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HADAMARD (EDMH)
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Bordeaux, Université de Bordeaux Rapporteur

Siddhartha Mishra
Professeur des Universités, Seminar für Angewandte
Mathematik, ETH Zürich Examinateur
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Abstract

This thesis addresses two main objectives: the modelling of compressible multiphase
and multicomponent flows, and the design of novel numerical schemes for their accurate
simulation.

In the first part of this work, we propose a novel Baer-Nunziato-like hyperbolic model
for reactive non-equilibrium gas-liquid flows, where the governing equations account for
mass transfer, interfacial drag, mechanical nonequilibrium and thermal transfer between
the phases. The exchange of information between the phases is governed my the material
interface which are defined using general closure laws. The model is Galilean invariant and
entropy dissipative and maintain these properties at compete non-equilibrium.

We, then, focus on the design of novel high-order numerical schemes for hyperbolic mul-
tiphase and multicomponent flows, involving nonconservative products. Here, the discretiza-
tion framework is based on the discontinuous Galerkin spectral elements method (DGSEM),
which involves the collocation of quadrature and interpolation points. The DGSEM uses
the summation-by-parts operators, with simultaneous approximation terms (SBP-SAT), in
the numerical quadrature for approximating the integrals over discretization elements. We
use the SBP-SAT operators to modify the volume integral over cell elements and replace the
physical fluxes with entropy conservative fluxes in fluctuation form, while applying entropy
stable fluxes at the cell interfaces. This modification allows us to establish a semi-discrete
entropy inequality, for a given entropy function, while still ensuring high-order accuracy of
the numerical scheme. For high-order integration in time, we rely on explicit strong-stability
preserving Runge-Kutta schemes that retain the properties of first order time integration
schemes.

We, first, apply the semi-discrete DGSEM to the discretization of the homogeneous
Baer-Nunziato model where we derive entropy conservative and entropy stable fluxes for the
model. We show that these fluxes also satisfy the Abgrall criterion and preserve the discrete
kinetic energy. The numerical scheme guarantees the positivity of the cell-averaged solutions,
which is ensured by imposing conditions on the numerical parameters. The positivity of the
solution is further transferred to nodal values through the use of a posteriori limiters.

The DGSEM is, further, applied to the discretization of the gamma-based multicompo-
nent model of Shyue (1998). Here, we propose a novel high-order entropy stable scheme
that enables a sharp resolution of material discontinuities, while also maintaining high-order
accuracy and entropy stability. We derive contact-preserving numerical fluxes and entropy
conservative fluxes that are applied in the volume integral based on the values of a troubled-
cell indicator function, while at the cell-interfaces we derive a HLLC approximate Riemann
solver. The numerical scheme resolves shock solutions accurately, preserves uniform states
across contact discontinuities and maintains positivity of the cell-averaged solutions.A pos-
teriori limiters are further applied that enforce positivity at nodal values.
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Résumé

Cette thèse a deux objectifs principaux : la modélisation des écoulements compressibles
multiphasiques et multi-composants, et la conception de nouveaux schémas numériques pour
leur simulation d’ordre élevé.

En ce qui concerne la modélisation des écoulements multiphasiques, nous nous concen-
trons sur le modèle de non-équilibre de type Baer-Nunziato et proposons un nouveau modèle
pour les écoulements impliquant un mélange réactif de gaz et de liquide. Notre modèle est
hyperbolique et prend en compte le transfert de masse, la traînée interfaciale, le déséquilibre
mécanique ainsi que le transfert thermique entre les phases. Le modèle est invariant par
transformations galiléennes et dissipe l’entropie.

En ce qui concerne la conception de nouveaux schémas pour les écoulements compress-
ibles, nous nous concentrons sur les modèles hyperboliques d’écoulement multiphasiques et
multi-composants sous forme non-conservative. Nous choisissons comme cadre de discréti-
sation la méthode des éléments spectraux de Galerkin discontinus (DGSEM), basée sur la
collocation des points de quadrature et d’interpolation. La méthode DGSEM utilise des
opérateurs de sommation par parties (SBP) dans la quadrature numérique pour approcher
les intégrales sur les éléments de discrétisation. Dans notre cas, nous modifions l’intégrale
sur les éléments de la cellule en remplaçant les flux physiques par des flux aux fluctuations
conservant l’entropie tout en appliquant des flux dissipant l’entropie aux interfaces du mail-
lage. Cela nous permet d’établir un schéma semi-discret qui est précis à l’ordre élevé et
qui satisfait à une inégalité d’entropie semi-discrète. Pour l’intégration temporelle d’ordre
élevé, nous nous appuyons sur des schémas explicites de Runge-Kutta préservant la stabilité
et conservant les propriétés des schémas d’intégration temporelle au premier ordre.

Nous appliquons ce schéma à la discrétisation du modèle homogène de Baer-Nunziato, où
nous dérivons des flux conservant et dissipant l’entropie mathématique pour le modèle. Nous
montrons également que la conception des flux numériques préserve formellement l’énergie
cinétique au niveau discret. En analysant le schéma discret, nous imposons des conditions
sur les paramètres numériques qui restreignent le pas de temps et garantissent la positivité
des solutions moyennées par cellule. La positivité de la solution moyenne de la cellule est
renforcée aux valeurs nodales en appliquant des limiteurs.

Le schéma DGSEM est également appliqué pour la discrétisation du modèle multi-
composants de Shyue (1998) pour des lois d’état de type gaz raidis. Nous proposons ici
un nouveau schéma d’ordre élevé qui dissipe l’entropie et qui permet une résolution précise
des discontinuités matérielles. À cette fin, nous dérivons des flux dissipant l’entropie et
des flux préservant les contacts qui sont appliqués dans l’intégrale de volume, sur la base
d’un senseur de chocs. Pour les flux numériques à l’interface, nous concevons un solveur de
type HLLC pour le modèle multi-composants. Nous montrons que le schéma DG satisfait à
inégalité d’entropie semi-discrète pour les solutions de choc, préserve les profils uniformes à
travers les contacts et les interfaces matérielles et maintient la positivité de la solution.
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Chapter 1
Introduction

1.1 Motivation

The study of compressible multiphase flows finds use in several engineering and phys-
ical problems. Historically, there are numerable evidences to them being used to study
geophysical flows involving sediments and clouds, and fluid flows through porous media.
Approximately, around the middle of the twentieth century, the modelling and simulation of
multiphase models started gathering interest from the nuclear and the aeronautical indus-
tries. Typically, in the nuclear industry, the targeted applications have been to investigate
the normal operating mode of pressurized water reactors and incidental configurations, such
as the departure from nucleate boiling, the loss of coolant accident (LOCA) or the re-flooding
phase following a LOCA. While in the aeronautical and aerospace industries, compressible
multiphase models were used to study the complex flows physics occurring inside jet engines
or through the propulsion system of re-entry space vehicles. In the particular example of a
jet engine, multiphase flows can be found in the combustion chamber, where air from the
compression phase is received and mixed with dispersed aviation fuel to create a combustible
air-fuel mixture which is then ignited. The unburnt mixture and the burnt gaseous prod-
uct then travels through the turbine and, finally, exit through the nozzle. This motion of
the fluid mixture through the different stages of the jet engine is a complex phenomenon,
where the fluid mixture experiences compression, expansion, ignition, interfacial drag, heat
and mass transfer. A thorough understanding of such complex flows by means of physical
experiment can entail heavy monitory expenses and resources. Thus creating a need for
mathematical models and design of numerical schemes which enable the study of complex
flow physics by means of mathematical analysis and computer simulations.

In this thesis, we study compressible multiphase flows through diffuse interface models,
examples of which can be found in [4, 7, 10, 99, 101, 119, 122]. Diffuse interface models
aim to resolve the interface, between the involved phases or species, numerically in diffused
surrounding zones. One main challenge of this approach lies in the fact that the computation
of interfaces separating two immiscible phases with different thermodynamics has no physical
viscous regularization, as seen in shock-capturing schemes. The model may contain external
driving forces, also known as source terms, which usually govern the disequilibria between the
phases (or species). These disequilibria terms can be related to compaction, heat transfer,
interfacial drag or mechanical transfer. Diffuse interface models can be further categorized

1
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into interface-based models and multicomponent (or multispecies) models. In the case of
interface-based models, each phase is assigned its own set of governing equations and the
phases interact with each other through the material interface. Such models also provide
an explicit and clean treatment of the material interface which is necessary as an interface
is the physical location where the flow parameters are close to the limits of validity of the
equation of state. In contrast, a multicomponent model is based on the mixture quantities of
the flow. Here the system of equations do not explicitly treat the material interface and one
may either consider gas mixture where all the species occupy the same volume, or immiscible
mixture where the components occupy different volumes in a given control volume. However,
in contrast to interface-based models, the number of equations in multicomponent models
may not depend on the number of components. This makes them highly computationally
efficient.

The governing equations of multiphase models are, usually, represented by a system of
first order nonlinear hyperbolic partial differential equations (PDEs), for which the Cauchy
problem lead to breakdown of classical solutions in finite time, even for sufficiently smooth
initial data. As a result, global existence of solutions requires working with a class of
discontinuous functions where the system of equations is interpreted in their distributional
sense. We explore these fundamental notions by briefly recalling the mathematical theory
around hyperbolic systems. This in turn will help in better understanding the forthcoming
discussions in this thesis. The main ideas presented here are borrowed from the seminal
works of Lax [88, 89] and from the books by Godlewski and Raviart [61], as well as by
Dafermos [39].

Let us consider a bounded domain Ω ⊆ R𝑑 in 𝑑 space dimensions with Lipschitz boundary
𝜕Ω ⊆ R𝑑−1 and unit outward normal n ∈ 𝑆𝑑−1. The production of an external vector valued
quantity u, that takes values in an open set Ω∗ ⊂ R𝑁 , within the domain, is given by the
following balance law

𝑑

𝑑𝑡
∫
Ω
u(x, 𝑡)𝑑x + ∫

𝜕Ω
f(u) ⋅ n𝑑Γ(x) + ∫

Ω
c(u)∇u𝑑x = ∫

Ω
s(x, 𝑡)𝑑x, 𝑡 > 0, (1.1)

where f(u) ∶ Ω∗ → R𝑁×𝑑 is the called the flux function, that acts through the boundaries of
the domain, c(u)∇u ∶ Ω∗ → R𝑁 is the nonconservative product and s(x, 𝑡) ∶ Ω∗ → R𝑁 is the
vector of driving forces, that is also known as the source term. Note that both f(u) and c(u)
are smooth functions. In the particular case where the source terms and the nonconservative
product are absent, c(u)∇u ≡ s(x, 𝑡) ≡ 0, the quantity u is said to be conserved. The
application of the divergence theorem then leads to the system of conservation laws for
𝑁−variables

𝜕𝑡u +∇ ⋅ f(u) = 0, x ∈ R𝑑, 𝑡 > 0. (1.2)

The system (1.2) is said to be hyperbolic if the matrix valued function A(u) = ∑𝑑𝑗=1
𝜕
𝜕u f𝑗(u)𝑛𝑗 ∶

Ω∗ ∋ u↦ R𝑁×𝑁 for smooth solutions of (1.2) that admits real eigenvalues 𝜆1(u), 𝜆2(u),⋯, 𝜆𝑁(u)
and corresponding linearly independent (right) eigenvectors r1(u), r2(u),⋯, r𝑁(u), such
that

A(u)r𝑘(u) = 𝜆𝑘(u)r𝑘(u), u ∈ Ω∗, 1 ≤ 𝑘 ≤ 𝑁. (1.3)

As a result, hyperbolicity of a system of PDEs can be interpreted as the propagation of
𝑁 distinct weak waves in space at (finite) speeds corresponding to the eigenvalues, also
known as characteristic speeds. If the eigenvalues are distinct then (1.2) is said to be strictly
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hyperbolic.

Definition 1.1.1. The 𝑘 − 𝑡ℎ characteristic field is said to be genuinely nonlinear if

𝐷𝜆𝑘(u) ⋅ r𝑘(u) ≠ 0, ∀u ∈ Ω∗,

and it is said to be linearly degenerate if

𝐷𝜆𝑘(u) ⋅ r𝑘(u) = 0, ∀u ∈ Ω∗,

where 𝐷𝜆𝑘(u) ⋅ r𝑘(u) is the directional derivative of 𝜆𝑘(u) in the direction r𝑘(u).

If (1.2) is provided with sufficiently smooth initial conditions

u(x,0) = u0(x), (1.4)

then we arrive at the Cauchy problem for (1.2).

Notion of weak solutions for conservation laws

Hyperbolic systems may develop discontinuous solutions in finite time even for suffi-
ciently smooth initial data, where the notion of the derivative becomes too strong. We
illustrate this loss of regularity by considering the inviscid Burger’s equation in single spa-
tial dimension

𝜕𝑡𝑢 + 𝜕𝑥 (
𝑢2

2
) = 0, (1.5a)

𝑢(𝑥,0) = 𝑢0(𝑥) =
1

1 + 𝑥2
. (1.5b)

For t > 0, but small, the solution can be found by the method of characteristics. Indeed,
if u is smooth, (1.5a) is equivalent to

𝜕𝑡𝑢 + 𝑢𝜕𝑥𝑢 = 0. (1.6)

Geometrically, this means that the directional derivative of 𝑢 along the vector (1, 𝑢) vanishes.
Therefore 𝑢 must be constant along the characteristic lines in 𝑥 − 𝑡 plane:

𝑡↦ (𝑥 + 𝑡𝑢0(𝑥), 𝑡) = (𝑥 +
𝑡

1 + 𝑥2
, 𝑡) . (1.7)

These lines do not intersect for 𝑡 < 𝑇 = 8⇑
⌋︂

27, and the solution of the Cauchy problem is
thus given by

𝑢(𝑥 +
𝑡

1 + 𝑥2
, 𝑡) =

1

1 + 𝑥2
. (1.8)

However, for 𝑡 > 𝑇 the characteristic lines start interacting and the map

𝑥↦ 𝑥 +
𝑡

1 + 𝑥2
, (1.9)

is no longer one-to-one. Hence (1.8) does not define a single-valued solution for the Cauchy
problem (1.5).
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Note that a classical solution is a Lipschitz continuous function that satisfies (1.2) almost
everywhere in Ω∗. However, it is clear from our concise demonstration that global solutions
cannot be defined in a classical sense, hence we interpret (1.2) in the sense of distributions.

Definition 1.1.2. Let u0(x) ∈ 𝐿1
𝑙𝑜𝑐(R

𝑑) be a vector-valued initial condition that takes values
in Ω∗ and 𝜑(x, 𝑡) ∈ 𝐶1

0(R𝑑 × (︀0,+∞))𝑁 be a test function, then a function u(x, 𝑡) is a weak
solution to the Cauchy problem (1.2),(1.4) if it satisfies the following relation in the sense
of distributions

∫

∞

0
∫
Ω
(u ⋅ 𝜕𝑡𝜑 + f(u) ⋅ ∇𝜑)𝑑x𝑑𝑡 + ∫

Ω
u0(x) ⋅𝜑(x,0) 𝑑x = 0, (1.10)

for all 𝜑(x, 𝑡) ∈ 𝐶1
0(R𝑑 × (︀0,+∞))𝑁 .

Alternatively, u(x, 𝑡) is a weak solution if it is piecewise differentiable over submani-
folds of R𝑑 × (︀0,+∞), with normals (n,−𝜎) ∈ 𝑆𝑑−1 × R, and satisfy (1.2) at its points of
differentiability, while satisfying the Rankine-Hugoniot jump condition

n ⋅ Jf(u)K = 𝜎JuK, (1.11)

at each surface of discontinuity.

Here, the terms JuK ∶= u+ − u− denotes the jump operation and

u±(x, 𝑡) ∶= lim
𝜖↓0,𝜖>0

u(x(𝑡) ± 𝜖n, 𝑡 ± 𝜖𝜎),

are the traces of u at the surface of discontinuity.

We now show that the distributional interpretation of the conservation law (1.2) is too
weak and does not lead to uniqueness. As an example, we again consider the Burger’s
equation (1.5a) and complement it with Riemann initial data

𝑢0(𝑥) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

0, 𝑥 < 0,

1, 𝑥 > 0.
(1.12)

This leads to the Cauchy problem emanating piecewise constant data on the 𝑥− 𝑡 plane
that are separated by jump discontinuities. This is called as a Riemann problem. A contin-
uous solution of th Riemann problem is given by

𝑢1(𝑥, 𝑡) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

0, 𝑥 < 0,

𝑥⇑𝑡, 0 ≤ 𝑥 < 𝑡,

1 𝑡 ≤ 𝑥.

(1.13)

However, using the Rankine-Hugoniot conditions (1.11), one can easily come up with
more weak solutions, such as

𝑢2(𝑥, 𝑡) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

0, 𝑥 < 𝑡⇑2,

1, 𝑥 ≥ 𝑡⇑2
and 𝑢3(𝑥, 𝑡) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

0, 𝑥 < 𝑡⇑4,

1⇑2, 𝑡⇑4 ≤ 𝑥 ≤ 3𝑡⇑4,

1, 𝑥 ≥ 3𝑡⇑4,
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where 𝑢2 and 𝑢3 trivially satisfy the conservation law (1.5a) in regions where it is constant,
whereas along the the lines of discontinuity 𝑥 = 𝑡⇑2 and 𝑥 = 𝑡⇑4, 𝑥 = 3𝑡⇑4, respectively, the
condition (1.11) holds, with shock speeds 𝜎 = 1⇑2 and 𝜎 = 1⇑4, 𝜎 = 3⇑4, respectively.

From this example, it is evident that additional constraints are needed to guarantee
uniqueness of solution for (1.2), which we describe below.

Mathematical entropy and admissible solutions

Admissible solutions, among weak solutions for (1.2), must satisfy a companion relation
known as the entropy condition. The entropy condition is defined in terms of a convex
entropy function 𝜂(u) ∈ C2(Ω∗,R) and an entropy flux q(u) ∈ C2(Ω∗,R𝑑).

Definition 1.1.3. Let (𝜂(u),q(u)) be an entropy-entropy flux pair and v(u) ∶= 𝜕
𝜕u𝜂(u) be

the entropy variables such that

q𝑗(u)
⊺
= v(u)⊺f′𝑗(u), ∀u ∈ Ω∗, 𝑗 = 1,⋯, 𝑑. (1.14)

Then admissible weak solutions u(x, 𝑡) to the Cauchy problem (1.2), (1.4) must satisfy an
entropy inequality (1.15) for all test functions 𝜑(x, 𝑡) ∈ 𝐶1

0(R𝑑 × (︀0,+∞)) in the sense of
distributions

∫

∞

0
∫
Ω
(𝜂(u)𝜕𝑡𝜑 + q(u) ⋅ ∇𝜑)𝑑x𝑑𝑡 + ∫

Ω
𝜂(u0(x))𝜑(x,0)𝑑x ≥ 0. (1.15)

Note that this entropy condition is useful only if some nontrivial convex entropy function
for (1.2) is known. Furthermore, (1.14) is a system of 𝑁 ×𝑑 linear PDEs for 𝑑+ 1 unknowns
𝜂(u) and q(u). Therefore, in the case of scalar conservation law 𝑁 = 1 in arbitrary spatial
dimensions, any convex function can be considered as the entropy. While for systems 𝑁 > 1,
the entropy-entropy flux pairs can only be determined for 𝑁 = 2 and 𝑑 = 1. For any
system, where 𝑁 > 2 in 𝑑 > 1, the relation (1.14) is overdetermined. Interestingly, however,
hyperbolic systems arising from continuum mechanics are known to be endowed with an
entropy function which satisfies the second law of thermodynamics. A classic example for
such a system is the compressible Euler equations of gas dynamics, where the mathematical
entropy function is usually considered as the negative of the concave physical entropy.

Theorem 1.1.1 (Godunov [62]). Let 𝜂(u) be a strictly convex function, then it qualifies as
an entropy function for the conservation law (1.2) if the 𝑁 ×𝑁 matrix 𝜂′′(u)f′𝑗(u),1 ≤ 𝑗 ≤ 𝑑
is symmetric positive definite.

The entropy condition (1.15) can equivalently be written in the divergence form as

𝜕𝑡𝜂(u) + ∇ ⋅ q(u) ≤ 0. (1.16)

In the case of smooth solutions, (1.16) turns into a conservation law for the entropy function,
while for solutions in the form of shocks the entropy solution is the limit of a vanishing
viscosity. Additionally, it can be said that weak solutions are admissible it they satisfy the
the following entropy jump condition across discontinuities

n ⋅ Jq(u)K ≤ 𝜎J𝜂(u)K. (1.17)
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We end this brief recollection of the theory of hyperbolic conservation laws by comment-
ing on the entropy variable, which appeared in Definition 1.1.3.

Theorem 1.1.2 (Mock [100]). If 𝜂(u) is a strictly convex entropy function then the mapping
u↦ v(u) is one-to-one, and the change of variable u(v) symmetrizes (1.2)

Through the change of variables, the conservation law can be written in terms of the
entropy variables

𝜕𝑡u(v) + 𝜕𝑥f(u(v)) = 0. (1.18)

This system is symmetric in the sense that the matrix u′(v) = (𝜂′′ (u(v)))
−1

is symmetric
positive definite, and f′(u(v)) is symmetric.

Modelling of two-phase flows

One of the pioneering works, in the context of two-phase flows, involves the model
proposed by Baer and Nunziato [7], where the governing equations describe the flow of
a mixture of energetic granular material embedded in gaseous combustion product under
complete disequilibria. Their model was derived by bypassing the discrete nature of separate
phases through the use of averaging techniques from [45, 75]. In single spatial dimension,
the Baer-Nunziato model is a set of seven hyperbolic partial differential equations, where
each phase has its own governing equations for the evolution of partial mass, momentum and
energy, while the phases are coupled through the transport equation for the void fraction.
It must be noted that such models require explicit treatment of the material interface as the
closure of the interfacial variables can significantly impact the well-posedness of the Cauchy
problem, see [115].

In our work, we focus on deriving a Baer-Nunziato-like disequilibrium model for reactive
gas-liquid flows. In a slightly general context, the authors in [115] were the first to propose
a non-equilibrium model for compressible gas-liquid flows. Their model was derived by
applying the averaging technique in [44] to compressible flows, where the authors neglected
the mass and thermal transfer between the phases. This led to numerous works where the
authors have modified the model proposed in [115] to include either mass transfer or thermal
transfer or both, see [43, 53, 56, 92, 97, 117, 118, 120]. Note, however, that even today there
is no general consensus on the choice of the source terms that accurately depicts the physics
of the flow. As a result, in our work we resort to the assumptions made in [10] for the choice
of source terms for reactive mixtures. However, even though there is sufficient freedom in
the choice of the source terms, yet there exists a major constraint which takes the form of the
entropy balance. Essentially, for a convex entropy function, the contribution of the source
terms should lead to an entropy decay. This is particularly difficult when mass transfer is
included in the model, as the difference of the Gibbs free energy between the phases appears
as an additional driving force in the entropy balance [10, 144]. The difficulties are however
not limited to the presence of Gibbs free energy terms, as we show that the entropy balance
is susceptible to change in the inertial frame of reference, and corrective source terms are
necessary in order to achieve Galilean invariance.

Through this thesis, we propose a novel two-phase flow model for gas-liquid reactive
flows that is both Galilean invariant and entropy dissipative. The model exhibits these
capabilities while accounting for disequilibria in chemical transfer, interfacial drag, pressure
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and heat transfer between the phases. To the best of our knowledge, no other model for
reactive two-phase flows exhibits such properties at complete disequilibria.

Nonconservative hyperbolic systems and their numerical
discretization

In the context of designing novel numerical schemes, we focus on the discretization of
compressible multiphase and multicomponent flows, which are governed by nonliear hy-
perbolic . Here we are interested in the Cauchy problem for a one-dimensional nonlinear
nonconservative hyperbolic system of the form

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = 0, 𝑥 ∈ R, 𝑡 > 0, (1.19a)
u(x,0) = u0(x), 𝑥 ∈ R. (1.19b)

An integral form of this equation in 𝑑 space dimensions space has been introduced in (1.1),
however here we only consider the homogeneous system and ignore the source terms. Note
that even though c(u) is assumed to be smooth, u can be discontinuous. This makes
it difficult to meaningfully define the nonconservative product c(u)𝜕𝑥u at the point of
discontinuity using the standard framework of weak solution arising from conservation laws.

To overcome this predicament, LeFloch and collaborators [40] extended the work done on
quasilinear PDEs with discontinuous functions by Volpert [137] to define the weak solution of
nonconservative products as Borel measures on the set where the state vector is continuous,
while at the discontinuities the measure is defined based on a family of Lipschitz paths
connecting the left and right states. LeFloch [90] has also shown that this family of paths
can be derived from a parabolic regularization of (1.19) by means of smooth viscous profiles.
Indeed, the family of paths depends on the given regularization and this non-uniqueness
is a specific feature of nonconservative hyperbolic systems. Nevertheless, the definition of
weak solution does not guarantee uniqueness of the solution and so solutions of (1.19) must
satisfy the entropy condition, as seen in the case of conservation laws (1.16).

Numerical schemes that approximate hyperbolic systems, in general, should ideally re-
cover admissible solutions by satisfying a discrete entropy condition [69, 88]. This property
of the numerical scheme is known as entropy stability. In the case of conservation laws,
Tadmor [128] provided the framework for entropy conservative and entropy stable numeri-
cal fluxes which allow for either conservation or dissipation of entropy by three-point finite
volume schemes. This was extended to nonconservative systems in [24, 103] by the use of
fluctuation fluxes and the theory of connecting paths [40]. However, path-consistent schemes
do not always converge to the right admissible solutions as the solutions are dependent on
the choice of path which defines the jump relation and hence the viscous profile used to
attain entropy stability [3, 22, 26]. Entropy stable schemes using fluctuation fluxes to dis-
cretize nonconservative hyperbolic systems can be found in [25, 71, 108] and we refer to [91]
for a review.

High-order accuracy of the numerical scheme is another exceedingly desirable quality
that one seeks. Though not exhaustive, we refer to finite volume schemes using the path-
consistent framework and either reconstruction operators [21], or central schemes [23]; to
discontinuous Galerkin (DG) methods [54, 55, 113]; or to ADER methods [46, 49]. Among
these, the DG methods have gained substantial popularity over the years. The DG method
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approximates the solution with a piecewise polynomial solution over an unstructured mesh,
see Figure 1-1 for a representation in one space dimension. The semi-discrete form of the
DG method is proven to satisfy an entropy inequality for square entropy functions in scalar
conservation laws [79], which was extended to symmetric systems in [72].

Figure 1-1: A one-dimensional representation of the mesh with cell 𝜅𝑗 of size ℎ. The left
and right interfaces of cell 𝜅𝑗 are at 𝑥𝑗∓ 1

2
.

In [59], Gassner and coauthors have proposed an entropy stable high-order scheme for
the compressible Euler equations using the discontinuous Galerkin spectral elements method
(DGSEM), which was extended to general conservation laws in [30]. They used the general
framework for conservative elementwise flux differencing schemes [52] satisfying a semi-
discrete entropy inequality for the cell-averaged entropy. The DGSEM is based on collocation
of quadrature nodes with interpolation points using the Gauss-Lobatto quadrature rules
and Lagrange interolation polynomials to span the function space [86]. The scheme was
shown to satisfy the summation-by-parts (SBP) property [57] for the discrete operators
which allows to take into account, in the semi-discrete entropy inequality, the numerical
quadrature that approximates integrals compared to other techniques that require their
exact evaluation [70, 71, 79]. Such a form of the nodal DG method has found tremendous
use in the development of entropy stable high-order schemes for the compressible Euler
equations [30, 59] and multicomponent Euler equations [110], the shallow water equations
[141], the magnetohydrodynamic (MHD) equations [15, 94, 142] and gradient flows [127]. In
the case of nonconservative systems, a semi-discrete framework was proposed in [108] based
on the DGSEM formulation that proves to be entropy stable and high-order accurate.

The Baer-Nunziato model

One of the models that we discretize in this work is the two-velocity, two-pressure, two-
temperature Baer-Nunziato model for two-phase flows [7]. In general, the model is a system
that describes two-phase flows in complete disequilibrium with respect to the chemical,
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mechanical, thermal, and thermodynamic processes. The interaction between the phases
are governed by the presence of nonconservative products and zeroth order relaxation source
terms. However, in this work, we restrict the numerical discretization to the convective part
of the model and ignore the source terms. The homogeneous model that we consider is fairly
general using closure laws for the interface velocity and pressure [34, 56] as well as stiffened
gas equations of states (EOS) for both the phases.

In the Eulerian framework, many Godunov-type methods computing the homogeneous
BN two-phase flow model have been proposed, including the operator splitting method
[27, 36, 41, 130, 131, 133], the unsplit Roe-type wave-propagation method [8, 82, 95, 114]
and the path-conservative scheme [48]. However all these methods are limited to first order
accuracy. In the DG community high-order schemes were proposed in [47, 54, 55, 84, 102],
but they do not prove a discrete entropy inequality.

In the present work we utilize the framework from [108] and focus on the design of a
high-order entropy stable scheme for the Baer-Nunziato model. This framework is here
extended to systems that contain both space derivatives in divergence form and noncon-
servative products, which is based on a direct generalization of the frameworks of entropy
stable finite volume schemes for conservation laws [128] and for nonconservative systems
[24]. Such generalization has already been proposed for balance laws in [24] in the case of
three-point schemes. This generalization allows the design of discretizations that reduce to
conservative schemes using conservative numerical fluxes when the nonconservative products
vanish as it is the case away from material fronts in the Baer-Nunziato model. Using this
framework, we modify the integration over cell elements using the SBP operator and replace
the physical fluxes with two-point entropy conservative fluxes in fluctuation form [24], while
we use entropy stable fluxes at the cell interfaces [24, 108]. The entropy conservative fluxes
are derived by using the entropy condition [24], and we add upwind-type dissipation as ad-
vocated in [76] to obtain the entropy stable numerical fluxes. Let us stress that such choice
of numerical fluxes at interfaces is not unique and may be replaced by other numerical fluxes
from the literature that guaranty entropy stability and robustness [36, 71]. The scheme is
also kinetic energy preserving at the discrete level. The present method is introduced in one
space dimension for the sake of clarity and we provide details on its extension to multiple
space dimensions on Cartesian meshes in the appendices. The extension of the DGSEM to
quadrangles and hexahedra is direct and based on tensor products of one-dimensional basis
functions and quadrature rules.

We then focus on high-order integration in time for which we rely on strong stability-
preserving explicit Runge-Kutta methods [63, 121] which are defined as convex combinations
of first-order schemes and keep their properties under some condition on the time step. We
analyze the properties of the fully discrete one-step scheme and derive explicit conditions
on the time step and numerical parameters to maintain the positivity of the cell-averaged
partial densities and a maximum principle for the cell-averaged void fraction. Positivity
of the solution is then enforced at nodal values by the use of a posteriori limiters [145,
146]. Numerical tests in one and two space dimensions are finally performed to assess the
properties of the present scheme.
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The gamma-based multicomponent model and its discretization using
DGSEM

Multicomponent flow models [2, 4, 123, 124], with equations for the mixture quantities,
have an innate capability to cope with an arbitrary number of fluid species without changes
in the number of governing equations. This particular quality makes them incredibly flexible
and computationally efficient when simulating complex phenomena. These models are,
generally, considered in their nonconservative form to prevent strong oscillations across
material interfaces as in discretely conservative schemes. The design of numerical schemes,
predominantly, involves two issues that need special care. Firstly, the equation of state of
the mixture should not acquire nonphysical values near material interfaces. Secondly, the
numerical scheme should resolve strong shocks without excessive oscillations.

With the above objectives, it becomes reasonable to subject nonconservative multicom-
ponent models to the high-order entropy stable DGSEM framework that we utilise in this
work. For the choice of model, here we discretize the gamma-based model for compressible
multicomponent flows by Shyue [121], which will be henceforth called as the gamma-model.
This model is an extension of the gamma-model which was originally proposed by Abgrall
[1], to include the stiffened gas equation of state. The model is a system of compressible
Euler equation which are augmented with the transport equations for the EOS parame-
ters Γ = 1⇑(𝛾 − 1) and Π = 𝛾p∞⇑(𝛾 − 1), with 𝛾 > 1 the adiabatic exponent and p∞ > 0 a
pressure-like constant for the mixture. The introduction of explicit evolutionary equations
for Γ and Π, allow an accurate computation of the pressure across material interfaces, which
is necessary to preserve invariant domains.

In recent times, there have been a number of works [31, 42, 51, 64, 96, 105, 106, 138] using
the DG method that primarily focus on sharp resolution of the material interface for diffuse
interface models, however they do not provably satisfy an entropy inequality. In this work,
we propose a novel high-order scheme for the gamma-model [122] that preserves uniform
velocity and pressure profiles across contact and material discontinuities while proving to
be entropy stable across shocks. We utilize the DGSEM framework introduced in this
work to modify the volume integral over cell elements and replace the physical fluxes with
entropy conservative fluxes for shock solutions, while applying contact preserving fluxes
everywhere else. We show that no single numerical flux for the gamma-model can exhibit
the qualities of entropy conservation and contact preservation, therefore a choice needs
to be made for applying the numerical fluxes in the volume integral based on the local
solution. Our algorithm makes this choice through a pressure-based troubled-cell indicator
function [78]. At the cell interfaces, we apply the HLLC approximate Riemann solver for
the gamma-model. We show that the HLLC solver preserves uniform profiles across contact
discontinuities, satisfies a discrete entropy inequality and maintains positivity of the solution.
Together with entropy conservative numerical fluxes in the volume integral and the HLLC
fluxes at the cell interface, the semi-discrete DG scheme is shown to be entropy stable across
shocks. Furthermore, we include a posteriori limiters that enforce the positivity of the
solution at nodal values. A series of test cases for both one- and two-dimensional problems
are provided to verify the accuracy, stability and robustness of the proposed method.
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The DG code AGHORA

All numerical schemes that were designed as part of this thesis were implemented in the
ONERA DG code AGHORA [112].

Aghora is a high-resolution numerical solver for the simulation of unsteady compressible
turbulent flows with different turbulence modelling (RANS, hybrid RANS-LES, LES, DNS),
mutli-species and multi-phase models. The space discretization is based on high-order dis-
continuous Galerkin methods, with different function space representations, on unstructured
mutli-element meshes in two and three space dimensions with high-order approximation of
curved boundaries. High-order explicit and implicit methods are used for the time integra-
tion. The Aghora solver also uses local mesh and approximation order adaptation techniques
for local high resolution simulation of flow features.

1.2 Publications

• The work performed in Chapter 4 was presented at the European workshop on high
order numerical methods for evolutionary PDEs: theory and applications, Madrid
2019, and has been published as the below article:

F. Coquel, C. Marmignon, P. Rai, F. Renac. An entropy stable high-order discontin-
uous Galerkin spectral element method for the Baer-Nunziato two-phase flow model.
J. Comput. Phys., 431 (2021). DOI: https://doi.org/10.1016/j.jcp.2021.110135

• The DGSEM discretization of the gamma-based multicomponent flow model in Chap-
ter 5, will be submitted as the following article:

A contact preserving and entropy stable discontinuous Galerkin spectral element method
for multicomponent flows. In preparation.

• The work in Chapter 2 on the novel Galilean invariant and entropy dissipative model
for reactive gas-liquid flows is being extended to include the asymptotic analysis of
the model, and will be submitted as the following article:

A Galilean invariant and entropy dissipative model for gas-liquid reactive flows and
its asymptotic analysis. In preparation.

https://doi.org/10.1016/j.jcp.2021.110135


Chapter 2
A Galilean invariant entropy dissipative

two-phase flow model for gas-liquid reactive
flows

Résumé du chapitre

Dans ce chapitre, nous nous intéressons à la modélisation des écoulements diphasiques à
l’aide de lois d’équilibre hyperboliques non linéaires contenant des produits non-conservatifs.
Nous commençons l’étude par le modèle non-équilibre de type Baer-Nunziato proposé par
Saurel et Abgrall[115] où le modèle est dérivé en utilisant la procédure de moyenne d’ensemble
de Drew [44]. Ce modèle évolue dans l’espace et dans le temps sous l’influence des déséquili-
bres en vitesse et en pression entre les phases, alors qu’il ne tient pas compte du transfert
chimique. Les phases interagissent en raison du terme source et du produit non-conservatif.
Ces modèles sans équilibre sont appelés modèles moyennés et les lois d’équilibre qui en ré-
sultent sont sous-déterminées. Par conséquent, pour tenir compte de la perte d’information,
des conditions de fermeture supplémentaires sont nécessaires qui garantissent également
l’hyperbolicité et la cohérence thermodynamique, voir Coquel et al. [34, 35], Gallouët et al.
[56], Hantke et Müller [68].

Notre objectif avec ce travail est de proposer un modèle d’écoulements réactifs, qui rend
compte des déséquilibres complets dans les processus chimiques, mécaniques et thermody-
namiques. Pour cela, nous modifions le modèle proposé dans [115] avec des termes sources
supplémentaires afin de satisfaire cet objectif. Il faut mentionner qu’une attention parti-
culière est nécessaire lors de l’introduction de nouveaux termes sources dans un modèle
existant, car le choix global des termes sources influence grandement le caractère bien posé
du modèle. Pour les variables interfaciales, qui apparaissent dans le produit non-conservatif,
nous nous appuyons sur les lois de fermeture proposées par Coquel et al. [34], Gallouët et al.
[56] qui assurent la positivité des fractions volumiques, des fractions de masse et des éner-
gies internes des phases. De plus, nous démontrons que nos modifications conduisent à un
modèle invariant par transformations galiléennes qui est également dissipateur d’entropie
pour un choix d’une fonction d’entropie convexe.

12
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2.1 Short description and outline of the chapter

In this chapter we discuss the modelling of two-phase flows using nonlinear hyper-
bolic balance laws that contain nonconservative products. Our starting point is the Baer-
Nunziato-like non-equilibrium model proposed in [115] where the model is derived using the
ensemble averaging procedure of [44]. The model assumes thermal equilibrium and does
not account for chemical transfer, while it evolves in space and time under the influence of
the disequilibrium in velocity and pressure between the phases. The phases interact as a
result of the source term and the nonconservative product. Such non-equilibrium models are
averaged models, and the resulting balance laws are underdetermined. Therefore, in order
to account for the loss of information, additional closure conditions are necessary that also
guarantee hyperbolicity and thermodynamical consistency [34, 35, 56, 68].

Our aim with this work is to propose a model for reactive flows, which accounts for
complete disequilibria in the chemical, mechanical and thermodynamic processes. For this
purpose we modify the model proposed in [115] with additional source terms in order to
satisfy our objective. It must be mentioned that significant care is needed while introducing
new source terms in an existing model, as the overall choice of the source terms greatly
influence the well-posedness of the model. For the interfacial variables, that appear in the
nonconservative product, we rely on the closure laws proposed in [34, 56] that ensure the
positivity of the void fractions and the mass fractions, as well as, the internal energies of the
phases. Additionally, we demonstrate that our modifications lead to a Galilean invariant
model which is also entropy dissipative the convex physical entropy.

The plan of the chapter is as follows. section 2.2 describes the main mathematical and
physical properties of the non-equilibrium model, along with the introduction of new source
terms. In section 2.3 we describe the entropy condition for systems with relaxation source
terms and demonstrate that the new source terms do not guarantee an entropy dissipative
and Galilean invariant model. section 2.4 describes remedies to the model in the form of
corrective source terms, that allow us to propose a Galilean invariant entropy dissipative
non-equilibrium model. We end this this chapter by summarising our work in section 2.5.

2.2 Governing equations of the non-equilibrium model

The non-equilibrium model that we intend to modify is the two-velocity, two-pressure
two-phase flow model presented in [115], which is obtained by similar averaging techniques
as done for the incompressible case in [44]. The model bears resemblance to the well known
Baer-Nunziato model [7], except that here the source terms are responsible for the interaction
between a liquid and a gaseous phases. Note that, in what follows, the physical quantities
and constants related to the gaseous phase are subscript as 1 while for the liquid phase they
have been subscript as 2.

In one space dimension the model is a set of seven first order hyperbolic balance laws

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = s(u), 𝑥 ∈ R, 𝑡 > 0, (2.1)
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where

u ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛼1

𝛼1𝜌1
𝛼1𝜌1𝑢1
𝛼1𝜌1𝐸1

𝛼2𝜌2
𝛼2𝜌2𝑢2
𝛼2𝜌2𝐸2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, f(u) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
𝛼1𝜌1𝑢1

𝛼1(𝜌1𝑢
2
1 + p1)

𝛼1𝑢1(𝜌1𝐸1 + p1)

𝛼2𝜌2𝑢2
𝛼2(𝜌2𝑢

2
2 + p2)

𝛼2𝑢2(𝜌2𝐸2 + p2)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, c(u)𝜕𝑥u ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

uI

0
−pI

−pIuI

0
pI

pIuI

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

𝜕𝑥𝛼1, (2.2)

and

s(u) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Θp𝑟
0

Λ𝑢𝑟
ΘpIp𝑟 +ΛuI𝑢𝑟

0
−Λ𝑢𝑟

−(ΘpIp𝑟 +ΛuI𝑢𝑟)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(2.3)

represent the vector of the state variables, the physical fluxes, the nonconservative products,
and the zeroth order source terms, respectively. The phase densities are 𝜌𝑖, the velocities are
𝑢𝑖, and the specific total energies are 𝐸𝑖 = 𝑒𝑖 + 𝑢2𝑖 ⇑2 where 𝑒𝑖 is the specific internal energy
and 𝑖 = 1,2 refers to the 𝑖th phase. The void fraction of each phase is denoted as 𝛼𝑖 and the
two void fractions are related through the saturation condition

𝛼1 + 𝛼2 = 1. (2.4)

The solution u belongs to the phase space

Ωnoneq = {u ∈ R7
∶ 0 < 𝛼𝑖 < 1, 𝜌𝑖 > 0, 𝑢𝑖 ∈ R, 𝜌𝑖𝑒𝑖 > p∞,𝑖, 𝑖 = 1,2}, (2.5)

where p∞,𝑖 is a pressure-like constant. Space variations of the physical quantities are gov-
erned by the flux function f ∶ Ωnoneq ∋ u↦ f(u) ∈ R7 and the nonconservative product c(u)𝜕𝑥u,
with c ∶ Ωnoneq ∋ u↦ c(u) ∈ R7×7, where both f(u) and c(u) are smooth. The nonconservative
product couples the phases and hinders the system (2.1) to be written in divergence form.
Observe that if 𝛼𝑖 is uniform in space, the phases decouple into separate systems of com-
pressible Euler equations. The right hand source terms s(u) ∈ 𝐿∞(Ωnoneq) ∶ Ωnoneq ∋ u ↦ R7

act as driving forces, and together with the nonconservative product, are responsible for the
phase interaction. Note that within the vector of source terms there are relative quantities

p𝑟 = p2 − p1, 𝑢𝑟 = 𝑢2 − 𝑢1 (2.6)

of pressure and velocity, respectively, that arise as a result of the non-equilibria associated
to the mechanical and drift processes. Furthermore, the terms Θ and Λ are represent the
compaction viscosity and the drag coefficient, respectively, and govern the rate of relaxation
of the respective processes.

In this work we modify the source vector (2.3), from [115], so that the resulting model
accounts for chemical transfer and non-equilibrium in temperature, in addition to the non-
equilibria in the mechanical and drift processes. Therefore, we introduce the chemical po-
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tentialℳ and the heat transfer coefficient 𝒦 to the source vector

smod(u) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Θp𝑟
−ℳ

Λ𝑢𝑟
ΘpIp𝑟 +ΛuI𝑢𝑟 +𝒦𝑇𝑟

ℳ

−Λ𝑢𝑟
−(ΘpIp𝑟 +ΛuI𝑢𝑟 +𝒦𝑇𝑟)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (2.7)

where
ℳ= 𝜈(𝜓1 − 𝜓2), (2.8)

𝜓𝑖 is the Gibbs free energy for the phases 𝑖 = 1,2, and 𝜈 > 0 is the coefficient for the relaxation
of the Gibbs free energy. The relative temperature is defined as

𝑇𝑟 = 𝑇2 − 𝑇1. (2.9)

Note that, at a material interface, the phases attain local equilibrium and the terms for
relative pressure, temperature and velocity vanish.

