 – – – – 2.1 
5 10 – – – + 3.3 
10 5 – – – – 3.6 
10 10 – + +++ +++ 6.2 
15 7.5 – + +++ +++ 8.2 
15 10 – + +++ +++ 11.7 

Emulsions mixed with MD solutions show an enhance rate of creaming when a critical MD 
concentration, defined as critical flocculation concentration (CFC), is exceeded. Above the CFC the 
non-adsorbed MD molecules in the aqueous phase cause depletion flocculation of NE droplets [34]. In 
our experiment the critical flocculation concentration (CFC) was identified at MD concentrations ≥ 
7.5%. 
Too high viscosity of the initial solution hinders homogenous atomization and correct drop 
formation [48]. An increase of MD and NE concentrations (from 5 to 15%) led to a slight increase 
of viscosity (from 2 to 12 mPa·s). However, the overall viscosity remained low (< 12 mPa·s) and spray-
drying could be performed even at high NE concentration (15% w/v). Following the spray-drying 
process, powders were recovered both from the cyclone wall and bottom. Macroscopic characteristics 
of powder obtained are presented in Table 3. 
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Table 3 Characteristics of spray-dried NE powders. 
NE (% 
w/v) 

MD (% 
w/v) 

Ratio 
NE/MD Macroscopic properties Moisture content (% 

w/v) 
Yield (% 
w/v) 

5 5 1 White powder, good 
flowability 3.1 77.3 

5 10 0.5 White powder, good 
flowability 4.5 90.2 

10 5 2 White powder, 
sticky 1.7 – 

10 10 1 White powder, good 
flowability 3.7 89.7 

15 7.5 2 White powder, 
quite sticky 2.4 73.2 

15 10 1.5 White powder, good 
flowability 2.6 92.8 

Fig. 5 SEM images of spray-dried NE at different NE and MD concentrations (% w/v). NE:MD = A) 
5:10; B) 10:10; C) 15:10.
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Powders were pasty and stuck to the cyclone bottom when spray-dried with a NE/MD ratio of 2. 
Formulations with lower NE/MD ratios of 1.5, 1 and 0.5 resulted in smooth powders, which could be 
collected at the cyclone wall. Residual moisture content of all obtained powders was very low, varying 
from 1.7% to 4.5% (Table 3). It is worthy to notice that two sticky powders, corresponding to 
formulations with an NE/MD ratio of 2, showed the lowest value of relative humidity (1.67% and 2.4%, 
respectively). Their sticky state resulted from the exposure of the oil phase of droplets, due to the low 
amount of MD present in the powder. The sticky state of the formulation having NE-MD concentration 
of 10%-5% hampered the powder collection for further analysis. Process yields were satisfying, with 
values ranging from 70 to 93%, for all other mixtures (Table 3). 90% yield was reached for the mixture 
containing 10% of MD and NE at 5%. Such yields are much higher than the ones reported in the 
literature. In fact, previous works reported process yields between 30% and 40% for lipid-core 
nanocapsules (1%) spray-dried in presence of lactose (10% w/v) [35]. Also, nanocapsules (1%) were 
spray-dried in presence of MD (10% w/v) and the process yield was 66.9% [31]. 
SEM observations of NE powders (Fig. 5) revealed particles with a spherical shape and a folded surface 
with a broad size distribution, ranging from 500 nm to 6 µm (Fig. 5). The powders obtained for NE:MD 
concentrations of 5:10 (Fig. 5A) and 10:10 (B) (Fig. 5B) were composed of single particles while, in the 
case of powder obtained from higher NE:MD concentrations of 15:10 (Fig. 5C) particles looked like 
irregular agglomerates. Agglomeration was probably related to a phenomenon of interparticle adhesion 
during drying process, caused by the low amount of MD that did not provide an effective protective 
shell against sticking. 
The stability after spray-drying was assessed by evaluating the ability of NE to recover their initial 
physicochemical properties following reconstitution in water (Fig. 6A). When NE (concentration 15-
10-5%) was spray dried in presence of MD at 10%, no variation in terms of NE size and PdI were 
detected. While, for powders prepared using NE at 15 and 5% and MD at 7.5 and 5% respectively, an 
increase of NE hydrodynamic diameter (from 102 nm to 260 nm and 225 nm, respectively) and of PdI 
(from 0.15 to 0.4) were observed following resuspension in water. 
Overall, best results in terms of production yield, moisture content and stability following reconstitution 
were obtained for the mixture prepared at NE concentration of 5% and MD concentration of 10%. 
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Fig. 6 Particle size and polydispersity index (PdI) of : A) re-hydrated spray-dried NE at different NE 
and MD concentrations (% w/v); B) re-hydrated freeze-dried NE at different NE and TR concentrations 
(% w/v).

II.3.6.2. Nanoemulsions freeze-drying and characterization
Prior to lyophilization study, a freeze-thawing experiment was performed. The choice of trehalose as
drying excipient was dictated by its reported superiority in the freeze-drying process because of its
reduced hygroscopy, low chemical reactivity and high glass transition temperature [32,33]. Moreover,
better maintaining of NE physicochemical properties was observed with trehalose when compared to
maltodextrin (results not shown). NE was mixed with TR at different concentrations (Table 4) and the
stability of mixtures was evaluated upon 24 h of storage at 4 °C. No phase separation was observed for
all NE-TR mixtures.
Samples were then frozen in the freeze-drying chamber at slow freezing rate that avoided TR trapping
into ice crystals [36]. Frozen NE were thawed and their physicochemical properties were analysed by
DLS. Though particle sizes of all samples slightly increased (Table 4), they remained in the acceptable
nanometer range (< 200 nm). Size increase was more pronounced (around 70 nm) in samples with
NE/TR ratio higher than 10. Smaller and highly monodisperse (PdI = 0.1) particles were obtained for
NE/TR ratio ≤ 6.8.



99 

Table 4 Physicochemical characterization of NE mixed with trehalose (TR) at different ratio following 
the freeze-thawing study. NE original size = 103.9 ± 2.7 nm; PdI = 0.20. 

NE (% w/v) TR (% w/v) Ratio NE/TR Size (nm) PdI 
27 146 ± 3 0.13 

27 
1 27 174 ± 5 0.24 
2.5 10.8 165 ± 2 0.21 
5 5.4 128 ± 2 0.12 

13.5 1 13.5 176 ± 3 0.26 
2.5 5.4 154 ± 2 0.16 

6.8 1 6.8 151 ± 2 0.14 
10 0.68 128 ± 1 0.17 

3.4 5 0.68 111 ± 1 0.12 

The freeze-thawing experiment showed that the freezing stage of the lyophilization process did not affect 
the stability of the droplets, though this is considered as one of the most critical step. On this basis, 
freeze-drying was performed for the samples prepared at NE/TR ratio lower than 10. 
Representative pictures of the lyophilized cakes are shown in Fig. 7. The NE lyophilized without 
cryoprotectant resulted in elegant cakes with no defects (Fig. 7A and Table 5). White snow-like, smooth 
and elegant cakes were obtained for samples prepared at NE concentration of 13.5% and 2.5% of TR 
(Fig. 7B). While, at low NE content (3.4%) (Fig. 7D and Table 5) cakes resulted of poorest quality, with 
partial shrinkage and cracks. 
The residual moisture content of all obtained powders was low, varying from 0.3% to 3.3% (Table 5). 
The highest TR concentration tested (10%, 20%) contained more moisture (> 3%). This was due to 
unfrozen water remaining trapped in the sugar matrix during the sublimation step. Process yields were 
satisfactory, with values ranging from 87% (NE:TR = 6.8%:10%) to 100% (NE 27%) (Table 5). 

Fig. 7 Visual appearance of NE cakes and TEM images of NE after lyophilization and reconstitution in 
water. A) Blank NE without cryoprotectant; B) Blank-NE:TR=13.5:2.5; C) Tacrolimus-loaded 
NE:TR=13.5:2.5; D) Blank NE:TR=3.4:5. 
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Table 5 Characteristics of freeze-dried NE powders. 
NE (% 
w/v) 

TR (% 
w/v) 

Ratio 
NE/TR Macroscopic properties Moisture content 

(% w/v) 
Yield (% 
w/v ) 

27.0 White snow like smooth oily 
cake 0.3 103.6 

27.0 5 5.4 White snow like  smooth 
elegant cake 1.2 97.2 

13.5 2.5 5.4 White snow like smooth 
elegant cake 0.9 99.2 

13.5 20 0.7 White snow like smooth 
elegant cake 2.9 97.5 

6.8 1 6.8 White brittle cake 0.9 97.9 
6.8 10 0.7 White brittle cake 3.4 86.5 
3.4 0.5 6.8 White brittle cake, shrinkage 0.4 97.8 
3.4 5 0.7 White brittle cake 3.3 90.0 

The ability of dried NE to recover their initial physicochemical properties upon reconstitution in water 
was also evaluated. All the dried samples were rehydrated with pure water under gentle shaking and 
analysed for droplet size by DLS (Fig. 6B). NE without cryoprotectant (27%) showed acceptable 
increase in size (from 103 nm to 173 nm) and PdI (0.3). However, their rehydration was difficult and 
slow (> 10 min). NE at different concentrations were mixed with TR solutions or with the powder of 
TR before drying. When TR solutions (13.5% and 6.8%) were mixed with NE, the lyophilized cakes 
were easily and rapidly rehydrated (less than 1 min). Physicochemical properties of NE at 13.5% (size 
= 141 nm, PdI = 0.2) were better preserved at TR amount of 2.5% (Fig. 6B). TEM observations (Fig. 7B) 
revealed that particles were spherical and presented a rough surface. NE formed a monodispersed 
population and no visible aggregates were present. However, at the lowest NE (3.4%) and TR (0.5%) 
concentrations an increase in particle size (154 nm) was observed. TEM (Fig. 7D) showed that particles 
were highly agglomerated. Low NE content formulations exhibited a poor aptness to freeze-drying. 
When the powder of TR (5%) was dissolved in NE suspension (27%), large (190 nm) and highly 
polydisperse (PdI = 0.4) particles were obtained, revealing a partial destabilization of the emulsion by 
TR. These results highlight the importance of the addition method (TR solution versus powder), which 
had to be considered as relevant during the freezing and drying steps. 
In order to study whether the freeze-drying process could cause the leakage of the loaded drug, loaded 
NE were formulated, diluted at final NE concentration of 13.5%, mixed with TR solution (2.5%) and 
freeze-dried. A snow-like, smooth, elegant cake (Fig. 7C), with a low moisture content (0.8%) was 
obtained. After rehydration, loaded NE physicochemical properties were maintained and corresponded 
to the ones of the freeze-dried blank NE (size = 146 nm, PdI = 0.3). EE was 80%, demonstrating the 
feasibility of freeze-drying loaded NE without drug leakage. 
Overall, the highest yield of NE while preserving physicochemical properties was reached when 13.5% 
NE was freeze-dried in presence of 2.5% TR. 
Recent studies report the successful lyophilisation of MCT-lecithin nanoemulsions at TR-NE ratio 10/1, 
while in this work same results were obtained at TR-NE ratio of 1/5 [55]. Our freeze-drying protocol 
benefits from using a low amount of cryoprotectant to dry a highest amount of lipid system. Such 
attribute cannot be found in previous research and can broaden the use of nanoemulsions in 
pharmaceutical applications. Globally, both freeze-drying and spray-drying were efficient in the 
conversion of NE into a dry powder. Although spray-drying is faster and less expensive than freeze-
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drying, the high processing temperatures and the lowest quality of the dried products make the freeze-
drying the preferred method for preserving the present pharmaceutical formulations. The highest process 
yields were obtained by freeze-drying. Indeed, there is no product collection step required after freeze-
drying, thus avoiding product loss and contamination. A higher concentration of NE (13.5% by freeze-
drying versus 5% by spray-drying) was dried using lower amount of excipient (TR 2.5%). 

II.3.7. Structural characterization of nanoemulsions in colloidal suspension and reconstituted
following drying processes
A unique structural characterization of the NE, with an in-depth focus on the NE shell nature was
performed. The shell composition, thickness and rigidity can affect nanoparticles stability and drug
encapsulation efficacy [6]. So far, many studies on lipid-based systems focused on the characterization
of crystalline or amorphous state of the oil core and on the link between drug loading efficacy and core
properties [37]. The fluid or rigid nature of liposomes [38] and the rigid character of SLN or LNC
composed of PEGylated surfactants [39] have been previously reported, but to our knowledge few
studies have addressed the core-shell structure of NE [40]. The state of the shell (crystalline or
amorphous) was presently investigated by means of DSC and XRPD measurements and the fluidity of
the NE shell was assessed by fluorescence using a polarity-sensitive fluorophore. DSC analysis of the
crystalline state of NE (SMR = 2.85, SOR = 2.86) is shown in Fig. 8.3.
Only evaporation of water was visible as NE was heated from room temperature up to 160 °C (step 1).
Once the sample was dry in the DSC pan, cooling caused crystallization, as revealed by an exotherm
starting at 30 °C (step 2). Finally heating again caused melting at 40 °C (step 3). The exothermic and
endothermic heats in the cooling step and heating steps were identical. DSC scans of single and physical
mixtures of NE components were run in order to disclose which materials were involved in such thermal
events.
Typical thermograms of NE and single components (after water evaporation) are displayed in Fig. 8.1
and 8.2. The solid crystalline hydrophilic surfactant S1, analysed as a powder, showed a melting
endotherm at 43.1 °C and a crystallization exotherm at 28.9 °C upon cooling (Fig. 8.1 and 8.2, sample
A). The same pattern was observed when S1 was dissolved in water, at a concentration of 14.28%
(Fig. 8.1 and 8.2, sample B). Once S1 powder was mixed with liquid S2, no variation in the melting
point was found for S1 (Fig. 8.1, sample C and Table 6). In addition to the main peak, a second peak at
lower temperatures (38 °C) was observed in mixtures of S1 and S2 (Fig. 8.1, sample C), S1 and MCT
(Fig. 8.1, sample D) and in the oil phase of the NE (Fig. 8.1, sample E), suggesting the presence of a
second crystalline phase, attributable to a polymorphic form of the stearic acid of S1. Polymorphism
resulted from the different molecular packing of S1 when mixed with S2 and MCT excipients [37].
DSC was also employed to study the MCT behaviour. In the mixture of S1 and MCT upon cooling, the
MCT crystallized at -25.5 °C (Fig. 8.2, sample D). The melting of the frozen MCT occurred at -12.5 °C
(Fig.8.1, sample D). While when the MCT were in the oil phase (sample E) and in the NE (sample F), a
decrease of its crystallization peak (-37.9 °C) and an appearance of a second melting peak (-27.2 °C)
were observed. Such behaviour can be referred to MCT polymorphism [37,41]. However, the
assignment of polymorphs to MCT needs further investigation.
Overall, the major characteristic peaks for S1 were still observed in melting and crystallization patterns
of NE (Fig. 8.1 and 8.2, sample F), proving the crystalline nature of the PEGylated NE shell. While the
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liquid amorphous state of S2 and MCT was supposedly maintained after NE formulation. In accordance 
with our results, previous studied proved how surfactants used to stabilize LNC and SLN maintained 
their crystallinity upon interaction with the oil core composed of medium chain triglycerides [37,42]. 
Moreover, dried NE powders and dried NE rehydrated were analysed to examine the influence of the 
drying process on the structure of NE. Once water had been evaporated, the melting and crystallization 
peaks of S1 were visible in NE dried with both spray-drying and freeze-drying (Table 6), while 
rehydrated NE were amorphous in colloidal suspension. A shift in the melting and crystallization peaks 
of the spray-dried NE (Table 6) was observed due to the presence of MD cryoprotectant in the sample. 
Instead, in both freeze-dried NE powders and NE rehydrated (analysed in absence of cryoprotectant), 
the crystallinity of the NE shell was maintained, without significant variations compared to the 
formulation before drying, as shown in Fig. 8.1 and 8.2, samples G and H. The degree of crystallinity 
was calculated from the ratio of the enthalpy of S1 in the NE to bulk S1 enthalpy. The use of raw S1 not 
100% crystalline and the formation of polymorphs not present in the bulk material might explain the 
degree of crystallinity values higher than 100%, as the melting enthalpy of the raw S1 was taken as 
reference (Table 6). 

Fig. 8 1 and 2) DSC thermograms of: (A) S1 powder, (B) S1 in water solution, (C) mixture of S1 and 
S2 (SMR=2.5), (D) mixture of S1 and MCT, (E) oil phase: S1, S2 and MCT, (F) blank NE, (G) freeze-
dried blank NE powder and (H) freeze-dried blank NE re-suspended in water. Analysis performed from 
–80 °C to +80 °C at a 10 °C min−1 rate. Data corresponding to the second cooling (1) and third heating
(2) steps. 3) DSC thermogram of blank NE. Step 1: heating scan from +20 °C to +160 °C; step 2: cooling
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scan from +80 °C to −80 °C; step 3: heating scan from -80 °C to +80 °C. 4) XRPD patterns of: (A) S1 
powder, (B) S1 in water solution, (C)mixture of dry S1 and S2 (SMR=2.5), (D) blank NE in colloidal 
suspension, (E) blank NE after complete water evaporation, (F) freeze-dried blank NE powder.

Table 6 DSC analysis from –80 °C to +160 °C at a 10 °C·min-1 heating rate. NE were analyzed at the 
second heating scan. 

Sample Tm (°C) Tc (°C) ΔEm (J·g-1) ΔEc (J·g-1) Crystallinity (%) 
S1 43.1 28.9 128.6 128.6 100.0 
S1 + S2 44.4 27.4 123.7 128.2 96.2 
S1 + MCT 41.1 28.2 137.2 133.6 106.7 
Full oil phase 45.1 29.4 136.3 137.3 105.9 
NE 45.4 29.7 155.3 148.9 120.8 
Freeze-dried NE powder 39.1 26.9 131.7 129.9 102.4 
Freeze-dried NE rehydrated 45.4 27.2 111.1 109.5 86.4 
Spray-dried NE powder 34.8 - 5.7 85.9 62.9 77.8 
Spray-dried NE rehydrated 39.9 - 2.3 4.7 6.0 77.8 

However, information about the crystalline state of NE while in colloidal suspension could not be 
provided due to the lack of sensitivity of the DSC technique in analysing samples in their wet state. 
Thus, XRPD experiments (Fig. 8.4) were performed to further study the state of S1 in the NE shell and 
confirm the components behaviour established by DSC measurements. Bulk S1 (Fig. 8.4A) exhibited 
several diffraction reflections with two major sharp peaks at diffraction angles (2 = 19.1° and 23.2°), 
indicating its crystalline state. The same peaks were observed in the mixture of S1 and S2 and in the NE 
after complete water evaporation (Fig. 8.4C and E, respectively). Similar peaks were also observed in 
the freeze-dried NE powder (Fig. 8.4F), demonstrating the aptness to freeze-drying of developed 
nanosystem. However, there were no characteristic peaks for crystalline S1 in colloidal suspension of 
NE (Fig. 8.4D), suggesting the amorphous state of S1 in wet state after the EPI process. 
The nature of the NE shell was highly influenced by the presence of water. The dry hydrophilic shell 
was crystalline (after water evaporation and for lyophilized samples) and it became amorphous when 
hydrated. In line with previous studies, the formation of a bulky amorphous PEG-water complex in 
colloidal NE suspension decreases the packing density of the surfactant to such an extent that the stearic 
chains are no longer crystalline. This is a possible explanation for the observed behaviour [43]. 
NE were stabilized using a surfactant (S1) which is solid at room and physiological temperature (Tm of 
S1 = 43 °C) rising doubts about the fluid or rigid nature of the amorphous NE shell. 
Firstly, an in vitro release study of tacrolimus was carried out at 50 °C. No differences in release pattern 
were observed compared to 37 °C, though these temperatures were below and above surfactant melting 
point (43 °C). Thus, the surfactant shell should have been in its molten state at both temperatures, such 
that it did not significantly act as a barrier against drug release [44]. 
To confirm this result, fluorescence measurements using polarity sensitive fluorophores were 
performed. Laurdan (6-dodecanoyl-2-dimethylaminonaphthalene) is a polarity-sensitive fluorophore 
commonly used for the assessment of liposomes rigidity and the study of biological membranes. Yet, 
when incubated with NE solution, its fluorescence emission spectrum with a single peak at 440 nm was 
characteristic of a highly hydrophobic environment, suggesting that the fluorophore was inserted in the 
hydrophobic core of the NE. Therefore, we presently used a home-made derivative of Laurdan called 
Dioll (patent pending EPO19306175.1-1118) having an enhanced polarity allowing better insertion in 
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the NE shell. Dioll was post-inserted in the NE shell by simple mixing the probe with the NE suspension 
(Dioll-NE). Insertion of Dioll in the NE shell was checked by measurements of emission spectra of 
controls. Due to the lack of fluorescence activity in hydrophilic environment, no fluorescence emission 
was detected when the probe was dissolved in water. Neither blank NE emitted fluorescence. A single 
peak at 440 nm was observed when Dioll was dissolved in MCT related to the radiative de-excitation of 
a “locally excited” state of Dioll in oil [16] (detailed information can be found in the supplementary 
section). Emission spectra of Dioll-NE at temperatures ranging from 5 °C to 37 °C showed two peaks 
at 440 nm and 490 nm, (Fig. 9), which, based on literature data on Laurdan [16], corresponded to 
fluorophore inserted into a rigid or a fluid environment, respectively, each band depending on the 
physical state of the medium and on the capacity of the probe to undergo interactions with the 
surrounding water molecules. So, we could conclude that Dioll was emitting from NE surfactant shell 
and not from the MCT core of NE. Indeed, the Dioll hydrophobic tail could be oriented towards the NE 
oil core, while the hydrophilic and fluorescent naphthalene moiety could be aligned with the PEG 
components of S1, towards the surrounding water phase. NE size, PdI and surface charge did not vary 
upon insertion of the probe (size: 105 ± 1 nm, PdI: 0.21, ζ‒potential: -18 ± 1 mV). 
Decreasing the temperature from 37 °C to 5 °C led to the progressive increase of peak intensity at 
440 nm (Fig. 9A). To quantify membrane fluidity state at each temperature, the GP values were 
calculated as described in Materials and methods section. GP increased as temperature was lowered 
(Fig. 9B), proving decreased fluidity of the NE shell. However, GP values remained negative (fluid 
state) and no significant phase transition from fluid to rigid state occurred over the full temperature 
range. The NE shell was in its fluid state, even at low temperature (5 °C). 

Fig. 9 A) Effect of temperature on fluorescence emission of Dioll-NE; B) Generalized Polarization of 
probes inserted in Dioll-NE as a function of temperature. 

NE differs from other LBDDS, such as LNC for the nature of the shell, which is fluid for NE and fairly 
rigid for LNC. The rigidity of the system is related to i) the presence of PEG as the outmost particle 
coating (i.e. lipidots, NLC, modified matrix SLN and mRNA-LNP [39,40,45,46]) and the density of 
PEG chains (PEG density is usually low for NE (< 10 wt%) and rather high (> 10 wt%) for LNC 



105 

[29,47]); ii) the use of a solid excipient whose melting point is higher than the storage temperature [48]; 
iii) the overconcentration of surfactant on the NE surface, thanks to the stirring cycles performed, while
formulating particles by the PIT method [48]. The presented NE should be rigid with regards to these
three criteria. However, it was fluid according to fluorescence measurement. The fluidity of the NE shell
is ascribed to the chemical structure of the S1 PEGylated surfactant that has a bulky head group that
lowers the surfactant packing density in the membrane. S1 head groups weakened hydrophobic
interactions between surfactant tails, thus constraining alkyl chains in a disordered configuration in order
to fill the full space set by lateral steric repulsions between bulky PEG moieties [49]. Similar impact of
the structure of system components on the final fluidity of the system has been described for liposomes.
Liposomes composed of phosphatidic acid, which has a small head group, are rigid, while liposomes
composed of phosphatidylcholine, which has a larger head group, are more fluid [50]. Moreover, the
presence of the second surfactant (S2), which intercalates S1 in the NE shell, may further reduce the
packing density of PEG chains [25,51].
We move that the latter shell characterization be performed on several lipid-based nanocarriers. Gained
information on shell properties would patch the current structural analysis, whose main objective is the
lipid core, leading to a better understanding of correlations between particle composition and stability,
drug encapsulation efficacy, drug release behaviour. The whole set of physicochemical properties allows
a proposal for the NE structure as described in Fig. 10.

Fig. 10 Representation of the NE structure with oil core and mixed surfactant shell.

The oil liquid core corresponding to MCT, was surrounded by a surfactant shell composed of a mixture 
of S1 and S2. S2 was located inside the mixed surfactant layer and its hydrophobic part interacts with 
the oil phase while the hydrophilic part of S1 was oriented to water. 

II.4. Conclusion
In this work a novel approach of producing NE, based on the EPI method coupled with high energy
input to shape droplets’ size, was proposed. Through this innovative procedure, NE physicochemical
properties were tuned to obtain systems which best suit the desired application.
Once the formulation criterion settled, the system composition was varied and optimized by mean of a
robust experimental design over the full ternary phase diagram. The region of interest of suitable
formulations was selected through the evaluation of parameters as the Smix surfactant ratio (SMR) and
the surfactant-to-oil ratio (SOR). The ability of NE to efficiently encapsulate hydrophobic drug
molecules (tacrolimus) and to modulate the release behaviour of the associated drug in biorelevant GI
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fluids was proven. To increase the shelf-life of the finished product by preserving it in a more stable dry 
state, NE were successfully converted into dry powders, using spray-drying and freeze-drying 
techniques. Finally, the freeze-drying resulted as the most adequate technique, overcoming major 
challenges related with the production of dry powders from oil based systems. To study the shell nature 
(crystallinity and fluidity) of lipid nanocarriers, we have exploited an original methodology, based on 
combining DSC, XRD and an innovative fluorescence analysis. While, the fluidity of the NE shell was 
closely related to the structure of used excipients. Such structural analysis will supplement the usual 
characterization of nanocarriers, which is mostly focusing on the system core and loaded drug. Overall, 
the methodology and results here presented provide a template for developing a rational design of 
nanoemulsion-based systems intended for oral delivery of hydrophobic drugs. 
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II. Supplementary Information

Fig. S1. Ternary phase diagram at SMR = (A) 1, (B) 2.5, (C) 5. The green area corresponds to 
formulations in the solid state, the two blue areas to formulations in the liquid state. The dark blue region 
corresponds to formulations containing NE. 

Fig. S2. TEM images of blank NE composed of S1 and S2 (without MCT) (A, B and C) and blank NE 
composed of S1 and MCT (without S2) (D, E, and F) at different magnifications (scales bars are 2 µm 
(A and D), 200 nm (B and E) and 100 nm (C and F). 

Fig. S3. Stability study of blank NE upon storage at 20 °C and 37 °C for 28 days. Data are shown as 
mean ± S.D., n = 3. 
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Fig. S4. Stability study of tacrolimus-NE upon storage at 20 °C and 37 °C for 28 days. Data are shown 
as mean ± S.D., n = 3. 

Fig. S5. Evolution of the particle size of tacrolimus-NE upon incubation in SGF and SIF media at 37 °C. 
The attenuator of the DLS instrument was fixed at 6 in the whole series of experiments. Mean ± S.D., n 
= 3. Original size of the formulation: 120.9 ± 0.8 nm. SGF: simulated gastric fluid; SIF: simulated 
intestinal fluid. 

Fig. S6. In vitro release profiles of tacrolimus from solutions and loaded NE in FaSSIF-V2 (pH 6.5) up 
to 72 h. Mean ± SD, n = 3. FaSSIF-V2: simulated intestinal fluid in fasted state. 
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Fig. S7. Fluorescence emission spectra of Dioll-NE in control media at 21 °C used as references for 
assessment of the effective insertion of Dioll in the NE shell. 

Fig. S8. Fluorescence emission spectra of Laurdan-NE versus Dioll-NE, showing the poor adequacy of 
the Laurdan probe in performing fluorescence measurements. Laurdan mostly inserted in the NE MCT 
core because of its highest hydrophobicity compared to Dioll, while Dioll was located in the NE shell. 
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Chapter III: Nanocomposite sponges for enhancing 
intestinal residence time following oral 
administration  

The oral administration of drugs faces several biological hurdles, notably the presence of the intestinal 
mucus gel layer that hinders drug delivery to the underlying epithelium, and the rapid mucus turnover 
that enhance drug excretion. Hybrid systems based on the combination of nanoparticles and polymers 
in a single device have been proposed as a promising strategy for prolonged retention and controlled 
drug release at the intestinal epithelial surface. 

Main aim 
The aim of this second chapter of the thesis was the design of a nanocomposite, by loading 
mucopenetrating PEGylated nanoemulsions (NEs) in a mucoadhesive chitosan (CH) sponge, to prolong 
intestinal residence time following oral administration. 

Specific objectives 
 Assess the mucopenetrating ability of NEs;
 Produce nanocomposite sponges by the freeze-drying technique and evaluate the NEs release in

biorelevant intestinal fluids;
 Study the system cytocompatibility in vitro on models of intestinal cells (HCT 116 and Caco-2 cells)
 Compare the intestinal residence time of the NEs and the nanocomposite sponge via in vivo

biodistribution studies in healthy mice.
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Highlights of the chapter 
 The NEs are promising mucopenetrating candidates. They showed only weak surface affinity

interactions with reconstituted mucins and they penetrated in a preformed mucin network rapidly.
 A nanocomposite was efficiently designed by embedding of NEs in a CH sponge via the freeze-

drying technique, without altering the NE physicochemical properties. Being in a dry form such
system possesses a high storage stability.

 Nanocomposite sponges with diverse structural properties were obtained by modulation of NE and
CH concentrations. These structural differences allowed to tune the sponge pH-dependent stability
and the NE release profile in simulated intestinal environment.

 The nanocomposite sponge showed increased intestinal residence time after oral administration to
healthy mice. Thanks to the mucoadhesive ability of the CH, the sponge acted as a reservoir to
localize NEs at the intestinal site. This opens the way for its future exploitation as systemic or local
drug delivery system.
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III. Abstract
In this work, nanocomposites that combine mucopenetrating and mucoadhesive properties in a single
system are proposed as innovative strategy to increase drug residence time in the intestine following
oral administration. To this aim, a novel mucoadhesive chitosan (CH) sponge loaded with
mucopenetrating PEGylated nanoemulsions (NEs) was developed via the freeze-casting technique. The
NEs mucopenetration ability was determined studying the surface affinity and thermodynamic binding
of the nanosystem with mucins. The ability of nanoparticles to penetrate across preformed mucins layers
was validated by 3D-time laps CLSM imaging. Microscopy observation (Scanning Electron Microscopy
and Optical Microscopy) of CH-NE sponges revealed that the structure of sponge is highly impacted by
CH and NE concentrations. In vitro release kinetics of NEs from re-hydrated sponges towards a
biorelevant intestinal fluid (FaSSIF-V2) revealed a sustained release over the whole intestinal pH range
(57.4). To assess the cytocompatibility of the system, the NEs were incubated with HCT 116 and Caco-
2 cell lines. A time- and concentration-dependent loss of cell viability was observed on HCT 116 cells,
while NEs revealed a non-toxic behaviour on Caco-2 cells at all concentrations tested. Finally, the in
vivo biodistribution of the nanocomposite was evaluated after oral gavage in healthy mice. The intestinal
retention of NEs was highly enhanced when loaded in the sponge compared to NEs suspension. Overall,
our results demonstrated that the developed nanocomposite sponges are promising systems for sustained
drug intestinal delivery.

III.1. Introduction
The development of drug delivery strategies able to control and sustain drug release after oral
administration must be achieved using systems that are biocompatible, mechanically flexible, and steady
over time [1–3]. Upon oral administration, drugs face stomach acidic environment and enzymatic
degradation before reaching the intestine, which limits their availability. Once in the intestine, further
obstacles to be considered are i) the presence of the intestinal mucus gel layer that hinders drug delivery
to the underlying epithelium, and ii) mucus turnover, that enhance drug excretion [4]. To overcome
these biological hurdles and increase the residence time of active compounds in the gastro-intestinal
(GI) tract, mucoadhesive and mucopenetrating drug delivery nanosystems have been extensively
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explored [5,6]. Mucoadhesive systems obtained by coating the nanosystems with bioadhesive polymers 
(chitosans, alginates, and acrylic polymers) are able to interact with the mucus layer through several 
mechanisms, including electrostatic, H-bonding and/or hydrophobic interactions [1,7–9]. This strategy 
allows the nanosystems to remain intimately attached to the mucins gel, however premature cargo 
release and/or accumulation inside the mucosal layer could occur [10]. On the contrary, mucopenetrating 
nanocarriers can spread over the mucosa, penetrate deep mucus regions and reach the intestinal 
epithelium [11,12]. A reduction of interactions with mucins is provided by a neutral surface charge of 
the particles, resulting from the coating with non-ionic polymers such as poly(ethylene glycol) (PEG) 
[13–15]. A further improvement strategy consists in the development of nanocomposites made of 
mucopenetrating nanoparticles integrated into a biocompatible mucoadhesive macro-structure. 
Exploiting this strategy, nanosystems can be released from the composite in a controlled and “on-
demand” fashion, assisting site-specific drug targeting, and finally interacting with the epithelial surface 
[6]. For the development of such mucoadhesive macro-systems, physical hydrogels based on 
polysaccharides have been extensively studied [3,16–19]. However, because of their semi-solid 
properties and hydrated nature, hydrogels presented practical concerns such as the limited stability 
during storage and the dependence of the hydrogel network properties on the physiological conditions 
(pH, enzymes). This can shorten the in vivo residence time or trigger burst drug release [17,20]. To 
address this issue, dry porous 3D systems such as sponges have been designed. Sponges are obtained 
via the controlled solidification of polymers and colloidal suspensions by mean of the freeze-casting 
technique. [21–23]. Sponges can improve mucoadhesion thanks to their porous structure, while 
providing a sustained drug release [24,25]. Moreover, the dry state guarantees a high system stability 
for storage and offers an in situ activable platform upon hydration in biological fluids [26]. The 
incorporation of a drug delivery systems inside sponge macro or micro-structures can refine intestinal 
targeting ability [27]. Nanocomposites have been proved to enhance the systemic absorption [2,28] or 
maximize the local effect of drugs [3]. Their exploitation is currently under investigation for the 
treatment of different pathological conditions including obesity, diabetes, colon cancer and 
inflammatory disorders, such as ulcerative colitis and Crohn’s disease [3,20,29,30]. 
We recently developed novel nanoemulsions (NEs), composed of an oil core surrounded by a non-ionic 
PEGylated surfactant shell, which holds promising features as mucopenetrating drug delivery system 
[31]. In this work, we aimed at developing chitosan (CH) sponges loaded with NEs as novel 
nanocomposites to control and prolong drug intestinal delivery. To reach this objective our strategy was 
focused on increasing the intestinal residence time of such nanocomposite via the combination of 
mucopenetrating (NEs) and mucoadhesive (CH sponge) properties in a single delivery system.  
Chitosan is a high mucoadhesive polysaccharide regarded as non-toxic, biocompatible and 
biodegradable. Its adhesion capacity to the mucosal epithelium has been largely described and arises 
mainly from the electrostatic binding with anionic glycoproteins of mucins in the intestine [32,33]. In 
particular, the low pH of inflamed zones can favour such interactions increasing its mucoadhesive ability 
[18].  
We hypothesized that the CH sponge can prolong the drug retention time in the intestine by adhering to 
the mucus allowing a controlled release of the embedded NEs. To validate our approach, we firstly 
assessed the mucopenetrating ability of NEs. Then, NE-loaded CH sponges (CH-NE) obtained by 
freeze-casting technique, were characterized regarding their structural and mechanical properties. The 
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impact of the CH sponge on NEs release kinetics was investigated after sponge re-hydration in a 
simulated intestinal fluid. The cytocompatibility of the system was assessed on human colorectal 
carcinoma cells (HCT 116 and Caco-2). Finally, in vivo biodistribution studies of both fluorescent NEs 
and CH-NE after oral gavage of mice were performed to assess the ability of nanocomposite to increase 
the residence time of NEs in the intestine. 

