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Résumé — Cette recherche est réalisée dans le cadre du projet de subvention avancée Scale-
FreeBack du Conseil européen de la recherche (ERC). L’objectif du projet Scale-FreeBack est
de développer une approche holistique de contrôle sans échelle des systèmes complexes, et de
poser de nouvelles bases pour une théorie traitant des réseaux physiques complexes avec une
dimension arbitraire. Les contributions du présent travail de thèse sont principalement liées
aux problèmes de modélisation et de conception de commandes pour les systèmes à grande
échelle. Nous recherchons des représentations de modèles simplifiées à des fins de contrôle
pour différentes classes de systèmes à grande échelle, des réseaux aux EDP. Dans cette
thèse de doctorat, nous proposons des techniques de conception de commandes qui reposent
entièrement sur des modèles agrégés de systèmes originaux à grande échelle. Tout d’abord,
nous traitons de grands réseaux linéaires en contrôlant leur état moyen et l’écart de tous les
états par rapport à la moyenne. Le problème du contrôle de l’état moyen avec contrôleur
intégral est étudié, et une relation simple entre la positivité du système et sa passivité est
établie. L’écart est ensuite minimisé via la méthode de recherche d’extremum contraint.
Cette approche est généralisée pour contrôler une sortie linéaire multidimensionnelle générale
et minimiser simultanément une sortie quadratique scalaire générale. Ensuite, nous tournons
notre attention vers les systèmes EDP et une représentation simplifiée de leurs solutions. À
savoir, nous développons une technique de réduction de modèle basée sur la forme applicable
aux lois de conservation 1D, qui suppose une paramétrisation de forme particulière des
solutions de la EDP, puis transforme la EDP en un système d’EDO décrivant l’évolution de
ces paramètres de forme. Enfin, nous étudions le problème de la dérivation de représentations
continues de systèmes spatialement distribués à grande échelle. À savoir, nous développons
une méthode de continuation qui transforme tout système non linéaire général avec une
structure spatiale en un modèle EDP. Nous proposons en outre une analyse de la précision et
de la convergence d’une telle représentation dans le cas linéaire. La méthode est utile car elle
ouvre de nouvelles possibilités pour l’analyse et la conception de contrôle dans le domaine
continu pour les systèmes intrinsèquement discrets. Dans la thèse, nous élaborons diverses
applications de la méthode de continuation. En particulier, nous appliquons la méthode à
plusieurs problèmes de réseaux de transport et de systèmes multi-agents, fournissant des
dérivations de modèles continus pour les systèmes de trafic, une solution originale au 6ème
problème de Hilbert de la dérivation d’équations d’Euler à partir de systèmes newtoniens
de particules, et un contrôle technique de conception d’une grande formation robotique au
niveau de la densité. Enfin, nous appliquons la méthode aux réseaux d’oscillateurs à grande
échelle (tels que les lasers ou les oscillateurs spin-couple). Les modèles EDP obtenus sont
utilisés à des fins de contrôle (telles que la stabilisation des limites via un backstepping basé
sur EDP) et pour l’analyse, en dérivant des conditions pour l’existence et la stabilité de so-
lutions synchrones dans des systèmes avec des oscillateurs à la fois homogènes et inhomogènes.

Mots clés : Contrôle de grands systèmes, Réseaux à grande échelle, Équations aux
dérivées partielles, Réduction de modèle, Systèmes multi-agents
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Abstract — This research is done in the context of European Research Council’s (ERC)
Advanced Grant project Scale-FreeBack. The aim of Scale-FreeBack project is to develop
a holistic scale-free control approach to complex systems, and to set new foundations for a
theory dealing with complex physical networks with arbitrary dimension. The contributions
of the present PhD work are mainly related to the problems of modeling and control design
for large-scale systems. We seek simplified model representations for control purposes
for different classes of large-scale systems, from networks to PDEs. Within this PhD
thesis, we propose control design techniques that completely rely on aggregated models of
original large-scale systems. First of all, we deal with large linear networks by controlling
their average state and the deviation of all the states from the average. The problem of
controlling the average state with integral controller is studied, and a simple relation between
positivity of the system and its passivity is established. The deviation is then minimized
via constrained extremum seeking method. This approach is generalized to control a general
multidimensional linear output and simultaneously minimize a general scalar quadratic
output. Then, we turn our attention to the PDE systems and a simplified representation of
their solutions. In particular, we develop a shape-based model reduction technique applicable
to 1D conservation laws, which assumes a particular shape parametrization of the PDE’s
solutions and then transforms the PDE into a system of ODEs describing the evolution of
these shape parameters. Finally, we study the problem of deriving continuous representations
of large-scale spatially-distributed systems. Namely, we develop a continuation method
which transforms any general nonlinear system with spatial structure into a PDE model.
We further provide an analysis of accuracy and convergence of such representation in the
linear case. The method is useful since it opens new possibilities for analysis and control
design in continuous domain for intrinsically discrete systems. In the thesis we elaborate
various applications of the continuation method. In particular, we apply the method to
several problems of transportation networks and multi-agent systems, providing derivations
of continuous models for traffic systems, an original solution to the Hilbert’s 6th problem of
the derivation of Euler equations from Newtonian systems of particles, and a control design
technique for a large robotic formation on a density level. Finally we apply the method to
the large-scale networks of oscillators (such as lasers or spin-torque oscillators). The obtained
PDE models are used for control purposes (such as boundary stabilization via PDE-based
backstepping) and for the analysis, deriving conditions for the existence and stability of
synchronous solutions in systems with both homogeneous and inhomogeneous oscillators.

Keywords: Control of Large Systems, Large-Scale Networks, Partial Differential
Equations, Model Reduction, Multi-Agent Systems
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11 Rue des Mathématiques, 38400 Saint-Martin-d’Hères



Résumé

Nous vivons dans un monde complexe dans lequel tous les processus sont interconnectés.
L’approche scientifique initiale en physique, ingénierie et théorie du contrôle consistait à isoler
les sous-systèmes individuels, à simplifier les modèles autant que possible et à les explorer
dans leur forme la plus pure, mais dans le monde d’aujourd’hui, nous devons faire face à
des systèmes complexes qui ne peuvent pas être considérés comme la somme de leurs sous-
systèmes indépendants constitutifs. Les structures créées par l’homme, comme le trafic urbain,
les réseaux sociaux, les réseaux électriques ou les réseaux de lasers, peuvent avoir des milliers,
voire des millions de degrés de liberté. Pour étudier des systèmes de cette taille et pour des
applications pratiques, il est nécessaire de développer de bons modèles et des moyens de les
analyser.

Il existe de nombreuses façons de décrire les systèmes à grande échelle. L’une d’elles est un
réseau d’équations différentielles ordinaires (EDO), qui décrit l’évolution d’un grand système
comme une évolution des états des nœuds dans le temps, en tenant compte des interactions
par paires. Dans le même temps, le nombre d’états peut encore être énorme ; il devient
nécessaire de développer des méthodes d’analyse évolutives des grands systèmes d’EDO. Une
autre solution consiste à décrire l’état du grand système comme un continuum et à utiliser le
langage des équations aux dérivées partielles (EDP) qui prédit l’évolution des champs continus
dans le temps en fonction des dérivées partielles de ces quantités par rapport à la position. De
nombreuses EDP ont été créées et constituent des modèles pour la description de différents
processus physiques.

Le contrôle des systèmes dynamiques à grande échelle est un problème difficile pour la
théorie moderne du contrôle. Sa difficulté provient de la grande dimensionnalité de ces sys-
tèmes du monde réel, où le nombre d’états peut atteindre des millions. Au lieu de développer
des algorithmes de contrôle sophistiqués directement pour les grands systèmes, une approche
fondamentalement différente du problème du contrôle de ces systèmes est la simplification du
modèle. Dans ce paradigme, le modèle d’un système complexe est remplacé par un modèle
de plus petite taille et/ou une structure d’interactions plus simple. Un tel processus peut
entraîner une perte d’informations sur la dynamique du système original, mais la représenta-
tion du système sous une forme plus simple permet d’appliquer des algorithmes de contrôle
standard.

Le principal intérêt de notre travail est le problème du contrôle évolutif des grands sys-
tèmes. En utilisant différents modèles et structures de grands systèmes comme points de
départ, nous étudions différentes options sur la façon dont les systèmes peuvent être simpli-
fiés et utilisés pour l’analyse et la conception du contrôle, en démontrant les résultats dans
divers problèmes pratiques.

Les principaux chapitres de cette thèse sont résumés ci-dessous.
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Contrôle de la moyenne et de la déviation dans les réseaux
linéaires

Dans le Chapitre 2, nous nous concentrons sur le problème du contrôle de l’état moyen du
réseau, ainsi que sur la minimisation simultanée de sa déviation. En utilisant un régulateur
pour l’état moyen, il est naturel de souhaiter que les états du système soient proches de la
moyenne : ce comportement peut être obtenu en minimisant leur déviation au carré. De plus,
nous nous assurons que le modèle du système n’est pas utilisé dans le régulateur. Ainsi, le
régulateur n’utilise directement que les sorties et le point de référence du système et l’équilibre
des états internes n’est jamais calculé explicitement. Le fait de ne pas utiliser le modèle du
système permet de contourner tous les problèmes de complexité de calcul et d’incertitudes
qui affectent les grands réseaux.

Nous étudions d’abord un problème de contrôle de sortie linéaire et examinons les pro-
priétés générales des fonctions de transfert du système et du régulateur. Nous étudions ensuite
le régulateur intégral pour la régulation linéaire de la sortie et formulons une condition suff-
isante CA2 > 0 pour la convergence de tout régulateur intégral positif, en montrant que
la stabilisation de la sortie est atteinte lorsque la fonction de transfert du système est réelle
strictement positive (Strictly Positive Real - SPR) et en donnant en plus un exemple montrant
le conservatisme de cette condition. Si le système satisfait à cette condition, les paramètres
du régulateur peuvent être choisis arbitrairement, et il n’est pas nécessaire de connaître le
vecteur d’état ou les valeurs des éléments de la matrice A. Nous avons étendu notre analyse
aux systèmes multi-sorties dans le but de contrôler les états moyens de plusieurs grappes
et avons dérivé une condition suffisante sur les matrices du système pour que le système
multi-sorties soit SPR.

Le contrôle de l’état moyen ne signifie pas que les états des systèmes individuels seront
proches de l’état moyen. Par conséquent, en plus de contrôler la moyenne, il est utile de
minimiser la déviation des états du système. Pour résoudre ce problème, nous utilisons
l’algorithme de Extremum Seeking augmenté de la méthode primal-dual pour la minimisation
sous contrainte. La stabilité de ce schéma est prouvée et sa performance, ainsi que celle de
plusieurs versions modifiées, est testée dans les simulations numériques.

Réduction des modèles basés sur la forme pour les lois de con-
servation

Le Chapitre 3 est consacré à une méthode de description d’un système de loi de conservation
1D basée sur la notion de forme de la solution. La fonction de forme décrit la forme de
la solution en fonction de plusieurs paramètres bien traitables. Nous réduisons l’état du
système à un ensemble de ces paramètres de forme et dérivons leur dynamique, fournissant
une solution à forme fermée. Nous analysons ensuite ses propriétés, montrant en particulier
que cette solution minimise la distance de Wasserstein entre le système original et le système
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réduit et que les points d’équilibre du système original sont préservés. L’idée de représenter
la solution du système par des paramètres de forme spécifiques peut potentiellement conduire
à de nouveaux types de conception de régulateurs basés sur les caractéristiques agrégées du
système.

Méthode de continuation pour la modélisation et le contrôle
des systèmes à grande échelle : des EDO aux EDP

Dans le Chapitre 4, nous nous concentrons sur le problème inverse rarement étudié de la
transformation d’un système d’EDO en EDP, dans le but de combler cette lacune et de
fournir une contrepartie à la procédure de discrétisation. Ceci peut être utile car les EDP
fournissent une manière beaucoup plus compacte de décrire le système, qui dans de nombreux
cas est plus facile à analyser analytiquement que le système d’EDO correspondant. Nous
nous intéressons en particulier aux systèmes qui sont distribués dans l’espace et qui ont une
interaction dépendant de la position, comme le trafic en ville, les réseaux électriques, les
formations de robots, etc.

Notre idée est de remplacer le système original d’EDO spatialement distribué par une
EDP continue dont les variables d’état et d’espace préservent les variables d’état et d’espace
du système original. Nous développons une méthode pour les EDO linéaires spatialement
invariantes qui les transforme en EDP à l’aide de différences finies. Nous appelons cette
méthode une continuation, car elle est exactement opposée à la procédure de discrétisation. De
plus, nous montrons que le spectre des EDP converge vers le spectre de l’EDO originale lorsque
l’ordre de continuation augmente, et que cette convergence fournit une limite sur la déviation
entre les solutions des systèmes. En utilisant le formalisme des graphes computationnels,
nous étendons la méthode aux systèmes non linéaires, puis aux systèmes multidimensionnels,
aux systèmes variant dans l’espace et dans le temps, aux systèmes multi-agents indexés et
aux systèmes avec frontières. L’avantage de la méthode de continuation est qu’elle permet de
récupérer une EDP qui décrit le même système physique que le réseau d’EDO original.

Applications de la méthode de continuation aux systèmes multi-
agents

Une description basée sur les EDP du système physique décrit à l’origine par le réseau d’EDO
peut être très utile non seulement pour l’analyse, mais aussi à des fins de contrôle. En effet,
on peut utiliser une EDP obtenue pour concevoir une commande continue qui, discrétisée
à nouveau, donne une loi de contrôle pour le système ODE original. Dans le Chapitre 5,
nous montrons que sur la base de la méthode de continuation, de nouveaux modèles continus
peuvent être dérivés et utilisés à des fins d’analyse et de contrôle. Une attention particulière
est accordée aux systèmes multi-agents, pour lesquels la méthode de continuation peut être
appliquée en utilisant une notion de densité définie comme l’inverse de la dérivée partielle
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d’une position par rapport à la fonction d’indexation.

A titre d’exemple, nous utilisons la continuation pour montrer comment divers modèles
d’EDP de trafic peuvent être récupérés à partir de représentations discrètes du trafic. Ensuite,
nous nous concentrons sur la question de savoir comment les équations d’Euler pour un
fluide compressible peuvent être dérivées des interactions entre particules newtoniennes, ce
qui permet de mieux comprendre le sixième problème de Hilbert. Enfin, la même suite est
ensuite utilisée pour décrire une formation de robots volant à travers une fenêtre. Nous
développons un algorithme de contrôle pour stabiliser une trajectoire désirée basée sur une
représentation continue de la formation. Cet algorithme est distribué car chaque robot n’a
besoin d’information que sur les robots voisins. Une simulation numérique montre que le
régulateur proposé est capable d’amener la formation de robots à effectuer les manœuvres
souhaitées à la fois en 2D et en 3D.

Applications de la méthode de continuation aux systèmes os-
cillatoires

Le Chapitre 6 montre comment la méthode de continuation peut être utilisée pour transformer
des réseaux oscillants en modèles d’EDP non linéaires, ce qui ouvre de nouvelles possibilités
pour l’analyse et le contrôle des phénomènes de synchronisation.

Tout d’abord, un réseau laser est synchronisé en supprimant les oscillations indésirables
grâce au fait que le modèle d’EDP du système laser est adapté à un backstepping basé sur
les EDP. Nous démontrons par des simulations numériques que l’application d’un régulateur
basé sur les EDP au système initialement discret assure la stabilité, tandis que la dérivation
d’un tel contrôle continu est simple et explicite.

De plus, nous présentons un réseau d’oscillateurs non linéaires avec des interactions locales,
couplés sur un anneau 1D. Nous introduisons une approximation d’EDP pour ce système en
utilisant la méthode de continuation. Cette représentation EDP peut être plus appropriée
pour l’analyse de la même manière que les systèmes dynamiques continus peuvent être plus
faciles à traiter que les systèmes discrets. La question de la dérivation des conditions de
synchronisation est ensuite abordée pour le cas particulier des oscillateurs de Kuramoto, puis
pour un cas général d’oscillateurs non isochrones. Il apparaît que les EDP non linéaires
apparaissant dans ce cas peuvent être analysées pour retrouver des solutions d’équilibre et
vérifier leur stabilité. La validation par simulation numérique démontre que les solutions
synchrones ainsi obtenues coïncident avec celles vers lesquelles converge le système réel.

Conclusion et perspectives

Bien que les méthodes décrites dans ce travail de recherche aient fourni de bons résultats
initiaux, il reste des problèmes et des questions en suspens qui peuvent apporter des amélio-



vii

rations significatives à notre compréhension des méthodes et à leur applicabilité pratique, ce
qui peut constituer une base pour une recherche future.

En résolvant le problème du contrôle de l’état moyen et de la déviation des grands réseaux,
notre objectif de contrôle était uniquement de conduire l’état moyen du réseau à une valeur
fixe désirée en régime permanent, alors que dans le monde réel, la tâche de suivre la valeur au
fur et à mesure qu’elle change dans le temps est beaucoup plus importante. En même temps,
en supprimant l’hypothèse de l’état stationnaire, il est possible d’améliorer la minimisation
de l’écart type dans les processus transitoires. Enfin, nous avons supposé que l’état moyen et
l’écart-type pouvaient être mesurés directement, ce qui est une hypothèse relativement forte
qui pourrait être relâchée.

La méthode de réduction de modèle basée sur la forme n’est actuellement limitée dans son
application qu’à la classe des lois de conservation EDP 1D et seulement pour des périodes de
temps limitées jusqu’à ce que la forme sélectionnée devienne dégénérée. La dégénérescence
de la forme est une limitation très sérieuse qui pourrait être supprimée si une procédure de
reparamétrisation était développée qui corrige automatiquement la forme chaque fois qu’elle
devient dégénérée. Il serait également possible d’étudier l’extension de la méthode à d’autres
classes de systèmes, y compris divers modèles d’EDP et des réseaux d’EDO avec une structure
spatiale.

La suite la plus directe du travail qui a été décrit dans cette thèse de doctorat est une
étude plus détaillée de la méthode de continuation, ainsi qu’un développement plus détaillé
d’une théorie générale de son application à divers systèmes d’analyse et de contrôle. Pre-
mièrement, les résultats analytiques du Chapitre 4 garantissent la convergence des solutions
des systèmes EDP vers les solutions ODE tant que l’ordre d’EDP tend vers l’infini. En réal-
ité, en raison du manque de méthodes d’analyse des EDP pour les ordres élevés, ainsi que
du risque d’instabilités artificielles, il est logique de limiter la dérivation des EDP aux pre-
mier et deuxième ordres. Ainsi, il serait hautement souhaitable de développer des critères
pour l’applicabilité de la méthode aux approximations d’ordre inférieur. Deuxièmement, les
résultats analytiques ont été dérivés pour des systèmes linéaires spatialement invariants. En
réalité, cependant, la méthode est surtout appliquée à des systèmes non linéaires dépendant
de l’espace, il est donc intéressant d’étudier les garanties de convergence pour de tels sys-
tèmes. Troisièmement, les Chapitres 5 et 6 ont montré le potentiel de l’application de la
méthode de continuation à la conception de régulateurs utilisant une représentation continue
du système. Une telle procédure nécessite non seulement l’application de la méthode de con-
tinuation pour dériver un modèle d’EDP du système, mais aussi la discrétisation de la loi de
contrôle obtenue afin de pouvoir l’implémenter dans le système réel. Dans le futur, il serait
souhaitable de trouver quelles conditions la continuation doit satisfaire pour que le régulateur
soit capable d’accomplir cette tâche.
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1.1 Large-scale systems modelling

We live in a complex world in which all processes are interconnected. The early scientific
approach in physics, engineering and control theory was to isolate individual subsystems,
simplify models as much as possible, and explore them in their purest form, but in today’s
world we have to deal with complex systems that cannot be viewed as the independent sum
of their constituent subsystems. Man-made structures such as city traffic, social networks,
power networks or laser arrays can have thousands or even millions of degrees of freedom.
To study systems of this size and for practical applications it is necessary to develop good
models and ways to analyze them.

1.1.1 Networks modelling

There are four fundamental interactions in physics, and they all work in such a way that
objects interact with each other in pairs. In other words, the force acting on a particle can
always be defined as a sum of independent forces acting from all other particles. It turns
out, and perhaps this is not a coincidence, that in practical applications the same structure is
often traced — subsystems interact with each other in pairs, and the total external influence

1
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on any subsystem is the sum of all influences from other subsystems. Such systems, which are
a collection of pairwise interacting subsystems, are described by the structure of networks.
Throughout this work we will call the interacting subsystems as nodes or agents.

Using the language of ordinary differential equations (ODEs) it is possible to write down
the evolution of any large network as an evolution of nodes’ states in time, taking into account
pairwise interactions. At the same time the number of states can still be enormous; it becomes
necessary to develop methods for scalable analysis of large ODE systems. Like other ODEs,
models describing networks can be linear or nonlinear.

Linear networks are essentially very large linear systems. Their distinctive feature is that
the system matrices of linear networks have a clear structure, because an element of the
matrix will have zero if the two corresponding nodes are not directly connected to each other.
This property is investigated by the theory of structural controllability, see Lin 1974; Dion,
Commault, and Woude 2003; Leitold, Vathy-Fogarassy, and Abonyi 2017. In addition, in
many systems the influence of other nodes on a particular node is positive, and then such
systems belong to the class of positive systems. Finally, linear networks describing real-world
systems are often stable. One particular and important example is opinion dynamics and
consensus networks, where the states of all nodes converge to a mean value, see Tanner 2004;
Mirtabatabaei and Bullo 2012.

The analysis of nonlinear networks is much more difficult. This problem is now at the
forefront of science in the theory of nonlinear dynamics. One of the most important issues in
this problem is the investigation of various modes of possible network functioning. Besides
stable and unstable equilibrium states, there are many other modes, such as synchronous
oscillations, traveling waves, chaotic behavior and even chimera states. Therefore in the study
of nonlinear networks the analysis of general patterns, rather than the specific trajectories of
specific nodes, comes to the fore.

1.1.2 Partial differential equations

The problem of describing systems with a large number of interacting particles first appeared
quite a long time ago. Probably the first famous equations to describe a large system were the
Euler equations derived by Euler 1761 describing the behavior of fluids and gases. This model
is written in the language of partial differential equations (PDEs) and predicts the evolution
of continuous fields of density and velocity of a fluid over time as a function of the partial
derivatives of these quantities, as well as pressure, with respect to the position. Since then,
many PDEs have been created that are models for describing different physical processes,
such as the Maxwell equations for electromagnetic field by Maxwell 1873. We can distinguish
three prototypical linear partial differential equations that describe physical processes:

• Transport equation:
∂ρ(t, x)
∂t

= −v∂ρ(t, x)
∂x

.
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This equation describes pure transportation of some quantity ρ(t, x) through the space
with velocity v. In particular, shape of the solution does not change with time and can
be uniquely identified from initial conditions, ρ(t, x) = ρ(0, x− vt).

• Heat equation:
∂ρ(t, x)
∂t

= −α∂
2ρ(t, x)
∂x2 .

Here ρ(x, t) is understood as the temperature at a particular point in space at a partic-
ular time, and α is the heat transfer coefficient. In the absence of external heat sources,
the heat conduction equation tends to locally “average” the solution, so after some time
the solution converges to thermal equilibrium.

• Wave equation:
∂2ρ(t, x)
∂t2

= β2∂
2ρ(t, x)
∂x2 .

This model describes the vibrations of a stretched string. In this equation, ρ(x, t) is
the displacement of the string relative to its equilibrium position, and β is the rate
of propagation of mechanical disturbances along the string. Since the wave equation
contains a second derivative with respect to time, it gives the acceleration as a function
of the displacement along the position, and hence the solution can be written in terms
of harmonic functions in space and time.

Many other partial differential equations for real physical systems can be seen as more
advanced nonlinear versions of these three equations. Interestingly, the first two of these
equations belong also to the class of conservation laws models: quantity in any domain can
be changed only by flows through boundaries of this domain.

It is important to note that fluids and gases, whose behavior is modeled by Euler’s equa-
tions, still have an underlying structure defined in terms of particles (molecules). Nevertheless,
trying to describe such a system using a set of ODEs is unimaginably difficult: for example,
even a small room contains about 1027 of air molecules, each of which in turn has 6 positional
degrees of freedom (3 for coordinate and 3 for velocity), not to mention rotational dynamics.
That is why PDEs are the only reasonable way to describe such a system. The same logic
is true for most other physical systems that are historically described by partial differential
equations. In the modern world of large systems, such a representation is also beginning to
make sense for describing large man-made structures. For example, in the 1950s Lighthill and
Whitham 1955 and Richards 1956 developed the LWR model for highway traffic. Instead of
independently writing equations for each of the thousands of cars, they assumed that the cars
could be treated as small particles like a fluid, and that the density of the cars at each point
could be determined. The LWR model is a nonlinear PDE conservation law describing the
evolution of this density at each point depending on how many machines are around. With
this formulation, the whole system has been reduced to just one equation, and thus traffic
analysis has been greatly simplified.

Nevertheless, mathematical analysis of PDEs is very complicated, since the states of the
system at each moment of time are functions, which requires sophisticated tools such as func-
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tional analysis to study the systems. Still, in many cases this approach is more realistic than
solving the original system of a huge number of equations describing the behavior of inde-
pendent particles. A possible solution to the difficulty of working with PDEs is to discretize
them, turning PDEs back into a set of ODEs for fixed points in space called cells. In this
case, the designer has a possibility to adjust the choice of the number of cells in order to
balance the accuracy of the model with the complexity of working with it.

1.2 Large-scale systems control

Control of large-scale dynamical systems is a challenging problem for modern control theory.
Its difficulty originates from the large dimensionality of these real-world systems, where the
number of states can reach millions. These large systems challenge the scalability of control
methods from several points of view. First, the computation of traditional control algorithms
becomes too expensive. Indeed, imagining a large-scale linear network with n nodes, even
an eigenvalue stability check would require O(n3) operations, while algorithms like linear-
quadratic regulator (LQR) are substantially more computationally demanding. Second, the
structure and the detailed dynamics of a system may not be fully known. Third, the number
of actuators and sensors is often much lower than the number of nodes, so that state feedback
is not possible: see for instance biological neural networks, where only an average neuronal
activity is measured by electrodes.

The paradigms for controlling large-scale systems can be divided into three groups:

• Centralized control Traditional control theory assumes the existence of a single deci-
sive device, the controller, which measures the state of the system and produces control
commands that are applied to the whole system. This situation can be imagined in
large systems as well. For example, city traffic lights can be controlled from a single
control center that analyzes traffic conditions in the city. However, due to the problems
listed above, such a scheme is not always applicable.
Another difficulty is that the amount of energy needed to control all elements of the
system can grow unbounded as the state-space increases: in case of networks the growth
is actually exponential for some network structures, see Yan et al. 2012; Liu, Slotine, and
Barabási 2011; Cowan et al. 2012. A possible solution to this problem may be that the
centralized controller does not have to worry about the state of each specific element,
instead solving some more general control problem and thus minimizing the control
energy. By limiting ourselves to controlling the mean state and standard deviation, we
can control the system “on average”, to which Chapter 2 of this work is devoted.

• Boundary control There is a particular type of centralized control that makes special
sense in real physical systems, namely boundary control. In this case a physical system
evolves in its domain, and control can be applied only from boundaries (Belishev 2007;
Coron, d’Andrea-Novel, and Bastin 2007). This situation is very typical and realistic
for physical systems, examples include controlling a road section where you can only
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limit the flow of cars at the entrance or exit, but not inside the road segment itself,
or controlling the temperature in a room which is done with a heater located by the
wall, but which has no direct effect on the temperature at any point in the middle of
the room (Krstic and Smyshlyaev 2008). In a sense, this type of control is “weak”.
This is easy to understand by imagining a system evolving on a continuous bounded
manifold and noticing that the dimension of the manifold’s boundary is less by one than
the dimension of the interior of this manifold. Due to this problem even questions of
controllability become non-trivial (Lasiecka and Triggiani 1989). Nevertheless, it is still
often possible to achieve control goals by controlling systems through boundaries. For
example, Tumash, Canudas-de-Wit, and Delle Monache 2021a showed that the state
of traffic on a road can be driven to the desired time-dependent state by restricting
the flow on the boundaries, and Prieur, Winkin, and Bastin 2008 developed a robust
boundary control scheme for fluid networks.

• Decentralized control One approach to the problem of complexity of controlling large
systems is to abandon the idea that the system is controlled by a single global controller
and imagine instead that many smaller controllers are used to control only parts of the
system. The advantage of such controllers is that they are assumed to have only local
information about the system available to them. In the limit it is possible to imagine
controllers independently controlling the state of each agent and measuring only the
state of that agent and its neighbors. In decentralized control, each controller turns
out to be simple, so this approach is well applicable to real-world problems where each
agent can implement its own control but has limited computational resources and only
local ability to measure the state of other agents. Examples of this approach include
platooning control as in Jovanovic and Bamieh 2005; Barooah, Mehta, and Hespanha
2009; Bamieh et al. 2012. However, in most cases showing that decentralized controllers
fulfill the global control goal requires analysis of the system as a whole.

1.3 Approaches to model simplification

Instead of developing sophisticated control algorithms directly for large systems, a fundamen-
tally different approach to the problem of controlling such systems is model simplification. In
this paradigm, the model of a complex system is replaced by a model of a smaller size and/or
a simpler structure of interactions. Such a process possibly leads to a loss of information
about the dynamics of the original system, but the representation of the system in a simpler
form gives a possibility of applying standard control algorithms. Thus, the complexity shifts
from the issue of control design to the process of model simplification itself. Several specific
approaches to simplifying models of large systems can be distinguished:

• Balanced realizations for linear systems. In the middle of XX century Kalman
1965 analysed irreducible realizations (or minimal realizations), linear systems with very
clear structure and minimal number of state variables preserving the original behaviour.
Much later, Moore 1981 gave an algorithm of transforming every linear system into its
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minimal realization, using the idea similar to principal component analysis (PCA) from
statistics. This algorithm became known as balanced realization. Moore’s idea was not
only to transform the system into its minimal realization, but to do the similar thing as
PCA does in statistics: to identify the most important directions in the state space and
get rid of the others, thus obtaining some “reduced model”. For this he diagonalized
infinity-time Gramians. To extend this approach for unstable systems as well, in Zhou,
Salomon, and Wu 1999 a method for creating balanced realization (and thus model
reduction) was presented using Gramian defined in frequency space.

Gramian-based model reduction techniques are not very suitable for networks, because
the reduced system loses network properties like sparsity and tractability. So, current
research is more focused on other reduction methods which are trying to preserve some
physical properties instead of copying the original system behaviour. But there are
modern papers like Rossi and Frasca 2018 devoted to network reduction which preserves
network structure using generalized Gramians, defined for semi-stable systems with zero
eigenvalues, for example as for Laplacian dynamics systems.

• Clustering. Perhaps the most popular method of simplifying models for ODE networks
is clustering, as in Cheng, Kawano, and Scherpen 2017; Martin, Frasca, and Canudas-
de-Wit 2019; Niazi et al. 2019. The idea of this method is to combine several connected
network nodes and represent them as one "large" node. In this case, the new node is
connected to the same nodes with which its constituent nodes were connected, and is
subject to the same dynamic equations. The logic behind this simplification is that
possibly nearby nodes have similar dynamics, and due to the connection between them,
they interact with the rest of the nodes in the same way. Different approaches and
versions of this method use different criteria to determine the "similarity" of nodes to
cluster them into a single node.

• Aggregated parameters and moments. Simplification of the model by clustering
implies that the system retains the same physical meaning but reduces the number of
considered nodes. An alternative to this approach may be to represent the behavior of
the system through completely different parameters with a different physical meaning,
which nevertheless allow to preserve the dynamics of the system and describe it in a
more compact form. Some of the most popular aggregated parameters are moments:
the average state of the system, the standard deviation, and so on. For most systems
it is easy to define moments, but building a general principle of controlling a system
exclusively through moments requires solving the problem of moments closure, since in
general the dynamics of each moment depends on the next one and this series continues
to infinity, see the review by Kuehn 2016 devoted to this problem. Moment closure
can be performed explicitly only for some systems, e.g. for crowd control as in Yang,
Dimarogonas, and Hu 2015.

• Particular class of solutions. Many models are difficult to study, as they describe
all the solutions that can arise in the system. Sometimes in the process of analysis it
is possible to restrict the class of considered solutions, and thus simplify the system.
Perhaps the most striking example of such a simplification is the derivation of Newton’s
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classical mechanics from Einstein’s General Theory of Relativity. Indeed, General Rela-
tivity describes any behavior of systems with gravitational interactions. However, if we
assume that we are only interested in solutions in which all speeds are much less than
the speed of light and gravity remains small enough (does not create black holes), the
General Relativity can be simplified to Newton’s second law, supplemented by Newton’s
law of universal gravity. The idea that we can use a priori knowledge of a solution’s
belonging to a certain class forms the basis of Chapter 3 of this work, where the system
is described in terms of the parameters of the solution shape.

• Continuous approximations. Another way to simplify a large system of interacting
particles is to represent their dynamics through a continuous model. This is how Euler’s
equations describe the behavior of molecules in fluids and gases, and this is how the
LWR equation describes the motion of cars on the highway. In spite of the fact that
in terms of system dimensionality this method does not look like a simplification (we
replace a very large but finite-dimensional system with an infinite-dimensional system),
the resulting equations look much more homogeneous, that is their form does not depend
on a specific point in space, whereas in the original system the equation of each particle
could depend on the number and position of other particles interacting with it. The
method of approximating the dynamics of systems through continuous models is the
subject of Chapters 4, 5, and 6 of this manuscript.

Any simplification of a model is essentially an approximation, and there is always the
question of how much this approximation guarantees the accuracy of the solutions, especially
if the goal is to control the original system. Often such methods guarantee only that when
the size of the simplified model tends toward the original, the solutions will also tend toward
the original, that is, the control will work “for a sufficiently complex system”. The question
of when control will work for truly small systems remains open.

1.4 Problems and contributions

The main interest of our work is the problem of scalable control of large systems. Using differ-
ent models and structures of large systems as starting points, we investigate different options
on how systems can be simplified and used for control analysis and design, demonstrating
results in various practical problems.

The first problem we tackle in Chapter 2 is controlling a large linear network. The control
goal is to bring the average state of the network to a certain desired value, while keeping the
states of all nodes as close to the average as possible. It is assumed that the average state of
the network and the standard deviation of all states from the average can be measured. First,
we study the problem of controlling only the average state using an integral controller and
show that control can be performed using arbitrarily large gains if the system is positive and
satisfies simple conditions on the matrices. Thus, a simple relationship has been established
between positivity and passivity of linear systems. We then minimize the standard deviation
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using the constrained extremum seeking algorithm. This approach is generalized for cases
of general multidimensional linear output control and simultaneous minimization of general
scalar quadratic output.

In Chapter 3 we turn our attention to systems whose models are given through partial
differential equations. We develop a shape-based model reduction technique applicable to 1D
PDE conservation laws. The main idea is that we assume that the solution of the system
can be approximated by a solution of some specific shape that can be parametrized. And
thus the PDE dynamics of the original system turns into a simplified ODE dynamics for the
parameters of the solution shape.

Noticing that there are many similarities between systems modeled by ODE networks and
PDEs, for the third problem we focus on a way of combining these two worlds together, in
particular deriving continuous PDE representations of large-scale spatially distributed ODE
systems. In Chapter 4 we develop a continuation method which transforms any general
nonlinear system with spatial structure into a PDE model. In addition, we show that in
the linear case, taking a sufficiently large PDE order, one can approximate a solution of the
original ODE system as closely as desired. This method can be used to derive PDE models
of originally discrete systems, which can then be used for control and analysis.

The problem of the connection between the discrete and continuous world has a long
history, and in this context the Hilbert’s problem 6 is very famous for raising the question of
strict derivation of the Euler equations from the equations of motion of individual particles.
We derive an original solution to this problem for the case of long-range potentials in Chapter 5
using the continuation method. The same technique makes it possible to derive models of
traffic motion and even to control large swarms of robots. In addition, in Chapter 6, turning
ODE networks into continuous models allows large networks of oscillators to be treated as
nonlinear PDEs, which in turn opens up many possibilities for synchronization analysis and
for stabilization. Various systems such as Kuramoto oscillators or non-isochronous spin-torque
oscillators (STO) are being studied, and the conditions for their synchronization are derived
from a continuous model of the original discrete system.

Thesis organization. Chapters 2, 3, and 4 introduce various transformation, simpli-
fication and control methods for large systems. Chapters 5 and 6 focus on the particular
continuation method developed in Chapter 4 and show how it can be applied to analyze and
control various multi-agent and coupled oscillator systems, respectively. Each chapter is pre-
ceded by an introduction, a relevant review of the literature and the state of the art, and
concludes with a description of the contributions, open issues and possible research areas. All
contributions and perspectives are summarized and discussed in the conclusion, followed by
Appendix A, containing technical proofs of some of the lemmas used in the main body of this
work.
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2.1 Introduction

Control community has often approached the issue of network control by looking for dis-
tributed control algorithms, in which the control is applied locally at all nodes and uses only
local information. Instead, in this chapter we choose to work in a centralized setting, where an
external operator has limited information about the network and limited access to few nodes
for sensing or actuation purposes. In view of these limitations, the operator shall aim at
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Figure 2.1: Scale-Free network with “hub” regions (shaded in yellow) controlled from the
boundary nodes (double circles)

controlling some aggregate function of the network state, rather than controlling all of its in-
dividual nodes. A natural choice for such aggregate function is the average of the node states,
which has indeed been defined as a control objective in some prior work that was motivated
by opinion dynamics in social networks, see Vassio et al. 2014; Rossi and Frasca 2018. More
broadly, the control of a generic output of a large-scale network was studied by Klickstein,
Shirin, and Sorrentino 2017a; Wittmuess, Heidingsfeld, and Sawodny 2016; Klickstein, Shirin,
and Sorrentino 2017b; Commault, Woude, and Frasca 2019; Casadei, Canudas-de-Wit, and
Zampieri 2018. In particular it was shown that the energy required to control aggregated
outputs instead of all states is much less.

In this chapter we focus on the problem of controlling the average state of the network,
together with the concurrent minimization of its deviation. The average state of the network
is defined as an average over all node states of the network, while the squared deviation is
defined as an average over all squared differences between node states and the average state.
While using a controller for the average state, it is natural to desire the system states to be
close to the average: this behavior can be obtained by minimizing their squared deviation.
In opposition to previous work, it is assumed that the only values that are measured and
regulated are the values of the system outputs, i.e. the average state and the squared deviation.
Moreover, we make sure that the system model is not used in the controller. Thus, the
controller directly utilizes only system outputs and reference point and the equilibrium of
internal states is never computed explicitly. Not using the system model circumvents all
issues about computational complexity and uncertainties that affect large networks. Another
relevant setup is a scale-free control approach to large-scale networks (see the Scale-FreeBack
project of Canudas-de-Wit 2015) as in Fig. 2.1: in this approach, the goal is to control the
average state and the deviation of the “hub” regions (such as large cities in a multi-city
transportation network) and the control is applied to the boundaries of the hubs. Thus
several linear outputs should be controlled independently which poses a problem of multi-
output control.

Section 2.2 of this chapter is devoted to the problem of controlling the average state of the
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linear network, where three stability results are presented. Theorem 2.1 provides conditions
on the integral controller gains for the stability of the closed-loop system, and Theorem 2.2
simplifies the conditions under the assumption that the system is positive. Then, Theorem 2.3
is a main contribution of this section which gives a simple sufficient sign condition on the
system matrices which guarantees stability of any positive integral controller for controlling
the system output to a constant reference point without knowledge of the system matrices.

Most of our results regarding the output regulation problem of a large linear network
system are presented under the assumption that the system is stable and positive (that is, the
system matrix has positive elements outside the main diagonal). Network systems with stable
dynamics and positive edge weights belong to this class. More generally, positive systems are
an important class of systems for which the synthesis of large-scale control algorithms can
be greatly simplified. Their impulse response is bounded by their static gain (Rantzer 2011),
optimal (Rantzer 2015) and robust (Briat 2013) feedback control laws can be easily designed
using linear programming, and the state feedback output regulation problem can be explicitly
solved (Nogueira 2013). From the passivity analysis in the classical control theory it is known
that the feedback interconnection between a linear operator with an integral controller is
stable irrespective of the gain (has an infinite gain margin) if the linear operator is strictly
positive real (SPR), see Sepulchre, Jankovic, and Kokotovic 2012; Kottenstette et al. 2014.
From this point of view our analysis provides a new simple sufficient condition for the positive
system to be SPR, which is summarized in Theorem 2.4.

In Section 2.3 this result is extended to include multi-output systems such that average
states of different parts of a system could be regulated independently. Using the passivity
formulation, we prove Theorem 2.5 which provides sufficient conditions on system matrices
to assure that a MIMO system has a SPR transfer function.

Finally, Section 2.4 focuses on the deviation minimization problem, when the system
should be driven to the particular average state while the control inputs should be balanced
in such a way that the squared deviation of the states takes the smallest possible value. To
solve this problem we use an extremum seeking scheme as in Ariyur and Krstić 2003; Tan
et al. 2010 which is an adaptive model-free algorithm for the minimization/maximization of a
nonlinear steady-state output characteristic. We augment this algorithm with an additional
subsystem such that both tasks are accomplished simultaneously: the average is driven to
the particular value while the squared deviation is minimized. Theorem 2.6 proves that the
system approaches any small neighbourhood of the optimum state provided the gains of the
controller are small enough.

2.1.1 Examples of physical systems

In our problem formulation we assume that the network operator has knowledge of the average
and the squared deviation values. There are many physical examples of systems where the
average and the squared deviation can be measured without measuring the states of the nodes.
Here we briefly mention four examples:
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Urban traffic networks. Consider a network of roads in a city, where the state of
each node is the number of cars on the corresponding road section. The total number of
cars in the city can be estimated either directly or indirectly. A direct estimation of the
number of cars can be performed by vision-based methods, by processing images taken from
satellites, as in Eslami and Faez 2010; Palubinskas, Kurz, and Reinartz 2010. Although every
car is counted independently, the estimation error is defined as a discrepancy in the overall
number of cars, therefore these methods effectively reconstruct the total number of cars.
An indirect estimation can be based on the vehicle emissions: combustion engines produce
CO2, which then goes into the atmosphere. The polluted atmosphere changes its reflection
properties based on the amount of CO2, thus this amount can be measured using infrared
sensors mounted on satellites, see Boynard et al. 2014. Therefore, the number of cars can
be reconstructed from the satellite measurements. The total number of cars divided by the
number of road sections equals to the average state of the network.

Biological neural networks. A widely known method of monitoring the brain activity
is the electroencephalography, with electrodes placed usually along the sculp of the person
being monitored. Each electrode measures voltage fluctuations of group of neurons under the
surface, therefore it is directly related to the average of individual states of neurons, which
obviously cannot be measured independently (Van Veen et al. 1997).

Dynamics of gas. Every gas consists of a huge number of particles colliding with each
other, therefore it can be seen as a dynamical network with neighbouring particles whose
interaction depends on their velocities. Thus, we can define the states being the velocities
of each individual particle. The gas temperature can be easily measured, but at the same
time it corresponds to the internal kinetic energy: Ek = 3

2kBT = 1
2mv

2
rms. Here kB is the

Boltzmann constant, T is the temperature and m is the mass of one particle. The variable
v2
rms represents the mean squared deviation of the velocities of particles with respect to the
flow velocity. The flow velocity itself is a “wind speed”, which represents the average state of
the system and can be also directly measured.

