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UNIVERSITÉ DE PAU ET DES PAYS DE L’ADOUR
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Benôıt Liquet and Noëlle Bru, my PhD advisors, deserve my deepest thanks.
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Aurélien, Iosu, Florèn, Bastien, Teo. Special mention for Claire who helped me
with the organization of the defense.

I also would like to cite benevolent proofreaders. Sarat Moka, and his direct
and salutary comments. Miyer, Cesar, y José, also known as los tres mos-
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Abstract

Over the past five years, Nearest Neighbor Gaussian Processes (NNGP) arose
as a computationally scalable method for spatial statistical models, but remain
hampered by problems caused by the behavior of Markov Chain Monte-Carlo
(MCMC) algorithms. Several approaches allow to alleviate those issues but they
restrict the flexibility of the original model.

This work keeps the “jack of all trades” basic model and tackles its MCMC
weak points with several strategies. The robustness and efficiency of high-level
parameters estimation is boosted using interweaving strategies. Lower-level
operations are parallelized using Chromatic Sampling. Efficient Hamiltonian
methods are developed for NNGP models.

In a second time, the versatility of the NNGP model is used in order to tackle
nonstationary modeling. An original parametrization and model architecture
are proposed in order to ease model interpretation and selection while capturing
complex nonstationarity patterns. An innovative MCMC strategy based on
Hamiltonian methods and Nested Interweaving is proposed.

Chromatic Sampling; Interweaving; Markov Chain Monte Carlo;
Nearest Neighbor Gaussian Process; Nonstationary spatial modeling.

Résumé

Au cours des cinq dernières années, les processus gaussiens des plus proches
voisins (NNGP) sont apparus comme une méthode pour adapter les modèles
statistiques spatiaux aux données de grande taille, mais ils restent entravés par
des problèmes computationels causés par le comportement des algorithmes de
Monte-Carlo par châıne de Markov (MCMC). Plusieurs approches permettent
d’atténuer ces problèmes mais elles limitent la flexibilité du modèle original.

Ce travail conserve le modèle de base et son côté “couteau suisse” tout en
s’attaquant à ses points faibles MCMC avec plusieurs stratégies. La robustesse
et l’efficacité de l’estimation des paramètres de haut niveau sont renforcées par
des stratégies d’entrelacement. Les opérations de bas niveau sont parallélisées à
l’aide de l’échantillonnage chromatique. Des méthodes Hamiltoniennes efficaces
sont développées pour les modèles NNGP.

Dans un deuxième temps, la polyvalence du modèle NNGP est utilisée pour
aborder la modélisation non stationnaire. Une paramétrisation et une architec-
ture de modèle originales sont proposées afin de faciliter l’interprétation et la
sélection des modèles tout en capturant des structures de non-stationnarité com-
plexes. Une stratégie MCMC innovante basée sur les méthodes hamiltoniennes
et l’entrelacement imbriqué est proposée.

Échantillonnage Chromatique; Entrelacement; Modélisation Spa-
tiale Non Stationnaire; Monte-Carlo par châıne de Markov; Processus
Gaussiens des Plus Proches Voisins.
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Chapter 1

Introduction

This introduction starts with a wide shot of the thesis, its hypotheses, and its
contributions, presented in section 1.1. After that, the methods that are used in
the dissertation are presented in detail in order to explain the approach of the
thesis. Section 1.2 introduces spatial modeling. Section 1.3 concerns Vecchia’s
approximations and Nearest Neighbor Gaussian Processes (NNGP). The matter
of MCMC implementation of spatial models is exposed in section 1.4, with an
emphasis on NNGP models. The introduction ends with a detailed structure of
the developments of the thesis, in section 1.5.

1.1 Overview of the decisions and contributions
made in the thesis

The purpose of this work is to find ways to improve the computational behavior
of NNGP spatial models and to use the resulting upgrades to propose new ap-
plications for NNGPs. The next paragraphs outline the choices and the method
of the thesis; in order to get “the big picture”, many points about spatial mod-
eling and Vecchia’s approximation are overlooked, but they should respectively
be clarified in sections 1.2 and 1.3.

Context of the thesis. This thesis builds on the current momentum of Vec-
chia’s approximations and more specifically their NNGP variant in the domain
of spatial statistics. Even though Vecchia’s approximations were introduced
more than thirty years ago (Vecchia, 1988) and studied ever since (Stein et al.,
2004), there has been a bloom of publications on the subject in the past five
years (Datta et al., 2016; Katzfuss and Guinness, 2017; Guinness, 2018; Finley
et al., 2019; Taylor-Rodriguez et al., 2019; Katzfuss et al., 2020; Peruzzi et al.,
2020; Katzfuss et al., 2020; Zilber and Katzfuss, 2021). Those developments
include software, such as Guinness and Katzfuss (2018), Katzfuss et al. (2020)
and Finley et al. (2017).
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Vecchia’s approximations are a family of sequential approximations of Gaus-
sian densities. They are mostly used in spatial statistics (Datta et al., 2016;
Guinness, 2018; Katzfuss et al., 2020), even though they also have applications
in other cases where Gaussian Processes are relevant, such as the exploration
of a parameter space in computer experiments (Katzfuss et al., 2020). Assume
that a Gaussian process (GP) x(·) indexed on a domain D, typically R2 or the
sphere, is observed at a finite collection of locations S ⊂ D with cardinal n.
Assign an order to S, and write the ordered set as (s1, . . . , sn). Vecchia’s ap-
proximation approaches the joint Gaussian density of the process f(·) using a
pruned conditional recursive factorization:

f(x(S)) = f(x(s1))Πn
i=2f (x(si) | x(s1, . . . , si−1))

≈ f(x(s1))Πn
i=2f (x(si) | x(pa(si))) ,

(1.1)

where pa(si) ⊆ (s1, . . . , si−1). The idea is that if pa(si) is much smaller than
(s1, . . . , si−1) but chosen carefully, the conditional density will be cheap to com-
pute but still accurate. A good joint approximation should then arise from the
aggregation of conditional approximations. Given the fact that the locations
are ordered, pa(·) denotes the parents of a node in a Directed Acyclic Graph
(DAG, a graph where the connections are oriented and where there is no cycle)
that is used to define Vecchia’s approximation. In general, the parents of si are
chosen as its nearest spatial neighbors among all its predecessors (s1, . . . , si−1),
even if more subtle tactics exist (Guinness, 2018). A careful reader may object
that defining an approximate density through recursive conditional factorization
does not require the density to be Gaussian (Lauritzen, 1996); however, I have
always found explicitly written that Vecchia’s approximation targets Gaussian
densities, except in Stein (2012), who does not specify the exact nature of the
process. In Gaussian settings, the accuracy of Vecchia’s approximations de-
pends on the ordering and parent-picking heuristics but is highly satisfactory
(Guinness, 2018), and the method performs well in benchmarks against other
state-of-the-art methods (Heaton et al., 2019).

In space-time models, Gaussian data observed at a spatial site s ∈ S is often
analyzed as:

z(s) = X(s)βT + w(s) + ε(s),

where z(·) is the observed variable, X(·) are covariates, β is a vector of regres-
sion coefficients, ε(·) is a Gaussian white noise, and w(·) is a Gaussian Process
latent field that intends to capture a spatially coherent error. The problem is
that multivariate Gaussian density is not affordable in high dimension, and is
approached using Vecchia’s approximation.

NNGPs are a special case of Vecchia’s approximation applied to the density
of the latent field w(·), that is in 1.1 “x(·)” is replaced by “w(·)”. The density
that is factorized and approximated is therefore the GP prior. The general prin-
ciple of pruned recursive conditional factorization can be used on the Gaussian
response z(·); in this case, a positive term corresponding to the nugget ε(·) is
added to the diagonal of the GP prior’s covariance matrix. It also is possible to

9



collect both w(·) and z(·) in one vector and apply Vecchia’s approximation to
this joint vector; the approximation will change following how w(·) and z(·) are
ordered within that vector (Katzfuss and Guinness, 2017).

Key choices of the thesis. A first choice of the thesis is to focus on NNGPs
rather than on other Vecchia’s approximations. While Vecchia’s approximations
that mix the Gaussian response and the Gaussian latent field may be very
efficient, they require the observations to be Gaussian. On the other hand,
NNGPs focus on the latent field w(·) and leave the Gaussian error ε(·) out,
which allows them to handle other types of data (binomial, Poisson, etc...)
or to be used elsewhere than in the decomposition of the interest variable, to
enforce some spatial coherence on a field of parameters for example. The PhD
adopts the NNGP approach, and is therefore not focused on the construction
of Vecchia’s approximations, even though a few original results concerning KL
divergence with respect to full GP are presented in the thesis.

NNGPs are used within the framework of Bayesian hierarchical models
(Datta et al., 2016) and were initially fitted using MCMC. However, this ap-
proach is not immune from the usual problems of auto-correlation and poor
mixing of the MCMC chains. Alternative Monte-Carlo algorithms develop-
ments (Finley et al., 2019) aim to mitigate those problems, but lose flexibility
with respect to the type of data, and are sensitive to other factors such as the
dimension of the geographic space (see Rue and Held, 2005, for more details).
Classical yet powerful MCMC architectures (Knorr-Held and Rue, 2002) suffer
from the same problems. Another solution is to use conjugate algorithms (Fin-
ley et al., 2019; Zhang et al., 2019); however, those methods are restricted to
Gaussian data and to certain priors for the covariance parameters, limiting the
flexibility of the model.

Here comes the second critical choice of the thesis, that stems from the first
choice. Since the approach is to retain the adaptability of NNGPs, possibly at
the expense of performance, the thesis focuses on improving the original MCMC
algorithm of Datta et al. (2016), while retaining its flexibility.

Contributions of the thesis. The contributions of the thesis are synthesized
here, but a more detailed presentation can be found in section 1.5. Much of the
effort of the PhD work is focused on finding improvements for the “vanilla”
Gibbs sampler. The markovian nature of NNGPs allows to transpose the par-
allelisability of the prior density to the sampling of the latent field w(·), and
to make this step easier to implement using high-level languages. Chromatic
samplers (Gonzalez et al., 2011) arise as a practical solution permitted by the
sparsity of NNGPs. Extensive sensitivity analysis is carried out, with the con-
clusion that the method is “all-terrain” and behaves well with state-of-the-art
NNGP settings.

Attractive but expensive algorithms that involve prior whitening of the la-
tent field become affordable with NNGPs. Whitening consists in multiplying the
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Gaussian latent field by the inverse Cholesky factor of its prior covariance ma-
trix. If the latent field followed its prior distribution, the whitened field would
be a collection of independent and identically distributed normal variables, ex-
plaining the name of the method. Applying this transformation to variables
that follow the posterior distribution results in a sharp decrease of the corre-
lation. A NNGP prediction algorithm that relies on whitening, and improved
Hamiltonian sampling of the latent field are developed.

A fruitful approach is to use the interweaving methods of Yu and Meng
(2011). Those methods are particularly cheap with NNGPs thanks to the ma-
trix sparsity induced by the method. Interweaving is applied in two parts of
the MCMC architecture. One basic yet very helpful application is to improve
dramatically the robustness of the MCMC behavior of parameters associated
to the linear regression component of the model. The second application is to
couple natural and whitened parametrizations of the latent field to improve the
sampling of covariance parameters (Filippone et al., 2013).

The lead of Delayed Acceptance of Christen and Fox (2005) is also explored.
The thesis underlines that this method was worth a serious try because of the
ease to split NNGP density and because it is compatible with the developments
that use interweaving. However, after preliminary analysis, the method gave
disappointing results and was not retained. The algorithmic details and the
experimental results are nonetheless presented.

The end of the thesis uses the improvements brought to the stationary model
to propose a nonstationary hierarchical NNGP model. This work is done in
collaboration with Benôıt Liquet and Sudipto Banerjee, and is presented in
an article that is included in the thesis but has not been submitted yet. The
simplicity and operability of the algorithms that were proposed in the first part
allow to use them on complex structures, while more elaborate algorithms would
be very hard to use. The whole toolbox that was devised for stationary models is
brought into service: both interweaving schemes, whitened Hybrid Monte-Carlo,
chromatic sampling play a role. The starting problem is that nonstationary
spatial modeling is exciting and potentially rewarding, but suffers from several
problems: its computational cost, the complexity and lack of interpretability
of multi-layered hierarchical models, and the difficulty of model selection. The
model presented in the article attempts to tackle those issues.

The model considers three extensions to a stationary model, where several
parameters may vary in space: the latent process’ marginal variance, the latent
process’ spatial range (potentially anisotropic), and the noise’s variance when
the observations are Gaussian. The nonstationary correlation is taken from the
classical framework from Paciorek (2003). In practice, changing the marginal
variance of the Gaussian process changes the amplitude of its realizations, al-
lowing for bigger or smaller effects when needed. The range of the Gaussian
process has two components. When the range is scalar, the spatial coherence of
the process can vary, leading the coherence of w(·) to change with the region.
In addition to that, an elliptic range allows to parametrize locally anisotropic
fields. A spatially varying variance of the noise results in a nugget effect that
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will be stronger or weaker following the location.
The first part of this work on nonstationary NNGPs is to derive analytical

and empirical properties of NNGPs with nonstationary covariance. The article
presents a few factorization formulas that allow efficient implementation, in par-
ticular with high-level languages such as R. Various construction heuristics of
NNGPs were tested, and the results confirmed that the state-of-the-art heuris-
tics of Guinness (2018) for stationary covariance structure also are the best in
nonstationary settings.

The second part of this work is to find a flexible yet interpretable parametriza-
tion of the spatially variable parameters. In order to enforce a spatial or space-
time coherence on a parameter field, the classical solution of log-Gaussian pro-
cesses is used. The latent field is analyzed as:

log(θ(s)) = wθ(s) +Xθ(s)β
T
θ ∀ s ∈ S and wθ(S) ∼ N (0, ζθ).

Here θ(·) is a parameter that can vary in space; it can be the range, the marginal
variance of the latent GP w(·), or the variance of the noise ε(·). The latent
Gaussian process wθ(·) captures spatially coherent variations, linear regression
coefficients βθ parametrize the linear effects (including an intercept), and ζθ are
covariance parameters for the log-Gaussian process prior. This parametrization
is popular in the literature (Heinonen et al., 2016), however the thesis gives
further justifications that might help to popularize the method. The second
contribution as for parametrization is to extend the model to elliptical range
parameters. Analogously to scalar logarithm, matrix logarithm maps positive-
definite matrices into symmetric matrices by passing their eigenvalues to the
logarithm. A multivariate Gaussian Process prior is then applied on the coordi-
nates of the log-matrix in the basis of the vector space of symmetric matrices. A
model with stationary range corresponds to a model with constant nonstation-
ary scalar range. In turn, a model with elliptic range whose ellipses are circular
corresponds to a model with nonstationary scalar range. Integrating the various
range models within an expanding, interpretable family allows for better under-
standing of the parameters and easier model selection. On synthetic data sets,
complex models applied to stationary data boil down to a degenerate model
that induces a stationary distribution.

A third aspect is to find efficient MCMC algorithms. An important point is
to sample the nonstationary parameters. After exploring the possibility of Chro-
matic Sampling, it appears that while this solution is conceptually possible, its
usefulness is limited. A Hybrid Monte-Carlo step inspired from Heinonen et al.
(2016) is used instead. This method is easy to implement for variance parame-
ters of the latent field and the noise thanks to the properties of nonstationary
NNGPs mentioned earlier. As for the range parameters, the method requires
the derivative of the NNGP-induced Cholesky factor of the precision matrix
with respect to each range parameter. Even though the formula is tedious to
derive, it can be implemented at a reasonable cost. This sampling method is
embedded within a nested interweaving algorithm, a strategy envisioned by Yu
and Meng (2011) but never put in application for realistic models as far as I
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know.

1.2 Space time hierarchical models for point-
measurement observations

In natural and social sciences it is usual to observe some phenomena on a spa-
tial domain and possibly at several times. Many of them, for example mineral
deposits, pollution, or biomass density, can be modeled as fields with some
kind of space-time coherence. A point-measurement data set is a collection of
measurements of the response variable associated with their precise space-time
coordinates in a domain D which can be R2, R3, the sphere, the Cartesian prod-
uct of the sphere and R, et caetera. It gives an incomplete, possibly noisy, image
of the field because the number of measurements is limited while the field could
be observed on infinitely many points of the space. Point-measurements are not
the only possible format for such data. Sometimes only areal measurements are
available, for example when the observations are aggregated on administrative
regions. The development of geographical information systems allows for larger,
richer point-measurement space-time data sets, impulsing research for scalable
models.

Hierarchical model architecture. Let’s start with the general architec-
ture of the hierarchical model, before zooming on each of its layers. Statistical
modeling of a space or space-time phenomenon z(·) that is observed with point-
referenced measurements can be done by introducing a spatially-indexed process
w(·) on the interest space-time domain, such that for any finite subset S of the
spatial domain D, there is a well-defined joint distribution of the vector w(S).
When we deal with one single spatial location, it is noted s ∈ S. Many models
also add linear regression on covariates X(·). When the observed data z(·) is
continuous, it can be analyzed by introducing a Gaussian error ε(·), giving a
hierarchical model with Gaussian data presented in figure 1.1. There are three
components: the linear regression, the spatial process, and the noise. When the
data is not continuous, for example binomial or integer, the generalized spatial
model of figure 1.2 is used. This model has only two components, the linear
regression and the spatial effect.

First layer of the model: analysis of the interest data. The first layer of
the model separates the observed variable into several components. Recall the
Gaussian spatial model formula, which is used when the response is continuous:

z(s) = X(s)βT + w(s) + ε(s).

This space-time model differs from a simple Gaussian linear model only because
of the presence of w(·). The analogy with linear models goes further since
the response variable z(·) can have arbitrary distributions, and link functions
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Role in the analysis of the data

(Spatial Dependence) (Noise) (Link with covariates)

L
ay

er
in

th
e

m
o
d
el (Hyperpriors) PC/improper/uniform PC/improper/IW Normal/improper

↓ ↓ ↓

(Parameters)
Covariance Noise Regression

Parameters (θ) Variance (τ) Coefficients (β)
↓ ↓ ↓

(Interest variable Gaussian White Noise LS Regression
analysis) Process (w(·)) (ε(·)) (X(·)βT )

↘ ↓ ↙
Observed Gaussian field(
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Figure 1.1: Schema of a hierarchical Gaussian space-time GP model
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Figure 1.2: Schema of a hierarchical generalized space-time GP model
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(logistic, normal cumulative density function, exponential) can make space-time
models suitable for various types of data models. Take h(·) a link function such
as the normal cumulative distribution function or the logistic function, we can
formulate a space-time model for binomial observations:

z(s) ∼ Bern
(
h
(
X(s)βT + w(s)

))
.

We also can formulate a spatial count data model as

z(s) ∼ Poisson
(
exp

(
X(s)βT + w(s)

))
.

In order to keep general notations, the log-likelihood of the observed field with
respect to the latent field and the regression coefficients is noted

l(z(S)|w(S), β, . . .).

Some arguments are left un-precised because they can change with the data
model: for example, in a Gaussian model, adding a parameter τ to precise the
standard deviation of ε is necessary, while no further argument is needed for a
Poisson or binomial model.

Second layer of the model: the Gaussian Process prior. Gaussian pro-
cesses (GP) make an elegant prior distribution for w(·). The GP prior distribu-
tion of w(S) is N (0,Σ(S, θ)), where Σ(S, θ) belongs to a family of parameter-
indexed matrices {Σ(S, θ)}, the covariance parameters θ being unknown. The
model reported here allows to infer the covariance parameters θ and to smooth
the signal at the observed locations S. Usually, the parameters of the covari-
ance matrix are identified with the parameters of a covariance function. Using
a covariance function that takes two spatial locations as arguments allows to
transform the mutual dependence of all locations in a collection of pairwise
links. Matérn’s covariance is a popular choice. Stein (1999) gives an unambigu-
ous guideline: “Use the Matérn model”. One parametrization of the isotropic
Matérn function is presented here. Take θ = (σ2, α, ν), respectively the marginal
variance, range and smoothness parameter, and s1, s2 are two points from D.
The Gamma function is noted Γ(·), and the modified Bessel function of the
second kind is noted κ(·).

M(s1, s2, σ
2, α, ν) = σ2(21−ν/Γ(ν))×

(
‖s1 − s2‖2

α

)ν
× κν

(
‖s1 − s2‖2

α

)
.

I give an example of the effects of the covariance parameters in figure 1.3.
Subfigures 1.3a, 1.3c and 1.3e show respectively how ν, α and σ2 change the
covariance function. Subfigures 1.3b, 1.3d, 1.3f give Gaussian process samples
that correspond to the changes of covariance functions. The diversity of the
samples shows that the Matérn covariance can capture a great variety of spatial
behaviors.

However, the use of full Matérn covariance is sometimes overkill with respect
to the available data. In particular, it is sometimes hard to identify range and

15



−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
rr

el
at

io
n

smoothness = 1
smoothness = .5
smoothness = 2

(a) Matérn covariance functions with
varying smoothness

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2

sa
m

pl
e

smoothness = 1
smoothness = .5
smoothness = 2

(b) Gaussian Process samples with vary-
ing smoothness

−3 −2 −1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

co
rr

el
at

io
n

range= 1 
range= .5 
range= 2 

(c) Matérn covariance functions with
varying range

−3 −2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

sa
m

pl
e

range = 1
range = .5
range = 2

(d) Gaussian Process samples with vary-
ing range

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

co
rr

el
at

io
n

variance= 1 
variance= .5 
variance= 2 

(e) Matérn covariance functions with
varying marginal variance

−3 −2 −1 0 1 2 3

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

sa
m

pl
e

variance= 1 
variance= .5 
variance= 2 

(f) Gaussian Process samples with vary-
ing marginal variance

Figure 1.3: The covariance parameters of a Matérn model change the covariance
function and the process samples 16



smoothness and in practice smoothness is often fixed. Some values of ν actually
correspond to positive-definite functions with a simpler form. For ν = 1/2, the
covariance is exponential

Kexp(s1, s2, σ
2, α) = σ2exp

(
−‖s1 − s2‖2

α

)
.

For ν → +∞ it is squared-exponential

Ksqexp(s1, s2, σ
2, α) = σ2exp

(
−‖s1 − s2‖22

α

)
.

All those functions depend only on the Euclidean distance between the two
spatial locations, they are isotropic following the typology of Rasmussen and
Williams (2006). Those functions also are stationary, which means that they
depend only on s1−s2 (Rasmussen and Williams, 2006). Anisotropic covariance
functions can be obtained by replacing the Euclidean distance by Mahalanobis’
distance. A function can be stationary but not isotropic, like those who depend
on Mahalanobis’ distance, but an isotropic function is always stationary since
the Euclidean distance is a function of s1 − s2.

Third layer of the model: the hyperpriors. The high-level parameters
are themselves subject to modeler-specified hyperpriors. Articles that present
MCMC implementation of such a hierarchical model (Datta et al., 2016; Baner-
jee et al., 2008) prefer to use conjugate priors, such as a normal prior for the
regression coefficients, a Gamma prior for the marginal variance, an Inverse
Wishart distribution for noise variance. Range and smoothness have no full
conditional distribution that can be easily sampled from, let alone a conjugate
prior, so a constant prior on an interval is used in those articles. An inter-
esting hyperprior is the PC (penalize complexity) distribution (Fuglstad et al.,
2015b). This distribution aims to avoid identification problems between range
and marginal variance when the spatial domain is too small (Zhang, 2004).
From my experience, even improper constant priors on the hyper-parameters
give satisfactory model behavior even though there can be a ridge-like joint
distribution on the range and variance parameters.

1.3 Vecchia’s approximation and Nearest Neigh-
bor Gaussian Processes

The weakness of Gaussian processes is that they are not scalable (Datta et al.,
2016; Banerjee et al., 2008). Computing the GP prior density of w(S) involves
the determinant and inverse of Σ(S, θ), incuring a computational cost that is
cubic in the size of S. A plebiscited method, the Integrated Nested Laplace
Approximation (INLA) (Lindgren et al., 2011), uses a Stochastic Partial Dif-
ferential Equation representation of Gaussian Processes. Another method, that
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received increasing interest the past years, is Vecchia’s approximation, intro-
duced by Vecchia (1988). One important special case is the Nearest Neighbor
Gaussian Process (NNGP) (Datta et al., 2016).

1.3.1 General principle of the Nearest Neighbor Gaussian
Process

Defining a NNGP starts by finding an ordering for the n locations of S which are
noted (s1, . . . , sn). They can be computed with any ordering, and Datta et al.
(2016) argue that it has little impact and that sorting S along a coordinate of
D is a good choice. However, Guinness (2018) shows that in some cases even
random ordering can be a better choice than coordinate ordering and introduces
methods that show good behaviors in terms of Kullback-Leibler contrast with
respect to the full GP prior (see 1.3.3 for more details). The joint latent density
of w(s1, . . . , sn) is then written as the product of conditional densities. One
realization of the process is conditioned by all of the previous realizations. Here,
the non-approximated conditional form of the joint prior GP density is given,
with a covariance matrix parametrized by θ, and an omitted mean equal to 0.

f(w(s1, . . . , sn)|θ) = f(w(s1)|θ)×Πn
i=2f(w(si)|w(s1, . . . , si−1), θ).

Since f(w(s1, . . . , sn)|θ)) is a Multi-Variate Normal (MVN) distribution func-
tion, the conditional density f(w(si)|w(s1, . . . , si−1), θ), i ∈ 2, . . . , n is a Normal
distribution function whose mean and variance parameters are determined by

w(s1, . . . , si−1) and Σ((s1, . . . , si), θ).

The approximation consists, for each conditional density, in replacing the vector
w(s1, . . . , si−1) that conditions w(si) by a much smaller subset. Denote pa(si)
the subset of the vector of locations (s1, . . . , si−1) so that, in the NNGP, w(si)
conditions on w(pa(si)): they are the parents of si in the Directed Acyclic Graph
(DAG) that defines the NNGP (see Datta et al. (2016), Katzfuss and Guinness
(2017)). A DAG is a graph where the connections are oriented, and where there
is no cycle.

Usually, the size of pa(si) is fixed m = 5, 10, or 15, except for the m first
locations s1, . . . , sm that cannot have m parents. The NNGP approximation to
the GP prior joint density of w(·) is defined as

f̃(w(s1, . . . , sn)|θ) = f(w(s1)|θ)×Πn
i=2f(w(si)|w(pa(si)), θ) (1.2)

This very general principle can be applied to any kind of well-defined multivari-
ate density. Defining a joint density through factorization on a DAG always
yields a valid distribution thanks to clique factorization (Lauritzen, 1996). The
special case of MVN distribution has very interesting properties that are ex-
plained in 1.3.2.

I focused here on the NNGP case which approximates the latent Gaussian
Process density. However, the principles of pruned recursive conditional factor-
ization can be applied to other densities. For example, the observed variable
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z(·) is Gaussian, the latent field w(·) can be easily replaced by z(·) in (1.2). The
family of Vecchia’s approximations comprises yet other cases (see 1.3.3 for more
details).

1.3.2 The good computational properties of the Nearest
Neighbor Gaussian Process

The NNGP defines a MVN density and allows to compute explicitly and eas-
ily a sparse right lower-triangular Cholesky factor of the precision matrix. I
call this factor R̃. In order to show this point, let’s focus again on the recur-
sive conditional formula of Vecchia’s approximation. In order to keep notations
shorter, the covariance parameters are omitted: Σ(S, θ) is noted Σ(S). The
notation Σ(x, y) is used to designate the (rectangular) sub-matrix of Σ(S) that
corresponds to the two collections of locations x, y ⊂ S, and the square sub-
matrix is abbreviated as Σ(x, x) = Σ(x). In the purpose of showing that
the NNGP is an unbiased approximation, the mean of the full GP is noted
µ(·), so that w(s) has mean µ(s), even though usually µ = 0 because the mean
of the explained variable is explained by the linear effects XβT . Since the
full GP distribution of w(S) is a Gaussian vector, the conditional distribution
f(w(si)|w(pa(si)), µ(S), θ) will be a Normal density. Using the standard results
on conditional distributions, its conditional mean parameter will be

µ̄i = µ(si) + Σ(si, pa(si))Σ(pa(si))
−1(w(pa(si))− µ(pa(si)))

and its conditional variance parameter will be

σ̄2
i = Σ(si)− Σ(si, pa(si))Σ(pa(si))

−1Σ(pa(si), si).

The NNGP factor to the precision matrix R̃ is then constructed row by row:

• R̃ii receives the value 1/σ̄i.

• the elements of the ith row whose column indices correspond to pa(si)
receive the value Σ(si, pa(si))Σ(pa(si))

−1/σ̄i.

• the rest remains 0.

Now consider the MVN density with covariance matrix (R̃T R̃)−1 and mean
µ(S). Its density is

(2π)−n/2(|(R̃T R̃)−1|−1/2)exp(−(w(S)− µ(S))T R̃T R̃(w(S)− µ(S))/2).

Using the fact that R̃ is triangular, the determinant can be written

|(R̃T R̃)−1|−1/2 = |R̃| = Πn
i=11/σ̄i.

Using the row-by-row construction of R̃, the product involving R̃ can be written

−w(S)T R̃T R̃ w(S)/2 = −Σni=1(w(si)− µ̄i)/2σ̄2
i .

19



This MVN density can then be re-written as

Πn
i=11/(

√
2πσ̄i)exp(−(w(si)− µ̄i)2/(2σ̄2

i )) (1.3)

and therefore be identified with f̃(w(S)).
From this construction, it clearly appears that R̃ is triangular and has only

m + 1 non-null values per row at the most, making it very easy to store and
manipulate using sparse matrix algebra libraries. It also appears that the NNGP
leaves the mean invariant. When the Gaussian response variable z(·) is used
instead of the latent variable w(·), the nugget effect ε(·) has to be taken into
account. The noise variance term τ2 is then added to the diagonal of Σ(S). The
method of construction for R̃ is not changed, so its sparsity and triangularity
are carried over; however the value of the coefficients is impacted.

1.3.3 Nota Bene of Vecchia’s approximations and Nearest
Neighbor Gaussian Processes

Here is a review of a few points that matter for Vecchia’s approximations, with
a special focus on NNGPs.

Cost. The construction of R̃ makes it easy to use in practice. The coefficients
of a row of R̃ are found using Gaussian conditional expectation and variance
formulas between w(si) and w(pa(si)), for a cost that is O(m3). Then, finding
R̃ costs O(nm3) flops, even though Guinness (2018) argues that the O(nm2)
memory allocation costs more than the operations. Storing R̃ is also relatively
cheap since a row has only m non-null coefficients, leading to a O(nm) RAM re-
quirement. Most of the time, the cost of Vecchia’s approximation is linear in the
size of the data and parallelizable (with the exception of some of the algorithms
presented by Finley et al., 2019). The latent density Πn

i=2f(w(si)|w(pa(si)), θ)
can be split into n − 1 small jobs and dispatched to a cluster of calculators
(Datta et al., 2016).

Ordering. Datta et al. (2016) argue that the ordering has little impact on the
accuracy of NNGPs, and order the locations following one of their coordinates
in the spatial domain. However, Guinness (2018) carries out extensive Kullbak-
Leibler experiments and shows that the max-min heuristic (starting from a
random site, then constructing the ordering recursively by picking the site that
has the highest minimal distance with its predecessors) or even random ordering
give much better performances on two dimensions. On three, four dimensions,
the middle-out heuristic (ordering following the distance to the center of the
cloud of observations) performs better. The max-min heuristic and random
ordering have in common to quickly cover the spatial domain. Coordinate and
middle-out orderings create an expanding blanket of vertices.

Parents. The choice of the conditioning sets is critical but no universal cri-
terion exists. A popular choice is to choose pa(si) to be si’s nearest neighbors
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among (s1, . . . , si−1), explaining the denomination “Nearest Neighbors Gaussian
Process” given by Datta et al. (2016). This choice is motivated by a heuristic
which argues that the nearest neighbors have the highest correlation with the
considered site. Other schemes exist like mixing close and far-away observa-
tions (Datta et al., 2016; Stein et al., 2004) or multi-resolution approximation
(Katzfuss and Guinness, 2017).

More advanced strategies exist such as a grouping strategy proposed by
Guinness (2018), that allows to improve the Kullback-Leibler divergence be-
tween the full GP prior and Vecchia’s approximation while making it cheaper
to compute. This strategy is based on the “information never hurts” principle:
adding more parents to an existing parent set can only lower the Kullback-
Leibler divergence between Vecchia’s approximation and the full GP (Guinness,
2018; Peruzzi et al., 2020).

However, I think that there are cases where the nearest neighbor heuristic is
not powerful enough, or at least is very difficult to use. In the case of multivari-
ate spatial data, the approach m = 5, 10... neighbors of each p variables for good
measure would lead to parent sets of size m × p, and be unbearable computa-
tionally. I do not think that using only m nearest neighbors regardless of which
variable is observed at those sites is a good idea. If the variables that at observed
at the neighbors have little correlation with the variables that are observed at
the considered point, the conditioning may be very bad. When the space where
the observations are done grows in dimension, there may be anisotropy along
one or several coordinates (in particular when one of the dimensions is the time)
and there is no unequivocal definition of the nearest neighbors.

Shuffling the Gaussian response and the latent field. If z(·) is Gaussian,
the random vectors obtained combining z(S) and w(S) are Gaussian vectors as
well. The methodology that consists in pruning the recursive conditional form
of the density can therefore be applied to any permutation of the joint vector
(w(S), z(S)). Katzfuss and Guinness (2017) study those possibilities as the
Sparse General Vecchia’s approximation. Following the approach of Katzfuss
and Guinness (2017), NNGPs are a special case of Vecchia’s approximation
where the latent field w(·) comes before the response variable z(·) in the ordering.
Since the latent field comes first, its prior Gaussian density is approximated by
(1.2). The Gaussian response variables are, in turn, conditioned only by the
latent field at their location and Vecchia’s approximation boils down to the
likelihood of the Gaussian white noise. It also is possible to simply drop w(S)
and just work with z(S) in a response NNGP (Finley et al., 2019) (note that
the response NNGP is not a NNGP according to the typology of Katzfuss and
Guinness (2017)).
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1.3.4 Approach of the thesis with respect to Vecchia’s ap-
proximations

Vocabulary. Later in the thesis, I will name “NNGP” Vecchia’s approxima-
tion that is applied on the latent field’s density, following the typology of Katz-
fuss and Guinness (2017). I am however fully satisfied with neither of those two
names.

