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Introduction 

 
One of the most serious concerns in the near future is the depletion of fossil fuels associated 

with increasing greenhouse gases emissions. According to the strategical review of world 
energy 2019, energy demand worldwide increased at its fastest rate since 2010: world energy 
consumption grew by 2.9% in 2018 with fossil fuels meeting nearly 70% of the rise in energy 
consumption, almost double of its 10-year average of 1.5% per year [1]. This led to an 
unprecedented increase in the global energy-related carbon dioxide (CO2) emissions by 1.7% 
in 2018 [1], thereby contributing to hastened global climate change. Consequently, it is 
extremely important to develop environmentally friendly routes for alternative fuel production 
such as synthesis gas (syngas), supplied by sustainable renewable energy sources such as 
biomass, biogas, and solar energy. Syngas can be used as an interesting energy carrier for a 
multitude of chemical synthesis processes. Moreover, it can be burned directly in internal 
combustion engines, furnaces, boilers and stoves, utilized to produce methanol and hydrogen, 
or further converted into synthetic liquid fuels via the Fisher-Tropsch method [2]. 

Solar thermochemical fuel production processes involve the thermochemical conversion of 
solid and gaseous carbonaceous feedstocks as well as metal oxides (MxOy) into syngas and 
metals utilizing concentrated solar energy to drive endothermic chemical reactions. In 
particular, the use of solar energy as the source of process heat for supplying such solar 
thermochemical processes has several advantages:  

(i) eliminate the need for fossil fuels combustion as heat source, which in turn reduces 
the total world fossil fuels energy consumption, 

(ii) avoid producing CO2, which seriously affects climate change and global warming,  
(iii) store intermittent solar energy within the chemical products through the endothermic 

reactions,  
(iv) produce clean and transportable chemical fuels and materials commodities, 
(v) provide very high temperatures, dependent on the magnitude of solar concentration, 

which may exceed those supplied by combustion-based heat sources. 
The physical state of carbonaceous feedstocks can be used to categorize the solar 

thermochemical processes into two main groups according to Fig. 1. Regarding gaseous 
feedstocks, natural gas, methane (CH4), and biogas can be converted to syngas via cracking, 
steam/dry reforming, or chemical looping reforming (CLR) or to syngas and metals via 
methano-thermal reduction (MTR), representing an attractive approach for the short-term solar 
process implementation. In addition, the gaseous H2O/CO2 feedstock can also be converted to 
H2/CO via direct thermolysis or two-step H2O/CO2 splitting, but requires higher temperatures, 
thus representing an attractive option for the long-term sustainable fuel production. Concerning 
solid feedstocks, pet coke, coal, biomass, or waste can be converted to syngas via 
pyrolysis/gasification or chemical looping gasification (CLG). In addition, they can be used as 
a chemical reducing agent to separate oxygen from metals oxides, thereby generating elemental 
metals concomitantly with carbon monoxide (CO) or syngas. This process is known as 
carbothermal reduction (CTR). As shown in Fig. 1, the solar thermochemical processes offer 
different pathways to produce solar fuels, and each one has its own advantages and drawbacks. 
In this study, CLR and gasification are considered as attractive means to convert gaseous and 
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solid feedstocks, respectively, into syngas, while CTR is considered as an attractive avenue to 
produce metals according to Fig. 2. 

 

Figure 1. Diagram of the conversion routes of carbonaceous feedstocks for solar 
thermochemical processes. 

 

 
Figure 2. Diagram of the three considered conversion routes of carbonaceous feedstocks for 

solar thermochemical processes. 
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Research objectives  

The main goal of this work is to convert gaseous (methane) and solid feedstocks (wood 
biomass) into syngas via solar chemical looping reforming and solar gasification, respectively, 
and to produce metals from metal oxides (ZnO and MgO) via solar carbothermal reduction. 
The conventional processes of reforming, gasification, and metallurgy have demonstrated 
several serious major drawbacks regarding the need for fossil fuels as heat source, partial 
combustion of feedstocks, CO2 emissions, products contamination by combustion by-products, 
and catalyst requirement. This also provides incentives in this present study to overcome the 
conventional processes. The objective is to experimentally investigate such considered 
processes and demonstrate a variety of solar thermochemical processes capability in both 
converting gaseous and solid carbonaceous feedstocks to syngas and producing metals in new 
solar thermochemical reactors operated flexibly in batch and continuous modes under vacuum 
and atmospheric conditions during on-sun testing.  

 

Scope of the study 

The work is performed by conducting thermodynamic studies and experimental 
investigations of solar CLR, biomass gasification, and CTR processes in 1.5 kWth prototype 
solar chemical reactors during on-sun operation. Methane and H2O/CO2 are considered as 
gaseous feedstocks while wood biomass and solid carbon (charcoal/carbon black) are 
considered as solid feedstocks. Four metal oxides materials regarding two non-volatile oxides 
(ceria and iron oxides) and two volatile oxides (ZnO and MgO) are considered as oxygen 
carriers or oxidants. The results for each considered solar thermochemical process are 
compared. Insights into the influence of operating parameters on conversion, yield, and reactor 
performance are emphasized. The feasibility and reliability of the considered processes are 
demonstrated. 

 

Thesis outline 

This work aims to experimentally investigate various solar thermochemical processes to 
convert both gaseous and solid carbonaceous feedstocks to syngas and to produce metals, using 
1.5 kWth prototype solar chemical reactors during continuous on-sun operation. 

Chapter 1 describes the background involving principles of solar concentrating 
technologies, followed by thermodynamics of solar thermochemical conversion, solar fuel 
thermochemical processes, metal oxide redox pairs, and solar reactors, which are detailed and 
reviewed to identify the scientific research gaps leading to the investigation of solar CLR, solar 
gasification, and solar CTR. 

Chapter 2 presents an experimental investigation of the chemical looping reforming of 
methane (CLRM) using non-volatile materials including ceria and iron oxides with different 
morphologies in a 1.5 kWth solar reactor driven by real high-flux concentrated sunlight. Fifty-
five on-sun experiments with eight different ceria and iron oxides samples were performed 
isothermally in the solar reactor in the temperature range 900-1150 °C. The effect of different 

ceria and iron oxides morphologies (reticulated porous foam, packed-bed powder, and blend 
of metal oxides powder mixed with inert Al2O3 particles), CH4 flow-rate, reduction 
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temperature, and sintering temperature on the bed-averaged oxygen non-stoichiometry (δ), 
methane conversion, syngas production yield, cycle stability, and reactor performance was 
experimentally investigated and evaluated. 

Chapter 3 focuses on the experimental study of continuous solar gasification of biomass 
with sixty-four on-sun tests in a 1.5 kWth prototype spouted-bed reactor at 1100-1300 °C. A 
comprehensive parametric study considering the influence of different lignocellulosic biomass 
feedstocks (wood type), biomass feeding rates, steam/biomass molar ratios, carrier gas flow 
rates, and reaction temperatures was conducted to optimize the syngas production capacity and 
evaluate the gasification performances. An optimization in the syngas yield through the study 
of biomass feeding rate influence is highlighted. 

Chapter 4 addresses a novel metallurgical process via the solar CTR of volatile metal oxides. 
Two metal oxide candidates (ZnO and MgO) were decomposed with different solid reducing 
agents in a new ceramic cavity solar reactor at temperatures depending on the metal oxide (950-
1350 °C for ZnO and 1400-1650 °C for MgO). This reactor was designed to be flexible for 

operation at temperatures up to above 1600 °C under 1.5 kWth solar power input. Twenty-six 
on-sun experiments were carried out by varying different operating parameters such as solid 
reducing agents (activated charcoal, carbon black, graphite, and beech wood biomass) and 
reactant molar ratio in batch or continuous modes under vacuum and atmospheric pressures. 
High conversion of ZnO and MgO to Zn and Mg is highlighted. 

Chapter 5 demonstrates the feasibility of the combination of biomass gasification and CTR 
of ZnO to produce both Zn and syngas in a single process. The combined process was operated 
in continuous mode utilizing the same solar reactor, which was used in the gasification process, 
in the temperature range 1050-1300 °C through sixteen runs. The influence of temperature and 
reactant molar ratio on syngas production was studied and compared to the case of a pyrolysis 
process (without any oxidant). The advantages and reliability of such a combined process for 
co-production of syngas and metallic Zn are highlighted.  