III.2. Material and methods
III.2.1. Materials
Medium chain triglycerides, MCT (Miglyol®812), was purchased from Cremer Oleo GmbH & Co. KG 
(Hamburg, Germany). Polyoxyethylene (40) stearate (Myrj®52), nile red (NR), curcumin (CCM), 
formic acid, sodium dodecyl sulphate (SDS), mucin from porcine stomach Type II and Dulbecco’s 
modified Eagle’s medium (DMEM) were purchased from Sigma-Aldrich (St Quentin-Fallavier, 
France). Oleoyl polyoxyl-6 glycerides (Labrafil®M1944CS) was provided by Gattefossé (Saint-Priest, 
France). Egg phospholipids with 70% phosphatidylcholine (Lipoid E80S) were obtained from Lipoid 
GmbH (Ludwigshafen am Rhein, Germany). Potassium dihydrogen phosphate (KH2PO4) and potassium 
chloride (KCl) were purchased from Riedel-de-Haën AG (Seelze, Germany). Di-sodium hydrogen 
orthophosphate dihydrate (Na2HPO4,2H2O) was purchased from Serva Electrophoresis GmbH 
(Heidelberg, Germany). Sodium chloride (NaCl), hydrochloric acid (HCl) 37%, phosphate buffered 
saline (PBS) tablets (pH 7.4), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) was 
obtained from VWR International (Fontenay-sous-Bois, France). Penicillin/streptomycin 
(10000 U·mL1), foetal bovine serum (FBS, South America) and nanomycopulitine from Dutscher SAS 
(Brumath, France).  Acetic acid was obtained from Chem-Lab NV (Zedelgem, Belgium). 
Dichloromethane, methanol, acetonitrile (HPLC grade), sodium taurocholate hydrate 96%, sodium 
hydroxide (NaOH), DiIC18(5) solid, 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 
4-chlorobenzene sulfonate salt (DiD) and Promega CellTiter 96™ AQueous One Solution Cell
Proliferation Assay (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium), MTS) were purchased from Thermo Fisher Scientific (Illkirch, France). Milli-Q® water 
was obtained using a Milli-Q® Academic System from Merck-Millipore (Saint-Quentin-en-Yvelines, 
France). The aqueous phase used to prepare NEs was phosphate buffer saline solution (PBS 5 mM, pH 
7.4). The aqueous phase used to prepare mucin gels was Sorenson’s phosphate buffer containing 
Na2HPO4 and KH2PO4 (0.2 M, pH 7.4). The chitosan used in this study was produced from N-
deacetylation of chitin extracted from squid pens and was purchased from Mahtani Chitosan (batch type 
114). Its structural properties are the following: a degree of acetylation of 4.0 ± 0.5%, a weight-average 
molar mass Mw of 550 ± 50 kg·mol‒ 1 and a dispersity Đ of 1.5 ± 0.3. 1H NMR analysis was used to 
determine the degree of acetylation (DA) of chitosan [34]. Mw and Đ were determined as previously 
described [35], using size exclusion chromatography (SEC) coupled online with a differential 
refractometer (Optilab T-rEX, Wyatt; λ=658 nm) and with a multi-angle laser light scattering detector 
(Dawn-HELOES II, Wyatt; λ=664 nm). 

III.2.2. Process of nanoemulsions formulation
NEs were prepared by emulsion phase inversion (EPI) technique coupled with high stirring energy input 
as previously described [31]. Briefly, NEs were composed of an MCT oil core stabilized by a surfactant 
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shell, made of a mixture of hydrophilic and hydrophobic surfactants, namely polyoxyethylene (40) 
stearate (Myrj 52) and oleoyl polyoxyl-6 glycerides (Labrafil M1944CS), respectively. To prepare the 
oil phase, MCT (0.35 g) and surfactants (1 g) were mixed and magnetically stirred (750 rpm) using a 
thermostated bath at 80 °C. The aqueous phase (PBS 5 mM, 3.65 mL), heated up to 80 °C as well, was 
added into the organic melt phase. Stirring was then performed by two cycles of 10 min using a rotor-
stator disperser (T25 digital Ultra-Turrax® equipped with a S25N-10G shaft, IKA®-Werke GmbH & 
Co. KG, Staufen, Germany) rotating at 11000 rpm at 80 °C. Hydrophobic dyes as nile red (NR), 
curcumin (CCM) and DiD were added to the oil phase during NEs preparation for their encapsulation 
in NE droplets. The final fluorescent probe concentrations in the NEs were NR 200 μg·mL1, CCM 
500 μg·mL1, DiD 50 μg·mL1. NR or CCM were solubilized in the oil phase and magnetically stirred 
(750 rpm) for 2 h at 80 °C to obtain a homogeneous mixture. NEs were then formulated as explained 
above. Regarding the lipophilic carbocyanine dye DiD, 125 µL of its stock solution in ethanol 
(2 mg·mL1) were mixed with the oil phase and the NEs were formulated keeping the temperature below 
the DiD melting point (68 °C) in order to avoid dye decomposition. 

III.2.3. Physico-chemical characterization of nanoemulsions
The size distribution and surface potential of the NE droplets were determined using Malvern Zetasizer®
Nano ZS instrument (Malvern Instruments S.A., Worcestershire, UK). The particle sizes were measured
by Dynamic Light Scattering (DLS) at 25 °C at a scattering angle of 173 °. The ζ–potential was
calculated from the mean electrophoretic mobility measured for samples diluted in 0.1 mM KCl.
Measurements were performed in triplicate.
The stability of blank and CCM-NEs in as produced colloidal suspension was followed during 28 days
upon storage at 20 °C. At scheduled time points, particle size, polydispersity index (PdI) and ζ–potential
were measured. Moreover, dye leakage (CCM and NR) from NE was assessed at day 28. Free dye was
separated from the suspending aqueous medium by size exclusion chromatography on PD-10 Desalting
Columns containing 8.3 mL of Sephadex™ G-25 resin (GE Healthcare Bio-Sciences AB, Uppsala,
Sweden). The NE containing fractions were easily identified thanks to their turbidity and collected in
microtubes. For NR-loaded NEs, 200 mg of isolated NE were dissolved in ethanol (1 g) and analysed
by UV–vis absorbance at 549 nm. The CCM-loaded NE fraction was analysed by HPLC equipped with
an UV-vis detector using the method described by Liu et al. [36,37]. In order to quantify CCM, 300 mg
of isolated NEs were dissolved in methanol (1 g) and the samples were vortexed for 5 min. The samples
were filtered using Nylon filter 0.22 μm (Whatman GmbH, Dassel, Germany) before injection in the
HPLC system. The HPLC apparatus consisted of Agilent 1200 Series G1311A Quat Pump, Agilent 1200
Series G1367B HIP-ALS High Performance Autosampler, equipped with Agilent 1200 Series G1315D
Dad Diode Array Detector HPLC (Agilent, Santa Clara, CA, United States). CCM was detected using a
RP-C18 column (Kinetex 5 μm C18 100 Å, 150 × 4.6 mm, Phenomenex, Torrance, CA, USA), set at
30 °C, using acetonitrile and deionized water 0.1% formic acid (50:50) as mobile phase at a flow rate of
1.0 mL·min1. The injection volume was 10 μL, the detection wavelength 423 nm and the total run time
8 min. The chromatogram of CCM exhibited a characteristic peak at a retention time 6.6 min. Peak areas
were recorded and processed on the OpenLab CDS ChemStation Edition software (Agilent, Santa Clara,
CA, United States). The HPLC calibration curve was linear (R2 = 0.99) in the concentration range of
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0.0440 μg·mL1. The method was validated according to ICH Q2(R1) guidelines. Detection and 
quantification limits (LOD and LOQ) were 2.17 μg·mL1 and 7.24 μg·mL1, respectively. 
The encapsulation efficiency was calculated as the ratio of dye detected in the isolated NE (NE purified: 
NEp) to the amount of dye initially loaded in the NE (NE initial: NEi): Encapsulation efficiency (%) = NEpNEi x 100 Eq. 1 

 
III.2.4. Mucins-nanoemulsions interaction 
III.2.4.1. Colloidal stability of nanoemulsions in mucins 
Mucin solution from porcine stomach Type II (1% w/v) was prepared by suspending 40 mg of mucin 
powder in 4 mL of Sorenson’s phosphate buffer (pH 7.4). The solution was magnetically stirred (750 
rpm) for 2 h in an ice bath and left for equilibration overnight at 4 °C. Then, mucin solution and blank 
NE were mixed to obtain a final mucin concentration of 0.5% w/v and NE concentration of 0.5% w/v. 
Samples were magnetically stirred at 300 rpm for 4 h in a water bath at 37 °C. At predetermined time 
points (0.5, 1, 2, 3, and 4 h) an aliquot (1 mL) was retrieved and centrifuged at 7000 rpm for 5 min to 
separate mucin and entrapped NEs from the supernatant. Then, the supernatant was collected and NEs 
size distribution and ζ–potential were measured at 37 °C. The ζ–potential of NEs (0.1% w/v) and mucin 
solutions (0.1% w/v) in PBS 5 mM was separately analysed at pH values ranging from 2 to 9. The pH 
was varied by titration of NaOH (0.1 M) or HCl (0.1 M). Measurements were performed in triplicate. 
 
III.2.4.2. Microcalorimetric studies 
The thermodynamics of the interaction between mucin and NE were assessed by isothermal titration 
calorimetry (VP-ITC, MicroCal, Northampton, MA). 0.1 g of mucin from porcine stomach (type II) 
were dissolved in 1 L of PBS (5 mM pH 7.4) to obtain a final concentration of 0.01% w/v and NE were 
diluted with the same PBS to 0.1% w/v. Both solutions were degassed while stirring for 10 min before 
the loading. 1.42 mL of the mucin solution were placed into the calorimetric cell equilibrated at 25 °C 
and titrated by the injection of 283 μL of NE loaded in the syringe (3 μL for the first injection, followed 
by 28 injections of 10 μL each) under continuous stirring at 307 rpm. The duration of each injection was 
20 s, and the time interval between them was 200 s. Control titrations were performed by injecting the 
same concentration of NE into the reaction cell containing the dilution buffer, using the same injection 
parameters. The raw data obtained with the control titration were then subtracted to the mucin-
nanoemulsion raw data. 
 
III.2.4.3. 3D-time laps imaging using confocal laser scanning microscopy  
The penetration of NE (10% w/v) in artificial gastric mucin type II (10% w/v) was verified by 3D time 
laps imaging using Confocal Laser Scanning Microscopy (CLSM, Confocal Zeiss LSM 800) available 
at the Centre Technologique des Microstructures (CTµ) of the University Lyon 1 (Villeurbanne, France). 
A constant volume of mucin solution (50 µL) was filled in a chamber slide resulting in equally thick 
mucins layers (3 mm). At time zero, 10 µL of DiD-loaded NEs were added on the top of the mucin layer 
(Fig. S1). Z-stacks (51 images of planes at various depths) within the mucin sample were obtained at a 
constant distance of 20 µm from the bottom of the slide. The wavelength for DiD excitation was set at 
640 nm and the emission was measured between 646 and 700 nm. Particle penetration was tracked and 
z-stacks images starting from time 10 min and at time intervals of 10 min up to 3 h were recorded. A 
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sample of mucin alone was examined as control. Images were analysed with the Fiji ImageJ software 
[38] for fluorescence intensity and 3D visualisation of image stacks.

III.2.5. Preparation of chitosan sponges and nanoemulsion incorporation process
CH solutions were prepared by dissolving CH in an aqueous solution of acetic acid at 1% w/w under
magnetic stirring (375 rpm) for 24 h at room temperature. Mass % of CH reported in Table 1 included
~8% of residual water content. The final CH concentrations were 0.1% w/w (CH A) and 1% w/w (CH
B) (Table 1).

Table 1. Formulated chitosan (CH) and nanoemulsion-loaded chitosan (CH-NE) sponges. 

Sample 
% (w/w) in CH-NE 
mixture 

% (w/w) in CH-NE 
sponge 

NE/CH ratio 
(w/w) 

Apparent 
density 
(g/cm3) 

CH NE CH NE 
CH A 0.1  100   0.02 ± 0.01 
CH B 1  100   0.04 ± 0.01 
CH-NE A 0.1 2.5 3.9 96.1 25 0.44 ± 0.03 
CH-NE B 1 2.5 28.6 71.4 2.5 0.10 ± 0.05 
CH-NE C 1 10 9.1 90.9 10 0.21 ± 0.01 

In order to prepare CH-NE mixtures, NEs were added to CH solutions and the samples were 
magnetically stirred at 375 rpm for 3 h at room temperature until complete homogenization. CH-NE 
mixtures at CH concentrations of 0.1% and 1% w/w and NEs concentrations of 2.5% and 10% w/w were 
obtained (CH-NE A, B, C in Table 1). The samples were then transferred to lyophilisation vials to be 
converted into dry sponges by freeze-casting technique [24]. The freezing and drying steps were carried 
out in a Cryonext pilot freeze-dryer (Cryonext, Saint-Aunès, France). The freeze-drying process 
consisted in 3 steps: i) freezing at -50 °C for 6 h in the freeze-dryer chamber (cooling speed of 
0.3°C·min‒1 during the first 3h); ii) primary drying from -50 °C to 0 °C in 20 h ( 0.1 mbar); iii) secondary 
drying at 20 °C for 12 h (0.1 mbar for 6h, then 0.01 mbar for other 6h). Finally, the vials were sealed 
with rubber caps and stored at 20 °C. 

III.2.6 Microscopy observations of sponges: scanning electron microscopy (SEM) and optical
images
Sponge morphology was assessed by scanning electron microscopy (SEM) using a FEI Quanta 250 FEG
microscope at the Centre Technologique des Microstructures (CTµ) of the University Lyon 1
(Villeurbanne, France). Surface and cross-sectional morphology of the sponges were analysed. The
samples were coated under vacuum by cathodic sputtering with copper and observed by SEM under an
accelerating voltage of 15 kV. Transmission electron microscopy (TEM) was performed with a Philips
CM120 microscope at the Centre Technologique des Microstructures (CTµ) of the University Lyon 1
(Villeurbanne, France). Diluted NE (10 µL) was deposited on a microscope grid (copper support coated
with carbon) and slowly dried in open air. The dry samples were observed by TEM under 120 kV
acceleration voltage. Optical images of sponge surfaces were collected using a Keyence VHX-6000
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series digital microscope (Keyence, Jonage, France). Pictures of the depth of pores across a large area 
of the sponge surface were captured in real-time and combined by 3D image stitching. 

III.2.7. Rehydration and water uptake capacity
The water uptake capacity of CH and CH-NE sponges was evaluated at pH 5, 5.5 and 7.5 in two different
media: PBS (5 mM) and simulated GI fluid in fasted state (FaSSIF-V2). Pre-weighed freeze-dried
sponges (initial mass M0) were submerged in the media. At predetermined time points, the excess of
medium was gently removed using a micropipette, and hydrated sponges were weighed (MS). The water
uptake was calculated as follows:water uptake % = MS−M0M0  x 100 Eq. 2 

The study was performed in triplicate. 

III.2.8. Rheological characterization
Oscillatory rheological tests were carried out through a MCR 302 rheometer (Anton Paar, Les Ulis,
France) fitted with a 25 mm plate-plate geometry. CH and CH-NE sponges were rehydrated in PBS at
pH 7.5 for 15 min. The temperature was set at 22 °C. The applied strain (γ%) was fixed at 1% within
the linear viscoelastic regime on the basis of a previous amplitude sweep test. The apparent storage and
loss moduli of rehydrated CH and CH-NE sponges were measured by mean of frequency sweep tests
over an angular frequency range of 100–0.05 rad·s1. Measurements were performed in triplicate.

III.2.9. In vitro release studies
The in vitro release of NEs from the CH sponges was evaluated in PBS and FaSSIF-V2 at pH of 5, 5.5
and 7.5 by mean of two different studies: destructive and cumulative test.
The influence of the composition and pH of the release medium was assessed by a destructive study.
NR-loaded NEs were embedded into CH-NE A sponges (52 mg) and 3 mL of release medium were
added on the top of sponges. Two different media at three different pH were tested: i) PBS at pH 5, pH
5.5, and pH 7.5 ii) FaSSIF-V2 at pH 5, 5.5 and 7.5. At scheduled time points (5 min, 30 min, 2 h, 8 h
and 24 h), the release media were retrieved and the amount of NEs released (NR-loaded NEs) was
measured by UV-vis spectroscopy.
Then, the influence of CH and NE concentrations on NE release from the sponges was assessed in
FaSSIF-V2 by mean of a cumulative study. To this aim, 5 mL of medium FaSSIF-V2 were added on
top of the sponges containing CCM-loaded NE (weight of the dry sponge CH-NE A: 52 mg, B: 70 mg,
C: 55 mg and D: 60 mg, at constant CCM concentration of 50 µg·g‒1) and the pH was varied over time.
FaSSIF-V2 was prepared at pH 7.5 and this pH was maintained for the first 24 h of the study. Then, the
pH was decreased to 5.5 for the following 48 h. Finally, the pH value was set at 5 to 72 h. At
predetermined time points (30 min, 1, 2, 3, 4, 5, 6, 7, 8, 24, 48, and 72 h), the entire volume of medium
was removed and replaced with fresh medium. The amount of CCM released was quantified by HPLC-
UV as described above. Data were normalized based on the dry weight of the NE in the sponge. Studies
were performed in triplicate.
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III.2.10. In vitro cell viability studies
III.2.10.1 Cell culture conditions
Human colorectal carcinoma (HCT 116) cells were used to perform the MTT assays, being cultured in
75 cm2 flasks, at 37 °C in a humidified atmosphere 5% CO2 and 95% air incubator. Cell culture medium
was DMEM, supplemented with 10% (v/v) FBS and 1% (v/v) penicillin/streptomycin. The medium was
exchanged every two days.
Human colon carcinoma (Caco-2) cells were used to perform MTS assays. Caco-2 cells were cultured
in 75 cm2 flasks, at 37 °C in a humidified atmosphere 5% CO2 and 95% air incubator. Cell culture
medium was DMEM, supplemented with 10% (v/v) FBS, 2% (v/v) penicillin/streptomycin and 1%
nanomycopulitine. The medium was exchanged every two days.

III.2.10.2 Toxicological evaluation of NE
The effect of blank NEs on the viability of HCT 116 cells was evaluated by the MTT colorimetric assay.
To do so, 1x104 cells/well were seeded in 96-well plates and maintained overnight at 37 °C, 5% CO2.
Then, the culture medium was removed, and cells were treated with increasing concentration of blank
NE (ranging from 10 to 1250 μg·mL1) diluted with pre-warmed DMEM supplemented with 2% of FBS
(v/v). DMEM was used as positive control (100% viability), while SDS (2%, w/v) as negative control.
Cells were exposed to the formulations for 3 and 24 h at 37 °C. After the considered period, samples
were replaced with 100 µL of fresh medium added of 25 µL of MTT solution (0.5 mg·mL1 in PBS pH
7.4) in each well. The plates were incubated for 4 h at 37 C. The formazan purple crystals formed by the
reaction of MTT with NAD(P)H of metabolically active cells were dissolved in 100 µL SDS (10%, w/v)
and the plates incubated overnight at 37 °C. The absorbance was measured spectrophotometrically
(Infinite M200; Tecan, Austria) at 570 nm, with background correction at 650 nm.
The effect of blank NEs on the viability of Caco-2 cells was evaluated by the MTS assay. To this end,
2x104 cells/well were seeded in 96-well plates and maintained for 48 h at 37 °C, 5% CO2. Then, the
culture medium was removed, and cells were treated with increasing concentration of blank NE (ranging
from 10 to 1250 μg·mL1) diluted with pre-warmed DMEM supplemented with 10% of FBS (v/v).
DMEM was used as positive control (100% viability), while SDS (3%, w/v) as negative control. Cells
were exposed to the formulations for 3 and 24 h at 37 °C. After the considered period, samples were
replaced with 100 µL of fresh medium added of 20 µL of MTS solution (Promega CellTiter 96™
AQueous One Solution Cell Proliferation Assay) in each well. The plates were incubated for 4 h at 37 °C.
The absorbance was measured spectrophotometrically (Multiskan EX, Thermo Fisher Scientific,
France) at 492 nm, with background correction at 620 nm.
Cell viability was calculated by the following formula (Abs = absorbance):Cell viability (%) = Abs sample−Abs SDSAbs DMEM−Abs SDS  x 100 Eq. 3 

The IC50 were calculated using GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San 
Diego, California, USA). The study was performed in triplicate. 

III.2.11. In vivo biodistribution study of fluorescent NE-loaded sponges following oral
administration
All animal experiments were approved by the local animal ethics of University Claude Bernard Lyon 1,
and carried out in compliance with current French guidelines. Female nude mice (average body weight

http://tools.thermofisher.com/content/sfs/brochures/D12842~.pdf
http://tools.thermofisher.com/content/sfs/brochures/D12842~.pdf
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of 20 g, n = 45) used for the experiment were obtained from Charles River Laboratories (Saint-Germain-
Nuelles, France). The animals were fasted for 12 h before the oral gavage. Three different systems were 
administered: i) DiD-loaded NEs (NE 10% w/w), ii) DiD-loaded NEs mixed with CH solution (CH 
dissolved in acetic acid), named CH-NE mixture (CH-NE C, CH 1%- NE 10% w/w), and iii) DiD-
loaded NEs embedded in the CH sponge, defined as CH-NE sponge (CH-NE C, CH 1%- NE 10% w/w). 
NEs and CH-NEs mixture were administer as liquid colloidal suspensions, while CH-NE sponges were 
re-hydrated with water and filled in the feeding tube. Mice were randomly divided into three groups: 
NE (n = 15), CH-NE mixture (n = 15), CH-NE sponge (n = 15). Each formulation contained NEs at a 
concentration of 100 mg·mL1, corresponding to a dose of ≈ 1.25 mg·kg1 of body weight. At scheduled 
time points (1, 2, 3, 4, and 6 h), anesthetized animals were placed prone in a light-tight chamber where 
a controlled flow of 1.5% isoflurane in air was administered through a nose cone to maintain anaesthesia. 
Fluorescence images as well as black and white pictures of mice whole body (ventral view) were 
acquired via a back-thinned CCD-cooled camera ORCAIIBT-512G (Hamamatsu Photonics 
Deutschland GmbH, Herrsching am Ammersee, Germany) using a coloured glass long-pass RG 665 
filter (Melles Griot, Voisins les Bretonneaux, France), which cuts off all excitation light. Optical 
excitation was carried out at 644 nm, and the emission wavelength was detected at 664 nm. At each time 
point (1, 2, 3, 4, and 6 h), n = 3 mice for time point were sacrificed and the organs (GI, liver, spleen, 
heart, kidneys, lungs, bone, brain, muscle) were harvested. Ex vivo fluorescent measurements were 
performed immediately after organ collection to determine the accumulation of the dye. Images were 
analysed using the Wasabi software (Hamamatsu Photonics Deutschland GmbH, Herrsching am 
Ammersee, Germany). The fluorescence intensities of the different intestinal segments were normalized 
to the fluorescence intensity of the whole intestinal tract in each mouse. Then, comparisons between 
normalized signals were made at all the time points for all different groups. 

III.2.12. Statistical analysis
The normality of data distribution of the in vitro cytotoxicity and in vivo studies was assessed by mean 
of the Shapiro-Wilk test (alpha > 0.05). In vitro cytotoxicity data were analysed by mean of a Student’s 
t-test to compare different groups. In vivo data were analysed by a Two Way ANOVA multiple 
comparison (Tukey test). A p-value less than 0.05 indicated statistical significance (p < 0.05 = *; p < 
0.01 = **; p < 0.001 = ***; ≥ 0.05 = not significant). Statistical analysis of the data was performed using 
GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, California, USA). The 
data are the mean ± SD for n = 3. 

III.3. Results and discussion
III.3.1. Nanoemulsions formulation, physicochemical characterization, and stability
Monodisperse lipid nanosystems, namely NEs with neutral/slightly negative surface charge have been 
designed and obtained combining emulsion phase inversion (EPI) technique and homogenization 
process [31]. They presented a mean droplet size of 104 ± 3.1 nm, a low PdI (0.2) and a ζ–potential of 
9 ± 1.1 mV (Table 2). Due to the presence of the hydrophobic core, nile red (NR) and curcumin (CCM)
dyes were efficiently loaded, with encapsulation efficiencies around 100% (99.7 ± 1.2% for NR-NEs 
and 99.9 ± 4.3% for CCM-NEs). Furthermore, no alterations in particle hydrodynamic diameter and PdI 
were observed for loaded systems (92.9 ± 5.4 nm for NR-loaded NE and 97.7 ± 8.2 nm for CCM-loaded 
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NE; PdI 0.2) (see Table 2). The ζ‒potential of the NEs was shifted towards more negative values after 
NR and CCM loading (20.1 ± 2.9 mV for NR-loaded NEs and 19.4 ± 5.3 mV for CCM-loaded NEs) 
(Table 2). 
The stability of blank and loaded NEs in colloidal suspension (27% w/w, pH 6.8), upon storage at 20 °C, 
was followed over 28 days (Fig. S2 in supplementary information). The mean hydrodynamic size and 
PdI remained stable during the examined period. Moreover, no leakage of the dies was detected upon 
28 days (maintenance of encapsulation of 100.1 ± 3.2% for NR-loaded NEs, 98.6 ± 5.3% for CCM-
loaded NEs, see table 2). We showed in our previous work that the selected NEs formulation was stable 
in both SGF (simulated gastric fluid) and FaSSIF-V2 fluid (simulated intestinal fluid in fasted state), 
making them a good system candidate for oral delivery [31]. 

Table 2. Physicochemical characteristics of blank and loaded nanoemulsions (NEs). NR-NE: nile red-
loaded NE; CCM-NE: curcumin-loaded NE. 

Sample Size (nm) PdI ζ–potential (mV) 
Encapsulation efficiency (%) 
Day 0 Day 28 

Blank NE 104 ± 3.1 0.2 9 ± 1.1 ‒ ‒ 
NR-NE 92.9 ± 5.4 0.2 20 ± 2.9 99.7 ± 1.2 100.1 ± 3.2 
CCM-NE 97.7 ± 8.2 0.2 19 ± 5.3 99.9 ± 4.3 98.6 ± 5.3 

III.3.2. Mucopenetrating properties of nanoemulsions
To target the intestinal epithelium, delivery systems must diffuse across the mucus layer either to interact
with surface receptors of the epithelial cells, or to pass through the epithelium to reach the blood
circulation [11]. To predict mucus permeation behaviour, we carried out an in-depth physicochemical
characterization of mucin-NEs interactions using different techniques: Dynamic Light Scattering (DLS),
Isothermal Titration Calorimetry (ITC) and Confocal Laser Scanning Microscopy (CLSM) analysis.
As a first approach, we studied the surface ionic interactions of PEGylated NEs in presence of
reconstituted intestinal mucins by monitoring hydrodynamic diameter and surface charge of the system
using DLS over the time. As described by Bernkop-Schnürch group, the contact between negatively
charged mucins and nanoparticles can result in a possible adsorption of mucins onto the NEs surface
through electrostatic interactions, affecting the physicochemical properties of the nanosystem [12]. No
increase in particle size (around 100 nm) and no modification of NEs ζ–potential (around 8 mV) was
observed after incubation of NEs (0.5% w/v) with mucins (0.5% w/v) in Sorenson’s phosphate buffer
(pH 7.4) at 37 °C during 4 h (Fig. S3 A in supplementary information). Due to the neutral surface charge
of the NEs, the interaction with mucins was avoided.
The DLS analysis was further exploited to analyse the pH-dependent behaviour of both mucins and NEs.
In fact, the pH of mucus can vary based on its location. The mucus at the luminal surface is usually more
acidic than the mucin firmly adherent layer near the epithelial interface. Such variation of pH can lead
to conformational changes in the mucin structure that could consequently induce possible interactions
with NEs at certain pH ranges [32]. The ζ–potential of NEs (0.1% w/v) and mucin solutions (0.1% w/v)
was separately analysed at pH values ranging from 2 to 9 in PBS 5 mM at room temperature (Fig. S3 B
in supplementary information).
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Under strongly acidic conditions (pH < 2) mucin pH shifted toward neutrality (0.4 mV) due to the 
protonation of carboxylic acid residues and NE followed the same behaviour showing a surface charge 
close to 0.4 mV [39]. The absence of electrostatic charge and electrostatic repulsions between NE 
nanoparticles implied that steric forces alone imparted colloidal stabilisation.  
At neutral pH, NEs and mucins showed a similar weak negative ζ–potential (13 ± 1 and 11.1 ± 1 mV 
respectively). In basic conditions (pH 9), ζ–potential values of 15.7 ± 2 mV were recorded for mucins 
and of 14.8 ± 1 mV for NEs. This slightly negative surface charge NEs and mucins suggested the 
presence of repulsive electrostatic forces between the two systems showing that strong polyelectrolyte 
association will not occur. 
After establishing that NEs and mucins exhibited only weak interactions, the thermodynamics of specific 
mucins-nanoparticles interaction were investigated using ITC [40]. In this case, we tested whether 
nanoparticles and mucins were able to interact and the nature of the possible non-covalent interactions 
(electrostatic interactions, van der Waals forces and hydrophobic interactions) [13]. When a mucin 
solution (0.01% w/v) was titrated with NEs dispersion (0.1% w/v) only the presence of low energy peaks 
was evidenced, a pattern similar to the one obtained during the control titration analysis (Fig. S3 C in 
supplementary information). We concluded that these low-energy effects were mainly due to the dilution 
of the NEs in the sample cell. In good agreement with the ζ–potential analysis of NEs surface properties, 
this finding suggested the presence of only weak interactions between mucins and NEs. 
Along with DLS and ITC experiments, monitoring the NEs displacement in mucins is fundamental to 
get insights into the particles behaviour in complex biological environments. Hence, we monitored the 
diffusion of NEs in mucins using 3D-time laps CLSM imaging (Fig. 1). To minimize the errors, the 
study was performed in a dedicated chamber slide containing the mucin solution. At the beginning of 
the analysis (time point 10 min in Fig. 1 A and B), the majority of NEs were present in upper layers, as 
demonstrated by the high fluorescent signal. Over the three h of the analysis, NEs diffused to the 
underneath layers at a speed of 1.34 µm·min1. After 180 min of analysis, fluorescence could be 
observed across the whole mucin sample, meaning that NEs were distributed in all the sample height 
(600 µm). (Fig. 1 A and B, video S1 in supplementary information). 

Fig. 1. A) Z-stacks of NE penetration (red) in the mucin layer (10% w/v, 600 µm thickness) at time point 
10 and 180 min; B) total fluorescence signal of NE in the mucin layer (10% w/v) as a function of time 
as determined by image analysis software. 
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The developed NEs were endowed with penetrating ability by their PEGylated shell (PEG (40) stearate 
surfactant). The PEGylation strategy aimed at conferring neutral surface properties to the nanocarriers 
to reduce their association with mucus. Modifications of the nanoparticle surface with hydrophilic 
polymers, such as polydopamine [11], dextran-containing polymers [4] or PEG [13] have been described 
as successful strategies to facilitate mucus penetration. In the design of poly(lactic-co-glycolic acid- 
polyethylene glycol (PLGA-PEG) NP [13] and PEG-based lipid-polymer hybrid vesicles [17] the 
authors observed that molecular weight (MW) of PEG, neutral ζ–potential and PEG density were key 
parameters controlling mucopenetration. In the case of PLGA-PEG NPs, 5% w/w of PEG (5 kDa) was 
needed to decrease the interactions with mucins. While in the case of hybrid vesicles, the displacement 
through reconstituted porcine mucus was observed only at a copolymer poly(ethylene glycol)-b-
poly(cholesterol methacrylate (PEG-b-PCMA) concentration of 25% w/w [17]. In our study, the 
mucopenetration ability of NEs was conferred by PEG-40 stearate as PEGylated surfactant at a 
concentration of 14.3% w/w. By avoiding the entrapment in the mucosal barriers, the developed NEs 
show promising results for reaching the intestinal epithelium and improve drug delivery efficacy. 

III.3.3. Development of chitosan and nanoemulsion-loaded chitosan sponges
An original nanocomposite system made of mucopenetrating NEs loaded in a mucoadhesive CH sponge 
was designed with the final aim to increase the intestinal residence time.  
CH of low degree of acetylation (DA 4%) and high molecular weight (MW 500 kg·mol‒1) was used. 
High MW CH has been selected as it provides greater mucoadhesion ability because of the higher 
molecular interactions with mucins and the increased entanglement of CH molecules in the mucin layer 
[33]. The preparation of CH-NEs sponges is illustrated in Fig. 2.  

Fig. 2. Formulation process of A) chitosan (CH) sponges and B) nanoemulsion-loaded chitosan (CH-
NE) sponges and their aspect after re-hydration. CH-NE A: sponge at low CH concentration (CH 0.1%- 
NE 2.5% w/w), CH-NE C: sponge at high CH concentration (CH 1%- NE 10% w/w). CH: chitosan 
(550 kg·mol‒1, DA 4%); NE: nanoemulsion. 

Firstly, CH was solubilized in an acetic acid solution concentrated at 1% w/w. Then, NEs were added 
to CH solution and the CH-NEs mixture was stirred to obtain a homogeneous suspension. To produce 
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CH sponges (Fig. 2 A) and nanocomposite sponges (Fig. 2 B), the isotropic freeze-casting method was 
used [22]. By freezing the CH solution or the CH-NE mixture, a solid phase is segregated by the moving 
freezing front and accumulated between the growing ice crystals, thus determining the structural 
configuration of the final system. Dry sponges were obtained once ice has been removed by sublimation. 
The porosity is thus a replica of the frozen aqueous crystals. The morphology of CH sponges was 
examined by SEM analysis (Fig. 3). 
At low CH concentration (0.1% w/w CH A series I in figure 3), CH sponges were soft and 
unconsolidated, presenting smooth surfaces. Entangled and non-continuous interpore membranes were 
present both at the surface (Fig. 3 I1 and 3 I2) and in the bulk (Fig. 3 I3 and 3 I4) of the sponge. As 
chitosan concentration increased (1% w/w CH B series III in figure 3), consolidated sponges presenting 
a well-defined cellular structure, interconnected pores and smooth walls were obtained (Fig. 3 III1 to 3 
III4).   
 

