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Titre de la thèse

Les équivalences quadratiques et la formule de Baker-Campbell-Hausdor� pour les variétés 2-
nilpotentes

Résumé de la thèse

Le travail de thèse contribue à établir des liens entre structures algébriques non-linéaires, décrites
par des théories algébriques, et des structures algébriques linéaires, encodées par des algèbres sur une
opérade linéaire. Pour les théories algébriques dont les modèles forment une catégorie semi-abélienne
(ce qui inclut la plupart des structures intéressantes), un tel lien a été exhibé récemment par M.
Hartl, au niveau des objets gradués associés à une nouvelle notion de suite centrale descendante des
modèles d'une théorie donnée : il s'avère qu'ils ont une structure naturelle d'algèbre graduée sur
une certaine opérade de groupes abéliens associée à la théorie.

Le sujet de thèse s'inscrit dans le projet d'étendre ce lien au niveau global, c'est-à-dire d'établir
des correspondances du type Mal'cev et Lazard dans le cas des groupes, à savoir entre les modèles
nilpotents su�samment radicables et les algèbres nilpotentes sur l'opérade linéaire correspondante
(après tensorisation avec un sous-anneau des rationnels approprié). Ces correspondances jouent un
rôle fondamental en théorie des groupes et commencent à faire leurs preuves en théorie des loops
grâce au développement plus récent d'une théorie de Lie non-associative; on peut s'attendre à ce
qu'il en soit de même dans un contexte plus général. Il est important de noter qu'aussi bien dans
les correspondances classiques de Mal'cev et Lazard que dans leurs généralisations à des variétés
multiples de loops (Moufang, Bruck, Bol etc.), le passage des algèbres (de Lie, de Mal'cev etc.) ap-
propriées aux objets non-linéaires (groupes, voire loops) qui leur correspondent, est donné par une
formule de Baker-Campbell-Hausdor� appropriée, déduite d'une étude de fonctions exponentielles et
logarithmes.
Dans la thèse, une nouvelle approche est développée pour construire une correspondance (en fait,
une équivalence de catégories) du type Lazard entre une variété (dite aussi catégorie algébrique) 2-
nilpotente 2-radicable (dans un sens approprié) C donnée et les algèbres sur une opérade symétrique
unitaire linéaire et 2-nilpotente AbOp(C) dépendant de la variété, vivant dans la catégorie monoïdale
des Z[1

2
]-modules à gauche. L'anneau de fraction Z[1

2
] apparaît car notre dé�nition de 2-divisibilité

d'objets de C se traduit par la condition de 2-divisibilité classique sur le premier terme de l'opérade.
L'équivalence de type Lazard se construit grâce à la théorie des foncteurs polynomiaux (plus précisé-
ment quadratiques) et à la notion d'extension linéaire de catégories. L'idée principale est de chercher
une équivalence quadratique (i.e un foncteur quadratique qui est une équivalence de catégories) entre
une variété semi-abélienne 2-nilpotente 2-radicable donnée C et la catégorie des algèbres sur AbOp(C),
que nous appellerons le foncteur de Lazard.
La nouveauté principale de cette approche est de ne pas construire ce foncteur explicitement sur tous
les objets et les morphismes, en utilisant une formule de BCH établie au préalable; mais au con-
traire de construire l'"ADN" du foncteur de Lazard, c'est-à-dire un ensemble de données minimales
le caractérisant étudié dans ce travail de thèse, et d'en déduire une formule de type BCH dans notre
contexte. Cette démarche devrait pouvoir se généraliser et ainsi fournir une approche nouvelle et
intéressante même de la formule BCH classique.
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Title of the thesis

Quadratic equivalences and the Baker-Campbell-Hausdor� formula for 2-step nilpotent varieties

Abstract

The aim of this work consists of establishing the foundations and �rst steps of a research project
which aims at a new understanding and generalization of the classical Baker-Campbell-Hausdor�
formula with a conceptual approach, and its main application in group theory: re�ning a result
of Mal'cev adapting the classical Lie correspondence to abstract groups, Lazard proved that the
category of n-divisible n-step nilpotent groups is equivalent with the category of n-step nilpotent
Lie algebras over the coe�cient ring Z[1

2
, . . . , 1

n
]. Generalizations to other algebraic structures than

groups were obtained in the literature �rst for several varieties of loops (in particular Moufang,
Bruck and Bol loops), and �nally for all loops in recent work of Mostovoy, Pérez-Izquierdo and
Shestakov. They invoke other types of algebras replacing Lie algebras in the respective context,
namely Mal'cev algebras related with Moufang loops, Lie triple systems related with Bruck loops,
Bol algebras with Bol algebras and �nally Sabinin algebras with arbitrary loops. In each case, the
associated type of algebras can be viewed as a linearization of the non-linear structure given by a
given type of loops.

This situation motivates a research program initiated by M. Hartl, namely of exhibiting suitable
linearizations of all non-linear algebraic structures satisfying suitable conditions, namely all semi-
abelian varieties (of universal algebras, in the sense of universal algebra or of Lawvere). In fact,
Hartl associated with any semi-abelian category C a multi-right exact (and hence multi-linear) functor
operad on its abelian core. In the special case where C is a variety, this functor operad is even multi-
colimit preserving and by specialization is equivalent with an operad in abelian groups; the algebra
type encoded by this operad provides a linearization of the given variety. Indeed, for each of the
above-mentioned varieties of loops this algebra type coincides (over rational coe�cients) with the one
exhibited in the literature. These constructions and results are based on a new commutator theory in
semi-abelian categories which itself relies on a calculus of functors in the framework of semi-abelian
categories, both developed by Hartl in partial collaboration with B. Loiseau and T. Van der Linden.
Now the project mentioned at the beginning constitutes the next major goal in this emerging general
theory of linearization of algebraic structures: to generalize the Lazard equivalence and Baker-
Campbell-Hausdor� formula to the context of semi-abelian varieties, and to deduce a way of explicitly
computing the operad AbOp(C) from a given presentation of the variety C (more precisely, the operad
obtained from AbOp(C) by tensoring its term of arity n with Z[1

2
, . . . , 1

n
]). In the classical example of

groups this would amount to deducing the structure of the Lie operad directly from the usual group
axioms.
In this thesis, we provide the starting point of this new theoric approach for the case n = 2. In
contrast with all existing local approaches to the subject (de�ning the desired equivalence object-
by-object), in the classical framework of groups or loops, the approach investigated in this thesis for
the �rst time is of an essentially global nature; in fact, it is not based on the use of an exponential
function, but exclusively relies on the theory of polynomial functors. More precisely, we �rst study
the DNA-like condensed data encoding such quadratic functors. The latter data should allow to
exhibit a 2-truncated logarithm functor from a given 2-step nilpotent variety C satisfying a certain
2-divisibility condition to 2-step nilpotent algebras over the operad AbOp(C), that is an equivalence
of categories. Then the latter may be termed Lazard correspondence of degree 2 and provides an
explicit 2-truncated Baker-Campbell-Hausdor� formula, that is a formula expressing all non-linear
operations in the variety C by the linear operations of algebras over the operad AbOp(C).
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Chapter 0

Introduction

The Baker-Campbell-Hausdor� formula (BCH formula for short) has a long history and has applica-
tions in a wide variety of problems. The classical, associative version (for groups) was more recently
extended to various non-associative contexts (that is, for numerous varieties of loops). In the associa-
tive case, one of the old references about the BCH series had been provided in 1906 by F. Hausdor�
in [15]. Some forty years later, Mal'cev gave a bijective correspondence (called now the Mal'cev
correspondence) between torsion-free radicable nilpotent groups and nilpotent Lie algebras over the
rational �eld Q in [29]. In 1954, M. Lazard then improved this result by establishing a bijective
correspondence between n-step nilpotent n-radicable groups and n-step nilpotent Lie algebras over
the subring Z[1

2
, . . . , 1

n
] of Q. The idea of these correspondences consists in making a (nilpotent or

complete) Lie algebra into a group by using the BCH formula. Explicitely, this group structure is
given by the element H(X, Y ) = log(exp(X).exp(Y )) of the rational non-commutative power series
ring in two variables X and Y , expressed as an in�nite sum of nested commutators of X and Y of
increasing weight. Thus

H(X, Y ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]]− 1

24
[Y, [X, [X, Y ]]] + . . .

Specializing the variables X and Y to any elements of an n-step nilpotent Lie algebra G over the
subring Z[1

2
, . . . , 1

n
] of Q then de�nes an n-step nilpotent and n-radicable group structure on G.

The above explicit expression of the �rst few terms of the BCH formula is probably due to E.
Dynkin in [8]. The in�nite BCH series is well-known to arise in the classical equivalence between
simply-connected Lie groups and Lie algebras; it expresses the multiplication of the Lie group in
terms of the linear structure of its Lie algebra.
In the nonassociative case, generalizations to other algebraic structures than groups were obtained
in the literature �rst for several varieties of loops (in particular Moufang, Bruck and Bol loops).
According to Lev L. Sabinin, Mal'cev has made a pioneering work of a great importance in this area
by providing the �rst generalization of Lie theory to a non-associative context. In fact, Mal'cev
established a bijective correspondence between simply-connected Monfang loops and Mal'cev
algebras (which was called Moufang-Lie algebras by Mal'cev). The latter correspondence was
further studied by Kuzmin in [23] and by Kerdman in [20]. Then Sabinin proved that local Bruck
loops and local symmetric spaces are essentially the same (see [38]), while it is known that the latter
spaces are classi�ed by Lie triple systems (see [25] and [27]). In an independent work, Kikkawa
introduced in [21] homogeneous Lie loops (some generalized version of Lie groups), and in particular
symmetric Lie loops (a slightly generalized version of Bruck loops) which are also classi�ed by Lie
triple systems (see also [22] for a short history). Next the correspondence between Bol algebras
and simply-connected Bol loops was well-studied in [30], [33] and [37]. Finally, J. Mostovoy, J.M.
Izquierdo and P. Shestakov in [32] gave an equivalence between the category of nilpotent Sabinin
algebras over the real numbers and the category of simply-connected nilpotent loops, using a
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nonassociative BCH formula which they exhibit in this context.

In the present work, we introduce a functor theoretic approach in order to exhibit a BCH type for-
mula in a much more general context than for varieties of groups and loops, namely for semi-abelian
varieties all of whose objects are n-step nilpotent and n-radicable. In fact, in this thesis we content
ourselves of studying only the �rst, but already highly non-trivial case where n = 2. However, the
methods developed here are designed to serve as a model for a future treatment of higher values of
n once the necessary theory of polynomial functors will have been developed.

More precisely, given a 2-step nilpotent 2-radicable variety C, we establish a Lazard type corre-
spondence in a more general context (equivalence of categories in fact) between C and the category
of algebras over the operad in abelian groups AbOp(C) associated with C (by specialization of a
more general construction of Manfred Hartl for arbitrary semi-abelian categories). Taking C to be
the variety of 2-step nilpotent 2-radicable groups our equivalence recovers the classical Lazard cor-
respondence in nilpotency class 2. However, the classical methods based on a thorough study of the
exponential and other functions are not available at this level of generality, so we develop a new ap-
proach based on the use of functors instead of functions which proceeds in four steps: �rst of all, we
�nd minimal algebraic data, which we call DNA, characterizing quadratic functors with domain an
appropriate pointed category and with values in algebras over a given linear operad, which general-
izes the work of M. Hartl and C. Vespa for functors taking values in abelian groups in [12]. Secondly,
we give a criterion for a quadratic functor between categories of regular projective objects in 2-step
nilpotent categories, and from there between entire 2-step nilpotent varieties, to be an equivalence
of categories. This criterion is based on Baues's notion of linear extension of categories and Hartl's
commutator calculus for functors. Thirdly, we construct a speci�c DNA giving rise to a functor on a
given 2-step nilpotent 2-radicable variety with values in algebras over AbOp(C), which we prove to be
an equivalence by using the criterion obtained in the second step. Finally, analyzing this equivalence
in detail provides a way to recover not only the 2-step nilpotent group structure in C but also any
operation of arbitrary arity, in terms of a BCH formula for all operations in C.

In summary, the method in this paper is based not on any kind of exponential function as all
classical theory on the subject, but on universal algebra and the construction of a logarithm functor
via its DNA, by using the theory of quadratic functors.

We now give a detailed account of the content of each chapter of this thesis.

Chapter 1. In this chapter, we give the necessary background of the thesis. First we recall the notion
of varieties (in the sense of Lawvere). It provides a convenient formal setting to describe algebraic
structures consisting of a given family of operations of any numbers of variables (called arities) on
sets which satisfy a given family of equational axioms (or relations). Then we give generalities about
polynomial functors that are functors de�ned by the vanishing of their cross-e�ect of a certain degree.
Moreover we recall the notion of (linear) operads and algebras over such operads. A linear operad
may be seen as a way to describe a collection of modules of abstract operations with (potentially)
several entries and one output, endowed with multilinear composition operations satisfying certain
relations. Then an algebra over such an operad is a module endowed with multilinear structure maps,
which morally realize the abstract operations of the operad as concrete multilinear multiplication
operations on the given module. In addition, we recall the notion of commutators relative to a functor
introduced by M. Hartl, which play a fundamental role in our work. They are a generalization of
commutators in semi-abelian categories de�ned by cross-e�ects of the identity functor as introduced
by Hartl and Loiseau. This tool allows us to establish interesting links between polynomial functors
and nilpotent objets (i.e. objects in a given semi-abelian category such that its commutator of a
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certain order is trivial).

Chapter 2. In this part, we �rst recall the main results of the paper [12] in which M. Hartl and C.
Vespa provide the minimal algebraic data (or DNA) characterizing quadratic functors with domain
an appropriate category C and values in the category of abelian groups Ab. More precisely, their
DNA are quadratic C-modules that are diagrams of abelian groups homormophisms of the form

M =
(
T11cr2(UE)(E,E)⊗Λ Me

H−→Mee
T−→Mee

P−→Me

)
(0.0.1)

satisfying certain conditions, where E is a �xed object in C. In addition, M. Hartl and C. Vespa also
give a functorial construction of quadratic functors (with domain C and values in abelian groups) from
quadratic C-modules, namely: if M is a quadratic C-module as above, they construct the quadratic
functor − ⊗M : C → Ab, called the quadratic tensor product (associated with M) determined by
the data which constitute M , as being the pushout of two natural transformations. It is proved that
the quadratic tensor product preserves �ltered colimits and suitable coequalizers (more precisely
coequalizers of re�exive graphs if C is a semi-abelian category).
Let R be a (unitary) ring and let P be a unitary symmetric operad in the category of abelian groups
endowed with its standard monoidal structure given by the tensor product. In the present work,
we generalize the above results by providing DNA's that characterize �rst quadratic functors with
domain C and values in (right) R-modules, and then those with the same domain and values in
P-algebras. In fact, we show that quadratic functors taking values in (right) R-modules are entirely
characterized by quadratic C-modules as in (0.0.1) endowed with a structure of R-modules, i.e. each
component is a R-module and the maps preserve R-module structures. Next the �rst main result of
this thesis provide DNA's of quadratic functors with values in P-algebras, namely:

Theorem 0.0.1. Quadratic functors from an arbitrary pointed algebraic theory C to P-algebras are
functorially equivalent to quadratic C-modules over P. Also, quadratic functors from any semi-abelian
variety C to P-algebras preserving �ltered colimits and coequalizers of re�exive graphs are functorially
equivalent to quadratic C-modules.

Here a quadratic C-module over P is a pair MP = (M, φM : M2 → M) where M is a quadratic
C-module enriched with a structure of right P(1)-module, M2 is another such object depending on
M and φ : M2 →M is a morphism of these kinds of objects, see de�nitions 1.4.3 and 1.4.6 for details.
In fact, the morphism φM : M2 → M between quadratic C-modules recovers binary structure linear
maps of the quadratic tensor product −⊗M : C → Ab so as to make it take values in the category
of P-algebras.

Chapter 3. In this chapter, we �rst recall the notion of linear extensions of categories introduced
by H.-J. Baues in 5.1 of [4]. Then we provide the �ve lemma in this context, already given by
Baues in 5.5 of [4], but whose assumption is slightly weakened here in this thesis. Then it permits
us to establish a criterion for a quadratic functor between 2-step nilpotent categories to induce an
equivalence between suitable subcategories, or even to be an equivalence between the entire categories
if they are varieties. For this we need some technical results using abstract tools such as commutators
relative to functors in semi-abelian categories established in the forthcoming paper [10], and recalled
in the �rst chapter in the thesis. This criterion is the second main result of this thesis, whose explicit
form is as follows:

Theorem 0.0.2. Let C and D be two 2-step nilpotent varieties. Let F : C → D be a reduced (i.e.
sending the nul object of C to the nul object of D) quadratic functor. Assume that the following
conditions are satis�ed.
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(1) F preserves �ltered colimits, binary coproducts and coequalizers of re�exive graphs.

(2) F sends the free object E of rank 1 in C to the free object E ′ of rank 1 in D.

(3) F commutes up to an isomorphism with the abelianization functors of C and D (i.e. a certain
natural triangle commutes).

(4) The functor Ab(F ) : Ab(C)→ Ab(D) given by the restriction of F (well-de�ned thanks to con-
dition (3)) is an equivalence of categories.

(5) F preserves the class of monomorphism constitued to binary commutators of free object of �nite
rank in C.

Then F is an equivalence of categories.

Here note that this kind of functor necessarly preserves free objects of �nite rank (by conditions
(1) and (2) of the latter theorem). Moreover an explicit construction of a weak inverse of the equiv-
alence F , in the above statement, has been given in the thesis (see Lemma 3.5.12 for details).

Next we show that quadratic equivalences with domain C and values in P-algebras can be equiv-
alently seen as a certain type of quadratic C-modules over P in which all the terms (in particular
P itself) are explicitly determined by the condition of being an equivalence, except an appropriate
action of the monoid C(E,E) on Me and the morphism H : T11cr2UE(E, E) ⊗Λ Me → Mee in the
structure of M in MP (see (0.0.1)). This says that taking a quadratic equivalence with domain C
and values in P-algebras amounts to giving an appropriate explicit expression for H.

Chapter 4. In this part, we establish the desired Lazard type correspondence between a 2-radicable
2-step nilpotent variety C and the category of algebras over AbOp(C) (see section 3.1 for details)
depending on C. Let E be a distinguished object of rank 1 in C, let FAbOp(C) be the canonical free
AbOp(C)-algebra of rank 1 and let us denote by Alg − AbOp(C) the category of AbOp(C)-algebras.
The �rst step towards establishing our Lazard correpondence is to �nd an appropriate action of the
monoid C(E,E) on FAbOp(C) such that the adjoint morphism of monoids

LE,E : C(E,E)→ Alg − AbOp(C)
(
FAbOp(C),FAbOp(C)

)
,

which will become the e�ect of the functor L on C(E,E)) is an isomorphism. Then we exhibit
the remaining structure of an appropriate quadratic C-module over the operad AbOp(C) provid-
ing a quadratic functor L : C → Alg − AbOp(C), called the Lazard functor, which satis�es the
above-mentioned necessary conditions for being an equivalence, in particular whose evaluation to the
endomorphisms of E in C is given by the above isomorphism of monoids. Next we prove that the
Lazard functor preserves �nite coproducts so that its restriction to the full subcategory 〈E〉 of free
objects of �nite rank of C takes values in the category 〈FAbOp(C)〉 of free AbOp(C)-algebras of �nite
rank. Then we show that its restriction functor is an equivalence of categories between the algebraic
theories 〈E〉 and 〈FAbOp(C)〉 by applying the criterion given in the third chapter.

Chapter 5. In this chapter, we prove that the equivalence of categories between the varieties
Alg − AbOp(C) and C, induced by the equivalence between their underlying theories established
in the previous chapter, provide an explicit Baker-Campbell-Hausdor� formula recovering any (non
linear) operation of the variety C from structure linear maps of AbOp(C)-algebras. This actually is
the third main result of this thesis, whose explicit form is as follows:
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Theorem 0.0.3. Let C be a 2-step nilpotent semi-abelian variety, then there is a Lazard equivalence

L∗ : Alg − AbOp(C)→ C

given by |L∗(A)| = |A| and the following Baker-Campbell-Hausdor� formula : an n-ary operation θ
of the variety C acts on |L∗(A)| by

θ(a1, . . . , an) =
n∑
p=1

(
λ1(ap ⊗ θp(e)) +

1

2
λ2(ap ⊗ ap ⊗H(θp))

)
+

1

2

∑
16p<q6n

λ2

(
ap ⊗ aq ⊗ γ1,1;2(θq(e)⊗ θp(e)⊗ [e1, e2]M)

)
+

∑
16p<q6n

λ2

(
aq ⊗ ap ⊗ (θpq(e1, e2)−M (θp(e1) + θq(e2)))

)
for a1, . . . , an ∈ A.

Here λk : A⊗k⊗P(k)→ A are the multiplication maps in the structure of algebra A over AbOp(C),
for k = 1, 2. The unary operations θp and binary ones θpq in C are de�ned by

θl(a) = θ(0, . . . , 0, a, 0, . . . , 0) and θpq(a1, a2) = θ(0, . . . , 0, a1, 0, . . . , 0, a2, 0, . . . , 0)

where a is placed in the l-th place and a1, a2 are respectively placed in the p-th and q-th places, for
1 6 p 6 n and 1 6 p < q 6 n. Moreover, for any unary operation V of C, we have

H(V) = VE+E(e1 +M e2)−M
(
VE+E(e1) +M VE+E(e2)

)
where ik : E → E + E is the injection of the k-th summand, ek = ik(e) and k = 1, 2. The
element [a, b]M of |A| is the commutator of a and b for the group structure + which is given by
[a, b]M = (a+M b)−M (b+M a).
Now if θ is a binary operation for which 0 is a both-sided unit, θp is the identity for p = 1, 2, whence

θ(a, b) = a+ b+
1

2
λ2

(
b⊗ a⊗ [e1, e2]M

)
+ λ2

(
a⊗ b⊗ (θ(e1, e2)−M (e1 +M e2))

)
In particular, a+M b = a+b+ 1

2
λ2(b⊗a⊗[e1, e2]M), which in case C is the variety of 2-radicable 2-step

nilpotent groups becomes the classical 2-truncated Baker-Campbell-Hausdor� formula. Moreover, if
θ is a binary bireduced operation (that is θp = 0 for p = 1, 2), then

θ(a, b) = λ2

(
b⊗ a⊗ θ(e1, e2)

)
In particular, [a, b]M = λ2(b ⊗ a ⊗ [e1, e2]M). Thus when C is the variety of 2-radicable 2-step
nilpotent groups, then [a, b]M equals the Lie commutator of a and b, in accordance with the BCH
formula for commutators.

To summarize, we have given this concrete formula by using abstract concepts of a global nature
such as quadratic functors and linear extensions of categories. Let us have a look at the perspectives
resulting from a possible generalization of the methods introduced in this thesis. Denote by Grn and
Lien respectively the theories of radicable n-step nilpotent groups, respectively n-step nilpotent Lie
algebras over Q. In the classical case, one observes that the classical Mal'cev equivalence preserves
the underlying sets and hence also free objects, in particular those of �nite rank. This means that it
induces an isomorphism of algebraic theories Ln : Grn → Lien (Ln for logarithm and also Lazard).

13



It follows from general polynomial functor theory that an isomorphism Ln as above is polynomial of
degree n, as well as its composite with the natural forgetful functor from Lien to rational vector spaces
V ect. Then generalizing the methods developed in this thesis should provide a new, exponential-free
approach to the Lazard equivalence and BCH formula for groups, which may shed some new light on
the combinatorics of the coe�cients of the BCH formula, by presenting it as kind of a fusion of the
combinatorics of free Lie algebras and the one of non-linear pseudo-Mackey-functors introduced in
[13] as a DNA of polynomial functors from groups to abelian groups. If this approach works out one
may carry out a similar program for loops since the necessary ingredients from polynomial theory
have also been provided in [13]. On the long term, one may then hope to obtain similar results for
arbitrary nilpotent semi-abelian varieties based on the theory of polynomial functors after �nding
their corresponding DNA. In fact, there is unpublished work of Xantcha in this direction (see [40]);
however, it remains to be investigated whether it indeed provides the desired general results in a
satisfactory form.
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Chapter 1

Background

In this part, we give the necessary background before tackling the main subject of the thesis.
Throughout the thesis, C denotes a pointed category (i.e. having a null object denoted by 0) with
small Hom-sets, but with a possibly large set of objects with respect to a �xed universe. Thus our
categories of functors with domain C may have large Hom-sets, according to the conventions in Mac
Lane's book [28]. We also suppose that C is a pointed category with �nite coproducts denoted by +.
For the case where C (or any category) has �nite products, we denote by × the product.

Notation 1.0.1. Troughout this thesis, we use the following conventions:

• We denote by Set the category of sets, Gr the category of groups and Ab the category of abelian
groups. If D and E are categories, then ED denotes the category of functors with domain D
and values in E ;

• We denote by U : Ab→ Set the canonical forgetful functor assigning each abelian group to its
underlying set;

• If D is any pointed category, Func∗(C, D) denotes the category of reduced functors (i.e. F (0) =
0) with domain C and values in D;

• Let D and E be two categories and let F, F ′ : C → D and G,G′ : D → E be functors. We
denote by G · F : C → E the composite functor. If α : F ⇒ F ′ and β : G ⇒ G′ are two
natural transformations, then we denote by G∗ ·α : G ·F ⇒ G ·F ′ the image of α by G and by
F ∗ · β : G · F ⇒ G′ · F the restriction of β to image objects of F .

• For n ∈ N∗ and n objects X1, . . . Xn in C, we denote by ink : Xk � X1 + . . .+Xn the injection
of the k-th summand and rnk : X1 + . . .+Xn → Xk its corresponding retraction, i.e. the unique
morphism such that rnk ◦ ink = id and rnk ◦ inl = 0, for l 6= k.

• Let X be an object in C, we write as usual ∇n
X : X+n → X the unique morphism such that,

for k = 1, . . . , n, ∇n
X ◦ ink = id.

• If moreover C has �nite products, and X1, . . . Xn are n objects in C, we denote by πnk : X1 ×
. . .×Xn → Xk the projection onto the k-th summand, for k = 1, . . . , n. In addition, we denote
their corresponding injectons ιnk : Xk � X1 × . . .×Xn such that πnk ◦ ιnk = id and πnk ◦ ιnl = 0,
for l 6= k.

• If moreover C has �nite products, we denote by ∆n : C → C×n the diagonal functor and by
∆n
X : X → X×n the unique morphism such that πnk ◦∆n

X = id, for k = 1, . . . , n.

• For two objects X1 and X2 in C, we denote by τ 2
X1,X2

: X1 + X2 → X2 + X1 the canonical
switch. If X1 = X2 = X, then we write τ 2

X1,X2
= τ 2

X . If moreover C has �nite products, we
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denote by T 2
X1,X2

: X1 × X2 → X2 × X1 the canonical switch. If X1 = X2 = X, we write
T 2
X1,X2

= T 2
X : X ×X → X ×X.

• If f1, f2 are two morphisms in C with domain respectively X1 and X2 taking values in the same
codomain Y , then (f1, f2) : X1 +X2 → Y denotes the unique morphism given by the universal
property of the coproduct X1 +X2.

• If moreover C has �nite products, and g1, g2 are two morphisms in C with the same domain
X and values respectively in Y1 and Y2, then we write (g1, g2)t : X → Y1 × Y2 the unique
morphism given by the universal property of the product Y1 × Y2.

• If moreover C is �nitely complete and cocomplete, we recall that a regular morphism in C is a
coequalizer of some parallel pair of morphisms. In addition we say that, for X and Y objects
in C, a morphism f : X → Y in C has a regular epi-mono factorization if we have f = i ◦ e,
where i : I → Y is a monomorphism, e : X → I is a regular epimorphism and I is an object
in C. The object I is usually called the image (unique up to an isomorphism) of f and it is
denoted by Im(f). It is a general fact that any morphism in a regular category (hence in a
semi-abelian category) has an epi-mono factorization. It is said that e : X → I and i : I → Y
are respectively the coimage and the image of f (unique up to an isomorphism).

• If moreover C has kernels and cokernels, for any morphism f : X → Y in C, we denote
respectively by ker(f) : Ker(f) � X and by coker(f) : Y → Coker(f) the kernel and the
cokernel of f .

1.1 Varieties

We here recall and discuss the de�nition of a variety and a pointed algebraic theory used in this
paper.
Roughly speaking, a variety (or an algebraic category) in the sense of classical universal algebra is
a collection of sets X endowed with a familly of operations X×n → X, for some n ∈ N (for the case
n = 0, it is the same as taking a constant in X) and a set of equational relations. This de�nition is a
part of classical universal algebra and it is more detailed in the de�nition 3.2.1 of [5], in terms of logic
syntax and all of whose axioms are universally quanti�ed equations. As an example, the category
Gr is in particular a variety: given a group G, it may be considered as a set containing a constant
0 ∈ G (i.e. a 0-ary operation), a unary operation − : G→ G and a binary operation + : G×G→ G
satisfying the usual axioms

(x+ y) + z = x+ (y + z), x+ 0 = 0 + x, x+ (−x) = 0 = (−x) + x

where x, y, z ∈ G. One should observe that these axioms are now presented in a very elementary
form: just equalities between algebraic composites, without any existential quanti�er, implication
symbol, conjunction, disjunction or negation. Then there is another de�nition of a variety in the
sense of categorical universal algebra (which is equivalent to the one in the sense of classical universal
algebra). In fact, it is �rst given precisely by an algebraic theory, or simply theory, whose de�nition
is the following:

De�nition 1.1.1. A pointed (algebraic) theory is a pointed category T with a given object E in C
such that any object of T is a �nite sum of copies of E, i.e. E+n for some n ∈ N with a speci�c
choice of injections E � E+n (and the convention E+0 = 0). We denote by 〈E〉C, or simply 〈E〉, the
theory generated by E.
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Note that this de�nition of an algebraic theory is dual to the classical one as being a category
encoding algebraic operations. Now a variety may be seen as a category of models (associated with
a theory), in the sense of categorical universal algebra, de�ned as follows:

De�nition 1.1.2. A model of a theory T in our sense is a contravariant functor from T to Set
transforming coproducts into products. A variety (in the sense of categorical universal algebra) is
the category of models of some theory T .

The advantage of this de�nition is that here T identi�es with a full subcategory of its category
of models, namely the category of free models of T of �nite rank. This allows us to de�ne certain
quadratic functors, from data just depending on T , to be naturally de�ned on the whole category of
models of T .
Now we are interested in certain properties of any variety and preservation properties of the forgetful
functor assigning each object of a given variety its underlying set. Let C be variety (in the sense of
1.1.2) and let V : C → Set denote the canonical forgetful functor. Then we provide the theorem
3.5.4 of [5] below:

Proposition 1.1.3. The variety C is regular and exact.

Here we recall that a category is regular when it has �nite limits, every kernel pair has a coequalizer
and the pull-back of a regular epimorphism along any morphism is a regular epimorphism (see the
de�nition in A.5.1 of [6]). In addition a category is exact when it is a regular category and every
equivalence relation is a kernel pair relation (see the de�nition in A.5.11 of [6]). Then we give the
following proposition already given in 3.5.2 of [6]:

Proposition 1.1.4. The forgetful functor V : C → Set preserves and re�ects coequalizers of equiva-
lence relation.

Corollary 1.1.5. If moreover C is a Mal'cev variety (i.e. it has �nite limits and every re�exive
relation in C is an equivalent relation), then the forgetful functor V : C → Set preserves and re�ects
coequalizers of re�exive graphs.

Proof. First we observe that in C every equivalence relation is in particular a re�exive graph. We
assume that d0, d1 : R → X is an equivalence relation of an object X in C (relation means that the
morphism (d0, d1)t : R → X × X is a monomorphism). In particular, this (equivalence) relation is
re�exive, i.e. there is a morphism s : R→ X in C such that the following diagram commutes

R X ×X

X

(d0,d1)t
//

��

∆2
X

��

ww

s

ww

Hence it is clear that the morphism s is a common section of d0 and d1. This implies that d0, d1 :
R→ X is a re�exive graph in C.
Then we prove that a coequalizer of a re�exive graph is also a coequalizer of some equivalence relation.
Let δ0, δ1 : T → X be a re�exive graph with common section σ : X → T , and q : X → Q be its
coequalizer. Hence we have the following commutative diagram:

T X ×X

X

(δ0,δ1)t
//

��

∆2
X

��

ww

σ

ww (1.1.1)
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As the morphism (δ0, δ1)t : T → X ×X is not a monomorphism (i.e. a relation on X) in general, we
consider its regular epi-mono factorization as follows:

T X ×X

R

(δ0,δ1)t //

p
## ## ;;

r

;;

where p and r are respectively the coimage and the image of (δ0, δ1)t. Thus r : R � X × X is a
relation on X (because it is a monomorphism) and it is re�exive because we get

r ◦
(
p ◦ σ

)
= r ◦ p ◦ σ = (δ0, δ1)t ◦ σ = ∆2

X

As the variety C is supposed to be Mal'cev by assumption, r : R� X×X in an equivalence relation.
In addition, q : X → Q is also the coequalizer of r because p : T → R is a (regular) epimorphism.
Finally, the forgetful functor V : C → Set preserves and re�ects coequalizers of re�exive graphs.

Next we recall the proposition 3.4.2 of [5] as follows:

Proposition 1.1.6. The variety C has �ltered colimits and these are computed pointwise. In partic-
ular, the forgetful functor V : C → Set preserves and re�ects �ltered colimits.

In this thesis, we mostly use the semi-abelian context.

Remark 1.1.7. Any semi-abelian category (see the de�nition in 5.1.1 of [6] or in [17]) is Mal'cev by
5.1.2 of [6]. If the variety C is semi-abelian, then C has �ltered colimits, and the forgetful functor
V : C → Set preserves and re�ects �ltered colimits and coequalizers of re�exive graphs. It is a direct
consequence of 1.1.5 and 1.1.6.

1.2 Generalities about polynomial functors

Let D be a semi-abelian category. Here we mainly use the second cross-e�ect of a reduced functor
F : C → D with domain C and values in D de�ned as follows:

F (X|Y ) = cr2F (X, Y ) = Ker
(
r̂F2 = (F (r2

1), F (r2
2))t : F (X + Y )→ F (X)× F (Y )

)
,

More generally, we have the following de�nition (also see 1.2 of [12]):

De�nition 1.2.1. The n-th cross-e�ect of F , denoted by crnF : C×n → D, is the multireduced
multifunctor such that, for X1, . . . , Xn objects in C, crnF (X1, . . . , Xn) also denoted by F (X1| . . . |Xn)
is the kernel of the following natural homomorphism

r̂Fn =
n∏
k=1

F (rn
k̂
) : F (X1 + . . .+Xn)→

n∏
k=1

F (X1 + . . .+ X̂k + . . . Xn) (1.2.1)

where, for k = 1, . . . , n, rn
k̂

: X1 + . . . + Xn → X1 + . . . + X̂k + . . . + Xn is the morphism whose
restriction to Xi is its canonical injection if i 6= k and is the zero morphism otherwise, see 1.3 of [12].

Remark 1.2.2. From 1.2.1, it de�nes a functor crn : Func∗
(
C, D

)
→ Func∗

(
C×n, D

)
, for n ∈ N∗.

There is also an inductive de�nition of the n-th cross-e�ect of a functor given in 1.2 of [12].

Notation 1.2.3. We denote by ιFn : crnF (X1, . . . , Xn)� F (X1 + . . .+Xn) the kernel of r̂Fn .
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Now we give a property (also given in 2.25 of [14]) of the comparison morphism r̂F2 (see (1.2.1)),
as follows:

Lemma 1.2.4. Let X and Y be objects in C. Then the comparison morphism r̂F2 : F (X + Y ) →
F (X)× F (Y ) (de�ned in (1.2.1)) is a regular epimorphism.

Proof. Since the functor F : C → D is reduced, we have the following equalities:

r̂IdD2 = r̂F2 ◦
(
F (i21), F (i22)

)
: F (X) + F (Y )→ F (X)× F (Y )

where
(
F (i21), F (i22)

)
: F (X)+F (Y )→ F (X+Y ) is the morphism given by the universal property of

the coproduct F (X) +F (Y ). Since the comparison morphism r̂IdD2 : F (X) +F (Y )→ F (X)×F (Y )
is a regular epimorphism (by protomodularity of the category D), so is the comparison morphism

r̂F2 : F (X + Y )→ F (X)× F (Y ).

Intuitively the cross-e�ect of a functor can be seen as a (categorical) version of the "derivatives"
of a functor. This point of view is supported by the notation 2.21 and Lemma 2.22 of [14]. Now it
permits to de�ne the notion of polynomial functors, already given in 1.6 of [12]:

De�nition 1.2.5. A functor F : C → D is said to be polynomial of degree 6 n whenever its (n+1)-th
cross-e�ect is trivial, i.e. crn+1F = 0. We denote Func6n(C, D) the full subcategory of Func∗(C, D)
constituted by polynomial functors of degree 6 n. In particular, Lin(C, D) and Quad(C, D) are
respectively the full subcategories of Func∗(C, D) formed by linear and quadratic functors.

The following proposition says that the composition of a polynomial functor taking values in an
abelian category with another polynomial functor with abelian source and target is polynomial. It
has appeared in the theorem 1.9 of [34], the proposition 1.9 of [19] and the proposition 2.20 of [13].

Proposition 1.2.6. Let A and B be abelian categories, and let C F→ A G→ B be functors. If F is
polynomial of degree 6 n and G is polynomial of degree 6 m, then the composite functor G·F : C → B
is polynomial of degree 6 nm.

Then we de�ne an important natural transformation, already given in 1.7 of [12], as follows:

De�nition 1.2.7. Let F : C → D be a reduced functor. Then the natural transformation SFn :
crnF ·∆n ⇒ F is such that, for X object in C,

(SFn )X = F (∇n
X) ◦ ιFn : crnF (X, . . . , X)→ F (X)

where crnF : C×n → D is the n-th cross-e�ect of F de�ned in 1.2.1.

Notation 1.2.8. Here we assume that C is semi-abelian. For the special case where F is the identity
functor IdC : C → C (the identity functor of C), the morphism (SIdCn )X (given in 1.2.7) is also written
cXn : crnIdC(X, . . . , X)→ X.

Then it is possible to construct the "polynomialization" of a reduced functor. For this, M. Hartl
and C. Vespa introduce the notion of n-Taylorization of a reduced functor in 1.9 of [12].

De�nition 1.2.9. The n-Taylorization functor Tn : Func∗(C, D)→ Func6n(C, D) is such that, for
a (reduced) functor F : C → D, Tn(F ) = Coker

(
SFn+1 : crn+1F ·∆n+1 ⇒ F

)
. The proposition 1.10

in [12] says that Tn is left adjoint to the inclusion functor.

Notation 1.2.10. We denote by tFn : F ⇒ TnF the unit of the adjunction that is the cokernel of
SFn+1 : crn+1F ·∆n+1 ⇒ F , de�ned in 1.2.7.
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The universal property of tFn gives:

Proposition 1.2.11. Any natural transformation with source F and target a polynomial functor of
degree 6 n factorizes uniquely through tFn : F ⇒ TnF .

Let us denote by BiFunc∗,∗(C×2,D) the category of bireduced bifunctors (i.e that are trivial
whenever one of their place is the zero object). The notion of polynomial functors has been extended
for bifunctors as bipolynomial bifunctors, appeared in 1.11 of [12]:

De�nition 1.2.12. A bireduced bifunctor B : C×2 → D is said bipolynomial of bidegree 6 (n,m)
whenever, for an object X in C, the reduced functors B(−, X) : C → D and B(X,−) : C → D are
respectively polynomial of degree 6 n and 6 m. If n = m = 1, we say that B is bilinear. We consider
BiFunc6(n,m)(C×2,D) its corresponding category.

Remark 1.2.13. Let F : C → D be a reduced functor. By 1.2 of [12], F is a quadratic functor if, and
only if, its second cross-e�ect cr2F = F (−|−) : C×2 → D de�ned above is bilinear.

Now we recall the bilinearization bifunctor T11 : BiFunc∗,∗(C×2,D) → BiFunc6(1,1)(C×2,D)
de�ned in 1.13 of [12]. It is the left adjoint of the inclusion functor by 1.14 of [12]. For a bireduced
bifunctor B : C×2 → D, we denote by tB11 : B ⇒ T11B the unit of the adjunction. The universal
property of tB11 gives:

Proposition 1.2.14. Any natural transformation (between bifunctors) with source B and target a
bilinear bifunctor factorizes uniquely through t11 : B ⇒ T11B.

Notation 1.2.15. We write tB11(a), or simply t11(a), the equivalence class of an element a ∈ B(X, Y )
in T11B(X, Y ) where X and Y are objects in C.

1.3 Commutators relative to functors in semi-abelian cate-

gories

Let D be a semi-abelian category and let F : C → D be a reduced functor. For this, we give the
notion of commutators relative to a functor, introduced by M. Hartl in the forthcoming paper [10].
Here we shall recall the de�nition of commutators and nilpotent objects in semi-abelian categories.

De�nition 1.3.1. Consider F : C → D a reduced functor and A an object in D. Let X be an object
in C and let (xi : Xi� X)16i6n be n subobjects of X. Then

• the n-weighted commutator [X1, . . . , Xn]F relative to F is the image of the morphism (SFn )X ◦
F (x1| . . . |xn) : F (X1| . . . |Xn) → F (X), where SFn : crnF ·∆n ⇒ F is the natural transforma-
tion given in 1.2.7 and F (x1| . . . |xn) : F (X1| . . . |Xn) → F (X| . . . |X) is the restriction of the
morphism x1 + . . .+ xn : X1 + . . .+Xn → X+n to F (X1| . . . |Xn).

• the object A is said n-step nilpotent whenever the (n+ 1)-weighted commutator [A, . . . , A]IdD
is trivial. We denote by Niln(D) the full subcategory of D formed by n-step nilpotent objects
in D.

• for the case n = 1, we say that A is an abelian object of D. We denote by Ab(D) the full
subcategory formed by abelian objects in D, usually called the abelian core of D.

We now consider the notion of central subobject in semi-abelian categories using the commutators
in the sense of 1.3.1 as follows:

De�nition 1.3.2. Let X be an object in D and z : Z � X be a subobject of X. We say that
z : Z � X, or simply Z, is a central subobject of X if [X, Z]IdD = 0.
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Notation 1.3.3. Let X be an object in C. Here

• we write γFn (X) = [X, . . . , X]F for the n-weighted commutator of X relative to F ;

• we denote by eFX,n : F (X| . . . |X)� γFn (X) and iFX,n : γFn (X)� F (X) respectively the coimage
and the image of (SFn )X : F (X| . . . |X)→ F (X) (see 1.2.7);

• we denote by In : Niln(D)→ D and I = I1 : Ab(D)→ D the inclusion functors.

It provides a functor associating to any object in C its n-weighted commutator of X relative to a
functor in D, as follows:

De�nition 1.3.4. We de�ne the functor γFn : C → D such that γFn (X) is the n-weighted commutator
of X relative to F (given in 1.3.3), and γFn (f) : γFn (X) → γFn (Y ) is the unique factorization of
F (f) ◦ iFX,n through iFY,n (which exists by naturality of SFn ). It also satis�es

γFn (f) ◦ eFX,n = eFY,n ◦ crnF (f, . . . , f)

where X ∈ C and f : X → Y is any morphism in C.

Notation 1.3.5. We introduce the following notations:

• If F = IdD, we write γIdDn = γDn .

• For an object X in D, we denote respectively by eX = eIdDX,2 : X → γD2 (X) and iX = iIdDX,2 :

γD2 (X)� X the coimage and the image of the morphism cX2 : IdD(X|X)→ X.

Remark 1.3.6. Consider an object X in C and a subobject z : Z � X of X. Let F : C → D be a
reduced functor. Then the 1-weighted commutator γF1 (Z) = [Z]F relative to F is the image of the
morphism F (z) : F (Z) → F (X) (because cr1F (X) = F (X) since F is reduced, see 1.2.1). It gives
the deviation of F (z) to be a monomorphism.

Notation 1.3.7. Consider an object X in C and a subobject z : Z � X of X. We denote respectively
by eFZ = eFZ,1 : F (Z) → [Z]F and iFZ = iFX,1 : [Z]F � F (X) the coimage and the image of F (z) :
F (Z)→ F (X).

Remark 1.3.8. Let F : C → D be a polynomial functor of degree 6 n (see 1.2.5). Then, for any
object X in C and k ≥ n + 1, γFk (X) = [X, . . . , X]F = 0 by 1.3.1 because the k-th cross-e�ect of F
is trivial implying that the natural transformation SFk : crkF ·∆k ⇒ F is trivial.

The next proposition provides the properties of commutators relative to functors, that appear in
the forthcoming paper [10]:

Proposition 1.3.9. Let E be a semi-abelian category and let F : C → D and G : D → E be two
reduced functors. If the functor G : D → E preserves regular epimorphisms, then we have

[ [X1,1, . . . , X1,n1 ]F , . . . , [Xm,1, . . . , Xm,nm ]F ]G ⊂ [X1,1, . . . , Xm,nm ]G·F

where, for k ∈ {1, . . .m} and j ∈ {1, . . . , nk}, Xk,j is a subobject of an object X in C.

Now we are naturally led in this thesis to consider semi-abelian categories whose objects are
nilpotent de�ned in an appropriate sense (see 1.3.1 for details). It is given by the notion of nilpotent
category whose de�nition is the following:

De�nition 1.3.10. A category D is called n-step nilpotent when it is a semi-abelian category whose
identity functor IdD : D → D is polynomial of degree 6 n in the sense of 1.2.5.
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As an example, the full subcategory Niln(D) of D (see 1.3.1) formed by n-step nilpotent objects
in D is an n-step nilpotent category. The case n = 2 has an immediate consequence:

Proposition 1.3.11. Let D be a 2-step nilpotent category and let X be an object in D. Then the
2-weighted commutator [X,X]IdD is a central subobject of X.

Proof. By 1.3.10, the identity functor IdD : D → D of D is quadratic. Hence it is a direct consequence
of 1.3.12.

Let X be an object in D. We give a condition for the 1-weighted commutator [[X, X]IdC ]F relative
to F to be a central subobject of F (X), as follows:

Proposition 1.3.12. We here suppose that C is a semi-abelian category. Consider a (reduced)
functor F : C → D and an object X in C. If F is a quadratic functor and preserves regular
epimorphisms, then the 1-weighted commutator [[X, X]IdC ]F relative F is a central subobject of F (X).

Proof. As F is a reduced functor, F (Y ) = [Y ]F is the 1-weighted commutator of Y relative to F by
1.3.1. By 1.3.9, we have

[ [[Y, Y ]IdC ]F , F (Y ) ]IdD = [ [[Y, Y ]IdC ]F , [Y ]F ]IdD ⊂ [ [Y, Y ]IdC , Y ]F ⊂ [Y, Y, Y ]F = 0 , by 1.3.8

because F is a quadratic functor which preserves regular epimorphisms.

1.4 Polynomial functors and nilpotent objects

In this part, D denotes a semi-abelian category. We here study links between polynomial functors
and nilpotent objects. The next proposition says that polynomial functors of degree 6 n, n ∈ N∗,
with values in a semi-abelian category takes in fact values in n-step nilpotent objects:

Proposition 1.4.1. Let F : C → D be a reduced polynomial functor of degree n, then F takes values
in Niln(D).

Proof. Let X be an object in C. The result is a direct consequence of 1.3.9. The last result says
in particular that the commutator γIdDn+1(F (X)) is a subobject of the commutator γFn+1(X) relative
to the functor F of weight n + 1. As F : C → D is polynomial of degree 6 n, γFn+1(X) is trivial
(see 1.3.8). Hence γIdDn+1(F (X)) is trivial as well. Consequently F (X) is an n-step nilpotent object in
D.

It follows from 1.4.1 that the second cross-e�ect of the identity functor of a given 2-step nilpotent
category takes values in the abelian core, as follows:

Lemma 1.4.2. If D is a 2-step nilpotent category, then the second cross-e�ect of the identity functor
IdD : D → D seen as a bifunctor from D ×D to D takes in fact values in the abelian core Ab(D) of
D.

Proof. By 1.2.13, the bifunctor IdD(−|−) : D×D → D is bilinear because the identity functor of D
is quadratic by 1.3.10 (since the category D is 2-step nilpotent). Hence it is a direct consequence of
1.4.8 that the (bilinear) bifunctor IdD(−|−) takes values in Ab(D).

Remark 1.4.3. For n ∈ N∗, the functor TnIdD : D → D (de�ned in 1.2.9) is a polynomial functor of
degree n. By 1.4.1, it takes values in Niln(D).

Notation 1.4.4. We consider the following notations:

• We denote by Niln : D → Niln(D) the functor TnIdD : D → Niln(D) de�ned in 1.2.9.
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• We write niln = tIdDn : IdD ⇒ In.Niln for the cokernel of the natural transformation SIdDn+1 :
crn+1IdD · ∆n+1 ⇒ IdD given in 1.2.7, where In : Niln(D) → D is the inclusion functor (see
1.3.1).

• For the case n = 1, we denote by Nil1(D), respectively AbD : D → Ab(D), the category Ab(D),
respectively the functor Nil1 : D → Nil1(D). The category Ab(D) is called the abelian core of
D, and the functor AbD : D → Ab(D) is called the abelianization functor (of D).

• Moreover we write ab = nil1 : IdD ⇒ I.AbD for the cokernel of SIdD2 : cr2IdD · ∆n+1 ⇒ IdD,
where I : Ab(C)→ C is the inclusion functor (see 1.3.1).

Remark 1.4.5. For an n-step nilpotent object X in D, we consider that X = Niln(X) and (niln)X =
id : X → Niln(X) = X, i.e. the functor Niln : D → Niln(D) (given in 1.4.4) restricted to Niln(D)
is the identity functor of Niln(D).

Proposition 1.4.6. For any n ∈ N∗, the functor Niln : D → Niln(D) is a re�ection of the inclusion
functor In : Niln(D) → D. The unit of this pair of adjoint functors is the cokernel niln : IdD ⇒
In.Niln of the natural transformation SIdDn+1 : crn+1IdD ·∆n+1 ⇒ IdD.

Proof. Let X be an object in D. We �rst observe that Niln(X) = TnIdD(X) is an n-step nilpotent
object of D. For this we have(

SIdDn+1◦)Niln(X) ◦ IdD
(
(niln)X |(niln)X

)
= (niln)X ◦

(
SIdDn+1

)
X

= 0 (1.4.1)

by naturality of
(
SIdDn+1

)
X

: crn+1IdD · ∆n+1(X) → X in X and because (niln)X : X → Niln(X) is

the cokernel of
(
SIdDn+1

)
X
. As the identity functor IdD : D → D clearly preserves regular epimor-

phisms and (niln)X : X → Niln(X) is a regular epimorphism, the morphism IdD
(
(niln)X |(niln)X

)
:

IdD
(
X|X

)
→ IdD

(
Niln(X)|Niln(X)

)
is a (regular) epimorphism. It follows from (1.4.1) that the

morphism (
SIdDn+1)Niln(X) : IdD

(
Niln(X)|Niln(X)

)
→ Niln(X)

is trivial. By 1.3.1, Niln(X) is an n-step nilpotent object in D. Then the universal property of the
unit (niln)X : X → Niln(X) of the pair of adjoint functors is a direct consequence of the naturality of(
SIdDn+1

)
X
in X, and of the universal property of the cokernel (niln)X : X → Niln(X) of

(
SIdDn+1

)
X
.

Remark 1.4.7. For an object X in D, we observe that Niln(X) is the quotient of X by the (n+ 1)-
weighted commutator γIdDn+1(X) (de�ned in 1.3.1).

Then, for n ≥ 1, the next proposition says that polynomial functors of degree 6 n with semi-
abelian source and target and preserving coequalizers of re�exive graphs can be entirely described
by restricting them to n-step nilpotent objects of the source category.

Proposition 1.4.8. We here assume that C is a semi-abelian category. Let F : C → D be a
polynomial functor of degree 6 n preserving coequalizers of re�exive graphs. Then the functors F
and F.Niln with domain C and values in D are isomorphic to each other. More precisely, the natural
transformation F ∗.niln : F ⇒ F.Niln is an isomorphism.

Proof. Let X be an object in C. Then we have the following short exact sequence:

0 γIdCn+1(X) X Niln(X) 0
i
IdD
n,X // (niln)X // //// (1.4.2)
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because (niln)X : X → Niln(X) is the cokernel of (SIdCn+1)X : crn+1IdC ·∆n+1(X)→ X and γIdCn+1(X) =

Im
(
(SIdCn+1)X

)
by 1.3.1. By 2.31 of [14], we get the following right exact sequence:

F
(
γIdCn+1(X)|X

)
o F

(
γIdCn+1(X)

)
F (X) F

(
Niln(X)

)
0

〈
SF2 ◦ IdC(i

IdC
n+1,X |id)

F (iIdCn+1,X)

〉
//

F
(

(niln)X

)
// //

By 1.3.1 and by 1.3.9, we have

Im
(
SF2 ◦ IdC(i

IdC
n+1,X |id)

)
=
[
γIdCn+1(X), X

]
F

=
[
[X, . . . , X]IdC , X

]
F
⊂ [X, . . . , X]F = γFn+2(X)

because the functor F : C → D preserves coequalizers of re�exive pairs (hence regular epimorphisms).
Similarly, we get

Im
(
γIdCn+1(X)

)
=
[
γIdCn+1(X)

]
F

=
[
[X, . . . , X]IdC

]
F
⊂ [X, . . . , X]F = γFn+1(X)

As the functor F : C → D is polynomial of degree 6 n, we have

γFn+2(X) = 0 = γFn+1(X)

by 1.3.8. It implies that F ((niln)X) : F (X)→ F (Niln(X)) is an isomorphism, as desired.

1.5 E�ective actions on morphism sets in semi-abelian cate-

gories

We note that actions on morphism sets have been already treated by Bourn in a more general context
of unital categories (see the de�nition in 1.2.5 of [6]). This work has been studied in the paper [7]. It
also appears in the book [6] of Bourn and Borceux, in which moreover they consider these actions in
strongly unital categories (see the de�nition in 1.8.3 of [6]), which are in particular unital categories
by 1.8.4 of [6].
In this part, we �rst recall the necessary notions and the main result relative to actions on morphism
sets in [6]. In the case of semi-abelian categories, which are strongly unital, we give an alternative
de�nition of actions on morphism sets, which is equivalent to those of Bourn ; these are e�ective.
Now we recall that a unital category E is a pointed category having �nite limits such that, for X
and Y objects in E , the pair (ι21, ι

2
2) is strongly epimorphic:

X
ι21−→ X × Y

ι22←− Y ,

see the notations given in 1.0.1. Then we provide the notion of centrality in unital categories, already
de�ned in 1.3.12 of [6]. Before this, we give the following de�nition:

De�nition 1.5.1. Let E be a unital category. Two morphisms f : X → Z and g : Y → Z with the
same codomain cooperate when there exists a factorization ϕf,g : X×Y → Z such that the following
diagram

YX × YX

Z

ι22oo
ι21 //

ϕf,g

��
f

""

g

||
(1.5.1)

commutes. The morphism ϕf,g is called the cooperator of f and g; it is necessarily unique because
the pair (ι21; ι22) is epimorphic. To simplify the notation, we may write ϕ = ϕf,g for the cooperator of
f and g.
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Remark 1.5.2. Let E be a unital category. Consider two morphisms f : X → Z and g : Y → Z in E
which cooperate with cooperator φf,g : X×Y → Z as in 1.5.1. If moreover E has binary coproducts,
then f and g cooperate if, and only if, the cooperator φf,g makes the following triangle commute:

X + Y X × Y

Z

r̂
IdE
2 //

(f,g)

''

ϕf,g

��

commutes.

Then we are able to de�ne central morphisms in unital categories already given in 1.3.12 of [6],
as follows:

De�nition 1.5.3. Let E be a unital category. A morphism f : X → Y is central when it cooperates
with the identity of Y . We write ϕf the cooperator of f and idY . We denote by Z(X, Y ) the set of
central morphisms from X to Y , and by Z(E) the class of central morphisms in E .

Let E be a unital category. For X and Y objects in E , we have a map + : E(X, Y )× Z(X, Y )→
E(X, Y ) de�ned by

f + g = ϕg ◦ (f, idX)t (1.5.2)

where f ∈ E(X, Y ), g ∈ Z(X, Y ) and ϕg : Y ×X → Y is the cooperator of g and idY (see 1.5.3). It
gives the following proposition present in 1.3.22 of [6]:

Proposition 1.5.4. Let E be a unital category. For all objects X, Y ∈ E, the set Z(X, Y ) of central
morphisms from X to Y is a commutative monoid which acts on E(X, Y ). The monoid operation
and the monoid action are both given by the addition in (1.5.2).

In any unital category E , each central morphism from X to Y doesn't need to have an inverse in
the commutative monoid Z(X, Y ), for X, Y ∈ E . We shall consider those morphisms having such an
inverse, as follows:

De�nition 1.5.5. Let E be a unital category. We say that a morphism f : X → Y is symmetrizable
if f is a central morphism having an inverse in the commutative monoid Z(X, Y ). We denote by
Σ(X, Y ) the subset of Z(X, Y ) formed by symmetrizable morphisms form X to Y , and by Σ(E) the
class of symmetrizable morphisms in E .

Remark 1.5.6. Taking the notations of 1.5.5, the set Σ(X, Y ) of symmetrizable morphisms is clearly
an abelian group.

There are some unital categories in which all central morphisms are symmetrizable. This fact
holds in the general context of strongly unital categories. We brie�y recall that a category is strongly
unital (see 1.8.3 of [6]) when it is pointed, has �nite limits and sati�es the property: every split
right punctual relation is undiscrete (see 1.1.1 of [6]). Moreover 1.5.4 also holds in strongly unital
categories because any such category is unital by 1.8.4 of [6].

Remark 1.5.7. Let E be a strongly unital category. For X, Y ∈ E , Z(X, Y ) = Σ(X, Y ), hence the set
Z(X, Y ) is an abelian group, see 1.8.19 of [6].

Note that any semi-abelian category is strongly unital because it is in particular a �nitely com-
plete protomodular category and any such category is strongly unital by 3.1.18 of [6]. Now we de�ne
certain actions on morphism sets in semi-abelian categories induced by central subobjects in the sense
of 1.3.2, and we compare them with actions given in the context of (strong) unital categories as above.
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From now on, we assume that E is a semi-abelian category (or merely a pointed �nitely complete
regular protomodular category having binary coproducts). The next proposition says that a central
subobject of an object in E in the sense of 1.3.2 is exactly a monomorphism and a central morphism
as in 1.5.3.

Proposition 1.5.8. Let z : Z � Y be a monomorphism in E. Then z : Z � Y is a central subobject
of Y in the sense of 1.3.2 if, and only if, it is a central morphism from Z to Y in E as in 1.5.3.

Proof. First we assume that z : Z � Y is a central subobject of Y in E in the sense of 1.3.2. It
means that [Y, Z]IdE = 0, that is equivalent to say that the morphism cY2 ◦ IdE(id|z) : IdE(Y |Z)→ Y
is trivial. Hence there is a unique factorization ϕz : Y × Z → Y of (id, z) : Y + Z → Y though the

comparison morphism r̂IdE2 : Y + Z → Y × Z, i.e. we get

ϕz ◦ r̂IdE2 = (id, z) (1.5.3)

because (id, z) ◦ ιIdE2 = cY2 ◦ IdE(id|z) = 0 and the comparison morphism r̂IdE2 : Y +Z → Y ×Z is the
cokernel of its kernel ιIdE2 : IdE(Y |Z)� Y +Z. By 1.5.2 and 1.5.1, it says that z and the identity of
Y cooperate with cooperator ϕz. By 1.5.3, we deduce that z is a central morphism from Z to Y .
Next we suppose that z : Z � Y is a central morphism in E . By 1.5.3 and 1.5.2, there is a unique
morphism ϕz : Y × Z → Y such that the relation (1.5.3) holds. Hence we get the equalities as
follows:

cY2 ◦ IdE(id|z) = (id, z) ◦ ιIdE2

= ϕz ◦ r̂IdE2 ◦ ιIdE2

= 0

because ιIdE2 : IdE(Y |Z)� Y + Z is the kernel of the comparison morphism r̂IdE2 : Y + Z → Y × Z
(see 1.2.3). By 1.3.1, we have

[Y, Z]IdE = Im
(
cY2 ◦ IdE(id|z)

)
= 0

implying that z : Z � Y is a central subobject in the sense of 1.3.2.

Now we assume that z : Z → Y is a central subobject of Y in E (i.e. a central morphism from X
to Y in E).
Notation 1.5.9. Let X and Y be two objects in E . We write Z0(X, Y ) for the set of morphisms of
the form z ◦ α, where α ∈ E(X,Z).

Then we show that, for X, Y ∈ E , each morphism belonging to Z0(X, Y ) is a central morphism
in E .

Proposition 1.5.10. Let X and Y be two objects in E. Then Z0(X, Y ) ⊂ Z(X, Y ). Moreover for
α ∈ E(X,Z) the cooperator ϕz◦α : Y ×X → Y of z ◦ α and idY is given by

ϕz◦α = ϕz ◦ (idY × α) (1.5.4)

Proof. It is a direct consequence of 1.3.20 and 1.3.6 of [6].

Remark 1.5.11. Let X and Y be two objects in E . The set Z0(X, Y ) is clearly stable under the
additive law of the abelian group Z(X, Y ) (by 1.5.7 because E is strongly unital since it is a semi-
abelian category by 1.5.8). Hence it has a canonical abelian group structure.
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Now we are interested in an action on sets of morphisms with codomain Z (a central subobject
of Y in E) from(1.5.3); in fact, for X, Y ∈ E , we de�ne the map • : E(X, Y )×E(X,Z)→ E(X, Y ) by

f • α = ϕz ◦ (f, α)t (1.5.5)

where f ∈ E(X, Y ) and α ∈ E(X,Z). We prove that it is an action of E(X,Z) on E(X, Y ) which
coincides with the restriction of the action given in (1.5.2) to E(X, Y )× Z0(X, Y ).

Lemma 1.5.12. Let X and Y be two objects in E. For f ∈ E(X, Y ) and α ∈ E(X,Z), we have

f • α = f + α

Proof. It su�ces to prove that ϕz◦α = ϕz ◦ (idY × α). For this, we have the equalities as follows:

f + α = ϕz◦α ◦ (f, id)t

= ϕz◦α ◦ (f × id) ◦∆2
X

= ϕz ◦ (id× α) ◦ (f × id) ◦∆2
X , by (1.5.4)

= ϕz ◦ (f × α) ◦∆2
X

= ϕz ◦ (f, α)t

= f • α ,

as desired.

Remark 1.5.13. We recall that z : Z � Y is a central subobject of Y in E . Let X and Y be objects
in E . Then the abelian group E(X,Z) acts on E(X, Y ) as

f + α = ϕz ◦ (f, α)t (1.5.6)

where f ∈ E(X, Y ) and α ∈ E(X,Z). Moreover this action coincides with the one given in (1.5.2) by
1.5.12.

Then we prove that each abelian object in E has an internal binary operation in the sense of
De�nition A.1.1 of [6].

Proposition 1.5.14. Let A be an abelian object in E. Then A has an internal binary operation
mA : A × A → A in Ab(E), that is the unique factorization of ∇2

A : A + A → A through the

comparison morphism r̂IdE2 : A+ A→ A× A.

Proof. The morphism mA : A × A → A exists because ∇2
A ◦ ι

IdE
2 = cA2 = 0 by 1.3.1 (since A is an

abelian object in E).

Remark 1.5.15. Since Z is a central subobject of Y (hence an abelian object in E), there is an internal
binary operation mZ : Z × Z → Z by 1.5.14. It determines an abelian group structure on E(X,Z)
as follows:

f + g = mZ ◦ (f, g)t

where f, g ∈ E(X,Z). It is in fact the restriction of the action + : E(X, Y ) × E(X,Z) → E(X, Y )
(see 1.5.13) to the set E(X,Z)× E(X,Z).

The next proposition gives an isomorphism of abelian groups:

Proposition 1.5.16. Consider an object X and an abelian object A both in E. Then the map
(abX)∗ : E(Xab, A)→ E(X, A) is an isomorphism of abelian groups.
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Proof. It su�ces to observe that the morphism cX2 : IdE(X|X) → X (given in (1.2.8)) is natural in
X, i.e. f ◦ cX2 = cA2 ◦ IdE(f |f), for f ∈ E(X,Z). As A is an abelian object in E , we have cA2 = 0 by
1.3.1. Hence f factorizes uniquely through the cokernel abX : X → Xab of cX2 .

Notation 1.5.17. Consider an object X and an abelian object A in E , and f ∈ E(X, A), then we
write fab ∈ C(Xab, A) for the unique factorization of f through abX : X → Xab.

Now we provide a criterion for a subobject of an object in E to be central, already given by D.
Bourn and M. Gran. The proof has been adapted for our own context.

Proposition 1.5.18. Let e : Y → Q be a regular epimorphism in E. Consider the following diagram:

Y Q

R Y

K K

e //

e

��

d0

��

d1 //

k

��

ker(e)

��

s

EE

(1.5.7)

where the bottom rectangle is the kernel pair of e, s : Y → R is the canonical common section of d0

and d1, and k : K � R is the unique morphism such that k ◦ d0 = 0 and k ◦ d1 = ker(e) by the
universal property of the kernel pair of e.
Then K is a central subobject of Y (in the sense of 1.3.2) if, and only if, there is a morphism
σ : R → K in E such that σ ◦ k = id, σ ◦ s = 0 and (d0, σ)t : R → Y ×K is an isomorphism. In
other terms, there is a morphism σ : R→ K in E such that the span

K R Y
d0 //

s

vvk //

σ

vv

in E is a split punctual and undiscrete relation (see the de�nitions in 1.11 of [6]).

Proof. First we assume that K is a central subobject of Y , i.e. [Y,K]IdE = 0. As s : Y � R
is a subobject of Y , it implies that (s, k) ◦ ιIdE2 = cY2 ◦ IdE(s|k) = 0 because Im(cR2 ◦ IdE(s|k)) =

[Y,K]IdE = 0 by 1.3.1. As the comparison morphism r̂IdE2 : Y +K → Y ×K is the cokernel of its kernel
ιIdE2 : IdE(Y |K)� Y +K (since it is a regular epimorphism), there is a unique ϕ(s,k) : Y ×K → R
such that

ϕ(s,k) ◦ r̂IdE2 = (s, k) (1.5.8)

Note that k : K � R is the kernel of d0 : R → Y by a categorical argument because the bottom
rectangle of diagram (1.5.7) is a pull-back. Then we consider the following morphism of split short
exact sequences:

K R Y

K Y ×K Y

0

0

0

0

k // d0 //

s

{{

ι22 //
π2

1 //

ι21

zz

//

// //

//

ϕ(s,k)

��
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By applying the split �ve lemma (by protomodularity of E) to the above diagram, it proves the
ϕ(s,k) : Y × Z → R is an isomorphism. Next we set the morphism σ = π2

2 ◦ ϕ−1
(s,k) : R→ K. We �rst

have

σ ◦ k = σ ◦ (s, k) ◦ i21

= σ ◦ ϕ(s,k) ◦ r̂IdE2 ◦ i22 , by (1.5.8)

= π2
2 ◦ ϕ−1

(s,k) ◦ ϕ(s,k) ◦ r̂IdE2 ◦ i22

= π2
2 ◦ r̂

IdE
2 ◦ i22

= π2
2 ◦ ι22

= id

Then we get

σ ◦ s = σ ◦ (s, k) ◦ i21

= π2
2 ◦ r̂

IdE
2 ◦ i21

= π2
2 ◦ ι21

= 0

Hence we obtain
σ ◦ k = id and σ ◦ s = 0 (1.5.9)

It remains to prove that the morphism (d0, σ)t : R→ Y ×K is an isomorphism. For this, it su�ces
to show that (d0, σ)t ◦ ϕ(s,k) = id. First we have the equalities as follows:

π2
1 ◦ (d0, σ)t ◦ ϕ(s,k) ◦ r̂IdE2 = d0 ◦ ϕ(s,k) ◦ r̂IdE2

= d0 ◦ (s, k) , by (1.5.8)

= (d0 ◦ s, d0 ◦ k)

= (id, 0)

= r2
1

= π2
1 ◦ r̂

IdE
2

Hence we obtain
π2

1 ◦ (d0, σ)t ◦ ϕ(s,k) = π2
1 (1.5.10)

because the comparison morphism r̂IdE2 : Y +K → Y ×K is an epimorphism. Next we get

π2
2 ◦ (d0, σ)t ◦ ϕ(s,k) ◦ r̂IdE2 = σ ◦ ϕ(s,k) ◦ r̂IdE2

= σ ◦ (s, k) , by (1.5.8)

= (σ ◦ s, σ ◦ k)

= (0, id) , by (1.5.9)

= r2
2

= π2
2 ◦ r̂

IdE
2
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Thus we have
π2

2 ◦ (d0, σ)t ◦ ϕ(s,k) = π2
2 (1.5.11)

By (1.5.10) and (1.5.11), it implies that

(d0, σ)t ◦ ϕ(s,k) = id (1.5.12)

by uniqueness in the universal property of the product Y ×K. Consequently, the morphism (d0, σ)t :
R→ Y ×K is an isomorphism.
Now we assume that there is a morphism σ : R → K such that σ ◦ k = id, σ ◦ s = 0 and
(d0, σ)t : R → Y × K is an isomorphism. We aim at proving that ker(e) : K � Y is a central
subobject of Y . By using similar calculations as above, we get

(d0, σ)t ◦ (s, k) = r̂IdE2 (1.5.13)

We set the morphism ϕs,k = ((d0, σ)t)−1. Hence we have

cY2 ◦ IdE(id|ker(e)) = (id, ker(e)) ◦ ιIdE2 = d1 ◦ (s, k) ◦ ιIdE2 = d1 ◦ ϕ(s,k) ◦ r̂IdE2 ◦ ιIdE2 = 0

implying that [Y,K]IdE = 0. Thus it proves that ker(e) : K � Y is a central subobject of Y .

We recall that z : Z � Y is a central subobject of Y in E . We denote by q = coker(z) : Z �
Y ) : Y → Coker(z) the cokernel of z. Note that the monomorphism z is normal by using Lemma
4.2 of [36].

Remark 1.5.19. By Proposition 3.2.20 and Lemma 4.2.6 both in [6], the monomorphism z : Z � Y
is the kernel of q.

Then we determine the orbits of actions on morphism sets as in (1.5.6).

Proposition 1.5.20. Let X and Y be two objects in E. Consider f, g : X → Y two morphisms in
E. Then we have q ◦ f = q ◦ g if, and only if, there is a morphism d : X → Z such that

g = f + d

whose action is de�ned in (1.5.6).

Proof. Consider the following diagram:

Y Coker(z)

R Y

Z Z

q //

q

��

d0

��

d1 //

k

��

z

��

s

EE

(1.5.14)

where the bottom rectangle of the above diagram is the kernel pair of q. It is a similar diagram as
in (1.5.7) in the statement of 1.5.18 (replacing respectively e, ker(e) and K with q, z and Z). By
1.5.18, there is a morphism σ : R → Z such that σ ◦ k = id, σ ◦ s = 0 and (d0, σ)t : R → Y × Z
is an isomorphism (because z : Z � Y is a central subobject of Y ). We set the morphism ϕ(s,k) =
((d0, σ)t)−1 : Y ×K → R
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We �rst assume that q ◦ f = q ◦ g. By the universal property of the kernel pair of q, there is a unique
morphism α : X → R such that

f = d0 ◦ α and g = d1 ◦ α (1.5.15)

We set the morphism d = σ ◦ α : X → Z. We have

ϕz = d1 ◦ ϕ(s,k) (1.5.16)

by (??). Then we get the equalities as follows:

f + d = ϕz ◦ (f, d)t

= d1 ◦ ϕ(s,k) ◦ (f, d)t , by (1.5.17)

= d1 ◦ ϕ(s,k) ◦ (d0 ◦ α, σ ◦ α)t , by (1.5.17)

= d1 ◦ ϕ(s,k) ◦ (d0, σ)t ◦ α

= d1 ◦ α , by (1.5.12)

= g ,

as desired. Now we assume that there is a morphism d : X → Z such that g = f + d. We have the
following equalities:

q ◦ g = q ◦ (f + d) = q ◦ ϕz ◦ (f, d)t = q ◦ ϕz ◦ (f × d) ◦∆2
X

Then we get

q ◦ ϕz ◦ (f × d) ◦ r̂IdE2 = q ◦ ϕz ◦ r̂IdE2 ◦ (f + d) , by naturality

= q ◦ (id, z) ◦ (f + d) , by (1.5.4)

= q ◦ (f, z ◦ d)

= (q ◦ f, 0)

= q ◦ f ◦ r2
1

= q ◦ f ◦ π2
1 ◦ r̂

IdE
2

Hence we obtain
q ◦ ϕz ◦ (f × d) = q ◦ f ◦ π2

1 (1.5.17)

Thus we have

q ◦ g = q ◦ ϕz ◦ (f × d) ◦∆2
X

= q ◦ f ◦ π2
1 ◦∆2

X , by (1.5.17)

= q ◦ f ,

as desired.

Now we give an important property of actions on morphism sets as in 1.5.5.
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Proposition 1.5.21. Let X be an object in E. Then the action of the abelian group E(X,Z) on
E(X, Y ) given in 1.5.5 is simple, i.e. if f : X → Y and d : X → Z are two morphisms such that

f + d = f

then it implies that d = 0.

