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RESUME 

 

Les microglies, cellules immunitaires résidentes du système nerveux central (SNC), étaient 

traditionnellement décrites comme ayant un rôle uniquement lors de blessures ou de maladies 

du SNC. De manière frappante, dans le cerveau sain, les microglies effectuent une surveillance 

active du parenchyme en étendant et en rétractant leurs prolongements ramifiés. Ce mouvement 

est connu sous le nom de motilité microgliale et peut être dirigé vers les synapses. La régulation 

de ces mouvements et le but des contacts microglie-épines dendritiques restent inconnus. Nous 

avons examiné l'influence de l'activité neuronale sur la motilité et la morphologie microgliale 

ainsi que sur les interactions microglies-épines pendant l’éveil et le sommeil. Nous avons 

observé que les propriétés morpho-dynamiques des microglies sont modulées par les états de 

vigilance. Les prolongements microgliaux sont attirés par les synapses actives, particulièrement 

lors de l’éveil, alors que le sommeil régule négativement la proximité des prolongements 

microgliaux ainsi que les contacts dépendants de l’activité qui lient les prolongements 

microgliaux aux épines. Le contact des épines avec les prolongements microgliaux entraîne une 

augmentation de l’activité des épines, principalement observée pendant le sommeil lent. Pour 

conclure, ces résultats montrent un contrôle complexe de la morpho-dynamique microgliale par 

l’activité et les états de vigilance. Appréhender les mécanismes régulant la dynamique 

microgliale et les interactions microglie-épines dendritiques pendant les états de vigilance 

permettra de mieux comprendre comment les cellules microgliales sont impliquées dans la 

régulation de l'homéostasie synaptique, l'apprentissage et de la mémoire, des fonctions 

associées au sommeil. La compréhension des interactions microglies-neurones dans des 

conditions physiologiques est cruciale pour élucider le fonctionnement synaptique et ses 

altérations lorsque la microglie est impliquée dans ses fonctions immunes, une caractéristique 

commune à la plupart des pathologies cérébrales. 

 

Mots-clés : microglie, motilité, interaction microglie-épine, synapse, éveil, sommeil, imagerie 

calcique, in vivo 



ABSTRACT 

 

Microglia, the resident immune cells of the central nervous system (CNS), were traditionally 

believed to be set into action only by injury or diseases. Strikingly, in the healthy brain, 

microglia actively carry out parenchyma patrolling by extending and retracting their ramified 

processes. These movements are referred to as microglial motility and may be to some extent 

directed toward synapses. However, motility regulation and the purpose of microglia-spine 

contacts remain elusive. We thus examined the influence of neuronal activity on microglial 

motility, morphology and microglia-spine interactions during sleep and wakefulness. We found 

that microglial motility and morphology are modulated by vigilance states. Microglial 

processes were found to be attracted by active synapses particularly during wake, whereas sleep 

downregulates microglial proximity and activity-dependent contact with spines. Microglial 

contact resulted in increased spine activity which was mainly observed during sleep. 

Understanding the mechanisms regulating microglial dynamics and microglia-spine 

interactions across the vigilance states will provide further insights into how microglial cells 

may be involved in sleep-associated functions such as synaptic homeostasis, learning and 

memory. Grasping these cellular interactions in physiological conditions is crucial to 

understanding synaptic functioning and alterations when microglia are engaged in their immune 

functions, a hallmark of most brain pathologies. 

  

Key words: microglia, motility, microglia-spine interactions, synapse, wake, sleep, calcium 

imaging, in vivo  
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INTRODUCTION 

I. Overview of microglial cells 

1. Glial cells – coming out from the shadows 
 

From a passive role as elements that form an “adhesive substance connecting neurons”, glial 

cells have been recently recognized as key players in many aspects of brain physiology and 

disease (Rasband, 2016). This new status is due to growing body of evidence, especially in the 

past 20 years or so, reporting critical involvement of glial cells in many physiological 

mechanisms (Figure 1). These roles include shaping the central nervous system (CNS) 

architecture, promoting neuronal survival, offering metabolic support to neurons, regulating 

ionic extracellular environment, as well as sensing and modulating neuronal activity via 

gliotransmitters or contact-dependent mechanisms (Akiyoshi et al., 2018; Araque et al., 2014; 

Eyo et al., 2014; Jha and Morrison, 2018; Mosser et al., 2017; Olsen et al., 2015; Volterra and 

Meldolesi, 2005). These processes are highly dependent on bidirectional neuron-glial and glial-

glial communication (Dzyubenko et al., 2016; Shaham, 2005). Disruption of these mechanisms 

leading to and/or caused by glial cell dysfunction are common in a broad spectrum of 

pathologies, including neurodevelopmental, neurodegenerative and neuropsychiatric disorders 

(Arranz and De Strooper, 2019; Bachiller et al., 2018; Booth et al., 2017; Li et al., 2018; Szepesi 

et al., 2018).  

               

Figure 1: Major types of glial cells (astrocytes, oligodendrocytes and microglial cells) in the central 
nervous system (CNS) and their main functions. Adapted from (Butt and Verkhratsky, 2018; Giaume et 
al., 2007; Osterhout et al., 1999) 
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2. General description of microglial cells in physiology and pathology  
 

2.1 First description of microglial cells 
 

The earliest description of microglia was reported by Nissl, who described “rod cells” in 

patients with general paresis (Nissl, 1899). Rod microglia are a unique type of activated 

microglia, with a strikingly different morphology from amoeboid microglia (Holloway et al., 

2019). Using tannin and ammoniacal silver nitrate staining method, Achúcarro, an alumnus of 

Ramon y Cajal, described “granuloadipose cells” that appeared to phagocytose degradation 

material (Achúcarro, 1913, Figure 2). Ramon y Cajal later developed a staining method (gold 

chloride sublimate) allowing for an excellent depiction of astrocytes but failed to distinguish 

other glial cells types. Instead, he observed “corpuscles without process” assembling apolar, 

adendritic dwarf cells, that he named “the third element” (Ramon y Cajal 1913a). The mystery 

of the third element was later resolved by Pio del Rio-Hortega, another Cajal alumnus (Rio-

Hortega, 1919a). Using modified ammoniacal silver carbonate staining method, del Rio-

Hortega managed to distinguish two other cell types: microglia and oligodendroglia, endowed 

with distinct cytoplasmic expansions. He characterized microglial cells as having small, dark 

nucleus with little protoplasm and long ramified processes with lateral spines, suggesting that 

“their shape is mutable and conditional; that their protoplasm is capable of plasticity” (Rio-

Hortega, 1919b). Hence, he documented their proliferation, migratory and phagocytic activity 

upon injury from stab wounds (Rio-Hortega, 1919b). He also described their distribution 

throughout the brain, revealing a higher density in the gray matter (Rio-Hortega, 1919c). Due 

to delayed occurrence of microglia in the brain and close apposition with vascular elements, del 

Rio-Hortega proposed that microglial cells are of mesodermic origin. Regarded as the “father 

of microglia biology”, Del Rio-Hortega provided fascinating insights on microglial origin, 

morphology, distribution and function that have been mostly confirmed 100 years later. 



4 
 

              

Figure 2: Describing the composition of the third element. (A) Using the tannin and ammoniacal 
silver nitrate method, Achúcarro visualized “granuloadipose” cells that seemed to phagocytose 
degradation material. (B) Later, Cajal used sublimated gold chloride method leading to an excellent 
visualization of astrocytes but poor staining of other glial cells. These cells resembling “corpuscles 
without processes” were named “the third element”. (C, D) Del Rio-Hortega managed to distinguish 
between microglia (C) and oligodendrocytes (D) using modified silver carbonate method (Tremblay et 
al., 2015).    
 

2.2 Origin and maintenance of microglial cells 
 

Microglial cells are the resident immune cells of the central nervous system (CNS). They 

account for ~10% of cells in the brain, after oligodendrocytes (40-60%) and astrocytes (20-

40%), with considerable differences between brain regions, developmental stage and species 

(von Bartheld et al., 2016). Most tissue resident macrophages, with the exception of microglia 

and partially epidermal Langerhans cells, are derived from classic hematopoietic stem cells 

(HSC) (Sheng et al., 2015a). Microglial cells were found to derive from yolk-sac precursors 

(Ginhoux and Guilliams, 2016; Ginhoux et al., 2010; Hoeffel and Ginhoux, 2015), however the 

precise nature of these precursors remains a matter of debate. Ginhoux et al. found that adult 

microglia come from primitive macrophages during embryogenesis (Ginhoux et al., 2010), 

whereas two other studies recognized erythromyeloid progenitors as sole precursors of 
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embryonic and perinatal microglia (Gomez Perdiguero et al., 2015; Kierdorf et al., 2013). The 

issue in studying microglial ontogeny lies in the difficulty of labeling in utero and 

discriminating subsets of hematopoietic precursors that emerge in a very narrow time interval 

during development. Using a zebrafish model where each possible precursor is spatially and 

temporally distinct during embryonic development, Ferrero et al. showed that erythromyeloid 

progenitors did not contribute to microglial development (Ferrero et al., 2018). It was primitive 

macrophages that generated a first transient wave, followed by embryonic HSC that gave rise 

to definitive adult microglia (Ferrero et al., 2018). Since this study was conducted in zebrafish, 

these findings are yet to be confirmed in rodents.   

Even though precise microglial ontogeny is to be elucidated, it is well-established that most 

microglial colonization of the neuroepithelium begins from E9.5 concurrently with the 

generation of first neurons and prior to astrogliogenesis and oligodendrogenesis (Ginhoux et 

al., 2010; Malatesta et al., 2000; Qian et al., 2000; Swinnen et al., 2013). Microglia enter via 

the leptomeninges and lateral ventricles and then spread throughout the cortical wall. Thus, 

microglial recruitment, positioning and proliferation at the early stages are crucially dependent 

on bi-directional cross talk between microglia and neural progenitor cells (Arnò et al., 2014). 

In addition, a microglial subpopulation with a delayed appearance in the brain was recently 

identified (Chen et al., 2010a). This minoritarian Hoxb8+ population was suggested to enter the 

brain at embryonic day 12.5 (E12.5) from a hematopoietic source within the embryo (De et al., 

2018). 

During the early embryonic period and the first two postnatal weeks microglia proliferate 

rapidly (Nikodemova et al., 2015). Microglial cell numbers start to decline in the third postnatal 

week and are reduced by 50% in adulthood. In terms of morphology, during the first stages of 

development, microglial cells have ameboid-like morphologies, with a large soma and no 

processes (Arnoux et al., 2013). The morphological change from “amoeboid” to “ramified” 

starts around P10, with the loss of transcription factor Runx, and the ramification process is 

complete by P28 (Nayak et al., 2014; Zusso et al., 2012). 

Under physiological conditions, microglial maintenance is not dependent on the peripheral 

hematopoietic system (Ajami et al., 2007, 2011). The consensus is that microglia are maintained 

by self-renewal in steady state, and the initial proliferation rate was found to be very low 

(0.05%) (Lawson et al., 1992). Questioning this study and the established paradigm that 

microglial population is long-lived and almost never renewed, a recent study proposed 

approximately 10 times higher proliferation rate for microglia in mice (Askew et al., 2017). 
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This study showed that microglial turnover depended on temporal and spatial coupling of 

microglial proliferation and death, and that proliferation in steady conditions did not depend on 

local nestin-positive progenitors as it has been shown after transgenic microglial depletion 

(Bruttger et al., 2015). Furthermore, microglia proliferation rate differed between brain regions 

and corresponded to the overall proliferation rate in their local environment (Arnoux et al., 

2013; Swinnen et al., 2013).  

 

2.3 Microglial cells are a many-splendored thing 
 
 
 
 
 
 
 
 
 

Over the course of their development, microglia exhibit discrete transcriptional phases due to 

changes in their chromatin landscape (Matcovitch-Natan et al., 2016). These phases include 

early microglia (E10.5 to E14), pre-microglia (E14 to P9) and adult microglia (4 weeks and 

onward). Strikingly, microglial transcriptional signature reflects their function and parallels 

brain homeostasis requirements. For instance, early microglia specific genes were associated 

with defense response and multiple hematopoietic fates. At the pre-microglia stage, clusters 

enriched for genes related to migration, proliferation and cytokine secretion were common. 

Interestingly, the transcriptional signatures at early and pre-microglia stages were highly 

correlated, even though their respective environment was different.  

Furthermore, the number of molecularly distinct subpopulations peaked at young ages (E14.5 

and P5) and was later reduced (Hammond et al., 2019). Some genes were strongly upregulated 

in specific states, suggesting a definable transcriptional program for each state. For instance, a 

Spp1+ microglial state, highly concentrated at the axon tracts of pre-myelinated brain, was 

found only at P4-P5, and was enriched with genes associated with immune cell activation, 

lysosomal activity and phagocytosis. 

Adult microglia express canonical microglial genes associated with tissue maintenance and 

signaling (Matcovitch-Natan et al., 2016). Under homeostatic conditions, microglia have a 

specific transcriptome that contains genes that are expressed exclusively by microglia or at 

higher levels than other CNS or myeloid cell types. In fact, after recruitment and under the 

influence of the CNS environment, microglial gene expression profile diverges from other 

tissue-resident macrophages. With regards to CNS macrophages, including perivascular, 

meningeal and choroid plexus macrophages (Prinz and Priller, 2014, Figure 3), microglial 

transcriptional profile was found to be closely related in particular to perivascular macrophages 

(Goldmann et al., 2016; Prinz et al., 2017). 



7 
 

                 

Figure 3: Myeloid cell types in the CNS. The CNS accommodates several populations of myeloid 
cells: microglial cells in the brain parenchyma (a); and macrophages at outer borders of the brain, 
including the choroid plexus (b), perivascular space (c) and the meninges (d). Finally, blood-derived 
dendritic cells (e) are found to a lesser extent at similar locations as macrophages (Prinz and Priller, 
2014).  
 

This transcriptome is referred to as homeostatic microglial signature genes and includes Sall1, 

Hexb, Fcrls, Gpr43, CX3CR1, Olfml3, Tmem119, Trem2, P2RY12, Mertk, Pros1 and SiglecH 

(Bennett et al., 2016; Buttgereit et al., 2016; Goldmann et al., 2016). These genes allow the 

maintenance of microglial identity and their homeostatic phenotype. Even though canonical 

microglial genes (P2RY12, CX3CR1, Trem2, C1qa, Fcrls) were highly expressed in most 

microglial cells, systematic expression was found only for C1qa, Fcrls and Trem2 (Hammond 

et al., 2019). Homeostatic microglial transcriptome is crucially regulated by Tgfβ, since its 

removal is accompanied with a reduction of microglial numbers and microglial homeostatic 

gene expression (Butovsky et al., 2014).   

Genome-wide analysis shows that microglial cells exhibit age- and region-specific 

transcriptional profiles (Grabert et al., 2016). Even in a single anatomical structure such as the 

basal ganglia, microglia in different nuclei exhibited different transcriptomes, membrane 

properties and lysosome content (De Biase et al., 2017). Interestingly, these differences re-

emerged in repopulated microglia after microglial ablation, suggesting that local specific cues 

shape microglial diversity incessantly. 
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Interestingly, adult microglia also presented sexually dimorphic transcriptomic signatures 

(Thion et al., 2018). Microglia were in a more immune-activated state in females, with a higher 

expression level of inflammatory response genes, including TNF, CXCL10, CCl2. Microglial 

baseline morphology in males was found to be more complex and significantly reduced upon 

LPS stimulation (Hanamsagar et al., 2017). On the contrary, LPS stimulation did not affect 

microglia in females. Furthermore, environmental challenges such as the absence of maternal 

microglia had sexually dimorphic impact on microglial transcriptome that also depended on the 

developmental stage (Thion et al., 2018). 
 

2.4 Microglial functions in pathology 
 

The traditional roles of microglial cells as immune-competent cells in the CNS have been 

extensively studied (Bachiller et al., 2018; Wolf et al., 2017). In addition to being the primary 

cells in the innate immune response, they also activate pathways leading to the initiation of 

adaptive immune responses, such as antigen presentation to T lymphocytes (Town et al., 2005).  

 

2.4.1 M1/M2 polarization paradigm and its demise 
 

Microglial cells may sense brain microenvironment disturbance via a plethora of pattern 

recognition receptors (PRRs), including Toll-like receptors (Kielian, 2006; Kigerl et al., 2014). 

Cell dysfunction, damage and foreign pathogens are detected by danger and pathogen-

associated molecular patterns recognition (DAMPs and PAMPs, respectively). Under these 

conditions, microglial cells become “activated”, with morphological changes and modifications 

of gene expression adapted to challenge the immune outbreak. Many neurological conditions, 

including acute injury, neurodevelopmental, neurodegenerative and neuropsychiatric diseases, 

are accompanied by microglial activation (Nayak et al., 2014; Peng et al., 2016; Ransohoff and 

Perry, 2009). The traditional view has been that microglia acquire customized phenotype upon 

activation, with polarization towards proinflammatory neurotoxic M1-state or anti-

inflammatory neuroprotective M2-state depending on the circumstances (Franco and 

Fernández-Suárez, 2015; Kabba et al., 2018; Tang and Le, 2016, Figure 4). For instance, 

following stroke and trauma, microglia polarize towards M1-like state, characterized by 

increased production of proinflammatory cytokines (TNFα, IL1, IL6), reactive oxygen species 

(ROS) and inducible nitric oxide synthase (iNOS), as well as expression of high amounts of 

MHC class I or II. On the other hand, following mild ischemia, microglia polarize to M2-like 
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state and upregulate arginase-1, anti-inflammatory molecules (IL-10 and TGFβ), secrete growth 

factors (IGF-I, FGF, CSF1) as well as neurotrophic factors (NGF, BDNF, GDNF). This 

dichotomous model of microglial activation is overly simplified because a broad spectrum of 

microglia activation states were found to exist in vivo (Dubbelaar et al., 2018; Ransohoff, 2016; 

Vogel et al., 2013). These activation states have been shown to be highly complex in terms of 

immune cell phenotypes, encompassing changes in morphology, gene and protein expression 

(Hammond et al., 2019; Keren-Shaul et al., 2017; Mathys et al., 2017). For instance, it has been 

suggested that microglia may have neuroprotective functions in ischemia, while evidence for 

neurotoxic activity also exists (Tian et al., 2016; Wu et al., 2012).  

                  

Figure 4: M1/M2 polarization of microglial cells. Classical (M1) and alternative (M2) activation lead 
to different functional states of microglial cells. Classical activation is induced by LPS and pro-
inflammatory cytokines, leading to M1 polarization favoring neuroinflammation and oxidant state. In 
presence of Th2 type cytokines, microglia polarize to alternative M2 phenotype characterized by 
arginase, anti-inflammatory cytokine and neurotrophic factor production. This phenotype is associated 
with reparative and neuroprotective functions (Salvi et al., 2017). 
 
 

2.4.2 Unexpected roles for microglial cells in pathology 
 
 
 
 

Even though microglia have been mostly related to initiation of immune response after CNS 

injury and disease, microglial dysfunction may also be the cause for disease initiation. The 

recent discovery that many risk genes for Alzheimer’s disease (AD) are exclusively expressed 

by microglia suggests that microglia might also be a driving mechanism in disease onset and 

progression (Bonham et al., 2019).  
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Microglial cells were thought to be restricted to the CNS even in the case of pathology or injury. 

However, a recent study in the zebrafish showed that microglial cells may squeeze through the 

spinal boundary in the case of brachial plexus injury model (BPNS) (Green et al., 2019). They 

may cross into the peripheral nervous system (PNS) and emerge as the main debris-cleaning 

cells at the point of injury. From the PNS, they return in the spinal cord in an altered state and 

may carry the debris back into the CNS, with possible long-term implications in CNS 

physiology.  

In addition to their well-described roles as resident immune cells in the brain, microglial cells 

were found to serve many functions in physiological conditions.  

 

3. Microglial functions in physiological conditions 
 

3.1 Microglial functions during embryonic and post-natal development 
 

Many roles have emerged for microglial cells during the embryonic and postnatal period. As 

mentioned previously, microglia start invading the brain very early during embryogenesis and 

are present when neuronal circuits start to assemble (Swinnen et al., 2013). During the 

embryonic period, microglial functions include: regulation of the axon tract formation, 

interneuron migration, phagocytosis of neural progenitors, as well as regulation of gliogenesis 

and angiogenesis (Thion and Garel, 2017, Figure 5). Indeed, embryonic depletion of microglia 

led to abnormal outgrowth of dopaminergic axons in the forebrain and laminar positioning of 

subsets of neocortical interneurons, as well as defasciculation of dorsal callosal axons (Pont-

Lezica et al., 2014; Squarzoni et al., 2014).  

During the postnatal period, microglial cells promoted proliferation of neuronal precursors and 

neuronal survival. At early stages, microglial cells were required for layer V neuronal survival 

through insulin-like growth factor 1 (IGF-1) and CX3CL1 signaling (Ueno et al., 2013); while 

IL-1β, IL6, TNFα and IFNγ were needed for cortical SVZ neuron survival (Shigemoto-Mogami 

et al., 2014). 

Microglia also participated in programmed cell death (PCD), by phagocytosing dead or dying 

neurons and debris. In vitro studies found that microglial cells triggered PCD by at least two 

mechanisms: TNFα release inducing death of motor neurons (Sedel et al., 2004) and superoxide 

ion production leading to PCD of Purkinje neurons (Marín-Teva et al., 2004). In favor of this 
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role, microglia deficiency for DAP12 and CD11b resulted in decreased apoptosis in the 

hippocampus (Wakselman et al., 2008). 

     

Figure 5: Timeline of microglial and brain development during embryonic and early postnatal 
period. Illustration of microglial generation and brain colonization (top panel) concurrent with major 
developmental events (bottom panel) with established and potential involvement of microglial cells 
(Thion and Garel, 2017). 
 
 
In addition to participating in large-scale neuronal turnover, microglia contribute considerably 

to the proper establishment of neuronal circuits by mechanisms involving spine remodeling and 

functional maturation of synapses.   

 

3.1.1 Synapse formation 
 

Early postnatal period is characterized by a massive burst of synapse formation. Microglia were 

found to be involved in synapse formation in the developing somatosensory cortex during this 

period (Miyamoto et al., 2016, Figure 6B). From P8 to P10, microglia-dendrite contacts were 

often followed by filopodia formation which was initiated by Ca2+-induced actin accumulation. 

Interestingly, this effect seemed restricted to this specific time frame since the rate of microglia-

induced filopodia formation was not increased at P12-P14 and P26-P30. Importantly, filopodia 

formation was critically dependent on microglial activated phenotype since minocycline 

administration reduced filopodia formation rate.  
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Microglial role in synapse formation was also found in organotypic hippocampal slices 

(Weinhard et al., 2018). Microglial contact elicited transient filopodia formation, which was 

proposed to involve several mechanisms, including application of tension for pulling, loosening 

up of the extracellular matrix (ECM) or release of chemotactic factors. Intriguingly, the 

majority of filopodia originated from mature spine heads, suggesting a role in reorganization of 

postsynaptic sites.  

 
Figure 6: Synthesizing literature on neuron-related microglial functions during development. (A) 
“Weak” synapses are selectively pruned by microglia in a complement-dependent manner, while others 
are protected with the presence of “don’t eat me” signals. (B) Microglial contact of aspiny dendrites 
induces Ca2+-dependent actin accumulation and filopodia formation. (C) Microglial fractalkine signaling 
is necessary for NMDA receptor maturation at thalamocortical synapses. (D) Microglial contact with 
highly active neurons resulted in downregulation of neuronal activity in larval zebrafish.  

 

3.1.2 Synapse elimination 
 

The period of intense spinogenesis is accompanied by synaptic refinement, termed pruning, 

during which specific synapses are eliminated to obtain proper brain connectivity. Pruning was 

initially considered to occur by shedding excess material or to be solely dependent on neuronal 

mechanisms (Schuldiner and Yaron, 2015), but recent studies suggest that microglia are potent 

regulators of this mechanism.  
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3.1.2.1 The complement system and MHC-I molecules 

First evidence of microglial involvement in synaptic pruning implicated the classical 

complement cascade in the mouse retinogeniculate system (Figure 6A). This system undergoes 

extensive activity-dependent pruning that is crucial for eye-specific segregation (Guido, 2008). 

Using in vivo engulfment essay, the authors showed an internalization of retinal ganglion cell 

(RGC) axonal terminals within microglial cytoplasm and lysosomal compartments during the 

period of highest synaptic remodeling (P5-P8) (Stevens et al., 2007). In the developing LGN 

(lateral geniculate nucleus), synapse elimination was dependent on the expression of 

complement cascade components C1q and C3 at immature synapses (Stevens et al., 2007). C1q 

and C3-tagged synapses were recognized and eliminated by microglia via the complement 

receptor (CR3). Several mechanisms regulating microglia and complement-mediated pruning 

have been described even though molecular actors for synaptic tagging are still unknown. 

Engulfment of RGC inputs was found to be performed in an activity-dependent manner, where 

weaker inputs were selectively pruned (Schafer et al., 2012). C1q expression and localization 

to synapses was dependent on astrocyte-derived transforming growth factor (TGF)-β and 

inhibition of TGF-β signaling in postnatal retina led to significant impairment in eye-specific 

segregation (Bialas and Stevens, 2013). Contrary to “eat-me” signals, synapses may also 

express “don’t eat me” signals that protect them from microglia-mediated pruning. In the dorsal 

lateral geniculate nucleus, CD47 was localized to more active inputs and its deficiency 

increased functional pruning and reduced synapse density (Lehrman et al., 2018). Thus, the 

extent and timing of microglia-dependent pruning during development might be dependent on 

the joint action of neuronal activity and context-dependent molecular cues.  

Another candidate from the immune system that might be involved in synaptic remodeling 

includes major histocompatibility complex (MHC) class I molecules. MHC-1 colocalizes with 

PSD-95, a major scaffolding protein in the excitatory postsynaptic density (Goddard et al., 

2007) and is involved in segregation of retinal fibers in dLGN (Huh et al., 2000). Alterations in 

MHC-I expression levels at neuronal synapses were associated with alterations in synaptic 

elimination and eye-specific segregation (Lee et al., 2014). In the immune system, MHC-I is 

involved in tagging cells for phagocytosis, therefore, it is possible that the pruning is performed 

by the resident immune cells of the CNS. 
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3.1.2.2 Fractalkine signaling 

Fractalkine signaling (CX3CR1/CX3CL1) is a specific microglia-neuron communication 

pathway with a debated role in synaptic pruning. Fractalkine (CX3CL1) is a chemokine almost 

exclusively expressed by neurons (Ransohoff, 2009; Tarozzo et al., 2003) and may exist in a 

membrane-bound and soluble form. Importantly, the fractalkine receptor (CX3CR1) is 

expressed only by microglia in the healthy brain (Cardona et al., 2006; Combadiere et al., 1998). 

CX3CR1-deficient mice presented a transient increase in dendritic spine density in pyramidal 

neurons and electrophysiological characteristics of immature circuitry (Paolicelli et al., 2011). 

However, CX3CR1 KO mice also showed reduced microglial density in the maturing 

hippocampus between P8 and P28. This was proposed to be the reason for the reduced synaptic 

pruning, even though a direct contribution of CX3CR1 should not be excluded. Paolicelli et al. 

also showed microglial engulfment of both pre- and postsynaptic material in the developing 

hippocampus. PSD95, marker of excitatory postsynaptic density, as well as presynaptic 

SNAP25, were observed both inside clathrin- and nonclatrin-coated vesicles within microglial 

processes (Paolicelli et al., 2011).  
 

3.1.2.3 Hoxb8 signaling 
 

Pruning may also be mediated, at least partly and probably indirectly, by Hoxb8 signaling. 

Genetic ablation of Hoxb8 was associated with increased spine density in the frontal cortex and 

several sub-regions of the striatum, suggestive of pruning deficits (Nagarajan et al., 2018). 

However, this was not due to synaptic pruning behavior of Hoxb8+ cells, since it was found to 

be similar to non-Hoxb8+ microglia (De et al., 2018). 
 

3.1.2.4 Phagocytosis or trogocytosis? 
 

The microglial mechanism of synaptic material elimination was presumed to be phagocytosis, 

defined as cellular uptake of particles over 0.5μm of size (Gordon, 2016). A very recent study 

using correlated light and EM microscopy coupled with ex vivo imaging did not find evidence 

for phagocytosis of whole synapses (Weinhard et al., 2018). Instead, in the developing 

hippocampus, microglial processes were engulfing smaller fragments of presynaptic 

components, with an average diameter of 250nm. This mechanism is known as trogocytosis. 

Trogocytosis was limited to presynaptic boutons and axons, and was CR3-independent. This 

mechanism was recently suggested to be mediated by phosphatidylserine (PS), another “eat-me 
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signal”, and might be the underlying mechanism for microglial trogocytosis (Perry and 

Ravichandran, 2017). 
 

3.1.2.5 Impact of microglial spatial arrangement on spine turnover 
 

Interestingly, the spatial arrangement of microglia was found to be critical for spine stability in 

the somatosensory cortex in juvenile mice and to be a factor for neuronal circuit remodeling 

(Iida et al., 2019). The frequency of microglia-spine contacts as well as dendritic spine turnover 

was higher in the microglial proximal zone (7-20μm from microglia cell body). Microglial 

spatial arrangement defined alternating domains on dendritic segments with variable distances 

from microglia, indicating that spine turnover may not be uniformly regulated even in the same 

dendrites.  
 

3.1.3 Synapse maturation 
 

During development, deficiencies in several neuron-microglia communication pathways also 

result in synaptic maturation deficits.  
 

3.1.3.1 KARAP/DAP12 
 

KARAP/DAP12 is a transmembrane signaling protein, whose expression is restricted to 

hippocampal microglia during development (Roumier et al., 2004). Loss-of-function mutation 

of DAP12 led to enhanced long-term potentiation (LTP) and significant reduction in the 

synaptic accumulation of GluR1, GluR2 and the postsynaptic targeting of BNDF receptor TrkB 

(Roumier et al., 2004). These synapses were characterized with a higher ratio of AMPA/NMDA 

receptor EPSCs (Roumier et al., 2008), suggestive of an immature phenotype due to microglial 

deficiency. 

3.1.3.2 Fractalkine signaling 
 

Maturation deficits were also found in mice deficient for CX3CR1 signaling in the 

thalamocortical synapses and hippocampus. Between the first and second postnatal weeks, 

synaptic NMDAR content is known to switch from GluN2B to GluN2A at thalamocortical 

synapses. CX3CR1 deficiency resulted in altered NMDAR composition, characterized with a 

higher proportion of GluN2B-containing NMDARs and consequently slower kinetics of 
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NMDAR-mediated synaptic current (Hoshiko et al., 2012, Figure 6C). These deficits were not 

found at later times (P27-P32).  

As neuronal circuits mature, the ratio between spontaneous and miniature excitatory 

postsynaptic currents increases (sEPSC and mESPC, respectively) (Hsia et al., 1998). At P15 

and P40, the sEPSC/mESPC ratio was reduced in CX3CR1 KO hippocampal slices. The density 

of multi-synaptic boutons was significantly reduced at P40, as well as the coherence between 

the hippocampus and prefrontal cortex in adult mice, suggesting a deficit in maturation of 

synaptic connectivity (Paolicelli et al., 2011; Zhan et al., 2014).  

CX3CR1 deficiency also affected glutamatergic presynaptic properties, resulting in synaptic 

release deficits and higher number of silent synapses in the developing hippocampus (Basilico 

et al., 2019). These deficits led to immature AMPA/NMDA ratio and defective hippocampal 

functional connectivity that persisted at later developmental stages.  
 

3.1.3.3 Inhibitory synapses 
 

Apart from excitatory synapses, a possible functional relationship between microglia and 

inhibitory synapses has been suggested. In fact, the frequency of miniature inhibitory post-

synaptic currents (mIPSC) in the hippocampus at P15 was reduced in CX3CR1 KO mice (Zhan 

et al., 2014). 
 

3.1.4 Baseline and experience-dependent plasticity 
 

 

 

In addition to targeting specific microglial pathways, another approach to study microglial 

function consists in depleting microglial cells. Microglial depletion at P19 and P30 caused a 

significant reduction in baseline and motor learning-induced spine formation and elimination, 

associated with learning deficits (Parkhurst et al., 2013). This was associated with significant 

changes in protein levels at glutamatergic synapses. Altered protein levels concerned those 

mostly involved in synaptic plasticity and function, such as post-synaptic GluN2B and 

presynaptic vesicular glutamate transporter 1 (VGLUT1). Whole-cell patch clamp recordings 

revealed a significant reduction in the frequency of NMDA and AMPA mEPSC in microglia-

depleted mice. In addition, the decay time of NMDA was reduced, consistent with a GluN2B 

containing receptor decrease. These alterations were replicated with specific removal of BNDF 

in microglia, suggesting a crucial role of microglial BDNF during development. 
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Another pathway for activity-dependent remodeling of neuronal networks by microglial cells 

seems to be P2Y12R (Sipe et al., 2016). Alteration of P2Y12R signaling led to disruption of 

the shift of ocular dominance from the closed eye to the open eye following monocular 

deprivation. Thus, it is posited that microglial P2Y12R expression is crucial for proper 

development of the visual cortex and ocular dominance. Contrary to P2Y12R, CX3CR1 

signaling was not required for plasticity in the developing visual system, since CX3CR1 KO 

mice did not present any deficits in lateral geniculate nucleus refinement or ocular dominance 

plasticity (Lowery et al., 2017).  
 

3.1.5 Modulation of neuronal activity 
 

During development, microglia may also play a role in the homeostatic downregulation of 

neuronal activity. In a recently developed model of supramaximal stimulation, increased 

neuronal activity elicited axon swelling and large, sustained depolarization of soma membrane 

potential (Kato et al., 2016a). Microglial processes migrated towards and wrapped the affected 

axons, and in some case removed axonal debris which induced rapid soma membrane 

repolarization back to resting potentials. Thus, neuronal hyperactivity was accompanied with 

an acute and highly localized neuroprotective action by microglial cells. In larval zebrafish, 

microglia-neuron contact downregulated both spontaneous and visually-evoked activity of 

contacted highly active neurons (Li et al., 2012, Figure 6D).  

In conclusion, during development, a period of rich synaptic remodeling, microglia are 

critically involved in neural circuit sculpting and maintenance of neuronal homeostasis and 

proper synaptic function. This raised intriguing questions about whether these functions are 

specific to microglia during development or they may also be major contributors to normal 

physiology in adulthood.  
 

3.2 Microglial physiology in the adult brain 
 
 

In the healthy adult brain, microglial cells have a small soma (~10μm) and highly ramified 

primary, secondary and tertiary processes. Primary branches protrude directly from the soma, 

whereas secondary and tertiary processes emerge from primary and secondary processes, 

respectively. At the tip of large processes, microglial cells have thin, hair-like processes called 

filopodia that were described very recently (Bernier et al., 2019).  The distribution of microglial 

cells appears to be uniform across brain regions. Intriguingly, it could not be explained by 
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random distribution (Iida et al., 2019), suggestive of a potential regulatory mechanism for 

microglial-specific distribution pattern that needs to be assessed. Nevertheless, each microglial 

cell occupies a non-overlapping territory with distances of 50-60μm between cell bodies.  

Microglial cell bodies were assumed to be stable and immobile in physiological conditions, 

contrary to the dynamic nature of their processes discussed in the next section. However, a 

recent study reported 5.8% of translocating microglia daily, suggestive of microglia migratory 

capacities in the healthy brain (Eyo et al., 2018a). These capacities differed between brain areas: 

microglia in the cerebellum exhibited higher migration rate compared to the visual cortex 

(Stowell et al., 2018). Regional differences were even observed within the same region, with a 

higher percentage of rearrangement in the limb/trunk region compared to the barrel cortex in 

the somatosensory cortex (Eyo et al., 2018a).  

In vivo imaging of microglia dramatically changed our view of these “resting” immune cells. 

Several tools were pivotal for their unprecedented observation in physiological conditions: 1) 

technological advances in two-photon microscopy, 2) the development of CX3CR1-GFP/Iba1-

GFP transgenic mouse line for specific labeling of microglia in the healthy brain (Hirasawa et 

al., 2005; Jung et al., 2000), and 3) the use of minimally invasive thin-skull cortical window 

preparation allowing imaging up to ~250μm below the cortical surface (Jung et al., 2000; Shih 

et al., 2012). Benefiting from these advances, two pioneering studies revealed that microglial 

processes show continuous extensions and retractions in the healthy brain (Davalos et al., 2005; 

Nimmerjahn et al., 2005, Figure 7A). This remarkable dynamics is termed microglial motility 

and relies on actin polymerization and depolymerization (Hines et al., 2009). Primary processes 

were found to be less dynamic compared to higher-order processes that displayed an average 

velocity of 1.47μm/min, and may even reach >4μm/min (Davalos et al., 2005; Nimmerjahn et 

al., 2005). Thus, microglial cells were posited to monitor the surrounding brain parenchyma in 

a few hours (Davalos et al., 2005; Nimmerjahn et al., 2005).  
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Figure 7: Cortical two-photon imaging of microglial cells. (A) Resting microglia are highly ramified 
and motile in the mouse cerebral cortex. Microglia are labeled by enhanced green fluorescent protein 
(eGFP) expressed under the control of microglial promoter CX3CR1. Microglial motility is shown by 
means of representative color-coded time-lapse images of a single microglial cell showing rapid process 
extensions (in blue) and retractions (in red) with a 2-minute interval over the time course of 18 minutes 
(Hristovska and Pascual, 2016) (B) Time-lapse microglial imaging after localized laser injury (center). 
Neighboring microglial processes extend towards the ablation site within minutes. (C) Microglial 
processes are attracted towards microelectrode containing ATP, but not towards artificial cerebrospinal 
fluid (ACSF) containing microelectrode, suggesting chemoattractant effect of ATP. Scale bar=10μm. 
(Davalos et al., 2005) 
 

Microglial dynamics was first proposed as a mechanism for continuous surveillance of the brain 

microenvironment. That way, microglial cells would be able to detect cell damage and preserve 

brain homeostasis. Indeed, focal lesions induced by two-photon laser (Avignone et al., 2015; 

Davalos et al., 2005; Haynes et al., 2006) in the mouse cortex resulted in a rapid extension 

(reported velocity ~4.5μm/min of microglial processes (Avignone et al., 2015) towards the 

lesion site (Figure 7B)). These processes presented bulbous termini and the injured site was 

quickly isolated from the rest of the parenchyma (Davalos et al., 2005).  

Besides the anticipated response in case of injury, the remarkable motility of microglial 

processes in the uninjured brain has drawn a lot of interest concerning its regulation and 

biological significance.  
 

3.2.1 Regulation of microglial morphodynamics 
 

3.2.1.1 THIK-1 channels 
 

Microglial surveillance and ramification were recently found to depend on microglial resting 

potential. In rat brain slices, microglia exhibit a membrane potential of -40mV, which is 

depolarized compared to neurons and other glial cells (Madry et al., 2018a). This resting 

potential is maintained in part by the tonic activity of two-pore domain halothane-inhibited K+ 

channel type 1 (THIK-1). Indeed, genetic deletion or pharmacological blockade of THIK-1, or 

raising [K+]e, lead to microglial depolarization and subsequent reduction in microglial 

ramification and surveillance (Madry et al., 2018a). In the same vein, highly ramified cells are 

characterized with hyperpolarized resting potential compared to less ramified cells, and 

possibly express more THIK-1 receptors (De Biase et al., 2017). 
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3.2.1.2 ATP and metabolites 
 

Until recently, it was well-accepted that extracellular nucleotide levels drove a tonically active 

signaling mechanism regulating microglial ramification and motility, using ATP as key 

regulator. ATP is released in an activity-dependent manner by neurons and astrocytes, via 

hemichannels, secretory vesicles and transporters (Burnstock, 2008). Upon release, it may act 

on specific ionotropic (P2X) and metabotropic (P2Y) purinergic receptors expressed on neurons 

and glia (Puchałowicz et al., 2014). In the extracellular space, ATP may also be quickly 

metabolized to other purine molecules by ectonucleotidases, creating a gradient of ATP 

metabolites (Dunwiddie et al., 1997). 

Several studies have shown that ATP and its metabolites may regulate baseline microglial 

morphology and dynamics. Application of ATP increased basal microglial motility and 

complexity in retinal explants (Fontainhas et al., 2011), whereas antagonizing P2Y receptors 

using Reactive blue 2 (RB2) significantly reduced microglial motility (Dou et al., 2012; Wu et 

al., 2007). Manipulation of extracellular nucleotide levels by applying exogenous apyrase or 

knocking out endogenous ecto-ATPase NTPDase1/CD39 reduced baseline motility and 

ramifications (Braun et al., 2000; Davalos et al., 2005; Eyo and Dailey, 2012; Kurpius et al., 

2007; Matyash et al., 2017). However, a recent study showed that commercial apyrase was 

contaminated by K+ which caused microglial depolarization and subsequent reduction of 

ramification and motility (Madry et al., 2018b). The same study found that blocking ecto-

ATPases did not affect microglial ramification and surveillance, nor did it evoke P2Y12R-

evoked electrical response (Madry et al., 2018b). They argued that NTPDase1/CD39 KO mice 

may exhibit microglial deramification due to functions beyond its enzymatic activity or 

NTPDase1-mediated effects from other cells (Lanser et al., 2017; Wu et al., 2006). Considering 

these findings, the effect of ATP on baseline motility and morphology is highly plausible but 

may be less dependent on ATP degradation than previously thought.  
 

3.2.1.3 Purinergic receptors 
 

P2Y12R is an ATP/ADP receptor, specifically expressed by microglial cells in the brain (Sasaki 

et al., 2003). In acute hippocampal slices or in vivo, microglial motility was not altered in 

P2Y12R-deficient mice (Eyo et al., 2014; Sipe et al., 2016). On the other hand, microglial cells 

exhibited a reduced baseline morphology in the visual cortex (Sipe et al., 2016). This was not 

the case in hippocampal slices, where blocking P2Y12R did not affect membrane potential, 
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ramification or surveillance (Madry et al., 2018a). Thus, it is possible that P2Y12R regulation 

is region-specific or that the type of preparation may affect this mechanism.  

P2Y13R is the second most expressed NT receptor in microglial cells at the mRNA level 

(Zhang et al., 2014b). Even though its expression could not be detected at the protein level 

(Kyrargyri et al., 2019), P2Y13R invalidation led to reduction of microglial process length 

(Kyrargyri et al., 2019; Stefani et al., 2018), and consequently, reduction of microglial 

surveillance (Kyrargyri et al., 2019). The reduction of microglial morphology could not be 

ascribed to changes in microglial membrane potential, but possibly to different functional state 

of microglial cells since Il-1β protein levels were significantly increased. All things considered, 

baseline motility seems to be independent from P2Y12R and P2Y13R signaling, but both 

purinergic receptors seem to regulate baseline microglial morphology.  
 

3.2.1.4 Fractalkine signaling 
 

Fractalkine signaling manipulation has yielded inconsistent results in terms of its involvement 

in baseline microglial morphology and motility. In adult mice, cell and arborization area were 

increased in the CA1 in CX3CR1-deficienct mice (Milior et al., 2016), whereas a subsequent 

study found that microglial morphology was not affected by CX3CR1 deficiency (Hellwig et 

al., 2016). Furthermore, fractalkine signaling did not seem to be involved in microglial 

morphology and motility regulation in the visual cortex in adolescent and young adult mice 

(Lowery et al., 2017).   
 

3.2.2 Microglial interaction with synapses 

 

3.2.2.1 Baseline and activity-modulated microglia-spine interaction 
 

Physical interactions between microglial processes and synapses in physiological conditions 

were first reported in 2009 by Wake et al. in the adult mouse visual cortex (Wake et al., 2009). 

Two-photon in vivo imaging of fluorescent-labeled microglia and neurons showed that 

microglial processes contacted axon terminals and dendritic spines transiently (~5 minutes) but 

frequently, at a rate of about one microglial contact per hour. To investigate the impact of 

synaptic activity on microglial contacts, basal neuronal activity was reduced by binocular eye 

enucleation, injection of TTX and reduction of neuronal temperature. Reducing neuronal 

activity resulted in significant reduction of the contact frequency between microglial processes 
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and synapses, which shortened to a rate of 0.5 per hour. However, following transient ischemia, 

contacts were prolonged (~1h) and were occasionally followed with disappearance of the 

presynaptic bouton. Several fascinating findings emerged from this study and have been since 

confirmed: 1) microglial processes may respond to the functional status of synapses, 2) the 

frequency of microglia-spine contacts may be related to basal neuronal activity, and 3) 

microglial processes may participate in activity-dependent synaptic remodeling.  

A subsequent study showed that at the ultrastructural level, 94% of microglial processes in the 

juvenile mouse visual cortex directly contacted synapse-associated elements at any given time 

point (Tremblay et al., 2010). Even though most contacts appeared to be without any 

morphological evidence of specialization, 3D reconstructions revealed finger-like protrusions 

from distal microglial processes that enveloped dendritic spines contacted by an axon terminal. 

Furthermore, clathrin-coated pits were occasionally observed at interfaces between microglia 

and synapse-associated elements, suggesting molecular communication between them.  