In “Nearest Neighbor Gaussian Process”, I am uneasy with “Nearest Neigh-
bor”. On one hand, a latent density can be defined through recursive factor-
ization on a DAG even if this DAG is not defined using the heuristic of nearest
neighbors. Stein et al. (2004) show that a mix of nearest neighbors and far-
ther observations improves the approximation. Conversely, general Vecchia’s
approximations (Katzfuss and Guinness, 2017) can be defined using the nearest
neighbor heuristic, but will not qualify as NNGPs.

As for “Vecchia’s approximations”, I think that even though Gaussian Pro-
cesses defined through recursive conditional factorization are indeed a great
approximation for Gaussian processes that are defined through the covariance
matrix they can be something else than approximations. For example, in my
work on nonstationary NNGP, I use the covariance function of Paciorek (2003),
that is defined only on the plane. Paciorek provides an extension to the sphere
through truncated kernels but this function is fairly complex to implement. In-
stead, each conditional likelihood of the NNGP factorization is computed on
the orthogonal projection of the points, from the sphere to a tangent plane.
Using this formulation, a NNGP density is derived without actually defining a
covariance function.

Method. I decided to focus my work on NNGPs with full data augmentation,
that is implementations of the NNGP model that simulate explicitly w(S). Be-
cause of this choice, I clearly walk in the steps of Datta et al. (2016). The first
reason is that they can be applied to many types of observed data as long as
a suitable link function is available. A second reason is that it is possible to
build on the versatility of NNGPs with full data augmentation to tackle complex
modeling. For example, latent Gaussian fields can be used for non-stationary
Gaussian process modeling in one dimension and relatively few observations
(Heinonen et al., 2016), and I wanted to use NNGPs to extend this approach to
data sets with larger size and larger dimension.

1.4 MCMC problems in spatial NNGP models

The NNGP model initially presented by Datta et al. (2016) is fitted using a
simple Gibbs sampler that loops over the latent field w(S) (sequential update),
the covariance parameters θ (Metropolis step), the regression coefficients β, and
the noise variance τ (in the Gaussian case). However, this approach suffers
from slow mixing (Finley et al., 2017). The “vanilla” NNGP model has a high
dimension, since there are more parameters than observations. However, due to
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the hierarchical nature of the model, all parameters are not on an equal footing.
Some parameters such as the covariance parameters, the variance of the noise,
or the regression coefficients, are high-level parameters that explain all of the
observations. On the other hand, the variables from the latent field w(·) have a
very local impact.

All the issues that I have been able to identify have in common to involve
the latent field in one way or another. This implies that their answers will
also have to fiddle with w(·). Some solutions treat the root of the problem by
removing the troublesome components. One approach, the response NNGP of
Finley et al. (2019) is to remove w(·) and just work with z(·). Another approach
is to remove the MCMC and use a conjugate model (also in Finley et al., 2019).
However, since the purpose of the thesis is to have a versatile tool thanks to
plain sampling of w(·), the problems must be exposed, and hopefully addressed.
The trouble caused by the latent field can be split into several components.

1.4.1 Spatial correlation

The first problem is that w(S) is auto-correlated because of the NNGP prior.
Sequential update of the field can mix very slowly, in particular if the obser-
vations are dense with respect to the spatial process range. A solution to this
problem is to use blocked updates on w(S).

Analytical joint sampling. A first approach is to use the analytical joint
distribution in the Gaussian case (Datta et al., 2016). This approach has the
inconvenient to become prohibitively costly as the size of the data augments.
Due to the fact that a NNGP induces a Gaussian Markov Random Field, the
cost will be roughly O(n), O(n3/2), O(n2) following if the dimension of the
spatial domain is respectively 1, 2, or 3 (Rue and Held, 2005). To address this
problem, it is possible to split w(S) into groups and update them sequentially.
Those groups should be spatial clusters in order to guarantee that one group has
enough freedom conditionally on the rest of the field. The problem is that the
size of the groups will lower as more data is added, bringing back the original
issue. Another problem is that extension to non-Gaussian data is possible but
technical (Rue et al., 2004).

Hamiltonian methods. Another approach is to use Hamiltonian Monte Carlo
(HMC). This method has the advantage to be easy to transpose to non-Gaussian
data. The NUTS of Hoffman et al. (2014) gained much notoriety thanks to its
automatic leapfrog length selection, but in the context of a hierarchical model
Neal et al. (2011) report that short Hybrid Monte-Carlo hopping, potentially
with momentum carry-over, is an efficient solution. My own experience with
nonstationary models is consistent with the advice of Neal et al. (2011).
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1.4.2 Interactions with covariance parameters

Another problem, and a much thornier one, is that the latent field impedes
the mixing of the higher level parameters. A first aspect is that the covariance
parameters and the latent field are correlated (Knorr-Held and Rue, 2002). The
covariance parameters θ control the general aspect of the latent field, as shown
in figure 1.3. New covariance parameters cannot just be sampled so easily: the
latent field has to correspond to a field that could have been sampled with the
proposed parameters.

Blocked update. A first solution to this problem consists in updating the
field and the covariance parameters jointly, using blocked update (Knorr-Held
and Rue, 2002). First, a new covariance parameter is proposed, then a new field
corresponding to those parameters is sampled. The resulting Metropolis ratio
is composed of:

• the ratio of proposal distributions, itself composed of:

– the proposal distribution for the new covariance parameters.

– the distributions to sample the latent fields knowing the covariance
parameters.

• the ratio of densities, composed of:

– the GP density of the latent field knowing the covariance parameters.

– the likelihood of the observations knowing the latent field.

– the hyperprior densities of the parameters.

This solution requires to use blocked sampling of w(S) in order to avoid spatial
correlation with the previous state of the latent field. It inherits the vulner-
abilities of blocked field sampling concerning the scalability and the extension
to non-Gaussian data. A good point is that it is possible to work on spatial
clusters to sample the latent field. Another problem is that this solution relies
on a random walk proposal for the covariance parameters. While the dimension
of the parameters is low, which is the case in a stationary model, this solution
is adequate, but it cannot be transposed as it is to a nonstationary model with
more than a couple of parameters.

Collapsed Gibbs. Another solution is to avoid to sample the latent field
thanks to a collapsed Gibbs (Finley et al., 2019). Like blocked sampling, the
method is sensitive to the dimension of the space; moreover, unlike blocked
sampling, it is not possible to work on spatial clusters. The method also is
restricted to Gaussian data.
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Interweaving. Yet another solution is to use interweaving (Filippone et al.,
2013). This method samples covariance parameters while coupling natural and
whitened parametrizations of the latent field. In general, this method scales
poorly because it requires costly Cholesky factorization of the covariance matrix.
The properties of NNGPs, though, make it perfectly affordable.

1.4.3 Interactions with regression coefficients

A second aspect of the interaction with high-level parameters is that the regres-
sion coefficients also cause trouble with the latent field. In particular, I showed
empirically that the covariates with some spatial coherence are especially af-
fected. I also carried over a theoretical exploration for the intercept effect, and
got a result that goes in that sense even though it has some intractable terms
(see chapter 3 for more details about this point). While I am not aware of
some discussion of the problem for spatial models, the issue is well known for
hierarchical models with random effects (Gelfand et al., 1995).

Collapsed Gibbs. The collapsed Gibbs should work well in theory, but it
lacks applicability for NNGP models.

Switching parametrizations. Changing the centering of the latent field is
another option (Gelfand et al., 1995). In general, it is well known that a linear
recombination of the sampled variables can dramatically improve the perfor-
mance of a Gibbs algorithm (Robert and Casella, 2004). In the case of the
spatial model, this centering consists in replacing w(·) by

wcenter = w +XβT .

Of course, one is not obliged to center w(·) on the whole XβT , and we can select
a subset of the covariates. This method however suffers from various problems.
A first potential issue is the cost of the method. With full GP, large dense
matrix multiplication and inversion make the method very costly. In our case,
centering is workable thanks to the good properties of NNGPs. Another issue is
that centering the latent field on variables that vary within one spatial location
is not possible. For example, several persons can live in the same house, being
men or women, smokers or nonsmokers, etc... However, all covariates obtained
through areal or gridded data are eligible for the method. The big flaw of the
method is that when two parametrizations are available, they often behave like
a “beauty and beast” pair (Yu and Meng, 2011). If one works greatly, the other
will work terribly. It is therefore very important to chose which covariates to
center and which covariates not to center.

Interweaving. Eventually, interweaving can be used (Yu and Meng, 2011).
This solution mixes centered and natural parametrizations of the latent field, re-
moving the daunting task to pick the right centering among the 2 number of covariates

candidates. It inherits the rest of positive aspects and shortcomings of simple
parametrization switching.
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1.5 Detailed structure of the thesis

The first part of the thesis is a patchwork of ragtag developments that did not
make their way into an article. It features results concerning the Kullback-
Leibler precision of NNGPs, with an excursion towards meshed Gaussian Pro-
cesses. Later, an algorithmic toolbox using latent field whitening is provided. It
consists in a NNGP prediction algorithm adapted to the use of MCMC in high-
level languages, a transposition to NNGP of the interweaving of Filippone et al.
(2013), and a whitened Hybrid Monte-Carlo algorithm for the latent field (Neal
et al., 2011). Eventually, the frustrated attempts to apply delayed acceptance to
NNGP models are presented, with the motivation of the scheme and the results.

The second part of the thesis is an article that I wrote under the supervi-
sion of Benôıt Liquet. It begins with a focus on the seemingly trivial linear
regression component of NNGP models. I start with the intercept of the spatial
model and show empirically that an equivalent centered parametrization works
much better in terms of MCMC efficiency. I give some theoretical elements
to support this point, but some intractable elements induced by GPs forbid a
rigorous quantification of what is going on. I provide nonetheless some reason-
ing “with the hands” in order to show why the space-time coherence induced
by a NNGP will make the intercept’s coefficient mix poorly. After solving this
problem, I had another difficulty: some covariates, having some kind of spatial
coherence, may cause trouble just like the intercept. An approach consisting in
picking the troublesome variables and center them manually would be tedious.
Instead, I use the sparsity induced by NNGPs to implement efficiently an in-
terweaving method (Yu and Meng, 2011) that mixes centered and non-centered
parametrizations. The resulting hybrid takes advantage of the discordance of
the two parametrizations.

The second part of this article aims to improve the sampling of the latent
field. The Markovian nature of NNGPs allows to carry the parallelizability of
NNGP density over to field sampling, leading to parallel coding for massive
data sets and easy implementation in high-level languages such as R using vec-
torization. The groups of variables that can be sampled in parallel are identified
through graph coloring. I tested three coloring algorithms, with the objective
that the number of colors must be as small as possible while the time needed
to color the graph must remain reasonable. Several types of graphs, including
large graphs and graphs that correspond to blocked updates of the latent field,
are tested. The available designs of Vecchia’s approximations (ordering, number
of parents) are screened. The results are compared through sensitivity analysis,
and it appears that even though the number of colors changes with the properties
of the graph, chromatic sampling is a viable and robust method. I also provide
some clues to explain why the number of colors varies following the attributes of
the graph, even though I could not go to the bottom of things, each individual
subject being, I believe, able to provide enough problems for one thesis to solve.
After proposing those two schemes, I put them in application. First, I tested my
implementation with the package spNNGP (Finley et al., 2017) on synthetic data
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sets. The proposed implementation performed well against the state-of-the-art
package: in spite of its high-level coding, it does as good or better than the
fine-tuned spNNGP. This implementation is used to analyze a data set of lead
contamination in the mainland of the United States of America. While spNNGP
had a pathological MCMC behavior, this implementation found sensible results.

The third part of the thesis concerns nonstationary NNGP modeling. It is
an article resulting from a collaboration with Sudipto Banerjee and Benôıt Li-
quet. The aim of this work is to tackle three issues of nonstationary modeling:
the computational cost, the interpretability of the model, and model selection.
We consider three extensions to the stationary model: a model with spatially
variable range, and two heteroskedasticity models for the latent and noise pro-
cesses. We use the covariance function of Paciorek (2003), embedded in the
log-GP prior model of Heinonen et al. (2016). The first aspect of the work is
to clarify what exactly is a non-stationary NNGP that uses the covariance from
Paciorek (2003). I derive some helpful properties of the resulting NNGP, and I
extend the NNGP process on the sphere.

The second contribution is not limited to NNGPs. It consists in generalizing
the log-GP prior of Heinonen et al. (2016) to the elliptic covariance parameters
of Paciorek (2003). As a result, a family of nonstationary models is obtained,
with the complex models encompassing the simple ones, considerably simplifying
model interpretation and selection.

The third contribution of this article is to find a MCMC engine able to
power a complex, multi-layered hierarchical model. The algorithm relies on two
pillars. The first element is a nested interweaving strategy, envisioned but not
implemented by Yu and Meng (2011). This method is adapted to the fact that
there are latent fields at various floors of the model. The second is a Hybrid
Monte-Carlo step inspired from Heinonen et al. (2016) and adapted to NNGPs,
that serves to update nonstationary covariance parameters. A potentially useful
byproduct of this development is the gradient of the nonstationary NNGP den-
sity with respect to nonstationary covariance parameters: this result could be
used in other approaches such as maximum a posteriori or maximum likelihood.

Experiments are done on synthetic data sets in order to draw empirical
rules concerning model selection and identification. The results are encour-
aging. Analyzing a nonstationary data set with a nonstationary model gives
better results following the deviance information criterion (Spiegelhalter et al.,
2002). Moreover, the interpretability of the parametrization and the fact that
the complex models encompass the simpler models largely helps model selec-
tion. Over-modeling can be detected from the estimates, allowing the user to
downgrade the model after looking at the MCMC chains. Eventually, I use
nonstationary models on real data, such as lead contamination in the United
States of America (the same data set I analyzed with a stationary model in the
previous part of the thesis).

The thesis ends with a short conclusion. It recaps the problems that were
addressed by the thesis, and lays out the unsolved issues and open perspectives
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that arise at the end of this work.
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Chapter 2

Miscellaneous developments

This chapter rounds up various works that did not make their way into an
article.

The first point, in section 2.1, is a couple of formulas concerning Kullback-
Leibler divergence that helped me apprehend better Vecchia’s approximations.
In 2.1.1, I decompose the divergence of a Vecchia’s approximation with respect
to a full GP as a sum of conditional divergences. I also show that obtaining
the smallest divergence is equivalent to a variable selection problem with an
objective of conditional variance minimization. In 2.1.2, I adapt the result
to another approximation of Peruzzi et al. (2020) called the Meshed Gaussian
Process.

The second development started from the fact that the NNGP factor R̃
is sparse and triangular, allowing for fast linear solving. In particular, the
whitened latent field w∗ = R̃w can be used ad libitum. MCMC steps that use
this manipulation are omnipresent and instrumental in my current implemen-
tations of NNGP models. I start in 2.2.1 by exposing the surprising behavior of
this parametrization, with an empirical exploration and a property that draws
an unexpected bridge between the NNGPs and the predictive processes (Baner-
jee et al., 2008). Later, I describe an algorithmic toolbox whose elements involve
this transformation in one way or another. The first item, in 2.2.2, is a predic-
tion algorithm that is easy to use with MCMC and high-level languages. The
second, in 2.2.3, is a Metropolis step that interweaves the whitened and natural
parametrizations to update the covariance parameters. The third, in 2.2.4, is
a Hybrid Monte-Carlo step whose efficiency is boosted thanks to approximate
decorrelation of the sampled variables induced by whitening.

The third part, in 2.3, is an attempt to use delayed acceptance (Christen
and Fox, 2005) with NNGP density computation. Delayed acceptance seems
a promising lead for NNGP models: thank to the inherent separability of the
pruned recursive conditional form, NNGP density can be sliced any way we
want. I detail those points in 2.3.1. Moreover, delayed acceptance is compatible
with the interweaving scheme for covariance parameters. Unfortunately, the
results of delayed acceptance, which I present in 2.3.2 were disappointing.
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2.1 Conditional Kullback-Leibler for Nearest Neigh-
bor Gaussian Process

Kullback-Leibler (KL) is extensively used to assess the accuracy of Vecchia’s
approximations and Nearest Neighbor Gaussian Processes (Guinness, 2018; Pe-
ruzzi et al., 2020; Katzfuss et al., 2020). I report here two results that I derived
and that are not in the literature, as far as I know. They can help to think
about parent-picking heuristics and directed acyclic graph construction.

2.1.1 Conditional Kullback-Leibler divergence for NNGPs

Result. Conditional KL divergence is defined for two continuous distributions
p(·) and q(·) and two sets of variables x and y as

KL(p(x|y)|q(x|y)) =

∫
p(x, y)log

(
p(x|y)

q(x|y)

)
d(x, y), (2.1)

d(x, y) denoting the Lebesgue measure on the joint sample space of x and y,
in our case Rdim(x)+dim(y) since (x, y) has a Gaussian distribution. Take a set
S = (s1, . . . , sn) of n ordered spatial locations, and w(·) the realization of the
latent process at the considered site. Denote the NNGP density and the full
Gaussian density respectively f̃(·) and f(·). Then, the KL divergence between
the full GP joint density and its NNGP approximation writes:

KL(f(w(S))|f̃(w(S))) = Σni=1KL(f(w(si)|w(s1 . . . si−1))|f(w(si)|w(pa(si)))).
(2.2)

This formula allows a “divide and conquer” approach to the problem of choos-
ing the parents sets (see 1.3.3). Given the ordering of the spatial locations,
the global KL divergence of NNGP with respect to the full GP is minimized
if all the conditional KL divergences are minimized. Each conditional KL di-
vergence minimization is a variable selection problem: one looks for m parents
that will minimize the divergence between the incompletely conditioned and the
fully conditioned distributions. This problem can be reformulated in terms of
conditional variance:

KL(f(w(S))|f̃(w(S))) = Σni=1log((σ̄2
i )NNGP − (σ̄2

i )full GP )/2, (2.3)

with (σ̄2
i )NNGP = var(w(si)|w(pa(si))) and (σ̄2

i )full GP = var(w(si)|w(s1, . . . , si−1)).
This means that minimizing the conditional Kullbak-Leibler divergence with re-
spect to the choice of pa(si) among (s1, . . . , sn) is the same thing as minimizing
var(w(si)|w(pa(si))).

Use and interpretation. Conditional KL divergences are difficult to com-
pute due to the fact that the full GP conditional density becomes unaffordable
as the number of conditioners augments. However, one can be interested in
the subtraction of the KL divergence of two competing Vecchia’s approximation
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(b) Parents of a point with coordinate
ordering

Figure 2.1: Parents of the same point following the ordering

sharing the same ordering with respect to the full GP (Guinness, 2018). In this
case, the expensive parts cancel out.

The formulas help to understand why the nearest neighbors (Datta et al.,
2016) or a mix of nearest neighbors and farther observations (Stein et al., 2004)
are chosen as parents sets. Indeed, the nearest neighbors of a point are the
location that have the highest correlation with it, inducing a strong conditioning.
However, when the covariance between those nearest neighbors is strong, they
are redundant. In this case, it may be better to replace some of the nearest
neighbors by farther locations that have a lower correlation with the considered
point, but also have a lower correlation with each other, reducing the redundancy
of the information they bring.

This decomposition gives a lead about the results of Guinness (2018), who
finds that on a space with two dimensions, some orderings such as random shuf-
fling of the locations or the max-min heuristic produce better approximations
than other methods, such as ordering the points following one of their spatial
coordinates or their distance from a point. The good orderings make the ver-
tices cover quickly the spatial domain, while the bad orderings create a carpet of
vertices that expands over the domain. The point is that Guinness (2018) uses
the nearest neighbor heuristic to find the parents in the Directed Acyclic Graph
(DAG). In the orderings that give bad results, the parents are packed on the
blanket’s lip and are highly correlated with each other. In the good orderings,
the parents will be spread around their children and their mutual correlation is
likely to be low.

Proofs. To prove the decomposition of the Kullback-Leibler contrast, do:
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KL(f(w(S))|f̃(w(S))) =
∫
f(w(S))log

(
f(w(S))

f̃(w(S))

)
d(w(S))

(passing to conditional recursive form, equation (1.2))

=
∫
f(w(S))Σni=1log

(
f(w(si)|w(s1...si−1))

f̃(w(si)|w(s1...si−1))

)
d(w(S))

(writing integral of finite sum as sum of integrals)

= Σni=1

∫
f(w(S))log

(
f(w(si)|w(s1...si−1))

f̃(w(si)|w(s1...si−1))

)
d(w(S))

(splitting f(w(S)) at si)

= Σni=1

∫
f(w(s1 . . . si))f(w(si+1 . . . sn)|w(s1 . . . si))

log
(
f(w(si)|w(s1...si−1))

f̃(w(si)|w(s1...si−1))

)
d(w(S))

(applying Fubini’s theorem since the KL divergence is finite because of
the fact that the NNGP is non degenerate (Datta et al., 2016),
and Lebesgue’s measure is a product measure so d(x, y) = dx dy)

= Σni=1

∫
f(w(s1 . . . si))log

(
f(w(si)|w(s1...si−1)

f̃(w(si)|w(s1...si−1)))

)
(∫

f(w(si+1 . . . sn)|w(s1 . . . si))d(w(si+1 . . . sn))

)
︸ ︷︷ ︸

integrates to 1

d(w(s1 . . . si))

(integrating out)

= Σni=1

∫
f(w(s1 . . . si))log

(
f(w(si)|w(s1...si−1))

f̃(w(si)|w(s1...si−1))

)
d(w(s1 . . . si))

(restricting NNGP parents, who are comprised in (s1, . . . , si−1))

= Σni=1

∫
f(w(s1 . . . si))log

(
f(w(si)|w(s1...si−1))
f(w(si)|w(pa(si)))

)
d(w(s1 . . . si))

(identifying conditional KL formula)

= Σni=1KL(f(w(si)|w(s1 . . . si−1))|f(w(si)|w(pa(si))))

In order to write the KL contrast in terms of conditional variance, start the
conditional cross-entropy. The conditional KL is found by subtracting the con-
ditional cross-entropy of the NNGP and the conditional entropy of the full GP,
which is obtained by applying the formula below with pa(si) = (s1, . . . , si−1).

32



H = −
∫
f(w(s1, . . . , si))log(f(w(si)|w(pa(si))))dw(s1, . . . , si)

(Integrating out, using finiteness of the cross entropy and the fact that
Lebesgue’s measure is a product measure)

= −
∫ (∫

f(w(s1, . . . , si\(si ∪ pa(si)))|w(si ∪ pa(si))dw(s1, . . . , si\(si ∪ pa(si))
)

f(w(si ∪ pa(si)))log(f(w(si)|w(pa(si))))dw(si ∪ pa(si))

= −
∫
f(w(si ∪ pa(si)))log(f(w(si)|w(pa(si))))dw(si ∪ pa(si))

(Introducing the conditional variance and mean)

= −
∫
f(w(si ∪ pa(si)))

(
−log(σ̄i)− log(2π)

2 − (xi−µ̄i)2
2σ̄i2

)
dw(si ∪ pa(si))

(σ̄i and log(2π)
2 are constant with respect to w, and the density integrates to 1)

= log(σ̄i) + log(2π)
2 +

∫
f(w(si ∪ pa(si)))

(xi−µ̄i)2
2σ̄i2

dw(si ∪ pa(si))

(recognizing the formula of conditional variance)

= log(σ̄i) + log(2π)
2 +

∫
f(w(pa(si)))

∫
f(w(si))

(xi−µ̄i)2
2σ̄i2

dw(si)dw(pa(si))

= log(σ̄i) + log(2π)
2 + 1

2

When I found this second result, it felt inconsistent with the usual KL formula
for multivariate normal distributions. After removing

(µNNGP − µGP )T R̃T R̃ (µNNGP − µGP )

because the NNGP approximation does not change the mean, the Kullback-
Leibler divergence between the full GP and the NNGP is

KL(GP |NNGP ) =
1

2
× (tr(R̃T R̃Σ)−n+ log(det(R̃T R̃))− log(det(Σ))). (2.4)

The “log(σ̄i)” part allows to retrieve log(det(R̃T R̃))− log(det(Σ)), but nothing
seems to correspond to tr(R̃T R̃Σ). It felt like I forgot a term. After failing to
find any error, I decided to compute tr(R̃T R̃Σ) on a toy example, and I obtained
n, which cancels out in the KL formula. Therefore, I am quite reassured about
the fact that I did not forget a component, but it would be interesting to pinpoint
the exact reason why tr(R̃T R̃Σ) = n.

2.1.2 Conditional Kullback-Leibler divergence for meshed
Gaussian Processes

Peruzzi et al. (2020) introduce the meshed Gaussian Process, a hybrid between
the Predictive Process (Banerjee et al., 2008) and the Nearest Neighbor Gaus-
sian Process (Datta et al., 2016). The principle of the method is to introduce
a set of auxiliary spatial locations (“knots”) like in Banerjee et al. (2008). This
set of p points is denoted as K = (k1, . . . , kp). A NNGP density is then defined
on K ∪ S, with the restriction that K comes before S in the ordering of spa-
tial locations used to define the DAG and that ∀s ∈ S, pa(s) ⊂ K. Thanks to
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the fact that K has a simple form, typically gridded, the computation of the
covariance structure is considerably simplified.

The knots are auxiliary, so what matters in the end is to approximate best
the Gaussian density at the observations and not the knots. The objective is
to minimize KL(f(w(S))|f̃(w(S))), where f̃ is the tessellated GP density. This
quantity can be controlled using:

KL(f(w(S))|f̃(w(S))) ≤ Σpi=1KL(f(w(ki)|w(k1, . . . , ki−1)|f(w(ki)|w(pa(ki)))

+Σni=1KL(f(w(si)|w(k1, . . . , kn, s1, . . . , si−1)|f(w(si)|w(pa(si)))

The proof starts with a majoration of the KL divergence, relying on the posi-
tivity of conditional KL divergence:
KL(f(w(S))|f̃(w(S))) ≤ KL(f(w(S))|f̃(w(S))) +KL(f(w(K)|w(S))|f̃(w(K)|w(S)))

(using 2 times conditional entropy property: H(x|y) +H(y) = H(x ∪ y))

= KL(f(w(S ∪ K))|f̃(w(S ∪ K)))

= KL(f(w(K))|f̃(w(K))) +KL(f(w(S)|w(K))|f̃(w(S)|w(K)))

(applying the first formula (2.2) on the two KL)

= Σpi=1KL(f(w(ki)|w(k1, . . . , ki−1)|f(w(ki)|w(pa(ki)))

+ Σni=1KL(f(w(si)|w(k1, . . . , kp, s1, . . . , si−1)|f(w(si)|w(pa(si)))

Then the target KL can be controlled through:

• Σpi=1KL(f(w(ki)|w(k1, . . . , ki−1)|f(w(ki)|w(pa(ki))), which is the Kullback-
Leibler divergence between the NNGP approximation at the knots and the
full GP at the knots.

• Σni=1KL(f(w(si)|w(k1, . . . , kp, s1, . . . , si−1)|f(w(si)|w(pa(si))), which is the
quality of the conditioning of an observation by its parent knots with re-
spect to the full GP, which conditions by all the knots plus all the previous
observations.

This formula has the advantage of “dividing and conquering” like (2.2). First,
the quality of the approximation on the knots grid and the quality of the con-
ditioning of the observations can be treated separately in order to minimize the
upper bound. Second, each of those two problems can be split into smaller ele-
mental tasks. Its big flaw is that the result is based on a majoration that may
be gross.

2.2 Fast prior whitening of latent NNGP field

NNGPs allow for an useful re-parametrization of the latent field known as prior
whitening. This method is known in the Gaussian process literature (Filip-
pone et al., 2013; Heinonen et al., 2016) and MCMC good practices in general
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(Neal et al., 2011), but it has not been applied to NNGP as far as I know:
the recent works of Finley et al. (2019) rather develop algorithms that avoid
sampling the latent field. However, R̃, the NNGP factor of the prior precision
matrix of the latent field, is sparse and triangular, which is ideal to implement
efficiently algorithms that need to whiten the latent field. From this starting
point, I investigated the aspects of NNGP models that may benefit from the
re-parametrization.

Subsection 2.2.1 presents the parametrization, gives a few properties, and
explores empirically its behavior. Later, I apply those properties to various al-
gorithms: latent field prediction (2.2.2), Ancillary-Sufficient Interweaving Strat-
egy (ASIS) to update the covariance parameters (2.2.3), and prior whitening for
Hamiltonian Monte-Carlo sampling of the latent field (2.2.4).

2.2.1 Presentation of latent field whitening

Prior whitening, ancillary parametrization. Prior whitening is a linear
combination of the Gaussian latent field which depends on the covariance pa-
rameters. Remember that S is a set of n spatial coordinates. The latent field
w(S) whose prior GP density is N (0,Σ) is re-parametrized as

w∗(S) = (Σ1/2)−1w(S),

with
Σ = Σ1/2(Σ1/2)T .

The prior density of w∗(S) will then be a standard multivariate normal distri-
bution.

This reparametrization can be used in an Ancillary-Sufficient Interweaving
Strategy (ASIS) (Yu and Meng, 2011; Filippone et al., 2013) aiming to im-
prove the sampling of the covariance parameters θ. I call w(S) the “natural”
parametrization because it has a straightforward interpretation in the analysis
of the observations in the hierarchical model (see figures 1.1 and 1.2). Following
the terminology of interweaving, the natural parametrization of the latent field
is called sufficient augmentation because conditionally on w(S) the a posteri-
ori density of the covariance parameters is independent from the observed data
and the other parameters. On the other hand, the whitened latent field is an
ancillary augmentation because it is a priori independent from the covariance
parameters.

The properties of the whitened latent field are not the same as the natural
latent field’s and it is easy to get confused. Let S1 and S2 be two sets of
spatial points. Assume that Σ−1/2 is lower triangular, like the NNGP factor R̃.
Due to the fact that Σ−1/2 is not diagonal, the whitened latent field cannot be
concatenated:

(w∗(S1), w∗(S2)) 6= w∗(S1,S2).

Similarly, a permutation of the spatial locations is not equivalent to a permu-
tation of the vector indices:

w∗(Sp(1,...,n)) 6= w∗(S)p(1,...,n),
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(b) Changing the smoothness

Figure 2.2: Effect of a change of covariance parameters on a Matérn latent field
with fixed ancillary augmentation

p(1, . . . , n) being a permutation of (1, . . . , n). However, Σ−1/2 being lower tri-
angular, the first elements of w∗(·) can be extracted. Denote # the cardinal:

w∗(S1 ∪ S2)1,...,#S1 = w∗(S1).

Methods using prior whitening are appealing but they usually involve comput-
ing Cholesky factors and solving linear systems for large matrices. However, a
NNGP model allows for direct computation of R̃ such that the GP prior of w(S)
has a covariance matrix given by (R̃T R̃)−1, and R̃ is sparse and triangular. Us-
ing sparse matrix multiplication, it is immediate to compute w∗(S) = R̃w(S).
On the other hand, sparse triangular linear solving allows to retrieve efficiently
w(S) = (R̃)−1w∗(S). However, computing explicitly R̃−1 quickly becomes pro-
hibitively expensive.

Empirical exploration. Changing the covariance parameters θ and leaving
w∗(S) untouched will not alter the general profile of w(S) but will modify its
aspect locally. For example, when the range (figure 2.2a) or smoothness (fig-
ure 2.2b) parameters of a Matérn function are modified, the field will become
smoother or fuzzier but will keep the same profile.

On the other hand, changing w∗ does not change the way w behaves locally,
but will change its global trajectory. In particular, when the ordering of the
locations is such that the first locations of S cover the whole spatial domain
rapidly (maxmin and random ordering in Guinness, 2018), the first coefficients
of w∗ can have an impressive leverage effect. In some cases, a handful of the first
coefficients are enough to have an accurate approximation of w, and the rest of
the coefficients of w∗ parametrize small local variations. I illustrate this point

with figure 2.3. I take an original NNGP sample w = R̃−1w∗, w∗
ind.∼ N (0, 1),
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(b) Changing the 100 first coeff. of w∗

Figure 2.3: The first elements of the ancillary augmentation are much more
important than the last.

that is represented in black in the two subfigures. In figure 2.3a, I replace the
900 last values of w∗ by new draws from a standard normal. I do the same
in 2.3b, but with the 100 first values. In the two cases, we obtain perturbed
samples of w that are drawn in red. In this example, changing the 900 last
values of w∗ produces almost no effect on w, while changing the 100 first values
completely transforms the sample.

Truncated whitened latent field inducing a Predictive Process approx-
imation of the Nearest Neighbor Gaussian process. In order to present
the result, I use the following notations. For a matrix M , read Mi...j,k...l as “the
sub-matrix obtained by reducing M to its rows whose indices range from i to j
and its columns whose indices range from k to l”. Similarly, for a vector x, read
xi...j as “the sub-vector obtained by reducing x to its coefficients whose indices
range from i to j”.

The powerful leverage effect of the first elements of w∗ comes from the fact
that (

R̃−1
1...n,1...iw

∗
1...i

)
1...i

= w1...i

and that (
R̃−1

1...n,1...iw
∗
1...i

)
i+1...n

= E (wi+1...n|w1...i, θ) (2.5)

if the mean of w(·) is (0, . . . , 0). This means that the i first terms of w∗(S) will
allow to recover perfectly the i first terms of w(S). The rest of w(S) will be
recovered imperfectly, but will be replaced by its expectation conditionally on
the i first terms of w and the covariance parameters. If the i first observation
sites are sufficiently dense in the spatial domain, the conditional expectation can
be very close to the actual sample. This the principle of the predictive process
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approximation to full Gaussian Processes (Banerjee et al., 2008), where the i
first elements of S are the knots of the predictive process.

