
THÈSE DE DOCTORAT
Algorithmes d’optimisation pour le

Network Slicing pour la 5G

Adrien GAUSSERAN
Laboratoire d’Informatique, de Signaux et Systèmes de Sophia Antipolis (I3S)

UMR7271 UCA CNRS

Présentée en vue de l’obtention
du grade de docteur en Informatique
d’Université Côte d’Azur

Dirigée par : Nicolas NISSE

Co-encadrée par : Joanna MOULIERAC

Soutenue le : 09/11/2021

Devant le jury, composé de :
Mathieu BOUET, Directeur du network soft-
ware lab., HDR, Thales
Frédéric GIROIRE, Directeur de recherche,
CNRS, I3S, Univ. Côte d’Azur
Brigitte JAUMARD, Professeur, Concordia
University, Canada
Adlen KSENTINI, Professeur, EURECOM,
Sophia Antipolis
Joanna MOULIERAC, Maître de conférence,
encadrante, Univ. Côte d’Azur
Nicolas NISSE, Chargé de Recherche, HDR,
directeur, Inria de l’Univ. Côte d’Azur
Géraldine TEXIER, Professeur, IMT Atlan-
tique
Guillaume URVOY-KELLER, Professeur,
Univ. Côte d’Azur, Sophia Antipolis

ALGORITHMES D’OPTIMISATION POUR LE NETWORK
SLICING POUR LA 5G

Optimization algorithms for Network Slicing for 5G

Adrien GAUSSERAN

./

Jury :

Rapporteurs
Mathieu BOUET, Directeur du network software lab., HDR, Thales
Géraldine TEXIER, Professeur, IMT Atlantique

Examinateurs
Frédéric GIROIRE, Directeur de recherche, CNRS, I3S, Univ. Côte d’Azur
Brigitte JAUMARD, Professeur, Concordia University, Canada
Adlen KSENTINI, Professeur, EURECOM, Sophia Antipolis
Guillaume URVOY-KELLER, Professeur, Univ. Côte d’Azur, Sophia Antipolis

Encadrants
Joanna MOULIERAC, Maître de conférence, encadrante, Univ. Côte d’Azur
Nicolas NISSE, Chargé de Recherche, HDR, directeur, Inria de l’Univ. Côte d’Azur

Université Côte d’Azur

Algorithmes d’optimisation pour le Network Slicing pour la 5G

Résumé

Notre décennie voit l’accroissement de l’utilisation des réseaux mobiles pour les acteurs in-
dustriels et administratifs ainsi que pour le grand public grâce à l’introduction de la 5ème
génération de réseaux mobiles : la 5G. La 5G apporte une diversité de cas d’utilisation des
réseaux mobiles et un nombre croissant de demandes avec des besoins très hétérogènes mais
toujours avec de fortes contraintes de qualité de service (QoS). La 5G a été développée pour
utiliser les technologies de réseaux définis par logiciel (SDN) et de virtualisation de fonctions
réseaux (NFV). SDN sépare les plans de contrôle et de données et offre une gestion central-
isée du réseau. NFV dissocie les fonctions réseaux du matériel qui les exécute grâce à la
virtualisation. Ces technologies automatisent la gestion du réseau et le rendent plus flexible et
adaptable à l’évolution du débit du trafic ainsi que de ses besoins. L’introduction du paradigme
de découpage du réseau entraîne une division du réseau en des réseaux virtuels indépendants
cohabitant sur la même infrastructure. Ce paradigme permettra de répondre aux besoins très
hétérogènes des futures demandes. Dans cette thèse nous nous intéressons à l’optimisation
de l’utilisation des ressources des réseaux de nouvelle génération afin de diminuer les coûts
opérationnels et d’accepter plus de demandes. Nous étudions d’abord l’allocation de chaînes
de fonctions de services, pour accepter rapidement les requêtes et répondre aux demandes
diverses et abondantes des réseaux mobiles. Nous étudions ensuite la faisabilité de la re-
configuration Make-Before-Break des requêtes, qui permet de reconfigurer sans dégrader la
QoS. Nous adaptons ensuite notre reconfiguration au network slicing pour l’utiliser sur les fu-
tures réseaux 5G. Enfin nous optimisons les périodes de reconfiguration grâce à un algorithme
d’apprentissage par renforcement, réduisant ainsi les coûts de gestion.

Mots-clés : SDN, NFV, SFC, 5G, Slicing, Reconfiguration.

vi

Optimization algorithms for Network Slicing for 5G

Abstract

Our decade is marked by an increase in the use of mobile networks for industrial and admin-
istration actors as well as for the general public thanks to their evolution. The introduction of
the 5th generation of mobile networks, 5G, brings a diversity of use cases for mobile networks
and a growing number of demands with very heterogeneous needs and with strong quality of
service (QoS) constraints. The development of 5G relies on new techniques such as Software
Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies. SDN
allows the separation of control and data planes by providing centralised network management.
NFV decouples network functions from the hardware that performs them through virtualisa-
tion. The use of these two technologies automates the management of the network and makes it
much more flexible and adaptable to changing traffic flows and requirements. The introduction
of the network slicing paradigm leads to a division of the network into multiple independent
virtual networks cohabiting on the same infrastructure. This paradigm allows to meet the very
heterogeneous needs of future applications. In this thesis, we focus on optimising the resource
utilisation of next generation networks in order to decrease operational costs and to accept
more demands. We first study the allocation of service function chains, to quickly accept re-
quests and to meet the diverse and high-volume demands of mobile networks. We then study
the feasibility of Make-Before-Break reconfiguration of requests, which allows to reconfig-
ure without degrading the QoS. We then scale up our reconfiguration and adapt it to network
slicing to be used on future 5G networks. Finally, we optimise the reconfiguration periods by
implementing a reinforcement learning algorithm, minimising the management costs.

Keywords: SDN, NFV, SFC, 5G, Slicing, Reconfiguration.

vi

Remerciements

Je tiens d’abord à remercier Joanna Moulierac et Frédéric Giroire pour avoir encadré mon travail
et m’avoir aidé dans l’amélioration de mes compétences de recherche. Je tiens aussi à remercier
Nicolas Nisse pour m’avoir accompagné durant ma thèse et m’avoir aidé à aboutir mon manuscrit.

Je remercie aussi mes rapporteurs Géraldine Texier et Mathieu Bouet pour le temps qu’ils ont
pris pour la lecture ainsi que pour les remarques qu’ils m’ont faites et qui m’ont permis d’achever
mon manuscrit. Je remercie les membres de mon jury d’avoir accepté d’évaluer mon travail, Adlen
Ksentini, Guillaume Urvoy-Keller et surtout Brigitte Jaumard pour m’avoir permis de travailler
avec elle pendant 3 mois au sein de l’université Concordia au Canada.

Je remercie tous les membres de l’équipe COATI de m’avoir accueilli et d’avoir approfondi
ma culture par les discussions que j’ai pu avoir avec eux et par les conseils qu’ils m’ont apportés.

Je tiens à remercier tous mes anciens enseignants et collègues, aussi bien à l’Inria qu’à l’I3S,
qu’à toutes les périodes de ma vie. Toutes ces personnes qui, par leur culture, leur travail et leur
passion m’ont permis de développer ma curiosité, ma conscience et mes capacités en partageant
une partie de leur savoir.

Un grand merci à tous mes amis, ceux que j’ai connu par la fac et ceux qui étaient aux bons
endroits aux bons moments. Tous ces moches et ces moins moches, c’est gros et ces maigres, ces
débiles et ces encore plus débiles avec qui j’ai dansé, chanté, mangé et bu. Tous ces gens avec qui
j’ai profité dans des champs, des caves, sous des chapiteaux ou des plots. Parfois à 12 et parfois
à plus, souvent peu vêtu, hagard et à l’œil peu vif. Ces personnes de tous bords et tous horizons
qui m’ont permis de sortir de ma bulle, de profiter de la vie et d’accaparer des objets sans resurgir
sur autrui. Ces prolos, ces médecins et ces futurs ministres, ces avocats, ces ingés et ces dentistes
: tous unis pour profiter aussi bien dans les bons moments que dans l’adversité.

Un pensée toute particulière au gangs des pistaches citronnées, Arthur, Guillaume, Joseph et
Mehdi : le réseau de neurones le moins efficace de la décennie.

Enfin je tiens à remercier ma famille pour m’avoir soutenu pendant tant d’années. Ma sœur
m’a donné le goût du voyage, mon frère celui de l’informatique, ma mère m’a offert la passion
et mon père la curiosité. À mes parents qui ont toujours été là pour moi, qui ont été patients et
qui m’ont soutenu quand j’étais perdu. Ils ont eu peur du Gi-Joe, ils ont eu peur du Tanguy, mais
maintenant ils savent qu’ils ont mis au point un adulte autonome, un peu à l’ouest et à peu près
fonctionnel.

Table of contents

Table of contents ix

List of Abbreviations xiii

Introduction 1
0.1 Motivations . 1
0.2 Context . 1

0.2.1 Software Defined Networks . 3
0.2.2 Network Function Virtualisation and Service Function Chaining 7
0.2.3 5G Networks . 12
0.2.4 Reconfiguration . 20

0.3 Thesis plan and Contributions . 26
0.3.1 List of Publications . 27

References . 29

1 Preliminaries 37
1.1 Linear Programming (LP) . 39

1.1.1 A general example . 41
1.1.2 Linear Programming properties . 42

1.2 Column Generation . 44
1.2.1 A general example . 46

1.3 Reinforcement Learning . 48
1.3.1 Definition . 48
1.3.2 Markov Decision Process . 49
1.3.3 Policy and Value function . 51
1.3.4 Exploration vs Exploitation . 53
1.3.5 Q-Learning . 53
1.3.6 Deep Q-Learning . 56

References . 59

2 Service Function Chain Placement 61
2.1 Introduction . 63
2.2 Related Work . 64
2.3 Problem Statement and Notations . 65
2.4 Layered Graph . 65

2.4.1 Layered Graph . 65
2.5 Static routing and provisioning problem (R&P) 66

2.5.1 State of the Art ILP formulation state-of-art-ILP 66
2.5.2 Our ILP formulation layer-ILP . 67

2.6 R&P for a single demand . 69
2.6.1 State of the Art ILP formulation, single demand 69

ix

x CHAPTER 0 —

2.6.2 Our ILP formulation, single demand . 70
2.7 Weight Constrained Shortest Path based heuristic 70

2.7.1 Algorithm 4: Finding a good static placement 71
2.7.2 Algorithm 5: Finding the best routing 71
2.7.3 Algorithm 7: Choosing the VNFs to turn off 73

2.8 Numerical Results for layer-ILP and state-of-art-ILP 73
2.9 Conclusion . 74
References . 79

3 Service Function Chains Reconfiguration 81
3.1 Introduction . 83
3.2 Related Work . 84
3.3 Problem Statement and Notations . 85
3.4 Modeling . 85

3.4.1 Objective . 88
3.4.2 Break-Free-ILP Reconfiguration (Make-before-break) 88
3.4.3 Heuristic Break-Free-HEUR . 91

3.5 Numerical Results . 94
3.5.1 Data sets . 95
3.5.2 Low-traffic scenario - Resource usage 96
3.5.3 High-Traffic scenario - Acceptance Rate 99
3.5.4 Low-Traffic scenario - Impact of Parameter β 100
3.5.5 Execution Times to Compute the Reconfiguration 103
3.5.6 Reconfiguration Rate . 104
3.5.7 Percentage of rerouted requests . 106
3.5.8 Percentage of Transient VNFs instantiated during reconfiguration 107

3.6 Conclusion . 108
References . 109

4 Network Slices Reconfiguration 113
4.1 Introduction . 115
4.2 Related Work . 116
4.3 Problem Statement and Notations . 117

4.3.1 Definitions . 117
4.4 ILP Model: slow-rescue . 118
4.5 The column generation technique and our model 120

4.5.1 A first CG-based algorithms . 121
4.5.2 Description of our CG-based algorithms: rescue-ILP and rescue-LP 123

4.6 Numerical Results . 126
4.6.1 Data sets . 126
4.6.2 Efficiency of our algorithms with different traffic matrices 127
4.6.3 Impact of the number of reconfiguration steps 131
4.6.4 Gains over Time . 132
4.6.5 Impact of the reconfiguration time interval 136
4.6.6 Scalability . 137
4.6.7 Parallelisation of the pricing problem 139

x

0.0 – TABLE OF CONTENTS xi

4.6.8 Impact of the delay constraints . 139
4.7 Conclusion . 141
References . 143

5 Reinforcement Learning Driven Reconfiguration 145
5.1 Introduction . 147
5.2 Related Work . 148

5.2.1 Predict and Learn . 148
5.3 System Model and Problem Formulation . 149

5.3.1 Optimisation Model . 150
5.4 Deep Reinforcement Learning Algorithm . 150
5.5 Data Set . 152
5.6 Numerical Results . 154

5.6.1 Improved network usage . 154
5.6.2 Number of reconfigurations . 154

5.7 Conclusion . 156
References . 157

Conclusion and Perspectives 159

Bibliography 163

xi

List of Abbreviations
3GPP 3rd Generation Partnership Project

5G-PPP 5G Infrastructure Public Private Partnership

5GC 5G Core

ADSL Asymmetric Digital Subscriber Line

API Application Programming Interface

BSS Business Support System

Capex Capital Expenditure

CG Column Generation

CPU Central Processing Unit

CU Centralized Unit

DPI Deep Packet Inspection

DU Distributed Unit

eMBB Enhanced Mobile Broadband

EPC Evolved Packet Core

ETSI European Telecommunications Standards Institute

ILP Integer Linear Program

IMT International Mobile Telecommunications

IoT Internet of Things

IP Internet Protocol

LP Linear Program

MANO Management And Network Orchestration

MIMO Multiple-Input Multiple-Output

MIP Mixed Integer Program

MME Mobility Management Entity

mMTC Massive Machine Type Communications

NFV Network Function Virtualisation

NGMN Next Generation Mobile Networks Alliance

xiii

xiv TABLE OF CONTENTS

ONF Open Network Foundation

Opex Operational Expenditure

OSPF Open Shortest Path First

OSS Operations Support Systems

PGW Packet Data Network Gateway

PHY Physical

PP Pricing Problem

QoS Quality of Service

RAN Radio Access Network

RIP Routing Information Protocol

RMP Restricted Master Problem

RRU Remote Radio Unit

SDN Software-Defined Networking

SFC Service Function Chain

SGW Serving Gateway

SLA Service-Level Agreement

uRLLC Ultra-Reliable and Low-Latency Communications

VM Virtual Machine

VNF Virtual Network Function

WLAN Wireless Local Area Network

xiv

Introduction

0.1 Motivations

Over the last two decades the use of telecommunication networks has seen very large changes,
from the number of users connected, to the amount of data exchanged. In France, for example,
17% of households were connected to the Internet through fixed networks in 2001 compared to
90% in 2018. In recent years, the development of mobile networks has been even more important.
In France, 4G data consumption averaged 4.6GB per user per month in 2017, compared to 10.2GB
in 2020, an increase of over 30% each year [dT21]. The evolution of networks is also driven by
the needs they have to meet. The users of mobile networks have been mainly people so far. In
the coming years, the users will also largely be industrials, administrations, and a large number of
connected objects (IoT: Internet of Things objects). These IoTs objects range from sensors in the
city to watches or cars. As a result, a large number of very heterogeneous use cases are emerging,
with different needs and constraints. To meet these needs in terms of new services and bandwidth,
networks have significantly changed, both in their infrastructure and in the technologies they use.

5G is envisioned to enable a multi-service network supporting a wide range of communica-
tion scenarios with a diverse set of performance and service requirements. All of these advances
come with the promise of more bandwidth, less delay, and more flexibility for an ever increasing
number of users and applications. In addition to infrastructure changes, to meet these require-
ments network management must evolve and two technologies are at the root of 5G. The combi-
nation of Software Defined Networking (SDN) and Network Function Virtualisation (NFV) is at
the root of 5G. These two technologies improve the management of the network which becomes
programmable and therefore automatable. It also becomes much more flexible and adaptable to
changing traffic flows and requirements. One network for so many different use cases is not fea-
sible, so the network slicing paradigm has emerged. The objective is to divide the network into
multiple virtual networks, independent and isolated from each other, each meeting specific needs
while providing a high Quality of Service (QoS).

In this context, the efficient provisioning of network and resources for a wide variety of ap-
plications with dynamic user demands is a real challenge. Network management as we know it
must change and be adapted to network slicing. New management methods and optimisation algo-
rithms need to be developed in order to efficiently manage increasingly dense and heterogeneous
networks.

This thesis aims at providing a humble part of the answers to this challenge and contributing
to the construction of tomorrow’s network management.

0.2 Context

In traditional networks, packet routing is distributed across the network and is handled by routers.
Each router communicates with its neighbours to create and maintain enough information about
the network to build a routing table. They must keep this information up to date in order to route
each packet to its destination. As can be seen on Figure 0.2.1(a), on this distributed architecture

1

2 TABLE OF CONTENTS

both data and control plane are located on the same equipment. This has some advantages. In case
of failure, each router is responsible for itself, so there are as many failure points as routers. Each
router has only a limited number of neighbours. The decision making logic is simple. Finally this
architecture can easily be scaled for very large networks. It also has disadvantages. The change
of a route can require a human intervention on multiple routers. The distributivity of the control
does not allow a global vision as well as a fine-grained control of the routing. Finally the human
interventions on the routers can induce errors.

To understand how routing in traditional networks works, a network can be modelled as a
graph where nodes represent routers to which resources and/or users will be connected and edges
represent links connecting routers. To route data within the network, an interior gateway protocol
must be used. Data may also be routed between networks, using exterior gateway protocol such
as Border Gateway Protocol [RHL06], but they are not presented in this thesis as they are out of
scope.

There are two main types of protocols that can be used for intra-domain routing:

• In distance vector routing protocols, each router does not have information about the com-
plete network topology. A router reports its distance values (number of hops to reach the
destination) to its neighbours and receives similar reports from them. If changes occur, the
router updates its routing table (a table that maps destination addresses to the router ports).
If a router stops reporting, after some time its neighbours will stop forwarding packets on
that route. Using these routing announcements, each router fills its routing table. During
the next announcement cycle, a router announces the updated information in its routing ta-
ble. This process continues until the routing table of each router converges to stable values
(when the shortest paths are found). A widely used protocol is Routing Information Proto-
col (RIP) [Mal98]. For each known destination network, each router keeps the address of
the neighbouring router with the lowest distance value. These best routes are broadcasted
every 30 seconds. To avoid routing loops, the number of hops to reach the destination is
limited to 15. RIP only takes into account the distance between two machines, but it does
not consider the link state in order to choose the best possible bandwidth. RIP is based on
the Bellman-Ford algorithm [Bel58].

• In link-state routing protocols, each router has information about the entire network topol-
ogy. Using the local topology information, every router independently determines the best
next hop for all possible destinations. The routing table is composed of the set of the best
next hops. A good example is the Open Shortest Path First (OSPF) protocol [Moy98]. OSPF
has been designed expressly for the TCP/IP internet environment. This routing protocol col-
lects link state information (the bandwidth) from the routers in the network and determines
the routing table information to forward packets. This happens by creating a topology map
for the network and each router obtains it through flooding. Unlike RIP, OSPF only ex-
changes routing information when there is a change in the network topology. Every router
then runs the Dijkstra algorithm on its database to build the shortest-path tree and, thus,
the IP routing table. The OSPF protocol is adapted to complex networks that have multi-
ple subnets and are intended to facilitate network administration and traffic optimisation. It
efficiently calculates the shortest path with minimal network traffic when the change occurs.

Table 1 shows the routing table of a router on a traditional network. This table has six entries
and each entry is divided into several parts. The letters in blue correspond to the protocol used to

Introduction 3

Destination Distances Next hop Update Interface
S* 0.0.0.0/0 [1/0] via 10.0.0.2
C 10.0.0.0/30 is directly connected, Serial0/0
C 10.0.0.8/30 is directly connected, FastEthernet0/1
R 10.0.10.32/27 [120/2] via 10.0.0.8, 00:00:14, FastEthernet0/1
O 10.0.10.0/24 [110/62] via 10.0.0.1, 00:43:25, Serial0/0
D 10.0.10.0/24 [90/186487] via 10.0.0.5, 00:14:41, Serial0/1

Table 1 – Routing table on a traditional network

Control Plane

Data Plane

(a) Traditional Network

Control Plane

Data Plane

(b) SDN Network

Figure 0.2.1 – Standard VS SDN network

learn the route: O for OSPF, R for RIP, D for EIGRP, C if the destination is directly connected, and
S to say that the route is static (the * means that it is the default route). On the right of the letters
is the destination network address and its mask. The red part corresponds to the administrative
distance (right) and to the distance metric of the route calculated by the protocol (left). The
administrative distance is an arbitrary number assigned to rank the preferred routes according to
the protocol (the preferred being one): 1 is for static, 90 for EIGRP, 110 for OSPF, and 120 for RIP.
After the metrics comes the address of the next jump, then the time since the last route update in
hours:minutes:seconds. Finally, the interface from which the destination network can be reached
is specified.

0.2.1 Software Defined Networks

Software Defined Network (SDN) is an emerging paradigm that aims at simplifying network man-
agement. It is democratized and standardized by the Open Network Foundation [Fou16] (ONF)
which specifies its architecture. The management of the network is simplified by separating the
control plane of traditional networking devices (e.g.switches, routers) from the data plane, as
shown in Figure 0.2.1(b). Network intelligence is logically centralized in an SDN controller that

4 TABLE OF CONTENTS

Control Plane
API

SDN Application SDN Application

API

Application plane

...

Data Plane

API

Figure 0.2.2 – SDN Architecture

maintains a global view of the network state. This centralization completely changes the man-
agement of the packets. The network becomes programmable and the routes can be changed dy-
namically without human intervention on the routers. This allows network administration to adapt
on demand to different concurrent applications, enabling more precise control of the network and
therefore better resource management [KF13]. In 2013, Google introduced its first operational
SDN on its private WAN connecting all its data centres across the world [JKM+13]. Today SDN
is used in many corporate networks. Its architecture aims at optimising traffic management be-
tween data centers and reduce over-provisioning of links between them. It has been shown the
ability to use its data center network at full capacity by achieving close to 100% link utilisation,
demonstrating the feasibility and benefits of SDN in a real production network. As developed
in [KREV+15] and presented in Figure 0.2.2 the SDN architecture is composed of three main
layers: data plane, control plane and application plane.

• The data plane is made up of all the network equipments forming the underlying network.
It consists of switches and routers (and mobile equipment such as antennas for mobile net-
works) connected to each other by different types of links. The goal of this layer is to
forward the network traffic and each device must expose its capabilities to the control plane
using an Application Programming Interface (API).

• In the control plane the SDN controller is the core of the logic in the SDN architecture. It
is a software entity that has exclusive control over a set of data plane resources. It can also
provide abstract information about the attributes and operations that can be performed by
the elements of the data plane to the application plane.
The controller supervises the network forwarding behaviour through an open API by aggre-
gating the various network information and application requests to enable the best routing
for each application. It does it while making the most efficient use of the data plane re-
sources. It also allows to dynamically reconfigure routes according to policy changes or to

Introduction 5

respond to failures on the data plane.
The SDN controller is seen as a single logical entity but it may be implemented as many
software components, distributed on many physical platforms. To be seen as one entity
those components must maintain a synchronized and self-consistent view of information
and status. A single centralized controller may be sufficient for a small network. On the
other hand, it represents a risk because in case of failure, the control of the whole network
is interrupted. It also may not be sufficient to resiliently manage the network elements of
the data plane. The controller can also be distributed within a single cluster or to different
nodes in the network. When a node fails, another node takes over the tasks.

• The application plane is the manager of the network. It is responsible for analysing all the
information about the network topology and the network state. It manages the different con-
trol functions that will be given to the control plane (through APIs) to adapt the traffic on the
data plane. The SDN applications in the application plane relay their network requirements
to the controller plane. The SDN controller interprets the applications’ requirements and
provides low-level control over the network elements, while feeding relevant information to
the SDN applications. An SDN controller can manage concurrent application requests for
limited network resources.

Challenges
Like any new paradigm, SDN has raised challenges. The SDN controller must be able to intercon-
nect with equipment already in use on traditional networks. The entire infrastructure does not have
to be changed. The administration being centralized, routers must be able to report information
about the state of the network. In [LHK+13] the authors propose a solution to deploy an SDN
network and connect it to other IP networks seamlessly. They integrate a border gateway protocol
process to the SDN controller that makes SDN-IP peering possible. Their application allows the
SDN network to appear as a single router to the connected routers of other IP networks. Without
breaking the traffic, the application updates the information received by the controller and then
allows it to coordinate the actions of the routers to route the traffic.

Since SDN is used in new networks, the question of scaling arises. The control plane and the
data plane being decoupled, when a flow management rule is added it must be forwarded to the
routers, thus increasing control plane related traffic. This traffic increases the load on the network
and at large scale it can potentially create a bottleneck. As updates to flow management rules
and network information are also propagated over the network, this can create additional latency,
with a risk of deteriorating the quality of service. Some studies focus on these scalability issues.
In [YG12] the authors propose a SDN controller using two layers for the control plane. The top
layer is the central controller which has a global view of the network. The bottom layer consists
of several controllers used by local applications using a single switch. These local controllers can
be instantiated when needed and handle the majority of frequent events, reducing the load on the
top layer.

SDN has to work on large-scale networks with a large number of heterogeneous requests re-
quiring a large number of different rules to handle all the flows. These rules are stored in flow
tables inside the network devices, which use an expensive and small type of memory, limiting
the number of rules to a few thousand. Since their size can be substantial, some works focus on
compression techniques to reduce the number of flow entries. Giroire et al. [GHM15] develop a
destination-based heuristic to address the problem of determining a compact two-dimension rout-
ing table using aggregation rules that has the same behaviour as the original routing table. They

6 TABLE OF CONTENTS

manage to often save half the space of the table. One of the contributions of [GHMP18] is the
reduction of the size of the forwarding tables using wildcard rules by aggregating rules with the
same action on the corresponding fields. They develop an Integer Linear Program (ILP) and two
heuristics that outperform a solution using default port compression by having a compression ratio
between 15% and over 60% depending on the number of ports. They study multi-field compres-
sion, using extra wildcards compared to a default port compression. The additional wildcards are
used to aggregate flows having a field with a specific value (such as a common destination).

Distributing the SDN controller across different nodes ensures that the network is resilient
and does not become brainless in the case of a single failure. This distributivity poses a challenge
because the controller must be synchronized. This requires exchanges on the control plane be-
tween the different devices that host the controller. Finally, in case of failure, the controller must
be able to reorganize itself in an elastic way. These issues have been particularly studied in some
works. Bari et al. [BRC+13] propose a framework that, instead of optimally placing SDN con-
trollers, dynamically adjusts the number of active controllers. Each controller manages a subset of
switches based on network dynamics. They develop an ILP and two heuristics to ensure minimal
flow establishment and communication time. One of their heuristics, a greedy approach based on
the knapsack problem, manage to balance these two objectives while running fast enough to be
used in real time. Their second heuristic is a simulated annealing based meta-heuristic approach
that provides better results, but takes longer to converge. In [DHM+13] the authors propose to
dynamically scale the size of the SDN controller set according to traffic conditions. They also
perform dynamic load migration between controllers to avoid overloading any of them. By mon-
itoring switch CPU utilization, they determine which switches are most likely to send the most
messages and overload a controller. They emulate their architecture using mininet [LHM10] and
show that their solution enables load balancing between different controllers, resulting in better
throughput and faster response time. In [KBK+12], the controller is not distributed but only one
of its functions. The link and node failure detection protocol is distributed within the switches.
Their method allows the switches to emit the messages making the restorations possible without
inducing a load on the controller, thus allowing a scalable recovery of the data plan, in less than
50ms.

Advantages
Although SDN poses some challenges it also comes with many advantages [ONF14]:

• Programmability: Once the infrastructure is deployed, no human intervention is required
on the equipment to modify the routes, all these actions are managed directly by the con-
troller. Each SDN application can have a different policy which is programmed and trans-
mitted to the controller. The controller can manage the heterogeneous needs of the different
applications and adapt the traffic flow accordingly.

• Centralization: The network view being centralised, decisions are made with a global view
and therefore they will be more efficient in managing network resources as well as in re-
specting the different SDN application policies. This allows easy manipulations of large
amounts of traffic data as well as for dealing with very low latency requests.

• Scalability: As discussed, scalability can be a challenge with SDN because of the poten-
tially large number of different rules that need to be managed. But centralized control brings
a considerable advantage as it gives access to the complete network information. This makes

Introduction 7

traffic routes adaptable to improve load balancing and prevent congestion and QoS degra-
dation.

• Modularity and cost reduction: One of the purpose of SDN is to establish an open standard
to simplify interconnection. This objective is supported by the ONF. The deployment of
SDN enables interconnection of devices even if they are from different manufacturers. This
heterogeneity of equipments allows network owners to meet their needs more effectively,
as well as greater openness to competition and thus a reduction in costs and a stimulus to
hardware innovation.

• Security: The centralization of control provides a quicker and more effective identification
and response in case of an attack on the data plane or in case of failure of some equipment
of the data plane. The resilience of the network can be improved through migration and
restoration functions provided by the controller.

In recent years, the increase in traffic, the number of requests and their heterogeneity, and
the constraints they impose such as very low latency or high mobility, have been significant. To
address these developments, SDN is becoming an essential paradigm in the management of next
generation networks.

0.2.2 Network Function Virtualisation and Service Function Chaining

The purpose of the data plane is not only to route traffic but also to provide network services. To
this end, in addition to routers and switches, it is also composed of various network functions such
as firewalls or video optimisers.

0.2.2.1 Network Function Virtualisation

In a traditional network, network functions are executed on specialised and proprietary hardware
called middleboxes [CB02]. These devices are placed on the network and can only be added
and/or moved by specialised technicians. These additions and moves are slow and fail to provide
an adaptable network to traffic and demands. When a new service is added, new equipments must
be purchased and placed on the network. Those equipments must be compatible with those already
in use. In the case of a failure it takes a relatively long time to repair or change the hardware.

To address these issues a new paradigm has emerged, Network Function Virtualisation (NFV).
The goal is to shift from specialised hardware appliances to general-purpose hardware in order
to deal with the major problems of today’s enterprise middlebox infrastructure. These problems
range from cost to capacity limitations to management complexity and failures. [SHS+12]. NFV
change the way network infrastructure is deployed and managed by virtualising network functions
on standard equipments such as servers or switches. To install a new function, instead of buying a
new machine and sending technicians to install it, the network manager simply runs the software
for the network function on a virtual machine. As shown in Figure 0.2.3, virtual machines can be
instantiated on servers and a server can execute a multitude of functions as long as its capacity
is sufficient. These Virtual Network Functions (VNF) can be run on demand in a very short time
making their placement adaptable to the traffic load and to the different demand requirements.
The aim of virtualisation is therefore to make the management of network services more flexible.
NFV adds dynamism by creating and orchestrating network functions in real time. This makes the
management adaptable to the needs and traffic in an environment where function placement was

8 TABLE OF CONTENTS

Video
Optimization

Firewall

DPI
Hardware Server

VM:
vVideo

VM:
vFirewall

VM:
vDPI...

Figure 0.2.3 – Network Function Virtualisation means executing network functions on standard
servers

previously static. It improves network resource utility and reduces costs. It also improves profits
by being able to offer customised services on demand.

Similarly to the control and management layers that SDN has, NFV has its orchestrator. NFV-
MANO (management and network orchestration) is a framework developed by the European
Telecommunications Standards Institute (ETSI) [00114]. It is used to manage and orchestrate all
resources in a virtualised data center, including computation, network, storage and virtual machine
(VM) resources. NFV-MANO works within existing systems using standard VNF templates that
define the function and profile details of VNFs. It gives users the ability to choose from existing
NFV resources to deploy their functions. NFV-MANO is divided into three functional elements:

• The Virtualised Infrastructure Manager controls computing machines (CPU, memory),
storage and network resources.

• The NFV orchestrator is responsible for discovering available services. It manages the
availability/allocation/release of virtualised resources and the life cycle of network services.
Finally, it monitors resource failures and performance.

• The VNF Manager is responsible for the instantiation and life cycle management of the
VNF instances, scaling the VNFs (increasing or decreasing the capacity of the VNF) and
updating them.

Challenges
Like SDN, NFV has raised challenges, many of which have been studied. The flexibility induced
by the possibility of launching virtual functions on demand implies optimising the number and
localisation of these functions in a dynamic way. In [CLX+10] the authors propose a heuristic
based on the constraint set cover problem to dynamically migrate and allocate VNFs when the
topology of the network changes (failure or addition of infrastructure). They modify the allocation
of VNFs to satisfy the embedded virtual networks by taking into account the capacities of nodes
and links as well as path delays. Their objective is to minimise migration costs as well as the cost
of installing new VNFs. Their heuristic gives results ranging from 11% to 26% of the optimal.

Introduction 9

The cost of using these virtual functions cannot be managed in the same way as purchasing
hardware. Indeed, as several instances of the same software can be run at the same time, it is
necessary to define a cost and licence management policy as recall in [01017].

As these licence costs become a significant part of expenditure, they are one of the two ex-
penses we are reducing in our pursuit of operational cost minimisation. In chapters 3, 4 and 5,
our solutions allow to decrease the VNFs licence costs by 20% to almost 40% depending on the
topology used and the network load.

Finally, the security of virtual machines cannot be approached in the same way as on physical
equipment. It is necessary to think about security strategies for the NFV paradigm and using the
NVF paradigm. Jaeger [Jae15] described a security extension for the standard ETSI NFV archi-
tecture for a hybrid network (physical and virtual network functions are deployed). Its security
orchestrator is intended to interact with Network Management and Orchestration ("MANO") enti-
ties while being independent of the ETSI NFV reference architecture. The roles of his orchestrator
are automated control of the deployment and configuration of virtual security functions and trust
management within network services.

Advantages
The use of NFV is now gaining popularity [GJPGA12] among network operators because of the
opportunity it brings them. It brings an opportunity to offer services in a more agile way, capable
of operating at extremely large scales. Above all, it enables services to be delivered more quickly
by exploiting the intrinsic properties of virtualisation. There are many advantages of using NFV
compared to the proprietary middlebox of the traditional networks:

• Flexibility: Networks can be modified without updating any hardware. Network opera-
tors can deploy new network services dynamically on the same hardware. Managing the
installation of the various services can be done quickly and automatically without human
intervention.

• Scalability: The servers can be switched off and on to follow the network load and new
virtual functions can be launched to decongest routes and prevent bottlenecks.

• Capital expenditure (Capex): The cost of buying and maintaining the middlebox for large
network may rise to over one million dollars over five years [SHS+12]. By running the
functions on standard servers, operators no longer need expensive proprietary hardware.
This allows for greater openness to competition, as well as simplified maintenance resulting
in lower costs. In addition, upgrading software running on multiple machines is much less
expensive than changing a whole set of equipment.

• Operational expenditure (Opex): Centralized and automated orchestration of service de-
ployment simplifies management and reduces associated costs. It also reduces energy costs
if equipment can be turned off by consolidating multiple functions on a single machine.

0.2.2.2 Service Function Chaining

Even though SDN and NFV are two different independent technologies, they are complementary
and share many properties [Fou15]. With SDN optimising traffic routing and VFN optimising
network function placement, the work of these two paradigms can be synergistic and the action
of one can benefit the other to improve networks and service delivery over them [MGT+15]. A

10 TABLE OF CONTENTS

Firewall

Deep Packet
Inspection

Video
Optimization

Figure 0.2.4 – An example of SFC allocation

customer’s request within a network can be simply summarised as traffic going from a source
to a destination and passing through a network service. As the European Telecommunications
Standards Institute recalls, a service may requires the traffic flow to be processed by a sequence
of network functions in a specific order [00114]. This sequence of functions can be composed
of physical network functions and/or VNFs, linked together. This notion is known as Service
Function Chaining (SFC) [QN15]. Users may have different requirements for network services.
To meet these demands, various sets of ordered chains of network functions may be required. A
multitude of SFCs can therefore be offered by a network operator to meet a range of heterogeneous
needs.

An example of an SFC placed on a network is shown in Figure 0.2.4. On this network, a
chain of three functions must be placed. The traffic must be processed in order by a firewall, a
deep packet inspection function and a video optimisation function. The three functions must be
placed on nodes that can host them. It is sometimes more convenient to place several functions
on the same node, to reduce the energy consumption of a node for example. But it can also
be more interesting to allocate the functions on different nodes because these functions can be
used by other chains and it is necessary to avoid overloading the nodes and the links attached
to them. Considering the traffic routing at the same time as the placement of the functions can
also be interesting, as it avoids having too long routes and therefore does not saturate the network
unnecessarily. In this example, the functions are placed in such a way that the flow goes through
its shortest path.

The concept of SFC is not dependent on SDN and NFV. The implementation of function
chaining can be done between physical network functions through the use of segment routing.
This paradigm encapsulates the packet in headers in a recursive manner in order for the packet to
be sent through a predetermined set of intermediate routers until its destination. By combining
segment routing and NFV it is possible to make the management of SFCs much more flexible.
In [ACF+17], when the packet is sent the VNFs are chosen and the packet is encapsulated in the
corresponding headers to allow the service (the SFC) to be deployed. In [WBIC19], the authors
propose an architecture for deployment on NFV networks using existing routing protocols (OSPF)
and allowing the placement of SFCs without the use of SDN. Unlike [ACF+17], the ingress node
is not in charge of setting the list of nodes to be visited to constitute the SFC. Instead, the decision
is completely distributed within autonomous NFV routers. They propose a Linear Program (LP)
with the objective of minimising costs (traffic and VNF) and compare their solution to a centralised
SFC placement. The cost of their solution never exceeds 2 times the cost of the centralized solution

Introduction 11

and is mostly between 1 and 1.4 times. SFCs can therefore be deployed using traditional networks
and without the deployment of SDN.

However, even with this it is easy to see how difficult it is to orchestrate SFCs in a traditional
network. Indeed, if too many users request the same service, the SFC that provides that service can
quickly become a bottleneck. Rerouting requests (changing the route taken by the flow) to a new
network function chain can be slow and complicated without SDN. If there are no other instances
of the same network functions, it will also be impossible to create a new SFC dynamically without
using the NFV paradigm as installing a new middlebox cannot be done in real time. As network
requirements change rapidly, it seems complicated to be able to provide new services quickly
taking into account the time to purchase and install new middleboxes [BJSE16]. Indeed, using
SDN and NFV together bring significant advantages. In case of congestion, it is possible to quickly
allocate new VNFs on the network, create a route between them and thus generate a new instance
of an SFC producing the same service. New requests can be routed to this SFC and bottlenecks
are avoided.

A notable improvement is also the addition of new services. Service requirements are evolving
even more rapidly with the arrival of new technologies such as 5G and the network must therefore
be able to adapt. Using SFC on a SDN and NFV based network eases the implementation of
these new services by minimising the addition of network equipment. When a new service is
required, a combination of network functions is needed to provide the service. Let us take for
example a tracking service for a fleet of autonomous taxis. In [QKA18], an intrusion detection
system is combined with a firewall for security. A service prioritisation function is added to
ensure high priority is given to the service. Finally, a remote control function is added to allow
the management of autonomous vehicles. The service can then be instantiated and the VNFs will
be allocated automatically. The route between these VNFs will also be reserved automatically to
create an SFC and users can now use this service without the need for technicians to intervene on
the network infrastructure.

Managing and implementing SFC by combining SDN and NFV has many advantages but ex-
poses also to many challenges. Since SDN and NFV are used, inherently all the related challenges
are also included. Resource allocation for SFCs is an even more challenging problem because it
links the optimisation of VNF allocation to path optimisation, taking into account multiple con-
straints such as link capacities, server capacities and execution and propagation times. In addition,
multiple objectives can be taken into account such as improving the utility of the network, energy
saving, increasing the acceptance of requests, reliability or simply reducing costs.

Gu et al. [GZT+19] jointly study the problem of online network flow scheduling and VNF
resource allocation. They develop a dynamic distributed algorithm for flow and rate control by
applying Lyapunov’s optimisation theory. Their objective is to maximise the utility of the net-
work while ensuring system stability and guaranteeing fairness among the SFCs. Their algorithm
achieves performance close to the optimal solution, with fairness consideration on their scenario
set.

In [HTGJ18] the authors propose 3 decomposition models based on column generation to
minimise energy consumption when using SFCs in an SDN and NFV based environment. Their
solutions reduce energy consumption by up to 60% during low load periods by consolidating
VNFs on common devices and turning off unused equipment.

Tomassilli et al. [THGJ18] study the resilient allocation of SFCs while minimising the band-
width used in the network. They develop an ILP and a column generation model to handle ded-
icated protection (having a one plus one path for each SFC). They again develop an ILP and a

12 TABLE OF CONTENTS

column generation model to deal with shared protection (against single-link failure). Their solu-
tion is never further than 4% from the optimal.

The authors in [KHZ17] propose two solutions for placing the SFCs while minimising the
bandwidth. A first approach is inspired by the Perfect 2-factor theory and transforms the SFCs
into cycles and then find these cycles to have an optimal placement. Although the first approach is
only valid for SFCs consisting of three VNFs, they propose a second approach to handle a larger
number of VNFs. They propose a heuristic working on what we will present later as a layer graph
(see section 2.4). They then solve the maximal flow problem to find a valid placement and routing.
Their solutions are competitive in terms of performance and complexity compared to the current
state of the art.

In this thesis, we will compare different methods for the SFC placement problem in chapter 2.
Our interest is the use of a structure called layered graph (section 2.4), which allows to easily
model the ordering of functions within SFCs. This structure is used throughout this thesis. In
chapter 3, we study the problem of reconfiguring these SFCs. The study will be carried out on
both static and dynamic scenarios. Our goal is to show the efficiency of a reconfiguration technique
in increasing the acceptance of requests as well as in decreasing the costs of the network.

0.2.3 5G Networks

The evolution of networks is also taking place through mobile networks. Since 40 years, the
deployment of the first generation of mobile networks has continuously evolved, both in the tech-
nology and in the provided services. For some years now, IP networks have considerably changed
but also mobile networks in terms of bandwidth requirements and number of connections and
these are still increasing. On the contrary, new needs cannot be met without an evolution of net-
works, which is driving the adoption of a new generation of mobile networks [ARS16]. In this
context, 5G is envisioned to enable a multi-service network supporting a wide range of communi-
cation scenarios with a diverse set of performance and service requirements. It needs to meet all
these requirements while promising more bandwidth, less delay and more flexibility for an ever
increasing number of users and applications.

Since the introduction of 3G, mobile networks have supported multimedia content and al-
though the speed was not high, it was sufficient for the video quality of the time for the general
public. The arrival of 4G was even more promising. In addition to greatly increasing through-
put and improving Quality of Service, 4G brought IP interoperability for seamless access to the
mobile Internet. Mainstream users could therefore have the same mobile network usage as their
domestic network [Var12]. This means being able to watch TV or high quality streaming video,
make video calls or play video games, with some operators even providing 4G modems to connect
homes to the internet rather than using copper lines like ADSL. Today the need to change mobile
network is felt in particular for two reasons. The 4G network is reaching its limits in terms of
bandwidth. The increase of users and their personal needs for bandwidth is causing congestion
problems. The second reason is the increase in heterogeneous needs arising from the expansion
and emergence of new special user groups. These include the expansion of connected objects,
the development of autonomous cars, the emergence of smart cities, and industrials who intend to
exploit mobile networks. The 4G network was not designed to be so adaptable and 5G is designed
to meet these needs. 5G promises greater speed, capacity and density of connected devices with
less interferences. It also delivers greater energy efficiency, greater mobility and lower latency. To

Introduction 13

achieve this, new technologies are being introduced, such as new architectures and optimisation
designed to meet these needs.

With 5G come new needs with very heterogeneous requirements that may vary considerably
depending on the use case. This may involve very low latency, very high throughput or a massive
amount of connections, all with a high QoS requirement.

To have an overview of these use cases and their requirements refer to Figure 0.2.5(a). It shows
the great disparity of the use cases but especially of their needs. The triangle represents the three
main types of needs: enhanced mobile broadband, mass communication and reliable communica-
tion with very low latency. The position of the use cases in the triangle represents the importance
of the shared requirements for each use case. For example, in the case of autonomous cars, reliable
communications and very low latency are extremely important requirements compared to the other
two. Unlike 4G, which had the principle of one network for everything, which does not allow for
performance. 5G is designed to meet specific combinations of needs, making it highly efficient.

To address these issues, 5G has five main characteristics as outlined in these white pa-
pers [22.16, 38.20] and surveys [DGT+19, FZI16]:

• 5G promises very high bandwidth for both reception and transmission. To support uses
such as 4k video-on-demand, 5G will deliver download speeds of over 1 gigabit per second,
putting it on a par with some optical fibre connections.

• Very low latency is required by some real-time applications with very low delay tolerance,
such as autonomous cars or critical life support systems. The latency target is as low as 1ms.

• The feature of very high mobility is promised by 5G, which means continuous coverage
for a user moving around the network. This feature has to be implemented both in very
dense areas of users and antennas like in cities for the autonomous car. It must also be
implemented in much less dense areas and at much faster speeds to cover high speed trains
up to 500km/h while respecting the QoS.

• Massive connectivity is required with the sharp increase in IoT. This includes connected
objects used by the general public such as smart-watches but also autonomous devices used
in the industry or sensors for smart cities.

• Some applications will require high reliability of connections, which implies very high
availability and resilience of communications. These applications may include autonomous
cars and critical life support systems.

14 TABLE OF CONTENTS

Massive Machine Type
Communications

Ultra-Reliable and Low
Latency Communications

Enhanced Mobile Broadband

Future
IMT

Smart City

Smart
Home/Building

Gigabytes/second

3D/4K Video

Work and Play in
the Cloud

Augmented
Reality

Industry
Automation

Voice

Mission Critical
Application

Self-driving
Car

(a) 5G Use Cases

Peak
data rate

Area traffic
capacity

Network
energy

efficiency

Connection
density

Latency

Mobility

Spectrum
efficiency

User experienced
data rate

High
Importance

Medium

Low

Enhanced Mobile
Broadband

Massive Machine
Type Communications

Ultra-reliable
and Low Latency
Communications

(b) 5G Needs classes

Figure 0.2.5 – 5G Use Cases and Needs

Even with all these targeting features, 5G cannot accommodate all these demands at once for
every application. But as mentioned earlier, the very heterogeneous use cases of 5G have very
different needs. As can be seen in Figure 0.2.5(a) the majority of the applications can be classified
into three groups each with different specifications and needs(Figure 0.2.5(b) [ITU18]). Use
cases of class Enhanced Mobile Broadband have high requirements in energy efficiency, mobility,
spectrum efficiency, data rate and traffic capacity. Use cases of class Massive Machine Type
Communications have high requirements in connection density and energy efficiency. Finally, use
cases of class Ultra-reliable and Low Latency Communications have high requirements in latency
and mobility.

Introduction 15

To meet these requirements, 5G network architectures need to be adapted. It is based on the
use of SDN and NFV technologies. It includes multi-antenna transmission/reception technology,
advanced inter-node coordination schemes and multi-hop technologies. 5G also uses a wide vari-
ety of frequency bands that vary to carefully addresses the needs of each use cases scenario.

