
HAL Id: tel-03462624
https://theses.hal.science/tel-03462624

Submitted on 2 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bile acids signaling as a novel mechanism in the
hypothalamic control of energy balance.

Ashley Castellanos Jankiewicz

To cite this version:
Ashley Castellanos Jankiewicz. Bile acids signaling as a novel mechanism in the hypothalamic control
of energy balance.. Neuroscience. Université de Bordeaux, 2019. English. �NNT : 2019BORD0218�.
�tel-03462624�

https://theses.hal.science/tel-03462624
https://hal.archives-ouvertes.fr


 
 

 
 

THESIS PRESENTED TO OBTAIN THE DEGREE OF 

 
DOCTOR OF THE UNIVERSITY OF BORDEAUX 

 

ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTÉ 

SPECIALIZATION: NEUROSCIENCES 

 

Presented in public on November 14th, 2019 

at the Neurocentre Magendie, INSERM U1215, Université de Bordeaux, France 

 
By Ashley Kate Castellanos Jankiewicz 

 
Bile acids signaling as a novel mechanism in the hypothalamic 

control of energy balance 
 
 
 

Directed by: Daniela Cota, MD, HDR 
 

 

Members of the jury: 

M. Guillaume Ferreira, Directeur de Recherche, INRA UMR 1286, Université de Bordeaux, France. 
Chair (Président) 

M. Luc Penicaud, Directeur de Recherche, CNRS Genopole Toulouse, Université de Toulouse III, 
Toulouse, France. Referee (Rapporteur) 

M. Christophe Magnan, Professeur des Universités, Université Paris Diderot, Paris, France.    
Referee (Rapporteur) 

M. Gilles Mithieux, Directeur de Recherche, INSERM U1213, Lyon, France.  
Examiner (Examinateur) 

Mme. Daniela Cota, Directrice de Recherche, INSERM U1215, Université de Bordeaux, France. 
Thesis director, examiner (Directrice de thèse, examinatrice) 



 
 

RESEARCH UNIT 

 

Team “Energy Balance and Obesity” 

Led by Daniela Cota, MD, HDR 

 

INSERM U1215, Université de Bordeaux 

Neurocentre Magendie 

146, rue Léo Saignat 

33077 Bordeaux 

France 

https://neurocentre-magendie.fr    



 
 

ACKNOWLEDGEMENTS 

 

This all started as a hopeful email addressed to Daniela, expressing my wish to carry 

out my master internship in her lab for 9 months. To my great excitement, she was kind 

enough to answer positively. So, first and foremost, thank you Daniela for opening that very 

first email. 9 months indeed gave way to life, which is my PhD thesis 4 years later! I am 

extremely grateful for the trust you have given me over these years for carrying out this 

innovative project. Your passion for science and the dedication that stems from it is truly 

inspiring, and granted me both personal and professional growth. Most important, it presented 

me with a fantastic team of enthusiastic, creative and brilliant scientists with which it has been 

a pleasure to work with: 

Avant d’arriver, je n’avais aucune expérience pratique de la plupart des techniques 

avec lesquelles je me sens maintenant à l’aise. Pour cela, je dois remercier Omar, le post doc 

(aujourd’hui chercheur) qui m’a tout appris, et qui a tout commencé pour ce projet. Je te 

remercie aussi pour les longues discussions pendant des longues journées du travail à 

l’animalerie ou au labo. Fuiste lo más cercano que pude tener a una familia cuando llegué a 

Burdeos sin conocer a nadie, así que ¡gracias por tu gran corazón! Alexia, je ne peux pas 

parler du moment où Omar était là sans parler de toi, mais peut-être il faut mieux pas ! Non, 

pour être honnête, tu représentes la première personne qui j’ai encadré formellement, et je suis 

très heureuse de voir ton parcours aujourd’hui. Merci de m’avoir laissé cette opportunité 

(même si tu n’as pas eu trop le choix). 

Sam, you are the beating heart of our lab, we are so fortunate to have you in the team! 

It is not always easy to stay positive in this environment, but I know that when it’s tough, I 

can turn to you for hearty discussions that will keep my chin up. Also, thanks to you, I learned 

to be more independent, particularly with western blots, if you know what I mean ;) 

Philippe, what would we do without you?! Il est difficile d’imaginer comment nous 

nous en sommes sorties sans toi au labo! C’est un régal de travailler et d’apprendre à côté de 

toi, ainsi que de s’amuser à diffuser notre travail ensemble. Merci pour ta disponibilité et 

patience éternelles, ainsi que pour ton partage généreuse des connaissances (et de musique !).  

C’est rare de trouver des personnes qui montrent leur affection ouvertement et 

honnêtement au travail. Dans l’équipe, j’ai découvert ça dans les câlins de Valérie : merci de 



 
 

prendre soin de moi pendant des déménagements, voyages personnels et professionnels, des 

moments difficiles… et de me rassurer et me soutenir quand j’ai eu besoin. Tu as un cœur très 

généreux ! 

Nathalie, merci de tout ce que tu fais pour nous dans les coulisses ! Tu nous facilites 

énormément le travail de jour à jour. Et merci aussi pour ton soutien quand le temps presse, 

j’aurais été submergée sans ton aide ces derniers mois. 

With all this positivism going on, luckily we have Vincent! No, really, it’s been great 

having a fellow PhD student around. Thanks for your honesty, impartiality and valuable input. 

Although your PhD topic remains cryptic to me (and others), I know you will rock it, like 

we’ve seen you do before! 

We have been fortunate to welcome bright new members in the team: Camille, it’s 

fantastic sharing an office with a young colleague as experienced and spontaneous as 

yourself! Carmelo, I’ve learnt so much from you in this relatively short period of time, thanks 

for your willingness to share your passion for your work! (To the both of you, I hope we’re 

done with surgeries by the time I write this; thanks for that, too). And Stéphane, who 

represents the fresh, young researchers in our lab, thanks for keeping the (mood) balance in 

the office next door, you arrive at a crucial time! 

Je voulais aussi remercier le personnel administratif du Neurocentre Magendie, ainsi 

que toutes les collègues de notre institut, directeurs, étudiants, postdocs, ingenieurs, ITAs, 

avec lesquelles je partage des moments amicaux chaque jour, et qui m’ont soutenu 

affectivement pendant mon parcours. Merci aussi à l’accueil de l’équipe Marsicano, car je 

m’incruste dans pas mal des soirées, mais je me sens toujours la bienvenu ! Grâce à vous tous, 

Magendie est devenu mon deuxième ‘chez moi’. Je remercie également à l’équipe de 

communication scientifique de l’Université de Bordeaux, particulièrement Delphine, ma 

coach pendant MT180s, qui a su me rassurer et guider pendant cette belle expérience. 

  



 
 

I’d like to also thank the members of the jury for accepting to take part in my thesis 

defense. It is a great honor for me to have you as witnesses of the work I have done over the 

past years. Please receive my gratitude and deep respect. I’d like to especially thank Dr. 

Mithieux, who, apart from being in my mid-thesis committee, has helped me on several other 

occasions with his kind support. I would also like to thank Dr. Ferreira in particular, who has 

seen this work evolve over time, and with whom, apart from sharing science, I was able to 

share a bit of nostalgia towards Mexico from time to time.  

 

Everyone serves the good wine first, and when people have drunk freely, then the poor 

wine. But you have kept the good wine until now.   - John 2:10 

 

Not that there is good wine and bad wine (at least not when you do your thesis in 

Bordeaux). But I’d like to finish by thanking the people who are most important to me:  

Alicia, my mom, and Arturo, my dad, were the academic adventurers of their time. 

With their real-life, almost fairytale, stories enriched with once in an improbable lifetime 

experiences, you have been the great inspirers of the path I chose to take. Thank you for your 

unconditional support from the very start, and for the assurance that, no matter where I go or 

whatever happens, I will never be too far from home. I am also grateful to have not only one, 

but two people who are always on my side: thank you Alec and Lee, my brothers, for 

watching out for me, guiding me and listening. I wouldn’t have gone very far without your 

examples. Geographical distance doesn’t mean much with a family like ours ♥ 

And to finish with the cherry on the top, merci Laurent for all the efforts you have 

made for the both of us. A good friend once told me that the most important thing in a 

relationship is to keep the ‘chispa, magia y color’ alive. Well, you sure know how to keep it 

thriving every day!  

 

 

 



 
 

 

 

 

 

 

  

Abstract (English) 

Résumé (Français) 

Résumé in extenso (Français) 

 



 
 

ABSTRACT (ENGLISH) 

Title: Bile acids signaling as a novel mechanism in the hypothalamic control of energy 

balance 

Introduction: Bile acids (BA) are cholesterol-derived molecules mostly known for their role 

in digesting lipids. By activating the Takeda G protein coupled receptor 5 (TGR5) in 

peripheral organs, they can also act as signaling molecules to reduce body weight and 

improve glucose homeostasis. Notably, TGR5 activation can increase energy expenditure in 

brown adipocytes, although the metabolic pathways involved in these effects are not yet clear. 

These outcomes imply an anti-obesity function for TGR5. However, all studies investigating 

BA in energy balance have exclusively focused on peripheral tissues. Since the major center 

of convergence of nutrient, hormonal, and environmental cues is the brain, particularly the 

hypothalamus, we hypothesized a role for TGR5 in this brain structure, suggesting that 

hypothalamic TGR5 activity may participate in energy balance, specifically under diet-

induced obesity. 

Objective: To demonstrate the function of the BA – TGR5 system in hypothalamic 

populations known to control energy homeostasis, and disentangle its relevance for the 

treatment of diet-induced obesity. 

Methods: C57Bl6/J male mice that were either lean (standard chow) or diet-induced obese 

(60% high-fat diet; HFD) were implanted with an intra-cerebroventricular (ICV) cannula for 

the pharmacological delivery of TGR5 agonists. TGR5flox/flox mice were used to target the site-

specific deletion of the receptor within the mediobasal hypothalamus (MBH), through the 

stereotaxic delivery of AAV-Cre. The following metabolic outputs were measured: body 

weight, food intake, body composition (EchoMRI analyzer), insulin sensitivity, serum and 

hypothalamic BA (liquid mass spectrometry), and energy expenditure (TSE Phenomaster 

system). To block sympathetic signaling, we exposed mice to thermoneutrality (30°C) or 

performed chemical sympathectomy (6-hydroxydopamine; 80mg/kg i.p.). Markers of 

lipolysis, thermogenesis, and thyroid metabolism were measured in the liver, adipose and 

hypothalamic tissues by qPCR or western blots. All studies received the approval from the 

animal ethical committee of the University of Bordeaux. 

Results: We demonstrate that TGR5 and BA transporters are expressed in the MBH and that 

diet-induced obese mice have decreased circulating and hypothalamic BA. Acute ICV or 



 
 

intra-MBH administration of TGR5 agonists reduced food intake and body weight in diet-

induced obese mice only, and improved insulin sensitivity. Accordingly, chronic ICV 

administration of the TGR5 agonist in obese mice reduced their body weight and adiposity, 

while increasing energy expenditure and mRNA markers of sympathetic activity in the 

adipose tissue. Indeed, experiments conducted at thermoneutrality or chemical 

sympathectomy blunted these effects, demonstrating that central TGR5 effects require an 

enhanced sympathetic tone. By using TGR5flox/flox mice coupled with the delivery of an AAV-

Cre, we observed that the deletion of TGR5 in the MBH had no effect in chow-fed mice. 

However, a HFD switch rapidly increased their body weight, food intake and adiposity. When 

exposed to the cold (4 h at 4°C), protein levels of lipolysis and thermogenesis markers in the 

adipose tissue were blunted, implying an interruption in sympathetic signaling to the 

periphery due to hypothalamic downregulation of TGR5. Lastly, Cre-dependent deletion of 

TGR5 in the MBH of already obese mice rapidly increased adiposity by inducing 

hyperphagia, worsening their obese phenotype. 

Conclusions: Our work proves the existence of a functional hypothalamic BA – TGR5 

receptor system. We show for the first time that the activation of TGR5 in the MBH decreases 

body weight and adiposity, while increasing energy expenditure through recruitment of the 

sympathetic nervous system. Taken together, these results expose a new mechanism of action 

for potential anti-obesity therapies. 

 

Keywords: Bile acids, TGR5, diet-induced obesity, mediobasal hypothalamus, sympathetic 

activity, thermogenesis. 

  



 
 

GRAPHICAL ABSTRACT 

 

Highlights 

• The Takeda G-protein coupled receptor, TGR5, is a specific bile acids receptor that is expressed 

in the brain 

• Acute or chronic central activation of TGR5 improves a diet-induced obese phenotype by 

decreasing body weight and food intake through a process that likely depends on the 

sympathetic nervous system 

• This will consequently increase the use of energy for promoting lipolysis in the white adipose 

tissue and thermogenesis in the brown adipose tissue 

• Overall, TGR5 can act centrally to participate in whole-body metabolic control 

  



 
 

RÉSUMÉ (FRANÇAIS) 

Titre : La signalisation des acides biliaires comme nouveau mécanisme dans le contrôle 

hypothalamique de la balance énergétique 

Introduction : Les acides biliaires (AB) sont des molécules connues pour digérer les lipides. 

En activant le récepteur couplé à la protéine G Takeda 5 (TGR5) dans les tissus périphériques, 

ils peuvent également servir de molécules de signalisation pour réduire le poids corporel et 

améliorer le profil glycémique. L'activation de TGR5 peut aussi augmenter la dépense 

énergétique dans le tissu adipeux, mais les voies métaboliques impliquées dans ces effets sont 

encore mal connues. Ces observations impliquent une action anti-obésité du TGR5. 

Cependant, toutes les études sur les AB dans la balance énergétique se sont concentrées 

exclusivement sur des tissus périphériques. Comme le principal centre de convergence des 

signaux nutritifs, hormonaux et environnementaux se trouve dans le cerveau, et en particulier 

dans l'hypothalamus, nous avons émis l'hypothèse que l'activité hypothalamique du TGR5 

pourrait moduler la balance énergétique, en particulier dans un contexte d’obésité. 

Objectif : Démontrer la fonction du système AB – TGR5 dans des populations de cellules 

hypothalamiques connues pour contrôler l’homéostasie énergétique et étudier sa pertinence 

pour le traitement de l’obésité. 

Méthodes : Des canules intra-cérébro-ventriculaires (ICV) ont été implantées sur des souris 

mâles C57Bl6/J minces (sous régime standard) ou obèses (sous régime riche en graisses) pour 

permettre l'administration pharmacologique aiguë ou chronique des agonistes du TGR5. Des 

souris TGR5flox/flox ont été utilisées pour provoquer la délétion du récepteur dans 

l'hypothalamus médio-basal (HMB), par l’injection in situ d’un AAV-Cre. Nous avons 

mesuré le poids corporel, prise alimentaire, composition corporelle, sensibilité à l'insuline, 

niveaux des AB hypothalamiques et plasmatiques et dépense énergétique. Pour bloquer la 

signalisation sympathique, nous avons exposé les souris à un environnement de thermo-

neutralité (30°C) ou à une sympathectomie chimique. Des marqueurs de la lipolyse, de la 

thermogenèse ou du métabolisme thyroïdien ont été mesurés dans le foie, le tissu adipeux et 

l’hypothalamus par qPCR ou western blot. Toutes les études ont été approuvées par le comité 

d'éthique en expérimentation animale de l'Université de Bordeaux. 

Résultats : Nous montrons que les transporteurs du TGR5 et des AB s’expriment dans 

l’HMB et que les souris obèses ont une diminution des AB dans la circulation et 



 
 

l’hypothalamus. L'administration aiguë d'agonistes du TGR5 (ICV ou intra-HMB) réduit la 

prise alimentaire et le poids corporel chez les souris obèses, tout en améliorant leur sensibilité 

à l'insuline. De plus, l'administration chronique ICV de l’agoniste réduit le poids corporel et 

l'adiposité, tout en augmentant la dépense énergétique et les marqueurs de l'activité 

sympathique dans le tissus adipeux. La thermo-neutralité ainsi que la sympathectomie 

chimique atténuent ces effets, démontrant que l’activité du récepteur TGR5 nécessite un tonus 

sympathique accru. La délétion de TGR5 dans le HMB (souris TGR5flox/flox) n'a aucun effet 

chez les souris minces. Cependant, l’exposition à une nourriture riche en graisse augmente 

rapidement leur poids, prise alimentaire et adiposité. Lors de l’exposition au froid (4 heures à 

4°C), l’expression des marqueurs de lipolyse et thermogenèse dans le tissu adipeux était 

atténuée, suggérant une interruption de la signalisation sympathique. Enfin, la suppression du 

TGR5 dans le HMB de souris déjà obèses augmente l'adiposité en induisant une hyperphagie, 

aggravant l’obésité. 

Conclusions : Nos résultats prouvent l’existence d’un système fonctionnel du TGR5 

hypothalamique, un récepteur des AB. Nous montrons pour la première fois que l'activation 

du TGR5 dans le HMB induit une myriade d'effets qui améliorent des paramètres 

métaboliques, et que cela dépend de l'activation du système nerveux sympathique. Ainsi, nous 

dévoilons un nouveau mécanisme d'action pour des potentiels traitements contre l'obésité. 

 

Mots clés : Sels biliaires, obésité induite par l’alimentation, hypothalamus médio-basal, 

balance énergétique, thermogenèse. 

  



 
 

RÉSUMÉ IN EXTENSO (FRANÇAIS) 

Contexte de la recherche 

L'obésité est pathologie caractérisée par une accumulation excessive de graisse, sous forme de 

tissu adipeux, qui présente un risque potentiel pour la santé (Kyle, Dhurandhar, & Allison, 

2016). Aujourd'hui, plus de 13% de la population mondiale est obèse (Marques, Peralta, Naia, 

Loureiro, & de Matos, 2017). Dans le cas de la France, 49% de la population adulte est en 

surpoids, dont 17,2% d’obèses (Verdot, Torres, Salanave, & Deschamps, 2017). 

Le traitement le plus efficace actuellement disponible contre l'obésité sévère est la chirurgie 

bariatrique. En suivant cette intervention, les patients ont une perte de poids durable ainsi 

qu’une amélioration de paramètres métaboliques, tels qu’une sensibilité à l'insuline accrue, 

une meilleure tolérance au glucose (Ashrafian et al., 2010; Kohli et al., 2013) et une 

diminution des lipides dans la circulation (Douglas, Bhaskaran, Batterham, & Smeeth, 2015; 

Sjostrom et al., 2004). De plus, la rémission du diabète de type 2 arrive chez une grande 

proportion de patients et se maintient plus de 14 ans après la chirurgie (Rubino & Gagner, 

2002). Néanmoins, notre compréhension des mécanismes biologiques permettant d’obtenir 

ces effets étonnants sur le métabolisme reste à ce jour très limitée. 

Acides biliaires en tant que molécules de signalisation périphériques 

Les acides biliaires (AB) sont aujourd'hui reconnus comme l'un des principaux acteurs des 

bénéfices de la chirurgie bariatrique. Ces sont des molécules amphipathiques synthétisées à 

partir de molécules de cholestérol, qui participent à la solubilisation des lipides après un 

repas. Une certaine quantité d’AB peut passer dans la circulation systémique, ce qui suggère 

qu’ils jouent un rôle au-delà de la simple digestion (Ferrebee & Dawson, 2015).  

Dans le cas des patients souffrant d'obésité, leur taux d’AB circulant après un repas est 

inférieur à celui des sujets de poids normal (Ahmad, Pfalzer, & Kaplan, 2013; Kohli et al., 

2013), mais après une chirurgie bariatrique, ils présentent une augmentation marquée d’AB 

circulants, allant du double (Kohli et al., 2013; Patti et al., 2009) au triple (Spinelli et al., 

2016), ce qui est positivement corrélé avec la quantité de poids perdu (Penney, Kinross, 

Newton, & Purkayastha, 2015). Pour cette raison, le concept classique d’AB est en train de 

changer, passant des émulsifiants lipidiques à des molécules de signalisation ayant des effets 

systémiques répandus.  



 
 

En effet, deux récepteurs spécifiques des AB ont été découverts en dehors du tract gastro-

intestinal. L’un d’eux est le récepteur nucléaire farnésoïde X (FXR) (Wang, Chen, Hollister, 

Sowers, & Forman, 1999), dont la fonction est plutôt d’assurer un rétro-contrôle, car il inhibe 

le catabolisme du cholestérol, ce qui diminue la biosynthèse des AB. Le second est le 

récepteur membranaire couplé à la protéine-G Takeda 5 (TGR5), exprimé dans les tissus 

périphériques et dans le système nerveux central (SNC) (Kawamata et al., 2003; Maruyama et 

al., 2006). Il répond aussi aux AB, en ayant une fonction métabolique. En effet, son activation 

entraîne une amélioration de l'homéostasie du glucose, une augmentation de la dépense 

énergétique et une inhibition de l'expression de marqueurs inflammatoires, ce qui  présente un 

grand intérêt pour le traitement de l'obésité et du diabète du type 2 (Chavez-Talavera, 

Tailleux, Lefebvre, & Staels, 2017). 

Tous ces effets participent à la régulation de l'homéostasie énergétique globale, un processus 

étroitement contrôlé par le cerveau. Cependant, bien que l'on sache que le TGR5 soit 

également exprimé dans le cerveau, le rôle qu'il joue dans le SNC reste inexploré. 

Contrôle central de la balance énergétique : l’hypothalamus médiobasal 

Le cerveau joue un rôle crucial dans l’équilibre énergétique en recevant et en intégrant des 

signaux provenant de la périphérie. En particulier, l'hypothalamus reçoit des signaux des 

organes périphériques par le biais de signaux nutritifs, hormonaux et nerveux et est capable 

d'intégrer ces signaux afin de contrôler les informations relatives à l'utilisation de l’énergie, 

conduisant ainsi au maintien de l'équilibre énergétique (Cota, Proulx, & Seeley, 2007). 

L’hypothalamus médiobasal (HMB) borde le troisième ventricule, permettant ainsi un contact 

presque direct avec la périphérie. Cette caractéristique distinctive repose également sur 

l'éminence médiane dans la partie inférieure de l'hypothalamus, qui est située en dehors de la 

barrière hémato-encéphalique, de sorte que les protéines et les hormones de la périphérie 

peuvent filtrer dans l'hypothalamus à un taux plus efficace que dans d’autres régions du 

cerveau (Rizzoti & Lovell-Badge, 2017). Ces caractéristiques neuro-anatomiques confèrent à 

l’HMB un rôle privilégié pour la détection rapide des besoins énergétiques (Prevot et al., 

2018). 

Interaction cerveau – périphérie  

Le SNC communique constamment avec la périphérie afin d'ajuster les besoins énergétiques 

immédiats. Pour ce faire, le système nerveux autonome (SNA) est en lien avec les tissus 



 
 

périphériques qui, à leur tour, peuvent agir sur le SNC (Seoane-Collazo et al., 2015). Le SNA 

est principalement régulé par l'hypothalamus, et se divise en systèmes nerveux sympathique et 

parasympathique (SNS et SNP) (Seoane-Collazo et al., 2015). 

En particulier, par le biais de l’hypothalamus, le SNS joue un rôle crucial dans la régulation 

de la lipolyse dans le tissu adipeux blanc (white adipose tissue, WAT) et de la thermogenèse 

dans le tissu adipeux brun (brown adipose tissue, BAT) pour réguler la dépense énergétique. 

Pour ce faire, l'axe hypothalamo-thyroïdien est particulièrement important pour la modulation 

du SNS liée à la température corporelle. Le produit final de cet axe est la biosynthèse des 

hormones thyroïdiennes par la glande thyroïde sous forme de thyroxine (T4), qui sera activée 

en triiodothyronine (T3) par les déiodinases (Nillni, 2010). T3 peut alors agir sur différentes 

cibles afin de stimuler le SNS, provoquant la synthèse de catécholamines (telles que la 

noradrénaline). Celles-ci atteindront finalement les tissus périphériques, tels que le WAT, le 

BAT, le foie et les muscles pour stimuler la dépense énergétique et la production de chaleur 

en se liant aux récepteurs β-adrénergiques (Blaszkiewicz & Townsend, 2016). 

Dans l'ensemble, le contrôle de l'homéostasie énergétique repose sur une stricte régulation de 

l'apport et de la dépense énergétique. Cette régulation est centralisée au niveau de 

l’hypothalamus, qui adapte la prise alimentaire et la dépense énergétique selon les besoins de 

l’organisme. Cette régulation est cruciale pour l’étude de l’obésité et de ses comorbidités 

associées. 

Hypothèse 

Nous émettons l'hypothèse d'un rôle du récepteur TGR5 dans l'hypothalamus, une structure 

cérébrale impliquée dans le contrôle du comportement alimentaire et de la dépense 

énergétique, suggérant que l'activité hypothalamique de TGR5 soit pertinente pour le contrôle 

de l'équilibre énergétique, en particulier en situation d’obésité. Nos objectifs sont les 

suivants :  

1. Identifier la présence de composants du système d’AB au niveau de l'hypothalamus ; 

2. Tester le système in vivo par l’activation pharmacologique aiguë et chronique du récepteur 

TGR5 dans le cerveau, et identifier les voies moléculaires à l'origine de ses effets ; 

3. Identifiez les populations cellulaires de l’HMB responsables des effets métaboliques de 

l'activation du TGR5 central. 