Proof. Let f : X → Y and d : X → Z be two morphisms such that f = f +d. We have the following
relations:

f = f + d⇐⇒ f = ϕz ◦ (f, d)t , by (1.5.6)

⇐⇒ f = d1 ◦ ϕ(s,k) ◦ (f, d)t , by (1.5.17)

First we observe that d1 ◦ (s ◦ f) = f = d1 ◦ ϕ(s,k) ◦ (f, d)t, i.e.

d1 ◦ (s ◦ f) = d1 ◦ ϕ(s,k) ◦ (f, d)t (1.5.18)

Then we have

d0 ◦ ϕ(s,k) ◦ (f, d)t = π2
2 ◦ (f, d)t , by (1.5.10) = f = d0 ◦ (s ◦ f)

Hence we obtain
d0 ◦ ϕ(s,k) ◦ (f, d)t = d0 ◦ (s ◦ f) (1.5.19)

The relations (1.5.18) and (1.5.19) imply that

s ◦ f = ϕ(s,k) ◦ (f, d)t (1.5.20)

by uniqueness in the universal property of the kernel pair of q (see (1.5.14)). Now we have

s ◦ f = (s, k) ◦ i21 ◦ f = ϕ(s,k) ◦ r̂IdE2 ◦ i21 ◦ f , by (1.5.4) = ϕ(s,k) ◦ ι21 ◦ f

Then we have the relations as follows:

s ◦ f = ϕ(s,k) ◦ ◦(f, d)t ⇐⇒ ϕ(s,k) ◦ ι21 ◦ f = ϕ(s,k) ◦ ◦(f, d)t , by (1.5.4)

⇐⇒ ι21 ◦ f = (f, d)t

Thus we obtain

d = π2
2 ◦ (f, d)t = π2

2 ◦ ι21 ◦ f = 0

Then we are led to consider a certain type of actions on morphism sets (induced by speci�c central
subojects) in 2-step nilpotent categories as follows:

Corollary 1.5.22. Let E be a 2-step nilpotent category (see 1.3.10). Then, for X, Y ∈ E, the abelian
group E(X, [Y, Y ]IdE ) simply acts on E(X, Y ) as

f + α = ϕiY ◦ (f, α)t (1.5.21)

where f ∈ E(X, Y ), α ∈ E(X, [Y, Y ]IdE ), iY : [Y, Y ]IdE � Y is the image of cY2 : IdE(Y |Y )→ Y (see
1.3.5) and ϕiY : Y × [Y, Y ]IdE → Y is the cooperator given in (1.5.3) (replacing z with iY ).
Moreover, for f, g : X → Y two morphisms in E, then we have abY ◦f = abY ◦ g if, and only if, there
is a morphism d : X → [Y, Y ]IdE such that

g = f + d
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Proof. In this case, [Y, Y ]IdE is a central subobject of Y by 1.3.11. Then it is a direct consequence
of 1.5.13, 1.5.21 and 1.5.20.

Notation 1.5.23. In (1.5.21), we often write ϕ = ϕiY .

Proposition 1.5.24. Let E be a 2-step nilpotent category and let X,X ′, Y, Y ′ ∈ E. Then for f ∈
E(Y, Y ′), g ∈ E(X, Y ), h ∈ E(X ′, X) and α ∈ E(X, [Y, Y ]IdE ) we have{

f ◦ (g + α) = f ◦ g + γIdE2 (f) ◦ α
(g + α) ◦ h = g ◦ h+ α ◦ h

where the action + : E(X, Y )× E(X, [Y, Y ]IdE )→ E(X, Y ) is de�ned in (1.5.21).

Proof. For this we have the following equalities:

f ◦ ϕiY ◦ (g × α) ◦ r̂IdE2 = f ◦ ϕiY ◦ r̂
IdE
2 ◦ (g + α) , by naturality

= f ◦ (id, iY ) ◦ (g + α)

= (f ◦ g, f ◦ iY ◦ α)

= (f ◦ g, iY ′ ◦ γIdE2 (f) ◦ α)

= (id, iY ′) ◦
(
(f ◦ g) + (γIdE2 (f) ◦ α)

)
= ϕiY ′ ◦ r̂

IdE
2 ◦

(
(f ◦ g) + (γIdE2 (f) ◦ α)

)
= ϕiY ′ ◦

(
(f ◦ g)× (γIdE2 (f) ◦ α)

)
◦ r̂IdE2

Hence we obtain
f ◦ ϕiY ◦ (g × α) = ϕiY ′ ◦

(
(f ◦ g)× (γIdE2 (f) ◦ α)

)
(1.5.22)

Then we get

f ◦ (g + α) = f ◦ ϕiY ◦ (g, α)t

= f ◦ ϕiY ◦ (g × α) ◦∆2
X

= ϕiY ′ ◦
(
(f ◦ g)× (γIdE2 (f) ◦ α)

)
◦∆2

X

= ϕiY ′ ◦
(
f ◦ g, γIdE2 (f) ◦ α

)t
= f ◦ g + γIdE2 (f) ◦ α ,

as desired. Next we consider the equalities as follows:

(g + α) ◦ h = ϕiY ◦ (g, α)t ◦ h = ϕiY ◦ (g ◦ h, α ◦ h)t = g ◦ h+ α ◦ h ,

as desired.

1.6 Linear operads and algebras over such an operad

In this part, we recall the notion of (algebraic) operads wich can be found in chapter 5 of [26], and
in chapter 1 of [9]. Intuitively, the notion of operad consists of a collection of objects P(r) (indexed
in N) in some monoidal category which collects (formal) operations with r variables. It is formally
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de�ned by a structure given by such a collections of objects P(r) together with composition product
that model the composition of operations. In our context, we consider (right) linear operads in the
whole thesis, namely the objects P(r) are abelian groups (or modules over a commutative ring)
together with structure maps which are linear.

De�nition 1.6.1. We consider the following de�nitions:

• We say that P is a right (resp. left) linear operad when it is an operad in the monoidal category
of modules over a commutative ring k, i.e. it consists of a sequence of k-modules P(r), r ∈ N,
together with structure linear maps

γk1,...,kn;n : P(k1)⊗ . . .⊗ P(kn)⊗ P(n)→ P(k1 + . . .+ kn) (1.6.1)(
resp. γn;k1,...,kn : P(n)⊗ P(k1)⊗ . . .⊗ P(kn)→ P(k1 + . . .+ kn)

)
(1.6.2)

de�ned for all k1, . . . , kn, n ∈ N, satisfying associativity relations expressed in the diagram of
Figure 1.3 of [9]. We often omit the term righ and left for an operad. For r ∈ N, we call P(r)
the k-th term of P and the integer r its arity. An element p ∈ P(r) is called an operation of
arity r.

• A (linear) operad P is symmetric if, for r ∈ N, the k-module P(r) has an additional (left)
Sr-module structure and the structure linear maps in (1.6.1) verify the equivariance relations
expressed in the diagram of Figure 1.1 of [9].

• A (linear) operad P is unitary when there is a unit morphism η : k→ P(1) satisfying the unit
relation given in the diagram of Figure 1.2 of [9]. In fact, it is equivalent to have an element
1P ∈ P(1), called the unit of P , such that certain appropriate axioms hold.

• A (linear) operad P is reduced if P(0) is the zero object.

• If Q is another such operad, a morphism φ : P → Q of (linear) operads is a sequence of k-
module homomorphisms φr : P(r)→ Q(r), r ∈ N, which commutes with the operad structure.

From now on, we consider k a commutative ring. One can see a unitary operad as a monad, i.e.
a monoid in the category of endofunctors of the category of k-modules endowed with its standard
(strict) monoidal structure given by the composition of functors. This is a point of view already
given in 5.2.1 of [26] by seing the operad P as an endofunctor of the category of k-modules de�ned
on objects by

P(M) =
⊕
n∈N

M⊗n ⊗k P(n) (1.6.3)

for the case where P is not symmetric, or by

P(M) =
⊕
n∈N

M⊗n ⊗Sn P(n) (1.6.4)

for the case where P is symmetric. For n ∈ N, the summand M⊗n ⊗Sn P(n) is the quotient of
M⊗n ⊗k P(n) by equivariance relations involving operations of arity n in the operad P .
Remark 1.6.2. Now we recall that a linear operad P can be seen as an endofunctor de�ned on
objects in (1.6.3) and (1.6.4) according to the structure of P . In any case, it provides a left adjoint
functor to the forgetful functor from the category of (nonsymmetric or symmetric) linear operads
to the category of k-modules. Moreover setting M = k in (1.6.4) resp. (1.6.3) determines the free
(symmetric resp. nonsymmetric) P-algebra of rank 1, denoted by FP .
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Now we provide a fundamental example of (left) linear operad given as follows:

Example 1.6.3. Let A be a k-module. We write Homk(B,A) the set of k-module homomorphisms
from B to A, for any k-module B. Then we consider the (left) endomorphism operad EndA associated
with A that is a unitary symmetric linear operad given by a collection of hom-sets

EndA(r) = Homk(A
⊗r, A)

for r ∈ N, together with the structure linear maps

γn;k1,...,kn : EndA(n)⊗ EndA(k1)⊗ . . .⊗ EndA(kn) −→ EndA(k1 + . . .+ kn)
f ⊗ f1 ⊗ . . .⊗ fn 7−→ f ◦

(
f1 ⊗ . . .⊗ fn

)
,

for all k1, . . . , kn, n ∈ N, and the unit of this operad is the identity idA ∈ EndA(1) = Homk(A,A).
Moreover, for r ∈ N, the abelian group EndA(r) is canonically endowed with a Sr-module structure
whose action is given by the permutations of the inputs A⊗r, and the operad EndA clearly satis�es
the equivariance relations.

In the whole thesis, we are led to consider right linear operads and a certain type of them given
as follows:

De�nition 1.6.4. A (linear) operad P (endowed with any monoidal structure) is n-step nilpotent
when any k-th term of P is trivial, for k > n.

We observe that this de�nition can be extended to operads in any pointed monoidal category.
Now we can construct canonically a nilpotent operad from a given linear operad.

De�nition 1.6.5. Let P be a linear operad. We de�ne Niln(P) the (linear) n-step nilpotent operad
associated with P such that the collection of abelian groups {Niln(P)(k)}k∈N is given by

Niln(P)(k) =

{
P(k) , if 1 6 k 6 n

0 , otherwise

endowed with the structure linear maps of P but truncated to order n.

Next we de�ne algebras compatible with the structure of linear operad as follows:

De�nition 1.6.6. Let P be a linear operad. A P-algebra A is a k-module endowed with a morphism
φA : P → EndA of linear operads. Equivalently speaking, it consists of a k-module A together with
structure linear maps

λAr : A⊗r ⊗ P(r)→ A ,

for r ∈ N, satisfying appropriate associativity relations. If moreover the operad P is supposed to be
unitary (resp. symmetric), then the structure linear maps should verify the unitary (resp. symmetric)
relations.

Notation 1.6.7. Let P be a linear operad. Then we denote by Alg − P the category of P-algebras.
Remark 1.6.8. Let P be a linear operad. Then the category Alg − P can be seen as a semi-abelian
variety associated with an algebraic theory containing an abelian group whose presentation is taken
in such a way that associative relations and multilinearity relation for operations hold. If moreover
P is unitary and symmetric, unitary and equivariance relations must hold.

Let P be a linear operad. Any P-algebra can be clearly considered as an abelian group or a set.
Hence it gives rise to two forgetful functors as follows:
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Notation 1.6.9. We denote by W : Alg − P → Ab, respectively V : Alg − P → Set, the forgetful
functor from the category of P-algebras to the category of abelian groups, respectively the category
of sets.

The next proposition says that the forgetful functor W : Alg − P → Ab has the following
preservation properties:

Proposition 1.6.10. The forgetful functor W : Alg−P → Ab preserves and re�ects �ltered colimits
and coequalizers of re�exive graphs.

Proof. For this, we consider the following commutative diagram:

Alg − P Ab

Set

W
//

U

OO

V

77

As the category Alg − P is a semi-abelian variety (see 1.6.8), it follows that the forgetful functor
W : Alg − P → Set preserves and re�ects �ltered colimits and coequalizers of re�exive graphs by
1.1.7. It is the same for the forgetful functor U : Ab → Set because Ab is an abelian category
(hence in particular a semi-abelian category). Hence it is straighforward that the (forgetful) functor
W : Alg − P → Ab preserves and re�ects �ltered colimits and coequalizers of re�exive pairs.

The proof of the proposition 1.6.10 can be slightly extented replacing the forgetful functor W :
Alg − P → Ab with a certain type of functors, as follows:

Proposition 1.6.11. Let C be any category having �ltered colimits and coequalizers of re�exive
graphs, and let F : C → Alg − P be a functor. If the composite functors W.F : C → Ab preserves
�ltered colimits and coequalizers of re�exive graphs, then F preserves these colimits.

Proof. For this we consider the following commutative diagram:

C Alg − P

Ab

F
//

W

OO

W.F

77

By assumption, the composite functors W.F preserves �ltered colimits and coequalizers of re�exive
graphs. As the forgetful functor W : Alg − P → Ab re�ects these colimits by 1.6.10, it follows that
the functor F preserves also �ltered colimits and coequalizers of re�exive graphs.

1.7 Nilpotent algebras over a linear operad

We assume that P is a linear operad as in 1.6.1. In this part, we determine nilpotent P-algebras.
First, for n ≥ 2, we shall compute on objects the n-th cross-e�ect of the identity functor of the
category Alg − P on objects. Then we provide commutators of any P-algebra. Next we verify that
taking a 2-step nilpotent P-algebra is the same as taking an algebra over a certain 2-step nilpotent
operad depending on P . Let A1, . . . , An n be P-algebras and ik : Ak � A1 + . . .+An be the injection
of the k-th summand, for 1 6 k 6 n. To simplify, we write S = A1 + . . .+ An.
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Proposition 1.7.1. The n-th cross-e�ect IdAlg−P(A1| . . . |An) is generated as a subgroup of S by
elements of the following form

λSk

(
i1(a1,1)⊗ . . .⊗ i1(a1,k1)⊗ . . .⊗ in(an,1)⊗ . . .⊗ in(an,kn)⊗ p

)
(1.7.1)

where k is a natural number such that k ≥ n, aj,l ∈ Aj (for 1 6 j 6 n and 1 6 l 6 kj), p ∈ P(k)
and k1, . . . , kn are natural numbers such that k1, . . . , kn ∈ {1, . . . k − n+ 1} and k1 + . . .+ kn = k.

Proof. Denote by Pn the assertion for a given n > 2. We prove this result by induction. First we
prove that P2 is true. Let i1 : A1 → A1 +A2 and i2 : A2 → A1 +A2 be respectively the injections of
the �rst and the second summand, and r1 : A1 + A2 → A1, r2 : A1 + A2 → A2 their corresponding
retractions. We �rst observe that A1 + A2 may be seen as a (right) P(1)-module generated by
elements of the following form:

λA1+A2
k

(
i1(a1,1)⊗ . . .⊗ i1(a1,k1)⊗ i2(a2,1)⊗ . . .⊗ i2(a2,k2)⊗ p

)
(1.7.2)

where a1,i ∈ A1 (for 1 6 i 6 k1), a2,j ∈ A2 (for 1 6 j 6 k2), p ∈ P(k) and k1, k2 are natural numbers
such that k1 + k2 = k. By convention, the case k1 = k (resp. k2 = k) and k2 = 0 (resp. k1 = 0)
corresponds to the fact that there are only elements in A1 (resp. A2) in λ

A1+A2
k above. Then there

is a retraction ρId2 : A1 + A2 → IdAlg−P(A1|A2) (as only a right P(1)-module homomorphism) of
the inclusion map ιId2 : IdAlg−P(A1|A2) → A1 + A2 which is the kernel of the comparison morphism
̂
r
IdAlg−P
2 = (r1, r2)t : A1 + A2 → A1 × A2, given by:

∀x ∈ A1 + A2 , ρId2 (x) = x− (i1 ◦ r1)(x)− (i2 ◦ r2)(x)

As ρId2 : A1+A2 → IdAlg−P(A1|A2) is surjective, the elements of ρId2 (A1+A2) generate IdAlg−P(A1|A2)
as a sub-P(1)-module of A1+A2. It su�ces to evaluate the morphism ρId2 on the generators of A1+A2

given in (1.7.2). Hence we �nd

ρId2

(
λA1+A2
k

(
i1(a1)⊗ . . .⊗ i1(ak)⊗ p

))
= ρId2

(
λA1+A2
k

(
i2(b1)⊗ . . .⊗ i2(bk)⊗ p

))
= 0

where ai ∈ A1 and bi ∈ A2, for 1 6 i 6 k, and p ∈ P(k). However we have

ρId2

(
λA1+A2
k

(
i1(a1,1)⊗ . . .⊗ i1(a1,k1)⊗ i2(a2,1)⊗ . . .⊗ i2(a2,k2)⊗ p

))
= λA1+A2

k

(
i1(a1,1)⊗ . . .⊗ i1(a1,k1)⊗ i2(a2,1)⊗ . . .⊗ i2(a2,k2)⊗ p

)
if we assume that k ≥ 2 and k1, k2 are natural numbers such that 1 6 k1, k2 6 k − 1 such that
k1 + k2 = k. It proves that the property P2 is veri�ed.
Now, proceeding by induction, we assume that Pn−1 is true , for a given n > 3. We aim at proving that
the property Pn is also true. For this, we �rst consider the coproduct S to be (A1 +A2)+A3 + . . .+An

the coproduct of n − 1 P-algebras whose ĩn−1
1 = (in1 , i

n
2 ) : A1 + A2 → (A1 + A2) + A3 + . . . + An is

the injection of the �rst summand and, for 2 6 p 6 n − 1, ĩn−1
p = inp+1 : Ap+1 → (A1 + A2) + A3 +

. . .+An the injection of the (p+ 1)-th summand of S (seen as the injection of the p-th summand of
(A1 + A2) + A3 + . . . + An). Then we use the inductive de�nition of the cross-e�ect of the identity
functor IdAlg−P : Alg − P → Alg − P given in 2.20 of [14] as follows:

IdAlg−P(A1| . . . |An) = IdAlg−P(−|A3| . . . |An)(A1|A2)

To simplify, we write G = IdAlg−P(−|A3| . . . |An) which is a functor with domain and range Alg−P .
There is a retraction ρG2 : G(A1 +A2)→ G(A1|A2) (as a P(1)-module homomorphism) of the kernel
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ιG2 : G(A1|A2) → G(A1 + A2) of the comparison morphism r̂G2 = (G(r1), G(r2))t : G(A1 + A2) →
G(A1)×G(A2); this retraction is given by

∀x ∈ G(A1 + A2) , ρG2 (x) = x−G(i1 ◦ r1)(x)−G(i2 ◦ r2)(x)

As ρG2 : G(A1 +A2)→ G(A1|A2) is surjective, the elements of ρG2
(
G(A1 +A2)

)
generate G(A1|A2) =

IdAlg−P(A1| . . . |An) as a P(1)-module. Then it su�ces to evaluate ρG2 on the generators of G(A1+A2)
given by induction, namely G(A1 +A2) = IdAlg−P(A1 +A2| . . . |An) is generated (as a P(1)-module)
by elements of the following form:

xSk = λSk

( k1⊗
i=1

ĩn−1
1 (si)⊗

n−1⊗
α=2

kα⊗
β=1

ĩn−1
l (aα,β)⊗ p

)
where k is a natural number such that k ≥ n − 1, si ∈ A1 + A2 (for 1 6 i 6 k1), aj,l ∈ Aj+1

(for 2 6 j 6 n − 1 and 1 6 l 6 kj), p ∈ P(k) and k1, . . . , kn−1 are natural numbers such that
k1, . . . , kn−1 ∈ {1, . . . k − n+ 2} and k1 + . . .+ kn−1 = k. We know that, for 1 6 i 6 k1, we have

si =
(
i1 ◦ r1

)
(si) +

(
i2 ◦ r2

)
(si) + ρId2 (si)

where ρId2 : A1 +A2 → IdAlg−P(A1|A2) is the map given above. By the previous argument, we know
that, for 1 6 i 6 k1, ρId2 (si) ∈ IdAlg−P(A1|A2). Then we have

xSk = λSk

( k1⊗
i=1

ĩn−1
1

(
(i1 ◦ r1)(si) + (i2 ◦ r2)(si) + ρId2 (si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p
)

= λSk

( k1⊗
i=1

(
in1
(
r1(si)

)
+ in2

(
r2(si)

)
+ ĩn−1

1

(
ρId2 (si)

))
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p
)

= λSk

( k1⊗
i=1

in1
(
r1(si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p
)

+ λSk

( k1⊗
i=1

in2
(
r2(si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p
)

+ λSk

( k1⊗
i=1

ĩn−1
1

(
ρId2 (si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p
)

(♣)

+ sum of mixed terms (♠)

It is not necessary to make the sum explicit but it is interesting to see in which form are the mixed
terms: 

λSk

( k1
1⊗

i=1

in1
(
r1(si)

)
⊗

k2
1⊗

j=1

in2
(
r2(sj)

)
⊗

k3
1⊗

l=1

ĩn−1
1

(
ρId2 (sl)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p1

)
λSk

( k1
1⊗

i=1

in1
(
r1(si)

)
⊗

k2
1⊗

j=1

ĩn−1
1

(
ρId2 (sj)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p2

)
λSk

( k1
1⊗

i=1

in2
(
r2(si)

)
⊗

k2
1⊗

j=1

ĩn−1
1

(
ρId2 (sj)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p3

)
λSk

( k1
1⊗

i=1

in1
(
r1(si)

)
⊗

k2
1⊗

j=1

in2
(
r2(si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

inl+1(aα,β)⊗ p4

)
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where kl1 ∈ N∗ and pi ∈ P(k), for i = 1, . . . , 4 and l : 1, . . . , 3. Moreover we know that ρId2 (si) ∈
IdAlg−P(A1|A2) so that it can be expressed as a sum of the elements as in (1.7.3) (for n = 2). Hence
(♣) and (♠) are sums of elements having the form of those in (1.7.3). In addition, we have

ρG2 (xSk ) = λSk

( k1⊗
i=1

ĩn−1
1

(
ρId2 (si)

)
⊗

n−1⊗
α=2

kα⊗
β=1

ĩn−1
l (aα,β)⊗ p

)
+ (♠)

Consequently, the property Pn is true. This proves the result.

A direct consequence of 1.7.1 is to �nd a generating set of commutators (in the sense of 1.3.1) in
the category of P-algebras as an abelian group.

Proposition 1.7.2. For a P-algebra A, the n-weighted commutator γ
IdAlg−P
n (A) = [A, . . . , A]IdAlg−P

is generated as a subgroup of A by elements of the following form

λAk

(
a1 ⊗ . . .⊗ ak ⊗ p

)
(1.7.3)

where k is a natural number such that k ≥ n, ai ∈ A for i = 1, . . . , k.

Proof. Let inl : A � A+n be the injection of the l-th summand, for 1 6 l 6 n. By 1.7.1, the n-th
cross-e�ect IdAlg−P(A| . . . |A) is the P-algebra generated by elements of the following form:

λSk

(
in1 (a1,1)⊗ . . .⊗ in1 (a1,k1)⊗ . . .⊗ inn(an,1)⊗ . . .⊗ inn(an,kn)⊗ p

)
where S = A+n, k is a natural number such that k ≥ n, aj,l ∈ A (for 1 6 j 6 n and 1 6 l 6 kj), p ∈
P(k) and k1, . . . , kn are natural numbers such that k1, . . . , kn ∈ {1, . . . k−n+1} and k1 + . . .+kn = k.
Hence we get

cAn

(
λSk
(
in1 (a1,1)⊗ . . .⊗ in1 (a1,k1)⊗ . . .⊗ inn(an,1)⊗ . . .⊗ inn(an,kn)⊗ p

))
= (∇n

A ◦ ι
IdAlg−P
2 )

(
λSk
(
in1 (a1,1)⊗ . . .⊗ in1 (a1,k1)⊗ . . .⊗ inn(an,1)⊗ . . .⊗ inn(an,kn)⊗ p

))
= ∇n

A

(
λSk
(
in1 (a1,1)⊗ . . .⊗ in1 (a1,k1)⊗ . . .⊗ inn(an,1)⊗ . . .⊗ inn(an,kn)⊗ p

))
= λAk

(
a1,1 ⊗ . . .⊗ a1,k1 ⊗ . . .⊗ an,1 ⊗ . . .⊗ an,kn ⊗ p

)
because ∇n

A : A+n → A is the unique homomorphism of P-algebras such that, for 1 6 l 6 n,
∇n
A ◦ inl = id. Since by 1.3.1 the n-weighted commutator γ

IdAlg−P
n (A) of A is the image of cAn :

IdAlg−P(A| . . . |A)→ A, it concludes the proof.

Then it is now possible to characterize nilpotent P-algebras as follows:

Corollary 1.7.3. Let A be a P-algebra. Then A is an n-step nilpotent P-algebra if, and only if, its
structure linear maps λAk : A⊗k ⊗ P(k)→ A are trivial for k > n.

Proof. It is a direct consequence of 1.7.2.

Corollary 1.7.4. Let A be a P-algebra. If P is a 2-step nilpotent operad (see 1.6.4), then the
2-weighted commutator [A,A]IdAlg−P , de�ned in 1.3.1, is

[A,A]IdAlg−P = Im
(
λA2 : A⊗2 ⊗ P(2)→ A

)
where λA2 is a structure linear map of A.
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Proof. It also is a direct consequence of 1.7.3.

Corollary 1.7.5. The abelian core Ab(Alg − P) is exactly the category of (right) P(1)-modules.

Proof. Let A be an abelian object in Alg−P . It means that γ
IdAlg−P
2 (A) is trivial by 1.3.1. By 1.7.3,

it implies that the structure linear maps λAk : A⊗ P(k)→ A are trivial, for k > 2.

Now it is possible to determine an explicit expression of the abelianization functor AbAlg−P :
Alg − P → Ab(Alg − P) = ModP(1) on objects and on morphisms.

Notation 1.7.6. We consider the following notations, as follows:

• For a P-algebra A, we denote by A2 the ideal of A consists of elements of the form λA2 (a1⊗a2⊗p2)
where a1, a2 ∈ A, p2 ∈ P(2) and λA2 : A⊗2⊗P(2)→ A is the structure linear map of A encoding
binary bilinear operations in A parametrized by P(2). Moreover we denote by A the quotient
of A by A2.

• For a ∈ A, we write a the equivalence class of A in A.

Corollary 1.7.7. The abelianization functor AbAlg−P : Alg − P → Ab(Alg − P) = ModP(1) is such
that

• On objects, for a P-algebra A, AbAlg−P(A) = Aab = A the quotient of A by the ideal A2 (see
1.7.6).

• On morphisms, for a morphism f : A→ B of P-algebras, AbAlg−P(f) : Aab = A→ Bab = B is
the unique canonical factorization.

The next result now says that taking an n-step nilpotent P-algebra amounts to picking an algebra
over the n-step nilpotent operad Niln(P).

Proposition 1.7.8. Let P be a (linear) operad as in 1.7.3. We have the following isomorphism of
categories

Niln(Alg − P) ∼= Alg −Niln(P)

where Niln(P) is the n-step nilpotent linear operad de�ned in 1.6.5.

Proof. It is an immediate consequence of 1.7.3.

1.8 Binary coproducts of 2-step nilpotent algebras over a lin-

ear operad

Let P be a linear symmetric unitary operad as in 1.6.1 supposed here 2-step nilpotent (see 1.6.4). In
this part, we give an explicit expression of binary coproducts in the category of P-algebras. We �rst
give an explicit expression of the free P-algebra of rank 1, denoted by FP . As P is a 2-step nilpotent
operad, the free P-algebra of rank 1 has the following expression:

+∞⊕
n=1

Z⊗n ⊗Sn P(n) =
(
Z⊗ P(1)

)
⊕
(
Z⊗2 ⊗S2 P(2)

) ∼= P(1)⊕ P(2)S2 (1.8.1)

where P(2)S2 is the set of the coinvariants by the action of the symmetric group S2 on P(2) present
in the structure of the operad P .
Notation 1.8.1. We denote by q : P(2)→ P(2)S2 the canonical quotient map. If p2 ∈ P(2), we write
q(p2) = p2 to denote the equivalence class of p2 in the set of coinvariants P(2)S2 .
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Remark 1.8.2. By (1.8.1), we here consider FP to be P(1)⊕P(2)S2 together with its structure linear
maps given by:

• λFP1 : FP ⊗ P(1)→ FP is given by

λFP1

(
(p1, p2)⊗ p′1

)
=
(
γ1;1(p1 ⊗ p′1), γ2;1(p2 ⊗ p′1)

)
(1.8.2)

where p1, p
′
1 ∈ P(1), p2 ∈ P(2).

• λFP2 : F⊗2
P ⊗ P(2)→ FP is de�ned by

λFP2

(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗ p2

)
=
(
0, γ1,1;2(p1

1 ⊗ p2
1 ⊗ p2)

)
(1.8.3)

where pk1 ∈ P(1), pk2, p2 ∈ P(2) and k = 1, 2.

Notation 1.8.3. We set 0FP = (0, 0).

Let A be a P-algebra and let ev(id,0) : Alg − P(FP , A) → A be the canonical isomorphism that
assigns each morphism with source FP and target A to its evaluation to the basis element (id, 0) of
FP . We observe that its inverse is given by:

ev−1
(id,0)

(a)(p1, p2) = λA1
(
a⊗ p1

)
+ λA2

(
a⊗ a⊗ p2

)
(1.8.4)

where p1 ∈ P(1), p2 ∈ P(2) and a ∈ A. Now we observe that the ideal (FP)2 of FP consists of
elements of the form (0, p2) where p2 ∈ P(2). Consequently, (FP)2 is isomorphic to P(2)S2 in the
abelian category ModP(1). Let i2 : P(2)S2 � FP and π1 : FP → P(1) be respectively the injection
of the second summand and the projection onto the �rst one. Then we have clearly the following
canonical short exact sequence in ModP(1):

0→ P(2)S2

i2
� FP

π1

� P(1)→ 0

This implies that there is an isomorphism of P(1)-modules as follows:

AbAlg−P(FP) = FP ∼= P(1) (1.8.5)

Remark 1.8.4. It is straightforward to see that the (right) P(1)-module FP consists of elements of
the form (p1, 0), with p1 ∈ P(1).

Then we give an explicit expression of binay coproducts in the category of P-algebras (that is
here speci�c for the case where P is a 2-step nilpotent operad) as follows:

Proposition 1.8.5. Let A and B be two P-algebras. Then the coproduct A+B is the abelian group
A×B ×

(
A⊗B ⊗P(1)⊗P(1) P(2)

)
together with its structure linear maps de�ned below:

• λA+B
1 : (A+B)⊗ P(1)→ A+B is given by

λA+B
1

(
(a, b, a′ ⊗ b′ ⊗ p2)⊗ p1

)
=
(
λA1 (a⊗ p1), λB1 (b⊗ p1), a′ ⊗ b′ ⊗ γ2;1(p2 ⊗ p1)

)
where a, a′ ∈ A, b, b′ ∈ B, p1 ∈ P(1) and p2 ∈ P(2).

• λA+B
2 : (A+B)⊗2 ⊗ P(2)→ A+B is de�ned by

λA+B
2

(
(a1 ⊗ b1 ⊗ u1)⊗ (a2, b2, u2)⊗ p2

)
=
(
λA2 (a1 ⊗ a2 ⊗ p2), λB2 (b1 ⊗ b2 ⊗ p2), a1 ⊗ b2 ⊗ p2 + a2 ⊗ b1 ⊗ (p2.t)

)
where a1, a2 ∈ A, b1, b2 ∈ B, u1, u2 ∈ A⊗B ⊗P(1)⊗P(1) P(2) and p2 ∈ P(2).
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and the injections of the �rst and the second summands are given by iA : A → A + B, a 7→ (a, 0, 0)
and iB : B → A+B, b 7→ (0, b, 0). Here, for a P-algebra A, A = AbAlg−P(A) is the quotient of A by
the ideal A2 (see 1.7.6 and 1.7.7)

Proof. It is straightforward to check that A+B de�ned above together with its structure linear maps
is a P-algebra. Then we need to prove that A + B veri�es the universal property of the coproduct.
Let f : A → C and g : B → C be two morphisms in Alg − P . Then we de�ne the morphism
h : A+B → C by

h(a, b, a′ ⊗ b′ ⊗ p2) = f(a) + g(b) + λC2 (f(a′)⊗ g(b′)⊗ p2) (1.8.6)

where a, a′ ∈ A, b, b′ ∈ B and p2 ∈ P(2). It is easy to check that h ◦ iA = f and h ◦ iB = g. Now
we prove that h : A + B → C is a morphism in Alg − P . For this, we consider the two following
diagrams.

• We verify that the following diagram commutes:

(A+B)⊗ P(1) C ⊗ P(1)

A+B C

h⊗id //

λA+B
1

��

λC1

��
h //

We have

h ◦ λA+B
1

(
(a, b, a′ ⊗ b′ ⊗ p2)⊗ p1

)
= h

(
λA1 (a⊗ p1), λB1 (b⊗ p1), a′ ⊗ b′ ⊗ γ2;1(p2 ⊗ p1)

)
= f(λA1 (a⊗ p1)) + g(λB1 (b⊗ p1)) + λC1

(
f(a′)⊗ g(b′)⊗ γ2;1(p2 ⊗ p1)

)
= λC1 (f(a)⊗ p1) + λC1 (g(b)⊗ p1) + λC1

(
λC2 (f(a′)⊗ g(b′)⊗ p2)⊗ p1

)
= λC1

((
f(a) + g(b) + λC2 (f(a′)⊗ g(b′)⊗ p2))

)
⊗ p1

)
= λC1 ◦ (h⊗ id)

(
(a, b, a′ ⊗ b′ ⊗ p2)⊗ p1

)
where a, a′ ∈ A, b, b′ ∈ B, p1 ∈ P(1) and p2 ∈ P(2).

• We prove that the following diagram commutes:

(A+B)⊗2 ⊗ P(2) C⊗2 ⊗ P(2)

A+B C

h⊗2⊗id //

λA+B
2

��

λC2

��
h //

We have

h ◦ λC2 ((a1, b1, a′1 ⊗ b′1 ⊗ p1
2)⊗ (a2, b2, a′2 ⊗ b′2 ⊗ p2

2)⊗ p2)

= h
(
λA2 (a1 ⊗ a2 ⊗ p2), λB2 (b1 ⊗ b2 ⊗ p2), a1 ⊗ b2 ⊗ p2 + a2 ⊗ b1 ⊗ (p2.t)

)
)

= f(λA2 (a1 ⊗ a2 ⊗ p2)) + g(λB2 (b1 ⊗ b2 ⊗ p2)) + λC2 (f(a1)⊗ g(b2)⊗ p2) + λC2 (f(a2)⊗ g(b1)⊗ (p2.t))

= λC2 (f(a1)⊗ f(a2)⊗ p2) + λC2 (g(b1)⊗ g(b2)⊗ p2) + λC2 (f(a1)⊗ g(b2)⊗ p2) + λC2 (g(b1)⊗ f(a2)⊗ p2)
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Moreover we obtain

λC2 ◦ (h⊗2 ⊗ id)
(

(a1, b1, a′1 ⊗ b′1 ⊗ p1
2))⊗ (a2, b2, a′2 ⊗ b′2 ⊗ p2

2)⊗ p2

)
= λC2

((
f(a1) + g(b1) + λC2 (f(a′1)⊗ g(b′1)⊗ p1

2)
)
⊗
(
f(a2) + g(b2) + λC2 (f(a′2)⊗ g(b′2))

)
⊗ p2

2

)
= λC2 (f(a1)⊗ f(a2)⊗ p2) + λC2 (g(b1)⊗ g(b2)⊗ p2) + λC2 (f(a1)⊗ g(b2)⊗ p2) + λC2 (g(b1)⊗ f(a2)⊗ p2)

because the other terms of the sum disappear as they generate ternary linear operations that are
trivial, where a1, a2, a

′
1, a
′
2 ∈ A, b1, b2, b

′
1, b
′
2 ∈ B and p1

2, p
2
2, p2 ∈ P(2).

Let rA : A + B → A and rB : A + B → B be respectively the two retractions onto the �rst and
the second summand. Then we give the second cross-e�ect of the identity functor of P-algebras as
follows:

Corollary 1.8.6. Let A and B be two P-algebras, then we have

IdAlg−P(A |B) = A⊗B ⊗P(1)⊗P(1) P(2)

and the kernel ιId2 : IdAlg−P(A | B) → A + B of the comparison morphism
̂
r
IdAlg−P
2 = (rA, rB)t :

A+B → A×B is given by ιId2 (u) = (0, 0, u), where u ∈ IdAlg−P(A |B).

Remark 1.8.7. Let A be a P-algebra. We see that the (right) P(1)-module IdAlg−P(A|A) is endowed
with the involution T ⊗P(1)⊗P(1) t where T : (A)⊗2 → (A)⊗2 is the canonical switch.

Notation 1.8.8. For a P-algebra A, we denote by IdAlg−P(A|A)S2 the coinvariants set and by π :
IdAlg−P(A|A)→ IdAlg−P(A|A)S2 the canonical quotient map.

By 1.8.5 (or by 1.8.4), we get the following isomorphism of P(1)-modules:

IdAlg−P(FP |FP) = FP ⊗FP ⊗P(1)⊗P(1) P(2) ∼= P(1)⊗ P(1)⊗P(1)⊗P(1) P(2) ∼= P(2)

because P(2) is a (P(1)⊗ P(1))-P(1)-bimodule.

Remark 1.8.9. It permits us to consider that the binary coproduct FP + FP has the following ex-
pression

FP + FP = FP ×FP × P(2)

endowed with the following structure linear maps:

• λF
+2
P

1 : (F+2
P )⊗ P(1)→ F+2

P is given by

λ
F+2
P

1

((
p1

1, p
1
2

)
,
(
p2

1, p
2
2

)
, p2

)
⊗ p1

)
=
((
γ1;1(p1

1 ⊗ p1), γ2;1(p1
2 ⊗ p1)

)
,
(
γ1;1(p2

1 ⊗ p1), γ2;1(p2
2 ⊗ p1)

)
, γ2;1(p2 ⊗ p1)

))
where p1, p

k
1 ∈ P(1), pk2, p2 ∈ P(2) with k = 1, 2.

• λF
+2
P

2 : (F+2
P )⊗2 ⊗ P(2)→ F+2

P is de�ned by

λ
F+2
P

2

((
(p1,1

1 , p1,1
2 ), (p1,2

1 , p1,2
2 ), u1

)
⊗
(
(p2,1

1 , p2,1
2 ), (p2,2

1 , p2,2
2 ), u2

)
⊗ p2

)
=
(
λFP2

(
(p1,1

1 , p1,1
2 )⊗ (p2,1

1 , p2,1
2 )⊗ p2

)
, λFP2

(
(p1,2

1 , p1,2
2 )⊗ (p2,2

1 , p2,2
2 )⊗ p2

)
,

γ1,1;2

(
p1,1

1 ⊗ p
2,2
1 ⊗ p2

)
+ γ1,1;2

(
p2,1

1 ⊗ p
1,2
1 ⊗ (p2.t)

)
where pi,j1 ∈ P(1) and pi,j2 , p2, u1, u2 ∈ P(2), for i, j = 1, 2.
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and the injections of the �rst and the second summands are given by i1 : FP → FP +FP , (p1, p2) 7→(
(p1, p2), 0, 0

)
and i2 : FP → FP + FP , (p1, p2) 7→

(
0, (p1, p2), 0

)
.

Then it is possible to know the generating set of F+2
P as a (right) P(1)-module.

Remark 1.8.10. The (right) P(1)-module F+2
P consists of elements of the form

(
(p1

1, 0), (p2
1, 0), 0

)
,

where p1
1, p

2
1 ∈ P(1). This is due to the fact that we have

λ
F+2
P

2

((
(id, 0), 0FP , 0

)
⊗
(
(id, 0), 0FP , 0

)
⊗ p2

)
=
(
(0, p2), 0FP , 0

)
λ
F+2
P

2

((
0FP , (id, 0), 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ p2

)
=
(
0FP , (0, p2), 0

)
λ
F+2
P

2

((
(id, 0), 0FP , 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ p2

)
=
(
0FP , 0FP , p2

)
for p2 ∈ P(2).
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Chapter 2

Quadratic functors

In this chapter, we are interested in studying quadratic functors. We �rst give the appropriate
context for those taking values in Ab. Then we provide minimal algebraic data (or also called DNA)
characterizing quadratic functors taking values in (right) modules, and those with values in algebras
over a linear symmetric unitary operad.

Assumption: we recall that C denotes a pointed category (whose zero object is denoted by 0)
having �nite coproducts (whose coproduct is denoted by +), and E is a �xed object in C.

For a set S, let Z[S] denote the free abelian group with basis S. Let X ∈ C, then we consider
the pointed set C(E, X) with basepoint the zero map 0EX : E → X, and we can de�ne a subfunctor
Z[0] of Z[C(E, −)] : C → Ab such that, for X ∈ C, Z[0](X) = Z|{0EX}] ⊆ Z[C(E, X)]. This allows
us to give the following de�nition:

De�nition 2.0.1. The universal functor UE : C → Ab relative to E is the quotient of Z[C(E, −)] :
C → Ab by the subfunctor Z[0] : C → Ab.

Moreover there is a retraction ρ2 : UE(E+E)→ UE(E|E) of the kernel ι2 : UE(E|E)→ UE(E+E)

of the comparison morphism r̂UE2 (see (1.2.1)) de�ned by

ρ2(ξ) = ξ − i21 ◦ r2
1 ◦ ξ − i22 ◦ r2

2 ◦ ξ , (2.0.1)

for ξ ∈ C(E, E+2). The above de�nition is given in 1.1 of [12].

Notation 2.0.2. The abelian groups UE(E) and T1UE(E) are rings denoted respectively by Λ and Λ
where T1 is the linearization functor de�ned in 1.2.9. To keep notation simple we write also f for
the equivalence class in UE(X) of an element f of C(E, X) and t1(f) for the equivalence class of f
in T1UE(X).

For an object X in C, we observe that UE(X) has clearly a left Λ-module structure whose action of
Λ is given by the precomposition of elements in the monoid C(E,E). It also provides a left Λ-module
structure on T1UE(X). More precisely, we get

Remark 2.0.3. For an object X in C, the abelian group T1UE(X) is a left Λ-module. This is a direct
consequence of 3.8 of [12] because T1UE : C →ModΛ is a linear functor by 1.2.9.

Notation 2.0.4. Let D be any variety. If C is supposed to be a semi-abelian variety (or merely a
Mal'cev variety), then we denote by QUAD(C,D) the full-subcategory of Quad(C,D) constituted
with quadratic functors from C to D preserving �ltered colimits and coequalizers of re�exive graphs.

In chapter 3 and 4 of the thesis, we are led to study quadratic functors between (2-step nilpotent)
semi-abelian varieties.

45



2.1 Quadratic functors with values in abelian groups

In this part, we mainly recall de�nitions and results of [12]. The main result of [12] provide minimal
algebraic data characterizing quadratic functors taking values in abelian groups.

De�nition 2.1.1. A quadratic C-module (relative to E) is a diagram of homomorphisms of abelian
groups

M =
(
T11cr2(UE)(E,E)⊗Λ Me

HM−→Mee
TM−→Mee

PM−→Me

)
,

where

• Me is a left Λ-module;

• Mee is a symmetric (Λ⊗ Λ)-module with involution TM : Mee →Mee;

• PM : Mee →Me is a homomorphism of Λ-modules with respect to the diagonal action of Λ on
Me, i.e. for α ∈ C(E,E) and m ∈Mee,

PM(t1(α)⊗ t1(α).m) = αPM(m)

and satis�es PM ◦ TM = PM .

• HM : T11cr2(UE)(E,E) ⊗Λ Me → Mee is a homomorphism of symmetric Λ ⊗ Λ-modules such
that, for ξ ∈ C(E,E+2), m ∈Mee and a ∈Me,

(∇2
E ◦ ξ)a = (r2

1 ◦ ξ)a+ (r2
2 ◦ ξ)a+ (PM ◦HM)

(
t11(ρUE2 (ξ))⊗ a

)
(QM1)

and

HM

(
t11(ρUE2 )(ξ)⊗ PM(m)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
m+ TM(m)

)
(QM2)

where ρ2 = ρUE2 : UE(E+E)→ UE(E|E) is the retraction of the inclusion ι2 = ιUE2 : UE(E|E)→
UE(E + E) de�ned in 2.0.1.

A morphism between quadratic C-modules is a pair of homomorphisms of abelian groups (φe, φee) :
M → N such that φe : Me → Ne and φee : Mee → Nee are respectively homomorphisms of left
Λ-modules and Λ⊗Λ-modules which make an obvious diagram commute. We denote by QModC the
corresponding category.

We shall know the structure of Coker(PM), where PM : Mee → Me is the morphism involved in
a quadratic C-module as in 2.1.1. This is given by the following remark:

Remark 2.1.2. Let M be a quadratic C-module, then Coker(PM) is a left Λ-module by 5.2 of [12].

For an object X in C, we now de�ne the map φ′1 : T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2UE(E,E)→ T2UE(X)
as being the following composite map:

T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E) T2UE(X)

T1UE(X)⊗2 ⊗Λ⊗Λ cr2(T2UE)(E,E) cr2(T2UE)(X,X)

φ′1 //

id⊗2⊗cr2(t2) ∼=

��

S
T2UE
2

OO

u′
cr2(T2UE)

// (2.1.1)

Here
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• the natural transformation cr2(t2) : T11(cr2UE) ⇒ cr2(T2UE) between these bifunctors is the
unique factorization of cr2(t2) : cr2UE ⇒ cr2(T2UE) through t11 : cr2UE ⇒ T11(cr2UE), see
(2.4.1) in [12]. It is a natural isomorphism by 2.5 of [12].

• the natural transformation ucr2(T2UE) : T1UE ⊗ T1UE ⊗ T11cr2(UE)(E,E)⇒ cr2(T2UE) between
bifunctors from C × C to Ab is de�ned in 3.21 of [12] (replacing B with the bilinear bifunctor
cr2(T2UE)).

Then, we recall the construction of a quadratic functor with values in Ab corresponding to an
arbitrary quadratic C-module. This is given by taking the push-out of two natural transformations,
see 6.2 and 6.4 of [12], called the quadratic tensor product whose de�nition is given below:

De�nition 2.1.3. Let M be a quadratic C-module and X be an object in C. The quadratic tensor
product X ⊗M ∈ Ab is de�ned by the following push-out diagram of homomorphisms of abelian
groups:

(
T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2
⊕ (UE(X)⊗Mee) T2UE(X)⊗Λ Me

(
T1UE(X)⊗2 ⊗Λ⊗Λ Mee

)
S2

X ⊗M

φX=(φ′1⊗id,t2⊗PM )
//

ψX=(ψ′1,π(δ⊗id))

��

ψ̂MX

��

φ̂MX

//

where ψ′1 = id⊗ id⊗H, δ : UE(X)→ T1UE(X)⊗ T1UE(X), f 7→ t1(f)⊗ t1(f), π is the cokernel of
T̂ ⊗ id− id⊗ T with T̂ : T1UE(X)⊗ T1UE(X)→ T1UE(X)⊗ T1UE(X) being the canonical switch.

In the sequel, we shall give the explicit expression for the morphism φ′1 involved in the de�nition
of the quadratic tensor product (see 2.1.3):

Lemma 2.1.4. The abelian group homomorphism φ′1 has the following explicit expression:

φ′1

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ t11(ρ2(ξ))

)
= t2(∇2

X ◦ (f1 + f2) ◦ ξ)− t2(f1 ◦ r2
1 ◦ ξ)− t2(f2 ◦ r2

2 ◦ ξ)

where f1, f2 ∈ C(E, X) and ξ ∈ C(E, E+2).
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Proof. Let f1, f2 ∈ C(E, X) and ξ ∈ C(E, E+2). We have

φ′1

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ t11(ρ2(ξ))

)
= ST2UE

2 ◦ u′cr2(T2UE) ◦
(
id⊗ id⊗Λ⊗Λ cr2(t2)

)(
t1(f1)⊗ t1(f2)⊗ t11(ρ2(ξ))

)
= T2UE(∇2

X) ◦ ιT2UE
2 ◦ u′cr2(T2UE)

(
t1(f1)⊗ t1(f2)⊗ cr2(t2)(ρ2(ξ))

)
= T2UE(∇2

X) ◦ ιT2UE
2 ◦ cr2(T2UE)(f1, f2)

(
cr2(t2)(ρ2(ξ))

)
= T2UE(∇2

X) ◦ T2UE(f1 + f2) ◦ ιT2UE
2 ◦ cr2(t2)(ρ2(ξ))

= T2UE(∇2
X) ◦ T2UE(f1 + f2) ◦ t2(ι2 ◦ ρ2(ξ))

= T2UE(∇2
X) ◦ T2UE(f1 + f2) ◦ t2(ξ)− T2UE(∇2

X) ◦ T2UE(f1 + f2) ◦ t2(i21 ◦ r2
1 ◦ ξ)

− T2UE(∇2
X) ◦ T2UE(f1 + f2) ◦ t2(i22 ◦ r2

2 ◦ ξ)

= t2(∇2
X ◦ (f1 + f2) ◦ ξ)− t2(∇2

X ◦ (f1 + f2) ◦ i21 ◦ r2
1 ◦ ξ)− t2(∇2

X ◦ (f1 + f2) ◦ i22 ◦ r2
2 ◦ ξ)

= t2(∇2
X ◦ (f1 + f2) ◦ ξ)− t2(∇2

X ◦ i21 ◦ f1 ◦ r2
1 ◦ ξ)− t2(∇2

X ◦ i22 ◦ f2 ◦ r2
2 ◦ ξ)

= t2(∇2
X ◦ (f1 + f2) ◦ ξ)− t2(f1 ◦ r2

1 ◦ ξ)− t2(f2 ◦ r2
2 ◦ ξ)

as desired.

Corollary 2.1.5. Let f1, f2 ∈ C(E, X), h ∈ C(E, IdC(E|E)) and a ∈Me. Then we have

φX

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ t11(ρ2(ιIdC2 ◦ h))⊗ a, 0

)
= t2

(
cX2 ◦ IdC(f1|f2) ◦ h

)
⊗ a

Proof. It is a direct consequence of 2.1.4 replacing ξ with ιIdC2 ◦h and of the relations r2
k ◦ ι

IdC
2 = 0, for

k = 1, 2 (because ιIdC2 : IdC(E|E)� E+E is the kernel of the comparison morphism r̂IdC2 : E+E →
E × E, see 1.2.1). Moreover we observe that we have

∇2
X ◦ (f1 + f2) ◦ ιIdC2 ◦ h = ∇2

X ◦ ι
IdC
2 ◦ IdC(f1|f2) ◦ h = cX2 ◦ IdC(f1|f2) ◦ h ,

see 1.2.8.

The diagram of 2.1.3 is clearly functorial. Let M be a quadratic C-module, then the Proposition
6.5 of [12] says that −⊗M : C → Ab is a quadratic functor. It allows to de�ne the following functor:

De�nition 2.1.6. The functor T2 : QModC → Quad(C, Ab) is given as follows:

1. On objects, for a quadratic C-module M , T2(M) = −⊗M : C → Ab such that, for all X ∈ C,
(−⊗M)(X) = X ⊗M is the corresponding quadratic tensor product given in 2.1.3.

2. On morphisms, let φ = (φe, φee) : M → N be a morphism of quadratic C-modules. Then T2(φ) :
T2(M)⇒ T2(N) is a natural transformation such that, for allX ∈ C, T2(φ)X : X⊗M → X⊗N
is the unique morphism given by the universal property of the pushout in 2.1.3 satisfying T2(φ)X ◦ ψ̂MX = ψ̂MY ◦

(
t2(f)⊗Λ id

)
T2(φ)X ◦ φ̂MX = φ̂MY ◦

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ id

)
S2

(2.1.2)

where f, f1, f2 ∈ C(X, Y ).
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Moreover a quadratic functor with domain C and values in Ab gives rise to a quadratic C-module,
see 5.16 of [12]. This de�nes a functor as follows:

De�nition 2.1.7. The functor S2 : Quad(C, Ab)→ QModC is de�ned as follows:

1. On objects, with a quadratic functor F : C → Ab, we associate a corresponding quadratic
C-module S2(F ) as follows:

S2(F ) =
(
T11cr2(UE)(E,E)⊗Λ F (E)

HF
E−→ F (E|E)

TFE−→ F (E|E)
(SF2 )E−→ F (E)

)
.

Here we have

• HF : T11cr2(UE) ·∆2 ⊗Λ F (E)⇒ cr2F the natural transformation given by the following
diagram

T11cr2(UE)(X,X)⊗Λ F (E) cr2F (X,X)

cr2(UE)(X,X)⊗Λ F (E)

HF
X //

t
cr2(UE)
11 ⊗Λid

OO

cr2(u′F )X,X

33

where X ∈ C and u′F : UE ⊗Λ F (E) ⇒ F is a natural transformation given by (u′F )X :
UE(X)⊗Λ F (E)→ F (X), f ⊗Λ x 7→ F (f)(x), for f ∈ UE(X) and x ∈ F (E);

• T FX : cr2F (X,X) → cr2F (X,X) the restriction of the involution F (τ 2
X) : F (X + X) →

F (X +X) to cr2F (X,X).

• SF2 : cr2F · ∆2 ⇒ F the natural transformation given in 1.8 of [12] and de�ned by
(SF2 )X = F (∇X) ◦ ιF2 , for an object X in C.

2. On morphisms, let α : F ⇒ G be a natural transformation between quadratic functors, then
S2(α) = (αE, cr2(α)E,E) : S2(F )→ S2(G).

Notation 2.1.8. Let F : C → Ab be a quadratic functor. Then we set MF = S2(F ) its corresponding
quadratic C-module.

Then the following result says that the two functors S2 : Quad(C, Ab) → QModC and T2 :
QModC → Quad(C, Ab) are both additive.

Proposition 2.1.9. The functors S2 : Quad(C, Ab) → QModC and T2 : QModC → Quad(C, Ab)
are additive.

Proof. The proof is given in two steps.

1. First we prove that the functor S2 : Quad(C, Ab)→ QModC is additive. Let α, β : F ⇒ G be
two natural transformations. Then we have

S2(α + β) =
(
αE + βE, cr2(α + β)E,E

)
We verify that, for two objects X and Y in C, we get

cr2(α + β)X,Y = cr2(α)X,Y + cr2(β)X,Y
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We have the following equalities as follows:

ιG2 ◦ cr2(α + β)X,Y = (αX+Y + βX+Y ) ◦ ιF2

= (αX+Y ◦ ιF2 + βX+Y ◦ ιF2 )

=
(
ιG2 ◦ cr2(α)X,Y + ιG2 ◦ cr2(β)X,Y

)
= ιG2 ◦

(
cr2(α)X,Y + cr2(β)X,Y

)
As ιG2 : G(X|Y )� G(X + Y ) is a monomorphism, we get

cr2(α + β)X,Y = cr2(α)X,Y + cr2(β)X,Y

Hence we have

S2(α + β) =
(
αE + βE, cr2(α + β)E,E

)
=
(
αE + βE, cr2(α)E,E + cr2(β)E,E

)
=
(
αE, cr2(α)E,E

)
+
(
βE, cr2(β)E,E

)
= S2(α) + S2(β)

as desired.

2. Then we prove that the functor T2 : QModC → Quad(C, Ab) is additive. Let X be an object
in C. For this it su�ces to observe that the functors T2UE(X)⊗− and

(
T1UE(X)⊗2⊗Λ⊗Λ−

)
S2

with domain C and values in Ab are additive.

Now we recall the theorem 7.1 of [12] which says that quadratic functors taking values in Ab can
be characterized by quadratic C-modules:

Theorem 2.1.10. Let C be a pointed category with �nite coproducts.

• If C is a small category, the functors

S2 : Quad(C, Ab)� QModC : T2

form a pair of adjoint functors.

• If C = 〈E〉, the functors S2 and T2 are equivalences of categories inverse to each other.

• If C has sums and if E is a small regular-projective generator object of C, then the functors

S′2 : QUADE(C, Ab)� QModC : T′2

are equivalences of categories inverse to each other, where T′2 is given by T2 which actually
takes values in QUADE(C, Ab) (by 6.24 of [12]), and where S′2 is the restriction of S2.

Here QUADE(C, Ab) denotes the full subcategory of Quad(C, Ab) formed by (reduced) quadratic
functors from C to Ab preserving �ltered colimits and E-saturated coequalizers (see the de�nition
in 6.21 of [12]); from the proposition 6.23 of [12], E-saturated coequalizers can be replaced with
E-saturated E-free coequalizers, and with coequalizers of re�exive graphs if C is Mal'cev and Barr
exact (as all semi-abelian categories).
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Remark 2.1.11. The third point of the statement in 2.1.10 can be replaced with the following one: if
C is a semi-abelian variety and if E denotes the free object of rank 1 in C, then the functors

S′2 : QUAD(C, Ab)� QModC : T′2

are equivalences of categories inverse to each other, where T′2 is given by T2 which actually takes
values in QUAD(C, Ab) (see the de�nition of this category in 2.0.4), and where S′2 is the restriction
of S2.

Notation 2.1.12. We denote respectively by η : Id ⇒ S2 · T2 and ε : T2 · S2 ⇒ Id the unit and the
counit of the adjunction 2.1.10.

Remark 2.1.13. The unit η : Id⇒ S2 ·T2 is a natural equivalence by 7.10 of [12]; but not the counit
ε : T2 · S2 ⇒ Id in general.

2.2 Quadratic functors with values in right modules

In this part, we take R a ring, F : C → ModR a quadratic functor and ModR denotes the category
of right R-modules. The functor F : C → ModR is the same as considering a pair (F, λF1 ) where F
is seen as taking values in abelian groups and λF1 : F ⊗ R⇒ F is the right action of R on F . As F
is a quadratic functor taking also values in Ab, it allows us to apply the functor S2 to F (see 2.1.7)
representing a part of its minimal algebraic data given by the following quadratic C-module:

S2(F ) =

(
T11cr2(UE)(E,E)⊗Λ F (E)

HF
E−→ F (E|E)

TFE−→ F (E|E)
(SF2 )E−→ F (E)

)
Moreover there is a homomorphism of rings α : Rop → End(F ), rop 7→ αr

op
that is the right action of

R on F , more precisely, for r ∈ R, αrop : F ⇒ F is the natural transformation de�ned by

αr
op

X : F (X)→ F (X), x 7→ (λF1 )X(x⊗ r)

where X is an object in C and (λF1 )X : F (X)⊗R→ F (X) represents the right action of R on F (X).
By restriction of αr

op

X+X to F (E|E), we obtain a right action of R on F (X|X) denoted by cr2(αr
op

)E,E
making F (E|E) into a right R-module. Then, for any r ∈ R, we have the following commutative
diagram by applying S2 to the natural transformation αr

op
: F ⇒ F :

T11cr2(UE)(E, E)⊗ F (E) F (E|E)

T11cr2(UE)(E, E)⊗ F (E) F (E|E) F (E)

F (E)

F (E|E)

F (E|E)
TFE //

id⊗Λα
rop

E

OO

cr2(αr
op

)E,E

OO

TFE

//

αr
op

E

OO

(SF2 )E //

(SF2 )E

//

HF
E //

HF
E //

cr2(αr
op

)E,E

OO

This commutative diagram expresses the fact that HF
E , T

F
E and (SF2 )E are homomorphisms of right

R-modules.

2.2.1 Quadratic C-modules over a ring R

We de�ne the notion of quadratic C-modules enriched with a right R-module structure as follows:

51



De�nition 2.2.1. A quadratic C-module over R is a quadratic C-module as follows:

M =
(
T11cr2(UE)(E,E)⊗Λ Me

H−→Mee
T−→Mee

P−→Me

)
as in 2.1.1 such that

• Me and Mee are right R-modules; moreover the action of Λ (resp. Λ ⊗ Λ) on Me (resp. Mee)
commutes with the action of R on Me (resp. Mee).

• P , H and T are homomorphisms of right R-modules.

We denote by QModRC the corresponding category.

Let A be a preadditive category. We denote by ModR(A) the category of right R-modules whose
objects are pairs (A, φA) where A is an object in A and φA : Rop → End(A), rop 7→ φArop is a
homomorphism of rings. A morphism f : (A, φA)→ (B, φB) in ModR(A) is a morphism f : A→ B
in A preserving the right R-modules structure in the following sense: for rop ∈ Rop, we have

f ◦ φArop = φBrop ◦ f

Remark 2.2.2. We remark that QModRC is isomorphic to the category ModR(QModC). It makes
sense because QModC is clearly a preadditive category. Similarly we also observe that the category
Quad(C, ModR) is isomorphic to ModR

(
Quad(C, Ab)

)
.

2.2.2 The functors SR2 and TR
2

In this part, we de�ne two functors so as to settle a similar theorem as in 2.1.10 for quadratic functors
with domain C and values in ModR. First we check that a quadratic C-module over R provides a
quadratic functor taking values in ModR.

Proposition 2.2.3. Let M be a quadratic C-module over R, then the quadratic functor T2(M) =
−⊗M : C → Ab, de�ned in 2.1.6, lifts into a functor from C to ModR.

Proof. It remains to recover the right action of R on − ⊗ M . We write β = (βe, βee) : Rop →
End(M), rop 7→ βr

op
= (βr

op

e , βr
op

ee ) denoting the right R-module structure for M . For each r ∈ R,
αr

op
= T2(βr

op
) : − ⊗ M ⇒ − ⊗ M is the natural transformation given by applying T2 to the

morphism βr
op

: M → M of quadratic C-modules. The uniqueness in the universal property of the
push-out de�ned in 2.1.3 says that α : Rop → End(−⊗M), rop 7→ αr

op
is a homomorphism of rings.

Finally T2(M) = −⊗M is a quadratic functor taking values in ModR.

Now it is convenient to de�ne two functors in order to summarize the above arguments.

De�nition 2.2.4. We de�ne two functors as follows:

1. The functor SR2 : Quad(C, ModR)→ QModRC is de�ned by:

• On objects, let F : C →ModR be a quadratic functor, SR2 (F ) is the quadratic C-module

SR2 (F ) =
(
T11cr2(UE)(E,E)⊗Λ F (E)

HF
E−→ F (E|E)

TFE−→ F (E|E)
(SF2 )E−→ F (E)

)
equipped with the (right) action of R on SR2 (F ) given by

Rop → End(S2(F )) , rop 7→ (αr
op

E , cr2(αr
op

)E,E)

Here α : Rop → End(F ) is the homomorphism of rings corresponding to the action of
R on the quadratic functor F and S2 : Quad(C, Ab) → QModC is the functor de�ned in
2.1.7;
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• On morphisms, SR2 (β) = S2(β), for β : F ⇒ G a natural transformation in
Quad(C, ModR).

2. The functor TR2 : QModRC → Quad(C, ModR) is de�ned by:

• On objects, let M be a quadratic C-module over R as in 2.2.1, TR2 (MR) = (−⊗M, λM1 ),
where λM1 : (− ⊗M) ⊗ R ⇒ −⊗M is the natural transformation representing the right
action of R on −⊗M ; more precisely, for all X ∈ C, we have

(λM1 )X : (X ⊗M)⊗R→ X ⊗M, x⊗ r 7→ αr
op

X (x)

where αr
op

= T2(βr
op

) : − ⊗ M ⇒ − ⊗ M is the natural transformation given by ap-
plying T2 : QModC → Quad(C, Ab) (see 2.1.6) to βr

op
: M → M , and β : Rop →

End(QModC), r
op 7→ βr

op
is the homomorphism of rings associated with the (right) ac-

tion of R on M .

• On morphisms, for φ = (φe, φee) : M → N a morphism of quadratic C-modules over R,
TR2 (φ) = T2(φ).

Notation 2.2.5. We give a similar notation as in 2.1.8. Let F : C → ModR be a quadratic functor.
Then we also set MF

R = SR2 (F ) its corresponding quadratic C-module over R.

Remark 2.2.6. If we assume that C is a semi-abelian variety and if E denotes the free object of rank
1 in C, then the functor TR2 takes in fact values in QUAD(C,ModR). This is due to the fact that,
for a quadratic C-module M over R, the composite functors W · TR2 (M) = W · (− ⊗M) : C → Ab
preserves �ltered colimits and coequalizers of re�exive graphs by 2.1.11, where W : ModR → Ab is
the forgetful functor. By 1.6.11, the (quadratic) functor TR2 (M) = − ⊗M : C → ModR preserves
�ltered colimits and coequalizers of re�exive graphs.

2.2.3 The adjunction between SR2 and TR
2

The two functors SR2 and TR2 de�ned in 2.2.4 give rise to the following theorem:

Theorem 2.2.7. Let C be a pointed category with �nite coproducts.

• If C is a small category, the functors

SR2 : Quad(C, ModR)� QModRC : TR2

form a pair of adjoint functors extending S2 and T2.

• If C = 〈E〉, the functors SR2 and TR2 are equivalences of categories inverse to each other.

• If C is a semi-abelian variety and if E denotes the free object of rank 1 in C, then the functors

(SR2 )′ : QUAD(C,ModR)� QModRC : (TR2 )′

are equivalences of categories inverse to each other, where (TR2 )′ is given by TR2 which actually
takes values in QUAD(C,ModR) (by 2.2.6), and where (SR2 )′ is the restriction of SR2 .

Before tackling the proof of this theorem, we need a technical lemma providing a pair of adjoint
additive functors between categories of modules in pre-additive categories from such a pair between
preadditive categories.
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Lemma 2.2.8. Let A and B be two preadditive categories. Suppose that there is a pair of adjoint
additive functors

F : A� B : G

Then it �ts into another pair of adjoint additive functors

FR : ModR(A)�ModR(B) : GR

where FR is the functor de�ned by

1. On objects, let (A, φA) be an object in ModR(A), FR((A, φA)) = (F (A), φF (A)), and φF (A) :
Rop → EndB(F (A)) is the homomorphism of rings given by:

∀r ∈ R, φ
F (A)
rop = F (φArop)

2. On morphisms, for any f : (A, φA)→ (B, φB) morphism in ModR(A), we set

FR(f) = F (f) : (F (A), φF (A))→ (F (B), φF (B))

In addition, GR is de�ned in the same way.

Proof. By 2.1.9, we know that S2 : Quad(C, Ab) → QModC and T2 : QModC → Quad(C, Ab) are
additive functors. Let η : IdA ⇒ G · F be the unit of the adjunction.

• Given an object (A, φA) in ModR(A) and set φ(G·F )(A) : Rop → EndA((G · F )(A)) the homo-
morphism of rings given by:

∀r ∈ R, φ
(G·F )(A)
rop = (G · F )(φArop)

By naturality of η, we have

φ
(G·F )(A)
rop ◦ ηA = (G · F )(φArop) ◦ ηA = η ◦ φArop

This proves that ηA : (A, φA) → ((G · F )(A), φ(G·F )(A)) = GR · FR((A, φA)) is a morphism in
ModR(A) and that η : IdModR(A) ⇒ GR · FR is a natural transformation from IdModR(A) to
GR · FR.

• It su�ces to prove that the universal property of η : IdModR(A) ⇒ GR · FR is satis�ed in
ModR(A). Let (A, φA) be an right R-module in A and f : (A, φA) → GR((B,ψB)) =
(G(B), ψG(B)) be a morphism in ModR(B). As the universal property of η : IdA ⇒ G · F
works in A, there exists a unique f : F (A)→ B morphism in B such that

f = G(f) ◦ ηA
Then we prove that f : FR((A, φA)) = (F (A), φF (A)) → (B,ψB)) is a morphism in ModR(B).
Let r ∈ R, then we have

G(f ◦ φF (A)
rop ) ◦ ηA = G(f) ◦G(φ

F (A)
rop )ηA

= G(f) ◦ (G.F )(φArop) ◦ ηA

= G(f) ◦ ηA ◦ φArop

= f ◦ φArop

= ψ
G(B)
rop ◦ f

= G(ψBrop) ◦ f

= G(ψBrop) ◦G(f) ◦ ηA

= G(ψrop ◦ f) ◦ ηA
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By uniqueness in the universal property of η,

ψBrop ◦ f = φ
F (A)
rop

Consequently f : FR((A, φA))→ (B,ψB) is a morphism in ModR(B). This proves the result.

Proof. of Theorem 2.2.7. We consider the following commutative diagram:

Mod−R(Quad(C, Ab)) Mod−R(QModC)

QModRCQuad(C, ModR)

(T2)R

nn

(S2)R ..

∼=

��

∼=

��

TR2

nn

SR2
..

The left and right isomorphisms of categories comes from 2.2.2. By 2.2.8, (S2)R and (T2)R form a
pair of adjoint functors because S2 and T2 is a pair of adjoint additive functors, see 2.1.10. This
implies that SR2 and TR2 form also an adjunction pair.
The unit, respectively the counit of the adjunction pair 2.2.7 is exactly the unit η : Id ⇒ S2 · T2,
respectively the counit ε : T2 · S2 ⇒ Id of the pair of adjoint functors 2.1.10 (see the notations
given in 2.1.12); they both preserve the (right) R-module structure (by naturality of η, respectively
ε) if restricted to the category QModR, respectively to the category Quad(C,ModR). Then we can
consider the unit η (respectively the counit ε) as a natural transformation from the identity functor of
QModRC (respectively the composite functors TR2 ·SR2 ), to the composite functors SR2 ·TR2 (respectively
the identity functor of Quad(C,ModR)).
As η : Id⇒ SR2 · TR2 is a natural equivalence by 2.1.13, it su�ces to prove that ε : TR2 · SR2 ⇒ Id is a
natural equivalence for the second and third points in the statement.
If we assume that C = 〈E〉, then ε is a natural equivalence by the second point of 2.1.10 implying
that the functors SR2 and TR2 form a pair of adjoint equivalences.
Now we suppose that C is a semi-abelian variety and E is the free object of rank 1 in C. For a quadratic
functor F : C →ModR preserving �ltered colimits and coequalizers of re�exive graphs, the counit εF :
TR2 ·SR2 (F ) = −⊗S2(F )⇒ F (evaluated to F ) is a natural transformation between quadratic functors
preserving �ltered colimits and coequalizers of re�exive graphs which is a natural isomorphism if
restricted to the full subcategory 〈E〉 of C (by the second point in the above statement). Hence it
is a natural isomorphism by 6.25 of [12]. Thus the functors (SR2 )′ and (TR2 )′ in the statement form a
pair of adjoint equivalences.

Notation 2.2.9. We denote respectively by η : Id ⇒ SR2 · TR2 and ε : TR2 · SR2 ⇒ Id the unit and the
counit of the adjunction pair 2.2.7.

2.3 The linearization of the quadratic tensor product

Let M be a quadratic C-module. Here we give an explicit expression of the linearization of the
functor T2(M) = −⊗M : C → Ab de�ned in 2.1.6. However we shall give two results before.

Proposition 2.3.1. Let A, B be two abelian categories, G : C → A be a reduced functor and
L : A → B be a functor preserving right exact sequences. Then we have

Tn(L ·G) ∼= L · TnG
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where Tn : Func∗(C, A)→ Func6n(C, A) is the n-Taylorization functor de�ned in 1.9 of [12]. More
precisely, the unique factorization L∗ · tG : Tn(L ·G)⇒ L · TnG of L∗ · tG : L ·G⇒ L · TnG through
tL·Gn : L ·G⇒ Tn(L ·G) is a natural isomorphism.

Proof. We observe that the following diagram commutes by naturality of tG⊗AMn : L ·G⇒ Tn(L ·G):

L ·
(
crn+1G ·∆n+1

)
L ·G

Tn

(
L ·
(
crn+1G ·∆n+1

))
Tn(L ·G)

L · TnG 0
L∗·SGn+1 //

tn

��
tL·Gn

��

Tn(L∗·SGn+1)
//

L∗·tGn // //

As the functor L · TnG : C → Ab is polynomial of degree 6 n (by Theorem 1.9 in [34] or Proposition
1.6 in [19] because it is a polynomial functor of degree 6 n postcomposed by a linear functor with
abelian source and target), the universal property of tL·Gn : L · G ⇒ Tn(L ·G) (see 1.10 of [12]) says
that there is a unique natural transformation L∗ · tGn : Tn(L ·G)⇒ L · TnG such that

(L∗ · tGn ) ◦ tL·Gn = L∗ · tGn (2.3.1)

Moreover the n-Taylorisation of the functor L ·
(
crn+1G ·∆n+1

)
: C → Ab is trivial by 2.19 of [13], i.e

Tn

(
L ·
(
crn+1G ·∆n+1

))
= 0

since L∗ · crn+1G : C×(n+1) → Ab is a multireduced multifunctor (the latter fact is also expressed by
saying that L ·

(
crn+1G ·∆n+1

)
: C → Ab is cohomogenous of degree 6 n). Hence we have

tL·Gn ◦
(
L∗ · SGn+1

)
= 0

By 1.9 of [12], tGn : G⇒ TnG is the cokernel of SGn+1 : crn+1G ·∆n+1 ⇒ G. As the functor L : A → B
preserves colimits (right exact sequences in particular), the top sequence of the above diagram is
right exact. Consequently, there is a unique natural transformation tL·Gn : L · TnG⇒ Tn(L ·G) such
that

tL·Gn ◦
(
L∗ · tGn

)
= tL·Gn (2.3.2)

The two composites of the maps tL·Gn ◦
(
L∗ · tGn

)
and

(
L∗ · tGn

)
◦tL·Gn respectively with the epimorphisms

tL·Gn and L∗ · tGn , and the equations (2.3.1) and (2.3.2) show that tL·Gn and L∗ · tGn are inverse to each
other.

Proposition 2.3.2. Let D be a semi-abelian category, F : C → D be a reduced functor, and n,m be
two natural integers with 1 6 n < m. Then we have the following natural isomorphism

Tn(TmF ) ∼= TnF

More precisely, the natural transformation T ∗n · tFm : TnF ⇒ Tn(TmF ) is an isomorphism.

Proof. As tFm : F ⇒ TmF is the cokernel of the natural transformation SFm : crmF · ∆m ⇒ F in
Func∗(C, Ab) and the n-Taylorization functor Tn : Func∗(C, Ab)→ Func6n(C, Ab), given in 1.9 of
[12], preserves colimits (because Tn is a left adjoint functor by 1.10 of [12]), we obtain the following
right exact sequence:

Tn(crmF ·∆m)
(Tn)∗·SFm=⇒ TnF

(Tn)∗·tFm=⇒ Tn(TmF ) =⇒ 0

Applying 2.19 of [13], we deduce that Tn(crmF · ∆m) = 0 because the m-th cross-e�et crmF :
C×m → Ab of F (see 1.2 of [12]) is a multireduced multifunctor and 1 6 n < m. This proves that
(Tn)∗ · SFm = 0, so that (Tn)∗ · tFm : TnF ⇒ Tn(TmF ) is a natural isomorphism. Consequently, the
functors Tn(TmF ) and TnF are isomorphic in Func6n(C, Ab).
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Proposition 2.3.3. Let M be a quadratic C-module and X be an object in C, then we have

T1(−⊗M)(X) ∼= T1UE(X)⊗ Coker(P ) ,

which is natural in X. In particular, we obtain the following isomorphism of left Λ-modules:

T1(−⊗M)(E) ∼= Coker(P )

Proof. LetM be a quadratic C-module. By 2.1.3, we recall that the quadratic functor−⊗M : C → Ab
is the pushout in Func(C, Ab) given below:(

T1U
⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2

⊕ (UE ⊗Mee) T2UE ⊗Λ Me

(
T1U

⊗2
E ⊗Λ⊗Λ Mee

)
S2

−⊗M

φ=(φ′1⊗id,t2⊗P )
//

ψ=(ψ1,π(δ⊗id))

��

ψ̂M

��

φ̂M
//

Let i2 : UE ⊗Mee ⇒
(
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E) ⊗Λ Me

)
S2
⊕ (UE ⊗Mee) be the injection of

the second summand. As the functor T1 : Func∗(C, Ab)→ Lin(C, Ab) is left adjoint to the inclusion
functor, then T1 preserves colimits in Func∗(C, Ab). This leads to the following pushout in Lin(C, Ab):

T1

((
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2
⊕ (UE ⊗Mee)

)
T1(T2UE ⊗Λ Me)

T1

((
T1U

⊗2
E ⊗Λ⊗Λ Mee

)
S2

)
T1(−⊗M)

T1(φ) //

T1(ψ)

��
T1(ψ̂M )

��

T1(φ̂M )

//

We know that T1

((
T1U

⊗2
E ⊗Λ⊗Λ Mee

)
S2

)
: C → Ab is trivial by 2.4 of [12] or 2.19 of [13] because(

T1U
⊗2
E ⊗Λ⊗Λ Mee

)
S2

: C → Ab is a diagonalizable functor (also called cohomogenous of degree 6 1),
see the de�ni�on at the beginning of section 2.2 in [12]. The same argument also works for the
diagonalizable functor

(
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E) ⊗Λ Me

)
S2

: C → Ab, so that its linearization
is trivial. Finally, we obtain the following right exact sequence in Lin(C, Ab):

T1

(
(T1U

⊗2
E ⊗Λ⊗ΛT11cr2(UE)(E,E)⊗ΛMe)S2⊕(UE⊗Mee)

)
T1(φ)
=⇒ T1(T2UE⊗ΛMe)

T1(ψ̂M )
=⇒ T1(−⊗M) =⇒ 0

As the functor T1 : Func∗(C, Ab) → Lin(C, Ab) preserves colimits in Func∗(C, Ab), we obtain the
following isomorphisms in Lin(C, Ab):

T1

((
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2
⊕ (UE ⊗Mee)

)
∼= T1

((
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2

)
⊕ T1(UE ⊗Mee))

∼= T1(UE ⊗Mee)

∼= T1UE ⊗Mee , by 2.3.1.