It is clear that the knots of a predictive process should be well spread over
the spatial domain in order to guarantee a strong conditioning of the predicted
locations. Similarly, the ordering of S that is used to define the NNGP should
be such that the i first locations span all over the space. Orderings that induce
such dispersion are the max-min and random ordering, which yield anyway the
most accurate Vecchia’s approximations on two dimensions following Guinness
(2018). The result is demonstrated using block matrices. Denote:

• the upper left block as R̃11 = R̃1...i,1...i.

• the lower right block as R̃22 = R̃i+1...n,i+1...n.

• the lower left block as R̃21 = R̃i+1...n,1...i.

• the upper right block as R̃12 = R̃1...i,i+1...n.

Use the same notation for R̃−1. For w and the other vectors of size n:

• w1...i is noted w1.

• wi+1...n is noted w2.

Using the fact that R̃ is triangular,(
R̃−1

)
11

=
(
R̃11

)−1

and
(
R̃−1

)
12

= 0Mi×(n−i) .

It follows that
(R̃−1)11w

∗
1 = (R̃−1w∗)1 = w1,

which proves the first point. Using the usual block inversion formulas and
remarking that R̃12 has only null coefficients,(

R̃−1
)

21
=
(
−R̃22

)−1

R̃21

(
R̃11

)−1

.

Multiplying by w∗1 on the right and factorizing by
(
−R̃T22R̃22

)−1

on the left, it

follows that(
R̃−1

)
21
w∗1 =

(
−R̃22

)−1

R̃21w1 =
(
−R̃T22R̃22

)−1 (
R̃T22R̃21

)
w1.

Denote Q = R̃T R̃ the NNGP-induced precision matrix. Using the fact that R̃
is triangular,

R̃T22R̃22 =
(
R̃T R̃

)
22

= Q22 and R̃T22R̃21 =
(
R̃T R̃

)
21

= Q21.

Using the conditional expectation formula with a precision matrix (Rue and
Held, 2005), we find the second result:(

R̃−1
)

21
w∗1 = −Q̃−1

22 Q̃21w1 = E(w2|w1, θ).
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2.2.2 NNGP prediction using completion of the ancillary
parametrization

Prediction of the latent field at unobserved locations is an important aspect of
spatial modeling. There is an extensive study of Vecchia prediction in Katzfuss
et al. (2020). However, the family of algorithms presented there is not well
suited for MCMC implementation of a NNGP model. The method of Katzfuss
et al. (2020) is to obtain the conditional mean and variance of the latent process
at the predicted locations, conditionally on the response variable and the co-
variance parameters. But if MCMC samples of the latent field at the observed
locations are available, prediction can then be done conditionally on the covari-
ance parameters and the latent field at the observed locations, instead of the
noisy response variable. Prediction algorithms already exist for MCMC imple-
mentation of NNGP models in Datta et al. (2016); Finley et al. (2019). However,
those algorithms are oriented towards low-level languages and a method easy to
use in R can come in handy. Moreover, those algorithms induce independence
between the predicted locations conditionally on the observed locations, which
leads to a decrease in the quality of the approximation following Katzfuss et al.
(2020).

The R package GpGp already uses sparse forward substitution for fast NNGP
sampling, see algorithm 1. This method is standard for spatial process simula-
tion (Kroese and Botev, 2015). I apply the same idea to NNGP prediction at
unobserved locations.

Algorithm 1 Algorithm used by GpGp in order to sample from N (0, (R̃T R̃)−1)

input R̃

simulate w∗ ∼ N (0, In)

solve w = R̃−1w∗

return w

Denote S the set of spatial locations where samples of w(·) are available,
and P the set of locations where prediction needs to be done. To predict at the
un-observed locations, a joint NNGP prior must be defined at the observed and
predicted locations. Define a DAG on (S,P), S coming before P in the ordered
set. The first #S nodes of the dag and the edges between those nodes have
already been defined, because the prediction proceeds from a NNGP model fit
using data observed at S. The rest of the edges arrive to nodes corresponding
to the locations of P, and can come from either S or P. Consider a state of the
MCMC chain (θt, wt(S)). Note R̃((S,P), θt) the joint NNGP factor computed
using the covariance parameters θt. Its upper left corner corresponding to S is
denoted R̃(S, θt). Using (2.5),

R̃((S,P), θt)−1
1,···R̃(S, θt)wt(S) = E(w(P)|wt(S), θt),

R̃((S,P), θt)−1
1,··· being the matrix composed of the first #S columns of R̃((S,P), θt)−1.
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Using the conditional distribution formula for precision matrices (Rue and Held,
2005) and the fact that R̃((S,P), θt) is lower triangular,the conditional variance
matrix of w(P) can be expressed as

V ar(w(P)|wt(S), θt) =
(
R̃((S,P), θt)T2,2R̃((S,P), θt)2,2

)−1

,

R̃((S,P), θt)2,2 being the lower-right square block of R̃((S,P), θt) of size #P.
With those two elements in hand, it is possible to obtain one conditional draw
of w(P) using

R̃((S,P), θt)−1
1,···R̃(S, θt)wt(S)︸ ︷︷ ︸

E(w(P)|wt(S),θt)

+ R̃((S,P), θt)−1
2,2︸ ︷︷ ︸

Chol(V ar(w(P)|wt(S),θt))

w∗(P),

with w∗(P)
ind.∼ N (0, 1).

This draw can actually be re-written as a completion of the known elements
of the whitened latent field w∗(S) with #P random elements drawn following
independent standard normal distributions:

R̃((S,P), θt)−1(w∗ t(S), w∗(P))

with w∗(P)
ind.∼ N (0, 1) and w∗ t(S) = R̃(S, θt)wt(S).

A pseudo code using this principle is presented in algorithm 2.
One potential limit of the algorithm is that it requires the observed loca-

tions S to come before the predicted locations P in the ordering. Indeed, in
algorithm 2, the “sample” step consists in completing w∗(S) by standard nor-
mal draws in order to get samples of w∗(S,P), which is possible only if the
observed locations come first (see 2.2.1). Empirical exploration of the accuracy
of Vecchia’s approximations by Guinness (2018) shows that some orderings of
the spatial locations work better than others. On spatial domains with two di-
mensions, the max-min and the random ordering win; those methods guarantee
that the first ordered locations will quickly span the spatial domain, contrary
to other methods such as classing the points following a coordinate. The prob-
lem is that the observed locations S may not cover regularly the whole spatial
domain where both observations and predictions are done. For example, satel-
lite measurements may yield very dense measurements along the orbit, but no
measurements between those paths (Katzfuss et al., 2020). Following the con-
clusions of Guinness (2018), it would be better to predict such data using a
max-min or random order on (S,P). This is not possible with my algorithm
since shuffling or inverting S and P is forbidden. A workaround for this problem
would be to change the heuristic to choose the parents of the DAG instead of
changing the order of the graph. Using (2.2), we can see that if the parents
of a predicted point are clumped, their mutual correlation is high and they are
redundant. Prediction is done after the model is fit, so that the modeler has an
idea of the actual range of the spatial process. Then, variable selection can be
used in order to minimize (2.3).
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Algorithm 2 NNGP prediction using ancillary representation, practical version

input S,P . Observed and Predicted spatial Locations

input w1,...,niter(S) . MCMC samples of the latent field

input θ1,...,niter . MCMC samples of the covariance parameters

for t ∈ {1, . . . , niter} do

Compute R̃((S,P), θt)

Extract R̃(S, θt) from R̃((S,P), θt) . Upper left corner

Solve w∗t (S) = R̃(S, θt)wt(S)

Sample w∗t ((S,P)) = (w∗t (S),N (0, I#P)) . Completion

Solve wt((S,P)) = R̃((S,P), θt)−1w∗t ((S,P))

Extract wt(P) from wt((S,P))

end for

return w1,...,niter(P)

2.2.3 ASIS for covariance parameters update

Covariance parameters sampling is a thorny question because the correlation
between the latent field and the covariance parameters is strong. In Datta et al.
(2016), the Gibbs sampler loops over the covariance parameters, the latent field,
and all other parameters. This architecture often suffers from slow mixing.

The collapsed NNGP (Finley et al., 2019) removes the troublesome latent
field and only samples from the covariance parameters and the other parameters
of the model. However, various points should be considered: the algorithm
is sensitive to the design of the spatial observations, and as far as I know it
is difficult to apply it to latent fields with non-Gaussian likelihoods. On the
other hand, the KHR architecture (Knorr-Held and Rue, 2002) blocks field
and covariance parameter sampling. The method can boast a good mixing,
but it involves costly Cholesky factorizations. It is possible but technical and
potentially costly to extend it to fields with non-Gaussian observations (Rue
et al., 2004). Moreover, the method can scale poorly like the collapsed NNGP.
It is possible to keep the method feasible by splitting the field into various spatial
blocks that are updated one after another, but it is at the expense of efficiency,
it is complex, and the cost remains relatively high anyway.

Interweaving is another option. It consists in a mix of covariance parameters
updates with two data augmentations. The general methodology is presented
by Yu and Meng (2011). The particular application to covariance parameters
updating is evaluated by Filippone et al. (2013). This article concludes that
the method is competitive with other strategies (in particular with the KHR
update). This method can also boast about the fact that it is easy to implement
and that there is no a priori difficulty with non-Gaussian response.

The method takes advantage of the discordance between two parametriza-
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tions of the data augmentation w1 and w2. Gibbs sampler updates of θ in
models with either parametrizations are done with the relevant full conditional

θt+1 ∼ [θ|wt1, . . .] or θt+1 ∼ [θ|wt2, . . .],

where “. . .” represents the rest of the parameters of the model. Now suppose
that there is a valid joint distribution (even degenerate) [θ, w1, w2, . . .] com-
prising both data augmentations, that is with marginal distributions [w1, θ, . . .]
and [w2, θ, . . .] corresponding to the joint distributions of the two simpler mod-
els. Interweaving consists in using the distribution that encompasses the two
parametrizations, and replacing the update of θ by the following step:

[w2, θ|wt1, . . .]→ [θt+1, wt+0.5
1 |w2, . . .].

Two blocked updates following the full conditional distributions are combined,
each preserving the target density. Usually, it is complicated to sample directly
[w2, θ|wt1, . . .], and much simpler to do:

[θ|wt1, . . .]→ [w2|wt1, θ, . . .]︸ ︷︷ ︸
[θ,w2|wt1,...]

→ [θt+1|w2, . . .]→ [wt+0.5
1 |w2, θ

t+1, . . .]︸ ︷︷ ︸
[θt+1,wt+0.5

1 |w2,...]

. (2.6)

When the joint distribution is degenerate, [w2|θ, w1, . . .] is a deterministic trans-
formation. It is the case with field whitening since w∗ = R̃(θ)w. At the end
of the step w1 is changed, but this change is not on an equal footing with a
dedicated step that guarantees the irreducibility of the chain. This is the reason
why “wt+0.5

1 ” is written instead “wt+1
1 ” at the end of the step. A genuine update

of the data augmentation must be included in the Gibbs sampler and can be
either [w2|θ, . . .]→ [w1|θ, w2, . . .] or [w1|θ, . . .]→ [w2|θ, w1, . . .], the second part
of each step actually being a deterministic harmonization.

Note that the θ that is sampled in the left-hand part of (2.6) is not used in
the right-hand part, so by marginalization of the joint draw

[θ|wt1, . . .]→ [w2|wt1, θ, . . .] is equivalent to [w2|wt1, . . .].

The strategy precisely relies on the discordance between w2 and w1 and can
even be efficient when none of the two augmentations performs well when im-
plemented separately. A good choice for interweaving is when the two data
augmentations are an ancillary-sufficient couple, giving an Ancillary-Sufficient
Interweaving Strategy (ASIS). A sufficient augmentation is an a posteriori suffi-
cient statistic for the parameter θ: conditioning by the data augmentation only
gives the full conditional. An ancillary statistic is a priori independent from
the parameter. In this application, the natural parametrization of the latent
field is the sufficient augmentation, and the whitened latent field is the ancillary
augmentation.

A change of parametrization for the latent field affects greatly the sampling
procedure for the covariance parameters. When sufficient augmentation is used,
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the full conditional distribution of the covariance parameters is proportional to
the prior NNGP distribution f̃(w(S)|θ)h(θ), h(·) being the hyperprior distribu-
tion and f̃(·|·) being the NNGP prior of a latent field knowing its covariance
parameters. This means that when a new covariance parameter is proposed in
a Metropolis step, it is accepted or rejected following whether it explains well
or not the structure of the latent field.

When ancillary augmentation is used, the prior of w∗ is a multivariate stan-
dard normal density and does not change with θ. The full conditional becomes
proportional to l(z(S)|R̃(S, θ)−1w∗, β, . . .)h(θ), l(·, ·) being the likelihood of the
observations knowing the latent field, the linear regression, and additional pa-
rameters such as the variance of the noise if the data is Gaussian. This means
that when a new covariance parameter is proposed, the latent field is modi-
fied accordingly like in figure 2.2, and the covariance parameter is accepted or
rejected following whether the new latent field explains well the observed data.

Two versions of the algorithm are given. The first version (algorithm 3)
underlines the sampling operations while the second (algorithm 4) is more prac-
tical.

Algorithm 3 Covariance parameters update using ASIS

input βt, θt, wt, z,X, . . . . More parameters such as τ can be needed

sample θ′ from qsuff (·|θt) . Sufficient augmentation Metropolis Update

sample a ∼ U([0, 1])

if
f̃(wt|θ′)qsuff (θt|θ′)
f̃(wt|θ)qsuff (θ′|θt) > a then

θt+1/2 = θ′

else

θt+1/2 = θt

end if

sample w∗ conditionally on wt and θt+1/2

sample θ′ from qancill(·|θt+1/2) . Ancillary augmentation Metropolis Update

sample a ∼ U([0, 1])

if l(z|R̃(θ′)−1w∗,β,...)qancill(θ
t+1/2|θ′)

l(z|R̃(θt+1/2)−1w∗,β,...)qancill(θ′|θt+1/2)
> a then

θt+1 = θ′

else

θt+1 = θt+1/2

end if

sample wt+1/2 conditionally on w∗ and θt+1

return θt+1, wt+1/2 . wt+1/2 needs be updated later
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Algorithm 4 Covariance parameters update using ASIS, practical version

input βt, θt, wt, z,X, . . . . More parameters such as τ can be needed

input R̃(θt)

sample θ′ from qsuff (·|θt) . Sufficient augmentation Metropolis Update

compute R̃(θ′)

ρ1 = Σni=1log(R̃(θ′)i,i) − 1/2((wt)TR(θ′)TR(θ′)wt) − Σni=1log(R̃(θ)i,i) +
1/2((wt)TR(θ)TR(θ)wt) . NNGP log-ratio

ρ2 = log(qsuff (θt|θ′))− log(qsuff (θ′|θt) . Proposal distribution log-ratio

sample a ∼ U([0, 1])

if ρ1 + ρ2 > log(a) then

θt+1/2 = θ′

R̃(θt+1/2) = R̃(θ′)

else

θt+1/2 = θt

R̃(θt+1/2) = R̃(θt)

end if

sample θ′ from qancill(·|θt+1/2) . Ancillary augmentation Metropolis Update

compute R̃(θ′)

solve w′ = R̃(θ′)−1R̃(θt+1/2)wt

ρ1 = log(l(z|w′, β, . . .))− log(l(z|wt, β, . . .)) . Field likelihood log-ratio

ρ2 = log(qancill(θ
t|θ′))− log(qancill(θ

′|θt)) . Proposal distribution log-ratio

sample a ∼ U([0, 1])

if ρ1 + ρ2 > log(a) then

θt+1 = θ′

R̃(θt+1) = R̃(θ′)

wt+1/2 = w′

else

θt+1 = θt+1/2

R̃(θt+1) = R̃(θt+1/2)

wt+1/2 = wt

end if

return θt+1, R̃(θt+1), wt+1/2 . wt+1/2 still needs to be updated later
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2.2.4 Field whitening and Hamiltonian Monte Carlo sam-
pling

Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) is an attractive method
to sample from the joint density of the latent field w(S). First, it allows to
produce samples with low auto-correlation. Moreover, it is more all-terrain
than analytical block sampling because it does not require the observations to
be Gaussian. However, when the data size n increases, one is caught between
the hammer and the anvil. One the one hand, the cost of one Leapfrog iteration
augments. On the other hand, the Leapfrog integration step must be lowered
in order to keep good acceptance rates, increasing the number of iterations in
one HMC proposal.

In general, this problem is sensitive to multiplying the sampled variables by
a matrix. It is well-known that when sampling a Gaussian vector x of covariance
matrix Σ, working with Σ−1/2x can be much more efficient than using directly
x (Neal et al., 2011). The problem is that either the posterior distribution of
w is non-Gaussian, or such a transform is unaffordable. Prior whitening of the
field (see for example Heinonen et al., 2016) doges this difficulty by multiplying
the latent field w by R̃, and is equivalent to applying HMC on w∗. If w was
following its prior distribution, w∗ would be a white noise, hence the method’s
name; even if the components of w∗ are not perfectly decorrelated a posteriori,
they still are much less correlated than the components of w.

Replacing w by w∗ in the HMC step changes the negated log-density and its
gradient, see table 2.1 for a comparison. Note that in the lower right cell, the
differentiation is done with respect to w and not w∗. It is because differentiating
the likelihood of the observations with respect to w∗ would be unaffordable. It
is much better to use the Jacobian chain rule, with

−
∂
(
log(l(z|R̃−1w∗, X, β, . . .))

)
d(w∗)

= −(R̃−1)T
∂
(
log(l(z|w = R̃−1w∗, X, β, . . .))

)
d(w)

.

Here the triangularity and sparsity of R̃ is critical for fast solving. As for
the likelihood of the observations, using the conditional independence of the
observations conditionally on the natural latent field allows to write it as:

log(l(z|w,X, β, . . .)) = Σni=1Σ
nobs(si)
j=1 log(l(zj(si)|w(si), Xj(si), β, . . .)),

nobs(s) being the number of observations in the spatial site s, and “. . .” beign
additional parameters (the Gaussian noise variance in the case of Gaussian ob-
servations for example). Differentiation with respect to w is therefore affordable.
Using all those elements, a workable whitened HMC step can be devised. Algo-
rithm 5 is a general outline, while hands-on instructions are given in algorithm
6.
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Table 2.1: Negated log density and its gradient for natural and whitened NNGP
field

Natural Whitened

Negated log-density 1/2wT R̃T R̃w 1/2Σni=1(w∗i )2

−log(l(z|w,X, β, . . .)) −log(l(z|R̃−1w∗, X, β, . . .))

Negated log density R̃T R̃w Σni=1w
∗
i

gradient w.r.t w/w∗ −∂(log(l(z|w,X,β,...)))
d(w) −(R̃−1)T

∂(log(l(z|w=R̃−1w∗,X,β,...)))
d(w)

Algorithm 5 HMC algorithm with whitening

input wt, θt, βt, z,X, . . . . More parameters such as τ can be needed

compute w∗t conditionally on wt, θt

sample pt ∼ N (0, In) . Momentum

sample w∗′, p′ using Leapfrog integration

Accept or reject w∗′, p′ with Metropolis step

if w∗′ is accepted then

w∗ t+1 = w∗′

else

w∗ t+1 = w∗t

end if

compute wt+1 conditionally on w∗ t+1, θt

return wt+1
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Algorithm 6 HMC algorithm with whitening, practical version

input wt, θt, βt, z,X, . . . . More parameters such as τ can be needed

input R̃

input ε . Leapfrog step size

input L . Number of Leapfrog steps

w∗t = R̃wt . Current position for HMC

sample pt ∼ N (0, In) . Current momentum for HMC

w∗′ = w∗t . Proposed position

p′ = pt . Proposed momentum

p′ = p′ − 1/2× ε×
(

Σni=1w
∗
i
′/2− (R̃−1)T∂ (log(l(z|w′, θ, β, . . .))) /d(w

′)
)

.

Half step for the momentum

for i = 1 . . . L do . Leapfrog integration

w∗′ = w∗′ + ε× p . Position change

solve w′ = R̃−1w∗′ . Retrieve sufficient parametrization

if i < L then

p′ = p′ − ε×
(

Σni=1w
∗
i
′/2− R̃−1∂ (log(l(z|w′, θ, β, . . .))) /d(w′)

)
. Full

steps for the momentum

end if

end for

p′ = p′ − 1/2× ε×
(

Σni=1w
∗
i
′/2− (R̃−1)T∂ (log(l(z|w′, θ, β, . . .))) /d(w′)

)
.

Half step for the momentum

sample a ∼ U([0, 1])

ρ1 = Σni (p′i)
2 − p2

i . Momentum log-density ratio

ρ2 = Σni (w∗i
′)2 − (w∗i

t)2 . Whitened GP prior log-density ratio

ρ3 = log(l(z|w′, X, β, . . .))− log(l(z|wt, X, β, . . .)) . Observations likelihood
log-density ratio

sample a ∼ U([0, 1])

if ρ1 + ρ2 + ρ3 > log(a) then . Metropolis ratio

wt+1 = w′ . Accept

else

wt+1 = wt . Reject

end if

return wt+1
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2.3 Exploiting the separability of NNGP den-
sity with delayed acceptance

2.3.1 Delayed acceptance for NNGPs

Delayed Acceptance is a modification of the Metropolis-Hastings step that trades
statistical efficiency of the MCMC chain for computational efficiency. Let f(·) be
a target distribution and q(·|·) be a proposal distribution. The usual Metropolis-
Hastings ratio for the proposed parameter y is

ρ(x, y) = (q(x|y)/q(y|x))︸ ︷︷ ︸
Proposal distribution

×(f(y)/f(x))︸ ︷︷ ︸
Target density

.

Delayed acceptance consists in splitting ρ(x, y) as the product of k arbitrary
positive functions ρ1(·, ·), . . . , ρk(·, ·), and to accept the proposed move with
probability

Πk
i=1min(ρi(y, x), 1).

The cheaper ratios should be computed first: if the proposal fails to pass the
first ratios, the following ratios, which are more expensive, are not computed
(Banterle et al., 2014).

I chose to apply delayed acceptance to covariance parameter sampling for
two reasons. First, a Metropolis-Hastings step is unavoidable since no analytical
full conditional can be derived for covariance parameters (Datta et al., 2016).
Second, Vecchia’s approximation to a density can be split very easily since
it is a product of small elements. This theoretical split is easy to apply in
practice because the Cholesky factor of the Gaussian Process precision matrix
is computed row by row (Guinness and Katzfuss, 2018), each row corresponding
to one chunk of the recursive conditional likelihood.

My application of delayed acceptance to Vecchia’s approximation is in the
spirit of Christen and Fox (2005). They split the acceptance ratio as:

ρ1(y, x) = (q(x/y)/q(y/x))︸ ︷︷ ︸
Proposal distribution

× (f∗(y)/f∗(x))︸ ︷︷ ︸
Target approximation

and
ρ2(y, x) = (f∗(x)/f∗(y))︸ ︷︷ ︸

Target approximation

× (f(y)/f(x))︸ ︷︷ ︸
True target

.

In the first ratio, f∗(·) is supposed to be a cheaper approximation to f(·).
Hence ρ1(·, ·) is supposed to be an approximation to ρ(·, ·). The first ratio can
be interpreted as a pre-selection, and the costlier actual ratio is then computed
only for the proposals that are the best according to the approximation. I pro-
pose to “taste” this ratio with the first n1 observations, n1 being much smaller
than n. This is a classical Subset of Regressors approximation (Rasmussen and
Williams, 2006). Another approach is to dispatch the n1 observations among
the n observations, at random for example. However, this approach is more
complicated to implement and does not allow to use Ancillary Augmentation.
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NNGP with sufficient augmentation. With a proposal distribution q(·|·),
a hyperprior distribution h(·), a NNGP density f̃(·), a latent field w(·), and
respectively current and proposed covariance parameters θ and θ′, the “usual”
Metropolis ratio for NNGP with sufficient augmentation is:

ρ(θ′|θ) = (q(θ|θ′)/q(θ′|θ))︸ ︷︷ ︸
Proposal distribution

× (h(θ′)/h(θ))︸ ︷︷ ︸
Hyperprior

× (f̃(w(s1, . . . , sn)|θ′)/f̃(w(s1, . . . , sn)|θ))︸ ︷︷ ︸
NNGP density

.

The Delayed Acceptance ratios are then:

ρ1(θ′|θ) = (q(θ|θ′)/q(θ′|θ))︸ ︷︷ ︸
Proposal distribution

× (h(θ′)/h(θ))︸ ︷︷ ︸
Hyperprior

× (f̃(w(s1, . . . , sn1)|θ′)/f̃(w(s1, . . . , sn1)|θ))︸ ︷︷ ︸
Beginning of the NNGP density

,

and
ρ2(θ′|θ) = f̃(w(sn1+1, . . . , sn)|w(s1, . . . , sn1

), θ′)

/f̃(w(sn1+1, . . . , sn)|w(s1, . . . , sn1), θ)︸ ︷︷ ︸
End of the NNGP density

.

Only the first n1 rows of R̃ are needed to compute the first ratio.

Response NNGP. Response NNGP (Finley et al., 2019) has no latent field
and computes directly the density of the Gaussian observations z(·). The co-
variance parameters integrate a nugget effect to account for the noise of the
observations. The previous approach can be transposed mutatis mutandis.

NNGP with ancillary augmentation. Here, l(·) is the likelihood of the
observations. The Cholesky factor of the precision matrix that is found using
the NNGP is noted R̃(·). The whitened latent field is w∗ = R̃(θ)w. The “usual”
Metropolis ratio for NNGP with ancillary augmentation is:

ρ(θ′, θ) = (q(θ|θ′)/q(θ′|θ))︸ ︷︷ ︸
Proposal distribution

× (h(θ′)/h(θ))︸ ︷︷ ︸
Hyperprior

× (l(z|R̃−1(θ′)w∗, β, . . .)/l(z|R̃−1(θ)w∗, β, . . .))︸ ︷︷ ︸
Likelihood of the observations

.
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The Delayed Acceptance ratios are:

ρ1(θ′, θ) = (q(θ/θ′)/q(θ′/θ))︸ ︷︷ ︸
Proposal distribution

× (h(θ′)/h(θ))︸ ︷︷ ︸
Hyperprior

× l(z1...n1 |(R̃(θ′)−1w∗)1...n1 , β, . . .)

l(z1...n1 |(R̃(θ)−1w∗)1...n1 , β, . . .)︸ ︷︷ ︸
Likelihood of the first n1 observations

.

ρ2(θ′, θ) =
l(zn1+1...n|(R̃(θ′)−1w∗)n1+1...n, β, . . .)

l(zn1+1...n|(R̃(θ)−1w∗)n1+1...n, β, . . .)︸ ︷︷ ︸
Likelihood of the last n− n1 observations

.

Once again, only the n1 first rows of R̃ need to be computed to solve
(R̃1...n1,1...n1

)−1w∗1...n1
= (R̃−1w∗)1...n1

.

2.3.2 Empirical exploration

Design. An experiment on synthetic data sets is set up to assess the con-
tribution of delayed acceptance to computational efficiency. One case of the
experiment is obtained by:

1. Simulating a spatial data set.

2. Running a NNGP model with a certain delayed acceptance strategy.

3. After 6000 iterations, store the chain and record interest variables about
the computational efficiency of the run.

The observed fields are simple Gaussian fields given as z(·) = w(·) + ε(·), the
latent field w being an exponential field with range and marginal variance 1,
and the error ε(·) being a white noise with variance 1. Those synthetic data sets
all have size 10000 and the spatial locations are drawn uniformly on a square of
size 20× 20.

A random ordering (Guinness, 2018) is used in order to improve the accuracy
of the NNGP, implying that the n1 first spatial points used in the delayed
acceptance step occupy all the 20× 20 spatial domain, but are less dense in the
square than the original 10000 spatial points. The density of the observations
(25 observations per unit of area) is high enough with respect to the range of
the spatial process (1 unit of length) to guarantee that the subset-of-regressors
approach is not a nonsense. Indeed, it is possible to fit a model with the same
range but just 1 observation per unit of area.

Four cases are tested for the delayed acceptance: n1 = 500, 1000, 2500, and
no delayed acceptance. An ASIS algorithm (4) with automatic greedy proposal
tuning in the first hundred iterations is used. There are one ancillary and one
sufficient Metropolis steps in each iteration of the MCMC algorithm. Each of
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those two steps is done with delayed acceptance, but not necessarily with the
same n1, so that there are 16 cases in total. Each of those 16 cases is replicated
50 times with different seeds.
The interest outcome variables are:

• the running time, that should be lower with delayed acceptance.

• the Effective Sample Size (ESS) is a measure of the statistical efficiency
and should be lower with delayed acceptance (Christen and Fox, 2005).

• the ESS per time as a measure of computational efficiency. If delayed
acceptance is beneficial, it should increase.

Results. To assess the effect of delayed acceptance on the interest variables,
I treated n1 as a factor and used linear models with interactions. A summary
of the models is presented in table 2.2.

As expected, both the running time and the ESS are generally lower when
using delayed acceptance. Only three cases are out of this pattern, at rows
11, 14, and 15 of the table. Those three rows correspond to interactions between
sufficient and ancillary augmentation. In those three cases, the ESS drops dra-
matically but the running time strongly increases. They correspond to cases
where the chains mix poorly and may even stray, explaining the drop of ESS.
The increase of time could be explained by a failure of the pre-acceptance step
to act as a filter.

As for the ESS per time, it appears that it is not affected greatly by delayed
acceptance in general, but the three pathological cases obviously cause a serious
deterioration. I did not push forward on this lead whose preliminary results
were not very encouraging.

The fact that I use NNGP with full data augmentation (the latent field w(·)
is sampled within the Gibbs sampler) might explain the mediocrity of delayed
acceptance’s performance. A loss of statistical efficiency in the sampling of the
covariance parameters actually affects the mixing of all the parameters of the
model. On the other hand, the gain in time only affects the corresponding step.
In a more frugal model, such as response NNGP (Finley et al., 2019), delayed
acceptance might perform better than in the full NNGP model I used.
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Table 2.2: Results of the Delayed Acceptance experiment.

ESS/time ESS time
Case Est.1 Pr(> |t|) Est. Pr(> |t|) Est. Pr(> |t|)

(Intercept)2 3.31 0.00 96.50 0.00 29.14 0.00
suff. 500 -0.14 0.24 -20.18 0.00 -5.05 0.00
suff. 1000 -0.01 0.91 -19.33 0.00 -5.76 0.00
suff. 2500 -0.18 0.14 -22.48 0.00 -5.54 0.00
anc. 500 0.10 0.42 -8.98 0.00 -3.51 0.00
anc. 1000 0.37 0.00 -5.91 0.03 -4.56 0.00
anc. 2500 0.36 0.00 -8.03 0.00 -5.06 0.00
suff. 500, anc. 500 0.40 0.02 6.17 0.10 -0.52 0.00
suff. 1000, anc. 500 0.46 0.01 6.35 0.09 -0.52 0.00
suff. 2500, anc. 500 0.63 0.00 11.20 0.00 -0.36 0.01
suff. 500, anc. 1000 -2.63 0.00 -48.44 0.00 4.55 0.00
suff. 1000, anc. 1000 0.33 0.06 0.79 0.83 -0.79 0.00
suff. 2500, anc. 1000 0.48 0.01 5.40 0.15 -0.60 0.00
suff. 500, anc. 2500 -2.61 0.00 -48.16 0.00 2.87 0.00
suff. 1000, anc. 2500 -2.71 0.00 -47.96 0.00 4.05 0.00
suff. 2500, anc. 2500 0.44 0.01 2.91 0.44 -1.01 0.00

1 “Est.” stands for “Estimate”.
2 The reference case is no delayed acceptance
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Chapter 3

Chromatic sampling and
fixed effect ASIS applied to
NNGP models.

The chapter consists in an article that presents early attempts to improve the
MCMC algorithm of Datta et al. (2016). It currently is under review (first
round) in Computational Statistics and Data Analysis. Two methods are pre-
sented.

The first method aims to solve a problem that caused much trouble in my
early implementations of NNGP models: poor mixing of the linear regression
coefficients associated to the fixed effects. It was not difficult to stumble on the
issue because the intercept’s coefficient has an especially bad MCMC behavior.
A re-parametrization of the model, where the latent Gaussian field is centered
around the intercept instead of 0, is enough to solve the problem. While it is
well-known that linear transformation of the variables may dramatically improve
the behavior of a Gibbs sampler algorithm, the question that remains is why
centering the latent field on the intercept works better. Theoretical exploration
of a simplified field-intercept model reveals that the two parametrizations of the
intercept will behave in opposite ways: when either does good, the other will
fail. It is impossible to give a rigorous quantification of what is going on due
to the fact that GP densities generate some intractable terms. However, some
reasoning “with the hands” allows to link the behavior of the intercept with the
fact that Gaussian Processes induce some spatial coherence.

The problem that arose with the intercept sometimes happens with other co-
variates. A good point is that thanks to the sparsity that is induced by NNGPs,
centering the latent field on the incriminated fixed effects is computationally af-
fordable. However, instead of proposing to pick the effects and center them,
I advocate in favor of an interweaving of the two parametrizations. The first
reason why is that interweaving generally is very efficient, even when none of
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the two interweaved steps are. The second is that there is some incertitude
about which parametrization should be chosen. In general, covariates that have
some spatial coherence will cause trouble, while the others are well behaved.
Worse, centering a linear effect that should not be centered will deteriorate the
behavior of the associated regression coefficient. Testing the variables one by
one by spatial correlation analysis or preliminary run would be tedious and
negate the benefit of the approach. Instead of spending time thinking about
which parametrization should be used, I prefer to round all eligible covariates
(including the intercept) up in a common sampling step and forget about them.

The limit of this solution is that it cannot be applied to covariates that vary
within one spatial site (e.g. people living in the same household may smoke
or not, but the presence or not of asbestos in the building affects all of them).
This limit must be tempered in practice because NNGP methods are applied on
point-measurement data sets: therefore, all regressors obtained through grids
or areas are immediately eligible.