 
Fig. 3. SEM images of CH and CH-NE sponges. I: CH A; II: CH-NE A; III: CH B; IV: CH-NE C as 
defined in table 1. 1: sample surface at low magnification (scale bar:  µm); 2: sample surface at higher 
magnification (scale bar: 100 µm); 3: Bulk of the sponge sample at intermediate magnification (scale 
bar: 200 µm); 4 Bulk of the sponge sample at high magnification (scale bar: 20 µm). 
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Upon the loading of NEs in CH, sponges presented a different organization characterized by a dense 
structure and rough surface (Fig. 3 II and 3 IV). Such roughness was ascribed to the accumulation of 
NEs on the sponge surface, as previously reported [41,42]. A further proof of concept of the NE presence 
in the nanocomposite sample was obtained through TEM images (Fig. S4 in supplementary 
information), showing NE with hydrodynamic size of around 100 nm and spherical shape. At high 
NE/CH ratio of 25 (CH 0.1% w/w, CH-NE A) the CH interpore membranes were entirely covered in 
NEs because of the excess of NE present (Fig. 3 II). In turn, at NE/CH ratio of 10 (CH 1% w/w, CH-
NE C) the NE accumulated on CH walls while maintaining the sponge porous structure (Fig. 3 IV). 
Optical images showed that the depth of the pores at the sponge surface decreased in presence of NE in 
a NEs concentration-dependent manner (535 µm in CH B vs 146 µm in CH-NE B and 90 µm in CH-
NE C sponges, Fig. 4. Apparently, the presence of NEs was concomitant with a higher ice nucleation 
during the freezing process which led to the formation of small ice crystals and consequently small pores 
in the sponges [43]. 
Overall, the amount of CH and NEs played an important role in determining the final morphology of 
systems. CH concentration determined the porous structure of sponges (CH B), while the NEs were 
adsorbed onto the CH walls of the sponge network.  

Fig. 4. Optical images of CH B and CH-NE sponges (CH-NE B and CH-NE C). The z-axis values 535 
µm, 146 µm and 90 µm represent the maximum depth of the pores on the sponge surface. 

III.3.4. Sponges rehydration: water uptake capacity
CH and CH-NEs sponges were rehydrated in PBS and FaSSIF-V2. PBS was used to mimic ion
concentration, osmolarity, and pH of human body fluids and FaSSIF-V2 to mimic the physiological
composition of human intestinal fluid [44]. The pH was set at 5, 5.5 and 7.5 for both media: such pH
range covers the apparent pKa of CH (~6.2) and simulates in vitro the human intestinal luminal pH in
both healthy (pH of 5.5 in the small bowel and 7.5 in the colon) and inflammatory conditions (reduced
pH values mostly in the colon) [3].
Upon rehydration in PBS media, pure CH sponges (0.1% w/w CH A and 1% w/w CH B) dissolved at
pH values (pH 5 and 5.5) below the pKa CH (Fig. 5 A). The protonation of amine groups of chitosan
allowed its progressive re-dissolution in such acidic aqueous solutions. On the other hand, at pH 5.5 in
FaSSIF-V2 medium and at pH of 7.5 in both PBS and FaSSIF-V2, CH sponges (CH A and CH B) turned
into hydrogel-like structure able to take-up high water amounts (85% water uptake in PBS at pH 7.5;
70% in FaSSIF-V2 at pH 7.5 and 5.5) (Fig. 5 A and Fig. 2).
A different trend was observed for NE-loaded sponges. When CH-NE sponges prepared at high NE/CH
ratio of 25 (CH 0.1% w/w CH-NE A) were rehydrated, the macrostructure of the dry sponge collapsed
and turned into a dense, aggregated system (Fig. 2). The swelling was immediate, and no further water
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uptake occurred over time (Fig. 5 B). Unlike pure CH sponges (0.1% w/w CH A), CH-NE A did not 
dissolve at any pH up to 8 h and the complete dissolution only occurred after 24 h at pH 5, in both PBS 
and FaSSIF-V2 (Fig. 5 B). Instead, at lower CH-NE ratio of 2.5 and 10 (CH 1% w/w CH-NE B and CH-
NE C), the macrostructure of the sponges was not altered upon rehydration (Fig. 2) and all 
systems became non pH- responsive, as described in details in section 3.6. NEs loading impaired the 
ability of the polymeric structure to retain water: 10% of water, on average, was taken-up by CH-NE 
sponge A (Fig. 5 B). This behaviour was related to the high apparent density and low 
porosity of the nanocomposite system (table 1) and it could be ascribed to the presence of NEs, 
which enhanced the hydrophobicity of the systems. In previous studies, the incorporation of a 
hydrophobic component in hydrogels was shown to decrease water uptake [45,46]. The slight 
reduction in water uptake over time (Fig. 5 B) could be associated with the release of the NE 
absorbed on the sponge surface in the rehydration medium, as highlighted in section 3.6. 

 Fig. 5 A) Water uptake capacity of CH A sponge at pH 5, 5.5 and 7.5 in both PBS and FaSSIF-V2; B) 
Water uptake capacity of CH-NE A sponge at pH 5, 5.5 and 7.5 in both PBS and FaSSIF-V2. 

III.3.5. Rheological analysis
The viscoelastic properties of rehydrated sponges were assessed through rheological measurements in
dynamic mode. From amplitude sweep measurements, the linear viscoelastic region was identified at a
shear strain (γ%) range of 0.01%‒100%, at angular frequency (ω) = 10 rad·s1 and temperature of
22 °C). Thus, frequency sweep measurements were performed at γ%  1%, ω = 0.05–100 rad·s1. The
results obtained for sponges with and without NEs are given for ω = 1 rad·s1 in Fig. 6.
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Fig. 6. Variation of G’ and G’’ moduli and loss tangents of rehydrated CH and CH-NE sponges (PBS 
pH 7.5) at different CH and NE concentrations at an angular frequency ω = 1 rad·s1 

The frequency sweeps always presented the same trend: the apparent moduli were nearly frequency-
independent, G’ was much higher than G’’, the loss tangent was always lower than 1 (Table S1), 
conditions that define gel-like rheological behaviour [47]. For samples obtained from CH solutions at 
low concentration (0.1% w/w CH A and CH–NE A), at high angular frequency (> 10 rad·s1), the G’ 
and G’’ moduli increased with frequency (Fig. S5). This behavior is typical of that of softer gels [48]. 
The G’ and G’’ apparent moduli were higher at higher CH concentration (CH B versus CH A Fig. 7), 
indicative of the improved connectivity of the sponge network (see figure 3). Moreover, values of 
apparent moduli were higher when CH was loaded with NEs, with increasing values at the highest NEs 
concentrations (10% w/w CH–NE C). In line with previous findings [49], the increase in the system 
stiffness along with NEs addition suggested that NEs were able to interact with CH, preventing the 
relaxation of CH chains under shear stress. NEs also bring hydrophobicity to the sponges and limit water 
uptake, thus limiting plasticization effects of chitosan by water. 
In view of an intestinal delivery, the mechanical strength of rehydrated sponges is a major asset. A 
cohesive system, as CH-NE C, might be suitable to increase the retention time at the intestinal site by 
avoiding product flow together with enhancing mucoadhesion [50]. 

III.3.6. In vitro release studies
In vitro release studies of NEs from nanocomposite sponges following rehydration were carried out in 
PBS and FaSSIF-V2 at pH 5, 5.5 and 7.5 in order to investigate i) the role of pH and composition of 
release medium (destructive release studies), and ii) the influence of the sponge composition (NE/CH 
ratio) on the nanosystem release kinetics (cumulative release studies). 
Fig. 7 A shows how pH and composition of the release medium affected NEs release (destructive release 
studies). The study was performed on samples at NE/CH ratio of 25 (CH-NE A). When NEs were 
incubated with PBS at pH 5 and 5.5, 65% of NEs were released within 8 h (Fig. 7 A). In the case of PBS 
at pH 7.5, only 47% of NEs were released over the same experimental period. This release behaviour at 
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pH values lower than the pKa of CH (6.2) can be related to the protonation of CH amino groups, resulting 
in the increase of CH solubility, which weakens the structure of the sponge. 
In the release study performed in FaSSIF-V2 at pH 5, 5.5 and 7.5, 50% of NEs were released over 8h of 
incubation irrespective of the medium pH. After 24 h the CH sponge completely dissolved and 100% of 
NEs were released at pH 5 in both PBS and FaSSIF-V2 (Fig. 7 A). Lower release rates were observed 
at the two other pH: 80% release at pH 5.5 in PBS, 50% release at pH 5.5 and pH 7.5 in FaSSIF-V2 
(Fig. 7 A). From these results, we determined the impact of the intestinal medium composition on the 
system behaviour. FaSSIF-V2 contains amphiphilic molecules, such as sodium taurocholate (NaTC) 
and lecithin, able to interact with the nanocomposites, thus increasing the hydrophobicity of the sponge 
and slowing down the release rate. Lecithin can have affinity for the hydrophobic regions formed by the 
hydrophobic interactions NEs–CH and NEs–NEs [51,52]. Diversely, NaTC binds strongly to the 
nanocomposite thanks to hydrophobic and electrostatic interactions between the negatively charged 
sulfonate groups of the surfactant and the amino groups of CH, which are partly protonated at pH 5 and 
5.5, forming insoluble micelle-like clusters within CH beads [40]. 

Fig. 7. A) NEs release (Nile Red-loaded NE (NR-NE), 20 μg·mL1) from the nanocomposite sponge 
CH-NE A in PBS and FaSSIF-V2 at pH 5, 5.5 and 7.5 up to 24 h; destructive release study to evaluate 
the effect of pH and release medium; B) NEs release (curcumin-loaded NEs (CCM-NEs), CCM 
50 μg·mL1) from nanocomposite sponges at different NEs and CH concentrations in FaSSIF-V2 at pH 
7.5 up to 24 h, pH 5.5 up to 48 h and pH 5 up to 72 h; cumulative release study to evaluate the effect of 
chitosan and nanoemulsions concentration. 
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The physicochemical properties of NEs released from the rehydrated nanocomposites were also 
investigated (in PBS at pH 7.5). NEs showed a slight increase in the hydrodynamic diameter (128 ± 3 
nm vs 104 ± 3 nm), while ζ–potential values shifted from 9 ± 1 mV to 1.7 ± 1 mV, indicative of the 
absorption of some chitosan chains on the particle surface. 
A cumulative release study was performed to investigate the influence of the sponge composition 
expressed as NE/CH ratio on the release kinetic of NEs. Release studies were performed in FaSSIF-
V2 and the pH was decreased from 7.5 to 5 over 72 h. As reported in Fig. 7 B, the sponge at high 
NE/CH ratio of 25 (CH-NE A) fastly released 47% of NEs in 30 min, reaching 65% after 3 h. When 
the NE/CH ratio was decreased to 10 (CH-NE C) the release became sustained. 9% of NE was 
released in 30 min, 34% in 3 h and a plateau at 46% was reached at 8 h. The further decrease in the NE/
CH ratio at 2.5 (CH-NE B) prevented the NE release. After 24 h, the pH was lowered at 5.5 and no 
changes in the release profile were observed up to 48 h. Thus, at time point 48 h, the pH was further 
decreased until 5. The sponge at NE/CH ratio of 25 (CH-NE A) dissolved in one day and 100% of 
NEs was released. Instead, in the sponges at NE/CH ratio of 2.5 and 10 (CH-NE B and C) the release 
rate remained constant (plateau at 50% for CH-NE C). These observations suggested that part of the 
NE was on the bulk of the membranes constituting the pores of the sponges, while part of the NE 
was located at the sponge surface (see figure 3). NE could interact with the CH polymer chains via 
hydrogen bonding but also via hydrophobic interactions, since the CH used in this study (4% DA in the 
neutralized state) exhibits hydrophobicity [52]. In the sponge at high NE/CH ratio of 25 an excess of NE 
was present at the sponge surface and the NE completely covered the CH membranes and the sponge 
lost its porous nature, as highlighted by the SEM images (Fig. 3 series II). This excess of NE was 
easily and rapidly released from the sponge surface once in contact with the medium [53]. Then, the 
remaining NE was constantly released by diffusion trough the sponge creating a plateau. Instead, at a 
NE/CH ratio of 10, a lower amount of NE accumulated on the surface, in fact the sponge 
maintained its porous structure (SEM images Fig. 3 series IV and optical images Fig. 4). The main 
mechanism of NE release was the diffusion of the NE present in the bulk of the pore walls. The 
hydrogen bonds and hydrophobic interactions between CH and NEs together with the 
interconnected 3D network of the sponge microstructure supported the NE diffusion and led to a 
controlled and prolonged release over time. Similarly, Kassem et al. described a sustained release of 
the hydrophilic drug buspirone hydrochloride from chitosan sponges by increasing the polymer 
concentration from 0.5% to 2% thus decreasing the ratio between drug and polymer [23]. The 
absence of release in CH-NE B sponge suggested that when the NE/CH ratio was low (NE/CH 2.5) 
all the NE were entrapped in the sponge structure, supposedly strongly interacting with the CH 
polymer chains. Complete NE release of 100% was achieved only in the sponge at high NE/CH ratio 
of 25 (CH-NE A) when the pH was shifted towards acidic value of 5 due to the sponge dissolution 
and massive release of particles from the surface of the sponge walls. Possible reasons of the CH-
NE A sponge dissolution are i) the lower CH concentration in the initial suspension that led to 
lower thickness of the interpore membranes and to a higher amount of NE in the bulk of pore 
membranes, and ii) the modification of the crystalline structure of CH in presence of NE governed 
by the NE/CH ratio [52]. Further evaluation of the nanocomposite crystallinity will assist in gaining a 
better understanding of the NE release kinetics. Thus, in sponges CH-NE B and C, 100% of release 
could be achieved only after degradation in the colon by bacterial enzymes and human chitinases [2]. 

https://context.reverso.net/traduzione/inglese-italiano/assist
https://context.reverso.net/traduzione/inglese-italiano/better+understanding
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Overall, these results showed that by varying the NE/CH ratio we were able to modulate the release rate 
of NEs. Several strategies have been reported in the literature to tune the release of nanosystems from 
their composite systems as i) the modulation of the degree of cross-linking in polymeric hydrogels 
[54,55], ii) the in situ hydrogelation of polymers followed by their selective pH triggered degradation 
[18], iii) the chemically-driven erosion of the nanocomposite hydrogel network at the site of action [56]. 
In this work a sustained release was obtained by loading NEs in CH sponges at NE/CH ratio of 10 (CH-
NE C). These CH sponges offer the advantages of protecting NEs from the harsh environment of the GI 
tract and they can tackle shortcomings related to the pH-dependent strength of CH-based materials, such 
as the rapid dissolution and the immediate release of the associated nanosystem [57]. The sustained NE 
release and the mechanical strength provided by the NE presence in the bulk of the pore walls, the 
stability over the full intestinal pH range (5 to 7.5) and the CH mucoadhesive potential made the 
developed nanocomposite sponges (CH-NE C) the preferred candidate for enhancing the intestinal 
residence and the delivery performance in vivo.  

III.3.7. In vitro cytotoxicity
Cell viability assays were carried out in order to evaluate the cytocompatibility of blank NEs on two 
separate intestinal cell lines, the HCT 116 and the Caco-2. Human colon carcinoma Caco-2 cells are 
commonly used as a model of intestinal barrier since upon differentiation they express a phenotype 
comparable to enterocytes [58]. Human colorectal carcinoma HCT 116 cells are considered a model of 
colon cancer primary cells [59]. The in vitro cell viability assay was conducted by exposing both cell 
lines to NEs for 3 and 24 h in concentrations ranging from 1250 to 0.62 µg·mL1 (Fig. 8). The minimum 
level acceptable of cell viability in cytotoxicity tests was fixed at 70% according to ISO 10993 [60]. 

Fig. 8. Cell viability of HCT-116 and Caco-2 cells after exposure to blank NE for 3h and 24h. Statistical 
data analysis: p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***; ≥ 0.05 = not significant. 

After the first 3 h, for the HCT 116 cells, blank NEs did not show signs of cytotoxicity with a cell 
viability above 80% up to 625 µg·mL1, while NEs were toxic at the higher concentration used (1250 
µg·mL1, p=0.01). A time-dependent decrease in the viability of HCT 116 cells was observed. After 24 
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h blank NE showed toxicity at concentration higher than 156 µg·mL1, being the IC50 value of 336 
µg·mL1. The value of IC50 of the blank NE was similar to the ones previously reported for lipid 
nanocapsules [59], polymeric nanocapsules [61,62] and solid lipid nanoparticles [63] when evaluated 
on the same colon cancer cell line (HCT-116).  
Regarding to the Caco-2 cell line, their viability remained higher than 80% even at higher NE 
concentrations (1250 µg·mL1) for both time points tested, in accordance with other studies [15,64]. 
The difference in cytotoxicity between the two cell lines can be ascribed to the different % of FBS used. 
In the case of HCT 116 cells a 2% of FBS was required to ensure cell growth. While in the case of Caco-
2 cells the % of FBS was 10%. 
Overall results showed that the cytocompatibility of the NE here developed was in an acceptable range 
and opened the way to its future use as delivery system for systemic or localized treatment. Since the 
cell viability might be altered by the shielding effect of the CH sponge, future studies will investigate 
the toxicity profile of the developed nanocomposite. 

III.3.8. In vivo biodistribution and transit studies in mice
A variety of methods has been reported in the literature for assessing GI transit times, motility, and drug
release. In vivo biodistribution studies using fluorescent or radio-labelled nanoparticles have been
largely described to localize the nanosystems in the GI tract [62]. In this work, we evaluated the
residence time of fluorescent DiD-labelled CH-NE mixture (before freeze-drying) and CH-NE sponges
in the GI tract by near-infrared fluorescence imaging following oral administration to healthy mice.
DiD-loaded NEs were also used as control. Observations were made at 1, 2, 3, 4, and 6 h to anesthetized
mice. Due to the short duration of the anaesthesia and the rapid recovery time, the effect of anaesthesia
on GI motility was not expected. Time points were chosen according to previous studies considering
that mice have a total GI transit time of about 6 h and that the majority of the intestinal content is located
in small intestines and cecum after 3 h [65]. The in vivo biodistribution profiles of formulations
following oral administration are shown in Fig. 9 A. A wide distribution of the fluorescent signal in the
mice GI region was observed for all the systems. After 6 h, the fluorescent signal still was detected in
the mice GI tract and it was more intense for CH-NE mixture and CH-NE sponge than for the NEs.
In order to perform a semi-quantitative analysis of the fluorescent dye distribution, organs were
harvested and ex vivo images were taken (Fig. 9 B). The images collected at the different time points
were processed to extract different information on residence time, targeting ability and potential toxic
effect of the formulations. It was noticed that 1 h after oral gavage, NEs entered the stomach because of
the intense fluorescence of almost the entire loop of small intestines and cecum. At 3 h, NEs were
visualized mainly in the cecum, ascending, transverse and descending tract of the colon, and the rectum.
After 6 h, only a weak fluorescent signal was still present in the small intestine while the most intense
fluorescence was found in the rectum (Fig. 9 B and 10 A). A different transit time was observed when
the NEs were mixed with the CH solution (CH-NE mixture). After 2 h and 3 h, an intense fluorescence
signal was located in the cecum. NEs were retained up to 4 h in cecum and colon and no fluorescent
signal was detected in the rectum up to 6 h (Fig. 9 B and 10 A). On the other hand, when the CH-NE-
sponge was administered the intestinal residence time was considerably enhanced. The highest level of
fluorescent signal was detected in the cecum up to 6 h (Fig. 9 B and 10 A). However, the fluorescence
signal coming from NEs embedded in the sponge was less intense as compared to those obtained with
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the NEs or CH-NE mixture. This observation suggested that the DiD fluorescence was quenched and 
that the NEs fluorescence intensity was underestimated in the composite formulation. Quenching 
typically occurs when lipophilic fluorescent labels are tightly packed together in the nanoparticle core, 
as previously observed for other nanocarriers [66], and it can be further enhanced by the shield effects 
of the macro-system [29]. 

Fig. 9. A) Fluorescent images of mice whole body; B) representative ex vivo fluorescence images of 
intestines of mice sacrificed at 1, 2, 3, 4 and 6 h after oral administration of nanoemulsions (NE), CH-
NE mixture (Mixture), CH-NE sponge (Sponge). 

Fig. 10. A) Contents of nanoemulsion (NE), NE-loaded chitosan mixture (Mixture), NE-loaded chitosan 
sponge (Sponge) in different parts of the intestinal tract following oral administration at time 1, 2, 3, 4 
and 6 h; B) Dissection scheme of the mouse GI tract. Statistical data analysis in supplementary 
information Fig. S6. 

We also verified by visual inspection the absence of alteration of the intestinal mucosa indicating 
absence of toxicity, and preservation of the physiology and gastrointestinal integrity. Moreover, using 
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IVIS technique no NEs fluorescent signal was observed in other organs but the GI (no NEs detected in 
kidneys, liver, spleen, heart, brain, muscles, lungs, bones, skin and urine). These data suggest that the 
developed nanocomposite sponge can be investigated for prolonging the intestinal residence time of 
associated drugs thus allowing for their sustained systemic absorption or enhanced local therapeutic 
efficacy in the case of inflammatory intestinal pathologies [67]. 
Targeting of nanoparticles to the intestine has been extensively studied as a method to potentially 
enhance drug systemic absorption or maximize delivery in a specific GI site. However, due to the unique 
and diverse physiology of the GI tract, including mucus thickness and structure, numerous cell types 
and various physiological functions, the oral delivery of drug-loaded nanocarriers is still an open 
challenge. Thanks to the enhancement in the targeting ability and intestinal residence, nanocomposite 
can be considered as a valid candidate to boost the local effect or to enhance the systemic absorption of 
drugs and biologics following oral administration. Similar findings have been previously reported for 
nanoparticle-loaded hydrogels. Laroui et al. synthetized a cross-linked chitosan and alginate hydrogel 
to encapsulate nanoparticles containing the anti-inflammatory tripeptide Lys-Pro-Val (KPV) that 
ameliorated mucosal inflammation in vivo [18]. Nanoparticles containing CD98 siRNA or plasmid DNA 
embedded in hydrogel were also used target small and large intestine [2,3]. Finally, similar 
nanocomposite structure made of alginate loaded nanoparticles has been described for improving the 
systemic absorption of oral insulin [20]. 
In the present work, the mucoadhesive properties of CH were combined with the mucopenetrating ability 
of NEs in a single delivery system. By adhering to the mucins, CH enhanced the NEs residence time in 
the intestine and prolonged their retention at the mucosal surface. Hence, the NEs might act as depot, 
that may deliver the encapsulated drug, promoting a high drug concentration and a reduction in dosage 
and frequency of administration. Future examinations of nanocomposite sponge residence time in the 
intestinal tract will require bigger animals, such as pigs, with transit times more similar to humans [65]. 

III.4. Conclusions
Nanocomposites combining mucopenetrating NEs and mucoadhesive CH sponges aimed at the 
prolonged intestinal drug delivery by oral administration were successfully developed. The combination 
of mucopenetrating entities encapsulated in a mucoadhesive carrier just started to be explored. The 
loading of nanoparticles in a macrostructure that offers protection from the harsh GI environment and 
enhances the intestinal retention is still an open challenge. 
In this work, NEs, synthesized via the emulsion phase inversion technique, were selected as 
mucopenetrating nanocarrier. The absence of surface affinity and thermodynamic interactions with 
mucins, together with the rapid penetration in a preformed mucin network suggested their 
mucopenetrating potential in vitro. Hence, a freeze-casting process was used to produce highly porous 
nanocomposite CH sponges. The structural and mechanical properties of the latter were found to be 
tweakable by variating CH and NEs concentration, leading to the formation of a pore-wall structure at 
CH amount of 1% w/w and NE/CH ratio lower than 10 (namely CH-NE C). In vitro release studies in a 
biorelevant intestinal fluid (FaSSIF-V2) highlighted the ability of sponges to release NEs in a sustained 
manner irrespectively of the pH of the media. This behaviour represents a great advantage for 
maximizing drug delivery in the intestine. The cytocompatibility of NEs was assessed on Caco-2 and 
HCT 116 cells. NEs proved to be non-toxic on Caco-2 cells at concentration higher than 1 mg·mL1, 

https://context.reverso.net/traduzione/inglese-italiano/Dosage+and+frequency
https://context.reverso.net/traduzione/inglese-italiano/Dosage+and+frequency
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while a time- and concentration-dependent inhibition of cell viability was observed on HCT 116 cells 
being the threshold of toxicity at 313 µg·mL1 after 24 h. The in vivo biodistribution studies in mice 
showed that the nanocomposite sponge greatly increased the intestinal residence time of NEs. Overall, 
these results proved the benefits offered by nanocomposite sponges as intestinal delivery system with a 
view to the local or systemic improvement in therapeutic effect. 
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III. Supplementary information
Table S1 Viscoelastic properties of rehydrated CH and CH-NE sponges (PBS pH 7.5) at angular
frequency of 1 rad·s1.

Sample CH–NE% 
(w/w) 

Storage modulus G' 
(Pa) 

Loss modulus 
G'' (Pa) 

Loss tangent 
(tanδ) 

Complex 
modulus G* 

CH A 0.1 10.5 ± 0.2 1.0 ± 0.1 0.10  ± 0.0 10.6 
CH-NE A 0.1–2.5 32.3 ± 9 5.0 ± 2 0.16 ± 0.1 32.7 
CH B 1 340.9 ± 13 38.9 ± 10 0.11 ± 0.1 343.1 
CH-NE C 1–10 9563.4 ± 72 977.5 ± 23 0.10 ± 0.0 9613.2 

Fig. S1 Experimental setup to study the diffusion of DiD labelled-NEs (10% w/v) in artificial gastric 
mucin type II (10% w/v) by 3D time laps imaging using confocal laser scanning microscopy (CLSM). 
A defined volume of mucin solution was filled in a chamber slides resulting in an equally thick mucin 
layer (3 mm). Then, a predetermined volume of DiD labelled-NEs was added on the top of ASM. Z-
stacks (images of planes at various depths) within the mucin sample were obtained over time at constant 
distance of 20 µm from the bottom of the slide.  

Fig. S2 Physicochemical stability over time of A) blank nanoemulsion, B) curcumin-loaded 
nanoemulsion (0.5 mg·mL1). 
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Fig. S3 A) Colloidal stability of NE (0.5% w/v) upon incubation with mucin (0.5% w/v); B) Surface 
charge of NEs (0.1% w/v) and mucin solutions (0.1% w/v) as assessed by DLS analysis at pH values 
ranging from 2 to 9 in PBS 5 mM at room temperature. The pH was varied by titration of NaOH (0.1 
M) or HCl (0.1 M); C) Calorimetric raw data recorded over time by the titration of NE with mucin
solutions.

Fig. S4 TEM images of CH A and CH-NE A sponges with sample surface at 1 µm, 500 nm, 200 nm and 
100 nm. 
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Fig. S5 Variation of G’ (full lines) and G’’ (dashed lines) moduli versus frequency for CH and CH-NE 
sponges at different CH and NE concentrations. 

Fig. S6 A) Contents of nanoemulsion (NE), NE-loaded chitosan mixture (Mixture), NE-loaded chitosan 
sponge (Sponge) in different parts of the intestinal tract following oral administration at time 1, 2, 3, 4 
and 6 h; B) Dissection scheme of the mouse GI tract. Statistical data analysis: * = significant difference 
(p < 0.05) from all time points within one sample (NE or Mixture or Sponge); 2 = significant difference 
(p < 0.05) from the time point 2 h within one sample (NE or Mixture or Sponge); 3,6 = significant 
difference (p < 0.05) from time points 3 h and 6 h within one sample (NE or Mixture or Sponge); # = 
significant difference (p < 0.05) from other samples at the same time point. 
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Chapter IV: Supersaturable self-microemulsifying 
delivery systems enhance oral bioavailability of a 
benzimidazole derivative anticancer drug. 

Self-microemulsifying drug delivery systems (SMEDDS) are isotropic mixtures of oil, surfactants and 
co-solvents that exploit the intestinal intraluminal fluids to spontaneously form microemulsions. Their 
combination with precipitation inhibitors in supersaturable systems can allow to increase the drug 
payload and to maximize and prolong intestinal absorption by balancing the need for high intraluminal 
drug concentrations with the guarantee of sufficient stability. 

Main aim 
The aim of this third chapter of the work was the design of a supersaturable SMEDDS (S-SMEDDS) to 
address the poor solubility and oral bioavailability of a novel lipophilic anticancer drug, BI.  

Specific objectives 
 Formulate and optimize SMEDDS and S-SMEDDS;
 Evaluate their stability in simulated gastrointestinal fluids;
 Study cytocompatibility and transport on the Caco2 cell line;
 Assess SMEDDS and S-SMEDDS pharmacokinetic profile following oral administration in healthy

mice.
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Highlights of the chapter 
 SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP, EtOH and KlucelTM EF

(1%) were designed and optimized. S-SMEDDS showed a size of 19 nm, a good self-
microemulsification ability and 2- to 4-folds higher drug loading capacity than SMEDDS.

 The SMEDDS and S-SMEDDS not only enhanced drug solubility, but also ameliorate intestinal
permeability. They were proved to increase paracellular transport by inducing a transient opening
of tight junctions on Caco-2 cell monolayers.

 A liquid chromatography-mass spectrometry (LC-MS) method for the detection of the drug in
plasma was established. The method allowed to quantify low drug concentrations of 1.4 ng·mL‒1

and study the pharmacokinetic profile of drug-loaded systems following oral administration in
healthy mice.

 The S-SMEDDS prolonged the drug plasmatic circulation time compared to free drug and
SMEDDS.
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Supersaturable self-microemulsifying delivery systems enhance oral bioavailability of a 
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IV. Abstract
This study explored the design of a supersaturable SMEDDS (S-SMEDDS) to address the poor solubility
and oral bioavailability of a novel benzimidazole derivative anticancer drug, BI. The SMEDDS
formulation made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP and ethanol, was established
by a careful selection of the components through drug solubility studies and optimisation of the system
via a mixture design. By adding hydroxypropyl cellulose (1% Klucel™ EF) in conventional SMEDDS,
the supersaturable system with two-fold higher loading capacity for BI was obtained. Upon dispersion
in aqueous media, SMEDDS and S-SMEDDS created neutrally charge droplets of 19 nm, showing a
good self-microemulsification ability and high robustness to dilution. The in vitro stability of the system
evaluated in simulated gastric (SGF) and intestinal (SIF) fluids, highlighted the ability of S-SMEDDS
to recover their physicochemical properties and avoid drug precipitation once moved from gastric to
intestinal basic pH. An in vitro cell viability study using the Caco-2 cell line indicated the safety of the
formulations up to 1 mg·mL‒1. Investigations on the permeability of SMEDDS and S-SMEDDS across
a model of intestinal epithelium (Caco-2 monolayer) via TEER and fluorescent tracking coupled with
confocal scanning laser microscopy (CLSM) analysis indicated the ability of the formulations to induce
the transient opening of tight junctions. Moreover, in vivo studies after oral gavage in healthy mice
depicted a prolonged drug plasmatic circulation time with S-SMEDDS compared to free-drug and
SMEDDS. Overall, this data highlight the potential of using S-SMEDDS as alternative to conventional
SMEDDS for improving the oral systemic absorption of water-insoluble drugs.

IV.1. Introduction
Pharmaceutical pipelines are highly populated with poorly water-soluble drug candidates that require
novel formulation strategies to provide adequate bioavailability following oral administration. These
drugs mainly belong to the Biopharmaceutical Classification System (BCS) class II (low solubility, high
permeability) and IV (low solubility, low permeability) [1]. To overcome their limited solubility and
bioavailability, lipid-based drug delivery systems (LBDDS) have attracted considerable attention due to
their capacity to present the drug in a solubilized state in their lipid excipients, facilitating
gastrointestinal absorption [2–4]. LBDDS design ranges from oil solutions to more complex systems as
nanoemulsions, lipid nanocapsules and self-nano and microemulsifying drug delivery systems

https://www.researchgate.net/scientific-contributions/2056296258_Samira_Azzouz-Maache
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(SNEDDS and SMEDDS) [5]. SNEDDS and SMEDDS are isotropic mixtures of oil, surfactants and 
co-solvents, that rapidly and spontaneously self-emulsify once entering in contact with aqueous fluids 
in the gastrointestinal tract [6–8]. Upon dispersion SNEDDS form two-phases kinetically stable 
nanoemulsions, while SMEDDS form one-phase thermodynamically stable microemulsions [9]. 
Numerous advantages are offered by SMEDDS, including i) thermodynamic stability [10], ii) small 
droplet size which provide a high contact surface between the drug and the intestinal mucosa maximising 
absorption [11], iii) simple manufacturing process and ease of scale-up [12] and iv) possible formulation 
into soft or hard gelatine capsule or tablets that are easy to administer orally [13,14]. Up to date 
SMEDDS have been exploited as delivery platform for many poorly water-soluble drugs such as the 
benzimidazole derivatives albendazol and olmesartan [13,15]. In particular, more than ten drugs, notably 
cyclosporine (Sandimmune®, Neoral®), ritonavir (Norvir®), and saquinavir (Fortovase®) are available 
in the market as SEDDS to improve their oral bioavailability [16]. Despite all these positive features, 
low drug loading, loss of drug solubilisation capacity upon dilution with body fluids, pH variations or 
intestinal digestion which leads to drug precipitation prior to absorption  limit their application [17–19]. 
Therefore, supersaturable formulations have been developed by adding precipitation inhibitors to 
conventional SMEDDS [20,21]. The aim of the supersaturable approach is to create a supersaturated 
drug state upon dispersion in the GI fluids and last such condition enough to maximize absorption [16]. 
Pharmaceutical polymers as hydroxypropyl methylcellulose (HPMC), polyvinylpyrrolidone (PVP), 
hydroxypropyl cellulose (HPC), poly (acrylic acid) (PAA), polyethylene glycol (PEG) and polyvinyl 
caprolactam–polyvinyl acetate–polyethylene glycol graft copolymer (Soluplus®), have been used as 
precipitation inhibitors to kinetically or thermodynamically maintain supersaturation by inhibiting drug 
nucleation and crystal growth [18,19,22,23]. Their stabilisation mechanism is mainly based on the 
formation of hydrogen bonds or hydrophobic interactions, together with the increased system viscosity 
[16,20]. Previous studies with poorly water-soluble drugs such as cyclosporine A, fenofibrate, paclitaxel 
support the notion that supersaturable SEDDS (S-SEDDS) offer higher oral bioavailability than 
conventional SEDDS [19,22,24]. 
Based on this knowledge, we aimed at developing supersaturable SMEDDS to enhance the oral 
absorption of new therapeutic molecules, such as the anticancer agent BI. BI is a benzimidazole 
derivative with antitumor activity able to interfere with the MAPK/ERK pathway, leading to the 
suppression of proliferation and of resistance to apoptosis of cancer cells. Its efficacy has been proved 
in human cancer cell lines of lung, colon, pancreas, melanoma and sarcoma, while no activity has been 
observed in normal cells, highlighting its high selectivity [25]. BI belongs to BCS Class II, making it an 
optimal candidate for its formulation in such lipid systems. 
The rationale behind this work is that by enabling higher drug load and promoting supersaturation after 
self-emulsification in the intestine, BI-loaded S-SMEDDS improve drug absorption and hence plasma 
concentrations compared to free drug and conventional SMEDDS. Firstly, SMEDDS were formulated 
and optimized by mean of a mixture design. Then, high payload supersaturable systems (S-SMEDDS) 
were prepared by incorporating HPC as viscosity enhancer and inhibitor of drug precipitation in 
SMEDDS. SMEDDS and S-SMEDDS were characterized in terms of physicochemical and rheological 
properties, self-emulsification ability, stability to dilution and efficacy in encapsulating the drug BI. In 
vitro stability tests and pH-shift experiments in simulated gastric (SGF, pH 1.2) and intestinal (SIF, pH 
6.8) fluids were performed to evaluate if S-SMEDDS increased the drug concentration in solution and 
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hindered drug precipitation compared to conventional SMEDDS. The systems cytocompatibility and 
the ability to permeate across the epithelial barrier were studied in vitro on Caco-2 cells. Lastly, in vivo 
pharmacokinetic studies were performed after oral administration to healthy mice to determine the 
advantage of S-SMEDDS in enhancing the systemic absorption of BI. 