The third isomorphism above holds because the functor
(
T1U

⊗2
E ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ Me

)
S2

:

C → Ab is a diagonalizable functor so that its linearization is trivial by 2.4 of [12]. Evaluating the
above isomorphisms on X, we have the following isomorphism in Ab:

B(X) ∼= T1UE(X)⊗Mee
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where B(X) = T1

(
(T1U

⊗2
E ⊗Λ⊗ΛT11cr2(UE)(E,E)⊗ΛMe)S2⊕(UE⊗Mee)

)
(X) whose injection of the

�rst summand can be chosen to be the zero morphism, and the injection of the second summand can
be taken to be T1(i2) : T1(UE ⊗Me)(X) � B(X). In fact, the morphism T1(i2) is an isomorphism
thanks to the isomorphisms above. Moreover we get the following isomorphisms by using 2.3.1 and
2.3.2:

T1

(
T2UE ⊗Λ Me

)
(X) ∼= T1(T2UE)(X)⊗Me

∼= T1UE(X)⊗Me

Then we have the following diagram in Ab:

B(X) T1

(
T2UE ⊗Me

)
(X) T1(−⊗M)(X)

T1UE(X)⊗Mee T1UE(X)⊗Me T1UE(X)⊗ Coker(P ) 0

0
T1(φ)X //

∼=αX

��

∼= βX

��
id⊗P //

T1(ψ̂M )X //

id⊗coker(P ) //

∼= γX

��
//

//

where B(X) is de�ned just above and αX : B(X) → T1UE(X) ⊗ Mee, βX : T1

(
T2UE ⊗ Me

)
→

T1UE(X)⊗Me are the unique morphisms in Ab such that

αX ◦ T1(i2)X ◦
(
tUE⊗Mee
1

)
X

= t1 ⊗ id and βX ◦
(
tT2UE⊗Me
1

)
X
◦
(
(t2)X ⊗ id

)
= t1 ⊗ id (2.3.3)

We prove that the left-hand square commutes, as follows:

βX ◦ T1(φ)X ◦ T1(i2)X ◦
(
tUE⊗Mee
1

)
X

= βX ◦ T1(φ ◦ i2)X ◦
(
tUE⊗Mee
1

)
X

= βX ◦ T1(t2 ⊗ P )X ◦
(
tUE⊗Mee
1

)
X

= βX ◦
(
tT2UE⊗Me
1

)
X
◦
(
(t2)X ⊗ P

)
= βX ◦

(
tT2UE⊗Me
1

)
X
◦
(
(t2)X ⊗ id

)
◦
(
id⊗ P

)
=
(
(t1)X ⊗ id

)
◦
(
id⊗ P

)
=
(
id⊗ P

)
◦
(
(t1)X ⊗ id

)
=
(
id⊗ P

)
◦ αX ◦ T1(i2)X ◦

(
t
UE)⊗Mee

1

)
X

As
(
tUE⊗Mee
1

)
X

: UE(X)⊗Mee → T1

(
UE ⊗Mee

)
(X) is an epimorphism, we have

βX ◦ T1(φ)X ◦ T1(i2)X =
(
id⊗ P

)
◦ αX ◦ T1(i2)X

As T1(i2)X : T1(UE ⊗Me)(X)� B(X) is an epimorphism, we get

βX ◦ T1(φ)X =
(
id⊗ P

)
◦ αX

as desired. Then a categorical argument provides a unique isomorphism γX : T1(− ⊗ M)(X) →
T1UE(X) ⊗ Coker(P ) (natural in X) which makes the right-hand square of the above diagram
commutes, i.e. such that

γX ◦ T1(ψ̂M)X =
(
id⊗Λ coker(P )

)
◦ βX ,

that is equivalent to

γX ◦ (tL1 )X ◦ ψ̂MX = γX ◦ T1(ψ̂M)X ◦
(
tT2UE⊗ΛMe
1

)
X

= (t1)X ⊗Λ coker(P ) (2.3.4)

by (2.3.3) and because
(
tT2UE⊗ΛMe
1

)
X
is a regular epimorphism (see 1.2.10). Moreover Coker(P ) is

a left Λ-module by 2.1.2, and it gives us the following isomorphism:

T1(−⊗M)(E) ∼= T1UE(E)⊗ Coker(P ) ∼= Λ⊗ Coker(P ) ∼= Coker(P ) ,

as desired.
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Notation 2.3.4. We denote by γ : T1(−⊗M)(E)→ Coker(P ) the isomorphism obtained by precom-
posing γE : T1(− ⊗M)(E) → Λ ⊗ Coker(P ) with the evaluation isomorphism from Λ ⊗ Coker(P )
onto Coker(P ). If x ∈ Coker(P ), we write x = γ−1(x) to simplify notations.

2.4 Quadratic functors with values in algebras over a linear

symmetric operad P
Here we give the assume the following important hypothesis:

Assumption: from now on, we assume here that C is a semi-abelian variety and E is the free
object of rank 1 in C.

Notation 2.4.1. Let P be a linear symmetric unitary operad in the category of abelian groups endowed
with its standard monoidal structure given by the tensor product. The unit of P is denoted by
1P ∈ P(1).

In this part, we intend to make the same work as before for quadratic functors with domain C
and values in P-algebras.

Notation 2.4.2. For a P-algebra A, we denote by λAk : A⊗k ⊗ P(k) → A, for k ∈ N∗, the structure
linear maps of A. Moreover Alg − P denotes the category of P-algebras.

2.4.1 Aim and main arguments

We aim at �nding DNA describing quadratic functors with domain C and values in P-algebras.

Assumption: we suppose that F : C → Alg−P is a (reduced) quadratic functor in this section.

First we observe that F may be considered as taking values in ModP(1), so we know that a part
of its DNA is given by the following quadratic C-module over P(1) (see 2.2.7):

SP(1)
2 (F ) =

(
T11cr2(UE)(E,E)⊗Λ F (E)

HF
E−→ F (E|E)

TFE−→ F (E|E)
(SF2 )E−→ F (E)

)
where SP(1)

2 : Quad(C, ModP(1)) → QMod
P(1)
C is the functor de�ned in 2.2.4. It says that unary

operations in the P-algebra structure for F are entirely described by the notion of quadratic C-
module over P(1), see 2.2.1.
Then we need three main steps to describe multilinear operations in the P-algebra structure for F
by using the notion of quadratic C-modules over P(1). The �rst step is to remark that the linear
operad P can be supposed to be 2-step nilpotent, i.e. the abelian groups P(k) are trivial, for k > 2
(see 1.4.1 and 1.7.8 for details). Hence we observe that the quadratic functor F : C → Alg − P can
be interpreted as a triple (F, λF1 , λ

F
2 ), where F is seen as taking values in abelian groups, endowed

with the structure natural transformations λF1 : F ⊗ P(1)⇒ F and λF2 : F⊗2 ⊗ P(2)⇒ F encoding
respectively unary and binary operations.
The second step is to describe binary operations λF2 : F⊗2 ⊗ P(2) ⇒ F encoded by P(2) as a
certain morphism between quadratic C-modules over P(1). For this, we compress the P-algebras
structure for F into just one natural transformation λF2 : T2(F⊗2 ⊗S P(2))⇒ F which is the unique
factorization of λF2 : F⊗2 ⊗ P(2) ⇒ F through a certain natural transformation. Here T2 is the
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quadratization functor de�ned in 1.2.9 and S = (P(1)⊗P(1)) oS2 is the wreath product recalled in
2.4.9. Then it provides the morphism SP(1)

2 (λF2 ) : SP(1)
2 (T2(F⊗2 ⊗S P(2))) → SP(1)

2 (F ) of quadratic
C-modules over P(1) by applying the functor SP(1)

2 to the natural transformaton λF2 .
The third step is to prove the existence of a natural isomorphism φF : T2(F⊗2⊗S P(2))⇒ T1F

⊗2⊗S
P(2) between quadratic functors with values in ModP(1). It leads to the isomorphism SP(1)

2 (φF ) from

SP(1)
2 (T2(F⊗2 ⊗S P(2))) onto SP(1)

2 (T1F
⊗2 ⊗S P(2)) in the category QMod

P(1)
C . The main interest of

this result is that SP(1)
2 (T1F

⊗2⊗SP(2)) is a more understandable quadratic C-module over P(1) than
SP(1)

2 (T2(F⊗2 ⊗S P(2))).
Finally it gives the morphism SP(1)

2 (λF2 ◦ (φF )−1) : SP(1)
2 (T1F

⊗2 ⊗S P(2)) → SP(1)
2 (F ) of quadratic

C-modules over P(1). This leads us to de�ne quadratic C-modules over P as pairs of the following
form:

MP = (M, φM : M2 →M)

where M is any quadratic C-module over P(1), M2 is another such objects depending on M and φM

is a morphism between these kinds of object, see 2.4.23 for details. The aim of this section is to prove
that minimal algebraic data describing quadratic functors with domain C and values in P-algebras
are quadratic C-modules over P , see the theorem 2.4.37.

2.4.2 Assumption on the linear operad P
In this part, we observe that quadratic functors with domain C and values in algebras over a linear
operad can be considered as taking values in algebras over a 2-step nilpotent linear operad (i.e. the
linear n-ary operations of the operad are trivial for n > 2).
As F : C → Alg − P is a (reduced) quadratic functor, it takes values in the full subcategory
Nil2(Alg−P) of Alg−P constituted with 2-step nilpotent P-algebras. By 1.7.8, there is an isomor-
phism of categories between Nil2(Alg − P) and Alg − Nil2(P), the category of Nil2(P)-algebras.
Here we recall that Nil2(P) is the 2-step nilpotent linear (unitary and symmetric) operad associated
with P , see 1.6.5 for details.
Consequently, taking a quadratic functor with domain C and values in Alg−P is equivalent to take
a quadratic functor with domain C and values in Alg−Nil2(P). This explains why we don't need to
consider the multi-linear maps (λFn )X : F (X)⊗n ⊗ P(n)→ F (X) for n > 2 present in the P-algebra
structure for F (X) where X an object in C.

Assumption: from now on, the linear unitary symmetric operad P supposed to be 2-step nilpo-
tent. In this case, P = Nil2(P).

2.4.3 The structure bilinear maps for F encoded by P(2)

Let X be an object in C. In this part, we prove that the natural homomorphism (λF2 )X : F (X)⊗2 ⊗
P(2) → F (X) is P(1) ⊗ P(1)-bilinear and that it is also a homomorphism of right P(1)-modules
thanks to the axioms of P-algebras for F (X). First we give some notations:

Notation 2.4.3. Let B be a ring and A be a subring of B. Take M and N be respectively right
and left B-modules (hence A-modules). As the tensor product ⊗B : M × N → M ⊗B N is clearly
A-bilinear, there is a unique homomorphism of abelian groups qBA : M ⊗A N → M ⊗B N such that
the following diagram

M ×N M ⊗A N

M ⊗B N

⊗A //

⊗B
$$

qBA

��
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commutes. We observe that qBA : M ⊗A N → M ⊗B N is B-bilinear and is an epimorphism. It
is a straightforward exercice to prove that it satis�es the following universal property, namely: any
B-bilinear map with domain M ⊗A N and values in an abelian group factorizes uniquely through
qBA : M ⊗A N →M ⊗B N (it is a direct consequence of the universal property of the tensor product
⊗B and the fact that ⊗A is an epimorphism).

Then we denote by γ1;1 : P(1) ⊗ P(1) → P(1), γ2;1 : P(2) ⊗ P(1) → P(2) and γ1,1;2 : (P(1) ⊗
P(1))⊗P(2)→ P(2) the structure linear maps of the operad P . By the axioms of the linear operad
P , γ1;1 conferes a ring structure on P(1). Moreover the homomorphisms γ2;1 and γ1,1;2 confers P(2)
a (P(1)⊗ P(1))-P(1)-bimodule structure. Now we observe that F (X) is a right P(1)-module, with
action of P(1) given by (λF1 )X : F (X) ⊗ P(1) → F (X). This is due to the following commutative
diagram

F (X)⊗ (P(1)⊗ P(1)) (F (X)⊗ P(1))⊗ P(1)

F (X)⊗ P(1) F (X)⊗ P(1)

F (X)

∼= //

id⊗γ1;1

��

(λF1 )X⊗id

��

(λF1 )X
''

(λF1 )X
ww

Then one of the axioms of the P-algebra for F (X) is given by the following commutative diagram:

F (X)⊗2 ⊗ (P(2)⊗ P(1)) (F (X)⊗2 ⊗ P(2))⊗ P(1)

F (X)⊗2 ⊗ P(2) F (X)⊗ P(1)

F (X)

∼= //

id⊗2⊗γ2;1

��

(λF2 )X⊗id

��

(λF2 )X
''

(λF1 )X
ww

It says that (λF2 )X : F (X)⊗2 ⊗ P(2)→ F (X) is a homomorphism of right P(1)-modules. Hence the
natural transformation λF2 : F⊗2 ⊗ P(2) ⇒ F is a morphism in the category Func∗(C, ModP(1)).
Then another axiom is given by the following commutative diagram:

F (X)⊗2 ⊗ (P(1)⊗ P(1))⊗ P(2)
(
(F (X)⊗ P(1))⊗ (F (X)⊗ P(1))

)
⊗ P(2)

F (X)⊗2 ⊗ P(2) F (X)⊗2 ⊗ P(2)

F (X)

∼= //

id⊗2⊗γ1,1;2

��

(λF1 )⊗2
X ⊗id

��

(λF2 )X
''

(λF2 )X
ww

It says that (λF2 )X : F (X)⊗2 ⊗ P(2) → F (X) is P(1) ⊗ P(1)-bilinear. By 2.4.3, there is a unique

homomorphism of abelian groups (λ̂2

F
)X : F (X)⊗2 ⊗P(1)⊗P(1) P(2)→ F (X) such that

(λ̂2

F
)X ◦ qP(1)⊗P(1)

Z = (λF2 )X (2.4.1)
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As (λF2 )X is a homomorphism of right P(1)-modules and q
P(1)⊗P(1)
Z is an epimorphism, (λ̂2

F
)X

also is a homomorphism of right P(1)-modules. As the construction is functorial, λ̂2

F
is a natural

transformation living in Func∗(C, ModP(1)).

We here point out that the above arguments in this subsection also hold for any P-algebra.
Then we here provide a classical way to compress the axioms of P-algebra for A in term of a
unique morphism. Consider a P-algebra A with its structure linear maps λA1 : A ⊗ P(1) → A and
λA2 : A⊗2 ⊗ P(2)→ A. By 1.8.6, we recall that, for two P-algebras A and B, the second cross-e�ect
of the identity functor of Alg − P is de�ned on objects by

IdAlg−P(A|B) = A⊗B ⊗P(1)⊗P(1) P(2)

where A (resp. B) is the quotient of A (resp. B) by the ideal A2 (resp. B2), see the notations given
in 1.7.6. Now since the operad P is supposed to be 2-step nilpotent, we obtain

λA2 ◦
(
λA2 ⊗ id⊗ id

)
= 0 = λA2 ◦

(
id⊗ λA2 ⊗ id

)
by an associativity relation for P-algebras. Hence there is a unique morphism λ̃A2 : (A)⊗2⊗P(2)→ A
such that

λ̃A2
(
a1 ⊗ a2 ⊗ p

)
= λA2

(
a1 ⊗ a2 ⊗ p

)
where a1, a2 ∈ A and p ∈ P(2). It is a (right) P(1)-module homomorphism because so is λA2 .
Similarly, we know that the map λA2 is a (right) P(1)-modules homomorphism. In addition, there is

a unique abelian groups homomorphims λ̂A2 : (A)⊗2 ⊗P(1)⊗P(1) P(2)→ A such that

λ̂A2 ◦ q
P(1)⊗P(1)
Z = λ̃A2

by 2.4.3. It is a (right) P(1)-module homomorphism because so is λ̃A2 . The equivariance axiom says
that

λA2
(
a1 ⊗ a2 ⊗ p

)
= λA2

(
T (a1 ⊗ a2)⊗ (p.t)

)
where T : A⊗2 → A⊗2, x ⊗ y 7→ y ⊗ x is the canonical switch and t : P(2) → P(2) is the (right)
action of S2 on P(2) in the operad structure of P . As qP(1)⊗P(1)

Z : A⊗2⊗P(2)→ A⊗2⊗P(1)⊗P(1)P(2)
is natural and is surjective, we also have

λ̂A2
(
a1 ⊗ a2 ⊗ p

)
= λ̂A2

(
T (a1 ⊗ a2)⊗ (p.t)

)
(2.4.2)

where T : (A)⊗2 → (A)⊗2 also is the canonical switch.

Notation 2.4.4. We denote by

IdAlg−P(A|A)S2 =
(
(A)⊗2 ⊗P(1)⊗P(1) P(2)

)
S2

the set of coinvariants of IdAlg−P(A|A) and by π : IdAlg−P(A|A)→ IdAlg−P(A|A)S2 is the canonical
quotient map which clearly satis�es

π = π ◦
(
T ⊗ t

)
where T : A⊗2 → A⊗2 is the canonical switch.
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The relation (2.4.2) implies that there is a unique abelian group homomorphism λA2 :
IdAlg−P(A|A)S2 → A such that

λA2 ◦ π = λ̂A2

It also is a (right) P(1)-module homomorphism because so is λ̂A2 . By 1.7.4, we recall that
γ
IdAlg−P
2 (A) = [A,A]IdAlg−P = Im

(
λA2 : A⊗2 ⊗ P(2)→ A

)
.

Notation 2.4.5. We denote by λA2 : IdAlg−P(A|A)S2 → [A,A]IdAlg−P the restriction map of λA2 :
IdAlg−P(A|A)S2 → A onto its image. It is clearly a surjective map.

Remark 2.4.6. In summary, for a1, a2 ∈ A and p ∈ P(2), we have

λA2 (a1 ⊗ a2 ⊗ p) = λA2 (a1 ⊗ a2 ⊗ p)

We now are able to give another description of the image [A,A]IdAlg−P = Im(λA2 ) (see 1.7.4)
whenever A is a free P-algebra of �nite rank.

Proposition 2.4.7. If A is a free P-algebra of �nite rank, then the surjective map

λA2 : IdAlg−P(A|A)S2 → [A,A]IdAlg−P

given in 2.4.5 is an isomorphism of P(1)-modules.

Proof. First we recall that λA2 : IdAlg−P(A|A)S2 → Im(λA2 ) is de�ned by

λA2
(
a1 ⊗ a2 ⊗ p2

)
= λA2 (a1 ⊗ a2 ⊗ p2) (2.4.3)

where a1, a2 ∈ A and p2 ∈ P(2). Then we observe that λA2 : IdAlg−P(A|A)S2 → [A,A]Alg−P is natural
in A so that it gives rise to a natural transformation

λ2 : I ·
(
(AbAlg−P)⊗2 ⊗P(1)⊗P(1) P(2)

)
S2

=⇒ γ
IdAlg−P
2

in the category of P-algebras, where I : ModP(1) = Ab(Alg−P)→ Alg−P is the inlcusion functor.
We observe that Im(λ2) can be seen as a subfunctor of the identity functor IdAlg−P : Alg − P →
Alg − P . As P is a 2-step nilpotent operad, the category of P-algebras is 2-step nilpotent so that
the functor IdAlg−P : Alg − P → Alg − P is quadratic by 1.3.10. It implies that the functor
Im(λ2) : Alg − P → Alg − P also is quadratic. Then the functor

I ·
(
(AbAlg−P)⊗2 ⊗P(1)⊗P(1) P(2)

)
S2

: Alg − P → Alg − P

is quadratic by 1.2.6. Hence the natural transformation λ2 with quadratic source and target restricted
to 〈FP〉 (the full subcategory of free P-algebras of �nite rank of Alg −P) is an isomorphism if, and

only if, λA2 is an isomorphism of P(1)-modules, for A = FP and A = F+2
P , by 1.17 of [12].

We �rst prove that, for A = FP , λA2 is an isomorphism. We observe that Im(λFP2 ) consists of elements
of the form (0, p2), for p2 ∈ P(2) (see 1.8.3). For this we de�ned the P(1)-module homomorphism
rFP : Im(λFP2 )→

(
(FP)⊗2 ⊗P(1)⊗P(1) P(2)

)
S2

by

rFP (0, p2) = (id, 0)⊗ (id, 0)⊗ p2 (2.4.4)
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where p2 ∈ P(2). Then we have the equalities as follows:

rFP ◦ λ
FP
2

(
(p1, 0), (p′1, 0)⊗ p2

)
= rFP

(
λFP2

(
(p1, 0)⊗ (p′1, 0)⊗ p2

))
, by (1.8.2)

= rFP
(
0, γ1,1;2(p1 ⊗ p′1 ⊗ p2)

)
= (id, 0)⊗ (id, 0)⊗ γ1,1;2(p1 ⊗ p′1 ⊗ p2)

= (p1, 0)⊗ (p′1, 0)⊗ p2

where p1, p
′
1 ∈ P(1) and p2 ∈ P(2). Thus we obtain rFP ◦ λ

FP
2 = id implying that λFP2 :(

(FP)⊗2 ⊗P(1)⊗P(1) P(2)
)
S2
→ Im(λFP2 ) is a monomorphism. Since λFP2 is a surjective map, it is

an isomorphism.

Next we check that, for A = F+2
P , λA2 is an isomorphism. By 1.8.10, we recall that the (right)

P(1)-module F+2
P consists of elements of the form

(
(p1

1, 0), (p2
1, 0), 0

)
, where p1

1, p
2
1 ∈ P(1). Then we

de�ne the P(1)-module homomorphism rF+2
P

: Im(λ
F+2
P

2 )→
(
(F+2
P )⊗2 ⊗P(1)⊗P(1) P(2)

)
S2

de�ned by

rF+2
P

(
(0, p1

2), (0, p2
2), p2

)
=
(
(id, 0), 0FP , 0

)
⊗
(
(id, 0), 0FP , 0

)
⊗ p1

2 +
(
0FP , (id, 0), 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ p2

2

+
(
(id, 0), 0FP , 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ p2
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where p1
2, p

2
2, p2 ∈ P(2). Let pi,j1 ∈ P(1) with i, j = 1, 2. Then we have the following equalities:

rF+2
P
◦ λF

+2
P

2

((
(p1,1

1 , 0), (p1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), (p2,2
1 , 0), 0

)
⊗ p2

)
= rF+2

P

(
λ
F+2
P

2

((
(p1,1

1 , 0), (p1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), (p2,2
1 , 0), 0

)
⊗ p2

))
= rF+2

P

(
λFP2

(
(p1,1

1 , 0)⊗ (p2,1
1 , 0)⊗ p2

)
, λFP2

(
(p1,2

1 , 0)⊗ (p2,2
1 , 0)⊗ p2

)
,

γ1,1;2

(
(p1,1

1 , p1,1
2 )⊗ (p2,2

1 , p2,2
2 )⊗ p2

)
+ γ1,1;2

(
(p2,1

1 , p2,1
2 )⊗ (p1,2

1 , p1,2
2 )⊗ (p2.t)

)
, by 1.8.9

= rF+2
P

((
0, γ1,1;2(p1,1

1 ⊗ p
2,1
1 ⊗ p2)

)
,
(
0, γ1,1;2(p1,2

1 ⊗ p
2,2
1 ⊗ p2)

)
,

γ1,1;2((p1,1
1 ⊗ p

2,2
1 ⊗ p2

)
+ γ1,1;2(p2,1

1 ⊗ p
1,2
1 ⊗ (p2.t)

)
, by (1.8.3)

=
(
(id, 0), 0FP , 0

)
⊗
(
(id, 0), 0FP , 0

)
⊗ γ1,1;2(p1,1

1 ⊗ p
2,1
1 ⊗ p2)

+
(
0FP , (id, 0), 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ γ1,1;2(p1,2

1 ⊗ p
2,2
1 ⊗ p2)

+
(
(id, 0), 0FP , 0

)
⊗
(
0FP , (id, 0), 0

)
⊗
(
γ1,1;2((p1,1

1 ⊗ p
2,2
1 ⊗ p2

)
+ γ1,1;2(p2,1

1 ⊗ p
1,2
1 ⊗ (p2.t))

)
=
(
(p1,1

1 , 0), 0FP , 0
)
⊗
(
(p2,1

1 , 0), 0FP , 0
)
⊗ p2) +

(
0FP , (p

1,2
1 , 0), 0

)
⊗
(
0FP , (p

2,2
1 , 0), 0

)
⊗ p2

+
(
(id, 0), 0FP , 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ γ1,1;2((p1,1

1 ⊗ p
2,2
1 ⊗ p2

)
+
(
(id, 0), 0FP , 0

)
⊗
(
0FP , (id, 0), 0

)
⊗ γ1,1;2(p2,1

1 ⊗ p
1,2
1 ⊗ (p2.t))

=
(
(p1,1

1 , 0), 0FP , 0
)
⊗
(
(p2,1

1 , 0), 0FP , 0
)
⊗ p2) +

(
0FP , (p

1,2
1 , 0), 0

)
⊗
(
0FP , (p

2,2
1 , 0), 0

)
⊗ p2

+
(
(p1,1

1 , 0), 0FP , 0
)
⊗
(
0FP , (p

2,2
1 , 0), 0

)
⊗ p2 +

(
(p2,1

1 , 0), 0FP , 0
)
⊗
(
0FP , (p

1,2
1 , 0), 0

)
⊗ (p2.t)

Moreover we get(
(p2,1

1 , 0), 0FP , 0
)
⊗
(
0FP , (p

1,2
1 , 0), 0

)
⊗ (p2.t) =

(
0FP , (p

1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), 0FP , 0
)
⊗ p2 ,

see 2.4.4. Then we obtain

rF+2
P
◦ λF

+2
P

2

((
(p1,1

1 , 0), (p1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), (p2,2
1 , 0), 0

)
⊗ p2

)
=
(
(p1,1

1 , 0), 0FP , 0
)
⊗
(
(p2,1

1 , 0), 0FP , 0
)
⊗ p2) +

(
0FP , (p

1,2
1 , 0), 0

)
⊗
(
0FP , (p

2,2
1 , 0), 0

)
⊗ p2

+
(
(p1,1

1 , 0), 0FP , 0
)
⊗
(
0FP , (p

2,2
1 , 0), 0

)
⊗ p2 +

(
0FP , (p

1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), 0FP , 0
)
⊗ p2

=
(
(p1,1

1 , 0), (p1,2
1 , 0), 0

)
⊗
(
(p2,1

1 , 0), (p2,2
1 , 0), 0

)
⊗ p2

Thus we have

rF+2
P
◦ λF

+2
P

2 = id

implying that the map λ
F+2
P

2 is a monomorphism. Since λ
F+2
P

2 is surjective, it is an isomorphism.

Hence λA2 is an isomorphism of P(1)-modules, for any free P-algebra A of �nite rank.
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In summary, a P-algebra A can be equivalently seen as a right P(1)-module endowed with a
P(1)-module homomorphism λA2 :

(
(A)⊗2 ⊗P(1)⊗P(1) P(2)

)
S2
→ A. In the next subsection, we

give a di�erent way to describe the equivariance axiom by taking the cokernel of a certain natural
transformation. Then we use the (polynomial) functors calculus providing a functorial way to describe
the structure linear natural transformations λF1 : F⊗2 ⇒ F , λF2 : F⊗2⊗P(2)⇒ F and their relations
into a unique natural transformation.

2.4.4 The equivariance axiom

Here we show that the equivariance axiom for F (as it takes values in P-algebras) allows to factorize
the natural transformation λ̂2

F
: F⊗2 ⊗P(1)⊗P(1) P(2)⇒ F through a certain cokernel.

Notation 2.4.8. For a (reduced) functor G : C → Ab and an object X in C, we denote by T̂GX :
G(X)⊗2 → G(X)⊗2, x⊗ y 7→ y ⊗ x the canonical switch which is clearly natural in X.

As P is a symmetric 2-step nilpotent operad, there is just one diagram left as follows:

F (X)⊗2 ⊗ P(2) F (X)⊗2 ⊗ P(2)

F (X)⊗2 ⊗ P(2) F (X)

id⊗t //

T̂FX⊗id

��

(λF2 )X

��(λF2 )X //

where T̂ FX : F (X)⊗2 → F (X)⊗2, x⊗ y 7→ y ⊗ x is the canonical switch and t the right action of S2

on P(2). This above diagram equivalently says that we have

(λF2 )X ◦ (T̂ FX ⊗ id− id⊗ t) = 0

Then we have the following equations:

(λF2 )X ◦
(
T̂ FX ⊗ id− id⊗ t

)
= 0

⇔ (λ̂2

F
)X ◦ qP(1)⊗P(1)

Z ◦
(
T̂ FX ⊗ id− id⊗ t

)
= 0

⇔ (λ̂2

F
)X ◦

(
T̂ FX ⊗P(1)⊗P(1) id− id⊗P(1)⊗P(1) t

)
◦ qP(1)⊗P(1)

Z = 0

⇔ (λ̂2

F
)X ◦

(
T̂ FX ⊗P(1)⊗P(1) id− id⊗P(1)⊗P(1) t

)
= 0 , because qP(1)⊗P(1)

Z is a regular epimorphism.

Finally we obtain

(λ̂2

F
)X ◦

(
T̂ FX ⊗P(1)⊗P(1) id− id⊗P(1)⊗P(1) t

)
= 0 (2.4.5)

Notation 2.4.9. Here we denote respectively R = P(1), and S = (R ⊗ R) o S2 the wreath product
de�ned by

(R⊗R) oS2 = (R⊗R)⊕ (R⊗R).t

whose multiplication is given by(
r1 ⊗ r2 + (s1 ⊗ s2).t

)(
r′1 ⊗ r′2 + (s′1 ⊗ s′2).t

)
=
(
r1r
′
1 ⊗ r2r

′
2 + s1s

′
2 ⊗ s2s

′
1

)
+
(
r1s
′
1 ⊗ r2s

′
2 + s1r

′
2 ⊗ s2r

′
1

)
.t

where ri, r′i, si, s
′
i ∈ R and t denotes the generator of S2. It is de�ned in 3.24 of [12].

Remarks 2.4.10. We have the following three observations:

• R⊗R is a subring of S.

66



• Any left (resp. right) S-module is a left (resp. right) (R⊗R)-module, and any S-bilinear map
is (R⊗R)-bilinear.

• A right symmetric (R ⊗ R)-module M with involution T has a right S-module structure and
it is given by

m.
(
r1 ⊗ r2 + (s1 ⊗ s2).t

)
= m.(r1 ⊗ r2) + T (m).(s2 ⊗ s1) (2.4.6)

where ri, r′i, si, s
′
i ∈ R.

Example 2.4.11. As an example, we observe that

• F (X)⊗2 has a right S-module structure given by

x⊗ y.
(
(r1 ⊗ r2) + (s1 ⊗ s2).t

)
= λF1 (x⊗ r1)⊗ λF1 (y ⊗ r2) + λF1 (y ⊗ s2)⊗ λF1 (x⊗ s1)

where x, y ∈ F (X). This structure commutes with the right P(1)-module structure on P(2) so
that P(2) actually is an S-P(1)-bimodule;

• P(2) has a left S-module structure given by(
(r1 ⊗ r2) + (s1 ⊗ s2).t

)
.p = γ1,1;2(r1 ⊗ r2 ⊗ p) + γ1,1;2(s1 ⊗ s2 ⊗ p.t)

where rk, sk ∈ P(1) and p ∈ P(2).

Notation 2.4.12. For X an object in C, we write qFX = qSR⊗R : F (X)⊗2⊗R⊗RP(2)→ F (X)⊗2⊗S P(2)
(see 2.4.3) which is natural in X.

Then we prove that qFX : F (X)⊗2⊗R⊗R P(2)→ F (X)⊗2⊗S P(2) is the cokernel of T̂ FX ⊗R⊗R id−
id⊗R⊗R t.

Proposition 2.4.13. The natural transformation qF : F⊗2⊗R⊗RP(2)⇒ F⊗2⊗SP(2) is the cokernel

of T̂ F ⊗R⊗R id− id⊗R⊗R t : F⊗2 ⊗R⊗R P(2)⇒ F⊗2 ⊗R⊗R P(2) in Func∗(C, ModP(1)).

Proof. Let X be an object in C. First we remark that qFX : F (X)⊗2⊗R⊗RP(2)→ F (X)⊗2⊗S P(2) is
an epimorphism and that is a homomorphism of right P(1)-modules. Then we check that qFX is the

cokernel of T̂ FX ⊗R⊗R id − id ⊗R⊗R t. Let φ : F (X)⊗2 ⊗R⊗R P(2) → C be a homomorphism of right
P(1)-modules such that

φ ◦
(
T̂ FX ⊗R⊗R id

)
= φ ◦

(
id⊗R⊗R t

)
It su�ces to prove that φ : F (X)⊗2 ⊗R⊗R P(2)→ C is S-bilinear as follows:

φ
(
x⊗ y.

(
(r1 ⊗ r2) + (s1 ⊗ s2).t

)
⊗R⊗R p

)
= φ

(
λF1 (x⊗ r1)⊗ λF1 (y ⊗ r2)⊗R⊗R p

)
+ φ
(
λF1 (y ⊗ s2)⊗ λF1 (x⊗ s1)⊗R⊗R p

)
However we get

φ
(
λF1 (y ⊗ s2)⊗ λF1 (x⊗ s1)⊗R⊗R p

)
= φ ◦

(
T̂ FX ⊗R⊗R id

)(
λF1 (x⊗ s1)⊗ λF1 (y ⊗ s2)⊗R⊗R p

)
= φ ◦

(
id⊗R⊗R t

)(
λF1 (x⊗ s1)⊗ λF1 (y ⊗ s2)⊗R⊗R p

)
= φ

(
λF1 (x⊗ s1)⊗ λF1 (y ⊗ s2)⊗R⊗R p.t

)
= φ

(
x⊗ y ⊗R⊗R γ1,1;2(s1 ⊗ s2 ⊗ p.t)

)
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Hence we have

φ
(
x⊗ y.

(
(r1 ⊗ r2) + (s1 ⊗ s2).t

)
⊗R⊗R p

)
= φ

(
x⊗ y ⊗R⊗R γ1,1;2(r1 ⊗ r2 ⊗ p)

)
+ φ
(
x⊗ y ⊗R⊗R γ1,1;2(s1 ⊗ s2 ⊗ p.t)

)
= φ

(
x⊗ y ⊗R⊗R

(
γ1,1;2(r1 ⊗ r2 ⊗ p) + γ1,1;2(s1 ⊗ s2 ⊗ p.t

))
= φ

(
x⊗ y ⊗R⊗R

(
(r1 ⊗ r2) + (s1 ⊗ s2).t

)
.p
)

This proves that φ : F (X)⊗2⊗R⊗RP(2)→ C is S-bilinear. By 2.4.3, there is a unique homomorphism
of abelian groups φX : F (X)⊗2 ⊗S P(2)→ C such that

φ = φX ◦ qFX

Moreover φX is a homomorphism of right P(1)-modules because so are φX and qFX . It proves the
result.

To summarize, we have the natural transformation λ̂2

F
: F⊗2 ⊗R⊗R P(2)⇒ F verifying

λ̂2

F
◦
(
T̂ F ⊗P(1)⊗P(1) id− id⊗P(1)⊗P(1) t

)
= 0

By 2.4.13 and (2.4.5), there is a unique natural transformation λ̃2

F
: F⊗2 ⊗S P(2) ⇒ F factorizing

λ̂2

F
through qF : F⊗2 ⊗R⊗R P(2)⇒ F⊗2 ⊗S P(2), i.e.

λ̂2

F
= λ̃2

F
◦ qF (2.4.7)

However we observe that we can not apply the functor SP(1)
2 : Quad(C, ModP(1)) → Qmod

P(1)
C (see

2.2.4) to the natural transformation λ̃2

F
because F⊗2 ⊗S P(2) : C → ModP(1) is not a quadratic

functor in general but polynomial of degree 4. That is the reason why we use the universal property
of the unit of the adjunction given in 1.10 of [12], which makes sense because F is a quadratic functor.

More precisely, there is a unique natural transformation λ2
F

: T2(F⊗2 ⊗S P(2))⇒ F such that

λ̃2

F
= λ2

F ◦ tF
⊗2⊗SP(2)

2 (2.4.8)

The proposition 1.10 of [12] also says that T2(F⊗2 ⊗S P(2)) : C → Ab is a quadratic functor taking
values in right P(1)-modules. Finally we have expressed the P-algebra structure for F in terms of

a natural transformation λ2
F

: T2(F⊗2 ⊗S P(2)) ⇒ F between quadratic functors with domain C
and values in right P(1)-modules. By applying SP(1)

2 to this natural transformation, it provides the
morphism SP(1)

2 (λF2 ) : SP(1)
2 (T2(F⊗2 ⊗S P(2)))→ SP(1)

2 (F ) between quadratic C-modules over P(1).
Finally, it interprets the binary bilinear operations involved in the P-algebra structure for the functor
F : C → Alg − P in terms of a morphism between quadratic C-modules over P(1).

2.4.5 Isomorphism between two quadratic C-modules over P(1)

Here we prove that the quadratic C-module SP(1)
2 (T2(F⊗2 ⊗S P(2))) over P(1) is isomorphic to an

another such object more understandable. On the one hand, we show that the quadratic functors
T2(F⊗2 ⊗S P(2)) and T1F

⊗2 ⊗S P(2) with domain C and values in ModP(1) are isomorphic to each
other. On the second hand, we give the explicit expression of each component and morphism involved
in the quadratic C-module over P(1) corresponding to the quadratic functor T1F

⊗2 ⊗S P(2).
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First we provide a technical result which gives the bilinearization of a speci�c (bireduced) diago-
nalizable bifunctor (see 2.2 of [12]) depending on the functor F . By the universal property of the
bilinearization of the bifunctor F ⊗ F : C×2 → Ab (see 1.14 of [12]), there is a unique morphism be-
tween bilinear bifunctors tF1 ⊗ tF1 : T11

(
F ⊗F

)
⇒ T1F ⊗T1F factorizing tF1 ⊗tF1 : F ⊗F ⇒ T1F ⊗T1F

through tF⊗F11 : F ⊗F ⇒ T11

(
F ⊗F

)
. The following proposition says that this morphism is a natural

isomorphism.

Proposition 2.4.14. The natural transformation tF1 ⊗ tF1 : T11

(
F ⊗F

)
⇒ T1F ⊗ T1F is an isomor-

phism between bilinear bifunctors.

Proof. It is an immediate consequence of 2.3.1 and of right-exactness of the tensor product.

There is a more general setting than 2.4.14 given in Example 1.15 of [12]. Now we give the
following natural isomorphism between quadratic functors:

Proposition 2.4.15. The quadratic functors T2

(
F⊗2⊗R⊗RP(2)

)
and T1F

⊗2⊗R⊗RP(2) with domain
C and values in ModP(1) are isomorphic to each other in Quad(C, ModP(1)).

Proof. By 2.3.1, 2.7 of [12] and 2.4.14, we have the following natural isomorphisms between quadratic
functors with domain C and values in ModP(1):

T2

(
F⊗2 ⊗R⊗R P(2)

) ∼= T2

((
F ⊗ F

)
·∆2)⊗R⊗R P(2) ∼= T11

(
F ⊗ F

)
·∆2 ⊗R⊗R P(2) ∼= T1F

⊗2 ⊗R⊗R P(2)

By 1.2.11, there is a unique factorization (tF1 )⊗2 ⊗ id : T2

(
F⊗2 ⊗R⊗R P(2)

)
⇒ T1F

⊗2 ⊗S P(2) (that
exists because its target object is quadratic) of (tF1 )⊗2 ⊗ id : F⊗2 ⊗R⊗R P(2) ⇒ T1F

⊗2 ⊗S P(2)

through tF
⊗2⊗R⊗RP(2)

2 : F⊗2 ⊗R⊗R P(2)⇒ T2

(
F⊗2 ⊗R⊗R P(2)

)
, i.e.

(tF1 )⊗2 ⊗ id ◦ tF
⊗2⊗R⊗RP(2)

2 = (tF1 )⊗2 ⊗ id (2.4.9)

We prove that (tF1 )⊗2 ⊗ id is a natural isomorphism. We have the following equalities:(
(t1 ⊗ t1)X,X ⊗R⊗R id

)
◦
(
(∆∗2 · tF⊗F11 )X ⊗R⊗R id

)
◦
(
(tF

⊗2

2 ⊗ id)X ⊗R⊗R id
)
◦
(
t
F⊗2⊗R⊗RP(2)
2

)
X

=
(
(t1 ⊗ t1)X,X ⊗R⊗R id

)
◦
(
(∆∗2 · tF⊗F11 )X ⊗R⊗R id

)
◦
(
(tF

⊗2

2 )X ⊗R⊗R id
)
, by 2.3.1

=
(
(t1 ⊗ t1)X,X ⊗R⊗R id

)
◦
(
(tF⊗F11 )X,X ⊗R⊗R id

)
, by 2.7 of [12]

= (tF1 )⊗2
X ⊗R⊗R id , by 2.4.14

=
(
(tF1 )⊗2

X ⊗ id
)
◦
(
t
F⊗2⊗R⊗RP(2)
2

)
X
, by (2.4.9)S

Hence we get(
(tF1 )⊗2

X ⊗ id
)

=
(
(t1 ⊗ t1)X,X ⊗R⊗R id

)
◦
(
(∆∗2 · tF⊗F11 )X ⊗R⊗R id

)
◦
(
(tF

⊗2

2 ⊗ id)X ⊗R⊗R id
)

because
(
t
F⊗2⊗R⊗RP(2)
2

)
X
is a (regular) epimorphism. Thus (tF1 )⊗2

X ⊗ id is an isomorphism as a com-
posite of isomorphisms.
By using 2.4.13, we have the following right exact sequence in Func∗(C,ModP(1)) as follows:

F⊗2 ⊗R⊗R P(2)
T̂F⊗id−id⊗t

=⇒ F⊗2 ⊗R⊗R P(2)
qF

=⇒ F⊗2 ⊗S P(2) =⇒ 0

The quadratization functor T2 : Func∗(C,ModP(1)) → Quad(C, ModP(1)) is the left adjoint functor
of the inclusion functor by 1.10 of [12]. Hence T2 is a right exact functor. Then we have the following
right exact sequence in Quad(C,ModP(1)):

T2

(
F⊗2 ⊗R⊗R P(2)

) T2

(
T̂F⊗id−id⊗t

)
=⇒ T2

(
F⊗2 ⊗R⊗R P(2)

) T2(qF )
=⇒ T2

(
F⊗2 ⊗S P(2)

)
=⇒ 0
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Let X be any object in C. Then we consider the following diagram:

T1F (X)⊗2 ⊗R⊗R P(2) T1F (X)⊗2 ⊗R⊗R P(2)

T2

(
F⊗2 ⊗R⊗R P(2)

)
(X) T2

(
F⊗2 ⊗R⊗R P(2)

)
(X) T2

(
F⊗2 ⊗S P(2)

)
(X)

T1F (X)⊗2 ⊗S P(2)
T̂
T1F
X ⊗id−id⊗t

//
q
T1F
X //

T2(T̂F⊗id−id⊗t)X //

(tF1 )⊗2
X ⊗id

∼=

��

(tF1 )⊗2
X ⊗id

∼=

��

T2(qF )X //

∼= φFX

��

Now we prove that the left-hand rectangle is commutative:(
(tF1 )⊗2

X ⊗ id
)
◦ T2(T̂ F ⊗ id− id⊗ t)X ◦ (t

F⊗2⊗R⊗RP(2)
2 )X

=
(
(tF1 )⊗2

X ⊗ id
)
◦ (t

F⊗2⊗R⊗RP(2)
2 )X ◦ (T̂ FX ⊗ id− id⊗ t)

=
(
(tF1 )⊗2

X ⊗ id
)
◦ (T̂ FX ⊗ id− id⊗ t) , by (2.4.9)

= (T̂ T1F
X ⊗ id− id⊗ t) ◦

(
(tF1 )⊗2

X ⊗ id
)

= (T̂ T1F
X ⊗ id− id⊗ t) ◦

(
(tF1 )⊗2

X ⊗ id
)
◦ (t

F⊗2⊗R⊗RP(2)
2 )X , by 2.4.9

Hence we obtain(
(tF1 )⊗2

X ⊗ id
)
◦ T2(T̂ F ⊗ id− id⊗ t)X = (T̂ T1F

X ⊗ id− id⊗ t) ◦
(
(tF1 )⊗2

X ⊗ id
)

because (t
F⊗2⊗R⊗RP(2)
2 )X is a (regular) epimorphism. As

(
(tF1 )⊗2

X ⊗ id
)
is an isomorphism (see 2.4.15

and (2.4.9)), a category argument provides an unique isomorphism φFX : T2

(
F⊗2 ⊗S P(2)

)
(X) →

T1F (X)⊗2 ⊗S P(2) such that

φFX ◦ T2(q)X = qT1F
X ◦

(
(tF1 )⊗2

X ⊗ id
)

(2.4.10)

We remark that the morphism φFX is natural in X. Then it de�nes a natural isomorphism φF :
T2(F⊗2 ⊗S P(2))⇒ T1F

⊗2 ⊗S P(2) in Quad(C, ModP(1)).

Remark 2.4.16. By applying the functor SP(1)
2 : Quad(C, ModP(1)) → QMod

P(1)
C to the natu-

ral isomorphism φF : T2(F⊗2 ⊗S P(2)) ⇒ T1F
⊗2 ⊗S P(2), we get an isomorphism SP(1)

2 (φF ) =

(φFE, cr2(φF )E,E) : SP(1)
2 (T2(F⊗2 ⊗S P(2)))→ SP(1)

2 (T1F
⊗2 ⊗S P(2)) in QMod

P(1)
C .

Before giving the quadratic C-module over P(1) associated with the quadratic functor T1F ⊗S
P(2) : C →ModP(1), we give the following proposition:

Proposition 2.4.17. Let A and B be two abelian categories, G : C → A be a reduced functor and
L : A → B be an additive functor. Then the n-th cross-e�ect of the composite functor L ·G : C → B
is

crn(L ·G)(X1, . . . , Xn) = L
(
crnG(X1, . . . , Xn)

)
where X1, . . . , Xn ∈ C. Moreover the kernel ιL.Gn : crn(L ·G)(X1, . . . , Xn)� (L ·G)(X1 + . . . + Xn)

of the comparison morphism r̂L·Gn (see (1.2.1)) is given by

ιL·Gn = L(ιGn )

with ιGn : crnG(X1, . . . , Xn)� G(X1 + . . .+Xn) being the kernel of the comparaisaon morphism r̂Gn .
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Proof. It is an immediate consequence of the inductive de�nition of the n-th cross-e�ect of G (see
1.2 of [12]) and of the fact that L preserves �nite products (because it is an additive functor between
abelian categories).

Proposition 2.4.18. The quadratic C-module SP(1)
2

(
T1F

⊗2 ⊗S P(2)
)
over P(1) is as follows:

T11cr2(UE)(E,E)⊗Λ

(
T1F (E)⊗2 ⊗S P(2)

) ĤF
E−→ T1F (E)⊗2 ⊗R⊗R P(2)

q
T1F
E−→ T1F (E)⊗2 ⊗S P(2)

Here

• The involution involved is the morphism T̂ T1F
E ⊗R⊗R t : T1F (E)⊗2⊗R⊗RP(2)→ T1F (E)⊗2⊗R⊗R

P(2), where T̂ T1F
E : T1F (E)⊗2 → T1F (E)⊗2 , x⊗ y 7→ y ⊗ x is the canonical switch;

• the morphism qT1F
E , respectively the map ĤF

E , is the cokernel of T̂ T1F
E ⊗R⊗R id− id⊗R⊗R t (see

2.4.13), respectively the homomorphism of (Λ⊗ Λ)-P(1)-bimodules de�ned as follows:

ĤF
E

(
t11(ρ2(ξ))⊗ (x⊗ y ⊗ p)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
x⊗ y ⊗ p+ y ⊗ x⊗ (p.t)

)
where x, y ∈ T1F (E), ξ ∈ C(E,E + E) and p ∈ P(2).

Proof. Let X and Y be two objects in C. We denote respectively by i21 : X � X + Y and i22 :
Y � X + Y the injections of the �rst and the second summand. Moreover consider x, x′ ∈ T1F (X),
y, y′ ∈ T1F (Y ) and p ∈ P(2). There are several steps to prove this proposition:

1. Computation of cr2

(
T1F

⊗2⊗SP(2)
)
. First we observe that the quadratic functor T1F

⊗2⊗SP(2)
is the postcomposite of the additive functor −⊗SP(2) : ModS →ModP(1) with the (quadratic)
functor

(
T1F ⊗T1F

)
·∆2 = T1F

⊗2 : C →ModS. Moreover the second cross-e�ect of the functor(
T1F ⊗ T1F

)
·∆2 = T1F

⊗2 : C →ModS is

cr2

(
T1F

⊗2
)
(X, Y ) =

(
T1F (X)⊗ T1F (Y )

)
⊕
(
T1F (Y )⊗ T1F (X)

)
(2.4.11)

by 2.6 of [12] because the bifunctor T1F ⊗ T1F : C×2 → ModS is bilinear. In addition, the

kernel ιT1F⊗2

2 : cr2

(
T1F

⊗2
)
(X, Y ) � T1F (X + Y )⊗2 of the comparison morphism r̂T1F⊗2

2 (see
(1.2.1)) is given by

ιT1F⊗2

2 =
((
T1F ⊗ T1F

)
(i21, i

2
2),
(
T1F ⊗ T1F

)
(i22, i

2
1)
)

=
(
T1F (i21)⊗ T1F (i22), T1F (i22)⊗ T1F (i21)

)
We remark that cr2

(
T1F

⊗2
)
(X, Y ) is a right (R⊗R)-module with involution T de�ned by

T
(
a⊗ b, c⊗ d

)
= (d⊗ c, b⊗ a)

Hence cr2

(
T1F

⊗2
)
(X, Y ) has a canonical right S-module structure by 2.4.10. By 2.4.17, the

second cross-e�ect of the functor T1F
⊗2 ⊗S P(2) is given as follows:

cr2

(
T1F

⊗2 ⊗S P(2)
)
(X, Y ) = cr2

(
T1F

⊗2
)
(X, Y )⊗S P(2) , (2.4.12)

and the kernel ιT1F⊗2⊗SP(2)
2 : cr2

(
T1F

⊗2 ⊗S P(2)
)
(X, Y ) � T1F (X + Y )⊗2 ⊗S P(2) of the

comparison morphism (see (1.2.1)) is given by

ι
T1F⊗2⊗SP(2)
2 = ιT1F⊗2

2 ⊗S id .
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Now let us de�ne the morphism φ : T1F (X)⊗T1F (Y )⊗R⊗RP(2)→ cr2

(
T1F

⊗2⊗SP(2)
)
(X, Y )

by
φ(x⊗ y ⊗ p) = (x⊗ y, 0)⊗S p ,

Then we prove that φ is an isomorphism in ModP(1). For this, it su�ces to �nd its inverse.
Let ϕ : cr2

(
T1F

⊗2
)
(X, Y )⊗R⊗R P(2)→ T1F (X)⊗ T1F (Y )⊗R⊗R P(2) be de�ned by

ϕ
(
(x⊗ y, y′ ⊗ x′)⊗ p

)
= x⊗ y ⊗ p + x′ ⊗ y′ ⊗ (p.t)

where x, x′ ∈ T1F (X), y, y′ ∈ T1F (Y ) and p ∈ P(2). We verify that ϕ is S-bilinear. For this,
we get

ϕ
(

(x⊗ y, y′ ⊗ x′).
(
r1 ⊗ r2 + (s1 ⊗ s2).t

)
⊗ p
)

= λF1 (x⊗ r1)⊗ λF1 (y ⊗ r2)⊗ p+ λF1 (x′ ⊗ r2)⊗ λF1 (y′ ⊗ r1)⊗ (p.t)

+ λF1 (x′ ⊗ s2)⊗ λF1 (y′ ⊗ s1)⊗ p+ λF1 (x⊗ s1)⊗ λF1 (y ⊗ s2)⊗ (p.t) , by (2.4.6)

= x⊗ y ⊗ γ1,1;2(r1 ⊗ r2 ⊗ p) + x⊗ y ⊗ γ1,1;2(s1 ⊗ s2 ⊗ (p.t))

+ x′ ⊗ y′ ⊗ γ1,1;2(r2 ⊗ r1 ⊗ (p.t)) + x′ ⊗ y′ ⊗ γ1,1;2(s2 ⊗ s1 ⊗ p)

By the equivariance axiom of the operad P , we have

γ1,1;2(r2 ⊗ r1 ⊗ (p.t)) + γ1,1;2(s2 ⊗ s1 ⊗ p) =
(
γ1,1;2(r1 ⊗ r2 ⊗ p) + γ1,1;2(s1 ⊗ s2 ⊗ (p.t))

)
.t

Hence we get

ϕ
(

(x⊗ y, y′ ⊗ x′).
(
r1 ⊗ r2 + (s1 ⊗ s2).t

)
⊗ p
)

= x⊗ y ⊗
(
γ1,1;2(r1 ⊗ r2 ⊗ p) + γ1,1;2(s1 ⊗ s2 ⊗ (p.t))

)
x′ ⊗ y′ ⊗

(
γ1,1;2(r1 ⊗ r2 ⊗ p) + γ1,1;2(s1 ⊗ s2 ⊗ (p.t))

)
.t

= x⊗ y ⊗
(
r1 ⊗ r2 + (s1 ⊗ s2).t

)
.p

x′ ⊗ y′ ⊗
((
r1 ⊗ r2 + (s1 ⊗ s2).t

)
.p.
)
.t , by 2.4.11

= ϕ
(

(x⊗ y, y′ ⊗ x′)⊗
(
r1 ⊗ r2 + (s1 ⊗ s2).t

)
.p
)

where r1, r2, s1, s2 ∈ R. By 2.4.3, there is a morphism ψ : cr2

(
T1F

⊗2
)
(X, Y ) ⊗S P(2) →

T1F (X) ⊗ T1F (Y ) ⊗R⊗R P(2) such that ψ ◦ qSR⊗R = ϕ. It is clear that it is a (right) P(1)-
module homomorphism. Let us prove that φ and ψ are inverse to each other.

• On the one hand, we have φ ◦ ψ = id because we get

(φ ◦ ψ)
(
(x⊗ y, y′ ⊗ x′

)
⊗S p

)
= φ

(
x⊗ y ⊗ p+ x′ ⊗ y′ ⊗ (p.t)

)
=
(
x⊗ y, 0)⊗S p+

(
0, y′ ⊗ x′

)
⊗S p

= (x⊗ y, y′ ⊗ x′
)
⊗S p

as desired.

• On the other hand, we get ψ ◦ φ = id as we have

(ψ ◦ φ)(x⊗ y ⊗ p) = ψ((x⊗ y, 0)⊗S p) = x⊗ y ⊗ p

as desired.
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Now let us de�ne k : T1F (X) ⊗ T1F (Y ) ⊗R⊗R P(2) → T1F (X + Y )⊗2 ⊗S P(2) to be the

composite morphism k = ι
T1F⊗2⊗SP(2)
2 ◦ψ, which is clearly a kernel of the comparison morphism

̂
r
T1F⊗2⊗SP(2)
2 (see (1.2.1)). We have the following expression of k:

k(x⊗ y ⊗ p) = (ι
T1F⊗2⊗SP(2)
2 ◦ ψ)(x⊗ y ⊗ p)

=
(
ιT1F⊗2

2 ⊗S id
)(

(x⊗ y, 0)⊗ p
)

=
((
T1F ⊗ T1F

)
(i21, i

2
2),
(
T1F ⊗ T1F

)
(i22, i

2
1)
)
(x⊗ y, 0)⊗S p

=
(
T1F (i21)⊗ T1F (i22), T1F (i22)⊗ T1F (i21)

)
(x⊗ y, 0)⊗S p

= T1F (i21)(x)⊗ T1F (i22)(y)⊗S p

= qFX+Y ◦
(
T1F (i21)⊗ T1F (i22)⊗R⊗R id)(x⊗ y ⊗ p)

Moreover we deduce that we have the following isomorphism of (right) P(1)-modules:

cr2

(
T1F

⊗2 ⊗S P(2)
)
(X, Y ) ∼= T1F (X)⊗ T1F (Y )⊗R⊗R P(2)

From now on, we consider that the second cross-e�ect of the functor BF
S ·∆2 : C →ModP(1) is

cr2

(
T1F

⊗2 ⊗S P(2)
)
(X, Y ) = T1F (X)⊗ T1F (Y )⊗R⊗R P(2) (2.4.13)

setting here (ι
T1F⊗2⊗SP(2)
2 )X,Y = qT1F

X+Y ◦
(
(T1F (i21)⊗ T1F (i22))⊗R⊗R id

)
, for X, Y ∈ C.

2. Computation of (S
T1F⊗2⊗SP(2)
2 )E : cr2

(
T1F

⊗2 ⊗S P(2)
)
(E,E)→ T1F (E)⊗2 ⊗S P(2). We prove

that (S
T1F⊗2⊗SP(2)
2 )E = qT1F

E . We have the following equalities:

(S
T1F⊗2⊗SP(2)
2 )E =

(
T1F (∇2

E)⊗2 ⊗S id
)
◦ (ι

T1F⊗2⊗SP(2)
2 )E,E , by de�nition

=
(
T1F (∇2

E)⊗ T1F (∇2
E)⊗S id

)
◦ qT1F

E+E ◦
(
T1F (i21)⊗ T1F (i22)⊗R⊗R id

)
= qT1F

E ◦
(
T1F (∇2

E)⊗ T1F (∇2
E)⊗R⊗R id

)
◦
(
T1F (i21)⊗ T1F (i22)⊗R⊗R id

)
,

by naturality of qFE in E

= qT1F
E

3. Computation of H
T1F⊗2⊗SP(2)
E : T11cr2UE(E,E)⊗Λ

(
T1F (E)⊗2⊗SP(2)

)
→ T1F (E)⊗2⊗R⊗RP(2).

We prove that HT1F⊗2⊗SP(2)
E = ĤF

E where ĤF
E is given in the statement of 2.4.18. We recall

that the morphism H
T1F⊗2⊗SP(2)
E is de�ned in 5.15 of [12] as follows:

T11cr2(UE)(E,E)⊗Λ (T1F (E)⊗2 ⊗S P(2)) T1F (E)⊗2 ⊗R⊗R P(2)

cr2(UE)(E,E)⊗Λ (T1F (E)⊗2 ⊗ P(2))

H
T1F
⊗2⊗SP(2)

E //

(t
cr2(UE)
11 )E,E⊗Λid

OO

cr2(u′
T1F
⊗2⊗SP(2)

)E,E

22

where, for X object in C, (u′T1F⊗2⊗SP(2))X : UE(X)⊗Λ(T1F (E)⊗2⊗SP(2))→ T1F (X)⊗2⊗SP(2)
is the morphism de�ned by

(u′T1F⊗2⊗SP(2))X
(
f ⊗Λ (x⊗ y ⊗S p)

)
= T1F (f)(x)⊗ T1F (f)(y)⊗S p
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where f ∈ C(E, X), x, y ∈ T1F (E) and p ∈ P(2). Moreover we recall that cr2(u′T1F⊗2⊗SP(2))E,E
is the unique morphism such that the following diagram commutes:

cr2(UE)(E,E)⊗Λ

(
T1F (E)⊗2 ⊗S P(2)

)
UE(E+2)⊗Λ

(
T1F (E)⊗2 ⊗S P(2)

)

T1F (E)⊗2 ⊗R⊗R P(2) (T1F (E+2)⊗2 ⊗S P(2))

ι2⊗Λid //

cr2(u′
T1F
⊗2⊗SP(2)

)E,E

��

(u′
T1F
⊗2⊗SP(2)

)E+2

��ι
T1F
⊗2⊗SP(2)

2 //

with ι2 : UE(E|E)� UE(E+2) being the kernel of the comparison morphism r̂UE2 : UE(E+2)→
UE(E)×2 (see 1.3 of [12]). We recall that ι2 has a retraction ρ2 : UE(E+2)→ UE(E|E) (as the
functor UE takes values in the abelian categoryModΛ). Hence ρ2(UE(E+2)) generates UE(E|E)
(as a left Λ-module). Let x, y ∈ T1F (E), ξ ∈ C(E, E+2) and p ∈ P(2). It su�ces to prove that
the above diagram commutes if cr2(u′T1F⊗2⊗SP(2))E,E has the following explicit expression:

cr2(u′T1F⊗2⊗SP(2))E,E
(
ρ2(ξ)⊗Λ (x⊗ y ⊗S p)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
x⊗ y ⊗R⊗R p+ y ⊗ x⊗R⊗R (p.t)

)
= T1F (r2

1 ◦ ξ)(x)⊗ T1F (r2
2 ◦ ξ)(y)⊗R⊗R p+ T1F (r2

1 ◦ ξ)(y)⊗ T1F (r2
2 ◦ ξ)(x)⊗R⊗R (p.t)

by uniqueness of cr2(u′T1F⊗2⊗SP(2))E,E. On the one hand, we have

(ι
T1F⊗2⊗SP(2)
2 )E,E ◦ cr2(u′T1F⊗2⊗SP(2))E,E

(
ρ2(ξ)⊗Λ (x⊗ y ⊗S p)

)
= qT1F

E+2 ◦
(
T1F (i21)⊗ T1F (i22)⊗R⊗R id

)(
T1F (r2

1 ◦ ξ)(x)⊗ T1F (r2
2 ◦ ξ)(y)⊗R⊗R p

+ T1F (r2
1 ◦ ξ)(y)⊗ T1F (r2

2 ◦ ξ)(x)⊗R⊗R (p.t)
)

= qT1F
E+2

(
T1F (i21 ◦ r2

1 ◦ ξ)(x)⊗ T1F (i22 ◦ r2
2 ◦ ξ)(y)⊗R⊗R p

+ T1F (i21 ◦ r2
1 ◦ ξ)(y)⊗ T1F (i22 ◦ r2

2 ◦ ξ)(x)⊗R⊗R (p.t)
)

= T1F (i21 ◦ r2
1 ◦ ξ)(x)⊗ T1F (i22 ◦ r2

2 ◦ ξ)(y)⊗S p

+ T1F (i21 ◦ r2
1 ◦ ξ)(y)⊗ T1F (i22 ◦ r2

2 ◦ ξ)(x)⊗S (p.t)

= T1F (i21 ◦ r2
1 ◦ ξ)(x)⊗ T1F (i22 ◦ r2

2 ◦ ξ)(y)⊗S p

+ T1F (i22 ◦ r2
2 ◦ ξ)(x)⊗ T1F (i21 ◦ r2

1 ◦ ξ)(y)⊗S p
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On the other hand, we obtain

(u′T1F⊗2⊗SP(2))E+2 ◦ (ι2 ⊗Λ id)
(
ρ2(ξ)⊗Λ (x⊗ y ⊗S p)

)
= (u′T1F⊗2⊗SP(2))E+2 ◦

(
(ι2 ◦ ρ2)(ξ)⊗Λ (x⊗ y ⊗S p)

)
= (u′T1F⊗2⊗SP(2))E+2

(
ξ ⊗Λ (x⊗ y ⊗S p)

)
− (u′T1F⊗2⊗SP(2))E+2

(
(i21 ◦ r2

1 ◦ ξ)⊗Λ (x⊗ y ⊗S p)
)

− (u′T1F⊗2⊗SP(2))E+2

(
(i22 ◦ r2

2 ◦ ξ)⊗Λ (x⊗ y ⊗S p)
)

= T1F (ξ)(x)⊗ T1F (ξ)(y)⊗S p− T1F (i21 ◦ r2
1ξ)(x)⊗ T1F (i21 ◦ r2

1 ◦ ξ)(y)⊗S p

− T1F (i22 ◦ r2
2 ◦ ξ)(x)⊗ T1F (i22 ◦ r2

2 ◦ ξ)(y)⊗S p

As T1F : C → Ab is a linear functor, we have the following relation:

T1F (ξ) = T1F (i21 ◦ r2
1 ◦ ξ) + T1F (i22 ◦ r2

2 ◦ ξ) ,

by 2.14 of [12]. Hence it follows that we have

(u′T1F⊗2⊗SP(2))E+2 ◦ (ι2 ⊗Λ id)
(
ρ2(ξ)⊗Λ (x⊗ y ⊗S p

)
= T1F (i21 ◦ r2

1 ◦ ξ)(x)⊗ T1F (i22 ◦ r2
2 ◦ ξ)(y)⊗S p

+ T1F (i22 ◦ r2
2 ◦ ξ)(x)⊗ T1F (i21 ◦ r2

1 ◦ ξ)(y)⊗S p

as desired. Finally we get HT1F⊗2⊗SP(2)
E = ĤF

E .

4. Computation of the involution T
T1F⊗2⊗SP(2)
E : T1F (E)⊗2⊗S P(2)→ T1F (E)⊗2⊗S P(2). By the

de�nition of T T1F⊗2⊗SP(2)
E , it is the unique morphism such that the following diagram commutes:

T1F (E)⊗2 ⊗R⊗R P(2) T1F (E)⊗2 ⊗S P(2)

T1F (E)⊗2 ⊗R⊗R P(2) T1F (E)⊗2 ⊗S P(2)

ι
T1F
⊗2⊗SP(2)

2 //

T
T1F
⊗2⊗SP(2)

E

��

T1F (τ2
E)⊗2⊗SP(2)

��ι
T1F
⊗2⊗SP(2)

2 //

where the morphism τ 2
E : E+2 → E+2 is the canonical switch. We get the following equalities:(

T1F (τ 2
E)⊗2 ⊗S id

)
◦ ιT1F⊗2⊗SP(2)

2 (x⊗ y ⊗ p)

=
(
T1F (τ 2

E)⊗2 ⊗S id
)
◦ qT1F

E+2 ◦
(
T1F (i21) ◦ T1(i22)⊗R⊗R id

)
(x⊗ y ⊗ p)

= T1F (τ 2
E ◦ i21)(x)⊗ T1F (τ 2

E ◦ i22)(y)⊗S p

= T1F (i22)(x)⊗ T1F (i21)(y)⊗S p

= T1F (i21)(y)⊗ T1F (i22)(x)⊗S (p.t)

= qT1F
E+2 ◦

(
T1F (i21)⊗ T1F (i22)⊗R⊗R id

)
◦ (T̂ T1F

E ⊗R⊗R t)(x⊗ y ⊗ p)

= ι
T1F⊗2⊗SP(2)
2 ◦ (T̂ T1F

E ⊗R⊗R t)(x⊗ y ⊗ p)
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where x, y ∈ T1F (E) and p ∈ P(2). This proves that

T
T1F⊗2⊗SP(2)
E = T̂ T1F

E ⊗R⊗R t

by uniqueness of T T1F⊗2⊗SP(2)
E .

This proves the result.

In summary, we get the morphism SP(1)
2 (λF2 ◦ (φ

F
)−1) : SP(1)

2 (T1F
⊗2 ⊗P(1)⊗P(1) P(2))→ SP(1)

2 (F )

in the category QMod
P(1)
C . It describes the binary bilinear operations encoded by P(2) (and their

relations) involved in the P-algebra structure for the functor F .

2.4.6 Quadratic C-modules over P
Here we give the de�nition of quadratic C-modules over a symmetric unitary linear operad. We recall
that R and S are rings respectively equal to P(1) and (R⊗ R) oS2 (see 2.4.9 or 3.24 of [12]). First
we de�ne a quadratic C-module over P(1) from a given such object as follows:

De�nition 2.4.19. LetM be a quadratic C-module over the ring P(1). We de�neM2 the quadratic
C-module over P(1) depending on M by

M2 = SP(1)
2

(
T1(−⊗M)⊗2 ⊗S P(2)

)
Explicitly the quadratic C-module M2 has the following form by 2.2.4:

M2 =

(
T11cr2(UE)(E,E)⊗Λ M

2
e

ĤM

−→M2
ee

T̂M⊗R⊗Rt−→ M2
ee

qM−→M2
e

)
where

• M2
e is the left Λ-module T1(−⊗M)(E)⊗2 ⊗S P(2);

• M2
ee is the symmetric (Λ⊗Λ)-module T1(−⊗M)(E)⊗2⊗R⊗R P(2) with involution T̂M ⊗R⊗R t,

where T̂M : T1(−⊗M)(E)⊗2 → T1(−⊗M)(E)⊗2, x⊗ y 7→ y ⊗ x is the canonical switch;

• the map qM , respectively ĤM , is the cokernel of T̂M ⊗R⊗R id − id ⊗R⊗R t, respectively the
homomorphism of symmetric (Λ⊗ Λ)-modules de�ned by:

ĤM
(
t11(ρ2(ξ))⊗Λ (x⊗ y ⊗S p)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
x⊗ y ⊗R⊗R p+ y ⊗ x⊗R⊗R (p.t)

)
where x, y ∈ T1(−⊗M)(E), ξ ∈ C(E, E+2) and p ∈ P(2).

Let M be a quadratic C-module over P(1). Then we give an expression of the other such object
M2 (depending on M) up to isomorphism as follows:

Proposition 2.4.20. Let M be a quadratic C-module over P(1). Then up to isomorphism the
quadratic C-module M2 has the following form:

M2 =

(
T11cr2(UE)(E,E)⊗Λ M2

e

ĤM−→M2
ee

T̂M⊗R⊗Rt−→ M2
ee

qM−→M2
e

)
where
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• M2
e is the left Λ-module Coker(PM)⊗2 ⊗S P(2) (induced by the left Λ-module structure of

Coker(PM), see 2.1.2) where PM : Mee → Me is the morphism involved in the structure of
quadratic C-module over P(1) for M (see 2.1.1);

• M2
ee is the symmetric (Λ⊗Λ)-module Coker(PM)⊗2⊗R⊗RP(2) (as Coker(PM) is a left Λ-module

by 2.1.2) with involution T̂M ⊗R⊗R t, where T̂M : Coker(P )⊗2 → Coker(PM)⊗2, x⊗ y 7→ y ⊗ x
is the canonical switch;

• the map qM , respectively ĤM , is the cokernel of T̂M ⊗R⊗R id − id ⊗R⊗R t, respectively the
homomorphism of symmetric (Λ⊗ Λ)-modules de�ned by:

ĤM

(
t11(ρ2(ξ))⊗Λ (x⊗ y ⊗S p)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
x⊗ y ⊗R⊗R p+ y ⊗ x⊗R⊗R (p.t)

)
where x, y ∈ Coker(PM), ξ ∈ C(E, E+2) and p ∈ P(2).

Proof. First we have an explicit expression of the quadratic C-moduleM2 (over P(1) by 2.4.19. Then
it su�ces to observe that the isomorphism γ : T1(− ⊗M)(E) → Coker(PM) of Λ-P(1)-bimodules
given in 2.3.4 implies that M2 is a quadratic C-module over P(1), and that

(
(γ)⊗2⊗S id, (γ)⊗2⊗R⊗R

id
)

: M2 →M2 is an isomorphism of quadratic C-modules over P(1).

Notation 2.4.21. Let f = (fe, fee) : M → N be a morphism in QMod
P(1)
C . We set f 2 = (f 2

e , f
2
ee)

where

• f 2
e = T1

(
TP(1)

2 (f)
)⊗2

E
⊗S id : M2

e → N2
e

• f 2
ee = T1

(
TP(1)

2 (f)
)⊗2

E
⊗R⊗R id : M2

ee → N2
ee.

by keeping the notations in 2.4.19, where TP(1)
2 : Func∗(C,ModP(1)) → Quad(C,ModP(1)) is the

functor de�ned in 2.2.4.

Proposition 2.4.22. Let M and N be two quadratic C-modules over P(1), and let f = (fe, fee) :
M → N between these objects. Then the pair of morphisms f 2 = (f 2

e , f
2
ee) : M2 → N2 is a morphism

between quadratic C-modules over P(1).