Density of a fluid. Fluids also consist of a huge number of particles, and one way to
write the dynamical model of a fluid is to consider a space partitioned into individual cells
with states being defined as the densities of the fluid inside each cell. In this case, the average
state would be the average density in the system: Hunt et al. 2021 showed that this density
can indeed be measured for cryogenic fluids by measuring permittivity by a technique called
electrical capacitance tomography.

2.1.2 Problem formulation

We start posing the problem assuming the system we need to control is the network given by
the graph G = (V, E), where V is the set of vertices and E is the set of edges. The number of
vertices |V| is denoted by n.

On each node vi ∈ V the state xi is defined. Each edge e ∈ E , where e = {vi, vj},
corresponds to the flow between nodes vi and vj . Matrix A ∈ Rn×n represents flow ratio. The
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set of nodes V is split into two parts V1 and V2 with state vectors x1 and x2 respectively (see
Fig. 2.2). The set V1 consists of the nodes which are directly controlled by the control action
u. We call these nodes “boundary”. The set V2 is a set of uncontrolled nodes, which we call
“inner nodes”. The average state y = 1Tx/n and the squared deviation V = ‖x‖2 /n− y2 are
measured. Thus the network depicted on Fig. 2.2 can be viewed as one particular hub from
the scale-free network on Fig. 2.1.

x1 : boundary nodes

x2 : inner nodes

Figure 2.2: Network with boundary and inner nodes separation

The evolution of the states x, the average state y and the squared deviation V is given by
the following linear time-invariant system

ẋ1 = A11x1 +A12x2 + u,

ẋ2 = A21x1 +A22x2,

y = 1
n
1Tx,

V = ‖x‖2 /n− y2.

(2.1)

Most of real-world networks are internally stable, so we further assume A being stable.
Also in most of our analysis we will assume A is a Metzler matrix (defined as a matrix with
its off-diagonal elements being non-negative), which means all edges have positive weights.
Such choice of system matrix together with the fact that B > 0 and C > 0 means that the
system (2.1) belongs to the class of positive systems.

It is useful to analyse more general case than (2.1), with general stable matrix A ∈ Rn×n,
C ∈ Rm×n, B ∈ Rn×k, and symmetric positive semi-definite matrix P ∈ Rn×n defining the
quadratic output: 

ẋ = Ax+Bu,

y = Cx,

V = xTPx.

(2.2)

System (2.1) can be written in form of (2.2) using

A =
(
A11 A12
A21 A22

)
, B =

(
I

0

)
,

C = 1
n
1T , P = 1

n
I − 1

n211
T
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In general, the control goal is to stabilize average state y over the whole network to some
desired constant state yd without the explicit knowledge of system matrices. It is assumed
that the number of states is too large that it is impossible to use full-state feedback or to use
matrix A explicitly.

In the following two problems will be addressed:

1. Control of average: find the control law u = u(y) for the system (2.2) such that

lim
t→∞

y(t) = yd.

2. Control of average and deviation: Find the control law u = u(y, V ) for the system
(2.2) such that

lim
t→∞

y(t) = yd, and V is minimized.1

For notational simplicity and expressiveness we will often use the word “average” when speak-
ing about linear outputs and the word “deviation” for a general scalar quadratic output.

It appears that the problem of linear output control leads to different types of conditions
for the case when the output is scalar with respect to the multiple output case. Therefore
Section 2.2 is devoted to the first problem of average control, treating scalar output y. Section
2.3 presents an extension of the first problem for multidimensional output y. Finally, Section
2.4 shows the solution for the second problem of simultaneous control of linear and quadratic
outputs.

Notation. Along this chapter several types of vector and matrix inequalities are used:

• x > 0 for x ∈ Rn means xi > 0 ∀i ∈ {1, ..., n}.

• x > 0 for x ∈ Rn means xi > 0 ∀i ∈ {1, ..., n} and there exists j ∈ {1, ..., n} : xj > 0.

• x� 0 for x ∈ Rn means xi > 0 ∀i ∈ {1, ..., n}.

• P � 0 for P ∈ Rn×n means that P = P T and xTPx > 0 ∀x ∈ Rn : x 6= 0.

2.2 Control of average

In this section, we solve Problem 1 of controlling the average as a scalar linear output of system
(2.2). We first describe a general controller structure and then prove stability conditions for
low and high gains. Further we discuss these conditions and present examples of the controller
performance.

1Note that the problems are formulated in the steady-state, therefore we will not pursue any optimization
of the transient process.
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2.2.1 Controller structure

Define transfer function of the system (2.2)

Ws(s) = C(sI −A)−1B, (2.3)

thus y(s) = Ws(s)u(s). Denote error between desired output and system output: e = yd − y.
Then we can define controller transfer function Wc(s) such that u(s) = Wc(s)e(s). System
control loop is depicted on Fig. 2.3.

Wc Ws
uyd e y

−

Figure 2.3: Control loop given by closed-loop transfer function (2.6)

Thus the input-output relation is

y(s) = Ws(s)Wc(s)e(s), (2.4)

or, solving for y,

y(s) = Ws(s)Wc(s)
1 +Ws(s)Wc(s)

yd. (2.5)

Define closed-loop transfer function

W (s) = Ws(s)Wc(s)
1 +Ws(s)Wc(s)

. (2.6)

In the following we investigate what properties Ws and Wc do have and what properties
W should have in order to be stable. Values of Ws are row-vectors and values of Wc are
column-vectors, because controller input e and system output y are scalars, while u which is
controller output and system input is a vector, u ∈ Rk. Let us look at the i-th component of
Ws and Wc, where i ∈ {1, ..., k}, and define polynomials α(s), βi(s), δ(s), γi(s) such that

Ws(s)i = βi(s)
α(s) and Wc(s)i = γi(s)

δ(s) . (2.7)

It is obvious that α(s) is a polynomial of degree n. Moreover, our system is strictly stable,
casual and have no direct influence of u on y, thus

deg βi(s) < degα(s) = n and α(s) 6= 0 ∀s ∈ C+. (2.8)

We can choose α(s) and βi(s) such that α(s) ∈ R for s ∈ R and α(s) > 0 for s > 0.

Then, the controller Wc should also be stable and casual, which means

deg γi(s) 6 deg δ(s) and δ(s) 6= 0 ∀s ∈ C+. (2.9)
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Again, it is possible to choose δ(s) and γi(s) such that δ(s) ∈ R for s ∈ R and δ(s) > 0 for
s > 0. Now we can rewrite W (s) in terms of polynomials:

W (s) =

∑
i
βi(s)γi(s)

α(s)δ(s) +∑
i
βi(s)γi(s)

. (2.10)

The closed-loop transfer function W (s) should have the following property: for a constant
input yd it should give the same output y, thus W (0) = 1. This means that α(0)δ(0) = 0,
which is possible only if δ(0) = 0, so δ(s) cannot contain free term. The simplest possible
controller that satisfies this necessary condition is an integral controller given by

Wc(s)i = κ
γi
s
, (2.11)

where γ ∈ Rk is the vector of gains, defining relative control force applied to different actuated
nodes (in other words in can be seen as a “control direction”), and κ is the overall gain. The
following sections will be devoted to the integral controller and its properties.

2.2.2 Stability of integral controller

Assume we apply the integral controller (2.11) to the system (2.2). The closed-loop system
may be unstable, and in general in order to prevent this one needs to carefully choose controller
gains κ and γ in (2.11).

Theorem 2.1. System (2.2) with applied integral controller (2.11) is asymptotically stable if
−CA−1Bγ > 0 and κ ∈ (0, κ∗) for some small κ∗ ∈ R.

Proof of Theorem 2.1. Applying integral controller, a transfer function of the closed-loop sys-
tem is given by

W (s) =
κ
∑
i
βi(s)γi

α(s)s+ κ
∑
i
βi(s)γi

. (2.12)

For stability of the closed-loop system W (s) should have no poles on the right-hand side
of the complex plane C+. Decompose the denominator:

α(s)s

1 + κ

∑
i
βi(s)γi

α(s)s

 6= 0.

Denote Q(s) =
(∑

i
βi(s)γi

)
/ (α(s)s). Any point such that α(s) = 0 or s = 0 leads to

W (s) = 1, thus poles of the transfer function can land only in positions of roots of 1 +κQ(s).
We will prove that there exists κ∗ such that

∀κ ∈ (0, κ∗) : ∀s ∈ C+ \ {0} Re{1 + κQ(s)} > 0. (2.13)
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Choose ε,R ∈ R such that ε < |λi(A)| and R > |λi(A)| for all i ∈ {1..n}. Thus all the roots of
α(s) lie in a ring between ε and R in the left half-plane. We split the complex right half-plane
C+ into three parts:

H+
0,ε = {s : Re s > 0, |s| < ε}

H+
ε,R = {s : Re s > 0, |s| > ε, |s| 6 R}

H+
R,∞ = {s : Re s > 0, |s| > R}

First we analyse H+
0,ε. Function Q(s) has a pole at zero, thus it can be written using

Laurent series with coefficients Qn:

Q(s) = Q−1
s

+
∞∑
n=0

Qns
n = Q−1

s
+ P (s),

where P (s) is an analytic function. The residual Q−1 =
(∑

i
βi(0)γi

)
/α(0) = −CA−1Bγ > 0,

thus
Re Q−1

s
> 0 ∀s ∈ H+

0,ε \ {0},

while P (s) is analytic in C and thus has a minimum in H+
0,ε.

Next we analyse H+
R,∞. This set is contained into a set HR,∞ = {s : |s| > R}. If R is

big enough, Q(s) is analytic in HR,∞, but it vanishes at infinity, therefore by the maximum
modulus principle Q(s) is bounded from below in HR,∞ by values on its boundary, and
consequently it is bounded in H+

R,∞.

Finally, set H+
ε,R is compact and does not contain zeros or roots of α(s). Therefore Q(s) is

analytic in it and thus bounded. We obtained that ReQ(s) is bounded from below in C+\{0}.
Denoting this bound asQinf , we see that choosing κ∗ = −1/Qinf in caseQinf < 0 or κ∗ = +∞
in case Qinf > 0 assures satisfaction of (2.13) and therefore proves the theorem.

Theorem 2.2. System (2.2) with applied integral controller (2.11) is asymptotically stable if
the system (2.2) is positive, γ > 0, −CA−1Bγ 6= 0 and κ ∈ (0, κ∗) for some small κ∗ ∈ R.

Proof of Theorem 2.2. Positivity of the system (2.2) means that all elements of matrices B
and C are greater or equal than zero, and matrix A is a Metzler matrix. Now we introduce
a notion of M-matrix:

Definition 2.1 (M-matrix, Plemmons 1977). An n × n matrix M that can be expressed in
the form M = αI −L, where L = (lij) with lij > 0, 1 6 i, j 6 n, and α > ρ(L) where ρ(L) is
the maximum of the moduli of the eigenvalues of L, is called an M-matrix.

From this definition it follows immediately that a negative of a Metzler stable matrix is
an M-Matrix. The main property of any M-matrix M is that its inverse M−1 is a positive
matrix, thus (M−1)ij > 0 for all i, j (Fan 1958).

Matrix −A is an M-Matrix which means that −A−1 has its all elements nonnegative,
therefore −CA−1B is a positive vector. By the theorem statement γ > 0, and having
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−CA−1Bγ 6= 0 means −CA−1Bγ > 0 and, applying Theorem 2.1, this leads to an asymptotic
stability of the closed-loop system for small enough κ.

By Theorem 2.2, if the system is positive it is enough to choose γ = 1 (or any γ � 0, just
to satisfy −CA−1Bγ 6= 0), and then pick up small enough overall gain κ.

2.2.3 Control with arbitrary large gains

It appears although that there exists simple criteria on the system matrices which says whether
the closed-loop system will converge irrespectively of controller gain values, provided that they
are positive. This result is one of the main contributions of this chapter, and it is formulated
as follows:

Theorem 2.3. System (2.2) with applied integral controller (2.11) is asymptotically stable
for arbitrary large positive controller gains κ and γ if the system (2.2) is positive, CA2 > 0
and CA2Bγ > 0.

This result means that, irrespective of the gains, an integral controller will preserve sta-
bility for a very large class of systems. One of the important types of large-scale networks for
which Theorem 2.3 is satisfied is a general consensus network (e.g. for social interactions),
see the example below.

Example 2.1 (Damped consensus). Assume system (2.2) is given by matrices A = −L−αI,
where L is a Laplacian matrix of some network with n nodes, α > 0 means additional damping
to the system to preserve stability, and C = 1T /n represents average state of the network.
Then A is a Metzler stable matrix, and C is the eigenvector of A with corresponding eigenvalue
−α, thus CA2 = α2C > 0. Then any controller with positive gains κ and γ will lead to the
convergence, provided Bγ > 0.

One should notice that the condition CA2Bγ > 0 on the control matrix B is very non-
restrictive, because by choosing appropriate vector gain γ it is always possible to make Bγ > 0,
and hence, provided CA2 > 0 and CA2B 6= 0, we will have CA2Bγ > 0. A reason for this is
the fact that the regulation variable is a single scalar output.

Proposition 2.1. Condition CA2Bγ > 0 is a sufficient condition for the output controlla-
bility of the system (2.2).

Proof. Indeed, Kalman rank test for the output controllability of (2.2) can be written as

rank{C
(
B AB A2B ... An−1B

)
} = 1,

and by CA2Bγ > 0 we have CA2B 6= 0, which means that the rank test is satisfied.

Note that the analogue of this Proposition can be proven for Theorems 2.1 and 2.2.
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Corollary 2.1. Positive system (2.2) with CA2 � 0 is asymptotically stable for any integral
controller (2.11) with positive gains applied to any single boundary node. Therefore, it is
enough to control only one node.

Before proving Theorem 2.3 we need to state three technical lemmas.
Lemma 2.1. Suppose we have a matrix M = M + ibI, which is a complex matrix with
real part M and imaginary part bI, with b ∈ R and I an identity matrix. Assume M being
invertible and having no eigenvalues on the imaginary axis. Denote L = M−1 = L + iL̄.
Then the real part of L is given by

ReL = L = (M + b2M−1)−1. (2.14)

Proof. See Appendix A.1.

Lemma 2.2. Let M be an M-matrix. Let C be a row-vector such that CM2 > 0. Then

C(M + tM−1)−1 > 0 (2.15)

for any t > 0.

Proof. See Appendix A.2.

Lemma 2.3. Let M be an M-matrix. Let C be a row-vector such that CM2 > 0 and
CM2Bγ > 0. Then

C(M + tM−1)−1Bγ > 0 (2.16)
for any t > 0.

Proof. See Appendix A.3.

Proof of Theorem 2.3. Applying the integral controller and multiplying nominator and de-
nominator by s, transfer function of the closed-loop system is given by

W (s) = κC(sI −A)−1Bγ

s+ κC(sI −A)−1Bγ
. (2.17)

It is sufficient to show that real part of the denominator is strictly greater than zero
in the right half-plane. Since Re s > 0 in the right half-plane, it is enough to show that
Re
{
κC(sI −A)−1Bγ

}
> 0.

Denote Re s = α and Im s = β, so matrix (sI − A)−1 = ((αI − A) + iβI)−1. Denote
M = αI −A. Matrix A is a Metzler stable matrix, thus (−A) is an M-matrix and matrix M
is an M-matrix too. Moreover, condition CA2 > 0 implies CM2 > 0 and CA2Bγ > 0 implies
CM2Bγ > 0. Applying Lemma 2.1 we conclude that

ReκC(M + iβI)−1Bγ = κC(M + β2M−1)−1Bγ. (2.18)

By Lemma 2.3 C(M + β2M−1)−1Bγ > 0 for any β ∈ R, and assuming κ > 0 we trivially
obtain a sufficient condition on positivity of the real part of the denominator.
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2.2.4 Passivity formulation

Lemmas 2.1-2.3 allow us to formulate a more general theorem, applicable to a general SISO
linear system:

Theorem 2.4. Any positive stable SISO system with control matrix B ∈ Rn×1 and observa-
tion matrix C ∈ R1×n such that CA2 > 0 and CA2B > 0 has a strictly positive real (SPR)
transfer function, thus it is strictly-input passive.

Proof. A strictly positive real (SPR) transfer function should by definition satisfy Re{C(sI −
A)−1B} > 0 for ReS > 0, see Sepulchre, Jankovic, and Kokotovic 2012; Kottenstette et al.
2014. Therefore the proof of this theorem follows the same steps as the second part of the
proof of Theorem 2.3.

From a point of view of linear systems theory, Theorem 2.4 is a main result of this chapter.
Indeed, such a simple condition for passivity for positive SISO systems appears in literature
for the first time.

κ
1
s

C(sI −A)−1B γ

αyd e

y

−

u

Figure 2.4: Feedback interconnection of passive systems

Moreover, it appears that Theorem 2.3 is a direct consequence of Theorem 2.4, as the
following reasoning shows. Assume we fix an input gain vector γ and define a new controller
output α such that u = γα. Then system (2.2) becomes SISO with respect to input variable
α. Define H1(s) = κ/s and H2(s) = C(sI − A)−1Bγ. It is possible to construct control
loop with feedback interconnection as depicted on Fig. 2.4. The closed-loop system input is
defined as yd and the system output is α. It is known that for L2 stability of a system with
feedback interconnection it is sufficient that a transfer function of one of the blocks is positive
real (PR, which is equivalent to passivity) and another is SPR, see Sepulchre, Jankovic, and
Kokotovic 2012. Passivity of an integral controller H1(s) is obvious, and Theorem 2.4 is used
to prove that H2(s) is SPR. Therefore the closed-loop system is L2 stable. Now, it remains
to prove that y → yd, which is obvious if one recalls that an output of a stable system with
constant input converges to a constant value, thus for any constant yd there exists α∗ such
that α → α∗. But convergence of an output of an integral controller means that its input
converges to zero, which reads as e→ 0, which is exactly y → yd.
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2.2.5 Interpretation of conditions

Theorems 2.1-2.3 presented in the previous sections provide the same result, stability of the
closed-loop system (2.2) with controller (2.11). However, they differ in their assumptions.
During the derivation of the controller (2.11) we assumed that the system matrices are not
known. However, usually one has a knowledge about some general properties of the system,
such as positivity. These properties can sometimes be induced from the nature of the problem
itself and do not rely on the particular topology. Therefore the results presented in our work
can be used to analyse stability based on these properties.

Theorem 2.1 requires −CA−1Bγ > 0 for the integral controller to be stable for κ ∈ (0, κ∗).
This scalar condition essentially means that direction of adaptation of the integral controller
forms an acute angle with a zero frequency gain of the system. In practice one usually knows
direction of the zero frequency gain. At worst, it is enough to change a sign of γ once.

Theorem 2.2 exploits positivity of the system: zero frequency gain of the positive system
is positive. Therefore it is enough to use positive gains for the integral controller, and the
condition −CA−1Bγ > 0 can be loosened just to −CA−1B 6= 0. However the gain κ still
should satisfy κ ∈ (0, κ∗).

In Theorem 2.3 a small-gain condition κ ∈ (0, κ∗) is removed at the cost of adding a vector
inequality CA2 > 0. This inequality can be used to determine stability without knowing
particular matrices for some classes of systems, such as damped consensus, see the example
after Theorem 2.3. For other systems, this condition should be interpreted as a constraint on
the system parameters.

In the remainder of this section we will analyse the condition CA2 > 0 more closely.
Namely, first of all we will prove that this condition cannot be relaxed, since weaker conditions
would not assure the stability for all gains. Then, we will provide some graph-theoretical
intuition and rewrite the condition in terms of quadratic constraint on node self-dampings.

If A is a Metzler stable matrix, all elements of A−1 are nonpositive. Multiplication of a
positive vector by a matrix with nonpositive elements renders negative vector, therefore right
multiplying the condition CA2 > 0 by A−1 one obtains CA < 0, and the same argument
provides C > 0. The condition CA2 > 0 is new and it is used in Lemmas 2.2 and 2.3
(substituting M = αI −A as in the proof of the theorem). When one looks at the statement
of Lemma 2.2, one might think that it would be enough to require a less restrictive condition
CA < 0 (This condition can be obtained from the statement of Lemma 2.2 by letting t→ +∞)
and has been proposed for a full state static feedback output control of positive systems by
Nogueira 2013).

However, let us show that condition CA2 > 0 is significant and CA < 0 is not sufficient.
An example of a positive system with CA < 0 but CA2 6> 0 would be

A =

−1 0 0
1 −1 0
0 1 −1

 , B =

1
0
0

 , C = 1T . (2.19)
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For this system CA = (0, 0,−1), but CA2 = (0,−1, 1). We can then show that this system
is not SPR. To check this, by definition we take a pole in the complex right half-plane
s = 0.01 + 2i, which results in

ReC(sI −A)−1B = −0.0047. (2.20)

Since the transfer function value is negative, the system is not positive real and thus it is not
passive. Moreover, there exists an integral controller which makes this system unstable, for
example one with a control vector γ = 1 (since only one node can be controlled) and a gain
κ = 3 (although with κ = 2 the system is still stable). This confirms our understanding that
the novel CA2 > 0 condition is meant to ensure stability using any arbitrary boundary node
and arbitrary positive gain κ.

Going deeper to understand topological properties of the condition CA2 > 0, we first start
with more intuitive one, CA < 0, which is implied by CA2 > 0.

Define matrices D and E such that A = E −D, with D being diagonal and E having all
diagonal elements zero. Thus both D and E have all their entries positive. Matrix E can be
viewed as adjacency matrix of the network, with element Eij meaning influence of node vj
on node vi. Matrix D consists of self-damping powers on the diagonal. Therefore condition
CA < 0 reads as CD > CE. This condition states some kind of diagonal dominance in the
network.

Assume some Ci = 0. Then (CD)i = 0 because D is diagonal. Thus (CE)i should be also
zero, which means that for every index j either Cj = 0 or Eji = 0.

Corollary 2.2. If node vi is not included in the aggregated output (Ci = 0), then its reachable
set should not be included either.

• For a strongly connected graph this means that all nodes should be included in the ag-
gregated output.

• If a network is divided into “boundary” nodes and “inner” nodes, and the goal is to
control an average of the inner nodes, then at least one of the boundary nodes should
also be included into the average.

In the same manner it is possible to see this condition as a lower bound on the damping
of each node: Dii >

∑
j CjEji/Ci. Thus the bigger is the influence of node’s neighbours in

the output, the bigger should be the node’s damping.

We can use the same decomposition A = E − D in order to understand the condition
CA2 > 0 and conclude that

CE2 + CD2 > C(ED +DE). (2.21)

Being a quadratic inequality, this condition bounds damping of each node from above and
below with respect to dampings of other nodes. We will see examples in the following section.
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Figure 2.5: Scheme: Network with star topology with n leafs. Boundary nodes are in green.
Plots: Output control of the star network with n = 20 leafs. α = 2, β = 1.1, κ = 12, yd = 5.
(a): Output y for different γ vectors. (b): Spread of states x for γ = (1, 0)T corresponding
to the control of the central node. All the leaf states x1...x20 have the same asymptotic value
4.751 (which is obvious from the symmetry), while the central state converges to 9.978.

2.2.6 Examples

Here we present three examples of networks, namely a star, a line and an Erdős-Rényi graph,
and analyse the condition CA2 > 0 for them.

2.2.6.1 Network with star topology

To begin with we choose network with star topology with one central node and n leafs,
average state of which we want to control. Let nodes 1, ..., n be the leafs and node n + 1 be
the center. Assume the center and the first leaf belong to the boundary node set and thus
can be controlled (see Fig. 2.5).
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(a) (b)

Figure 2.6: Regions in α-β space, (a): satisfying (2.24) as n → ∞ for a star network, (b):
satisfying (2.27) for a line network.

Dynamics of this network can be written as system (2.2) with matrices

A =


−1− β 0 · · · 1

0 −1− β · · · 1
...

... . . . ...
1 1 · · · −n− α

 , B =


0 1
0 0
...

...
1 0

 , C = 1
n+ 11

T . (2.22)

Such choice of system matrices corresponds to the undirected network with star topology and
damping α > 0 for central node and β > 0 for all other nodes. The choice of B explores
both cases of controlling leaf and center. It allows for maximum generality, moreover the
controllability is guaranteed by Corollary 2.1. Integral controller (2.11) with γ = (1, 0)T
would correspond to a control applied only to the center, and controller with γ = (0, 1)T
would correspond to a control of the first leaf.

Calculating CA and CA2 gives

CA =
(
−β −β · · · −α

)
/(n+ 1) < 0,

(CA2)1,...,n =
(
β2 + (β − α)

)
/(n+ 1),

(CA2)n+1 =
(
α2 + n(α− β)

)
/(n+ 1).

(2.23)

CA2 > 0 means then α2 + n(α − β) > 0 and β2 + (β − α) > 0 with at least one of these
inequalities being strict. Solving this for damping of leaf nodes we obtain√

α+ 1
4 −

1
2 6 β 6 α+ α2

n
, (2.24)

thus β is bounded from both sides with respect to α. Moreover, as n→∞, we obtain a limit
inequality β 6 α, which means that damping for leafs should be lower than damping for the
center. The region satisfying (2.24) is depicted in Fig. 2.6a.

Simulation results for both cases, γ = (1, 0)T and γ = (0, 1)T , and for n = 20 leafs are
given in Fig. 2.5, with dampings α = 2, β = 1.1, desired output value yd = 5 and integral
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−β −β −β −α

(a)
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Figure 2.7: Scheme: Directed line network with n nodes. Boundary nodes are in green.
Plots: Output control of the directed line network, α = 0.2, κ = 12, yd = 5. (a): n = 4,
β = 0.002. Output y of the network is unstable, CA2 6> 0. (b), (c), (d): n = 100, β = 0.2.
Network is stable. (b): Output y. (c): Spread of states x. (d): Values of lim

t→∞
xi depending

on the number i ∈ {1, ..., 100}, which is the distance from the controlled node.

controller gain κ = 12. On Fig. 2.5a it is clearly seen that controlling the central node and
controlling the leaf has almost the same effect on the output y.

2.2.6.2 Line network

Now we explore an example of a directed line network with n nodes. This network is depicted
on Fig. 2.7. As usual, we are interested in controlling average state of the network, and it is
assumed that we can control only the input node x1 of the system. System matrices for n
nodes are given as follows:

A =


−1− β 0 · · · 0

1 −1− β · · · 0
...

... . . . ...
0 0 · · · −α

 , B =


1
0
...
0

 , C = 1
n
1T , γ = 1. (2.25)

This choice of system matrices corresponds to the directed line network with damping α > 0
for the last node and β > 0 for all other nodes.
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(a) (b)

Figure 2.8: Output control of Erdős-Rényi graph for n = 4000 nodes, κ = 250. (a): Dynamics
of output y. (b): Dynamics of states x.

Calculating CA and CA2 gives

CA =
(
−β −β · · · −α

)
/n < 0,

(CA2)1,...,n−2 = β2/n > 0,
(CA2)n−1 = (β2 + β − α)/n,

(CA2)n = (α2 + α− β)/n.

(2.26)

CA2 > 0 means then α2 + (α− β) > 0 and β2 + (β−α) > 0. Solving this for damping of leaf
nodes we obtain √

α+ 1
4 −

1
2 6 β 6 α+ α2, (2.27)

thus β is bounded from both sides with respect to α. The region satisfying (2.27) is depicted
in Fig. 2.6b.

In order to validate our conclusions about this example, we take directed line networks
with 4 and 100 nodes and check whether they are stable or unstable for different κ.

Fix α = 0.2, therefore for condition CA2 > 0 to hold one needs
√

0.45 − 0.5 6 β 6 0.24.
On Fig. 2.7 simulation results are shown for κ = 12, yd = 5 and for two values of β, the first,
β = 0.2, satisfies the condition, and the second β = 0.002 does not. In the case β = 0.2 and
n = 100 it is very interesting to see what are limit values of the state variables x. It appears
that they decrease exponentially starting from the controlled node x1, while preserving their
average equal to yd. This is due to the fact that in the steady state all nodes’ states except
the first one and the last one should satisfy relation xi−1 − (1 + β)xi = 0.

2.2.6.3 Random Erdős-Rényi graph

Here we present a simulation results for an integral controller for random Erdős-Rényi graph
with n = 4000 nodes and probability of creating an edge p = 0.01. Vector C = 1T /n
represents the average, and the system matrix A is a negative of the Laplacian of this ER
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graph with an additional random damping on every node taken from the uniform distribution
U(6, 7) such that CA2 > 0. Matrix B is chosen to be a random vector of zeros and ones with
equal probability. With such setup for any κ > 0 the system converges to the desired output
reference yd = 5, see Fig. 2.8.

2.3 Control of multiple linear aggregates

In this section we will enlarge our results of control of linear outputs to their reference values
to include also a multidimensional output setup. Ideally we would like to obtain a condition
similar to Theorem 2.3 which could describe classes of systems for which integral controller
with arbitrary large gains would be stable.

2.3.1 Problem formulation

Assume again the system (2.2) has a special structure, corresponding to a network controlled
from boundaries. Namely, let a state vector be divided into two parts, xT = (xT1 , xT2 ). States
x1 ∈ Rk correspond to the boundary nodes, which can be directly controlled, and states
x2 ∈ Rn−k are inner nodes, thus no control is applied to them. Assume further that the
subnetwork corresponding to the inner nodes is undirected, while an interconnection between
inner and boundary nodes exists only in the direction from boundaries to inner nodes, thus
there is no influence from inner nodes to boundaries. Schematically this structure is depicted
in Fig. 2.9.

x1 : boundary nodes

x2 : inner nodes

Figure 2.9: Network with boundary and inner nodes separation for multidimensional output
control. Inner nodes have no influence on boundary nodes and their subnetwork is undirected.

In contrast to the previous section, the goal is to control multiple outputs to their desired
values. Note that using direct control of boundary nodes, the number of outputs m should
be the same as the number of inputs k in order to use the passivity formalism. The system
model is then: 

ẋ1 = A11x1 + u,

ẋ2 = A21x1 +A22x2,

y = C1x1 + C2x2,

(2.28)
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with an additional assumptions that A22 = AT22 ∈ R(n−k)×(n−k) is a symmetric negative-
definite matrix, corresponding to the undirected stable subnetwork, and that A21 is of full
rank, meaning that the boundary nodes act independently.

Define the integral controller
u̇ = Γ(yd − y), (2.29)

where Γ ∈ Rk×k is a symmetric positive-definite matrix. Then closed-loop system has a
structure as in Fig. 2.10.

Γ1
s

C(sI −A)−1B

uyd e

y

−

Figure 2.10: Feedback interconnection of passive systems in MIMO case

As before, we will use passivity decomposition of feedback interconnection similar to
Section 2.2.4 and Theorem 2.4. Accomplishment of the control goal follows from H1(s) = Γ/s
being PR and H2(s) = C(sI −A)−1B being SPR. If Γ is positive-definite, H1(s) is PR. Thus
we will focus on proving that under certain conditions the system (2.28) is SPR.

2.3.2 Conditions on passivity

Now we present a theorem which is the main result of this section:

Theorem 2.5. If the matrix C1 is symmetric positive-definite and a matrix inequality (2.30)
is satisfied

4H + δK − JK−1J � 0, (2.30)

with matrices H,J,K and a positive scalar δ defined as follows:

H = C2A22C
T
2 + C2C

T
2 A11 +AT11C2C

T
2 +AT11C2A

−1
22 C

T
2 A11,

J = 2C1A11 + 2AT11C1 + C2A21 +AT21C
T
2 −AT21A

−1
22 C

T
2 A11 −AT11C2A

−1
22 A21,

K = AT21A
−1
22 A21,

(2.31)

δ =



1
4
(
λmax(JK−1) − λmin(JK−1)

)2
,

when 4λmax(CT2 C−1
1 C2) 6 λmin(JK−1) + λmax(JK−1)

4
(
λmax(CT2 C−1

1 C2) − 1
2λmin(JK−1)

)2

when 4λmax(CT2 C−1
1 C2) > λmin(JK−1) + λmax(JK−1)

(2.32)

then the system (2.28) has a strictly positive real (SPR) transfer function.
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Proof. A known result (Narendra 2014) from passivity theory says that a stable system is
SPR iff there exists P = P T � 0 such that{

ATP + PA ≺ 0,
PB = CT .

(2.33)

Note that it is not possible to test this property directly for a given system, since it requires
finding a feasible solution P , which can be done for example by optimization techniques such
as LMIs. However it was also shown (Tao and Ioannou 1990, Theorem 3.4) that if such matrix
P exists, then {

CB = (CB)T � 0,
CAB + (CAB)T ≺ 0.

(2.34)

It is easy to show that the conditions (2.34) are also sufficient if matrices B and C are square
and non-singular (all n nodes in the system are controlled). Indeed, take P = CTB−1. Then
BTPB = (CB)T = CB = BTP TB � 0, from which it is clear that P = P T � 0. Then,
CAB+ (CAB)T ≺ 0 implies BT (PA+ATP )B ≺ 0, which is possible only if ATP +PA ≺ 0.

In our case only k < n nodes are controlled, thus the control matrix is not square. But
we can assume that there exist also n− k “virtual” controls, acting on the inner nodes, such
that the modified control matrix is square. Moreover, by the structure of the system real
controls form the identity matrix of rank k, thus the reasonable choice for virtual controls is
the identity matrix of rank n− k.

The observation matrix C should also be augmented, and from the condition CB =
(CB)T � 0 with identity controls it follows that C = CT � 0. Therefore we can define all
the matrices,

C =
(
C1 C2
CT2 D

)
, A =

(
A11 0
A21 A22

)
, B = I,

where C1 = CT1 � 0 and D = DT ∈ R(n−k)×(n−k) is some positive-definite matrix which
corresponds to the “virtual” observations.

The main reason to augment the system with virtual controls and observations is that
once SPR-ness of the augmented system is proven, it immediately implies the that the transfer
function of the original system is also SPR. If there exists P such that (2.33) holds for the
augmented system, the same P can be used to prove (2.33) for the original system. Indeed,
the first condition ATP + PA ≺ 0 is the same for both systems, and PB = CT can be
decomposed into PBi = CTi , where Bi is the i-th column of the control matrix and Ci is
the i-th row of the observation matrix, thus for every subset of controls and observations the
equality holds.

Now we define a matrix G representing the second condition (2.34) for the augmented
system:

G =CAB + (CAB)T = CA+ATC =(
C1A11 +AT11C1 + C2A21 +AT21C

T
2 C2A22 +AT11C2 +AT21D

A22C
T
2 + CT2 A11 +DA21 A22D +DA22

)
(2.35)
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The main question is if there exists such matrix D = DT � 0 that C � 0 and G ≺ 0. In
general this question is very hard to answer, but we can restrict our attention to a special
class of matrices D such that the sufficient conditions on C and A can be obtained. Namely,
let us choose D = αI for some positive scalar α. Then if we can find α such that C � 0 and
G ≺ 0, the system is SPR. With the new variable α the matrix G becomes

G =
(
C1A11 +AT11C1 + C2A21 +AT21C

T
2 C2A22 +AT11C2 + αAT21

A22C
T
2 + CT2 A11 + αA21 2αA22

)
. (2.36)

By Schur’s Complement, C � 0 leads to the condition αI − CT2 C−1
1 C2 � 0, thus α should

satisfy
α > λmax(CT2 C−1

1 C2) (2.37)

And applying the Schur’s Complement to the matrix G (and recalling that A22 is negative-
definite) we see that G ≺ 0 is equivalent to

2α(C1A11 +AT11C1 + C2A21 +AT21C
T
2 )−

(C2A22 +AT11C2 + αAT21)A−1
22 (A22C

T
2 + CT2 A11 + αA21) ≺ 0

(2.38)

Using the definitions (2.31) and removing brackets we get

α2K − αJ +H � 0, (2.39)

where K ≺ 0 because A22 ≺ 0 and A21 is of full rank, and J and H are in general sign-
indefinite.

Define L = (−K)−1/2, where square root is chosen such that L is positive definite. Mul-
tiplying (2.39) from both sides by L, we obtain

α2I + αLJL− LHL ≺ 0, (2.40)

which can be rearranged as(
αI + 1

2LJL
)2
≺ L

(
H − 1

4JK
−1J

)
L (2.41)

If it had been a scalar quadratic equation, it would be possible to make the left-hand side zero
by choosing appropriate α. In our case it is not possible, but we can find an upper bound on
this term. Namely, (

αI + 1
2LJL

)2
≺ λmax

[(
αI + 1

2LJL
)2
]
I, (2.42)

where

λmax

[(
αI + 1

2LJL
)2
]

= max
{
λmax

(
αI + 1

2LJL
)
,−λmin

(
αI + 1

2LJL
)}2

=

= max
{
α+ 1

2λmax(LJL),−α− 1
2λmin(LJL)

}2
=

= max
{
α− 1

2λmin(JK−1),−α+ 1
2λmax(JK−1)

}2
.

(2.43)
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The minimal value is achieved when two arguments of maximum are equal. Define α∗1 =
1
4
(
λmin(JK−1) + λmax(JK−1)

)
. Then the bound is

δ1 := λmax

[(
α∗1I + 1

2LJL
)2
]

= 1
16
(
λmax(JK−1)− λmin(JK−1)

)2
. (2.44)

This value is optimal, but it assumes that α∗1 can be used, which is possible only if (2.37) is
satisfied. Denote α∗2 = λmax(CT2 C−1

1 C2). If α∗2 > α∗1, then the bound is

δ2 := λmax

[(
α∗2I + 1

2LJL
)2
]

=
(
α∗2 −

1
2λmin(JK−1)

)2
=

=
(
λmax(CT2 C−1

1 C2)− 1
2λmin(JK−1)

)2
.

(2.45)

Finally, defining δ := 4δ1 if α∗2 6 α∗1 and δ := 4δ2 otherwise, we can rewrite the quadratic
equation (2.41) as (

αI + 1
2LJL

)2
≺ 1

4δI ≺ L
(
H − 1

4JK
−1J

)
L, (2.46)

and, multiplying both sides by L−1, get a sufficient condition

− δK ≺ 4H − JK−1J, (2.47)

which is exactly the condition (2.30) that we aimed to obtain.

Remark 2.1. The result of the theorem is only a sufficient condition for the transfer function
to be SPR. The augmentation of the system with virtual controls and observations is still an
equivalence operation, as one can always choose such additional columns for B and CT that
PB = CT holds. The equivalence is lost when the matrix D is substituted with αI. For the
future work it would be possible to add an additional degree of freedom to this procedure by
considering an augmentation of matrix B in the form

B =
(
I 0
0 βI

)
,

thus obtaining a system of two quadratic matrix inequalities on α and β. Possibly tighter
sufficient conditions could be recovered as a result.

2.3.3 Examples

Inequality (2.30) is a straightforward condition to check, given the system, but it is hard to
interpret in general. However from the definitions of matrices H, J and K it is clear that the
condition is easier to satisfy for bigger C1, for C2 closer to zero and for bigger K and −K−1.
The latter happens when A22 is strongly negative, for example when inner nodes have strong
negative self-loops.
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Figure 2.11: Undirected line network, controlled from two sides, with n = 8 nodes. Boundary
nodes are in green. Network is splitted into two parts by dahsed line, denoting two separate
outputs y1 and y2.

(a) (b)

(c) (d)

Figure 2.12: Top: Smallest eigenvalue λmin(4H + δK − JK−1J), depending on (a): α and
γ for n = 100, (b): n and γ for α = 0.6. Dashed line denotes zero level. All points above
dashed line satisfy (2.30). Blue stars denote points in which bottom images are obtained.
Bottom: Multi-output control of the undirected line network, n = 100, κ = 50, α = 0.6.
(c): γ = 4, the closed-loop system is stable, (d): γ = 0.5, the closed-loop system is unstable.
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It can be shown on the example of an undirected line network, controlled from two sides,
with the aim to stabilize two halves of the network to different average values. The network
for n = 8 nodes is depicted in Fig. 2.11.

Dynamics of this network are given by the matrices

A =



−γ 0 0 0 · · · 0 0
0 −γ 0 0 · · · 0 0
0 1 −2− γ 1 · · · 0 0
0 0 1 −2− γ · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · −2− γ 1
1 0 0 0 · · · 1 −2− γ


, (2.48)

C =
(

1 0 0 · · · 0 α · · · α

0 1 α · · · α 0 · · · 0

)
, B =

(
I

0

)
. (2.49)

This system can be either SPR or not for given n, depending on parameters α and γ.
Intuitively, lower is α, smaller is the influence of C2, and easier is to obtain passivity. In the
same way if γ is large enough, A22 is strongly negative and thus system is passive. Indeed,
in Fig. 2.12a the smallest eigenvalue λmin of the matrix 4H + δK − JK−1J is depicted for
n = 100 depending on both α and γ. The condition (2.30) is satisfied when λmin > 0.

Dependence of the condition (2.30) on the size of a network is presented in Fig. 2.12b,
where the same λmin(4H + δK − JK−1J) is depicted for α = 0.6 for various γ and n. It is
clear that for a longer line network to be passive its negative self-loops should be stronger.

Now we apply an integral controller to this system, with a goal to stabilize the outputs
to the desired values yd1 = 5 and yd2 = 10. The controller has the form

u̇ =
(
κ 0
0 κ

)(
yd1 − y1
yd2 − y2

)
. (2.50)

Simulation results for n = 100 and κ = 50 are shown in Fig. 2.12c,d. Indeed, for fixed value
of α = 0.6, small value of γ = 0.5 leads to unstable behaviour of the closed-loop system, while
γ = 4 is stable.

2.4 Minimization of deviation

Previous sections showed that control of linear output can be performed rather easily by
integral controller and without any knowledge of the system. But in some cases controlling
an average with arbitrary control direction γ can lead to a poor performance: although the
average state y → yd, states themselves can be very far from yd. As an example one can look
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at Fig. 2.7c-d, where a spread of steady states x is shown. Although the average value is 5,
most of the states are almost zero, while some states are much larger, around 80.

This dispersion between states is captured by the squared deviation V . The smaller it is,
the closer are the states to their average value. Therefore, it makes sense to find a control
law u = u(y, V ) for the system (2.2) which solves simultaneously two problems: assures
limt→∞ y(t) = yd and minimizes the squared deviation V .

Preliminary, let us make the following observation. Controlling a linear output y ∈ Rm
to the desired value yd ∈ Rm in a steady state means that the system should satisfy m-
dimensional constraint −CA−1Bu∗ = yd, thus if the dimension of the steady-state control
vector u∗ is k > m, there are still k −m degrees of freedom left for optimizing the control
direction in sense of minimization of the squared deviation.

2.4.1 Explicit solution

Let us assume that the desired steady state is reached and try to find it. Denote x∗ and u∗
as the state vector and the control vector respectively in the steady state. Also denote the
steady-state squared deviation as V ∗. Then the equations for the steady state, obtained from
the system (2.2) in assumption that y → yd are

0 = Ax∗ +Bu∗,

yd = Cx∗,

V ∗ = x∗TPx∗.

(2.51)

Our problem can be seen as a linear constrained quadratic minimization problem:

minimize V ∗ = x∗TPx∗,

subject to Ax∗ +Bu∗ = 0,
Cx∗ = yd.

(2.52)

In comparison to the standard linear-quadratic regulator, note that problem (2.52) is formu-
lated for the steady state, thus there is no more dynamics in it, as well as no optimization of
the transient process.