General conclusion presents the thesis with a summary of the results and perspectives for 
future work. 
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Chapter 1: Background on solar 

thermochemical processes 
 

1.1 Solar energy  

Solar energy is radiant light and derived heat from the sun. This radiant energy is 
generally measured and reported as the solar irradiance. In fact, the total amount of solar energy 
incident on Earth is largely in excess of the anticipated energy requirements; however, its 
intensity is quite low. If harnessed, this energy source has the high potential to meet global 
energy demands without the concomitant production of greenhouse gases [3]. Fig. 1-1 shows 
the potential of solar energy in terms of the average daily/year sum of direct normal irradiation 
(DNI). The colors on the map represent the local solar irradiance averaged from 
1994/1999/2007 to 2015, calculated by the Solargis model from atmospheric and satellite data 
[4]. The area close to the equator exhibits the greatest amount of solar radiation, and the regions 
with the highest potential are Australia, China, India, France, Spain, Morocco, Sub-Saharan 
Africa, South Africa, and Latin America and Caribbean, which are capable for producing heat 
to supply chemical reactions or electricity generation process. 

 

 
Figure 1-1. Global distribution of solar radiation intensity [4]. 

 

1.2 Principles of solar concentration 

Among the different ever-evolving technologies for harnessing solar energy, solar 
concentrating power systems utilize lens or mirrors and tracking systems to focus a large area 
of sunlight into a small beam. These technologies mainly consist of parabolic troughs and 
concentrating linear Fresnel reflectors, solar dishes, solar power tower, double reflection solar 
furnace, and solar simulator.
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1.2.1 Parabolic trough and linear Fresnel systems

Parabolic troughs are the oldest solar thermal technology for concentrated solar power 
(CSP) plants [5]. The concentrating systems utilize parabolic-shaped collectors made of 
reflecting material, according to Fig. 1-2. The mirrors reflect the incident solar radiation onto 
a focal line, where receivers are placed to be heated. Parabolic trough reflectors can concentrate 
sunlight between 60 and 100 times [6], which is sufficient to raise the temperature of the heat 
transfer fluid to as much as 550 °C. 

 
Figure 1-2. Schematic of a solar trough [5]. 

 

Another system, which is similar to the parabolic troughs, is the linear Fresnel reflector 
system (Fig. 1-3). Flat plane mirrors are split into multiple parts to track sunlight that is 
reflected onto the secondary reflector and absorber tube. 

 

 
Figure 1-3. Linear Fresnel reflector system [7]. 

 

1.2.2 Solar dishes 

Fig. 1-4 shows a parabolic-dish solar concentrator. Sunlight is concentrated and reflected 
by a parabolic dish toward the thermal receiver positioned on the focal point of the dish 
collector. The operating temperature is above 1000 °C with a concentration ratio in the range 
of 1000-5000 [5]. This technology is limited by the size of the dish and can be equipped with 
“dish-Stirling” engines. 
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Figure 1-4. Parabolic-Dish solar concentrator [5]. 

 

1.2.3 Solar towers 

The solar tower system includes a massive heliostat field focusing on a single solar 
receiver mounted on a tall tower positioned at its center, according to Fig 1-5. Each mirror 
tracks the sun independently, making the solar collection system relatively more expensive 
than for a solar trough plant. The benefit is that a higher temperature can be achieved with this 
plant type. A concentration factor of between 600 to 1000 times is possible, reaching 
temperature in the range 800-1000 °C [8]. 

 

 
Figure 1-5. Solar tower system [5]. 

 

1.2.4 Double reflection solar furnace 

The concentrating system uses one or several heliostats like solar towers. In place of a 
tower with a central receiver, a parabolic mirror is employed as a secondary optical component 
to concentrate the sunlight at the focal point with a concentration ratio up to 20,000 times. 
Several parabolic mirrors can be joined because a single mirror is restricted in size. The largest 
system is the solar furnace in Odeillo, which is 54 m high and 48 m wide, including 63 
heliostats. The thermal power capacity is 1 MW with a maximum temperature above 3500 °C 
(Fig. 1-6). 
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Figure 1-6. Solar furnace in Odeillo, France [9].  

 

1.2.5 Solar simulator 

The solar simulator is a device delivering illumination approximating natural sunlight, 
and it can generally be categorized into two types: those that utilize a pointing source of 
simulated solar radiation positioned away from the collector and those that have a large area of 
multiple lamps positioned close to the collector. The objective of the solar simulator is to 
provide a controllable indoor test facility under laboratory conditions without the issues of 
unstable natural solar irradiation. The world’s biggest solar simulator is located at the DLR 

facility in Jülich, Germany (Fig. 1-7). The 149 high-performance Xenon short-arc lamps 
generate artificial sun [10]. 

 

 
Figure 1-7. 149 xenon short-arc lamps that are employed to simulate solar irradiation at DLR 

in Jülich, Germany [10]. 

1.3 Thermodynamics of solar thermochemical conversion 

Solar thermochemical processes use the concept of the conversion of solar energy to 
chemical energy carriers. Therefore, two fundamental thermodynamic laws regarding the 1st 
and 2nd principle laws are nescessary to analyze solar thermochemical processes. To estimate 
the feasibility of chemical reactions, Gibbs free energy (ΔG) of system needs to be verified:  

 
ΔG=ΔH-TΔS<0      (1-1) 
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Where: ΔG is Gibbs free energy, ΔH is the enthalpy change of reaction, T is temperature, 

and ΔS is the entropy change. 
Fig. 1-8 shows variations of ΔH, TΔS, ΔG as a function of temperature. For solar 

thermochemical processes, the total required energy to transform reactants to products is equal 
to the enthalpy change of reactions (ΔH), while the amount of energy supplied by solar energy 
as process heat to complete reversible process is equivalent to TΔS. ΔG decreases with 
increasing temperature. If ΔG is negative, the reaction can proceed spontaneously and is 
thermodynamically favorable. 

 

 
Figure 1-8. Variations of ΔH, TΔS, ΔG as a function of temperature [11]. 

 

The performance indicator of CSP plant is the solar energy absorption efficiency of the 
receiver (ηabsorption). It is the ratio of the net rate of absorbed energy to the solar power input 
from the concentrator. Unless accounting for the conduction and convection losses, the 
absorption efficiency is given by [11,12]: 

 ����������� =
(���� ∙���������)−(����∙���������∙�∙�4)������     (1-2) 

 
Where: ������  is the total solar power input, ∙ ���������  is the amount of solar power 

captured by the aperture area (���������), ���� and ���� are the absorptance and emittance of 

the solar cavity receiver, respectively, T is the nominal cavity receiver temperature, � is the 
Stefan-Boltzmann constant. 

The ability of the collector to concentrate solar energy is represented by the mean 

concentration ratio (�̃) over the aperture as follows: 
 �̃ =

�������������������   (1-3) 

 
Where I is the intensity of solar radiation 
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Assuming that all incoming solar energy can be ideally captured, i.e. ���������=������, and 
the cavity receiver is a perfectly insulated blackbody (no heat losses except radiative heat 
losses), with ���� = ����=1, η���������� can be simplified as: 

 η���������� = 1 − (��4��̃ )   (1-4) 

 
The absorbed solar power drives the endothermic chemical reaction; therefore, the 

conversion of solar energy to chemical form is quantified as the exergy efficiency: 
 ������� =

−�̇∆����������   (1-5) 

 
 Where �̇ is the molar flow rate of products, and ∆����is the maximum amount of work 
that may be obtained from the products when converted back to the reactants at 298K. Thus, 
the 2nd law is employed to calculate the maximum exergy efficiency (�������,�����). 
 Because the conversion of the solar process heat to chemical energy is limited by both 
solar absorption and Carnot efficiency, the �������,����� is given by: 
 �������,����� = ����������� ∙ ������� = (1− ��4��̃ ) ∙ (1− ��� )   (1-6) 

where TL is ambient temperature. 
Fig. 1-9 shows the ideal exergy efficiency (�������,�����) as a function of temperature 

(T) for different concentration ratios. It is also compared with Carnot efficiency. An increase 
in temperature and concentration ratio increases the �������,�����. For example, at 1100 K the 

maximum �������,����� of 65–72% can be obtained for concentration ratios of 1000–10,000 

respectively. In addition, the optimal operating temperatures that maximize �������,����� can 

be calculated [11]. Therefore, maximizing the actual solar-to-chemical energy efficiency as 
close as possible to the ideal efficiency in solar thermochemical endothermic processes 
operated at 1100-1800K is a key challenge for solar thermochemical research. 

 
Figure 1-9. ������� ����� as a function of operating temperature at different solar 

concentration ratios for a blackbody cavity receiver [11]. 
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1.4 Solar fuel thermochemical processes 

Solar fuel thermochemical processes use solar energy to drive endothermic chemical 
reactions for the conversion of either gaseous/solid feedstocks or metal oxides to storable and 
transportable fuels or chemical commodities. They can be divided into two groups based on 
the feedstocks (Fig. 1-10). On the one hand, H2O/CO2 splitting, which consists of thermolysis 
(or electrolysis) and two-step cycles, represents a long-term ultimate goal for sustainable fuel 
production. On the other hand, decarbonization, which consists of reforming/chemical looping 
reforming (CLR), cracking, gasification/chemical looping gasification (CLG), and 
carbothermal/methanothermal reduction, should be promising for the short-term solar process 
implementation. It consists of the conversion of solid/gaseous carbonaceous feedstocks to 
syngas that can be combined with the conversion of metal oxides to metals. The details of each 
solar thermochemical process are reviewed and discussed in the following. 