IV.2. Materials and methods
IV.2.1. Materials
BI was provided by the Center for Drug Discovery and Development (C3D) platform (Centre de
recherche en cancérologie de Lyon (CRCL),Lyon, France). Medium chain triglycerides, MCT
(Miglyol® 812) was purchased from Cremer Oleo GmbH & Co. KG (Hamburg, Germany). Polyoxyl
40 hydrogenated castor oil (Kolliphor® RH40) and Polyoxyl 35 hydrogenated castor oil
(Kolliphor® EL) were purchased from BASF SE (Ludwigshafen, Germany). Polyoxyethylene 40
stearate (Myrj® 52), formic acid (98% - 100%, LC-MS grade), glacial acetic acid, ethanol (EtOH) 96%,
dimethyl sulfoxide (DMSO), sodium dodecyl sulphate (SDS), Dulbecco’s modified Eagle’s medium
(DMEM) and Hanks’ Balanced Salt solution (HBSS, modified, with sodium bicarbonate, without phenol
red, calcium chloride and magnesium sulfate) were provided by Sigma-Aldrich (St Quentin-Fallavier,
France). Oleoyl polyoxyl-6 glycerides (Labrafil® M1944CS), linoleoyl polyoxyl-6 glycerides
(Labrafil® M2125CS), diethylene glycol monoethyl ether (Transcutol® HP) were provided by
Gattefossé (Saint-Priest, France). Hydroxypropyl cellulose (HPC, Klucel™ LF and EF grades) was
purchased from Ashland (Wilmington, Delaware, United States). Potassium dihydrogen phosphate and
potassium chloride were purchased from Riedel-de-Haën AG (Seelze, Germany). Di-sodium
hydrogenorthophosphate dihydrate was purchased from Serva Electrophoresis GmbH (Heidelberg,
Germany). Hydrochloric acid 37% and sodium chloride were obtained from VWR International
(Fontenay-sous-Bois, France). Dichloromethane (DCM), methanol (MeOH, HPLC grade and LC/MS
grade), sodium hydroxide, DiIC18(5) solid, 1,1'-dioctadecyl-3,3,3',3'-
tetramethylindodicarbocyanine, 4 -chlorobenzenesulfonate salt (DiD), 4',6-Diamidino-2-
Phenylindole, Dihydrochloride (DAPI) and Promega CellTiter 96™ AQueous One Solution Cell
Proliferation Assay (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium), MTS) were purchased from Fisher Scientific (Illkirch, France). Penicillin/streptomycin
(10,000 U·mL1), foetal bovine serum (FBS), nanomycopulitine from Dutscher SAS (Brumath, France).
Phalloidin-iFluor™ 488 Conjugate was purchased from AAT Bioquest -Interchim (Montluçon, France).
Milli-Q® water was obtained using a Milli-Q® Academic System from Merck Millipore (Saint-
Quentin-en-Yvelines, France).

IV.2.2. Solubility studies of BI
Various oils, surfactants and co-solvents were screened for their ability to dissolve BI. Saturated
solutions were prepared by adding an excess of BI powder (25 mg) to 500 µL of each excipient
(Kolliphor® RH40, Kolliphor® EL, Myrj® 52, Transcutol® HP, EtOH, DMSO, Miglyol® 812,
Labrafil® M1944CS, Labrafil® M2125CS), stirred at 750 rpm for 3 h at 37 °C and then left for 24 h to
reach the equilibrium. Moreover, the solubility of BI was evaluated in phosphate buffer at pH 7.4 and
6.8, in acetate buffer at pH 4.5. An excess of BI powder was added to each solvent and samples were
stirred at 600 rpm for 30 min at 37 °C. The excipients and buffers were then centrifuged at 14,000 rpm

http://www.synergielyoncancer.fr/glossaire/cancerologie
https://www.google.com/search?client=firefox-b-d&bih=731&biw=1600&hl=fr&sxsrf=ALeKk01AvD5lPaG8ZqHm3KLIw2EGPPoEOA:1585493740536&q=Wilmington+(Delaware)&stick=H4sIAAAAAAAAAOPgE-LUz9U3MDMwM8lR4gAxi9IrCrS0spOt9POL0hPzMqsSSzLz81A4VhmpiSmFpYlFJalFxYtYRcMzc3Iz89JL8vMUNFxScxLLE4tSNXewMgIAcjCCL14AAAA&sa=X&ved=2ahUKEwjF28q5-L_oAhVK1hoKHUAQBNsQmxMoATARegQIDRAD
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for 15 min at room temperature to separate the precipitated drug. The supernatant (50 mg) was diluted 
with 2 mL of MeOH/DCM mixture (50/50 w/w) and filtered through 0.22 μm nylon syringe filter 
(Whatman GmbH, Dassel, Germany). The concentration of BI was determined in each of the excipients 
by validated high-performance liquid chromatography (HPLC) method as described in the following 
section (2.3.4). 

IV.2.3. Development of SMEDDS formulations
IV.2.3.1. SMEDDS formulation and optimization using mixture design
The ternary phase diagram of the selected oil, surfactant, and co-solvents, each one representing an apex 
of the triangle, was constructed by mixing the excipients at various proportions. The self-
microemulsifying region was identified by adding 900 µL of ultrapure water over 100 mg of each 
formulation (dilution factor 10) in a glass beaker and magnetically stirring at 100 rpm for 5 min at 37 
°C in a water bath. The size of the resultant microemulsions was measured by DLS analysis. 
Preliminary experiments were performed to identify the self-microemulsifying region in the ternary 
diagram. In this region, further investigations were achieved by the means of a mixture design in order 
to optimize the SMEDDS mean size. A series of 25 SMEDDS with varied concentrations of oil 
(Miglyol® 812: 5–70% w/w), surfactant (Kolliphor® RH40: 10–70% w/w), and co-solvents 
(Transcutol® HP and EtOH: 15–25% w/w at Transcutol® HP/ EtOH ratio of 50/50) were thus prepared 
Aiming at a thorough investigation of the area of formation of SMEDDS droplets and at determining 
formulations showing the desired physicochemical attributes, a mixture design was used to model results 
of experiments. The upper and lower bounds on the component proportions xi were defined according 
to the ternary phase diagram preliminary results and the resulting set of constraints was: 0.05<xoil<0.30, 
0.45<xsurfactant<0.80 and 0.15<xco-solvents<0. 25. According to Scheffé [A], the nine design points 
corresponding to the 4 extreme vertices, the midpoints of the four edges and the centroid of the 
constrained region were chosen as the most useful points for estimating the coefficients of the special 
cubic polynomial:𝑌̂ = ∑ 𝑏𝑖𝑥𝑖3𝑖=1 + ∑ ∑ 𝑏𝑖𝑗𝑥𝑖𝑥𝑗 +  𝑏123𝑥1𝑥2𝑥33𝑖<𝑗 Eq. 1

where the variable 𝑌̂ corresponds to the microemulsion mean size predicted by the model. 
Moreover, additional runs regularly spread over the constrained experimental domain were used as 
check points to assess the predictive performance of the developed model. Multiple linear regression 
calculations, analysis of variance (ANOVA) and residual analysis were performed with Modde® 
software (Umetrics, Sartorius-Stedim, Sweden).  

IV.2.3.2. Supersaturable SMEDDS formulation
To prepare supersaturable SMEDDS (S-SMEDDS), two different HPC (Klucel™ LF and Klucel™ EF)
at concentration of 1% and 3% (w/w) were added in the optimized SMEDDS system (F12, Table 1) by
replacing the surfactant Kolliphor® RH40 (S-SMEDDS I). A second type of S-SMEDDS (S-SMEDDS
II) was then prepared by substituting EtOH with DMSO. Firstly, SMEDDS were optimized on the base
of the developed ternary phase diagram in order to have a limited amount of DMSO (5%) and maintain
unvaried the physicochemical properties of the formed microemulsions. The optimized SMEDDS was
composed of 79% Kolliphor® RH40, 7.5% Miglyol® 812, 7.5% Transcutol® HP and 5% DMSO (%
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w/w). Then, S-SMEDDS were formulated by adding Klucel™ EF at concentration of 1% (w/w) while 
reducing the amount of surfactant Kolliphor® RH40 (S-SMEDDS II).  

IV.2.3.3. Preparation of BI-loaded SMEDDS
BI was loaded in the optimized SMEDDS (F12 Table 1) at different concentrations (SMEDDS a: 0.5 
mg·mL‒1; b: 0.9 mg·mL‒1; c: 1.4 mg·mL‒1; d: 1.9 mg·mL‒1). BI was also loaded in S-SMEDDS I (Klucel 
™ EF 1% w/w) at a concentration of 3 mg·mL‒1 and in S-SMEDDS II (Klucel ™ EF 1% w/w and 
DMSO) of 5.5 mg·mL‒1. Briefly, BI was dissolved in the oil-surfactant-co-solvents mixture and the 
system was magnetically stirred at 100 rpm for 10 min at 37 °C until a clear solution was obtained. Then 
microemulsions were formed by dilution with water and the droplet size was measured immediately 
after formulation. The samples were observed for turbidity or phase separation over a period of 48 h. 
The concentration of BI in SMEDDS excipients was determined by diluting 50 mg of freshly prepared 
mixture in 2 mL of MeOH/DCM mixture (50/50 w/w) and analysed by HPLC.
The drug loading (DL) was calculated as the ratio of the mass of BI loaded in SMEDDS to the total 
mass of SMEDDS:𝐷𝐿(%) = mass of BI in SMEDDSmass of SMEDDS × 100 Eq. 2 

To assess the drug encapsulation efficiency in microemulsions, which represented the solubility of BI 
in the microemulsion droplets, the samples were centrifuged at 10,000 rpm for 5 min at 
room temperature to separate the non-encapsulated drug. Then, 200 mg of the supernatant were 
retrieved, dissolved in 2 mL of MeOH/DCM mixture (50/50 w/w) and analysed by HPLC as 
described in section 2.3.4. The encapsulation efficiency (EE) was calculated as following: 𝐸𝐸(%) = mass of BI in microemulsionmass of feeding BI × 100 Eq. 3 

Analyses were done in triplicate. 

IV.2.3.4. HPLC determination of BI
The HPLC system for BI detection consisted of Agilent 1200 Series G1311A Quat Pump, Agilent 1200
Series G1367B HIP-ALS High Performance Autosampler, equipped with Agilent 1200 Series G1315D
Dad Diode Array Detector HPLC (Agilent, Santa Clara, CA, United States). BI was separated on a
reverse phase C18 column (Kinetex 5 μm C18 100 Å, 150 × 4.6 mm, Phenomenex, Torrance, CA,
USA), with temperature set to 23 °C. The mobile phase was composed of MeOH/0.1% formic acid and
ultrapure water/0.1% formic acid, in gradient elution mode, at a flow rate of 0.6 mL·min‒1. The injection
volume was 5 μL and the detection wavelength was 354 nm. The total run time was 20 min. The system
was managed by OpenLab CDS ChemStation Edition software (Agilent, Santa Clara, CA, United
States). The HPLC method was linear (R2 = 0.9996) in the concentration range of 2.5–150 μg·mL‒1. The
method was validated according to ICH Q2(R1) guidelines [26]. Detection and quantification limits
(LOD and LOQ) were 3.82 μg·mL‒1 and 12.74 μg·mL‒1, respectively.

IV.2.4. SMEDDS characterization
IV.2.4.1. Droplet size and ζ‒potential measurements
Size distribution and surface potential of microemulsions were determined using Malvern Zetasizer®
Nano ZS instrument (Malvern Instruments S.A., Worcestershire, UK). Particle sizes were measured by
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Dynamic Light Scattering (DLS) at 25 °C at a scattering angle of 173 °. The ζ–potential was calculated 
from the mean electrophoretic mobility measured for samples diluted in 0.1 mM KCl. Measurements 
were performed in triplicate. 

IV.2.4.2. Rheological analysis
The rheological tests were carried out through an MCR 302 rheometer (Anton Paar, Les Ulis, France)
fitted with a 25 mm cone-plate geometry. The temperature was set at 25 °C. Approximately 300 μL of
the formulation was added to the steel Peltier plate and the head was lowered to the measurement gap
of 49 μm. Flow sweep experiments were performed with a shear rate in the range of 1 to 100 s‒1 to
measure the viscosity of blank SMEDDS, S-SMEDDS I containing Klucel™ LF or Klucel™ EF at
concentration of 1% and 3% (w/w) and S-SMEDDS II. All measurements were performed in triplicates.

IV.2.4.3. Determination of self-emulsification time
The emulsification time of SMEDDS and S-SMEDDS was assessed by measuring the time (s) required
to obtain a clear dispersion. Ultrapure water was added dropwise onto the SMEDDS mixture (dilution
factor 10) under gentle magnetic stirring (100 rpm) in a water bath at 37 °C.

IV.2.4.4. Effect of dilution on SMEDDS
The impact of SMEDDS dilution on microemulsion formation was studied by diluting SMEDDS 5, 10,
20 and 100 times with ultrapure water. Experiments were performed under gentle magnetic stirring (100
rpm) in a water bath at 37 °C. The droplet diameter of microemulsions was determined and samples
were observed for any sign of phase separation over 24 h.

IV.2.5. Stability studies in simulated gastrointestinal fluids
The colloidal stability of BI-loaded SMEDDS a, SMEDDS b, SMEDDS c, S-SMEDDS I and S-
SMEDDS II was evaluated in simulated gastric fluid (SGF) at pH 1.2 (dilution factor 10).
The colloidal stability of BI-loaded SMEDDS c, S-SMEDDS I and S-SMEDDS II was evaluated in 

simulated intestinal fluid (SIF) at pH 6.8 (dilution factor 10). Both SGF and SIF did not contained 
enzymes and were prepared in accordance with the guidelines of the Ph. Eur. 9th. All samples were kept 
under continuous stirring (100 rpm) in a water bath at 37 °C for the whole period of analysis. The droplet 
size and PdI of microemulsions in both SGF and SIF were measured by DLS analysis at time points 0, 
60, 120 and 180 min.
In the case of microemulsions in SGF, the BI encapsulation efficiency was also assessed at time points 
0, 60, 120 and 180 min by mean of HPLC, as explained in section 2.3.4.
Subsequently, the pH was shifted from acid to alkaline to simulate the pH changes in the GI tract. BI-
loaded SMEDDS c), S-SMEDDS I and S-SMEDDS II were dispersed in SGF at pH 1.2 (dilution factor 
10, time point 0). Then, the pH was increased by titration with 1M NaOH solution (final pH of 11, time 
point 10 min). At predetermined time points (0, 10, 30, 60, 120, 180 and 360 min) the samples were 
withdrawn, the microemulsions size was analysed by DLS, and the BI encapsulation efficiency was 
assessed by HPLC, as explained in section 2.3.4.
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IV.2.6. In vitro studies on Caco-2 cells
IV.2.6.1 Cell culture conditions
Human colon carcinoma (Caco-2) cells were used to perform the MTS (3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Caco-2 cells were cultured in
75 cm2 flasks, at 37 °C in a humidified atmosphere 5% CO2 and 95% air incubator. Cell culture medium
was DMEM, supplemented with 10% (v/v) FBS, 2% (v/v) penicillin/streptomycin and 1%
nanomycopulitine. The medium was exchanged every two days.

IV.2.6.2 In vitro cell viability studies
The effect of drug-loaded SMEDDS and S-SMEDDS I on the viability of Caco-2 cells was evaluated
by the MTS assay. 1x104 cells/well were seeded in 96-well plates and maintained for 48 h at 37 °C, 5%
CO2. Then, the culture medium was removed and cells were treated with increasing concentration of
drug-loaded SMEDDS c, S-SMEDDS I and free drug in ethanol diluted with pre-warmed DMEM
supplemented with 10% of FBS (v/v) to obtain a drug concentration range from 0.63 to 10 µM. Blank
SMEDDS and S-SMEDDS I were also tested to assess the cytocompatibility of systems without the
drug. DMEM was used as positive control (100% viability), while SDS (3%, w/v) as negative control.
Cells were exposed to the formulations for 24 h at 37 °C, 5% CO2. After the considered period, samples
were replaced with 100 µL of fresh medium added of 20 µL of MTS solution in each well. The plates
were incubated for 4 h at 37 °C. The absorbance was measured spectrophotometrically (Multiskan EX,
Thermo Fisher Scientific, France) at 492 nm, with background correction at 620 nm. The study was
performed in triplicate.
Cell viability was calculated by the following formula (Abs = absorbance):𝐶𝑒𝑙𝑙 𝑣𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = 𝐴𝑏𝑠 𝑠𝑎𝑚𝑝𝑙𝑒−𝐴𝑏𝑠 𝑆𝐷𝑆𝐴𝑏𝑠 𝐷𝑀𝐸𝑀−𝐴𝑏𝑠 𝑆𝐷𝑆  𝑥 100 Eq. 4 

IV.2.6.3 Transport of SMEDDS and S-SMEDDS across Caco-2 cell monolayers
Caco-2 cells were seeded at a density of 2.5x104 cells/cm2 onto Transwell inserts (1 x 10/8 cm2 pore
density, 0.4 μm pore size, polyethylene terephthalate (PET) membrane, ThinCertTM Greiner Bio-One,
Les Ulis, France) in 24-well tissue culture plates (Cellstar® Greiner Bio-One, Les Ulis, France). The
cells were grown in a DMEM culture media containing 10% FBS for 21 to 26 days at 37 °C, 5 % CO2

for them to differentiate so as to morphologically resemble the enterocytes of the small intestine,
presenting the characteristic tight junctions, microvilli and brush-border [27-28]. During the period of
growth, the media was initially replaced after 5 days and subsequently it was changed every 2 days. Cell
differentiation was evaluated by transepithelial electrical resistance (TEER) measurements in an apical
to basolateral direction using a Millicell® ERS-2 Voltohmmeter (Merck Millipore, Darmstadt,
Germany). Caco-2 monolayers were used when TEER values were around 300 Ω·cm2.
Apical-to-basolateral transport experiments across the Caco-2 monolayers were carried out. To this aim
the growth medium was removed, replaced with HBSS and cells were incubated for 30 min at 37 °C,
5% CO2. The HBSS medium was supplemented with glucose (25 mM). The SMEDDS and S-SMEDDS
were stained with the fluorescent dye DiD (2 mg·mL‒1) in order to quantify the transport by fluorescence
spectroscopy. DiD-stained SMEDDS and DiD-stained S-SMEDDS microemulsions were formulated in
HBSS with SMEDDS and S-SMEDDS final concentrations of 1 mg·mL‒1, selected on the base of cell
viability studies, and DiD concentrations of 1 µg·mL‒1. Then, 150 µL of HBSS containing the DiD-

http://tools.thermofisher.com/content/sfs/brochures/D12842~.pdf
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stained SMEDDS or DiD-stained S-SMEDDS microemulsions were added to the apical compartment 
of the inserts. The basolateral compartment was filled with 1 mL of HBSS. The experiments were 
performed in triplicate. 
After 2 h and 4 h of incubation at 37 °C 5% CO2, the medium in the basolateral compartment was 
collected and the amount of DiD-stained SMEDDS and DiD-stained S-SMEDDS was quantified via 
fluorescent measurements using a Spark® multimode microplate reader (Tecan Trading AG, 
Männedorf, Switzerland). The excitation and emission wavelengths were 635 nm and 720 nm 
respectively. HBSS was used as negative control, while DiD-stained SMEDDS and DiD-stained S-
SMEDDS were used as positive control. 

IV.2.6.4 Measurement of the Transepithelial Electrical Resistance
TEER measurements were performed all along the transport studies. in order to gain information on the
potential route of transport (transcellular or paracellular). As a reference, TEER values of the cell
monolayers were measured just before adding the formulations. Then, once the cells incubated with
DiD-stained SMEDDS and DiD-stained S-SMEDDS, TEER values were recorded at 2 and 4 h. The
TEER of monolayers incubated with HBSS were measured as a control. After 4 h, the tested
formulations were removed and replaced by fresh DMEM in order to check the TEER values at 24 h
after exposure to SMEDDS and S-SMEDDS. Each TEER value was calculated as a percentage of the
initial TEER value. The experiments were performed in triplicate.

IV.2.6.5 Localization of SMEDDS and S-SMEDDS in Caco-2 cell monolayers
DiD-stained SMEDDS and S-SMEDDS were tested for their cell association and internalization across
the Caco-2 cell monolayers. The localization of samples in Caco-2 cell monolayers was studied
qualitatively by confocal laser scanning microscopy (CLSM). The inserts obtained from the
permeability studies were fixed in 4% (v/v) paraformaldehyde (PFA). After 24 h storage at 4 °C, the
cells were washed with PBS and permeabilized with 0.1% Triton X-100 (Sigma Aldrich, USA) in PBS
for 5 min. The tight junctions were then stained with Phalloidin-iFluor™ 488 Conjugate in PBS (16 µM)
for 20 min. After 5 cycles of washing, nuclei were stained with DAPI in PBS (25 µg/mL) for 10 min.
Cells were rinsed with PBS twice. The inserts were then cut and stained cells were imaged on a Leica
TCS SP5 X confocal microscope (Leica Microsystems, Mannheim, Germany). Images were analysed
with the Fiji ImageJ software [29] for background correction.

IV.2.7. In vivo pharmacokinetic study
IV.2.7.1. SMEDDS and S-SMEDDS administration and blood collection
Mouse experiments were conducted in agreement with the local ethics committee (CECCAPP, Comité
d’Evaluation Commun au PBES, à AniCan, au laboratoire P4, à l’ENS, à l’IGFL), authorization number
#10386. Female nude mice (average body weight of 19-20 g) used for the in vivo pharmacokinetic study
were obtained from Charles River Laboratories (Saint-Germain-Nuelles, France). Mice were housed in
clean polypropylene cages (5 mice/cage) with the commercial pellet diet and water ad libitum at 22 ± 2
°C and kept on a 12 h light/dark cycle. Prior to oral gavage, animals were fasted for 12 h. The mice were
randomly divided into four groups (n= 3 for each group) corresponding to 4 formulations: i) BI-loaded
SMEDDS c (14 mg·kg‒1 of BI), ii) BI-loaded S-SMEDDS I (30 mg·kg‒1 of BI), iii) BI-loaded S-
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SMEDDS II (55 mg·kg‒1 of BI), iv) BI dispersion in HPC (40 mg·kg‒1 of BI). After oral gavage mice 
were housed one per cage and food was given them back. At time points 0, 0.25, 0.5, 1, 3, 6, 8, and 24 
h blood samples (100 µL) were collected intracardially or retro-orbitally. Experiments were ended at 
time point 6 h for the mice receiving HPC dispersion and SMEDDS c (groups iv and i). Blood samples 
were immediately centrifuged at 40,000 rpm for 15 min at 4 °C, and the separated plasma was stored at 
−20 °C until analysis.

IV.2.7.2. Plasma sample extraction and analysis
Prior to extraction, frozen plasma samples were thawed at ambient temperature. Mouse plasma (50 µL)
was mixed with 450 µL of MeOH and samples were vortexed for 20 s. The mixture was centrifuged at
10,000 rpm for 10 min at 4 °C. The supernatant was filtered on a 0.22 µm Nylon filter and injected in
HPLC-MS for the analysis using the same conditions as in section 2.7.2.

IV.2.7.3. Development of LC-MS analysis of plasma samples
The LC-MS method was established to quantify BI in plasma, using an Agilent InfinityLab Liquid
Chromatography/Mass Selective Detector (LC/MSD) system equipped with an electrospray ionization
(ESI) source (Agilent, Santa Clara, CA, United States). Chromatographic separation was achieved on a
HPLC reversed phase C18 column (Zorbax RRHD SB-C18, 2.1×50 mm, 1.8 μm, Agilent, Santa Clara,
CA, United States) maintained at 40 ℃. The separation was accomplished using water as mobile phase
A (30%) and MeOH as mobile phase B (70%) in isocratic elution mode at a flow rate of 0.4 mL·min‒1.
The injection volume was 5 μL and the total run time 10 min. The mass spectrometer was operated in
positive ionization mode with fragmentation and capillary voltage set at 240 and 4 kV, respectively.
Protonated BI was quantified in the selected-ion monitoring (SIM) mode at m/z 388.2 (M+H)+. The
system was controlled by OpenLab CDS ChemStation Edition for LC&LC/MS Systems software
(Agilent, Santa Clara, CA, United States). In order to prepare standard curves, 50 µL of BI stock solution
in MeOH were mixed with 50 µL of blank plasma, samples were vortexed for 20 s, then 400 µL of
MeOH were added and samples were vortexed again for 20 s. The mixture was centrifuged at 10,000
rpm for 10 min at 4 °C. The supernatant was filtered on a 0.22 µm nylon filter and injected in HPLC-
MS for the analysis. Analysis were done in triplicate. The BI calibration curve was linear (r2 = 0.997)
over the concentration range 1.4–240 ng·mL‒1.

IV.2.7.4. Pharmacokinetic data analysis
Pharmacokinetic data were treated by non-compartmental analysis of the percentage of the administered
dose versus time profiles with Kinetica 5.1 software (Thermo Fischer Scientific, France). The maximum
BI plasma concentration (Cmax) and the time taken to reach the maximum plasma concentration (Tmax)
were determined from the individual plasma concentration vs time curves. The elimination half-life (t
½) was calculated as follows:t ½ = ln2Ke × 100 Eq. 5 

where Ke is the elimination rate constant. 
The trapezoidal equation was used to calculate the area under the curve (AUC) during the whole 
experimental period (AUC [0 - ∞]). The mean residence time (MRT) was calculated by dividing the 
area under the first moment of the concentration/time integral (AUMC) by the AUC. 
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IV.2.8. Statistical analysis
The normality of data distribution of in vitro cell viability study was assessed by mean of the Shapiro-
Wilk test (alpha > 0.05). Data were analysed by mean of a Student’s t-test to compare different groups
using GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, California, USA).
A p-value less than 0.05 indicated statistical significance. The data are the mean ± SD for n = 3.

IV.3. Results and discussion
IV.3.1. Solubility studies
BI is a lipophilic BCS class II drug, showing a logP value of 3.7 and very weak basic properties [25].
BI is not soluble in aqueous media as it was not detected in phosphate buffer at pH 7.4, pH 6.8 and in
acetate buffer at pH 4.5 because below the HPLC LOQ (12.7 μg·mL‒1). Solubility study of BI in oils,
surfactants and co-solvents was the primary pre-formulation test to select the suitable SMEDDS
excipients and define the amount of drug that can be loaded in the system. Fig. 1 illustrates the drug
chemical structure and the results of solubility studies.

Fig. 1 A) BI chemical structure and pKa values; B) Maximum solubility of BI in various excipients 
expressed in mg·mL‒1. 

The drug solubility was low in all the tested oils with values of 0.7 mg·mL‒1 in Labrafil® M1944CS, 
3.5 mg·mL‒1 in Labrafil® M2125CS and 0.3 mg·mL‒1 in Miglyol® 812. The surfactants Kolliphor® 
EL (and Kolliphor® RH40 showed similar values of solubility (10.8 mg·mL‒1 and 10.9 mg·mL‒1 

respectively), while the solubility was two times higher in the surfactant Myrj® 52 (18.2 mg·mL‒1). The 
greatest solubility capacity was provided by Transcutol® HP (32.7 mg·mL‒1) and DMSO (36.7 mg·mL‒

1), while the solubility in EtOH was of 8.8 mg·mL‒1. 
These results pointed out that BI solubility is highly dependent on fatty acid chain length, on HLB value 
and on the presence of ethylene oxide moieties in excipients. The lowest solubility was observed in 
Miglyol® 812, a medium chain triglyceride having an HLB value of 6. Labrafil® M1944CS and 
M2125CS, partially PEGylated long chain triglycerides, also showed low solubility because of their low 
HLB value of 9. Among all tested surfactants, the highest solubility was detected in Kolliphor® RH40 

https://www-sciencedirect-com.docelec.univ-lyon1.fr/topics/pharmacology-toxicology-and-pharmaceutical-science/diethylene-glycol-monoethyl-ether
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(10.9 mg·mL‒1) and Myrj® 52 (18.2 mg·mL‒1), that possess higher content of ethylene oxide moieties 
(PEG40) than Kolliphor® EL (PEG35) and higher HLB values (16.9 for Myrj® 52, 14‒16 for 
Kolliphor® RH40, 12‒14 for Kolliphor® EL).  Transcutol® HP, ETOH and DMSO were evaluated as 
co-solvents. The higher solubilisation capacity of DMSO (36.7 mg·mL‒1) compared to the one of ethanol 
(8.8 mg·mL‒1) lies on its higher polarity, while the higher solubility in Transcutol® HP (32.7 mg·mL‒1) 
was ascribable to the ethylene oxide moiety. In accordance with previous studies on the solubility of 
lipophilic drugs in lipid excipients [30,31], a key to increase the solubility of BI was the high polarity 
and the H-bond interactions between drug and oxygen/hydroxyl functional groups of PEGylated 
excipients while non-polar and double bond π-π interactions played a minor role in triggering 
solubilisation.  
Taking into account the solubility study, Miglyol® 812, Kolliphor® RH40, Transcutol® HP and EtOH 
were selected as components of SMEDDS for the delivery of the anticancer agent BI. In the formulation 
of SMEDDS, the selection of the oil has to be a compromise between the solubilizing potential and the 
ability to facilitate the microemulsions formation, since the drug solubility can be enhanced by the 
microemulsification of oil with surfactants. [9] Unsaturated fatty acids like Labrafil® M1944CS and 
M2125CS are known for their susceptibility to oxidation that can disturb the stability of the system [32], 
while medium chain triglycerides are resistant to oxidation and possess high emulsifying capacity [33]. 
For these reasons, Miglyol® 812 was selected as the oil component in SMEDDS.Kolliphor ® RH40 
was the surfactant of choice based on its good solubilizing capacity for BI and on the fact that it has 
efficient self-emulsification capacity when combined with Miglyol® 812 [34]. Besides,  Kolliphor® 
RH40 showed low digestion and ability to inhibit the intestinal efflux transporter P-glycoprotein (P-gp) 
,resulting in enhanced drug absorption and bioavailability [35,36]. Co-solvents addition is required to 
reduce the interfacial tension between oil and aqueous phases, promoting nanodroplet formation and 
stability, and to partially substitute surfactants, thus limiting intestinal local irritation [37]. In order to 
maximize drug loading Transcutol® HP was selected, while DMSO or EtOH were used to further 
improve the molecular dispersion of BI in the mixture. EtOH was chosen over DMSO because FDA 
approved for food products  and widely use in the design of lipid-based systems [19,23,38]. 

IV.3.2. SMEDDS optimization through mixture design
The ternary phase diagram was constructed to identify the self-microemulsifying region and to select
SMEDDS formulations. The phase diagram consisted of 100% of oil, surfactant and co-solvents (ratio
50/50) in each apex of the triangle (Fig. 2A). The use of co-solvents at ratios other than 50/50 was also
investigated but failed to provide a satisfactory outcome. Each microemulsion was formulated by
addition of water over the oily excipients (dilution factor 10) and the microemulsifying ability was
assessed by DLS analysis. Visually, the turbid appearance of samples indicated the formation of coarse
emulsions, while clear solutions corresponded to microemulsions. It was observed that a decrease in the
oil content led to a decrease in droplet size and PdI. Microemulsions with an average size lower than 35
nm and PdI lower than ≤ 0.3 were obtained at oil content lower than 30% (blue dots in Fig. 2A). Thus,
a set of constraints on the component mass fractions of 0.05<xoil<0.30, 0.45<xsurfactant<0.80 and 0.15<xco-

solvents<0. 25 was defined for SMEDDS optimization trough a mixture design. Only the regression
coefficients significant at the 5% level (t-test) were kept in the model: the coefficients b12 and b23 were
thus removed from Eq. 1. The ANOVA results indicated the high significance of the fitting with a p-

https://www-sciencedirect-com.docelec.univ-lyon1.fr/topics/pharmacology-toxicology-and-pharmaceutical-science/diethylene-glycol-monoethyl-ether
https://www-sciencedirect-com.docelec.univ-lyon1.fr/topics/pharmacology-toxicology-and-pharmaceutical-science/diethylene-glycol-monoethyl-ether
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value of 0.03 (F-test). The determination coefficient R²=0.89 proved the satisfactory adequacy of the 
model. Finally, its good predictive performance was assessed by the residuals at the test points: they 
were determined for each experiment as the difference between the experimental size and the one 
predicted by the model and were below 8 nm, i.e. in good accordance with the experimental error 
determined from repeated runs (standard deviation = 2.2 nm). Once validated, the developed model was 
used to plot the estimated surface contours for the mean size in a pseudoternary phase diagram (Fig. 2B). 
A progressive increase in size from 15 up to 30 nm was observed in samples at the lowest oil content 
(xoil < 10%) when the amount of co-solvents was increased from 15 to 25% (blue regions at the bottom 
right in Fig 2B), supposedly because of the destructuring of microemulsion droplets. For xoil > 0.2, the 
amount of surfactant greatly influenced the microemulsion droplet mean size which ranges from 20 to 
85 nm with xsurfactant decreasing from 65 down to 45% while no significant influence was observed for 
xoil < 0.2. At intermediate oil contents in between 10 and 15%, SMEDDS formulations appeared quite 
robust since characterized by similar mean size of less than 20 nm (dark blue region in Fig 2B). The 
width of this area corresponded to the feasibility domain. Experimentally, microemulsions in the 
feasibility domain showed an average size of around 20 nm and PdI lower than 0.1 (green dots in Fig. 
2A, formulations F12, F17, F18, F19, F23 in Table 1).  

Fig. 2 A) Ternary phase diagram of SMEDDS composed of Miglyol® 812, Kolliphor® RH40 and 
Transcutol® HP/ EtOH (50/50). Red dots correspond to unsuitable formulations. Blue dots correspond 
to formulations having a nanometric size and PdI lower than 0.3. Green dots correspond to the feasibility 
domain showing microemulsion droplets of around 20 nm and PdI lower than 0.1. The selected 
formulation is highlighted with a black circle (F12, size 19 nm, PdI 0.1); B) Pseudoternary phase 
diagram. Contour plots of the predicted droplet mean size in the triangle defined by the lower and upper 
bounds of mass fractions of oil, surfactant and co-solvents with the selected optimized formulation (F12) 
indicated by a black circle.
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Table 1 Composition and physicochemical properties of SMEDDS in the feasibility domain composed 
of Miglyol® 812, Kolliphor® RH40, Transcutol® HP and EtOH.  