Assume for a moment that all the system matrices are known. Using the fact that
the matrix A is stable, we can take the inverse and thus obtain the steady state vector
x∗ = −A−1Bu∗. Denoting S = BTA−TPA−1B and η = −BTA−TCT , we can write the
minimization problem (2.52) in terms of u∗:

minimize V ∗ = u∗TSu∗,

subject to ηTu∗ = yd.
(2.53)

Solution for the constrained problem is found using the Lagrangian:

L(u) = uTSu+ λT (ηTu− yd). (2.54)
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Minimizing it over the control variable and solving for the Lagrange multiplier λ, we find that
the explicit solution to the minimization problem is given by

λ∗ = −2
(
ηTS−1η

)−1
yd,

u∗ = S−1η
(
ηTS−1η

)−1
yd,

x∗ = −A−1BS−1η
(
ηTS−1η

)−1
yd.

(2.55)

Without loss of generality we will assume that S is positive definite for the future analysis.
This property corresponds to the fact that the minimizing control is unique.

The solution (2.55) cannot be used explicitly due to the fact that the system matrices
are assumed to be unknown. But the next section introduces an algorithm which is able to
stabilize the system in the arbitrary small neighbourhood of this solution.

2.4.2 Extremum seeking

Extremum seeking is a form of adaptive control where the steady-state input-output charac-
teristic is optimized, without requiring any explicit knowledge about this input-output charac-
teristic other than that it exists and that it has an extremum (Ariyur and Krstić 2003; Tan
et al. 2010). This algorithm, developed in the first part of XX century, explores the control
space with small oscillations and provides an approximation of the gradient, which then can
be integrated in order to find the optimum.

In standard realisations of extremum seeking, one adds to a current control input an
oscillating signal, which should be small and slow in comparison with the system dynamics.
Further, multiplying the output by the same oscillating signal, it is possible to recover an
estimate of the gradient of the output with respect to the input.

This standard algorithm is unfortunately not usable for us, since we want to perform a
constrained optimization (2.53) with a constraint that the average steady state should be
equal to the desired one. However, if we modify the algorithm so to minimize the Lagrangian
(2.54) instead of the squared deviation itself, we will optimize the original squared deviation
while preserving the average state constraint. This modification leads to an introduction of
a vector of Lagrange multipliers λ, which can be reconstructed by an additional integrator.

Assume the control law for the system (2.2) is given by
˙̄u = −κωr(ωt)(V + λT (y − yd)),
λ̇ = κaωκλ(y − yd),
u = ū+ ar(ωt),

(2.56)

where a and κ are small gains, ω is a small frequency, κλ is a relative Lagrange multiplier
adaptation gain, and the oscillating signal r(ωt) is defined as

r(ωt) =
√

2 ·
(
sin(2πωt) cos(2πωt) sin(4πωt) · · ·

)T
.
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Figure 2.13: Extremum seeking scheme for constrained minimization

Inputs to this control scheme (Fig. 2.13) are the output average y and output squared devi-
ation V . Therefore, the control law does not use any state feedback or the system matrices.
This is a multi-variable (Moase et al. 2011) extremum seeking control scheme, augmented
with an additional integrator for the adaptation of the Lagrange multiplier as in primal-dual
method (Nedić and Ozdaglar 2009; Simpson-Porco et al. 2019) with κλ being the relative
speed of adaptation.

To begin with the proof of the stability of the control scheme (2.56), we first present a
preliminary analysis, treating ω, κ and a as “small” parameters. Assuming ω is small, we
define a new time-scale τ := ωt, which should be slow enough such that the dynamics of the
system (2.2) is much faster than the dynamics of the adaptation. Under this time-scale the
closed-loop system equations are

ω
dx

dτ
= Ax+B(ū+ ar(τ)),

dū

dτ
= −κr(τ)

(
xTPx+ λT (Cx− yd)

)
,

dλ

dτ
= κaκλ(Cx− yd).

(2.57)

With small ω the singular perturbation analysis (Kokotović, Khalil, and O’reilly 1999) can be
performed, thus system dynamics is substituted with its steady-state input-state mapping,
i.e. x∗ = x∗(u) = −A−1Bu. The reduced dynamics is then approximated by

dū

dτ
= −κr(τ)

[
(ū+ ar(τ))TS(ū+ ar(τ)) + λT

(
ηT (ū+ ar(τ))− yd

) ]
,

dλ

dτ
= κaκλ(ηT (ū+ ar(τ))− yd).

(2.58)

As a next step we introduce an additional time-scale θ := κτ , using which the system becomes
dū

dθ
= −r(τ)

[
(ū+ ar(τ))TS(ū+ ar(τ)) + λT

(
ηT (ū+ ar(τ))− yd

) ]
,

dλ

dθ
= aκλ(ηT (ū+ ar(τ))− yd).

(2.59)
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This system is periodic in τ with unit period. When κ is small, the reduced dynamics can be
approximated well by the dynamics averaged over the unit period:

dūav
dθ

= −
1∫

0

{
r(σ)

[
(ūav + ar(σ))TS(ūav + ar(σ)) + λTav

(
ηT (ūav + ar(σ))− yd

) ]}
dσ,

dλav
dθ

=
1∫

0

{
aκλ(ηT (ūav + ar(σ))− yd)

}
dσ.

Recall that by the definition of r(·) the oscillating signal has the following properties:∫ 1
0 r(σ)dσ = 0 and

∫ 1
0 r(σ)r(σ)Tdσ = I. Then we can rewrite the system:

dūav
dθ

= −2aSūav − aηλav − a2R,

dλav
dθ

= aκλη
T ūav − aκλyd,

(2.60)

where R =
1∫
0
r(σ)r(σ)TSr(σ)dσ. It can be seen that 2Su+ηλ is the gradient of the Lagrangian

with respect to control, therefore
dūav
dτ

= −a∇ūavL+O(a2),
dλav
dτ

= aκλ∇λavL,
(2.61)

which converges to O(a) of the explicit solution (u∗, λ∗). Concretely, analysing steady state
we obtain

y∗av = ηT ū∗av ≡ yd,

λ∗av = λ∗ − a
(
ηTS−1η

)−1
ηTS−1R,

ū∗av = u∗ + a

2

[
S−1η

(
ηTS−1η

)−1
ηTS−1R− S−1R

]
.

(2.62)

The rigorous stability proof is based on the notion of semi-global practical asymptotic
stability:

Definition 2.2 (SPA stability, Tan, Nešić, and Mareels 2006). Consider the parametrized
family of systems:

ẋ = f(t,x, ε1, ε2, ..., εl), (2.63)
where x ∈ Rn and parameters of the system εi > 0 ∀i = 1, 2, ..., l. The system (2.63)
is said to be semi-globally practically asymptotically (SPA) stable in [ε1, ε2, ..., εl] at x∗, if
there exists β ∈ KL (Khalil and Grizzle 2002) such that the following holds: for each pair
of strictly positive numbers (∆, ν), there exists ε∗1 > 0 and for any ε1 ∈ (0, ε∗1) there exists
ε∗2 = ε∗2(ε1) > 0 and for any ε2 ∈ (0, ε∗2) there exists ε∗3 = ε∗3(ε1, ε2) > 0, ..., there exists
ε∗l = ε∗l (ε1, ε2, ..., εl−1) > 0 such that for any εl ∈ (0, ε∗l ) the solutions of (2.63) with the
parameters [ε1, ε2, ..., εl] satisfy:

|x− x∗| 6 β(|x0 − x∗|, (ε1 · ε2 · · · εl)(t− t0)) + ν (2.64)

for all t > t0 > 0, x(t0) = x0 with |x0 − x∗| 6 ∆.
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Remark 2.2. Note that the order of the parameters [ε1, ε2, ..., εl] is very important, because
the bound for every parameter depends on the choice of all previous parameters, i.e. ε∗3
depends on the chosen ε1 and ε2.

Theorem 2.6. System (2.2) with applied control law (2.56) is SPA stable in [a, κ, ω] at
(x∗, u∗, λ∗).

Proof. First we see that the system (2.60) is a linear system with the system matrix M =(
−2S −η
κλη

T 0

)
, multiplied by a. The matrix M is stable, which can be shown by analysing its

eigenvalues. Assuming µ with Reµ > 0 being eigenvalue ofM , we show that the characteristic
polynomial can have no roots. By the Schur complement:

det(M − µI) = det
(
−κληT (2S + µI)−1η − µI

)
det(−2S − µI). (2.65)

Matrix S is positive definite, thus 2S + µI has eigenvalues with strictly positive real parts,
which means det(−2S − µI) 6= 0. Further, defining S̄ = 2S + ReµI, by Lemma 2.1 we
rewrite Re(2S + µI)−1 =

(
S̄ + (Imµ)2S̄−1

)−1
which is clearly positive definite, therefore

Re ηT (2S + µI)−1η � 0. Finally, since Reµ > 0, the real part of the matrix inside of the
determinant of the first multiplier in (2.65) has negative eigenvalues, thus the determinant
cannot be zero, which means µ cannot be an eigenvalue of M .

We see that the matrix M has no non-negative eigenvalues, which means that the system
(2.60) converges to its steady state (2.62). In particular the system (2.60) is SPA stable in
a. Then, using Lemma 1 from Tan, Nešić, and Mareels 2006, we see that the system (2.58)
is SPA stable in [a, κ], and finally using Lemma 2 from Tan, Nešić, and Mareels 2006, we
conclude that the original closed-loop system is SPA stable in [a, κ, ω], which concludes the
proof.

Note that the stability of the closed-loop system (2.2)-(2.56) heavily depends on the chosen
parameters. We proved SPA stability in [a, κ, ω], which by definition means that the bound
for κ depends on the chosen α, and the bound for ω depends on the chosen α and κ. Therefore,
it is difficult to find any rigorous bounds for how small these parameters should be. We can
make only heuristic assumptions, such as requiring that all these parameters should be an
order of magnitude smaller than the system impulse response.
Remark 2.3 (Additional integral controller). The extremum seeking scheme (2.56) can be
enhanced by an array of possible modifications. For instance, an additional integral controller
can be added: 

˙̄u = −κaωΓ(yd − y)− κωr(ωt)(V + λT (y − yd)),
λ̇ = κaωκλ(y − yd),
u = ū+ ar(ωt),

(2.66)

where the matrix Γ ∈ Rk×m such that ηTΓ > 0 plays the same role as in the first sections of
this paper regarding average control. I.e. for positive system and in the case of scalar output
it is enough to take Γ > 0, as in Theorem 2.2. Stability proof for the controller (2.66) follows
exactly the same steps as in Theorem 2.6, replacing S > 0 by S + ΓηT /2 > 0.
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(a) (b)

Figure 2.14: Integral controller (2.11) for average control, T = 3.84. (a): Average state y,
black dashed line denotes yd. (b): Squared deviation V , black dashed line denotes V ∗.

This scheme can provide much faster convergence of the linear output (see the examples),
which means that the bigger adaptation gains can be used without the possibility for λ to
diverge. The equilibrium point for the averaged reduced model of the closed-loop system with
this scheme is (2.62), exactly the same as in the previous case.

There are a lot of other possible modifications of the extremum seeking scheme that can
be usefully included, for example the high- and low-pass filters that are added to pick up the
adaptation signal, see Tan et al. 2010.

2.4.3 Examples

All the algorithms presented before were tested on a graph constructed as a random Erdős-
Rényi graph with n = 40, probability of creating an edge (with weight 1) p = 0.1 and self-loops
with weight −5. The dimension of the control vector was chosen k = 3, with matrix B ∈ Rn×k
being filled randomly: each element was set either to 0 or 1 with equal probability. Matrices
C and P were chosen such that scalar linear output y corresponds to the average and V to the
squared deviation of the states of the system. Desired value for the average was set yd = 5.

In order to compare the speed of different algorithms we calculated characteristic times
for the dynamics of average and squared deviation, defined as a negative inverse of the largest
eigenvalue of the closed-loop system. Results of the simulations of different algorithms are
presented in Figures 2.14-2.18.

To begin with, we apply the integral controller (2.11) to the system, and the dynamics
of the average state y and the squared deviation V are shown on Fig. 2.14. The gain values
are κ = 1 and γ = [0, 0, 3]T . It is clearly seen that the squared deviation V does not reach
its minimal value V ∗, although this controller is the fastest one: its characteristic time is
T = 3.84.

Now we aim to minimize the deviation of the system states together with controlling
the average. If the extremum seeking scheme (2.56) is used, the goal is achieved, and the
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(a) (b)

(c) (d)

Figure 2.15: Extremum seeking control (2.56), T = 2350. (a): Average state y, black dashed
line denotes yd. (b): Lagrange multiplier λ, black dashed line denotes λ∗. (c): Squared
deviation V , black dashed line denotes V ∗. (d): Control vector u, dashed lines denote u∗.

(a) (b) (c)

(d) (e) (f)

Figure 2.16: Extremum seeking control (2.56) with the gains decreasing over time, T = 434.
(a): Average state y. (d): Squared deviation V . (b) and (e): Short-term plots for y and V .
(c): Lagrange multiplier λ. (f): Control vector u.
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(a) (b) (c)

(d) (e) (f)

Figure 2.17: Extremum seeking control (2.66), TV = 732 for squared deviation and Ty = 3.9
for average. (a): Average state y. (d): Squared deviation V . (b) and (e): Short-term plots
for y and V . (c): Lagrange multiplier λ. (f): Control vector u.

(a) (b) (c)

(d) (e) (f)

Figure 2.18: Extremum seeking control (2.66) with the gains decreasing over time, TV = 41
and Ty = 18. (a): Average state y. (d): Squared deviation V . (b) and (e): Short-term
plots for y and V . (c): Lagrange multiplier λ. (f): Control vector u.
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performance is shown in Fig. 2.15. The gain values are ω = 0.1, κ = 2, a = 1 and κλ = 0.01.
This scheme is rather difficult to tune and also very slow, the characteristic time is T = 2350,
three orders of magnitude higher than in Fig. 2.14. Also, significant oscillations in y, V and
u can be seen even after the convergence of the system.

To minimize the oscillations in the extremum seeking, one needs to minimize the gains,
but this would lead to an increased convergence time. Therefore we may try to improve the
extremum seeking controller by adding the time-dependence to the gains, making them large
at the beginning and decreasing them over time. Usually in adaptation algorithms the gains
should decrease slower than 1/t (Borkar 2009), otherwise the algorithm does not converge.
In the extremum seeking (2.56) the gains a and κ are multiplied together, therefore their
product should decrease slower than 1/t. In this example we set a = κ = 12

(t/10+1)0.4 together
with ω = 0.1 and κλ = 0.01. Performance of this scheme is shown in Fig. 2.16. It works
much faster than the original one (the characteristic time is T = 434), and the oscillations
are smaller, although the overshoot is larger.

Performance of the extremum seeking scheme (2.66) is shown on Fig. 2.17. The gain
values are ω = 0.15, κ = 2, a = 1 and κλ = 0.1. With respect to the scheme (2.56), the gain
κλ can be chosen larger. This leads to the faster adaptation of the Lagrange multiplier, thus
this scheme works faster than (2.56). The dynamics for average and deviation now behave
differently due to the additional controller for the average, therefore it makes sense to find
separate characteristic times for them. The characteristic time for average is just Ty = 3.9,
while for squared deviation it is TV = 732. The parameter of the integral controller is the
same as in the case of the integral controller for average, κaωγ = [0, 0, 3]T .

Finally, the implementation of the scheme (2.66) with time-decreasing gains is presented
in Fig. 2.18. The parameters are ω = 0.15, κλ = 0.1, κaωγ = [0, 0, 3]T , and the dependent
gains are a = 3

(t/100+1)0.4 and κ = 7
(t/100+1)0.4 . It is clearly seen that this scheme is much faster

than all previous ones, with the characteristic time for squared deviation being TV = 41 and
for average Ty = 18.

We see that the scheme (2.66) in general works faster that the scheme (2.56), but both of
them are too slow to compare with the simple average controller (2.11). Their performance
can be significantly increased using time-varying gains, although this leads to a large overshoot
at the beginning.

2.5 Concluding remarks

In this chapter we considered a problem of control of aggregates of a large-scale network
system (in particular its average and standard deviation). First we studied a linear output
control problem and examined the general properties of the transfer functions of the system
and the controller. We then studied the integral controller for the linear output regulation and
formulated sufficient condition CA2 > 0 for the convergence of any positive integral controller,
showing that the output stabilization is achieved when the transfer function of the system is
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SPR and giving in addition an example showing the conservatism of this condition. If the
system satisfies this condition, the parameters of the controller can be chosen arbitrarily, and
there is no need to have knowledge of the state vector or of the values of the elements of the
A matrix. We extended our analysis to multi-output systems for the purpose of controlling
average states of several clusters and derived a sufficient condition on the system matrices for
the multi-output system to be SPR.

Control of the average state does not mean that the individual system states will be close
to the average state. Therefore, in addition to controlling the average it is worth to minimize
the deviation of the system states. To solve this problem we used the extremum seeking
algorithm augmented with the primal-dual method for the constrained minimization. The
stability of this scheme was proven and its performance, as well as that of several modified
versions, was tested in the numerical simulations.

To conclude, we would like to further discuss the scope of application of this work. In
the introduction, we argued that average and deviation can be directly measured in sev-
eral practical examples. In an even broader range of cases, however, average and deviation
can be estimated through sampling some nodes and constructing suitable observers, as re-
cently illustrated by Niazi, Canudas-de-Wit, and Kibangou 2020a; Niazi, Canudas-de-Wit,
and Kibangou 2020b: the inclusion of such observers in our control scheme should be a topic
of future work.
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3.1 Introduction

Mathematical models of large physical systems can be described in various ways, for example,
partial differential equations, conservation laws, or networks. Regardless of the way it is
modelled, the problem of controlling state of the entire system is usually highly complex. In
the previous chapter we presented one particular example of an aggregated characteristics
control, where the average state of the system was stabilized to a desired value and the
standard deviation of states was minimized. However, general methods for controlling higher
moments of the system require solving the problem of moments closure (Kuehn 2016). In a
particular case, this problem is solved if the system is homogeneous, that is, if the evolution
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equation for each state equally depends on other states (Zhang et al. 2021), however this
solution can be applied only to specific systems.

Other aggregated characteristics of the state of the system may be parameters that de-
scribe the spatial properties of the solution. For example, if there is a clear peak in the
solution, it would be desirable to be able to describe the dynamics of the position and size
of the peak. Often when describing the state of the system it is enough to know a simplified
shape of the solution described by several parameters. Moreover, depending on various tasks,
various basic shapes may be assumed. In this chapter we will present a model reduction
method for conservation laws, where the model is reduced to the dynamics of user-defined ag-
gregated characteristics that describe the simplified shape of the solution. Conservation laws
are an important class of systems as they can describe various real processes. For example,
road traffic is often modelled by LWR model (Lighthill and Whitham 1955; Richards 1956),
which is a hyperbolic conservation law, and heat distribution is modelled by the parabolic
heat equation.

For the model reduction of PDEs, the Galerkin approximation (see Li and Qi 2010) is
often used. In this method, the solution is projected onto a set of basis functions, then a
finite subset of these functions is selected, and then the final ODE system for projection
gains is constructed. For a recent work on controlling PDEs using the Galerkin method and
B-splines see Tol, Visser, and Kotsonis 2019. The Galerkin method is applicable also to
nonlinear systems, however, the process of model reduction itself is linear. The state vector
of the obtained ODE system in general does not have any clear physical meaning, and its
dimension often turns out to be very large to describe the solution. Many methods have
been proposed to refine the solution and find good basis functions, see for example Baker and
Christofides 2000 and Barrault et al. 2004. Hyperbolic conservation laws can create shocks
and discontinuities in finite time, so conventional projective methods do not work. For their
approximation, discontinuous Galerkin methods (Cockburn, Karniadakis, and Shu 2012) were
developed, which can be easily parallelized for the efficient computation. Nevertheless, the
dimension of the state vector in this case is enormous.

In this chapter we propose a novel nonlinear model reduction method, in which just one
function is used instead of a set of basis functions. This function describes the form of
the solution depending on several parameters. The dynamics of the system turns into the
dynamics of the shape parameters. The resulting system can be used for estimation and
control tasks. We have also shown that the model reduction process minimizes the derivative
of the Wasserstein distance (Villani 2009) between the original and reduced systems.

In Section 3.2 the general derivation of the reduced model is presented. It is based on
an optimal projection of the system’s flow on the desired shape via least squares. Further,
the analysis of the Wasserstein distance between the original and reduced systems is given
together with a behaviour of the deviation of the integral solutions. Section 3.3 discusses
different shapes and presents one relevant choice of parametrization of the solution shape.
Then, an example of applying our method to the reduction of the LWR traffic model is
shown. Finally, Section 3.4 suggests a method for approximating boundary conditions and
gives more examples based on the LWR model as well as on the parabolic heat equation.
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3.2 Model reduction

3.2.1 Problem formulation

Let the original system be a one-dimensional conservation law PDE described by the following
model:

∂ρ(t, x)
∂t

+ ∂φ(t, x)
∂x

= 0, (3.1)

where a state of the model is a density ρ(t, x). The flow is described by

φ(t, x) = φ(x, ρ(t, x), ρx(t, x))

and can depend on the position, density or its derivative. If the flow depends only on the
density, (3.1) is a first-order PDE, and if a dependence on the derivative of the density is
also considered, it is a second-order PDE. System (3.1) is assumed to be defined on a domain
x ∈ [0, L]. Boundary conditions for (3.1) are not specified in advance (one can think of a state
continued infinitely in both directions), but we will introduce specific boundary conditions in
Section 3.4.

We aim to create a reduced system, which is also a conservation law:

∂ρ̂(t, x)
∂t

+ ∂φ̂(t, x)
∂x

= 0, (3.2)

where ρ̂(t, x) is an approximated density and φ̂(t, x) is an approximated flow. At each time
we set the approximated density to have a form ρ̂(t, x) = g(x, θ(t)), where g(x, θ) is a function
which describes the desired shape based on m parameters θ ∈ Rm. This function is assumed
to be Lipschitz continuous in both x and θ. We will discuss shape functions in more details in
Section 3.3, but for now as an example one can imagine g(x, θ) being a Gaussian kernel with
θ = (µ, σ), where µ is a position of the peak and σ is a standard deviation. The parameters
θ will constitute the state of the reduced system. Our goal is to find an evolution of θ such
that (3.2) approximates the original system (3.1) as close as possible.

3.2.2 Formal solution

Therefore, we assume that there exists some ODE system which drives the dynamics of the
parameters θ:

θ̇ = F (θ). (3.3)

From ρ̂(t, x) = g(x, θ(t)) it is possible to write a time evolution equation for the approximated
density by the chain rule:

∂ρ̂(t, x)
∂t

= ∂g(x, θ)
∂θ

F (θ). (3.4)

Here we denote by ∂g(x, θ)/∂θ the generalized derivative, which is bounded due to the Lip-
schitz continuity of g(x, θ). We can imagine that change of the density (3.4) was caused by
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some flow φ̂(t, x) which we call an approximated flow. To satisfy (3.2), this flow should obey
a conservation law:

∂φ̂(t, x)
∂x

:= −∂ρ̂(t, x)
∂t

, (3.5)

which we will use as a definition for φ̂(t, x). Taking an integral and substituting (3.4), we
obtain

φ̂(t, x) := φ̂0(t)−

 x∫
0

∂g(s, θ)
∂θ

ds

F (θ), (3.6)

where φ̂0(t) is an integration constant and does not affect the dynamics. Finally, assume we
fix an initial time point t0 and we set the density of the reduced system ρ̂(t0, x) to be equal
to the density ρ(t0, x) of the original system.

Now we are ready to define the model reduction procedure. If both conservation laws start
from the same initial condition, the natural way to minimize the difference between them is to
minimize the Lp-difference between the flows. In particular, in Section 3.2.3 it is shown that
minimization of difference between flows in L1 norm coincides with the Wassershein distance
derivative minimization. However, for computational purposes we prefer to choose L2 norm,
which leads to the least squares minimization. This particular choice appears to be related to
the minimization of L2 norm of integral solutions’ deviations as it is shown in Section 3.2.4.
Performing least squares minimization, the dynamics F (θ) for the reduced system can be
found as

F (θ) = argminf∈Rm
(

min
φ̂0∈R

J(f, φ̂0)
)
, (3.7)

where

J(f, φ̂0) =
L∫

0

∣∣∣φ̂(t0, x)− φ(t0, x)
∣∣∣2 dx =

L∫
0

∣∣∣∣∣∣φ̂0 −

 x∫
0

∂g(s, θ(t0))
∂θ

ds

 f − φ(t0, x)

∣∣∣∣∣∣
2

dx. (3.8)

The minimization parameters are f ∈ Rm and φ̂0 ∈ R, where the first one is a value of F (θ)
at the moment of optimization f = F (θ(t0)), and the second one is an additional parameter
φ̂0 = φ̂0(t0) which is used to define approximated flow in (3.6) but is redundant for the
dynamics of θ in (3.3).

The flow φ(t, x) in general depends on ρ(t, x), but by our assumption at time point t0 the
density of the original system is the same as the approximated density, thus

φ(t0, x) = φ(x, ρ̂(t0, x), ρ̂x(t0, x)) = φ(x, g(x, θ), gx(x, θ)). (3.9)

We further define a vector of decision variables ξ = (fT , φ̂0)T , a function h : [0, L] × Rm →
R1×(m+1)

h(x, θ) =

− x∫
0

∂g(s, θ)
∂θ

ds , 1

 , (3.10)

and then two new functions based on h(x, θ):

H(θ) =
L∫

0

h(x, θ)Th(x, θ) dx, (3.11)
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ψ(θ) =
L∫

0

h(x, θ)Tφ(x, g(x, θ), gx(x, θ)) dx. (3.12)

With this notation the cost functional (3.8) can be written as

J(ξ) = ξTH(θ)ξ − 2ξTψ(θ) + const, (3.13)

and its minimization is performed by setting ∂J
∂ξ = 0. Minimization of the quadratic function

is achieved by solving a linear equation H(θ)ξ = ψ(θ), and its solution is just ξ = H(θ)−1ψ(θ).

Finally, we are interested in the first m components of the decision vector ξ, therefore the
optimal dynamics for the reduced system is

θ̇ = F (θ) =
[
H(θ)−1ψ(θ)

]
1,...,m

. (3.14)

Note that knowing the flow φ(x, ρ, ρx) and class of functions g(x, θ) one can compute
H(θ) and ψ(θ) symbolically, thus obtaining a closed-form solution to the problem. Moreover,
the matrix H(θ) depends only on the parametrization g(x, θ) and not on the particular flow
φ(x, ρ, ρx), therefore it is necessary to symbolically compute it (and its inverse) only once for
each chosen parametrization.

3.2.3 Relation to Wasserstein distance minimization

It is possible to show that the minimization of flow discrepancy leads to the minimization
of Wasserstein distance divergence between real and reduced solution. The Lp-Wasserstein
distance between two nonnegative densities ρ0(x) and ρ1(x) of equal mass on the domain
x ∈ [0, L] is defined as

Wp(ρ0, ρ1) = min
T∈T

 L∫
0

|T (x)− x|p ρ0(x) dx

1/p

, (3.15)

where T is the set of all possible transformations over the domain [0, L] that transfer the mass
from one configuration to another. In other words, for any x ∈ [0, L] the position defined by
T (x) means that the mass ρ1(x) consolidates the mass ρ0(T (x)). More precisely,

T :=

T : [0, L]→ [0, L]
∣∣∣∣∣

b∫
a

ρ1(x) dx =
T (b)∫
T (a)

ρ0(x) dx ∀a, b ∈ [0, L]

 . (3.16)

We will show that the L1-minimization of flows is equivalent to the minimization of the time
derivative of L1-Wasserstein distance.

Assume at some time moment t0 the state of the original system ρ(t0, x) and the recon-
structed state of the reduced system ρ̂(t0, x) are equal. Then the L1-Wasserstein distance is
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zero and the transformation T which achieves minimum is identity, T (x) = x. Equivalently
we can define time-dependent transformation T (t, x) between two densities, and since they
coincide at t0, we have T (t0, x) = x. In the same way the time-dependent Wasserstein dis-
tance can be defined. Now take the time derivative of the L1-Wasserstein distance (3.15) for
this particular transformation:

Ẇ1(ρ, ρ̂, t0) =
L∫

0

|Ṫ (t0, x)|ρ(t0, x) dx =
L∫

0

|Ṫ (t0, x)ρ(t0, x)| dx, (3.17)

where we used the fact that ρ(t0, x) > 0.

Using the definition (3.16) of the transformation T ∈ T and taking its time derivative by
the Leibniz rule, we get

b∫
a

∂ρ̂(t0, x)
∂t

dx =
T (t0,b)∫
T (t0,a)

∂ρ(t0, x)
∂t

dx+ Ṫ (t0, a)ρ(t0, a)− Ṫ (t0, b)ρ(t0, b). (3.18)

Both ρ(t, x) and ρ̂(t, x) obey the conservation laws (3.1) and (3.2) with the flows φ(t, x) and
φ̂(t, x) respectively. Therefore (3.18) can be rewritten as

φ̂(t0, a)− φ̂(t0, b) = φ(t0, T (t0, a))− φ(t0, T (t0, b)) +
+ Ṫ (t0, a)ρ(t0, a)− Ṫ (t0, b)ρ(t0, b).

(3.19)

This condition should be satisfied for all a, b ∈ [0, L], therefore

φ̂(t0, x) = φ(t0, x) + Ṫ (t0, x)ρ(t0, x), (3.20)

where we also used that T (t0, x) = x for all x. Finally, substituting this into (3.17) we obtain

Ẇ1(ρ, ρ̂, t0) =
L∫

0

|φ̂(t0, x)− φ(t0, x)| dx, (3.21)

which is minimized exactly by the L1-minimization of the flows discrepancy.

3.2.4 Relation to deviations between integral solutions

Let us introduce a special function M(t, x) called Moskowitz function, which is an integral
solution to the conservation law (3.1) and which has a definition:

∂M(t, x)
∂t

= φ(t, x), ∂M(t, x)
∂x

= −ρ(t, x). (3.22)

It follows that the system (3.1) is just an equality of the second mutual derivatives ofM(x, t).
Choosing M(L, 0) = 0, we can write the integral form as

M(t, x) =
L∫

0

ρ(0, s)ds+
t∫

0

φ(τ, 0)dτ −
x∫

0

ρ(t, s)ds. (3.23)
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If the system’s state represents density (mass in a unit length), then M(t, x) can be seen as
an overall mass which was transfered through the point x up to the time t. In particular, in
traffic modeling this function corresponds to the number of vehicles passed through a fixed
point, see Newell 1993. Now define

J∗(θ) = min
f∈Rm

(
min
φ̂0∈R

J(f, φ̂0)
)
, (3.24)

which is a minimal achievable value of the cost functional (3.8). Then, introducing a
Moskowitz function M̂(t, x) for the reduced system (3.2) and using the minimization of (3.8)
in Section 3.2.2, one can see from the definition (3.22) that

∥∥∥ ˙̂
M(t, ·)− Ṁ(t, ·)

∥∥∥2

2
= J∗(θ(t)), (3.25)

because the norm of difference of time derivatives of Moskowitz functions is exactly the norm
of difference of flows. Therefore equation (3.25) provides an additional interpretation of the
result in Section 3.2.2 as a minimization of integral solutions’ deviations.

3.2.5 Equilibrium points

It appears that the model reduction procedure defined in Section 3.2.2 preserves equilibrium
solutions while transforming the original system to the reduced one. In particular, it is
possible to show that any equilibrium solution to the original system (3.1), which can be
exactly reconstructed via chosen parametrization, is by itself an equilibrium solution to the
reduced system (3.14):

Theorem 3.1. Let ρ∗(x) be an equilibrium solution to (3.1), and assume there exists θ∗ such
that ρ∗(x) = g(x, θ∗) for all x ∈ [0, L]. Then θ∗ is an equilibrium point for the reduced system
(3.14).

Proof. First of all, ρ(t, x) ≡ ρ∗(x) means that ρ(t, x) does not depend on time, or ∂ρ/∂t = 0,
which by (3.1) leads to ∂φ/∂x = 0 in the equilibrium case. Therefore the flow should be
constant in space: φ(t, x) ≡ φ∗(t) for some φ∗(t). Now it becomes clear that the functional
J(f, φ̂0) in (3.8) can be minimized to zero by setting f = 0 and φ̂0 = φ∗(t) at each moment t,
which by (3.7) means that the dynamics of the reduced system satisfy F (θ∗) = 0. Therefore,
θ∗ is itself an equilibrium point.

Note that the opposite property does not hold in general: if F (θ∗) = 0 for some θ∗, the
reduced system will be in equilibrium, however the original system can still evolve “orthogo-
nally” if the flow φ(t, x) vanishes being projected on a subspace formed by ∂g(x, θ∗)/∂θ.
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3.3 Shape parametrization

The most important question which arises while designing the reduced system is the choice
of the class of reduced solutions g(x, θ). One possible solution which is known as Galerkin
projection is to take a countable set of basis functions ψi(x) for i ∈ {1, ...,m} and to define θ
to be their multipliers:

g(x, θ) =
m∑
i=1

θiψi(x). (3.26)

Popular examples for the basis functions ψi(x) are the set of all polynomials or the set of all
harmonic functions. However this leads to a large number of parameters θ which need to be
maintained, especially when the density profile cannot be easily described as a finite sum of
basis functions.

Galerkin projection (3.26) is linear in θ, which explains its popularity. However the method
in Section 3.2.2 is designed with nonlinear dependence of shapes g(x, θ) on θ in mind. There-
fore what we suggest is to find a parametrization for each particular case. One of such cases
when the traditional approach struggles is in describing densities with single peak or spike,
since they require a large number of basis functions. Instead of Galerkin projection (3.26) one
could use a shape specially designed for single peak functions. One obvious choice of shape
in this case would be a Gaussian-type function:

g(x, θ) = γe−
(x−µ)2

2σ2 (3.27)

which has three parameters θ = (γ, µ, σ), describing the height, the position and the spread of
the peak respectively. It is possible to derive a reduced system (3.14) for the parametrization
(3.27), however it appears that since g(x, θ) is required to be only Lipschitz continuous, we
can use a more simple class of piecewise-linear functions, which at the same time has much
more degrees of freedom.

3.3.1 A piecewise-linear approximation

Let θ = (γ, µ, k1, k2, c1, c2), where the meaning of the parameters is as follows: γ is the height
of the peak, µ is the position of the peak, k1 is the slope to the left, k2 is the slope to the
right, c1 is the constant level to the left, c2 is the constant level to the right. We can define
a piecewise-linear function g(x, θ) as follows:

g(x, θ) =



c1, if x < p1,

γ + k1(x− µ), if p1 6 x < µ,

γ + k2(x− µ), if µ 6 x < p2,

c2, if p2 6 x,

(3.28)

where p1 = µ − (γ − c1)/k1 and p2 = µ − (γ − c2)/k2. This parametrization is depicted in
Fig. 3.1.
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Figure 3.1: The parametrization of the piecewise-linear peak functions

Advantage of the parametrization (3.28) over the Gaussian-type function (3.27) is in the
simplicity of computing h(x, θ) in (3.10) and further H(θ) in (3.11), which can be done
analytically and renders polynomial functions. Moreover, piecewise-linear parametrization
(3.28) can have many different degrees of freedom (in particular here we set its number to
6), while (3.27) has only three, and adding additional degrees of freedom would require using
other types of complicated nonlinear functions. Finally, in theory it is possible to use higher-
order polynomials and define spline-type approximations instead of (3.28), which would still
be computationally feasible since all integrals in (3.10) and (3.11) would be still analytic.

Note that contrary to the Galerkin projections such parametrizations can lead to the
situation when detH(θ) = 0, therefore the system (3.14) can no longer be solved. This
happens for example in (3.28) when c1 = γ. It is clear that in this case the shape becomes
degenerate, the parameters become dependent and it is no longer possible to resolve which
one of them should be varied to give the smallest flow discrepancy. Thus the system works as
long as it preserves its shape, which is rather expected if one thinks that the particular class
of functions was chosen based on the assumed shape of the real density.

3.3.2 Application to LWR system

We will show the capabilities of our method on the example of the LWR system:

∂ρ(t, x)
∂t

+ ∂φ(ρ(t, x))
∂x

= 0, (3.29)

where
φ(ρ(t, x)) = vmax

(
1− ρ(t, x)

ρmax

)
ρ(t, x).

Such choice of the flow corresponds to the Greenshields fundamental diagram (Greenshields
et al. 1935). This system models the flow of cars on a highway in assumption that the
velocity of each car decreases linearly with the density of vehicles nearby. More comprehensive
description of LWR system will be presented in Section 5.2. Here we set the length of the
road to L = 1000m with ρmax = 0.181 veh/m (one vehicle per 5.5m) and vmax = 60 km/h.
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(a) (b)

(c) (d)

Figure 3.2: Comparison of real and reduced solutions to the LWR equation (3.29). (a):
Evolution of real density ρ(t, x). (b): Evolution of approximated density ρ̂(t, x). (c): Com-
parison of densities at t = 12s. Real density ρ(t, x) is shown with blue line, approximated
density ρ̂(t, x) with red line and initial density ρ0(x) with black dashed line. (d): Comparison
of densities at t = 50s.

The results of the comparison are shown in Fig. 3.2. We simulated T = 50 seconds
of both systems’ behaviours. The original system (3.29) was numerically solved using Go-
dunov method (Godunov 1959). Matrix H(θ) and vector ψ(θ) were symbolically computed
using MATLAB Symbolic Toolbox, and the system (3.14) was numerically solved using Euler
method. We used a space grid with 200 cells for the original system simulation, and the num-
ber of time steps was 500 for both systems. We calculated the time needed to simulate both
systems: on average, simulation of the original system took 0.207241 seconds, and simulation
of the reduced system took 0.027709 seconds, thus being almost 10 times faster. We believe
that by designing a specialized software instead of using a general toolbox one can achieve
much higher performance.

It is clear that the reduced solution perfectly tracks the position and the slopes of the
peak, and the difference between the real density and the approximated density arises only
because of the non-smoothness of the reduced solution. It is also interesting to note that
if one continues simulation further, the reduced system will fail at time moment t = 54s,
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because the shock arises on the left slope and k1 becomes infinity. It is a known property of
the LWR system which can produce shocks in a finite time. In our assumption g(x, θ) should
be continuous both in x and θ for the correct definition of the artificial flow (3.6). Using a
different kind of discontinuous parametrization it is possible to reduce the LWR system to a
system similar to wave-front tracking algorithm, see Baiti and Jenssen 1998.

3.4 Boundary problems

3.4.1 Formal solution

Up to now not a word was said about boundary conditions which affect the solution to the
original system and which should be taken into account properly in the reduced system.
Essentially all the analysis performed in the previous sections was based on the assumption
that the solutions evolve in R, with only exception being the cost functional (3.8). Therefore
boundary conditions were not taken into account either in original or reduced systems.

Now assume that the original system is given by the equation (3.1) defined on the domain
[0, L]. Let one of the boundary flows φ(t, 0) = φin(t) or φ(t, L) = φout(t) (or possibly both
of them) be given. The flows can be either given explicitly as functions of time or they can
depend on the state of the system itself, as if one would like to control the system via feedback.

The given boundary flows work as constraints for the flow discrepancy minimization prob-
lem. Namely, if the inflow φin(t) is given, the solution ξ to the problem of minimization of
the cost functional J should satisfy the constraint

h(0, θ)ξ = φin(t), (3.30)

and similarly for outflow in case φout(t) is given.

The constraints can be written in a unified manner if one defines matrix C(θ) and column-
vector d such that they have one row if only one condition is given and two rows if both
boundary conditions are set. Consider both boundary conditions are set, then we define

C(θ) :=
(
h(0, θ)
h(L, θ)

)
, d :=

(
φin(t)
φout(t)

)
.

Then the constrained minimization of J is equivalent to the minimization of the Lagrangian

L = ξTH(θ)ξ − 2ξTψ(θ) + 2λT (C(θ)ξ − d), (3.31)

with λ ∈ R2 being a vector of Lagrange multipliers. Solution to this problem is given by

λ =
(
CH−1CT

)−1 (
CH−1ψ − d

)
,

ξ = H−1
(
ψ − CTλ

)
,

(3.32)
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(a) (b)

(c) (d)

Figure 3.3: Comparison of real and reduced solutions to the heat equation (3.34) for the
temperature of a copper rod in Celsius assuming the system is closed: φin = φout = 0 K·m/s.
(a): Evolution of real temperature ρ(t, x). (b): Evolution of approximated temperature
ρ̂(t, x). (c): Comparison of temperatures at t = 1.5s. Real temperature ρ(t, x) is shown with
blue line, approximated temperature ρ̂(t, x) with red line and initial temperature ρ0(x) with
black dashed line. (d): Comparison of temperature at t = 6s.

where we omit dependencies on θ for simplicity of writing. From ξ the dynamics of θ can be
easily recovered by discarding the last row:

θ̇ =
[
H−1

(
ψ − CTλ

)]
1...m

. (3.33)

It is interesting to node that by putting the constraints on both boundaries one guaranties
the conservation of mass, therefore the overall mass in the original and the reduced system
are always equal.
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(a) (b)

(c) (d)

Figure 3.4: Comparison of real and reduced solutions to the heat equation (3.34) for the
temperature of a copper rod in Celsius in an externally heated system: φin = 1 K·m/s and
φout = −2.5 K·m/s. (a): Evolution of real temperature ρ(t, x). (b): Evolution of approxi-
mated temperature ρ̂(t, x). (c): Comparison of temperature at t = 0.5s. Real temperature
ρ(t, x) is shown with blue line, approximated temperature ρ̂(t, x) with red line and initial
temperature ρ0(x) with black dashed line. (d): Comparison of temperature at t = 2s.

3.4.2 Application to the heat equation

We can demonstrate how the method works for a bounded system by considering the heat
equation:

∂ρ(t, x)
∂t

+ ∂φ(ρ(t, x))
∂x

= 0, (3.34)

where φ(ρ(t, x)) = −αρx(t, x), thus (3.34) is a linear second-order parabolic PDE. Let system
(3.34) represent a heated rod of copper of a length L = 1m. The state ρ(t, x) denotes temper-
ature of the rod in Celsius at the point x ∈ [0, L] at time t. Parameter α = 0.0111m2/s is a
thermal conductivity of copper. We consider approximation of the copper rod’s temperature
using parametrization (3.28). The simulations were performed with the same space and time
discretization as in the previous section. Initial conditions were set in such way that the
center of the rod was heated to 100◦ Celsius, while the ends were kept at 10◦ Celsius.
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Assuming that there is no heat transfer between the domain and the environment, we set
the boundary conditions φin = φout = 0 (measured as Kelvin·meter/second). The results are
presented in Fig. 3.3. We can see that the system comes close to the thermal equilibrium in
just 6 seconds, and the final temperature is around 28◦ Celsius. Further, it is clear that the
reduced model approximates the original one almost perfectly.

Alternatively, we can set non-zero boundary conditions, heating the rod at the ends. Let
us introduce heat flows φin = 1 K·m/s and φout = −2.5 K·m/s. Note that the negative value
of φout corresponds to the flow propagating “backwards”, which for the boundary at x = L

means the flow is going into the system. The results are shown in Fig. 3.4. The rod is heated
very fast. It is clear that although the reduced system cannot capture the shape of the real
solution near the right boundary at time t = 2s, it still averages it in terms of the chosen
shape. In this setup at t = 2.15s the shape becomes degenerate as c2 reaches γ.