 
Figure 1-10. Thermochemical routes for solar fuel production using concentrated solar 

energy. 

 

1.4.1 H2O/CO2 splitting 

The H2O/CO2 splitting processes use only H2O or CO2 as feedstocks to produce H2/CO. 
They consist of thermolysis/electrolysis and two-step splitting cycles. 

1.4.1.1 Solar thermolysis of water 

Direct thermal water splitting is the simplest pathway for solar thermochemical 
hydrogen production from H2O, according to Eq. 1-7. 

 �2� → �2 +
12�2      (1-7) 

 
Nevertheless, this process is hardly practical due to both very high temperatures needed 

as evidenced by the ΔG equal to zero at 4300 K for 1 bar (Fig. 1-11) [13], and difficulty in 
effectively separating/quenching H2 and O2 to avoid recombination and explosive mixtures. 
High solar flux concentration is thus required to reach the reduction temperature of H2O, 
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thereby adversely resulting in issues regarding solar reactor materials thermal stability, costs, 
and heat losses. 

 
Figure 1-11. ∆�°, �∆�°, and ∆�° as a function of temperature for direct thermal water 

splitting at 1 bar [14]. 
 

1.4.1.2 Two-step splitting cycles 

Two-step thermochemical cycles are a series of consecutive chemical reactions. In this 
pathway, metal oxides (either non-volatile or volatile metal oxides) are employed as initial 
oxygen carrier materials that need to be reduced to release oxygen in the first step 
(endothermic) and recycled via oxidation with H2O or CO2 in the second step (exothermic); 
therefore, the process temperatures strongly depend on the applied metal oxides. Moreover, the 
reduction step requires reaction temperature lower than that of the thermolysis of water (single 
step), thereby allowing operation at moderately high temperatures. Likewise, the separation 
issue can be avoided as two-step thermochemical cycles produce H2/CO and O2 separately. 
The two-step thermochemical cycles using metal oxide redox pairs are shown in Eqs. 1-8 and 
1-9: 

 

1st step endothermic reaction (Solar) :���� → �� +
�2�2    (1-8) 

2nd step exothermic reaction (non-solar) :�� + ��2�(��2) → ���� + ��2(��) (1-9) 

 
Nakamura [15] originally proposed a simple two-step water-splitting cycle using 

Fe3O4/FeO redox pair: 
 ��3�4 → 3��� +

12�2     (1-10) 3��� + �2� → ��3�4 + �2     (1-11) 
 

Fig. 1-12 shows the variations of ΔG as a function of temperature for the reduction of 
Fe3O4, Mn3O4, and Co3O4 metal oxides theoretically favored at above 2500 K, 2000 K, and 
1000 K, respectively. 
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Figure 1-12. Variations of ΔG for the thermal reduction of (a) Fe3O4, (b) Mn3O4 and (c) 

Co3O4 as a function of temperature at 1 bar [14]. 
 

In contrast, the oxidation of MnO and CoO with water to produce hydrogen is not 
thermodynamically favorable as evidenced by ΔG above zero [16], whereas FeO oxidation is 
possible below ~1000K according to Fig. 1-13. 
 

 
Figure 1-13. Variations of ΔG for the oxidation of (a) FeO, (b) MnO, and (c) CoO with water 

as a function of temperature at 1 bar [14]. 

From these observations, the ease of reduction and oxidation of any metal oxide needs 
to be thermodynamically evaluated for two-step thermochemical cycles. 

 

1.4.2 Decarbonization processes 

Decarbonization of hydrocarbon species consists of the conversion of solid/gaseous 
carbonaceous feedstocks to syngas. It can be combined with the conversion of metal oxides to 
metals using such feedstocks as reducing agents. 
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1.4.2.1 Solar cracking 

The solar cracking involves the thermochemical decomposition of fossil fuels 
(pyrolysis) including natural gases, oil, and other hydrocarbons. The simplified net reaction is 
given in Eq. 1-12. 

 ���� → ��(�) +
�2�2      (1-12) 

 
The products of the solar cracking process mainly consist of a carbon-rich condensed 

phase and hydrogen-rich gas phase. However, other components may occur depending on the 
composition of starting materials and reaction kinetics. The solid carbonaceous product can be 
used as a reducing agent for carbothermal reduction processes or valorized as it.  

 
1.4.2.2 Solar reforming and solar chemical looping reforming (CLR)  

The conventional steam/dry reforming method utilized in the chemical industry to 
produce syngas uses both fossil fuels as the source of process heat and catalysts to catalyze the 
endothermic chemical reactions. This results in both CO2 emissions contributing to global 
warming and catalysts deactivation. Gaseous carbonaceous feedstocks such as methane (CH4) 
are oxidized utilizing H2O/CO2 as oxidizing agents to syngas, and the reaction temperature is 
usually 1000 K at 1 atm. The simplified net reaction of steam reforming is given according to 
Eq. 1-13. Alternatively, the heat required for such an endothermic reaction can be supplied by 
solar energy using concentrating solar technologies, thereby storing solar energy into 
transportable and storable chemical fuels [13–15]. 

 ���� + ��2� → (�2 + �)�2 + ���      (1-13) 

 
In contrast to the conventional method, solar chemical looping reforming of methane 

(CLRM) employs solid metal oxides as oxygen carriers in place of pure oxygen as the oxidant. 
For chemical looping scheme, in the endothermic step gaseous CH4 is partially oxidized with 
the metal oxides to produce syngas while the metal oxide is reduced. The reduced metal oxide 
is subsequently oxidized in the exothermic step with H2O/CO2 to generate H2/CO. The solid 
metal oxide oxygen carrier is then circulated between these two steps. The simplified net 
reaction of CLRM corresponds to Eqs. 1-14 and 1-15: 
 

Endothermic partial oxidation of methane: ��4 +
1∆����−��� → 1∆����−���� + 2�2 + ��  (1-

14) 
Exothermic step: ��2� + (1− �)��2 +

1∆����−���� → 1∆����−��� + ��2 + (1 − �)�� (1-

15) 
The net products of chemical looping reforming equal those of steam and dry reforming 

for fractions of �= 1 and �= 0, respectively [17]. 
Compared to the first step in two-step redox cycles, the methane-induced reduction of 

metal oxides significantly lowers the reduction temperature [16] due to the CH4 reducing agent. 
Since the metal oxide reduction with CH4 and H2O/CO2 splitting steps can proceed at similar 
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temperatures, isothermal cycle operation is possible, thereby reducing the constrains imposed 
to reactor materials as well as thermal radiation losses [18]. 

The advantages of the CLRM are: (i) the discharge of pollutants is avoided, as the 
required heat is provided by solar energy [19–22], (ii) the utilization of CH4 in the reduction 
step allows for isothermal operation between first and second steps, thereby avoiding sensible 
heat losses taking place during temperature-swing cycles and eliminating the need for heat 
recovery, (iii) solid oxide is used in place of gaseous oxygen which eliminates the need for 
oxygen production from air, (iv) reduced metal oxide can be subsequently oxidized with 
H2O/CO2 in the oxidation step to produce additional syngas and complete the cycle, (v) 
deposited carbon on metal oxide structures can be concomitantly gasified and removed during 
the oxidation step, thus avoiding material deactivation and eliminating the requirement for 
expensive catalysts.  

The feasibility of utilizing metal oxides (either non-volatile or volatile metals) as oxygen 
carriers for CH4 partial oxidation has been experimentally reported e.g. for ceria (CeO2) [18], 
cerium-based oxides [23], iron oxide [24], tungsten oxide [21], and zinc oxide [25]. 