Assumptions. In this work, we assume that Θ,Λ and 𝒦 are positive parameters, whileℳ
is negative. The chemical potential is considered to be negative as we impose

𝜓2 > 𝜓1, (2.10)

which represents a change of phase 1 (liquid) to phase 2 (gas) through chemical reactions, see
[10]. Here it is also worth mentioning that the pressure relaxation is the fastest among the
different process to reach equilibrium, followed by the drag relaxation and then the thermal
relaxation while the chemical transfer is the slowest. This cascading rate of relaxation of
the source terms are based on physical experiments and interested readers can refer to
[7, 10, 81, 115] for further details.

Closure laws. The pressure of each phase p𝑖 is related to the density and internal energy
through a stiffened gas EOS:

p𝑖(𝜌𝑖, 𝑒𝑖) = (𝛾𝑖 − 1)𝜌𝑖𝑒𝑖 − 𝛾𝑖p∞,𝑖, (2.11)

where 𝛾𝑖 = Cp𝑖⇑Cv𝑖 > 1 is the ratio of specific heats of phase 𝑖 and p∞,𝑖 ≥ 0 are some constants.
Note that, for the gaseous phase, p∞1 = 0 and the polytropic ideal gas EOS is retrieved.

System (2.1) is supplemented with closure laws for the interfacial velocity and pressure,
uI and pI, respectively, that govern the exchange of information at the interface of the two
phases. In this work, we use definitions of the interfacial velocity and pressure based on
convex combinations of the velocities and pressures of the two phases [34, 56] and adapted
to the treatment of discontinuous solutions:

uI ∶= 𝛽𝑢1 + (1 − 𝛽)𝑢2, (2.12a)
pI ∶= 𝜇p1 + (1 − 𝜇)p2, (2.12b)
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where the weights are

𝛽 =
𝜒𝛼1𝜌1

𝜒𝛼1𝜌1 + (1 − 𝜒)𝛼2𝜌2
, 𝜇 =

(1 − 𝛽)𝑇2
𝛽𝑇1 + (1 − 𝛽)𝑇2

, 𝜒 ∈ {0, 12 ,1}. (2.13)

Under the particular choice for the closures (2.12) and (2.13), the characteristic field
associated to the eigenvalue uI for the matrix-valued function A ∶ Ωnoneq ∋ u ↦ A(u) =

f′(u) + c(u) ∈ R7×7 of (2.1) is linearly degenerate (LD) [34]. This allows to close the jump
relation across an isolated material interface since uI is now continuous across it.

In the remaining discussions in this chapter, we will demonstrate that the non-equilibrium
model (2.1) with source terms (2.7) does not guarantee a Galilean invariant entropy dissi-
pative model, and additional corrective terms are necessary. Furthermore, for the sake of
simplification, we will henceforth use the following general notation:

u =

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝑖
𝛼𝑖𝜌𝑖
𝛼𝑖𝜌𝑖𝑢𝑖
𝛼𝑖𝜌𝑖𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎠

, f(u) =

⎛
⎜
⎜
⎜
⎜
⎝

0
𝛼𝑖𝜌𝑖𝑢𝑖

𝛼𝑖(𝜌𝑖𝑢
2
𝑖 + p𝑖)

𝛼𝑖𝑢𝑖(𝜌𝑖𝐸𝑖 + p𝑖)

⎞
⎟
⎟
⎟
⎟
⎠

, c(u)𝜕𝑥u =

⎛
⎜
⎜
⎜
⎜
⎝

uI

0
−pI

−pIuI

⎞
⎟
⎟
⎟
⎟
⎠

𝜕𝑥𝛼𝑖, (2.14a)

smod(u) ∶= (−1)𝑖−1
⎛
⎜
⎜
⎜
⎜
⎝

−Θp𝑟
−ℳ

Λ𝑢𝑟
ΘpIp𝑟 +ΛuI𝑢𝑟 +𝒦𝑇𝑟

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑖 = 1,2, (2.14b)

without ambiguity due to the saturation condition (2.4).

2.3 Entropy in dissipative relaxation

In the smooth regime, we consider the quasilinear form of the system (2.1):

𝜕𝑡u + 𝜕𝑥A(u)𝜕𝑥u = s(u), 𝑥 ∈ R, 𝑡 > 0, (2.15)

where s(u) is stiff. The system (2.15) is hyperbolic over the phase space (2.5) and A(u)
admits real eigenvalues

𝜆1(u) = 𝑢1 − 𝑐1, 𝜆2(u) = 𝑢2 − 𝑐2, 𝜆3(u) = 𝑢1,
𝜆4(u) = uI, 𝜆5(u) = 𝑢2, 𝜆6(u) = 𝑢1 + 𝑐1, 𝜆7(u) = 𝑢2 + 𝑐2,

(2.16)

associated to linearly independent eigenvectors. Here 𝑐𝑖(𝜌𝑖, 𝑒𝑖)2 = 𝛾𝑖(𝛾𝑖−1)(𝜌𝑖𝑒𝑖−𝑝∞,𝑖)⇑𝜌𝑖 is
the speed of sound for the EOS (2.11). Observe, in (2.16), that 𝜆3, 𝜆4 and 𝜆5 are associated
to linearly degenerate (LD) fields, whereas 𝜆1, 𝜆2, 𝜆6 and 𝜆7, are associated to genuinely
nonlinear (GNL) fields. Additionally, (2.15) is only weakly hyperbolic when uI is equal to
one of the transport velocities, 𝑢1 or 𝑢2, for 𝜒 = 1 or 0 in (2.13).

Uniqueness of solutions of (2.15) relies on the existence of a convex entropy function 𝜂(u)
and an entropy flux 𝑞(u) such that physically relevant weak solutions satisfy an admissibility
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criteria in the sense of distributions

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) =
𝜕

𝜕u
𝜂(u) ⋅ s(u). (2.17)

This amounts to the following necessary conditions:

v(u)⊺A(u) =
𝜕

𝜕u
𝑞(u), (2.18a)

v(u)⊺s(u) ≤ 0, (2.18b)

where v(u) = 𝜕
𝜕u𝜂(u) is the vector of entropy variables. Convex entropy functions play a

stabilizing role in relaxation [29, 143] and this has been extensively analyzed in [17, 67, 143].

In the case of systems, such as (2.1) that have a thermodynamic origin, there exists a
physical entropy function for each phase

𝑠𝑖(𝜌𝑖, 𝜃𝑖) = −Cv𝑖 ln (
p+p∞,𝑖

𝜌
𝛾𝑖
𝑖

) = −Cv𝑖( ln
1

𝑇𝑖
+ (𝛾𝑖 − 1) ln𝜌𝑖), 𝑖 = 1,2. (2.19)

This definition of the phasic entropies can easily be derived by using the relation

𝜌𝑖Cv𝑖𝑇𝑖 = 𝜌𝑖𝑒𝑖 − p∞,𝑖 =
p𝑖 + p∞,𝑖
𝛾𝑖 − 1

, 𝑖 = 1,2. (2.20)

If one considers only the homogeneous part of (2.1), with (2.2), then it is easy to verify
that for smooth solutions the total entropy of the mixture is conserved since

𝜕𝑡
2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖 + 𝜕𝑥

2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖 =

2

∑
𝑖=1

(pI − p𝑖)(uI − 𝑢𝑖)

𝑇𝑖
𝜕𝑥𝛼𝑖, (2.21)

where the nonconservative product on the right-hand side vanishes for the closure of inter-
facial quantities (2.12) and (2.13):

2

∑
𝑖=1

(pI − p𝑖)(uI − 𝑢𝑖)

𝑇𝑖
𝜕𝑥𝛼𝑖 = 0. (2.22)

Additionally, in the case of non-smooth solutions, such as shocks, given a convex entropy
pair (𝜂, 𝑞), where

𝜂(u) ∶= −
2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖, 𝑞(u) ∶= −

2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖, (2.23)

admissible weak solutions must satisfy a nonlinear stability condition

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) ≤ 0. (2.24)

Lemma 2.3.1. The two-phase flow model (2.15) with source terms (2.7) and closure laws
(2.11)-(2.13) does not guarantee entropy dissipation and is not Galilean invariant.

Proof. We recall the fundamental relation for the second law of thermodynamics

𝑇𝑖𝑑𝑠𝑖 = 𝑑𝑒𝑖 +
p𝑖
𝜌2𝑖
𝑑𝜌𝑖, 𝑖 = 𝑖,2, (2.25)



Entropy in dissipative relaxation 18

which can be re-cast as

𝑇𝑖𝑑𝛼𝑖𝜌𝑖𝑠𝑖 = 𝑑𝛼𝑖𝜌𝑖𝐸𝑖 +
⎛

⎝

𝑢2𝑖
2
− 𝜓𝑖

⎞

⎠
𝑑𝛼𝑖𝜌𝑖 − 𝑢𝑖𝑑𝛼𝑖𝜌𝑖𝑢𝑖 + pi𝑑𝛼𝑖, (2.26)

where 𝜓𝑖 = 𝑒𝑖 + p
𝜌𝑖
− 𝑇𝑖𝑠𝑖 denotes the Gibbs free energy.

Using the equations for the void fraction, mass, momentum and energy equations from
(2.1)-(2.2) with source terms (2.7) we get

𝑇𝑖𝜕𝑡𝛼𝑖𝜌𝑖𝑠𝑖 + 𝜕𝑥𝛼𝑖𝑢𝑖(𝜌𝑖𝐸𝑖 + p𝑖) − 𝑢𝑖𝜕𝑥𝛼𝑖(𝜌𝑖𝑢
2
𝑖 + p𝑖) + (

𝑢2𝑖
2
− 𝜓𝑖)𝜕𝑥𝛼𝑖𝜌𝑖𝑢𝑖 + (pI𝑢𝑖 + p𝑖uI − pIuI)𝜕𝑥𝛼𝑖

= (−1)𝑖−1
⎛
⎜
⎝

Θ(pI − p𝑖)p𝑟 +Λ(uI − 𝑢𝑖)𝑢𝑟 −ℳ
⎛

⎝

𝑢2𝑖
2
− 𝜓𝑖

⎞

⎠
+𝒦𝑇𝑟

⎞
⎟
⎠
,

(2.27)
where the space derivatives can be further simplified to get

𝑇𝑖𝜕𝑡𝛼𝑖𝜌𝑖𝑠𝑖 + 𝜕𝑥𝛼𝑖𝜌𝑖𝑒𝑖𝑢𝑖 + 𝛼𝑖p𝑖𝜕𝑥𝑢𝑖 + (pI(𝑢𝑖 − uI) + p𝑖uI)𝜕𝑥𝛼𝑖 + 𝑠𝑖𝑇𝑖𝜕𝑥𝛼𝑖𝜌𝑖𝑢𝑖

− 𝑒𝑖𝜕𝑥𝛼𝑖𝜌𝑖𝑢𝑖 − 𝛼𝑖p𝑖𝜕𝑥𝑢𝑖 −
𝛼𝑖p𝑖𝑢𝑖
𝜌𝑖

𝜕𝑥𝜌𝑖 − p𝑖𝑢𝑖𝜕𝑥𝛼𝑖

= (−1)𝑖−1
⎛
⎜
⎝

Θ(pI − p𝑖)p𝑟 +Λ(uI − 𝑢𝑖)𝑢𝑟 −ℳ
⎛

⎝

𝑢2𝑖
2
− 𝜓𝑖

⎞

⎠
+𝒦𝑇𝑟

⎞
⎟
⎠
,

(2.28)

which eventually leads to

𝜕𝑡𝛼𝑖𝜌𝑖𝑠𝑖 + 𝜕𝑥𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖 −
(p𝑖 − pI)(𝑢𝑖 − uI)

𝑇𝑖
𝜕𝑥𝛼𝑖

=
(−1)𝑖−1

𝑇𝑖

⎛
⎜
⎝

Θ(pI − p𝑖)p𝑟 +Λ(uI − 𝑢𝑖)𝑢𝑟 −ℳ
⎛

⎝

𝑢2𝑖
2
− 𝜓𝑖

⎞

⎠
+𝒦𝑇𝑟

⎞
⎟
⎠
.

(2.29)
We then set 𝜂(u) ∶= −∑2

𝑖=1 𝛼𝑖𝜌𝑖𝑠𝑖 as the convex entropy function and 𝑞(u) ∶= −∑2
𝑖=1 𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖

as the entropy flux and apply the relation (2.22) to get the following balance law:

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = −Θp2
𝑟 (

1 − 𝜇

𝑇1
+
𝜇

𝑇2
) −Λ𝑢2𝑟 (

1 − 𝛽

𝑇1
+
𝛽

𝑇2
) −𝒦

𝑇 2
𝑟

𝑇1𝑇2

+ℳ
⎛
⎜
⎝

𝜓2

𝑇2
−
𝜓1

𝑇1
+

1

2

⎛

⎝

𝑢21
𝑇1

−
𝑢22
𝑇2

⎞

⎠

⎞
⎟
⎠
.

(2.30)

Observe that the algebraic relations involving relaxation in pressure, velocity and tem-
perature are all positive, given that the temperature of each phase 𝑇𝑖 is positive and the
coefficient of pressure, velocity and thermal relaxations are positive. Additionally, these
terms have a negative sign in front of them therefore they correctly contribute to the en-
tropy dissipation.

However, the term related to the chemical potentialℳ< 0 has the quantities 𝜓2

𝑇2
−
𝜓1

𝑇1
and

𝑢21
𝑇1
−
𝑢22
𝑇2

which can attain both positive and negative values and are not bounded. The latter
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term also prevent Galilean invariance of (2.30). These terms need to be bounded in order to
ensure a correct contribution towards the entropy balance. Therefore the model (2.15) with
source terms (2.7) does not to qualify as Galilean invariant and entropy dissipative.

The entropy balance (2.30) shows that the Gibbs free energy appears as an additional
driving force, which is also indicated in [10] for reactive systems. In order to control its con-
tribution towards the entropy balance, at complete non-equilibria, we introduce the notion
of interfacial Gibbs free energy in the following way

𝜓I = (1 − 𝜔)𝜓1 + 𝜔𝜓2, 0 ≤ 𝜔 ≤ 1. (2.31)

The interfacial Gibbs free energy will, eventually, combine with the phasic Gibbs energy
terms appearing in the last part of the source term in (2.30) and will allow to control its
contribution towards the entropy dissipation.

2.4 A corrected model

Since we cannot control the sign of the last term in (2.30), corrective source terms are
necessary and will be applied through the chemical potential. Note that we also aim to
annihilate the effects of the velocity terms in (2.30) so that the entropy dissipation retains
Galilean invariance. Additionally, we intend to impose a control on the sign of the Gibbs
free energy in the source terms of (2.30), so that entropy balance exhibits dissipation at
complete non-equilibria.

Lemma 2.4.1. Let Λ̃ℳ and (𝜓I + 𝑚̃)ℳ be the corrective source terms that are introduced
to the momentum and energy equations

scor(u) = (−1)𝑖−1
⎛
⎜
⎜
⎜
⎜
⎝

−Θp𝑟
−ℳ

Λ𝑢𝑟 − Λ̃ℳ
ΘpIp𝑟 +ΛuI𝑢𝑟 +𝒦𝑇𝑟 − (𝜓I + 𝑚̃)ℳ

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑖 = 1,2. (2.32)

Then the non-equilibrium model (2.1)-(2.2), with source terms (2.32), is entropy dissipative
for the convex entropy pair defined in (2.23) if Λ̃ = 𝑢1+𝑢2

2 and 𝑚̃ = 𝑢1𝑢2
2 .

Proof. The entropy balance is evaluated with source terms (2.32)

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = −Θp2
𝑟 (

1 − 𝜇

𝑇1
+
𝜇

𝑇2
) −Λ𝑢2𝑟 (

1 − 𝛽

𝑇1
+
𝛽

𝑇2
) −𝒦

𝑇 2
𝑟

𝑇1𝑇2

+ℳ
⎛
⎜
⎝

𝜓2

𝑇2
−
𝜓1

𝑇1
+

1

2

⎛

⎝

𝑢21
𝑇1

−
𝑢22
𝑇2

⎞

⎠

⎞
⎟
⎠
+ℳΛ̃(

𝑢2
𝑇2

−
𝑢1
𝑇1

) +ℳ(𝜓I + 𝑚̃)(
1

𝑇1
−

1

𝑇2
) ,

(2.33)

where the interfacial Gibbs energy is introduced through the corrective source terms. Upon
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collecting the terms, we get

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = −Θp2
𝑟 (

1 − 𝜇

𝑇1
+
𝜇

𝑇2
) −Λ𝑢2𝑟 (

1 − 𝛽

𝑇1
+
𝛽

𝑇2
) −𝒦

𝑇 2
𝑟

𝑇1𝑇2

+ℳ
⎛
⎜
⎝

𝜓2

𝑇2
−
𝜓1

𝑇1
+ 𝜓I (

1

𝑇1
−

1

𝑇2
)

+
1

2𝑇1
(𝑢21 + 2(𝑚̃ − Λ̃𝑢1)) −

1

2𝑇2
(𝑢22 + 2(𝑚̃ − Λ̃𝑢2))

⎞
⎟
⎠
.

(2.34)

Now, we only need to solve the following simultaneous equations

𝑢21 + 2(𝑚̃ − Λ̃𝑢1) = 0, (2.35a)

𝑢22 + 2(𝑚̃ − Λ̃𝑢2) = 0, (2.35b)

in order to annihilate the unbounded velocity terms associated to the chemical potential,
which leads to Λ̃ = 𝑢1+𝑢2

2 and 𝑚̃ = 𝑢1𝑢2
2 .

The entropy balance now reads

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = −Θp2
𝑟 (

1 − 𝜇

𝑇1
+
𝜇

𝑇2
) −Λ𝑢2𝑟 (

1 − 𝛽

𝑇1
+
𝛽

𝑇2
) −𝒦

𝑇 2
𝑟

𝑇1𝑇2

+ℳ(𝜓2 − 𝜓1)(
1 − 𝜔

𝑇2
+
𝜔

𝑇1
) ≤ 0, (𝜇,𝜔, 𝛽) ∈ (︀0,1⌋︀,

(2.36)

which is both Galilean invariant and entropy dissipative under the assumptions placed on
the model from section 2.2.

Theorem 2.4.1. The non-equilibrium hyperbolic two-phase flow model

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = scor(u), 𝑥 ∈ R, 𝑡 > 0, (2.37)

where

u =

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝑖
𝛼𝑖𝜌𝑖
𝛼𝑖𝜌𝑖𝑢𝑖
𝛼𝑖𝜌𝑖𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎠

, f(u) =

⎛
⎜
⎜
⎜
⎜
⎝

0
𝛼𝑖𝜌𝑖𝑢𝑖

𝛼𝑖(𝜌1𝑢
2
𝑖 + p𝑖)

𝛼𝑖𝑢𝑖(𝜌𝑖𝐸𝑖 + p𝑖)

⎞
⎟
⎟
⎟
⎟
⎠

, c(u)𝜕𝑥u =

⎛
⎜
⎜
⎜
⎜
⎝

uI

0
−pI

−pIuI

⎞
⎟
⎟
⎟
⎟
⎠

𝜕𝑥𝛼𝑖, (2.38a)

scor(u) = (−1)𝑖−1
⎛
⎜
⎜
⎜
⎜
⎝

−Θp𝑟
−ℳ

Λ𝑢𝑟 −
𝑢1+𝑢2

2 ℳ

ΘpIp𝑟 +ΛuI𝑢𝑟 +𝒦𝑇𝑟 − (𝜓I +
𝑢1𝑢2
2 )ℳ

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑖 = 1,2. (2.38b)

is Galilean invariant and entropy dissipative for the convex entropy pair (2.23).

The model is closed with the stiffened gas EOS (2.11) that defines the pressure of each
phase, while the interfacial variables are closed using general closure laws (2.11)-(2.13) and
(2.31).
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2.5 Summary

The discussion in this chapter can be summarized as follows. We propose a two-phase
flow model for a reactive mixture of gas and liquid, where the chemical, mechanical and
thermodynamical processes are in complete disequilibria. This model is derived from the
Baer-Nunziato-like model proposed in [115], where chemical and heat transfers were not
accounted for. In our work we introduce novel source terms that allows the exchange or
chemicals and heat across the phases. In doing so we highlight that introduction of new
source terms to an existing model is a problem which is far from trivial, as the choice
of source terms affect the well-posedness of the model. Therefore additional correction is
necessary so that the resulting model is Galilean invariant and entropy dissipative. We thus
arrive a two-phase flow model for reactive immiscible fluids that is Galilean invariant and
entropy dissipative at complete disequilibria.



Chapter 3
Hyperbolic systems in nonconservative form:

theory and discretization

Résumé du chapitre

Les discussions de ce chapitre concernent des EDP hyperboliques non linéaires avec des
produits non conservatifs où nous ne tenons pas compte des termes sources, contrairement au
Chapter 2. Nous nous intéressons ici au problème de Cauchy pour un système hyperbolique
non linéaire non conservatif à une dimension. Nous supposons que (3.1) est strictement
hyperbolique et admet des valeurs propres réelles et distinctes avec un ensemble complet de
vecteurs propres.

Il est bien connu que les systèmes hyperboliques non linéaires peuvent conduire à la rup-
ture des solutions classiques en temps fini, même pour des conditions initiales suffisamment
lisses. On s’appuie alors sur des solutions faibles qui sont définies au sens des distributions.
Cependant, dans le cas de systèmes non conservatifs, le cadre standard des solutions faibles,
découlant des lois de conservation, ne s’applique pas car il est difficile de définir de manière
significative le produit non conservatif au point de discontinuité. De plus, les systèmes
hyperboliques sont souvent obtenus comme la limite de viscosité nulle d’une régularisation
parabolique. Par conséquent, le choix de la famille de chemins dépend du profil visqueux.
Cependant, les solutions faibles ne garantissent pas l’unicité, c’est pourquoi une contrainte
supplémentaire sous la forme d’une condition d’entropie est introduite, qui permet de sélec-
tionner des solutions faibles physiquement pertinentes. En conséquence, dans ce chapitre,
nous rappelons la notion de solutions faibles dans le contexte des systèmes hyperboliques
non-conservatifs: [40, 90], où le produit non-conservatif est défini comme une mesure de
Borel bornée à une discontinuité basée sur une famille de chemins de Lipschitz reliant les
états gauche et droit. Nous montrons ensuite l’existence de la solution de [90] pour les
données initiales de Riemann et commentons la condition d’entropie.

Le système non conservatif décrit dans ce chapitre est discrétisé à l’aide de la méthode
des éléments spectraux de Galerkin discontinue (DGSEM)[57, 59, 86] avec les règles de
quadrature de Gauss-Lobatto, qui sont basées sur la collocation des points d’interpolation.
Nous décrivons ici le cadre DGSEM, ainsi que sa propriété de sommation par parties (SBP),
de manière très détaillée ; en conséquence, ce chapitre sert également de base à la conception
des schémas numériques réalisés dans cette thèse. Nous rappelons également les résultats
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obtenus dans [108] pour les systèmes non-conservatifs généraux et décrivons la notion de flux
numériques qui conservent et ceux qui dissipent l’entropie [24]. Le cadre DGSEM permet
de proposer un schéma semi-discret pour le problème de Cauchy (3.1). Nous modifions
l’intégration sur les éléments cellulaires en utilisant les opérateurs SBP et nous remplaçons
les flux physiques par des flux conservant d’entropie tout en appliquant des flux dissipant
d’entropie à l’interface. Cela permet de prouver une inégalité semi-discrète pour l’entropie
moyenne de la cellule, tout en maintenant une précision d’ordre élevé.

Nous décrivons également le schéma d’intégration temporelle qui sera utilisé dans tous
les chapitres à venir. Dans cette thèse, nous nous appuyons sur des schémas de Runge-Kutta
explicites préservant la stabilité [63, 121] qui sont définis comme des combinaisons convexes
de schémas du premier ordre et conservent leurs propriétés sous certaines conditions sur
le pas de temps. Il faut noter que ces schémas d’intégration temporelle sont particulière-
ment utiles lors de l’analyse du schéma entièrement discret car ils permettent d’imposer des
conditions sur les paramètres numériques qui garantissent la positivité de la solution.

3.1 Short description and outline of the chapter

The discussions in this chapter involve nonlinear hyperbolic PDEs with nonconservative
products where we disregard the source terms, unlike Chapter 2.

Here we are interested in the Cauchy problem for a one-dimensional nonlinear noncon-
servative hyperbolic system of the form

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = 0, 𝑥 ∈ R, 𝑡 > 0, (3.1a)
u(𝑥,0) = u0(𝑥), 𝑥 ∈ R, (3.1b)

where u(𝑥, 𝑡) is the state vector that takes values in an open convex set Ω∗ ⊂ R𝑁 , f(u) ∶
Ω∗ ∋ u ↦ f(u) ∈ R𝑁 is the flux function and c(u)𝜕𝑥u is the nonconservative product with
c(u) ∶ Ω∗ → R𝑁×𝑁 . Note that both f(u) and c(u) are assumed to be smooth.

The system (3.1a) can be expressed in a quasilinear form

𝜕𝑡u +A(u)𝜕𝑥u = 0. (3.2)

where A(u) ∶= ∇uf(u) + c(u) ∶ Ω∗ ∋ u ↦ A(u) ∈ R𝑁×𝑁 is a smooth, locally bounded map
that cannot be considered as the Jacobian matrix due to the presence of the nonconservative
product. Here we assume that (3.2) is strictly hyperbolic and A(u) admits real and distinct
eigenvalues with a complete set of eigenvectors.

It is well known that nonlinear hyperbolic systems may lead to breakdown of classical
solutions in finite time, even for sufficiently smooth initial conditions. We then rely on
for weak solutions that are defined in the sense of distributions. However, in the case of
nonconservative systems the standard framework of weak solutions, arising from conservation
laws, does not apply as it is difficult to meaningfully define the nonconservative product
at the point of discontinuity. Additionally, hyperbolic systems are often obtained as the
vanishing-viscosity limit of a parabolic regularization. Therefore the choice of family of
paths depends on the viscous profile. However, weak solutions do not guarantee uniqueness
therefore an additional constraint in the form of an entropy condition is introduced, that
allows to select physically relevant weak solutions. As a result in this chapter we recall the
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notion of weak solutions in the context of nonconservative hyperbolic systems [40, 90], where
the nonconservative product is defined as a bounded Borel measure at a discontinuity based
on a family of Lipschitz paths connecting the left and right states. Then we show existence
of solution from [90] for Riemann initial data and comment on the entropy condition.

The nonconservative system described in this chapter is discretized using the discontinu-
ous Galerkin spectral element method (DGSEM)[57, 59, 86] with Gauss-Lobatto quadrature
rules, that are based on the collocation of interpolation points. Here we describe the DGSEM
framework, along with its summation-by-parts (SBP) property, in extensive detail as a re-
sult this chapter also acts a foundation for the design of numerical schemes performed in
this thesis. We also recall the results obtained in [108] for general nonconservative systems
and describe the notion of entropy conservative [24] and entropy stable fluxes. The DGSEM
framework allows to propose a semi-discrete scheme for the Cauchy problem (3.1). We mod-
ify the integration over cell elements using the SBP operators and replace the physical fluxes
with entropy conservative fluxes while applying entropy stable fluxes at the interface. This
allows to prove a semi-discrete inequality for the cell-averaged entropy, while maintaining
high-order accuracy.

We also describe the time integration scheme that will used in all forthcoming chapters.
In this thesis, we rely on strong stability-preserving explicit Runge-Kutta schemes [63, 121]
which are defined as convex combinations of first-order schemes and keep their properties
under some condition on the time step. It must be noted that these time integration schemes
are especially useful when analysing the fully discrete scheme as they allow to impose con-
ditions on the numerical parameters that guarantees the positivity of the solution.

This chapter is organised as follows. In section 3.2, we recall the definition of weak
solutions for nonconservative systems from [90]. Then, in section 3.3, we demonstrate that
weak solutions are dependent on the viscous profile and expose the entropy condition for
nonconservative systems as an admissibility criterion to select the physically relevant so-
lutions. In section 3.4 we introduce the DGSEM framework and the semi-discrete scheme.
section 3.5 introduces the notion of entropy conservative and entropy stable numerical fluxes
in fluctuation form and highlights the properties of the semi-discrete scheme. We end this
chapter by describing the strong-stability preserving explicit Runge-Kutta time integration
in section 3.7.

3.2 Notion of weak solutions

We, first, define the nonconservative product A(u)𝑑𝑥u as a bounded measure at the
point of discontinuity and then demonstrate, through a simple example, that the definition
of the product depends on the family of Lipschitz paths.

Lemma 3.2.1 (DLM [40]). Let u ∶⌋︀𝑎, 𝑏(︀→ R𝑁 be a function of bounded variation which
is discontinuous at a point 𝑥0 ∈⌋︀𝑎, 𝑏(︀, such that the discontinuity separates two constant
states to the left and right, u𝐿 ∶⌋︀𝑎, 𝑥−0 (︀→ R𝑁 and u𝑅 ∶⌋︀𝑥+0 , 𝑏(︀→ R𝑁 , respectively. Then the
nonconservative product A(u)𝑑𝑥u at 𝑥0 can be defined as a bounded measure that depends
on a family of Lipschitz paths connecting the left and right states.

To illustrate this idea, we consider a single discontinuity for u at the point 𝑥0 separating
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two continuous states on the left and right, u𝐿 and u𝑅, such that

u = u𝐿 +H(𝑥 − 𝑥0)JuK, 𝑥 ∈⌋︀𝑎, 𝑏(︀, (3.3)

where H ∶ R → R is the heavyside function and JuK ∶= u𝑅 − u𝐿 represents the jump op-
eration over the function u. Furthermore, to the function A(u), we introduce a smooth
regularisation u𝜖, such that if the total variation of u𝜖 is uniformly bounded then

A(u)𝑑𝑥u ≡ lim
𝜖→0

A(u𝜖)𝑑𝑥u𝜖, (3.4)

which defines the nonconservative product as a bounded measure. For the sake of complete-
ness of the argument let us also recall the definition of the total variation of a BV function
u:

𝑇𝑉 (u) = ∫
𝑏

𝑎
⋁︀
𝑑u
𝑑𝑥

⋁︀ < +∞. (3.5)

Let us introduce a Lipschitz continuous path Ψ ∶ (︀𝑠;u𝐿,u𝑅⌋︀ → Ω∗ satisfying Ψ(0) = u𝐿
and Ψ(1) = u𝑅, such that for every 𝜖 > 0, u𝜖 is defined as

u𝜖(𝑥, 𝑡) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

u𝐿, 𝑎 < 𝑥 < 𝑥0 − 𝜖,

Ψ(
𝑥 − 𝑥0 + 𝜖

2𝜖
;u𝐿,u𝑅) , 𝑥0 − 𝜖 < 𝑥 < 𝑥0 + 𝜖,

u𝑅, 𝑏 > 𝑥 > 𝑥0 + 𝜖,

(3.6)

such that at the limit 𝜖→ 0,
A(u𝜖)𝑑𝑥u𝜖 ⇀C𝛿𝑥0 , (3.7)

in the sense of measures on ⌋︀𝑎, 𝑏(︀, where 𝛿𝑥0 is the Dirac measure placed at 𝑥0 and

C = ∫

1

0
A(Ψ(𝑠))Ψ′

(𝑠)𝑑𝑠. (3.8)

Here we see a clear dependence of the definition of the nonconservative product on the
chosen family of paths connecting the left and right states. Now, assuming that we choose
a family of locally Lipschitz paths, Ψ(𝑠;u𝐿,u𝑅) ∶ (︀0,1⌋︀ ×Ω∗ ×Ω∗ → Ω∗,∀u𝐿, ,u𝑅 ∈ Ω∗,∀𝑠 ∈
(︀0,1⌋︀, that satisfies the following consistency and regularity properties:

(Hyp.1): Ψ(0;u𝐿,u𝑅) = u𝐿, Ψ(1;u𝐿,u𝑅) = u𝑅,

(Hyp.2): ∃𝑘 > 0, ⋂︀𝜕𝑠Ψ(𝑠;u𝐿,u𝑅)⋂︀ ⩽ 𝑘 ⋃︀u𝑅 − u𝐿⋃︀ ,

(Hyp.3): ∃𝑘 > 0, ⋂︀𝜕𝑠Ψ(𝑠;u𝐿,u𝑅) − 𝜕𝑠Ψ(𝑠;u∗𝐿,u
∗
𝑅)⋂︀ ⩽ 𝑘 (⋃︀u𝐿 − u∗𝐿⋃︀ + ⋃︀u𝑅 − u∗𝑅⋃︀) ,

then the nonconservative product can be defined based on the family of paths Ψ(𝑠;u𝐿,u𝑅).

Theorem 3.2.1 (DLM [40]). Let the state vector be defined on the space of BV functions
u ∈ BV(⌋︀𝑎, 𝑏(︀,R𝑁) and A(u) be a 𝑁 ×𝑁 matrix-valued function, then for a chosen family
of Lipschitz paths , there exits a unique real-valued Borel measure 𝜇, such that

• if u is continuous on some Borel set 𝒪 ⊂ R, then

𝜇(𝒪) = ∫𝒪
A(u)

𝑑u
𝑑𝑥
, (3.9)
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• if u is discontinuous at a point 𝑥0, then

𝜇(𝑥0) = ∫
1

0
A(Ψ(𝑠;u𝐿,u𝑅))𝜕𝑠Ψ(𝑠;u𝐿,u𝑅)𝑑𝑠. (3.10)

The interpretation of the nonconservative product as a Borel measure is central to the
definition of weak solutions for (3.2) and henceforth we will denote it as )︀A(u)𝑑𝑥u⌈︀Ψ.

Note that the above theorem coincides with the definition of the nonconservative product
introduced by Volpert [137] if the family of paths are considered as straight lines. More
precisely, in such a case the nonconservative product can be defined as the product of the
averaged superposition Â of u ∈ BV(⌋︀𝑎, 𝑏(︀,R𝑁) by the smooth function A(u) and the Borel
measure 𝑑u

𝑑𝑥

)︀A(u)𝑑𝑥u⌈︀Ψ = Â(u)
𝑑u
𝑑𝑥
, (3.11)

where
Â(u) = ∫

1

0
A (u𝐿 + 𝑠 (u𝑅 − u𝐿))𝑑𝑠, (3.12)

and the family of paths are defined as

Ψ(𝑠;u𝐿,u𝑅) = u𝐿 + 𝑠(u𝑅 − u𝐿). (3.13)

It has been proved in [137] that Â(u) is a measurable function with respect to the Borel
measure 𝑑u

𝑑𝑥 and the resulting product is a bounded Borel measure.

We will now move to the original point of interest, namely to describe the notion of
weak solutions of (3.1) and (3.2), based on the definition of the nonconservative product in
Theorem 3.2.1. Note that now we consider the vector of unknowns u as a function of space
and time, and therefore the product )︀A(u(⋅, 𝑡))𝜕𝑥u(⋅, 𝑡)⌈︀Ψ is defined for every 𝑡 > 0 as a
Borel measure on R and is a bounded Lebesgue-measurable function.

Definition 3.2.1. A function u ∈ L∞(R+,BV(R,R𝑁)) is called a weak solution of (3.1) if
for any 𝜑 ∈ C1

0(R ×R+,R) it satisfies

∫
R+
∫
R
u(𝑥, 𝑡)𝜕𝑡𝜑(𝑥, 𝑡)𝑑𝑥𝑑𝑡 − ∫

R+
(∫

R
𝜑(𝑥, 𝑡) )︀A(u(𝑥, 𝑡))𝜕𝑥u(𝑥, 𝑡)⌈︀Ψ 𝑑𝑥)𝑑𝑡

+ ∫
R
𝜑(𝑥,0)u0(𝑥)𝑑𝑥 = 0,

(3.14)

where A(u) is defined in (3.2).

Consequently, for a discontinuity travelling at the finite speed 𝜎 ∈ R, the weak solution
must satisfy the generalized Rankine-Hugoniot condition

𝜎JuK = )︀A(u)𝜕𝑥u⌈︀Ψ , (3.15)

where JuK = u𝑅 −u𝐿 and u𝐿, u𝑅 are the respective left and right states at the discontinuity.

Remark 3.2.1. In the case that (3.1a) is a conservation law, i.e. c(u) ≡ 0, the matrix-
valued function is indeed a Jacobian of the physical flux A(u) = 𝜕uf(u) and the relation
(3.15) simplifies to the standard notion of the Rankine-Hugoniot jump condition

𝜎JuK = Jf(u)K, (3.16)
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for weak solutions in the sense of distributions. Note that the jump condition for conservation
laws is independent of the family of paths introduced earlier.

3.3 Existence of solution and the entropy condition

We state the existence results obtained in [40] for Riemann initial data

u0(𝑥) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

u𝐿, 𝑥 < 0,

u𝑅, 𝑥 > 0,
(3.17)

in the case where the jump ⋃︀u𝐿 − u𝑅⋃︀ is small.

Theorem 3.3.1 (DLM [40]). Let there be family of paths Ψ satisfying (Hyp.1)-(Hyp.3).
Assume that (3.2) is strictly hyperbolic with either genuinely nonlinear, or linearly degenerate
characteristic fields, and that Ψ satisfies

𝜕Ψ

𝜕u𝑅
(1;u𝐿,u𝐿) −

𝜕Ψ

𝜕u𝑅
(0;u𝐿,u𝐿) = Id, ∀u𝐿 ∈ Ω∗. (3.18)

Then, for ⋃︀u𝐿 − u𝑅⋃︀ small enough, the Riemann problem for (3.2) with initial data (3.17)
has a solution with bounded variation u that depends only on 𝑥

𝑡 and has the Lax’s structure:
u consists of 𝑁 + 1 constant states separated by shock waves, rarefaction waves or contact
discontinuities.

Let us now interpret the family of paths from a parabolic regularization. This leads to
the notion that the choice of family of paths depends on the viscous profile. In order to
demonstrate this, let us consider the parabolic regularization of (3.2), we have, for 𝜖 > 0

𝜕𝑡u𝜖 +A(u𝜖)𝜕𝑥u𝜖 = 𝜖𝜕𝑥 (D(u𝜖)𝜕𝑥u𝜖) , (3.19)

where the right hand elliptic operator is termed as the viscous profile and D is a smooth
positive semi-definite matrix.

Assuming that u is still a BV function, which is piecewise smooth [137], then for smooth
solutions as 𝜖→ 0, we formally have

u𝜖 → u, A(u𝜖)𝜕𝑥u𝜖 ⇀A(u)𝜕𝑥u, 𝜖𝜕𝑥 (D(u𝜖)𝜕𝑥u𝜖) → 0, (3.20)

almost everywhere, under suitable estimates on the derivatives of u𝜖.

In the case of travelling wave solutions of (3.19), u𝜖(𝑥, 𝑡) = w(𝜉), 𝜉 = 𝑥−𝜎𝑡
𝜖 , that satisfy

lim
𝜉→−∞

w(𝜉) = u𝐿, lim
𝜉→+∞

w(𝜉) = u𝑅, lim
𝜉→±∞

w′
(𝜉) = 0, (3.21)

the viscous profile must satisfy the following ordinary differential equation

(A(w(s)) − 𝜎)w′
(𝜉) = (D(w(s))w′

(𝜉))
′
, (3.22)
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which can be integrated, see [24], to deduce

𝜎JwK = ∫
+∞

−∞
A(w(𝜉))w′

(𝜉)𝑑𝜉, (3.23)

where it is evident that the jump condition depends on the choice of viscous profile w(𝜉).

It must be mentioned, however, that weak solution in Definition 3.2.1 do not guarantee
uniqueness, and, therefore, additional constraints need to be enforced in order to select
admissible solutions. These constraints come in the form of entropy conditions.

Definition 3.3.1. Let 𝜂(u) ∶ Ω∗ → R be a smooth convex function and 𝑞(u) ∶ Ω∗ → R be
the smooth entropy flux, then admissible smooth solutions of (3.2) must satisfy an additional
conservation law

𝜂′(u) (𝜕𝑡u +A(u)𝜕𝑥u) = 𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = 0,∀u ∈ Ω∗, (3.24)

such that
q′(u)⊺ = 𝜂′(u)⊺A(u), (3.25)

where 𝜂′(u)⊺ = 𝜕u𝜂(u) are the entropy variables and the mapping u→ v(u) is one-to-one.

Additionally, let (u𝜖)𝜖 be a sequence of sufficiently smooth solutions to (3.19) such that

• ∏︁u𝜖∏︁L∞(R+,BV(R,R𝑁 )) < +∞,

• u𝜖 → u as 𝜖→ 0 almost everywhere in R × (︀0,+∞(︀,

then as 𝜖→ 0, admissible weak solutions of (3.19) must satisfy the entropy condition

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) ≤ 0. (3.26)

In the sense of distributions ∀𝜑 ∈ C1
0(R+,R):

∫
R+
∫
R
𝜂(u(𝑥, 𝑡))𝜕𝑡𝜑(𝑥, 𝑡) + 𝑞(u(𝑥, 𝑡))𝜕𝑥𝜑(𝑥, 𝑡)𝑑𝑥𝑑𝑡 + ∫

R
𝜂(u0(𝑥))𝜑(𝑥,0)𝑑𝑥 ≥ 0. (3.27)

3.4 Numerical solution

In this section we introduce the discontinuous Galerkin spectral element method (DGSEM)
that we use to discretize (3.1).

Let us consider the Cauchy problem (3.1) over a computational grid Ωℎ ∶= ∪𝑗∈Z𝜅𝑗 con-
taining cells 𝜅𝑗 = (︀𝑥𝑗− 1

2
, 𝑥𝑗+ 1

2
⌋︀, 𝑥𝑗+ 1

2
= 𝑗ℎ with cell size ℎ > 0, where the mesh is assumed to

be uniform without loss of generality, see Figure 3-1.

We seek approximate solutions of (3.1) in the function space of piecewise polynomials

𝒱
𝑝
ℎ = {𝑣ℎ ∈ 𝐿

2
(Ωℎ) ∶ 𝑣ℎ⋃︀𝜅𝑗 ∈ 𝒫𝑝(𝜅𝑗), 𝜅𝑗 ∈ Ωℎ}, (3.28)

where 𝒫𝑝(𝜅𝑗) denotes the space of polynomials of degree at most 𝑝 in the element 𝜅𝑗 . The
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Figure 3-1: A one-dimensional representation of the mesh with cell 𝜅𝑗 of size ℎ. The left
and right interfaces of cell 𝜅𝑗 are at 𝑥𝑗∓ 1

2
, and the left and right traces are represented at

𝑥𝑗+ 1
2
.

polynomial approximate solution is defined as

uℎ(𝑥, 𝑡) ∶=
𝑝

∑
𝑘=0

𝜑𝑘𝑗 (𝑥)U
𝑘
𝑗 (𝑡) ∀𝑥 ∈ 𝜅𝑗 , 𝜅𝑗 ∈ Ωℎ, 𝑡 ≥ 0, (3.29)

where (𝜑0𝑗 , ..., 𝜑
𝑝
𝑗) constitutes a basis of 𝒱𝑝ℎ restricted onto 𝜅𝑗 and U0⩽𝑘⩽𝑝

𝑗 are the 𝑝+1 degrees
of freedom (DOFs) in 𝜅𝑗 .

Here we use the Lagrange interpolation polynomials ℓ0⩽𝑘⩽𝑝, see Figure 3-2, associated to
the Gauss-Lobatto (GL) nodes over the reference element 𝐼 = (︀−1,1⌋︀: −1 = 𝜉0 < 𝜉1 < ⋯ < 𝜉𝑝 =
1:

ℓ𝑘(𝜉) =
𝑝

∏
𝑙=0,𝑙≠𝑘

𝜉 − 𝜉𝑙
𝜉𝑘 − 𝜉𝑙

, (3.30a)

ℓ𝑘(𝜉𝑙) = 𝛿𝑘𝑙, 0 ⩽ 𝑘, 𝑙 ⩽ 𝑝. (3.30b)

Observe that the GL nodes take into account the boundary points 𝜉 = −1 and 𝜉 = 1 and
satisfy the summation-by-parts (SBP) property. The basis functions with support in a given
element 𝜅𝑗 are written as

𝜑𝑘𝑗 (𝑥) = ℓ𝑘(𝜎𝑗(𝑥)), 𝜎𝑗(𝑥) = 2(𝑥 − 𝑥𝑗)⇑ℎ, (3.31)

where 𝑥𝑗 = (𝑥𝑗+ 1
2
+ 𝑥𝑗− 1

2
)⇑2 denotes the center of the element.