As shown in Figure 0.2.6, the Radio Access Network (RAN) is divided and virtualised into
server-based Distributed Units (DUs) and then centralised into server-based Centralised Units
(CUs), reducing the proprietary hardware to Remote Radio Units (RRUs).

• The RRU handles parts of the PHY layer, analog to digital conversion, filtering, power
amplification as well as the digital beamforming functionality.

• The Distributed Unit (DU) is close to the RRU and runs the Radio Link Control, MAC,
and parts of the PHY layer. It provides digital processing, including signal modulation,
encoding and scheduling. It is a logical node that includes a subset of the gNB (5G base
station) functions, depending on the functional split option. Its operations are controlled by
the CU.

• The Centralized Unit (CU) is a logical node that provides support for higher layers of the
protocol stack. It includes the gNodeB functions like Transfer of user data, mobility control,
radio access network sharing, positioning, session management, with the exception of the
functions that are allocated exclusively to the DU. The CU controls the operation of several
DUs.

This centralized deployment makes load-balancing between different RRUs possible. That is why,
in most cases, the DU will be collocated with RRUs on-sit. Intelligent Edge servers will sup-
port real-time applications with computing and AI inferencing. 4G Evolved Packet Core (EPC)
functions will be replaced by 5G Core components running as virtualised network functions in
data centers and the cloud. 5G infrastructure will enable the interconnectivity among the different
emerging technologies like Massive MIMO network, Cognitive Radio network, and mobile and
static small-cell networks.

0.2.3.1 Network Slicing

As mentioned above, 5G will bring many improvements such as very high speeds and very low
latency, but above all it promises to meet many new QoS requirements for a wide range of new
heterogeneous use cases. These requirements can vary greatly depending on the use case. To
cope with this diversity, the traditional monolithic network is inadequate. Through the joint use
of SDN and NFV, a multitude of independent virtual networks can be abstracted from a single
network. Each of these networks is specialised to meet the specific requirements of an end-to-end
service. This idea of splitting the network into multiple independent networks is a new paradigm
called network slicing [01118]. Its purpose is to logically adapt the management of network
infrastructure and resources to meet the promise of 5G.

An example of the network slicing architecture can be seen on Figure 0.2.7. The network
infrastructure is on the last layer and covers the access network, the transport network and the
core network. In this example there are three slices, each of a different class and with different
needs. Each slice has several entry points on the access network thanks to the Wireless Local Area
Network (WLAN) infrastructure. Then every slices passe through network functions on edge

16 TABLE OF CONTENTS

Edge Server

Edge Server

eNodeB

MME SGW PGW

E-uTRAN

Evolved Packet Core

IP NetworkProprietary Hardware Open Hardware Platform

(a) 4G LTE Network

DU (vRAN)

5G NR RAN

5G Core
Cloud

RRU

RRU DU (vRAN)

CU (vRAN)

Edge Server

BSS/OSS 5GC IMS

Virtualization Layer

Proprietary Hardware Open Hardware Platform

(b) 5G Network

Figure 0.2.6 – Architecture differences between 4G LTE and 5G

Introduction 17

clouds in the transport network . Finally they connect to datacenters in the core network. Some
parts of the network infrastructure are used by only one slice and others are shared by several.

Many proposals exist on what a network slice is, several organisations such as ETSI [01217],
3GPP, ONF, NGMN [All15] or 5G-PPP [PPP20] each have their own definition. To make it simple
we can describe a slice as an independent virtual network composed of a set of network functions
combined together to fulfil the requirements of a specific use case with resource guarantees or
guaranteed service level. The use of both dedicated infrastructure resources for certain slices, as
well as the use of shared infrastructure resources and functions between multiple slices is needed.
Each slice must be seen by its users as an independent network. The purpose of a 5G slice is to
provide only the traffic throughput required for the use case, and to avoid any other unnecessary
functionality. Although some definitions of network slicing differ in certain aspects, some of the
required principles are recurrent [ATS+18]:

• The creation of a slice can be done on demand, so their instantiation must be managed
automatically without the need of human intervention. Each slice request has constraint re-
quirements such as user positions (sources), bandwidth, maximum latency, network service
or different network functions required, the target service, the lifetime of the slice, etc.

• During the use of a slice, some needs may change and a slice must be elastic and must
provide the possibility to change according to these needs. In some cases, a slice may be
sized according to the number of users and its main usage. This enables great flexibility,
but this flexibility must not lead to a degradation of the QoS of the other slices using shared
resources. This required elasticity may include changes in user location (mobility), changes
in latency and changes in capacity. To meet these demands a slice must be able to modify
its routing and change the allocation of its VNFs, by migrating them or allocating more
resources.

• Coexisting on the same physical network, each slice must be isolated from the others. This
isolation must provide a certain level of security and above all never violate the required
Service-Level Agreement (SLA). The use of certain resources by one slice must not have
an impact on the others. Because of the elasticity of the slices, it can be hard to maintain
this isolation. Indeed, if two slices share the same resource and each of them requires an
increase in traffic, security measures must be established to ensure that the slices do not
suffer any degradation of the QoS.

• A slice must be programmable and customizable. Via APIs, the slice tenant (referred to
as the customer paying for the slice and using it as his own virtual network) must be able to
request changes to the slice’s requirements. He must have access to statistics on its use and
be able to manage the slice in a transparent manner, as if it was his own physical network.

• A slice must provide an end-to-end service and may therefore include part of the
RAN [KN17], the transport network and the core network in order to reach the cloud. It
must chain the relevant network functions, assigns the relevant performance configurations,
and finally maps all of this onto the infrastructure resources.

In the literature a slice can be seen as a virtual network, in which case the slice allocation
problem would be a Virtual Network Embedding problem. This problem involves allocating
VNFs on the network and routing traffic between them but there is no order between the VNFs

18 TABLE OF CONTENTS

Core
Cloud

Slice mobile

Slice IOT

Slice high
reliability, low

latency

Physical
infrastructure

Access network Transport network Core network
WLAN

infrastructure
Access

node
Transport

node
Core node Edge

Cloud

Figure 0.2.7 – Network Slicing Architecture

and the network created does not necessarily respond to an End to End service. Due to their
requirements, the majority of slice implementations in the literature use one or a set of SFCs, as
in [SZGS+18, TAM19, ZLF+17]. Similarly we use sets of SFCs to model slices in chapter 4 and
chapter 5.

As said before, even if 5G is full of promise, use cases do not need the full potential of 5G at
the same time. Figure 0.2.5(b) shows us that use case requirements can be split into three classes,
and since slices are made to address the use case, there are mainly three classes of slices as recalled
in [BAMH20].

• Enhanced Mobile Broadband (eMBB) slices are those that meet the most common needs
of the general public, they must support stable connections with very high peak data rates,
as well as moderate data rates for users at the cell edge. The needs addressed range from
video-on-demand to social networking and general internet surfing.

• Ultra-Reliable and Low-Latency Communications (uRLLC) slices will open up scenar-
ios with very low latency and/or security needs, such as managing medical emergencies
or performing remote operations, vehicle-to-vehicle communications to avoid accidents or
virtual reality video games.

• Massive Machine Type Communications (mMTC) slices support a very large number of
Internet of Things (IoT) devices, which are only intermittently active and send very little
data. In the usage scenario, we will have a lot of sensors that have a very limited battery but
consume very little power.

Because of the innovations they bring as well as the heterogeneity of their use cases and the
multiple solutions they offer, network slicing and 5G in general are raising many new challenges.

Allocation: Network slice allocation is the first problem encountered. In [SZGS+18], to find a
slice allocation the authors compute the k shortest paths offline between each base station and

Introduction 19

each centralized unit. Then online, in two phases, they reserve resources and choose paths to
maximise an operator’s revenue by overbooking (subsection 0.2.4). Each path is characterised by
a delay in order to respect the delay constraint of the incoming slices. Their solution does not
only focus on allocation (subsection 0.2.4). In [TAM19], the authors use a MILP that, given a set
of SFC requests, finds an optimal VNF placement and routing and wavelength assignment. Their
allocation is offline and they aim to maximise the number of successfully routed SFCs. Their
allocation is then used by a reinforcement learning algorithm to perform online reconfiguration
(subsection 0.2.4). In [ZLF+17] the authors propose efficient penalty successive upper bound
minimisation and rounding algorithms for slice allocation, as well as four heuristics for fast allo-
cation in dynamic scenario but they don’t take into account any users QoS requirements. Their
heuristics give solutions with resource violations. One of their algorithms has a good balance
between solution quality and execution speed.
Isolation: The second problem that can be mentioned is the problem of the slices isolation, be-
cause goal of network slicing is to have multiple virtual networks sharing some resources and
having different needs, on the same infrastructure. Due to the slice elasticity, isolation can become
very challenging if we don’t want to degrade the QoS. Huin et al. [HMM+19] choose to physically
isolate the slices to ensure that there is no interference between them. They rely on Flex Ethernet
technology, which allows different slices to be isolated by allocating resources in the manner of
Time-division multiple access. In [MF19], the authors propose a two-layer scheduler to reduce
the complexity of a single layer in the context of RAN slicing. The first layer is an inter-slice
scheduler that determines the amount of resources for each slice. The second layer is an intra-slice
scheduler and allocates resources to end users. Their approach allows to obtain different trade-offs
between isolation and efficiency depending on the chosen parameters. They compare their meth-
ods to other state-of-the-art techniques to show the flexibility of their approach. In [YLW+19],
the authors demonstrate that the use of a user admission control mechanism ensures isolation in a
dynamic network slicing scenario exploiting the capacity advantages of dynamic network slicing.
For an overview of slice isolation, in [KNS+18], the authors discuss the different types of isola-
tion as well as the isolation parameters. An important aspect of their discussion is the security
achieved by inter-slice communication and they propose a set of challenges to realize end-to-end
user’s security based on slices isolation.

In this thesis, the isolation of slices is ensured because a slice is seen as a pipe with a reserved
capacity. This method does not allow for overbooking by allocating less capacity than the tenant
has requested when the slice is not used much. But by doing this we ensure that the SLA will
always be respected, as well as the isolation of the slices.

Elasticity: Finally, we can be interested in the slices elasticity. The elasticity of a slice can be
seen in two ways. Either the traffic of the slice is modified dynamically without modifying the
quantity of resources payed by the tenant (to follow the dynamics of the traffic). Or it can be
seen as a scaling of the slice: the tenant wants to modify the reserved capacities. The second is
intrinsically linked to the scaling reconfiguration that we will discuss next. The first, on the other
hand, must be taken into account only if the operator does not reserve the capacities requested by
the tenant. Indeed, if the operator reserves less capacity during a period of low load on a slice to
do overbooking, then he must be prepared to manage an increase in its load if he does not want
to break the isolation. Multiple solutions are applicable, whether for the scaling of slices or their
migration.

20 TABLE OF CONTENTS

Wang et al. [WFQ+19] propose a hybrid slice reconfiguration mechanism that manages two
types of reconfiguration. A first type of reconfiguration is made to adapt the slices to the current
traffic and a second one is made to modify the flows traversing the slices. The first reconfiguration,
which they call DSR, is done so that the capacity reserved for the slice is as close as possible to
what it actually consumes, in order to maximise the operator’s profit.

In [ZZC20] the authors use an algorithm to predict the traffic demanded by each slice at a
time t. The prediction is used by an adaptive VNF scaling strategy that determines the number of
VNFs and the network resources to be installed. The aim is to deploy slices with the lowest energy
consumption costs. However, once a slice is deployed its resource consumption does not change.

The elasticity of slices is not taken into account in this thesis. When a slice is allocated, its
resources are reserved. A change in slice traffic therefore does not need to be taken into account as
the reserved capacity will not change. As mentioned for isolation, this prevents overbooking but
ensures that the SLA is met. As for scaling, we have not studied it in our work. We could partially
modify our simulations to decrease or increase the capacity of the slices at certain times. But this
method would not take into account some challenges related to scaling. It could be interesting to
add a scaling function to our reconfiguration, inspired by the work mentioned above.

0.2.4 Reconfiguration

To avoid the saturation that 5G could bring and to be able to manage ever larger networks without
sacrificing performance and wasting resources, we need ever more effective optimisation tech-
niques. These techniques must be adjusted to the problem they address and to the context to be as
efficient as possible, but they can be adapted from existing methods.

In the scope of this thesis, a network configuration can be defined as the set of resources used,
both the VNFs deployed and the links used and how they are used. A configuration takes into
account how each resource is used by each slice or demand. To define it simply, a reconfiguration is
a change in the configuration of the network. A reconfiguration neither adds nor removes demands.
Reconfiguration is used to adapt the utilisation of network resources to the traffic and can have
several objectives such as reducing the Opex or improving the QoS.

In a traditional network, reconfiguring can lead to a modification of the network infrastructure,
because if a network function needs to be moved, it means moving the hardware, which takes
time, possibly measured in days. Reconfiguration in this case is therefore not necessarily adapted
to accommodate the network dynamically to traffic, but rather to accommodate the network in
the long term. The use of SDN and NFV gives reconfiguration its full potential in our context and
makes it possible to avoid modifying the infrastructure. The network can therefore be reconfigured
to adapt to the dynamics of the traffic. Reconfiguration can be performed at several moments in
time. It can be done as soon as a new request arrives [GR18], when a request is rejected [TTG13],
when the physical network is modified [CLX+10], or it could also be done periodically while the
network is not yet saturated.

0.2.4.1 Different types of reconfigurations

Multiple types of reconfiguration can be done within a network in our context, not necessarily
involving the same resources.

• The first type of reconfiguration is flow re-routing. With this type of reconfiguration, a
portion of the traffic is changed without impacting the network functions. If a request has

Introduction 21

to go through specific network functions, its traffic can be rerouted in-between but the func-
tions cannot migrated. Wang et al. [WFQ+19], develop an algorithm that handles two types
of reconfiguration to maximise the operator’s profits. A first one that modifies the routing
of the flow inside the slices, and a second one that we will mention later. In this context,
slices have a fractional allocation. Their algorithm reduces the number of reconfigured flows
by over 85% compared to their baseline. This type of reconfiguration is rarely done alone
in a SDN-NFV network in the literature, as performing migration of VNFs together with
re-routing of flows lead to a better improvement of the utilization of the network resources.

• The second type of reconfiguration is the VNFs migration within a datacenter. Cho et
al. [CTZB17] present an algorithm to migrate VNFs within VMs to minimise latency. As
they mention, if two VNFs used one after the other are on the same VM on the same node,
then it removes the communication delay between them. In [LZC+16], the authors present
two algorithms for migration and consolidation of virtual machines within a datacenter.
Their objective is to minimise energy consumption by doing as few migrations as possible.
The authors point out that each node within a datacenter can consume up to 70% of its
maximum energy consumption when it is only slightly used: the migration of VMs and
their consolidation therefore provide the opportunity to shut down nodes and improve the
energy efficiency of the data center.

• The reconfiguration can also take the form of a scaling. When allocating a virtual network,
SFC or slice, the allocated capacities can be seen as fixed: the customer pays for a maximum
bandwidth. But a slice may also need to be scaled. A tenant may ask for an increase in
resources during high traffic periods. Alternatively, he may ask for a decrease in the capacity
of his slice. Scaling and elasticity are also often linked. In many works, the maximum
capacity of a slice is not reserved, only what it consumes at a given time. This allows
to minimise the cost and to accept more demand. However, when traffic increases, it is
necessary to be able to handle the traffic for which the tenant has paid without compromising
the other slices using the same resources. In this case, a scaling reconfiguration can be used.
Scaling allows to modify the allocated capacities to be always close to the current traffic or
to foresee the traffic increase or decrease by scaling-up or down flow capacities.

In [SGT20] the authors propose a dynamic slicing algorithm, which manages the placement
of VNFs on the network. They also propose a stochastic optimisation formulation, which
handles the uncertainty of service demands. For them a slice is not made for a tenant but for
a specific service. If several requests are made for the same service their algorithm will try
to place them in the same slice to maximise its utility. They try to minimise the number of
slices by deleting, adding or scaling existing slices to fit the current traffic. For each slice
their objective is to maximise its utility by not oversizing it. Their view of slices does not
allow them to compare themselves to the literature. They test their algorithm with several
parameters to observe its behaviour and confirm that it adapts correctly to the traffic.

Salvat et al. [SZGS+18] use machine learning to overbook slices based on the prediction of
resource usage in order to maximise the operator’s revenue. At each time step the algorithm
runs to scale the slices according to the given prediction. They use a Benders decomposition
(also called row generation) for small and medium size instances. They also use a heuristic
for large instances. They manage to get up to three times more profit with their concept and
test it experimentally.

22 TABLE OF CONTENTS

As mentioned earlier, in [WFQ+19] the authors develop an algorithm that handles two types
of reconfiguration to maximise the operator’s profits. Firstly, a scaling reconfiguration to
adapt the slices to the current traffic. Secondly, a reconfiguration that modifies the routing
of the slices. Their first algorithm reduces the number of reconfigurations performed by 5%
compared to their baseline.

Ayoubi et al. [AZA16] propose a reliable embedding and reconfiguration algorithm for elas-
tic services in failure-prone datacenter networks. They work on Virtual Network scale-up
requests, such as increasing resource demands, adding new network components and/or
upgrading the class of service. Their objective is to provide the greatest improvement in
availability. Their algorithm, unlike existing work, promotes better resource utilisation as it
avoids availability over-provisioning. They also propose an availability-aware reconfigura-
tion module for elastic services that enables low-cost reconfiguration with minimal service
disruption.

• The VNF migration between datacenters is also a type of reconfiguration. In this case it
may be associated with re-routing of flows to route traffic between the new VNFs’ positions.

In [EMAL17] the authors study the problem of VNF migrations in a dynamic scenario with
the aim of minimising the network operating cost which is the sum of the energy consump-
tion costs and the loss of revenue due to the loss of data during downtime. They propose a
heuristic based on the markov decision process theory. In the worst case they do not exceed
20% difference with the optimal and compared with a simple state of the art policy they
improve the results by 27%. Ghaznavi et al. [GKS+15] propose a reconfiguration algorithm
for VNF consolidation that optimises the placement of those functions in response to the
workload on demand. Their solution accepts almost twice the workload in comparison to
first-fit and random placements. As for the operational cost, their solution reduces it by %5
to 8%.

As mentioned earlier, Troia et al. [TAM19] use a MILP to calculate the allocation of a set
of SFCs. They use reinforcement learning to reconfigure the SFCs placed on the network
by migrating VNFs and rerouting traffic. Their objective is to accept as many demands as
possible while minimising the reconfiguration costs. Their algorithm learns how and when
to reconfigure demands in order to route traffic requests with a lower blocking probability.
It is also able to predict sudden changes in traffic patterns and trigger the reconfiguration of
SFCs in advance.

Pozza et al. [PNL+20] propose to find the steps of a reconfiguration in which VNFs and
routes are modified taking into account capacities and delays, based on an initial allocation
of slices and a final pre-computed allocation. There are few papers dealing with multi-step
reconfigurations and their method allows to calculate these steps quickly. Compared to our
work in chapter 3, chapter 4 and chapter 5 they do not propose a method to compute the
final allocation used for reconfiguration and their reconfiguration does not prevent from a
degradation of the QoS. This type of reconfiguration is the one that will be developed in
this thesis. Indeed, it allows to process requests from end to end with a global view of the
network (with the exception of RAN which is outside the scope of this thesis). It also allows
to control the processing of requests from the edge, through the transport network, to the
core network, thus giving a large potential for management improvement.

Introduction 23

0.2.4.2 Reconfiguration strategies

To recall, reconfiguring generally aims at maximising revenue by accepting more demands and/or
at reducing costs by minimising the resources used. But there are also reconfiguration costs that
have to be considered by the network operators. There are management costs but also disruption
costs as during a reconfiguration, data losses or degradation of QoS can occur for some. The
majority of the related work take into account the cost of reconfigurations. In [KBB19], there are
migration costs related to the volume of data transmitted during the migration. In [WFQ+19], the
cost of a reconfiguration is defined by its resource consumption during signalling and retransmis-
sions. In [EMAL17], the loss of revenue caused by a reconfiguration is due to the loss of data
during downtime. In [AZA16], they seek to minimise the overall cost of reconfiguration, which
reflects the amount of resources used as well as any service disruption/downtime.

Different reconfiguration methods can be implemented for migration of rerouting of traffic.
Break-Before-Make approach does not provide control over the possible cohabitation of the dif-
ferent traffic during the reconfiguration. The new routes are defined, the functions are migrated
and then the traffic rerouted. A reconfiguration may not be perfectly synchronised and some mi-
grations may take longer than others. As a result, new traffic sent may collide with old traffic that
should no longer exist when crossing the same route.

In case of a collision, if a link is saturated, the router will queue packets, resulting in in-
creased latency. But when operating on a core network with links with bandwidth greater than 1
gigabit/second, the router’s buffers fill up quickly, which may also imply packet losses.

Current route

Old route with
flow still passing

Old route without
flow

(a) Legend

A

B C

D E F

(b) Before the reconfigura-
tion

A

B C

D E F

(c) After 1ms

A

B C

D E F

(d) Collisions

Figure 0.2.8 – An example of a failed break-before-make reconfiguration.

Example Figure 0.2.8 illustrates an example for the reconfiguration of two requests using a
break-before-make process. In this example, there are no VNF for simplicity. Each link can only
support one flow per direction and all links have the same latency (1ms). The legend (a) shows
the three types of flow. The current route is the route the flow should take when it is sent. Old
routes are routes that are no longer identified by the SDN controller as being in use, however either
packets are still in transit on them or no traffic is present. In (b) the green and blue flows are not
optimal. The green flow going from D to F uses four links instead of two and the blue flow going
from A to F uses three links instead of two. To reconfigure them, paths need to change: the green
flow now goes from D to E to F and the blue flow from A to C to F. In (c), routing on the old
paths is stopped and routing on the new ones begins. The old flows do not disappear until their
packets in transit reach their destination. Because of the latency, the old green traffic and the new
one arrive at node E approximately at the same time. In (d) there are two collisions, the new green

24 TABLE OF CONTENTS

flow and the old blue flow try to use the E-F link at the same time. The same happens with the new
blue flow and the old green flow on C-F. These collisions may lead to packet loss and therefore
QoS degradation.

Even reconfiguring requests one by one (which may not be very efficient on a large network)
may lead to these collisions. As Foerster et al. [FVW19] show, when reconfiguring a request, in
each part of the network where the old and new routes cross (this may involve several links/nodes
or just the destination node) there is a risk of a collision due to the latency differences on the old
and new routes. If the traffic goes faster on the new route it may catch up with the old traffic and
therefore collide.

To avoid these collisions, one strategy would be to wait for all the old packets to arrive at their
destination, however this implies an interruption of the transmission and thus a degradation of the
QoS. Most work on reconfiguration takes into account these packet losses and latency increases,
which is why they put a cost on reconfiguration. Taking into account the high QoS requirements
of 5G and network slicing, an important question is whether putting a price on reconfiguration is
a good idea or whether these QoS degradations should be avoided instead.

The last reconfiguration method that will be addressed in this thesis is based on Make-Before-
Break approach. Make-Before-Break comes from a spectral defragmentation mechanism in opti-
cal networks [WM13, DJCA18]. In an optical network, a traffic flow from a source to a destination
keeps the same wavelength along its path. The same wavelength cannot be used twice at the same
time on the same fiber. Flows sharing part of their path must have a different wavelength, and the
number of wavelengths available is limited. The dynamicity of the demands will over time create
fragmentation: "holes" in the network where certain wavelengths become unusable.

As the name suggests the new reconfigured route will be created before the old one is broken.
To be more precise, the reconfiguration is done following several steps: (i) First, the reconfigura-
tion to be carried out is computed by the controller. (ii) Second, the new needed VNF instances (if
any) are deployed. (iii) Third, rerouted flows are sent towards their new routes in which we know
the needed capacity is available (the capacities on the old route are still reserved) . (iv) Finally,
the flows are no longer sent to their old routes, the routing entries corresponding to the old flow
are removed and therefore capacities are no longer reserved on the old route. When a request is
reconfigured, its two routes (the old and the new one) coexist, the traffic capacity is reserved on
each of them: this reconfiguration consequently implies a stronger constraint in terms of capacity
and may therefore require more steps to approach an optimal allocation.

Introduction 25

Current route

Old route with
capacities still
reserved

(a) Legend

A

B C

D E F

(b) Before the reconfigura-
tion

A

B C

D E F

(c) First transition

A

B C

D E F

(d) First step

A

B C

D E F

(e) Second transition

A

B C

D E F

(f) Second step

A

B C

D E F

(g) Third transition

A

B C

D E F

(h) Third and last step

Figure 0.2.9 – An example of make-before-break reconfiguration.

Example. Figure 0.2.9 shows the same scenario as in Figure 0.2.8 but with make-before-break
reconfiguration. The legend (a) shows the two types of flow. The current route is the route initially
followed by the flow. The old route is the one during transition, where packets are still in transit.
This route still has its capacity reserved by the controller. In (b), the green and blue flows are
not optimal. The green flow going from D to F uses four links instead of two and the blue flow
going from A to F uses three links instead of two. To reconfigure them, paths need to change: the
green flow now goes from D to E to F and the blue flow from A to C to F. (c) represents the first
transition (between (b) and (d)), both old and new routes are active. Only the green demand is
being reconfigured in a temporary route. The green flow cannot be directly in the final route oh
(h) as there is not enough capacity on link EF. In (d) the transition is finished and all the packets of
the old route have been forwarded. The capacities of the old routes are freed by the controller. (e)
represents the second transition (between (d) and (f)), the blue demand is being reconfigured. (f)
is the second step of the reconfiguration, the blue demand is in the optimal state. In (g) the green
demand is being reconfigured in its optimal state, both old and new routes are active. Finally in (h)
both flows take their optimal routes. The reconfiguration was computed in 3 steps (we don’t count
the transition steps). This example shows that the make-before-break reconfiguration is more
constraining to implement than the break-before-make because of the capacities reserved during
the transition phases. Nevertheless, it may allow to find ways to reconfigure in several steps.

26 TABLE OF CONTENTS

B C

F E
A F

xx

xx

(a) Requests

A

B D

F

C E

(b) Two requests

A

B D

F

C E

(c) A 3rd request

A

B D

F

C E

(d) First two requests leave

A

B D

F

C E

(e) Reconfiguration phase

A

B D

F

C E

(f) Optimal routing for the third re-
quest

Figure 0.2.10 – An example of the reconfiguration of a request using a make-before-break ap-
proach with one step.

Example. Figure 0.2.10 illustrates an example for the reconfiguration of a request using a make-
before-break process. In addition to the traffic reconfiguration, this example shows the reconfigu-
ration of the VNFs and the congestion caused by the dynamicity of the requests. When the request
from A to F arrives in step (c), two requests have already been routed during step (b). To avoid
the cost of installing new VNFs, the route from A to F with minimum cost is a long 5–hops route
(step (c)). When requests from B to C and from F to E leave (step (d)), the request is routed on
a non-optimal path which uses more resources than necessary. We reroute the request from A to
F to one optimal 3-hops path (step (f)) with an intermediate make-before-break step (step (e)) in
which both routes co-exist. Note that the VNF in C is removed, while a new one is installed in D.
At the end of the reconfiguration, the red application uses fewer links on the network (which can
be a goal when reconfiguring).

This type of reconfiguration can be run with several requests at the same time and over several
steps. Thanks to the security it induces in terms of packet loss and latency, this technique is inter-
esting to use on a 5G network with network slicing in consideration of the high QoS requirements.

0.3 Thesis plan and Contributions

In this section, I present the plan of the thesis by summarising the contributions, and listing all the
published works and submitted ones.

In chapter 1, I introduce different optimisation tools and techniques that are used in this thesis.
Firstly, I present an introduction to linear programming, secondly I develop the concept of column
generation based on linear programming, and thirdly I introduce reinforcement learning.

Introduction 27

The chapter 2 focuses on the SFC placement problem. The static placement problem of a set
of SFCs and the dynamic placement problem of an SFC are studied. I describe the data structure
called a layer graph that allows the routing and allocation problem to be transformed into a routing
problem. This structure is used to formulate an ILP and a heuristic. The ILP is the model used
throughout the thesis for the placement problem, and it is compared to an ILP from the literature.

The following chapters of the thesis focuse on the reconfiguration problem. The chapter 3
studies the make-before-break reconfiguration of SFCs using fractional flows in static and dynamic
environments. I present an ILP that computes the best possible allocation by reconfiguring a set
of requests with a given number of steps. This ILP also computes a reconfiguration that enables
the allocation of an SFC that could not be placed. Then, I present a heuristic that computes a
reconfiguration to get as close as possible to an optimal allocation. Finally, my solutions are
compared to no-reconfiguration and to break-before-make reconfiguration solutions.

The chapter 4 develops the reconfiguration of the previous chapter in the context of network
slicing. Other parameters such as daily dynamicity, delay, request design and the management of
a much larger number of requests have to be taken into account. Therefore, the modelisation has
to be adapted in order to be consistent with these new constraints. These modifications cannot
be handled by common ILP due to the huge number of constraints, therefore, I set up a column
generation algorithm with two different pricing problems (ILP and LP based approach). This
modelisation gives the ability to manage the reconfiguration of a large number of slices in less than
one minute and can take advantage of a parallelisation potential. We compare our new solutions
against an adapted version of our previous ILP as well as against a non-reconfiguring solution
and one using break-before-make reconfiguration. We show that our solution can handle a much
larger number of demands while significantly improving costs compared to a solution without
reconfiguration.

Finally, chapter 5 proposes an intelligent management of reconfigurations by choosing the best
moment during the day to perform reconfigurations. By developing a deep reinforcement learning
agent, I show how to reduce the number of reconfigurations within a day by choosing at which
time to reconfigure, without reducing the improvement given by a fixed frequency reconfiguration
method. This makes the network management easier and more programmable. The agent is
adaptable to the dynamics of the day, and changes the frequency of reconfigurations in response
to the number of slices on the network and their arrival/departure.

0.3.1 List of Publications

International Journals:

[GGJM22] Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard and Joanna
Moulierac, "Be Scalable and Rescue My Slices During Reconfiguration"
The Computer Journal, Volume 65, 2022.

[GTGM21] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, Joanna
Moulierac, "Don’t interrupt me when you reconfigure my Service Func-
tion Chains", Computer Communications, Volume 171, 2021, Pages 39-53,
ISSN 0140-3664, https://doi.org/10.1016/j.comcom.2021.02.008.

28 TABLE OF CONTENTS

International Conferences:

[GGJM20] Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard and Joanna
Moulierac, "Be Scalable and Rescue My Slices During Reconfiguration"
ICC 2020 - 2020 IEEE International Conference on Communications
(ICC), 2020, pp. 1-6, doi: 10.1109/ICC40277.2020.9148871.

[GTGM19a] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire and Joanna
Moulierac, "No Interruption When Reconfiguring my SFCs" 2019 IEEE
8th International Conference on Cloud Networking (CloudNet), 2019, pp.
1-6, doi: 10.1109/CloudNet47604.2019.9064115.

[GTGM19b] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire and Joanna
Moulierac, "Poster: Don’t interrupt me when you reconfigure my service
function chains" 2019 IFIP Networking Conference (IFIP Networking),
2019, pp. 1-2, doi: 10.23919/IFIPNetworking46909.2019.8999470.

Submitted to an International Conference:

[GAL+22] Adrien Gausseran, Redha A. Alliche, Hicham Lesfari, Ramon Aparicio-
Pardo, Frédéric Giroire and Joanna Moulierac, "When to Reconfigure my
Network Slices? A Deep Reinforcement Learning Approach" ICC 2022 -
2022 IEEE International Conference on Communications (ICC), 2022, pp.
1-6.

National Conferences:

[GTGM19c] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, Joanna
Moulierac. "Reconfiguration de chaînes de fonctions de services sans in-
terruption". CORES 2019 - Rencontres Francophones sur la Conception de
Protocoles, l’Évaluation de Performance et l’Expérimentation des Réseaux
de Communication, Juin 2019, Saint Laurent de la Cabrerisse, France. (hal-
02118989).

Research Reports:

[GGJM19] Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard, Joanna Moulierac.
"Be Scalable and Rescue My Slices During Reconfiguration". [Research
Report] Inria - Sophia Antipolis; I3S, Université Côte d’Azur; Concordia
University. 2019. (hal-02416096).

[GTGM18] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, Joanna
Moulierac. "Don’t Interrupt Me When You Reconfigure my Service Func-
tion Chains". [Research Report] RR-9241, UCA, Inria; Université de Nice
Sophia-Antipolis (UNS); CNRS; UCA,I3S. 2018. (hal-01963270v).

References

[00114] ETSI GS NFV-MAN 001. Etsi gs nfv-man 001 v1.1.1 (2014-12)network functions
virtualisation (nfv);management and orchestration. https://www.etsi.org/
deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-
man001v010101p.pdf, 12 2014.

[01017] ETSI GR NFV-EVE 010. Network functions virtualisation(nfv) re-
lease 3; licensing management; report on license management for nfv.
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/
010/03.01.01_60/gr_nfv-eve010v030101p.pdf, 12 2017.

[01118] ETSI GR NGP 011. Next generation protocols(ngp);e2e network slicing reference
framework and information model. https://www.etsi.org/deliver/
etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.
pdf, 09 2018.

[01217] ETSI GR NFV-EVE 012. Network functions virtualisation (nfv) release 3;evo-
lution and ecosystem; report on network slicing support with etsi nfv archi-
tecture framework. https://www.etsi.org/deliver/etsi_gr/NFV-
EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf, 12
2017.

[22.16] 3GPP TR 22.891. Study on new services and markets technology enablers.
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2897, 9 2016.

[38.20] 3GPP TR 38.913. Study on scenarios and requirements for next
generation access technologies. https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=2996, 7 2020.

[ACF+17] Ahmed Abdelsalam, Francois Clad, Clarence Filsfils, Stefano Salsano, Giuseppe
Siracusano, and Luca Veltri. Implementation of virtual network function chaining
through segment routing in a linux-based nfv infrastructure. In 2017 IEEE Confer-
ence on Network Softwarization (NetSoft), pages 1–5, 2017.

[All15] The Next Generation Mobile Networks Alliance. 5g white paper.
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_
Paper_V1_0.pdf, 02 2015.

[ARS16] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wire-
less networks: A comprehensive survey. IEEE Communications Surveys Tutorials,
18(3):1617–1655, 2016.

29

https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/010/03.01.01_60/gr_nfv-eve010v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/010/03.01.01_60/gr_nfv-eve010v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2897
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2897
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf

30 REFERENCES

[ATS+18] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu
Flinck. Network slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions. IEEE Communications Surveys Tutorials, 20(3):2429–
2453, 2018.

[AZA16] Sara Ayoubi, Yanhong Zhang, and Chadi Assi. A reliable embedding framework for
elastic virtualized services in the cloud. IEEE Transactions on Network and Service
Management (IEEE TNSM), 13(3):489–503, 2016.

[BAMH20] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines. 5g
network slicing using sdn and nfv: A survey of taxonomy, architectures and future
challenges. Computer Networks, 167:106984, 2020.

[Bel58] Richard Bellman. Quarterly of Applied Mathematics, 16:87–90, 1958.

[BJSE16] Deval Bh, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey on service
function chaining. Journal of Network and Computer Applications, 75, 09 2016.

[BRC+13] Md. Faizul Bari, Arup Raton Roy, Shihabur Chowdhury, Qi Zhang, Mohamed Faten
Zhani, Reaz Ahmed, and R. Boutaba. Dynamic controller provisioning in software
defined networks. 10 2013.

[CB02] B. Carpenter and Scott Brim. Middleboxes: taxonomy and issues. 01 2002.

[CLX+10] Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. Virtual network
embedding for evolving networks. In IEEE Global Telecommunications Conference
- GLOBECOM, pages 1–5. IEEE, 2010.

[CTZB17] Daewoong Cho, Javid Taheri, Albert Y. Zomaya, and Pascal Bouvry. Real-time
virtual network function (vnf) migration toward low network latency in cloud en-
vironments. In 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 798–801, 2017.

[DGT+19] Tilemachos Doukoglou, Velissarios Gezerlis, Konstantinos Trichias, Nikos
Kostopoulos, Nikos Vrakas, Marios Bougioukos, and Rodolphe Legouable. Ver-
tical industries requirements analysis targeted kpis for advanced 5g trials. In 2019
European Conference on Networks and Communications (EuCNC), pages 95–100,
2019.

[DHM+13] Advait Dixit, Fang Hao, Sarit Mukherjee, T. Lakshman, and Ramana Kompella.
Towards an elastic distributed sdn controller. volume 43, pages 7–12, 09 2013.

[DJCA18] Huy Duong, Brigitte Jaumard, David Coudert, and Ron Armolavicius. Efficient
make before break capacity defragmentation. In 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing (HPSR), pages 1–6, 2018.

[dT21] Fédération Française des Télécoms. Chiffres clés. https://www.
fftelecoms.org/chiffres-cles/, 2021.

https://www.fftelecoms.org/chiffres-cles/
https://www.fftelecoms.org/chiffres-cles/

REFERENCES 31

[EMAL17] Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar, and Francesco Giacinto
Lavacca. An approach for service function chain routing and virtual function net-
work instance migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking (ToN), 25(4):2008–2025, 2017.

[Fou15] Open Networking Foundation. Tr-518 relationship of sdn and nfv.
https://opennetworking.org/wp-content/uploads/2014/
10/onf2015.310_Architectural_comparison.08-2.pdf, 10 2015.

[Fou16] Open Networking Foundation. Tr-521 sdn architecture. https:
//opennetworking.org/wp-content/uploads/2014/10/TR-
521_SDN_Architecture_issue_1.1.pdf, 2016.

[FVW19] Klaus-Tycho Foerster, Laurent Vanbever, and Roger Wattenhofer. Latency and con-
sistent flow migration: Relax for lossless updates. In 2019 IFIP Networking Con-
ference (IFIP Networking), pages 1–9, 2019.

[FZI16] Pingzhi Fan, Jing Zhao, and Chih-Lin I. 5g high mobility wireless communications:
Challenges and solutions. China Communications, 13(Supplement2):1–13, 2016.

[GAL+22] A. Gausseran, R. Alliche, H. Lesfari, R. Aparicio-Pardo, F. Giroire, and
J. Moulierac. When to reconfigure my network slices? a deep reinforcement learn-
ing approach. In GLOBECOM 2022 - 2022 IEEE Global Communications Confer-
ence, pages 1–6, 2022.

[GGJM19] Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard, and Joanna Moulierac. Don’t
break network slices during reconfiguration. Technical report, Inria, Dec. 2019.

[GGJM20] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. In IEEE ICC, 2020.

[GGJM22] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. volume 65, 2022.

[GHM15] Frédéric Giroire, Frédéric Havet, and Joanna Moulierac. Compressing two-
dimensional routing tables with order. In 7th Network Optimization Conference
(INOC), 2015.

[GHMP18] Frédéric Giroire, Nicolas Huin, Joanna Moulierac, and Truong Khoa Phan. Energy-
Aware Routing in Software-Defined Network using Compression. The Computer
Journal, 61(10):1537–1556, 03 2018.

[GJPGA12] Aaron Gember-Jacobson, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.
Toward software-defined middlebox networking. pages 7–12, 10 2012.

[GKS+15] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, and
Raouf Boutaba. Elastic virtual network function placement. In IEEE International
Conference on Cloud Networking (CloudNet), pages 255–260, 2015.

https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf
https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf

32 REFERENCES

[GR18] Lingnan Gao and George N Rouskas. Virtual network reconfiguration with load bal-
ancing and migration cost considerations. In Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), pages 2303–2311. IEEE,
2018.

[GTGM18] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, and Joanna Moulierac.
Don’t Interrupt Me When You Reconfigure my Service Function Chains. Technical
report, Inria, Dec. 2018.

[GTGM19a] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. No interruption when
reconfiguring my SFCs. In IEEE International Conference on Cloud Networking
(CloudNet), pages 1–6, 2019.

[GTGM19b] Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, and Joanna Moulierac.
Poster: Don’t interrupt me when you reconfigure my service function chains. In
2019 IFIP Networking Conference (IFIP Networking), pages 1–2, 2019.

[GTGM19c] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, and Joanna Moulierac. Re-
configuration de chaînes de fonctions de services sans interruption. In CORES 2019
- Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Per-
formance et l’Expérimentation des Réseaux de Communication, Saint Laurent de la
Cabrerisse, France, June 2019.

[GTGM21] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. Don’t interrupt me when
you reconfigure my service function chains. Computer Communications, 2021.

[GZT+19] Lin Gu, Deze Zeng, Sheng Tao, Song Guo, Hai Jin, Albert Y. Zomaya, and Wei-
hua Zhuang. Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain. IEEE Journal on Selected Areas in
Communications, 37(5):1059–1071, 2019.

[HMM+19] Nicolas Huin, Paolo Medagliani, Sébastien Martin, Jérémie Leguay, Lei Shi, Sheng-
ming Cai, Jinchun Xu, and Hao Shi. Hard-isolation for network slicing. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 955–956, 2019.

[HTGJ18] Nicolas Huin, Andrea Tomassilli, Frederic Giroire, and Brigitte Jaumard. Energy-
efficient service function chain provisioning. IEEE/OSA Journal of Optical Com-
munications and Networking, 10(3):114–124, 2018.

[ITU18] International Telecommunication Union ITU. Itu-r m.2083; setting the scene for 5g:
opportunities and challenges. http://handle.itu.int/11.1002/pub/
811d7a5f-en, 2018.

[Jae15] Bernd Jaeger. Security orchestrator: Introducing a security orchestrator in the con-
text of the etsi nfv reference architecture. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 1255–1260, 2015.

[JKM+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs

http://handle.itu.int/11.1002/pub/811d7a5f-en
http://handle.itu.int/11.1002/pub/811d7a5f-en

REFERENCES 33

Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed
software defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3–14, August
2013.

[KBB19] Nguyen Tuan Khai, Andreas Baumgartner, and Thomas Bauschert. Optimising vir-
tual network functions migrations: A flexible multi-step approach. In 2019 IEEE
Conference on Network Softwarization (NetSoft), pages 188–192, 2019.

[KBK+12] James Kempf, Elisa Bellagamba, András Kern, Dávid Jocha, Attila Takacs, and
Pontus Sköldström. Scalable fault management for openflow. In 2012 IEEE Inter-
national Conference on Communications (ICC), pages 6606–6610, 2012.

[KF13] Hyojoon Kim and Nick Feamster. Improving network management with Software
Defined Networking. IEEE Communications Magazine, 51(2):114–119, 2013.

[KHZ17] Selma Khebbache, Makhlouf Hadji, and Djamal Zeghlache. Scalable and cost-
efficient algorithms for vnf chaining and placement problem. In 2017 20th Confer-
ence on Innovations in Clouds, Internet and Networks (ICIN), pages 92–99, 2017.

[KN17] Adlen Ksentini and Navid Nikaein. Toward enforcing network slicing on ran: Flex-
ibility and resources abstraction. IEEE Communications Magazine, 55(6):102–108,
2017.

[KNS+18] Zbigniew Kotulski, Tomasz Wojciech Nowak, Mariusz Sepczuk, Marcin Tunia,
Rafal Artych, Krzysztof Bocianiak, Tomasz Osko, and Jean-Philippe Wary. To-
wards constructive approach to end-to-end slice isolation in 5g networks. EURASIP
Journal on Information Security, 2018(1):2, Mar 2018.

[KREV+15] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE, 103(1):14–76, Jan 2015.

[LHK+13] Pingping Lin, Jonathan Hart, Umesh Krishnaswamy, Tetsuya Murakami, Masayoshi
Kobayashi, Ali Al-Shabibi, Kuang-Ching Wang, and Jun Bi. Seamless interworking
of sdn and ip. volume 43, pages 475–476, 08 2013.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, New York, NY, USA,
2010. Association for Computing Machinery.

[LZC+16] Hongjian Li, Guofeng Zhu, Chengyuan Cui, Hong Tang, Yusheng Dou, and Chen
He. Energy-efficient migration and consolidation algorithm of virtual machines in
data centers for cloud computing. Computing, 98(3):303–317, Mar 2016.

[Mal98] Gary S. Malkin. RIP Version 2. RFC 2453, November 1998.

[MF19] Dania Marabissi and Romano Fantacci. Highly flexible ran slicing approach to
manage isolation, priority, efficiency. IEEE Access, 7:97130–97142, 2019.

34 REFERENCES

[MGT+15] Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo Jacob. Toward
an SDN-enabled NFV architecture. IEEE Communications Magazine, 53(4):187–
193, 2015.

[Moy98] John Moy. OSPF Version 2. RFC 2328, April 1998.

[ONF14] Optical Interconnecting Forum Open Networking Foundation. Global transport sdn
prototype demonstration. https://opennetworking.org/wp-content/
uploads/2013/02/oif-p0105_031_18.pdf, 10 2014.

[PNL+20] M. Pozza, P. K. Nicholson, D. F. Lugones, A. Rao, H. Flinck, and S. Tarkoma. On
reconfiguring 5g network slices. IEEE Journal on Selected Areas in Communica-
tions, 2020.

[PPP20] 5G PPP. View on 5g architecture. https://5g-ppp.eu/wp-
content/uploads/2020/02/5G-PPP-5G-Architecture-White-
Paper_final.pdf, 02 2020.

[QKA18] Long Qu, Maurice Khabbaz, and Chadi Assi. Reliability-aware service chaining in
carrier-grade softwarized networks. IEEE Journal on Selected Areas in Communi-
cations, PP, 03 2018.

[QN15] P. Quinn and T. Nadeau. Problem statement for service function chaining. RFC
7498, RFC Editor, April 2015.

[RHL06] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, January 2006.

[SGT20] S. Sharma, A. Gumaste, and M. Tatipamula. Dynamic network slicing using utility
algorithms and stochastic optimization. In 2020 IEEE 21st International Conference
on High Performance Switching and Routing (HPSR), 2020.

[SHS+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. ACM SIGCOMM Computer Communication Review,
42(4):13–24, 2012.

[SZGS+18] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Scian-
calepore, and Xavier Costa-Perez. Overbooking network slices through yield-driven
end-to-end orchestration. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[TAM19] S. Troia, R. Alvizu, and G. Maier. Reinforcement learning for service function chain
reconfiguration in nfv-sdn metro-core optical networks. IEEE Access, 2019.

[THGJ18] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte Jaumard. Resource
requirements for reliable service function chaining. In 2018 IEEE International
Conference on Communications (ICC), pages 1–7, 2018.

https://opennetworking.org/wp-content/uploads/2013/02/oif-p0105_031_18.pdf
https://opennetworking.org/wp-content/uploads/2013/02/oif-p0105_031_18.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf

BIBLIOGRAPHY 35

[TTG13] Phuong Nga Tran and Andreas Timm-Giel. Reconfiguration of virtual network map-
ping considering service disruption. In IEEE International Conference on Commu-
nications - ICC, pages 3487–3492. IEEE, 2013.

[Var12] Upkar Varshney. 4g wireless networks. IT Professional, 14(5):34–39, 2012.