3.4.3 Application to LWR system

Time-dependent control over only one boundary can be demonstrated on the LWR example.
Using the model (3.29) and the same parameters as in Section 3.3.2, assume that we set an
additional inflow φin(t) = 0.2 + 0.15 sin(t/2) vehicles per second. Results of the numerical
simulation are presented in Fig. 3.5. It appears that due to the shape limitations the reduced
system averages the high frequency components, while precisely tracking the initial peak.

3.5 Concluding remarks

In this chapter we presented a method of describing 1D conservation law system based on
notion of solution shape. We reduced system state to a set of well-tractable shape param-
eters and derived their dynamics, providing closed-form solution. We further analyzed its
properties, showing in particular that this solution minimizes Wasserstein distance between
the original and the reduced system and that the equilibrium points of the original system
are preserved. The idea of representing system’s solution by specific shape parameters can
potentially lead to new types of control design based on the aggregated characteristics of the
system. There are thought some open problems that should be considered:

• It was shown in Sections 3.3.2 and 3.4.2 that solutions to the reduced system can become
degenerate once the chosen shape is violated. To fight with degeneracy of solutions it is
interesting to develop a methods for reparametrizations and changes of shape, as well
as to allow discontinuous shape functions.

• Since the reduced system is an approximation to the original one, it would be desirable
to find bounds on a difference between systems’ solutions to guarantee the performance
and help in choosing the particular shape function.
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(a) (b)

(c) (d)

Figure 3.5: Comparison of real and reduced solutions to the LWR equation (3.29) with
φin(t) = 0.2 + 0.15 sin(t/2) vehicles per second. (a): Evolution of real density ρ(t, x). (b):
Evolution of approximated density ρ̂(t, x). (c): Comparison of densities at t = 12s. Real
density ρ(t, x) is shown with blue line, approximated density ρ̂(t, x) with red line and initial
density ρ0(x) with black dashed line. (d): Comparison of densities at t = 50s.

• Here we presented the method of the shape-based model reduction for 1D conservation
laws. The method could be generalized to include more classes of systems, starting from
multidimensional conservation laws and adding then general PDE models. Moreover,
it is straightforward to generalize the idea of shape functions to systems with finite-
dimensional state space, therefore including ODE networks in scope of the method.

• In Section 3.4.3 periodic inflow was applied to LWR system modeling traffic. However
LWR model cannot be controlled directly, since the inflow which enters the system
is equal to the minimum between demand on the boundary, which can be directly
controlled, and supply in the system, which depends directly on the state of the system
itself. Therefore in fact one can pose only inequality-type constraints on the in- and
outflow instead of equality-type constraints discussed in Section 3.4. Generalization of
the method to inequality constraints could be useful in application of the method to
such systems with weak boundary conditions.
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4.1 Introduction

Most of the systems we encounter in real life consist of such a large number of particles that the
direct analysis of their interaction is impossible. In such cases, simplified models are used that
aggregate the behavior of a set of particles and replace them with a continuous representation.
In general, discrete and continuous system descriptions often share a lot of common properties,
which was noticed a long time ago. A common theory for discrete and continuous boundary
problems was developed in Atkinson 1964, and properties of continuous wave-type oscillatory
systems in a limiting case of discrete systems were derived in Gantmakher and Krein 1941.
However even if the discretization procedure transforming PDEs to ODEs is a widely known
and widely used method, the inverse problem of transforming an ODE system into PDE is
more rarely studied.

In this chapter we focus on this particular problem, with the aim of filling this gap and
providing a counterpart to the discretization procedure. This can be useful since PDEs
provide a much more compact way of describing the system, which in many cases is easier
to analyze analytically than the corresponding ODE system. In particular we are interested
in systems which are spatially distributed and which have a position-dependent interaction,
such as traffic in the city, power networks, robot formations, etc.

ODE network PDE

Figure 4.1: Transformation of ODE network into a single PDEmodel via continuation method.

Our idea is to replace the original spatially distributed ODE system by a continuous PDE
whose state and space variables preserve the state and space variables of the original system,
see Fig. 4.1. We develop a method for linear spatially invariant ODEs which transforms them
into PDEs with the help of finite differences. We name this method as a continuation, since
it is exactly opposite to the discretization procedure. Further we show how the continuation
converges to the original system in sense of spectrum. Using computational graph formalism
(see review Baydin et al. 2018) we extend the method to nonlinear systems and further to
space-dependent systems and systems with boundaries. The advantage of the continuation
method is that it allows to recover a PDE which describes the same physical system as the
original ODE network. Such a description can be very helpful both for analysis and control
purposes.
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4.1.1 State of the art

The idea of replacing the system with its compact and simplified representation is widely
used, especially for the ODE systems describing large-scale networks. Probably the most
known approach of this type is a clustering technique which transforms a network into a
smaller one while conserving the properties and the dynamics, see Aoki 1968; Niazi et al.
2019. Apart from various clustering techniques large-scale networks are studied by mean
field methods in case of the all-to-all interaction topology. In this situation the effect of
the network on each node is the same, therefore it is enough to use an equation for a single
agent together with parameters of a state of the whole network, see Acebrón et al. 2005a
for a review with application to Kuramoto networks. The idea of mean field can be further
extended to track not only a single agent’s state, but the whole probability distribution over
all agents’ states in the network. This method is called population density or probability
density approach (Grabert 2006) and it can be used for example to model large biological
neural networks (Nykamp and Tranchina 2000). Large-scale systems can be also simplified
by studying the approximations to their probability densities, represented by moments. E.g.,
Yang, Dimarogonas, and Hu 2015; Zhang et al. 2021 took a moment-based approach to control
crowds dynamics. A similar approach of network control via its first two moments is used
as a starting point in Chapter 2 of this document. Different applications and issues of the
method of moments are covered by Kuehn 2016. The idea of moment-based description of
distributions is closely related to the shape-based model reduction for PDEs presented in
Chapter 3.

Mean field and population density approaches are suitable in the case when the interaction
topology between nodes is all-to-all. In other cases, the continuous representation of a system
requires more sophisticated tools. A recently emerged theory of graphons studies graph limits,
i.e. structural properties that the graph possesses if the number of nodes tends to infinity while
preserving interaction topology. Using graphons it is possible to describe any dense graph
as a linear operator in continuum space, see Lovász 2012. This method was further used to
control large-scale linear networks (Gao and Caines 2019) and to study sensitivity of epidemic
networks (Vizuete, Frasca, and Garin 2020). However, the resulting operator is non-local
and requires the original network to have very dense connections. For example, Medvedev
2014 studied a dense network of Kuramoto oscillators using a continuous representation with
integral coupling operator.

It worth noticing that by applying population density method or graphon theory to a sys-
tem with position-dependent interactions, such as traffic in the city, power networks, robot
formations, etc, we would end up with a continuous model which either looses spatial structure
of the problem or describes it using non-local operators such as in partial-integral differential
equations. Our idea is to assume predominance of local interactions and derive a single PDE
describing the system. We start in Section 4.2 by defining a continuation for linear ODEs, dis-
cussing questions of accuracy, convergence and choice of the particular model. In particular it
appears that the PDE approximation can capture all the effects of the original ODE provided
the order of continuation (the highest spatial derivative) is high enough. Section 4.3 continues
to nonlinear models, utilizing the computational graph formalism. In Section 4.4 the method
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ρi ρi+s2ρi+s1 ρi+sj

a2a1

aj

x
xi−1 xi xi+1 xi+sj

∆x ∆x

Figure 4.2: System of nodes aligned in 1D line with dynamics given by (4.1) with s1 = −1
and s2 = 1.

is extended to much broader class of systems, including multidimensional or space- and time-
varying systems and also discussing boundary conditions. We also show that the method can
be applied to multi-agent systems where positions of agents are themselves included into a
state vector. This technique gives possibilities to derive density-based models for such sys-
tems, which is demonstrated further in Chapter 5. Finally, in Section 4.5 application of the
method to general linear networks is covered and several particular structures are recovered.
PDE representations of networks are useful for control and analysis purposes of oscillatory
networks, among others, with several possible applications presented in Chapter 6.

4.2 Continuation for linear spatially invariant systems

The simplest class of systems for which the transformation of ODE into PDE can be performed
is given by linear ODE systems corresponding to the dynamics of states of nodes, which are
aligned on the 1D line in space and depend only on some fixed set of their neighbours. Let
the node i ∈ Z have a state ρi(t) ∈ R and a fixed geographical position xi ∈ R such that for
every i the distance between two consecutive nodes in space is constant, xi+1− xi = ∆x (the
assumption of ∆x being constant will be relaxed later on). The number of nodes is assumed
to be infinite. Then the systems of our interest take the form

ρ̇i(t) =
N∑
j=1

ajρi+sj (t), (4.1)

where ρ̇i(t) denotes time derivative. That is ρ̇i(t) linearly depends only on N neighbouring
nodes shifted by sj ∈ Z for j ∈ {1, ..., N}, and aj ∈ R are the system gains, see Fig. 4.2. In
other words, ρ̇i(t) is defined as a convolution of ρi(t) with a sequence of values aj situated at
indices −sj . Thus the relation between ρ̇i(t) and ρi(t) is shift-invariant with respect to index
shifts. This type of systems belongs to the class of linear spatially invariant systems (see e.g.
Bamieh, Paganini, and Dahleh 2002), which is a natural class for distributed control. In the
future we will omit writing the dependence on t whenever this is the only argument of ρ.
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4.2.1 Motivating example

We start by considering the most simple ODE system of class (4.1) which has spatial depen-
dence:

ρ̇i = 1
∆x (ρi+1 − ρi) . (4.2)

Comparing with (4.1), here N = 2, a1 = 1/∆x, a2 = −1/∆x, s1 = 1 and s2 = 0. This
equation describes a transport of some quantity along the line, and is usually referred as a
Transport ODE. Equation (4.2) often comes as a result of a discretization process applied to
another equation,

∂ρ

∂t
(t, x) = ∂ρ

∂x
(t, x). (4.3)

This equation belongs to a class of PDEs, which is usually thought to be more difficult class
of equations to study than ODEs. However, equation (4.3) describes a perfect transport of
information with finite propagation speed along the line, which can be studied much more
easily in PDE form than in ODE, as it perfectly conserves the form of a solution, performing
only a shift along the line as time increases. We will refer to this equation as a Transport
PDE.

Equation (4.2) can be obtained from (4.3) by the discretization process, which has been
a well-established mathematical tool. Nevertheless, up to now there was no strict procedure
describing a general process which could render equation (4.3) from (4.2). In the next sub-
sections we explore more how the discretization procedure is defined for linear systems and
how it should be inverted to obtain a continuation process.

4.2.2 Discretization

The discretization of PDEs is usually performed by a finite difference method, where the par-
tial derivatives are approximated by finite differences. For example, in the case of Transport
ODE,

∂ρ

∂x
≈ 1

∆x (ρi+1 − ρi) .

This approximation is valid in case when ∆x is small. Indeed, assuming that the solution to
PDE is given by a smooth function ρ(x) and using Taylor series, we can write

ρi+1 = ρ(xi+1) = ρ(xi) + ∂ρ

∂x
∆x+ ∂2ρ

∂x2
∆x2

2 + ..., (4.4)

where all partial derivatives are calculated in xi. Thus, subtracting ρi and dividing by ∆x,
we get

∂ρ

∂x
=
[ 1

∆x (ρi+1 − ρi)
]
− ∂2ρ

∂x2
∆x
2 − ..., (4.5)

which means that the residual belongs to the class O(∆x), which is a class of all functions
which go to zero at least as fast as ∆x. Thus, taking ∆x sufficiently small, one can ensure the
arbitrary accuracy of the approximation, provided all the partial derivatives are bounded.
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Accuracy can be further increased by taking different points where the function is sampled,
called stencil points. For example, writing

ρi−1 = ρ(xi−1) = ρ(xi)−
∂ρ

∂x
∆x+ ∂2ρ

∂x2
∆x2

2 − ..., (4.6)

subtracting (4.6) from (4.4) and dividing by 2∆x, we get

∂ρ

∂x
=
[ 1

2∆x (ρi+1 − ρi−1)
]
− ∂3ρ

∂x3
∆x2

6 + .... (4.7)

Thus, using stencil points {i− 1, i+ 1} to approximate the first-order derivative in the point
i the obtained residual belongs to the class O(∆x2), which means that this discretization of
the Transport PDE has order of accuracy 2.

In general, if one wants to approximate the derivative of order m in point i using N stencil
points {i+ s1, i+ s2, ..., i+ sN} with m < N in form

∂mρ

∂xm
≈

N∑
j=1

ajρi+sj (4.8)

where coefficients aj are unknown, one can define SN,N ∈ RN×N , a ∈ RN and c ∈ RN by

SN,N =


1 · · · 1
s1 · · · sN
... . . . ...

sN−1
1 · · · sN−1

N

 , a =


a1
a2
...
aN

 , c = m!
∆xm



0
...
1
...
0


,

where c is nonzero on the position m+ 1, and solve a linear system

a = S−1
N,N c. (4.9)

The system (4.9) can be trivially obtained by writing Taylor series for all points ρi+s1 ...ρi+sN
and summing them in a linear combination as in (4.8). The obtained order of accuracy is
at least O(∆x(N−m)), and sometimes can be higher if some of the higher derivatives are also
eliminated (as in case of (4.7)).

4.2.3 Continuation

Essentially the same process can be applied to the equation (4.1) to get the PDE version. For
every term in a sum we can write

ρi+sj = ρ(xi+sj ) = ρ(xi) + ∂ρ

∂x
∆xsj + ∂2ρ

∂x2
∆x2s2

j

2 + ... (4.10)

Thus, assume we state the problem of finding the PDE approximation of (4.1) in form
N∑
j=1

ajρi+sj ≈
d∑

k=0
ck

∆xk
k!

∂kρ

∂xk
, (4.11)
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where d is the highest order of derivative (order of continuation) we want to use. Note that
zero is also included in the right summation, since the function itself can be used in the
resulting PDE. Then, introducing Sd+1,N ∈ R(d+1)×N , a ∈ RN and c ∈ Rd+1 as

Sd+1,N =


1 · · · 1
s1 · · · sN
... . . . ...
sd1 · · · sdN

 , a =


a1
a2
...
aN

 , c =


c0
c1
...
cd

 , (4.12)

substituting (4.10) in (4.11) we see that the vector of unknown coefficients c can be found by
direct multiplication,

c = Sd+1,N a, or ck =
N∑
j=1

ajs
k
j ∀k ∈ {0, .., d}. (4.13)

Once (4.13) is solved, we write the PDE approximation to (4.1):

∂ρ

∂t
=

d∑
k=0

ck
∆xk
k!

∂kρ

∂xk
. (4.14)

As an example, applying (4.13) to the Transport ODE (4.2) with d = 1 we obtain the
Transport PDE (4.3).

4.2.4 Analysis of reversibility

Procedures (4.9) and (4.13) look very similar from the algebraic point of view, however they
are qualitatively different in the way how the problem is formulated and how we should
interpret their results.

The discretization procedure tries to find the best approximation to a continuous and
smooth function ρ(t, x) and its derivatives. What is most important, the discretization step
∆x is usually an adjustable parameter which can be set by a system engineer arbitrarily small
to satisfy the desired performance. Thus the notion of accuracy of a discretization is used to
describe how fast the solution of the discretized equation tends to the solution of the original
equation when ∆x tends to zero. In some sense this means quality of the discretization, since
the higher order of accuracy means that the engineer can take larger ∆x to achieve the same
error and thus use the smaller number of states in the discretized system.

Contrary, when the original system is given by the ODE, the nodes have fixed locations,
thus ∆x is a true constant representing properties of an underlying physical system and
it cannot be changed by an engineer. In turn this means that the accuracy defined as a
class O(∆x(N−m)) cannot measure quality of the approximation as ∆x does not behave as an
infinitely small value. Moreover, in the ODE case the system state ρi is known only on a given
set of points i, thus in general the continuation ρ(t, x) can be non-smooth or discontinuous.
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Even if we assume the smoothness at the initial moment of time, the dynamics can render its
derivatives unbounded. As a result the series in (4.10) can be non-convergent.

We know however that the systems (4.1) and (4.14) are connected by finite difference
methods (4.9) and (4.13). We will use this fact as a definition of a reversible PDE approxi-
mation to an ODE.

Definition 4.1. Discretization of PDE to ODE is called valid if it is performed according to
the finite difference method (4.9).

Definition 4.2. Continuation of ODE to PDE is called reversible if there exists a valid
discretization of the obtained PDE to the original ODE.

These definitions basically mean that we assume a reversible PDE representation to be
more natural, more intrinsic way to describe the system, and that the original ODE is just a
particular discrete realization in physical world that we encountered. In particular definitions
4.1 and 4.2 say that if we use continuation on some ODE and then perform discretization at
the same stencil points, we should arrive at the same ODE. This procedure sets a constraint
on the minimum order of the reversible PDE:

Theorem 4.1. The order of continuation d of the PDE which can be obtained from the ODE
with N stencil points should satisfy the following constraint to be reversible:

d+ 1 > N. (4.15)

Proof. Indeed, assume d + 1 < N . This means that the PDE approximation (4.14) has the
highest derivative at most of the order d. Thus we can augment the vector of coefficients c
by N − d− 1 zeros corresponding to higher-order derivatives obtaining a new vector c̄ ∈ RN .
Augmenting c with N − d − 1 zeros to obtain c̄ is equivalent to the augmentation of Sd+1,N
with N − d − 1 zero rows since c was defined by (4.13). Now, applying the discretization
process (4.9) to c̄ we should arrive at the same vector a of the parameters of the ODE system.
Since this should be true for any a, we substitute S−1

N,N and augmented Sd+1,N and obtain a
condition 

1 1 · · · 1
s1 s2 · · · sN
...

... . . . ...
sN−1

1 sN−1
2 · · · sN−1

N


−1


1 1 · · · 1
s1 s2 · · · sN...

... . . . ...
sd1 sd2 · · · sdN
0 0 · · · 0...

... . . . ...


= I,

which is impossible to satisfy since the second matrix is singular. Therefore there is no valid
discretization process for the PDE obtained by continuation with order d such that d+1 < N ,
which by definition means that such continuation is not reversible.

Case d + 1 = N is trivial, since the equations (4.9) and (4.13) are equivalent in this
situation. This obviously provides a validity of the continuation procedure.
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Now assume d+ 1 > N . Then the obtained vector of coefficients c is of higher dimension
than a. The discretization (4.9) cannot be applied directly, since there is not enough stencil
points to express the finite differences for the derivatives of order higher than N−1. However
we can increase the set of stencil points. Let us choose additional d + 1 − N stencil points
s̄N+1, s̄N+2, ..., s̄d+1. Applying continuation (4.13) to the original ODE (4.1) and then (4.9)
to the obtained PDE using the augmented set of stencil points we get a new ODE gains ā
which are expressed as

ā =


1 · · · 1 1 · · · 1
s1 · · · sN s̄N+1 · · · s̄d+1
... . . . ...

... . . . ...
sd1 · · · sdN s̄dN+1 · · · s̄dd+1


−1

1 · · · 1
s1 · · · sN
... . . . ...
sd1 · · · sdN

 a.
We can show that first N elements of ā are exactly a and the rest is zero, irrespective of the
chosen additional points s̄j . This means that the artificially introduced stencil points do not
appear in the discretized PDE, rendering the same ODE as the original one.

Indeed, for any matrix S ∈ Rd×N for d > N and S̄ ∈ Rd×(d−N) such that the matrix(
S S̄

)
is invertible one can prove that

(
S S̄

)−1
S =

(
I

0

)
. (4.16)

To prove (4.16) one can just multiply it by invertible matix
(
S S̄

)
from both sides and

obtain the trivial equality S = S.

The latter part of the proof of Theorem 4.1 means that the PDE obtained by the process
(4.13) with d+ 1 > N has more information that one with d+ 1 = N , since it provides exact
Taylor approximations not only on the given set of points, but in the additional d + 1 − N
points which can be chosen arbitrary. This property can be used to define the excessive
accuracy as d+ 1−N .
Definition 4.3. Excessive accuracy of a reversible continuation process of ODE to PDE is
defined as the number of additional points in which the corresponding discretization process
can be made exact simultaneously, i.e. d+ 1−N .

For example, a continuation

ρi+1 − ρi → ∆x∂ρ
∂x

is of excessive accuracy 0, since trying to discretize the PDE on any larger set of stencil points
except from {i, i+ 1} will give different ODE. At the same time a continuation

ρi+1 − ρi−1 → 2∆x∂ρ
∂x

+
(

0 · ∂
2ρ

∂x2

)
has excessive accuracy 1 because the second derivative vanishes (thus d = 2), and it is possible
to discretize the PDE on a set of stencil points of size 3 (with one additional point), for example
{i− 1, i, i+ 1}.
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4.2.5 Analysis of convergence

It is clear that the higher order of continuation is taken, the better the original ODE operator
(4.1) is approximated by the PDE (4.14). It is possible to study the convergence properties
by shifting the problem to the frequency domain using the Fourier transform. In this section
we will perform a spectrum analysis and then derive a bound on solutions’ deviation.

For simplicity of writing without loss of generality assume in this section ∆x = 1. Let us
define a function a(x) as

a(x) =
N∑
j=1

ajδ (x+ sj) , (4.17)

where δ(x) is the Dirac delta function. Further, assume that the state ρi(t) of (4.1) was
sampled from some integrable function ρi(t) := ρ(t, xi). Then, equation (4.1) is equivalent to
the following system with convolution

∂ρ

∂t
(t, x) = (a ? ρ(t, ·))(x). (4.18)

Use now the Fourier transform, defined as

F {f} (ω) =
∫ ∞
−∞

f(x)e−ixωdx (4.19)

for any integrable function f(x) and for any frequency ω ∈ R. It is known that the Fourier
image of a convolution is a multiplication. Therefore the system (4.18) is just

∂F {ρ}
∂t

(t, ω) = F {a} (ω)F {ρ} (t, ω), F {a} (ω) =
N∑
j=1

aje
isjω, (4.20)

where F {a} (ω) was found by direct calculation of Fourier transform. To interpret (4.20),
let us introduce an operator T over integrable functions such that Tρ is a right-hand side
of the original ODE system (4.18). A spectrum of an operator T is defined as a closed
set of points λ ∈ C for which T − λI is not invertible. Thus finding a spectrum of (a ?
ρ(t, ·))(x) is equivalent to finding a closure of a set of all λ such that for some v(x) there
is no solution to (a ? ρ(t, ·))(x) − λρ(t, x) = v(x). Taking Fourier transform one arrives at
(F {a} (ω)− λ)F {ρ} (t, ω) = F {v} (ω), which clearly has no solution for F {v} (ω) 6= 0 if
and only if λ = F {a} (ω) for some ω. Therefore we have just shown that the spectrum of
T is parametrized by the closure of the image of F {a} (ω). In the case of (4.20) F {a} (ω),
being an image of the unit circle, coincides with its closure, therefore the spectrum is simply
{F {a} (ω)|ω ∈ R}. In fact, this result is well-known, since the system (4.1) on an infinite line
belongs to the class of Laurent systems, whose spectrum is known to be (4.20), see Frazho
and Bhosri 2010.

Now let us calculate the spectrum of the right-hand side of the continualized system (4.14).
Denote the state of the continualized system as ρc(t, x). By another property of the Fourier
transform, if the function ρc(t, x) is sufficiently smooth and its derivatives are integrable, we
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can recover their Fourier images by

F
{
∂kρc

∂xk

}
(t, ω) = (iω)k F {ρc} (t, ω).

Therefore (4.14) is read in frequency domain as

∂F {ρc}
∂t

(t, ω) = F {c} (ω)F {ρc} (t, ω), F {c} (ω) =
d∑

k=0
ck

1
k! (iω)k . (4.21)

Substituting (4.13), we can rewrite F {c} (ω) in (4.21) as

F {c} (ω) =
N∑
j=1

aj

d∑
k=0

(isjω)k
k! . (4.22)

Now, comparing (4.22) with (4.20), it is clear that (4.22) uses the first d+ 1 terms of the
Taylor expansion of the exponential function in (4.20). In fact, since the exponential function
is analytic on the whole complex plane, we have just proven the following result:

Theorem 4.2. The spectrum of the PDE operator (4.14) converges to the spectrum of the
original ODE operator (4.1) pointwise as d→∞.

Define now a Discrete-Time Fourier Transform (or DTFT, although taken along the co-
ordinate axis) for an infinite sequence fn for n ∈ Z as

D {f} (ω) =
+∞∑

n=−∞
fne
−inω, ω ∈ [−π, π]. (4.23)

This transform is also known as the z-transform, evaluated on the unit circle. We can use
Theorem 4.2 to prove that the sampled trajectory of the PDE converges to the solution of
the ODE as d increases:

Theorem 4.3. Let ρ̃i(t) := ρi(t) − ρc(t, xi) be a deviation between the original and the
continualized systems’ solutions at the nodes’ positions. Assume that at initial moment

D {ρ} (0, ω) = F {ρc} (0, ω) ∀|ω| 6 π,

0 = F {ρc} (0, ω) ∀|ω| > π,
(4.24)

which defines the initial state of the PDE with respect to the original ODE. Then for ∀t > 0

‖ρ̃(t)‖l2 6 eReλmaxt
(
eγdt − 1

)
‖ρ(0)‖l2 , where

Reλmax = max
|ω|6π

ReF {a} (ω), γd =
N∑
j=1
|aj |
|πsj |d+1

(d+ 1)! e
|πsj |.

(4.25)

In particular for any fixed t > 0 ‖ρ̃(t)‖l2 → 0 as d→∞.



74 Chapter 4. Continuation method for large-scale modeling and control

Proof. First of all, by definition (4.23) of DTFT it is clear that D {a} (ω) ≡ F {a} (ω), where
the former is taken for the sequence ai in (4.1) and the latter is taken for the function a(x) in
(4.17). Since the right-hand side of (4.1) represents a convolution of ρi(t) with the sequence
ai, we can use this equality and write the evolution of the DTFT image of ρi as

∂D {ρ}
∂t

(t, ω) = F {a} (ω)D {ρ} (t, ω). (4.26)

Further it is easy to show (e.g. by Fischer 2018) that the sampling of ρc(x, t) induces
periodization on its Fourier image:

D {ρc(t, xi)} (ω) =
+∞∑

n=−∞
F {ρc(t, x)} (ω + 2πn).

By (4.24) and by (4.21) F {ρc} (t, ω) = 0 for |ω| > π, t > 0, which means that
D {ρc(t, xi)} (ω) ≡ F {ρc(t, x)} (ω) for |ω| 6 π. Therefore, the DTFT of ρ̃i(t) is

D {ρ̃} (t, ω) := D {ρ} (t, ω)−F {ρc} (t, ω) ∀ω ∈ [−π, π].

Let us now use Parseval’s identity for DTFT, see Frazho and Bhosri 2010:

‖ρ̃(t)‖2l2 =
+∞∑
i=−∞

|ρ̃i|2(t) = 1
2π

π∫
−π

∣∣∣D {ρ̃} (t, ω)
∣∣∣2dω. (4.27)

The integral is taken over the bounded interval of frequencies since the transformed sequence
is discrete.

One can now notice that (4.21) and (4.26) are just scalar linear time-invariant ODEs for
each ω, thus it is possible to write their explicit solutions as

D {ρ} (t, ω) = eF{a}(ω)tD {ρ} (0, ω),
F {ρc} (t, ω) = eF{c}(ω)tF {ρc} (0, ω).

Using the condition (4.24) on initial conditions D {ρ} (0, ω) = F {ρc} (0, ω) ∀|ω| 6 π we write
the Fourier image of ρ̃i(t):

D {ρ̃} (t, ω) =
(
eF{a}(ω)t − eF{c}(ω)t

)
D {ρ} (0, ω) = eF{a}(ω)t

(
1− e(F{c}(ω)−F{a}(ω))t

)
D {ρ} (0, ω)
(4.28)

which holds ∀|ω| 6 π. Inserting (4.28) in (4.27) and using Hölder’s inequality we get

‖ρ̃(t)‖2l2 6
1

2π

π∫
−π

∣∣∣D {ρ} (0, ω)
∣∣∣2dω ×

× max
|ω|6π

∣∣∣eF{a}(ω)t
∣∣∣2 × max

|ω|6π

∣∣∣1− e(F{c}(ω)−F{a}(ω))t
∣∣∣2 .

(4.29)

The first multiplier is just ‖ρ(0)‖2l2 . Further it is evident that max|ω|6π
∣∣∣eF{a}(ω)t

∣∣∣2 =
e2 Reλmaxt. Thus we will concentrate on the third multiplier.
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Let z = u + iv be any complex number. Then by Mitrinovic and Vasic 1970-(3.8.23) we
can write |ez − 1|2 6

(
e|z| − 1

)2
. This bound increases with respect to |z|, therefore

max
|ω|6π

∣∣∣1− e(F{c}(ω)−F{a}(ω))t
∣∣∣2 6

(
eγt − 1

)2

for any γ > max|ω|6π |F {c} (ω)−F {a} (ω)|. We can find the lowest bound on γ denoted as
γd using the definitions of F {a} (ω) and F {c} (ω) in (4.20) and (4.22). Namely,

|F {c} (ω)−F {a} (ω)| =

∣∣∣∣∣∣
N∑
j=1

aj

+∞∑
k=d+1

(isjω)k
k!

∣∣∣∣∣∣ 6
6

N∑
j=1
|aj |

+∞∑
k=d+1

|sjω|k

k! 6
N∑
j=1
|aj |
|sjω|d+1

(d+ 1)!

+∞∑
k=0

|sjω|k

k! ,

(4.30)

and the last summation is just e|sjω|. Finally, since (4.30) increases with |ω|, we can substitute
the maximal value |ω| = π and thus obtain γd as in (4.25). Finally the bound (4.25) is
recovered by taking square root of (4.29).

The final statement of the theorem can be proven if one notices that γd → 0 as d → ∞,
which leads to (eγdt − 1)→ 0 as d→∞ for any fixed t > 0.

Remark 4.1. Condition (4.24) means that the continuous system should be initialized with the
low-frequency continuation of the original ODE initial state. Note that this can always be done
since (4.24) uniquely determines the Fourier image of ρc(0, x). For example an initial state
ρ0 = 1 and ρi = 0 for i 6= 0 results in D {ρ} (ω) ≡ 1 which by (4.24) sets ρc(0, x) = sinc(πx).
Moreover, bound (4.25) at t = 0 ensures that ρ̃i(0) ≡ 0, therefore the continuation coincides
with the ODE initial state.

4.2.6 Analysis of stability

We can now turn to the discussion of stability of the obtained PDE. Due to the simple nature
of scalar equations (4.20) and (4.21) we can say that the system (4.20) is stable if and only if
ReF {a} (ω) 6 0 ∀ω ∈ R, otherwise it is unstable. A simple corollary of Theorem 4.3 can be
derived:

Corollary 4.1. If ReF {a} (ω) 6 Reλmax < 0 ∀ω ∈ R, then ‖ρ̃(t)‖l2 → 0 as t → ∞ for all
high enough d.

Proof. Indeed, for high enough d we have γd < −Reλmax, which means that (4.25) is bounded
by an exponential e(Reλmax+γd)t → 0 as t→∞.

Note that although Theorem 4.3 states the convergence of sampled trajectories, in The-
orem 4.2 the convergence of spectrums is not uniform. Moreover, the spectrum (4.20) is an
image of the unit circle and thus is a compact set, while the spectrum (4.22) for any d is
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Figure 4.3: Left: spectrum for the Transport ODE (4.31) eiω − 1 (blue circle) together
with spectrums of the continuations up to the order 6, according to (4.32). As d increases,
spectrums converge to the blue circle, however for some orders (such as 4 or 5) they can become
unstable. Right: Schematic picture of an artificial instability for high order d. Although the
continuation (blue) coincides with the original solution (red) at the nodes’ positions, high-
frequency components can be unstable.

a polynomial and thus unbounded. This can lead to an undesirable effect which we call an
artificial instability, meaning that the tails of the image of the polynomial (4.22) happen to
lie in the positive complex half-plane, as in the left panel of Fig. 4.3 for d = 4 or 5. Essen-
tially this means that the PDE becomes unstable on high frequencies, see the right panel of
Fig. 4.3. We can though induce several corollaries from Theorems 4.2 and 4.3 which can help
in understanding stability properties of the obtained PDE.

Corollary 4.2. If the original ODE (4.1) is unstable, there exists D > 0 such that for all
d > D the continualized system (4.14) will also be unstable.

Proof. Since the original system is unstable, there exists ω0 such that ReF {a} (ω0) > 0.
Now, by Theorem 4.2 there exists D > 0 such that for all d > D ReF {c} (ω0) > 0.

Corollary 4.3. PDE (4.14) with an odd order of continuation d has the same stability prop-
erties as a PDE with the order of continuation d− 1.

Proof. All odd terms in the spectrum (4.22) are purely imaginary and thus have no impact
on the stability.

Corollary 4.4. Artificial instability is introduced when the last even term in the PDE (4.14)
has ck > 0 if k = 4m or ck < 0 if k = 4m+ 2 for some m ∈ Z+.
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Proof. Artificial instability comes if the term of the polynomial (4.22) with the highest even
power is positive, which leads to a positive real part of the spectrum on high frequencies.
Positivity of the highest even term is exactly equivalent to the statement of the corollary
since i4m = 1 and i4m+2 = −1 for any m ∈ Z+.

We will demonstrate the convergence of spectrums on the Transport ODE

ρ̇i = ρi+1 − ρi. (4.31)

With ∆x = 1, the continuation of (4.31) is:

∂ρ

∂t
(t, x) =

d∑
k=1

1
k!
∂kρ

∂xk
(t, x), (4.32)

Spectrum of (4.31) equals eiω−1 by (4.20), which is depicted as a blue circle in the left panel
of Fig. 4.3 together with the spectrums of the continuations up to the order d = 6. It is clear
that as the order increases, the approximations become better.

The original Transport ODE is stable. Moreover, it has an intrinsic diffusion in it, which
can be captured by the continuation of the second order. However, the continuations of orders
4 and 5 are unstable. It happens because of an artificial instability as described in Corollary
4.4, since c4 = 1 > 0. In general all stable continuations of the Transport ODE are given by
the orders {1, 2, 3, ..., 4m+ 2, 4m+ 3, ...} for all m ∈ Z+.

Theorems 4.2 and 4.3 say that increasing order of continuation leads to the more cor-
rect capture of the behavior of the original ODE. Further, Theorem 4.1 shows that high
enough order of continuation guarantees that the original model can be reconstructed back
from the approximated PDE system. However, from the practical point of view, low-order
PDEs capture low frequency effects very well, while high orders can cause artificial instability.
Moreover, lack of tools for control and analysis of high-order PDEs makes impractical their
derivation. Therefore it usually makes sense to stick to the orders d = 1 or d = 2, which will
be used in examples throughout this thesis.

4.3 Continuation for nonlinear spatially invariant systems

Finite differences give us a complete tool for linear systems, but for nonlinear systems they
should be applied in composition with nonlinearities. Using an additional concept of compu-
tational graph it is possible to elaborate the case of general nonlinear ODE systems.

As in the previous case we assume without loss of generality that the nodes are equally
spaced along the 1D line, a node i having a state ρi and a position xi. Then the general
nonlinear ODE with space dependence takes form of

ρ̇i = F (ρi+s1 , ρi+s2 , ..., ρi+sN ). (4.33)

We further assume that the function F is continuous.
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result

sin sin

ρi−1 ρi ρi ρi+1

-1 1
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Figure 4.4: Computational graph for the system (4.34). Similar subgraphs are outlined by
dashed rectangles of the same color. Possible choices of sinus subgraph’ positions are written
in the corners of blue rectangles.

4.3.1 Computational graph

Kolmogorov 1957 showed that every multidimensional continuous function can be written as
a composition of functions of one variable and additions. This work laid the basis for the
neural networks function approximation, which is now a major branch of modern machine
learning.

Here we will use this idea and assume that the function F is given in the form of computa-
tional graph (see Baydin et al. 2018 for review). This is a directed acyclic graph, every node
of which represents a one-dimensional function, applied to a weighted sum of inputs coming
to this node. We assume that the leaves of this graph are the states of the system ρi+sj and
the root node computes the resulting value of F .

As an example of the computational graph we will consider a system

ρ̇i = sin(ρi+1 − ρi)− sin(ρi − ρi−1) (4.34)

which is a system of Kuramoto oscillators coupled on a ring. The computational graph for
(4.34) is presented in Fig. 4.4.

4.3.2 Similar subgraphs and their positions

Now let us introduce an original notion of similar subgraphs. Subgraph is a computational
graph which computes subexpression of the original computational graph. Every node in a
computational graph serves as the root of a subgraph computing expression defined in this
node. The leaf nodes are also the subgraphs “computing” themselves.

Definition 4.4. We call two subgraphs similar if

1. they serve as an input to the same node,
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2. they differ only in the positions of the leaf nodes, and this difference can be represented
by a single shift.

This is an equivalence relation, therefore we can speak about equivalence classes which
we call sets of similar subgraphs.

For example, in Fig. 4.4 there are three sets of similar subgraphs:

1. ρi−1 and ρi for the left sinus node,

2. ρi and ρi+1 for the right sinus node,

3. sin(ρi − ρi−1) and sin(ρi+1 − ρi) for the root node, because they differ by a single shift
which equals 1.

Finally we will define a position of a subgraph:

Definition 4.5. Position of a subgraph is defined as a coordinate in space where the expres-
sion of this subgraph is calculated.

The leaf nodes by definition are the states of the system, thus their positions are uniquely
specified. For example for the leaf node ρi+1 in Fig. 4.4 we say that its position is i+ 1. The
root node by definition has a position i, since it is exactly the position of the left-hand side
term in (4.33).

For other subgraphs defining the position is ambiguous. One choice of this position func-
tion could be an average of all positions of inputs, as in Fig. 4.4. Position function should
have the only property to be well-defined: similar subgraphs, which differ by some shift s,
should have their positions differ also by s. In general, this function could affect performed
computations (and thus change the obtained PDE), but in a linear case it is possible to prove
that the particular choice doesn’t matter:

Theorem 4.4. For any linear combination of states computed at point i

Ei =
N∑
j=1

ajρi+sj , (4.35)

its continuous approximation Êi defined by (4.11) at point i coincides with an approximation[
Êi+k

]
i
made at some position i+k and then reapproximated again at i, if all approximations

were done up to the order d.

Proof. By (4.11), we can write the approximation of Ei made directly at point i as

Êi =
d∑

m=0

 N∑
j=1

aj
smj
m!

 ∂mρi
∂xm

∆xm
 , (4.36)
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where ∂mρi
∂xm is a derivative of orderm calculated at point i. Now, using the same approximation

rule at i+ k, we obtain that

Êi+k =
d∑

m=0

 N∑
j=1

aj
(sj − k)m

m!

 ∂mρi+k
∂xm

∆xm
 . (4.37)

Finally, every partial derivative, calculated at point i + k, can be written again as a Taylor
series at point i:

∂mρi+k
∂xm

=
d−m∑
q=0

kq

q!
∂m+qρi
∂xm+q ∆xq, (4.38)

where the summation is truncated such that the maximal order of derivative does not exceed
d. The resulting approximation is

[
Êi+k

]
i

=
d∑

m=0

 N∑
j=1

aj
(sj − k)m

m!

 d−m∑
q=0

kq

q!
∂m+qρi
∂xm+q ∆xm+q


=

d∑
m=0

 N∑
j=1

aj

 m∑
q=0

(sj − k)m−q
(m− q)!

kq

q!

 ∂mρi
∂xm

∆xm
 ,

(4.39)

and it is clear that the value inside the square brackets is exactly smj
m! by binomial expansion.

Therefore, (4.39) coincides with (4.36), which concludes the proof.

In the following we will stick to the choice of an averaging position function. Since the
position of a subgraph represents a position on the line, it is natural to have non-integer
position values, although the leaf nodes and the root have only integer positions. As an
example, with the averaging position function, in Fig. 4.4 the node sin(ρi+1 − ρi) has its
position i+ 1/2.

4.3.3 Continuation

When system (4.33) is expressed in a form of computational graph with similar subgraphs
being found and their positions being defined, one can perform a continuation procedure
described in section 4.2 to obtain a PDE.

Continuation should be performed recursively, starting from the leaves. Each set of sim-
ilar subgraphs by definition is used in their common ancestor node as a linear combination
of equivalent elements shifted by some distance. Continuation of this linear combination by
(4.11) replaces a set of similar subgraphs by a weighted sum of partial derivatives of subex-
pressions, calculated at the position of the ancestor node.

Let ∆x = xi+1 − xi be a distance between two neighbouring nodes. Elaborating example
(4.34) and using d = 1 for each set of subgraphs, we perform the continuation in three steps:

1. sin(ρi+1 − ρi) → sin
(

∆x∂ρ
∂x

(xi+1/2)
)
,
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2. sin(ρi − ρi−1) → sin
(

∆x∂ρ
∂x

(xi−1/2)
)
,

3. sini+1/2− sini−1/2 → ∆x ∂
∂x

sin.

which finally gives a nonlinear PDE representation of (4.34):

∂ρ

∂t
(t, x) = ∆x ∂

∂x
sin
(

∆x∂ρ
∂x

(t, x)
)
. (4.40)

To obtain higher-order PDE approximations it makes sense to specify the desired order
of the equation d and then get rid of all the terms which consist of composition of derivatives
of combined order higher than d.

4.4 Continuation for general ODE systems

Until now we discussed systems with nodes which were uniformly placed on the infinite 1D
line and which had common space-independent dynamics. The method can be extended to
include more classes of systems.

4.4.1 Trivial extensions

Spatially invariant systems (Bamieh, Paganini, and Dahleh 2002) such as periodic ones can
be tackled by choosing different index spaces. In the periodic case we can assume that the
positions x ∈ S are placed on the unit circle and indices i ∈ Z \ nZ form a ring of integers
modulo n, where n is the number of states of the original ODE. Since any function on S can
be mapped to a periodic function on R, the analysis in Sections 4.2 and 4.3 remain the same.

Time dependence can be introduced into system gains both in the ODE and in the PDE,
where the continuation is performed independently for every fixed t. This allows to use
the method for time-varying systems and switching networks. Also systems whose state is
vector-valued can be continualized using the same finite differences based scheme, thus in the
following we will assume that the state of a system is scalar.

In the following subsections we will explore how the method can be extended to include
systems with several spatial dimensions, systems with space dependence or nonuniform placing
and systems with boundaries. Further we introduce a concept of PDE with index derivatives
which can be applied to systems whose states coincide with the positions in space, for ex-
ample particle systems. Finally, all kinds of systems are covered by the general continuation
algorithm presented in the end of this section.
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4.4.2 Multidimensional systems

In Sections 4.2 and 4.3 we assumed that the nodes were placed on the 1D line, with integer
indices and scalar positions. Now we describe how to extend the method for the space with
n dimensions.

Let a position of a node ρi be described by xi ∈ Rn. Moreover, a node ρi is referenced
by a multi-index i = (i1, ..., in) ∈ Zn. We assume that the position difference between two
neighbour nodes i = (i1, ..., ik, ..., in) and i′ = (i1, ..., ik + 1, ..., in) is

xi′ − xi = (0, ...,∆xk, ..., 0) ∀k ∈ {1..n},

and that there exists a vector ∆x = (∆x1, ...,∆xk, ...,∆xn).