The DOFs in (3.29) thus correspond to the point values of the solution: given 0 ⩽ 𝑘 ⩽ 𝑝,
𝑗 ∈ Z, and 𝑡 ≥ 0, we have

uℎ(𝑥𝑘𝑗 , 𝑡) = U𝑘
𝑗 (𝑡) (3.32)
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Figure 3-2: The plot of the Lagrange basis functions on the bi-unit reference element
𝐼 = (︀−1,1⌋︀ for 𝑝 = 1,2, and 3.

for 𝑥𝑘𝑗 = 𝑥𝑗+𝜉𝑘ℎ⇑2. Likewise, the left and right traces of the solution at the element interfaces
read

uℎ(𝑥−𝑗+1⇑2, 𝑡) = U𝑝
𝑗(𝑡), uℎ(𝑥+𝑗−1⇑2, 𝑡) = U0

𝑗(𝑡), (3.33)

respectively. The integrals over the elements are based on the Gauss-Lobatto quadrature
rule where the quadrature and interpolation points are collocated:

∫
𝜅𝑗
𝑓(𝑥)𝑑𝑥 =

ℎ

2
∫

1

−1
𝑓(𝑥𝑗 +

ℎ

2
𝜉)𝑑𝜉 ≈

ℎ

2

𝑝

∑
𝑙=0
𝜔𝑙𝑓(𝑥

𝑙
𝑗), (3.34)

where 𝜔𝑙 > 0 with ∑𝑝𝑙=0 𝜔𝑙 = 2, are the quadrature weights and 𝑥𝑙𝑗 are the quadrature points.
The discrete inner product within the element is defined as

∐︀𝑓, 𝑔̃︀𝑝𝑗 ∶=
ℎ

2

𝑝

∑
𝑙=0
𝜔𝑙𝑓(𝑥

𝑙
𝑗)𝑔(𝑥

𝑙
𝑗). (3.35)

Let us also introduce the discrete difference matrix

𝐷𝑘𝑙 = ℓ
′
𝑙(𝜉𝑘) =

ℎ

2
𝑑𝑥𝜑

𝑙
𝑗(𝑥

𝑘
𝑗 ), 0 ⩽ 𝑘, 𝑙 ⩽ 𝑝, (3.36)

where the property ∑𝑝𝑙=0 ℓ𝑙 ≡ 1 implies

𝑝

∑
𝑙=0
𝐷𝑘𝑙 = 0 ∀0 ⩽ 𝑘 ⩽ 𝑝. (3.37)

The discrete difference matrix is known to satisfy the summation-by-parts (SBP) property,
as observed in [86]. The SBP is the discrete analogue of the following integration-by-parts

∫
𝜅𝑗
𝜑𝑘𝑗 (𝑥)𝑑𝑥𝜑

𝑙
𝑗(𝑥)𝑑𝑥 + ∫

𝜅𝑗
𝑑𝑥𝜑

𝑘
𝑗 (𝑥)𝜑

𝑙
𝑗(𝑥)𝑑𝑥 = (𝜑

𝑘
𝑗 (𝑥)𝜑

𝑙
𝑗(𝑥))

𝑥−
𝑗+1⇑2

− (𝜑𝑘𝑗 (𝑥)𝜑
𝑙
𝑗𝑤(𝑥))

𝑥+
𝑗−1⇑2

,

(3.38)
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where we use (3.34) and (3.36) to get

𝜔𝑘𝐷𝑘𝑙 + 𝜔𝑙𝐷𝑙𝑘 = 𝛿𝑘𝑝𝛿𝑙𝑝 − 𝛿𝑘0𝛿𝑙0 ∀0 ⩽ 𝑘, 𝑙 ⩽ 𝑝. (3.39)

Indeed, the approximation (3.34) is exact for polynomial integrands up to degree 2𝑝 − 1
which is the case in (3.39).

3.4.1 Semi-discrete form

Let uℎ ∈ (𝒱
𝑝
ℎ)
𝑁 be the approximate solution of (3.1a) then, under the DGSEM framework

[54, 113], the semi-discrete form of (3.1) can be written as

∑
𝜅𝑗∈Ωℎ

∫
𝜅𝑗
𝜕𝑡𝑣ℎuℎ𝑑𝑥 − ∑

𝜅𝑗∈Ωℎ

∫
𝜅𝑗
f(uℎ)𝜕𝑥𝑣ℎ𝑑𝑥 + ∑

𝜅𝑗∈Ωℎ

∫
𝜅𝑗

c(uℎ)𝜕𝑥uℎ𝑑𝑥

+ ∑
𝑗∈Z

𝑣−𝑗+1⇑2 (h(U
𝑝
𝑗 ,U

0
𝑗+1) + d−(U𝑝

𝑗 ,U
0
𝑗+1))

+ ∑
𝑗∈Z

𝑣+𝑗+1⇑2 (d
+
(U𝑝

𝑗−1,U
0
𝑗) − h(U𝑝

𝑗−1,U
0
𝑗)) = 0, ∀𝑣ℎ ∈ 𝒱

𝑝
ℎ.

(3.40)

We again perform integration-by-parts to get

∑
𝜅𝑗∈Ωℎ

∫
𝜅𝑗
𝜕𝑡𝑣ℎuℎ𝑑𝑥 + ∑

𝜅𝑗∈Ωℎ

∫
𝜅𝑗
𝑣ℎ(𝜕𝑥f(uℎ) + c(uℎ)𝜕𝑥uℎ)𝑑𝑥

+ ∑
𝑗∈Z

𝑣−𝑗+1⇑2 (h(U
𝑝
𝑗 ,U

0
𝑗+1) − f(U𝑝

𝑗) + d−(U𝑝
𝑗 ,U

0
𝑗+1))

+ ∑
𝑗∈Z

𝑣+𝑗+1⇑2 (f(U
0
𝑗) − h(U𝑝

𝑗−1,U
0
𝑗) + d+(U𝑝

𝑗−1,U
0
𝑗)) = 0, ∀𝑣ℎ ∈ 𝒱

𝑝
ℎ,

(3.41)
where h(u−,u+) are the numerical fluxes for the physical flux function, f(u±) are the traces
of the physical flux at the interfaces, and d±(u−,u+) are the fluctuation fluxes for the
nonconservative product. Note that here we consider solutions which are only piecewise
smooth, therefore the operation (∓h(u−,u+) ± f(u±)) splits the Dirac mass placed at the
interface.

The projection of the initial condition (3.1b) onto (𝒱
𝑝
ℎ)
𝑁 reads

∑
𝜅𝑗∈Ωℎ

∫
𝜅𝑗
𝑣ℎuℎ(𝑥,0)𝑑𝑥 = 0, ∀𝑣ℎ ∈ 𝒱

𝑝
ℎ. (3.42)

In this work, we replace the numerical fluxes in (3.41) with fluctuation fluxes D(⋅, ⋅) and
substitute 𝑣ℎ for the Lagrange interpolation polynomials (3.30). Furthermore, we consider
the quadrature rule (3.34) and the difference matrix (3.36) to get a semi-discrete scheme for
(3.1a):

𝜔𝑘ℎ

2

𝑑

𝑑𝑡
U𝑘
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0
𝐷𝑘𝑙(f(U𝑙

𝑗) + c(U𝑘
𝑗 )U

𝑙
𝑗)

+ 𝛿𝑘𝑝D−
(U𝑝

𝑗 ,U
0
𝑗+1) + 𝛿𝑘0D

+
(U𝑝

𝑗−1,U
0
𝑗) = 0, 𝑡 > 0, ∀𝑗 ∈ Z, 0 ⩽ 𝑘 ⩽ 𝑝,

(3.43)
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along with the projection of the initial condition (3.1b) on the function space:

U𝑘
𝑗 (0) = u0(𝑥

𝑘
𝑗 ) ∀𝑗 ∈ Z,0 ⩽ 𝑘 ⩽ 𝑝. (3.44)

The fluctuation fluxes satisfy the consistency property

D±
(u,u) = 0, ∀u ∈ Ω∗. (3.45)

Note that our aim is to recover physically relevant solutions of (3.1) using the scheme
(3.43). Therefore the concept of entropy weak solutions needs to be considered. In the
following section we comment on the numerical fluxes and describe the conditions that
allow them to satisfy a semi-discrete entropy inequality.

3.5 Numerical fluxes

We rely on numerical fluxes in fluctuation form [103] that satisfy the properties of entropy
conservation and entropy stability for the semi-discrete scheme (3.43). Here we recall their
definition from [24].

Definition 3.5.1. Let D±
𝑒𝑐 be consistent numerical fluxes in fluctuation form, D±

𝑒𝑐(u,u) = 0
for all u in Ω∗, and (𝜂, 𝑞) be an entropy-entropy flux pair for (3.1a), then D±

𝑒𝑐 are said to
be entropy conservative if they satisfy the following relation:

v(u−)⊺D−
𝑒𝑐(u

−,u+) + v(u+)⊺D+
𝑒𝑐(u

−,u+) = 𝑞(u+) − 𝑞(u−) ∀u± ∈ Ω∗, (3.46)

where v(u±) = 𝜂′(u±) are the entropy variables.

In this work we are interested in entropy conservative fluxes of the following form

D−
𝑒𝑐(u

−,u+) = h(u−,u+) − f(u−) + d−(u−,u+), (3.47a)
D+
𝑒𝑐(u

−,u+) = f(u+) − h(u−,u+) + d+(u−,u+), (3.47b)

where the numerical fluxes satisfy the consistency conditions:

h(u,u) = f(u), d±(u,u) = 0 ∀u ∈ Ω∗, (3.48)

and may also satisfy the path-conservative property

d−(u−,u+)+d+(u−,u+) = ∫
1

0
c(Ψ(𝑠,u−,u+))𝜕𝑠Ψ(𝑠,u−,u+)𝑑𝑠, ∀u± ∈ Ω∗, 𝑗 ∈ Z. (3.49)

Using (3.47), the condition for entropy conservation now becomes

v(u−)⊺d−(u−,u+) + v(u+)⊺d+(u−,u+) + Jv⊺f − 𝑞K = h(u−,u+)⊺JvK ∀u± ∈ Ω∗, (3.50)

where 𝑎 = 𝑎++𝑎−
2 is the arithmetic mean and J𝑎K = 𝑎+−𝑎− at a point x and 𝑎± = lim𝜀↓0 𝑎(𝑥+𝜀).

This relation is a direct generalization of entropy conditions in [24, 128] to systems with both
conservative and nonconservative terms (3.1a).

Furthermore, we apply entropy stable fluxes [76] at the interfaces that dissipate the
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entropy for shock solutions.

Definition 3.5.2. Fluctuation fluxes D± of the form

D±
(u−,u+) = D±

𝑒𝑐(u
−,u+) ±D𝜈(u−,u+), (3.51)

are said to be entropy stable if they satisfy the following relation:

v(u−)⊺D−
(u−,u+) + v(u+)⊺D+

(u−,u+) ≥ 𝑞(u+) − 𝑞(u−) ∀u± ∈ Ω∗, (3.52)

where D𝜈(u−,u+) is a numerical dissipation that satisfies the consistency and entropy dis-
sipation

D𝜈(u,u) = 0, Jv(u)K⊺D𝜈(u−,u+) ⩾ 0 ∀u,u± ∈ Ω∗. (3.53)

Observe that in the semi-discrete form (3.43), the discrete volume integral

𝜔𝑘

𝑝

∑
𝑙=0
𝐷𝑘𝑙(f(U𝑙

𝑗) + c(U𝑘
𝑗 )U

𝑙
𝑗)

does not bear proper constraints towards entropy conservation or dissipation. In other words,
we cannot control the sign of its scalar product with the entropy variables. Therefore, we
modify the volume integral and replace it with entropy conservative fluctuation fluxes, as in
[108]. The semi-discrete scheme now reads

𝜔𝑘ℎ

2

𝑑U𝑘
𝑗

𝑑𝑡
+R𝑘

𝑗 (uℎ) = 0, (3.54)

where

R𝑘
𝑗 (uℎ) = 𝜔𝑘

𝑝

∑
𝑙=0
𝐷𝑘𝑙D̃(U𝑘

𝑗 ,U
𝑙
𝑗) + 𝛿𝑘𝑝D

−
(U𝑝

𝑗 ,U
0
𝑗+1) + 𝛿𝑘0D

+
(U𝑝

𝑗−1,U
0
𝑗), (3.55)

and

D̃(u−,u+) ∶= D−
𝑒𝑐(u

−,u+) −D+
𝑒𝑐(u

+,u−), (3.56a)
(3.47)
= h(u−,u+) + h(u+,u−) + d−(u−,u+) − d+(u+,u−). (3.56b)

Note that in the above relation we do not require h to be symmetric as in [30, 52], but
rather use the symmetrizer 1

2
(h(u−,u+)+h(u+,u−)). Indeed this symmetrizer still satisfies

the consistency (3.48) and entropy conservation (3.50) conditions.

3.5.1 Properties of the semi-discrete scheme

The modification to the integrals over cell elements in (3.55) allows for an entropy stable
numerical scheme that preserves the high-order accuracy of the scheme. These properties
have been proven in [30, Theorem 3.3] for the conservative terms and [108, Theorems 3.1
and 3.2] for the nonconservative ones, however we recall them for systems that contain both
the conservative and nonconservative terms.

Theorem 3.5.1. Let D̃ be defined as (3.56) using consistent and entropy conservative fluc-
tuation fluxes (3.48) and (3.46), respectively, and let D± be entropy stable fluxes that satisfies
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(3.52). Then, the semi-discrete numerical scheme (3.54) satisfies an entropy inequality for
the entropy-entropy flux pair (𝜂, 𝑞):

ℎ
𝑑

𝑑𝑡
∐︀𝜂̃︀𝑗 +𝑄(U

𝑝
𝑗 ,U

0
𝑗+1) −𝑄(U

𝑝
𝑗−1,U

0
𝑗) ⩽ 0, (3.57)

where ∐︀𝜂̃︀𝑗(𝑡) = ∑
𝑝
𝑘=0

𝜔𝑘

2 𝜂(U
𝑘
𝑗 (𝑡)) is the cell averaged entropy and the conservative numerical

entropy flux is defined by

𝑄(u−,u+) =
𝑞(u−) + 𝑞(u+)

2
+

1

2
v(u−)⊺D−

(u−,u+) −
1

2
v(u+)⊺D+

(u−,u+), (3.58)

which are also consistent.

Further assuming that d± in (3.56b) have the form

d±(u−,u+) = 𝒞±(u−,u+)JuK, (3.59a)
𝒞(u−,u+) ∶= 𝒞+(u−,u+) + 𝒞−(u−,u+), (3.59b)

𝒞(u−,u+) + 𝒞(u+,u−) = c(u−) + c(u+), (3.59c)
𝒞(u,u) = c(u), (3.59d)

where JuK = u+ − u−, then semi-discrete DGSEM (3.54) is a high-order approximation in
space of smooth solutions for the nonconservative system (3.1a) that satisfies

ℎ
𝑑

𝑑𝑡
∐︀uℎ̃︀𝑗 + ∐︀c(uℎ), 𝑑𝑥uℎ̃︀

𝑝
𝑗 +D−

(U𝑝
𝑗 ,U

0
𝑗+1) + f(U𝑝

𝑗) +D+
(U𝑝

𝑗−1,U
0
𝑗) − f(U0

𝑗) = 0, (3.60)

for the cell averaged solution

∐︀uℎ̃︀𝑗(𝑡) ∶=
1

ℎ
∫
𝜅𝑗

uℎ(𝑥, 𝑡)𝑑𝑥 =
1

2

𝑝

∑
𝑘=0

𝜔𝑘U𝑘
𝑗 (𝑡). (3.61)

Proof. The proof for semi-discrete entropy stability follows the same technique as deriving an
entropy condition for the quasi-linear system in addition to employing some of the DGSEM
identities mentioned earlier. Therefore, we left multiply 𝜂′(U𝑘

𝑗 )
⊺ to (3.54) and by summing

over 0 ⩽ 𝑘 ⩽ 𝑝 obtain

ℎ
𝑑

𝑑𝑡
∐︀𝜂̃︀𝑗 +

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝜂
′
(U𝑘

𝑗 )
⊺D̃(U𝑘

𝑗 ,U
𝑙
𝑗)𝐷𝑘𝑙 + 𝜂′(U𝑝

𝑗)
⊺D−

(U𝑝
𝑗 ,U

0
𝑗+1)

+ 𝜂′(U0
𝑗)
⊺D+

(U𝑝
𝑗−1,U

0
𝑗) = 0,

(3.62)
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where attention should be given to resolving the volume term

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝜂
′
(U𝑘

𝑗 )
⊺D̃(U𝑘

𝑗 ,U
𝑙
𝑗)𝐷𝑘𝑙

(5.24𝑎)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝜂
′
(U𝑘

𝑗 )
⊺
(D−

𝑒𝑐(U
𝑘
𝑗 ,U

𝑙
𝑗) −D+

𝑒𝑐(U
𝑙
𝑗 ,U

𝑘
𝑗 ))𝐷𝑘𝑙

(3.39)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝜂
′
(U𝑘

𝑗 )
⊺D−

𝑒𝑐(U
𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 + 𝜔𝑙𝜂

′
(U𝑘

𝑗 )
⊺D+

𝑒𝑐(U
𝑙
𝑗 ,U

𝑘
𝑗 )𝐷𝑙𝑘

− 𝛿𝑘𝑙(𝛿𝑘𝑝 − 𝛿𝑘0)𝜂
′
(U𝑘

𝑗 )
⊺D+

𝑒𝑐(U
𝑙
𝑗 ,U

𝑘
𝑗 )

(3.45)
=
𝑘↔𝑙

𝑝

∑
𝑘,𝑙=0

𝜔𝑘 (𝜂
′
(U𝑘

𝑗 )
⊺D−

𝑒𝑐(U
𝑘
𝑗 ,U

𝑙
𝑗) + 𝜂′(U𝑙

𝑗)
⊺D+

𝑒𝑐(U
𝑘
𝑗 ,U

𝑙
𝑗))𝐷𝑘𝑙

(3.46)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘 (𝑞(U𝑙
𝑗) − 𝑞(U

𝑘
𝑗 ))𝐷𝑘𝑙

(3.39)
=

(3.37)
𝑞(U𝑝

𝑗) − 𝑞(U
0
𝑗).

In the above, 𝑘↔ 𝑙 indicates the inversion of the indices 𝑘 and 𝑙 in some of the terms.

The relation (3.62), thus, simplifies to

ℎ
𝑑

𝑑𝑡
∐︀𝜂̃︀𝑗 + 𝑞(U

𝑝
𝑗) − 𝑞(U

0
𝑗) + 𝜂′(U𝑝

𝑗)
⊺D−

(U𝑝
𝑗 ,U

0
𝑗+1) + 𝜂′(U0

𝑗)
⊺D+

(U𝑝
𝑗−1,U

0
𝑗) = 0, (3.63)

which can equivalently be expressed as

ℎ
𝑑

𝑑𝑡
∐︀𝜂̃︀𝑗 +

1

2
(𝑞(U𝑝

𝑗) + 𝑞(U
0
𝑗+1)) −

1

2
(𝑞(U0

𝑗+1) − 𝑞(U
𝑝
𝑗))

−
1

2
(𝑞(U𝑝

𝑗−1) + 𝑞(U
0
𝑗)) +

1

2
(𝑞(U𝑝

𝑗−1) − 𝑞(U
0
𝑗))

+ 𝜂′(U𝑝
𝑗)
⊺D−

(U𝑝
𝑗 ,U

0
𝑗+1) − 𝜂′(U𝑝

𝑗+1)
⊺D+

(U𝑝
𝑗 ,U

0
𝑗+1) + 𝜂′(U𝑝

𝑗+1)
⊺D+

(U𝑝
𝑗 ,U

0
𝑗+1)

+ 𝜂′(U0
𝑗)
⊺D+

(U𝑝
𝑗−1,U

0
𝑗) − 𝜂′(U𝑝

𝑗−1)
⊺D−

(U𝑝
𝑗−1,U

0
𝑗) + 𝜂′(U𝑝

𝑗−1)
⊺D−

(U𝑝
𝑗−1,U

0
𝑗) = 0,

(3.64)
where we collect the terms and use (3.58) to get

ℎ
𝑑

𝑑𝑡
∐︀𝜂̃︀𝑗 +𝑄(U

𝑝
𝑗 ,U

0
𝑗+1) −𝑄(U

𝑝
𝑗−1,U

0
𝑗)

=
1

2
(𝑞(U0

𝑗) − 𝑞(U
𝑝
𝑗−1) − 𝜂′(U0

𝑗)
⊺D+

(U𝑝
𝑗−1,U

0
𝑗) − 𝜂′(U𝑝

𝑗−1)
⊺D−

(U𝑝
𝑗−1,U

0
𝑗))

+
1

2
(𝑞(U0

𝑗+1) − 𝑞(U
𝑝
𝑗) − 𝜂′(U0

𝑗+1)
⊺D+

(U𝑝
𝑗 ,U

0
𝑗+1) − 𝜂′(U𝑝

𝑗)
⊺D−

(U𝑝
𝑗 ,U

0
𝑗+1))

(3.52)
≤ 0 .

(3.65)

High-order accuracy [37, 108]. In order to prove that the DGSEM scheme (3.54) is
high-order accurate it is sufficient to prove that the modification to the volume integral
(3.55)-(3.56) provide a high-order approximation of ∫𝜅𝑗 𝜑𝑗 (𝜕𝑥f(uℎ) + c(uℎ)𝜕𝑥uℎ)𝑑𝑥.

Let 𝜋𝑝ℎ ∶ 𝐿
2(Ω) ∩ 𝐶(Ω) ∋ 𝑢 → 𝜋𝑝ℎ(𝑢) ∈ 𝒱

𝑝
ℎ be the Lagrange projection onto the reference

domain. Since the Lagrange interpolation error is of order 𝒪(ℎ𝑝+1), we have the following
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result for the product of 𝑢 and 𝑣 in 𝒞𝑝+1(Ωℎ):

𝑑𝑥𝜋
𝑝
ℎ(𝑢𝑣)(𝑥) = 𝑢(𝑥)𝑑𝑥𝑣(𝑥) + 𝑣(𝑥)𝑑𝑥𝑢(𝑥) +𝒪(ℎ

𝑝
), ∀𝑥 ∈ Ωℎ. (3.66)

Furthermore, let c𝑘ℎ(𝑥) ∶= ∑
𝑝
𝑙=0 𝒞

−(U𝑘
𝑗 ,U

𝑙
𝑗)𝜑

𝑙(𝑥) be the interpolation polynomial, then
we have c𝑘ℎ(𝑥

𝑘
𝑗 ) = 𝒞

−(U𝑘
𝑗 ,U

𝑘
𝑗 ) and 𝑑𝑥c𝑘ℎ(𝑥

𝑘
ℎ) =

2
ℎ ∑

𝑝
𝑙=0 𝒞

−(U𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 by using (3.39). Then

by applying (3.66) to c𝑘ℎuℎ, we obtain

2

ℎ

𝑝

∑
𝑙=0
𝒞
−
(U𝑘

𝑗 ,U
𝑙
𝑗)U

𝑙
𝑗𝐷𝑘𝑙 =

2

ℎ

𝑝

∑
𝑙=0

(𝒞
−
(U𝑘

𝑗 ,U
𝑘
𝑗 )U

𝑙
𝑗 + 𝒞

−
(U𝑘

𝑗 ,U
𝑙
𝑗)U

𝑘
𝑗 )𝐷𝑘𝑙 +𝒪(ℎ

𝑝
). (3.67)

Similarly, an expression for c𝑘ℎ(𝑥) ∶= ∑
𝑝
𝑙=0 𝒞

+(U𝑙
𝑗 ,U

𝑘
𝑗 )𝜑

𝑙(𝑥) can also be derived. As a
result (3.56) can be written as

2

ℎ

𝑝

∑
𝑘,𝑙=0

D̃(U𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙

=
2

ℎ

𝑝

∑
𝑘,𝑙=0

(2h(U𝑘
𝑗 ,U

𝑙
𝑗) + d−(U𝑘

𝑗 ,U
𝑙
𝑗) − d+(U𝑙

𝑗 ,U
𝑘
𝑗 ))𝐷𝑘𝑙

(3.59𝑎)
=

2

ℎ

𝑝

∑
𝑘,𝑙=0

(h(U𝑘
𝑗 ,U

𝑙
𝑗) + h(U𝑙

𝑗 ,U
𝑘
𝑗 ) + (𝒞

−
(U𝑘

𝑗 ,U
𝑙
𝑗) + 𝒞

+
(U𝑙

𝑗 ,U
𝑘
𝑗 )) (U

𝑙
𝑗 −U𝑘

𝑗 ))𝐷𝑘𝑙

(3.67)
=

(3.37)
𝜕𝑥f̃(uℎ(𝑥𝑘𝑗 )) +

2

ℎ

𝑝

∑
𝑘,𝑙=0

(𝒞
−
(U𝑘

𝑗 ,U
𝑘
𝑗 ) + 𝒞

+
(U𝑘

𝑗 ,U
𝑘
𝑗 ))U𝑙

𝑗𝐷𝑘𝑙 +𝒪(ℎ
𝑝
)

(3.59𝑐)
=

(3.36)
𝜕𝑥f̃(uℎ(𝑥𝑘𝑗 )) + 𝒞(U

𝑘
𝑗 ,U

𝑘
𝑗 )𝜕𝑥uℎ(𝑥

𝑘
𝑗 ) +𝒪(ℎ

𝑝
)

(3.59𝑑)
= 𝜕𝑥f̃(uℎ(𝑥𝑘𝑗 )) + c(uℎ(𝑥𝑘𝑗 ))𝜕𝑥uℎ(𝑥

𝑘
𝑗 ) +𝒪(ℎ

𝑝
).

Finally we prove (3.60) by summing (3.55) over 0 ⩽ 𝑘 ⩽ 𝑝, we obtain

ℎ
𝑑∐︀uℎ̃︀𝑗
𝑑𝑡

+

𝑝

∑
𝑘=0

𝑝

∑
𝑙=0
𝜔𝑘𝐷𝑘𝑙D̃(U𝑘

𝑗 ,U
𝑙
𝑗) +D−

(U𝑝
𝑗 ,U

0
𝑗+1) +D+

(U𝑝
𝑗−1,U

0
𝑗) = 0,

where
𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙D̃(U𝑘
𝑗 ,U

𝑙
𝑗)

(3.56𝑏)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙(h(U𝑘
𝑗 ,U

𝑙
𝑗) + d−(U𝑘

𝑗 ,U
𝑙
𝑗)) +

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙(h(U𝑙
𝑗 ,U

𝑘
𝑗 ) − d+(U𝑙

𝑗 ,U
𝑘
𝑗 ))

(3.39)
=

(3.48)

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙(h(U𝑘
𝑗 ,U

𝑙
𝑗) + d−(U𝑘

𝑗 ,U
𝑙
𝑗)) −

𝑝

∑
𝑘,𝑙=0

𝜔𝑙𝐷𝑙𝑘(h(U𝑙
𝑗 ,U

𝑘
𝑗 )

− d+(U𝑙
𝑗 ,U

𝑘
𝑗 )) + f(U𝑝

𝑗) − f(U0
𝑗)

(3.59𝑎)
=

(3.59𝑏)

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙𝒞(U𝑘
𝑗 ,U

𝑙
𝑗)(U

𝑙
𝑗 −U𝑘

𝑗 ) + f(U𝑝
𝑗) − f(U0

𝑗)
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(3.39)
=

(3.59𝑑)

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙𝒞(U𝑘
𝑗 ,U

𝑙
𝑗)U

𝑙
𝑗 +

𝑝

∑
𝑘,𝑙=0

𝜔𝑙𝐷𝑙𝑘𝒞(U𝑘
𝑗 ,U

𝑙
𝑗)U

𝑘
𝑗

− c(U𝑝
𝑗)U

𝑝
𝑗 + c(U0

𝑗)U
0
𝑗 + f(U𝑝

𝑗) − f(U0
𝑗)

(3.59𝑐)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙(c(U𝑘
𝑗 ) + c(U𝑙

𝑗))U
𝑙
𝑗 − c(U𝑝

𝑗)U
𝑝
𝑗

+ c(U0
𝑗)U

0
𝑗 + f(U𝑝

𝑗) − f(U0
𝑗)

(3.39)
=

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙c(U𝑘
𝑗 )U

𝑙
𝑗 −

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙c(U𝑘
𝑗 )U

𝑘
𝑗 + f(U𝑝

𝑗) − f(U0
𝑗)

(3.37)
=

(3.35)
∐︀c(uℎ), 𝑑𝑥uℎ̃︀

𝑝
𝑗 + f(U𝑝

𝑗) − f(U0
𝑗)

3.6 DGSEM in multiple space dimensions

We here extend the DGSEM to multiple space dimensions and restrict ourselves to
Cartesian meshes. For the sake of clarity we introduce the scheme in two space dimensions,
𝑑 = 2, on uniform grids without loss of generality.

The physical domain Ω is discretized with a Cartesian grid Ωℎ with elements 𝜅𝑖,𝑗 =

(︀𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
⌋︀ × (︀𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
⌋︀ with 𝑥𝑖+ 1

2
= 𝑖ℎ𝑥, 𝑦𝑗+ 1

2
= 𝑗ℎ𝑦, where ℎ𝑥 > 0 and ℎ𝑦 > 0 are the

space steps.The Cartesian coordinate system is denoted as (0,ex,ey). Each element 𝜅𝑖,𝑗 is
defined through the mapping x𝑖,𝑗 ∶ 𝐼2 ∋ (𝜉, 𝜂) ↦ x = x𝑖,𝑗(𝜉, 𝜂) ∈ 𝜅𝑖,𝑗 with 𝐼2 = (︀−1,1⌋︀2. The
function space 𝒱𝑝ℎ restricted onto an element 𝜅𝑖,𝑗 is spanned with functions defined as tensor
products of one-dimensional Lagrange polynomials associated to the Gauss-Lobatto nodes
(see section 3.4):

𝜑𝑘𝑙𝑖,𝑗(x𝑖,𝑗(𝜉, 𝜂)) ∶= ℓ𝑘(𝜉)ℓ𝑙(𝜂), 0 ⩽ 𝑘, 𝑙 ⩽ 𝑝,

which satisfy the cardinality relation ℓ𝑘(𝜉𝑘)ℓ𝑙(𝜂𝑙̃) = 𝛿𝑘𝑘𝛿𝑙̃𝑙 for 0 ⩽ 𝑘, 𝑘, 𝑙̃, 𝑙 ⩽ 𝑝. The approxi-
mate solution is now represented as

uℎ(x, 𝑡) ∶=
𝑝

∑
𝑘,𝑙=0

𝜑𝑘𝑙𝑖,𝑗(x)U
𝑘𝑙
𝑖,𝑗(𝑡) ∀x ∈ 𝜅𝑖,𝑗 , 𝑡 ⩾ 0.

The integrals over the physical elements and faces are approximated with Gauss-Lobatto
quadratures:

∫
𝜅𝑖,𝑗

𝑓(x)𝑑𝑉 ≈

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝜔𝑙
ℎ𝑥ℎ𝑦

4
𝑓(x𝑘𝑙𝑖,𝑗), ∫

𝑒
𝑓(x)𝑑𝑆 ≈

𝑝

∑
𝑘=0

𝜔𝑘
⋃︀𝑒⋃︀

2
𝑓(x𝑘𝑒),

where 𝜔𝑘 and 𝜔𝑘𝜔𝑙 are the Gaussian weights, and ⋃︀𝑒⋃︀ is the length of 𝑒.

The semi-discrete DGSEM for the discretization of (4.37) then reads

ℎ𝑥ℎ𝑦

4

𝑑U𝑘𝑙
𝑖,𝑗

𝑑𝑡
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+ 𝜔𝑙
ℎ𝑦

2
(

𝑝

∑
𝑚=0

𝜔𝑘𝐷𝑘𝑚D̃(U𝑘𝑙
𝑖,𝑗 ,U

𝑚𝑙
𝑖,𝑗 ,ex) + 𝛿𝑘𝑝D

−
(U𝑝𝑙

𝑖,𝑗 ,U
0𝑙
𝑖+1,𝑗 ,ex) + 𝛿𝑘0D

+
(U𝑝𝑙

𝑖−1,𝑗 ,U
0𝑙
𝑖𝑗 ,ex))

+ 𝜔𝑘
ℎ𝑥
2
(

𝑝

∑
𝑚=0

𝜔𝑙𝐷𝑙𝑚D̃(U𝑘𝑙
𝑖,𝑗 ,U

𝑘𝑚
𝑖,𝑗 ,ey) + 𝛿𝑙𝑝D

−
(U𝑘𝑝

𝑖,𝑗 ,U
𝑘0
𝑖,𝑗+1,ey) + 𝛿𝑙0D

+
(U𝑘𝑝

𝑖,𝑗−1,U
𝑘0
𝑖𝑗 ,ey)) = 0,

with
D̃(u−,u+,n) ∶= D−

𝑒𝑐(u
−,u+,n) −D+

𝑒𝑐(u
+,u−,n).

3.7 Time integration

The DG formulation provides the ability to compute high-order accurate solutions in
space, therefore it is expected that the temporal integration is also high-order accurate. In
this work we rely on strong-stability preserving Runge-Kutta (SSP-RK) methods [63] that
preserves the properties of first order forward Euler method under some condition on the
time step.

To demonstrate this, let us discretize the scheme (3.54) using the forward Euler method

u(𝑛+1)ℎ = u(𝑛)ℎ +∆𝑡R(u(𝑛)ℎ ), (3.68)

where u(𝑛)ℎ is the vector of DOFs, R(u𝑛ℎ, 𝑡
𝑛) is the vector of residuals (3.55) and 𝑡(𝑛) = 𝑛∆𝑡,

∆𝑡 > 0 is the time step. Additionally the explicit 𝑠 stage Runge-Kutta method can be
written as

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

v(0) = u(𝑛)ℎ
v(𝑖) = ∑𝑖−1𝑗 𝛼𝑖𝑗v(𝑗) + 𝛽𝑖𝑗∆𝑡R (v(𝑗), 𝑡𝑛 +∆𝑡) ,

v(𝑠) = u(𝑛+1)ℎ ,

(3.69)

where the values of 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are found such that the order conditions are satisfied [19,
66, 121]. For consistency, we must have

𝑖−1
∑
𝑙=0
𝛼𝑖𝑙 = 1.

Observe that if 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are positive in (3.69) then the RK method is a convex
combination of the forward Euler steps

v(𝑖) =
𝑖−1
∑
𝑗=0

𝛼𝑖𝑗 (v(𝑗) +
𝛽𝑖𝑗

𝛼𝑖𝑗
∆𝑡R (v(𝑗), 𝑡𝑛 +∆𝑡)) .

As a result, if ∆𝑡𝐸 is the time step for the Euler method, then we can directly rely on that
result at high order, provided that the maximum time step is bounded as

∆𝑡𝑅𝐾 ⩽ min
𝑖𝑗

𝛼𝑖𝑗

𝛽𝑖𝑗
∆𝑡𝐸 .

This describes the SSP-RK methods which are particularly important for problems in-
volving shocks and discontinuities.
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In our work we use the SSP-RK method proposed in [121], which can be written as

v(1) = u𝑛ℎ +∆𝑡R (v(0), 𝑡𝑛 +∆𝑡) ,

v(2) =
1

4
(3u(𝑛)ℎ + v(1) +∆𝑡R (v(1), 𝑡𝑛 +∆𝑡)) ,

v(3) =
1

3

⎛

⎝
u(𝑛)ℎ + 2v(2) + 2∆𝑡R(v(2), 𝑡𝑛 +

1

2
∆𝑡)

⎞

⎠
,

(3.70)

and u(𝑛+1)ℎ = v(3).



Chapter 4
An entropy stable high-order discontinuous
Galerkin spectral element method for the

Baer-Nunziato two-phase flow model

Résumé du chapitre

Dans ce chapitre, nous proposons une discrétisation d’ordre élevé du modèle d’écoulement
diphasique de Baer-Nunziato [7] avec des fermetures pour la vitesse et la pression à l’interface
adaptées au traitement de solutions discontinues, et des équations d’état des gaz raidies.
Nous utilisons la méthode des éléments spectraux de Galerkin discontinue (DGSEM), basée
sur la collocation des points de quadrature et d’interpolation [86]. La DGSEM utilise des
opérateurs de sommation par parties (SBP) dans la quadrature numérique pour approximer
les intégrales sur les éléments de discrétisation [20, 59]. Ici, nous nous appuyons sur le
cadre fourni dans [108] pour les systèmes hyperboliques non-conservatifs afin de modifier
l’intégration sur les éléments de cellule en utilisant les opérateurs SBP et de remplacer
les flux physiques par des flux de fluctuation conservant de l’entropie de [24], tandis que
nous dérivons des flux numériques qui dissipe l’entropie aux interfaces. Cela permet de
prouver une inégalité semi-discrète pour l’entropie physique moyenne de la cellule, tout en
conservant une précision d’ordre élevé. La conception des flux numériques préserve aussi
formellement l’énergie cinétique au niveau discret. L’intégration temporelle d’ordre élevé
est réalisée à l’aide de schémas de Runge-Kutta préservant la stabilité et nous proposons
des conditions sur les paramètres numériques pour la positivité de la fraction de vide et des
densités partielles moyennées par cellule. La positivité de la solution moyenne de la cellule
est étendue aux valeurs nodales par l’utilisation d’un limiteur a posteriori. La précision
d’ordre élevé, la stabilité non linéaire et la robustesse du présent schéma sont évaluées par
plusieurs expériences numériques en une et deux dimensions spatiales.

4.1 Short description and outline of the chapter

In this chapter we propose a high-order discretization of the Baer-Nunziato two-phase
flow model [7] with closures for interface velocity and pressure adapted to the treatment
of discontinuous solutions, and stiffened gas equations of states. We use the discontinu-
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ous Galerkin spectral element method (DGSEM), based on collocation of quadrature and
interpolation points [86]. The DGSEM uses summation-by-parts (SBP) operators in the
numerical quadrature for approximating the integrals over discretization elements [20, 59].
Here, we build upon the framework provided in [108] for nonconservative hyperbolic systems
to modify the integration over cell elements using the SBP operators and replace the phys-
ical fluxes with entropy conservative fluctuation fluxes from [24], while we derive entropy
stable numerical fluxes applied at interfaces. This allows to prove a semi-discrete inequality
for the cell-averaged physical entropy, while keeping high-order accuracy. The design of the
numerical fluxes also formally preserves the kinetic energy at the discrete level. High-order
integration in time is performed using strong stability-preserving Runge-Kutta schemes and
we propose conditions on the numerical parameters for the positivity of the cell-averaged
void fraction and partial densities. The positivity of the cell-averaged solution is extended to
nodal values by the use of an a posteriori limiter. The high-order accuracy, nonlinear stabil-
ity, and robustness of the present scheme are assessed through several numerical experiments
in one and two space dimensions.

The plan of this chapter is as follows. In Section 4.2 we recall the essential properties of
the Baer-Nunziato model that are relevant to this work. The derivation of entropy conserva-
tive and entropy stable numerical fluxes are given in section 4.3. The properties of the scheme
and the limiters are described in section 4.4. The results of the numerical experiments in
one space dimension are presented in section 4.5, while those in two space dimensions are
presented in section 4.6. Finally, we summarize the present work in section 4.7.

4.2 The Baer-Nunziato model

Here we only recall specific properties of the Baer-Nunziato model that are relevant to
this chapter. This is done in order to avoid repetitiveness. For complete details on the
physical aspects of the model, we refer to Chapter 2.

We consider the Cauchy problem to the model (2.1), without the zeroth order source
terms [5, 6, 48, 132]

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = 0, 𝑥 ∈ R, 𝑡 > 0, (4.1a)
u(𝑥,0) = u0(𝑥), 𝑥 ∈ R, (4.1b)

where

u =

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝑖
𝛼𝑖𝜌𝑖
𝛼𝑖𝜌𝑖𝑢𝑖
𝛼𝑖𝜌𝑖𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎠

, f(u) =

⎛
⎜
⎜
⎜
⎜
⎝

0
𝛼𝑖𝜌𝑖𝑢𝑖

𝛼𝑖(𝜌1𝑢
2
𝑖 + p𝑖)

𝛼𝑖𝑢𝑖(𝜌𝑖𝐸𝑖 + p𝑖)

⎞
⎟
⎟
⎟
⎟
⎠

, c(u)𝜕𝑥u =

⎛
⎜
⎜
⎜
⎜
⎝

uI

0
−pI

−pIuI

⎞
⎟
⎟
⎟
⎟
⎠

𝜕𝑥𝛼𝑖, 𝑖 = 1,2. (4.2)

represent the variable vector, the vector of physical fluxes, and nonconservative products,
respectively. The phase densities are 𝜌𝑖, the velocities are 𝑢𝑖, and the specific total energies
are 𝐸𝑖 = 𝑒𝑖 + 𝑢2𝑖 ⇑2 where 𝑒𝑖 is the specific internal energy and 𝑖 = 1,2 refers to the 𝑖th phase.
The void fraction of each individual phase is denoted as 𝛼𝑖 and we assume that both satisfy
the saturation condition

𝛼1 + 𝛼2 = 1. (4.3)
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In one space dimension, the model is a system of seven equations including the evolution
equations for the mass, momentum and energy of each phase, along with a transport equation
for the void fraction. The solution u belongs to the phase space

ΩBNM = {u ∈ R7
∶ 0 < 𝛼𝑖 < 1, 𝜌𝑖 > 0, 𝑢𝑖 ∈ R, 𝜌𝑖𝑒𝑖 > p∞,𝑖, 𝑖 = 1,2}, (4.4)

where p∞,𝑖 ≥ 0 is a pressure-like constant.

Closure laws. We use the same closure laws for the pressure and the interfacial variables
as in (2.11)-(2.12) with (2.13). Therefore the pressure of each phase is related to the density
and internal energy through the stiffened gas EOS:

p𝑖(𝜌𝑖, 𝑒𝑖) = (𝛾𝑖 − 1)𝜌𝑖𝑒𝑖 − 𝛾𝑖p∞,𝑖, (4.5)

where 𝛾𝑖 = Cp𝑖⇑Cv𝑖 > 1 is the ratio of specific heats of phase 𝑖, while we use general closure
laws from [34, 56]:

uI ∶= 𝛽𝑢1 + (1 − 𝛽)𝑢2, (4.6a)
pI ∶= 𝜇p1 + (1 − 𝜇)p2, (4.6b)

where
𝛽 =

𝜒𝛼1𝜌1
𝜒𝛼1𝜌1 + (1 − 𝜒)𝛼2𝜌2

, 𝜇 =
(1 − 𝛽)𝑇2

𝛽𝑇1 + (1 − 𝛽)𝑇2
, 𝜒 ∈ {0, 12 ,1}, (4.7)

are the convex weights and 𝑇𝑖 denotes the temperature of the 𝑖th phase, which is defined by

𝑒𝑖 = Cv𝑖𝑇𝑖 +
p∞,𝑖
𝜌𝑖

. (4.8)

Entropy. The system (4.1a) is endowed with a physical entropy function

𝑠𝑖(𝜌𝑖, 𝜃𝑖) = −Cv𝑖 ln (
p+p∞,𝑖

𝜌
𝛾𝑖
𝑖

) = −Cv𝑖( ln 𝜃𝑖 + (𝛾𝑖 − 1) ln𝜌𝑖), 𝑖 = 1,2, (4.9)

where 𝜃𝑖 = 1
𝑇𝑖

the inverse of temperature.