 
 

Démarche adoptée 

Nos études ont été réalisées chez des souris C57Bl6/J minces (sous régime standard) ou en 

situation d’obésité induite par le régime alimentaire (60% des apports caloriques provenant de 

matières grasses). Nous avons réalisé des études aiguës et chroniques d’administration 

pharmacologique intra-cérébro-ventriculaire (ICV) des agonistes du TGR5.  Des souris 

TGR5flox/flox ont été utilisées pour provoquer la délétion du récepteur dans l’HMB, par 

l’injection in situ d’un AAV-Cre ou d’un AAV-contrôle. Nous avons évalué le poids corporel, 

la prise alimentaire, la composition corporelle (EchoMRI), la sensibilité à l'insuline, les 

niveaux des AB hypothalamiques et plasmatiques (chromatographie en phase liquide couplée 

à la spectrométrie de masse) et la dépense énergétique (Phenomaster TSE). Pour bloquer la 

signalisation sympathique, nous avons exposé des souris à un environnement en thermo-

neutralité (30°C) ou à une sympathectomie chimique (6-hydroxydopamine ; 80 mg/kg i.p.). 

L'exposition à court terme au froid (4 heures à 4°C) a été utilisée pour augmenter l'activité 

sympathique chez des souris avec la délétion du récepteur au niveau de l’HMB. Des qPCR 

ont été réalisées sur du tissu hypothalamique de souris minces et obèses pour mesurer 

l’expression des composants du système des AB ainsi que du système thyroïdien, après le 

traitement chronique chez des souris obèses. En plus, des qPCR et des western blots ont été 

réalisés dans le tissus adipeux (WAT et BAT) de souris recevant le traitement chronique pour 

mesurer des marqueurs de lipolyse ou de thermogenèse. Toutes les études ont été approuvées 

par le comité d'éthique en expérimentation animale de l'Université de Bordeaux. 

Résultats obtenus 

Les composants du système des AB sont présents dans le cerveau et sont dérégulés en 

situation d’obésité 

Nous avons montré que le récepteur TGR5 est exprimé dans le cerveau et plus 

particulièrement dans l'HMB de souris minces et obèses. En utilisant la chromatographie en 

phase liquide couplée à la spectrométrie de masse (UPLC-MS/MS), nous avons démontré que 

les souris obèses ont des niveaux d’AB plasmatiques et hypothalamiques inférieurs comparées 

aux souris minces, un fait qui a déjà été rapporté chez les humains obèses (Albaugh et al., 

2015). En particulier, l'expression des transporteurs des AB dans l'hypothalamus est 

surexprimée chez les souris minces après une réalimentation faisant suite à un jeûne de 24 

heures (refeeding), ce qui suggère que les AB peuvent agir comme molécules de signalisation 

dans le cerveau pour indiquer en temps réel l'état énergétique lié à la consommation de 



 
 

nourriture. Ce n’est pas le cas dans notre modèle obèse, puisqu'il n'y a pas de changement 

dans les transporteurs des AB après la réalimentation, impliquant une altération du transport 

des AB hypothalamiques en situation d’obésité.  En effet, des déficits dans les transporteurs 

hépatiques des AB dans le foie de sujets obèses ont été décrits, où l’expression de 

transporteurs est en corrélation négative avec l’obésité, ce qui pourrait contribuer à ralentir la 

circulation entéro-hépatique (Haeusler et al., 2016). 

Ainsi, nos données suggèrent que la signalisation centrale des AB est altérée dans l'obésité, 

puisque les niveaux circulants des AB pourraient ne pas être suffisants pour atteindre le 

cerveau et moduler l'expression des transporteurs pour engendrer une réponse postprandiale 

adéquate. 

La signalisation centrale aiguë du TGR5 simule un état postprandial 

L'administration ICV ou intra-HMB aiguë d'un agoniste sélectif du TGR5 réduit la prise 

alimentaire et le poids corporel des souris obèses, tout en améliorant leur sensibilité à 

l'insuline. Ces effets semblent être médiés par l'activité hypothalamique du récepteur, puisque 

l'administration ciblée de l’agoniste dans l’HMB produit les mêmes résultats phénotypiques 

que l'administration par voie ICV.  

Au niveau moléculaire, nous avons observé que l'activation centrale aiguë du TGR5 diminue 

considérablement l'expression hépatique du Cyp7a1 (cholesterol 7 α hydroxylase 1), la 

principale enzyme responsable de la biosynthèse des AB (rate-limiting enzyme). Il a été 

démontré que des marqueurs de la biosynthèse des AB sont 2 fois plus élevés chez des sujets 

obèses (Glicksman et al., 2010). C’est pourquoi nos données peuvent être interprétées comme 

un mécanisme pour ramener les taux d’AB à la normalité.  

Il est maintenant admis que les AB peuvent agir comme molécules de signalisation pour 

maintenir l'homéostasie métabolique (Chiang, 2013) et réguler la glycémie (Bunnett, 2014; 

Thomas et al., 2009). Nous avons observé une diminution de l’expression des marqueurs 

hépatiques du métabolisme du glucose et de la synthèse des AB (glucose-6-phosphatase, 

G6pc, et Cyp7a1, respectivement), ainsi qu’une augmentation des marqueurs de synthèse des 

acides gras (fatty acid synthase, FAS) chez des souris à jeun, suggérant que l'activation 

centrale du TGR5 est suffisante pour imiter un état postprandial des tissus périphériques, 

simulant une situation de forte disponibilité énergétique. 



 
 

L'activation centrale chronique du TGR5 combat l'obésité par l’action du système nerveux 

sympathique sur le tissu adipeux 

Les effets sur la diminution du poids corporel et de la prise alimentaire ont été reproduits dans 

notre modèle chronique, où la perte de poids est principalement attribuée à une diminution de 

l'adiposité. De plus, l’efficacité alimentaire, généralement utilisée dans l'élevage pour 

quantifier la relation entre la nourriture consommée et sa transformation en une production 

souhaitée, est significativement diminuée chez nos souris traitées par voie ICV aiguë et 

chronique. Cela signifie que la perte de poids ne peut pas s'expliquer uniquement par la 

réduction de la prise alimentaire. 

Une possibilité est que le traitement provoque une augmentation de la dépense énergétique, ce 

qui contribuerait à réduire le poids corporel. Il a été démontré que le TGR5 exprimé dans les 

adipocytes participe à l'augmentation de l'activité du BAT et de la dépense énergétique par 

stimulation de la thermogenèse (Broeders et al., 2015; Teodoro et al., 2014; Watanabe et al., 

2006; Zietak & Kozak, 2016), qui contribue à réduire l'adiposité et le poids corporel. Nous 

avons observé que l'activation centrale chronique du TGR5 s'accompagne d'une diminution de 

l'adiposité et d'une augmentation de la dépense énergétique dans notre modèle d’obésité, ce 

qui suggère que les effets précédemment décrits liés à l'activation du BAT pourraient être 

engagés en stimulant le récepteur de façon centrale. 

La voie canonique par laquelle l'hypothalamus signale au BAT une augmentation de la 

dépense énergétique est l'activation du SNS, ce qui stimule la libération de catécholamines qui 

agissent sur β-adrénorécepteurs pour induire la thermogenèse (Bianco & McAninch, 2013). 

En effet, nous avons observé une augmentation de l’expression des β-adrénorécepteurs dans 

le tissu adipeux après le traitement chronique central avec un agoniste du TGR5, couplé à une 

augmentation de la dépense énergétique, suggérant une implication du SNS dans les effets du 

récepteur.  

Pour étudier cela, nous avons réalisé deux expériences afin d’empêcher l'activité 

sympathique, et avons testé les conséquences de la stimulation centrale du TGR5 dans ce 

contexte. La première expérience a consisté à placer nos souris soumises au traitement 

chronique en thermo-neutralité (où la thermogénèse n'est plus nécessaire, bloquant ainsi le 

SNS). Comme prévu, il n'y a plus eu d'augmentation de la dépense énergétique (puisqu'à 30°C 

il n'est plus nécessaire de générer de la chaleur corporelle), et l'expression des β-

adrénorécepteurs et de la deiodinase 2 (Dio-2, qui participe à la conversion de T4 à T3) a été 



 
 

diminuée dans le tissu adipeux. La seconde expérience a consisté à éliminer la connectivité 

sympathique périphérique par sympathectomie chimique (6-hydroxydopamine par voie i.p.), 

puis à exposer nos souris au traitement central de l’agoniste du TGR5. Là aussi, en l'absence 

d'un SNS fonctionnel, les effets précédemment observés ont disparu. Ensemble, ces résultats 

prouvent que l'activité centrale du récepteur TGR5 protège du gain de poids corporel par 

l'intermédiaire d'un mécanisme dépendant du SNS, comparable à ce qui serait attendu si les 

souris étaient exposées au froid. 

Il existe des preuves solides présentant les effets de l’hormone thyroïdienne dans 

l’hypothalamus comme facteur déterminant de l’activation du BAT (Lopez et al., 2010). Nous 

avons constaté que la stimulation centrale du SNS dépendante du TGR5 augmente 

l'expression de la Dio-2 dans le BAT. Par conséquent, il est probable qu'il y ait une plus forte 

conversion de T4 en T3 dans cet organe, ce qui entraînerait une « fuite » de l'hormone dans la 

circulation. Cela implique que T3 serait augmentée dans la circulation et qu'elle pourrait 

accéder à l'hypothalamus (Bianco & McAninch, 2013) pour stimuler le SNS suite à 

l’activation chronique du TGR5. Bien que des mesures des hormones thyroïdiennes soient 

actuellement prévues afin de confirmer notre hypothèse, nous avons examiné des marqueurs 

du métabolisme thyroïdien au niveau de l'hypothalamus. Fait intéressant, nous avons constaté 

que tous les marqueurs sont sous-exprimés suite à l'administration centrale chronique d’un 

agoniste du TGR5. Ces résultats suggèrent donc que l'activation centrale du TGR5 stimule 

l'activité du SNS pour favoriser la conversion de T4 en T3 (par la Dio-2 dans le BAT). En 

retour, les niveaux élevés de T3 libérés dans la périphérie agiraient au niveau du cerveau pour 

diminuer l’expression ses propres récepteurs et transporteurs au niveau de l'hypothalamus. 

Nos résultats impliquent que l'action du TGR5 dans l’augmentation de la dépense énergétique 

par la production de chaleur ne se produit pas seulement à travers le TGR5 exprimé dans les 

adipocytes, comme démontré précédemment (Teodoro et al., 2014; Watanabe et al., 2006; 

Zietak & Kozak, 2016), mais pourrait également être dépendant d'une signalisation d'ordre 

supérieur, spécifiquement liée à l'activation hypothalamique du TGR5, pouvant entraîner un 

phénotype similaire à celui observé lors d’une exposition au froid. 

La délétion du TGR5 au niveau de l’HMB augmente l’adiposité et aggrave l’obésité 

Pour comprendre l'implication hypothalamique du TGR5 dans les effets métaboliques décrits 

précédemment, nous avons utilisé un modèle génétique nous permettant de supprimer le 

TGR5 de l’HMB. Comme nous nous y attendions suite à nos expériences aiguës, la 



 
 

suppression du TGR5 chez des souris minces n'a pas d'effets phénotypiques évidents. 

Cependant, lorsque les animaux sont passés sous un régime enrichi en graisses, cette approche 

génétique entraîne un gain de poids très rapide, principalement attribuable à l'augmentation de 

l'adiposité. De plus, une exposition aiguë au froid (4 heures à 4°C) nous a permis de confirmer 

que le TGR5 cause effectivement une perte de poids grâce à l’activation du SNS, puisque les 

marqueurs de lipolyse et de thermogénèse sont sous-exprimés dans le tissu adipeux en 

absence du récepteur. De plus, la suppression du TGR5 dans l’HMB chez des souris déjà 

obèses provoque une augmentation rapide de leur poids corporel, prise alimentaire et 

adiposité, contribuant davantage au phénotype obèse. Dans l'ensemble, ces résultats indiquent 

une forte implication du TGR5 exprimé dans l’HMB dans la protection contre l'obésité. 

Néanmoins, l'approche virale utilisée pour effectuer la délétion du TGR5 dans l’HMB ne nous 

permet pas de déterminer les types cellulaires ciblés, principalement parce que le récepteur 

TGR5 est exprimé à des niveaux très faibles dans le cerveau adulte. Par conséquent, nous 

explorons actuellement la possibilité d'utiliser des modèles génétiques couplés à 

l'administration d'AAV-Cre avec des promoteurs spécifiques pour cibler des types cellulaires 

particuliers dans l'HMB afin d’identifier les populations cellulaires exprimant le TGR5 dans 

cette région du cerveau. 

Conclusions 

Nos résultats établissent clairement que les AB n'agissent pas seulement comme molécules de 

signalisation dans les tissus périphériques, mais peuvent aussi atteindre le cerveau pour 

activer le récepteur TGR5 et déclencher une myriade d'effets métaboliques bénéfiques, 

particulièrement dans un contexte d'obésité. Plus spécifiquement, nous avons montré que le 

TGR5 au niveau hypothalamique joue un rôle dans la physiopathologie de l'obésité. Tout 

d'abord, nous démontrons un dysfonctionnement des composants du système des AB en 

situation d’obésité. Ensuite, nous montrons que l'activation pharmacologique aiguë ou 

chronique du récepteur au niveau central entraîne des améliorations métaboliques chez les 

souris obèses, notamment une diminution de l'adiposité et une augmentation de la dépense 

énergétique. De plus, nous prouvons que ces effets sont induits par le recrutement du SNS 

pour augmenter la lipolyse et la thermogénèse dans le WAT et BAT, respectivement. Enfin, 

nous démontrons que le récepteur TGR5 est en réalité nécessaire pour obtenir une 

amélioration du phénotype, puisque sa délétion ciblée dans l’HMB augmente l'adiposité en 

présence d’un régime riche en graisses, bloque le tonus sympathique et aggrave le phénotype 



 
 

obèse. Nos travaux placent le récepteur TGR5 hypothalamique comme un médiateur clé des 

effets du SNS qui, via sa signalisation dans le tissu adipeux, diminue le poids corporel, 

dévoilant ainsi un nouveau mécanisme d'action pour de potentielles thérapies anti-obésité. 

D'autres études seront nécessaires pour identifier les types de cellules impliqués dans les 

effets médiés par le TGR5 hypothalamique sur le métabolisme. 
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I. Introduction 
 

 Energy balance and obesity A.

a. Energy balance: key to survival 

The human being is a living system that, like all others, is ruled by the first law of 

thermodynamics, which states that energy cannot be destroyed or created, but can only be 

transformed from one form to another (Ho, 2018). Therefore, the amount of energy that we 

consume (intake) should equal the amount of energy that we use for mechanical work, heat 

production and biosynthetic processes (expenditure). Losses that occur during the process, 

such as waste products, should also be considered in the system. Any other remaining energy 

that is consumed but not expended will be stored (Keith N. Frayn, 2010).  

The capacity of individuals to conserve this balance is crucial for survival. Evolutionarily, 

maintaining a stable body weight (BW) represents an advantage, since individuals whose 

weight fluctuates significantly over time (particularly in the case of voluntary weight loss, 

followed by weight regain) carry an increased risk of suffering from cardiovascular disease 

and new onset diabetes  (Bangalore et al., 2017; Cheng, Gao, & Jensen, 2015). In order to 

maintain this stability, mammals have developed a complex system for controlling their 

weight.  To achieve this, different hardwired mechanisms localized within the brain are 

responsible for regulating our eating behavior and metabolic responses (use and storage of 

calories) in peripheral organs. One of them is referred to as homeostatic system, which occurs 

when there is a decrease in energy substrates within the organism, causing hunger and the 

subsequent consumption of food. This situation has recently been more precisely referred to 

as the “endostatic system”, since it detects endogenous levels of energy, and gives indication 

to the body of replenishing the internal (“endo-”) energetic needs (“I eat when hungry”) 

(Piazza, Cota, & Marsicano, 2017). However, the act of eating is not always caused by actual 

hunger, but can also be triggered by the presence of food, particularly one that is palatable. 

Hence, animals that are already sated decide to keep eating, although their immediate energy 

needs have already been fulfilled. This second system is referred to as the non-homeostatic 

system.  Since this system is mostly related to the food that is available in the external (“exo-

“) environment, it is also referred to as the exostatic system, and it mostly relates to push the 

organism towards food consumption so to stock energy for future energetic needs (“I eat 

when food is available”) (Piazza et al., 2017).  
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Both systems participate in controlling energy balance, which depends on both energetic 

needs and environmental constraints, such as food abundance or scarcity. This balance is 

comprehensible when thinking in evolutionary terms about the human species in particular, 

since we evolved in environments where nutrient availability was far from stable, ranging 

from periods of abundance to dramatic food shortages. However, particularly in Western 

societies, in a relatively short period of time, our technologies have evolved to provide us with 

abundant and highly caloric food at any time during the day, having to make little effort to 

obtain it and consume it (Piazza et al., 2017). Hence, the sophisticated brain circuits 

regulating food ingestion and energy balance is being challenged, due to the easy availability 

and consumption of calorie-rich food, consequently leading to obesity and its serious 

metabolic consequences.  

b. Obesity: definition and classification 

Obesity is defined as a pathological condition where excessive fat accumulation 

occurs, in the form of adipose tissue, in a way that carries a potential health risk (Kyle et al., 

2016). This increase in body fat typically arises from an imbalance between energy intake 

(amount of calories ingested) and energy expenditure (amount of energy used as fuel for 

different purposes, such as maintaining basal metabolism, body heat and performing physical 

activities). Hence, obesity results when the amount of calories that are ingested surpasses the 

energy that is actually used by the individual, an effect on metabolism that is referred to as 

having a positive energy balance (energy intake>energy expenditure) (Krashes, Lowell, & 

Garfield, 2016).  

In order to categorize the severity of obesity and the risk of comorbidities, it is common to use 

anthropometric parameters that consider the body weight and height of an individual, since 

tools required to measure body fat in humans are too costly for recurrent use. Hence, the most 

common tool for this purpose is the body mass index (BMI), which is the ratio resulting from 

dividing the weight of an individual (kg) by the square of the height (meters). This ratio gives  

a surrogate measure of body fatness and categorizes an individual as being underweight 

(<18.5), normal weight (18.5-24.9), overweight (25.0-29.9), obese class I (>30.0-34.9), obese 

class II (35.0-39.9) and obese class III (>40.0) (WHO, 2000).  

Obesity is a preventable disease, and yet, in a relatively short period of time it has become an 

epidemic, being on the rise since 1997 (Caballero, 2007; Kyle et al., 2016). The World Health 

Organization has estimated that today, more than 13% of the world population is obese. More 
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alarming is the fact that, within the countries of the European Union, around 15% of the adult 

population is obese (Marques et al., 2017). In the particular case of France, it is the first 

country worldwide where the prevalence has not changed significantly since 2006, affirming 

stability of tendencies of overweight and obesity within the French population. However, the 

numbers are still alarming, with 49% of the adult population being overweight, out of which 

17.2% are obese (Verdot et al., 2017). 

Obesity carries with it a myriad of chronic comorbidities that severely decrease the quality of 

life and life expectancy itself, such as hypertension, type 2 diabetes, heart disease, respiratory 

disorders, non-alcoholic fatty liver disease, osteoarthritis, gallstones, reduced fertility, 

obstructive sleep apnea, several types of cancer and mild cognitive impairment (Kelly, Yang, 

Chen, Reynolds, & He, 2008). Furthermore, the social perception related to body size also 

places a heavy burden on the mental health of patients who suffer from obesity, carrying an 

increased risk of anxiety, low self-esteem and depression (Williams, Mesidor, Winters, 

Dubbert, & Wyatt, 2015). Obesity also negatively impacts the economy of health systems, 

making it one of the most common and costly chronic diseases worldwide (M. W. Schwartz et 

al., 2017).  

However, although being obese has received a stigma from society for being associated with 

negative personal traits (such as a lack of will power), it is nowadays clear that the process of 

becoming obese is far more complicated and involves fundamental aspects of our biological 

traits, such as the disruption of circuits that control energy balance, as explained by different 

central regulatory systems (endostatic and exostatic), together with our evolutionary 

physiology, which has predisposed us to conserve body fat and gain weight (M. W. Schwartz 

et al., 2017). In support of this evidence, a recent study has shown that most obesity-

associated mutations cluster in the brain, highlighting the role of the central nervous system in 

understanding and possibly treating this condition (Locke et al., 2015) (Fig. 1). 
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Figure 1. Obesity-associated mutations cluster within the brain. In a recent genome-wide 

association study, the central nervous system had the most significantly enriched single 

nucleotide polymorphisms associated with body mass index (BMI; p<5 x 10-4), indicating that 

most obesity-associated mutations cluster in the brain. Tissues were sorted by physiological 

system, where significantly enriched tissues appear in black; surpassing the dotted lines 

represents statistically significant enrichment [Taken from (Locke et al., 2015)]. 

 

In order to tackle the obesity epidemic, public policies worldwide have included the 

promotion of a healthy lifestyle, education in food choices and nutrition, and have underlined 

the importance of increasing time spent exercising (Leclerc et al., 2015). However, these 

strategies often fail to achieve sustained weight loss in the long term, mostly due to the 

difficulty for patients to adopt lifestyle changes and adhere to specific diets. Hence, much 

research has focused on developing and testing pharmacological compounds that could treat 

obesity and its comorbidities from different angles, resulting in five drugs being approved by 

the US Food and Drug Administration (FDA) to date (Daneschvar, Aronson, & Smetana, 

2016). However, these drugs allow for relatively small changes in body weight loss, and most 
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importantly, all of them present high risks of suffering from serious side effects as a 

consequence of their use (Krentz, Fujioka, & Hompesch, 2016), so that no drug that is both 

effective and safe is currently available. Furthermore, adaptive responses to weight loss 

suggest the existence of a defense system that protects the elevated level of acquired body fat, 

making it more difficult to lose weight and explaining the poor long-term efficacy of current 

treatments (Leibel, Rosenbaum, & Hirsch, 1995). For these reasons, a new focus for treating 

and overcoming obesity is urgently needed. 

c. Bariatric surgery: the most successful long-term therapy 

The most successful therapy that is currently available to treat severe obesity is bariatric 

surgery. Within this surgical procedure are grouped many different types of interventions, 

which are mostly differentiated by the inclusion of a “metabolic bypass” that causes a re-

routing of the gastrointestinal tract, or by procedures that do not have this bypass [Table 1; 

modified from (Ashrafian et al., 2010; Benaiges et al., 2015; Buchwald et al., 2009; C. K. 

Huang et al., 2016)]. 

 

Type of surgery Metabolic 
bypass 

(Yes/No) 

Description Outcomes 

Biliopancreatic 
diversion/duoden
al switch (BPD) 

Yes Partial gastrectomy with an 
anastomosis of the stomach pouch 
to the jejunum, forming an 
alimentary limb and a 
duodenojejunal biliopancreatic limb 
connected to the distal ileum. 

49.81 kg of body 
weight lost (73% of 
excess body weight 
lost) at ≥2 years post-
surgery. 

Roux-en-Y gastric 
bypass (RYGB) 

Yes The stomach is divided to create a 
small pouch (30 to 50mL), whilst 
the distal jejunum is connected to 
the stomach pouch, bypassing the 
duodenum and a part of the 
proximal jejunum. In doing so, 
food enters the stomach pouch to 
directly enter the jejunum. This 
procedure alters BA and nutrient 
flow through the gastrointestinal 
tract. 

41.41 kg of body 
weight lost (63.25% 
of excess body weight 
lost) at ≥2 years post-
surgery. 

Jejunoileal bypass Yes A segment of the jejunum is 
anastomosed to the terminal ileum, 
hence bypassing 90% of the 

This procedure is no 
longer practiced, since 
it leads to significant 
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functioning small intestine (a 
surgical short bowel syndrome).  

comorbidities (renal 
failure, liver disease, 
diarrhea, steatorrhea 
and protein 
deficiency). 

Partial ileal 
bypass 

Yes It consists of connecting a proximal 
segment of the ileum 200cm from 
the ileocaecal valve, which results 
in shortening the length of the small 
intestine. It decreases the 
absorption of cholesterol and bile 
acids by the ileum.  

This procedure is 
rarely used to treat 
obesity, since it is 
mostly indicated for 
the treatment of 
hypercholesterolemia. 

Duodenojejunal 
bypass 

Yes The stomach is connected the 
jejunum, bypassing the duodenum. 
It can improve diabetes by 
excluding nutrients from the 
proximal bowel and is currently 
used to treat diabetic patients with a 
BMI ≤22kg/m2. 

Outcomes are similar 
to patients that 
underwent RYGBP. 
After 1 year post-
surgery, 15.7 kg of 
body weight was lost.  

Vertical banded 
gastroplasty 

No The stomach is partitioned along 
the smaller curvature and then 
banded. 

The procedure is no longer used, 
since it does not lead to long term 
weight loss nor metabolic 
improvements. 

36.97 kg of body 
weight lost (56.48% 
of excess body weight 
lost) at ≥2 years post-
surgery. 

Adjustable gastric 
band 

No An adjustable band is placed 
around the top portion of the 
stomach to reduce its storage 
capacity. 

38.30 kg of body 
weight lost (48.98% 
of excess body weight 
lost) at ≥2 years post-
surgery. 

Ileal interposition No The ileum is positioned towards the 
proximal part of the small intestine, 
without modifying the stomach 
connectivity.  

It is mostly used for 
the treatment of type 2 
diabetes, even when 
the BMI is <20kg/m2. 

Sleeve 
gastrectomy 

No Removal of 70% of the stomach by 
transecting the greater curvature. Its 
effects are attributed to increased 
gastric emptying and intestinal 
transit, as well as stimulating gut 
hormone modifications. 

Excess body weight 
loss has been 
estimated at 62.3% 
after 5 years post-
surgery. 

Table 1. Types of bariatric surgery for body weight loss [Modified from (Ashrafian et al., 

2010; Benaiges et al., 2015; Buchwald et al., 2009; C. K. Huang et al., 2016)]. 
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Historically, caloric restriction due to a reduction in stomach size or to the bypass of nutrients 

(malabsorption) into the distal gut was thought to be key in the success of these surgeries 

(Cummings, Overduin, & Foster-Schubert, 2004). However, nowadays there is a shift in 

understanding the mechanism of action of these surgical procedures due to the astounding 

metabolic effects that they carry. 