Nonlinear multidimensional system can be treated by the same computational graph, so
the only difference between 1D and multi-dimensional case is in a transformation from a linear
weighted sum into PDE, as in (4.11). Therefore assume that the system F is linear:

ρ̇i = F (ρi+s1 , ρi+s2 , ..., ρi+sN ) =
N∑
j=1

ajρi+sj . (4.41)

For nonnegative multi-index h we define an absolute value |h| =
n∑
k=1

hk. Further, we define

multi-index power h of a vector x as xh =
n∏
k=1

xhkk , with an assumption 00 = 1. By Taylor
series

ρi+sj = ρi +
∑
|h|=1

shj∆xh ∂ρi
∂xh

+
∑
|h|=2

shj
2 ∆xh∂

2ρi
∂xh

+ ..., (4.42)

and the dynamics thus is

∂ρ

∂t
=

 N∑
j=1

aj

 ρ+
∑
|h|=1

 N∑
j=1

ajs
h
j

∆xh ∂ρ
∂xh

+

+
∑
|h|=2

 N∑
j=1

aj
shj
2

∆xh ∂
2ρ

∂xh
+ ...,

(4.43)

where the approximation is truncated up to the first d+ 1 terms representing the derivatives
of order |h| 6 d.

4.4.3 Space-dependent and unequally spaced systems

Let us now look at the linear system (4.1) with one important difference: the system gains
aj , the shifts sj and the number of neighbours N become space-dependent:

ρ̇i =
Ni∑
j=1

aijρi+sij . (4.44)
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Notice that equation (4.44) describes in fact any linear system.

Now one can perform a continuation (4.13) at every point xi up to the order d and obtain
a PDE (4.14) with space dependent gains cik. This means that we know the gains cik at
points with coordinates xi, which can be seen as a sampling of some function ck(x) at xi.

Non-uniform placing of nodes can be tackled in the same way. Indeed, assuming distance
xi+1−xi can be arbitrary, continuation can be performed by defining cik = ∑Ni

j=1 aij(xi+sij −
xi)k instead of (4.13).

We can now perform either an interpolation or an approximation based on this sampling.
In the first case we seek for ck(x) such that ck(xi) = cik, while in the second case it is enough
to satisfy this relation approximately. In either case, the resulting continuation of (4.44) is
given by

∂ρ

∂t
(t, x) =

d∑
k=1

ck(x) 1
k!
∂kρ

∂xk
(t, x). (4.45)

For nonlinear systems the continuation can be performed if computational graphs for every
node compute the same dynamics. We can formalize it with the following property:

Definition 4.6. We say that two computational graphs have the same structure if

1. their root nodes compute the same expression,

2. any child subgraph of the root node of the first graph has the same structure with some
child subgraph of the root node of the second graph and vice versa.

This definition, formulated through recursion, essentially means that the order of nonlin-
earities which is hidden in two computational graphs should coincide, see Fig. 4.5.

F (·) F (·)

G(·) H(·) H(·) G(·) H(·)

a11
a12

a13 a21 a22

Figure 4.5: Illustration of two computational graphs having the same structure.

Finally, a continuation of a nonlinear ODE system can be performed if all the computa-
tional graphs computing the dynamics for all states ρi have the same structure. Indeed, in
this case it is possible to perform a continuation for any set of similar subgraphs for each
node as in the linear case of (4.44)-(4.45). Moreover, by Definition 6 these sets of similar
subgraphs for different positions serve as inputs to the same nonlinearities, therefore a unique
PDE with space-dependent coefficients can be obtained.
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Remark 4.2. In theory, it is possible to satisfy Definition 6 for any nonlinear system formulated
through computational graphs. Indeed, assume two computational graphs have two different
root node expressions, denoted as F (·) and G(·) respectively. Then we can artificially create
a new common root node which will compute 1 · F (·) + 0 · G(·) for the first graph and
0 · F (·) + 1 ·G(·) for the second. Thus we can satisfy the first condition of Definition 6, and
recursively applying this idea one can transform any pair of computational graphs into the
pair which has the same structure. However, if the computational graphs of the system are
too different in different points, it can make no sense to represent a system as a PDE, since
it means that the dynamics of different parts of the system has nothing in common.

4.4.4 Systems with boundaries

Now let us look at the Heat PDE:
∂ρ

∂t
= ∂2ρ

∂x2 . (4.46)

Imagine that this equation is defined on an interval x ∈ [0, +∞), that is there is a boundary
in the point x = 0.

There are two types of boundary conditions (or BC) which can be supplied to provide a
well-posed boundary value problem. For example for some a ∈ R,

1) Dirichlet BC: ρ(0) = a,

2) Neumann BC: ∂ρ/∂x (0) = a.
(4.47)

There can also exist a linear combination of these boundary conditions, called Robin BC.

If the Heat Equation (4.46) is discretized in stencil points {i− 1, i, i+ 1}, the result is

ρ̇i = 1
∆x2 (ρi−1 − 2ρi + ρi+1) . (4.48)

Assume now that there exists i0 = 1 such that xi0−1 = 0. Depending on the type of boundary
conditions, the equation for the state ρ1 can be obtained by the discretization of a boundary
value problem (4.46)-(4.47) in two ways:

1) Dirichlet BC: ρ̇1 = (a− 2ρ1 + ρ2) /∆x2,

2) Neumann BC: ρ̇1 = (ρ2 − ρ1) /∆x2 − a/∆x.
(4.49)

Now imagine the system (4.46) being obtained by the continuation process from the system
(4.48). We can notice that every state of (4.48) is governed by the same dynamics except for
the boundary state ρ1. The question is how to recover the boundary conditions (4.47) for the
PDE from the dynamics of ρ1 in (4.49).

This indeed can be done if one assumes that there exists a “ghost cell” ρ0 such that it has
no dynamics, but is algebraically connected with adjacent states. With a proper definition
of ρ0 the equation for ρ̇1 can be represented in the same way as for other states (4.48) and
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thus has the same continuation (4.46). For example, algebraic equations for ρ0 representing
(4.48)-(4.49) are

1) Dirichlet BC: ρ0 = a,

2) Neumann BC: ρ0 = ρ1 − a∆x.
(4.50)

The ghost cell ρ0 = a for the case of Dirichlet BC is depicted in Fig. 4.6. Notice that equations
(4.50) can be directly continualized, obtaining (4.47).

ρ1 ρ2a

x
0 ∆x 2∆x

Figure 4.6: Boundary of the system (4.48) with Dirichlet boundary condition (4.49), repre-
sented by a ghost cell ρ0 = a.

This procedure can be generalized to any ODE system: once the states near boundaries
change their dynamics with respect to the general governing equation, this change can be
represented by “ghost cells” with algebraic dependences on the “real” states. Continualizing
these algebraic equations leads to the boundary conditions for the obtained PDE.

4.4.5 Systems with moving agents

Usually PDEs have derivatives written with respect to the time and space variables, thus
their physical meaning is in the function continuously varying in time and space. However, in
general no one prevents us from writing a PDE with derivatives with respect to some other
variables.

Assume a physical system is given by a set of interacting agents, with agents being indexed
by an integer index i ∈ Z (a general multiindex space Zn can also be used). Let an agent
i have a state ρi. The index variable i is by definition discrete. However we can make an
assumption that in between of two agents with consecutive indexes i and i + 1 there is a
continuum of virtual agents having state varying from ρi to ρi+1. Denoting this continuously
varying index byM ∈ R we can say that the state of the system ρ is a continuous and smooth
function ρ(t,M) with the property ρ(t, i) = ρi(t). In fact it appears that this definition of
M coincides with the definition of Moskowitz function which is used to describe the number
of vehicles passed through a fixed point in traffic modeling (see Newell 1993) and which was
already introduced in Section 3.2.4 to describe density evolution in conservation laws.

Once the index variable is continuous, we can think about it as a new space variable. Thus
it is possible to use a continuation described in previous sections, where the distance between
two consecutive agents is obviously ∆M = 1. The derivatives of the state with respect to the
index can be obtained by continuation, for example ρi+1 − ρi → ∂ρ/∂M .

PDEs with index derivatives are very useful in multi-agent setups, when states of the
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agents are represented by their positions. Examples include traffic systems as in Molnár et al.
2019 with agents being cars, or systems of interacting particles and robot formations which
will be discussed in Chapter 5.

4.4.6 Algorithm for general continuation procedure

The general continuation procedure for different kinds of systems can be summarized in
the Algorithm 4.1. It checks for boundedness and space-dependency of the system and uses
nonlinear continuation based on computational graphs. In case of multi-agent systems indices
are treated as space coordinates. Linear systems are also covered by the algorithm since their
computational graph is trivial.

4.5 Continuation for large-scale linear networks

Large-scale networks are often used to describe physical systems such as urban traffic, brain
activity or power networks. Entities in these systems have a predefined position in the real-
world space representing individual nodes in the network, and interconnections between dif-
ferent nodes often have a property of locality meaning that nodes which are close in the real
world are connected stronger than those which are far apart. Due to these properties various
types of large-scale networks can be transformed to PDEs by continuation.

In this section we focus on the linear network analysis. It is widely known (Frihauf and
Krstic 2010; Jafarizadeh 2020) that the Laplacian consensus networks are closely related to
the diffusion PDEs. Performing continuation of a general linear spatially-distributed net-
work we show how the network dynamics can be written as a linear second-order PDE with
space-dependent coefficients. In particular we show that several additional properties such
as absence of self-loops, regularity or undirected topology of the network can simplify the
resulting PDE.

4.5.1 Model

Assume the system is given by a linear model with ρi ∈ R being the state of i-th agent and
xi ∈ Rn being its spatial position. We can assume that every agent i is influenced by its
neighbourhood Ni and also has its own dynamics:

ρ̇i = aiiρi +
∑
j∈Ni

aijρj . (4.51)

Note that (4.51) is a space-dependent multidimensional generalization of (4.1). Also we
assume that ghost cells are added to the system (4.51) to ensure boundary conditions as in
Section 4.4.4. A particular choice would be to have a set of boundary nodes, placed on the
boundaries of the domain, with either fixed or controlled states.
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Algorithm 4.1: General continuation procedure
Input: System of ODEs, d

if system consists of moving agents then
treat indices as coordinate space; // Sec 4.4.5

end
if system has boundaries then // Sec 4.4.4

create ghost cells on boundaries such that equations
for all nodes become homogeneous;

end
if system is space-dependent then // Sec 4.4.3

for each node do
build computational graph;

end
find the most general structure of the computational graph;
for each node do

adjust computational graph such that it has
the same structure with others;

continuation();
end
approximate PDE coefficients by space-dependent functions;

else
build computational graph;
continuation(); // same continuation for all nodes

end
Procedure continuation()

Input: Computational graph of ODE, d
for each node in graph, starting from leaves, do

for each group of children with similar subgraphs do // Sec 4.3

compute PDE coefficients by (4.13) using d;
replace group by PDE;

end
end
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Based on Theorems 4.2 and 4.3 and on the discussion in Section 4.2.6, we choose the order
of continuation d = 2 to study transportation and diffusion properties of large-scale network.

4.5.2 Continuation

Using a second-order approximation, continuation of the state ρj at the point xi can be
performed in the following way:

ρj = ρ(xj) ≈ ρ(xi) + (xj − xi)T · ∇ρ+ 1
2(xj − xi)T

∂2ρ

∂x2 (xj − xi), (4.52)

or using the property of trace:

ρj = ρ(xj) ≈ ρ(xi) + (xj − xi)T · ∇ρ+ 1
2 Tr

(
(xj − xi)(xj − xi)T

∂2ρ

∂x2

)
, (4.53)

which leads to the PDE transformation of (4.51), which can be written at agents’ positions
as

∂ρ

∂t
=

aii +
∑
j∈Ni

aij

 ρ+

∑
j∈Ni

aij(xj − xi)T
 · ∇ρ+

+ Tr

1
2
∑
j∈Ni

aij(xj − xi)(xj − xi)T
 ∂2ρ

∂x2

 .
(4.54)

Define λ(x) ∈ R, b(x) ∈ Rn and ε(x) ∈ Rn×n such that

λ(xi) ≈

aii +
∑
j∈Ni

aij

 , b(xi) ≈

∑
j∈Ni

aij(xj − xi)

 ,
ε(xi) ≈

1
2
∑
j∈Ni

aij(xj − xi)(xj − xi)T
 ,

(4.55)

thus these functions are found by a continuous approximation of coefficients of (4.54). With
the help of these functions we finally formulate the main continuation result:

Theorem 4.5. The continuation of a linear network (4.51) is given by

∂ρ

∂t
= λ(x)ρ+ b(x)T · ∇ρ+ Tr

(
ε(x)∂

2ρ

∂x2

)
, (4.56)

where λ(x), b(x) and ε(x) are given by (4.55).

Remark 4.3. Note that if aij > 0 then the matrix inside of the trace is positive-semidefinite,
which means that under suitable affine transformation of local coordinates the second-order
term can be represented as a stable Laplacian diffusion. This corresponds to c2 > 0 in (4.14),
required for absence of artificial instability by Corollary 4.4.
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4.5.3 Particular network structures

It is possible to derive several important corollaries for different classes of networks:
Corollary 4.5 (Laplacian network). If the original system (4.51) depends only on the differ-
ences of states

ρ̇i =
∑
j∈Ni

aij(ρj − ρi),

then (4.56) has λ(x) ≡ 0.

Proof. This property corresponds to the fact that the network has no self-loops. For the
Laplacian network aii = − ∑

j∈Ni
aij , thus by (4.55) λ(x) ≡ 0.

Corollary 4.6 (Symmetric network). If the original system is symmetric, that is for every
j ∈ Ni there exists such j′ ∈ Ni that xj − xi = −(xj′ − xi) and aij = aij′, then b(x) ≡ 0.

Proof. Straightforward by (4.55).

Corollary 4.7 (Undirected regular network). If aij = aji for all i, j and if for every j ∈ Ni
there exists such j′ ∈ Ni that xj−xi = −(xj′−xi), then (4.56) can be represented in the form

∂ρ

∂t
= λ(x)ρ+∇ ·

(
ε(x)∂ρ

∂x

)
, (4.57)

Proof. Indeed, by taking the derivative we see that

∇ ·
(
ε(x)∂ρ

∂x

)
= (∇ · ε(x)) · ∇ρ+ Tr

(
ε(x)∂

2ρ

∂x2

)
, (4.58)

and it remains to prove that bT = ∇ · ε.

Since aij = aji, we can assume that there exists some continuous function α(x, n̄) depen-
dent on the coordinate x and the direction n̄ which is even with respect to the direction such
that

aij = α

(
xi + xj

2 ,
xj − xi
||xj − xi||

)
= α

(
xi + xj

2 ,
xi − xj
||xi − xj ||

)
= aji

Denote n̄j = (xi−xj)/||xi−xj ||. Further, define y = xi to be the point where the function α
is investigated, thus α ((xi + xj)/2, n̄j) = α (y + (xj − xi)/2, n̄j). We can now take the Taylor
expansion of this function with respect to the coordinate:

α

(
y + xj − xi

2 , n̄j

)
≈ α(y, n̄j) + 1

2∇α(y, n̄j) · (xj − xi).

Inserting this expansion into the definition of b(x) we obtain

b(y)T =
∑
j∈Ni

α(y, n̄j)(xj − xi)T + 1
2
∑
j∈Ni
∇α(y, n̄j) · (xj − xi)(xj − xi)T =

=1
2
∑
j∈Ni
∇α(y, n̄j) · (xj − xi)(xj − xi)T ,

(4.59)
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since the first sum vanishes because for every j there exists j′ such that (xj−xi) = −(xj′−xi)
and α(y, n̄j) = α(y, n̄j′). Now, analyzing ε(x), we get

ε(y) =1
2
∑
j∈Ni

α(y, n̄j)(xj − xi)(xj − xi)T+

+ 1
4
∑
j∈Ni

(xj − xi)∇α(y, n̄j)(xj − xi)(xj − xi)T =

=1
2
∑
j∈Ni

α(y, n̄j)(xj − xi)(xj − xi)T ,

(4.60)

where the second sum vanishes by the same reasons. Now it is clear that taking the divergence
of (4.60) with respect to y one ends up with (4.59), which finishes the proof.

4.6 Concluding remarks

In this chapter we presented a general process of transformation of ODE systems into their
PDE counterparts via the continuation method. Performing analysis of the continuation for
linear systems, we found conditions for the continuation to be reversible, meaning that the
original ODE system could be obtained from the PDE version by a correct discretization.
We have further shown that the spectrum of PDE converges to the spectrum of the original
ODE as the order of continuation grows, and that this convergence provides a bound on
the deviation between systems’ solutions. The continuation method was then elaborated
for many classes of systems including nonlinear, multidimensional, space- and time-varying
systems, indexed multi-agent systems and systems with boundaries. Based on this method,
new continuous models can be derived and further utilized for analysis and control purposes.

In the next two chapters we will focus on applications of the continuation method to
various systems. In Chapter 5 it will be shown that the continuation can be a helpful tool for
the analysis and control design for multi-agent systems since it allows to recover their density-
based continuous representations. In Chapter 6 the method will be applied to networks of
oscillators, and resulting PDE models will be used to derive conditions which assure existence
and stability of synchronous oscillatory behaviours in the networks.

As a future direction of research it would be desirable to investigate the continuation
method in more details, as there are many problems that were not covered in the present
manuscript:

• Convergence properties of the continuation method could be analysed for more classes
of systems. In particular a generalization of Theorem 4.3, which was proven here only
for linear spatially invariant systems, could provide guarantees on solutions for much
broader class of nonlinear and space-dependent systems.

• Theorems 4.1, 4.2 and 4.3 show that the obtained system approximates the original
ODE well enough as soon as the order of continuation is sufficiently high. However
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due to possible artificial instabilities and difficulties in analysis of high-order PDEs it
is often makes more sense to use only first- and second-order PDEs. Future research
could provide deeper understanding of applicability of the method for these particular
orders, stating explicitly which properties can be reconstructed with low-order PDEs
and which systems are better suitable for this continuation.

• Finally, in Section 4.3 a computational graph was introduced to describe dynamics of a
nonlinear system. In addition to the graph itself it was shown that a position function
should be specified for every node in the graph to be able to perform continuation. It
appears that a designer has some freedom in choosing this position function, which in
turn leads to different PDE models. It would be desirable to study the dependence of
the quality of the obtained model on the chosen position function and to provide some
justified guidelines on how to make this choice.
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5.1 Where and why the method is useful

In the previous chapter we presented the continuation method for ODE-based systems which
are spatially distributed and which have position-dependent interactions. The method re-
places the original spatially distributed ODE system by a continuous PDE whose state and
space variables preserve the state and space variables of the original system. Here we will
focus on applications of this method to different classes of systems.

The idea of substituting finite differences with partial derivatives was already used in
several particular applications for analysis purposes. For example, Barooah, Mehta, and
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ODE continuation PDE

control
design

controlled PDE

discretization

controlled ODE

Figure 5.1: Proposed framework for control design based on the continuation method and a
continuous representation of the system.

Hespanha 2009 derived a PDE model for the controlled platooning system, and consensus
lattice networks were transformed into PDEs by Biccari, Ko, and Zuazua 2019.

The advantage of the continuation method is that it allows to recover a PDE which
describes the same physical system as the original ODE network. Such a description can
be very helpful not only for analysis, but also for control purposes. Indeed, one can use
an obtained PDE to design a continuous control which, being discretized back, results in a
control law for the original ODE system: this design framework is illustrated in Fig. 5.1.

Multi-agent systems are of particular interest here. If the system is given by a set of
indexed agents with given interaction topology, than by Section 4.4.5 we can treat their
interaction as a PDE with respect to indices. This can have long-lasting implications and
allow for derivation of many important results. Indeed, one can imagine a system with
agents whose state vector includes a one-dimensional position x. Introducing continuous
index function M as in Section 4.4.5, we can write index derivative of a state as ∂x/∂M . But
its inverse is ∂M/∂x, which in other words can be read as “a number of agents present in a
unit of length”. Therefore we can use it to define a density, ρ := ∂M/∂x, and write a PDE
describing density evolution for the system’s dynamics.

In this chapter we will cover several examples of this transformation, using the contin-
uation method to obtain density evolution PDEs from the original agent-defined systems.
In Section 5.2, which is devoted to the urban traffic applications, we show with an example
how a simple car-following law can be transformed to a density-based PDE conservation law
describing traffic evolution, i.e. LWR model. We also show that LWR model can be recov-
ered from a discrete Cell Transmission Model (CTM), and that a similar technique can lead
to a derivation of a two-dimensional model for urban traffic. Next, in Section 5.3 we show
that this transformation can be also useful for multidimensional systems. Here we present a
transformation of a system of infinite number of interacting particles in n-dimensional space,
recovering Euler equations for the fluid dynamics. Thus our method can be seen as an orig-
inal solution to the Hilbert’s 6th problem. Finally, Section 5.4 is devoted to the practical
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application of the method: reusing the derivation of Euler equations, we obtain a PDE model
for a large formation of flying drones. We use this PDE to design a control law on a density
level and then discretize it back to be able to implement it on every drone in accordance with
the scheme in Fig. 5.1. It is finally shown in a numerical simulation that it is possible to
control the formation to perform desired maneuvers both in 2D and in 3D.

5.2 Applications for traffic systems

In 1950s Lighthill and Whitham 1955 and Richards 1956 presented a first model for traffic
description, which is now called LWR model. It describes traffic as a fluid using a conservation
law PDE. State of the system is a density of cars at every time and space point ρ(t, x) for
x ∈ [0, L] where L is a length of the road, and t ∈ R+. LWR model predicts that evolution of
the density is caused by a flow φ(t, x):

∂ρ(t, x)
∂t

+ ∂φ(t, x)
∂x

= 0. (5.1)

The main assumption of this model is the existence of the fundamental diagram which
couples density with flow:

φ(t, x) = Φ(ρ(t, x)). (5.2)
Function Φ(ρ) is a concave function, which equals zero either at ρ = 0 (meaning there is
no cars) or at ρ = ρmax (meaning cars are in complete traffic jam). It possesses a unique
maximum at φmax = Φ(ρcrit), with ρcrit being called a critical density. Since it produces a
maximal flow, the critical density serves as an optimal operation point for traffic systems. The
fundamental diagram relation is often established experimentally. Popular analytical choices
include:

• Triangular diagram: Φ(ρ) = min{vmaxρ, ω(ρmax − ρ)},

• Greenshields diagram: Φ(ρ) = vmaxρ
(
1− ρ

ρmax

)
,

• Exponential diagram: Φ(ρ) = vmaxρ

(
1− eα

(
1− ρmax

ρ

))
.

In all these diagrams ρmax denotes the maximal possible density and vmax denotes the free
velocity of cars in absence of other cars. Also ω denotes the backward kinematic wave speed
(which is a speed with which a traffic jam propagates), and α defines the skewness of the
diagram.

5.2.1 From single car model to LWR model

Here we will derive LWR equation from the motion of individual vehicles. Assume each car
has a number i, a position xi (i.e. measured at a front bumper) and a length l. We will
assume that all cars have the same length.
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A car can control its velocity depending on a difference between its position and a position
of the rear bumper of the next car, which is xi+1 − l. The car i uses very simple driving law:
if the next car is far away, it drives with velocity vmax, but if the next car is closer that some
distance scrit, the car i starts decreasing its speed linearly with a gain γ, reaching zero velocity
at the safety distance h. Denote sstop = l + h, that is sstop is a stopping distance between
front bumpers of two successive cars. Therefore, the equation of motion can be written as

ẋi = min{vmax, γ(xi+1 − xi − sstop)}, (5.3)

and scrit satisfies the relation vmax = γ(scrit − sstop). We also need to assume that all cars
are initially spaced with distances greater or equal than sstop.

Now, according to Section 4.4.5, let us define a continuous function to numerate cars as
M(t, x), which defines an index of a car at the position x at time t, that is M(t, xi) = i.
Equivalently, M(t, x) is a number of cars from the beginning of the road up to a position x.
Then we can apply the continuation method for x(t,M), i.e. with position as a state and with
index and time as dependent variables. In particular, we substitute xi+1 − xi with ∂x/∂M .

First-order PDE approximation for (5.3) is then just

∂x

∂t
= min

{
vmax, γ

(
∂x

∂M
− sstop

)}
. (5.4)

Now by definition of functions M(t, x) and x(t,M) we have that

x(t,M(t, x)) ≡ x, (5.5)

from which we immediately obtain

∂x

∂M

∂M

∂x
= 1, ∂x

∂t
+ ∂x

∂M

∂M

∂t
= 0. (5.6)

Using these relations, we obtain a PDE for the index function:

∂M

∂t
= −min

{
vmax, γ

(
1
∂M
∂x

− sstop

)}
∂M

∂x
= −min

{
vmax

∂M

∂x
, γ

(
1− sstop

∂M

∂x

)}
, (5.7)

where the second equality comes from the fact that index can only increase with position.
Finally, let us define the density and the flow:

ρ(t, x) := ∂M

∂x
, φ(t, x) := −∂M

∂t
. (5.8)

Then, for consistency, these new variables should satisfy

∂2M

∂x∂t
= ∂2M

∂t∂x
, (5.9)

which reads as
∂ρ

∂t
+ ∂φ

∂x
= 0. (5.10)
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Moreover, by the definition of φ(x, t) and by (5.7) the flow should satisfy

φ(t, x) = min {vmaxρ(t, x), γ (1− sstopρ(t, x))} , (5.11)

or
φ(t, x) = Φ(ρ(t, x)) = min{vmaxρ(t, x), ω(ρmax − ρ(t, x))}, (5.12)

where ω = γsstop and ρmax = 1/sstop. Therefore, we obtain equation (5.10), which is exactly
the LWR equation, and the relation between flow and density (5.12), which corresponds to the
Triangular fundamental diagram. Similar idea of substituting finite differences with partial
derivatives was used in Molnár et al. 2019; Molnár et al. 2020 to derive LWR model with
delayed interaction between cars.

An example of the transformation of a driver model to the fundamental diagram is shown
in the first row of Fig. 5.2. Function V (s) corresponds to the driver model in (5.3) with sstop =
5.5m, scrit = 20m and vmax = 60km/h. After the transformation we obtain the Triangular
fundamental diagram with φmax = 3000veh/h, ρcrit = 50veh/km and ρmax = 182veh/km.

This method can be applied to any driver model, not only to (5.3), assuming the car’s
velocity can be directly controlled. In general, we can say that the driver control policy
depends on the difference between the positions of two cars, thus given a function V (s) for
the desired velocity at each distance,

ẋi = V (xi+1 − xi). (5.13)

Using the first-order PDE approximation, one obtains

∂x

∂t
= V

(
∂x

∂M

)
. (5.14)

Now, using (5.6) we rewrite this PDE with M(t, x) as a state:

∂M

∂t
= −V

(
1
∂M
∂x

)
∂M

∂x
. (5.15)

Finally, defining ρ(t, x) and φ(t, x) as in (5.8), we obtain LWR equation with φ(t, x) =
Φ(ρ(t, x)) and with a fundamental diagram

Φ(ρ) = V

(1
ρ

)
ρ. (5.16)

Note that the derivation of (5.16) from (5.13) can be reversed, thus it is possible to obtain
driver model from a fundamental diagram. To support this, let us derive the driver model for
the Greenshields diagram,

Φ(ρ) = vmaxρ

(
1− ρ

ρmax

)
. (5.17)

Assuming equality of (5.16) and (5.17),

V

(1
ρ

)
ρ = vmaxρ

(
1− ρ

ρmax

)
, (5.18)



98 Chapter 5. Applications of the continuation to multi-agent systems

Figure 5.2: Driver models and their corresponding fundamental diagrams for LWR model.
First row: Triangular fundamental diagram (5.3)-(5.12). Second row: Greenshields funda-
mental diagram (5.17)-(5.20). Third row: Exponential fundamental diagram (5.21)-(5.22).
Fourth row: Triangular fundamental diagram producing maximal possible flow assuming
autonomous cars can stop immediately.
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we get (using the definition of ρmax = 1/sstop)

V (s) = vmax

(
1− sstop

s

)
, (5.19)

which than by (5.13) leads to a driver model

ẋi = vmax

(
1− sstop

xi+1 − xi

)
. (5.20)

This is a continuous function which strictly increases with a distance between cars, which has
an asymptotic value vmax and which reaches zero when the distance is xi+1 − xi = sstop.

For the Exponential fundamental diagram the similar result is obtained. Starting from
the fundamental diagram itself

Φ(ρ) = vmaxρ

1− e
α

(
1−
ρmax
ρ

) , (5.21)

we end up with a driver model

ẋi = vmax

(
1− e

α

(
1−xi+1−xi

sstop

))
. (5.22)

Transformations for the Greenshields and for the Exponential fundamental diagrams are
shown in the second and third rows of Fig. 5.2. For the Exponential fundamental diagram
skewness α = 0.7 was chosen.

One can establish a distance scrit = 1/ρcrit corresponding to the critical density ρcrit
which produces maximal flow. Thus scrit is an optimal distance for cars to keep. Interesting
to notice that for the Triangular diagram V (scrit) always corresponds to the maximal velocity,
while for the other diagrams it is significantly less.

Moreover, one can ask a question what should be a driver model such that the flow reaches
maximum possible value. Keeping vmax and ρmax fixed, the optimal fundamental diagram
would be the one where cars can stop immediately at sstop, driving with maximal velocity vmax
otherwise (see the fourth row of Fig. 5.2). Their reaction distance scrit should be as small as
possible, which in turn translates as ρcrit coinciding with ρmax. If one takes vmax = 60km/h
and sstop = 5.5m, using this diagram the resulting flow reaches a value almost four times
larger than the flows using other diagram types. Therefore it is always preferable to use as
low reaction distance scrit and as high velocity V (scrit) as possible, provided it is still safe.
This design paradigm can be implemented on large platoons of communicating autonomous
vehicles, which can follow one another at very small distances and at very high velocities.

Continuation method gives a straightforward way of obtaining LWR model from single
car dynamics, provided cars can directly control their velocities. In some scenarios this
assumption is unrealistic, therefore in theory it would be possible to use the same method
to derive second-order PDEs describing traffic flow of acceleration-controlled cars. We are
not digging into this problem here, but this would constitute a promising future direction of
research.
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5.2.2 From Cell Transmission Model to LWR model

Another way of discrete representation of traffic on a road is a Cell Transmission Model
(CTM) describing by the following equation:

ρ̇i = 1
∆x (min(D(ρi−1), S(ρi))−min(D(ρi), S(ρi+1))) . (5.23)

The road is assumed to be split into cells of length ∆x, each cell i having a density of cars
ρi inside. Further, function D(ρ) is an increasing demand function, and S(ρ) is a decreasing
supply function. Term min(D(ρi−1), S(ρi)) represents a flow which can physically pass from
cell i − 1 to cell i, since the flow of cars that want to enter the cell i is defined by D(ρi−1),
and the flow of cars which can be accepted by the cell i is defined by S(ρi).

This model is often used to describe propagation of traffic in a discrete way for optimization
purposes and can be considered as a dicretization of the LWR model. We will show that
this model can also be trivially transformed back into the LWR model by performing a
continuation process up to the order d = 1. Using computation graph formalism we can
define subexpression

gi−1/2 = g(ρi−1, ρi) = min(D(ρi−1), S(ρi)), (5.24)
computed at the average position of its leaf nodes. With the help of this subexpression we
rewrite (5.23) as

ρ̇i = 1
∆x

(
gi−1/2 − gi+1/2

)
(5.25)

which is approximated up to the first order by
∂ρi
∂t

= −∂gi
∂x

. (5.26)

Then,

gi = min(D(ρi−1/2), S(ρi+1/2)) ≈ min
(
D

(
ρi −

∆x
2
∂ρ

∂x

)
, S

(
ρi + ∆x

2
∂ρ

∂x

))
. (5.27)

But the equation (5.26) already has a first-order derivative, thus we should keep only zeroth-
order terms inside of the subexpression gi. Therefore,

∂ρ

∂t
= −∂min(D(ρ), S(ρ))

∂x
= −∂Φ(ρ)

∂x
, (5.28)

where Φ(ρ) = min(D(ρ), S(ρ)). Finally we can notice that equation (5.28) is indeed the LWR
model describing the continuous evolution of traffic, and Φ(ρ) defines a fundamental diagram
which is concave since it is defined as a minimum between increasing demand and decreasing
supply functions.

5.2.3 From urban traffic network to multidimensional PDE model

While the previous sections suggested a way of transformation of discrete models into con-
tinuous ones for a single road, it is possible to apply the continuation method to obtain a
continuous model describing an evolution of traffic in the 2D plane.
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Figure 5.3: Prediction of traffic in Grenoble with NEWS PDE model (5.30). Screen-
shot is taken from GTL Ville web-application developed within Scale-FreeBack project, see
gtlville.inrialpes.fr.

Given a network of roads, we can assume that the evolution of traffic is governed by a
system of CTM equations for every road. Namely, for a road i evolution of its density ρi is

ρ̇i = 1
Li

(
φini − φouti

)
,

φini = min


N in∑
j=1

αjiD(ρj), S(ρi)

 ,
φouti = min

D(ρi),
Nout∑
k=1

βikS(ρk)

 ,
(5.29)

where Li is a length of the road i and flows φini and φouti define the number of cars per second
which enter and exit the road respectively. It is also assumed that cars can enter the road i
from roads j ∈ {1, ..., N in}, and that the proportion of cars leaving the road j to enter the
road i is defined by a turning ratio αji. The same happens with cars leaving the road i to
one of the roads k ∈ {1, ..., Nout}, whose splitting is defined by supply ratios βik.

It appears that under suitable conditions it is possible to approximate behaviour of (5.29)
by a continuous model. First, a unique method of intersections representation is designed.
This can be done by choosing four cardinal directions N (North), E (East), W (West) and
S (South), and projecting every road’s dynamics on these directions. Then equations for all
roads become similar and a clear spatial structure arises. Note that for every coordinate
direction two opposite cardinal directions are used (both N and S, and both E and W) in
order to maintain independent descriptions of positive flows on opposite lanes. Using the
continuation method this representation can be transformed into a space-dependent PDE

gtlville.inrialpes.fr
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with four-dimensional state ρ = (ρN , ρE , ρW , ρS) with evolution

∂ρ

∂t
= 1
L

(
ΦT − Φ

)
1︸ ︷︷ ︸

mixing term

− ∂(cos θ φ)
∂x

− ∂(sin θ φ)
∂y︸ ︷︷ ︸

transportation term

, (5.30)

where L = L(x, y) ∈ R, cos θ = cos θ(x, y) ∈ R4×4 and sin θ = sin θ(x, y) ∈ R4×4 are space-
dependent parameters describing average length of roads and average projection coefficients
respectively in the neighbourhood of the point (x, y). Matrix Φ ∈ R4×4 consists of partial
flows, e.g. ΦNE = min{αNED(ρN ), βNES(ρE)}, and flows φ ∈ R4 denote pure directional
flows, e.g. φN = min{D(ρN ), S(ρN )}. Thus the mixing term represents density exchange
between different layers of different flow directions, and the transportation term represents
density movement withing the layer.

For the detailed derivation of (5.30), its analytical properties and its performance valida-
tion see Tumash, Canudas-de-Wit, and Delle Monache 2021c; Tumash, Canudas-de-Wit, and
Delle Monache 2021b. The model (5.30) was utilized to describe and predict the traffic in the
city of Grenoble in the web-application GTL Ville within Scale-FreeBack project. Screenshot
with an example of the prediction within GTL Ville is shown in Fig. 5.3.

5.3 Euler equations and Hilbert’s 6th problem

5.3.1 Overview

The problem of description of systems of discrete interacting objects by continuous models
has a long history. In the beginning of the XX century Hilbert posed his 6th problem (Hilbert
1902), where he suggested to develop a rigorous way leading from the atomistic view to the
laws of motion of continua. In particular, the problem can be formulated as a derivation of
Euler equations for compressible fluids from the Newton’s dynamics of individual particles.

For the most famous case of particles interacting through collision the Boltzmann equation
was developed, describing evolution of the joint position-velocity probability distribution of
particles. The method of how to transform individual’s dynamics into Boltzmann equation is
based on the Boltzmann-Grad limit (Gallagher, Saint-Raymond, and Texier 2013), assuming
velocities of colliding particles being independent. The following transformation from the
Boltzmann equation to the Euler equations uses either Hilbert or Chapman-Erskog expan-
sions with space contration limits (Saint-Raymond 2009; Chapman and Cowling 1990), Grad
moments by Grad 1949 or the method of invariant manifolds by Gorban and Karlin 2014.

Another situation arises when the particles interact through long-range forces. In this
case the Vlasov equation can be used instead of the Boltzmann equation to describe the
joint position-velocity probability distribution. The derivation of the Euler equations from
the Vlasov equation was performed by Caprino et al. 1993 using space-contracting limit. In
particular it was shown that the resulting system has zero temperature, i.e. the velocities of
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individual particles coincide with the velocity field. However, due to the space contraction
the particular form of the potential function was lost and the obtained pressure was just a
square of the density.

Here we present a derivation of Euler equations directly from the dynamics of individual
particles interacting through long-range forces using the continuation method described in
previous sections. Contrary to other works, we do not use any kind of limits and we use only
one assumption on the isotropy of the space. The assumption requires that for any particle its
nearest neighbours are distributed around uniformly in every direction, which can be seen as
a counterpart to the molecular chaos hypothesis for the standard derivation of the Boltzmann
equation.

5.3.2 System of particles

It is assumed that the fluid consists of small particles interacting with each other, with every
particle following simple Newton laws. We will study the system with n space dimensions,
and the particles are assumed to have unit mass.

We further assume that there is an interaction between each pair of particles which is
given by a force

F (xi − xj) = xi − xj
‖xi − xj‖

f(‖xi − xj‖) = (xi − xj)φ(‖xi − xj‖), (5.31)

thus the force acts along the line connecting two particles with the smooth magnitude f
depending only on the distance between particles. For simplicity we also define a function
φ(s) = f(s)/s representing the scaled magnitude. We will consider an infinite number of
particles and an infinitely large space, therefore we should assume that the cumulative force
on any particle is finite. In particular for an equally distributed grid this implies that the
magnitude of the force should satisfy

+∞∫
ε

sn−1f(s)ds <∞ ∀ε > 0, (5.32)

thus the interaction should be fast-decaying.

We then need to enumerate all particles. For this we will use multiindex i ∈ Zn. Now let
us write the dynamics of a particle with multiindex i using the second Newton’s Law:

ẋi = vi,

v̇i =
∑
q 6=0

F (xi − xi+q), (5.33)

where the summation is performed among all multiindices q in Zn \{0}, since all the particles
interact with each other. Both the position xi and the velocity vi are vectors in Rn.
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5.3.3 Derivation in the Euclidean space

Treating the coordinate xi as a state and using the idea written in section 4.4.5 we define
a multiindex function M(t, x) which is the inverse function of the coordinate: M(t, xi) := i.
Likewise, x(t, i) = xi(t) and thus x(t,M(t, x)) ≡ x ∀x ∈ Rn. Now let us write a property
of inverse function of multiindex as M(t, x(t,M)) ≡ M ∀M ∈ Rn, where the space for
multiindices is continuous by the assumption in section 4.4.5. Taking the time and the index
derivatives, we obtain the following very useful relations on Jacobians:

∂M

∂t
+ ∂M

∂x

∂x

∂t
= 0, (5.34)

∂M

∂x

∂x

∂M
= I. (5.35)

Equation (5.34) can be seen as a PDE where the function M depends both on t and x.
Recalling that the multiindex is assumed to be continuous, we can further utilize the first
equation of (5.33) written in a form ∂x(t,M)/∂t = v(t,M), substitute it in (5.34) and obtain
the following equation on the multiindex evolution:

∂M

∂t
= −∂M

∂x
v(t,M(t, x)) = −∂M

∂x
u(t, x), (5.36)

where the velocity function u(t, x) = v(t,M(t, x)) is defined as a velocity of a particle at some
given point in space. Finally, taking the derivative with respect to space, we obtain

∂

∂t

(
∂M

∂x

)
= − ∂

∂x

(
∂M

∂x
u

)
. (5.37)

The Jacobian matrix ∂M
∂x (t, x) represents a compression tensor, which measures how close are

neighbour particles with respect to different directions in the euclidean space. Evolution of
this Jacobian in the euclidean space is described by the matrix PDE (5.37), which is essentially
a transport equation with flow velocity given by u(t, x).

Now we approach the second equation in (5.33). It would be desirable to transform it
in such a way that we could obtain an evolution equation for the flow velocity u(t, x). First
of all, let us rewrite the second equation of (5.33) in a way more suitable for continuation,
namely

v̇i = −
∑
q>0

(F (xi+q − xi)− F (xi − xi−q)) , (5.38)

where the summation is performed among all multiinidices which are greater than zero in
lexicographical order, i.e. the first nonzero element of q should be positive.

We can now use the continuation of order 1 on a multidimensional system such that

xi+q − xi →
∂x

∂M

(
t, xi+q/2

)
q, xi − xi−q →

∂x

∂M

(
t, xi−q/2

)
q,

which means that (5.38) becomes

v̇i = −
∑
q>0

(
F

(
∂x

∂M
q

)
i+q/2

− F
(
∂x

∂M
q

)
i−q/2

)
.
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Applying the continuation further to the forces, we obtain

Fi+q/2 − Fi−q/2 → ∂F

∂M
(t, xi)q.

Thus (5.38) transforms into

∂v

∂t
= −

∑
q>0

∂

∂M

([
∂x

∂M
q

]
φ

(∥∥∥∥ ∂x∂M q

∥∥∥∥)) q, (5.39)

where we used a definition of the force (5.31).

Now, we state the following result:

Proposition 5.1. For any q ∈ Zn and for any smooth scalar field φ the following identity
holds: [

∂

∂M

(
∂x

∂M
qφ

)
q

]T
= ∇ ·

(
∂x

∂M
qqT

∂x

∂M

T

φ

)
−
(
∇ ·

(
∂x

∂M

)
qqT

∂x

∂M

T
)
φ, (5.40)

where ∇ denotes a row vector of derivatives with respect to x.

Proof. First, for convenience denote the left-hand side as a vector Q:

Q := ∂

∂M

(
∂x

∂M
qφ

)
q = ∂

∂x

(
∂x

∂M
qφ

)
∂x

∂M
q. (5.41)

Also define h = (∂x/∂M)q. Expanding ∂(hφ)/∂x, we get

Q = h
∂φ

∂x
h+ ∂h

∂x
hφ = hhT

∂φ

∂x

T

+ ∂h

∂x
hφ. (5.42)

Now, for any h ∈ Rn

∇ · (hhT ) =
(∑

i
h1

∂hi
∂xi

+∑
i
hi
∂h1
∂xi

· · ·
∑
i
hn

∂hi
∂xi

+∑
i
hi
∂hn
∂xi

)
,

which means that (
∇ · (hhT )

)T
= ∂h

∂x
h+ (∇ · h)h. (5.43)

Therefore the transpose of (5.42) is

QT = ∂φ

∂x
hhT +∇ · (hhT )φ− (∇ · h)hTφ. (5.44)

Since for any matrix J and for any scalar field α

∇ · (αJ) = ∂α

∂x
J + (∇ · J)α, (5.45)

we can simplify (5.44) as QT = ∇· (hhTφ)− (∇·h)hTφ. The result of the proposition follows
by substituting h and noticing that ∇ · ((∂x/∂M)q) = (∇ · (∂x/∂M))q.
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Proposition 5.1 allows us to rewrite (5.39) as being dependent only on the euclidean space
divergences and the inverse of the compression tensor ∂M/∂x. To finalize the derivation of
a complete set of equations, recall the definition of the velocity field u(t, x) = v(t,M(t, x)).
Taking the time derivative:

∂u

∂t
= ∂v

∂t
+ ∂v

∂M

∂M

∂t
,

which by (5.36) is
∂u

∂t
= − ∂v

∂M

∂M

∂x
u+ ∂v

∂t
.