[WBIC19] Adrien Wion, Mathieu Bouet, Luigi Iannone, and Vania Conan. Change in continu-
ity: Chaining services with an augmented igp. IEEE Transactions on Network and
Service Management, 16(4):1332–1344, 2019.

[WFQ+19] G. Wang, G. Feng, T.Q.S. Quek, S. Qin, R. Wen, and W. Tan. Reconfiguration
in network slicing-optimizing the profit and performance. IEEE Transactions on
Network and Service Management, 16(2):591–605, June 2019.

[WM13] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-
disruptive defragmentation. IEEE Journal of Lightwave Technology, 31(15):2491–
2500, 2013.

[YG12] Soheil Yeganeh and Yashar Ganjali. Kandoo: A framework for efficient and scal-
able offloading of control applications. HotSDN’12 - Proceedings of the 1st ACM
International Workshop on Hot Topics in Software Defined Networks, 08 2012.

[YLW+19] Xu Yang, Yue Liu, Ieok Cheng Wong, Yapeng Wang, and Laurie Cuthbert. Effective
isolation in dynamic network slicing. In 2019 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6, 2019.

[ZLF+17] Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, and
Zhi-Quan Luo. Network slicing for service-oriented networks under resource con-
straints. IEEE journal on Selected Areas in Communications, 35(11):2512–2521,
2017.

[ZZC20] J. Zhou, W. Zhao, and S. Chen. Dynamic network slice scaling assisted by prediction
in 5g network. IEEE Access, 2020.

CHAPTER 1
Preliminaries

In this Preliminary chapter we introduce different optimisation tools and techniques that
are used in this thesis. Understanding all the models presented requires a basic knowl-
edge of these optimisation techniques. Linear Programming is used in all the chapters of
this thesis. Column generation is used in chapter 4 and 5. Finally reinforcement learning
is used in chapter 5.

1.1 Linear Programming (LP) . 39
1.1.1 A general example . 41
1.1.2 Linear Programming properties 42

1.2 Column Generation . 44
1.2.1 A general example . 46

1.3 Reinforcement Learning . 48
1.3.1 Definition . 48
1.3.2 Markov Decision Process 49
1.3.3 Policy and Value function 51
1.3.4 Exploration vs Exploitation 53
1.3.5 Q-Learning . 53
1.3.6 Deep Q-Learning . 56

References . 59

37

Preliminaries 39

1.1 Linear Programming (LP)

Linear programming, also called linear optimisation, is, as the second name suggests, a method
for solving optimisation problems. Since 1947 with the introduction of the simplex algorithm by
Dantzig [Dan48] (the first practical approach to solving linear programs), linear programming has
become one of the most widely used methods for solving optimisation problems. A linear program
(LP) consists of three components:

• An objective function, which can be a cost to minimise or a profit to maximise. This is the
main driver of decision making in optimisation problems.

• A set of decision variables. Each variable has a coefficient in the objective (in terms of
cost or profit). The value of the objective is therefore dependent on the value of the set of
decision variables. The value of the variables determine the output solution.

• A set of linear constraints which are in the form of equality and/or inequality. Each con-
straint restricts the value of one or more variables and thus reduces the set of possible solu-
tions.

Linear programming is widely used to solve optimisation problems in operations research such
as scheduling, flow routing, resource allocation, resource management, etc. In a LP, all variables
must be fractional, however there are many problems that require integer or binary variables. For
example, to model a delivery vehicle scheduling problem, it is impossible to use a fraction of a
vehicle, when a truck is sent on delivery it is sent entirely. When all variables are binaries or
integers the problem is an ILP (Integer Linear Program). When there is a mix of fractionals and
integers/binaries variables the problem is a MILP (Mixed Integer Linear Program) but we will
refer to it as ILP during this thesis to keep the nomenclature simple. Solving an ILP instead of an
LP changes the complexity of the problem, as explained in subsection 1.1.2.

A very simple example allows to understand and visualise how it works. A company manu-
factures two products a and b. Two variables xa and xb represent the output quantity for products
a and b. To produce a and b three resources are needed: r1, r2, r3. There are 6 units of resource
r1, 15 units of resource r2 and 10 units of resource r3 in stock. To prepare one unit of a, 1 unit of
resource r1, 3 units of resource r2 and 1 unit of resource r3 are needed. To prepare one unit of b,
1 unit of resource r1, 1 unit of resource r2 and 2 units of resource r3 are needed. On sale, product
a (resp. b) has a profit of $12 (resp. $10). The aim of the problem is to determine the number of
products a and b to produce in order to maximise the profit with the given number of resources.

This problem can be modelled as follows:

Maximise 12xa + 10xb
Subject To: xa + xb 6 6 (1)

3xa + xb 6 15 (2)
xa + 2xb 6 10 (3)

xa > 0
xb > 0

(1.1)

The constraint (1), (2) and (3) respectively represent the amount of resources r1, r2 and r3 to make
products a and b.

This problem can also be represented by a plot. Figure 1.1 represents different versions of the
problem.

40 Preliminaries

xa + 2 xb ≤ 10

xa + xb ≤ 6

3 xa + xb ≤ 15

5

10

xa

xb

Objective

(a) LP

Objective

xa + 2 xb ≤ 10

xa + xb ≤ 6

3 xa + xb ≤ 15

5

10

xa

xb

(b) ILP

Objective

xa + 2 xb ≤ 10

xa + xb ≤ 6

3 xa + xb ≤ 15

5

10

xa

xb

(c) MIP

Figure 1.1 – Representation of the graphical solution of a linear optimisation problem

• First, in Figure 1.1(a), each axis represents a variable, xa or xb, and each line corresponds to
a constraint (except the red one which corresponds to the objective). The colours of the lines
(green, blue and purple) correspond to those of the model 1.1. The red polytope is the area
of all possible solutions and is delimited by all the constraints. To find the optimal solution,
the objective line is moved until it reaches an extreme border of the possible solutions area.
In this example, the solution found is 69, with a value of 4.5 for xa and 1.5 for xb. The
variables are therefore part of R+.

• Depending on the problem, the output values should be integer, and not fractional. Indeed,
if for example xa and xb represent a number of phones to be sold, it’s impossible to sell half
a phone. In Figure 1.1(b), xa and xb are part of N and therefore the sum of each can only
be part of N. The area of possible solutions is thus made up of a set of points and the best
solution must be chosen using the objective line. The program is no longer an LP but an
ILP. The result is 68 with 4 for xa and 2 for xb.

• Finally, a third version, if xa is part of N and xbb is part of R+. As in Figure 1.1(c), the set
of solutions can be represented by lines and the solution is found by the objective line. In
this case, the program is a MILP.

Linear programs are written in the form:

Minimise/Maximise
n∑
i=1

cixi (1)

Subject To:
n∑
i=1

aj,ixi

6
=
>

bj , j ∈ [1,m] (2)

xi

{
6
>

0, i ∈ [1, n] (3)

(1.2)

Where n is the number of variables and m the number of constraints. X = {x1, x2, ..., xn} is
the set of decision variables. C = {c1, c2, ..., cn} is the set corresponding to the coefficients of
the variables in the objective function, it may be a cost to minimise or a profit to maximise. For

Preliminaries 41

every linear constraint j ∈ [1,m] there is a set of coefficient aj,i for every variables xi and bj is
the right-hand-side of equation j.

In Equation 1.2, line (1) corresponds to the objective, line (2) corresponds to the set of con-
straints and finally line (3) corresponds to the restriction on variables: either unrestricted or nega-
tive or positive.

There is a standard form of writing LPs. The problem must be a maximisation and all con-
straints must be of the form lesser or equal. To switch to a minimisation problem the signs of the
coefficients of the variables are changed and the constraints are switched to greater or equal.

Any linear program can be written in matrix form and in standard form:

Maximise z = cTx
Subject To: Ax 6 b

x > 0
(1.3)

• c =

c1
...
cn

 , x =

x1
...
xn

 are column vectors of size n.

• b =

 b1
...
bm

 is a column vector of size m.

• A =

a1,1 ... a1,n
...
am,1 ... am,n

 is a matrix of size m× n.

• cT represents the transpose of vector c.

1.1.1 A general example

For a more general example and to facilitate the understanding of the next section, an ILP mod-
elling of the shortest path problem between two points with capacity constraints is considered.
Using an ILP is not the most efficient way to solve it, but it is a simple way to understand the
modelling of constraints.

To summarise, on a graph G = (V,E), a request from a source vs ∈ V must be routed to a
destination vd ∈ V and it consumes an amount bw of bandwidth. The objective is to find a shortest
path between vs and vd that respects the capacity Cuv of each link uv ∈ E. The list of parameters
and variables is noted in Table 1.1.

42 Preliminaries

Parameters
G = (V,E) The network where V represents the set of nodes and E the set of links.

Cuv Capacity of a link (u, v) ∈ E expressed as its total bandwidth available.

(vs, vd, bw) The demand is modeled by a triplet with vs ∈ V the source, vd ∈ V the
destination, and bw the required units of bandwidth.

Variables
xuv Utilisation of link (u, v) ∈ E. xuv ∈ {0, 1} is equal to 1 if the link (u, v) is

used, 0 otherwise.

Table 1.1 – Notation for the shortest path problem

Objective: Minimise the number of links used

min
∑

(u,v)∈E
xuv (1.4)

Flow conservation constraints: Constrains the flow to go from vs to vd. For each Node u ∈ V .

∑
(u,v)∈ω+(u)

xuv −
∑

(v,u)∈ω−(u)
xvu =

1 if u = vs

−1 if u = vd

0 else

(1.5)

Link capacity constraints: For each Link (u, v) ∈ E.

bw · xuv ≤ Cuv (1.6)

This simple example provides a general understanding of modelling. Equation 1.4 is the ob-
jective and minimises the number of links used, we are looking for the shortest path. Equation 1.5
is a set of 3 constraints for each node, it forces one and only one link to leave if the node is vs and
one and only one link to reach the node if it is vd. For each intermediate node, every incoming link
implies an outgoing link. There is no anti-cycle constraint as, thanks to the shortest path objective,
a cycle cannot be part of the shortest path.

Finally, Equation 1.6 forbids the use of any link with not enough capacity to pass the flow.
With a single request, the links with not enough capacity can be removed before the modelling
and therefore, this constraint is not useful anymore. There is no non-negativity constraint because
we specify in Table 1.1 that the x variables can only take the value 0 or 1.

1.1.2 Linear Programming properties

The simplex algorithm is the most common method to solve LPs. To summarise, the simplex
method proceeds by going through the polytop (a compact convex set with a finite number of
extreme points) from one vertex to another. At each step, it chooses the best vertex relative to
the objective function. Either the algorithm determine that the constraints are unsatisfiable, or it
determine that the objective function is unbounded, or finally it reach a vertex from which it cannot
progress, which optimises the objective function.

Other algorithms exist, without going into details we can mention the ellipsoid method pro-
posed by Khachiyan [Kha80] who proves that an LP can be solved in polynomial time. But

Preliminaries 43

this algorithm was only effective in theory. Finally, in 1984, Karmarkar [Kar84] developed a
new polynomial algorithm for practical use, based on the interior-point method. Thanks to these
advances, LPs can be solved in polynomial time. While solving an ILP is NP-hard in general, it
can be useful even in large problems. As explained in Section 1.2, some problems can be broken
down into several smaller problems and solved quickly by an ILP. However, these solutions may
not always be optimal. ILPs can also be relaxed by removing the integrality constraint from
each variable. This method provides an upper-bound for maximisation and a lower-bound for
minimisation, which is useful for approximation algorithms. Using the previous example, the LP
scores 69 against 68 for the ILP. By using the LP solution and rounding the value of the variables,
the optimal solution is found. This does not work in every case and the optimal solution may be
far from the relaxation solution (there may be no solution to the ILP while there is one for the LP).

One of the key properties of LP used in the following section is the Duality. For each LP
written in standard form, called the Primal, there is another LP called the Dual. The objective of
the dual is the opposite of the primal one, i.e. if the primal is a minimisation problem, then the
dual is a maximisation one, and vice-versa. For every variable in the primal there is a constraint
in the dual. And for every constraint in the dual there is a variable in the dual. The dual problem
of the dual is the primal.

The dual problem (left) of the precedent primal 1.3 (right) is modelled as follows:

Minimise bT y Maximise cTx
Subject To: AT y > c Subject To: Ax 6 b

y > 0 x > 0
(1.7)

Where y is the vector variables of size m of the dual problem.

There are several rules for transforming the constraints and bounds of a primal maximisation
problem to its dual:

• For an inferiority constraint and a non-negativity bound, the dual has a superiority constraint
and a non-negativity bound.

• For an equality constraint and a non-negativity bound, the dual has a superiority constraint
and no bound.

• For an inferiority constraint with no bound, the dual has an equality constraint and a non-
negativity bound.

For example, the dual problem (left) of the precedent primal 1.1 (right) is modelled as follows:

Minimise 6ya + 15yb + 10yc Maximise 12xa + 10xb
Subject To: ya + 3yb + yc > 12 Subject To: xa + xb 6 6

ya + yb + 2yc > 10 3xa + xb 6 15
ya > 0 xa + 2xb 6 10
yb > 0 xa > 0
yc > 0 xb > 0

(1.8)

Two theorems emerge from the duality [Dan63]:

44 Preliminaries

• The weak duality theorem: The objective value of any feasible solution of the dual is
an upper bound on the optimal objective value of the primal solution. And reciprocally
the objective value of any feasible solution of the primal is a lower bound on the optimal
objective value of the dual solution. This implies that if the dual is unbounded, then the
primal has no feasible solution, and reciprocally if the primal is unbounded, then the dual
has no feasible solution.
If x∗ is a feasible solution of the primal maximisation and y∗ is a feasible solution of the
dual minimisation then the weak duality theorem can be stated as :

Maximise cTx∗ 6 Minimise bT y∗

• The strong duality theorem: If the primal problem has an optimal solution with a finite
objective value then so does the dual (and vice versa). This objective value is the optimal
value for both problems. The bounds given by the weak duality theorem are tigh. If x∗ is an
optimal solution of the primal maximisation, there exists y∗ an optimal solution of the dual
minimisation and:

Maximise cTx∗ = Minimise bT y∗

The comprehension of the duality in LP is important to understand the functioning of the column
Generation (CG).

1.2 Column Generation

ILPs can be an interesting method for solving small problems but they quickly become inefficient
when the size of the problem increases. Some large problems can still benefit from ILP modelling
under certain conditions.

Column Generation (CG) [DDS05] is a decomposition method coming from the field of oper-
ational research and which divides an optimisation model into two parts:

• A Restricted Master Problem (RMP) which consists of the original problem but with a
restricted number of variables and consequently of possible solutions.

• A set of Pricing Problems (PP) which consists of a smaller problem by focusing on one
(or a subset) of the RMP variables, thus allowing a faster execution. Each pricing create
columns (decision variables) to feed the RMP. Using an ILP is not mandatory for modelling
PPs. Any exact optimisation algorithm suffice as long as the objective can be modified.
Using an approximation algorithm or a heuristic can improve the execution time of the PPs
but can potentially reduce the quality of the RMP solution.

In order to use column generation, a problem needs to be divided into several pricing problems.

To recall, an LP uses a matrix in which the rows are the constraints and the columns are the
decision variables. The CG works by gradually adding columns (decision variables) to find a good
solution.

For example Three PPs, red, blue and green are the sub-problems of a RMP. At the start of the
algorithm the constraint matrix of the RMP is:

A =

a1,(1,1) a1,(2,1) a1,(3,1)
...

am,(1,1) am,(2,1) am,(3,1)

Preliminaries 45

Where ax,(y,z) represents the coefficients of the column z of the pricing y in the xth constraint.
After each pricing has produced a valid column, the matrix evolves.

A =

a1,(1,1) a1,(1,2) a1,(2,1) a1,(2,2) a1,(3,1) a1,(3,2)
...

am,(1,1) am,(1,2) am,(2,1) am,(2,2) am,(3,1) am,(3,2)

Figure 1.2 is a representation of how CG works. In order to be solved, CG needs first a valid

solution (even a very bad one). Usually the algorithm starts with the smallest possible number of
variables (down to one per pricing problem). This first set of variables may be found either through
using a heuristic or by using the PPs a first time if it works. The quality of this first solution can
have an impact on the quality of the final solution found by the RMP. Variables will then be added
at each iteration. In order to add variables that can potentially improve the solution of the master,
the relaxation of the master problem is solved. The use of an LP allows, thanks to the simplex
algorithm, to obtain the dual values of the constraints. These dual values indicate for each row if it
constrains the solution of the problem. The dual values are then injected in the pricing problems.
For each pricing problem, when a column related to it is present in a constraint, the dual of this
constraint influences the pricing objective.

The objective Cj of the PP for the variable j is called the reduced cost and is expressed as
follows:

Cj = Cj −
∑
i

aij · µi
(1.9)

Where Cj corresponds to the original cost of the variable j in the RMP objective. The sum on i is
the sum of all constraints i where the variable j appears. aij is the coefficient of the variable j in
the constraint i. µi is the dual value of the constraint i.

Each PP is then solved. If the reduced cost of a PP is less than 0, the resulting column can
potentially improve the solution of the RMP relaxation, so it is added to the set of columns of
the RMP. The algorithm then iterates between executing the RMP relaxation and executing the
PPs. When no more columns are created the integral RMP is executed. This execution gives an
optimal solution for the restricted set of columns of the RMP. The end of the iteration can also be
triggered using a timer or when the improvement of the RMP relaxation objective is lower than a
parameterised threshold. Finally, even if the RMP has a restricted number of variables, in some
problems this number may still be so large that it cannot be executed in a reasonable time. In this
case, a column filtering method can be added to remove the least useful columns. As an example,
the least used columns in relation to their number of iterations in the RMP may be removed.
However, removing columns may decrease the quality of the RMP solution, as variables not used
when running the LP may become useful when running the ILP.

The solution given by the RMP may be close to or far from the actual optimal solution, de-
pending on the problem. But, the CG at least gives a solution, while it is not possible for an ILP
due to time execution constraints (as we will see in chapter 4). The quality of the CG solution
(objective = π∗CG) can be estimated by comparing it to the optimal solution of the relaxed problem
(objective = π∗LP). By calculating (π∗CG − π∗LP)/π∗LP we obtain a ratio. If this ratio is 0, then the
solution is optimal, and the closer it is to 0, the better the solution.

46 Preliminaries

Restricted
Master

Problem

Set of pricing problems PP(s)

 ...PP1 PP2 PPk

Found
variables

with negative
costs ?

Transform the Restricted
Master Problem to ILP

and solve it

Get the
optimal
solution

Initial
variables

Dual
values

Yes

No

Add
columns

Figure 1.2 – How column generation works

The advantage of column generation is its good optimisation acceleration capabilities. In
the last few years, the number of cores per CPU has increased drastically. Since the PPs are
independent, they can be solved in parallel and take advantage of this technological advance.

The drawbacks of column generation are as follows. Finding a first set of variables to start
the algorithm may be difficult, and the quality of this first set may have an impact on the quality
of the solution. In some problems, the speed up may be negligible or the execution time may be
longer than ILP. Pricing problems can take too long to solve if the problem they address is too
complex. Finally, the implementation of a column generation model is more complex than an ILP
one.

1.2.1 A general example

To get a better understanding of how CG works, the previous example of the shortest path problem
is generalised. This problem is called the Multi-commodity flow problem. It is extremely similar
to the previous one except that this time there are several requests that must be satisfied on the same
network. The objective changes slightly, instead of minimising the length of paths, the bandwidth
is minimised (which implies that between two requests with different throughput, it is better to
prioritise the optimisation of the larger ones and to take longer routes for the smaller ones. The
variables and parameters are almost the same as the ones for the shortest path problem. Each
triplet identifies the needs of a request (source, destination, bandwidth) is now linked to a demand
d ∈ D. The same applies to variables x which are associated to a request d ∈ D in addition to
being associated to a link l ∈ E. This ILP can therefore be used to solve our new problem, but
as we said before using an ILP (especially if the number of requests is very large) can quickly
become inefficient. To solve this problem with a large number of requests, the CG technique is
used.

Preliminaries 47

To understand the modelling of the problem, consider Figure 1.2. Instead of having an ILP
finding the solution for all requests, a set of pricing problems (PPs) is defined. Each one finds a
possible path for a request at every iteration. These paths are then given to the RMP which instead
of having as many variables as there are links and requests, has a reduced number of paths.

Table 1.2 adds notations used in the RMP.

Parameters
D The set of demands d

Pd The set of paths p from demand d ∈ D
δpuv Is equal to 1 if the link (u, v) is in path p, 0 otherwise

Variables
zp Utilisation of path p, its equal to 1 if path p is used, 0 otherwise.

Table 1.2 – Additional notation for the RMP

Restricted Master Problem
Objective: minimise the bandwidth used

min
∑
d∈D

∑
p∈Pd

∑
(u,v)∈E

zp · δpuv · bwd (1.10)

One path used per demand. For each Demand d ∈ D.∑
p∈Pd

zp = 1 (1.11)

Link capacity constraints. For each Link (u, v) ∈ E.∑
d∈D

∑
p∈Pd

zp · bwd · δpuv ≤ Cuv (1.12)

The objective 1.10 is a little different, the total bandwidth used must be minimised and to do
this the bandwidth for the path used by each request must be minimised. There are no longer any
flow conservation constraints which are managed by the PPs. Constraint 1.11 forces the use of
one and only one path per request. And constraint 1.12 prohibits the overloading of links.

For the Pricing Problems, the model is the same as for the shortest path except that the objective
must take into account the dual values of 1.11 and 1.12 constraints, represented by µ. The original
cost Cj (see Equation 1.9) of a column j is the bandwidth used by the demand:∑

(u,v)∈E
xuv · bwd

Before writing the objective function, it is necessary to verify the form of the constraints in the
RMP. Indeed, Equation 1.9 is valid when the RMP is written in standard form. For a minimisation
problem, all constraints must be in the form geq or the dual of the constraints will have negative
values.

48 Preliminaries

Link capacity constraints in standard form. For each Link (u, v) ∈ E.∑
d∈D

∑
p∈Pd

−bwd · δpuv ≥ −Cuv (1.13)

The new objective is therefore:

min − µ1.11
d +

∑
(u,v)∈E

xuv · bwd · (µ1.13
uv + 1)

(1.14)

For constraints 1.11, there is one constraint per demand d. In the PP objective, the dual value
is therefore the one associated with the PP demand, resulting in the notation µ1.11

d . On the contrary
for constraints 1.13, there is one constraint per link (u, v), which means that the dual value are
used by all PPs resulting in the notation µ1.13

uv . µ1.13
uv is positive because in 1.13 the variable δpuv

has a negative coefficient.
For a more complete understanding of column generation, the reader may refer to [DDS05].
The implementation of the Multi-commodity flow problem can be found at [Gaub]

1.3 Reinforcement Learning

Machine learning is a branch of Artificial Intelligence and Computer Science which focuses on the
use of data and algorithms to learn and adapt themselves without following explicit instructions.
Machine learning uses statistical models to analyse and draw inferences from patterns found in
data samples, in order to make predictions or decisions without relying on a predetermined equa-
tion as a model. The algorithms adaptively improve their accuracy as the number of training
samples increases.

Algorithms used in machine learning basically fall into four categories:

• Supervised Learning: algorithms use a labelled and classified dataset. When a prediction is
made, a function calculates an error by comparing the prediction and the label to determine
how accurate the prediction is. The error result is used to adapt the prediction function.

• Unsupervised Learning: algorithms use a dataset that only contains inputs. They look
for hidden patterns or intrinsic structures in the data. They learn based on the presence or
absence of such patterns in each new dataset.

• Semisupervised Learning: algorithms fall between the above categories. The dataset con-
tains both labelled and unlabelled data, which allows the algorithms to learn how to label
data. This guides the algorithms to draw independent conclusions and can improve the
learning accuracy.

• Reinforcement Learning: algorithms are presented in the following subsection.

1.3.1 Definition

Reinforcement Learning exists in a context where there is an environment with a state and where
taking an action change the state of that environment. It has the ability to learn how to map a series

Preliminaries 49

state : st

reward : rt

Agent Environment

action : at

st+1

rt+1

Figure 1.3 – Interaction between the agent and the environment

of inputs to outputs with dependencies. This model progressively learns through trials and errors.
A sequence of positive outcomes are reinforced to build the best recommendation or policy for a
given problem.

A reinforcement learning algorithm consists of an environment and an agent. The agent is the
entity making the decisions. The environment evolves as the agent makes decisions, and gives the
agent the state on which to perform the action and a reward as feedback for its previous action.

As can be seen in Figure 1.3, at an instant t, the environment gives the state st to the agent. The
agent makes a decision by sending the action at to the environment. The environment modifies its
state according to the transition probabilities between states (which itself depends on the action)
and sends the state st+1 and the reward rt+1 to the agent.

1.3.2 Markov Decision Process

Almost all the RL problems can be modeled as Markov Decision Processes.

The model is composed by five elements :

• S a set of states.

• A a set of actions of the agent.

• P the transition probability function with P (s′, r|s, a) the probability of transition from
state s to state s′ under action a while receiving reward r.
With P the symbol of probability:

P (s′, r|s, a) = P[st+1 = s′, rt+1 = r|st = s, at = a]
Thus, the state-transition function can be defined as a function of this probability:

P ass′ = P (s′|s, a) = P[st+1 = s′|st = s, at = a] =
∑
r∈R

P (s′, r|s, a)

• R the reward function which gives the value of the next reward when taking the action a
on state s:

R(s, a) = E[rt+1|st = s, at = a] =
∑
r∈R

r
∑
s′∈S

P (s′, r|s, a)

• γ ∈ [0, 1] is the discount factor for future rewards. It specifies the extent to which future
rewards impact on the outcome of the current action.

50 Preliminaries

All states transition have the Markovian property: given the current state s and action a, the
next state s′ is conditionally independent of all the previous states and actions.

For example: As a toy example, let us consider an agent that moves in a labyrinth (which is
modeled by a small grid here for sake of simplicity). On each cell, the agent may gain some
reward or some penalty. Starting from a cell, the goal is then for the agent to progressively learn
an optimal trajectory (i.e., guaranteeing it a best final gain starting from this cell). Intuitively, the
agent begins by following random trajectories. The following trajectories are increasingly guided
by the memory of its previous trials. More precisely, the environment is represented by a 3*3 grid
(Figure 1.4(a)) and each state is represented by a cell. The cells are identified by their position
(x,y) on the grid with x the horizontal axis and y the vertical axis. The agent starts from cell (0,0),
it can only move to the adjacent cells and must learn to go to cell (2,2). It must not pass through
cells (2,0) and (1,2). When the agent reaches the cell (2,2), (2,0), or (1,2) the game ends. To help
the agent make a decision, he is given a reward of 1 when he reaches the state (2,2) and a reward
of -1 when he reaches the state (2,0) and (1,2).
S = {(0, 0), (0, 1), (0, 2), ..., (2, 1), (2, 2)}.
The agent has four possible actions at his disposal, go up, down, left or right.
A = {left, right, up, down}.
R(2, 2) = 1, R(1, 2) = −1, R(2, 0) = −1.
The transition probability function is simple, for each transition the probability is either 1 when
the transition involves two adjacent cells with the appropriate action or 0. The possible movements
are represented by arrows in Figure 1.4(b). For each state the agent can perform all actions. The
red arrows represent actions that are impossible. Either because the state is a terminal state and
the agent cannot perform any action when the game is over. Either because theses actions do not
change the agent’s state and we forbid them for simplicity.

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

(a) Reward of each state (b) Transitions of the agent

Figure 1.4 – Environment example

Preliminaries 51

1.3.3 Policy and Value function

By interacting with its environment, the RL agent determines which actions produce the greatest
reward and uses this experience to improve its performance on future trials. The agent’s main ob-
jective is therefore to maximise the total amount of reward received (good actions are reinforced).
To this end, the agent’s behaviour is determined by a policy π. It provides a direction on the action
to take in a certain state. π(a, s) gives the probability of taking action a in state s
π(a, s) ∈ [0, 1]
π(a, s) = P(at = a|st = s)

The return Gt is a weighted sum of the future rewards starting from time t:

Gt =
∞∑
k=0

γkrt+k+1.

Not all rewards have the same impact on Gt. Even if it is important to take into account
potential rewards that are far in the future, rewards that are closer in time may have more meaning.
By setting the γ parameter to a value smaller than 1, we ensure that the further into the future a
potential reward is, the less impact it has on the Gt return.
To choose the direction offering the best reward, a value function is associated V (s) to each state.
It predicts the expected value of the future rewards related to a state. The bigger the value function
for a state, the better the state is.
The value function V π(s) is the expected return starting with state s by following policy π.

V π(s) = Eπ[Gt|st = s]

The action-value (or Q-value) of a state action pair is the expected return starting with state s and
first performing action a, before following policy π.

Qπ(s, a) = Eπ[Gt|st = s, at = a]

By following the target policy π, the state-value can be rewritten using the probability distribution
over the possible actions and the Q-values.

V π(s) =
∑
a∈A

π(a, s) ·Qπ(s, a) (1.15)

As the return Gt is recursively built, the Q and V functions can also be expressed recursively
using the Bellman equations. Bellman’s equations are related to dynamic programming and allow
for the consideration of future states. A decision at a state st is recursively composed by the
decisions at states st+1

V (s) = E[Gt|st = s]
= E[Rt+1 + γRt+2 + γ2Rt+3 + ...|st = s]
= E[Rt+1 + γ(Rt+2 + γRt+3 + ...)|st = s]
= E[Rt+1 + γGt+1|st = s]
= E[Rt+1 + γV (st+1)|st = s]

(1.16)

52 Preliminaries

Similarly for Q-value,

Q(s, a) = E[Rt+1 + γV (st+1)|st = s, at = a]
= E[Rt+1 + γEa∼πQ(st+1, a)|st = s, at = a]

The optimal policy π∗ achieves the optimal value functions: it maximises the expected cumulative
reward. The optimal value function produces the maximum return.

V π∗(s) = max
π

V π(s)

Qπ∗(s, a) = max
π

Qπ(s, a)

The goal of a reinforcement learning agent is to learn the optimal policy to take the best decisions.

For example: To complete the previous example, the value function can be represented as a 3*3
matrix with one value per state.

V =

V(0,0) V(0,1) V(0,2)
V(1,0) V(1,1) V(1,2)
V(2,0) V(2,1) V(2,2)

The Q-Value can be represented as a 3*3*4 matrix with one value per (state, action) pair.

Q =

(
Q((0,0),left) Q((0,0),right)
Q((0,0),up) Q((0,0),down)

)
... ...

...

... ...

(
Q((2,2),left) Q((2,2),right)
Q((2,2),up) Q((2,2),down)

)

Each state can therefore be represented as Figure 1.4(b) to visualise its value function and Q-Value.
At the beginning of the algorithm their value is shown in Figure 1.5(b).

V(x,y)
Q((x,y),left)

Q((x,y),up)

Q((x,y),down)

Q((x,y),right)

(a) Value-function and Q-Value

0 0

0 0 0

0

0

0 0

0

0

0

0

0 0
0

0

0 0
0

0

0
0

(b) Start of the algorithm

Figure 1.5 – Example of V and Q tables

Preliminaries 53

1.3.4 Exploration vs Exploitation

To find the optimal policy π∗ and to be able to exploit it, the agent has to first explore the different
states with every actions. However, this is not a good method. Indeed, it does not allow for
scaling when the number of states and actions are too large. The trade-off between exploitation
and exploration is one of the main challenges in reinforcement learning [SB18].

A simple and very common method is the ε-greedy policy. This method allows to control the
exploration rate in relation to the exploitation rate. The value ε ∈ [0, 1] is the probability for the
agent to choose a random action at each step : it is the exploration probability. Similarly, 1-ε is the
probability of exploitation: the probability of following the policy.

The value ε can be a fixed or varied value. A commonly used method is the decay. The
value of epsilon is close to 1 at the start of the algorithm to encourage a strong exploration at the
beginning. Epsilon then decreases with each iteration to reach a minimum value (down to 0) to
encourage exploitation. A good configuration of the decay allows not to fall in a local optimal at
the beginning and to converge faster at the end of the training of the agent.

1.3.5 Q-Learning

There are different reinforcement learning algorithms and in this thesis we will focus on Q-
Learning. The Q-Learning algorithm was introduced in 1992 by Watkins and Dayan [WD92]
and aims at learning the Q-values Q(s, a). It is used when both the action space and the state
space are discrete.

It is an off-policy algorithm. Instead of having a single policy π(s, a) (the target policy), there
is a second policy β(s, a) (the behaviour policy). The behaviour policy is used by an agent to select
actions during exploration and the target policy is used during exploitation. The target policy is
learnt independently of the agent’s actual behaviour. Being an off-policy algorithm means that
π(s, a) is not the same as β(s, a): the policy used during the evaluation of the agent is different
from the one used during the training of the agent.

Q-Learning is a model-free algorithm which means it does not use the transition probability
distribution and the reward function associated with the Markov decision process. For a model-
free agent, to change the action associated with a state, it moves to that state, acts from it, possibly
several times, and experiences the consequences of its actions. Model-free reinforcement learning
algorithms can be described as trial and error learning methods.

In addition to the discount factor, Q-learning uses a parameter called the learning rate α ∈
[0, 1]. It defines the extent to which newly acquired information overrides old ones. Like ε, α can
be fixed or can vary depending on the problem being addressed.
The equation for updating the Q-value is written as follows:

Q(st, at) = (1− α)Q(st, at) + α
[
r + γmax

at+1
Q(st+1, at+1)

]
(1.17)

Q-Learning learns it’s Q-values from a sequence of agent interactions with the environment.
Unfortunately, when the state and action spaces are huge, Q-learning requires a prohibitive com-
putation time.

54 Preliminaries

For example: By completing the previous example, an agent can be trained to solve this maze.
The discount factor γ is set to 0.9 and the learning rate α to 0.5. The policy used is the ε-greedy
with an ε value of 1 which decreases by 5% per round In the first round, the agent plays in a totally
random way. In the second round, it has 5% chance of choosing the action with the best Q-value.

The first run can be seen in Figure 1.6(a): the agent goes right and then down and then right
and then down and reaches the state (2,2). On reaching the state (2,2), it receives a reward of 1
and the Q-value of the previous state (2,1) is changed and the game is reset. During this reset the
value function of all states is updated, which is visible (as well as the Q-function) in Figure 1.6(b).

During the second run Figure 1.6(c), the agent plays down, right, up, right and reaches the
state (2,0). On reaching the state (2,0), it receives a reward of -1 and the Q-value of the previous
state (1,0) is changed and the game is reset. The negative reward propagates to the states through
which the agent has passed Figure 1.6(d).

Finally, Figure 1.6(e) shows the Q-Value and the value function when the training is finished
(the epsilon has reached a parameter value of 0.05). If the agent now follows its target policy,
it will take the actions with the maximum Q-value (in blue) and will always arrive at the state
(2,2). Even if the agent has finished training and is no longer in the exploration phase but in the
exploitation phase (ε = 0), this does not mean that the optimal policy π∗ has been found. The
behavioural policy being based on partially random choices, it is possible that some states are
rarely visited or not visited at all. For example, the state (0,2) at the bottom left has only been
visited a few times and its value function is far from its optimal value. Nevertheless, it can be seen
that even if the epsilon greedy policy does not necessarily give the optimal policy, it allows to
converge towards it. Figure 1.6(f) represents the optimal policy, the two paths (in blue) (through
(1,0) and through (0,1)) are optimal, and the value function converges. It is therefore equal to the
Equation 1.15.

The agent training algorithm is represented by Algorithm 1. At each new step, the agent
starts by calling Algorithm 2 to chooses an action following its behaviour policy (ε-greedy in this
example). Then it applies its action to the environment and the environment returns the reward and
the new state. A global variable of type LIFO is used to record all the transitions. This transition
variable is used to update the value function at the end of a round. The agent then chooses the best
action to take for the new state by using its target policy to update the Q-value. The agent then
updates the Q-value of the current state by following Equation 1.17. Finally, the current state is
updated and if the reward is different from 0, it means that the round is over and the environment
is reset by calling Algorithm 3.

Algorithm 2 choose an action and takes as parameters the current state and the value of ε. A
random value is drawn between 0 and 1 and if this value is lower than ε then a random action is
chosen. Otherwise it is the best action known to the agent that is returned.

Finally Algorithm 3 resets the environment to play a new round. All transitions are processed
one by one in their reverse order of arrival to update the value function by following Equation 1.16.
Finally, ε decays and the current state is reset to the initial state.

Preliminaries 55

(a) First round played

0.05 0.1

0 0.23 0.5

0

0

0 0

0

0

0

0

0 0
0

0

0 0
0

0.5

0
0

(b) Result of the first round

(c) Second round played

0 -0.45

-0.04 -0.09 0.5

0

0

0 0

0

-0.5

0

0

0 0
0

0

0 0
0

0.5

0
0

(d) Result of the second round

0.64 0.23

0.75 0.87 0.99

0.29

0.73

0.41 0.6

0.81

-0.99

0.54

0.54

0.81 0.44
0.66

-0.87

0.9 0.45
-0.98

1

0.28
-0.87

(e) End of the training

0.73 0.81

0.81 0.9 1

0.73

0.73

0.73 0.66

0.81

-1

0.66

0.66

0.81 0.73
0.73

-1

0.9 0.81
-1

1

0.73
-1

(f) Optimal policy

Figure 1.6 – Example of training the agent

56 Preliminaries

Algorithm 1: step
Data: st, ε
Result: Play one step

1 at←− takeAction(st, ε);
2 st′ , r←− Environement.play(st, at);
3 transition.push([st, r, st′]);
4 at′ ←− takeAction(st′ ,0);
5 Q[st][at]←− Q[st][at] + α*(r+γ*Q[st′][at′]-Q[st][at]);
6 st←− st′ ;
7 if r != 0 then
8 st←− reset(transition, α, γ, ε);
9 return st, r;

Algorithm 2: takeAction
Data: st, ε
Result: Choose the action to take

1 if random(0,1) < ε then
2 at←− random(left, right, up, down);
3 else
4 at←− argMax(Q[st]);
5 return at;

Algorithm 3: reset
Data: transition, α, γ, ε
Result: Reset the position of the agent to start a new round

1 while transition.lenght > 0 do
2 st, r, st′ ,←− transition.pop();
3 V[st]←− V[st] + α*(r+γ*V[st′]-V[st]);
4 ε←− ε*0.5;
5 st←− (0,0);
6 return st;

The implementation of this algorithm can be found at [Gaua].

1.3.6 Deep Q-Learning

To overcome the Q-Learning limitation, Deep Q-learning Network (DQN) [MKS+15] makes use
of a deep neural network to approximate the Q-value function for potentially high-dimensional or
continuous state-space problems. The state is given as the input and the Q-value of all possible
actions is generated as the output of the neural network. The Q-value Qθt is a vector. A second
neural network θ called the Target network (usually a copy of the first Q-network) is used to
calculate a target Q-value "y" (the value of the best possible choice in the target network). The

Preliminaries 57

target is used to train the network and compute the loss function.

yt = rt + γmax
at+1

Qθt
(st+1, at+1)

Qθt is updated by a gradient descent on its parameters θt:

θt+1 = θt − α∇θtQθt(st, at)
(
Qθt(st)− yt

)
The target network is not updated at each iteration.
A loss function is computed during the Q-learning update at iteration t:

Lt(θt) = E(s,a,r,s′)∼U(D)

[(
yt −Qθt(st, a)

)2]
The aim of the learning algorithm is not only to maximise the reward, it is above all to learn,

and therefore to be able to predict the reward. As the training progresses, the value of the sum of
the rewards of each episode should increase while the value of the loss function should decrease
and converge to a minimum value.

Lin [Lin91] introduced an important method for speeding up learning called the experience
replay. In Q-Learning, experiments obtained through trials and errors are used only once to adjust
the Q-values and then discarded. This is wasteful, as some experiments may be rare and others
expensive to obtain. To overcome this problem, the agent’s experiences et = (st, at, rt, st+1) are
stored at each time step in a dataset Dt = {e1, ..., et}, aggregated over many episodes in a replay
buffer. Regularly, a learning update is performed on a sample of experiences (s, a, r, s′) ∼ U(D)
randomly drawn from the dataset By doing this, the agent remembers its past experiences, as if
it were experiencing again and again the same situation. This method has a second advantage.
Reinforcement learning may become unstable or divergent when a neural network is used to
represent the Q-values. Each small update of Q can significantly change the agent’s policy and
the distribution of the data because of correlations in the observation sequence. The experience
replay removes these correlations and smoothes the changes in the data distribution.

Figure 1.7 summarises the operation of the DQN architecture. The DQN is trained in several
steps over many episodes. It goes through a sequence of operations at each time step. First, the
agent selects an ε − greedy action from the current state, executes it in the environment which
returns the reward and the next state. This operation is saved in the experience buffer.

A random batch of samples is then formed by recent and older samples. This batch of training
data is given as inputs to both networks. The Q-network takes the current state and action of each
data sample and predicts the Q-value for that action. The target network takes the next state of
each data sample and predicts the best Q-value (target Q-value) of all actions that can be taken
from that state. The Q-value, the target Q-value and the observed reward of the data sample are
used to calculate the loss to train the Q-network. The processing is repeated for the next time steps.
After T time steps, the weights of the Q-network are copied to the target network. The iteration
continues until the training ends: the convergence of the loss function is a good indicator of the
end of the agent’s learning.
For a more complete understanding of reinforcement learning, the reader may refer to [SB18].

58 REFERENCES

Copy Q network
weights to target

network

Train Q
network only

Compute
Loss

Continue for
next time steps

At the end,
repeat for next

episode

Q network
predict Q value

Target network
predict target

value

Random
Batch of
training

data

Experience
replay

Environement

ϵ-greedy
action

reward
next state

Every T
steps

Figure 1.7 – Deep Q Network operation

References

[Dan48] George B Dantzig. Programming in a linear structure. Washington, DC, 1948.

[Dan63] George Bernard Dantzig. Linear Programming and Extensions. RAND Corporation,
Santa Monica, CA, 1963.

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column Gen-
eration. Number 978-0-387-25486-9 in Springer Books. Springer, May 2005.

[Gaua] Adrien Gausseran. Maze qlearning example. https://github.com/
AdrienGausseran/MazeQLearningExample.

[Gaub] Adrien Gausseran. Multi commodity flow column generation. https://github.
com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4(4):373–395, Dec 1984.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[Lin91] Long-Ji Lin. Programming robots using reinforcement learning and teaching. In
Proceedings of the Ninth National Conference on Artificial Intelligence - Volume 2,
AAAI’91, page 781–786. AAAI Press, 1991.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 2015.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

59

https://github.com/AdrienGausseran/MazeQLearningExample
https://github.com/AdrienGausseran/MazeQLearningExample
https://github.com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration
https://github.com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration

CHAPTER 2
Service Function Chain

Placement
In this first chapter we study the problem of SFCs placement. The main contribution
of this thesis deals with reconfiguration, but before reconfiguring requests they must
be placed on the network. Two placement problems are studied in this section. The
dynamic placement problem of a single SFC on the network must allow to accept
automatically and instantaneously a SFC when a request is received. In order to
be valid, this placement must take into account the resources already in use on the
network. The second problem is the static placement problem. It does not have to be
instantaneous, although there may still be a time constraint, but it concerns a set of
SFCs and is therefore more difficult to solve.

Part of this chapter is contained in the articles [GTGM19a, GTGM21].

2.1 Introduction . 63
2.2 Related Work . 64
2.3 Problem Statement and Notations 65
2.4 Layered Graph . 65

2.4.1 Layered Graph . 65
2.5 Static routing and provisioning problem (R&P) 66

2.5.1 State of the Art ILP formulation state-of-art-ILP . . 66
2.5.2 Our ILP formulation layer-ILP 67

2.6 R&P for a single demand . 69
2.6.1 State of the Art ILP formulation, single demand 69
2.6.2 Our ILP formulation, single demand 70

2.7 Weight Constrained Shortest Path based heuristic 70
2.7.1 Algorithm 4: Finding a good static placement 71
2.7.2 Algorithm 5: Finding the best routing 71
2.7.3 Algorithm 7: Choosing the VNFs to turn off 73

2.8 Numerical Results for layer-ILP and state-of-art-ILP . 73
2.9 Conclusion . 74
References . 79

61

Service Function Chain Placement 63

2.1 Introduction

The introduction of SDN and NFV has paved the way for a transformation in network manage-
ment. SDN decouples the control plane from the data plane by centralising routing management
in a controller. Thanks to this centralisation of intelligence, the controller has a global view of the
network and can make the network management programmable and dynamic [KF13]. NFV allows
network functions to be virtualised within generic hardware. This gives network operators greater
freedom to customise their networks and offers a chance to reduce both Capex and Opex. Net-
work management thus becomes more flexible and even more dynamic [M. 13]. A more complete
description of SDN and NFV is given in subsection 0.2.1 and subsubsection 0.2.2.1.

SDN centralises control of routing and is an important technology for optimising routing and
increasing the acceptance of requests. NFV, on the other hand, allows control over the placement
of functions and is therefore more interesting in optimising the scaling of these functions or in
reducing costs. However, the joint use of these two technologies leads to synergy [Fou15], both
in the independent optimisation of the above-mentioned objectives and in multi-ojective optimisa-
tions.

This improvement in the management of routes and network functions makes it easier to han-
dle end-to-end service requests through ordered chains of network functions [00114]. This notion
of service is called Service Function Chaining (SFC) [QN15] and allows the modelling of various
service requests by changing the order of the functions as well as the bandwidth or delay con-
straints linked to the path. A more complete description of SFC is given in subsubsection 0.2.2.2.

Many works are mainly focused on optimising the placement of VNFs, omitting route op-
timisation and reducing routing to a simple constraint [CLBB+15, SJG+17]. Yet routing op-
timisation is an important factor in avoiding network congestion and improving request accep-
tance [MTC+19] as reported by [FAPZ11], 99% of rejections were caused by bandwidth shortage
even though there were enough resources to satisfy the request. Jointly optimising routing and
function placement is therefore an advantageous strategy to consider.

In this context, a fundamental problem that arises is how to map these VNFs to nodes (servers)
in the network to satisfy all demands, while routing them through the right sequence of functions
and meeting service level agreements. In doing this, the capacity constraints on both nodes and
links must be respected.
In this chapter, we consider the problem of providing, for each demand, a path through the network
in the case of dynamic traffic while respecting capacities on both links and nodes. Moreover,
the problem also consists in provisioning VNFs in order to ensure that the traversal order of the
network functions by each path is respected. Our goal is to minimise the network operational
cost, defined as the sum of the bandwidth cost to route the demands and the cost for all the VNFs
running in the network. We present in this chapter, several layer graph based placement models
and compare one of them with a state of the art ILP. Our goal is to show that this model can easily
transform the allocation and routing problem into a routing problem, without compromising on
computation time.