During normal visual experience, microglial processes were preferentially in contact with small 

dendritic spines (Tremblay et al., 2010). This specificity was not found in the somatosensory 

cortex, suggesting that spine-microglia interactions are not uniform between brain areas (Iida 

et al., 2019). The contact duration in the visual cortex was highly variable (5-50 minutes) 

(Tremblay et al., 2010). Interestingly, spines expanded transiently during interactions with 

microglial processes; however, over the course of two days, they disappeared more often than 

non-contacted spines. These findings further confirmed that microglial sampling does not seem 

to occur randomly. Indeed, microglial processes seemed to target a subset of synapses that were 

rather transient and displayed structural synaptic changes. Microglial processes were 

surrounded by pockets of extracellular space and a minority of processes showed phagocytic 

specializations and cellular inclusions containing material that was possibly synapse-associated 

elements.  

Sensory modulation such as light deprivation resulted in preferential localization of microglial 

processes at the vicinity of larger dendritic spines that persistently shrank (Tremblay et al., 

2010). In this case, extracellular spaces were extended with increased occurrence of cellular 

inclusions. These effects were reversed following re-exposure to light, except for microglial 

phagocytosis. In conclusion, as suggested by Wake et al., microglial interaction with synapses 

and regulation of structural changes may be performed in an experience-dependent manner.  
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A subsequent electron microscopy immunogold study reported that only 3.5% of synapses were 

contacted by microglial processes in the rat frontal cortex (Sogn et al., 2013). The authors 

suggested that this percentage might be a slight underestimation of the true frequency because 

the majority of microglial processes are labelled with the Iba1 antibody, but not all of them. In 

line with Tremblay et al., they observed electron-lucent pockets around microglial cell bodies 

and processes, possibly representing extracellular space with matrix proteins, as well as vesicle 

like-structures inside microglial cells.  

In acute hippocampal slices, only 1.5% of dendritic spines were found to be in contact with a 

microglial process (~1.5 min) at any given time, reaching on average 12% after 80 minutes 

time-lapse imaging (Pfeiffer et al., 2016). High frequency LTP-inducing stimulation resulted in 

decreased number of microglia-spine contacts which lasted longer, showing activity-dependent 

microglial-spine contact and suggestive of possible microglial involvement in spine 

remodeling. Microglial morphological dynamics and interaction with spines were NMDAR-

dependent, as suggested by previously described studies in the hippocampus and cortex. 

Microglial contact with dendritic spines was also found to be directly related to spine activity 

(Akiyoshi et al., 2018). In the motor cortex of non-anesthetized mice, contacted spines had 

significantly higher basal rates of Ca2+ transients compared to non-contacted spines. 

Interestingly, the frequency of Ca2+ transients in parent dendrites was not different between 

contacted and non-contacted spines, suggesting that a very localized change of neuronal activity 

may influence microglial processes.   
 

3.2.2.2 Fractalkine signaling 
 

CX3CR1 pathway contribution to baseline microglial behavior was recently assessed (Lowery 

et al., 2017). In CX3CR1 KO mice, baseline microglia-spine contact dynamics and spine 

turnover were unaffected. However, the number of contacts with axon terminals was reduced 

and was accompanied with increase in the perimeter of contact with perisynaptic astrocytic 

processes. Furthermore, a significant increase in the number of cellular inclusions within 

microglial processes was observed in CX3CR1 deficient mice. Thus, CX3CR1 signaling had a 

limited effect on microglia-synapse interactions and synaptic dynamics. 
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3.2.3 Modulation of microglial motility and morphology by neuronal activity 
 

The discovery that microglial processes transiently contacted synapses raised the intriguing 

possibility that neuronal activity may guide microglial motility (Tremblay et al., 2010; Wake et 

al., 2009). To assess this hypothesis, neuronal activity was modulated by genetic, 

pharmacological and sensory means, and microglial motility was assessed in these conditions. 

Initial findings have rather negative. Reducing neuronal activity by surface TTX (tetradotoxin, 

Na+ channel blocker) application did not impact baseline microglial motility (Nimmerjahn et 

al., 2005), nor did high frequency stimulation (HFS) in acute hippocampal slices (Wu and Zhuo, 

2008). Reducing basal neuronal activity in the visual cortex by TTX injection or body 

temperature reduction did not decrease microglial motility (Wake et al., 2009), and only 

binocular eye nucleation resulted in retraction of microglial processes. However, several studies 

described hereafter have suggested an impact of neurotransmission modulation on microglial 

morphodynamics. 
 

3.2.3.1 Glutamate and GABA 
 

Modulation of glutamatergic and GABAergic neurotransmission resulted in altered microglial 

dynamics and morphology in retinal explants. Application of GABA receptor blocker 

bicuculline on cortical surface significantly increased microglial volume sampling and 

dynamism (Fontainhas et al., 2011; Nimmerjahn et al., 2005). Along the same line, GABA bath 

application induced significant but smaller decrease in microglial morphology and process 

velocity (Fontainhas et al., 2011). In the same model, ionotropic glutamatergic transmission 

positively regulated microglial morphology and motility through AMPA and kainate receptors, 

and to a smaller extent through NMDA receptors (Fontainhas et al., 2011, Figure 8A). However, 

glutamate application, which serves as agonist in both ionotropic and metabotropic glutamate 

receptors, did not affect microglial morphology nor motility in retinal explants (Fontainhas et 

al., 2011).  

The effect of glutamate application on microglial cells in hippocampal and cortical slices was 

a different matter. Although baseline motility and morphology were not assessed, bath 

application of glutamate resulted in significant microglial process extension towards neuronal 

elements in acute hippocampal slices, and to a lesser degree in cortical slices (Eyo et al., 2014, 

Figure 8B). These findings were also corroborated in vivo. Glutamate and NMDA-induced 

microglial process extension was dependent on ATP release secondary to NMDAR activation, 
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and relied on microglial P2Y12 receptors that accumulated at the bulbous tips during outgrowth 

(Dissing-Olesen et al., 2014; Eyo et al., 2014). Even activation of dendritic NMDAR events on 

single neurons was sufficient to trigger process outgrowth, proposing a direct link between 

microglial process motility and neuronal activity (Dissing-Olesen et al., 2014). These 

interactions were found to be regulated by neuronal NMDAR GluN2A subunit, possibly 

conferring different regional sensitivities to microglial process extension depending on 

GluN2A localization (Eyo et al., 2018b). Thus, tissue-specific regulation of microglia-neuron 

communication is highly conceivable on several levels and may be linked to local architecture 

and activity of neuronal circuits. 

 

Figure 8: Schematic representation of glutamatergic neurotransmission-induced microglial 
process outgrowth in the retina and hippocampus. (A) In the retina, AMPAR/kainate activation leads 
to ATP release through pannexin-1 and possibly other mechanisms from neurons and astrocytes, 
ultimately leading to microglial response through P2 receptors. (B) In the hippocampus, glutamate-
induced microglial process outgrowth is dependent on NMDA receptor. NMDAR activation leads to 
significant Ca2+ influx that is required for ATP release through currently unknown mechanisms but 
independent of pannexin-1 and astrocyte hemichannels. ATP diffuses in the extracellular space and 
activates microglial purinergic receptor P2Y12, eliciting microglial process extension. Adapted from 
(Hristovska and Pascual, 2016) 
 

In the zebrafish optic tectum, local and global elevation of neuronal activity did not change the 

overall microglial cell area, process tip number and deformation speed, but affected the number 

of bulbous endings, suggestive of microglia-neuron interactions (Li et al., 2012). Neuronal 

activity had an instructive role in the oriented movement of microglial processes with 

underlying mechanisms resembling those described in mammals. Glutamate uncaging caused 
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ATP-induced outgrowth of microglial processes towards the source of glutamate. This 

attraction was mediated by the accumulation of P2Y12R at the tip of microglial processes, as 

well as Rho GTPase Rac, a key regulator of cytoskeleton reorganization. This led to bulbous 

endings formation, possibly underlying microglia-neuron interactions. Thus, even though the 

impact of global neuronal activity on microglial dynamics is not straightforward, it is rather 

well-established that neuronal activity has an instructive role in microglia process extension 

and microglia-neuron contact via ATP and P2Y12R-dependent mechanisms. 

 

3.2.3.2 Neuromodulators and neurotransmitters 
 

An important matter is whether neurotransmission may signal directly to microglial cells, but 

this does not seem to be the prevailing mechanism.  Even though microglia express a variety of 

NT receptors in cultured microglia, they lack electrical responses to local application of 

glutamatergic and GABAergic agonists (Eyo et al., 2014; Färber and Kettenmann, 2005; Fields 

and Burnstock, 2006; Fontainhas et al., 2011; Wu and Zhuo, 2008). On the contrary, it is well-

established that extracellular nucleotides elicit strong microglial inward and outward membrane 

currents through ionotropic P2X and G protein-coupled P2Y receptors respectively (Arnoux et 

al., 2013; Avignone et al., 2008; Boucsein et al., 2003; Fontainhas et al., 2011; Ulmann et al., 

2013; Wu et al., 2007).  

Thus, it has been proposed that neurotransmission signals to microglial cells by modulating 

extracellular levels of nucleotides, such as ATP and metabolites. Even though we described 

extensively the regulation of microglial dynamics by ATP, the exact molecular mechanisms 

and cell types involved in ATP release remain to be determined (Dissing-Olesen et al., 2014; 

Eyo et al., 2014; Fontainhas et al., 2011; Li et al., 2012). Apart from ATP, adenosine is another 

potential candidate for regulating microglial motility. Microglial cells express high levels of 

adenosine A1 and A3 receptors and A3R was found to be necessary for microglial process 

extension in vitro (Hammarberg et al., 2003; Ohsawa et al., 2012).  

Very few studies have assessed the effect of NTs other than glutamate and GABA on microglial 

morphodynamics. Bath application of norepinephrine in acute brain slices caused retraction of 

microglial processes and reduction of baseline surveillance (Gyoneva and Traynelis, 2013). 

This effect was mediated by β2 adrenergic receptor that is highly expressed in microglia 

(Gyoneva and Traynelis, 2013; O’Donnell et al., 2012; Zhang et al., 2014). Interestingly, 
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norepinephrine abolished microglial process extension caused by ATP (Gyoneva and Traynelis, 

2013), raising an interesting possibility of norepinephrine regulation of purinergic signaling in 

microglia.  

Contrary to norepinephrine, serotonin application led to chemotactic attraction of microglial 

processes, possibly through 5-HT2B receptors (Kolodziejczak et al., 2015; Krabbe et al., 2012). 

These effects may be region-dependent since acetylcholine, serotonin and norepinephrine did 

not have any effect on microglial motility in the spinal cord dorsal horn (Chen et al., 2010b). 

Apart from neurotransmission, extracellular ion concentrations may also regulate microglial 

dynamics. In addition to K+ regulation of baseline motility, reduction in extracellular Ca2+ 

induced microglial process convergence towards dendrites in mouse brain slices and in vivo 

(Eyo et al., 2015). Interestingly, this phenomenon was independent of neuronal action potential 

firing and was mediated by purinergic signaling through microglial P2Y12R. 

To summarize, several mechanisms regulating microglial baseline microglial motility have 

been described, involving THIK-1 channels and ATP. Interestingly, the mechanism(s) by which 

ATP may regulate baseline motility may not be the same as those involved in microglial process 

extension towards sites of increased neuronal activity. Even though studies have yielded 

inconsistent results, changes in neuronal activity seem to affect microglial morphology and 

dynamics, as well as microglial interactions with neuronal elements, and this seems to be 

preparation-, age- and region-dependent. Glutamate and GABA, major excitatory and 

inhibitory NT, seem to signal indirectly to microglial cells via changes in extracellular 

nucleotide concentrations, whereas others such as NA and serotonin seem to present functional 

receptors at microglial surface. Future studies elucidating the impact of neuronal activity and 

microglia-neuron interactions should investigate these points in the most physiological models 

possible, without the use of anesthetics, and taking advantage of novel available tools for 

specific microglial cell manipulation.  
 

3.2.4 Microglial functions in the adult brain 
 

Compared to studies during development, much less research has been done to elucidate 

microglial function in the adult brain. The reason might be that this period is accompanied with 

relatively minor changes compared to large-scale turnover in the developing brain. 

Nevertheless, microglial cells have emerged as important regulators of synaptic and structural 

plasticity even in the adult brain.  
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3.2.4.1 Roles in innate responses, learning and memory 
 

Genetic microglial depletion in adult mice caused a significant reduction in motor learning-

dependent spine formation, accompanied with a lack of performance improvement after 

learning (Parkhurst et al., 2013). Deficits in other behavioral tasks were also observed: reduced 

fear response in auditory-cued fear conditioning and lack of preference for a new object in novel 

object recognition test. BDNF removal in microglial cells specifically recapitulated both the 

alterations in learning-induced spine remodeling and the behavioral deficits in all tests, except 

for novel object recognition (Figure 9B and 9C). This finding indicates that depending on the 

learning paradigm, different cellular and molecular microglial mechanisms might be involved. 

Microglial BDNF is thought to act on neuronal tyrosine kinase receptor (TrkB), since microglia-

conditioned media was found to phosphorylate TrkB in vitro in cultures of purified neurons 

(Parkhurst et al., 2013). Moreover, TrkB signaling may modulate synaptic transmission and 

plasticity, including the induction of dendritic spine formation (Rex et al., 2007). 

A subsequent study used another method for microglial depletion: administration of selective 

inhibitor of colony-stimulating factor 1 receptor (CSF1R) leading to decreased microglial 

survival (Elmore et al., 2014). Surprisingly, microglia-depleted adult mice did not present any 

behavioral and cognitive abnormalities nor changes in synaptic properties. The discrepancy in 

these results raises the intriguing possibility that the method of microglial elimination (genetic 

or pharmacological) might impact results and needs to be assessed. 

Apart from BDNF, CX3CR1 pathway may be critically involved in microglial functions in 

adulthood. Alterations in several forms of learning and memory were reported in adult mice 

with CX3CR1 deficiency: 1) motor learning in the rotarod test, 2) associative learning in a fear 

conditioning paradigm, and 3) hippocampal-dependent learning in the water maze (Rogers et 

al., 2011, Figure 9C). These effects might be mediated by IL-1β release since intrahippocampal 

infusion of antagonist IL-1Ra significantly reversed cognitive deficits.  

Other microglial signature receptors may also mediate physiological microglial functions in 

adulthood. In addition to microglial P2Y12R role in experience-depending plasticity in the 

developing visual cortex, this receptor was found to be important for innate fear behaviors in 

adult and developing mice (Peng et al., 2019). Microglia with conditional deletion of P2Y12R 

in adulthood showed enhanced innate fear responses (Figure 9C), surprisingly without affecting 

conditional or learned fear responses. These mice presented abnormal ventral hippocampus 
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CA1 neuronal excitability as action potential firing threshold was lower and sEPSC amplitude 

was significantly increased.  

 

Figure 9: Synthesizing literature on microglial functions in the adult brain. (A) Microglial processes 
preferentially contact active spines and microglia-spine contact results in increased frequency of spine Ca2+ 
transients. (B) Microglial cells are involved in learning-dependent synapse formation through BDNF release. (C) 
Deficiencies in microglial signaling pathways significantly impact innate responses, as well as learning and 
memory.  
 

3.2.4.2 Modulation of neuronal activity and “tag” setting 
 

Microglia-spine contact had functional consequences at the level of synapses and neuronal 

circuits in adult mice (Akiyoshi et al., 2018). Microglial contact resulted in enhanced activity 

in the contacted spine and a corresponding increase in back-propagating action potential along 

the parent dendrite (Figure 9A). At the circuit level, microglial ablation resulted in reduced 

synchronous firing of L2/3 neurons, especially for those close to each other, which may result 

from reduced microglia-synapse contact modulation of neuronal activity. Moreover, reduced 

firing synchrony of spatially close L2/3 neurons was also decreased in case of microglial 

activation by LPS. Thus, the increase in synaptic activity caused by microglial contact may 

enhance neuronal population synchronization only in physiological conditions.  

A very recent study put forward a role for microglia in synaptic tag setting during the early 

phase of activity-dependent plasticity in hippocampal slices (Raghuraman et al., 2019).

Synaptic tag setting and its subsequent interactions with plasticity related proteins (PRP) 
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regulate late LTP induction and maintenance (Redondo and Morris, 2011). Hippocampal slices 

were treated with clodronate, which resulted in activation of microglial cells. Chlodronate 

treatment did not affect early LTP, but its administration before or 60 minutes after LTP 

induction prevented LTP maintenance. On the contrary, later activation of microglia (2h post-

LTP) did not affect long lasting maintenance.  
 

3.2.4.3 Regulation of neurogenesis 
 

Microglia are also involved in the regulation of proliferation and differentiation of neuronal 

precursors in the adult neurogenic zones via TNFα, IGF-1, IL-1 and CX3CL1 (Sato, 2015). 

CX3CR1 deficiency resulted in a dramatic reduction of adult hippocampal neurogenesis due to 

upregulation of proinflammatory signaling (Bachstetter et al., 2011; Rogers et al., 2011). 

Microglia may also phagocytose apoptotic cells from the neurogenic niche, by recognizing 

phosphatidylserine expressed by apoptotic cells (Diaz-Aparicio and Sierra, 2019; Païdassi et 

al., 2008).   

In conclusion, microglial deficiencies impact significantly learning and memory in adult mice, 

potentially in part by reduction of spine formation and failure to induce local network 

synchronization. Microglial functions during adulthood do not seem exclusive to learning, 

because they are also crucial for maintenance of synaptic properties and innate behavior.  
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II. Neurobiology of the vigilance states 
 

The alternation of sleep and wake is a fundamental biological phenomenon conserved across 

the animal kingdom that has never ceased to fascinate mankind (Siegel, 2008). Ever since the 

first observation of distinct brain electrical wave patterns in awake and sleeping humans by 

Hans Berger in 1929, much research has been done to understand the expression, regulation 

and function of the vigilance states. Even though many of these aspects have been elucidated, 

some remain poorly understood. Pioneering research has been exploring new and exciting 

ventures leading to the discovery of local sleep-wake states, homeostatic regulation of sleep, 

and central to this thesis, glial involvement in sleep-wake regulation and function. In the 

following chapters, I will first provide evidence on the current understanding of sleep and wake 

neurobiology, to conclude with the recent discoveries implicating glial cells in its regulation 

and functions. 

 
 

1. General description of the vigilance states, with focus on neuronal activity 

Apart from different behavioral manifestations, a major characteristic of the vigilance states is 

the presence of different cortical brain activity, reflected in particular waveforms in 

electroencephalogram (EEG) recordings (Scammell et al., 2017, Figure 10). For vigilance states 

and sub-states identification, EEG recordings are often accompanied with muscle and ocular 

activity assessment using EMG (electromyogram) and EOG (electrooculogram) recordings, 

respectively. The wake state is characterized by prominent theta (high-frequency, low-

amplitude) EEG activity, a variable amount of EMG activity and presence of ocular 

movements. Sleep can be divided in two main states: non-rapid eye movement (NREM), also 

called slow-wave sleep (SWS), and rapid-eve movement (REM), also known paradoxical sleep 

(PS). NREM sleep is distinguished by slow delta (low frequency, high amplitude) oscillations, 

low muscular activity and absence of ocular movements, whereas REM sleep shows 

predominant theta rhythm comparable to wake, absence of muscle tone and occurrence of rapid 

eye movements.  

1.1 Description of the wake state 

The characteristic waveforms during wake mirror mostly desynchronized activity associated 

with continuous irregular firing (5-9Hz). Wake can be further decomposed into sub-states that 
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differ in terms of cortical activity and synchronization, such as active (AW) and quiet (QW) 

wake. During active wake, including active exploratory behavior, theta activity is increased, 

whereas quiet wake contains large amplitude slow oscillations (Bennett et al., 2013; Crochet 

and Petersen, 2006; Polack et al., 2013; Poulet and Petersen, 2008)  

1.2 Description of NREM sleep 

NREM sleep is characterized by two major oscillatory events, slow wave activity (0.5-4Hz) 

and spindles (9-16Hz) (Dijk, 1995). Slow wave activity is considered a major hallmark of 

NREM sleep. During slow wave activity, local populations of cortical neurons display 

synchronous membrane potential oscillations, alternating between a depolarized state caused 

by active neuronal firing and synaptic activity (up state), and hyperpolarized state associated 

with absence of synaptic activity and spiking state (down-state) (Amzica and Steriade, 1998; 

Neske, 2015; Steriade et al., 1993, 2001). It is proposed that the up- and down-states result from 

a sustained balance between a positive feedback loop (recurrent excitation) with negative 

feedback control within neuronal networks (Haider et al., 2006; Sanchez-Vives and 

McCormick, 2000). 

Up states seem to be initiated by a subset of layer 5 (L5) pyramidal neurons that fire low-

frequency (0.2-2Hz) brief bursts of action potentials (Lőrincz et al., 2015). Slow-frequency 

rhythmic activity was also observed in reduced preparations such as cortical slices and is 

generated in the cortical network even without driving thalamic inputs (Steriade et al., 1993). 

Nevertheless, the removal of thalamic inputs in vivo reduced the occurrence of up-states in the 

slow oscillation, which was stabilized within two weeks (Lemieux et al., 2014).   

Sleep spindles, another characteristic pattern of NREM sleep, are rhythmic discharges of 

neurons throughout the thalamocortical system in the frequency range of 9-16Hz with durations 

ranging from 0.5 to 3s (De Gennaro and Ferrara, 2003; Dijk, 1995; Vyazovskiy et al., 2004). 

Spindles generation is thought to occur from the rhythmic burst activity of thalamic reticular 

nucleus (TRN) during the up state of slow oscillations and is self-maintained by reciprocal 

interaction between cortical, thalamocortical and TRN neurons (von Krosigk et al., 1993; 

Steriade et al., 1993).  
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Figure 10: Electrophysiological recordings during the vigilance states. (A) Representative 
EEG/EMG, (B) local field potential (LFP) and (C) intracellular recordings during wake, NREM and 
REM sleep showing muscle tonus and different patterns of neuronal activity at the global and local level 
during the vigilance states. (Luo et al., 2013, unpublished data from Chauvette and Timofeev) 
 
 

1.3 Description of REM sleep 

REM sleep is a unique sleep state, since it is accompanied by the behavioral components of 

sleep while the forebrain EEG patterns resemble those during wake (Mizuseki and Miyawaki, 

2017). Indeed, REM is characterized with a prominent theta rhythm and low-voltage 

desynchronized activity originating from the hippocampal formation (Buzsáki, 2002). Upon 

entering REM sleep, acetylcholine release increases to the level of waking while other wake-

promoting NT levels are decreased (Hasselmo, 1999). From slow-oscillation fluctuations and 

burst firing during NREM sleep, thalamocortical neurons switch to tonic neuronal firing during 
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REM sleep with high arousal threshold (Hirsch et al., 1983; Mizuseki and Miyawaki, 2017). 

Compared to wake, theta oscillations are slower during REM sleep, except during phasic REM 

sleep, and the amplitude of CA1 gamma oscillations are significantly lower (Montgomery et 

al., 2008). Interestingly, theta and gamma synchrony between DG and CA3 are significantly 

higher during NREM than waking, which is not the case for gamma frequency coherence 

between CA3 and CA1. Thus, even though REM sleep activity may resemble waking activity, 

fundamental differences exist in terms of neuromodulation, activity pattern characteristics and 

network synchrony. 

1.4 Electrophysiological and in vivo Ca2+ imaging assessment of activity during the 

vigilance states 

The different patterns of neuronal activity underlying wake and sleep are well-established. 

However, whether overall neuronal activity is different between the vigilance states remains a 

matter of debate. To answer this question, electrophysiological and calcium imaging studies 

have assessed neuronal activity of both excitatory and inhibitory cortical populations.  

In electrophysiological studies, excitatory and inhibitory neurons are distinguished indirectly 

by the difference in their discharge patterns: pyramidal cells are mostly regular-spiking, 

whereas interneurons are fast-spiking. During wake, pyramidal cells discharged in a single 

spiking mode which shifted to burst firing mode during NREM sleep (Steriade et al., 2001). 

Surprisingly, the average firing rate increased slightly, even though not significantly, during 

NREM and REM sleep compared to wake. Fast-spiking neurons exhibited tonic firing pattern 

during wake which turned to phasic during sleep, accompanied with a decrease in average 

spiking rate during NREM sleep compared to wake and REM sleep. 

In view of the above-described findings, discordant evidence has been provided with two recent 

in vivo Ca2+ imaging studies combined with cell-specific labeling of neuronal circuits (Figure 

11). Using two-photon imaging of GCaMP6f in superficial and deep layers in adult mice, 

Niethard et al., reported that activity in pyramidal neurons was highest during wake, lower 

during SWS and lowest during REM sleep (Niethard et al., 2016). Two major classes of 

GABAergic neurons, parvalbumin (PV-INs) and somatostatin (SOM-INs) presented different 

profiles: SOM-INs displayed an activity pattern comparable to those of pyramidal cells, 

whereas PV-INs showed highest activity during wake and intermediate activity levels during 
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REM sleep. Seibt et al. corroborated some of these findings, in particular the reduction of 

cortical population activity in L5 during SWS and REM sleep (Seibt et al., 2017). Interestingly, 

contrary to Ca2+ transients in the soma, L5 dendritic shafts exhibited highest Ca2+ transients 

during spindle-rich oscillations, and lowest during wake. In L2/3 neurons, both population 

activity and dendrites showed an important decrease during quiet wake and all sleep stages 

compared to active wake, whereas dendrites showed an increase in activity both during 

individual NREM and REM sleep episodes.  

The discrepancies between these studies may arise from several reasons. In electrophysiological 

studies, the recorded cells are classified indirectly based on their spike shape and more active 

neurons are likely to be selected for extracellular recordings, which may lead to an 

overestimation of the firing rates (Harris et al., 2016). On the other hand, calcium imaging is 

unlikely to faithfully reflect single spikes, especially with regards to high-frequency spike 

bursts (>100Hz), as found in pyramidal neurons during slow oscillations (Chen et al., 2013). 

Future use of genetically encoded voltage indicators (GEVI), capable of detecting subthreshold 

voltage changes of neuronal populations with subcellular resolution, might be able to clarify 

these discrepancies. 

A recent study has assessed more precisely the interaction between neuronal populations during 

different NREM oscillatory events. Indeed, Niethard et al., studied Ca2+ activity in excitatory 

and inhibitory populations when slow oscillations occurred independently or simultaneously 

with sleep spindles (Niethard et al., 2018). Interestingly, when spindles nested in the up state 

of the slow oscillation, these events were accompanied with three-fold higher pyramidal cell 

Ca2+ activity, which occurred in the presence of strong perisomatic inhibition through PV-INS, 

but not via SOM-Ins. In contrast, during solitary slow oscillations up state, pyramidal cells and 

SOM-Ins displayed significant increases in activity, without difference in PV-Ins activity. Thus, 

there seems to be an added complexity in the balance between the activity of excitatory and 

inhibitory neurons within circuits depending on whether slow oscillations and spindles events 

are solitary or concurrent. 
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Figure 11: Main findings for vigilance state-dependent neuronal activity and functions using in 
vivo imaging. (A) Characterization of cell-, layer- and neuronal compartment-specific activity during 
different vigilance states and substates. (B) Specific sleep-related processes associated with cognitive 
and housekeeping functions. (Sigl-Glöckner and Seibt, 2019) 
 

In conclusion, wake and sleep are characterized with important difference in patterns of 

neuronal activity, but the underlying activity in different compartments of excitatory and 

inhibitory neuronal populations still needs to be elucidated. These populations present an 

elaborate interplay associated with different oscillatory events that might underlie, at least 

partly, some of the functions of sleep and needs to be studied further.  

2. Regulation of the sleep-wake cycle 

 

2.1 Global regulation of the sleep-wake cycle 

Sleep-wake states are regulated by arousal- and sleep-promoting networks based on the 

principle of reciprocal inhibition (Figure 12).  
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2.1.1 Wake-promoting networks and neurotransmitters 

The cortical state during wake is dependent on the activation of specific nuclei that belong to 

the ascending reticular activating system (serotoninergic neurons localized in the dorsal raphe 

nucleus, noradrenergic neurons in the locus coeruleus, cholinergic neurons in the pontine 

brainstem, glutamatergic neurons in the medial parabrachial nucleus and dopaminergic neurons 

in the ventral tegmental area) and the forebrain (cholinergic neurons in the basal forebrain, 

histaminergic neurons in the tuberomammillary nucleus and GABAergic and orexin neurons in 

the lateral hypothalamus) (Saper and Fuller, 2017).  

           

Figure 12: Overview of neuronal networks responsible for sleep and wake regulation. 
Wake- (in red) and sleep-promoting (in green) nuclei send their projections to the cortex to 
regulate vigilance states. (Wigren and Porkka‐Heiskanen, 2018) 
 

These small group of cells send their axonal projections to the thalamus and/or cortex and 

release specific neurotransmitters upon activation (Fuller et al., 2011). Thus, levels of wake-

promoting NT, such as acetylcholine and serotonin, were found to increase significantly during 

wake in cortical and subcortical areas (Marrosu et al., 1995; Portas et al., 2000). Norepinephrine 

levels were also increased in both regions that were assessed: the medial prefrontal (mPFC) and 
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motor (M1) cortex, with higher relative levels in mPFC (Bellesi et al., 2016). Interestingly, NA 

levels presented different nadir and build-up dynamics in these two regions, suggesting region-

dependent fluctuations of neurotransmitters. Moreover, some neuromodulators, such as 

norepinephrine, are endowed with rather uniform projections in cortical regions (Berridge and 

Waterhouse, 2003), whereas others, such as dopamine, preferentially target prefrontal areas 

(Arnsten, 1997). 

A well-described function of wake-promoting neuromodulators includes their capacity of 

changing membrane properties, spiking activity and intracellular signaling pathways in neurons 

and glia (O’Donnell et al., 2012). In addition, a wake-promoting neuromodulators cocktail 

remarkably influenced the ionic composition during the vigilance states whose variations were 

initially considered a consequence of different patterns of neuronal activity (Ding et al., 2016; 

Seigneur et al., 2006). In turn, it was extracellular ions that impacted neuronal activity patterns 

and ion homeostasis regulation was sufficient to alter behavioral states both locally and globally 

(Ding et al., 2016). Transitions from wake to sleep were accompanied with rapid and sustained 

decrease in [K+]e and a progressive increase in [Ca2+]e and [Mg2+]e. Wake was found to induce 

opposite changes in both parameters, that showed faster transitions from sleep towards wake. 

Interestingly, blocking neuronal activity by TTX did not alter basal [K+]e nor did it suppress the 

neuro-modulator-cocktail induced [K+]e increase, suggesting that synaptic transmission did not 

influence changes of [K+]e.  

2.1.2 Sleep-promoting networks and neurotransmitters 

At the onset of sleep, sleep-active neurons depolarize strongly, releasing inhibitory 

neurotransmitters onto wake-promoting regions, leading to reduced release of wake-promoting 

neurotransmitters (Saper and Fuller, 2017; Saper et al., 2005). Sleep-active neurons constitute 

a subset of GABAergic and galaninergic neurons in the preoptic area (POA) of anterior 

hypothalamus, including ventrolateral preoptic nucleus (VLPO) and median preoptic nucleus 

(MnPn) (Sherin et al., 1996; Suntsova et al., 2007). Since lesions in the POA resulted in partial 

sleep loss, additional sleep-active areas have been recently described in other brain areas 

including the basal forebrain, lateral hypothalamus, cortex and the medulla of the brain stem 

(Anaclet et al., 2014; Gerashchenko et al., 2008; Luppi et al., 2017). Sleep-promoting neurons 

are themselves inhibited by the wake-promoting ascending arousal system: wake-promoting 

neurotransmitters noradrenaline, acetylcholine and serotonin, but not histamine, inhibited 
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sleep-active VLPO neurons (Gallopin et al., 2000). Thus, these interactions between wake- and 

sleep-promoting regions make this system act as a “flip-flop switch”, characterized by a fast 

switch between these states (Saper et al., 2001, 2010).  

Similar to previously described regional variations of NA, GABA also presented sleep-stage-

specific changes between different regions (Vanini et al., 2012). For instance, in the cortex, 

GABA levels were significantly decreased both during wake and REM sleep compared to 

NREM sleep. On the other hand, GABA levels were significantly reduced only during REM 

sleep in the substantia insomnata (SI) of the basal forebrain. Furthermore, several studies 

indicate that GABA may promote sleep or wake depending on a brain region-by-region basis. 

For instance, in the pontine reticular formation, GABA may promote wake and inhibit REM 

sleep (Camacho-Arroyo et al., 1991; Flint et al., 2010; Sanford et al., 2003; Watson et al., 2008; 

Xi et al., 1999). On the contrary, GABA may promote REM sleep generation in the locus 

coeruleus and in the dorsal raphe nucleus (Nitz and Siegel, 1997a, 1997b). On the other hand, 

in the posterior hypothalamus and thalamus, GABA was found to promote NREM sleep and 

slow wave activity, respectively (Kékesi et al., 1997; Nitz and Siegel, 1996). 

Wake-promoting influence was believed to be mostly due to monoaminergic and cholinergic 

neurons. However, specific lesions of these cell groups, as well as large lesions affecting the 

thalamus, had little effect on the amount of wake and sleep in rodents (Blanco-Centurion et al., 

2007; Fuller et al., 2011; Gerashchenko et al., 2001, 2004; Gompf et al., 2010; Petrovic et al., 

2013). Sleep-wake duration was profoundly affected by glutamatergic inputs both from 

parabrachial nucleus (PB) and pedunculopontine tegmental nucleus (PPT) to the basal forebrain 

(BF), as well as GABAergic populations in BF and the lateral hypothalamus (LH) (Fuller et al., 

2011; Saper and Fuller, 2017). These findings shift the traditional view and propose 

monoaminergic, cholinergic and peptidergic systems as being modulatory systems. Future 

studies will need to assess the interaction between these components in the regulation of sleep 

and wakefulness.  
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2.2 Local regulation of the sleep-wake cycle 
 

2.2.1 Evidence of local regulation 

Sleep has traditionally been viewed as a global state relying on the previously described top-

down regulatory mechanisms. Recent evidence suggests that sleep may originate locally in 

neuronal circuits, and that synchronization of several circuits would result in global sleep 

(Krueger and Obäl, 1993; Roy et al., 2008; Van Dongen et al., 2011). Pioneering study by 

Pigarev et al. found that sleep developed asynchronously in cortical areas in behaving monkeys 

and was specific to local networks (Pigarev et al., 1997). Sleep-like functional states were 

localized in regions at least as small as cortical columns, functional units of tightly connected 

neurons in the cortex (Rector et al., 2005, 2009). Moreover, the cortical column sleep-like state 

was found to be homeostatically regulated: the likelihood of being in sleep-like state depended 

on the duration of the previous wake state. In addition, when cortical columns associated with 

a particular task were in a sleep-like state, the task performance was affected. For instance, after 

learning a task that consisted in licking a sweet solution when a specific whisker was stimulated, 

if the cortical column receiving input from that whisker was in a sleep-like state, more mistakes 

were committed by the animal.  

This phenomenon was also found at the level of cortical neurons since brief episodes of 

neuronal silence (“off periods”) were observed after prolonged wake and were accompanied 

with emergence of slower waves locally (Vyazovskiy et al., 2011). The incidence of “off 

periods” increased with wake duration and tended to appear asynchronously across cortical 

areas even though rats displayed active waking behavior and typical waking EEG activity. Yet 

again, off periods occurring in the motor cortex during sugar pellet reaching task led to an 

impaired performance.  

2.2.2 Potential mechanisms involved in local regulation 

The mechanistic origin of local wake and sleep is probably fundamentally different from 

previously described global state switching that is controlled by specific neural circuits. Since 

local sleep is associated with prior activity, it might be initiated by activity-dependent release 

of molecules, such as ATP, into the extracellular space. ATP may bind to P2 receptors, and 

ATP-dependent P2X7R activation was found to affect cytokine (IL1 and TNFα) and 
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neurotrophin release from glia or neurons (Bianco et al., 2005; Hide et al., 2000; Krueger, 

2008). Indeed, endogenous TNFα expression was enhanced in the corresponding barrel column 

by increased whisker stimulation in vivo (Churchill et al., 2008). Cytokines and neurotrophins 

influence neuromodulator (adenosine) and NT (glutamate and GABA) receptor trafficking 

(Imeri and Opp, 2009; Krueger, 2008; Reyes-Vázquez et al., 2012), which may result in altered 

network responsiveness, leading to oscillations within small networks. In support of this theory, 

cortical TNFα application induced sleep-like state within cortical columns (Churchill et al., 

2008; Jewett et al., 2015). Local application of IL1 to the cortex also induces local cortical delta 

waves (Yasuda et al., 2005), but it also increased neuronal activation in hypothalamic sleep 

regulatory circuit (Yasuda et al., 2007). Considering these findings, the effect of somnogens on 

global states through a top-down influence of local sleep or a bottom-up effect on subcortical 

networks needs to be assessed more precisely. 

2.3 Homeostatic and circadian regulation of sleep 

Borbely proposed a two-process model on sleep regulation, comprised of two anatomically 

independent mechanisms that jointly regulate sleep duration and propensity: a homeostatic, 

sleep-dependent process (process S) and circadian, sleep-independent process (process C) 

(Borbély, 1982).  

2.3.1 Process C 

Process C reflects the circadian rhythm, that is coordinated by a master clock located in the 

suprachiasmatic nucleus (SCN) in the anterior hypothalamus (Leak and Moore, 2001; 

Vansteensel et al., 2008). The circadian clock controls rhythms of many physiological 

functions, including sleep. A major role of SCN in vigilance state regulation was proposed 

because SCN lesioning resulted in abolishment of diurnal and nocturnal distribution of sleep-

wake rhythms (Edgar et al., 1993; Mistlberger et al., 1983; Tobler et al., 1983; Trachsel et al., 

1992). In addition, shorter endogenous sleep-wake periods observed in mutant mice were 

reproduced in wild-type host mice with SCN transplantation (Ralph et al., 1990).  

Rhythmic SCN firing rate relies on the activity of photoreceptive retinal ganglion cells (RGC) 

that detect light signals and project to the SCN via the retinohypothalamic tract (RHT). In turn, 

SCN projects mostly to intrahypothalamic zones, including the previously described sleep- and 
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wake-active nuclei, as well as the pineal gland that drives the synthesis and secretion of 

melatonin, a sleep inducing hormone (Gooley et al., 2001; Hattar et al., 2002; Lucas et al., 2001; 

Mistlberger, 2005; Provencio et al., 2000; Rusak and Zucker, 1979; Saper et al., 2005).  

2.3.2 Process S 

Sleep is also regulated by a homeostatic mechanism that represents the sleep-wake-dependent 

pressure to sleep (Deboer, 2015). Sleep homeostasis is based on the principle that when sleep 

is lost, it is compensated with modulation of sleep duration and intensity during the following 

sleep period. A reliable marker of homeostatic sleep need is slow-wave activity (SWA). Indeed, 

the first hours of sleep are characterized by maximal SWA, reflecting the highest “sleep need”. 

SWA power progressively decreases over the course of sleep, exhibiting the homeostatic 

decrease in sleep need (Borbély et al., 2016). Along the same line, prolonged wakefulness or 

sleep restriction gave rise to an overall increase of SWA during subsequent sleep. 

At the cellular level, homeostatic sleep need is proposed to be driven by progressive 

accumulation of endogenous somnogenic molecules during wake (Brown et al., 2012; Joiner, 

2018). The best-known agent of sleep need is adenosine (Huang et al., 2011). Adenosine is 

created during the day as a metabolic by-product of the energy-storage molecule ATP. 

Adenosine levels assessed by microdialysis in several brain regions showed a 15-20% decline 

during episodes of sleep compared to wake (Porkka-Heiskanen et al., 2000). Furthermore, 

adenosine accumulated significantly in the cholinergic region of the basal forebrain in sleep 

deprivation, suggesting that sleep-promoting effects due to prolonged wake may be mediated 

by adenosinergic inhibition of basal forebrain arousal system. Adenosine may promote sleep 

using several mechanisms in different brain areas, via inhibitory A1R (on several sleep-

promoting nuclei) or excitatory A2AR (on several striatum nuclei, nucleus accumbens and 

VLPO) signaling (Huang et al., 2011). Intriguingly, adenosine may also promote wakefulness 

by A1R activation in the lateral preoptic area of the hypothalamus (Methippara et al., 2005). 

As mentioned previously, adenosine is supplied by ATP which represents the actual “energy 

currency of the brain”. During spontaneous wake, ATP levels were maintained at a steady state 

and increased significantly in the initial hours of sleep in predominantly wake-active regions 

(Dworak et al., 2010). In these regions, ATP surge was positively correlated to the intensity of 

slow-wave delta activity, suggesting that ATP levels are directly related to SWA in NREM 



43 
 

sleep. These findings open new questions about the possible physiological role of ATP and its 

metabolites in sleep regulation in the cortex or connecting hypothalamic and cortical signaling.  

3. Sleep function 

Evolutionary speaking, a strong selective pressure not to sleep exists, since the animal is at 

increased risk of predation and has less opportunities to find mates and resources (Lima and 

Rattenborg, 2007; Lima et al., 2005). Despite that, sleep appears to be a universally conserved 

phenomenon across evolution and is therefore posited to serve at least one fundamental 

biological function. Theories about the function of sleep revolve around its involvement in 

serving higher-order cognitive functions and housekeeping/restorative processes (Frank and 

Heller, 2019). The first implies a role for sleep in synaptic plasticity, learning and memory, 

whereas the latter involves many contributions, including metabolic regulation (Knutson et al., 

2007; Van Cauter et al., 2008), restoring and replenishing energy stores (Oswald, 1980), and 

removal of metabolic waste (Xie et al., 2013). In this chapter, we will discuss evidence of the 

role of sleep in learning and memory, which is central to my research. The 

housekeeping/restorative functions will be addressed briefly in the final chapter, with regards 

to glial cells involvement in these mechanisms. Nevertheless, these functions are certainly 

crucial for promoting normal cognitive functioning.   

3.1 The role of sleep in memory 

Sleep is known to support plasticity and memory consolidation (Datta and Maclean, 2007; 

Diekelmann and Born, 2010; Stickgold and Walker, 2013; Tononi and Cirelli, 2014). The 

standard model for memory formation involves two specific processes: 1) temporary encoding 

of new memories, that are still labile and vulnerable to interference, and 2) repeated memory 

activation, transfer and integration of stable memory representations into long-term memory 

networks (Rasch and Born, 2013). With regards to the vigilance states, wake is a period of 

intense information processing and encoding, whereas sleep, characterized by minimal sensory 

input, is considered as optimal for memory stabilization and reorganization into a permanent 

form of long-term storage.  

Both encoding and memory consolidation are thought to involve changes in single synapses, 

and up to entire circuits. Experience-dependent activity during wake leads to short-lived 
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synaptic changes associated with induction of synaptic plasticity. These mainly rely on post-

translational modifications of proteins and rapid morphological alterations of dendritic spines 

(Bailey et al., 2015; Hernandez and Abel, 2008; Lang et al., 2004). NMDAR are crucially 

involved in the induction of synaptic plasticity. Their activation leads to increase in postsynaptic 

intracellular Ca2+ concentration, which may result in activation of different kinases and 

phosphatases, that have been shown to play important roles in long-term plasticity (LTP) and 

long-term depression (LTD) (Ho et al., 2011; Malenka et al., 1989). Potent enzymatic activity 

is followed by changes in the activity and distribution of AMPAR, ionotropic receptors that 

mediate fast excitatory transmission, thus influencing synaptic strength. Phosphorylation-

dependent changes also affect actin cytoskeleton dynamics resulting in structural modification 

of spines.  

Experience may also activate induction of gene expression in neuronal ensembles. Experience-

dependent transcription is the first step towards consolidation of plastic changes in neurons 

(Flavell and Greenberg, 2008). Thus, it is well-established that wake leads to induction of early 

forms of plasticity. However, the precise role of sleep on plasticity and learning is not clear and 

two theories have been suggested: the synaptic homeostasis hypothesis (SHY) and the active 

system consolidation hypothesis. 

3.1.1 Synaptic homeostasis hypothesis (SHY) 

The SHY theory proposes that sleep promotes global synaptic weakening (downscaling) that 

counteracts overall increase of synaptic strength that occurs during wake due to sensory 

processing and coding (Tononi and Cirelli, 2014). This mechanism would serve to preserve an 

overall balance of synaptic strength and avoid synaptic saturation. A recent expansion of SHY 

asserts that subsets of spines may not be affected by synaptic downscaling, which would allow 

them to maintain their increased signal-to-noise ratio. Nevertheless, it suggests that under 

physiological conditions, sleep is not involved in synaptic strengthening and synaptogenesis. 

Global downscaling during sleep has been supported by evidence at the molecular, structural 

and electrophysiological level. At the molecular level, the levels of AMPAR, a marker of 

synaptic potentiation, were decreased during sleep both in the cortex and hippocampus. These 

results are suggestive of a net decrease of synaptic strength during sleep (Lanté et al., 2011; 

Vyazovskiy et al., 2009). A recent study showed that synapse weakening due to AMPAR 
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removal and dephosphorylation was driven by immediate early gene Homer1a and 

metabotropic glutamate receptors mGlu1/5 (Diering et al., 2017). This study proposed that 

during wake, Homer1a was excluded from the synapses due to high levels of norepinephrine. 