 
1.4.2.3 Solar gasification and solar chemical looping gasification (CLG) 

Conventional gasification of solid carbonaceous feedstocks requires a significant portion 
of feedstocks (up to 30-45%) being subjected to combustion with air or oxygen to drive 
endothermic gasification reactions [26], in turn discharging a large amount of CO2 [27]. 
Moreover, a purification of the produced syngas may be needed, thereby consuming additional 
energy for gas separation requirement [ 8- 9] .  Either solid fossil fuels (coal and pet coke) or 
renewable fuels (biomass) can be employed as feedstocks for the gasification. Additionally, 
when biomass is used as the feedstock, the process is carbon neutral. A novel approach for 
converting such solid carbonaceous feedstocks to syngas without CO2 emissions is solar 
thermochemical gasification [ 10-15] .  In this approach, two sustainable energy sources 
regarding solar energy and biomass can be combined in a single process to convert both 
biomass and intermittent solar energy into high-quality syngas [31,32]. The ideal 
stoichiometric steam-based gasification reaction of solid carbonaceous materials to syngas can 
be written by the simplified overall reaction as: 

 ������ + (� − �)�2� → (�2 + � − �)�2 + ���    (1-16) 

 
When employing biomass as feedstock, the thermochemical gasification reactions are 

very complex because of the variability of starting biomass compositions in accordance with 
the variant of carbonaceous feedstock, age, geographic location and period of the year [33]. 
However, it can mainly be divided into two sequential processes. First, a pyrolysis step occurs 
via the decomposition of solid hydrocarbons at temperatures from 300 ºC to 1000 ºC.  The 
biomass chiefly decomposes into char, tars, and incondensable gases, as represented in Eq. 1-
-17. During this step, both high temperatures and heat transfer rates favor the production of gas 
products over char and tars [14]. 

 
Biomass → char(carbon)+CO+CO2+H2+CH4+Tars   (1-17) 
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Second, the produced char is gasified with an oxidizing agent (such as steam or CO2), 
thereby yielding different possible reactions (Eqs. 1-18 to 1-22): 
 

C+H2O→CO+H2  H° = 131.3 kJ/mol    (1-18) 

C+2H2→CH4   H° = -74.6 kJ/mol    (1-19) 

C+CO2→2CO   H° = 172.4 kJ/mol    (1-20) 

CO+H2O→CO2+H2   H° = -42 kJ/mol    (1-21) 

CH4+H2O→CO+3H2  H° = 206 kJ/mol    (1-22) 

 
Equilibrium gas compositions of carbon- steam and carbon- CO2 systems as a function 

of temperature show that H2 and CO are the main gas produced when the temperature exceeds 
1000°C [14]. In contrast, CH4 decreases considerably when increasing the temperature because 
both CH4 formation is thermodynamically favored at lower temperatures (CH4 is unstable 
above ~1000°C) and the kinetics of methane formation is too slow [14]. 

In comparison to the conventional process, the advantages of the solar gasification of 
biomass are: (i) the portion of biomass feedstock (in the range of 30-45%) combusted for 
process heat can be avoided [34], thus increasing syngas output per unit of feedstock and 
reducing CO2 emissions [35]; (ii) the production of an energy-rich and high quality syngas that 
is not contaminated by the products of combustion; (iii) the calorific value of the feedstock is 

solar upgraded, resulting in the storage of intermittent solar energy into a storable and 
dispatchable chemical fuel; (iv) the requirement of additional energy consumption in 

downstream gas separation systems is circumvented [28,29]; (v) the discharge of pollutants to 
the environment is avoided [36]; (vi) the solar reactor can be operated at high temperatures 
(>1200°C), resulting in faster reaction kinetics, higher syngas quality, and thereby avoiding the 
presence of tars in the produced syngas [37,38]. To cope with the problem of intermittent solar 
energy, the concept of hybrid solar gasification has been investigated [39,40] with emphasis 
on the importance of operating systems around-the-clock.  

Alternatively, another novel approach is solar chemical looping gasification (CLG). The 
operating principles for the CLG are similar to CLRM. The difference is just the use of solid 
carbonaceous feedstocks in place of the gaseous feedstocks. In this pathway, the solid 
carbonaceous feedstocks, which can be fossil fuels or biomass, are partially oxidized to 
generate syngas utilizing metal oxides as oxygen carriers, while the metal oxide is reduced as 
given by: 

 ����� +
1−�� ���� → �� +

�2�2 +
1−�� ����−�    (1-23) 

 
When the reduced metal oxide is re-oxidized by H2O or CO2, the overall reaction is given 

by Eq. 1-15. The CLG lies in the advantages outperforming the solar steam gasification in both 
being able to avoid the use of pure oxygen or H2O in the reaction (corrosion issue), and 
operating as chemical looping cycles. 
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1.4.2.4 Solar carbothermal and methano-thermal reduction 

Solar carbothermal reduction (CTR) and methano-thermal reduction (MTR) is the 
reduction of metal oxides using solid and gaseous feedstocks, respectively, as a reducing agent 
and concentrated solar energy as the source of process heat. Such reductants can be either fossil 
sources such as coke [41,42], coal [43], methane [25] or renewable sources biomass or biogas 
[44]. When employing biomass feedstock, the chemical reactions become the combination of 
CTR and gasification. The objective of the CTR and MTR is to produce metals (metallurgical 
processes) by removing oxygen from metal oxides utilizing carbonaceous feedstocks, 
generating metals and CO/syngas. The CTR and MTR overall reactions can be written as Eqs. 
1-24 and 1-25 respectively: 

 ���� + �� → �� + ���     (1-24) ���� + ���4 → �� + ��� + �2�2    (1-25) 

 
Comparing to direct thermochemical dissociation of metal oxides, the 

carbothermal/methanothermal chemical reactions can be conducted at much lower 
temperatures thanks to the reducing agent. For example, the solar direct ZnO dissociation 
(ZnO(s) + solar heat → Zn(g) + ½ O2) requires temperatures up to ~1975 °C at atmospheric 
pressure [45–51], while the CTR of ZnO can be performed at a reduction temperature as low 
as 950 °C, resulting in 1025 °C lower compared to direct dissociation of ZnO. 

 

1.5 Metal oxides redox pairs for solar thermochemical processes 

Several metal oxide redox pairs have been studied extensively for solar thermochemical 
processes (two-step splitting cycles, CLR, CLG, CTR, and MTR). They can be mainly 
classified into two groups based on their phase change regarding volatile oxides such as ZnO 
[52], SnO2 [53], and MgO [54] and non-volatile oxides such as iron oxides (Fe2O3/Fe3O4, 
ferrites [55]), and ceria (CeO2/Ce2O3) [56] perovskites (La1−xSrxMnO3−δ) [57]. In this study, 
four attractive metal oxides candidates regarding two non-volatile oxides (ceria and iron 
oxides) and two volatile oxides (ZnO and MgO) are considered as oxygen carriers or oxidants 
due to their interesting chemical and physical properties. 

 

1.5.1 Volatile oxides 

When employing volatile metal oxides (stoichiometric materials), a solid-to-gas/liquid 
phase transition of the products (either gaseous (ZnO/Zn) [58,59], MgO/Mg or liquid 
(SnO2/Sn)) occurs in the reduction step. The reduced product species are first vaporized/melted 
and then condensed in the form of fine solid particles when temperature decreases. Volatile 
metal oxides usually have high oxygen storage capacity and high entropy variation since they 
can be completely reduced to their metallic elements, thus enhancing fuel production capacity. 
However, they come at the expense of a recombination issue with oxygen (O2) during thermal 
reduction. Two attractive volatile oxides candidates (ZnO and MgO) are reviewed in different 
thermochemical processes. 
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1.5.1.1 ZnO 

ZnO is an attractive candidate for various thermochemical processes because of its 
physical properties (Table 1-1). Its decomposition temperature is not too high (1975 °C) 
compared to other volatile candidates [60]. In addition, zinc is highly reactive for oxidation 
with H2O/CO2 to generate high-purity H2/CO [47] and needed for the applications of both 
corrosion-resistant zinc plating of iron and electrical batteries [61]. The direct thermal 
dissociation of ZnO is usually conducted at temperatures exceeding 1975 °C at atmospheric 
pressure [45–51] as mentioned before. This system has been extensively investigated 
experimentally and numerically by research teams (e.g. at PROMES CNRS-Odeillo in France 
and PSI in Switzerland). Abanades et al [45] experimented and simulated the direct thermal 
dissociation of ZnO involved in water-splitting thermochemical cycles for hydrogen 
production. They found that reaction completion was achieved for reactant temperature 
exceeding 2200 K for a 1 mm initial particle diameter, and the higher the particle surface area, 
the higher the conversion rate. Koepf et al. [51] tested a 100 kWth scale reactor for ZnO 
dissociation. The solar reactor was operated for over 97 h and yielded ZnO dissociation rates 
as high as 28 g/min totaling over 28 kg of processed reactant during 13 full days of 
experimentation. However, the major drawback of the thermal dissociation of ZnO is attributed 
to its high reduction temperature as well as recombination of Zn product. Alternatively, 
utilizing gaseous [19,62,63]/solid carbon species [19,43] as reducing agents regarding a 
CTR/MTR approach for the reduction of ZnO can tremendously lower the reduction 
temperature to ~950 °C [64], generating Zn and CO/syngas according to Eqs 1-26 and 1-27. 