64 Service Function Chain Placement

2.2 Related Work

The problem of how to deploy and manage network services conceived as a chain of VNFs has
received a significant interest in the research and industrial community. We refer to [HB16]
and [M+16] for comprehensive surveys on the relevant state of the art. Some solutions are de-
signed to work on traditional networks that don’t use SDN, like in [WBIC19] where the authors
use segment routing. Their solution is to totally distribute the choice of functions to be used on
the VNF server. When a packet is processed by a network function, the router to which the
function is connected decides where the next fonction will be located according to the func-
tion by which the packet must be executed. Other solutions are based on SDN and a lot of
works have been conducted to develop efficient solutions that respect the functions chaining con-
straints [KLLT18, TGHP18]. In [SMGZ17] the authors study the placement of SFCs in order to
consolidate VNFs by reducing the use of different servers to improve energy efficiency. Their
solution is based on the Monte Carlo search tree method to select the best nodes and then optimise
the communication between the nodes, but they do not take into account the delays.

The authors of [SJG+17] study the placement of SFCs with splitable requests. Each request is
a flow that can go through several paths and can be executed by several instances of the same VNF.
Their goal is to minimise the number of VNF instances and they are not interested in minimising
links at all. They propose an ILP and two approximation algorithms.

Addis et al. [ABBS15] focus on the SFC placement problem and propose two solutions, a
MILP and a heuristic. Two objectives are used separately for the MILP: a minimisation of in-
stantiated VNFs or a minimisation of the bandwidth usage. Their heuristic is multi-objective and
compromised by first minimising the maximum link utilisation. It then uses the solution found as
a parameter to minimise the number of instantiated VNFs. Both approaches improve performance
in accordance with the intended objective. In [MTC+19] the authors study the problem of placing
SFCs dynamically on single and multi-tenant scenarios. Their objective is to maximise the accep-
tance of SFCs. It is characterised by minimising three parameterised factors, bandwidth, and node
capacities. It allows to prioritize the use of resourceful links and nodes, and to reserve the more
loaded ones for potential future heavy requests. They implement an ILP and a heuristic that di-
vides the network into multiple clusters and computes an offline abstraction of the network. They
compare their solution to a solution aiming only at minimising bandwidth and obtain an average
of 5% to 10% better performance.

The last two works take into account potential compression/decompression functions that
modify the bandwidth requirement between two functions. They also take into account differ-
ent delay constraints between certain types of functions. Bandwidth and delay requirements are
therefore consider for the all SFC and locally (between VNFs).

In this chapter we compare our layered graph modelling with the modelling of Morin et
al. [MTC+19]. Although their work focuses on the study of the objective, we only keep the
ILP constraints. In addition, some constraints such as delay constraints are removed and only the
constraints that allow to model an SFC taking into account the capacity of links and nodes are
kept. All the constraints removed from their ILP can be added to our model, but we maintain the
model as simple as possible.

Service Function Chain Placement 65

G = (V,E) the network where V represents the set of nodes and E the set of
links.

Cuv capacity of a link (u, v) ∈ E expressed as its total bandwidth avail-
able.

Cu available resources∗such as CPU, memory, and disk of a node u ∈ V .

∆f number of cores required per unit of bandwidth required by the func-
tion f ∈ F .

cu,f installation cost of the function f ∈ F which also depends on the
node u.

(vs, vd, cd, bwd) each demand d ∈ D is modeled by a quadruple with vs the source,
vd the destination, cd the ordered sequence of network functions that
need to be performed, and bwd the required units of bandwidth.

Succ(f ∈ cd) Outgoing neighbouring VNF of f ∈ cd form demand d ∈ D.

Table 2.1 – Notation used throughout the chapter

2.3 Problem Statement and Notations

We model the network as a directed graphG = (V,E), where V represents the set of nodes and E
the set of links. Both nodes and links have associated a capacity. The capacity of a link (u, v) ∈ E
is denoted by Cuv and defines the total bandwidth of the link. For a node u ∈ V , the capacity Cu
denotes the available resources such as CPU, memory, and disk; it is expressed as the number of
CPU cores. For this purpose, given the set of VNFs F , each f ∈ F has associated a value ∆f

defining the number of cores required by function f per unit of bandwidth. Also, each function f
has associated an installation cost cu,f which also depends on the node u. D represents the set of
demands. Each demand d ∈ D is modeled by a quadruple with vs the source, vd the destination,
cd the ordered sequence of network functions that need to be performed, and bwd the required
units of bandwidth. Table 2.1 defines the notation used throughout this chapter.

The optimisation task consists in routing each demand while minimising the network opera-
tional cost defined in terms of bandwidth and VNFs cost (licenses, energy consumption, etc).

2.4 Layered Graph

2.4.1 Layered Graph

Similarly as in [HJG18], in order to model the chaining constraints of a demand, we associate to
each demand d a layered graph GL(d). See Figure 2.1 for an example of a graph with three layers.
Representing the original graph as a layered graph is a modeling trick first proposed in [DW16].
It allows to simplify the problem by reducing it to a routing problem with shared capacities. This
allows a drastic reduction of computation time compared to usual strategies using a large number
of binary variables due to the ordering constraints of SFCs. The principle is to consider as many
∗A node u with a strictly positive number of cores (i.e., Cu ∈ N+ = {1, 2, · · · }) represents a cloud location with

the capability to execute VNFs, while a node with Cu = 0 is a node that serves only as an SDN router.

66 Service Function Chain Placement

Layer 0

u1,0

u2,0

u3,0

Layer 1

u1,1

u2,1

u3,1

Layer 2

u1,2

u2,2

u3,2

Figure 2.1 – The layered network GL(d) associated with a demand d such that vs = u1, vd = u3,
and cd = f1, f2, within a triangle network. f1 is allowed be installed on u1 and f2 on u1 and u3.
Source and destination nodes of GL(d) are u1,0 and u3,2. Two possible SFCs that satisfy d are
drawn in red (f1 is in u1, f2 in u3) and blue (f1 and f2 are in u1).

copies of the network as VNFs in an SFC plus one. Copies of a node in a layer are then con-
nected to the ones in the above and below layers with a vertical link. Using a horizontal link in a
layer corresponds to the use of a physical network link, when using a vertical link joining layers
represents the use a virtual function in the corresponding node. Layered graphs can be used to
solve different problems: (i) determine the placement and activation of NFVs, and the routing of
demands; (ii) If the placement of NFVs has already been done, determine their activation and the
routing of demands.

We denote by ui,l the copy of node ui in layer l. The path for demand d starts from node vs,0
in layer 0 and ends at node vd,|cd| in layer |cd| where |cd| denotes the number of VNFs in the chain
of the demand.
Given a link (ui, vj), each layer l has a link (ui,l, vj,l) defined. This property does not hold for
links of the kind (ui,l, ui,l+1). Indeed, a node may be enabled to run only a subset of the virtual
functions. To model this constraint, given a demand d we add a link (ui,l, ui,l+1) only if Node u
is enabled to run the (l + 1)− th function of the chain of d. The l − th function of the chain of d
are denoted by f cd

l .
A path on the layered graph corresponds to an assignment to a demand of both a path and the
locations where functions are being run. Using a link (ui,l, vj,l) on GL, implies using link (u, v)
on G. On the other hand, using link (ui,l, ui,l+1) implies using the (l + 1) − th function of the
chain at node u. Capacities of both nodes and links are shared among layers.

2.5 Static routing and provisioning problem (R&P)

2.5.1 State of the Art ILP formulation state-of-art-ILP

Model.
This ILP which we call state-of-art-ILP is derived from [MTC+19], with a modification
of the objective and the deletion of constraints not used in this context.
It takes as an input the set of demands D.

Service Function Chain Placement 67

Variables:
• ϕf,f ′,duv ∈ {0, 1} where ϕf,f

′,d
uv = 1 if Link (u, v) is used by demand d between VNF f and f ′.

• αf,du ∈ {0, 1} where αf,du = 1 if Node u is used by VNF f from demand d.
• zu,f ∈ {0, 1}, where zu,f = 1 if function f is activated on Node u.
Objective: minimise the amount of network resources consumed.

min
∑
d∈D

∑
(u,v)∈E

|cd|−1∑
i=0

bwd · ϕfi,fi+1,d
uv + β ·

∑
u∈V

∑
f∈F

cu,f · zu,f

Constraints:
Entry and Exit. The entry and exit nodes of the chain are represented by two fictive VNFs (inF
and outF) without any resource needs, so αinf,dvs

= 1 and αoutf,dvd
= 1.

Path continuity. For each Node u ∈ V , Demand d ∈ D, VNF number i ∈ {0, ..., |cd| − 1}∑
(v,u)∈ω−(u)

ϕfi,fi+1,d
vu −

∑
(u,v)∈ω+(u)

ϕfi,fi+1,d
uv + αfi,d

u − αfi+1,d
u = 0. (2.1)

Node capacity constraints. The capacity of a node u in V is shared between each path between
VNFs and cannot exceed Cu. For each Node u ∈ V .

∑
d∈D

bwd

|cd|−1∑
i=0

∆fi
· αfi,d

u ≤ Cu. (2.2)

Link capacity constraints. The capacity of a link (u, v) ∈ E is shared between each path between
VNFs and cannot exceed Cuv. For each Link (u, v) ∈ E.

∑
d∈D

bwd

|cd|−1∑
i=0

ϕfi,fi+1d
uv ≤ Cuv. (2.3)

Functions activation. To know which functions are activated on which nodes. For each Node
u ∈ V , Function f ∈ F , Demand d ∈ D, VNF number i ∈ {0, ..., |cd| − 1}.

αfi,d
u ≤ zu,fi

(2.4)

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For each Demand d ∈ D, Node u ∈ V , VNF number i ∈ {0, ..., |cd| − 1}, if the (i + 1) − th
function of cd cannot be installed on Node u, we add the following constraint.

αdu,i = 0 (2.5)

2.5.2 Our ILP formulation layer-ILP

To solve the static R&P (Routing and Provisioning) problem in which a routing and a provisioning
of VNF is given for each SFC, we use the ILP (layer-ILP) given below.layer-ILP routes
the demands by finding a path on the layered graph for each of them. In doing this, both node
and link capacities must be respected as they are shared among all the demands. The ILP has the
minimisation of the network operational cost (i.e., bandwidth cost and network function activation
cost) as an objective. As network functions can be shared, the ILP tries to activate a small number

68 Service Function Chain Placement

of network functions. The parameter β ≥ 0 specified by the network administrator accounts
for different scales over which the functions’ activation cost is put in relationship with the net-
work bandwidth cost. β represents how many TB/s of data can be sent when using a dollar. Its
dimension thus is TB/dollars, giving that our objective function formally expresses a bandwidth.

Model.
layer-ILP takes as an input the set of demandsD. The output corresponds to the minimum cost
SFC-R&P.
Variables:
• ϕduv,i ≥ 0 is the amount of flow on Link (u, v) in Layer i for Demand d.
• αdu,i ≥ 0 is the fraction of flow of Demand d using Node u in Layer i.
• zu,f ∈ {0, 1}, where zu,f = 1 if function f is activated on Node u.

Objective: minimise the amount of network resources consumed.

min
∑
d∈D

∑
(u,v)∈E

|cd|∑
i=0

bwd · ϕduv,i + β ·
∑
u∈V

∑
f∈F

cu,f · zu,f

Constraints:
Flow conservation constraints. For each Demand d ∈ D, Node u ∈ V .

∑
(u,v)∈ω+(u)

ϕduv,0 −
∑

(v,u)∈ω−(u)
ϕdvu,0 + αdu,0 =

{
1 if u = vs

0 else
(2.6)

∑
(u,v)∈ω+(v)

ϕduv,|cd| −
∑

(v,u)∈ω−(v)
ϕdvu,|cd| − α

d
u,|cd|−1 =

{
−1 if v = vd

0 else
(2.7)

∑
(u,v)∈ω+(u)

ϕduv,i −
∑

(v,u)∈ω−(u)
ϕdvu,i + αdu,i − αdu,i−1 = 0.(0 < i < |cd|) (2.8)

Node capacity constraints. The capacity of a node u in V is shared between each layer and cannot
exceed Cu. For each Node u ∈ V .

∑
d∈D

bwd

|cd|−1∑
i=0

∆f
cd
i
· αdu,i ≤ Cu. (2.9)

Link capacity constraints. The capacity of a link (u, v) ∈ E is shared between each layer and
cannot exceed Cuv. For each Link (u, v) ∈ E.

∑
d∈D

bwd

|cd|∑
i=0

ϕduv,i ≤ Cuv. (2.10)

Functions activation. To know which functions are activated on which nodes. For each Node
u ∈ V , Function f ∈ F , Demand d ∈ D, Layer i ∈ {0, ..., |cd| − 1}.

αdu,i ≤ zu,fcd
i

(2.11)

Service Function Chain Placement 69

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For each Demand d ∈ D, Node u ∈ V , layer i ∈ {0, ..., |cd| − 1}, if the (i+ 1)− th function of
cd cannot be installed on Node u, we add the following constraint.

αdu,i = 0 (2.12)

2.6 R&P for a single demand

Note first that even routing a single demand is NP-hard. Indeed, it is equivalent to finding a
shortest Weight-Constrained Path [GJ02] in the layered graph as link and node capacities are
shared between layers [HJG18]. A solution is to use the ILP for static R&P in which all the
demands routed in the past are fixed. The ILP routes the demand (if possible) with the goal of
minimising the additional needed cost without exceeding the available network resources. To deal
with the already installed network function, the current cost c̃u,f of installing a network function
f on a Node u is defined as follows. Let I be the set with the already installed network function,
then c̃u,f = 0 if (u, f) ∈ I, and cu,fotherwise.

ILP takes as an input a demand d = (vs, vd, cd, bwd) and the network. We denote by Ru the
residual capacity of a Node u, and finally by Ruv the residual capacity of a link (u, v).

2.6.1 State of the Art ILP formulation, single demand

Variables:
• ϕf,f ′,duv ∈ {0, 1} where ϕf,f

′,d
uv = 1 if Link (u, v) is used by demand d between VNF f and f ′.

• αf,du ∈ {0, 1} where αf,du = 1 if Node u is used by VNF f from demand d.
• zu,f ∈ {0, 1}, where zu,f = 1 if function f is activated on Node u.
Objective: minimise the amount of network resources consumed.

min
∑
d∈D

∑
(u,v)∈E

|cd|−1∑
i=0

bwd · ϕfi,fi+1,d
uv + β ·

∑
u∈V

∑
f∈F

c̃u,f · zu,f

Constraints:
Entry and Exit. The entry and exit nodes of the chain are represented by two fictive VNFs (inF
and outF) without any resource needs, so αinf,dvs

= 1 and αoutf,dvd
= 1.

Path continuity. For each Node u ∈ V , Demand d ∈ D, VNF number i ∈ {0, ..., |cd| − 1}∑
(v,u)∈ω−(u)

ϕfi,fi+1,d
vu −

∑
(u,v)∈ω+(u)

ϕfi,fi+1,d
uv + αfi,d

u − αfi+1,d
u = 0. (2.13)

Node capacity constraints. The capacity of a node u in V is shared between each layer and cannot
exceed Ru. For each Node u ∈ V .

∑
d∈D

bwd

|cd|−1∑
i=0

∆fi
· αfi,d

u ≤ Ru. (2.14)

Link capacity constraints. The capacity of a link (u, v) ∈ E is shared between each layer and
cannot exceed Ruv. For each Link (u, v) ∈ E.

∑
d∈D

bwd

|cd|−1∑
i=0

ϕfi,fi+1d
uv ≤ Ruv. (2.15)

70 Service Function Chain Placement

2.6.2 Our ILP formulation, single demand

Variables:
• ϕuv,i ≥ 0 is the amount of flow on Link (u, v) in Layer i.
• αu,i ≥ 0 is the fraction of flow of the demand using Node u in Layer i at time step t.

Objective: minimise the additional increase in terms of network operational cost.

min
∑

(u,v)∈E

|cd|∑
i=0

bwd · ϕuv,i + β ·
∑
u∈V

|cd|−1∑
i=0

c̃u,fcd
i
· αu,i

Constraints:
Flow conservation constraints. For each Node u ∈ V .∑

(u,v)∈ω+(u)
ϕuv,0 −

∑
(v,u)∈ω−(u)

ϕvu,0

+ αu,0 =
{

1 if u = vs

0 else
(2.16)∑

(u,v)∈ω+(v)
ϕuv,|cd| −

∑
(v,u)∈ω−(v)

ϕvu,|cd|

− αu,|cd|−1 =
{
−1 if v = vd

0 else
(2.17)∑

(u,v)∈ω+(u)
ϕuv,i −

∑
(v,u)∈ω−(u)

ϕvu,i + αu,i − αu,i−1 = 0.

0 < i < |cd| (2.18)

Node capacity constraints. The capacity of a node u in V is shared between each layer and cannot
exceed the residual capacity Ru. For each Node u ∈ V .

bwd

|cd|−1∑
i=0

∆f
cd
i
· αu,i ≤ Ru. (2.19)

Link capacity constraints. The capacity of a link (u, v) ∈ E is shared between each layer and
cannot exceed the residual capacity Ruv. For each Link (u, v) ∈ E.

bwd

|cd|∑
i=0

ϕuv,i ≤ Ruv. (2.20)

2.7 Weight Constrained Shortest Path based heuristic

Another possibility that we have studied is to adapt the pseudo-polynomial algorithms proposed
for the shortest Weight-Constrained Path problem such as the Label-setting algorithm based on
dynamic programming [ID05]. We present in this section the algorithms implemented for the static
problem. Although the solution in subsection 2.6.2 is a ILP, the execution time for a single demand
is negligible (less than 10ms for the largest networks tested). This heuristic (Algorithm 4) was

Service Function Chain Placement 71

therefore made for the static placement problem for a large number of SFCs when the execution
time of subsection 2.5.2 is too long. It calls the sub-procedures 5, 6, and 7 described in the
following subsections.

2.7.1 Algorithm 4: Finding a good static placement

Algorithm 4 is the algorithm called to find a good placement for a set of SFCs. It takes as input
the graph G, the list of SFCs to be placed, the list of functions, the β parameter of the objective,
and a parameter nbVnfToShut. nbVnfToShut represents the maximum number of VNFs to try to
turn off to improve the objective, the larger it is the more time the algorithm takes, but the greater
the chance of a good placement there is. The principle of the algorithm is to iteratively place each
SFC through a configuration of functioning VNFs. As the VNFs are turned off to improve the
objective, a new placement is computed for all SFCs. In line 2 the layer graph G′ is created and in
line 3, the variable adj is pointing to the adjacency dictionary of G′.

Between lines 4 and 9 a first placement for the set of SFCs is computed by leaving all VNFs on.
This placement is iteratively calculated using Algorithm 5 and the capacities of G′ are decreased
at each iteration. The parameter β is not given as an input to Algorithm 5, therefore the algorithm
only minimise links utilisation (path size). If an allocation is impossible then the algorithm returns
false and no allocation for the whole set of SFCs is found. This first allocation and its objective is
saved in line 8 and 10. In line 11 the usage of every VNF on every datacenter is recovered from
the allocation in addition to the number of every VNF instances. Then these information are given
as input to Algorithm 7 which returns a list of VNFs to be turned off (the length of this list is
nbVnfToShut). This list is added to a stack: stackToShut. From line 15 the algorithm iterates until
stackToShut is empty.

The last list in the stack is removed and a VNF is taken from this list. The list is returned to
the stack in line 19. In line 20 it is checked that the current configuration of switched off VNFs
(counting the one removed from the list) has not already been tried. If the configuration is not
already tried, it is saved and the VNF to be turned off is stack in stackToTurn to be turned on later
to tried other configurations.

In lines 25 and 26 the VNF is turned off by removing the link in G′ and the capacities of G′

are reset. Between lines 27 and 33 the placement for the set of SFCs is computed with the new
configuration of VNFs turned on. If the allocation is possible, the objective is checked and if it is
better than the older one, the allocation is saved and a new list of VNFs to turn off is added to the
stack. If the allocation is not possible, in lines 42 and 43 the last VNF turned off is turned back on,
and another VNF from the queue will be tested, until stackToShut is empty. The best placement is
then returned.

2.7.2 Algorithm 5: Finding the best routing

Algorithm 5 is the algorithm of the Weight Constrained Shortest Path problem and it is called
to find the best placement for a single SFC for a configuration of activated VNFs. It takes as
input adj (the adjacency dictionary of G′), the list of SFCs to be placed, the list of functions,
the β parameter of the objective, and a parameter nbVnfToShut. The algorithm does not need G′

because adj is already pointing to its links. This algorithm uses labels: a label is the identification
of a path from the source of the SFC to a given node of G′. A label consists of the path, its cost,
resourceUsed (a dictionary of resources used by the path), and a list of pointers to its child labels.

72 Service Function Chain Placement

Algorithm 4: FindGoodAllocation
Data: G, listSfc, functions, β, nbVnfToShut
Result: Find a good allocation for a list of SFCs

1 bestAlloc, currentAlloc←− void dictionaries;
2 G’←− Create layer graph of G;
3 adj←− Adjacency dictionary of G’;
4 for sfc in listSfc do
5 possibleRouting, routing←− FindRouting(adj, sfc, 0);
6 if not possibleRouting then
7 return False, void;
8 bestAlloc[sfc]←− routing;
9 G’.updateCapacity(routing);

10 bestObj←− Objective of bestAlloc;
11 usedDC, nbVnfPresent←− Datacenter usage and number of each vnf used by bestAlloc;
12 listVnfToShut←− FindVnfToShut(usedDC, nbVnfPresent, nbVnfToShut);
13 stackToShut, stackToTurn, configurationsTried←−void lists;
14 stackToShut.push(listVnfToShut);
15 while stackToShut.length > 0 do
16 currentList←− stackToShut.pop();
17 if currentList.length > 0 then
18 (v,f)←− currentList.pop();
19 stackToShut.push(currentList);
20 if currentConfiguration in configurationsTried then
21 continue;
22 else
23 configurationsTried.append(currentConfiguration);
24 stackToTurn.push((v, f));
25 G’.removeVnf(v,f);
26 G’.resetCapacities();
27 for sfc in listSfc do
28 possibleRouting, routing←− FindRouting(adj, sfc, 0);
29 if not possibleRouting then
30 break;
31 currentAlloc[sfc]←− routing;
32 G’.updateCapacity(routing);
33 if possibleRouting then
34 obj←− Objective of currentAlloc;
35 if obj < bestObj then
36 bestObj←− obj;
37 bestAlloc←− currentAlloc;
38 usedDC, nbVnfPresent←− Datacenter usage and number of each vnf

used by currentAlloc;
39 listVnfToShut←− FindVnfToShut(usedDC, nbVnfPresent,

nbVnfToShut);
40 stackToShut.push(listVnfToShut);
41 else
42 (v,f)←− stackToTurn.pop();
43 G’.addVnf(v,f);
44 return True, bestAllocation;

Service Function Chain Placement 73

For each link or datacenter used by the path, resourceUsed records the amount of resources used
for that link/datacenter.

An important property of labels is dominance, represented by Algorithm 6. One label domi-
nates another if its cost is lower and if for each resource used, the second label consumes at least
as much.

At the start of Algorithm 5 a first label is created, starting from the source of the SFC, and is
placed on the stack labelToTreat. The algorithm iterates until the stack is empty. When a label is
taken from the stack, if it is still active (none of the ancestor is dominated), the algorithm iterates
on its adjacent edges. For every edge, the capacity is checked (the multiplier is greater than 0 if
the edge represents a VNF) and a new cost is created.

If the edge is a VNF, β is added to the cost, but is the real β from the objective was used. This
algorithm would find the best placement with the best allocation and a big part of Algorithm 4
would be useless. On the contrary, in lines 5 and 28 of Algorithm 4 0 is given as a parameter
instead of β. By running the algorithm with β instead of 0, the computation time becomes too
important and does not allow the use of the algorithm. Instead Algorithm 4 controls the VNF
allocations.

In lines 23 to 25, the path and the resourceUsed of the new label are created. If the destination
is reached, the cost and the path are saved in line 28. The new child label of the current label is
created and its dominance is checked against all the labels already saved on the edge in line 33. If
the new label is dominated, it is discarded, but if it dominates a label, this one is turned off (and all
of its childs are turned off recursively). The new label is then added to the edge and to the stack.
At the end, the algorithm returns the best placement for the SFC.

2.7.3 Algorithm 7: Choosing the VNFs to turn off

Algorithm 7 is the algorithm used to find a list of VNFs to turn off. It takes as input UsedDC:
the usage of every VNF on every datacenter, nbVnfPresent, the number of every VNF instances,
and nbVnftoShut, the number of VNFs to turn off. The objective of the algorithm is to minimise
the cost. The cost being defined by the bandwidth used on the paths and the number of VNFs
deployed, it is relevant to try to turn off as many VNFs as possible.

To turn off a VNF, the algorithm takes the least used VNF as long as it is not the last instance
of a function.

2.8 Numerical Results for layer-ILP and state-of-art-ILP

In this section we compare the efficiency of layer-ILP and state-of-art-ILP to observe
whether modelling using the layered graph improves or impairs computation times.

We conduct experiments on two real-world topologies from SNDlib [OWPT10] of different
sizes: pdh (11 nodes, 34 links), and ta1 (24 nodes, 55 links). We generate our problem instances
as follows. To create the scenarios we vary the number of VNFs used by the demands and the
number of SFCs to be placed. Each demand is associated with an ordered sequence of 4 to 6 func-
tions (depending on the scenario) uniformly chosen at random from a set of 6 different functions.
Each demand set contains 50 or 100 SFCs to be placed.

To identify the difference in performance between the two algorithms each scenario is run
with different maximum computation times, 5, 10, 30, 60 and 300 seconds. At the end of
the simulation, if the two algorithms have given a solution, their two objectives are compared

74 Service Function Chain Placement

and a ratio is calculated. The ratio is the percentage improvement of one algorithm over the
other. When the two objectives are equal, the ratio is 0. If the objective of layer-ILP
is better than state-of-art-ILP then the ratio is negative and represents the percent-
age improvement of layer-ILP over state-of-art-ILP. Conversely, if the objective of
state-of-art-ILP is better than that of layer-ILP, then the ratio is positive and repre-
sents the percentage improvement of state-of-art-ILP over layer-ILP

Each scenario is performed on 10 instances and the results are summarised in tables 2.2 for
pdh and 2.3 for ta1. For pdh the difference between the two solutions is rarely more than 5%:
it reaches 8.3% in favour of layer-ILP for 100SFCs composed of 6VNFs to be placed in less
than 10 seconds. The average ratio is less than 1% difference and the number of instances that did
not give a result due to lack of time is 5 for layer-ILP as for state-of-art-ILP.

For ta1 again the ratio rarely exceed 5%, it reaches 18.4% in favour of layer-ILP for
50 SFCs composed of 5 VNFs in 10 seconds but this gap would surely be reduced if we did a
larger number of experiments. The average ratio is less than 1% difference and the number of
instances that did not give a result due to time constraints is slightly higher for layer-ILP with
58 iterations without result against 56 for state-of-art-ILP.

These results do not show any difference in effectiveness between layer-ILP and
state-of-art-ILP.

2.9 Conclusion

After extensive simulations, the heuristic presented in section 2.7 did not prove to be effective.
Algorithm 4 when used for a single SFC with the beta parameter does not allow to find a dynamic
placement as quickly as the two ILPs from section 2.6.

Algorithm 5, sometimes gives results considerably faster than the ILPs from section 2.5: up
to a factor of 10 when the ILPs take more than 600 seconds. Unfortunately the quality of the
solutions is very uneven, the objective is up to 2.5 times higher. Although Algorithm 7 turns off
the less used VNFs, they are sometimes essential to a good solution and are used a lot more in an
optimal solution. In low congestion scenarios where many of the VNFs are not used, turning off
the VNFs step by step is often a bad solution. In such a scenario a better heuristic idea would be
to maybe on the contrary turn on the VNFs gradually until a possible solution is founded and the
objective does not decrease any more.

Furthermore, since the heuristic searches for a solution iteratively for each SFC, it does not
always find a solution for a set of SFCs when the ILPs return an optimal solution. Finally, when
the problem has many SFCs and no solution, the heuristic can take several seconds to detect it,
whereas it takes less than a second for the ILPs.

In this chapter we have seen several ways to model the ordering of network functions within an
SFC. The formulation layer-ILP developed in this chapter, based on the layer graph, transforms
the routing and allocation problem into a routing problem. This formulation, while not improving
or degrading execution times, allows for an intuitive modelling of ordered chains and will be used
throughout this thesis.

REFERENCES 75

Algorithm 5: FindRouting
Data: adj, sfc, β
Result: Find a weight constrained shortest path in the layer graph

1 labelToTreat←− void stack;
2 currentLabel←− newLabel(path = [sfc.src_layer0], cost = 0, resourceUsed = dictionary);
3 bestCost←− +∞ ;
4 bestRouting←− void;
5 labelToTreat.push(currentLabel);
6 while labelToTreat.length > 0 do
7 currentLabel←− labelToTreat.pop();
8 if not currentLabel.isOn() then
9 continue; . # If an antecedent of this label is dominated

10 for edge in adj[currentLabel.path.LastNode] do
11 if edge.dst in currentLabel.path then
12 continue;
13 if currentLabel.resourceUsed[edge] + sfc.bandwidth*edge.multiplier >

edge.capacity then
14 continue; . # We check the capacity of the edge
15 cost←− currentLabel.cost;
16 if edge.isLink() then
17 cost←− cost + sfc.bandwidth;
18 else
19 if edge.isVnf() then
20 cost←− cost + β ;
21 if cost > bestCost then
22 continue; . # We check if a routing with a better cost is already found
23 resourceUsed←− currentLabel.resourceUsed;
24 resourceUsed[edge]←− resourceUsed[edge] + sfc.bandwidth*edge.multiplier;
25 path←− currentLabel.path + edge; . # We find the destination
26 if edge.dst is sfc.dst_lastLayer then
27 if cost < bestCost then
28 bestCost←− cost;
29 bestRouting←− path;
30 else
31 labelToAdd←− newLabel(path = path, cost = cost, resourceUsed =

resourceUsed);
32 addLabel←− True;
33 for label in edge.dst.labelSaved do
34 if dominate(label, labelToAdd) . # If the new label is dominated
35 then
36 addLabel←− False;
37 break;
38 if dominate(labelToAdd, label) . # If the new label dominate the old one
39 then
40 label.turnOff();
41 if addLabel then
42 labelToTreat.push(labelToAdd);
43 edge.dst.labelSaved.append(labelToAdd);
44 if bestRouting = void then
45 return False, bestRouting;
46 return True, bestRouting;

76 REFERENCES

Algorithm 6: dominate
Data: label1, label2
Result: Indicates if label1 dominate label2

1 if label1.cost >= label2.cost then
2 return False;
3 for r in label1.resourceUsed do
4 if not r in label2.resourceUsed then
5 return False;
6 if not label1.resourceUsed[r] >= in label2.resourceUsed[r] then
7 return False;
8 return True;

Algorithm 7: FindVnfToShut
Data: usedDC, nbVnfPresent, nbVnfToShut
Result: Find the next VNFs to turn off

1 listVnfToShut←− void list;
2 for (i=0, i<nbVnfToShut, i++) do
3 smallerUse←− +∞ ;
4 smallerVnf←− void;
5 for v in usedDC do
6 for f in usedDC[v] do
7 if (usedDC[v][f] < smallerUse) And (nbVnf[f] > 1) And ((v,f) not in

smallerVnf) then
8 smallerUse←− usedDC[v][f];
9 smallerVnf←− (v,f);

10 listVnfToShut.append(smallerVnf);
11 nbVnf[smallerVnf.f]←− nbVnf[smallerVnf.f] - 1;
12 return listVnfToShut;

REFERENCES 77

50
SF

C
s

Ti
m

e
5s

10
s

30
s

60
s

30
0s

#
of

V
N

Fs
4

5
6

4
5

6
4

5
6

4
5

6
4

5
6

R
at

io
(%

)
0.

4
0.

4
-1

.8
0.

7
1.

1
0.

9
0.

1
-0

.3
0

0
0

0
0

0
0

A
ve

ra
ge

R
at

io
(%

)
0.

1

#
of

in
st

an
ce

s
w

ith
ou

ts
ol

ut
io

n
l
a
y
e
r
-
I
L
P

:0
s
t
a
t
e
-
o
f
-
a
r
t
-
I
L
P

:0

10
0

SF
C

s
Ti

m
e

5s
10

s
30

s
60

s
30

0s
#

of
V

N
Fs

4
5

6
4

5
6

4
5

6
4

5
6

4
5

6
R

at
io

(%
)

-2
.2

0
0.

9
-4

.0
1.

9
-8

.3
0

-0
.1

-0
.1

-2
.2

-0
.4

0.
3

-0
.1

-0
.4

-0
.3

A
ve

ra
ge

R
at

io
(%

)
-1

#
of

in
st

an
ce

s
w

ith
ou

ts
ol

ut
io

n
l
a
y
e
r
-
I
L
P

:5
s
t
a
t
e
-
o
f
-
a
r
t
-
I
L
P

:5

Table 2.2 – Efficiency ratio between layer-ILP and state-of-art-ILP in percentage on
the pdh network (numbers in blue are in favour of layer-ILP and numbers in red are in favour
of state-of-art-ILP.)

78 REFERENCES

50
SF

C
s

Ti
m

e
5s

10
s

30
s

60
s

30
0s

#
of

V
N

Fs
4

5
6

4
5

6
4

5
6

4
5

6
4

5
6

R
at

io
(%

)
2.

1
5.

8
-4

.4
-0

.2
-1

8.
4

-0
.4

-0
.5

-0
.2

-0
.1

-0
.9

0.
1

1.
0

-0
.1

0
0

A
ve

ra
ge

R
at

io
(%

)
-1

.1

#
of

in
st

an
ce

s
w

ith
ou

ts
ol

ut
io

n
l
a
y
e
r
-
I
L
P

:0
s
t
a
t
e
-
o
f
-
a
r
t
-
I
L
P

:0

10
0

SF
C

s
Ti

m
e

5s
10

s
30

s
60

s
30

0s
#

of
V

N
Fs

4
5

6
4

5
6

4
5

6
4

5
6

4
5

6
R

at
io

(%
)

7.
7

0
0

3.
7

0
0

0.
3

-0
.8

2.
3

1.
3

-3
.2

2.
1

-0
.7

-2
.1

-0
.3

A
ve

ra
ge

R
at

io
(%

)
0.

7

#
of

in
st

an
ce

s
w

ith
ou

ts
ol

ut
io

n
l
a
y
e
r
-
I
L
P

:5
8

s
t
a
t
e
-
o
f
-
a
r
t
-
I
L
P

:5
6

Table 2.3 – Efficiency ratio between layer-ILP and state-of-art-ILP in percentage on
the ta1 network (numbers in blue are in favour of layer-ILP and numbers in red are in favour
of state-of-art-ILP.)

References
[00114] ETSI GS NFV-MAN 001. Etsi gs nfv-man 001 v1.1.1 (2014-12)network functions

virtualisation (nfv);management and orchestration. https://www.etsi.org/
deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-
man001v010101p.pdf, 12 2014.

[ABBS15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. Virtual net-
work functions placement and routing optimization. In 2015 IEEE 4th International
Conference on Cloud Networking (CloudNet), pages 171–177, 2015.

[CLBB+15] Marcelo Caggiani Luizelli, Leonardo Bays, Luciana Buriol, Marinho Barcellos, and
Luciano Gaspary. Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions. 05 2015.

[DW16] Abhishek Dwaraki and Tilman Wolf. Adaptive service-chain routing for virtual net-
work functions in software-defined networks. In Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization, pages 32–37,
2016.

[FAPZ11] Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann. VNR algo-
rithm: A greedy approach for virtual networks reconfigurations. In IEEE Global
Telecommunications Conference - GLOBECOM, pages 1–6. IEEE, 2011.

[Fou15] Open Networking Foundation. Tr-518 relationship of sdn and nfv.
https://opennetworking.org/wp-content/uploads/2014/
10/onf2015.310_Architectural_comparison.08-2.pdf, 10 2015.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, volume 29.
wh freeman New York, 2002.

[HB16] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A com-
prehensive survey. IEEE Transactions on Network and Service Management (IEEE
TNSM), 13(3):518–532, 2016.

[HJG18] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. Optimal network service
chain provisioning. IEEE/ACM Transactions on Networking (ToN), 26(3):1320–
1333, June 2018.

[ID05] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource constraints.
In Column generation, pages 33–65. Springer, 2005.

[KF13] Hyojoon Kim and Nick Feamster. Improving network management with Software
Defined Networking. IEEE Communications Magazine, 51(2):114–119, 2013.

[KLLT18] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking (TON), 26(4):1562–1576, 2018.

79

https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf
https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf

80 BIBLIOGRAPHY

[M. 13] M. Chiosi et al. Network functions virtualisation (NFV) network operator perspec-
tives on industry progress. In SDN & OpenFlow World Congress, Dusseldorf, Ger-
many, October 2013.

[M+16] Rashid Mijumbi et al. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262, 2016.

[MTC+19] Cédric Morin, Geraldine Texier, Christelle Caillouet, Gilles Desmangles, and Cao-
Thanh Phan. Vnf placement algorithms to address the mono-and multi-tenant issues
in edge and core networks. In 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet), pages 1–6, 2019.

[OWPT10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[QN15] P. Quinn and T. Nadeau. Problem statement for service function chaining. RFC
7498, RFC Editor, April 2015.

[SJG+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye. Provably efficient
algorithms for joint placement and allocation of virtual network functions. In An-
nual Joint Conference of the IEEE Computer and Communications Societies (INFO-
COM), pages 1–9. IEEE, 2017.

[SMGZ17] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. En-
ergy efficient algorithm for vnf placement and chaining. pages 579–588, 05 2017.

[TGHP18] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane Pérennes. Prov-
ably efficient algorithms for placement of Service Function Chains with ordering
constraints. In Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), pages 774–782, Honolulu, Hawai, US, 2018. IEEE.

[WBIC19] Adrien Wion, Mathieu Bouet, Luigi Iannone, and Vania Conan. Change in continu-
ity: Chaining services with an augmented igp. IEEE Transactions on Network and
Service Management, 16(4):1332–1344, 2019.

CHAPTER 3
Service Function Chains

Reconfiguration
Software Defined Networking (SDN) and Network Function Virtualisation (NFV) are
complementary and core components of modernised networks. In this chapter, we con-
sider the problem of reconfiguring Service Function Chains (SFC) with the goal of bring-
ing the network from a sub-optimal to an optimal operational state.
We propose optimisation models based on the make-before-break mechanism, in which
a new path is set up before the old one is torn down. Our method takes into consideration
the chaining requirements of the flows and scales well with the number of nodes in the
network.
We show that, with our approach, the network operational cost defined in terms of both
bandwidth and installed network function costs can be reduced and a higher acceptance
rate can be achieved, while not interrupting the flows.

This chapter is part of the articles [GTGM19b, GTGM19a, GTGM21].

81

82 Service Function Chains Reconfiguration

3.1 Introduction . 83
3.2 Related Work . 84
3.3 Problem Statement and Notations 85
3.4 Modeling . 85

3.4.1 Objective . 88
3.4.2 Break-Free-ILP Reconfiguration (Make-before-break) . 88
3.4.3 Heuristic Break-Free-HEUR 91

3.5 Numerical Results . 94
3.5.1 Data sets . 95
3.5.2 Low-traffic scenario - Resource usage 96
3.5.3 High-Traffic scenario - Acceptance Rate 99
3.5.4 Low-Traffic scenario - Impact of Parameter β 100
3.5.5 Execution Times to Compute the Reconfiguration 103
3.5.6 Reconfiguration Rate . 104
3.5.7 Percentage of rerouted requests 106
3.5.8 Percentage of Transient VNFs instantiated during reconfigu-

ration . 107
3.6 Conclusion . 108
References . 109

Service Function Chains Reconfiguration 83

3.1 Introduction

The last decade has seen the development of new paradigms to pave the way for a more flexible,
open, and economical networking. In this context, SDN and NFV are two of the most promising
technologies for the Next-Generation Network.

• SDN which aims at simplifying network management by decoupling the control plane from
the data plane. See subsection 0.2.1 for more details on SDN.

• NFV which allows network functions (e.g., firewall, load balancer, content filtering or deep
packet inspection) to be implemented in software and executed on generic-purpose servers
located in small cloud nodes. See subsubsection 0.2.2.1 for more details on NFV.

Even though SDN and NFV are two different independent technologies, they are comple-
mentary. Each one can leverage off the other to improve networks and service delivery over
them [MGT+15]. Service Function Chaining (SFC) [QN15] can take advantage of these tech-
nologies, with VNFs being strategically placed to reach the service destination, and SDN allowing
VNFs to be chained easily together. See subsubsection 0.2.2.2 for more details on SFC.

Reconfiguring The network state changes continually due to the arrival and departure of flows.
Moreover, the allocation of a demand is performed individually without having full knowledge
of the incoming traffic. This may lead to a sub-optimal utilization of the resources of the net-
work. For instance, requests may be routed on long paths, and there may be more active network
functions than needed. An optimal or near-optimal resource allocation may result after a lapse
of time in over-provisioning or in an inefficient resource usage. Also, it may lead to a higher
blocking probability even though there are enough resources to serve new demands. Indeed, as
reported by [FAPZ11], 99% of rejections were caused by bandwidth shortage even though there
were enough resources to satisfy the request.

Therefore, operators must take it into consideration and adjust network configurations in
response to changing network conditions to fully exploit the benefits of the SDN and NFV
paradigms, and to avoid undue extra cost (e.g., software licenses, energy consumption, and Service
Level Agreement (SLA) violation).

Thus, another problem is how to reroute traffic flows through the network and how to improve
the mapping of network functions to nodes. In order to minimise the network’s operator cost and
to optimise the usage of network resources, we consider the problem of reconfiguring regularly
the demands, i.e., moving them from a local optimal allocation to a global optimal one.

Make-Before-Break Reconfiguration can be performed at several moments in time. It can be
done as soon as a new request arrives [GR18], when a request is rejected [TTG13], when the
physical network is modified [CLX+10], or it could also be done periodically when the network
is not yet saturated.

Rerouting demands and migrating VNFs may take several time steps. If during this time,
traffic is interrupted, it may have a non-negligible impact on the QoS experienced by the users.
To tackle this issue, our strategy performs the reconfiguration by using a two–phase approach.
First, a new route for the transmission is established while keeping the initial one enabled (i.e.,
two redundant data streams are both active in parallel), and after the network has been updated to
the new state, the transmission moves on the new route and the resources used by the initial one

84 Service Function Chains Reconfiguration

are released. This strategy is often referred to as make-before-break.
See subsection 0.2.4 and subsubsection 0.2.4.2 for more details on reconfiguration and the make-
before-break technique.

The results of our numerical evaluations lead to the following conclusions.

• Break-Free-ILP allows to reduce the network cost and increase the acceptance rate. It
can achieve, in most of the considered cases, a gain close to the one of a reconfiguration
algorithm that interrupts the requests (referred to as Breaking-Bad in the following), as
proposed in the literature.

• It is important to consider mechanisms limiting the impact on the demands. Indeed, as we
show in subsection 3.5.7, the percentage of demands which have to be rerouted to achieve a
significant gain in terms of network cost or acceptance rate may be very high.

• Network reconfiguration needs to be performed frequently in order to achieve a significant
gain. However, this reconfiguration can be quickly computed and carried out, making it
possible to be put into practice in real time.

The rest of this chapter is organized as follows. In section 3.2, we discuss related work. In
section 3.3, we formally state the problem addressed in this Chapter. The section 3.4 presents the
optimisation framework and develops the optimisation models for reconfiguring the network. In
section 3.5, we validate our proposed optimisation models by various numerical results on two
real–world network topologies of different sizes. Finally, we draw our conclusion in section 3.6.

3.2 Related Work

The problem of how to deploy and manage network services conceived as a chain of VNFs is
summarised in chapter 2

Although a lot of effort has been made to develop efficient strategies to route demands and
satisfy their chaining requirements [KLLT18, TGHP18], not enough has been made to improve
resources usage during network operation.

Recently, some research work has started to explore SDN capabilities for a more efficient
usage of the network resources by dynamically adapting the routing configuration over time. For
instance, Paris et al. [PDM+16] study the problem of online SDN controllers to decide when to
perform flow reconfigurations for efficient network updating such that the flow reallocation cost is
minimised. However, the network function requirements are not considered in their work. Indeed,
the traffic of a request may need to be steered to traverse middleboxes implementing the required
network functions.

In [NKT19], Noghani et al. study the trade-off between the reconfiguration of SFCs and the
optimality of the reconfigured routing and placement solution.

In [HFS+19], Harutyunyan et al proposes a MILP to solve the problem of slices embedding,
modeled by SFCs. They compare different placement strategies and study their trade-offs. They
then propose a slice embedding heuristic to minimise the number of vnf migrations.

Wei et al [WFS+20] proposes a slice reconfiguration algorithm in the core network exploiting
Deep Reinforcement Learning to maximise the use of network resources. Deep Reinforcement
Learning is used to predict when to make reconfigurations. A reconfiguration consists in re-routing
the slice from the VNFs it uses to other VNFs, while taking into account a reconfiguration cost.

Service Function Chains Reconfiguration 85

The closest study to our work is from Liu et al. [LLZ+17]. They consider the problem of op-
timising VNFs deployment and readjustment to efficiently orchestrate dynamic demands. When
a new request arrives, the service provider can serve it or change the provisioning schemes of the
already deployed ones at time instances with a fixed interval in between. They consider the max-
imisation of the service provider’s profit which is the total profit from the served requests minus the
total deployment cost as an optimisation task. For this purpose, they formulate an Integer Linear
Programming (ILP) model. Then, to reduce the time complexity, they design a column generation
model. An important unaddressed issue concerns the revenue loss of an operator due to the QoS
degradation occurring when demands are reconfigured [EMAL17]. Indeed, in their model, trans-
missions may need to be interrupted in order to be moved to the new computed state. Different
from the above mentioned works, our aim is to provide efficient mechanisms to dynamically re-
allocate the demands without the consequential QoS deterioration due to the traffic interruption,
but instead using make-before-break strategy.

The Table 3.1 presents the main differences of the publications presented in this related work.

3.3 Problem Statement and Notations

We model the network as a directed graphG = (V,E), where V represents the set of nodes and E
the set of links. Both nodes and links have associated a capacity. The capacity of a link (u, v) ∈ E
is denoted by Cuv and defines the total bandwidth of the link. For a node u ∈ V , the capacity Cu
denotes the available resources such as CPU, memory, and disk; it is expressed as the number of
CPU cores. For this purpose, given the set of VNFs F , each f ∈ F has associated a value ∆f

defining the number of cores required by function f per unit of bandwidth. Also, each function f
has associated an installation cost cu,f which also depends on the node u. D represents the set of
demands. Each demand d ∈ D is modeled by a quadruple with vs the source, vd the destination,
cd the ordered sequence of network functions that need to be performed, and bwd the required
units of bandwidth. Table 3.2 defines the notation used throughout the chapter.

We consider a setting with splittable flows as it is frequent to have load balancing in net-
works [AFT07] and as it makes the model quicker to solve [GK07]. Following the model
of [SJG+17], a demand can follow different paths and the network functions of its chain can
be processed in different cloud nodes.
The optimisation task consists in routing each demand while minimising the network operational
cost defined in terms of bandwidth and VNFs cost (licenses, energy consumption, etc). Also, as the
dynamics related to the arrival and departure of demands may leave the network in a sub-optimal
operational state, we want to reconfigure the network to improve resources usage and to be able
to accommodate new incoming traffic. In doing this, we use the make-before-break mechanism
to avoid network services disruption due to traffic rerouting resulting from the re-optimisation
process.