At the onset of sleep, Homer1a was targeted to synapses due to low norepinephrine and increase 

in adenosine levels and bound mGluR1/5, whose activation induced synaptic weakening. A 

major regulatory mechanism underlying synaptic and sleep homeostasis might involve the 

recently discovered phosphorylation/dephosphorylation cycle of a particular set of sleep-need-

index-phosphoproteins (SNIPPs) (Wang et al., 2018). Wakefulness progressively increased 

phosphorylation (mostly on synaptic proteins associated with pre-synaptic short-term plasticity, 

post-synaptic density structure and glutamate receptors) and phosphorylation states paralleled 

changes of sleep need. 

At the structural level, 3D measurements of synaptic size from both motor and somatosensory 

cortex were obtained during the sleep-wake cycle using serial block-face scanning electron 

microscopy (SBEM) (de Vivo et al., 2017). The axon-spine interface decreased by almost 20% 

after sleep, indicative of scaling, but engaged only small-to-medium synapses. In support of 

this theory, overall spine density showed a net decrease during sleep in the adolescent mouse 

brain, but was not observed in adult mice (Maret et al., 2011). 

At the electrophysiological level, sleep was associated with a significant decrease of the slope 

of cortical evoked responses, an electrophysiological marker of synaptic efficacy (Vyazovskiy 

et al., 2009). Furthermore, the frequency and amplitude of miniature EPSC (mEPSC) from 

frontal cortex slices in mice and rats were decreased after sleep and increased after waking. 

Importantly, these studies were done during development and might not be replicated in adult 

animals, as suggested previously. Furthermore, neocortical and hippocampal firing rates 

generally increased during wake, followed by a subsequent decrease during sleep (Grosmark et 

al., 2012; Miyawaki and Diba, 2016; Mizuseki and Buzsáki, 2013; Vyazovskiy et al., 2009). 

3.1.1.1 NREM mechanisms involved in synaptic downscaling 

Synaptic downscaling and renormalization in networks are believed to be mostly due to slow-

wave activity (SWA) (Tononi and Cirelli, 2014). SWA was found to be higher or lower in 

cortical areas that were respectively more or less active, potentially reflecting the different need 

for downscaling (Huber et al., 2004, 2006). Experimentally generated firing rates resembling 
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SWA led to LTD induction of glutamatergic synapses in vitro (Bliss and Lomo, 1973; 

Czarnecki et al., 2007). However, low frequency stimulation was insufficient for LTD induction 

in vivo in the hippocampus and cortex and seemed to critically depend on the level of 

spontaneous activity of neural circuits (Abraham et al., 1996; Errington et al., 1995; Hager and 

Dringenberg, 2010; Jiang et al., 2003). On the other hand, burst-mode firing, observed in 

NREM thalamocortical activation patterns, was able to elicit LTD with and without pairing 

with post-synaptic EPSPs (Birtoli and Ulrich, 2004; Czarnecki et al., 2007; Lanté et al., 2011). 

In acute slices of entorhinal cortex, spontaneous pattern of NREM up state spiking was found 

to induce synaptic weakening of connections between L3 pyramidal neurons (Bartram et al., 

2017). On the other hand, pairing synaptic inputs with postsynaptic spiking during up states 

maintained synaptic strength that was protected against subsequent up state-induced synaptic 

weakening. Thus, slow-wave activity may be biased towards synaptic weakening, but a subset 

of synaptic connections may be preserved, in particular those within active neuronal circuits.  

3.1.1.2 Evidence challenging SHY 

Several findings seem to challenge SHY, providing evidence of synaptic strengthening during 

sleep. Presynaptic stimulation mimicking slow-wave activity was found to increase EPSP 

amplitude in cortical neurons, suggesting that NREM firing patterns may induce long-term 

potentiation (Chauvette et al., 2012). Following visual experience, sleep was found to promote 

cortical response potentiation in adult mice (Aton et al., 2014) and somatosensory-evoked 

potentials were also enhanced after a slow-wave sleep episode (Chauvette et al., 2012). SWS 

also promoted formation of new spines following motor learning on a subset of branches of 

individual layer V pyramidal neurons (Yang et al., 2014a). Interestingly, most of these studies 

hint to synaptic strengthening during sleep when sleep was specifically preceded by novel task 

or experience.  

Others propose a Wide Dynamic Range hypothesis (WIDER SHY) in agreement with new 

findings suggesting that sleep does not simply reduce overall firing rates in neuronal 

populations. Instead, NREM sleep was found to reduce the activity of high firing rate neurons 

and tended to increase firing of slow firing neurons, resulting in homogenization of firing rate 

distribution during sleep (Miyawaki et al., 2019; Watson et al., 2016). This relationship proves 

to be even more complex because another study suggested that firing rate homeostasis was 

found to be inhibited during sleep (Hengen et al., 2016). In this case, V1 neurons maintained 
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their average firing rate around an individual set-point, but when perturbed, firing homeostasis 

was induced only during wake.  

In line of these results, it is possible that the effects of sleep on synaptic plasticity and networks 

are not as uniform as SHY proposes, but depend on the species, developmental stage and the 

circuit examined, with a special importance of waking experience preceding sleep.  

                                     

Figure 13: Pre-, peri- and postsynaptic changes associated with sleep-dependent synaptic weakening 
and strengthening at the molecular, structural and electrophysiological level. (Puentes-Mestril and Aton, 
2017) 
 
 

3.1.2 Active system consolidation hypothesis 

Based on the previously described two-stage model, this hypothesis proposes that sleep, in 

particular NREM sleep, is highly involved in the “active system consolidation” of memory 

(Born and Wilhelm, 2012). This theory implies that repeated reactivation of specific memory 

traces that need to be consolidated occurs during sleep and that memories undergo qualitative 

changes when they are transferred to long-term memory store.  

Reactivation was observed for the first time in hippocampal “place cells”. These are a subset of 

cells that fire when an animal is at different locations in an environment during active behavior 

(Rowland et al., 2016). Recently, the ordered reactivation of neurons was observed optically 

using two-photon in vivo Ca2+ imaging of hippocampal cells in running and inactive mice 
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(Malvache et al., 2016). During wake, replay sequences were related to functional binding of 

different anatomically preconfigured cell ensembles.   

Recordings from a large ensemble of hippocampal “place cells” showed that the cells that fire 

together during active exploration had an increased predisposition to fire together during 

subsequent NREM sleep. Thus, during NREM sleep, these memories are reactivated 

(“hippocampal replay”) as part of the consolidation process at compressed timescales 

(approximately 20-fold), and gradually transferred to the long-term stores in the neocortex (Lee 

and Wilson, 2002; Wilson and McNaughton, 1994, Figure 14). The replay sequences were 

reactivated during hippocampal sharp-wave ripple oscillations (100-200Hz) that were recently 

found to induce LTP during replay and thus promote synaptic plasticity (Diekelmann and Born, 

2010; Sadowski et al., 2016). Hippocampal-dependent memory consolidation and redistribution 

towards neocortical networks was found to require slow oscillations, thalamo-cortical spindles 

and hippocampal sharp wave-ripples and relied on the hierarchical settlement of these rhythms 

(Buzsáki et al., 1992; Diekelmann and Born, 2010; Steriade et al., 1993). More specifically, 

phase-locking was achieved when sleep spindles coincided with the early part of the up state of 

the slow wave and sharp-wave ripples nested into the excitable troughs of the spindle oscillation 

(Latchoumane et al., 2017). As described previously, spindle nesting in the up states of the slow 

oscillation was recently found to be accompanied with particular activity of cortical excitatory 

and inhibitory cell populations, suggestive of conditions that might optimize synaptic plasticity 

within cortical circuits (Niethard et al., 2018).  

 



49 
 

Figure 14: Active system consolidation during sleep. (A) Temporary memory representations are 
reactivated during NREM sleep, leading to distribution to long-term cortical stores. (B) Hippocampal-
dependent memory consolidation and redistribution require precise settlement of neocortical slow 
oscillations, thalamo-cortical spindles and hippocampal sharp wave-ripples (Born and Wilhelm, 2012).   
 
 
It is important that reactivation during NREM sleep occurs in the same neurons activated during 

wake. One of the theories providing an attractive framework for an underlying mechanism is 

the synaptic tagging and capture hypothesis (STC). This theory proposes that at the time of 

memory encoding, “synaptic tags” are set on synapses, creating the potential for long-term 

remodeling (Lesburgueres et al., 2011). Importantly, these tags may mark synapses depending 

on their prior waking experience and may result in subsequent strengthening or weakening 

during sleep. Thus, plasticity related proteins (PRPs), such as Arc, Homer1a and BDNF, were 

found to be transcribed in an experience-dependent manner and targeted to dendrites during 

wake. Later reactivation of primed neurons and synapses during oscillatory NREM activity 

promoted PRP capture by tagged synapses. Furthermore, localized spindle activity may target 

different subsets of dendrites, leading to PRP capture for specific fate depending on the levels 

of intracellular Ca2+. The ultimate stabilization of synaptic strength, dependent on PRP 

translation, is proposed to occur during REM sleep (Almeida-Filho et al., 2018). 

4. Role of glial cells in sleep regulation and function  

Past research on sleep has mostly been conducted in a “neurocentric” manner, without 

considering an active involvement of glial cells. This is probably due to the fact that initial 

description of the wake-sleep cycle was done using EEG that reflects electrical activity of 

cortical neurons, whereas glial cells are electrically non-excitable cells. Over the recent years, 

a growing body of evidence has suggested that glial cells may be directly involved in sleep 

regulation and may mediate sleep functions. 

4.1 Role of astrocytes  

Astrocytes are known to play important roles in maintaining brain homeostasis and regulating 

synaptic transmission. More precisely, they are involved in regulation of brain energy 

metabolism, blood flow, local concentrations of ions and neurotransmitters, as well as synapse 

function, formation and elimination (Butt and Verkhratsky, 2018).  
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4.1.1 Involvement in sleep regulation and homeostasis  

We already addressed the importance of adenosine accumulation for sleep homeostasis. Even 

though all cell types are capable of releasing adenosine, a more direct evidence of astrocytic 

involvement in sleep homeostasis was reported using conditional astrocytic suppression of 

SNARE-dependent gliotransmission. This resulted in impaired exocytosis and loss of tonic 

adenosine-mediated presynaptic inhibition of excitatory synaptic transmission (Pascual et al., 

2005). In this model, the compensatory NREM SWA mechanisms were affected due to a 

reduced supply of adenosine acting on A1R (Halassa et al., 2009).  

Astrocytes were also proposed to modulate sleep homeostasis by regulating slow oscillations. 

Suppressing the previously described astrocytic SNARE gliotransmission led to reduction of 

the slow oscillation power in whole cell recordings of pyramidal neurons (Fellin et al., 2009). 

Another mechanism by which astrocytes may assist slow local oscillations includes short-range 

spatial buffering of extracellular K+, because during slow sleep oscillations (<1Hz), astrocyte 

membrane polarization oscillated in close synchrony with NREM SWA (Amzica, 2002; 

Amzica and Neckelmann, 1999).  

New tools allowing optogenetic activation of astrocytes in vivo has provided further evidence 

for the role of astrocytes in sleep-wake regulation. Optogenetic stimulation of astrocytes in 

posterior hypothalamus mostly affecting orexin and MCH neurons resulted in increased NREM 

and REM sleep time, without changes in the delta power (Pelluru et al., 2016). This 

manipulation allows for increase in intracellular Ca2+ (Losi et al., 2017), resulting in increased 

gliotransmission and possible release of ATP, D-serine, glutamate and cytokines mediating the 

observed effect. 

In addition, astrocytic gene expression and ultrastructure were critically regulated by the sleep-

wake cycle (Bellesi et al., 2015). 1.4% of all astrocytic transcripts in the forebrain were 

dependent on the vigilance states. Upregulated genes during wake included those associated to 

metabolism, extracellular matrix and cytoskeleton, including genes involved in the elongation 

of peripheral astrocytic processes (PAP). At the ultrastructural level, astrocytic processes were 

found to be closer to the synaptic cleft during wake, with reduced astrocytic coverage during 

sleep. This configuration might promote neurotransmitter clearance or supply of glial-derived 
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signals for synaptic plasticity during wake. During sleep, it may support glutamate spillover 

and participate in the promotion of neuronal synchronization. 

4.1.2 Involvement in glymphatic pathway  

Astrocytes may play an important role in “brain cleaning” via the glymphatic pathway which 

is highly active during sleep. The glymphatic pathway facilitates the clearance of solutes, 

including Aβ, from the interstitial fluid (Iliff et al., 2012). This clearance pathway is critically 

dependent on aquaporin-4 (AQP-4) water channels that are mostly localized on astrocytic 

endfeet in the brain (Camassa et al., 2015; Papadopoulos and Verkman, 2013). During slow-

wave sleep, both the interstitial space and the glymphatic influx were highly increased, 

compared to wakefulness (Xie et al., 2013), suggesting higher waste clearance during sleep. 

4.1.3 Astrocyte-neuron metabolic interactions in sleep/wake cycle  

Even though brain activity during wake is associated with higher metabolic rates, brain 

expenditure remains relatively high during NREM sleep (~85% of the rate during wake) 

(Stender et al., 2016). Astrocytes are known to supply energy metabolites to neurons via gap 

junction-mediated networks (Giaume et al., 2010). The major constituent of gap junctions in 

astrocytes is connexin 43 (Nagy and Rash, 2000). Mice with conditional deletion of astrocyte 

gap-junction protein connexin 43 manifested excessive sleepiness and fragmented wake during 

the nocturnal active phase. This effect was mediated by a reduced excitability of orexin neurons 

in the lateral hypothalamic area (Clasadonte et al., 2017), due to reduced diffusion of glucose 

and lactate. Thus, astrocyte-neuron metabolic interactions contribute to the regulation of the 

sleep-wake cycle. 

4.2 Role of oligodendrocytes 

In contrast to well-described functions for astrocytes, much less is known about the roles of 

oligodendrocytes and microglia in the regulation of sleep. Oligodendrocytes may secrete 

prostaglandin D2, which was found to be a robust sleep-promoting substance when applied 

exogenously (Urade and Hayaishi, 2011). Genome-wide profiling of oligodendrocytes during 

the vigilance state also showed that, similar to astrocytes, oligodendrocyte gene expression was 

affected by sleep (Bellesi et al., 2013). Genes related to promotion of OPC proliferation as well 
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as phospholipid synthesis and myelination were transcribed preferentially during sleep, whereas 

genes involved in apoptosis, cellular stress response and OPC differentiation were expressed at 

higher levels during wake. 

4.3 Role of microglial cells  

 

4.3.1 Regulation of sleep homeostasis 

Microglia, as well as astrocytes, are capable of secreting many somnogenic substances in vitro, 

including IL-1, TNFα and neurotrophines. As mentioned earlier, these molecules may influence 

sleep pressure and enhance NREM duration when injected intraventricularly or following 

cortical application (Yasuda et al., 2007). In addition, mice lacking TNFα or IL-1 present a 

sleep phenotype characterized with reduction of NREM sleep duration and intensity. A more 

direct effect of microglia was suggested when sleep-deprived mice were administered with 

minocycline (Wisor et al., 2011). Minocycline administration leads to microglial reactivity 

attenuation and caused a reduction in total sleep time and abolished compensatory EEG SWA 

in sleep-deprived mice. The molecular mechanism did not seem to involve IL-1β, IL6 and 

TNFα, since their mRNA levels were not altered. On the other hand, TNFα was suggested to 

exert its somnogenic effects by promoting microglial attraction to synapses (Karrer 2015). 

Indeed, TNFα induced neuronal production of chemokines (CCL2, CCL7 and CXCL10) and 

colony stimulating factor 1 (CSF-1) in vitro, promoting elongation of microglial processes. 

Furthermore, chronic sleep restriction, but not acute, resulted in microglia activation and 

promoted its phagocytic activity without overt signs of neuroinflammation (Bellesi et al., 2017). 

4.3.2 Involvement in sleep-dependent plasticity 

Microglia might also be involved in sleep-dependent plasticity, with mechanisms closely linked 

with the microglial circadian clock. Microglial morphology and microglia-spine interactions 

exhibited diurnal variations (Hayashi, 2013). These were critically dependent on P2Y12R 

expression that was driven by the intrinsic microglial clock. Microglia extended their processes 

and increased contacts with dendritic spines during the dark phase, when P2Y12R expression 

was highest. Furthermore, microglial P2Y12R expression was found to be critical for ocular 

dominance plasticity (ODP), a process highly dependent on sleep (Frank et al., 2001; Sipe et 

al., 2016). Cortical microglia also presented circadian expression of cathepsin S (CatS) 
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(Hayashi et al., 2013). CatS is a microglia-specific lysosomal cysteine protease that is able to 

modify the perisynaptic environment. CatS was secreted during the dark phase and led to 

downscaling of synaptic strength during the subsequent light phase.  

With these evidence, we may affirm that glial cells are very well positioned to control the 

regulation of sleep-wake cycles and mediate sleep functions. Indeed, many functions that are 

mediated by glial cells are found to be modulated during the sleep-wake cycle. Thus, better 

characterization of the functions of glial cells in general, as well as specifically related to the 

sleep-wake cycle will undoubtedly provide much insight into the sleep-wake mechanisms that 

are not properly understood.  

5. Sleep vs other brain states: general anesthesia and coma 

Even though anesthesia is a pharmacologically induced state, it shares many physiological 

hallmarks with the naturally occurring sleep state. These include reversible loss of 

consciousness, slow synchronous cortical waves, immobility and reduction of body temperature 

(Franks, 2008). Anesthesia may be induced by administration of two types of anesthetic agents: 

intravenous, including propofol, thiopental and ketamine; and halogenated agents, such as 

isoflurane and halothane. The exact mechanism of action of general anesthetics remains largely 

unknown, but evidence show that ion channels are the most probable molecular targets, in 

particular GABA receptors, two-pore-domain K+ (2PK) channels and NMDA receptors 

(Franks, 2008). In general, anesthetics do not affect single but multiple ion channels in agent-

specific permutations resulting in increased neural inhibition and/or decreased synaptic 

excitation (Garcia et al., 2010).  

 

To achieve unconsciousness, it is possible that anesthetics may hijack networks involved in the 

regulation of the sleep-wake cycle. Currently, it is unclear whether anesthetics primarily affect 

cortical or subcortical regions with subsequent repercussions (Brown et al., 2011; Hutt et al., 

2018), but evidence point to distinct regulation for different anesthetics. For instance, sleep-

promoting GABAergic neurons in the preoptic area were activated with GABAA agonist 

propofol and pentobarbital administration, as well as several halogenated anesthetics, but not 

with ketamine (Lu et al., 2008; Moore et al., 2012; Nelson et al., 2003). Another example of 

agent-specific pharmacological mechanisms is that lesioning of cholinergic neurons in the 



54 
 

nucleus basalis amplified the anesthetic potency of propofol and pentobarbital, but not 

halothane (Leung et al., 2011). 

 

Even though the regulation of these mechanisms needs to be elucidated, the specific 

combination of targeted channels and circuits is likely reflected in the distinct EEG oscillatory 

patterns for each anesthetic drug. Neuronal oscillations generated by anesthetics such as 

ketamine/xylazine and urethane resemble particularly those during sleep. Indeed, 

ketamine/xylazine reproduces the predominant EEG signature of NREM sleep: slow cortical 

activity with states of hyperpolarization and depolarization (Chauvette et al., 2011). 

Nevertheless, more precise LFP and intracellular recordings reveal several differences: 

ketamine/xylazine administration exhibited increased amplitude of slow oscillations and 

duration of silent states compared to sleep, as well as increased gamma activity power 

(Chauvette et al., 2011). Other anesthetics may produce activity that is quite different from 

sleep. For instance, propofol, thiopental and isoflurane administration leads to high amplitude 

burst suppression activity separated by brief episodes of isoelectric activity (Lukatch et al., 

2005).  

 

Taking into consideration these findings, the distinct activity patterns generated by different 

anesthetic agents resembling more or less those during sleep, may serve as substrates for 

studying the impact of sleep-like and other states. 

 

Other brain states exist and may be studied, such as coma, characterized with minimal brain 

activity and globally depressed metabolism (Brown et al., 2010). In terms of activity, low-

amplitude delta activity and bursts of theta and alpha activity and possibly burst suppression 

are mostly observed in humans.  

 

6. Somatosensory cortex organization and sleep-wake activity 

Due to its somatotopic organization, the (primary) somatosensory cortex, provides an excellent 

model to study active sensory processing and experience-dependent plasticity. Sensory 

information from peripheral receptors are first transduced to the dorsal root and trigeminal 

ganglion cells. The information is then conveyed to neurons in the spinal cord and hindbrain, 

that project in turn to specific somatosensory thalamic relays. The major thalamic 

somatosensory nucleus is the ventral posterior group, which projects to somatosensory areas in 
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the cerebral cortex where sensory information processing is taking place. Interestingly, the 

barrel (whisker-related) cortex occupies more than two thirds of the total S1 area in the mouse 

(Franklin and Paxinos 2008). Apart from the area representing the whiskers and other parts of 

the face, the somatosensory cortex also includes the forelimb, trunk and hindlimb area. These 

areas are separated between them by territories with few granule cells in L4. In turn, the 

somatosensory cortex has widespread projections to cortical and subcortical areas.  

During active wakefulness, global cortical activation was observed in the somatosensory cortex 

(Fernandez et al., 2017). Quiet wakefulness was accompanied with prominence of low-

frequency (LF) activity. This differed from other regions, such as mPFC, that showed only a 

slight increase in frequency during active wakefulness compared to quiet wakefulness. During 

NREM sleep, LF oscillations increased in all cortical regions, with the highest mean amplitude 

observed in the somatosensory cortex (Figure 15). In addition, NREM sleep was enriched in 

fast spindles compared to prefrontal cortex (Fernandez et al., 2018). Interestingly, 

somatosensory areas showed increased coherence in the LF band during NREM sleep with 

regions such as the motor cortex that communicate via direct corticocortical connections.  

In addition to the important changes of activity during sleep and wake, many studies have 

shown sleep-dependent changes at the molecular, structural and electrophysiological level in 

the somatosensory cortex. 
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Figure 15: LFP spectral analysis during active wakefulness (AW), quiet wakefulness (QW), and 
NREM sleep in different cortical regions. The somatosensory cortex shows highest mean amplitude 
of low-frequency (LF) activity during NREM sleep and notable separations in the power spectra during 
wake and sleep. (Fernandez et al., 2017) 
 

 

To summarize, the wake and sleep-related activity changes and the topographic organization of 

the somatosensory cortex, in particular the barrel cortex, constitute a great model for sleep-

wake study, which might be further supplemented with modulation of sensory experience and 

plasticity mechanisms.  
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METHODOLOGICAL CONSIDERATIONS 

1. Use of CX3CR1eGFP/+ and CX3CR1CreERT2/+ mice 
 

To visualize microglial cells in the brain, we used the CX3CR1eGFP/+ mouse model, where 

enhanced green fluorescent protein (eGFP) is expressed under the control of endogenous 

CX3CR1 locus (Jung et al., 2000). In fact, this model is the tool par excellence for visualizing 

microglial cells in the healthy brain. For study of microglial dynamics at the spine level, we 

generated CX3CR1CreERT2/+Rosa26-STOP-tdTomato-/- mouse model where Cre recombinase is 

expressed under the control of the CX3CR1 promotor (Parkhurst et al., 2013). The resulting 

genotype in both cases bears one functional copy of the CX3CR1 gene. Consequently, mice 

may be partially deficient for CX3CR1, which mediates neuron-microglia communication. 

Several studies found no effect of CX3CR1 heterozygosity on many microglial parameters in 

physiological conditions, while others have observed a mild impact both in physiological and 

pathological conditions. In CX3CR1eGFP/+ mice, several parameters relevant to our study were 

similar to Iba1eGFP/+ mice, another model for microglia visualization without CX3CR1 

heterozygosity (Hirasawa et al., 2005; Paolicelli et al., 2014). These parameters included 

microglial morphology and motility (Nimmerjahn et al., 2005; Wake et al., 2009), dendritic 

spine turnover (Parkhurst et al., 2013) and interaction with synapses (Tremblay et al., 2010; 

Wake et al., 2009). However, to exclude any effect of CX3CR1 heterozygosity, all these 

parameters should be compared between CX3CR1eGFP/+ and wild type mice. In other studies, 

CX3CR1 deficiency showed a gene dose-dependent effect, with intermediate phenotype for 

CX3CR1eGFP/+ mice in memory tests or LTP induction, even though the latter was not 

significantly different from wild type mice (Lee et al., 2010; Maggi, 2011; Rogers et al., 2011). 

In our case we assess sleep and wake within the same phenotype (CX3CR1eGFP/+), and the 

results we observed are thus due to the change of the vigilance states rather than the decrease 

of CX3CR1 protein expression.  
 

2. Surgical procedure: thin-skull cortical window preparation and 

electrode implantation 
 

The two most common approaches for in vivo imaging include thinned-skull and cranial 

window preparations. In the case of thinned-skull preparation, the skull is carefully thinned to 

approximately 20μm leaving an intact periosteal layer as structural support for the thinned area. 
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For cranial window preparation, a part of the skull is completely removed. Even though cranial 

window preparation provides more imaging depth, the thinned-skull is a more immunologically 

inert preparation, thus better suited for studying microglial cells in physiological conditions. 

Indeed, possibly due to extensive activation of microglial cells in the cranial window 

preparation, rates of spine turnover were higher using this preparation compared to the thinned- 

skull preparation (24.7% to 4.9%) (Xu et al., 2007). In our case, we used a variation of the 

thinned-skull preparation, called thinned-skull cortical window preparation, where a coverslip 

is placed on top of the thinned skull allowing long-term imaging of the intact mouse brain. 

For electrophysiological recordings, we implanted two EEG electrodes over the frontal and 

parietal cortex. Fronto-parietal electrodes are often used for sleep-wake studies since SWA 

signal is stronger in frontal derivations, allowing for a good detection of sleep-wake states 

(Huber et al., 2000; Vyazovskiy et al., 2002). EEG screws were placed contralaterally to the 

thinned-skull preparation due to the large place occupied by the thinned-skull preparation and, 

most importantly, to avoid injury. Since EEG allows for global monitoring of the vigilance 

states, we cannot rule out appearance of local wake/sleep states in our imaging region. 

However, local assessment at the imaging site would be highly invasive since electrode 

placement would cause an important microglial activation. In any case, the somatosensory 

region remains a good choice for studying sleep and wake cycles because high mean amplitudes 

of low-frequency activity are observed in this area, as well as substantial separations in the 

power spectra during wake and NREM sleep.  
 

3. Genetically encoded calcium indicator GCaMP6m injection 
 

To visualize fluctuations of neuronal activity, mice were injected with a genetically encoded 

calcium indicator AAV1.Syn.GCaMP6m.WPRE.SV40 in the somatosensory cortex (Chen et 

al., 2013). To avoid inflammation and injury at the imaging site, the injection was performed 

with an angle of 60o at a speed of 0.1μl/min, using a glass pipette with a small 20μm diameter 

tip. Two-photon imaging was done at a distance from the injection site where microglial cells 

were highly ramified and resembled microglial cells in physiological conditions. Taking into 

consideration the fact that we perform imaging fairly soon after injection, the expression of 

GCaMP6 indicators should not perturb the function of cortical circuits during this period (Chen 

et al., 2013).  
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4. Head-restriction 

Two-photon imaging in vivo in unanesthetized mice requires contention and we chose head-

restriction of the animal. Mouse immobilization may cause difficulties for the mouse to sleep 

and may increase stress levels. To improve animal well-being, prior to the imaging sessions, 

mice were progressively habituated to head-restriction (from 10 minutes to 4 hours) and were 

given a reward at the beginning and end of each session. Mice did not exhibit stress signs during 

imaging session and exhibited both NREM and REM episodes, which we believe reflects 

minimal stress. We observed relatively long NREM sleep periods that were occasionally 

followed by REM sleep, resembling natural sleep-wake cycles. However, due to head-

restriction, both NREM and REM sleep duration was reduced, and sleep was more fragmented 

compared to freely moving mice (Franken et al., 1999). An individual episode of NREM sleep 

lasted on average 52 seconds and was often adjacent to other sleep episodes. These individual 

juxtaposed sleep episodes constituted one longer sleep episode (on average 5.8 minutes) that 

was interrupted by micro-wake episodes. Since individual episodes were too short for 

quantification of microglial parameters, we selected longer sleep episodes that contained more 

than >75% sleep. We found this to be a good compromise since the longer episodes still 

contained ~90% of sleep on average. Future experiments may use more recent knowledge to 

optimize head-fixation in order to mimic natural sleep position or incorporate gentle techniques, 

such as rocking, that may increase sleep duration (Kompotis et al., 2019; Yüzgeç et al., 2018).   
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THESIS OBJECTIVES 

 

The regulation and functional role of the continuous movement of microglia is one of the great 

mysteries of neuroscience currently. Recent evidence has suggested that neuronal activity may 

regulate microglial motility and interaction with spines. Several brain states such as sleep, wake 

and anesthesia exhibit different patterns of neuronal activity. Sleep and wake are also associated 

with molecular mechanisms of synaptic plasticity important for synaptic homeostasis, learning 

and memory. Taking into consideration the growing body of evidence of microglial guidance 

by neuronal activity and its potent involvement in synaptic plasticity, this thesis had two 

objectives: 1) assess the impact of the brain states on global microglial motility and 

morphology, and 2) study how microglial dynamics at the spine level and microglia-spine 

interactions are impacted by the vigilance states and local neuronal activity, as well as the 

functional consequences of microglia-spine contact. 

 

1. Aim 1  

 

In physiological conditions, microglial cells have a highly ramified morphology and motile 

processes that extend and retract continuously. This movement is characterized with high 

energy expenditure and may serve functions other than immune surveillance of the surrounding 

parenchyma. Studies assessing the impact of neuronal activity on global motility and 

morphology in several brain areas and preparations have proposed a regulation of microglial 

dynamics by neuronal activity. However, these studies remain inconclusive and were done 

either using ex vivo models or anesthetized animals and/or sensory deprivation. To study the 

regulation of microglial morphology and motility by neuronal activity in physiological 

conditions, we used wake and sleep as two physiological states that are characterized with 

different patterns of neuronal activity (Article 2). We also assessed the impact of two different 

anesthetics: ketamine/xylazine, that reproduces the main features of sleep; and pentobarbital, 

characterized with a more divergent EEG pattern (Article 1). For this reason, I set up the 

simultaneous placement of thinned-skull cortical window preparation over the somatosensory 

cortex and EEG/EMG electrodes to assess neuronal activity and muscle tonus. We were thus 

able to combine two-photon imaging in vigil CX3CR1eGFP/+ with electrophysiological 

recordings which allowed us to visualize microglial morphology and motility during the brain 

states.  
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2. Aim 2 

 

To a greater extent than global microglial motility, previous studies found microglial dynamics 

at the spine level to be activity-dependent. For the most part, microglial processes appear to 

sense neuronal activity and to be attracted towards active spines. However, in physiological 

conditions, this attraction may be influenced by the vigilance states. Sleep and wake are 

fundamentally distinct states characterized with changes in neuronal activity, neuromodulation, 

ion and purine concentrations and are involved in different mechanisms of synaptic plasticity. 

Combining the previously described technique with stereotaxic injection of genetically encoded 

calcium indicators in the somatosensory cortex, we were able to simultaneously visualize both 

microglial dynamics and the fluctuations of Ca2+ activity at the spine level and the underlying 

vigilance state (Article 2). Using this mode we examined: 1) the regulation of microglial 

dynamics at the spine level and microglia-spine interactions by local neuronal activity and the 

vigilance states, 2) whether the proposed positive attraction between microglial processes and 

spines is vigilance state-dependent, and 3) the functional consequences of microglia-spine 

contact during the vigilance states. 
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RESULTS 

 

 

1. Article 1: Anesthetics alter microglial morphology and motility 

 

2. Article 2: Sleep decreases neuronal activity control of microglial 

dynamics 
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Abstract 

Background: Microglia, the resident immune cells of the brain, are highly ramified and motile and their 

morphology is strongly linked to their function. Microglia constantly monitor the brain parenchyma and 

are crucial for maintaining brain homeostasis and fine-tuning of neuronal networks. Besides affecting 

neurons, anesthetics may have wide-ranging effects mediated by non-neuronal cells and in particular 

microglia. We thus examined the effect of two commonly used anesthetic agents, ketamine/xylazine and 

barbiturates, on microglial motility and morphology.  

Methods: A combination of two-photon in vivo imaging and electroencephalography (EEG) recordings 

in unanesthetized and anesthetized mice as well as automated analysis of ex vivo sections were used to 

assess morphology and dynamics of microglia. 

Results: We found that administration of ketamine/xylazine and pentobarbital anesthesia resulted in 

quite distinct EEG profiles. Both anesthetics reduced microglial motility, but only ketamine/xylazine 

administration led to reduction of microglial complexity in vivo. The change of cellular dynamics in 

vivo was associated with a reduction of several features of microglial cells ex vivo, such as the 

complexity index, the ramification length and the number of nodes for ketamine/xylazine, whereas 

barbiturates altered the size of the cytoplasm. Furthermore, ketamine/xylazine and pentobarbital effects 

on microglial morphological parameters were region dependent. 

Conclusions: Anesthetics have considerable effects on neuronal activity and microglial cells. This may 

have unintended consequences on microglial functions so barbiturates might be a preferred anesthetic 

agent for the study of microglial morphology. These findings will undoubtedly raise compelling 

questions about the functional relevance of anesthetics on microglial cells in neuronal physiology and 

anesthesia-induced neurotoxicity. 

Keywords: microglia, motility, morphology, anesthesia, ketamine/xylazine, pentobarbital, 

immunohistochemistry, two-photon imaging  
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Introduction 

 

Anesthetics are widely administered in animal research studies. They are commonly used to generate a 

reversible brain state allowing surgery and in vivo imaging of animals with less motion artefacts and 

stress during contention. Excess of anesthetics can also be used for euthanasia allowing further 

anatomical studies, such as immunohistochemistry. However, anesthetic agents are major 

pharmacological modulators of neuronal activity. As such, they may have unwanted effects on animal 

physiology and possibly bias the outcome of experiments.  

For instance, general anesthesia primarily acts on the two main inhibitory and excitatory 

neurotransmitters of the CNS (1) by targeting Gamma-AminoButyric Acid A (GABAA) receptors and 

N-methyl-D-aspartate (NMDA) receptors, respectively. Furthermore, recent studies revealed 

detrimental effects of general anesthetics on morpho-functional changes in the CNS as well as impaired 

neurocognitive performance (2). Research on the subject was mostly focused on elucidating the impact 

of anesthetic toxicity on neurons, and little consideration has been given to mechanisms mediated 

through action on glial cells.  

 

Microglial cells, a part of the glial cell population, are the resident immune cells of the brain and are 

thus crucial in maintaining brain homeostasis (3). A growing body of evidence indicates that they 

contribute to the fine-tuning of neuronal circuits, to synaptic and structural plasticity, and that they could 

be involved in learning and memory (4,5). A hallmark of microglial cells in physiological conditions is 

the incessant motility of their processes that has been linked to changes of neuronal activity and synaptic 

functions (6). The effect of anesthesia on their function and more elaborated responses are however 

poorly documented.  

 

Few studies have examined the effects of anesthetic exposure on microglial cells, and most often as side 

studies, revealing contradictory findings. Very recently, isoflurane was found to increase the length of 

microglial processes in acute and chronic preparations in vivo, and potentiate motility in acute 

preparations only (7). The effect of ketamine/xylazine was less potent as it increased microglial 
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ramification in acute preparation only and had no effect on microglial motility. On another hand, 

isoflurane was previously reported to inhibit microglial surveillance and ramifications by blocking 

THIK-1, one of the main K+ channels expressed by microglia in situ (8). The same study found that 

another widely used anesthetic, urethane, had no effect on both microglial ramifications and motility. 

Other studies have assessed the activation of microglial cells with anesthesia administration. Ketamine 

caused the activation of microglial cells in the retrosplenial cortex, but not in the cingulate cortex of rats 

(9). Kannan et al. found that in the presence of GABAAR agonist, pentobarbital, the morphology of 

microglia in cell culture changed from a ramified to a rounded shape (10). However, neuroleptic 

anesthetics targeting dopamine and opioid receptors did not cause any activation of microglial cells in 

the hippocampus of young adult mice (11). Morphological changes of microglia have been associated 

with different roles in physiological and pathological conditions. For instance, reduction of microglial 

ramification, accompanied by cell body enlargement, and shortening and thickening of processes, is 

characteristic of brain inflammation or injury (12,13). In this case, microglial cells secrete pro-

inflammatory cytokines, increase their phagocytic activity and decrease neuronal synchrony (14,15). On 

the other hand, microglia may also hyper-ramify in response to stress (16) and accelerated aging (17), 

and this phenotype and the potential consequences have been much less described. Considering the 

importance of microglial cells in brain homeostasis and the routine use of anesthetics, more detailed 

evidence on the effects of anesthetics on microglial morphology and motility is needed.  

 

In our study, we combined immunohistochemistry and two-photon in vivo imaging to study the effects 

of two anesthetics commonly used in laboratory studies, pentobarbital/ thiopental-based anesthetics 

(GABAAR agonist) and ketamine-xylazine cocktail (NMDAR antagonist), on the morphology and 

motility of microglial cells as well as on neuronal activity assessed by electroencephalography (EEG) 

and electromyography (EMG). Our findings suggest that these anesthetics differ in their effect on 

neuronal activity and cause changes in microglial motility and morphology that vary depending on the 

anesthetics and on the brain region studied.   
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Materials and methods 

Animals 

For in vivo and ex vivo experiments, six to ten week-old male heterozygous CX3CR1eGFP(+/-) mice were 

used, expressing enhanced green fluorescent protein (eGFP) under the control of CX3CR1 promoter. 

Mice were housed in individual cages with bedding and running wheels, under normal light/dark 

conditions and provided with food and water ad libitum. All experimental procedures were carried out 

in accordance with the French institutional guidelines and ethical committee. 

In vivo experiments 

Surgery and habituation 

Mice were handled during one week prior to surgery. For surgery, mice were deeply anesthetized with 

isoflurane (3-4%, Isovet, Piramal Healthcare, UK Ltd.) and mounted in a stereotaxic apparatus (D. Kopf 

Instruments). To relieve post-operatory pain and inflammation, Carprofen (5mg/kg s.c.) was 

administered at the beginning of the surgery and the following two days. For transcranial imaging, a 

custom-made head plate implant was positioned on the left hemisphere and the skull was carefully 

thinned over the somatosensory cortex using a high-speed dental drill. For electrophysiological 

recordings, two EEG screws were inserted in the frontal and parietal cortex of the right hemisphere and 

two EMG electrodes were inserted in the neck muscles. A custom-made restraint system was used during 

head-restraining habituation sessions. Our habituation protocol involved daily training sessions over 7-

10 days lasting progressively longer (from 10 minutes to 4 hours). A reward of several drops of 

sweetened concentrated milk was administered at the beginning and end of each session. Mice were 

imaged at the end of the habituation sessions.  

Treatment conditions 

Two-photon imaging was performed in the somatosensory cortex in the same mice (n=6) in 

unanesthetized (control condition) and anesthetized condition. Thus, the same microglial cells were 

imaged in unanaesthetized condition and subsequently during anesthesia. In the «anesthesia» condition, 
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mice were injected intraperitoneally with either a mixture of ketamine (100mg/kg) and xylazine 

(10mg/kg) or pentobarbital (60mg/kg) dissolved in 0.9% saline.  

Two-photon in vivo imaging microscopy 

A two-photon microscope (Olympus) with a mode-locked Ti:Sapphire laser (Mai-Tai, Spectra-Physics) 

tuned to 900nm (excitation wavelength for eGFP) was used. eGFP-labeled microglia were imaged under 

a 20x water-immersion objective (0.95 N.A. Olympus). Fluorescence was detected using a 560nm 

dichroic mirror coupled to a 525/50nm emission filter and a photomultiplier tube in whole-field 

detection mode. Laser power during imaging was maintained below 20mW. Microglial cells in the 

somatosensory cortex were imaged at least 15 minutes after general anesthesia. The imaging parameters 

corresponded to 200x200μm field of view and resolution of 521x521 pixels approximately. Microglia 

were imaged at a depth of 50-150 μm from the cortical surface and a typical recording lasted 

approximately 15-20 minutes (30-40 stacks). 25-30 consecutive Z-stack images were acquired every 30 

seconds, 1μm/optical section.   

EEG/EMG recordings 

During the entire imaging session, the vigilance states were monitored using real-time EEG/EMG 

differential recordings amplifier (Model 3000, A-M systems). Signals were sampled at 1kHz. EEG was 

filtered in the frequency band [0.5Hz-300Hz], while EMG was filtered in the [10-500Hz] frequency 

band. EEG data were analyzed using a custom MATLAB© software. Power spectra and probability 

distributions of EEG magnitude were estimated for the total duration of anesthesia. Time-frequency 

representation was performed with a 4s duration sliding FFT (fast Fourier transform) window and 0.5s 

step size. 

Imaging analysis 

Image processing and analysis were performed using custom-written MatLab© software. From the 

original image, we manually delimited regions of interest containing the totality of only one microglial 

cell. In order to correct the drift in the x, y and z planes, each volume was registered to a reference 

volume (the first volume) using shift estimation from the cross-correlation peak by FFT. After 
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realignment, standard deviation intensity projections of z stacks were created and used to generate 2D 

time-lapse movies. For analyses of microglial complexity, we transformed the images into binary and 

calculated the Hausdorff fractal dimension, thus providing quantitative measure of the complexity of 

microglial cells. For each series of images, cell complexity was determined by averaging the complexity 

values obtained for each image. To analyze microglial motility, subtractions between consecutive Z-

stack projections were performed. The number of summed pixels in subtracted images determined the 

global motility coefficient (arbitrary unit). This coefficient was normalized to the volume of the stack.  

Ex vivo experiments 

Treatment conditions  

Three experimental groups were considered. In the anesthesia group, n=6 mice were injected 

intraperitoneally with either with a mixture of ketamine (100mg/kg) and xylazine (10mg/kg) or 

thiopental (60mg/kg) dissolved in 0.9% saline and were euthanized by cervical dislocation 5 minutes 

after anesthesia, followed by collection of the brain. In the control group, n=5 mice were injected with 

isotonic saline solution (NaCl 0.9%) and were euthanized by cervical dislocation 5 minutes after 

injection followed by brain collection. Cervical dislocation was authorized by the Ethics Committee of 

the Institute Pasteur and the French Ministry of National Education and Research in order to avoid any 

molecular interaction with any type of anesthesia or with carbon dioxide before brain analysis. 

Tissue preparation 

After euthanasia by cervical dislocation, the brains were immediately removed and sectioned along the 

inter-hemispherical fissure on a sagittal plane. The left hemisphere, dedicated to the morphological 

analysis, was fixed for 24 hours in a 4% paraformaldehyde solution (QPath®, VWR Chemicals, 

Fontenay Sous Bois, France) and then stored in a 0.1% paraformaldehyde solution until carrying out 

floating sections of 80μm along a sagittal plane using a vibratome (VT 1000 S, Leica®, Germany). The 

most medial section was then used for the morphological analysis.  
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Microglial morphology imaging and analysis 

 

Microglial morphologic criteria were determined with an automated confocal tissue imaging system 

coupled to morphological modelling in CX3CR1GFP/+ transgenic mice. This analysis was performed on 

sagittal cerebral floating sections of the left hemisphere placed on glass slides with FluoroMount 

(FluoroMount-G Mounting Medium, FluoProbes). 

The image acquisition was carried out according to a previously validated protocol (18) using a confocal 

spinning disk microscope (Cell Voyager - CV1000, Yokogawa®, Japan) equipped with a UPLSAPO 

objective 40x/NA 0.9. Automatic analysis was applied using analysis script developed with the image 

analysis software Acapella™ (version 2.7 - Perkin Elmer Technologies, Waltham, USA). The following 

morphological criteria have been defined for each microglial cell on more than 3,000 microglial cells 

by group: the area of the cell body and the cytoplasmic area, defined as the area of the cytoplasm 

included in the primary branches, expressed in μm2; a second set of calculated criteria extrapolated from 

the previous ones yielded the complexity index (CI) and the covered environment area (CEA). We 

defined the CI by the ratio between the number of segments of each ramification of each cell multiplied 

by the sum of the nodes on one hand and the number of primary branches on the other hand. Thus, we 

obtained an average complexity relative to the number of primary branches for each microglial cell.  

 

The CEA represents the 2D total surface covered by its ramifications and defined as the area of the 

polygon formed by linking the extremities of its processes, expressed in μm2. 

Statistical analysis 

All statistical analyses were performed using the Prism V statistical analysis software (GraphPad, La 

Jolla, Ca). Microglial complexity and motility index were compared between groups using the non-

parametric paired Wilcoxon test. Significance of p<0.05 was used for all analyses.   
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Results 

Ketamine/xylazine and pentobarbital administration generate distinct and specific patterns of 

neuronal activity in vivo  

Anesthetic effects on global neuronal activity were monitored using EEG/EMG recordings. EEG signal 

patterns were different between vigilance states and varied depending on the anesthetic agent (Figure 

1A, 1C, 1E). The unanaesthetized condition is characterized with a large spectral range (Width to Mid-

Height: WHM) equal to 10Hz, as well as a high dispersion of the amplitudes’ distribution (Figure 1A, 

1B, 1G, 1H). Ketamine/xylazine anesthesia was characterized with slow and large amplitude waves 

(Figure 1C, 1D) close to pure bi-chromatic signal (0.5Hz and 2Hz, Figure 1I) continuously present 

during the anesthesia period (Figure 1J). The 0.5 Hz component is stable during anesthesia while the 

2Hz component tends to vanish at the end of the recoded period (Figure 1J). Pentobarbital anesthesia 

caused states of low electric activity with sporadic bursts of high amplitude (Figure 1E), consistent with 

the high peak at 0 (around baseline) and the long wings observed on the amplitudes’ distribution (Figure 

1F). The EEG signal exhibited a more spread spectrum in comparison to ketamine/xylazine (Figure 1I, 

1J). The time-frequency representation of pentobarbital anesthesia (Figure 1K, 1L) showed a gradual 

increase of the spectral range before continuously decreasing until the end of the recording.  