 
Carbothermal reduction of ZnO: ZnO+C→Zn+CO     (1-26) 
Methano-thermal reduction of ZnO: ZnO+CH4→Zn+2H2+CO   (1-27) 

 
Prior thermodynamic and experimental studies on ZnO in different solar 

thermochemical processes dealing with the utilization of solid/gaseous carbonaceous 
feedstocks have been conducted. Osinga et al. [41] experimentally investigated the CTR of 
ZnO using a two-cavity packed-bed reactor. Thermal efficiency up to 20% was achieved for 
batch tests but 20% of non-reacted ZnO remained and was assumed to diffuse into the 
insulation material. The influence of temperature, carbon source, and carrier gas composition 
on CTR of ZnO was later examined utilizing the same reactor to gain data for designing a 
scaled up reactor [42]. Wieckert et al. [65] tested a 300 kW packed-bed batch reactor for the 
CTR of ZnO in the temperature range 1300-1500 K, yielding 50 kg/h of 95%-purity Zn and 
30% of thermal efficiency, and confirmed that ZnO condensation and rock crystal generally 
grew on cooled surface. Various works on thermodynamic and experimental analysis of MTR 
of ZnO were proposed [62,63,66–69]. For example, Steinfeld et al. [63] examined the 
combined solar thermal reduction of ZnO and reforming of CH4 in a fluidized-bed tubular 
quartz reactor at 1200 K and 1 atm. They reported that the combined process offered the 
simultaneous production of Zn and syngas from ZnO and CH4 without discharging greenhouse 
gases. Three years later, the same group [25] tested the same process in a gas-particle vortex 
flow under continuous operation in the temperature range 1000-1600 K, yielding up to 90% of 
Zn conversion. Koepf et al. [59] studied the CTR of ZnO with beech charcoal in a continuous 
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beam down, gravity-fed solar reactor, yielding 12.4% of thermal efficiency, 75% of Zn content, 
and 14% of reactant conversion; however, critical issues related to clogging and significant 
unreacted reactant were encountered. Recently, Brkic et al. [70] tested CTR of ZnO in a drop 
tube reactor at pressure between 1 and 960 hPa and found that the Zn production rate is 
maximal at ~100 hPa and significantly drops under vacuum because of insufficient residence 
time and limited particles heat up in the reaction zone. Besides, vacuum CTR of ZnO was 
proposed in order to enhance the reduction rate [58,71] and decrease products recombination 
reaction, according to Le Chatelier’s principle. Leveque and Abanades [58] studied the 
influence of the total pressure and the oxygen partial pressure (dilution) for the CTR of different 
volatile oxides (ZnO, SnO2, GeO2, and MgO) via solar-driven vacuum thermogravimetry. They 
reported that when metal oxides were reduced by lowering pressure, the reaction rate was 
greatly enhanced, and the required temperature to achieve a given reduction rate was 
significantly lowered. A decrease in total pressure also lowered the need for a diluent gas.  

 
1.5.1.2 MgO 

MgO is also considered as an attractive candidate for solar thermochemical processes 
[58] towards Mg commodity. Mg product is commonly used as structural material involving 
magnesium-based alloys [72,73] and power generation in magnesium-based combustion 
engines, and it also shows high reactivity and stability for H2O/CO2 splitting [58]. The melting 
and boiling points of MgO are extremely high (2852 °C and 3600 °C, Table. 1-1), while those 
of Mg are 650 °C and 1091 °C, respectively. Mg is conventionally produced by Pidgeon, 
Magnetherm, and electrolytic methods. The Pidgeon and Magnetherm techniques require the 
reduction of calcined dolomite ore with ferrosilicon at high temperatures (1700 °C), while the 
electrolysis requires the reduction of molten magnesium chloride in the temperature range 680–

720 °C [74]. They proceed with additional materials (silicothermic process) and need very high 
energy consumption from either electricity or fossil fuels to drive the endothermic reactions, 
thereby raising serious environmental concerns. For these reasons, solar thermochemical 
reduction of MgO becomes an alternative attractive approach towards a CO2-free Mg economy. 
Nevertheless, solar direct reduction of MgO (MgO(s) +solar heat → Mg(g) + 1/2O2) is not 
practical because of its extremely high dissociation temperature (3600 °C). Hence, 
carbothermal (MgO + C → Mg + CO) and methano-thermal (MgO + CH4 → Mg + CO + 2H2) 
reduction can be alternatively considered to be a better option for producing Mg. Previous 
studies mainly focused on the kinetics of the CTR of MgO with the utilization of various solid 
carbonaceous materials such as graphite [75–78] and charcoal [75] via thermogravimetry 
analysis (TGA). A two-step thermochemical process based on MgO/Mg with charcoal and 
petcoke for syngas production was thermodynamically and experimentally examined via TGA 
under atmospheric pressure [54], and the steam-hydrolysis of Mg was also studied in the 
temperature range 350–550 °C. The reactions kinetics were also studied and compared (the Ea 
values of MgO reduction with charcoal, 468.4 kJ/mol and petcoke, 419.1 kJ/mol were higher 
than those reported in previous studies [76]). The methano-thermal reduction of MgO was 
hardly found in literature [54]. 

Despite employing carbonaceous materials for decreasing the reduction temperature, 
the CTR of MgO still requires high temperatures above 1600 °C at atmospheric pressure for 
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complete conversion [76,78]. Two main approaches can be considered to avoid gaseous 
products recombination and allow metal product recovery: rapid quenching of the vapor and 
dissolving the magnesium directly in a suitable metal solvent before reversion can occur [79]. 
Alternatively, decreasing CO partial pressure also improves Mg yield [80]. Vacuum operation 
has been studied theoretically and experimentally with the MgO carbothermal reduction to 
lower the temperature [58,71,75,81–87]. This concept offers possibilities not only to alleviate 
heat losses and reactor materials issues but also to increase MgO reduction rate and conversion, 
at the expense of pumping energy requirement. Chubukov et al. [75] studied pressure 
dependent kinetics of MgO carbothermal reduction with carbon black in the temperature range 
1350-1650 °C and pressure range 0.1–100 kPa in a graphite furnace. They found that the rate 
of MgO carbothermal reduction increased inversely with pressure, and a transition between 
conversions of 20–35% occurred after the reaction rate was maximal at 10 kPa. Recently, the 
same group [81] studied the kinetic enhancement of MgO carbothermal reduction with 
petroleum coke by the means of catalysis, milling, and vacuum operation in the same furnace. 

 
Table 1-1. Physical and chemical properties of ZnO and MgO. 

Property Zinc oxide Magnesium oxide 

Chemical formula ZnO MgO 
Molar mass 81.38 g/mol 40.3044 g/mol 

Appearance White solid White powder 
Density 5.606 g/cm3 3.58 g/cm3 
Melting point 1,975 °C 2,852 °C 

Boiling point 1,975 °C 3,600 °C 
Solubility in water 0.0004% (17.8°C) 0.0086 g/100 mL (30 °C) 
Refractive index (nD) 2.0041 1.7355 

Flash point 1,436 °C Non-flammable 
Specific heat capacity (Cp) - 37.8 J/mol K 

Std molar entropy (So298) 43.9 J·K−1mol−1 26.9 J·mol−1·K−1 
Std enthalpy of formation (ΔfHo298) -348.0 kJ/mol -601.8 kJ·mol−1 
Gibbs free energy (ΔfG˚) - -596.6 kJ/mol 

Crystal structure Wurtzite Halite (cubic) 

 

1.5.2 Non-volatile oxides 

In contrast to volatile oxides, non-volatile oxides remain in the solid state over the 
thermochemical process; therefore, only oxygen is released from their structure, thereby 
bypassing the recombination issue and suitably matching with CLRM and CLG pathways in 
terms of process operation in a single reactor. However, non-volatile oxides exhibit issues of 
both non-stoichiometric reaction (case of ceria), which results in lower oxygen storage/release 
capacity leading to low fuel productivity and sintering (case of iron oxides). For these reasons, 
physicochemical characteristics regarding specific surface area, particle porosity, particle size, 
and thermal stability become important factors for non-volatile oxides. Ferrites and ceria are 
reviewed for different solar thermochemical processes. 