Proof. We recall that tM1 : E ⊗ M ⇒ T1

(
− ⊗M

)
(E) is the cokernel of the morphism S−⊗M2 :

cr2(− ⊗ M)(E,E) → E ⊗ M ; it is a (regular) epimorphism. Let x, y ∈ E ⊗ M , p ∈ P(2) and
ξ ∈ C(E, E+2). We prove that we have

• f 2
ee ◦ ĤM = ĤN ◦ (id⊗Λ f

2
e ). For this, we get

ĤN ◦ (id⊗Λ f
2
e )
(
t11(ρ2(ξ))⊗Λ

(
tM1 (x)⊗ tM1 (y)⊗S p

))
= ĤN

(
t11(ρ2(ξ))⊗Λ

(
T1

(
TP(1)

2 (f)
)
E

(tM1 (x))⊗ T1

(
TP(1)

2 (f)
)
E

(tM1 (y))⊗S p
))

= ĤN
(
t11(ρ2(ξ))⊗Λ

(
tN1
(
TP(1)

2 (f)E(x)
)
⊗ tN1

(
TP(1)

2 (f)E(y)
)
⊗S p

))
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
tN1
(
TP(1)

2 (f)E(x)
)
⊗ tN1

(
TP(1)

2 (f)E(y)
)
⊗R⊗R p

+ tN1
(
TP(1)

2 (f)E(y)
)
⊗ tN1

(
TP(1)

2 (f)E(x)
)
⊗R⊗R p.t

)
=
(
T1(−⊗N)(r2

1 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(x)
))
⊗
(
T1(−⊗N)(r2

2 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(y)
))
⊗R⊗R p

+
(
T1(−⊗N)(r2

1 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(y)
))
⊗
(
T1(−⊗N)(r2

2 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(x)
))
⊗R⊗R p.t
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Then we observe that, for k = 1, 2, we have

T1(−⊗N)(r2
k ◦ ξ) ◦ tN1

(
TP(1)

2 (f)E(x)
)

= tN1

((
(r2
k ◦ ξ)⊗N

)
◦ TP(1)

2 (f)E(x)
)

= tN1

(
TP(1)

2 (f)E ◦
(
(r2
k ◦ ξ)⊗M

)
(x)
)

= T1

(
TP(1)

2 (f)
)
E
◦ tM1

((
(r2
k ◦ ξ)⊗M

)
(x)
)

= T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

k ◦ ξ)(tM1 (x))

Hence we get

T1(−⊗N)(r2
k ◦ ξ) ◦ tN1

(
TP(1)

2 (f)E(x)
)

= T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

k ◦ ξ)(tM1 (x)) (2.4.14)

Thus we have the equalities as follows:

ĤN ◦ (id⊗Λ f
2
e )
(
t11(ρ2(ξ))⊗Λ

(
tM1 (x)⊗ tM1 (y)⊗S p

))
=
(
T1(−⊗N)(r2

1 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(x)
))
⊗
(
T1(−⊗N)(r2

2 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(y)
))
⊗R⊗R p

+
(
T1(−⊗N)(r2

1 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(y)
))
⊗
(
T1(−⊗N)(r2

2 ◦ ξ) ◦ tN1
(
TP(1)

2 (f)E(x)
))
⊗R⊗R p.t =

(
T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

1 ◦ ξ)(tM1 (x))
)
⊗
(
T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

2 ◦ ξ)(tM1 (Y ))
)
⊗ p

=
(
T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

1 ◦ ξ)(tM1 (x))
)
⊗
(
T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

2 ◦ ξ)(tM1 (y))
)
⊗ p

+ T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

1 ◦ ξ)(tM1 (y))
)
⊗
(
T1

(
TP(1)

2 (f)
)
E
◦ T1(−⊗M)(r2

2 ◦ ξ)(tM1 (x))
)
⊗ p.t

=
(
T1

(
TP(1)

2 (f)
))⊗2

E
⊗R⊗R id

)
◦
(
T1(−⊗M)(r2

1 ◦ ξ)(tM1 (x))⊗ T1(−⊗M)(r2
2 ◦ ξ)(tM1 (y))⊗ p

+ T1(−⊗M)(r2
1 ◦ ξ)(tM1 (y))⊗ T1(−⊗M)(r2

2 ◦ ξ)(tM1 (x))⊗ p.t
)

= f 2
ee

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
tM1 (x)⊗ tM1 (y) ◦ p+ tM1 (y)⊗ tM1 (x)⊗ p.t

))
= f 2

ee ◦ ĤM
(
t11(ρ2(ξ))⊗Λ

(
tM1 (x)⊗ tM1 (y)⊗S p

))
,

as desired.

• f 2
ee ◦

(
T̂M ⊗R⊗R t

)
=
(
T̂N ⊗R⊗R t

)
◦ f 2

ee. For this, we get

f 2
ee ◦

(
T̂M ⊗R⊗R t

)
(tM1 (x)⊗ tM1 (y)⊗R⊗R p)

= f 2
ee

(
tM1 (y)⊗ tM1 (x)⊗R⊗R (p.t)

)
= T1

(
TP(1)

2 (f)
)
E

(tM1 (y))⊗ T1

(
TP(1)

2 (f)
)
E

(tM1 (x))⊗ p.t

=
(
T̂N ⊗R⊗R t

)(
T1

(
TP(1)

2 (f)
)
E

(tM1 (x))
)
⊗ T1

(
TP(1)

2 (f)
)
E

(tM1 (y))⊗ p
)

=
(
T̂N ⊗R⊗R t

)
◦
(
T1

(
TP(1)

2 (f)
)⊗2

E
⊗R⊗R id

)
(tM1 (x)⊗ tM1 (y)⊗ p)

=
(
T̂N ⊗R⊗R t

)
◦ f 2

ee(t
M
1 (x)⊗ tM1 (y)⊗ p)
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• qN ◦ f 2
ee = f 2

e ◦ qM . For this, we have the following equalities

qN ◦ f 2
ee(t

M
1 (x)⊗ tM1 (y)⊗R⊗R p)

= qN ◦
(
T1

(
TP(1)

2 (f)
)⊗2

E
⊗R⊗R id

)
(tM1 (x)⊗ tM1 (y)⊗R⊗R p)

= T1

(
TP(1)

2 (f)
)
E

(tM1 (x))⊗ T1

(
TP(1)

2 (f)
)
E

(tM1 (y))⊗S id

=
(
T1

(
TP(1)

2 (f)
)⊗2

E
⊗S id

)
(tM1 (x)⊗ tM1 (y)⊗S p)

=
(
T1

(
TP(1)

2 (f)
)⊗2

E
⊗S id

)
◦ qM(tM1 (x)⊗ tM1 (y)⊗R⊗R p) ,

as desired.

Then we give the de�nition of a quadratic C-module over P by relying on the previous arguments.
It just consists in interpreting them entirely in terms of quadratic C-module over P(1) as follows:

De�nition 2.4.23. A quadratic C-module over P , denoted by MP , is a pair (M, φM) where M
is a quadratic C-module over P(1) (see 2.2.1), M2 is the other such object de�ned in 2.4.19 and
φM = (φMe , φ

M
ee ) : M2 →M is a morphism of quadratic C-modules over P(1).

A morphism f : MP → NP between such objects is a morphism f : M → N between the two
underlying quadratic C-modules over P(1) making the following diagram commute in QMod

P(1)
C :

M2 M

NN2

φM //

f2

��

f

��

φN
//

where f 2 : M2 → N2 is de�ned in 2.4.21. We denote by QModPC the corresponding category.

2.4.7 The functors SP2 and TP2
Let MP = (M, φM) be a quadratic C-module over P (see 2.4.23). First we prove that, for an object
X in C, the abelian group X ⊗M , given in 2.1.3, is endowed with a P-algebra structure implying
that the quadratic functor − ⊗M : C → Ab takes in fact values in Alg − P . Next we de�ne two
functors SP2 : Quad(C, Alg − P) → QModPC and TP2 : QModPC → Quad(C, Alg − P), see 2.4.27 for
details.
Now we �rst determine up to isomorphism the quadratic functor taking values in ModP(1) corre-
sponding to M2, the quadratic C-module over P(1) de�ned in 2.4.19.

Proposition 2.4.24. Let M be a quadratic C-module over P(1) and M2 be the other such object
de�ned in 2.4.19. Then the following natural transformation between quadratic functors with domain
C and values in ModP(1)

εT1(−⊗M)⊗2⊗SP(2) : TP(1)
2 (M2) = TP(1)

2 · SP(1)
2

(
T1(−⊗M)⊗2 ⊗S P(2)

)
=⇒ T1(−⊗M)⊗2 ⊗S P(2)

(2.4.15)
is an isomorphism, where ε : TP(1)

2 · SP(1)
2 ⇒ Id is the counit of the adjoint pair of functors given in

2.2.7.
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Proof. First we recall that the (linear) functor T1(− ⊗ M) and T1UE ⊗Λ P(1) whith domain C
and values in ModP(1) are isomorphic to each other by 2.3.3. By 6.24 of [12] and by 1.6.11, the
functor T1UE : C → ModΛ preserves �ltered colimits and coequalizers of re�exive pairs. As the
functor − ⊗S P(2) : ModS → ModP(1) prerserves colimits, it follows that the quadratic functor
T1(− ⊗M)⊗2 ⊗S P(2) : C → ModP(1) preserves also �ltered colimits and coequalizers of re�exive
pairs. Moreover the following quadratic functor

TP(1)
2 · SP(1)

2

(
T1(−⊗M)⊗2 ⊗S P(2)

)
: C →ModP(1)

preserves also �ltered colimits and coequalizers of re�exive pairs by 6.24 of [12] and by 1.6.11.
Hence the natural transformation εT1(−⊗M)⊗2⊗SP(1) is a natural isomorphism by 6.25 of [12] because it
is a natural transformation whose source and target are functors which preserve �ltered colimits and
coequalizers of re�exive graphs, and it is a natural isomorphism if restricted to the full subcategory
〈E〉 of C by 2.2.7.

Now we verify that, for any object X in C, X⊗M : C → Ab is a P-algebra. We know that there is
a morphism φM = (φMe , φ

M
ee ) : M2 →M of quadratic C-modules over P(1) involved in the de�nition

of MP = (M, φM), see 2.4.23. Applying the functor TP(1)
2 : QMod

P(1)
C → Quad(C, ModP(1)) to this

morphism, we get its corresponding natural transformation

TP(1)
2 (φM) : TP(1)

2 (M2) = −⊗M2 ⇒ TP(1)
2 (M) = −⊗M

between quadratic functors with domain C and values in ModP(1). Then we de�ne the natural trans-
formation λM2 : (−⊗M)⊗2⊗P(2)⇒ −⊗M to be the following composite of natural transformations:

λM2 = TP(1)
2 (φM) ◦ ε−1

T1(−⊗M)⊗2⊗SP(2) ◦ ((tM1 )⊗2 ⊗S id) ◦ qM ◦ qR⊗RZ (2.4.16)

where we recall that

• εT1(−⊗M)⊗2⊗SP(2) : TP(1)
2 ·SP(1)

2

(
T1(−⊗M)⊗2⊗S P(2)

)
⇒ T1(−⊗M)⊗2⊗S P(2) is the counit of

the adjunction pair of functors 2.2.7; it is a natural isomorphism by 2.4.24 (see also (2.4.15));

• qM : T1(−⊗M)⊗2⊗R⊗RP(2)⇒ T1(−⊗M)⊗2⊗SP(2) is the cokernel of T̂M⊗R⊗R id−id⊗R⊗R t
(see 2.4.13 replacing F with −⊗M);

• tM1 : −⊗M ⇒ T1(−⊗M) is the cokernel of S−⊗M2 : cr2(−⊗M) ·∆2 ⇒ −⊗M (see 1.9 of [12]);

• qR⊗RZ : (−⊗M)⊗2⊗P(2)⇒ (−⊗M)⊗2⊗R⊗RP(2) is the natural transformation given in 2.4.9.

We also recall that we have the natural isomorphism φ−⊗M : T2

(
(−⊗M)⊗2 ⊗S P(2)

)
⇒ T1(−⊗

M)⊗2 ⊗S P(2) between quadratic functors with domain C and values in ModP(1), and the natural

transformation λM2 : T2((− ⊗M)⊗2 ⊗S P(2)) ⇒ − ⊗M given respectively in (2.4.10) and (2.4.8)
(replacing F with − ⊗M). The following proposition says that there is another expression of the
natural transformation TP(1)

2 (φM) : T1(−⊗M)⊗2 ⊗S P(2)⇒ −⊗M as follows:

Proposition 2.4.25. The natural transformation TP(1)
2 (φM) : T1(− ⊗M)⊗2 ⊗S P(2) ⇒ − ⊗M is

equal to the following composite:

T2(φM) ◦ ε−1
T1(−⊗M)⊗2⊗SP(2) = λM2 ◦ (φ−⊗M)−1

80



Proof. Let X be an object in C. We have the following equalities:

(λM2 )X ◦ (φ−⊗MX )−1 ◦
(
(tM1 )⊗2

X ⊗S id
)
◦ q−⊗M ◦ qR⊗RZ

= (λM2 )X ◦ (φ−⊗MX )−1 ◦ qMX ◦
(
(tM1 )⊗2

X ⊗R⊗R id
)
◦ qR⊗RZ

= (λM2 )X ◦ T2(qM)X ◦
(
t
(−⊗M)⊗2⊗R⊗RP(2)
2

)
X
◦ qR⊗RZ , by (2.4.10)

= (λM2 )X ◦
(
t
(−⊗M)⊗2⊗R⊗RP(2)
2

)
X
◦ qMX ◦ qR⊗RZ

= (λ̃M2 )X ◦ qMX ◦ qR⊗RZ , by (2.4.1)

= (λ̂M2 )X ◦ qR⊗RZ , by (2.4.7)

= (λM2 )X

= TP(1)
2 (φM) ◦ ε−1

T1(−⊗M)⊗2⊗SP(2) ◦
(
(tM1 )⊗2

X ⊗S id
)
◦ qMX ◦ qR⊗RZ , by de�nition of λM2

As
(
(tM1 )⊗2

X ⊗S id
)
◦ q−⊗M ◦ qR⊗RZ is a natural epimorphism, we get

T2(φM) ◦ ε−1
T1(−⊗M)⊗2⊗SP(2) = λM2 ◦ (φ−⊗M)−1 ,

as desired.

Proposition 2.4.26. Let X be an object in C and MP = (M, φM) be a quadratic C-module over P
(see 2.4.23). Then

(
X ⊗M, (λM1 )X , (λM2 )X

)
is a P-algebra, where λM1 : (−⊗M)⊗P(1)⇒ −⊗M

and λM2 : (− ⊗M)⊗2 ⊗ P(2) ⇒ − ⊗M are the natural transformations respectively given in 2.2.4
and (2.4.16).

Proof. Let X be an object in C and MP = (M, φM) be a quadratic C-module over P . By 2.4.23, we
know that the object M , involved in the de�nition of MP , is a quadratic C-module over P(1). By
applying the functor TP(1)

2 : QMod
P(1)
C → Quad(C, ModP(1)), we obtain its corresponding quadratic

functor with domain C and values in ModP(1):

TP(1)
2 (M) =

(
−⊗M, λM1

)
, by 2.2.4

Hence we know that X ⊗M is a right P(1)-module whose action of P(1) on X ⊗M is given by
(λM1 )X . It can be interpreted by the following commutative diagram:

(X ⊗M)⊗
(
P(1)⊗ P(1)

) (
(X ⊗M)⊗ P(1)

)
⊗ P(1)

(X ⊗M)⊗ P(1) (X ⊗M)⊗ P(1)

X ⊗M

∼= //

id⊗γ1;1

��

(λM1 )X⊗id

��

(λM1 )X
''

(λM1 )X
ww

As TP(1)
2 (φ)X : T1(− ⊗M)(X)⊗2 ⊗S P(2) → X ⊗M and (tM1 )⊗2

X ⊗S id : (X ⊗M)⊗2 ⊗S P(2) →
T1(− ⊗ M)(X)⊗2 ⊗S P(2) are S-bilinear, they are both (R ⊗ R)-bilinear by 2.4.10. Hence the
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composite morphism (λM2 )X : (X ⊗M)⊗2⊗P(2)→ X ⊗M , given in 2.4.16, is also (R⊗R)-bilinear.
It is equivalent to say that the following diagram commutes:

(X ⊗M)⊗2 ⊗
(
P(1)⊗ P(1)⊗ P(2)

) ((
(X ⊗M)⊗ P(1)

)
⊗
(
(X ⊗M)⊗ P(1)

))
⊗ P(2)

(X ⊗M)⊗2 ⊗ P(2) (X ⊗M)⊗2 ⊗ P(2)

X ⊗M

∼= //

id⊗γ1,1;2

��

(λM1 )⊗2
X ⊗id

��

(λM2 )X
((

(λM2 )X
vv

Moreover we observe that (λM2 )X : (X ⊗M)⊗2 ⊗P(2)→ X ⊗M is a homomorphism of right P(1)-
modules as it is a composite of right P(1)-module homomorphisms. It is equivalent to say that the
following diagram commutes:

(X ⊗M)⊗2 ⊗
(
P(2)⊗ P(1)

) (
(X ⊗M)⊗2 ⊗ P(2)

)
⊗ P(1)

(X ⊗M)⊗2 ⊗ P(2) (X ⊗M)⊗ P(1)

X ⊗M

∼= //

id⊗γ2;1

��

(λM2 )X⊗id

��

(λM2 )X
''

(λM1 )X
ww

Then it remains to check that
(
X ⊗M, (λM1 )X , (λM2 )X

)
satis�es the equivariance axiom. It holds

because we have the following relation:

(λM2 )X ◦ (T̂M ⊗ id) = (λM2 )X ◦ (id⊗ t)

by 2.4.13 and (2.4.16). Finally,
(
X ⊗M, (λM1 )X , (λM2 )X

)
is a P-algebra.

We recall that the functors SP(1)
2 : Quad(C,ModP(1)) → QMod

P(1)
C and TP(1)

2 : QMod
P(1)
C →

Quad(C,ModP(1)) both de�ned in 2.2.4 form a pair of adjoint functors by 2.2.7. We now give two
functors which summarize the previous arguments.

De�nition 2.4.27. We de�ne the functors SP2 : Quad(C, Alg − P)→ QModPC and TP2 : QModPC →
Quad(C, Alg − P) as follows:

1. The functor SP2 : Quad(C, Alg − P)→ QModPC is such that

• On objects, let F : C → Alg − P be a quadratic functor, then SP2 (F ) is the pair(
MF , φM

F

: (MF )2 →MF
)

Here

� MF = SP(1)
2 (F ) (see 2.2.5) is the quadratic C-module over P(1) corresponding to F

seen as a functor with domain C and values in ModP(1);

� (MF )2 = SP(1)
2

(
T1

(
TP(1)

2 (MF )
)⊗2⊗P(1)⊗P(1)P(2)

)
is the quadratic C-module over P(1)

associated with the quadratic functor

T1

(
TP(1)

2 (MF )
)⊗2 ⊗P(1)⊗P(1) P(2) = T1

(
TP(1)

2 · SP(1)
2 (F )

)⊗2 ⊗P(1)⊗P(1) P(2) : C →ModP(1) ;
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� φM
F

= SP(1)
2

(
λF2 ◦ (φF )−1 ◦

(
T1(εF )⊗2 ⊗S id

))
: (MF )2 →MF ;

where λF2 : T2

(
F⊗2 ⊗S P(2)

)
⇒ F and φF : T2

(
F⊗2 ⊗S P(2)

)
⇒ T1F

⊗2 ⊗S P(2) are

respectively the natural transformations given in 2.4.8 and (2.4.10), and εF : TP(1)
2 ·

SP(1)
2 (F )⇒ F is the counit of the adjunction 2.2.7 evaluated to F .

• On morphisms, let α : F ⇒ G be a natural transformation in Quad(C, Alg − P), then
SP2 (α) = (αE, cr2(α)E,E).

2. The functor TP2 : QModPC → Quad(C, Alg − P) is such that

• On objects, let MP = (M, φM) be a quadratic C-module over P as in 2.4.23, TP2 (MP) =(
−⊗M, λM1 , λ

M
2

)
, or simply TP2 (MP) = −⊗M , where

� M is the quadratic C-module over P(1) (see 2.2.1) involved in the de�nition of MP .

�
(
−⊗M, λM1

)
= TP(1)

2 (M) where TP(1)
2 : QMod

P(1)
C → Quad(C, ModP(1)) is the functor

de�ned in 2.4.27.
� λM2 : (−⊗M)⊗2 ⊗ P(2)⇒ −⊗M is the natural transformation de�ned in (2.4.16).

• On morphims, let f = (fe, fee) : M → N be a morphism of quadratic C-modules over
P , then TP2 (f) = TP(1)

2 (f) = T2(f) is the unique natural transformation given by the
universal property of the push-out 2.1.3.

Remark 2.4.28. If we assume that C is a semi-abelian variety and if E denotes the free object of
rank 1 in C, then the functor TP2 takes in fact values in QUAD(C, Alg − P). This is due to the
fact that, for a quadratic C-module MP = (M,φM) over P , the composite functors W · TP2 (M) =
W · (−⊗M) : C → Ab preserves �ltered colimits and coequalizers of re�exive graphs by 2.1.11, where
W : Alg−P → Ab is the forgetful functor. By 1.6.11, the (quadratic) functor TP2 (MP) : C → Alg−P
preserves �ltered colimits and coequalizers of re�exive graphs.

2.4.8 The DNA of a quadratic functor from C to Alg-P is a quadratic

C-module over P
We prove that the minimal algebraic data (called DNA) which characterize quadratic functors with
domain C taking values in Alg−P are quadratic C-modules over P . Before giving the main theorem
of this section, we recall that η : Id⇒ SP(1)

2 ·TP(1)
2 and ε : TP(1)

2 ·SP(1)
2 ⇒ Id are respectively the unit

and the counit of the adjunction 2.2.7 (that is the same as in the adjunction pair 2.1.10), see 2.2.9.
Let M be a quadratic C-module over P(1). Then ηM : M → SP(1)

2 · TP(1)
2 (M) is clearly a morphism

of quadratic C-modules over P(1), hence so is the pair of morphisms

(ηM)2 = SP(1)
2

(
T1

(
TP(1)

2 (ηM)
)⊗2 ⊗S id

)
: M2 →

(
SP(1)

2 · TP(1)
2 (M)

)2
(2.4.17)

by 2.4.22 (replacing f with ηM) where T1 : Func∗(C,ModP(1))→ Lin(C,ModP(1)) is the linearization

functor (see 1.2.9), and
(
SP(1)

2 · TP(1)
2 (M)

)2
is the quadratic C-module over P(1) as follows:(

SP(1)
2 · TP(1)

2 (M)
)2

= SP(1)
2

(
T1

(
−⊗SP(1)

2 · TP(1)
2 (M)

)⊗2 ⊗S P(2)
)

= SP(1)
2

(
T1

(
TP(1)

2 · SP(1)
2 · TP(1)

2 (M)
)⊗2 ⊗S P(2)

)
Notation 2.4.29. Let M = (M,φM) be a quadratic C-module over P . We set the following composite
morphisms of quadratic C-modules over P(1):

φT2·S2(M) = ηM ◦ φM ◦ SP(1)
2

(
T1

(
ε−⊗M

)⊗2 ⊗S id
)

:
(
SP(1)

2 · TP(1)
2 (M)

)2 → SP(1)
2 · TP(1)

2 (M)
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where ε−⊗M : TP(1)
2 · SP(1)

2 (−⊗M) = TP2 (1) · SP(1)
2 · TP(1)

2 (M)⇒ −⊗M = TP(1)
2 (M) is the counit of

the adjunction 2.2.7 evaluated to the quadratic functor −⊗M : C →ModP(1).

Remark 2.4.30. Let M = (M,φM) be a quadratic C-module over P . We observe that the pair(
SP(1)

2 · TP(1)
2 (M), φT2·S2(M)

)
is a quadratic C-module over P (see the de�nition given in 2.4.23).

Lemma 2.4.31. Let MP = (M,φM) be a quadratic C-module over P, then the following diagram in

QMod
P(1)
C

(
SP(1)

2 · TP(1)
2 (M)

)2 SP(1)
2 · TP(1)

2 (M)

M2 M
φM //

(ηM )2

��

ηM

��

φT2·S2(M)
//

commutes.

Proof. We have the equalities as follows:

φT2·S2(M) ◦ (ηM)2 = ηM ◦ φM ◦ SP(1)
2

((
T1

(
ε−⊗M

)⊗2 ⊗S id
))
◦ SP(1)

2

(
T1

(
TP(1)

2 (ηM)
)⊗2 ⊗S id

)
= ηM ◦ φM ◦

(
T1

(
ε−⊗M ◦ TP(1)

2 (ηM)
)⊗2 ⊗S id

))
= ηM ◦ φM

because ε−⊗M ◦ TP(1)
2 (ηM) = id.

Corollary 2.4.32. Let MP = (M,φM) be a quadratic C-module over P. Then the unit ηM : M →
SP(1)

2 · TP(1)
2 (M) of the pair of adjoint functors 2.2.7 is a morphism of quadratic C-modules over P

from MP = (M,φM) to
(
SP(1)

2 · TP(1)
2 (M), φT2·S2(M)

)
.

Proof. It is a direct consequence of 2.4.31.

Remark 2.4.33. We observe that the unit η : Id ⇒ SP(1)
2 · TP(1)

2 of the pair of adjoint functors 2.2.7
can be considered as a natural transformation from the identity functor of QModPC to the composite
functors SP2 · TP2 . It is denoted by ηP : Id⇒ SP2 · TP2 in this case.

Now we prove that, for a quadratic functor F : C → Alg − P and an object X in C, the counit
(εF )X :

(
TP(1)

2 ·SP(1)
2 (F )

)
(X) = X⊗MF → F (X) is a homomorphism of P-algebras. We known that

it is a homomorphism of (right) P(1)-modules by 2.2.7. Then we have the following proposition:

Proposition 2.4.34. Let F : C → Alg−P be a quadratic functor and let X be an object in C. Then
the counit (εF )X :

(
TP(1)

2 · SP(1)
2 (F )

)
(X)→ F (X) satis�es

(λF2 )X ◦ (εF )X = (εF )X ◦ (λM
F

2 )X

where (λF2 )X : F (X)⊗2 ⊗ P(2) → F (X), respectively (λM
F

2 )X : (X ⊗MF )⊗2 ⊗ P(2) → X ⊗MF

(de�ned in 2.4.16) is the structure linear map involved in the P-algebra structure of F (X), respectively
X ⊗MF .
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Proof. First we recall that R = P(1). Then we get the following equalities:

εF ◦ λM
F

2

= εF ◦ TP(1)
2 (φM

F

) ◦ ε−1
T1(−⊗MF )⊗2⊗SP(2)

◦
(
(tM

F

1 )⊗ ⊗S id
)
◦ qMF ◦ qR⊗RZ

= εF ◦ TP(1)
2 · SP(1)

2

(
λF2 ◦ (φF )−1 ◦

(
T1(εF )⊗2 ⊗S id

))
◦ ε−1

T1(−⊗MF )⊗2⊗SP(2)
◦
(
(tM

F

1 )⊗ ⊗S id
)
◦ qMF ◦ qR⊗RZ

= λF2 ◦ (φF )−1 ◦
(
T1(εF )⊗2 ⊗S id

)
◦ εT1(−⊗MF )⊗2⊗SP(2) ◦ ε−1

T1(−⊗MF )⊗2⊗SP(2)
◦
(
(tM

F

1 )⊗ ⊗S id
)
◦ qMF ◦ qR⊗RZ

= λF2 ◦ (φF )−1 ◦
(
T1(εF )⊗2 ⊗S id

)
◦
(
(tM

F

1 )⊗ ⊗S id
)
◦ qMF ◦ qR⊗RZ

By naturality of tM
F

1 in MF , we have T1(εF ) ◦ tMF

1 = tF1 ◦ εF . Hence we obtain

εF ◦ λM
F

2

= λF2 ◦ (φF )−1 ◦
(
T1(εF )⊗2 ⊗S id

)
◦
(
(tM

F

1 )⊗ ⊗S id
)
◦ qMF ◦ qR⊗RZ

= λF2 ◦ (φF )−1 ◦
(
(tF1 )⊗ ⊗S id

)
◦
(
(εF )⊗2 ◦S id

)
◦ qMF ◦ qR⊗RZ

= λF2 ◦ (φF )−1 ◦
(
(tF1 )⊗ ⊗S id

)
◦ qF ◦

(
(εF )⊗2 ◦R⊗R id

)
◦ qR⊗RZ

= λF2 ◦ (φF )−1 ◦
(
(tF1 )⊗ ⊗S id

)
◦ qF ◦ qR⊗RZ ◦

(
(εF )⊗2 ◦ id

)
= λF2 ◦

(
(εF )⊗2 ◦ id

)
,

as desired.

Corollary 2.4.35. Let F : C → Alg − P be a quadratic functor and let X be an object in C. Then
the morphism (εF )X :

(
TP(1)

2 .SP(1)
2 (F )

)
(X)→ F (X) is a homomorphism of P-algebras.

Remark 2.4.36. Let F : C → Alg − P be a quadratic functor. By 2.4.35, we observe that the counit
ε : TP(1)

2 · TP(1)
2 ⇒ Id can be seen as a natural transformation from the composite functors TP2 · SP2

to the identity functor of Quad(C, Alg − P). It is denoted by εP : TP2 · SP2 ⇒ Id in this case.

The main result of this section generalizes the theorems 7.1 of [12] and 2.2.7. It says that quadratic
functors with domain C and values in Alg−P are entirely characterized by quadratic C-modules over
P (see 2.4.23) which constitute their DNA.

Theorem 2.4.37. Let P be an operad as in 2.4.1. Then

• the functors

SP2 : Quad(〈E〉, Alg − P)� QModPC : TP2

are equivalences of categories, inverse to each other.

• if C is a semi-abelian variety, then the functors

(SP2 )′ : QUAD(C, Alg − P)� QModPC : (TP2 )′

also are equivalences of categories, inverse to each other. Here the functor (TP2 )′ is given by TP2
(de�ned in 2.4.27) which actually takes values in QUAD(C, Alg − P) (by 2.4.28), and where
the functor (SP2 )′ is the restriction of SP2 (given in 2.4.27).
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Proof. First we assume that C is a semi-abelian variety. In the whole proof, X, MP and G : C →
Alg − P will denote respectively an indeterminate object of C, a quadratic C-module over P (see
2.4.23) and a quadratic functor. Here we prove that the natural transformation ηP : Id ⇒ SP2 · TP2
(given in (2.4.33)) is the unit of the pair of adjoint functors in the statement. For this we check that
ηM = ηMP : MP → SP2 · TP2 (MP) satis�es the universal property of the unit of the adjunction in the
statement.
Let α = (αe, αee) : MP → SP2 (G) be any morphism in QModPC . We check that there is a unique
natural transformation β : TP2 (MP)⇒ G in Quad(C, Alg − P) such that α = SP2 (β) ◦ ηM . First we
remark that α : M → SP(1)

2 (G) is also a morphism in QMod
P(1)
C . Hence there is a unique natural

transformation β : TP(1)
2 (M)⇒ G in Quad(C, ModP(1)) such that

α = SP(1)
2 (β) ◦ ηM (2.4.18)

by the universal property of the unit ηM : M → SP(1)
2 · TP(1)

2 (M) of the adjunction 2.2.7. Next we
have

εG ◦ TP(1)
2 (α) = εG ◦

(
TP(1)

2 · SP(1)
2

)
(β) ◦ TP(1)

2 (ηM)

= β ◦ ε−⊗M ◦ TP(1)
2 (ηM)

= β

Thus we get
εG ◦ TP(1)

2 (α) = β (2.4.19)

Then we verify that α = SP2 (β) ◦ ηMP . It remains to prove that the following diagram commutes:

M2 M

SP(1)
2 · TP(1)

2 (M)
(
SP(1)

2 · TP(1)
2 (M)

)2

(
SP(1)

2 (G)
)2 SP(1)

2 (G)

φM //

(ηM )2

��

ηM

��

φS2·T2(M)
//

SP(1)
2 (β)

xx
(
SP(1)

2 (β)
)2

xx

φM
G

//

α

��

α2

��

Here we recall that φM
G

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(εG)⊗2⊗S id

))
= φM

F ◦ SP(1)
2

(
T1(εG)⊗2⊗S id

)
, see

the de�nition in 2.4.27. The top rectangle and the right-hand triangle of the above diagram commute
by 2.4.31 and (2.4.18). Moreover the diagonal rectangle commutes because α : MP → SP2 (G) is a
morphism of quadratic C-modules over P . Then we prove that the left-hand triangle commutes. We
have the equalities as follows:(

SP(1)
2 (β)

)2 ◦ (ηM)2 = SP(1)
2

((
T1(β)⊗2 ⊗S id

))
◦ SP(1)

2

((
T1(TP(1)

2 (ηM)
)⊗2 ⊗S id

))
= SP(1)

2

(
T1

(
β ◦ TP(1)

2 (ηM)
)⊗2 ⊗S id

)
= SP(1)

2

(
T1

(
TP(1)

2 (α)
)⊗2 ⊗S id

)
= α2 ,

as desired. As (ηM)2 is an isomorphism (hence an epimorphism), the bottom rectangle of the above
diagram commutes, i.e.

φM
G ◦
(
SP(1)

2 (β)
)2

= SP(1)
2 (β) ◦ φS2.T2(M) (2.4.20)
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implying that SP(1)
2 (β) : SP(1)

2 · TP(1)
2 (M) → SP(1)

2 (G) is in fact a morphism of quadratic C-modules
over P .
Next we prove that, for all X ∈ C, βX : TP(1)

2 (M)(X) = X ⊗M → G(X) is a homomorphism of
P-algebras. By 2.4.18 and 2.2.7, we know that βX is a P(1)-module homomorphism. It remains to
prove that

βX ◦ (λM2 )X = (λG2 )X ◦
(
(βX)⊗2 ⊗S id

)
For this we consider the following equalities:

SP(1)
2

(
β ◦ TP(1)

2 (φM)
)
◦ ηM2

= SP(1)
2 (β) ◦

(
SP(1)

2 · TP(1)
2

)
(φM) ◦ ηM2

= SP(1)
2 (β) ◦ ηM ◦ φM

= SP(1)
2 (β) ◦ ηM ◦ φM ◦ SP(1)

2

(
T1

(
ε−⊗M

)⊗2 ⊗S id
)
◦ (ηM)2

= SP(1)
2 (β) ◦ φS2·T2(M) ◦ (ηM)2

= φM
G ◦ SP(1)

2

(
T1(β)⊗2 ⊗S id

)
◦ (ηM)2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(εG)⊗2 ⊗S id

)
◦ SP(1)

2

(
T1(β)⊗2 ⊗S id

)
◦ (ηM)2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(εG ◦ β)⊗2 ⊗S id

))
◦ (ηM)2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1

(
β ◦ ε−⊗M)⊗2

)
⊗S id

)
◦ (ηM)2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(β)⊗2 ⊗S id

))
◦ SP(1)

2

(
T1

(
ε−⊗M

)⊗2 ⊗S id
)
◦ (ηM)2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(β)⊗2 ⊗S id

))
= SP(1)

2

(
λG2 ◦ (φG)−1 ◦

(
T1(β)⊗2 ⊗S id

))
◦ SP(1)

2 (εT1(−⊗M)⊗2⊗SP(2)) ◦ ηM2

= SP(1)
2

(
λG2 ◦ (φG)−1 ◦

(
T1(β)⊗2 ⊗S id

)
◦ εT1(−⊗M)⊗2⊗SP(2)

)
◦ ηM2

By the uniqueness in the universal property of the unit ηM2 : M2 → SP(1)
2 · TP(1)

2 (M2), we obtain

β ◦ TP(1)
2 (φM) = λG2 ◦ (φG)−1 ◦ T1(β)⊗2 ⊗S id

)
◦ εT1(−⊗M)⊗2⊗SP(2) (2.4.21)

Then we get the equalities as follows:

β ◦ λM2 = β ◦ TP(1)
2 (φM) ◦ ε−1

T1(−⊗M)⊗2⊗SP(2) ◦
(
(tM1 )⊗2 ⊗S id

)
◦ qM ◦ qR⊗RZ

= λG2 ◦ (φG)−1 ◦
(
T1(β)⊗2 ⊗S id

)
◦ εT1(−⊗M)⊗2⊗SP(2) ◦ ε−1

T1(−⊗M)⊗2⊗SP(2) ◦
(
(tM1 )⊗2 ⊗S id

)
◦ qM ◦ qR⊗RZ

= λG2 ◦ (φG)−1 ◦
(
T1(β)⊗2 ⊗S id

)
◦
(
(tM1 )⊗2 ⊗S id

)
◦ qM ◦ qR⊗RZ

= λG2 ◦ (φG)−1 ◦
(
(tG1 )⊗2 ⊗S id

)
◦
(
β⊗2 ⊗S id

)
◦ qM ◦ qR⊗RZ

= λG2 ◦ (φG)−1 ◦
(
(tG1 )⊗2 ⊗S id

)
◦ qG ◦ qR⊗RZ ◦

(
β⊗2 ⊗ id

)
= λG2 ◦

(
β⊗2 ⊗ id

)
,
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as desired.
As η : Id⇒ SP(1)

2 · TP(1)
2 is a natural equivalence by 2.1.13, so is ηP : Id⇒ SP2 · TP2 (see the notation

given in 2.4.33). Hence it su�ces to prove that the counit εP : TP2 · SP2 ⇒ Id (see 2.4.36) is a natural
equivalence for the second and third points in the statement.
If we assume that C = 〈E〉, then ε is a natural equivalence by the second point of 2.1.10 implying that
εP is also a natural equivalence. Hence the functors SP2 and TP2 form a pair of adjoint equivalences.
Now we suppose that C is a semi-abelian variety and E is the free object of rank 1 in C. For a
quadratic functor F : C → Alg − P preserving �ltered colimits and coequalizers of re�exive graphs,
the counit εPF : TP2 · SP2 (F ) = −⊗ S2(F )→ F (evaluated to F ) is a natural transformation between
quadratic functors preserving �ltered colimits and coequalizers of re�exive graphs which is a natural
isomorphism if restricted to the full subcategory 〈E〉 of C (by the above argument). Hence it is a
natural isomorphism by 6.25 of [12]. Thus the functors (SP2 )′ and (TP2 )′ in the statement form a pair
of adjoint equivalences.

This concludes the proof of 1.4.42, which gives the "DNA" of quadratic functors with domain C
and values in P-algebras.
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Chapter 3

Quadratic equivalences

Here we assume that C is a 2-step nilpotent category. Moreover we recall that P is a linear symmetric
unitary operad in the category of abelian groups endowed with its standard monoidal structure given
by the tensor product. The unit of P is denoted by 1P ∈ P(1), and Alg−P denotes the category of
P-algebras.
In this chapter, we �rst give a criterion for certain quadratic functors to be quadratic equivalences
by using the notion of linear extension of categories. Then we characterize quadratic C-modules over
P which correspond to quadratic equivalences with values in P-algebras.
Notation 3.0.1. We denote by Cop the dual category of C whose objects are the same as those in
C and, for X and Y objects in C, morphisms are of the form f op : Y → X, where f : X → Y is
a morphism in C. In addition, we consider OpC : C → Cop the contravariant functor which is the
identity on objects and reverses direction of any morphism in C.

If G : C → D is any functor, then GOP : Cop → Dop is the unique functor factorizing OpD · G
through OpC. Then we recall that Ab(C) is the full subcategory of C formed by abelian objects (see
1.3.1) and that AbC : C → Ab(C) is the abelianization functor de�ned in 1.4.4. As [X, X]IdC is a
normal subobject of X, we have the following short exact sequence in C:

0 −→ [X, X]IdC
iX−→ X

abX−→ Xab −→ 0 (3.0.1)

where iX : [X, X]IdC � X is the image of cX2 and we denote eX : IdC(X|X)� [X,X]IdC its coimage
(see the notations given in 1.3.5).

3.1 2-step nilpotent categories as linear extensions of abelian

categories

In this part, we shall use the notion of linear extensions of categories given in 5.1 of [4]. There
are countless examples of this setting in algebra as well as in homotopy theory. As an example,
it is used to characterize the category of the Moore spaces M(A, 2), for A an abelian group, as
a non trivial cohomology class of the second cohomology of Ab in coe�cients on the Ab-bimodule
Ext(−, Γ) : Abop × Ab → Ab, where Γ : Ab → Ab is the J.H.C Whitehead's quadratic functor [39],
see [3]. Here we recall the basic de�nition:

De�nition 3.1.1. Let B be a category and let D : Bop × B → Ab be a bifunctor. We say that

D
+−→ A p−→ B

is a linear extension of the category B if
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1. A is a category with the same objects as B, and p is a full functor which is the identity on
objects;

2. for each f : A → B in B, the abelian group D(A, B) acts transitively and e�ectively on the
subset p−1(f) of morphisms in A. We write f0+α for the action of α ∈ D(A, B) on f0 ∈ p−1(f).
Any f0 ∈ p−1(f) is called a lift of f ;

3. the action satis�es the linear distributive law:

(f0 + α) ◦ (g0 + β) = f0 ◦ g0 +
(
D(idC , f)(β) +D(g, idB)(α)

)
where f : A → B and g : C → A are morphisms in B and f0 : A → B (resp. g0 : C → A) are
respecitvely lifts of f (resp. g).

The fundamental algebraic example studied and exploited in many contexts is the following; it
provides the model of our generalization to arbitrary 2-step nilpotent categories below.

Example 3.1.2. Let us denote by 〈Z〉Nil2(Gr) the full subcategory of the category of groups Gr whose
objects are free 2-step nilpotent groups of �nite rank. We denote by 〈Z〉Ab the full subcategory of the
category of abelian groups Ab formed by free abelian groups of �nite rank, and by Ab : Gr → Ab the
abelianization functor. Here we take the restriction of the abelianization functor to 〈Z〉Nil2(Gr) taking
values in 〈Z〉Ab (since the functor Ab preserves coproducts), also denoted by Ab : 〈Z〉Nil2(Gr) → 〈Z〉Ab.
Then we consider the category Im(Ab) that has the same objects as 〈Z〉Nil2(Gr) and, for F and H two
free 2-step nilpotent groups of �nite rank, Im(Ab)(F, H) is the set of morphisms Ab(f) = fab : F ab →
Hab where f : F → H is a morphism in 〈Z〉Nil2(Gr). We de�ne the functor Ab′ : 〈Z〉Nil2(Gr) → Im(Ab)
that is the identity on objects and the abelianization functor on morphisms. Moreover we consider
the functor γ̃2 : Im(Ab)→ Ab given by

• On objects, let F be an object in 〈Z〉Nil2(Gr), then γ̃2(F ) = γ2(F ) = [F, F ] ∈ Ab. We recall
that [F, F ] is here the classical binary commutator in Gr.

• On morphisms, let F andH be two free 2-step nilpotent groups of �nite rank and g : F ab → Hab

be a morphism in Im(Ab), then we set γ̃2(g) = γ2(f0) where f0 : F → H is any lift of g ◦ abF
through abH , i.e. such that

g ◦ abF = abH ◦ f

where abF : F → F ab is the quotient map. Such morphisms exist because F is projective (as
any free group). Let f1, f2 : F → H be two such lifts, then their "di�erence" takes values in
γ2(H) = [H, H], i. e.

∀x ∈ F, (f1 f
−1
2 )(x) = f1(x)f2(x)−1 ∈ [H, H] = γ2(H)

because, for x ∈ F , abH(f1(x)) = abH(f2(x)) and Ker(abH) = [H,H]. Moreoever we observe
that f1.f

−1
2 : F → γ2(H) is a group homomorphism because γ2(H) is central in H (as H is a

2-step nilpotent group). Then we deduce that f1 and f2 are equal if we both restrict them on
γ2(F ) = [F, F ], i.e. γ2(f1) = γ2(f2) because

(f1 f
−1
2 )([F, F ]) = [(f1 f

−1
2 )(F ), (f1 f

−1
2 )(F )] ⊂ [γ2(H), γ2(H)] = 0

This is due to the fact that γ2(H) is central in H (hence it is an abelian group) because H is
a 2-step nilpotent group. As a consequence, the functor γ̃2 : Im(Ab) → Ab is well-de�ned on
morphisms.
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We consider F a free 2-step nilpotent group of �nite rank. As we know, there is a natural extension
of Ab(F ) = F ab by the binary commutator γ2(F ) = [F, F ] (which is an abelian group because it is
a central subgroup in F ) as follows:

0 −→ [F, F ]
iF−→ F

abF−→ F ab −→ 0 (3.1.1)

where iF : [F, F ] → F is the inclusion map and abF : F → F ab is the quotient map. Then such
"concrete" extensions can be put into a global structure by considering the following linear extension
of the category Im(Ab):

Hom
(
−, γ̃2

) +−→ 〈Z〉Nil2(Gr)
Ab′−→ Im(Ab) (3.1.2)

Here the bifunctor Hom
(
−, γ̃2

)
: Im(Ab)op × Im(Ab)→ Ab is de�ned on objects by

Hom
(
−, γ̃2

)
(F,H) = Hom(F, γ̃2(H)) = Hom(F, γ2(H)) ,

for F and H objects in 〈Z〉Nil2(Gr). Note that, for any free 2-step nilpotent group of �nite rank F ,
the abelian group γ2(F ) = [F, F ] may be seen as the second exterior algebra ∧2F ab of F ab. For this
we observe that [−,−] : F ×F → F factorizes through the surjection abF ×abF : F ×F → F ab×F ab

and clearly maps into the central subobject [F, F ] of F . We denote by [−,−] : F ab × F ab → [F, F ]
its (unique) factorization which is bilinear since F is 2-step nilpotent. By the universal property of
the tensor product, there is a unique abelian group homomorphism φF : F ab ⊗ F ab → [F, F ] that
factorizes [−,−] : F ab × F ab → [F, F ] through ⊗ : F ab × F ab → F ab ⊗ F ab. Hence we have

φF (g ⊗ g′) = [g, g′]

where g, g′ ∈ F . If g = g′, then φF (g ⊗ g) is trivial. Hence there is a unique abelian group
homomorphism φF : ∧2F ab → [F, F ] by the universal property of the second exterior algebra of F ab.
It is clearly a surjection (already true if F is any 2-step nilpotent group). Now thanks to Witt's
theorem, the abelian group homomorphism φF : ∧2F ab → [F, F ] is an isomorphism whenever F is a
free 2-step nilpotent group of �nite rank. Thus we get back the classical central extension for 2-step
nilpotent groups as follows:

Hom
(
−, ∧2

) +−→ 〈Z〉Nil2(Gr)
Ab′−→ Im(Ab)

Now we generalize this example to any 2-step nilpotent category.

De�nition 3.1.3. We de�ne the category Im(AbC) such that it has the same objects as C and, for
X and Y objects in C, Im(AbC)(X, Y ) is the set of morphisms fab : Xab → Y ab where f : X → Y is
a morphism in C. If we take the restriction of the above linear extension to any full subcategory C ′
whose objects are regular projective, then Im(AbC

′
)(X, Y ) = Ab(C ′)(Xab, Y ab) for X and Y objects

in C ′.

Notation 3.1.4. We consider the functor (AbC)′ : C → Im(AbC) that is the identity on objects and
the abelianization functor AbC : C → Ab(C) on morphisms.

Let X and Y be two objects in C. We set D(X, Y ) = C(Xab, [Y, Y ]IdC), and it is an abelian
group because [Y, Y ]IdC is an abelian object in C (since it is a central subobject of Y ). Since
(abX)∗ : C(Xab, [Y, Y ]IdC) → C(X, [Y, Y ]IdC) is an isomorphism of abelian groups, the abelian group
D(X, Y ) simply acts on C(X, Y ) by 1.5.22 as follows:

f +D α = f + (abX)∗(α) = ϕiY ◦ (f, α ◦ abX)t , (3.1.3)

for f ∈ C(X, Y ) and α ∈ D(X, Y ), where ϕiY : Y × [Y, Y ]IdC → Y is the unique factorization of

(id, iY ) : Y + [Y, Y ]IdC → Y through r̂IdC2 : Y + [Y, Y ]IdC → Y × [Y, Y ]IdC (see 1.5.4).
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Remark 3.1.5. Let f, g : X → Y be two morphisms in C. Then, abY ◦ f = abY ◦ g if, and only if,
there is α ∈ D(X, Y ) such that

g = f +D α

It is a direct consequence of 1.5.22.

Remark 3.1.6. Let X,X ′, Y, Y ′ ∈ C. For f ∈ C(X, Y ), g ∈ C(X ′, X), h ∈ C(Y, Y ′) and α ∈ D(X, Y ),
we have {

(f +D α) ◦ g = f ◦ g +D α ◦ gab

h ◦ (f +D α) = h ◦ f +D γ
C
2 (h) ◦ α

It is a direct consequence of 1.5.22.

De�nition 3.1.7. We de�ne the functor γ̃2
C : Im(AbC)→ Ab(C) of the following way:

• On objects, let X be an object in C, then we set γ̃2
C(X) = γC2 (X) = [X, X]IdC .

• On morphisms, let f : X → Y be a morphism in C, then γ̃2
C(fab) = γC2 (f). We shall verify

that the functor γ̃2
C is well-de�ned on morphisms. We consider f̃ : X → Y another morphism

such that fab ◦ abX = abY ◦ f̃ . It follows that abY ◦ f = abY ◦ f̃ . By 1.5.22, there is a morphism
α : Xab → [Y, Y ]IdC such that

f = f̃ +D α

By precomposing with the image iX : γC2 (X)� X of cX2 : IdD(X |X)→ X, we get

f ◦ iX = (f̃ +D α) ◦ iX ⇔ f ◦ iX = f̃ ◦ iX +D α ◦ (iX)ab ⇔ iY ◦ γC2 (f) = iY ◦ γC2 (f̃)

because abX ◦ iX ◦ eX = abX ◦ ix ◦ eX = 0 implying that abX ◦ iX = 0 (since eX : IdC(X|X)→
[X,X]IdC is an epimorphism). As iY : [Y, Y ]IdC → Y is a monomorphism, we have γC2 (f) = γC2 (f̃)
as desired.

Then we de�ne the following bifunctor:

De�nition 3.1.8. The bifunctor D : Im(AbC)op × Im(AbC)→ Ab is de�ned such that:

• On objects, let X and Y be objects in C, then D(X, Y ) = C(Xab, [Y, Y ]IdC).

• On morphisms, let f ∈ D(X, X ′) and g ∈ D(Y, Y ′), we set D((fab)op, gab) = γ̃2
C(gab)∗◦(fab)∗ =

γC2 (g)∗ ◦ (fab)∗ : D(X ′, Y )→ D(X, Y ′).

Now we are able to see any 2-step nilpotent category as a linear extension of categories, as follows:

Proposition 3.1.9. Let C be a 2-step nilpotent category. Then we have the following linear extension
of categories:

D
+−→ C (AbC)′−→ Im(AbC)

where Im(AbC) is the category given in 3.1.3, and (AbC)′ and D : Im(AbC)op × Im(AbC) → Ab are
respectively the functor and the bifunctor de�ned in 3.1.4 and 3.1.8.

Proof. The �rst point of 3.1.1 is clearly satis�ed by construction of the category Im(AbC) and of the
functor (AbC)′ : C → Im(AbC). Now let g ∈ Im(AbC)(X, Y ). Then there is a morphism f : X → Y
in C such that g = fab. Then putting

f +D α = f + (abX)∗(α) (see (3.1.3))
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de�nes a simple action of D(X, Y ) on the set C(X, Y ) since (abX)∗ : C(Xab, [Y, Y ]IdC) →
C(X, [Y, Y ]IdC) is an isomorphism of abelian groups by 1.5.16; the orbits of this action is the set(
(AbC)′

)−1
(f) by 1.5.22. Hence the second point of 3.1.1 holds. Then it remains to check that the third

point is veri�ed, i.e. the linear distributive law. Let f ∈ Im(AbC)(Y, Y ′) and g ∈ Im(AbC)(X, Y ).
Consider f0 : Y → Y ′ and g0 : X → Y respectively two lifts of f and g. Let α ∈ D(Y, Y ′) and
β ∈ D(X, Y ). First we get

(g0 +D β)ab ◦ abX = abY ◦ (g0 +D β) = abY ◦ g0 = g ◦ abX

by 1.5.22. Hence we obtain (g0 +D β)ab = g because abX : X → Xab is an epimorphism. Then we
have

(f0 +D α) ◦ (g0 +D β) = f0 ◦ (g0 +D β) +D α ◦ (g0 +D β)ab , by 3.1.6

= f0 ◦ g0 +D γ
C
2 (f0) ◦ β +D α ◦ g , by 3.1.6

= f0 ◦ g0 +D γ̃2
C(f) ◦ β +D α ◦ g , see 3.1.7

= f0 ◦ g0 +D γ̃2
C(f)∗(β) +D g

∗(α)

= f0 ◦ g0 +D

(
D(id, f)(β) +D(g, id)(α)

)
, see 3.1.8

3.2 The �ve lemma for linear extensions of categories

First taking a linear extension of category as in 3.1.1, the functor p : A → B has the following
property already proved in [1] by H.J Baues:

Proposition 3.2.1. Given a linear extension of categories as in 3.1.1, then the functor p : A → B
re�ects isomorphisms, equivalently speaking it satis�es the su�ciency condition in the sense of H.J.
Baues, see 1.3 of [1].

Proof. This is a straightforward application of 2.12 of [1] because the mixed term (see 2.7 of [1]) of
the action D : Bop × B → Ab on p : A → B is trivial.

Then we give the �ve lemma in this context of linear extension of categories which has been
provided in 5.5 of [4] for the �rst time. However we provide a slightly generalized assumption of this
lemma and a more detailed proof as follows:

Lemma 3.2.2. Consider the following morphism of linear extensions of categories:

D′ A′

D A B

B′
+ //

F

OO

+ //

p′ //

p //

G

OO

that is, F and G are functors as indicated such that the right-hand square commutes, and φ : D ⇒
(GOP ×G)∗ ·D′ is a natural isomorphism between bifunctors with domain Bop ×B and values in Ab
such that

F (f + α) = F (f) + φX,Y (α)

where X and Y are objects in A, f ∈ A(X, Y ), α ∈ D(X, Y ). Suppose that G : B → B′ is an
equivalence of categories. Then F is an equivalence of categories.
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Proof. First we prove that F : A → B is essentially surjective, i.e. for each object B in A′, there
exists A ∈ A such that F (A) ∼= B in A′. As G : B → B′ is an equivalence of categories (in particular
essentially surjective), there exists A ∈ B and an isomorphism ϕ : G(A) ∼= p′(B) = B in B′. Moreover
the right square of the above diagram commutes, then we have

G(A) = G · p(A) = p′ · F (A)

As p′ : A′ → B′ is full, there exists ϕ̃ : F (A) → B morphism in A′ such that ϕ = p′(ϕ̃). By 3.2.1,
ϕ̃ : F (A)→ B is an isomorphism in A′. Then it su�ces to prove that F is full and faithful. Let X
and Y be two objects in A, we have

• F is full. Let g ∈ A′(F (X), F (Y )). We consider the diagram below:

A(X, Y ) A′(F (X), F (Y ))

B(X, Y ) B′(F (X), F (Y )) B′(G(X), G(Y ))

F //

p

����

p′

����

G

∼= //

As p, p′ are surjective on morphisms and G is a bijection on morphisms, there is f ∈ A(X, Y )
such that

p′(g) = G · p′(f) = p′ · F (f) = p′(F (f))

Then there exists β ∈ D′(p′(F (X)), p′(F (Y ))) such that g = F (f) + β by 3.1.1. As φX,Y is
surjective, we have

∃α ∈ D(p(X), p(Y )), β = φX,Y (α)

Consequently, we have

g = F (f) + β = F (f) + φX,Y (α) = F (f + α) ,

It proves that F is full.

• F is faithful. Let f, g ∈ A(X, Y ) such that

F (f) = F (g)

By applying p′, we obtain G · p(f) = G · p(g), which is equivalent to p(f) = p(g) because G is
faithful. Then there exits α ∈ D(p(X), p(Y )) such that g = f + α. By applying the functor
F , we have

F (g) = F (f + α) = F (f) + φX,Y (α) = F (g) + φX,Y (α)

By 1.5.21, φX,Y (α) = 0 implying that α = 0 because φX,Y is injective. Finally g = f . Hence F
is faithful.

3.3 Existence of a morphism

Let C be a semi-abelian category. We need to recall the "join" between two subobjects, de�ned in
2.7 of [14]. For subobjects

L
l
� X

m
�M
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of an object X in C (merely in homological categories), we write

L ∨M = Im
(
(l, m) : L+M → X

)
,

see [6]. Let D be a semi-abelian category, F : C → D be a reduced functor and δ : A → G be a
morphism. We start to recall the existence and uniqueness of a certain morphism, already determined
in [14]. Here we denote respectively by rG : A + G → G, iG : G → A + G and iA : A → A + G the
retraction onto the second summand, the injections of the second and �rst summand. First we have
the split epimorphism F (rG) : F (A + G) → F (G) whose section is F (iG) : F (G) → F (A + G) and
its kernel is denoted by ker(F (rG)) : Ker(F (rG))→ F (A+G). As F is a reduced functor, there is a
unique morphism s : F (A)→ Ker(F (rG)) factorizing F (iA) : F (A)→ F (A+G) through ker(F (rG)).
In addition, there is a unique morphism k : F (A|G) → Ker(F (rG)) such that ker(F (rG)) ◦ k = ιF2
where ιF2 : F (A|G) → F (A + G) is the kernel of the regular epimorphism r̂F2 = (F (rA), F (rG))t :
F (A + G) → F (A) × F (G). Setting p = F (rA) ◦ ker(F (rG)) : Ker(F (rG)) → F (A), it is a split
epimorphism whose section is s. The nine lemma applied to the following commutative diagram:

F (A|G) F (A+G)

Ker(F (rG))

F (A)× F (G)

F (A)

0

0

0

0

0 F (G) F (G)

00 0

0 0

F (A|G)

0 0 0

//
ιF2 //

OO

ker(F (rG))

OO

r̂F2 // // //

p // ////

//

// k //
OO

ιA

OO

OOOO

F (rG)

OOOO

πG

OOOOOO OO
// //// //

OO OO OO

OO OO OO

//

ensures that the bottom sequence of the diagram is split short exact, where πG : F (A)×F (G)→ F (G)
and ιA : F (A) → F (A) × F (G) are respectively the projection onto the second summand and the
injection of the �rst summand. By 3.10 of [11] or 3.1 of [14], there is a strict action core (see 3.5 of
[11]), or simply an action (see 3.1 of [14]), ψ : IdD(F (A|G) |F (A))→ F (A|G) which is the restriction
of the regular epimorphism (k, s) : F (A|G) + F (A) → Ker(F (rG)) (by protomodularity of D) to
IdD(F (A|G) | F (A)), such that

ιF2 ◦ ψ = (ιF2 , F (iA)) ◦ ιIdD2

Then we prove that the following diagram commutes:

IdD(F (A|G) | F (A)) F (A|G)

IdD(F (G) | F (G)) F (G)

ψ //

IdD

(
SF2 ◦F (δ|id)

∣∣ F (δ)
)
��

SF2 ◦F (δ|id)

��

SId2 =c
F (G)
2

//
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We have

SId2 ◦ IdD
(
SF2 ◦ F (δ|id) | F (δ)

)
=
(
SF2 ◦ F (δ|id), F (δ)

)
◦ ιId2

=
(
F ((δ, id)) ◦ ιF2 , F (δ)

)
◦ ιId2

=
(
F ((δ, id)) ◦ ιF2 , F ((δ, id)) ◦ F (iA)

)
◦ ιId2

= F ((δ, id)) ◦ (ιF2 , F (iA)) ◦ ιId2

= F ((δ, id)) ◦ ιF2 ◦ ψ

= SF2 ◦ F (δ|id) ◦ ψ

By 4.4 of [11], there exists a unique morphism h =

〈
(SF2 )G ◦ F (δ|id)

F (δ)

〉
: F (A|G) o F (A)→ F (G)

such that h ◦ k = (SF2 )G ◦ F (δ|id) and h ◦ s = F (δ).

3.4 Commutators and the e�ect of functors on exact sequences

In this part, we provide short exact sequences by applying reduced functors preserving coequalizers
of re�exive graphs to right short exact sequences. The next proposition gives a useful short exact
sequences as follows:

Proposition 3.4.1. Let F : C → D be a reduced functor preserving coequalizers of re�exive graphs.
Consider the following right exact sequence in C:

A G Q 0
q // //δ //

Then it gives rise to the following short exact sequence:

[A, G]F ∨ [A]F0 F (G) F (Q) 0
F (q) //// ////

Proof. As F preserves coequalizers of re�exive graphs, we have the following exact sequence by 2.31
of [14]:

F (A|G) o F (A) F (G) F (Q) 0
F (q) // //h //

Then it su�ces to determine the image of h so as to have our desired short exact sequence because
im(h) : Im(h) � F (G) is the kernel of F (q). We remark that the images of (SF2 )G ◦ F (δ|id) and
F (δ) are respectively [A, G]F and [A]F by de�nition of these commutators. Hence we have

Im(h) = Im(h ◦ (k, s))

= Im
((

(SF2 )G ◦ F (δ|id), F (δ)
))

= Im
(
(SF2 )G ◦ F (δ|id)

)
∨ Im (F (δ))

= [A, G]F ∨ [A]F

as desired.

Corollary 3.4.2. Let F : C → D be a reduced functor preserving coequalizers of re�exive graphs and
Y be an object in C. If, moreover, we suppose that F is quadratic, then we have the following short
exact sequence

[[Y, Y ]IdC ]F0 F (Y ) F (Y ab) 0
F (abY ) //// //

iF
[Y, Y ]IdC //
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where we recall that iF[Y, Y ]IdC
: [[Y, Y ]IdC ]F → F (Y ) is the image of the morphism F (iY ) :

F
(
[Y, Y ]IdC

)
→ F (Y ).

Proof. We just apply 3.4.1 to the following short exact sequence:

[Y, Y ]IdC0 Y Y ab 0
abY // //iY ////

If, moreover, F is a quadratic functor, then

[[Y, Y ]IdC , Y ]F ⊂ [Y, Y, Y ]F = 0 ,

by 1.3.8 and by 1.3.9 because F preserves regular epimorphisms (since it preserves coequalizers of
re�exive graphs by 2.31 of [14]).

3.5 Criteria for quadratic equivalences

In this part, we �nd criteria for certain quadratic functors between 2-step nilpotent categories re-
spectively varieties to be quadratic equivalences, at least when restricted to suitable subcategories.
We start by stating the precise results.

Theorem 3.5.1. Let C and D be two 2-step nilpotent categories with distinguished full subcategories
C ′ respectively D′ all of whose objects are regular projective. Let F : C → D be a reduced quadratic
functor which preserves coequalizers of re�exive graphs and carries C ′ into D′. Denote by F ′ : C ′ → D′,
AbC

′
: C ′ → Ab(C) and AbD

′
: D′ → Ab(D) the functors given by the corresponding restrictions of F ,

AbC and AbD, respectively.
Also let Ab(C ′) (resp. Ab(D′)) be the full subcategories of Ab(C) (resp. Ab(D)) whose objects are

isomorphic to the abelianization of some object in C ′ (resp. D′).
Then the functor F ′ : C ′ → D′ given by restriction of F is an equivalence provided the following

three conditions hold.

1. There is a natural isomorphism σ : AbD · F ⇒ F · AbC of functors from C to D such that the
triangle

F (Xab)

F (X)

F (X)ab

F (abX)

zz

abF (X)

$$
σX
∼=

oo (3.5.1)

commutes for all objects X in C.

2. The functor Ab(F ) : Ab(C) → Ab(D) given by restriction of F (which is de�ned thanks to
condition 1.) is full and faithful, and its restriction Ab(F ′) : Ab(C ′) → Ab(D′) is essentially
surjective. Here Ab(C ′) and Ab(D′) denote respectively the full subcategories of Ab(C) and
Ab(D) whose objects are isomorphic to abelianizations of objects in C ′ and D′, respectively.

3. For every object Y in C ′, the morphism F (iY ) : F (γC2 (Y ))→ F (Y ) is a monomorphism.

This result can be considerably strengthened for 2-nilpotent varieties, as follows.

Theorem 3.5.2. Let C and D be two 2-step nilpotent varieties. Let F : C → D be a reduced quadratic
functor. Suppose that F satis�es the following properties.

97



1. F preserves binary coproducts, �ltered colimits and coequalizers of re�exive graphs.

2. F carries a given free object E of rank 1 in C to a free object of rank 1 in D.

3. Up to isomorphism F commutes with the abelienization functors of C and D, as in condition
1. of Theorem 3.5.1.

4. The functor Ab(F ) : Ab(C) → Ab(D) given by restriction of F (which is de�ned thanks to
condition 3.) is an equivalence.

5. For n ≥ 1 and Y = E+n, the morphism F (iY ) : F (γC2 (Y ))→ F (Y ) is a monomorphism.

Then F is an equivalence, with a weak inverse F−1 described in Lemma 3.5.12 below.

Remark 3.5.3. Condition 4. may be replaced with the condition that the map

FEab,Eab : C(Eab, Eab)→ C(F (Eab), F (Eab))

is bijective. In fact, as both F and abelianization functors preserve binary sums and F commutes with
the abelianization functors (up to isomorphism), it follows that Ab(F ) preserves direct coproducts
and thus is additive. Hence if FEab,Eab is bijective it is a ring isomorphism and hence the functor

Ãb(F ) : 〈Eab〉 → 〈F (Eab)〉

is full and faithfull since morphisms in these categories can be described by matrices with coe�cients
in the rings C(Eab, Eab) respectively C(F (Eab), F (Eab)), and composition of morphisms corresponds
to matrix multiplication. Now Lemma 3.5.12 applied to Ab(F ) instead of F shows that Ab(F ) is an
equivalence (note that Ab(F ) preserves coequalizers of re�exive graphs and �ltered colimits since F
does and commutes with abelianization functors).

Now let C and D be 2-step nilpotent categories. Recall the bifunctorsD : Im(AbC)op×Im(AbC)→
Ab and D′ : Im(AbD)op × Im(AbD)→ Ab the bifunctors de�ned in 3.1.8. For all X, Y ∈ C, we know
by 1.5.22 that the abelian group D(X, Y ) simply acts on the set C(X, Y ) as follows:

f +D α = ϕiY ◦ (f, α ◦ abX)t

where f ∈ C(X, Y ), α ∈ D(X, Y ) and ϕiY : Y × [Y, Y ]IdC → Y is the cooperator of iY : [Y, Y ]IdC � Y
and the identity of Y (see (1.5.4)). Similarly, for A,B ∈ D, the abelian group D′(A,B) acts on the
set D(A,B).

Remark 3.5.4. Let X and Y be two objects in C, and let F : C → D be a reduced quadratic functor
preserving coequalizers of re�exive graphs (hence regular epimorphisms). Since [F (Y ), F (Y )]IdD is a
central subobject of F (Y ) by 1.3.11, we observe that the abelian group D(F (X), F (Y )) acts on the
set D(F (X), F (Y )) by (1.5.6), as follows:

g +D′ β = ϕiF (Y )
◦ (g, β ◦ abF (Y ))

t (3.5.2)

where g ∈ D(F (X), F (Y )), β ∈ D′(F (X), F (Y )) and ϕiF (Y )
: F (Y ) × [F (Y ), F (Y )]IdD → F (Y ) is

the cooperator of iF (Y ) and the identity of Y (see (1.5.4)).

Now we de�ne a functor γ̃1
F : Im(AbC)→ Ab(D) as follows:

• On objects, let X be an object in C, then γ̃1
F (X) = [[X, X]IdC ]F .
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• On morphisms, let f : X → Y be a morphism in C, then γ̃1
F (fab) is the unique morphism such

that the two rectangles of the following diagram commute:

F (X)

[γC2 (X)]F

F (γC2 (X))

F (Y )

[γC2 (Y )]F

F (γC2 (Y ))

��

��

F (f) //
��

��

F (γC2 (f)))=F (γ̃2
C(fab))

//

γ̃1
F (fab) //

where the functor γ̃2
C : Im(AbC) → Ab(C) is de�ned in subsection 2.1. Is is clear that the

functor γ̃1
F : Im(AbC)→ Ab(D) is well-de�ned on morphisms.

Next we de�ne a speci�c bifunctor DF : Im(AbC)op× Im(AbC)→ Ab depending on F which kind
of �interpolates� between D and D′, as follows:

De�nition 3.5.5. We de�ne the bifunctor DF : Im(AbC)op × Im(AbC)→ Ab as follows:

• On objects, let X and Y be two objects in C, then DF (X, Y ) = D
(
F (Xab), [[Y, Y ]IdC ]F

)
which

is an abelian group because [[Y, Y ]IdC ]F is an abelian object since it is a central subobject of
F (Y ) by 1.3.12.

• On morphisms, let f ∈ C(X ′, X) and g ∈ C(Y, Y ′), then DF ((fab)op, gab) = F (fab)∗◦ γ̃1
F (gab)∗ :

DF (X, Y )→ DF (X ′, Y ′).

Remark 3.5.6. It is a consequence of 1.5.13 that the abelian group DF (X, Y ) acts on D(F (X), F (Y ))
as follows:

g +DF α = ϕ′ ◦
(
g, α ◦ F (abX)

)t
where g ∈ D(F (X), F (Y )), α ∈ DF (X, Y ) and ϕ′ : F (Y ) × [[Y, Y ]IdC ]F → F (Y ) is the unique

factorization of (id, iFY ) : F (Y ) + [[Y, Y ]IdC ]F → F (Y ) through the comparison morphism r̂IdD2 :
F (Y ) + [[Y, Y ]IdC ]F → F (Y ) × [[Y, Y ]IdC ]F . It is due to the fact that [[Y, Y ]IdC ]F is a central
subobject of F (Y ) by 1.3.12.

Then we provide a natural transformation between the bifunctors D and DF both with domain
Im(AbC)op × Im(AbC) and values in Set. For all X, Y ∈ C, we �rst de�ne the map

φFX, Y : D(X, Y ) −→ DF (X, Y )
α 7−→ eF[Y,Y ]IdC

◦ F (α) . (3.5.3)

where eF[Y,Y ]IdC
: F ([Y, Y ]IdC)� [[Y, Y ]IdC ]F is the coimage of F (iY ) : F ([Y, Y ]IdC)→ F (Y ).

Proposition 3.5.7. The collection of maps φFX,Y for X, Y ∈ C de�nes a natural transformation
φF : D ⇒ DF between bifunctors with domain Im(AbC)op × Im(AbC) and values in Set.

Remark 3.5.8. Without further hypothesis on F the map φFX,Y is not a homomorphism; a su�cient
condition would be to require that F preserves binary products of abelian objects. This in fact is a
consequence of the hypothesis of Theorem 3.5.1, see its proof below.

Next we give the following proposition:
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Proposition 3.5.9. If F is a quadratic reduced functor preserving regular epimorphisms, then for
all X, Y ∈ C the map F : C(X, Y )→ D(F (X), F (Y )) carries the action +D of D(X, Y ) on C(X, Y )
to the action +DF of DF (X, Y ) on D(F (X), F (Y )) along φFX,Y : V

(
D(X, Y )

)
→ V

(
DF (X, Y )

)
;

more precisely, for f ∈ C(X, Y ) and α ∈ D(X, Y ), we have

F (f +D α) = F (f) +DF φ
F
X, Y (α)

where

• V : Ab→ Set is the canonical forgetful functor;

• D and DF are the bifunctors with domain Im(AbC)op × Im(AbC) and values in Ab respectively
de�ned in 3.1.8 and 3.5.5, and +D and +DF are the actions given in (3.1.3) and (3.5.6);

• for all X, Y ∈ C, φFX,Y : D(X, Y )→ DF (X, Y ) is the map de�ned in (3.5.3).