SMEDDS Miglyol®
812 (% w/w) 

Kolliphor®
RH40 (% 
w/w) 

Transcutol®
HP (% w/w) 

EtOH (% 
w/w) Size (nm) PdI 

F12 10 70 10 10 18.6 ± 2.2 < 0.1 
F17 15 70 7.5 7.5 21.5 ± 1.6 < 0.1 
F18 10 75 7.5 7.5 18.7 ± 2.6 < 0.1 
F19 5 80 7.5 7.5 16.4 ± 1.2 < 0.1 
F23 15 60 12.5 12.5 21.9 ± 1.3 < 0.1 

The criteria for the selection of the optimal formulation were: i) surfactant content that had to be lower 
than 70% in order to minimize system toxicity in vivo [39,40], ii) EtOH content that should not exceeded 
the approved limit in medicinal products [41], iii)  oil content that had to be high enough to emulsify the 
system but low enough to guarantee  a high drug loading since the BI solubility in the oil was very low. 
On this basis, the SMEDDS F12, composed of 70% surfactant, 10% oil, 10% co-solvent Transcutol® 
HP and 10% EtOH (Table 1 and Fig. 2), was selected for further studies.  
The SMEDDS F12 microemulsions had an average size of 18.6 ± 2.2 nm, low PdI and neutral ζ–potential 
of ‒1.0 ± 0.8 mV. Despite the neutral surface charge, SMEDDS showed high stability up to 21 days 
(Fig. S1 in supplementary information). This might be ascribed to SMEDDS thermodynamical stability 
and to the presence of Kolliphor® RH40 and Transcutol® HP, non-ionic surfactants which sterically 
stabilize the system by forming a shell around the droplet surface, as previously evidenced by Nasr et 
al. [15]. The developed SMEDDS were diluted to a maximum of 100-fold and a minimum of 5-fold in 
order to mimic the process of dilution in the intestinal tract [42]. As already observed in previous studies 
[7,43], dilutions did not cause any alteration in the system physicochemical properties (Fig. S2), any 
change in visual clarity, and no phase separation was observed within 24 h. The preservation of 
microemulsions integrity was attributed to the high amount of surfactant Kolliphor® RH40, which never 
fell below the critical micelle concentration (CMC of Kolliphor® RH40: 0.03% w/w at 37 °C) even in 
high diluted conditions (100-fold). 

IV.3.3. Supersaturable SMEDDS formulation and optimisation
S-SMEDDS were developed to promote drug solubilisation and to prolong supersaturation in the
gastrointestinal fluids, providing an opportunity to increase drug absorption  [16,21]. S-SMEDDS
formulations were prepared by adding the two different cellulose derivatives Klucel™ EF and Klucel™
LF at concentrations of 1% or 3% (w/w) to the optimized SMEDDS formulation F12. The self-
emulsifying process of this system is illustrated in Fig. 3A, and the systems physicochemical properties
in Fig. 3B.
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Fig. 3 A) Formulation of S-SMEDDS; B) Physicochemical properties of blank supersaturable 
SMEDDS (S-SMEDDS). 

The optimisation was performed trough the evaluation of both physicochemical properties 
of microemulsions by DLS analysis (Fig. 3B) and rheological properties of S-SMEDDS by flow 
sweep measurements at 25 °C (Fig. S3).  
From the rheological analysis it was observed that both S-SMEDDS I and II showed a shear 
thinning behaviour, meaning that the viscosity decreased at increasing shear rate, while 
SMEDDS (F12), analysed as control, displayed a Newtonian behaviour and a constant viscosity value 
of 150 mPa·s.  S-SMEDDS at Klucel™ EF concentration of 1% (w/w) had an apparent viscosity of 
17,583 mPa·s (shear rate 5 s‒1) and maintained the physicochemical characteristics of conventional 
SMEDDS (size 20.5 ± 1 nm, PdI 0.2) upon dilution in water (Fig. 3B), indication of good self-
emulsification ability. On the other hand, S-SMEDDS containing Klucel™ EF3%, LF1% and 
LF3%, presented higher apparent viscosity of 168,135 mPa·s, 73,407 mPa·s and 95,907 mPa·s 
respectively (shear rate 5 s‒1) and their microemulsions showed high polydispersity (PdI > 0.3), 
meaning that their self-emulsification was hindered by the too high viscosity. The different self-
emulsifying properties of S-SMEDDS containing Klucel™ EF and LF could be ascribed to the 
Klucel™ different viscosity grades (EF and LF) used in this study. Klucel™ LF is a medium viscosity 
grade HPC, with a MW of 95,000 Dalton, while Klucel™ EF has lower viscosity and MW (80,000 
Dalton) , that make it more easily soluble in organic liquids [20,44]. Only when using the low 
viscosity grade Klucel™ EF at the lower concentration of 1% (w/w), the emulsifying ability and the 
physicochemical properties of the system were preserved.  Similar effect of the precipitator inhibitor 
concentration on self-emulsification was previously reported for S-SMEDDS containing HPC 
intended for the delivery of raloxifene. When the amount of HPC was increased from 1 to 5% (w/
w), the high viscosity of the system was shown to hinder the microemulsion formation [45]. Thus, 1% 
Klucel™ EF was selected to create the supersaturable system. 
Then, in order to further enhance the drug loading, a second S-SMEDDS system was developed. 
EtOH was replaced with DMSO, in which BI was highly soluble (36.7 ± 2.0 mg·mL‒1). DMSO is 
considered a non-toxic solvent with oral Permitted Daily Exposure (PDE) limit of 50 mg·day‒1 
according to the FDA, and previous studies reported the use of DMSO in SNEDDS for the oral 
route [46–48]. The feasibility of obtaining DMSO-SMEDDS by substituting EtOH in the SMEDDS 
F12 formulation was 
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firstly assessed. Therefore, the amount of excipients was optimized using the developed ternary phase 
diagrams to prevent alteration of the system physicochemical properties. When using 79% Kolliphor® 
RH40, 7.5% Miglyol® 812 and 7.5% Transcutol® HP and 5% DMSO (% w/w), a microemulsion with 
same size (18.8 ± 0.6 nm) and PdI (0.1) of SMEDDS microemulsions were obtained (Fig. 3B). S-
SMEDDS containing Klucel™ EF at 1% (w/w) and DMSO were prepared (DMSO-S-SMEDDS EF 
1%). DMSO-S-SMEDDS EF1% presented an apparent viscosity of 81,194 mPa·s (shear rate 5 s‒1, Fig. 
S3), value that was higher than the one of S-SMEDDS EF1% (17,583 mPa·s). However, the 
microemulsion physicochemical properties were not altered being the hydrodynamic diameter of 19.8 ± 
0.5 nm and PdI of 0.1 (Fig. 3B).  
Overall, two S-SMEDDS, containing 1% Klucel™ EF and EtOH or DMSO, were selected as 
supersaturable systems for further studies, henceforth referred to as S-SMEDDS I (containing EtOH) 
and S-SMEDDS II (containing DMSO). 

IV.3.4. Determination of self-emulsification time
The emulsification time is an important parameter for assessing the emulsification potential of the
formulations without the use of any external thermal or mechanical energy.
SMEDDS F12 showed an emulsification time of 68 s and S-SMEDDS I of 127 s, which indicate their
ability to quickly disperse when subjected to aqueous dilution under mild agitation. The reason behind
the rapid emulsification is the fast  water penetration in the shell of surfactant and co-solvents
surrounding the oil droplets [49]. A longer emulsification time of 481 s was recorded for S-SMEDDS
II and was ascribed to the higher system viscosity.

IV.3.5. BI loading in SMEDDS and S-SMEDDS
BI was added to the SMEDDS mixture at drug loading (DL) up to 0.19% (Table 2). High drug
encapsulation efficiency was obtained for SMEDDS a (92.7 ± 0.1%), b (92.2 ± 3.8%) and c (83.9 ±
0.1%). When a higher amount of drug was loaded in the system (SMEDDS d, DL 0.19%), the
microemulsion presented a cloudy appearance and an orange solid crystalline precipitate of BI was
observed, meaning that the saturation solubility of BI was exceeded. The addition of BI did not influence
droplet size (19.1 ± 0.9 nm), PdI (< 0.1) and surface charge (‒0.4 ± 0.9 mV) for the SMEDDS a, b and
c (Table 2).

Table 2 Physicochemical properties of blank and BI-loaded microemulsion and encapsulation efficiency 
in SMEDDS, s-SMEDDS I and s-SMEDDS II by HPLC analysis. *drug precipitation. 

Sample 
Drug loading 
(%) 

Size (nm) PdI 
ζ–potential 
(mV) 

Encapsulation 
efficiency (%) 

SMEDDS a 0.05 18.4 ± 0.4 < 0.1 92.7 ± 0.1 
SMEDDS b 0.09 18.7 ± 0.2 < 0.1 ‒1.5 ± 1.0 92.2 ± 3.8 
SMEDDS c 0.14 19.1 ± 0.9 < 0.1 83.8 ± 0.1 
SMEDDS d 0.19 18.5  ± 0.2 < 0.1 ‒0.4 ± 0.8 * 
S-SMEDDS I 0.30 20.2 ± 0.8 < 0.2 ‒0.3 ± 0.2 90.5 ± 12 

S-SMEDDS II 0.55 20.1 ± 0.7 < 0.2 ‒2.2 ± 0.5 92.7 ± 7.3 
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The addition of Klucel™ EF as precipitation inhibitor allowed to increase 2-folds the BI loading in S-
SMEDDS I compared to conventional SMEDDS (DL from 0.14% in SMEDDS c to 0.30% in S-
SMEDDS I), without variation of the physicochemical properties (droplet size 20.2 ± 0.8 nm, PdI < 0.2, 
ζ–potential ‒0.3 ± 0.2 mV). The encapsulation efficiency was high (90.5 ± 12%) and no drug 
precipitation occurred. S-SMEDDS II allowed to further increase the drug loading up to 0.55% 
(encapsulation efficiency 92.7 ± 7.3%) while maintaining droplet size (20.1 ± 0.7 nm, PdI < 0.2) and 
surface charge (‒2.2 ± 0.5 mV, Table 2). Previous studies already demonstrated that the use of HPC in 
S-SMEDDS allowed to maintain the lipophilic drug raloxifene in a supersaturated state above its 
equilibrium level [45].  
The S-SMEDDS here developed solubilised higher BI amounts and hindered BI precipitation from 
microemulsions after dispersion in water due to the higher viscosity of the system and the creation of 
hydrogen bonds between BI and HPC (Klucel™ EF). The HPC is adsorbed and accumulated onto the 
BI crystal surface, delaying the crystallization and nucleation process that would have led to 
precipitation. 
 
IV.3.6. Stability studies in simulated gastrointestinal fluids 
In sight of their oral administration, the stability of developed formulations was evaluated in simulated 
gastric fluid (SGF) at pH 1.2 and in simulated intestinal fluid (SIF) at pH 6.8.  
Firstly, drug-loaded SMEDDS a, SMEDDS b, SMEDDS c, S-SMEDDS I and S-SMEDDS II were 
dispersed in SGF at pH 1.2 (10-fold dilution) and the physicochemical properties of the formed 
microemulsions (Fig. 4 A) and their drug encapsulation efficiency (Table S1) were studied over 3 h.  
 

 
Fig. 4 Stability studies of BI-loaded SMEDDS c, S-SMEDDS I and S-SMEDDS II microemulsions in 
A) simulated gastric fluids (SGF) and B) simulated intestinal fluids (SIF) up to 3h. Stability was 
evaluated by mean of DLS analysis.
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Upon dispersion in SGF, SMEDDS a (DL 0.05%) and SMEDDS b (DL of 0.09%) microemulsions 
maintained the physicochemical properties (size < 20 nm PdI 0.1), but their encapsulation efficiency 
decreased after 3 h (from 87.5 ± 1.9% to 64.8 ± 5.8% in SMEDDS a and from 78.2 ± 6.3% to 36.7 ± 
4.0% in SMEDDS b, Table S1). Instead, SMEDDS c (DL 0.14%) microemulsion turned yellow and 
turbid, the size and PdI increased dramatically (size > 500 nm, PdI > 0.3 in Fig. 4A). Visible BI 
precipitation was observed and only the 21.7 ± 0.1% of BI was still encapsulated in the formulation 
(Table S1). When the stability of blank SMEDDS was evaluated in SGF (10-fold dilution) no alteration 
in size and PdI were observed (size 19 nm, PdI of 0.1), sign of the excipient stability in gastric 
environment. It was concluded that the drug precipitation process from SMEDDS in SGF was drug-
concentration dependent and the maximum drug solubility in SMEDDS a, b and c microemulsions at 
acidic pH was 0.03 mg·mL‒1. 
Then, S-SMEDDS were dispersed in SGF. S-SMEDDS I (DL 0.30%) formed an emulsion with a 
yellowish reflection and a size of 80.3 ± 4.9 nm (Fig. 4A) that destabilized after 1 h (particle size above 
360 nm) leading to visible drug precipitation. S-SMEDDS II (DL 0.55%) suspension developed opacity 
immediately, particle size and PdI drastically increased (230.6 ± 79 nm, PdI 0.9), and a visible yellow 
solid crystalline precipitate of BI appeared. Upon dilution, only 21.7 ± 0.1% of BI was detected in S-
SMEDDS I, and 13.7 ± 0.1% in S-SMEDDS II (Table S1). Despite system instability, the maximum 
drug concentration in S-SMEDDS I and II microemulsions upon dilution in SGF was 0.07 mg·mL‒1, 
2.3-fold higher than the one of SMEDDS (0.03 mg·mL‒1). Thanks to the presence of Klucel™ EF (1% 
w/w), S-SMEDDS maintained the drug in a supersaturated state in simulated acidic conditions. Similar 
reduction of drug precipitation in gastric environment was observed for S-SMEDDS containing HPMC 
[23] and Eudragit® E [50].The partial precipitation in strong acidic conditions was ascribed to the BI 
ionisation (pKa 4.97, 3.99, 2.04), that hindered the association with the non-ionic excipients generating 
supersaturation at lower drug concentration. The effect of drug ionisation state on inefficient association 
with lipids leading to drug precipitation at gastric pH was previously reported for cinnarizine [17] [38] 
and haloperidol [51].
Subsequently, BI-loaded SMEDDS c, S-SMEDDS I and S-SMEDDS II were dispersed in SIF at pH 6.8 
(10-fold dilution) and the physicochemical properties of the formed microemulsions were studied by 
DLS analysis over 3 h (Fig. 4B). No alteration of particle size (< 25 nm) and PdI (< 0.2) were observed 
during the experimental period, indicative of the system stability.
The rate of precipitation and supersaturation in the stomach might affect the performance of SMEDDS 
in the intestine and reduce drug absorption [21]. With the aim of mimicking the system fate in vivo, we 
adjusted the microemulsion pH from acid to alkaline in a pH-shift study and we evaluated the ability of 
SMEDDS c, S-SMEDDS I and S-SMEDDS II to recover their physicochemical properties and avoid 
drug precipitation at intestinal pH (Fig. 5).
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Fig. 5 Physicochemical properties of BI-loaded SMEDDS c and S-SMEDDS I and II following pH 
adjustment from acid (time point 0 min) to alkaline (from time point 10 min to 360 min). 
 
Systems were firstly dispersed in SGF, where drug precipitation occurred. Afterwards, alkalinisation 
was produced by adding NaOH (time point 10 min in Fig. 5). In consequence of the pH shift the BI 
precipitate immediately re-dissolved, formulations turned clear and the physicochemical properties of 
microemulsions were re-established. Moreover, all BI was solubilized in the lipid droplets, as 
demonstrated by the high values of encapsulation efficiency (78.4 ± 1.7% in SMEDDS c, 83.4 ± 0.6% 
in S-SMEDDS I and 90.9 ± 1.0% in S-SMEDDS II at time point 10 min). SMEDDS c recovered their 
properties and remained stable up to 2h. Then, their hydrodynamic diameter progressively augmented 
and the system became highly polydispersed at 6 h (size 324 nm, PdI 0.4, Fig. 5). S-SMEDDS were 
more stable. No alteration in particle size was observed, but PdI increased at 2 h in S-SMEDDS I and at 
3 h in S-SMEDDS II, indicating the presence of aggregated particles. Even after 6 h BI was still 
encapsulated in all the systems (encapsulation efficiency of 79.80 ± 1.5% in SMEDDS c, 83.01 ± 1.6% 
in S-SMEDDS I and 91.85 ± 2.5% in S-SMEDDS II).In accordance with previous research [18], when 
the lipophilic drug was in its non-ionised form the interactions with the lipid excipients were maximized. 
At time point 3 h, S-SMEDDS I maintained 0.24 mg·mL‒1 and S-SMEDDS II 0.46 mg·mL‒1 of BI in a 
supersaturated state and ready to be absorbed. The ability of developed S-SMEDDS microemulsions to 
regain their properties and to maintain the drug in a high supersaturated state in the intestinal 
environment is a major prerequisite to enhance drug systemic absorption. 
 
IV.3.7 Cytotoxicity assessment of the SMEDDS and S-SMEDDS formulations  
The cytocompatibility of blank and drug-loaded SMEDDS and S-SMEDDS I was assessed in the human 
colon carcinoma (Caco-2) cell model after 24 h exposure via MTS cell viability assays. The minimum 
level acceptable of cell viability in cytotoxicity tests was fixed at 70% according to ISO 10993 [52]. Fig. 

https://context.reverso.net/traduzione/inglese-italiano/alkalinisation


165 

6A shows that the self-emulsifying systems did not affect the Caco-2 cell viability, whereas the free 
drug was highly toxic at all concentrations tested. Cell viability values higher than 70% were observed 
for blank SMEDDS c and S-SMEDDS I and their drug-loaded counterparts at system concentrations up 
to 1.3 mg·mL‒1. Such system concentration ensured that the Kolliphor® RH40 amount was below the 
reported limit of toxicity, since Kolliphor® RH40 in high amount was reported to damage Caco-2 cells 
by promoting oxidative stress and inhibition of the cardiac mitochondrial respiration [53]. Besides, the 
ability of SMEDDS c and S-SMEDDS I to significantly reduce the drug toxicity on intestinal cells is a 
major advantage in sight of an oral administration, as previously reported [50]. 

IV.3.8 In vitro transepithelial permeability and cellular uptake studies
Transepithelial permeability assays were performed to evaluate if the developed systems could also exert 
an effect on the epithelial permeability. Studies were carried out on Caco-2 monolayers by labelling the 
blank SMEDDS and S-SMEDDS I with the fluorescent dye DiD.
Analysis of DiD fluorescence showed that after 2h and 4h the fluorescence intensity was halved in the 
apical compartment compared to the sample fed solution at time point 0. No fluorescent signal was 
detected in the basolateral compartment. This was probably due to the high diluted conditions and 
suggested the system accumulation within or inside intestinal cells.
TEER values of the Caco-2 cell monolayers were monitored upon exposure to DiD-labelled SMEDDS, 
DiD-labelled S-SMEDDS and the corresponding control (HBSS) for up to 4 h. The results in Fig. 6B 
indicated that the TEER values of the monolayer were not modified upon incubation with the HBSS 
medium, while in the case of SMEDDS and S-SMEDDS I a decrease in the TEER of around 25% was 
observed at 2 and 4 h. Interestingly, the standard TEER values could be re-established after removal of 
the samples. In fact, the TEER values observed at 24 h were very similar to the initial ones. Taking into 
account that the SMEDDS and S-SMEDDS concentrations used in this experiment (1 mg·mL‒1) did not 
compromise the cell viability, this TEER reduction could be directly associated with the system ability 
to modify the paracellular permeability by transitory opening of the tight junctions. These results are in 
line with those obtained by Aktas et al. who proved the ability of Exendin-4 loaded SNEDDS composed 
of Cremophor® EL, Labrasol®, propylene glycole to reversibly decrease the TEER values of Caco-2 
cell monolayers and to enhance drug permeability compared to the free drug solution [54].
CLSM analysis confirmed TEER and basolateral fluorescence results. Fig. 6C shows the confocal 
micrographs of Caco-2 cells monolayer on Transwell® inserts after exposure to SMEDDS and S-
SMEDDS for 2 h and 4 h. Untreated cells in presence of HBSS were imaged as a control.
Red stained fluorescent structures consistent with DiD-labelled nanosystems was visible for all tested 
formulations at 2 h and 4 h. The red signal was not visible in the images of cell monolayers treated with 
the HBSS control.  At time point of 2 h, systems accumulated in correspondence of tight junctions. After 
4 h the distribution of the fluorescent signal was more uniform, less intense and mainly present within 
the cell membrane and nucleus. This was an sign of the possible permeation across the monolayer or 
of the partial internalization into intestinal cells. In accordance with the decrease in TEER values, a clear 
disruption of tight junctions was observed upon incubation with both SMEDDS and S-SMEDDS I 
compared to the HBSS control, as indicated by the discontinuity in cell membrane green signal. Such 
enhancement of the paracellular transport across Caco-2 cell monolayers was ascribed to the small 
droplet size of SMEDDS and S-SMEDDS and to the amphiphilic non-ionic surfactants present in the
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formulation which were previously reported to exert a membrane fluidifying effect and to transiently 
and reversibly open tight junctions [50,55–58]. Previous studies also stated that the co-solvent 
Transcutol HP can have a permeation enhancing effect [6,59].  
The ability of the developed SMEDDS and S-SMEDDS of opening tight junctions highlights their 
potential for the oral administration of hydrophobic drugs. 
 
 

 
Fig. 6. A) Viability of Caco-2 cells after incubation with blank SMEDDS, blank S-SMEDDS, drug-
loaded SMEDDS, drug-loaded S-SMEDDS, free drug solution in EtOH for 24 h. Data are shown as 
mean ± SD, n = 3. Statistical data analysis: p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***; ≥ 0.05 = not 
significant. B) TEER values of Caco-2 monolayer upon incubation with DiD-labelled SMEDDS and S-
SMEDDS (1 mg·mL‒1). C) Confocal microscope images of fixed and stained Caco-2 cell monolayers 
grown on transwell membranes for 21 days prior to 2 h and 4 h exposure to DiD-labelled SMEDDS and 
DiD-labelled S-SMEDDS I (red). Fixed cells were stained with DAPI (blue nuclei) and Phalloidin-
iFluor™ 488 Conjugate (green tight junctions). Scale bar: 30 µm. 
 
IV.3.9 Pharmacokinetic studies 
Pharmacokinetic studies were performed to evaluate the oral absorption of BI loaded SMEDDS and S-
SMEDDS following oral administration in healthy mice. BI dispersion in HPC was used as a control. 
BI blood concentration was quantified by LC-MS analysis after the development and optimization of 
plasma extraction and plotted as a function of time (Fig. 7 A and B). The pharmacokinetic parameters 
are summarized in Table 3. 
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Fig. 7 Plasma concentrations vs time profile after oral administration of A) drug dispersion in HPC and 
SMEDDS c (up to 6 h) and B) S-SMEDDS I and S-SMEDDS II (up to 24 h). 
 
Table 3 Pharmacokinetic parameters of BI following oral administration to mice. 

Sample 
BI 
administered 
dose  

Cmax Tmax AUC t ½ MRT 

  mg·kg‒1 ng·mL‒1 h ng·mL‒1·h  h h 
HPC 40 186.2 0.25 66.8 2.6 2.3 
SMEDDS c 14 7.1 1 47.6 4.9 7.8 
S-SMEDDS I 30 19.5 3 295.1 30.0 36.1 
S-SMEDDS II 55 26.5 1 171.9 8.5 12.2 

 
When BI was administered as dispersion in HPC the drug intestinal absorption was immediate, the peak 
plasma concentration was 186.2 ng·mL‒1 and occurred at 15 min (Fig. 7 A and Table 3).  
The encapsulation of BI in SMEDDSc provided lower plasma concentration as compared to HPC 
dispersion, being the Cmax below 10 ng·mL‒1 (Fig. 7 A). 
When S-SMEDDS I and II were administered, the peak plasma concentration was three times higher 
compared to SMEDDS (Fig. 7 B). Longer Tmax were observed when the drug was associated to the 
delivery systems, notably in S-SMEDDS I (1 h for SMEDDS c and S-SMEDDS II; 3 h for S-SMEDDS 
I).  The Area Under the Curve (AUC) was lower for SMEDDS (47.6 ng·mL‒1·h) than for BI dispersion 
in HPC (66.8 ng·mL‒1·h). While the AUC of S-SMEDDS I was 295.1 ng·mL‒1·h and of S-SMEDDS II 
was 171.9 ng·mL‒1·h, about 4.5-fold and 2.5-fold greater than that obtained with the reference 
formulation. 
The half-life (t ½) was longer for S-SMEDDS I, being its value 12-fold higher than for BI dispersion, 6-
fold higher than SMEDDS c and 4-fold higher than S-SMEDDS II. In line with the AUC values, the 
medium residence time (MRT) increased when the drug loaded in the delivery systems, particularly in 
the case of S-SMEDDS I (36 h).  
The variation of the dose-dependent pharmacokinetics parameters (Cmax, AUC and MRT) suggested that 
the loading in S-SMEDDS had a positive impact on the drug concentration-time profile. While the 
increase of the dose-independent pharmacokinetics parameters (Tmax, t ½) proved the ability of S-
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SMEDDS I to prolong the blood circulation time of the drug. Such behaviour was ascribed to the 
presence of HPC in s-SMEDDS I that induced and maintained the drug in a supersaturated state over 
time. S-SMEDDS too were less efficient in prolonging the drug blood circulation time. We suggested 
that the behaviour of S-SMEDDS II was related to the long emulsification time and high viscosity of S-
SMEDDS II, that prevented drug absorption. 
Conventional SMEDDS systems have been previously developed for benzimidazole derivatives such as 
albendazol, leading to a marked increase in the absorption of the drugs [13]. Albendazol was also 
formulated in supersaturated SMEDDS, containing polyethylene glycol 400 (PEG 400) as solubility 
enhancer, and a 63% improvement of its relative bioavailability was observed when orally administered 
to rabbit (10 mg·kg‒1) [11].  Compared to the latter system the S-SMEDDS here developed will enable 
the administration of a higher amount of drug (30 mg·kg‒1 in mice).  
Overall, by combining the attributes of small SMEDDS microemulsions, that have a large surface area 
for intestinal absorption, together with the supersaturable characteristics, the S-SMEDDS formulation 
approach proved to be a successful strategy for the oral delivery of lipophilic drug molecules. 
 
IV.4. Conclusions 
In the present study the oral administration of the new benzimidazole derivative anticancer agent BI was 
challenged by its formulation in supersaturable self-microemulsifying drug delivery systems (S-
SMEDDS). Firstly, SMEDDS made of Miglyol® 812, Kolliphor® RH40, Transcutol® HP and EtOH 
(or DMSO) were developed and optimized by means of a mixture design to generate microemulsions 
having a size of 19 nm, low PdI (0.1) and neutral ζ‒potential (around 1 mV) upon dispersion in water 
under mild agitation. Then, the drug payload was boosted by formulating two supersaturable systems 
(S-SMEDDS) in which 1% KlucelTM EF was added as precipitation inhibitor. For efficient drug 
dissolution, S-SMEDDS I contained 10% EtOH as co-solvent and S-SMEDDS II 5% DMSO. The 
systems physicochemical properties were not affected by the dilution rate and both SMEDDS and S-
SMEDDS showed good emulsification ability upon dispersion in water, being the time for dispersion 
faster in presence of EtOH than DMSO. When stability studies were performed in simulated 
gastrointestinal fluids, both SMEDDS and S-SMEDDS presented instability in the gastric environment 
(pH 1.2). However, S-SMEDDS recovered their physicochemical properties and avoided drug 
precipitation once moved to the intestinal basic pH, indicating their potential as oral delivery systems.  
The SMEDDS and S-SMEDDS were cytocompatible with Caco-2 cells up to 1.3 mg·mL‒1 and by 
carrying the drug in their oil core they markedly reduced its toxicity. Transport and uptake studies on 
Caco-2 cell monolayers proved the ability of SMEDDS and S-SMEDDS to increase the epithelial 
permeability by the transient opening of tight junctions without signs of cytotoxicity. The in vivo 
evaluation after oral administration to healthy mice highlighted how S-SMEDDS prolonged the drug 
plasmatic circulation time, compared to free drug and conventional SMEDDS, by maintaining the drug 
in its supersaturated state in the intestine.  
Globally in this work we demonstrated that the application of supersaturation to self-emulsifying 
systems lead to the development of improved formulations for the oral administration of other lipophilic 
BCS Class II drugs. 
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IV. Supplementary information 

 
Fig. S1 BI-loaded SMEDDS b (0.9 mg·mL‒1) microemulsion stability over time in milliQ® water at 37 
°C. 
 

 
Fig. S2 Effect of the dilution factor on SMEDDS physicochemical properties. 
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Fig. S3 Flow sweep experiments (viscosity vs. shear rate response) of SMEDDS and S-SMEDDS at 25 
°C. 
Table S1 BI-loaded SMEDDS and S-SMEDDS microemulsions stability in simulated gastric fluids 
(SGF) at time point 0 and 180 min, detected by HPLC analysis.  

Sample Drug loading (%) Time (hours) Encapsulation 
efficiency (%) 

SMEDDS a 0.05 0 87.5 ± 1.9 
  180 64.7 ± 5.8 
SMEDDS b 0.09 0 78.1 ± 6.3 
  180 36.7 ± 4.0 
SMEDDS c 0.14 0 21.7 ± 2.3 
  180 32.7 ± 2.4 
S-SMEDDS I 0.30 0 21.5 ± 0.1 
  180 18.4 ± 0.1 
S-SMEDDS II 0.55 0 13.6 ± 0.1 
  180 11.9 ± 1.2 
 
  



 

175 
 

Chapter V. General discussion 
The aim of the present research thesis has been the development of hybrid polymeric-lipid systems based 
on nanoemulsions (NEs) loaded into a chitosan sponges and supersaturable self-microemulsifying drug 
delivery systems (S-SMEDDS). Both systems were designed for improving intestinal residence time 
following oral administration and for increasing local or systemic drug absorption. 
To this aim, a first part of this work was dedicated to the formulation and the physicochemical-structural 
characterization of the nanosystems, NE and SMEDDS, and then of their hybrid polymeric counterparts, 
sponges and S-SMEDDS. A second part was focused on the evaluation in vitro and in vivo. 
 
V.1 Formulation and characterization 
In this work, two types of lipid-based formulations were developed: NE, prepared by emulsion phase 
inversion (EPI) method, were intended for an improved oral drug delivery, and SMEDDS, created by 
self-emulsification, aimed at the solubility enhancement of poorly-water soluble molecules in the 
intestinal tract (Fig. 1). 

 
Fig. 1 Comparison between the two developed nanosystems, nanoemulsions (NE) and SMEDDS, as for 
their formulation process, composition and physicochemical attributes. 
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V.1.1 Nanosystems 
NE were formulated by mean of EPI method coupled with a high energy input via a rotor-stator 
disperser. The choice of excipients was based on their common use in lipid-based formulations and their 
FDA status for the oral route. The NE core was composed of medium chain caprylic/capric triglycerides 
(MCT, Miglyol® 812) and stabilized by a mixture of non-ionic hydrophilic and hydrophobic surfactants, 
polyoxyethylene (PEG)-40 stearate (Myrj® 52, HLB 16.9) and oleoyl polyoxyl-6 glycerides (Labrafil® 
M1944CS, HLB 4). The hydrophilic PEGylated surfactant was selected because of i) the reported 
stabilizing properties, ii) the emulsification ability, iii) the related biological advantages, such as the 
neutral surface potential optimal to permeate across the intestinal mucus layer [1,2]. The hydrophobic 
surfactant was added to the formulation to strengthen the NE structure by positioning between the oil 
core and the PEGylated shell, thus conferring stability [3]. Worthy of mention is that the combination 
of these excipients in a nanometric system is for the first time described. 
NE was optimized using an experimental design in ternary and pseudo-ternary diagrams [4]. The 
selected formulation had an oil content of 7% (w/w), a surfactant to oil (SOR) ratio of 2.86 and HLB of 
13.2. NE presented a size of 100 nm, they were quite monodispersed (PdI 0.2) and neutrally charged (ζ–
potential ‒9 mV). The avoidance of organic solvents for NE formulation makes the EPI provides an 
additional benefit over other techniques for toxicity reasons [5].  
The EPI was previously used for the development of food-grade NE. By simple water addition over the 
oil phase (MCT, vitamin E acetate, Tween® 80, SOR 1) McClements research group obtained NE 
showing a size of 90 nm and low PdI (0.22) at SOR value of 1 [6].  
In the present study, the EPI alone turned out not to be the optimal method for the development of NE, 
and additional energy was needed to refine the droplet size. Possible reason was the solid nature of the 
excipient which needed to be solubilized at high temperature (80 °C) for homogeneous mixing with 
other excipients. The issue was simply overcomed by furnishing additional energy to the system via 
rotor-stator dispersers. This technique was already presented by Ragelle et al. who prepared 146 nm NE 
(PdI < 0.1), made of a MCT oil core (Miglyol® 812, Lipoid E80®) stabilised by a surfactant mixture 
(Labrasol®, Tween®), intended for fisetin delivery by water titration heated at 70 °C followed by a 
cycle of high shear mixing (UltraTurrax®, 21,500 rpm) for 10 min and an additional cycle of sonication 
for 15 min [7]; and by Rutckeviski et al. who developed bullfrog oil NE stabilized by a surfactant blend 
of Tween® 20 and Span® 80 of 410 nm (PdI 0.2) via one UltraTurrax® cicle of 10 min at 11,000 rpm 
[8]. Also the UltraTurrax® was used when formulating NE in presence of small amount of surfactants, 
as in the case of NE, composed of Eugenia brejoensis essential oil and Tween® 80 as surfactant, that 
were homogenized at 12,000 rpm for 4 min, obtaining droplets of 143 nm [9].  
Overall, the formulation process here proposed may recall the widely exploited high-pressure 
homogenization or microfluidization, in which coarse emulsions are formed and their droplets 
subsequently broken down into nanometric particles [10]. Its advantage lies i) in the production of 
droplets with high kinetic stability and ii) in the lower amount of energy and time required that makes 
it economically beneficial and environmentally sustainable [11]. 
The robustness of the formulation process was demonstrated by the efficiency in scaling up the NE 10 
times. A further scale up in light of a future industrialisation has to take account of difficulties in 
obtaining homogeneity in large volumes.  
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The use of alternative and newer formulation processes, namely the microfluidics [12], could be 
envisaged to further shape the system monodispersity or decrease the surfactant amount. 
 