The other method presented in the article is a Chromatic sampler that uses
the sparsity induced by NNGPs in order to improve the sampling of the latent
field. It is a continuation of the approach of Datta et al. (2016), in the sense
that it aims to transpose the parallelisability of the computation of the NNGP
density to the sampling of the latent field.

While Peruzzi et al. (2020) force a chromatic behavior on the data through
a mesh of knots, the approach presented here is to adapt chromatic sampling
to existing NNGPs. The two methods have their own merits. Meshed NNGPs
are a great tool in cases where the Nearest Neighbor heuristic is ambiguous or
difficult to apply, such as multivariate data. However, “vanilla” NNGPs are
time-tested, and their accuracy is guaranteed by standard empirically tested
heuristics (Guinness, 2018).

Empirical exploration showed that the method is successful in gathering the
sampling operations into very few, very large groups, while remaining cheap
using simple greedy coloring. Even though the heuristics of construction for
NNGPs (Guinness, 2018) do affect the number of groups, it remains stable with
the size of the data set, and there was no problematic case. The behavior of
NNGP moral graphs with respect to coloring is surprising and arises curiosity.
I did my best to explain this behavior, even though much more work would be
needed to go to the bottom of things.

What chromatic samplers cannot do is to solve the problems of auto-correlation
of NNGPs with full data augmentation. They must be used in the framework of
efficient MCMC architectures, such as those that were benchmarked by Filip-
pone et al. (2013), see section 2.2.3 of the thesis for the implementation details
for NNGP models. On the other hand, chromatic samplers have the very pos-
itive property to be usable with any type of data and not only Gaussian data.
Therefore, they perfectly fitted in the approach to find robust and all-terrain
methods as basic elements for more complex methods. In particular, they were
an interesting lead for complex sampling involved in non-stationary model fit-
ting, even though in the end Hamiltonian methods worked better.

54



Improving performances of MCMC for

Nearest Neighbor Gaussian Process

models with full data augmentation

Sébastien Coube-Sisqueille1,a and Benôıt Liquet1,2,b

Abstract

Even though Nearest Neighbor Gaussian Processes (NNGP) alleviate con-
siderably MCMC implementation of Bayesian space-time models, they do not
solve the convergence problems caused by high model dimension. Frugal alter-
natives such as response or collapsed algorithms are an answer. Our approach
is to keep full data augmentation but to try and make it more efficient. We
present two strategies to do so.
The first scheme is to pay a particular attention to the seemingly trivial fixed
effects of the model. We show empirically that re-centering the latent field on
the intercept critically improves chain behavior. We extend this approach to
other fixed effects that may interfere with a coherent spatial field. We propose
a simple method that requires no tuning while remaining affordable thanks to
the sparsity of NNGPs.
The second scheme accelerates the sampling of the random field using Chro-
matic samplers. This method makes long sequential simulation boil down to
group-parallelized or group-vectorized sampling. The attractive possibility to
parallelize NNGP density can therefore be carried over to field sampling.
We present a R implementation of our methods for Gaussian fields in the public
repository
https://github.com/SebastienCoube/Improving_NNGP_full_augmentation.
An extensive vignette is provided. We run our implementation on two synthetic
toy examples along with the state of the art package spNNGP. Finally, we apply
our method on a real data set of lead contamination in the United States of
America mainland.
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3.1 Introduction

Many social or natural phenomena happen at the scale of a territory and must
be observed at various sites and possibly times. The rise of modern GPS and
Geographic Information Systems made large and high-quality point-referenced
data sets more and more available. Assume that, in a collections of sites S of
the space or space-time domain D, we have measurements z(·) with some kind
of space or space-time coherence. This coherence can be accounted for by intro-
ducing a spatially-indexed process w(·) that has a well-defined joint distribution
on any finite subset of the domain. We consider a Gaussian model where the
observations z(·) have been perturbed by a Gaussian noise ε of standard devi-
ation τ . Many models also add linear regression on covariates X(·), giving the
following classical model formulation

z(s) = β0 +X(s)βT + w(s) + ε(s), s ∈ S. (3.1)

In order to keep notations shorter, for any collection of spatial locations P ⊂ S,
we denote the vector {w(s) : s ∈ P} as w(P). Gaussian processes (GP) make
an elegant prior distribution for w(·), see Gelfand et al. (2010). The GP prior
distribution of w(S) is N (µ,Σ). The mean parameter of w(·) is usually fixed
to µ = 0 to avoid identification problems with the linear regression intercept
β0. The covariance matrix is computed using a positive definite function k(·)
with covariance parameters θ, such as Matérn’s covariance and its exponential
and squared-exponential special cases. It can then be written as Σ(S, θ), and
its entries are Σ(S, θ)i,j = k(si, sj , θ). We denote f(·|µ,Σ) the GP density, and
we abbreviate it as f(·|µ, θ) . The covariance parameters can have modeller-
specified hyperpriors developed in Fuglstad et al. (2015); Datta et al. (2016).

The weakness of GPs is that computing the prior density of w(S) involves
the determinant and inverse of Σ(S, θ), incurring a computational cost that is
cubic in the size of S. Vecchia’s approximation to Gaussian likelihoods received
increased attention the past years, with theoretical developments of Katzfuss
and Guinness (2017); Guinness (2018); Datta et al. (2016); Finley et al. (2019)
and software presented in Guinness and Katzfuss (2018); Finley et al. (2017).
The Nearest Neighbor Gaussian Process (NNGP) is a special case of Vecchia’s
approximation that provides a surrogate of the inverse Cholesky factor of Σ
and uses it to approximate GP prior density. It starts by finding an ordering
for the n locations of S which we will denote (s1, . . . , sn). The ordering may
have an impact on the quality of the approximation, and is discussed in Datta
et al. (2016); Guinness (2018). The joint latent density of w(s1, . . . , sn) is then
written under the recursive conditional form

f(w(s1, . . . , sn)|µ, θ) = f(w(s1)|µ, θ)×Πn
i=2f(w(si)|w(s1, . . . , si−1), µ, θ).

Since f(w(s1, . . . , sn)|µ, θ)) is a Multi-Variate Normal (MVN) distribution func-
tion, the conditional density f(w(si)|w(s1, . . . , si−1), µ, θ), i ∈ 2, . . . , n is a Nor-
mal as well. A NNGP is obtained by replacing the vector w(s1, . . . , si−1) that
conditions w(si) by a much smaller parent subset denoted w(pa(si)) for each
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conditional density. The NNGP approximation to the GP prior joint density of
w(·) is defined as

f̃(w(s1, . . . , sn)|µ, θ) = f(w(s1)|µ, θ)×Πn
i=2f(w(si)|w(pa(si)), µ, θ). (3.2)

This very general principle can be applied to any kind of well-defined multivari-
ate density. However, as far as we know, MVN density approximation is the
only application. This may be explained by the fact that non-Gaussian data
can be handled with GP modeling using link functions. Moreover, a NNGP de-
fines a MVN density and it is possible compute explicitly and easily the sparse
Cholesky factor of the precision matrix. The choice of the parents is critical but
no universal criterion exists. A popular choice is to pick si’s nearest neighbors
among (s1, . . . , si−1), explaining the denomination “Nearest Neighbors Gaus-
sian Process” given in Datta et al. (2016). However, Datta et al. (2016); Stein
et al. (2004) argue that mixing close and far-away observations can improve
the approximation. This approximation is cheap and easily parallelisable. The
latent density (3.2) can be split into small jobs and dispatched to a cluster of
calculators (Datta et al., 2016). Its cost is linear in the number of observations
under the condition that the size of each parent set is bounded. More advanced
strategies exist such as grouping, proposed by Guinness (2018).

If NNGPs work around the bottleneck of GP likelihood computation, they
do not solve the problem of slow MCMC convergence. In Datta et al. (2016), the
Gibbs sampler loops over θ, w(S) and β, µ is fixed to 0. The latent field w(S)
is updated sequentially or by blocks. This sampler suffers from slow mixing, in
particular when n increases. Other strategies have been proposed by Finley et al.
(2019) that precisely avoid to sample the field in order to reduce the dimension
of the model. Yet another method (Finley et al., 2019; Zhang et al., 2019) is to
use convenient conjugate distributions for models where the range of w(·) and
the variance ratio of w(·) and ε(·) is fixed, and select the fixed parameters by
cross-validation. Our approach is nevertheless to improve implementations of
NNGP models where the latent field is explicitly sampled. Our first reason is
that there may be situations where some of the methods presented in Finley et al.
(2019) perform poorly while full data augmentation works well. For example,
the collapsed NNGP of Finley et al. (2019) enjoys low dimensionality and allows
nonetheless to retrieve the latent field, but demands Cholesky factorization of
large sparse matrices which may be unfeasible depending on n and the dimension
of D. The Response NNGP of Finley et al. (2019) retrieves the covariance
parameters θ but not the latent field w(S). Our second reason is that efficient
Gibbs sampler architectures can sharply improve mixing. A NNGP defines a
Markov Random Field, allowing to use the blocking methods of Knorr-Held
and Rue (2002). The sparse Cholesky factor in a NNGP makes it possible to
use the Ancillary-Sufficient Interweaving Strategy (AS-IS) presented in Yu and
Meng (2011). The third reason is that full latent field sampling is all terrain,
and can address many data models or be plugged into complex, non-stationary
models like Heinonen et al. (2016), while collapsed MCMC or conjugate models
are much pickier.
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Here is an outline of the article. Section 3.2 focuses on the seemingly trivial
linear effects of the hierarchical model. In 3.2.1 we propose a mild but effi-
cient centering of the latent field on the least squares regression intercept. In
3.2.2, we extend centering to other linear effects, and we use interweaving from
Yu and Meng (2011) to propose a robust, tuning-less application. Section 3.3
targets the simulation of the random field. In 3.3.1, we propose to use the
chromatic samplers developed by Gonzalez et al. (2011) in order to carry the
attractive parallelizability of NNGP density over to field sampling. In 3.3.2,
we analyze the sensitivity of NNGP graph coloring and we benchmark coloring
algorithms. We apply our methods in section 3.4. We present our implemen-
tation (available at https://github.com/SebastienCoube/Improving_NNGP_

full_augmentation) in 3.4.1. We test our implementation along with the state
of the art package spNNGP presented in Finley et al. (2017) on synthetic toy
examples in 3.4.2. In 3.4.3, we present an application on lead contamination in
the mainland of the United States of America. The article ends by a discussion
in Section 3.5.

3.2 Latent field centering

3.2.1 Centering the latent field on the intercept

The mean parameter µ of the prior density for the latent field w(·) is usually set
to 0 in order to avoid identification problems with the intercept β0. We call this
formulation standard, since it is found in state of the art papers such as Datta
et al. (2016); Finley et al. (2019). We name samples of the standard formulation
ws(·). Our proposal is to replace ws(S) by a centered wc(S) = ws(S) + β0 in
the Gibbs Sampler. This substitution is a non degenerate linear transform that
keeps the model valid, while keeping the possibility to transform the samples
back to standard parametrization if needed. The centered parametrization can
also be seen as a slightly different model, with (3.1) becoming

z(s) = X(s)βT + wc(s) + ε(s), s ∈ S, (3.3)

and the prior density of wc(S) becoming

f̃(wc(S)|µ = β0, θ).

Those changes impact the full conditional distributions. Table 3.1 summarizes
the changes in a Gibbs sampler for a Gaussian model found in Datta et al.
(2016). We denote f(·|·, ·) the normal density function, and Q̃ the latent field’s
precision matrix defined by the NNGP. We abbreviate the interest variables
X(S) as X. We denote the vector made of n times 1 as 1. The matrix obtained
by adding 1 to the left side of X is named [1|X]. We did not feature prior
distributions on the high-level parameters like θ, τ or β: their full conditionals
would not be affected since centering changes only the NNGP prior and the
observed data likelihood. Even if the modification is minor, the improvement
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Table 3.1: Changes in the full conditional distributions

Variable Standard Centered

β0 f(β0, (1
T Q̃1)−1(1T Q̃wc), (1

T Q̃1)−1)
β f(β, (XTX)−1(XT (z − wc))), τ2(XTX)−1)

(β0, β) f(β, ([1|X]T [1|X])−1([1|X]T (z − ws))),
τ2([1|X]T [1|X])−1)

θ f̃(ws(S)|0, θ) f̃(wc(S)|β0, θ)
τ Πs∈Sf(z(s)|ws(s) + β0 +X(s)βT , τ) Πs∈Sf(z(s)|wc(s) +XβT , τ)

w(s), f̃(ws(s)|ws(S\s), 0, θ) f̃(wc(s)|wc(S\s), β0, θ)
s ∈ S f(z(s)|ws(s) + β0 +X(s)βT , τ) f(z(s)|wc(s) +X(s)βT , τ)
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(a) Centered model
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(b) Standard model

Figure 3.1: The ACF of β0 drops much faster in the centered model than in the
standard model

in the mixing of the intercept is clear. We simulated a little toy example with
1000 observations and we ran the two Gibbs samplers. The autocorrelation plots
(Figure 3.1) are clearly in favor of the centered formulation. Even though for
this toy example the standard model mixes after a few hundred iterations, this
is not the case for larger data sets. We observed empirically that there is much
more correlation between w(S) and β0 in the standard implementation. Plotting
1
nΣw(S) against β0 (Figure 3.2) displays a clear ridge in the case of the standard
model (Figure 3.2b). This means that the whole latent field has to shift upwards
and downwards for the intercept to explore its posterior distribution. Ridge-like
densities are a well known plague of Gibbs samplers, and linear recombination
is one of the tools to get rid of it, see Gelfand et al. (1995) and Robert and
Casella (2004).

The behavior of the toy example arises from the fact that the fraction of
βt0 that is carried over in wt+1 and βt+1

0 changes following the model. Take a
simpler spatial model where only an intercept and the Gaussian latent field are
estimated, while the Gaussian noise variance τ2 and the NNGP precision Q̃ are
known. The intercept coefficient has an improper constant prior. Assume that
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(a) Centered model
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(b) Standard model

Figure 3.2: When plotting 1
nΣw(S) against β0, the standard model exhibits a

ridge-shaped point cloud

the latent field is sampled in one step (which is usually not the case unless the
data size is very small).
Denote the diagonalization Q̃ = V TλV , V being a square matrix of eigenvectors
and λ being a diagonal matrix of eigenvalues. The eigenvalues are positive since
Q̃ is defined as the cross-product of two NNGP factors (Datta et al., 2016;
Katzfuss and Guinness, 2017). Note αi, i = 1, . . . , n the coordinates of the
vector 1 = (1, . . . , 1) in the orthonormal basis V . The following results are
proved in 3.6.
The first result is that a fraction of β0 is carried over in the empirical mean of
the latent field. Note ρ = Σni=1α

2
i (τ

2λ+ In)−1
i,i /n. Then,

wt+1
s = µs − ρβt0 + εt+1

s and wt+1
c = µc + (1− ρ)βt0 + εt+1

c ,

µs and µc being fixed, εs and εc being stochastic innovations, and t being the
index of the iteration. Moreover, we have .

0 ≤ ρ ≤ 1

Using this result, we can see that if a high fraction of β0 is carried over in the
mean of the standard latent field, then a low fraction of β0 will be carried over
in the mean of the centered latent field, and conversely. This is clearly what
can be seen in figure 3.2.

The next question is why ρ is closer to 1 than to 0. This point is difficult to
clarify because there is no analytic expression for terms where Q̃ is involved. For
example, the range parameters are updated through a Metropolis step in Datta
et al. (2016) because a full conditional draw is challenging. However, we can
start from ρ = Σni=1α

2
i (τ

2λ+In)−1
i,i /n and make a deduction: if the sum is high,

then λi,i is small when αi is big; and conversely λi,i is big when αi is small. We
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can re-formulate: λ−1
i,i is big when αi is big. Now, remark that V and λ−1 respec-

tively are the spatial basis and coefficients of the Karhunen-Loève decomposition
of the NNGP prior. This means that αi is high for the first components of the
decomposition, where λ−1 is the highest. In other terms, 1 “resonates” with the
first spatial basis functions of the Karhunen-Loève decomposition. This conclu-
sion is consistent with the fact that Q̃ parametrizes a spatially coherent latent
field, inducing that a few spatial basis functions are enough to describe most
of w. For example, in the Predictive Process model of Banerjee et al. (2008),
w is approximated by a degenerate process with a low-rank covariance matrix.
Similarly, Gelfand et al. (2010) report that “it is generally the case that the
Empirical Orthogonal Functions (EOF) associated with the largest eigenvalues
[of the Karhunen-Loève decomposition] represent larger-scale spatial variation,
and conversely, the EOFs associated with the smallest eigenvalues correspond
to smaller-scale spatial variation”.

Now, let’s focus on the expressions of [βt+1
0 |βt0]. Like the mean of the latent

field, they can be expressed with a fixed part, a geometric carry-over, and an
innovation. In the standard model, a fraction ρ of βt0 is carried over. We already
discussed this quantity. As for the centered model, the fraction of βt0 which is
conserved in βt+1 is

Σni=1

(
(α2
iλi,i)(τ

2λi,i)/(τ
2λi,i + 1)

)
/Σni=1α

2
iλi,i.

Once again, the geometric term is between 0 and 1 since

0 ≤ (τ2λi,i)/(τ
2λi,i + 1) ≤ 1.

Like before, suppose that α is big when λ is small. Then, when αi is the
largest, (τ2λi,i)/(τ

2λi,i + 1) will be much smaller than 1, resulting in the geo-
metric carry-over term Σni=1

(
(α2
iλi,i)(τ

2λi,i)/(τ
2λi,i + 1)

)
being much smaller

than Σni=1α
2
iλi,i. Therefore, we can expect a small proportion of βt0 to remain

in βt+1
0 .

3.2.2 Adaptation to other fixed effects through interweav-
ing

Field centering can be extended to other fixed effects. In most cases it is unnec-
essary because centering and scaling X(S) is enough to considerably improve
chain behavior. Even worse, the Gibbs sampler usually behaves very bad if the
random field is centered on other fixed effects than the intercept. There are
nonetheless cases where bad mixing of the regression coefficients happens again.
In this case, it is often useful to try and center w(·) not only on the intercept
but also on the troublesome covariates’ fixed effect. However, doing preliminary
runs and picking manually which fixed effects the field needs to be centered on
would be tedious.

Interweaving, introduced by Yu and Meng (2011), combines the advantages
of the two strategies and removes the need to choose. The method takes advan-
tage of the discordance between two parametrizations to construct the following
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step:
[w2|w1]→ [θt+1|w2],

w1 and w2 being two data augmentations and θ the parameter. Usually, it is
complicated to sample directly [w2|w1]. Drawing an intermediary θt+0.5 gives

[w1|θt]→ [θt+0.5|w1]→ [w2|θt+0.5, w1]→ [θt+1|w2].

It is possible that [w2|θ, w1] is a deterministic transformation, giving a degener-
ate joint distribution. Note that interweaving is not alternating: an alternating
scheme would be [w1|θt] → [θt+0.5|w1] → [w2|θt+0.5] → [θt+1|w2]. The strategy
is usually very efficient if the two parametrizations are an ancillary-sufficient
couple, giving an Ancillary-Sufficient Interweaving Strategy (ASIS), and can
even be efficient when none of the two augmentations performs well when im-
plemented separately. Algorithm 7 presents the steps to update the regression
coefficients with interweaving. The two parameterizations are w which is un-
centered and corresponds to the standard parametrization ws, and v, which
is centered on all the fixed effects and is a generalization of wc. For the sake
of simplicity, we suppose that there is only one measurement of X per spatial
location and we use an improper constant joint hyperprior on (β0, β). The pa-
rameters that depend on the state in the Gibbs sampler are indexed by t. If
the observations were not Gaussian, the second “simulate” step would be left
unchanged while the first “simulate” step would be adapted just like in any
generalized NNGP model Datta et al. (2016).

There are two limitations to this approach. The first is the case where several
measurements of the interest variable z(·) and the regressors X(·) are done at
the same spatial location. The model must be extended as

z(s, i) = X(s, i)βT + w(s) + ε(s, i), s ∈ S, 1 ≤ i ≤ nobs(s),

nobs(s) ≥ 1 being the number of observations in the site s. In this setting, some
variables vary within one spatial locations while other do not. For example, the
presence of asbestos in buildings may be considered as a location-wise regressor
while smoking is an observation-wise regressor. If the regressors vary within
one location, it is impossible to center the field on the corresponding fixed ef-
fects. This would mean that the normal random variable w(s) has several mean
parameters at the same time. However, it is still possible to restrict interweav-
ing to the regression coefficients associated to the location-wise variables. Our
implementation allows one to specify which regressors are associated to spatial
location and which are associated to individual measurements. A NNGP being
a point-measurement model, regressors obtained through gridded and areal data
are immediately eligible for this method.

The second limitation is the computational cost. With improper constant
prior, the centered regression coefficients follow a MVN distribution whose mean
and variance need to be computed at each update of θ. The sparsity induced by
Vecchia’s approximation is critical for the feasibility of the method because it
ensures that matrix multiplications involving Q̃ are affordable. Using a sparse
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matrix formulation for X could further alleviate this operation if X has dummy
variables or null measurements.

Algorithm 7 Regression coefficient updating with interweaving

input Q̃t, wt, X, βt, βt0, τ
t

simulate βt+.50 , βt+.5 followingN (([1|X]T [1|X])−1([1|X]T z), τ2([1|X]T [1|X])−1)

v = wt +X(βt+.5)T

simulate βt+1
0 , βt+1 followingN (([1|X]T Q̃t[1|X])−1([1|X]T Q̃tv), ([1|X]T Q̃t[1|X])−1)

wt+0.5 = v −X(βt+1)T

return βt+1
0 βt+1, wt+0.5

3.3 Chromatic sampler for Nearest Neighbor Gaus-
sian Process

3.3.1 Chromatic samplers and how to apply them to NNGP

In a Gibbs sampler, the parameters of a model are updated sequentially. If
a set of variables happens to be mutually independent conditionally on the
other variables of the model and are updated consecutively by the Gibbs algo-
rithm, their sampling can be parallelized. Let’s consider a Gibbs sampler or a
Metropolis-Within-Gibbs aiming to sample from a joint multivariate distribu-
tion f(x1, . . . , xn).

xt+1
1 ∼ f(x1|xt2, . . . , xtn)
. . .

xt+1
i ∼ f(xi|xt+1

1 , . . . , xt+1
i−1, x

t
i+1, . . . , x

t
n)

. . .
xt+1
n ∼ f(xn|xt+1

1 , . . . , xt+1
n−1).

Let’s introduce p ≤ n vectors X1, . . . , Xp so that (x1, . . . , xn) = (X1, . . . , Xp),
and suppose that ∀X ∈ X1, . . . , Xp, either X has only one element or the ele-
ments of X are conditionally independent given the other variables. The Gibbs
sampler can then be re-written

xt+1
i ∈ X1 ∼ f(xi|Xt

2, . . . , X
t
p)

. . .
xt+1
i ∈ Xj ∼ f(xi|Xt+1

1 , . . . , Xt+1
j−1, X

t
j+1, . . . , X

t
p)

. . .
xt+1
i ∈ Xp ∼ f(xi|Xt+1

1 , . . . , Xt+1
p−1).

Since all elements from Xj are simulated from independent densities, it is pos-
sible to parallelize their sampling.
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(a) Directed Acyclic Graph (b) Moral Graph (c) Colored Moral Graph

Figure 3.3: Moralization and coloring of a DAG

A NNGP is defined on a Directed Acyclic Graph (DAG) by Datta et al.
(2016), see Katzfuss and Guinness (2017) for discussion about other Vecchia
approximations. Then, using the argument of recursive kernel factorization
given in Lauritzen (1996), it has the Markov properties on the moral graph
obtained by un-directing the edges and “marrying” the parents in the DAG
(Figure 3.3). Graph vertex coloring associates one color to each node of a
graph while forbidding that two connected nodes have the same color, just like
coloring a map while forbidding that two countries that share a border have
the same color. Using inductively the Global Markov property, it is possible
to guarantee mutual conditional independence for the variables or the blocks
that correspond to vertices sharing the same color. Chromatic sampling can be
applied straightforwardly to the Gibbs sampler presented in Datta et al. (2016).
It also allows to compute normalizing constants and can be combined with the
covariance parameter blocking proposed by Knorr-Held and Rue (2002).

Chromatic samplers can be applied to blocked sampling as well. This method
consists in updating the latent field in various locations at once. Chromatic
sampling is a special case of blocked sampling, because in general there is no
conditional independence within one block. Precisely, sampling the latent field
jointly in a region of the domain reduces the negative impact of spatial auto-
correlation on the behavior of MCMC chains. Blocked sampling may be applied
to the latent field alone (Datta et al., 2016) or improve both covariance param-
eters and field sampling in Knorr-Held and Rue (2002). Even though there is
no conditional independence within one block, there is some conditional inde-
pendence between the blocks as long as there is no edge between any pair of
their respective vertices, allowing for chromatic sampling. The matrix BTAB
indicates the connections between the blocks, A being the adjacency matrix of
the NNGP latent field’s Markov graph, and B a vertex-block indicator matrix
(Bi,j = 1 if vertex i belongs to block j).
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3.3.2 Coloring of NNGP moral graphs: sensitivity analy-
sis and benchmark of the algorithms

Coloring the moral graph Gm is a critical step in chromatic sampling and deter-
mines the attractiveness of the method with respect to the “vanilla” versions of
the algorithms (one-site sequential sampling or blocked sampling with several
blocks). We focus on two variables to summarize the efficiency of chromatic
sampling:

• The number of colors: the smaller this number, the fewer the number of
steps in the chromatic sampler.

• The time needed for coloring, that must be small with respect to the
running time of the MCMC chains.

This section has two objectives. The first is to test the sensitivity of those
two interest variables to the properties of Gm and the coloring algorithm using
variance-based sensitivity analysis. The second objective is to benchmark vari-
ous coloring algorithms and find a rule to choose the algorithm. We test various
factors that may change the structure of Gm:

• Size n.

• Number of parents in the DAG m.

• Spatial domain dimension d.

• Ordering of the points.

We also test 3 coloring algorithms, given in detail in 3.7.1:

• Naive greedy coloring: coloring each vertex with the smallest available
color.

• Degree greedy coloring: reorder the vertices following their number of
neighbors, and apply naive greedy coloring.

• DSATUR heuristic: color the node that has the highest number of distinct
colors among its neighbors (Degree of SATURation), and break ties using
the number of neighbors.

The full results of the experiments are given in 3.7.2, and the sensitivity analyses
are summarized in table 3.2.

Pilot experiment

Design. The objective is to do preliminary sensitivity analysis and benchmark
on small graphs. We test the three coloring algorithms and graphs with the
following attributes, each case being replicated 10 times:

• Graph size n = 500, 1000, 2000.
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Figure 3.4: Connections of the same point, with two different orderings.

• Number of parents m = 5, 10, 20.

• Dimension d = 2, 3.

• Ordering following the first coordinate from Datta et al. (2016), at random,
or using MaxMin heuristic from Guinness (2018).

Sensitivity. The color count is overwhelmingly driven by the number of par-
ents, the ordering, and interactions between them. The role of the parents is
not surprising: the larger the parent sets, the more edges in the graph, the more
colors needed. As for the ordering, it does not change the density but rather the
distribution of the edges, which may explain why the number of colors is much
smaller in the coordinate ordering. In a graph obtained through Coordinate
ordering and the Nearest Neighbor heuristic, a vertex tends to be connected
with its immediate spatial surroundings. Indeed its parents in the DAG will be
its predecessors along the coordinate used for ordering, its children will be its
successors, and its co-parents will mostly be a mix of the closest parents and
children. In a graph obtained using random or max-min ordering, the connec-
tions can be much longer, in particular for points coming early in the ordering.
This results in some vertices being connected to many other vertices, leading to
a denser graph. This point is illustrated in figures 3.4 and 3.5.

The number of colors is robust with respect to the graph size because n and
its interactions have very low percentages in table 3.2. Since the numbers of
colors are small with respect to n (45 colors at the most), this makes chromatic
sampling a good candidate for large data sets.

This point is counter-intuitive because a bigger graph is more complex than
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Figure 3.5: Number of connections of a point given its place in the ordering
(same graphs as in figure 3.4)

a smaller graph and should therefore be more difficult to color. The markovian
nature of NNGPs may be a lead to explain this point, because several sets of
vertices that are not linked by a direct edge can be colored independently. While
new vertices are added in the graph, older vertices can be forgotten and their
colors can be re-used.

The dimension of the spatial domain d plays almost no role in the sensitivity
analysis, and the choice of the coloring algorithm has a very marginal effect
on the color count. Closer examination of the means reveals nonetheless that
their effect is not nonexistent but rather dwarfed by the prominent role of the
ordering of the vertices and the number of parents. For graphs obtained with
max-min or random ordering (3.6b and 3.6c), the number of colors increases if
d = 3.

The running time is affected by n, as expected. However, it is mostly ex-
plained by the coloring algorithm and its interactions with n and m. In Figure
3.7, we see the results of the experiment when the ordering of the spatial points
is random and d = 2. The number of parents m defines well-separated vertical
clouds of points, showing a clear, positive impact on the number of colors. It
also increases the running time: the clouds of points on the right are stretched
higher along the ordinates axis. The graph size n affects the running time posi-
tively. The other cases with different ordering and dimension all show this clear,
chromatography-like profile.

Benchmark. In order to see if one coloring algorithm has the better of the
others, we compare the average number of colors for each case of the experiment
in table 3.5. Regardless of the ordering, m, and n, the number of colors favors
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(b) Max-min ordering
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Figure 3.6: Impact of the spatial domain dimension and the coloring algorithm
on the mean number of colors, for graphs of size n = 2000.
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Figure 3.7: Repartition of the number of colors and running time with random
ordering and d=2.
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Table 3.2: Sensitivity analysis*

Pilot Large Blocked
colors time colors time colors time

ordering 15.4 3.4 10.6 8.7 40.7 1.7
algo 0.8 24.7 0.5 1.3 1.0 8.6

d 0.6 0.0 1.1 0.7 0.4 0.0
m 76.4 2.8 80.6 26.0 17.2 1.0

n/n blocks 0.2 11.8 0.1 40.7 15.2 16.2
ordering:algo 0.3 6.8 0.1 0.3 0.3 3.3

ordering:d 0.3 0.0 0.5 0.4 0.2 0.0
ordering:m 5.3 0.8 5.2 5.4 7.9 0.5
ordering:n 0.0 3.3 0.0 3.0 6.4 6.1

algo:d 0.0 0.1 0.0 0.0 0.0 0.1
algo:m 0.2 5.5 0.2 0.6 0.1 1.9
algo:n 0.0 23.3 0.0 0.7 0.9 31.3

d:m 0.2 0.0 0.4 0.5 0.0 0.0
d:n 0.0 0.0 0.0 0.2 0.1 0.1

m:n 0.0 2.4 0.0 8.0 6.3 3.5
total 99.7 84.8 99.5 96.6 96.6 74.6

* Read: “In the pilot experiment, the ordering of the spatial points explained 15.4 percents
of the variance of the number of colors”

systematically but slightly DSATUR over the two simpler algorithms. In the
case of coordinate ordering, naive greedy coloring reaches the performances of
DSATUR. While the two simple methods are very economical, the running
time becomes high in DSATUR when the graph size augments (Figure 3.7b).
We conclude that regardless of the structure of the graph, DSATUR must be
chosen for smaller graphs. The two other methods must be chosen for larger
graphs because DSATUR will become prohibitively expensive.

Coloring for large graphs

Design. The objective is to test the sensitivity of the two interest variables and
to benchmark coloring algorithms when the graphs are bigger. The experiment
is the same as before, with two differences:

• Only naive greedy and degree greedy coloring algorithms are tested.

• The graph size n = 50000, 100000, 200000.

Each case is replicated 10 times.

Sensitivity. For the number of colors, the results are the same as before (table
3.2). It is mostly determined by the ordering and the number of parents. The
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robustness of the number of colors with respect to n is confirmed. The running
time is affected mostly by n, but the ordering and m also play a role.

Benchmark. In table 3.6, we can see that naive coloring systematically has
a lower mean number of colors than degree coloring. It is also slightly faster
due to the fact that the vertices are not sorted. Anyway, the running times are
short in both cases and are never bigger than 15 seconds. We conclude that
naive greedy coloring is the better option for large data sets.

Coloring blocked graphs

Design. The objective is to carry out sensitivity analysis and benchmark to
graphs that correspond to spatial blocks used for block-update of the latent
field. Spatial clusters of vertices are found using a K-means algorithm on n =
10000 spatial locations, and coloring is applied to the Markov graph between
the blocks. The orderings, the numbers of parents, and the dimensions remain
the same as in the previous experiments. The parameters that change are:

• The graph size nblocks = 10, 20, 50, 100, 500.

• All three algorithms (DSATUR, naive greedy, and degree greedy) are
tested

Each case is replicated 10 times.

Sensitivity. The sensitivity of the number of colors (table 3.2) differs from
the previous experiments. Even though m still matters, it is the ordering that
becomes the most important variable.

This loss of importance of m can be explained by the fact that one edge is
enough to connect two blocks, and once two blocks are connected adding new
edges between them is redundant. On the other hand, the disposition of the
edges in the space, which is induced by the ordering, keeps all its importance.
Short edges induced by a coordinate ordering (3.4b) will connect adjacent spatial
blocks, while the long edges induced by the max-min heuristic (3.4a) will connect
distant regions. The important interaction between m and the ordering is well
explained by this hypothesis. In table 3.7 we see that m barely plays any role
for coordinate ordering, while it keeps having an important impact for the other
two orderings. Indeed, when S is ordered following a coordinate, adding more
short connections between contiguous spatial blocks does not change anything:
those blocks already are connected. For max-min and random ordering, though,
adding long edges may link distant regions that were not connected yet. After m
and the ordering, the number of blocks is the third most important variable. As
expected, the more blocks in the graph, the more colors are needed. However,
we remark that Max-Min and Random orderings perform poorly for graphs with
few blocks, and actually need almost one color per block. Once the graphs get
bigger, the number of colors stabilizes. Therefore, the observed sensitivity with
respect to the number of blocks is mostly induced by the bad coloring of graphs
with few blocks. The point can be visualized in figure 3.8 for m = 5 and d = 2.
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Figure 3.8: Number of colors following the number of blocks, for spatial domain
dimension d = 2 and number of parents m = 5.