Proof. By (3.5.6), we recall that for f ∈ C(X, Y ) and α ∈ D(X, Y ) we have

f +D α = ϕiY ◦ (f, α ◦ abX)t (see (3.1.3)

where ϕiY : Y × [Y, Y ]IdC → Y is the cooperator of iY and the identity of Y given in (1.5.4). Now
we consider the following diagram:

F (Y + [Y, Y ]IdC) F (Y × [Y, Y ]IdC)

F (Y ) + F ([Y, Y ]IdC) F (Y )× F ([Y, Y ]IdC)

F (Y ) + [[Y, Y ]IdC ]F F (Y )× [[Y, Y ]IdC ]F F (Y )

F (Y )
F (r̂

IdC
2 )

//

(F (π1), F (π2))t

��

(F (i1), F (i2))

OO

id+eFY

��

id×eFY

��

r̂F2

((r̂
IdD
2 //

ϕ′ //

F (ϕiY )
//

r̂
IdD
2 //

F ((id, iY ))

((

(id, iFY )

66

(3.5.4)

However it does not allows us to conclude that the right-hand square commutes. This happens

whenever the composite morphism F (r̂IdC2 )◦ (F (i21), F (i22)) : F (Y )+F ([Y, Y ]IdC)→ F (Y × [Y, Y ]IdC)
is a regular epimorphism (which is false in general). For this, we search the deviation of the morphism
(F (i21), F (i22)) : F (Y ) + F ([Y, Y ]IdC) → F (Y + [Y, Y ]IdC) to be a regular epimorphism. We take

the pull-back of the morphism r̂IdC2 : F (Y ) + F ([Y, Y ]IdC) → F (Y ) × F ([Y, Y ]IdC) along r̂F2 :
F (Y + [Y, Y ]IdC)→ F (Y )× F ([Y, Y ]IdC) as follows:

F (Y | [Y, Y ]IdC) P

F (Y + [Y, Y ]IdC)

F (Y ) + F ([Y, Y ]IdC)

F (Y )× F ([Y, Y ]IdC)

0 0
k //

q

��

p //

r̂F2 //

r̂
IdC
2

��

// //

s

xx
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By regularity of the category D, the morphisms p and q are regular epimorphisms as pull-back of
regular epimorphisms. Next, k : F (Y | [Y, Y ]IdC) → P is the unique morphism such that k ◦ p = 0
and k ◦ q = ιF2 by the universal property of the pull-back. A categorical argument says that k
is the kernel of p : P → F (Y ) + F ([Y, Y ]IdC) (it works in any �nite complete category). Finally
s : F (Y ) + F ([Y, Y ]IdC)→ P is the unique morphism such that p ◦ s = id and q ◦ s = (F (i21), F (i22))
by the universal property of the pull-back. Hence we deduce that the top sequence of the above
diagram is short split exact. By protomodularity of the category D (as any semi-abelian category),
the morphism (s, k) :

(
F (Y )+F ([Y, Y ]IdC)

)
+F (Y | [Y, Y ]IdC)→ P is a regular epimorphism. So the

morphism
(
(F (i21), F (i22)), ιF2

)
= q◦(k, s) :

(
F (Y )+F ([Y, Y ]IdC)

)
+F (Y |[Y, Y ]IdC)→ F (Y +[Y, Y ]IdC)

is also a regular epimoprhism as a composite of two regular epimorphisms. Now we consider the
following diagram:

F (Y + [Y, Y ]IdC) F (Y × [Y, Y ]IdC)

(
F (Y ) + F ([Y, Y ]IdC)

)
+ F (Y | [Y, Y ]IdC) F (Y )× F ([Y, Y ]IdC)

F (Y ) + [[Y, Y ]IdC ]F F (Y )× [[Y, Y ]IdC ]F F (Y )

F (Y )
F (r̂

IdC
2 )

//

(F (π1), F (π2))t

��

(
(F (i1), F (i2)), ιF2

) OO

(
id+eFY , 0

)
��

id×eFY

��

(r̂
IdD
2 , 0)

//

r̂F2

**

ϕ′ //

F (ϕiY )
//

r̂
IdD
2 //

F ((id, iY ))

))

(id, iFY )

55

Note that F (r̂IdC2 ) : F (Y +[Y, Y ]IdC)→ F (Y ×[Y, Y ]IdC) is a regular epimorphism because F preserves

regular epimorphisms. The outside and left-hand rectangles commute and F (r̂IdC2 ) ◦ (F (i21), F (i22)) :
F (Y ) + F ([Y, Y ]IdC) → F (Y × [Y, Y ]IdC) is a regular epimorphism as a composite of two regular
epimorphisms. Hence the right-hand rectangle commutes. Finally, the result of the assumption
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comes from the following commutative diagram:

F (X) F (Y × [Y, Y ]IdC)

F (Y )× F ([Y, Y ]IdC)

F (Y )× [[Y, Y ]IdC ]F F (Y )

F (Y )
F ((f, α◦abX)t) //

(F (π1), F (π2))t

��

id×eFY

��
ϕ′ //

F (ϕiY )
//

F (f+Dα)

((

F (f)+
DF

φFX,Y (α)

77

(
F (f), φFX,Y (α)◦F (abX)

)t
$$

Now we assume that the functor F : C → D commutes with the abelianization functors, i.e. there
is a natural isomorphism σ : AbD ·L⇒ L ·AbC such that for all X ∈ C the triangle (3.5.1) commutes.
Then we consider the following diagram:

[[Y, Y ]IdC ]F F (Y )

F (Y )

F (Y ab)

[F (Y ), F (Y )]IdD F (Y )ab0

0 0

0

//
iFY // F (abY ) //

iF (Y ) //
abF (Y ) // ////

////

∼=σ̂Y

OO

σY∼=

OO

The top sequence is short exact by 3.4.2 because F : C → D is a quadratic functor preserving
regular epimorphisms. The bottom one is also short exact by de�nition of abF (Y ) as a cokernel of the

image of cF (Y )
2 : IdD(F (Y )|F (Y ))→ F (Y ). Since the right-hand square commutes, there is a unique

morphism σ̂Y : [F (Y ), F (Y )]IdD → [[Y, Y ]IdC ]F such that

iF[Y,Y ]IdC
◦ σ̂Y = iF (Y ) (3.5.5)

Moreover it is an isomorphism by the �ve lemma. Hence it induces a natural isomorphism

(σ̂−1)∗ ◦ (σ)∗ : DF =⇒ (GOP ×G)∗ ·D′

between bifunctors with domain Im(AbC)op× Im(AbC) and values in Ab. For all X, Y ∈ C, we de�ne
the map

φX, Y : D(X, Y ) −→ D′(F (X), F (Y ))

α 7−→ σ̂Y
−1 ◦ eF[Y,Y ]IdC

◦ F (α) ◦ σX .
(3.5.6)

We observe that for α ∈ D(X, Y ) we get

φX,Y (α) = (σ̂Y )−1 ◦ φFX,Y ◦ σX , (3.5.7)

see (3.5.3). Then we have a condition for a quadratic reduced functor F : C → D preserving
coequalizers of re�exive graphs to carry the action +D of D(X, Y ) on C(X, Y ) to the action +D′ of
D′(F (X), F (Y )) on D(F (X), F (Y )).
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Corollary 3.5.10. Let X and Y be two objects in C. We assume that F : C → D is a
quadratic reduced functor preserving coequalizers of re�exive graphs. If, moreover, there is a nat-
ural isomorphism σ : AbD · F ⇒ F · AbC on C such the triangle 3.5.1 commutes, then the map
F : C(X, Y )→ D(F (X), F (Y )) carries the action +D of D(X, Y ) on C(X, Y ) to the action +D′ of
D′(F (X), F (Y )) on D(F (X), F (Y )) along φX,Y : D(X, Y ) → D′(F (X), F (Y )); more precisely for
f ∈ C(X, Y ) and α ∈ D(X, Y ), we have

F (f +D α) = F (f) +D′ φX, Y (α)

where

• D is the bifunctor with domain Im(AbC)op× Im(AbC) and values in Ab de�ned in 3.1.8 and D′

is the bifunctor with domain Im(AbD)op × Im(AbD) and values in Ab de�ned in 3.5.5;

• +D and +D′ are the actions given in (3.1.3) and (3.5.4);

• for all X, Y ∈ C, φX,Y is the map de�ned in (3.5.6).

Proof. Let f ∈ C(X, Y ) and α ∈ D(X, Y ). By 3.5.9, we have

F (f +D α) = F (f) +DF φ
F
X,Y (α) = ϕ′ ◦

(
F (f), φFX,Y (α) ◦ F (abX)

)t
It remains to prove that

F (f) +DF φ
F
X,Y (α) = F (f) +D′ φX, Y (α)

First we get

ϕ′ ◦ r̂IdD2 = (id, iF[Y,Y ]IdC
)

=
(
id, iF (Y ) ◦ (σ̂Y )−1

)
, by (3.5.7)

= (id, iF (Y )) ◦
(
id+ (σ̂Y )−1

)
= ϕiF (Y )

◦ ◦r̂IdD2 ◦
(
id+ (σ̂Y )−1

)
, by (1.5.4)

= ϕiF (Y )
◦
(
id× (σ̂Y )−1

)
◦ r̂IdD2 , by naturality

Hence we obtain
ϕ′ = ϕiF (Y )

◦
(
id× (σ̂Y )−1

)
(3.5.8)

because the comparison morphism r̂IdC2 : F (Y ) + [[Y, Y ]IdC ]F → F (F ) × [[Y, Y ]IdC ]F is a (regular)
epimorphism. Then we get the equalities as follows:

F (f) +DF φ
F
X,Y (α) = ϕ′ ◦

(
F (f), φFX,Y (α) ◦ F (abX)

)t
= ϕiF (Y )

◦
(
id× (σ̂Y )−1

)
◦
(
F (f), φFX,Y (α) ◦ F (abX)

)t
, by (3.5.8)

= ϕiF (Y )
◦
(
F (f), (σ̂Y )−1 ◦ φFX,Y (α) ◦ F (abX)

)t
= ϕiF (Y )

◦
(
F (f), (σ̂Y )−1 ◦ φFX,Y (α) ◦ σX ◦ abF (X)

)t
, by (3.5.1)

= ϕiF (Y )
◦
(
F (f), φX,Y (α) ◦ abF (X)

)t
, by (3.5.7)

= F (f) +D′ φX, Y (α) , by (3.5.4)

as desired.
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Let F : C → D be a reduced quadratic functor preserving coequalizers of re�exive graphs (hence
regular epimorphisms), which commutes with the abelianization functors as in condition 1. of The-
orem 3.5.1. We now de�ne a functor depending on F as follows:

De�nition 3.5.11. We de�ne the functor Im(Ab(F )) : Im(AbC)→ Im(AbD) such that:

• On objects, let X be an object in C, Im(Ab(F ))(X) = F (X),

• On morphisms, let f : X → Y be a morphism in C, we set Im(Ab(F ))(f) = F (f)ab. We prove
that it is well-de�ned on morphisms. For this, consider morphism g : X → Y in C such that

fab = gab , i.e. abY ◦ f = abY ◦ g

By 3.1.5, there exists d ∈ D(X, Y ) such that

g = f +D d

By 1.5.22, we get
F (g) = F (f) +D′ φX,Y (d)

Hence we have

abF (Y ) ◦ F (g) = abF (Y ) ◦
(
F (f) +D′ φX,Y (d)

)
= abF (Y ) ◦ F (f) , by 3.1.5

Thus we get F (g)ab ◦ abF (X) = F (f)ab ◦ abF (X) implying that F (g)ab = F (f)ab, because abF (X) :
F (X)→ F (X)ab is a (regular) epimorphism.

Then we observe that we have the following diagram of linear extensions of categories:

D′ D

D C Im(AbC)

Im(AbD)
+ //

F

OO

+ //

(AbD)′ //

(AbC)′ //

Im(Ab(F ))

OO

(3.5.9)

where the two linear extensions of categories are given in 3.1.9, the bifunctor D (resp. D′) with
domain Im(AbC)op × Im(AbC) (resp. Im(AbD)op × Im(AbD)) and values in Ab is de�ned in 3.1.8,
and the functor Im(Ab(F )) : Im(AbC)→ Im(AbD) is de�ned in 3.5.11.

Now we are ready to prove the equivalence criteria stated at the beginning of this section.

Proof of Theorem 3.5.1. Suppose that the hypothesis 1. and 2. hold. Consider the following diagram.

D′D′+
// D′ (Ab

D′ )′// Im(AbD
′
)

JD′ // Ab(D′)

DC′+ // C ′ (AbC
′
)′ //

F ′

OO

Im(AbC
′
)

G

OO

JC′ // Ab(C ′)

Ab(F ′)

OO

where G = Im(Ab(F ′)) is the functor de�ned in 3.5.11, the bifunctor DC′ is given by restriction of
D to Im(AbC

′
)op× Im(AbC

′
), and similarly for D′D′ ; in fact, omitting the right-hand square the lines

are sub-linear extensions of the ones in diagram (3.5.9). Next, G is de�ned by G(X) = F (X) and
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G(fab) = F (f)ab = σ−1
Y ◦F (fab)◦σX for X, Y in C ′ and f ∈ C(X, Y ); the second identity ensures that

G(fab) does indeed only depend on fab. Thus the left-hand square commutes. Moreover, the functor
JC′ de�ned by JC′(X) = Xab and JC′(fab) = fab is an equivalence since it is essentially surjective, full
(by regular projectivity of the objects of C ′) and faithful by de�nition of the category Im(AbC

′
); the

same holds for JD′ . As the right-hand square commutes up to the isomorphism σ and as Ab(F ′) is
an equivalence by condition 2. so is G.

Now let X, Y be objects of C ′ and consider the following decomposition of the map
φX,Y : D(X, Y )→ D′(F (X), F (Y )):

C(Xab, γC2 (Y ))
F
Xab,γC2 (Y )

// D(F (Xab), F (γC2 (Y )))
(σX)∗(eFY )∗// D(F (X)ab, γD2 (F (Y ))).

Note that the functor Ab(F ) is additive since being an equivalence it preserves binary coproducts.
Hence the map FXab,γC2 (Y ) is an isomorphism of abelian groups since Xab and γC2 (Y ) are abelian
objects. Moreover, (σX)∗ is an isomorphism of abelian groups since σ is an isomorphism in D; the
same with (eFY )∗ since being a regular epimorphism eFY is an isomorphism i� it is monic. But this is
equivalent with F (iY ) = iF

γC2 (Y )
◦ eFY being monic. Thus φX,Y is an isomorphism of abelian groups.

Together with 3.5.10 we conclude that the �ve-lemma for linear extension 3.2.2 applies to the
above diagram of linear extensions (omitting the right-hand square) and shows that F ′ is an equiv-
alence. �

The proof of Theorem 3.5.2 now heavily relies on the following general lemma.

Lemma 3.5.12. Let C and D be two 2-step nilpotent semi-abelian categories and let F : C → D
be a functor which preserves �nite coproducts, coequalizers of re�exive graphs and �ltered colimits.
Moreover, suppose that F carries a given free object E of rank 1 in C to a free object of rank 1 in D,
and that its restriction to 〈E〉 is full and faithful. Then F is an equivalence, and a weak inverse F−1 of
F is given as follows: consider that the objects of C and D are sets endowed with operations satisfying
given equational axioms, and let X be an object of D. Then F−1(X) has the same underlying set
|X| as X, and for an n-ary operation θ of the variety C and an element x = (x1, . . . , xn) ∈ |X|n
the element θ(x1, . . . , xn) is given as follows: let e′ be a basis element of F (E) and θ̂ ∈ C(E,E+n)
be the morphism sending e′ to θ(in1 (e′), . . . , inn(e′)). Furthermore, let s : F (E)+n → F (E+n) be the
isomorphism such that s◦ink = F (ink) for k = 1, . . . , n, and x̂ ∈ D(F (E)+n, X) be such that |x̂◦ink |(e′) =

xk for k = 1, . . . , n. Then θ(x1, . . . , xn) = |x̂ ◦ s−1 ◦ F (θ̂)|(e′).

Proof. We proceed in several steps.

Step 1: passing to the language of models of an algebraic theory. Consider the theory 〈E〉 in C.
By hypothesis, the injections F (ink) : F (E)→ F (E+n), k = 1, . . . , n, make F (E+n) into a coproduct
of n copies of F (E); in particular, F (E+n) is a free object of rank n. So let the theory 〈F (E)〉
in D be given by taking F (E)+n = F (E+n) × {n} with injections (pr1)−1 ◦ F (ink) (the products
with the sets {n} render the objects F (E)+n formally distinct). Now by hypothesis the restriction
F̃ : 〈E〉 → 〈F (E)〉 of F is an isomorphism of theories. We thus obtain a diagram of functors, cf.
section 1.1:

C F //

ρC ∼
��

D
ρD ∼
��

Model(〈E〉)
(F̃−1)∗
//Model(〈F (E)〉)F̃ ∗oo

Both ρC and ρD are equivalences as C and D are varieties, and the functors F̃ ∗, (F̃−1)∗ are mutually
inverse to each other.
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Step 2: Reduction to the construction of a certain natural isomorphism Γ. We contend to construct
a natural isomorphism Γ: (F̃−1)∗ · ρC → ρD · F as then we can deduce isomorphisms

ρ−1
C · F̃

∗ · ρD · F ∼= ρ−1
C · F̃

∗ · (F̃−1)∗ · ρC ∼= IdC.

Since G = ρ−1
C · F̃ ∗ · ρD is an equivalence since its three factors are it follows that F is an equivalence

with weak inverse G. Using the construction of ρ−1
C in section 1.1 it then is easily seen that G is the

functor F−1 described in the assertion.

Step 3: Construction of Γ on 〈E〉. Abbreviate F1 = (F̃−1)∗ · ρC and F2 = ρD · F . Let m,n ≥ 0.
Then

F1(E+m)(F (E+n)) = C(E+n, E+m)

F2(E+m)(F (E+n)) = D(F (E+n), F (E+m))

Hence we may de�ne a map

(ΓE+m)E+n = FE+n,E+m : F1(E+m)(F (E+n))→ F2(E+m)(F (E+n))

which is a bijection since F is full and faithful on 〈E〉. Now it is immediate to check that for �xed
m the collection (ΓE+m)E+n , n ≥ 0, is a natural transformation and hence natural isomorphism
ΓE+m : F1(E+m) → F2(E+m), and again that the collection of maps ΓE+m , m ≥ 0, is a natural
transformation and hence a natural isomorphism Γ1 between the restrictions of F1 and F2 to 〈E〉.
It is then clear that Γ1 extends to a natural isomorphism Γ2 between the restrictions of F1 and
F2 to Free(C), the full subcategory of all �nite sums E with itself. More precisely, for a set S let
L(S) =

∐
s∈S E be a chosen coproduct with injections it : E →

∐
s∈S for all t ∈ S. Then the objects

of Free(C) are of the form L(S) for S a �nite set.

Step 4: Extension of Γ to all free objects. First note that the above construction is a way of
describing a left-adjoint L : Set → C of the forgetful functor X 7→ |X| where for a map f : S → T
in Set the morphism L(f) : L(S) → L(T ) is de�ned by L(f) ◦ is = if(s) for s ∈ S. Now let 〈〈E〉〉E
be the full subcategory of C whose objects are of the form L(S) for any set S; it is equivalent with
the full subcategory of all free objects. Let S be a set. Denote by Fin(S) the �ltered category of
�nite subsets of S and their mutual inclusions, and for T ∈ |Fin(S)| let jT,S : T ↪→ S. Note that the
morphisms L(jT,S) : L(T )→ L(S) with T varying over the objects of Fin(S) form a colimit cone of
the diagram given by applying L to Fin(S). As F and also the equivalences F̃ ∗, (F̃−1)∗, ρC and ρD
preserve �ltered colimits so do F1 and F2, hence for k = 1, 2 the morphisms Fk ◦L(jT,S) : Fk ◦L(T )→
Fk ◦ L(S), T ∈ |Fin(S)|, again form a colimit cone. It follows that there exists a unique morphism
ΓL(S) : F1(L(S))→ F2(L(S)) such that ΓL(S) ◦F1(L(jT,S)) = F2(L(jT,S)) ◦ΓL(T ) for all T ∈ |Fin(S)|.
To prove that the collection of maps ΓL(S), S a set, is a natural transformation let S, S ′ be two sets
and f ∈ C(S, S ′). Note that in order to show that ΓL(S′)◦F1(f) = F2(f)◦ΓL(S) it su�ces to show that
this identity holds after precomposing with F1(L(jT,S)) for all T ∈ |Fin(S)|. Fix such a set T . The
key fact is that E and hence L(T ) are small objects, so that there exists a �nite subset T ′ of S ′ such
that f ◦ jT,S factors through the monomorphism L(jT ′,S′), so that there exists fT ∈ C(L(T ), L(T ′))
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such that f ◦ jT,S = jT ′,S′ ◦ fT . Hence

F2(f) ◦ ΓL(S) ◦ F1(L(jT,S)) = F2(f) ◦ F2(L(jT,S)) ◦ ΓL(T )

= F2(f ◦ L(jT,S)) ◦ ΓL(T )

= F2(L(jT ′,S′) ◦ fT ) ◦ ΓL(T )

= F2(L(jT ′,S′)) ◦ F2(fT ) ◦ ΓL(T )

= F2(L(jT ′,S′)) ◦ ΓL(T ′) ◦ F1(fT )

= ΓL(S′) ◦ F1(L(jT ′,S′)) ◦ F1(fT )

= ΓL(S′) ◦ F1(f ◦ L(jT,S))

= ΓL(S′) ◦ F1(f) ◦ F1(L(jT,S)),

as desired.

Step 5: Extension of Γ to all objects. It is clear that it su�ces to present any object X of C as a
coequalizer of a natural re�exive graph in 〈〈E〉〉E. The natural way to do this is the following. For
any object Y of C let pY : L(|Y |)→ Y be given by pY ◦ iy(e′) = y for y ∈ |Y |. Now let X be an object

of C and R
d0 //

d1

// L(|X|)s0oo be the kernel pair of pX . Let U be the disjoint union of R and |X| and

for k = 0, 1 let d′k : L(U)→ L(|X|) be de�ned by d′k ◦ iu(e′) = dk(u) if u ∈ R and d′k ◦ iu(e′) = iu(e
′)

if u ∈ |X|. De�ning also s′0 : L(|X|)→ L(U) by s′0 ◦ ix = ix for x ∈ |X| we obtain a natural re�exive

graph L(U)
d′0 //

d′1

// L(|X|)s′0
oo whose coequalizer is pX .

Proof of Theorem 3.5.2: Apply Theorem 3.5.1 with C ′ = 〈E〉 and D′ = 〈F (E)〉. �

3.6 Quadratic C-modules over P associated with quadratic

equivalences

In this section, we characterize quadratic C-modules over P (see 2.4.23) corresponding to quadratic
equivalences taking values in P-algebras. Let C be a semi-abelian category and F : C → Alg − P
be a quadratic equivalence. As F is bijective on objects, there is an object E in C such that F (E)
is isomorphic to the free algebra of rank 1 in Alg − P , denoted by FP . To simplify calculations, we
can suppose that F (E) = FP .
We know that the functor F| 〈E〉 : 〈E〉 → Alg − P restricted to the algebraic theory 〈E〉 generated
by E (as in 1.1.1) preserves �nite coproducts because F is an equivalence of categories. Then the
quadratic equivalence F| 〈E〉, or simply F , takes values in the category of free P-algebras of �nite
rank, denoted by 〈FP〉Alg−P . We now give the second cross-e�ect F (E|E) evaluated twice on E as
below:

Proposition 3.6.1. Let F : C → Alg − P be a quadratic equivalence, then there is a natural
isomorphism of (Λ⊗ Λ)-P(1)-bimodules F (E|E) ∼= P(2).

Proof. As F is a reduced functor in particular, we know that the right-hand square commutes in the

107



following diagram:

F (E | E) F (E + E)

F (E) + F (E)

F (E)× F (E)

IdAlg−P(F (E) | F (E)) F (E)× F (E)0

0 0

0

//
ιF2 //

(F (i21), F (i22)) ∼=

OO

r̂F2 //

ι
IdAlg−P
2 //

̂
r
IdAlg−P
2 // ////

////

∼=α

OO

The morphism (F (i21), F (i22)) : F (E) + F (E) → F (E + E) is an isomorphism because F preserves
�nite coproducts. Then there is a unique morphism α : IdAlg−P(F (E)|F (E)) → F (E|E) such that
the left-hand square of the above diagram commutes, i.e.

ιF2 ◦ α = (F (i21), F (i22)) ◦ ιIdAlg−P2 (3.6.1)

by using a categorical argument. Then, by a straightforward categorical argument, α is an isomor-
phism in Alg − P . By 1.8.6 and (1.8.5), we deduce that

F (E | E) ∼= IdAlg−P(F (E) | F (E)) = IdAlg−P(FP | FP)

By 1.8.6 and (1.8.5), we get

IdAlg−P(FP | FP) = FP ⊗FP ⊗P(1)⊗P(1) P(2) = P(1)⊗ P(1)⊗P(1)⊗P(1) P(2) ,

and there is a canonical isomorphism ev2 : IdAlg−P(FP |FP)→ P(2) de�ned by:

ev2

(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗ p2

)
= γ1,1;2(p1

1 ⊗ p2
1 ⊗ p2) (3.6.2)

where pk2, p2 ∈ P(2) and pk1 ∈ P(1), for k = 1, 2.

Since F (E) is a left Λ-module by 3.2 of [12], so is FP whose action is given by

f.(p1, p2) = F (f)(p1, p2) ,

for p1 ∈ P(1) and p2 ∈ P(2). Moreover, 3.17 of [12] says that F (E|E) is a left (Λ ⊗ Λ)-module
(because the second cross-e�ect of F is a bilinear bifunctor 1.2.13 since the functor F is quadratic),
hence so is P(2) whose action is given by

t1(f)⊗ t1(g).p2 = ev2 ◦ α−1 ◦ F (f |g) ◦ α ◦ ev−1
2 (p2) (3.6.3)

where f, g ∈ C(E, E), α : IdAlg−P(F (E)|F (E))→ F (E|E) is the isomorphism de�ned in (3.6.1) and
ev2 : IdAlg−P(FP |FP)→ P(2) is the canonical isomorphism de�ned in 3.6.2.

Proposition 3.6.2. Let f, g ∈ C(E, E) and p2 ∈ P(2). Then we have

t1(f)⊗ t1(g).(p2.t) = t1(g)⊗ t1(f).p2

Proof. First we check that α◦ev−1
2 (p2.t) = TE◦α◦ev−1

2 (p), where α : IdAlg−P(F (E)|F (E))→ F (E|E)
is the isomorphism in the proof of 3.6.1 and ev2 : IdAlg−P(F (E)|F (E)) → P(2) is the evaluation
isomorphism given in (3.6.2). We have the following relations:

ιF2 ◦ α ◦ ev−1
2 (p2.t) =

(
F (i21), F (i22)

)
◦ ιId2

(
(1P , 0)⊗ (1P , 0)⊗ (p2.t)

)
=
(
F (i21), F (i22)

)(
0, 0, (1P , 0)⊗ (1P , 0)⊗ (p2.t)

)
= (λF2 )E+2

(
F (i21)(1P , 0)⊗ F (i22)(1P , 0)⊗ (p2.t)

)
, by 1.8.5

= (λF2 )E+2

(
F (i22)(1P , 0)⊗ F (i21)(1P , 0)⊗ p2

)
, by the axioms of algebra over P

= (λF2 )E+2

(
F (τ 2

E ◦ i21)(1P , 0)⊗ F (τ 2
E ◦ i22)(1P , 0)⊗ p2

)
= F (τ 2

E)
(

(λF2 )E+2(F (i21)(1P , 0)⊗ F (i22)(1P , 0)⊗ p2)
)
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because F (τ 2
E) : F (E + E)→ F (E + E) is a morphism in the category Alg − P . Then we have

ιF2 ◦ α ◦ ev−1
2 (p2.t) = F (τ 2

E) ◦ (F (i21), F (i22)) ◦ ιId2 ◦ ev−1
2 (p2)

= F (τ 2
E) ◦ ιF2 ◦ α ◦ ev−1

2 (p2)

= ιF2 ◦ TE ◦ α ◦ ev−1
2 (p2)

As ιF2 : F (E|E)→ F (E + E) is a monomorphism, we obtain

α ◦ ev−1
2 (p2.t) = TE ◦ α ◦ ev−1

2 (p2)

Hence we have

t1(f)⊗ t1(g).(p2.t) = ev2 ◦ α−1 ◦ F (f |g) ◦ α ◦ ev−1
2 (p2.t)

= ev2 ◦ α−1F (f |g) ◦ TE ◦ α ◦ ev−1
2 (p2)

= ev2 ◦ α−1F (g|f) ◦ α ◦ ev−1
2 (p2) , because F (f |g) ◦ TE = F (g|f)

= t1(g)⊗ t1(f).p2

as desired. Now it is easy to see that the left action of Λ on P(2)S2 is well-de�ned.

Remark 3.6.3. The abelian group P(2)S2 is a left Λ-module whose action is given by:

f.p2 = t1(f)⊗ t1(f).p2

where f ∈ C(E, E) and p2 ∈ P(2). It is immediate that the left Λ action on P(2) is well-de�ned by
3.6.2.

Notation 3.6.4. We de�ne the map q̇ : P(2) → FP by q̇ = i2 ◦ q where q : P(2) → P(2)S2 is the
canonical quotient map and i2 : P(2)S2 � FP is the inclusion of the second summand.

Now we give the linearization of the functor F evaluated on E:

Proposition 3.6.5. There is an isomorphism of Λ-P(1)-bimodules between the linearization of F
evaluated to E and P(1).

Proof. We consider the following diagram:

F (E|E) F (E)

IdAlg−P(F (E)|F (E)) F (E)

T1F (E) 0

P(2) FP P(1) 0

(SF2 )E //

α ∼=

OO

c
F (E)
2 //

(tF1 )E // //

ev−1
2
∼=

OO

q̇ // π1 // //

∼= β

��

where π1 : FP → P(1) is the projection onto the �rst summand and ev2 is the isomorphism given in
(3.6.2). We recall that α : IdAlg−P(F (E)|F (E)) → F (E|E) is the isomorphism such that ιF2 ◦ α =
(F (i21), F (i22)) ◦ ιId2 given in the proof of 3.6.1.
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• The top left-hand rectangle commutes because we have

(SF2 )E ◦ α = F (∇2
E) ◦ ιF2 ◦ α = F (∇2

E) ◦ (F (i21), F (i22)) ◦ ιId2 = ∇2
F (E) ◦ ιId2 = c

F (E)
2

• The left bottom one commutes because we have

c
F (E)
2 ◦ ev−1

2 (p) = ∇2
F (E) ◦ ιId2 ((1P , 0)⊗ (1P , 0)⊗ p2)

= ∇2
F (E)

(
0, 0, (1P , 0)⊗ (1P , 0)⊗ p2

)
, by 1.8.6

= λFP2

(
(1P , 0)⊗ (1P , 0)⊗ p2

)
, by 1.8.5

=
(
0, γ1,1;2(1P ⊗ 1P ⊗ p2)

)
= (0, p2)

= q̇(p2)

where p2 ∈ P(2).

As (tF1 )E : F (E)→ T1F (E) and π1 : FP → P(1) are respectively the cokernels of (SF2 )E : F (E|E)→
F (E) and q̇ : P(2) → FP , there is a unique isomorphism (of abelian groups) β : T1F (E) → P(1)
such that β ◦ (tF1 )E = π1. As each (not dotted) morphism in the diagram is a homomorphism of
Λ-P(1)-bimodules, so is the isomorphism β : T1F (E)→ P(1).

Notation 3.6.6. If (p1, p2) is an element of F (E) = FP , then we set (p1, p2) the equivalence class of
(p, q) in T1F (E).

The next result gives a speci�c quadratic C-module over P(1). We shall use it to determine the
one corresponding to the quadratic equivalence F : C → Alg − P .

Proposition 3.6.7. The diagram of homomorphisms of right P(1)-modules

MP
2 =

(
T11(cr2UE)(E,E)⊗Λ P(2)S2

Ĥ−→ P(2)
.t−→ P(2)

q−→ P(2)S2

)
where

• .t : P(2)→ P(2) is the (right) action of t = (1, 2) on P(2) involved in the structure of operads;

• Ĥ : T11(cr2UE)(E,E)⊗Λ P(2)S2 → P(2) is de�ned by

Ĥ
(
t11(ρ2(ξ))⊗Λ p2

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(p2 + p2.t)

where p2 ∈ P(2) and ξ ∈ C(E, E+2);

is a quadratic C-module over P(1).

Proof. Let ξ ∈ C(E, E+2), f, g ∈ C(E, E), p1 ∈ P(1) and p2 ∈ P(2). First we know that P(2)S2

and P(2) are respectively left Λ-module and (Λ ⊗ Λ)-module by (3.6.3) and 3.6.3. We verify that
q : P(2) → P(2)S2 is a homomorphism of Λ-modules with respect to the diagonal action of Λ on
P(2) as follows:

q(t1(f)⊗ t1(f).p2) = t1(f)⊗ t1(f).p2 = f.p2 = f.q(p2)

by using 3.6.3. By de�nition, Ĥ : T11(cr2UE)(E,E) ⊗Λ P(2)S2 → P(2) clearly satis�es (QM2) in
2.1.1:

Ĥ(t11

(
ρ2(ξ))⊗Λ q(p2)

)
) = Ĥ

(
t11(ρ2(ξ))⊗Λ p2

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(p2 + p2.t)
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In addition, Ĥ also satis�es (QM1) as follows:

(∇2
E ◦ ξ).p2 = t1(∇2

E ◦ ξ)⊗ t1(∇2
E ◦ ξ).p2

= t1(r2
1 ◦ ξ)⊗ t1(∇2

E ◦ ξ).p2 + t1(r2
2 ◦ ξ)⊗ t1(∇2

E ◦ ξ).p2 ,by 2.14 of [12]

= t1(r2
1 ◦ ξ)⊗ t1(r2

1 ◦ ξ).p2 + t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ).p2

+ t1(r2
2 ◦ ξ)⊗ t1(r2

1 ◦ ξ).p2 + t1(r2
2 ◦ ξ)⊗ t1(r2

2 ◦ ξ).p2

= (r2
1 ◦ ξ).p2 + (r2

2 ◦ ξ).p2 + t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ).p2 + t1(r2
2 ◦ ξ)⊗ t1(r2

1 ◦ ξ).p2 , by 3.6.3

= (r2
1 ◦ ξ).p2 + (r2

2 ◦ ξ).p2 + t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ).p2 + t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ).(p2.t)

= (r2
1 ◦ ξ).p′ + (r2

2 ◦ ξ).p2 +
(
q ◦ Ĥ

)
(t11(ρ2(ξ))⊗Λ p2)

as desired. As P(2) is a right P(1)-module, P(2)S2 is also a right P(1)-module de�ned by

p2.p1 = γ2;1(p2 ⊗ p1)

and the quotient map q : P(2)→ P(2)S2 is a homomorphism of right P(1)-modules because we have

q(γ2;1(p2 ⊗ p1)) = γ2;1(p2 ⊗ p1) = p2.p1 = q(p2).p1

To prove that Ĥ : T11(cr2UE)(E,E) ⊗Λ P(2)S2 → P(2) is a homomorphism of right P(1)-modules,
it is su�cient to prove that

γ2;1(t1(f)⊗ t1(g).p2 ⊗ p1) = t1(f)⊗ t1(g).γ2;1(p2 ⊗ p1)

For this, we use relation (3.6.3), and the fact that α : IdAlg−P(F (E)|F (E)) → F (E|E) (de�ned in
(3.6.1)) is a homomorphism of right P(1)-modules (as it is the restriction of the homomorphism of
right P(1)-modules (F (i21), F (i22)) : F (E) + F (E)→ F (E + E) to IdAlg−P(F (E)|F (E))).

Before giving the quadratic C-module corresponding to the quadratic equivalence F : C → Alg−P ,
we give the following lemma:

Proposition 3.6.8. The objects SP(1)
2 (T1F

⊗2⊗S P(2)), given in 2.4.18, and MP
2 , given in 3.6.7, are

isomorphic in Mod
P(1)
C .

Proof. We set R = P(1) and S = (R⊗R) oS2 (as in 2.4.9) and we de�ne the canonical isomorphism
of (P(1)⊗ P(1))-P(1)-bimodules evS2 : (P(1)⊗ P(1))⊗S P(2)→ P(2)S2 by:

evS2((p1 ⊗ p′1)⊗S p2) = γ1,1;2(p1 ⊗ p′1 ⊗ p2) ,

for p1, p
′
1 ∈ P(1) and p2 ∈ P(2). We prove that (evS2◦(β⊗2⊗Sid), ev2◦(β⊗2⊗R⊗Rid)) : SP(1)

2 (T1F
⊗2⊗S

P(2))→MP
2 is an isomorphism of quadratic C-modules over P(1).

1. Computation of qFE : T1F (E)⊗2 ⊗R⊗R P(2)→ T1F (E)⊗2 ⊗S P(2). We check that the following
diagram commutes:

T1F (E)⊗2 ⊗R⊗R P(2) T1F (E)⊗2 ⊗S P(2)

(P(1)⊗ P(1))⊗R⊗R P(2) (P(1)⊗ P(1))⊗S P(2)

P(2) P(2)S2

qFE //

β⊗2⊗R⊗Rid ∼=

��

β⊗2⊗Sid∼=

��

ev2 ∼=

��
q //

evS2
∼=

��
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Let (pk1, p
k
2) ∈ F (E), p2 ∈ P(2) and k = 1, 2. First we have

q ◦ ev2 ◦ (β⊗2 ⊗R⊗R id)
(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗ p2

)
= q ◦ ev2(p1

1 ⊗ p2
1 ⊗ p2)

= q(γ1,1;2(p1
1 ⊗ p2

1 ⊗ p2))

= γ1,1;2(p1
1 ⊗ p2

1 ⊗ p2)

Then we have

evS2 ◦ (β⊗2 ⊗S id) ◦ qFE
(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗R⊗R p2

)
= evS2(p1

1 ⊗ p2
1 ⊗S p2)

= γ1,1;2(p1
1 ⊗ p2

1 ⊗ p2)

This proves that the above diagram commutes.

2. Computation of the involution T̂ FE ⊗R⊗R t : T1F (E)⊗2⊗R⊗R P(2)→ T1F (E)⊗2⊗R⊗R P(2). We
verify that the following diagram commutes:

T1F (E)⊗2 ⊗R⊗R P(2) T1F (E)⊗2 ⊗R⊗R P(2)

(P(1)⊗ P(1))⊗R⊗R P(2) (P(1)⊗ P(1))⊗R⊗R P(2)

P(2) P(2)

T̂FE⊗R⊗Rt //

β⊗2⊗R⊗Rid ∼=

��

β⊗2⊗R⊗Rid∼=

��

ev2 ∼=

��
.t //

ev2∼=

��

We have

ev2 ◦ (β⊗2 ⊗R⊗R id) ◦ (T̂ FE ⊗R⊗R t)
(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗R⊗R p2

)
= ev2 ◦ (β⊗2 ⊗R⊗R id)

(
(p2

1, p
2
2)⊗ (p1

1, p
1
2)⊗R⊗R (p2.t)

)
= ev2

(
p2

1 ⊗ p1
1 ⊗ (p2.t)

)
= γ1,1;2(p2

1 ⊗ p1
1 ⊗ (p2.t)) = γ1,1;2(p1

1 ⊗ p2
1 ⊗ p2).t

= ev2

(
p1

1 ⊗ p2
1 ⊗ p2

)
.t

= (.t) ◦ ev2 ◦ (β⊗2 ⊗R⊗R id)
(
(p1

1, p
1
2)⊗ (p2

1, p
2
2)⊗R⊗R p2

)
where .t : P(2)→ P(2) denotes the action of t = (1, 2) ∈ S2 on P(2) (involved in the structure
of the operad P).

3. Computation of ĤF
E : T11cr2(UE)(E, E) ⊗ (T1F (E)⊗2 ⊗S P(2)) → T1F (E)⊗2 ⊗R⊗R P(2). We
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prove that the following diagram commutes:

T11(cr2UE)(E, E)⊗Λ (T1F (E)⊗2 ⊗S P(2)) T1F (E)⊗2 ⊗R⊗R P(2)

T11(cr2UE)(E, E)⊗Λ ((P(1)⊗ P(1))⊗(P(1)⊗P(1))oS2 P(2)) (P(1)⊗ P(1))⊗P(1)⊗P(1) P(2)

T11(cr2UE)(E, E)⊗Λ P(2)S2 P(2)

ĤF
E //

id⊗Λ(β⊗2⊗Sid) ∼=

��

β⊗2⊗R⊗Rid∼=

��

id⊗ΛevS2
∼=

��
Ĥ //

ev2∼=

��

Let p2 ∈ P(2) and ξ ∈ C(E, E + E). First we have

t11(ρ2(ξ))⊗ p2 = (id⊗Λ evS2) ◦
(
id⊗Λ (β⊗2 ⊗S id)

)(
t11(ρ2(ξ))⊗Λ (1P , 0)⊗ (1P , 0)⊗S p2

)
where ev1 : FP → P(1) denotes the isomorphism in (1.8.5). Then we also have

ev2 ◦ (β⊗2 ⊗R⊗R id) ◦ ĤF
E

(
t11(ρ2(ξ))⊗Λ (1P , 0)⊗ (1P , 0)⊗S p2

)
= ev2 ◦ (β⊗2 ⊗R⊗R id)

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

+ (1P , 0)⊗ (1P , 0)⊗R⊗R (p2.t)
))

= t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ). ev2 ◦ (β⊗2 ⊗R⊗R id)
(

(1P , 0)⊗ (1P , 0)⊗R⊗R p2

+ (1P , 0)⊗ (1P , 0)⊗R⊗R (p2.t)
))

= t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ). ev2

(
1P ⊗ 1P ⊗R⊗R p2 + 1P ⊗ 1P ⊗R⊗R (p2.t))

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(p2 + p2.t)

= Ĥ
(
t11(ρ2(ξ))⊗ p2

)
This proves that the above diagram commutes.

Now we give the quadratic C-module over P corresponding to the quadratic equivalence F : C →
Alg − P as follows:

Proposition 3.6.9. The quadratic C-module over P corresponding to the equivalence F : C →
Alg − P is the following commutative diagram of homomorphisms of right P(1)-modules up to an
isomorphism:

T11cr2(UE)(E, E)⊗Λ FP P(2)

T11cr2(UE)(E, E)⊗Λ P(2)S2 P(2) P(2)S2

FPĤF
//

OO

id⊗Λi2

OO

Ĥ

//
OO

i2

OO
q̇ //

q
//
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Here

• ĤF : T11cr2(UE)(E, E) ⊗Λ FP → P(2) is a homomorphism of (Λ ⊗ Λ)-modules satisfying the
following relations (∇2

E ◦ ξ).(p1, p2) = (r2
1 ◦ ξ).(p1, p2) + (r2

2 ◦ ξ).(p1, p2) +
(
q̇ ◦ ĤF

)(
t11(ρ2(ξ))⊗Λ (p1, p2)

)
ĤF
(
t11(ρ2(ξ))⊗Λ (0, p2)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
p2 + p2.t

)
where ξ ∈ C(E, E+2), p1 ∈ P(1) and p2 ∈ P(2);

• the bottom diagram is the quadratic C-module over P(1) given in 3.6.7.

Proof. By applying the functor SP2 : Quad(C, Alg−P)→ModPC , de�ned in 2.4.27, to the quadratic
functor F : C → Alg−P , we know that its corresponding quadratic C-module over P is given by the
following diagram:

T11cr2(UE)(E, E)⊗ F (E) F (E|E)

T11cr2(UE)(E, E)⊗ (T1F (E)⊗2 ⊗S P(2)) T1F (E)⊗2 ⊗R⊗R P(2) T1F (E)⊗2 ⊗S P(2)

F (E)
HF
E //

id⊗Λψ
F
E

OO

cr2(ψF )E,E

OO

ĤF
E

//

ψFE

OO

(SF2 )E //

qFE

//

where R = P(1) and S = (R⊗R)oS2 (see 2.4.9). By 3.6.8, the quadratic C-module S2(T1F
⊗2⊗SP(2))

over P(1) is isomorphic to MP
2 given in 3.6.7. Let us denote by MF the top quadratic C-module

over P(1) of the diagram in the assumption, then we prove that (id, ev2 ◦ α−1) : S2(F ) → MF

where α : IdAlg−P(F (E)|F (E)) → F (E|E) is the isomorphism given in (3.6.1), such that iF2 ◦ α =
(F (i21), F (i22)) ◦ ιId2 .

1. Computation of ψFE . We consider the diagram below:

T1F (E)⊗2 ⊗S P(2) F (E)

(P(1)⊗ P(1))⊗(P(1)⊗P(1))oS2 P(2)

P(2)S2 FP

ψFE //

β⊗2⊗Sid ∼=

��

evS2
∼=

��
i2 //

Let p2 ∈ P(2). We have the following equalities:

ψFE ◦ (β⊗2 ⊗S id)−1 ◦ ev−1
S2

(p2) = ψFE((1P , 0)⊗ (1P , 0)⊗S p2)

= λFP2

(
(1P , 0)⊗ (1P , 0)⊗ p2

)
=
(
0, γ1,1;2(1P ⊗ 1P ⊗ p2)

)
= (0, p2)

= i2(p2)

This proves that the above diagram commutes.
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2. Computation of cr2(ψF )E,E. We verify that the following diagram commutes:

T1F (E)⊗2 ⊗R⊗R P(2) F (E|E)

(P(1)⊗ P(1))⊗P(1)⊗P(1) P(2) IdAlg−P(F (E)|F (E))

P(2) P(2)

cr2(ψF )E,E //

β⊗2⊗R⊗Rid ∼=

��

α−1∼=

��

ev2 ∼=

��

ev2∼=

��

Let p2 ∈ P(2), then we have

ιF2 ◦ cr2(ψF )E,E
(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
= ψFE+2 ◦ ιT1F⊗2⊗SP(2)

2

(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
= ψFE+2

(
F (i21)(1P , 0)⊗ F (i22)(1P , 0)⊗S p2

)
= λF2

(
F (i21)(1P , 0)⊗ F (i22)(1P , 0)⊗ p2

)
= (F (i21), F (i22))

(
0, 0, (1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
, by 1.8.5

= (F (i21), F (i22)) ◦ ιId2 ((1P , 0)⊗ (1P , 0)⊗R⊗R p2) , by 1.8.6

= ιF2 ◦ α
(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
, by de�nition of α

As ιF2 is a monomorphism, we have the following relation:

cr2(ψF )E,E((1P , 0)⊗ (1P , 0)⊗R⊗R p2) = α((1P , 0)⊗ (1P , 0)⊗R⊗R p2)

Therefore we have

ev2 ◦ α−1 ◦ cr2(ψF )E,E ◦ (β⊗2 ⊗R⊗R id)−1 ◦ ev−1(p2)

= ev2 ◦ α−1 ◦ cr2(ψF )E,E
(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
= ev2

(
(1P , 0)⊗ (1P , 0)⊗R⊗R p2

)
= p2

This proves that we have

ev2 ◦ α−1 ◦ cr2(ψF )E,E = ev2 ◦ (β⊗2 ⊗R⊗R id)

as desired.

3. De�nition of ĤF . We de�ne ĤF : T11(cr2UE)(E,E)⊗ΛFP → P(2) by the following composite
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of morphisms:

T11(cr2UE)(E,E)⊗Λ FP P(2)

T11(cr2UE)(E,E)⊗Λ F (E) F (E|E)

IdAlg−P(F (E)|F (E))

P(2)ĤF
//

ĤF
E //

α−1∼=

OO

ev2∼=

OO

By using appropriated isomorphisms, it is easy to check that

ĤF
(
t11(ρ2(ξ))⊗ (0, p2)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(p2 + p2.t)

where ξ ∈ C(E, E + E) and p2 ∈ P(2). This proves that the left-hand diagram in the
statement commutes. As HF

E : T11(cr2UE)(E,E)⊗Λ F (E)→ F (E|E) veri�es (QM1) in 2.1.1,
the morphism ĤF : T11(cr2UE)(E,E)⊗Λ FP → P(2) satis�es the following relation:

(∇2
E ◦ ξ).(p1, p2) = (r2

1 ◦ ξ).(p1, p2) + (r2
2 ◦ ξ).(p1, p2) +

(
q̇ ◦ ĤF

)(
t11(ρ2)(ξ)⊗Λ (p1, p2)

)
where ξ ∈ C(E, E + E) and (p1, p2) ∈ FP .

We point out that ĤF : T11(cr2UE)(E,E)⊗ΛFP → P(2), given in 3.6.9, has no explicit expression
comparing with the other maps in the diagram of 3.6.9. Then taking a quadratic equivalence F :
〈E〉C → Alg−P with domain an algebraic theory 〈E〉 generated by E and values in Alg−P amounts
to taking an appropriate explicit expression of ĤF : T11(cr2UE)(E,E)⊗Λ FP → P(2).
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Chapter 4

Lazard correspondence for 2-step nilpotent

varieties

In this chapter, we aim at �nding the Lazard correspondence between any 2-radicable 2-step
nilpotent variety and the category of algebras over a 2-step nilpotent linear symmetric unitary
operad depending on the variety. In the �nal chapter this equivalence of categories will then provide
the BCH formula for arbitrary operations in the variety.

Notation 4.0.1. Recall the following notations:

• We denote by E the free object of rank 1 in C, and 〈E〉 the algebraic theory generated by E
(as in 1.1.1) representing the full subcategory formed by free objects of �nite rank in C.

• We denote by eve : C(E, X)→ |X|, f 7→ f(e) the canonical bijection. Given x ∈ |X|, we write
x̂ = ev−1

e (x).

Then the object Eab is the distinguished free object of rank 1 in the abelian core Ab(C) whose
basis element is e = abE(e).

Notation 4.0.2. We also consider the following notations:

• We denote by 〈Eab〉 the theory (as in 1.1.1) generated by Eab representing the full subcategory
of free abelian objects of �nite rank in the abelian core Ab(C).

• We consider eve : C(Eab, A) → |A|, g 7→ g(e) the canonical bijection, where A is an abelian
object in C. Given a ∈ |A|, we write ã = ev−1

e (a). Let X be any object in C and x ∈ |X|, we
write x = abX(x).

• If f : X → Y is any morphism in C, we denote f = |fab| and we clearly have f(x) = f(x).

Now we point out the following important property of the variety C (in fact of any variety).

Remark 4.0.3. The free object E of rank 1 of C is a small regular-projective generator.

We recall that small means that the functor C(E,−) : C → Set∗ preserves �ltered colimits,
regular-projective means that E is projective with respect to the class of all regular epimorphisms,
and generator means that any object X in C is a colimit of copies of E, or equivalently, admits a
regular epimorphism +i∈IE → X, where I is a set. The property in 4.0.3 permits us to use the next
proposition about certain natural transformations (holding here for merely Mal'cev and Barr exact
categories) that has been already given in 6.25 of [12] as follows:
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Proposition 4.0.4. Let D be any category. Let ϕ : F ⇒ G be any natural transformation between
functors F,G : C → D preserving both �ltered colimits and coequalizers of re�exive pairs. Then ϕ is
an isomorphism if, and only if, ϕE+n is an isomorphism for all n ≥ 1. Similarly let ψ : B ⇒ D be
any natural transformation between bifunctors B,D : C ×C → D preserving both �ltered colimits and
coequalizers of re�exive pairs. Then ψ is an isomorphism if, and only if, ψE+n,E+m is an isomorphism
for all n,m ≥ 1.

4.1 2-step nilpotent varieties

Assumption: Throughout this section we assume that C is a 2-step nilpotent variety (see 1.3.10).

We here establish certain speci�c properties of these varieties which are needed to construct the
quadratic C-module which gives rise to the Lazard correspondence. They could basically be deduced
from the theory of square ringoids in [4] using the framework of linear extensions of categories which
in section 2 was made available in our context; however, as several important formulas in that paper
are wrong and many proofs not explicitely developed we give a (mostly) independent treatment here.

In particular, we show that there exists a (non-unique) 2-step nilpotent group structure among
the operations in C, denoted by +. Thus for any object X in C its underlying set |X| has a natural
2-step nilpotent group structure. If X is an abelian object, this structure is abelian and coincides
with the natural one. Moreover, we study the compatibility between the induced group structure on
morphism sets between free objects and the composition operation.

Assumption: In this subsection, we consider X an object in 〈E〉, the full subcategory of free
objects of �nite rank in C, and Y, Z any objects in C.

First we recall the de�nition of a cogroup:

De�nition 4.1.1. Let D be a pointed category having �nite coproducts (also denoted by +). A
cogroup in D is a triplet (Z, µ, v) such that Z is an object in D, and µ : Z → Z + Z and v : Z → Z
are morphisms in D satisfying the following properties:

• the counity property : (0 + id) ◦ µ = (id+ 0) ◦ µ = id, where 0 : Z → 0 is the zero morphism;

• the coassociativity property : (µ+ id) ◦ µ = (id+ µ) ◦ µ;

• the coinverse property : (v + id) ◦ µ = 0 = (id + v) ◦ µ, where here 0 : Z → Z is the zero
morphism.

As X is a regular-projective object in C (because it is a �nite coproduct of copies of E that is a
regular-projective object), there is a morphism µX : X → X +X in C such that

r̂IdC2 ◦ µX = ∆2
X (4.1.1)

because the comparison morphism r̂IdC2 : X + X → X × X (see (1.2.1)) is a regular epimorphism,
where ∆2

X : X � X × X is the morphism given in 1.0.1. Then we verify that the morphism
µX : X → X +X satis�es the counit property as in 4.1.1, as follows:

rX ◦ (0 + id) ◦ µX = π2
2 ◦ r̂

IdC
2 ◦ (0 + id) ◦ µX , by (1.2.1)

= π2
2 ◦ (0× id) ◦ r̂IdC2 ◦ µX , by naturality of r̂IdC2

= id ◦ π2
2 ◦∆2

X , by (4.1.1)

= id
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where rX : 0+X → X is the canonical isomorphism (retraction) and π2
1 : 0×X → X is the projection

onto the second summand (that is also an isomorphism). Similarly we also have rX ◦(id+0)◦µX = id,
as desired.
Hence we use the Lemma 6.4 of [4] saying that a morphism with domain an object X and with target
object X + X, that satis�es the counit property as in 4.1.1, provides a structure of cogroup on X.
Let X1, X2, X3 be objects in C. For this, we point out that the authors only use the injectivity of
the comparison morphism

r̂3
IdC : X1 +X2 +X3 → (X1 +X2)× (X1 +X3)× (X2 +X3) , see (1.2.1)

for the coassociativity property as in 4.1.1. By 1.2.1, the kernel of the comparison morphism r̂3 is
IdC(X1|X2|X3), the third cross-e�ect of the identity functor of C. As the category C is supposed to
be 2-step nilpotent (see 1.3.10), it follows that

IdC(X1|X2|X3) = 0

Hence it permits us to use this lemma. By 6.4 of [4], there is a morphism vX : X → X in 〈E〉 such
that (X,µX , vX) is a cogroup in C with µX being its comultiplication. By 6.6 of [4], it yields a group
structure (written additively) on the set C(X, Y ) given by

∀f, g ∈ C(X, Y ) , f + g = (f, g) ◦ µX (4.1.2)

whose neutral element is the zero morphism 0 : X → Y and, for each morphism f ∈ C(X, Y ), the
inverse of f , denoted by f−1, is given by f−1 = f ◦ vX . In the case where Y = X + X, f = i21 and
g = i22, we get

µX = i21 + i22 (4.1.3)

Notation 4.1.2. We write 2X = id+ id, or simply 2 for the case X = E.

The upshot of these considerations is the following result.

Proposition 4.1.3. Every object X of 〈E〉 admits a (non unique) cogroup structure (X,µX , νX)
which we choose once and for all. Then the representable functor C(X,−) : C → Set takes its values
in Gr. In particular, C is a variety of ω-groups where a group law on any object Y (depending on
the choice of µE) is de�ned by x+ y = |(x̂, ŷ) ◦ µE|(e) for x, y ∈ |Y |.

The following proposition says that the group structure given in (4.1.2) is left distributive:

Proposition 4.1.4. Let Y ′ be an object in C, f1, f2 ∈ C(X, Y ) and g ∈ C(Y, Y ′). Then we have

g ◦
(
f1 + f2) = g ◦ f1 + g ◦ f2

Proof. We have the equalities as follows:

g ◦
(
f1 + f2) = g ◦ (f1, f2) ◦ µX = (g ◦ f1, g ◦ f2) ◦ µX = g ◦ f1 + g ◦ f2 ,

as desired.

Now for an abelian object Z of C the internal binary operation mZ : Z×Z → Z on Z (see 1.5.14)
provides an abelian group structure on C(X, Z) given by

∀f, g ∈ C(X, Z), f • g = mZ ◦ (f, g)t (4.1.4)

whose neutral element is the zero morphism 0 : X → Z. Then we observe that C(X, Z) has two
group structures. However we have the following proposition:
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Proposition 4.1.5. Let Z be an abelian object of C. Then the two group structures on C(X, Z)
given in (4.1.2) and (4.1.4) coincide.

Proof. Let f, g ∈ C(X,Z). Then we have

f + g = (f, g) ◦ µX , by (4.1.2)

= ∇2
Z ◦ (f + g) ◦ µX

= mZ ◦ r̂IdC2 ◦ (f + g) ◦ µX , by 1.5.14

where r̂IdC2 : Z + Z → Z × Z is the comparison morphism given in (1.2.1). Then we have

f + g = mZ ◦ (f × g) ◦ r̂IdC2 ◦ µX , by naturality of r̂IdC2

= mZ ◦ (f × g) ◦∆2
X , by (4.1.1)

= mZ ◦ (f, g)t

= f • g , by 4.1.4

as desired.

Now we show that the abelian group C(X,Z) has an additional (right) module structure. For
this, we need the following remark:

Remark 4.1.6. Let Z be an abelian object in C. We remark that the abelian group C(Xab, Z)
is a (right) C(Xab, Xab)-module whose action is given by the precomposition of elements in the
endomorphism ring of Xab. Hence it provides a (right) C(Xab, Xab)-module structure on C(X,Z), as
follows:

f.α = (abX)∗
(

((abX)∗)−1(f) ◦ α
)

for α ∈ C(Xab, Xab) and f ∈ C(X,Z).

The linear functors IdC(−|Y ) and IdC(Y |−) : C → Ab(C) (cf. De�nition 1.2.5 and Proposition
1.4.2) are �additive� on 〈E〉, as follows:

Proposition 4.1.7. Consider an object X ′ in 〈E〉 and an object Y ′ in C. Let f ∈ C(X, Y ) and
g ∈ C(X ′, Y ′). Then the morphism IdC(f |g) : IdC(X|X ′) → IdC(Y |Y ′) is linear in f and g in the
sense of [4], i.e. we have {

IdC(f1 + f2 | g) = IdC(f1|g) + IdC(f2|g)

IdC(f | g1 + g2) = IdC(f |g1) + IdC(f |g2)

where f1, f2 ∈ C(X, Y ) and g1, g2 ∈ C(X ′, Y ′).

Proof. Let f1, f2 ∈ C(X, Y ) and g ∈ C(X ′, Y ′). Then we have

IdC
(
f1 + f2 | g

)
= IdC

(
(f1, f2) ◦ µX | g

)
, by (4.1.2)

= IdC
(
(f1, f2) | g

)
◦ IdC

(
µX | g

)
As for any object Z in C, the functor IdC(−|Z) : C → C is linear in the sense of 1.2.5. By 3.6 of [12],
we have

IdC(id|id) = IdC
(
i21 ◦ r2

1| id
)

+ IdC
(
i22 ◦ r2

2 | id
)
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Hence we have

IdC
(
f1 + f2 | g

)
= IdC

(
(f1, f2) | g

)
◦
(
IdC
(
i21 ◦ r2

1| id
)

+ IdC
(
i22 ◦ r2

2 | id
))
◦ IdC

(
µX | g

)
= IdC

(
(f1, f2) ◦ i21 ◦ r2

1 ◦ µX | g
)

+ IdC
(
(f1, f2) ◦ i22 ◦ r2

2 ◦ µX | g
)

By (4.1.1), we get r2
k ◦ µX = id, for k = 1, 2. Then it implies that we have

IdC
(
f1 + f2 | g

)
= IdC

(
f1 | g

)
+ IdC

(
f2 | g

)
,

as desired. Similarly IdC(f |g) is linear in g.

As the representable functor C(X,−) : C → Gr is exact and preserves �nite products, the second
cross-e�ect of C(X,−) : C → Gr is given by

cr2

(
C(X,−)

)
(Y, Z) = C

(
X, IdC(Y |Z)

)
(4.1.5)

where (ιIdC2 )∗ : C
(
X, IdC(Y |Z)

)
� C

(
X, Y + Z

)
is the kernel of the comparison morphism r̂

C(X,−)
2

(see (1.2.1)). Note that IdC(Y |Z) is abelian by Lemma 1.4.2, hence the bifunctor cr2

(
C(X,−)

)
:

C×2 → Gr takes in fact values in Ab by 4.1.4.

Notation 4.1.8. The second cross-e�ect of the representable functor C(X,−) : C → Gr is denoted by
C(X,−|−) : C × C → Ab. More precisely, we have

• On objects, for two objects Y and Z in C, C(X, Y |Z) = C
(
X, IdC(Y |Z)

)
.

• On morphisms, let f : Y → Y ′ and g : Z → Z ′ be two morphisms in C, then C(X, f |g) =
IdC(f |g)∗.

Notation 4.1.9. The abelian group C(X, Y |Z) = C
(
X, IdC(Y |Z)

)
is equipped with the involution

TX,Y,Z where we write TX,Y,Z = (TY,Z)∗ : C(X, Y |Z)→ C(X, Y |Z), with TY,Z : IdC(Y |Z)→ IdC(Z|Y )
being the restriction of the canonical switch τ 2

Y,Z : Y + Z → Z + Y to IdC(Y |Z). It clearly satis�es
TX,Y,Z ◦ TX,Z,Y = id. In the case where X = Y = Z = E, we write TX,Y,Z = T .

Notation 4.1.10. We denote by
(
C
(
X, IdC(Y |Y )

))
S2

the abelian group of coinvariants and by π :

C
(
X, IdC(Y |Y )

)
→
(
C
(
X, IdC(Y |Y )

))
S2

the canonical quotient map.

Since the representable functor C(X,−) : C → Gr preserves �nite products and the bifunctor
IdC(−|−) : C×2 → C is bilinear (by 1.3.10 since C is supposed to be 2-step nilpotent), we have the
following remark:

Remark 4.1.11. The second cross-e�ect of the representable functor C(X,−) : C → Gr is a bilinear
bifunctor (see 1.2.12). It implies that the functor C(X,−) : C → Gr is quadratic by 1.2.13. Hence
the representable functor C(X,−) : C → Gr takes values in Nil2(Gr), i.e. the full subcategory of Gr
formed by 2-step nilpotent groups by 1.4.1.

By 3.21 of [12], we get a natural transformation u′C(E,IdC(−|−)) : T1UE ⊗ T1UE ⊗Λ⊗Λ

C(E, IdC(E|E))⇒ C(E, IdC(−|−)) between bifunctors de�ned by

(u′C(E,IdC(−|−)))X,Y
(
t1(f1)⊗ t1(f2)⊗ h

)
= IdC(f1|f2) ◦ h (4.1.6)

By 4.1.11 and 3.22 of [12], u′C(E,IdC(−|−)) restricted to 〈E〉 × 〈E〉 is an isomorphism. In ad-
dition, for all X1 and X2 objects in C, IdC(X1|X2) is an abelian object in C implying that
(abE)∗ : C(Eab, IdC(E|E)) → C(E, IdC(E|E)) is an isomorphism by 1.5.16. Hence we get the natu-
ral isomorphism u′C(Eab,IdC(−|−))

: T1UE ⊗ T1UE ⊗Λ⊗Λ C(Eab, IdC(E|E)) ⇒ C(Eab, IdC(−|−)) between
bifunctors de�ned by

(uC(Eab,IdC(−|−))′)X,Y = ((abE)∗)−1 ◦ (u′C(E,IdC(−|−)))X,Y ◦
(
id⊗ id⊗Λ⊗Λ (abE)∗

)
(4.1.7)

where X and Y objects in C.
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Notation 4.1.12. For an object X in C, we denote by(
u′C(E,IdC(−|−))

)
X

:
(
T1UE(X)⊗2 ⊗Λ⊗Λ P(2)

)
S2
→ C(E, IdC(X|X))S2

the canonical factorization between the sets of coinvariants.

Remark 4.1.13. The map
(
u′C(E,IdC(−|−))

)
X
, given in 4.1.12, is a P(1)-module homomorphism which

is an isomorphism by the �ve lemma applied to an appropriated diagram.

Now we recall that iY : [Y, Y ]IdC � Y is the image of the morphism cY2 = ∇2
Y ◦ιId2 : IdC(Y |Y )→ Y

(see 1.2.8) and abY : Y → Y ab is its cokernel. Then we need the following technical lemma:

Lemma 4.1.14. The morphisms IdC(abY |id) : IdC(Y |Z) → IdC(Y
ab|Z) and IdC(id|abZ) :

IdC(Y |Z)→ IdC(Y |Zab) are isomorphisms.

Proof. By 2.26 of [14], the functor IdC(−|Z) : C → C preserves coequalizers of re�exive graphs.
Hence the claim follows from Proposition 1.4.8

Then the following proposition says that the morphism (cY2 )∗ : C(X, IdC(Y |Y ))→ C(X, Y ) maps
to the center of the group C(X, Y ).

Proposition 4.1.15. Let Y be an object in C, f ∈ C(X, Y ) and ξ ∈ C(X, Y |Y ). Then we have

f + cY2 ◦ ξ = cY2 ◦ ξ + f

Proof. First we observe that we get

IdC(id|abY ) ◦ IdC(f |cY2 ◦ ξ) = IdC(f |abY ◦ cY2 ◦ ξ) = 0

implying that we have IdC(f |cY2 ◦ξ) = 0 because abY : Y → Y ab is the cokernel of cY2 : IdC(Y |Y )→ Y
and IdC(Y |abY ) : IdC(Y |Y )→ IdC(Y |Y ab) is an isomorphism by 4.1.14. Hence we have

(f, cY2 ◦ ξ) ◦ ι
IdC
2 = cY2 ◦ IdC(f |cY2 ◦ ξ) = 0

As the comparison morphism r̂IdC2 is the cokernel of ιIdC2 : IdC(X|X) � X + X (see 1.2.3 and
1.2.1), there is a unique factorization φ1 : X × X → Y of (f, cY2 ◦ ξ) : X + X → Y though

r̂IdC2 : X +X → X ×X, i.e.

(f, cY2 ◦ ξ) = φ1 ◦ r̂IdC2 (4.1.8)

Similarly there is a unique φ2 : X ×X → Y such that

(cY2 ◦ ξ, f) = φ2 ◦ r̂IdC2 (4.1.9)

Next we have the equalities as follows:

f + cY2 ◦ ξ = (f, cY2 ◦ ξ) ◦ µX , by (4.1.2)

= φ1 ◦ r̂IdC2 ◦ µX

= φ1 ◦∆2
X , by (4.1.1)

= φ1 ◦ T 2
X ◦∆2

X , because T
2
X ◦∆2

X = ∆2
X
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where T 2
X : X×X → X×X is the canonical switch and ∆2

X : X � X×X is the diagonal morphism
(see 1.0.1). However we have

φ1 ◦ T 2
X ◦ r̂

IdC
2 = φ1 ◦ r̂IdC2 ◦ τ 2

X , by naturality of r̂IdC2

= (f, cY2 ◦ ξ) ◦ τ 2
X , by (4.1.8)

= (cY2 ◦ ξ, f)

= φ2 ◦ r̂IdC2 , by (4.1)

where τ 2
X : X +X → X +X is the canonical switch given in 1.0.1. As r̂IdC2 : X +X → X ×X is an

epimorphism, we have
φ1 ◦ T 2

X = φ2 (4.1.10)

Hence we get

f + cY2 ◦ ξ = φ1 ◦ T 2
X ◦∆2

X

= φ2 ◦∆2
X , by (4.1.10)

= (cY2 ◦ ξ, f) ◦ r̂IdC2 ◦∆2
X , by (4.1)

= (cY2 ◦ ξ, f) ◦ µX , by (4.1.1)

= cY2 ◦ ξ + f , by 4.1.2

Remark 4.1.16. From 4.1.15, we deduce that, for each morphism ξ ∈ C(X, IdC(Y |Z)), the morphism
ιIdC2 ◦ ξ ∈ C(X, Y + Z) belongs to the center of the group C(X, Y + Z). Because we have

ιIdC2 ◦ ξ = (i21, i
2
2) ◦ ιIdC2 ◦ ξ = ∇2

Y+Z ◦ (i21 + i22) ◦ ιIdC2 ◦ ξ = ∇2
Y+Z ◦ ι

IdC
2 ◦ IdC(i21|i22) ◦ ξ = cY+Z

2 ◦ IdC(i21|i22) ◦ ξ

The set C(X, [Y, Y ]IdC) may be seen as a subgroup of the group C(X, Y ) whose inclusion map is
the injection map (iY )∗ : C(X, [Y, Y ]IdC)→ C(X, Y ).

Corollary 4.1.17. The subgroup C(X, [Y, Y ]IdC) is central in the group C(X, Y ).

Proof. Let h ∈ C(X, [Y, Y ]IdC). As X is a regular-projective object in C (as a �nite coproduct of
copies of the regular-projective object E in C) and eY : IdC(Y |Y )→ [Y, Y ]IdC is a regular epimorphism
(because it is the coimage of the morphism cY2 ), there is a morphism ĥ ∈ C(X, IdC(Y |Y )) such that
h = eX ◦ ĥ. Hence we get

(iY )∗(h) = iY ◦ h = iY ◦ eY ◦ ĥ = cY2 ◦ ĥ

Then it is a direct consequence of 4.1.15.

Moreover there is a (set-theoretic) retraction r2 : C(X, Y +Z)→ C(X, Y |Z) of the kernel ιC(X,−)
2 =

(ιIdC2 )∗ : C(X, Y |Z)→ C(X, Y +Z) of the comparison morphism r̂
C(X,−)
2 such that, for ξ ∈ C(X, Y +Z),

r2(ξ) ∈ C(X, Y |Z) is the unique map satisfying

ιIdC2 ◦ r2(ξ) = ξ −
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)
= ξ − i22 ◦ r2

2 ◦ ξ − i21 ◦ r2
1 ◦ ξ (4.1.11)
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Then the map HX,Y : C(X, Y ) → C(X, Y |Y ) (already given in 2.11 of [4]) is de�ned such that, for
α ∈ C(X, Y ), H(α) ∈ C(X, Y |Y ) is the unique morphism satisfying

ιIdC2 ◦HX,Y (α) = (i21 + i22) ◦ α−
(
i21 ◦ α + i22 ◦ α

)
= ιIdC2 ◦ r2

(
(i21 + i22) ◦ α

)
, (4.1.12)

implying that we get
HX,Y (α) = r2

(
(i21 + i22) ◦ α

)
where here Y is supposed to be in 〈E〉.
Notation 4.1.18. For X = Y , we write HX,Y = HX : C(X,X)→ C(X,X|X).

In the special case where X = Y = E, we consider the map H : C(E,E) → C(Eab, E|E) =
C(Eab, IdC(E|E)) such that, for α ∈ C(E,E), we have

H(α) = HE(α)ab (4.1.13)

where HE(α)ab ∈ C(Eab, IdC(E|E)) is the unique factorization of HE(α) ∈ C(E, IdC(E|E)) through
abE ∈ C(E,Eab) (which exists because the target object of HE is an abelian object in C, see 1.5.16
and 1.5.17).

Remark 4.1.19. We have the following observations:

1. First we have ιIdC2 ◦HX(2X) = [i22, i
2
1] = i22 + i21− i22− i21. This is due to the following equalities:

ιIdC2 ◦HX(2X) = (i21 + i22) ◦ 2X − i22 ◦ 2X − i21 ◦ 2X , by (4.1.12)

= i21 + i22 + i21 + i22 − i22 − i22 − i21 − i21

= i21 +
(
i22 + i21 − i22 − i21

)
− i21

= i21 + [i22, i
2
1]− i21

Then we observe that the morphism [i22, i
2
1] belongs to the kernel of the comparison morphism

r̂
C(X,−)
2 , see (4.1.5). By 4.1.16, [i22, i

2
1] is in the center of the group C(X,X+X). Hence we have

ιIdC2 ◦HX(2X) = i21 + [i22, i
2
1]− i21 = [i22, i

2
1]

2. Next it is straightforward to see that TX ◦HX(2X) = −id, where TX : IdC(X|X)→ IdC(X|X)
is the restriction of the canonical switch τ 2

X : X +X → X +X to IdC(X|X).

Now we determine the deviation of the group structure given in 4.1.2 to be commutative:

Proposition 4.1.20. Let f, g ∈ C(X, Y ). Then we have

g + f = f + g + cY2 ◦ IdC(f |g) ◦HX(2X)

Proof. We have the following equalities:

g + f = (g, f) ◦ µX

= (f, g) ◦ τ 2
X ◦ (i21 + i22) , by 4.1.3

= (f, g) ◦
(
τ 2
X ◦ i21 + τ 2

X ◦ i22
)
, by 4.1.4

= (f, g) ◦ (i22 + i21)

= (f, g) ◦
(
i21 + i22 + ιIdC2 ◦HX(2X)

)
, by 4.1.19 and 4.1.16

= (f, g) ◦ i21 + (f, g) ◦ i22 + (f, g) ◦ ιIdC2 ◦HX(2X) , by 4.1.4

= f + g + (f, g) ◦ ιIdC2 ◦HX(2X)
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In addition, we have

(f, g) ◦ ιIdC2 = ∇2
Y ◦ (f + g) ◦ ιIdC2 = ∇2

Y ◦ ι
IdC
2 ◦ IdC(f |g) = cY2 ◦ IdC(f |g) , by 1.2.8

Hence we get

g + f = f + g + (f, g) ◦ ιIdC2 ◦HX(2X) = f + g + cY2 ◦ IdC(f |g) ◦HX(2X)

The map HXY : C(X, Y ) → C(X, Y |Y ) de�ned in (4.1.12) is not a homomorphism of groups in
general, where Y is here supposed to be in 〈E〉. The next proposition gives the deviation of the map
HX,Y to be a homomorphism of groups.

Proposition 4.1.21. We consider an object X ′ in 〈E〉. Let f, g ∈ C(X,X ′). Then we have

HX,X′(f + g) = HX,X′(f) +HX,X′(g) + IdC(g|f) ◦HX(2X)

Proof. We have the following equalities:

ιIdC2 ◦HX,X′(f + g)

= (i21 + i22) ◦ (f + g)− i22 ◦ (f + g)− i21 ◦ (f + g) , by (4.1.12)

= (i21 + i22) ◦ f + (i21 + i22) ◦ g − i22 ◦ g − i22 ◦ f − i21 ◦ g − i21 ◦ f , by (4.1.4)

= (i21 + i22) ◦ f + (i21 + i22) ◦ g − i22 ◦ g −
(
i21 ◦ g + i22 ◦ f

)
− i21 ◦ f

Moreover we have

i21 ◦ g + i22 ◦ f = i22 ◦ f + i21 ◦ g + cX
′+X′

2 ◦ IdC(i22 ◦ f |i21 ◦ g) ◦HX(2X) , by (4.1.20)

= i22 ◦ f + i21 ◦ g + cX
′+X′

2 ◦ TX′+X′ ◦ IdC(i22 ◦ f |i21 ◦ g) ◦HX(2X)

= i22 ◦ f + i21 ◦ g + cX
′+X′

2 ◦ IdC(i21 ◦ g|i22 ◦ f) ◦ TX ◦HX(2X)

= i22 ◦ f + i21 ◦ g − cX
′+X′

2 ◦ IdC(i21 ◦ g|i22 ◦ f) ◦HX(2X) , by 4.1.19

= i22 ◦ f + i21 ◦ g − ι
IdC
2 ◦ IdC(g|f) ◦HX(2X)

where, for any object Z in C, TZ : IdC(Z|Z) → IdC(Z|Z) is the restriction of the canonical switch
τ 2
Z : Z + Z → Z + Z to IdC(Z|Z). Hence we get

ιIdC2 ◦HX,X′(f + g)

= (i21 + i22) ◦ f + (i21 + i22) ◦ g − i22 ◦ g −
(
i21 ◦ g + i22 ◦ f

)
− i21 ◦ f

= (i21 + i22) ◦ f + (i21 + i22) ◦ g − i22 ◦ g −
(
i22 ◦ f + i21 ◦ g − ι

IdC
2 ◦ IdC(g|f) ◦HX(2X)

)
− i21 ◦ f

= (i21 + i22) ◦ f + (i21 + i22) ◦ g − i22 ◦ g − i21 ◦ g − i22 ◦ f − i21 ◦ f + ιIdC2 ◦ IdC(g|f) ◦HX(2X) , by (4.1.16)

= (i21 + i22) ◦ f + ιIdC2 ◦HX,X′(g)− i22 ◦ f − i21 ◦ f + ιIdC2 ◦ IdC(g|f) ◦HX(2X) , by (4.1.12)

= (i21 + i22) ◦ f − i22 ◦ f − i21 ◦ f + ιIdC2 ◦HX,X′(g) + ιIdC2 ◦ IdC(g|f) ◦HX(2X) , by (4.1.16)

= ιIdC2 ◦HX,X′(f) + ιIdC2 ◦HX,X′(g) + ιIdC2 ◦ IdC(g|f) ◦HX(2X) , by (4.1.12)

= ιIdC2 ◦
(
HX,X′(f) +HX,X′(g) + IdC(g|f) ◦HX(2X)

)
, by (4.1.4)

As ιIdC2 : IdC(X
′|X ′)� X ′ +X ′ is a monomorphism, it concludes the proof.
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In addition we provide the deviation of the group structure given in (4.1.2) to be right distributive:

Proposition 4.1.22. Consider an object X ′ in 〈E〉. Let g1, g2 ∈ C(X, Y ) and f ∈ C(X ′, X). Then
we have (

g1 + g2

)
◦ f = g1 ◦ f + g2 ◦ f + cY2 ◦ IdC(g1|g2) ◦HXX′(f)

Proof. We have the following equalities:(
g1 + g2

)
◦ f = (g1, g2) ◦ µX ◦ f , by (4.1.2)

= (g1, g2) ◦ (i21 + i22) ◦ f , by (4.1.3)

= (g1, g2) ◦
(
i1 ◦ f + i2 ◦ f + ιIdC2 ◦HXX′(f)

)
, by (4.1.12) and 4.1.16

= (g1, g2) ◦ i1 ◦ f + (g1, g2) ◦ i2 ◦ f + (g1, g2) ◦ ιIdC2 ◦HXX′(f) , by 4.1.4

Moreover we have

(g1, g2) ◦ ιIdC2 ◦HXX′(f) = ∇2
Y ◦ (g1 + g2) ◦ ιIdC2 ◦HXX′(f)

= ∇2
Y ◦ ι

IdC
2 ◦ IdC(g1|g2) ◦HXX′(f)

= cY2 ◦ IdC(g1|g2) ◦HXX′(f) , by 1.2.8

Hence we get(
g1 + g2

)
◦ f = (g1, g2) ◦ i1 ◦ f + (g1, g2) ◦ i2 ◦ f + (g1, g2) ◦ ιIdC2 ◦HXX′(f)

= g1 ◦ f + g2 ◦ f + cY2 ◦ IdC(g1|g2) ◦HXX′(f)

There is another expression of the involution TX,Y,Y : C(X, Y |Y )→ C(X, Y |Y ) given in the next
proposition.