This equation can be simplified by ∂u/∂x = ∂v/∂M · ∂M/∂x. Finally, substituting (5.39)
and (5.40) and combining the result with (5.37) we obtain a system

∂

∂t

(
∂M

∂x

)
=− ∂

∂x

(
∂M

∂x
u

)
,

∂u

∂t
=− ∂u

∂x
u−

∑
q>0

[
∇ ·

(
∂x

∂M
qqT

∂x

∂M

T

φ

)
−
(
∇ ·

(
∂x

∂M

)
qqT

∂x

∂M

T
)
φ

]T
,

(5.46)

where φ = φ(‖(∂x/∂M)q‖).

The system (5.46) has 12 states in 3-dimensional space, 9 for ∂M/∂x (t, x) and 3 for
u(t, x). It resembles the famous Grad 13-moment system by Grad 1949, which extends the
Euler equations by considering directional-dependent pressure tensor. The last state of the
Grad 13-moment system is the inner energy, which does not appear in (5.46). The reason
for this is that we derive a continuous interaction term explicitly from the interaction forces,
which is possible only if the forces are defined by long-range potentials. As it was shown by
Caprino et al. 1993, expressing a system with long-range potentials by the Euler equations
leads to the solution with zero temperature, therefore the inner energy becomes functionally
dependent on the velocity field and its evolution equation can be omitted.

5.3.4 Dimensionality reduction

It appears that in some special cases it is possible to reduce the system (5.46) by consider-
ing only one scalar characteristic of a compression in any space point instead of the whole
compression tensor. Indeed, we define a density as a determinant of the compression tensor:

ρ(t, x) := det (∂M/∂x) (t, x).

Not only the compression tensor itself, but also its determinant satisfies (5.37). This nontrivial
fact holds because the compression tensor is a Jacobian, which is shown by the following
lemma:

Lemma 5.1. Let J(t, x) ∈ Rn×n be the Jacobian matrix of function M(t, x). Let J(t, x)
satisfies the dynamic equation

∂J

∂t
= −∂(Ju)

∂x
, (5.47)
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where u = u(t, x) is some vector field. Then the determinant det J satisfies the same equation:

∂ det J
∂t

= − ∂

∂x
· (det J · u) . (5.48)

Proof. See Appendix A.4.

Therefore from (5.37)
∂ρ

∂t
= −∇ · (ρu) . (5.49)

This equation is the first of the complete set of Euler equations. Unfortunately, the second
equation of (5.46) depends on the whole compression tensor and thus it cannot be described
only by the means of density. This is reasonable since in general the system can have different
forces in different directions in response to different compressions. Therefore in order to
simplify the system we need to assume that the compression can be represented by a single
number, i.e. that it is compressed equally in all directions.

Assumption 5.1 (Isotropy). Compression tensor ∂M/∂x(t, x) is isotropic (equal in all di-
rections), thus it can be represented as a rotation matrix multiplied by a scalar.

This assumption looks restricting at first glance, but for the infinitely large chaotic system
with infinitely many particles the system indeed “looks the same” in all directions at every
point, thus we can say it is isotropic.

Assumption 5.1 has long-lasting implications. Define l(t, x) := λ(∂x/∂M(t, x)), since all
the eigenvalues are equal. This variable, called specific distance, represents an average distance
between two neighbouring particles at point x. By definition of the density ρ = l−n. Further,∥∥∥ ∂x∂M q∥∥∥ = l ‖q‖. Since q is a multiindex vector, its squared length should be a natural number.
Therefore we can define its length r = ‖q‖ such that r2 ∈ N. Breaking the summation in
(5.46) in a sum of all possible lengths r of multiindex vectors, we can rewrite the summation
term as

∑
r2∈N

[
∇ ·

φ(rl) ∂x
∂M

∑
q>0
‖q‖=r

(
qqT

) ∂x

∂M

T

− φ(rl)

∇ ·
(
∂x

∂M

) ∑
q>0
‖q‖=r

(
qqT

) ∂x

∂M

T


]T
. (5.50)

Proposition 5.2. Given r such that r2 ∈ N, the summation over all outer products of
multiindices of a length r is proportional to the identity matrix, i.e. there exists β(r) such
that ∑

q>0
‖q‖=r

qqT = β(r)I. (5.51)

Proof. First of all, we will show that all nondiagonal elements in (5.51) are zero. Indeed, for
any positive q its contribution to kj-th element of matrix (5.51) is given by qkqj . But for any
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k 6= j we can pick q̄ such that it equals q except q̄max(k,j) = −qmax(k,j). In this case q̄ is also
positive and thus is included into the summation, while the contribution to kj-th element of
(5.51) has opposite sign. Therefore all nondiagonal elements of (5.51) are zero.

Further, all diagonal elements of (5.51) are equal. This can be proven by analogous
argument. Indeed, we can take a positive q and look at the elements q2

k and q2
j . Then q̄

which is equal to q except for q̄k = sgn(qk)|qj | and q̄j = sgn(qj)|qk| is also positive, but swaps
the contributions between k-th and j-th diagonal elements. Thus all the contributions to the
diagonal elements are equal. Finally,

Tr
∑
q>0
‖q‖=r

qqT =
∑
q>0
‖q‖=r

qT q = r2 ·#rq = nβ(r), (5.52)

where #rq denotes the number of positive multiindices q with length r and we define
β(r) = r2/n · #rq. It is worth noticing that by Takloo-Bighash 2018 the average approx-
imate behaviour of the number of positive multiindices q with length r is #rq ∝ rn−1 as
r → +∞, thus β(r) ∝ rn+1.

By Assumption 5.1
∂x

∂M

∂x

∂M

T

= l2I. (5.53)

Using Proposition 5.2 and (5.53), (5.50) becomes

∑
r2∈N

β(r)
[
∇ ·

(
φ(rl)l2I

)
− φ(rl)

(
∇ ·

(
∂x

∂M

)
∂x

∂M

T
)]T

.

The value inside of the square brackets can be simplified further. Indeed, by (5.45) it is
possible to inject density inside, which gives

1
ρ

[
∇ ·

(
ρφ(rl)l2I

)
− ∂ρ

∂x
φ(rl)l2I − φ(rl)ρ

(
∇ ·

(
∂x

∂M

)
∂x

∂M

T
)]T

= 1
ρ

[
∇ ·

(
ρφ(rl)l2I

)
− φ(rl)

(
∇ ·

(
ρ
∂x

∂M

)
∂x

∂M

T
)]T

.

Finally, the second term in the square brackets appears to be zero due to the following result:

Lemma 5.2. Let ∂x/∂M be isotropic, i.e. represented by a scalar multiplied by a rotation
matrix, and let ρ = det(∂M/∂x). Then

∇ ·
(
ρ
∂x

∂M

)
∂x

∂M

T

= 0. (5.54)

Proof. See Appendix A.5.
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Using this Lemma and the fact that ∇ · (ρφ(rl)l2I) = ∇(ρφ(rl)l2), we can define the
pressure:

P =
∑
r2∈N

β(r)ρφ(lr)l2 =
∑
r2∈N

β(r)
r
l1−nf(lr). (5.55)

Note that the pressure is well-defined since the sum is convergent by the property (5.32). With
this definition, the system (5.46) together with (5.49) turns into the famous Euler equations:

∂ρ

∂t
= −∇ · (ρu) ,

∂u

∂t
= −∂u

∂x
u− ∇P

ρ

T

.

(5.56)

Therefore the following theorem was proven:

Theorem 5.1. There exists a valid continuation process which leads from the Newtonian
system (5.33) to the Euler equations (5.56) under the assumption that the system is locally
isotropic in every point in space.

Remark 5.1 (Non-complete interaction topologies). In the original ODE system (5.33) we
assumed that an interaction exists between every pair of particles, i.e. that the topology of
interactions is all-to-all. In general in order to obtain (5.33) it would be sufficient to use
any topology for which the isotropy required in Assumption 5.1 is possible. The difference in
topologies would modify the definitions of density P (t, x) in (5.55). For example, for the grid
topology with equations given by

ẋi = vi,

v̇i =
n∑
k=1

(F (xi − xi−ek)− F (xi − xi+ek)) ,
(5.57)

where ek denotes the k-th basis vector of Rn, the continuation renders the same Euler equa-
tions (5.56) with the pressure given by P = f(l)/ln−1.

5.4 Control of robotic formation

5.4.1 Overview

In this section we will demonstrate how the continuation method can help in the analysis and
design of control laws for large-scale systems. We will do it by using an example of a robotic
swarm, i.e. a formation of robots whose goal is to follow some desired trajectory while passing
through obstacles and preserving relative agents’ positions.

Control of robotic formations is an extensively studied topic, see recent reviews by Oh,
Park, and Ahn 2015; Chung et al. 2018. However most of the methods rely on the graph-
theoretic properties of interaction topology and on simple linear controllers to provide sta-
bility. A PDE approach was taken by Toner and Tu 1995 who used the Euler PDE with
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diffusion terms to model the flocks of birds. The authors proposed a PDE to describe the
behaviour of agents and analyzed it to study a symmetry breaking which leads to a coherent
movement of birds. Similar PDE model was used to control 3D agent formation with 2D disc
communication topology via backstepping, see Qi, Vazquez, and Krstic 2014. Lattice-based
spatially-invariant models for platooning were considered by Jovanovic and Bamieh 2005;
Bamieh et al. 2012, where stability properties of infinite systems were studied in various
space dimensions.

Works mentioned above which use PDE representations of multi-agent systems just assume
a PDE model, which can be justified by a limiting case of the infinite number of agents.
Contrary, we will base our analysis on the continuation procedure, rigorously introducing a
PDE to describe a finite formation of drones. We will study this PDE and recover a nonlinear
local control law which, being applied to the agents, forces the whole formation to follow the
desired density profile.

5.4.2 System continuation and PDE control

Let us start from a system of drones having double integrator dynamics:

ẍi = τi. (5.58)

Here xi ∈ Rn is a position of the i-th drone in n-dimensional space and τi ∈ Rn is a control we
want to design. The drones are enumerated with multiindices i ∈ Zn. Define vi = ẋi. Similarly
to the previous section we introduce multiindex function M(t, x) such that M(t, xi) ≡ i and
then perform a continuation. The resulting system is

∂ρ

∂t
= −∇ · (ρu),

∂u

∂t
= −∂u

∂x
u+ τ(x, t),

(5.59)

where τ(t, x) = τ(t,M(t, x)) is a continuation of the control τi.

Now let us formulate a desired system which will be used as a reference which the real
formation should converge to. Given a velocity profile ud(x), we define the desired density
ρd(t, x) to follow this velocity profile. Essentially this means “desired agents” have single-
integrator dynamics. Note that in general ud can be dependent on time but we don’t consider
it for simplicity of writing.

Thus we assume the desired system is governed by
∂ρd
∂t

= −∇ · (ρdud). (5.60)

Our goal is to derive τ(t, x) such that ρ→ ρd. First, direct calculations from (5.59) and (5.60)
lead to the following systems in terms of flows (ρu) and (ρdud):

∂(ρu)
∂t

= −∇ · (ρu)u− ρ∂u
∂x
u+ ρτ(x, t),

∂(ρdud)
∂t

= −∇ · (ρdud)ud.
(5.61)
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Define the deviation from the desired density ρ̃ = ρ− ρd. Then the second-order equation for
the deviation is

∂2ρ̃

∂t2
= ∇ ·

[
∇ · (ρu)u−∇ · (ρdud)ud + ρ

∂u

∂x
u− ρτ(x, t)

]
.

In order to cancel the nonlinear terms, define now the control τ as

τ = ∂u

∂x
u+ 1

ρ

[
∇ · (ρu)u−∇ · (ρdud)ud + α(ρdud − ρu) + β∇(ρd − ρ)T

]
, (5.62)

where α and β are some positive gains. Then the equation for the density deviation transforms
into

∂2ρ̃

∂t2
= −α∂ρ̃

∂t
+ β∇2ρ̃. (5.63)

This equation is a wave equation with damping and thus it is asymptotically stable if ρ̃ = 0
on the boundary of the domain (Folland 2020). Choosing a desired system such that ρd = 0
on the boundary and using a continuation of ρ such that ρ = 0 on the boundary ensures
satisfaction of the boundary condition.

5.4.3 Control discretization

Formula (5.62) for PDE (5.59) is local by its nature, but it should be discretized to be
implemented on every agent of the original ODE (5.58). One particular discretization is
described next.

First of all, for the agent i define a matrix Gi as a discretization of the compression tensor:

[Gi]j = (xi+ej − xi−ej )/2 ≈
∂x

∂Mj
(t, xi), (5.64)

where ej is the j-th unit basis vector and [Gi]j represent the j-th column of Gi. The matrix
Gi depends on the positions of 2n neighbouring agents of the i-th agent, thus the interaction
topology is a lattice. In the same way as Gi we define a matrix Wi representing a velocity
Jacobian:

[Wi]j = (vi+ej − vi−ej )/2 ≈
∂u

∂Mj
(t, xi). (5.65)

Now we can write formulas for all terms inside of (5.62) depending on the real system:

1). ∂u

∂x
u = ∂u

∂M

∂M

∂x
u ≈WiG

−1
i vi,

2). ∇ · u =
n∑
j=1

∂uj
∂M

∂M

∂xj
≈

n∑
j=1

[W T
i ]j · [G−1

i ]j ,

3). ρ ≈ 1/ detGi,

4). ∇ρ = −ρ2∇
(

det ∂x

∂M

)
= −ρ2

∂
(
det ∂x

∂M

)
∂M

∂M

∂x
≈ −ρ2∂(detGi)

∂M
G−1
i ,

(5.66)
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ρ

x
xi−ej xi xi+ej xi+2ej

s = 2l l l

ρi−ej = 0

ρi = 2
3 l
−1

ρi+ej = ρi+2ej = l−1

Figure 5.4: Left boundary of the system (5.58) with control (5.67). Agent i is on the boundary,
the position of the “ghost agent” i− ej is chosen such that ρ linearly goes to zero at xi−ej .

where the gradient of the determinant detGi in the last equation should be computed accord-
ing to the determinant formula, using second derivatives of the positions discretized similarly
to (5.64):

∂2x

∂Mj∂Mk
(xi, t) ≈ (xi+ej+ek + xi−ej−ek − xi+ej−ek − xi−ej+ek)/4,

∂2x

∂M2
j

(xi, t) ≈ xi+ej − 2xi + xi−ej .

Since the gradient of the determinant depends on the second derivatives, in total each agent
requires information about the velocities of its 2n neighbouring agents and the positions of
its 2n2 neighbouring agents, including diagonal ones.

Finally, substituting (5.66) into (5.62), the formula for the control action τi appears as

τi =

WiG
−1
i +

n∑
j=1

[W T
i ]j · [G−1

i ]j − α

 vi +
[
βI − vivTi

] 1
detGi

G−Ti
∂(detGi)
∂M

T

+

+ detGi
[
αρdud + (βI − uduTd )∇ρTd − ρd(∇ · ud)ud

]
.

(5.67)

5.4.4 Boundary conditions

For the system (5.63) to converge to zero proper boundary conditions should be used. Namely,
the continuation should be chosen such that ρ = 0 outside of the formation. As it was shown
in Section 4.4.4, boundary conditions for PDE correspond to “ghost agents” in the ODE case.
In particular, information about neighbour agents is used in (5.64) and (5.65). Therefore, if
an agent with index i is on the boundary with respect to the j-th axis direction, specifying
boundary conditions means specifying position xi−ej and velocity vi−ej for the nonexisting
agent i− ej (contrary, if the agent i is on the other side of the formation, nonexisting agent
would have an index i+ ej respectively).

Proposition 5.3. Assume agent i− ej is a ghost agent. Then

xi−ej = 3xi − 2xi+ej , vi−ej = 2vi − vi+ej (5.68)

ensures ρi−ej = 0 and a correct computation of [Wi]j by (5.65).
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Proof. Choice (5.68) for velocities is natural, since being substituted in (5.65) this leads to
an approximation of the velocity gradient based solely on the existing i and i+ ej agents.

For the position we want that the compression tensor (5.64) “feels” that the drone i is on
the border. For this we can use such an approximation that the density near the border will
linearly diminish to zero, see Fig. 5.4. Namely, let us look at 1D case and fix i-th agent to
be on the left border, with ρi−ej = 0 for the ghost agent. Assume further that the distance
between each pair of existing agents is constant and equal to l. Then ρi+ej = l−1. Define
an unknown distance s := xi − xi−ej . Then asking for a linear dependency of a density on
position, we have necessarily

ρi =
lρi−ej + sρi+ej

l + s
= s

l(l + s) .

But by (5.64) ρi = 2/(l + s), which immediately gives the answer s = 2l, or xi−ej = xi +
2(xi − xi+ej ), which is (5.68).

Proposition 5.3 finalizes the formulation of the boundary conditions and thus the correct
implementation of (5.67).

5.4.5 Numerical simulation

To demonstrate the control policy (5.67) we used a numerical simulation. The simulation
was performed both in 2D and in 3D to show that the derived controller can handle arbitrary
space dimensions. In 2D a formation of 7×7 = 49 drones was simulated, while in 3D space we
used a cubic formation of 8×8×8 = 512 drones. Starting from a random initial position, the
drones’ goal was to reach a regular formation, fly through a window and restore the regular
formation after the maneuver.

Assume the center of the window is placed at the point (x0, 0, 0), and the formation should
fly through it starting from the origin. The desired velocity field ud(x, y, z) able to fulfill the
task was constructed as

udx = 1, udy|z = 0.05 atan(x− x0)e−
(x−x0)2

100 y|z,

where y|z denotes y or z, see the left panel of Fig. 5.5 for the streamlines projected on the
x-y plane.

For simplicity the desired system (5.60) was simulated by first-order integrators following
the desired velocity profile, and the density ρd(x, t) was interpolated between agents. Both
the desired system (5.60) and the real system (5.58) were simulated using the Euler method
for the regular formations of 7 × 7 = 49 drones in 2D and of 8 × 8 × 8 = 512 drones in 3D.
The initial positions for the real system were multiplied by 2 in comparison to the desired
system and a uniform noise U(−2, 2) was added. The control gains were chosen as α = 3 and
β = 100. The convergence of the real density to the desired one is shown on the right panel
of Fig. 5.5 and snapshots of the simulation are presented in Fig. 5.6 for 2D system and in
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Figure 5.5: Left: streamlines of the desired velocity field ud(x, y). Right: convergence of
the L2 norm of the density deviation for 3D formation (similar picture can be obtained for
2D formation).

Fig. 5.7 for 3D system respectively. It is clear that the real formation, being heavily disturbed
in the beginning, converges to the desired shape in less than 5 seconds and then follows the
desired pattern, successfully passing through the window.

5.5 Concluding remarks

In this chapter we showed that based on the continuation method, new continuous models
can be derived and further utilized for analysis and control purposes. A special attention was
paid to multi-agent systems, which can be continualized using a notion of density defined as
an inverse of a partial derivative of a position with respect to the indexing function.

As an example we used the continuation to show how various traffic PDE models can be
recovered from discrete traffic representations and how the Euler equations for compressible
fluid can be derived from the Newtonian particle interactions, providing more intuition into
the Hilbert’s 6th problem. The same continuation was then used to describe a robot formation
flying through a window. We developed a control algorithm to stabilize a desired trajectory
based on a continuous representation of the formation. This algorithm is distributed as every
robot requires information only about neighbouring robots.

A general method for derivation of continuous models for multi-agent systems is a promis-
ing method that can lead to development of new boundary and distributed control approaches
and algorithms in the future. To facilitate this process, it would be beneficial to explicitly
derive conditions on the boundaries of applicability of the proposed framework and on the
required order of continuation which should be used for the system description.
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Figure 5.6: Simulation of 2D formation of 7 × 7 = 49 drones flying through window. Rows
correspond to times t = {0s, 2s, 12s, 25s, 35s, 50s}. Left column, reference: desired system
(5.60), governed by single integrators. Right column, actual: heavility perturbed real
system (5.58) with control (5.67) which converges to the desired one.
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Figure 5.7: Simulation of 3D formation of 8×8×8 = 512 drones flying through window. Rows
correspond to times t = {0s, 1s, 5s, 12s, 20s, 30s, 45s}. Left column, reference: desired
system (5.60), governed by single integrators. Right column, actual: heavility perturbed
real system (5.58) with control (5.67) which converges to the desired one.
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6.1 Introduction to networks of oscillators

Networks are an astonishing subject of multidisciplinary research, since they are ubiquitous.
Electric power grids and traffic networks are only few examples of systems that consist of
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a large number of connected dynamical units. The large-scale collective behaviour of such
systems is determined by the interplay of network spatial topology and individual dynamics.
Oscillatory networks are a particular type of networks where every node exhibits oscillatory
dynamics. In these networks major studies are devoted to synchronization phenomena, which
is of special importance in systems such as laser arrays, biological neural networks, power
grids, electrical and magnetic systems. For example, in laser arrays, in power or magnetic
systems synchronization is a desirable mode of operation since it drastically increases the
amount of energy produced by system. At the same time it was shown that in biological
neural networks synchronization plays a negative role since it is related to the Parkinson
disease.

In Chapter 5 we demonstrated how the continuation method derived in Chapter 4 can
be helpful in the analysis and control design for large-scale nonlinear systems. In this chap-
ter we will further apply the continuation method to solve various problems related to the
synchronization oscillatory networks. One could argue: why do we want to use a PDE in-
stead of ODEs, if PDEs are generally considered to be harder to analyze and to control?
From the point of view of the control design the answer is that a suitable use of PDEs can
lead to explicit and scalable algorithms. Indeed, the centralized computation of feedback
control gains for a large-scale linear system with n agents requires at least O(n) operations
by methods such as ODE-based backstepping (Kanellakopoulos, Kokotovic, and Morse 1991)
and at least O(n3) operations by methods like LQR, which require solving a Riccati matrix
equation. On the contrary, in Section 6.2 we will give an example of such situation where the
continuation helps to design a control with gains computed in O(1) operations. In particu-
lar, in case of unstable 1-dimensional PDEs we can use the result by Smyshlyaev and Krstic
2005, where the general second-order linear space-dependent system is stabilized to zero state
using backstepping control, based in turn on Smyshlyaev and Krstic 2004. From the point of
view of system analysis it appears that synchronization of oscillations is a highly nonlinear
effect and thus its analysis poses big challenges for large ODE networks. In Section 6.3 we
show that the nonlinear continuation method allows to recover synchronization threshold for
a ring of coupled Kuramoto oscillators which plays a role of a prototypical model for a power
grid. Although this can be considered as a toy example (since the same result was recently
discovered in the ODE setup), we show in Section 6.4 that the continuation method can be
applied to a much more general class of oscillators which change their frequency depending
on a magnitude of oscillations for which, up to the author’s knowledge, no synchronization
conditions exist for ODE-based coupled large networks.

6.2 Synchronization of a laser chain

6.2.1 Overview

The first problem in the domain of the networks of oscillators that we draw our attention
to is a problem of stabilization of a chain of coupled semiconductor lasers. Coupled laser
systems are important for high-precision power transmission applications such as welding,
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laser surgery or fusion research as well as many others (Saxena, Prasad, and Ramaswamy
2012). Recently, Pietrzak et al. 2015 showed that large arrays of semiconductor laser diodes
are more power- and cost-efficient compared to single crystal lasers due to lower electrical
resistance and optical load. A typical array of coupled lasers is depicted in Fig. 6.1.

Figure 6.1: High-average-power laser-diode 41kW array, composed of 28 silicon monolithic
microchannels (SiMMs) each consisting of thousands of diodes. Image from Lawrence
Livermore National Laboratory, https://lasers.llnl.gov/science/photon-science/
highpowered-lasers/hapl, licensed under CC BY-NC-SA 4.0.

It was shown by Carr, Taylor, and Schwartz 2006 that coupling of several Class-B lasers
(Arecchi et al. 1984) can lead to a resonance effect, greatly increasing intensity comparing
to the uncoupled laser system. However, such a system is prone to instabilities: electrical
fields of lasers start to oscillate around the operating point, destroying resonance effect. Carr,
Taylor, and Schwartz 2006 further showed that these oscillations, up to the first order, are
described by coupled Stuart-Landau oscillators.

Stuart-Landau oscillators are prototypical models for Andronov-Hopf bifurcation, and
apart from laser applications they are used to describe many oscillatory systems such as elec-
tronic oscillators (Bergner et al. 2012) or biological neural networks (Aoyagi 1995). Usually
in laser analysis Stuart-Landau model describes electrical field of one laser, thus the oscil-
lating behaviour is the desired one. However we base our analysis on the results of Carr,
Taylor, and Schwartz 2006, where Stuart-Landau model is used to describe deviation from
the synchronized steady state: thus, oscillations should be suppressed.

6.2.2 Model

Let the deviation of one laser be c ∈ C, then one Stuart-Landau oscillator is described by the
evolution equation

ċ =
(
Γ + iω − η|c|2

)
c, (6.1)

https://lasers.llnl.gov/science/photon-science/highpowered-lasers/hapl
https://lasers.llnl.gov/science/photon-science/highpowered-lasers/hapl
https://creativecommons.org/licenses/by-nc-sa/4.0/
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where Γ > 0 is an excitation gain, ω is a natural frequency and η ∈ C is a nonlinear damping
coefficient. For Γ < 0 the system has one stable equilibrium point c = 0, while for Γ > 0 zero
equilibrium point is unstable, and system has a stable limit cycle with frequency ω and with
amplitude |c| =

√
Γ/η.

c1 c20 cN u

a12a01 aN,N+1

∆x 2∆x 1−∆x 1

Figure 6.2: System of coupled semiconductor lasers, modeled by (6.2).

Saxena, Prasad, and Ramaswamy 2012 proposed to design laser hardware having in mind
an effect called amplitude death to suppress laser electrical field’s undesirable oscillations and
thus prevent loss of efficiency. This effect appears when many inhomogeneous oscillators are
strongly coupled, thus making their limit cycles unstable and the zero fixed point stable.
Contrarily to this approach of hardware-designed amplitude death, we propose to use an
active feedback stabilization from one boundary to suppress oscillations. We consider here
a chain of N + 2 coupled Stuart-Landau oscillators. Let the position of i-th oscillator for
i ∈ {0, .., N + 1} be xi = i∆x with ∆x = 1/(N + 1) being distance between two neighbours,
thus x0 = 0 and xN+1 = 1. The state of i-th oscillator is ci ∈ C. We assume that the
oscillators on the boundaries are directly controllable, namely the left boundary oscillator has
fixed zero state c0 = 0 and the state of the right boundary oscillator is a control variable
cN+1 := u. We also assume that the coupling of lasers is realized by an overlapping of their
evanescent fields (Winful and Rahman 1990), thus the evolution equation of i-th oscillator
depends on the nearest neighbours’ states with gains ai,i−1 and ai,i+1. Since it is a conservative
force, ai,i+1 = ai+1,i, thus the network is undirected. The system is given by

ċi = (µ− η|ci|2)ci + ai,i−1(ci−1 − ci) + ai,i+1(ci+1 − ci),
c0 = 0, cN+1 = u,

(6.2)

with µ = Γ + iω. In general, coupling ai,i+1 can be space-dependent. We assume that it is
monotone, for example as in case of an increasing electrical permeability of the medium along
the laser chain. Therefore, to approximate monotone dependencies we restrict ourselves to
a class of coupling gains ai,i+1 ≈ α(xi − β)2 with α > 0, β ∈ R \ [0, 1]. Note that this class
includes also homogeneous couplings in case β → ±∞ and α→ 0 such that αβ2 ≡ const.

6.2.3 Continuation and boundary control using backstepping

Since Γ > 0, system (6.2) has unstable zero equilibrium. Our goal is to design a feedback
control law cN+1 = u(c) such that zero solution is stabilized, thus suppressing oscillations.
Linearizing system (6.2) around zero and assuming |ci| is small, we get

ċi = µci + ai,i−1(ci−1 − ci) + ai,i+1(ci+1 − ci),
c0 = 0, cN+1 = u.

(6.3)
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(a) (b)

Figure 6.3: Numerical simulation of system (6.2) with N = 30 oscillators with parameters
µ = 5 + 4i, η = 10, α = 5 and β = −10. The absolute values of all states |ci(t)| for i ∈ {1..N}
are depicted. (a): Uncontrolled system, u = 0. (b): Controlled system with controller (6.7)
with γ = 10.

In case of thousands of coupled laser diodes, the implementation of traditional control al-
gorithms for the system (6.3) would require a lot of computational power. Instead, we can
use the continuation method as explained in Section 4.5, Corollary 4.7 for undirected linear
networks and obtain a continuous model of (6.3) as a second-order PDE:

∂c(x, t)
∂t

= µc(x) + ∂

∂x

(
α∆x2(x− β)2∂c(x, t)

∂x

)
(6.4)

for x ∈ (0, 1) and with boundary conditions c(0, t) = 0 and c(1, t) = u.

Although system (6.4) is formulated in complex domain, one can use backstepping method
by Smyshlyaev and Krstic 2005 to stabilize it. Indeed, the stabilizing controller is given by

u :=
1∫

0

k(x)c(x, t)dx, (6.5)

and the kernel is found by formula (44) from the work of Smyshlyaev and Krstic 2005:

k(x) = −x̄(µ+ γ)
α|β|

(1− β)3/2

(x− β)5/2 ×
I1
(√

(µ+ γ)(ȳ2 − x̄2)/(αβ2)
)

√
(µ+ γ)(ȳ2 − x̄2)/(αβ2)

, (6.6)

where γ > 0 is an adjustable gain, I1(s) is the modified Bessel function of order one, x̄ =
−β log(1− x/β) and ȳ = −β log(1− 1/β).
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6.2.4 Control discretization and numerical simulation

Finding a control law for the original ODE system (6.2) can be easily done by performing a
numerical integration of (6.5) using the trapezoidal rule

u := ∆x
N∑
i=1

k(xi)ci, (6.7)

Each control gain k(xi) can be computed directly in O(1) operations.

We validated the obtained control law by numerical simulation of system (6.2) withN = 30
coupled oscillators. We took Γ = 5 for excitation gain, ω = 4 for natural frequency and
η = 10 for damping, thus a steady state magnitude of an uncoupled oscillator would be
|c| = 1/

√
2 ≈ 0.7071. Further, we took α = 5 and β = −10 as parameters for the coupling

coefficients ai,i+1. Due to the coupling, steady state magnitudes of the network (6.2) diminish,
which can be seen on the graph in Fig. 6.3(a) depicting simulation of the uncontrolled system
(6.2) with u = 0. However, the system still oscillates. The oscillations can be suppressed
by applying control (6.7) with kernel (6.6), where we took γ = 10. Successful suppression is
depicted in Fig. 6.3(b).

6.3 Analysis of synchronization for a ring of Kuramoto oscil-
lators

6.3.1 Overview

In the previous section we were focused on oscillators governed by Stuart-Landau equation,
describing oscillations in the complex domain. But there is another special class of dynamical
models, the Kuramoto phase oscillator model (Kuramoto 2003), which is a base model that
serves to describe synchronization phenomena due to its simplicity. Compared to Stuart-
Landau oscillator the Kuramoto oscillator tracks only phase dynamics of a node, assuming
amplitude of oscillations being constant. This first-order model captures phenomena arising
in coupled Josephson arrays (Wiesenfeld, Colet, and Strogatz 1996), quasi-optical oscillators
(York and Compton 1991), etc. The original first-order Kuramoto model was extended by
Tanaka, Lichtenberg, and Oishi 1997a; Tanaka, Lichtenberg, and Oishi 1997b who included
an additional inertial term, making the whole model second-order. They were inspired by
the work of Ermentrout 1991, who introduced a pulse coupled phase oscillator model with
inertia to mimic synchronization mechanisms, observed among the fireflies Pteroptix Malaccae.
Filatrella, Nielsen, and Pedersen 2008 showed that the second-order Kuramoto model can be
used as well to describe the collective behaviour of power networks. Other uses include
synchronization phenomena in crowd synchrony on London’s Millennium Bridge (Strogatz et
al. 2005), Huygens pendulum clocks (Bennett et al. 2002), and self-synchronization of smart
grids (Salam, Marsden, and Varaiya 1984; Rohden et al. 2012; Dörfler, Chertkov, and Bullo
2013).
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The collective behaviour of limit-cycle oscillators was first studied by Winfree 1967 who
proposed a mean-field model of coupled phase oscillators with distributed natural frequencies.
This work revealed that despite having different natural frequencies, oscillators spontaneously
synchronize to some common frequency if the coupling strength exceeds a critical value. Con-
ditions and effects of synchronization in complex networks were first analysed by Watts 2018
via the numerical study of the Kuramoto model in small-world networks and Barahona and
Pecora 2002, who considered analytically the conditions for complete synchronization of iden-
tical chaotic systems on different kinds of graphs. Synchronization of Kuramoto oscillators in
globally coupled networks was extensively analysed in the mean-field sense, see the detailed
review by Acebrón et al. 2005b. At the same time, different effects in other topologies were
treated mostly numerically, as by Tumash, Olmi, and Schöll 2019. General reviews on syn-
chronization phenomena in complex networks include works of Arenas et al. 2008; Dörfler and
Bullo 2014.

In this section we present a network of Kuramoto oscillators with local interactions, namely
coupled on a 1D ring. We introduce a PDE approximation for this system using the contin-
uation method. This PDE representation of Kuramoto system can be more appropriate for
analysis (in the same way as continuous dynamical systems can be more tractable than the
discrete ones). As a toy example, here we present one possible application of this representa-
tion, namely we analytically find a synchronization threshold for a 1D ring topology. Problem
of computation of a general synchronization threshold for different topologies and frequency
distributions was recently solved by Dörfler, Chertkov, and Bullo 2013 and Jafarpour and
Bullo 2018 with the help of graph theory. However, the methods presented in these papers
are sophisticated and not straightforward to extend to other types of oscillators. Contrary,
the idea based on continuation which is presented in this section helps to find a synchroniza-
tion condition in a very natural way. Moreover this method will be extended in the next
Section 6.4 to a more general class of non-isochronous oscillators in the complex domain.

Apart from deriving synchronization threshold we demonstrate that the continuation
method produces an accurate representation of the Kuramoto network by performing nu-
merical simulations comparing the original ODE system with the obtained PDE. Finally,
considering the Kuramoto system as a model for a power network, we give a design procedure
for optimal power which should be produced by generators. We show that there exists a
lower bound on the synchronization threshold depending on power loads in the system, and
that this bound can be achieved by a careful design of generators. Such choice of generators
provides the lowest possible required capacity of the transmission lines, which in theory can
lower the construction costs and increase stability of the network.

6.3.2 Problem formulation and continuation

We start by analysing the Kuramoto oscillator system

φ̇i = ωi + F (sin(φi+1 − φi)− sin(φi − φi−1)) , (6.8)
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where φi is a phase angle of i-th oscillator, ωi is its natural frequency and F is a coupling
strength. Each oscillator is coupled with its two neighbours, thus a most natural topology for
the system would be a ring (although intervals on a real line with boundary conditions could
be also easily considered). We assume that there are n oscillators and that each oscillator
has a position on a ring defined by xi ∈ [0, 2π), with xi+1− xi = ∆x and x1− xn + 2π = ∆x,
meaning that the oscillators are spaced equally on the ring. Using these positions, we can
further define a natural frequency function ω(xi) = ωi and then a state function φ(xi) = φi.

Continuation of system (6.8) was already performed as an example in Section 4.3 obtaining
(4.40) with a change of notation more appropriate for oscillatory systems ρ → φ. Also a
multiplication on the coupling strength F and an addition of the natural frequency function
ω(x) should be performed comparing to (4.40), which leads to the following continuation of
(6.8):

∂φ

∂t
= ω(x) + F∆x ∂

∂x
sin
(

∆x∂φ
∂x

)
= ω(x) + F cos

(
∆x∂φ

∂x

)
∆x2∂

2φ

∂x2 . (6.9)

We validate this PDE approximation in the simulation with an ODE system with n = 50
oscillators, placed on a ring, such that the last oscillator is connected with the first one.
For illustrative purposes the natural frequency function is set as ω(x) = 1 + x sin(2x) for
x ∈ [0, 2π) (in general any function can be used, but for the future analysis we choose an
integrable one) and the coupling strength F = 4. We numerically simulate the approximated
PDE (6.9) on a grid with 500 points. The results of simulation are shown in Fig. 6.4.

From the figures 6.4(a),(b) we see that the ODE system converged to a partial synchroni-
sation state, having 14 distinct clusters. At the same time PDE model continuously connects
these clusters (Inset 6.4(c)), remaining rather accurate at the positions of the oscillators of
the original ODE system (Inset 6.4(d)).

6.3.3 Synchronization threshold

The main advantage of describing the system in terms of partial derivatives is that now the
space becomes a continuum, thus integrals can be taken (and in general integrals are much
more tractable than series).

We will show how the obtained PDE (6.9) can be used to find a parameter F ∗ for which
a phase transition from the complete synchronization to the emergence of clusters occurs.
Namely, let us try to find an equilibrium solution φ∗ of (6.9) in case of complete synchroniza-
tion. It is clear that then there exists ω̄ = 1

2π
∫ 2π
0 ω(x)dx such that all oscillators share the

same frequency:
∂φ∗

∂t
= ω̄.

One can validate that the synchronization frequency is given by an average value of all oscil-
lators’ frequencies by integrating (6.9) over whole space domain. Therefore, the equilibrium
solution should satisfy

F∆x ∂
∂x

sin
(

∆x∂φ
∗

∂x

)
= ω̄ − ω(x). (6.10)
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(a) (b)

(c)
(d)

Figure 6.4: (a): Simulation of a Kuramoto ODE network (6.8) with n = 50 oscillators,
different lines denote states of different nodes. (b): Simulation of a PDE approximation (6.9)
discretized in 500 cells, different lines denote states of different cells. (c): Snapshot of profiles
of both systems at time T = 500. (d): Evolution of a mean-square absolute divergence
between solutions.

Let us integrate this equation from x0 to x1, where both are chosen arbitrary:

sin
(

∆x∂φ
∗

∂x
(x1)

)
− sin

(
∆x∂φ

∗

∂x
(x0)

)
= 1
F∆x (H(x1)−H(x0)) , (6.11)

where H(x) is some primitive function of ω̄ − ω(x). Rearranging, we obtain

sin
(

∆x∂φ
∗

∂x
(x1)

)
− 1
F∆xH(x1) = sin

(
∆x∂φ

∗

∂x
(x0)

)
− 1
F∆xH(x0) =: C, (6.12)

and since x0 and x1 were chosen arbitrary, C appears to be some constant independent of the
choice of x0 and x1. We obtained that the existence of an equilibrium solution is equivalent
to the existence of the primitive function H(x) written in the form

1
F∆xH(x) = sin

(
∆x∂φ

∗

∂x
(x)
)

+ C. (6.13)
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If such H(x) exists, φ∗ can be recovered by taking arcsine and then integrating.

Therefore, a complete synchronization for a given F is possible if and only if there exists
H(x) such that (6.13) is possible, in a sense that the sinus value lies in the interval [−1, 1].
Essentially this means that

H(x) ∈ [−F∆x+ C,F∆x+ C] ∀x ∈ [0, 2π].

Recalling that H(x) is a primitive function of ω̄ − ω(x) and that in general it is defined up
to a constant, this is equivalent to the condition

max
x∈[0,2π]

H(x)− min
x∈[0,2π]

H(x) 6 2F∆x (6.14)

for any H(x). To recover synchronization threshold F ∗ it requires only to replace inequality
with equality sign:

F ∗ = 1
2∆x

(
max
x∈[0,2π]

H(x)− min
x∈[0,2π]

H(x)
)
. (6.15)

Synchronization threshold (6.15) provides a condition on the existence of equilibrium
solutions. It appears that for all F > F ∗ there will be a stable equilibrium solution:

Theorem 6.1. For all F > F ∗, there exists an equilibrium solution φ∗, satisfying (6.13),
which is locally asymptotically stable.

Proof. Without loss of generality we assume that C = 0 (because the primitive function
H(x) is defined up to a constant). Note that H(x) ∈ [−F ∗∆x, F ∗∆x]. Then the equilibrium
solution can be recovered from (6.13) (up to a constant) as

φ∗(x) = 1
∆x

x∫
0

arcsin
( 1
F∆xH(x)

)
dx. (6.16)

Now assume that the equilibrium solution is slightly perturbed: φ = φ∗ + φ̃. Then, by (6.9),

∂φ̃

∂t
= F∆x ∂

∂x
sin
(

∆x∂φ
∗

∂x
+ ∆x∂φ̃

∂x

)
+ ω(x)− ω̄. (6.17)

Rewriting sine, we get

sin
(

∆x∂φ
∗

∂x
+ ∆x∂φ̃

∂x

)
= sin

(
∆x∂φ

∗

∂x

)
cos

(
∆x∂φ̃

∂x

)
+ cos

(
∆x∂φ

∗

∂x

)
sin
(

∆x∂φ̃
∂x

)
≈

≈ sin
(

∆x∂φ
∗

∂x

)
+ cos

(
∆x∂φ

∗

∂x

)
∆x∂φ̃

∂x
,

where the fact that φ̃ is the small perturbation was used. Now (6.10) cancels the natural
frequencies, therefore we arrive at

∂φ̃

∂t
= F∆x2 ∂

∂x

[
cos

(
∆x∂φ

∗

∂x

)
∂φ̃

∂x

]
. (6.18)
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Figure 6.5: Desynchronization frequency ω̃ depending on the coupling strength F . Other
parameters as in Fig. 6.4. Left: F ∈ [0, 20]. Right: zoom in, F ∈ [18, 20].

This is a standard linear diffusion equation with the diffusion coefficient cos
(
∆x∂φ∗∂x

)
. For

stability it remains to prove that this coefficient is always positive. Indeed,

cos
(

∆x∂φ
∗

∂x

)
= cos

(
arcsin

( 1
F∆xH(x)

))
=

√
1−

(
H(x)
F∆x

)2
>

√
1−

(
H(x)
F ∗∆x

)2
> 0,

and thus the linearised system is locally asymptotically stable.

To validate this analysis we use the parameters of the simulation made in Fig. 6.4: the
length of the ring is L = 2π, the number of ODE nodes n = 50, and the natural frequency
ω(x) = 1 + x sin(2x) (which is an integrable function, thus can be analytically treated). By
definition of the positions of nodes, ∆x = L/n = 2π/50. Further,

x∫
0

ω(s)ds = x− 1
2x cos(2x) + 1

4 sin(2x),

thus the average frequency ω̄ = 1/2. Primitive function H(x) can be taken as

H(x) =
x∫

0

(ω̄ − ω(s))ds = 1
2x cos(2x)− 1

4 sin(2x)− 1
2x, (6.19)

with maxH(x) = H(3.06) = 0.0203 and minH(x) = H(4.765) = −4.726. Substituting these
values in (6.15) gives

F ∗ ≈ 18.88. (6.20)

The value (6.20) is the smallest F for which the equilibrium solution exists. To verify
the result (6.20) for the original system (6.8), we simulated it for F ∈ [0, 20] and calculated
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ω̃ = max φ̇i−min φ̇i, which we call desynchronization frequency. In case of complete synchro-
nization ω̃ should be zero. Indeed, Fig. 6.5 shows that ω̃ is zero for F > 18.9, and it increases
when F becomes smaller.