Interestingly, the types of bariatric surgeries that have been most successful in treating obesity 

and its metabolic consequences in humans belong to interventions that include a metabolic 

bypass (Buchwald et al., 2009; Kohli et al., 2013). By following these types of surgical 

interventions, patients achieve sustained weight loss while improving metabolic parameters, 

such as an increase in glucagon like peptide 1 (GLP-1), a gastrointestinal hormone improving 

insulin secretion and sensitivity, as well as glucose tolerance (Ashrafian et al., 2010; Kohli et 

al., 2013), lowering levels of circulating triglycerides, cholesterol and low density lipoprotein 

levels, all of which remain stable for up to 4 to 10 years after the surgery (Douglas et al., 

2015; Sjostrom et al., 2004). Noteworthy, one of the most important clinical consequences 

that occur shortly after the surgical intervention is the remission of type 2 diabetes in a large 

proportion of patients, an effect that has been described even after 14 years of follow-up, 

hence reducing the mortality from diabetes (Rubino & Gagner, 2002). This is especially true 

for biliopancreatic diversion/duodenal switch (BPD) and Roux-en-Y gastric bypass (RYGB), 

where body weight loss is maintained even after 2 years post-surgery (73.72% and 63.25% of 

excess body weight lost, respectively) and where diabetes resolution occurs in 95.1% and 

80.3% of patients, respectively. In comparison, interventions such as gastric banding (where 

no metabolic bypass takes place) achieved an excess body weight loss of only 48.98% after 2 

years, with 56.7% of patients achieving diabetes resolution (Buchwald et al., 2009).  

The current eligibility criteria for undergoing any type of bariatric surgery is being morbidly 

obese (BMI >40kg/m2) or a BMI of >35kg/m2 with important comorbidities (such as type 2 

diabetes) (Fruhbeck, 2015). However, due to all the previously described effects of bariatric 

surgery, the 2nd Diabetes Surgery Summit (DSS-II)  came together in 2015, which hosted 

diabetes organizations from around the world (including the American Diabetes Association, 

the International Diabetes Federation, the French Society of Diabetes, among others). In this 

summit, guidelines were established for clinicians to include these surgeries as a treatment for 

patients who are diabetic and have a BMI as low as 30kg/m2 (Rubino et al., 2016). Hence, the 

concept of bariatric surgery is nowadays shifting from a purely calorie-restriction 

intervention, to being considered a metabolic surgery that should not only be indicated for 
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morbidly obese patients, but also for the treatment of non-obese type 2 diabetic patients 

(Rubino et al., 2006; Rubino et al., 2016).  

Nevertheless, there exists a knowledge gap for understanding the biological mechanisms in 

achieving these astounding effects on metabolism, and due to the strict inclusion criteria for 

undergoing surgery (and the cost it entails), not all obese or diabetic patients are candidates 

for this intervention. Moreover, although it is nowadays considered among the safest of 

available surgical procedures (mortality rate of <0.3%), there are important risks that can rise 

from this intervention that need to be taken into consideration. Complications include 

bleeding, leaks and bowel obstruction during surgery, nutritional deficiencies and post-

prandial hypoglycemia after surgery, as well as psychological disorders, such as depression, 

drug and alcohol abuse (Miras & le Roux, 2017). 

Therefore, it is in our best interest to better comprehend the underlying mechanisms of 

bariatric surgery success for finding a less invasive but equally effective solution to obesity. 

d. Bile acids and body weight loss after surgery 

In this regard, bile acids (BA) are nowadays being recognized as one of the main 

players in the metabolic benefits of these surgeries. Patients who undergo RYGB have a 

marked increase in circulating BA levels, going from a 2-fold (Kohli et al., 2013; Patti et al., 

2009) and up to a 3-fold increase (Spinelli et al., 2016), an effect that is not observed in non-

metabolic bypass interventions, such as gastric banding (Kohli et al., 2013). Moreover, this 

increase in BA is positively correlated with the amount of lost weight (Penney et al., 2015).  

At the experimental level, a study in rats confirmed that the sole diversion of the bile duct 

from the liver to either the jejunum or the ileum (instead of the duodenum) significantly 

increased BA in plasma, and mimicked the metabolic effects of bariatric surgery, even during 

exposure to a high-fat and high-sucrose diet (Goncalves et al., 2015). Moreover, these effects 

were blunted when providing a diet rich in cholestyramine, a resin that typically prevents BA 

reabsorption, suggesting that BA play a key role in achieving these metabolic changes. The 

study further revealed that BA diversion (without any dietary intervention) caused a reduction 

in BW and food intake (FI). Interestingly, rats also displayed a decreased interest towards 

palatable foods, effect that was strongly associated with increased plasma BA (Goncalves et 

al., 2015). These alterations in eating behavior and food preference have also been described 

in patients who undergo RYGB, suggesting that they do not eat less due to the restrictive 
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nature of the surgery, but mostly because of the reduction of hedonic hunger (Chakravartty, 

Tassinari, Salerno, Giorgakis, & Rubino, 2015).  

To further understand the metabolic consequences of increased BA after bariatric surgery, it is 

therefore essential to describe the state of the art in regards to their known metabolic 

functions. 

 

 Bile acids B.

a. What are bile acids? 

BA have been amply characterized as amphipathic molecules with detergent properties 

that are synthesized from cholesterol molecules in the liver, stored in the gallbladder through 

the common hepatic duct, and are discharged into the duodenum through the common bile 

duct upon meal ingestion (a process triggered by cholecystokinin, a hormone secreted by 

enteroendocrine cells), where they participate in lipid solubilization. Recycling of BA is a 

well-known mechanism for energy optimization (Chiang, 2013; Hofmann & Hagey, 2014), so 

that 95% of secreted BA are actively reabsorbed in the terminal ileum and carried back to the 

liver via the portal vein to participate in the next digestive process (Chiang, 2013). This flow 

of events is termed the enterohepatic cycle (Fig. 2) (Gioiello et al., 2014; Mazuy, Helleboid, 

Staels, & Lefebvre, 2015). In humans, 200 to 600 mg of BA are produced, and the same 

amount are excreted in the feces. This loss of BA per day is compensated by the synthesis of 

new BA (de novo) in the liver, so that, at any given time, the total BA pool is around 3 g.  
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Figure 2. The enterohepatic cycle. BA are synthesized from cholesterol molecules in the liver 

as primary BA, such as cholic acid (CA) and chenodeoxycholic acid (CDCA). They are then 

stored in the gallbladder (green) as conjugated primary BA. The presence of food in the 

stomach stimulates their secretion through the common bile duct into the duodenum in order 

to participate in the digestion process by emulsifying dietary fats throughout the intestine. 

Here, they undergo bacterial transformation (deconjugation and 7-α-dehydorxylation) to 

form the secondary BA deoxycholic acid (DCA) or lithocholic acid (LCA) and are either 

reabsorbed by the small intestine (95%) or lost in feces (5%). Hence, de novo BA synthesis 

represents 5% of the total BA pool. This pool of BA can cycle between 2 and 3 times per day 

in humans, depending on the dietary regimen. BA will then travel back to the liver, where they 

can signal a downregulation of their biosynthesis, completing a negative feedback loop for 

their regulation (Mazuy et al., 2015) [Taken from (MayoClinic, 2019)]. 

 

BA are cholesterol-derived molecules. Therefore, the core molecular structure of BA is a 

steroid nucleus, consisting of four fused carbon rings (three 6-carbon rings and one 5-carbon 
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ring). The biosynthesis of BA occurs in the liver, and can be classified in two major 

pathways: the neutral (or classic) pathway, where building of BA starts with modifications of 

the core steroid ring, and the acidic pathway, where these modifications are initiated by the 

cleavage of the side-chains of the steroid molecule. Notably, the classic pathway contributes 

to about 91% of the total BA that are synthesized in humans (Chiang, 2013). The first step of 

BA synthesis from cholesterol is initiated by their only rate-limiting enzyme, cholesterol 7α-

hydroxylase (CYP7a1). The initial products from cholesterol conversion are primary bile 

acids, which in humans are cholic acid and chenodeoxycholic acid, and in mice are cholic 

acid, α-muricholic acid and β-murocholic acid (Kuipers, Bloks, & Groen, 2014).  

Within the liver, primary BA are conjugated with either glycine or taurine, a process that 

increases their solubility for preventing their passive absorption and protecting them against 

cleavage by pancreatic enzymes. Upon reaching the distal intestine, BA are deconjugated and 

undergo further modifications carried out by the gut microbiota that result in secondary BA: 

cholic acid becomes deoxycholic acid, whilst chenodeoxycholic acid becomes lithocholic 

acid. These secondary BA are either excreted in the feces or re-circulated back to the liver via 

the portal system for subsequent excretion into the bile (Chiang, 2013). 

Since BA cannot be passively absorbed, they require specific transporters to complete this 

cycle. Hence, once BA reach the enterocytes in the small intestine, they are exported into the 

circulation via the organic solute transporter alpha (Ostα). Consequently, the hepatic tissue 

imports them from the bloodstream through the Na+-taurocholate co-transporting polypeptide 

(NTCP). In contrast, export of BA from the liver takes place through the bile salt export pump 

(BSEP) and the multidrug resistance associated protein 2 (Ballatori et al., 2009; Mazuy et al., 

2015). This complex transport system is able to protect the liver and other tissues from BA 

accumulation and toxicity (Mazuy et al., 2015). 

Of note, during the enterohepatic cycle, a small amount of BA can leak into the systemic 

circulation, tripling their blood concentrations after a meal, a fact that had been overlooked 

for many years and suggests sites of action of BA that extend beyond the digestive tract. 

Nowadays, we know that this spillover can have important metabolic effects (Ferrebee & 

Dawson, 2015). Moreover, in the particular case of patients who suffer from obesity, it has 

been shown that their levels of circulating BA after a meal are lower than in normal weight 

subjects, whilst after following bariatric surgery (particularly after RYGB), these levels were 

re-established to normal (Ahmad et al., 2013; Kohli et al., 2013). For this reason, the classic 
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concept of BA is currently shifting, from acting as mere lipid emulsifiers in the intestine to 

behaving as hormone-like signaling molecules with ubiquitous systemic effects. 

b. Bile acids as peripheral signaling molecules 

1. The farnesoid X receptor (FXR) 

Since BA have detergent properties, this might impose a risk to cells that are exposed 

to high concentrations of BA, causing inflammation and apoptosis. Consequently, there are 

protective mechanisms that come to place for the sensing and regulation of BA levels 

(Kuipers et al., 2014). In 1999, the hypothesis of the existence of a sensing system of BA 

arose with the discovery of their specific nuclear farnesoid X receptor (FXR) (Wang et al., 

1999), which is expressed in the liver, intestine, white adipose tissue, kidney, adrenal glands, 

stomach, pancreas, endothelial cells, among other tissues (Kuipers et al., 2014) (Fig. 3). To 

the present day, there is no clear evidence of the FXR receptor being expressed within the 

brain (Forman et al., 1995; X. Zhang et al., 2014), with some authors clearly stating that the 

receptor is not expressed in the adult mouse brain, as assessed by real-time PCR and in situ 

hybridization (Gofflot et al., 2007).  

 

Figure 3. Expression of FXR in the mouse. Mouse tissue distribution of FXR expression 

(mRNA) relative to standardization by 18S. The receptor is most abundant in the kidney, liver 

and the gastrointestinal tract [Taken from (X. Zhang et al., 2014)]. BAT: brown adipose 

tissue; WAT: white adipose tissue. 
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Since BA can be highly toxic to cells, due to their amphipathic nature, the main role of this 

nuclear receptor is to tightly regulate their synthesis and transport through tissues. Once BA 

bind to FXR in the liver, they inhibit BA synthesis by inhibiting cholesterol catabolism. This 

is achieved through the recruitment of transcriptional factors that will thereafter suppress the 

expression of the BA biosynthetic enzyme CYP7a1. In vivo, activation of BA-FXR signaling 

inhibits the expression of genes involved in hepatic gluconeogenic pathways, as well as in 

hepatic lipid metabolism (Ma, Saha, Chan, & Moore, 2006). Therefore, BA can regulate 

hepatic carbohydrate and lipid metabolism through FXR-induced changes in gene expression 

(Duran-Sandoval, Cariou, Fruchart, & Staels, 2005; Duran-Sandoval, Cariou, Percevault, et 

al., 2005). FXR is also implicated in other metabolic functions, such as BA transport towards 

the liver, by repressing the expression of the NTCP transporter, and in the regulation of 

lipogenesis and triglyceride synthesis through the suppression of the sterol regulatory binding 

protein 1c (Srebp1c). Moreover, studies in FXR knockout mice, as well as in transgenic 

models, suggest a potential role of this BA receptor as an anti-atherogenic target through 

lowering plasma cholesterol and reducing aortic plaque formation (Mazuy et al., 2015). 

2. The Takeda G protein-coupled receptor 5 (TGR5) 

Beyond the nuclear receptor FXR, in 2002, a novel G protein coupled receptor 

(GPCR) was found through searching in an existing GenBank DNA database. In order to 

understand its function, HEK293 cells that expressed this receptor were established and were 

exposed to different compounds. Interestingly, levels of cAMP (cyclic adenosine 

monophosphate, a second messenger that is activated by GPCRs) increased when the cells 

were exposed to compounds that were similar to cholesterol. By screening for compounds that 

possess the same core carbon ring structure, the authors found that this receptor was 

specifically responsive in a dose dependent manner to BA (Maruyama et al., 2002). Hence, 

for the first time they described the G-protein membrane BA receptor 1 (GPBAR1), also 

known with the name of Takeda G protein-coupled receptor 5 (TGR5) (Maruyama et al., 

2002).  

2.1. G-protein coupled receptor signal transduction 

GPCRs are cell membrane receptors with seven transmembrane domains that are 

capable of transducing signals from the extracellular space into the cytoplasm and the 

nucleus, in order to modulate the expression of genes within the cell that will lead to a myriad 

of different responses (Rajagopal & Shenoy, 2018). They respond to stimuli such as 
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hormones, neurotransmitters, ions, odorants, and others, for which they play an important role 

in physiology and represent interesting drug targets. Specific agonists of GPCRs are able to 

induce a maximal response, while partial agonists and inverse agonists cause submaximal 

responses or even decrease their activity, respectively (Hilger, Masureel, & Kobilka, 2018).  

Upon GPCR agonist binding, different signaling cascades can take place, which can be 

divided in G-protein dependent and G-protein independent. The first refer to processes that 

include the activation of heterodimeric G proteins that are composed of thee subunits (Gα, Gβ 

and Gγ). While Gα can modulate the activity of adenylyl cyclase, the complex of Gβγ can 

interact with channels that will allow the entrance of potassium to the cell. G-protein signaling 

is finalized by the re-association of the proteins to form an inactive heterodimer. The second 

signaling cascade leads to G-protein-coupled receptor kinases (GRK) phosphorylation and 

coupling to arrestins, which can either lead to activation of the mitogen-activated protein 

kinases (MAPK) pathway, promote the internalization of the receptor in endosomes for 

degradation, or recycling back to the plasma membrane (see Fig. 4) (Hilger et al., 2018). 

Continuous stimulation of GPCRs can eventually lead to the receptor being refractory to the 

stimulus or to its degradation by endosomes. This process is referred to as desensitization. 

After chronic exposure to their agonist, the response of the receptor can be significantly 

reduced and is associated with a decrease in its expression, a process referred to as the 

downregulation of the receptor (Rajagopal & Shenoy, 2018).  
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Figure 4. G-protein-coupled receptor signal transduction. This process can either be 

dependent (left) or not (right) on G-protein signaling. The activated receptor is capable of 

binding to different intracellular signaling proteins, such as G proteins (orange), GRKs (red), 

and active (turquoise) or inactive (green) arrestins. G-protein mediated signaling ends by the 

reassembly of Gα and Gβγ to an inactive complex. G-protein independent signaling by 

arrestins can also lead to the internalization of the receptor into endosomes to either be 

recycled back to the membrane, or to its degradation [Taken from (Hilger et al., 2018)]. 

 

In the specific case of TGR5, this GPCR responds to different endogenous agonists, 

particularly to BA, in a different rank order of potency, as follows: lithocholic acid, 

deoxycholic acid, chenodeoxycholic acid, and cholic acid (Duboc, Tache, & Hofmann, 2014). 

Its activation results in cAMP signaling at the plasma membrane and in the cytoplasm. It is 

interesting to note that TGR5 is an unusual kind of GPCR, since it does not interact with 

arrestins or GRK when it is activated by its endogenous agonists (Jensen et al., 2013). 

Moreover, even during constant activation by potent agonists (endogenous or synthetic), it 

does not undergo desensitization nor does it traffic to endosomes for degradation, but leads to 

continuous cAMP signaling at the level of the plasma membrane and the cytosol. Moreover, 

continuous stimulation causes the receptor’s redistribution in the plasma membrane to form 

microdomains that are referred to as membrane lipid rafts (Jensen et al., 2013). Here it can 
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associate with epidermal growth factor receptors (EGFR) in order to mediate MAPK 

signaling. Although it is not yet clear what the function might be in the particular case of the 

TGR5 receptor, there is evidence that the formation of membrane rafts allow the enhancement 

of the signal transduction (Patel, Murray, & Insel, 2008). 

The TGR5 receptor is expressed in peripheral tissues and in the central nervous system (CNS) 

both in humans (Kawamata et al., 2003) and in mice (Maruyama et al., 2006) (Fig. 5).  

 

Figure 5. TGR5 receptor expression in mice and humans. The TGR5 receptor (also known 

as Gpbar1) is expressed in many different tissues in A) female and male mice and B) human 

samples. Total RNA underwent reverse transcription and quantitative PCR. Each column 

represents the mean of duplicate values [Taken from (Kawamata et al., 2003; Maruyama et 

al., 2002)]. BAT: brown adipose tissue; WAT: white adipose tissue. Red rectangles: 

expression in brain and brain-related structures. 

A 

B 
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2.2.  Gastrointestinal regulatory functions 

At the time of its discovery, questions arose related to the usefulness of a specific BA 

receptor in tissues outside of the digestive tract, meaning tissues that are not directly related to 

the digestive process. However, now it is clear that the ubiquitous expression of TGR5 leads 

to widespread metabolic effects in the periphery. Since this is essentially a BA receptor, the 

first experiments to understand its role were focused on the liver and the gastrointestinal tract.  

Within the biliary tree, the activation of TGR5 involves the proliferation of cholangiocytes 

(epithelial cells of the bile duct) by phosphorylation of the MAPK/ERK1/2 pathway, a 

process that is independent of adenylate cyclase activity. TGR5 is highly expressed in the 

gallbladder, where its activation promotes its filling with BA and blocks its emptying (T. 

Chen et al., 2018). Moreover, the stimulation of TGR5 in non-parenchymal cells of the liver 

promotes choleresis, a process that allows for bile to flow from the liver to the gallbladder 

(Deutschmann et al., 2018). Within the gastrointestinal tract, it is expressed in either the 

apical or basolateral membranes of epithelial cells of the intestine, where it exerts different 

regulatory functions related to digestive processes (Bunnett, 2014):  

• Enterochromaffin (EC) cells from the colon: BA from the lumen bind to TGR5 on the 

apical membrane of EC cells to stimulate the peristaltic reflex that is dependent of 

serotonin secretion; 

• Gastric myocytes: The function of TGR5 in these cells is related to the contraction of 

the stomach muscles to facilitate digestion; 

• Colonocytes: The activation of the receptor on the basolateral membrane of 

colonocytes can inhibit chloride secretion; 

• Macrophages: Activation of TGR5 in macrophages that reside in the colon suppresses 

the secretion of tumor necrosis factor α (TNFα) to blunt inflammation; 

• Primary sensory neurons: BA that reach the basolateral membrane of enterocytes can 

reach primary sensory neurons to activate the TGR5 receptor, which will transmit 

irritant signals to the spinal cord. 

2.3. Metabolic effects of TGR5 activation 

Outside of its role within the gastrointestinal tract, TGR5 can also play a role in other 

peripheral tissues. Notably, it participates in improving glucose homeostasis. Its activation in 

L cells, which are specialized endocrine cells of the gastrointestinal tract, protects against 
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insulin resistance by stimulating the release of glucagon-like peptide 1 (GLP-1), an incretin 

that increases insulin secretion while decreasing glucagon, hence controlling glycaemia 

(Bunnett, 2014; Thomas et al., 2009). Moreover, when activated in pancreatic β-cells, TGR5 

can also directly induce insulin secretion (Kumar et al., 2012). Similarly, it has been recently 

shown that TGR5 activation by a synthetic agonist in the skeletal muscle of genetically obese 

(ob/ob) or diet-induced obese mice improves insulin sensitivity by a mechanism that is 

dependent of the cAMP/PKA pathway (S. Huang et al., 2019).  

Activation of TGR5 within cells of the immune system (such as human monocytes and 

macrophages) leads to a decrease of pro-inflammatory cytokines such as TNFα. Furthermore, 

in isolated macrophages from mice lacking TGR5 (TGR5-/-), the synthesis of pro-

inflammatory cytokines was higher than in wild type mice after a lipopolysaccharide 

stimulation. These effects are achieved by inhibiting the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB), which is a pro-inflammatory transcriptional factor 

(Duboc et al., 2014). Particularly at the level of Kupffer cells of the liver and macrophages, 

ligands that bind to the receptor inhibit pro-inflammatory cytokine production through 

inhibition of NF-κB, as well as through other mechanisms, such as the protein kinase A 

(PKA) and protein kinase B (Akt) and mammalian target of rapamycin (mTOR) pathways for 

the suppression of chemokine expression (Keitel & Haussinger, 2018). Thus, TGR5 activation 

in the peripheral immune system overall plays an anti-inflammatory action through different 

signaling cascades. 

TGR5 has also been found to increase heat production in the adipose tissue of rodents 

(Watanabe et al., 2006). To understand this, it is important to differentiate between the 

process of heat production, or thermogenesis, in mammals that can be ‘obligatory’ or 

‘adaptive’. The first refers to heat produced as a consequence of inefficient energy 

transformation during biochemical processes. Instead of being lost and wasted, this heat 

allows us to increase our body temperature to one that permits optimal biological functions. 

Obligatory thermogenesis occurs at temperatures ranging from 26-28°C. On the other hand, 

temperatures lower than this cause a stress that requires additional heat for proper 

thermoregulation, especially in small mammals, which produce heat in order to adapt to these 

colder environments (adaptive thermogenesis). Both of these processes are regulated by 

thyroid hormones (Bianco, Salvatore, Gereben, Berry, & Larsen, 2002), and the sympathetic 

nervous system  (SNS) (see also further below, section C. Central control of energy 

balance), among other mechanisms. Furthermore, adaptive thermogenesis can be sub-
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classified in shivering and non-shivering. During cold exposure, the hypothalamus causes an 

involuntary shivering response that will increase the blood flow throughout the body and 

hence, lead to heat production. At the same time, cold exposure activates the SNS for the 

release of catecholamines (such as adrenaline and noradrenaline), in order to increase heat 

production (non-shivering thermogenesis). Because the brown adipose tissue (BAT) is 

abundantly innervated by the SNS, it is the key organ responsible for non-shivering adaptive 

thermogenesis (Bianco et al., 2002). In fact, within the BAT, noradrenaline secreted as a 

consequence of SNS stimulation, together with the active thyroid hormone tri-iodothyronine 

(T3), are capable of stimulating uncoupling protein-1 (Ucp-1) gene transcription, and 

sustaining its expression during longer periods of cold exposure, allowing for an increase in 

heat production (Bianco et al., 2002).  

Studies have shown the implication of TGR5 in increasing thermogenesis by affecting the 

action of thyroid hormones. By looking at the BAT of mice fed a high fat diet (HFD), TGR5 

activation by BA lead to an increase in energy expenditure, preventing obesity and insulin 

resistance. This process was dependent on the activation of iodothyronine deiodinase type 2 

(D2), an enzyme responsible of converting thyroxine (T4) into T3. This study has been key in 

confirming the implication of TGR5 in the BAT as a primary target of BA for increasing 

energy expenditure through thermogenesis (Watanabe et al., 2006).  

In addition to this thermogenic effect of TGR5, this receptor has also been recently implicated 

in the ‘beiging’ of subcutaneous white adipose tissue (SAT) of mice during cold exposure, 

as well as during prolonged exposure to a TGR5 agonist-enriched HFD, a process that also 

leads to increased mitochondrial content in the SAT. This beiging of the adipose tissue is 

dependent of an increase in lipolysis though increased β-oxidation and thermogenesis 

(Velazquez-Villegas et al., 2018). 

Hence, the activation of the TGR5 receptor in peripheral tissues can have vast effects 

depending on the tissue where it is expressed, through different signaling cascades (Fig. 6), 

effects that are particularly relevant in the presence of obesity. 
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Figure 6. TGR5 receptor activation participates in different cell signaling pathways. TGR5 

activation can regulate a vast number of metabolic functions, depending on the tissue in 

which it is expressed [Taken from (Guo, Chen, & Wang, 2016)]. 

 

The presence of the TGR5 receptor within the CNS is in line with evidence of BA found in 

the brain, thanks to studies showing their ability to cross the blood-brain barrier (Keene et al., 

2001; Parry et al., 2010), as well as showing the presence of BA intermediates that circulate 

within the cerebrospinal fluid (Ogundare et al., 2010). 

Other authors have speculated on the role of the TGR5 receptor within the hypothalamus. Of 

note, in a rat model of acute cholestasis, circulating BA levels were increased to pathological 

levels rapidly (within 1 hour) in the hypothalamus, evidencing their ability to cross the blood-

brain barrier. The accumulation of these BA within the brain activated TGR5 that was 

expressed in the hypothalamic supraoptic nucleus (SON), which triggered a neuroendocrine 

loop regulating BA secretion from the liver. The authors hence suggested that BA may be 
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involved in an endocrine pathway connecting the liver and the hypothalamus through a 

TGR5-dependent mechanism (Doignon et al., 2011). To our knowledge, this work has been 

the first to suggest a hypothalamic role of TGR5 activation through peripheral BA signaling. 