 
1.5.2.1 Ferrites 

Ferrites are usually ferromagnetic ceramic compounds developed from iron oxides, e.g. 
magnetite (Fe3O4). Iron oxide is a promising candidate due to abundant source, low cost, and 
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easy handling. They exhibit large oxygen releasing ability compared to other candidates thanks 
to stoichiometric materials but may encounter sintering issues, contributing to low cycling 
stability [24,88]. Over the past four decades, Nakamura first assessed the two-step cycle of iron 
oxide (Fe3O4/FeO). The reduction reaction of Fe3O4 proceeds at temperature of 2500 K, and 
the subsequent hydrolysis reaction proceeds at 450 K. The melting points of Fe3O4 and FeO 
are 1870 K and 1650 K, respectively (Table 1-2). Thus, Fe3O4 is thermally reduced to liquid 
FeO in the first step. In the second step, solid FeO reacts with steam to generate hydrogen and 
solid Fe3O4. Steinfeld and Fletcher [89] conducted the CTR of Fe2O3 with graphite in the 
temperature range 1300-2390 K using solar energy. They found that the iron yields were 
extremely low when the reaction temperature was below its melting point due to slow reaction 
kinetics and diffusion limitation; moreover, the highest iron yields were obtained in a higher 
temperature range 1850-2390 K, demonstrating a relatively strong effect of the reactor 
temperature and the cooling and/or heating rate. The same research group proposed the solar 
Fe3O4+4CH4 system [66,90,91] and reported that the chemical equilibrium species consist of 
metallic iron in the solid phase and a mixture of 67% H2 and 33% CO in the gaseous phase (at 
1 bar and 1027 °C), while showing experimentally that the reduction of Fe3O4 with CH4 is 
strongly dependent on temperature and residence time. Lu et al. [24] investigated the reactivity 
of magnetite (Fe3O4) via CH4 reforming and H2O splitting in a continuous prototype. The 
reduction kinetics was also studied with both fresh and recycled magnetite. The hydrogen 
yields from the original and calcinated magnetite after successive cycling were 4.94 and 5.25 
mmol/g, respectively, and the activation energy for the reduction was 93 kJ/mol. In addition, 
Bleeker et al. [88] studied the deactivation of iron oxide used in the steam-iron process to 
produce hydrogen and reported that the main drawback of using iron oxide is the inherent 
structural changes that take place during oxygen loading and unloading, leading to severe 
deactivation due to loss of specific surface area. In addition, doped iron oxides were examined 
thermodynamically and experimentally to improve their reactivity and stability [55,92–97], e.g. 
Ni0.39Fe2.61O4/ZrO2. Kodama et al. [55] evaluated M0.39Fe2.61O4 with M = Ni, Zn, Co. The Ni-
ferrite achieved the highest conversion and selectivity (XCH4 = 31%, SH2 = 75%, SCO = 72%), 
and supporting on ZrO2 reduced sintering and improved reactivity. 

 
1.5.2.2 Ceria 

Currently, ceria is considered as an attractive non-volatile redox candidate for both two-
step H2O/CO2 splitting and CLRM. It exhibits crystallographic stability through extensive 
thermal cycling [98,99], oxygen release and storage capacities, fast oxygen exchange rates, and 
reversible shift between Ce4+ and Ce3+ oxidation states [100,101]. Ceria retains a stable cubic 
fluorite structure during large variations in oxidation state [102–104] and demonstrates rapid 
kinetics during thermochemical cycles as compared to other non-volatile metal oxides such as 
ferrites [55,105,106]. The physical properties of Ce(III) and Ce(IV) oxide are shown in Table 
1-2. Ceria has been widely investigated as a redox material for thermochemical two-step 
H2O/CO2 splitting cycles in which reduction is conducted in an inert sweep gas or at sub-
atmospheric pressures. The two-step solar-driven water-splitting cycle based on cerium oxides 
was first demonstrated by Abanades and Flamant [107]. The ceria is first partially reduced to 
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nonstoichiometric state at above 1400 °C [103]. Then, the reduced ceria (CeO2-) is re-oxidized 
completely with H2O/CO2 to form H2/CO with fast reaction kinetic at lower temperature. 

Alternatively, utilizing ceria as oxygen carriers for CLRM is also particularly attractive. 
Prior experimental studies considering the partial oxidation of CH4 using the redox properties 
of ceria was first reported by Otsuka et al. [108], without the utilization of solar energy. They 
demonstrated that the conversion of methane into syngas with a H2/CO ratio of two was 
possible, and the reduced ceria could be re-oxidized with CO2 to produce CO. Then, both 
thermodynamic and experimental studies with the combination of concentrated solar energy 
were considered [109]. Krenzke and Davidson [109] studied the thermodynamics of the ceria 
cycle with methane. They indicated that coupling the reduction of ceria with the partial 
oxidation of methane enables isothermal cycling at 950 °C with high-quality syngas produced 
during the reduction step and maximum predicted solar-to-fuel efficiency of 40%. Welte et al. 
[22] experimentally investigated the methane reforming over ceria in a particle-transport 
reactor. This reactor achieved a bed-averaged oxygen non-stoichiometry (δ) as high as 0.25 at 
the expense of unreacted ceria particle being entrained by the produced syngas. Otsuka et 
al.[108,110,111] reported that carbon accumulation tends to occur when more than 80% of the 
available oxygen from the oxygen carrier material has been consumed. The ceria 
macrostructure plays a significant role on the performance of the combined two-step process 
in terms of conductive and radiative heat transfer across the material and reactivity. Various 
metal oxide structures such as porous foams [98,103,112–114], textured plates [113], vertical 
pins [113], powder [115], powder mixed with inert material [100], multi-channeled 
honeycombs [13,116], felts [104] and three-dimensionally ordered macroporous (3DOM) 
ceramics [13,104,114–117] have been studied for two-step thermochemical H2O/CO2 splitting 
cycles in order to provide an effective interface for uniform concentrated solar energy 
absorption and sufficient surface area for supporting rapid chemical reactions. The powder bed 
structure or powder mixed with inert promoter [100] exhibited rapid oxidation rates; however 
at the expense of high radiative opacity, which may lead to undesired temperature gradients 
across the bed. Such a barrier can be tackled by using porous foam structures with high specific 
surface area [117], although heat transfer limitation may arise from their high optical thickness. 
Such reactive structures could therefore be applied advantageously to the solar-driven 
isothermal chemical looping reforming process with CH4 and oxidant gas (H2O or CO2) 
alternately flowing through the oxide structure. 
 
Table 1-2. Physical properties of cerium and iron oxides. 

Property Cerium (III) oxide Cerium (IV) oxide Hematite Magnetite 
Chemical formula Ce2O3 CeO2 Fe2O3 Fe3O4 

Molar mass 328.24 g/mol 172.115 g/mol 159.687 g/mol 231.533 g/mol 

Appearance Yellow-green dust 
White or light pale 

yellow solid 
Red-brown solid Solid black powder 

Density 6.2 g/cm3 7.215 g/cm3 (24 °C) 5.25 g/cm3 5.00 g/cm3 

Melting point 2,177 °C 2,400 °C 1539 °C 1597°C 
Boiling point 3,730 °C 3,500 °C - 2623 °C 

Solubility in water Insoluble Insoluble 
Soluble in diluted 

acid 
- 

Crystal structure Hexagonal, hP5 Cubic (fluorite) 
Rhombohedral, 
hR30(�-form) 

- 
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1.6 Reactors for solar thermochemical processes 

The design of solar reactors for solar thermochemical processes remains one of the most 
significant challenges to improve process efficiency. Concentrated solar power input, chemical 
reactants, heat and mass transfer, chemical thermodynamics, residence time, reaction kinetics 
as well as operating temperature are important parameters for reactor design that must consider 
reactor type, geometry/size, materials of construction, and modes of operation. The reactors 
may be classified according to either reactor operation mode (batch and continuous reactors) 
or solar irradiation pathway (indirectly and directly irradiated reactors). For the directly-
irradiated reactors, the chemical reactants are directly exposed to concentrated solar radiation, 
thereby providing efficient radiative heat transfer directly to the reaction site, at the expense of 
the need for a transparent window, which remains a critical and troublesome component at 
large scale and, particularly, under industrially-preferred high pressures [118]. The indirectly-
irradiated reactors offer radiative heat transfer to the reaction site via an opaque absorbing wall, 
eliminating the need for a transparent window at the expense of limitations imposed by the 
absorbing materials such as maximum operating temperature, thermal conductivity, radiative 
absorptance, inertness, and resistance to thermal shocks. The different solar reactors are 
reviewed according to their operation with volatile oxides (such as ZnO and MgO), non-
volatile oxides (such as ceria and ferrites), and biomass. 