 

Both anesthetics reduce microglial motility, but only ketamine/xylazine affects microglial 

morphology in vivo 

We examined microglial morphology, particularly the degree of ramification, assessed by an overall 

complexity index, and the motility of microglial processes in vivo in the somatosensory cortex of 

CX3CR1GFP/+ mice. These cellular parameters where compared in unanaesthetized and anesthetized 

conditions. We found that microglial complexity was significantly reduced in vivo when mice were 

injected with ketamine/xylazine (1.55±0.016 vs 1.52±0.013, p=0.031; Figure 2A, 2B). However, 

microglial complexity remained unaltered with thiopental administration (1.56±0.01 vs 1.56±0.008, 

p=0.56; Figure 2D, 2E). To address the impact of anesthesia on microglial motility, we recorded 3D 
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time-lapse videos of the same microglial cells when the mouse was not anesthetized and subsequently 

during ketamine/xylazine or pentobarbital anesthesia. Both ketamine/xylazine and pentobarbital 

administration resulted in a significantly reduced overall process motility when compared to control 

(859.6±45.61 vs 707.1±26.28 motility index/μm3 for ketamine/xylazine and 841.22±29.76 vs 

757.12±22.46 motility index/μm3 for pentobarbital; p=0.031; Figure 2C and 2F).  

 

Ketamine/xylazine and thiopental affect different parameters of microglial morphology ex vivo, 

with inter-regional variability 

To further describe the morphological changes of microglia and evaluate their heterogeneity in different 

brain areas, we studied microglial morphology in brain sections from CX3CR1GFP/+ mice administered 

with ketamine/xylazine, thiopental anesthesia or saline prior to euthanasia (Figure 3 A, B, C). In the 

whole brain, ketamine/xylazine anesthesia caused a significant reduction of microglial cell complexity 

in comparison to the control group (3.5±0.1 vs 3.2±0.1; p<0.05; Figure 3E). Consequently, the total 

length of ramifications and the number of nodes were significantly reduced in comparison to the control 

group (318±19 vs 358±29 μm; p<0.05 and 8.3±0.6 vs 7.1±0.5; p<0.05; Figure 3H and 3I). In contrast, 

treatment with thiopental affected exclusively the cytoplasm area, resulting in a significant reduction in 

comparison to the control group (53.8±2.2 vs 59.7±3.3 μm2; p<0.05; Figure 3D), which was not the case 

upon ketamine/xylazine administration. Other morphological features such as the cell environment 

covered by the ramifications (Figure 3F) and the number of segments (Figure 3G) remained unchanged 

in both conditions. 

 

To investigate possible inter-regional variability, we quantified these morphological parameters in 

microglial cells separately in the frontal cortex (Figure 4) and the hippocampus (Figure 5). In both 

regions, the complexity of microglial cells (3.2±0.1 vs 3.4±0.1 for the frontal cortex and 3.3±0.2 vs 

3.6±0.2 for the hippocampus; p<0.05, Figure 4E and 5B) were significantly reduced with 

ketamine/xylazine anesthesia. However, we observed a significant decrease of the total length of the 

ramifications in the frontal cortex only (306±16 vs 349±26 μm; p<0.05; Figure 5E). Furthermore, the 
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previously reported reduction of the cytoplasm area caused by thiopental anesthesia was only observed 

in the hippocampus but not in the frontal cortex (58.5±4.4 vs 68.3±8.2 μm2; p<0.05; Figure 4D and 5A).  

 

Discussion 

 

Our current findings demonstrate that administration of two commonly used iv anesthetic in clinic, 

ketamine/xylazine and barbiturates resulted in the loss of microglial surveillance rate in vivo and 

morphological alterations that depended on the type of anesthetics administered and the brain region 

examined. Ketamine/xylazine administration resulted in extensive and widespread reduction of 

microglial process complexity, whereas barbiturates affected the cytoplasm area in a limited manner.  

Ketamine/xylazine and barbiturates are commonly used as general anesthetics for surgery, imaging, or 

euthanasia preceding immunohistochemistry studies. For anesthesia, ketamine, a NMDAR antagonist is 

often used with an α2 adrenergic agonist, in our case xylazine, which provides sedation and analgesia 

(19,20). Importantly, ketamine activates less GABAAR in comparison with other anesthetics, which 

allowed us to distinguish the effects of ketamine/xylazine and barbiturates that are GABAA agonists 

(21). For the ex vivo and in vivo experiments, we used two types of barbiturates characterized by different 

durations of action caused chemical structure differences. Thiopental is an ultra-short acting anesthetic 

that was used for ex vivo experiments whereas pentobarbital was preferred for in vivo study because it 

was reported to have 4 to 8 times longer action than thiopental (22). 

 

Interestingly, different anesthetics generate distinct and specific neuronal activity that might explain the 

discrepancies that we found on microglial morphology and dynamics. Our EEG recordings indicate that 

ketamine/xylazine anesthesia is characterized by slow, large amplitude waves with high delta power and 

it has been shown that different anesthetics affecting delta power in opposite manner impact differently 

sensory processing in V1 (23). The different effect of anesthetics on cortical activity might thus be 

related to the divergent impact on microglial cells (7). We found that pentobarbital anesthesia was 

associated with a different EEG pattern: states of isoelectric activity with bursts of high amplitude 

activity. Moreover, pentobarbital was found to reduce the firing rate of high and non-high frequency 
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bursting (HFB and non-HFB respectively) neurons in vivo in rats (24). Looking more closely, the 

pentobarbital power spectrum resembles the power spectrum during anaesthetized condition when 

compared to ketamine/xylazine. This might explain why pentobarbital had no effect on microglial 

morphology, suggesting that the frequency pattern of EEG could impact global microglial morphology. 

These findings need further investigation, to determine whether and how different EEG patterns, in 

terms of frequency and amplitude, may impact microglial morphology and motility. 

 

Microglial cells continuously survey their surroundings by extending and retracting their motile 

processes (25,26). They make direct contacts with synapses that seems to be dependent, at least partly, 

on neuronal activity (14,27–29). Our study found that both anesthetics induced a reduction of microglial 

motility in the somatosensory cortex. Our results are in line with previous studies showing that blocking 

NMDAR-mediated glutamatergic transmission induced a significant decrease in microglial motility in 

retinal explants (−12.5% decrease) while GABA application decreased microglial motility as well 

(−7.9% decrease) (30). However the reduction that we observed with ketamine/xylazine do not match a 

recent study that report no or opposite effect of ketamine/xylazine anesthesia on microglial motility 

(7,31). Even though both studies were performed in vivo, several discrepancies should be highlighted: 

1) we used a thin-skull cranial preparation, which is more immunologically inert compared to cranial 

window preparation used by the two studies; 2) in our case, the same microglia is imaged in presence 

and absence of anesthetics, whereas Sun et al. imaged different microglia between the conditions with 

2-h rest between the two conditions.  

 

Although we report clear effects of anesthetics, it is rather difficult to determine whether their action is 

direct on microglial cells. Indeed, various evidence report the presence of glutamate and GABA 

receptors on microglial surface (32,33). However microglia lack electrical responses to local application 

of GABA and glutamate in retinal slices (30), as well as to puffs of glutamate or NMDA in hippocampal 

slices (27) casting doubt on a direct action on microglia. The observed effect could also be due to side 

effects of anesthetics for example pentobarbital also target alpha-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptors (AMPAR) (34,35) or voltage-dependent Na+ channels, while 
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ketamine affects also the cholinergic muscarinic receptors (antagonistic effect) (36,37) and α(alpha) and 

β(beta) adrenergic receptors (agonistic effect) (38). Ketamine and pentobarbital could also target ion 

channels expressed by microglial cells and alter membrane properties (39,40). A recent study found a 

direct impact of gaseous anesthetics on microglial motility by action on tandem pore domain halothane 

inhibited K(+) channel (THIK)-1, a two-pore domain K+ channel present on microglial cells (8). 

Likewise, possible changes in extracellular ion concentration due to altered neurotransmission by 

anesthesia might affect microglial resting potential and consequently microglial motility.  

 

Anesthetics could also modulate microglia through indirect action. For example, extracellular 

nucleotides, in particular adenosine triphosphate (ATP), elicit membrane currents in microglial cells via 

ionotropic (P2X) and metabotropic (P2Y) purinergic receptors and affect microglial motility (27,30,41–

44). Importantly, ATP is co-released with the main transmitters from neurons (45) and from astrocytes 

(46) at synapses in response to neuronal activity. ATP released could lead to a chemotactism of 

microglial processes toward highly active spines (14) possibly by a NMDAR-dependent ATP release 

(27). Thus, a reduction of ATP release caused by reduction of neuronal activity may decrease microglial 

motility. Finally, both iv and inhaled anesthetics have been shown to disrupt astrocyte calcium signaling 

in the cortex (47) and consequently the calcium-dependent release of ATP that could regulate microglial 

motility.  

 

Morphological changes of microglial cells are often associated with microglial activation. Indeed, 

immunohistochemistry studies rely on quantification of microglial morphology to characterize 

inflammation. We found both in vivo and ex vivo that ketamine/xylazine and barbiturates affected 

microglial morphology in different ways. Ketamine/xylazine anesthesia caused a significant reduction 

of microglial complexity overall, particularly by decreasing the number of segments and branching 

points. It has previously been found that blocking NMDAR by D-AP5 resulted in significant decreases 

in all morphological parameters studied, such as the total dendritic length, the total branch point and the 

dendritic tree area in retinal explants (30). Because β-adrenergic receptor agonist, isoproterenol, has 
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been shown to induced a considerable decrease in the ramifications of resting microglia in acute slices 

(48), another effect of ketamine could be through its agonist action on β-adrenergic agonist receptors.  

We found no effect of pentobarbital on microglial complexity in the somatosensory cortex in vivo. More 

precise ex vivo quantifications found that barbiturates affected only the cytoplasm area of microglial 

cells, which is defined as the cell body area associated with the cytoplasmic area of the primary 

ramifications. In that regard, the study of Fontainhas et al. shows that GABA application in retinal 

explants affected microglial complexity (30). The discrepancy between these results could be explained 

by the heterogeneity of microglial cells between retina and CNS. Another explanation could be the use 

of barbiturates that target specifically GABAA while the administration of GABA might also target 

GABAC and GABAB receptors.   

 

We then assessed whether the aforementioned morphological changes by anesthesia administration are 

similar among different brain regions. We studied microglial cells in the hippocampus and the frontal 

cortex, two areas where microglial cells contribute to neuropsychiatric disorders such as dementia or 

depression (49,50). Ketamine/xylazine caused a significant reduction in both the complexity and the 

total ramification length in both regions. This reduction was accompanied by a reduction in the number 

of segments and nodes rank 1 and 2 in the frontal cortex, but not in the hippocampus. The effects of 

thiopental also differed depending on the brain region. Thiopental caused a reduction in the cytoplasm 

area of the hippocampus, but not the frontal cortex. The discrepancy between the effects of anesthetics 

on microglial cells in these different regions may come from several reasons. First, the composition and 

function of glutamatergic and GABAergic networks may vary between the hippocampus and cortex. 

Second, the neuronal NMDA and GABAA receptor subtype composition may differ between areas. 

Third, microglial phenotypic heterogeneity: microglial expression profiles, receptor and channel 

distribution, as well as the resting potential of microglial cells may vary between different regions (51–

54), thus contribute to different responses of microglial cells.  
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Conclusion 

 

Overall, our study shows that both anesthetics reduced microglial surveillance. Ketamine/xylazine had 

a more considerable effect on microglial morphology, whereas the effect of barbiturates was limited to 

the cytoplasm area. Even though both anesthetics alter microglial motility, barbiturates seem more 

appropriate anesthetic agents for the study of microglial morphology. 

Our findings have major implications for research studies. Many ex vivo studies are based on the 

characterization of microglial morphology to evaluate the activation status and inflammatory profile of 

microglial cells and may thus be biased by the type of anesthetic used. Furthermore, the disclosed 

alterations of microglial motility and morphology may have unintended consequences on microglial 

responses in vivo and thus bias experimental results. Future studies need to assess the potential 

alterations of additional parameters associated with microglial morphology and motility under 

anesthesia. These include microglial interaction with spines and neuronal networks, the phagocytic 

capacity of microglial cells, as well as the cytokine secretion. Furthermore, it is important to determine 

whether anesthetics maintain their effects on microglial cells’ morphology and motility in vivo past 

anesthesia and the potential long-term effects. If this is the case, multiple imaging sessions with repeated 

animal exposure to anesthesia may have serious consequences on the experimental results. Finally, since 

the developing brain and the aging brain are more vulnerable to anesthesia-induced neurotoxicity, we 

need to study the short-term and long-term effects of anesthetic agents on microglial cells in these 

populations. 
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Figures 

 

Figure 1. Ketamine/xylazine and pentobarbital anesthesia are associated with different patterns 

of neuronal activity. (A-F) Examples of EEG traces (A, C, E) and their corresponding amplitude 

distributions (B, D, F) in different conditions: control (A, B), during ketamine/xylazine (C, D) and 

pentobarbital (E, F) anesthesia. (G-L) Characteristic power spectrum (G, I, K) and normalized color-

coded logarithmic amplitude of time-frequency graphs (H, J, L) in control condition (G, H), and during 

ketamine-xylazine (I, J) and pentobarbital (K, L) anesthesia. 

 

Figure 2. Ketamine/xylazine and pentobarbital anesthesia reduce microglial motility in vivo, while 

microglial complexity is reduced by ketamine/xylazine only. (A, D) Representative images showing 

microglial complexity between control (in green) and ketamine/xylazine anesthesia (A) or pentobarbital 

(in red) anesthesia (D). (B, C) Quantification of microglial complexity (B) and motility (C) for control 

and ketamine/xylazine anesthesia (n=6 CX3CR1GFP/+ mice, 3 microglia analyzed per mouse, Wilcoxon 

test). (E, F) Quantification of microglial complexity (E) and motility (F) for control and pentobarbital 

anesthesia (n=6 CX3CR1GFP/+ mice, 3 microglia analyzed per mouse, Wilcoxon test). Bars represent 

mean±SEM. *indicates p<0.05. 

 

Figure 3. Whole brain variability by morphological criteria in the different conditions. Two 

regions have been explored: hippocampus (H) and frontal cortex (FC) in three different conditions: 

control, ketamine/xylazine (ket/xyl) and thiopental. (A-C) Morphological criteria characterizing a 

representative microglial cell in each condition. The scale bars equal 5μm. (D-I) Microglial morphology 

was characterized using the following parameters: microglial cytoplasm (D), the complexity index (E), 

the cell environment area in μm2 (F), the number of segments by cell (G), the total ramification length 

in μm (H) and the number of nodes (rank #1 & #2) by cell (I). Data shown are mean±SD in the control, 

ketamine/xylazine and thiopental conditions (n=5, n=6 and n = 6, respectively). In CX3CR1GFP/+ mice, 

576 to 988 microglial cells were analyzed by region and by animal. ANOVA Kruskal-Wallis test was 

used to compare the different regions. *p<0.05. 
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Figure 4. Frontal cortex variability by morphological criteria in the different conditions. (A-C) 

Microglial modelization characterizing a representative panel of microglial cells in each condition in the 

frontal cortex. The scale bars equal 10μm. (D-I) Microglial morphology was characterized using the 

following parameters: microglial cytoplasm (D), the complexity index (E), the cell environment area in 

μm2 (F), the number of segments by cell (G), the total ramification length in μm (H) and the number of 

nodes (rank #1 & #2) by cell (I). Data shown are mean±SD in the control, ketamine/xylazine and 

thiopental conditions (n=5, n=6 and n=6, respectively). In CX3CR1GFP/+ mice, 305 to 582 microglial 

cells were analyzed by region and by animal. ANOVA Kruskal-Wallis test was used to compare the 

different regions. *p<0.05. 

 

Figure 5. Hippocampus variability by morphological criteria in the different conditions. Microglial 

morphology was characterized using the following parameters: microglial cytoplasm (A), the 

complexity index (B), the cell environment area in μm2 (C), the number of segments by cell (D), the 

total ramification length in μm (E) and the number of nodes (rank #1 & #2) by cell (F). Data shown are 

mean±SD in the control, ketamine/xylazine and thiopental conditions (n = 5, n=6 and n = 6, 

respectively). In CX3CR1GFP/+ mice, 272 to 448 microglial cells were analyzed by region and by animal. 

ANOVA Kruskal-Wallis test was used to compare the different regions. *p<0.05. 
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Introduction 

 

Microglial cells are the resident immune cells of the central nervous system (CNS) and their roles in 

various brain pathologies have been extensively studied (Prinz and Priller, 2014). In the healthy brain, 

microglia perform many physiological tasks that are essential for neuronal homeostasis and normal 

synaptic functions. During development, they participate in the refinement of neuronal circuits, 

including phagocytosis of synapses and trogocytosis of presynaptic structures, and their spatial 

arrangement is essential for generating domains of spine instability (Iida et al., 2019; Paolicelli et al., 

2011; Schafer et al., 2012; Weinhard et al., 2018). They are also important for synapse maturation and 

filopodia formation in the developing somatosensory cortex (Hoshiko et al., 2012; Miyamoto et al., 

2016; Weinhard et al., 2018). In the adult brain, microglia play a central role in learning-induced synapse 

formation by the secretion of brain-derived neurotrophic factor (BDNF) (Parkhurst et al., 2013). 

Moreover, microglial contact enhances synaptic activity and promotes neuronal network 

synchronization (Akiyoshi et al., 2018). These functions are critically dependent on microglial dynamics 

and functional properties in the healthy brain. Indeed, in non-pathological conditions, microglial cells 

present a ramified morphology with highly dynamic processes that extend and retract continuously 

(Davalos et al., 2005; Nimmerjahn et al., 2005). This movements allows them to survey the surrounding 

parenchyma and make transient contacts with other CNS elements, particularly synapses (Davalos et 

al., 2005; Nimmerjahn et al., 2005; Tremblay et al., 2010; Wake et al., 2009). The regulation of 

microglial motility and microglia-spine contact is still not well understood. Even though results are not 

straightforward, manipulation of neuronal activity revealed that increased neuronal activity is mostly 

accompanied by enhanced microglial dynamics while it is decreased in low neuronal activity regimen 

(Fontainhas et al., 2011; Li et al., 2012; Nimmerjahn et al., 2005; Tremblay et al., 2010). Moreover, 

microglial interactions with synapses seem to be activity dependent. For instance, reduction of neuronal 

activity in the visual cortex by means of eye nucleation, lowering body temperature or applying 

tetradotoxin (TTX) decreased microglia-synapse interactions (Wake et al., 2009). LTP induction in 

hippocampal slices increased the number of microglial processes and the duration of microglia-spine 

contacts (Pfeiffer et al., 2016). Highly active spines were the preferential target of microglial processes 
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in the somatosensory cortex, and microglial contact resulted in enhanced activity in the contacted spine 

(Akiyoshi et al., 2018). Thus, microglial processes seem to be sensing neuronal activity and are attracted 

towards sites of high neuronal activity, suggestive of microglia-to-neuron physical interactions (Eyo et 

al., 2014; Li et al., 2012; Wake et al., 2009). 

Even though these studies suggest that microglial dynamics and microglia-synapse interactions are 

activity-dependent, most of them are performed in non-physiological conditions. These include ex vivo 

manipulations and use of anesthetized animals and/or sensory deprivation. Sleep-wake cycles are 

physiological states characterized by major changes in neuronal activity, including activity patterns and 

firing rate: wake is characterized by continuous asynchronous firing of cortical neurons, resulting in 

high-frequency, low-amplitude oscillations, while neurons alternate between synchronous periods of 

sustained neuronal firing and periods of neuronal silence, producing low-frequency, high-amplitude 

oscillations during sleep (Steriade, 1994). Beside neuronal activity, these vigilance states present distinct 

neuromodulation, extracellular space volume, ion and purine concentrations (Ding et al., 2016; Dworak 

et al., 2010). Although the exact function of sleep is still elusive, its role in synaptic homeostasis and 

plasticity is consensual as sleep and wake are important for learning and memory consolidation and are 

associated with molecular mechanisms of synaptic plasticity (Abel et al., 2013; Klinzing et al., 2019).   

Taking into consideration the growing body of evidence of microglial guidance by neuronal activity and 

its potent involvement in synaptic plasticity, we wanted to assess the regulation of microglial dynamics 

and microglia-spine interactions during the vigilance states.  

For this reason, we combined two-photon in vivo imaging of microglial cells and neuronal activity with 

electrophysiological recordings in vigil head-restrained mice. Our results show that global microglial 

motility and complexity are modulated by wake and sleep. At a single-spine level, microglial proximity 

and contact with spines were downregulated during NREM sleep in a state-dependent manner. Finally, 

we found that microglial contact with spines resulted in an increase of spine activity which was mainly 

observed during NREM sleep. 
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MATERIAL AND METHODS 

 

Animals 

To image microglial motility and complexity, we used six to ten-week-old male heterozygous 

CX3CR1+/eGFP mice, expressing enhanced green fluorescent protein (eGFP) under the control of the 

fractalkine receptor (CX3CR1) promoter (Jung et al., 2000). For microglial dynamics and spine activity 

analysis, CX3CR1CreERT2 mice (Parkhurst et al., 2013a) were crossed with ROSA26-STOP-tdTomato 

mice, to generate CX3CR1+/CreERT2; ROSA26-STOP-tdTomato(-/-) mice. All transgenic mice were derived 

from the C57BL/6J strain. Mice were housed in individual cages with bedding and running wheels, 

under 12/12h light/dark cycle and were given access to food and water ad libitum at ALECS Facility. 

All experimental procedures were carried out in accordance with the European institutional guidelines 

and ethical committee (Apafis #DR2014-14 and Apafis #7839).  

 

Induction of Cre activity with Tamoxifen treatment 

Tamoxifen (catalog #T-5648; Sigma-Aldrich) was dissolved in warm sterile olive oil (catalog #8001-

25-0, Sigma Aldrich, warmed at 55oC) at a concentration of 20mg/ml. Six to seven-weeks-old 

CX3CR1+/CreERT2ROSA26-STOP-tdTomato(-/-) mice were injected subcutaneously in the thigh at 0.4mg/g, 

twice 48h apart. 

 

Surgery and habituation 

For surgery, mice were deeply anesthetized with isoflurane (3-4%, Isovet, Piramal Healthcare, UK Ltd.) 

and mounted in a stereotaxic frame (D. Kopf Instruments). Isoflurane anesthesia was maintained at 

concentrations of 1-3% during the surgical procedure. To reduce post-operatory pain and inflammation, 

we administered Carprofen (5mg/kg s.c.) at the beginning of the surgery, and for two consecutive days 

following surgery. After the skull was thoroughly cleaned and exposed, two EEG 

(electroencephalogram) screws were inserted in the frontal and parietal cortex of the right hemisphere 

and two EMG (electromyogram) electrodes were inserted in the dorsal neck muscles. A custom-

designed 0.5-mm diameter cranial implant was firmly glued on the left hemisphere using acrylic-based 
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dental adhesive resin cement (Super bond; Sun Medical). The skull was carefully thinned over the 

somatosensory cortex using a high-speed dental drill until reaching 20-30μm bone thickness. Most of 

the drilling was performed in cold, sterile saline solution which allowed continuous cooling and 

humidification of the bone to avoid heat-induced tissue injury, desiccation of the bone and inflammation. 

To visualize Ca2+ dynamics in spines of L2/3 pyramidal neurons of the somatosensory cortex, we 

performed a small craniotomy (300μm) and injected 500-700nl AAV1.Syn.GCaMP6m.WPRE.SV40 

(UPenn Vector Core, ≥1x1013 viral genomes/ml) at a speed of 0.1μl/min. We used a glass pipette with 

a 20μm diameter tip which was maintained in the brain for 10 additional minutes to avoid backflow. We 

then placed a cover glass on top of a thin layer of cyanoacrylate glue over the thinned skull.  

Following surgery, mice were left to recover for one week. Mice were then subjected to daily head-

restrained habituation sessions over 7-10 days lasting progressively longer (from 10 minutes to 4 hours). 

At the beginning and end of each session, mice were rewarded with several drops of sweetened 

concentrated milk.  

 

Vigilance state recordings 

The vigilance states were monitored using real-time EEG/EMG differential recordings amplifier (Model 

3000, A-M systems). EEG and EMG signals were sampled at 1kHz and band-pass filtered with 0.5Hz-

300Hz and 10-500Hz, respectively. EEG/EMG data were analyzed using a custom-written MATLAB© 

software considering EEG frequency and power, as well as EMG power in 4-sec epochs. Wake was 

determined by increased EMG activity and high theta/delta ratio. NREM sleep was defined by low EMG 

activity and high delta/theta ratio, while REM sleep consisted of high theta activity (6-9Hz) and muscle 

atonia. Sleep and wake episodes were defined using a manually established threshold. Episodes 

containing >90% and <25% of wake were recognized as wake and sleep respectively. One episode of a 

given vigilance state lasted on average 5.86±0.46 minutes. 

 

Two-photon in vivo imaging 

Two-photon microscope (Olympus) with a mode-locked Ti:Sapphire laser (Mai-Tai, Spectra-Physics) 

and 20x water-immersion objective (0.95 N.A. Olympus) was used. Fluorescence was detected using a 
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560nm dichroic mirror coupled to 525/50nm and 650/40nm emission filters for eGFP and tdTomato, 

respectively. Laser power during imaging was maintained below 20mW. 

 

Microglial motility and complexity during wake and sleep experiments. For imaging of microglial cells 

only, the laser was tuned to 900nm considering the excitation wavelength for eGFP. Microglial cells 

were imaged in the somatosensory cortex at a depth of 60-150 μm from the cortical surface. The imaging 

area was 200x200μm with a resolution of 521x521 pixels and pixel size of 0.38μm. Z-stacks containing 

25-35 consecutive images were acquired every 30 seconds, with a step size of 1μm/optical section. A 

typical recording lasted approximately 30-35 minutes (60-70 Z-stacks).  

 

Microglial dynamics and calcium imaging experiments. Imaging of microglial dynamics and spine 

calcium activity was performed using a laser tuned to 980nm for simultaneous excitation of both 

fluorescent proteins, eGFP and tdTomato. Imaging was performed in the L1 of the somatosensory cortex 

at a depth of 60-120 μm from the cortical surface because of higher spine density. The imaging area was 

100x100μm with a resolution of 256x256 pixels and a 0.38μm pixel size. Z-stacks containing 14-16 

consecutive images were acquired every 7 seconds, with a step size of 1μm/optical section. A typical 

recording lasted approximately 35 minutes (300 Z-stacks). 

 

Analysis 

Image processing and analysis were performed using ImageJ (National Institute of Mental Health, 

Bethesda, USA) and custom-written MatLab© code. Prior to realignment, microglial images were 

uniformly adjusted for contrast and brightness to reduce background noise. The Z-stacks for each 

microglial cell were then corrected for drift and movements in the x, y and z planes during time-lapse 

image acquisition. Each volume was registered to a reference volume (the first volume) using shift 

estimation from the cross-correlation peak by fast Fourier transform (FFT). 

Microglial motility and complexity during wake and sleep experiments. We manually delimited and 

cropped regions of interest containing the totality of one microglial cell from the 200x200μm field of 

view. After realignment, standard deviation intensity projections from the Z-stacks were added to 
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generate 2D time-lapse movies. To quantify the complexity of microglial cells during wake and sleep, 

we converted the projections into binary and calculated the Hausdorff fractal dimension (Fernández-

Martínez and Sánchez-Granero, 2014) for each time point. For surface area measurements, we 

thresholded each microglia, converted the projections into binary and measured microglial area 

overtime. Microglial complexity coefficient and surface area during wake and sleep were determined 

by averaging the values obtained for all images during episodes of wake or sleep for each imaging 

session. 

To analyze microglial motility, we performed subtractions between consecutive Z-stack projections. For 

visualization purposes, the lost and gained pixels between each time point were pseudo colored in red 

and blue, resulting in images where red and blue points represented lost and newly formed processes, 

respectively. The number of summed pixels in subtracted images determined the global motility 

coefficient (arbitrary unit). This coefficient was normalized to the volume of each microglial Z-stack.  

Microglial dynamics and spine calcium imaging during wake and sleep experiments. We first identified 

spines using a maximum intensity projection (MIP) of all the images contained in the time series. We 

then identified the time point with the higher intracellular Ca2+ level for each spine. For that time point, 

we scrolled through the Z-stack to find the three planes containing the majority of the spine (3μm 

volume). For each spine, we did a maximum intensity projection (MIP) time-series only from the three 

planes containing the spine. On the MIP time-series, we delimited a 15x15 μm region of interest (ROI) 

centered at the spine. For each spine, we generated a new time-series containing only the ROI. To 

include microglial processes from all planes surrounding the spine, we delimited 7-9 planes 

encompassing the planes above and below the spine and assessed microglial processes around the spine 

of interest. We generated standard deviation intensity (STD) projections for microglial cell images. 

Time-series were cropped at the previously described ROI. The 15x15μm maximum intensity and 

standard deviation projections were used for further analysis of spine activity and microglial dynamics 

respectively. For most of the microglia-spine analyses, we used 11-22 spines/mouse from 5 mice. For 

spine activity during sleep and wake, with and before/after contact, we used 10-18 spines/mouse from 

5 mice. Spines that were not in contact with microglial processes during sleep or wake were excluded 

from analyses (n=16). For microglial proximity with dendritic spines, we used 7-15 spines/mouse from 
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5 mice, including spines that were never contacted by microglial processes. All spines that were very 

close to microglial cell bodies or primary processes were excluded from the microglia-spine distance 

analysis.  

 

To quantify calcium activity in spines, we filtered the signal to remove background noise and measured 

the fluorescence intensity at the center of the spine and calculated the mean (baseline) and the standard 

deviation of the fluorescence intensity over time. Significant Ca2+ events were defined when the 

fluorescence intensity exceeded 0.85*std above the baseline. This threshold was determined by visual 

inspection for several spines allowing us to detect most of the Ca2+ transients. Background fluorescence 

was subtracted for each image.  

To measure the distance and contact duration between microglial processes and dendritic spines, we 

used a custom-made Matlab code that plots the distance between the center of the spine and the moving 

front of the closest microglial process (Figure S3B). Since the size of the spine is variable, the threshold 

for microglia-spine contact was defined by visual inspection. Physical contact between microglial 

processes and dendritic spines was considered when the process was less than 500nm away from the 

edge of the spine and detectable in more than 3 consecutive focal planes. For contact duration, the totality 

of the time points below the threshold was added and multiplied by the time for each Z-stack (7 seconds). 

For the study of microglial dynamics with regards to activity during sleep or wake, we classified spines 

in three categories depending on their level of activity during different vigilance states (Figure S3A): 1) 

for spines active during wake, the ratio of Ca2+ events between wake and sleep was > 1.3; this value 

corresponded approximately to 1*std; 2) for spines mostly active during sleep, the ratio of Ca2+ events 

between sleep and wake was > 1.3 and 3) intermediary spines, active both during wake and sleep, with 

a ratio of Ca2+ events < 1.3. 

For illustration purposes, brightness and contrast of the images were adjusted. 

 

Statistics. All statistical analyses were performed using the Prism V statistical analysis software 

(GraphPad, La Jolla, Ca). For microglial complexity, motility and surface area comparisons during the 

vigilance states, we used Wilcoxon test and all n-values represent individual animals. For experiments 
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assessing microglial dynamics and spine activity, n-values represent individual spines obtained from 

two videos analyzed per animal. For these analyses, we used two-tailed paired t-test where appropriate, 

Kolmogorov-Smirnoff test for cumulative distributions and Pearson’s correlation test for correlation 

analyses. All values reported are mean±SEM. Significance of p<0.05 was used for all analyses. 
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RESULTS 

 

Vigilance states influence microglial motility and complexity  

To examine whether microglial complexity and motility are modified by vigilance states, we performed 

two-photon imaging of microglial cells in the somatosensory cortex while simultaneously assessing the 

electroencephalogram (EEG) and the electromyogram (EMG) (Figure 1A, 1B) in unanesthetized head-

restrained mice. We imaged microglial cells for 35 minutes, and each session included several episodes 

of wake (dark blue) and NREM sleep (pale blue), during which microglial parameters for several cells 

were found to vary (Figure 1C, 1D). The same microglial cell imaged during wake and sleep showed 

increased motility (extensions in blue and retractions in red) and morphology (in black) during wake 

compared to sleep (Figure 1C). Quantifications of microglial morphology and motility in vivo for 34 

microglial cells from 6 mice revealed that microglial surface area (Figure 1E, Wilcoxon test, *p<0.05), 

complexity (Figure 1F, Wilcoxon test, *p<0.05) and motility (Figure 1G, Wilcoxon test, *p<0.05) were 

significantly reduced during sleep when compared to wake.  

 

Microglial motility and complexity are regulated by neuronal activity  

Sleep and wake are characterized by different patterns of neuronal activity that were clearly observed 

during our imaging sessions. During wake, low-amplitude high-frequency desynchronized activity with 

a large spectral range is observed (Figure 2A), whereas sleep contains a larger amount of synchronized 

high-amplitude low-frequency activity with a lower spectral range (Figure 2B). To examine whether 

neuronal activity is an important parameter that affects microglial motility and complexity, we 

performed cross-correlation analysis between these parameters and EEG power. We found that both 

complexity (Figure 2C) and motility (Figure 2D) were negatively cross correlated with the EEG power. 

 

As cross-correlation analysis indicates that microglia seems to be under the influence of the global 

network, we wanted to assess whether changes in motility and complexity are synchronized for several 

microglial cells in a large field of view or if individual microglia behave independently from each other, 

indicating a rather local regulation of motility and complexity. We thus studied the correlation of 
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microglial complexity and motility for microglial cells that are close or far apart (Figure 2E). We found 

that the changes in complexity are well correlated between microglial cells whatever their respective 

distances (Figure 2F), indicating that complexity might reflect global brain activity. On the other hand, 

the modifications of motility are not well correlated, and the correlation worsens as microglial cells are 

further apart (Figure 2G). These data suggest that even though the vigilance states seem to modulate 

microglial motility and complexity, this is done at different levels of integration. Complexity seems to 

respond to global neuronal activity, whereas motility could rather depend on the local network, likely at 

the synaptic level.  

 

Microglial contact with spines is affected by neuronal activity and the vigilance states  

To study microglial motility at the synaptic level, we simultaneously visualized microglial cells and 

fluctuations of intracellular Ca2+ concentration as a proxy of neuronal activity during the vigilance states 

(Figure 3A). To monitor neuronal activity, neurons in the somatosensory cortex were transduced with 

GCaMP6m in order to monitor neuronal activity in mice expressing the reporter gene tdTomato in 

microglia. We found contacts between microglial processes and spines with variable duration lasting on 

average ~4.38±0.42min (Figure S2A). In 35 minutes, active spines were contacted on average 35% of 

the time by microglial processes, even though this time span was highly variable (Figure S2B). 

We next assessed the impact of the vigilance states on local microglia-spine distance and contacts. First, 

we did not find any significant difference in the proportion of spines contacted by microglial processes 

during wake and NREM sleep (Figure 3B, Wilcoxon test, *p<0.05). This is consistent with the fact that 

we did not observe a significant difference in spine activity during NREM sleep and wake (Figure S2C). 

When investigating the distribution of microglial processes around spines during the different vigilance 

states, we found that microglial processes were closer to spines during wake (Figure 3C, Kolmogorov-

Smirnoff, ****p<0.0001). Interestingly, this difference was not observed when processes were very 

close or far from the spine, but for intermediate distances enclosed between 2 and 5μm. Furthermore, 

microglial processes spent slightly more time in contact with microglial processes during wake when 

compared to sleep (Figure 3D, paired t-test, two-tailed, *p<0.05), indicating that NREM sleep may 

counterbalance the positive attraction of neuronal activity. 
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We next wanted to know whether local spine activity affects microglial dynamics. Thus, we studied the 

correlation between the activity of the spine and the duration of microglia-spine contact. We found that 

this correlation was positive and that microglial processes seem to stay longer in contact with highly 

active spines (Figure 3E, Pearson’s correlation test, *p<0.05). To test whether this profile may be 

observed by a random distribution of values for microglia-spine contact and spine activity, we performed 

the same analysis after randomizing our data. We did not find any correlation for this random data set 

(Figure 3F, Pearson’s correlation test, *p<0.05).  

 

NREM sleep limits the positive attraction of microglial processes towards synaptic activity  

Next, we wanted to evaluate the effect of NREM sleep on the positive attraction of microglial processes 

towards synaptic activity. For this reason, we studied microglia-spine contacts in various regimens of 

synaptic activity during the vigilance states. To do this, we classified spines in three categories: spines 

mostly active during wake, spines mostly active during sleep and spines with comparable activity 

between NREM sleep and wake (Figure S3A). For sake of simplicity, we only report here results from 

spines that exhibited activity mostly during one of the vigilance states (spines with comparable activity 

during sleep and wake are presented in supplemental material). As previously, we found that microglial 

processes were closer to spines active during wake (Kolmogorov-Smirnov test, ****p<0.0001, Figure 

4A and S3C). This observation holds true whatever the vigilance state during which the contact was 

monitored (Kolmogorov-Smirnov test, *p<0.05, Figure S3D and S3E). As suggested previously, 

microglial processes were closer during wake both for spines active during wake and spines active 

during sleep, although the difference between wake and NREM sleep was smaller for spine active during 

NREM sleep (Kolmogorov-Smirnov test, ****p<0.0001, Figure 4B and 4C). Spine activity was well 

correlated with microglia-spine contact duration for spines active during wake, but not as well for spines 

active during NREM sleep (Figure 4D and 4E, Pearson’s correlation test, **** p<0.0001). In addition, 

the contact duration was reduced during NREM sleep for spines active during wake (Figure 4F, paired 

t-test, two-tailed, *p<0.05), indicating that those synapses might have a peculiar faith. This was not 

detected for spines active during NREM sleep (Figure 4G, paired t-test, two-tailed *p<0.05).  
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Microglial contact induces spine activity increase during NREM sleep 

Since microglial contact was recently found to increase spine activity (Akiyoshi 2018), we wanted to 

evaluate the impact of the vigilance states in this regard. By quantifying spine Ca2+ transients when 

microglia process where not in contact (before/after contact) or during contact with spines, we confirmed 

that overall spine activity was significantly increased during contact with microglial processes without 

considering the vigilance state (Figure 5B, paired t-test, *p<0.05). Intriguingly, during contact, the 

increase in spine activity was significantly higher during NREM sleep compared to wake (Figure 5C, 

one-way ANOVA, *p<0.05), indicating that the contact-induced increase in activity may be mainly 

occurring during NREM. 

 

DISCUSSION 

In this work, we investigated the impact of neuronal activity and vigilance states on microglial dynamics 

at the network and synaptic level. We report here, that global microglial morphology and motility are 

modulated during the vigilance states and that these variations are at least partly related to changes in 

neuronal activity. We found that microglial morphology was globally following the changes of neuronal 

activity associated to the vigilance states, whereas motility was likely regulated at the synaptic level. 

Interactions between microglial processes and single spines were related to the level of spine activity 

but were impacted by the vigilance states. Finally, microglial contact increased spine activity, mostly 

during NREM sleep episodes.  

 

Changes of activity during various vigilance states  

We analyzed microglial morphology and motility in head-restrained mice who presented several sleep-

wake episodes during a continuous imaging session. Even though sleep episodes were, as anticipated, 

shorter than those observed in freely moving animals (Franken et al., 1999), changes in neuronal activity 

characteristic of NREM sleep were well monitored by EEG recordings. Few episodes of REM sleep 

were detected but too short and rare to be analyzed reliably.  

Local neuronal activity during different vigilance states has been an open question for many years. 

Recent data using imaging combined to electrophysiology indicate that at the somatic level, NREM 
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sleep is associated with a decrease of neuronal activity compared to wake (Niethard et al., 2016; Seibt 

et al., 2017). However, when calcium dynamics is monitored at the dendritic level, the decrease in 

calcium activity is absent (Seibt et al., 2017). In a similar manner, our monitoring of calcium activity in 

spines indicates that calcium activity does not change between wake and NREM sleep at the spine level 

(Figure S2C). The decoupling between somatic and dendritic firing has to be interpreted in the light of 

data indicating that interneurons activity is increased during NREM (Niethard et al., 2016) and that their 

projections on the somato-axonal compartment might gate dendritic activity. With our approach, we 

monitored only excitatory synapses as inhibitory neurons exhibit “en passant synapses” lacking spine 

heads. 

 

EEG activity is coupled with microglial dynamics  

Our findings indicate that NREM sleep is associated with a significant reduction of microglial 

morphological parameters and global motility. Both microglial complexity and surface area were 

reduced, pointing to a global decrease in microglial ramification during sleep. Cross-correlation analysis 

confirmed this result since it indicates that during sleep, when the EEG power is high, microglial motility 

and complexity are low. The opposite relationship holds true during wake. Modifications of microglial 

morphology and motility were observed for single sleep-wake episodes and were correlated with the 

corresponding activity patterns, suggesting a close relationship between neuronal activity and microglial 

dynamics. 

An important finding of our study is that changes in morphology were mostly correlated for several 

microglial cells (<120μm apart) across the sleep-wake cycle, suggesting a global impact of neuronal 

activity on microglial morphology and its degree of ramification. However, it is difficult to distinguish 

the impact of neuronal activity versus the vigilance states. On the other hand, motility changes were not 

well correlated between microglial cells, indicating that motility is intrinsic to each microglia and 

potentially dependent on local mechanisms. These findings suggest that microglial cells are highly 

responsive to changes in neuronal activity occurring during the vigilance states and that microglial 

motility and morphology might rely on different signaling mechanisms.  
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Possible regulation of microglial dynamics during the vigilance states 

The vigilance states are regulated by neuronal populations that send projections over widespread CNS 

areas (Wigren and Porkka‐Heiskanen, 2018). Thus, excitatory and inhibitory neurotransmitters (NTs) 

fluctuate at the cortical level during the vigilance states. Cortical GABA levels were found to be 

significantly increased during NREM sleep compared to wake (Vanini et al., 2012). In line with our 

results, increase in ionotropic GABA transmission in retinal explants resulted in significant reduction of 

microglial motility and morphology (Fontainhas et al., 2011a). During wake, among other NTs, cortical 

norepinephrine and serotonin are increased (Bellesi et al., 2016; Portas et al., 2000), but these were 

found to have divergent effects on microglial cells. Norepinephrine caused microglial process retraction 

in acute brain slices (Gyoneva and Traynelis, 2013), whereas serotonin was found to have chemotactic 

effect for microglial processes (Etienne et al., 2019; Krabbe et al., 2012). Thus, even though microglial 

response to single NTs may be characterized, this should be taken with caution in the complex 

neuromodulatory environment of the sleep-wake cycles and needs to be further assessed. 

 

Besides NTs, several ions exhibit state-dependent changes of concentration (Ding et al., 2016). For 

instance, arousal is associated with a rapid rise in [K+]e, occurring within seconds, along with a slower 

decrease in [Ca2+]e and [Mg2+]e. It has been reported that baseline microglial surveillance and 

morphology are critically regulated by changes in [K+]e via two-pore K+ channel (THIK-1) (Madry et 

al., 2018). However, [K+]e found to induce changes in microglial dynamics (Madry et al., 2018) is far 

beyond the slight concentration modifications (Ding et al., 2016) observed during the vigilance states, 

which makes regulation by THIK-1 unlikely. Thus, changes occurring in the extracellular space during 

the vigilance states are multiple and the exact mechanisms influencing microglial motility and 

morphology remain to be determined.  

 

Neuronal activity positively attracts microglial processes  

In physiological conditions, microglial processes are highly motile, but the properties, the target and the 

function of this dynamics remain unclear. Several studies ex vivo and in anesthetized animals have 

suggested that neuronal activity could control, at least partly, the dynamism of microglial processes 
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(Tremblay et al., 2010; Wake et al., 2009). To better understand the local regulation of microglial 

processes, we first assessed whether spine activity determines the proximity and contact of microglial 

processes with spines and how vigilance states may impact this process. We found that microglial 

processes spent more time in contact with spines displaying high calcium transient frequencies. These 

findings suggest that microglial processes may sense activity and be attracted towards spines depending 

on their activity. These results are in accordance with a recent study showing that microglia are 

preferentially in contact with active spines (Akiyoshi et al., 2018). Interestingly, we found that positive 

attraction toward active spines was affected by NREM sleep as microglial processes where found further 

away from spines and the correlation between the frequency of Ca2+ activity in spines and contact 

duration was reduced.  