Considering the metabolic impact of TGR5 activation in peripheral tissues, particularly in 

relation to its effects in improving glucose homeostasis, increasing energy expenditure and 

inhibiting the expression of inflammatory markers, the modulation of this receptor’s activity 

is of great interest in the treatment of obesity and type 2 diabetes (Chavez-Talavera et al., 

2017). It is noteworthy that these effects participate to the regulation of overall energy 

homeostasis, a process that is tightly controlled by the brain. However, although it is known 

that TGR5 is also expressed within the brain, as mentioned above, the role it plays in the 

CNS, and potentially within the hypothalamus for participating in energy homeostasis 

remains unexplored. 

 

 Central control of energy balance C.

The brain is an organ that plays a critical role in driving energy balance, by receiving 

and integrating signals from the periphery of the body’s energetic status. In response, the 

brain can modulate food intake and energy expenditure. Both environmental and endogenous 

factors can influence our eating behavior, and hence modulate brain networks involved in 

food intake and thermogenesis. There are three main interacting brain regions that are related 

to the storage and use of energy, all of which exert particular functions: the hypothalamus and 

the brainstem, which classically integrate physiological cues (endostatic: the need to eat for 

energetic purposes), and regions of the forebrain that control the incentive to seek and ingest 

food (exostatic: wanting and liking food), such as the ventral tegmental area end the nucleus 

accumbens (Myers & Olson, 2014). However, these systems are not independent. Neurons 

that are involved in homeostatic responses to feeding are directly linked to neurons that 

influence the perception of reward and aversion to food. Both these systems are activated 

during any behavior that is related to feeding and associated control of peripheral metabolism, 

even though the degree in which each is activated may differ, depending on the food type and 

the metabolic state of the subject (Rossi & Stuber, 2018).  

Although the neural basis of feeding and reward are intimately linked and can be overlapping, 

it is important to distinguish the main brain regions that regulate each. 
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c. Non-hypothalamic structures participating in energy balance 

1. Brainstem  

The nucleus of the solitary tract (NTS) is a caudal region within the brainstem that 

receives projections from peripheral tissues, such as the gut and the adipose tissue, and in turn 

projects to hypothalamic and limbic systems within the brain. It is capable of mediating meal-

related stimuli and determining food consumption and meal size (Blouet & Schwartz, 2012; 

G. J. Schwartz, 2006). These meal-related signals are transmitted through visceral afferent 

feedback signals (chemical, mechanical, hormonal and nutritional), which reach the NTS: 

during food intake, the distention of the stomach and the presence of nutrients in the digestive 

tract cause the release of peptide hormones that stimulate the vagus nerve and the area 

postrema (AP, a circumventricular organ, hence devoid of a complete blood brain barrier), to 

activate neurons in the NTS. Through a negative feedback loop, the NTS can then stimulate 

gut movement through the vagus nerve for limiting food intake. Of note, the lesioning of both 

the NTS and the AP causes sustained hyperphagia. Similarly, the knockdown of leptin 

receptors in both regions induces hyperphagia (Waterson & Horvath, 2015). 

In relation to the emotional aspects linked to feeding, the NTS projects to the 

amygdala to promote aversion to food, and also specific nuclei in the hypothalamus 

implicated in the control of ingestion (Myers & Olson, 2014). For this reason, there is a 

developing idea suggesting that the NTS is an integrator of neural processing related to 

feeding, the extent of which remains to be determined (G. J. Schwartz, 2006).  

2. Reward circuits 

Circuits that are involved in the motivation to ingest food are mostly mediated by 

dopaminergic (DA) neurons within the ventral tegmental area (VTA). These neurons project 

to the nucleus accumbens (NAc), which is mostly related to wanting food (incentive salience) 

and taking pleasure in eating it (hedonic attribute, liking), and integrate information such as 

the taste of food, the environment in which it is consumed and the social stimuli surrounding 

its consumption. These stimuli reach the hypothalamus for modulating appetitive behaviors. 

However, they can also project to the amygdala, hence mediating aversive responses to 

feeding (Myers & Olson, 2014). The insula and the amygdala can, in turn, communicate the 

overall value of food to the prefront al cortex (PFC) and ACC through specific neuronal 

inputs, since these are brain regions that are highly sensitive to reward cues from the 
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environment. The ventral striatum, and in particular the medial shell of the NAc, classically 

dictates representations on ‘liking’ and ‘wanting’ components of behaviors driven by reward 

seeking through dopaminergic activity (Richard, 2015).  

In an environment where highly palatable foods are readily available, the reward circuit is 

constantly stimulated, and hence contributes to the development of obesity. Moreover, a 

stressful lifestyle further contributes to the obesogenic context by weakening self-regulation 

brain circuits (comfort eating) (Richard, 2015).  

3. Other structures 

The PFC and the anterior cingulate cortex (ACC) drive the conscious decision to 

engage in eating or in performing physical activity, and mediate the self-discipline to 

modulate food intake (Richard, 2015). The parabrachial nucleus (PBN), located in the pons 

and in proximity to the cerebellum, is involved in many biological functions, such as arousal, 

control of glycaemia, body temperature regulation, breathing, and the perception of taste, 

pleasure and pain. Neurons of the PBN expressing calcitonin gene-related peptide (CGRP) 

play a major role in regulating appetite: they are stimulated by peripheral hormones that are 

released after a meal, which can subsequently promote a starvation phenotype that is either 

aversive (gastric discomfort) or rewarding (satiety after a meal) (Essner et al., 2017; Palmiter, 

2018). 

Studies in mice have shown an involvement of the medial PFC (mPFC) in the regulation of 

feeding. Optogenetic photostymulation of dopamine excitatory neurons (D1) in the mPFC has 

been shown to increase food intake, while inhibiting these neurons decreases intake. 

Moreover, D1 neurons in the PFC send projections to the amygdala, and the photostimulation 

of these axons seems to be sufficient to increase feeding, as observed with mPFC D1 

stimulation (Land et al., 2014). 

d. Hypothalamic control of energy balance 

The first studies demonstrating a hypothalamic role on the control of food intake and 

body weight date back to the mid-20th century, where lesions in the ventromedial (VMH) 

hypothalamus of rats caused an increase in adiposity, leading to obesity (Hetherington & 

Ranson, 1942). Later on, it became clear that the VMH was responsible of causing 

hyperphagia, whereas another region, the lateral hypothalamus (LH) drove satiety (Anand & 

Brobeck, 1951). Subsequent studies identified other hypothalamic nuclei, such as the 
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paraventricular nucleus (PVN), the dorsomedial nucleus (DMN) and the arcuate nucleus 

(ARC), all of which are involved in controlling energy homeostasis.  

The hypothalamus receives signals from peripheral organs through nutrient, hormonal and 

nervous signals, and is capable of integrating these signals in order to control energy-related 

information, such as caloric intake, storage and use. Indeed, fuels derived from recently 

ingested foods (nutrients) or that are secreted by peripheral tissues (ghrelin, leptin, insulin) 

can be sensed by the hypothalamus, which then integrates this information. The consequent 

modulation of signaling pathways can regulate the neuronal firing rate and the transcription of 

other molecules, hence leading to the maintenance of energy balance (Cota et al., 2007). 

Due to the presence of the blood-brain barrier surrounding vessels in the brain, including the 

hypothalamus, these signals can take some time to be received centrally. However, one 

particular region, the mediobasal hypothalamus (MBH, which includes the arcuate and 

ventromedial nuclei) is distinctive in that it boards the third ventricle of the brain, allowing for 

an almost direct and immediate contact with the peripheral environment, such as with 

hormones and nutrients. This distinctive characteristic of direct exposure to blood-born 

molecules also relies on the median eminence in the inferior portion of the hypothalamus 

(ventral to the third ventricle), which is a circumventricular organ, meaning that it is localized 

outside of the blood-brain barrier. The median eminence is constituted of fenestrated 

capillaries from which proteins and hormones from the periphery can filter into the 

hypothalamus at a more efficient rate than in other brain regions. The cells that line the 

median eminence are called tanycytes, a type of glial cells which also facilitate the passage of 

blood borne molecules for hypothalamic input and output (Rizzoti & Lovell-Badge, 2017), 

hence conveying the MBH a privileged neuroanatomic attribute for sensing real-time 

energetic needs (Prevot et al., 2018).  

1. The arcuate nucleus (ARC) 

Neurons located in the ARC have been largely investigated because of their 

anatomical location and express receptors for many different circulating molecules that are 

associated to eating behavior and regulation of peripheral metabolic responses, such as 

hormones. There exist at least two different neuronal populations that have been amply 

described within the ARC for guiding the use of energy or its storage: 
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• The catabolic functions are driven by the expression of pro-opiomelanocortin 

(POMC), which is processed to form other bioactive products, notably α-melanocortin 

stimulating hormone (αMSH), which promotes satiety in response to feeding, 

increases energy expenditure and leads to weight loss by activating the melanocortin-4 

receptor (MC4R) (Krashes et al., 2016; Carole M. Nasrallah & Tamas L. Horvath, 

2014). POMC neurons can also express β-endorphin and cocaine-amphetamine 

regulated transcript (CART). POMC neurons express the receptors for leptin (LepRb), 

which is an adipose tissue derived hormone that will activate the cells to signal satiety. 

POMC neurons also express ghrelin receptors (GHS-R), a hormone secreted by the 

stomach that, conversely, will inhibit the satiety signaling of these neurons.  

• The anabolic functions are determined by a decrease in caloric reserves, causing a 

release of agouti-related peptide (AgRP), neuropeptide Y (NPY) and γ-aminobutyric 

acid (GABA). Neurons that express AgRP are found exclusively in the ARC, and they 

are activated by fasting and promote feeding. They send projections to the forebrain, 

other hypothalamic nuclei and the hindbrain (Rossi & Stuber, 2018). Interestingly, 

AgRP acts as an inverse agonist of the MC4R, suggesting common downstream 

targets for both anabolic and catabolic cell types. Moreover, AgRP expressing neurons 

are capable of inhibiting POMC neurons through GABA signaling, demonstrating that 

both AgRP and POMC neuronal populations differentially influence feeding. AgRP 

neurons also express LepRb and GHS-R, and their activity have the opposite effect as 

in POMC neurons. Leptin will bind to its receptor in AgRP neurons to inhibit appetite 

signaling, while ghrelin will stimulate hunger. 

Both POMC/CART and AgRP/NPY expressing neurons in the ARC, together with neurons in 

the PVN that express melanocortin receptors, constitute the hypothalamic melanocortin 

system, which is one of the most important neural circuits involved in controlling feeding 

behavior and metabolism (Fig. 7) (Hill & Faulkner, 2017).  

Therefore, the overall energetic state of the organism is strongly influenced by the way in 

which these two distinct cellular populations in the ARC interact with each other in response 

to peripheral queues: following a period of fasting, the activity of anorexigenic neurons that 

express POMC and CART diminishes, while the activation of orexigenic neurons expressing 

AgRP/NPY is increases, leading to an increased appetite, food consumption and energy 

storage. Conversely, after a meal, the activity of anorexigenic neurons increases, while 

orexigenic neuron activation is decreases, hence leading to a signal of satiety, reduction of 
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food intake and an increased energy expenditure (Richard, 2015).  However, recent evidence 

suggests that these “classic” roles of POMC and AgRP neurons may be outdated. Work in 

preparation from our own research group confirms that, indeed, there exist subpopulations of 

POMC neurons that are capable of driving feeding (Saucisse N, Mazier W, Simon V et al., in 

preparation). Additionally, fiber photometry studies have shown that POMC neurons are 

immediately activated (increased calcium signaling) as soon as animals perceive food-related 

cues, implying that POMC neurons may play a major role in physiologically driving feeding 

and preparing the organism for actual food intake (Brandt et al., 2018), while AgRP neurons 

seem to be more relevant in the actual search of food and are then immediately switched off 

as soon as food becomes available (Betley, Cao, Ritola, & Sternson, 2013; Betley et al., 2015; 

Y. Chen, Lin, Kuo, & Knight, 2015). 

2. The paraventricular nucleus (PVN) 

This hypothalamic nucleus receives output targets from both AgRP and POMC 

neurons of the ARC. It is located adjacent to the third ventricle and dorsal to the ARC. It is 

implicated in behaviors such as feeding, drinking and temperature regulation through 

projections to the hindbrain (Rossi & Stuber, 2018). The MC4R is expressed within this 

nucleus, and hence, α-MSH and AgRP   produced by POMC and AgRP neurons of the ARC 

act within the PVN for promoting satiety or hunger, respectively, modulating energy 

expenditure.  

Therefore, by receiving input from other hypothalamic nuclei, the PVN participates in 

recognizing the energetic needs of the body, and can adjust its outputs accordingly, through 

directing physiological and behavioral responses (Krashes et al., 2016).  
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Figure 7. The melanocortin system. Both AgRP and αMSH are neuropeptides that bind to the 

MC4R that are expressed in target neurons, such as those of the PVN of the hypothalamus, 

causing opposite responses: αMSH will activate the MC4R, whose ultimate effect will be to 

promote satiety. AgRP acts on the same receptor as an antagonist (or biased agonist), leading 

to an increase in food intake (Krashes et al., 2016). Moreover, neurons expressing NPY/AgRP 

can also release NPY and GABA to promote orexigenic responses, and inhibit neurons 

expressing POMC, keeping a balance between this bimodal system. Peripheral hormones 

such as leptin and ghrelin have differential effects on these neuronal populations [Taken from 

(C. M. Nasrallah & T. L. Horvath, 2014)]. AgRP: agouti-related protein; GABA: γ‑

aminobutyric acid; GABAAR: GABA receptor; GHSR: growth hormone secretagogue 

receptor (or ghrelin receptor); MC4R: melanocortin receptor 4; NPY: neuropeptide Y; 

POMC: proopiomelanocortin; PVN: paraventricular nucleus of the hypothalamus. 
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3. The ventromedial nucleus (VMN) 

It classically constitutes a satiety center, which plays a critical role in the sensing of 

glucose. It is composed of two distinctive neuronal populations that respond directly to 

changes in extracellular glucose levels: ones that increase their electrical activity (excited) and 

others that decrease their electrical activity (inhibited) in response to glucose (Fioramonti, 

Song, Vazirani, Beuve, & Routh, 2011). Hence the VMN is of importance under conditions of 

hypoglycemia, through receiving and sending projections to other hypothalamic nuclei. 

A number of studies suggest that the VMN closely participates in the regulation of energy 

expenditure (Lopez et al., 2010). The central (ICV or intra-VMN) administration of T3 

hormone increased BAT thermogenesis and mitochondrial activity, as well as increased de 

novo fatty acid synthesis and uptake into the liver. Notably, these effects in the BAT and liver 

were not observed when T3 was administered into the ARC (Martinez-Sanchez et al., 2017).  

4. The dorsomedial nucleus (DMN) 

It has been implicated in the regulation of body temperature by increasing the 

thermogenic activity of the brown adipose tissue via the SNS. Certain neurons in this nucleus 

express leptin receptors, which activation takes to the excitation of the sympathetic nervous 

system, causing hyperthermia (Enriori, Sinnayah, Simonds, Garcia Rudaz, & Cowley, 2011). 

The DMN also expresses the MC3R and MC4R and receives projections of POMC and AgRP 

neurons from the ARC (Mountjoy, Mortrud, Low, Simerly, & Cone, 1994). Moreover, they 

express the Y1 and Y5 receptors, which are both targets for NPY, demonstrating an 

involvement of the DMN in the control of eating behavior (Bi, Kim, & Zheng, 2012).  

Neurons within the DMN can also have an impact in energy homeostasis by modulating SNS 

inputs onto WAT and BAT. Notably, knocking down the expression of NPY in the DMN 

results in an increased peripheral sympathetic tone in discrete fat deposits (inguinal WAT and 

interscapular BAT), a process that leads to an increase in thermogenesis and energy 

expenditure (Bi et al., 2012).  

5. The lateral hypothalamic area (LHA) 

This hypothalamic nucleus was originally described as the feeding center, since 

lesioning studies reported severe hypophagia to the point of starvation, and electrical 

stimulation promoted food intake even in sated animals. However, it is now clear that the 
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LHA can modulate a wide variety of systems, including the autonomic, mesolimbic and 

somatomotor systems to regulate the skeletal and cardiovascular muscles, adrenal gland and 

BAT, as well as to determine the value of stimuli (food, drugs, stress, etc.). Due to its 

involvement in these processes, it is thought that the role of the LHA extends to the 

coordination of motivated behavior through peripheral output (engaging muscles to seek for 

food, increase energy expenditure through BAT) (Leinninger, 2011).  

6. The suprachiasmatic nucleus (SCN) 

Mammals follow a rhythmic environment that is coordinated with the rotation of the 

Earth around its axis, causing the succession of day and night. Circadian oscillators that 

follow this 24 hour pattern are found in all mammalian cells, and are coordinated by a master 

pacemaker that is located in the SCN of the anterior hypothalamus. This is achieved through 

the transmission of light/dark information to the retina, which then travels through fibers that 

will leave the optic pathway to reach the SCN (retino-hypothalamic tract). This temporal 

information is capable of synchronizing the SCN clock to the external environment. 

Compared to other cells of the body, the rhythm of the SCN is autonomous and self-sustained, 

and coordinates oscillations in peripheral organs to ensure a phase coherence in the whole 

body (Kolbe, Brehm, & Oster, 2019). The synchronization is achieved through cellular 

mechanisms, comprised of nuclear auto-regulatory transcriptional and translational feedback 

loops which are encoded in specific clock genes (Froy, 2010).  

The SCN sends projections to several hypothalamic nuclei in order to participate in energy 

homeostasis. The DMN and the VMN are responsible of relaying information from the SCN 

to other cell bodies that are located in the hypothalamus in order to regulate sleep/wake 

cycles, locomotion, corticosteroid secretion and feeding. The PVN also receives fibers from 

the SCN, which can control neurons related to the autonomic nervous system (sympathetic 

and parasympathetic) in order to regulate peripheral tissues (Froy, 2010).      

Conversely, the ARC can send projections to the SCN in order to transmit information related 

to the overall energetic state of the organism, due to its strategic neuroanatomical position 

boarding the third ventricle and the leaky blood-brain barrier of the median eminence. Hence, 

this interaction provides the SCN a link with circulating metabolic information (Froy, 2010).   

In animal models of diet-induced obesity, it has been shown that perturbations of metabolic 

pathways are linked to alterations of the circadian oscillations, where cells from peripheral 
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tissues present a shift in their 24 hour rhythm. Interestingly, it was found that the 

reprogramming of the peripheral clocks was dependent of the nutritional challenge (a high-fat 

diet), and not on the presence of an obese phenotype. Moreover, these effects were reversible 

when mice were returned to a standard chow diet (Eckel-Mahan et al., 2013). The relationship 

between circadian clock disturbances and associated metabolic complications has also been 

shown in humans, by observation of subjects that engage in shift work, frequent trans-

meridian flights or exposed to continuous levels of stress. These factors exacerbate insulin 

resistance, elevate cortisol levels, and favor the development of obesity and type 2 diabetes 

(Albrecht, 2012).  

As seen, many different brain structures send and receive projections, either directly or 

indirectly, to the hypothalamus, so that the circuits that participate in controlling eating 

behavior and overall energy balance are interconnected (Fig. 8) (Myers & Olson, 2014).   

 

Figure 8. Integrated view of neural pathways that control feeding. The CNS drives the 

quantity and the timing of food intake. These signals are driven by different interacting brain 

regions. The brainstem receives information from the gastrointestinal tract, while the 

hypothalamus receives direct input from the circulation (humoral signals). Both the brainstem 

and the hypothalamus control the sensations of appetite and satiety, and can relay this 

information to a third region, the corticolimbic system, which is mostly involved in the 

motivation to seek food and the reward it entails [Taken from (Myers & Olson, 2014)]. 
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e. The autonomic nervous system 

The CNS must be in constant communication with the periphery in order to adjust the 

temporal energetic needs accordingly. For this, the CNS makes use of the autonomic nervous 

system (ANS) to communicate with peripheral tissues that in turn, can act on the CNS 

(Seoane-Collazo et al., 2015). The ANS is mostly regulated by the hypothalamus, as 

previously mentioned when describing the different hypothalamic nuclei, and innervates 

metabolic organs that play crucial roles in physiological responses. It is divided in the 

sympathetic and parasympathetic nervous systems (SNS and PSNS) (Seoane-Collazo et al., 

2015). The information that the CNS receives from peripheral tissues mainly comes from 

sensory neurons, the PSNS, and circulating factors, which can all trigger the activation of the 

SNS to modulate the use of energy (Fig. 9).  

• Sensory neurons are responsible for conveying environmental information to the 

brain, which will then relay the information to peripheral tissues through SNS 

innervations. Transient receptor potential channels (TRP), which are found on sensory 

neurons of the skin and adipose tissues, participate in integrating the sensations of 

touch, pain, temperature and taste. The activation of such channels can drive the 

increase of the sympathetic tone through CNS signaling. Moreover, TRP can also act 

directly on the adipose tissue, where it can inhibit adipogenesis in BAT and WAT 

(Blaszkiewicz & Townsend, 2016).  

• The SNS is also involved in this crosstalk, notably through the CNS control of feeding 

and increased EE, as well as through direct innervation of the WAT for the increase of 

EE and browning of the adipose tissue (Blaszkiewicz & Townsend, 2016).  

• Circulating factors from the periphery can further act on the CNS or also directly on 

the adipose tissues to participate in energy balance (Blaszkiewicz & Townsend, 2016).  
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Figure 9. Periphery to brain crosstalk for the regulation of energy expenditure. Sensory 

neurons transmit environmental queues to the CNS, which can in turn respond to the 

periphery through the SNS to control the use of energy in the WAT and BAT (thermogenesis, 

lipolysis, browning). The vagus nerve can either directly target the WAT to control energy 

use, or do this indirectly through signaling to the CNS. Circulating factors such as hormones 

can act on the CNS to regulate EE via hypothalamic pathways that will increase the 

sympathetic tone, or act locally on adipose tissues to directly trigger lipolysis and 

thermogenesis [Taken from (Blaszkiewicz & Townsend, 2016)]. BAT: brown adipose tissue; 

CNS: central nervous system; EE: energy expenditure; FA: fatty acids; FGF21: fibroblast 

growth factor 21; SNS: sympathetic nervous system; TRP: transient receptor potential 

channels; WAT: white adipose tissue. 

 

Independently of the source of the stimulation (sensory neurons, SNS or circulating factors), 

the contribution of the SNS in dictating the use of energy mostly comes from the modulation 
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of adipose depots, specifically the BAT for regulating thermogenesis, and the WAT for 

stimulating lipolysis (Blaszkiewicz & Townsend, 2016).  

 

f. Hypothalamic control of energy expenditure, thermogenesis and lipolysis in the 

adipose tissue through the sympathetic nervous system 

Notably, particular nuclei of the hypothalamus greatly contribute to the control of 

BAT thermogenesis and WAT lipolysis through modulating the sympathetic drive (Fig. 10) 

(Lage, Ferno, Nogueiras, Dieguez, & Lopez, 2016): 

The preoptic area (POA) is known as the thermoregulatory center, since it recognizes 

cutaneous, hormonal, and central thermal signals through temperature sensitive neurons to 

regulate adaptive thermogenesis (Boulant, 2000). When stimulated, it can promote adrenergic 

activity in the BAT and WAT (Lage et al., 2016).  

The DMN contains heat-sensitive neurons that project to the brainstem, which will then 

stimulate thermogenesis in the BAT, which can act as a neuroprotective mechanism against 

increased environmental heat. Moreover, the DMN also expresses NPY, which in this case 

modulates the sympathetic tone in WAT and BAT. Under diet-induced obesity conditions, the 

DMN overexpresses NPY, even in the fed state (as opposed to its lower expression in the 

ARC), and inhibits the excitation of sympathetic nerves, contributing to the obese phenotype 

(Chao, Yang, Aja, Moran, & Bi, 2011). In line with this, the expression of NPY in the DMN 

is increased during cold exposure, which suggests that these neurons would prioritize food 

intake over thermogenesis in order to cope with the energetic demand (Yang et al., 2009).   

Recent work has stressed the involvement of the VMN in the regulation of BAT 

thermogenesis. After central administration of T3 via ICV or directly to the VMN, 

hypothalamic lipogenesis is heightened, associated with a decrease in adenosine 

monophosphate-activated protein kinase (AMPK), which leads to an increase in AgRP/NPY 

expression that activates SNS outflow. As a consequence, central T3 acutely increases 

thermogenesis markers in the BAT (Lopez et al., 2010; Martinez-Sanchez et al., 2017). 

Adaptive thermogenesis is also regulated by the LHA through the expression of the 

orexigenic peptides melanin-concentrating hormone (MCH) and orexin (OX). MCH-knockout 

mice have a leaner phenotype compared to their wild types, which is mostly attributed to 
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increased thermogenesis in the BAT (Segal-Lieberman et al., 2003). Conversely, the central 

injection of OX increases sympathetic flow, which heightens the metabolic rate and body 

temperature (W. Zhang et al., 2010).  