Note that in general the formula analogous to (6.15) can be obtained also for the ODE
case, with the primitive function H(x) being replaced by the partial sum of ω(x). But for a
very large network a computation complexity for the partial sum scales as O(n), where n is
the size of the network, while analytical computation for PDE has a complexity O(1).

6.3.4 Kuramoto oscillators with inertia

The Kuramoto oscillator can be used to model the behaviour of power networks, see Filatrella,
Nielsen, and Pedersen 2008; Rodrigues et al. 2016. In this case the coupling acts as an
electromotive force, while the nodes itself have inertias, thus the second-order model should
be considered: {

φ̇i = ωi,

Mω̇i = Ωi − αωi + F (sin(φi+1 − φi)− sin(φi − φi−1)) ,
(6.21)

where ωi is a current frequency of the i-th oscillator, which is included in the state now.
Physically (see Rodrigues et al. 2016), M represents an inertia coefficient, α is a damping
(dissipation), Ωi is a power supplied to (or taken from) the system, and F is the allowed
maximum transferred power.

Performing the same approximation process, we arrive at the following PDE system
∂φ

∂t
= ω,

M
∂ω

∂t
= Ω− αω + F∆x ∂

∂x
sin
(

∆x∂φ
∂x

)
,

(6.22)

or just

M
∂2φ

∂t2
+ α

∂φ

∂t
= F∆x ∂

∂x
sin
(

∆x∂θ
∂x

)
+ Ω(x). (6.23)

Note that the right-hand side of (6.23) coincides with the right-hand side of (6.9), thus the
synchronization threshold F ∗ is exactly the same for (6.23) as for (6.9). One can simply
use the formula (6.15) to obtain the synchronization threshold for the Kuramoto model with
inertia substituting natural frequency ω(x) with supplied power Ω(x).

6.3.5 Design of generators in power networks

When the power network is modelled by (6.21), the value of Ω(x) represents the power which
the node brings to the system (or consumes, if Ω(x) is negative). Without loss of generality, we
can assume that Ω̄ = 0 (which can be done by treating deviations from the normal behaviour).
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Figure 6.6: Left: Schematic representation of a power grid on a ring with n = 20 nodes. Red
dots represent generators and blue dots represent loads. a1 and a2 define loads intervals, b1
and b2 define generators intervals. Right: Intervals of loads and generators. Ω(x) is negative
on the intervals aj of loads and positive on the intervals bj of generators. Given loads, the
goal is to design the generators.

Then it makes sense to split all the nodes into two classes: generators (with Ω(x) > 0) and
loads (with Ω(x) < 0).

The desired behaviour of power networks is the synchronization, thus the system can
be considered more stable if the synchronization threshold is smaller. Namely, Filatrella,
Nielsen, and Pedersen 2008; Rodrigues et al. 2016 showed that the coupling strength F is the
maximal power which the line connecting two oscillators should be able to transmit. And if
this capacity is not enough, system desynchronizes, leading to a blackout.

Therefore, it is desirable to design such system that F ∗ required for synchronization is as
small as possible. This leads to a cheaper construction of power system transmission lines and
in the same time increases stability allowing for more fluctuations to happen before a blackout.
As the large loads (such as factories) are usually known, one can ask a question what is the
optimal design of generators such that the synchronization threshold is the smallest one.

Let the power network be the ring of n oscillators with coordinates xi ∈ [0, 2π), which can
be represented by a PDE (6.9) (or (6.23) for the model with inertia). Then the ring can be
split into 2K intervals a1, b1, a2, ..., aK , bK (see Fig. 6.6), such that Ω(x) is negative on the
intervals aj and positive on the intervals bj for j ∈ {1, ...,K}. Further let us define positions
of intervals ends by xaj and xbj .

Denote

Aj =
∫
aj

Ω(x)dx and Bj =
∫
bj

Ω(x)dx, j ∈ {1, ...,K}.

Then it is obvious that the primitive function H(x) =
∫

Ω(x)dx has its minimum points at
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xaj , maximum points at xbj , and that

H(xaj ) =
j∑
i=1

Ai +
j−1∑
i=1

Bi, H(xbj ) =
j∑
i=1

(Ai +Bi) . (6.24)

Synchronization threshold F ∗ is defined via (6.15), and the way to minimize it is to minimize
the difference between the maximal and the minimal values of H(x).

Proposition 6.1. Irrespectively of generator powers Ω(x) on intervals bj,

max
x∈[0,2π)

H(x)− min
x∈[0,2π)

H(x) > max
j∈{1,...,K}

|Aj |. (6.25)

Proof. Indeed,

max
x∈[0,2π)

H(x)− min
x∈[0,2π)

H(x) > H(xbj−1)−H(xaj ) = |Aj |,

and taking maximum for all j ∈ {1, ...,K} results in (6.25).

Proposition 6.1 shows that there is an intrinsic bound on the synchronization threshold
which is defined by loads and cannot be lowered by any choice of generators. But this bound
can be achieved in many different ways. One of them is to use generators to compensate for
their neighbouring loads.

Proposition 6.2. Let the integral power of generators be such that

Bj = −αAj − (1− α)Aj+1, j ∈ {1, ...,K}, (6.26)

where AK+1 is equivalent to A1 and α ∈ [0, 1] is the splitting coefficient. Then the lower
bound in inequality (6.25) is achieved.

Proof. By (6.24) and (6.26)

H(xaj ) = (1− α)A1 + αAj , H(xbj ) = (1− α)A1 − (1− α)Aj+1.

One can see that such choice of generators assures

Ω̄ =< Ω >= 0.

Then, xaj are the minimum points, xbj are the maximum points, therefore

max
x∈[0,2π)

H(x)− min
x∈[0,2π)

H(x) = max
j∈{1,...,K}

H(xbj )− min
j∈{1,...,K}

H(xaj ) =

max
j∈{1,...,K}

((1− α)(A1 −Aj+1))− min
j∈{1,...,K}

((1− α)A1 + αAj) =

= (1− α) max
j∈{1,...,K}

|Aj |+ α max
j∈{1,...,K}

|Aj | = max
j∈{1,...,K}

|Aj |,

which gives the equality in (6.25).
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Figure 6.7: Intervals of loads and generators with generators designed according to the Propo-
sition 6.2 with Remark 6.1. Ω(x) on intervals bj is an average of the neighbouring loads.

Remark 6.1. By Proposition 6.1 one particular choice of the power of generators is

Ω(x) = |Aj |+ |Aj+1|
2|bj |

, x ∈ bj , j ∈ {1, ...,K}, (6.27)

where |bj | denotes the length of the interval bj . Such generators equally compensate for the
average of their neighbour loads, providing the optimal result (see Fig. 6.7).

Finally, synchronization threshold

F ∗ =
maxj∈{1,...,K} |Aj |

2∆x (6.28)

should be large enough such that the coupling overcomes the strongest load.

6.4 Analysis of synchronization for a ring of non-isochronous
oscillators

6.4.1 Overview

It was shown in the previous section that synchronization analysis can be easily performed for
Kuramoto oscillators using PDE representation. The same synchronization conditions were
already derived for ODE representation by Dörfler, Chertkov, and Bullo 2013 and Jafarpour
and Bullo 2018, however these results were based on an extensive use of nontrivial graph
theory and linear algebra. We can further show that PDE-based models allow for more
natural analysis of systems by applying the continuation method for more complex class of
oscillators, namely non-isochronous oscillators. Non-isochronous oscillators are characterized
by a coupling of amplitude and phase. This class of models generalizes both Stuart-Landau
oscillators in Section 6.2 and Kuramoto oscillators in Section 6.3 and includes many important
physical systems, such as spin-torque oscillators (STO), Van der Pol oscillators, neuron models
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Figure 6.8: Left: Schematic representation of a possible geometry of spin-torque oscillator.
Red blocks represent ferromagnetic layers with their magnetization directions denoted by
black arrows. Electrons flow from bottom to top, first passing through the “fixed” magnetic
layer which induces spin polarization coinciding with its magnetization direction P. The
magnetization M of the “free” magnetic layer then oscillates under the effect of polarized
current and the external magnetic field H. Right: Close view on the dynamics of the
magnetization M of the “free” layer, governed by equation (6.29). Damping and current-
induced spin-transfer torque compensate each other, stabilizing steady oscillations caused by
precession around the magnetic field H.

or many others. Here we will focus mostly on STO systems, however the analysis in this
section can be applied to other types of non-isochronous oscillators.

Spin-torque oscillators are based on the spin-transfer torque effect discovered by Slon-
czewski 1996 and Berger 1996. It appears that an electric direct current which passes through
a magnetized layer can become spin-polarized, and moreover this spin-polarized current can
further transfer angular momentum to another magnetized layer. This transfer induces torque
on the magnetization of the second layer, which can lead to switching of the magnetization
direction. In presence of an external magnetic field a steady magnetization precession can be
achieved instead of direction switching. Thus a typical spin-torque oscillator consists of two
ferromagnetic layers, a thick one called “fixed” and a thin one called “free”, see the left panel
of Fig. 6.8. Magnetization direction of the “fixed” layer turns electrons’ spin in the current in
the same direction, which then induces torque on the magnetization of the “free” layer, thus
creating precession, depicted in the right panel of Fig. 6.8. Denote the magnetization of the
“free” magnetic layer by vectorM, the magnetization of the “fixed” magnetic layer by vector
P and the external magnetic field by vector H. Then the magnetization is governed by the
Landau-Lifshitz-Gilbert equation:

∂M
∂t

= −γ (M×H)︸ ︷︷ ︸
precession

+ α

|M|

(
M× ∂M

∂t

)
︸ ︷︷ ︸

damping

+ σI

|M|
(M× (M×P))︸ ︷︷ ︸
spin transfer

, (6.29)

where parameters γ, α and σ depend on system’s geometry and materials, and I is a current
which is applied to the system. For a review of the spin-transfer torque effect and STOs see
Slavin and Tiberkevich 2009; Stiles and Miltat 2006; Dieudonné 2015.
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Due to the fast precession of magnetization in a ferromagnetic layer, STOs produce mi-
crowaves. Thus large arrays of STOs can theoretically serve as very efficient microwave
generators. This is why the question of synchronization of STOs is very important: syn-
chronous oscillations of many oscillators amplify each other due to constructive interference,
while asynchronous oscillations exhibit destructive interference and thus produce less power.
In this section we will focus on the analysis of synchronization of a set of oscillators coupled
in a ring topology, providing conditions which can guarantee synchronization depending on
the parameters of independent oscillators.

Equation (6.29) can be simplified for analysis. Magnetization vectorM oscillates around
magnetic field vector H. Let us project M on a plane orthogonal to H and denote the
resulting projection via a complex variable c. Then, with some additional transformations
and simplifications (see Slavin and Tiberkevich 2009 for details) it is possible to show that
the magnetization dynamics (6.29) of an STO can be modelled through:

ċ = i(ω +Np)c− ΓG(1 +Qp)c+ σI(1− p)c, (6.30)

where p = |c|2 represents a squared amplitude of oscillations, ω is a base frequency, N is
a frequency gain with respect to the amplitude, ΓG is a base damping, Q is a damping
amplitude gain, and I and σ are the same as in (6.29). Model (6.30) is nonlinear since the
oscillations’ frequency depends on the amplitude through the frequency gain N . In case of
spin-torque oscillators this amplitude-related frequency shift happens to be very strong, thus
these oscillations cannot be described by simpler linear models.

If σI 6 ΓG, the origin c = 0 is a stable equilibrium point. Oscillations will occur if
σI > ΓG. Assuming it is true, define a linear part of sum of dissipative terms Γ = σI−ΓG > 0
and further a nonlinear gain of sum of dissipative terms S = ΓGQ+σI, thus the system (6.30)
can be written as

ċ = i(ω +Np)c+ (Γ− Sp)c. (6.31)

System (6.31) will oscillate with amplitude |c| = √p =
√

Γ/S and with frequency φ̇ =
ω + NΓ/S, where φ is a phase of an oscillator. For the amplitude of oscillations to be well
defined, we also require S > 0.

6.4.2 Logarithmic representation for a ring of non-isochronous oscillators

Model (6.31) is often studied in amplitude-phase representation c = √peiφ, where √p is an
amplitude of oscillations and φ is a phase of an oscillator. Instead of writing two separate
equations for them, we will write model (6.31) in logarithmic representation. Define z = ln c.
Then the real part of z will represent the amplitude, namely exp{2 Re z} = p. Let us denote
r := Re z = 1

2 ln p. The imaginary part of z is a phase of an oscillator, φ := Im z, thus such
transformation allows to track phase information immediately. Since dc = c · dz, the model
(6.31) now becomes

ż = Γ + iω − (S − iN)e2 Re z. (6.32)
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Now let us move to a system of coupled oscillators. We assume the oscillators are placed
on a ring, and each oscillator is coupled with its two neighbours. As in the previous section,
let n denote the number of oscillators and let xi ∈ [0, 2π) be a position on a ring of the i-th
oscillator. The distance between oscillators is xi+1−xi = ∆x and x1−xn+2π = ∆x, meaning
that the oscillators are spaced equally on the ring. Coupling between oscillators means that
each oscillator has its neighbors’ states as an external force:

ċi = i(ωi +Nipi)ci + (Γi − Sipi)ci + Fi(ci−1 + ci+1). (6.33)

Here Fi is a (possibly complex) coupling constant, with an amplitude representing coupling
strength and a phase representing coupling phase.

Using logarithmic representation, the model (6.33) reads as

żi = Γi + iωi − (Si − iNi)e2 Re zi + Fi
(
ezi−1−zi + ezi+1−zi) . (6.34)

6.4.3 Continuation and synchronization condition

It is now possible to perform continuation for the coupled system in the same way it was done
for Kuramoto oscillators in the previous section. In theory one could use the continuation
method for (6.33), but it appears that in this case an intrinsic difference in scales between
the amplitude and the phase dynamics is lost. Indeed, in physical systems the phase of
an oscillator usually changes much faster than its amplitude. Instead one should perform
continuation in such a way that the amplitude and the phase dynamics are clearly separated.
One way to do so is to consider separate equations for amplitude and phase. Another way,
which we will choose, is to use logarithmic representation (6.34). Therefore, the continuation
of (6.34) is performed in several steps:

1. zi−1 − zi → −∆x ∂z/∂xi−1/2

2. zi+1 − zi → ∆x ∂z/∂xi+1/2

3. e−∆x ∂z/∂xi−1/2 → e−∆x ∂z/∂xi −∆x1
2
∂
∂xe
−∆x ∂z/∂xi

4. e∆x ∂z/∂xi+1/2 → e∆x ∂z/∂xi + ∆x1
2
∂
∂xe

∆x ∂z/∂xi

Using these continuations, we finally get

ezi−1−zi + ezi+1−zi →
(
e∆x ∂z

∂x + e−∆x ∂z
∂x

)
+ ∆x ∂

∂x

(
e∆x ∂z

∂x − e−∆x ∂z
∂x

2

)
,

or simply
ezi−1−zi + ezi+1−zi → 2 cosh

(
∆x∂z

∂x

)
+ ∆x ∂

∂x
sinh

(
∆x∂z

∂x

)
.

Thus, system (6.34) can be written using PDE model as

∂z

∂t
= Γ + iω − (S − iN)e2 Re z + F

[
2 cosh

(
∆x∂z

∂x

)
+ ∆x ∂

∂x
sinh

(
∆x∂z

∂x

)]
, (6.35)



6.4. Analysis of synchronization for a ring of non-isochronous oscillators 135

where parameters Γ, ω, S, N and F are (possibly) varying functions of space, determined by
approximating sampled values Γi, ωi, Si, Ni and Fi at points xi.

Separating (6.35) into a system of two equations for r = Re z and φ = Im z, one gets

∂r

∂t
= Γ− Se2r

+ ReF
[
2 cosh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

)
+ ∆x ∂

∂x

(
sinh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

))]

− ImF

[
2 sinh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

)
+ ∆x ∂

∂x

(
cosh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

))]
,

∂φ

∂t
= ω +Ne2r

+ ReF
[
2 sinh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

)
+ ∆x ∂

∂x

(
cosh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

))]

+ ImF

[
2 cosh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

)
+ ∆x ∂

∂x

(
sinh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

))]
.

(6.36)

In is interesting to note that (6.36) includes a standard Kuramoto PDE derived in Section 6.3.2
as a particular case. Indeed, assuming r = r0 = const both in space and time and assuming
F ∈ R, one gets an equation for φ as

∂φ

∂t
= ω +Ne2r0 + F∆x ∂

∂x
sin
(

∆x∂φ
∂x

)
, (6.37)

which exactly coincides with (6.9) changing ω to ω +Ne2r0 .

Similar to Section 6.3.3 we are interested in possible synchronized solutions of (6.35) and
conditions for their existence and stability. A synchronized solution is such solution to (6.35)
that ∂z/∂t = iω̄, where ω̄ is a synchronization frequency. Thus we are interested in a question
when such a solution z = z(x) exists for some ω̄. Then the condition for synchronization is

0 = Γ + i(ω − ω̄)− (S − iN)e2 Re z + F

[
2 cosh

(
∆x∂z

∂x

)
+ ∆x ∂

∂x
sinh

(
∆x∂z

∂x

)]
, (6.38)

or in terms of r(x) and φ(x)

0 = Re
(
F−1

[
Γ + i(ω − ω̄)− (S − iN)e2r

])
+

+
[
2 cosh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

)
+ ∆x ∂

∂x

(
sinh

(
∆x∂r

∂x

)
cos

(
∆x∂φ

∂x

))]
,

0 = Im
(
F−1

[
Γ + i(ω − ω̄)− (S − iN)e2r

])
+

+
[
2 sinh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

)
+ ∆x ∂

∂x

(
cosh

(
∆x∂r

∂x

)
sin
(

∆x∂φ
∂x

))]
.

(6.39)

Note that we divided the equation by F before splitting real and imaginary parts such that
the hyperbolic functions take the simplest form.
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Exponential term e2r in (6.39) can be removed by combining two equations together.
Using amplitude-phase notation we can introduce f = |F |, β = argF , G = |S + iN | and
γ = arg(S + iN). With this notation

Re
(
F−1(S − iN)

)
= G

f
cos(γ + β), Im

(
F−1(S − iN)

)
= −G

f
sin(γ + β),

therefore defining A = tan(γ+β), multiplying the first equation in (6.39) by A and summing
it with the second one we obtain

A∆x ∂
∂x

[
cos

(
∆x∂φ

∂x

)
sinh

(
∆x∂r

∂x

)]
+ ∆x ∂

∂x

[
sin
(

∆x∂φ
∂x

)
cosh

(
∆x∂r

∂x

)]
+

+ 2
[
A cos

(
∆x∂φ

∂x

)
cosh

(
∆x∂r

∂x

)
+ sin

(
∆x∂φ

∂x

)
sinh

(
∆x∂r

∂x

)]
+B = 0,

(6.40)

where
B = 1

f cos(γ + β) [cos γ (ω − ω̄) + sin γ Γ] . (6.41)

Therefore, the synchronization condition is equivalent to (6.40) combined with one of the
equations in (6.39) to determine connection between r and φ.

6.4.4 Identical oscillators case

In this section we will focus on the case when the ring consists of oscillators having identical
parameters. Intuitively it is clear that in this case there exists a solution where all oscillators
share the same amplitude r and the same phase φ. However it appears that depending on
the number of oscillators and their parameters there can be more solutions, and that their
stability properties are not trivial.

First let us assume that in the synchronized case the amplitudes of oscillators r are
the same, namely r(x) = r∗ = const. In Section 6.4.6 we will prove that this assumption is
indeed valid, because it can be shown that r(x) should be monotone with respect to x, which is
possible on the ring only if r(x) is constant. Since ∂r/∂x = 0, we can use sinh(∆x ∂r/∂x) = 0
and cosh(∆x ∂r/∂x) = 1. With these simplifications the equation (6.40) depends only on
φ(x) and thus can be solved independenty:

∆x ∂
∂x

sin
(

∆x∂φ
∂x

)
+ 2A cos

(
∆x∂φ

∂x

)
+B = 0. (6.42)

If the parameters of oscillators would be non-identical, the equation (6.42) would be very
difficult to solve analytically since A and B are varying functions of space (at most it can be
converted to the Abel equation of the second kind). Therefore in this section we assume A
and B being constant. A more general scenario of a piecewise constant functions A and B

will be covered in the next section.
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For constant A and B equation (6.42) is separable. We can notice that it depends only
on the derivative of φ(x), not on the phase itself. Define θ = ∆x ∂φ/∂x. A physical meaning
of θ is a difference in phases between two consecutive oscillators. With this definition, (6.42)
becomes

cos θ
−B − 2A cos θdθ = 1

∆xdx. (6.43)

Integration of equation (6.43) is performed in Appendix A.6, admitting two solutions depend-
ing on J := B/A:

A
x

∆x + C = J

2
√

4− J2
ln

∣∣∣∣∣∣
1 +

(
2−J√
4−J2 tan θ

2

)
1−

(
2−J√
4−J2 tan θ

2

)
∣∣∣∣∣∣− 1

2θ (6.44)

for |J | < 2 and
A
x

∆x + C = J√
J2 − 4

arctan
(

J − 2√
J2 − 4

tan θ2

)
− 1

2θ (6.45)

for |J | > 2, with C being integration constant. Also in case |J | < 2 equation (6.42) has a
constant solution cos θ = −J/2.

Apart from being a solution to (6.42), synchronization means that the solution φ(x) is a
continuous angle, thus φ(x + 2π)− φ(x) = 2πk for some k ∈ Z. This implies two conditions
which θ should satisfy:

1). θ(x) = θ(x+ 2π) ∀x ∈ R,

2).
2π∫
0

θ(x) dx = 2π∆xk for some k ∈ Z.
(6.46)

Finally, a nonconstant solution can’t reach θ = ±π/2, since in this case left-hand side of
(6.43) becomes zero and the solution becomes undefined. This corresponds to the fact that
solutions (6.44) and (6.45) written in form x = g(θ) are strictly monotone functions such that
the inverse function θ = g−1(x) could exist.

In the case of identical oscillators with constant A and B it appears that the only possible
solution to (6.42) is a constant one. Indeed, non-constant solutions (6.44) and (6.45) should
be monotone with respect to coordinate, however the first condition in (6.46) requires θ to be
periodic, which is not possible if θ is not constant. Thus all possible synchronized solutions
for (6.43) are given by

θ = arccos
(
− B

2A

)
. (6.47)

6.4.4.1 Equilibrium points

Recall that θ = ∆x∂φ∂x . Since φ(x) is a phase, it is defined up to a constant. Assuming
φ(x) = 0 at x = 0, using (6.47) and the definitions of A and B, the solution for φ(x) is a
linear function

φ(x) = x

∆x arccos
(
−cos γ (ω − ω̄) + sin γ Γ

2f sin(β + γ)

)
. (6.48)
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Note that ω̄ is a synchronization frequency and is still unknown in this equation.

Position x is itself defined on a ring, thus x ∈ [0, 2π). Moreover, since the equilibrium
solution is a periodic function, φ(2π) should also be a multiple of 2π. We can define k ∈ Z+
such that φ(2π) = 2πk. Therefore, the solution can exist for any ω̄ such that

k = 1
∆x arccos

(
−cos γ (ω − ω̄) + sin γ Γ

2f sin(β + γ)

)
, k ∈ Z+.

The case k = 0 corresponds to an in-phase synchronized system, meaning phases of all
oscillators coincide, while the case k = 1 corresponds to the state where the phases of the
oscillators do a round turn along the ring. It is clear that in general the phase difference
between neighbours is

θ∗ = k∆x.

Note also that the system is symmetric for simultaneous substitution k → −k and x → −x,
thus phases can turn both clockwise and counter-clockwise along the ring.

The principal branch of arccos has a range of values [0, π], therefore k should satisfy
k 6 π/∆x (other solutions will just copy the ones included in this range due to periodicity).
Since ∆x is defined as the distance between two oscillators and is assumed to be constant,
∆x = 2π/n, where n is the number of oscillators in the system. Thus k 6 n/2, with k = n/2
corresponding to the case when two neighbor oscillators are in anti-phase.

The synchronization frequency is thus given by

ω̄ = ω + tan γ Γ + 2f sin(β + γ)
cos γ cos(k∆x), k ∈

{
0, ..., n2

}
. (6.49)

In particular, depending on the sign of 2f sin(β+γ)
cos γ , the in-phase synchronized state is either

the fastest or the slowest one.

6.4.4.2 Stability analysis

Assume the equilibrium solution is given by (6.48) with the frequency (6.49) for k ∈
{0, ..., n/2}. We want to study for which of these k the solution is stable.

Define z∗(x, t) = r∗ + iφ∗(x) + iω̄t to be an equilibrium solution for (6.35). Thus φ∗(x)
is defined by (6.48) for a chosen k, ω̄ is a frequency of synchronized solution (6.49), and a
constant r∗ can be found from (6.38) by taking its real part:

e2r∗ = Γ + 2 ReF cos(k∆x)
S

. (6.50)

Note that exponential should be positive to be well defined, therefore we require

Γ + 2f cosβ cos(k∆x) > 0.
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Now let us define a deviation from the equilibrium solution z̃(x, t) = z(x, t) − z∗(x, t). It
is governed by a difference of (6.35) for z(x, t) and for z∗(x, t), taking into account (6.38).
Assuming z̃(x, t) is small, linearization of (6.35) around z∗(x, t) is given by

∂z̃

∂t
= −2(S − iN)e2r∗ Re z̃+2F sinh

(
∆x∂z

∗

∂x

)
∆x∂z̃

∂x
+

+ F∆x ∂
∂x

[
cosh

(
∆x∂z

∗

∂x

)
∆x∂z̃

∂x

]
.

(6.51)

Using
∆x∂z

∗

∂x
= i∆x∂φ

∗

∂x
= iθ∗ = ik∆x,

we get
cosh

(
∆x∂z

∗

∂x

)
= cos(k∆x), sinh

(
∆x∂z

∗

∂x

)
= i sin(k∆x),

which can be substituted in (6.51), resulting in

∂z̃

∂t
= −2(S − iN)e2r∗ Re z̃ + 2iF∆x sin(k∆x)∂z̃

∂x
+ F∆x2 cos(k∆x)∂

2z̃

∂x2 . (6.52)

Separating (6.52) into real and imaginary parts z̃ = r̃ + iφ̃ and using F = feiβ:

∂r̃

∂t
= −2Se2r∗ r̃ − 2f∆x sin β sin(k∆x)∂r̃

∂x
− 2f∆x cosβ sin(k∆x)∂φ̃

∂x
+

+ f∆x2 cosβ cos(k∆x)∂
2r̃

∂x2 − f∆x2 sin β cos(k∆x)∂
2φ̃

∂x2 ,

∂φ̃

∂t
= 2Ne2r∗ r̃ + 2f∆x cosβ sin(k∆x)∂r̃

∂x
− 2f∆x sin β sin(k∆x)∂φ̃

∂x
+

+ f∆x2 sin β cos(k∆x)∂
2r̃

∂x2 + f∆x2 cosβ cos(k∆x)∂
2φ̃

∂x2 .

(6.53)

System (6.53) is a system of linear equations, thus the method of separation of variables
can be applied to solve it. Moreover, it is homogeneous, thus the basis functions should be
exponential. Therefore stability of (6.53) can be checked by substituting exponential basis
functions

r̃ = r0e
λteimx, φ̃ = φ0e

λteimx (6.54)
for some λ ∈ C and m ∈ Z, since basis should be periodic in x along the ring. For asymptotic
stability there should exist no solution of (6.53) with Reλ > 0. Substituting (6.54) in (6.53)
one gets

λr0 = −2Se2r∗r0 − 2f∆x sin β sin(k∆x)imr0 − 2f∆x cosβ sin(k∆x)imφ0 −
− f∆x2 cosβ cos(k∆x)m2r0 + f∆x2 sin β cos(k∆x)m2φ0,

λφ0 = 2Ne2r∗r0 + 2f∆x cosβ sin(k∆x)imr0 − 2f∆x sin β sin(k∆x)imφ0 −
− f∆x2 sin β cos(k∆x)m2r0 − f∆x2 cosβ cos(k∆x)m2φ0.

(6.55)

Define
P = f∆x2 cosβ cos(k∆x)m2 + 2if∆x sin β sin(k∆x)m,
Q = −f∆x2 sin β cos(k∆x)m2 + 2if∆x cosβ sin(k∆x)m.
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Note that as m → ∞, first terms become dominating. With the help of these functions and
with S̄ = 2Se2r∗ > 0 and N̄ = 2Ne2r∗ , (6.55) becomes

λ

(
r0
φ0

)
=
(
−P − S̄ −Q
N̄ +Q −P

)(
r0
φ0

)
, (6.56)

thus we are interested in the eigenvalues of the matrix in (6.56). It is trivial to show that
they are given by

λ = 1
2

(
−2P − S̄ ±

√
(2P + S̄)2 − 4P (P + S̄)− 4Q(Q+ N̄)

)
. (6.57)

Taking m = 0, one of the eigenvalues becomes zero, corresponding to the fact that the phase
is defined up to a constant, and the other eigenvalue is −S̄.

Further assume m 6= 0 and thus P,Q 6= 0. Condition for stability Reλ < 0 translates as

Re(2P + S̄) > Re
√

(2P + S̄)2 − 4P (P + S̄)− 4Q(Q+ N̄). (6.58)

In particular, as m→∞, ReP should be positive. Now for simplicity define

H = (2P + S̄)2, D = 4P (P + S̄) + 4Q(Q+ N̄).

Using complex relation for any c ∈ C

2 (Re c)2 = Re
(
c2
)

+ |c|2 (6.59)

and taking square of inequality (6.58), it becomes

|H|+ ReD > |H −D|, (6.60)

in particular ReD > −|H|. Taking square once more we get

(ImD)2 − 2 ImH ImD − 2|H|(cos υ + 1) ReD < 0, (6.61)

where υ = argH. By (6.59) |H|(cos υ + 1) = 2(Re
√
H)2, and thus (6.61) means that

(ImD)2 − 2 ImH ImD < 4 ReD(Re
√
H)2. (6.62)

Defining sequences hm, dm for m ∈ Z \ {0} as

hm = f∆x2 cos(k∆x)m2 and dm = 2f∆x sin(k∆x)m, (6.63)

we can express P , Q, D and H as

P =hm cosβ + idm sin β, Q = −hm sin β + idm cosβ,
D =4(h2

m − d2
m + S̄hm cosβ − N̄hm sin β) + 4i(S̄dm sin β + N̄dm cosβ),

H =(4h2
m cos2 β − 4d2

m sin2 β + S̄2 + 4hmS̄ cosβ) + 4i(S̄dm sin β + 2hmdm sin β cosβ),

which then being inserted in (6.62) results in

(S̄dm sin β + N̄dm cosβ) · (N̄dm cosβ − S̄dm sin β − 4hmdm sin β cosβ) <
< (S̄ + 2hm cosβ)2(h2

m − d2
m + S̄hm cosβ − N̄hm sin β).

(6.64)
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Finally, defining Ḡ = 2e2r∗G and using S̄ = Ḡ cos γ, N̄ = Ḡ sin γ, we get

d2
mḠ sin(γ + β)(Ḡ sin(γ − β)− 4hm sin β cosβ) <

< (Ḡ cos γ + 2hm cosβ)2(h2
m − d2

m + Ḡhm cos(γ + β)).
(6.65)

Recall that by (6.58) ReP > 0, and substituting P and hm from (6.63) we imply also that
cos(k∆x) cosβ > 0. Thus we just proved theorem:

Theorem 6.2. Necessary and sufficient condition for stability of a constant equilibrium
state is given by the inequality (6.65) for all m ∈ Z \ {0} together with the requirement
cos(k∆x) cosβ > 0.

Due to the dependence of (6.65) on m it is difficult to check this condition explicitly.
Therefore we will state several corollaries for particular cases, providing explicit inequalities
to check.

Corollary 6.1. Necessary and sufficient conditions for in-phase synchronization are given by

cosβ > 0, cos(γ + β) > − f∆x2

2e2r∗G
.

Proof. Indeed, in-phase equilibrium solution satisfies k = 0, thus by (6.63) dm = 0 and
hm = f∆x2m2 > 0. From the second condition of Theorem 6.2 we recover cosβ > 0.
Finally, (6.65) with dm = 0 requires right-hand terms to be greater than zero, which is just
hm(hm+ Ḡ cos(γ+β)) > 0. Since this is always true as hm →∞ with m→ ±∞, it is enough
to satisfy this inequality for m = ±1, leading to cos(γ + β) > −f∆x2/Ḡ.

Notice that conditions required in Corollary 6.1 as well as in all other corollaries below
immediately ensure the existence of exponential representation of the amplitude of oscillations
defined in (6.50).

Corollary 6.2. Necessary and sufficient conditions for anti-phase synchronization are

cosβ < 0, cos(γ + β) < f∆x2

2e2r∗G
.

Proof. The proof follows the same steps as the previous one, switching the sign of hm.

Corollary 6.3. Sufficient conditions for synchronization with sin(k∆x) 6= 0 are given by

cos(k∆x) cosβ > 0 (6.66)

together with

Υ <
∆x2

4 cot(k∆x)2 + Ge2r∗ cos(γ + β)
2f

cos(k∆x)
sin(k∆x)2 − 1,

where Υ =


0, cos2 β 6 cos2 γ,

cos2 β

cos2 γ
− 1, cos2 β > cos2 γ.

(6.67)

Condition (6.66) is also a necessary condition for stability.
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Proof. First, condition (6.66) repeats the second condition of Theorem 6.2. Further, since
sin(k∆x) 6= 0, dm is non-zero. Divide (6.65) by d2

m and by (Ḡ cos γ + 2hm cosβ)2, obtaining

Ḡ sin(γ + β)(Ḡ sin(γ − β)− 4hm sin β cosβ)
(Ḡ cos γ + 2hm cosβ)2 <

h2
m − d2

m + Ḡhm cos(γ + β)
d2
m

. (6.68)

Inserting the definitions of hm and dm we see that right-hand side of (6.68) is strictly increasing
with m2, therefore it can be simplified by setting m2 = 1 as in the worst-case, thus obtaining
the right-hand side of (6.67).

Now, to find sufficient conditions for satisfaction of (6.68), let us bound the left-hand side
from above. For this we will use the following Lemma:

Lemma 6.1. Function f(x), defined as

f(x) = V + µx

(U + x)2 (6.69)

with U > 0 and x > 0 is bounded from above by

f(x) 6


0, V 6 0 and µ 6 0,
V/U2, V > 0 and Uµ 6 2V,

µ2

4µU − 4V , µ > 0 and Uµ > 2V.
(6.70)

The proof of this lemma can be found in Appendix A.7. We apply this lemma to the left-
hand side of (6.68), with U = Ḡ cos γ > 0, x = 2hm cosβ > 0, V = Ḡ2 sin(γ + β) sin(γ − β)
and µ = −2Ḡ sin(γ+β) sin β, obtaining (6.67). Note that due to the trigonometric properties
the conditions U > 0, µ > 0 and Uµ > 2V are contradicting by definitions of variables, thus
only the first two cases of (6.70) are present in (6.67). Further, V 6 0 and U > 0 implies
µ 6 0, while V > 0 and U > 0 implies Uµ < 2V , thus it is sufficient to check only V in
(6.70).

Assume cosβ > 0 such that the in-phase solution is stable. Then the second condition
of Theorem 6.2 requires that cos(k∆x) > 0. Thus for the stability k∆x should be smaller
than π/2. This means k < n/4, where n is the number of oscillators. In particular, the phase
difference between two neighbouring oscillators should be smaller than π/2. Also this means
that to observe a state with k = 1 one needs at least 5 coupled oscillators, and to observe
higher-order states one needs at least 9 oscillators. As an example, all possible states in the
system with 10 oscillators are shown in Fig. 6.9.

6.4.4.3 Numerical simulation

To compare predictions from the previous section we performed a numerical simulation of
system of n = 50 coupled spin-torque oscillators. Simulation parameters were chosen accord-
ing to Dieudonné 2015, namely, we set ω = 6.55 · 2π, N = −3.82 · 2π, ΓG = 0.375 · 2π (all
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k = 0, in-phase stable k = 1, stable k = 2, stable

k = 3, unstable k = 4, unstable k = 5, anti-phase unstable

Figure 6.9: Six possible equilibrium solutions (6.48) for the ring of 10 spin-torque oscillators.
Assuming cosβ > 0, the first three are stable and the second three are unstable.

(a) (b)

(c) (d)

Figure 6.10: Synchronized solutions for system of n = 50 coupled identical spin-torque os-
cillators. Top row: analytic results for PDE (6.35). (a): diagram of possible regimes by
Corollaries 6.1 and 6.3. Color code denotes the highest guaranteed existing regime, chaotic
means that no stable solution exists. (b): Synchronization frequency ω̄ by (6.49) for different
k depending on β for f = 0.75. Bottom row: numerical simulation of (6.33). (c): diagram
of numerically estabilshed regimes. (d): experimentally measured synchronization frequency.
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those measured in radians per nanosecond), Q = −0.24 and σ = 5.48 · 10−4 · 2π for (6.30).
In this case the critical current which is required to start oscillations is Ic = ΓG/σ = 684.3.
In our experiments we use a larger current I = 1.5Ic to observe steady oscillations. With
this setup the parameters of oscillator (6.31) are Γ = 1.1781 and S = 2.9688. Further, using
definitions G = |S + iN | and γ = arg(S + iN), we get G = 24.1847 and γ = −82.95◦.

Due to large negative γ conditions in Corollaries 6.1 and 6.3 are not easy to satisfy. We
can check which stable synchronized solutions are admitted by the coupled system depending
on different coupling parameter F . Comparison between analytic predictions and numerical
simulation results is shown in Fig. 6.10. We take different couplings F = feiβ with f changing
from 0 to 10 and β changing from −0.2 to 0.2 radians. For each set of parameters we check
the highest k for which conditions in Corollaries 6.1 and 6.3 are satisfied. These results are
depicted in the diagram Fig. 6.10a. Further, we compare them with experimental results by
simulating the original ODE system (6.33). We initialize all oscillators in this system using
an amplitude √pi =

√
Γ/S and a phase φi = ik∆x for the i-th oscillator, such that the phase

makes k turns along the ring. Finally a small Gaussian noise with a standard deviation of 0.05
is added to phases. The system is simulated for 5000 nanoseconds (corresponding roughly
to 15000 periods of oscillation for f = 0.75). When simulation ends, we check if the system
remained stable or it diverged from the corresponding equilibrium solution. The obtained
highest possible stable regimes are depicted in the diagram Fig. 6.10c. Comparing it with
the diagram Fig. 6.10a, we see that the analytic prediction almost perfectly reconstructs the
experimental diagram, with deviations probably being attributed to the inaccuracies in the
numerical stability check.

Finally we compare synchronization frequency ω̄ predicted by (6.49) with the one measured
in simulation. To measure synchronization frequency in simulation we first notice that for
every agent oscillating with constant amplitude its immediate frequency can be found as ω ≈
Im(ċ/c). Then we average this frequency over all agents and over the last 1000 nanoseconds.
The measured synchronization frequency for f = 0.75 and for β ∈ [−0.1, 0.2] is depicted
in Fig. 6.10d. It is clear that for the higher regimes for k = 1 and k = 2 stable solutions
exist only for sufficiently high values of β. Comparing measured frequency with analytically
predicted by (6.49) in Fig. 6.10b one can see that the trends and relative frequency differences
between different regimes are reproduced correctly and that the measured frequency is about
0.1 rad/nanosec higher than the predicted one. This effect diminishes for higher values of f .
This mismatch can have its origin in the fact that the analytic prediction was found for the
PDE model (6.35), while the simulation was performed for the original ODE system (6.33).

6.4.5 Non-identical oscillators in small magnitude variation case

In the previous section we assumed that all oscillators are identical and that the solutions’
magnitude is constant in space. In this section we relax a requirement on homogeneity but
keep the assumption that ∂r/∂x ≈ 0. It was shown in Section 6.4.4 that under this assumption
with piecewise constant parameters A and B the solution to the synchronization condition
(6.42) is given by (6.44) and (6.45) with θ = ∆x ∂φ/∂x and J = B/A, with a full solution
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θ = −π/12 θ = −π/4 θ = −π/2

Figure 6.11: Function g(θ, J) defined in (6.71) with respect to J for different values of θ.
Colors denote different branches in (6.71).

K = 1 K = 4 K = 10

Figure 6.12: Examples of schematic representations of a ring with n = 20 oscillators with two
different oscillator types placed periodically. K is a number of periods.

presented in Appendix A.6. In particular, let us define a function

g(θ, J) =



J

2
√

4− J2
ln

∣∣∣∣∣∣
1 +

(
2−J√
4−J2 tan θ

2

)
1−

(
2−J√
4−J2 tan θ

2

)
∣∣∣∣∣∣− 1

2θ, |J | < 2,

J√
J2 − 4

arctan
(

J − 2√
J2 − 4

tan θ2

)
− 1

2θ, |J | > 2,

1
2 tan θ2 −

1
2θ, J = 2,

− 1
2 cot θ2 −

1
2θ, J = −2.

(6.71)

It is interesting to note that there is a complex relation between arctangent and logarithm
functions

arctan s = − i2 ln
(1 + is

1− is

)
, (6.72)

which means that the first two cases in (6.71) are essentially the same. In fact, the definition
(6.71) defines a piecewise continuous function with at most two singularities with respect to
J , see Fig. 6.11. Note further that g(θ, J) is an odd function with respect to θ.
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With the help of this function we can define solutions to (6.42) as

A
x

∆x + C = g(θ, J), (6.73)

where C is an integration constant. In particular (6.73) means that the constant solution
(6.47) is captured by the singularity at J = −2.

Using the solution (6.73) it becomes possible to analyse systems with several different
types of oscillators. Here for simplicity we will focus on the case of two types of oscillators.
The first type of oscillators has a set of parameters ω1, N1, Γ1, S1 and F1, and similarly
the second type has a corresponding set of its own parameters. We further assume that
oscillators’ types are repeated K times along the ring, and that every continuous chunk of
a particular oscillators’ type consists of a fixed number of oscillators depending on its type
(evidently this implies K is a divisor of the number of oscillators n). This means that the type
of oscillators is a periodic function on the ring with period 2π/K. For example if K = 1 this
setup corresponds to one large set of oscillators of the first type followed by only one large set
of oscillators of the second type, while if K = n/2 the types of oscillators alternate. We can
define a set of switching points as yj for j ∈ {0, ..., 2K − 1}, with y0 = 0 and yj = j/2 · 2π/K
for even j. Finally, for odd j we require yj − yj−1 = const, thus the proportion of types
is preserved. Oscillators placed in [0, y1) ∪ [y2, y3) ∪ ... are of the first type, and oscillators
placed in [y1, y2)∪ [y3, y4)∪ ... are of the second type. In particular this means that oscillators
of the first type occupy proportion y1/y2 of the whole ring. Some possible examples of such
distributions are schematically presented in Fig. 6.12.

Since oscillators are of different types, aggregated parameters A and B will have different
values A1, A2, B1 and B2, leading to two different decision parameters J1 and J2. However
an unknown synchronization frequency ω̄ should be common for both types, therefore by
definition of B in (6.41) we can write J1 = J̄1 + τ1ω̄ and J2 = J̄2 + τ2ω̄, where

J̄1 = cos γ1 ω1 + sin γ1 Γ1
f1 sin(γ1 + β1) , τ1 = − cos γ1

f1 sin(γ1 + β1) , (6.74)

with J̄2 and τ2 being defined in a similar way.