Smooth solutions of (4.1) satisfy

𝜕𝑡
2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖 + 𝜕𝑥

2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖 =

2

∑
𝑖=1
(pI − p𝑖)(uI − 𝑢𝑖)𝜃𝑖𝜕𝑥𝛼𝑖, (4.10)

where the right-hand side indeed vanishes for the closure of interfacial quantities (4.6) and
(4.7):

2

∑
𝑖=1
(pI − p𝑖)(uI − 𝑢𝑖)𝜃𝑖𝜕𝑥𝛼𝑖 = 0. (4.11)

In the case of non-smooth solutions, such as shocks, admissible weak solutions of (4.1)
must satisfy a nonlinear stability condition for the convex entropy function 𝜂(u) ∶= −∑2

𝑖=1 𝛼𝑖𝜌𝑖𝑠𝑖
and entropy flux 𝑞(u) ∶= −∑2

𝑖=1 𝛼𝑖𝑢𝑖𝜌𝑖𝑠𝑖:

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) ⩽ 0. (4.12)



An entropy stable high-order discontinuous Galerkin spectral
element method for the Baer-Nunziato two-phase flow model 43

For smooth solutions, system (4.1a) can also be written in quasi-linear form as

𝜕𝑡u +A(u)𝜕𝑥u = 0, 𝑥 ∈ R, 𝑡 > 0, (4.13)

where A ∶ ΩBNM ∋ u ↦ A(u) = f′(u) + c(u) ∈ R7×7 is a matrix-valued function for smooth
solutions of (4.1). The system (4.13) is hyperbolic over the phase space (4.4) and A(u)
admits real eigenvalues

𝜆1(u) = 𝑢1 − 𝑐1, 𝜆2(u) = 𝑢2 − 𝑐2, 𝜆3(u) = 𝑢1,
𝜆4(u) = uI, 𝜆5(u) = 𝑢2, 𝜆6(u) = 𝑢1 + 𝑐1, 𝜆7(u) = 𝑢2 + 𝑐2,

(4.14)

associated to linearly independent eigenvectors. Here 𝑐𝑖(𝜌𝑖, 𝑒𝑖)2 = 𝛾𝑖(𝛾𝑖−1)(𝜌𝑖𝑒𝑖−𝑝∞,𝑖)⇑𝜌𝑖 is
the speed of sound for the EOS (4.5). Observe, in (4.14), that 𝜆3, 𝜆4 and 𝜆5 are associated to
LD fields, whereas the others ones, 𝜆1, 𝜆2, 𝜆6 and 𝜆7, are associated to genuinely nonlinear
(GNL) fields. Note that (4.13) is only weakly hyperbolic when uI is equal to one transport
velocity, 𝑢1 or 𝑢2, for 𝜒 = 1 or 0 in (4.7). In this work we assume that (4.13) is hyperbolic
and well-posed and exclude resonance phenomena.

Definition 4.2.1. A hyperbolic system (4.13) is said to be resonant if a linearly degenerate
field interacts with a genuinely nonlinear field, resulting in the system to turn degenerate as
the right eigenvectors no longer span the whole phase space.

In our case, the eigenvalues of A(u) in (4.13) are linearly independent iff

𝛼𝑖 ≠ 0, uI ≠ 𝑢𝑖 ± 𝑐𝑖, 𝑖 = 1,2. (4.15)

During the remaining course of this chapter, we will discretize the initial value problem
(4.1) using the DGSEM framework, which was introduced in section 3.4. Here we propose
numerical fluxes in fluctuation form, refer section 3.5, for the model (4.1a) that satisfies the
Theorem 3.5.1.

4.3 Numerical fluxes for the Baer-Nunziato model

Here we derive the numerical fluxes for the model (4.1a) that satisfy the entropy conserva-
tion (3.50) and dissipation (3.52) properties together with the assumptions in Theorem 3.5.1.
An essential tool which would help in the algebraic manipulations are the Leibniz identities,
which we recall here. Let 𝑎+, 𝑎−, 𝑏+, 𝑏−, 𝑐+, 𝑐− in R have finite values, then we have

J𝑎𝑏K = 𝑎J𝑏K + 𝑏J𝑎K, J𝑎𝑏𝑐K = 𝑎(𝑏J𝑐K + 𝑐J𝑏K) + 𝑏𝑐J𝑎K, (4.16)

where 𝑎 = 𝑎++𝑎−
2 is the arithmetic mean and J𝑎K = 𝑎+−𝑎− at a point x and 𝑎± = lim𝜀↓0 𝑎(𝑥+𝜀).

4.3.1 Entropy conservative fluxes

We begin by proposing entropy conservative numerical fluxes.

Proposition 4.3.1. The numerical fluxes (3.47) with the following definitions are consistent
and entropy conservative fluxes that satisfy the assumptions (3.59) of Theorem 3.5.1 for the
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Baer-Nunziato model (4.1a) with the EOS (4.5) and the interface variables (4.6).

h(u−,u+) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0
ℎ𝜌𝑖
ℎ𝜌𝑢𝑖
ℎ𝜌𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎠

− 𝛽𝑠
J𝛼𝑖K

2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1

ℎ̃𝜌𝑖
ℎ̃𝜌𝑢𝑖
ℎ̃𝜌𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, d±(u−,u+) ∶=
J𝛼𝑖K

2

⎛
⎜
⎜
⎜
⎜
⎝

uI
±

0
−pI

±

−pI
±uI

±

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑖 = 1,2, (4.17)

where

(ℎ𝜌𝑖 , ℎ𝜌𝑢𝑖 , ℎ𝜌𝐸𝑖) =
⎛

⎝
𝛼𝑖𝑢𝑖𝜌𝑖, 𝛼𝑖 (𝑢

2
𝑖 𝜌𝑖 +

p𝑖𝜃𝑖
𝜃𝑖

) , 𝛼𝑖𝑢𝑖 (𝜌𝑖 (
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) +
p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖)
⎞

⎠
,

(ℎ̃𝜌𝑖 , ℎ̃𝜌𝑢𝑖 , ℎ̃𝜌𝐸𝑖) = (𝜌𝑖, 𝜌𝑖𝑢𝑖, 𝜌𝑖 (
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) + p∞,𝑖) ,

(4.18)

𝛽𝑠 ⩾ 0 is defined in Theorem 4.4.2 and 𝑎̂ =
J𝑎K

Jln𝑎K
is the logarithmic mean [76].

Proof. Consistency of the numerical flux h follows from consistency of the arithmetic and
logarithmic means and the fact that 𝜌𝑖𝑒𝑖 = 𝜌𝑖Cv𝑖𝑇𝑖 + p∞,𝑖 from

𝜌𝑖Cv𝑖𝑇𝑖 = 𝜌𝑖𝑒𝑖 − p∞,𝑖 =
p𝑖 + p∞,𝑖
𝛾𝑖 − 1

, 𝑖 = 1,2. (4.19)

It can be easily checked that d± satisfy (3.59) and consistency d±(u,u) = 0.

Now let us recall the entropy variables associated to the entropy in (4.12):

v(u) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(−1)𝑖 (p1𝜃1 − p2𝜃2)

−𝑠𝑖 +
⎛

⎝
ℎ𝑖 −

𝑢2𝑖
2

⎞

⎠
𝜃𝑖

𝑢𝑖𝜃𝑖
−𝜃𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑖 = 1,2, (4.20)

where ℎ𝑖(𝜌𝑖, 𝑒𝑖) = 𝑒𝑖 +
p𝑖(𝜌𝑖,𝑒𝑖)

𝜌𝑖
= Cp𝑖𝑇𝑖 is the specific enthalpy for phase 𝑖 = 1,2 and 𝜃𝑖 = 1⇑𝑇𝑖.

Then, the discrete counterpart of (4.11) holds for the interface closures (4.6) and reads

2

∑
𝑖=1

(pI − p𝑖)(uI − 𝑢𝑖)𝜃𝑖J𝛼𝑖K = 0. (4.21)

Entropy conservation requires the fluxes (3.47) with (4.17) to satisfy (3.50) so we have
to check that

∆𝑄(u−,u+) ∶= −h(u−,u+) ⋅ Jv(u)K + v(u−) ⋅ d−(u−,u+) + v(u+) ⋅ d+(u−,u+)
+ Jf(u) ⋅ v(u) − 𝑞(u)K = 0.

(4.22)

Below we detail each term in the above relation by using the Liebniz identities (4.16) for
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the numerical fluxes (4.17). Note that direct manipulations give

Jp𝑖𝜃𝑖K
(4.5)
= (𝛾𝑖 − 1)Cv𝑖J𝜌𝑖K − p∞,𝑖J𝜃𝑖K, (4.23a)

Jℎ𝑖𝜃𝑖K = 0, (4.23b)

J𝑠𝑖K
(4.9)
= −Cv𝑖Jln 𝜃𝑖K − (𝛾𝑖 − 1)Cv𝑖Jln𝜌𝑖K, (4.23c)

𝑢2𝑖 −
𝑢2𝑖
2 =

𝑢−𝑖 𝑢
+
𝑖

2
. (4.23d)

Then, by (4.17) and (4.20), we have

Jv(u)K ⋅ h(u−,u+)

=
2

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑢𝑖J(ℎ𝑖 − 𝑢2𝑖 ⇑2)𝜃𝑖 − 𝑠𝑖K + 𝛼𝑖 (𝜌𝑖𝑢

2
𝑖 +

p𝑖𝜃𝑖
𝜃𝑖

) J𝑢𝑖𝜃𝑖K

− 𝛼𝑖𝑢𝑖 (𝜌𝑖 (
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) +
p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖) J𝜃𝑖K

− 𝛽𝑠
J𝛼𝑖K
2

⎛

⎝
−Jp𝑖𝜃𝑖K + 𝜌𝑖J(ℎ𝑖 − 𝑢2𝑖 ⇑2)𝜃𝑖 − 𝑠𝑖K + 𝜌𝑖𝑢𝑖J𝑢𝑖𝜃𝑖K − (𝜌𝑖 (

Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) + p∞,𝑖) J𝜃𝑖K
⎞

⎠

(4.23)
=

2

∑
𝑖=1

−𝛼𝑖𝜌𝑖𝑢𝑖(𝑢𝑖𝜃𝑖J𝑢𝑖K + 𝑢2𝑖 ⇑2J𝜃𝑖K −Cv𝑖Jln 𝜃𝑖K − (𝛾𝑖 − 1)Cv𝑖Jln𝜌𝑖K)

+ 𝛼𝑖 (𝜌𝑖𝑢
2
𝑖 +

p𝑖𝜃𝑖
𝜃𝑖

) J𝑢𝑖𝜃𝑖K − 𝛼𝑖𝑢𝑖 (𝜌𝑖 (Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) +
p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖) J𝜃𝑖K

− 𝛽𝑠
J𝛼𝑖K
2 ( − (𝛾𝑖 − 1)Cv𝑖J𝜌𝑖K + p∞,𝑖J𝜃𝑖K + 𝜌𝑖𝑢𝑖 (𝑢𝑖J𝜃𝑖K + 𝜃𝑖J𝑢𝑖K) − (𝜌𝑖 (Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) + p∞,𝑖) J𝜃𝑖K

− 𝜌𝑖 (𝑢𝑖𝜃𝑖J𝑢𝑖K + 𝑢2𝑖 ⇑2J𝜃𝑖K −Cv𝑖Jln 𝜃𝑖K − (𝛾𝑖 − 1)Cv𝑖Jln𝜌𝑖K))

(4.16)
=

(4.23)

2

∑
𝑖=1

−𝛼𝑖𝑢𝑖𝜌𝑖(𝑢𝑖𝜃𝑖J𝑢𝑖K + 𝑢2𝑖 ⇑2J𝜃𝑖K −Cv𝑖Jln 𝜃𝑖K − (𝛾𝑖 − 1)Cv𝑖Jln𝜌𝑖K)

+ 𝛼𝑖 (𝑢
2
𝑖 𝜌𝑖 +

p𝑖𝜃𝑖
𝜃𝑖

)(𝑢𝑖J𝜃𝑖K + 𝜃𝑖J𝑢𝑖K) − 𝛼𝑖𝑢𝑖 (𝜌𝑖 (Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) +
p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖) J𝜃𝑖K.

(4.24)

Furthermore, using (4.17) we easily obtain

v(u−) ⋅ d−(u−,u+) + v(u+) ⋅ d+(u−,u+) =
2

∑
𝑖=1

(pIuI − pI𝑢𝑖 − p𝑖uI)𝜃𝑖J𝛼𝑖K
(4.21)
= −

2

∑
𝑖=1

p𝑖𝑢𝑖𝜃𝑖J𝛼𝑖K,

(4.25)
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and

Jf(u) ⋅ v(u) − 𝑞(u)K

=
2

∑
𝑖=1

J−𝛼𝑖𝜌𝑖𝑢𝑖(𝑠𝑖 − (ℎ𝑖 − 𝑢2𝑖 ⇑2)𝜃𝑖) + 𝛼𝑖(𝜌𝑖𝑢
2
𝑖 + p𝑖)𝑢𝑖𝜃𝑖 − 𝛼𝑖(𝜌𝑖𝐸𝑖 + p𝑖)𝑢𝑖𝜃𝑖 + 𝛼𝑖𝜌𝑖𝑠𝑖𝑢𝑖K

=
2

∑
𝑖=1

J𝛼𝑖p𝑖𝑢𝑖𝜃𝑖K
(4.16)
=

2

∑
𝑖=1

p𝑖𝑢𝑖𝜃𝑖J𝛼𝑖K + 𝛼𝑖p𝑖𝜃𝑖J𝑢𝑖K + 𝛼𝑖𝑢𝑖Jp𝑖𝜃𝑖K

(??)
=

2

∑
𝑖=1

p𝑖𝑢𝑖𝜃𝑖J𝛼𝑖K + 𝛼𝑖p𝑖𝜃𝑖J𝑢𝑖K + 𝛼𝑖𝑢𝑖((𝛾𝑖 − 1)Cv𝑖J𝜌𝑖K − p∞,𝑖J𝜃𝑖K).

(4.26)

Substituting (4.24), (4.25) and (4.26) into (4.22) and collecting terms proportional to
J𝜌𝑖K, J𝑢𝑖K, and J𝜃𝑖K, we get

∆𝑄(u−,u+)

(4.23)
=

2

∑
𝑖=1
𝛼𝑖 (𝜌𝑖𝑢

2
𝑖 𝜃𝑖 − (𝜌𝑖𝑢

2
𝑖 +

p𝑖𝜃𝑖
𝜃𝑖

)𝜃𝑖 + p𝑖𝜃𝑖) J𝑢𝑖K

+ 𝛼𝑖𝑢𝑖 (𝜌𝑖(
𝑢2𝑖
2 −Cv𝑖

Jln 𝜃𝑖K
J𝜃𝑖K

) − 𝜌𝑖𝑢
2
𝑖 −

p𝑖𝜃𝑖
𝜃𝑖

+ 𝜌𝑖(
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 ) +
p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖 − p∞,𝑖) J𝜃𝑖K

− (𝛾𝑖 − 1)Cv𝑖𝛼𝑖𝑢𝑖(𝜌𝑖Jln𝜌𝑖K − J𝜌𝑖K) = 0,

which concludes the proof.

Remark 4.3.1. The contributions to the volume integral in (3.55) of the terms associated
to 𝛽𝑠 in (4.17) vanish due to the symmetrizer h(u−,u+) + h(u+,u−) in (3.56b). They will
however play an important role in the design of the entropy stable fluxes at interfaces (see
Theorem 4.4.2). They may be compared to the upwinding term in the Lax-Friedrichs flux
derived in [116] for (4.1a). The main motivation for including this term was to introduce
stabilizing mechanisms in the transport equation for the void fraction, as is evident from the
first component of h in (4.17). However, uI is associated to a LD field, so the remaining
terms ℎ̃𝜌𝑖, ℎ̃𝜌𝑢𝑖 , and ℎ̃𝜌𝐸𝑖 are further included so that this dissipation does not affect the
entropy balance as shown in the proof above.

Remark 4.3.2. Assuming perfect gas EOS in (4.5), p∞,𝑖 = 0, and uniform void fractions,
J𝛼𝑖K = 0, then the numerical flux h(u−,u+) in (4.17) for both phases reduce to the entropy
conservative Chandraskhar flux [28] for the compressible Euler equations. This numerical
flux has been here extended to the stiffened gas EOS (4.5).

4.3.2 Entropy stable fluxes

We here follow the procedure in [76] and build entropy stable fluxes (3.52) by adding
upwind-type dissipation to the entropy conservative numerical fluxes (3.47). We introduce
numerical dissipation to the equations of mass, momentum and energy for each phase. The
rationales for this particular choice of the numerical dissipation are as follows. First, we
do not add numerical dissipation to the void fraction equation as it is associated to a LD
field. We stress that the conservative flux in (4.17) already adds dissipation through an
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upwinding term without altering the entropy balance (see Remark 4.3.1). Second, since
we exclude resonance effects according to the assumption (4.15), the void fractions remain
uniform across shocks leading to uncoupled phases. It is, thus, appropriate to include
dissipation phase by phase.

Proposition 4.3.2. A class of entropy stable fluxes (3.52) that satisfy

D𝜈(u,u) = 0, Jv(u)K⊺D𝜈(u−,u+) ⩾ 0 ∀u,u± ∈ Ω∗. (4.27)

can be obtained for the Baer-Nunziato model (4.1a) where the numerical dissipation takes
the form

D𝜈(u−,u+) =

⎛
⎜
⎜
⎜
⎜
⎝

0 0 0 0
0 𝑘22 0 0
0 𝑘32 𝑘33 0
0 𝑘42 𝑘43 𝑘44

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

0
J𝜌𝑖K
J𝑢𝑖K
J𝑇𝑖K

⎞
⎟
⎟
⎟
⎟
⎠

,

where the matrix entries satisfy the following conditions

𝑘22 ⩾ 0, 𝑘33 ⩾ 0, 𝑘44 ⩾ 0, 𝑘32 = 𝑢𝑖𝑘22, 𝑘43 = 𝑢𝑖𝑘33, 𝑘42 = (
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2
)𝑘22. (4.28)

Proof. By construction we have D𝜈(u,u) = 0. Then, using (4.20) and (4.9), we get

Jv(u)K ⋅D𝜈(u−,u+) =
2

∑
𝑖=1
𝑘22(𝛾𝑖 − 1)Cv𝑖J𝜌𝑖KJln𝜌𝑖K + 𝑘33𝜃𝑖J𝑢𝑖K2 − 𝑘44J𝑇𝑖KJ𝜃𝑖K

+ 𝜃𝑖(𝑘32 − 𝑘22𝑢𝑖)J𝜌𝑖KJ𝑢𝑖K −
⎛
⎜
⎜
⎝

𝑘42 − 𝑢𝑖𝑘32 − 𝑘22
⎛
⎜
⎝

Cv𝑖

𝜃𝑖
−
𝑢2𝑖
2

⎞
⎟
⎠

⎞
⎟
⎟
⎠

J𝜌𝑖KJ𝜃𝑖K

− (𝑘43 − 𝑢𝑖𝑘33)J𝑢𝑖KJ𝜃𝑖K

(4.28)
=

2

∑
𝑖=1
𝑘22(𝛾𝑖 − 1)Cv𝑖J𝜌𝑖KJln𝜌𝑖K + 𝑘33𝜃𝑖J𝑢𝑖K2 − 𝑘44J𝑇𝑖KJ𝜃𝑖K ⩾ 0.

Using dimensional arguments, we define 𝑘33 = 𝜌𝑖𝑘22 and 𝑘44 = 𝜌𝑖Cv𝑖𝑘22, and 𝑘22 =
𝜖𝜈
2 max (𝜌A(u−), 𝜌A(u+)), with 𝜖𝜈 ⩾ 0 and 𝜌A(u) = max𝑖=1,2(⋃︀𝑢𝑖⋃︀ + 𝑐𝑖) the spectral radius of
A(u) in (4.13), to get the following numerical dissipation

D𝜈(u−,u+) =
𝜖𝜈
2

max (𝜌A(u−), 𝜌A(u+))

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
J𝜌𝑖K

J𝜌𝑖𝑢𝑖K

(
Cv𝑖

𝜃𝑖
+
𝑢−𝑖 𝑢

+
𝑖

2 )J𝜌𝑖K + 𝜌𝑖J𝐸𝑖K

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.29)

Remark 4.3.3. Nonconservative systems may admit shocks which depend on small scale
mechanisms such as viscosity and that numerical methods may fail to capture because the
leading viscosity terms in the equivalent equation do not match these mechanisms [91]. The
jump conditions indeed depend on the family of paths prescribed in the jump relations which
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should be consistent with the viscous profile. Using (4.29) the decay rate for the cell-averaged
entropy (3.57) reads

ℎ
𝑑∐︀𝜂(uℎ)̃︀𝑗

𝑑𝑡
+𝑄(U𝑝

𝑗 ,U
0
𝑗+1)−𝑄(U

𝑝
𝑗−1,U

0
𝑗) = −

𝜖𝜈
2

2

∑
𝑖=1

(𝛾𝑖 − 1)Cv𝑖J𝜌𝑖K2

𝜌𝑖
+𝜌𝑖𝜃𝑖J𝑢𝑖K2−𝜌𝑖Cv𝑖J𝑇𝑖KJ𝜃𝑖K ⩽ 0,

where the two last terms in the RHS are analogous to the ones in the physical model [56] for
a Prandtl number 𝑃𝑟𝑖 = 3𝛾𝑖⇑4:

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) = −∑
𝑖

4𝜇𝑖
3

(𝜃𝑖(𝜕𝑥𝑢𝑖)
2
−

3Cp𝑖

4𝑃𝑟𝑖
𝜕𝑥𝑇𝑖𝜕𝑥𝜃𝑖) ,

and 𝜇𝑖 > 0 is the dynamic viscosity coefficient and are therefore consistent with the small
scale mechanisms. The first term in the RHS was seen to improve stability and robustness
of the computations despite its lack of physical relevance.

4.4 Properties of the high-order DGSEM scheme for
the Baer-Nunziato model

4.4.1 Kinetic energy preservation

The equation for the kinetic energy of the model (4.1a) can be derived from the mass
and momentum equations:

𝜕𝑡𝐾𝑖 + 𝜕𝑥𝐾𝑖𝑢𝑖 + 𝑢𝑖𝜕𝑥𝛼𝑖p𝑖 − pI𝑢𝑖𝜕𝑥𝛼𝑖 = 0, 𝑖 = 1,2,

where 𝐾𝑖 =
1
2𝛼𝑖𝜌𝑖𝑢

2
𝑖 is the partial kinetic energy of the 𝑖th phase. These equations con-

tain nonconservative terms of pressure work and energy transfer between the phases. The
property of kinetic energy preservation by numerical schemes was introduced in [77] for the
compressible Euler equations, where a general condition was provided to impose kinetic
energy preservation for finite volume schemes, and was seen to be useful in turbulent flow
simulations. Kinetic energy preservation was later extended to high-order nodal DG schemes
in [58, 59] and we refer to [87] for split forms of the convective terms in the compressible Eu-
ler equations that lead to kinetic energy preserving schemes. According to [59, Theorem 2] it
is sufficient to show that the volume terms of the advective part of the cell-averaged kinetic
energy can be written in conservation form. This is done in the theorem below.

Theorem 4.4.1. The discretization of the volume integral in (3.54)-(3.55) with the numer-
ical fluxes (4.17) is kinetic energy preserving.

Proof. Let us consider the time derivative and volume term of the advective parts of the
mass and momentum equations of phase 𝑖 = 1,2 in (3.55). Using (4.17) they read

∆𝐾𝛼𝜌,𝑘
𝑖,𝑗 =

𝜔𝑘ℎ
2 𝑑𝑡(𝛼

𝑘
𝑖,𝑗𝜌

𝑘
𝑖,𝑗) +

𝑝

∑
𝑙=0

2𝜔𝑘𝐷𝑘𝑙ℎ
𝛼𝜌
𝑖 (U𝑘

𝑗 ,U
𝑙
𝑗),

∆𝐾𝛼𝜌𝑢,𝑘
𝑖,𝑗 =

𝜔𝑘ℎ
2 𝑑𝑡(𝛼

𝑘
𝑖,𝑗𝜌

𝑘
𝑖,𝑗𝑢

𝑘
𝑖,𝑗) +

𝑝

∑
𝑙=0

2𝜔𝑘𝐷𝑘𝑙
𝑢𝑘𝑖,𝑗+𝑢𝑙𝑖,𝑗

2 ℎ𝛼𝜌𝑖 (U𝑘
𝑗 ,U

𝑙
𝑗),
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with ℎ𝛼𝜌𝑖 (u−,u+) = 1
2
(ℎ𝜌𝑖(u

−,u+) + ℎ𝜌𝑖(u
+,u−))

(4.17)
= 𝛼𝑖𝑢𝑖𝜌𝑖.

Introducing 𝐾𝑘
𝑖,𝑗 =

1
2𝛼

𝑘
𝑖,𝑗𝜌

𝑘
𝑖,𝑗(𝑢

𝑘
𝑖,𝑗)

2, we have

𝑝

∑
𝑘=0

𝑢𝑘𝑖,𝑗∆𝐾
𝛼𝜌𝑢,𝑘
𝑖,𝑗 −

(𝑢𝑘𝑖,𝑗)2
2 ∆𝐾𝛼𝜌,𝑘

𝑖,𝑗

=

𝑝

∑
𝑘=0

𝜔𝑘ℎ
2 𝑑𝑡(𝐾

𝑘
𝑖,𝑗) +

𝑝

∑
𝑘,𝑙=0

2𝜔𝑘𝐷𝑘𝑙(𝑢
𝑘
𝑖,𝑗
𝑢𝑘𝑖,𝑗+𝑢𝑙𝑖,𝑗

2 −
(𝑢𝑘𝑖,𝑗)2

2
)ℎ𝛼𝜌𝑖 (U𝑘

𝑗 ,U
𝑙
𝑗)

= 𝑑𝑡∐︀𝐾𝑖(uℎ)̃︀𝑗 +
𝑝

∑
𝑘,𝑙=0

2𝜔𝑘𝐷𝑘𝑙
𝑢𝑘𝑖,𝑗𝑢

𝑙
𝑖,𝑗

2 ℎ𝛼𝜌𝑖 (U𝑘
𝑗 ,U

𝑙
𝑗)

(3.39)
= 𝑑𝑡∐︀𝐾𝑖(uℎ)̃︀𝑗 +

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙
𝑢𝑘𝑖,𝑗𝑢

𝑙
𝑖,𝑗

2 ℎ𝛼𝜌𝑖 (U𝑘
𝑗 ,U

𝑙
𝑗)

−

𝑝

∑
𝑘,𝑙=0

𝜔𝑙𝐷𝑙𝑘
𝑢𝑘𝑖,𝑗𝑢

𝑙
𝑖,𝑗

2 ℎ𝛼𝜌𝑖 (U𝑘
𝑗 ,U

𝑙
𝑗) + 𝑢

𝑝
𝑖,𝑗𝐾

𝑝
𝑖,𝑗 − 𝑢

0
𝑖,𝑗𝐾

0
𝑖,𝑗

= 𝑑𝑡∐︀𝐾𝑖(uℎ)̃︀𝑗 + 𝑢
𝑝
𝑖,𝑗𝐾

𝑝
𝑖,𝑗 − 𝑢

0
𝑖,𝑗𝐾

0
𝑖,𝑗 ,

by symmetry of ℎ𝛼𝜌𝑖 (u−,u+), which concludes the proof.

4.4.2 Positivity of the numerical solution

High-order time integration is made through the use of strong stability-preserving explicit
Runge-Kutta schemes [121] that are convex combinations of explicit first-order schemes in
time, see section 3.7. Therefore, we focus on the fully discrete scheme by using a one-step
first-order explicit time discretization.

We use the notation 𝑡(𝑛) = 𝑛∆𝑡 with ∆𝑡 > 0 the time step, and set 𝜆 = Δ𝑡
ℎ , u(𝑛)ℎ (⋅) =

uℎ(⋅, 𝑡(𝑛)) and U𝑘,𝑛
𝑗 = U𝑘

𝑗 (𝑡
(𝑛)). The fully discrete scheme reads

𝜔𝑘
2
(U𝑘,𝑛+1

𝑗 −U𝑘,𝑛
𝑗 ) + 𝜆R𝑘

𝑗 (u
(𝑛)
ℎ ) = 0, (4.30)

where R𝑘
𝑗 (⋅) is defined in (3.55). Our analysis of the discrete scheme provides conditions on

the numerical parameters that guarantee the positivity of the cell-averaged partial densities
and a maximum principle on the cell-averaged void fraction. Unfortunately, we were not
able to derive conditions for positivity of the partial internal energies, i.e., 𝜌𝑖𝑒𝑖 > p𝑖,∞, and
we refer to [36] for a first-order scheme that guaranties such condition.

Theorem 4.4.2. Assume that 𝜌0⩽𝑘⩽𝑝,𝑛𝑖,𝑗∈Z > 0, 𝛼0⩽𝑘⩽𝑝,𝑛
𝑖,𝑗∈Z > 0 for 𝑖 = 1,2 and let 𝛽𝑠, in (4.17), be

locally defined at element interfaces as

𝛽𝑠𝑗+1⇑2 ∶= max
𝑖=1,2

(⋃︀𝑢𝑝,𝑛𝑖,𝑗 ⋃︀, ⋃︀𝑢
0,𝑛
𝑖,𝑗+1⋃︀), (4.31)
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then under the CFL condition

𝜆max
𝑗∈Z

max
𝑖=1,2

⎛
⎜
⎝

max
0⩽𝑘⩽𝑝

1

𝜔𝑘

⎛
⎜
⎝
∐︀uI
(𝑛)
ℎ , 𝑑𝑥𝜑

𝑘
𝑗 ̃︀
𝑝
𝑗 + 𝛿𝑘𝑝

𝛽𝑠𝑗+1⇑2 − uI
𝑝,𝑛
𝑗

2
+ 𝛿𝑘0

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2

⎞
⎟
⎠
,

1

𝜔0

⎛
⎜
⎝

(𝛽𝑠𝑗−1⇑2 − 𝑢𝑖,𝑗−1⇑2)𝜌𝑖,𝑗−1⇑2
2𝜌0,𝑛𝑖,𝑗

+
𝜖𝜈𝑗−1⇑2

𝛼0,𝑛
𝑖,𝑗

⎞
⎟
⎠
,

1

𝜔𝑝

⎛
⎜
⎝

(𝛽𝑠𝑗+1⇑2 + 𝑢𝑖,𝑗+1⇑2)𝜌𝑖,𝑗+1⇑2
2𝜌𝑝,𝑛𝑖,𝑗

+
𝜖𝜈𝑗+1⇑2

𝛼𝑝,𝑛𝑖,𝑗

⎞
⎟
⎠

⎞
⎟
⎠
<

1

2
,

(4.32)

where 𝑢𝑖,𝑗+1⇑2 =
𝑢𝑝,𝑛𝑖,𝑗 +𝑢0,𝑛𝑖,𝑗+1

2 , 𝜌𝑖,𝑗+1⇑2 =
𝜌0,𝑛𝑖,𝑗+1−𝜌𝑝,𝑛𝑖,𝑗

ln𝜌0,𝑛𝑖,𝑗+1−ln𝜌𝑝,𝑛𝑖,𝑗

, we have for the cell averaged solution at

time 𝑡(𝑛+1)

∐︀𝛼𝑖,ℎ𝜌𝑖,ℎ̃︀
(𝑛+1)
𝑗 > 0, ∐︀𝛼𝑖,ℎ̃︀

(𝑛+1)
𝑗 > 0, 𝑖 = 1,2, 𝑗 ∈ Z.

Furthermore,

∐︀𝛼𝑖,ℎ̃︀
(𝑛+1)
𝑗 =

𝑝

∑
𝑘=0

⎛
⎜
⎜
⎝

𝜔𝑘
2
− 𝜆

⎛
⎜
⎝
∐︀uI
(𝑛)
ℎ , 𝑑𝑥𝜑

𝑘
𝑗 ̃︀
𝑝
𝑗 + 𝛿𝑘𝑝

𝛽𝑠𝑗+1⇑2 − uI
𝑝,𝑛
𝑗

2
+ 𝛿𝑘0

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2

⎞
⎟
⎠

⎞
⎟
⎟
⎠

𝛼𝑘,𝑛𝑖,𝑗

+ 𝜆
𝛽𝑠𝑗+1⇑2 − uI

𝑝,𝑛
𝑗

2
𝛼0,𝑛
𝑖,𝑗+1 + 𝜆

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2
𝛼𝑝,𝑛𝑖,𝑗−1

(4.33)
is a convex combination of DOFs at time 𝑡(𝑛).

Proof. Summing over 0 ⩽ 𝑘 ⩽ 𝑝 the first component of (4.30) for the void fraction we obtain

∐︀𝛼𝑖,ℎ̃︀
(𝑛+1)
𝑗

=

𝑝

∑
𝑘=0

𝜔𝑘
2
𝛼𝑘,𝑛+1𝑖,𝑗

=

𝑝

∑
𝑘=0

𝜔𝑘
2
𝛼𝑘,𝑛𝑖,𝑗 − 𝜆(

𝑝

∑
𝑙=0
𝜔𝑘𝐷𝑘𝑙uI

𝑘,𝑛
𝑗 𝛼𝑙,𝑛𝑖,𝑗 + 𝛿𝑘𝑝

uI
𝑝,𝑛
𝑗 − 𝛽𝑠𝑗+1⇑2

2
(𝛼0,𝑛

𝑖,𝑗+1 − 𝛼
𝑝,𝑛
𝑖,𝑗 )

+ 𝛿𝑘0
uI

0,𝑛
𝑗 + 𝛽𝑠𝑗−1⇑2

2
(𝛼0,𝑛

𝑖,𝑗 − 𝛼
𝑝,𝑛
𝑖,𝑗−1))

(3.35)
=

𝑝−1
∑
𝑘=1

(
𝜔𝑘
2
− 𝜆∐︀uI

(𝑛)
ℎ , 𝑑𝑥𝜑

𝑘
𝑗 ̃︀
𝑝
𝑗)𝛼

𝑘,𝑛
𝑖,𝑗 +

⎛
⎜
⎜
⎝

𝜔0

2
− 𝜆

⎛
⎜
⎝
∐︀uI
(𝑛)
ℎ , 𝑑𝑥𝜑

0
𝑗 ̃︀
𝑝
𝑗 +

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2

⎞
⎟
⎠

⎞
⎟
⎟
⎠

𝛼0,𝑛
𝑖,𝑗

+
⎛
⎜
⎝

𝜔𝑝

2
− 𝜆

⎛

⎝
∐︀uI
(𝑛)
ℎ , 𝑑𝑥𝜑

𝑝
𝑗 ̃︀
𝑝
𝑗 +

𝛽𝑠𝑗+1⇑2 − uI
𝑝,𝑛
𝑗

2

⎞

⎠

⎞
⎟
⎠
𝛼𝑝,𝑛𝑖,𝑗 + 𝜆

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2
𝛼𝑝,𝑛𝑖,𝑗−1

+ 𝜆
𝛽𝑠𝑗+1⇑2 − uI

𝑝,𝑛
𝑗

2
𝛼0,𝑛
𝑖,𝑗+1,

which is a convex combination of DOFs at time 𝑛 with (4.31) and the following restriction
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on the time-step:

𝜆
⎛
⎜
⎝
∐︀uI
(𝑛)
ℎ , 𝑑𝑥𝜑

𝑘
𝑗 ̃︀
𝑝
𝑗 + 𝛿𝑘𝑝

𝛽𝑠𝑗+1⇑2 − uI
𝑝,𝑛
𝑗

2
+ 𝛿𝑘0

𝛽𝑠𝑗−1⇑2 + uI
0,𝑛
𝑗

2

⎞
⎟
⎠
<
𝜔𝑘
2
, 0 ⩽ 𝑘 ⩽ 𝑝,

since from (4.6) we have 𝛽𝑠𝑗+1⇑2 ⩾ max(⋃︀uI
𝑝,𝑛
𝑗 ⋃︀, ⋃︀uI

0,𝑛
𝑗+1⋃︀).

For the cell-averaged partial densities, we use a similar technique to [104, 145] and sum
over 0 ⩽ 𝑘 ⩽ 𝑝 the second component in (4.30) for the partial densities to get

∐︀𝛼𝑖,ℎ𝜌𝑖,ℎ̃︀
(𝑛+1)
𝑗

=

𝑝

∑
𝑘=0

𝜔𝑘
2
𝛼𝑘,𝑛𝑖,𝑗 𝜌

𝑘,𝑛
𝑖,𝑗

− 𝜆
⎛
⎜
⎝
(𝑢𝑖,𝑗+1⇑2

𝛼𝑝,𝑛𝑖,𝑗 + 𝛼
0,𝑛
𝑖,𝑗+1

2
−
𝛽𝑠𝑗+1⇑2

2
(𝛼0,𝑛

𝑖,𝑗+1 − 𝛼
𝑝,𝑛
𝑖,𝑗 ))𝜌𝑖,𝑗+1⇑2 − 𝜖𝜈𝑖,𝑗+1⇑2(𝜌

0,𝑛
𝑖,𝑗+1 − 𝜌

𝑝,𝑛
𝑖,𝑗 )

⎞
⎟
⎠

+ 𝜆
⎛
⎜
⎝
(𝑢𝑖,𝑗−1⇑2

𝛼𝑝,𝑛𝑖,𝑗−1 + 𝛼
0,𝑛
𝑖,𝑗

2
−
𝛽𝑠𝑗−1⇑2

2
(𝛼0,𝑛

𝑖,𝑗 − 𝛼
𝑝,𝑛
𝑖,𝑗−1))𝜌𝑖,𝑗−1⇑2 − 𝜖𝜈𝑖,𝑗−1⇑2(𝜌

0,𝑛
𝑖,𝑗 − 𝜌

𝑝,𝑛
𝑖,𝑗−1)

⎞
⎟
⎠

=

𝑝−1
∑
𝑘=1

𝜔𝑘
2
𝛼𝑘,𝑛𝑖,𝑗 𝜌

𝑘,𝑛
𝑖,𝑗

+
⎛
⎜
⎝

𝜔𝑝

2
− 𝜆(

𝛽𝑠𝑗+1⇑2 + 𝑢𝑖,𝑗+1⇑2
2

𝜌𝑖,𝑗+1⇑2
𝜌𝑝,𝑛𝑖,𝑗

+
𝜖𝜈𝑖,𝑗+1⇑2

𝛼𝑝,𝑛𝑖,𝑗
)
⎞
⎟
⎠
𝛼𝑝,𝑛𝑖,𝑗 𝜌

𝑝,𝑛
𝑖,𝑗

+ 𝜆(
𝛽𝑠𝑗+1⇑2 − 𝑢𝑖,𝑗+1⇑2

2

𝜌𝑖,𝑗+1⇑2
𝜌0,𝑛𝑖,𝑗+1

+
𝜖𝜈𝑖,𝑗+1⇑2

𝛼0,𝑛
𝑖,𝑗+1

)𝛼0,𝑛
𝑖,𝑗+1𝜌

0,𝑛
𝑖,𝑗+1

+
⎛
⎜
⎝

𝜔0

2
− 𝜆(

𝛽𝑠𝑗−1⇑2 − 𝑢𝑖,𝑗−1⇑2
2

𝜌𝑖,𝑗−1⇑2
𝜌0,𝑛𝑖,𝑗

+
𝜖𝜈𝑖,𝑗−1⇑2

𝛼0,𝑛
𝑖,𝑗

)
⎞
⎟
⎠
𝛼0,𝑛
𝑖,𝑗 𝜌

0,𝑛
𝑖,𝑗

+ 𝜆(
𝛽𝑠𝑗−1⇑2 + 𝑢𝑖,𝑗−1⇑2

2

𝜌𝑖,𝑗−1⇑2
𝜌𝑝,𝑛𝑖,𝑗−1

+
𝜖𝜈𝑖,𝑗−1⇑2

𝛼𝑝,𝑛𝑖,𝑗−1
)𝛼𝑝,𝑛𝑖,𝑗−1𝜌

𝑝,𝑛
𝑖,𝑗−1,

and is positive if

𝜆(
𝛽𝑠𝑗−1⇑2 − 𝑢𝑖,𝑗−1⇑2

2

𝜌𝑖,𝑗−1⇑2
𝜌0,𝑛𝑖,𝑗

+
𝜖𝜈𝑖,𝑗−1⇑2

𝛼0,𝑛
𝑖,𝑗

) ⩽
𝜔0

2
, 𝜆(

𝛽𝑠𝑗+1⇑2 + 𝑢𝑖,𝑗+1⇑2
2

𝜌𝑖,𝑗+1⇑2
𝜌𝑝,𝑛𝑖,𝑗

+
𝜖𝜈𝑖,𝑗+1⇑2

𝛼𝑝,𝑛𝑖,𝑗
) ⩽

𝜔𝑝

2
,

provided 𝜖𝜈𝑖,𝑗±1⇑2 ⩾ 0 and (4.31).
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4.4.3 A posteriori limiters

The properties of Theorem 4.4.2 hold only for the cell averaged value of the numerical
solution at time 𝑡(𝑛+1), which can be extended to nodal values by using a posteriori limiters
[145, 146]. We here limit the void fraction with the bounds of its initial value over the whole
domain, while we enforce positivity of the partial densities, similar to [108]. The limiter
reads

Ũ
𝑘,𝑛+1
𝑗 = 𝜃𝑗(U

𝑘,𝑛+1
𝑗 − ∐︀uℎ̃︀

(𝑛+1)
𝑗 ) + ∐︀uℎ̃︀

(𝑛+1)
𝑗 , 0 ⩽ 𝑘 ⩽ 𝑝, 𝑗 ∈ Z, (4.34)

with 0 ⩽ 𝜃𝑗 ⩽ 1 defined by 𝜃𝑗 ∶= min(𝜃 𝜌𝑖𝑗 , 𝜃 𝛼𝑖
𝑗 ∶ 𝑖 = 1,2) where

𝜃 𝜌𝑖𝑗 = min
⎛
⎜
⎝

∐︀𝛼𝑖,ℎ𝜌𝑖,ℎ̃︀
(𝑛+1)
𝑗 − 𝜖

∐︀𝛼𝑖,ℎ𝜌𝑖,ℎ̃︀
(𝑛+1)
𝑗 − (𝛼𝑖𝜌𝑖)𝑚𝑖𝑛𝑗

,1
⎞
⎟
⎠
, (𝛼𝑖𝜌𝑖)

𝑚𝑖𝑛
𝑗 = min

0⩽𝑘⩽𝑝
(𝛼𝑖𝜌𝑖)

𝑘,𝑛+1
𝑗 ,

𝜃 𝛼𝑖
𝑗 = min

⎛
⎜
⎝

∐︀𝛼𝑖,ℎ̃︀
(𝑛+1)
𝑗 −𝑚𝛼

𝑖,𝑗

∐︀𝛼𝑖,ℎ̃︀
(𝑛+1)
𝑗 − 𝛼𝑚𝑖𝑛𝑖,𝑗

,
𝑀𝛼
𝑖,𝑗 − ∐︀𝛼𝑖,ℎ̃︀

(𝑛+1)
𝑗

𝛼𝑚𝑎𝑥𝑖,𝑗 − ∐︀𝛼𝑖,ℎ̃︀
(𝑛+1)
𝑗

,1
⎞
⎟
⎠
, 𝛼𝑚𝑖𝑛𝑖,𝑗 = min

0⩽𝑘⩽𝑝
𝛼𝑘,𝑛+1𝑖,𝑗 , 𝛼𝑚𝑎𝑥𝑖,𝑗 = max

0⩽𝑘⩽𝑝
𝛼𝑘,𝑛+1𝑖,𝑗 ,

(4.35)
0 < 𝜖≪ 1 is a parameter (we set 𝜖 = 10−8 in our numerical tests), and

𝑚𝛼
𝑖,𝑗 = min

𝑗∈Z
min
0⩽𝑘⩽𝑝

𝛼𝑘,0𝑖,𝑗 , 𝑀𝛼
𝑖,𝑗 = max

𝑗∈Z
max
0⩽𝑘⩽𝑝

𝛼𝑘,0𝑖,𝑗 .

The limiter (4.35) guarantees that 𝜌0⩽𝑘⩽𝑝,𝑛+1𝑗 > 0 together with the following bounds on the
void fractions 𝑚𝛼

𝑖,𝑗 ⩽ 𝛼̃
0⩽𝑘⩽𝑝,𝑛+1
𝑖,𝑗 ⩽𝑀𝛼

𝑖,𝑗 .

4.5 Numerical tests in one space dimension

In this section we assess the high-order accuracy, robustness, and nonlinear stability of
the numerical scheme for the Baer-Nunziato model by considering numerical tests for the
initial value problem (4.1). We recall the numerical scheme in A.1. We use uI = 𝑢2 and pI = p1

as the interfacial variables (4.6). Unless stated otherwise, all numerical tests are performed
with fourth-order accuracy in space, 𝑝 = 3, on a unit domain Ω = (︀−0.5,0.5⌋︀ discretized
with a uniform mesh of 100 cells. The values of the numerical dissipation parameter 𝜖𝜈 in
(4.29) lie in the range (︀0.1,0.5⌋︀. The time integration is performed by using the three-stage
third-order strong stability-preserving Runge-Kutta scheme by Shu and Osher by [121], refer
section 3.7. The limiter (4.34) is applied at the end of each stage. The time step is computed
through (4.32). The numerical experiments of sections 4.5 and 4.6 have been obtained with
the CFD code Aghora developed at ONERA [112].