See Figure 0.2.10 for an example.

3.4 Modeling

In the considered setting, demands arrive and leave the network. To route them, we consider them
one by one, and find the route which minimises the additional network operational cost to be paid.
Indeed, in an SDN network, even if multiple flows arrive simultaneously, they will be processed

86 Service Function Chains Reconfiguration

Reference

Type of requests

VNFs by Request

Allocation

Objective

Reconfiguration Done

Reconfiguration Cost

Uninterrupted Flow

ILP

Heuristic

Dynamic Programming

Reinforcement Learning

[K
L

LT
18

]
SF

C
U

p
to

8
D

yn
am

ic
M

ax
A

cc
ep

t
-

N
C

N
C

-
X

X
-

[T
G

H
P1

8]
SF

C
U

nk
no

w
n

St
at

ic
M

in
C

os
t

-
N

C
N

C
X

X
-

-
[P

D
M

+
16

]
Fl

ow
0

D
yn

am
ic

M
in

C
os

t
X

X
-

X
X

X
-

[E
M

A
L

17
]

SF
C

U
p

to
3

St
at

ic
M

ax
A

cc
ep

tM
in

C
os

t
X

X
-

X
X

-
-

[N
K

T
19

]
SF

C
U

p
to

4
D

yn
am

ic
M

in
C

os
t

X
X

-
X

-
-

-
[H

FS
+

19
]

SF
C

3
D

yn
am

ic
M

in
C

os
t

X
X

-
X

X
-

-
[W

FS
+

20
]

SF
C

2-
3

-
M

in
C

os
t

X
X

-
X

-
-

X
[L

L
Z

+
17

]
SF

C
U

p
to

5
D

yn
am

ic
M

ax
Pr

ofi
t

X
-

-
X

-
X

-
O

ur
W

or
k

SF
C

U
p

to
4

D
yn

am
ic

M
in

C
os

t
X

-
X

X
X

-
-

Table 3.1 – Related Work Summary where NC means Not Concerned, ’-’ means that the paper
does not deal with this parameter, and Xmeans that this parameter is addressed in the paper.

Service Function Chains Reconfiguration 87

G = (V,E) the network where V represents the set of nodes and E the set of
links.

Cuv capacity of a link (u, v) ∈ E expressed as its total bandwidth avail-
able.

Cu available resources∗such as CPU, memory, and disk of a node u ∈ V .
∆f number of cores required per unit of bandwidth required by the func-

tion f ∈ F .
cu,f installation cost of the function f ∈ F which also depends on the

node u.
(vs, vd, cd, bwd) each demand d ∈ D is modeled by a quadruple with vs the source,

vd the destination, cd the ordered sequence of network functions that
need to be performed, and bwd the required units of bandwidth.

Table 3.2 – Notation used throughout the Chapter

one by one by the SDN controller [MSB+17]. We then reconfigure the network to improve the
network operational cost when one of the following conditions holds:

• Periodically, after a given period of time;

• When the set of requests has changed significantly (after a given number of SFC arrivals
and departures);

• When a request arrives and cannot be accepted with the current provisioning and routing
solution.

The solution we propose, called Break-Free-ILP (for Break-Free Reconfiguration algo-
rithm), implements a make-before-break mechanism to avoid the interruption of the flows. In our
experiments, we compare its results with a reconfiguration algorithm which does not implement
such a mechanism, called Breaking-Bad (for Breaking-Bad Reconfiguration algorithm). This
algorithm breaks the flows before rerouting them, leading to packet losses and QoS degradation
for these flows. When a reconfiguration has to be carried out, Breaking-Bad considers ba-
sically a static setting with the requests present in the network and finds an optimal Routing &
Provisioning solution (R&P) without considering the current setting.

The algorithms presented in this chapter will use the concept of a layered graph, see the
section 2.4 in chapter 2 for a full description. To solve the problem of static routing and compute
the optimal allocation to a set of SFCs we used the ILP Breaking-Bad presented in subsec-
tion 2.5.2 of chapter 2. To route one demand when it dynamically arrives we use an ILP derived
from the previous one and working on the residual capacities of the network. It is presented in
subsection 2.6.2 of chapter 2. These models differ in the use of fractional variables, which allow
requests to be processed as flows rather than paths.

In this Section we present one optimisation model to reconfigure the network with the make-
before-break mechanism of Break-Free-ILP (subsection 3.4.2). For large networks, the
models may take a prohibitive time to be solved. We thus also propose a heuristic algorithm,
Break-Free-HEUR, to solve large instances in subsection 3.4.3.

88 Service Function Chains Reconfiguration

3.4.1 Objective

For all models used here (both reconfiguration and allocation of SFCs), we need to find valid SFC
allocations. The demands are routed by finding a path on the layered graph for each of them.
In doing this, both node and link capacities must be respected as they are shared among all the
demands. The objective is to minimise the network operational cost (i.e., bandwidth cost and
network function activation cost). As network functions can be shared, it may be better to activate
a small number of network functions. The parameter β ≥ 0 specified by the network administrator
accounts for different scales over which the functions’ activation cost is put in relationship with the
network bandwidth cost. β represents how many TB/s of data can be sent when using a dollar. Its
dimension thus is TB/dollars, giving that our objective function formally expresses a bandwidth.

3.4.2 Break-Free-ILP Reconfiguration (Make-before-break)

A first way to perform the reconfiguration at a given time t is to try to reconfigure to optimal.
This is done in two phases. In the first one, we compute a minimum cost routing for the set of
demands present at time t. This can be done by using the model for static R&P presented in
subsection 2.5.2. In the second one, we compute the transitions from the current routing to the
optimal routing for each demand, taking into account the intermediate make-before-break steps
during which two paths may co-exist for demands that need to be moved. This can be done using
the ILP presented in this section, taking as inputs the current and the minimum cost solutions.

However, the transitions to an optimal solution may be long to compute or even impossible to
carry out. Indeed, in complex scenarios (which occur when the network is saturated), the transition
to the new routes cannot be performed directly. This is mainly due to two reasons.
First, in an intermediate step of the reconfiguration, two routes are provided, leading to an in-
creased use of the network resources. Second, a request may need to be in an intermediate routing
state before reaching its final one in order to free space for another request. This needs to be done
during distinct reconfigurations steps. Because of this, several intermediate steps of reconfigu-
rations may be necessary, and each additional step of reconfiguration significantly increases the
number of variables and constraints of the problem, and thus the time needed to obtain an optimal
solution. Therefore, we propose a best effort reconfiguration.

Best Effort Reconfiguration. The idea here consists in improving the R&P as much as possible
instead of setting a final R&P as a target. To this end, we set a number of intermediate reconfig-
uration steps, T , (how to set T is discussed below) and the goal of the optimisation is to find a
routing with minimal cost which can be reached from the current routing using T reconfiguration
steps. Note that the best effort reconfiguration has several advantages compared to the reconfig-
uration to optimal. It will give a solution as good as the reconfiguration to optimal when such
a reconfiguration is possible. Indeed, several optimal solutions may exist, and only part of them
could be reached using reconfiguration. Reconfiguration to optimal is focusing on only one, when
Best Effort reconfiguration could reach any of those. Second, when reconfiguration to optimal is
not possible, Best Effort reconfiguration may still be able to find a solution better than the current
one. This is why we used Best Effort reconfiguration in our experiments.
∗A node u with a strictly positive number of cores (i.e., Cu ∈ N+ = {1, 2, · · · }) represents a cloud location with

the capability to execute VNFs, while a node with Cu = 0 is a node that serves only as an SDN router.

Service Function Chains Reconfiguration 89

Best Effort reconfiguration can be modeled using the ILP presented in the following. At time
0, the R&P is set to the current one. Then, at each step of reconfiguration, a set of demands can
be rerouted as long as there are enough link and node capacities to satisfy the intermediate make-
before-break reconfiguration steps. This can be modeled linearly by defining a variable which is
equal to 1 if a resource is used by a request either at time t − 1 or at time t. As a single step of
reconfiguration may not be enough, the ILP has several intermediate reconfiguration steps, each
corresponding to a solution of the R&P problem. The objective function is to minimise the cost
of the R&P of the final state.

Note that reconfiguration to optimal can be modeled using the same ILP with a few changes.
We just have to set the variables corresponding to the final state to the minimum cost R&P com-
puted previously.
Choosing T , the number of reconfiguration steps. The value of T is an important parame-
ter. Indeed, a value too small may lead to models with no solution, while a value too large to
models with prohibitive execution times. This is why we tested different values in our exper-
iments. We observe that when the network is not congested, corresponding to the low-traffic
scenarios of subsection 3.5.2, a single reconfiguration step is enough to provide optimal (or close
to optimal) solutions while it leads to solutions almost as bad as without reconfiguration in the
high-traffic scenarios of subsection 3.5.3. In the later scenarios, at least 2 reconfiguration steps
are necessary. A good way to find the right value is to start with T = 1, which is the fastest
model, and then to increase progressively the value of T until either the solution does not im-
prove any more or the model solving time is too long. Note that, when a maximum solving time is
set, the largest possible value of T leading to a lower solving time can also be found by dichotomy.

Model.
The ILP takes as an input both the current configuration (i.e., paths and function locations for
all the demands) and the number of time steps T to be used in the reconfiguration process. The
output corresponds to both the final SFC-R&P at time T after the reconfiguration process and the
intermediate SFC-R&P to be used to reach the final state. Between two consecutive time steps
t0 < ... < ti < ti+1 < ... < T , a subset of the demands may be moved to a new route. In doing
this, resources of both nodes and links must not be exceeded in order to not interrupt connections
(make-before-break).
Variables:
• ϕd,tuv,i ≥ 0 is the amount of flow on Link (u, v) in Layer i at time step t for Demand d.

• αd,tu,i ≥ 0 is the fraction of flow of Demand d using Node u in Layer i at time step t.

• xd,tuv,i ≥ 0 is the maximum amount of flow on Link (u, v) in Layer i at time steps t and t− 1 for
Demand d.
• yd,tu,i ≥ 0 is the maximum fraction of flow of demand d using Node u in Layer i at time steps t
or t− 1.
• zTu,f ∈ {0, 1}, where zfu = 1 if function f is activated on Node u at time step T in the final
routing.

The optimisation model starts with the initial configuration as an input. Thus, for each demand
d ∈ D the variables ϕd,0uv,i (for each node u ∈ V , layer i ∈ {0, ..., |cd|}) and αd,0u,i (for each link
(u, v) ∈ E, layer i ∈ {0, ..., |cd|}) are known. The ILP is based on the layered graph described in

90 Service Function Chains Reconfiguration

section 2.4 and it is written as follows.

Objective: minimise the amount of network resources consumed during the last reconfiguration
time step T .

min
∑
d∈D

∑
(u,v)∈E

|cd|∑
i=0

bwd · ϕd,Tuv,i + β ·
∑
u∈V

∑
f∈F

cu,f · zTu,f

Constraints:
Flow conservation constraints. For each Demand d ∈ D, Node u ∈ V , time step t ∈ {1, ..., T}.

∑
(u,v)∈ω+(u)

ϕd,tuv,0 −
∑

(v,u)∈ω−(u)
ϕd,tvu,0

+ αd,tu,0 =
{

1 if u = vs

0 else
(3.1)

∑
(u,v)∈ω+(v)

ϕd,tuv,|cd| −
∑

(v,u)∈ω−(v)
ϕd,tvu,|cd|

− αd,tu,|cd|−1 =
{
−1 if v = vd

0 else
(3.2)

∑
(u,v)∈ω+(u)

ϕd,tuv,i −
∑

(v,u)∈ω−(u)
ϕd,tvu,i + αd,tu,i − α

d,t
u,i−1 = 0.

0 < i < |cd| (3.3)

Node usage over two consecutive time periods. For each Demand d ∈ D, Node u ∈ V , Layer
i ∈ {0, ..., |cd| − 1} time step t ∈ {1, ..., T}.

αd,tu,i ≤ y
d,t
u,i

αd,t−1
u,i ≤ yd,tu,i
αd,tu,i + αd,t−1

u,i ≥ yd,tu,i

Link usage over two consecutive time periods. For each Demand d ∈ D, Link (u, v) ∈ E, Layer
i ∈ {0, ..., |cd|} time step t ∈ {1, ..., T}.

ϕd,tuv,i ≤ x
d,t
uv,i

ϕd,t−1
uv,i ≤ x

d,t
uv,i

ϕd,tuv,i + ϕd,t−1
uv,i ≥ x

d,t
uv,i

These two last constraints state that the flow yd,tu,i for the node (or xd,tuv,i for the link) is equal to the
maximum flow between two intermediate reconfiguration steps. If there is no flow in u and uv
during steps t− 1 and t then yd,tu,i (and xd,tuv,i) are equal to 0.
Make Before Break - Node capacity constraints. The capacity of a node u in V is shared between
each layer and cannot exceedCu considering the resources used over two consecutive time periods.

Service Function Chains Reconfiguration 91

For each Node u ∈ V , time step t ∈ {1, ..., T}.

∑
d∈D

bwd

|cd|−1∑
i=0

∆f
cd
i
· yd,tu,i ≤ Cu. (3.4)

Make Before Break - Link capacity constraints. The capacity of a link (u, v) ∈ E is shared
between each layer and cannot exceed Cuv considering the resources used over two consecutive
time periods. For each Link (u, v) ∈ E, time step t ∈ {1, ..., T}.

∑
d∈D

bwd

|cd|∑
i=0

xd,tuv,i ≤ Cuv. (3.5)

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For each Demand d ∈ D, Node u ∈ V , layer i ∈ {0, ..., |cd|−1}, if the (i+1)− th function of cd
cannot be installed on Node u, we add the following constraint for each time step t ∈ {1, ..., T}.

αd,tu,i = 0 (3.6)

Functions activation. To know which functions are activated on which nodes in the final routing.
For each Node u ∈ V , Function f ∈ F , Demand d ∈ D, and Layer i ∈ {0, ..., |cd| − 1},

αd,Tu,i ≤ z
T
u,f

cd
i
. (3.7)

Note that we do not consider the cost of potential activations of VNFs during the reconfiguration
process. Indeed, our goal is to minimise the network operational cost over time and the reconfig-
uration duration is very small in comparison in an SDN network [B+14].

3.4.3 Heuristic Break-Free-HEUR

As shown by the numerical evaluations in subsection 3.5.5, the ILP models may take a long time
to be solved for large networks. We thus present a heuristic algorithm, Break-Free-HEUR, able
to provide good solutions for them. The algorithm reconfigures the requests as closely as possible
to a given (optimal if possible) configuration in a given number of steps.

Break-Free-HEUR is an iterative algorithm presented in Algorithm 8, which starts from
an initial allocation and tries to reconfigure as many as possible the SFCs to a given allocation.
In the best case, all SFCs are reconfigured to the new allocation, in the worst case no SFCs are
reconfigured. Algorithm 8 takes as inputs the graph G, the initial allocation (allocInit given by the
flow values ϕ and α at time 0) the allocation to which we reconfigure (allocFinal given by the flow
values ϕ and α at time T) and the number of steps allowed to reconfigure (nbSteps). The main
technical point of the algorithm is concentrated in the procedure reconfSFC (Algorithm 9). The
difficulty derives from the fact that we consider splittable flows and that only part of these flows
can be rerouted by the procedure.

In Lines 1 and 2, the initial allocation of each SFC is divided into two allocations: currentOpti
is the set of flows already reconfigured (noted as ϕd,t

∗
) and currentNonOpti is the set of flows that

remains to be reconfigured (noted as ϕ⊥ = ϕd,t − ϕd,t
∗
). These two allocations represent the

current allocation of each SFC. We also consider the set of flows of the final allocation to which

92 Service Function Chains Reconfiguration

Algorithm 8: Break-Free-HEUR
Data: G, listSfc, allocInit, allocFinal, nbSteps
Result: Reconfigure the allocation as close as possible to the optimal

1 currentOpti←− void allocation;
2 currentNonOpti←− copy of allocInit;
3 remainingFinal← allocFinal;
4 listSfcToReconf←− List of SFCs whose initial allocation is not the final allocation;
5 for step in nbSteps do
6 G’←− Residual graph of G for the current step;
7 for s in listSfcToReconf do
8 reconfSFC(G’, currentOpti[s], currentNonOpti[s], allocFinal[s], s);
9 if currentOpti[s] = allocFinal[s] then

10 remove s from listSfcToReconf; . # We no longer need to reconfigure this sfc
11 if no chains have been moved during this step then
12 break; . # We can no longer reconfigure sfc
13 return fusion(currentOpti, currentNonOpti);

the initial flow was not yet reconfigured, named remainingFinal. The corresponding flow is noted
ϕ> = ϕd,T − ϕd,t∗ .

In Line 4 we list the SFCs to be reconfigured: those of which allocInit is different from
allocFinal. In Line 6 we compute G′, the residual graph of G using the current allocation of each
SFC for the current step. The capacities of G′ are given by cuv(G′) = Cuv −

∑
d

∑cd
i ϕd,tuv,i for

edges and cu(G′) = Cu −
∑
d

∑cd
i αd,tu,i for nodes. In Line 8, for each SFC to be reconfigured, the

procedure reconfSFC (presented in Algorithm 9) moves as much flow as possible from current-
NonOpti to currentOpti. The procedure reconfSFC updates currentOpti, currentNonOpti and
the residual graphG′ to take into account the additional capacity used at each reconfiguration step.
And it will return if it has successfully changed the current allocation of the SFC or if no move is
possible at this step. The algorithm stops either if the final allocation is reached and there are no
more SFCs to reconfigure, or when no more SFCs can be modified, or when the maximum number
of steps has been reached. At the end of the algorithm in Line 13, currentNonOpti and currentOpti
of each SFC are merged to return the current allocation: in the best case, currentNonOpti is empty
for each SFC and the current allocation is the final allocation. In the worst case no SFC has been
reconfigured and the current allocation is the same as the initial allocation.

The procedure reconfSFC (Algorithm 9) takes as inputs the residual graph, d (the SFC to
be moved), the current allocation of the SFC and the final allocation to which we want to move
the SFC. Its goal is to move as much flow as possible from currentNonOpti to remainingFinal. It
returns if a reconfiguration has taken place or if the SFC is blocked at this step. In Line 1, we
create the layer graph for the flow that is not yet reconfigured by taking only the links and nodes
present in currentNonOpti and taking as capacity the flow passing through currentNonOpti. In
Line 2, we create the layer graph for the final allocation by taking only the links and nodes present
in remainingFinal and taking the capacities of G’. In Line 3, we find a path on currentNonOpti,
that is a non splitted subflow from the flow of d which still has to be rerouted. In fact, a flow
can be easily decomposed into paths. The procedure findPath returns such a path using a

Service Function Chains Reconfiguration 93

Algorithm 9: reconfSFC(sfc d)
Data: G’, currentOpti, currentNonOpti, allocFinal, sfc
Result: Pushes as much flow of currentNonOpti as possible into allocFinal for sfc during

one step
1 G⊥←− layer graph of currentNonOpti(d);
2 G>←− layer graph of remainingFinal(d);
3 while path⊥ ← findPath(G⊥) 6= Null do
4 . #Find a path to be rerouted;
5 flow⊥ ← min. value of ϕ⊥ over edges and nodes of path . #Max. flow which can be

rerouted from path;
6 while path> ← findPath(G>)) 6= Null do
7 . #Find a destination path for part of flow⊥;
8 flow> ← maxFlow(G>,path>);
9 remove flow> from the edges of path⊥ on G⊥;

10 remove flow> from currentNonOpti and remainingFinal;
11 reduce the residual capacity of G> by flow>;
12 add flow> into currentOpti;
13 if If currentOpti has not changed then
14 return False;
15 return True;

depth-first-search from the source of the SFC d to its destination. The value of the flow which can
be rerouted from this path is the minimum value (over all edges of the path) of the flow passing
through currentNonOpti (Line 4).

Algorithm 10: findPath(G)
Data: a graph G
Result: Find an s-t path

1 Carry out a Bread First Search in G starting from s and stopping at t;
2 if t never reached then
3 return Null;
4 path← path from s to t given by the DFS;
5 return path;

We now want to reroute this subflow. We do it iteratively from Lines 6 to 12. In Line 6, we
compute a target path, path>, to which we reroute some flows. Then, we compute the maximum
value of flow which can be rerouted using the procedure maxFlow (given in Algorithm 11). The
computation of the maximum flow which can be rerouted on path⊥ is not direct due to layers
sharing capacities. First, if path> has an edge in the layered graph, (e, i), which is common with
path⊥, we know that flow⊥ can be completely rerouted on (e, i). We note Ep the set of such
edges. Then, for each edge e of path>, we compute the maximum flow, f∗e , which can pass on
the edge. The flow f∗e is equal to the capacity Ce divided by the number of times path> goes
through e in different layers (f∗e = Ce/|{(e, i) with (e, i) in path and (e, i) /∈ Ep}|). Then, we

94 Service Function Chains Reconfiguration

set f∗ = mine∈E f∗e . We have flow ≤ f∗. Second, we should not reroute more flow than the one
of the target solution on path path>. Thus, we have flow> ≤ mine∈path ϕ>e . Last, the value of
the rerouted flow cannot be larger than the flow which is rerouted, that is flow> ≤ flow⊥. This
gives

flow> = min(flow⊥, f∗, min
e∈path

ϕ>e).

We now have the value of flow> and its path. We update the flows and capacities of the residual

Algorithm 11: maxFlow(G,path>,path⊥,flow⊥)

Data: a graph G,path>,path⊥,flow⊥

Result: The maximum value of flow which can be rerouted from path⊥ to path>.
1 Ep ← ∅ . #Ep = {(e, i) : (e, i) ∈ path>and(e, i) ∈ path⊥};
2 for (e, i) ∈ path> do
3 if (e, i) ∈ path⊥ then
4 Ep.append((e, i));
5 for e in path> do
6 nbPassages← 0;
7 for (e, i) in path> do
8 if (e, i) /∈ Ep then
9 nbPassages← nbPassages+1;

10 f∗e = Ce
nbPassages ;

11 f∗ = mine∈E f∗e ;
12 flow = min(flow⊥, f∗,mine∈path ϕ>e);
13 return flow;

graphs G⊥ and G> for the remaining of the procedure reconfSFC (Lines 7 and 8). We also
accordingly update the allocations currentNonOpti, currentOpti, remainingFinal which are used
in the main Algorithm 8 (Lines 9 and 10). We then iterate on all the paths in G⊥.

Finally, in Line 13, we check that we have succeeded in reconfiguring at least part of the flow.
Otherwise, we return that sfc is blocked at this step.

3.5 Numerical Results

In this section, we evaluate the performance of Break-Free-ILP and Break-Free-HEUR.
We study the impact of the reconfiguration on different metrics such as cost savings, acceptance
rate, and resource usage. We first present the data sets used for the experiments. Then, we compare
the results with the ones of Breaking-Bad, which computes an optimal R&P for the whole set
of requests (ILP of subsection 2.5.2) for each SFC arrival, and with No-Reconf, which computes
the R&P problem for a single demand, the newly arrived SFC (subsection 2.6.2).
We consider two scenarios, one with low traffic in which basically all demands can be accepted
and one with high traffic in which some of them have to be rejected in order to satisfy the capacity
constraints. In the low traffic scenario, we can fairly compare resource usage using the different
algorithms Break-Free-ILP, Breaking-Bad, and No-Reconf, as they are accepting the
same demands. In the high traffic scenario, we can compare them in terms of acceptance rate.

Service Function Chains Reconfiguration 95

0 100 200
SFC Arrival

0

50

100

VN
Fs

 d
ep

lo
ye

d
(%

)

(a) pdh

0 100 200
SFC Arrival

0

50

100

VN
Fs

 d
ep

lo
ye

d
(%

)

(b) ta1

0 100 200
SFC Arrival

0

25

50

VN
Fs

 d
ep

lo
ye

d
(%

)

(c) ta2

Figure 3.1 – Low-Traffic scenario - Number of VNFs deployed across time.

We show in particular that Break-Free-ILP allows to lower the network cost and increases
the acceptance rate almost as much as Breaking-Bad. For both algorithms, a large number
of demands have to be rerouted, showing that it is crucial to implement a mechanism to avoid
impacting them. Network reconfiguration has to be done often to attain a significant gain, however,
this reconfiguration can be quickly computed. This allows reconfiguration mechanisms to be put
into practice.

3.5.1 Data sets

We conduct experiments on three real-world topologies from SNDlib [OWPT10] of different sizes:
pdh (11 nodes, 34 links), ta1 (24 nodes, 55 links), and ta2 (65 nodes, 108 links). The Table 3.3
summarizes the properties of each network topology. We generate our problem instances as fol-
lows. We considered 250 demands for each network. The source and destination of each demand
are chosen using the given traffic matrices. Following [S+15], the lifetime of a demand is expo-
nentially distributed with mean µ = 20 for the low-traffic scenario and with mean µ = 45 for the
high-traffic scenario. We then round this lifetime to an integral number of time steps. The volume
of the demands is chosen randomly. Also, each demand is associated with an ordered sequence of
2 to 4 functions uniformly chosen at random from a set of 5 different functions. Experiments have
been conducted on an Intel Xeon E5520 with 24GB of RAM. Break-Free-ILP is not studied
on ta2 due to excessive runtime.

96 Service Function Chains Reconfiguration

0 100 200
SFC Arrival

0

20

40

Li
nk

 u
sa

ge
 (%

)

(a) pdh

0 100 200
SFC Arrival

0

20

40

Li
nk

 u
sa

ge
 (%

)
(b) ta1

0 100 200
SFC Arrival

0

20

40

Li
nk

 u
sa

ge
 (%

)

(c) ta2

Figure 3.2 – Low-Traffic scenario - Bandwidth usage across time.

3.5.2 Low-traffic scenario - Resource usage

In Figure 3.3, we show the network cost for the low-traffic scenario. This cost is the result
the weighted addition of Bandwidth (Figure 3.2) and of VNF costs (Figure 3.1). The results
are given for No-Reconf and Breaking-Bad as a measure of comparison, for several vari-
ants of Break-Free-ILP with different numbers of reconfiguration steps from 1 to 3, and for
Break-Free-HEUR with 10 steps of reconfiguration. We focus on the low-traffic scenario as
the compared algorithms accept the same requests and therefore, we can have a comparison for
the same global volume of traffic

We first see that Break-Free-ILP has similar performances to Breaking-Bad in terms
of network operational cost. Recall that Breaking-Bad interrupts the requests during reconfig-
uration. This means that Breaking-Bad provides a lower bound for Break-Free-ILP. As
Break-Free-ILP does not interrupt the requests, it won’t be able to reach a better solution than
Breaking-Bad. Moreover, Break-Free-ILP achieves this performance for any number of
time steps (even 1). This leads to a very fast algorithm as discussed below. Indeed, when the net-
work is not congested, there is enough capacity to host both the old and new routes. Nevertheless
in ta2 the efficiency of Break-Free-HEUR is slightly below Breaking-Bad.

Service Function Chains Reconfiguration 97

0 100 200
SFC Arrival

3000

4000

N
et

w
or

k
co

st

(a) pdh

0 100 200
SFC Arrival

3000

4000

N
et

w
or

k
co

st

(b) ta1

0 100 200
SFC Arrival

4000

6000

N
et

w
or

k
co

st

(c) ta2

Figure 3.3 – Low-Traffic scenario - Network operational cost.

Reconfiguration leads to a better resource utilization and reduces the network operational cost
compared to No-Reconf, and this given a same volume of traffic (note that no demand is re-
jected in this scenario). Indeed, reconfiguring the network regularly permits a reduction of 15%
of network operational cost (Figure 3.3(a)) while using 7% fewer VNFs (Figure 3.1(a)) and 18%
less link bandwidth (Figure 3.2(a)) compared to the no-reconfiguration case on pdh. For ta1,
we have a reduction of 20% of network operational cost while using 17% fewer VNFs and 21%
less link bandwidth compared to No-Reconf. Finally, for ta2 we have a reduction of 19% of
network operational cost while using 10% fewer VNFs and 22% less link bandwidth compared to
the no-reconfiguration.

topology nb Nodes nb Links degree min degree max degree avg diameter

pdh 11 34 4 8 6.18 3
ta1 24 55 2 11 4.58 4
ta2 65 108 1 10 3.32 8

Table 3.3 – Three-real world topologies

98 Service Function Chains Reconfiguration

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(a) pdh

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(b) ta1

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(c) ta2

Figure 3.4 – High-Traffic scenario - Percentage of accepted profit across time.

For ta2 and unlike pdh and ta1, Break-Free-HEUR deployed two times more VNFs
than Breaking-Bad (Figure 3.1(c)). But, in the same time, Break-Free-HEUR reduces
drastically the bandwidth usage (Figure 3.2(c)), leading in the end to a good improvement of
network cost (Figure 3.3(c)).

The results for Break-Free-HEUR on ta2 show that we can reduce the whole network
operational cost, but not equally between the bandwidth usage and the VNF cost. The diameter
on this graph is 8, and the average degree connectivity is low compared to pdh and ta1. This
implies that finding alternative paths reducing the number of links is more interesting to reduce
the global network operational cost than moving the VNFs to other data centers. Recall that there
are a fixed number of data centers where the VNFs can be installed, and with a large network,
there are less opportunities for changing the VNFs. Moreover, deleting a VNF in one data center
implies moving all the SFCs using it, and due to the possible longer paths, it is not always an
interesting option.

We can hypothesize that Break-Free-HEUR has more difficulty in stopping using VNFs
during reconfiguration because the graph is larger, its diameter is larger too (3 for pdh, 4 for ta1,
8 for ta2) and the average node’s degree is also smaller making it more difficult to reconfigure
completely every SFCs using a specific VNF.

Service Function Chains Reconfiguration 99

0 100 200
SFC Arrival

3000

4000

5000

N
et

w
or

k
co

st

(a) pdh

0 100 200
SFC Arrival

4000

6000

N
et

w
or

k
co

st

(b) ta1

0 100 200
SFC Arrival

6000

8000

N
et

w
or

k
co

st

(c) ta2

Figure 3.5 – High-Traffic scenario - Cost gain across time.

3.5.3 High-Traffic scenario - Acceptance Rate

In our high-traffic scenario, there are not enough resources to satisfy all the demands. As a con-
sequence, some requests cannot be accepted. We show, in Figure 3.4, the profit achieved by
Break-Free-ILP, Breaking-Bad, Break-Free-HEUR and No-Reconf. We define the
profit of a demand as the asked volume of bandwidth multiplied by its duration.
The global profit is defined as the sum of all the accepted requests’ profits. This metric is of high
importance. Indeed, in case of High-Traffic scenario, some requests will be rejected. However,
we want to ensure that our algorithm will accept equally the requests when they arrive. If we
consider only the number of accepted requests, one can think of an heuristic accepting only short
and low-bandwidth in order to get an higher acceptance rate.

We show the profit as a percentage in terms of maximum achievable profit. In other words,
100% of profit means that all the demands (and their requested bandwidth) have been accepted
(100% represents the global profit of all the requests).

It can be seen that No-Reconf and Break-Free-ILP (with 1-step) lead to equivalent
profit, around 70% for pdh (and between 78 and 81% for ta1), while Break-Free-ILP
(with 2, 3, and 4 steps), Break-Free-HEUR and Breaking-Bad have similar performances
(around 79% for pdh and 87% for ta1). On ta2 the results are the following: 71% for
No-Reconf against 79% for Break-Free-HEUR and 82% for Breaking-Bad.

100 Service Function Chains Reconfiguration

For this congested scenario, one step of reconfiguration is not enough as there is not enough
place to move the requests. Therefore, some requests are rejected. Allowing to use more steps
in our make-before-break reconfiguration process, without interrupting the requests, we can reach
the same performances as Breaking-Bad.

In Figure 3.5, we show the network operational cost for Break-Free-ILP,
Breaking-Bad, and No-Reconf as a function of the number of demands arrived. The
first observation is that Break-Free-HEUR and Break-Free-ILP (with more than 2-steps)
lead to a smaller network operational cost than No-Reconf. It accepts more, with less cost.
The second observation is that even if Break-Free-ILP (with 1-step) has a similar profit to
No-Reconf, it has substantially less network operational cost than all the other algorithms.

3.5.4 Low-Traffic scenario - Impact of Parameter β

In Figure 3.6 and Figure 3.7, we study the impact of the β parameter on the resources required in
the network in terms of bandwidth and number of deployed VNFs, respectively.

As β increases, the impact of the VNF cost on the total cost is greater. As a consequence, the
number of deployed VNFs decreases, leading to longer routes, and thus, to an increased amount
of bandwidth usage.

Note also that, for all values of beta, reconfiguration using Break-Free-ILP (for any num-
ber of steps) leads to similar gains to reconfiguration using Breaking-Bad. This shows that the
conclusion discussed in subsection 3.5.2 for a specific value of β = 25 (our default value) is valid
in more general settings for a wide range of β.

Another important observation is that the gain of reconfiguration is higher for larger values
of β. The reason is that, when β is large, the requests tend to use longer routes as the cost of
bandwidth is less important compared to the one of VNFs. This leads to requests routed in a very
suboptimal way when other requests using the same VNFs leave (as shown in the example of
Figure 0.2.10). On the contrary, when β is small, the routes try to always use close to shortest path
solutions, leading to lower gains. There is still a gain as a shortest path is not always available
(due to nodes and link capacities).

Finally, we can see that, as we said earlier in subsection 3.5.2, the Break-Free-HEUR
is not as effective in reducing the deployment of VNFs: For pdh and ta1 it is comparable to
Break-Free-ILP with 1 step. For ta2 we can see that its efficiency is very limited compared
to Breaking-Bad, even if it does as well in reducing the use of links.

In the following, we use β = 25, as this is a good compromise between link utilization and
number of VNFs deployed.

Service Function Chains Reconfiguration 101

0 10 25 50 100

30

40

50

Li
nk

 u
sa

ge
 (%

)

(a) pdh

0 10 25 50 100
0

20

40

Li
nk

 u
sa

ge
 (%

)

(b) ta1

0 10 25 50 100
0

20

40

Li
nk

 u
sa

ge
 (%

)

(c) ta2

Figure 3.6 – Low-Traffic scenario - Impact of parameter β - Bandwidth usage as a function of β.

102 Service Function Chains Reconfiguration

0 10 25 50 100

60

80

100

VN
Fs

 d
ep

lo
ye

d
(%

)

(a) pdh

0 10 25 50 100

60

80

100
VN

Fs
 d

ep
lo

ye
d

(%
)

(b) ta1

0 10 25 50 100

40

60

VN
Fs

 d
ep

lo
ye

d
(%

)

(c) ta2

Figure 3.7 – Low-Traffic scenario - Impact of parameter β - VNFs deployed as a function of β.

Service Function Chains Reconfiguration 103

0
100

101

102

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

(a) pdh

0
100

101

102

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

(b) ta1

0
100

101

102

R
ec

on
fig

ur
at

io
n

tim
e

(s
)

(c) ta2

Figure 3.8 – High-Traffic scenario - Average reconfiguration times

3.5.5 Execution Times to Compute the Reconfiguration

Figure 3.8 shows the average times to reconfigure with a logarithmic scale. We can see that the
reconfiguration time of Breaking-Bad and Break-Free-HEUR are within the same order
of magnitude. Indeed, recall that in the first steps of Break-Free-HEUR, a routing is com-
puted. During the simulations, this routing is computed using Breaking-Bad. This explains
the identical reconfiguration times.

For Break-Free-ILP, even if the computation time is not much longer with one
step, it increases with 2 and 3 steps and can not be used on large networks such as ta2.
Break-Free-ILP with one step being far less effective on high-traffic scenarios than
Breaking-Bad and Break-Free-HEUR, it also seems to be of little use on large networks.

Figure 3.9 shows the gains of network cost (compared to No-Reconf) in percentage
for Break-Free-ILP (1 to 3 steps) when limiting the time spent for the reconfiguration.
Break-Free-ILP with 1 step needs only 1 second to reach its best solution. This variant
of the algorithm is almost as fast as Breaking-Bad (which does not compute an intermediate
make-before-break step). 10 seconds are needed to reach a close to optimal solution for the 2–step
variant, and a good solution for the 3–step variant. The best solution is attained after 1 minute. We
remind the reader that in the low-traffic scenario, the 1–step variant is enough to achieve solutions
close to optimal, while in the high-traffic scenario, this is the case of the 2 step variant. It is thus
possible to reconfigure a network without interruption and with significant gain in a few seconds.

104 Service Function Chains Reconfiguration

0.1 1 10 60
Max reconf time (s)

0

10

20

N
et

w
or

k
co

st
re

du
ct

io
n

(%
)

(a) B-Free (1 step)

0.1 1 10 60
Max reconf time (s)

0

10

20

N
et

w
or

k
co

st
re

du
ct

io
n

(%
)

(b) B-Free (2 steps)

0.1 1 10 60
Max reconf time (s)

0

10

20

N
et

w
or

k
co

st
re

du
ct

io
n

(%
)

(c) B-Free (3 steps)

Figure 3.9 – Low-Traffic scenario - Gains of network operational costs for different time limits for
the optimisation process.

3.5.6 Reconfiguration Rate

In this experiment, we test different reconfiguration rates. Note that during the previous simula-
tions, we reconfigured the network considering the three conditions defined in the beginning of
section 3.4. Here, the only condition to reconfigure is the first one, i.e., periodically, after a given
number of time steps, defined as the reconfiguration rate.

The faster rate is to reconfigure every time step, while the slowest one in our setting would be
to reconfigure every 100 time steps (only 1 or 2 reconfigurations are performed during the whole
test). We thus present the results for reconfiguration rates of every 1, 5, 10, 15, 50, and 100 time
steps using Break-Free-HEUR, the results with Breaking-Bad and Break-Free-ILP
are similar. In Figure 3.10, we provide the network cost in the low-traffic scenario. The minimum
cost is as expected achieved when reconfiguring at each time step. However, in this setting similar
gain can be obtained when reconfiguring every 10 and 15 time steps for pdh, ta1 and ta2.

Results for the high-traffic scenarios can be seen in Figure 3.11, in which we report the profit
generated by the accepted demands. In this setting, the network is congested. This means that
very frequently the demand arriving at a time step cannot be routed directly.

For pdh, not reconfiguring at every time step leads to poor performance, whatever the value
of the reconfiguration rate. For ta1, this effect is not as stringent. Different reconfiguration rates
lead to different values of profit. However, only a reconfiguration every time step leads to an

Service Function Chains Reconfiguration 105

0 100 200
SFC Arrival

2000

3000

4000

N
et

w
or

k
co

st

(a) pdh

0 100 200
SFC Arrival

3000

4000

N
et

w
or

k
co

st

(b) ta1

0 100 200
SFC Arrival

4000

6000

N
et

w
or

k
co

st

(c) ta2

Figure 3.10 – Low-Traffic scenario - Impact of the reconfiguration rate on the network cost.

optimal performance. Choosing a rate between 5 and 15 can achieve a high efficiency without
reconfiguring too much.

Thus, the reconfiguration should be well chosen by network operators, depending on their
network usage. The higher the congestion, the higher the rate should be.

106 Service Function Chains Reconfiguration

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(a) pdh

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(b) ta1

0 100 200
SFC Arrival

80

100

Pr
of

it
ac

ce
pt

ed
(%

)

(c) ta2

Figure 3.11 – High-Traffic scenario - Impact of the reconfiguration rate on the percentage of profit
accepted.

B-Bad

B-Free 1 ste
p

B-Free 2 ste
ps

B-Free 3 ste
ps

Heuristi
c

0

50

100

SF
C

s
re

co
nf

ig
ur

ed
(%

)

1 5 10 15 50 100
Reconfiguration rate

0

50

100

SF
C

s
re

co
nf

ig
ur

ed
(%

)

Figure 3.12 – Percentage of rerouted requests for ta1, considering (left) different intermediate
reconfiguration steps and (right) different reconfiguration rates.

3.5.7 Percentage of rerouted requests

To see the importance of implementing a make-before-break process, we study the percentage
of rerouted requests during the reconfiguration process. We report in Figure 3.12 (left) the per-
centage of reconfigured SFCs for Break-Free-ILP (1 to 3 steps), Break-Free-HEUR and
Breaking-Bad for the high-traffic scenario. Firstly, Breaking-Bad has to interrupt, on av-

Service Function Chains Reconfiguration 107

B-Free 2 steps B-Free 3 steps
0

5

10

15
Tr

an
si

en
ts

 V
N

Fs
(%

)

(a) pdh

B-Free 2 steps B-Free 3 steps
0

5

10

15

Tr
an

si
en

ts
 V

N
Fs

(%
)

(b) ta1

Figure 3.13 – Percentage of transient VNFs used during the intermediate steps of the reconfigura-
tion.

erage, 48% of the requests (between 20% and 70%) to maintain an optimal solution. This is thus
of crucial importance to avoid impacting this large number of requests when reconfiguring.
Break-Free-ILP and Break-Free-HEUR change the routing of approximately the same
number of requests (except for one step which is less efficient) but without any interruption of
traffic.
Note that the number of reconfigured requests depends on the frequency of the reconfiguration, as
shown in Figure 3.12 (right). Reconfiguring regularly permits to impact less SFCs at each recon-
figuration process. Indeed, around 48% of SFCs are reconfigured when the reconfiguration rate
equals 1, while around 80% of SFCs need to be reconfigured if this rate reach 100.

3.5.8 Percentage of Transient VNFs instantiated during reconfiguration

Our objective is to minimise the network operational cost at the final step of the reconfiguration.
Since the transient VNFs used during reconfiguration are instantiated for a short period of time,
our model did not take them into account. We considered their cost to be marginal compared to
the cost of the VNFs that are used before and after the reconfiguration. Nevertheless, we plot in
Figure 3.13 the percentage of transient VNFs that are used only for the aim of the reconfiguration.
A VNF is considered as transient if it is deployed neither before, nor after the reconfiguration, but
during the steps of the reconfiguration.

Breaking-Bad has no reconfiguration step and therefore do not activate transient VNFs. As
for Break-Free-HEUR, by design it does not activate any either: indeed, each reconfiguration
step is only a transition from the initial state to the final state. Therefore, no transient VNF is
needed for Break-Free-HEUR. By analogy to Break-Free-HEUR, there is also none with
Break-Free-ILP with one step, since there is no intermediate step between the initial an the
final state.

In Figure 3.13, we can see that Break-Free-ILP (with 2 and 3 steps) uses on average about
5% temporarily VNFs for pdh and between 11% and 12% for ta1. We can especially notice that
the use of transient VNFs is stable between 2 and 3 reconfiguration steps and does not increase.
Although our model does not minimise the use of transient VNFs, it deploys an acceptable number
of them during reconfiguration. If this happens to be critical, then constraints in the model could be
added to restrain the use of these VNFs. Another solution would be to use Break-Free-HEUR
that has no transient VNF and similar performance.

108 Service Function Chains Reconfiguration

3.6 Conclusion

In this chapter, we provide two solutions, Break-Free-ILP and Break-Free-HEUR, to
reconfigure a set of requests which have to go through service function chains. The requests
are routed greedily when they arrive, leading to a sub-optimal use of network resources, band-
width, and virtual network functions. We compared our strategies with Breaking-Bad (that
reconfigures to an optimal placement and routing solution with interruption of the requests) and
No-Reconf (that never performs reconfiguration). For our 2 solutions, we study their impact
on bandwidth usage, the deployment of VNFs as well as on the increase in the acceptance of re-
quests during periods of heavy network congestion. We also study their efficiency according to
the variation of reconfiguration frequencies and the maximum time limit allowed for each recon-
figuration. For small and medium sized networks, Break-Free-ILP is fast and efficient. It
reroutes the requests to an optimal or close to optimal solution in a few seconds while providing
a make-before-break mechanism to avoid impacting the rerouted requests. The reconfiguration
frequency can be adapted depending on the needs and the number of SFC arrivals and departures.
The network operational cost is already greatly improved with only two steps of reconfigurations.

Break-Free-HEUR needs as an input the final desired placement and routing solution, and
tries to greedily move the requests to that state. Therefore, it does not instantiate transient VNFs
during reconfiguration steps. It is almost as efficient as Break-Free-ILP and moreover, it
allows to solve efficiently large network instances, for which Break-Free-ILP cannot provide
any solution.

The considered setting had splittable flows to allow a fast execution of the model. It is relevant
to ask whether the solution provided works when each SFC can only pass on a single path. A
partial answer is given in chapter 4, slow-rescue takes the problem with paths and adds latency
constraints. The algorithm works in the same way and the solution is not degraded by the use of
paths rather than splittable flows. However, the computation time does not allow it to be used in
our next experiments. To complete the answer, we need to look at Break-Free-HEUR, which
is not included in the next chapter. Its functioning is based on moving the flow of each SFC little
by little towards an optimal allocation. By imposing the use of paths, it would be necessary to be
able to reconfigure each SFC in one step, which is difficult to do when the network is congested.
This method was therefore not adapted because it would have required a complete change of the
heuristic.

Ensuring the performance of make-before-break reconfiguration in a SDN-NFV network using
SFCs is essential before studying its performance in a more constrained context. In the next
chapter we develop this technique in the context of network slicing.

Our algorithm could be improved by taking into account the capacity reserved for the backup
paths. Indeed, the intermediate steps of the reconfiguration being relatively short, it would be
interesting to use these paths during these steps. Taking these paths into account would also
ensure that the reconfiguration respects the resilience constraints by not reconfiguring a request on
one of its backup paths.

References

[AFT07] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring load-balanced
paths in the internet. In ACM Internet Measurement Conference (IMC), pages 149–
160. ACM, 2007.

[B+14] Pankaj Berde et al. Onos: towards an open, distributed sdn os. In Workshop on Hot
topics in software defined networking, pages 1–6. ACM, 2014.

[CLX+10] Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. Virtual network
embedding for evolving networks. In IEEE Global Telecommunications Conference
- GLOBECOM, pages 1–5. IEEE, 2010.

[EMAL17] Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar, and Francesco Giacinto
Lavacca. An approach for service function chain routing and virtual function net-
work instance migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking (ToN), 25(4):2008–2025, 2017.

[FAPZ11] Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann. VNR algo-
rithm: A greedy approach for virtual networks reconfigurations. In IEEE Global
Telecommunications Conference - GLOBECOM, pages 1–6. IEEE, 2011.

[GK07] Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM Journal on Computing,
37(2):630–652, 2007.

[GR18] Lingnan Gao and George N Rouskas. Virtual network reconfiguration with load bal-
ancing and migration cost considerations. In Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), pages 2303–2311. IEEE,
2018.

[GTGM19a] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. No interruption when
reconfiguring my SFCs. In IEEE International Conference on Cloud Networking
(CloudNet), pages 1–6, 2019.

[GTGM19b] Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, and Joanna Moulierac.
Poster: Don’t interrupt me when you reconfigure my service function chains. In
2019 IFIP Networking Conference (IFIP Networking), pages 1–2, 2019.

[GTGM21] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. Don’t interrupt me when
you reconfigure my service function chains. Computer Communications, 2021.