The expression of NPY/AgRP in the ARC in response to energetic needs suppresses adaptive 

thermogenesis in order to preserve energy. Indeed, the expression of NPY in the ARC directly 

inhibits heat production by suppressing the sympathetic flow to the BAT. Furthermore, it 

indirectly counteracts thermogenesis by decreasing the expression in the PVN of tyrosine 

hydroxylase, a key limiting enzyme in the synthesis of catecholamines. On the contrary, a 

reduction of NPY or AgRP expression in the ARC increases the expression of thermogenesis 

markers in the BAT (Shi et al., 2013). Similarly, the PVN also mediates the NPY-induced 

decrease of thermogenesis in brown adipocytes. Since the PVN is considered the major 

autonomic output of the hypothalamus, it is suggested that the effects of the ARC on 

thermoregulation are mostly mediated by the PVN (Lage et al., 2016). 

Hence, there is a growing body of evidence supporting a crucial role for particular 

hypothalamic nuclei in the regulation of the sympathetic tone towards the BAT for regulating 

heat production, and the WAT for triggering lipolysis. The fact that these complex processes 

act together, and are sometimes redundant, allows for a rapid, homeostatic response that will 

meet the immediate metabolic needs (Lage et al., 2016). 
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Figure 10. Hypothalamic control of adaptive thermogenesis. Signals from the periphery 

(hormonal or environmental) are integrated in the hypothalamus to regulate the sympathetic 

drive towards the BAT and WAT. The POA integrates thermal sensory signals that project 

information to the DMH that will in turn stimulate the brainstem to increase SNS outflow. 

Appetite and satiety neurons, such as NPY, AgRP, POMC and orexin neurons in the DMN, 

the ARC or the LHA also participate in the regulation of body temperature. Lastly, peripheral 

signals can directly target the VMN to modulate AMPK activity and enhance sympathetic 

outflow. These effects will collectively have an impact on the thermogenic and lipolytic 

program of BAT and WAT tissues in the periphery, which are under the control of the SNS. 

Dashed lines represent inhibited pathways, and rounded ends indicate inhibitory signals 

[Taken from (Lage et al., 2016)]. 3V: third ventricle: AgRP: agouti-related protein; BAT: 

brown adipose tissue; DMH: dorsomedial hypothalamus; IO: inferior olivary nucleus; LH: 

lateral hypothalamus; NPY: neuropeptide Y; POA: preoptic area; POMC: 

proopiomelanocortin; PVH: paraventricular hypothalamus; rRPa: rostral raphe pallidus; 

SNS: sympathetic nervous system; VMH: ventromedial hypothalamic nucleus; WAT: white 

adipose tissue. 

 

The hypothalamic – thyroid axis is particularly relevant for the temperature-related 

modulation of the SNS. The CNS responds to changes in external temperatures in order to 

regulate core body temperature. This is done through the activation of the hypothalamic-

pituitary-thyroid axis (HPT axis) that is responsible for synthesizing thyroid hormones. Upon 

sensing of the environmental cues of temperature (e.g. cold exposure), thermo sensitive 
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hypothalamic neurons synthesize thyrotropin-releasing hormone (TRH), which will in turn 

stimulate the synthesis and secretion of thyroid stimulating hormone (TSH) from the pituitary 

gland. The end product of this axis is the biosynthesis of thyroid hormones by the thyroid 

gland in the form of T4, which will be modified to active T3 by deiodinases (Nillni, 2010). T3 

can then act on different targets in order to activate the SNS for the synthesis of 

catecholamines (such as norepinephrine). These will finally reach tissues in the periphery, 

such as the WAT, BAT, liver and muscle to stimulate energy expenditure and heat production 

through binding to β-adrenergic receptors (Blaszkiewicz & Townsend, 2016). 

 

g. Brown adipose tissue thermogenesis 

Compared to other tissues, the thermogenic capacity of the BAT is remarkable, 

making it the primary site of non-shivering thermogenesis in rodents and accounting for up to 

75% of the increased metabolic rate induced by the SNS (Labbe, Caron, Lanfray, et al., 2015). 

Moreover, it is estimated that the BAT triglyceride pool during an acute cold challenge 

contributes to up to 84% of heat production (Labbe, Caron, Bakan, et al., 2015). This tissue 

owes its high thermogenic properties to the production of heat, rather than ATP, as a result 

from the membrane potential generated from oxygen consumption (Clapham, 2012). Non-

shivering thermogenesis is a process that mostly depends on the activation of the SNS. 

Indeed, brown adipocytes are highly innervated by the SNS (evidenced by their rich 

expression of thyroxin hydroxylase, the rate limiting enzyme for the synthesis of 

catecholamines) (Murano, Barbatelli, Giordano, & Cinti, 2009) and abundantly express the β-

3 adrenergic receptor, whose activation by catecholamines (such as norepinephrine) 

stimulates heat production (Blaszkiewicz & Townsend, 2016).  

The potential of BAT to participate in heat production is attributed to the expression of Ucp-1, 

which is a protein that is solely found in the inner membrane of brown adipocytes. Upon 

stimulation, sympathetic neurons increase their firing and release catecholamines, such as 

noradrenaline, which in turn activate β-3 adrenergic receptors. This will lead to the expression 

of Ucp-1, which uncouples oxidative phosphorylation and ATP production in mitochondria. 

In this way, the energy that is generated in the respiratory chain due to oxygen consumption is 

used to generate a membrane potential that will be dissipated in the form of heat, rather than 

ATP synthesis. Therefore, the primary metabolic product in the BAT is heat, rather than ATP, 

as is the case in most tissues (Clapham, 2012). In order for this process to occur, the 
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mobilization of free fatty acids is essential for thermogenesis, which is achieved by increasing 

the hydrolysis of lipids (lipolysis) (Braun, Oeckl, Westermeier, Li, & Klingenspor, 2018).  

However, catecholamines that are produced as a direct consequence of SNS activity are not 

the sole stimulators of heat production in the BAT. In fact, many different activators of BAT 

have been found that act independently or in association with the SNS (Fig. 11) (Villarroya & 

Vidal-Puig, 2013):  

• The thyroid system: BAT expresses type II thyroxine 5-deiodinase, which is an 

enzyme controlled by norepinephrine that is responsible for converting T4 into active 

T3 hormone. As mentioned previously, intracellular T3 can induce thermogenesis in 

BAT through inducing the expression of Ucp-1.  

• Muscle activity: Although it is still unclear if exercise increases BAT activity through 

browning of WAT depots, it is speculated that a newly discovered hormone, irisin, 

might play a role in increasing thermogenesis, since it is released from the muscle 

tissue after exercise (Bostrom et al., 2012).  

• Macrophages: Cold-induced thermogenesis recruits macrophages that reside in the 

adipose tissue. These activated macrophages are capable of secreting catecholamines 

to promote BAT thermogenesis (Nguyen et al., 2011). 

• Natriuretic peptides: These are hormones produced by the heart that can enhance 

BAT thermogenesis and the browning of WAT by interacting with their receptors, and 

can be as potent as β-3 adrenergic receptors in doing so (Bordicchia et al., 2012). This 

crosstalk is conceivable when considering that BAT activation by a cold environment 

would need an increased cardiac output to be efficient.  

• Fibroblast growth factor 21 (FGF21): Produced by the liver, FGF21 can have 

antidiabetic and weight loss effects in obese rodents. By interacting with its receptor, it 

can activate thermogenesis in BAT, stimulate the browning of WAT, and induce 

glucose oxidation (Fisher et al., 2012). Presently, it is thought that FGF21 is an 

autonomous and direct activator of BAT, since no central effects or interaction with 

the SNS has been reported.  

• Bile acids: As mentioned previously, BA are also capable of increasing thermogenesis 

in the BAT through a process that is dependent of the conversion of T4 into active T3, 

in order to stimulate Ucp-1 synthesis. Hence, BA can increase the thermogenic 



[   38   ] 
 

capacity of the BAT (Teodoro et al., 2014; Watanabe et al., 2006; Zietak & Kozak, 

2016). 

 

 

Figure 11. Metabolic factors contributing to BAT thermogenesis. Apart from 

catecholamines activating adrenergic receptors in the BAT, other molecules are capable of 

initiating the thermogenic program, which do not necessarily depend on the SNS. Notably, 

bile acids have been previously reported to participate in this process through the activation 

of their TGR5 receptor. Irisin, a newly discovered muscle hormone, natriuretic peptides from 

the heart and FGF21 are other novel activators that promote BAT recruitment and WAT 

browning to different extents [Taken from (Villarroya & Vidal-Puig, 2013)]. 
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h. White adipose tissue lipolysis 

Adipocytes are the main energy storage in mammals, since they are capable of 

accumulating triacylglycerol (TAG), which are lipids consisting of three fatty acids linked to 

a glycerol molecule. When energy is required (e.g. during fasting, exercise or cold exposure), 

the process of lipolysis is initiated, which will lead to a series of intracellular signaling 

cascades that will culminate in the sequential hydrolysis of TAG to produce free fatty acids. 

These, eventually, will undergo β-oxidation to generate energy (Bolsoni-Lopes & Alonso-

Vale, 2015).  

There are three main enzymes that participate in lipolysis: first, TAG is hydrolyzed to 

diacylglycerol (DAG) and a free fatty acid in a reaction catalyzed by the adipose triglyceride 

lipase (ATGL). Next, DAG is hydrolyzed to a second free fatty acid and monoacylglycerol 

(MAG) by the action of hormone sensitive lipase (HSL). Lastly, MAG will be hydrolyzed to 

glycerol and a third free fatty acid through the action of monoacylglycerol lipase (MGL). 

These fatty acids will generally be released in the bloodstream and be used as energy 

substrates by other tissues (Bolsoni-Lopes & Alonso-Vale, 2015). The major enzymes 

contributing to TAG breakdown are ATGL and HSL, since they are responsible for more than 

95% of the hydrolase activity in the WAT (Schweiger et al., 2006). 

As occurs in the BAT, there exists a bidirectional communication between the brain and the 

WAT, which happens through the SNS, and the activation of this pathway is necessary for 

lipolysis (Bartness, Liu, Shrestha, & Ryu, 2014). Indeed, the tone of sympathetic innervation 

allows for catecholamines (mostly noradrenalin) output to the WAT, which will bind to β-

adrenoreceptors to increase cAMP levels to activate the protein kinase A (PKA). In turn, PKA 

will lead to the phosphorylation of HSL that will allow its translocation into the lipid droplet 

to access TAG and initiate lipid mobilization. ATGL, on the other hand, is regulated by an 

activator protein (α/β-fold domain containing protein 5) (Schweiger et al., 2006), and also by 

an increase in AMPK, which phosphorylates ATGL and increases its activity (Bolsoni-Lopes 

& Alonso-Vale, 2015). The sympathetic innervation of the WAT has further been evidenced 

by studies of surgical or chemical sympathectomy, which resulted in an inhibition of lipolysis 

and the accumulation of TAG within the fat tissue (Vaughan, Zarebidaki, Ehlen, & Bartness, 

2014; Youngstrom & Bartness, 1998).  

Adipocytes not only accumulate energy, but constantly mobilize large amounts of fatty acids 

that are stored in TAG droplets. For this reason, the size of the lipid droplet is constantly 
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changing according to the energy requirements, and as a result of variations in food intake and 

energy use. Due to the effects of stimulating lipolysis and the potential to decrease body 

weight, efforts have been made to selectively target the CNS-SNS-WAT through 

pharmacological treatments of metabolic diseases (Braun et al., 2018). 

Apart from catecholamines, other circulating factors are involved in initiating lipolysis either 

directly, or through an indirect pathway involving the SNS (Fig. 12) (Braun et al., 2018): 

• Adenosine: This purine can either initiate or inhibit lipolysis through binding to 

distinctive GPCRs. Adipocytes can liberate adenosine into the extracellular space, 

where it can consequently act in an autocrine fashion. 

• Melanocortins: Beyond their action in the CNS, melanocortins can also act on 

melanocortin receptors that are expressed in the periphery. αMSH and 

adrenocorticotropic hormone (ACTH) display lipolytic functions in rodent adipocytes, 

although their implication in humans is not yet clear (Kiwaki & Levine, 2003). 

• Natriuretic peptides: As in the BAT, these peptides can also participate in lipolytic 

processes. Particularly, the atrial natriuretic peptide (ANP) can stimulate the 

phosphorylation of HSL to trigger the lipolytic pathway. 

• Parathyroid hormone: This peptide hormone, which classically regulates circulating 

calcium levels, can also activate the cAMP – PKA pathway to initiate lipolysis. 

• Bile acids: Similar to their actions in the BAT, bile acids can signal through the TGR5 

receptor pro-lipolytic effects. 

Interestingly, leptin and GLP-1 have been suggested to indirectly participate in this process 

through hypothalamic signaling that would trigger the activation of the SNS to stimulate 

WAT lipolysis (Lockie et al., 2012; Zeng et al., 2015). These observations are supported by 

findings in leptin deficient mice that are obese (ob/ob), where leptin treatment was able to 

reduce food intake and fat mass (Montez et al., 2005). Conversely, insulin can inhibit lipolysis 

by decreasing PKA activity, which will hamper HSL phosphorylation and promote adiposity 

(Bartness & Ryu, 2015; Langin, 2006).  
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Figure 12. Circulating factors regulating lipolysis in WAT. The action of catecholamines on 

β-adrenoreceptors is not the only mechanism triggering lipolysis in the WAT. Other 

circulating factors participate in enhancing the actions of lipolytic enzymes, particularly 

through the phosphorylation of HSL by G-protein coupled receptor activity. Examples of such 

receptors are the melanocortin receptor 2 and adrenocorticotropic hormone (ACTH), and the 

adenosine receptor 2a and adenosine.  Interestingly, bile acids are known to participate in 

this process through their specific G-protein coupled receptor, TGR5 [Taken from (Braun et 

al., 2018)]. 
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Taken together, the control of energy homeostasis relies on the tight regulation of energy 

intake (eating behavior) and expenditure (by modulating muscle activity, BAT and WAT 

energy stores, and thermogenesis). This regulation is dictated by many brain regions that can 

either participate in the control of executive functions (decision to eat), the hedonic value of 

food (liking, wanting), or in the autonomic circuits regulating eating behavior (appetite and 

satiety signals). The activity of these brain circuits are influenced by environmental 

(temperature) and peripheral (nutrients, hormones, BA) mediators that can inform the CNS of 

the body’s current energetic state. These overlapping and interacting systems have emerged as 

a central concept for the study of obesity and its associated comorbidities, especially due to 

the influence of the brain areas involved in the control of BAT and WAT mobilization. 
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II. Knowledge gap and open questions 

 

Apart from participating in lipid digestion within the gastrointestinal tract, BA are now 

recognized as signaling molecules that are involved in a myriad of metabolic effects, the most 

dramatic being their contribution to the sustained body weight loss and diabetes remission that 

occur after bariatric surgery (Goncalves et al., 2015; Kohli et al., 2013; McGavigan et al., 

2017). The mechanisms by which these effects are achieved are attributed to an increase in 

circulating BA following surgery, and to their action on peripheral targets. This is achieved 

through their binding onto their specific receptor, TGR5, whose activation in tissues such as 

the muscle, gut and adipose tissues reduces body weight, increases energy expenditure and 

improves glycemic control. These effects are closely related to the control of energy balance 

and whole body metabolic responses, a process that is tightly regulated by the brain, and in 

particular by the hypothalamus. However, all studies investigating the metabolic functions of 

BA through TGR5 activation have so far exclusively focused on their action in peripheral 

organs, so that the state of the art ignores the role that BA can have in the CNS through the 

activation of this receptor, and their consequent impact on the regulation of energy balance.  

Disentangling the central role of BA through TGR5 activation is of interest for several 

reasons. First of all, although it is accepted that BA are capable of crossing the blood-brain 

barrier (Keene et al., 2001; Parry et al., 2010), and that the TGR5 receptor is expressed 

centrally (Kawamata et al., 2003; Maruyama et al., 2002), the relevance of this system within 

the brain has not been explored directly and therefore remains to be elucidated. Second, it is 

not clear how bariatric surgery can lead to such astounding metabolic outcomes. Indeed, the 

hypothesis that these effects are partly due to an increase in circulating BA is currently being 

explored, but due to its overall effects on energy metabolism, it mostly hints at the central 

modulation of energy balance. Furthermore, there is evidence that the regulation of the BA 

pool size not only occurs in the liver, but is also controlled centrally by the hypothalamus, 

which might act as a sensor for BA (Doignon et al., 2011). Third, TGR5 activation is 

considered a therapeutic target against obesity. However, the effects in humans seem to be 

inconsistent (Hodge et al., 2013), potentially due to off-target effects of TGR5 agonists 

administered orally. Most important, it is surprising that, given its potential in the treatment of 

obesity and diabetes, little research has been carried out for understanding the underlying 

mechanisms by which BA participate in enhancing energy use, a process classically 



[   44   ] 
 

controlled by the hypothalamus. Lastly, exploring the role of BA within the brain could lead 

to the discovery of better dietary or pharmacological strategies to treat obesity, mimicking the 

metabolic benefits of bariatric surgery, while at the same time excluding the risk this 

intervention carries with it.  

 

III. Hypothesis 

We hypothesized a role for the TGR5 receptor within the hypothalamus, a major brain 

structure involved in the control of eating behavior and energy expenditure, suggesting that 

the modulation of hypothalamic TGR5 activity is relevant for the control of energy balance, 

particularly under diet-induced obesity. 

 

IV. Objectives 

The general aim of this work was to evaluate the actions of BA within hypothalamic 

nuclei that participate in energy balance, through the pharmacological activation of their 

specific receptor TGR5, and to further understand their contribution to metabolic 

improvements, particularly in the presence of diet-induced obesity. To do this, our objectives 

were divided in the following axes: 

1. Identify the presence of BA system components centrally under different energetic states 

(lean vs. diet-induced obese) at the level of the hypothalamus; 

2. Challenge the system in vivo, through the acute and chronic pharmacological activation of 

the TGR5 receptor centrally, and identify the molecular pathways driving its effects; 

3. Pinpoint the cellular populations in the MBH responsible for the metabolic effects of 

central TGR5 activation. 
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V. Previous results generated in the team 

 

Initial data supporting our hypothesis were generated within Dr. Cota’s team by Omar 

Guzmán-Quevedo, PhD (Laboratory "Neuronutrition and Metabolic Disorders", Higher 

Technology Institute of Tacambaro, Mexico), a postdoctoral researcher at the time who 

investigated the presence of the components of the BA – TGR5 receptor system within the 

hypothalamus of mice under different metabolic conditions (i.e. lean vs. diet-induced obese). 

These experiments were carried out in C57BL6/J mice (Janvier, France) that were fed either a 

standard chow diet (Standard Rodent Diet A03, SAFE, France) or a commercial high-fat diet 

(HFD) (D12492, Research Diets Inc. New Brunswick, NJ, USA). His findings are 

summarized in the following section. 
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A. Bile acid receptors are expressed in the hypothalamus 

The expression by real-time quantitative PCR (qPCR) of the BA receptors FXR and 

TGR5 was measured in hypothalamic samples of lean mice that were either fed ad libitum 

(n=6) or fasted (n=7) for 24-h. Hypothalamic and liver tissues were obtained, immediately 

frozen and kept at -80 °C until further processed. Tissues were taken for isolating total RNA 

(TRIzol®, Invitrogen, CA, USA), followed by the synthesis of cDNA (High- Capacity cDNA 

Reverse Transcription Kit, Applied Biosystems, France). cDNA of BA receptors TGR5 and 

FXR were amplified and quantified by qRT-PCR (Applied Biosystems, France) under 

standard conditions (1x 3 min at 95 °C, 40x 15 sec at 95 °C, 30 sec at 60 °C and 30 sec at 72 

°C). Relative expression was corrected for PCR efficiency and normalized to the reference 

genes Ppia and Nono. Expression was quantified using the comparative 2-ΔΔCt method. 

Expression levels are presented as the fold change from the ad libitum group after 

normalization. 

These first results show that the TGR5 receptor is expressed within the hypothalamus of 

C57BL6/J lean mice, whilst the FXR receptor was undetectable, in accordance with previous 

reports (Fig. 13).  

 

Figure 13. Expression of BA receptors in the hypothalamus. The TGR5 receptor is 

expressed in the hypothalamus of lean mice; FXR was not detected (expression in the liver is 

shown as a positive control).  
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B. Bile acid transporters are found in the hypothalamus and their 
expression is regulated by the body’s energy status 

The expression by real-time quantitative PCR (qPCR) of BA transporters responsible 

for importing and exporting BA from cells was measured in hypothalamic samples of both 

lean and obese mice that were either fasted (food removed for 24h before killing) or refed 

(food removed for 24h and replaced for 2h before killing). Hypothalamic tissues (n=7 per 

group) were obtained and processed as described above. cDNA of BA transporters OSTα, 

NCTP and BSEP were amplified and quantified by qRT-PCR as described above with the 

reference genes SDHA and TUBA4A.  

Our data show that BA transporters are expressed in the hypothalamus. Interestingly, mice 

who were lean responded to refeeding conditions by increasing their BA transporters in the 

hypothalamus, an effect that was absent in obese mice (Fig. 14).  

 

 

 

 

 

 

 

Figure 14. Expression of BA transporters in the hypothalamus. The BA system transporters 

responsible for importing and exporting BA from cells are expressed both in chow (A) and 

HFD-fed obese (B) mice. Notably, lean mice show an increase of BA transporters during 

refeeding, an effect that is not seen in obese mice. Two-tailed Student’s t tests; *p<0.05. 
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C. Bile acid levels are decreased in obesity 

In order to confirm the presence of BA within the brain, total BA were measured in 

the plasma and the hypothalamus of both chow (n=10) and HFD-fed (n=10) mice that were 

fasted for 24h before killing. Measurements were performed by ultra-performance liquid 

chromatography, tandem mass spectrometry (UPLC-MS/MS) by collaborators (F. Bäckhed, 

U. Gothenburg, Sweden).  

Notably, BA were lower in mice fed a HFD, both in the circulating plasma and the 

hypothalamus (Fig. 15), suggesting a deregulation of the BA system peripherally and 

centrally in the presence of diet-induced obesity. 

 

 

 

 

 

 

 

 

Figure 15. Quantification of BA levels. BA are significantly lower in both plasma (A) and 

the hypothalamus (B) of obese mice, compared to their lean counterparts. Two-tailed 

Student’s t test; *p<0.05; **p<0.01. 
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VI. Materials and methods 

 

A.  Ethical statement 

All procedures involving live animals were approved and carried out in accordance with 

the National and European Directives 2013/63/EU, the French Ministry of Agriculture and 

Fisheries and the Ethical Committee of the University of Bordeaux for Animal 

Experimentation (authorization #3959, #13394 and #13395). Maximal efforts were made to 

avoid or reduce any suffering and to reduce the number of animals used. 

B.  Animals 

Male mice starting at 7 weeks old were housed individually in standard plastic rodent 

cages under a 12:12 h reversed light/dark cycle (lights on at 1:00 h) at 23 ± 2 °C. Mice 

received a standard chow diet (Standard Rodent Diet A03, SAFE, France; 3.236 kcal/g; 

13.5% lipids, 25.2% proteins and 61.3% carbohydrates) and water ad libitum, unless 

otherwise stated. For the diet-induced obesity model, mice were switched to a commercial 

high-fat diet (HFD) (D12492, Research Diets Inc. New Brunswick, NJ, USA; 5.24 kcal/g; 

20% of calories from proteins, 20% from carbohydrates, 60% from lipids) one week after 

arrival and were maintained on the diet for 12 weeks before the start of experiments unless 

otherwise stated. Body weight was recorded weekly from all mice throughout the studies and 

daily when a particular experimental procedure was carried out. 

C57BL6/J mice (Janvier, France) and TGR5flox/flox mice on a C57BL6/J background (obtained 

from Dr. K. Schoonjans, EPFL, Switzerland) and generated as described in (Thomas et al., 

2009) were used. At the end of the in vivo experiments, mice were either anesthetized and 

perfused for neuroanatomical analysis or killed by decapitation and tissues collected, frozen 

on isopentane chilled on dry ice, and stored at -80°C until needed for molecular and 

biochemical analysis. Number of animals used in each experiment is indicated in the figure 

legends. 

C.  Body composition 

Body composition analysis was performed in vivo by nuclear echo magnetic resonance 

imaging whole-body composition analysis (EchoMRI™ 900; EchoMedical Systems, 
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Houston, TX, USA) at arrival, after the 12-week exposure to the HFD, and during chronic 

experiments (at the start, one week after the start of treatment, and at the end of treatment), as 

described previously (Cardinal et al., 2014; Cardinal et al., 2015). Mice were weighed and 

placed in the EchoMRI™ using a movement restrainer to allow for proper measurements. All 

measures were taken at the same time of day under free-feeding condition. Data for total 

water, fat mass and lean mass were extracted for analysis. 

D.  Pharmacological tools 

In order to stimulate TGR5 activity, we used two different compounds:  

1. Sodium choleate (Sigma-Aldrich): a mix of BA containing taurocholic, glycocholic, 

deoxycholic and cholic acids, or  

2. The specific and potent synthetic TGR5 agonist, 3-(2-chlorophenyl)-N-(4-

chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (Abcam), commonly referred to 

as CCDC.  

For acute experiments, sodium choleate was diluted in artificial cerebrospinal fluid (aCSF), 

while CCDC was diluted in 100% dimethylsulfoxide (DMSO). For chronic experiments, 

CCDC was diluted in 60% DMSO and 40% aCSF. Doses are indicated below (see 

Experimental design). 

E.  Surgical procedures 

i. Intracerebroventricular (ICV) cannula implantation 

7. ICV cannula placement for acute pharmacology studies 

An ICV cannula was implanted in the lateral ventricle in order to perform 

pharmacological studies. Both lean and diet-induced obese mice were anesthetized using 

isofluorane 5% to induce the anesthesia and 1-2% during the surgery. Subcutaneous 

analgesics were injected to reduce discomfort: buprenorphine (0.1 mg/kg) as an analgesic, and 

lidocaïne (0.1mL at 0.5%) as a local anesthetic. Unconscious mice were placed on a 

stereotactic frame (David Kopf Instruments, USA). A burr hole for the guide cannula 

(C313GS-5/SPC, G22; Plastics One®) was drilled on the skull [coordinates relative to 

bregma: ML: -1.2; AP: -0.5; DV: -2.1; (Paxinos, 2013)] and was fixed with dental cement 

(MajorRepair®). Following surgery, mice received an anti-inflammatory and analgesic drug 
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(meloxicam, 5 mg/kg for 2 days) as well as 0.3 ml of saline solution subcutaneously. After 

surgery, animals continued to be housed individually and body weight was monitored daily 

during one week to assess recuperation and well-being. 