 

1.6.1 Solar reactors for volatile metal oxide processes  

A large number of solar reactors have been designed, developed, and tested for direct 
dissociation, CTR, and MTR of ZnO. In this case, solar reactors can be classified regarding 
batch and continuous operation. On the one hand, packed-bed reactors, whether directly or 
indirectly irradiated are usually operated in a batch mode [41,42,65,119]. These reactor 
concepts demonstrate high extent of reaction as a result of the relatively large exposed reactant 
surface area able to absorb upcoming solar radiation and long residence time [65]; however, 
they exhibit temperature gradient issues [42], and unreacted reactant remaining [119]. For 
example, packed-beds at 5 kWth lab-scale [41] (Fig. 1-14, left) and 300 kWth pilot-scale [65] 
(Fig 1-14, right) were developed featuring two-cavity indirectly-irradiated solar reactors for 
the CTR of ZnO. They consist of two cavities in which the upper one acts as the solar absorber 
and the lower one acts as the reaction chamber. With this concept, the upper cavity can protect 
the window against products deposition and condensable gases coming from the reaction 
chamber. 
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Figure 1-14. Two-cavity solar reactors: 5 kWth [41] (left) and 300 kWth [65] (right). 

 
On the other hand, entrained particle flow [45,48,51,61], moving-front [50], gravity-fed 

[120,121], drop tube [70], vortex flow[25], and spouted-bed [122]solar reactors were operated 
in a continuous mode. These reactors achieve rapid conversion rates, but the reactant feeding 
rate must match well the reaction rate to avoid a reactant accumulation issue, and heat and mass 
transfer limitations must be taken into account [49]. The continuous system may also require 
large amounts of carrier gas for maintaining particle entrainment. When compared to batch 
operation, reactants conversion efficiencies may be lower, as residence time is shorter, and 
solid reactant can escape from the reactor with carrier gases. For example, continuous particle-
fed [50] and pellet-fed solar reactors [45] for the direct dissociation of ZnO under controlled 
atmosphere are presented in Fig. 1-15 and 1-16, respectively. The former reactor was mounted 
on a horizontal axis solar furnace, and ZnO particles were fed by a screw feeder in a rotary 
cavity, while the latter one was installed at the focus of a vertical axis solar furnace and ZnO 
pellets were injected by a pushing rod. Both reactors were heated by real concentrated sunlight 
delivered by a sun-tracking heliostat and a 2 m diameter parabolic concentrator. 

 
Figure 1-15. Particle-fed rotating solar reactor for continuous dissociation of ZnO [50]. 
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Figure 1-16. Pellet-fed moving-front solar reactor for continuous thermal dissociation of ZnO 

[45]. 
 

Two other directly-irradiated reactors designed for the solar thermal dissociation of ZnO 
operated in a semi-continuous mode in the temperature range of 2000-2300 K are depicted in 
Fig. 1-17. Their concept features a windowed rotating cavity-receiver lined with ZnO particles 
and exposed directly to high-flux solar irradiation [48,61].  

 

 
 

Figure 1-17. Scheme of the windowed rotating cavity-receiver solar reactor configurations for 
thermal dissociation of ZnO [48,61]. 

 
A vortex-flow solar reactor concept for the continuous combined ZnO reduction and 

CH4 reforming at 1300 K is shown in Fig. 1-18. It includes a cylindrical cavity containing a 
windowed aperture to capture concentrated solar energy. A mixture of ZnO particles and CH4 
was continuously fed into the cavity receiver via a tangential inlet port while the chemical 
products regarding Zn vapor and syngas exited the cavity via a tangential outlet port.  
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Figure 1-18. Vortex-flow solar reactor concept for the combined ZnO reduction and CH4 

reforming [25]. 
 

1.6.2 Solar reactors for non-volatile metal oxide processes

Similar to the solar reactors developed for volatile metal oxides, solar reactor concepts 
are generally fixed bed and fluidized bed reactors. Regarding fixed bed reactors, Marxer et al. 
[103] studied the two-step solar thermochemical CO2 splitting cycle using a reticulated porous 
structure made of ceria. A schematic of the directly-irradiated solar configuration is shown in 
Fig. 1-19. It consists of a windowed cavity-receiver including a reticulated porous ceramic 
(RPC) foam-type structure directly exposed to high-flux solar irradiation provided by a solar 
simulator. The maximum conversion of 83% for CO2 and solar-to-fuel energy efficiency of 
5.25% were achieved. 

 
Figure 1-19. Schematic of the solar reactor configuration for CO2 splitting via a two-step 

thermochemical redox cycle [103]. 
 



Chapter 1: Background on solar thermochemical processes 

27 
 
 

Another example of solar fixed bed concept is an indirectly-irradiated tubular reactor 
(Fig. 1-20) [100]. This reactor was tested for both ceria redox cycle and CLRM using ceria 
particles as oxygen carrier and H2O/CO2 as oxidants in second exothermic oxidation step. It 
comprises a cavity receiver with the aperture (15 mm diameter) placed at the focal point of a 
horizontal axis solar furnace. The cavity made of graphite is lined with a surrounding insulation 
layer and separated from the atmosphere using a glass window. High reduction rate and bed-
averaged oxygen non-stoichiometry (δ) up to 0.431 during reduction with CH4 at 1000 °C were 
achieved. 

   
Figure 1-20. Schematic of the indirectly-irradiated tubular reactor for solar-driven CeO2 

redox cycles [114].  

To enhance heat and mass transfer, fluidized-bed solar reactors were proposed in which 
reactants are continuously stirred with inert particles by a neutral gas and/or oxidizing agent. 
Gokon et al. [123] tested the two-step water splitting for hydrogen production by using a single 
reactor consisting of an internally-circulating fluidized bed of NiFe2O4 or ceriaparticles at a 
temperature up to 1600 °C (Fig. 1-21 left). A metal foam distributor of porous stainless-steel 
was fixed at the bottom of the fluidized bed region of the reactor. The circulating fluidized bed 
was subjected to simulated solar light from Xe lamps with an input power in the range 1.6–2.6 
kWth. As a result, hydrogen productivity reached about 1000 Ncm3 for successive reactions of 
thermal-reduction and water-decomposition, while ferrite conversion was in the range 5–35%. 
However, the major drawbacks of fluidized bed reactors are the reactive particle size limitation 
and the difficult operation in continuous mode. In addition, Welte et al. [22] examined the 
continuous combined ceria reduction and methane reforming in a 2 kWth particle-transport 
solar reactor utilizing a vertical Al2O3 tube receiver including a downward gravity-driven 
particle flow of ceria particles (Fig. 1-21 right). Ceria particles were delivered to the alumina 
tube in either co-current or counter-current to a CH4 flow. Methane conversion was up to 89% 
at 1300 °C for residence times under 1 s and the maximum reduction extent (δ) was 0.25. 
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Figure 1-21. Schematic of the fluidized bed solar reactor for two-step H2O splitting using 

metal oxides  particles (left) [123] and solar particle-transport reactor for continuous 
combined ceria reduction and methane reforming (right) [22]. 

 

1.6.3 Solar reactors for gasification  

The solar reactor concepts for solar gasification of solid carbonaceous materials are 
similar as compared to those for volatile and non-volatile oxides. For example, Piatkowski et 
al. [124,125] conducted steam-gasification of coal, biomass, and carbonaceous waste 
feedstocks for syngas production in 5 kW and 150 kW [126] indirectly irradiated packed-bed 
reactors operated in a batch mode. Such reactors feature two cavity receivers with an emitter 
plate between them (Fig. 1-22 left). They achieved high solar-to-chemical energy conversion 
efficiencies varying between 17.3% and 29% but exhibited issues with liquid tars in the product 
gas stream and incomplete conversion because of non-homogeneous heating. The gasification 
of carbonaceous materials with fluidized-bed reactor was also investigated. The reactor uses 
oxidative gas to stir solid feedstocks within the cavity receiver (Fig. 1-22 right). This reactor 
can especially overcome the limitations of heat and mass transfer, enhance solid residence 
times, and reduce ash buildup [127–129], however at the expense of limitation of allowable 
feedstock size (<1 mm) and operation usually in batch mode. 

 
Figure 1-22. Section view of the packed-bed solar reactor, featuring two cavities separated by 

an emitter plate (left) [124] and internally circulating fluidized bed reactor (right) [129]. 