[HFS+19] D. Harutyunyan, R. Fedrizzi, N. Shahriar, R. Boutaba, and R. Riggio. Orchestrating
end-to-end slices in 5g networks. In 15th International Conference on Network and
Service Management (CNSM), 2019.

109

110 REFERENCES

[KLLT18] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking (TON), 26(4):1562–1576, 2018.

[LLZ+17] Junjie Liu, Wei Lu, Fen Zhou, Ping Lu, and Zuqing Zhu. On dynamic service
function chain deployment and readjustment. IEEE Transactions on Network and
Service Management (IEEE TNSM), 14(3):543–553, 2017.

[MGT+15] Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo Jacob. Toward
an SDN-enabled NFV architecture. IEEE Communications Magazine, 53(4):187–
193, 2015.

[MSB+17] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and Niki Pissinou. Traf-
fic aware placement of interdependent NFV middleboxes. In Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM), pages 1–9,
2017.

[NKT19] Kyoomars Alizadeh Noghani, Andreas J. Kassler, and Javid Taheri. On the Cost-
Optimality Trade-off for Service Function Chain Reconfiguration. In IEEE Interna-
tional Conference on Cloud Networking (CloudNet), 2019.

[OWPT10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[PDM+16] Stefano Paris, Apostolos Destounis, Lorenzo Maggi, Georgios S Paschos, and
Jérémie Leguay. Controlling flow reconfigurations in SDN. In Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM), pages
1–9. IEEE, 2016.

[QN15] P. Quinn and T. Nadeau. Problem statement for service function chaining. RFC
7498, RFC Editor, April 2015.

[S+15] Sahel Sahhaf et al. Network service chaining with optimized network function
embedding supporting service decompositions. Computer Networks, 93:492–505,
2015.

[SJG+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye. Provably efficient
algorithms for joint placement and allocation of virtual network functions. In An-
nual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 1–9. IEEE, 2017.

[TGHP18] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane Pérennes. Prov-
ably efficient algorithms for placement of Service Function Chains with ordering
constraints. In Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), pages 774–782, Honolulu, Hawai, US, 2018. IEEE.

[TTG13] Phuong Nga Tran and Andreas Timm-Giel. Reconfiguration of virtual network map-
ping considering service disruption. In IEEE International Conference on Commu-
nications - ICC, pages 3487–3492. IEEE, 2013.

BIBLIOGRAPHY 111

[WFS+20] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y. C. Liang. Network slice recon-
figuration by exploiting deep reinforcement learning with large action space. IEEE
Transactions on Network and Service Management, 2020.

CHAPTER 4
Network Slices

Reconfiguration
Modern 5G networks promise more bandwidth, less delay, and more flexibility for an
ever increasing number of users and applications, with Software Defined Networking,
Network Function Virtualisation, and Network Slicing as key enablers. Within that
context, efficiently provisioning the network and cloud resources of a wide variety of
applications with dynamic user demand is a real challenge. We study here the network
slice reconfiguration problem. Reconfiguring network slices from time to time reduces
network operational costs and increases the number of slices that can be managed
within the network. However, this affect the Quality of Service of users during the
reconfiguration step. To solve this issue, we study solutions implementing a make-
before-break scheme. In this chapter we propose new models and scalable algorithms
(relying on column generation techniques) that solve large data instances in few seconds.

This chapter is part of the articles [GGJM20, GGJM22].

113

114 Network Slices Reconfiguration

4.1 Introduction . 115
4.2 Related Work . 116
4.3 Problem Statement and Notations 117

4.3.1 Definitions . 117
4.4 ILP Model: slow-rescue . 118
4.5 The column generation technique and our model 120

4.5.1 A first CG-based algorithms 121
4.5.1.1 First Master Problem 121
4.5.1.2 First Pricing Problem 122

4.5.2 Description of our CG-based algorithms: rescue-ILP and
rescue-LP . 123
4.5.2.1 Master Problem of rescue-ILP and rescue-LP123
4.5.2.2 ILP Pricing Problem of rescue-ILP 124
4.5.2.3 LP Pricing Problem of rescue-LP 125

4.6 Numerical Results . 126
4.6.1 Data sets . 126
4.6.2 Efficiency of our algorithms with different traffic matrices . 127

4.6.2.1 Execution times 128
4.6.2.2 Gains in network cost 128
4.6.2.3 Accuracy of the Column Generation Models . . . 130
4.6.2.4 Time limits for the reconfiguration 131

4.6.3 Impact of the number of reconfiguration steps 131
4.6.4 Gains over Time . 132

4.6.4.1 Network Cost 134
4.6.4.2 Throughput . 135
4.6.4.3 Accepted Slices 135
4.6.4.4 Cost per MBit 136

4.6.5 Impact of the reconfiguration time interval 136
4.6.5.1 Network Cost 136
4.6.5.2 Throughput . 136
4.6.5.3 Accepted Slices 136
4.6.5.4 Cost per MBit 137

4.6.6 Scalability . 137
4.6.7 Parallelisation of the pricing problem 139
4.6.8 Impact of the delay constraints 139

4.6.8.1 Stricter delays lead to lower improvements 140
4.6.8.2 Stricter delays makes it harder to solve 140

4.7 Conclusion . 141
References . 143

Network Slices Reconfiguration 115

4.1 Introduction

The 5G technology is envisioned to allow a multi-service network supporting a wide range of com-
munication scenarios with a diverse set of performance and service requirements. The concept of
network slicing has been proposed to address these diversified service requirements. A network
slice is an end-to-end logical network provisioned with a set of isolated virtual resources on a
shared physical infrastructure [R+17, BGB+17]. Moreover, slicing allows an efficient usage of
resources, as VNFs can be instantiated and released on demand by slices. Besides, slices can be de-
ployed whenever there is a service request, reducing the network operator costs [BGB+17]. With
all these key features, Network slicing will thus be a fundamental feature of 5G networks [R+17].
See subsection 0.2.3 and subsubsection 0.2.3.1 for more details on 5G networks and network slic-
ing.

Slice description As the Network slicing paradigm is still relatively recent, the modelling of a
slice can vary according to the context of the work in which it is used. In [01118] the ETSI defines
a slice as a description of a service-aware logical network composed of different physical or virtual
network elements, resources and functions. The instance of a slice has resources allocated to it
from the underlying network infrastructure and is independently managed and monitored by the
tenant. The tenant being the entity that consumes a network slice instance from network slice
providers. This definition of a slice leaves a wide variety of choices for its modelling, however
the description of its role specifies that it is designed to deliver a service. Network slices provide
a network through which a consumer can achieve his or her service delivery objectives. The use
of SFCs to model end-to-end services is already widespread as in [SZGS+18, TAM19, ZLF+17]
and is consistent with the definition of a slice. The definition of the dynamicity of a slice can also
lead to different interpretations. In [WFS+20, GZL20] the authors do not fix the capacities used
by a slice, which may vary over time depending on the use made of it by its users. On the contrary,
in our model, the capacities allocated to a slice are fixed and represent a maximum limit for it. If
the slice is underused, the unused capacities cannot be used by another slice, they are reserved to
allow perfect isolation and respect of the capacities constraints. The tenant of a slice is responsible
for the use of the resources he reserves, in accordance with the ETSI definition. Each slice being
an independent entity should not impact the operations or lead service disruptions for other slices.
In addition, it should be possible for a tenant operator of a slice to control and manage resources
as well as allocate them to different users or flows with in its own network slice. Taking these
different parameters into account, in this chapter we model a slice by using a set of SFCs with a
fixed resource demand throughout the slice’s lifespan.

Dynamic resource allocation is one of the key challenges of network slicing. In this chapter
we consider the problem of both rerouting traffic flows and improving the mapping of network
functions onto nodes in the presence of dynamic traffic, with the objective of bringing the network
back to a close to optimal operating state, in terms of resource usage. We adapt our make-before-
break reconfiguration method in the context of network slicing. To the best of our knowledge,
we are the first to propose scalable models to reconfigure network slices while implementing such
mechanisms to avoid QoS degradation. See subsection 0.2.4 and subsubsection 0.2.4.2 for more
details on reconfiguration and the make-before-break technique.

Our contributions in this chapter are as follows:

116 Network Slices Reconfiguration

• We propose an Integer Linear Program (slow-rescue) to reconfigure, with a make-
before-break mechanism, the routing and provisioning of a set of slices.

• We propose two scalable models, rescue-ILP and rescue-LP, with rescue stand-
ing for “REconfiguration of network Slices with ColUmn gEneration without interruption".
Both are based on a decomposition model and are solved using column generation. Our
algorithms reconfigure a given set of network slices from an initial routing and placement
of network functions to another solution that improves the usage of the network resources
(both in terms of links and VNFs). Our solutions scale on large networks as we succeeded in
solving data instances with 65 nodes and 108 links, and a hundred of network slices in few
seconds, a lot faster than with a classic compact Integer Linear Program (ILP) formulation
such as slow-rescue.

• We show that our solutions allow the decrease of the network cost without degrading the
QoS (as the network slices are not interrupted thanks to the make-before-break approach) in
moderate running times. Moreover, we can manage more network slices when the network
is congested compared to solutions without any reconfiguration.

In this chapter the optimisation problem is similar to the one in the previous chapter. The
modelling of the slices is done by using SFC and the objective of the model is the minimisation
of the link usage and the deployment of VNFs. However, in this chapter the flow of each SFC
is not splittable and must follow a single path. The addition of a delay constraints makes the
problem harder to solve and allows for different latency classes depending on the type of slices.
The ILP slow-rescue is the adaptation of the Break-Free-ILP ILP of the previous chapter
and allows to compare our new solutions with the one of the previous chapter. Finally, the test
scenarios are more realistic and based on a typical daily variation of traffic in an ISP network
(Figure 4.1). It allows us to test our solutions with an evolving network load.

4.2 Related Work

In the last years, a large corpus of works has studied the deployment and management of net-
work services.In particular, the problem of jointly routing demand and provisioning them with
their needed VNFs has attracted a lot of attention. A large number of efficient algorithms and
optimisation models have been proposed in order to minimise setup cost [CLENR15] or take into
account the chaining constraints [HJG18]. The problem of how to deploy and manage network
services conceived as a chain of VNFs is summarised in chapter 2 In [LPMK18] the authors study
a multi-objective slice placement algorithm. They take into account fairness of delay, computa-
tional power, traffic usage and total utility maximisation. Their objective can be set to balance
different needs while being pareto optimal. Pozza et al. [PPR+19] study a slice placement algo-
rithm collocating VNFs with the objective of minimising inter-VNFs traffic and latency within a
slice.

Most of these works have only considered scenarios in which, when a service is deployed,
its route and used virtual resources are not changed during its lifetime. However, the churn of
network services makes that even an optimal service deployment may lead to sub-optimal use of
network resources after a certain time, when some services are no longer there.

Inspired by the classic defragmentation mechanism in optical networks [WM13], it has been
proposed to carry out reconfigurations of network and virtual resources regularly in order to bring

Network Slices Reconfiguration 117

G = (V,L) Network: V represents the node set and L the link set.

C` Bandwidth link capacity of ` ∈ E.

DELAY` Link delay of ` ∈ L.

Cv Resource node capacity (e.g., CPU, memory, and disk) of node v ∈ V .

∆f Number of bandwidth units required by function f ∈ F .

cv,f Usage cost of function f ∈ F , which also depends on node v.

Each demand d ∈ D is modeled by a quintuplet :

(vSRC, vDST) Source and destination nodes,

cd Ordered network function sequence for demand d,

f cd
i i− th function of chain cd,

BWd Required bandwidth units,

DELAYd Maximum required delay for the slice.

Table 4.1 – Notations

the network closer to an optimal state of operation. The goals can be diverse: optimising network
usage, granting more requests, modifying the capacities of flows already allocated on the network
or even to overcome network failures.

The readjustment of Service Function Chains (SFCs) has been studied in Liu et al. [LLZ+17].
The latter formulates an ILP and a column generation model in order to jointly optimise the de-
ployment of the SFCs of new users and the readjustment of the SFCs already provisioned in the
network while considering the trade-off between resource consumption and operational overhead.

Gao and Rouskas [GR18] considered the reconfiguration of virtual networks. They proposed
online algorithms to minimise the maximum utilization of substrate nodes and links while bound-
ing the number of virtual nodes that have to be migrated.

Similarly, all works on reconfiguration of virtual resources (virtual networks, slices or service
function chains) include a cost expressing the degradation of the client’s QoS. On the contrary, our
goal is to avoid this QoS degradation by proposing a make-before-break mechanism, in which the
new route is reserved and the new virtual resources are installed before the slice is reconfigured.
A similar mechanism has been proposed in chapter 3. However, this chapter if the first to present
a scalable decomposition model based on column generation to solve it.

4.3 Problem Statement and Notations

4.3.1 Definitions

We consider the network as a directed capacitated graph G = (V,L) where V represents the node
set and L the link set. The resource node capacity (e.g., CPU, memory, and disk) of node v ∈ V
is denoted by Cv. Link transport capacity is represented by C` and DELAY` is the delay of link
` ∈ L. t ∈ T is the number of steps used for the reconfiguration. ∆f is the number of bandwidth
units required by function f ∈ F .

118 Network Slices Reconfiguration

Following, e.g., [LPMK18, PPR+19], a slice can be modeled by a set of requests. Each de-
mand request d ∈ D is modeled with a quintuplet: vSRC the source, vDST the destination, cd the
ordered sequence of network functions that need to be performed, where f cd

i is the i− th function
of chain cd. BWd denotes the required units of bandwidth of demand d, and DELAYd the delay
requirement of demand d. Table 4.1 summarizes the notations used throughout the chapter.

In a dynamic scenario with no information on future traffic, each demand is routed individu-
ally while minimising the network operational cost defined by the weighted sum of link bandwidth
and VNF usage costs (licenses, energy consumption, etc). As requests come and leave over time,
allocations that are locally optimal at a given instant can bring the network in a global sub-optimal
state. Our goal is to reconfigure the network to improve resource usage and therefore the oper-
ational costs. In doing so, we use the make-before-break mechanism to avoid network service
disruption due to traffic rerouting. Reconfiguring a demand involves rerouting its path and/or
reallocating the VNFs it’s using to other locations
|cd| denotes the number of VNFs in the chain cd of the demand.

4.4 ILP Model: slow-rescue

Model.
The compact ILP model, slow-rescue, is an Integer Linear Program based on the notion of
layered graph described in section 2.4. This model is similar to the Break-Free-ILP model
explained in subsection 3.4.2 from chapter 3. It differs by the addition of delays, the use of
binary variables and by a more constraining reconfiguration. Unlike Break-Free-ILP, when
a reconfigured request uses the same link twice between two steps, the link is counted twice.
Variables:
• ϕd,t`,i ∈ [0, 1] is the amount of flow on Link ` in Layer i at time step t for demand d.

• αd,tv,i ∈ [0, 1] is the amount of flow on node v in layer i at time step t for demand d.

• xd,t`,i ∈ [0, 1] is the maximum amount of flow on Link ` in Layer i at time steps t and t − 1 for
demand d.
• yd,tv,i ∈ [0, 1] is the maximum amount of flow on node v in layer i at time steps t and t − 1 for
demand d.
• ωd,t ∈ [0, 1], where ωd,t = 0 if the allocation of demand d is modified between time steps t or
t− 1.
•zv,f ∈ [0, 1], where zfv = 1 if function f is activated on node v at time step |T | in the final routing.

The optimisation model starts with the initial configuration (an initial placement of VNFs on the
nodes, and a valid routing for the slices) as an input. Thus, for each demand d ∈ D, at initial time
step 0, variables ϕd,0`,i (for each link ` ∈ L, layer i ∈ {0, ..., |cd|}) and αd,0v,i (for each node v ∈ V ,
layer i ∈ {0, ..., |cd|}) are known.

Objective: minimise the amount of network resources consumed during the last reconfiguration
time step |T |.

min
∑
d∈D

∑
`∈L

|cd|∑
i=0

BWd ϕ
d,T
`,i + β

∑
v∈V

∑
f∈F

cv,f zv,f (4.1)

Network Slices Reconfiguration 119

The parameter β ≥ 0 specified by the network administrator accounts for different scales over
which the functions’ activation cost is put in relationship with the network bandwidth cost. β rep-
resents how many TB/s of data can be sent when using a dollar. Its dimension thus is TB/dollars,
giving that our objective function formally expresses a bandwidth.

Constraints:
Flow conservation constraints. The following equations are the usual flow conservation con-
straints considering the graph layer technique as explained previously. Note that the traffic can
enter at the top layer, and only exits at the bottom layer. For each demand d ∈ D, node v ∈ V ,
time step t ∈ T .

∑
`∈ω+(v)

ϕd,t`,0 −
∑

`∈ω−(v)
ϕd,t`,0 + αd,tv,0 =

{
1 if v = vSRC

0 else
(4.2)

∑
`∈ω+(v)

ϕd,t`,|cd| −
∑

`∈ω−(v)
ϕd,t`,|cd| − α

d,t
v,|cd|−1

=
{
−1 if v = vDST

0 else
(4.3)

∑
`∈ω+(v)

ϕd,t`,i −
∑

`∈ω−(v)
ϕd,t`,i + αd,tv,i − α

d,t
v,i−1 = 0

0 < i < |cd|. (4.4)

Node usage over two consecutive time periods. For d ∈ D, v ∈ V , i ∈ {0, ..., |cd| − 1}, t ∈ T . If
d used link ` either at time step t or t − 1, then yd,tv,i is forced to 1. If d is modified between these

two steps, then ωd,t = 0 and one (or both) of the two variables αd,tv,i or αd,t−1
v,i should be equal to 0.

If d keeps the same allocation between t and t− 1, then ωd,t = 1 and yd,tv,i is forced to 1 if node v
is used and can be equal to 0 otherwise.

αd,tv,i ≤ y
d,t
v,i (4.5)

αd,t−1
v,i ≤ yd,tv,i (4.6)

αd,tv,i + αd,t−1
v,i − ωd,t ≤ yd,tv,i . (4.7)

Link usage over two consecutive time periods. For d ∈ D, ` ∈ L, Layer i ∈ {0, ..., |cd|}, t ∈
T . The arguments to justify these constraints are the same as the ones for node usage over two
consecutive time periods.

ϕd,t`,i ≤ x
d,t
`,i (4.8)

ϕd,t−1
`,i ≤ xd,t`,i (4.9)

ϕd,t`,i + ϕd,t−1
`,i − ωd,t ≤ xd,t`,i . (4.10)

Make Before Break - Node capacity constraints. The capacity of a node v ∈ V is shared between
each layer and cannot exceedCv considering the resources used over two consecutive time periods.
For each Node v ∈ V , time step t ∈ T .

∑
d∈D

BWd

|cd|−1∑
i=0

∆f
cd
i
yd,tv,i ≤ Cv. (4.11)

120 Network Slices Reconfiguration

Make Before Break - Link capacity constraints. The capacity of a link ` ∈ L is shared between
each layer and cannot exceedC` considering the resources used over two consecutive time periods.
For ` ∈ L, t ∈ T . ∑

d∈D
BWd

|cd|∑
i=0

xd,t`,i ≤ C`. (4.12)

Delay constraint. The sum of the delays of all links traversed by the flow of a demand d must not
exceed the maximum delay accepted by the demand. For d ∈ D, t ∈ T

|cd|∑
i=0

xd,t`,i DELAY` ≤ DELAYd. (4.13)

Function activation. To know which functions are activated on which nodes in the final routing.
For v ∈ V , f ∈ F , d ∈ D, and i ∈ {0, ..., |cd| − 1},

αd,Tv,i ≤ zv,fcd
i
. (4.14)

Reconfiguration - node modification constraints. To know if the allocation of a demand d is
modified on nodes between two consecutive time periods.
For d ∈ D, v ∈ V , i ∈ {0, ..., |cd|}, t ∈ T .

ωd,t ≤ 1 + αd,tv,i − α
d,t−1
v,i (4.15)

ωd,t ≤ 1 + αd,t−1
v,i − αd,tv,i. (4.16)

Reconfiguration - link modification constraints. To know if the routing of a demand d is modified
on links between two consecutive time periods.
For d ∈ D, ` ∈ L, i ∈ {0, ..., |cd|}, t ∈ T .

ωd,t ≤ 1 + ϕd,t`,i − ϕ
d,t−1
`,i (4.17)

ωd,t ≤ 1 + ϕd,t−1
`,i − ϕd,t`,i . (4.18)

As we will see in section 4.6, although effective, the compact ILP model slow-rescue
does not scale on large networks or with many slices. We therefore propose an alternative using
column generation: rescue-ILP and rescue-LP (for REconfiguration of network Slices with
ColUmn gEneration with ILP or LP pricing).

4.5 The column generation technique and our model

Column generation (CG) is a model allowing the solution of an optimisation model without ex-
plicitly introducing all variables, see section 1.2 for an explanation. It thus often allows to solve
larger instances of the problem than a compact model, in particular, with an exponential number
of variables.

To model our problem using column generation we tested two different solutions.

Network Slices Reconfiguration 121

4.5.1 A first CG-based algorithms

In the first model each PP handles the reconfiguration of a single demand. The PPs are therefore a
reformulation of slow-rescue which seeks to find a valid reconfiguration for one demand and
where only the objective changes. The capacity constraints are kept inside the PPs because if a
request passes several times on a link during several steps of the reconfiguration, it can saturate
the link by itself and thus there is a risk to have a column which is invalid and which will not be
used by the RMP. The RMP on the other hand combines columns, each of which is the complete
reconfiguration of a demand. The RMP also contains capacity constraints to ensure that capacities
are respected between different requests.

4.5.1.1 First Master Problem

Model.
In this model the role of the RMP is to connect the different reconfigurations of the demands.
Each demand has a set of columns representing a valid reconfiguration,generated by a PP. The
RMP must find the optimal configuration of the columns to ensure the best global reconfiguration
of the set of slices by choosing on column per demand.

Parameters:
• δr,t` is the number of times the link ` appears on reconfiguration r between time step t and t+ 1.
At t = T only the time step T is used
• θr,ti,v is the number of times the bode v is used as a VNF on reconfiguration r on layer i between
time step t and t+ 1. At t = T only the time step T is used
Variables:
• ϕdr ∈ [0, 1] is the amount of flow of demand d on reconfiguration r.

We assume an initial configuration is provided with fixed values for ϕdr . The optimisation
model is written as follows.

Objective: minimise the amount of network resources consumed during the last reconfiguration
time step T .

min
∑
d∈D

∑
p∈Pd

∑
`∈L

BWd ϕ
d
r δ

r,T
` + β

∑
V ∈V VNF

∑
f∈F

cv,f zv,f (4.19)

Constraints:

One reconfiguration constraint. For d ∈ D.∑
r∈Rd

ϕdr = 1. (4.20)

Make Before Break - Node capacity constraints. The capacity of a node v in V is shared between
each layer and cannot exceedCv considering the resources used over two consecutive time periods.
For v ∈ V VNF, t ∈ T . ∑

d∈D

∑
r∈Rd

|cd|−1∑
i=0

ϕdr · θ
r,t
i,v · BWd ·∆f

cd
i
≤ Cv. (4.21)

122 Network Slices Reconfiguration

Make Before Break - Link capacity constraints. The capacity of a link ` ∈ L is shared between
each layer and cannot exceedC` considering the resources used over two consecutive time periods.
For ` ∈ L, t ∈ T , ∑

d∈D

∑
r∈Rd

BWd ϕ
d
r δ

r,t
` ≤ C`. (4.22)

Function activation. To know which functions are activated on which nodes in the final routing.
For v ∈ V , f ∈ F , d ∈ D, i ∈ {0, ..., |cd| − 1},

ϕdr · θ
r,T
i,v ≤ zv,fcd

i
. (4.23)

4.5.1.2 First Pricing Problem

Model.
The variables are the same as slow-rescue, with the exception that they are only related to the
demand handled by the PP.
Variables:
• ϕt`,i ∈ [0, 1] is the amount of flow on Link ` in Layer i at time step t.
• αtv,i ∈ [0, 1] is the amount of flow on node v in layer i at time step t.
• xt`,i ∈ [0, 1] is the maximum amount of flow on Link ` in Layer i at time steps t and t− 1.
• ytv,i ∈ [0, 1] is the maximum amount of flow on node v in layer i at time steps t and t− 1.
• ωt ∈ [0, 1], where ωt = 0 if the allocation is modified between time steps t or t− 1.
•zv,f ∈ [0, 1], where zfv = 1 if function f is activated on node v at time step |T | in the final routing.

The constraints are also the same as slow-rescue, but only related to the demand handled
by the PP.
As in slow-rescue, the optimisation model starts with the initial configuration (an initial place-
ment of VNFs on the nodes, and a valid routing for the demand) as an input. Thus, at initial time
step 0, variables ϕ0

`,i (for each link ` ∈ L, layer i ∈ {0, ..., |cd|}) and α0
v,i (for each node v ∈ V ,

layer i ∈ {0, ..., |cd|}) are known.
The objective, however, changes. It takes into account the dual values of the RMP constraints,

as explained in Equation 1.9.

Objective: minimise the amount of network resources consumed during the last reconfiguration
time step |T |.

min
∑
`∈L

|cd|∑
i=0

ϕT`,i BWd(1 + µ
(4.22)
`,T) +

T∑
t=1

∑
`∈L

|cd|∑
i=0

xt`,i BWd µ
(4.22)
`,t−1

+ BWd

T∑
t=1

∑
v∈V VNF

µ
(4.21)
v,t−1

|cd|−1∑
i=0

∆f
cd
i
ytv,i

− µ(4.20)
d,t + β

∑
v∈V VNF

∑
f∈F

cv,f zv,f µ
(4.23)
d,v,f (4.24)

Network Slices Reconfiguration 123

4.5.2 Description of our CG-based algorithms: rescue-ILP and rescue-LP

In the second model the reconfiguration computation is transferred to the RMP. The PPs only find
one valid allocation for each request. A column is therefore only one path and the RMP combines
the paths to ensure that all requests can be reconfigured from one path to another. In this model
there are no capacity constraints within the PPs simply because saturating a link or node with
a single request in one step is highly unlikely, if not impossible in our scenario. The PPs are
therefore much simpler problems than in the first model. The RMP is more complicated to solve.

We have chosen to study only the second model after testing both. In the case of the second
model the majority of the execution time comes from the PPs and even with a more complex RMP,
the time spent executing it at each iteration is negligible. For the first model the PPs take longer
to execute and this is deleterious for the convergence time as well as for the quality of the final
solution when the execution time is bounded.

In the context of our problem, the master problem (MP) seeks a possible global reconfiguration
for all slices with a path-formulation. In the RMP, only a subset of potential paths is used for each
slice. At the initialisation, the set of paths is the one used before reconfiguration. Each (PP)
then generates a new path for a request, together with the placement of the VNFs. During a
reconfiguration, slices are migrated from one path to another. Note that, as the execution of each
pricing problem is independent of the others, their solutions can be obtained in parallel.

It should be noted that in the majority of the state of the art of column generation, for each new
column added to the RMP, only one set of variables is added. In our case two sets of variables are
added as well as a constraint. The 4.27 constraint is used to bind the ϕp and y sets of variables.
Its dual value does not appear in the pricing objective because it applies to a particular column
and even if it did appear in the pricing, the left and right signs of the constraint would cancel each
other.

This addition of a constraint should not be considered as row generation. Without going into
detail, row generation is an optimisation technique in which constraints (rows) are added to the
problem in order to constrain it progressively and find a valid solution quickly. In our case the
added constraints do not constrain the problem further but simply binds the sets of added variables.

4.5.2.1 Master Problem of rescue-ILP and rescue-LP

Model.
This master problem is used both by rescue-ILP and rescue-LP.

Parameters:
• δp` is the number of times the link ` appears on path p.
• θpi,v = 1 if node v is used as a VNF on path p on layer i.
Variables:
• ϕd,tp ∈ [0, 1] is the amount of flow of demand d on path p at time step t.
•yd,tp ∈ [0, 1] is the maximum amount of flow of demand d on path p between time step t−1 and t.

We assume an initial configuration is provided with fixed values for ϕd,0p . The optimisation
model is written as follows.

124 Network Slices Reconfiguration

Objective: minimise the amount of network resources consumed during the last reconfiguration
time step T .

min
∑
d∈D

∑
p∈Pd

∑
`∈L

BWd ϕ
d,T
p δp` + β

∑
V ∈V VNF

∑
f∈F

cv,f zv,f (4.25)

Constraints:
One path constraint. For d ∈ D, time step t ∈ T .∑

p∈Pd

ϕd,tp = 1. (4.26)

Path usage over two consecutive time periods. For d ∈ D, p ∈ Pd, t ∈ T .

ϕd,tp ≤ yd,tp and ϕd,tp ≤ yd,t−1
p . (4.27)

Make Before Break - Node capacity constraints. The capacity of a node v in V is shared between
each layer and cannot exceedCv considering the resources used over two consecutive time periods.
For v ∈ V VNF, t ∈ T .

∑
d∈D

∑
p∈Pd

|cd|−1∑
i=0

yd,tp · θ
p
i,v · BWd ·∆f

cd
i
≤ Cv. (4.28)

Make Before Break - Link capacity constraints. The capacity of a link ` ∈ L is shared between
each layer and cannot exceedC` considering the resources used over two consecutive time periods.
For ` ∈ L, t ∈ T , ∑

d∈D

∑
p∈Pd

BWd y
d,t
p δp` ≤ C`. (4.29)

Function activation. To know which functions are activated on which nodes in the final routing.
For v ∈ V , f ∈ F , d ∈ D, i ∈ {0, ..., |cd| − 1},

yd,Tp θpi,u ≤ zv,fcd
i
. (4.30)

4.5.2.2 ILP Pricing Problem of rescue-ILP

The pricing problem searches for a possible placement for the slice. Since a reconfiguration can
be done in several steps, a pricing problem is launched for each demand, at each time step.

Parameters:
• µ are the dual values of the master’s constraints. The number written in upperscript is the
reference of the master’s constraints.
Variables:
• ϕ`,i ∈ [0, 1] is the amount of flow on link ` in layer i.
• αv,i ∈ [0, 1] is the amount of flow on node v in layer i.
Objective: minimise the amount of network resources consumed for the demand d at time t.

Network Slices Reconfiguration 125

min
∑
`∈L

|cd|∑
i=0

ϕ`,i BWd(1 + µ
(4.29)
`,t)

+ BWd

∑
v∈V VNF

µ
(4.28)
v,t

|cd|−1∑
i=0

∆f
cd
i
αv,i

− µ(4.26)
d,t + β

∑
v∈V VNF

∑
f∈F

cv,f zv,f µ
(4.30)
d,v,f (4.31)

where µ(4.30)
d,v,f = 0 when t 6= T , see constraints (4.30).

Constraints:
Flow conservation constraints for the demand d. For v ∈ V VNF.

∑
`∈ω+(v)

ϕ`,0 −
∑

`∈ω−(v)
ϕ`,0 + αv,0 =

{
1 if v = vSRC

0 otherwise
(4.32)

∑
`∈ω+(v)

ϕ`,|cd| −
∑

`∈ω−(v)
ϕ`,|cd| − αv,|cd|−1 =

{
−1 if v = vDST

0 otherwise
(4.33)

∑
`∈ω+(v)

ϕ`,i −
∑

`∈ω−(v)
ϕ`,i + αv,i−1 − αv,i−1 = 0

0 < i < |cd|. (4.34)

Delay constraints. The sum of the link delays of the flow must not exceed the delay requirement
of demand d.

|cd|∑
i=0

ϕ`,i DELAY` ≤ DELAYd. (4.35)

Function activation. To know which functions are activated on which nodes. For v ∈ V VNF, f ∈
F , layer i ∈ {0, ..., |cd| − 1}.

αv,i ≤ zv,fcd
i
. (4.36)

Location constraints. A node may be enabled to run only a subset of the virtual network functions.
For v ∈ V VNF, i ∈ {0, ..., |cd|−1}, if the (i+ 1)th function of cd cannot be installed on v, we have

αv,i = 0. (4.37)

4.5.2.3 LP Pricing Problem of rescue-LP

The difference between rescue-ILP and rescue-LP comes from the pricing problem, which
is integer for rescue-ILP and fractional for rescue-LP. Indeed, the execution time of the CG
algorithm is divided into the resolutions of: (1) the multiple PPs, (2) the multiple relaxations of
the RMP, and (3) the ILP of the MP. In our experiments, the time spent in (1) represents more than
90% of the whole execution time. To reduce this computational time, we propose rescue-LP
that solves a relaxation of the pricing problem with fractional flows. The Master Problem of
rescue-LP is the same as previously described. In the vast majority of cases, even with no

126 Network Slices Reconfiguration

constraint to force integral flows, the PP outputs an integral path that can be directly integrated
into the RMP. If the LP gives a fractional flow, we use the ILP PP of rescue-ILP to get an
integral path.

4.6 Numerical Results

We conducted several experiments in order to show the efficiency of our Column Generation
algorithms, rescue-ILP (with ILP pricing) and rescue-LP (with LP pricing). We compare
their results with three solutions:

• no-reconf which places and removes the slices without reconfiguring the network,

• slice-wreck which regularly reconfigures the network but with interruptions. It solves
the problem of static routing and computes the optimal allocation to a set of slices (refor-
mulation of Breaking-Bad from section 3.4 of chapter 3 explained in subsection 2.5.2
from chapter 2)

• slow-rescue, our (slower) compact ILP reconfiguring slices without interruptions (sim-
ilar to Break-Free-ILP explained in subsection 3.4.2 from chapter 3).

The solution slice-wreck computes an optimal (static) routing and placement solution and
reconfigures to that new solution. This algorithm gives a bound for the best solution we can reach
with the make-before-break approach.

We first show the efficiency of the CG models in terms of execution times and gains in net-
work costs compared to the ILP, and of accuracy using static scenarios in subsection 4.6.2. We
discuss the impact of the number of reconfiguration steps in subsection 4.6.3. Then, we consider
dynamic scenarios in which requests arrive and leave over time in subsection 4.6.4. We discuss
the gains provided by the reconfiguration by studying the impact on several metrics while varying
the reconfiguration frequency in subsection 4.6.5. The scalability of our solutions are proven in
subsection 4.6.6. The gains of parallelisation are shown in subsection 4.6.7 and the impact of slice
delay constraints in subsection 4.6.8.

4.6.1 Data sets

Topologies. We conduct simulations on three real-world topologies from SNDlib [OWPT10] of
different sizes: pdh (11 nodes, 34 links), ta1 (24 nodes, 55 links), and ta2 (65 nodes, 108 links).
The compact model, slow-rescue, succeeds to find solutions only for small networks like pdh.
We thus first compare the results on pdh and ta1 to show the efficiency of the CG models in terms
of execution times and gains in network costs. We then use the two larger networks ta1 and ta2
for our study of large dynamic scenarios.
Slice demands. Each slice is composed of a random number of demands chosen uniformly be-
tween 1 and 5. Each of the demands has to implement a chain of up to 5 VNFs, requires a specific
amount of bandwidth, and has a latency constraints. We consider four different types of demands
corresponding to four services: Video Streaming, Web Service, VoIP, and online gaming. The
characteristics of each service are reported in Table 4.2 and are taken from [STV15]. The band-
width usage was chosen according to the distribution of Internet traffic described in [CIS15]. The
latency requirements are expressed in milliseconds and represent the maximum delay between the
source and destination.

Network Slices Reconfiguration 127

Slice Types VNF chain Latency bw (Mbps)

Web Service NAT-FW-TM-WOC-IDPS 10ms 100
Video Streaming NAT-FW-TM-VOC-IDPS 5ms 256
VoIP NAT-FW-TM-FW-NAT 3.5ms 64
Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

Table 4.2 – Characteristics of network slices

Simulations have been conducted on an Intel Xeon E5520 with 24GB of RAM.

Figure 4.1 – Period approximation of traffic variation

Traffic distribution. Our goal is to study the impact of reconfiguration for different network
usages. Indeed, when the traffic is low or medium, all slices can be served and reconfigurations
improve the network usage (links and VNFs). However, when the traffic is high and if some links
are congested, reconfiguration also helps to prevent rejecting slices. To model the typical daily
variation of traffic in an ISP network, we used the traffic distribution from a trace of the Orange
network (Figure 4.1). We adapted the churn rate of slices during time in order to obtain a similar
level of traffic. This distribution is decomposed into five different levels of traffic demands: D1 to
D5, D1 being the lowest one (from 3 to 6 am) and D5 the highest one (from 11 am to 6 pm). Each
level of traffic corresponds to a different average number of slices: from 10 for D1, 22 for D2, 35
for D3, 52 for D4 to 60 for D5 with an average of 3 SFCs per slice.

Finally we will mostly use 3-steps reconfiguration, except for pdh where it will be a 2-steps
reconfiguration (to be able to compare our algorithms with slow-rescue which does not give
results with 3 steps). The reason for the choice of the 3-steps reconfiguration is developed in
sub-subsection 4.6.3.

4.6.2 Efficiency of our algorithms with different traffic matrices

We evaluate the efficiencies of rescue-ILP and rescue-LP by comparing them with
slow-rescue. We consider the pdh and ta1 networks for the five different traffic levels dur-
ing the day of Figure 4.1. We consider here a static scenario. For each network and for each
level of traffic, we first place a corresponding number of slices one by one. We then carry out a
reconfiguration to reroute the slices in order to improve the network usage. First, all the slices of
D1 are placed, and then all reconfigured at once. Then, the same process is repeated for D2 until
D5.

128 Network Slices Reconfiguration

4.6.2.1 Execution times

We report the execution times of a reconfiguration in two steps for slow-rescue,
rescue-ILP and rescue-LP in Figure 4.2. Each value is an average over 10 experiments.
We set a time limit of one hour. When the time limit is reached, the algorithms return the best
solution found during this delay. This solution is often not too far from the optimal solution, or
even optimal as the solver tries to prove the optimality of the solution. For pdh, slow-rescue
finds the optimal solution only for the period D1 and a small number of runs for D2. For all the
other ones, it reaches the time limit. For the larger network ta1, the compact ILP was not able
to find any feasible solution, even for D1 with the lowest number of slices. Column generation
models are a lot faster. The execution times are below 120 s for both networks for any time
period. Moreover, the models scale well as their execution times increase in a linear way. We
observe that rescue-LP is a lot faster than rescue-ILP (beware of the log y-scale): for
ta1, rescue-LP needs from 4 s to around 70 s, while the execution times of rescue-ILP are
between 20 s and 120 s. It confirms that using LPs instead of ILPs when possible very significantly
speeds up the resolution of the pricing problems, and, then, of the whole method.

D1 D2 D3 D4 D5
Time Period

100

101

102

103

Ti
m

e
(s

)

D1 D2 D3 D4 D5
Time Period

100

101

102

103

Ti
m

e
(s

)

Figure 4.2 – Execution times for pdh (left) and for ta1 (right).

4.6.2.2 Gains in network cost

We now compare the improvement in terms of network cost obtained after a reconfiguration in
Figure 4.3. Results are given for each time period for pdh and ta1. Recall that the network
cost is a weighted sum of the VNF and network costs (which are also plotted in Figure 4.4 and
Figure 4.5, respectively).

Network Slices Reconfiguration 129

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

Figure 4.3 – Gains in network cost for pdh (left) and for ta1 (right).

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 V
N

F
(%

)

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 V
N

F
(%

)

Figure 4.4 – Gains in VNF cost for pdh (left) and for ta1 (right).

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 B
w

 (%
)

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 B
w

 (%
)

Figure 4.5 – Gains in bandwidth cost for pdh (left) and for ta1 (right).

For pdh and for traffic matrix D2, slow-rescue reached the time limit, but succeeds in
finding a feasible solution, whose improvement in terms of network cost is only half of the im-
provement of the Column Generation based methods. For the other traffic periods (except for the
smallest one D1), not even a feasible solution can be found during the time limit.

130 Network Slices Reconfiguration

pdh ta1
rescue-ILP rescue-LP rescue-ILP rescue-LP

D1 3.11 4.03 1.82 1.38
D2 19.14 17.15 10.67 6.64
D3 11.22 13.88 8.19 9.55
D4 15.30 17.87 12.39 15.60
D5 12.52 13.28 12.16 13.09

Table 4.3 – Accuracy of the column generation models (%)

For both networks, we see that rescue-ILP and rescue-LP achieve comparable results.
As rescue-LP is faster, we use it as our preferred solution in the following.

Last, we compare the results of our models with slice-wreck, which does not use the
make-before-break mechanism. slice-wreck can achieve a better network improvement but at
the cost of breaking slices and, thus, of a degraded QoS for users. We report its results as an upper
bound on what our algorithms can achieve. We see that rescue-ILP and rescue-LP results
are within few percent of the ones of slice-wreck, showing their efficiency. The difference
is higher for heavy load periods (D4 and D5). Indeed, when the traffic is high, some links are
almost saturated. It thus is harder to ensure that the bandwidth for both the current path and the
one targeted by the reconfiguration can be reserved during the process.

Figure 4.4 and Figure 4.5 show how the improvement of objective is decomposed between the
number of VNFs and the bandwidth usage. We considered a setting (and accordingly set the value
of β in our objective function, Equation 4.1) in which the bandwidth and the VNFs have the same
weight in the objective: using 100% of the available bandwidth has the same cost as using 100%
of the available VNFs.

We see that reconfiguration allows to decrease the usage of both network bandwidth and VNFs.
In terms of network bandwidth usage, the gains are similar between pdh and ta1 and vary be-
tween 12% and 24%. For the deployment of VNFs the gain on pdh is lower and is between 6%
and 25% while for ta1 it varies between 23.5% and 38%.

Indeed, pdh is a smaller network with a smaller diameter compared to ta1 and fewer available
datacenters. The routes of new slices are therefore more likely to be close to an already deployed
VNF and of length not too far from the shortest one. Therefore, the reconfiguration is not as
efficient on pdh compared to ta1.

4.6.2.3 Accuracy of the Column Generation Models

The accuracy ε of a column generation model is classically defined as ε = (z̃ILP−z?LP)/z?LP, where
z?LP represents the optimal value of the relaxation of the Restricted Master Problem, and z̃ILP the
integer solution obtained at the end of the column generation algorithm. We provide the accuracy
of rescue-ILP and rescue-LP in Table 4.3. We see that, if the accuracy increases with the
number of slices, it is always lower than 20% for both networks. The solutions thus are not far
from optimal.

Network Slices Reconfiguration 131

1 5 10 60 1 5 10 60 1 5 10 60 1 5 10 60 1 5 10 60
D1 D2 D3 D4 D5

0

10

25
Im

pr
ov

ed
 O

bj
 (%

)

(a) rescue-ILP

1 5 10 60 1 5 10 60 1 5 10 60 1 5 10 60 1 5 10 60
D1 D2 D3 D4 D5

0

10

25

Im
pr

ov
ed

 O
bj

 (%
)

(b) rescue-LP

Figure 4.6 – Improvement due to the reconfiguration for different model time limits on ta1.

4.6.2.4 Time limits for the reconfiguration

The reconfiguration of the network has to be done dynamically in real time. In this context,
the time to compute the reconfiguration is an important element towards the adoption of such
solutions. We thus compare the results of the algorithms for ta1 for different maximum execution
times: 1, 5, 10, 60 seconds and without limits, see Figure 4.6 (with rescue-ILP at the top and
rescue-LP at the bottom). In period D1, rescue-LP is almost optimal in 1 s. We need at least
10 s to get closer to the optimal (no time limit) in the other periods, at 3% at most in D5. As for
rescue-ILP, it is almost optimal in D1 in 5 s but needs at least 60 s to reach near optimal results
for the other periods.

It confirms that rescue-LP is the most scalable method while reaching similar performance
as rescue-ILP. It thus is the best solution to use in practice: rescue-LP is fast and reaches a
very good performance level in only 10 s for all the periods.

4.6.3 Impact of the number of reconfiguration steps

A specificity of our make-before-break scheme is that the reconfiguration is done in a given num-
ber of steps. The more steps the more possibilities to improve the network operating state, however
the more complex the models and the longer to solve them. In this section, we are interested in
the impact of the number of steps on the improvements achieved by the reconfiguration and on the
execution time. We use the same scenario as in the previous section. The simulations are done on
ta1 for a number of reconfiguration steps varying from 1 to 4. Results are reported in Figure 4.7
and Figure 4.8. As a measure of comparison, we reported the results of slice-wreck which
are the same in all cases, as the method does not have reconfiguration steps.
As can be seen in Figure 4.7 and Table 4.4, whether on rescue-LP or rescue-ILP, over all
periods: an increase in numbers implies an improvement in the objective. This phenomenon is

132 Network Slices Reconfiguration

rescue-ILP rescue-LP
1 step 2 steps 3 steps 4 steps 1 step 2 steps 3 steps 4 steps

D1 21.0 26.1 26.1 25.7 20.7 25.4 25.9 26.7
D2 18.6 24.4 23.9 26.1 18.6 24.6 26.6 26.4
D3 16.6 27.0 28.8 28.0 17.0 26.5 27.9 27.4
D4 9.1 19.5 24.7 25.8 9.1 18.9 23.6 25.9
D5 6.4 19.6 25.2 27.5 6.8 19.0 24.7 26.9
AVG 14.4 23.3 25.8 26.6 14.4 22.9 25.8 26.7

Table 4.4 – Average percentages of improvement for each period and each number of steps for
rescue-LP and rescue-ILP on ta1.

rescue-ILP rescue-LP
1 step 2 steps 3 steps 4 steps 1 step 2 steps 3 steps 4 steps

D1 19.5 25.1 23.9 39.0 2.8 3.2 4.2 4.7
D2 24.0 40.1 48.1 58.8 6.6 11.6 15.5 15.5
D3 35.2 50.2 65.4 83.8 15.4 24.3 32.7 45.3
D4 44.3 73.4 107.9 112.9 23.6 40.4 53.8 62.7
D5 59.3 85.1 120.7 151.8 20.1 45.2 68.0 83.7
AVG 36.5 54.8 73.2 89.3 13.7 24.9 34.8 42.4

Table 4.5 – Computation times (seconds) on ta1

even more noticeable in periods D4 and D5. Nevertheless we can see a strong improvement be-
tween 1 step and 2 steps, a weaker improvement between 2 and 3 steps and finally a negligible
improvement between 3 and 4 steps. In order to compare the interest of different numbers of
reconfiguration steps, we must also look at the execution times. Figure 4.8 and Table 4.5 shows
that, like the objective, an increase in the number of reconfiguration steps implies a higher com-
puting time. But unlike the objective, the increase in computing time is not reduced as much by
increasing the number of steps. By averaging over all time periods and between rescue-LP and
rescue-ILP:

Going from 1 to 2 steps, the balance is undeniable, we increases the objective improvement
by 60% against 59% additional execution time. Passing from 2 to 3 steps increases the objective
improvement by 11.7% for 35.3% more computing time. Finally, moving from 3 to 4 steps we
increases the objective improvement by only 3.1% for 21.9% more computing time. Seeing this we
decided to use a 2-step reconfiguration for pdh (mainly so that we could compare our algorithms
to slow-rescue) and a 3-steps reconfiguration for all the other experiments because it seems
to us to be the most balanced configuration.