4.5.1 Advection of density and void fraction waves

We first test the high-order accuracy of the scheme (3.54). Let us consider a unit domain
with periodic conditions and the following initial condition u0(𝑥)

𝛼1,0(𝑥) =
1

2
+

1

4
sin(4𝜋𝑥), 𝜌𝑖,0(𝑥) = 1 +

1

2
sin(2𝜋𝑥), 𝑢𝑖,0(𝑥) = 1, p𝑖,0(𝑥) = 1, 𝑖 = 1,2,
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which results in a density wave and a void fraction wave with different frequencies and
amplitudes that are purely advected in a uniform flow. The EOS parameters in (4.5) are
𝛾1 = 1.4,p∞1 = 2.0 and 𝛾2 = 3.0,p∞2 = 5.0.

Table 4.1 indicates the values of the norms of the error on 1
2(𝜌1+𝜌2) obtained at final time

𝑇𝑚𝑎𝑥 = 5 with different polynomial degrees and grid refinements, as well as the associated
orders of convergence. We observe, as the mesh is refined, that the expected 𝑝 + 1 order of
convergence is recovered with the present scheme.

𝑝 ℎ ∏︁𝑒ℎ∏︁𝐿1(Ωℎ) 𝒪1 ∏︁𝑒ℎ∏︁𝐿2(Ωℎ) 𝒪2 ∏︁𝑒ℎ∏︁𝐿∞(Ωℎ) 𝒪∞

1

1/32 4.51E-02 - 5.08E-02 - 8.52E-02 -
1/64 7.71E-03 2.55 9.75E-03 2.38 2.05E-02 2.05
1/128 2.90E-03 1.41 3.38E-03 1.53 6.79E-03 1.59
1/256 7.67E-04 1.92 8.88E-04 1.93 1.71E-03 1.99

2

1/32 2.08E-04 - 2.24E-04 - 5.41E-04 -
1/64 1.93E-05 3.43 2.49E-05 3.29 5.88E-05 3.20
1/128 2.59E-06 2.90 3.29E-06 2.92 8.16E-06 2.85
1/256 3.43E-07 2.92 4.40E-07 2.90 1.25E-06 2.71

3

1/32 1.33E-06 - 1.74E-06 - 5.57E-06 -
1/64 4.21E-08 4.98 6.19E-08 4.81 2.49E-07 4.48
1/128 2.28E-09 4.21 3.55E-09 4.12 1.53E-08 4.03
1/256 1.41E-40 4.02 2.22E-10 3.99 1.00E-09 3.93

Table 4.1: Test for high-order accuracy: different norms of the error on densities under 𝑝-
and ℎ-refinements and associated orders of convergence at final time 𝑇𝑚𝑎𝑥 = 5.

4.5.2 Riemann Problems

We now consider a series of Riemann problems from [15, 36, 132] to assess the entropy
conservation, robustness, and stability properties of the present scheme. The initial condition
reads

u0(𝑥) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

u𝐿, 𝑥 < 𝑥0,

u𝑅, 𝑥 > 𝑥0.

Table 4.2 contains the initial conditions for the different Riemann problems, while the phys-
ical parameters are given in Table 4.3.

Test for entropy conservation

The property of entropy conservation of the numerical fluxes (3.47) in the modified
scheme (3.54) is validated based from the experimental setup introduced in [15]. Here we
only focus on entropy conservative fluxes, so we set 𝜖𝜈 = 0 in (4.29). The initial condition
corresponds to the test case EC in Table 4.2 which generates discontinuities of moderate
strength in each phase. We impose periodic boundary conditions and the global entropy
should remain constant over the computational domain, while being modified only as a result
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Test case 𝛼1 𝜌1 𝑢1 p1 𝜌2 𝑢2 p2

EC u𝐿 0.5 1.0 0.0 1.0 1.0 0.0 1.0
u𝑅 0.5 1.125 0.0 1.1 1.125 0.0 1.1

RP1 u𝐿 0.1 1.0 1.0 1.0 1.5 1.0 1.0
u𝑅 0.9 2.0 1.0 1.0 1.0 1.0 1.0

RP2 u𝐿 0.8 2.0 0.0 3.0 1900.0 0.0 10.0
u𝑅 0.1 1.0 0.0 1.0 1950.0 0.0 1000.0

RP3 u𝐿 0.2 0.99988 -1.99931 0.4 0.99988 -1.99931 0.4
u𝑅 0.5 0.99988 1.99931 0.4 0.99988 1.99931 0.4

RP4 u𝐿 0.3 1.0 -19.59741 1000.0 1.0 -19.59716 1000.0
u𝑅 0.8 1.0 -19.59741 0.01 1.0 -19.59741 0.01

RP5 u𝐿 0.999 1.6 1.79057 5.0 2.0 1.0 10.0
u𝑅 0.001 2.0 1.0 10.0 2.67183 1.78888 15.0

Table 4.2: Initial conditions for the Riemann problems.

EC RP1 RP2 RP3 RP4 RP5
𝑥0 0.0 0.0 0.0 0.0 0.3 0.0
𝑇𝑚𝑎𝑥 0.15 0.25 0.15 0.15 0.007 0.05
𝛾1 1.4 3.0 1.35 1.4 1.4 3.0
𝛾2 1.4 1.4 3.0 1.4 3.0 1.4

p∞1 0.1 0.1 0.0 0.0 0.0 0.0
p∞2 0.0 0.0 3400.0 0.0 100.0 0.0

Table 4.3: Location of discontinuity on Ωℎ, final time, EOS parameters from (4.5).

of the time integration. We thus introduce the entropy budget

ℰΩℎ
(𝑡) ∶= ℎ⋂︀ ∑

𝜅𝑗∈Ωℎ

∐︀𝜂(uℎ)̃︀𝑗 − ∐︀𝜂(u0)̃︀𝑗 ⋂︀, (4.36)

which evaluates the variations in the computation of the cell-averaged entropy over the
domain Ωℎ. The results in Table 4.4 show that the error (4.36) decreases to machine accuracy
when refining the time step, with the order of convergence corresponding to the theoretical
approximation order of the time integration scheme. This validates the entropy conservation
of the numerical fluxes (3.47).

time step ℰΩℎ
(𝑡) 𝒪

∆𝑡 6.85E-06 –
∆𝑡⇑2 2.08E-06 2.94
∆𝑡⇑4 2.65E-07 2.97
∆𝑡⇑8 3.31E-08 2.99
∆𝑡⇑16 4.14E-09 3.00
∆𝑡⇑32 5.14E-10 3.00

Table 4.4: Global entropy budget and the corresponding order of convergence 𝒪 when
refining the time step at final time 𝑇𝑚𝑎𝑥 = 0.15.
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Riemann problems

The results of the Riemann problems in Table 4.2 are shown in Figures 4-1 to 4-5, where
we compare the numerical results with the exact solutions from [36, 132].

Here the test RP1 consists in the advection of a material interface in a uniform flow
and the results in Figure 4-1 show that the velocity and pressure of both phases remain
uniform in time which may be related to the so-called criterion of Abgrall [1]. The observed
smearing of the contact is a consequence of the limiter (4.34) which is a common remark for
all Riemann problems that we will consider.

The results for tests RP2 and RP3 in Figures 4-2 and 4-3 contain the development of
shocks, rarefaction and contacts in both phases. The scheme captures the correct solutions,
but the intermediate states contain small oscillations at the shock and rarefaction waves
in phase 1 of RP2. It is however observed that as the mesh is refined all the intermediate
states are accurately captured and the DG solution converges to the exact weak entropy
solution. The scheme also proves to maintain the positivity of the partial densities in the
near vacuum region of RP3, see Figure 4-3.

The capabilities of the scheme to resolve strong shocks are demonstrated in Figure 4-4
for the RP4 test case. Here the left-traveling rarefaction waves and the material disconti-
nuity are well captured, whereas small oscillations are observed around the right-traveling
shock in both phases. A possible reason could be that, as the dissipation is introduced in
the numerical scheme through the interfaces, the internal DOFs may suffer from a lack of
stabilization mechanism.

Finally, the test case RP5 probes the numerical scheme close to resonance (4.15) mim-
icking pure phases separated by a material interface. Numerical experiments are given for
two different grids. Note that we do not consider pure phases in this work and restrict
ourselves to conditions close to resonance (see [36] about the numerical difficulties associ-
ated to resonance effects and the derivation of a robust scheme handling such phenomena).
The design of the present scheme is based on entropy variables (4.20) requiring the map
u ↦ v(u) to be one-to-one and thus excluding pure phases. We indicate in Figure 4-5 the
regions where the corresponding phases exist. The results show a correct approximation
of the intermediate states where either phase exists, while spurious oscillations occur but
in regions where the corresponding phase is absent. As the mesh is refined, we observe a
damping of the oscillations where the phase exist, but oscillations in the regions of vanishing
phase persist.

4.6 Numerical tests in multiple space dimensions

The Baer-Nunziato model in multiple space dimensions reads

𝜕𝑡u +∇ ⋅ f(u) + c(u)∇u = 0, x ∈ R𝑑, 𝑡 ⩾ 0, (4.37)
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where

u ∶=

⎛
⎜
⎜
⎜
⎜
⎝

𝛼𝑖
𝛼𝑖𝜌𝑖
𝛼𝑖𝜌𝑖v𝑖
𝛼𝑖𝜌𝑖𝐸𝑖

⎞
⎟
⎟
⎟
⎟
⎠

, f(u) ∶=

⎛
⎜
⎜
⎜
⎜
⎝

0
𝛼𝑖𝜌𝑖v⊺𝑖

𝛼𝑖(𝜌𝑖v𝑖v⊺𝑖 + p𝑖I)
𝛼𝑖(𝜌𝑖𝐸𝑖 + p𝑖)v⊺𝑖

⎞
⎟
⎟
⎟
⎟
⎠

, c(u)∇u ∶=

⎛
⎜
⎜
⎜
⎜
⎝

vI
⊺

0
−pII
−pIvI

⊺

⎞
⎟
⎟
⎟
⎟
⎠

∇𝛼𝑖, 𝑖 = 1,2,

with v𝑖 = (𝑢𝑖, 𝑣𝑖,𝑤𝑖)⊺ the velocity vector of the 𝑖th phase, p𝑖 = p𝑖(𝜌𝑖, 𝑒𝑖) given by (4.5) and
𝑒𝑖 = 𝐸𝑖 −

1
2v𝑖 ⋅ v𝑖 the specific internal energy.

The DGSEM scheme (3.54) can be extended to (4.37). The derivation of the scheme
for Cartesian meshes is introduced in 3.6, while the numerical fluxes for the above model
are presented in A.2. Unless stated otherwise, the time step is computed with the CFL
condition in A.3 and was seen to maintain positivity of the solution though it does not
guaranty positivity of the partial internal energies.

Numerical experiments in two-space dimensions are given in the remainder of this section
including tests on high-order accuracy, entropy conservation, kinetic energy preservation,
together with the simulation of a shock-bubble interaction problem.

4.6.1 Advection of density and void fraction waves

We here reproduce the test on accuracy from section 4.5.1 and consider the pure ad-
vection of oblique void fraction and density waves in a uniform flow in a unit square with
periodic boundary conditions. The initial condition reads

𝛼1,0(x) =
1

2
+

1

4
sin (4𝜋(𝑥 + 𝑦)), 𝜌𝑖,0(x) = 1 +

1

2
sin (2𝜋(𝑥 + 𝑦)),

𝑢𝑖,0(x) = 1, 𝑣𝑖,0(x) = 1, p𝑖,0(x) = 1, 𝑖 = 1,2.
(4.38)

The EOS parameters in (4.5) are 𝛾1 = 1.4,p∞1 = 2.0 and 𝛾2 = 3.0,p∞2 = 5.0. The obtained
results are presented in Table 4.5. It is again observed that the expected 𝑝 + 1 order of
convergence is achieved.

𝑝 ℎ ∏︁𝑒ℎ∏︁𝐿1(Ωℎ) 𝒪1 ∏︁𝑒ℎ∏︁𝐿2(Ωℎ) 𝒪2 ∏︁𝑒ℎ∏︁𝐿∞(Ωℎ) 𝒪∞

1

1/32 1.00E-01 1.83 1.11E-01 1.82 1.83E-01 1.65
1/64 1.67E-02 2.58 2.03E-02 2.45 3.98E-02 2.20
1/128 4.86E-03 1.78 5.83E-03 1.80 1.16E-02 1.78

2

1/32 4.84E-04 3.67 5.90E-04 3.65 1.22E-03 3.59
1/64 3.81E-05 3.66 4.92E-05 3.58 1.00E-04 3.61
1/128 2.77E-06 3.78 3.77E-06 3.71 1.06E-05 3.55

3

1/32 2.77E-06 6.37 3.53E-06 6.28 1.32E-05 5.75
1/64 8.04E-08 5.11 1.03E-07 5.10 5.38E-07 4.61
1/128 4.18E-09 4.26 5.27E-09 4.29 2.96E-08 4.18

Table 4.5: Test for high-order accuracy with initial condition (4.38): different norms of the
errors on 1

2(𝜌1 + 𝜌2) under grid and polynomial degree refinements and associated orders of
convergence at final time 𝑇𝑚𝑎𝑥 = 5.
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4.6.2 Entropy conservation

We also check entropy conservation by using the same procedure as in section 4.5.2 on
the unit square with periodic boundary conditions. The initial condition is EC in Table 4.2
with zero transverse velocity, 𝑣𝑖 = 0 for 𝑖 = 1,2, and we keep the same EOS parameters. The
global entropy budget, similar to (4.36), is displayed in Table 4.6 when refining the time
step. Again the conservation of entropy by the space discretization is observed.

time step ℰΩ(𝑡) 𝒪

∆𝑡 7.49E-04 -
∆𝑡⇑2 1.07E-04 2.81
∆𝑡⇑4 1.37E-05 2.97
∆𝑡⇑8 1.72E-06 2.99
∆𝑡⇑16 2.15E-07 3.00
∆𝑡⇑32 2.67E-08 3.01
∆𝑡⇑64 3.19E-09 3.06

Table 4.6: Global entropy budget (4.36) in two space dimensions and the corresponding
order of convergence 𝒪 at final time 𝑇𝑚𝑎𝑥 = 0.15.

4.6.3 Kinetic energy preservation

The property of kinetic energy preservation in Theorem 4.4.1 is here investigated. We
propagate material and contact discontinuities in a unit square with periodic boundary
conditions, following the initial condition u0(𝑥, 𝑦) = u𝑅 if 0 ≤ 𝑥, 𝑦 ≤ 1

2 or 1
2 ≤ 𝑥, 𝑦 ≤ 1, else

u0(𝑥, 𝑦) = u𝐿 (see Table 4.7). The EOS parameters for the two-phases are 𝛾1 = 𝛾2 = 1.4,
p∞,1 = 0.1, and p∞,2 = 0. For this test, the pressure fields are uniform and equal so that the
kinetic energy is conserved.

Figure 4-6 presents the temporal variations of the global kinetic energy of the domain
𝐾𝐸(𝑡) = ∫Ωℎ

∑
2
𝑖=1

1
2𝛼𝑖𝜌𝑖𝑢

2
𝑖 𝑑𝑥 from its initial value and we observe that 𝐾𝐸(𝑡) does not vary

in time. We conclude that 𝐾𝐸(𝑡) is not changed by the advective terms, but only by the
pressure work, which validates Theorem 4.4.1.

Test case 𝛼1 𝜌1 𝑢1 𝑣1 p1 𝜌2 𝑢2 𝑣2 p2

KEP u𝐿 0.4 1.0 1.0 1.0 1.0 1.5 1.0 1.0 1.0
u𝑅 0.6 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 4.7: Initial conditions for the kinetic energy preservation test case.

4.6.4 Shock-bubble interaction

This numerical test involves the interaction between a shock wave and a material dis-
continuity. The test was introduced by Haas and Sturtevant [65] to experimentally study
the interaction of a shock wave with a single discrete gas inhomogeneity. Later it was
adopted as a numerical benchmark to validate the robustness and accuracy of various nu-
merical schemes for compressible two-phase flows, see [60, 74, 80, 83, 107, 110, 116, 129] and
references therein.
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The computational domain Ωℎ = (︀0,6.5⌋︀ × (︀0,1.78⌋︀ is discretized using a Cartesian mesh
with 1300×356 elements. The initial condition involves a bubble of unit diameter containing
a mixture of 95% of helium by volume (𝛼1 = 0.95) and 5% of air, to exclude resonance effects
(4.15), in a domain filled with 5% of air. The center of the bubble is located at x = (3.5,0.89).
A left moving shock is initially placed at the rightmost edge of the bubble, 𝑥0 = 4, and then
moves to the left and interacts with the bubble. The initial condition is provided in Table 4.8.

𝛼1 𝜌𝑖 𝑢𝑖 𝑣𝑖 p𝑖
Pre-shock air (𝑖 = 2) 0.05 1.3764 -0.3336 0.0 1.1213
Helium bubble (𝑖 = 1) 0.95 0.1819 0.0 0.0 0.7143
Post-shock air (𝑖 = 2) 0.05 1.0 0.0 0.0 0.7143

Table 4.8: Physical parameters for the initial condition of the shock-bubble interaction
problem.

The EOS parameters for helium and air are 𝛾1 = 1.648 and Cv1 = 6.06, and 𝛾2 = 1.4
and Cv2 = 1.786, respectively. The physical model does not involve viscous effects so to
avoid oscillations of the interface we smoothen the initial condition around the material
interface following [14, 73, 83]. The numerical test is performed using periodic boundary
conditions at the top and bottom boundaries, and non-reflective conditions on the left and
right boundaries.

Figure 4-7 illustrates the deformation of the He bubble as the shock passes through it.
The plotted fields are those of the void fraction for phase 1, the total pressure and numerical
Schlieren. It is observed that the material interface and the shock are accurately captured
without excessive smearing of the contact. Note however that, for the Baer-Nunziato model,
the pressure field shows the presence of a secondary shock inside the bubble (see e.g. the
Schlieren at 𝑡 = 62𝜇s). This secondary shock is due to the presence of air inside the bubble.
Furthermore, as the shock leaves the bubble, vortices are generated on the bubble interface
as a result of the Kevin-Helmoltz instability.

Figure 4-8 shows the space-time diagram for three characteristic points on the interface
of the bubble. We compare the results obtained with the DGSEM scheme to reference data
from [83]. The deformation of the bubble shows complete agreement with the reference data
and indicate that the smooth initial condition does not affect the global deformation of the
bubble.

Finally, we compare results obtained under mesh refinement in Figure 4-9. We observe
a sharpening of the material interface and the excitation of Kelvin-Helmoltz vortices as the
mesh is refined. The positions of the three characteristic points in Figure 4-8 are clearly
unaffected by the mesh refinement.
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4.7 Summary

In this work, we derive a high-order entropy stable scheme for the Baer-Nunziato model
[7, 115] for flows of two separated immiscible fluids in complete disequilibria with respect
to the chemical, mechanical, thermal, and thermodynamic processes. Here we focus on the
discretization of the convective part of the model and neglect the modelling source terms.
The exchange of information at the interfaces of the fluids is governed through interface
variables of pressure and velocity, for which we choose general closure laws [34, 56] that
allow the material interface to be associated to a LD field and an entropy inequality in
conservative form to be derived from the model. The model is closed with stiffened gas EOS
relevant for both gas and liquid phases.

The space discretization is performed by using the semi-discrete entropy stable DGSEM
framework proposed in [108], which involves modifying the integration over cell elements
by replacing the physical fluxes with two point entropy conservative fluxes in fluctuation
form [24, 103], while employing entropy stable fluctuation fluxes at the cell interfaces. This
framework is here generalized to include both conservative and nonconservative terms to
allow a conservative discretization of the former ones. The entropy conservative fluxes are
derived by using the condition in [24], to which we add upwind type dissipation to obtain the
entropy stable fluxes. The semi-discrete scheme is high-order accurate for smooth solutions,
satisfies an entropy inequality, and is kinetic energy preserving.

We use a method of lines with an explicit time integration and propose conditions on the
numerical parameters that guarantee the positivity of the cell-averaged partial densities and
a maximum principle on the void fraction for the fully discrete scheme coupled with a first-
order forward Euler discretization. High-order integration in time is performed using strong
stability-preserving explicit Runge-Kutta schemes [121]. The positivity of the solution is
then extended to nodal values using a posteriori limiters adapted from [104, 145, 146].

The numerical tests involve specific test cases that support the high-order accuracy, sta-
bility and robustness of the semi-discrete scheme in one and two space dimensions. Riemann
problems are performed in one space dimension involving the development of strong shocks,
contacts, near vacuum regions, and vanishing phases. The results obtained with a fourth-
order scheme show that the present method captures the physically relevant entropy weak
solution. The intermediate states are well resolved, as well as the shocks and contacts and
the computation is shown to be robust in situations close to either vacuum, or resonance.
Furthermore, the application to the simulation of a shock-bubble interaction problem in two
space dimensions confirm the accurate approximation of the shock and material interfaces.
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Figure 4-1: Comparison of the fourth-order accurate numerical solution to the exact solu-
tion for test case RP1 at final time 𝑇𝑚𝑎𝑥 = 0.25.
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Figure 4-2: Test for convergence of solution through mesh refinement: RP2 at at final time
𝑇𝑚𝑎𝑥 = 0.15. The black symbols represent solutions on a mesh with 100 elements, whereas
the symbols in red represent solutions on a mesh with 400 elements.
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Figure 4-3: Comparison of the fourth-order accurate numerical solution to the exact solu-
tion for test case RP3 at final time 𝑇𝑚𝑎𝑥 = 0.15.
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Figure 4-4: Comparison of the fourth-order accurate numerical solution to the exact solu-
tion for test case RP4 at final time 𝑇𝑚𝑎𝑥 = 0.007.
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Figure 4-5: Comparison of the fourth-order accurate numerical solution of test case RP5
to the exact solution on meshes with 100 elements (black symbols) and 400 elements (red
symbols) at final time 𝑇𝑚𝑎𝑥 = 0.05.
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Figure 4-6: The demonstration of kinetic energy preservation for the test case KEP, where
< KE(𝑡) − KE0 > is the difference in the kinetic energies of the initial state and those
calculated along the physical time until 𝑇𝑚𝑎𝑥 = 1.5.
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𝑡 = 32𝜇s 𝑡 = 240𝜇s

𝑡 = 62𝜇s 𝑡 = 427𝜇s

𝑡 = 102𝜇s 𝑡 = 674𝜇s

Figure 4-7: The snapshots of the deformation of the He bubble due to the left traveling
shock at various physical times. For each snapshot, the left plot displays contours of the
void fraction 𝛼1 and of the total pressure p = 𝛼1p1 + 𝛼2p2, while the right plot shows the
Schlieren 𝜑 = exp(⋃︀∇𝜌⋃︀⇑⋃︀∇𝜌⋃︀max), with 𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2, obtained with a polynomial degree
𝑝 = 3.



An entropy stable high-order discontinuous Galerkin spectral
element method for the Baer-Nunziato two-phase flow model 67

Upstream, Jet, Downstream (mm)

T
im

e
 (

m
s

e
c

)

20 40 60 80 100 120 140
0

200

400

600

800

Upstream

Jet

Downstream

Figure 4-8: Space-time diagram for three characteristic points on the interface of the He
bubble. The solid lines are the reference data from [83], while the symbols are the results
obtained with the present DGSEM scheme for polynomial of degree 𝑝 = 3 and on a 1300×356
mesh.

Mesh: 650 × 178 Mesh: 1300 × 356 Mesh: 2600 × 712

Figure 4-9: Comparison of the deformation of the He bubble at the physical time of
427𝜇𝑠 for different mesh refinements. The top figures display contours of the void fraction
𝛼1 and of the total pressure p = 𝛼1p1 + 𝛼2p2, while the bottom figures show Schlieren
𝜑 = exp(⋃︀∇𝜌⋃︀⇑⋃︀∇𝜌⋃︀max), with 𝜌 = 𝛼1𝜌1 + 𝛼2𝜌2, obtained with a polynomial degree 𝑝 = 3.
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Figure 4-10: Comparison of the fourth-order accurate numerical solution to the exact
solution for test case RP2 at final time 𝑇𝑚𝑎𝑥 = 0.15.



Chapter 5
A contact preserving and entropy stable

DGSEM for multicomponent flows

Résumé du chapitre

Dans ce chapitre, nous nous intéressons à la discrétisation du modèle d’écoulement mul-
ticomposant proposé dans [122] où l’état thermodynamique de chaque espèce est modélisé
par une équation d’état (EOS) de type gaz raidi. Ce modèle est une extension du travail
original d’Abgrall [1], qui était limité à l’équation d’état polytropique. Nous appellerons
ici ce modèle le modèle gamma. Ce modèle possède deux qualités essentielles qui rendent
son étude intéressante. Premièrement, le nombre d’équations du modèle ne dépend pas du
nombre d’espèces, cette qualité du modèle est en contraste avec le modèle Baer-Nunziato qui
a été discuté dans Chapter 2 et Chapter 4. Et deuxièmement, la forme non-conservative du
modèle permet de préserver les interfaces matérielles et les discontinuités de contact. Nous
discrétisons le modèle gamma [122] en utilisant le cadre DGSEM introduit dans Chapter 3,
dans le but de proposer un schéma DG précis d’ordre élevé qui préserve les discontinuités
de contact, tout en satisfaisant également à une inégalité d’entropie semi-discrète au travers
des chocs au sens de Theorem 3.5.1.

Nous appliquons le schéma DGSEM semi-discret (3.54) au modèle gamma et considérons
la conception des flux numériques pour l’intégrale de volume et pour les flux d’interface sé-
parément. La condition d’inégalité d’entropie de Theorem 3.5.1 impose que des flux conser-
vant l’entropie [24] doivent être appliqués dans l’intégrale de volume. Cependant, il apparaît
dans ce travail que les flux conservant l’entropie pour le modèle gamma ne préservent pas
la pression et la vitesse uniformes à travers les discontinuités de contact. Nous introduisons
donc un deuxième jeu de flux numériques préservant les contacts pour l’intégrale de volume,
qui satisfont le critère d’Abgrall [1]. Cependant, les flux numériques préservant les contacts
ne satisfont pas la condition de conservation de l’entropie proposée dans [24]. Dans ce tra-
vail, nous appliquons des flux conservant l’entropie dans l’intégrale de volume uniquement
lorsqu’un choc est détecté, tandis que des flux préservant le contact sont appliqués partout
ailleurs. Le schéma numérique alterne entre les flux par le biais d’un senseur de choc basé
sur la distribution de pression dans la cellule [78, 126].

Nous dérivons ensuite des flux de type HLL et HLLC [134, 136] pour le modèle gamma
qui sont appliqués aux interfaces des cellules. Nous montrons que le solveur HLLC satisfait la
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condition de stabilité de l’entropie [12] sous une condition CFL donnée et préserve les profils
uniformes à travers les discontinuités de contact. De plus, nous proposons des estimations des
vitesses d’onde pour le solveur HLLC qui maintiennent la positivité de la solution [9, 16].
La positivité est renforcée aux valeurs nodales par l’application de limiteurs a posteriori,
similaires à [37, 139, 145, 146]. L’intégration temporelle d’ordre élevé est effectuée à l’aide
de schémas Runge Kutta préservant la stabilité, voir section 3.7. L’extension du schéma
DGSEM à plusieurs dimensions d’espace sur maillages cartésiens est effectuée par le biais de
tensorisations des fonctions de base et des règles de quadrature comme en section 3.6. Les
capacités du schéma à préserver les discontinuités de contact et à maintenir la stabilité non
linéaire à travers les chocs avec une précision d’ordre élevé sont démontrées par plusieurs
expériences numériques en une et deux directions de l’espace.

5.1 Short description and outline of the chapter

In this work, we discretize the multicomponent flow model, called the gamma model,
proposed in [122] where each species is considered as a stiffened gas. This model is an
extension of the original work by Abgrall [1], which was limited to the polytropic equation
of state (EOS). The interest is discretizing such multicomponent models are twofolds. First,
the number of equations in the model is independent of the number of species, this quality
of the model is in contrast to the Baer-Nunziato model which was discussed in Chapter 2
and Chapter 4. One consequence, however, is the lack of information on each species. And
second, the nonconservative form of the model allows to preserve the material interface and
contact discontinuities. We discretize the gamma-model [122] using the DGSEM framework
introduced in Chapter 3, with the aim to propose a high-order accurate DG scheme that
preserves contact discontinuities, while also satisfying an entropy inequality across shocks
in the sense of Theorem 3.5.1.

To this purpose, we apply the semi-discrete DG scheme (3.54) to the gamma-model and
consider the design of the numerical fluxes for the volume integral and for the interface
fluxes separately. The entropy inequality condition from Theorem 3.5.1 dictates that en-
tropy conservative fluxes [24] must be applied in the volume integral. However, the entropy
conservative fluxes derived in this work for the gamma-model do not preserve uniform pres-
sure and velocity across contact discontinuities, hence contact preserving numerical fluxes
for the volume integral, that satisfy the Abgrall criterion [1], are designed separately. How-
ever, contract preserving numerical fluxes fail to satisfy the entropy conservation condition
proposed in [24]. We thus apply entropy conservative fluxes within the volume integral
only when a shock is detected, while contact preserving fluxes are applied everywhere else.
The numerical scheme alternates between the fluxes through a pressure-based troubled-cell
indicator function [78, 126].

We then derive HLL and HLLC like fluxes [134, 136] for the gamma model that are
applied at the cell interfaces. We show that the HLLC solver satisfies the entropy stability
condition [12] under a given CFL condition and preserves the uniform profiles across contact
discontinuities. Furthermore, we propose wave speed estimates for the HLLC solver that
maintain positivity of the solution [9, 16]. The positivity is further enforced at the nodal
values by applying a posteriori limiters, similar to [37, 139, 145, 146]. High-order time inte-
gration is performed using strong-stability preserving Runge Kutta schemes, see section 3.7.
The DGSEM is easily extended to several space dimensions with Cartesian meshes by using
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tensor products of basis functions and quadrature rules as detailed in section 3.6.

This chapter is organised as follow. The gamma-model and the definition of the mixture
quantities are introduced in section 5.2. In section 5.3 we derive contact preserving fluxes
and entropy conservative fluxes that are applied to the volume integral, together with the
troubled-cell indicator function. The HLL and HLLC fluxes for the cell interface are derived
in section 5.4. In section 5.4.3 we provide details on the properties of the HLLC solver. The
a posteriori limiter has been described in section 5.6 and we summarize the properties of the
DGSEM scheme in section 5.5 . Numerical experiments in one and two spatial dimensions
are given in section 5.7. Finally, the results of this chapter are summarised in section 5.8.

5.2 The gamma model

In this work, we are interested in the multicomponent model proposed in [122], where
each species is considered as a stiffened gas. The model comprises of the compressible
Euler equations for the mixture which are supplemented by the transport equations for the
equation of state (EOS) state parameters.

For the sake of simplicity, let us consider the Cauchy problem for the SG-gamma model
in one-space dimension

𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u = 0, 𝑥 ∈ R, 𝑡 > 0, (5.1a)
u(𝑥,0) = u0(𝑥), 𝑥 ∈ R, (5.1b)

where

u =
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. (5.2)

represent the vector of state variables, the physical fluxes and the nonconservative products,
respectively.

In (5.2), the density, momentum and the total energy of the mixture are defined as

𝜌 =
𝑛

∑
𝑖=1
𝛼𝑖𝜌𝑖, (5.3a)

𝜌𝑢 =
𝑛

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑢𝑖, (5.3b)

𝜌𝐸 =
𝑛

∑
𝑖=1
𝛼𝑖𝜌𝑖𝐸𝑖, (5.3c)

where 𝜌𝑖, 𝑢𝑖, and 𝐸𝑖 represent the density, velocity and specific total energy of the 𝑖th species,
respectively, and 𝑛 represents the number of species. The species are coupled through the
void fraction 𝛼𝑖 which satisfies the saturation condition

𝑛

∑
𝑖=1
𝛼𝑖 = 1. (5.4)
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The pressure of each species is related to the density and specific internal energy 𝑒𝑖 of
the species through the stiffened gas EOS (SG-EOS)

p𝑖(𝜌𝑖, 𝑒𝑖) = (𝛾𝑖 − 1)𝜌𝑖𝑒𝑖 − 𝛾𝑖p∞𝑖 , 𝑖 = 1,⋯, 𝑛, (5.5)

where 𝛾𝑖 = Cp𝑖⇑Cv𝑖 > 1 is the ratio of specific heats and p∞𝑖 ≥ 0 is a pressure-like constant
that introduces incompressibility in the species. Observe that if p∞𝑖 = 0 in (5.5) then we
recover the polytropic EOS. The total pressure of the mixture is defined as

p + 𝛾p∞
(𝛾 − 1)

= pΓ +Π = 𝜌𝑒, (5.6)

where
𝜌𝑒 =

𝑛

∑
𝑖=1
𝛼𝑖𝜌𝑖𝑒𝑖, (5.7)

is the mixture total internal energy and the EOS parameters of the mixture, Γ and Π, are
defined as

Γ =
1

𝛾 − 1
=

𝑛

∑
𝑖=1

𝛼𝑖
𝛾𝑖 − 1

, (5.8a)

Π =
𝛾p∞
𝛾 − 1

=
𝑛

∑
𝑖=1

𝛼𝑖𝛾𝑖p∞𝑖

𝛾𝑖 − 1
. (5.8b)

Hyperbolicity of the SG-gamma model requires that the solutions to the Cauchy problem
(5.1) belong to the phase space

ΩGM = {u ∈ R5
∶ 𝜌 > 0, 𝑢 ∈ R, 𝜌𝑒 > p∞,Γ > 0,Π ≥ 0} , (5.9)

for all time, and, for smooth solutions, the matrix-valued function A ∶ ΩGM ∋ u ↦ A(u) =
f′(u) + c(u) ∈ R5×5 admits real eigenvalues

𝜆1(u) = 𝑢 − 𝑐, 𝜆2(u) = 𝑢, 𝜆3(u) = 𝑢, 𝜆4(u) = 𝑢, 𝜆5(u) = 𝑢 + 𝑐, (5.10)

where 𝑐 =
⌈︂
𝛾(𝛾 − 1)(𝜌𝑒 − p∞)⇑𝜌 is the speed of sound of the mixture. Observe here that, in

(5.10), 𝜆2, 𝜆3 and 𝜆4 are associated to linearly degenerate (LD) fields, while 𝜆1 and 𝜆5 are
associated to genuinely nonlinear (GNL) fields, and the eigenvalues are not distinct, hence
(5.1a) is not strictly hyperbolic.

Uniqueness of solution for (5.1a) requires satisfying an entropy condition, where physi-
cally relevant weak solutions of (5.1a) must satisfy

𝜕𝑡𝜂(u) + 𝜕𝑥𝑞(u) ≤ 0, (5.11)

for a given convex entropy function 𝜂(u) and an entropy flux 𝑞(u). However, during the
course of this work we realised that the derivation of a strictly convex function for the model
(5.1a) is a very challenging task, and in our efforts were unable to prove that there exists a
𝜂(u) for (5.1a) for which the Hessian 𝜂′′(u) is symmetric positive-definite.

Alternatively, we know that the involved species, in (5.1a), are endowed with a physical
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entropy function

𝑠𝑖(𝜌𝑖, 𝜃) = −Cv𝑖 (ln 𝜃 + (𝛾𝑖 − 1) ln𝜌𝑖) , 𝑖 = 1,⋯, 𝑛, (5.12)

where 𝜃 = 1⇑𝑇 is the inverse of the temperature 𝑇 and that the physical entropy satisfies the
second law of thermodynamics

𝑇𝑑𝑠𝑖 = 𝑑𝑒𝑖 −
p𝑖
𝜌2𝑖
𝑑𝜌𝑖. (5.13)

Note that the SG-gamma model was derived under the assumption that species are in
thermal equilibrium

𝑇 (𝜌, 𝑒) ≡ 𝑇1(𝜌1, 𝑒1) ≡ ⋯ ≡ 𝑇𝑛(𝜌𝑛, 𝑒𝑛). (5.14)

In our work, we set the entropy pair as

𝜂(u) = −𝜌𝑠, 𝑞(u) = −𝜌𝑠𝑢, (5.15)

where

𝑠 = Cv ln(
p + p∞
𝜌𝛾

) , (5.16)

is the specific physical entropy of the immiscible mixture and in the case of smooth solutions
of (5.1a), the total physical entropy is conserved

𝜕𝑡𝜌𝑠 + 𝜕𝑥𝜌𝑠𝑢 = 0. (5.17)

In (5.16), the term Cv is defined as

Cv =
𝑛

∑
𝑖=1
𝑌𝑖Cv𝑖, (5.18)

where 𝑌𝑖 = 𝛼𝑖𝜌𝑖
𝜌 is the mass fraction of the ith species that satisfy

𝑛

∑
𝑖=1
𝑌𝑖 = 1. (5.19)

Remark 5.2.1. We must emphasize that the convexity of the entropy pair (5.15) holds only
for pure phases, i.e. regions in the physical domain where both 𝛼𝑖 and 𝑌𝑖 are uniform and the
species become uncoupled. This restriction on the convexity has implications when deriving
the entropy variables v(u) = 𝜂′(u) as the map u ↦ v(u) is one-to-one only in regions
containing pure phases.

We end this section by deriving the entropy variables for the SG-gamma model through
the below lemma.

Lemma 5.2.1. Under the choice of the entropy function 𝜂(u) in (5.15), the SG-gamma
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model (5.1a) admits the following entropy variables for pure phases:

v(u) =
𝜕

𝜕u
𝜂(u) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝛾Cv − 𝑠 − 𝜁
𝑢2

2
𝜁𝑢
−𝜁
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, ∀u ∈ ΩGM (5.20)

where 𝜁 = (𝛾−1)Cv𝜌
p+p∞ .

Proof. The physical entropy of the mixture (5.16) be reformulated as

𝑠 = Cv ln(
p + p∞
𝜌𝛾

)

= −Cv ln 𝜁 − (𝛾 − 1)Cv ln𝜌 +Cv ln((𝛾 − 1)Cv),

(5.21)

and using the definition of 𝜂(u) from (5.15), we have

𝑑𝜂 = −𝜌𝑑𝑠 − 𝑠𝑑𝜌 (5.22)
(5.21)
= −𝜌Cv

𝑑(p + p∞)
p + p∞

+ 𝛾Cv𝑑𝜌 − 𝑠𝑑𝜌

(5.6)
= −𝜌Cv(𝛾 − 1)

𝑑𝜌𝑒

p + p∞
+ 𝛾Cv𝑑𝜌 − 𝑠𝑑𝜌

= −𝜌
(𝛾 − 1)Cv

p + p∞
(𝑑𝜌𝐸 − 𝑢𝑑𝜌𝑢 +

𝑢2

2
𝑑𝜌) + 𝛾Cv𝑑𝜌 − 𝑠𝑑𝜌

= −𝜁𝑑𝜌𝐸 + 𝜁𝑢𝑑𝜌𝑢 + (𝛾Cv − 𝑠 − 𝜁
𝑢2

2
)𝑑𝜌.

It is direct to get (5.20) from the above relation, where 𝛾 can be computed from (5.8).

5.3 Numerical fluxes for the volume integral

For the sake of clarity, let us first recall the semi-discrete DG scheme (3.54), for general
hyperbolic system with nonconservative product, over the cell 𝜅𝑗 with cell size ℎ > 0:

𝜔𝑘ℎ

2

𝑑U𝑘
𝑗

𝑑𝑡
+ 𝜔𝑘

𝑝

∑
𝑙=0
𝐷𝑘𝑙D̃(U𝑘

𝑗 ,U
𝑙
𝑗) + 𝛿𝑘𝑝D

−
(U𝑝

𝑗 ,U
0
𝑗+1) + 𝛿𝑘0D

+
(U𝑝

𝑗−1,U
0
𝑗) = 0,

0 ≤ 𝑘 ≤ 𝑝, 𝑗 ∈ Z,
(5.23)

where 𝜔𝑘 > 0 are the quadrature weights, U0≤𝑘≤𝑝
𝑗 are the 𝑝 + 1 degrees of freedom in cell 𝜅𝑗 ,

D± are the numerical fluxes at the interfaces and

D̃(u−,u+) ∶= D−
𝑋(u

−,u+) −D+
𝑋(u

+,u−), (5.24a)
= h𝑋(u−,u+) + h𝑋(u+,u−) + d−(u−,u+) − d+(u+,u−). (5.24b)
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In (5.24), D±
𝑋 are numerical fluxes in fluctuation form that are applied in the volume integral.

They are defined as

D−
𝑋(u

−,u+) = h𝑋(u−,u+) − f(u−) + d−(u−,u+), (5.25a)
D+
𝑋(u

−,u+) = −h𝑋(u−,u+) + f(u+) + d+(u−,u+), (5.25b)

where h𝑋(u−,u+) is the vector of numerical fluxes, f(u±) are the approximation of the
traces of the physical flux at the interfaces, and d±(u−,u+) is the vector of fluctuation
fluxes for approximating the nonconservative product. In the forthcoming discussions, the
suffix𝑋 attached to the numerical fluxes may be replaced by 𝑐𝑝 or 𝑒𝑐, which signifies that the
numerical fluxes exhibit the property of either contract-preservation of entropy conservation,
respectively. Note that entropy stability of (5.23) requires that D̃ should be replaced by
entropy conservative fluxes D±

𝑒𝑐, while D± must be entropy stable fluxes, see Theorem 3.5.1
for details.

In this section, we will specifically focus on designing numerical fluxes that will be applied
to the volume integral for the scheme (5.23). Numerical fluxes at the interface will be dealt
separately in section 5.4. An essential tool which would help in the algebraic manipulations
are the Leibniz identities, which we recall here. Let 𝑎+, 𝑎−, 𝑏+, 𝑏−, 𝑐+, 𝑐− in R have finite
values, then we have

J𝑎𝑏K = 𝑎J𝑏K + 𝑏J𝑎K, J𝑎𝑏𝑐K = 𝑎(𝑏J𝑐K + 𝑐J𝑏K) + 𝑏𝑐J𝑎K, (5.26)

where 𝑎 = 𝑎++𝑎−
2 is the arithmetic mean and J𝑎K = 𝑎+ − 𝑎−.

5.3.1 Contact preserving numerical fluxes

Here, we focus on deriving conditions that will ensure that the numerical fluxes main-
tain uniform pressure and velocity profiles across an isolated contact discontinuity. To this
purpose, we introduce contact preserving fluctuation fluxes of the form

D−
𝑐𝑝(u

−,u+) = h𝑐𝑝(u−,u+) − f(u−) + d−(u−,u+), (5.27a)

D+
𝑐𝑝(u

−,u+) = −h𝑐𝑝(u−,u+) + f(u+) + d+(u−,u+), (5.27b)

where h𝑐𝑝(u−,u+) = (ℎ𝜌𝑐𝑝, ℎ𝜌𝑢𝑐𝑝 , ℎ𝜌𝐸𝑐𝑝 ,0,0)⊺ is the numerical flux for the conservative equations
of mass, momentum and energy, f(u±) are the traces of the physical flux function, and
d±(u−,u+) = (0,0,0, 𝑑±Γ, 𝑑

±
Π)

⊺ are fluctuation fluxes for the nonconservative product.