 

Mechanisms affecting changes in attraction towards spines during the vigilance states 

The change of microglial processes attraction towards spines between vigilance states warrants further 

investigation and is beyond the scope of this paper but several explanations might be suggested. Purines, 

especially ATP and adenosine, are important chemical signaling molecules promoting attraction and 

retraction of microglial cell processes (Davalos et al., 2005; Dissing-Olesen et al., 2014; Eyo et al., 2014; 

Ohsawa et al., 2012; Orr et al., 2009) Purine concentrations vary during neuronal activity through local 

ATP release from active spines and astrocytes. It is thus possible that ATP release and gradient 

generation, differently regulated during the vigilance states, contribute to the disparity in microglial 

sensing of activity during sleep. Extracellular concentrations of ATP and adenosine also fluctuate during 

the vigilance states; adenosine accumulates during wake, while ATP levels increase at the onset of the 

light phase (Dworak et al., 2010; Porkka-Heiskanen et al., 2000). During this phase, Hayashi found that 

microglial morphology was reduced and proposed that it was due to the decrease in microglial P2Y12R, 

that varies due to the circadian rhythm (Hayashi, 2013). Our experiments were performed at the 

beginning of the light phase when sleep episodes are most frequent. However, the fluctuations of 

morphological parameters were correlated to the change of vigilance state. Due to the fragmented pattern 

of the vigilance states in mice, we can exclude the possibility that the circadian variation of P2Y12R 

expression is responsible for the fast change of morphology that we observed in our 35-minute 
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recordings. Finally, we do not know if changes observed during wake or sleep are due to different 

microglial sensibility to NT or to their fluctuation, and future studies need to assess these possibilities.  

 

Microglia-spine contact modulates spine activity 

Like previously reported by Akiyoshi et al., we also observed an increase in spine activity during contact 

with microglial processes. Unexpectedly, this increase took place during sleep. The impact of this 

change of activity is difficult to assess but raises two intriguing points. First, microglia may modulate 

neuronal activity. This comes as no surprise since several recent reports indicate that microglia can 

modulate neuronal activity in given circumstances through the release of neuroactive molecules (Pascual 

et al., 2012; Zhang et al., 2014a). However, to our knowledge, this is the first report of microglia 

modulating neuronal activity in a specific vigilance state. Second, microglia could participate to 

functions associated with NREM sleep. Since sleep function is associated in general with synaptic 

homeostasis and memory, a tempting speculation would relate these specific contacts with synaptic 

scaling mechanisms. Two predominant theories of synaptic scaling during sleep are hotly debated. The 

active system consolidation theory proposes that sleep is involved in molecular and structural 

strengthening of synapses tagged during wake by active neuronal replay during slow wave sleep (Rasch 

and Born, 2013). Next to the idea of active system consolidation, the synaptic homeostasis hypothesis 

(SHY) suggests a global synaptic downscaling during sleep, which counters synaptic potentiation 

generated during wake (Tononi and Cirelli, 2014). Microglia may find their place in both hypothesis 

since they may affect synaptic activity by releasing cytokines, and neurotrophic factors, and by direct, 

contact-dependent mechanisms (Sheng et al., 2015b). A growing body of evidence suggests that 

microglia could also be involved in structural plasticity during the vigilance states by several 

mechanisms, including phagocytosing opsonized synapses during sleep (Choudhury et al., 2019). 

Microglia could also participate in synaptic plasticity through BNDF release since specifically removing 

BNDF in microglia resulted in reduction of learning-dependent spine formation and that sleep was found 

to promote branch-specific formation of dendritic spines after learning (Parkhurst et al., 2013; Yang et 

al., 2014). 
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Finally, microglia could also drive changes in the sleep-wake cycle. Pro-inflammatory cytokines, 

including interleukin (IL)-1β and tumor necrosis factor (TNF)α, were found to influence sleep pressure 

and enhance duration of NREMS and EEG delta wave power during NREM sleep (Krueger et al., 2011). 

TNFα was further suggested to promote microglial attraction at synapses and participate in the 

modulation of the sleep-wake cycles (Karrer et al., 2015). The possible role of microglial cells in the 

regulation of sleep is not mutually exclusive to our findings and needs to be addressed for a full 

understanding of the contribution of these cells to different and complementary aspects across the sleep-

wake cycle. 

 

In conclusion, we demonstrate that microglial motility and morphology are modulated by the vigilance 

states, both globally and at the level of the spine. Spine activity, and especially the vigilance state in 

which activity is occurring, impacts microglial proximity and contact with spines, resulting in functional 

consequences during contact. Based on our findings, we propose that microglial processes may sense 

neuronal activity particularly during wake and increase spine activity during sleep. These findings 

provide a foundation for future work understanding the mechanisms regulating microglial dynamics and 

microglia-spine activity across the vigilance states and excitingly, the potential functions of microglia 

in synaptic homeostasis. Understanding these mechanisms at the physiological levels is crucial for 

understanding how sleep disruptions and microglial activation in pathological conditions may impact 

these processes.  
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Figures 

 

Figure 1. Microglial complexity and motility are modulated by the vigilance states. (A, B) 

Schematic representation of the experimental setup. (A) Head-restrained mice were trained for 

simultaneous two-photon imaging with electrophysiology (side view). (B) Fronto-parietal EEG and 

neck EMG electrodes were implanted, combined with a thin-skull cortical window preparation and 

calcium indicator injection (top view). (C) Selected frames showing microglial complexity (in black) 

and motility (extensions in blue and retractions in red) for one cell during wake and sleep. (D) Evolution 

of the complexity and motility for three microglial cells (yellow, red and black lines) during an entire 

imaging session containing several episodes of wake and sleep. (E, F, G) Quantification of (E) 

microglial surface area (51.85±2.38 and 48.605±2.18 for wake and sleep respectively, n=6 mice, 5-7 

microglial cells/mouse, Wilcoxon test, *p<0.05), (F) microglial complexity (1.571±0.11 and 1.556±0.11 

for wake and sleep respectively, n=6 mice, 5-7 microglial cells/mouse, Wilcoxon test, *p<0.05) and (G) 

motility (897.56±25.32 and 835.04±26.91 for wake and sleep respectively, n=6 mice, 5-7 microglial 

cells/mouse, Wilcoxon test, *p<0.05) during wake and sleep. Scale bar=10μm. Graphs show mean ± 

SEM. Individual points represent individual animals. 

 

Figure 2. Neuronal activity correlates with microglial complexity and motility. (A, B) Characteristic 

electroencephalogram (EEG) and electromyogram (EMG) signals (left panel), power spectrum (middle 

panel) and color-coded time-frequency graph (right panel) during (A) wake and (B) sleep. (C, D) Cross-

correlation analysis between (C) microglial complexity (r=-0.202, n=6 mice, 5-7 microglial 

cells/mouse) and (D) motility (r=-0.25, n=6 mice, 5-7 microglial cells/mouse) with 

electroencephalogram (EEG) power. (E) Examples of two microglial cells that are close (left panel) or 

far apart (right panel) with their corresponding correlation coefficients for complexity and motility. (F, 

G) Distribution of the correlation coefficient of the (F) complexity (average r=0.63, n=3-7 microglial 

cells/mouse) and (G) motility (average r=0.377, n=5 mice, 3-7 microglial cells/ mouse) between couples 

of microglial cells as a function of their distance. Scale bar=10μm. Graphs show mean ± SEM. 
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Figure 3. Microglia-spine contact is influenced by the vigilance states and neuronal activity. (A) 

Simultaneous imaging of microglial processes (red, arrow) and neuronal GCaMP6 expression (green) 

in the L1 of the primary somatosensory cortex. The arrowheads indicate contacts between microglial 

processes and spines. (B) Percentage of contacted spines by microglial processes during individual 4.2-

minute wake and sleep episodes (0.667±0.027 and 0.608±0.035 for wake and sleep respectively, n=68 

spines from 5 mice, Wilcoxon test, *p<0.05). (C) Cumulative distribution of the distance between the 

closest microglial process with spines during wake and sleep episodes (Kolmogorov-Smirnov test, 

*p<0.05). (D) Percentage of time the spine spends in contact with a microglial process during wake and 

sleep (0.38±0.0285 and 0.342±0.029, n=68 spines from 5 mice, paired t-test, two-tailed, *p<0.05). (E) 

Correlation between Ca2+ spike frequency and the duration of microglia-spine contact (r=0.31, n=68 

spines from 5 mice, Pearson’s correlation test, *p<0.05). (F) Correlation between spine activity and 

duration of microglia-spine contact for random data set (r=-0,09, n=68 spines from 5 mice, Pearson’s 

correlation test, *p<0.05). Graphs show mean ± SEM.  

 

Figure 4. Activity during wake exerts positive attraction towards microglial processes. (A) The 

cumulative distribution of microglia-spine distance for spines active during wake (blue line) and spines 

active during sleep (red line) (Kolmogorov-Smirnov test, *p<0.05). (B, C) The cumulative distribution 

of microglia-spine distance for (B) spines active during wake and (C) spines active during sleep during 

wake and sleep episodes (Kolmogorov-Smirnov test, *p<0.05). All distances are indicated in μm. (D, 

E) Correlation between microglia-spine contact duration and spine activity during (D) wake and (E) 

sleep (r=0.66 and 0.23 for spines active during wake and sleep respectively, n=26 for spines active 

during wake and n=25 for spines active during sleep, from 5 mice, Pearson’s correlation test, *p<0.05). 

(F, G) For episodes of wake and sleep, duration of contact between microglial processes and spines 

active during (F) wake (407.62s±42.36 and 282.15s±39 for wake and sleep respectively, n=26 spines 

from 5 mice, paired t-test, two-tailed, *p<0.05) and (G) spines active during sleep (402.4s±51.5 and 

347.8s±54.33 for wake and sleep respectively, n=25 spines from 5 mice, paired t-test, two-tailed, 

*p<0.05). 

 



111 
 

Figure 5. Microglial contact with spine increases spine activity during sleep. (A) Selected frames 

showing spine activity before/after and during contact with microglial processes. (B) Frequency of spine 

Ca2+ transients during or before/after contact with microglial processes (0.88x10-2±0.00063 and 1.04x10-

2±0.00074, before/after and during contact, respectively, n=68 spines from 5 mice, paired t-test, two-

tailed, *p<0.05). (C) Frequency of spine Ca2+ before/after and during microglial contact during episodes 

of wake (9.41x10-3Hz ± 0.00096 and 8.75x10-3Hz ±0.0009 during and before/after contact respectively, 

n=61 spines from 5 mice, one-way ANOVA, *p<0.05) and episodes of sleep (1.3x10-2±0.0012 and 9x10-

3±0.00081 during and before/after contact respectively, n=61 spines/mouse from 5 mice, One-way 

ANOVA, *p<0.05).  
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Supplementary figures 

 

Figure 1. Characterization of sleep and wake duration and episodes in head-restrained mice. (A, 

B, C) Quantification of wake and sleep (NREM and REM) from 4-hour recordings in head-restrained 

mice. (A) Percentage of time spent during wake, sleep and REM sleep during a 4-hour session (12 4-

hour sessions from 6 mice, 63.43%±1.75%, 35.7%±1.65%, 0.87%±0.16% for wake, sleep and REM 

sleep respectively). (B) Average duration of individual wake, NREM and REM sleep episodes during a 

4-hour session (12 4-hour sessions from 6 mice, 59.56s±3, 41.2s±2.3, 14.4±2.3 for wake, NREM sleep 

and REM sleep respectively). (C) Total number of wake, NREM and REM sleep episodes with varying 

lengths over a 4-hour session (12 4-hour sessions from 6 mice, 163.5±8.24, 131.1±7.4, 6.58±0.99 for 

wake, NREM and REM sleep respectively). (D, E) Quantification of sleep and wake during 35-minute 

imaging sessions. (D) Percentage of time spent awake or in NREM and REM sleep during one imaging 

session of 35 minutes (16 35-minute sessions from 6 mice, 52.4%±3.38, 46.51%±3.29, 1.04%±0.39 for 

wake, NREM and REM sleep respectively). (E) Average duration of individual wake, NREM and REM 

sleep episodes for one imaging session of 35 minutes (16 35-minute sessions from 6 mice, 52.48s±5.77, 

52.07s±5.5 and 8.88±2.2 for wake, NREM and REM sleep respectively). (F) Total number of wake, 

NREM and REM sleep episodes over 35-minute imaging session (16 35-minute sessions from 6 mice, 

23.06s±1.88, 20.19s±1.89 and 1.25±0.37 for wake, NREM and REM sleep respectively). (G) Average 

duration of chosen wake and sleep episodes for morphology and motility quantification (355.68s±39.22 

for wake and 350.44s±37.8) (H) Average duration of wake and sleep for chosen wake and sleep episodes 

(for wake episodes: 348.52±39.28 during wake and 7.16s±2.32 during sleep; for sleep episodes: 

29.2s±4.21 during wake and 321.25±36.59 during sleep).      

 

Figure 2. Description of microglia-spine contact and spine activity. (A) Average duration of 

microglia-spine contact (263.82s±25.1, n=48 spines from 5 mice, 7-14 spines/mouse). (B) Average 

percentage of time the spine spends in contact with microglial processes (35.84%±2.76, n=68 spines 

from 5 mice, 11-22 spines/mouse). (C) Average frequency of spine Ca2+ transients during wake and 

during sleep (0.9x10-2±0.000695 and 1.04x10-2±0.00071, during wake and sleep respectively, n=11-22 
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spines from 5 mice, paired t-test, two-tailed, *p<0.05). (D) Correlation between spine activity and 

number of microglia-spine contacts over 35 minutes (r=0.05, n=6-18 spines/mouse from 5 mice, 

Pearson’s correlation test, *p<0.05) 

 

Figure 3. Definition of spines active during wake and spines active during sleep. (A) An example 

of a spine active during wake (upper panel) and a spine active during sleep (lower panel). The blue and 

red arrows indicate calcium events during wake and sleep, respectively. (B) Analysis of microglial 

motility at the level of the spine by measuring the distance between the moving front of the closest 

microglial process (yellow line) and the spine (encircled). (C) Selected frames showing the minimal 

distances (yellow line) and maximal distances (purple lines) between the closest microglial processes 

and a spine active during wake (upper panel) and a spine active during sleep (lower panel). Scale 

bar=5μm. All distances are indicated in micrometers. (D, E) The cumulative distribution of microglia-

spine distance during (D) wake episodes and (E) sleep episodes for spines active during wake and spines 

active during sleep (Kolmogorov-Smirnov test, *p<0.05). All distances are indicated in μm. 

 

Figure 4. Microglia-spine contact duration and activity for intermediary spines. (A) Correlation 

between microglia-spine contact duration and spine activity for intermediary spines (r=0.017, n=17 from 

5 mice, Pearson’s correlation test, *p<0.05). (B) Duration of contact between microglial processes and 

intermediary spines during wake and sleep (450.88s±81.09 and 366.47s±62.45 for wake and sleep 

respectively, n=17 spines from 5 mice, paired t-test, two-tailed, *p<0.05). (C) Frequency of spine Ca2+ 

transients before/after and during microglial contact for intermediary spines (0.936x10-2±0.0012 and 

1.04x10-2±0.0015, before/after and during contact respectively, n=17 spines from 5 mice, paired t-test, 

two-tailed, *p<0.05). 
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DISCUSSION 

 

Our results suggest that microglial morphodynamic parameters may vary during different brain 

states and these changes may be directly linked to the level and/or patterns of neuronal activity. 

At the spine level, the interactions between microglial processes and spines were related to the 

level of spine activity and were influenced by the vigilance states. Finally, microglia-spine 

contact resulted in modulation of spine activity, which occurred mainly during NREM sleep 

episodes.  

 

1. Limitations of the study 

 

Using calcium imaging, we were only able to observe excitatory spines that have been active 

during the imaging period. We were blind towards inactive or inhibitory spines and studied 

microglial dynamics with this important limitation. Contrary to excitatory spines, very few 

studies have focused on microglial behavior towards inhibitory spines. These were mostly 

conducted in vitro (Lim et al., 2013) or in pathological conditions (Cantaut-Belarif et al., 2017; 

Chen et al., 2014). Thus, the occurrence of microglial contact with inhibitory spines in 

physiological conditions and its functional consequences are currently largely unknown.  

Furthermore, we could not assess the possible preference of microglial processes for spines of 

certain size during the vigilance states due to limited resolution. The size parameter is worth 

considering because microglia showed preference for contacting smaller spines that 

subsequently disappeared in the visual cortex during development (Tremblay et al., 2010a). 

Taking into consideration the absence of structural neuronal marker in our experiments, we 

were unable to assess the fate and potential structural changes at synapses contacted during 

wake or sleep, as well as for spines whose activity increased following microglial contact. 

Future investigations will have to take advantage of these markers in order to obtain a 

comprehensive assessment of microglial dynamics towards all spines. 

 

For experiments assessing microglial dynamics at the spine level, the frequency of image 

acquisition was 7 seconds per Z-stack, which is not best suited for neuronal activity assessment. 

At the time of our experiments, we did not dispose of a resonant scanner with our two-photon 

imaging system. Thus, in order to maintain a reasonable resolution, and image multiple Z-stacks 

with a certain number of planes during several sleep-wake cycles, we opted for this acquisition 
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frequency. Using this acquisition frequency did not result in a significant loss of detection of 

calcium events, probably due to the use of medium kinetics genetically encoded calcium 

indicator (GCaMP6m) and the fact that each spine was contained in several planes of the 

volume.  

 

2. Modulation of microglial morphology and motility in different brain states 

 

In physiological conditions, microglial processes are highly ramified and dynamic, 

continuously surveying the surrounding parenchyma (Davalos et al., 2005; Nimmerjahn et al., 

2005). Despite being the resident immune cells of the brain, recent studies attribute fundamental 

physiological functions to microglial cells, including contribution to synaptic connectivity and 

properties, as well as the regulation of neuronal activity and network synchronization (Akiyoshi 

et al., 2018; Parkhurst et al., 2013; Raghuraman et al., 2019). These newly discovered tasks 

depend on the integrity of microglial morphology and motility, which are regulated by 

mechanisms that have just begun to be elucidated. 

 

1.1 Specific patterns of neuronal activity during sleep and anesthesia administration  

 

It has been suggested that neuronal activity could control, at least partly, microglial morphology 

and dynamics in anesthetized animals and ex vivo (Tremblay et al., 2010; Wake et al., 2009), 

but these findings are almost inexistent in physiological conditions. In two separate studies, we 

assessed microglial morphology and motility during sleep and anesthesia. These states are 

characterized by specific patterns of neuronal activity, with the common denominator being 

increased delta power, suggestive of slow-wave activity dominated states particularly during 

sleep and ketamine/xylazine anesthesia. Barbiturate anesthesia administration also slowed 

neuronal activity but led to isoelectric activity with bursts of high amplitude activity.  

 

1.2 Global reduction of microglial motility during sleep and anesthesia 

 

In all conditions, microglial motility in the somatosensory cortex was decreased compared to 

wake. This finding suggests that global reduction in neuronal activity and/or increased delta 

power may result in global decrease in microglial motility. The degree to which microglial 

motility was reduced in all conditions varied: sleep (~7.5%), pentobarbital (~9%) and ketamine-

xylazine anesthesia (~17%). The observation that the reduction of microglial motility during 
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sleep is significant, but not major, might be explained by several reasons: 1) sleep remains an 

unstable physiological state with regards to anesthesia and microglial processes still need to 

continuously survey the tissue, 2) even though sleep has been perceived as a “passive” state, its 

metabolic rate is only slightly reduced compared to wake, and 3) sleep may play vital functions 

that might involve microglial cells. The reduction of microglial motility was higher in 

anesthetized conditions, which may result from the increased duration and proportion of silent 

states and isoelectric activity during anesthesia (Chauvette et al., 2011; Lukatch et al., 2005). 

The difference we observed between pentobarbital and ketamine-xylazine anesthesia is quite 

interesting and might be associated with the different pathways that are targeted by these 

anesthetics that might impact microglial motility to different extents. Isoflurane anesthesia was 

also found to impact microglial morphology and motility, however, with inconclusive results 

between studies. Microglial surveillance and ramifications were reduced in slices and in vivo 

(Madry et al., 2018a), whereas isoflurane administration increased microglial ramifications in 

vivo (Sun et al., 2019).  

 

1.3 Different regulation of microglial morphology by anesthetic agents 

 

Microglial complexity was significantly reduced with sleep and ketamine/xylazine anesthesia 

administration, but not with pentobarbital anesthesia. This may be due to the shared slow 

oscillations between the first two states, even though these do not present similar cellular and 

network features. For instance, the duration of silent states or the degree of synchrony of slow 

waves differs between sleep and ketamine/xylazine anesthesia (Chauvette et al., 2011). Thus, 

it is possible that microglial morphology is shaped more specifically by the patterns of neuronal 

activity, and not as much the level of activity, like it seems to be the case for motility.  

 

1.4 Variable decrease of microglial morphodynamic parameters during sleep 

 

The design of our sleep/wake experiments allowed us to observe fluctuations of microglial 

morphology and motility within individual consecutive wake and sleep episodes. Even though 

we found a global reduction of microglial motility and morphology in the majority of NREM 

sleep episodes, the extent of this decrease was variable. This might result from the presence of 

different proportions of slow-wave and spindle-rich activity in NREM sleep episodes. 

Furthermore, transitions between states and preceding circumstances might impact these 

parameters. For instance, some sleep episodes were preceded by wake whilst others by periods 
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of fragmented sleep. Thus, neuronal activity might not be similar within these sleep episodes 

and microglial cells might not respond in the same way. It is also possible that the shift from 

one state to another does not influence microglial parameters at the same pace. For instance, 

extracellular ion concentrations change far more consistently and rapidly from wake to sleep 

relative to falling asleep (Ding et al., 2016). In future experiments, faster acquisition frequencies 

may give accurate measurements and assess these aspects more precisely.  

 

3. May microglia contribute to change of vigilance states? 

 

Following the observation of a concurrent fluctuation of microglial parameters and neuronal 

activity during the vigilance states, an important point is to ascertain whether microglial 

changes are following or preceding changes in neuronal activity. Cross-correlation analysis 

suggests that changes in microglial motility may precede changes in EEG power, suggesting 

that microglial motility may start to increase just before or at the transition between states and 

possibly contribute to the state change. Since our acquisition frequency is rather slow (1 Z-

stack=30s), we are not entirely convinced that this is the case and faster acquisition frequencies 

may help ascertain the validity of these results. Nevertheless, the possibility that microglia may 

contribute in switching between states is not completely unexpected since several studies point 

towards a role for microglial cells in driving changes in the sleep-wake cycle. First, microglia 

are greatly equipped to sense adenosine and ATP that mediate sleep pressure and local sleep 

homeostasis (Bjorness and Greene, 2009; Dworak et al., 2010; Madry and Attwell, 2015). 

Microglial cells are capable of releasing pro-inflammatory cytokines, including IL-1β and 

TNFα that are found to influence sleep pressure and enhance EEG delta wave power and 

duration of NREM sleep (Krueger et al., 2011). Furthermore, genetic deletion of cathepsin S, a 

microglia-specific lysosomal cysteine protease in the brain, resulted in a significant reduction 

of EEG delta power during the light phase (Hayashi et al., 2013), suggesting that microglia may 

induce changes in neuronal activity over the sleep-wake cycle. Even if this is the case, global 

motility variation prior to activity change does not exclude the possible regulation of microglial 

motility by neuronal activity at the local level once the vigilance state is established.  

 

On the other hand, microglial morphology appeared to follow changes in neuronal activity, 

suggesting that microglial cells would ramify following the onset of low-amplitude activity as 

observed during wake and vice versa. Taking into consideration our previous observation of 

the potential major influence of patterns of neuronal activity on microglial morphology, it is 
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probable that fluctuations of microglial morphology require sustained changes in patterns of 

neuronal activity and possibly the characteristic neuromodulatory tones observed during the 

vigilance states. 

 

4. Microglial morphology and motility are regulated at different integration levels 

 

Is the temporal evolution of global microglial morphology and motility comparable between 

microglial cells or is it intrinsic to each microglia? Interestingly, our results hint to a contrasting 

regulation of these parameters. Microglial cells in a larger field (~120μm) presented similar 

changes in microglial morphology across the sleep-wake cycle, suggesting a global impact of 

the vigilance states on microglial ramification. On the contrary, changes in microglial motility 

did not evolve in the same manner and were quite dissimilar for cells that were far. The modest 

correlation observed for neighboring microglial cells may arise from the potential presence of 

localized patterns of synchronous neural activity, as it has been observed during running, 

grooming or level pulling in neighboring motor cortical L2/3 neurons (Dombeck et al., 2009; 

Hira et al., 2013). Nevertheless, our observations indicate that microglial motility seems more 

likely to be regulated at the local level. 

 

In addition to the already-described surveillance by large microglial processes, microglia also 

possess thin actin-dependent filopodia processes that allow nanoscale surveillance (Bernier et 

al., 2019). These are found at the tip of microglial processes and their regulation is distinct from 

large processes. In fact, norepinephrine and nitric oxide, both involved in the regulation of 

sleep-wake cycles, drive filopodia extension. It is thus possible that even though the complexity 

and motility of large processes is reduced during sleep, this nanoscale surveillance is affected 

differently during the vigilance states and may serve different functions.  

 

5. Distinct regulation of microglial processes by neuronal activity during the 

vigilance states  

 
Several studies provide evidence that microglial dynamics is not random, but rather activity-

dependent. Microglial processes may be attracted towards sites of increased neuronal activity 

via mechanisms involving NMDAR-dependent ATP release and microglial P2Y12R (Dissing-

Olesen et al., 2014; Eyo et al., 2014). Spines contacted by microglia exhibited higher basal rates 



132 
 

of Ca2+ transients in vivo (Akiyoshi et al., 2018) and processes extended their contact with 

spines after LTP induction in hippocampal slices (Pfeiffer et al., 2016). Our results are in 

agreement with this hypothesis since we observed that microglial processes spent more time in 

contact with highly active spines. 

 

5.1 Activity during wake attracts microglial processes, but is impeded during sleep 

 

Since activity at the spine level does not seem to differ between sleep and wake, and these are 

profoundly distinct states, we investigated their influence on microglial sensing of neuronal 

activity. During wake, microglial processes were overall closer to spines and spent longer time 

in contact with spines that exhibited higher frequency of Ca2+ transients. Sleep was associated 

with an important weakening of this relationship. Thus, microglial processes seem to sense 

neuronal activity predominantly during wake and sleep might hinder this attraction. These 

findings may lead to intriguing theories regarding the purpose for microglial sensing of activity 

during wake and the mechanisms underlying the weakening of microglial attraction during 

sleep. 

 

5.2 May microglial processes sense and tag active synapses during wake? 

 

A recent study suggested that microglia may play a critical role in setting synaptic tags during 

the early phase of activity-dependent plasticity (Raghuraman et al., 2019). Thus, a pleasant 

speculation could be that by sensing activity during wake, microglial processes are directed 

towards synapses that need to be “tagged” for further activity-dependent plasticity. Induction 

of synaptic plasticity and setting of a synaptic tag involved NMDAR activation (Moncada et 

al., 2015) and activity-dependent microglial process outgrowth is also dependent on NMDAR 

activation (Dissing-Olesen et al., 2014; Eyo et al., 2014), providing an intriguing link for 

microglial involvement in the setting of synaptic tags. The candidate molecules employed by 

microglial cells to facilitate mechanisms for long-term potentiation may involve pro-

inflammatory cytokines TNF-α and IL-1β (Raghuraman et al., 2019). 

 

5.3 What mechanisms may contribute to the impediment of microglial process 

attraction during sleep? 
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Since microglial processes seem to be attracted towards spines mostly during wake, what are 

the mechanisms that might change this attraction during sleep? The first reason might be purely 

physical. The increased distance between microglial processes and spines during sleep might 

lead to a critical gap between them, rendering microglial processes too far to sense ATP 

gradient. This is not very likely because even though ATP has a very short half-life, its 

metabolite and in particular ADP may still act as a long-range signal for process outgrowth 

even for distant microglia. The mechanisms responsible for long-range chemoattraction by ATP 

are not known but may include ATP amplification by means of other signaling molecules or 

enhancing ATP response by mechanisms such as ATP-induced ATP release from astrocytes 

(Davalos et al., 2005; Pascual et al., 2012). It is possible that the regulation of these mechanisms 

differs between the vigilance states, contributing to the incapacity of microglial processes in 

properly sensing ATP and purine gradient. Indeed, astrocytic processes were found to be farther 

from the synaptic cleft during sleep, possibly leading to disparity in activity sensing, NT 

recapture and astrocytic gliotransmitter release between the vigilance states. Furthermore, the 

change in extracellular ion concentration during the sleep-wake cycle may impact 

ectonucleotidases activity, and consequently ATP gradient generation and process attraction 

(Wang and Guidotti, 1996). In addition to the signaling molecules, microglial processes also 

need to be properly equipped to sense them and the expression of these receptors may vary with 

the circadian rhythm and possibly the vigilance states (Hayashi 2013).  

 

5.4 May microglial processes sense activity from other neuronal compartments? 

 

Apart from synaptic clefts, it is possible that microglial processes may sense activity from other 

neuronal compartments, such as dendrites and axons. This might occur to a much lesser extent 

because most microglial processes were in direct apposition to synapse-associated elements 

(Tremblay et al., 2010). However, an argument opposed to this hypothesis is that the frequency 

of Ca2+ transients in the parent dendrite did not differ between contacted and non-contacted 

spines (Akiyoshi et al., 2018), suggesting that Ca2+ transients in dendrites may not drive 

microglial process extension. However, to our knowledge, this study did not assess potential 

contacts at the dendrite level with regards to dendritic activity. Taken into consideration the 

increased and synchronized activity in dendrites during spindle-rich NREM sleep (Seibt et al., 

2017), it would be interesting to address microglial dynamics at the dendritic level during the 

sleep-wake cycle.  
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In conclusion, even though the basic mechanism of ATP-dependent attraction of microglial 

processes has been described, there are many gaps and inconsistencies in our understanding and 

much research needs to be done to obtain a comprehensive view. Not much is known about 

how these mechanisms are regulated during the vigilance states and need to be elucidated. 

Nevertheless, the impediment of microglial process attraction during sleep raises fascinating 

questions not only about the underlying circumstances of this phenomenon, but also its 

functional consequences.  

 

6. Microglial contact increases spine activity 

 

Microglial contact with neuronal components has previously been found to increase local spine 

activity or homeostatically downregulate neuronal activity (Akiyoshi et al., 2018; Li et al., 

2012). In our study, we observed an increase in spine activity during contact with microglial 

process. The exact mechanism remains unknown, but microglia possess an arsenal of molecular 

tools serving this purpose. They may secrete many soluble molecules locally, such as cytokines, 

neurotrophic factors and neurotransmitters capable of influencing neuronal activity (Szepesi et 

al., 2018). They may also release extracellular vesicles (EVs) that may increase glutamate 

release at presynaptic sites of neuronal synapses (Antonucci et al., 2012). Finally, they may also 

trigger intracellular Ca2+ elevation by contact-dependent mechanism mediated by neural cell 

adhesion molecules (NCAM) (Sheng et al., 2015b).  

 

6.1 Microglial contact-induced increase in spine activity occurs during NREM sleep 

 

Increase in spine activity during microglial contact took place during NREM sleep. 

Unfortunately, due to our limited acquisition frequency, we were unable to assess with certainty 

whether this increase occurs during slow-wave activity or spindle-rich episodes. Taking into 

consideration the different activity rhythms that constitute NREM sleep and their respective 

functions, assessing the context in which microglia-induced activity increase occurs is 

primordial for understanding its function. 

 

Nevertheless, our findings suggest that, during sleep, microglial roles may be less oriented 

towards sensing neuronal activity, but potentially towards exerting specific functions at 

synapses. One hypothesis is that after having sensed and “tagged” active spines, microglia may 

participate in their strengthening during sleep by increasing their activity. Activity increase 
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might lead to enhanced spine growth, since activity-dependent growth of spines has already 

been established (Kwon and Sabatini, 2011; Maletic-Savatic et al., 1999). Microglia may 

enhance spine formation by secreting BDNF and IL-10 (Lim et al., 2013; Parkhurst et al., 2013). 

In the adult brain, microglia were indeed found to be involved in learning-dependent spine 

formation, but their role in baseline spine formation was not assessed in adults. Our study might 

suggest that even in the absence of a learning paradigm, microglia could modulate spine activity 

through contact with spines. 

 

Akiyoshi et al. suggested that microglia-dependent increase in spine activity was accompanied 

with increased frequency of back-propagating action potentials reflected as dendritic Ca2+ 

transients, that may serve in local network synchronization (Akiyoshi et al., 2018). Taking into 

consideration that spindle-rich NREM sleep is associated with increased and synchronized 

activity in dendrites, it is possible that microglia may participate in local dendritic spindle-

related plasticity, implied by the decoupling of dendritic and somatic firing during sleep. 

Bearing in mind these findings, future studies need to determine the temporal and spatial 

requirements for increased network synchronization caused by contact-dependent microglial 

increase in spine activity. 
 

 

6.2 Microglia may contribute to global downscaling during sleep 

 

Microglial roles during sleep are without doubt not limited to increasing spine activity. A very 

recent study suggested that microglia might be engaged in selective elimination of opsonized 

synapses during each sleep phase (Choudhury et al., 2019). In addition to recognizing specific 

“tagged” synapses, microglia may be involved in global downscaling of synaptic strength via 

proteolytic modification of perisynaptic environment. This might be due to microglial cathepsin 

S secretion which was involved in functional changes in glutamate receptor (Liu et al., 2010; 

Vyazovskiy et al., 2008) and spine density (Maret et al., 2011; Yang and Gan, 2012), as well 

as reduction of the mEPSC mean amplitude (Hayashi et al., 2013). 

 

Taking into consideration the role of the sleep-wake cycles in information processing, learning 

and memory, and the emerging microglial roles in adulthood linked with these processes, future 

experiments need to combine two-photon imaging and electrophysiology with sensory 

modulation and behavioral learning paradigms to assess more precisely the interplay between 

all these parameters. 



136 
 

CONCLUSION 

 

In conclusion, we report that microglial dynamics is modulated by the brain states, and these 

variations are related to changes in neuronal activity. Two physiological states, sleep and wake 

affect microglial morphology globally, whereas microglial motility seems to be intrinsically 

linked to local spine activity. We propose that microglial processes may sense neuronal activity 

and are attracted towards active synapses particularly during wake; however, this relationship 

seems to be hindered during sleep. Microglial contact increases spine activity, and this increase 

takes place mainly during NREM sleep. Our findings contribute to the accumulating evidence 

of the regulation and function of microglial cells in physiological conditions. The novelty of 

our study is in determining how the vigilance states may add another level of complexity to the 

established regulation by neuronal activity and in describing specific microglial functions 

dependent on the vigilance state. Taking into consideration the critical and separate 

involvement of the wake/sleep cycles in information processing, learning and memory, and 

their distinct impact on microglial properties, their concerted action may guide microglia-

mediated fine-tuning of neuronal networks in the adult brain. Sleep disruption, and age- and 

pathology-related changes in microglial parameters may lead to failure of microglia to fulfill 

these emerging homeostatic functions and restoring microglial function is crucial for 

maintaining synaptic homeostasis. 
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Abstract (199 words) 

Neuroinflammation is known to be a major component of stroke, often associated with the 

worsening of outcome. Phagocyte cells, involving resident microglia and infiltrating 

macrophages, secrete toxic molecules and thus represent a potential therapeutic target in 

ischemic stroke. The aim of the present study was to investigate the feasibility of imaging 

phagocytic activity in-vivo after ischemic stroke using NanoGd, a new multimodal imaging 

probe. Following NanoGd intravenous injection in a mouse model of permanent middle 

cerebral artery occlusion, we identified with MRI an inflammatory response in the ischemic 

core and in the prolongation of the corpus callosum. Intravital microscopy performed back to 

back with MRI highlighted both an extravasation of NanoGd in the interstitial space of the 

ischemic lesion and an internalization of NanoGd by phagocytic cells. Ex-vivo analysis 

confirmed NanoGd accumulation within the ischemic lesion and their uptake by immune cells. 

This bimodal imaging approach was finally used to monitor the anti-inflammatory effects of a 

therapeutic molecule. In this study, we showed that NanoGd allowed to monitor phagocytic 

activity in-vivo at the subacute stage of ischemic stroke in a mouse model. Taking together, our 

data suggest that NanoGd-enhanced MRI might serve as an imaging biomarker of post-ischemic 

neuroinflammation. 

 

  



Introduction  

Ischemic stroke is a devastating neurological condition that represents the second cause of 

deaths in Western countries. Neuroinflammation is known to be a major component of stroke 

physiopathology, often associated with the worsening of outcome [1]. It is well established that 

phagocyte cells, including tissue-resident microglia/macrophages and blood-borne recruited 

macrophages, are main mediators of inflammation initiation and continuation following stroke. 

By secreting toxic molecules, they may contribute to tissue damages early in the acute phase of 

stroke, and thus represent potential therapeutic targets [2], [3]. 

The method of reference to image immune cells in-vivo in the pre-clinical setting is intravital 

two-photon microscopy coupled with the use of transgenic mouse lines and/or fluorescent dyes 

[4]. Two-photon microscopy have been used to investigate brain immune cell dynamic and 

interaction with neural environment in several neurological diseases [5], allowing exciting new 

discoveries in mouse models of focal blood brain barrier (BBB) disruption [6], traumatic brain 

injury [7], Alzheimer disease [8] or stroke [9], [10]. However, skull absorption of light prevents 

clinical translation of this method at this time. In addition, only part of the cortex may be imaged 

with this approach due to the low depth penetration of light. Therefore, a complementary 3D 

imaging technique is needed to provide information about macrophage activation into the whole 

brain. Positron emission tomography (PET) associated with radiotracers targeting the protein 

TSPO, biomarker of microglia, is the gold-standard to image inflammation in clinic. In patients 

with ischemic stroke, PET imaging reveals inflammatory phenomena at the lesion site as well 

as remote from the lesion [11]–[13], but only at the subacute (>72 hours) and chronic stages of 

the pathology [14]. Therefore, it cannot be used to study the early phagocytic activity following 

stroke. Over the last decades, contrast agents based on (ultrasmall) superparamagnetic particles 

of iron oxides (U)SPIOs) have been developed as magnetic resonance imaging (MRI) 

biomarkers of inflammation [15]. When injected intravenously, (U)SPIOs are internalized by 



phagocytic cells, which become magnetic and may thus be detected with MRI. Thus, MRI 

coupled with the intravenous injection of USPIOs represents a non-invasive tool allowing to 

image immune cells trafficking across the inflamed central nervous system (CNS) [16], [17]. 

Notably, USPIO-enhanced MRI has been used for tracking phagocytic cells in rodent models 

at the acute and subacute phases of permanent ischemic stroke [18]–[21].  

In this study, we investigate the potential of a novel contrast agent, NanoGd, for the multimodal 

in-vivo imaging (MRI back-to-back with two-photon intravital microscopy) of phagocytes after 

focal cerebral ischemia. Our aim was 2-fold: (1) to evaluate whether NanoGd-enhanced MRI 

allows to monitor in-vivo phagocytic cells following their internalization of NanoGd, and (2) 

to decipher the working mechanism of MRI signals using two-photon intravital imaging. 

Following NanoGd in-vitro characterization, we assessed the potential of NanoGd as an in-vivo 

multimodal phagocytic biomarker in transgenic CX3CR1-GFP mice submitted to permanent 

stroke. 3D high resolution gadolinium mapping and histological staining were performed post-

mortem to corroborate our in-vivo results. Finally, we evaluated the ability of this technique to 

monitor the therapeutic effects of Simvastatin, molecule which have been shown to modulate 

phagocyte response following inflammatory challenges [22]–[24].  

 

Material and Method 

Contrast agent 

The NanoGd nanoparticle is composed of a 16 nm magnetic core of gadolinium fluoride (GdF3) 

[25], coated with bifunctional bisphosphonate polyethylene glycol (PEG) to ensure it 

biocompatibility and functionalized with a Lemke-type fluorophore (LEM-A) for fluorescence 

imaging. The hydrodynamic diameter of NanoGd is 29 nm with a polydispersity index (PDI) 

of 0.251+/-0.003 (PDI=[StDev/MeanSize]^2), and its zeta potential is – 40mV. NanoGd 

synthesis and in-vitro characterization are the subject of a specific paper currently in preparation 



(Karpati S. et al), and we hope to complete this manuscript with a preliminary version of this 

article before the PhD defence. NanoGd cytotoxicity, biodistribution and pharmacokinetic were 

evaluated as described in the SI supplementary material. 

For in-vivo experiments, a dose of 2 mmol gadolinium/kg body weight was injected 

intravenously (i.v.) into the tail vein 24 hours post-pMCAo, immediately after baseline MRI. 

In-vitro microglial culture and immunocytology 

Microglia were isolated from postnatal P0-P1 C57Bl/6 pups and prepared for primary cell 

culture. Briefly, brains were removed and rinsed in phosphate buffer saline with 0.6% glucose 

(PBS-glucose). After removal of the meninges, hemispheres were mechanically dissociated in 

PBS-glucose. Cells were collected and centrifuged, and then seeded in DMEM with 10% foetal 

calf serum (FCS). They were cultured at 37°C in humidified 5% CO2/95% air and medium was 

exchanged at D1, D3 and D7. Microglial cells were collected at confluence (after 15-20 days): 

they were mechanically detached from the dish by agitation and freezing. Cells were then 

replated for 24 h in 12-wells plates containing glass coverslips coated with poly-l-ornithine, at 

a density of 80,000 cells per wells. The following day, microglia cultures were incubated with 

either 0 mM, 0.5 mM or 1.5 mM NanoGd for 24 h, in order to evaluate NanoGd internalization 

in a dose-dependent manner.  

For microglial staining, cells were fixed with 4% paraformaldehyde (PFA). Cells were then 

rinsed in PBS and incubated 1 h with 0.30% Triton X, 1% bovine serum albumin (BSA) and 

5% goat serum (GS) in PBS to block unspecific antibody labelling and permeabilize cell 

membrane. Microglia was stained using a rabbit anti-Iba-1 antibody (1:500; 019-19741, 

FUJIFILM Wako, Richmonds, USA) overnight at 4°C. Cells were then rinsed in PBS and 

incubated 90 min with an anti-rabbit secondary antibody labelled with Alexa fluor 488 (1:1000; 

A21433, Invitrogen, Carlsbad, USA). Finally, cells were rinsed three times in PBS, stained with 

Hoechst and investigated for the presence of NanoGd and Iba-1 positive cells. Images were 



acquired using a Leica TCS-SP5X confocal microscope (Leica Biosystems, Wetzlar, 

Germany).  

In-vivo study design 

Figure 1 show the experimental design of the in-vivo studies. Table 1 summarizes the animal 

number for each group. At day 0 (D0), 22 mice underwent a permanent occlusion of the middle 

cerebral artery (pMCAO) in order to induce a reproducible cortical lesion. Baseline MRI was 

performed at day 1 (D1) post-pMCAO to document the presence of the lesion and of a potential 

brain blood barrier disruption. NanoGd was then immediately administered to 16 of the 22 

operated mice (Group I). The 6 other operated mice did not receive NanoGd and served as 

controls (Group II). Three nonoperated mice (sham) received NanoGd the same day and at the 

same dose as in Group I (Group III). Among those animals, 11 mice (Group I: n=7; Group II: 

n=1; Group III: n=3) were prepared for longitudinal intravital two-photon microscopy. They 

were imaged on the day of injection (D1 post-pMCAO, approximatively 8h following NanoGd 

injection) and followed-up the next day (D2 post-pMCAO, approximatively 28h following 

NanoGd injection). Except for 3 mice (Group II: n=1; Group III: n=2) that were only imaged 

with intravital microscopy, all the mice (n=22) underwent post-contrast MRI at day 3 (D3) post-

pMCAO (48 hours post-NanoGd administration).  

To assess whether NanoGd multimodal imaging allow to detect the effect of an anti-

inflammatory treatment, 6 additional mice were submitted to pMCAo (Group IV). All animals 

underwent a baseline MRI 1 hour after the occlusion (D0) and were then s.c. injected with 

simvastatin for 3 days, twice a day. A subgroup of mice (n=3) were imaged with two sessions 

of intravital two-photon microscopy (D1 and D2). All 6 mice were re-imaged with MRI at D3.  

All animals were sacrificed at the end of the experiment and their brains were sampled for 

histology or X ray phase contrast tomography for 3D depiction of gadolinium brain distribution 

[26].  



 

Table 1 | Subjects and studies design. Summary of imaging exams underwent by each mouse of the study, 

distributed in four experimental groups. 2 and 2  correspond to the first and the second intravital two-photon 

microscopy sessions, and MRI to the post-NanoGd MRI session. Times indicated in hour (30h, 54h or 72h) 

correspond to the exact time of imaging post-pMCAo. Baseline MRI was performed on D1, 24 hours after pMCAo 

induction, and immediately followed by NanoGd i.v. injection. *n=1, represents the mice that died before the 

end of the protocol. Simva: simvastatin; w/o: without. 

Animal experiments 

All experimental procedures involving animals and their care were carried out in accordance 

with the European regulation for animal use (EEC Council Directive 2010/63/UE, OJ L 276,  

Oct. 20, 2010) and this study was approved by our local ethic committee “Comité d’éthique 

pour l’Expérimentation Animale Neurosciences Lyon” (CELYNE - CNREEA number: C2EA 

– 42). The animals were housed in a temperature and humidity-controlled environment (21 ± 

3°C), on 12:12h light-dark cycle, having free access to standard chow and tap water. Animal 

experiments were performed in 8-week-old (24.1 +/- 2.2 g) C57Bl/6 male mice (Janvier, 

France), and 8 to 12-week-old (22.7 +/- 1.9 g) CX3CR1-GFP transgenic male mice (originally 

donated by Serge Nataf in 2012 and bred at the INMG Institute, Claude Bernard University, 

Lyon). 