Correct cannula placement was assessed in vivo by ICV infusion of the well-known 

orexigenic peptide NPY (Phoenix Pharmaceuticals Inc.), as described previously (Bellocchio 

et al., 2013). Each mouse received 5 μg of NPY in 1 μL of 0.1 M PBS (pH 7.4) through an 

internal injector (projection of 0.5mm below the guide cannula). Body weight and food 

weight were recorded before and 2 h after NPY injection, which was administered during the 

light phase. Animals that ingested at least 0.50 g of food after 2 h were included in the 

experiments. 

8. ICV cannula placement for chronic pharmacology studies 

The same procedure as described for the acute cannula placement was used, with the 

addition of the subcutaneous implantation of a mini osmotic pump (Alzet® System, model 

1004; pump rate 0.1µl/h during 28 days) (adjusted coordinates relative to bregma: AP: -0.3; 

ML: -1.0; DV: -2.5). This pump was filled with either vehicle or CCDC.  The subcutaneous 

pumps were connected to the ICV cannula through a catheter.  

j. Intra-MBH cannula implantation 

Diet-induced obese mice were anesthetized and placed on a stereotactic frame as 

described above. A bilateral cannula (C235I-SPC, G33; Plastics One®) targeting the MBH 

was implanted (AP: -1.1; ML: ±0.4; DV: -4.9). Cannula placement was verified at the end of 

the acute experiments by injection of a blue dye into the cannula. Mice were sacrificed and 

brains were dissected and sliced using a cryostat (Leica CM 1950) in order to observe the blue 

dye trace. Animals that did not have the trace within the MBH (arcuate and ventromedial 

nucleus) were excluded from further data analysis. 

k. Intra-MBH viral injections 

TGR5flox/flox adult mice were used for the site-specific deletion of TGR5 in the MBH by 

injecting an adeno-associated virus (AAV) linked to Cre recombinase (AAV1/2-Cre-CAG-

hrGFP) or its control (AAV1/2-CAG-hrGFP). The virus was injected bilaterally in the MBH 

of both chow-fed and HFD-fed mice (coordinates relative to bregma: AP:  -1.5; ML: ±0.3; 

DV: -5.8 from the brain surface) using a Hamilton syringe of 10 µl, an automatic pump at a 
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rate of 100 nl/min and a 10 mm stainless steel injector (Nanofil® NF33BL, World Precision 

Instruments, USA). Total volume injected was 500 µl per side. The same pre- and post-

operative care procedures as described earlier for cannula placement were followed.  

F.  Experimental design 

l. Experiment 1: Acute ICV effects of TGR5 agonism on food intake and body weight 

In order to test the effect of acute central TGR5 activation in vivo on body weight and 

food intake, mice fed chow or HFD were injected ICV after 24 h fast, just before the dark 

phase (13:00 h): 

1. 2 µl aCSF as vehicle, or 2 µl sodium choleate (2.5 µg/µl), or  

2. 2 µl 100% DMSO as vehicle, or 2 µl of CCDC (2.5 µg/µl). 

Body weight was measured at baseline and after 24 h of injection; food intake was measured 

at baseline and after 1, 2, 4 and 24 h. Feed efficiency was calculated by dividing the body 

weight gain into the total calories ingested (3.2 kcal/g of chow or 5.24 kcal/g of HFD), over 

24 h food intake and expressing the ratio in percentage. In a separate experiment, an insulin 

tolerance test was performed after the ICV injection of vehicle or CCDC.  

m. Experiment 2: Acute intra-MBH effects of TGR5 agonism on food intake and body 

weight in diet-induced obesity 

Since ICV compound delivery can diffuse throughout the brain, acute intra-MBH 

administration of CCDC was carried out in diet-induced obese mice in order to more precisely 

target this brain region. The volumes used were adjusted to 0.2µl per mouse, and each time 

mice were injected with either vehicle or CCDC (5µg/µl). Body weight was measured at 

baseline and after 24 h of injection; food intake was measured at baseline and after 1, 2, 4 and 

24 h. Feed efficiency was calculated as described above. 

n. Experiment 3: Chronic ICV effects of TGR5 agonism on food intake and body 

weight in diet-induced obesity 

Body weight and food intake were followed for 28 days in mice with an ICV cannula 

that was connected to a mini-osmotic pump. Body composition analysis was performed before 

surgery, after 1 week of the start of treatment and at the end of the treatment. Mice were 

placed in calorimetric cages on day 10 of treatment and during 5 consecutive days to evaluate 
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energy expenditure at 22°C. A separate group of mice receiving chronic infusion of CCDC or 

vehicle were placed in calorimetric cages at 22°C and then housed at thermoneutrality (30°C) 

during 48 h to evaluate energy expenditure in the absence of sympathetic activity. In another 

group of mice, an insulin tolerance test was performed at 4 weeks of treatment. All mice were 

killed by decapitation either at 22°C or at 30°C, blood was collected and tissues were 

extracted, immediately frozen in isopentane chilled on dry ice, and stored at -80°C until 

needed. 

o. Experiment 4: Effect of chemical sympathectomy on chronic ICV TGR5 agonism 

Diet-induced obese mice were i.p. injected for 3 consecutive days with 80mg/kg of 6-

hydroxydopamine (6-OH-DOPA) diluted in saline solution with 0.1% ascorbic acid, as in 

(Quarta et al., 2010). One group of mice was killed after 1 week of the i.p. injections in order 

to obtain WAT and BAT tissues for assessing the downregulation of markers the SNS by 

western blot.  

The same procedure for chemical sympathectomy was performed in an independent group of 

mice, which after 1 week underwent stereotaxic surgery coupled with subcutaneous mini-

pump implantation for chronic delivery of either vehicle or CCDC, as described above, in 

order to assess the effect of central TGR5 agonism in the absence of functional sympathetic 

connectivity. Body weight and food intake were followed for 28 days. Body composition 

analyses were performed before sympathectomy, after 1 week of the start of CCDC treatment 

and at the end of the treatment. Mice were killed by decapitation, blood was collected and 

tissues were extracted, immediately frozen in isopentane chilled on dry ice, and stored at -

80°C until needed (Table 2). 

p. Experiment 5: Effect of AAV-mediated genetic deletion of TGR5 in the MBH on 

food intake, body weight and adiposity 

To assess the phenotypic effect of genetic TGR5 deletion in the MBH, three groups of 

mice were created: 

1. Chow-fed lean TGR5flox/flox mice were injected in the MBH with AAV-GFP or AAV-

Cre; 

2. Chow-fed TGR5flox/flox mice were injected in the MBH with AAV-GFP or AAV-Cre 

and switched to a HFD after 1 week of the viral injection; 
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3. Diet-induced obese TGR5flox/flox mice were injected with either AAV-GFP or AAV-

Cre and maintained on HFD. 

An additional group of chow-fed mice were injected in the MBH with AAV-GFP or AAV-

Cre. These mice were perfused after 4 weeks for subsequent neuroanatomical analysis to 

verify the localization of the expression of Cre recombinase, as well as to verify effective 

recombination by genotyping in these samples. 

In all cases, body weight and food intake were measured for up to 21 days. Mice were killed 

by decapitation for blood collection and tissue extraction. In the case of chow-fed mice 

switched to a HFD (group 2 described in the list above), killing was preceded by a 4 h cold 

challenge at 4°C so to stimulate SNS-related responses (Table 3). 

G.  Pharmacokinetics of TGR5 agonist 

The abundance of the TGR5 agonist CCDC was measured after an acute ICV dose of 5µg, 

and after chronic ICV infusion. Groups of 3 mice were sacrificed at 15, 30, 60, 120 and 240 

min after the injection, and the hypothalamus and the rest of the brain were collected and 

directly frozen for quantification by liquid-chromatography-mass spectrometry. Blood was 

collected in heparin tubes, centrifuged at 5000 rpm for 10 min at 4°C, and plasma was 

collected and frozen at -80°C. Blood samples after 28 days of ICV CCDC were also 

processed for CCDC quantification. Actual measurement of CCDC was carried out by our 

collaborator Julie Charton (Pasteur Institute, INSERM U1177, Lille) by mass spectrometry 

analysis. 

H.  Insulin tolerance test 

This procedure was performed as in (Cardinal et al., 2014). Briefly, mice were fasted for 6 

h and were injected intra-peritoneally (i.p.) with 0.5 U/kg insulin (Humulin, Lilly, France). 

Blood samples were collected from the tail vein and glucose was measured using glucose 

strips (OneTouch, Vita, France) at baseline, 15, 30, 60, 90 and 120 min. 

I. Indirect calorimetry 

Indirect calorimetry, in-cage locomotor activity and gas exchange analysis were carried 

out in light, temperature and humidity controlled calorimetric chambers (TSE Systems 

GmbH, Bad Homburg, Germany), as in (Cardinal et al., 2014).  Diet-induced obese mice were 
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acclimated for 3 days in the chambers before recording. O2 consumption and CO2 production 

were measured every 20 minutes in order to calculate the gas exchange, the respiratory 

quotient (RQ) and the energy expenditure. At the same time, in-cage locomotor activity was 

determined using a tridimensional infrared light beam system. Food intake was measured 

continuously by integration of scales inside the cages. Body weight was measured daily 

during this time and the temperature was fixed to 22°C. When recording at thermoneutrality, 

the temperature in the calorimetric chambers was increased to 30°C. For mice that underwent 

a cold challenge, the temperature of the chambers was dropped to 4°C.  

By placing a group of mice under thermoneutral conditions, analysis of energy expenditure 

components was carried out as in (Abreu-Vieira, Xiao, Gavrilova, & Reitman, 2015) in order 

to determine the energy expenditure of physical activity (PAEE), the thermic effect of food 

(TEF), the basal metabolic rate (BMR) and the cold-induced thermogenesis (CIT).  

J.  BA quantification 

In independent experiments, diet-induced obese mice were killed by decapitation after 2 h 

of ICV infusion of vehicle or CCDC, respectively, or after 28 days of chronic treatment with 

CCDC. Blood was collected in EDTA-treated tubes placed on ice, centrifuged for 10 min at 

10000 rpm at 4°C and plasma was recuperated. Total (free and conjugated) BA were 

measured by UPLC MS/MS by our collaborators Dr. A. Muhr-Tailleux and Dr. B. Staels 

(Pasteur Institute, INSERM U1011, Lille).  

K.  Quantitative real-time PCR (qPCR) 

qPCR on epididymal white adipose tissue (WAT), brown adipose tissue (BAT), liver and 

the hypothalamus were performed with a LightCycler® 480 qPCR System (Roche 

Diagnostics, Meylan, France). Tissue RNA extraction, qPCR reactions and analysis were 

performed as described in (Binder et al., 2014). Relative expression analysis was corrected for 

PCR efficiency and normalized against two reference genes, depending on the tissue (WAT: 

Gapdh and Ppia; SAT: Gusb and Ppia; BAT: Sdha and Nono; liver: Nono and Eef1a1; 

hypothalamus: Ppia and Nono). The relative level of expression was calculated using the 

comparative 2-ΔΔCT method. Samples were run by duplicates, where the average of both was 

considered for quantification. mRNA expression levels are expressed as the fold change (FC) 

from vehicles after normalization. 
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L.  Neuroanatomical analysis of Cre expression in the MBH 

At the end of Experiment 5, TGR5flox/flox mice receiving the AAV linked to the Cre 

recombinase or their controls were deeply anesthetized with an i.p. injection of sodium 

pentobarbital (300 µl/30g Exagon® mixed with 30 mg/kg lidocaïne) and then perfused 

transcardially with ice-cold PBS (pH 7.4), followed by 4% paraformaldehyde (PFA, Sigma-

Aldrich, France). Whole brains were extracted and post-fixed in 4% PFA overnight at 4°C, 

then cryo-protected with a 30% sucrose solution in PBS at 4°C and frozen. Coronal sections 

(30µm) were cut with a cryostat (CM1950, Leica, Germany), collected, and stored in an 

antifreeze solution (30% ethylene glycol, 30% glycerol in KPBS) at -20°C until needed.  

The neuroanatomical expression of Cre recombinase in the MBH of these samples is ongoing, 

and hence it will not be included in this manuscript. 

M.   Assessment of Cre recombination by PCR 

Perfused brain slices containing the MBH from TGR5flox/flox receiving the AAV linked to 

the Cre recombinase or their controls were genotyped by PCR to evaluate recombination in 

genomic DNA (Experiment 5). Brain slices were incubated overnight at 56°C in Proteinase 

K buffer (100 mM Tris-HCl pH8, 5 mM EDTA, 0.2 % SDS, 200 mM NaCl, 0,2 mg/mL PK); 

after 10 min at 13200 rmp, the supernatants were purified by vacuum on silica columns, 

according to the manufacturer’s protocol (Macherey-Nagel kit), on a Zephyr automatic 

workstation (Perkin-Elmer). PCR assay was carried out on a Bio-Rad C1000 thermal cycler, 

in a 20 µL volume, using GoTaq G2 Hot Start Green Master Mix (Promega), and 0.2 µM of 

each primer. PCR conditions were as follows: 1 cycle, 5 min at 95°C; 37 cycles, 30 sec at 

95°C, 30 sec at 60°C, 45 sec at 72°C; 1 cycle, 5 min at 72°C. PCR products was analyzed on 

a Labchip GX microfluidic electrophoresis system (Perkin-Elmer) using the DNA5k kit. 

N.  Western blot analysis 

WAT and BAT were homogenized in radioimmunoprecipitation assay buffer with 

phosphatase and protease inhibitors (Santa Cruz Biotechnology) for obtaining protein 

extracts. Proteins were separated in an SDS-polyacrylamide gel (9-13%) by electrophoresis 

and transferred to nitrocellulose membranes, which were then blocked for 1h with 5% skim 

milk powder and incubated overnight at 4°C with the following primary antibodies: adipose 

triglyceride lipase (ATGL, 1:1000, #2439, Cell Signaling), hormone-sensitive lipase (HSL, 
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1:1000, #4107, Cell Signaling), phospho-HSL ser563 (1:1000, #4139, Cell Signaling), 

uncoupling protein-1 (Ucp-1, 1:1000, #10983, Abcam), tyrosine hydroxylase (TH, 1:1000, 

#152, Millipore), and β-actin (1:2000, #4967, Cell Signaling). β-actin was used as loading 

control. After washing in Tris-buffered saline with Tween (TBST), the membranes were 

incubated for 1 h at room temperature with secondary antibody conjugated with horseradish 

peroxidase (goat anti-rabbit; 1:2000; Cell Signaling Technology). After 3 washes in TBST, 

immunoreactive bands were visualized using enhanced chemiluminescence (ECL Plus, 

PerkinElmer) then exposed on a ChemiDoc® MP Imaging System (Biorad). Bands were 

quantified using ImageJ software (NIH, Bethesda, MA). When necessary, membranes were 

stripped after protein detection for 10 min at 55°C with a solution containing 62.5 mmol/l 

Tris-HCl, 100 mmol/l 2-mercaptoethanol, and 2% SDS, blocked, and reblotted with another 

primary antibody. 

O.  Statistical analysis 

Statistical analysis was carried out using the GraphPad Prism Software version 8.0 for 

Windows (La Jolla, CA, USA). Data are expressed as mean ± S.E.M.  

When comparing 2 groups, data were analyzed by an unpaired Student’s t-tests. When 

comparing 3 or more groups, data were analyzed by one-way ANOVA. Body weight, insulin 

tolerance test and cumulative food intake over time were analyzed by two-way repeated 

measures ANOVA considering treatment and time as factors. Bonferroni’s post-hoc tests 

were run when applicable for identifying differences amongst groups. In all cases, tests were 

two-tailed and were considered significant when p<0.05.  
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Table 2. Experimental procedures 1 to 4. See Materials and methods, section Experimental 

design. 

 

 

Table 3. Experimental procedure 5. See Materials and methods, section Experimental 

design. 
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VII. RESULTS 

 

 Acute pharmacology experiments in lean and diet-induced obese mice A.

q. Central administration of TGR5 agonists have no effect on chow-fed lean mice 

We first explored under standard chow diet conditions if the central activation of TGR5 

had an impact on 24 h food intake or body weight changes. We found that the acute infusion 

of 5µg of sodium choleate (a BA mix) or CCDC (a synthetic, potent TGR5 agonist) via ICV 

did not have an effect in neither of these parameters in chow-fed mice (Fig. 16A-D).  

 

Figure 16. Acute ICV infusion of sodium choleate or CCDC does not affect food intake or 

body weight in lean mice. 24h cumulative food intake and associated body weight change in 

chow-fed mice that received an ICV injection of sodium choleate or its vehicle (A, B; n=9 per 

group) or CCDC and its vehicle (C, D; n=10 per group), respectively. Data are mean ± SEM; 

two-tailed student’s t test. 
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r. Central administration of TGR5 agonists decrease food intake and body weight 

in diet-induced obese mice 

Since TGR5 activity is particularly relevant in the presence of obesity (Chavez-Talavera 

et al., 2017; S. Huang et al., 2019; Velazquez-Villegas et al., 2018; Watanabe et al., 2006), we 

performed the same acute ICV experiment in mice that had been fed with a HFD for at least 

12 weeks and had developed obesity. Contrary to what we had previously seen in lean mice, 

the same dose (5µg) of sodium choleate or CCDC via ICV significantly lowered their food 

intake, body weight, and their feed efficiency (Fig. 17A-F). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Acute ICV infusion of sodium choleate or CCDC decreases food intake and 

body weight in diet-induced obesity. 24h cumulative food intake and associated body weight 

change and feed efficiency in diet-induced obese mice that received an ICV injection of 

sodium choleate or its vehicle (A-C; n=12 per group) or CCDC and its vehicle (D-F; n=15 

per group), respectively. Data are mean ± SEM; two-tailed student’s t test: *p<0.05; 

**p<0.01. 
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Hence, the acute effects of central TGR5 activation seemed to be dependent upon the 

metabolic status (i.e. HFD vs. standard chow). For this reason, for our subsequent 

experiments investigating the central role of TGR5 in metabolic control, we used diet-induced 

obese animals.  

 

s. MBH infusion of CCDC acutely decreases food intake in diet-induced obese mice 

Compounds that are administered in vivo via ICV can diffuse throughout the brain.  To 

further confirm that ICV administration of CCDC was modulating food intake and body 

weight in diet-induced obese mice by acting on hypothalamic circuits, we administered the 

TGR5 agonist directly in the MBH. CCDC infusion into the MBH of diet-induced obese mice 

significantly reduced their food intake and their body weight (Fig. 18A-B). Representative 

image of the injection of a blue dye shows correct bilateral cannula placement at the level of 

the MBH (Fig. 18-C).  
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Figure 18. Acute intra-MBH infusion of a TGR5 agonist decreases food intake and body 

weight in obesity. 24h cumulative food intake (A) and associated body weight change (B) in 

diet-induced obese mice that received an intra-MBH injection of CCDC and its vehicle 

(n=16-17), respectively. C) Representative image of correct cannula placement after in vivo 

blue dye injection and tissue collection. Data are mean ± SEM; two-tailed student’s t test: 

*p≤0.05.  

 

A B C 



[   62   ] 
 

These results show that both acute ICV and intra-MBH pharmacological activation of the 

TGR5 receptor by means of endogenous (sodium choleate) or synthetic (CCDC) agonists is 

capable of decreasing food intake and body weight in a diet-dependent manner, since the 

strongest outcomes were seen in diet-induced obese mice.  

Interestingly, the feed efficiency in obese mice receiving the agonist was reduced, implying 

that the reduction in body weight could not solely be explained by the reduction in food 

intake. As mentioned earlier, TGR5 activation in the adipose tissue can drive an increase in 

energy use through the production of heat (Watanabe et al., 2006). To test the contribution of 

increased energy expenditure by thermogenesis in the observed phenotype, we went on to 

evaluate the expression of thermogenic markers in the WAT and BAT of mice receiving 

CCDC centrally.  

 

t. Central infusion of CCDC acutely increases markers of thermogenesis in 

peripheral tissues 

After 30 min and 2 h of the ICV administration of CCDC, we found a significant increase 

in markers of thermogenesis in the WAT, particularly in the case of the β-adrenoreceptor 1 

(Adrb1), Ucp-3, and Dio-2. Conversely, the β-adrenoreceptor 2 (Adrb-2) and Ucp-2 seemed 

to be decreased in the BAT at 2 h (Fig. 19).  
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Figure 19. Acute central TGR5 activation induces changes in the expression of markers of 

thermogenesis in the adipose tissue. mRNA expression levels of markers of thermogenic 

activity in A) WAT and B) BAT. For both tissues: n=7 vehicle, n=7 CCDC 30min, n=8 CCDC 

2h. Data are mean ± SEM; one-way ANOVA: *p<0.05; **p<0.01. 

Ardb1: β-adrenoreceptor 1; Ardb2: β-adrenoreceptor 2; Ardb3: β-adrenoreceptor 3; Hsl: 

hormone sensitive lipase; Atgl: adipose triglyceride lipase; Ucp-1: uncoupling protein 1; 

Ucp-2: uncoupling protein 2; Ucp-3: uncoupling protein 3; Dio2: deiodinase 2. 
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Overall, these results suggest that the acute central activation of TGR5 can signal to 

peripheral tissues in order to modify the body’s energetic state. This could initiate a series of 

metabolic events that would eventually lead to an increased use of energy for heat production 

and/or changes in the handling of lipids and their storage.     

Since it has been shown that peripheral TGR5 activation also leads to better glucose 

homeostasis by stimulating the release of GLP-1 from the gut (Bianco et al., 2002), we went 

on to assess if the acute central stimulation of TGR5 could have an impact on modulating the 

glycemic response. 

 

u. Acute central TGR5 agonism improves insulin-mediated control of glycaemia in 

diet-induced obese mice 

We therefore carried out an insulin tolerance test in diet-induced obese mice acutely 

receiving ICV CCDC or its vehicle. We found that CCDC-treated mice had a better insulin-

dependent control of glycaemia compared to their controls, as their glucose levels remained 

significantly lower after 120 min of i.p. insulin injection (Fig. 20).  

 

 

 

 

 

 

 

 

Figure 20. Acute ICV infusion of CCDC improves insulin-dependent glucose control in 

diet-induced obese mice.  Blood glucose levels following an insulin tolerance test in diet-

induced obese mice (10 mice per group). Data are mean ± SEM; two-way repeated measures 

ANOVA: * denotes effect of treatment at p<0.05. 
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In order to evaluate the potential underlying mechanisms that were driving the improvement 

in glycaemia, we evaluated markers in the liver related to glucose metabolism. Furthermore, 

we looked at the expression levels of markers associated to BA synthesis and transport to 

assess whether the central activation of TGR5 would have an effect on BA metabolism.  

We found that the acute activation of TGR5 caused a significant decrease of glucose-6-

phosphatase catalytic subunit (G6pc), which is key in glucose homeostasis, particularly for 

gluconeogenesis and glycogenolysis.  Furthermore, there was an increase in insulin receptor 

substrate 2 (Irs2), a signaling molecule that mediates the effects of insulin, as well as in the 

fatty acid synthase (FAS), which catalyzes the synthesis of fatty acids. Lastly, we found a 

significant decrease in Cyp7a1, which is the rate-limiting enzyme in the synthesis of BA, 

although no changes were observed in the expression levels of BA transporters (Fig. 21). 

 

 

 

 

 

 

 

Figure 21. Acute central TGR5 activation induces changes in the expression of markers of 

the energetic state in the liver. mRNA expression levels of markers of glucose metabolism and 

BA synthesis in the liver 2 h after ICV injection of CCDC or its vehicle (n=7 vehicles, n=8 

CCDC). Data are mean ± SEM; two-tailed student’s t tests: *p<0.05. 

ACC: acetyl-CoA carboxylase; Bsep: bile salt export pump; Cyp7a1: cholesterol 7 alpha-

hydroxylase; FAS: fatty acid synthase; FXR: farnesoid X receptor; G6pc: glucose-6-

phosphatase catalytic subunit; Irs1: insulin receptor type 1; Irs2: insulin receptor type 2; 

Ntcp: Na+-taurocholate co-transporting polypeptide; Osta: organic solute transporter alpha; 

Shp: short heterodimer partner. 
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The central activation of the receptor seemed to be triggering a rapid response in peripheral 

tissues to signal a high energetic state (i.e. as would be expected after a meal), decreasing the 

availability of glucose through G6pc and Irs2, while activating pathways for the synthesis of 

fatty acids. Most notably, the dramatic decrease in Cyp7a1 suggested that central TGR5 

stimulation might be acting as a negative feedback mechanism that would downregulate the 

production of BA in the liver. To further explore this possibility, we measured circulating BA 

levels after an acute ICV administration of CCDC. 

 

v. Acute central TGR5 agonism affects hepatic BA production in diet-induced obese 

mice 

Plasma samples from diet-induced obese mice (24h fasted) were collected during an 

independent experiment 2h after ICV infusion of vehicle or CCDC, respectively. CCDC-

treated mice had lower levels of total free BA compared to their controls. No changes were 

observed in levels of total, total glyco- or total tauro-conjugated BA (Fig. 22-A). Since BA 

are produced as free species in the liver from cholesterol molecules and are subsequently 

conjugated, this suggests that the central acute activation of TGR5 signals a high energetic 

state to peripheral tissues, such as the liver, which in turn responds by downregulating BA 

biosynthesis.  