Benchmark. Incontestably, DSATUR has the smallest number of colors, as
seen in figure 3.8 and table 3.7. Interestingly, degree greedy coloring has the
second smallest number of colors. If we assume that the number of blocks
will always be smaller than 1000, we can discard the running time from our
criteria and say that DSATUR is the best option for blocked graphs. However,
in the cases with random and Max-Min orderings and low numbers of blocks,
chromatic sampling does not greatly reduce the number of steps with respect
to vanilla block sampling.

3.4 Implementation, testing and application

3.4.1 About our implementation

We tested our implementation along with the state of the art package spN-
NGP presented by Finley et al. (2017), that uses the Gibbs sampler architecture
given by Datta et al. (2016). spNNGP uses Rcpp (Eddelbuettel et al., 2011)
and parallelizes the computation of NNGP density. In order to monitor conver-
gence using the diagnostics from Gelman et al. (1992) and Brooks and Gelman
(1998), various chains need to be run one after the other. Our implementation
is available at https://github.com/SebastienCoube/Improving_NNGP_full_
augmentation. The code is done in R (see R Core Team (2018a)), with the AS-
IS Gibbs sampler architecture of Yu and Meng (2011). Chromatic sampling
is implemented for individual locations. We used the package GpGp (Guinness
and Katzfuss, 2018) for Vecchia’s approximation factor computation. Our im-
plementation runs several chains in parallel using the package parallel (R Core
Team, 2018b), but GpGp does not implement parallel Vecchia’s approximation
factor computation within each chain like spNNGP. We emphasized the ease
of use, with real-time Gelman-Rubin diagnostics and chains plotting, greedy
MCMC tuning in the first hundred iterations, and the possibility to start, stop,
and run again easily. For some data sets, our implementation has an advantage
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over spNNGP because multiple measurements at the same spatial site are al-
lowed. However, unlike spNNGP, we have only implemented a Gaussian model
so far.

3.4.2 Toy examples

We present two toy examples in order to test our implementation, with the
latent field NNGP implementation of spNNGP as a reference. For both imple-
mentations, 5 nearest neighbors were used for NNGP. The toy examples are
Gaussian. We compare the MCMC behavior using the number of iterations
and the time needed before the chains have mixed following the Gelman-Rubin-
Brooks R̂. We also compare the estimated covariance parameters with the values
that were used to simulate the toy example. The covariance parameters are re-
ported individually, and in the second toy example we report the Mean Square
Error (MSE) of the fitted fixed effects with respect to their true value. Even-
tually we compare the quality of the denoising using the MSE of the denoised
field predicted by the model with respect to the simulated latent field. The first
toy example is a simple Gaussian field simulated as follows.

1. Simulate spatial locations S ∼ U([0, 50]× [0, 50]).

2. Simulate latent field w(S) ∼ N (0,Σ(S)),Σ(S)i,j = exp(−0.5‖si, sj‖).

3. Simulate observed variable z(S) = w(S) + ε(S), ε(S) ∼ N (0, 5In).

The second toy example intends to highlight the positive effect of our architec-
ture when covariates have some spatial coherence. We integrate covariates that
are areal indicators, and others that are white noise.

1. Simulate spatial locations S ∼ U([0, 50] × [0, 50]) and note S1 the first
coordinates of the locations.

2. Simulate latent field w(S) ∼ N (0,Σ(S)),Σ(S)i,j = exp(−0.5‖si − sj‖).

3. Simulate regressorsX = [X1|X2] withX1 = [11≤S1<2|12≤S1<3 . . . |149≤S1≤50]
and X2 a matrix of side n× 49 with coefficients drawn following indepen-
dent N (0, 1).

4. Simulate regression coefficients β ∼ N (0, I98).

5. Simulate observed variable z(S) = w(S) +XβT + ε(S), ε(S) ∼ N (0, 5In).

The results of the runs on the toy examples are presented in table 3.3. The esti-
mates are close to the target and there is no clear gap between the methods. Due
to the fast-mixing AS-IS architecture from Yu and Meng (2011) and Filippone
et al. (2013), our implementation needed much less iterations than the latent
model of spNNGP (Even taking into account the fact that one AS-IS iteration
needs two covariance parameters updates): our model takes thousands itera-
tions to converge, while spNNGP needs tens of thousands. The response model,
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Table 3.3: Summary of the toy examples runs

(a) Summary of the first toy example

method n iter. time (min) MSE σ2 τ2 α
spNNGP 15000 28 0.40 1.07 4.99 1.10
Our code 3000 28 0.38 1.08 5.00 1.01

spNNGP res. 8000 13 1.06 5.00 0.99
true values 1.00 5.00 1.00

σ2: marginal variance of w; τ2: variance of ε; α: range of w

(b) Summary of the second toy example

method n iter. time (min) MSE β−MSE σ2 τ2 α
spNNGP 25000 74 0.45 0.053 0.91 5.08 0.90
Our code 3000 36 0.42 0.057 0.98 5.06 1.13

spNNGP res. 10000 50 0.047 0.88 5.10 0.72
true values 1.00 5.00 1.00

σ2: marginal variance of w; τ2: variance of ε; α: range of w

in spite of its frugality, needed a few thousands iterations to converge, like our
implementation. The running times end up being of the same order, due to
the efficient multi-process implementation of spNNGP which compensates the
number of iterations.

Let’s now focus on the behavior of the regression coefficients in the second
toy example (Figure 3.9). The best model regarding the mixing of the regres-
sion coefficients is incontestably the response model (3.9a, 3.9b). However, the
covariance parameters needed more time to mix than the regression coefficients,
explaining why 10000 iterations were needed. Moreover, the response model
cannot retrieve the latent field, explaining why its MSE could not be computed.
Except for the response model, we can see that the coherent regression coeffi-
cients of X1, in green in 3.9, mix slower than the fuzzy coefficients of X2, in
blue. Nonetheless, for our implementation, the R̂ diagnostics dropped to 1 in a
few hundred iterations (figure 3.9c), against the tenths of thousands needed for
spNNGP (figure 3.9e). For our implementation, the autocorrelations dropped to
0 after a few dozen iterations (figure 3.9d). The auto-correlations of spNNGP
for the regression coefficients of X1 were still between 0.4 and 0.6 after 100 iter-
ations (figure 3.9f), while the autocorrelation for the coefficients of X2 remain
stuck slightly above 0. It is then clear that the chains behave much better in
our implementation than in spNNGP. Moreover, the good behavior of our im-
plementation could not be reproduced if we did not indicate that interweaving
could be used, see figures 3.9g, 3.9h.
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(c) R̂ of our implementation
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Figure 3.9: Behavior of the regression coefficients with spNNGP and with our
implementation

3.4.3 Application to lead contamination analysis

We used our implementation to study a heavy metal contamination data set
proposed by Hengl (2009)1. The dataset gathers measurements made by the
United States Geological Survey of Grossman et al. (2004) and several covari-
ates, including geophysical and environmental information about the sampling
site, and potential contamination sources nearby. We added the predominant
subsoil rock type given by the USGS study presented in Horton (2017)2. We
scaled the quantitative regressors. After removing missing data, there was 64274
observations. We assumed the model

log(z(s)) = w(s) +X(s)βT + ε(s),

s being the sampling location, X(·) being the aforementioned covariates, w(·)
being a latent Gaussian field with exponential covariance on the sphere, and ε
being a white noise.

The model converged in 4000 iterations, and 1 hour and 38 minutes were
needed. We tried to analyze the real data set with spNNGP in order to compare
the results and the running time. Surprisingly, spNNGP had a pathological be-
havior in spite of its good performances on simulated data. The scale parameter
kept straying towards values several orders of magnitude above the variance of
the observed field, even with starting points corresponding to our estimates.
This behavior was observed with both latent and response model, and various
orderings of the locations.

1https://spatial-analyst.net/book/NGS8HMC
2https://mrdata.usgs.gov/geology/state/
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Table 3.4: Summary of the covariance parameters and a subset of the fixed
effects

mean qtile 0.025 median qtile 0.975 st dev
Scale 0.198 0.188 0.198 0.209 0.0053

Noise variance 0.178 0.175 0.178 0.181 0.0017
Range (Km) 35.6 33.3 35.5 38.3 1.2700

(Intercept) 2.83 2.79 2.83 2.87 0.019
Air pollution dsty 0.0403 0.0195 0.0404 0.0605 0.0106
Mineral op1 dsty 0.0180 0.0044 0.0182 0.0312 0.0069
Toxic reject dsty 0.0641 0.0433 0.0639 0.0852 0.0107

Carbon biomass dsty -0.0543 -0.0673 -0.0541 -0.0412 0.0066
Population dsty 0.1360 0.1100 0.1360 0.1640 0.0138

Night light 0.0384 0.0303 0.0384 0.0466 0.0042
Roads dsty 0.0193 0.0139 0.0193 0.0248 0.0028

1: “operations”

We present our implementation’s estimates of the covariance parameters
and some of the fixed effects in table 3.4. We left out some regressors such
as the geological classification, indications about nearby mineral observations,
the geophysical characteristics of the sampling site. The variances of the latent
field and the noise have equivalent order (σ2 = 0.20, τ2 = 0.18). The spatial
range is 30 Km. With a rule of the thumb, this means that the correlation
drops to 10% of the scale for locations separated by 60 Km. The regressors
behave as expected: the urbanization level and contamination indicators have
a positive, certain effect on lead concentration. However, the values of the
regression coefficients remain modest with respect to the scale of the latent
field.

We also provide prediction of the latent field on a 5-Km grid on the territory
of the USA mainland. Predictions at un-observed locations are done using the
MCMC samples of the covariance parameters θ and w(S), see for example Finley
et al. (2019). We report the predicted latent mean and standard deviation in
figures 3.10a and 3.10b. The standard deviation map must be put in relation
with the sampling sites map (Figure 3.11). The patches with high standard
deviation correspond to zones with no measurement, while territories with dense
sampling, such as Florida, will have low predicted standard deviation.

3.5 Discussion

We presented two ways to improve the behavior of NNGPs with full data aug-
mentation, that can be simply applied to previous implementations. What’s
more, while we assumed a Gaussian data model throughout the article, the two
methods we proposed can be easily applied to other models.
While our article focused on a basic NNGP model, our field centering may have
applications in complex models. Space-varying regression coefficients are an
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Figure 3.11: Sampling sites

extension to GP models (Datta et al. (2016); Banerjee et al. (2008)). If we con-
sider the latent field w(·) as a space-varying intercept, it seems natural to try
to center a spatially variable parameter on the corresponding fixed effect. The
extension to other fixed effects we presented could prove valuable in the case in
which the regressor with a spatially variable β is correlated with other variables
from X. Another possible extension could be a GP defined as the sum of two or
more GPs. It could have an interest in various applications, such as: modeling
seasonality in a space-time process, modeling a process with short-range and
long-range interactions, defining one non-separable space-time process as a sum
of two separable processes. The equivalent of standard parametrization would
be z(·) = β0 + w1(·) + w2(·) + ε, w1(·) and w2(·) being GPs of mean 0. One
could try out a Russian doll centering: z(·) = v1(·) + ε where v1(·) has mean
v2(·), and v2(·) has mean β0. In this case it might be necessary to find an ad
hoc interweaving scheme.
Beyond the improvements of chromatic sampling in the NNGP algorithm, ex-
ploration of the moralized graph could be an interesting approach to study
Vecchia’s approximation and evaluate heuristics concerning ordering and pick-
ing parents. For example, Guinness (2018) has explored how various ordering
and grouping strategies affected the Kullback-Leibler divergence of Vecchia’s
approximation with respect to the full GP density. Those strategies have a
graphical translation. Grouping takes an existing graph and adds new edges,
making it closer to the full GP’s graph (i.e. the saturated DAG and moralized
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graph). Ordering modifies the structure of the graph and the length of the
edges, just like the mixing of observations explored in Stein et al. (2004). For
example, a coordinate or a middle-out ordering with Nearest Neighbor heuristic
will make graph where each vertex connected to its closest neighbors, while we
could use a classical concept of Geography and say that a random or a max-min
ordering will generate graphs not unlike a Christallerian system. Focusing on
the neighbor-picking heuristics gives one a close-up shot of what is going on and
has a direct algorithmic translation, but some descriptive statistics about the
moralized graphs could give a more general view.
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APPENDIX

3.6 Appendix: stochastic form of the intercept-
field model

We obtain the full conditionals of wc and ws using the conditional expectation
and variance formulas with precision matrices of Rue and Held (2005), the joint

precision of both (ws, z) or (wc, z) being

[
Q̃+ τ2In −τ2In
−τ2In τ2In

]
. The expecta-

tion of ws is 0, the expectation of wc is β0, and the expectation of z is always
β0.

Distributions with the standard model. The full conditional distributions
of β0 and ws are:

[β0|ws] ∼ N (z − ws, τ2/n), [ws|β0] ∼ N (−(Q̃+In/τ
2)−1(−In/τ2)(z−β0), (Q̃+In/τ

2)−1).

Note 1 the vector of length n and filled with ones. From the second full
conditional, we have a formula for the mean of ws, which is obtained with
ws = 1tws/n. It has 3 terms: one is fix, the second is a geometric carry-over of
β0, and the third is stochastic:

[ws|β0] ∼ 1T (τ2Q̃+ In)−1(z)/n︸ ︷︷ ︸
fixed

− (1T (τ2Q̃+ In)−11/n)(β0)︸ ︷︷ ︸
carry-over

+N ((0,1T (Q̃+ In/τ
2)−11/n2)︸ ︷︷ ︸

innovation

.

Injecting the full conditional of w̄s into β0’s, we identify an expression with 3
terms like before:

[βt+1
0 |βt0] ∼ z − 1T (τ2Q̃+ In)−1(z)/n︸ ︷︷ ︸

fixed

+ (1T (τ2Q̃+ In)−11/n)βt0︸ ︷︷ ︸
carry-over

+N (0,1T (Q̃+ In/τ
2)−11/n2 + τ2/n)︸ ︷︷ ︸

innovation

.

Distributions with the centered model. The full conditional of β0 and
wc are:

[β0|wc] ∼ N (1T Q̃wc/1
T Q̃1, 1/1T Q̃1), [wc|β0] ∼ N (β0+(Q̃+In/τ

2)−1(z−β0)/τ2, (Q̃+In/τ
2)−1).

The mean of wc behaves like the mean of ws except for the term that depends
on β0:

[wc|β0] ∼ 1T (τ2Q̃+ In)−1(z)/n︸ ︷︷ ︸
fixed

− (1− (1T (τ2Q̃+ In)−11/n))β0︸ ︷︷ ︸
carry-over

+N (0,1T (Q̃+ In/τ
2)−11/n2)︸ ︷︷ ︸

innovation

.
(3.4)
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Injecting the full conditional of wc into the full conditional of β0, we have

[βt+1
0 |βt0] ∼ 1T Q̃(Q̃+ In/τ

2)−1z/τ21T Q̃1︸ ︷︷ ︸
fixed

+ 1T Q̃(In − (τ2Q̃+ In)−1)1β0/1
T Q̃1︸ ︷︷ ︸

carry-over

+N (0,1T Q̃(Q̃+ In/τ
2)−1Q̃1/(1T Q̃1)2 + 1/1T Q̃1)︸ ︷︷ ︸
innovation

Passing to the SVD. Let’s compare first the expressions of [ws|β0] and
[wc|β0]. Denote the diagonalization Q̃ = V TλV , V being a square matrix of
eigenvectors and λ being a diagonal matrix of eigenvalues. The eigenvalues
are positive since Q̃ = R̃T R̃. Using the fact that adding In adds 1 to every
eigenvalue without affecting the eigenvectors,

(τ2Q̃+ In)−1/n = V T (τ2λ+ In)−1V/n.

Let α = (α1, . . . , αn) be the coordinates of 1 in the orthonormal basis defined
by V .

1T (τ2Q̃+ In)−11/n = Σni=1α
2
i (τ

2λ+ In)−1
i,i /n.

Using that Q̃ is positive-definite on the left and that Σn1αi =< 1,1 >= n on
the right, we have

0 ≤ 1T (τ2Q̃+ In)−11/n ≤ 1.

As for the centered model, we re-write:

Q̃(In− (τ2Q̃+ In)−1) = V T (λ(In− (τ2λ+ In)−1))V = V T (τ2λ2(τ2λ+ In)−1)V.

Once this is done, we can express the fraction of βt0 which is conserved in βt+1

in the centered model as

1T Q̃(In−(τ2Q̃+In)−1)1/1T Q̃1 = Σni=1

(
(α2
iλi,i)(τ

2λi,i)/(τ
2λi,i + 1)

)
/Σni=1α

2
iλi,i.

Like before, using the fact that the eigenvalues of Q̃ are positive,

0 ≤ (τ2λi,i)/(τ
2λi,i + 1) ≤ 1

.
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3.7 Appendix: coloring

3.7.1 Details about the coloring algorithms

Algorithm 8 Naive greedy coloring

input A . Input adjacency matrix

(c1, . . . , cn) = (0, . . . , 0) . Initialize colors

for ci ∈ (c1, . . . , cn) do . Coloration loop

ci = min((1, . . . , n)\(cJ)) with J = {J/Ai,j = 1} . Using smallest available
color

end for

return (c1, . . . , cn)

Algorithm 9 Degree greedy coloring

input A . Input adjacency matrix

(c1, . . . , cn) = (0, . . . , 0) . Initialize colors

find (nd1, . . . , ndn) = (1, . . . , 1) ·A . Compute connection degrees of nodes

find (o(1), . . . , o(n)), a permutation of 1, . . . , n such that i < j ⇒ ndo(i) ≤ ndo(j)
. order nodes by decreasing connection degree

for ci ∈ (co(1), . . . , co(n)) do . Coloration loop

ci = min((1, . . . , n)\(cJ)) with J = {J/Ai,j = 1} . Using smallest available
color

end for

return (c1, . . . , cn)
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Algorithm 10 DSATUR

input A . Input adjacency matrix

(c1, . . . , cn) = (0, . . . , 0) . Initialize colors

(sd1, . . . , sdn) = (0, . . . , 0) . Initialize saturation degrees

(nd1, . . . , ndn) = (1, . . . , 1) ·A . Compute connection degrees of nodes

while 0 ∈ (c1, . . . , cn) do . Coloration loop

j = {i/ci = 0}
j = {i ∈ j/sdi == maxi∈j(sdi)} . Saturation degree selection rule

if #j > 1 then

j = {i ∈ j/ndi == maxi∈j(ndi)} . Node degree tiebreaking rule

end if

if #j > 1 then

Reduce j to its first element . lexicographical tiebreaking rule

end if

cj = min((1, . . . , n)\(ci/Ai,j=1)) . Using smallest available color

sdi/Ai,j=1 = sdi/Ai,j=1 + 1 . Updating saturation degrees

end while

return (c1, . . . , cn)
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3.7.2 Results of coloring experiments

Table 3.5: Case-by-case mean number of colors in the pilot experiment.

Coordinate ordering Max-min ordering Random ordering

m n d d
eg

re
e

D
S

A
T

U
R

n
ai

ve

d
eg

re
e

D
S

A
T

U
R

n
ai

ve

d
eg

re
e

D
S

A
T

U
R

n
ai

ve

5

500
2 7.4 6.0 6.0 9.8 9.1 10.1 10.3 9.2 10.0
3 7.9 6.0 6.0 10.8 9.6 11.0 10.6 10.0 11.1

1000
2 8.2 6.0 6.0 10.1 9.4 10.3 10.6 9.3 10.2
3 8.0 6.0 6.0 11.8 10.0 11.1 11.3 10.1 11.1

2000
2 8.6 6.0 6.0 10.5 9.6 10.3 10.7 9.9 10.2
3 8.9 6.0 6.0 11.6 10.1 11.7 11.8 10.0 11.4

10

500
2 12.9 11.0 11.0 18.7 17.4 18.9 19.0 17.8 19.4
3 13.0 11.0 11.0 20.9 19.1 21.2 21.0 18.9 21.3

1000
2 13.7 11.0 11.0 19.2 17.8 19.5 19.9 17.9 20.0
3 13.6 11.0 11.0 21.3 19.4 22.3 21.6 19.4 22.0

2000
2 14.8 11.0 11.0 20.2 18.2 20.0 20.7 18.6 19.8
3 15.0 11.0 11.0 22.3 19.7 22.6 22.7 19.9 22.4

20

500
2 23.0 21.0 21.0 36.5 33.9 37.4 36.8 34.2 37.5
3 23.3 21.0 21.0 40.8 37.1 44.1 40.5 37.5 43.4

1000
2 24.9 21.0 21.0 37.6 35.0 38.2 38.6 35.2 38.5
3 23.9 21.0 21.0 42.9 38.4 45.3 43.1 38.8 44.7

2000
2 26.0 21.0 21.0 38.6 35.9 38.8 39.1 36.2 39.1
3 25.7 21.0 21.0 44.8 39.6 46.4 44.7 40.0 45.6
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Table 3.6: Case-by-case mean number of colors for large graphs.

Coordinate ordering Max-min ordering Random ordering
m n d degree naive degree naive degree naive

5

50000
2 10.0 8.8 11.3 11.0 12.3 11.1
3 10.0 8.7 13.1 12.6 13.1 12.3

100000
2 10.1 9.0 11.7 11.0 12.1 11.0
3 10.0 9.1 13.1 13.0 13.2 12.3

200000
2 10.1 9.3 11.9 11.2 12.1 11.4
3 10.3 9.7 13.3 13.0 13.5 12.8

10

50000
2 17.1 13.8 21.5 21.0 22.7 20.8
3 17.0 14.0 24.5 24.1 25.5 23.7

100000
2 17.0 15.6 22.0 21.2 22.9 21.0
3 17.0 15.5 24.9 24.2 25.6 23.9

200000
2 17.9 16.7 22.2 21.3 22.9 21.1
3 18.0 16.8 25.2 24.2 26.4 24.3

20

50000
2 31.4 21.1 41.4 40.1 43.0 40.4
3 31.2 21.6 49.7 48.2 50.2 47.8

100000
2 30.8 25.1 41.9 40.7 44.3 40.8
3 31.0 24.6 50.0 48.5 50.8 47.6

200000
2 30.3 28.6 41.7 40.7 44.3 40.8
3 30.2 28.7 50.5 48.9 51.6 48.2
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Table 3.7: Case-by-case mean number of colors for blocked graphs.

Coordinate ordering Max-min ordering Random ordering
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10
2 2.9 2.5 3.0 6.2 6.2 6.6 6.5 6.5 6.7
3 2.7 2.3 2.7 7.5 7.5 7.5 7.3 7.3 7.5

20
2 3.0 2.4 3.0 7.9 7.9 8.6 7.6 7.5 8.3
3 3.0 2.6 3.0 9.0 8.5 9.6 8.6 8.3 9.5

50
2 3.0 2.4 3.0 8.9 8.6 10.8 8.6 8.1 10.2
3 3.0 2.4 3.0 10.9 10.2 12.7 10.3 9.4 12.0

100
2 3.0 2.4 3.0 9.8 9.1 12.0 9.0 8.6 11.3
3 3.0 2.2 3.0 11.8 11.1 14.0 11.0 10.2 13.0

500
2 3.0 2.9 3.1 10.3 9.3 14.7 10.1 9.1 14.3
3 3.0 3.0 3.0 13.2 11.7 17.3 12.4 11.1 16.1

10

10
2 2.9 2.5 3.0 8.1 8.1 8.2 8.6 8.6 8.6
3 2.7 2.3 2.7 9.3 9.3 9.3 9.3 9.3 9.3

20
2 3.0 2.4 3.0 11.4 11.4 12.2 11.9 11.9 12.5
3 3.0 2.6 3.0 13.5 13.4 13.8 12.5 12.3 13.0

50
2 3.0 2.4 3.0 14.8 14.2 17.1 14.0 13.6 16.0
3 3.0 2.4 3.0 17.5 16.6 19.0 16.2 15.5 18.2

100
2 3.0 2.4 3.0 16.7 16.0 20.6 15.7 15.0 19.2
3 3.0 2.2 3.0 19.8 18.5 22.9 18.0 17.1 21.2

500
2 3.6 3.1 4.1 19.6 18.2 26.5 18.6 17.0 24.5
3 3.8 3.4 4.3 22.9 21.0 30.9 20.9 18.8 28.0

20

10
2 2.9 2.5 3.0 9.8 9.8 9.8 9.9 9.9 9.9
3 2.7 2.3 2.7 10.0 10.0 10.0 10.0 10.0 10.0

20
2 3.0 2.4 3.0 16.2 16.2 16.7 16.3 16.3 16.5
3 3.0 2.6 3.0 17.7 17.7 17.7 17.1 17.1 17.2

50
2 3.0 2.4 3.0 25.1 24.5 27.0 23.0 22.9 25.4
3 3.0 2.4 3.0 27.9 27.8 30.4 24.8 24.3 27.4

100
2 3.0 2.4 3.0 30.4 29.1 34.6 26.7 25.7 31.0
3 3.0 2.2 3.0 33.7 32.4 38.2 29.8 28.9 33.9

500
2 5.2 4.7 5.6 37.2 35.2 47.6 34.0 31.2 42.6
3 5.2 4.8 5.8 42.0 39.0 55.0 38.9 35.1 49.1
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Chapter 4

Nonstationary spatial
modeling using Nearest
Neighbor Gaussian
Processes

Pourquoi faire simple quand on peut faire compliqué ? 1

-The Shadoks

This chapter consists in an article redacted in collaboration with my advisor
Benôıt Liquet and Sudipto Banerjee.

After finding techniques to improve NNGP models with explicit sampling of
the latent field, I felt that I had to do something with those methods; prefer-
ably, something that cannot do without those methods. I started from the work
of Heinonen et al. (2016), who propose an elegant framework for nonstation-
ary Gaussian Processes using Hybrid Monte-Carlo implementation. This article
presents a model that allows covariance parameters to vary in the space us-
ing Gaussian Process priors, inducing a nonstationary behavior of the response.
Here, the Gaussian Processes are replaced by Nearest Neighbor Gaussian Pro-
cesses and the algorithmic toolbox that has been devised in the first part of
the thesis is used to power the model. This transposition of methods results
in a computational scale-up: Heinonen et al. (2016) work with small data sets,
indexed in spaces of one dimension; the article transposes their approach to
larger data sets with more spatial dimensions.

More broadly, the article also aims to tackle three thorny and interdependent
problems of nonstationary modeling: (i) parameter interpretation, (ii) model
selection, and (iii) computational efficiency.

Like in Heinonen et al. (2016), understanding the model is made easier by

1Why make it simple when we can make it complicated ?
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the use of logarithm transformation. This transformation and the correspond-
ing prior are extended to models with locally elliptic covariance from Paciorek
(2003) through the original matrix log NNGP prior. Moreover, more parameters
are estimated in our architectures than in Heinonen et al. (2016), providing as
a consequence an expanding family where the nonstationary models encompass
the stationary models.

The issue of model selection and overfitting is investigated through extensive
experimentation on synthetic data sets. It appears that thanks to the fact that
the simple models are embedded in the complex ones, a nonstationary model is
able to degenerate back to a stationary model when the data is stationary. As a
consequence, over-modeling can be detected from the parameters of the model
and no overfitting was observed on the synthetic data sets. On real data ap-
plications, nonstationary models were selected using the Deviance Information
Criterion (DIC) (Spiegelhalter et al., 2002).

The problem of computation is addressed through a strategy with two com-
ponents. The first method is a Hybrid Monte-Carlo algorithm invented by
Heinonen et al. (2016) but transposed here to NNGP settings, that aims to
sample from fields of latent parameters with spatial auto-correlation. In order
to use HMC, I had to find the gradients of NNGP densities with respect to
the nonstationary parameters. This task was fairly tedious, but now that it is
done I believe that the formulas could be used in other applications than in
HMC. Thanks to the Markovian nature of the NNGP, a bounded amount of
operations is needed to differentiate the NNGP density; the method is there-
fore affordable, even though it is costlier than stationary NNGP. The second
is a Nested Interweaving strategy. This method, envisioned by Yu and Meng
(2011) but not applied to realistic models as far as I know, answers to the fact
that the model has several hierarchical layers with NNGP latent fields. While
the MCMC strategy presented in the model is operational on synthetic data
sets, I still encounter difficulties to model real data sets with the full NNGP
prior. Alternative computational strategies are discussed in the article and in
the conclusion of the thesis, section 5.2.

Nonetheless, the model works smoothly when the behavior of the spatial
effect is explained only by covariates (and, ironically, spatial patterns can be
captured by putting spatial basis functions in the covariates, see the conclusion
of the thesis for further discussion). The model is applied to analyze the lead
contamination data set. The properties of the spatial process are explained us-
ing several environmental and anthropic variables that may impact the emission
and/or the diffusion of the lead in the environment. Following the DIC, the non-
stationary model is a clear improvement with respect to the stationary model.
The nonstationary model brings a little bit of change to the predicted values;
in contrast, the variance of the predictions is heavily affected. Some variables
clearly impact the covariance structure, allowing to interpret their role in the
emission and diffusion of the lead.
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Nonstationary Nearest Neighbor

Gaussian Process: hierarchical model

architecture and MCMC sampling

Sébastien Coube-Sisqueille1,a Sudipto Banerjee2,b and Benôıt Liquet1,3,c

Abstract

Nonstationary spatial modeling is exciting and potentially rewarding, but
suffers from several problems: its computational cost, the complexity and lack
of interpretability of multi-layered hierarchical models, and the difficulty of
model selection. We tackle those problems by introducing a nonstationary
Nearest Neighbor Gaussian Process (NNGP) model. NNGPs are a good start-
ing point to address the problem of the computational cost because of their
accuracy and affordability. We study the behavior of NNGPs that use a non-
stationary covariance function, deriving some algebraic properties and explor-
ing the impact of ordering on the effective covariance induced by NNGPs.
To simplify results analysis and model selection, we introduce a readable hi-
erarchical model architecture. In particular, we make parameter interpreta-
tion and model selection easier by integrating stationary range, nonstation-
ary range with circular parameters, and nonstationary range with elliptic pa-
rameters in a consistent framework. Given the NNGP approximation and
the model architecture, we propose a MCMC implementation based on Hy-
brid Monte-Carlo and nested interweaving of parametrizations, available at
https://github.com/SebastienCoube/Nonstat-NNGP. We carry out experi-
ments on synthetic data sets to find empirical practical rules concerning MCMC
algorithm choice, hyperparameter tuning, and model selection. Finally, we use
those guidelines to analyze a data set of lead contamination in the United States
of America.

Keywords: Hybrid Monte-Carlo; Interweaving; Spatial Model
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4.1 Introduction

Bayesian hierarchical models for analyzing spatially and temporally oriented
data continue to be widely deployed in diverse scientific and technological ap-
plications in the physical, environmental and health sciences (Cressie and Wikle,
2015; Banerjee et al., 2014; Gelfand et al., 2019). Such models are constructed
by embedding a spatial process within a hierarchical structure,

[data |process, parameters]× [process |parameters]× [parameters] , (4.1)

which specifies the joint probability law of the data, an underlying spatial pro-
cess and the parameters. The process in (4.1) is a crucial inferential component
that introduces spatial and/or temporal dependence, allows us to infer about
the underlying data generating mechanism, and to carry out predictions over
entire spatial-temporal domains.

Point-referenced spatial data, which will be our focus here, refer to mea-
surements over a set of locations with fixed coordinates. These measurements
are assumed to arise as a partial realization of a spatial process over the finite
set of locations. A stationary Gaussian process is a conspicuous specification in
spatial process models. Stationarity imposes a simplifying assumption on the
dependence structure of the process such as the association between measure-
ments at any two points being a function of the separation between the two
points. While this assumption is unlikely to hold in most scientific applications,
stationary Gaussian process models are easier to compute. Also, they can effec-
tively capture spatial variation and substantially improve predictive inference
that are widely sought in environmental data sets. The aforementioned refer-
ences provide several examples of stationary Gaussian process models and their
effectiveness.

Nonstationary spatial models attempt to relax assumptions of stationarity
and can enhance wide-ranging benefits to inference. For example, in situations
where variability in the data is a complex function of space composed of multiple
locally varying processes, the customary stationary covariance kernels may be
inadequate. Here, the richer and more informative covariance structures in
nonstationary processes, while adding complexity, may be more desirable by
improving smoothing, goodness of fit and predictive inference. Nonstationary
spatial models have been addressed by a number of authors (Higdon, 1998;
Fuentes, 2002; Paciorek, 2003; Banerjee et al., 2008; Cressie and Johannesson,
2008; Yang and Bradley, 2021; Risser and Calder, 2015; Risser, 2016; Fuglstad
et al., 2015a; Gelfand et al., 2010, chapter 9)

The richness sought in nonstationary models have been exemplified in a num-
ber of the above references. Paciorek (2003) and Kleiber and Nychka (2012) in-
troduce nonstationarity by allowing the parameters of the Matérn class to vary
with location, yielding local variances, local ranges, local geometric anisotropies
and local smoothness. Such ideas have been extended and further developed
in a number of different directions but have not been devised for implemen-
tation on massive data sets in the order of 105+. For example, recent works
have addressed data sets in the order of hundreds (Risser and Calder, 2015;
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Ingebrigtsen et al., 2015; Heinonen et al., 2016) or thousands (Fuglstad et al.,
2015a) of locations, but this is modest with respect to the size of commonly
encountered spatial data (see the examples in Datta et al., 2016; Heaton et al.,
2019; Katzfuss and Guinness, 2017).

A second challenge with nonstationary models is overparametrization arising
from complex space-varying covariance kernels. This can lead to weakly iden-
tifiable models that are challenging to interpret and difficult to estimate. This
issue also complicates model evaluation and selection as the inference becomes
very sensitive to the specifications of the model.