We are now interested in particular solutions θ(x) to (6.42). By (6.46) θ should be periodic.
Since intervals of types of oscillators are equal, symmetry leads to the fact that θ should be
periodic with period being equal to two intervals of different types of oscillators, namely
θ(y0) = θ(y2) = θ(y4) = ... = θ(y2K−2). Further, one could expect to obtain continuous
solutions, however performing numerical simulations of such systems we made an observation
regarding possible synchronized solutions:

Observation 6.1. Solution θ(x) behaves continuously and monotonically in the first type
domain and is constant with discontinuity in the interior in the second type domain. Moreover,
solution endpoints are symmetric about zero, namely θ(y0) = −θ(y1).

The set of all possible solutions is not covered only by those proposed by Observation 6.1,
however each particular class of solutions heavily depends on properties of the function (6.71)
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and thus requires special treatment. Further in this section we will stick to the class of
solutions in agreement with Observation 6.1.

Defining θ∗ = θ(0) and assuming θ(y1) = −θ∗ by Observation 6.1, we can compute (6.73)
in points x = y0 = 0 and x = y1 for the first type of oscillators and subtract one from another,
obtaining

A1
y1
∆x = 2g(θ∗, J1),

where we used the fact that the function g(θ, J) is odd with respect to θ. Substituting J1 as
in (6.74), we get a condition which should be satisfied for the first type of oscillators

2g(θ∗, J̄1 + τ1ω̄)−A1
y1
∆x = 0, (6.75)

which have two unknowns: θ∗ and ω̄. The second condition comes from the assumption that
for the second type domain the solution is constant and thus it is determined by (6.47). Using
it for the second type domain we get

θ∗ = arccos
(
−J2

2

)
. (6.76)

Note that both θ∗ and −θ∗ are solutions to (6.47), which is consistent with Observation 6.1.
Now, substituting J2 by (6.74) in (6.76) and then substituting result in (6.75) we obtain an
equation with a single unknown ω̄:

2g
(

arccos
(
− J̄2 + τ2ω̄

2

)
, J̄1 + τ1ω̄

)
−A1

y1
∆x = 0. (6.77)

This equation can be solved for ω̄ using numerical methods such as Newton method for
example. Once ω̄ is known, we can find J1 and J2 by (6.74) and then compute θ∗ by (6.76).
The full solution on the first domain can be then reconstructed by (6.73).

To determine the shape of solution θ(x) it remains only to find an exact position denoted
by y∗ ∈ (y1, y2) where a discontinuous jump from θ∗ to −θ∗ happens in the second type
domain. This position can be obtained if one recalls that θ = ∆x ∂φ/∂x and thus integral of
θ should have fixed value by (6.46) for some k ∈ Z. In particular due to the periodic nature
of the problem with K periods we have

y2∫
0

θ(x)dx = 2π∆x
K

k. (6.78)

Since on the first type domain θ(x) is symmetric, its contribution to the integral is zero.
Further, θ(x) = θ∗ on x ∈ [y1, y

∗) and θ(x) = −θ∗ on x ∈ (y∗, y2], therefore (6.78) is just

(2y∗ − y1 − y2)θ∗ = 2π∆x
K

k,

which leads to
y∗ = π∆x

Kθ∗
k + y1 + y2

2 . (6.79)

Thus the solution’s shape θ(x) is fully reconstructed.
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(a) (b)

Figure 6.13: Comparison of numerical and analytical synchronized solutions of systems with
n = 500 oscillators separated into two classes. Horizontal axis: index of oscillator. Vertical
axis: phase difference between two consecutive oscillators in degrees. Yellow line denotes
solution obtained by numerical simulation of (6.33), black line denotes analytic solution by
(6.76)-(6.79). Parameters: (a): K = 1, y1/y2 = 0.2, Γ2 = 1.05 · Γ1, k = 3. (b): K = 4,
y1/y2 = 0.6, N2 = 1.03 ·N1, k = −2.

Remark 6.2. Observation 6.1 assumes the first part of the solution behaves continuously and
the second part is piecewise constant. In real system these parts can be interchanged, which
depends on the obtained values of J1 and J2: for the continuous part |J | > 2, while for the
piecewise constant part |J | < 2 (while they are both usually negative and close to -2).

Remark 6.3. Other types of solutions except those presented in Observation 6.1 are also
possible. In this case there is no piecewise constant domain and all solution’s parts behave
according to (6.73). It is then possible to formulate a system of nonlinear equations with sev-
eral unknown variables which should be solved numerically. However we found that solutions
to this system lie very close to singularities of g(θ, J), thus they cannot be found reliably by
numerical methods without additional problem reformulation.

6.4.5.1 Numerical simulation

To demonstrate how solutions to the synchronization condition (6.42) found by (6.76)-(6.79)
approximate synchronized solutions of the original system (6.33) we performed numerical
simulations of (6.33) with n = 500 oscillators being split into two types as it was described
earlier in this section. Parameters of the first type of oscillators were taken the same as in
Section 6.4.4.3, and for the second type slight deviations in parameters were added. Oscillators
were placed periodically on the ring with K periods, thus there were 2K groups of oscillators
as it was shown in Fig. 6.12. Each group of oscillators of the first type occupies y1/y2
proportion of the period of the length y2, and each group of oscillators of the second type
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occupies (y2 − y1)/y2 proportion. Numerical simulation was initialized in the same way as in
Section 6.4.4.3 with k denoting initial shift in phases of consecutive oscillators such that the
phase makes k turns along the ring.

We performed two simulations:

1. In the first simulation we altered damping parameter Γ for the second type of oscillators
such that Γ2 = Γ1 · 1.05. We used only two groups of oscillators, one of each type, thus
K = 1. The first type occupies only 20% of the whole ring, thus y1/y2 = 0.2. Finally,
oscillators were initialized such that the phase makes k = 3 turns along the ring.

2. In the second simulation we changed frequency gain parameter N for the second type
of oscillators such that N2 = N1 · 1.03. We used eight groups of oscillators, four of each
type, thus K = 4. The first type occupies 60% of every period, thus y1/y2 = 0.6. In this
simulation oscillators were initialized such that the phase makes k = −2 turns along
the ring, rotating in opposite direction.

Results of the simulation are presented in Fig. 6.13. Simulation was performed for 2000
nanoseconds and then phase differences between consecutive oscillators were computed. The
result was then compared with analytic predictions by (6.76)-(6.79). It is clear that the
shape of solutions is reconstructed almost perfectly even though our analysis was based on
the continualized PDE model of the network and a small magnitude variation assumption.

6.4.6 General large magnitude variation case

Analysis in Sections 6.4.4 and 6.4.5 was based on the assumption that the amplitude of oscil-
lations is almost identical along the ring, i.e. ∂r/∂x ≈ 0. It appears that this assumption can
be removed and that it is possible to equivalently transform an original synchronization con-
dition (6.40) to the differential equation similar to (6.42) by using properties of trigonometric
functions and moving the problem to the complex domain. To perform this transformation
we pose another assumption that the parameter A is constant along the ring. With this
assumption we can move A under the spatial derivative in (6.40) and obtain the following
condition

∆x ∂
∂x

[
A cos

(
∆x∂φ

∂x

)
sinh

(
∆x∂r

∂x

)
+ sin

(
∆x∂φ

∂x

)
cosh

(
∆x∂r

∂x

)]
+

+ 2
[
A cos

(
∆x∂φ

∂x

)
cosh

(
∆x∂r

∂x

)
+ sin

(
∆x∂φ

∂x

)
sinh

(
∆x∂r

∂x

)]
+B = 0,

(6.80)

Now let us define (possibly) complex variables ψ and L such that

A cos
(

∆x∂φ
∂x

)
= L cos(iψ), i sin

(
∆x∂φ

∂x

)
= L sin(iψ). (6.81)
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In particular L =
√
A2 − 1, which is purely real if |A| > 1 and purely imaginary if |A| < 1.

Further, (6.81) results in ψ being defined in such way that

tan(iψ) = i

A
tan

(
∆x∂φ

∂x

)
, (6.82)

which in particular means that tan(iψ) is purely imaginary. There can also be two cases:

1. If | tan
(
∆x∂φ∂x

)
/A| < 1, then (6.82) leads to

ψ = 1
i

arctan
[
i

A
tan

(
∆x∂φ

∂x

)]
= −1

2 ln

A− tan
(
∆x∂φ∂x

)
A+ tan

(
∆x∂φ∂x

)
 ∈ Re,

since the argument of the logarithm is positive. Here a complex relation (6.72) between
arctangent and logarithm was used.

2. If | tan
(
∆x∂φ∂x

)
/A| > 1, then

ψ = −1
2 ln

A− tan
(
∆x∂φ∂x

)
A+ tan

(
∆x∂φ∂x

)
 = −1

2 ln

tan
(
∆x∂φ∂x

)
−A

tan
(
∆x∂φ∂x

)
+A

± π

2 i,

since ln(−s) = ln(s)± iπ.

Now let us simplify (6.80) using L and ψ in (6.81). First, with the help of identities
cosh(x) = cos(ix) and sinh(x) = −i sin(ix) we can write the system (6.80) as

∆x ∂
∂x

[
− iA cos

(
∆x∂φ

∂x

)
sin
(
i∆x∂r

∂x

)
+ sin

(
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)
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+

+ 2
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A cos
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)
cos
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∂x

)
− i sin

(
∆x∂φ

∂x

)
sin
(
i∆x∂r

∂x

)]
+B = 0,

which by substitution of (6.81) becomes

− iL∆x ∂
∂x

sin
(
iψ + i∆x∂r

∂x

)
+ 2L cos

(
iψ + i∆x∂r

∂x

)
+B = 0. (6.83)

Denoting θ := ψ + ∆x ∂r∂x , Ã = i and B̃ = iB/L, we arrive at the same type of equation as
(6.42), although formulated now in the complex domain and with coefficients Ã and B̃.

It is now possible to prove our original statement in Section 6.4.4 that ∂r/∂x = 0 for
any synchronized solution in the system with identical oscillators. Indeed, in case of identical
oscillators the only solution to the equation (6.83) is given by cos(iθ) = −B/2L. It is clear
that for the constant θ we should have ∂r

∂x = 0, otherwise r could not be periodic along the
ring. Thus, substituting θ = iψ, the constant solution is cos(iψ) = −B/2L or by definitions
of ψ and L in (6.81) it is just cos(∆x ∂φ/∂x) = −B/2A. This solution exactly coincides with
(6.47) which was obtained using small magnitude variation assumption in Section 6.4.4.
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Moving to the case of non-identical oscillators, we can use the same methods as in Sec-
tion 6.4.5 to find solutions to (6.83). In particular, for J 6= ±2 we can write the general
solution (6.73) for (6.83) as

i
x

∆x + C = J√
J2 − 4

arctan
(

J − 2√
J2 − 4

tan iθ2

)
− iθ

2 , (6.84)

where J = B/L. The first two cases in (6.71) become the same since the problem is now
formulated in the complex plane and arctangent and logarithm functions are related by (6.72).
Finally, using relations tan(iθ) = i tanh(θ) and arctan(is) = i artanh(s) formula (6.84) is
simply

x

∆x + C = J√
J2 − 4

artanh
(

J − 2√
J2 − 4

tanh θ2

)
− θ

2 . (6.85)

Solutions to (6.85) can be checked numerically for several types of oscillators in a similar
way it was done in Section 6.4.5. It is interesting to note that (6.85) depends only on the
parameter J compared to the general solution (6.73) which depends both on J and A. This
happens because unknown variable θ in (6.85) is scaled by (6.81) thus parameter A is already
integrated inside. Finally, once (6.85) is solved and θ(x) is recovered, one can reconstruct
r(x) from the solution by using (6.39).

6.4.7 Open problems

Analysis of synchronization of spin-torque oscillators has a big practical importance since
synchronous oscillations produce much more energy, therefore it is very important to realize
when synchronized solutions do exist and what deviations in manufacturing (which result in
deviations in parameters) they do tolerate. In previous sections we showed how the contin-
uation method can help in the analysis of this problem and then we derived some results
which could be useful in practical applications. Still, there are many questions that could
be investigated in details regarding the system (6.33), its PDE approximation (6.35) and the
synchronization condition (6.38).

• Case of identical oscillators was fully covered in Section 6.4.4 where synchronization
condition was analysed to find equilibrium points and their stability conditions. Still
Corollary 6.3 gives only sufficient conditions on stability and probably more rigorous
statements could be made based on Theorem 6.2.

• Practically more important case of non-identical oscillators was discussed in Sec-
tions 6.4.5 and 6.4.6 but the results presented there cover only the question of a search
for equilibrium solutions. Due to Observation 6.1 only specific class of equilibrium so-
lutions was reconstructed, however it is not clear whether the obtained solution really
persists in the system, e.g. whether it is stable. Also, numerical simulations have shown
that synchronized solutions are very fragile in a sense that small deviations in parame-
ters result in very large differences in phases between consecutive oscillators, although
system still remains stable.
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• In the original formulation of the system (6.33) we assumed that every oscillator is
coupled only with its two neighbours, however in practical applications coupling between
oscillators can occur mostly due to physical effects depending on distance, thus in general
every oscillator is coupled to all others with distance-diminishing coupling coefficient.
As it was shown in previous chapter in Section 5.3 systems with summation of distance-
dependent forces are suitable for the continuation method, thus it would be possible to
derive synchronization conditions for them as well.

• Instead of analysing inhomogeneous oscillators with known parameters one could as-
sume stochastic parameter deviations and thus construct a Fokker-Plank-type PDE
which generalizes (6.35), which could be then analysed for a search of synchronization
conditions in probabilistic sense.

• In (6.33) we assumed a ring topology of oscillators. Analysis for more general topologies,
especially 2-dimensional, would be of a great importance for practical applications.

6.5 Concluding remarks

In this chapter we demonstrated how the continuation method can be utilized to transform
oscillatory networks into nonlinear PDE models which open new possibilities for analysis and
control of synchronization phenomena.

First, a laser network was synchronized by suppressing undesirable oscillations due to the
fact that the PDE model of the laser system was suitable for a PDE-based backstepping.
We demonstrated by numerical simulations that application of a PDE-based control to the
initially discrete system indeed provides stability, while derivation of such continuous control
is simple and explicit. Question of derivation of synchronization conditions was then covered
for the particular case of Kuramoto oscillators and then for a general case of non-isochronous
oscillators. It appears that nonlinear PDEs appearing in this case can be analysed to recover
equilibrium solutions and to check their stability. Validation by numerical simulation demon-
strated that synchronized solutions obtained in this way coincide with the ones to which the
real system converges.

It is interesting to note that while it is possible to duplicate the derivation of synchroniza-
tion threshold for Kuramoto oscillators in the ODE-based setup (although PDE approach can
still sometimes be more scalable), the true power of the continuation method becomes visi-
ble in the general problem of reconstructing synchronization conditions for non-isochronous
oscillators. We have shown that in the case of two different types of oscillators synchronized
solutions are given by (6.73), where function g(θ, J) in (6.71) is a solution to the differential
equation (6.42). It is clear that it would not be possible to obtain an analytic formula for an
analogue of g(θ, J) in the ODE-based setup since (6.42) would transform in a large system
of nontrivial trigonometric difference equations. Therefore, application of the continuation
method results in continuous conditions which are simpler to tackle analytically compared to
discrete ones in the same way as ODEs are easier to solve than difference equations.



Conclusion and perspectives

Control and analysis of large-scale systems is a complex problem and there are many different
ways to approach it. In this thesis, we examined in detail the various possibilities of analyzing
systems through an aggregated simplified representation and the application of this approach
to systems control. Below we will first summarize the main contributions of this work, and
then propose some possible future directions of research.

Contributions

Large-scale network control

Control of large ODE networks differs from traditional control tasks in that in networks
it is often not necessary to independently control the state of each node. In some real-
world problems, for normal functioning of the network it is sufficient that the states of the
nodes would be close enough to the average state, and this average state, in turn, would
be maintained at a given desired value. This is exactly the kind of setup we considered
in Chapter 2. Assuming that we can only measure the average state of the network and
that the control goal is to stabilize the average state to a given value, we showed that it is
possible to do this with an integral controller. We then showed that any integral controller
with positive coefficients will work for a positive system if the system matrices satisfy the
condition CA2 > 0. This result was proved in Theorem 2.3. Due to the special structure,
it can be shown that this result trivially holds for all systems with Laplacian dynamics. In
terms of passivity theory, Theorem 2.4 showed that this condition is equivalent to the system
transfer function being strictly positive real (SPR). The result was generalized to the more
general case of controlling multiple outputs such as the average states of different clusters of
the network.

To ensure that the network states are indeed close to the desired mean values we addition-
ally proposed an algorithm that can minimize the standard deviation of the system states.
This algorithm is based on the extremum seeking method, which is used to minimize steady-
state input-output response. In order to perform standard deviation minimization in our case
we developed our own modified version of the algorithm, namely a constrained extremum
seeking, which minimizes a given function subject to a constraint that the average network
state is held at the desired value.

Shape-based model reduction for PDEs

Usually model reduction methods are based on simplifying the original system in order to
obtain a system that is in some sense ”close” to the original system but with a smaller
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dimensionality of the state space. In Chapter 3 of this thesis we additionally assumed that
the solution profile of the system has a certain shape, which can be approximately described
by a small number of parameters. In this way we were able to perform a model reduction
that transforms the dynamics of the original system into an evolution of the parameters of the
shape of the solution. Using numerical simulations, we have shown that the reduced model
is able to describe the behavior of the system very well. Even when the solution profile of
the original system violates the chosen shape, the reduced system ”averages” effects that the
shape cannot describe, as long as solution of the reduced system does not become degenerate.
The method in Chapter 3 was developed for 1D conservation laws, but the idea of reducing
a system to the dynamics of parameters of some shape can be generalized to other classes of
models of large systems.

Continuation method and its applications

Many large ODE systems have an underlying physical and spatial structure, that is, the
nodes of the network have coordinates in space, and interactions in the network depend on
the relative position of the nodes. For such systems we have developed a continuation method
that allows us to turn ODE models of large spatial systems into PDE models. The method
was described in Chapter 4 of this thesis. The key idea behind the method is to replace
finite differences with corresponding partial derivatives through the Taylor series. At the
same time Theorem 4.2 showed that for linear spatially invariant systems taking a sufficiently
large PDE order one can approximate the spectrum of the original ODE system arbitrarily
closely, and Theorem 4.3 gave an estimate for the deviation of solutions between ODE and
PDE representations depending on the PDE order. Then the method was generalized to
nonlinear systems using a computational graph formalization. Many additional extensions
have been described such as multidimensional spaces, space-dependent systems or systems
with boundaries. Thus essentially any ODE system that has a spatial structure can be
transformed into a PDE using the continuation method.

A special type of ODE systems which can be turned into PDEs are systems in which
the underlying space is index space, and the state of each node includes a spatial position.
In other words, these are systems in which some indexed moving agents interact with their
neighbors with adjacent indices. By performing a continuation in index space we can write
such systems as PDEs, which determine the motion of virtual agents with non-integer indices.
The reciprocal of the position derivative with respect to the index can be used to define
the concept of density, which in turn transforms the resulting PDE into an equation for the
evolution of the density of agents in space. We have thus derived a procedure for transforming
the ODE dynamics of individual agents into a PDE for the density of agents. Chapter 5 of
this manuscript is devoted to a discussion of this procedure and its application to various
specific problems. More specifically, in Section 5.2 we showed how PDE models for car traffic
density (e.g., the LWR model for car density on highways) can be derived from individual
driver models. Section 5.3 generalized the method to probably the most famous problem of
connecting particle and continuous worlds, the Hilbert’s 6th problem, which is devoted to the
derivation of the Euler equations from the dynamics of individual particles with dynamics
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based on Newton’s laws.

In addition to deriving new models the continuation method can be used for control design.
To do this one must perform a continuation of the original discrete system, find a control law
for the system in its continuous representation and then discretize the resulting control back
to apply it to the original system. The application of such a technique was demonstrated
in Section 5.4 for a robot formation transformed into a continuous representation similarly
to the Euler equations and in Section 6.2, where a chain of lasers was synchronized using
PDE-based backstepping.

Finally, we applied the continuation method to large networks of nonlinear oscillators in
Chapter 6. One of the most important problems for such systems is the question of syn-
chronization, the conditions for its existence and stability. In Chapter 6, we concentrated on
deriving synchronization conditions for Kuramoto oscillator networks and for non-isochronous
oscillator networks such as spin-torque oscillators. Working with PDE models of these net-
works we were able to take advantage of the analysis of continuous systems and therefore ob-
tained conditions that could not be derived from the original ODE network. We have shown
with the help of numerical simulations that the obtained conditions can indeed capture the
behavior of the original systems and thus they can be used in real practical applications.

Perspective and extensions

Although the methods described in this research work have provided good initial results,
there are still open problems and questions that can provide significant improvements to our
understanding of the methods and to their practical applicability, which can be a base for a
future research.

One clear path is an in-depth development of a method for controlling the average state of
a network and the standard deviation of states in that network. In Chapter 2, our control goal
was solely to drive the average network state to a fixed desired steady-state value, whereas
in the real world the task of tracking the value as it changes over time is much more impor-
tant. At the same time, removing the steady-state assumption it is possible to improve the
minimization of the standard deviation in transient processes. Finally, we assumed that both
average state and standard deviation could be measured directly. The method of controlling
the average would be much more widely applicable if, for example, we could locally measure
only some specific states of the network (for example, boundary states).

The shape-based model reduction method from Chapter 3 is currently limited in appli-
cation only to the class of 1D PDE conservation laws and only for limited periods of time
until the selected shape becomes degenerate. The degeneracy of the shape is a very serious
limitation that could be removed if a reparameterization procedure were developed that au-
tomatically corrects the shape each time it becomes degenerate. It would be convenient to
enclose such a system in a specially created software that is applicable to any system and au-
tomatically controls the parameterizations of the reduced system. In the future it would also
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be possible to investigate the extension of the method to other classes of systems, including
various PDE models and ODE networks with a spatial structure.

The most straightforward continuation of the work which was described in this PhD thesis
is a more detailed study of the continuation method, as well as a more detailed development
of a general theory of its application to various systems for analysis and control. First,
the analytic results in Chapter 4 guarantee the convergence of PDE system solutions to ODE
solutions as long as the PDE order tends to infinity. In reality, due to the lack of PDE analysis
methods for high orders, as well as the risk of artificial instabilities, it makes sense to limit the
PDE derivation to no more than the first and second orders. Thus, it would be highly desirable
to develop criteria for the applicability of the method to low-order approximations. Second,
the analytic results were derived for linear spatially invariant systems. In reality, however, the
method is mostly applied to nonlinear space-dependent systems, so it is worth investigating
convergence guarantees for such systems. Third, Chapters 5 and 6 showed the potential of
applying the continuation method to control design using a continuous representation of the
system. Such a procedure requires not only the application of the continuation method to
derive a PDE model of the system, but also the discretization of the obtained control law in
order to be able to implement it in the actual system. That is, the efficiency of the control law
depends on the accuracy of the continuation-discretization two-way process. In the future,
it would be desirable to find what conditions the continuation must satisfy for the control
to be able to perform the task, and how these conditions might be related to Theorem 4.1
about reversibility of the continuation procedure as well as to the other theorems proved in
Chapter 4.
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A.1 Proof of the Lemma 2.1

Lemma 2.1. Suppose we have a matrix M = M + ibI, which is a complex matrix with
real part M and imaginary part bI, with b ∈ R and I an identity matrix. Assume M being
invertible and having no eigenvalues on the imaginary axis. Denote L = M−1 = L + iL̄.
Then the real part of L is given by

ReL = L = (M + b2M−1)−1. (A.1)

Proof. By the definition of inverseML = (M + ibI)(L+ iL̄) = I, which decomposes into real
and imaginary parts:

ML− bL̄ = I,

ML̄+ bL = 0.
(A.2)

From the second equation L̄ = −bM−1L, and substitution of L̄ into the first equation gives

ML+ b2M−1L = I, (A.3)

which means L =
(
M + b2M−1)−1.
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A.2 Proof of the Lemma 2.2

Lemma 2.2. Let M be an M-matrix. Let C be a row-vector such that CM2 > 0. Then

C(M + tM−1)−1 > 0 (A.4)

for any t > 0.

Proof. Denote L(t) = (M + tM−1)−1. We need to prove that CL(t) > 0 for all t > 0. The
idea of the proof is to provide series expansion for CL(t) such that each term in the expansion
is positive. First the coefficients of Taylor series will be computed and then summation by
parts will be used twice to obtain series with positive terms. The proof of the Lemma is
separated into subsections A.2.1-A.2.6.

A.2.1 Series expansion

Matrix M is an M-matrix, which by definition means that there exists some matrix P with
Pi,j > 0, ρ(P ) < 1 and scalar s > 0 such that M = s(I − P ). Now make the following
transformations:

L(t) = (M + tM−1)−1 = M(M2 + tI)−1 = s(I − P )
(
s2(I − P )2 + tI

)−1

= s(I − P )
(
(s2 + t)I − 2s2P + s2P 2

)−1
= s

s2 + t
(I − P )

(
I − 2s2

s2 + t
P + s2

s2 + t
P 2
)−1

.

(A.5)

Multiplier s
s2+t is always positive, thus it doesn’t affect the sign of the result, so in future we

will omit it. Now denote α = s2

s2+t . By definition of t and s this variable satisfies 0 < α 6 1.
Case α = 1 is trivial (it corresponds to the case t = 0), thus often in the following we will use
0 < α < 1. Then

L = (I − P )
(
I − 2αP + αP 2

)−1
. (A.6)

We aim to find a coefficients in formal series expansion of L in the powers of P :

L =
+∞∑
k=0

LkP
k. (A.7)

A.2.2 Coefficients of the series expansion

We can introduce a scalar function F (x) which has the same expansion as (A.7) and for which
a recursive computation of series coefficients is possible. Concretely, define

f(x) = 1− x
1− 2αx+ αx2 , (A.8)
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where x ∈ [0, 1). Writing the same expansion as L:

f(x) = (1− x)
+∞∑
k=0

(2αx− αx2)k. (A.9)

At the same time, f(x) can be expanded as Taylor series centered at 0:

f(x) =
+∞∑
k=0

f (k)(0)
k! xk. (A.10)

Power series expansion is unique, thus coefficients Lk = f (k)(0)
k! .

The next step is to determine derivatives of f(x) evaluated at x = 0. Let us introduce
function

g(x) = 1− 2αx+ αx2. (A.11)
It is obvious that f(x)g(x) = 1− x. Now take n-th derivative of this multiplication:

dn

dxn
(1− x) = dn

dxn
(f(x)g(x)) =

n∑
k=0

(
n

k

)
f (n−k)(x)g(k)(x). (A.12)

Function g(x) is a polynomial of the degree 2, thus its derivatives can be explicitly written:

g(0)(0) = 1, g(1)(0) = −2α, g(2)(0) = 2α, (A.13)

and all higher derivatives are zero. Moreover, (1 − x)(0)(0) = 1 and (1 − x)(1)(0) = −1 with
all higher derivatives also zero. Recall that Ln = f (n)(0)

n! . Using (A.12) we have the following
recurrent relation for Ln:

Ln − 2αLn−1 + αLn−2 = 0, ∀n > 2, (A.14)

with initial conditions L0 = 1 and L1 = 2α− 1.

A.2.3 Solving the linear recurrent equation

Equation (A.14) is a linear recurrent equation, which solution is found by solving the char-
acteristic polynomial

λ2 − 2αλ+ α = 0. (A.15)
For 0 < α < 1 roots are complex conjugate pair (λ, λ∗) with

λ = α+ i
√
α(1− α), |λ| =

√
α. (A.16)

The general solution to the equation (A.14) is given by Ln = Re [zλn] , where z is a complex
value that should be determined from the initial conditions. From L0 = 1 we simply recover
Re z = 1, and from L1 = 2α − 1 it is found that Im z =

√
1−α
α . Thus the solution to the

equation (A.14) is given by

Ln = Re
[(

1 + i

√
1− α
α

)(
α+ i

√
α(1− α)

)n]
. (A.17)
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A.2.4 Back to the matrix equation

It is established that matrix L can be expressed by the series

L =
+∞∑
k=0

LkP
k, (A.18)

where Lk are given by (A.17). Now it is evident that (A.18) is a convergent series due to
ρ(P ) < 1 and |λ| =

√
α < 1.

Coefficients Lk can be both positive and negative, thus in general matrix L should not be
positive. But we want to prove positivity of the vector CL:

CL =
+∞∑
k=0

LkCP
k > 0. (A.19)

A.2.5 Properties of {CP k} sequence

Now it is time to use the condition CM2 > 0. First of all, M is an M-matrix, thus for
any vector x inequality xM > 0 implies x > 0. Therefore CM > 0 (and actually C > 0
automatically).

From CM > 0 we obtain C(I − P ) > 0, which means C > CP . Moreover, matrix P

is positive, thus multiplying both sides of this inequality on P preserves it. Thus the order
relation holds:

C > CP > CP 2 > CP 3 > ... > 0. (A.20)

Therefore sequence {CP k} is monotonically decreasing with a limit zero (because ρ(P ) <
1).

Now let us use the next condition, CM2 > 0. Essentially it means C(I − P )(I − P ) > 0,
or (C − CP ) > (CP − CP 2). Again, multiplication by P preserves order, so we have

C − CP > CP − CP 2 > CP 2 − CP 3 > ... > 0, (A.21)

or
CP k − 2CP k+1 + CP k+2 > 0. (A.22)

This implies that sequence {CP k−CP k+1} is also monotonically decreasing to zero. In some
sense this is equivalent to the ”convexity” of {CP k} sequence.

A.2.6 Summations by parts

For any series
N∑
k=0

xkyk = xNYN −
N−1∑
k=0

(xk+1 − xk)Yk, (A.23)
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where Yn =
n∑
k=0

yk. This transformation is called Abel transformation or summation by parts.
We will apply this procedure twice to obtain series with each term positive.

Denote Hn =
n∑
k=0

Lk. Then Hn is bounded because Lk consists of powers of λ with

|λ| =
√
α < 1. By ρ(P ) < 1 follows limk→+∞CP

k = 0. Thus limk→+∞HkCP
k = 0 and we

can write

CL =
+∞∑
k=0

LkCP
k = −

+∞∑
k=0

Hk(CP k+1 − CP k) =
+∞∑
k=0

Hk(CP k − CP k+1). (A.24)

Applying Abel transformation for the second time with Gn =
n∑
k=0

Hk, we get

CL =
+∞∑
k=0

Gk(CP k − 2CP k+1 + CP k+2). (A.25)

Let us calculate Hn:

Hn =
n∑
k=0

Lk = Re
[
z

n∑
k=0

λk
]

= Re
[
z

1− λn+1

1− λ

]
, (A.26)

where λ = α + i
√
α(1− α) and z = 1 + i

√
1−α
α . Multiply nominator and denominator by

(1− λ∗):
Hn = 1

1− α Re
[
z(1− λ∗)(1− λn+1)

]
. (A.27)

Product z(1− λ∗) = i
√

1−α
α , which is purely imaginary, so

Hn = −Re
[
i

λ√
α(1− α)

λn
]
. (A.28)

Denote w = −i λ√
α(1−α)

and calculate Gn:

Gn =
n∑
k=0

Hk = Re
[
w

n∑
k=0

λk
]

= Re
[
w

1− λn+1

1− λ

]
. (A.29)

Multiply nominator and denominator by (1− λ∗):

Gn = 1
1− α Re

[
w(1− λ∗)(1− λn+1)

]
. (A.30)

Product w(1− λ∗) = 1, thus this function reads as

Gn = 1
1− α

(
1− Re

[
λn+1

])
. (A.31)

By definition |λ| =
√
α < 1, thus Re [λn] < 1 for any n > 0. This means that Gn > 0 for any

n > 0. Furthermore, by convexity of the sequence {CP k} for any k > 0 : CP k − 2CP k+1 +
CP k+2 > 0.

Thus every term in (A.25) is greater than zero, which concludes the proof.
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A.3 Proof of the Lemma 2.3

Lemma 2.3. Let M be an M-matrix. Let C be a row-vector such that CM2 > 0 and
CM2Bγ > 0. Then

C(M + tM−1)−1Bγ > 0 (A.32)

for any t > 0.

Proof. As in the previous proof, define L = (M + tM−1)−1 and M = s(I − P ). By Lemma
2.2 CL > 0. Using the series expansion (A.25), we can write

CL =
+∞∑
k=0

Gk(C − 2CP + CP 2)P k > 0, (A.33)

where all Gk > 0. Condition CM2Bγ > 0 reads as

(C − 2CP + CP 2)Bγ > 0. (A.34)

Then

CLBγ =
+∞∑
k=0

Gk(C − 2CP + CP 2)P kBγ =

= G0(C − 2CP + CP 2)Bγ +
+∞∑
k=1

Gk(C − 2CP + CP 2)P kBγ,
(A.35)

where the first term is strictly greater than zero and all others a greater or equal than zero.
Thus CLBγ > 0, which concludes the proof.

A.4 Proof of the Lemma 5.1

Lemma 5.1. Let J(t, x) ∈ Rn×n be the Jacobian matrix of function M(t, x). Let J(t, x)
satisfies the dynamic equation

∂J

∂t
= −∂(Ju)

∂x
, (A.36)

where u = u(t, x) is some vector field. Then the determinant det J satisfies the same equation:

∂ det J
∂t

= − ∂

∂x
· (det J · u) . (A.37)

Proof. First of all let us rewrite (A.36) for one element Jik of the matrix J :

∂Jik
∂t

= −∂(Ji u)
∂xk

= −
n∑
j=1

∂2Mi

∂xk∂xj
uj −

n∑
j=1

Jij
∂uj
∂xk

= −
n∑
j=1

∂Jik
∂xj

uj −
n∑
j=1

Jij
∂uj
∂xk

, (A.38)

where we used the fact that J = ∂M/∂x.
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Now let us recall the definition of the determinant: det J = ∑
σ sgn(σ)∏n

i=1 Jσi,i, where σ
is a permutation of the set {1, 2, ..., n} and ∑σ is taken over all possible permutations, with
sgn(σ) being the sign of the permutation. Let us take the time derivative and then substitute
(A.38):

∂ det J
∂t

=
∑
σ

sgn(σ)
n∑
k=1

∂Jσk,k
∂t

n∏
i=1,i 6=k

Jσi,i =

= −
n∑
j=1

∑
σ

sgn(σ)
n∑
k=1

[
∂Jσk,k
∂xj

uj + Jσk,j
∂uj
∂xk

]
n∏

i=1,i 6=k
Jσi,i

(A.39)

We will investigate two parts of (A.39), corresponding to the two terms inside the square
brackets. For the first term we have

−
n∑
j=1

∑
σ

sgn(σ)
n∑
k=1

∂Jσk,k
∂xj

uj

n∏
i=1,i 6=k

Jσi,i = −
n∑
j=1

∂ det J
∂xj

uj = −∂ det J
∂x

u. (A.40)

The second term is a little more tricky:

−
n∑
j=1

∑
σ

sgn(σ)
n∑
k=1

Jσk,j
∂uj
∂xk

n∏
i=1,i 6=k

Jσi,i = −det J
n∑
j=1

∂uj
∂xj
−

−
n∑
j=1

∑
σ

sgn(σ)
n∑

k=1,k 6=j
Jσk,j

∂uj
∂xk

n∏
i=1,i 6=k

Jσi,i.

Here we split the summation over k into the term with k = j and all other terms. The former
immediately gives the determinant multiplied by the divergence of the vector field, where the
latter sum over all other terms is zero. Indeed, imagine a permutation σ̄ such that it is equal
to σ except σj and σk are swapped. Then the sign of σ̄ is opposite to the sign of σ. Further,
since the product Jσk,jJσj ,j is the only way in which σk and σj enter the formula, the absolute
value does not change with the change of permutation. Therefore for each j, k and for each
permutation there exists a permutation which cancels them out.

Finally, substitution of the nonzero term of the last equation and (A.40) into (A.39) leads
to (A.37).

A.5 Proof of the Lemma 5.2

Lemma 5.2. Let ∂x/∂M be isotropic, i.e. represented by a scalar multiplied by a rotation
matrix, and let ρ = det(∂M/∂x). Then

∇ ·
(
ρ
∂x

∂M

)
∂x

∂M

T

= 0. (A.41)

Proof. Define λ = λ(∂M/∂x), thus ρ = λn. By isotropy,

∂x

∂M
= λ−2∂M

∂x

T
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and therefore, by using (5.45), the left-hand side of (A.41) is

∇ ·
(
λn−2∂M

∂x

T
)
∂M

∂x
λ−2 = λn−4∇ ·

(
∂M

∂x

T
)
∂M

∂x
+ (n− 2)λn−3∂λ

∂x
. (A.42)

Now let us investigate the first term more closely. Taking the divergence and looking at j-th
element, we see that [

∇ ·
(
∂M

∂x

T
)
∂M

∂x

]
j

=
n∑
k=1

∂2M

∂x2
k

T
∂M

∂xj
. (A.43)

Now, by isotropy
∂M

∂xj

T ∂M

∂xk
= 0 ∀j 6= k,

∂M

∂xk

T ∂M

∂xk
= λ2. (A.44)

Taking the derivative of the multiplication of basis vectors:

∂

∂xj

(
∂M

∂xk

T ∂M

∂xk

)
= 2 ∂2M

∂xj∂xk

T
∂M

∂xk
, (A.45)

but at the same time the value under the derivative is λ2 by (A.44), therefore

∂

∂xj

(
∂M

∂xk

T ∂M

∂xk

)
= ∂λ2

∂xj
= 2λ ∂λ

∂xj
. (A.46)

Then, taking the derivative of multiplication of different basis vectors with j 6= k, by (A.44)
we obtain zero:

∂

∂xk

(
∂M

∂xj

T ∂M

∂xk

)
= ∂2M

∂xj∂xk

T
∂M

∂xk
+ ∂M

∂xj

T ∂2M

∂x2
k

= 0,

which by equality of (A.45) and (A.46) means that for j 6= k

∂M

∂xj

T ∂2M

∂x2
k

= − ∂2M

∂xj∂xk

T
∂M

∂xk
= −λ ∂λ

∂xj
. (A.47)

In the case of j = k by equality of (A.45) and (A.46) we have

∂2M

∂x2
j

T
∂M

∂xj
= λ

∂λ

∂xj
. (A.48)

Combination of (A.47) and (A.48) means that (A.43) is[
∇ ·

(
∂M

∂x

T
)
∂M

∂x

]
j

= (2− n)λ ∂λ
∂xj

. (A.49)

Finally, substituting (A.49) in (A.42) gives zero.
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A.6 Solution to the equation (6.43)

Here we will solve equation (6.43), which is:
cos θ

−B − 2A cos θdθ = 1
∆xdx.

For simplicity let us define J := B/A, thus the ODE becomes
cos θ

−J − 2 cos θdθ = A

∆xdx.

Define t = tan θ
2 . Then

cos θ = 1− t2
1 + t2

, dθ = 2
1 + t2

dt,

and thus ∫ cos θ
−J − 2 cos θdθ =

∫
t2 − 1

J(1 + t2) + 2(1− t2)
2

1 + t2
dt.

Define p = J + 2 and q = J − 2. Then
t2 − 1

J(1 + t2) + 2(1− t2) = t2 − 1
p+ qt2

= 1
q

(
1− 2J

p+ qt2

)
.

Further,
1

1 + t2
1

p+ qt2
= 1

4

[ 1
1 + t2

− q

p+ qt2

]
,

which leads to
2

1 + t2
1
q

(
1− 2J

p+ qt2

)
= J

1
p+ qt2

− 1
1 + t2

.

A.6.1 Case 1.

Let pq < 0. This is equivalent to the statement |J | < 2. Then∫ 1
p+ qt2

dt = 1√
−pq

∫ 1

1−
(

q√
−pq t

)2
−q√
−pq

dt =

= 1
2√−pq

∫  1
1 +

(
q√
−pq t

) + 1
1−

(
q√
−pq t

)
 −q√
−pq

dt = 1
2√−pq ln

∣∣∣∣∣∣
1−

(
q√
−pq t

)
1 +

(
q√
−pq t

)
∣∣∣∣∣∣ ,

and the solution with C being integration constant is

Ax

∆x + C = J

2√−pq ln

∣∣∣∣∣∣
1−

(
q√
−pq tan θ

2

)
1 +

(
q√
−pq tan θ

2

)
∣∣∣∣∣∣− arctan

(
tan θ2

)
,

which can be simplified to

A
x

∆x + C = J

2
√

4− J2
ln

∣∣∣∣∣∣
1 +

(
2−J√
4−J2 tan θ

2

)
1−

(
2−J√
4−J2 tan θ

2

)
∣∣∣∣∣∣− 1

2θ. (A.50)
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A.6.2 Case 2.

Let pq > 0. This is equivalent to the statement |J | > 2. Then∫ 1
p+ qt2

dt = 1
√
qp

∫ 1

1 +
(

q√
qp t
)2

q
√
qp
dt = 1

√
qp

arctan
(

q
√
qp
t

)
,

and the full solution is therefore

A
x

∆x + C = J
√
qp

arctan
(

q
√
qp

tan θ2

)
− arctan

(
tan θ2

)
,

or simply
A
x

∆x + C = J√
J2 − 4

arctan
(

J − 2√
J2 − 4

tan θ2

)
− 1

2θ. (A.51)

Note that solutions (A.50) and (A.51) are essentially the same functions if one uses complex
relation between arctangent and logarithm:

arctan s = − i2 ln
(1 + is

1− is

)
. (A.52)

A.6.3 Case 3.

Finally, if pq = 0, it means that J = ±2.

1. If J = 2 we get p = 4 and q = 0. Then the solution is given simply by
Ax

∆x + C = 1
2 tan θ2 −

1
2θ.

2. If J = −2 we get p = 0 and q = −4. Then the solution is
Ax

∆x + C = −1
2 cot θ2 −

1
2θ.

A.7 Proof of the Lemma 6.1

Lemma 6.1. Function f(x), defined as

f(x) = V + µx

(U + x)2 (A.53)

with U > 0 and x > 0 is bounded from above by

f(x) 6


0, V 6 0 and µ 6 0,
V/U2, V > 0 and Uµ 6 2V,

µ2

4µU − 4V , µ > 0 and Uµ > 2V.
(A.54)
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Proof. The function f(x) is defined for x ∈ [0,+∞), thus its supremum is achieved either at
x = 0, x = +∞ or at f ′(x) = 0. If V 6 0 and µ 6 0, then the function is nonpositive with
asymptotic value f(+∞) = 0, thus we use 0 as a bound in this case. Let us now find its
extremum:

f ′(x) =
(
V + µx

(U + x)2

)′
= µ(U − x)− 2V

(U + x)3 = 0, (A.55)

thus it is achieved at xextr = U − 2V/µ. Substituting it back in (A.53) we obtain

f(xextr) = µ2

4µU − 4V . (A.56)

Finally we notice that the extremum (A.55) is indeed maximum only if µ > 0 and if xextr > 0,
otherwise the maximum is achieved at zero, f(0) = V/U2. Therefore, combining the bounds
together we get

f(x) 6


0, V 6 0 and µ 6 0,
V/U2, V > 0 and Uµ 6 2V,

µ2

4µU − 4V , µ > 0 and Uµ > 2V.
(A.57)
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