The species of free BA that were lowest after the intervention were cholic acid and ω-

muricholic acid (Fig. 22-B). Interestingly, cholic acid is one of the strongest endogenous 

TGR5 agonists (Duboc et al., 2014; Kawamata et al., 2003). 
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Figure 22. Acute central activation of TGR5 induces changes in BA species in obesity. A) 

Quantification of total plasma BA and their fractions by liquid-chromatography-mass 

spectrometry 2 h after ICV administration of CCDC or its vehicle in diet-induced obese mice 

(n=7 vehicles; n=8 CCDC). B) Quantification of different free BA species. Data are mean ± 

SEM; two-tailed student’s t test: *p<0.05; **p<0.01. 

 CA: cholic acid, CDCA: chenodeoxycholic acid; DCA: deoxycholic acid; LCA: lithocholic 

acid; UDCA: ursodeoxycholic acid; aMCA: α-muricholic acid; bMCA: β-muricholic acid; ω-

MCA: ω-muricholic acid; HCA: hyocholic acid; HDCA: hyodeoxycholic acid. 

 

Overall, our results show that the acute central activation of TGR5 decreases food intake and 

body weight in a diet-dependent manner. Moreover, TGR5 agonism can signal a high 

energetic state to peripheral tissues, particularly in obese mice, activating a postprandial 

profile that favors fatty acid synthesis, glucose uptake, downregulation of gluconeogenesis 

and of BA synthesis. These effects can be observed as early as 30 min or 2 h post-stimulation 

and are in line with an improvement in insulin sensitivity.  
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We finally verified that the effects observed were not due to leakage of the compound into the 

periphery by performing a pharmacokinetic study. 

Free-fed diet-induced obese mice were sacrificed immediately after the ICV injection of 

CCDC at different time points (Table 4). After 15 min, CCDC was mostly detected within the 

hypothalamus and the total brain, while marginal concentrations were found in the plasma. 

From 30 min onwards, marginal concentrations were found in the hypothalamus and brain 

only, while it was undetectable in the plasma. The compound was also not detected in the 

plasma of mice that received CCDC ICV chronically for 28 days, as further detailed in the 

following section.  

 

[CCDC] sample (nM) 
Time Plasma Hypothalamus* Brain* 

Acute 
15 min 

22 9671 3651 
18 4710 1957 
< 3 14 8 

30 min 
< 3 13 160 
< 3 7 883 
< 3 < 5 287 

60 min 
< 3 < 5 11 
< 3 < 5 49 
< 3 15 2274 

120 min 
< 3 24 31 
< 3 24 26 
< 3 6 12 

240 min 
< 3 7 21 
< 3 < 5 7 
< 3 < 5 8 

Chronic 
At 28 days 

< 3 - - 
< 3 - - 
< 3 - - 

*1g of tissue per 1mL 

Table 4. Pharmacokinetics of CCDC shows that the compound does not leak into the 

systemic circulation. Assessment of CCDC concentrations (nM) by liquid-chromatography-

mass spectrometry in the plasma, hypothalamus and brain of diet-induced obese mice 

receiving either acute or chronic treatment (n=3 per group). 
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 Chronic pharmacology experiments in diet-induced obese mice B.

w. Lateral ventricle infusion of a TGR5 agonist chronically decreases adiposity 

while improving insulin sensitivity  

The greatest challenge for combating obesity is to find successful therapies that can 

achieve sustained body weight loss that is maintained chronically. In order to test if the 

observed acute effects of central TGR5 activation could be maintained in the long term, we 

carried out chronic experiments in diet-induced obese mice. By means of a subcutaneous 

mini-osmotic pump, we administered ICV the TGR5 agonist CCDC (5µg/day) during 28 days 

and followed the body weight, food intake and assessed metabolic parameters in this model.  

Diet-induced obese mice receiving chronic ICV infusion of CCDC lowered their body weight 

significantly from day 14 and until the end of treatment compared to their vehicles (Fig. 23A). 

Moreover, they decreased their food intake over time and had a lower feed efficiency towards 

the end of the treatment (Fig. 23B-C). Body composition analysis showed that weight loss 

was mostly explained by a reduction in their total fat mass, without changing their lean mass 

content (Fig. 23D-E).  

Insulin sensitivity was assessed by an insulin tolerance test, where a main effect of treatment 

was observed. The quantification of the area under the curve evidenced an overall lower 

glycaemia in mice chronically receiving ICV CCDC (Fig. 23F).  
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Figure 23. Chronic central TGR5 activation reduces obesity. A) Body weight follow-up, B) 

cumulative food intake, C) feed efficiency, D) fat mass and E) lean mass of obese mice that 

underwent chronic ICV CCDC treatment (n=6 vehicles; n=7 CCDC). F) Blood glucose levels 

following an insulin tolerance test from an independent experiment (n=11 vehicles; n=18 

CCDC). Data are mean ± SEM; analyzed by two-tailed student’s t test when comparing two 

groups, or by two-way repeated measures ANOVA when measuring outcomes across time: 

*p<0.05; **p<0.01; ***p<0.001. 

AUC: area under the curve. 

 

As we previously observed that acute central administration of CCDC was able to alter 

plasma free BA levels (Fig. 22), we went on to verify the impact of chronic ICV CCDC 

treatment on circulating BA. We collected plasma samples from an independent chronic 

experiment, where free-fed diet-induced obese mice were killed after 10 days of ICV infusion 
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of vehicle or CCDC. No changes were observed in the levels of total, free, total glyco- or total 

tauro-conjugated BA (Fig. 24). 

  

 

 

 

 

 

 

 

 

 

Figure 24. Chronic central TGR5 activation does not induce changes in BA species. 

Plasma quantification of total, total free and total conjugated (glyco- and tauro-) BA by 

liquid-chromatography-mass spectrometry in free fed, diet-induced obese mice after 10 days 

of treatment with CCDC or its vehicle (n=8 vehicles; n=10 CCDC). Data are mean ± SEM; 

two-tailed student’s t test. 

 

Although mice receiving chronic CCDC treatment had a lower food intake compared to their 

controls, the decrease in food consumption did not explain the magnitude of the body weight 

loss, as evidenced by their lower feed efficiency, an observation that was consistent with our 

acute pharmacology studies. This suggested other mechanisms involved in improving their 

phenotype. In particular, one likely possibility was that central TGR5 activity could be 

stimulating the SNS to enhance energy expenditure in peripheral tissues. This seemed logical, 

considering we had previously observed changes in thermogenesis markers in the WAT (most 

notably an increase in Dio-2) after acute central TGR5 stimulation (see Fig. 19A). Hence, we 
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looked for markers of thermogenesis and SNS activity in peripheral tissues, and measured 

energy expenditure and use of fuel substrates in our chronic model. 

 

x. Chronic central TGR5 agonism stimulates sympathetic activity and increases 

energy expenditure 

WAT and BAT were collected and processed to measure the expression levels of SNS and 

thermogenesis markers. Notably, in the WAT, all forms of β-adrenergic receptors (Adrb) 

were upregulated in obese mice receiving CCDC chronic treatment, while adipose triglyceride 

lipase (ATGL), a marker of lipolysis, had a tendency towards being increased. In the BAT, 

there was an increased expression of Adrb2, uncoupling protein 3 (Ucp-3) and Dio-2 in mice 

chronically receiving ICV the TGR5 agonist (Fig. 25). 
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Figure 25. Chronic central TGR5 activation increases markers of thermogenesis in 

peripheral tissues. mRNA expression levels of thermogenesis markers in WAT (A) and BAT 

(B)  from diet-induced obese mice receiving chronic ICV CCDC (n=6 vehicles; n=7 CCDC); 

data are mean ± SEM; two-tailed student’s t test: *p<0.05. 

Ardb1: β-adrenoreceptor 1; Ardb2: β-adrenoreceptor 2; Ardb3: β-adrenoreceptor 3; Hsl: 

hormone sensitive lipase; Atgl: adipose triglyceride lipase; Ucp-1: uncoupling protein 1; 

Ucp-2: uncoupling protein 2; Ucp-3: uncoupling protein 3; Dio2: deiodinase 2; Cox-IV: 

cytochrome c oxidase IV; Tfam: mitochondrial transcription factor A; Pgc-1α: peroxisome 

proliferator-activated receptor γ co-activator 1 α. 
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It is known that the adipocyte TGR5 receptor participates in the regulation of energy 

expenditure by promoting intracellular thyroid hormone action through Dio-2 activation in 

adipose tissue as this enzyme transform the pro-hormone T4 in the active form T3 (Watanabe 

et al., 2006). However, increased expression and activation of the Dio-2 enzyme can be also 

driven by the SNS (Bianco & McAninch, 2013). Accordingly, we found that at 

thermoneutrality, when the SNS is not engaged, expression of Dio-2 in BAT is not altered in 

animals chronically receiving ICV CCDC (see further below in the manuscript, Fig. 29).  

Intra-cellular produced T3 is known to leak into the circulation (Bianco & McAninch, 2013). 

Thus, a possibility arises that chronic ICV CCDC by stimulating the SNS is inducing T3 

production in the BAT, resulting in increased T3 in the plasma, which may feed forward SNS 

activation and thermogenesis by acting onto the hypothalamus (Lopez et al., 2010). While this 

hypothesis is being currently tested, as we have collected plasma samples from chronic ICV 

CCDC treated animals in which we will measure T4 and T3, we assessed whether the mRNA 

expression of thyroid hormone transporters and receptors was altered in the hypothalamus of 

ICV CCDC treated mice.    

We found that chronic ICV CCDC administration was associated with the downregulation of 

the solute carrier family 16 member 2 (Slc16a2), which is responsible of transporting T3 

hormone into neurons (Friesema et al., 2006), the solute carrier organic anion transporter 

family member 1C1 (Slco1c1), which mediates the sodium-independent uptake of thyroid 

hormones in brain tissues, especially at the level of the blood-brain barrier (Roberts et al., 

2008), and thyroid hormone receptor α (Thra) and β (Thrb), which are receptors for T3 (Fig. 

26). These results, which will need further confirmation, may therefore be the reflection of a 

negative feedback loop induced by high plasma T3 levels released in the periphery in 

response to the TGR5-dependent SNS-Dio-2 engagement in the BAT. 
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Figure 26. Chronic central TGR5 activation induces hypothalamic changes in thyroid 

hormone transporters and receptors. mRNA expression levels of markers of thyroid hormone 

system in the hypothalamus in response to chronic central CCDC treatment in diet-induced 

obese mice (n=6 vehicles, n=7 CCDC); data are mean ± SEM; two-tailed student’s t test: 

*p<0.05. 

Slc16a2: solute carrier family 16 member 2; Slco1c1: solute carrier organic anion 

transporter family member 1C1; Dio2: deiodinase 2; Thra: thyroid hormone receptor α; 

Thrb: thyroid hormone receptor β.  

 

In order to verify if molecular changes indicating increases SNS activity and thermogenesis in 

adipose tissue were associated with actual changes in energy expenditure in vivo, CCDC-

treated mice were housed in calorimetric cages under normal temperature conditions (22°C) at 

day 10 of chronic treatment, before any significant weight loss was achieved. We observed a 

significant effect of treatment over time, where the average of 48 h energy expenditure was 

significantly higher in the diet-induced obese mice chronically receiving ICV CCDC (Fig. 

27).  
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Figure 27. Chronic central TGR5 activation increases energy expenditure in diet-induced 

obesity. A) Energy expenditure over 48 h collected from day 10 of chronic treatment, before 

differences in body weight were evident. Grey bars indicate the 12 h dark phase; B) average 

energy expenditure over 48h (n=6 vehicles, n=6 CCDC); data are mean ± SEM; analyzed by 

two-way repeated measures ANOVA when measuring outcomes across time, or by two-tailed 

student’s t test when comparing two groups: *p<0.05. 

 

Since the SNS drives increased use of energy for heat production (Labbe, Caron, Bakan, et 

al., 2015; Labbe, Caron, Lanfray, et al., 2015) , and peripheral markers of thermogenesis were 

upregulated in our chronic model (see Fig. 25), we wanted to understand if the SNS was 

driving the effects on energy expenditure from mice receiving CCDC chronic treatment 

centrally. For this, we placed the mice in the calorimetric cages, this time at thermoneutrality 

(30°C) in order to blunt the activity of the SNS. In doing so, the previously observed effects 

on energy expenditure as a result of chronic CCDC infusion were lost (Fig. 28A). By 

calculating the different components that participate in the use of energy (see Materials and 

Methods; (Abreu-Vieira et al., 2015)), we obtained the basal metabolic rate (BMR) per group 

[EE at 22°C – EE at 30°C]. From this analysis, we were able to calculate the amount of 

energy that is exclusively used to maintain body temperature at 22°C (cold-induced 

thermogenesis). Interestingly, mice receiving the TGR5 agonist had an increased cold-
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induced thermogenesis during their resting period (light) compared to their controls (Fig. 

28B) implying that the effect of chronic central TGR5 stimulation on energy expenditure was 

indeed dependent of the SNS. 

 

 

 

 

 

 

 

Figure 28. Effects of chronic central TGR5 activation on energy expenditure depend on 

sympathetic activity. A) 48 h energy expenditure at thermoneutrality (30°C) and B) cold-

induced thermogenesis during the light phase at 22°C of obese mice receiving chronic ICV 

treatment of CCDC (n=6 vehicles, n=6 CCDC); data are mean ± SEM; Two-tailed student’s t 

test: *p<0.05. 

 

Moreover, the previously seen effects on the increased expression of markers of sympathetic 

activity and thermogenesis in WAT and BAT (see Fig. 25) were lost under thermoneutrality 

(Fig. 29), further suggesting an implication of the SNS in the effects of chronic TGR5 central 

activation.  
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Figure 29.  Thermoneutrality blocks the effects of central TGR5 activation on peripheral 

tissues. mRNA expression levels of markers of sympathetic activity and thermogenesis in WAT 

(A) and BAT (B) from diet-induced obese mice receiving chronic treatment of CCDC that 

were placed at thermoneutrality during 6 days (30°C) (n=12 vehicles, n=10 CCDC); data are 

mean ± SEM; two-tailed student’s t test. 

Ardb1: β-adrenoreceptor 1; Ardb2: β-adrenoreceptor 2; Ardb3: β-adrenoreceptor 3; Ucp-1: 

uncoupling protein 1; Ucp-2: uncoupling protein 2; Ucp-3: uncoupling protein 3; Dio2: 

deiodinase 2. 

 

A 

B 



[   79   ] 
 

To further confirm that the observed effects of central TGR5 on body weight and adiposity 

were indeed attributable to an increase in the sympathetic tone, we performed chemical 

sympathectomy using peripheral administration of 6-OH-DOPA, a toxic compound that 

causes the selective destruction of noradrenergic terminals, and hence disrupts the 

sympathetic innervation towards peripheral tissues (Vaughan et al., 2014). These mice then 

underwent a chronic ICV treatment with CCDC, as done in previous experiments. 

 

y. Chemical sympathectomy prevents weight loss induced by central TGR5 agonism  

Peripheral chemical sympathectomy was achieved by injecting i.p. 6-OH-DOPA 

(80mg/kg; (Quarta et al., 2010)) in diet-induced obese mice during 3 consecutive days. A first 

cohort of mice was used to verify successful sympathectomy after 1 week of the i.p. 

injections. Tyrosine hydroxylase (TH) protein in the WAT and BAT was used as a measure of 

successful denervation (Vaughan et al., 2014). Indeed, after 1 week from the first i.p. 

injection, TH was significantly reduced in both tissues with respect to mice receiving vehicle 

only (Fig. 30). 

 

 

 

 

 

 

Figure 30. Chemical sympathectomy decreases TH protein content in adipose tissue. 

Protein quantification by western blot of TH from diet-induced obese mice that were killed 

after inducing chemical sympathectomy. A) Ratio between TH and β-actin in WAT and BAT; 

B) representative blots of TH and β-actin in the WAT and BAT. (n=4 per group); data are 

mean ± SEM; two-tailed student’s t test with respect to their vehicles: *p<0.05. 

6-OH-DOPA: 6-hydroxydopamine; TH: tyrosine hydroxylase. 
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Another group of mice treated with 6-OH-DOPA was implanted with mini-osmotic pumps for 

chronic central CCDC treatment after 1 week of denervation. We found that there was no 

significant effect in body weight across time between groups, and no effect in food intake or 

feed efficiency (Fig. 31A-C).  Moreover, no changes in body composition were observed 

(Fig. 31D-E). These results show that in the absence of sympathetic connectivity, the 

phenotypic effects of central TGR5 agonism are blunted. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Chemical sympathectomy blocks the beneficial effects of central TGR5 

activation. A) Body weight follow-up, B) cumulative food intake, C) feed efficiency, D) fat 

mass, and E) lean mass of obese mice that underwent chemical sympathectomy, followed by 

chronic ICV CCDC treatment (n=9 vehicles, n=10 CCDC). Data are mean ± SEM; analyzed 

by two-tailed student’s t test when comparing two groups, or by two-way repeated measures 

ANOVA when measuring outcomes across time. 
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At the end of the chronic treatment, WAT and BAT samples were collected in order to assess 

denervation, since recovery has been reported after several weeks following 6-OH-DOPA 

treatment (Demas & Bartness, 2001). At 5 weeks post-6-OH-DOPA injections, a significant 

decrease of TH in the WAT of vehicles remained, while a marginal reduction was still present 

in the WAT of mice receiving CCDC and in the BAT of both groups (Fig. 32), suggesting a 

partial recovery of SNS innervation. 

 

 

 

 

 

 

 

Figure 32. Denervation after 5 weeks post-treatment with 6-OH-DOPA. Protein 

quantification by western blot of TH from obese mice that were killed after 5 weeks of 

chemical sympathectomy. A) Ratio between TH and β-actin in WAT and BAT; B) 

representative blots of TH and β-actin in the WAT and BAT; (n=9 vehicles, n=10 6-OH-

DOPA for both tissues); data are mean ± SEM; two-tailed student’s t test with respect to their 

vehicles: ***p<0.001. 

6OH-DA: 6-hydroxydopamine. 

 

These results indicate that in a diet-induced obesity, chronic central TGR5 activation by 

CCDC is capable of reducing body weight, food intake, and adiposity through a heightened 

SNS, which will dictate an increase in metabolic markers of thermogenesis in peripheral 

tissues, as well as increased energy expenditure. In the absence of a functional sympathetic 

connectivity, central TGR5-dependent effects are lost. 

Taken together, we have shown that chronic central activation of the TGR5 receptor in diet-

induced obese mice is capable of sustained body weight loss (mostly attributed to decreased 
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adiposity), reduced food intake, and improved insulin sensitivity. Moreover, we show that 

these effects are possible through a heightened SNS, which will stimulate peripheral tissues 

(WAT and BAT) to increase energy expenditure and thermogenesis.  

However, up until this point, we had not proven that the TGR5 receptor was indeed necessary 

for attaining these effects. To demonstrate this, we made use of a genetic animal model 

(TGR5flox/flox mice with a Bl6/J background), which allowed performing a site-specific, Cre-

dependent deletion of the receptor within the MBH.   
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 Genetic animal models C.

In the following sections, the deletion of the TGR5 receptor within the MBH was 

carried out through the stereotaxic injection of a Cre-linked AAV or its GFP-linked control. 

Although the neuroanatomical expression of Cre recombinase in the MBH of these samples is 

ongoing, we have genotyped by PCR representative samples per group to evaluate 

recombination in genomic DNA, as a means to control that the TGR5 gene was indeed 

excised in this region. In all brain slices originating from mice receiving the Cre-linked AAV, 

recombination was identified, contrary to what was seen in mice receiving AAV-GFP, where, 

as expected, no recombination was present.  

z. Deletion of TGR5 in the MBH has no effect on lean mice 

Chow-fed TGR5flox/flox mice that were lean were injected in the MBH with either a Cre-

linked AAV or its control. There was no effect in terms of their body weight, feed efficiency 

or body composition, although there was a small increase in their food intake (Fig. 33).  
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Figure 33. Deletion of TGR5 in the MBH does not affect the phenotype of lean mice. A) 

Body weight follow-up, B) food intake, C) feed efficiency, D) fat mass, and E) lean mass of 

lean mice receiving AAV-control or AAV-Cre (n=5 and 16, respectively). The black arrow 

represents the time of AAV injection. Data are mean ± SEM; analyzed by two-tailed student’s 

t test when comparing two groups, or by two-way repeated measures ANOVA when 

measuring outcomes across time: *p<0.05.  

 

Since our acute experiments suggested that effects of TGR5 activation on food intake and 

body weight were diet-dependent, we went on to test if the deletion of the receptor had an 

impact when mice were exposed to a HFD. For this, we designed an experiment in which lean 

mice were switched to a HFD one week after the AAV-Cre delivery in the MBH. 
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aa. Deletion of TGR5 in the MBH favors weight gain in the presence of a HFD 

Chow-fed TGR5flox/flox mice were injected into the MBH with either a Cre-linked AAV or 

their AAV-GFP control and switched to a HFD after 1 week from the viral injection. Animals 

receiving the Cre-linked AAV rapidly gained more weight, increased their food intake and 

feed efficiency compared to their controls when exposed to the HFD (Fig. 34).  

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Deletion of TGR5 in the MBH increases body weight in a diet-dependent 

manner. A) Body weight follow up, B) cumulative food intake, and C) feed efficiency after 1 

week of chow or 2 weeks of HFD exposure (n=7 AAV-controls; n=8 AAV-Cre). Data are 

mean ± SEM; repeated measures ANOVA or two-tailed student’s t test; *p<0.05; **p<0.01; 

***p<0.001. 

 

To understand what was causing the increased body mass gain (since in this model, the feed 

efficiency was higher in HFD-fed mice with the MBH deletion), we carried out a cold 

challenge. For this, mice were placed at 4°C for 4 h in order to stimulate the SNS. By 

measuring markers of lipolysis and thermogenesis, we found that mice with the MBH deletion 

of TGR5 were not as efficient as their controls in coping with a cold challenge (Fig. 35), 
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further implying that TGR5 in the MBH is necessary for cold-induced SNS-dependent 

lipolysis and thermogenesis. 

 

 

  

Figure 35. TGR5 in the MBH is necessary for maintaining appropriate cold-induced SNS 

responses in adipose tissue. Protein quantification by western blot from AAV-control or AAV-

Cre treated mice that were killed after a 4 h cold challenge on a HFD. For WAT, pHSL563 

and ATGL were used as markers of lipolysis; for BAT, Ucp-1 was used as a marker of 

thermogenesis (n=7 controls, n=6 Cre for both tissues); data are mean ± SEM; two-tailed 

student’s t test: *p<0.05. 

ATGL: adipose triglyceride lipase; HSL: hormone sensitive lipase; pHSL563: phosphorylated 

form of HSL at Ser563; Ucp-1: uncoupling protein 1. 

 

Finally, we assessed whether MBH deletion of TGR5 in already obese animals affected their 

phenotype. 
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bb. Deletion of TGR5 in the MBH of already obese mice worsens their phenotype 

Diet-induced obese TGR5flox/flox mice were injected the AAV-Cre or its control in the MBH. 

Compared to their controls, AAV-Cre treated mice significantly gained more weight, 

increased their food intake, feed efficiency and their fat mass content (Fig. 36), hence 

worsening the obese phenotype. 

Figure 36. Deletion of TGR5 in the MBH worsens obesity. A) Body weight follow up, B) 

food intake, C) feed efficiency, D) fat mass,  and E) lean mass of TGR5flox/flox diet-induced 

obese mice receiving AAV-Cre or its control in the MBH (n=10 AAV-controls; n=10 AAV-

Cre); repeated measures ANOVA or two-tailed student’s t test (mean ± SEM); *p<0.05; 

**p<0.01; ***p<0.001. 
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Overall, our experiments in TGR5flox/flox mice allowed confirming that the hypothalamic 

TGR5 receptor is indeed necessary to achieve the previously described metabolic benefits on 

body weight, food intake, body composition and increased thermogenesis. This is because its 

site-specific deletion increases adiposity in a diet-dependent manner, blunts sympathetic 

activity in HFD-fed mice exposed to the cold, and causes a rapid increase in body weight, 

food intake and fat mass, even in mice that are already obese, worsening their phenotype. 

 



 
 

 

 

 

 

 

 

VIII.  Discussion and conclusions 
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VIII. Discussion 

BA have been mostly studied in the context of their action in peripheral tissues. Due to 

their widespread effects on metabolism and energy use, we hypothesized a role for BA at the 

level of the hypothalamus through the activation of their receptor, TGR5. We first 

demonstrate that TGR5 and BA system components are present in the hypothalamus, and are 

deregulated in the presence of an obese phenotype. Next, we show that both acute and chronic 

ICV pharmacological activation of TGR5 decreases body weight, food intake, adiposity, and 

improves insulin sensitivity, effects that are evident only in the presence of diet-induced 

obesity. Moreover, we demonstrate that these effects are coupled to an increase in energy 

expenditure, which is in turn driven by recruiting the SNS and signaling lipolysis and 

thermogenesis in the WAT and BAT, respectively. Lastly, we show that the hypothalamic 

TGR5 receptor is indeed necessary for driving these metabolic effects, since its deletion in the 

MBH of adult mice rapidly increases food intake, body weight, and adiposity in a diet-

dependent manner, worsening the obese phenotype. For the first time, we provide evidence of 

a hypothalamic BA – TGR5 receptor system that is particularly relevant in the presence of 

diet-induced obesity. Therefore, with this evidence, we propose a shift in the current view of 

BA metabolic actions, which should now include a “central” perspective.  

 The BA system is deregulated in obesity D.

We have found that the components of the BA system are present within the brain, 

since the TGR5 receptor and BA transporters were detected at the level of the hypothalamus. 