We devise a new class of nonstationary spatial models for massive data sets
that build upon Bayesian hierarchical models based upon directed acyclic graphs
(DAGs) such as the Nearest Neighbor Gaussian Process models (Datta et al.,
2016) and, more generally, the family of Vecchia’s approximations (Katzfuss
and Guinness, 2017) to nonstationarity, which allow us to exploit their attrac-
tive computational and inferential properties (Katzfuss and Guinness, 2017;
Finley et al., 2019; Guinness, 2018). The idea is to endow the nonstationary
process model from Paciorek (2003) with NNGP specifications on the processes
defining the parameters. Our approach relies upon matrix logarithms to specify
processes for the elliptic covariance parameters of Paciorek (2003). The result-
ing parametrization is sparser than Paciorek (2003) or Risser and Calder (2015)
and is a natural extension of the usual logarithmic prior for positive parameters
such as the marginal variance, the noise variance, and the range when it is not
elliptic. We embed this nonstationary NNGP in a coherent and interpretable
hierarchical Bayesian model framework as in Heinonen et al. (2016), but differ
from Heinonen et al. (2016) in our focus on modeling large spatial data sets.

A key challenge is learning about the nonstationary covariance processes.
Our approach is a Hamiltonian Monte Carlo (HMC) algorithm directly derived
from Heinonen et al. (2016). Here, we draw distinctions from Heinonen et al.
(2016) who used full GP and classical matrix calculus that are impracticable
for handling massive data and, specifically, for NNGP or other DAG-based
models. We devise such algorithms specifically for NNGP models to achieve
computational efficiency. We also differ from Heinonen et al. (2016) in that we
pursue hierarchical latent processmodelling. Estimating the latent field (Finley
et al., 2019) allows us to model non-Gaussian responses as well. In order to
obtain an efficient algorithm, we hybridize the approach of Heinonen et al.
(2016) with interweaving strategies of Yu and Meng (2011); Filippone et al.
(2013). We implement a nested interweaving strategy that was envisioned by
Yu and Meng (2011), but not applied to realistic models as far as we know.
Our Gibbs sampler otherwise closely follows Coube and Liquet (2020), which is
itself a tuned version of Datta et al. (2016) using elements from Yu and Meng
(2011) and Gonzalez et al. (2011) to improve the computational efficiency to
improve MCMC behavior. We answer to the problem of interpretability by
a parsimonious and readable parametrization of the nonstationary covariance
structure, allowing to integrate random and fixed effects. We construct a nested
family of models, where the simpler models are merely special states of the
complex models. While we do not develop automatic model selection of the
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nonstationarity, we observe through experiments on synthetic data sets that a
complex model that is unduly used on simple data will not overfit but rather
degenerate towards a space corresponding to a simpler model. This behavior
allows to detect over-modeling from the MCMC samples without waiting for
full convergence.

The balance of the article proceeds as follows. Section 4.2 outlines the non-
stationary models we develop: covariance and data models, the properties of
NNGP density and the model architecture. Section 4.3 details the MCMC im-
plementation of the model, with two pillars: the Gibbs sampler architecture
using interweaving of parametrizations in section 4.3.1, and the use of HMC in
section 4.3.2. In section 4.4 we focus on application: we use experiments on
synthetic data to find guidelines, and we apply them to analyze a data set of
lead contamination in the US mainland.

4.2 Nonstationary nearest neighbor space time
model

4.2.1 Process and response models

Let S = (s1, s2, . . . , sn) be a collection of n spatial locations indexed in a spatial
domain D. This domain can be R, when the observations are referenced along
time for example; in R2 or the sphere, for spatial data, which will be our scope
here; or in spaces of higher dimensions, that allow to add a depth or a tem-
poral component to spatial locations using Cartesian product. We introduce
nonstationarity through the following extensions: (i) spatially-varying marginal
variance σ2(S); (ii) spatially-variable, possibly anisotropic range; and (iii) a spa-
tially variable Gaussian noise variance τ2(S). All three models are encompassed
in equations (4.2)—(4.5). For Gaussian data, we envision a regression equation

z(s) = X(s)βT + w(s) + ε(s) , (4.2)

where the heteroskedastic noise’s prior distribution is

ε(si)
ind∼ N

(
0, τ2(si)

)
. (4.3)

The GP prior for the latent field is

w(S) ∼ N (0,Σ). (4.4)

The covariance function between two locations, used in order to compute the
latent NNGP prior on w(S), is

Σi,j = K(si, sj) = σ(si)σ(sj)K0(si, sj , α(si), α(sj)), (4.5)

where σ(s1 . . . sn) is a collection of (positive) spatially-variable marginal stan-
dard deviations, K0 is a correlation function, and α(s1, . . . , sn) is a collection of
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spatially variable range parameters. Those parameters can be positive-definite
matrices, giving a locally anisotropic nonstationary covariance structure, or pos-
itive numbers, giving a locally isotropic nonstationary range. The first case is
given by Paciorek (2003).

K0(s, t, A(s), A(t)) =
2d/2|A(s)|1/4|A(t)|1/4

|A(s) +A(t)|1/2
Ki (dM (s, t, (A(s) +A(t))/2)) ,

(4.6)
A(s) and A(t) being the range matrices, d being the dimension of the space-time
domain, dM (·, ·, ·) being the Mahalanobis distance, and Ki being an isotropic
correlation function. Note that when the range matrices A(·) are constant, the
covariance structure is anisotropic but stationary. The nonstationary correlation
with isotropic range parameter is obtained by setting A = αId and identifying
the Mahalanobis distance with matrix Id and the Euclidean distance dE(·, ·):

K0(s, t, α(s), α(t)) =

(√
2α(s)1/4α(t)1/4

(α(s) + α(t))1/2

)d
Ki (dE(s, t)/ ((α(s) + α(t))/2)) .

(4.7)
Nonstationary models are more complex than their stationary counterparts and
should, therefore, have more issues. We try to anticipate them in this subsection
and try to propose solutions. Whether or not those problems actually occur and
our proposals are efficient is to be tested.

1. Combining a nonstationary marginal variance and range models sounds
attractive, however we have concerns about the possibility to identify the
two parameters. Identification is a problem for stationary models when
the spatial domain is not large enough (Zhang, 2004). The problem can
be addressed using PC priors in order to reduce the ridge of equivalent
range-marginal variance combinations to one of its points (Fuglstad et al.,
2015b). Due to the fact that covariance functions quickly drop to 0, the
locations that will have a non-null covariance with respect to one site
are concentrated around it. The observations that will effectively allow
to infer the covariance parameters at this site will then be reduced to a
cluster of points around the site, a situation that reminds of the fill-in
asymptotic of Zhang (2004).

2. We also suspect that a non-stationary model may overfit when the obser-
vations are not dense enough with respect to the spatial process range.
Consider a situation where the observations are dense enough to tell w(·)
apart from ε(·) but not to have precise estimates of the latent field. The
samples of w(·) will vary and give broad a posteriori confidence intervals.
In the case of a nonstationary model, this variability could be explained
by the nonstationary marginal variance and/or range, leading to a poor
identification between the latent field value and those parameters.

3. Another point is to tell spatially variable process variance σ2(·) apart
from spatially variable noise variance τ2(·). The samples of the latent
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field w(S) can be quite fuzzy, in particular when the correlation function
K0 has low smoothness (for example: exponential kernel, that is Matérn
covariance with smoothness ν = 0.5). A combination of sample fuzziness
and spatially variable marginal variance could be difficult to distinguish
from a heteroskedastic noise.

4. Eventually, it is difficult to identify range and smoothness when a Matérn
model is used, even for stationary models. It may be wise to leave smooth-
ness as a hyperparameter and use special cases of the Matérn function such
as the exponential kernel (ν = 1/2) or the squared exponential kernel
(ν = 1) as isotropic correlation K0(·).

Solutions for problems 1, 2 and 3 would be:

1. Not to use full nonstationary model if the identification problems are con-
firmed

2. To use priors to guarantee that the spatially variable parameters will have
a strong, smooth, large-scale spatial cohesion. For example, in problem 2,
a short-scale prior for σ(·) will allow σ(s) to go along w(s), while a large-
scale prior will bound it to nearby realizations of σ(·), giving a restoring
force that will prevent σ(s) from moving around freely. The extreme of this
approach would be a prior that is so stiff that it is practically equivalent
to a stationary model.

4.2.2 Nonstationary NNGP

Useful formulas about nonstationary NNGP. The stationary NNGP
proceeds from the pruned recursive conditional form

f̃(w(si) |w(s1, . . . , si−1), θ) = f(w(si) |w(pa(si)), θ), (4.8)

where pa(si) is the set of parents for location si defined through the Directed
Acyclic Graph (DAG), f̃(·) is the NNGP density, and f(·) is the non-approximated
GP with mean 0 and covariance parameters (range and marginal variance) θ.
The NNGP density is normal and the Cholesky factor of its precision matrix is
extremely sparse (Katzfuss and Guinness, 2017). We note this factor R̃, such

that the precision of the NNGP is R̃T R̃ and its covariance is
(
R̃T R̃

)−1

.

The non-stationary NNGP density replaces the set of uniform covariance
parameters θ by the spatially-variable θ(S). A critical point is that if the co-
variance model is given by (4.6) or (4.7) we have:

f̃(w(si) |w(s1) . . . , w(si−1), θ(S)) = f(w(si) |w(pa(si)), θ(si ∪ pa(si))). (4.9)

This means that instead of conditioning by θ(S) in the recursive conditional
form we can condition only by θ(si ∪ pa(si)). We illustrate in annex 4.6.1

Another useful property of NNGP using the covariance model of (4.5) con-
cerns the marginal variance. Note R̃0 the NNGP factor obtained using the
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correlation function K0(·) instead of the covariance function K(·) and σ(S) the
nonstationary standard deviations taken at all spatial locations. The NNGP
Cholesky factor can be written as

R̃ = R̃0 diag(σ(S))−1. (4.10)

So the nonstationary NNGP behaves like full GP in the sense that, w0 being the
normalized NNGP with marginal variance 1, we have diag(σ(S))w0(S) = w(S).
Demonstration is provided in annex 4.6.2. Therefore, the parts that intervene
in NNGP density can be re-written as:

|(R̃T R̃)−1|−1/2 = |R̃| = |R̃0 diag(σ(S))−1| = Πn
i=1(R̃0)i,i/σ(si) (4.11)

in virtue of the triangularity of R̃, and

(w)T R̃T R̃(w) = σ−1(S)T diag(w)R̃T0 R̃0 diag(w)σ−1(S). (4.12)

When evaluated in σ−1(S), (4.12) is proportional to MVN log-density with mean
0 and precision matrix diag(w)R̃T0 R̃0 diag(w).

Nonstationary NNGP on the sphere. Paciorek (2003) gives a general
method to construct a nonstationary function on the sphere using truncated
kernels. This approach seemed tedious to transpose to NNGP, so we took ad-
vantage of the fact that the NNGP is defined locally to define nonstationary
NNGPs on the sphere without defining a nonstationary covariance on the sphere.
If the ordering of the points (Guinness, 2018) guarantees that the parents of a
point si are close (within a few hundred kilometers), they can be projected on
the tangent plane intersecting the sphere in si with little deformation. The
nonstationary conditional Gaussian distribution can then be computed on the
tangent plane, and a NNGP distribution arises from the local behaviors. Note
that even though NNGP is widely used as an approximation of a full Gaussian
process, here we are defining a NNGP without knowing the actual covariance
function.
This approach is straightforward to apply in the case of (4.7), since the Eu-
clidean distance on the tangent plane is not affected by a rotation of the plane’s
basis. However, in the case of (4.6), the Mahalanobis distance is used and
rotation of the plane’s basis matters. For regions that exclude the poles (not
necessarily the actual magnetic poles but any couple of opposed points on earth),
the tangent plane can be parametrized using the North and East directions as
a basis. We did not find an approach that allows to work on the whole sphere.

Kullback-Leibler divergence between nonstationary NNGP and full
nonstationary GP. The Kullback-Leibler (KL) contrast between two multi-
variate normal distributions N0 and N1 with respective means µ0 and µ1 and
covariances Σ0 and Σ1 is

KL (N0 ‖ N1) =
1

2

(
tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

T
Σ−1

1 (µ1 − µ0)− k + ln

(
|Σ1|
|Σ0|

))
.
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Consider a full GP and a NNGP with nonstationary marginal variance σ(S),
the same mean, and respective covariance matrices written thanks to (4.10) as
a sandwich of spatial correlation and marginal variance matrices:

diag(σ(S)) Σ0 diag(σ(S)) and diag(σ(S)) (R̃T0 R̃0)−1 diag(σ(S)).

A first point is that if the marginal variance of the NNGP and the full GP
are identical, the KL contrast boils down to the divergence between Σ0 and
(R̃T0 R̃0)−1. Indeed,

• in the left-hand term, which can be re-written as

tr
(
diag(σ(S)) Σ0 diag(σ(S)) diag(1/σ(S)) (R̃T0 R̃0) diag(1/σ(S))

)
the inner variance matrices trivially cancel each other out, while the fact
that the trace only uses the diagonal terms suppresses the outer variance
matrices.

• the NNGP does not affect the mean, so µ1 = µ0 and the middle term
vanishes.

• in the right-hand term, |AB| = |A| |B| makes the determinants that in-
volve σ(S) cancel out.

This means that in a model where only the marginal variance is nonstationary,
the KL contrast will be the same as in a full stationary model. One can then
refer to the study of Guinness (2018).

In order to get an understanding of what happens when the range is non-
stationary, we simulated credible nonstationary range parameter fields on two
dimensions following the log-GP prior (see section 4.2.3). We computed the
KL divergence between full GP and NNGP while checking for the number of
nearest neighbors, the ordering, and the intensity of nonstationarity through
the marginal variance of the log-GP. In the case of scalar range parameters, the
impact of the intensity of nonstationarity is weak, but it becomes non-negligible
when anisotropy is added. Regardless of the covariance type, the most impor-
tant factors are the number of parents and the ordering. Like Guinness (2018)
we found that the random and max-min orderings induce the lowest KL diver-
gence. Details are provided in 4.7.

4.2.3 Log-Gaussian Process priors for spatially variable
covariance parameters

Definition of the log-Gaussian Process prior. An attractive option to
enforce some kind of coherence in the latent fields of positive parameters is to
use a log-Gaussian Process (log-GP) prior (Heinonen et al., 2016). The latent
field θ(S) is analyzed as

log(θ(s)) = wθ(s) +Xθ(s)β
T
θ ∀ s ∈ S and wθ(S) ∼ N (0, ζθ). (4.13)
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Some regression coefficients βθ parametrize linear effects (that may in particular
include an intercept), and ζθ is a set of high-level covariance parameters for the
log-GP prior.
The linear effects can answer two types of problems: first, a Gaussian Process
is not the perfect tool to capture all spatial patterns. Some regressors such as
the latitude, the time, the easting, or some factors, powers, sinusoidals derived
from them can be of high interest. Also, one can be interested in explaining
the parameter field using some regressors. By construction of the space-time
hierarchical model, there is only one realization of w(·) by spatial location, so
there cannot be more than two range or marginal variance parameters at the
same location. Therefore, only regressors that do not change within one spatial
location are allowed.
However, there are more than one realization of the Gaussian error process ε(·)
if several observations are done at the same spatial site. The Gaussian data
model at site s becomes

z(s, i) = X(s, i)βT + w(s) + ε(s, i), s ∈ S, 1 ≤ i ≤ (nobs(s)), (4.14)

nobs(s) ≥ 1 being the number of observations in the site s. While the regressors
Xτ2(s, i) may change within the spatial site s, the latent field wτ2 ∼ GP (ζτ2)
is fixed, giving

ε(s, i) ∼ N
(
0, τ2(s, i)

)
and log(τ2(s, i)) = wτ2(s) +Xτ2(s, i)βTτ2 . (4.15)

A convenient and intuitive tool to compare covariance parameters.
We favor log-GP priors for various reasons. The first is that a Gaussian vari-
able is defined on the real numbers, while isotropic range parameters and the
variance of a Gaussian noise are positive numbers. With respect to truncated
distributions or other workarounds, simply passing the parameters to the log-
arithm seems less trouble. Moreover, the covariance parameters are essentially
sizes: a variance is the size of a distribution, a range is the width or the vol-
ume of a covariance function. When comparing sizes, using the logarithm feels
more natural: a random variable with variance 1.1 differs from a variable with
variance 1 as much as a variable with variance 11 differs from a variable with
variance 10, and not 10 times less. Following the typology of measurements of
Stevens et al. (1946), the logarithm maps the ratio scale into the interval scale
and allows for a good interpretability of the value of wθ and βθ.

Using the logarithm also wipes some parametrization problems out. For ex-
ample, it is legitimate to wonder if it is better to use the variance, the precision,
or the standard deviation in order to parametrize the heteroskedastic noise vari-
ance τ2(·) and the marginal variance σ2(·). Similarly, is it better to compare the
scalar range parameters α(·) or some power such as αd(·) ? In a d-dimensional
space-time domain, the covariance function’s radius varies proportionally to α,
but its volume varies proportionally to αd. Once passed to the logarithm, those
parametrizations only differ by a multiplicative constant. The parametrization
problem is then turned into a parameter problem and can be solved fitting (or
tuning) the intercept and the log-GP variance σ2

θ .
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4.2.4 Extension of the log-GP prior to positive-definite
matrices for anisotropic range parameters

The previous log-GP distribution is not straightforwardly extended to nonsta-
tionary covariance functions with anisotropic range parameters such as those
of Paciorek (2003). However, using the matrix generalization of scalar loga-
rithm allows to find a consistent generalization. We proceed by analogy with 3
guidelines: the operations and objects involved in the matrix log-GP must be
generalizations of their log-GP counterparts; the good properties of the log-GP
prior must be carried over; the log-GP prior must be a special case of the matrix
log-GP prior.

Matrix logarithm. Let A be a positive definite matrix of size d × d. Let
(λ1, . . . , λd) and (v1, . . . , vd) be its eigenvalues and eigenvectors. The logarithm
log(A) is defined as the matrix whose eigenvalues are log(λ1), . . . , log(λd), and
the eigenvectors are (v1, . . . , vd). It is clear that log(·) maps the positive definite
matrices into the symmetric matrices and that log(A−1) = −log(A), which
removes parametrization problems like logarithm transformation.

Matrix log-GP prior. Analogously to (4.13), the logarithm of the range
matrices is analyzed as

log(A(s)) = W (s) + Σ
nXA
i=1 Xi(s)×Bi, (4.16)

nXA being the number of covariates, Xi(·), 1 ≤ i ≤ nXA , the ith regressor and
Bi, 1 ≤ i ≤ nXA being a d× d symmetric matrix. Since Bi does not depend on
s, Σki=1Xi(s)×Bi must be seen as a linear effect.
On the other hand W (s) is a d × d random symmetric matrix. Consider
an orthonormal basis of the symmetric matrices (e1, . . . , ed(d+1)/2). Denote
(w1(s), . . . , wd(d+1)/2(s)) the coordinates of W (s) in this basis. Analogously to
(4.13), the matrix log-GP prior is defined as:(

w1(s1, . . . , sn), . . . , wd(d+1)/2(s1, . . . , sn)
)
∼ N (0, S ⊗ Σ0), (4.17)

⊗ being the Kronecker product, Σ0 being a n× n hyper-parameter correlation
matrix and S being a positive-definite matrix with d(d+1)/2 rows and columns.
Σ0 is a spatial correlation matrix and accounts for correlation between sites,
while S is the matrix analogous of a marginal variance parameter and accounts
for the multivariate correlation within one site. Like the marginal variance of
the log-GP prior, S is estimated by the model.

Denoting βAi with 1 ≤ i ≤ d(d + 1)/2 the vector obtained with the projec-
tions of (B1, . . . , BnXA ) on the ith element of the basis of symmetric matrices,
and log(A)i the projection of log(A) on the same element, we have

(log(A(S))1, . . . , log(A(S))d(d+1)/2) ∼ N (µ, S ⊗ Σ0), (4.18)

the mean µ being obtained by stacking vertically XAβA1
, . . . , XAβAd(d+1)/2

. The
stationary model and the nonstationary range model with scalar range are in-
cluded in a model with matrix log-GP. If S is null and that all Bis are null
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except for the pseudo-intercept, then the induced correlation is stationary. As
for the scalar range case, denote v the coordinates of the matrix Id/

√
d(d+ 1)/2

in the chosen basis of symmetric matrices. If S = σ2
α × vT v, the random ef-

fect w1(s), . . . , wd(d+1)/2(s) is degenerate and its support is restricted to the

matrices that are proportional to Id. If in addition Bi = βiΣ
d(d+1)/2
j=1 vjej =

βiId/
√
d(d+ 1)/2, we recognize the nonstationary correlation with scalar range

parameters of (4.7).
This point is illustrated in figure 4.1. On the left hand side, we see range

ellipses generated with the matrix log NNGP prior (see below section 4.2.5),
and a NNGP sample corresponding to those parameters that has been obtained
using w = R̃−1w∗, with w∗ ∼ N (0, I) and R̃ obtained from the elliptic range
parameters using (4.6). On the right hand side, we removed the anisotropy
components of the ellipses (the matrices are projected on Id/

√
d(d+ 1)/2) and

we are left with circles. While R̃ was obtained using (4.7) and the circular range
parameters, w∗ was not changed. The resulting NNGP sample is obtained like
before as w = R̃−1w∗. We can see that the circles of figure 4.1b and the ellipses
of figure 4.1a have similar sizes even if they differ in shape. The NNGP samples
paths are very similar too, and figure 4.1c looks like figure 4.1d “plus some local
anisotropy”.

Evaluation and sampling. Sampling is easy using (4.17). Simulation of the
matrix log-GP prior on a grid with no linear effects and null intercept shows a
coherent field of ellipses as seen in Figure 4.1a. Predictions of A(·) can be done
applying standard Gaussian conditional distribution formulas to (4.17).

Interpretation. The coordinates of the log-matrix are not on an equal foot-
ing. On the one hand, the coordinate of the matrix Id/

√
d(d+ 1)/2, noted

v, controls the determinant of the log-matrix. Moving this coordinate of the
log-matrix will inflate or deflate the corresponding range ellipse homothetically
but will not change its orientation or the intensity of the anisotropy. On the
other hand, the rest of the coordinates of the basis for the symmetric matri-
ces do not affect the determinant. They change the shape of the ellipse, either
by modifying its direction or the ratio of its axes (an increase of either axis
being compensated by an inverse decrease of the other, the determinant does
not move). Those coordinates cannot be separated in groups parametrizing the
rotation or the elongation alone, they all do both.

4.2.5 Hierarchical architecture using NNGPs

In view of the good computational properties and accuracy of NNGP approxi-
mation (Guinness, 2018; Katzfuss and Guinness, 2017), we use log-NNGP and
Matrix log-NNGP as priors for the spatially variable parameters. They are
obtained replacing the covariance matrix Σ(S, θ) by a NNGP approximation
(R̃Tθ R̃θ)

−1 in the log-GP and matrix log-GP priors.
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(a) Ellipses obtained with matrix log
NNGP
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(b) Circles obtained with scalar log NNGP
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(c) NNGP samples corresponding to the el-
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(d) NNGP samples corresponding to the
circles

Figure 4.1: Example of range ellipses and GP samples induced by the log-NNGP
and matrix log-NNGP priors
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Estimating or not the covariance structure of log-NNGP priors. The
log-NNGP and matrix log-NNGP priors for the latent covariance parameters
fields θ(·) are themselves parametrized by at least a covariance matrix (R̃Tθ R̃θ)

−1

and an intercept that is integrated in βθ. In Heinonen et al. (2016), the covari-
ance parameters and the intercept are treated as hyper-parameters. We choose
to leave only the hyperprior range as a user-chosen parameter, while estimating
σ2
θ (or its counterpart S for elliptic range) and βθ. On the other hand, we chose

not to sample αθ. First, it is a costly operation since it involves to compute R̃θ.
Moreover, in view of the identification problems that could occur in nonstation-
ary models, we advocated for a prior with a high spatial coherence. In the case
of a log-GP prior, this means that the range αθ should be high with respect to
the domain size. Given the identification problem that occurs between range
and variance in fill-in asymptotic (Zhang, 2004), estimating the range would
bring a very marginal improvement.

Prior distributions on high-level parameters. The high-level parameters
that are estimated by the model are the linear regression coefficients βθ and the
variance parameter σ2

θ or S. We put an improper prior on βθ. This choice of an
improper prior on the logarithm of a positive parameter is quite standard, but
the literature of stationary spatial models generally advocates for stronger priors
(Fuglstad et al., 2015b; Datta et al., 2016). As for the variance parameter, we
put a uniform prior on a [−8; 3] window for log(σ2

θ), and for each log-eigenvalue
of S in the matrix case. The bottom of the interval induces a model that
is practically stationary since the variance of the field of parameters will be
very close to 0. We chose not to let the variance fall any lower in order to avoid
straying and numerical problems. On the other hand, exp(3) ≈ 20, which means
that the latent field can have a high variance too. We did not choose to allow
the field to go any higher because of numerical problems, and because there
would be no sensible interpretation of an extremely variable field of parameters.

4.3 MCMC strategy

Log-NNGP and matrix log-NNGP induce a hierarchical model on four levels

[data |process, parameter process, parameters] × [process |parameter process, parameters]
[parameter process |parameters ] × [parameters].

The implementation of a Gibbs sampler for such a model is a difficult task.
Generally, the bigger and the more complex the model, the more trouble should
be expected. In addition, one very problematic point stands out: the high corre-
lation between fields and parameters. The problem is well-known in stationary
models and various articles address it through tactics such as blocking (Knorr-
Held and Rue, 2002), collapsing (Finley et al., 2019) or interweaving (Yu and
Meng, 2011; Filippone et al., 2013). In our model, this behavior is likely to occur
in both [process |parameter process, parameters] and [parameter process |parameters ].
Moreover, spatial auto-correlation makes it difficult to sample from the latent
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fields, in particular the parameter fields that have a long range because of the
model construction. We decided to address those problems with a MCMC strat-
egy based on two pillars:

1. A nested interweaving scheme, well adapted to the structure of our model.

2. Hybrid Monte-Carlo steps to deal with spatial auto-correlation.

The lead of chromatic sampling was investigated, but it become clear that HMC
was a better option. We outline the approach in annex 4.8.

4.3.1 Gibbs sampler architecture using Nested Interweav-
ing

Interweaving. Interweaving is a method introduced by Yu and Meng (2011),
which improves the convergence speed of models relying on data augmentation.
Usually various parametrizations of the data augmentation are available. For
example, in the context of our NNGP model, the latent field

w ∼ N (0, (R̃T R̃)−1)

can be re-parametrized as

wcenter = Xlocsβ
T + w ∼ N (Xlocsβ

T , (R̃T R̃)−1),

Xlocs being the covariates that do not change within one spatial location. An-
other parmetrization is the prior whitening:

w∗ = R̃w
a priori∼ N (0, In).

The component-wise interweaving strategy of Yu and Meng (2011) can be
applied when two data augmentations w1 and w2 have a joint distribution
[θ, w1, w2] (even if it is degenerate) such that its marginals [θ, w1] and [θ, w2]
correspond to the two models with the different data augmentations. It takes
advantage of the discordance between the two parametrizations to construct the
following step in order to sample θt+1:

[θ, w2|wt1, . . .]→ [θt+1, wt+0.5
1 |w2, . . .],

“. . .” being the other parameters of the model. Since all the draws are done from
full conditional distributions, the target joint distribution is always preserved.
Joint sampling of the parameter and the data augmentation is much easier to
implement when decomposed as:

[θ|wt1, . . .]→ [w2|wt1, θ, . . .]︸ ︷︷ ︸
[θ,w2|wt1,...]

→ [θt+1|w2, . . .]→ [wt+0.5
1 |w2, θ

t+1, . . .]︸ ︷︷ ︸
[θt+1,wt+0.5

1 |w2,...]

.

It is possible that the joint distribution is degenerate as long as it is well-defined,
so that [w2|θ, w1] and [wt+0.5

1 |w2, θ
t+1, . . .] are often deterministic transforma-

tions (in our application they are). For this reason even though the data aug-
mentation is changed at the end of the sampling of θ, w1 still has to be updated
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in a separate step in order to have an irreducible chain: that is why we indexed
it by t+ 0.5.

The strategy being based on the discordance between two parametrizations,
it is a good choice to pick an ancillary-sufficient couple, giving an Ancillary-
Sufficient Interweaving Strategy (ASIS). Interweaving can work very well even
though none of the two augmentations performs well when implemented sepa-
rately. Following the terminology of Yu and Meng (2011), w is sufficient when
a posteriori (θ|w, z) = (θ|w), z being the observed data. It is sufficient when it
is a priori independent from θ. ASIS already proved its worth for GP models:
Filippone et al. (2013) show empirically that updating covariance parameters
in a Gaussian Process model benefits from interweaving w (sufficient) and w∗

(ancillary), while Coube and Liquet (2020) show that interweaving w (ancillary)
and wcenter (sufficient) improves the sampling of the fixed effect coefficients.

Nested interweaving for high-level parameters. The problem here is
that there are some latent fields on various layers of the model. Nested ASIS
is envisioned by Yu and Meng (2011) for such models, even though the authors
do not provide application to realistic models.

Consider a high-level parameter concerning the log-NNGP distributions of
the covariance parameters. Those high-level parameters may be the marginal
variance of a log-NNGP distribution or the regression coefficients from (4.13),
or (4.16) and (4.17). This parameter is noted ζ. Note (wθ)1 and (wθ)2 the two
parametrizations for the corresponding log-NNGP field of covariance parame-
ters. Eventually, note w1 and w2 the two parametrizations of the NNGP latent
field from (4.2). If we aim to sample regression coefficients βθ, the centered and
non-centered parametrizations of wθ will be used, while if we aim to sample the
marginal variance S or σ2

θ , the whitened parametrization will be used. A nested
interweaving step aiming to update ζ can be devised as

[ζ, (wθ)2, w2|(wθ)1, w1, . . .]→ [ζ, (wθ)1, w2|(wθ)2, w1, . . .]
↙

[ζ, (wθ)2, w1|(wθ)1, w2, . . .]→ [ζ, (wθ)1, w1|(wθ)2, w2, . . .]︸ ︷︷ ︸
interweaving wθ

 interweaving w

(4.19)
Like before, it is much easier to sample sequentially, for example the blocked
draw [ζ, (wθ)2, w2|(wθ)1, w1, . . .] writes as

[ζ|(wθ)1, w1, . . .]→ [(wθ)2|ζ, (wθ)1, w1, . . .]︸ ︷︷ ︸
deterministic

→ [w2|ζ, (wθ)1, (wθ)2, w1, . . .]︸ ︷︷ ︸
deterministic

.

Like before too, wθ needs to be updated later, using an interweaving of parametriza-
tions of w.

Centering-upon-whitening nested interweaving for the log-NNGP re-
gression coefficients. Coube and Liquet (2020) show that updating the re-
gression coefficients of (4.2) using an interweaving of w and wcenter = w+XβT
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considerably improves the behavior of the chains, in particular when some co-
variates have spatial coherence. The limit is that it cannot be applied for the
covariates that vary within one spatial location. We apply this strategy to up-
date βα, βτ2 and βσ2 . The covariates explaining the range and marginal variance
cannot vary within one spatial location anyway. In the case of the scalar range
and the latent field’s marginal variance, we are using nested interweaving. The
two relevant parametrizations for the NNGP latent field of (4.2) are the natural
parametrization and the whitened latent field w∗ = R̃w. So, for βα and βσ2 ,
the sampling step derived from (4.19) is

[βθ|wθ, w, . . .]→ [βθ|(wθ)center, w, . . .]→ [βθ|wθ, w∗, . . .]→ [βθ|(wθ)center, w∗, . . .].

For the sake of simplicity we do not write the implicit updates of the latent
fields at each sampling of βθ. (wθ)center being a sufficient augmentation, sam-
pling from [βθ|(wθ)center, w, . . .] is the same as sampling from [βθ|(wθ)center].
The procedure is described in Coube and Liquet (2020). As for the updates
conditionally on wθ, they can be done with an usual Metropolis-within-Gibbs
sweep over the components of βθ or with a Hybrid Monte-Carlo step detailed
in the following section 4.3.2. When the model has elliptic range parameters,
the approach is essentially the same but the “Vec trick” is needed. Details are
given in annex 4.9.1.

We have not found a satisfactory couple of parametrizations for w when the
matter is to update βτ2 . We use simple (non-nested) interweaving:

[βτ2 |wτ2 , w, . . .]→ [βτ2 |(wτ2)centered, w, . . .].

Whitening-upon-whitening nested interweaving for the log-NNGP
variance. In the case of the marginal variance σ2

θ of a log-NNGP prior, two
parametrizations of wθ are available. The sufficient parametrization is the
natural parametrization, while the ancillary parametrization is the whitened
w∗θ = R̃0θwθ/σθ, R̃0θ being the hyperprior correlation NNGP factor. Like be-
fore, for the latent field, we use w and w∗. For the marginal variance σ2, the
circular range α, and the elliptic range A, the step writes:

[σ2
θ |wθ, w, . . .]→ [σ2

θ |w∗θ , w, . . .]→ [σ2
θ |wθ, w∗, . . .]→ [σ2

θ |w∗θ , w∗, . . .].

Since wθ is a sufficient statistic for σ2
θ , [σ2

θ |wθ, w, . . .] or [σ2
θ |wθ, w∗, . . .] are equiv-

alent to [σ2
θ |wθ]. The procedure to update a marginal variance with such a

parametrization is well-known (Banerjee et al., 2008; Datta et al., 2016). When
the ancillary parametrization w∗θ is used, a Metropolis-Hastings step or a HMC
step detailed below can be used. Contrary to the case of fixed effects, it is
straightforward to generalize to the matrix log NNGP prior.