Induction of focal Cerebral Ischemia 



Focal ischemia was induced at day 0 in mice anesthetized with isoflurane (2%, ISO-VET, 

Piramal Healthcare, Morpeth, UK), by permanent occlusion of the distal middle cerebral artery 

(pMCAo) with iron chloride (FeCl3), as previously described by Karatas et al. [27]. Briefly, the 

right MCA was exposed by subtemporal craniectomy and occluded by placement of a 10% 

FeCl3-soaked filter paper strip on the dura mater, over the trunk of the distal MCA, for 10 

minutes. To alleviate the pain, subcutaneous (s.c.) injection buprenorphine at the dose of 0.05 

mg/kg was made prior to the surgery, and at the end of the surgery, the wound was covered 

with lidocaine. During surgery, body temperature was monitored with a rectal probe and 

maintained at 37 °C using a feedback-regulated heating pad. 

Thinned skull cortical window preparation 

Thinned skull cortical window preparation was performed one day after the permanent 

occlusion of the MCA. For surgery, mice were exposed to isoflurane anesthesia (3-4%) and 

mounted in a stereotaxic apparatus (D. Kopf Instruments). At the beginning of the surgery, 

buprenorphine was administered (0.05 mg/kg s.c.) for post-surgery pain relief. During surgery, 

mice were placed on a heating pad, and their body temperature was maintained at 37°C. After 

the skull was thoroughly cleaned and exposed, a 6 mm diameter custom-made polyamide 

cranial implant was glued. This material has an advantage over the commonly used metal-

containing implants in being compatible with MR imaging. The implant was centered 

approximately -0.5 anterior and +2.5 lateral from Bregma, which corresponded to the periphery 

of the lesion; however, its position was adjusted according to the baseline T2-weighted MRI 

images and the size of the lesion. Thus, the 0.5 mm diameter area encircled both extralesional 

and ischemic tissue. The skull was carefully thinned over this area using a high-speed drill. To 

avoid heat-induced tissue injury, continuous cooling of the bone was performed by repeated 

application of cold, sterile saline solution. When the desired 20-30 μm bone thickness was 



reached, a cover glass was placed on top of a thin layer of cyanoacrylate glue over the thinned 

skull. 

Treatment  

Simvastatin is a molecule from the statin family, competitive inhibitors of 3-hydroxy-3-

methylglutaryl-CoA (HMG-CoA) reductase. which is also known to have immunomodulatory 

effects in vitro [23], [24]. Simvastatin (Sigma-Aldrich, Lyon, France) was activated and 

prepared for in-vivo injection as described on Çakmak et al study [28]: simvastatin was 

dissolved in the vehicle [95% ethanol (40%) and 0.1N NaOH (60%)], the solution was heated 

for 2 h at 50°C. Then, the solution was neutralized with HCl to pH 7.2. The final volume was 

completed by adding distilled water and the 4.0 mg/ml stock solution was stored at -20°C. At 

D0, one s.c. injection of activated simvastatin (40 mg/kg) was performed 1 hour post-pMCAo 

(40 mg/kg), and another one was performed 6 hours post-pMCAo. At D1 and D2, two s.c. 

injections (40 mg/kg) were performed per day 6 hours apart.  

A first in-vivo study was performed to evaluate simvastatin impact on ischemic lesion volume. 

The experimental protocol is described in the SI supplementary material. The second study 

designed to assess whether NanoGd multimodal imaging allow to detect the anti-inflammatory 

effect of simvastatin is described in the “in-vivo study design” part of this M&M.  

MRI  

MRI was performed on a 7T horizontal-bore Bruker Avance II rodent imaging system (Bruker 

Biospin, Ettlingen, Germany).  

To quantify the r1 and r2 relaxivities of NanoGd (in mM-1.s-1), phantoms were prepared with a 

range of twelve gadolinium concentrations going from 0 to 5 mM. To reach the appropriate 

concentrations, NanoGd phantoms were prepared using a 0.5 M stock solution dissolved in 

saline. Measurements were then performed at 25°C. T1 maps were obtained from a fast imaging 

with steady-state procession (FISP) sequence (TE/TR=2.1/4.2 ms; Inversion time (TI): 73,8ms; 



32 echoes) by fitting an inversion/recuperation function to the data. T2 maps were obtained 

from a multiple spin-echo sequence (MSME; TE [interecho delay]/TR 50/5000 ms; 24 echoes) 

by fitting a monoexponential function to the data. 

For in-vivo MRI, mouse anaesthesia was induced with a mixture of air and 3.5% isoflurane and 

then animals were placed in an MRI-compatible mouse cradle. During the acquisitions, 

anesthesia was maintained with 2% isoflurane. The respiratory rhythm was cautiously 

monitored by a pressure sensor linked to a monitoring system (ECG Trigger Unit HR V2.0, 

RAPID Biomedical, Rimpar, Germany), as well as the body temperature thanks to circulating 

heated water. A 50-mm inner diameter birdcage coil was used for transmission and a 15-mm 

diameter surface coil was used for reception.  

For each sequence, 25 slices were acquired from the olfactory bulb to the cerebellum, using a 

field of view (FOV) of 20x20 mm2, a slice thickness of 500 μm and a matrix size of 256x256. 

The in-vivo MRI protocol comprised the following axial sequences: a T1 weighted GRE 

FLASH sequence pre- and post-gadolinium i.v. injection, TE/TR= 3.5/350 ms, bandwidth= 101 

kHz, number of average=3, acquisition time 4 min; a spin-echo T2 weighted image (T2-WI), 

TE/TR= 43.8/5000ms, bandwidth= 40 kHz, number of averages= 6, acquisition time 12 min; a 

T2-star gradient-echo (GRE) FLASH sequence (T2*-WI), TE/TR=  6/750 ms, bandwidth= 40 

kHz, flip angle (FA)= 20°, number of averages= 8, acquisition time 19 min; these parameters 

yielded an in-plane resolution of 78 μm.  

Two-photon intravital microscopy 

For each imaging session, mice were anesthetized with intraperitoneal injection of a mixture of 

ketamine (100 mg/kg) and medetomidine (1 mg/kg). The mice were placed on a heating pad, 

and their body temperature was maintained at 37 °C. Imaging was performed using a two-

photon microscope (Bruker Ultima) with an Insight 3X laser (Spectra Physics) tuned to 980 nm 

for simultaneous excitation of both fluorescent proteins, eGFP and LEM-A. For imaging, a 20x 



water-immersion objective (0.95 N.A. Olympus) was used. To separate green and red 

fluorescence, 560 nm dichroic mirror coupled to 525/50 nm and 650/40 emission filters were 

used. 

Images were acquired at a depth of 50-150 μm at three sites: 1) lesional area, corresponding to 

the ischemic core with mostly activated CX3CR1-GFP cells; 2) perilesional area, 

corresponding to the lesion border zone, containing both activated and ramified CX3CR1-GFP 

cells; and 3) extralesional area, corresponding to the zone furthest from the lesion and 

containing mostly ramified CX3CR1-GFP cells. These sites were determined by visual 

observation of the morphological characteristics of microglial cells and their localization with 

regards to the lesion. Thirty to forty-five consecutive Z-stacks with a resolution of 521x521 

pixels were acquired every minute with a step size of 1μm. A typical recording lasted 

approximately 10-15 minutes (10-15 Z-stacks). To compare the evolution of: 1) CX3CR1-GFP 

cell morphology and number and 2) NanoGd internalization by CX3CR1-GFP cells, the same 

areas were imaged at day 1 and day 2. 

Data analysis 

MRI 

The r1 and r2 relaxivities were calculated with T2 and T1 values obtained from T2- and T1-

maps, using the following formulas: 1/ΔT1= r1 x C; 1/ΔT2= r2 x C (T1 and T2 in sec; C= molar 

concentration in mmol/L). For r1 calculation, a linear regression was made between the 

gadolinium concentration (mM) of NanoGd phantoms and the value 1/T1 associated. The slope 

of the line represents r1 (mM-1.s-1). The same process was applied for r2 measurement.  

Hypointense MR signal volumes in the ischemic lesion were measured, 1) to quantify NanoGd 

accumulation in the ischemic lesion following pMCAo, and 2) to compare this accumulation 

between the vehicle-treated and the simvastatin-treated groups (respectively Group I and Group 

IV in Table I). Hypointense MR signals in the ischemic lesion were thus manually outlining on 



T2*-WI for both groups. Volumes were then calculated by summation of the hypointense 

signals of all brain slices showing brain damage and integrated by slice thickness. For each 

mouse, hypointense signal volume in the lesion was normalized by the ischemic lesion volume 

at 24 hours post-pMCAO determined on baseline T2-WI. Analyses was performed using 

ImageJ software (National Institute of Mental Health, Bethesda, USA, imagej.nih.gox/ij/).  

Two-photon microscopy  

Image processing and analysis were performed using ImageJ, Icy (open source software created 

by BioImage Analysis Lab, Institut Pasteur, France; http://icy.bioimageanalysis.org/) and 

custom-written Matlab software. We first corrected the images for drift in x, y, and z-axis during 

acquisition using a custom-written Matlab program. The correction was accomplished by shift 

estimation from the cross-correlation peak by FFT (fast Fourier transform) between the first 

stack of each acquisition (reference Z-stack) and the following Z-stacks. After realignment, 

CX3CR1-GFP images were uniformly adjusted for contrast and brightness to reduce 

background noise. 

For CX3CR1-GFP cell density count, the first Z-stack from each acquisition was used to 

generate an average intensity projection. The threshold was adjusted for object detection for 

each projection and quantified the number of cells using Spot Detector (Icy). The total number 

of CX3CR1-GFP cell was then divided by the imaging volume/field to generate a measure of 

cell density.  

For the nanoparticle internalization analysis, the first Z-stacks from both channels were used. 

A threshold was set to convert the nanoparticle images to binary and used a median filter to 

remove background noise. Then, the AND function from Image Calculator (ImageJ) was used, 

to obtain the resulting Z-stack containing the colocalized signal from both channels. An average 

Z-projection was generated, and the number of cells that have internalized the nanoparticle was 



counted using Spot Detector. This number was subtracted from the total number of cells in the 

field, providing the percentage of cells that have internalized the nanoparticle. 

Confocal microscopy 

For the in-vitro study, 5 representative areas of 246x246 μm2 were acquired (6-9 Z-stacks) for 

each condition (control, NanoGd 0.5 mM and NanoGd 1.5 mM). The quantification of NanoGd 

internalization by Iba-1 positive microglial cells on these areas will be performed using ImageJ, 

using the same methods described in the subsection “M&M - Data analyses – Two photon 

microscopy”. 

Histology  

For histological analysis, mice were euthanized by intracardiac perfusion with PBS followed 

by perfusion with 4% PFA. Brains were then removed, post-fixed with 4% PFA for 24 hours 

and frozen in methylbutane with dry ice. Finally, tissues were cut into 12 μm sections on a 

cryostat. For the fluorescence analyses, slides were rinsed three times in 0.5% PBS-Triton 

(PBST) and then mounted with Roti-Mount® Fluocare with DAPI. Then, the slices were 

investigated for the presence of NanoGd and CX3CR1-GFP cells. Images were acquired from 

the 12 μm section using an Axio Scope A.1 fluorescence microscope (4 filters, Carl Zeiss, 

Oberkochen, Germany) equipped with a x0.63 AxioCam MRc (Carl Zeiss, Oberkochen, 

Germany). 

X ray phase contrast tomography 

For ex-vivo phase contrast tomography, mice were euthanized by intracardiac perfusion with 

PBS followed by 4% PFA. Brains were then extracted and dehydrated in successive ethanol 

baths: 25% ethanol (24h), 50% ethanol (24h), 75% ethanol (24h) and 96% ethanol (24h). 

Finally, mouse brains were placed inside 2 ml syringes to maintain them in a static position. In-

line phase contrast tomography was performed on beamline ID17 of the European Synchrotron 



Radiation Facility (ESRF) in Grenoble at 26 keV. An indirect detection-based detector with a 

LuAg scintillator, standard microscope optics and a 2048x2048 pixel CCD camera was 

positioned 3-m from the sample to obtain phase contrast. The whole-brain data set was acquired 

at an isotropic pixel size of 7.5-μm. Acquisition time of the 3000 projections was <5 minutes 

per brain. Reconstruction was performed with Paganin algorithm by setting /  to 1000 as in 

[26].  

 

Results 

NanoGd has optimal properties for in-vivo multimodal imaging of phagocytic cells 

First, NanoGd cytotoxicity was evaluated on several human cell lines, including THP-1 

monocytes, HepG2 hepatocytes, A549 epithelial-like cells and HEK 293T kidneys cells. 

Mortality and viability cell tests (LDH and MTT assays) revealed an absence of cytotoxic 

impact for NanoGd on these cell lines (Suppl Figure S1). As a second step, we investigated 1) 

NanoGd fluorescence detection in-vitro and 2) the ability of microglial cells to phagocyte 

NanoGd particles (Figure 2A). NanoGd red fluorescent signal was detected on microglial 

cultures incubated with NanoGd (Figure 2A2 and 2A3), but not in control microglial culture 

(Figure 2A1). Moreover, confocal images showed an internalization of NanoGd by Iba-1 

stained cells following NanoGd incubation (Figure 2A2 and 2A3, white arrowheads). Higher 

magnification highlighted a cytoplasmic location for the NanoGd particles in the microglial 

cells (Figure 2A2 and 2A3, insets). Quantitative analyses are ongoing to see if the proportion 

of NanoGd-labelled Iba-1 cells increases in a dose-dependent manner, and this experiment will 

be repeated in order to obtain n=3 replicates/condition.  

MR signal drops increased on T2 map with increasing NanoGd concentration (Figure 2B1) and 

MR signal enhancement increase on T1 map with increasing NanoGd concentration (Figure 

2B2). Relaxivity parameters were then calculated (Figure 2C). NanoGd r1 relaxivity was 0.98 



mM-1.s-1 and r2 relaxivity was 20 mM-1.s-1. Then, NanoGd biodistribution and pharmacokinetic 

were evaluated in-vivo in healthy mice (n=4). Dynamic images showed an accumulation of 

NanoGd in the liver, the spleen but not in the kidneys immediately after NanoGd injection 

(Suppl Figure S2A), which was constant during the first hour following injection (Suppl Figure 

S2B). From this data, we concluded that NanoGd has a long vascular remanence. This was also 

seen with two-photon microscopy, where NanoGd was still detected in the vessels 24 hours 

after i.v. injection. Therefore, we scheduled the post-NanoGd MRI scan 48h post-injection to 

allow time for the nanoparticle to be eliminated from the vascular compartment at the time of 

scanning.  

NanoGd accumulation in the ischemic core of the lesion is detected with in-vivo MRI 

On baseline T2-WI, a cortical edema indicative of the ischemic lesion was detected for all the 

mice submitted to pMCAo surgery (Dotted white line, Figure 3A). A strong contrast 

enhancement was detected in the ischemic area of pMCAo mice on baseline post-gadolinium 

images (white arrowheads, Figure 3B), indicative of a BBB disruption. Of note, three pMCAo 

mice were not imaged with pre- and post-gadolinium T1 sequences for technical reasons. In 

sham-operated animals, neither cortical lesion nor BBB leakage were detected (Figures 3A et 

3B).  

Due to experimental reasons related to mouse anaesthesia during intravital microscopy 

sessions, two mice died before the post-NanoGd MRI session (Table 1. Group I, n=1; Group 

III, n=1). T2- and T2*-WI acquired 48 hours after NanoGd injection (D3 post-pMCAO) showed 

an accumulation of strong hypointense MR signals within the ischemic lesion of the fifteen 

pMCAo mice from group I (red arrowheads, Figures 3C and 3D). These hypointense signals 

were not found in sham-operated mice (n=1; Figures 3C and 3D) or in pMCAo mice not injected 

with NanoGd (n=5; Figures 3C and 3D).  



For all group I animals, hypointense MR signals were mainly detected on the central part of the 

ischemic lesion, also called ischemic core. Less hypointense signals were observed in the border 

zone of the lesion which surrounds the ischemic core, and we did not detect any signal drops in 

the cortical extralesional area. Examples of this spatial distribution are shown in Figures 4C 

and 4D (see the T2 and T2* hypointense signals delineated by dotted red lines), for four 

representative pMCAo mice. Visually, contrast enhancement in the ischemic core on T2- and 

T2*-WI were quite heterogeneous from one mouse to another (Figures 4C and 4D). 

Quantifications of these MR hypointense signals in the ischemic lesion of group I mice are 

ongoing. Visual analysis of MR images showed a strong co-localization of T1 contrast 

enhancement and T2 hypointense signals for n=6/15 mice, a partial co-localization for n=5/15 

mice and no co-localization for n=1/15 mouse (see examples on Figures 4B and 4C). For the 

three mice that were not imaged with gadolinium sequences, this analysis was not performed. 

Of note, extralesional hypointense MR signals were also detected in several pMCAo mice 

(n=8/15), in the corpus callosum (red arrowheads, Figures 4B and 4C). 

NanoGd accumulation in activated CX3CR1-GFP+ cells is revealed by two-photon 

intravital microscopy. 

To understand the biological substrates of MR hypointense signals, we examined NanoGd fate 

in mouse brains using two-photon intravital microscopy. In a subgroup of pMCAo mice injected 

with NanoGd (n=6), two sessions of microscopy were performed to image the same three 

cortical areas at D1 and D2 following pMCAo: 1) the extralesional area, 2) the border zone and 

3) the ischemic core (Figure 5A). The extralesional area was characterized by the presence of 

resting-state branched CX3CR1-GFP positive cells (Figure 5B and Suppl online movies), the 

ischemic core by the presence of highly activated round CX3CR1+ cells (Figure 5D and Suppl 

online movies) and the border zone by the presence of the two types of cell phenotype (Figure 

5C and Suppl online movies). To ensure that CX3CR1+ cell activation was not associated with 



NanoGd injection, we imaged a pMCAo mouse not injected with NanoGd. With intravital 

microscopy, highly activated round CX3CR1+ cells were also detected in the ischemic lesion 

(dotted white lines on Suppl Figure S3C). 

Following NanoGd injection, two-photon images showed NanoGd diffusion from the blood 

sector to the brain parenchyma in the ischemic core. This phenomenon was moderate in the 

border zone and almost non-existent in the extralesional area (Figures 5B-D and Suppl online 

movies). Our analyses also stressed out the high amount of CX3CR1+ cells that have 

internalized NanoGd particles in the ischemic core and to a lesser extent, in the border zone 

(yellow signal on the right images, Figures 5C and 5D). When looking at CX3CR1+ cells that 

have internalized NanoGd, we distinguished two type of cell phenotype: large “jellyfish” like 

cells, which probably correspond to activated microglia (white arrowheads on Suppl Figure S4; 

Figures 5C-D and Suppl online movies)  and small round shape cells, very mobile, which 

probably correspond to infiltrated macrophages (white arrows on Suppl Figure S4; Figures 5C-

D and online movies). We also detected red signal that seems to correspond to NanoGd 

accumulation in CX3CR1-GFP negative cells, on the ischemic core and the border zone (blue 

arrows on Suppl Figure S4; Figures 5C-D and online movies). By contrast, we did not observe 

colocalization of CX3CR1+ cells and NanoGd in the extralesional area (yellow signal on the 

right images, Figure 5B). Cortical two-photon imaging of sham-operated mice revealed neither 

CX3CR1+ cell activation, NanoGd diffusion in the brain parenchyma, nor NanoGd 

internalization by CX3CR1+ cells (Suppl Figure S3A).  

These observations were supported by our first quantitative analyses. Quantification of 

CX3CR1-GFP cell numbers per area showed an increase of CX3CR1+ cells in the ischemic 

core and in the border zone from D1 to D2, but not in the extralesional area (data not shown). 

The percentage of CX3CR1+/NanoGd+ cells was quantitatively higher in the ischemic core (80 

to 90%) than in the border zone (60 to 65%) and it was negligible in the extralesional areas. In 



addition, this percentage of CX3CR1+/NanoGd+ cells increased from D1 to D2 (Figure 5E). 

Quantitative analyses presented in this part were made for four of the seven pMCAo mice 

imaged with intravital microscopy. The global analysis is ongoing. 

Post-mortem analyses confirm NanoGd presence in the ischemic lesion and its 

internalization by phagocytic cells.  

To make sure that MR signal drops did not come from NanoGd within brain capillaries mice 

were euthanized by intracardiac perfusion in order to remove any NanoGd particle that could 

remain within the blood sector. On high resolution X ray phase contrast images, hyperintense 

signals were still visualized inside the ischemic core (dotted red line, Figure 6B), and they co-

localized with in-vivo hypointense MR signals (dotted red line, Figure 6A). Beside the ischemic 

hyperintense signals, extralesional hyperintense signals were also detected in the prolongation 

of the corpus callosum on phase contrast images (red arrowheads Figure 6B), as observed in-

vivo on T2-WI (red arrowheads Figure 4B and 6A).   

Histological analyses highlighted the same spatial distribution for CX3CR1+ cells as described 

with intravital microscopy: 1) ramified CX3CR1+ cells characteristic of resting-state microglia 

were found on the extralesional areas of the brain and closed to the border zone, 2) large round 

shape CX3CR1+ cells surrounded the ischemic core, corresponding to the border zone and 3) 

the ischemic core was rich with both large round shape CX3CR1+ cells and small CX3CR1+ 

cells (Figure 6C). We then focused on each of these areas. In the ischemic core of the pMCAo 

mice injected with NanoGd, highly activated CX3CR1+ cells were often associated with red 

fluorescent signal corresponding to the NanoGd (white arrowheads, Figure 6D3). Higher 

magnification suggested an intracellular location for NanoGd (magnified inset, Figure 6D3). In 

the border zone, CX3CR1+ cells also presented an activated phenotype and some of them 

colocalized with NanoGd (white arrowheads and magnified inset, Figure 6D2) whereas in the 

extralesional area, CX3CR1+ cells were not associated with red fluorescence (Figure 6D1). In 



the sham-operated mice, histological staining showed resting-state microglia in the cortical area 

but no NanoGd presence was observed (Suppl Figure S3B).   

Assessment of simvastatin anti-inflammatory effects using NanoGd multimodal imaging.  

Finally, to investigate the potential of NanoGd multimodal imaging to measure the impact of 

an anti-inflammatory treatment, we worked with simvastatin, which have been shown to have 

neuroprotective effects in stroke rodent models [29]–[31]. First, we wanted to assess the impact 

of simvastatin treatment on ischemic lesion volume in our pMCAo mouse model. Suppl Figure 

S5A represents the experimental protocol designed to evaluate this impact. There was no 

significative difference of lesion volume between simvastatin-treated mice (n=9) and vehicle-

treated mice (n=9) (Suppl Figure S5C).  

In parallel, we imaged a group of simvastatin-treated pMCAo mice injected with NanoGd 

(Table I, Group IV) using our bimodal (MRI/two-photon microscopy) imaging method, to 

evaluate whether this method could give some insights on potential anti-inflammatory impact 

of simvastatin following ischemic stroke (see experimental design on Figure 1B). Du to 

experimental reasons related to intravital microscopy anaesthesia protocol, one mouse died 

before the post-NanoGd MRI session. On T2- and T2*-WI, we compared the presence of 

hypointense MR signals in the ischemic lesion between simvastatin-treated pMCAo mice (n=5) 

and non-treated pMCAo mice injected with NanoGd (respectively Group IV and Group I in 

Table I). Example of T2-WI for representative mice from both groups are showed on the Figure 

7A, where dotted red lines delineated the hypointense MR signals in the ischemic core. 

Quantitative analyses are ongoing to measure and compare the volume of these hypointense 

MR signals for simvastatin-treated group and non-treated group. Of note, hypointense MR 

signal were also detected for simvastatin-treated mice in the corpus callosum (red arrowheads, 

Figure 7A1). To go further, a subgroup of simvastatin-treated pMCAo mice (n=2) were also 

imaged with two-photon microscopy, on D1 and D2 following pMCAO surgery. As for non-



treated mice (Figures 5B and 7B and Suppl online movies), we observed the same phenomena 

of NanoGd diffusion in the brain parenchyma and internalization by CX3CR1+ cells in the 

border zone (Figure 7B) and the ischemic core, but not in the extralesional area (Suppl online 

movies). Quantification of CX3CR1+ cells number and of CX3CR1+/NanoGd+ cell percentage 

in these areas are ongoing and will offer more precise information regarding simvastatin impact 

on NanoGd internalization and CX3CR1+ activation.  

 

Figures  

 
Figure 1 | Experimental design. A. Experimental timeline for Group I (pMCAo + NanoGd), Group II (pMCAo 

without NanoGd) and Group III (Sham + NanoGd). B. Experimental timeline for Group IV (pMCAo + NanoGd 

+ Simvastatin). Red arrows represent simvastatin s.c. injection, spaced from 6 hours each day. Intravital 2γ μscopy 

(1): intravital two-photon microscopy, session 1; Intravital 2γ μscopy (2): intravital two-photon microscopy, 

session 2. 

 



 
Figure 2 | NanoGd in-vitro characterization. A. Microglia primary cultures internalized NanoGd. Confocal 

images of Iba-1 stained microglial cells incubated with (A2, 0.5 mmol/L; A3, 1.5 mmol/L) or without NanoGd 

(A1). (Scale bars: 50 μm for overview images; 10 μm for magnified insets). B. NanoGd increased T1 and T2 MR 

contrast. On T1 cartography, MR signal increases with gadolinium concentration increase (B1) whereas on T2 

cartography, MR signal drops with the increase of gadolinium concentration (B2). C. Measurement of r1 (orange) 

and r2 (blue) relaxivities by linear regression connecting NanoGd phantoms gadolinium concentration to the value 

“1/Ti”, where Ti means either T1 or T2. 

 



 
Figure 3 | In-vivo multiparametric MRI. Pre- (A-B) and post-NanoGd (C-D) MRI for three representative mice, 

a pMCAo mouse and a sham-operated mouse both injected with NanoGd, and a pMCAo mouse not injected with 

NanoGd. For each sequence, only one transversal slice is showed. T2 weighted images (A) show the presence of 

an ischemic lesion in pMCAo mice (dotted white lines), but not in the sham mouse. Blood brain barrier (BBB) 

breakdown was assessed using a T1 weighted sequence, pre and post (B) gadolinium injection. T1 enhancement 

in pMACo mouse brain is indicative of BBB disruption (white arrowheads). 48 hours following NanoGd injection, 

its presence at the ischemic lesion was observed using T2 (C) and T2* (D) weighted sequences. Red arrowheads 

indicate the presence of hypointense signals in the ischemic lesion of the pMCAo mouse. NanoGd is also detected 

in the vessels of the sham-operated mouse, illustrating a slight heterogeneity in NanoGd pharmacokinetic from 

one mouse to another. Gd: gadolinium. w/o: without. (Scale bars: 1mm). 

 

 



 

Figure 4 | Spatiotemporal pattern of NanoGd distribution following pMCAo. Baseline MRI (A-B) and post-

NanoGd MRI (B-D) for 4 representative pMCAo mice injected with NanoGd. For each sequence, only one 

transversal slice is showed. Dotted white lines delineate the ischemic lesion on baseline T2-WI (A). White 

arrowheads indicate T1 enhancement following gadolinium injection on T1 weighted images (B), indicative of 

BBB disruption. On post-NanoGd T2-WI (C), dotted white lines delineate the ischemic lesion and dotted red lines 

the hypointense signals within the lesion, indicative of NanoGd presence. Red arrowheads point out hypointense 

signals remote from the lesion, along the corpus callosum. The same legend is used for post-NanoGd T2*-WI (D). 

On these T2*-WI, NanoGd is still detected on the vessels of some mice, highlighting the heterogeneity in NanoGd 

pharmacokinetic from one mouse to another. (Scale bars: 1mm) 



 
Figure 5 | Characterization of NanoGd interaction with phagocytic cells with two-photon intravital 

microscopy. A. Schematic representation of the ischemic brain for a pMACo mouse. The three areas imaged with 

two-photon microscope are represented (green boxes): 1= the extralesional area; 2= the perilesional area or border 



zone; 3= the ischemic core. B-D. For a pMCAo mouse injected with NanoGd, representative images from two-

photon microscopy sessions are showed, for the first imaging session (D1) and the second one (D2). For each brain 

localization, left images represent fluorescent signals from CX3CR1-GFP positive cells (in green) and NanoGd 

(in red), and the right images showed the area where CX3CR1-GFP positive cells and NanoGd colocalize (in 

yellow). (Scale bar: 20μm). E. Percentage of CX3CR1-GFP cells that have internalized the nanoparticle in the 

extralesional area (n=2), the border zone (n=4) and the ischemic core (n=3). 

  



Figure 6 | Ex-vivo detection of NanoGd following pMCAo. Hypointense signals on in-vivo T2-WI (A) 

colocalized with hyperdense signals observed on maximum intensity projection (MIP) obtained from ex vivo X 

ray phase contrast image (B). Dotted red lines represent signal observed in the ischemic lesion and red arrowheads 

signals exterior from the lesion. Both images were obtained from the same pMCAo mouse injected with NanoGd. 

(Scale bar: 1 mm). Brain stained sections of a representative pMCAo mouse (C-D). C. The ischemic lesion is 

delineated with dotted white line on a macroscopic view of the ischemic hemisphere. (Scale bar: 250 μm). D. 

Higher magnifications show CX3CR1-GFP cells and NanoGd in the extralesional area (D1), the border zone (D2) 

and the ischemic core (D3). White arrowheads point at the area of colocalization between CX3CR1-GFP cells and 

NanoGd. (Scale bars: 50 μm for overview images; 20 μm for magnified insets). 

 



 

Figure 7 | Multimodal NanoGd imaging to investigate Simvastatin anti-inflammatory effect. A. Qualitative 

evaluation of simvastatin effect on MR signal related to NanoGd in a pMCAo treated mouse (A1) compare to a 

pMCAo non treated mouse (A2). On the T2-WI, the dotted white line delineated the ischemic lesion, the dotted 

red line the hypointense signals within the lesion and the red arrowheads point out hypointense signals exterior 

from the lesion. (Scale bars: 1mm). B. Two-photon intravital microscopy images show CX3CR1-GFP positive 

cells and NanoGd interaction in the border zone of a pMCAo treated mouse and a pMCAo non treated mouse, at 

D1 (session 1) and D2 (session 2). Ø treated mice: non-treated mouse. (Scale bar: 20μm). 

 

  



Discussion 

Tissue-resident microglia and recruited macrophages are important mediators of tissue damage 

following ischemic stroke. However, in vivo monitoring of phagocytic activity is currently 

limited at the acute stage of this condition. New tools enabling in vivo assessment of early 

phagocytic activity would thus be highly desirable. In this study we have developed a 

multimodal protocol to image in-vivo phagocytic cells in a mouse model of permanent 

ischemia. Our MRI results highlighted a systematic accumulation of T2/T2* signals in the 

ischemic core of the pMCAo mice, associated with remote MR signal voids in the corpus 

callosum. With two-photon microscopy, we confirmed the correlation between MR signals and 

NanoGd internalization by CX3CR1-GFP phagocytic cells, validating the potential of NanoGd-

enhanced MRI for phagocyte tracking at the acute and subacute stages of ischemic stroke.  

The originality of our method is based the use of a new multimodal nanoprobe, the NanoGd. In 

the present study, we demonstrated its optimal properties for MR imaging, with a r2 relaxivity 

equivalent to (U)SPIO relaxivities [32], [33], reference as T2/T2* contrast agent. NanoGd 

fluorescence spectra have already been measured with fluorescence spectroscopy on NanoGd 

phantoms (Karpati et al., in preparation), and here we confirmed its efficient detection both in-

vitro and in vivo with fluorescence, confocal and two-photon microscopies. Moreover, NanoGd 

detection with new generation spectral photon-counting computed tomography (SPCCT) was 

demonstrated in a recent study performed on healthy rodents [25], which highlighted its 

potential as contrast agent for X-ray imaging. Regarding NanoGd physicochemical properties, 

our nanoparticle has a small hydrodynamic diameter, a long vascular remanence and a negative 

zeta potential characteristic of anionic compounds. These properties are known to be associated 

with great uptake by circulating macrophages [15], [34]. Except for the zeta potential, they are 

quite similar to the ones of (U)SPIOs [15], [35], widely used nanoparticles for phagocyte 

labelling and immune cell tracking imaging [36]. In a primary model of microglia cell culture, 



we confirmed this hypothesis, demonstrating its efficient internalization by phagocytic cells. 

All these data, taking together with our results showing the absence of NanoGd cytotoxic 

effects, confirmed the great properties of our nanoprobe as a trimodal contrast agent and 

promising biomarker of phagocytosis. 

Following NanoGd injection in mice submitted to permanent ischemia, reproducible 

hypointense MR signals were almost systematically detected in the ischemic core of the lesion. 

Post-mortem high-resolution phase contrast images confirmed this spatial distribution of 

NanoGd in the mouse ischemic brains. Two distinct and probably complementary mechanisms 

may explain NanoGd accumulation within the ischemic brains of pMCAo mice. The first 

mechanism is the so-called “Trojan horse mechanism” by which activated peripheral immune 

cells may internalize NanoGd in the blood stream before being subsequently recruited at the 

ischemic lesion by inflammatory signals. The second mechanism is represented by the crossing 

of disrupted BBB by free NanoGd, followed by secondary internalization by phagocytic cells 

present at the lesion site [37], [38]. In the ischemic core and to a lesser extent, in the border 

zone, we observed with two-photon microscopy sessions both NanoGd diffusion from the 

vessels to the brain parenchyma and activated CX3CR1-GFP cells phagocytosing NanoGd. 

Moreover, observation and preliminary quantifications of two-photon images obtained during 

these two imaging sessions pointed out: 1) an increase in CX3CR1-GFP+ cells presence in the 

ischemic core and the border zone, associated with 2) an increase of NanoGd internalization by 

CX3CR1-GFP cells. In the current study, we used the fractalkine receptor CX3CR1, expressed 

on the surface of both resident microglia and recruited macrophages [39], [40], to image and 

characterize phagocytic cells. While this marker is common to both cell types, visual 

observations of CX3CR1-GFP cell morphologies highlighted the presence of two distinct cell 

population: first, small round shape CX3CR1-GFP cells, essentially in the ischemic core, which 

are most probably recruited macrophages [41], and second, highly activated “jellyfish” like 



CX3CR1-GFP microglial cells [42] in the ischemic core and border zone. Moreover, highly 

mobile NanoGd-laden CX3CR1-GFP negative cells were detected in the ischemic core. We 

hypothesized that these cells may correspond to neutrophils, which are CX3CR1 negative 

immune cells [43] presents at the lesion at the acute and subacute phases of permanent stroke 

[44], and which have the potential to internalize magnetic nanoparticles [45]. These results are 

in line with literature studies performed on pMCAo mice, showing that the presence and 

activation of immune phagocytic cells is major at the lesion site from 1 day to 5 days following  

ischemic stroke [46]. If microglia and neutrophils presence and activation in the lesion in this 

model have been well documented using specific histological markers [44] or fluorescent 

reporter mice [47], it is more challenging to obtain temporal information that is specific from 

recruited macrophages, and data regarding the kinetic of macrophage infiltration following 

pMCAo are scarce [48], [49]. Several studies have described the temporal dynamic of blood-

borne macrophage infiltration in mouse models of transient cerebral ischemia and 

photothrombosis permanent stroke [50]–[52], but inflammatory mechanisms differ from one 

model to another [44], [53]. Thus, the precise characterisation of cellular population associated 

with NanoGd internalisation following pMCAo warrants further investigation. Nonetheless, 

regardless of the cell origin, these first analyses suggest that MR hypointense signals observed 

in the ischemic lesion 48 hours following NanoGd injection reflect at least in part phagocytic 

activity in the ischemic lesion.  

Interestingly, the spatial distribution of NanoGd-associated hypointense MR signals differs 

from the results obtained in USPIO-enhanced MRI studies in the same stroke model, despite 

quite similar experimental chronologies [19], [54], [55]. In these studies, strong hypointense 

MR signals were observed surrounding the ischemic lesion, and ex-vivo analyses revealed a 

colocalization between the iron oxide particles and immune phagocytic cells in the same area 

[54]. NanoGd and USPIOs biocompatibility is ensured by distinct types of coating [19], [55], 



chemical component which is known to strongly influence nanoparticle uptake by phagocytes 

[15]. Thus, an internalization of these nanoparticles by different cell populations based on their 

affinity for nanoparticles coating could be one hypothesis to explain MR signal spatial 

difference following permanent ischemia. Indeed, following pMCAo in mice, microglia 

cells/recruited macrophages and their anti/pro-inflammatory subsets had been associated with 

specific localizations in the ischemic core and in the border zone [46], [47], [56]. In this study, 

sample preparation for post-mortem analyses did not offer the possibility to assess the 

phenotype of immune cells that have internalized NanoGd. Thus, future studies should aim at 

confirming this hypothesis.  

To give some therapeutic perspectives to our study, we wanted to determine whether the 

NanoGd imaging approach could provide a marker of disease regression upon anti-

inflammatory treatment, and we tested its efficiency to monitor the potential therapeutic effects 

of a treatment with simvastatin in pMCAo mice. Indeed, in-vitro studies highlighted promising 

immunomodulatory properties for simvastatin, showing an effect on immune cell migration and 

phagocytic properties [23], [24], [57]. To the best of our knowledge, this study is the first 

investigating the impact of a treatment with simvastatin in a pMCAo mouse model. At first 

sight, our results suggest that simvastatin does not impact the lesion size on this model. 

Quantifications of NanoGd accumulation in the ischemic lesion on MRI and two-intravital 

microscopy data are ongoing and will allow to obtain in-vivo information on simvastatin impact 

on phagocytic activity following ischemic stroke.   

In the present study, we extended the work done with nanoparticle-enhanced MRI for in-vivo 

phagocyte tracking, using for the first time MRI and intravital microscopy back-to-back in a 

murine model of ischemic stroke. Two-photon intravital microscopy is a powerful method, 

complementary to noninvasive 3D imaging techniques by providing the spatial and temporal 

resolution required to monitor the dynamics of immune cells in CNS diseases, including stroke. 



Notably, it has been used in a mouse model of photothrombosis stroke, to monitor and 

characterize in-vivo neutrophils interaction with microglia at the acute phase of ischemic stroke 

[10], [58], highlighting a potential protective role for microglia against tissue damages induced 

by neutrophils [47]. As mentioned above, microglia/macrophage dynamic differs from one 

stroke model to another [53], and still have to be characterized following pMCAo. Due to the 

reproducible cortical localization of the pMCAO infarct, intravital microscopy is ideal to 

investigate immune cell involvement in this model. This technique has already been used in 

pMCAo mice to investigate T cell behavior following stroke, but to our knowledge, our study 

provides the first two-photon intravital microscopy data on CX3CR1-GFP cell activation in the 

ischemic lesion following pMCAo.        

The absence of efficient treatment to protect the brain following stroke has resulted in a clear 

need to develop surrogate markers for monitoring the clinical response to therapy. In this study, 

we proposed a multimodal imaging method to assess in-vivo phagocytic activity following 

stroke, based on the injection of a novel nanoprobe, the NanoGd. We have shown that 

minimally-invasive NanoGd-enhanced MRI provides an in-vivo surrogate marker of 

inflammation. Most importantly, we demonstrated that this method is a promising tool for 

studying phagocyte spatiotemporal dynamic associated with the ischemic lesion in transgenic 

animals. 
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SI Material and Method 

NanoGd cytotoxicity study 

Cell lines 

NanoGd potential cytotoxicity was assessed on 4 human cell lines, all supplied by the American 

Type Culture Collection (ATCC). A549, epithelial-like cells from human lung, were cultivated 

in DMEM 4.5 g/L glucose + Glutamax medium supplemented with 10% fetal calf serum (FCS) 

and 1% penicillin-streptomycin. THP-1, monocytes from human peripheral blood, were 

cultivated in RPMI 1640 + Glutamax medium supplemented with 10% FCS, 1% penicillin-

streptomycin, 1% pyruvate and 4.5 g/L glucose. HepG2, human hepatocytes, were cultivated 

in MEM _ + Glutamax medium supplemented with 10% FCS, 1% penicillin-streptomycin and 

1% pyruvate. Finally, HEK 293T, embryonic kidney cells from human, were cultivated in the 

same medium than HepG2 cells. 

Cell survival assays 

NanoGd impact on cell lines was evaluated using two complementary assays: the LDH assay, 

assessing cell membrane damages and the MTT assay, assessing mitochondrial activity. 

Briefly, the different cell lines were seeded in 96-well plates at 105 cells/mL for A549, HEK 

and HepG2, and 5.105 cells/mL for THP-1, and incubated for 24 h at 37°C and 5% CO2. After 

24h, cells were exposed to different NanoGd concentrations (0.5 nM to 5000 nM). Cell survival 

assays were performed at 48 hours and 72 hours after NanoGd incubation. 

For LDH assay, cells were incubated with 100 μL of CytoToxOne reagent for 10 minutes at 

22°C. 50 μL of Stop solution were then added in each well and cell death was measured by 

fluorescence with ELISA plate reader (Victor, Perkin Elmer) at λex= 544 nm and λem=572 nm. 



For MTT assay, 10 μL of MTT Sigma-Aldrich solution (5 mg/mL in PBS) were added to each 

well, and the 96-well plates were incubated for 2 hours at 37°C. 100 μL of lysis buffer (SDS 

10%) were then added to each well, and after 3 hours of agitation, cell viability was determined 

by absorption measurement (λ = 570 nm) with ELISA plate reader (Victor, Perkin Elmer). 

Simvastatin treatment study design 

An experimental protocol was designed to evaluate simvastatin impact on ischemic lesion 

volume, based on the protocols of two studies: the study of Marinescu and colleagues on 

minocycline treatment [1] and the study of Potey et al investigating atorvastatin impact 

following mouse ischemic stroke [2]. Suppl Figure S4A describes this experimental design. On 

day 0 (D0), 18 mice underwent permanent occlusion of the MCA, immediately followed by a 

baseline MRI. Simvastatin (n=9) or its vehicle (n=9) was randomly administered as a two-dose 

per day subcutaneous injection once every 6 h starting 1 hour after pMCAO induction, at D0 

and D1. MRI was repeated 24h (D1) and 48h (D2) after pMCAo. The lesion volume was 

extracted from the MRI data to compare Simvastatin-treated versus vehicle-treated animals: it 

was delineated on apparent diffusion coefficient (ADC) map at D0, and on T2-weighted images 

at D1 and D2. The imaging protocol was followed by animal sacrifice and brain preparation for 

histology. 

 

MRI 

Evaluation of biodistribution, pharmacokinetic and Simvastatin treatment with MRI were 

performed on the same 7T magnet, using the same anesthesia protocol and mouse monitoring.  

Biodistribution and pharmacokinetic 

To evaluate biodistribution and pharmacokinetic, healthy mice (n=4) were imaged using a 35 

mm inner diameter whole-body transmit-receive coil for signal acquisition. To avoid movement 

artifacts due to the respiration, the acquired sequence was triggered on mouse respiratory 



rhythms. Abdominal axial T1 images were obtained with a dynamic RARE 2D sequence 

(TE/TR= 7.51/960.77 ms; FA= 90; number of averages= 2; acquisition time 1.32 min; number 

of repetitions= 25). NanoGd (2.0 mmol/kg) was injected i.v in the magnet between the second 

and the third repetitions. For this scan, 37 slices were acquired from the top of the heart to the 

bottom of the liver, using a FOV of 35x35 mm2, a slice thickness of 1 mm and a matrix of 

128x128.   

Simvastatin treatment study 

To measure the lesion volume at D0 (baseline MRI), EPI-diffusion images (acquisition time 4 

min) were acquired with TE/TR= 23.3/5000 ms using 3 b-values (0, 1532 and 3045 s/mm2 in 

slice direction). Apparent diffusion coefficients (in mm2/s) were then calculated by fitting 

monoexponential model function on a pixel-by-pixels basis. At D1 and D2, T2 weighted images 

were acquired using a spin-echo sequence (TE/TR= 75/5000 ms; number of averages= 4, 

acquisition time 8 min). For all scans, the field of view was 20 20 mm2, slice thickness 0.8 mm 

and the number of slices 17. Matrix size was 256 256 for the T2 sequence and 128x128 for the 

diffusion sequence. 

 

Data analysis 

Image analysis was performed using ImageJ software (National Institute of Mental Health, 

Bethesda, USA imagej.nih.gox/ij/). 

Biodistribution and pharmacokinetic  

Biodistribution in the liver, the spleen, the kidneys and the vascular sector was assessed by 

looking at contrast enhancement on the T1 weighted images obtained before contrast agent 

injection (1st repetition), and at the end (25th repetition) of the dynamic RARE sequence post-

injection. To study NanoGd pharmacokinetic, MR signal changes during the time was observed 

by delineated one region of interest (ROI) for the liver, one for the spleen, one for each kidney 



and three on the abdominal aorta on T1-WI for each mouse. MR signal intensity values in these 

ROI were averaged for the four mice, for each sequence repetition time. Results are expressed 

in a graph representing the variation of the mean MR signal value in relation to the time.  