Consistent with the literature, we were unable to detect the nuclear BA receptor FXR in our 

hypothalamic samples (Forman et al., 1995; X. Zhang et al., 2014). 

Notably, the expression of BA transporters in the hypothalamus was upregulated in 

refed, lean mice, suggesting that BA can act as signaling molecules in the brain to indicate the 

real-time energy status related to meal consumption. This was not the case in our obese 

model, since there was no change in BA transporters following refeeding. Deficits in hepatic 

BA transporters have been reported in liver samples of obese human subjects, where NTCP 

and BSEP were negatively correlated with body mass index, possibly contributing to a 

slowing down of the enterohepatic circulation during obesity (Haeusler et al., 2016). Our 

results are therefore in line with the literature. Moreover, the levels of circulating and 

hypothalamic BA were dramatically lower in obese mice, a fact that has already been reported 

in the plasma of obese humans (Albaugh et al., 2015).   
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Thus, our data suggest that the central signaling of BA is impaired in obesity, since 

BA circulating levels might not be sufficient to reach the brain and modulate the expression of 

their transporters for an accurate postprandial response.  

Central TGR5 signaling emulates a postprandial state 

We first focused on testing the relevance of TGR5 centrally, both during acute and 

chronic exposure to its agonists. We administered sodium choleate, which contains two of the 

most potent endogenous agonists of the receptor (cholic acid and deoxycholic acid), as well as 

CCDC, a synthetic agonist which is selective to TGR5 and the most potent stimulant of 

cAMP formation, without causing the endocytosis of the receptor after continuous exposure 

(Jensen et al., 2013). Since the selective activation of TGR5 centrally seemed to have an 

effect only in the presence of diet-induced obesity, we carried out subsequent experiments in 

an obese model. 

Human subjects that are obese have a 2-fold increase in markers of BA synthesis, as 

well as a blunted response of serum BA following a meal (Glicksman et al., 2010; Haeusler et 

al., 2016). We observed that the acute central activation of TGR5 in obese mice dramatically 

decreased hepatic expression of Cyp7a1, perhaps as a mechanism to bring BA levels back to 

normal. If, in the context of obesity, the de novo synthesis of BA is 2-fold higher to 

compensate for the lack of circulating BA, it seems logical that the activation of central TGR5 

by BA would recognize their high availability, hence triggering a negative feedback loop to 

decrease their biosynthesis. In line with these findings, we found that the acute central 

stimulation of TGR5 caused changes in the plasma BA pool, notably decreasing levels of one 

of the most potent endogenous agonists of the receptor, cholic acid, most likely as a 

mechanism to compensate for the central overstimulation of the receptor. 

It is now accepted that BA can act as signaling molecules to maintain metabolic 

homeostasis (Chiang, 2013) and more particularly to regulate glycaemia   (Bunnett, 2014; 

Thomas et al., 2009). Our results on the downregulation of hepatic markers of glucose 

metabolism and BA synthesis (G6pc and Cyp7a1, respectively), as well as on the increase of 

fatty acid synthesis markers (FAS), suggest that the central activation of TGR5, even during 

fasting, since food was not given back to animals then undergoing these ex vivo analyses, is 

sufficient to emulate a postprandial state in peripheral tissues, mimicking a situation of high 

energy availability.  
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Circulating  BA levels are known to follow circadian rhythms, in part due to clock 

genes regulating BA biosynthetic pathways through regulating the expression of Cyp7a1 

(Duez et al., 2008; Le Martelot et al., 2009). BA can also induce changes in the expression 

profiles of circadian genes (Govindarajan et al., 2016), evidencing an intricate regulation 

system for their availability. In humans, a clear diurnal variation in BA synthesis has been 

evidenced through measuring a marker of Cyp7a1 activity, 7-hydroxy-4-cholesten-3-one 

(C4), in plasma samples. The authors showed that, independently of the energetic state (i.e. 

fasted vs. refed), BA synthesis follows pronounced diurnal rhythms (peaks at 13 h and 21 h), 

while decreasing their levels during the night (Galman, Angelin, & Rudling, 2005). Mice 

seem to show the opposite pattern, where total serum BA are lowest at the peak of the light 

phase, and highest at the beginning and end of the dark phase, suggesting two main episodes 

of food ingestion during the dark (Y. K. Zhang, Guo, & Klaassen, 2011). Interestingly, when 

looking into the main BA species driving these concentration peaks in mice, some of the 

strongest TGR5 agonists (cholic acid and lithocholic acid) seem to have the most significant 

peaks of secretion at these time points (Y. K. Zhang et al., 2011). However, to our knowledge, 

no studies of the circadian fluctuations of BA have been carried out in the context of obesity. 

In our studies, BA sampling was performed just before the dark period. Although we did not 

explore the 24 h synthesis patterns of BA, it would be of interest to assess if these patterns are 

altered in in our model, and if so, how they would contribute to the phenotype. We can only 

hypothesize that, since circulating BA are lower in our obese mice, their secretion may not 

reach the same peak levels as in normal subjects. This would be in line with literature 

showing that obese subjects have deregulated meal patterns (Aparicio et al., 2018; Baron, 

Reid, Kern, & Zee, 2011), which may again contribute to defective rhythms in their 

biosynthesis and secretion.  

Effects on insulin sensitivity 

TGR5 that is expressed in pancreatic β cells can directly stimulate the release of 

insulin in order to participate in the control of glucose homeostasis (Kumar et al., 2012). 

Furthermore, it can also indirectly participate in the control of glycaemia by inducing the 

release of intestinal GLP-1 from enteroendocrine cells, leading to enhanced glucose tolerance 

in obese mice (Bunnett, 2014; Thomas et al., 2009). In humans, it seems that the release of 

insulin following a meal plays a role in the reduction of circulating BA after their postprandial 

peak, by promoting their uptake from the blood to the liver. This process seems to be blunted 

in obesity (Haeusler et al., 2016). It is likely that these blunted effects are due to insulin 
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resistance in the liver, added to the fact that, as mentioned earlier, hepatic transporters of BA 

are also downregulated in obesity (Haeusler et al., 2016), hence preventing or slowing down 

their reuptake. Moreover, high hepatic gluconeogenesis can occur in the presence of insulin 

resistance (Hatting, Tavares, Sharabi, Rines, & Puigserver, 2018). In line with this, we 

observe that the acute central activation of TGR5 leads to better control of glucose in a matter 

that is dependent of insulin. Due to the late phase of glucose decrease (i.e. past 30 minutes of 

insulin administration), this might be reflective of a counterregulatory response driven by 

other hormones, such as glucagon, adrenaline, cortisol and growth hormone. However, it is 

also possible that this effect is achieved through the increase in Irs2 expression in the liver, 

which is accompanied by a decreased mRNA expression of glucose-6-phosphatase, indicating 

decreased hepatic gluconeogenesis. Similarly, this decrease in markers of hepatic glucose 

production has also been reported in animal models undergoing bile diversion, which mimics 

the metabolic effects of bariatric surgery, where bile-diverted rats had decreased mRNA and 

protein levels of glucose-6-phosphatase (Goncalves et al., 2015). It remains to be elucidated 

whether this might lead to better BA reuptake by the liver, and hence a reestablishment of the 

enterohepatic cycle to bring BA levels back to normal following a meal.  

 Metabolic effects of TGR5 are driven by its central activity E.

The effects of central TGR5 activity on decreased food intake and body weight loss 

over 24 h seemed to be driven by the hypothalamic activity of the receptor, since the targeted 

administration of CCDC into the MBH had the same outcomes as the ICV administration. 

Moreover, these effects were sustained in our chronic model, where weight loss was mostly 

attributed to decreased adiposity. Our outcomes are in line with the only published literature 

that has explored central TGR5 effects on metabolism. By administering taurolithocholic acid 

via ICV, a recent publication shows that obese mice receiving the chronic infusion centrally 

decreased their fat mass. However, the authors did not observe changes in body weight nor 

energy expenditure, despite BAT markers of energy expenditure being upregulated (Eggink et 

al., 2018). This could be explained by the fact that their compound of choice for ICV 

administration, taurolithocholic acid, was acting on other targets within the brain (not a 

specific TGR5 agonist). Furthermore, taurolithocholic acid has a much lower signaling 

capacity than our compound, CCDC, which, as mentioned previously, is the most potent 

stimulant of TGR5-driven cAMP formation. 
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Unlike our acute studies, where we observed changes in BA content in the plasma, this 

was not the case after chronic central activation of the receptor in our obese model. However, 

we were still able to see a clear phenotype in terms of reduced body weight, adiposity and 

food intake. This observation, added to the fact that CCDC was not found in the circulation 

after chronic ICV treatment (i.e. it stays within the brain), suggests that, in fact, these effects 

were driven by CCDC targeting central TGR5 exclusively, and not by peripheral changes in 

BA targeting other tissues. 

 Central TGR5 activity increases energy expenditure through the F.
SNS-dependent engagement of the adipose tissue 

The feed efficiency, or feed conversion ratio, is an index that is typically used in 

animal husbandry to quantify the relation between food consumed and its transformation into 

the desired output (milk, meat, weight) (Koch, Swiger, Chambers, & Gregory, 1963). In the 

context of our studies, both our acute and chronic models significantly decreased their feed 

efficiency after central CCDC treatment. This hinted at a differential use of nutrients that was 

being reflected in a lower conversion of energetic substrates to body mass, meaning that the 

loss of body weight could not be solely explained by the reduction in food consumed. One 

likely explanation was that the treatment was causing an enhanced use of energy, which 

would consequently contribute to further decreasing body weight. As mentioned earlier, 

TGR5 expressed in adipocytes has been shown to participate in increased brown fat activity 

and energy expenditure through thermogenesis (Broeders et al., 2015; Teodoro et al., 2014; 

Watanabe et al., 2006; Zietak & Kozak, 2016), which contributes to a reduction of adiposity 

and overall body weight. Similarly, we observed that sustained central TGR5 activation was 

accompanied by a decrease in adiposity and an increase in energy expenditure in our obese 

model, suggesting that the previously described effects in increased BAT activation could be 

initiated by stimulating the receptor centrally. 

The canonical pathway by which the hypothalamus signals to the BAT for increasing 

energy expenditure is through the activation of the SNS, increasing the release of 

catecholamines that act on β-adrenoreceptors to induce thermogenesis (Bianco & McAninch, 

2013). Indeed, the upregulation of the mRNA expression of β-adrenoreceptors in the adipose 

tissue from our model, together with the increased energy expenditure, hinted at the 

involvement of the SNS in the centrally-driven effects of TGR5. To prove this, we performed 

two experiments that would hinder sympathetic activity, and tested the relevance of central 
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TGR5 stimulation. The first experiment consisted on placing our chronically treated mice at 

thermoneutrality (where thermogenesis is no longer necessary, hence blunting the SNS). As 

expected, there was no longer an increase in energy expenditure (since at 30°C there is no 

need to generate body heat), and the expression of β-adrenoreceptors and Dio-2 were blunted 

in adipose depots. The second experiment entailed eliminating peripheral sympathetic 

connectivity through chemical sympathectomy, and then exposing our mice to the central 

treatment with CCDC. Similarly, in the absence of a functional SNS, the previously seen 

effects on decreased body weight, adiposity and food intake were lost. Although we did 

observe a tendency towards decreased body weight and adiposity at the end of the chronic 

treatment, this was most likely due to a partial recovery of SNS innervation (Thureson-Klein, 

Lagercrantz, & Barnard, 1976). Indeed, such recovery in the innervation was confirmed by 

the marginal reductions in the TH protein in the WAT and BAT after 5 weeks from 6-OH-

DOPA administration as compared to suppression of TH expression observed after 1 week. 

Together, these results prove that the central activity of the TGR5 receptor protects from body 

weight gain through an SNS-dependent mechanism leading to enhanced β-adrenoreceptor 

activity for the thermogenic activation of the BAT, similar to what would be expected if mice 

were exposed to a cold environment.  

It is also known that sympathetic signaling and thyroid hormone pathways are 

interconnected, since the SNS can drive an increased expression of Dio-2 in the BAT (Bianco 

& McAninch, 2013), leading to increased T3 production in this organ and resulting increased 

thermogenesis (Labbe, Caron, Bakan, et al., 2015; Labbe, Caron, Lanfray, et al., 2015). 

Indeed, in our studies we found that Dio-2 mRNA expression was upregulated in the BAT of 

mice treated with CCDC centrally, while its expression was not changed when we placed 

them at thermoneutrality, implying that increased Dio-2 expression depends upon SNS 

activation. Other studies have actually shown that administration of the BA cholic acid 

supplemented in a HFD can increase Ucp-1 expression, independently of action on the SNS 

and engagement of Dio-2 (Zietak & Kozak, 2016). We did not see changes in Ucp-1 

expression. However, we did observe an increase in Ucp-3 due to chronic central activation of 

TGR5, a marker that is being increasingly recognized as an important mediator of 

thermogenesis (Oliveira et al., 2016).  

There is an important body of research linking thyroid effects on the hypothalamus 

(particularly the VMH) as an important determinant of BAT activation (Lopez et al., 2010). 

We have found that central TGR5-dependent stimulation of the SNS increases Dio-2 
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expression in the BAT. Therefore a likely possibility is that there is a higher conversion of T4 

to T3 in this organ, leading to the spillover of the hormone in the circulation. This would 

imply that T3 would be increased in the circulation, and that it could reach the hypothalamus 

(Bianco & McAninch, 2013) to feed forward the TGR5-induced SNS stimulation chronically. 

Although measurements of thyroid hormones in the circulation are warranted and are 

currently planned in order to confirm our hypothesis, we did look at thyroid metabolism 

markers at the level of the hypothalamus. Interestingly, we found that all markers were 

downregulated in the presence of the chronic central administration of CCDC. These findings 

therefore suggest that the central activation of TGR5 would stimulate the activity of the SNS 

to favor the conversion of T4 to T3 (through Dio-2 in the BAT). In turn, the elevated levels of 

T3 released in the periphery would then signal back to the brain to blunt the expression of its 

own receptors and transporters at the level of the hypothalamus. 

Our results imply that the action of TGR5 to stimulate energy expenditure through 

heat production not only happens locally through TGR5 expressed in adipocytes, as 

previously demonstrated (Teodoro et al., 2014; Watanabe et al., 2006; Zietak & Kozak, 2016), 

but it could also be dependent on a higher order signaling, specifically on the hypothalamic 

activation of TGR5, resulting in a phenotype resembling that of being exposed to cold and 

which may involve subsequent central action of T3. Accordingly, work by Lopez and 

collaborators has disentangled a T3-dependent system that initiates in the hypothalamic 

VMN, which takes to enhanced activation of the SNS, and ultimately to an increase in BAT 

thermogenesis through increased catecholamines (Lopez et al., 2010; Martinez-Sanchez et al., 

2017), providing a metabolic loop between the canonical SNS-BAT signaling pathway and 

hypothalamic thyroid hormone signaling (Villarroya & Vidal-Puig, 2013).  

 MBH deletion of TGR5 increases adiposity and worsens obesity G.

To understand the hypothalamic implication of TGR5 in all the previously described 

metabolic effects, we decided to make use of a genetic model that would allow us to delete 

TGR5 from the MBH. As expected from our acute experiments in chow-fed mice, this 

deletion in lean mice had no gross phenotypic effects. However, this genetic approach 

resulted in a rapid weight gain, mostly attributed to increased adiposity when animals were 

switched to a HFD. Moreover, a cold challenge allowed us to further confirm that TGR5 

indeed drives weight loss through enhanced SNS, since markers of lipolysis and 

thermogenesis were blunted in the adipose tissue of mice with the MBH deletion of the 
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receptor, which was also in line with our previous results blunting the SNS. Additionally, 

when the deletion of MBH TGR5 was performed in already obese mice, they rapidly 

increased their body weight, food intake and adiposity, further contributing to the obese 

phenotype. Overall, these results strongly point to an involvement of TGR5 expressed within 

the MBH in protecting from diet-induced obesity. Unfortunately, the viral approach that was 

used for conducting the MBH deletion of TGR5 does not allow us to determine the specific 

types of cells that were targeted, mostly because the TGR5 receptor is expressed at very low 

levels in the adult brain. This stresses the difficulty of imaging the receptor by other tools. In 

our experience, immunohistochemical approaches to visualize the localization of the receptor 

have been inconsistent and very much related to the specific batch of primary antibody used 

to label TGR5. Moreover, we have further tested the possibility of creating a probe that would 

target the mRNA within the cells. However, in line with its low expression, this strategy also 

proved to be challenging. Therefore, we are currently exploring the possibility of using 

genetic models coupled with promoter-specific AAV-Cre delivery that will target discrete cell 

types in the MBH in order to pinpoint the cellular populations expressing TGR5 within this 

brain region. 

 Pinpointing the hypothalamic cellular populations expressing TGR5 H.
in the brain that participate in improving obesity 

There are several hypothalamic nuclei that are involved in feeding behavior and the 

control of energy homeostasis (see section C. Central control of energy balance). Indeed, it 

is of interest to dissect the role of TGR5 in each of these nuclei in order to pinpoint where the 

metabolic effects of its activation are originated.  

The ARC, containing at least two distinctive cellular populations mediating appetite 

and satiety, could very likely be implicated in TGR5-mediated effects. Unpublished work by 

our collaborators (Dr. Schoonjans, Laboratory of Metabolic Signaling, Ecole Polytechnique 

Féderale de Lausanne) performed in lean mice suggest that both Tgr5-/- (full knockout) and 

Tgr5Syn-/- (neuronal knockout) mice have an increased food intake, as well as an increased 

expression of AgRP within the ARC compared to their control littermates.  We have analyzed 

samples from these same models, and found that activation of POMC neurons seemed to be 

inhibited, which would explain the increased food intake in these mice and further suggest 

that the BA sensing pathway to the MBH is dependent on neuronal TGR5. However, Tgr5Syn-

/- , which lack the receptor in all neurons, both in the CNS and the PNS, do not seem to have a 
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deleterious phenotype when exposed to HFD. This could be due to the aspecificity of the 

neuronal deletion in this animal model. In addition, deletion of POMC neurons does lead to 

hyperphagia during HFD, but this is compensated for by an increase in energy expenditure. 

Because of these data generated by our collaborator, we have therefore started to investigate a 

possible role for TGR5 in other hypothalamic cell populations.   

Since SF1 neurons expressed in the VMH have been associated with the hypothalamic 

effects driving increased BAT thermogenesis through thyroid T3 hormone stimulation (Lopez 

et al., 2010), we have recently conducted experiments in mice with SF1 constitutive deletion 

of TGR5 (SF1*TGR5-Cre+). However, our preliminary data suggest that TGR5 might not be 

relevant in this cellular population, since no changes were observed in lean or HFD-fed mice 

carrying this deletion, as compared to their Cre- controls. However, this evidence does not 

exclude that SF1 neurons may be part of the phenotypic effects of chronic central TGR5 

agonism. In order to prove this latter point, we would actually need to delete thyroid hormone 

receptors from the VMH and evaluate whether metabolic effects of central TGR5 activation 

are still observed. 

 Another possibility is that TGR5 may also directly increase hypothalamic T3and in 

this way engage SNS responses and improve obesity. In the brain, astrocytes possess the Dio-

2 enzyme and are the main source of T3 (Freire-Regatillo, Argente-Arizon, Argente, Garcia-

Segura, & Chowen, 2017). This type of cells also express TGR5 (Keith N. Frayn, 2010), like 

neurons. Therefore, targeting the deletion of TGR5 in astrocytes within the MBH would help 

answer the question of a possible non-neuronal action of TGR5, which may drive the 

observed improvements in the obese phenotype via increased central production of T3 and 

subsequent SNS activation.  

Lastly, another unexplored option would be that Sim1 neurons that are particularly 

expressed in the PVN would be driving the TGR5-dependent effects that we have observed. 

This is because genetic mouse models with Sim1 ablation limited to the PVN exhibit early 

onset obesity caused by hyperphagia and decreased thermogenesis and energy expenditure (Xi 

et al, 2013).  
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 Prospective clinical implications of central TGR5-driven metabolic I.
effects 

cc. Potential implications of bariatric surgery 

As mentioned earlier, the astounding long-lasting metabolic effects that follow 

bariatric surgeries are increasingly being attributed to a systemic increase in circulating BA 

following surgery. In particular, interventions that include a rerouting of the gastrointestinal 

tract seem to have more dramatic effects (in terms of body weight loss and diabetes 

remission) compared to surgeries that only restrict stomach size (e.g. gastric banding) 

(Buchwald et al., 2009; Goncalves et al., 2015; Kohli et al., 2013), a fact most likely due to 

the shorter transit of BA through the gut, allowing them to reach distal parts of the intestine 

more rapidly, where they would be reabsorbed.  

Although the increase in circulating BA following surgery have been amply discussed 

in the context of targeting the TGR5 receptor in peripheral tissues for promoting 

improvements in glycaemia, insulinaemia, lipolysis, reduced food intake, among others, it is 

highly possible that this increase in circulating BA would also reach the brain to target the 

MBH, especially considering the evidence pertaining to BA crossing the blood-brain barrier 

(Keene et al., 2001; Parry et al., 2010). It has been reported in experimental models that bile 

routing modifications, which mimic the BA delivery in the gut following gastric bypass 

surgery, can cause changes in food preference (Goncalves et al., 2015): when presented with a 

choice between standard chow or a high fat-high sucrose diet, rats that underwent bile 

diversion surgery almost exclusively preferred the standard chow, whereas their sham 

controls would consume 60% of the high fat-high sucrose diet (Goncalves et al., 2015). This 

observation on food preference has also been reported in patients who undergo bariatric 

surgery, since they show a marked decrease in hedonic hunger (pleasure associated with 

consumption of highly palatable foods, as well as cravings in the absence of immediate 

energetic needs) compared to severely obese patients (Schultes, Ernst, Wilms, Thurnheer, & 

Hallschmid, 2010). These studies further hint at the involvement of the MBH in the attained 

effects, considering the role that the distinct cell populations of this brain region have on 

directing eating behavior, as well as of relaying this information to other brain regions. 

Moreover, it further suggests an implication of other circuits in these effects, such as the 

reward system. It is likely that central TGR5 activity might be acting as a ‘lipid sensing’ 

mechanism, thus preventing the subject from consuming highly caloric food and limiting the 

amount of circulating lipids. Although we have not performed food preference experiments in 
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our models, it would be of interest to test if the central administration of the TGR5 agonist 

can have effects on food choice, and by which mechanisms this takes place.  

dd. Clinical trials administering BA 

BA have been long used for treating specific diseases (cholelithiasis, non-alcoholic 

fatty liver disease, symptoms from neurodegenerative diseases). However, the discovery of 

their receptors led the way for greater research in their clinical applications, which has 

translated in the US Food and Drug Administration (FDA) approving the use of cholic acid 

for the treatment of BA synthesis disorders (Mullard, 2016). Due to their known effects on 

glucose, lipid and energy metabolism, BA signaling pathways through TGR5 activation have 

been considered as attractive targets for treating metabolic diseases, particularly obesity. 

Since BA can activate at least 2 different receptors, efforts have been made to either identify 

or synthesize novel BA with high specificity towards the TGR5 receptor (Ethanic et al., 

2018).  

However, to our knowledge, only one clinical trial has been published that 

administered a selective TGR5 agonist (Hodge et al., 2013). In this trial, patients with type 2 

diabetes (with a BMI of 29 kg/m2, on average) received a daily oral dose of compound SB-

756050, a selective TGR5 agonist that had previously shown improvements in glycaemia and 

insulinaemia in diabetic animal models. Although authors expected improvements in glucose 

profiles, patients that received the two lowest doses of the compound (15 and 50 mg) had 

increased fasting glucose levels, as well as higher levels during an oral glucose tolerance test. 

The highest doses (100 and 200 mg) did not translate in any metabolic changes (Hodge et al., 

2013). Although no adverse effects were reported, the high variability in response to the 

treatment may be one of the main reasons why clinical trials are lacking.  Moreover, it is 

possible that, due to oral administration of the compound, the targeting of TGR5 was mostly 

restricted to the proximal gastrointestinal tract. Our work suggests that it is mostly the 

modulation of central TGR5 activity that would be driving the peripheral effects on 

metabolism, including control of glucose homeostasis, through either changes in BA 

biosynthetic pathways or stimulation of the SNS that would lead to adipose tissue 

mobilization and increased energy use. Finding strategies that could allow selective TGR5 

agonists to reach hypothalamic targets for modulating the activity of the receptor would be 

necessary for implementing pre-clinical protocols that could translate to treatments for human 

subjects suffering from obesity and its related metabolic complications. 
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 Conclusions J.

Our results clearly establish that BA do not only act as signaling molecules in 

peripheral tissues, but they can also reach the brain to activate TGR5 and trigger a myriad of 

beneficial metabolic effects, particularly in the context of obesity. More specifically, we have 

shown that hypothalamic TGR5 plays a role in obesity physiopathology. First, we 

demonstrate a dysfunction of the BA system components in the presence of an obese 

phenotype. Next, we show that the acute or chronic pharmacological activation of the receptor 

centrally leads to metabolic improvements in obese mice, including a decrease in adiposity 

and an increase in energy expenditure. Further, we prove that these effects are driven by 

recruitment of the SNS to increase lipolysis and thermogenesis in WAT and BAT, 

respectively. Lastly, we demonstrate that TGR5 is in fact necessary for driving the improved 

phenotype, since its targeted deletion in the MBH increases adiposity in a diet-dependent 

manner by blunting the sympathetic tone, and worsens the obese phenotype.  

Our work places hypothalamic TGR5 as a key mediator of SNS-driven effects on body weight 

loss through adipose signaling, unveiling a new mechanism of action for potential anti-obesity 

therapies. Further studies will be necessary for pinpointing the cell types involved in the 

central TGR5-mediated effects on metabolism.  
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