Proposition 4.1.23. Consider an object X ′ in 〈E〉. We have TX,X′,X′ = HX,X′ ◦ (cX
′

2 )∗ − id.

Proof. Let ξ ∈ C(X,X ′|X ′). Then we have

ιIdC2 ◦HX,X′ ◦ (cX
′

2 )∗(ξ)

= ιIdC2 ◦HX,X′(c
X′

2 ◦ ξ)

= (i21 + i22) ◦ cX′2 ◦ ξ − i21 ◦ cX
′

2 ◦ ξ − i22 ◦ cX
′

2 ◦ ξ , by (4.1.12)

= cX
′+X′

2 ◦ IdC
(
i21 + i22|i21 + i22

)
◦ ξ − cX′+X′2 ◦ IdC

(
i21|i21

)
◦ ξ − cX′+X′2 ◦ IdC

(
i22|i22

)
◦ ξ

By 4.2.8, we get

IdC
(
i21 + i22|i21 + i22

)
= IdC

(
i21|i21 + i22

)
+ IdC

(
i22|i21 + i22

)
= IdC

(
i21|i21

)
+ IdC

(
i21|i22

)
+ IdC

(
i22|i21

)
+ IdC

(
i22|i22

)
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Hence we have

ιIdC2 ◦HX,X′ ◦ (cX
′

2 )∗(ξ)

= cX
′+X′

2 ◦ IdC
(
i21|i22

)
◦ ξ + cX

′+X′

2 ◦ IdC
(
i22|i21

)
◦ ξ

= cX
′+X′

2 ◦ IdC
(
i21|i22

)
◦ ξ + cX

′+X′

2 ◦ TX′+X′ ◦ IdC
(
i22|i21

)
◦ ξ

= cX
′+X′

2 ◦ IdC
(
i21|i22

)
◦ ξ + cX

′+X′

2 ◦ IdC
(
i21|i22

)
◦ TX′ ◦ ξ

= ιIdC2 ◦ ξ + ιIdC2 ◦ TX′ ◦ ξ

= ιIdC2 ◦
(
ξ + TX,X′,X′(ξ)

)
As ιIdC2 : IdC(X

′|X ′)� X ′ +X ′ is a monomorphism, it concludes the proof.

Then the next proposition says that the full subcategory 〈E〉 of C formed by free objects of �nite
rank in C has a square ringoid structure, as introduced in de�nition 3.1 of [4].

Proposition 4.1.24. The full subcategory 〈E〉 of C is a square ringoid, when endowed with the
multifunctor C(−,−|−) : 〈E〉op×〈E〉× 〈E〉 → Gr and, for X, Y and Z objects in 〈E〉, the following
diagram of maps (

C(X, Y )
HX,Y−→ C(X, Y |Y )

PX,Y−→ C(X, Y )
)
, (4.1.14)

and with TX,Y,Z : C(X, Y |Z)→ C(X,Z|Y ) being the bijection given in 4.1.9 and PX,Y = (cY2 )∗, where
cY2 : IdC(Y |Y )→ Y is the morphism given in 1.2.8. It means that the maps HX,Y , (cY2 )∗ and TX,Y,Z
satisfy the following properties:

• PX,Y = (cY2 )∗ : C(X, IdC(Y |Y )) → C(X, Y ) is a homomorphism which is natural in both vari-
ables, i.e. for f1 ∈ C(X,X ′) and f2 ∈ C(Y, Y ′), we have

(f1)∗ ◦ (cY2 )∗ = (cY2 )∗ ◦ (f1)∗ and (cY
′

2 )∗ ◦ IdC(f2|f2)∗ = (f2)∗ ◦ (cY2 )∗ (4.1.15)

• Let X ′, Y and Y ′ be objects in 〈E〉. For f1 ∈ C(X,X ′), f2 ∈ C(Y, Y ′), ξ1 ∈ C(X,X|X ′) and
ξ2 ∈ C(Y, Y ′|Y ′), the maps

IdC
(
f1 | cY

′

2 ◦ ξ2

)
∗ , IdC

(
cX
′

2 ◦ ξ1 | f2

)
∗ : C(Z,X|Y )→ C(Z,X ′|Y ′)

are trivial, i.e.

IdC
(
f1 | cX

′

2 ◦ ξ1

)
∗ = IdC

(
cY
′

2 ◦ ξ2 | f2

)
∗ = 0 (4.1.16)

• Let f, g ∈ C(X, Y ), we have

HX,Y (f + g) = HX,Y (f) +HX,Y (g) + IdC(g|f) ◦HX(2X) (4.1.17)

• For f1 ∈ C(X, Y ) and f2 ∈ C(Y, Z), we have

HX,Z(f2 ◦ f1) = IdC(f2|f2) ◦HX,Y (f1) +HY,Z(f2) ◦ f1 (4.1.18)

• For α ∈ C(X, Y ), we get

TX,Y,Y
(
HX,Y (α)

)
= HX,Y (α) +HY (2Y ) ◦ α− IdC(α|α) ◦HX(2X) (4.1.19)
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• Let Z be an object in 〈E〉 (or merely in C). For g1, g2 ∈ C(Y, Z) and f ∈ C(X, Y ), we get "the
quadratic left distributivity law":

(g1 + g2) ◦ f = g1 ◦ f + g2 ◦ f + cZ2 ◦ IdC(g1|g2) ◦HX,Y (f) (4.1.20)

• Let Z be an object in 〈E〉 (or merely in C). For g ∈ C(Y, Z) and f1, f2 ∈ C(X, Y ), we have
"the linear right distributivity law":

g ◦ (f1 + f2) = g ◦ f1 + g ◦ f2 (4.1.21)

• The bijection TX,Y,Z : C(X, Y |Z)→ C(X,Z|Y ) satis�es

TX,Y,Y = HX,Y ◦ PX,Y − id = HX,Y ◦ (cY2 )∗ − id (4.1.22)

Proof. The �rst property is veri�ed because the map (cY2 )∗ : C(X, IdC(Y |Y )) → C(X, Y ) clearly
satis�es (4.1.15). The property (4.1.16) is satis�ed because we have

IdC
(
id | abY ′

)
◦ IdC

(
f1 | cY

′

2 ◦ ξ2

)
= IdC

(
f1 | abY ′ ◦ cY

′

2 ◦ ξ2

)
= 0

and IdC
(
id | abY ′

)
: IdC

(
X ′|Y ′

)
→ IdC

(
X ′ | (Y ′)ab

)
is an isomorphism by 4.1.14. Then the properties

(4.1.17), (4.1.20), (4.1.21), (4.1.20) and (4.1.22) are respectively given by 4.1.21, 4.1.22, 4.1.4 and
4.1.23. Hence it remains to prove the properties (4.1.18) and (4.1.19).

• First we prove that the property (4.1.18) holds. Let f1 ∈ C(X, Y ) and f2 ∈ C(Y, Z). Then we
have

ιIdC2 ◦HXZ(f2 ◦ f1)

= (i21 + i22) ◦ (f2 ◦ f1)− i22 ◦ (f2 ◦ f1)− i21 ◦ (f2 ◦ f1) , by (4.1.12)

=
(
i21 ◦ f2 + i22 ◦ f2 + ιIdC2 ◦HY Z(f2)

)
◦ f1 − i22 ◦ f2 ◦ f1 − i21 ◦ f2 ◦ f1 , by (4.1.12) and (4.1.16)

In addition we get(
i21 ◦ f2 + i22 ◦ f2 + ιIdC2 ◦HY Z(f2)

)
◦ f1 =

(
i21 ◦ f2 + i22 ◦ f2

)
◦ f1 + ιIdC2 ◦HY Z(f2) ◦ f1

by 4.1.22 and (4.1.17) because we have

ιIdC2 ◦HY Z(f2) ◦ f1 = cZ+Z
2 ◦ IdC(i21|i22) ◦HY Z(f2) ◦ f1

Hence we have

ιIdC2 ◦HXZ(f2 ◦ f1)

= i21 ◦ f2 ◦ f1 + i22 ◦ f2 ◦ f1 + cZ+Z
2 ◦ IdC(i21 ◦ f2|i22 ◦ f2) ◦HXY (f1) + ιIdC2 ◦HY Z(f2) ◦ f1 , by 4.1.22

− i22 ◦ f2 ◦ f1 − i21 ◦ f2 ◦ f1

= cZ+Z
2 ◦ IdC(i21 ◦ f2|i22 ◦ f2) ◦HXY (f1) + ιIdC2 ◦HY Z(f2) ◦ f1 , by (4.1.15) and (4.1.16)

= cZ+Z
2 ◦ IdC(i21|i22) ◦ IdC(f2|f2) ◦HXY (f1) + ιIdC2 ◦HY Z(f2) ◦ f1

= ιIdC2 ◦ IdC(f2|f2) ◦HXY (f1) + ιIdC2 ◦HY Z(f2) ◦ f1

= ιIdC2 ◦
(
IdC(f2|f2) ◦HXY (f1) +HY Z(f2) ◦ f1

)
, by 4.1.4

As ιIdC2 : IdC(Z|Z)� Z + Z is a monomorphism, it gives the desired relation.
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• Then we prove that the property (4.1.19) holds. For α ∈ C(X, Y ), we have the following
equalities:

ιIdC2 ◦ TX,Y,Y
(
HXY (α)

)
= ιIdC2 ◦ TY,Y ◦HXY (α) , see 4.1.9

= τ 2
Y ◦
(

(i21 + i22) ◦ α− i22 ◦ α− i21 ◦ α
)

= (i22 + i21) ◦ α− i21 ◦ α− i22 ◦ α , by (4.1.4)

=
(
i21 + i22 + ιIdC2 ◦HY (2Y )

)
◦ α− i21 ◦ α− i22 ◦ α

= (i21 + i22) ◦ α + ιIdC2 ◦HY (2Y ) ◦ α− i21 ◦ α− i22 ◦ α , by (4.1.22) and 4.1.16

= (i21 + i22) ◦ α + ιIdC2 ◦HY (2Y ) ◦ α−
(
i22 ◦ α + i21 ◦ α

)
By (4.1.20), we have

i22 ◦ α + i21 ◦ α = i21 ◦ α + i22 ◦ α + cY+Y
2 ◦ IdC(i21 ◦ α|i22 ◦ α) ◦HX(2X)

= i21 ◦ α + i22 ◦ α + ιIdC2 ◦ IdC(α|α) ◦HX(2X)

Hence we have

ιIdC2 ◦ TX,Y,Y
(
HXY (α)

)
= (i21 + i22) ◦ α + ιIdC2 ◦HY (2Y ) ◦ α−

(
i22 ◦ α + i21 ◦ α

)
= (i21 + i22) ◦ α + ιIdC2 ◦HY (2Y ) ◦ α

−
(
i21 ◦ α + i22 ◦ α + ιIdC2 ◦ IdC(α|α) ◦HX(2X)

)
= (i21 + i22) ◦ α + ιIdC2 ◦HY (2Y ) ◦ α− i22 ◦ α− i21 ◦ α− ι

IdC
2 ◦ IdC(α|α) ◦HX(2X) , by (4.1.16)

= (i21 + i22) ◦ α− i22 ◦ α− i21 ◦ α + ιIdC2 ◦HY (2Y ) ◦ α− ιIdC2 ◦ IdC(α|α) ◦HX(2X) , by (4.1.16)

= ιIdC2 ◦HXY (α) + ιIdC2 ◦HY (2Y ) ◦ α− ιIdC2 ◦ IdC(α|α) ◦HX(2X) , by (4.1.12)

= ιIdC2

(
HXY (α) +HY (2Y ) ◦ α− IdC(α|α) ◦HX(2X)

)
, by (4.1.4)

As ιIdC2 : IdC(Y |Y )� Y + Y is a monomorphism, we obtain the desired relation.

Remark 4.1.25. We have the following observations:

1. Let f ∈ C(Y, Z). Using (4.1.20) with g1 = 0 and g2 = −f , we get

(−f) ◦ g = −(f ◦ g) + cZ2 ◦ IdC(f |f) ◦HY,Z(g) (4.1.23)

2. The morphisms in C involved in the relations (4.1.17), (4.1.18), (4.1.19) and (4.1.22) have an
abelian object as a target object. By 1.5.17, these relations remain the same if we replace each
morphism with its unique factorization through the abelianization morphism (see 1.5.16 and
1.5.17). For exemple, (4.1.17) is equivalent to the following relation:

HX,Y (f + g)ab = HX,Y (f)ab +HX,Y (g)ab + IdC(f |g) ◦HX(2X)ab ,

for f, g ∈ C(X, Y ).
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Now we give the deviation of the retraction r2 : C(X, Y +Y )→ C(X, Y |Y ) to preserve the (right)
action of the monoid C(X,X), as follows:

Proposition 4.1.26. Let X be an object in 〈E〉 and Y be an object in C. Then, for ξ ∈ C(Y, Z +Z)
and α ∈ C(X, Y ), we have

r2(ξ ◦ α) = r2(ξ) ◦ α + IdC(r
2
1 ◦ ξ|r2

2 ◦ ξ) ◦HX,Y (α)

Proof. We have the following equalities:

ιIdC2 ◦ r2(ξ) ◦ α =
(
ξ −

(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

))
◦ α

= ξ ◦ α +
(
−
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)))
◦ α

− cE+2

2 ◦ IdC(ξ|i21 ◦ r2
1 ◦ ξ + i22 ◦ r2

2 ◦ ξ) ◦HX,Y (α) by (4.1.20)

By (4.1.23), we get(
−
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)))
◦ α

= −
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)
◦ α

+ cE
+2

2 ◦ IdC
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

∣∣i21 ◦ r2
1 ◦ ξ + i22 ◦ r2

2 ◦ ξ
)
◦HX,Y (α)

Denoting i21 ◦ r2
1 ◦ ξ + i22 ◦ r2

2 ◦ ξ by h, we have

IdC(ξ|h) = IdC(i
2
1 ◦ r2

1 ◦ ξ|h) + IdC(i
2
2 ◦ r2

2 ◦ ξ|h) = IdC(i
2
1 ◦ r2

1 ◦ ξ + i22 ◦ r2
2|h) = IdC(h|h)

by 3.6 of [12] because the functor IdC(−|E+2) : C → C is linear. Hence we have

ιIdC2 ◦ r2(ξ) ◦ α = ξ ◦ α−
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)
◦ α

= ξ ◦ α−
(
i21 ◦ r2

1 ◦ ξ ◦ α + i22 ◦ r2
2 ◦ ξ ◦ α

+ cE
+2

2 ◦ IdC(i21 ◦ r2
1 ◦ ξ|i22 ◦ r2

2 ◦ ξ) ◦HX,Y (α)
)

However we get

cE
+2

2 ◦ IdC(i21 ◦ r2
1 ◦ ξ|i22 ◦ r2

2 ◦ ξ) ◦HX,Y (α) = (i21, i
2
2) ◦ ιIdC2 ◦ IdC(r2

1 ◦ ξ|r2
2 ◦ ξ) ◦HX,Y (α)

= ιIdC2 ◦ IdC(r2
1 ◦ ξ|r2

2 ◦ ξ) ◦HX,Y (α)

It implies that

ιIdC2 ◦ r2(ξ) ◦ α = ξ ◦ α−
(
i21 ◦ r2

1 ◦ ξ ◦ α + i22 ◦ r2
2 ◦ ξ ◦ α

)
− ιIdC2 ◦ IdC(i21 ◦ r2

1 ◦ ξ|i22 ◦ r2
2 ◦ ξ) ◦HX,Y (α)

= ιIdC2 ◦ r2(ξ ◦ α)− ιIdC2 ◦ IdC(r2
1 ◦ ξ|r2

2 ◦ ξ) ◦HX,Y (α)

= ιIdC2 ◦
(
r2(ξ ◦ α)− IdC(r2

1 ◦ ξ|r2
2 ◦ ξ) ◦HX,Y (α)

)
by (4.1.20)

As ιIdC2 : C(X, Y |Y )� C(X, Y + Y ) is a monomorphism, it concludes the proof.

In addition we give the deviation of the retraction r2 : C(X, Y + Y ) → C(X, Y |Y ) to be a
homomorphism of groups, as follows:
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Proposition 4.1.27. Let X be an object in 〈E〉 and Y be an object in C. Then, for f, g ∈ C(X, Y +
Y ), we have

r2(f + g) = r2(f) + r2(g) + IdC
(
r2

1 ◦ g|r2
2 ◦ f

)
◦HX(2X)

Proof. We have the following equalities:

ιIdC2 ◦ r2(f + g) = (f + g)− i22 ◦ r2
2 ◦ (f + g)− i21 ◦ r2

1 ◦ (f + g)

= f + g − i22 ◦ r2
2 ◦ g − i22 ◦ r2

2 ◦ f − i21 ◦ r2
1 ◦ g − i21 ◦ r2

1 ◦ f , by (4.1.21)

= f + g − i22 ◦ r2
2 ◦ g −

(
i21 ◦ r2

1 ◦ g + i22 ◦ r2
2 ◦ f

)
− i21 ◦ r2

1 ◦ f

By (4.1.18), we get

i21 ◦ r2
1 ◦ g + i22 ◦ r2

2 ◦ f

= i22 ◦ r2
2 ◦ f + i21 ◦ r2

1 ◦ g + cY+Y
2 ◦ IdC(i22 ◦ r2

2 ◦ f |i21 ◦ r2
1 ◦ g) ◦HX(2X)

= i22 ◦ r2
2 ◦ f + i21 ◦ r2

1 ◦ g + cY+Y
2 ◦ TY+Y ◦ IdC(i22 ◦ r2

2 ◦ f |i21 ◦ r2
1 ◦ g) ◦HX(2X)

= i22 ◦ r2
2 ◦ f + i21 ◦ r2

1 ◦ g + cY+Y
2 ◦ IdC(i21 ◦ r2

1 ◦ g|i22 ◦ r2
2 ◦ f) ◦ TX,X ◦HX(2X)

= i22 ◦ r2
2 ◦ f + i21 ◦ r2

1 ◦ g − cY+Y
2 ◦ IdC(i21 ◦ r2

1 ◦ g|i22 ◦ r2
2 ◦ f) ◦HX(2X) , by 4.1.19

= i22 ◦ r2
2 ◦ f + i21 ◦ r2

1 ◦ g − ι
IdC
2 ◦ IdC(r2

1 ◦ g|r2
2 ◦ f) ◦HX(2X)

Hence we have

ιIdC2 ◦ r2(f + g)

= f + g − i22 ◦ r2
2 ◦ g −

(
i21 ◦ r2

1 ◦ g + i22 ◦ r2
2 ◦ f

)
− i21 ◦ r2

1 ◦ f

= f + g − i22 ◦ r2
2 ◦ g −

(
i22 ◦ r2

2 ◦ f + i21 ◦ r2
1 ◦ g − ι

IdC
2 ◦ IdC(r2

1 ◦ g|r2
2 ◦ f) ◦HX(2X)

)
− i21 ◦ r2

1 ◦ f

= f + g − i22 ◦ r2
2 ◦ g − i21 ◦ r2

1 ◦ g − i22 ◦ r2
2 ◦ f − i21 ◦ r2

1 ◦ f

+ ιIdC2 ◦ ◦IdC(r2
1 ◦ g|r2

2 ◦ f) ◦HX(2X) , by 4.1.16

= f + ιIdC2 ◦ r2(g)− i22 ◦ r2
2 ◦ f − i21 ◦ r2

1 ◦ f + ιIdC2 ◦ IdC(r2
1 ◦ g|r2

2 ◦ f) ◦HX(2X) , by (4.1.11)

= f − i22 ◦ r2
2 ◦ f − i21 ◦ r2

1 ◦ f + ιIdC2 ◦ r2(g) + ιIdC2 ◦ IdC(r2
1 ◦ g|r2

2 ◦ f) ◦HX(2X) , by 4.1.16

= ιIdC2 ◦ r2(f) + ιIdC2 ◦ r2(g) + ιIdC2 ◦ IdC(r2
1 ◦ g|r2

2 ◦ f) ◦HX(2X) , by (4.1.11)

= ιIdC2 ◦
(
r2(f) + r2(g) + IdC(r

2
1 ◦ g|r2

2 ◦ f) ◦HX(2X)
)
, by (4.1.21)

As ιIdC2 : IdC(Y |Y )� Y + Y is a monomorphism, it concludes the proof.

Remark 4.1.28. From 4.1.27 and 4.1.7, we deduce that the map r2 : C(X, Y + Y )→ C(X, Y |Y ) is a
quadratic map in the sense of [4].

Then we give the following relation:

Proposition 4.1.29. Consider X an object in 〈E〉, and Y and Z two objects in C. Then, for
f1, f2 ∈ C(Y, Z + Z) and ξ ∈ C(X, Y |Y ), we have

r2

(
cZ+Z

2 ◦ IdC(f1|f2) ◦ ξ
)

= IdC(r
2
1 ◦ f1|r2

2 ◦ f2) ◦ ξ + IdC(r
2
1 ◦ f2|r2

2 ◦ f1) ◦ TX,Y,Y (ξ)
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Proof. We get the following equalities:

ιIdC2 ◦ r2

(
cZ+Z

2 ◦ IdC(f1|f2) ◦ ξ
)

= cZ+Z
2 ◦ IdC(f1|f2) ◦ ξ − i22 ◦ r2

2 ◦ cZ+Z
2 ◦ IdC(f1|f2) ◦ ξ − i21 ◦ r2

1 ◦ cZ+Z
2 ◦ IdC(f1|f2) ◦ ξ , by (4.1.11)

= cZ+Z
2 ◦ IdC(f1|f2) ◦ ξ − cZ+Z

2 ◦ IdC
(
i22 ◦ r2

2 ◦ f1|i22 ◦ r2
2 ◦ f2

)
◦ ξ

− cZ+Z
2 ◦ IdC

(
i21 ◦ r2

1 ◦ f1|i21 ◦ r2
1 ◦ f2

)
◦ ξ , by naturality of cZ+Z

2

As the bifunctor IdC(−|−) : C × C → C is bilinear, we have

IdC(id|id) = IdC
(
i21 ◦ r2

1|id
)

+ IdC
(
i22 ◦ r2

2|id
)

= IdC
(
i21 ◦ r2

1|i21 ◦ r2
1

)
+ IdC

(
i21 ◦ r2

1|i22 ◦ r2
2

)
+ IdC

(
i22 ◦ r2

2|i21 ◦ r2
1

)
+ IdC

(
i22 ◦ r2

2|i22 ◦ r2
2

)
by 3.6 of [12]. Hence we have

ιIdC2 ◦ r2

(
cZ+Z

2 ◦ IdC(f1|f2) ◦ ξ
)

= cZ+Z
2 ◦ IdC

(
i21 ◦ r2

1 ◦ f1|i22 ◦ r2
2 ◦ f2

)
◦ ξ + cZ+Z

2 ◦ IdC
(
i22 ◦ r2

2 ◦ f1|i21 ◦ r2
1 ◦ f2

)
◦ ξ

= IdC
(
r2

1 ◦ f1|r2
2 ◦ f2

)
◦ ξ + cZ+Z

2 ◦ TZ+Z ◦ IdC
(
i22 ◦ r2

2 ◦ f1|i21 ◦ r2
1 ◦ f2

)
◦ ξ

= IdC
(
r2

1 ◦ f1|r2
2 ◦ f2

)
◦ ξ + cZ+Z

2 ◦ IdC
(
i21 ◦ r2

1 ◦ f2|i22 ◦ r2
2 ◦ f1

)
◦ TX ◦ ξ

= ιIdC2 ◦ IdC
(
r2

1 ◦ f1|r2
2 ◦ f2

)
◦ ξ + ιIdC2 ◦ IdC

(
r2

1 ◦ f2|r2
2 ◦ f1

)
◦ TX,Y,Y (ξ)

= ιIdC2 ◦
(
IdC
(
r2

1 ◦ f1|r2
2 ◦ f2

)
◦ ξ + IdC

(
r2

1 ◦ f2|r2
2 ◦ f1

)
◦ TX,Y,Y (ξ)

)
, by (4.1.21)

As ιIdC2 : IdC(Z|Z)� Z + Z is a monomorphism, it concludes the proof.

Remark 4.1.30. As in 4.1.25, the relations in 4.1.26, 4.1.27 and 4.1.29 also hold if we replace each
morphism with its unique factorization through the abelianization morphism by 1.5.16 because it has
an abelian object as a target object. For exemple, the relation in 4.1.26 is equivalent to the following
one:

r2(ξ ◦ α)ab = r2(ξ)ab ◦ αab + IdC(r
2
1 ◦ ξ|r2

2 ◦ ξ) ◦HX,Y (α)ab ,

for ξ ∈ C(Y, Z + Z) and α ∈ C(X, Y ).

4.2 De�nition of the operad AbOp(C)
First we recall that the set of morphisms with abelian source and target has a natural abelian group
structure and we consider the following notation:

Notation 4.2.1. For A and B abelian objects in C, we denote by Ab(C)(A,B) = C(A,B) the indicated
morphism set endowed with its natural abelian group structure.

From now on, we suppose that we have the 2-divisibility condition as follows:

Assumption: idEab + idEab is invertible in the endomorphism ring C(Eab, Eab).

Hence it permits us to consider that, for an abelian object Z in C, the abelian group C(Eab, Z)
(see 4.1.4) is a left Z[1

2
]-module. Then the 2-divisibility condition implies the next proposition:
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Proposition 4.2.2. Let X be an object in 〈E〉. If we assume that the 2-divisibility condition given
above holds, then we have the following isomorphism of Λ-P(1)-bimodules

C
(
Eab, [X, X]IdC

) ∼= C(Eab, IdC(X|X)
)
S2

Proof. We recall that the morphism iX : [X,X]IdC � X and eX : IdC(X|X) → [X,X]IdC are
respectively the image and the coimage of cX2 : IdC(X|X)→ X given in 1.3.5. We have the following
equalities:

cX2 ◦ TX,X = ∇2
X ◦ ι

IdC
2 ◦ TX,X = ∇2

X ◦ τ 2
X ◦ ι

IdC
2 = ∇2

X ◦ ι
IdC
2 = cE2

As cX2 = iX ◦ eX and iX : [X, X]IdC � X is a monomorphism, we get eX = eX ◦ TX,X implying that
we have

(eX)∗ = (eX)∗ ◦ (TX,X)∗ = (eX)∗ ◦ TEab,X,X

Hence there is a unique morphism (eX)∗ :
(
Eab, IdC(X|X)

)
S2
→ C(Eab, [X, X]IdC) such that

(eX)∗ = (eX)∗ ◦ π (4.2.1)

where π : C
(
Eab, IdC(X|X)

)
→ C

(
Eab, IdC(X|X)

)
S2

is the cokernel of the morphism TEab,X,X −
id : C

(
Eab, IdC(X|X)

)
→ C

(
Eab, IdC(X|X)

)
. We observe that (eX)∗ : C(Eab, IdC(X|X)) →

C(Eab, [X, X]IdC) is a surjective homomorphism of Λ-P(1)-bimodules because Eab is a regular-
projective object in the abelian core Ab(C) and eX : IdC(X|X) → [X,X]IdC is a surjective
homomorphism of Λ-P(1)-bimodules. As (eX)∗ : C(Eab, IdC(X|X)) → C(Eab, [X, X]IdC) and
π : C

(
Eab, IdC(X|X)

)
→ C

(
Eab, IdC(X|X)

)
S2

are also surjective homomorphisms of Λ-P(1)-

bimodules, so is (eX)∗ : C
(
Eab, IdC(X|X)

)
S2
→ C(Eab, [X, X]IdC) by regularity of the category

C. Then we de�ne a set map θX : C(Eab, [X, X]IdC)→ C
(
Eab, IdC(X|X)

)
S2

by:

θX(f) =
1

2
HX(iX ◦ f ◦ abE)ab (4.2.2)

where f ∈ C(Eab, [X, X]IdC) and the set map HX : C(X,X)→ C
(
E, IdC(X|X)

)
is given in (4.1.12)

(also see 4.1.18). As (eX)∗ : C
(
Eab, IdC(X|X)

)
S2
→ C(Eab, [X, X]IdC) is surjective, it su�ces to

prove that θX ◦ (eX)∗ = id. Let h ∈ C
(
Eab, IdC(X|X)

)
, then we get

θX ◦ (eX)∗(h) = θX ◦ (eX)∗ ◦ π(h)

= θX(eX ◦ h)

=
1

2
HX(iX ◦ eX ◦ h ◦ abE)ab

=
1

2
HX(cX2 ◦ h ◦ abE)ab

=
1

2
h+

1

2
TEab,X,X(h) , by (4.1.22) and 4.1.25

=
1

2
h+

1

2
h , because h = TEab,X,X(h)

= h

as desired.
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Remark 4.2.3. By 4.2.2, we deduce that we have the following isomorphism of P(1)-modules

|IdC(X|X)|S2
∼= |[X,X]IdC | ,

for an object X in C (see the notations given in 4.0.1). In the category of P-algebras with P here
being an operad as in 2.4.1 supposed to be 2-step nilpotent (see 1.6.4), the above isomorphism is
exactly the one given in 2.4.7.

Then we de�ne a linear 2-step nilpotent operad depending on the variety C, already constructed
by M. Hartl.

De�nition 4.2.4. The 2-step nilpotent symmetric unitary (right) operad AbOp(C) actually is an
operad in the monoidal category of Z[1

2
]-modules as

AbOp(C)(1) = C(Eab, Eab) and AbOp(C)(2) = C(Eab, IdC(E|E)) (4.2.3)

and the second term of AbOp(C) is endowed with the involution T = (TE)∗, where TE : IdC(E|E)→
IdC(E|E) is given in 4.1.9. Then abbreviating P = AbOp(C) the only non-trivial ones among the
composition operations

γk1,...,km;m : P(k1)⊗ . . .⊗ P(km)⊗ P(m)→ P(k1 + . . .+ km)

are given as follows:

γ1;1(a⊗ b) = a ◦ b , γ2;1(µ⊗ a) = µ ◦ a , γ1,1;2(a⊗ b⊗ µ) = IdC(a
′|b′) ◦ µ (4.2.4)

where a, b ∈ P(1), µ ∈ P(2) and a′, b′ ∈ C(E, E) are respectively a (non-unique) factorization of
a◦abE and b◦abE through abE (which exist because E is a regular-projective object). The structure
linear map γ1,1;2 : P(1) ⊗ P(1) ⊗ P(2) → P(2) is well-de�ned because IdC(abE|abE) : IdC(E|E) →
IdC(E

ab|Eab) is an isomorphism.

Now we recall the rings Λ = UE(E) and Λ = T1UE(E) where UE : C → Ab is a reduced standard
projective functor associated with E, de�ned in 2.0.1. Then we remark that P(1) has a left Λ-module
structure given by

α.a = αab ◦ a = γ1;1(αab ⊗ a) , (4.2.5)

for a ∈ P(1) and α ∈ C(E, E). As C is a 2-step nilpotent category, the bifunctor IdC(−|−) : C×C → C
is bilinear making P(2) into a left Λ⊗ Λ-module (see 3.17 and 3.26 of [12]) given by

t1(α)⊗ t1(β).b = IdC(α|β) ◦ b = γ1,1;2(αab ⊗ βab ⊗ b) (4.2.6)

where α, β ∈ C(E, E) and b ∈ P(2). Now we recall that TE : IdC(E|E)→ IdC(E|E) be the involution
of IdC(E|E) obtained by taking the restriction of the canonical switch τ 2

E : E + E → E + E to
IdC(E|E).

Notation 4.2.5. We denote by P(2)S2 the coinvariants of P(2) (i.e here the quotient of P(2) by the
image of T − id) and we consider q : P(2)� P(2)S2 the canonical quotient map, where T = (TE)∗ :
P(2)→ P(2).

Then we observe that the linear unitary (whose unity is here equal to id ∈ P(1) = C(Eab, Eab))
operad AbOp(C) is symmetric because we have the following equality:

γ1,1;2

(
a⊗ b⊗T (µ)

)
= IdC(a

′|b′)◦T (µ) = IdC(a
′|b′)◦TE ◦µ = TE ◦ IdC(b′|a′)◦µ = T

(
γ1,1;2(b⊗a⊗µ)

)
by taking the same notations as in (4.2.4). Moreover we recall that the free P-algebra of rank 1 is
FP = P(1) ⊕ P(2)S2 , see the beginning of section 2.4. Now we give speci�c abelian objects in the
category of P-algebras obtained from abelian objects in C, as follows:
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Proposition 4.2.6. Let Z be an abelian object in C. The sets C(E,Z) and C(Eab, Z) are abelian
objects in the category of P-algebras, i.e. right P(1)-modules by 1.7.5.

Proof. It is a direct consequence of (4.1.4) (providing an abelian group structure), 4.1.6 (giving a
right P(1)-module structure) and 1.7.5 (saying that abelian objects in Alg − P are (right) P(1)-
modules).

Remark 4.2.7. Hence 4.2.6 says that the representable functors C(E,−) and C(Eab,−) with domain C
taking values in Gr (see (4.1.2)) restricted to the abelian core Ab(C) preserve abelian objects. Hence
their restrictions to the abelian core Ab(C) (see 1.3.1) are functors between abelian categories.

Proposition 4.2.8. The representable functors C(E,−) and C(Eab,−) restricted to the abelian core
Ab(C) and values in ModP(1) are linear in the sense of 1.2.5.

Proof. The restriction of the representable functors C(E,−) and C(Eab,−) to the abelian core Ab(C)
take values in the abelian category ModP(1) and preserve �nite coproducts. Hence their comparison

morphism r̂
C(E,−)
2 and

̂
r
C(Eab,−)
2 (see 1.2.1) are isomorphisms (as coproducts and products coincide in

the abelian category Ab(C)) implying that their second cross-e�et (see 1.2.1) are trivial.

We de�ne the natural transformation t̂1 : UE ⇒ C
(
Eab, AbC

)
between functors C → Ab such that,

for X an object in C and α ∈ C(E,X), t̂1(α) = t1(αab). As the functor C
(
Eab, AbC

)
: C → Ab is

linear by 1.2.6 (because it is a linear functor postcomposed by a linear functor with abelian source
and target), there is a unique morphism t1 : T1UE ⇒ C

(
Eab, AbC

)
such that

t1 ◦ t1 = t̂1 (4.2.7)

by 1.2.11.

Proposition 4.2.9. The natural transformation t1 : T1UE ⇒ C
(
Eab, AbC

)
is an isomorphism.

Proof. Consider the following factorization of t1:

T1UE
(T1UE)∗.ab// (T1UE) ◦ AbC t1 // C

(
Eab, AbC

)
The �rst factor is an isomorphism by 1.4.8 since T1UE preserves coequalizers of re�exive graphs
by 6.24 of [12]. The second factor also is an isomorphism since for an abelian object A the map
C
(
Eab, A

)
→ T1UE(A), f 7→ t1(f ◦ abE), is an inverse of (t1)A.

We recall the rings Λ = UE(E) and Λ = T1UE(E), see 2.0.2.

Corollary 4.2.10. The ring homomorphism (t1)E : Λ→ P(1) is an isomorphism.

We now consider the natural transformation u′C(Eab,AbC)
: T1UE ⊗ΛP(1)⇒ C

(
Eab, AbC

)
such that,

for any object X in C, α ∈ C(E,X) and f ∈ P(1), we have(
u′C(Eab,AbC)

)
X

(
t1(α)⊗ f

)
= (αab)∗(f) = αab ◦ f , (4.2.8)

see 3.5 of [12]. Combining 4.2.9 and 4.2.10 we obtain

Proposition 4.2.11. The natural transformation

u′C(Eab,AbC) : T1UE ⊗Λ P(1)⇒ C
(
Eab, AbC

)
(de�ned in (4.2.8)) is an isomorphism living in the category of functors from C to the category of
Λ-P(1)-bimodules.
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4.3 The graded algebra over AbOp(C)
As a �rst �approximation� of the intended Lazard correspondence functor, we here consider the
graded algebra over the linear symmetric unitary operad P = AbOp(C) (see (4.2.3)) associated with
any object in C, by taking the associated graded of its lower central series. Then we prove that this
de�nes a quadratic functor with domain C and values in Alg−P . Finally we exhibit its corresponding
quadratic C-module over P . In the following sections we will modify the latter by a suitable �twist�
(or �perturbation�) in order to construct the quadratic C-module over P whose associated functor, in
contrast with the associated graded functor, is an equivalence, thus establishing the desired Lazard
correspondence.

For X an object in C we associate its graded P-algebra as follows:⊕
n≥1

γIdCn (X)/γIdCn+1(X) = Xab ⊕ [X, X]IdC

in the category C, because γIdCn (X) = 0 for n > 3 (as C is a 2-step nilpotent category) and Xab =
X/γIdC2 (X) = γIdC1 (X)/γIdC2 (X). Hence we have the following abelian groups isomorphism:

|Xab| ⊕ |[X, X]IdC | ∼= C(Eab, Xab)⊕ C(Eab, [X, X]IdC) = Grad(X)

Note that |[X, X]IdC | is an abelian group because [X, X]IdC is a central subobject of X in C (as C is
a 2-step nilpotent category). Then the structure linear maps of Grad(X) are given by:

• the map λGrad1 : Grad(X)⊗ P(1)→ Grad(X) is such that

λGrad1 ((f, h)⊗ a) =
(
f ◦ a, h ◦ a

)
• the map λGrad2 : Grad(X)⊗2 ⊗ P(2)→ Grad(X) is such that

λGrad2

(
(f1, h1)⊗ (f2, h2)⊗ b

)
=
(
0, eX ◦ IdC(abX |abX)−1 ◦ IdC(f1|f2) ◦ IdC(abE|abE) ◦ b

)
Here we recall that the morphism IdC(abX |abX) : IdC(X|X)→ IdC(X

ab|Xab) is an isomorphism
by 4.1.14.

This gives rise to the functor Grad : C → Alg − P that is de�ned on morphisms by Grad(f) =
(fab, γIdC2 (f)), for any morphism f in C.

4.3.1 The second cross-e�ect of the functor Grad from C to AbOp(C)-
algebras

Before determining the second cross-e�ect of Grad : C → Alg−P , we need the following proposition:

Proposition 4.3.1. Let X and Y be two objects in C, then the second cross-e�ect of γIdC2 : C → C
is given by

γIdC2 (X|Y ) = IdC(X|Y )

and the kernel ι
γ
IdC
2

2 : γIdC2 (X|Y )� γIdC2 (X + Y ) of the comparison morphism r̂
γ
IdC
2

2 : γIdC2 (X + Y )→
γIdC2 (X)× γIdC2 (Y ) is the unique factorization of ιIdC2 : IdC(X|Y )� X + Y through iX+Y : γIdC2 (X +

Y )� X + Y , i.e. ιIdC2 = iX+Y ◦ ι
γ
IdC
2

2 .
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Proof. Let X and Y be two objects in C. Moreover we denote by i2X : X � X +Y , i2Y : Y � X +Y
respectively the injections of the �rst and the second summands, and by r2

X : X + Y → X, r2
Y :

X + Y → Y their respective retractions. We consider the following diagram:

γIdC2 (X + Y )

IdC(X + Y |X + Y )

γIdC2 (X)× γIdC2 (Y )

IdC(X|X)× IdC(Y |Y )

0

00

IdC(X|Y ) X + Y X × Y0 0

IdC(X|Y )⊕ IdC(Y |X)

IdC(X|Y )0

eX+Y

OOOO

̂
r
γ
IdC
2

2 // // //

̂
r
IdC(−|−).∆2

2 // // //// // k //

eX×eY

OOOO

OO

iX+Y

OO

OO

iX×iY

OOOO
r̂
IdC
2 // //// ////

ι
IdC
2 //

(
id, TYX

)OOOO
// k ////

where k =
(
IdC(i

2
X |i2Y ), IdC(i

2
Y |i2X)

)
is the kernel of

̂
r
IdC(−|−)·∆2

2 (see the Lemma 1.20 of [12]), TY X :
IdC(Y |X) → IdC(X|Y ) is the restrinction of the canonical switch τ 2

Y X : Y + X → X + Y on

IdC(Y |X). The two right-hand rectangles commute by naturality of the comparison morphism
̂
r
γ
IdC
2

2 :
γIdC2 (X + Y ) → γIdC2 (X) × γIdC2 (Y ) in γIdC2 . Then it remains to prove that the outside left-hand
rectangle commutes. It commutes because we have

cX+Y
2 ◦ IdC(i2X |i2Y ) = (i2X , i

2
Y ) ◦ ιIdC2 = ιIdC2

and
cX+Y

2 ◦ IdC(i2Y |i2X) = (i2Y , i
2
X) ◦ ιIdC2 = (i2X , i

2
Y ) ◦ τ 2

Y X ◦ ι
IdD
2 = ιIdC2 ◦ TY X

We observe that (id, TY X) = ∇2 ◦ (id⊕TY X) is a regular epimorphism as a composite of two regular
epimorphisms. Hence we deduce that IdC(X|Y ) is the image of the morphism ιIdC2 ◦ (id, TY X). By
the universal property of the image, there is a unique morphism k : IdC(X|Y )� γIdC2 (X + Y ) such
that

ιIdC2 = iX+Y ◦ k (4.3.1)

Moreover we get
eX+Y ◦ k = k ◦

(
id, TY X

)
(4.3.2)

because we have the relation (4.3.1), cX+Y
2 ◦ k = ιIdC2 ◦ (id, TY, X), and iX+Y : γIdC2 (X + Y ) is a

monomorphism. It remains to prove that the morphism k : IdC(X|Y ) � γIdC2 (X + Y ) satis�es the

universal property of the kernel of the comparison morphism
̂
r
γ
IdC
2

2 . Let f : Z → γIdC2 (X + Y ) any

morphism in C such that
̂
r
γ
IdC
2

2 ◦ f = 0. By postcomposing with iX × iY , we obtain

0 = (iX × iY ) ◦
̂
r
γ
IdC
2

2 ◦ f = r̂IdC2 ◦ iX+Y ◦ f

By de�nition of ιIdC2 , there is a unique morphism f̃ : Z → IdC(X|Y ) such that ιIdC2 ◦ f̃ = iX+Y ◦ f .
By (4.3.2), we get

iX+Y ◦ k ◦ f̃ = ιIdC2 ◦ f̃ = iX+Y ◦ f

As iX+Y : γIdC2 (X + Y )� X + Y is a monomorphism, we have k ◦ f̃ = f . It �nishes the proof.
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Corollary 4.3.2. Let X and Y be two objects in C, then the second cross-e�ect of Grad is given by:

Grad(X|Y ) = I
(
C
(
Eab, IdC(X|Y )

))
and the kernel ιGrad2 : Grad(X|Y ) � Grad(X + Y ) of the comparison morphism r̂Grad2 : Grad(X +
Y )→ Grad(X)×Grad(Y ) is de�ned by:

ιGrad2 (α) = (0, ι
γ
IdC
2

2 ◦ α)

where α ∈ C(Eab, IdC(X|Y )), and I : ModP(1) = Ab(Alg − P) → Alg − P is the inclusion functor
(see the notation given in 1.3.3 for C = Alg − P).

Proof. Let (f, h) ∈ Grad(X + Y ) such that r̂Grad2 (f, h) = 0, i. e.{ (
(r2
X)ab ◦ f, γIdC2 (r2

X) ◦ h
)

= 0(
(r2
Y )ab ◦ f, γIdC2 (r2

Y ) ◦ h
)

= 0
⇐⇒


r̂Ab

C
2 ◦ f = 0

̂
r
γ
IdC
2

2 ◦ h = 0

⇐⇒


f = 0

̂
r
γ
IdC
2

2 ◦ h = 0

because AbC : C → Ab(C) is a linear functor which is equivalent to say that r̂AbC2 : (X + Y )ab →
Xab×Y ab is an isomorphism by 1.3 of [12]. By 4.3.1, there is a unique morphism h̃ : Eab → IdC(X|Y )

such that h = ι
γ
IdC
2

2 ◦ h̃. Then we have

(f, h) = (0, h) = (0, ι
γ
IdC
2

2 ◦ h̃) = ιGrad2 (h̃)

as desired.

Corollary 4.3.3. The functor Grad : C → Alg − P is quadratic.

Proof. The bifunctor Grad(−|−) : C × C → Alg − P (whose expression is given in 4.3.2) is bilinear
because the functor C(Eab, −) : C → Ab restricted to Ab(C) is linear and IdC(−|−) : C × C → C
is a bilinear bifunctor (because C is a 2-step nilpotent category). Hence it proves that the functor
Grad : C → Alg − P is quadratic by Remark 1.2.13.

4.3.2 The linearization of the functor Grad

We now determine the linearization of the functor Grad : C → Alg − P .

Proposition 4.3.4. Let X be an object in C. The linearization of Grad : C → Alg − P is given by

T1(Grad)(X) = I
(
C(Eab, Xab)

)
where tGrad1 : Grad(X)→ T1(Grad)(X) is the projection onto the �rst summand, and I : ModP(1) =
Ab(Alg − P)→ Alg − P is the inclusion functor (see the notation given in 1.3.3 for C = Alg − P).

Proof. Let X be an object in C. We give another expression of the morphism (SGrad2 )X :
Grad(X|X)→ Grad(X) as follows:

(SGrad2 )X(α) = Grad(∇2
X)◦ιGrad2 (α) = Grad(∇2

X)(0, ι
γ
IdC
2

2 ◦α) = (0, γIdC2 (∇2
X)◦ιγ

IdC
2

2 ◦α) = (0, (S
γ
IdC
2

2 )X◦α)

where α ∈ C(Eab, IdC(X|X)). Let g : Eab → [X, X]IdC be any morphism in Ab(C). As Eab is a
regular-projective object in Ab(C), there is a (non-unique) morphism g̃ : Eab → IdC(X|X) such that

g = eX ◦ g̃
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Then we have

iX ◦ (S
γ
IdC
2

2 )X ◦ g̃ = iX ◦ γIdC2 (∇2
X) ◦ ιγ

IdC
2

2 ◦ g̃

= ∇2
X ◦ iX+X ◦ ι

γ
IdC
2

2 ◦ g̃

= ∇2
X ◦ ι

IdC
2 ◦ g̃ , by de�nition of ιγ

IdC
2

2

= cX2 ◦ g̃

= iX ◦ eX ◦ g̃

= iX ◦ g

Hence we have g = (S
γ
IdC
2

2 )X ◦ g̃ because iX : [X, X]IdC � X is a monomorphism. It proves
that the canonical injection of the second summand of Grad(X) is the image of the morphism
(SGrad2 )X : Grad(X|X)→ Grad(X). Finally we deduce that the projection of Grad(X) onto the �rst
summand is the cokernel of (SGrad2 )X : Grad(X|X) → Grad(X), denoted by (tGrad1 )X : Grad(X) →
T1(Grad)(X) = C(Eab, Xab).

4.3.3 The quadratic C-module over AbOp(C) associated with the functor

Grad

In this part, we give the quadratic C-module over P = AbOp(C) (see (4.2.3)) associated with the
quadratic functor Grad : C → Alg − P .

Remark 4.3.5. We �rst observe that the 2-divisibility condition ensures that Grad(E) is isomorphic
to FP the free P-algebra of rank 1 because we get

Grad(E) = C
(
Eab, Eab

)
⊕ C

(
Eab, [E,E]IdC

)
= P(1)⊕ C

(
Eab, [E,E]IdC

) ∼= P(1)⊕ P(2)S2 = FP

by 4.2.2 (replacing X with E) because the 2-divisibility condition holds.

As Grad : C → Alg − P is a quadratic functor by 4.3.3, it makes sense to consider SP2 (Grad) its
corresponding quadratic C-module over P where SP2 : Quad(C, Alg − P) → QModPC is the functor
de�ned in 2.4.27.

Remark 4.3.6. Recall that θE : C(Eab, [E, E]IdC) → P(2)S2 is the isomorphism of (right) P(1)-
modules de�ned in (4.2.2) and that eE : P(2)S2 → C(Eab, [E, E]IdC) is its inverse given in 4.2.1, then
we have another left Λ-module structure on FP given by

α.(f, h) = (id⊕ θE) ◦Grad(α) ◦ (id⊕ eE)(f, h)

=
(
αab ◦ f, IdC(α|α) ◦ h

)
=
(
γ1;1(αab ⊗ f), γ1,1;2(αab ⊗ αab ⊗ h)

)
,

for α ∈ C(E, E), f ∈ P(1), h ∈ P(2) and h denotes the equivalence class of h in P(2)S2 . The
structure linear maps of the linear symmetric unitary operad P are de�ned in (4.2.4).

The next result provides another quadratic C-module over P isomorphic to SP2 (Grad) in QModPC .
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Proposition 4.3.7. If the 2-divisibility condition holds, the quadratic C-module over P corresponding
to Grad is isomorphic to the following one in the category QModPC :

T11cr2(UE)(E, E)⊗Λ FP P(2)

T11cr2(UE)(E, E)⊗Λ P(2)S2 P(2) P(2)S2

FPHGrad
//

OO

id⊗Λi2

OO

Ĥ

//
OO

i2

OO
q̇ //

q
//

Here

• we de�ne the map HGrad : T11cr2(UE)(E, E)⊗FP → P(2) by

HGrad
(
t11(ρ2(ξ))⊗Λ (f, h)

)
= Ĥ

(
t11(ρ2(ξ))⊗Λ h

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)

)
where ξ ∈ C(E, E+2), f ∈ P(1) and h ∈ P(2).

• i2 : P(2)S2 � FP is the canonical injection of the second summand and q̇ : P(2)→ P(2)S2 is
the map de�ned by q̇ = i2 ◦ q.

Proof. By 2.4.27, the quadratic C-module over P corresponding to Grad is given by:

T11cr2(UE)(E, E)⊗Λ Grad(E) Grad(E|E)

T11cr2(UE)(E, E)⊗ (T1Grad(E)⊗2 ⊗S P(2)) T1Grad(E)⊗2 ⊗R⊗R P(2) T1Grad(E)⊗2 ⊗S P(2)

Grad(E)
HGrad
E //

id⊗Λ

(
(λGrad2 )E◦(φGradE )−1

)
OO

cr2

(
λGrad2 ◦(φGrad)−1

)
E,E

OO

ĤE
Grad

//

(λGrad2 )E◦(φGradE )−1

OO

(SGrad2 )E //

qGradE

//

By 4.3.4 and 4.3.2, we know that T1Grad(E) = P(1) and Grad(E|E) = P(2). The calculations are
the same than those in the proof of 3.6.9. It is just necessary to focus on the morphism HGrad. Let
ξ ∈ C(E, E+2) and (f, h) ∈ FP . We de�ne the morphism HGrad : T11cr2(UE)(E, E)⊗Λ FP → P(2)
by

HGrad = HGrad
E ◦

(
id⊗ (id⊕ eE)

)
(4.3.3)

where eE : P(2)S2 → C(Eab, [E, E]IdC) is the isomorphism given in (4.2.1). Then we have explicitly

HGrad
(
t11(ρ2(ξ))⊗ (f, h)

)
= HGrad

E

(
t11(ρ2(ξ))⊗ (f, eE(h))

)
, (4.3.3)

= HGrad
E

(
t11(ρ2(ξ))⊗ (f, eE ◦ h)

)
, by (4.2.1)

= cr2(u′Grad)E,E
(
ρ2(ξ)⊗ (f, eE ◦ h)

)
, by 2.1.7

We recall that u′Grad : UE ⊗Λ Grad(E)⇒ Grad is the natural transformation given by

(u′Grad)X(α⊗ (g, b)) = Grad(α)(g, b)
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where X is an object in C, α ∈ C(E, X) and (g, b) ∈ Grad(E) (see 2.1.1). Now we have

ιGrad2 ◦HGrad
(
t11(ρ2(ξ))⊗ (f, h)

)
= ιGrad2 ◦ cr2(u′Grad)E,E

(
ρ2(ξ)⊗ (f, eE ◦ h)

)
= (u′Grad)E+2 ◦ (ι2 ⊗ id)

(
ρ2(ξ)⊗ (f, eE ◦ h)

)
= (u′Grad)E+2

(
(ι2 ◦ ρ2(ξ))⊗ (f, eE ◦ h)

)
= (u′Grad)E+2

(
ξ ⊗ (f, eE ◦ h)

)
− (u′Grad)E+2

(
(i21 ◦ r2

1 ◦ ξ)⊗ (f, eE ◦ h)
)

− (u′Grad)E+2

(
(i22 ◦ r2

2 ◦ ξ)⊗ (f, eE ◦ h)
)

= Grad(ξ)(f, eE ◦ h)−Grad(i21 ◦ r2
1 ◦ ξ)(f, eE ◦ h)−Grad(i22 ◦ r2

2 ◦ ξ)(f, eE ◦ h)

=
(
ξab ◦ f, γIdC2 (ξ) ◦ eE ◦ h

)
−
(
(i21 ◦ r2

1 ◦ ξ)ab ◦ f, γ
IdC
2 (i21 ◦ r2

1 ◦ ξ) ◦ h
)

−
(
(i22 ◦ r2

2 ◦ ξ)ab ◦ f, γ
IdC
2 (i22 ◦ r2

2 ◦ ξ) ◦ h
)

As the functor AbC : C → Ab(C) is linear, we get

ξab =
(
i21 ◦ r2

1 ◦ ξ)ab +
(
i22 ◦ r2

2 ◦ ξ
)ab

by 3.6 of [12]. Hence we have

ιGrad2 ◦HGrad
(
t11(ρ2(ξ))⊗ (f, h)

)
=
(

0, γIdC2 (ξ) ◦ eE ◦ h− γIdC2 (i21 ◦ r2
1 ◦ ξ) ◦ eE ◦ h− γ

IdC
2 (i22 ◦ r2

2 ◦ ξ) ◦ eE ◦ h
)

=
(

0, eE+2 ◦ IdC(ξ|ξ) ◦ h− eE+2 ◦ IdC(i21 ◦ r2
1 ◦ ξ|i21 ◦ r2

1 ◦ ξ) ◦ h

− eE+2 ◦ IdC(i22 ◦ r2
2 ◦ ξ|i22 ◦ r2

2 ◦ ξ) ◦ h
)

=
(

0, eE+2 ◦ IdC(i21 ◦ r2
1 ◦ ξ|i22 ◦ r2

2 ◦ ξ) ◦ h+ IdC(i
2
2 ◦ r2

2 ◦ ξ|i21 ◦ r2
1 ◦ ξ) ◦ h

)
, by 3.6 of [12]

As the bifunctor IdC(−|−) : C×2 → C is bilinear, it implies that

IdC(ξ|ξ) = IdC(i
2
1 ◦ r2

1 ◦ ξ|i21 ◦ r2
1 ◦ ξ) + IdC(i

2
2 ◦ r2

2 ◦ ξ|i22 ◦ r2
2 ◦ ξ)

+ IdC(i
2
1 ◦ r2

1 ◦ ξ|i22 ◦ r2
2 ◦ ξ) + IdC(i

2
2 ◦ r2

2 ◦ ξ|i21 ◦ r2
1 ◦ ξ)

by 3.6 of [12]. Then we get

ιGrad2 ◦HGrad
(
t11(ρ2(ξ))⊗ (f, h)

)
=
(

0, eE+2 ◦
(
IdC(i

2
1|i22), IdC(i

2
1|i22)

)
◦
(
IdC(r

2
1 ◦ ξ|r2

2 ◦ ξ)⊕ IdC(r2
2 ◦ ξ|r2

1 ◦ ξ)
)
◦ h
)

=
(

0, ι
γ
IdC
2

2 ◦ (id, TE) ◦
(
IdC(r

2
1 ◦ ξ|r2

2 ◦ ξ)⊕ IdC(r2
2 ◦ ξ|r2

1 ◦ ξ)
)
◦ h
)
, by (4.3.2)

= ιGrad2

(
(id, TE) ◦ (IdC(r

2
1 ◦ ξ|r2

2 ◦ ξ)⊕ IdC(r2
2 ◦ ξ|r2

1 ◦ ξ)) ◦ h
)
, by 4.3.2

= ιGrad2

(
IdC(r

2
1 ◦ ξ|r2

2 ◦ ξ) ◦ h+ TE ◦ IdC(r2
2 ◦ ξ|r2

1 ◦ ξ) ◦ h
)

= ιGrad2

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).h+ IdC(r

2
1 ◦ ξ|r2

2 ◦ ξ) ◦ TE ◦ h
)
, by 3.17 of [12]

= ιGrad2

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).h+ t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).T (h)

)
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As ιGrad2 : Grad(E|E)� Grad(E + E) is a monomorphism, it proves the result.

We also denote Grad : C → Alg − P the quadratic functor corresponding to the quadratic C-
module over P given in 4.3.7. Note that the functor Grad : C → Alg − P is not an equivalence of
categories because the map Grad : C(E, E) → Alg − P(FP , FP) is not a bijection. In order to see
this �rst note that we have the canonical isomorphism ev(id,0) : Alg−P(FP , FP)→ FP , f 7→ f(id, 0).
Then, for α ∈ C(E, E), we have

ev(id,0) ◦Grad(α) = α.(id, 0) = (αab, 0)

where α.(id, 0) is given in 4.3.6. Hence we deduce that the map Grad : C(E, E)→ Alg−P(FP , FP)
is not a bijection.
This observation leads us to modify the left Λ-module structure for FP and the expression of the
morphism HGrad : T11cr2(UE)(E, E) ⊗Λ FP → P(2) (present in 4.3.7) by 3.6.9. It is the �rst step
to determine the Lazard equivalence with domain C and values in Alg −P . Before tackling this, we
need to provide a version of the �ve lemma for quadratic maps relative a (normal) subgroup.

4.4 The quadratic �ve lemma

In this part, we �rst give the de�nition of quadratic maps, already given in 2 of [4] and in [18] (as
weakly quadratic maps), and those relative to a subgroup introduced by M. Hartl. Then a �ve lemma
is provided for quadratic maps relative to a subgroup. It recovers the classical �ve lemma in the
category of groups by considering the homomorphisms of groups (equivalently saying linear maps)
as a particular case of quadratic maps.
Let f : G → H be some function between arbitrary groups. We shall however, write the group law
of H additively since in many applications H is abelian, and in those in [4], where H is genuinely
nonabelian, it is written additively anyway to match the conventions in homotopy theory which
originally motivated these developments. De�ne the deviation function, or the cross-e�ect of f , to
be the map:

df : G×G→ H by d(a, b) = f(a+ b)−
(
f(a) + f(b)

)
(4.4.1)

Furthermore, let If and Df denote respectively the subgroup of H generated by Im(f) and Im(df ).

De�nition 4.4.1. We say that f as above is

1. linear if df = 0, i.e. f is a group homomorphism;

2. quadratic if df is bilinear andDf is central in If , or more explicitly, ∀a, b, c ∈ G, [df (a; b), f(c)] =
0.

We also need the relative version of quadratic maps as follows. Let A be a subgroup of G, then
we say that f as above is quadratic relative A if f is quadratic and df (A×G) = df (G×A) = 0. Note
that f is quadratic if, and only if, it is quadratic relative the trivial subgroup {0}. Now we establish
the �ve lemma for quadratic maps relative a subgroup, here called the quadratic �ve lemma:

Lemma 4.4.2. Given a commutative diagram where the two horizontable short sequences are exact
in the category of groups:

B H V 0

A G U 0

0

0

// // // q2 // //

// // // q1 // //

f1

��

f2

��

f3

��

If f2 is a quadratic map relative A, f1 is a reduced (i.e. f1(0) = f2(0) = 0) bijection map and f3 is
a bijection, then f2 is a bijection.
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Proof. This proof is mainly the same as the classical �ve lemma, except we need the following
property df2(A×G) = df2(G× A) = 0 which holds because f is a quadratic map relative A.

1. First we prove that f2 is surjective. Let h be any element in H. As q2(h) ∈ V and f3 is
surjective, there is u ∈ U such that q2(h) = f3(u). Moreover there exists g ∈ G such that
u = q1(g) because q1 is also surjective. Hence we have

q2(h) = f3(u) = (f3 ◦ q1)(g) = (q2 ◦ f2)(g) .

It implies that h − f2(g) ∈ B. As f1 is surjective, there is a ∈ A such that h − f2(g) =
f1(a) = f2(a) (because f1 is the restriction of f2 to A). Then the map f2 is quadratic relative
A implying that we get f2(a+ g) = f2(a) + f2(g) because df2(A×G) = 0. Hence we have

h = f2(a) + f2(g) = f2(a+ g)

Finally f2 is surjective.

2. Then we prove that f2 is injective. Let g and g′ be two elements in G such that f2(g) = f2(g′).
By postcomposing with q2, we have

(q2 ◦ f2)(g) = (q2 ◦ f2)(g′)⇐⇒ (f3 ◦ q1)(g) = (f3 ◦ q1)(g′)

⇐⇒ q1(g) = q1(g′) because f3 is injective

⇐⇒ g − g′ ∈ A

As f2 is a quadratic map relative A, we get f2(g) = f2((g−g′)+g′) = f2(g−g′)+f2(g′). Hence
we have f2(g − g′) = 0 because f2(g) = f2(g′). But g − g′ ∈ A and f1 is the restriction of f2 to
A, so we have f1(g − g′) = 0 implying that we get g = g′ because f1 is injective. Finally f2 is
injective.

4.5 Construction of the Lazard functor

Now we search for a quadratic equivalence with domain C and values in Alg − P . We call this the
Lazard correspondence for the 2-radicable 2-step nilpotent variety C. For this we �rst modify the
left Λ-module structure for FP , the free P-algebra of rank 1, given in 4.3.6 in such a way that we
obtain a bijection LE,E : C(E, E) → Alg − P(FP , FP). Then we �nd an appropriate quadratic
C-module over P whose associated quadratic functor L : C → Alg − AbOp(C) will be proved to be
an equivalence in the next section.

4.5.1 The quadratic functor L : C → Alg − AbOp(C)
Here we �nd the quadratic functor L : C → Alg − AbOp(C) by picking a particular quadratic C-
module over P = AbOp(C) (see (4.2.3)) with a suitable Λ-module structure on FP . As the quadratic
functor L has to be an equivalence of categories, we know that its corresponding quadratic C-module
over P is of the following form (by 3.6.9):

T11cr2(UE)(E, E)⊗Λ FP P(2)

T11cr2(UE)(E, E)⊗Λ P(2)S2 P(2) P(2)S2

FPHL
//

OO

id⊗Λi2

OO

Ĥ

//
OO

i2

OO
q̇ //

q
// (4.5.1)
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where i2 : P(2)S2 � FP is the canonical inclusion of the second summand, q : P(2)→ P(2)S2 is the
cokernel of T − id (see 4.2.5), q̇ : P(2)→ FP is the composite i2 ◦ q, HL : T11cr2(UE)(E, E)⊗ΛFP →
P(2) is a morphism satisfying the relations (QM1) and (QM2) (the relation (QM2) holds if, and
ony if, the left-hand square commutes) in 2.1.1 and Ĥ : T11cr2(UE)(E, E)⊗Λ P(2)S2 → P(2) is the
morphism de�ned by

Ĥ
(
t11(ρ2(ξ))⊗Λ h

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)

)
, (4.5.2)

for ξ ∈ C(E, E+2) and h ∈ P(2).

Notation 4.5.1. The top and the bottom rows of the diagram (4.5.1) are respectively denoted by ML

and by (ML)2.

On the one hand, we give another structure of left Λ-module for FP = P(1) ⊕ P(2)S2 , the free
P-algebra of rank 1. For this we �rst de�ne the map

φLE,E : C(E, E)→ FP by φLE,E(α) =
(
αab,

1

2
H(α)

)
= α.(id, 0) +

1

2
q̇(H(α)) (4.5.3)

where α ∈ C(E, E) and α.(id, 0) is given in 4.3.6.

Proposition 4.5.2. The map φLE,E : C(E, E)→ FP is quadratic relative C
(
E, [E, E]IdC

)
.

Proof. First we prove that the deviation of φLE,E to be a homomorphism of groups (see (4.4.1) for
f = φLE,E) is bilinear. Let f1, f2 ∈ C(E,E), then we have

dφLE,E(f1, f2) = φLE,E(f1 + f2)− φLE,E(f1)− φLE,E(f2)

=
(

(f1 + f2)ab,
1

2
H(f1 + f2)

)
−
(
fab1 ,

1

2
H(f1)

)
−
(
fab2 ,

1

2
H(f2)

)
=
(

0,
1

2

(
H(f1 + f2)−H(f1)−H(f2)

))
=
(

0,
1

2
IdC(f2|f1) ◦H(2)

)
, by (4.1.17)

=
(

0,
1

2
γ1,1;2(fab2 ⊗ fab1 ⊗H(2))

)
, (4.2.4)

We deduce that dφLE,E : C(E, E) × C(E, E) → C(E, E) is bilinear. Next we verify that

dφLE,E

(
C(E, [E, E]IdC)×C(E, E)

)
= dφLE,E

(
C(E, E)×C(E, [E, E]IdC)

)
= 0. Let f ∈ C(E, [E, E]IdC).

If we replace f2 (or f1) with (iE)∗(f) = iE ◦ f , then we clearly have observe that

H(f1 + f) = H(f1) +H(f)

because abE : E → Eab is the cokernel of iE : [E, E]IdC � E implying that (iE ◦ f)ab = 0.

Proposition 4.5.3. The map φLE,E : C(E, E)→ FP is a bijection.

Proof. First we prove that the following diagram is commutative:

P(2)S2 FP P(1) 0

C(E, [E, E]IdC) C(E,E) C(E,Eab) 0

0

0

// // i2 // π1 // //

// // (iE)∗ // (abE)∗ // //

θE◦((abE)∗)−1∼=

��

φLE,E

��

((abE)∗)−1∼=

��
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where θE : C(Eab, [E, E]IdC) → P(2)S2 is the isomorphism given in 4.2.2, i2 is the injection of the
second summand and π1 is the projection onto the �rst summand. The top sequence of the above
diagram is exact because we apply the representable functor C(E, −) : C → Gr to the following short
exact sequence

0 −→ [E, E]IdC
iE−→ E

abE−→ Eab −→ 0

For f ∈ C(E, [E, E]IdC), then we check that the right-hand square is commutative:

i2 ◦ θE ◦ ((abE)∗)−1(f) = (i2 ◦ θE)(fab)

= i2

(1

2
H(iE ◦ fab ◦ abE)

)
=
(

0,
1

2
H(iE ◦ f)

)
=
(

(iE ◦ f)ab,
1

2
H(iE ◦ f)

)
= φLE,E(iE ◦ f)

= φLE,E ◦ (iE)∗(f)

Let g ∈ C(E, E), then we prove that the left-hand square commutes:

((abE)∗)−1 ◦ (abE)∗(f) = fab = π1

(
fab,

1

2
H(f)

)
= π1 ◦ φLE,E(f)

As φLE,E : C(E, E) → FP is a quadratic map relative the subgroup group C
(
E, [E, E]IdC

)
by 4.5.2,

it is a bijection by 4.4.2.

Let us recall the canonical isomorphism ev(id,0) : Alg − P(FP , FP) → FP , then we de�ne the
composite map LE,E = ev−1

(id,0)
◦ φLE,E : C(E, E) → Alg − P(FP , FP) that is a bijection (as a

composite of two bijections). It will correspond to the image of endomorphisms of E in C by the
Lazard equivalence L (see 3.2, 6.12 and 6.16 of [12]), and it has the following explicit expression:

Lemma 4.5.4. Let α ∈ C(E, E), f ∈ P(1) and h ∈ P(2). Then we have

LE,E(α)(f, h) =
(
αab ◦ f, γ1,1;2(αab ⊗ αab ⊗ h) +

1

2
γ2;1(H(α)⊗ f)

)
Proof. We consider the equalities as follows:

LE,E(α)(f, h)

= ev−1
(id,0)
◦ φLE,E(α)(f, h)

= ev−1
(id,0)

(
αab,

1

2
H(α)

)
(f, h) , by 4.5.3

= λFP1

((
αab,

1

2
H(α)

)
⊗ f

)
+ λFP2

((
αab,

1

2
H(α)

)
⊗
(
αab,

1

2
H(α)

)
⊗ h
)
, by (1.8.4)

=
(
αab ◦ f, 1

2
γ2;1(H(α)⊗ f)

)
+
(

0, γ1,1;2(αab ⊗ αab ⊗ h)
)
, by (1.8.2) and (1.8.3)

=
(
αab ◦ f, γ1,1;2(αab ⊗ αab ⊗ h) +

1

2
γ2;1(H(α)⊗ f)

)
,

as desired.
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The bijection LE,E : C(E,E) → Alg − P(L(E), L(E)) gives rise to the following left Λ-module
structure on FP :

Proposition 4.5.5. The map LE,E : C(E,E)→ Alg − P(L(E), L(E)) gives rise to a left Λ-module
structure on FP as follows:

α ∗L (f, h) = LE,E(α)(f, h)

=
(
αab ◦ f, γ1,1;2(αab ⊗ αab ⊗ h) +

1

2
γ2;1(H(α)⊗ f)

)
, by 4.5.4

= α.(f, h) +
1

2
q̇
(
γ2;1(H(α)⊗ f)

)
where α ∈ C(E, E), f ∈ P(1), h ∈ P(2) and α.(f, h) is given in 4.3.6.

Proof. Let α1, α2 ∈ C(E, E) and (f, h) ∈ FP , then it su�ces to prove that we have

(α2 ◦ α1) ∗L (f, h) = α2 ∗L
(
α1 ∗L (f, h)

)
We get

(α2 ◦ α1) ∗L (f, h)

= (α2 ◦ α1).(f, h) +
1

2
q̇
(
γ2;1(H(α2 ◦ α1)⊗ f)

)
= α2.

(
α1.(f, h)

)
+

1

2
q̇
(
γ2;1

(
(H(α2) ◦ αab1 )⊗ f

)
+ γ2;1

(
(IdC(α2|α2) ◦H(α1))⊗ f

))
, by (4.1.18)

= α2.
(
α1.(f, h)

)
+

1

2
q̇
(
γ2;1

(
γ2;1(H(α2)⊗ αab1 )⊗ f

)
+ γ2;1

(
γ1,1;2(αab2 ⊗ αab2 ⊗H(α1))⊗ f

))
, by (4.2.4)

= α2.
(
α1.(f, h)

)
+ α2.

(
0,

1

2
γ2;1(H(α1)⊗ f)

)
+

1

2
q̇
(
γ2;1

(
H(α2)⊗ (αab1 ◦ f)

))
= α2.

(
α1.(f, h) +

1

2
q̇
(
γ2;1(H(α1)⊗ f)

))
+

1

2
q̇
(
γ2;1

(
H(α2)⊗ (αab1 ◦ f)

))
= α2.

(
α1 ∗L (f, h)

)
+

1

2
q̇
(
γ2;1

(
H(α2)⊗ (αab1 ◦ f)

))
= α2 ∗L

(
α1 ∗L (f, h)

)
as desired.

Assumption: we now consider that FP is equipped with the left Λ-module structure given in
4.5.5.

On the other hand, we are looking for the expression of the map HL : T11cr2(UE)(E, E)⊗ΛFP →
P(2). For this we de�ne the (right) P(1)-module homomorphism (vL)X,Y : UE(X + Y ) ⊗ FP →
T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) by

(vL)X,Y
(
ξ⊗ (f, h)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
h+T (h)− 1

2
H(2)◦f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y (r2(ξ)ab ◦f)

where X and Y are objects in 〈E〉, and u′C(Eab,IdC(−|−))
: T1UE⊗T1UE⊗Λ⊗ΛP(2)→ C(Eab, IdC(X|Y ))

is the natural transformation between bifunctors given in 4.1.7 which is an isomorphism on 〈E〉×〈E〉.
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Proposition 4.5.6. Let X and Y be two objects in 〈E〉. Then the (right) P(1)-module homomor-
phism (vL)X,Y : UE(X + Y )⊗FP → T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) is Λ-bilinear, i.e.

(vL)X,Y
(
ξ ⊗ α ∗L (f, h)

)
= (vL)X,Y

(
(ξ ◦ α)⊗ (f, h)

)
where ξ ∈ C(E,X + Y ), α ∈ C(E,E) and (f, h) ∈ FP .