4.6.4 Gains over Time

We now study the gains provided by the reconfiguration over time. To this end, we consider a
scenario in which the traffic is dynamic (requests arrive and leave over time) and some reconfig-
urations are regularly performed. We use a traffic distribution from a trace of Orange network
(Figure 4.1) in order to model the variation of traffic over 24 hours. In our scenario, the network

Network Slices Reconfiguration 133

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
D1 D2 D3 D4 D5

0

20

40
Im

pr
ov

ed
 O

bj
 (%

)

(a) rescue-ILP

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
D1 D2 D3 D4 D5

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

(b) rescue-LP

Figure 4.7 – Improvement of the Objective (in %) with different numbers of reconfiguration steps
on ta1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
D1 D2 D3 D4 D5

0

100

200

Ti
m

e
(s

)

(a) rescue-ILP

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
D1 D2 D3 D4 D5

0

100

200

Ti
m

e
(s

)

(b) rescue-LP

Figure 4.8 – Reconfiguration time with different numbers of reconfiguration steps on ta1

experiences periods of high congestion during which some slices may be rejected and periods with
lower traffic.

134 Network Slices Reconfiguration

To assess the reconfiguration gains, we compare rescue-LP (our best algorithm as it is as
efficient as rescue-ILP but much faster) with
noreconfChapFive which does not carry out reconfigurations for a medium (ta1) and a large
(ta2) networks. We study the following metrics: the network operational cost, the throughput of
the accepted slices, the accepted number of slices, and the operational cost per Mbits of accepted
traffic.

rescue-LP performs reconfigurations every 15 minutes. We choose this value as it seems
a reasonable one for a network operator which does not want to change its routes too frequently.
This choice is discussed in subsection 4.6.5, in which we vary the reconfiguration frequency, and
show that 15 is a good trade-off between network management and all the studied metrics.

4.6.4.1 Network Cost

In Figure 4.9 we study the network operational cost over time. Recall that the network costs are
defined by the weighted sum of link bandwidth and VNF usage costs. The network cost follows the
traffic variation depicted in Figure 4.1. Of course, the figures shows that the more traffic, the more
network operational cost. Our solution is more reactive to traffic variations thanks to the recon-
figurations that are regularly performed. Throughout the entire execution and for both networks,
rescue-LP significantly reduces the network operational costs: 22% of reduction on ta1 and
18% on ta2 compared to no-reconf case. This reduction is particularly substantial when the
network is loaded (between 10am and 6pm). Reconfiguration allows a better management of the
network and a more efficient resource usage.

0

50

100

Im
pr

ov
em

en
t (

%
)

0 6 12 18 24
Time (h)

0

50000

100000

O
pe

ra
tio

na
l C

os
t

0

50

Im
pr

ov
em

en
t (

%
)

0 6 12 18 24
Time (h)

0

50000

100000

O
pe

ra
tio

na
l C

os
t

Figure 4.9 – Network cost for ta1 (left) and for ta2 (right).

0

10

20

Im
pr

ov
em

en
t (

%
)

0 6 12 18 24
Time (h)

0

10000

20000

Th
ro

ug
hp

ut
 (M

B
/s

)

0

20

40

Im
pr

ov
em

en
t (

%
)

0 6 12 18 24
Time (h)

0

10000

20000

Th
ro

ug
hp

ut
 (M

B
/s

)

Figure 4.10 – Throughput for ta1 (left) and for ta2 (right).

Network Slices Reconfiguration 135

0 6 12 18 24
Time (h)

60

80

100
B

w
 A

cc
ep

te
d

(%
)

0 6 12 18 24
Time (h)

60

80

100

B
w

 A
cc

ep
te

d
(%

)

Figure 4.11 – Percentage of Bandwidth accepted for ta1 (left) and for ta2 (right).

0

50

100
Im

pr
ov

em
en

t (
%

)

0 6 12 18 24
Time (h)

0

5

10

C
os

t b
y

M
B

its

0

50

Im
pr

ov
em

en
t (

%
)

0 6 12 18 24
Time (h)

0

5

10

C
os

t b
y

M
B

its

Figure 4.12 – Network cost per accepted bandwidth for ta1 (left) and for ta2 (right).

4.6.4.2 Throughput

The objective of our solution is to reduce operational costs. However, we should not reduce these
costs at the price of rejecting slices. Therefore, we present the global throughput of the network
in Figure 4.10. This throughput is defined as the sum of the requested bandwidth of the accepted
slices. During the first 5 hours of execution there is almost no congestion because the traffic de-
creases, thus,
noreconfChapFive and rescue-LP accept the same number of slices and get roughly the same
throughput for both networks. The next 3 hours, traffic increases and rescue-LP improves the
throughput by up to 13% for ta2 when the network is the most saturated (traffic period D5). For
a period of 24 hours, rescue-LP allows an average throughput improvement of 3% on ta1 and
5% on ta2. Therefore, as a combined conclusion of Figure 4.9 and Figure 4.10, rescue-LP
succeeds in reducing the network operational costs while, at the same time, improving the network
throughput. These gains are reached without impacting users’ Quality of Service as resources are
reserved before any changes of network configurations thanks to our make-before-break mecha-
nism.

4.6.4.3 Accepted Slices

The difference in terms of throughput discussed above comes from different slice acceptance rates
of both solutions. As the slices of different types do not require the same reserved bandwidth (see
Table 4.2), we report the percentage of the bandwidth of the accepted slices compared to the one of
the requested slices. The Figure 4.11 represents incremental acceptance, each bar corresponds to
the percentage of accepted bandwidth averaged over 2 hours. The evolution of the curve reflects

136 Network Slices Reconfiguration

the inverse of the network load as shown in Figure 4.1. Between midnight and 5:00 a.m. the
network load decreases from period D3 to D2 and then to D1, we can therefore see that we are
able to accept almost all of the demands. Then the load rises until noon to reach period D5 and
remains stable until about 7 p.m., thus, the percentage of demands acceptance declines, which
is even more noticeable on ta2. Finally, the load decreases until midnight to reach period D3,
implying an increase in the acceptance percentage. rescue-LP allows an improvement in slice
acceptance for both networks: 2% and 4% more bandwidth for ta1 and ta2, respectively.

4.6.4.4 Cost per MBit

As discussed above, reconfiguration allows to reduce the network operational cost and, at the same
time, to accept more slices. To measure both advantage with a single metric, we report the cost
per MBit to obtain a fair comparison in Figure 4.12. The improvement in percent is given by the
light red bars. The gain is of 25% for ta1 and 22% for ta2. This shows that our solution is
significantly efficient. We observe that the gain is lower when the traffic is low (period D1), but
similar for the other periods (D2, D3, D4, D5). We also see that reconfiguring the network keeps
the cost per MBit more stable during time, showing a better usage of the network resources which
adapt when the traffic varies.

4.6.5 Impact of the reconfiguration time interval

In the previous section, we measured the effects of regularly reconfiguring the network in a dy-
namic scenario. The reconfiguration interval was set to 15 minutes. We now study the effects of
different reconfiguration frequencies: 5 , 15 , 30 , and 60 min. Indeed, reconfiguring more regu-
larly can improve the usage of the network resources, but at the same time lead to more difficult
management. Reconfiguring less regularly eases management, but reduces the reconfiguration
gains. Results are reported in Table 4.6

4.6.5.1 Network Cost

We study in Figure 4.13 the network operational cost of the network considering different recon-
figuration frequencies. For frequency of 60 , 30 , 15 and 5 respectively, we have improvements of
15.5%, 18.2%, 22% and 23.9% on ta1 and 9.4%, 14%, 18% and 21% on ta2. Even if a fre-
quency of 5 leads to better improvement in network costs, good improvement is already obtained
with a reconfiguration frequency of 60 , meaning a reconfiguration every hour.

4.6.5.2 Throughput

Figure 4.14 shows the network throughput over time as defined in subsubsection 4.6.4.2. For
reconfiguration frequency of 60 , 30 , 15 and 5 respectively, there are improvements of 0%, 1%,
3.1% and 5.1% on ta1 and 0.1%, 2.4%, 5% and 7% on ta2. For both networks, a reconfigu-
ration frequency every 15 minutes seems to be a good trade-off between throughput and network
management.

4.6.5.3 Accepted Slices

In Figure 4.15, we plot the accepted bandwidth over time as defined in subsubsection 4.6.4.3. Each
curve is more easily identifiable compared to previous figures. For reconfiguration frequency of

Network Slices Reconfiguration 137

ta1 ta2
Time Interval 60 30 15 5 60 30 15 5

Network Cost 15.5 18.2 22 23.9 9.4 14 18 21
Throughput 0 1 3.1 5.1 0.1 2.4 5 7
Accepted Slices 0 0.7 2.2 4 0 1.5 3.8 5.3
Cost per MBit 14.4 20.5 25 28.5 10.2 16.2 22 26.8

Table 4.6 – Summary of the improvement percentage from rescue-LP with a 3-steps reconfig-
uration according to the reconfiguration time interval (number of minutes between every reconfig-
uration).

60 , 30 , 15 and 5 respectively we have improvements of 0%, 0.7%, 2.2% and 4% on ta1 and 0%,
1.5%, 3.8% and 5.3% on ta2. Here again, reconfiguring every 15 minutes seems to be a good
trade-off for the accepted number of slices.

4.6.5.4 Cost per MBit

Figure 4.16 shows the network operational cost per MBit over time as defined in subsubsec-
tion 4.6.4.4. We can easily distinguish the above curve without reconfiguration among all the
curves. For reconfiguration frequency of 60 , 30 , 15 and 5 respectively there are improvements of
14.4%, 20.5%, 25% and 28.5% on ta1 and 10.2%, 16.2%, 22% and 26.8% on ta2. Reconfig-
uring once an hour leads to strong peaks of cost, while when we reconfigure every 5 minutes, the
cost per Mbit is more stable.

To summarize, a reconfiguration time interval of 15 is a good trade-off to balance the cost, sta-
bility and ease of network management. It leads to an improvement of 20.7% (respectively 17%)
of network cost, 3.5% (respectively 8.9%) of throughput, 2.4% (respectively 6.4%) of accepted
bandwidth, and of 25.5% (respectively 23.2%) of cost per Mbit on ta1 (respectively on ta2).

4.6.6 Scalability

In this section we study the scalability potential of our approach. Indeed the interest of column
generation is to be able to use reconfiguration with many requests. We must recall that a slice
is composed of an average of three SFCs requests and therefore 480 slices represent about 1440
requests. In Figure 4.17, we are interested in the scalability of our solution based on our experi-
ences in subsection 4.6.2. We want to show that our solution can manage a large number of slices
in few seconds only. We vary the number of slices from 60 to 480, as well as the capacity of the
network to keep the same percentage of network load. We impose a maximum time of 60 seconds.
Note that only rescue-ILP and rescue-LP are compared, and recall that slow-rescue
did not find any feasible solution with 2 steps of reconfiguration, with less than 30 slices in 3600
seconds on ta1 (Figure 4.6 (right)). For each of the networks ta1 and ta2 we perform a 3-steps
reconfiguration. As we can see, even with a large number of slices and a limited time, our solution
still allows a significant improvement of the objective. The left side of Figure 4.17 shows us the
results on ta1 where rescue-ILP gets an improvement of 27.1% with 120 slices and on aver-
age it improves by 19%, while rescue-LP improves at best by 29.5% with 120 slices with an
average of improvement of 22.6%. The right side of Figure 4.17 shows the results on ta2 where
rescue-ILP improves at best by 22.6% with 120 slices and at worst by 12.2% with 480 slices

138 Network Slices Reconfiguration

0 6 12 18 24
Time (h)

0

50000

100000

O
pe

ra
tio

na
l C

os
t

0 6 12 18 24
Time (h)

0

50000

100000

O
pe

ra
tio

na
l C

os
t

Figure 4.13 – Network cost for ta1 (left) and for ta2 (right).

0 6 12 18 24
Time (h)

0

10000

20000

Th
ro

ug
hp

ut
 (M

B
/s

)

0 6 12 18 24
Time (h)

0

10000

20000
Th

ro
ug

hp
ut

 (M
B

/s
)

Figure 4.14 – Throughput for ta1 (left) and for ta2 (right).

0 6 12 18 24
Time (h)

80

90

100

B
w

 A
cc

ep
te

d
(%

)

0 6 12 18 24
Time (h)

80

90

100

B
w

 A
cc

ep
te

d
(%

)

Figure 4.15 – Percentage of Bandwidth accepted for ta1 (left) and for ta2 (right).

0 6 12 18 24
Time (h)

2.5

5.0

7.5

10.0

C
os

t b
y

M
B

its

0 6 12 18 24
Time (h)

2.5

5.0

7.5

10.0

C
os

t b
y

M
B

its

Figure 4.16 – Network cost per accepted bandwidth for ta1 (left) and for ta2 (right).

and on average it improves by 18.1%, while rescue-LP improves at best by 24% with 120 slices
and at worst by 17.9% with 480 slices and on average it improves by 20%. Finally we can see here

Network Slices Reconfiguration 139

60 120 240 480
Slices

0

20

40
Im

pr
ov

ed
 O

bj
 (%

)

60 120 240 480
Slices

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

Figure 4.17 – Gains in network cost for ta1 (left) and for ta2 (right) with different numbers of
slices during D5 period.

1 2 4 8
Threads

0

250

500

Ti
m

e
(s

)

Figure 4.18 – Time to execute the pricing problems according to the number of threads on ta2 in
D5 period (60 slices).

the advantage of rescue-LP over rescue-ILP which allows a better improvement and is less
affected by the lack of time on large instances.

4.6.7 Parallelisation of the pricing problem

One of the advantages of column generation is the ability to parallelise the execution of pricing
problems on several CPUs cores or machines. In our experiments about 70% of the execution
time is spent on solving pricing problems, which means that parallelisation can save time. In
Figure 4.18 we show the execution times of rescue-LP to reconfigure 60 slices in D5 period
in ta2. For this experiment we put no time limit and let the column generation create as many
columns that can potentially improve the solution. The average computation time is 433 seconds
with 1 thread and 237 seconds with 2 threads (45% improvement). With 4 threads rescue-LP
is faster and computes a solution on 157 seconds. The difference between 4 and 8 threads is
less pronounced, 29 seconds less, but our computer, although having 8 threads, has only 4 CPU
cores. As pricing execution already uses CPUs to their full potential, additional threads have only
a limited impact.

4.6.8 Impact of the delay constraints

Being able to ensure strict delay constraints for some applications is one of the key element of net-
work slicing [BGB+17]. As an example, each of the slice we considered had a maximum latency

140 Network Slices Reconfiguration

corresponding to its service as shown in Table 4.2. In this section, we study the impact of different
delay constraints on the reconfiguration gains. We carried out three sets of reconfigurations for
ta1 setting the delay constraints of each slice successively to 3 different values: 2.5 ms, 5 ms and
10 ms.

4.6.8.1 Stricter delays lead to lower improvements

The improvement of the objective due to reconfiguring is plotted in Figure 4.19 for the 3 different
latency constraints. We observe that larger gains are obtained when the delay constraints are
looser. For a 2.5 ms latency, the improvement is of 16% in average, while it is of 27% and 27.5%
for 5 ms and 10 ms latencies, respectively. Indeed, when the maximum delay is small, the number
and diversity of potential paths to choose from for a demand are smaller. This leads to fewer
opportunities for the reconfiguration. However, we also see that, when the maximum allowed
delay reaches a threshold, such constraints are no more an important limiting factor. For example,
for ta1 the improvements for 5 ms and the 10 ms are similar.

4.6.8.2 Stricter delays makes it harder to solve

In Figure 4.20 we study the time taken to compute the reconfigurations: The stricter the latency
constraints, the slower to compute a reconfiguration. With a very tight delay constraint of 2.5 ms,
in addition to have a lower improvement, we have much longer computation times with 428 sec on
average, compared to 228 sec and 91 sec for 5 ms and 10 ms, respectively, which allowed similar
gains. Indeed, the higher the maximum allowed delay, the larger the opportunities for reconfigu-
ration and the easier it is to find paths satisfying the delay constraints.

Network Slices Reconfiguration 141

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

(a) 2.5ms

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

(b) 5ms

D1 D2 D3 D4 D5
Time Period

0

20

40

Im
pr

ov
ed

 O
bj

 (%
)

(c) 10ms

Figure 4.19 – Improved Objective with different delay constraints on ta2.

4.7 Conclusion

Modern 5G networks will see an increase in the number of users and an ever-growing need for flex-
ibility and efficiency. Reconfiguring requests regularly can lead to significant improvements in the
use of network resources. In this chapter, we provide solutions, rescue-ILP and rescue-LP,
to reconfigure a set of requests using a make-before-break approach. Our algorithms, based on
column generation, reroute the requests to an optimal or close to optimal solution without impact-
ing the rerouted requests. Both our solutions are scalable and allow to reconfigure several hundred
of Slices in one minute. The use of column generation also allows us to effectively parallelise
part of the problem, which will increase its efficiency in the coming years with the development of
computer with a larger number of CPU cores. rescue-LP is the solution to be chosen in practice
as we observed during simulations that it scales better with the network size and the number of
slices. Reconfiguring regularly the network with rescue-LP allows a slight increase in through-
put when the network is congested as well as a significant reduction in operating costs of around
20% to 25%.

Tables summarising the percentage improvement of rescue-ILP and rescue-LP with
different numbers of reconfiguration steps and their computation times can be found in Table 4.4

142 Network Slices Reconfiguration

D1 D2 D3 D4 D5
Time Period

100

101

102

103

Ti
m

e
(s

)

(a) 2.5ms

D1 D2 D3 D4 D5
Time Period

100

101

102

103

Ti
m

e
(s

)

(b) 5ms

D1 D2 D3 D4 D5
Time Period

100

101

102

103

Ti
m

e
(s

)

(c) 10ms

Figure 4.20 – Reconfiguration time with different delay constraints on ta2.

and Table 4.5. The summary of the different percentage improvement of rescue-LP with dif-
ferent reconfiguration intervals can be found in Table 4.6.

It would be interesting to extend our work to include the edge network infrastructure. The
specificities in terms of latency and computing power of this part of the network would allow us
to better adapt our solution and its objective to the different types of slices. The uRLLC slices
could be given priority for reconfiguration at the edge due to their latency constraints, while the
eMBB slices could be given priority for reconfiguration in the core in order to have access to its
computing power.

References

[01118] ETSI GR NGP 011. Next generation protocols(ngp);e2e network slicing reference
framework and information model. https://www.etsi.org/deliver/
etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.
pdf, 09 2018.

[BGB+17] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and X. Costa-
Perez. Optimising 5G infrastructure markets: The business of network slicing. In
Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 1–9, 2017.

[CIS15] CISCO. Cisco Visual Networking Index: Forecast and Methodology, 2014–2019,
May 2015.

[CLENR15] R. Cohen, L. Lewin-Eytan, J.S. Naor, and D. Raz. Near optimal placement of virtual
network functions. In Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), pages 1346–1354, Kowloon, Hong-Kong, 2015.

[GGJM20] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. In IEEE ICC, 2020.

[GGJM22] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. volume 65, 2022.

[GR18] Lingnan Gao and George N Rouskas. Virtual network reconfiguration with load
balancing and migration cost considerations. In Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), pages 2303–2311. IEEE,
2018.

[GZL20] W. Guan, H. Zhang, and V. C. M. Leung. Slice reconfiguration based on demand
prediction with dueling deep reinforcement learning. In IEEE GLOBECOM, 2020.

[HJG18] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. Optimal network service
chain provisioning. IEEE/ACM Transactions on Networking (ToN), 26(3):1320–
1333, June 2018.

[LLZ+17] Junjie Liu, Wei Lu, Fen Zhou, Ping Lu, and Zuqing Zhu. On dynamic service func-
tion chain deployment and readjustment. IEEE Transactions on Network and Service
Management (IEEE TNSM), 14(3):543–553, 2017.

[LPMK18] Mathieu Leconte, Georgios S Paschos, Panayotis Mertikopoulos, and Ulaş C Kozat.
A resource allocation framework for network slicing. In Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pages 2177–2185.
IEEE, 2018.

143

https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf

144 BIBLIOGRAPHY

[OWPT10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[PPR+19] M. Pozza, A. Patel, A. Rao, H. Flinck, and S. Tarkoma. Composing 5G network
slices by co-locating VNFs in µslices. In IFIP Networking Conference, pages 1–9,
May 2019.

[R+17] Peter Rost et al. Network slicing to enable scalability and flexibility in 5G mobile
networks. IEEE Communications magazine, 55(5):72–79, 2017.

[STV15] Marco Savi, Massimo Tornatore, and Giacomo Verticale. Impact of processing costs
on service chain placement in network functions virtualization. In IEEE Conference
NFV-SDN, 2015.

[SZGS+18] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Scian-
calepore, and Xavier Costa-Perez. Overbooking network slices through yield-driven
end-to-end orchestration. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[TAM19] S. Troia, R. Alvizu, and G. Maier. Reinforcement learning for service function chain
reconfiguration in nfv-sdn metro-core optical networks. IEEE Access, 2019.

[WFS+20] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y. C. Liang. Network slice recon-
figuration by exploiting deep reinforcement learning with large action space. IEEE
Transactions on Network and Service Management, 2020.

[WM13] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-
disruptive defragmentation. IEEE Journal of Lightwave Technology, 31(15):2491–
2500, 2013.

[ZLF+17] Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, and
Zhi-Quan Luo. Network slicing for service-oriented networks under resource con-
straints. IEEE journal on Selected Areas in Communications, 35(11):2512–2521,
2017.

CHAPTER 5
Reinforcement Learning
Driven Reconfiguration

The emerging 5G induces a great diversity of use cases, a multiplication of the number
of connections, an increase in throughput as well as stronger constraints in terms of
quality of service such as low latency and isolation of requests. To support these new
constraints, Network Function Virtualisation (NFV) and Software Defined Network
(SDN) technologies have been coupled to introduce the network slicing paradigm.
Due to the high dynamicity of the demands, it is crucial to regularly reconfigure the
network slices in order to maintain an efficient provisioning of the network. A major
concern is to find the best frequency to carry out these reconfigurations, as there is a
trade-off between a reduced network congestion and the additional costs induced by
the reconfiguration. In this chapter, we tackle the problem of deciding the best moment
to reconfigure by taking into account this trade-off. By coupling Deep Reinforcement
Learning (DRL) for decision and a Column Generation (CG) algorithm to compute
the reconfiguration, we propose Deep-REC and show that choosing the best time
during the day to reconfigure allows to maximise the profit of the network operator,
minimise the use of network resources and the congestion of the network. Moreover,
our proposition allows to decrease the number of needed reconfigurations compared to
an algorithm doing regular reconfigurations during the day.

Part of this chapter is submitted in [GAL+22].

145

146 Reinforcement Learning Driven Reconfiguration

5.1 Introduction . 147
5.2 Related Work . 148

5.2.1 Predict and Learn . 148
5.3 System Model and Problem Formulation 149

5.3.1 Optimisation Model . 150
5.4 Deep Reinforcement Learning Algorithm 150
5.5 Data Set . 152
5.6 Numerical Results . 154

5.6.1 Improved network usage 154
5.6.2 Number of reconfigurations 154

5.7 Conclusion . 156
References . 157

Reinforcement Learning Driven Reconfiguration 147

5.1 Introduction

The increasing importance of wireless networks and the emergence of 5G bring out new needs such
as massive device connectivity, high mobility and a great diversity in the QoS requirements. By
dividing the network infrastructure into multiple logical isolated networks, network slicing allows
the support of a wide range of communication scenarios with a diversified set of service demands,
requirements, and performance. A slice must be deployed in real time and, needs to fulfill an end-
to-end service, thus, the corresponding provisioning of network, computing, and storage resources
has to be done dynamically. A network slice can be modeled as SFC containing the necessary
VNFs provided by the network, allowing for a fast management of the flows/demands [ZLF+17].
See subsection 0.2.3 and subsubsection 0.2.3.1 for more details on 5G networks and network
slicing.

In 5G networks, traffic is considered to be highly dynamic and network requests may be subject
to frequent changes such as arrivals and departures. After a while this dynamicity may fragment
the slice resource usage and make the use of network resources less efficient. As we have seen in
chapter 3 and chapter 4, thanks to SDN and NFV, this effect can be counter using reconfiguration.
The slice allocation can thus be adjusted in order to reduce the resource utilization with the goal
of minimising operational costs. In this chapter, we use the reconfiguration method presented in
chapter 4 and based on the make-before-break mechanism. This allows to not disrupt the traffic
and, therefore, does not impact the Quality of Service (QoS) of the slices. The computations
is done using a column generation approach allowing to deal with a large set of network slices.
See subsection 0.2.4 and subsubsection 0.2.4.2 for more details on reconfiguration and the make-
before-break technique.

Even when using such a mechanism to avoid degrading the QoS, network operators do not
want to reconfigure their network too frequently, as it may lead to additional management costs.
On the opposite, reconfiguring too rarely during the day may lead to a sub-optimal network us-
age. A simple policy with low computational cost is to regularly reconfigure every x minutes.
However, reconfiguring in response to variation of traffic can reduce the number of reconfigura-
tions required each day without impacting the overall improvement obtained. In this chapter, we
propose a reconfiguration management agent that chooses when to initiate reconfiguration as a
function of different parameters such as the traffic dynamics and the level of network congestion.
We use a Deep Reinforcement Learning technique by implementing it with Tensorflow [A+15]
and their DQN agent. We then show that our agent improves the efficiency of reconfigurations by
performing less reconfigurations while still minimising the network operational costs compared to
doing periodic and frequent reconfigurations.

Motivation In a dynamic scenario, due to the frequent arrival and departure of slices, the net-
work is regularly in a sub-optimal state. We have therefore previously worked on a reconfiguration
algorithm which, if called regularly, minimises the operational costs of the network. Nevertheless,
the frequency to run this algorithm was found on a empirical manner. Indeed, we deduced in
chapter 4 after several trials that reconfiguring every 15 minutes allowed a good ratio between
cost reduction, quality of reconfigurations, acceptance rate and computation time. A fixed fre-
quency is easy to set up but in practice, at some specific time of a day, reconfiguration may not
be needed as traffic remains stable and the network is already in an optimal state. A new recon-
figuration at this time won’t bring any gain. On the opposite, during high-dynamic traffic period,

148 Reinforcement Learning Driven Reconfiguration

more frequent reconfigurations may be suitable to maintain an acceptable state of the network
with efficient network resource usage. Therefore, a network operator might be interested to adapt
the reconfiguration frequencies depending on the congestion of the network, and the nature of the
traffic. This is the main goal of this chapter. We present a deep reinforcement learning model
named Deep-REC to choose when to reconfigure in order to optimally adapt to the evolving net-
work state. Our objective is to maximise the cumulative profit as presented before: the sum of the
instantaneous profits pt (See (5.1)).

The rest of this chapter is organized as follows. In section 5.2, we discuss related work.
section 5.3 presents the formal definition of our problem, and section 5.4 the optimisation models
based on reinforcement learning for solving our problem. In section 5.6, we validate our proposed
optimisation models by various numerical results. Finally, we draw our conclusion in section 5.7.

5.2 Related Work

Routing and provisioning of slices. The dynamic nature of network traffic raises a range of prob-
lems concerning the acceptance of incoming slices, resource management, and SLA compliance.
Cheng et al. [CWM+20] use a two-phase method to deploy and manage slice provisioning using
deep learning and Lyapunov stability theories. A first deployment phase allows to choose which
slices to accept, where to allocate VNFs, and how to route the flows of slices. A second man-
agement phase adapts the flow of the deployed slices to match the current traffic. Their solution
learns from past traffic and adapt to current traffic. In [HFS+19] the authors present a Mixed In-
teger Linear Program and a heuristic to add new slices by minimising the bandwidth consumption
and the slice provisioning cost while taking into account the VNF migrations.

Reconfiguration using standard techniques. The reconfiguration of SFCs and/or slices aims to
maintain a near-optimal state of the network over time in order to optimise the network usage and
the acceptance of demands. In [PNL+20] the authors propose a slice reconfiguration technique
in which the new state of the network is pre-computed. The reconfiguration is done in several
steps in which the VNFs and routes are modified while taking into account capacities and delays.
In [GTGM19a, GTGM21] (chapter 3), we proposed an integer linear program and an heuristic to
efficiently reconfigure SFCs using a make-before-break strategy.

5.2.1 Predict and Learn

Many works use prediction to help decision making. In [SZGS+18] the authors use machine
learning to predict future traffic, they compute the k-shortest paths in offlines and then in 2 phases
in online, reserve the resources and choose the paths to maximise the revenues of an operator by
overbooking. Zhou et al. [ZZC20] use an algorithm to predict the traffic requested by each slice,
which assists an adaptive VNF scaling strategy to determine the number of VNFs and network
resources. With the goal of deploying slices with the lowest power consumption costs. In [SW19]
the authors predict the sources and destinations of future SFCs in an optical network using a
machine learning classification method. Their goal is to maximise the prediction ratio of SFCs.

Machine learning and more precisely reinforcement learning is taking an increasingly impor-
tant place in the resolution of network problems. In [LHM20] deep reinforcement learning is used
coupled with a decomposition technique to learn the best policy for resource allocation for each
user in order to maximise slices utility in a heterogeneous network where SFCs coexist with flows

Reinforcement Learning Driven Reconfiguration 149

whose traffic does not use VNFs. Their solution is divided into two parts, one that manages the
resource orchestration policy for all agents to ensure SLA compliance. And the agents that learn
the resource demands of the slices and manage the resources accordingly to optimise their perfor-
mance while respecting network capacities. In [PHY20] the authors use a Q-learning algorithm to
find and optimal SFC deployment path in edge computing environment, minimising SFCs length
and latency.

Learning-based reconfiguration Some recent works use reconfiguration techniques based on
reinforcement learning and try to predict the dynamicity of the network. Liu et al. [LFC+20]
propose a VNF migration strategy based on Double-Deep Q-Network. Their goal is to equally
place VNFs between Mobile Edge clusters and core clouds in order to avoid congestion at the
Edge. The migration takes into account future traffic and tries to reduce the number of migrations
while minimising the number of congested links. In [WFS+20] the authors use deep reinforcement
learning to predict when to reconfigure in order to minimise the resources consumed. Unlike
our work, the authors focus on intra-slice reconfigurations. Guan et al. [GZL20] use a Markov
Renewal Process to predict changes in the resource occupancy of slices and reserve resources for
slices that obtain higher revenues at lower cost. They use deep dueling neural network combined
with Q-Learning to choose for each slice whether to reconfigure it or not. Their goal is to maximise
long term revenue: the increased user utility minus a cost for the resource utilization and the
service interruptions.

Similar to the last work mentioned, we establish an agent based on deep reinforcement learning
to choose when to reconfigure the slices. To the best of our knowledge, we are the first to propose
a methodology to place the network slices without booking capacity in advance. In contrast,
our deep reconfiguration learning algorithm adapts its behaviour based on the variations of the
network traffic. Moreover, we do not fix a limit of the reconfigurations per slice or per day. The
agent determines the best time to reconfigure and performs the needed number of reconfigurations
depending on the traffic variations. The reconfiguration is computed using a column generation
algorithm based on a make-before-break reconfiguration that chooses which slices to reconfigure.
This allows our method to deal with a large number of slices, taking only a few seconds to compute
the reconfiguration.

5.3 System Model and Problem Formulation

We consider the network as a directed capacitated graph G = (V,L) where V represents the node
set and L the link set. Using the resources available in this network, we must allocate a set of
slices requests D. These slices constitute network service chains supported by the set of functions
F deployed at the network. A slice request d ∈ D is modeled with a quadruplet: (i) the source
vSRC, (ii) the destination vDST, (iii) the required bandwidth BWd in traffic units, and, (iv) the ordered
sequence of network functions cd that need to be performed, where f cd

i is the i − th function of
chain cd. Each network function instance∗ f ∈ F has a installation cost cf accounting for all the
VNF usage costs (licenses, energy consumption, etc). Each slice d ∈ D provides a revenue u per
bandwidth unit.

We aim to find an allocation of the slice requests such that the network operator profit ac-
cumulated over a certain time window is maximised. This cumulative profit is the sum of the
instantaneous profits pt at each observation time (i.e. minute). The profits pt are computed as the
∗A function instance is a CPU process running at a given data center.

150 Reinforcement Learning Driven Reconfiguration

difference between the overall revenue of the allocated slices and the overall cost of the deployed
VNFs at time t:

pt =
∑
d∈Dt

u · BWd −
∑
f∈Ft

cf (5.1)

where Dt and Ft is the set of slices and function instances allocated at observation time t, respec-
tively.

In a dynamic scenario with no information on future traffic, the impact of recently arrived
requests onto the cumulative profit (at the operator time horizon) is still not known: slices routed
using long paths will consume too many resources preventing the allocation of future requests. To
take into account that, at each time, we target to place new requests on paths such that resources
(i.e. bandwidth at each link and network functions at each node) are minimised. The exact method
is commented in subsection 5.3.1.

As a consequence of this lack of information about the future, the trivial mechanics of requests
coming and leaving over time will bring the network in a global sub-optimal state, since optimal
allocations previously computed are not optimal anymore. Hence, we are forced to periodically
reconfigure the network. To do that, we use the make-before-break mechanism [GGJM20] that
avoids network service disruption due to traffic rerouting. See Figure 0.2.10 for an example.

5.3.1 Optimisation Model

To model the reconfiguration we use the column generation model that we previously presented in
section 4.5 [GGJM20, GGJM22]. The objective of the reconfiguration is to minimise the network
operational costs.

Column generation is an optimisation method based on a decomposition model that consists of
a master problem combining solutions of pricing sub-problems, see section 1.2 for an explanation.
This method allows computing the reconfiguration of several hundred slices in only a few seconds.
This is a scalable approach that can be used by a network operator to take a quick decision for
reconfiguring when the network is congested.

Our algorithm reconfigures a given set of network slices from an initial routing and placement
of network functions to another solution that improves the usage of the network resources (both
in terms of link bandwidth and VNFs). This reconfiguration is done with a make-before-break
approach to avoid interruptions of the flows.

5.4 Deep Reinforcement Learning Algorithm

The reinforcement learning paradigm formalises a discrete time stochastic control process (as our
networking problem) where an agent interacts with an environment (in our case, the network).
At each time step t, the agent interacts with its environment by (i) observing from the environ-
ment the current state s, (ii) accordingly, taking a decision (an action) a, (iii) receiving a reward
r(s, a), and, (iv) observing a new state s′ (the network has transitioned from s to s′). The agent
can repeat this process for a potential infinite number of time steps, giving rise to a trajectory.
The sum of the discounted rewards over a trajectory from time t, or discounted return, is calcu-
lated as Gt =

∑∞
k=0 γ

krt+k+1, where γ ≤ 1. The expectation of Gt over all possible trajectories
initiated at a state s after taking an action a is the so-called Q-value function Q(s, a). We aim to
take, at each state s, the action a maximising the Q-value function. Then, we need to estimate

Reinforcement Learning Driven Reconfiguration 151

Q(s, a). In [WD92], authors proposed the Q-learning algorithm to learn Q(s, a) from a sequence
of agent interactions with the environment. Unfortunately, when the state and action spaces are
huge, Q-learning needs a prohibitive computation time. To overcome that, Deep Q-learning Net-
work (DQN) [MKS+15] makes use of a deep neural network to approximate the Q-value function
for high-dimensional state-space problems, as our case. Finally, we also opt for DQN since, con-
versely to other reinforcement learning algorithms, it can learn efficiently from past experiences
without introducing bias. For an introduction to reinforcement learning, see section 1.3.

Description. For the implementation we use the DQN agent from tf_agents.agents.dqn.dqn_agent,
and the neural network from tf_agents.networks.q_network [A+15]. The network is composed of
a pre-processing layer from keras [C+15] used for batch normalization and 2 layers of 64 neurons
each. The batch size is 288, which is large enough to properly normalize. We use Adam optimiser
with a learning rate of 1e-3 and we update the network every 16 states.
The discount factor γ is set to 0.9, a value large enough to show the importance of future actions.
We use a epsilon-greedy policy, where ε is set to 0.99 and decay to 0 in 200 instances. The replay
buffer has a size of 50 instances and we train the agent on 250 instances.

Context. A 24-hour day consists of 1440 minutes. We decided to discretize it into 288 periods of 5
minutes in order to optimise the training of our agent. It is recalled that the objective is to maximise
the profit, while reconfiguring as efficiently as possible. The agent can potentially choose to
reconfigure 288 times. To make the agent aware of the implicit trade-off between reconfiguring
now or later, an artificial cost per reconfiguration vR is introduced. Reconfiguring a network will
never decrease the profit, but the agent has to learn when a reconfiguration really worth it.

The agent will then learn the optimal number of reconfigurations to maximise the profit with
this artificial cost. This cost can be real (management cost) or it can be fixed to get a given number
of reconfigurations per day. The advantage of this technique compared to having a maximum
number of reconfigurations allowed is that allows the agent to make more or less reconfigurations,
adapting its behaviour to the current period of the day.

State and Action Spaces. The network state can be described based on the next five quantities:
(i) the number of minutes since the last reconfiguration ∆T , (ii) the number of slices added since
the last reconfiguration λ, (iii) the number of slices released since the last reconfiguration µ, (iv)
the current profit pt (5.1) and, (v) the current time t. ∆T represent the current allocation oldness,
λ and µ estimate the current network load.

The action space consists of two actions: to perform or not a reconfiguration at current time
based on the decision of our agent.

Reward Function. If the agent has chosen not to perform a reconfiguration, the reward is 0.
Otherwise, the agent selects the reconfiguration, and two scenarios are possible:

1. The reconfiguration was worth it. A reconfiguration at time t is computed. To have a long-
term vision, we simulate the network behaviour (slices arrivals and departures) with the new
network configuration for the next three time slots (in training, we can simulate the future
requests). Finally, we estimate the accumulated profit gained with the reconfiguration as
∆pR = {

∑t+3
k=t pt|reconf at t}.

2. The reconfiguration was actually not worth it. The reward is estimated differently. We
suppose that no reconfiguration was performed at t and we also simulate the network

152 Reinforcement Learning Driven Reconfiguration

0 100 200
Instance number

2

1

0

1

Ac
cu

m
ul

at
ed

 re
wa

rd
s 1e6

(a) Reward

0 100 200
Instance number

80

100

120

140

Nu
m

be
r o

f
re

co
nf

ig
ur

at
io

ns

(b) Number of reconfigurations

Figure 5.1 – Learning Curves

behaviour (slices arrivals and departures) for the next three time slots. Again, we esti-
mate the accumulated profit gained, this case, without the reconfiguration as ∆pNR =
{
∑t+3
k=t pt|no reconf at t}.

Finally, we compute the reward as r = ∆pR −∆pNR − vR. We therefore have a positive reward
when the profit increases ∆pR (if reconfiguring was the good decision) compensates both the
profit increase ∆pNR (if not reconfiguring was the good decision) and the reconfiguration cost.

Training. We are now studing the efficiency of the learning of our agent trained on 250 instances.
In the Figure 5.1(a) the return of the agent on the training environment increases during the 250
trained instances, which implies that it learns to maximise the reward accumulated on each in-
stance.
We should not reconfigure too often during a day, so in Figure 5.1(b) we study the variation of the
number of reconfigurations made by the agent on each instance. The agent starts by reconfiguring
randomly: 1 time out of 2 and thus about 144 times per instance, and it learns that it must reduce
the number of reconfigurations to maximize the accumulated reward. When the agent has trained
on around 200 instances, the epsilon reaches 0 and the number of reconfigurations converges to
around 70 reconfigurations per instance.

5.5 Data Set

Topology. We conduct simulations on a real-world topology from SNDlib [OWPT10], ta1 (24
nodes, 55 links), which includes 6 datacenters on which all VNFs can be instantiated. The cost of
VNF cf is equal to the revenue of 2000 times the revenue u of a megabyte served.

Slice demands Each slice is composed of a chain of up to 5 VNFs, requires a specific amount of
bandwidth, and has latency constraints. We consider four different types of demands correspond-
ing to four services: Video Streaming, Web Service, VoIP, and online gaming. The characteristics
of each service are reported in Table 5.1 and have been already used by [STV15]. The bandwidth
usage was chosen according to the distribution of Internet traffic described in [CIS15]. The latency
requirements are expressed in milliseconds and represent the maximum delay between the source
and destination.
Each minute, 1 to 5 slice requests arrive (uniform random distribution) and slices that have reached

Reinforcement Learning Driven Reconfiguration 153

Slice Types VNF chain Latency bw (Mbps)

Web Service NAT-FW-TM-WOC-IDPS 10ms 100
Video Streaming NAT-FW-TM-VOC-IDPS 5ms 256
VoIP NAT-FW-TM-FW-NAT 3.5ms 64
Online Gaming NAT-FW-VOC-WOC-IDPS 2.5ms 50

Table 5.1 – Characteristics of network slices

the end of their life are removed from the network. By varying the lifetime of the slices, we can
vary the maximum number of slices present at the same time on so that the load on the network
follows the curve in Figure 5.2. This figure represents a real distribution of traffic measured on a
dedicated network operator. We divided this traffic in five different periods, where D1 is a low-
traffic period, and in D5, the network is highly congested. There are between 30 and 180 slices
present at each moment on the network and in 24 hours, there are about 4320 arrivals of slices.

Reconfiguration Cost. To train Deep-REC we define a fixed and artificial cost to the recon-
figuration. This cost can be adapted to reconfigure more or less. In our study, it is equal to the
cost of deploying a VNF for 15 minutes, which implies that a reconfiguration is useful if it allows
to shut down a VNF for at least 15 minutes. To be usable in practice, a reconfiguration must
be done quickly. Thanks to the column generation, we can limit the computation time of each
reconfiguration to 15 seconds without affecting its efficiency.

154 Reinforcement Learning Driven Reconfiguration

5.6 Numerical Results

We compare the results obtained with three solutions in this section:

• No-REC: the slices are added in and removed from the network over time, and no reconfig-
uration is performed,

• REC-15: the reconfiguration is carried out every 15 minutes using a make-before-break
strategy,

• Deep-REC: our deep-learning reconfiguration proposal.

We first show that reconfiguring the network leads to significant gains in terms of profit. We then
discuss the importance of selecting the best moments to carry out the reconfigurations, allowing
to perform fewer reconfigurations while achieving similar gains.

5.6.1 Improved network usage

Figure 5.3 presents the network cost per megabyte of data sent over the network throughout the
day. We observe that the costs achieved by REC-15 and Deep-REC are very similar with a clear
improvement compared to
noreconfChapSix: REC-15 allows an improvement of 36.82% when Deep-REC performs a little
better with 38.05%. We also see that the cost is rather stable throughout the day while with
noreconfChapSix the cost increases strongly during low-congestion period (periods D1 and D2,
between 2am and 7am). The global cost improvement through a day of REC-15 is 34.1% versus
35.55% with Deep-REC.
Figure 5.4 shows the achieved profit, whose maximisation is the objective of the reconfiguration:
Deep-REC and REC-15 have similar performance and improve the profit compared to
noreconfChapSix. Indeed, the profit improvement of REC-15 is 32.75% versus 32.53% for
Deep-REC. Note that the improvement in bandwidth acceptance for REC-15 is 1.42%, against
0.65% for Deep-REC.
Finally, Figure 5.5 shows that even when minimising VNF costs, reconfiguring the network does
not lead to an increase of congestion: we observe a slightly higher utilization of links during pe-
riods D1-D2, but when the network is heavily loaded (periods D4-D5), there is a reduction of the
congestion of the network.

As a conclusion, reconfiguring the network reduces congestion while reducing costs. More-
over, we validate with these results the performance of Deep-REC as it leads to similar profit
as a regular and fixed reconfiguration strategy such as REC-15. We show in the following that
Deep-REC, by performing reconfigurations at the ideal moment, achieves this efficiency while
reducing the total number of reconfigurations through a day compared to a regular and fixed re-
configuration strategy such as REC-15.

5.6.2 Number of reconfigurations

Figure 5.6 shows the distribution of the number of reconfigurations during a day over two-hour
periods. The green line on the figure represents REC-15 which does a constant number of re-
configuration, namely 8 (a reconfiguration every 15-minutes). In contrast, Deep-REC adapts its
actions to the network load and does not carry out reconfigurations when they are not necessary,

Reinforcement Learning Driven Reconfiguration 155

No-REC REC-15 Deep-REC

Figure 5.2 – Distribution of traffic

0 6 12 18 24
Time (h)

0

2

4

C
os

t b
y

M
B

its

Figure 5.3 – Cost by MB

0 6 12 18 24
Time (h)

0

5

Pr
of

it

1e4

Figure 5.4 – Profit

0 6 12 18 24
Time (h)

0

25

50

75
Li

nk
 U

sa
ge

 (%
)

Figure 5.5 – % of links capacity used

0 6 12 18 24
Time (h)

0

5

10

15

N
um

be
r

of
R

ec
on

fig
ur

at
io

ns

Figure 5.6 – Reconfiguration distribution

0 6 12 18 24
Time (h)

0

2

4

C
os

t I
m

pr
ov

em
en

t
B

y
R

ec
on

f

1e5

Figure 5.7 – Cost gain per Reconf

leading to a reduction of their number during some periods. From 00am to 6am the network load
decreases and stabilises at a very low level, Deep-REC does less reconfigurations than REC-15,
nevertheless the number of reconfiguration increases, indeed make-before-break reconfiguration
is made easier when the network has more unused capacity and it is simpler to co-locate the
VNFs and thus minimise the costs. Moreover, Deep-REC performs more reconfigurations than
REC-15 during the ascending phase (6am and 10am) in order to react to the rapid change of the
network and, thus, to maintain a good profit. During this period, the improvement given by each
reconfiguration is lower than that of REC-15 as can be seen in Figure 5.7. This may be due to the
increased difficulty of the make-before-break reconfiguration to get closer to the optimal alloca-
tion but this increase in the number of reconfigurations may also be essential to allow them to be

156 Reinforcement Learning Driven Reconfiguration

limited in the following period. During the busiest phase between 10am and 6pm, the number of
reconfigurations is at its lowest, as the capacity of the network is so constrained that it becomes
harder to co-locate VNFs and reduce costs, thus a small number of reconfigurations maintains the
operational costs of the network. Finally, at the end of the day, the network load decreases and
Deep-REC slightly increases the number of reconfigurations to adapt the allocation to the residual
capacity increase. With 96 reconfigurations during a day (against 73.2 in average for Deep-REC),
REC-15 has 31.15% more reconfigurations, for only 0.22% profit improvement.

Figure 5.7 presents the cost improvement divided by the number of reconfigurations over pe-
riods of two hours. This shows that Deep-REC performs more efficient reconfigurations than
REC-15. Each reconfiguration leads to a better improvement in terms of the network costs.

5.7 Conclusion

We presented in this chapter a deep reinforcement learning strategy to carry out an efficient recon-
figuration of network slices with dynamic network demands. Our proposal, Deep-REC, chooses
adequately the best time to reconfigure, it reconfigures few times during low-congestion periods
compared to a fixed-frequency reconfiguration strategy. Moreover, when the network is highly
congested, Deep-REC adapts his behavior, and reconfigures more in order to maximize the net-
work profit. Finally, Deep-REC reduces by almost a quarter the number of reconfigurations
needed over a day, while achieving similar performances in terms of network operational costs,
achieved profit, and congestion of the network. As a future work we plan to extend the simulations
of Deep-REC for several networks and to study the efficiency of our proposal by experimentation
on a real platform.