Simvastatin treatment study 

On ADC maps (D0) and T2 maps (D1 and D2), three ROI were outlined: the ischemic lesion, 

the ipsilateral hemisphere and the contralateral hemisphere. Volumes were calculated by 

summation of the lesion areas of all brain slices showing brain damage and integrated by slice 

thickness. Brain swelling (increased ipsilateral hemisphere volume compared with 

contralateral) was assessed by dividing the ipsilateral (IH) by the contralateral hemisphere (CH) 

value: IH/CH. To avoid overestimation attributable to brain swelling, lesion volume (V) was 

normalized by the ratio: Vx(CH/IH). 

 

Statistical analysis 

To determine differences in ischemic lesion volume between simvastatin-treated mice and not-

treated mice, a Student t-test (BiostaTGV website, Institut Pierre Louis UMR 1136 and UPMC, 

France) was used. In all comparisons, a p-value <0.05 was considered statistically significant. 

  



SI Supplementary Figures 

 

Supplementary Figure 1 | Evaluation of NanoGd cytotoxicity. Cytotoxicity was measured in different human 

cultured cells: HepG2, HEK, A549 and THP1. Cells were in contact with 0-5000 nM of NanoGd for 48h and 72h. 

A. NanoGd impact on cell survival assessed by LDH assay. “T+” correspond to the positive control with 100% 

cell death. Mean ±SD of duplicate. B. NanoGd effect on cell viability assessed by MTT assay. Mean ±SD of 

duplicate. 



Supplementary Figure 2 | Biodistribution and Pharmacokinetic. A. NanoGd biodistribution was assessed with a 

dynamic T1 sequence for the liver, the spleen and the kidneys. Left T1-WI were acquired before gadolinium 

injection and right T1-WI after gadolinium injection, at the end of the dynamic sequence. Green arrows point the 

organs of interest ant the MR contrast enhancement. B. Graph represents the evolution of MR signal intensities 

in the liver, the spleen, the kidneys and the blood compartment across the time. Mean ±SD (n= 4 mice).  

 

 

 

Supplementary Figure 3 | Fluorescence imaging in the control groups. Fluorescence imaging of NanoGd in a 

sham-operated mouse injected with NanoGd (A-B). A. Two-photon intravital microscope images of a cortical area 

at D1 (A1) and D2 (A2) following sham-operation. Right images represent fluorescent signals from CX3CR1-

GFP positive cells and NanoGd, and the left images showed areas where CX3CR1-GFP positive cells and NanoGd 



colocalize (in yellow). (Scale bar: 20μm). B. Brain stained sections show CX3CR1-GFP cells in a cortical area of 

a sham-operated mouse. NanoGd was not detected with histological analyses in sham-operated mouse brains. 

(Scale bars: 50 μm for overview images; 10 μm for magnified insets). C. Two-photon intravital microscope image 

for a pMCAo-operated mouse non injected with NanoGd, showing the border zone of the ischemic lesion at D2 

following pMCAo. Dotted white lines delineated areas with activated CX3CR1-GFP cells. (Scale bar: 20μm). 

 

 

 

Supplementary Figure 4 | Cellular populations within the ischemic core. Two-photon intravital microscope 

images A to C are screenshots from a movie of the ischemic core, for a representative pMCAo mouse. White 

arrowheads point at some of the “jellyfish” like CX3CR1-GFP positive cells that we assume to be microglia cells. 

White arrows show some of the small round shape, highly mobile CX3CR1-GFP positive cells, which are likely 

to be recruited macrophages. Blue arrows point at red signal that seems to correspond to NanoGd accumulation in 

CX3CR1-GFP negative cells and which may be neutrophils. All of these cells are highly dynamic across the time. 

(Scale bar: 20μm).      

 



Supplementary Figure 5 | Measurement of simvastatin impact on ischemic lesion with MRI. A. Experimental 

timeline of simvastatin treatment study. B. Example of ROI delineation in ADC map at D0 (B1) and T2-WI at D1 

(B2) and D2 (B3). Dotted red line represent the ROI “ischemic lesion”, dotted white line the ROI “ipsilateral 

hemisphere” and dotted yellow line the ROI “contralateral hemisphere”. C. Quantification of ischemic lesion 

volume at D0, D1 and D2 for the not treated group and the simvastatin group. Volume were normalized to 

ipsilateral and contralateral hemisphere volumes. Results are expressed in mean ±SD.   
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The Shh receptor Boc is important for myelin formation and repair
Mary Zakaria1, Julien Ferent2, Ines Hristovska3, Yousra Laouarem1, Amina Zahaf1, Abdelmoumen Kassoussi1,
Marie-Eve Mayeur3, Olivier Pascual3, Frederic Charron2 and Elisabeth Traiffort1,*

ABSTRACT
Myelination leads to the formation of myelin sheaths surrounding
neuronal axons and is crucial for function, plasticity and repair of the
central nervous system (CNS). It relies on the interaction of the axons
and the oligodendrocytes: the glial cells producing CNS myelin.
Here, we have investigated the role of a crucial component of the
Sonic hedgehog (Shh) signalling pathway, the co-receptor Boc, in
developmental and repairing myelination. During development, Boc
mutant mice display a transient decrease in oligodendroglial cell
density together with delayed myelination. Despite recovery of
oligodendroglial cells at later stages, adult mutants still exhibit a
lower production of myelin basic protein correlated with a significant
decrease in the calibre of callosal axons and a reduced amount of
the neurofilament NF-M. During myelin repair, the altered OPC
differentiation observed in the mutant is reminiscent of the phenotype
observed after blockade of Shh signalling. In addition, Boc mutant
microglia/macrophages unexpectedly exhibit the apparent inability to
transition from a highly to a faintly ramified morphology in vivo.
Altogether, these results identify Boc as an important component of
myelin formation and repair.

KEY WORDS: Myelin, Oligodendrocyte, Axon, Hedgehog signalling

INTRODUCTION
Myelination in vertebrates is fundamental for the rapid conduction of
action potentials along axons, and stands as a crucial regulator of
function, plasticity and repair in the central nervous system (CNS)
(Fields, 2008; Tomassy et al., 2016). This complex process relies on
reciprocal interactions between neurons and oligodendrocytes: the
CNS myelin-forming cells. Oligodendrocytes are the progeny of
oligodendrocyte precursor cells (OPCs) and arise in multiple waves
(Kessaris et al., 2006). In the dorsal forebrain, a major wave of OPC
production arises from the germinative zone located just beneath the
developing corpus callosum at the perinatal period. This wave
coincides with the bulk of myelination occurring early after birth
(Kessaris et al., 2006; Tong et al., 2015; Azim et al., 2016; Naruse
et al., 2016). OPCs are maintained in the adult CNS, continue to
divide, and generate new myelinating oligodendrocytes that
participate in the myelin-remodelling (Young et al., 2013) and the
learning processes (Gibson et al., 2014; McKenzie et al., 2014).

Importantly, these progenitors also constitute a major reserve of cells
scattered throughout the whole CNS that are able to be recruited
towards a demyelinated area, which leads to myelin regeneration
(Lopez Juarez et al., 2016; Franklin and Ffrench-Constant, 2017).

The type l transmembrane receptor Boc (brother of Cdo) is related
to cell-adhesion molecules of the immunoglobulin superfamily and
was initially implicated in the positive regulation of myogenic
differentiation (Kang et al., 2002). Besides this role, Boc is a target
and signalling component of the sonic hedgehog (Shh) pathway
(Tenzen et al., 2006; Allen et al., 2011; Sanchez-Arrones et al., 2012;
Yam and Charron, 2013). By binding Shh with high affinity, Boc
transduces Shh signal in the guidance of commissural axons in the
embryonic spinal cord (Okada et al., 2006; Tenzen et al., 2006) and in
the segregation of ipsilateral retinal ganglion cell axons at the optic
chiasm (Fabre et al., 2010). Later during postnatal development, Boc
forms a Shh receptor complex with the main receptor patched 1 and is
required for Shh-mediated cell proliferation of cerebellar granule
neuron progenitors (Izzi et al., 2011). Finally, the strong expression of
Boc in neurons of the cerebral cortex revealed its requirement for
circuit-specific synapse formation (Harwell et al., 2012).

Recently, the Shh signalling pathway has been implicated in
oligodendrocyte and myelin production during development and
repair. A Shh-dependent domain in the germinal zone of the dorsal
forebrain was found to produce large numbers of oligodendroglial
lineage cells in the postnatal brain (Tong et al., 2015). Moreover, we
and others have shown that modulation of Shh signalling can promote
myelin repair (Ferent et al., 2013; Samanta et al., 2015; Sanchez et al.,
2018). However, the role of Boc in oligodendrogenesis and
myelination remains unexplored.

Here, we have examined the endogenous expression and function
of Boc during OPC and myelin production, and in the context of
CNS demyelination. During development, we show that, besides its
previously described expression in callosal projection neurons, Boc
can be detected in progenitors arising from the dorsal forebrain that
are fated to the glial cell lineage. The Boc-null mutant revealed a
transient oligodendroglial phenotype that delayed myelination and
was associated with a decrease in the calibre of callosal axons. In the
context of CNS demyelination, we demonstrate a high upregulation
of Boc in the lesion. Together with the impaired myelin regeneration
reminiscent of the phenotype observed when Shh signalling is
inhibited, Boc mutant mice reveal morphological differences of
microglia and/or macrophages in vivo, suggesting an inability to
switch from a highly to a faintly ramified morphology. Altogether,
this work identifies the Boc receptor as a new regulator of
developmental myelination and remyelination.

RESULTS
Boc is expressed in neurons and neural progenitors that are
fated to the glial cell lineage
The first two postnatal weeks correspond to an intense period of
production and differentiation of OPCs derived from the germinative
zone of the dorsal forebrain and leading to active myelination in theReceived 6 October 2018; Accepted 28 March 2019
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rodent brain (Kessaris et al., 2006). On day 8 after birth (P8), the
highest Boc expression was detected in the cerebral cortex, and in
the external granular and Purkinje cell layers of the cerebellum, as
previously described (Izzi et al., 2011; Harwell et al., 2012). In
addition, Boc could be observed in the germinative zone located just
beneath the developing subcortical white matter (Fig. 1A). This area
comprises undifferentiated progenitors, which give rise to
oligodendroglial lineage cells that notably migrate to and populate
the developing corpus callosum and the cerebral cortex during the
first postnatal weeks (Menn et al., 2006; Seri et al., 2006; Kim et al.,
2011; Azim et al., 2016; Naruse et al., 2016). At P8, in the
germinative zone, 79±3% of Boc+ cells co-expressed the proliferation
marker Ki67 (Fig. 1B,D), while 32±2% were labelled for the Olig2
marker (Fig. 1C,D), which at this developmental stage is expressed in
both oligodendrocyte and astrocyte progenitors (Naruse et al., 2017).
Remarkably, most Olig2+ cells detected at a distance from the

germinative areawere devoid of Boc expression (white arrowheads in
Fig. 1C). At P15, Boc-expressing cells were mainly observed in
layers II to V of the cerebral cortex (Fig. 1E). The majority of these
cells (97±1%) co-expressed the marker of mature neurons NeuN and
corresponded to 58.5±4.9% of the neuronal population (Fig. 1F
and data not shown). The remaining 3±1% co-expressed Olig2 and
constituted only 2±1% of all the Olig2+ oligodendroglial cells in
the cortex (Fig. 1G,H). In the corpus callosum, a faint Boc
immunofluorescence was detected in the cytoplasm of a few
scattered cells co-expressing Olig2 and the adenomatous polyposis
coli (APC/CC1) marker. Boc+ cells represented only 15±2% of the
oligodendroglial population in the corpus callosum at P15 (Fig. 1H).
Given the decrease of Boc immunostaining from P8 to P15, we
investigated Boc expression at earlier time points (Fig. 1I). In situ
hybridization led to the detection of a high level of Boc transcription
at P0 and P5 in the dorsal germinative zone. A much weaker signal

Fig. 1. Boc is expressed in neurons and neural progenitors of the dorsal forebrain germinative zone. (A) Tiled image visualizing Boc immunoreactivity in
the P8 mouse brain. The four white arrows indicate the germinative zone of the dorsal forebrain. (B,C) Double immunohistofluorescence at the level of the
germinative zone showing Boc+ cells co-expressing (white arrows) or not (white arrowheads) the proliferation and oligodendroglial markers Ki67 and Olig2,
respectively. The right panels are magnifications of the boxed areas. (D) Quantification of Boc+ Ki67+ and Boc+ Olig2+cells. (E-G) Visualization of Boc expression
in the cerebral cortex from a P15 mouse (E, cortical layers are indicated on the left) and its co-expression with markers of mature neurons (NeuN, F) and of
oligodendroglial cells (Olig2, G). Insets show boxed areas at higher magnification. (H) Triple immunostaining using Boc, Olig2 and APC antibodies visualizes a
Boc+ cell co-expressing Olig2 and APC in the corpus callosum at P15 (white arrowhead). The graph shows the quantification of the percentage of Olig2+ cells co-
expressing Boc in the cerebral cortex or corpus callosum. (I) Boc in situ hybridization of brain slices from P0, P5, P8 and adult mice at the level of the dorsal
germinative zone. The dotted lines delineate the germinal zone at P8. The boxed area in the adult shows a scattered Boc+ cell in the corpus callosum. (J) Boc
immunostaining of brain slices from P0, P5 and P8 Boc knockout mice. (K) Boc+ and PDGFRa+ immunostaining in the dorsal germinative zone and developing
corpus callosum in the P0Bocmutant. The boxed area indicates anOPC still present in the germinative zone and likely expressing Boc (yellow puncta). (L)Gli1 in
situ hybridization in the dorsal germinative zone at P0. The brackets in I,J,L indicate the position of the germinative zone and developing corpus callosum. Scale
bars: 500 μm in A; 50 μm in B,C,E,H-L; 25 μm in F,G. Data are mean±s.e.m. cc, corpus callosum; Cx, cerebral cortex; EGL, external granular cell layer;
PL, Purkinje layer; St, striatum.
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was observed at P8 and became restricted to a few scattered cells in
the corpus callosum of the adult animal (boxed area in Fig. 1I). In
contrast, Boc+ cells were clearly detected at all time points in the
cerebral cortex (Fig. 1I and data not shown). To improve the
visualization of low Boc protein levels, we took advantage of the
insertion of a gene-trap β-galactosidase cassette inside the Boc gene
of the Boc mutant mouse strain (Okada et al., 2006). A fragment of
the N-terminal extracellular domain of Boc is still expressed in these
mutants. We have shown previously that the Boc antibody reacts with
this inactive fragment, which is retained intracellularly but inactive,
and that the signal from this antibody disappears in Boc-null mutant
mice (Allen et al., 2011). Therefore, we immunostained brain slices
derived from P0, P5 and P8 mutant mice. In agreement with in situ
hybridization experiments, we detected a high Boc signal in the
dorsal germinative zone from P0 pups progressively decreasing until
P8 (Fig. 1J). Moreover, double immunostaining of mutant P0 brain
slices by using antibodies against Boc and PDGFRa, a marker of
OPCs, showed that most OPCs were devoid of Boc expression,
althoughwe could not completely exclude the possibility that a subset
may maintain Boc expression (boxed area in Fig. 1K). Remarkably,
transcripts of Gli1, the transcriptional effector of Shh signalling, were
also detected at a low level in the P0 dorsal germinative zone
(Fig. 1L). These data thus indicate that, besides its neuronal
expression during the early postnatal period, Boc is present in
proliferating progenitors of the dorsal germinative zone.

Boc regulates the perinatal production of undifferentiated
neural progenitors and OPCs
The expression of Boc in progenitors of the dorsal germinal zone
during the period of oligodendrocyte production raised the
possibility that Boc could be involved in the dorsal wave of
oligodendrogenesis. To test this hypothesis, we analysed Boc
mutant mice and immunolabelled P0 forebrain sections derived
from wild-type and Boc mutant pups for Olig2 and the neural stem
cell marker Sox2 (Ellis et al., 2004; Dai et al., 2015). In the
germinative zone of the dorsal forebrain, the neural progenitors co-
express both markers, but progressively reduce Sox2 expression
while they migrate towards the developing subcortical white matter
and commit into astro- or oligodendroglial progenitors. As
expected, immediately after birth, we observed a high number of
Sox2+ and Olig2+ cells in the developing subcortical white matter
from the wild-type animals (Fig. 2A). Olig2+ cells co-expressed
either a high or a low level of Sox2, reflecting the ongoing reduction
in Sox2 expression (Fig. 2A, top, inset). In the P0 Boc mutant
animals, we observed a significant decrease in the density of Sox2+

(132±13 versus 210±12 cells/0.1 mm2, P=0.002) and Olig2+ (92±8
versus 164±7 cells/0.1 mm2, P=0.0005) cells compared with the
wild-type animals (Fig. 2A,B). However, the proportion of Sox2+

neural progenitors upregulating Olig2 was not changed, suggesting
that the absence of Boc reduced the production of Sox2+ neural
progenitors but not their commitment into Olig2+ progenitors.
Although Boc was mostly expressed in neural progenitors and not

in OPCs, we next tested whether the absence of Boc in the former
may nevertheless alter the proliferation of OPCs. Therefore, we
immunostained P0-P1 slices with the OPC and proliferation
markers PDGFRa and Ki67, respectively. The density of
PDGFRa+ OPCs was significantly decreased in Boc mutant
compared with the wild-type pups (140±15 versus 196±18 cells/
0.1 mm2, P=0.04). The proportion of proliferating PDGFRa+ Ki67+

cells was also decreased (31±5 versus 42±2%, P=0.03) not only at
P0 (Fig. 2C,D) but also at P5 (Fig. 2E,F). In contrast, this percentage
collapsed at P8 in the wild-type animals (20±2 versus 49±3%,

P=0.0001), whereas it remained stable in the mutant (33±1 versus
29±4%) (Fig. 2E,F), suggesting a prolonged OPC proliferation in
the mutant beyond that observed in wild-type animals. To determine
whether Boc may be involved in the previously reported
Shh-mediated proliferation of OPCs, we used a mixed glial cell
culture containing astrocytes, oligodendroglial cells and microglia
derived from the dorsal forebrain of P0-P1 wild-type and Boc
mutant pups. In agreement with the reduced number of
oligodendroglial cells generated in the dorsal germinal zone of the
mutants, the percentage of Olig2+ cells was significantly reduced
(18.5±1.1 versus 28.8±3.2%, P=0.023; Fig. 2G,H). Two hours after
a short pulse of the proliferation marker BrdU, we observed a
lower percentage of Olig2+ cells able to incorporate BrdU in the
mutant than in the wild type (11.5±0.8 versus 19.3±0.7%;
P=0.0002). Moreover, supplementation of the culture medium
with recombinant Shh protein (4 nM), which is able to bind its
receptor complex (Izzi et al., 2011), significantly increased the
percentage of wild-type Olig2+ BrdU+ cells (29.1±2.4 versus 19.3±
0.7%, P=0.002). In contrast, Shh stimulation only slightly and
non-significantly increased the proliferation of OPCs derived from
Boc mutants (13.0±0.5 versus 11.5±0.8%) (Fig. 2G,H). Gli1
transcription was increased by about fourfold when Shh was
added to the wild-type cells (4.4±0.8 versus 1.2±0.5, P=0.02),
although it was not significantly upregulated when Shh was added
to the mutant cell culture (2.1±0.5 versus 1.3±0.4; Fig. 2I),
suggesting that Boc is required in neural progenitors from the dorsal
germinative zone for their progeny to respond to Shh. In a consistent
manner, Gli1 transcription level determined by quantitative RT-PCR
in the forebrain from wild-type and Boc mutant mice indicated
significant Gli1 downregulation in P8 and P15 animals (Fig. 2J).
Then, to evaluate whether mutant OPCs could be refractory to any
stimulation, the mixed glial cell cultures were treated with SAG
(3×10−7M), an agonist of the key transducer of Shh signalling
smoothened (Smo). SAG induced an increase in the percentage of
Olig2+ cells incorporating BrdU in both the wild-type (28±2 versus
18±1, P=0.003) and the mutant (18±2 versus 11±1, P=0.02; Fig. 2K,
L) cultures, in disagreement with the idea of a full refractory state of
Boc mutant progenitors. In addition, purified OPCs derived from
wild-type and mutant pups responded to Shh in a similar manner to
the mixed glial cell cultures (Fig. 2M,N), further supporting the
hypothesis that Boc inactivation affects OPC proliferation
independently of the other glial cells present in the culture.

The absence of Boc decreases MBP production in the dorsal
forebrain
The decrease in OPC production at the perinatal period suggested
that the absence of Boc may influence developmental myelination
of axons that takes place during the first three postnatal weeks in
rodents. Therefore, we performed western blot analysis using the
dorsal forebrain from P8, P15 and adult wild-type or mutant mice
(Fig. 3A,B). MBP protein was significantly decreased in Boc
mutant compared with wild-type mice at P8 (0.631±0.009 versus
1.018±0.022, P<0.0001), P15 (0.807±0.018 versus 1.036±0.017,
P=0.0001) and in adulthood (0.845±0.007 versus 1.093±0.04,
P=0.0001). In order to determine whether MBP decrease was
related to a reduced density of oligodendroglial cells throughout the
whole process of developmental myelination, we first analysed the
transcription of Olig2 using quantitative RT-PCR. In Boc mutants,
as expected, Olig2 transcription was significantly decreased at
P0-P1 (0.73±0.01 versus 1.00±0.02, P=0.005) and remained lower
compared with the wild type at P8 (Fig. 3C). To further support
this observation, we analysed the generation of OPCs
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and oligodendrocytes by immunostaining P8, P15 and adult brain
slices with markers of OPCs (PDGFRa) and mature
oligodendrocytes (APC). At P8, the density of PDGFRa+ OPCs
was slightly but significantly lower in the mutant compared with the
wild-type corpus callosum (Fig. 3D,E). Similarly, we observed a
lower density of Olig2+ and APC+ cells. However, the percentage of
APC+ cells in the Olig2 population (19±2 versus 22±2%) was

unchanged, indicating that the absence of Boc did not alter the
capacity of OPCs to differentiate into mature oligodendrocytes
(Fig. 3F,G). At P15, in agreement with the absence of regulation of
Olig2 transcription observed at this age, the populations of
Olig2+ and APC+ cells remained comparable in both genotypes
(Fig. 3H,I). Similarly, no significant modification in the ability of
OPCs to differentiate into APC+ oligodendrocytes was observed in

Fig. 2. Boc regulates the perinatal production of neural progenitors and OPCs. (A) Immunostaining of slices derived from P0-P1 wild-type or Boc−/− pups at
the level of the germinative zone (white bracket) of the dorsal forebrain identified by Sox2 expression. Cells arising from this area and co-expressing the Olig2
marker are pre-OPCs and/or OPCs. (B) Quantification of Sox2+ and Olig2+ cells, and of the percentage of Sox2+ Olig2+ cells in the Sox2+ population.
(C-F) Immunostaining and quantification of slices from P0-P1 (C,D), P5 and P8 (E,F) pups using Ki67 and PDGFRa as cell proliferation and OPC markers,
respectively. (G,H) Primarymixed glial cell cultures derived from the forebrain of P0-P1wild-type andBoc−/−mice assessed for cell proliferation after incorporation
of the proliferation marker BrdU in the presence (+Shh) or absence (+Veh) of recombinant Shh protein. (I,J) Determination of Gli1 transcription in the
indicated culture conditions (I) and in the forebrain of P8 and P15 wild-type and Boc−/−mice (J) using quantitative RT-PCR. (K,L) Primary mixed glial cell cultures
assessed for cell proliferation in the presence (+SAG) or absence (+Veh) of the Smo agonist SAG. (M,N) Purified OPCs prepared from P0-P1 wild-type and
Boc−/−mice, and assessed for cell proliferation in the presence (+Shh) or absence (+Veh) of recombinant Shh protein. The white arrows show Olig2+ BrdU+ cells
in G,K, PDGFRa+ Ki67+ in C,E andOlig2+ BrdU− cells in M. Scale bars: 50 μm in E,K,M; 100 μm in A,G; 200 μm in C. Each point in the graphs corresponds to one
animal or one culture. Statistical analysis used unpaired two-tailed t-test (B,D,H, left), two-way ANOVA and Tukey’s multiple comparisons (F,H, right; I,J,L,N).
*P<0.05; ** and ##P<0.01, ***P<0.001; n.s. not significant. Data are mean±s.e.m.
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the mutant (48±3 versus 54±1%) (Fig. 3I). A similar result was
obtained in adulthood, where 92±1 and 94±1% of Olig2+ cells co-
expressed the APC marker in the mutant and wild-type corpus
callosum, respectively (Fig. 3J,K). However, consistent with the
decrease in MBP previously observed, visualization of other
myelin proteins, including the 2′,3′-cyclic-nucleotide 3′-
phosphodiesterase (CNPase) and the proteolipid protein (PLP)
indicated a significantly lower level of these proteins in P8 and P15
Boc mutants (Fig. 3L-S) compared with wild type. Collectively,
these results indicate that the decreased production of OPCs
observed in Boc mutants at birth can still be detected at P8 but
recovers from P15 onwards, in contrast to the level of myelin
proteins, which remains persistently reduced.

Impaired upregulation of gelsolin and delayed myelination
in Boc mutant mice
To further characterize the decrease in MBP protein observed at P8
and because the heterozygous Mbp+/− mice have been shown to
display only a subtle hypomyelination phenotype (Poggi et al.,
2016), we determined whether the decrease in MBP observed in
Boc mutant mice was associated with abnormal myelination of
axons. At this age, myelination had already started in the lateral
corpus callosum of control mice, but was significantly reduced in
Boc mutant mice (Fig. 4A), as indicated by the determination of the
area occupied by MBP+ myelin sheaths in this region (25±1 versus
42±2%; P=0.0002; Fig. 4B). Consistently, the proportion of APC+

oligodendrocytes co-expressing MBP was significantly lower in

Fig. 3. Boc KO mice display a decreased production of myelin in the developing dorsal forebrain. (A) Western blot analysis of dorsal forebrain
homogenates derived from P8, P15 and adult wild-type and Boc−/− mice. (B) Densitometric analysis of MBP immunoreactive signals normalized to β-actin
expression. (C) Olig2 transcript level determined by quantitative RT-PCR in the developing dorsal forebrain from P0, P8, P15 and P30 wild-type and Boc−/−

mutant mice (n=3). Boxes and whiskers indicate minimal to maximal values and corresponding s.e.m., respectively. (D-G) PDGFRa and Olig2/APC
immunostaining and corresponding quantifications carried out in slices fromP8wild-type orBoc−/−mice. The dashed line indicates the position of the germinative
zone. (H-K) Visualization and quantification of Olig2+ cells and APC+ differentiated oligodendrocytes in the corpus callosum of P15 (H,I) and adult (J,K) wild-type
and Boc−/− mice. (L-S) Visualization and quantification of CNPase+ and PLP+ immunostaining in the developing corpus callosum at P8 (L-O) and P15 (P-S) in
wild-type and Boc−/− animals. The dashed lines in (L,N) delineate the developing corpus callosum. cc, corpus callosum; Cx, cerebral cortex. Scale bars: 50 μm in
D,F,H,J,N; 100 μm in L,P,R. Statistical analysis used unpaired two-tailed t-test (E,G,I,K,M,O,Q,S), two-way ANOVA and Sidak’s multiple comparisons (B,C).
*P<0.05; **P<0.01, ****P<0.0001. Data are mean±s.e.m.
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Boc mutants compared with controls (37±3 versus 53±3%;
P=0.006; Fig. 4C). Moreover, the release of gelsolin, one of the
proteins required for oligodendrocyte actin disassembly, which is a
step that is necessary to promote myelin wrapping around axons
(Zuchero et al., 2015), was also reduced in the mutant. Indeed,
forebrain homogenates from P8 wild-type or mutant animals
analysed by western blot revealed a slight but significant decrease
of gelsolin in the mutant (0.238±0.019 versus 0.371±0.011;
P=0.04; Fig. 4D,E). In addition, we evaluated the ability of
enriched oligodendrocyte cultures to differentiate for 5 DIV. No
major morphological differences (Fig. 4F) were observed
according to the genotype, suggesting that the absence of Boc in
the neural progenitors did not impair the ability of OPCs to
differentiate into oligodendrocytes. However, western blot analysis
of such cultures at DIV 3 and DIV 5 revealed an increase in
gelsolin signal in both genotypes from DIV 3 to DIV 5, with a
much lower upregulation of gelsolin in the mutant (0.04±0.01
versus 0.11±0.01; P=0.0001; Fig. 4G,H). Thus, in Boc mutants,
the delayed production of OPCs at birth is correlated with a
decrease in MBP production and a defective gelsolin upregulation,

both of which are consistent with the delay in developmental
myelination observed at P8.

The absence of Boc causes/is associated with a decrease
in myelinated axon calibre
Despite the recovery of regular oligodendroglial density in adult Boc
mutants, the persistent decrease in MBP production remained
intriguing. Therefore, we analysed the adult corpus callosum at the
ultrastructural level. A striking observation was that axons appeared
smaller in Boc mutants compared with wild-type corpus callosum
(Fig. 5A,B). The analysis of more than 1000 axons from the three
animals studied for each genotype indicated that the total number of
axons was not significantly different in Boc mutants compared
with wild-type animals (135±9 versus 128±11 axons per 100 μm2;
Fig. 5C). In a similar manner, no significant difference was found in
the proportion of myelinated axons (68±3 versus 62±3%; Fig. 5D).
In contrast, the mean diameter evaluated for 200 wild-type and 150
Boc mutant myelinated axons was significantly lower in the
mutants (0.574±0.033 versus 0.773±0.061; P=0.047; Fig. 5E).
Characterized as a structure containing mainly small-calibre axons

Fig. 4. The Boc mutant fails to induce actin disassembly proteins and leads to a delay of myelination. (A) Initiation of myelination detected by MBP
upregulation in APC+ oligodendrocytes and first MBP+ myelin sheaths occurring in P8 wild-type andmutant mice. White arrowheads indicate APC+ MBP+ cells in
the wild-type developing corpus callosum. (B,C) Quantification of the area occupied by MBP and the percentage of APC+ MBP+ cells in each genotype.
(D) Detection of gelsolin immunoreactivity by western blot analysis of dorsal forebrain homogenates derived fromP8wild-type andBoc−/−mice. (E) Densitometric
analysis of gelsolin signals normalized to β-actin expression. (F) Oligodendrocyte-enriched cultures prepared from the dorsal forebrain of wild-type or Boc
mutant pups immunostained with MBP after 3 DIV show nomajor morphological differences. (G)Western blot analysis evaluating gelsolin andMBPexpression in
these cultures at 3 and 5 DIV. (H) Densitometric analysis of the immunoreactive gelsolin signal normalized to β-actin expression. Scale bars: 50 μm. Statistical
analysis used unpaired two-tailed t-test (B,C,E), two-way ANOVA and Tukey’s multiple comparisons (H). *P<0.05, **P<0.01, ***P<0.001. Data are mean±s.e.m.
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(Hildebrand et al., 1993), the corpus callosum from the wild-type
mice contained a high percentage of axons narrower than 0.8 μm.
Remarkably, this percentage was even higher in the mutant (86±2
versus 65±2%; P=0.002) at the expense of axons with a diameter in
the range 0.9-1.8 μm (14±2 versus 34±2; Fig. 5A,B,F). The g-ratio
(the ratio of the axon diameter to axon+myelin diameter) was
determined and the values were plotted against the axon diameter
from n=134 and n=119 axons derived from three animals of each
genotype (Fig. 5G,H). The equations were y=0.155x+0.651 and
y=0.109x+0.700 for Boc mutants and wild type, respectively. The
differences observed in the slopes and the intercepts did not reached
significance (P=0.06). Because of the role of the neurofilament
medium NF-M recognized in the control of axon calibre mostly in
the peripheral nervous system, we looked for a change in the
expression level of NF-M using western blot analysis. Consistent
with the globally reduced axon calibre, Boc mutants showed a
significantly reduced amount of NF-M at P15 (0.573±0.064 versus
0.927±0.077; P=0.008). In adulthood, no significant difference was
observed (0.948±0.096 versus 1.000±0.046). Taken together, these
results indicate that, in adulthood, the reduced production of MBP is
not associated with hypomyelination, but could be the indirect result
of the decreased axon diameter in Boc mutants. Moreover, the
absence of Boc is associated with a reduced amount of the
neurofilament NF-M.

The absence of Boc prevents spontaneous remyelination
in LPC-treated animals
Given the oligodendroglial phenotype of the Boc mutant during
development, we evaluated the possible consequences of

inactivating Boc in the spontaneous regeneration of myelin that
occurs upon demyelination. We used a model based on the injection
of lysolecithin (LPC) into the corpus callosum. In this model, repair
of the tissue comprises several successive and stereotyped steps,
including the recruitment and proliferation of OPCs (at 5 days post-
lesion, dpl), their differentiation into immature oligodendrocytes (at
10 dpl) and their maturation into myelinating cells (at 15 dpl). This
process finally leads to the regression of the lesion size. We
compared the main steps of the remyelination process in the corpus
callosum from wild-type and Boc mutant animals. At 5 dpl, while
Olig2+ cells have already populated the demyelinated area in the
wild-type mice, only rare Olig2+ cells could be detected in the lesion
from Boc mutants, indicating altered/delayed recruitment of new
oligodendroglial cells. In a consistent manner, at 10 dpl, the density
of differentiated APC+ oligodendrocytes was largely reduced in
the lesion from Bocmutants compared with wild type (Fig. 6A). The
quantification of Olig2+ and APC+ cells at the different steps of the
regeneration process confirmed a significantly lower density of
oligodendroglial lineage cells in the mutant lesion until 15 dpl.
However, at a later time point (21 dpl), the difference was largely
attenuated, suggesting that Boc delays rather than impedes OPC
recruitment (Fig. 6B). In contrast, the absence of Boc appeared to
prevent OPC differentiation, as APC+ immature oligodendrocytes
were detected at a much lower level in the mutant than in the wild
type at all time points. APC+ cells reached a plateau between 15 and
21 dpl, representing 60-70% of the level observed in the wild type
(Fig. 6C). In agreement with the delay for recruiting new Olig2+

cells, the number of PDGFRa+ OPCs (43±2 versus 72±5; P=0.001)
and the percentage of proliferating OPCs (13±1 versus 18±2%;

Fig. 5. The absence of Boc induces a decrease in
the diameter of axons. (A,B) Visualization of coronal
sections of the corpus callosum derived fromwild-type
(A) or Boc−/− (B) adult mice using electron
microscopy. (C,D) The total number of axons (C, n=3
mice) and the percentage of myelinated axons (D) do
not significantly differ according to the genotype.
Boxes indicate minimal to maximal values in C.
(E) The diameter of myelinated axons is decreased in
the mutant animals. (F) The mutant displays a
significantly higher proportion of myelinated axons
with a diameter in the range 0.1-0.8 μm at the expense
of larger calibre axons. (G,H) Visualization of myelin
sheaths at high magnification and linear regression of
the g-ratio (axon diameter/axon+myelin diameter).
(I) Western blot analysis of the neurofilament NF-M in
the dorsal forebrain from P15 and adult wild-type or
Boc mutant animals. (J) Densitometric analysis of
NF-M immunoreactive signals normalized to β-actin
expression. Statistical analysis used unpaired two-
tailed t-test (C-F,J). *P<0.05; **P<0.01. Data are
mean±s.e.m.
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P=0.04; Fig. 6D,E,F) were decreased in the mutant at 5 dpl.
Moreover, in a manner consistent with the impairment of
OPC differentiation, Boc mutants displayed a lower ability to
repair myelin, as indicated by the significantly lower MBP
immunolabelling in the demyelinated area at 21 dpl (38±5 versus
66±6%, P=0.02; Fig. 6G,H). The lesion size was also determined by
measuring the area in which a high cell nuclei density persists or the
area devoid of small chains of cells compared with the unlesioned
corpus callosum. Although the extent of the lesion significantly
decreased in both the wild-type and mutant animals between 5 and
30 dpl, the lesion remained significantly larger in the mutant at
21 (0.180±0.016 versus 0.121±0.007 mm2, P=0.03) and 30 dpl
(0.035±0.003 versus 0.021±0.001 mm2; P=0.001) (Fig. 6I).
Finally, we immunolabelled astrocytes and microglia and/or

macrophages using Iba1 and GFAP markers in each animal group.
Both cell types were detected in Boc mutants, as shown at 10 dpl

(Fig. 6J-L), suggesting that the absence of Boc did not prevent the
astro- and microgliosis in the lesion. However, microglia and/or
macrophages appeared to display some discrete morphological
differences, with cells apparently more ameboid in the wild type
and more multipolar in Boc mutants (Fig. 6J). In contrast, no
morphological differences could be observed for astrocytes
(Fig. 6K). Moreover, the extent of the response determined by the
measure of the area occupied by Iba1 and GFAP fluorescent signals
did not differ according to the genotype. In situ hybridization using
the Boc riboprobe showed that, as early as 2 dpl, Boc was
upregulated not only at the site of LPC injection, but also in the
ipsilateral SVZ compared with the contralateral hemisphere
(Fig. 7A,B). Co-immunolabelling of the slices with the Olig2
marker indicated that some Boc+ cells co-expressed Olig2 both in
the lesion and in the SVZ (Fig. 7C), suggesting that, besides the
reduced proliferation of OPCs shown above, OPC migration from

Fig. 6. The absence of functional Boc impedes complete remyelination. (A) Visualization of Olig2+ and APC+ cells in the lesion after the stereotaxic injection
of LPC into the corpus callosum of wild-type and Boc mutant mice. The white dotted lines delineate the lesion. (B,C) The histograms show the densities of
Olig2+ (B) and APC+ (C) cells quantified in the lesion of the wild-type and mutant mice at the indicated time points. (D-F) Double immunostaining using
PDGFRa and Ki67 in the lesion at 5 dpl (D) and quantifications of the density of OPCs and the percentage of proliferating OPCs (E,F). Arrows in D indicate
double-labelled cells. (G) Immunodetection of MBP in the lesion from the wild-type and mutant mice at 21 dpl. (H) The determination of MBP immunofluorescent
area is shown in the histogram. (I) Evaluation of the lesion size at 5, 21 and 30 dpl. (J-L) Visualization of Iba1+ microglia and GFAP+ astrocytes at
10 dpl in the lesion from the wild-type and mutant mice. (J) Microglia and/or macrophage morphology appears more ameboid in the wild type (arrowheads)
and more multipolar (arrows) in the mutant. (K) In contrast, no morphological differences are observed for astrocytes. (L) Quantification of Iba1 and GFAP
fluorescent areas indicates no significant difference according to the genotype. Scale bars: 100 μm in A; 50 μm in D,G,K; 25 μm in J. Statistical analysis used
multiple t-test (B,C) and unpaired two-tailed t-test (E,F,H,I,L). *P<0.05; **P<0.01. Data are mean±s.e.m.
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the SVZ towards the lesion might also be impaired in the mutant.
However, the hypothesis remains to be investigated. Our previous
work has shown that, in the lesion of wild-type animals, the Gli1
effector was upregulated at a much lower level than other
components of Shh signalling, such as Smo (Ferent et al., 2013).
Given the decrease of Gli1 transcription in the healthy Boc mutant
mice (present work), Gli1 upregulation was barely detectable in the
lesion of the Boc mutant (data not shown). In contrast, the
visualization of Boc transcription at 2, 5 and 10 dpl clearly indicated
that a high upregulation of Boc was maintained throughout the
repair process. The immunodetection of the oligodendroglial
(Olig2+) and astroglial (GFAP+) cells on the same section, and
microglia and/or macrophage (Ib4+) on an adjacent section showed

a notable similarity between the Boc signal and the Ib4+ microglia
and/or macrophage staining (Fig. 7D-F). The analysis of the merged
images for Boc+ and Olig2+ cells at each time point allowed the
detection of Boc+ cells co-expressing the Olig2 marker and
corresponding to a small and non-significantly different proportion
(9±3, 17±4 and 13±2% for 2, 5 and 10 dpl, respectively) of all Boc+

cells (Fig. 7G,H). The co-expression of Boc and GFAP was even
more restricted (Fig. 7G) and thus most Boc+ cells appeared to be
neither oligodendroglial nor astroglial cells. Therefore, many Boc+

cells could be microglia or macrophages. In order to check such
hypothesis, we performed triple immunolabelling of brain slices
derived from LPC-demyelinated animals at 5 dpl by using Iba1 as a
global marker of microglia and/or macrophages and Arg-1 as a

Fig. 7. Boc is highly upregulated upon focal demyelination of the corpus callosum. (A-C) In situ hybridization of slices derived fromwild-type animals 2 days
after LPC injection. Boc transcription is detected at a low level in the contralateral SVZ (A) and clearly upregulated in the ipsilateral side in the SVZ and the
corpus callosum at a level corresponding to the LPC injection site (white star, B). (C) Immunostaining using theOlig2 antibody shows that most Olig2+ cells arising
from the SVZ (white arrowheads) or already recruited into the lesion (black arrowheads) co-express Boc. (D-F) In situ hybridization and double immunolabelling
using the Olig2 and GFAP markers performed on the same slice derived from animals at 2 (D), 5 (E) and 10 (F) dpl. Ib4 staining was performed on the
consecutive slice at each time point. The highest level of Boc is observed in the centre of the lesion in which Ib4+ microglia and/or macrophages are the most
abundant. The dashed lines outline the lesion area. (G,H) At 5 dpl, the merged images indicate the presence of Boc+ cells co-expressing the Olig2 marker (white
arrows and white box in G) and the vast majority of cells co-expressing neither Olig2 nor GFAP (black arrowhead in the black inset in G). Only a tiny number of
GFAP+ cell bodies colocalize with Boc+ staining (not shown). The quantification of Boc+ Olig2+ cells is shown in H. Data are mean±s.e.m. (I) Triple
immunolabelling of a brain slice derived from an animal demyelinated via LPC injection into the corpus callosum at 5 dpl. Boc signal is observed in Iba1+ cells
(white arrowheads) as well as in Iba1+ Arg-1+ (white arrows and boxed area) cells. Bottom panels are magnifications of the boxed area. The yellow arrows indicate
Iba1+ Boc− microglia and/or macrophages. Scale bars: 100 μm in A,B,D-F; 50 μm in C,G,I.
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marker of microglia and/or macrophages displaying pro-regenerative
activity (Miron et al., 2013). The images evidenced Boc+ cells
expressing Iba1 alone or together with Arg-1 (Fig. 7I). Together,
these results indicate that the absence of Boc prevents myelin repair
by impairing OPC recruitment/differentiation, and also results in
discrete morphological differences in microglia and/or macrophages
that are consistent with Boc expression in this cell type.

Boc expression is required for microglia and/or macrophage
transition from a highly to a faintly ramified morphology
Under healthy conditions, the so-called ‘resting’ microglia and/or
macrophages display highly dynamic processes continuously
elongating and retracting to explore the tissue environment
(Nimmerjahn et al., 2005). Upon recognition of inflammatory
stimuli, microglia and/or macrophages can rapidly retract their
processes in order to become more ameboid and therefore efficient
mobile effector cells able to fulfil local immune-related functions
(Kierdorf and Prinz, 2013). The morphological differences detected
for microglia and/or macrophages in the Boc mutant upon LPC-
mediated demyelination led us to investigate whether the presence
or the absence of Boc could influence the morphological transition
between highly and faintly ramified cells. We took advantage of
live-imaging approaches (Hristovska and Pascual, 2015) to
visualize microglia and/or macrophages in the context of myelin
repair in living animals. We crossed the Boc mutant mice with a

strain expressing the YFP reporter under the promoter of the
chemokine receptor CX3CR1, prominently expressed in microglia
and/or macrophages (Wolf et al., 2013; Yona et al., 2013). Animals
received the copper chelator cuprizone in their food for 12 weeks to
induce an extensive demyelination of the cerebral cortex (Skripuletz
et al., 2008; Gudi et al., 2009), as shown in Fig. 8A-C. Transcranial
live-imaging of YFP+ microglia and/or macrophages was carried
out in the somatosensory cortex from both genotypes using two-
photon microscopy. Animals were live-imaged on day 3 (D3) and
day 8 (D8) after cuprizone removal from the diet while
remyelination was already ongoing (Skripuletz et al., 2008; Gudi
et al., 2009). On D3, microglia and/or macrophages appeared to be
more ramified in Boc mutant mice compared with wild-type mice
(Fig. 8D). Indeed, the cell processes were highly ramified in the
mutant, similar to a resting phenotype, whereas they were retracted
in the wild-type animals. In agreement with this observation, the
quantification of processes complexity indicated a significantly
higher value in Boc mutants compared with wild type (1.63±0.003
versus 1.57±0.013; P=0.05; Fig. 8E). Remarkably, the density of
microglia and/or macrophages did not significantly differ with
regards to the genotype or cuprizone treatment (Fig. 8F). Moreover,
as already shown in the context of injury (Eyo et al., 2016), we
visualized spontaneous focal events (SFE) corresponding to the
attraction of microglia and/or macrophage processes within minutes
at a focal point, followed by the subsequent invasion of the area by

Fig. 8. Microglia and/or macrophages fail to switch from a resting-like to an activated-like state in the demyelinated cerebral cortex of the Boc mutant
mice. (A) MBP immunostaining in the dorsal forebrain of a wild-type mouse (control). (B) MBP staining in wild-type and Boc mutant animals fed with cuprizone-
supplemented (Cup) chow for 12 weeks and analysed 8 days after cuprizone removal. (C) Comparable levels of MBP immunofluorescence are observed,
reflecting a similar extent of demyelination at this early time point after cuprizone removal. (D) Live images of CX3CR1-YFP microglia and/or macrophages in the
cerebral cortex of wild-type and Boc mutant mice 3 days after cuprizone removal. (E,F) Quantification of the complexity of microglia and/or macrophages shows
their inability to display the activated morphology observed for the wild-type cells 3 days after cuprizone removal (E). In contrast, the densities of cells are not
significantly different under any conditions (F). (G) Quantification of the number of spontaneous focal events shows that, in the mutant, microglia and/or
macrophage processes remain attracted towards focal events. Scale bars: 200 μm in B; 10 μm in D. Statistical analysis used Kruskal-Wallis and Dunn’s multiple
comparison test (E-G). *P<0.05; **P<0.01. Data are mean±s.e.m.
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those processes (Movie 1). As expected, SFE could be detected in
the cuprizone-treated wild-type and Boc mutant mice at D3.
However, although SFE completely disappeared in the wild-type
animals at D8, indicating a significant recovery, they were still
detected in Boc mutants at this time point (P=0.05; Fig. 8G).
Remarkably, in Bocmutant mice receiving a regular diet, some SFE
could be detected, whereas they were completely absent from their
wild-type counterparts. Together, these results indicate that, during
myelin repair, Boc inactivation is associated with morphological
differences in microglia and/or macrophages that mimic the
transition between a ‘resting-like’ and an ‘activated-like’ state. In
addition, Boc mutant mice display impaired responses in
demyelinating conditions.