Proof. Let ξ ∈ C(E,X + Y ), α ∈ C(E,E) and (f, h) ∈ FP . Then we have the following equalities:

(vL)X,Y
(
ξ ⊗ α ∗L (f, h)

)
= (vL)X,Y

(
ξ ⊗

(
αab ◦ f, γ1,1;2(αab ⊗ αab ⊗ h) +

1

2
γ2;1(H(α)⊗ f)

))
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
γ1,1;2(αab ⊗ αab ⊗ h)

+
1

2
H(α) ◦ f + T

(
γ1,1;2(αab ⊗ αab ⊗ h) +

1

2
H(α) ◦ f

)
− 1

2
H(2) ◦ αab ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
t1(α)⊗ t1(α).(h+ T (h)

)
+ t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

1

2

(
H(α) ◦ f + T (H(α)) ◦ f

−H(2) ◦ αab ◦ f
)

+ (u′C(Eab,IdC(−|−)))
−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

)
= t1(r2

1 ◦ ξ ◦ α)⊗ t1(r2
2 ◦ ξ ◦ α)⊗

(
h+ T (h)

)
+ t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

1

2

(
H(α) ◦ f + T (H(α)) ◦ f

−H(2) ◦ αab ◦ f
)

+ (u′C(Eab,IdC(−|−)))
−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

)
Now we consider the following term:

(u′C(Eab,IdC(−|−)))X,Y

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

1

2

(
H(α) ◦ f + T (H(α)) ◦ f

−H(2) ◦ αab ◦ f
)

+ (u′C(Eab,IdC(−|−)))
−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

))
=

1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦H(α) ◦ f +

1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦ T (H(α)) ◦ f

− 1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦H(2) ◦ αab ◦ f

)
+ r2(ξ)ab ◦ αab ◦ f

By 4.1.26, we have

r2(ξ) ◦ αab = r2(ξ ◦ α)ab − IdC(r2
1 ◦ ξ|r2

2 ◦ ξ) ◦H(α)
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Hence we get

(u′C(Eab,IdC(−|−)))X,Y

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

1

2

(
H(α) ◦ f + T (H(α)) ◦ f

−H(2) ◦ αab ◦ f
)

+ (u′C(Eab,IdC(−|−)))
−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

))
= −1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦H(α) ◦ f +

1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦ T (H(α)) ◦ f

− 1

2
IdC(r

2
1 ◦ ξ|r2 ◦ ξ) ◦H(2) ◦ αab ◦ f

)
+ r2(ξ ◦ α)ab ◦ f

By (4.1.19), we have
T (H(α)) = H(α) +H(2) ◦ αab − IdC(α|α) ◦H(2)

Then it gives the following equalities:

(u′C(Eab,IdC(−|−)))X,Y

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

1

2

(
H(α) ◦ f + T (H(α)) ◦ f

−H(2) ◦ αab ◦ f
)

+ (u′C(Eab,IdC(−|−)))
−1
X,Y

(
r2(ξ)ab ◦ αab ◦ f

))
= −1

2
IdC(r

2
1 ◦ ξ ◦ α|r2

2 ◦ ξ ◦ α).H(2) ◦ f + r2(ξ ◦ α)ab ◦ f

= (u′C(Eab,IdC(−|−)))X,Y

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
− 1

2
IdC(α|α) ◦H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y

(
r2(ξ ◦ α)ab ◦ f

))
implying that we have

t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ)⊗
1

2

(
H(α) ◦ f + T (H(α)) ◦ f −H(2) ◦ αab ◦ f

)
+ (u′cr2UE)−1

X,Y

(
r2(ξ)ab ◦ αab ◦ f

= t1(r2
1 ◦ ξ)⊗ t1(r2

2 ◦ ξ)⊗
(
− 1

2
IdC(α|α) ◦H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y

(
r2(ξ ◦ α)ab ◦ f

)
because (u′cr2UE)X,Y : T1UE(X) ⊗ T1UE(Y ) ⊗Λ⊗Λ P(2) → C(Eab, IdC(X|Y )) is an isomorphism, see
4.1.11 and 4.1.7. Hence we have

(vL)X,Y
(
ξ ⊗ α ∗L (f, h)

)
= t1(r2

1 ◦ ξ ◦ α)⊗ t1(r2
2 ◦ ξ ◦ α)⊗

(
h+ T (h)

)
+ t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
− 1

2
IdC(α|α) ◦H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y

(
r2(ξ ◦ α)ab ◦ f

)
= t1(r2

1 ◦ ξ ◦ α)⊗ t1(r2
2 ◦ ξ ◦ α)⊗

(
h+ T (h)− 1

2
H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X,Y

(
r2(ξ ◦ α)ab ◦ f

)
= (vL)X,Y

(
(ξ ◦ α)⊗ (f, h)

)
,

as desired.

Then it follows that the (right) P(1)-module homomorphism (vL)X,Y : UE(X + Y ) ⊗ FP →
T1UE(X) ⊗ T1UE(Y ) ⊗Λ⊗Λ P(2) factorizes through the quotient map qΛ

Z : UE(X + Y ) ⊗ FP →
UE(X+Y )⊗ΛFP by 2.4.3. We denote by (vL)X,Y : UE(X+Y )⊗ΛFP → T1UE(X)⊗T1UE(Y )⊗Λ⊗ΛP(2)
its factorization.
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Proposition 4.5.7. For two objects X and Y in 〈E〉, the P(1)-module homomorphism (vL)X,Y :
UE(X + Y )⊗FP → T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) is natural in X and Y .

Proof. Let α ∈ C(X1, X2), β ∈ C(Y1, Y2), ξ ∈ C(X,X1 + Y1) and (f, h) ∈ FP . Then we have

(vL)X2,Y2

((
(α + β) ◦ ξ

)
⊗ (f, h)

)
= t1

(
r2

1 ◦ (α + β) ◦ ξ
)
⊗ t1

(
r2

2 ◦ (α + β) ◦ ξ
)
⊗
(
h+ T (h)− 1

2
H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X2,Y2

(
r2

(
(α + β) ◦ ξ

)ab ◦ f)
= t1

(
α ◦ r2

1 ◦ ξ
)
⊗ t1

(
β ◦ r2

2 ◦ ξ
)
⊗
(
h+ T (h)− 1

2
H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X2,Y2

(
r2

(
(α + β) ◦ ξ

)ab ◦ f)
= t1(α)⊗ t1(β).

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ)⊗

(
h+ T (h)− 1

2
H(2) ◦ f

))
+ (u′C(Eab,IdC(−|−)))

−1
X2,Y2

(
r2

(
(α + β) ◦ ξ

)ab ◦ f)
However we have

ιIdC2 ◦ r2

(
(α + β) ◦ ξ

)
= (α + β) ◦ ξ −

(
i21 ◦ r2

1 ◦
(
(α + β) ◦ ξ) + i21 ◦ r2

1 ◦
(
(α + β) ◦ ξ)

)
, by (4.1.11)

= (α + β) ◦ ξ −
(

(α + β) ◦ i21 ◦ r2
1 ◦ ξ + (α + β) ◦ i22 ◦ r2

2 ◦ ξ
)

= (α + β) ◦ ξ − (α + β) ◦
(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

)
, by (4.1.21)

= (α + β) ◦
(
ξ −

(
i21 ◦ r2

1 ◦ ξ + i22 ◦ r2
2 ◦ ξ

))
, by (4.1.21)

= (α + β) ◦ ιIdC2 ◦ r2(ξ) , by (4.1.11)

= ιIdC2 ◦ IdC(α|β) ◦ r2(ξ)

As ιIdC2 : IdC(X,X2|Y2)� C(X,X2 + Y2) is a monomorphism, we get

r2

(
(α + β) ◦ ξ

)
= IdC(α|β) ◦ r2(ξ) = t1(α)⊗ t1(β).r2(ξ)

Hence we have

(u′C(Eab,IdC(−|−)))
−1
X2,Y2

(
r2

(
(α+β)◦ξ

)ab◦f) =
(
t1(α)⊗t1(β)⊗Λ⊗Λ id

)
◦(u′C(Eab,IdC(−|−)))

−1
X1,Y1

(
r2(ξ)ab◦f

)
by naturality of the natural transformation (u′C(Eab,IdC(−|−))

)X1,Y1 : T1UE(X1)⊗T1UE(Y1)⊗Λ⊗ΛP(2)→
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C(X, IdC(X1|Y1)) in X1 and Y1. Finally we get

(vL)X2,Y2

((
(α + β) ◦ ξ

)
⊗ (f, h)

)
= t1

(
α ◦ r2

1 ◦ ξ
)
⊗ t1

(
β ◦ r2

2 ◦ ξ
)
⊗
(
h+ T (h)− 1

2
H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X2,Y2

(
r2

(
(α + β) ◦ ξ

)ab ◦ f)
=
(
t1(α)⊗ t1(β)⊗ id

)(
t1
(
r2

1 ◦ ξ
)
⊗ t1

(
r2

2 ◦ ξ
)
⊗
(
h+ T (h)− 1

2
H(2) ◦ f

)
+ (u′C(Eab,IdC(−|−)))

−1
X1,Y1

(
r2(ξ)ab ◦ f

)
=
(
t1(α)⊗ t1(β)⊗Λ⊗Λ id

)
◦ (vL)X1,Y1

(
ξ ⊗ (f, h)

)
as desired.

Consequently the (right) P(1)-module homomorphism (vL)X,Y : UE(X+Y )⊗ΛFP → T1UE(X)⊗
T1UE(Y )⊗Λ⊗Λ P(2) is also natural in X and Y . Then we de�ne the map (wL)X,Y : cr2UE(X, Y )⊗Λ

FP → T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) by

(wL)X,Y = (vL)X,Y ◦
(
ι2 ⊗Λ id

)
Remark 4.5.8. Let X and Y be two objects in 〈E〉. If ξ ∈ C(E,X + Y ) and (f, h) ∈ FP , then we
have the following relation:

(wL)X,Y
(
ρ2(ξ)⊗ (f, h)

)
= (vL)X,Y

(
ξ ⊗ (f, h)

)
, (4.5.4)

because we have

(wL)X,Y
(
ρ2(ξ)⊗ (f, h)

)
= (vL)X,Y ◦

(
ι2 ⊗Λ id

)(
ρ2(ξ)⊗ (f, h)

)
= (vL)X,Y ◦

(
(ι2 ◦ ρ2)(ξ)⊗Λ (f, h)

)
= (vL)X,Y ◦

(
ξ ⊗Λ (f, h)

)
− (vL)X,Y ◦

(
(i21 ◦ r2

1 ◦ ξ)⊗Λ (f, h)
)

− (vL)X,Y ◦
(
(i22 ◦ r2

2 ◦ ξ)⊗Λ (f, h)
)

= (vL)X,Y ◦
(
ξ ⊗Λ (f, h)

)
since it is straightforward to check that r2(i2k ◦ r2

k ◦ ξ) = 0, for k = 1, 2. Moreover the map (wL)X,Y :
cr2UE(X, Y )⊗Λ FP ⇒ T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) is natural in X and Y because so is the map
(vL)X,Y : UE(X + Y )⊗Λ FP → T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) by 4.5.7.

In summary, we get a natural transformation wL : cr2UE ⊗Λ FP ⇒ T1UE ⊗ T1UE ⊗Λ⊗Λ P(2)
between bifunctors whose target is a bilinear bifunctor. By 1.2.14, there is a unique factorization
wL : T11cr2UE ⊗Λ FP ⇒ T1UE ⊗ T1UE ⊗Λ⊗Λ P(2) of wL : cr2UE ⊗Λ FP ⇒ T1UE ⊗ T1UE ⊗Λ⊗Λ P(2)
through t11 ⊗Λ id : cr2UE ⊗Λ FP ⇒ T11cr2UE ⊗Λ FP , i.e.

wL ◦
(
t11 ⊗Λ id

)
= wL (4.5.5)

Let evP(2) : Λ ⊗ Λ ⊗Λ⊗Λ P(2) → P(2) be the canonical isomorphism, where T1UE(E) = Λ (see
2.0.2). Then we choose a speci�c expression of the morphism HL : T11cr2(UE)(E, E)⊗ FP → P(2)
such that the diagram (4.5.1) is a quadratic C-module over P .
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Lemma 4.5.9. If we de�ne the morphism HL : T11cr2(UE)(E, E)⊗Λ FP → P(2) by

HL
(
t11(ρ2(ξ))⊗Λ (f, h)

)
= evP(2) ◦ (wL)E,E

(
t11(ρ2(ξ))⊗Λ (f, h)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1(r2(ξ)ab ⊗ f) ,

for ξ ∈ C(E, E+2) and (f, h) ∈ FP , then the diagram of homomorphisms of abelian groups (4.5.1)
is a quadratic C-module over P.

Proof. First we know that the bottom row in (4.5.1) is a quadratic C-module over P(1) by 3.6.7. Then
it su�ces to verify that the top one is a quadratic C-module over P(1) and that the diagram (4.5.1)
commutes. We recall that FP and P(2) are respectively a left Λ-module and a left Λ ⊗ Λ-module
(see (4.5.5) and (4.2.6)). The map q̇ : P(2)→ P(2)S2 is a homomorphism of Λ−P(1)-bimodules, in
fact:  α ∗L q̇(h) = α ∗L (0, h) =

(
0, γ1,1;2(αab ⊗ αab ⊗ h)

)
= q̇
(
t1(α)⊗ t1(α).h

)
λFP1

(
q̇(h)⊗ f

)
= λFP1

(
(0, h)⊗ f

)
=
(
0, γ2;1(h⊗ f)

)
= q̇
(
γ2;1(h⊗ f)

)
where α ∈ C(E, E), f ∈ P(1) and h ∈ P(2). Moreover the map q̇ clearly satis�es q̇ = q̇ ◦ T because
q̇ ◦ T = i2 ◦ q ◦ T = i2 ◦ q = q̇. Now it remains to prove the relations (QM1) and (QM2) in 2.1.1.
First we prove that (QM2) is veri�ed. We remark that (QM2) holds whenever the right-hand square
of the diagram (4.5.1) commutes. We have(

HL ◦ (id⊗ i2)
)(
t11(ρ2(ξ))⊗ h

)
= HL

(
t11(ρ2(ξ))⊗ (0, h)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)

)
, by de�nition ofHL

= Ĥ(t11(ρ2(ξ))⊗Λ h) , by (4.5.2)

Next we verify that (QM1) holds. By 4.5.5, we have

(∇2
E ◦ ξ) ∗L (f, h) =

(
(∇2

E ◦ ξ)ab ◦ f, γ1,1;2((∇2
E ◦ ξ)ab ⊗ (∇2

E ◦ ξ)ab ⊗ h) +
1

2
γ2;1(H(∇2

E ◦ ξ)⊗ f)
)

=
(

(∇2
E ◦ ξ)ab ◦ f, IdC(∇2

E ◦ ξ|∇2
E ◦ ξ) ◦ h+

1

2
γ2;1(H(∇2

E ◦ ξ)⊗ f)
)

As IdC(−|−) : C × C → C is a bilinear bifunctor, we have the following equalities by 3.7 of [12]:

IdC(∇2
E ◦ ξ|∇2

E ◦ ξ) = IdC(r
2
1 ◦ ξ|∇2

E ◦ ξ) + IdC(r
2
2 ◦ ξ|∇2

E)

= IdC(r
2
1 ◦ ξ|r2

1 ◦ ξ) + IdC(r
2
1 ◦ ξ|r2

2 ◦ ξ) + IdC(r
2
2 ◦ ξ|r2

1 ◦ ξ) + IdC(r
2
2 ◦ ξ|r2

2 ◦ ξ)

Since the abelianization functor AbC : C → Ab(C) is linear, we have (∇2
E ◦ ξ)ab = (r2

1 ◦ ξ)ab + (r2
2 ◦ ξ)ab

by 3.6 of [12]. Moreover we have the following equalities:

H(∇2
E ◦ ξ)

= H
(
(r2

1 ◦ ξ) + (r2
2 ◦ ξ) + (cE2 ◦ r2(ξ))

)
, by postcomposing with ∇2

E to the equation (4.1.11)

= H
(
(r2

1 ◦ ξ) + (r2
2 ◦ ξ)

)
+H(cE2 ◦ r2(ξ)) , by (4.1.17) and (4.1.16)

= H(r2
1 ◦ ξ) +H(r2

2 ◦ ξ) + IdC
(
r2

2 ◦ ξ|r2
1 ◦ ξ

)
◦H(2) +H(cE2 ◦ r2(ξ)) , by (4.1.17)

= H(r2
1 ◦ ξ) +H(r2

2 ◦ ξ) + γ1,1;2

(
(r2

2 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗H(2)

)
+H(cE2 ◦ r2(ξ)) , by (4.2.4)

= H(r2
1 ◦ ξ) +H(r2

2 ◦ ξ) + γ1,1;2

(
(r2

2 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗H(2)

)
+H(cE2 ◦ r2(ξ)ab ◦ abE)

= H(r2
1 ◦ ξ) +H(r2

2 ◦ ξ) + γ1,1;2

(
(r2

2 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗H(2)

)
+ r2(ξ)ab + T (r2(ξ)ab) , by (4.1.22)
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Finally we obtain

(∇2
E ◦ ξ) ∗L (f, h)

=
(

(r2
1 ◦ ξ)ab, γ1,1;2((r2

1 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗ h) +

1

2
γ2;1(H(r2

1 ◦ ξ)⊗ f)
)

+
(

(r2
2 ◦ ξ)ab, γ1,1;2((r2

2 ◦ ξ)ab ⊗ (r2
2 ◦ ξ)ab ⊗ h) +

1

2
γ2;1(H(r2

1 ◦ ξ)⊗ f)
)

+
(

0, γ1,1;2((r2
1 ◦ ξ)ab ⊗ (r2

2 ◦ ξ)ab ⊗ h) + γ1,1;2((r2
2 ◦ ξ)ab ⊗ (r2

1 ◦ ξ)ab ⊗ h)
)

+
(

0,
1

2
γ1,1;2((r2

2 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗H(2)) ◦ f +

1

2
r2(ξ)ab ◦ f +

1

2
T (r2(ξ)ab) ◦ f

)
= (r2

1 ◦ ξ) ∗L (f, h) + (r2
2 ◦ ξ) ∗L (f, h)

+
(

0, IdC(r2
1 ◦ ξ|r2

2 ◦ ξ) ◦ h+ IdC(r2
1 ◦ ξ|r2

2 ◦ ξ) ◦ T (h)
)

+
(

0,
1

2
γ1,1;2((r2

2 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗ γ2;1(H(2)⊗ f)) +

1

2
r2(ξ)ab ◦ f +

1

2
T (r2(ξ)ab ◦ f)

)
= (r2

1 ◦ ξ) ∗L (f, h) + (r2
2 ◦ ξ) ∗L (f, h) + q̇

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(h+ T (h)

)
+
(
0,

1

2
γ1,1;2((r2

1 ◦ ξ)ab ⊗ (r2
2 ◦ ξ)ab ⊗ (T (H(2)) ◦ f)) + r2(ξ)ab ◦ f

)
, because T (r2(ξ)ab) = r2(ξ)ab

= (r2
1 ◦ ξ) ∗L (f, h) + (r2

2 ◦ ξ) ∗L (f, h) + q̇
(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).(h+ T (h)

)
+
(
0, −1

2
γ1,1;2((r2

1 ◦ ξ)ab ⊗ (r2
2 ◦ ξ)ab ⊗ (H(2) ◦ f)) + γ2;1(r2(ξ)ab ⊗ f)

)
, as T (H(2)) = −H(2)

= (r2
1 ◦ ξ) ∗L (f, h) + (r2

2 ◦ ξ) ∗L (f, h) + q̇
(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

))
+ q̇
(
γ2;1(r2(ξ)ab ⊗ f)

)
= (r2

1 ◦ ξ) ∗L (f, h) + (r2
2 ◦ ξ) ∗L (f, h) +

(
q̇ ◦HL

)(
t11(ρ2(ξ))⊗Λ (f, h)

)
This ends the proof.

This provides a quadratic functor L : C → Alg − P by applying the functor TP2 : QModPC →
Quad(C, Alg − P) de�ned in 2.4.27 to the quadratic C-module over P given in 4.5.1. For an object
X in C, it is de�ned on objects by the following pushout, see 2.1.3:

(
T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP

)
S2

⊕ (UE(X)⊗ P(2)) T2UE(X)⊗Λ FP

(
T1UE(X)⊗2 ⊗Λ⊗Λ P(2)

)
S2

L(X)

φX //

ψLX

��
ψ̂M

L
X

��

φ̂M
L

X

//

(4.5.6)

Notation 4.5.10. The quadratic functor L : C → Alg −AbOp(C) will be called the Lazard functor in
the sequel.

152



4.6 The Lazard functor is an equivalence

Here we show that the functor L : C → Alg − AbOp(P) constructed in the previous section satis�es
the equivalence criterion established in Theorem 3.5.2. This in particular requires to prove that the
functor L restricted to the full-subcategory of free objects of �nite rank in C takes values in the full
subcategory of free P-algebras of �nite rank and is an equivalence.

However, as we found the criterion 3.5.2 only recently and time is too short to adapt this section
to it, we will here only show that the restriction of L to 〈E〉 takes values in 〈FP〉 (up to isomorphism)
and is an isomorphism of theories by using the criterion given in 3.5.1. This is su�cient to establish
an equivalence L∗ : Model(〈FP〉) → Model(〈E〉), which provides a Lazard correspondence between
Alg-AbOp(C) ' Model(〈FP〉) and C ' Model(〈E〉) which will be made explicit in the next chapter,
in terms of a BCH type formula.

We start with the following remark.

Remark 4.6.1. By 6.11 of [12], we know that L(E) is isomorphic to FP . To simplify calculations,
we consider that L(E) = FP , which is the same as considering that ηML = id where ηML : ML →
SP2 .TP2 (ML) = SP2 (L) is the unit of the adjunction of 2.4.37 evaluated onML and SP2 : Quad(C, Alg−
P)→ QModPC is the functor de�ned in 2.4.27.

We recall that the morphism φX in the pushout (4.5.6) is de�ned by φX =
(
φ′1 ⊗ id, t2 ⊗ q̇

)
(see

2.1.3), where the morphism φ′1 : T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E) → T2UE(X) is given in (2.1.1)
by:

T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E) T2UE(X)

T1UE(X)⊗2 ⊗Λ⊗Λ cr2(T2UE)(E,E) cr2(T2UE)(X,X)

φ′1 //

id⊗2⊗cr2(t2) ∼=

��

S
T2UE
2

OO

u′
cr2(T2UE)

//

where u′cr2(T2UE) : T1UE ⊗ T1UE ⇒ cr2(T2UE) is the natural transformation between bifunctors with
domain C × C and values in Ab given in 3.21 of [12]. By 3.22 of [12], it is an isomorphism when
restricted to 〈E〉, the full subcategory of free objects of �nite rank of C.

Lemma 4.6.2. The natural transformation u′cr2(T2UE) : T1UE⊗T1UE ⇒ cr2(T2UE) between bifunctors
with domain C × C and values in Ab is an isomorphism.

Proof. It su�ces to see that the functors T1UE, T2UE : C → Ab preserve �ltered colimits and co-
equalizers of re�exive graphs by 6.24 of [12], and that the property given in 4.0.3 holds in C. Then
the proof is a direct consequence of 6.25 of [12].

Now we recall that the morphism ψLX in the pushout (4.5.6) is given by ψLX =
(
id⊗2 ⊗HL, π ◦

(δ ⊗ id)
)
, where δ : UE(X) → T1UE(X)⊗2, α 7→ t1(α)⊗2 and π : T1UE(X)⊗2 ⊗Λ⊗Λ P(2) →(

T1UE(X)⊗2 ⊗Λ⊗Λ P(2)
)
S2

is the canonical quotient map. The explicit expression of the morphism

HL : T11cr2(UE)(E, E)⊗Λ FP → P(2) implies the following property on ψLX :

Proposition 4.6.3. Let X be an object in C. Then the morphism

ψLX :
(
T1UE(X)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP

)
S2
⊕ (UE(X)⊗ P(2))→

(
T1UE(X)⊗2 ⊗Λ⊗Λ P(2)

)
S2

restricted to the �rst summand (in (4.5.6)) is surjective. Hence the morphism ψ̂M
L

X : T2UE(X) ⊗Λ

FP → L(X) also is surjective.
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Proof. Let f1, f2 ∈ C(E,X) and h ∈ P(2). Then we have the following equality:

ψLX
(
t1(f1)⊗ t1(f2)⊗ t11(ρ2(ιIdC2 ◦ h ◦ abE))⊗ (id, 0), 0)

= t1(f1)⊗ t1(f2)⊗HL
(
t11(ρ2(ιIdC2 ◦ h ◦ abE))⊗ (id, 0)

)
However we get

HL
(
t11(ρ2(ιIdC2 ◦ h ◦ abE))⊗ (id, 0)

)
= r2

(
ιIdC2 ◦ h ◦ abE

)ab
= h

because, for k = 1, 2, we have r2
k ◦ ι

IdC
2 = 0. It proves that

ψLX
(
t1(f1)⊗ t1(f2)⊗ t11(ρ2(ιIdC2 ◦ h ◦ abE))⊗ (id, 0), 0) = t1(f1)⊗ t1(f2)⊗ h ,

as desired.

Remark 4.6.4. As C is a semi-abelian category (in particular Mal'cev and Barr exact), the functor
L : C → Alg − P preserves coequalizers of re�exive pairs (hence regular epimorphisms by 2.31 of
[14]) because it is the quadratic tensor product (see 2.1.3) of some quadratic C-module over P by
6.24 of [12].

For an object X in C, we recall that the linearization of the Lazard functor is given in 2.3.3 by

T1L(X) = T1

(
−⊗ML)(X) ∼= T1UE(X)⊗Λ Coker(q̇) = T1UE(X)⊗Λ P(1)

and ML is the quadratic C-module over the ring P(1) given in 4.5.1 and γ : T1L⇒ T1UE ⊗Λ P(1) is
the corresponding natural transformation given in (2.3).

Notation 4.6.5. We denote by γ : T1L⇒ C
(
Eab, AbC

)
the natural isomorphism that is the postcom-

position of the natural isomorphism u′C(Eab, AbC)
: T1UE ⊗Λ P(1)⇒ C

(
Eab, AbC

)
(see 4.2.11) with the

natural isomorphism γ : T1L⇒ T1UE ⊗Λ P(1) (see (2.3)).

In addition, the structure linear maps that make L(X) a P-algebra are given in 2.4.26. Here we
recall the construction of the structure linear map encoding binary operations parametrized by P(2)
that is given by the natural transformation λL2 : L⊗2 ⊗ P(2)⇒ L de�ned as follows:

λL2 = TP(1)
2 ((i2, id)) ◦

(
(tL1 )⊗2 ⊗S id

)
◦ qML ◦ qR⊗RZ , (4.6.1)

see (2.4.16) where R = P(1). Then, for an object X in C, it is now possible to prove that λL2 : L⊗2⊗
P(2) ⇒ L is entirely determined by the natural transformation φ̂ML :

(
T1U

⊗2
E ⊗Λ⊗Λ P(2)

)
S2
⇒ L

given in 2.1.3.

Notation 4.6.6. Let X be an object in C. We consider the following notations:

• We recall that, for any α ∈ C(Eab, Xab), we denote by α = γX
−1(α), see 4.6.5.

• We denote by b ∈ L(E) an antecedent of id = γE
−1(id) by the regular epimorphism t1 : L(E)→

T1L(E).

Proposition 4.6.7. Let X be an object in C. Then we have

Im
(
φ̂M

L

X

)
= Im

(
(λL2 )X

)
= [L(X), L(X)]IdAlg−P

where the morphism φ̂M
L

X :
(
T1UE(X)⊗2⊗Λ⊗Λ P(2)

)
S2
→ L(X) is present in the pushout (4.5.6) and

(λL2 )X : L(X)⊗2 ⊗ P(2)→ L(X) is a part of the structure linear maps of L(X).
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Proof. First we prove that Im
(
φ̂M

L

X

)
⊂ Im

(
(λL2 )X

)
= [L(X), L(X)]IdAlg−P . For this, we consider

f1, f2 ∈ C(E,X) and h ∈ P(2) = C
(
Eab, IdC(E|E)

)
. For k = 1, 2, consider the following diagram

L(X) T1L(X)

L(E) T1L(E) C
(
Eab, Eab

)
C
(
Eab, Xab

)
L(fk)

OO

tL1

//

tL1 //

T1L(fk)

OO

(fabk )∗

OO

γX
∼=

//

γE
∼=

// (4.6.2)

The above diagram commutes by naturality of tL1 : L(X)→ T1L(X) and γX : T1L(X)→ C
(
Eab, Xab

)
in X. Then we have

φ̂M
L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= TP(1)

2

(
(i2, id)

)
X
◦ φ̂(ML)2

X

(
t1(f1)⊗ t1(f2)⊗ h

)
, by (2.1.2)

= TP(1)
2

(
(i2, id)

)
X

(
T1L(f1)(id)⊗ T1L(f2)(id)⊗S h

)
As the morphism tL1 : L(E) → T1L(E) is an epimorphism, there is an element b ∈ L(E) such
that tL1 (b) = id = γE

−1(id) (see 4.6.6). Then we set xk = L(fk)(b), for k = 1, 2 and we get
tL1 (xk) = T1L(fk)(id) because the left-hand square of the diagram (4.6.2) commutes. Then we have

φ̂M
L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= TP(1)

2

(
(i2, id)

)
X

(
T1L(f1)(id)⊗ T1L(f2)(id)⊗S h

)
= TP(1)

2

(
(i2, id)

)
X

(
tL1 (x1)⊗ tL1 (x2)⊗S h

)
= TP(1)

2

(
(i2, id)

)
X
◦
(
(tL1 )⊗2

X ⊗S id
)
◦ qML

X ◦ qR⊗RZ
(
x1 ⊗ x2 ⊗ h)

= λL2
(
x1 ⊗ x2 ⊗ h

)
, by (4.6.1)

Hence we get

φ̂M
L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= λL2

(
L(f1)(b)⊗ L(f2)(b)⊗ h

)
(4.6.3)

Next we prove that [L(X), L(X)]IdAlg−P = Im
(
(λL2 )X

)
⊂ Im

(
φ̂M

L

X

)
. Let x1, x2 ∈ L(X) and h ∈ P(2).

As the right-hand square commutes and γX : T1L(X) → C(Eab, Xab) is an isomorphism (see 4.6.5),
there is a unique αk ∈ C(Eab, Xab) (k = 1, 2) such that

tL1 (xk) = γX
−1(αk) (4.6.4)

As E is a regular-projective object and abX : X → Xab is a regular epimorphism, there is a (non-
unique) morphism fk ∈ C(E,X) such that, for k = 1, 2, we have

abX ◦ fk = αk ◦ abE , i.e. αk = fabk (4.6.5)

By (4.6.4) and (4.6.5), it follows that, for k = 1, 2, we get

tL1 (xk) = T1L(fk)(γE
−1(id)) = T1L(fk)(id) (4.6.6)

Hence we get

λL2
(
x1 ⊗ x2 ⊗ h

)
= TP(1)

2

(
(i2, id)

)
X
◦
(
(tL1 )⊗2

X ⊗S id
)
◦ qML

X ◦ qR⊗RZ
(
x1 ⊗ x2 ⊗ h) , by (4.6.1)

= TP(1)
2

(
(i2, id)

)
X

(
tL1 (x1)⊗ tL1 (x2)⊗S h

)
= TP(1)

2

(
(i2, id)

)
X

(
T1L(f1)(id)⊗ T1L(f2)(id)⊗S h

)
, by (4.6.6)

= TP(1)
2

(
(i2, id)

)
X
◦ φ̂(ML)2

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= φ̂M

L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
, by (2.1.2)
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as desired. Then 1.7.4 gives [L(X), L(X)]IdAlg−P = Im(λL2 ) because the (linear) operad P = AbOp(C)
is 2-step nilpotent.

Now we are able to prove that the linearization T1L of the Lazard functor and the composite
functors AbAlg−P .L both with domain C and values in ModP(1) are isomorphic to each other. We
�rst give up to isomorphism an explicit expression of the second cross-e�ect of the Lazard functor
L : C → Alg − P that has been already given in 6.20 of [12]. In fact it says that there is a natural
transformation Φ : T1UE ⊗ T1UE ⊗Λ⊗Λ P(2) ⇒ cr2L between bilinear bifunctors such that, for X1

and X2 two objects in C, fk ∈ C(E,Xk) (k = 1, 2) and h ∈ P(2), we get

ΦX1,X2(t1(f1)⊗ t1(f2)⊗ h) = (ιL2 )−1 ◦ φ̂ML

X1+X2

(
t1(i21 ◦ f1)⊗ t1(i22 ◦ f2)⊗ h

)
(4.6.7)

By 4.0.3 and 6.27 of [12], it is a natural isomorphism on C×C. Then we have the following proposition:

Proposition 4.6.8. For an object X in C, we have

(SL2 )X ◦ ΦX,X = φ̂M
L

X ◦ π

where SL2 : cr2L.∆
2 ⇒ L is the natural transformation given in 1.2.7 and π : T1UE(X)⊗2 ⊗ P(2) →(

T1UE(X)⊗2 ⊗ P(2)
)
S2

is the canonical quotient.

Proof. Let f1, f2 ∈ C(E,X) and h ∈ P(2). Then we get

(SL2 )X ◦ ΦX,X(t1(f1)⊗ t1(f2)⊗ h)

= L(∇2
X) ◦ ιL2 ◦ ΦX,X(t1(i21 ◦ f1)⊗ t1(i22 ◦ f2)⊗ h) , by 1.2.7

= L(∇2
X) ◦ φ̂ML

X+2(t1(i21 ◦ f1)⊗ t1(i22 ◦ f2)⊗ h) , by (4.6.7)

= φ̂M
L

X ◦
(
t1(∇2

X)⊗2 ⊗Λ⊗Λ id
)
S2

(t1(i21 ◦ f1)⊗ t1(i22 ◦ f2)⊗ h) , by (2.1.2)

= φ̂M
L

X (t1(f1)⊗ t1(f2)⊗ h) ,

as desired.

Now we are able to give the following proposition:

Proposition 4.6.9. The linear functors T1L and AbAlg−P · L with domain C and values in ModP(1)

are isomorphic to each other; more precisely, there is a unique isomorphism ϑX : AbAlg−P · L(X)→
T1L(X) natural in X such that

ϑX ◦ abL(X) = (tL1 )X (4.6.8)

Proof. For all X ∈ C, we have the following equalities:

Im
(
S
IdAlg−P
2 : IdAlg−P

(
L(X)|L(X)

)
→ L(X)

)
= [L(X), L(X)]IdAlg−P , by de�nition

= Im
(
(λL2 )X : L(X)⊗ ⊗ P(2)→ L(X)

)
= Im

(
φ̂M

L

X

)
, by 4.6.7

= Im
(
φ̂M

L

X ◦ π
)
, since π is a surjection

= Im
(

(SL2 )X ◦ ΦX,X

)
, b 4.6.8

= Im
(
(SL2 )X : L(X|X)→ L(X)

)
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The last equality holds because ΦX,X is an isomorphism (hence a surjection). As the cokernels of
S
IdAlg−P
2 and (SL2 )X are respectively abL(X) : L(X) → AbAlg−P · L(X) and (tL1 )X : L(X) → T1L(X),

it concludes the proof.

Remark 4.6.10. For an object X in C and x ∈ L(X), we remark that we clearly have the following
relation:

ϑX(x) = tL1 (x)

where x = abL(X)(x) (see the notations given in 1.7.6).

4.6.1 The functor L| 〈E〉 : 〈E〉 → Alg − AbOp(C) preserves �nite coproducts

Here we check that the quadratic functor L|〈E〉 : 〈E〉 → Alg − P restricted to 〈E〉, or simply L,
preserves �nite coproducts. In this case, this ensures that L|〈E〉 : 〈E〉 → Alg−P takes values in 〈FP〉
so that it is a quadratic functor between algebraic theories. We �rst recall the explicit expression of
the coproduct FP + FP . By 1.8.5, it is given as follows:

FP + FP = FP ×FP × P(2)

together with its structure linear maps given by

• λF
+2
P

1 :
(
F+2
P
)
⊗ P(1)→ FP is de�ned by

λ
F+2
P

1

((
(f1, h1), (f2, h2), h

)
⊗ g
)

=
((
f1 ◦ g, h1 ◦ g)

)
,
(
f2 ◦ g, h2 ◦ g

)
, h ◦ g

)
where fk, g ∈ P(1), hk, h ∈ P(2) and k = 1, 2.

• λF
+2
P

2 : (F+2
P )⊗2 ⊗ P(2)→ FP is de�ned by

λ
F+2
P

2

((
(f 1

1 , h
1
1), (f 1

2 , h
1
2), h1

)
⊗
(
(f 2

1 , h
2
1), (f 2

2 , h
2
2), h2

)
⊗ h
)

=
((

0, IdC(f 1
1 |f 2

1 ) ◦ h)
)
,
(
0, IdC(f 1

2 |f 2
2 ) ◦ h)

)
, IdC(f

1
1 |f 2

2 ) ◦ h+ IdC(f
2
1 |f 1

2 ) ◦ T (h)
)

where fk ∈ P(1), fk, h ∈ P(2) and k = 1, 2.

Proposition 4.6.11. The functor L : C → Alg − P restricted to 〈E〉 preserves �nite coproducts.

Proof. It su�ces to verify that L(E + E) ∼= L(E) + L(E) = FP + FP . For this we prove that the
following diagram is a pushout:

B(E+2) T2UE(E+2)⊗Λ FP

(
(T1UE(E+2)⊗ T1UE(E+2))⊗Λ⊗Λ P(2)

)
S2

FP + FP

φE+2 //

ψL
E+2

��

ψ̂M
L

E+2

��

φ̂M
L

E+2

// (4.6.9)

where B(E+2) =
(
(T1UE(E+2)⊗ T1UE(E+2))⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP

)
S2
⊕ (UE(E+2)⊗P(2))

and the maps ψ̂ML

E+2 and φ̂ML

E+2 are de�ned as follows:

• Let ξ ∈ C(E, E+2) and (f, h) ∈ FP , then we have

ψ̂M
L

E+2

(
t2(ξ)⊗Λ (f, h)

)
=
(

(r2
1 ◦ ξ) ∗L (f, h), (r2

2 ◦ ξ) ∗L (f, h), HL
(
t11(ρ2(ξ))⊗Λ (f, h)

))
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• Let f1, f2 ∈ C(E, E+2) and h ∈ P(2), then we have

φ̂M
L

E+2

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ h

)
=
(
q̇
(
γ1,1;2

(
(r2

1 ◦ f1)ab ⊗ (r2
1 ◦ f2)ab ⊗ h

))
, q̇
(
γ1,1;2

(
(r2

2 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗ h

))
,

γ1,1;2

(
(r2

1 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗ h

)
+ γ1,1;2

(
(r2

1 ◦ f2)ab ⊗ (r2
2 ◦ f1)ab)⊗ T (h)

))

First we check that the diagram (4.6.9) commutes. We denote respectively by i1 and i2 the injections
of the �rst and the second summand of B(E+2). Then it remains to prove that we have

ψ̂M
L

E+2 ◦ φE+2 ◦ i1 = φ̂M
L

E+2 ◦ ψE+2 ◦ i1 and ψ̂M
L

E+2 ◦ φE+2 ◦ i2 = φ̂M
L

E+2 ◦ ψE+2 ◦ i2

by the universal property of the coproduct B(E+2). Let f1, f2, f, ξ ∈ C(E, E+2), g ∈ P(1) and
h ∈ P(2). First we have

(
ψ̂M

L

E+2 ◦ φE+2 ◦ i1
)(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ t11(ρ2(ξ))⊗Λ (f, h)

)
= ψ̂M

L

E+2

(
t2
(
∇2
E+2 ◦ (f1 + f2) ◦ ξ

)
⊗Λ (f, h)− t2

(
f1 ◦ r2

1 ◦ ξ
)
⊗Λ (f, h)

− t2
(
f2 ◦ r2

2 ◦ ξ
)
⊗Λ (f, h)

)
, by 2.1.4

=
((
r2

1 ◦ ∇2
E+2 ◦ (f1 + f2) ◦ ξ

)
∗L (f, h),

(
r2

2 ◦ ∇2
E+2 ◦ (f1 + f2) ◦ ξ

)
∗L (f, h),

HL
(
t11

(
ρ2(∇2

E+2 ◦ (f1 + f2) ◦ ξ)
)
⊗Λ (f, h)

))
−
((
r2

1 ◦ f1 ◦ r2
1 ◦ ξ

)
∗L (f, h),

(
r2

2 ◦ f1 ◦ r2
1 ◦ ξ

)
∗L (f, h), HL

(
t11(ρ2(f1 ◦ r2

1 ◦ ξ))⊗Λ (f, h)
))

−
((
r2

1 ◦ f2 ◦ r2
2 ◦ ξ

)
∗L (f, h),

(
r2

2 ◦ f2 ◦ r2
2 ◦ ξ

)
∗L (f, h), HL

(
t11(ρ2(f2 ◦ r2

2 ◦ ξ))⊗Λ (f, h)
))

We compute each component of the above triplet. For k = 1, 2 we have

(
r2
k ◦ ∇2

E+2 ◦ (f1 + f2) ◦ ξ
)
∗L (f, h) =

(
∇2
E ◦ ((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)
∗L (f, h) (4.6.10)

By 4.5.9, the relation (QM1) holds and it implies that we get

(
∇2
E ◦ ((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)
∗L (f, h)−

(
r2
k ◦ f1 ◦ r2

1 ◦ ξ
)
∗L (f, h)−

(
r2
k ◦ f2 ◦ r2

2 ◦ ξ
)
∗L (f, h)

=
(
∇2
E ◦ ((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)
∗L (f, h)−

(
r2

1 ◦ ((r2
k ◦ f1) + (r2

k ◦ f2)) ◦ ξ
)
∗L (f, h)

−
(
r2

2 ◦ ((r2
k ◦ f1) + (r2

k ◦ f2)) ◦ ξ
)
∗L (f, h)

=
(
q̇ ◦HL

)(
t11

(
ρ2(((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ)

)
⊗ (f, h)

)
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Moreover, for k = 1, 2, we have

HL
(
t11

(
ρ2(((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ)

)
⊗ (f, h)

)
= t1(r2

1 ◦ ((r2
k ◦ f1) + (r2

k ◦ f2)) ◦ ξ)⊗ t1(r2
2 ◦ ((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1

(
r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)ab ⊗ f)
= t1(r2

k ◦ f1 ◦ r2
1 ◦ ξ)⊗ t1(r2

k ◦ f2 ◦ r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1

(
r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)ab ⊗ f)
= t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

))
+ γ2;1

(
r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)ab ⊗ f)
Then we give another expression of r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)
as follows:(

(r2
k ◦ f1) + (r2

k ◦ f2)
)
◦ ξ

=
(
(r2
k ◦ f1) + (r2

k ◦ f2)
)
◦
(

(i21 ◦ r2
1 ◦ ξ) + (i22 ◦ r2

2 ◦ ξ) + (ιIdC2 ◦ r2(ξ))
)
, by (4.1.11)

=
(
i21 ◦ r2

k ◦ f1 ◦ r2
1 ◦ ξ

)
+
(
i22 ◦ r2

k ◦ f2 ◦ r2
2 ◦ ξ

)
+
(
ιIdC2 ◦ IdC

(
r2
k ◦ f1|r2

k ◦ f2

)
◦ r2(ξ)

)
, by (4.1.21)

=
(
i21 ◦ r2

1 ◦ ((r2
k ◦ f1) + (r2

k ◦ f2)) ◦ ξ
)

+
(
i22 ◦ r2

2 ◦ ((r2
k ◦ f1) + (r2

k ◦ f2)) ◦ ξ
)

+
(
ιIdC2 ◦ IdC

(
r2
k ◦ f1|r2

k ◦ f2

)
◦ r2(ξ)

)
This proves that we have

r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)
= IdC

(
r2
k ◦ f1|r2

k ◦ f2

)
◦ r2(ξ)

= t1(r2
k ◦ f1)⊗ t1(r2

k ◦ f2).r2(ξ)

Hence we have

r2

(
((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ

)ab
= t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).r2(ξ)ab

It implies that we get

HL
(
t11

(
ρ2(((r2

k ◦ f1) + (r2
k ◦ f2)) ◦ ξ)

)
⊗ (f, h)

)
= t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

))
+ t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).γ2;1(r2(ξ)ab ⊗ f)

= t1(r2
k ◦ f1)⊗ t1(r2

k ◦ f2).
(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f) + γ2;1(r2(ξ)ab ⊗ f)

)
= t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2). HL

(
t11(ρ2(ξ))⊗ (f, h)

)
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Consequently we obtain

(
r2
k ◦ ∇2

E+E ◦ (f1 + f2) ◦ ξ
)
∗L (f, h)−

(
r2
k ◦ f1 ◦ r2

1 ◦ ξ
)
∗L (f, h)−

(
r2
k ◦ f2 ◦ r2

2 ◦ ξ
)
∗L (f, h)

= q̇
(
t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2). HL

(
t11(ρ2(ξ))⊗ (f, h)

))
= q̇
(
γ1,1;2

(
(r2
k ◦ f1)ab ⊗ (r2

k ◦ f2)ab ⊗HL
(
t11(ρ2(ξ))⊗ (f, h)

)))
Then we compute the following term:

HL
(
t11

(
ρ2

(
∇E+2 ◦ (f1 + f2) ◦ ξ

))
⊗Λ (f, h)

)
−HL

(
t11(ρ2(f1 ◦ r2

1 ◦ ξ))⊗Λ (f, h)
)

−HL
(
t11(ρ2(f2 ◦ r2

2 ◦ ξ))⊗Λ (f, h)
)

For this we �rst give another expression of r2

(
∇2
E+2 ◦(f1 +f2)◦ξ

)ab
. We have the following equalities:

∇2
E+2 ◦ (f1 + f2) ◦ ξ = (f1, f2) ◦ ξ

= (f1, f2) ◦
(

(i21 ◦ r2
1 ◦ ξ) + (i22 ◦ r2

2 ◦ ξ) + (ιIdC2 ◦ r2(ξ))
)
, by (4.1.11)

= (f1 ◦ r2
1 ◦ ξ) + (f2 ◦ r2

2 ◦ ξ) +
(
cE

+2

2 ◦ IdC(f1|f2) ◦ r2(ξ)
)
, by (4.1.21)

Then we have

r2

(
∇2
E+2 ◦ (f1 + f2) ◦ ξ

)
= r2

(
(f1 ◦ r2

1 ◦ ξ) + (f2 ◦ r2
2 ◦ ξ) +

(
cE

+2

2 ◦ IdC(f1|f2) ◦ r2(ξ)
))
, by (4.1.11)

= r2

(
(f1 ◦ r2

1 ◦ ξ) + (f2 ◦ r2
2 ◦ ξ)

)
+ r2

(
cE

+2

2 ◦ IdC(f1|f2) ◦ r2(ξ)
)
, by 4.1.27 and (4.1.16)

= r2(f1 ◦ r2
1 ◦ ξ) + r2(f2 ◦ r2

2 ◦ ξ) + γ1,1;2

(
(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)ab ⊗ (r2

2 ◦ f1 ◦ r2
1 ◦ ξ)ab ⊗HE(2)

)
+ γ1,1;2

(
(r2

1 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗ r2(ξ)

)
+ γ1,1;2

(
(r2

1 ◦ f2)ab ⊗ (r2
2 ◦ f1)ab ⊗ T (r2(ξ))

)
by 4.1.27 and 4.1.29. Hence we obtain

r2

(
∇2
E+2 ◦ (f1 + f2) ◦ ξ

)ab
= r2(f1 ◦ r2

1 ◦ ξ)ab + r2(f2 ◦ r2
2 ◦ ξ)ab + γ1,1;2

(
(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)ab ⊗ (r2

2 ◦ f1 ◦ r2
1 ◦ ξ)ab ⊗H(2)

)
+ γ1,1;2

(
(r2

1 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗ r2(ξ)ab

)
+ γ1,1;2

(
(r2

1 ◦ f2)ab ⊗ (r2
2 ◦ f1)ab ⊗ T (r2(ξ)ab)

)
Now we give another expression of t1

(
r2
k ◦ ∇E+2 ◦ (f1 + f2) ◦ ξ). By 2.14 of [12], we get

t1
(
r2
k ◦ ∇E+2 ◦ (f1 + f2) ◦ ξ) = t1

(
∇2
E ◦
(
(r2
k ◦ f1) + (r2

k ◦ f2)
)
◦ ξ
)

= t1
(
r2

1 ◦
(
(r2
k ◦ f1) + (r2

k ◦ f2)
)
◦ ξ
)

+ t1
(
r2

2 ◦
(
(r2
k ◦ f1) + (r2

k ◦ f2)
)
◦ ξ
)

= t1
(
r2
k ◦ f1 ◦ r2

1 ◦ ξ
)

+ t1
(
r2
k ◦ f2 ◦ r2

2 ◦ ξ)
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Hence we have the following equalities:

HL
(
t11

(
ρ2

(
∇2
E+2 ◦ (f1 + f2) ◦ ξ

))
⊗Λ (f, h)

)
= t1(r2

1 ◦ f1 ◦ r2
1 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f1 ◦ r2
1 ◦ ξ)⊗ t1(r2

2 ◦ f2 ◦ r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f2 ◦ r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1

(
r2(f1 ◦ r2

1 ◦ ξ)ab ⊗ f
)

+ γ2;1

(
r2(f2 ◦ r2

2 ◦ ξ)ab ⊗ f
)

+ γ1,1;2

(
(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)ab ⊗ (r2

2 ◦ f1 ◦ r2
1 ◦ ξ)ab ⊗ (H(2) ◦ f)

)
+ γ1,1;2

(
(r2

1 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗ (r2(ξ)ab ◦ f)

)
+ γ1,1;2

(
(r2

1 ◦ f2)ab ⊗ (r2
2 ◦ f1)ab ⊗ (T (r2(ξ)ab) ◦ f)

)
= t1(r2

1 ◦ f1 ◦ r2
1 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1

(
r2(f1 ◦ r2

1 ◦ ξ)ab ⊗ f
)

+ t1(r2
1 ◦ f2 ◦ r2

2 ◦ ξ)⊗ t1(r2
2 ◦ f2 ◦ r2

2 ◦ ξ).
(
h+ T ((h)− 1

2
γ2;1(H(2)⊗ f)

)
+ γ2;1

(
r2(f2 ◦ r2

2 ◦ ξ)ab ⊗ f
)

+ t1(r2
1 ◦ f1 ◦ r2

1 ◦ ξ)⊗ t1(r2
2 ◦ f2 ◦ r2

2 ◦ ξ).
(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).γ2;1(H(2)⊗ f)

+ t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).γ2;1(r2(ξ)ab ⊗ f)

+ t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).γ2;1(T (r2(ξ)ab)⊗ f)

= HL
(
t11(ρ2(f1 ◦ r2

1 ◦ ξ))⊗Λ (f, h)
)

+HL
(
t11(ρ2(f2 ◦ r2

2 ◦ ξ))⊗Λ (f, h)
)

+ t1(r2
1 ◦ f1 ◦ r2

1 ◦ ξ)⊗ t1(r2
2 ◦ f2 ◦ r2

2 ◦ ξ).
(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h)− 1

2
γ1,1;2(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).γ2;1(H(2)⊗ f)

+ t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).γ2;1(r2(ξ)ab ⊗ f)
)

+ t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).γ2;1(T (r2(ξ)ab)⊗ f)
)
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Hence we have

HL
(
t11

(
ρ2(∇E+2 ◦ (f1 + f2) ◦ ξ

))
⊗Λ (f, h)

)
−HL

(
t11(ρ2(f1 ◦ r2

1 ◦ ξ))⊗Λ (f, h)
)

−HL
(
t11(ρ2(f2 ◦ r2

2 ◦ ξ))⊗Λ (f, h)
)

= t1(r2
1 ◦ f1 ◦ r2

1 ◦ ξ)⊗ t1(r2
2 ◦ f2 ◦ r2

2 ◦ ξ).
(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f2 ◦ r2
2 ◦ ξ)⊗ t1(r2

2 ◦ f1 ◦ r2
1 ◦ ξ).

(
h+ T (h) +

1

2
T (γ2;1(H(2)⊗ f))

)
, by 4.1.19

− t1(r2
1 ◦ f2 ◦ r2

2 ◦ ξ)⊗ t1(r2
2 ◦ f1 ◦ r2

1 ◦ ξ).T (γ2;1(H(2)⊗ f)) , by 4.1.19

+ t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).γ2;1(r2(ξ)ab ⊗ g) + t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).T (γ2;1(r2(ξ)ab ⊗ f))

= t1(r2
1 ◦ f1 ◦ r2

1 ◦ ξ)⊗ t1(r2
2 ◦ f2 ◦ r2

2 ◦ ξ).
(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

)
+ t1(r2

1 ◦ f1)⊗ t1(r2
2 ◦ f2).γ2;1(r2(ξ)ab ⊗ f)

+ t1(r2
1 ◦ f2 ◦ r2

2 ◦ ξ)⊗ t1(r2
2 ◦ f1 ◦ r2

1 ◦ ξ).
(
h+ T (h)− 1

2
T (γ2;1(H(2)⊗ f))

)
+ t1(r2

1 ◦ f2)⊗ t1(r2
2 ◦ f1).T (γ2;1(r2(ξ)ab ⊗ f))

= t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).
(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
h+ T (h)− 1

2
γ2;1(H(2)⊗ f)

))
+ t1(r2

1 ◦ f1)⊗ t1(r2
2 ◦ f2).γ2;1(r2(ξ)⊗ f)

+ t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).
(
t1(r2

2 ◦ ξ)⊗ t1(r2
1 ◦ ξ).T

(
T (h) + h− 1

2
γ2;1(H(2)⊗ f)

))
+ t1(r2

1 ◦ f2)⊗ t1(r2
2 ◦ f1).T (γ2;1(r2(ξ)ab ⊗ f))

= t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).HL
(
t11(ρ2(ξ))⊗Λ (f, h)

)
+ t1(r2

1 ◦ f2)⊗ t1(r2
2 ◦ f1).T

(
t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
T (h) + h− 1

2
γ2;1(H(2)⊗ f)

))
+ t1(r2

1 ◦ f2)⊗ t1(r2
2 ◦ f1).T (γ2;1(r2(ξ)ab ⊗ f))

= t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).HL
(
t11(ρ2(ξ))⊗Λ (f, h)

)
+ t1(r1 ◦ f2)⊗ t1(r2 ◦ f1).T

(
HL
(
t11(ρ2(ξ))⊗Λ (f, h)

))
= γ2;1

(
(r2

1 ◦ f1)ab ⊗ (r2
2 ◦ f2)ab ⊗HL

(
t11(ρ2(ξ))⊗Λ (f, h)

))
+ γ2;1

(
(r1 ◦ f2)ab ⊗ (r2 ◦ f1)ab ⊗ T

(
HL
(
t11(ρ2(ξ))⊗Λ (f, h)

)))

Finally it proves that we have

φ̂M
L

E+2 ◦ ψE+2 ◦ i1 = ψ̂M
L

E+2 ◦ φE+2 ◦ i1
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Then we have the following equalities:

(
ψ̂M

L

E+2 ◦ φE+2 ◦ i2
)
(ξ ⊗Λ h)

= ψ̂M
L

E+2

(
t2(ξ)⊗Λ (0, h)

)
=
(

(r2
1 ◦ ξ) ∗L (0, h), (r2

2 ◦ ξ) ∗L (0, h), HL
(
t11(ρ2(ξ))⊗Λ (0, h)

))
=
((

0, γ1,1;2

(
(r2

1 ◦ ξ)ab ⊗ (r2
1 ◦ ξ)ab ⊗ h

))
,
(
0, γ1,1;2

(
(r2

2 ◦ ξ)ab ⊗ (r2
2 ◦ ξ)ab ⊗ h

))
,

t1(r2
1 ◦ ξ)⊗ t1(r2 ◦ ξ).(h+ T (h))

)
= φ̂M

L

E+2

(
t1(ξ)⊗ t1(ξ)⊗ h

)
=
(
φ̂m

L

E+2 ◦ ψE+2 ◦ i2
)
(ξ ⊗Λ h)

Hence it proves that we get

φ̂M
L

E+2 ◦ ψE+2 ◦ i2 = ψ̂M
L

E+2 ◦ φML

E+2 ◦ i2

By the universal property of the coproduct B(E+2), the diagram (4.6.9) commutes. Next we verify
that the universal property of the push-out holds. Let α :

(
(T1UE(E+2)⊗T1UE(E+2))⊗Λ⊗ΛP(2)

)
S2
→

A and β : T2UE(E+2)⊗Λ FP → A be two morphisms in Ab such that

α ◦ ψLE+2 = β ◦ φE+2

It gives the following two equations:


α
(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ HL

(
t11(ρ2(ξ))⊗Λ (f, h)

))
= β(t2(∇2

E+2 ◦ (f1 + f2) ◦ ξ)⊗Λ (f, h))

−β
(
t2(f1 ◦ r2

1 ◦ ξ)⊗Λ (f, h)
)

−β(t2(f2 ◦ r2
2 ◦ ξ)⊗Λ (f, h))

β(t2(ξ)⊗Λ (0, h)) = α(t1(ξ)⊗ t1(ξ)⊗Λ⊗Λ h)

where f1, f2, ξ ∈ C(E, E+2), f ∈ P(1) and h ∈ P(2). Let
(
(g1, h1), (g2, h2), h

)
∈ FP +FP . First we

observe that there is a decomposition of any element in FP + FP as follows:

(
(g1, h1), (g2, h2), h

)
= ψ̂M

L

E+2

(
t2(i21)⊗Λ (g1, h1)

)
+ ψ̂M

L

E+2

(
t2(i22)⊗Λ (g2, h2)

)
+ φ̂M

L

E+2

(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ h

)
Then we de�ne the map δ : FP + FP → A by

δ
(
(g1, h1), (g2, h2), h

)
= β

(
t2(i21)⊗Λ (g1, h1)

)
+ β

(
t2(i22)⊗Λ (g2, h2)

)
+ α

(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ h

)
Now
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• we have β = δ ◦ ψ̂ML

E+2 because we get

δ ◦ ψ̂ML

E+2

(
t2(ξ)⊗Λ (f, h)

)
= δ
(
(r2

1 ◦ ξ) ∗L (f, h), (r2
2 ◦ ξ) ∗L (f, h), HL(t11(ρ2(ξ))⊗Λ (f, h))

)
= β

(
t2(i21)⊗Λ (r2

1 ◦ ξ) ∗L (f, h)
)

+ β
(
t2(i22)⊗Λ (r2

2 ◦ ξ) ∗L (f, h)
)

+ α
(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ HL(t11(ρ2(ξ))⊗Λ (f, h))

)
= β

(
t2(i21 ◦ r2

1 ◦ ξ)⊗Λ (f, h)
)

+ β
(
t2(i22 ◦ r2

2 ◦ ξ)⊗Λ (f, h)
)

+ α
(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ HL(t11(ρ2(ξ))⊗Λ (f, h))

)
,

for ξ ∈ C(E, E+2) and (f, h) ∈ FP . But we have the following relation:

α
(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ HL(t11(ρ2(ξ))⊗Λ (f, h))

)
= β

(
t2(∇2

E+2 ◦ (i21 + i22) ◦ ξ)⊗Λ (f, h)
)
− β

(
t2(i21 ◦ r2

1 ◦ ξ)⊗Λ (f, h)
)
− β

(
t2(i22 ◦ r2

2 ◦ ξ)⊗Λ (f, h)
)

= β
(
t2(ξ)⊗Λ (f, h)

)
− β

(
t2(i21 ◦ r2

1 ◦ ξ)⊗Λ (f, h)
)
− β

(
t2(i22 ◦ r2

2 ◦ ξ)⊗Λ (f, h)
)

It proves that we have

δ ◦ ψ̂ML

E+2

(
t2(ξ)⊗Λ (f, h)

)
= β

(
t2(ξ)⊗Λ (f, h)

)
as desired.

• we have α = δ ◦ φ̂ML

E+2 because we get

δ ◦ φ̂ML

E+2

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ h

)
= δ
((

0, t1(r2
1 ◦ f1)⊗ t1(r2

1 ◦ f2).h
)
,
(
0, t1(r2

2 ◦ f1)⊗ t1(r2
2 ◦ f2).h

)
,

t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).h+ t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).T (h)
)

= β
(
t2(i21)⊗Λ

(
0, t1(r2

1 ◦ f1)⊗ t1(r2
1 ◦ f2).h

))
+ β

(
t2(i22)⊗Λ

(
0, t1(r2

2 ◦ f1)⊗ t1(r2
2 ◦ f2).h

))
+ α

(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ t1(r2

1 ◦ f1)⊗ t1(r2
2 ◦ f2).h

)
+ α

(
t1(i21)⊗ t1(i22)⊗Λ⊗Λ t1(r2

1 ◦ f2)⊗ t1(r2
2 ◦ f1).T (h)

)
,

for f1, f2 ∈ C(E, E+2) and h ∈ P(2). Moreover we have the following relation:

β
(
t2(i2k)⊗Λ

(
0, t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).h

))
= α

(
t1(i2k)⊗ t1(i2k)⊗Λ⊗Λ t1(r2

k ◦ f1)⊗ t1(r2
k ◦ f2).h

)
= α

(
t1(i2k ◦ r2

k ◦ f1)⊗ t1(i2k ◦ r2
k ◦ f2)⊗Λ⊗Λ h

)
for k = 1, 2. Then we obtain

δ
(

(0, t1(r2
1 ◦ f1)⊗ t1(r2

1 ◦ f2).h), (0, t1(r2
2 ◦ f1)⊗ t1(r2

2 ◦ f2).h),

t1(r2
1 ◦ f1)⊗ t1(r2

2 ◦ f2).h+ t1(r2
1 ◦ f2)⊗ t1(r2

2 ◦ f1).T (h)
)

= α
(
t1(i21 ◦ r2

1 ◦ f1)⊗ t1(i21 ◦ r2
1 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i22 ◦ r2

2 ◦ f1)⊗ t1(i22 ◦ r2
2 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i21 ◦ r2

1 ◦ f1)⊗ t1(i22 ◦ r2
2 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i21 ◦ r2

1 ◦ f2)⊗ t1(i22 ◦ r2
2 ◦ f1)⊗Λ⊗Λ T (h)

)
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Moreover we have

t1(i21 ◦ r2
1 ◦ f2)⊗ t1(i22 ◦ r2

2 ◦ f1)⊗Λ⊗Λ T (h) = T
(
t1(i22 ◦ r2

2 ◦ f1)⊗ t1(i21 ◦ r2
1 ◦ f2)⊗Λ⊗Λ h

)
= t1(i22 ◦ r2

2 ◦ f1)⊗ t1(i21 ◦ r2
1 ◦ f2)⊗Λ⊗Λ h

This implies that we obtain

δ ◦ φ̂ML

E+2

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ h

)
= α

(
t1(i21 ◦ r2

1 ◦ f1)⊗ t1(i21 ◦ r2
1 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i22 ◦ r2

2 ◦ f1)⊗ t1(i22 ◦ r2
2 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i21 ◦ r2

1 ◦ f1)⊗ t1(i22 ◦ r2
2 ◦ f2)⊗Λ⊗Λ h

)
+ α

(
t1(i22 ◦ r2

2 ◦ f1)⊗ t1(i21 ◦ r2
1 ◦ f2)⊗Λ⊗Λ h

)
= α

(
t1(f1)⊗ t1(f2)⊗Λ⊗Λ h

)
, by 3.12 of [12]

The morphism δ : FP +FP → A is necessary unique because any element of FP +FP is decomposed

as a sum of images of ψ̂ML

E+2 and φ̂ML

E+2 . Consequently the functor L|〈E〉C : 〈E〉 → Alg − P (restricted
to 〈E〉) preserves �nite coproducts.

Remark 4.6.12. By 4.6.11, the functor L : 〈E〉 → Alg−P takes values in 〈FP〉, the full subcategory
of free P-algebras of �nite rank.

Moreover it is now possible to have an explicit expression of the quadratic functor L : 〈E〉 → 〈FP〉
on morphisms in C with source E and target E+2. The explicit expression of the functor L on these
kind of morphisms is important in order to provide the BCH formula later in this section.

Proposition 4.6.13. For ξ ∈ C(E, E+2) and (f, h) ∈ FP , we have

L(ξ)(f, h) =
(

(r2
1 ◦ ξ) ∗L (f, h), (r2

2 ◦ ξ) ∗L (f, h), HL
(
t11(ρ2(ξ))⊗ (f, h)

))
Proof. For this, we recall that the functor L is the quadratic tensor product (see 2.1.3) associated
with the quadratic C-module over P given in 4.5.9. As L(ξ) : L(E) → L(E+2) is given by the
universal property of 2.1.3, we have in particular

L(ξ) ◦ ψ̂ML

E = ψ̂M
L

E+2 ◦
(
t2(ξ)⊗Λ id

)
Hence we get

L(ξ)(f, h) =
(
L(ξ) ◦ ψ̂ML

E

)(
t2(id)⊗ (f, h)

)
=
(
ψ̂M

L

E+2 ◦
(
t2(ξ)⊗Λ id

))(
t2(id)⊗ (f, h)

)
= ψ̂M

L

E+2

(
t2(ξ)⊗ (f, h)

)
=
(

(r2
1 ◦ ξ) ∗L (f, h), (r2

2 ◦ ξ) ∗L (f, h), HL
(
t11(ρ2(ξ))⊗ (f, h)

))
as desired.

Now we prove that the quadratic functor L : C → Alg − P preserves not only the coproducts in
the full subcategory 〈E〉 of C but also all �nite coproducts in the whole of C. We recall the natural
isomorphism u′C(Eab,AbC)

: T1UE ⊗Λ P(1) ⇒ C
(
Eab, AbC

)
given in 4.6.15. Consider an object X in C.

By 2.3.3, 4.2.11 and 4.2.10, we have the following isomorphisms

T1L(X) = T1

(
−⊗ML

)
(X) ∼= T1UE(X)⊗Λ Coker(q̇) = T1UE(X)⊗Λ P(1) ∼= T1UE(X)⊗Λ Λ ∼= T1UE(X)

where ML is the quadratic C-module over the ring P(1) given in 4.5.1 and q̇ = i2 ◦ q : P(2)→ FP .
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Notation 4.6.14. For an object X in C, we set

ωX = ev ◦
(
id⊗Λ (t1)−1

E

)
◦ γX : T1L(X)→ T1UE(X)

where ev : T1UE(X)⊗Λ→ T1UE(X) is the canonical isomorphism (since T1UE(X) is a left Λ-module,
see 2.0.3), (t1)E : Λ→ P(1) is the isomorphism given in 4.2.10 and γ : T1L⇒ T1UE ⊗Λ Coker(q̇) =
T1UE ⊗Λ P(1) is the natural isomorphism in 2.3.3 (see (2.3)).

Corollary 4.6.15. Let X be an object in C. Then ωX : T1L ⇒ T1UE is a natural isomorphism in
the category of functors from C to the category of (left) Λ-modules such that, for any object X in C
and x ∈ L(X), we have

ωX(tL1 (x)) = t1(f̂x)

where f̂x ∈ C(E,X) is a morphism (which exists because E is a regular projective object) such that
(f̂x)

ab ∈ C(Eab, Xab) is unique morphism satisfying tL1 (x) = γX((f̂x)
ab) since γ : T1UE ⊗Λ P(1) ⇒

C
(
Eab, AbC

)
is a natural isomorphism (see 4.6.5) in the category of functors from C to the category

of Λ-P(1)-bimodules.

Proof. It is a direct consequence of 4.6.14.

Now we are able to prove that

Proposition 4.6.16. The Lazard functor L : C → Alg − P preserves �nite coproducts.

Proof. Let X and Y be objects in C. We consider the following diagram

L(X|Y ) L(X + Y )

L(X) + L(Y )

L(X)× L(Y )

IdAlg−P(L(X)| L(Y )) L(X)× L(Y )0

0 0

0

//
ιL2 //

(L(i21), L(i22))

OO

˜(L(i21), L(i22))

OO

r̂L2 //

//
ιId2 //

̂
r
IdAlg−P
2 // ////

////

(4.6.11)

We aim at proving that (L(i21), L(i22)) : L(X) + L(Y ) → L(X + Y ) is an isomorphism. For this

it su�ces to check that its restriction to IdAlg−P(L(X)|L(Y )), here denoted by ˜(L(i21), L(i22)) :
IdAlg−P(L(X)| L(Y ))→ L(X|Y ) is an isomorphism. By 1.7.1, we recall that

IdAlg−P
(
L(X)|L(Y )

)
= L(X)⊗ L(Y )⊗P(1)⊗P(1) P(2)

= L(X)ab ⊗ L(Y )ab ⊗P(1)⊗P(1) P(2)

and the kernel ι
IdAlg−P
2 : IdAlg−P(L(X)|L(Y ))� L(X)+L(Y ) of the comparison morphism

̂
r
IdAlg−P
2 :

L(X) + L(Y )→ L(X)× L(Y ) (see 1.2.1) is given by

ι
IdAlg−P
2 (u) = (0, 0, u)

Moreover we recall that we have up to an isomorphism an explicit expression of the second cross-e�ect
of the Lazard functor L : C → Alg − P , namely we get the natural isomorphism

Φ : T1UE ⊗ T1UE ⊗Λ⊗Λ P(2)⇒ cr2L

between bilinear bifunctors given in (4.6.7). We recall that, for x ∈ L(X), x = abL(X)(x) ∈ L(X)ab

(see the notations given in 1.7.6). Then we de�ne the morphism iX,Y : T1L(X)⊗ T1L(Y )⊗P(1)⊗P(1)

P(2)→ T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) by

iX,Y (x⊗ y ⊗ h) = ωX(tL1 (x))⊗ ωY (tL1 (y))⊗ h (4.6.12)
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where x ∈ L(X), y ∈ L(Y ), h ∈ P(2) and ω : T1L ⇒ T1UE is the natural isomorphism given in
4.6.15. We observe that

iX,Y (x⊗ y ⊗ h) = ωX(tL1 (x))⊗ ωY (tL1 (y))⊗ h

= ωX
(
ϑX(x)

)
⊗ ωY

(
ϑX(y)

))
⊗ h , by 4.6.10

Hence iX,Y is well-de�ned, and it is an isomorphism because ω and ϑX are natural isomorphism (see
4.6.15 and 4.6.9). We now consider the following diagram

IdAlg−P(L(X)|L(Y ))

T1UE(X)⊗ T1UE(Y )⊗Λ⊗Λ P(2) L(X + Y )

L(X) + L(Y )

iX,Y ∼=

OO

(L(i21), L(i22))

OO

ιL2 ◦ΦX,Y //

ι
IdAlg−P
2 // (4.6.13)

Then we prove that this diagram commutes. Let x ∈ L(X), y ∈ L(Y ) and h ∈ P(2). As γ :
T1UE ⇒ C

(
Eab, AbC

)
is a natural isomorphism (see 4.6.5), there is a unique αx ∈ C(Eab, Xab) (resp.

αy ∈ C(Eab, Y ab)) such that

tL1 (x) = γX(αx) ,
(
resp. tL1 (y) = γY (αy)

)
(4.6.14)

Since E is a regular-projective object and abX : X → Xab is a regular epimorphism, there is a
(non-unique) morphism f̂x ∈ C(E,X) (resp. f̂y ∈ C(E, Y )) such that

αx ◦ abE = abX ◦ f̂x ,
(
resp. αy ◦ abE = abX ◦ f̂y

)
By (4.6.14) and by naturality of γ : T1L⇒ C

(
Eab, AbC

)
, we get

tL1 (x) = T1L(f̂x)(id) ,
(
resp. tL1 (y) = T1L(f̂y)(id)

)
(4.6.15)

We get the following equalities:

(L(i21), L(i22)) ◦ ιIdAlg−P2 (x⊗ y ⊗ h)

= (L(i21), L(i22))
(
0, 0, x⊗ y ⊗ h

)
= (λL2 )X+Y

(
L(i21)(x)⊗ L(i22)(y)⊗ h

)
, by (1.8.6)

= TP(1)
2

(
(i2, id)

)
X+Y

(
(tL1 ◦ L(i21))(x)⊗ (tL1 ◦ L(i22))(y)⊗S h

)
, by (4.6.1)

= TP(1)
2

(
(i2, id)

)
X+Y

(
T1L(i21)(tL1 (x))⊗ T1L(i22)(tL1 (y))⊗S h

)
= TP(1)

2

(
(i2, id)

)
X+Y

(
(T1L(i21) ◦ T1(f̂x))(id)⊗ (T1L(i22) ◦ T1L(f̂y))(id)⊗S h

)
, by (4.6.15)

= TP(1)
2

(
(i2, id)

)
X+Y

(
T1L(i21 ◦ f̂x)(id)⊗ T1L(i22 ◦ f̂y)(id)⊗S h

)
= TP(1)

2

(
(i2, id)

)
X+Y

◦ φ̂(ML)2

X

(
t1(i21 ◦ f̂x)⊗ t1(i22 ◦ f̂y)⊗ h

)
= φ̂M

L

X+Y

(
t1(i21 ◦ f̂x)⊗ t1(i22 ◦ f̂y)⊗ h

)
, by (2.1.2)

= ιL2 ◦ ΦX,Y (t1(f̂x)⊗ t1(f̂y)⊗ h) , by (4.6.7)

= ιL2 ◦ ΦX,Y

(
ωX(tL1 (x))⊗ ωY (tL1 (y))⊗ h

)
, by 4.6.15

= ιL2 ◦ ΦX,Y ◦ iX,Y (x⊗ y ⊗ h) , by (4.6.12)
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It proves that ˜(L(i21), L(i22)) : IdAlg−P(L(X)| L(Y ))→ L(X|Y ) is an isomorphism. By applying the
�ve lemma to the diagram (4.6.13), it follows that (L(i21), L(i22)) : L(X) + L(Y ) → L(X + Y ) is an
isomorphism. It concludes the proof.

Notation 4.6.17. For an object X in C, we denote by

iX,X :
(
L(X)

⊗2
⊗P(1)⊗P(1) ⊗P(2)

)
S2
→
(
T1UE(X)⊗2 ⊗P(1)⊗P(1) ⊗P(2)

)
S2

the canonical factorization between the coinvariants sets, i.e. π ◦ iX,X = iX,X ◦ π where π :
T1UE(X)⊗2 ⊗Λ⊗Λ ⊗P(2) →

(
T1UE(X)⊗2 ⊗Λ⊗Λ ⊗P(2)

)
S2

and π : T1L(X)⊗2 ⊗P(1)⊗P(1) ⊗P(2) →(
T1L(X)⊗2 ⊗P(1)⊗P(1) ⊗P(2)

)
S2

are the canonical quotient maps (which are both P(1)-module ho-
momorphisms).

Remark 4.6.18. Let X be an object in C. Then iX,X , given in 4.6.17, is a P(1)-module homomorphism
which is an isomorphism by the �ve lemma applied to an appropriate diagram.

4.6.2 L : C → Alg − P commutes with the abelianizations

In this part, we prove that the (quadratic) functor L : C → Alg−P commutes with the abelianization
functors, i.e.

L · AbC ∼= AbAlg−P · L

We �rst provide the following lemma:

Lemma 4.6.19. Let X be an object in C. For f1, f2 ∈ C(E,X) and h ∈ P(2), we have the equility
as follows:

φ̂M
L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= ψ̂M

L

X

(
t2(cX2 ◦ IdC(f1|f2) ◦ h)⊗ (id, 0)

)
Proof. We have the following equalities:

φ̂M
L

X

(
t1(f1)⊗ t1(f2)⊗ h

)
= φ̂M

L

X

(
t1(f1)⊗ t1(f2)⊗HL

(
t11(ρ2(ιIdC2 ◦ h))⊗ (id, 0)

))
= φ̂M

L

X ◦ ψLX
(
t1(f1)⊗ t1(f2)⊗ t11(ιIdC2 ◦ h)⊗ (id, 0), 0

)
= φ̂M

L

X ◦ φX
(
t1(f1)⊗ t1(f2)⊗ t11(ιIdC2 ◦ h)⊗ (id, 0), 0

)
= φ̂M

L

X

(
t2
(
cX2 ◦ IdC(f1|f2) ◦ h

)
⊗ (id, 0)

)
,

as desied.

Remark 4.6.20. Let Z be an abelian object in C. Then the morphism φ̂M
L

Z :
(
T1UE(Z)⊗2 ⊗Λ⊗Λ

P(2)
)
S2
→ L(Z) is trivial.