The semi-discrete scheme for (5.1a) using (5.27) in the volume integral reads

𝜔𝑘ℎ
2 𝑑𝑡𝜌

𝑘
𝑐𝑝,𝑗 + 2𝜔𝑘

𝑝

∑
𝑙=0
ℎ𝜌𝑐𝑝(U

𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 + 𝛿𝑘𝑝𝐷

−
𝜌 (U

𝑝
𝑗 ,U

0
𝑗+1) + 𝛿𝑘0𝐷

+
𝜌 (U

𝑝
𝑗−1,U

0
𝑗) = 0, (5.28a)

𝜔𝑘ℎ
2 𝑑𝑡(𝜌𝑢)

𝑘
𝑗 + 2𝜔𝑘

𝑝

∑
𝑙=0
ℎ𝜌𝑢𝑐𝑝 (U

𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 + 𝛿𝑘𝑝𝐷

+
𝜌𝑢(U

𝑝
𝑗 ,U

0
𝑗+1) + 𝛿𝑘0𝐷

+
𝜌𝑢(U

𝑝
𝑗−1,U

0
𝑗) = 0, (5.28b)

𝜔𝑘ℎ
2 𝑑𝑡(𝜌𝐸)

𝑘
𝑗 + 2𝜔𝑘

𝑝

∑
𝑙=0
ℎ𝜌𝐸𝑐𝑝 (U

𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 + 𝛿𝑘𝑝𝐷

−
𝜌𝐸(U

𝑝
𝑗 ,U

0
𝑗+1) + 𝛿𝑘0𝐷

+
𝜌𝐸(U

𝑝
𝑗−1,U

0
𝑗) = 0,

(5.28c)
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𝜔𝑘ℎ
2 𝑑𝑡Γ

𝑘
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0

(𝑑−Γ(U
𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Γ(U

𝑙
𝑗 ,U

𝑘
𝑗 ))𝐷𝑘𝑙 + 𝛿𝑘𝑝𝐷

−
Γ(U

𝑝
𝑗 ,U

0
𝑗+1) + 𝛿𝑘0𝐷

+
Γ(U

𝑝
𝑗−1,U

0
𝑗) = 0,

(5.28d)

𝜔𝑘ℎ
2 𝑑𝑡Π

𝑘
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0

(𝑑−Π(U
𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Π(U

𝑙
𝑗 ,U

𝑘
𝑗 ))𝐷𝑘𝑙 + 𝛿𝑘𝑝𝐷

−
Π(U

𝑝
𝑗 ,U

0
𝑗+1) + 𝛿𝑘0𝐷

+
Π(U

𝑝
𝑗−1,U

0
𝑗) = 0,

(5.28e)

where, for the moment, we assume that the interface fluxes𝐷−
(⋅)(U

𝑝
𝑗−1,U

0
𝑗) and𝐷+

(⋅)(U
𝑝
𝑗 ,U

0
𝑗+1)

at the right and left interfaces of the cell, respectively, are contact preserving. We will ad-
dress this assumption on the interfaces fluxes in section 5.4.3.

Now let us suppose that the scheme encounters an isolated contact discontinuity, across
which the velocity and pressure must be uniform, 𝑢𝑘𝑗 = 𝑢 and p𝑘𝑗 = p, respectively, for all
0 ≤ 𝑘 ≤ 𝑝, and 𝜌, Γ and Π are allowed to be discontinuous. For such a case, we are interested
in deriving conditions for the numerical fluxes (5.27) that will be sufficient to maintain the
uniform states in time.

We can derive a semi-discrete scheme for the evolution of velocity in time from (5.28)
following the differential relation

𝜌𝑑𝑢 = 𝑑𝜌𝑢 − 𝑢𝑑𝜌, (5.29)

and we get

𝜔𝑘ℎ

2
𝜌𝑘𝑗𝑑𝑡𝑢

𝑘
𝑗 + 2𝜔𝑘

𝑝

∑
𝑙=0

(ℎ𝜌𝑢𝑐𝑝 (U
𝑘
𝑗 ,U

𝑙
𝑗) − 𝑢ℎ

𝜌
𝑐𝑝(U

𝑘
𝑗 ,U

𝑙
𝑗))𝐷𝑘𝑙 (5.30)

+ 𝛿𝑘𝑝 (𝐷
−
𝜌𝑢(U

𝑝
𝑗 ,U

0
𝑗+1) − 𝑢𝐷

−
𝜌 (U

𝑝
𝑗 ,U

0
𝑗+1))

+ 𝛿𝑘0 (𝐷
+
𝜌𝑢(U

𝑝
𝑗−1,U

0
𝑗) − 𝑢𝐷

−
𝜌 (U

𝑝
𝑗−1,U

0
𝑗)) = 0,

where we observe that in order to maintain uniform velocity in time, the following condition
on the numerical fluxes (5.27)

ℎ𝜌𝑢𝑐𝑝 (u
−,u+) = 𝑢ℎ𝜌𝑐𝑝(u

−,u+) + p̃(u−,u+), ∀u± ∈ ΩGM, (5.31)

are sufficient enough to ensure that the volume integral does not perturb the uniform velocity.
Note that we have added p̃ in (5.31) which acts as a consistent contribution from the discrete
pressure and is essential in order to maintain homogeneity. Although, if the pressure is
uniform within the cell then, owing to consistency, the contribution of p̃(u−,u+) vanishes

𝑝

∑
𝑙=0

p̃𝑗(U𝑘,U𝑘
)𝐷𝑘𝑙

(3.37)
= 0, 0 ≤ 𝑘, 𝑙 ≤ 𝑝, 𝑗 ∈ Z. (5.32)

In a similar manner, a semi-discrete equation for the evolution of pressure (5.6) can be
obtained following the differential relation

Γ𝑑p
(5.6)
=
(5.8)

𝑑𝜌𝐸 − (
𝑢2

2
𝑑𝜌 + p𝑑Γ + 𝑑Π) , (5.33)
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𝜔𝑘ℎ

2
Γ𝑘𝑗𝑑𝑡p

𝑘
𝑗 + 2𝜔𝑘

𝑝

∑
𝑙=0

(ℎ𝜌𝐸𝑐𝑝 (U
𝑘
𝑗 ,U

𝑙
𝑗)

−
1

2
(𝑢2ℎ𝜌𝑐𝑝(U

𝑘
𝑗 ,U

𝑙
𝑗) + p(𝑑−Γ(U

𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Γ(U

𝑙
𝑗 ,U

𝑘
𝑗 )) + 𝑑

−
Π(U

𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Π(U

𝑙
𝑗 ,U

𝑘
𝑗 )))𝐷𝑘𝑙

+ 𝛿𝑘𝑝
⎛

⎝
𝐷−
𝜌𝐸(U

𝑝
𝑗 ,U

0
𝑗+1) − (

𝑢2

2
𝐷−
𝜌 (U

𝑝
𝑗 ,U

0
𝑗+1) + p𝐷−

Γ(U
𝑝
𝑗 ,U

0
𝑗+1) +𝐷

−
Π(U

𝑝
𝑗 ,U

0
𝑗+1))

⎞

⎠

+ 𝛿𝑘0
⎛

⎝
𝐷+
𝜌𝐸(U

𝑝
𝑗−1,U

0
𝑗) − (

𝑢2

2
𝐷+
𝜌 (U

𝑝
𝑗−1,U

𝑝
𝑗) + p𝐷+

Γ(U
𝑝
𝑗−1,U

0
𝑗) +𝐷

+
Π(U

𝑝
𝑗−1,U

0
𝑗))

⎞

⎠
= 0,

(5.34)
where the evolution of uniform pressure, in time, remains unaffected by the volume integral
if the numerical fluxes satisfy

ℎ𝜌𝐸𝑐𝑝 (u
−,u+)

=
1

2
(𝑢2ℎ𝜌𝑐𝑝(u

−,u+) + p (𝑑−Γ(u
−,u+) − 𝑑+Γ(u

+,u−)) + 𝑑−Π(u
−,u+) − 𝑑+Π(u

+,u−)) , ∀u± ∈ ΩGM.

(5.35)

Following conditions (5.31) and (5.35), we can now propose contact preserving fluxes for
the volume integral.

Proposition 5.3.1. Numerical fluxes of the form

D±
𝑐𝑝(u

−,u+) = ∓h𝑐𝑝(u−,u+) ± f(u±) + d±(u−,u+), (5.36)

where

h𝑐𝑝(u−,u+) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜌𝑢
𝜌𝑢2 + p

(𝜌𝐸 + p)𝑢
0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, d±(u−,u+) =
𝑢±

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

JΓK
JΠK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.37)

preserve the uniform pressure and velocity fields across an contact discontinuities and ma-
terial interfaces for the SG-gamma model (5.1a)-(5.2), with the mixture EOS (5.6).

Proof. Let us assume the situation of encountering an isolated contact discontinuity, across
which the velocity and pressure are uniform in space

𝑢𝑘𝑗 = 𝑢, p𝑘𝑗 = p, 0 ≤ 𝑘 ≤ 𝑝, 𝑗 ∈ Z. (5.38)

It is evident from (5.37) that the momentum flux directly satisfies (5.31) and the con-
tribution from p𝑗 will vanish owing to consistency and (5.32). In order to prove that (5.36)
satisfy (5.35), we first introduce the following relation for (5.6) as it will simplify the proof

pJΓK + JΠK
(5.26)
= J𝜌𝐸K −

𝑢2

2
J𝜌K. (5.39)
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Using the numerical fluxes (5.36) in the volume integral of (5.34), (5.35) reduces to

ℎ𝜌𝐸𝑐𝑝 (U
𝑘
𝑗 ,U

𝑙
𝑗)𝐷𝑘𝑙 =

𝑢

2
(𝜌𝐸)𝑙𝑗𝐷𝑘𝑙. (5.40)

Furthermore

1

2
(𝑢2ℎ𝜌𝑐𝑝(U

𝑘,U𝑙
) + p (𝑑−Γ(U

𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Γ(U

𝑙
𝑗 ,U

𝑘
𝑗 )) + 𝑑

−
Π(U

𝑘
𝑗 ,U

𝑙
𝑗) − 𝑑

+
Π(U

𝑙,U𝑘
))𝐷𝑘𝑙,

(5.36)
=

𝑢

2
(𝑢2𝜌 + pJΓK + JΠK)𝐷𝑘𝑙,

(5.39)
=

𝑢

2
(𝑢2𝜌 + J𝜌𝐸K −

𝑢2

2
J𝜌K)𝐷𝑘𝑙,

=
𝑢

2
(𝜌𝐸)𝑙𝑗𝐷𝑘𝑙,

(5.41)

which is equal to (5.40).

Hence 𝑑𝑡𝑢𝑘𝑗 = 0 and 𝑑𝑡p𝑘𝑗 = 0 are maintained which concludes the proof.

Remark 5.3.1. The contact preserving numerical fluxes (5.36) are similar to the one pro-
posed in [85], where we have modified the contributions towards the energy equation to satisfy
our requirements.

5.3.2 Entropy conservative numerical fluxes for the gamma model

We now recall the definition of entropy conservative fluctuation fluxes as stated in sec-
tion 3.5. Fluctuation fluxes of the form

D−
𝑒𝑐(u

−,u+) = h𝑒𝑐(u−,u+) − f(u−) + d−(u−,u+), (5.42a)
D+
𝑒𝑐(u

−,u+) = −h𝑒𝑐(u−,u+) + f(u+) + d+(u−,u+), (5.42b)

are said to entropy conservative if they satisfy

∆𝑄(u−,u+) = −h𝑒𝑐(u−,u+)⊺JvK + v(u−)⊺d−(u−,u+) + v(u+)⊺d+(u−,u+)
+ Jv⊺(u)f(u) − 𝑞(u)K = 0 ∀u± ∈ ΩGM,

(5.43)

where ∆𝑄(u−,u+) is the discrete entropy dissipation at the interface.

In this work, we design entropy conservative fluxes for pure phases, thus excluding con-
tact discontinuities. This restriction is necessary as the entropy is not convex for the complete
mixture.

Proposition 5.3.2. Entropy conservative fluxes (5.42) with the following definition of its
components

h𝑒𝑐(u−,u+) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ℎ𝜌𝑒𝑐
ℎ𝜌𝑢𝑒𝑐
ℎ𝜌𝐸𝑒𝑐

0
0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, d±(u−,u+) =
𝑢±

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

JΓK
JΠK

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (5.44)
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where

ℎ𝜌𝑒𝑐 = 𝜌𝑢, ℎ𝜌𝑢𝑒𝑐 = 𝑢ℎ
𝜌
𝑒𝑐 + 𝜌(𝛾 − 1)(

Cv

𝜁
) − p∞, ℎ𝜌𝐸𝑒𝑐 =

⎛
⎜
⎝
(

Cv

𝜁
)

⋀

+
𝑢−𝑢+

2

⎞
⎟
⎠
ℎ𝜌𝑒𝑐 + 𝜌𝑢(𝛾 − 1)(

Cv

𝜁
),

and 𝜁 = (𝛾−1)Cv𝜌
p+p∞ satisfy (5.43), for the EOS (5.6), and hence conserve the cell entropy for

pure phases.

The void fraction is uniform in pure phases, therefore (5.8) along with (5.26) gives
JΓK ≡ JΠK ≡ 0.

Proof. As we intend to design entropy conservative fluxes for pure phases, the system (5.1a)
can be considered as conservative. This reduces (5.43) to the Tadmor condition [128]:

∆𝑄(u−,u+) = h𝑒𝑐(u−,u+) ⋅ JvK − J𝜓(u)K = 0, ∀u± ∈ ΩGM, (5.45)

where 𝜓(u) = v⊺f − 𝑞 is the entropy potential.

Let us now resolve each term in (5.45) and show that the numerical fluxes (5.44) indeed
conserve the entropy. The entropy potential reads

𝜓(u)
(5.20)
= −𝜁(𝜌𝐸 + p)𝑢 + 𝜁𝑢(𝜌𝑢2 + p) + (𝛾Cv − 𝑠 − 𝜁

𝑢2

2
)𝜌𝑢 + 𝜌𝑠𝑢

= (𝛾Cv − 𝜁𝑒)𝜌𝑢

= (𝛾 − 1)Cv𝜌𝑢 − p∞𝜁𝑢

(5.46)

and
J𝜓(u)K

(5.26)
= (𝛾 − 1)CvJ𝜌𝑢K − p∞J𝜁𝑢K. (5.47)

Then we have

h⊺𝑒𝑐(u
−,u+)Jv(u)K = J𝛾Cv − 𝑠 − 𝜁

𝑢2

2
K𝑢𝜌 + J𝜁𝑢K(𝑢2𝜌 +

(𝛾 − 1)Cv𝜌

𝜁
− p∞)

− J𝜁K
⎛
⎜
⎝

⎛

⎝

Cv

𝜁
+
𝑢−𝑢+

2

⎞

⎠
𝜌 +

(𝛾 − 1)Cv

𝜁
𝜌
⎞
⎟
⎠
𝑢

(5.21)
=

(5.26)
⎛

⎝

J𝜁K
𝜁

+ (𝛾 − 1)
J𝜌K
𝜌

⎞

⎠
Cv𝑢𝜌 + J𝜁𝑢K(𝑢2𝜌 +

(𝛾 − 1)Cv𝜌

𝜁
− p∞)

− J𝜁K
⎛
⎜
⎝

⎛

⎝

Cv

𝜁
+
𝑢−𝑢+

2

⎞

⎠
𝜌 +

(𝛾 − 1)Cv

𝜁
𝜌
⎞
⎟
⎠
𝑢

= (𝛾 − 1)CvJ𝜌𝑢K − p∞J𝜁𝑢K.

(5.48)

It is clear that (5.47) cancels (5.48) and ∆𝑄(u−,u+) is zero in (5.45). Hence the discrete
entropy is conserved and it concludes the proof.
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5.3.3 A troubled-cell indicator based selection of numerical
fluxes

We have introduced two numerical fluxes for the volume integral: the contact preserving
fluxes (5.36) and the entropy conservative fluxes (5.44). It must be noted that these fluxes
fail to satisfy each others purpose. Thus, the contact preserving numerical fluxes (5.36)
do not conserve the entropy across an isolated shock, while the entropy conservative fluxes
(5.44) fail to preserve uniform pressure and velocity profiles across a contact or material
discontinuity.

In view of this inflexible behaviour of the numerical fluxes, we choose to apply the contact
preserving numerical fluxes (5.36)-(5.37) or the entropy conservative fluxes (5.44) based on
the following troubled-cell indicator (TCI) function, which was originally proposed in [78]
and here it has been adapted to the DG framework:

TCI𝑗 =
𝑝

∑
𝑘=0

𝜔𝑘
2

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

pmin − 2p𝑘𝑗 + pmax

pmin + 2p𝑘𝑗 + pmax

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀

, 𝑗 ∈ Z, (5.49)

where pmin = min𝑘 p𝑘𝑗 and pmax = max𝑘 p𝑘𝑗 .

The essential idea of the pressure-based indicator function (5.49) is that it is expected
to generate large values across shocks, due to the jump in pressure, while the function
vanishes across contact discontinuities. In our implementation, we impose a pre-determined
threshold value of the TCI function as the selection criteria for the numerical fluxes. As
a result, if the TCI function generates values exceeding the threshold within a cell then
entropy conservative fluxes (5.44) are applied in the volume integral and for all other cases
contact preserving numerical fluxes (5.36)-(5.37) are applied.

5.4 Interface fluxes for the gamma-model

We are now concerned with designing HLL and HLLC numerical fluxes for the gamma-
model, which will be applied at the cell interfaces. Following [69], we consider the integral
form of (5.1a)

∫

Δ𝑡

0
∫

ℎ⇑2

−ℎ⇑2
𝜕𝑡u + 𝜕𝑥f(u) + c(u)𝜕𝑥u𝑑𝑥𝑑𝑡 = 0, (5.50)

with Riemann initial data

u0(𝑥) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

u𝐿, 𝑥 < 0,

u𝑅, 𝑥 > 0,
(5.51)

where ℎ is the cell size of the mesh and ∆𝑡 > 0 is the time step. Referring to Figure 5-1, we
integrate over [︀−ℎ2 ,

ℎ
2 ⌉︀ × (︀0,∆𝑡⌋︀, which gives

∫

ℎ⇑2

−ℎ⇑2
𝒲 (

𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 −

ℎ

2
(u𝐿 + u𝑅) +∆𝑡 (f(u𝑅) − f(u𝐿))

+ ∫

Δ𝑡

0
∫

ℎ⇑2

−ℎ⇑2
c(u)𝜕𝑥u𝑑𝑥𝑑𝑡 = 0,

(5.52)
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where 𝒲 ( 𝑥
Δ𝑡 ,u𝐿,u𝑅) denotes the exact Riemann weak solution of (5.1a) with initial data

(5.51). Applying c(u)𝜕𝑥u = 𝑢(𝜕𝑥ΓeΓ+𝜕𝑥ΠeΠ), where eΓ = (0,0,0,1,0)⊺ and eΠ = (0,0,0,0,1)⊺,
with both Γ and Π continuous across shocks, we obtain

∫

Δ𝑡

0
∫

ℎ⇑2

−ℎ⇑2
c(u)𝜕𝑥u𝑑𝑥𝑑𝑡

= ∫

Δ𝑡

0
∫

ℎ⇑2

−ℎ⇑2
𝑢𝜕𝑥 (ΓeΓ +ΠeΠ)𝑑𝑥𝑑𝑡

= ∫

Δ𝑡

0
∫

ℎ⇑2

−ℎ⇑2
𝜕𝑥𝑢 (ΓeΓ +ΠeΠ) − (ΓeΓ +ΠeΠ)𝜕𝑥𝑢𝑑𝑥𝑑𝑡

= ∆𝑡 ((𝑢𝑅Γ𝑅 − 𝑢𝐿Γ𝐿)eΓ + (𝑢𝑅Π𝑅 − 𝑢𝐿Π𝐿)eΠ) −∆𝑡(Γ𝑅eΓ +Π𝑅eΠ) (𝑢𝑅 − 𝑢∗)

−∆𝑡(Γ𝐿eΓ +Π𝐿eΠ) (𝑢∗ − 𝑢𝐿)

= ∆𝑡𝑢∗ ((Γ𝑅 − Γ𝐿)eΓ + (Π𝑅 −Π𝐿)eΠ)) ,

(5.53)

where 𝑢𝐿 and 𝑢𝑅 are the velocities in the left and right states u𝐿 and u𝑅, respectively and
𝑢∗ is veclocity in the intermediate state. Substituting (5.53) in (5.52), leads to the integral
form for (5.1a):

1

∆𝑡
∫

ℎ⇑2

−ℎ⇑2
𝒲 (

𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 −

ℎ

2∆𝑡
(u𝐿 + u𝑅) + f(u𝑅) − f(u𝐿)

+ 𝑢∗(Γ𝑅 − Γ𝐿)eΓ + 𝑢∗(Π𝑅 −Π𝐿)eΠ = 0.

(5.54)

We now introduce Godunov fluxes in fluctuation form for (5.50)

D−
(u−,u+) ∶ = f(u𝐿) + f (𝒲 (0;u𝐿,u𝑅)) + 𝑢∗,−(Γ𝑅 − Γ𝐿)eΓ + 𝑢∗,−(Π𝑅 −Π𝐿)eΠ

=
ℎ

2∆𝑡
u𝐿 −

1

∆𝑡
∫

0

−ℎ⇑2
𝒲 (

𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥,

(5.55a)

D+
(u−,u+) ∶ = −f(u𝑅) − f (𝒲 (0;u𝐿,u𝑅)) + 𝑢∗,+(Γ𝑅 − Γ𝐿)eΓ + 𝑢∗,+(Π𝑅 −Π𝐿)eΠ

=
ℎ

2∆𝑡
u𝑅 −

1

∆𝑡
∫

ℎ⇑2

0
𝒲 (

𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥,

(5.55b)

which are obtained by integrating (5.1a) over the control volumes [︀−ℎ2 ,0⌉︀ × (︀0,∆𝑡⌋︀ and

[︀0, ℎ2 ⌉︀ × (︀0,∆𝑡⌋︀, respectively, where (⋅)+ = max(⋅,0) and (⋅)− = min(⋅,0) denote the positive
and negative parts, respectively.

Note that summing up (5.55a) and (5.55b) leads to

D−
(u−,u+) +D+

(u−,u+) = 𝑢∗ ((Γ𝑅 − Γ𝐿)eΓ + (Γ𝑅 − Γ𝐿)eΠ) , (5.56)

which corresponds to the path-conservative property [103] for a nonconservative product
𝑢𝜕𝑥(ΓeΓ +ΠeΠ) = 𝑢∗𝜕𝑥(ΓeΓ +ΠeΠ).
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The cell-averaged solution at time 𝑡𝑛+1 = (𝑛 + 1)∆𝑡 in the cell 𝜅𝑗 , is defined as

U𝑛+1
𝑗 =

1

ℎ
(∫

𝑥𝑗

𝑥𝑗−1⇑2
𝒲 (

𝑥

∆𝑡
;U𝑛

𝑗−1,U
𝑛
𝑗 )𝑑𝑥 + ∫

𝑥𝑗+1⇑2

𝑥𝑗
𝒲 (

𝑥

∆𝑡
;U𝑛

𝑗 ,U
𝑛
𝑗+1)𝑑𝑥) ,

(5.55)
= U𝑛

𝑗 −
∆𝑡

ℎ
(D+

(U𝑛
𝑗−1,U

𝑛
𝑗 ) +D−

(U𝑛
𝑗 ,U

𝑛
𝑗+1)) ,

(5.57)

where 𝑥𝑗 =
𝑥𝑗−1⇑2+𝑥𝑗+1⇑2

2 is the cell centre, and 𝑥𝑗−1⇑2 and 𝑥𝑗+1⇑2 are the left and right interfaces
of cell 𝜅𝑗 , respectively, see Figure 3-1.

The numerical scheme needs to be consistent with the integral form of the entropy
inequality (5.11) over the control volume [︀−ℎ2 ,

ℎ
2 ⌉︀ × (︀0,∆𝑡⌋︀:

1

∆𝑡
∫

ℎ⇑2

−ℎ⇑2
𝜂 (𝒲 (

𝑥

∆𝑡
;u𝐿,u𝑅))𝑑𝑥𝑑𝑡 −

ℎ

2∆𝑡
(𝜂(u𝐿) + 𝜂(u𝑅)) + 𝑞(u𝑅) − 𝑞(u𝐿) ≤ 0. (5.58)

Therefore, in the case when the entropy function (5.15) is convex, we invoke the Jensen’s
inequality and show that a discrete entropy inequality can be obtained which is consistent
with (5.11):

𝜂(U𝑛+1
𝑗 )

(5.57)
≤

1

ℎ

⎛

⎝
∫

𝑥𝑗

𝑥𝑗−1⇑2
𝜂 (𝒲 (

𝑥

∆𝑡
;U𝑛

𝑗−1,U
𝑛
𝑗 ))𝑑𝑥 + ∫

𝑥𝑗+1⇑2

𝑥𝑗
𝜂 (𝒲 (

𝑥

∆𝑡
;U𝑛

𝑗 ,U
𝑛
𝑗+1))𝑑𝑥

⎞

⎠

=
∆𝑡

ℎ
(𝑄(U𝑛

𝑗−1,U
𝑛
𝑗 ) − 𝑞(U

𝑛
𝑗 ) +

ℎ

2∆𝑡
𝜂(U𝑛

𝑗 ) + 𝑞(U
𝑛
𝑗 ) −𝑄(U

𝑛
𝑗 ,U

𝑛
𝑗+1) +

ℎ

2∆𝑡
𝜂(U𝑛

𝑗 ))

= 𝜂(U𝑗) −
∆𝑡

ℎ
(𝑄(U𝑛

𝑗 ,U
𝑛
𝑗+1) −𝑄(U

𝑛
𝑗−1,U

𝑛
𝑗 )) ,

(5.59)
where in the second step, we have integrated (5.13) over the control volumes [︀−ℎ2 ,0⌉︀×(︀0,∆𝑡⌋︀

and [︀0, ℎ2 ⌉︀ × (︀0,∆𝑡⌋︀, and considered

𝑄(U𝑛
𝑗−1,U

𝑛
𝑗 ) = 𝑞 (𝒲(0;U𝑛

𝑗−1,U
𝑛
𝑗 )) (5.60a)

𝑄(U𝑛
𝑗 ,U

𝑛
𝑗+1) = 𝑞 (𝒲(0;U𝑛

𝑗 ,U
𝑛
𝑗+1)) , (5.60b)

as the entropy flux at the left and right interfaces, respectively.

5.4.1 HLL Riemann solver

We are interested in an approximate Riemann solver of the form

𝒲HLL
(
𝑥

𝑡
;u𝐿,u𝑅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

u𝐿, 𝑥
𝑡 < 𝑠𝐿,

u∗, 𝑠𝐿 < 𝑥
𝑡 < 𝑠𝑅,

u𝑅, 𝑠𝑅 < 𝑥
𝑡 ,

(5.61)

for which (5.54) and (5.58) are still satisfied, while replacing the exact Riemann solver by
(5.61). Note that here we assume a two wave configuration that splits the state vector u
into three constant states, see Figure 5-1, where 𝑠𝐿 is the speed of the leftmost wave and
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𝑠𝑅 is the rightmost wave. Therefore, the integral of the approximate solution over [︀−ℎ2 ,
ℎ
2 ⌉︀

is computed as

∫

ℎ⇑2

−ℎ⇑2
𝒲HLL

(
𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 = (

ℎ

2
− 𝑠𝑅∆𝑡)u𝑅 +∆𝑡(𝑠𝑅 − 𝑠𝐿)u∗ + (𝑠𝐿∆𝑡 +

ℎ

2
)u𝐿. (5.62)

If (5.62) is introduced into (5.54), we get

−𝑠𝑅u𝑅 + (𝑠𝑅 − 𝑠𝐿)u∗ + 𝑠𝐿u𝐿 + f(u𝑅) − f(u𝐿) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ = 0, (5.63)

which leads to a definition of the state vector in the star region:

u∗ =
𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 − f(u𝑅) + f(u𝐿)

𝑠𝑅 − 𝑠𝐿
−
𝑠∗(Γ𝑅 − Γ𝐿)

𝑠𝑅 − 𝑠𝐿
eΓ −

𝑠∗(Π𝑅 −Π𝐿)

𝑠𝑅 − 𝑠𝐿
eΠ, (5.64)

where 𝑠∗ is the approximate velocity in the star region, which is defined as

𝑠∗ =
(𝜌𝑢)∗

𝜌∗
=

p𝐿 − p𝑅 − 𝜌𝐿𝑢𝐿(𝑠𝐿 − 𝑢𝐿) + 𝜌𝑅𝑢𝑅(𝑠𝑅 − 𝑢𝑅)

𝜌𝑅(𝑠𝑅 − 𝑢𝑅) − 𝜌𝐿(𝑠𝐿 − 𝑢𝐿)
. (5.65)

The expressions for Γ and Π in the star region can be obtained directly from (5.64) as

Γ∗ =
(𝑠𝑅 − 𝑠

∗)Γ𝑅 − (𝑠𝐿 − 𝑠∗)Γ𝐿
𝑠𝑅 − 𝑠𝐿

, (5.66a)

Π∗
=
(𝑠𝑅 − 𝑠

∗)Π𝑅 − (𝑠𝐿 − 𝑠
∗)Π𝐿

𝑠𝑅 − 𝑠𝐿
. (5.66b)

We now define the numerical fluxes at interfaces so as to satisfy a discrete version of
(5.55).

Theorem 5.4.1. The HLL fluctuation fluxes (5.55) take the following form for the gamma
model (5.1a):

D−
(u𝐿,u𝑅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

f(u𝐿), 𝑠𝐿 > 0,

D∗,−(u−,u+), 𝑠𝐿 < 0 < 𝑠𝑅,

f(u𝑅) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ, 𝑠𝑅 < 0,

(5.67a)

D+
(u𝐿,u𝑅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

−f(u𝐿) − 𝑠∗(Γ𝑅 − Γ𝐿)eΓ − 𝑠∗(Π𝑅 −Π𝐿)eΠ, 𝑠𝐿 > 0,

D∗,+(u−,u+), 𝑠𝐿 < 0 < 𝑠𝑅,

−f(u𝑅), 𝑠𝑅 < 0,

(5.67b)

where eΓ = (0,0,0,1,0)⊺ and eΠ = (0,0,0,0,1)⊺ and D⋆,± are defined in (5.68) below.

Proof. To derive fluctuation fluxes for the HLL solver, we substitute (5.61) with (5.64) where
𝑢⋆ is replaced by 𝑠⋆, and consider three different possibilities for the wave speeds.
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If 𝑠𝐿 < 0 < 𝑠𝑅 ∶

D∗,−
(u−,u+) = f(u𝐿) −

1

∆𝑡

⎛

⎝
−𝑠𝐿∆𝑡u∗ + (𝑠𝐿∆𝑡 +

ℎ

2
)u∗

⎞

⎠
+

ℎ

2∆𝑡
u𝐿,

= f(u𝐿) − 𝑠𝐿u𝐿 + 𝑠𝐿
⎛
⎜
⎝

𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 + f(u𝐿) − f(u𝑅)
𝑠𝑅 − 𝑠𝐿

− 𝑠∗
Γ𝑅 − Γ𝐿
𝑠𝑅 − 𝑠𝐿

eΓ − 𝑠∗
Π𝑅 −Π𝐿

𝑠𝑅 − 𝑠𝐿
eΠ

⎞
⎟
⎠
,

=
𝑠𝑅f(u𝐿) − 𝑠𝐿f(u𝑅) + 𝑠𝑅𝑠𝐿(u𝑅 − u𝐿)

𝑠𝑅 − 𝑠𝐿
−

𝑠∗𝑠𝐿
𝑠𝑅 − 𝑠𝐿

(Γ𝑅 − Γ𝐿)eΓ

−
𝑠∗𝑠𝐿
𝑠𝑅 − 𝑠𝐿

(Π𝑅 −Π𝐿)eΠ.

(5.68a)

D∗,+
(u−,u+) = −f(u𝑅) −

1

∆𝑡

⎛

⎝
(
ℎ

2
− 𝑠𝑅∆𝑡)u𝑅 + 𝑠𝑅∆𝑡u∗

⎞

⎠
+

ℎ

2∆𝑡
u𝑅,

= −f(u𝑅) + 𝑠𝑅u𝑅 − 𝑠𝑅
𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 − f(u𝑅) + f(u𝐿)

𝑠𝑅 − 𝑠𝐿

+
𝑠∗𝑠𝑅
𝑠𝑅 − 𝑠𝐿

(Γ𝑅 − Γ𝐿)eΓ +
𝑠∗𝑠𝑅
𝑠𝑅 − 𝑠𝐿

(Π𝑅 −Π𝐿)eΠ,

= −
𝑠𝑅f(u𝐿) − 𝑠𝐿f(u𝑅) + 𝑠𝐿𝑠𝑅(u𝑅 − u𝐿)

𝑠𝑅 − 𝑠𝐿

+
𝑠∗𝑠𝑅
𝑠𝑅 − 𝑠𝐿

(Γ𝑅 − Γ𝐿)eΓ +
𝑠∗𝑠𝑅
𝑠𝑅 − 𝑠𝐿

(Π𝑅 −Π𝐿)eΠ.

(5.68b)

If 0 < 𝑠𝐿 ∶
D−

(u−,u+) = f(u𝐿). (5.68c)

D+
(u−,u+) = −f(u𝑅) −

1

∆𝑡

⎛

⎝
(
ℎ

2
+ 𝑠𝑅∆𝑡)u𝑅 + (𝑠𝑅 − 𝑠𝐿)∆𝑡u∗ + 𝑠𝐿∆𝑡u𝐿

⎞

⎠
+

ℎ

2∆𝑡
u𝑅,

(5.64)
= −f(u𝑅) + 𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 − 𝑠𝑅u𝑅 + 𝑠𝐿u𝐿 + f(u𝑅) − f(u𝐿)

+ 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ,
= −f(u𝐿) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ.

(5.68d)

If 𝑠𝑅 < 0 ∶

D−
(u−,u+) = f(u𝐿) −

1

∆𝑡

⎛

⎝
−𝑠𝑅∆𝑡u𝑅 + (𝑠𝑅 − 𝑠𝐿)∆𝑡u∗ + (𝑠𝐿∆𝑡 +

ℎ

2
)u𝐿

⎞

⎠
+

ℎ

2∆𝑡
u𝐿,

(5.64)
= f(u𝐿) + 𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 − 𝑠𝑅u𝑅 + 𝑠𝐿u𝐿 + f(u𝑅) − f(u𝐿)

+ 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ,
= f(u𝑅) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ.

(5.68e)
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D+
(u−,u+) = −f(u𝑅). (5.68f)

Note that the contribution from the nonconservative term in (5.54) prevents the proof
of entropy consistency of the HLL solver with (5.58). Indeed from (5.54) we have

∫

ℎ⇑2

−ℎ⇑2
WHLL

(
𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 = ∫

ℎ⇑2

−ℎ⇑2
W(

𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥

+ (𝑢∗ − 𝑠∗) ((Γ𝑅 − Γ𝐿)eΓ + (Π𝑅 −Π𝐿)eΠ) ,
(5.69)

where consistency with (5.54) would require 𝑠∗ to be equal to 𝑢∗ and thus one needs to solve
the exact Riemann problem. Here u∗ is not the avarage of the exact Riemann solution over
(𝑠𝐿∆𝑡, 𝑠𝑅∆𝑡) and we cannot apply the Jensen’s inequality to prove that WHLL ( 𝑥

Δ𝑡 ;u𝐿,u𝑅)
satisfies (5.58) as done in [69].

Moreover, this solver is known to smear contacts [136] and has to be modified to preserve
uniform velocity and pressure profiles across material interfaces. We thus consider a HLLC
like solver in the next section.

5.4.2 HLLC Riemann solver

The HLLC solver [9, 136] considers a three wave configuration that splits the state
vector into four constant states, see Figure 5-1. Therefore, the approximate solution takes
the following form:

𝒲HLLC
(
𝑥

𝑡
;u𝐿,u𝑅) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

u𝐿, 𝑥
𝑡 < 𝑠𝐿,

u∗𝐿, 𝑠𝐿 < 𝑥
𝑡 < 𝑠

∗,
u∗𝑅, 𝑠∗ < 𝑥

𝑡 < 𝑠𝑅,

u𝑅, 𝑠𝑅 < 𝑥
𝑡 ,

(5.70)

where the speed of the central wave, 𝑠∗, is considered, which approximates a contact wave,
along with 𝑠𝐿 and 𝑠𝑅. The integral of the approximate solution (5.70) over [︀−ℎ2 ,

ℎ
2 ⌉︀ at time

∆𝑡 can be split as

∫

ℎ⇑2

−ℎ⇑2
𝒲HLLC

(
𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 = (

ℎ

2
− 𝑠𝑅∆𝑡)u𝑅 +∆𝑡(𝑠𝑅 − 𝑠

∗
)u∗𝑅

+∆𝑡(𝑠∗ − 𝑠𝐿)u∗𝐿 + (𝑠𝐿∆𝑡 +
ℎ

2
)u𝐿.

(5.71)

We now, explicitly, define the intermediate states. We impose

∫

𝑠𝑅Δ𝑡

𝑠𝐿Δ𝑡
𝒲HLLC

(
𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥 = ∫

𝑠𝑅Δ𝑡

𝑠𝐿Δ𝑡
𝒲HLL

(
𝑥

∆𝑡
;u𝐿,u𝑅)𝑑𝑥, (5.72)

which results in
(𝑠𝑅 − 𝑠𝐿)u∗ = (𝑠∗ − 𝑠𝐿)u∗𝐿 + (𝑠𝑅 − 𝑠

∗
)u∗𝑅. (5.73)
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If we introduce the definition of the HLL state vector in the star region (5.64), we obtain

𝑠𝑅u𝑅 − 𝑠𝐿u𝐿 − f(u𝑅) + f(u𝐿) − 𝑠∗(Γ𝑅 − Γ𝐿)eΓ − 𝑠∗(Π𝑅 −Π𝐿)eΠ
= (𝑠∗ − 𝑠𝐿)u∗𝐿 + (𝑠𝑅 − 𝑠

∗
)u∗𝑅,

(5.74)

and considering the terms related to Γ and Π, and using (5.66) we get

(𝑠𝑅 − 𝑠
∗
)Γ𝑅 + (𝑠

∗
− 𝑠𝐿)Γ𝐿 = (𝑠∗ − 𝑠𝐿)Γ∗𝐿 + (𝑠𝑅 − 𝑠

∗
)Γ∗𝑅, (5.75a)

(𝑠𝑅 − 𝑠
∗
)Π𝑅 + (𝑠

∗
− 𝑠𝐿)Π𝐿 = (𝑠∗ − 𝑠𝐿)Π∗

𝐿 + (𝑠𝑅 − 𝑠
∗
)Π∗

𝑅, (5.75b)

from where it is evident that
Γ∗𝐿 = Γ𝐿, Γ∗𝑅 = Γ𝑅,

Π∗
𝐿 = Π𝐿, Π∗

𝑅 = Π𝑅,
(5.76)

meaning that Γ and Π are continuous across shocks and may be discontinuous across inter-
mediate waves.

We now define the intermediate states for the HLLC solver, where the conserved quan-
tities in u∗𝐿 and u∗𝑅 can be computed by imposing the Rankine-Hugoniot relations across 𝑠𝐿
and 𝑠𝑅

f(u∗𝐿) − f(u𝐿) = 𝑠𝐿(u∗𝐿 − u𝐿),
f(u∗𝑅) − f(u𝑅) = 𝑠𝑅(u∗𝑅 − u𝑅).

(5.77)

Let us introduce the mass fluxes [135] as

𝑄𝐿 = 𝜌𝐿(𝑢𝐿 − 𝑠𝐿) > 0, 𝑄𝑅 = 𝜌𝑅(𝑠𝑅 − 𝑢𝑅) > 0, (5.78)

which leads to the following definition of the velocity in the star regions:

𝑢∗𝐿 = 𝑢𝐿 −
p∗𝐿 − p𝐿

𝑄𝐿
, 𝑢∗𝑅 = 𝑢𝑅 +

p∗𝑅 − p𝑅

𝑄𝑅
. (5.79)

If we further impose the continuity of the velocity and the pressure across the intermediate
wave, 𝑢⋆𝐿 = 𝑢⋆𝑅 = 𝑢⋆ and 𝑝⋆𝐿 = 𝑝⋆𝑅 = 𝑝⋆, we obtain

p∗ − p𝑅
𝑄𝑅

+
p∗ − p𝐿
𝑄𝐿

+ 𝑢𝑅 − 𝑢𝐿 = 0, (5.80)

which gives the expression for the pressure in the intermediate states

p∗ =
𝑄𝐿p𝑅 +𝑄𝑅p𝐿 +𝑄𝑅𝑄𝐿(𝑢𝐿 − 𝑢𝑅)

𝑄𝐿 +𝑄𝑅
. (5.81)

Similarly by equating the pressure in (5.79), we have

𝑠∗ =
p𝐿 − p𝑅 +𝑄𝐿𝑢𝐿 +𝑄𝑅𝑢𝑅

𝑄𝐿 +𝑄𝑅
. (5.82)

Note that the value of 𝑠∗ in (5.82) corresponds to the one in the HLL fluxes (5.65).

The other states can directly be obtained following the Rankine-Hugoniot relation (5.77),
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also see [135]:

𝜌∗𝐿 =
𝑢𝐿 − 𝑠𝐿
𝑠∗ − 𝑠𝐿

𝜌𝐿, (5.83a)

𝑒∗𝐿 = 𝑒𝐿 + (𝑠
∗
− 𝑢𝐿)(

𝑠∗ − 𝑢𝐿
2

−
p𝐿
𝑄𝐿

) , (5.83b)

𝐸∗
𝐿 = 𝐸𝐿 + (𝑠

∗
− 𝑢𝐿)(𝑠

∗
−

p𝐿
𝑄𝐿

), (5.83c)

𝜌∗𝑅 =
𝑠𝑅 − 𝑢𝑅
𝑠𝑅 − 𝑠∗

𝜌𝑅, (5.83d)

𝑒∗𝑅 = 𝑒𝑅 + (𝑠
∗
− 𝑢𝑅)(

𝑠∗ − 𝑢𝑅
2

+
p𝑅
𝑄𝑅

) , (5.83e)

𝐸∗
𝑅 = 𝐸𝑅 + (𝑠

∗
− 𝑢𝑅)(𝑠

∗
+

p𝑅
𝑄𝑅

) . (5.83f)

Again, the numerical fluxes at interfaces are defined so as to satisfy a discrete version of
(5.55):

D−
(u−,u+) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

f(u𝐿), 0 < 𝑠𝐿,

f(u𝐿) + 𝑠𝐿(u∗𝐿 − u𝐿), 𝑠𝐿 < 0 < 𝑠∗,

f(u𝑅) + 𝑠𝑅(u∗𝑅 − u𝑅) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ, 𝑠∗ < 0 < 𝑠𝑅,

f(u𝑅) + 𝑠∗(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗(Π𝑅 −Π𝐿)eΠ, 𝑠𝑅 < 0,

(5.84a)

D+
(u−,u+) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀⌉︀]︀

f(u𝐿) − 𝑠∗(Γ𝑅 − Γ𝐿)eΓ − 𝑠∗(Π𝑅 −Π𝐿)eΠ, 0 < 𝑠𝐿,

f(u𝐿) + 𝑠𝐿(u∗𝐿 − u𝐿) − 𝑠∗(Γ𝑅 − Γ𝐿)eΓ − 𝑠∗(Π𝑅 −Π𝐿)eΠ, 𝑠𝐿 < 0 < 𝑠∗,

f(u𝑅) + 𝑠𝑅(u∗𝑅 − u𝑅), 𝑠∗ < 0 < 𝑠𝑅,

f(u𝑅), 𝑠𝑅 < 0.

(5.84b)

Note that by construction the numerical fluxes (5.84) satisfy

D−
(u𝐿,u𝑅) = f(𝒲HLLC

(
𝑥

∆𝑡
,u𝐿,u𝑅)) + 𝑠∗

−
(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗

−
(Π𝑅 −Π𝐿)eΠ,

D+
(u𝐿,u𝑅) = −f(𝒲HLLC

(
𝑥

∆𝑡
,u𝐿,u𝑅)) + 𝑠∗

+
(Γ𝑅 − Γ𝐿)eΓ + 𝑠∗

+
(Π𝑅 −Π𝐿)eΠ.

(5.85)

Finally, the HLLC solver (5.70) satisfies the consistency condition (5.54) with 𝑢⋆ replaced
by 𝑠⋆and the three-point scheme reads

U𝑛+1
𝑗 −U𝑛

𝑗 +
∆𝑡

∆𝑥
(D−

(U𝑛
𝑗 ,U

𝑛
𝑗+1) +D+

(U𝑛
𝑗−1,U

𝑛
𝑗 )) = 0, (5.86)
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with

U𝑛+1
𝑗 =

1

∆𝑥
∫

𝑥𝑗

𝑥𝑗−1⇑2
𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗−1,U
𝑛
𝑗 )𝑑𝑥 +

1

∆𝑥
∫

𝑥𝑗+1⇑2

𝑥𝑗
𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗 ,U
𝑛
𝑗+1)𝑑𝑥.