Like before, only the sufficient parametrization of w is used for the noise
variance. The step is:

[σ2
τ2 |wτ2 , w, . . .]→ [σ2

τ2 |w∗τ2 , w, . . .].
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4.3.2 Hybrid Monte-Carlo to sample parameter fields with
log-GP priors

Hybrid Monte-Carlo (HMC) (Neal et al., 2011) has already been implemented
successfully by Heinonen et al. (2016) for nonstationary Gaussian processes, but
in our case the gradient of the model negated log-density with respect to wθ(S)
must be found since we are using NNGP and not full GP, and the applicability
of HMC must be questioned for large spatial data sets. The other divergence
with respect to the methodology of Heinonen et al. (2016) is that we sample
the latent field w(·), while Heinonen et al. (2016) use a response model. Given
the fact that we use a nested ASIS strategy with the natural and the whitened
parametrizations of the latent NNGP field, we need the gradients of the density
with both model formulations.

Generic form for the gradients. We work with a log-NNGP or —matrix
log NNGP prior for the three spatially variable parameters (range, scale, noise
variance). The negated log likelihood with respect to the field wθ(S) will then
be

H = −log(f̃θ(wθ(S))− gθ(wθ(S))

f̃θ(·) being a NNGP density with covariance (R̃Tθ R̃θ)
−1 involved in the log-

NNGP prior and gθ(·) depending on the role of θ in the model. The gradient of
this potential is written as:

∇wθH = R̃Tθ R̃θwθ −∇wθgθ(wθ(S)).

However, this potential leads to inefficient HMC. According to Heinonen et al.
(2016) prior whitening may lead to improvements of “several orders of magni-
tude”. In order to do a whitened HMC step, we search the gradient of H with
respect to w∗θ(S) = R̃θwθ(S). This gradient is given as

∇w∗θH = R̃θwθ − (R̃−1
θ )T∇wθgθ(wθ(S)). (4.20)

Details are provided in annex 4.10.1. Solving or multiplication involving R̃θ
is not an issue thanks to the fact that R̃θ is sparse and triangular. In the
matrix log NNGP prior case, where R̃θ = S−1/2 ⊗ R̃0, the “Vec trick” (A ⊗
B) C = B V ec(C) AT comes in handy. The problem that remains is to compute
∇wθgθ(wθ(S)). In the following paragraphs, we derive this gradient for the
various parameters of the model (range, marginal variance, noise variance).

Marginal variance latent field. When sufficient augmentation is used, the
marginal variance intervenes in the NNGP density of the latent field. Using
(4.11) and (4.12), the gradient writes

−∇wσ2 gσ2(wσ2) = 1/2 + σ−1(S) ◦
(
diag(w)R̃T0 R̃0 diag(w) σ−1(S)

)
/2,

(4.21)
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with ◦ the Hadamard product.
When ancillary augmentation is used, the marginal variance has an impact on
the observed field likelihood with respect to the latent field. The gradient with
respect to wσ2(S) will write

−∇wσ2 gσ2(wσ2) = ∇w l(z(S)|R̃−1w∗, β, . . .) ◦ (R̃−1w∗/2), (4.22)

l(·) being the likelihood of the observations knowing the latent field, the fixed
effect, and the noise variance in the case of a Gaussian model. The demon-
strations are given in the annex 4.10.2. Given the fact that only sparse matrix
multiplications and sparse triangular system solving are involved, computing
those two gradients is affordable.

Range latent field. In the following, wα(sj) can be the latent field for a
model with isotropic range, (4.13), or one of the d(d + 1)/2 latent fields for a
model with anisotropic range (4.17). We find the gradient of the negated log-
density with respect to wα using a two-step method.
The first part is to compute the derivatives of R̃ with respect to wα. The
details are presented in annex 4.10.3. Even if the formulas seem daunting, their
computational cost actually is affordable thanks to the sparsity induced by the
covariance functions (4.6) and (4.7). In annex 4.10.4, we estimate that both
the number of flops and the RAM needed respectively to compute and store the
derivatives of R̃ are proportional to n m2, n being the size of the data set and
m being the size of the parents sets used in the NNGP approximation.
The second step is to express the gradient of H using the derivatives of R̃. In
the case of sufficient augmentation, we have

− ∂gα(wα)

∂wα(si)
=
(
wT R̃T

) ∂R̃

∂wα(si)
w + Σj/sj∈{si∪ch(si)}

∂R̃j,j
∂wα(si)

/R̃j,j , (4.23)

ch(si) being si’s children in the DAG used to define the NNGP and R̃j,j being

the jth diagonal term of R̃. When ancillary parametrization is used,

− ∂gα(wα)

∂wα(si)
= ∇wlog(l(z(si)|R̃−1w∗, X, β, . . .))T R̃−1 ∂R̃

∂(wα(si))
R̃−1w∗, (4.24)

where l(·) is the likelihood of the observations. Note that we use the gradient
∇w of the likelihood with respect to w, evaluated at w = R̃−1w∗. Details about
the gradients are found in annex 4.10.5. Due to the fact that ∂R̃/∂(wα(sj)) is
extremely sparse, the gradients can be computed for an affordable computational
cost discussed in annex 4.10.6.

Noise variance latent field. The noise variance intervenes directly in the
Gaussian likelihood of the observed field. The gradient of the negated log-
density writes:

−∇wτ2 gτ2(wτ2) = 1/2− τ2(S) ◦ (z(S)− w(S)−X(S)βT )2/2. (4.25)

Details are given in annex 4.10.7. Note that this method should be affordable
for other link functions as long as they are cheap to evaluate and differentiate.
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Regression coefficients for the covariance parameters. This paragraph
shows how to update βθ with a HMC step. This method is especially useful for
the range parameters since it avoids an unaffordable Metropolis-within-Gibbs
sweep over βα. Using the Jacobian chain rule,

∇βθH = JTβθ log(θ) · ∇log(θ)H = XT
θ · ∇log(θ)H.

In the case of the log-range and log-variance, there is a one-to-one correspon-
dence between log(θ) and wθ, so that it is possible to replace∇log(θ)H by∇wθH.
In the case of the noise variance, ∇log(τ2)H is straightforward to derive using
∂l(zi(s)|τ2

i (s),w(s),Xi(s),β)

∂τ2
i (s)

(i being the index of the observation at site s).

Marginal variance for the covariance parameters. When the ancillary
parametrization w∗θ = R̃θwθ/σθ is used, changing σ2

θ (or the within site mul-
tivariate covariance S in the case of the elliptic range) has an impact on wθ.
Using the Jacobian chain rule,

∇σ2
θ
H = JTσ2

θ
wθ · ∇wθH = JTσ2

θ
(σθR̃

−1
θ w∗θ) · ∇wθH = (R̃−1

θ w∗θ/2σθ)
T · ∇wθH.

In the case of elliptic range parameters, we have in virtue of the “Vec trick”:

∇SH = JTS wA·∇wAH = JTS (S1/2⊗R̃−1
A w∗A)·∇wAH = JTS (V ec(R̃−1

A w∗A(S1/2)T ))·∇wAH.

In order to get the Jacobian, the derivatives of S1/2 with respect to S are
obtained by finite differences. The derivatives of R̃−1

A w∗A(S1/2)T are in turn
obtained by matrix multiplication, and plugged into the V ec(·) operator.

4.4 Data analysis

While the raw results of the experiments and applications are too heavy to be
available online, our code can be found at https://github.com/SebastienCoube/
Nonstat-NNGP. Extensive vignettes and code enabling to reproduce the appli-
cations are provided.

4.4.1 Empirical guidelines

This subsection aims to give some answers to practical problems that may arise
with our model.

Over-modeling. For the choice of the model, the results of an experiment
presented in annex 4.11.2 and summarized in figure 4.8 and 4.9 tell us that
over-modeling does not hurt in terms of Deviance Information Criterion (DIC)
(Spiegelhalter et al., 1998). However, the problem of wasting time and resources
fitting a complex and costlier model remains.

If over-modeling does not affect the performance of the model, it is because
the non-stationary model encompasses the stationary model, and boils down
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to stationarity when confronted with stationary data. When stationary data is
analyzed with a non-stationary model, the marginal variance parameter of the
log-NNGP prior sticks to 0, inducing a degenerate distribution. The parameter
latent field ends up being constant, effectively inducing a stationary model.

Model selection. An useful corollary is that over-modeling can be detected
just by looking at the MCMC chains, without needing to wait for full conver-
gence. For example, in figure 4.2, we can see the 2000 first states, for 3 separate
chains, of the log-variance parameter for a range log-NNGP prior. On the left,
the data is stationary, and the log-variance is very low. On the right, the data
is non-stationary, and the log-variance is high enough to allow the parameter to
move in the space.

As for the model with anisotropic range parameters, it is also possible to
detect over-modeling from the estimates. In order to do so, we look at the
matrix logarithm of S from (4.17). Recall that if S ≈ vTσ2v, v being the
projection of Id/

√
d(d+ 1)/2 in the chosen basis of symmetric matrices, then

the model is effectively a nonstationary scalar range model. If S is null, the
model is stationary. We monitor three indicators:

v log(S) vT , u log(S) uT , x log(S) xT

with u, x being a completion of v in the basis of the symmetric matrices.
In figure 4.3, we show the behavior of the indicators for three data sets:

a stationary data set (figure 4.3a), a nonstationary data set with scalar range
(figure 4.3b), and a nonstationary data set with elliptic range (figure 4.3c). We
can see that all three components are very low in figure 4.3a, implying S ≈ 0 3×3,
which makes in turn wA constant, eventually inducing a stationary prior for
w. When the range is nonstationary with scalar parameters (4.3b), vSvT (in
black) raises while the two other indicators are low. Eventually, when the data
is nonstationary with elliptic range parameters (4.3c), all three indicators are
high.

Identification of the parameters. A first approach to tell the identification
of parameters is to use model comparison criteria such as the DIC. If the pa-
rameters are not well-identified, then a change in the chosen model, for example
replacing a model with nonstationary range by a model with nonstationary noise
variance, should not affect the chosen criterion. From the experiment presented
in 4.11.2, it is clear that nonstationary noise variance is well-identified and that
forgetting it in relevant cases leads to under-fitting.

Omitting both scalar range and marginal variance of the latent NNGP pro-
cess leads to under-fitting as well, but the identification of those two parameters
is less clear. On the one hand, on data with nonstationary range, a model with
nonstationary variance does not do as good as a model with nonstationary range
(see figure 4.8d in annex). On the other hand, the converse is not true for data
with nonstationary variance (figure 4.8f); and on data with both non-stationary
range and marginal variance, models with only either nonstationary range or
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Figure 4.2: Log-variance of the log-NNGP prior of the range parameter
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variance do as good as the model with both (figure 4.8b). This problem is not
surprising: on small domains, range and variance are difficult to identify for
stationary models (Zhang, 2004).

However, a troubling observation shows that there is some kind of identifi-
cation: when given the possibility, our model is able to make the right choice
between the two parameters. In figure 4.10, we used boxplots to summarize
results of the models that estimate both nonstationary marginal variance and
range. On the left (4.10a), we can see estimates for the log-variance of wα’s
log-NNGP prior. On the right (4.10b), we see its counterpart for wσ2 . In both
subfigures, the boxplots are separated following the type of the data, (∅) being
stationary data, (α) being data with nonstationary range, (σ2) being data with
nonstationary variance, and (α + σ2) being data with both nonstationarities
(annex 4.11.1 presents the naming system in detail). Recall that when the log-
variance is low, the corresponding field is practically stationary. Then we can
see that the right kind of nonstationarity is detected for all four configurations:
when data is stationary, both log variances are very low, when the data is (σ2),
then only the log-variance of wσ2 is high, etc.

4.4.2 Case study: lead concentration in the United States
of America mainland

About the data set. The lead data set presented by Hengl (2009) features
various heavy metals measurements, including lead concentration. Various an-
thropic (density of air pollution, mining operations, toxic release, night lights,
roads) and environmental (density of earthquakes, indices of green biomass, ele-
vation, wetness, visible sky, wind effect) covariates are provided. Those variables
may impact the emission of the lead, its diffusion, or both. The lead concen-
tration and the covariates have been observed on 58097 locations, with a total
of 64274 observations. As we can see in figure 4.4, the measures are irregular,
with gaps and denser patches. The observations were passed to the log.

About the analysis. We used a NNGP with 5 neighbors and the max-min
order. We tested 3 models: a model with non-stationary circular range, scale
and noise (α + σ2 + τ2), a model with just scale and noise (σ2 + τ2), and a
stationary model (∅). With the full log-NNGP prior, the chains had a patholog-
ical behavior, forcing us to integrate only a linear regression in the covariance
structure. The model (α+ σ2 + τ2) needed 5000 iterations and 3 hours to con-
verge following the Gelman-Rubin-Brooks diagnostics (Neal, 2011). The model
(σ2 + τ2) was tested in order to see whether the “over-modeling does not hurt”
rule that we deduced from synthetic experiments held in practice. The DIC of
the three models are compared in table 4.1. The model (α+σ2 +τ2) is therefore
selected. Even though the DIC clearly tells that a nonstationary model must
be chosen, it is legitimate to worry about problems of identification between
all those effects. To investigate the problem, we present the correlation matrix
of the MCMC samples for (β, βα, βσ2 , βτ2) in annex, figure 4.12. Problems of
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Figure 4.4: Measure sites for lead concentration

Table 4.1: DIC performances of various models on the lead data set

Model (α+ σ2 + τ2) (σ2 + τ2) (∅)
DIC 76758 78415 86158

identification should lead to high correlation between the samples. Our conclu-
sion is that there is some correlation, but not any worse than usual. Indeed,
some sub-diagonals are standing out, denoting that there is some correlation
between the components of βα, βσ2 and βτ2 associated to the same covariate.
However, the strongest correlation occurs between the intercept coefficients of
βα and βσ2 , which corresponds to the well-known problem of stationary models
(Zhang, 2004).

Results. After using a PCA on the table of regression coefficients (βα|βσ2 |βτ2)
obtained by aggregating the columns “mean” of table 4.2 and excluding the
intercepts, it appears that the role of the covariates can be summarized by their
role in the incoherence of the observed signal. A variable that increases the
incoherence will lower the range for the latent process and increase the variance
for both the noise and the latent process. Details are given in annex, figure
4.11. The wetness and the elevation seem to augment the coherence, while the
presence of green biomass and the density of lights make the signal fuzzier.
This incoherence component is plotted in figure 4.5. The predicted means of
lead contamination are quite similar between the stationary and nonstationary
model (figure 4.6). However, the prediction of the nonstationary model appears
sharper, pointier in Colorado or Arizona, where the spatial effects are more
incoherent. On the other hand, we can see in figure 4.5 that the spatial effects
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are more coherent in Missouri except for a few spots corresponding to cities
(Kansas City in the West, Saint Louis in the East, Springfield in the South-West)
and mining counties (Viburnum in the South-East), who respectively affect the
coherence of the spatial effect through the road and night light densities, and the
density of mining operations. If we squint at the predicted means in Missouri,
we can indeed see that the nonstationary predictions are smoother.

The predicted standard deviations are very different following whether the
model is stationary or nonstationary (figure 4.7). In the stationary model, the
only thing that imports is the spatial density of the observations (figure 4.4).
In the nonstationary model, regions with high spatial coherence such as the
Midwest will have lower standard deviation, and other regions such as the West
Coast will have high standard deviation even if the measurements are dense
there.

Table 4.2: Summary of the A Posteriori samples of βα, βσ2 , and βτ2 in the
model (α+ σ2 + τ2)

βα βσ2 βτ2

mean q0.025 q0.975 mean q0.025 q0.975 mean q0.025 q0.975
(Intercept) -4.838 -4.923 -4.752 -1.568 -1.626 -1.503 -1.878 -1.894 -1.860

air pollution. 0.104 0.031 0.187 -0.071 -0.122 -0.020 -0.023 -0.046 -0.001
mining dens. -0.017 -0.064 0.029 0.102 0.072 0.134 0.058 0.040 0.075

earthquake dens. -0.011 -0.067 0.043 -0.056 -0.098 -0.012 0.002 -0.016 0.019
toxic release -0.104 -0.186 -0.016 0.094 0.041 0.146 -0.036 -0.063 -0.004

green biomass -0.406 -0.468 -0.331 0.016 -0.025 0.056 0.184 0.166 0.202
elevation -0.172 -0.254 -0.094 -0.139 -0.194 -0.080 -0.507 -0.537 -0.475

night lights dens. -0.269 -0.338 -0.206 0.115 0.067 0.163 0.171 0.140 0.203
road dens. -0.030 -0.064 0.005 0.037 0.008 0.064 0.040 0.018 0.061

wetness idx. 0.515 0.422 0.602 -0.306 -0.367 -0.244 -0.300 -0.332 -0.267
visible sky idx. -0.185 -0.233 -0.139 -0.007 -0.045 0.033 -0.051 -0.077 -0.025
wind effect idx. -0.020 -0.072 0.027 0.142 0.107 0.178 0.075 0.053 0.096

4.5 Summary and open problems

This paper undertook to generalize the NNGP model to nonstationary covari-
ance structures. We delivered a solution that takes into account the problematic
aspects of computational cost, model selection, and interpretation of the param-
eters. Along the way, we developed various tools that could be useful in other
contexts:

1. We found a flexible and interpretable parametrization for local anisotropy,
embedding the nonstationary models in a coherent family à la Russian
doll. Thanks to the logarithmic transform, the user can easily interpret
the parameters. This family of models seems quite resilient with respect
to overfitting, and could be useful in models that do not use NNGP.

2. The derivatives of nonstationary NNGP density can be used elsewhere
than in HMC, in MAP or maximum likelihood approaches for example.
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Figure 4.5: Visualization of the spatial incoherence of the lead measurements

nonstationary stationary

−
2

−
1

0
1

2
3

4
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Figure 4.7: Predicted latent standard deviation of the lead concentration
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3. We proved that nested ASIS (Yu and Meng, 2011) can be a viable strategy
for multi-layered hierarchical models with large data augmentations.

A problem that we leave unsolved is the definition of a NNGP prior with
anisotropic covariance parameters on the whole sphere. Working locally and
using the projection of the range ellipses on tangent planes might allow to de-
fine both the nonstationary NNGP and matrix log NNGP prior. The matter
of defining fixed effects for the matrix-valued in the absence of a common basis
remains open.

A possible extension is an implementation of the model in more than two
dimensions. In particular, elliptic covariances in 3 dimensions might prove use-
ful to quantify drifts, for example rain moving across a territory. The matter
to keep in mind is that ellipses in higher dimensions incur more differentiation,
since the matrix logarithm of the range parameters will have 6 coordinates in-
stead of 3. A computational scale up, discussed below, may be necessary.

An exciting but complex subject is whether we can extend our nonstationary
spatial model to multivariate data. For example, the lead data set of Hengl
(2009) features other heavy metals than lead, and those variables may share
common sources and diffusion mechanisms.

A first axis would be to tackle “multivariate nonstationarity”, that is a
multivariate spatial model where spatial covariance is nonstationary. A pri-
ori, nothing forbids us to use Paciorek (2003)’s nonstationary covariance as a
nonstationary cross-covariance, with

Kmulti(si, sj , v(·), w(·)) = K(si, sj , θv(si), θw(sj))× C(v(·), w(·)),

K(·) being a nonstationary covariance function taking a couple of spatial loca-
tions (si, sj) and a couple of covariance parameters (θv(si), θw(sj)) observed at
those locations as arguments, and C(v(·), w(·)) being a measure of the associa-
tion between v(·) and w(·). C(v(·), w(·)) is not exactly a within-site correlation
because if the ranges of v(·) and w(·) differ in the site s, then

K(s, s, θv(s), θw(s)) ≤ 1.

If the association matrix obtained using C(·) is positive-definite, then thanks
to Schur’s theorem K(·) is positive-definite as well. The covariance parameters
θw and θv are allowed to vary in the spatial domain, inducing a nonstationary
cross-covariance whose marginals correspond to the univariate nonstationary
case.

Another point would be “nonstationary multivariateness”, where the rela-
tionship between the variables changes in space and/or depending on some re-
gressors. Since C(·) has to be a positive-definite matrix, this point seems right
up the alley for our matrix log-GP prior, expanding the model while keeping the
same framework. What remains to be done is to find a combination of C(si, v)
and C(sj , w) into C(si, sj , v, w) that preserves the positive-definiteness.
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The problem is that doing multivariate NNGP is not so easy, even in the
stationary case. Defining a relevant DAG for multivariate data is not an elu-
cidated point. Using m parents of each variable for good measure will quickly
become unaffordable. As far as we know, heuristics like mixing m1 parents of
the same variables and m2 parents of the rest have not been tested. Peruzzi
et al. (2020) use tessellated Gaussian processes, a modified NNGP that central-
izes the variables in auxiliary spatial locations. The auxiliary spatial locations
having a simple layout, typically gridded, many elements can be reused and
the computation ends up being much more economical. However, the fact that
some elements can be re-used precisely comes from the stationarity of the func-
tion. Moreover, Peruzzi et al. (2020) induces conditional independence between
the observed locations. In prediction, this behavior leads to a degradation of
model performances (Katzfuss et al., 2020). In one way or another, multivariate
nonstationary NNGP would mean more parents, so more NNGP density differ-
entiation. A computational scale-up is required.

This, and the perspective to have coordinate spaces of dimension 3 or more,
lead us to the third point. Given the fact that we have found the gradients
of the model density and that the a posteriori distributions of the model are
well-behaved thanks to the logarithmic parametrization (actually, in the lead
data set, the high-level parameters passed the test of Henze and Wagner (1997)
for multivariate normality), the option of Maximum A Posteriori (MAP) esti-
mation should be considered seriously. While we will lose some nuances of the
a posteriori distribution, there is a trade-off between MCMC and NNGP. The
computational effort in flops and RAM that is not spent on doing MCMC could
be re-invested in doing NNGP with a richer Vecchia’s approximation.
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APPENDIX

4.6 Appendix: demonstrations

4.6.1 Recursive conditional form of nonstationary NNGP

Start with:

f̃(w(si)|w(s1, . . . , si−1), θ(S)) = f(w(si)|w(pa(si)), θ(S)).

Then re-write

f(w(si)|w(pa(si)), θ(S)) = f(w(si ∪ pa(si))|θ(S))/f(w(pa(si))|θ(S)).

The joint distributions

f(w(si ∪ pa(si))|θ(S)) and f(w(pa(si))|θ(S))

are fully parametrized respectively by

Σ(si ∪ pa(si), θ(S)) and Σ(pa(si), θ(S)).

Since the covariance functions given by equations (4.6) or (4.7) allow to compute
Σi,j using only θ(si) and θ(sj) instead of θ(S),

f(w(si ∪ pa(si))|θ(S)) = f(w(si ∪ pa(si))|θ(si ∪ pa(si)))

and

f(w(pa(si))|θ(S)) = f(w(pa(si))|θ(pa(si))) = f(w(pa(si))|θ(si ∪ pa(si))).

Conclude with

f(w(si)|w(pa(si)), θ(S)) = f(w(si∪pa(si))|θ(si∪pa(si)))/f(w(pa(si))|θ(si∪pa(si))).

4.6.2 Marginal variance of nonstationary NNGP

Let R̃ be the NNGP factor using the nonstationary covariance K(·) and let R̃0

be the NNGP factor using the nonstationary correlation K0(·) from (4.5) and
either (4.6) or (4.7) respectively. From the construction of R̃, we introduce

σ̄i =
(
Σ(si, si)− Σ(si, pa(si))Σ(pa(si), pa(si))

−1Σ(pa(si), si)
)1/2

the standard deviation of w(si) conditionally on w(pa(si)), and its counterpart
¯(σ0)i obtained with Σ0 instead of Σ. The ith row will have:
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−Σ(si, pa(si))Σ(pa(si), pa(si))

−1/σ̄i at the column indices that correspond to pa(si)

1/σi at column index i

0 elsewhere

Introducing Σ0 and σ(S), we find that

σ̄i =
(
Σ(si, si)− Σ(si, pa(si))Σ(pa(si), pa(si))

−1Σ(pa(si), si)
)1/2

= (σ(si)
2Σ0(si, si)− σ(si)Σ0(si, pa(si)) diag(σ(pa(si)))

diag(σ(pa(si)))
−1Σ0(pa(si), pa(si))

−1 diag(σ(pa(si)))
−1

diag(σ(pa(si)))Σ0(pa(si), si)σ(si))
1/2

= σ(si)(σ̄0)i

The coefficients of row i become:
(
−Σ0(si, pa(si))Σ0(pa(si), pa(si))

−1/ ¯(σ0)i
)
diag(σ(pa(si)))

−1at the indices of pa(si)

1/(σ(si) ¯(σ0)i) at index i

0 elsewhere

It follows that
R̃i,j = R̃0i,j/σ(sj),

which proves the result.

4.7 Appendix: details about KL divergence

4.7.1 Scalar range case

Synthetic data sets with 10000 observations were simulated on a domain with
size 5 × 5. The spatially variable log-range had mean log(0.1). Three factors
were tested:

• the intensity of nonstationarity, by letting the log range’s variance take
different values (0.1, 0.3, and 0.5).

• the ordering (coordinate, max-min, random, middleout).

• the number of parents (5, 10, 20).

Using a linear model with interactions shows that the intensity of nonstation-
arity has almost no role. The most important factor is the number of parents.
Eventually, the NNGP approximation can be improved using the max-min and
random order, joining Guinness (2018)’s conclusions for stationary models in 2
dimensions. See table 4.3 for more details about the effects of the factors.
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4.7.2 Elliptic range case

Synthetic data sets with 10000 observations were simulated on a domain with
size 5 × 5. The spatially variable log-matrix range had mean log(.1) × I2/

√
2.

Three factors were tested:

• the intensity of nonstationarity, by letting the variance of the coordinates
of the log-range matrix take different values: (0.1 × I3, 0.3 × I3, and
0.5× I3).

• the ordering (coordinate, max-min, random, middleout).

• the number of parents (5, 10, 20).

The outcome is treated with a linear model, whose summary is presented in
table 4.4. Contrary to the first experiment, the intensity of the nonstationarity
does play a role.

Table 4.3: Summary of linear regression of the KL divergence, in the scalar
range case.*

Estimate Std. Error t value Pr(> |t|)
(Intercept) 186.5156 0.4517 412.96 0.0000

nonstat.intensity 0.3 1.4745 0.2957 4.99 0.0000
nonstat.intensity 0.5 3.2509 0.2957 10.99 0.0000

ordering max min -47.6966 0.5914 -80.66 0.0000
ordering middle out -4.7491 0.5914 -8.03 0.0000

ordering random -47.2462 0.5914 -79.89 0.0000
10 nearest neighbors -135.9274 0.5914 -229.86 0.0000
20 nearest neighbors -176.4046 0.5914 -298.31 0.0000

max min: 10 25.9771 0.8363 31.06 0.0000
middle out: 10 1.9064 0.8363 2.28 0.0228

random: 10 25.7530 0.8363 30.79 0.0000
max min: 20 41.4488 0.8363 49.56 0.0000

middle out: 20 3.3930 0.8363 4.06 0.0001
random: 20 40.9979 0.8363 49.02 0.0000

*The reference case has coordinate ordering, 5 nearest neighbors,
and a log-range variance of 0.1
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Table 4.4: Summary of linear regression of the KL divergence, in the elliptic
range case*.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 243.6011 1.8448 132.05 0.0000

nonstat.intensity 0.3 23.8570 1.2077 19.75 0.0000
nonstat.intensity 0.5 50.5490 1.2077 41.86 0.0000

ordering max min -50.5886 2.4154 -20.94 0.0000
ordering middle out -0.0311 2.4154 -0.01 0.9897

ordering random -50.6093 2.4154 -20.95 0.0000
10 nearest neighbors -176.3113 2.4154 -72.99 0.0000
20 nearest neighbors -238.4647 2.4154 -98.73 0.0000

max min: 10 19.4831 3.4159 5.70 0.0000
middle out: 10 -1.6965 3.4159 -0.50 0.6195

random: 10 19.5230 3.4159 5.72 0.0000
max min: 20 38.3413 3.4159 11.22 0.0000

middle out: 20 -1.6284 3.4159 -0.48 0.6337
random: 20 38.3553 3.4159 11.23 0.0000

The reference case has coordinate ordering, 5 nearest neighbors,
and a log-range variance of 0.1

4.8 Appendix: chromatic samplers for parame-
ter fields with log-NNGP priors

Coube and Liquet (2020) show that chromatic samplers are an operational so-
lution to sample the latent field w(S). We tried to adapt this method to update
wθ(S), but it was less efficient than HMC. We report our result here in the
eventuality of someone finding a better use for them.

Conditional independence in the full conditional of wα and wσ2 when
sufficient augmentation is used. In order to use chromatic sampler, the
Markov graph of the full conditional distribution of wθ(S) must be found. As-
sume a log-NNGP or matrix log-NNGP prior on the covariance parameter field
θ(S) and the NNGP prior for the latent field w(S). Let Gθ and Gw be the mor-
alized graphs induced by their respective NNGP DAGs. Both graphs have the
same vertices, identified with the spatial locations S. Let Eθ, Ew ⊂ S ⊗ S be
their respective edges. Then, the full conditional distribution of wθ(S) has the
global Markov property on the graph

Gw+θ = (S, Ew ∪ Eθ)

To prove this point, remark that (4.13) and (4.9) imply that the distribution of
wθ(S) conditionally on the rest of the parameters is proportional to

f̃θ(wθ(S)|ζθ)f̃(w(S)|θ(S)).
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The left-hand part is the parameters’ log-NNGP prior and the right-hand part
is the latent field’s NNGP prior. We call here pa(si) the parents of si in the
DAG used to define the latent field density f̃(·). Using (4.9), we can write

f̃(w(S)|θ(S)) = f(w(s1)|θ(s1))Πn
i=2f(w(si)|w(pa(si)), θ(si ∪ pa(si)))

= ψ1(θ1)Πn
i=2ψi(θ(si ∪ pa(i))), ψ1, . . . , ψn being nonnegative.

By definition, (si ∪ pa(si)) are complete sets or cliques on Gw, so the NNGP
density evaluated in θ(S) factorizes on Gw. On the other hand, using recursive
conditional factorization, the log-NNGP factorizes on Gθ.
Since the NNGP density and the log-NNGP prior respectively factorize on Gw
and Gθ, they a fortiori factorize on (S, Ew ∪ Eθ). Their product then factorizes
on (S, Ew ∪ Eθ). Therefore, it has the Global Markov Property on (S, Ew ∪ Ep)
(Lauritzen, 1996).

Distribution of wσ2 with ancillary augmentation. Using (4.10) and the
independence of the observations conditionally on the linear effects and the
latent field, the likelihood can be factorized as

l

(
z(S)|

(
R̃0 diag(σ(S))−1

)−1

w∗, β, . . .

)
= Πn

i=1l
(
z(si)|σ(si)

(
R̃−1

0 w∗
)
i
, β, . . .

)
.

(4.26)
When this likelihood is evaluated with respect to σ(S), it can be factorized
on the edge-less graph. So the full conditional distribution of wσ(S) can be
factorized on Eσ = Eσ ∪ø. This is consistent with the fact that wσ(si) will move
only w(si), in ]0,+∞[ if w(si) > 0, and in ]−∞, 0[ if w(si) < 0.

4.9 Appendix: details about interweaving

4.9.1 Centered update of the regression coefficients for the
matrix log NNGP

Start from (4.17) and (4.18), centering the latent field on the fixed effects gives

wAcentered =
(
w1(S), . . . , wd(d+1)/2(S)

)
+ µ.

The problem is that µ is obtained stacking various fixed effects vertically, so
that the approach of Coube and Liquet (2020) cannot be done directly. Write
the Cholesky factorization of the multivariate prior matrix of the log-NNGP
prior:

(S ⊗ Σ0) = (S1/2 ⊗ Σ
1/2
0 )(S1/2 ⊗ Σ

1/2
0 )T .

Note that Σ
−1/2
0 is the NNGP Cholesky factor that parametrizes the spatial

correlation in the matrix log-NNGP prior. Introduce the whitened matrix log-
GP field

w∗A =
(
w∗1(S), . . . , w∗d(d+1)/2(S)

)
= (S1/2⊗Σ

1/2
0 )−1/2

(
w1(S), . . . , wd(d+1)/2(S)

)
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Using the “Vec trick”, we can re-write:

wAcentered = V ec(µ) + Σ
1/2
0 (w∗A)(S1/2)T .

Recall that µ is obtained by by stacking vertically XAβA1 , . . . , XAβAd(d+1)/2
, so

that
V ec(µ) = XA(βA1

| . . . |βAd(d+1)/2
),

where (βA1
| . . . |βAd(d+1)/2

) is obtained by stacking horizontally the vectors of

regression coefficients. Multiply on the right by (S1/2)−T in order to do an
inter-component whitening (the spatial correlation remains):

wAcentered(S1/2)−T = XA(βA1 | . . . |βAd(d+1)/2
)(S1/2)−T + Σ

1/2
0 (w∗A).

Since the d(d+1)/2 columns of Σ
1/2
0 (w∗A) are independent, the method of Coube

and Liquet (2020) can be used to update each component of (βA1 | . . . |βAd(d+1)/2
)(S1/2)−T ,

which are then transformed back to (βA1 | . . . |βAd(d+1)/2
).