References

[A+15] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[C+15] Francois Chollet et al. Keras, 2015.

[CIS15] CISCO. Cisco Visual Networking Index: Forecast and Methodology, 2014–2019,
May 2015.

[CWM+20] X. Cheng, Y. Wu, G. Min, A. Y. Zomaya, and X. Fang. Safeguard network slicing in
5g: A learning augmented optimization approach. IEEE JSAC, 2020.

[GAL+22] A. Gausseran, R. Alliche, H. Lesfari, R. Aparicio-Pardo, F. Giroire, and J. Moulierac.
When to reconfigure my network slices? a deep reinforcement learning approach. In
GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 1–6,
2022.

[GGJM20] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. In IEEE ICC, 2020.

[GGJM22] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. volume 65, 2022.

[GTGM19] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. No interruption when
reconfiguring my SFCs. In IEEE International Conference on Cloud Networking
(CloudNet), pages 1–6, 2019.

[GTGM21] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. Don’t interrupt me when
you reconfigure my service function chains. Computer Communications, 2021.

[GZL20] W. Guan, H. Zhang, and V. C. M. Leung. Slice reconfiguration based on demand
prediction with dueling deep reinforcement learning. In IEEE GLOBECOM, 2020.

[HFS+19] D. Harutyunyan, R. Fedrizzi, N. Shahriar, R. Boutaba, and R. Riggio. Orchestrating
end-to-end slices in 5g networks. In 15th International Conference on Network and
Service Management (CNSM), 2019.

[LFC+20] Y. Liu, G. Feng, Z. Chen, S. Qin, and G. Zhao. Network function migration in
softwarization based networks with mobile edge computing. In IEEE ICC, 2020.

[LHM20] Q. Liu, T. Han, and E. Moges. Edgeslice: Slicing wireless edge computing network
with decentralized deep reinforcement learning. In IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), 2020.

157

158 BIBLIOGRAPHY

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-
level control through deep reinforcement learning. Nature, 2015.

[OWPT10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[PHY20] S. Pandey, J. W. Hong, and J. H. Yoo. Environment aware adaptive q-learning to
deploy sfc on edge computing. In 16th International Conference on Network and
Service Management (CNSM), 2020.

[PNL+20] M. Pozza, P. K. Nicholson, D. F. Lugones, A. Rao, H. Flinck, and S. Tarkoma. On re-
configuring 5g network slices. IEEE Journal on Selected Areas in Communications,
2020.

[STV15] Marco Savi, Massimo Tornatore, and Giacomo Verticale. Impact of processing costs
on service chain placement in network functions virtualization. In IEEE Conference
NFV-SDN, 2015.

[SW19] D. Szostak and K. Walkowiak. Machine learning methods for traffic prediction in
dynamic optical networks with service chains. In 2019 21st International Conference
on Transparent Optical Networks (ICTON), 2019.

[SZGS+18] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Scian-
calepore, and Xavier Costa-Perez. Overbooking network slices through yield-driven
end-to-end orchestration. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’18, New York, NY,
USA, 2018. Association for Computing Machinery.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

[WFS+20] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y. C. Liang. Network slice recon-
figuration by exploiting deep reinforcement learning with large action space. IEEE
Transactions on Network and Service Management, 2020.

[ZLF+17] Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, and
Zhi-Quan Luo. Network slicing for service-oriented networks under resource con-
straints. IEEE journal on Selected Areas in Communications, 35(11):2512–2521,
2017.

[ZZC20] J. Zhou, W. Zhao, and S. Chen. Dynamic network slice scaling assisted by prediction
in 5g network. IEEE Access, 2020.

Conclusion and
Perspectives

Traditional networks are now reaching their limits. The increase in throughput and in the number
of users cannot be satisfied with a simple hardware evolution. The management of networks also
needs to evolve. The introduction of SDN and NFV started this evolution. These two paradigms
enable a programmable network and an abstraction of resources, thus allowing an automatic
management and a much greater control of traffic and resources. 5G further increases the need for
evolution and for innovation in network management. It introduces strong constraints on latency,
mobility, throughput, energy efficiency, security, and above all QoS. The infrastructure of mobile
networks is also evolving, but this must be coupled with a change in the network management
approach. The great heterogeneity of use cases and of their requirements led to the introduction
of network slicing. This new paradigm involves the partitioning of the physical network into
multiple independent virtual networks, each of which provides a specific service to meet precise
requirements. With the new paradigm comes new algorithms with as many objectives as use cases.

In chapter 2, we have studied a data structure allowing a simple modelling of the ordering
of network functions within a service chain. This structure is used throughout the thesis and
allows to transform a routing and allocation problem into a simple routing problem. An ILP based
on this structure has been developed for static placement problems of a set of SFCs, as well as
for the dynamic placement problem of an SFC. We have compared our formulation to an ILP
from the literature, and it allows an intuitive modelling of the service chain without degrading the
computation time.

In the following of the thesis we looked at the reconfiguration of networks and demands. The
reconfiguration allows to limit the congestion and fragmentation effects induced by the dynamicity
of the arrivals and departures of requests over time. Reconfiguring improves traffic and resource
management, minimises Opex, and increases request acceptance.

In chapter 3, we investigated the feasibility and performance of the make-before-break recon-
figuration of SFCs within a network. This type of reconfiguration allows to modify the allocation
of VNFs and to reroute traffic without interrupting it. A secondary route is created, its capacity
is reserved, and the two routes co-exist during the reconfiguration. Not interrupting the traffic
ensures that the QoS is not degraded. We have shown that this type of reconfiguration, although
constraining, allows to significantly decrease Opex and to improve the acceptance of requests
without interrupting the traffic flows. An ILP and a heuristic have been developed to process up to
fifty SFCs in less than a minute on networks with more than a hundred links.

A relevant extension of this work would be to take into account path protection in our algo-
rithm. Indeed, the reconfiguration does not implement protection for the new routes. Furthermore,
reconfiguration could be potentially more effective if it used the capacity allocated to backup
paths during intermediate steps. As the reconfiguration steps are fast, the probability of a failure
occurring during this time is low, and this reserved capacity would allow better reconfiguration
performances during heavy loaded periods.

159

160 Conclusion and Perspectives

In chapter 4, we extended the make-before-break reconfiguration to network slices. This type
of reconfiguration is relevant because it allows to respects the QoS which is an important require-
ment of network slicing. Our study focused on very dense scenarios in terms of number of slices,
over a 24-hours period, following the dynamicity in terms of load of a typical day. We considered
an important scaling of our reconfiguration technique to cope with the very high density of future
5G networks. We reconfigured up to about 500 slices in one minute, representing approximately
1500 different traffic flows, and more than a hundred slices in a few seconds. To achieve this, we
developed two column generation models, one based on an ILP based pricing problem and one
with an LP based pricing problem.

A possible evolution of this work would be to take into account the specific features of the
slices as well as the differences in treatment between the edge and the core network. Indeed,
the edge does not have the same computing power as the core, but it can process requests with
lower latency. uRLLC slices have much stronger latency constraints than eMBB slices and could
have priority on the edge servers. The eMBB slices, on the contrary, have much higher computing
power requirements and should be allocated in the core. Placement and reconfiguration techniques
which take into account theses priorities would further improve the use of resources and ensure
greater fairness in the acceptance of slices. The uRLLC slices would have a better chance of being
routed if edge servers are not too heavily used by eMBB slices. The latter may be processed in the
core during peak periods.

Finally, in chapter 5, we have extended our reconfiguration method. Although reconfiguring
at fixed intervals improves the utilisation of network resources, it does not adapt to the variation of
the traffic. Some periods of the day do not need as much reconfiguration and reconfiguring at those
moments can add more management cost than it saves in Opex. On the contrary, during certain
periods, reconfiguring more regularly can significantly improve cost reduction and acceptance of
requests. To achieve this adaptability we have developed a reconfiguration agent based on Deep
Reinforcement Learning which finds the best moment during the day to reconfigure. The agent
adapts to the traffic load and time of day to reduce the number of reconfigurations and make
each one more effective. The reconfiguration algorithm and the agent are completely independent
of each other and the agent uses the reconfiguration as a black box. This makes it completely
independent of the reconfiguration method and allows for a potential easy deployment.

An interesting improvement that could be studied would be to couple the possible improve-
ment of the previous chapter, i.e. to treat the type of slice differently, with a new reinforcement
learning agent. This agent would have controlled over the placement and reconfiguration ob-
jective. It would prioritise slices acceptance in periods of high load and it would prioritise cost
reduction in off-peak periods. Furthermore, it could choose to process slices at the edge when
few slices are active. This would allow to turn off part of the transport network and save energy.
When the load increases, it could reconfigure the eMBB slices to reroute them to the core network
to accept more new uRLLC slices.

In this thesis, we have investigated the optimisation potential of make-before-break recon-
figuration of slices. This technique allows to preserve the QoS of requests, a very important
requirement in the context of network slicing. The reconfiguration can be coupled with efficient
placement techniques and allows to maintain the network in a near optimal state. It can be useful
in the event of a change in placement policy. It may allow the new policy to be propagated to the
slices already placed and thus to adapt the network management in real time. The adaptation of
this optimisation technique to the edge and RAN are possible issues to consider. But in general

Conclusion and Perspectives 161

we believe that this technique can be easily applied to 5G networks in deployment and to SDN-
NFV networks already in use. It can improve the utility of the networks and ultimately reduce the
energy consumption and financial expenditure they cause.

We have focused on Opex reduction and demand acceptance, but it would be worth investigat-
ing other objectives. Optimisation could potentially focus on reducing energy consumption, route
resilience, etc. Optimisation algorithms for network slicing must take into account the specific
features of 5G and network slicing such as end-to-end service management, user mobility and
resource sharing. They must also consider the differences in performance in terms of computing
power and latency between edge and core networks as well as the respect of QoS.

In addition to having different needs, slices may have different priorities. An interesting per-
spective would be to take into account the possibility of booking slices in advance. The placement
of these requests could be pre-computed and capacity could be reserved. This reserved capacity
should not remain unused as this would reduce the network’s utility. It would be interesting to pro-
vide admission control algorithms that would allow as many requests as possible to be accepted
while ensuring that reserved slices are accepted. These admission controls could be coupled with
reconfiguration algorithms whose objective would be to ensure the acceptance of these slices (and
not to minimise the Opex).

Another interesting extension of our work would be the adaptation of the reconfiguration
within the datacenters. The dispersion of virtual functions on different server racks can lead to
a high bandwidth usage. In addition, the latency constraint between two functions of the same
slice can be very low and locating two functions on the same rack removes the transmission delay.
A reconfiguration algorithm designed to manage flows within the datacenter would allow for more
efficient use of resources.

Finally, a last interesting perspective would be to take into account fog computing. In addition
to distributing the processing on devices at the edge of the network, we could also distribute the
processing on units in the local network. This would allow to support more efficiently uRLLC
and mMTC slices which are very dependent on low delays and/or hyper connectivity. As the
make-before-break reconfiguration is very capacity constrained, taking this additional capacity
into account would make this method much more effective.

Bibliography

[00114] ETSI GS NFV-MAN 001. Etsi gs nfv-man 001 v1.1.1 (2014-12)network functions
virtualisation (nfv);management and orchestration. https://www.etsi.org/
deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-
man001v010101p.pdf, 12 2014.

[01017] ETSI GR NFV-EVE 010. Network functions virtualisation(nfv) re-
lease 3; licensing management; report on license management for nfv.
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/
010/03.01.01_60/gr_nfv-eve010v030101p.pdf, 12 2017.

[01118] ETSI GR NGP 011. Next generation protocols(ngp);e2e network slicing reference
framework and information model. https://www.etsi.org/deliver/
etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.
pdf, 09 2018.

[01217] ETSI GR NFV-EVE 012. Network functions virtualisation (nfv) release 3;evo-
lution and ecosystem; report on network slicing support with etsi nfv archi-
tecture framework. https://www.etsi.org/deliver/etsi_gr/NFV-
EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf, 12
2017.

[22.16] 3GPP TR 22.891. Study on new services and markets technology enablers.
https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2897, 9 2016.

[38.20] 3GPP TR 38.913. Study on scenarios and requirements for next
generation access technologies. https://portal.3gpp.org/
desktopmodules/Specifications/SpecificationDetails.
aspx?specificationId=2996, 7 2020.

[A+15] Martín Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[ABBS15] Bernardetta Addis, Dallal Belabed, Mathieu Bouet, and Stefano Secci. Virtual net-
work functions placement and routing optimization. In 2015 IEEE 4th International
Conference on Cloud Networking (CloudNet), pages 171–177, 2015.

[ACF+17] Ahmed Abdelsalam, Francois Clad, Clarence Filsfils, Stefano Salsano, Giuseppe
Siracusano, and Luca Veltri. Implementation of virtual network function chaining
through segment routing in a linux-based nfv infrastructure. In 2017 IEEE Confer-
ence on Network Softwarization (NetSoft), pages 1–5, 2017.

[AFT07] Brice Augustin, Timur Friedman, and Renata Teixeira. Measuring load-balanced
paths in the internet. In ACM Internet Measurement Conference (IMC), pages 149–
160. ACM, 2007.

163

https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-man/001_099/001/01.01.01_60/gs_nfv-man001v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/010/03.01.01_60/gr_nfv-eve010v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/010/03.01.01_60/gr_nfv-eve010v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NGP/001_099/011/01.01.01_60/gr_ngp011v010101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://www.etsi.org/deliver/etsi_gr/NFV-EVE/001_099/012/03.01.01_60/gr_NFV-EVE012v030101p.pdf
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2897
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2897
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=2996

164 BIBLIOGRAPHY

[All15] The Next Generation Mobile Networks Alliance. 5g white paper.
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_
Paper_V1_0.pdf, 02 2015.

[ARS16] Mamta Agiwal, Abhishek Roy, and Navrati Saxena. Next generation 5g wire-
less networks: A comprehensive survey. IEEE Communications Surveys Tutorials,
18(3):1617–1655, 2016.

[ATS+18] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu
Flinck. Network slicing and softwarization: A survey on principles, enabling tech-
nologies, and solutions. IEEE Communications Surveys Tutorials, 20(3):2429–
2453, 2018.

[AZA16] Sara Ayoubi, Yanhong Zhang, and Chadi Assi. A reliable embedding framework for
elastic virtualized services in the cloud. IEEE Transactions on Network and Service
Management (IEEE TNSM), 13(3):489–503, 2016.

[B+14] Pankaj Berde et al. Onos: towards an open, distributed sdn os. In Workshop on Hot
topics in software defined networking, pages 1–6. ACM, 2014.

[BAMH20] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew Hines. 5g
network slicing using sdn and nfv: A survey of taxonomy, architectures and future
challenges. Computer Networks, 167:106984, 2020.

[Bel58] Richard Bellman. Quarterly of Applied Mathematics, 16:87–90, 1958.

[BGB+17] D. Bega, M. Gramaglia, A. Banchs, V. Sciancalepore, K. Samdanis, and X. Costa-
Perez. Optimising 5G infrastructure markets: The business of network slicing. In
Annual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 1–9, 2017.

[BJSE16] Deval Bh, Raj Jain, Mohammed Samaka, and Aiman Erbad. A survey on service
function chaining. Journal of Network and Computer Applications, 75, 09 2016.

[BRC+13] Md. Faizul Bari, Arup Raton Roy, Shihabur Chowdhury, Qi Zhang, Mohamed Faten
Zhani, Reaz Ahmed, and R. Boutaba. Dynamic controller provisioning in software
defined networks. 10 2013.

[C+15] Francois Chollet et al. Keras, 2015.

[CB02] B. Carpenter and Scott Brim. Middleboxes: taxonomy and issues. 01 2002.

[CIS15] CISCO. Cisco Visual Networking Index: Forecast and Methodology, 2014–2019,
May 2015.

[CLBB+15] Marcelo Caggiani Luizelli, Leonardo Bays, Luciana Buriol, Marinho Barcellos, and
Luciano Gaspary. Piecing together the nfv provisioning puzzle: Efficient placement
and chaining of virtual network functions. 05 2015.

[CLENR15] R. Cohen, L. Lewin-Eytan, J.S. Naor, and D. Raz. Near optimal placement of virtual
network functions. In Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM), pages 1346–1354, Kowloon, Hong-Kong, 2015.

https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf
https://www.ngmn.org/wp-content/uploads/NGMN_5G_White_Paper_V1_0.pdf

BIBLIOGRAPHY 165

[CLX+10] Zhiping Cai, Fang Liu, Nong Xiao, Qiang Liu, and Zhiying Wang. Virtual network
embedding for evolving networks. In IEEE Global Telecommunications Conference
- GLOBECOM, pages 1–5. IEEE, 2010.

[CTZB17] Daewoong Cho, Javid Taheri, Albert Y. Zomaya, and Pascal Bouvry. Real-time
virtual network function (vnf) migration toward low network latency in cloud en-
vironments. In 2017 IEEE 10th International Conference on Cloud Computing
(CLOUD), pages 798–801, 2017.

[CWM+20] X. Cheng, Y. Wu, G. Min, A. Y. Zomaya, and X. Fang. Safeguard network slicing
in 5g: A learning augmented optimization approach. IEEE JSAC, 2020.

[Dan48] George B Dantzig. Programming in a linear structure. Washington, DC, 1948.

[Dan63] George Bernard Dantzig. Linear Programming and Extensions. RAND Corporation,
Santa Monica, CA, 1963.

[DDS05] Guy Desaulniers, Jacques Desrosiers, and Marius M. Solomon, editors. Column
Generation. Number 978-0-387-25486-9 in Springer Books. Springer, May 2005.

[DGT+19] Tilemachos Doukoglou, Velissarios Gezerlis, Konstantinos Trichias, Nikos
Kostopoulos, Nikos Vrakas, Marios Bougioukos, and Rodolphe Legouable. Ver-
tical industries requirements analysis targeted kpis for advanced 5g trials. In 2019
European Conference on Networks and Communications (EuCNC), pages 95–100,
2019.

[DHM+13] Advait Dixit, Fang Hao, Sarit Mukherjee, T. Lakshman, and Ramana Kompella.
Towards an elastic distributed sdn controller. volume 43, pages 7–12, 09 2013.

[DJCA18] Huy Duong, Brigitte Jaumard, David Coudert, and Ron Armolavicius. Efficient
make before break capacity defragmentation. In 2018 IEEE 19th International Con-
ference on High Performance Switching and Routing (HPSR), pages 1–6, 2018.

[dT21] Fédération Française des Télécoms. Chiffres clés. https://www.
fftelecoms.org/chiffres-cles/, 2021.

[DW16] Abhishek Dwaraki and Tilman Wolf. Adaptive service-chain routing for virtual net-
work functions in software-defined networks. In Proceedings of the 2016 workshop
on Hot topics in Middleboxes and Network Function Virtualization, pages 32–37,
2016.

[EMAL17] Vincenzo Eramo, Emanuele Miucci, Mostafa Ammar, and Francesco Giacinto
Lavacca. An approach for service function chain routing and virtual function net-
work instance migration in network function virtualization architectures. IEEE/ACM
Transactions on Networking (ToN), 25(4):2008–2025, 2017.

[FAPZ11] Ilhem Fajjari, Nadjib Aitsaadi, Guy Pujolle, and Hubert Zimmermann. VNR algo-
rithm: A greedy approach for virtual networks reconfigurations. In IEEE Global
Telecommunications Conference - GLOBECOM, pages 1–6. IEEE, 2011.

https://www.fftelecoms.org/chiffres-cles/
https://www.fftelecoms.org/chiffres-cles/

166 BIBLIOGRAPHY

[Fou15] Open Networking Foundation. Tr-518 relationship of sdn and nfv.
https://opennetworking.org/wp-content/uploads/2014/
10/onf2015.310_Architectural_comparison.08-2.pdf, 10 2015.

[Fou16] Open Networking Foundation. Tr-521 sdn architecture. https:
//opennetworking.org/wp-content/uploads/2014/10/TR-
521_SDN_Architecture_issue_1.1.pdf, 2016.

[FVW19] Klaus-Tycho Foerster, Laurent Vanbever, and Roger Wattenhofer. Latency and con-
sistent flow migration: Relax for lossless updates. In 2019 IFIP Networking Con-
ference (IFIP Networking), pages 1–9, 2019.

[FZI16] Pingzhi Fan, Jing Zhao, and Chih-Lin I. 5g high mobility wireless communications:
Challenges and solutions. China Communications, 13(Supplement2):1–13, 2016.

[GAL+22] A. Gausseran, R. Alliche, H. Lesfari, R. Aparicio-Pardo, F. Giroire, and
J. Moulierac. When to reconfigure my network slices? a deep reinforcement learn-
ing approach. In GLOBECOM 2022 - 2022 IEEE Global Communications Confer-
ence, pages 1–6, 2022.

[Gaua] Adrien Gausseran. Maze qlearning example. https://github.com/
AdrienGausseran/MazeQLearningExample.

[Gaub] Adrien Gausseran. Multi commodity flow column generation. https:
//github.com/AdrienGausseran/MultiCommodityFlow_
ColumnGeneration.

[GGJM19] Adrien Gausseran, Frédéric Giroire, Brigitte Jaumard, and Joanna Moulierac. Don’t
break network slices during reconfiguration. Technical report, Inria, Dec. 2019.

[GGJM20] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. In IEEE ICC, 2020.

[GGJM22] A. Gausseran, F. Giroire, B. Jaumard, and J. Moulierac. Be scalable and rescue my
slices during reconfiguration. volume 65, 2022.

[GHM15] Frédéric Giroire, Frédéric Havet, and Joanna Moulierac. Compressing two-
dimensional routing tables with order. In 7th Network Optimization Conference
(INOC), 2015.

[GHMP18] Frédéric Giroire, Nicolas Huin, Joanna Moulierac, and Truong Khoa Phan. Energy-
Aware Routing in Software-Defined Network using Compression. The Computer
Journal, 61(10):1537–1556, 03 2018.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, volume 29.
wh freeman New York, 2002.

[GJPGA12] Aaron Gember-Jacobson, Prathmesh Prabhu, Zainab Ghadiyali, and Aditya Akella.
Toward software-defined middlebox networking. pages 7–12, 10 2012.

https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf
https://opennetworking.org/wp-content/uploads/2014/10/onf2015.310_Architectural_comparison.08-2.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/TR-521_SDN_Architecture_issue_1.1.pdf
https://github.com/AdrienGausseran/MazeQLearningExample
https://github.com/AdrienGausseran/MazeQLearningExample
https://github.com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration
https://github.com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration
https://github.com/AdrienGausseran/MultiCommodityFlow_ColumnGeneration

BIBLIOGRAPHY 167

[GK07] Naveen Garg and Jochen Koenemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM Journal on Computing,
37(2):630–652, 2007.

[GKS+15] Milad Ghaznavi, Aimal Khan, Nashid Shahriar, Khalid Alsubhi, Reaz Ahmed, and
Raouf Boutaba. Elastic virtual network function placement. In IEEE International
Conference on Cloud Networking (CloudNet), pages 255–260, 2015.

[GR18] Lingnan Gao and George N Rouskas. Virtual network reconfiguration with load bal-
ancing and migration cost considerations. In Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), pages 2303–2311. IEEE,
2018.

[GTGM18] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, and Joanna Moulierac.
Don’t Interrupt Me When You Reconfigure my Service Function Chains. Technical
report, Inria, Dec. 2018.

[GTGM19a] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. No interruption when
reconfiguring my SFCs. In IEEE International Conference on Cloud Networking
(CloudNet), pages 1–6, 2019.

[GTGM19b] Adrien Gausseran, Andrea Tomassilli, Frederic Giroire, and Joanna Moulierac.
Poster: Don’t interrupt me when you reconfigure my service function chains. In
2019 IFIP Networking Conference (IFIP Networking), pages 1–2, 2019.

[GTGM19c] Adrien Gausseran, Andrea Tomassilli, Frédéric Giroire, and Joanna Moulierac. Re-
configuration de chaînes de fonctions de services sans interruption. In CORES 2019
- Rencontres Francophones sur la Conception de Protocoles, l’Évaluation de Per-
formance et l’Expérimentation des Réseaux de Communication, Saint Laurent de la
Cabrerisse, France, June 2019.

[GTGM21] A. Gausseran, A. Tomassilli, F. Giroire, and J. Moulierac. Don’t interrupt me when
you reconfigure my service function chains. Computer Communications, 2021.

[GZL20] W. Guan, H. Zhang, and V. C. M. Leung. Slice reconfiguration based on demand
prediction with dueling deep reinforcement learning. In IEEE GLOBECOM, 2020.

[GZT+19] Lin Gu, Deze Zeng, Sheng Tao, Song Guo, Hai Jin, Albert Y. Zomaya, and Wei-
hua Zhuang. Fairness-aware dynamic rate control and flow scheduling for network
utility maximization in network service chain. IEEE Journal on Selected Areas in
Communications, 37(5):1059–1071, 2019.

[HB16] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in NFV: A com-
prehensive survey. IEEE Transactions on Network and Service Management (IEEE
TNSM), 13(3):518–532, 2016.

[HFS+19] D. Harutyunyan, R. Fedrizzi, N. Shahriar, R. Boutaba, and R. Riggio. Orchestrating
end-to-end slices in 5g networks. In 15th International Conference on Network and
Service Management (CNSM), 2019.

168 BIBLIOGRAPHY

[HJG18] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. Optimal network service
chain provisioning. IEEE/ACM Transactions on Networking (ToN), 26(3):1320–
1333, June 2018.

[HMM+19] Nicolas Huin, Paolo Medagliani, Sébastien Martin, Jérémie Leguay, Lei Shi, Sheng-
ming Cai, Jinchun Xu, and Hao Shi. Hard-isolation for network slicing. In IEEE
INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (IN-
FOCOM WKSHPS), pages 955–956, 2019.

[HTGJ18] Nicolas Huin, Andrea Tomassilli, Frederic Giroire, and Brigitte Jaumard. Energy-
efficient service function chain provisioning. IEEE/OSA Journal of Optical Com-
munications and Networking, 10(3):114–124, 2018.

[ID05] Stefan Irnich and Guy Desaulniers. Shortest path problems with resource con-
straints. In Column generation, pages 33–65. Springer, 2005.

[ITU18] International Telecommunication Union ITU. Itu-r m.2083; setting the scene for 5g:
opportunities and challenges. http://handle.itu.int/11.1002/pub/
811d7a5f-en, 2018.

[Jae15] Bernd Jaeger. Security orchestrator: Introducing a security orchestrator in the con-
text of the etsi nfv reference architecture. In 2015 IEEE Trustcom/BigDataSE/ISPA,
volume 1, pages 1255–1260, 2015.

[JKM+13] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs
Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a globally-deployed
software defined wan. SIGCOMM Comput. Commun. Rev., 43(4):3–14, August
2013.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combi-
natorica, 4(4):373–395, Dec 1984.

[KBB19] Nguyen Tuan Khai, Andreas Baumgartner, and Thomas Bauschert. Optimising vir-
tual network functions migrations: A flexible multi-step approach. In 2019 IEEE
Conference on Network Softwarization (NetSoft), pages 188–192, 2019.

[KBK+12] James Kempf, Elisa Bellagamba, András Kern, Dávid Jocha, Attila Takacs, and
Pontus Sköldström. Scalable fault management for openflow. In 2012 IEEE Inter-
national Conference on Communications (ICC), pages 6606–6610, 2012.

[KF13] Hyojoon Kim and Nick Feamster. Improving network management with Software
Defined Networking. IEEE Communications Magazine, 51(2):114–119, 2013.

[Kha80] L.G. Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980.

[KHZ17] Selma Khebbache, Makhlouf Hadji, and Djamal Zeghlache. Scalable and cost-
efficient algorithms for vnf chaining and placement problem. In 2017 20th Confer-
ence on Innovations in Clouds, Internet and Networks (ICIN), pages 92–99, 2017.

http://handle.itu.int/11.1002/pub/811d7a5f-en
http://handle.itu.int/11.1002/pub/811d7a5f-en

BIBLIOGRAPHY 169

[KLLT18] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server usage.
IEEE/ACM Transactions on Networking (TON), 26(4):1562–1576, 2018.

[KN17] Adlen Ksentini and Navid Nikaein. Toward enforcing network slicing on ran: Flex-
ibility and resources abstraction. IEEE Communications Magazine, 55(6):102–108,
2017.

[KNS+18] Zbigniew Kotulski, Tomasz Wojciech Nowak, Mariusz Sepczuk, Marcin Tunia,
Rafal Artych, Krzysztof Bocianiak, Tomasz Osko, and Jean-Philippe Wary. To-
wards constructive approach to end-to-end slice isolation in 5g networks. EURASIP
Journal on Information Security, 2018(1):2, Mar 2018.

[KREV+15] D. Kreutz, F.M.V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S. Azodol-
molky, and S. Uhlig. Software-defined networking: A comprehensive survey. Pro-
ceedings of the IEEE, 103(1):14–76, Jan 2015.

[LFC+20] Y. Liu, G. Feng, Z. Chen, S. Qin, and G. Zhao. Network function migration in
softwarization based networks with mobile edge computing. In IEEE ICC, 2020.

[LHK+13] Pingping Lin, Jonathan Hart, Umesh Krishnaswamy, Tetsuya Murakami, Masayoshi
Kobayashi, Ali Al-Shabibi, Kuang-Ching Wang, and Jun Bi. Seamless interworking
of sdn and ip. volume 43, pages 475–476, 08 2013.

[LHM10] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, New York, NY, USA,
2010. Association for Computing Machinery.

[LHM20] Q. Liu, T. Han, and E. Moges. Edgeslice: Slicing wireless edge computing net-
work with decentralized deep reinforcement learning. In IEEE 40th International
Conference on Distributed Computing Systems (ICDCS), 2020.

[Lin91] Long-Ji Lin. Programming robots using reinforcement learning and teaching. In
Proceedings of the Ninth National Conference on Artificial Intelligence - Volume 2,
AAAI’91, page 781–786. AAAI Press, 1991.

[LLZ+17] Junjie Liu, Wei Lu, Fen Zhou, Ping Lu, and Zuqing Zhu. On dynamic service
function chain deployment and readjustment. IEEE Transactions on Network and
Service Management (IEEE TNSM), 14(3):543–553, 2017.

[LPMK18] Mathieu Leconte, Georgios S Paschos, Panayotis Mertikopoulos, and Ulaş C Kozat.
A resource allocation framework for network slicing. In Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM), pages 2177–2185.
IEEE, 2018.

[LZC+16] Hongjian Li, Guofeng Zhu, Chengyuan Cui, Hong Tang, Yusheng Dou, and Chen
He. Energy-efficient migration and consolidation algorithm of virtual machines in
data centers for cloud computing. Computing, 98(3):303–317, Mar 2016.

170 BIBLIOGRAPHY

[M. 13] M. Chiosi et al. Network functions virtualisation (NFV) network operator perspec-
tives on industry progress. In SDN & OpenFlow World Congress, Dusseldorf, Ger-
many, October 2013.

[M+16] Rashid Mijumbi et al. Network function virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials, 18(1):236–262, 2016.

[Mal98] Gary S. Malkin. RIP Version 2. RFC 2453, November 1998.

[MF19] Dania Marabissi and Romano Fantacci. Highly flexible ran slicing approach to
manage isolation, priority, efficiency. IEEE Access, 7:97130–97142, 2019.

[MGT+15] Jon Matias, Jokin Garay, Nerea Toledo, Juanjo Unzilla, and Eduardo Jacob. Toward
an SDN-enabled NFV architecture. IEEE Communications Magazine, 53(4):187–
193, 2015.

[MKS+15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, He-
len King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning. Nature, 2015.

[Moy98] John Moy. OSPF Version 2. RFC 2328, April 1998.

[MSB+17] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and Niki Pissinou. Traf-
fic aware placement of interdependent NFV middleboxes. In Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM), pages 1–9,
2017.

[MTC+19] Cédric Morin, Geraldine Texier, Christelle Caillouet, Gilles Desmangles, and Cao-
Thanh Phan. Vnf placement algorithms to address the mono-and multi-tenant issues
in edge and core networks. In 2019 IEEE 8th International Conference on Cloud
Networking (CloudNet), pages 1–6, 2019.

[NKT19] Kyoomars Alizadeh Noghani, Andreas J. Kassler, and Javid Taheri. On the Cost-
Optimality Trade-off for Service Function Chain Reconfiguration. In IEEE Interna-
tional Conference on Cloud Networking (CloudNet), 2019.

[ONF14] Optical Interconnecting Forum Open Networking Foundation. Global transport sdn
prototype demonstration. https://opennetworking.org/wp-content/
uploads/2013/02/oif-p0105_031_18.pdf, 10 2014.

[OWPT10] Sebastian Orlowski, Roland Wessäly, Michal Pióro, and Artur Tomaszewski. Sndlib
1.0—survivable network design library. Networks: An International Journal,
55(3):276–286, 2010.

[PDM+16] Stefano Paris, Apostolos Destounis, Lorenzo Maggi, Georgios S Paschos, and
Jérémie Leguay. Controlling flow reconfigurations in SDN. In Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM), pages
1–9. IEEE, 2016.

https://opennetworking.org/wp-content/uploads/2013/02/oif-p0105_031_18.pdf
https://opennetworking.org/wp-content/uploads/2013/02/oif-p0105_031_18.pdf

BIBLIOGRAPHY 171

[PHY20] S. Pandey, J. W. Hong, and J. H. Yoo. Environment aware adaptive q-learning to
deploy sfc on edge computing. In 16th International Conference on Network and
Service Management (CNSM), 2020.

[PNL+20] M. Pozza, P. K. Nicholson, D. F. Lugones, A. Rao, H. Flinck, and S. Tarkoma. On
reconfiguring 5g network slices. IEEE Journal on Selected Areas in Communica-
tions, 2020.

[PPP20] 5G PPP. View on 5g architecture. https://5g-ppp.eu/wp-
content/uploads/2020/02/5G-PPP-5G-Architecture-White-
Paper_final.pdf, 02 2020.

[PPR+19] M. Pozza, A. Patel, A. Rao, H. Flinck, and S. Tarkoma. Composing 5G network
slices by co-locating VNFs in µslices. In IFIP Networking Conference, pages 1–9,
May 2019.

[QKA18] Long Qu, Maurice Khabbaz, and Chadi Assi. Reliability-aware service chaining in
carrier-grade softwarized networks. IEEE Journal on Selected Areas in Communi-
cations, PP, 03 2018.

[QN15] P. Quinn and T. Nadeau. Problem statement for service function chaining. RFC
7498, RFC Editor, April 2015.

[R+17] Peter Rost et al. Network slicing to enable scalability and flexibility in 5G mobile
networks. IEEE Communications magazine, 55(5):72–79, 2017.

[RHL06] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol 4 (BGP-4).
RFC 4271, January 2006.

[S+15] Sahel Sahhaf et al. Network service chaining with optimized network function
embedding supporting service decompositions. Computer Networks, 93:492–505,
2015.

[SB18] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018.

[SGT20] S. Sharma, A. Gumaste, and M. Tatipamula. Dynamic network slicing using utility
algorithms and stochastic optimization. In 2020 IEEE 21st International Conference
on High Performance Switching and Routing (HPSR), 2020.

[SHS+12] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. ACM SIGCOMM Computer Communication Review,
42(4):13–24, 2012.

[SJG+17] Yu Sang, Bo Ji, Gagan R Gupta, Xiaojiang Du, and Lin Ye. Provably efficient
algorithms for joint placement and allocation of virtual network functions. In An-
nual Joint Conference of the IEEE Computer and Communications Societies (IN-
FOCOM), pages 1–9. IEEE, 2017.

https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf
https://5g-ppp.eu/wp-content/uploads/2020/02/5G-PPP-5G-Architecture-White-Paper_final.pdf

172 BIBLIOGRAPHY

[SMGZ17] Oussama Soualah, Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. En-
ergy efficient algorithm for vnf placement and chaining. pages 579–588, 05 2017.

[STV15] Marco Savi, Massimo Tornatore, and Giacomo Verticale. Impact of processing costs
on service chain placement in network functions virtualization. In IEEE Conference
NFV-SDN, 2015.

[SW19] D. Szostak and K. Walkowiak. Machine learning methods for traffic prediction in
dynamic optical networks with service chains. In 2019 21st International Confer-
ence on Transparent Optical Networks (ICTON), 2019.

[SZGS+18] Josep Xavier Salvat, Lanfranco Zanzi, Andres Garcia-Saavedra, Vincenzo Scian-
calepore, and Xavier Costa-Perez. Overbooking network slices through yield-driven
end-to-end orchestration. In Proceedings of the 14th International Conference on
Emerging Networking EXperiments and Technologies, CoNEXT ’18, New York,
NY, USA, 2018. Association for Computing Machinery.

[TAM19] S. Troia, R. Alvizu, and G. Maier. Reinforcement learning for service function chain
reconfiguration in nfv-sdn metro-core optical networks. IEEE Access, 2019.

[TGHP18] Andrea Tomassilli, Frédéric Giroire, Nicolas Huin, and Stéphane Pérennes. Prov-
ably efficient algorithms for placement of Service Function Chains with ordering
constraints. In Annual Joint Conference of the IEEE Computer and Communica-
tions Societies (INFOCOM), pages 774–782, Honolulu, Hawai, US, 2018. IEEE.

[THGJ18] Andrea Tomassilli, Nicolas Huin, Frederic Giroire, and Brigitte Jaumard. Resource
requirements for reliable service function chaining. In 2018 IEEE International
Conference on Communications (ICC), pages 1–7, 2018.

[TTG13] Phuong Nga Tran and Andreas Timm-Giel. Reconfiguration of virtual network map-
ping considering service disruption. In IEEE International Conference on Commu-
nications - ICC, pages 3487–3492. IEEE, 2013.

[Var12] Upkar Varshney. 4g wireless networks. IT Professional, 14(5):34–39, 2012.

[WBIC19] Adrien Wion, Mathieu Bouet, Luigi Iannone, and Vania Conan. Change in continu-
ity: Chaining services with an augmented igp. IEEE Transactions on Network and
Service Management, 16(4):1332–1344, 2019.

[WD92] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

[WFQ+19] G. Wang, G. Feng, T.Q.S. Quek, S. Qin, R. Wen, and W. Tan. Reconfiguration
in network slicing-optimizing the profit and performance. IEEE Transactions on
Network and Service Management, 16(2):591–605, June 2019.

[WFS+20] F. Wei, G. Feng, Y. Sun, Y. Wang, S. Qin, and Y. C. Liang. Network slice recon-
figuration by exploiting deep reinforcement learning with large action space. IEEE
Transactions on Network and Service Management, 2020.

BIBLIOGRAPHY 173

[WM13] R. Wang and B. Mukherjee. Provisioning in elastic optical networks with non-
disruptive defragmentation. IEEE Journal of Lightwave Technology, 31(15):2491–
2500, 2013.

[YG12] Soheil Yeganeh and Yashar Ganjali. Kandoo: A framework for efficient and scal-
able offloading of control applications. HotSDN’12 - Proceedings of the 1st ACM
International Workshop on Hot Topics in Software Defined Networks, 08 2012.

[YLW+19] Xu Yang, Yue Liu, Ieok Cheng Wong, Yapeng Wang, and Laurie Cuthbert. Effective
isolation in dynamic network slicing. In 2019 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6, 2019.

[ZLF+17] Nan Zhang, Ya-Feng Liu, Hamid Farmanbar, Tsung-Hui Chang, Mingyi Hong, and
Zhi-Quan Luo. Network slicing for service-oriented networks under resource con-
straints. IEEE journal on Selected Areas in Communications, 35(11):2512–2521,
2017.

[ZZC20] J. Zhou, W. Zhao, and S. Chen. Dynamic network slice scaling assisted by prediction
in 5g network. IEEE Access, 2020.

Algorithmes d’optimisation pour le Network Slicing pour la
5G

Adrien GAUSSERAN

Résumé

Notre décennie voit l’accroissement de l’utilisation des réseaux mobiles pour les acteurs in-
dustriels et administratifs ainsi que pour le grand public grâce à l’introduction de la 5ème
génération de réseaux mobiles : la 5G. La 5G apporte une diversité de cas d’utilisation des
réseaux mobiles et un nombre croissant de demandes avec des besoins très hétérogènes mais
toujours avec de fortes contraintes de qualité de service (QoS). La 5G a été développée pour
utiliser les technologies de réseaux définis par logiciel (SDN) et de virtualisation de fonctions
réseaux (NFV). SDN sépare les plans de contrôle et de données et offre une gestion central-
isée du réseau. NFV dissocie les fonctions réseaux du matériel qui les exécute grâce à la
virtualisation. Ces technologies automatisent la gestion du réseau et le rendent plus flexible et
adaptable à l’évolution du débit du trafic ainsi que de ses besoins. L’introduction du paradigme
de découpage du réseau entraîne une division du réseau en des réseaux virtuels indépendants
cohabitant sur la même infrastructure. Ce paradigme permettra de répondre aux besoins très
hétérogènes des futures demandes. Dans cette thèse nous nous intéressons à l’optimisation
de l’utilisation des ressources des réseaux de nouvelle génération afin de diminuer les coûts
opérationnels et d’accepter plus de demandes. Nous étudions d’abord l’allocation de chaînes
de fonctions de services, pour accepter rapidement les requêtes et répondre aux demandes
diverses et abondantes des réseaux mobiles. Nous étudions ensuite la faisabilité de la re-
configuration Make-Before-Break des requêtes, qui permet de reconfigurer sans dégrader la
QoS. Nous adaptons ensuite notre reconfiguration au network slicing pour l’utiliser sur les fu-
tures réseaux 5G. Enfin nous optimisons les périodes de reconfiguration grâce à un algorithme
d’apprentissage par renforcement, réduisant ainsi les coûts de gestion.

Mots-clés : SDN, NFV, SFC, 5G, Slicing, Reconfiguration.

Abstract

Our decade is marked by an increase in the use of mobile networks for industrial and admin-
istration actors as well as for the general public thanks to their evolution. The introduction of
the 5th generation of mobile networks, 5G, brings a diversity of use cases for mobile networks
and a growing number of demands with very heterogeneous needs and with strong quality of
service (QoS) constraints. The development of 5G relies on new techniques such as Software
Defined Networking (SDN) and Network Function Virtualisation (NFV) technologies. SDN
allows the separation of control and data planes by providing centralised network management.
NFV decouples network functions from the hardware that performs them through virtualisa-
tion. The use of these two technologies automates the management of the network and makes it
much more flexible and adaptable to changing traffic flows and requirements. The introduction
of the network slicing paradigm leads to a division of the network into multiple independent
virtual networks cohabiting on the same infrastructure. This paradigm allows to meet the very
heterogeneous needs of future applications. In this thesis, we focus on optimising the resource
utilisation of next generation networks in order to decrease operational costs and to accept
more demands. We first study the allocation of service function chains, to quickly accept re-
quests and to meet the diverse and high-volume demands of mobile networks. We then study
the feasibility of Make-Before-Break reconfiguration of requests, which allows to reconfig-
ure without degrading the QoS. We then scale up our reconfiguration and adapt it to network
slicing to be used on future 5G networks. Finally, we optimise the reconfiguration periods by
implementing a reinforcement learning algorithm, minimising the management costs.

Keywords: SDN, NFV, SFC, 5G, Slicing, Reconfiguration.

	Table of contents
	List of Abbreviations
	Introduction
	0.1 Motivations
	0.2 Context
	0.2.1 Software Defined Networks
	0.2.2 Network Function Virtualisation and Service Function Chaining
	0.2.3 5G Networks
	0.2.4 Reconfiguration

	0.3 Thesis plan and Contributions
	0.3.1 List of Publications

	References

	1 Preliminaries
	1.1 Linear Programming (LP)
	1.1.1 A general example
	1.1.2 Linear Programming properties

	1.2 Column Generation
	1.2.1 A general example

	1.3 Reinforcement Learning
	1.3.1 Definition
	1.3.2 Markov Decision Process
	1.3.3 Policy and Value function
	1.3.4 Exploration vs Exploitation
	1.3.5 Q-Learning
	1.3.6 Deep Q-Learning

	References

	2 Service Function Chain Placement
	2.1 Introduction
	2.2 Related Work
	2.3 Problem Statement and Notations
	2.4 Layered Graph
	2.4.1 Layered Graph

	2.5 Static routing and provisioning problem (R&P)
	2.5.1 State of the Art ILP formulation state-of-art-ILP
	2.5.2 Our ILP formulation layer-ILP

	2.6 R&P for a single demand
	2.6.1 State of the Art ILP formulation, single demand
	2.6.2 Our ILP formulation, single demand

	2.7 Weight Constrained Shortest Path based heuristic
	2.7.1 Algorithm 4: Finding a good static placement
	2.7.2 Algorithm 5: Finding the best routing
	2.7.3 Algorithm 7: Choosing the VNFs to turn off

	2.8 Numerical Results for layer-ILP and state-of-art-ILP
	2.9 Conclusion
	References

	3 Service Function Chains Reconfiguration
	3.1 Introduction
	3.2 Related Work
	3.3 Problem Statement and Notations
	3.4 Modeling
	3.4.1 Objective
	3.4.2 Break-Free-ILP Reconfiguration (Make-before-break)
	3.4.3 Heuristic Break-Free-HEUR

	3.5 Numerical Results
	3.5.1 Data sets
	3.5.2 Low-traffic scenario - Resource usage
	3.5.3 High-Traffic scenario - Acceptance Rate
	3.5.4 Low-Traffic scenario - Impact of Parameter
	3.5.5 Execution Times to Compute the Reconfiguration
	3.5.6 Reconfiguration Rate
	3.5.7 Percentage of rerouted requests
	3.5.8 Percentage of Transient VNFs instantiated during reconfiguration

	3.6 Conclusion
	References

	4 Network Slices Reconfiguration
	4.1 Introduction
	4.2 Related Work
	4.3 Problem Statement and Notations
	4.3.1 Definitions

	4.4 ILP Model: slow-rescue
	4.5 The column generation technique and our model
	4.5.1 A first CG-based algorithms
	4.5.2 Description of our CG-based algorithms: rescue-ILP and rescue-LP

	4.6 Numerical Results
	4.6.1 Data sets
	4.6.2 Efficiency of our algorithms with different traffic matrices
	4.6.3 Impact of the number of reconfiguration steps
	4.6.4 Gains over Time
	4.6.5 Impact of the reconfiguration time interval
	4.6.6 Scalability
	4.6.7 Parallelisation of the pricing problem
	4.6.8 Impact of the delay constraints

	4.7 Conclusion
	References

	5 Reinforcement Learning Driven Reconfiguration
	5.1 Introduction
	5.2 Related Work
	5.2.1 Predict and Learn

	5.3 System Model and Problem Formulation
	5.3.1 Optimisation Model

	5.4 Deep Reinforcement Learning Algorithm
	5.5 Data Set
	5.6 Numerical Results
	5.6.1 Improved network usage
	5.6.2 Number of reconfigurations

	5.7 Conclusion
	References

	Conclusion and Perspectives
	Bibliography