Conversely, the formulation process of SMEDDS was much simpler and required the addition of water 
on the lipid phase under gentle stirring at physiological temperature (37 °C). The microemulsion droplet 
formation and physicochemical characteristics did not depend upon the formulation method but on the 
composition of the system. The range of exploitable excipient was limited and their careful selection 
was the fundamental step for optimal SMEDDS development. A literature search was performed to 
identify the components that were exploitable for the design of a self-emulsifying formulation [13,14], 
then oil, surfactant and co-solvents were selected on the base of their solubilisation capacity for the drug. 
The optimal system in terms of physicochemical attributes (size < 20 nm, PdI < 0.1) was chosen after 
thorough optimisation using a mixture design. Recently, Nottingham et al. exploited this methodology 
to optimize SNEDDS particle size, drug content and drug release [15].  
The final system was composed of 10% (w/w) oil (MCT, Miglyol® 812), 70% (w/w) surfactant 
(Polyoxyl 40 hydrogenated castor oil, Kolliphor® RH40) and 20% (w/w) co-solvents (diethylene glycol 
monoethyl ether Transcutol® HP and ethanol or DMSO). The surfactant to oil (SOR) ratio was 7 and 
the HLB 12.2.  
SMEDDS had a 2.6-fold lower oil content than NE. This is typical of LFCS class IIIB systems 
(microemulsions). The choice of designing a SMEDDS system with a low oil content was driven by the 
low solubility of the concerned drug in oils and by its high solubility in compounds possessing high 
content of ethylene oxide moieties (PEG40) and high HLB values, such as Kolliphor® RH40. Besides, 
the feasibility of loading the drug in NE was assessed prior to the creation of the SMEDDS system with 
poor results (i.e. complete drug precipitation within 24 h from NE at drug loading of 1 mg·mL‒1, results 
not reported). 
Upon water addition under gentle agitation the optimized SMEDDS led to the formation of 
microemulsions droplets of 18.52 ± 0.02 nm, low PdI and neutral surface charge (‒1.03 ± 0.82 mV). 
The self-emulsification occurred in 68 s due to the fast water penetration in the shell of surfactant and 
co-solvents surrounding the oil droplets [16].  
The system was highly stable upon dilution due to the high amount of surfactant Kolliphor® RH40, 
which never fell below the critical micelle concentration (CMC of Kolliphor® RH40: 0.03% w/w at 37 
°C, as reported by the technical specifications [17]) even in the highest diluted conditions (100-fold). 
The selected excipients Miglyol® 812, Kolliphor® RH40, Transcutol® HP and EtOH (or DMSO) were 
already used in self-emulsifying formulations in previous works [18–20]. However, their efficient 
combination as SMEDDS was reported for the first time in this study. 
Co-solvents EtOH or DMSO were used as vehicle for the drug in order to facilitate its homogeneous 
dispersion in the mixture. In accordance with previous studies reporting their use in SEDDS, their 
content was kept at values lower than the reported limit of toxicity for the oral route, ensuring the safety 
of the developed formulation [18,21–24]. 
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V.1.2 Conversion of the nanoemulsions in solid dosage forms
Further step in the formulation process of the nanosystems was the conversion of NEs in solid dosage 
forms using both freeze- and spray-drying. The purpose was to increase the NE storage stability, and to 
test the process feasibility in sight of the NE loading in the dry nanocomposite sponge.
Both freeze-drying and spray-drying were efficient in the conversion of NE into a dry powder and they 
allowed to preserve NE physicochemical and structural properties, but the freeze-drying turned out to 
be the preferred technique (Fig. 6 Chapter II).
Previous research compared freeze- and spray-drying for the solidification of NE, concluding that the 
spray-drying should be the technique of choice. Their criteria of selection were the dry samples quality, 
stability and morphology and the maintainance of the nanoparticle physicochemical properties upon 
reconstitution on water [25–27] (Table 2 in section I.4.3 introduction). In the present work, NE were 
spray-dried in presence of maltodextrin (MD) as drying excipients. A NE:MD ratio of 0.5, 
corresponding to a NE concentration of 5% (w/v) and MD of 10% (w/v), guaranteed the obtainment of 
dry powders showing all the required characteristics in terms of visual aspect, physicochemical 
properties, yield and morphological characteristics. These results are in accordance with previous studies 
on the drying of NE using MD that showed an increase in the NE size when using a low excipient 
amount (i.e. MD at 3% [28]) or when no drying agents were used [27] (Table 2 in section I.4.3 
introduction). While it was proved that the physicochemical properties of nanosystems were completely 
preserved when the excipient were added in a large excess (23.9% w/w of a 70:30 lactose: sucrose 
mixture [29] and 57.7% w/w of lactose [30]).
Freeze-drying of NE was performed in presence of trehalose (TR) as cryoprotectant. We could conclude 
that i) NE complied with all freeze dried requirements when the NE amount was high and the 
cryoprotectant amount was low (NE 13.5% TR 2.5% at NE: TR ratio of 5:1); ii) an excessive dilution 
of the nanosystem (NE < 5% w/v) resulted in poor drying performance in terms of cake appearance and 
NE physicochemical properties after reconstitution; iii) the method of cryoprotectant addition should be 
considered as relevant as the freezing and drying steps: the cryoprotectant should be added in the 
colloidal suspension as a solution rather than a powder since its direct addition as powder can lead to 
partial droplet destabilisation (higher size and PdI); iv) the freeze-drying in absence of cryoprotectant 
was feasible: despite the long reconstitution time, NE showed an acceptable increase in size (of 70 nm) 
and PdI (from 0.2 to 0.3).
Commonly, when freeze-drying NE, the tendency is to use a high cryoprotectant amount and low NE 
amount to ensure an efficient protection of the nanosystem from the freezing and drying stresses [31-
34] (Table 2 in section I.4.3 introduction), not always resulting in an optimal drying performance. 
Moreover, high cryoprotectant incorporation also lead to higher residual moisture content due to 
unfrozen water remaining trapped in the sugar matrix during the sublimation step [35].
The NE conversion in a solid dosage form also challenges the current research on the spray- and freeze- 
drying of other lipid-based systems than NE. The spray-drying procedure here presented allowed the
obtainment of higher process yield (90%) compared to previous research on lipid-core nanocapsules
(1% w/v) spray-dried in presence of lactose (10% w/v) (yields between 30% and 40%) [36], and
nanocapsules (1% w/v) spray-dried in presence of MD (10% w/v) (yield 66.9%) [37]. As for freeze-
drying, Morais et al. achieved the task of freeze-drying microemulsions using maltose at 5% (w/w), with
a reduction in the droplet size (from 54 to 32 nm) and no changes in the content of the loaded drug
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Amphotericin B [38]. Instead, the lyophilisation of other lipid-based systems such as LNC is still 
demanding a thorough investigation of the formulation and the process conditions in order to ensure the 
long-term stability of these systems. Briot et al. reported an attempt to freeze-dry LNC loaded with 
decitabine in presence of 40% w/w sucrose solution added in a 1:1 v/v ratio. Their protocol allowed for 
the maintenance of the nanoparticle physicochemical characteristics, however the residual moisture was 
high (25% of the initial quantity) and the drug payload was drastically decreased of 9-fold indicating 
that this method could not be selected to stabilize the formulation [39]. 
The findings of the drying study here reported can be helpful for the future design of dry lipid-based 
systems. 
 
V.1.3 Polymer hybrid nanosystems: nanocomposite sponges and S-SMEDDS 
In order to improve the pharmaceutical performance of the developed nanocarriers, matrix structured 
hybrid systems (polymeric nanocomposite sponges) and self-emulsifying polymer hybrid systems were 
formulated. The two hybrids differed for structural and functional properties (Fig.2). 
 

 
Fig. 2 Comparison between the two developed hybrid nanosystems, nanocomposite sponges and 
supersaturable SMEDDS, as for their formulation process, composition, physicochemical and structural 
attributes. 
 
Nanocomposites consisted in NE embedded in the matrix of a chitosan (CH) sponge. 
Unlike S-SMEDDS in which the polymer is in simple dispersion, in the nanocomposite the polymer 
creates a matrix in which the NE is embedded. This matrix protects the nanosystem from the external 
environment, stabilizes it and modulates its release and interactions with the environment. 
A point in common with the S-SMEDDS is that both systems were created to be activated in situ: the 
S-SMEDDS via the generation of microemulsions starting from the polymer-lipid mixture and the 
sponges via rehydration once in contact with intestinal fluids.  

https://context.reverso.net/traduzione/inglese-italiano/functional+properties
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Chitosan (CH, 550 kg·mol‒1 MW, 4% DA) was selected as polymer to create the nanocomposite matrix. 
CH has been widely exploited in nanocomposites [40–49] because of its favourable properties including 
biocompatibility, biodegradability, antibacterial and biological activity [50,51]. Besides, several studies 
proved its superiority as mucoadhesive cationic polymer owing to its ability to develop molecular 
attraction forces by electrostatic interactions with the negative charges of intestinal mucin depending on 
the environmental pH [52–54]. A key limitation in the use of CH is its low mechanical strength, its 
tendency to dissolve at pH lower than its pKa (6.2) and its difficulty to promote a sustained release 
[55,56]. We overcame these shortcomings by producing nanocomposite CH sponges via freeze-drying.  
NE were loaded in sponges by mixing of the NE colloidal suspension with the chitosan solution prior to 
the creation of the final system (Fig. 2 Chapter III). This method of nanoparticle addition was also used 
by Laroui et al. to produce chitosan-alginate hydrogels containing tripeptide Lys-Pro-Val (KPV)-loaded 
NPs [49] and by Javanbakht et al. to produce chitosan beads containing graphene quantum dot 
nanoparticles [44]. A different procedure was used by Cui et al. who loaded freeze-dried nanoparticles 
into pre-formed chitosan-ethylenediaminetetraacetic acid (EDTA) hydrogels and subsequently 
converted them into films [43]. However, most studies reported that the nanoparticle mixing with the 
polymer precursor rather than its loading in preformed polymeric network is preferable since it allows 
for a more homogenous dispersion of NP in the polymeric matrix [57]. 
The presence of the NE conferred stiffness and reinforced the structure of sponges. The porous structure 
was primarily defined by the morphology of the growing solvent crystals, and secondarily by the ability 
of the particles and CH chains to pack between the crystals. NE could interact with the CH polymer 
chains via hydrogen bonding but also via hydrophobic interactions, being the nature of the CH used (4% 
DA in the neutralized state) hydrophobic [58]. Consequently, part of the NE was present on the bulk of 
the membranes constituting the pores of the sponges, and part of the NE was located at the sponge 
surface (Fig. 3. Chapter III). Following rehydration, the presence of the NE hindered the conversion of 
the dry sponge in a gel-like structure (pH > 6.5) or its dissolution (pH < 6.5) and preserved its solid state 
as wet sponge in the whole intestinal pH range (from 5 to 7.5), while ensuring water absorption capacity 
(Fig. 5 Chapter III). 
The evaluation of the physicochemical properties of NE after sponge rehydration (increase in NE size 
of around 20 nm, unvaried PdI and shift towards neutral values of surface charge) pointed out that the 
CH polymer acted as drying excipient protecting the NE against the drying stress. In fact, the reported 
increase in particle size was comparable to the one observed for the NE dried in presence of trehalose 
(NE13.5%-TR2.5%) and lower than the one of NE freeze-dried alone (NE27%). 
The production of a dry macro-structure in a single step by freeze-casting was already reported for 
chitosan alone [59] and for nanocomposite aimed at tissue engineering purposes [60] or at buccal and 
vaginal delivery [61,62]. Only few examples of the application of the freeze-drying technique to 
intestinal nanocomposites can be found, where the freeze-drying was merely used for the conversion of 
the nanocomposite in a dry form (dry hydrogel or dry microsphere), but not as formulation process per 
se. Casadei et al. designed a nanocomposite through the freeze-drying of a dextran methacrylate 
hydrogel prepared by UV irradiation and loaded with SLN. The system was dried in absence of 
cryoprotectants exploiting the dextran methacrylate matrix for SLN stabilisation purposes. Upon 
rehydration the system recovered its gel-like characteristics and allowed for a sustained release [63]. 
Also microspheres of mPEG-b-PLLA (biodegradable methoxy poly(ethylene glycol)-block-poly(L-

https://www-sciencedirect-com.docelec.univ-lyon1.fr/science/article/pii/S0141813018340728?via%3Dihub#!
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lactide) embedded with nanoparticles for insulin oral delivery were produced by means of a double 
emulsification process followed by lyophilisation. The rehydrated matrix maintained its structure in the 
gastric acidic pH, while decomposing at intestinal pH ensuring for a targeted delivery [64].  
Lastly, the interest in the use of the freeze-casting arises from the possibility of modulating the system 
properties not only by varying the system composition but also by varying the process parameters. In 
this study we used a freeze-casting process to produce sponges with a cellular structure. It would be 
interesting to vary the drying parameters, such as the freezing temperature and the freezing rate in order 
to modulate the size of the ice crystals and consequently the size of the resulting pores [65]. Additionally, 
the direction of the solidification front could be varied during the freezing step to create systems with a 
lamellar or columnar pore structure [66], and compare the impact of in terms of rehydration 
performance, drug release and efficacy in vivo. 

The other type of developed hybrid nanosystem was self-emulsifying polymer hybrid systems, which 
consisted in SMEDDS combined with the polymeric precipitator inhibitor HPC. These supersaturable-
SMEDDS (S-SMEDDS) are a mixture of polymer and lipid excipients. Upon dispersion in aqueous 
medium, the lipid excipients create microemulsions, while the polymers prevent drug precipitation by 
maintaining the drug in a supersaturated state above the equilibrium solubility. Most of the studies on 
supersaturable systems exploit PIs that are insoluble in the lipid excipients and once in the GI tract got 
dispersed in the aqueous phase or positioned themselves at the interface of the lipid droplets maintaining 
the drug in a supersaturated state. Examples are HPMC [67–70], Poloxamer 407 [20,71,72] and 
Soluplus® [18,73,74]. They supposedly act by creating H-bonds and hydrophobic interactions with the 
drug or by absorbing the drug crystals thanks to their rigidity and high molecular weight [13]. Also HPC 
has been proved an effective lipid-insoluble PIs with respect to the kinetic stabilization of 
supersaturation thanks to the formation of H-bonds with the drug and to the decrease in drug crystal 
diffusion due to an increase in the system viscosity [75]. In the present study, HPC mechanism of drug 
precipitation inhibition was ascribed to the enhancement in system viscosity and to interactions between 
polymer and drug molecules.  
In the design of S-SMEDDS, three are the main objectives: (i) to achieve maximal drug loading, (ii) to 
shorten the system self-emulsification time, and (iii) to minimize drug degradation under in vivo 
physiological conditions.  
Two different S-SMEDDS were prepared: S-SMEDDS I containing 10% EtOH and 1% HPC and S-
SMEDDS II containing 5% DMSO and 1% HPC (% w/w). The drug loading performance of 
conventional SMEDDS was enhanced 2-fold through S-SMEDDS I and of 4-fold through S-SMEDDS 
II. However, the self-microemulsification time of S-SMEDDS II was longer (> 8 min) than in S-
SMEDDS I (2 min) because of the too high viscosity of the system that delayed the components 
homogenous mixing and the water penetration in the shell of surfactant and co-solvents surrounding the 
oil droplets. Thus, S-SMEDDS I was the system of choice from a technological point of view. 
The amount of precipitator inhibitor added was lower than previously reported in the literature. Lee et 
al. designed S-SMEDDS, composed of a surfactant mixture of Capryol™ 90 and Labrasol® and of PEG 
200 as co-solvent, complemented with 5% of the precipitator inhibitor HPC-L [75]. The S-SNEDDS 
prepared by Singh, containing a propylene glycol non-ionic lipophilic surfactant (Lauroglycol® FCC) 
and an ethoxylated co-solvent (Transcutol® P) contained 5% of HPMC as precipitator inhibitor [67]. 
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While an even higher content of precipitator inhibitor was used by Bannow et al., who supplemented 
the conventional SNEDDS, made of a MCT oil core (Capmul® MCM) stabilized by surfactants 
(Captex® 300 Kolliphor® RH40) with 20% w/w PVP/VA 64 to create S-SNEDDS [76]. The addition 
of PI in such high amount can cause variations in the nanodroplet physicochemical properties that can 
jeopardise the system performance. In HPMC S-SNEDDS [67] the size increased from 57 nm to 213 
nm showing three distinctive particle measurements in the DLS analysis and a high PdI value of 0.47, 
thereby indicating a heterogeneous dispersion. Instead, Quan et al. succeeded in designing S-SEDDS 
containing 15% of the precipitation inhibitor polyvinyl caprolactam–polyvinyl acetate–polyethylene 
glycol graft copolymer (Soluplus®) without significant alteration of the droplet size and PdI, which 
suggest the well-retained self-emulsifying ability. The slight increase in the mean droplet size compared 
to conventional SEDDS (from 125 nm to 132 nm) was attributed to the absorption of Soluplus® on the 
particle surfaces and the enhanced steric stabilization generated by the strongly hydrated polymer chain 
[18]. These observations suggest that we might try to use another precipitator inhibitor, such as HPMC, 
Soluplus® or Poloxamer, in view of maximizing its amount and consequently decreasing the amount of 
surfactant (Kolliphor® RH40), though bearing in mind that the system physicochemical properties must 
not be compromised.  
Furthermore, the developed S-SMEDDS can be converted in solid dosage forms with a view to further 
improve their storage stability. Among all the exploitable methods presented in section I.5.2 of the 
manuscript introduction, spray-drying and freeze-drying look valuable approaches. As a first trial the 
protocols developed for the NE could be applied to S-SMEDDS. Alternatively, S-SMEDDS could be 
embedded in polymers such as chitosan to generate sponges combining the advantages of a dry form 
with the ones of a matrix for a sustained release, enhanced mucoadhesion and improved stabilisation of 
supersaturation. 

V.1.4 Highlights on the nanoemulsion structure
Part of this PhD work was devoted to the structural characterization of the NE, with an in-depth focus 
on the NE shell nature (Fig. 3).
The NE shell was crystalline when the NE dry and amorphous when in colloidal suspension, supposedly 
because of the formation of a bulky amorphous PEG-water complex in colloidal NE suspension that 
decreased the packing density of the surfactant to such an extent that the Myrj® 52 surfactant stearic 
chains were no longer crystalline (Fig. 8 Chapter II).
The fluid nature of the NE shell can be ascribed to the low surfactant packing density in the shell, since 
the bulky head group of the PEGylated surfactant weakened the hydrophobic interactions between 
surfactant tails, thus constraining alkyl chains in a disordered configuration to fill the space between 
PEG moieties. Besides, the hydrophobic surfactant by intercalating the hydrophilic one can further 
reduce the packing density of PEG chains (Fig. 9 Chapter II).
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Fig. 3 Characteristics of the NE shell. 
 
These observations are in accordance with studies performed on liposomes showing that liposomes are 
fluid when composed of large head group excipients such as phosphatidylcholine and rigid when 
composed of small ones such as phosphatidic acid [77,78]. Dora et al. reported that the addition of PEG 
660-stearate (Solutol® HS15) to hydrogenated soybean lecithin with 70% phosphatidylcholine 
(Lipoid® S75-3N) in the formulation of nanosized emulsions increased the flexibility of the shell layer 
because of the prevention of a close packing of the molecules at the interface. Whereas the shell was 
rigid when the Lipoid® S75-3N was used as the sole surfactant [79]. 
The analysis here presented can be useful to provide a proof of concept of the structural differences 
between NE and other lipid based systems and shear more light on their complexity. Up to date the 
rigidity of a system has been stated based on observations regarding components amount, properties and 
physic state and on the exploited formulation method. LNC are thought to possess a rigid shell because 
of the surfactant used, which have a melting point higher than the storage temperature, because of the 
high density of PEG chains (> 10% versus < 10% in NE) and because of the overconcentration of 
surfactant on the particle surface thanks to the temperature cycles performed while formulating by PIT 
method [80]. While the rigidity of NLC, modified matrix SLN and mRNA-LNP has been related to the 
presence of PEG as the outmost particle coating [81–83]. 
A more rational approach for the characterisation of their fluid or rigid nature is therefore needed. 
The use of the polarity sensitive Dioll is a novelty in nanotechnology. Dioll (patent EPO19306175.1–
1118) is a newly synthetized derivative of the fluorophore Laurdan (6-dodecanoyl-2-
dimethylaminonaphthalene). It was selected for this study because of its enhanced polarity that allowed 
better insertion in the NE shell compared to Laurdan. Up to date Laurdan and its derivatives were only 
used for the assessment of liposomes rigidity and the study of biological membranes [84,85]. 
The exploitation of this technique in association with conventional ones, namely small-angle X-ray 
scattering (SAXS) [86], 1H nuclear magnetic resonance (NMR) spectroscopy [87], and 1,6-di-phenyl-
1,3,5-hexatrien (DPH) fluorescence anisotropy [88] can provide useful information on the structural 
properties of lipid-based nanosystem over a broad range of conditions. 
NE developed in this study are intended to deliver hydrophobic drugs. The presence of an amorphous 
oil core in NE state is highly beneficial to maximise the drug loading since an amorphous state facilitate 
the incorporation of the drug [89,90]. Moreover, the preservation of the amorphous state also when the 
NE in its dry state ensure the maintenance of a high drug encapsulation efficiency [86].  
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The nature of the shell plays a primary role on drug release. A sustained release of the loaded 
hydrophobic drug is ensured by the PEG-water complex in the shell which increases the hydrophilic 
character of the outer NE layer and slows down the drug diffusion through the PEG corona [86]. 
The crystallinity of the NE shell may underlie the NE aptness to freeze-drying. The crystallisation of the 
PEGylated Myrj® 52 surfactant upon water sublimation might strengthen the shell ensuring system 
stability during all drying steps. This is consistent with previous finding on nanocapsules in which the 
system aptness to freeze-drying was ascribed to crystallization of lecithin upon drying [91].  
The crystallinity of the shell when the NE in its dry form further contribute to enhance the system 
stability upon storage since a particle crystalline state is more stable than an amorphous one [92]. 
Lastly, the fluid nature of the NE shell might impact the NE biological performance and in particular its 
cellular internalisation pathway. We will make a point on this biological aspect in section V.2.6. 

V.2 In vitro and in vivo evaluation
In vitro and in vivo studies aimed at assessing the biological attributes of the developed formulations. 
Firstly, we evaluated the potential of NE, SMEDDS and S-SMEDDS systems to maintain a good 
stability in simulated gastric and intestinal fluids. In vitro release studies in simulated GI media aimed 
ad evaluating the ability of the NE to control the release of the loaded drug were carried out. 
Secondly, we examined the cytocompatibility of the NE and of SMEDDS and S-SMEDDS on intestinal 
cell models (Caco-2 and HCT 116). Then, we studied the mucopenetrating properties of the NE and the 
efficiency of the mucoadhesive chitosan sponge to increase the NE intestinal residence time after oral 
administration to mice. Lastly, SMEDDS and S-SMEDDS were evaluated as for their cellular 
permeability across Caco-2 monolayers and for their ability to increase drug bioavailability in vivo in 
healthy mice.

V.2.1 Considerations on stability in simulated gastrointestinal fluids
In view of their oral administration the stability of developed systems was evaluated in simulated gastric 
fluid (SGF) at pH 1.2 and simulated intestinal fluid (SIF) at pH 6.8, without enzymes, at 37 °C.
In the case of the NE, the stability was mirrored by the capacity of the drug-loaded delivery system 
(tacrolimus-loaded NE) to maintain its initial size and PdI in both SGF up to 3h and SIF up to 6h without 
showing drug leakage.
Instead, in the case of SMEDDS, the stability assessment implied the ability of the formulation to self-
emulsify in the gastrointestinal environment and to keep the drug in a solubilized state (SMEDDS) or 
supersaturated state (S-SMEDDS). BI precipitate in acidic SGF from both SMEDDS and S-SMEDDS 
probably due to the drug ionized state that hampered hydrophobic and H-bond interactions with the non-
ionic excipients. The precipitation was partially reduced by S-SMEDDS because of the ability of HPC 
to interact with the drug and maintain it in a supersaturated state (Fig. 4 Chapter IV).
Both SMEDDS and S-SMEDDS II were stable in the SIF alkaline pH, where the drug interactions with 
the system excipients were favoured thanks to the drug non-ionised form. Noteworthy, when the pH was 
shifted from acidic to alkaline values, with a view to mimic the pH variations in the GI tract, systems 
reclaimed their properties and all the drug re-dissolved in the oil droplets, being S-SMEDDS I the most 
stable (Fig. 5 Chapter IV). The avoidance of system instability while transiting in the stomach is for 
formulation scientist a primary concern. In the case of a neutrally charged drug, such as curcumin, the
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prevention of precipitation in SGF was easily achieved thanks to the addition of a small amount of 
Eudragit® E PO (5% w/w) as a precipitation inhibitor in S-SMEDDS. The hydrogen bonding between 
the carbonyl group of the Eudragit® E PO polymer and the hydroxyl (OH) group of curcumin facilitated 
the drug-polymer interaction independently from the acidic pH environment [93]. 
In the aim of stabilize the SMEDDS suspension in SGF, Lee et al. proposed pH-modified S-SMEDDS 
incorporating a precipitation inhibitor (HPC-L) and an acidifier (phosphoric acid) to increase the 
solubility of raloxifene hydrochloride. This system, showing a pH of 2.5, improved the dissolution of 
the drug when in SGF at pH 1.2 (> 80%) compared to non-pH-modified S-SMEDDS, indicating that the 
drug precipitation can be limited by modulating the pH of S-SMEDDS [75]. Further studies reported 
the efficient inhibition of precipitation of indomethacin, a weak acid lipophilic drug, in SGF by 
supplementing SEDDS with Vitamin E TPGS (20% w/w), thanks to the creation of hydrogen bonding 
with the drug. By using Raman spectroscopy, the authors were able to correlate the structure and 
physicochemical properties of the drugs and surfactants to their ability to prevent drug precipitation, 
suggesting the importance that the careful selection of system components can have on the overall 
performance [94]. In a similar research on SMEDDS loaded with the lipophilic drug itraconazole, the 
authors observed that the surfactants (2.5%) ability to stabilize the drug supersaturation in acidic 
medium was limited to a rather short time period (5 min in case of Tween® 20 and Kolliphor® RH40, 
40 min in case of Vitamin E TPGS). Whereas, a non-polymeric precipitator inhibitor like hydrophilic 
cyclodextrins was much more effective. This finding opens the way for the possible exploitation of 
precipitator inhibitors other than the polymeric ones [95]. 
Alternatively, system disturbance and drug low solubilisation in gastric environment were avoided by 
filling SEDDS in enteric coated capsules. Al-Nimry et al. proved that the capsule protected the solid-
SNEDDS at pH 1.2, while complete omeprazole solubilisation was achieved after capsule dissolution at 
intestinal basic pH of 7.4 [96]. We suggest to exploit this easy, technically and economically favourable 
approach which consists in the loading in enteric capsules also for the developed S-SMEDDS (Fig.4).  
SMEDDS can be solidified prior to filling [97] or newer technologies such as the enteric coated softgels 
(https://consumerhealth.catalent.com/over-the-counter/softgel/enteric-coated-softgels/) or the liquid-
filled hard capsules (LFHCs) composed of a hydroxypropyl methylcellulose (HPMC) shell 
(https://www.capsugel.com/service-suites/hpmc-gelatin-and-alternate-polymer-capsules) can be used to 
fill the liquid S-SMEDDS. The HPMC coating will ensure protection in the stomach environment and 
release at pH higher than 6.8.  

 
Fig. 4 Suggestion of the loading of nanoemulsion (NE), nanocomposite sponge and S-SMEDDS in 
enteric capsules.

https://consumerhealth.catalent.com/over-the-counter/softgel/enteric-coated-softgels/
https://www.capsugel.com/service-suites/hpmc-gelatin-and-alternate-polymer-capsules
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In addition, enteric capsules could be exploited for the delivery of the developed NE dried powders and 
nanocomposite sponges. In order to achieve a targeted small intestinal or colonic delivery the avoidance 
of system instability or degradation in the stomach is essential. Examples of nanocomposites stabilized 
by a gastro-resistant protection have been mentioned in Table 5 and 6, section I.6.1 of the introduction. 
Santos et al. research group designed enteric nanocomposite microspheres by loading chitosan-coated 
liposomes in an hydroxypropyl methylcellulose acetate succinate matrix. The polymer conferred total 
protection from the harsh gastric conditions, then its dissolution at pH higher than 6.8 allowed for system 
activation specifically in the intestine [98]. Similarly, sodium dodecyl sulphate modified-metal-organic 
framework nanoparticles (Ins@MIL100/SDS) were embedded in microsphere composed of the enteric 
methoxy poly(ethylene glycol)-block-poly(L-lactide) (mPEG-b-PLLA) polymer that protect them from 
rapid degradation under acidic conditions in the stomach allowing for specific nanoparticle delivery in 
the intestine at pH higher than 6.8 [64]. While, Nanoparticle-in-Microparticle Delivery System 
(NiMDS) designed to exert a mucoadhesion activity in the intestine were filled in enteric capsules prior 
to oral administration to dogs. The strategy allowed to avoid the impairment of the NiMDS integrity and 
to prevent the release of the encapsulated drug in the stomach leading to high system effectiveness in 
vivo [41]. Also other nanocomposite systems would benefit from a delivery via enteric capsules. 
Antisense oligonucleotide (ASO)-chitosan nanoparticles were embedded in a chitosan-phytic acid 
matrix shaped as microparticles that were subsequently coated with phytic acid protective shell creating 
multicompartimental capsules.  The double chitosan and phytic acid layers protected the encapsulated 
ASO from nuclease digestion and acidic environment, but a burst release (between 25% and 50% 
depending on the capsule size) of ASO occurred upon incubation in SGF over 2h. Despite this partial 
premature release of the cargo as assessed in vitro, the multicompartimental capsules were efficient to 
deliver high amount of ODN to the small intestine or the colon of rats in vivo [40]. A gastro-resistant 
coating would further ameliorate the system performance. 
As regards the present work, the use of enteric capsules will be favourable to protect the system and to 
avoid any premature release of the NE from the sponge and/or of the drug from the NE in the stomach, 
while guaranteeing complete system efficiency at its intestinal site of action.  

V.2.2 Insights into release mechanisms
The determination of drug release in vitro is important for the characterization of the dosage form 
performance. The experimental conditions, such as pH, temperature, medium volume, sample volume 
and time points, are usually defined and kept constant. However, the lack of a standardized method 
makes the results be highly subjective.
Two types of release were described in this work: the release of the model hydrophobic drug tacrolimus 
from NE, and the release of NE from the sponge matrix.
The release study of the drug from NE was performed under sink conditions, in both SGF (pH 1.2) and 
FaSSIF-V2 (pH 6.5). The sustained release of tacrolimus from NE was correlated to the high affinity of 
the drug with the oil core of NE, which resulted from the high hydrophobicity of tacrolimus (Fig. 4 
Chapter II). We suggested that the release occurred by a simple diffusion process of the drug to the 
surface of the oily droplets [99].
The release study of NE from sponges was carried out in PBS or FaSSIF-V2 at pH 5, 5.5 and 7.5 under 
non-sink conditions. The aim was to better mimic the physiological intestinal environment and to avoid
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the premature release of the dye loaded in the NE core (curcumin or nile red were loaded in NE for the 
HPLC or UV quantification of the NE release) thus seeking to evaluate the behaviour of the nanosystem 
per se. 
The release of NE from sponges was affected by the type of medium and by the sponge composition 
(ratio NE/CH) (Fig. 7 Chapter III). 
The slower release in simulated intestinal media (FaSSIF-V2) compared to PBS might have been caused 
by the hydrophobic and electrostatic interactions of FaSSIF-V2 components (sodium taurocholate and 
lecithin) with the sponge structure that generated a more lipophilic environment from which NE release 
was less favoured [100,101]. 
The variation of the NE/CH ratio led to three different types of release mechanisms: desorption, 
diffusion and dissolution (Fig. 5).  

Fig. 5 Summary of the mechanisms of NE release from the nanocomposite sponges of different 
composition, expressed as NE/CH ratio (CH-NE A: NE/CH ratio 25, CH-NE C: NE/CH ratio 10, CH-
NE B: NE/CH ratio 2.5). 

At high NE/CH mass ratio of 25 (CH-NE A) the release mainly occurred by desorption of the NE 
associated to the sponge surface and it was burst, because of the excess of NE present. At intermediate 
NE/CH ratio of 10 (CH-NE C) the release was sustained and due to diffusion of the NE through the 
sponge 3D network. Complete release (100%) occurred by dissolution of the sponge matrix at pH 5 in 
the case of sponges at low CH amount and different crystalline structure governed by the ratio NE/CH 
(CH-NE A), as from [58]. CH-NE sponges B and C were not affected by the acidic pH of 5, making us 
suppose that 100% of release would be achieved only after sponge enzymatic degradation [102]. 
Overall, the CH-NE C sponge (NE/CH ratio of 10) was the system of choice from a technological point 
of view, because it provided a sustained NE release and was stable in the whole intestinal pH range, 
properties that are hardly found in CH-based materials because of their pH-dependent strength [55,56]. 
Several strategies have been reported in the literature to tune the release of nanosystems from their 
nanocomposites.  A mechanism of release similar to the one of the sponges here presented was provided 
by the micelle-loaded chitosan-carballylic acid hydrogels for colonic resveratrol delivery designed by 
Iglesias et al. Their results proved that only a 40% of active was released by desorption or diffusion after 
48h incubation in simulated colonic medium suggesting that a complete release can be provided through 
the selective chitosan degradation by the colon microflora [47].  
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Bhavsar et al. designed nanocomposite microspheres composed of a PCL matrix in which gelatin 
nanoparticles containing plasmid DNA were embedded. The release mechanism was based on a 
chemically-driven erosion pattern. Once in the intestine the lipases degraded the PCL matrix of the 
microsphere and then the proteases digested the gelatin nanoparticles causing their degradation and the 
release of plasmid DNA resulting in complete drug release in 5 h [102]. A drawback of the strategy 
above mentioned could be the long latency of release onset due to interpersonal variability in enzyme 
expression. A system which exploit several release mechanisms as the sponge here developed could 
offer better performance.  
Other nanocomposites were designed to release the nanoparticle and their loaded active by mean of pH-
triggered dissolution mechanism. It is the case of NE-loaded microgels of alginate and carrageenan 
whose matrix is intended to prevent lipid digestion in the stomach and to subsequently dissolve at 
intestinal pH releasing the NE [103].  
The release can also be modulated via a swelling mechanism. Alginate hydrogels were designed to 
specifically swell at pH 7.4 in the intestine and release the loaded NE, but to stay intact at pH 1.2 or 2.5 
in the stomach ensuring NE protection. 80% released was observed within 30 min at pH due to the quick 
swelling and breakdown of hydrogels [104]. The advantage of our system compared to the latteris the 
possibility of a higher control of the NE release over time. In fact, the latter two types of system will act 
merely as delivery platform for the NE without providing the additional advantage of prolonging the 
NE resistance time at the site of action. 
For a better understanding of NE release dynamics, the effective diffusion coefficients of NE droplets 
inside different sponges should be estimated by modelling their diffusion process. We are currently 
developing a mathematical model based on the monodimensional unsteady Fick’s second law of 
diffusion, with appropriate initial and boundary conditions, to fit the experimental release data 
[105,106].  
The aim of our study was the evaluation of the release of the nanosystem, as done also by [43,107]. 
The majority of studies in the literature report the release of the drug from the nanocomposite rather 
than of the nanosystem [41,42,45,98,108–113]. We believe that these approaches should complement 
each other. In the future, the release kinetics of a model drug (previously loaded in the NE) from the 
nanocomposite sponges will be assessed to take a wider view of the whole release process in sight of a 
therapeutic application.  
As regards the developed SMEDDS, the drug release behaviour was not evaluated. The study of the 
release from SEDDS is particularly troublesome since the process is much more controlled by external 
factors than by the formulation per se, as opposed to all other delivery devices. Several causes can affect 
the release, such as the time needed by the system to self-emulsify, the tendency of the drug to precipitate 
in the medium, the drug absorption rate from the intestinal mucosal layer or the changes in system 
composition over time due to the release of surfactants and solvents as well as due to the digestion of 
lipids by lipases [99]. In light of the system characteristics it can be inferred that the release would be 
based on a simple diffusion process. Furthermore, a more sustained release can be expected from the S-
SMEDDS compared to SMEDDS because of the incorporation of the polymeric PI that could provide 
polymer-drug interactions.
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V.2.3 Evaluation of the cytocompatibility of the developed formulations 
The aim of the cell viability studies was the preliminary screening of the cytocompatibility of developed 
formulations. All nanosystems (NE, SMEDDS and S-SMEDDS) were not toxic at concentration of 1 
mg·mL‒1 on Caco-2 cells (Fig. 8 Chapter III, Fig. 6 Chapter IV). These results are in line with what 
reported in the literature for similar lipid-based nanosystems [25,114, 115]. Interestingly, previous 
research showed that the incorporation of precipitator inhibitors in S-SMEDDS allowed to significantly 
reduced the toxicity of the corresponding SMEDDS thanks to a 15% reduction in the surfactant 
concentration (Kolliphor® EL) [93]. In this study, similar values of toxicity were found for both blank 
SMEDDS and S-SMEDDS. This was probably due to the minimal difference in the amount of 
Kolliphor® RH40 present in SMEDDS (70% w/w) and S-SMEDDS (69% w/w).  
When the cell viability after exposure to NE was evalated on HCT 116 cells, the NE showed higher 
toxicity compared to Caco-2. The reason was the different concentration of FBS used (2% for HCT 116 
and 10% for Caco-2), which can have formed a different protein corona on the partile surface [116]. 
The toxicity profile of the nanocomposite sponges was not studied. Because of the possible shielding 
effect of the NEs by the CH sponge that might alter the cell viability profile of the NE, such evaluation 
is needed.  
The cytocompatibility screening presented in this work was performed by mean of a widely exploited 
cell viability screening assays (MTS) and on a simple monoculture of Caco-2 cells. This cell prototype 
does not completely mimic the complex intestinal physiology [117]. In the future, we must consider 
using advanced intestinal in vitro and/or ex vivo models for the obtainment of more predictive data [117]. 
In particular, a co-culture model Caco-2 and HT29-MTX cells will be useful to assess the impact of the 
mucus barrier on the nanosystem behaviour, while a co-culture Caco-2/HT29-MTX with Raji B cells, 
mimicking intestinal microfold (M) cells can represent a physiologically relevant model to evaluate 
particle uptake [98,118–120]. Also, advanced 3D in vitro models of the intestine can be used, such as 
organoids, microfluidic intestine‐on‐chip, 3D bioprinted or microengineered intestinal models [121–
124]. 
 