Next we prove that the Lazard functor has the following preservation property:

Lemma 4.6.21. The Lazard functor L : C → Alg − P preserves abelian objects.

Proof. By 4.6.20, we know that φ̂ML

Z :
(
T1UE(Z)⊗2 ⊗Λ⊗Λ P(2)

)
S2
→ L(Z) is trivial because cZ2 = 0

(since Z is an abelian object in C, see 1.3.1). By 4.6.7, it implies that the linear map λLZ : L(Z)⊗2 ⊗
P(2)→ L(Z) is trivial. By 1.7.3, it proves that L(Z) is an abelian object in Alg − P , i.e. a (right)
P(1)-module.
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Notation 4.6.22. Let I : Ab(C)→ C be the inclusion functor. We also denote by L = L · I : Ab(C)→
Ab(Alg − P) = ModP(1) the restriction of the Lazard functor to the abelian core Ab(C) of C.

Now we prove that the Lazard functor L : Ab(C) → Ab(Alg − C) restricted to the abelian core
Ab(C) is isomorphic to its linearization rectricted to the same abelian source.

Proposition 4.6.23. The natural transformation I∗ · tL1 = tL1 : L · I ⇒ T1L · I is an isomorphism
between functors with domain Ab(C) and values in Ab(Alg − P) = ModP(1).

Proof. Let Z be an abelian object in C. We consider the pushout (4.5.6), as follows:(
T1UE(Z)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP

)
S2

⊕ (UE(Z)⊗ P(2)) T2UE(Z)⊗Λ FP

(
T1UE(Z)⊗2 ⊗Λ⊗Λ P(2)

)
S2

L(Z)

φZ //

ψLZ

��
ψ̂M

L
Z

��

φ̂M
L

Z

//

We here denote by B(Z) =
(
T1UE(Z)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E) ⊗Λ FP

)
S2
⊕ (UE(Z) ⊗ P(2)). We

denote respectively by i1 and i2 the injection of the �rst and second summand of B(Z). By 4.6.20,

the morphism φ̂M
L

Z is trivial. Hence it follows that the pushout (4.5.6) can be seen as the following
right exact sequence:

B(Z) T2UE(Z)⊗Λ FP L(Z) 0
φZ //

ψ̂M
L

Z // //

By 2.1.3, we know that φZ =
(
φ′1 ⊗ id, t2 ⊗ q̇

)
. Hence we have

coker(φZ ◦ i1) = coker(φ′1 ⊗ id) = coker
(
(φ′1 ⊗ id) ◦ π′

)
= coker(φ′1 ⊗ id)

where the map

π′ : T1UE(Z)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP →
(
T1UE(Z)⊗2 ⊗Λ⊗Λ T11cr2(UE)(E,E)⊗Λ FP

)
S2

is the quotient map which is clearly a surjection. Then we obtain

coker(φZ ◦ i1) = coker(φ′1 ⊗ id) = coker(φ′1)⊗ id

because the functor − ⊗Λ FP : ModΛ → Ab preserves right exact sequences. By (2.1.1), we know
that

φ′1 = (ST2UE
2 )Z ◦ (u′cr2(T2UE))Z,Z ◦

(
id⊗2 ⊗ cr2(t2)Z,Z

)
By 4.6.2, the morphism (u′cr2(T2UE))Z,Z is an isomorphism. As cr2(t2) : T11cr2UE(Z,Z) →
cr2(T2UE)(Z,Z) also is an isomorphism by 2.5 of [12], we get

coker(φZ ◦ i1) = coker(φ′1)⊗ id

= coker
(
(ST2UE

2 )Z
)
⊗ id

= (tT2UE
1 )Z ⊗ id , see 1.2.10

By 2.3.2, we know that we get

T1

(
T2UE

) ∼= T1UE ,
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more precisely the natural transformation (T1)∗ · t2 : T1UE ⇒ T1

(
T2UE

)
is an isomorphism. We prove

that we have (
(T1)∗ · t2

)
◦ t1 = tT2UE

1

where t1 : T2UE ⇒ T1UE is the unique factorization of t1 : UE ⇒ T1UE though t2 : UE ⇒ T2UE by
1.2.11 (because the functor T1UE : C →ModΛ is linear hence quadratic), i.e.

tT2UE
1 ◦ t2 = t1 (4.6.16)

For this we have the following equalities:(
(T1)∗ · t2

)
◦ t1 ◦ t2 =

(
(T1)∗ · t2

)
◦ t1

= tT2UE
1 ◦ t2 , by naturality

As the natural transformation t2 : UE ⇒ T2UE is a regular epimorphism, the relation (4.6.16) holds.
Then we can choose the cokernel of φZ ◦ i1 to be

coker(φZ ◦ i1) = t1 ⊗ id

Now it su�ces to determine the cokernel of (t1⊗ id) ◦ φZ ◦ i2 to �nd out the cokernel of φZ . For this
we have

(t1 ⊗ id) ◦ φZ ◦ i2 = (t1 ⊗ id) ◦ (t2 ⊗ q̇) = t1 ⊗ q̇ , by (4.6.16)

Since Coker(q̇) = P(1) whose cokernel (morphism) is the projection π1 : FP → P(1) onto the �rst
summand, we get

coker
(
(t1 ⊗ id) ◦ φZ ◦ i2

)
= t1 ⊗ π1

because the functor T1UE(X)⊗− : ModΛ → Ab preserves right sequences. Hence the cokernel of φZ
is t1 ⊗ π1 : T1UE(X) ⊗Λ FP → T1UE(X) ⊗ P(1). It implies that there is an isomorphism of (right)
P(1)-modules εZ : L(Z)→ T1UE(Z)⊗Λ P(1) such that

εZ ◦ ψ̂M
L

Z = t1 ⊗Λ π1 (4.6.17)

By (4.6.17) and 2.3.3, we get the following isomorphisms:

L(Z) ∼= T1UE(Z)⊗Λ P(1) ∼= T1L(Z)

More precisely, we have

ε−1
Z ◦ γZ ◦ (tL1 )Z ◦ ψ̂M

L

Z = ε−1
Z ◦

(
(t1)Z ⊗Λ π1

)
= ψ̂M

L

Z , by (4.6.17)

By 4.6.3, the morphism ψ̂M
L

Z : T2UE(Z)⊗Λ FP → L(Z) is an epimorphism. Hence we get

ε−1
Z ◦ γZ ◦ (tL1 )Z = id

It implies that the morphism (tL1 )Z : L(Z)⇒ T1L(Z) is a monomorphism. As it is a regular epimor-
phism (because it is the cokernel of SL2 : L(Z|Z) → L(Z)), it proves that (t1)Z is an isomorphism,
as desired.
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Corollary 4.6.24. The Lazard functor L : Ab(C)→ Ab(Alg−P) restricted to the abelian core Ab(C)
is linear.

Proof. By 4.6.23, the natural transformation I∗ · tL1 : L · I ⇒ T1L · I is an isomorphism. Then the
functor T1L · I : Ab(C) → ModP(1) is linear because it is a linear functor postcomposed by a linear
functor with abelian source and target by 1.2.6. Hence the Lazard functor L : Ab(C) → ModP(1)

restricted to Ab(C) is a linear functor.

Now we prove that the Lazard functor L : C → Alg − P commutes with the abelianization
functors:

Proposition 4.6.25. There is a natural isomorphism σ : AbAlg−P · L ⇒ L · AbC such that, for an
object X in C, we have

σX ◦ abL(X) = L(abX)

Proof. Let X be an object in C. By 1.4.8, the natural transformation T1L
∗ · ab : T1L⇒ T1L ·AbC is

an isomorphism because T1L : C →ModP(1) is a linear functor. By 4.6.9, 4.6.23 and 1.4.8, we get

AbAlg−P · L(X) ∼= T1L(X) ∼= T1L(Xab) ∼= L(Xab) = L · AbC(X) ,

We denote by σ : AbAlg−P ·L⇒ L ·AbC the (above) natural isomorphism such that, for an object X in
C, σX = (tL1 )−1

Xab ◦T1L(abX)◦ϑX : AbAlg−P ·L(X)→ L ·AbC(X), where ϑX : AbAlg−P ·L(X)→ T1L(X)
is the isomorphism given in (4.6.8). Moreover we have the following equalities:

σX ◦ abL(X) = (tL1 )−1
Xab ◦ T1L(abX) ◦ ϑX ◦ abL(X)

= (tL1 )−1
Xab ◦ T1L(abX) ◦ (tL1 )X , by (4.6.8)

= (tL1 )−1
Xab ◦ (tL1 )Xab ◦ L(abX)

= L(abX) ,

as desired.

Now we observe that, for an abelian object Z in C, we have the following isomorphisms of (right)
P(1)-modules (natural in Z):

L(Z) T1UE(Z)⊗Λ P(1) C
(
Eab, AbC(Z)

)εZ // γZ //

where the isomorphisms are given in (4.6.17) and 4.6.5. It says that γ ◦ ε : L ⇒ C
(
Eab, AbC

)
is a

natural isomorphism between functors with domain Ab(C) and values in Ab(Alg − P) = ModP(1).
Then we check that the (linear) functor C

(
Eab, AbC

)
: Ab(C) → ModP(1) is an equivalence of cat-

egories. In fact, we just apply the Gabriel-Popescu theorem given in Corollary 6.4 of [35] (or also
in 4.6 of [12]) by taking the set {Eab} of the small projective generator Eab in the abelian category
Ab(C). Let us denote by CEab the full subcategory of C whose set of objects is {Eab}. The Gabriel-
Popescu theorem says that the functor assigning each abelian object Z in C to the additive functor
Ab(C)(−, Z) = C(−, Z) with domain Cop

Eab
and values in Ab is an equivalence of categories. Moreover

it is a well-known fact that the category of additive functors with domain Cop
Eab

and values in Ab is
isomorphic to the category of (right) P(1)-modules, where P(1) = C(Eab, Eab). This isomorphism of
categories assigns in particular the additive functor C(−, Z) : Cop

Eab
→ Ab to the (right) P(1)-module

C(Eab, Z) = C
(
Eab, AbC(Z)

)
. It permits us to give the following proposition:

Proposition 4.6.26. The Lazard functor L = L · I : Ab(C)→ Ab(Alg −P) restricted to Ab(C) is a
(linear) equivalence of categories.
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4.6.3 L| 〈E〉 : 〈E〉 → 〈FAbOp(C)〉 is an equivalence of categories

In this part, we prove that the quadratic functor L : 〈E〉 → 〈FP〉 is an equivalence of categories.
First we recall that Im(AbC) is the category de�ned in 3.1.3 and (AbC)′ : C → Im(AbC) is the functor
(that is the identity on objects and the abelianization functor on morphisms) given in 3.1.4. Here we
consider the restriction of the functor (AbC)′ and the category Im(AbC) to the objects of 〈E〉. Recall
that the functor Im(Ab(L)) : Im(Ab〈E〉)→ Im(Ab〈FP 〉) is de�ned in 3.5.11, as follows:

• On objects, let X be an object in Im(Ab〈E〉) (i.e. in 〈E〉), then Im(Ab(L))(X) = L(X);

• On morphisms, let X and Y be two objects in Im(Ab〈E〉), and f ∈ Im(Ab〈E〉)(X, Y ) =
C(Xab, Y ab) (because objects in 〈E〉 are regular-projective as a �nite coproducts of the regular-
projective object E), see 3.1.9. Then we set

Im(Ab(L))(f) = σ−1
Y ◦ L(f) ◦ σX (4.6.18)

where σ : AbAlg−P · L⇒ L · AbC is the natural isomorphism given in 4.6.25.

Proposition 4.6.27. The functor Im(Ab(L)) : Im(Ab〈E〉) → Im(Ab〈FP 〉) is a linear equivalence of
categories.

Proof. It is a direct consequence of 4.6.26.

Now we consider the following morphism of linear extensions of categories:

D′ 〈FP〉

D 〈E〉 Im(Ab〈E〉)

Im(Ab〈FP 〉)
+ //

L

OO

+ //

(AbAlg−P )′ //

(AbC)′
//

Im(Ab(L))

OO

(4.6.19)

The bottom linear extension of categories is the restriction of the one given in 3.1.9 to the full
subcategory 〈E〉 of C. The top linear extension of categories is an in 3.1.9 replacing the category C
with 〈FP〉. Then we check that the criterion, given in 3.5.1, for the quadratic functor L : 〈E〉 → 〈FP〉
to be an equivalence of categories is satis�ed. By 4.6.4, the functor L : 〈E〉 → 〈FP〉 preserves regular
epimorphisms because it preserves coequalizers of re�exive pairs by 6.24 of [12] (since 〈E〉 is a semi-
abelian category). Then we have a (unique) natural isomorphism σ : AbAlg−P ·L ⇒ L ·AbC by 4.6.25
such that, for X object in 〈E〉, the triangle

L(Xab)

L(X)

L(X)ab

L(abX)

zz

abL(X)

$$
σX
∼=

oo (4.6.20)

commutes. Moreover the functor Im(Ab(L)) : Im(Ab〈E〉) → Im(Ab〈FP 〉) is an equivalence of cate-
gories by 4.6.27. Finally we observe that there is just one condition left to check, namely the natural
transformation φL : D ⇒ DL, de�ned in (3.5.3), is an isomorphism between bifunctors with domain
Im(AbC)op × Im(AbC) and values in Ab, where the bifunctor DL : Im(AbC)op × Im(AbC) → Ab is
given in 3.5.5.
First we observe that up to isomorphism we give another expression of the commutator
[L(X), L(X)]IdAlg−P = Im

(
(λL2 )X : L(X)⊗2 ⊗ P(2)→ L(X)

)
, for an object X in 〈E〉, as follows:
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Lemma 4.6.28. For an object X in 〈E〉, the map

(λL2 )X : IdAlg−P
(
L(X)|L(X)

)
S2
→ [L(X), L(X)]IdAlg−P

given in 2.4.5 is an isomorphism of P(1)-modules, and we have

S
IdAlg−P
2 = iL(X) ◦ (λL2 )X ◦ π

where S
IdAlg−P
2 : IdAlg−P

(
L(X)|L(X)

)
→ L(X) is the morphism de�ned in 1.2.7 and iL(Y ) :

Im((λL2 )X) = [L(X), L(X)]IdAlg−P → L(X) is the canonical inclusion (which is the image of the

morphism S
IdAlg−P
2 ).

Proof. If X is an object in 〈E〉, then L(X) is a free P-algebra of �nite rank because the Lazard
functor L : C → Alg − P preserves �nite coproducts by 4.6.16. Hence it is a direct consequence of
2.4.7 applying to A = L(X). By 4.6.7, we recall that we have

[L(X), L(X)]IdAlg−P = Im
(
(λL2 )X : L(X)⊗2 ⊗ P(2)→ L(X)

)
Moreover, for x, y ∈ L(Y ) and h ∈ P(2), we get the equalities as follows:

S
IdAlg−P
2 (x⊗ x⊗ h) = ∇2

L(X) ◦ ι
IdAlg−P
2 (x⊗ y ⊗ h)

= ∇2
L(X)

(
0, 0, x⊗ y ⊗ h

)
= (λL2 )X(x⊗ y ⊗ h) , by (1.8.6)

= (λL2 )X ◦ π(x⊗ y ⊗ h) , by 2.4.6

= iL(X) ◦ (λL2 )X ◦ π(x⊗ y ⊗ h)

for x, y ∈ L(X) and h ∈ P(2). Hence we obtain

S
IdAlg−P
2 = iL(X) ◦ (λL2 )X ◦ π ,

as desired.

The next proposition says that the Lazard functor preserves a certain class of monomorphisms in
C, namely those of the form iY : [Y, Y ]IdC � Y (which is the image of the morphism cY2 : IdC(Y |Y )→
Y ), for an object Y in 〈E〉.

Proposition 4.6.29. Let Y be an object in 〈E〉. Then the coimage eL[Y,Y ]IdC
: L([Y, Y ]IdC) →

[[Y, Y ]IdC ]L of L(iY ) : L([Y, Y ]IdC) → L(Y ) is an isomorphism. Hence the morphism L(iY ) :
L([Y, Y ]IdC)→ L(Y ) is a monomorphism.

Proof. We recall that L(Y ) = L(Y )ab where L(Y ) is the quotient of L(Y ) by the ideal L(Y )2. We
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�rst consider the following diagram:

IdAlg−P
(
L(Y )|L(Y )

)
L(Y )

L
(
IdC(Y |Y )

)
L(Y )

C
(
Eab, IdC(Y |Y )

)
T1UE(Y )⊗ T1UE(Y )⊗Λ⊗Λ P(2)

L(Y )⊗ L(Y )⊗P(1)⊗P(1) P(2)

L(Y )

T1UE
(
IdC(Y |Y )

)
⊗ P(1)

S
IdAlg−P
2 //

L(cY2 )
//

iY,Y∼=

��

(
u′
C(Eab,IdC(−|−))

)
Y,Y

∼=

��

ε−1
IdC(Y |Y )

∼=

��

(SL2 )Y ◦ΦY,Y //

(
u′
C(Eab,AbC)

)−1

IdC(Y |Y )
∼=

��
(4.6.21)

where uC(Eab,AbC) : T1UE ⊗Λ P(1) ⇒ C
(
Eab, AbC

)
and u′C(Eab,IdC(−|−))

: T1UE ⊗ T1UE ⊗Λ⊗Λ P(2) ⇒
C(Eab, IdC(−|−)) are the natural isomorphisms between bifunctors respectively given in 4.2.11 and
4.1.7. The top rectangle commutes by using the relation expressed by Diagram 4.6.13. We prove
that the bottom rectangle commutes. Let f1, f2 ∈ C(E, Y ) and h ∈ P(2). Then we have

L(cY2 ) ◦ ε−1
IdC(Y |Y ) ◦

(
u′C(Eab,−)

)−1

IdC(Y |Y )
◦
(
u′C(Eab,IdC(−|−))

)
Y,Y

(
t1(f1)⊗ t1(f2)⊗ h

)
= L(cY2 ) ◦ ε−1

IdC(Y |Y ) ◦
(
u′C(Eab,−)

)−1

IdC(Y |Y )

(
IdC(f1|f2) ◦ h

)
, by (4.1.6)

= L(cY2 ) ◦ ε−1
IdC(Y |Y )

(
t1
(
IdC(f1|f2) ◦ h ◦ abE

)
⊗ id

)
= L(cY2 ) ◦ ε−1

IdC(Y |Y ) ◦
(
t1 ⊗ π1

)(
t2
(
IdC(f1|f2) ◦ h ◦ abE

)
⊗ (id, 0)

)
= L(cY2 ) ◦ ̂ψML

IdC(Y |Y )

(
t2
(
IdC(f1|f2) ◦ h ◦ abE

)
⊗ (id, 0)

)
, by (4.6.17)

= ψ̂M
L

Y ◦
(
t2(cY2 )⊗ id

)(
t2
(
IdC(f1|f2) ◦ h ◦ abE

)
⊗ (id, 0)

)
, by (2.1.2)

= ψ̂M
L

Y

(
t2
(
cY2 ◦ IdC(f1|f2) ◦ h ◦ abE

)
⊗ (id, 0)

)
= φ̂M

L

Y

(
t1(f1)⊗ t1(f2)⊗ h

)
, by 4.6.19

= (SL2 )Y ◦ ΦY,Y

(
t1(f1)⊗ t1(f2)⊗ h

)
where t1 : T2UE ⇒ T1UE is the unique factorization of t1 : UE ⇒ T1UE through t2 : UE ⇒ T2UE
by 1.2.11 (because the functor T1UE : C → ModΛ is linear hence quadratic) and π1 : FP → P(1)
is the projection onto the �rst summand. It proves that the bottom rectangle of diagram (4.6.21)
commutes. By 4.6.28, we get

S
IdAlg−P
2 = iL(Y ) ◦ (λL2 )Y ◦ π (4.6.22)
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Then we have the commutative diagram as follows:

L(Y )⊗ L(Y )⊗P(1)⊗P(1) P(2)
(
L(Y )⊗ L(Y )⊗P(1)⊗P(1) P(2)

)
S2

T1UE
(
IdC(Y |Y )

)
⊗Λ P(1)

L
(
IdC(Y |Y )

)
C
(
Eab, [Y, Y ]IdC

)
C
(
Eab, IdC(Y |Y )

)
T1UE(Y )⊗ T1UE(Y )⊗Λ⊗Λ P(2)

(
T1UE(Y )⊗ T1UE(Y )⊗Λ⊗Λ P(2)

)
S2

C
(
Eab, IdC(Y |Y )

)
S2

T1UE
(
[Y, Y ]IdC

)
⊗Λ P(1)

L
(
[Y, Y ]IdC

)

π //

L(eY )

,,

iY,Y ∼=

��

(
u′
C(Eab,IdC(−|−))

)
Y,Y

∼=

��

ε−1
IdC(Y |Y )

∼=

��

iY,Y∼=
��

(eY )∗∼=

��

(
u′
C(Eab,IdC(−|−))

)
Y

∼=

��

ε−1
[Y,Y ]IdC

∼=

��

T1UE(eY )⊗Λid

,,

(eY )∗

,,

π //

π //

(
u′
C(Eab,AbC)

)−1

IdC(Y |Y )
∼=

��

(
u′
C(Eab,AbC)

)−1

[Y,Y ]IdC
∼=

��

where the isomorphism of Λ-P(1)-bimodules (eY )∗ : C
(
Eab, IdC(Y |Y )

)
S2
→ C

(
Eab, [Y, Y ]IdC

)
(see

4.2.2) is de�ned in (4.2.1), and the isomorphisms of P(1)-modules
(
uC(Eab,IdC(−|−))′

)
Y
and iY,Y are

respectively given in 4.1.12 (see moreover 4.1.13) and 1.8.8 (see 4.6.18 in addition). Then we have
the following equalities:

L(iY ) ◦ ε−1
[Y,Y ]IdC

◦
(
u′C(Eab,−)

)−1

[Y,Y ]IdC
◦ (eY )∗ ◦

(
u′C(Eab,IdC(−|−))

)
Y
◦ iY,Y ◦ π

= L(iY ) ◦ L(eY ) ◦ ε−1
IdC(Y |Y ) ◦

(
u′C(Eab,−)

)−1

IdC(Y |Y )
◦
(
u′C(Eab,IdC(−|−))

)
Y,Y
◦ iY,Y

= L(cL2 ) ◦ ε−1
IdC(Y |Y ) ◦

(
u′C(Eab,−)

)−1

IdC(Y |Y )
◦
(
u′C(Eab,IdC(−|−))

)
Y,Y
◦ iY,Y

= (SL2 )Y ◦ ΦY,Y ◦ iY,Y

= S
IdAlg−P
2

= iL(Y ) ◦ (λL2 )Y ◦ π , by (4.6.22)

Hence it implies that we get

L(iY ) ◦ ε−1
[Y,Y ]IdC

◦
(
u′C(Eab,−)

)−1

[Y,Y ]IdC
◦ (eY )∗ ◦

(
u′C(Eab,IdC(−|−))

)
Y
◦ iY,Y = iL(Y ) ◦ (λL2 )Y (4.6.23)

because the canonical quotient map

π : T1L(Y )⊗ T1L(Y )⊗P(1)⊗P(1) P(2)→
(
T1L(Y )⊗ T1L(Y )⊗P(1)⊗P(1) P(2)

)
S2

is a surjection. Thus the morphism L(iY ) : L([Y, Y ]IdC) → L(Y ) is a monomorphism. By 1.3.7, we
recall that L(iY ) = iL[Y,Y ]IdC

◦ eL[Y,Y ]IdC
implying that the coimage eL[Y,Y ]IdC

: L([Y, Y ]IdC) → L(Y ) of

L(iY ) is a monomorphism. Hence eL[Y,Y ]IdC
is an isomorphism because it also is a regular epimorphism.
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We now are able to prove that the Lazard functor L : 〈E〉 → 〈FP〉 restricted to 〈E〉 is an
equivalence of categories:

Lemma 4.6.30. The functor L : 〈E〉 → 〈FP〉 is a quadratic equivalence of categories between
algebraic theories.

Proof. Let X and Y be two objects in 〈E〉. Consider the morphism of linear extensions of categories
given in (4.6.19). By 4.6.11 and 4.6.4, L : 〈E〉 → 〈FP〉 is a quadratic functor preserving �nite
coproducts and coequalizers of re�exive graphs. Moreover there is a unique natural isomorphism
σ : AbAlg−P · L ⇒ L · AbC on 〈E〉 by 4.6.25 such that the triangle (4.6.20) commutes. By 3.5.10,
the functor L : 〈E〉 → 〈FP〉 preserves the action +D of D(X, Y ) on C(X, Y ) to the action +D′

of D′(L(X), L(Y )) on Alg − P(L(X), L(Y )). Moreover Im(Ab(L)) : Im(Ab〈E〉) → Im(Ab〈FP 〉) is
an equivalences of categories by 4.6.27. Now it remains to prove that the natural transformation
ψL : D ⇒ DL between bifunctors with domain Im(AbC)op × Im(AbC) and values in Ab (see (3.5.3))
de�ned by:

φLX,Y : C
(
Xab, [Y, Y ]IdC

)
−→ Alg − P

(
L(Xab), [[Y, Y ]IdC ]L

)
f 7−→ eL[Y, Y ]IdC

◦ L(f) .

where eL[Y, Y ]IdC
: L([Y, Y ]IdC)→ [[Y, Y ]IdC ]L is the coimage of the morphism L(iY ) : L([Y, Y ]IdC)→

L(Y ) (see 1.3.7); it is an isomorphism by 4.6.29. By de�nition of φLX,Y , we have the following
commutative diagram:

C
(
Xab, [Y, Y ]IdC

)
Alg − P

(
L(Xab), L([Y, Y ]IdC)

)

Alg − P
(
L(Xab), [[Y, Y ]IdC ]L

)
φLX,Y

//

L
Xab,[Y,Y ]IdC

∼=

22 (
eL
[Y, Y ]IdC

)
∗

∼=

��

As the Lazard functor L : Ab(C) → Ab(Alg − P) = ModP(1) restricted to the abelian core Ab(C) is
an equivalence of categories, the map

LXab,[Y,Y ]IdC
: C
(
Xab, [Y, Y ]IdC

)
→ Alg − P

(
L(Xab), L([Y, Y ]IdC)

)
is a bijection. Hence the map φLX,Y also is a bijection. By 3.5.1, the functor L : 〈E〉 → 〈FP〉 is an
equivalence of categories.
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Chapter 5

The Baker-Campbell-Hausdor� formula for

2-radicable 2-step nilpotent varieties

In this chapter, we �rst recall how to recover (concrete) operations of any arity of objects in C, a
variety supposed 2-setp nilpotent. Then we provide a decomposition of morphisms from E to E+n,
for n ∈ N∗, as a sum (under the group law of C(E,E+n)) of some morphisms. Finally, we use the
latter decomposition of such morphisms and their evaluation by the Lazard functor so as to determine
a Baker-Campbell-Hausdor� type formula, expressing any operation in C from the structure linear
maps of AbOp(C)-algebras.

5.1 Decomposition of certain morphisms in C
In this part, we provide a decomposition of any morphism with source E and target E+n (with n ≥ 3)
in C as a sum of elements belonging to C(E,E) and C(E,E+2).
First we recall that, for X ∈ 〈E〉 and Y ∈ C, the set C(X, Y ) has a group structure (written
additively) by 4.1.2 as follows:

f + g = (f, g) ◦ µX
where f, g ∈ C(X, Y ) and µX : X → X +X is the morphism in C given by 4.1.1. If moreover Y is an
abelian object in C, then the group C(X, Y ) is abelian by 1.5.15 and by 4.1.5. Let k, l ∈ {1, . . . n},
k 6= l. Here ink : E → E+n denotes the injection of the k-th summand. Moreover we de�ne
inkl : E+2 → E+n and rnkl : E+n → E+2 the unique morphisms such that{

inkl ◦ i21 = ink

ikl ◦ i22 = inl
and


rnkl ◦ inp = 0, if p 6= k, l

rnkl ◦ ink = i21

rnkl ◦ inl = i22

(5.1.1)

We point out that rnkl ◦ inkl = id by the universal property of the coproduct E+2. For n ∈ N, n ≥ 3,
we consider E+n to be the coproduct E + E+(n−1) by choosing the appropriated injections, namely
in1 : E → E+n and în

1̂
: E+(n−1) → E+n, where în

1̂
is the unique morphism such that

în
1̂
◦ in−1

k = ink+1 , for 1 6 k 6 n− 1

and we consider r̂n
1̂

: E+n → E+(n−1) the unique morphism such that{
r̂n

1̂
◦ in1 = 0

r̂n
1̂
◦ inp = in−1

p−1 , for 2 6 p 6 n

Then we recall that C(E, −|−) : C×2 → Ab is the bifunctor given in 4.1.8 as follows:
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• On objects, for two objects X and Y in C, C(E,X|Y ) = C
(
E, IdC(X|Y )

)
, and (ιIdC2 )∗ :

C(E, X|Y ) � C(E, X + Y ) is the kernel of the comparison morphism r̂2 = ((r2
1)∗, (r2

2)∗)
t :

C(E, X + Y )→ C(E, X)× C(E, Y ) (see 4.1.5).

• On morphisms, let f : X → X ′ and g : Y → Y ′ be two morphisms in C, then C(E, f |g) =
IdC(f |g)∗ : C(E,X|Y )→ C(E,X ′|Y ′).

Note that, for two objects X and Y in C, IdC(X|Y ) is an abelian object in C by 1.4.2 (because C
is a 2-step nilpotent category). Hence the bifunctor C(E, X|Y ) is an abelian group by 1.5.15. Then
we deduce that the bifunctor C(E,−|−) : C×2 → Gr takes in fact values in Ab.

Remark 5.1.1. The bifunctor C(E,−|−) : C×2 → Ab is bilinear (i.e. linear on each variable, see 1.2.12)
because IdC(−|−) : C×2 → Ab(C) is a bilinear bifunctor and the representable functor C(E,−) : C →
Gr preserves �nite products.

Notation 5.1.2. For n ∈ N∗, we here denote by r̂n the comparison morphism r̂
C(E,−)
n .

Then the following lemma gives a decomposition of morphisms from E to E+n, for n ∈ N∗, as a
sum (under the group law of the set morphisms C(E,E+n)) of some morphisms.

Lemma 5.1.3. There is the following short exact sequence in the category of groups:

0 −→
⊕

16k<l6n

C(E, E|E)
kn−→ C(E, E+n)

r̂n−→ C(E, E)×n −→ 0

where r̂n =
(
(rn1 )∗, . . . , (r

n
n)∗
)t

and the morphism kn is de�ned explicitely by

kn :
⊕

16k<l6n

C(E, E|E) −→ C(E, E+n)

(fkl)16k<l6n 7−→
∑

16k<l6n

inkl ◦ ι
IdC
2 ◦ fkl .

Moreover, for all ξ ∈ C(E, E+n), we have

ξ =
n∑
p=1

inp ◦ rnp ◦ ξ +
∑

16k<l6n

inkl ◦ ι
IdC
2 ◦ r2(rnkl ◦ ξ)

where the sums are for the group structure + of C(E,E+n).

Proof. Let Pn be the property given in the statement. We prove this result by induction.

• It is clear that P2 is veri�ed because it corresponds to the canonical short exact sequence

0 −→ C(E, E|E)
(ι
IdC
2 )∗−→ C(E, E+2)

r̂2−→ C(E, E)×2 −→ 0

and any ξ ∈ C(E, E+2) is decomposed in the following way

ξ =
(
i21 ◦ r2

1 ◦ ξ
)

+
(
i22 ◦ r2

2 ◦ ξ
)

+
(
ιIdC2 ◦ r2(ξ)

)
by 4.1.11.
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• Now we suppose that Pn−1 is satis�ed, for n ≥ 3. We consider the following diagram

⊕
16k<l6n

C(E, E|E) C(E, E+n)

C(E, E)× C(E, E+(n−1))

C(E, E)×n

C(E, E)×n

0

0

0

0

C(E, E|E)⊕(n−1) C(E, E|E+(n−1)) 0

00 0

0 0

⊕
16k<l6n−1

C(E, E|E)

00 0

kn //

r̂2=((rn1 )∗,(r̂n
1̂

)∗)t

��

pn

��

r̂n // //

id×r̂n−1

// ////

//

(0, kn−1)t
//

in

��

(ι
IdC
2 )∗

�� ��

//// //
�� �� ��

∼=
φn //

���� ��

Here

� the morphism φn =
(
C(E, E|in−1

1 ), . . . , C(E, E|in−1
n−1)

)
: C(E, E|E)⊕(n−1) →

C(E, E|E+(n−1)) is an isomorphism of abelian groups whose inverse is

φ−1
n =

(
C(E, E|rn−1

1 ), . . . , C(E, E|rn−1
n−1)

)t
: C(E, E|E+(n−1))→ C(E, E|E)⊕(n−1)

because the bifunctor C(E, E|−) : C → Ab is linear by 5.1.1 and it is a consequence of 3.6
in [12].

� the morphism pn is de�ned by

pn :
⊕

16k<l6n

C(E, E|E) −→
⊕

16k<l6n−1

C(E, E|E)

(fkl)16k<l6n 7−→ (fk+1 l+1)16k<l6n−1 .

� the morphism in is given by

in : C(E, E|E)⊕(n−1) −→
⊕

16k<l6n

C(E, E|E)

(g1, . . . , gn−1) 7−→ (fkl)16k<l6n .

where f1l = gl−1, for l = 2, . . . , n, and fkl = 0 for k ≥ 2.

Then we prove that the four squares of the above diagram commute.

• The bottom right-hand square commutes. It is just an observation that, for k = 1, . . . n − 1,
we have rn−1

k ◦ r̂1̂
n = rnk+1 by the uniqueness in the universal property of the coproduct E+n.

Consequently it also proves that the top right-hand square commutes.
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• The bottom left-hand square commutes. Take a familly (fkl)16k<l6n of elements of C(E, E|E).
Then we have(

r̂2 ◦ kn
)(

(fkl)16k<l6n

)
= r̂2

( ∑
16k<l6n

inkl ◦ ι
IdC
2 ◦ fkl

)
=
( ∑

16k<l6n

rn1 ◦ inkl ◦ ι
IdC
2 ◦ fkl,

∑
16k<l6n

r̂1̂
n ◦ inkl ◦ ι

IdC
2 ◦ fkl

)
=
(

0,
∑

16k<l6n

r̂1̂
n ◦ inkl ◦ ι

IdC
2 ◦ fkl

)

=
(

0,
n∑
p=2

r̂1̂
n ◦ in1p ◦ ι

IdC
2 ◦ f1p +

∑
26k<l6n

r̂1̂
n ◦ inkl ◦ ι

IdC
2 ◦ fkl

)
=
(

0,
∑

26k<l6n

in−1
k−1 l−1 ◦ ι

IdC
2 ◦ fkl

)
=
(

0,
∑

16k<l6n−1

in−1
kl ◦ ι

IdC
2 ◦ fk+1 l+1

)
= (0, kn−1)t

(
(fk+1 l+1)16k<l6n−1

)
=
(
(0, kn−1)t ◦ pn

)(
(fkl)16k<l6n

)
• The top left-hand square commutes. First we know that the functor C(E, E|−) : C → Ab is
linear. By 3.6 of [12], we have the following relation:

id =
n−1∑
k=1

C(E, E| in−1
k ◦ rn−1

k )

Then, for ξ ∈ C(E, E|E+(n−1)), we have

(ιIdC2 )∗(ξ) =
n−1∑
k=1

(ιIdC2 )∗ ◦ C(E, E| in−1
k ◦ rn−1

k )(ξ)

=
n−1∑
k=1

(id+ in−1
k )∗ ◦ (id+ rn−1

k )∗ ◦ (ιIdC2 )∗(ξ)

=
n−1∑
k=1

(id+ in−1
k ) ◦ (id+ rn−1

k ) ◦ ιIdC2 ◦ ξ

=
n−1∑
k=1

in1 k+1 ◦ rn1 k+1 ◦ ι
IdC
2 ◦ ξ

where we recall that ιIdC2 : C(E, E|E+(n−1)) → C(E, E+n) is the kernel of the comparison
morphism r̂2 =

(
(rn1 )∗, (r̂1̂

n)∗
)t

: C(E, E+n)→ C(E, E)× C(E, E+(n−1)). Hence we have

(ιIdC2 )∗(ξ) =
n−1∑
k=1

in1 k+1 ◦ rn1 k+1 ◦ ι
IdC
2 ◦ ξ (5.1.2)
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Then we have(
kn ◦ in ◦ φ−1

n

)
(ξ) =

(
kn ◦ in ◦

(
C(E, E|rn−1

1 ), . . . , C(E, E|rn−1
n−1)

)t)
(ξ)

=
(
kn ◦ in

)(
IdC(id|rn−1

1 ) ◦ ξ, . . . , IdC(id|rn−1
n−1) ◦ ξ

)
= kn((fkl)16k<l6n)

where (fkl)16k<l6n is the familly such that f1l = IdC(id|rn−1
l−1 ) ◦ ξ for l = 2, . . . , n and fkl = 0 if

k ≥ 2. Then we obtain

kn
(
(fkl)16k<l6n

)
=

∑
16k<l6n

inkl ◦ ι
IdC
2 ◦ fkl

=
n∑
p=2

in1p ◦ ι
IdC
2 ◦ fkl +

∑
26k<l6n

inkl ◦ ι
IdC
2 ◦ fkl

=
n∑
p=2

in1 k+1 ◦ ι
IdC
2 ◦ IdC(id|rn−1

p−1 ) ◦ ξ

=
n−1∑
k=1

in1 k+1 ◦ ι
IdC
2 ◦ IdC(id|rn−1

k ) ◦ ξ

=
n−1∑
k=1

in1 k+1 ◦
(
id+ rn−1

k

)
◦ ιIdC2 ◦ ξ

=
n−1∑
k=1

in1 k+1 ◦ rn1k+1 ◦ ι
IdC
2 ◦ ξ

= (ιIdC2 )∗(ξ) , by 5.1.2

It proves that we get kn ◦ in ◦ φ−1
n = (ιIdC2 )∗.

Applying the nine lemma to the above diagram, the middle short vertical sequence is exact as desired.
Now we prove the decomposition of elements in C(E, E+n) as in the assumption. Let ξ ∈ C(E, E+n),
we have

ξ =
(
in1 ◦ rn1 ◦ ξ

)
+
(
î1̂
n
◦ r̂1̂

n ◦ ξ
)

+ d(ξ)

where d(ξ) = −
(
î1̂
n
◦ r̂1̂

n ◦ ξ
)
−
(
in1 ◦ rn1 ◦ ξ

)
+ ξ ∈ C(E, E|E+(n−1)). By assumption, we know that

r̂1̂
n ◦ ξ =

n−1∑
p=1

in−1
p ◦ rn−1

p ◦ r̂1̂
n ◦ ξ +

∑
16k<l6n−1

in−1
kl ◦ ι

IdC
2 ◦ r2(rn−1

kl ◦ r̂1̂
n ◦ ξ)

=
n−1∑
p=1

in−1
p ◦ rnp+1 ◦ ξ +

∑
16k<l6n−1

in−1
kl ◦ ι

IdC
2 ◦ r2(rnk+1 l+1 ◦ ξ)

Postcomposing by î1̂
n
to the above equation gives the following equality:

î1̂
n
◦ r̂1̂

n ◦ ξ =
n−1∑
p=1

inp+1 ◦ rnp+1 ◦ ξ +
∑

16k<l6n−1

ink+1 l+1 ◦ ι
IdC
2 ◦ r2(rnk+1 l+1 ◦ ξ)

=
n∑
p=2

inp ◦ rnp ◦ ξ +
∑

26k<l6n

inkl ◦ ι
IdC
2 ◦ r2(rnkl ◦ ξ)
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Moreover there is another expression of d(ξ) ∈ C(E, E|E+(n−1)) that is

d(ξ) =
n−1∑
k=1

in1 k+1 ◦ ι
IdC
2 ◦ r2(rn1 k+1 ◦ d(ξ)) =

n∑
k=2

in1k ◦ ι
IdC
2 ◦ r2(rn1k ◦ d(ξ))

However, for k = 2, . . . , n, we have

rn1k ◦ d(ξ) = −
(
rn1k ◦ î1̂

n
◦ r̂1̂

n ◦ ξ
)
−
(
rn1k ◦ in1 ◦ rn1 ◦ ξ

)
+
(
rn1k ◦ ξ

)
= −

(
i22 ◦ r2

2 ◦ (rn1k ◦ ξ)
)
−
(
i21 ◦ r2

1 ◦ (rn1k ◦ ξ)
)

+
(
rn1k ◦ ξ

)
= ιIdC2 ◦ r2(rn1k ◦ ξ)

Hence we get

d(ξ) =
n∑
k=2

in1 k ◦ ι
IdC
2 ◦ r2(rn1k ◦ ξ)

Thus we have

ξ =
(
in1 ◦ rn1 ◦ ξ

)
+
(
î1̂
n
◦ r̂1̂

n ◦ ξ
)

+ d(ξ)

=
(
in1 ◦ rn1 ◦ ξ

)
+

n∑
p=2

inp ◦ rnp ◦ ξ +
∑

26k<l6n

inkl ◦ ι
IdC
2 ◦ r2(rnkl ◦ ξ) +

n∑
p=2

in1p ◦ ι
IdC
2 ◦ r2(rn1p ◦ ξ)

=
n∑
p=1

inp ◦ rnp ◦ ξ +
∑

16k<l6n

inkl ◦ ι
IdC
2 ◦ r2(rnkl ◦ ξ)

This proves the result.

5.2 The Baker-Campbell-Hausdor� (BCH) formula

We �nally deduce this desired formula for 2-step nilpotent varieties from the Lazard functor and the
decomposition of operations provided in the previous section.

Recall that AbOp(C) is the 2-step (right) operad living in the monoidal category of Z[1
2
]-modules

as
AbOp(C)(1) = |Eab| and AbOp(C)(2) = |IdC(E|E)|

in which the composition operations are given as follows:

γ1;1(a⊗ b) =
(
ã ◦ b̃

)
(e) , γ2;1(µ⊗ a) =

(
µ̃ ◦ ã

)
(e) , γ1,1;2(a⊗ b⊗ µ) =

(
IdC(ã|b̃) ◦ µ̃

)
(e)

where a, b ∈ P(1) and µ ∈ P(2) and the notations are given in 4.0.2. Here T : AbOp(C)(2) →
AbOp(C)(2) denotes the involution of AbOp(C)(2) obtained by restriction of the canonical switch
τ 2
E : |E+2| → |E+2| to |IdC(E|E)|.
Now we recall the de�nition of "concrete" operations of the variety C. Any (formal) n-ary operation
θ of the algebraic theory 〈E〉 can be seen as a morphism θo : E → E+n in C by the Yoneda's lemma.
For an object X in C, the concrete n-ary operation θX : |X|×n → |X| in |X| associated with θ is
given in the following way:

C(E, X) |X|

C(E+n, X) |X|×nC(E, X)×n

eve
∼=

//

θX

OO

∼= //
∼=

ev×ne

//

(θo)∗

OO
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Now we write ek = ink(e), for k = 1, . . . , n. Let ink : E → E+n be the injection of the k-th summand,
for k = 1, . . . , n, we point out that θo(e) = θE+n(e1, . . . , en) which is the evaluation of θE+n on the n
generators ek of the free object E+n of rank n in C. As the above diagram is natural in X, this gives
rise to a natural transformation θ : | − |×n ⇒ | − | such that θX is de�ned by

θ(x1, . . . , xn) = θX(x1, . . . xn) = |(x̂1, . . . , x̂n) ◦ θo|(e) (5.2.1)

where x1, . . . , xn ∈ |X| and x̂k : E → E is the unique morphism such that x̂k(e) = xk (see 4.0.2), for
k = 1, . . . , n.

Notation 5.2.1. For k, l ∈ {1, . . . , n}, k 6= l, we set θk = rnk ◦ θo and θkl = rnkl ◦ θo where rnk : E+n → E
is the retraction onto the k-th summand and rnkl : E+n → E+2 is the morphism de�ned at the
beginning of section 3.4.

Lemma 5.2.2. Let X be an object in C. For x, x1, x2 ∈ |X|, we have{
θk(x) = θX(0, . . . , 0, x, 0, . . . , 0)

θkl(x1, x2) = θX(0, . . . , 0, x1, 0, . . . , 0, x2, 0, . . . , 0)

where x, x1 are settled in the k-th place and x2 is settled in the l-th place.

Proof. First we have the following equalities:

θk(x) = |x̂ ◦ rnk ◦ θo|(e) , by (5.2.1)

= |x̂ ◦ rnk | ◦ θE+n(e1, . . . , ek, . . . , en)

= θX
(
x̂ ◦ rnk (e1), . . . , x̂ ◦ rnk (ek), . . . , x̂ ◦ rnk (en)

)
, by naturality

= θX
(
x̂ ◦ rnk ◦ in1 (e), . . . , x̂ ◦ rnk ◦ ink(e), . . . , x̂ ◦ rnk ◦ inn(e)

)
= θX(0, . . . , 0, x̂(e), 0, . . . , 0)

= θX(0, . . . , 0, x, 0, . . . , 0)

Next we get

θkl(x1, x2) = |(x̂1, x̂2) ◦ rnkl ◦ θo|(e)

= |(x̂1, x̂2) ◦ rnkl| ◦ θE+n(e1, . . . , en)

= θX
(
(x̂1, x̂2) ◦ rnkl(e1), . . . , (x̂1, x̂2) ◦ rnkl(en)

)
, by naturality

= θX
(
(x̂1, x̂2) ◦ rnkl ◦ in1 (e), . . . , (x̂1, x̂2) ◦ rnkl ◦ inn(e)

)
We recall that rnkl : E+n → E+2 is the unique morphism such that rnkl ◦ ink = i21, r

n
kl ◦ inl = i22 and

rnkl ◦ inl = 0, for l 6= 1, 2 (see (5.1.1)). Hence we have

θkl(x1, x2) = θX
(
0, . . . , 0, (x̂1, x̂2) ◦ i21(e), 0, . . . , 0, (x̂1, x̂2) ◦ i22(e), 0, . . . , 0

)
= θX

(
0, . . . , 0, x̂1(e), 0, . . . , 0, x̂2(e), 0, . . . , 0

)
= θX

(
0, . . . , 0, x1, 0, . . . , 0, x2, 0, . . . , 0

)
with x1 and x2 being respectively settled in the k-th and l-th places.
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By the uniqueness in the universal property of the coproduct E+n, it is easy to check that
r2

1 ◦ θkl = θk and r2
2 ◦ θkl = θl. Hence we get

ιIdC2 ◦ r2(θkl) = θkl −
((
i21 ◦ r2

2 ◦ θkl
)

+
(
i22 ◦ r2

2 ◦ θkl
))

= θkl −
((
i21 ◦ θk

)
+
(
i22 ◦ θl

))
by (4.1.11). Evaluating r2(θkl) to the basis element e of E gives

r2(θkl)(e) = θkl(e1, e2)−M
(
θk(e1) +M θl(e2)

)
where +M and −M respectively refers to the multiplication and to the inverse of the group structure
of |X|. By using the notations given in 4.0.2, we get

r2(θkl)(e) = θkl(e1, e2)−M
(
θk(e1) +M θl(e2)

)
(5.2.2)

because we have r2(ξ) = r2(ξ)ab ◦ abE. Afterwards we recall the Lazard (quadratic) equivalence of
categories L : 〈E〉 → 〈FAbOp(C)〉 (between algebraic theories) explicitely de�ned on certain morphisms
in C. Here the left action of Λ on the free AbOp(C)-algebra FAbOp(C) of rank 1 making it into a (left)
Λ-module (see 4.5.5) is given by

α ∗L (x, y) = L(α)(x, y) =
(
α(x), γ1,1;2(x⊗ x⊗ y) +

1

2
γ2;1(H(α)⊗ x)

)
where (x, y) ∈ FAbOp(C) and y denotes the equivalence class of y in AbOp(C)(2)S2 . We denote by
ip : L(E)� L(E)+n the injection of the p-th summand, for 1 6 p 6 n. Let sn = (L(in1 ), . . . , L(inn)) :
L(E)+n → L(E+n) be the unique morphism obtained by the universal property of the coproduct
L(E)+n in Alg−AbOp(C) such that sn ◦ ip = L(inp ), for 1 6 p 6 n. It is a consequence of 4.6.16 that
sn is an isomorphism. As we have supposed that L(E+2) = L(E)+2, it remains to assume that s2 is
the identity. Let ξ : E → E+2 be any morphism in C, then we have

L(ξ)(x, y) =
(

(r2
1 ◦ ξ) ∗L (x, y), (r2

2 ◦ ξ) ∗L (x, y), HL
(
t11(ρ2(ξ))⊗Λ (x, y)

))
by 4.6.13 and we recall that

HL
(
t11(ρ2(ξ))⊗Λ (x, y)

)
= t1(r2

1 ◦ ξ)⊗ t1(r2
2 ◦ ξ).

(
y + T (y)− 1

2
γ2;1(H(2)⊗ x)

)
+ γ2;1

(
r2(ξ)(e)⊗ x

)
= γ1,1;2

(
r2

1(e)⊗ r2
2(e)⊗

(
y + T (y)− 1

2
γ2;1(H(2)⊗ x)

))
+ γ2;1

(
r2(ξ)(e)⊗ x

)
,

see 4.5.9. Now we are able to give the main theorem:

Theorem 5.2.3. There is a Lazard correspondence

L∗ : Alg − AbOp(C)→ C

given by |L∗(A)| = |A| and the following Baker-Campbell-Hausdor� formula holds : an n-ary opera-
tion θ of the variety C acts on |L∗(A)| by

θ(a1, . . . , an) =
n∑
p=1

(
λ1(ap ⊗ θp(e)) +

1

2
λ2(ap ⊗ ap ⊗H(θp))

)
+

1

2

∑
16p<q6n

λ2

(
ap ⊗ aq ⊗ γ1,1;2

(
θp(e)⊗ θq(e)⊗ [e1, e2]M

))
+

∑
16p<q6n

λ2

(
ap ⊗ aq ⊗

(
θpq(e1, e2)−M (θp(e1) +M θq(e2))

))
for a1, . . . , an ∈ A. Here
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• the multiplication maps λk : A⊗k⊗P(k)→ A, k = 1, 2, are the structure maps of the P-algebra
A ;

• for k = 1, 2, ek = i2k(e) ∈ E + E where i2k : E → E + E is the injection of the k-th summand.
Furthermore, [a, b]M = (a+M b)−M (b+M a) ;

• for any unary operation V of C,

H(V) = VE+2

(
e1 +M e2

)
−M

(
VE+2(e1) +M VE+2(e2)

)
• θp is the unary operation of C given by:

θp(a) = θ
(
0, . . . , 0, a, 0, . . . , 0

)
where a is placed in the p-th place. Similarly, θpq is the binary operation of C given by :

θpq(a, b) = θ
(
0, . . . , 0, a, 0, . . . , 0, b, 0, . . . , 0

)
where a, b are respectively in the p-th and q-th place.

Proof. We recall that (e, 0) is the generator of FAbOp(C) the free AbOp(C)-algebra of rank 1. Let θ be
an n-ary (formal) operation of the algebraic theory 〈E〉 and a1, . . . an ∈ |A|, then �nding the BCH
formula for θ amounts to giving an explicit expression of the following concrete operation in |A|:

θ(a1, . . . , an) = |(â1, . . . , ân) ◦ s−1
n ◦ L(θo)|(e, 0)

using the structure linear maps of |A|. We give four main steps to prove the result:

1. The group structure +M in |A|: we use the following relation

a1 +M a2 = |(â1, â2) ◦ s−1
2 ◦ L(i21 + i22)|(e, 0)

where a1, a2 ∈ |A|. Let (x, y) ∈ FP = L(E), then we have by 4.6.13

s−1
2 ◦ L(i21 + i22)(x, y)

=
(

(r2
1 ◦ (i21 + i22)) ∗L (x, y), (r2

2 ◦ (i21 + i22)) ∗L (x, y), HL
(
t11(ρ2(i21 + i22))⊗Λ (x, y)

))
=
(

(id+ 0) ∗L (x, y), (0 + id) ∗L (x, y), HL
(
t11(ρ2(i21 + i22))⊗Λ (x, y)

))
=
(

(x, y), (x, y), HL
(
t11(ρ2(i21 + i22))⊗Λ (x, y)

))
Moreover we have

HL(t11

(
ρ2(i21 + i22))⊗Λ (x, y)

)
= t1

(
r2

1 ◦ (i21 + i22)
)
⊗ t1

(
r2

2 ◦ (i21 + i22)
)
.
(
y + T (y)− 1

2
γ1;2(H(2)⊗ x)

)
+ γ2;1

(
r2(i21 + i22)(e)⊗ x

)
= y + T (y)− 1

2
γ1;2(H(2)⊗ x) , because r2(i21 + i22) = 0

Then we obtain(
s−1

2 ◦ L(i21 + i22)
)
(x, y) =

(
(x, y), (x, y), y + T (y)− 1

2
γ1;2(H(2)⊗ x)

)
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Hence we have

a1 +M a2 = |(â1, â2) ◦ s−1
2 ◦ L(i21 + i22)|(e, 0)

= |(â1, â2)|
(

(e, 0), (e, 0), −1

2
H(2)

)
= â1(e, 0) + â2(e, 0) + λ2

(
â1(e, 0)⊗ â2(e, 0)⊗ (−1

2
H(2))

)
, by 1.8.5

= a1 + a2 +
1

2
λ2

(
a1 ⊗ a2 ⊗ T (H(2))

)
, becauseT (H(2)) = −H(2)

= a1 + a2 +
1

2
λ2

(
a1 ⊗ a2 ⊗ [e1, e2]M

)
, by 4.1.19

Finally we obtain

a1 +M a2 = a1 + a2 +
1

2
λ2

(
a1 ⊗ a2 ⊗ [e1, e2]M

)
(5.2.3)

2. The unary operations : let θ be a unary (formal) operation. We have the following relation

θ(a) = |â ◦ L(θo)|(e, 0)

where a ∈ |A|. Thus we get

θ(a) = â
(
θ(e),

1

2
H(θo)

)
= λ1

(
â(e, 0)⊗ θ(e)

)
+ λ2

(
â(e, 0)⊗ â(e, 0)⊗ 1

2
H(θo)

)
= λ1

(
a⊗ θ(e)

)
+

1

2
λ2

(
a⊗ a⊗H(θo)

)
Finally we obtain

θ(a) = λ1

(
a⊗ θ(e)

)
+

1

2
λ2

(
a⊗ a⊗H(θo)

)
(5.2.4)

3. Let X be an object in 〈E〉 and f, g ∈ C(E, X). We denote by (λL1 )X : L(X) ⊗ P(1) → L(X)
and (λL2 )X : L(X)⊗2 ⊗ P(2)→ L(X) the structure linear maps of L(X). Then we have(

s−1
2 ◦ L(f + g)

)
(e, 0)

= s−1
2 ◦ L

(
(f, g) ◦ (i21 + i22)

)
(e, 0)

= s−1
2 ◦ L((f, g)) ◦ L(i21 + i22)(e, 0)

= (L(f), L(g)) ◦ s−1
2 ◦ L(i21 + i22)(e, 0)

= (L(f), L(g))
(
(e, 0), (e, 0), −1

2
H(2)

)
= L(f)(e, 0) + L(g)(e, 0) + (λL2 )X

(
L(f)(e, 0)⊗ L(g)(e, 0)⊗ (−1

2
H(2))

)
, by 1.8.5

= L(f)(e, 0) + L(g)(e, 0) +
1

2
(λL2 )X

(
L(f)(e, 0)⊗ L(g)(e, 0)⊗ T (H(2))

)
, by 4.1.19

= L(f)(e, 0) + L(g)(e, 0) +
1

2
(λL2 )X

(
L(f)(e, 0)⊗ L(g)(e, 0)⊗ [e1, e2]M

)
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Thus we have the following relation:(
s−1

2 ◦ L(f + g)
)
(e, 0) = L(f)(e, 0) +M L(g)(e, 0) (5.2.5)

by using (5.2.3). In the rightmost term, +M refers to the group structure of |L(X)|, see (5.2.3).

4. The n-ary operations : let θ be a (formal) n-ary operation and θo : E → E+n be its correspond-
ing morphism in C by the Yoneda's lemma. By 5.1.3, we know that θo can be seen as the sum
(for the group structure +) of unary and binary operations in C(E, E+n) as follows:

θo =
n∑

M, p=1

inp ◦ rnp ◦ θo +M

∑
16k<l6n

inkl ◦ ι
IdC
2 ◦ r2(rnkl ◦ θo)

Let a1, . . . , an ∈ |A|, then we aim at giving an explicit expression of the following term:

θ(a1, . . . , an) = |(â1, . . . , ân) ◦ s−1
n ◦ L(θo)|(e, 0)

By using (5.2.5), this gives the sums for the group structure +, given in (5.2.3), as follows:

θ(a1, . . . , an)

=
n∑

M, p=1

|(â1, . . . , ân) ◦ s−1
n ◦ L(inp ) ◦ L(rnp ◦ θo)|(e, 0)

+M

∑
16k<l6n

|(â1, . . . , ân) ◦ s−1
n ◦ L(inkl) ◦ L(ιIdC2 ◦ r2(rnkl ◦ θo))|(e, 0)

=
n∑

M, p=1

|(â1, . . . , ân) ◦ ip ◦ L(rnp ◦ θo)|(e, 0)

+M

∑
16k<l6n

|(â1, . . . , ân) ◦ (ik, il) ◦ L(ιIdC2 ◦ r2(rnkl ◦ θo))|(e, 0)

=
n∑

M, p=1

|âp ◦ L(rnp ◦ θo)|(e, 0) +M

∑
16k<l6n

|(âk, âl) ◦ L(ιIdC2 ◦ r2(rnkl ◦ θo))|(e, 0)

=
n∑

M, p=1

|âp ◦ L(θp)|(e, 0) +M

∑
16k<l6n

|(âk, âl) ◦ L(ιIdC2 ◦ r2(θkl))|(e, 0)

=
n∑

M, p=1

θp(ap) +M

∑
16k<l6n

|(âk, âl) ◦ L(ιIdC2 ◦ r2(θkl))|(e, 0)

However we get

L
(
ιIdC2 ◦ r2(rnkl ◦ θo)

)
(e, 0) =

(
(0, 0), (0, 0), r2(θkl)(e)

)
,

by 4.6.13. Then we deduce that we have

θ(a1, . . . , an) =
n∑

M, p=1

|âp ◦ L(θp)|(e, 0) +M

∑
16k<l6n

|(âk, âl) ◦ L(ιIdC2 ◦ r2(θkl))|(e, 0)

=
n∑

M, p=1

θp(ap) +M

∑
16k<l6n

λ2

(
âk(e, 0)⊗ âl(e, 0)⊗ r2(θkl)(e)

)
, by 1.8.5

=
n∑

M, p=1

θp(ap) +M

∑
16k<l6n

λ2

(
ak ⊗ al ⊗ r2(θkl)(e)

)
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We turn it into sums for the abelian group structure of |A|. The leftmost term of the following
relation is a sum for the group structure +M . By induction, we have

n∑
M, p=1

θp(ap) =
n∑
p=1

θp(ap) +
1

2

∑
16k<l6n

λ2

(
θk(ak)⊗ θl(al)⊗ [e1, e2]M

)
As λ2 ◦ (λ2⊗λ1⊗ id) = λ2 ◦ (λ1⊗λ2⊗ id) = 0 (because AbOp(C) is a 2-step nilpotent operad),
then we have

n∑
M, p=1

θp(ap) =
n∑
p=1

θp(ap) +
1

2

∑
16k<l6n

λ2

(
λ1(ak ⊗ θk(e))⊗ λ1(al ⊗ θl(e))⊗ [e1, e2]M

)
, by (5.2.3)

=
n∑
p=1

θp(ap) +
1

2

∑
16k<l6n

λ2

(
ak ⊗ al ⊗ γ1,1;2

(
θk(e)⊗ θl(e)⊗ [e1, e2]M

))
, by one of the axioms of AbOp(C)-algebras

By using (5.2.3), we obtain

θ(a1, . . . , an) =
n∑
p=1

(
λ1(ap ⊗ θp(e)) +

1

2
λ2(ap ⊗ ap ⊗H(θp))

)
+

1

2

∑
16k<l6n

λ2

(
ak ⊗ al ⊗ γ1,1;2

(
θk(e)⊗ θl(e)⊗ [e1, e2]M

))
+

∑
16k<l6n

λ2

(
ak ⊗ al ⊗ r2(θkl)(e)

)
=

n∑
p=1

(
λ1(ap ⊗ θp(e)) +

1

2
λ2(ap ⊗ ap ⊗H(θp))

)
+

1

2

∑
16k<l6n

λ2

(
ak ⊗ al ⊗ γ1,1;2

(
θk(e)⊗ θl(e)⊗ [e1, e2]M

))
+

∑
16k<l6n

λ2

(
ak ⊗ al ⊗

(
θk,l(e1, e2)−M

(
θk(e1) + θl(e2)

)))
, by (5.2.2)

This proves the result.

5.3 Application of the BCH formula to modules over a square

ring

In this section, we give an example of application of the Baker-Campbell-Hausdor� type formula
given in Theorem 5.2.3. First we recall the de�nition of a square ring and a module over a square
ring introducted by Baues, Hartl and Pirashivili in [4]. Then we use the latter formula for expressing
operations of any module over a given square ring from structure linear maps of algebras over a
certain operad depending on the square ring.
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The notion of square rings, respectively modules over a square ring, is the quadratic analogue of
the notion of (classical) rings, respectively modules over a ring. These notions have been introduced
and used by Baues, Hartl and Pirashvili in the context of metastable homotopy theory, and later
in a series of papers by Baues and Muro in the study of other subjects, in particular of secondary
operations in the homotopy of ring spectra. For example, it is observed in [4] that the endomorphism
of the suspended projective plan

∑RP 2, denoted by End(
∑RP 2), is a square ring (by a result of

M.G Barrat) and the category of free modules over End(
∑RP 2) is identi�ed with the homotopy

category of Moore spaces in degree 2 whose single non-trivial homology group is of exponent 2 (see
Theorem 8.1 of [4]).

Now we recall the de�nition of a square ring given in De�nition 7.1 of [4] as follows:

De�nition 5.3.1. A square ring R is a diagram

R =
(
Re

H−→ Ree
P−→ Re

)
where

1. Re is a (2-step nilpotent) group (whose law group is written additively) and it is a multiplicative
monoid with unity denoted by 1. Moreover we have

r(s+ s′) = rs+ rs′

2. Ree is an abelian group endowed with an action of the multiplicative monoid Re×Re×Rop
e on

Ree, denoted by (r, r′, s)x = (r, r′)xs, where r, r′, s ∈ Re and x ∈ Ree.

3. H and P are maps satisfying the following relations:

(a) (r + r′)s = rs+ r′s+ P
(
(r, r′)H(s)

)
,

(b) H(r + r′) = H(r) +H(r′) + (r, r′)H(2),

(c) H(rr′) = (r, r)H(r′) +H(r)r′,

(d) P (x+ x′) = P (x) + P (x′),

(e) P ((r, r)xs) = rP (x)s,

(f)
(
P (x), 1

)
x =

(
1, P (x)

)
x = yP (x) = 0,

(g) P ◦H ◦ P = 2P ,

where r, r′, s ∈ Re and x, y ∈ Ree.

Remark 5.3.2. A square ring as de�ned in 5.3.1 is the same as a square ringoid as in De�nition 3.1
of [4] with only one object by Lemma 7.4 of [4].

Notation 5.3.3. Let R be a square ring as in 5.3.1. We set R = Coker(P ). For r ∈ Re, we denote by
r the equivalence class of r in R.

Remark 5.3.4. Let R be a square ring as in 5.3.1. We observe that

• R is an ordinary ring,

• Ree is a (left) (R⊗R⊗Rop
)-module.

Let R be a square ring as in 5.3.1. Then we recall the de�nition of a module over R, already
given in De�nition 7.7 of [4] as follows:
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De�nition 5.3.5. A module over R is a group M (which we write additively) endowed with maps

M ×Re →M , (m, r) 7−→ m. r

M ×M ×Ree −→M , (m,m′, x) 7−→ [m,m′]M . x

satisfying the following relations:

1. m. 1 = m, (m. r). s = m.(rs), m. (r + s) = m. r +m. s,

2. [m,m′]M . x is linear in m, m′ and x,

3. [m. r,m′. s]M . x = [m,m′]M .
(
(r, s)x

)
and

(
[m,m′]M . x

)
. r = [m,m′]M .

(
x. r
)
,

4. (m+m′). r = m. r +m′. r + [m,m′]M . H(r),

5. m.P (x) = [m,m]M . x,

6. [m,m′]M . T (x) = [m′,m]M . x,

7. [m,m′]M . x = 0 if m ∈ [M ],

where m,m′ ∈M , r, s ∈ Re and x ∈ Ree. Here T = H ◦ P − Id and [M ] denotes the subgroup of M
generated by elements of the form [m,m′]M .x.

De�nition 5.3.6. A morphism f : M → N of modules over R is a group homomorphism such that

f([m,m′]M . x) = [f(m), f(m′)]N . x and f(m.r) = f(m).r ,

for m,m′ ∈M , r ∈ Re and x ∈ Ree.

Notation 5.3.7. We denote by ModR the category of modules over the square ring R. For m ∈ M ,
we denote by m the equivalence class of m in M .

Then the categoryModR has the following properties, already proved by M. Hartl and F. Goichot:

Proposition 5.3.8. The category ModR is a semi-abelian variety, complete and cocomplete, and Re

is the free module over R of rank 1.

Remark 5.3.9. The relation 7. of De�nition 5.3.5 says that [M ] is a central subgroup ofM . Moreover,
for m,m′ ∈M , the commutator of m and m′ is

m+m′ −m−m′ = [m′,m]M . H(2)

by relation 4. Hence M is a 2-step nilpotent group.

Remark 5.3.10. Now we explain the role of structure components of the square ring R on a module
M over R:

• the elements r of Re encode quadratic unary operations m 7→ m. r on M ,

• the elements x of Ree encode bilinear operations (m,m′) 7→ [m,m′]M . x on M ,

• the map H assigns to every quadratic unary operation m 7→ m. r, for r ∈ Ree, its cross-e�ect

(m,m′) 7−→ (m+m′). r −m. r −m′. r ,

as being the bilinear operation de�ned by H(r), see relation 4. of 5.3.5.
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• the map P assigns to every bilinear operation the associated squaring operation, see relation 5
of 5.3.5.

Notation 5.3.11. Let M be a module over R. We denote by M the quotient of M by [M ].

Remark 5.3.12. Let M be a module over R. We clearly observe that M is a (right) R-module.

Next we give an explicit expression of binary coproducts in ModR, which has been already
constructed by M. Hartl.

Proposition 5.3.13. LetM and N be two modules over the square ring R. Then the binary coproduct
M +N in ModR is the group M ×N ×

(
M ⊗N ⊗R⊗R Ree

)
with group law given by

(m,n, u) + (m′, n′, u′) =
(
m+m′, n+ n′, u+ u′ +m′ ⊗ n⊗H(2)

)
,

for m,m′ ∈M , n, n′ ∈ N and u, u′ ∈M ⊗N ⊗R⊗RRee. It is endowed with maps
(
M +N

)
×Re −→

M +N given by
(m,n, u). r =

(
m. r, n. r, u.r +m⊗ n⊗H(r)

)
and

(
M +N

)
×
(
M +N

)
×Ree −→M +N given by[

(m,n, u), (m′, n′, u′)
]
M+N

. x =
(

[m,m′]M . x, [n, n′]N . x, m⊗ n′ ⊗ x + m′ ⊗ n⊗ T (x)
)
.

The universal property of the coproduct M +N is the following:
Let P be a module over R, let f : M → P and g : N → P be two morphisms in ModR. Then the
unique morphism h : M +N → P in ModR such that

h ◦ iM = f and h ◦ iM = g ,

has the following explicit expression:

h
(
m,n,m′ ⊗ n′ ⊗ x

)
= f(m) + g(n) + [f(m′), g(n′)]P . x ,

where m,m′ ∈ M , n, n′ ∈ N , u, u′ ∈ M ⊗ N ⊗R⊗R Ree, r ∈ Re and x ∈ Ree. Here iM : M →
M + N m 7→ (m, 0, 0), respectively iN : N → M + N , n 7→ (0, n, 0), is the injection of the �rst,
respectively second, summand.

Proof. It is a straightforward veri�cation.

Remark 5.3.14. Let M and N be two modules over R. The inverse of an element (m,n, u) in M +N
for the group structure of M +N is (−m,−n,−u+m⊗ n⊗H(2)).

Thus it is possible to have an explicit expression for the second cross-e�ect of the identity functor
of ModR, as follows:

Corollary 5.3.15. Let M and N be two modules over R. Then we have

IdModR(M |N) = M ⊗N ⊗R⊗R Ree

and ι
IdModR

2 : IdModR(M |N) → M + N , u 7→ (0, 0, u) is the kernel of the comparison morphism

̂
r
IdModR

2 : M +N →M ×N .

Proof. It is a direct consequence of 5.3.13.

Let M be a module over R. We now give an explicit expression of the morphism cM2 :
IdModR(M |M)→M , de�ned in 1.2.8.
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Proposition 5.3.16. For mm′ ∈M and x ∈ Ree, we have

cM2
(
m⊗m′ ⊗ x

)
=
(
∇2
M ◦ ι

IdModR

2

)(
m⊗m′ ⊗ x

)
= [m,m′]M . x ∈ [M ]

where [M ] is the (central) subgroup of M generated by elements of the form [m,m′]M . x.

Proof. It is a direct consequence of 5.3.13.

Remark 5.3.17. By 5.3.16 and by 1.4.4, M is the abelianization AbModR(M) of M . Moreover the
abelian core Ab(ModR) of ModR is exactly ModR, the category of (right) R-modules.

From 5.3.17, we deduce that the second cross-e�ect of the identity functor IdModR : ModR →
ModR is bilinear, because the abelianization functor AbModR : ModR → Ab(ModR) = ModR is linear
by 1.4.4 and by 1.2.9. Thus the identity functor IdModR is quadratic by 1.2.13. Hence it means that
the categoryModR has the following additional property, already found by M. Hartl and F. Goichot:

Proposition 5.3.18. The category ModR is a 2-step nilpotent variety.

Thus it says that it is possible to apply Theorem 5.2.3 for C = ModR and E = Re. In this case,
Eab = AbModR(Re) = R by 5.3.17 and by 5.3.7. Moreover we have

IdModR(Re|Re) = R⊗R⊗R⊗R Ree
∼= Ree , (5.3.1)

by 5.3.15 and 5.3.4.

Assumption: from now on, we assume that the 2-divisibilty condition holds as in Chapter 5,
section 2. Here it means that 1

2
∈ R.

Now we determine the 2-step nilpotent symmetric unitary operad AbOp(ModR) in the monoidal
category of Z[1

2
]-modules, given in (4.2.3):

AbOp(ModR)(1) = ModR
(
R, R

) ∼= R ,

AbOp(ModR)(2) = ModR
(
R, IdModR(Re|Re)

) ∼= IdModR(Re|Re) ∼= Ree , by (5.3.1) .

Here we set |AbOp(ModR)|(1) = R and |AbOp(ModR)|(2) = Ree. Then |AbOp(ModR)| is also a 2-step
nilpotent linear symmetric unitary operad whose unity is 1 ∈ R. Its structure linear composition
maps are entirely determined by those of the (linear) operad AbOp(ModR). More precisely, the
composition map

γ1;1 : |AbOp(ModR)|(1)⊗ |AbOp(ModR)|(1)→ |AbOp(ModR)|(1)

is the multiplicative law of the ring R, the linear map

γ2;1 : |AbOp(ModR)|(2)⊗ |AbOp(ModR)|(1)→ |AbOp(ModR)|(2)

is the (right) action of R on Ree (see 5.3.4), and the following composition map

γ1,1;2 : |AbOp(ModR)|(1)⊗ |AbOp(ModR)|(1)⊗ |AbOp(ModR)|(2)→ |AbOp(ModR)|(2)

is the (left) action of R⊗R on Ree (see also 5.3.4).

Let R be a square ring. Next we know that each |AbOp(ModR)|-algebra A can be endowed with
a structure of modules over R via the Baker-Campbell-Hausdor� formula given in 5.2.3. Denote by
i21 : Re � R+2

e , r 7→ (r, 0, 0), respectively i22 : Re → R+2
e , r 7→ (0, r, 0), the injection of the �rst,

respectively second summand. Here e = 1, e1 = i21(1) and e2 = i22(1).
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• The group structure on A: the group law +A of A is given by

a+A a
′ = a+ a′ +

1

2
λA2
(
a⊗ a′ ⊗H(2)

)
,

for a, a′ ∈ A. The group law of the variety ModR may be seen as a binary operation θ,
in which we observe that the unary operations θ1 and θ2 are both the identity. It implies
that H(θ1) = H(θ2) = 0. Now we check that [e1, e2]M = −H(2). For this we calculate the
commutator of e1 and e2 in R+2

e as follows:

e1 + e2 − (e2 + e1) = (1, 0, 0) + (0, 1, 0)−
(
(0, 1, 0) + (1, 0, 0)

)
= (1, 1, 0)− (1, 1, 1⊗ 1⊗H(2))

= (1, 1, 0)− (1, 1, H(2))

= (1, 1, 0) + (−1,−1, H(2) + 1⊗ 1⊗H(2)) , by 5.3.14

= (1, 1, 0) + (−1,−1, 2H(2))

= (0, 0, 2H(2)− 1⊗ 1⊗H(2))

= (0, 0, H(2))

Hence we have here [e1, e2]M = H(2). Then we get

γ1,1;2

(
θ1(1)⊗ θ2(1)⊗ [e1, e2]M

)
= γ1,1;2

(
1⊗ 1⊗H(2)

)
= (1, 1)H(2) = H(2) .

Moreover the term θ12(e1, e2)−M (θ1(e1) +M θ2(e2)) becomes

θ12(e1, e2)−M (θ1(e1) +M θ2(e2)) = (e1 + e2)− (e1 + e2) = (0, 0, 0) ,

as desired.

• The unary operations encoded by Re: the action of Re on A is given by

a. r = λA1 (a⊗ r) +
1

2
λA2 (a⊗ a⊗H(r)) ,

for a ∈ A and r ∈ Re.

• The binary operations encoded by Ree: these are given as follows:

[a, a′]A. x = λA2 (a⊗ a′ ⊗ x) ,

for a, a′ ∈ A and x ∈ Ree. For x ∈ Ree, we consider the binary operation θx of the variety
ModR such that θx(a, a′) = [a, a′]. x. It is clear that the unary operations θx1 and θx2 are trivial
(see the relations in 5.3.5), and that θx12 = θx.
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