(5.87)

5.4.3 Properties of the HLLC solver

In this section, we analyse the properties of the numerical scheme (5.86) using fluxes
(5.84), where the time step ∆𝑡 > 0 is assumed to satisfy the CFL condition

∆𝑡

∆𝑥
max
𝑗∈Z

(⨄︀𝑠𝑅(U𝑛
𝑗 )⨄︀ , ⨄︀𝑠𝐿(U

𝑛
𝑗 )⨄︀) ≤

1

2
, (5.88)

with ∆𝑡 small enough so that the left and right waves do not interact. The wave speeds 𝑠𝐿
and 𝑠𝑅 are defined in section 5.4.3.

Discrete entropy inequality

We are interested in the nonlinear stability of the scheme (5.86). Here we use the
technique from [12] to prove the entropy inequality in integral form (5.59) for the HLLC
solution (5.70) and propose sufficient conditions on the intermediate states that enforce the
required stability.

Note that in the following theorem we refer to the physical entropy 𝑠𝑖(𝜌𝑖, 𝜃) → 𝑠𝑖(𝜏𝑖, 𝑒𝑖)
as a strictly convex function, where 𝜏𝑖 = 1⇑𝜌𝑖.

Theorem 5.4.2. Suppose that condition (5.88) on the time step holds. Assume that the
intermediate states in the HLLC solver (5.70), u⋆𝐿 and u⋆𝑅, satisfy u∗𝐿,u

∗
𝑅 ∈ ΩGM together

with
𝑠(u∗𝐿) ≥ 𝑠(u𝐿), 𝑠(u∗𝑅) ≥ 𝑠(u𝑅), (5.89)

for the physical entropy of the mixture (5.16), then the numerical scheme (5.86) satisfies the
entropy inequality (5.59) with the consistent numerical fluxes

𝑄(U𝑛
𝑗−1,U

𝑛
𝑗 ) = 𝑞(U

𝑛
𝑗 ) +

1

∆𝑡
∫

𝑥𝑗

𝑥𝑗−1⇑2
𝜂 (𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗−1,U
𝑛
𝑗 ))𝑑𝑥 −

∆𝑥

2∆𝑡
𝜂 (U𝑛

𝑗 ) . (5.90)

Proof. We first prove the entropy inequality in integral form (5.58) using (5.71), so we have
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∫

ℎ⇑2

−ℎ⇑2
𝜂 (𝒲HLLC

(
𝑥

∆𝑡
;u𝐿,u𝑅))𝑑𝑥

= (𝑠𝐿∆𝑡 +
ℎ

2
)𝜂(u𝐿) + (𝑠∗ − 𝑠𝐿)∆𝑡𝜂(u∗𝐿) + (𝑠𝑅 − 𝑠

∗
)∆𝑡𝜂(u∗𝑅) + (

ℎ

2
− 𝑠𝑅∆𝑡)𝜂(u𝑅),

(5.15)
=

ℎ

2
(𝜂(u𝐿) + 𝜂(u𝑅)) −∆𝑡(𝑠𝐿𝜌𝐿𝑠(u𝐿) + (𝑠∗ − 𝑠𝐿)𝜌∗𝐿𝑠(u

∗
𝐿))

−∆𝑡((𝑠𝑅 − 𝑠
∗
)𝜌∗𝑅𝑠(u

∗
𝑅) − 𝑠𝑅𝜌𝑅𝑠(u𝑅)),

(5.89)
≤

ℎ

2
(𝜂(u𝐿) + 𝜂(u𝑅)) −∆𝑡𝑠(u𝐿) (𝑠𝐿𝜌𝐿 + (𝑠∗ − 𝑠𝐿)𝜌∗𝐿) −∆𝑡((𝑠𝑅 − 𝑠

∗
)𝜌∗𝑅 − 𝑠𝑅𝜌𝑅)𝑠(u𝑅),

=
ℎ

2
(𝜂(u𝐿) + 𝜂(u𝑅)) −∆𝑡(𝜌𝑅𝑢𝑅𝑠(u𝑅) − 𝜌𝐿𝑢𝐿𝑠(u𝐿)),

(5.91)
where we have used the first component of the Rankine-Hugoniot relations (5.77).

As a consequence, setting u𝐿 = U𝑛
𝑗 and u𝑅 = U𝑛

𝑗+1, the numerical flux (5.90) satisfies

𝑄(U𝑛
𝑗 ,U

𝑛
𝑗+1) ≤ 𝑞(U

𝑛
𝑗 ) −

1

∆𝑥
∫

𝑥+1⇑2

𝑥𝑗
𝜂 (𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗 ,U
𝑛
𝑗+1))𝑑𝑥 +

∆𝑥

2∆𝑡
𝜂(U𝑛

𝑗 ), (5.92)

and using (5.87) we have the following relation through Jensen’s inequality for the convex
entropy function (5.15)

𝜂(U𝑛+1
𝑗 ) ≤

1

∆𝑥
∫

𝑥𝑗

𝑥𝑗−1⇑2
𝜂 (𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗−1,U
𝑛
𝑗 ))𝑑𝑥

+
1

∆𝑥
∫

𝑥𝑗+1⇑2

𝑥𝑗
𝜂 (𝒲HLLC

(
𝑥

∆𝑡
;U𝑛

𝑗 ,U
𝑛
𝑗+1))𝑑𝑥,

(5.90)
≤

(5.92)
∆𝑡

∆𝑥
(𝑄(U𝑛

𝑗−1,U
𝑛
𝑗 ) − 𝑞(U

𝑛
𝑗 ) +

∆𝑥

2∆𝑡
𝜂(U𝑛

𝑗 )))

+
∆𝑡

∆𝑥
(−𝑄(U𝑛

𝑗 ,U
𝑛
𝑗+1) + 𝑞(U

𝑛
𝑗 ) +

∆𝑥

2∆𝑡
𝜂(U𝑛

𝑗 )) ,

= 𝜂(U𝑛
𝑗 ) −

∆𝑡

∆𝑥
(𝑄(U𝑛

𝑗 ,U
𝑛
𝑗+1) −𝑄(U

𝑛
𝑗−1,U

𝑛
𝑗 )) .

(5.93)

We now clarify the conditions on the wave speed estimates under which (5.89) hold.

Lemma 5.4.1. There exist wave speed estimates 𝑠𝐿 and 𝑠𝑅 large enough so that they are
bounds of the minimum and maximum wave speeds in the exact Riemann weak solution of
(5.1a) with initial data (5.51), and so that (5.89) holds.

Proof. The first result is obvious by the finiteness of the wave speeds in the exact Riemann
solution. Then, we need to check that u∗𝐿 and u∗𝑅 satisfy the local entropy minimum principle
(5.89) introduced in [11, §4.2], which is a wave-by-wave condition provided the scheme is
consistent with the integral form of (5.1a). Using Γ∗𝑋 = Γ𝑋 and Π∗

𝑋 = Π𝑋 , the invariance
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principle in [11, Theorem 3.3] reads

p∗ +
𝑄2
𝑋

𝜌∗𝑋
= p𝑋 +

𝑄2
𝑋

𝜌𝑋
, (5.94a)

𝑒∗𝑋 −
(p∗)2

2𝑄2
𝑋

= 𝑒𝑋 −
p2
𝑋

2𝑄2
𝑋

, 𝑋 = 𝐿,𝑅. (5.94b)

The first is a direct consequence of (5.79) and (5.83a,5.83d), while eliminating p∗ from
the above relations and using (5.83a,5.83d) give (5.83b,5.83e). So the assumptions of [12,
Theorem 2.3] are met.

We finally link the discrete entropy inequality (5.58) to the entropy stable character of
the numerical fluxes (3.52), so that the HLLC fluxes can be used at the interfaces in the
DGSEM scheme to prove a semi-discrete entropy inequality.

Corollary 5.4.1. Let a three-point scheme of the form (5.86) for the discretization of (5.1a).
Then, the entropy inequality (5.58) implies the entropy stability of the numerical fluxes in
the sense of [24]:

𝜂′(u𝐿)⊺D−
(u𝐿,u𝑅) +𝜂′(u𝑅)⊺D+

(u𝐿,u𝑅) ≥ 𝑞(u𝑅) −𝜂′(u𝑅)⊺f(u𝑅) − 𝑞(u𝐿) +𝜂′(u𝐿)⊺f(u𝐿),
(5.95)

for all u𝐿,u𝑅 ∈ Ω⋆.

Proof. Indeed, let U𝑛
𝑗−1 = U𝑛

𝑗 = u𝐿 and U𝑛
𝑗+1 = u𝑅 then from (5.58) and (5.86), we obtain

U𝑛+1
𝑗 = u𝐿 −

∆𝑡

∆𝑥
D−

(u𝐿,u𝑅), (5.96)

and

𝜂 (u𝐿 −
∆𝑡

∆𝑥
D−

(u𝐿,u𝑅)) ≤ 𝜂(u𝐿) −
∆𝑡

∆𝑥
(𝑄(u𝐿,u𝑅) − 𝑞(u𝐿)) . (5.97)

Likewise, using U𝑛
𝑗−1 = u𝐿 and U𝑛

𝑗 = U𝑛
𝑗+1 = u𝑅, we get

U𝑛+1
𝑗 = u𝑅 −

∆𝑡

∆𝑥
D+

(u𝐿,u𝑅) (5.98)

and

𝜂 (u𝑅 −
∆𝑡

∆𝑥
D+

(u𝐿,u𝑅)) ≤ 𝜂(u𝑅) −
∆𝑡

∆𝑥
(𝑞(u𝑅) −𝑄(u𝐿,u𝑅)) . (5.99)

Summing (5.97) and (5.99) gives

𝜂 (u𝐿 −
∆𝑡

∆𝑥
D−

(u𝐿,u𝑅)) + 𝜂 (u𝑅 −
∆𝑡

∆𝑥
D+

(u𝐿,u𝑅)))

≤ 𝜂(u𝐿) + 𝜂(u𝑅) −
∆𝑡

∆𝑥
(𝑞(u𝑅) − 𝑞(u𝐿)) ,

(5.100)

and letting ∆𝑡→ 0+ with fixed ∆𝑥, we obtain (5.95).
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Preservation of uniform states

We, first, verify that the three-point scheme (5.86), with numerical fluxes (5.84), satisfy
the Abgrall criterion [1].

Let us consider that the left and right states satisfy 𝑢𝐿 = 𝑢𝑅 = 𝑢 and p𝐿 = p𝑅 = p, then
(5.81) and (5.82) gives p∗ = p and 𝑠∗ = 𝑢, respectively. As a result, the requirements (5.31)
and (5.35)

𝐷±
𝜌𝑢 − 𝑢𝐷

±
𝜌 = p, 𝐷±

𝜌𝐸 −
𝑢2

2
𝐷±
𝜌 = 𝑢 (pΓ +Π) , (5.101)

are satisfied, respectively.

Now assume that Γ𝐿 = Γ𝑅 and Π𝐿 = Π𝑅, then 𝐷±
Γ = 0 and 𝐷±

Π = 0 and the fluxes reduce
to the conservative HLLC solver for the Euler equations so pure phases are preserved.

Wave speed estimates

We propose wave speeds for the scheme [16]:

𝑠𝐿 = 𝑢𝐿 − 𝑐𝐿, 𝑠𝑅 = 𝑢𝑅 + 𝑐𝑅, (5.102)

where
𝑐𝐿 = 𝑐𝐿 +

𝛾+1
2 (

p𝑅−p𝐿
𝜌𝑅𝑐𝑅

+ 𝑢𝐿 − 𝑢𝑅)
+
,

𝑐𝑅 = 𝑐𝑅 +
𝛾+1
2 (

p𝐿−p𝑅
𝜌𝐿𝑐𝐿

+ 𝑢𝐿 − 𝑐𝐿)
+
,

[︀⌉︀⌉︀⌉︀⌉︀
⌈︀
⌉︀⌉︀⌉︀⌉︀⌊︀

if p𝑅 ≥ p𝐿. (5.103)

𝑐𝑅 = 𝑐𝑅 +
𝛾+1
2 (

p𝐿−p𝑅
𝜌𝐿𝑐𝐿

+ 𝑢𝐿 − 𝑢𝑅)
+
,

𝑐𝐿 = 𝑐𝐿 +
𝛾+1
2 (

p𝑅−p𝐿
𝜌𝑅𝑐𝑅

+ 𝑢𝐿 − 𝑢𝑅)
+
,

[︀⌉︀⌉︀⌉︀⌉︀
⌈︀
⌉︀⌉︀⌉︀⌉︀⌊︀

if p𝐿 ≥ p𝑅, (5.104)

and 𝛾 = max𝑋 𝛾𝑋 , 𝑐𝑋 =
⌈︂
𝛾(p𝑋 + p∞𝑋

)⇑𝜌𝑋 for 𝑋 = 𝐿,𝑅.

These wave speeds estimates will also bound the exact Riemann solution for pure phases.
In the general case when Γ𝐿 ≠ Γ𝑅 and Π𝐿 ≠ Π𝑟, it is difficult to guaranty such properties. We
refer to [98] for such an analysis in the case of a conservative multi-species model. However,
these estimates are sufficient for our purpose since the entropy inequality is relevant for pure
phases only.

Positivity of solution

According to [9], a numerical scheme preserves positivity of solution if it updates values
from a convex averaging [50] of the states that appear in the exact or approximate solution
to the Riemann problem.

Indeed, from (5.87), U𝑛+1
𝑗 results from the cell average of the HLLC solution at left and

right interfaces. Therefore, assuming that the left and right states are positive, we first show
that the density and the total internal energy in the intermediate states are positive.

The proof for positivity of density in the star region can be directly stated following its
definition in (5.83a) and (5.83d), where 𝑠𝑋 is always greater than 𝑢𝑋 and 𝑠∗ for 𝑋 = 𝐿,𝑅.
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Positivity of the internal energy in the star region requires satisfying the following con-
dition

𝜌∗𝑋𝑒
∗
𝑋 > p∞𝑋

, 𝑋 = 𝐿,𝑅, (5.105)

to hold in the intermediate states. We now consider the left star state u∗𝐿, with the corre-
sponding results for the right star state following in a similar way. Therefore, we have from
(5.105)

𝜌∗𝐿
⎛

⎝
𝐸∗
𝐿 −

(𝑠∗𝐿)
2

2

⎞

⎠
> p∞𝐿

,

(5.83)
⇔ 𝜌∗𝐿 (𝐸𝐿 + 𝑠

∗
(𝑠∗ − 𝑢𝐿) −

(𝑠∗)2

2
+ (𝑠∗ − 𝑢𝐿)

p𝐿
𝜌𝐿(𝑠𝐿 − 𝑢𝐿)

) > p∞𝐿
,

⇔𝜌∗𝐿 (𝑒𝐿 +
(𝑢𝐿 − 𝑠

∗)2

2
+ (𝑠∗ − 𝑢𝐿)

p𝐿
𝜌𝐿(𝑢𝐿 − 𝑠𝐿)

) > p∞𝐿
,

(5.83)
⇔ (

𝑢𝐿 − 𝑠𝐿
𝑠∗ − 𝑠𝐿

)(
p𝐿 + 𝛾𝐿p∞𝐿

𝛾𝐿 − 1
) + (

𝑢𝐿 − 𝑠𝐿
𝑠∗ − 𝑠𝐿

)
𝜌𝐿(𝑢𝐿 − 𝑠

∗)2

2
− (

𝑠∗ − 𝑢𝐿
𝑠∗ − 𝑠𝐿

)p𝐿 − p∞𝐿
> 0,

⇔(𝑢𝐿 − 𝑠𝐿)(
p𝐿 + 𝛾𝐿p∞𝐿

𝛾𝐿 − 1
) + (𝑢𝐿 − 𝑠𝐿)

𝜌𝐿
2
𝜎2 + 𝜎p𝐿 − (𝑠

∗
− 𝑠𝐿)p∞𝐿

> 0,

(5.106)
where 𝜎 = 𝑢𝐿 − 𝑠∗. Upon further simplification we get the following quadratic inequality

(𝑢𝐿 − 𝑠𝐿)
𝜌𝐿
2
𝜎2 − (p𝐿 + p∞𝐿

)𝜎 + (𝑢𝐿 − 𝑠𝐿)(
p𝐿 + p∞𝐿

𝛾𝐿 − 1
) > 0, (5.107)

where the sign for the inequality holds for all 𝜎 ∈ R if the discriminant of (5.107) is negative

𝒟 = (p𝐿 + p∞𝐿
)
2
− 2𝜌𝐿(𝑢𝐿 − 𝑠𝐿)

2
(

p𝐿 + 𝛾𝐿p∞𝐿

𝛾𝐿 − 1
) < 0,

= (p𝐿 + p∞𝐿
)
2
− 2(𝑢𝐿 − 𝑠𝐿)

2 (𝜌𝐿𝑐𝐿)
2

𝛾𝐿(𝛾𝐿 − 1)
< 0.

(5.108)

The inequality (5.108) reveals the following bounds on the left wave speed

𝑠𝐿 < 𝑢𝐿 −

}︂
𝛾𝐿 − 1

2𝛾𝐿
𝑐𝐿, (5.109)

which is satisfied by the wave speed estimates in section 5.4.3, since 𝛾𝐿−1
2𝛾𝐿

< 1.

We also show that the fully discrete three-point scheme preserves the positivity of Γ and
Π at time 𝑡𝑛+1 and also satisfies a maximum principle. Here we demonstrate this for Γ,
however a similar argument can be stated for Π.

Let us discretize the equation for Γ using forward Euler in time and the HLLC solver at
the interface. Then we have,

Γ𝑛+1𝑗 = Γ𝑛𝑗 −
∆𝑡

∆𝑥
(𝑠∗,−
𝑗+1⇑2 (Γ𝑛𝑗+1 − Γ𝑛𝑗 ) + 𝑠

∗,+
𝑗−1⇑2 (Γ𝑛𝑗−1 − Γ𝑛𝑗 )) ,

= (1 −
∆𝑡

∆𝑥
(𝑠∗,+
𝑗−1⇑2 − 𝑠

∗,−
𝑗+1⇑2))Γ𝑛𝑗 −

∆𝑡

∆𝑥
𝑠∗,−
𝑗+1⇑2Γ

𝑛
𝑗+1 +

∆𝑡

∆𝑥
𝑠∗,+
𝑗−1⇑2Γ

𝑛
𝑗−1,

(5.110)
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which shows that Γ at time 𝑛 + 1 is a convex combination of the cell-averaged Γ at time 𝑛.
Hence Γ satisfies the discrete max-principle.

5.5 Properties of the DGSEM scheme

We recall here the main properties of the DGSEM scheme for the discretization of the
gamma model with the numerical fluxes from section 5.3 and section 5.4.

First, the semi-discrete scheme (3.54) with the entropy conservative fluxes (5.44) in the
volume integral and the HLLC flux (5.84) at the interface satisfy the semi-discrete entropy
inequality (3.57) in the case of pure phases, see Theorem 3.5.1.

Then, we consider the fully discrete scheme (3.68) with forward Euler time-stepping. The
scheme with the contact-preserving fluxes (5.36)-(5.37) in the volume integral, along with
the HLLC solver at the interfaces, preserves uniform pressure and velocity profiles across
material interfaces.

Finally, for both contact-preserving and entropy conservative numerical fluxes in the
volume integral, the DGSEM (5.23) guarantees the positivity of the cell-averaged solution

U𝑘,𝑛
𝑗 ∈ ΩGM∀0 ≤ 𝑘 ≤ 𝑝, ⇒ ∐︀u𝑛+1ℎ ̃︀ ∈ ΩGM, ∀𝑗 ∈ Z,

provided that the time step satisfies the following conditions

∆𝑡

ℎ
max
𝑗∈Z

(⨄︀𝑠𝑛𝐿𝑗+1⇑2 ⨄︀ , ⨄︀𝑠
𝑛
𝑅𝑗−1⇑2 ⨄︀) ≤

1

𝑝(𝑝 + 1)
, (5.111a)

∆𝑡

ℎ
max
𝑗∈Z

max
0≤𝑘≤𝑝

⎛

⎝

𝑝

∑
𝑙=0
𝜔𝑙𝐷𝑙𝑘u

𝑘,𝑛
𝑗 − 𝛿𝑘𝑝𝑠

∗,−
𝑗+1⇑2 + 𝛿𝑘0𝑠

∗,+
𝑗−1⇑2

⎞

⎠
≤

1

2
. (5.111b)

Indeed, the cell average of (3.68) gives (3.60) according to Theorem 3.5.1. For the first
three components of (5.1a), 𝑋 = 𝜌, 𝜌𝑢, 𝜌𝐸, this gives [145]

∐︀𝑋ℎ̃︀
𝑛+1
𝑗 = ∐︀𝑋ℎ̃︀

𝑛
𝑗 −

∆𝑡

ℎ
(ℎ𝑋 (U𝑝,𝑛

𝑗 ,U0,𝑛
𝑗+1) − ℎ𝑋 (U𝑝,𝑛

𝑗−1,U
0,𝑛
𝑗 ))

=

𝑝−1
∑
𝑘=1

𝜔𝑘
2
𝑋𝑘,𝑛
𝑗 +

𝜔𝑝

2
(𝑋𝑝,𝑛

𝑗 −
2∆𝑡

𝜔𝑝ℎ
(ℎ𝑋 (U𝑝,𝑛

𝑗 ,U0,𝑛
𝑗+1) − ℎ𝑋 (U0,𝑛

𝑗 ,U𝑝,𝑛
𝑗 )))

+
𝜔0

2
(𝑋0,𝑛

𝑗 −
2∆𝑡

𝜔0ℎ
(ℎ𝑋 (U0,𝑛

𝑗 ,U𝑝,𝑛
𝑗 ) − ℎ𝑋 (U𝑝,𝑛

𝑗−1,U
0,𝑛
𝑗 ))) ,

(5.112)

which is a convex combination of positive quantities under (5.111a), since the HLLC solver
is positive under (5.88) and 𝜔0 = 𝜔𝑝 =

𝑝(𝑝+1)
2 .
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Moreover, the last two components, now 𝑋 = Γ,Π satisfy

∐︀𝑋ℎ̃︀
𝑛+1
𝑗 = ∐︀𝑋ℎ̃︀

𝑛
𝑗 −

∆𝑡

ℎ

⎛
⎜
⎝

𝑝

∑
𝑘,𝑙=0

𝜔𝑘𝐷𝑘𝑙𝑢
𝑘,𝑛
𝑗 𝑋 𝑙,𝑛

𝑗 + 𝑠∗,−
𝑗+1⇑2 (𝑋

0,𝑛
𝑗+1 −𝑋

𝑝,𝑛
𝑗 ) + 𝑠∗,+

𝑗−1⇑2 (𝑋
0,𝑛
𝑗 −𝑋𝑝,𝑛

𝑗−1)
⎞
⎟
⎠

=

𝑝

∑
𝑘=0

⎛
⎜
⎝

𝜔𝑘
2
−

∆𝑡

ℎ

⎛

⎝

𝑝

∑
𝑙=0
𝜔𝑙𝐷𝑘𝑙𝑢

𝑙,𝑛
𝑗 − 𝛿𝑘𝑝𝑠

∗,−
𝑗+1⇑2 + 𝛿𝑘0𝑠

∗,+
𝑗−1⇑2

⎞

⎠

⎞
⎟
⎠
𝑋𝑘,𝑛
𝑗

+
∆𝑡

ℎ
(−𝑠∗,−

𝑗+1⇑2𝑋
0,𝑛
𝑗+1 + 𝑠

∗,+
𝑗−1⇑2𝑋

𝑝,𝑛
𝑗−1) ,

(5.113)
which is indeed positive under (5.111a).

We further enforce the positivity of the solution at the nodal values by the use of limiters
which are introduced in section 5.6.

5.6 A posteriori limiters

We impose positivity of the solution at the nodal values by using a posteriori limiters as
proposed in [37, 139, 145, 146]. In this work we limit the mixture density, the total internal
energy and the Γ and Π terms. The solution at time 𝑛 + 1 after applying the limiter reads

Ũ
𝑘,𝑛+1
𝑗 = 𝜃𝑗(U

𝑘,𝑛+1
𝑗 − ∐︀uℎ̃︀

(𝑛+1)
𝑗 ) + ∐︀uℎ̃︀

(𝑛+1)
𝑗 , 0 ≤ 𝑘 ≤ 𝑝, 𝑗 ∈ Z, (5.114)

where

∐︀uℎ̃︀
(𝑛+1)
𝑗 =

𝑝

∑
𝑘=0

𝜔𝑘
2

U𝑘
𝑗 (𝑡), 0 ≤ 𝑘 ≤ 𝑝, (5.115)

is the cell-averaged solution and 0 ≤ 𝜃𝑗 ≤ 1 is the limiter which is defined based on the
variable that needs limiting 𝜃𝑗 = min(𝜃𝜌𝑗 , 𝜃

𝜌𝑒
𝑗 , 𝜃

Γ
𝑗 ).

• Limiting the mixture density:

𝜌𝑘,𝑛+1𝑗 = 𝜃 𝜌𝑗 (𝜌
𝑘,𝑛+1
𝑗 − ∐︀𝜌ℎ̃︀

(𝑛+1)
𝑗 ) + ∐︀𝜌ℎ̃︀

(𝑛+1)
𝑗 , 0 ≤ 𝑘 ≤ 𝑝, 𝑗 ∈ Z, (5.116)

where

𝜃 𝜌𝑗 = min
⎛
⎜
⎝

∐︀𝜌ℎ̃︀
(𝑛+1)
𝑗 − 𝜖

∐︀𝜌ℎ̃︀
(𝑛+1)
𝑗 − 𝜌min

𝑗

,1
⎞
⎟
⎠
, 𝜌min

𝑗 = min
0≤𝑘≤𝑝

𝜌𝑘,𝑛+1𝑗 . (5.117)

• Limiting the mixture total internal energy:

⎛
⎜
⎜
⎝

𝜌
𝜌𝑢

𝜌𝐸

⎞
⎟
⎟
⎠

𝑘,𝑛+1

𝑗

= 𝜃 𝜌𝑒𝑗

⎛
⎜
⎜
⎜
⎜
⎝

𝜌𝑘,𝑛+1𝑗 − ∐︀𝜌ℎ̃︀
(𝑛+1)
𝑗

𝜌𝑢𝑘,𝑛+1𝑗 − ∐︀𝜌𝑢ℎ̃︀
(𝑛+1)
𝑗

𝜌𝐸𝑘,𝑛+1𝑗 − ∐︀𝜌𝐸ℎ̃︀
(𝑛+1)
𝑗

⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

∐︀𝜌ℎ̃︀
(𝑛+1)
𝑗

∐︀𝜌𝑢ℎ̃︀
(𝑛+1)
𝑗

∐︀𝜌𝐸ℎ̃︀
(𝑛+1)
𝑗

⎞
⎟
⎟
⎟
⎟
⎠

, 0 ≤ 𝑘 ≤ 𝑝, 𝑗 ∈ Z, (5.118)
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where

𝜃 𝜌𝑒𝑗 = min
⎛

⎝

𝜌𝑒ℎ(∐︀uℎ̃︀𝑛+1𝑗 ) − ∐︀p∞̃︀𝑛+1𝑗 + 𝜖

𝜌𝑒ℎ(∐︀uℎ̃︀𝑛+1𝑗 ) − 𝜌𝑒min
𝑗

,1
⎞

⎠
, 𝜌𝑒min

𝑗 = min
0≤𝑘≤𝑝

𝜌𝑒𝑘,𝑛+1𝑗 , (5.119)

and 𝜌𝑒ℎ(∐︀uℎ̃︀𝑛+1𝑗 ) = 𝜌𝐸ℎ(∐︀uℎ̃︀𝑛+1𝑗 ) −
(𝜌𝑢ℎ(∐︀uℎ̃︀𝑛+1𝑗 ))2

2𝜌(∐︀uℎ̃︀𝑛+1𝑗 ) , see [139].

• Limiting Γ:
Γ̃𝑘,𝑛+1𝑗 = 𝜃Γ𝑗 (Γ𝑘,𝑛+1𝑗 − ∐︀Γℎ̃︀

(𝑛+1)
𝑗 ) + ∐︀Γℎ̃︀

(𝑛+1)
𝑗 , (5.120)

where

𝜃 Γ
𝑗 = min

⎛
⎜
⎝

∐︀Γℎ̃︀
(𝑛+1)
𝑗 −𝑚Γ

∐︀Γℎ̃︀
(𝑛+1)
𝑗 − Γmin

𝑗

,
𝑀Γ − ∐︀Γℎ̃︀

(𝑛+1)
𝑗

Γmax
𝑗 − ∐︀Γℎ̃︀

(𝑛+1)
𝑗

,1
⎞
⎟
⎠
, (5.121)

and

Γmin
𝑗 = min

0≤𝑘≤𝑝
Γ𝑘,𝑛+1𝑗 , Γmax

𝑗 = max
0≤𝑘≤𝑝

Γ𝑘,𝑛+1𝑗 , 𝑚Γ = min
𝑖=1,2

1

𝛾𝑖 − 1
, 𝑀Γ = max

𝑖=1,2
1

𝛾𝑖 − 1
,

(5.122)

Note that in (5.117) and (5.119), 0 < 𝜖≪ 1 is a small parameter, which we set as 𝜖 = 10−8

in our numerical tests. The limiter (5.116) and (5.118) guarantees that 𝜌0≤𝑘≤𝑝,𝑛+1𝑗 > 0 and
𝜌𝑒0≤𝑘≤𝑝,𝑛+1𝑗 > 0, respectively. Recalling (5.8), it is understood that

min
𝑖=1,2

1

𝛾𝑖 − 1
≤ Γ ≤ max

𝑖=1,2
1

𝛾𝑖 − 1
, (5.123)

as the void fraction is assumed to satisfy 0 ≤ 𝛼𝑖 ≤ 1 and (5.4). Therefore, (5.120) imposes
the following maximum principle

𝑚Γ ≤ Γ̃0≤𝑘≤𝑝,𝑛+1
𝑗 ≤𝑀Γ, (5.124)

following (5.8), where the above inequalities also hold on Π hold for two species only.

5.7 Numerical tests

We, now, perform some numerical tests using the semi-discrete scheme (5.23) for the SG-
gamma model (5.1)-(5.2) to assess its qualities of contact preservation, high-order accuracy
and the nonlinear stability, as described in section 5.5. The numerical scheme was imple-
mented in the in-house CFD code Aghora at ONERA [112], and we subject it to numerical
tests which are borrowed from [31, 37, 38, 42, 80]. Note that, as part of our algorithm,
the numerical fluxes in the volume integral switches between contact preserving numerical
fluxes (5.36)-(5.37) and entropy conservative fluxes (5.44), based on values of the TCI func-
tion (5.49) relative to a threshold. We thus set the TCI threshold belongs in the range
(︀0.01,0.03⌋︀.

The numerical tests include Riemann problems on one spatial dimension, where we con-
sider a computational domain comprising of 100 elements. All numerical tests are performed
at fourth-order accuracy (𝑝 = 3) in space, while the time integration is performed using a
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three-stage third-order strong stability-preserving Runge-Kutta scheme by Shu and Osher
[121], where the cell-averaged solution is expected to remain positive under the CFL con-
dition (5.88). The a posteriori limiter, introduced in section 5.6, which further transfers
the positivity of the solution to nodal values is applied at the end of each stage. The col-
lection of numerical tests performed as part of this work comprise of both one-dimensional
Riemann problems and two dimensional test cases, where in the two-dimensional setting we
restrict to Cartesian meshes. However, the numerical scheme (5.23) can easily be extended
to unstructured meshes, for higher spatial dimensions, due to the tensor product of function
spaces and the quadrature rule, see [37, 86, 111].

The results for each numerical test consists of the profile of the physical quantities at
the final time along with a plot of the values of the TCI function at each cell. We also
show the regions in the computational domain where contract preserving fluxes and entropy
conservative fluxes were applied to compute the volume integral. This can be found in the
plot named flux indicator, associated to each test case. We plot a binary flux indicator
where a value of 1 indicates the regions where entropy conservative fluxes were applied and
0 for contact preserving fluxes within the volume integral.

5.7.1 Advection of density wave

We begin by validating the claim of high-order accuracy of the scheme (5.23) by advecting
a density wave in a uniform flow in a unit square domain Ωℎ = (︀0,1⌋︀

2 with periodic conditions.
The initial condition u0(𝑥) is set as

𝜌0(𝑥) = 1 +
1

2
sin(2𝜋𝑥), 𝑢0(𝑥) = 1, 𝑣0(𝑥) = 1, p0(𝑥) = 1,

along with a set of EOS parameters

Cv1 = 1.0, Cv2 = 1.0, 𝛾1 = 1.4, p∞1 = 2.0, 𝛾2 = 3.0, p∞2 = 5.0. (5.125)

The numerical test is performed separately using contact preserving fluxes and entropy
conservative fluxes in the volume integral, while HLLC fluxes are applied at the interfaces.
We compute the values of the error 𝑒ℎ = 𝜌ℎ−𝜌 under different norms at final time 𝑇𝑚𝑎𝑥 = 5.0,
see Tables 5.1 and 5.2, using different polynomial order and grid refinements, and it is
observed that the expected 𝑝 + 1 order of convergence is recovered by the present scheme.
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𝑝 ℎ ∏︁𝑒ℎ∏︁𝐿1(Ωℎ) 𝒪1 ∏︁𝑒ℎ∏︁𝐿2(Ωℎ) 𝒪2 ∏︁𝑒ℎ∏︁𝐿∞(Ωℎ) 𝒪∞

1

1/32 3.63E-01 - 4.01E-01 - 5.80E-01 -
1/64 1.22E-01 1.5743 1.35E-01 1.5668 1.93E-01 1.5899
1/128 3.19E-02 1.9352 3.54E-02 1.9351 5.02E-02 1.9399
1/256 8.02E-03 1.9898 8.91E-03 1.9895 1.26E-02 1.9925

2

1/32 1.02E-03 - 1.23E-03 - 2.14E-03 -
1/64 7.98E-05 3.67519 9.94E-05 3.6324 2.17E-04 3.2959
1/128 8.48E-06 3.2357 9.97E-06 3.3176 3.33E-05 2.7064
1/256 9.66E-07 3.1339 1.16E-06 3.1078 4.55E-06 2.8730

3

1/32 8.67E-06 - 1.21E-05 - 6.56E-05 -
1/64 5.29E-07 4.0339 7.56E-07 4.0013 4.19E-06 3.9690
1/128 3.25E-08 4.0238 4.75E-08 3.9901 2.67E-07 3.9717
1/256 1.97E-09 4.0466 3.05E-09 3.9619 1.73E-08 3.9510

Table 5.1: Test for high-order accuracy using contact preserving (cp) numerical fluxes in
the volume integral at final time 𝑇𝑚𝑎𝑥 = 5. The error on density 𝑒ℎ = 𝜌ℎ − 𝜌 is computed for
each polynomial order with mesh refinement along with the associated orders of convergence.

𝑝 ℎ ∏︁𝑒ℎ∏︁𝐿1(Ωℎ) 𝒪1 ∏︁𝑒ℎ∏︁𝐿2(Ωℎ) 𝒪2 ∏︁𝑒ℎ∏︁𝐿∞(Ωℎ) 𝒪∞

1

1/32 3.56E-01 - 3.94E-01 - 5.72E-01 -
1/64 1.20E-01 1.5674 1.34E-01 1.5587 2.29E-01 1.321
1/128 2.95E-02 2.0254 3.55E-02 1.9151 6.65E-02 1.7851
1/256 7.55E-03 1.9674 8.94E-03 1.9873 1.68E-02 1.9835

2

1/32 2.35E-03 - 2.87E-03 - 6.98E-03 -
1/64 2.05E-04 3.5199 2.71E-04 3.4058 7.28E-04 3.2618
1/128 1.79E-05 3.3516 2.24E-05 3.5987 6.57E-05 3.4689
1/256 1.50E-06 3.5791 1.87E-06 3.5814 7.02E-06 3.2269

3

1/32 9.74E-05 - 1.17E-04 - 3.10E-04 -
1/64 3.15E-06 4.9496 4.26E-06 4.7839 2.41E-05 3.6854
1/128 1.92E-07 4.0337 2.51E-07 4.0858 1.70E-06 3.8248
1/256 1.07E-08 4.1655 1.43E-08 4.1335 1.09E-07 3.9653

Table 5.2: Test for high-order accuracy using entropy conservative (ec) numerical fluxes in
the volume integral at final time 𝑇𝑚𝑎𝑥 = 5. The error on density 𝑒ℎ = 𝜌ℎ − 𝜌 is computed for
each polynomial order with mesh refinement along with the associated orders of convergence.

5.7.2 Advection of a material discontinuity

We perform this test to validate the contact preservation property of the present scheme.
The computational domain for this test is chosen to be Ωℎ = (︀−0.5,0.5⌋︀ and the Riemann
initial data is split at 𝑥 = 0 as

(𝛼1, 𝜌, 𝑢,p) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

(0.375,2.0,1.0,1.0), 𝑥 < 0.0,

(0.146342,1.0,1.0,1.0), 𝑥 > 0.0,
(5.126)



Numerical tests 98

with

Cv1 = 1.0, Cv2 = 2.0, 𝛾1 = 1.4, 𝛾2 = 1.5, p∞1 = 0.0, p∞2 = 0.0. (5.127)

The discontinuity in 𝜌 and Γ between the left and right states amounts to an isolated
contact discontinuity, see Figure 5-2. The results obtained at the final time 𝑇𝑚𝑎𝑥 = 2.0
show that the TCI function attains values close to machine accuracy, which aligns well with
the expectation, see the comments in section 5.3.3. The algorithm thus applies the contact
preserving numerical fluxes in the volume integral, by respecting the threshold, along with
HLLC fluxes at the interfaces, and together they maintain uniform velocity and pressure
profiles across the contact discontinuity. The results in Figure 5-2 shows that the interface
is well captured with minimal oscillations for the 𝜌 profile.

5.7.3 The Lax problem

The Lax problem is performed for pure phases, which results in a rarefaction waves,
a contact discontinuity and a shock in each phase. The computational domain is Ωℎ =

(︀−1.0,1.0⌋︀ and the Riemann initial data is split at 𝑥 = 0 as

(𝛼1, 𝜌, 𝑢,p) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

(0.5,0.445,0.698,3.528), 𝑥 < 0.0,

(0.5,0.5,0.0,0.571), 𝑥 > 0.0,
(5.128)

with

Cv1 = 1.0, Cv2 = 1.0, 𝛾1 = 1.4, 𝛾2 = 1.4, p∞1 = 0.0, p∞2 = 0.0. (5.129)

It is seen that the TCI function gains high values in a small neighbourhood around the
shock where the algorithm applies entropy conservative fluxes (5.44) in the volume integral
(3.56). The approximate solution, in Figure 5-3, is well captured in the regions of rarefaction
and shock, with oscillations of small amplitude appearing at the contact.

We believe that the oscillations at the contact are due to the initial discontinuity. Until
some initial time, the scheme fails to distinguish between shocks and contacts, especially
when the shock and contact are found in the same cell. The algorithm will thus apply
entropy conservative fluxes in the volume integral in such cells which will fail to preserve
uniform profiles across contacts. This can be shown through a manufactured example, where
we set the initial data in the Lax problem such that shocks do not occur. The results in
Figure 5-4 show that, in the absence of the shock, the approximate solution is well captured
at high-order accuracy without any oscillations at the contact.

5.7.4 Gas-gas shock-interface interaction problem

This is a classic shock-material interface interaction problem which was originally pro-
posed in [93]. Here a shock wave in Helium gas travels at Mach 8.96 and interacts with air.
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The computational domain Ωℎ = (︀−1.0,1.0⌋︀ and the initial conditions are as follows:

(𝛼1, 𝜌, 𝑢,p) =

)︀⌉︀⌉︀⌉︀⌉︀⌉︀
⌋︀
⌉︀⌉︀⌉︀⌉︀⌉︀]︀

(0.0,0.386,26.59,100.0), 𝑥 < −0.8,

(0.0,0.1,−0.5,1.0), −0.8 < 𝑥 < −0.2,

(1.0,1.0,−0.5,1.0), 𝑥 > −0.2,

(5.130)

with

Cv1 = 1.0, Cv2 = 2.5, 𝛾1 = 1.4, 𝛾2 = 1.6667, p∞1 = 0.0, p∞2 = 0.0. (5.131)

The solution, in Figure 5-5, at final time reveals two shocks, one travelling left and the
other travelling right, with an advected material interface in between. It is observed that the
shocks are well captured, with oscillations of small amplitude occurring near the material
interface. This behaviour is akin to the oscillation observed at the wake of the shock during
the Lax problem, see Figure 5-3.

5.7.5 Gas-water shock-interface interaction problem

This test case models an underwater explosion, where the initial condition consists of a
material interface that separates highly compressed air to the left and water at atmospheric
pressure on the right. The computational domain is Ωℎ = (︀−5.0,5.0⌋︀. The initial data is
given as

(𝛼1, 𝜌, 𝑢,p) =

)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

(1.0,1.241,0.0,2.753), 𝑥 < 0.0,

(0.0,0.991,0.0,3.059 × 10−4), 𝑥 > 0.0,
(5.132)

with

Cv1 = 1.2, Cv2 = 0.073037, 𝛾1 = 1.4, 𝛾2 = 5.5, p∞1 = 0.0, p∞2 = 1.505. (5.133)

The solution to the Riemann problem in Figure 5-6 shows a right travelling shock, a right
travelling contact wave, a right advected material interface and a left rarefaction wave. It is
observed that even though the shock is of high amplitude, the velocity and pressure profiles
across the contact wave bears little oscillations. The material interface is well captured as
can be seen through the plots of Γ and Π.

The TCI values oscillate and attain high values near the right travelling shock. The
algorithm correctly detects the shock and applies entropy conservative fluxes in the volume
integral. This can be seen in the plot for the flux indicator.

5.7.6 Advection of a Helium bubble in air

The advection of a spherical He bubble (represented as species 1) in air (species 2)
demonstrates that the numerical is capable of preserving contact discontinuities which are
not aligned with the mesh. Here we have demonstrated this property by considering two
spatial dimensions as the scheme can easily be extended to accommodate higher spatial
dimensions owing to the tensor product of function spaces and the quadrature rule.

The initial data for the Helium bubble and the air surrounding it is taken from the
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shock-bubble interaction problem presented in section 5.7.7, also refer [37, 83], where we set
the initial data to disregard the shock for the purpose of this test. Thus the computational
domains contains a single discrete gas inhomogeneity. The computational domain Ωℎ =

(︀0,6.5⌋︀ × (︀0,1.78⌋︀ is discretized using 1300 × 365 elements and the Helium bubble, of unit
diameter, is centered at 𝑥 = 3.5 and 𝑦 = 0.89. The EOS parameters are 𝛾1 = 1.648, 𝛾2 =

1.4,Cv1 = 6.0598 and Cv2 = 1.7857. Note that the initial data are made nondimensional
with the initial bubble diameter and the density, temperature and the sound speed of air.
In order to advect the bubble in air, we introduce a unit positive velocity for the bubble and
air and allow the bubble to move right from its initial position.

The Figure 5-7 show the advection of the bubble from 𝑡 = 0𝜇𝑠 to a final time of 𝑡 =
152.38𝜇𝑠. We observe that the material interface is captured sharply as the algorithm applies
contact preserving numerical fluxes in the volume integral, which preserves the velocity and
pressure profiles across the interface.

5.7.7 Shock in air interacts with a Helium bubble

We perform the standard shock bubble interaction problem with the present scheme,
which was originally introduced in [65] through physical experiments. However, since then,
this famed test case has been adopted to highlight the robustness and accuracy of numerical
schemes for multiphase and multicomponent flows, see [37, 60, 74, 80, 83, 107, 111] to name
a few.

The test involves a stationary Helium bubble which is suspended in air while a left moving
Mach 1.22 shock in air travels through the bubble and deforms it. The computational domain
Ωℎ = (︀0.0,6.5⌋︀ × (︀0,1.78⌋︀ is discretized into 1300 × 365 elements. The Helium bubble of unit
diameter is centered at 𝑥 = 3.5 and 𝑦 = 0.89 and the left travelling shock is initially located at
𝑥 = 4. The boundary conditions on the computational domain is set as periodic conditions
on the top and bottom boundaries, along with non-reflective conditions at the left and right
boundaries. While referring to the species in the immiscible mixture, we once again consider
the Helium bubble as species 1 and the air surrounding it as species 2. The EOS parameters
of the species are 𝛾1 = 1.648, 𝛾2 = 1.4,Cv1 = 6.0598 and Cv2 = 1.7857. The initial data are
made nondimensional with the initial bubble diameter and the density, temperature and the
sound speed of the pre-shock air.