V.2.4 Observations on developed nanoparticles cellular uptake and intestinal permeability 
Once nanosystems have reached their intestinal target, the ability to cross the cellular barrier defines 
their fate. Three are the possible scenarios: i) the system does not interact with the cells and releases the 
drug in the intestine, ii) the system is uptaken by epithelial cells and iii) the system is transported through 
the epithelium via transcellular or paracellular transport. The release of the loaded drug can occur at any 
time and varies from device to device and from drug to drug, leading to a local or systemic therapeutic 
effect. 
Self-emulsifying systems are usually intended to increase the drug solubility. However, in recent years 
several studies reported their ability to exert a beneficial effect on the intestinal permeability too 
[15,115,125–128]. 
The developed SMEDDS and S-SMEDDS enhanced the paracellular transport across Caco-2 cell 
monolayers by opening of tight junctions (Fig. 6 Chapter IV). This behaviour was ascribed to the system 
small droplet size of and to the presence of amphiphilic non-ionic surfactants and medium chain fatty 
acids, which were previously reported to exert a membrane fluidifying effect and to reversibly open 
tight junctions [93,126,129–131]. Interestingly, almost all commonly employed surfactants, and the 
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Kolliphor surfactant family in particular, have been suggested to show some inhibitory activity against 
efflux transporters. The inhibition mechanism apparently involves alterations in membrane transporter 
structure or changes to transporter expression [132]. Further investigations are needed to evaluate any 
activity on efflux transporters by the developed SMEDDS and S-SMEDDS which contain around 70% 
of Kolliphor RH40. 
Moreover, the observed ehancement of the paracellular transport could explain the reduced cytotoxicity 
of the drug when loaded in SMEDDS because of its reduced intracellular uptake. 
Experiments are planned to assess the interactions between NE and Caco-2 cells. As mentioned in 
section V.1.4, the fluid nature of the NE shell might impact the NE cellular internalisation pathway. In 
a recent study we found that by modulating the liposome composition and thus its membrane fluidity, 
selective targeting on cancer cells could be achieved. Rigid-state liposomes targeted the stiffer control 
cells, whereas fluid-state liposomes targeting the flexible and metastatic cells and were internalized via 
a fusion process with the tumour membranes which become increasingly fluid with cancer progression 
[133]. The possibility of NE fusion with the targeted membrane will have to be carefully evaluated. 
Despite the fluid state of the NE shell, the NE possess a PEGylated surfactant as outer layer. PEG is 
known to inhibit liposome fusion and to promote liposome internalisation by endocytosis but also to 
reduce the interactions of lipid-based formulation with the intestinal epithelium [134,135]. The results 
of NE transport studies may reveal valuable information for a better understanding of the NE in vivo 
behavior and for a smart modulation of its properties in sight of a therapeutic application. 

V.2.5 Considerations on nanosystems mucopenetrating ability
To diffuse efficiently through the mucus, nanoparticles need to minimize the interactions between them 
and mucin [2]. The preliminary in vitro studies performed in this work suggested that NE were a good 
mucopenetrating candidate. The NE penetrating ability was ascribed to their PEGylated shell provided 
by the hydrophilic PEGylated surfactant PEG-40 stearate (Myrj® 52).
The NE had a PEGylated surfactant concentration of 14.3%, which is lower than what previously 
reported. Zaichik et al. successfully designed mucopenetrating NE by incorporation of the PEGylated 
surfactant polyethoxylated-35 castor at concentrations of 30% [136]. While the PEG-based lipid-
polymer hybrid vesicles developed by Taipaleenmäki et al. diffused only at a copolymer poly(ethylene 
glycol)-b-poly(cholesterol methacrylate (PEG-b-PCMA) concentration of 25% w/w [118].
The NE was composed of a low molecular mass PEG with an average PEG chain length of 2 kDa (PEG-
40 stearate), which can favour mucopenetration. A study by Inchaurraga et al. showed that nanoparticles 
coated with 2 kDa PEG better permeated the intestinal mucus layer than nanoparticles coated with 10 
kDa PEG. In fact, at such high molecular mass PEG (> 10 kDa) the particles exhibited mucoadhesive 
properties [137].
Further evaluation is recommended to confirm the reported observations on NE mucopenetration. 
Firstly, a more appropriate mucus model should be used. The commercial reconstituted mucins exploited 
(mucins from porcine stomach type II, Sigma Aldrich commercial product) are very different from the 
mucus freshly collected from porcine organs like stomach or intestine, in terms of structure, 
physicochemical behaviour and possible interactions [52,54]. The time of the analysis should also be 
increased to better evaluate the possibility of NE complete penetration through the mucus layer. Lastly, 
the experimental conditions should be optimized to ensure the maintenance of a constant humid
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microenvironment thus preventing NE and mucins from drying out over time. For a future evaluation, 
we suggest to use more predictive techniques and conditions, such as multiple particle tracking (MPT) 
on freshly collected porcine intestinal mucus and Ussing chambers on intestinal segments ex vivo 
[41,43,138]. 
Self-emulsifying systems were not evaluated for their mucopenetrating properties in the present work. 
The developed SMEDDS ad S-SMEDDS might possess good mucopenetrating potential. In a study by 
Friedl et al., Kolliphor RH 40 and triacetin were identified as promising excipients for SNEDDSs to 
overcome the mucus barrier and therefore facilitate contact with epithelial cells [139]. Being the 
developed SMEDDS composed of 70% Kolliphor RH40, the possibility of it being mucopenetrating is 
high. 
 
V.2.6 Combination of mucoadhesion and mucopenetration and analysis of the in vivo 
biodistribution following oral administration  
The assessment of the system behaviour in vivo after oral administration to mice was the last stage of 
the biological evaluation. (Fig. 9-10 Chapter III and Fig. 6). The sponge ability to enhance the intestinal 
residence time constitutes a step forward in confirming our hypothesis that the combination of 
mucopenetrating and mucoadhesive properties in a single delivery device is a winning delivery strategy.  
 

 
Fig. 6 Combination of mucoadhesion and mucopenetration properties in nanocomposite sponges. 
 
Up to date only few studies reported the combination of mucoadhesion and mucopenetration in a single 
delivery platform. Recently, Taipaleenmäki et al. developed mucoadhesive alginate microgels loaded 
with mucopenetrating PEG-based lipid-polymer hybrid vesicles. When orally administered to rats, the 
alginate beads protected the NE from the harsh environment of the GI tract but they were not efficient 
in extended the intestinal retention of the vesicles because of their fast dissolution at intestinal pH. The 
authors concluded that alginate might not have been the ideal choice as a mucoadhesive polymer and 
using either a positively charged hydrogel or thiolation might have resulted in longer retention times 
[118].  
Our nanocomposite sponge can overcome the current lack of effective intestinal targeting approaches. 
In this work we suggested that the sponge protected the NE and provided a sustained NE release in vivo. 
The NE then penetrated across the mucus layer to reach the underlying epithelium.



 

192 
 

Despite the absence of DiD fluorescent signal in organs other than the GI, we cannot exclude that no 
NE passed in circulation because of the detection limit of the technique that we used.  
We demonstrated the enhanced intestinal local retention of the nanocomposite and we ascribed it to the 
chitosan mucoadhesive properties [53,140]. The mucoadhesive characteristics of nanocomposite 
polymeric matrix were previously exploited for prolonged retention [40,43,98]. Indinavir nanoparticles 
produced by drug nanonization were loaded in alginate-chitosan microparticles. After dissolution of the 
enteric Eudragit coating, the microparticles adhered to the intestinal mucus and the nanoparticles were 
retained in the intestinal mucosa by physical entrapment leading to enhanced bioavailability [41].  
Our system can be exploited to enhance the efficacy of a localize treatment for inflammatory disorders, 
such as ulcerative colitis and Crohn’s disease [47]. The therapeutic potential of the nanocomposite 
sponge could be maximised in inflamed intestinal conditions, where the pH is lower and CH is 
protonated, being the electrostatic complexation with mucins favoured at a pH between 2.4 and 6.3 
[141]. This strategy was previously exploited by Iglesias et al. with chitosan-carballylic acid 
nanocomposite hydrogels loaded with resveratrol micelles and by Duan et al. Chitosan-Alginate 
hydrogels embedded with antisense oligodeoxyribonucleotide nanoparticles for inflammatory bowel 
disease (IBD) treatment [47,142]. Alternatively, delivery systems took advantage of the inflammatory 
state to increase residence time via a bioadhesion mechanism. It is the case of hydroxypropyl 
methylcellulose acetate succinate microparticles that protected the loaded NPs from the acidic 
environment and deliver them in the intestine; then, at the intestinal site, the negatively charged 
hyaluronic acid present on the nanoparticle surface brought the nanoparticles at the inflammation site, 
rich in positively charged proteins, where the nanoparticles gradually released their cargo by enzymatic 
degradation [143].  
Finally, investigations in bigger animals, such as pigs, with physiology and transit times more similar 
to humans [144], will be preferable to facilitate the sponge administration procedure and collect more 
predictive data. By using a more appropriate in vivo model, it will be also possible to administer sponges 
at different NE/CH ratio (CH-NE A, B and C) and to evaluate the effect of the nanocomposite 
composition and structure on the biodistribution.  
 
V.2.7 Analysis of the SMEDDS and S-SMEDDS in vivo behaviour  
Preliminary studies were carried out to assess the S-SMEDDS pharmacokinetic profile after oral 
administration to healthy mice. The drug dispersion in HPC and the SMEDDS were used as a control 
(Fig.7 Chapter IV). 
The systems contained different drug concentrations which corresponded to the maximum drug loading 
in the self-emulsifying systems, being the administered dose of 14 mg·kg‒1 for SMEDDS, 30 mg·kg‒1 
for S-SMEDDS I and 55 mg·kg‒1 for S-SMEDDS II. The free drug was at a dose of 40 mg·kg‒1 as 
dispersion in HPC that was prepared right before administration. Such differences in the administered 
drug amount allowed to observe the behaviour of the different formulations. The variation in Cmax 
together with the higher values of AUC and MRT when administering S-SMEDDS I and II highlighted 
the positive impact of the supersaturable delivery system on the drug pharmacokinetic profile. However, 
the direct comparison of the dose-depended parameters (Cmax, AUC and MRT) between systems was 
hindered. 
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Instead, we could compare the dose-independent pharmacokinetics parameters (Tmax, t½) which proved 
the ability of S-SMEDDS I to prolong the blood circulation time of the drug compared to all other 
formulations. In fact, S-SMEDDS I thanks to the presence of the precipitation inhibitor HPC were able 
to maintain the drug in a supersaturated state in the intestine for long time periods, supposedly promoting 
sustained drug absorption in the systemic circulation. S-SMEDDS II were not as much effective as S-
SMEDDS I. This was surprising as the administered dose of drug was 1.8-times higher with S-SMEDDS 
II than S-SMEDDS I. We believe that such behaviour can be due to the longer emulsification time and 
to the higher viscosity of S-SMEDDS II that prevented drug absorption. The use of DMSO in S-
SMEDDS II did not turn out to be the ideal choice.  
In line with our results, a multitude of S-SNEDDS/S-SMEDDS have demonstrated potential to improve 
the pharmacokinetic performance of lipophilic drugs [20,67,69–73,145]. By incorporating 2% (w/w) 
HPMC in S-SNEDDS, Zhang et al. increased 2.2-fold the oral AUC0-24h of the drug luteolin in rats 
compared to conventional SNEDDS [69]. Also Quan et al. achieved a 1.4-fold greater AUC and a 40% 
improvement of the oral relative bioavailability of fenofibrate by using solid S-SEDDS compared to 
conventional solid SEDDS. Their vivo pharmacokinetic study conducted in beagle dogs and the S-
SEDDS contained 15% (w/w) of Soluplus® as precipitation inhibitor [18].  The above mentioned 
systems led to a marked enhancement of the AUC. The advantage of the S-SMEDDS here developed is 
the prolonged blood circulation time of the drug. In a future therapeutic application this will allow to 
lengthen the dosing interval and ameliorate patient compliance. 
 
V.2.8 Perspectives on the evaluation of system digestion  
Orally administered lipid-based systems are submitted to the same digestive process as dietary fat. 
Depending on their composition, particle size and surface properties, they can be digested forming 
secondary vesicles in the small intestine, or they can be indigested remaining intact for absorption [146]. 
The impact of the triglyceride chain length on the system digestion was highlighted by Christophersen 
et al. while studying the release mechanism of a model protein, lysozyme, encapsulated in solid lipid 
microparticles. They observed that the presence of longer chains slowed down the digestion process and 
consequently the release [147]. Not only the chain length, but also the surfactant can have an impact on 
degradation velocity of lipid-based nanoparticles by lipases. The incorporation of non-ionic surfactants 
containing stealth PEG head groups in lipid-based nanoparticles provided enhanced resistance to 
digestion and reduced drug precipitation in comparison to the digestible non-PEGylated counterpart 
[148]. Besides, the number of ethylene oxide functionalities on surfactants chains was found to affect 
the velocity of degradation in the intestine by lipase/co-lipase. Olbrich et al. showed that a high number 
of ethylene oxide groups of the surfactant hindered the anchoring of the enzyme on the particle and 
consequently its degradation/digestion [149]. 
It can be suggested that the developed NE and SMEDDS would undergo a slow digestion process 
because of the presence of PEGylated surfactants in their shell (13.5% Myrj® 52 in NE and 70% 
Kolliphor® RH40 in SMEDDS). A prompt evaluation of the digestion process of the developed 
nanosystems and of the possible protective effect of the sponges will be the object of future studies. 
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Conclusions 
In this thesis work we proposed hybrid nanosystems that combine nanoparticles and polymeric systems 
as a new class of biomaterials unleashing unique synergistic properties with significant potential to 
prolong intestinal residence and improve drug delivery efficiency.  
The study proved the technological feasibility of formulating lipid-based nanosystems and their hybrid 
polymeric counterparts, and provided for the preliminary evaluation of the systems biological attributes 
in vitro and in vivo. 
In a first part, polymeric hybrid nanocomposites, made of NE embedded in CH sponges, were developed 
aiming at the exploitation of the intestinal mucus barrier to prolong the delivery. We presented a 
comprehensive characterisation of the nanosystem from a physicochemical and structural point of view. 
The successful embedding of NE in chitosan sponges, that guaranteed the NE sustained release without 
alteration of its physicochemical properties, gave a proof of the feasibility of designing the 
nanocomposite. The preliminary studies performed in vitro suggested that the NE possess 
mucopenetrating properties that will allow it to reach the targeted intestinal epithelium in vivo, and that 
the NE loading in the sponge will promote the NE sustained release in the intestinal site of action. Lastly, 
the nanocomposite oral administration to mice proved the effectiveness in increasing the intestinal 
residence time, thus confirming our hypothesis. Despite the noticeable progress in the development of 
hybrid nanosystem done in this work, there is still a need for further detailed studies on sponge structure 
and interactions with the NE which will provide a sound base for a better understanding of its biological 
attributes. While the mucoadhesive and mucopenetrating attributes of the systems should be further 
evaluated ex vivo and/or in vivo with more performant techniques. 
The second part of this work presented the design of a hybrid nanosystem in the form of supersaturable 
S-SMEDDS for the intestinal delivery of a benzimidazole derivative anticancer drug. In this frame we 
took advantage of the intestinal fluids to generate the nanosystem in situ. The addition of precipitation 
inhibitor HPC was intended to increase the drug loading in the formulation and to minimize the drug 
precipitation in the gastrointestinal fluids. HPC maintained the drug in a supersaturated state over a long 
time period prolonging the drug blood circulation time. The systems were cytocompatible on Caco-2 
cells and had a positive impact on the intestinal permeability by improving the paracellular transport. 
The S-SMEDDS loading in enteric capsules or the optimisation of the composition by substitution of 
the precipitator inhibitor are suggested to tackle the stability shortcoming in the gastric environment and 
further improve the drug therapeutic efficacy. 
The findings of this work can serve the domain from different perspectives.  
From a technological viewpoint it offers a better understanding of the formulation process of lipid-based 
nanocarriers and their hybrid polymeric counterparts, highlighting the importance of rational design in 
order to obtain nanocomposites with appropriate physicochemical and morphological characteristics. 
From a biological viewpoint it suggests the potential of the develop nanocomposite as intestinal drug 
delivery device for a future exploitation for both the treatment of local pathologies and the systemic 
delivery of active molecules. Further investigations are highly recommended to uncover the possibilities 
of these formulations.   
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Résumé substantiel 
La voie orale est la plus courante des voies d'administration des principes actifs pharmaceutiques (API). 
Ses avantages découlent de la grande surface intestinale pour l'absorption des médicaments, de la 
possibilité d'auto-administration qui améliore l’observance du patient et des faibles coûts de production 
[1,2]. Cependant, la précipitation ou la dégradation du principe actif ainsi que le temps de résidence 
relativement court au niveau intestinal sont des obstacles majeurs à l'administration orale [3]. Dans ce 
cadre, les nanosystèmes de délivrance lipidiques (LBDDS), comme les nanoémulsions (NE) et les 
systèmes auto-émulsionnables, sont une approche prometteuse pour améliorer l'efficacité thérapeutique 
locale ou systémique des médicaments [4,5]. Les NE sont des dispersions colloïdales, 
thermodynamiquement instables, composées majoritairement de deux liquides non miscibles (eau et 
huile). L'un des liquides est dispersé sous forme de gouttelettes nanométriques stabilisées par un 
tensioactif dans l'autre liquide [6]. Les systèmes auto-émulsionnables sont des mélanges d’huile, 
tensioactif et co-solvants capables de former spontanément des nano- (SNEDDS) ou des 
microémulsions (SMEDDS) lors de leur dispersion dans une phase aqueuse telle que les liquides 
intestinaux sous légère agitation [7]. Malgré les progrès technologiques, certaines limites biologiques 
empêchent encore ces systèmes de délivrance de répondre aux nombreuses exigences thérapeutiques. 
Parmi eux figurent un faible taux d'encapsulation du principe actif, une capacité de ciblage limitée et un 
temps de résidence au niveau intestinal court. Des systèmes hybrides associant les nanoparticules à des 
polymères ont été proposés pour dépasser ces limites.  [8]. Parmi ces systèmes hybrides on trouve : i) 
les systèmes hybrides à matrice, également appelés nanocomposites polymériques, où le polymère 
forme une matrice 3D dans laquelle les nanoparticules sont englobées ; ii) les systèmes hybrides auto-
émulsionnables constitués d’une suspension de nanoparticules dans une solution de polymère [9]. 
 
Ce travail de thèse consiste à développer des nanosystèmes hybrides pour augmenter le temps de 
résidence intestinale après administration orale, en vue d’augmenter l'effet local ou encore l'absorption 
systémique des médicaments. 
À ces fins, deux nanosystèmes hybrides différents ont été conçus : i) des nanocomposites polymériques 
composés de NE chargées dans une éponge de chitosane (CH) ii) des systèmes auto-émulsionnables 
sursaturables (S-SMEDDS) obtenus par la combinaison de SMEDDS conventionnels avec un inhibiteur 
de précipitation polymérique, l’hydroxypropylcellulose (HPC). 
L'objectif spécifique de la conception des nanocomposites polymères était de protéger les NEs et de 
moduler la libération du principe actif tout en prolongeant le temps de résidence du système au niveau 
intestinal. Ces nanocomposites peuvent être envisagés dans l’optique d'une administration systémique 
ou locale de médicaments. L'objectif spécifique de la conception de S-SMEDDS était d'améliorer la 
solubilité et l'absorption orale d'un médicament anticancéreux hydrophobe modèle. 
Dans un premier temps, les nanosystèmes (NE et SMEDDS) ont été préparés, optimisés et caractérisés 
d’un point de vue physico-chimique et structurel. Ensuite, les nanosystèmes ont été combinés avec les 
polymères (CH ou HPC) pour obtenir leurs homologues hybrides. Enfin, leurs efficacités in vitro et in 
vivo ont été évaluées. 
La première partie de ce travail de thèse met en avant les études de formulation et caractérisation des 
NE. Les NE ont été formulées par la méthode d'inversion de phase de l'émulsion (EPI), couplée à un 
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apport d'énergie élevé pour affiner la taille des gouttelettes (disperseur Ultraturrax®). Les NE sont 
composées de triglycérides à chaîne moyenne (MCT, Miglyol® 812, esters des acides 
caprylique/caprique) stabilisés par un mélange de tensioactifs hydrophiles et hydrophobes non ioniques, 
le stéarate de polyoxyéthylène (Myrj® 52, HLB 16.9) et le glycéride d'oléoyl polyoxyl-6 (Labrafil® 
M1944CS, HLB 4). La formulation a été optimisée à l’aide d’un plan d’expériences pour obtenir les 
paramètres suivants : une teneur en huile 7% (p/p), un rapport massique des agents tensioactifs (SMR) 
de 2.5 et un rapport agent tensioactif/huile (surfactant-to-oil ratio SOR) de 2.86. Les NE possèdent une 
taille de 100 nm, un PDI de 0.2 et une charge de surface neutre (-9 mV). Un principe actif modèle 
hydrophobe, le tacrolimus, a été encapsulé dans les NE, avec une excellente efficacité d’encapsulation 
(99.5%) et sans altération des propriétés physicochimiques. La libération prolongée du principe actif 
dans un milieu gastrique simulé le SGF (pH 1.2) et un milieu intestinal simulé le FaSSIF-V2 (pH 6.5) a 
été prouvée. 
Ensuite, les NE ont été séchées en utilisant les procédés de lyophilisation et de spray-drying afin 
d’augmenter leur stabilité au stockage. Des additifs ont été ajoutés pour préserver la structure des 
systèmes au séchage : maltodextrine (MD) pour le spray-drying et tréhalose (TR) pour la lyophilisation.  
La lyophilisation s'est avérée être le procédé à privilégier en raison d’un rendement plus élevé (90 % en 
spray-drying contre 99 % en lyophilisation) et de la possibilité de sécher les formulations avec une 
concentration élevée en NE (13.5% en lyophilisation contre 5% en spray drying) et un rapport 
NE/excipient supérieur (5.4 en lyophilisation contre 0.5 en spray drying). 
La caractérisation structurelle de la NE a été effectuée en se concentrant sur la nature de la surface de la 
NE. Tout d'abord, l'état cristallin ou amorphe de la NE a été évalué par DSC et par diffraction de rayons 
X. Les analyses ont montré que le cœur huileux reste amorphe, alors que la coque est amorphe lorsque 
la NE est liquide mais possède une structure cristalline lorsque la NE est à l’état sec. Ce point est 
particulièrement intéressant car la présence d'un noyau huileux amorphe maximise le taux 
d'encapsulation [10] et la cristallinité de l'enveloppe à l’état sec améliore la stabilité du système lors du 
stockage [11]. Deuxièmement, la nature fluide de la coque de la NE a été montrée par des mesures de 
fluorescence, à l'aide d'un fluorophore dérivé du Laurdan sensible à la polarité. La fluidité peut être 
expliquée par la faible densité de tassement du tensioactif Myrj® 52 dans la coque.  
 
Les propriétés mucopénétrantes des NE ont été évaluées en utilisant des mucines reconstituées, 
provenant d'estomacs de porc, pour simuler la barrière de mucus intestinal (chapitre III). L'analyse DLS 
a démontré que la taille et la charge des NE n’étaient pas affectées en présence de mucines, ce qui 
démontre la présence de faibles interactions de surface entre les deux [12]. L'analyse l'ITC a, en outre, 
confirmé l'absence d'interactions additionnelles entre les mucines et les NE. Enfin, par microscopie 
confocale à balayage laser (CLSM) on a observé que les NE pénétraient efficacement dans les mucines, 
se répartissant sur toute l’épaisseur de l'échantillon en 3 h. Les propriétés mucopénétrantes ont été 
attribués à la présence du surfactant PEGylé (PEG-40 stéarate) dans la coque de la NE [13–15]. 
 
Ensuite, ce travail s’est intéressé au développement de nanocomposite hybrides CH-NE (chapitre III). 
Les éponges nanocomposites ont été produites par lyophilisation. Trois éponges ont été préparées :  
• CH-NE A (CH 0.1%-NE 2.5%, rapport NE/CH de 25) 
• CH-NE B (CH 1%-NE 2.5%, rapport NE/CH de 2.5) 
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• CH-NE C (CH 1%-NE 10%, rapport NE/CH de 10).
Les propriétés structurelles et mécaniques des éponges varient en fonction de la concentration en CH et 
en NE, comme le montrent les images en microscopie optique et électronique. En comparaison avec des 
éponges de CH seul, la présence des NE entraîne un renforcement de  la structure, par interactions entre  
la NE et les chaînes de CH par liaison hydrogène et interactions hydrophobe, une autre partie des NE 
est retrouvée à la surface des éponges [54]. 
La cinétique de libération des NE a été étudiée après réhydratation de l'éponge dans un liquide intestinal 
simulé (FaSSIF-V2) à différents pH (5, 5.5, 7.5) [16]. Dans l'éponge avec un rapport NE/CH élevé (de 
25), c’est-à-dire avec un excès de NE situé à la surface de l'éponge, la NE est facilement et rapidement 
libérée une fois en contact avec le milieu. Au contraire, à un rapport NE/CH de 10, la NE doit d’abord 
diffuser à travers la matrice de l'éponge, entraînant une libération contrôlée et prolongée dans le temps. 
Aucune libération n’a été retrouvée dans l'échantillon CH-NE B (NE/CH 2.5) car toute la NE participait 
à la formation de la structure de l'éponge. La libération complète des NE n'a été atteinte que dans 
l'éponge à un rapport NE/CH élevé de 25 (CH-NE A), suite à la dissolution de l'éponge à pH 5. Les 
raisons possibles sont la faible teneur en CH (0.1%) et la modification de la structure cristalline du CH 
en fonction du rapport NE/CH [17].  
La cytocompatibilité des NE a été évaluée in vitro sur des cellules Caco-2. Les NE se sont révélées non 
toxiques à une concentration supérieure à 1 mg·mL-1. 
Les études de biodistribution in vivo chez la souris ont montré que l'éponge nanocomposite (CH-NE C) 
augmente considérablement le temps de séjour intestinal grâce à la capacité mucoadhésive du CH 
[18,19]. Le système s'accumule dans le cæcum à partir de 2 h et un signal fluorescent élevé est toujours 
détecté dans le cæcum et le côlon après 6 h. Au contraire lorsque la NE est administrée seule, un transit 
à travers le GI en 4 h est observé et la plupart de la formulation est excrétée à 6 h. Aucun signal 
fluorescent n'a été détecté dans les autres organes, ce qui indique que le système est bien retenu au 
niveau intestinal.  De plus, aucune altération de la muqueuse intestinale n'a été observée.  
Dans l'ensemble, ces résultats prouvent les avantages offerts par les éponges nanocomposites en tant 
que système de livraison intestinale pour un effet du médicament encapsulé au niveau local ou 
systémique. 

La deuxième partie de la thèse (chapitre IV) concerne la formulation et la caractérisation des SMEDDS 
et des S-SMEDDS pour l’administration orale d’un médicament anticancéreux appartenant à la classe 
de benzimidazoles, le BI. Les excipients des SMEDDS (huile, tensioactif et co-solvants) ont été 
sélectionnés sur la base de leur capacité de solubilisation du principe actif et un plan d’expérience a 
permis l’optimisation du système. Le système final était composé de 10% (p/p) d'huile (MCT, Miglyol® 
812), 70% (p/p) d'agent tensioactif (Polyoxyl 40 huile de ricin hydrogénée, Kolliphor® RH40) et 20% 
(p/p) de co-solvants (diéthylène glycol monoéthyléther Transcutol® HP et éthanol ou DMSO). Après 
ajout d'eau, les SMEDDS conduisent à la formation de microémulsions de taille 18.52 ± 0.02 nm, avec 
un faible PdI, une charge de surface neutre (-1.03 ± 0.82 mV) et une bonne capacité d’auto-
émulsification vérifiée par le temps nécessaire à cette émulsification (68 s). 
Ensuite, les S-SMEDDS ont été formulés par ajout d'hydroxypropylcellulose (HPC, Klucel® EF) dans 
les SMEDDS. Deux S-SMEDDS différents ont été préparés : S-SMEDDS I contenant 10% d'EtOH et 
1% de HPC et S-SMEDDS II contenant 5% de DMSO et 1% de HPC (% p/p). Comparée au SMEDDS 
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classique, a charge en principe actif a été doublée avec le S-SMEDDS I et quadruplée avec le S-
SMEDDS II. 
Les essais en milieu gastrique simulé (SGF, pH 1.2) ont montré une précipitation du principe actif depuis 
les SMEDDS et les S-SMEDDS, mais, grâce à la présence de l’hydroxypropylcellulose (Klucel™ EF, 
1% p/p) jouant le rôle d’inhibiteur de précipitation, la concentration du principe actif dans les S-
SMEDDS reste 2.3 fois plus élevée que dans les SMEDDS. . En milieu liquide intestinal simulé (SIF, 
pH 6.8), tous les systèmes sont stables, il n’y a pas de précipitation et tout le principe actif reste dissous.  
La cytocompatibilité des NE a été évaluée sur la lignée cellulaire Caco-2. Les SMEDDS et S-SMEDDS 
sont cytocompatibles jusqu'à 1.3 mg·mL‒1 et elles permettent une réduction de la toxicité du BI, 
avantage majeur en vue d'une administration orale [20]. Ensuite la capacité des SMEDDS et S-SMEDDS 
à augmenter la perméabilité intestinale a été évaluée sur des monocouches de cellules Caco-2 en utilisant 
trois techniques différentes : CLSM, TEER et mesures de fluorescence. Tous les systèmes augmentent 
la perméabilité paracellulaire en ouvrant les jonctions serrées. Cette ouverture est transitoire et réversible 
comme en témoigne le retour à l’état initial des valeurs de TEER après 24 h, ce qui confirme l'absence 
de toxicité du système, conformément aux études précédentes [20–23].  
Enfin, le profil pharmacocinétique des SMEDDS et des S-SMEDDS a été évalué in vivo sur la souris 
après administration orale. Par rapport au BI seul et au SMEDDS, les S-SMEDDS I prolongent le temps 
de circulation plasmatique avec un Tmax plus long et un t1/2 plus important. L'ajout de l'inhibiteur de 
précipitation HPC a permis de maintenir le principe actif dans un état sursaturé pendant une longue 
période, induisant une circulation prolongée. Les résultats obtenus sont conformes à ceux précédemment 
observé pour d’autres S-SMEDDS [24–30] [31].  
 
Dans l’ensemble, ce travail de thèse démontre que les nanosystèmes hybrides sont des systèmes 
prometteurs pour améliorer la délivrance intestinale des médicaments. 
Dans le cas de nanocomposites polymères, la synergie entre nanosystème et polymère a donné lieu à 
des propriétés physico-chimiques et biologiques exclusives, notamment une meilleure résistance 
mécanique, une modulation intelligente de la cinétique de libération des nanoparticules et une 
augmentation du temps de résidence intestinale après administration orale.  
Alors que, dans le cas des S-SMEDDS, le nanocomposite a permis d’améliorer le taux d'encapsulation 
du médicament anticancéreux hydrophobe BI et de prolonger son temps de présence dans la circulation 
systémique.  
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ABSTRACT: Lipid-based carriers such as liposomes represent one of the
most advanced classes of drug delivery systems. Their clinical success relies
on their composition, similar to that of the cell membrane. Their cellular
specificity often relies on a ligand−receptor interaction. Although differences
in the physicochemical properties of the cell membrane between tumor and
nontumor cells have been reported, they are not systematically used for drug
delivery purposes. In this report, a new approach was developed to ensure
selective targeting based on physical compatibility between the target and
the carrier membranes. By modulating the liposome composition and thus
its membrane fluidity, we achieved selective targeting on four cancer cell
lines of varying aggressiveness. Furthermore, using membrane-embedded
and inner core-encapsulated fluorophores, we assessed the mechanism of
this interaction to be based on the fusion of the liposome with the cell
membranes. Membrane fluidity is therefore a major parameter to be considered when designing lipid drug carriers as a promising,
lower cost alternative to current targeting strategies based on covalent grafting.