4.10 Appendix: gradients for HMC updates of
the covariance parameters

4.10.1 General form of the gradient with respect to w∗
θ

Start from

H = − log(f̃θ(wθ(S)|ζθ))− gθ(wθ(S)) ∝ wTθ R̃
T
θ R̃θwθ/2 − gθ(wθ(S)),

ζθ being the covariance parameters of the log-NNGP prior. Find the gradient
of H with respect to wθ:

∇wθH = R̃Tθ R̃θwθ −∇wθgθ(wθ(S)),

R̃θ being the NNGP factor informed by the covariance parameters ζθ. Then,
apply the Jacobian (J) chain rule ∇ψ ◦ φ(x) = (JTφ)(x) · (∇ψ)(φ(x)) with

ψ = H et φ(w∗θ) = R̃−1
θ w∗θ . With JT

(
R̃−1
θ w∗θ(S)

)
= (R̃−1

θ )T , we obtain

∇w∗θH = w∗θ − (R̃−1
θ )T∇wθgθ(R̃

−1
θ w∗θ(S))

4.10.2 Gradient of the negated log-density with respect to
wσ2

Sufficient augmentation. When sufficient augmentation is used, the marginal
variance intervenes in the NNGP density of the latent field. Using (4.12) and
(4.11),

f̃(w(S)|α, σ2(S)) = exp
(
−σ−1(S)T diag(w)R̃T0 R̃0 diag(w)σ−1(S)/2

)
Πn
i=1(R̃0)i,i/σ(si).
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Passing to the negated log-density

−gσ2 = −log
(
f̃(w(S)|α, σ2(S))

)
= cst+ Σni=1log(σ(si)) +

σ−1(S)T diag(w)R̃T0 R̃0 diag(w)σ−1(S)/2

One the one hand,

∇wσ2 Σni=1log(σ(si)) = ∇wσ2 Σni=1log((σ2(si))
1/2) = ∇wσ2 Σni=1log(σ2(si))/2 = (1/2, . . . , 1/2)

On the other hand, using σ−1(s) = (σ2(s))−1/2 = exp(−(wσ2(s)+Xσ2(s)βTσ2)/2),
we can write the Jacobian of σ−1 with respect to wσ2 :

Jwσ2σ
−1(S) = Jwσ2 exp(−(wσ2(S) +Xσ2(S)βTσ2)/2) = −diag(σ−1(S)/2).

We also find the following gradient:

∇σ−1σ−1(S)T diag(w)R̃T0 R̃0 diag(w)σ−1(S)/2 = diag(w)R̃T0 R̃0 diag(w)σ−1(S).

With the Jacobian chain rule, we combine the two previous formulas to find

−∇wσ2σ
−1(S)T diag(w)R̃T0 R̃0 diag(w)σ−1(S)/2 = σ−1(S) ◦

(
diag(w)R̃T0 R̃0 diag(w) σ−1(S)

)
/2,

with ◦ the Hadamard product.
Combining the two terms, we have

−∇wσ2 gσ2 = 1/2− σ−1(S) ◦
(
diag(w)R̃T0 R̃0 diag(w) σ−1(S)

)
/2. (4.27)

Ancillary augmentation. When ancillary augmentation is used, the marginal
variance has an impact on the observed field likelihood with respect to the latent
field. Like in (4.26), the likelihood can be written as

l(z(S)|(R̃(σ2(S), α)−1w∗), β, . . .) = Πn
i=1l

(
z(si)|σ(si)

(
R̃−1

0 w∗
)
i
, β, . . .

)
Passing to the negated log-density and introducing σ2(s) = exp(wσ2(s)+Xσ2(s)βTσ2),
the negated log-likelihood can be written as

−gσ2 = −Σni=1log
(
l
(
z(si)|exp

((
wσ2(si) +Xσ2(si)β

T
σ2

)
/2
) (
R̃−1

0 w∗
)
i
, β, . . .

))
Using the chain rule on

w(si) = exp
((
wσ2(si) +Xσ2(si)β

T
σ2

)
/2
) (
R̃−1

0 w∗
)
i
,

the gradient with respect to wσ2(S) will write

−∇wσ2 gσ2 = ∇w l(z(S)|R̃−1w∗, β, . . .) ◦ (R̃−1w∗/2), (4.28)

with ◦ being the Hadamard product.
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4.10.3 General derivative of R̃ with respect to nonstation-
ary range parameters

The aim is to find ∂R̃/∂wα(sj) with j ∈ 1, . . . , n. Let’s focus on the ith row

of R̃, noted R̃i,·. The index of the row i can be different from j. To find the

derivative of R̃i,· with respect to wα(sj), we need to use the covariance matrix
between si and its parents pa(si). Let’s note Σi the covariance matrix corre-

sponding to (pa(si), si), and let’s block it as Σi =

[
Σi11 Σi12

Σi21 Σi22

]
Σi11 being a

m×m covariance matrix corresponding to pa(si), and Σi22 being a 1× 1 matrix
corresponding to si. From its construction, R̃i,· has non-null coefficients only
for the column entries that correspond to si and its parents pa(si). Therefore
there is no need to compute the gradient but for those coefficients. The di-
agonal element R̃i,i has value 1/σ̄i, σ̄i being the standard deviation of w(si)
conditionally on w(pa(si)). The elements that correspond to pa(si) have value
−Σi21(Σi11)−1/σ̄i.
Let’s start by the diagonal coefficient R̃i,i:

∂(R̃ii)/∂wα(sj) = ∂((σ̄2
i )−1/2)/∂wα(sj)

(chain rule)

= −(σ̄−3
i /2)× ∂(σ̄2

i )/∂wα(sj)

(using conditional variance formula)

= −(σ̄−3
i /2)× ∂(Σi22 − Σi21(Σi11)−1Σi12)/∂wα(sj)

(product rule)

= −(σ̄−3
i /2)× ∂(Σi22)/∂wα(sj)

+(σ̄−3
i ) × ∂(Σi21)/∂wα(sj)(Σ

i
11)−1Σi12

+(σ̄−3
i /2)× Σi21∂

(
(Σi11)−1

)
/∂wα(sj)Σ

i
12

(derivative of inverse)

= −(σ̄−3
i /2)× ∂(Σi22)/∂wα(sj) (a)

+(σ̄−3
i ) × ∂(Σi21)/∂wα(sj)(Σ

i
11)−1Σi12 (b)

−(σ̄−3
i /2)× Σi21(Σi11)−1

(
∂(Σi11)/∂wα(sj)

)
(Σi11)−1Σi12 (c)

Let’s now differentiate the coefficients that correspond to pa(si), located on row
R̃i, at the left of the diagonal:
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∂(−Σi21(Σi11)−1/σ̄i)/∂wα(sj) = −∂(Σi21(Σi11)−1 × R̃ii)/∂wα(sj)

(product rule)

= −
(
∂Σi21/∂wα(sj)

)
(Σi11)−1 × R̃ii

−Σi21

(
∂
(
(Σi11)−1

)
/∂wα(sj)

)
× R̃ii

−Σi21(Σi11)−1∂R̃ii/∂wα(sj)

(derivative of inverse)

= −
(
∂Σi21/∂wα(sj)

)
(Σi11)−1 × R̃ii (d)

+Σi21(Σi11)−1
(
∂Σi11/∂wα(sj)

)
(Σi11)−1 × R̃ii (e)

−Σi21(Σi11)−1 × ∂R̃ii/∂wα(sj)︸ ︷︷ ︸
already known

(f)

From those derivatives, it appears that the elements that are needed to get the
derivative of R̃i,· are Σi and ∂Σi/∂wα(sj) (with sj ∈ si ∪ pa(si)). The for-

mer needs anyway to be computed in order to obtain R̃. The latter can be
approximated using finite differences:

∂Σi/∂wα(sj) ≈
(
Σi(wα(sj) + dwα(sj))− Σi(wα(sj))

)
/dwα(sj).

4.10.4 Computational cost of the derivative of R̃ with re-
spect to nonstationary range parameters

We can see that the differentiation of R̃i,· is non-null only for α(pa(si) ∪ si)
because the entries of Σi are given by K(s, t, α(s), α(t)) with s, t ∈ si ∪ pa(si).
Conversely, if wα(sj) moves, only the rows of R̃ that correspond to si and
its children on the DAG move as well. This means that in order to compute
the derivative of R̃ with respect to αj , the row differentiation operation must
actually be done |ch(sj)| + 1 times and not n times. Knowing the fact that
Σnj=1|ch(sj)| = Σnj=1|pa(sj)| = m×n (m being the number of nearest neighbors
used in Vecchia’s approximation), we can see that row differentiation must be
done (m + 1) × n times in order to get all the derivatives of R̃ with respect to
α(s1, . . . , sn).
Given the fact that one row has m + 1 non-null terms and that (m + 1) × n
rows are differentiated, the cost in RAM to store the differentiation of R̃ will be
O(m+ 1)2n, which remains acceptable for m = 5, 10.
On the other hand, the flop cost of differentiation itself may seem daunting.
However, the fact that spatially-variable covariance parameters affect pairwise
covariances considerably simplifies the problem. In the derivatives, there are
only 3 terms that depend on (sj), they are ∂(Σi22)/∂wα(sj), ∂(Σi12)/∂wα(sj),
and ∂(Σi11)/∂wα(sj). Let’s separate the cases:

1. When i 6= j

(a) ∂(Σi12)/∂wα(sj) has only one non-null coefficient.
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(b) ∂(Σi11)/∂wα(sj) is a m × m matrix with cross structure (non-null
coefficients only for the row and the column corresponding to sj).

(c) ∂(Σi22)/∂wα(sj) is a null 1× 1 matrix.

2. When i = j

(a) ∂(Σi12)/∂wα(sj) is a dense vector of length m.

(b) ∂(Σi11)/∂wα(sj) is null.

(c) ∂(Σi22)/∂wα(sj) is null because a change in wα(si) does not affect
the marginal variance of w(si) (a change in wσ2(si) does).

The costliest part of the formulas is to compute (Σi11)−1. However, this part
needs only to be computed one time since it is not affected by differentiation.
Even better, (Σi11)−1 and Σi21(Σi11)−1 can be used to compute R̃ and then
recycled on the fly to compute the derivatives. The computational effort needed
to get them can then be removed from the cost of the derivative and remain in
the cost of R̃.
Applying all those remarks gives table 4.5.

Table 4.5: costs to compute ∂R̃i,·/∂(wα(sj))

(a) (b) (c) (d) (e) (f)
i = j O(1) O(m) 0 O(m2) 0 0

si ∈ ch(sj) 0 O(1) O(m) O(m) O(m) 0

Using table 4.5 and again Σnj=1|ch(sj)| = Σnj=1|pa(sj)| = m×n, we can see that

the matrix operations should have a total cost of O(m2 × n).
The cost of the finite difference approximation to ∂Σi/∂wα(sj) must be added
to this. The cost of computing the finite differences in one coefficient of Σi de-
pends on whether isotropic or anisotropic range parameters are used. In the case
of isotropic range parameters, only a recomputation of the covariance function
(4.7) with range exp(log(α(s) + dw)) instead of exp(log(α(s))) will be needed.
In the other case, the SVD of log(A) must be computed again. What’s more,
the covariance function (4.6) involves the Mahalanobis distance instead of the
Euclidean distance. The cost will then depend on d, and be higher than in the
case with isotropic covariance parameters.
However, due to (4.5), it appears that if wα(sj) moves, only the row and column
of Σi that correspond to sj will be affected. Moreover, due to the symmetry of
Σi, the row and the column will be changed exactly the same way. Therefore,
computing ∂Σi/∂wα(sj) involves only m+ 1 finite differences since Σi is of size
(m+ 1)× (m+ 1).
The finite difference ∂Σi/∂wα(sj) must be computed m+1 time for each row of

R̃, and there is n rows. Therefore, the total cost of the finite differences should
be O(m+ 1)2n

Therefore, we can hope that careful implementation of the derivative of ∂R̃
∂(α(s1,...,sn))
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will cost O(n(m+1)2) operations, in the same order as computing R̃ itself (Guin-
ness, 2018).

4.10.5 Gradient of the negated log-density with respect to
wα

Sufficient augmentation. The negated log density of α(S) with sufficient
augmentation writes

log
(
|R̃ (S, α(S)) |

)
+ wT R̃ (S, α(S))

T
R̃ (S, α(S))w × 1/2.

Let’s write the derivative of the log-determinant log(|R̃|):

∂log(|R̃|)/∂wα(sj) = ∂(Σni=1log(R̃i,i))/∂wα(sj)(because R̃ is triangular)

= Σni=1∂log(R̃i,i)/∂wα(sj)

(only the rows corresponding to sj and its children are affected)

= Σi/si∈{sj∪ch(sj)}∂log(R̃i,i)/∂wα(sj)

(log-function derivative)

= Σi/si∈{sj∪ch(sj)}

(
∂R̃i,i/∂wα(sj)

)
/Ri,i

Let’s write the derivative of wT R̃T R̃w × 1/2:

∂
(
wT R̃T R̃w × 1/2

)
/∂wα(sj) = ∂

(
(wT R̃T )(R̃w)× 1/2

)
∂wα(sj)

= ∂(wT R̃T )/∂wα(sj)(R̃w)× 1/2+

(wT R̃T )∂(R̃w)/∂wα(sj)× 1/2

= (wT R̃T )∂(R̃w)/∂wα(sj)

= (wT R̃T )(∂R̃/∂wα(sj)w)

Ancillary Augmentation. The negated log density of θ(S) with ancillary
augmentation writes

−log(l(z|R̃−1w∗, X, β, . . .)).

Here, we do not write the white Gaussian prior on w∗ because it is not affected
by α(S). We leave empty slots in the data likelihood function l(·) because ad-
ditional parameters can be needed, such as noise standard deviation τ2 in a
Gaussian model. Applying differentiation, we get
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∂
(
−log(l(z|R̃−1w∗, X, β, . . .))

)
/∂(wα(sj))

(Conditional independence)

= Σni=1 − ∂
(
log(l(z(si)|

(
R̃−1w∗

)
i
, X, β, . . .))

)
/∂(wα(sj))

(Chain rule)

= Σni=1 − ∂
(
R̃−1w∗

)
i
/∂(wα(sj))×

∂
(
log(l(z(si)|w(si) =

(
R̃−1w∗

)
i
, X, β, . . .))

)
/∂(w(si))

(w∗ is not changed by θ)

= Σni=1 −
(
∂R̃−1/∂(wα(sj))w

∗
)
i
×

∂
(
log(l(z(si)|w(si) =

(
R̃−1w∗

)
i
, X, β, . . .))

)
/∂(w(si))

(Differentiation of inverse)

= Σni=1

(
R̃−1∂R̃/∂(wα(sj))R̃

−1w∗
)
i
×

∂
(
log(l(z(si)|w(si) =

(
R̃−1w∗

)
i
, X, β, . . .))

)
/∂(w(si))

(Taking gradient of log(l(·)) in w)

= ∇wlog(l(z(si)|R̃−1w∗, X, β, . . .))R̃−1∂R̃/∂(wα(sj))R̃
−1w∗

4.10.6 Computational cost of the gradient of the negated
log-density with respect to wα

Both sufficient and ancillary formulations have a partial derivative with a term
under the shape:

uT∂R̃/∂(wα(sj))v,

with u an v two vectors that do not depend on wα(sj) and with affordable cost.

Due to its construction, ∂R̃/∂(wα(sj)) has non-null rows only at the rows that
correspond to sj and ch(sj), and each of those rows has itself at most m+1 non-

null coefficients. Sparse matrix-vector multiplication (∂R̃/∂(wα(sj)))v therefore
costs O((m+ 1)× (1 + |ch(sj)|)) operations. Given the fact that Σnj=1|ch(sj)| =
Σnj=1|pa(sj)| = n × m, we can expect that the computational cost needed to

compute (∂R̃/∂(wα(sj)))v for j ∈ 1, . . . , n will be O(n× (m+ 1)2) operations,
which is affordable.
Moreover, due to the fact that ∂R̃/∂(wα(sj)) has non-null rows only at the

rows that correspond to sj and ch(sj), we can deduce that (∂R̃/∂(wα(sj)))v
has non-null terms only on the slots that correspond to si and its children.
Computing uT (∂R̃/∂(wα(sj)))v will then cost O(ch(sj) + 1) operations. Using
again Σnj=1|ch(sj)| = Σnj=1|pa(sj)| = n × m, we can deduce that (if we know
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already (∂R̃/∂(wα(sj)))v) computing uT (∂R̃/∂(wα(sj)))v for j ∈ 1, . . . , n will
cost O(n(m+ 1)).

4.10.7 Gradient of the negated log-density with respect to
wτ2

The noise variance intervenes directly in the Gaussian likelihood (noted f(·)) of
the observed field:

f(z(S)|w(S) +X(S)βT , diag(τ2(S))) = Πn
i=1f(z(si)|w(si) +X(si)β

T , τ2(si)).

Passing to the negated log-density and introducing τ2(s) = exp(wτ2(s)+Xτ2(s)βTτ2),
we have (within an additive constant)

Σni=1wτ2(si)/2 + exp(−wτ2(s)−Xτ2(s)βTτ2)(z(si)− w(si)−X(si)β
T )2/2.

Differentiating with respect to wτ2 brings

∇wτ2 f(z(S)|w(S)+X(S)βT , diag(τ2(S))) = 1/2−τ2(S)◦(z(S)−w(S)−X(S)βT )2/2.

4.11 Appendix: experiments on synthetic data
sets

4.11.1 Objectives of the experiments

We would like to investigate

1. the improvements caused by using nonstationary models when it is rele-
vant.

2. the problems caused by using nonstationary models when it is irrelevant.

3. the potential identification / overfitting problems of nonstationary models.

Our general approach to find answers to those questions is to run our imple-
mentation on synthetic data sets and analyze their results. Following the non-
stationary process and data model we defined using (4.5), (4.3), and (4.6)/(4.7),
there is 12 possible configurations counting the full stationary case: 2 marginal
variance models, 2 noise variance models, 3 range models. In order to keep the
section readable, we use the following notation for the different models:

• (∅) is the stationary model.

• (σ2) is a model with nonstationary marginal variance.

• (τ2) is a model with heteroskedastic noise variance.

• (α) is a model with nonstationary range and isotropic range parameters.

133



• (A) is a model with nonstationary range and elliptic range parameters.

• Complex models are noted using “+”. For example, a model with non-
stationary marginal variance and heteroskedastic noise variance is noted
(σ2 + τ2).

4.11.2 Under-modeling, over-modeling, and identification

Model-data cases of interest. This experiment aims to answer to problems
1, 2, 3. Our approach here is to use a possibly misspecified model and see what
happens. Four cases are possible:

• The “right” model, in the sense it matches perfectly the process used to
generate the data (however, potential identification and overfitting prob-
lems may cause it to be a bad model in practice).

• “Wrong” models, where some parameters that are stationary in the data
are non-stationary in the model, and some parameters that are stationary
in the model are non-stationary in the data.

• Under-modeling, where some parameters that are stationary in the model
are non-stationary in the data, but all parameters that are stationary in
the data are stationary in the model.

• Over-modeling, where some parameters that are stationary in the data
are non-stationary in the model, but all parameters that are stationary in
the model are stationary in the data.

If a nonstationary model actually helps to analyze nonstationary data, we
should see if the “right” model does better than under-modeling. The problem
of overfitting will be assessed by comparing over-modeling, under-modeling,
and the “right” model. If there is some overfitting, over-modeling or even
“right”modeling would have worse performances than simpler models. Iden-
tification problems will be monitored by looking at the “wrong” models and
under-modeling. If some model formulations are interchangeable, then some of
the “wrong” models should perform as good as the “right” model. Also, if two
parametrizations are equivalent, then using either parametrization should do as
good as using both, therefore under-modeling should do as good as the “true”
model. The models are compared using the DIC.

Models with (σ), (α), and (τ). We started with the eight models obtained
by combining (σ), (α), and (τ), giving us (∅), (σ2), (τ2), (α), (σ2 +τ2), (τ2 +α),
(σ2 +α), and (σ2 + τ2 +α). We tested each data-model configuration, yielding
64 situations in total. Each case was replicated 30 times. The results are
summarized by box-plots in figure 4.8.
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Models with (α) and (A). We focused on the case of elliptic range param-
eters with the three models obtained by combining (α) and (A), giving us (∅),
(α), and (A). Like before, we tested the 9 data-model configurations 30 times
each. The results are summarized by box-plots in figure 4.9.
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Figure 4.8: DIC of the models following the data
Legend: “right model” �; “wrong model” �; “over-modeling” �; “under-modeling” �
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Figure 4.10: Estimates of the log-variance of wα and wσ in the model (α+ σ2)
following the type of the data
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4.12 Appendix: case study of lead concentra-
tion
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Figure 4.12: Correlation plot of the high level parameters for the lead data set
analysis

Four groups are present: “range beta ...” parametrizes the range, “beta ...” the linear

regression, “scale beta ...” the marginal variance, and “noise beta ...” the noise variance.
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Chapter 5

Conclusion

5.1 Contribution with respect to the initial ob-
jectives

The objective of this work was to improve the MCMC sampling of Nearest
Neighbors Gaussian Process models with full data augmentation, in order to
enjoy their possibilities while repressing their computational misbehavior. The
first part of the work was to find upgrades for the original model presented by
Datta et al. (2016). Conditionally on that, the second part was to exploit the
specificities of NNGPs with full augmentation in order to propose new model
architectures that require to sample explicitly a NNGP latent field. In accor-
dance with an open science objective, the implementations of the methods are
provided, with extensive vignettes giving hands-on examples and scripts allow-
ing to reproduce the applications.

In this perspective, the thesis proposes and tests various modifications of the
basic MCMC algorithm to tackle its mixing and convergence problems, while
retaining its versatility.

In the first part of the dissertation, I present various methods that did not
make their way into an article. The first of those developments stems from
the fact that fast forward solving is extremely cheap and scalable with NNGPs.
From this point, all I had to do was to connect the dots and look for strategies
that rely on this transformation. The interweaving of Filippone et al. (2013)
improves the sampling of the covariance parameters. Whitened HMC (Neal
et al., 2011) allows for efficient Hybrid Monte-Carlo, even with high spatial auto-
correlation. I also propose a prediction algorithm relying on this transformation,
that permits to work with MCMC samples while remaining high-level. Another
lead I investigated is delayed acceptance (Christen and Fox, 2005), but its results
were disappointing in spite of its promising appearances.

The second part of the thesis presents an article promoting two other mod-
ifications of the basic algorithm. The first proposal is yet another interweaving
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strategy. This original method targets the regression coefficients of the linear
part of the NNGP model. Its practical efficiency also relies on the properties
of NNGPs. Experiments on synthetic data sets show that it greatly improves
the sampling of coefficients associated with covariates having some spatial co-
herence. This was also the occasion for me to take a closer look at the linear
part of the NNGP model, and to expose that it is much less trivial that it may
seem at first sight because of its interactions with the latent field.

The second method is the use of Chromatic Samplers to obtain a paralleliz-
able and high-level step to update the latent NNGP field. Empirical exploration
proved that this method is widely and easily applicable to NNGPs with usual
settings. Incidentally, it was an opportunity to explore how the heuristics used
in the construction of the DAG affected the structure of the NNGP’s Markov
graph.

The proposed algorithms were implemented and tested against the spN-
NGP package. The implementation is openly available at https://github.com/
SebastienCoube/Improving_NNGP_full_augmentation. (Finley et al., 2017)
on synthetic data sets. The results were promising given the fact that the pro-
posed implementation was not low-level and fine-tuned, contrary to Finley et al.
(2017). On simple data sets, the methods are equivalent; on “tricky” data sets
with correlated covariates, spNNGP was clearly outperformed both in terms of
MCMC behavior quality and computational time. The implementation allowed
to study a data set of lead contamination in the mainland of the United States
of America, while spNNGP gave erratic results on this application.

The third part of the dissertation builds on the first two parts in order to
propose an application that would not be possible without explicit sampling of
the latent field.

A nonstationary NNGP model is proposed, with a hierarchical architecture
that integrates latent fields of spatially variable covariance parameters, allow-
ing to capture spatial variations of the covariance structure. This architecture
aims to answer to three thorny problems of nonstationary modeling. The first
problem is the interpretability of the parametrization for a complex, multi-layer
model. The second is the model selection when several nonstationary models
are available. The third problem is the computational complexity.

The problem of the parametrization has been tackled by embedding the
models in an expanding and coherent family, so that the simpler models are
comprised in the complex ones. The use of logarithm transformations allows
for intuitive interpretation of the parameters. Another good point is that com-
plex nonstationary models can be laid out fairly simply under a probabilistic
formulation.

Model selection is eased by the structure of the model family. On syn-
thetic data sets, over-modeling does not lead to over-fitting; instead, the model
degenerates and is practically equivalent to a simpler model. In those cases,
over-modeling can be detected easily by looking at the MCMC samples. Those
results on synthetic data sets must be taken with a pinch of salt. Nonethe-
less, on real data sets such as the lead contamination, nonstationary modeling
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performed better than simpler models in terms of DIC.
As for the problem of computation, a MCMC strategy based on Hybrid

Monte-Carlo and nested interweaving is proposed, its implementation being
freely available at https://github.com/SebastienCoube/Nonstat-NNGP. Hy-
brid Monte-Carlo (using the whitening method presented in the beginning of the
thesis) is used in order to sample spatially correlated parameter fields. Nested
interweaving is needed because latent fields are present at various levels of the
model. This strategy is envisioned by the inventors of interweaving (Yu and
Meng, 2011), but as far as I know nested interweaving has not been put in
application for large models. While the method allows to work on data sets in
the order of a few tens of thousands observations, which is respectable given the
size of data treated with state-of-the-art nonstationary methods (Fuglstad et al.,
2015a), it is clear that a scale-up is still required to work with large modern
data sets such as Datta et al. (2016)’s.

5.2 Perspectives

The interweaving scheme used to improve the behavior of the regression coef-
ficients has one shortcoming, which is that it cannot be applied to covariates
that do not change within one spatial location. I did not put too much effort in
looking for a solution because there was no need to: indeed, the NNGP model
being applied to point-measurement data, all regressors obtained through grids
or areas are invariant in a point. The experiments on synthetic data sets show
that the regressors with some spatial coherence cause trouble when the “vanilla”
algorithm is used. A problematic behavior should then occur when a covariate
has some spatial coherence and some within-site variability. What one would
like to do in that case is to replace the troublesome variable by its site per site
average, so that interweaving can be applied. If it is absolutely necessary to
work with the exact covariate, the averaged covariate can still serve as an in-
strument to approach the actual density. The lead of using this approximation
as a proposal density in a Metropolis step might be worth investigating.

This work concerning the trouble caused by the interference between the
linear effect and the latent field in the NNGP model might be re-used in other
cases where various effects that have some spatial coherence cohabit within the
same model. One can imagine a model with two latent fields, one seasonal effect
and one temporal drift for example, or one long-scale correlation and some local
variations. A “Russian doll” parametrization where one field is centered on the
other might be useful in this case. However, it remains to find whether there is
an efficient formulation for such a model using NNGPs.

While the chromatic sampler has its limits such as spatial auto-correlation, I
cannot think of ways to make it better in the Gaussian data case. What has to
be done is to find an efficient implementation for non-Gaussian data, since the
exact Gaussian draw has to be replaced. The problem is that we are spoiled for
choice and several methods must be benchmarked. In the case of binomial data,
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Polya-Gamma variables are an option (Polson et al., 2013; Finley et al., 2017).
More generally, another method is to use a Metropolis step within the chromatic
sampler, but this requires to tune the proposal distributions and there are many
of them. Other options such as the Slice Sampler need no tuning, but they are
more expensive. I think that a good lead is to take advantage of the one thing
that does not change, whatever the data model: the NNGP prior, whose full
conditional distribution may be used as a proposal distribution in a Metropolis
step.

Beyond the sampling of the latent field, the exploration of NNGP moral
graphs from the perspective of coloring highlighted how the heuristics used to
build the NNGP DAG affect the induced graphs. While Guinness (2018) carried
out systematic exploration of how the heuristics affect the quality of Vecchia’s
approximation, I have not heard of an analogous study focused on the properties
of the DAG and/or the Markov graph. For example, degree distribution of the
moral graph varies greatly following the rank of the vertex in the DAG ordering,
with several modalities following the ordering heuristic. The edge lengths and
directions in the DAG change with the ordering heuristic.

Having insight on the relationship between the graph and the quality of the
approximation would help to look for better heuristics since it should be easier
to imagine the impact of a heuristic on the graph than on the induced Vec-
chia’s approximation. An example to support this method is that I remarked
that ordering the locations following a coordinate introduces some anisotropy
along that coordinate in the NNGP samples (incidentally, I suspect that this
happens in Datta et al. (2016), where the predictions of the biomass of the US
are stretched), while ordering following the distance to the center provokes some
radial anisotropy. Those two cases have in common that the undue anisotropy
follows the general direction of the edges in the DAG. I think that it is no co-
incidence if Guinness (2018) finds that for two-dimensional geographic spaces
coordinate and middle-out ordering are the least accurate. So, if I had to find
a new ordering heuristic, at least I would know that I should not come up with
one that produces a DAG with combed edges.

As for the nonstationary NNGP model, I am very satisfied with the inter-
pretability and the behavior of the model with respect to over-fitting. However,
there is still work to do in order to improve its scalability and robustness. An in-
teresting workaround might arise from a result that I presented in the “catch-all”
part of the thesis, equation (2.5). In this development I show that a truncated
ancillary augmentation of the latent field induces a Predictive Process (PP)
(Banerjee et al., 2008). Out of curiosity, I treated cases that cause problems to
the log-NNGP nonstationary model using a formulation where the log-NNGP
random effects are suppressed and replaced by a PP basis of size k = 50 or 100
elements integrated in the fixed effects:

log(θ(s)) = Xθ(s)β
T
θ +wθ(s) becomes log(θ(s)) = Xθ(s)β

T
θ +XθPP (s)βTθPP ,

where θ(s) is a nonstationary covariance parameter in the spatial site s, Xθ(s)
are the “usual” covariates (for example, elevation, wetness, etc, in the lead
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application), wθ(s) is the log-NNGP latent field, and XθPP (s) is the spatial
basis. The spatial basis is obtained by solving XθPP = R̃−1

0θ
M , R̃0θ being the

prior NNGP Cholesky factor used in the log-NNGP prior, and M being a n× k
matrix with only null coefficients except a diagonal Mi,i = 1. In other terms,
the basis is composed of the k first columns of the NNGP correlation matrix
Cholesky factor R̃−1

0θ
. The MCMC behavior of the model was satisfying and

allowed to retrieve spatial nonstationarity patterns. Indeed, the model with
spatial basis is much smaller than the full log-NNGP model: instead of the
tenths of thousands parameters of the latent log-NNGP field wθ(·), there is only
a few dozen additional regression coefficients needing to be estimated. Moreover,
the hyperprior range of the log-NNGP prior being high by construction of the
model, only a few elements of the spatial basis are enough to outline a coherent
field, like in figure 2.3. The approach has the merit to work, but it lacks the
interpretability of the log-NNGP prior. The interesting point is that adding a
Normal prior

βθPP
a priori∼ N (0k, σθIk)

is enough to turn this linear model component into a degenerate NNGP, where
the ancillary augmentation has been truncated:

wθ = σθR̃
−1
0θ
w∗θ is replaced by wθPP = R̃−1

0θ
MβTθPP = σθR̃

−1
0θ
MβTθPP /σθ︸ ︷︷ ︸
truncated w∗θ

,

where w∗θ
a priori∼ N (0n, In) while βTθPP /σθ

a priori∼ N (0k, Ik). The inconvenient
of a PP model is its over-smoothing (Banerjee et al., 2008; Datta et al., 2016).
In this specific application, I do not think that it is a big problem because of the
fact that the log-NNGP prior already is a smooth, large-scale prior. The gain
of the approach would be a reduction in the dimension of the high-level layers
of the model, inducing a much simpler and economical MCMC architecture.

Aside of the practical issues, many open problems and possibilities arise from
the developments on nonstationary modeling. First, I did not find a solution
to nonstationary anisotropic modeling on the whole sphere because of the im-
possibility to find a common parametrization for the elliptic range parameters.
Transposing and deepening the recursive tangent projection method that was
used to define a nonstationary NNGP in the absence of a nonstationary covari-
ance function on the sphere might be a good research direction. This method
defines a global behavior from a collection of local specifications, which sounds
like a good start in a problem caused by the absence of a common parametriza-
tion.

Another point, that arises naturally, is to try and work on multivariate
nonstationary models. Multivariate spatial modeling also is a thorny subject
in itself, even if recent works related to NNGP (Peruzzi et al., 2020; Taylor-
Rodriguez et al., 2019) tackle the subject. But it is clear that some data, such
as the lead contamination, are best modeled with a nonstationary framework;
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but on the other hand, they come from multivariate data sets and there may be
some interest in joint modeling.

In addition to that, I wonder if it is possible to work on some “nonstationary
multivariateness”, a model where the association between the interest variables
changes following some covariates or the spatial location. If it was possible
to define such a model, I think that my work on matrix logarithms would be
reusable to model variable association matrices.

A lead that should be considered seriously is the option of the Maximum
A Posteriori (MAP) estimation for NNGP models. Indeed, there is a trade-off
between MCMC and NNGP. The computational power that is not invested in
the exploration of the posterior distribution can be re-used in the construction
of richer Vecchia’s approximations.

Given the fact that I spent three years doing MCMC, switching to gradient-
based methods might sound like a confession of failure. A very partial one then.
It is because of the acquaintance with the full distributions that has been gained
thanks to MCMC sampling that I know that the a posteriori distributions of the
parameters are well-behaved, in the sense that they are “always” unimodal (I
never stumbled upon a multimodal case) and generally symmetric tanks to the
logarithmic parametrization. For example, in the case study of nonstationary
modeling of lead contamination, the MCMC samples of the regression coeffi-
cients for the nonstationary covariance parameters passed the joint multivariate
normality test of Henze and Wagner (1997). Therefore, even if summarizing the
a posteriori distribution by its mode causes a loss of information, we can expect
this summary to be reasonable, and compensated by the possibility to do better
NNGPs.

Moreover, the present work on MCMC leaves us with a toolbox that may
come in handy for a MAP approach. First, this PhD showed for the purpose of
implementing Hamiltonian methods that the gradient of the NNGP density is
affordable, even in complex cases such as a nonstationary covariance function.
Methods such as the gradient descent and the coordinate descent are known
to be sensitive to the parametrization. Thanks to the developments on inter-
weaving, several parametrizations of the gradient are available - I wonder if
some lowbrow transposition of interweaving to gradient algorithms would give
an interesting result. And of course, the methods that were developed for a
Gibbs sampler can be readily salvaged for use in a coordinate descent algo-
rithm. For example, chromatic sampling updates the latent field by computing
its conditional mean and then adding a noise whose intensity is proportional to
the conditional variance. One can remove the noise and remain with the mean,
which is the maximum of the conditional distribution. Yet another possibility
is to draw from the stochastic EM algorithm and apply gradient methods only
on the upper levels of the model while keeping the lower parameters stochastic.
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