DISCUSSION
The investigation of Boc mutants performed in the present work
provides evidence for the involvement of Boc in both
developmental and repairing myelination. The first phenotypic
feature observed in Boc mutants was the transient decrease in OPC
production related to a reduced number of Sox2+ neural progenitors
and the decreased capacity of OPCs to proliferate. Together with the
inability of Boc mutant glial cells to upregulate Gli1 in vitro, these
data support the hypothesis that Boc may be positively involved in
Shh-mediated dorsal oligodendrogenesis. Although questioned for
a long time (Kessaris et al., 2006), Shh involvement in this process
was recently demonstrated. Indeed, the neural progenitors located in
the dorsal germinative zone of the forebrain are Shh-responding
cells (Ahn and Joyner, 2005), which proliferate in a Shh-dependent
manner (Balordi and Fishell, 2007) and give rise to oligodendroglial
lineage cells at the neonatal period (Tong et al., 2015; Sanchez and
Armstrong, 2018). However, whereas the conditional inactivation of
the key transducer of Shh signalling, Smo, leads to a persistent
oligodendrocyte decrease (Tong et al., 2015), Boc mutant mice
display a rapid recovery of oligodendrocyte density. To account for
this discrepancy, a first hypothesis relies on the existence of partially
redundant functions of Boc with other Shh co-receptors, including
Cdo and Gas1 as previously proposed in Shh-mediated proliferation
of cerebellar progenitors (Izzi et al., 2011). This hypothesis is
nevertheless unlikely because, if Cdo and/or Gas1 had redundant
functions with Boc, the Boc-deficient glial cells should have
upregulated Gli1 in response to exogenous Shh. However, our data
indicate no Gli1 upregulation in vitro. Moreover, Gli1 transcription
is clearly downregulated in the early postnatal dorsal forebrain of
the xBoc mutant. On the other hand, the recent report that Cdo
promotes oligodendrocyte differentiation and myelination in vitro
(Wang and Almazan, 2016) is not in support of a putative role for
Cdo in oligodendroglial proliferation. A more plausible hypothesis
could be the existence of compensatory mechanisms mediated by
one of the other potent positive regulators of dorsal OPC
production, such as Wnt or FGF (Azim et al., 2012, 2014, 2016;
Ortega et al., 2013). If so, the absence of compensation observed
upon conditional inactivation of Smo could be related to the
experimental approach, based on the administration of an adenoviral
vector at birth, which probably induced a massive and abrupt drop in
oligodendrogenesis that may conceivably be more difficult to be
compensated for.
Contrasting with its limited expression in cells of the

oligodendroglial lineage, the wide expression of Boc in neurons is
in support of a major neuronal function susceptible to indirectly
influence myelination. In agreement with this hypothesis, Boc has
initially been characterized as a member of the family of membrane-
bound cell-adhesion molecules that provide axon-derived

instructive cues for myelination (Emery, 2010; Hughes and
Appel, 2016; Klingseisen and Lyons, 2018). Therefore, we tested
the Src-family tyrosine kinase (SFK) Fyn (data not shown) as the
most well-known integrator of neuronal signals during active
myelination and notably for its role in the site-specific translation of
MBP (White et al., 2008; White and Kramer-Albers, 2014).
Although we were unable to detect any modification in SFK
phosphorylation that might support the involvement of neuronal
Boc-mediated signals in the spatiotemporal regulation of MBP
production, we cannot exclude the possibility that Boc may mediate
such a signal via a signalling cascade different from Fyn. However,
our work importantly shows that the absence of functional Boc
results in a clear reduction in the calibre of callosal axons and in a
significant decrease in the neurofilament NF-M. The former
observation is able to account for the persistence of a lower
production of MBP given that small calibre axons require less MBP
for their ensheathment by myelin. The latter deserves to be
considered in the molecular mechanism possibly contributing to
the defective radial growth of callosal axons. Remarkably, the
decrease in NF-M is consistent with the role of Boc in neurite
outgrowth previously reported in cultures of cortical neural
progenitor cells. Indeed, the induction of Boc expression in those
cells was found to specifically induce a high NF-M expression
(Vuong et al., 2017). The role of NF-M in the radial growth of both
large (>2 μm) and small (<2 μm) classes of myelinated fibres has
been thoroughly investigated mainly in the peripheral nervous
system where this process is necessary for the rapid impulse
transmission in axons with a diameter over 1 μm (Eyer and Peterson,
1994; Garcia et al., 2003; Barry et al., 2012; Yuan and Nixon,
2016). Therefore, although further work is required to demonstrate a
potential link between the altered radial growth of the callosal axons
and the decreased expression of the neurofilament NF-M, both
phenotypic features are likely to impair the fine tuning of postnatal
active myelination in the absence of functional Boc.

In the context of demyelination, the Boc phenotype on cells of the
oligodendroglial lineage is reminiscent of the phenotype previously
reported when Shh signalling is inhibited (Ferent et al., 2013), as
shown by the delay of OPC recruitment into the lesion, the decrease
in the proliferation of these cells and the defect in their
differentiation into immature oligodendrocytes. In contrast, Boc
mutants do not phenocopy Shh signalling blockade at the level of
astrocytes, microglia and/or macrophages (Ferent et al., 2013)
because those cells were not increased in the Boc mutants.
Moreover, the fact that the mutant fails to reach the level of
myelin regeneration observed in the control animals was surprising
given the apparent inability of Boc to regulate OPC differentiation
during development. However, the unexpected consequences of
non-functional Boc on microglia and/or macrophages provide an
answer to these discordant observations. The high upregulation of
Boc in an area encompassing the region populated by activated
microglia and/or macrophages, most importantly the colocalization
of Boc with one of the markers of pro-regenerative microglia and/or
macrophages, as well as the inability of the mutant microglia and/or
macrophages to retract their processes both support the hypothesis
that OPC differentiation failure in the mutant may likely be related
to defective microglia and/or macrophage activation. Consistently,
during the past few years, a plethora of evidence have highlighted
the pro-remyelination roles of microglia and/or macrophages,
notably in the clearance of myelin debris, the secretion of growth
factors or the remodelling of the extracellular matrix in myelin repair
(Lloyd et al., 2017). Therefore, it is conceivable that the behavioural
anomalies of microglia and/or macrophages observed in Boc
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mutants disturb the ability of these cells to play their
pro-remyelinating role, by altering microglia and/or macrophage
reactive state (Kotter et al., 2006; Miron et al., 2013; Orihuela et al.,
2016; Ransohoff, 2016; Church et al., 2017). Moreover, the recent
observation that the dynamic state of the actin cytoskeleton
profoundly affects microglia and/or macrophage behaviour
(Uhlemann et al., 2016) might open the way to further
investigations regarding a potential relationship between Boc and
cell cytoskeletal dynamics in microglia and/or macrophages.
The recent identification of Boc variants in individuals with

holoprosencephaly and the characterization of Boc as a modifier
locus in this pathology, which is the most common malformation of
the forebrain in humans, pinpoint Boc as a new therapeutic target
(Roessler and Muenke, 2010; Hong et al., 2017). Given the accurate
tuning of CNS myelination according to a precise spatiotemporal
pattern, which coincides with the appearance of cognitive and
behavioural functions (Nagy et al., 2004; Fields, 2008; Dean et al.,
2016; Poggi et al., 2016), the delayed myelination, together with the
reduction in axon calibre, may likely be associated with potential
cortical dysfunctions in the absence of functional Boc. Moreover,
Boc variants in individuals presenting with a demyelinating disease
should be considered in the therapeutic strategy used, in particular
when the Shh pathway is known to contribute to the remyelinating
effects of the selected treatment, as recently shown for the drug
Fingolimod (Zhang et al., 2015).

MATERIALS AND METHODS
Animals
The Boc knockout mouse strain (Okada et al., 2006) was obtained and
maintained on a C57BL/6 background. The mouse strain CX3CR1tm2.1(Cre/
ERT2) (thereafter called CX3CR1CreER-YFP) expressing the YFP reporter
under the promoter of the chemokine receptor CX3CR1 (Wolf et al., 2013;
Yona et al., 2013) was provided by the Jackson Laboratory. Surgeries and
perfusions were performed under ketamine (100 mg/kg)/xylazine (10 mg/kg)-
induced anaesthesia. Two-month-old male animals were used unless otherwise
indicated. The number of animals is indicated in each graph as the data obtained
for each animal are shown. All animal studies were carried out according to the
guidelines established by the European Communities Council Directive
(86/806/EEC) for the care and use of laboratory animals. All experimental and
surgical protocols were approved by the Regional Ethics Committee CEEA26,
Minister̀e de L’Education Nationale, de l’Enseignement Supérieur et de la
Recherche. Animals were housed under standard conditions with access to
water and food ad libitum on a normal 12 h light/dark cycle.

LPC-induced focal demyelination
The lysolecithin (LPC)-induced demyelination was carried out as previously
described (Ferent et al., 2013). The injection was performed at the following
coordinates (to the bregma): anteroposterior (AP) +1 mm, lateral +1 mm,
dorsoventral (DV) −2.2 mm. Mice were sacrificed at different survival time
points: 2, 5, 10, 15, 21 and 30 days postlesion (dpl). The brain was removed,
frozen in liquid nitrogen and cryostat sections (14 μm) were cut.

Cuprizone-induced demyelination
Boc−/−;CX3CR1CreER-YFP male animals were placed on a diet containing
0.2% cuprizone (Sigma-Aldrich) mixed into powdered food. The food was
available ad libitum for 12 weeks and replaced every 2 days.

Primary glial cell cultures
Primary glial cell cultures were prepared from postnatal day (P) 1-2 mouse
dorsal forebrain derived from each genotype as previously described (Feutz
et al., 2001). Cultures containing astrocytes, oligodendrocytes and microglia
cells were then incubated in 5% CO2 and 95% air in a humidified atmosphere
(90%) at 37°C. After 5 DIV, the medium was replaced by fresh medium
supplemented or not with the recombinant Shh protein [4 nM; Shh (C24II) N-
Terminus, BioTechne; 4 nM] or SAG (DC Chemicals; 3×10−7 M) which was

renewed at 7 DIV. At 9 DIV, the cells were either collected in Trizol reagent
for RNA extraction and quantitative RT-PCR analysis or incubated for 2 h
with BrdU (3 μg/ml) before PFA 4% fixation for immunocytofluorescence.
For enriched oligodendrocyte cultures, shaking of the flasks containing the
primary mixed glial cells was carried out at 9 DIV in order to detach the
oligodendroglial cells that were further cultured for 3 or 5 additional DIV in an
oligodendrocyte medium as described previously (O’Meara et al., 2011). The
number of independent cultures is indicated in each graph in which the data
obtained from each culture is individually represented.

Histological procedures
The animals were deeply anesthetized before perfusion with 4%
paraformaldehyde (PFA). Brains were post-fixed in 4% PFA for 4 h and
incubated overnight in a 30% sucrose solution. Hemispheres were then frozen
into a Shandon Cryomatrix and stored at −80°C before performing cryostat
sections (14 μm). For immunohistochemistry the primary antibodies were as
follows: anti-Boc (goat polyclonal, R&D, AF2385, 1:100; Izzi et al., 2011),
anti-NeuN (mouse monoclonal, Millipore, MAB377, 1:500; Ferent et al.,
2014), anti-Sox2 (goat polyclonal, Santa Cruz, sc-17320, 1:500), anti-Olig2
(rabbit polyclonal, Millipore, AB9610, 1:500; mouse monoclonal, Millipore,
MABN50, 1:200; Ferent et al., 2013), anti-PDGFRa (rat; BD Pharmingen,
558774, 1:500; Ferent et al., 2013), anti-myelin basic protein (MBP) (rabbit
polyclonal, Millipore, AB980, 1:500; Ferent et al., 2013), anti-adenomatus
polyposis coli (APC/CC1) (mouse monoclonal, Calbiochem, OP80, 1:250;
Ferent et al., 2013), anti-Ki67 (mouse monoclonal; BD Pharmingen, 550609,
1:100; Ferent et al., 2013), anti-BrdU antibody (rat monoclonal, Abcam,
Ab6326, 1:250; Ferent et al., 2013), anti-glial fibrillary acidic protein (GFAP)
(rabbit polyclonal, Dako, ZO334, 1:1000; mouse monoclonal, Sigma-
Aldrich, G3893, 1:1000; Ferent et al., 2013), Iba1 (rabbit, Wako,
W1W019-19741, 1:250), isolectin GS-IB4 conjugated to Alexa Fluor 568
(Thermo Fisher Scientific, I21412, 1:250; Ferent et al., 2013), arginase 1
(goat, Santa-Cruz, sc-18355, 1:100), CNPase (mouse, Sigma-Aldrich, 11-5B,
1:500), PLP (mouse, Millipore, Mab388, 1:250). The secondary antibodies
were: donkey anti-goat Alexa 488, anti-mouse 647 and anti-rabbit 546
(Thermo Fisher Scientific, A11055, 1:250; A31571, 1:750; A10040, 1:250);
goat anti-rabbit cyanine 3 conjugated (Jackson Immunoresearch, 111-165-
003, 1:250); goat anti-mouse Alexa 488 and anti-rabbit Alexa 633 (Thermo
Fisher Scientific, A11026, 1:250 and A21070, 1:750).

In situ hybridization experiments were performed as previously described
(Ferent et al., 2013). The Boc riboprobe was kindly provided by Dr R.S.
Krauss (Mount Sinai, New York, USA).

Image acquisition and analysis
Images were taken using the microscope analysing system Axiovision 4.2
(Carl Zeiss), the confocal Zeiss LSM 510-Meta Confocor 2, Leica TCS SP8
with LAS AF software and slide scanner Model Panoramic 250 Flash II
3DHISTECH with CaseViewer software. Analyses were performed using
ImageJ software. Immunofluorescent-positive cells were counted in one
sitting for every other five sections throughout the whole demyelinated
lesion per mouse and averaged for each animal. Cell counts are the results
from at least three animals (the exact number is indicated in each graph) or
three independent cultures and are expressed per surface unit. Alternatively,
the area occupied by marker immunofluorescence is expressed as
percentage of the studied area. The lesion surface was determined by
measuring the area of the nuclear densification or the absence of small cell
chains (correlated with myelin loss visualized by MBP staining) on every
other five slices throughout the whole demyelinated lesion per mouse.

Electron microscopy
Three 12-week-old male mice per genotypewere perfused with 2% PFA and
2% glutaraldehyde. Ultrathin slices of resin-embedded osmium post-fixed
corpus callosum (related to the genu part) were examined using a
transmission electron microscope (1011 JEOL) equipped with a Gatan
digital camera. The g ratio (the ratio between the axon diameter and fibre
diameter corresponding to myelin sheath+axon diameter) was estimated by
measuring the minimum and maximum axon diameter and fibre diameter
for each axon using ImageJ software. At least 50 randomly chosen
myelinated axons were evaluated for each animal.
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RT-qPCR analysis
Three animals per group were sacrificed by decapitation. Brains were
dissected and frozen in liquid nitrogen for further processing. Total RNA
was isolated by using the Trizol Technique (Thermo Fisher Scientific) and
RNeasyMini Kit (Qiagen). For the primary glial cell cultures, the cells were
directly collected in Trizol reagent. Reverse transcription was performed
using the High Capacity cDNA Reverse Transcription kit (Applied
Biosystems). Quantitative real-time PCR was carried out by using the
Power SYBR-Green Master mix (Applied Biosystems) and gene expression
was analysed with the 7300 Systems SDS Software (Applied Biosystems)
normalized to reference genes GAPDH. The primers used were as follows:
GAPDH fwd, 5′-GTCGGTGTGAACGGATTTGG-3′; GAPDH rev, 5′-G-
ACTCCACGACATACTCAGC-3′; Olig2 fwd, 5′-GCAGCGAGCACCT-
CAAATCT-3′; Olig2 rev, 5′-GGGATGATCTAAGCTCTCGAATG-3′;
Gli1 fwd, 5′-ACAAGTGCACGTTTGAAGGCTGTC-3′; Gli rev, 5′-GC-
TGCAACCTTCTTGCTCACACAT-3′.

Western blotting
Tissues were homogenized in cold RIPA lysis buffer (Biorad) in the
presence of protease inhibitors (Sigma-Aldrich). The protein extract
concentration was measured using the BCA method (Thermo Fisher
Scientific). Proteins (30 μg) were separated using a 12% polyacrylamide
gel followed by blotting onto a PVDF membrane using the trans-blot
Turbo Transfer Pack (Biorad). Blots were incubated with the following
antibodies: anti-MBP (rabbit, Millipore, Mab386), anti-gelsolin (rabbit,
Abcam; Zuchero et al., 2015), anti-NF-M (mouse, Abcam, Ab7794) and
anti-β-actin (mouse, Sigma-Aldrich; Ferent et al., 2014). Goat anti-mouse-
and anti-rabbit Dylight-conjugated secondary antibodies were used
(Thermo Fisher Scientific) and membranes were scanned with the
Odyssey InfraRed Scanner (Li-Cor). Bands of interest were quantified
by measuring their integrated intensities using the Odyssey software V3.0.
Alternatively, goat anti-rabbit or anti-mouse horseradish peroxydase
(Biorad) were used and immunoreactivity was revealed with enhanced
chemiluminescence. The membranes were exposed to the
chemiluminescent substrate Radiance Plus (Biorad) according to the
manufacturer’s instructions and then quantified using the Bio-Rad
ChemiDoc MP Imaging System (Biorad). The densitometric values were
systematically normalized to β-actin expression.

Two-photon in vivo imaging
For transcranial imaging, we performed thin-skull window preparation
over the somatosensory cortex. Briefly, mice were deeply anesthetized
with isoflurane (3-4%, Isovet, Piramal Healthcare) and mounted in a
stereotaxic apparatus (D. Kopf Instruments). Carprofen (5 mg/kg s.c.)
was injected at the beginning of the surgery to diminish post-surgical pain
and inflammation. After the skull was exposed, a thin custom-made metal
implant was glued, allowing delimitation of the area over the
somatosensory cortex. The skull was then carefully thinned using a
high-speed dental drill. To avoid heat-induced damage, we repeatedly
interrupted drilling and applied cold sterile saline. When a 20 to 30 μm
skull thickness was reached, we applied a thin layer of cyanoacrylate glue
and placed a cover glass on top of the thinned skull. Mice were imaged on
the 2nd and 7th post-operatory days, which are respectively the 3rd and
8th day of the end of cuprizone treatment. These two time points represent
early remyelination and a more advanced remyelination. For each imaging
session, mice were anesthetized with a mixture of ketamine (100 mg/kg)
and xylazine (10 mg/kg), and their body temperature was maintained at
37°C. Imaging was performed using a two-photon microscope (Olympus)
with a Ti:Sapphire laser (Mai-Tai, Spectra-Physics) tuned to 940 nm.
We used a 20× water-immersion objective (0.95 N.A. Olympus) to
acquire images and maintained the laser power below 30 mW.
Fluorescence was detected using a 560 nm dichroic mirror coupled to a
525/50 nm emission filter and a photomultiplier tube in whole-field
detection mode. We imaged microglia and/or macrophages at a depth of
50-150 μm. Every 30 s we acquired 30-35 consecutive stack images with
a step size of 1 μm/optical section over an area of 200×200 μm and a
resolution of 521×521 pixels. Recordings generally lasted 10-15 min (20-
30 stacks).

Live imaging analysis
Image processing and analysis were performed using custom-written
program under MatLab and ImageJ software. Regions of interest containing
the totality of one microglia and/or one macrophage were delimited
manually. Brightness/contrast and drift correction in x, y and z planes of
images were adjusted by an automated post-processing. Drift correction was
performed by registering each volume to a reference volume (the first
volume) using shift estimation from the cross-correlation peak by FFT (fast
Fourier transform). After realignment, 2D time-lapse movies were generated
from standard deviation intensity projections of z-stacks. To quantitatively
measure cell complexity, the images were first converted into binary. The
cell complexity index was obtained by assessing the fractal dimension of the
cell by calculating the Hausdorff dimension using a custom-written MatLab
program. For each cell, the cell complexity index corresponded to the
complexity value obtained at the beginning of the recording (t0). We
identified spontaneous microglia and/or macrophage process convergence
as events during which processes from one or (more frequently) several cells
converged toward a focal point. All observed spontaneous microglia and/or
macrophage process convergence events, regardless of size, were manually
counted in a 200×200×30 μm visual field from all our recordings. Microglia
and/or macrophage density was manually counted by marking each cell
body in the visual field. The total number of microglia and/or macrophages
was then divided to generate a measure of cell density for 104 μm2.

Statistical analysis
Size sample was defined on the basis of our previous experiments. For cell
counts, the mean number of immunopositive cells was evaluated per image
area to determine the density of cells/surface area. Mice were allocated into
experimental groups based on their genotype. Data analysis was carried out
blind to the genotype of the mice. Data are expressed as mean±s.e.m.
Statistical analysis was performed with GraphPad Prism 7.0 software. The
significance of differences between means was evaluated using Student’s
unpaired t-test for two independent group comparisons and ANOVA
followed by ad hoc post-tests for comparisons of more than two groups and/
or several variables. In case of absence of distribution normality, non-
parametric tests (Mann–Whitney, Kruskal-Wallis) were used. Appropriate
corrections were carried out according to the determination of the variance
of each sample. Dixon’s Q test was used to identify potential outliers.
Significance of P<0.05 was used for all analyses.
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White, R. and Krämer-Albers, E. M. (2014). Axon-glia interaction and membrane
traffic in myelin formation. Front. Cell. Neurosci. 7, 1-8. doi:10.3389/fncel.2013.
00284
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Microglia, the resident immune cells of the central nervous system (CNS), were
traditionally believed to be set into action only in case of injury or disease. Accordingly,
microglia were assumed to be inactive or resting in the healthy brain. However,
recent studies revealed that microglia carry out active tissue sampling in the intact
brain by extending and retracting their ramified processes while periodically contacting
synapses. Microglial morphology and motility as well as the frequency and duration
of physical contacts with synaptic elements were found to be modulated by neuronal
activity, sensory experience and neurotransmission; however findings have not been
straightforward. Microglial cells are the most morphologically plastic element of the
CNS. This unique feature confers them the possibility to locally sense activity, and to
respond adequately by establishing synaptic contacts to regulate synaptic inputs by the
secretion of signaling molecules. Indeed, microglial cells can hold new roles as critical
players in maintaining brain homeostasis and regulating synaptic number, maturation and
plasticity. For this reason, a better characterization of microglial cells and cues mediating
neuron-to-microglia communication under physiological conditions may help advance
our understanding of the microglial behavior and its regulation in the healthy brain. This
review highlights recent findings on the instructive role of neuronal activity on microglial
motility and microglia-synapse interactions, focusing on the main transmitters involved
in this communication and including newly described communication at the tripartite
synapse.

Keywords: microglia, motility, neuronal activity, ATP, glutamate

INTRODUCTION

Microglia are the resident immunocompetent cells of the central nervous system (CNS) and they
comprise around 5–12% of the glial cell population (Gomez-Nicola and Perry, 2015). Microglia
emerge from two sources: erythromyeloid precursors of the embryonic yolk sac, and myeloid
progenitors that invade the CNS and proliferate during embryonic and postnatal development
(Ginhoux et al., 2013).

Considered as the resident immune cells of the brain, microglia have been mostly studied
in immune and inflammatory contexts (Prinz and Priller, 2014). However, recent in vivo data
indicate that under physiological conditions, microglial cells exhibit a highly ramified morphology
characterized by motile processes that constantly monitor their immediate surrounding by
extending and retracting their processes (Davalos et al., 2005; Nimmerjahn et al., 2005).
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This constant movement of microglial processes while the soma
remains stationary is called microglial motility (Figure 1). The
unexpected finding of microglial process motility led scientists
to enquire and identify new roles in the non-pathological brain
(Kettenmann et al., 2013). Since then, microglia were shown
to be involved in the phagocytosis of synaptic elements during
the entire lifespan, and the formation of learning-dependent
synapses in the mature brain, as well as maturation and plasticity
of excitatory synapses (Tremblay et al., 2010; Paolicelli et al.,
2011; Hoshiko et al., 2012; Schafer et al., 2012; Parkhurst et al.,
2013). These functions require localized fine-tuning involving
specialized cellular function to deliver targeted messages at
individual synapses. This targeted delivery could be compatible
with the rapid process motility described earlier. A growing
body of evidence also suggests that process motility and the
frequency and duration of physical contacts with synaptic
elements are regulated by neuronal activity, sensory experience
and neurotransmission. It is thus crucial to better understand
the mechanisms guiding neuron-to-microglia communication to
further comprehend microglial functions in a healthy brain. In
this review, we synthetize the recent discoveries on the properties
ofmicroglia in physiological conditions. Then, we report findings
on the instructive role of neuronal activity on microglial motility
and microglia-synapse interactions. Finally, we describe the
current understanding of the molecular mechanisms underlying
these interactions.

MICROGLIA, HIGHLY MOTILE CELLS THAT
CONTACT SYNAPSES

Until fairly recently, due to lack of proper tools to study
the microglial cells in a healthy brain, these cells were
believed to be immunologically quiescent and were qualified as
resting/dormant under physiological conditions. Two pioneer

studies using two-photon microscopy observation of microglial
motility in the intact cortical micro-environment reversed the
common belief that ‘‘resting’’ microglia in the healthy brain
were morphologically static (Davalos et al., 2005; Nimmerjahn
et al., 2005). They shifted the concept of microglia from
‘‘resting’’ to “surveying’’ (Hanisch and Kettenmann, 2007).
Visualization of microglia was made possible by the development
of CX3CR1GFP and Iba1GFP transgenic mice (Jung et al., 2000;
Hirasawa et al., 2005). Small-shaped soma of microglial cells
remained still overtime, with only 5% moving by 1–2 μm/h
(Nimmerjahn et al., 2005). In contrast, microglial processes
were morphologically plastic with considerable motility. They
presented a similar rate of extension and retraction of around
1.47 μm/min (Nimmerjahn et al., 2005). These findings position
microglial cells as the most dynamic CNS cells as no other cells
display such morphological plasticity in vivo. The dynamism of
microglial processes was also confirmed in the mouse spinal
cord and retinal explants (Davalos et al., 2005; Lee et al.,
2008) and in the zebrafish embryo (Peri and Nüsslein-Volhard,
2008).

These groundbreaking discoveries confirmed the
morphological plasticity of microglial ramifications under
physiological conditions in distinct CNS structures and species
led scientists to envisage a possible contribution in neuronal
physiology. Specific, direct and activity-dependent microglia-
to-synaptic element contacts in the adult mouse visual and
somatosensory cortex in vivo were thus demonstrated for the
first time (Wake et al., 2009). Using CX3CR1GFP/Thy1YFP
mice, Tremblay et al. (2010) were able to distinguish microglial
cells from neurons in the superficial layers of the developing
mouse visual cortex at 4 weeks of age. Intriguingly, microglial
processes made physical contacts especially with axon terminals
and dendritic spines, but also with perisynaptic astrocytic
processes and synaptic clefts. They preferentially localized

FIGURE 1 | Cortical two-photon imaging on awake mouse. Resting microglia are highly ramified and motile in the mouse cerebral cortex. Microglia are labeled
by enhanced green fluorescent protein (eGFP) expressed under the control of microglial promoter CX3CR1. Microglial motility is shown by means of representative
color-coded time-lapse images of a single microglial cell showing rapid process extensions (in blue) and retractions (in red) with a 2 min interval over the time course
of 18 min. Scale bar = 10 μm.
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at the proximity of small, more motile and more frequently
eliminated dendritic spines rather than larger dendritic spines.
Microglial distal processes enveloped dendritic spines by
forming finger-like protrusions (Tremblay et al., 2010).
Microglia-neuron contacts were brief and transient, at a
frequency of one per hour (Wake et al., 2009), whereas in
the developing visual cortex contacts varied in duration
between 5 and 30 min (Tremblay et al., 2010). These data
suggest that under physiological conditions in vivo, microglial
processes are highly motile and make direct contacts with
synaptic elements at regular frequencies during all stages of
life.

MICROGLIAL MOTILITY IS MODULATED
BY NEURONAL ACTIVITY

The discovery of the incessant dynamism of microglial processes
and the transient contacts with synapses under physiological
conditions led to new questions: are microglial processes
specifically guided by neuronal activity and do they respond
to the functional status of synapses? To investigate whether
neuronal activity instructs microglial motility and contact with
synaptic elements, global excitatory and inhibitory activity
were modulated by pharmacological, physiological and genetic
means. Initial results were rather negative. Silencing neuronal
activity by applying tetrodotoxin (TTX) onto cortical surface
in vivo had no impact on microglial motility (Nimmerjahn
et al., 2005), as well as high frequency stimulation inducing
long term potentiation (LTP) in acute hippocampal slices
(Wu and Zhuo, 2008). Likewise, reduction of basal activity in
the visual cortex in vivo by several independent approaches,
including binocular eye enucleation, retinal TTX injection and
reduction of body temperature, had no effect on basal velocity
of microglial processes (Wake et al., 2009). However, with
a simultaneous visualization of neurons and microglia, Wake
et al. (2009), showed a reduced frequency of microglia-synapse
contacts. Since this effect resulted from the aforementioned
manipulations of neuronal activity, apart from TTX application,
neuronal activity could at least modulate microglia-synapse
interaction.

Using physiological approach by modulating sensory
experience, Tremblay et al. (2010), studied neuronal activity-
dependent microglial behavior in the developing mouse visual
cortex. Mice were housed in dark conditions and thus deprived
of visual experience during a critical period of development.
During deprivation, average sampling and motility of microglial
processes were significantly reduced, but the frequency and
duration of microglia-synapse contacts remained unchanged.
The synaptic target changed: microglia no longer localized
next to small spines, but interacted preferentially with larger
dendritic spines that subsequently shrank. Re-exposure to
daylight restored microglial motility and contact with small
dendritic spines.

Microglial motility and activity-dependent interactions with
synaptic elements were also studied in the zebrafish optic tectum.
By simultaneously monitoring GFP-labeled microglia and levels
of spontaneous activity by Ca2+ imaging, Li et al. (2012)

found that neurons with high level of spontaneous activity steer
microglial processes, causing an increased contact frequency
between these two elements. Conversely, reducing global activity
by overexpressing human inward rectifier K+ channel (Kir2.1)
in tectal neurons lowered the likelihood of physical contact
(Hua et al., 2005). Visual stimuli increased the total number of
bulbous endings, inferring microglia-neuron interaction, which
were considerably reduced by TTX application (Li et al., 2012).

Overall, these findings suggest that under physiological
conditions the motility of microglial processes and their
interaction with synaptic elements can bemodulated by neuronal
activity.

NEUROTRANSMITTERS AND
MECHANISMS AFFECTING MICROGLIAL
MOTILITY

The molecular cues which maintain the movement of microglial
processes and by which neuronal activity may signal to microglia
are under investigation. A variety of classical neurotransmitter
and neuromodulator receptors are expressed at the surface of
microglia from culture assays, which in turn can cause changes
in cytokine release, in membrane potential, cellular morphology
and motility (Kettenmann et al., 2011). However, these in vitro
preparations should be interpreted with caution because
microglial phenotype resembles activated state (Ransohoff and
Perry, 2009). Recent in situ studies indicate that microglia express
functional purinergic receptors, whereas local application of
other neurotransmitters did not elicit electrical responses,
most probably reflecting lack of neurotransmitter receptors
(Fontainhas et al., 2011).

ROLE OF PURINES

Adenosine triphosphate (ATP), a neurotransmitter of the CNS,
has been identified as the key regulator of microglial morphology
and baseline dynamics. Disruption of ATP-dependent signaling
in the presence of ATP/ADP hydrolyzing enzyme apyrase
decreased the basal motility of microglial processes (Davalos
et al., 2005) while application of ATP increased basal motility and
cell complexity (Fontainhas et al., 2011). ATP is also involved in
directed microglial process outgrowth because focal applications
of ATP caused a striking extension of microglial processes
towards the source of ATP (Davalos et al., 2005; Dissing-Olesen
et al., 2014) and process outgrowth persisted as long as ATP
was applied (Dissing-Olesen et al., 2014). In addition, ATP
critically mediated microglial process outgrowth towards sites
of increased neuronal activity (Li et al., 2012; Eyo et al., 2014).
Finally, the extension of microglial processes was found to be
propelled by a cell autonomous release of ATP contained in
lysosomes, serving ultimately as a motor for motility (Dou et al.,
2012).

ATP acts at specific ionotropic (P2X) and metabotropic
(P2Y) purinergic receptors that are largely distributed in
neurons and glial cells. Initial studies in vitro showed that
ATP signaling through P2YR induced microglial membrane
ruffling (Honda et al., 2001), and that P2YR inhibition, but
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not P2XR, affected the number and motility of microglial
processes towards ablation site (Davalos et al., 2005). The
requirement of P2R signaling for neuronal activity oriented
motility and formation of bulbous contacts was also observed
in the zebrafish optic tectum (Li et al., 2012). A major receptor
candidate is P2Y12R, selectively expressed by microglia in
the physiological brain. Following ATP release, the extension
of microglial processes, but not basal motility, was critically
dependent on the activation of P2Y12R, as shown by experiments
performed on acute hippocampal slices from P2Y12 KO mice
(Haynes et al., 2006; Eyo et al., 2014). P2Y12R accumulated
at the tip of microglial processes during ATP-induced process
outgrowth, along with Rho GTPase Rac, a key molecule
in the cytoskeleton reorganization, whose downregulation
abolished oriented microglial process movement in response
to neuronal activity (Li et al., 2012; Dissing-Olesen et al.,
2014).

Additional factors such as gradient formation and generation
of ATP metabolites may be important in mediating motility.
ATP is quickly catabolized to other purine molecules by ecto-
nucleotidases in the extracellular space (Dunwiddie et al.,
1997). Constant release of non-hydrolysable ATP in presence
of apyrase was unable to attract microglial processes (Davalos
et al., 2005). Furthermore, the contribution of ATP hydrolysis
products seem to be critical because blocking ATP hydrolysis
using selective ectonucleotidases inhibitor altered microglial
outgrowth (Dissing-Olesen et al., 2014). When ATP and
metabolites diffuse in the extracellular space and form a
chemotactic gradient critical for microglial process outgrowth,
their elimination reduced the extent and speed of microglial
processes (Davalos et al., 2005). Adenosine seems to be a
potential candidate for regulating microglial motility because
high levels of adenosine receptors A1 and A3 are expressed
on microglia in physiological conditions (Hammarberg et al.,
2003) and an interplay of simultaneous purinergic stimulation
of both A3 and P2Y12 receptors was found necessary for process
outgrowth (Ohsawa et al., 2012). Adenosine was also involved
in the retraction of microglial processes in the pathological
brain due to signaling involving A2A receptors (Orr et al.,
2009).

ATP appears to be released in an activity-dependent
manner by neurons and astrocytes through hemichannels
(pannexin and connexin), transporters and secretory vesicles
(Burnstock, 2008). Studies reviewed below focus on ATP
release from hemichannels, since this particular mode of
communication has been predominantly investigated in relation
to microglial motility. The precise distribution of the three
pannexin subtypes (Panx1 to Panx3) between cell types and
subcellular location has not been fully understood, but could
partly account for discrepancies in the literature (Penuela et al.,
2013). Initial studies found that probenecid, a non-selective
pannexin channel antagonist, caused a general decrease in
morphological parameters and basal velocity (Fontainhas et al.,
2011). In the zebrafish optic tectum, glutamate uncaging-
induced movement of microglial processes and the formation
of bulbous endings were abolished using probenecid and
more importantly, by specifically downregulating pannexin-1

expression while keeping unchanged basal cell area and velocity
(Li et al., 2012). Consequently, pannexin-1 emerged as the
main hemichannel mediating ATP release and subsequently
microglial outgrowth. However, a recent study found that
during pannexin-1 blockage and in pannexin-1 deficient mice,
microglial outgrowth following NMDAR activation in acute
hippocampal slices was unaffected (Dissing-Olesen et al.,
2014). This mechanism remained probenecid-dependent,
raising possibilities for involvement of other pannexin
channels mediating ATP efflux, such as pannexin-2 or
prepackaged vesicles (Dissing-Olesen et al., 2014; Eyo et al.,
2014).

Another important component affecting microglial dynamics
could involve connexin hemichannels that mediate ATP
released from astrocytes. They seem to be of particular
importance for basal velocity of microglial processes in vivo
because pharmacological blockade of connexins decreased it
significantly (Davalos et al., 2005). However, fluoroacetate,
an astrocytic function blocker, did not affect glutamate-
induced microglial process extension (Eyo et al., 2014). In
acute hippocampal slices, blocking connexin channels did
not prevent NMDA-mediated microglial extension (Dissing-
Olesen et al., 2014; Eyo et al., 2014). The discrepancy in
these findings could be due to tissue specificity, microglia
heterogeneity, in vivo and ex vivo preparation and the
type and concentration of the pharmacological substances
utilized.

These studies clearly demonstrate that purinergic signaling,
in particular ATP and its derivates, are crucial for mediating
microglial basal motility and neuronal activity-oriented motility.
Further studies need to be performed to address the specific
effects and contribution of purinergic molecules, as well
as the exact downstream signaling pathways elicited in
microglia.

ROLE OF GLUTAMATE AND GABA

Direct action of glutamate and γ-aminobutyric acid (GABA)
neurotransmission on microglial morphology and motility was
also investigated. Initial studies failed to demonstrate any effect of
local application of glutamate and GABA on microglial motility.
No change was provoked by enhancing neuronal activity with
the application of GABA antagonist on the cortical surface
(Nimmerjahn et al., 2005) or the application of glutamate and
GABA on acute hippocampal slices and spinal cord dorsal horn
(Wu and Zhuo, 2008; Chen et al., 2010). A more recent study
found that glutamatergic and GABAergic neurotransmission
modulated microglial morphology and motility in retinal
explants, an ex vivo model with minimal CNS damage:
GABA application decreased microglial motility, whereas
bicuculline increased both the size and basal velocity of
microglial processes (Fontainhas et al., 2011). Both agonist and
antagonist of ionotropic glutamatergic receptors affected the
size and motility of microglial processes mainly through fast
AMPA/kainate receptors in retinal explants. This effect was
mediated to a much lesser extent through NMDA receptors.
Strangely, application of glutamate alone did not result in
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any change of the above-mentioned parameters (Fontainhas
et al., 2011). We must note that variations exist between
brain areas. In the hippocampus, two recent studies used
acute slices to show an important glutamate-induced microglial
process outgrowth requiring NMDAR activation that was
independent of AMPA/kainate receptor activation (Dissing-
Olesen et al., 2014; Eyo et al., 2014). These differences
between structures may attest for striking tissue-specific
regulation of microglial motility through fast AMPA/kainate
receptors in the retina and slow NMDA receptors in the
hippocampus (Figure 2). Glutamate signaling also affected
microglial motility in the zebrafish optic tectum. Glutamate
uncaging, a noninvasive approach for upregulating neuronal
activity, caused outgrowth of microglial processes towards the
glutamate source as well as formation of bulbous endings
(Li et al., 2012).

Studies have suggested that glutamate and GABA
neurotransmission do not signal directly to microglial cells,
but affect microglial motility and outgrowth by modulating
extracellular levels of nucleotides, such as ATP and metabolites.
Local application of glutamatergic or GABAergic agonists
did not induce detectable electrophysiological responses in
microglia. This is in agreement with the discovery that ionotropic
glutamatergic receptors were not present on microglial processes
and soma (Fontainhas et al., 2011; Eyo et al., 2014). On the
contrary, ATP induced large inward currents in microglia
and seems to be indeed implicated downstream glutamatergic

transmission because reduction of process length and motility,
obtained with glutamate receptor blockade, was inversed by ATP
(Fontainhas et al., 2011).

Future studies should investigate whether the activation of
all three main ionotropic glutamatergic receptors can activate a
common pathway.

OTHER NEUROTRANSMITTERS

Other than glutamate and GABA, very few studies have
investigated the impact of neurotransmitter application on
microglial motility. Acetylcholine, norepinephrine or serotonin
did not cause changes in the dynamism of microglial processes
in the spinal dorsal horn (Chen et al., 2010). However, Gyoneva
and Traynelis (2013) has shown that norepinephrine was
responsible for the retraction of microglial processes in
acute brain slices in physiological conditions through β2
adrenergic receptors present in resting microglia. Process
extension caused by ATP was inhibited by co-application of
norepinephrine. Propranolol, an antagonist of β2 receptor,
reversed this effect. These findings raise an interesting
question: can signaling mediated by norepinephrine modify
the microglial reactivity to ATP release in vivo? We believe
further studies of the influence of various neurotransmitters
in more physiological conditions are needed to obtain a
more complete understanding of the mechanisms underlying
neuron-to-microglia communication.

FIGURE 2 | Schematic representation of glutamatergic neurotransmission-induced microglial process outgrowth in the retina and hippocampus.
(A) In the retina, AMPAR/kainate activation leads to release of ATP through pannexin-1 and possibly other mechanisms from neurons and astrocytes, ultimately
leading to microglial response through P2 receptors. (B) In the hippocampus, glutamate-induced microglial process outgrowth is dependent on NMDA receptor.
NMDAR activation leads to a significant Ca2+ influx that is required for ATP release through currently unknown mechanisms but independent of pannexin-1 and
astrocyte hemichannels. ATP diffuses into the extracellular space and activates microglial purinergic receptor P2Y12, eliciting microglial process extension.
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MICROGLIA-ASTROCYTE INTERACTIONS

In addition to interacting structurally with pre- and postsynaptic
elements, microglia closely affix perisynaptic astrocytic processes
(Tremblay et al., 2010). Accumulating evidence demonstrate
that astrocytes not only play an important role in maintaining
homeostasis, but also in regulating synaptic transmission (Perea
et al., 2014; Oliveira et al., 2015). Thus, it appears that these glial
cells may cooperate in themodulation of synaptic function taking
into consideration their occasional structural proximity and
emerging roles. Despite the possible influence of astrocytic ATP
on microglial motility and morphology previously described,
astrocyte-derived ATP was also found to induce microvesicle
shedding from microglial cells, ultimately generating an increase
of excitatory transmission (Bianco et al., 2005; Antonucci
et al., 2012). Two recent studies provided compelling data on
microglia-to-astrocyte interactions. Pascual et al. (2012) found
that LPS stimulation of microglia in acute hippocampal slices
resulted in a rapid ATP release. ATP bound to astrocytic P2Y
receptor, which led to glutamate release by astrocytes, ultimately
increasing excitatory transmission (Pascual et al., 2012). Another
study found that fractalkine signaling, mediated exclusively by
microglia, caused adenosine release, which in turn increased
the release of D-serine most probably from both astrocytes
and microglia, finally resulting in potentiation of NMDAR
function (Scianni et al., 2013). Future studies must elucidate
the context and molecular mechanisms governing interactions
between microglia and astrocytes, as well as the functional
consequences at the regulation of synaptic transmission and
neural circuits.

CONCLUSION

Considerable progress has been made to decipher signaling
mechanisms that regulate microglia-synapse interactions, which
is only a token of its complexity. It is now crucial to
better understand these mechanisms because the degree to
which and how microglia interact with other cell types is
most probably dependent on their morphology and motility.
Several studies reveal functional importance of microglia
in physiological conditions as they contribute to the fine-
tuning of neuronal circuits and engage in synaptic and
structural plasticity. These microglial functions are at least
partly mediated by their motile processes, which can engulf
synaptic terminals, thus homeostatically regulating neuronal
activity and secrete a plethora of signaling molecules, including
cytokines, neurotrophines, microvesicles etc. Their dynamism
and functional capabilities position them perfectly to regulate
individual synapses and to be undoubtedly involved in
optimizing information processing, learning and memory, and
cognition.
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