The Figure 5-8 shows the deformation of the bubble at several physical times as the
left travelling shock passes through it. The plotted fields are those of the void fraction
of the Helium bubble, along with the total pressure, and the numerical Schlieren 𝜑 =

exp(⋃︀∇𝜌⋃︀⇑⋃︀∇𝜌⋃︀max). We observe that the scheme allows a sharp resolution of the bubble
interface for all physical times and is able to accurately capture the shock dynamics. The
bubble interface develops vortices after the shock has left the bubble due to Kelvin-Helmholtz
instability. We also highlight the regions in the computational domain where entropy con-
servative fluxes are applied in the volume integral and, for our choice of threshold of the TCI
function, the algorithm is able to detect the shock accurately and apply entropy conservative
fluxes in the volume integral along with HLLC fluxes at the interfaces. This allows us to
ensure nonlinear stability of the DGSEM scheme at the shock.

Through Figure 5-9, we show the space-time diagram for three characteristic points on
the interface of the bubble. Here we compare the results obtained with the present DGSEM
scheme to reference data from [83]. The deformation of the bubble shows complete agreement
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with the reference data and indicates that the smooth initial condition does not affect the
global deformation of the bubble.

5.7.8 Strong shock in air interacts with a Hydrogen bubble

We finally subject the scheme to the simulation of a strong shock (𝑀 = 2.0) in air
and its interaction with a Hydrogen bubble [14, 125]. The strong shock, compared to
section 5.7.7, results in a faster shock-bubble interaction. The computational domain Ωℎ =

(︀0,22.5⌋︀×(︀0,7.5⌋︀ is discretized into 450×300 elements, with the bubble centered at 𝑥 = 4 and
𝑦 = 0, and the right travelling shock located at 𝑥 = 7. The initial data is made nondimensional
with the pre-shock density, velocity and temperature of the air and the a length scale of 1mm.
The boundaries of the computational domain are defined using symmetry conditions for the
top and bottom boundaries, along with supersonic inflow condition at the left boundary and
nonreflecting conditions on the right boundary. The species in the mixture are designated
as 1 for the Hydrogen gas in the bubble and 2 for the surrounding air. The EOS parameters
of these species are 𝛾1 = 1.41, 𝛾2 = 1.353,Cv1 = 7.424 and Cv2 = 0.523.

The results obtained as part of Figure 5-10 show the deformation of the bubble as
the strong shock passes through it. The plotted field are those of the void fraction of
the Hydrogen bubble, the total pressure and the numerical Schlieren 𝜑 = exp(⋃︀∇𝜌⋃︀⇑⋃︀∇𝜌⋃︀max).
Here, we once again observe that the numerical scheme is able to resolve the bubble interface
well along with the shock. The oscillations at the interface are due to the Kelvin-Helmholtz
instability and they were also observed in [14]. The algorithm, under the current TCI
threshold, is able to the detect shock accurately and apply entropy conservative fluxes in the
volume integral at the shock while applying contact preserving numerical fluxes everywhere
else. As a result we were once again able to demonstrate the present scheme’s capability to
maintain sharp resolution of the interface while also resolving strong shocks.

5.8 Summary

In this work, we propose a high-order entropy stable semi-discrete numerical scheme for
the gamma model [122] that preserves uniform profiles of pressure and velocity across con-
tact and material discontinuities. The spatial discretization is performed using the DGSEM
framework [37, 108], where the design of the numerical fluxes for the volume integral and
those that are applied at the interfaces are considered separately. Following Theorem 3.5.1,
entropy stability for the DGSEM requires that entropy conservative fluxes [24] be applied in
the volume integral along with entropy stable fluxes at the cell interfaces, however through
this work we discovered that entropy conservative fluxes for the gamma model, which are
derived using entropy variables, fail to preserve uniform pressure and velocity profiles across
contact and material discontinuities. As a result, we design contact preserving numerical
fluxes for the gamma model that are applied in the volume integral when encountering
contact discontinuities or rarefaction waves. Conversely, contact preserving fluxes do not
conserve the discrete entropy within the cell, hence we apply entropy conservative fluxes in
the volume integral at shocks. The switching between entropy conservative and contact-
preserving fluxes in the volume integral is determined through the values obtained by a
pressure-based troubled-cell indicator (TCI) function [78, 126]. The algorithm receives a
user-defined threshold and applies entropy conservative numerical fluxes in the volume inte-
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gral for cells where the TCI function gains values that exceed the threshold, whereas contact
preserving fluxes are applied everywhere else.

We then propose HLL and HLLC approximate Riemann solvers for the gamma model
that can be applied at the cell-interfaces. Through this work we show that the HLL solver is
not consistent with the integral form of the model as it requires solving the exact Riemann
solution. Therefore, in our work we implement the HLLC solver and show that the HLLC
solver satisfies a discrete entropy inequality for the three-point scheme, preserves uniform
pressure and velocity profiles across contact discontinuities and we propose estimates for
the wave speeds that maintains the positivity of the solution. The property of positivity
of the solution is further transferred to nodal values by the use of a posteriori limiters
[37, 108, 139, 145] where we limit the density, the total internal energy and Γ. Furthermore,
to perform high-order integration in time we use strong-stability preserving Runge Kutta
schemes [121].

Numerical tests are performed both in one and two spatial dimensions that demonstrate
the capabilities of the scheme to maintain high-order accuracy, resolve shocks through en-
tropy stability and the ability to preserve material interfaces and contact discontinuities.
The numerical tests comprise of a variety of Riemann problems as well as two different
variants of the shock bubble interaction problem. The numerical scheme also reveal the ef-
fectiveness of the TCI function to accurately detects shocks and apply entropy conservative
numerical fluxes in the volume integral for cell containing the shock. Overall, the numerical
results show that the approximate solutions are well capture by the present numerical scheme
at high-order accuracy. There are small amplitude oscillations present around contact dis-
continuities which are linked to the limitations of the TCI based algorithm for switching
between the numerical fluxes. However, this also paves the path for the development of
more advanced switching strategy for the numerical fluxes.
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HLL wave configuration

HLLC wave configuration

Figure 5-1: The control volume [︀−ℎ2 ,
ℎ
2 ⌉︀ × (︀0,∆𝑡⌋︀ on the 𝑥 − 𝑡 plane, where 𝑠𝐿 and 𝑠𝑅 are

the slowest and fastest waves emanating from the cell interface.
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𝜌 𝑢 p

Γ TCI Flux indicator

Figure 5-2: The approximate solution for the advection of contact discontinuities at fourth-
order accuracy (𝑝 = 3) is compared to the exact solution on a computational domain com-
prising of 100 elements at 𝑇𝑚𝑎𝑥 = 0.2. The plot for the the TCI values indicate the values
obtained by the TCI function in the volume integral. A value of 0 (zero) on the flux indicator
implies that contact preserving numerical fluxes have been applied in the volume integral.



A contact preserving and entropy stable DGSEM for
multicomponent flows 105

𝜌 𝑢 p

TCI flux indicator

Figure 5-3: The approximate solution for the Lax problem at fourth-order accuracy (𝑝 = 3)
is compared to the exact solution on a computational domain comprising of 100 elements
at 𝑇𝑚𝑎𝑥 = 0.26. The plot for TCI function indicates the oscillation in the TCI values when
encountering a shock. The flux indicator shows the regions in the domain where entropy
conservative fluxes are applied.

𝜌 𝑢 p

Figure 5-4: The approximate solution for the Lax problem without the shock at fourth-
order accuracy 𝑝 = 3 is compared to the exact solution on a computational domain comprising
of 100 elements at 𝑇𝑚𝑎𝑥 = 0.26.
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𝜌 𝑢 p

Γ TCI Flux indicator

Figure 5-5: The approximate solution for gas-gas shock-interface interaction at fourth-
order accuracy (𝑝 = 3) is compared to the exact solution on a computational domain com-
prising of 100 elements at 𝑇𝑚𝑎𝑥 = 0.07. The plot for TCI values indicates the oscillation
in the TCI function when encountering a shock. The flux indicator is one when entropy
conservative fluxes are applied.
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𝜌 𝑢 p

Γ Π TCI

Flux indicator

Figure 5-6: The approximate solution for gas-water shock-interface interaction at fourth-
order accuracy (𝑝 = 3) is compared to the exact solution on a computational domain com-
prising of 100 elements at 𝑇𝑚𝑎𝑥 = 1.0. The plot for TCI values indicates the oscillation
in the TCI function when encountering a shock. The flux indicator is one when entropy
conservative fluxes are applied.



Summary 108

𝑡
=

0
𝜇
𝑠

𝛼1 in contours and p in lines Numerical Schlieren

𝑡
=

15
2
.3

8𝜇
𝑠

𝛼1 in contours and p in lines Numerical Schlieren 𝜑 =
exp(⋃︀∇𝜌⋃︀⇑⋃︀∇𝜌⋃︀max)

1D velocity profile 1D pressure profile

Figure 5-7: The advection of a Helium bubble in air through a unit distance at fourth
order accuracy (𝑝 = 3) in space on a mesh comprising of 1300 × 365 elements.
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Figure 5-8: The simulation of an interaction of a 𝑀 = 1.22 shock in air with a Helium
bubble at fourth order accuracy (𝑝 = 3) in space on a mesh comprising of 1300×365 elements.

Figure 5-9: Space-time diagram for three characteristic points on the interface of the He
bubble. The solid lines are the reference data from [83], while the symbols are the results
obtained with the present DGSEM scheme for polynomial of degree 𝑝 = 3 and on a mesh
comprising of 1300 × 356 elements.
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Figure 5-10: The interaction of a 𝑀 = 2.0 shock in air with a Hydrogen bubble at fourth
order accuracy (𝑝 = 3) in space on a mesh comprising of 450 × 300 elements.



Chapter 6
Conclusion and perspectives

6.1 Conclusion

The goal of this thesis is to focus on the modelling and the design of novel high-order
entropy stable schemes for compressible multiphase and multicomponent flows.

In the context of modelling of compressible multiphase flows, in Chapter 2, we focus
on flows involving a reactive mixture of gas and liquid. We recall that there is no general
consensus on the choice of models that accurately depicts the physics of such flows, and
several works have been proposed over the years for their modelling. To this end, we consider
the two-phase flow model proposed by Saurel and Abgrall [115] as a basis, and modify
the source terms so that the resulting model accounts for mass transfer, interfacial drag,
mechanical non-equilibrium and heat transfer under standard assumptions for reactive flows.
We show that including new source terms in a pre-existing model is far from trivial as it
affects the well-posedness of the system. Thus, we suggest corrective terms and propose a
hyperbolic two-phase flow model that is Galilean invariant and entropy dissipative under
complete disequilibria.

We, then, focus on the design of numerical schemes for hyperbolic multiphase and mul-
ticomponent models in nonconservative form. In Chapter 3 we briefly recall the notion of
weak solutions for nonconservative systems and introduce the DGSEM framework in one
and multiple space dimensions. Then, we describe a semi-discrete DG scheme for general
nonconservative systems, where we modify the volume integral over cell elements and re-
place the physical fluxes with two-point entropy conservative fluxes while at the interface
we apply entropy stable fluxes. The DGSEM satisfies the SBP-SAT property, and we use
it to prove that our modifications lead to a semi-discrete scheme that is both high-order
accurate and satisfies a semi-discrete entropy inequality. High-order integration in time
is performed using strong-stability preserving Runge-Kutta (SSP-RK) scheme that is also
described in this chapter. The SSP-RK are a convex combination of explicit first-order
schemes in time. We utilize this property in our discretization and impose restrictions on
the numerical parameters to prove that the cell-averaged solution is positive.

In Chapter 4, we discretize the homogeneous Baer-Nunziato model [7] using the semi-
discrete DGSEM from Chapter 3. We derive entropy conservative and entropy stable fluxes
for the Baer-Nunziato model that satisfy the requirements for high-order accuracy and en-
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tropy stability of the DG scheme. The numerical fluxes are also shown to preserve the kinetic
energy at the discrete level. We show that our numerical scheme guarantees positivity of
the cell-averaged void fraction and partial densities by imposing conditions on the time
step and on the numerical parameters. The positivity of the cell-averaged solutions is then
transferred to the nodal values through the use of a posteriori limiters. We demonstrate
the properties of the scheme by performing numerous tests, involving both one-dimensional
Riemann problems and a two-dimensional shock-bubble interaction problem.

We then discretize the gamma-based multicomponent model propose by Shyue [122], with
the aim to propose a high-order entropy stable DG scheme for multicomponent flows that
also allows for sharp resolution of the material interfaces. The DGSEM requires replacing
the physical fluxes in the volume integral with entropy conservative fluxes, as shown in
Theorem 3.5.1. However, the gamma-model does not admit a mathematical entropy function
that is convex for the entire state vector, instead convexity of the entropy function can only
be claimed for pure phases. To this purpose, we design entropy conservative fluxes for
pure phases, and, in order to preserve uniform pressure and velocity profiles across contact
and material discontinuities, we design contacting-preserving fluxes. It must be noted that
the design of a single numerical flux that exhibits the qualities of entropy conservation
and preservation of contacts is difficult, as a result our algorithm selects between entropy
conservative numerical fluxes and contact-preserving fluxes based on the values generated
from a pressure-based troubled-cell indicator function.

The semi-discrete scheme for the gamma-model involves applying a HLLC solver at the
interfaces of the cell. We show that a three-point scheme with this solver satisfies a discrete
entropy inequality, preserves uniform profiles across contact discontinuities and preserves
positivity of the density, the total internal energy and the adiabatic exponent of the mixture.
The positivity is further enforced at nodal values through the use of a posteriori limiters.

In this work, we demonstrate the capabilities of our numerical scheme by performing
several numerical experiments in one and two space dimensions. For tests in one space
dimension, we include Riemann problems that involve strong shocks, vanishing phases and
sharp resolution of material interfaces, while at two space dimensions we simulate the inter-
action of a shock with a Helium bubble in space[107].

6.2 Perspectives

The research conducted in the course of this thesis creates a foundation for further
development in the modelling of compressible multiphase flows and the design of high-order
entropy stable numerical schemes for numerical approximation of these flows. Here we briefly
describe the planned extension of the present work.

The non-equilibrium model proposed in Chapter 2 contains stiff relaxation source terms
and it is of interest to derive an equilibrium model under instantaneous relaxation. To this
end, a small parameter 0 < 𝜀≪ 1 can be introduced that quantifies the different relaxation
time scales for the source terms when perturbed close to an equilibrium. The source terms
in (2.38) can then be scaled with respect to 𝜀 as

Θ𝜀
(u) =

Θ(u)
𝜀3

, Λ𝜀(u) =
Λ(u)
𝜀2

, 𝒦
𝜀
(u) =

𝒦(u)
𝜀

.
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The above choice of scaling for the coefficients of the source terms lead to a cascading
relaxation towards equilibrium, where the pressure relaxes the fastest followed by the relax-
ation in velocity and then in temperature. Such cascading relaxation behaviour is attributed
to physical considerations and is classical in the context of reactive systems, see section 2.2.
Note that the coefficient for mass transferℳ is not scaled with respect to 𝜀, as one can derive
a homogeneous relaxation model [13], from the present model, at the limit of instantaneous
relaxation. Here, an important open question arises in the form of the well-posedness of the
relaxation process to the equilibrium.

In order to prove that the relaxation is stable, one needs show that the eigenvalues of the
equilibrium model satisfy the subcharacteristic condition [140]. Furthermore, equilibrium
state should minimize the convex entropy function and constitutes an analogue of the Gibbs
lemma from kinetic theory, while the entropy of the spatially homogeneous (perturbed)
disequilibrium system must be shown to decrease in time as 𝜀 ↓ 0 and reaches a unique
minimum in the sense of Lyapunov. Thus proving an analogue of the H-theorem.

In Chapters 4 and 5, it was observed that the numerical scheme is prone to spurious
oscillations in the neighbourhood of discontinuities, which may be attributed to some of
the drawbacks of the present approach, such as the scheme is entropy stable only at the
semi-discrete level and the entropy stability holds only for cell-averaged quantities, and only
for one convex entropy function. The stabilization of the numerical schemes is introduced
only through the numerical fluxes at the interface that do not stabilize internal degrees of
freedom. Furthermore, positivity of the solution is not guaranteed in the whole element
with the Lagrange interpolation polynomials, even if the nodal values are positive. One
possible way to alleviate these issues would be to consider a fully discrete scheme under
the DGSEM framework and include entropy diminishing projections which was introduced
in [18] for scalar conservation laws and in [32] for system of conservation laws using the
MUSCL scheme. An important result in this aspect would be the dissipation of all convex
entropies for the system. In [18, 32], these projections are used within a splitting procedure
to re-project the solution in the function space after an evolution step. One possible way
to apply these projections in the context of the DGSEM would be to introduce a posteriori
nonlinear limiters to the solution in contrast to the limiters used in the present work. Another
possibility to improve stability would be to extend the introduction of shock capture and
artificial dissipation terms, as done in [70], to the DGSEM setting by considering a space-
time DGSEM formulation.

In Chapter 5, we show that entropy consistency requires wave speed estimates that bound
the exact Riemann solution, which is necessary for consistency of the HLLC solver. However,
if the EOS differs in the left and right states, due to different species compositions, estimation
of maximum wave speeds may require the use of time-consuming Newton-Raphson iterations.
One possibility would be to use the energy relaxation technique introduced in [33] for the
approximation of the monocomponent compressible Euler equations with a general EOS.
In this method, one considers a decomposition of the internal energy including the energy
for a polytropic gas thus relaxing the general EOS. The method then allows the design of
numerical schemes by using classical numerical fluxes for polytropic gases. This method
has been extended to the compressible multispecies Euler equations in conservative form
in [98] and it would be interesting to check if this approach can be extended also to the
nonconservative mutlicomponent model by Shyue [122]. Works in [43, 109] tend to highlight
some difficulties with this approach in the case of fluid mixtures.



Chapter 7
Conclusion générale

L’objectif de cette thèse porte sur la modélisation des écoulements compressibles multi-
phases et multicomposants, et de concevoir de nouveaux schémas d’ordre élevé qui dissipe
l’entropie mathématique.

Dans le contexte de la modélisation des écoulements multi-phasiques compressibles, nous
nous concentrons sur les écoulements impliquant un mélange réactif de gaz et de liquide.
Nous rappelons qu’il n’y a pas de consensus général sur le choix des modèles qui décrivent
avec précision la physique de tels écoulements, et plusieurs travaux ont été présentés au cours
des années en ce sens. Dans ce but, nous considérons le modèle d’écoulement diphasique
proposé par Saurel et Abgrall [115], et nous modifions les termes sources afin que le modèle
résultant tienne compte du transfert de masse, de la traînée interfaciale, du non-équilibre
mécanique et du transfert de chaleur sous des hypothèses standards pour les écoulements
réactifs. Nous montrons que l’ajout de nouveaux termes sources dans un modèle préexistant
est loin d’être trivial car cela affecte le caractère bien posé du système. Nous suggérons
donc des termes correctifs et proposons un modèle d’écoulement diphasique hyperbolique
qui est invariant par transformations galiléennes et dissipe d’entropie en cas de déséquilibres
complets.

Nous nous concentrons ensuite sur la conception de schémas numériques pour les mod-
èles hyperboliques multi-phasique et multi-composants sous forme non conservative. Dans
Chapter 3 nous rappelons brièvement la notion de solutions faibles pour les systèmes non-
conservatifs et introduisons le cadre DGSEM en une et plusieurs dimensions d’espace. Nous
décrivons ici un schéma DG semi-discret pour les systèmes non-conservatifs généraux, où
nous modifions l’intégrale de volume sur les éléments de la cellule et remplaçons les flux
physiques par des flux conservant l’entropie à deux points tandis qu’à l’interface nous ap-
pliquons des flux dissipant l’entropie. Le schéma DGSEM se base sur des opérateurs sat-
isfaisant les propriétés SBP-SAT, et nous les utilisons pour prouver que nos modifications
conduisent à un schéma semi-discret qui est à la fois précis à l’ordre élevé et satisfait une
inégalité d’entropie semi-discrète. L’intégration temporelle d’ordre élevé est réalisée à l’aide
d’un schéma de Runge-Kutta préservant la stabilité (SSP-RK) qui est également décrit dans
ce chapitre. Les schémas SSP-RK sont une combinaison convexe de schémas explicites au
premier ordre en temps. Nous utilisons cette propriété dans notre discrétisation et imposons
des restrictions sur les paramètres numériques et le pas de temps pour prouver que la solution
moyenne dans la cellule est positive.
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Dans l’article Chapter 4, nous discrétisons le modèle homogène de Baer-Nunziato [7] en
utilisant la méthode DGSEM de Chapter 3. Nous dérivons des flux conservant et dissipant
l’entropie physique pour le modèle de Baer-Nunziato qui satisfont aux exigences de précision
d’ordre élevé et de stabilité en entropie du schéma DG. Nous montrons également que les
flux numériques préservent l’énergie cinétique au niveau discret. Nous montrons que notre
schéma numérique garantit la positivité de la fraction volumique et des densités moyennes
dans la cellule en imposant des conditions sur le pas de temps. La positivité des solutions
moyennes de la cellule est ensuite transférée aux valeurs nodales par l’utilisation de limiteurs
a posteriori. Nous illustrons les propriétés du schéma en effectuant de nombreux cas tests
impliquant à la fois des problèmes de Riemann unidimensionnels et un problème d’interaction
choc-bulle.

Nous discrétisons ensuite le modèle multi-composant proposé par Shyue [122], dans le
but de proposer un schéma DG d’ordre élevé qui dissipe l’entropie pour les écoulements
multi-composants qui permet également une résolution fine de l’interface matérielle. Le
DGSEM nécessite de remplacer les flux physiques dans l’intégrale de volume par des flux
conservant l’entropie, comme le montre le Theorem 3.5.1. Cependant, le modèle gamma
n’admet une fonction d’entropie mathématique n’est convexe que pour les phases pures.
À cette fin, nous concevons des flux conservant l’entropie pour les phases pures. Afin de
préserver des profils de pression et de vitesse uniformes à travers les interfaces matérielles,
nous concevons des flux préservant ces interfaces matérielles. Il faut noter qu’il est difficile
de trouver un flux numérique unique qui présente les qualités de conservation de l’entropie
et de préservation des contacts. Par conséquent, notre algorithme sélectionne entre les flux
numériques conservateurs de l’entropie et les flux préservant les contacts dans l’intégrale de
volume en se basant sur les valeurs générées par un senseur de chocs basé sur la pression.

À l’interface du schéma semi-discret pour le modèle gamma, nous appliquons un solveur
HLLC. Nous montrons qu’un schéma à trois points basé sur ce solveur satisfait à une inégalité
d’entropie discrète, préserve des profils uniformes à travers les discontinuités de contact et
préserve la positivité de la densité, de l’énergie interne totale et de l’exposant adiabatique
du mélange. La positivité est renforcée aux valeurs nodales par l’utilisation de limiteurs a
posteriori.

Nous illustrons les propriétés de notre schéma numérique en réalisant plusieurs expéri-
ences numériques en une et deux dimensions spatiales. Pour les tests en une dimension,
nous incluons des problèmes de Riemann qui impliquent des chocs forts, des phases évanes-
centes et des interfaces matérielles, tandis qu’en deux dimensions d’espace, nous simulons
l’interaction d’un choc avec une bulle d’Hélium suspendue dans l’air[107].
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Appendices

A.1 The semi-discrete DGSEM for the Baer-Nunziato
model

Here we recall the semi-discrete scheme (3.54)
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and to which we apply the numerical fluxes from Propositions 4.3.1 and 4.2) at each DOF
𝑘 of cell 𝑗 at time 𝑛:

𝜔𝑘ℎ

2

𝑑

𝑑𝑡
𝛼𝑘,𝑛1,𝑗 +𝜔𝑘

𝑝

∑
𝑙=0

uI
𝑘,𝑛
𝑗 𝛼𝑙,𝑛1,𝑗𝐷𝑘𝑙+𝛿𝑘𝑝

⎛

⎝
(uI

𝑝,𝑛
𝑗 − 𝛽𝑠𝑗+1⇑2)

J𝛼1K𝑗+1⇑2
2

⎞

⎠
+𝛿𝑘0

⎛

⎝
(uI

0,𝑛
𝑗 + 𝛽𝑠𝑗−1⇑2)

J𝛼1K𝑗−1⇑2
2

⎞

⎠
= 0,

𝜔𝑘ℎ

2

𝑑

𝑑𝑡
(𝛼𝑖𝜌𝑖)

𝑘,𝑛
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0

2ℎ𝜌𝑖(U
𝑘,𝑛
𝑗 ,U𝑙,𝑛

𝑗 )𝐷𝑘𝑙

+ 𝛿𝑘𝑝
⎛
⎜
⎝
ℎ𝜌𝑖,𝑗+1⇑2 − 𝛽𝑠𝑗+1⇑2

J𝛼𝑖K𝑗+1⇑2
2

ℎ̃𝜌𝑖,𝑗+1⇑2 − (𝛼𝑖𝜌𝑖𝑢𝑖)
𝑝,𝑛
𝑗 −

𝜖𝜈𝑗+1⇑2

2
max (𝜌A(u

𝑝,𝑛
𝑗 ), 𝜌A(u

0,𝑛
𝑗+1))J𝜌𝑖K𝑗+1⇑2

⎞
⎟
⎠

+ 𝛿𝑘0
⎛
⎜
⎝
𝛽𝑠𝑗−1⇑2

J𝛼𝑖K𝑗−1⇑2
2

ℎ̃𝜌𝑖,𝑗−1⇑2 − ℎ𝜌𝑖,𝑗−1⇑2 + (𝛼𝑖𝜌𝑖𝑢𝑖)
0,𝑛
𝑗 +

𝜖𝜈𝑗−1⇑2

2
max (𝜌A(u

0,𝑛
𝑗−1), 𝜌A(u

0,𝑛
𝑗 ))J𝜌𝑖K𝑗−1⇑2

⎞
⎟
⎠

= 0, 𝑖 = 1,2,

𝜔𝑘ℎ

2

𝑑

𝑑𝑡
(𝛼𝑖𝜌𝑖𝑢𝑖)

𝑘,𝑛
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0

(2ℎ𝜌𝑢𝑖(U
𝑘,𝑛
𝑗 ,U𝑙,𝑛

𝑗 ) − pI
𝑘,𝑛
𝑗 𝛼𝑙,𝑛𝑗 )𝐷𝑘𝑙
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+ 𝛿𝑘𝑝
⎛
⎜
⎝
ℎ𝜌𝑢𝑖,𝑗+1⇑2 − (𝛽𝑠𝑗+1⇑2 ℎ̃𝜌𝑢𝑖,𝑗+1⇑2 + pI

𝑝,𝑛
𝑗 )

J𝛼𝑖K𝑗+1⇑2
2

− 𝛼𝑝,𝑛𝑖,𝑗 (𝜌𝑖𝑢𝑖 + p𝑖)
𝑝,𝑛
𝑗

−
𝜖𝜈𝑗+1⇑2

2
max (𝜌A(u

𝑝,𝑛
𝑗 ), 𝜌A(u

0,𝑛
𝑗+1))J𝜌𝑖𝑢𝑖K𝑗+1⇑2

⎞
⎟
⎠

+ 𝛿𝑘0
⎛
⎜
⎝
(𝛽𝑠𝑗−1⇑2 ℎ̃𝜌𝑢𝑖,𝑗−1⇑2 − pI

0,𝑛
𝑗 )

J𝛼𝑖K𝑗−1⇑2
2

− ℎ𝜌𝑢𝑖,𝑗−1⇑2 + 𝛼
0,𝑛
𝑖,𝑗 (𝜌𝑖𝑢𝑖 + p𝑖)

0,𝑛
𝑗

+
𝜖𝜈𝑗−1⇑2

2
max (𝜌A(u

0,𝑛
𝑗−1), 𝜌A(u

𝑝,𝑛
𝑗 ))J𝜌𝑖𝑢𝑖K𝑗−1⇑2

⎞
⎟
⎠
= 0, 𝑖 = 1,2,

𝜔𝑘ℎ

2

𝑑

𝑑𝑡
(𝛼𝑖𝜌𝑖𝐸𝑖)

𝑘,𝑛
𝑗 + 𝜔𝑘

𝑝

∑
𝑙=0

(2ℎ𝜌𝐸𝑖(U
𝑘,𝑛
𝑗 ,U𝑙,𝑛

𝑗 ) − pI
𝑘,𝑛
𝑗 uI

𝑘,𝑛
𝑗 𝛼𝑙,𝑛𝑖,𝑗 )𝐷𝑘𝑙

+ 𝛿𝑘𝑝
⎛
⎜
⎝
ℎ𝜌𝐸𝑖,𝑗+1⇑2 − (𝛽𝑠𝑗+1⇑2 ℎ̃𝜌𝐸𝑖,𝑗+1⇑2 + pI

𝑝,𝑛
𝑗 uI

𝑝,𝑛
𝑗 )

J𝛼𝑖K𝑗+1⇑2
2

− 𝛼𝑝,𝑛𝑖,𝑗 𝑢
𝑝,𝑛
𝑖,𝑗 (𝜌𝑖𝐸𝑖 + p𝑖)

𝑝,𝑛
𝑗

−
𝜖𝜈𝑗+1⇑2

2
max (𝜌A(u

𝑝,𝑛
𝑗 ), 𝜌A(u

0,𝑛
𝑗+1))

⎛
⎜
⎝
(

Cv𝑖

𝜃𝑖,𝑗+1⇑2
+
𝑢𝑝,𝑛𝑖,𝑗 𝑢

0,𝑛
𝑖,𝑗+1

2
)J𝜌𝑖K𝑗−1⇑2 + 𝜌𝑖,𝑗+1⇑2J𝐸𝑖K𝑗+1⇑2

⎞
⎟
⎠

⎞
⎟
⎠

+ 𝛿𝑘0
⎛
⎜
⎝
(𝛽𝑠𝑗−1⇑2 ℎ̃𝜌𝐸𝑖,𝑗−1⇑2 − pI

0,𝑛
𝑗 uI

0,𝑛
𝑗 )

J𝛼𝑖K𝑗−1⇑2
2

− ℎ𝜌𝐸𝑖,𝑗−1⇑2 + 𝛼
0,𝑛
𝑖,𝑗 𝑢

0,𝑛
𝑖,𝑗 (𝜌𝑖𝐸𝑖 + p𝑖)

0,𝑛
𝑗

+
𝜖𝜈𝑗−1⇑2

2
max (𝜌A(u

0,𝑛
𝑗−1), 𝜌A(u

𝑝,𝑛
𝑗 ))

⎛
⎜
⎝
(

Cv𝑖

𝜃𝑖,𝑗−1⇑2
+
𝑢𝑝,𝑛𝑖,𝑗−1𝑢

0,𝑛
𝑖,𝑗

2
)J𝜌𝑖K𝑗−1⇑2 + 𝜌𝑖,𝑗−1⇑2J𝐸𝑖K𝑗−1⇑2

⎞
⎟
⎠

⎞
⎟
⎠

= 0, 𝑖 = 1,2,

where 𝜖𝜈𝑖,𝑗±1⇑2 ⩾ 0, 𝜌A(u) = max𝑖=1,2(⋃︀𝑢𝑖⋃︀ + 𝑐𝑖), 𝛽𝑠𝑗±1⇑2 is defined is (4.31), while the numerical
fluxes (ℎ𝜌𝑖 , ℎ𝜌𝑢𝑖 , ℎ𝜌𝐸𝑖) and (ℎ̃𝜌𝑖 , ℎ̃𝜌𝑢𝑖 , ℎ̃𝜌𝐸𝑖) are defined from (4.18).

A.2 Entropy conservative and entropy stable fluxes in
multiple space dimensions

In multidimensional space, for solutions belonging to the phase space

ΩBNM = {u ∈ R5+2𝑑
∶ 0 < 𝛼𝑖 < 1, 𝜌𝑖 > 0, v𝑖 ∈ R𝑑, 𝜌𝑖𝑒𝑖 > p∞,𝑖, 𝑖 = 1,2},

the entropy conservative fluxes (3.47) are defined as follows:

D∓
𝑒𝑐(u

−,u+,n) = ±h(u−,u+,n) ∓ f(u∓) ⋅ n + d∓(u−,u+,n),
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for the system (4.37). They are assumed to be consistent, h(u,u,n) = f(u)⋅n and d∓(u,u,n) =
0, and are defined as follows:

h(u−,u+,n) ∶ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
𝛼𝑖𝜌𝑖v𝑖 ⋅ n

𝛼𝑖
⎛

⎝
𝜌𝑖(v𝑖 ⋅ n)v𝑖 +

p𝑖𝜃𝑖

𝜃𝑖
n
⎞

⎠

𝛼𝑖
⎛

⎝
𝜌𝑖 (

Cv𝑖

𝜃𝑖
+

v−𝑖 ⋅ v
+
𝑖

2
) +

p𝑖𝜃𝑖
𝜃𝑖

+ p∞,𝑖
⎞

⎠
v𝑖 ⋅ n

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

− 𝛽𝑠
J𝛼𝑖K

2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
𝜌𝑖
𝜌𝑖v𝑖

𝜌𝑖 (
Cv𝑖

𝜃𝑖
+

v−𝑖 ⋅ v
+
𝑖

2
) + p∞,𝑖

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

d±(u−,u+,n) ∶=
J𝛼𝑖K

2

⎛
⎜
⎜
⎜
⎜
⎝

v±I ⋅ n
0

−pI
±n

−pI
±v±I ⋅ n

⎞
⎟
⎟
⎟
⎟
⎠

, 𝑖 ∈ {1,2}.

The entropy stable fluxes read

D±
(u−,u+,n) = D±

𝑒𝑐(u
−,u+,n) ±D𝜈(u−,u+,n),

with

D𝜈(u−,u+,n) =
𝜖𝜈
2

max (𝜌A(u−,n), 𝜌A(u+,n))

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
J𝜌𝑖K

J𝜌𝑖v𝑖K

(
Cv𝑖

𝜃𝑖
+

v−𝑖 ⋅ v
+
𝑖

2
) J𝜌𝑖K + 𝜌𝑖J𝐸𝑖K

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑖 ∈ {1,2},

where 𝜖𝜈 ⩾ 0 and 𝜌A(u,n) = max𝑖=1,2(⋃︀v𝑖 ⋅ n⋃︀ + 𝑐𝑖).

A.3 Condition for positivity of the cell-averaged so-
lution in multiple space dimensions

The condition for positivity of the solution is based on the extension of Theorem 4.4.2.
We introduce 𝜆𝑥 = Δ𝑡

ℎ𝑥
and 𝜆𝑦 = Δ𝑡

ℎ𝑦
with ∆𝑡 > 0 the time step. Let 𝜌0⩽𝑘,𝑙⩽𝑝,𝑛𝑖,𝑗 > 0,1 >

𝛼0⩽𝑘,𝑙⩽𝑝,𝑛
𝑖,𝑗 > 0, then the cell-averaged partial densities and void fraction are positive, at time
𝑡(𝑛+1), under the following CFL condition:
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(𝜆𝑥 + 𝜆𝑦)max
𝜅∈Ωℎ

max
u=u1,u2

max
0⩽𝑚⩽𝑝

⎛
⎜
⎝

max
0⩽𝑘⩽𝑝

1

𝜔𝑘

⎛
⎜
⎝

𝑝

∑
𝑙=0
𝜔𝑙𝐷𝑙𝑘uI

𝑙𝑚
𝑖,𝑗 + 𝛿𝑘𝑝

𝛽𝑚𝑠𝑖+1⇑2 − uI
𝑝𝑚
𝑖,𝑗

2
+ 𝛿𝑘0

𝛽𝑚𝑠𝑖−1⇑2 + uI
0𝑚
𝑖,𝑗

2

⎞
⎟
⎠
,

max
0⩽𝑙⩽𝑝

1

𝜔𝑙

⎛
⎜
⎝

𝑝

∑
𝑘=0

𝜔𝑘𝐷𝑘𝑙vI
𝑚𝑘
𝑖,𝑗 + 𝛿𝑙𝑝

𝛽𝑚𝑠𝑗+1⇑2 − vI
𝑚𝑝
𝑖,𝑗

2
+ 𝛿𝑙0

𝛽𝑚𝑠𝑗−1⇑2 + vI
𝑚0
𝑖,𝑗

2

⎞
⎟
⎠
,

1

𝜔0
(
(𝛽𝑚𝑠𝑖−1⇑2 − 𝑢

𝑚
𝑖−1⇑2)𝜌

𝑚
𝑖−1⇑2

2𝜌0𝑚𝑖,𝑗
+
𝜖𝑚𝜈𝑖−1⇑2

𝛼0𝑚
𝑖,𝑗

),
1

𝜔𝑝
(
(𝛽𝑚𝑠𝑖+1⇑2 + 𝑢

𝑚
𝑖+1⇑2)𝜌

𝑚
𝑖+1⇑2

2𝜌𝑝𝑚𝑖,𝑗
+
𝜖𝑚𝜈𝑖+1⇑2

𝛼𝑝𝑚𝑖,𝑗
),

1

𝜔0
(
(𝛽𝑚𝑠𝑗−1⇑2 − 𝑣

𝑚
𝑗−1⇑2)𝜌

𝑚
𝑗−1⇑2

2𝜌𝑚0
𝑖,𝑗

+
𝜖𝑚𝜈𝑗−1⇑2

𝛼𝑚0
𝑖,𝑗

),
1

𝜔𝑝
(
(𝛽𝑚𝑠𝑗+1⇑2 + 𝑣

𝑚
𝑗+1⇑2)𝜌

𝑚
𝑗+1⇑2

2𝜌𝑚𝑝𝑖,𝑗
+
𝜖𝑚𝜈𝑗+1⇑2

𝛼𝑚𝑝𝑖,𝑗
)
⎞
⎟
⎠

(𝑛)

<
1

2
,

where 𝑢, 𝑣, and 𝜌 refer either to phase u1, or to u2 and

𝛽𝑚𝑠𝑖+1⇑2 = max
𝑖𝑝=1,2

(⋃︀𝑢𝑝𝑚,𝑛𝑖𝑝,𝑖,𝑗
⋃︀, ⋃︀𝑢0𝑚,𝑛𝑖𝑝,𝑖+1,𝑗 ⋃︀), 𝛽𝑚𝑠𝑗+1⇑2 = max

𝑖𝑝=1,2
(⋃︀𝑣𝑚𝑝,𝑛𝑖𝑝,𝑖,𝑗

⋃︀, ⋃︀𝑣𝑚0,𝑛
𝑖𝑝,𝑖,𝑗+1⋃︀), 0 ⩽𝑚 ⩽ 𝑝,

𝑢𝑚𝑖+1⇑2 =
𝑢𝑝𝑚,𝑛
𝑖,𝑗 +𝑢0𝑚,𝑛

𝑖+1,𝑗
2 , 𝑣𝑚𝑗+1⇑2 =

𝑣𝑚𝑝,𝑛
𝑖,𝑗 +𝑣𝑚0,𝑛

𝑖+1,𝑗
2 , 0 ⩽𝑚 ⩽ 𝑝,

𝜌𝑚𝑖+1⇑2 =
𝜌0𝑚,𝑛
𝑖+1,𝑗 −𝜌𝑝𝑚,𝑛

𝑖,𝑗

ln𝜌0𝑚,𝑛
𝑖+1,𝑗 −ln𝜌𝑝𝑚,𝑛

𝑖,𝑗

, 𝜌𝑚𝑗+1⇑2 =
𝜌𝑚0,𝑛
𝑖,𝑗+1−𝜌𝑚𝑝,𝑛

𝑖,𝑗

ln𝜌𝑚0,𝑛
𝑖,𝑗+1−ln𝜌𝑚𝑝,𝑛

𝑖,𝑗

, 0 ⩽𝑚 ⩽ 𝑝.
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Titre : Modélisation et simulation numérique d’écoulements multi-composants compressibles

Mots clés : Écoulements multiphasiques compressibles, écoulement multi-componsants, EDP hyperbolique
sous forme non-conservative, Galerkin discontinu

Résumé : Cette thèse a deux objectifs principaux :
la modélisation des écoulements compressibles mul-
tiphasiques et multi-composants, et la conception de
nouveaux schémas numériques pour leur simulation
d’ordre élevé.Dans la première partie de ce travail,
nous proposons un nouveau modèle hyperbolique
de type Baer-Nunziato pour les écoulements réactifs
gaz-liquide en non-équilibre, qui présente un trans-
fert de masse, une résistance interfaciale, un non-
équilibre mécanique et un transfert thermique entre
les phases. Le modèle est fermé en utilisant des
lois de fermeture générales pour l’interface matérielle.
Nous montrons que notre modèle est invariant par
transformation galiléenne et dissipe l’entropie et qu’il
maintient ces propriétés à l’état de non-équilibre.
En ce qui concerne la conception de nouveaux
schémas pour les écoulements compressibles, nous
nous concentrons sur les modèles hyperboliques
d’écoulement multiphasiques et multi-composants
sous forme non-conservative. Nous choisissons
comme cadre de discrétisation la méthode des
éléments spectraux de Galerkin discontinus (DG-
SEM), basée sur la collocation des points de qua-

drature et d’interpolation. La méthode DGSEM uti-
lise des opérateurs de sommation par parties (SBP)
dans la quadrature numérique pour approcher les
intégrales sur les éléments de discrétisation. Dans
notre cas, nous modifions l’intégrale sur les éléments
de la cellule en remplaçant les flux physiques par
des flux aux fluctuations conservant l’entropie tout
en appliquant des flux dissipant l’entropie aux in-
terfaces du maillage. Cela nous permet d’établir un
schéma semi-discret qui est précis à l’ordre élevé et
qui satisfait à une inégalité d’entropie semi-discrète.
Pour l’intégration temporelle d’ordre élevé, nous nous
appuyons sur des schémas explicites de Runge-
Kutta préservant la stabilité et conservant les pro-
priétés des schémas d’intégration temporelle au pre-
mier ordre.Dans ce travail, le DGSEM semi-discret
est appliqué au modèle homogène de Baer-Nunziato
et au modèle multi-composant de Shyue (1998). On
montre que les schémas numériques maintiennent la
positivité de la solution moyenne de la cellule, qui est
renforcée aux valeurs nodales en utilisant des limi-
teurs a posteriori.

Title : Modelling and numerical simulation of compressible multicomponent flows
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Abstract : This thesis addresses two main objectives:
the modelling of compressible multiphase and mul-
ticomponent flows, and the design of novel numeri-
cal schemes for their accurate simulation. In the first
part of this work, we propose a novel Baer-Nunziato-
like hyperbolic model for reactive non-equilibrium gas-
liquid flows, that accounts for mass transfer, interfacial
drag, mechanical nonequilibrium and thermal transfer
between the phases. The model is closed using ge-
neral closure laws for the interfaces. We show that
our model is Galilean invariant and entropy dissipa-
tive and maintain these properties at compete non-
equilibrium.
We, then, focus on designing novel high-order, positi-
vity preserving and entropy stable numerical schemes
for hyperbolic multiphase and multicomponent flows,
involving nonconservative products, using the discon-
tinuous Galerkin spectral elements method (DGSEM).

The DGSEM satisfies the summation-by-parts pro-
perty, and we use the SBP operators to modify the vo-
lume integral over cell elements and replace the phy-
sical fluxes with entropy conservative fluxes in fluc-
tuation form, while applying entropy stable fluxes at
the cell interfaces. This modification allows us to es-
tablish a semi-discrete entropy inequality, for a given
entropy function, while still ensuring high-order ac-
curacy of the numerical scheme. For high-order in-
tegration in time, we rely on explicit strong-stability
preserving Runge-Kutta schemes that retain the pro-
perties of first order time integration schemes. Here
the semi-discrete DGSEM is applied to thehomoge-
neous Baer-Nunziato model and the multicomponent
model of Shyue (1998). The numerical schemes are
shown to maintain positivity of the cell-averaged solu-
tion which is further enforced at nodal values using a
posteriori limiters.
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