■ INTRODUCTION

The lack of specificity of cancer chemotherapy drugs is a major
clinical concern in the development of effective treatments.1 In
the search for new drug delivery strategies, innovative solutions
based on nanocarriers occupy an important place.2−5 The main
advantages of drug nanocarriers rely on their ability to
accumulate in tumors, avoiding indiscriminate biodistribution,
and to release the drug in an adjustable manner.6 By improving
drug distribution and bioavailability, this results in a better-
tolerated therapy allowing the administration of higher doses,
with reduced frequency.7 Among the various types of
nanoparticles, liposomes have been already used as drug
carriers, and several formulations are currently marketed or in
clinical trials.8−10

The clinical interest of liposomes relies on their
composition: they are nanosized vesicles made of lipid bilayers
surrounding a hydrophilic aqueous core.11,12 In addition to
being nontoxic, biocompatible, and biodegradable, their
amphiphilic properties allow them to encapsulate both
hydrophilic and hydrophobic drugs.
Like most submicrometer-sized drug carriers, liposomes

attain the tumor site through a passive targeting mechanism
based on the enhanced permeability and retention (EPR)
effect, as the high vascularization of tumors increases the
particle uptake when compared with healthy cells.13 Yet, recent
studies have shown that at least in the case of gold
nanoparticles extravasation across endothelial cells is possi-

ble.14 The passive targeting mechanism is in many cases high
enough to reduce the side effects of chemotherapy treatments
but suffers from a lack of selectivity toward capillary leakage.
Passive targeting is dependent on many factors that may vary
with different cancer types, such as a poor vascularization or a
high interstitial pressure for solid tumors.15,16

To improve liposome attachment and interaction with target
cells, active targeting strategies have been explored. So far,
whatever the active or passive targeting strategy, nanoparticles
reach the tumor site through passive accumulation (e.g., via the
EPR effect). Most current strategies use the modification in
membrane protein composition by grafting liposomes with
ligands specific to an overexpressed membrane protein.17−19

Some strategies alternatively use liposomes grafted with lectins
to target a change in the carbohydrate composition of the
membrane.20 Cancer development also induces profound
modifications of the membrane lipid composition, which
invariably led to alterations of membrane physicochemical
properties.21−28 Additionally, changes in the membrane fluidity
of the tumor cells have been reported and are thought to be
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associated with cancer progression, the tumor membranes
becoming increasingly fluid.29−32

Such membrane physicochemical modifications have not
been used for a drug delivery purpose. One reason is that most
of the current active targeting strategies using liposomes rely
on the functionalization of PEGylated liposomes with small
molecules. Hence, the membrane fusion pathway remains
largely unexplored in drug delivery applications, as the
presence of a hydrophilic shell will inhibit membrane−
membrane interactions and promote endocytosis mechanisms
instead.33,34 Alternative strategies to PEGylation exist, allowing
for longer-lasting drug carriers relying on the modulation of
liposome properties such as size, surface hydrophilicity, and
surface charge via lipid composition.35,36 Surface charge in
particular is a key parameter when considering liposome blood
stability, as the liposome binding by serum proteins relies on
electrostatic interactions.37 Moreover, it has been demon-
strated on two animal models, rodent and zebra fish, that
plasma protein association to liposomes also depended on lipid
chain composition, with liposomes in a gel-like state being
more easily covered with plasma proteins than their fluid
counterparts.38,39 This results in increased circulation times for
fluid state liposomes. All these considerations open the
possibility of obtaining long-lasting non-PEGylated liposomes
with a strong propensity to fuse with the target membrane.

Differences in membrane fluidity were exploited for the

delivery of hybrid liposomes (constituted of 90% DMPC and

10% polyoxyethylene dodecyl ethers), and the growth

inhibitory effects were correlated to the membrane fluidity of

cancer cells.40 Additionally, hybrid liposomes discriminated

between human hepatocellular carcinoma cells, with more fluid

membranes, and normal hepatocytes, with the more rigid

membranes, which could provide perspective of targeting the

cell membrane by using differences in biophysical character-

istics between tumor and normal cells.41

On the basis of the above-mentioned literature, in this work

we decided to explore a novel concept based on liposome

membrane fluidity to promote selective targeting. To validate

our hypothesis, three prostatic tumor cell lines of increasing

aggressiveness were used. Differences in liposome uptake were

recorded in comparison to nontumor cells and between the

metastatic lines. Such differences were related to the liposome

membrane fluidity. The mechanism of this interaction was also

investigated by following the internalization pathways of two

fluorophores: calcein encapsulated in the liposome hydrophilic

compartment and a fluorescent lipid embedded in the

liposome membrane. The results revealed pronounced lip-

osome fusion with target membranes.

Table 1. Lipids Used for Liposome Preparations, with the Lipid Names, Fatty Acid Compositions, Structure, and Phase
Transition Temperatures (Tm)
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■ EXPERIMENTAL SECTION

Materials and Cells. Lipids and polycarbonate membranes were
purchased from Avanti Polar Lipids (Alabaster, AL). Fetal bovine
serum (FBS), Dulbecco’s Modified Eagle Medium (DMEM), Roswell
Park Memorial Institute (RPMI) medium, penicillin/streptomycin,
phosphate buffered saline (PBS) composed of 10 mM phosphate, 137
mM NaCl, and 2.7 mM KCl, pH 7.4, dimethyl sulfoxide (DMSO),
calcein, paraformaldehyde (PFA), and 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolum bromide (MTT) were purchased from Sigma-
Aldrich (St. Louis, MO).
Liposome Preparation. Liposomes were prepared by using the

thin film hydration method. Briefly, lipids dissolved in chloroform
with a total lipid mass of 5 mg were mixed in a round flask. The
solvent was dried under vacuum at 50 °C on a rotatory evaporator.
The lipid film obtained was hydrated by 1 mL of sterile PBS while
stirring and heated above the lipid melting point. This resulted in the
formation of multilamellar vesicles (MLVs) with various sizes and
number of layers. Six freeze−thaw cycles in liquid nitrogen were then
applied to the prepared liposomes to burst the MLVs into large
unilamellar vesicles (LUVs). The LUVs’ size was defined by extrusion
through a porous membrane with a mini-extruder (Avanti Polar
Lipids, Alabaster, AL). Liposomes were heated above their phase-
transition temperature (Tm) and extruded through a 400 nm and then
a 100 nm pore diameter polycarbonate membrane by using a mini-
extruder apparatus (Avanti Polar Lipids). The final liposome solution
was stored at 4 °C for 4 weeks, without further extrusion.
Liposomes with different lipid compositions were prepared (Table

1). A constant percentage (20%) of fusogenic lipid DOPE was used to
promote the fusogenicity of the prepared liposomes. The remaining
80% of the lipid composition was made of phosphatidylcholines
(PCs) with various acyl chain lengths and degrees of saturation and
thus different phase transition temperatures. Six different PCs were
used: DSPC, DPPC, DMPC, POPC, DOPC, and DLPC. This led to
the creation of a range of liposome membrane compositions.
Fluorescent liposomes were prepared either with nitrobenzox-

adiazole-grafted DOPE (NBD-PE) embedded in the liposome
membrane or calcein internalized in the liposome hydrophilic core.
NBD-PE was added at a 2% molar ratio to the flask prior to drying.
Mass NBD-PE percentages ranged from 2.4% for DS, DO, PO, and
DL liposomes to 2.5% for DP and 2.7% for DM liposomes. When
hydrating the lipid film, the NBD-PE molecules were then directly
incorporated in the membrane of the forming vesicles. Calcein-loaded
liposomes were prepared by using calcein dissolved in PBS at a 500
μM concentration. One milliliter of this buffer was used in lieu and
place of the regular PBS when hydrating the lipid films. This resulted
in the encapsulation of calcein in liposomes. Free calcein was
eliminated from calcein-loaded liposomes through exclusion chroma-
tography on PD-10 desalting columns (GE Healthcare, Chicago, IL).
Liposome Characterization. The membrane fluidity of lip-

osomes was assessed by using an in-house Laurdan-derivative probe
sensitive to the membrane polarity (Dioll, Patent pending
EPO19306175.1).42 Liposomes at a concentration of 0.1 g/L were
incubated with the probe at 2 μM for 15 min, and then the
fluorescence emission spectrum was recorded on a FP-8500
spectrofluorometer (JASCO Applied Science, Halifax, Canada), with
emission and excitation slits set at 2.5 nm. Spectra were recorded from
400 to 600 nm at 37 °C, with an excitation λmax set at 390 nm. The
generalized polarization (GP) parameter was calculated as indicated
in eq 1, where I440 is the fluorescence emission intensity at 440 nm
(gel phase) and I490 is the fluorescence emission intensity at 490 nm
(liquid crystalline phase).43 Results were expressed as mean ±

standard deviation of three independent experiments.

= − +I I I IGP ( )/( )440 490 440 490 (1)

The liposome distribution and surface charge were analyzed by using
a Malvern Zetasizer Nano ZS (Malvern Instruments S.A.,
Worcestershire, UK). Particle size and polydispersity index (PdI)
were determined by dynamic light scattering (DLS) at a
concentration of 1 mg/mL liposomes in PBS. Analyses were

performed at 25 °C with an angle of detection of 173 °C. The ζ-
potential values were measured by the electrophoresis technique. For
ζ-potential measurements, liposomes were prepared in a low ionic salt
buffer (HEPES, 20 mM, pH 7.4). The stability of the particles was
investigated by following the size and PDI of the preparations 1, 2, 3,
and 4 weeks after preparation. Liposome size results were expressed as
mean ± standard deviation of three independent liposome
preparations. Liposome PDI results were expressed as the mean
PDI of the preparations and were measured concurrently with
liposome size on three independent liposomes preparations.

Liposome morphology was analyzed by cryogenic transmission
electron microscopy (Cryo-TEM) at the “Centre Technologique des
Microstructures” (CTμ) facility of the University of Lyon. Diluted
samples of liposomes were dropped onto 300 mesh holey carbon films
(Quantifoil R2/1) and quench-frozen in liquid ethane by using a cryo-
plunge workstation (made at Laboratoire de Physique des Solides-
LPS, Orsay, France). The specimens were then mounted on a
precooled Gatan 626 sample holder, transferred into the microscope
(Phillips CM120), and observed at an accelerating voltage of 120 kV.

Cell Culture. Four human cell lines were used as in vitro models:
WPMY-1, LNCaP, C4-2B, and PC-3. The WPMY-1 cell line was
originally obtained from healthy prostate tissue surrounding a
tumor.44 LNCaP is a hormone-sensitive cell line obtained from a
lymph node metastasis derived from a prostate tumor.45 The C4-2B
cell line was obtained as a subline of LNCaP xenografts in castrated
mice, resulting in the formation of a hormonal independent bone
metastasis.46 The PC-3 cell line was isolated from a vertebral
metastasis stemming from a prostate tumor and entirely composed of
carcinoma cells.47 WPMY-1 and LNCaP cell lines were purchased
from ATCC (Manassas, VA). PC-3 and C4-2B cell lines were a kind
gift from Dr. Olivier Cuvillier (Institute of Pharmacology and
Structural Biology, Toulouse, France).

WPMY-1 cells were cultured in DMEM supplemented with 5% (v/
v) FBS, 100 U/mL penicillin, and 100 μg/mL streptomycin. The
LNCaP, C4-2B, and PC-3 cells were cultured in RPMI medium
supplemented with 10% (v/v) FBS, 100 U/mL penicillin, and 100
μg/mL streptomycin. All cells were cultured in a humidified incubator
at 37 °C with 5% CO2. After standard trypsinization, cells were
seeded to the adapted density for cell viability and cytotoxicity assays
and for liposome−cell interaction characterization.

Cell Viability Assay. The number of adherent viable cells was
assessed by using the MTT assay, which is based on the reaction of a
colorless tetrazolium salt with cellular reductases to form purple
formazan crystals.48 Cells (6 × 104 cells/cm2 for WPMY-1 and
LNCaP, 3 × 104 cells/cm2 for C4-2B and PC-3) seeded in 12-well
plates were treated with liposomes for 2 h 30 min, washed with PBS,
and cultured in fresh medium for an additional 72 h. Afterward, MTT
was added at a final concentration of 0.125 g/L. The plate was further
incubated for 3 h at 37 °C, after which the culture medium was
removed, and the formed formazan crystals were dissolved in 1 mL of
DMSO. After 20 min incubation, the absorbance of the plate was
measured at 570 nm. Absorbance measurements were conducted on
an Infinite-M200 Pro plate reader (TECAN, Man̈nedorf, Switzer-
land). Results were expressed as mean ± standard deviation of three
independent experiments.

Cytotoxicity Assay. Cell death was assessed by using the lactate
dehydrogenase (LDH) assay that relies on the detection of a cytosolic
enzyme, the LDH, in the culture medium as an indicator of
membrane disruption upon cell death. Cells (6 × 104 cells/cm2 for
WPMY-1 and LNCaP, 3 × 104 cells/cm2 for C4-2B and PC-3) seeded
in 12-well plates were treated with liposomes for 2 h 30min, washed
with PBS, and cultured in fresh medium for an additional 72 h. LDH
was detected in 50 μL of culture medium by using an LDH
cytotoxicity assay kit (Sigma-Aldrich), as described by the
manufacturer. Results were expressed as mean ± standard deviation
of three independent experiments.

Liposome−Cell Interaction Characterization. WPMY-1,
LNCaP, C4-2B, and PC-3 cells were plated overnight in 96-well
plates with a cell density of 6 × 104 cells/cm2 for WPMY-1 and
LNCaP and 3 × 104 cells/cm2 for C4-2B and PC-3. The amount of
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cell per well was chosen to ensure 80% surface coverage prior to
liposome addition. NBD-PE or calcein fluorescent liposomes were
added at a final concentration of 0.25 g/L, and the plate was further
incubated for 2 h 30 min at 37 °C. The plates were rinsed three times
with PBS, fixed with PFA 3.7% in PBS for 10 min, and then rinsed
three more times with PBS. Finally, the plates were visualized by using
an AxioObserverZ.1 (Zeiss, Oberkochen, Germany) epifluorescence
microscope.
The fluorescence signal was quantified by calculating a corrected

total cell fluorescence (CTCF) parameter by using ImageJ software.
The cell surface was delimited, and the intensity of pixels contained in
the cell was summed. The resulting total cell fluorescence was divided
by the area occupied by the cells to obtain a mean cell light density.
CTCF was obtained after equalization of the mean cell light density
against the mean density of background readings in the same field of
view, following eq 2.

= −CTCF mean cell density mean background density (2)

For each cell line/liposome composition couple, the CTCF was
calculated on a total of 30 cells, spread over six independent cell
culture wells. To allow further comparison between cell lines, results
were expressed as a percentage of targeting, with the strongest
interaction corresponding to 100% targeting. Data followed a normal
distribution. The Student’s t test was used to analyze the data. Results
were expressed as mean ± standard deviation and were considered
significant when p < 0.05 (∗) and highly significant when p < 0.01
(∗∗).

■ RESULTS

Design of Liposomes of Controlled Membrane
Fluidity. To target cancer cell membranes, liposomes covering
a wide range of membrane fluidity were prepared as detailed in
Table 1. For all liposome preparations, 20 mol % of fusogenic
lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine)
was used to favor membrane fusion mechanisms between
liposomes and plasma membranes. The membrane order
degree (membrane fluidity) was dictated by the remaining
80%, which were constituted of phosphatidylcholines present-
ing various acyl chain lengths and degrees of unsaturation.
DSPC, DPPC, and DMPC are phospholipids with saturated
chains (18, 16, and 14 carbons, respectively). These
preparations were denoted as DS, DP, and DM. POPC is a
phospholipid with a saturated 16-carbon and an unsaturated
18-carbon chain (PO preparation); DOPC and DLPC possess
two unsaturated 18-carbon chains with one and two double
bonds, respectively (DO and DL preparations).
To ensure that the membrane composition range translated

in a membrane fluidity range at 37 °C, the degree of
membrane ordering (fluidity) was quantified by using an in-
house Laurdan derived sensitive to membrane polarity,
inserted in the liposome membrane (Dioll, patent pending
EPO19306175.1). This probe spontaneously inserts in the
bilayer, and its fluorescence emission is sensitive to the
viscosity of its environment (e.g., Dioll inserted in DMPC
liposomes shifted its maximum emission fluorescence (Figure
S1) from 440 nm at low temperature (gel state) to 490 nm
(liquid crystalline state)). A generalized polarization (GP)
parameter can be calculated from the spectra as described in
the Experimental Section (eq 1). GP evolution as a function of
temperature presents an inflection point around 24 °C, which
is in line with Tm values characteristic from DMPC (Figure
S1). In our case, we used the fluorescence spectra of Dioll
(Figure S2) and the resulting GP parameter to quantify the
fluidity state of the six liposome preparations used (Figure 1)
at 37 °C.

At 37 °C, membranes of DL and DO liposomes made of
phospholipids with long and unsaturated acyl chains were in a
fluid state as indicated by the negative GP values of −0.36 ±

0.04 and −0.34 ± 0.02, respectively. Membranes of PO and
DM liposomes reached a more rigid but still fluid state, as
revealed by the higher but still negative GP values of −0.21 ±

0.01 and −0.11 ± 0.03, respectively. Membranes of DP and DS
liposomes were at a more rigid state as shown by GP positive
values of 0.27 ± 0.03 and 0.47 ± 0.04, respectively. As
expected, the fluidity state of the liposomal membrane depends
on the lipid chain length and the acyl chain degree of
unsaturation and was quantitatively evaluated by the GP value
(Figure 1).
To check the quality of the preparation in view of in cellulo

use, the size and polydispersity of liposomes were measured
(Figure 2a). Except DS, all liposome preparations showed an
average size between 120 and 160 nm, constant for 4 weeks at
least, with a rather low polydispersity index (PDI) and a typical
size distribution histogram showing a single peak. For the very
rigid DS preparation, two populations are present on the size
distribution histogram: a population with an average diameter
of 160 nm, which is consistent with that evidenced for PO
liposomes (Figure 2d), and another population with a larger
size, higher than 1 μm (Figure 2e). This results in a high PDI
value (0.4). Yet, even for this more disperse preparation, the
population of nanoparticles with a diameter lower than 200 nm
was systematically present in the preparation for 4 weeks.
These findings were confirmed by Cryo-TEM analysis (Figure
2b,c) which show typical unilamellar vesicles of 100−200 nm.
No micrometer-sized vesicles were observed. We can attribute
the peak situated at 1 μm on the size histogram of DS
liposomes to vesicle aggregation in this rigid preparation.
The ζ-potential measurements showed a slightly negative

surface potential around −10 mV, which can be attributed to
the presence of the heads of PC groups which are oriented
through the external water phase. This has been demonstrated
also for other PC-based nanosystems.49−51 This value is lower
than that obtained for liposomal carriers containing positively
charged components (DOTAP).52 Even though the liposomes
were made of zwitterionic lipids such as PC and PE, the global
surface charge was not neutral: the charge delocalization at the
lipid headgroup creates weak charge repulsion forces between
liposomes, preventing them from coalescing or fusing into
larger vesicles over the course of 4 weeks.
Calcein was loaded in the six liposome preparations, and

calcein fluorescence intensity was plotted as a function of the

Figure 1. Lipid composition dictates liposome fluidity. GP values are
calculated for each liposome composition as mean ± SD of at least
three independent experiments at 37 °C.
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liposome preparation after removal of excess molecules by size
exclusion chromatography (Figure S3). All liposome prepara-
tions encapsulated the fluorophore, but fluid liposomes such
as DL and DO preparations were the most efficient.
Liposome Fluidity and Active Cell Targeting. The

selective interaction of liposomes modulated by their
membrane fluidity was tested on four cell lines chosen as
models of human prostate cancer: WPMY-1, a nontumor
control; LNCaP, lymph node hormone-sensitive low-aggres-
siveness metastasis; C4-2B, hormone-independent bone meta-
stasis of intermediate aggressiveness; and PC-3, highly
aggressive bone metastasis.53

To monitor the liposome−cell interactions, nitrobenzox-
adiazole-grafted DOPE (NBD-PE), a fluorescent lipid, was
embedded in the liposomal lipid bilayer at a 2% molar ratio.
The liposome preparations were incubated with adherent cells,
and the internalization was followed by epifluorescence
microscopy (Figure 3a). Liposome stability in the cell culture

medium was checked with calcein-leakage experiments (Figure
S4), and all the preparations used were found to be stable over
several hours in cell culture medium supplemented with FBS.
The extent of the interaction was quantified by calculating the
corrected total cell fluorescence (Figure 3b). The interaction
pattern was different for each cell line. For the control WPMY-
1 cells, an efficient targeting was achieved with the most rigid
DS liposomes. Of note, DA liposomes (composed of 78% of
DAPC (C20:0), 20% DOPE and 2% NBD-PE) also strongly
interacted with WPMY-1, but not with PC-3 cells, which
confirmed that control cells preferentially interact with rigid
liposomes. The fluorescence intensity quantified on fluores-
cence images of WPMY-1 cells incubated with DA liposomes
was lower than that obtained for DS liposomes (Figure S5),
which indicated that an optimal composition for WPMY-1
targeting was DS. LNCaP cells were targeted by DM, PO, DO,
and, more marginally, DL liposomes. C4-2B cells interacted
with PO and DM and showed a weaker signal with DO and

Figure 2. Monodisperse liposomes show a good stability over 4 weeks. (a) Liposome average size in blue and polydispersity index (PDI) in red.
Plot of representative means (±SD) of three independent experiments per liposome preparation over the course of 4 weeks. Isolated PO (b) and
DS (c) liposomes visualized by Cryo-TEM. Scale bars: 200 nm. Size distribution plots of PO (d) and DS (e) liposomes.
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DL. PC-3 cells strongly interacted with DO and PO
preparations and more modestly with DM and DL; none of
the metastatic cell lines showed an interaction with the rigid
DP and DS liposomes. Hence, the difference in the signal
obtained shows the influence of the liposomal lipid
composition on the targeting pattern: liposomes primarily
made of fluid-state lipids target the tumor cells, while
liposomes made of rigid-state lipids target the control cells.
Among fluid liposomes, if we look more precisely to

behavior DM liposomes discriminate PC-3 cells from C4-2B
cells (p = 0.045) and LNCaP cells (p = 0.014).
Cell Viability and Cytotoxicity of Liposomes. To check

the biocompatibility of the liposome in a 2D cell culture
model, we performed cytotoxicity and cell viability assays on
the four cell lines immediately after 2 h 30 min treatment with
liposomes to check for immediate toxicity or 72 h post-
liposome treatment to exclude toxicity effects through
activation of metabolic pathways. Figure 4a shows the cell
viability evaluated by the MTT metabolic test after 72 h
incubation, which was very little affected by liposome

incubation. A similar conclusion was drawn from LDH
cytotoxicity test: no LDH leakage was observed after
incubation with liposomes (Figure 4b). No toxic effects were
observed after 2 h 30 min incubation with liposomes (Figure
S6). Therefore, the prepared liposomes make excellent drug
carriers, as they have no toxic effect on cells.

Liposome−Cell Interaction Mechanism. The mecha-
nism of the liposome−membrane interaction was investigated
by using two fluorophores: NBD-PE, a fluorescent lipid
integrated into the liposomal membrane (Figure 5a), and
calcein, a fluorescent probe encapsulated in liposomes (Figure
5b). Based on the targeting patterns presented in Figure 3, two
liposome compositions were tested: POPC/DOPE 80:20
(PO), as it interacts with the three cancer cell lines, and
DSPC/DOPE 80:20 (DS), as it interacts with the control cell
line.
The results revealed a strong difference in the fluorescence

distribution inside the cell depending on the encapsulated
fluorophore. Liposomes incorporating NBD-PE led to a
fluorescent signal localized at the cell membrane (Figure 5a).
Yet, at the microscope resolution, it is difficult to see whether
the fluorophore is distributed inside the plasma membrane or
in the membrane of liposomes attached to the cells. We can,
however, exclude an endocytosis pattern in which liposomes
and fluorophore would be distributed in the inner compart-
ments of the cell (endocytic vesicles, endosomes, etc.). The
NBD-PE distribution pattern was therefore indicative of either
liposome adhesion to the cell membrane or liposome fusion
with the membrane and consequent distribution of the
fluorophore in the plasma membrane (Figure 5a). To
discriminate between these two possibilities, we used calcein-
loaded liposomes. In this case, calcein is a hydrophilic
fluorophore which is expected to be encapsulated in the
inner compartment of the liposomes. Indeed, this fluorophore
is readily released upon liposome-burst experiments.54 After
incubation with calcein-containing liposomes, the fluorophore
was mainly distributed in the cytoplasm (Figure 5b).
Therefore, calcein-containing liposomes either are internalized
through endocytosis pathways or release their internal content
in the cytoplasm upon membrane fusion processes. Yet, in the
case of vesicle internalization the two fluorophores are
expected to colocalize. This is not the case, as the two
fluorophores show different distributions inside the cell: NBD-
PE, which is of hydrophobic nature, remains at the cell
membrane, whereas calcein, which is hydrophilic, is distributed
in the cytoplasm. Therefore, among the main mechanisms
proposedendocytosis, membrane fusion, or liposome
adhesion to the cell membranethe results supported a
membrane fusion process leading to the distribution of the
fluorescent lipid in the cell membrane and the release of
calcein in the cytosol.

■ DISCUSSION

The process of tumor development modifies in a major way all
cellular physiological pathways.55 This leads to many
adaptations that enable tumor cells to survive, proliferate,
and invade surrounding tissues. Among these, changes in
membrane lipid composition resulting in membrane fluidity
modifications have been widely reported.21,27−29 In this study,
we used membrane fluidity modulations as a new way to
selectively target tumor cells with liposomal carriers. We
prepared liposomes using PCs with various acyl chains to
obtain a membrane fluidity scale ranging from rigid to fluid, as

Figure 3. Lipid composition dictates cell uptake of liposomes. (a)
Epifluorescence microscopy images of the interaction of WPMY-1,
LNCaP, C4-2B, and PC-3 cells with six liposome preparations
detailed in Table 1 after 2 h 30 min incubation. Scale bars: 20 μm. (b)
Fluorescence intensity quantification using the CTCF method. Plot of
means (±SD) of 30 individual cell measurements spread over six
independent assays. Results expressed as a percentage of targeting,
with the strongest interaction corresponding to 100% targeting. *p <
0.05 and **p < 0.01 (Student’s t test).
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reported by a polarity-sensitive probe (Figure 1). Except for
the DS preparation, which was very rigid and in which the Tm

difference between DSPC and the much lower melting DOPE
may induce significant demixing, the liposome preparations
used were monodisperse and stable for several weeks (Figure
2). By tracking the fluorescent lipid NBD-PE incorporated in
the liposome membrane, we investigated the interaction of
these liposomes with a nontumoral (control) and three
different tumor cell lines and show that prepared liposomes
achieve specific targeting of tumor or control cells solely on the
basis of their lipid composition (Figure 5). The intrinsic
membrane fluidity of the liposomes seems therefore to be
determinant for liposome−cell interaction specificity. Yet, as
discussed above, DS liposome preparation shows a high
dispersity in terms of size and may contain a large proportion
of larger particles; therefore, a size effect cannot be excluded. A
through study of the influence of the size of liposomes should
be considered in the future to better understand the fusion
mechanism and the cell specificity.
Moreover, the interaction of fluid-state liposomes with

tumor cells showed a different signal between the low-
aggressive LNCaP and C4-2B cells, on one hand, and the
highly aggressive PC-3 cells on the other hand. While DM
liposomes interact strongly with LNCaP and C4-2B cells, they

interact less efficiently with PC-3 cells. This suggests that the
fluidity of the liposomal membrane is, along with liposome
size, surface charge, and hydrophilicity, one of the
physicochemical parameters that affect liposome uptake by
promoting liposome−cell interactions and the subsequent
liposome fusion with the plasma membrane. It is interesting to
notice that fluid liposomes were the most selective not only in
terms of uptake but also in terms of amount of fluorophore
encapsulated (Figure S3).
To explore the mechanism of liposome−cell membrane

interaction, we used liposomes embedding NBD-PE in the
lipid bilayer or encapsulating calcein in the hydrophilic core to
follow the internalization profile. The NBD-PE fluorescence
profile was restricted to the cell membrane whereas calcein
showed a cytoplasm diffuse pattern. Considering three possible
mechanisms of interactionadhesion of liposomes to the cell,
fusion of the liposome with the cell plasma membrane, and
internalization through endocytosisthe profile obtained with
both NBD-PE- and calcein-loaded liposomes (Figure 5)
matched the expected signal for a liposome−cell membrane
fusion. This points out that the internalization is mainly based
on fusion phenomena. This fusion mechanism, which appears
controlled by the match of the membrane fluidity between the
cell and the liposomes membranes, is probably favored by the

Figure 4. Liposomes do not affect cell viability and show no cytotoxic effect. (a) Cell viability quantification, assessed on plated cells with the MTT
assay 3 days after liposome treatment. Results expressed as a percentage of cell viability relative to an untreated control corresponding to 100%
viability. (b) Cytotoxicity quantification, assessed on the same cells than (a) with the LDH assay. Results expressed as a percentage of cell death
relative to an untreated control corresponding to 0% toxicity and a control treated with 10% Triton X-100 corresponding to 100% toxicity.
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presence of DOPE, a fusogenic lipid in the liposome
membrane, as its conical geometry promotes the formation
of inverted hexagonal intermediate structures that lead to the
formation of fusion pores.56 For drug delivery purposes, such a
mechanism is very promising, since fusion leads to the release
of the entrapped drug directly in the cytosol of the targeted
cells. Indeed, liposomes adhering to the cell surface exhibit
poor drug release, and endocytic pathways lead to the early
and late stages of endosomes that fuse with lysosomes, often
leading to a lower activity of the encapsulated drug.
Additionally, cytotoxicity and cell viability assays revealed no

toxic effect of liposomes on all cell lines tested (Figure 4). This
highlights the drug delivery potential of these liposomes, as
they specifically target tumor cells while remaining nontoxic to
the control cells. It must be stressed here that instead of relying
on the difference in membrane carbohydrate or protein
composition usually used in current targeting strategies, these
liposomes achieve specific targeting based on membrane
fluidity differences.
Membrane fluidity is one of the key parameters for

membrane fusion, since it determines the mobility of lipids,
proteins, and water molecules that cooperate in the

Figure 5. Two fluorophore interaction pattern highlights a fusion mechanism. (a) Predicted and experimental interaction patterns for liposomes
incorporating NBD-PE in the liposomal membrane. Epifluorescence images of WPMY-1 (1), LNCaP (2), C4-2B (3), and PC-3 (4) cells, incubated
with liposomes containing 2% of NBD-PE. (b) Predicted and experimental interaction patterns for liposomes encapsulating calcein.
Epifluorescence images of WPMY-1 (1), LNCaP (2), C4-2B (3), and PC-3 (4) cells, incubated with liposomes encapsulating 500 μM calcein.
Images shown are representative of three independent measurements on each cell line. In both cases, cells were incubated with the liposome
composition that exhibited maximal interaction, i.e., DS for WPMY-1 cells and PO for LNCaP, C4-2B, and PC-3 cells. Scale bars: 20 μm.
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reorganization and the assembly required and induced by the
membrane fusion.57 As it is directly dependent on the
membrane lipid composition, any modification of the lipid
metabolism results in a membrane fluidity change. Many
studies found a link between membrane lipid composition,
membrane physicochemical state, and pathologies, especially in
the case of cancers where higher unsaturation of acyl chains is
associated with an elevated membrane fluidity and metastasis
aggressiveness.21,58 A previous study of PC-3 and WPMY-1
cells, the two extremes in the range of aggressiveness of the cell
lines used, revealed that the membrane of the highly aggressive
and metastatic PC-3 cells is less viscous and more prone to
deformation than that of the control WPMY-1 cells.32 In this
study, we found that the liposome−cell interaction is sensitive
to the membrane lipid composition, with fluid-state liposomes
targeting the flexible and metastatic cells, whereas rigid-state
liposomes target the stiffer control cells. In addition, we
determined that the interaction mechanism is mainly based on
a membrane fusion process, which supports the idea that
targeting relies on a difference in the physicochemical
properties of the membrane and, in particular, on differences
in membrane fluidity.
The role of lipid composition in liposome design has been

widely studied. However, until now, it was generally
recognized as a parameter affecting the global liposome
stability and the drug encapsulation efficiency.59 A recent
study shows that tailoring the lipid composition of nano-
particles modulates their cellular uptake in triple negative
breast cells (4 T1).60 In addition to the lipid headgroup, acyl
chain length and unsaturation also largely influence cellular
uptake in triple negative 4 T1 breast cancer cells, with an
increased uptake for liposomes constituted of C18:1 acyl
chains. Moreover, membrane fluidity of the liposomes seems to
play an important part in determining the liposome uptake as a
major effect of cholesterol, a modulator of membrane fluidity
of the liposomes, is observed. In our case, POPC and DOPC
liposomes, which contain C18:1 chains, largely and selectively
interact with prostate tumor cell lines. Yet, intrinsic differences
between breast and prostate cancer cell lines seem to exist in
terms of membrane composition and/or metabolic pathways
and determine liposome uptake. No uptake was measured for
long and saturated chains as C18:0 and C16:0 in prostate
cancer cell lines, and cell viability was affected by C12:0-
containing liposomes (not shown), but not by C14:0 (DM)
liposomes (Figure 4) as it was the case for breast cancer cells.
Two other previous studies also found that the lipid
composition of a nanoparticle could affect its interaction
with cells.61,62

In the present report, we show that targeting can be achieved
by modulating the liposome physical state. Yet, the use of
liposomes as drug carriers cannot be discussed without
considering factors related to circulation in vivo, such as
blood protein binding, interaction with circulatory cells, or
cholesterol transfer. Tailoring lipid composition by modulating
particle global charge may yield hydrophilic vesicles, and thus
limit plasma protein binding, while maintaining fluidity state.
Studies of association of plasma proteins with liposomes have
also shown that liposome membrane properties such as its
fluidity state, above or below lipid melting points, determines
particle circulation properties, as plasma protein binding
depends on the fluidity state of the membrane.38,39 Altogether,
fine-tuning of the lipid composition of carriers is a promising
strategy to promote specific drug delivery. These findings shed

new light on liposome membrane composition, which in turn
modulates membrane fluidity, by highlighting its role as a key
targeting parameter.

■ CONCLUSION

Selective drug delivery strategies is a Holy Grail in cancer
therapy. Here, we report for the first time a valid alternative
targeting based on liposome membrane fluidity. Using this
approach, we can easily tune liposomes to promote liposome
fusion with the target membrane. This strategy has been
proved successful in selective targeting of four prostatic cell
lines. Unlike conventional approaches, it does not rely on
proteins or carbohydrates functionalization and constitutes a
cost-effective alternative to promote membrane fusion and
consequently avoid endocytosis and lysosomal degradation.
Altogether, the carrier’s ability to target a particular cell type
according to its membrane fluidity and its fusion with the
target membrane are assets that should make it possible to
reduce the doses of active ingredients injected into the body to
limit the unwanted side effects of chemotherapy.
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Supramolećulaires, ICBMS UMR 5246, CNRS, Univ Lyon,
Universite ́ Lyon 1, Lyon, France

Loïc J. Blum − Institut de Chimie et Biochimie Molećulaires et
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