Chapter 1: Background on solar thermochemical processes 

29 
 
 

Additional design and development of solar-driven gasification reactors include the 
utilization of molten salts that offer the advantages of improved heat transfer, catalysis of 
gasification, reduced production of tars as well as thermal stability (inertia) for transient solar 
power input [130]. Hathaway and Davidson [131] demonstrated a 2.2 kW prototype molten 
salt solar gasification reactor in a continuous process, Fig.1-23. This reactor yielded a solar-to-
fuel thermochemical efficiency of up to 30% and converted 47% of the carbon at 945 °C. 
However, the problems of unreacted char release and salt leakage were pointed out. In addition, 
entrained flow reactors have been developed for improving heat and mass transfer and for 
operating in a continuous process; nevertheless, the drawback of such reactors is an excessively 
short residence time, and rather small particles (<1 mm) are required [132]. In order to increase 
the residence time that significantly affects the extent of reaction, drop-tube and vortex flow 
reactors have been proposed; however, the particle sizes of feedstocks are quite limited for 
these reactors. Bellouard et al. [30] developed and tested a high-temperature tubular solar 
reactor (1 kWth) combining drop tube and packed-bed concepts for continuous solar-driven 
gasification of biomass, according to Fig. 1-20. This reactor yielded an energy upgrade factor 
of 1.21 and a solar-to-fuel thermochemical efficiency up to 28% at 1400 °C. Müller et al. [118] 
demonstrated a 3 kW indirectly-irradiated (windowless, Fig. 1-24a) vortex flow solar reactor 
for the thermochemical gasification of carbonaceous particles at high pressures (1–6 bars). The 
reactor performances were studied and compared with a directly-irradiated (windowed, Fig 1-
24b) vortex flow reactor. The calorific value of the feedstock was upgraded from 16% to 35% 
and a peak solar-to-fuel energy conversion efficiency of 20% was achieved. Higher reaction 
extents, solar-to-fuel energy conversion efficiencies and calorific upgrade factors were 
demonstrated with the indirectly-irradiated solar reactor than with the directly-irradiated 
configuration. 

 

 
Figure 1-23. Schematic the molten salt gasification reactor with (a) side-cutaway to reveal 
key internal features and (b) axial-cutaway at the injector plane to illustrate feed delivery 

system and exit disengagement diffuser [131]. 
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Figure 1-24. Schematic of: (a) the indirectly-irradiated solar reactor and (b) the directly-

irradiated solar reactor [118]. 
 

1.7 Conclusions 

Solar thermochemical processes offer promising pathways to convert gaseous and solid 
carbonaceous feedstocks to solar fuels and further allow production of metals from their 
corresponding metal oxides. These energy-demanding processes use solar energy to drive 
endothermic chemical reactions, concomitantly storing intermittent solar energy into 
transportable and storable energy carriers. Cracking, reforming/chemical looping reforming, 
gasification/chemical looping gasification, and carbothermal/methanothermal reduction 
represent attractive approaches for short-term solar process implementation, while direct 
thermolysis and two-step H2O/CO2 splitting represent a promising option for long-term 
sustainable fuel production. In this work, three main solar thermochemical conversion 
approaches regarding solar chemical looping reforming (CLR), solar carbothermal reduction 
(CTR), and solar gasification (Fig. 1-25) were experimentally investigated to demonstrate their 
feasibility, reliability and robustness in converting both gaseous and solid carbonaceous 
feedstocks to syngas and producing metals in solar reactors. On-sun experiments were 
performed to gain understanding on the involved phenomena, reaction mechanisms and reactor 
performance under solar irradiation conditions. They were carried out in 1.5 kWth prototype 
solar chemical reactors utilizing highly concentrated sunlight provided by a solar concentrating 
system. On the one hand, the spouted bed solar reactor with continuous particle injection was 
employed for investigating solar gasification of biomass and combined gasification/CTR of 
ZnO with biomass, which was demonstrated for the first time, and it was further adapted for 
studying the CLRM process (Fig. 1-25). On the other hand, the high-temperature cavity-type 
solar reactor was developed for the CTR of both ZnO and MgO in batch and continuous 
operation under vacuum and atmospheric pressures. Concerning metal oxides, ceria and iron 
oxides were considered as oxygen carriers for the CLRM process, while ZnO and MgO were 
considered for the CTR process because they represent attractive metal oxides candidates as 
previously described in the review parts. Regarding feedstocks, methane and H2O/CO2 were 
considered as gaseous feedstocks for the CLRM process while wood biomass and solid carbon 
(charcoal/carbon black/graphite) were considered as either solid feedstocks for gasification or 
reducing agents for CTR, Fig. 1-25. 

Insights into the influence of operating parameters on conversion, yield, and reactor 
performance metrics are emphasized during experimental investigations. The feasibility and
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reliability of the considered processes are demonstrated, and research findings can be applied 
in next future works. 

 

 
Figure 1-25. Summary of the experimental routes investigated regarding the three considered 

solar thermochemical processes in different solar reactors.
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Chapter 2: Solar chemical looping 

reforming of methane through iron and 

cerium oxides1 
 

2.1 Introduction 

Methane reforming is the conventional method for producing synthesis gas (syngas). Steam 
[133] and dry reforming [134–137] are two possible routes for methane reforming: 

 
Steam reforming: CH4+H2O→3H2+CO   ∆H0=+206 kJ/mol    (2-1) 
Dry reforming: CH4+CO2→2H2+2CO     ∆H0=+247 kJ/mol    (2-2) 

 
Both reactions are highly endothermic, and the required energy to drive these reactions 

is generally supplied by the combustion of fossil fuels, resulting in methane feedstock 
consumption and greenhouse gas emissions, especially CO2 responsible for climate change and 
global warming. Using solar energy in place of fossil fuels for supplying process heat thus 
represents a suitable option to alleviate these issues. Alternatively, a promising modern 
pathway to produce clean syngas is the utilization of metal oxide redox pairs for partial 
oxidation of methane (namely, chemical looping reforming of methane, CLRM) using 
concentrated solar energy to drive endothermic reactions [18,56,138]. Such a process usually 
encompasses two steps: (1) partial oxidation of methane along with metal oxide reduction, and 
(2) re-oxidation of the oxide with steam (or CO2) to produce pure H2 (or CO). The net products 
of CLRM are the same as those of steam (Eq. 2-1) and dry reforming (Eq.2-2). 

The additional advantages of solar CLRM with metal oxides when compared to the 
conventional methane reforming process are: (i) produced syngas has a H2:CO ratio of 2:1, 
suitable for methanol synthesis, (ii) an excess in oxidizer is not necessary while conventional 
process needs to be operated with excess oxidizer (H2O:CH4≥3), which rises energy 
requirements and reduces process efficiency [139]. 

Cerium and iron oxides are particularly attractive because of their different beneficial 
physical and chemical properties [140]. Ceria keeps a stable cubic fluorite structure during 
large changes in oxygen non-stoichiometries (reduction extents), and exhibits rapid oxygen 
storage/release through lattice transfer [100,101,112,141]. On the other hand, iron oxide 
(Fe2O3) is abundant and low cost, and exhibits large oxygen releasing ability compared to CeO2 
and other candidates, but it may encounter sintering issues, leading to low cycling stability 
[24,88]. The main motivation of using iron oxide for CLRM is thus related to process cost 
reduction because of large material availability, compared to cerium oxide. Moreover, the 
sintering issue of iron oxide may be counterbalanced by its superior fuel production capability 

 
1 Details of this chapter consist of three peer-reviewed articles: 

• S. Chuayboon, S. Abanades, S. Rodat, Energy Technol. -(2019) 1900415. 
• S. Chuayboon, S. Abanades, S. Rodat, J. Energy Chem. 41 (2020) 60–72. 
• S. Chuayboon, S. Abanades, S. Rodat, Chem. Eng. J. 356 (2019) 756–770. 
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due to reactions involving multivalent iron species (Fe, FeO, Fe3O4), thus potentially 
leading to higher amounts of oxygen transferred during redox reactions. Conversely, the 
exchanged oxygen and fuel productivity from ceria are determined by the reduction extent 

corresponding to the achieved non-stoichiometry (amount of oxygen vacancies in CeO2-, 

which is always lower than max=0.5 molO/molCeO2 corresponding to complete reduction of 
Ce(IV) to Ce(III)). Thus, evaluation and comparison of the materials reactivity for fuel 
production upon cycling under real solar irradiation conditions is necessary to identify the most 
suitable one. 
 In this chapter, the CLRM process is experimentally investigated in a directly-irradiated 
volumetric lab-scale solar reactor utilizing iron and cerium oxides with different structures 
(packed-bed powder, blend of metal oxide mixed with inert Al2O3 particles, and reticulated 
porous foam). The work mainly focuses on cerium oxide candidate while iron oxide was 
studied for comparison purpose. The relevant performance metrics of the process are quantified 
including metal oxide structures influence, lattice oxygen transfer (nO) and average oxygen 
non-stoichiometry (�), methane conversion (XCH₄), syngas yield, sintering temperature, and 
thermochemical cycling stability. A comprehensive experimental analysis of the solar process 
performance outputs was performed, encompassing quantification of gas yields produced 
during each step and by each side reaction, amounts of oxygen transferred during the redox 
process as well as energy conversion efficiency. In addition, the demonstration of the whole 
two-step solar process in a solar reactor operated with a real solar concentrating system is 
presented with determination of the fuel production capacity during both steps. 

 

2.2 Thermodynamics 

2.2.1 Iron oxide 

The endothermic reduction reaction of iron oxide (Fe2O3) with CH4 is composed of 
successive steps:  
 

Fe2O3+1/3CH4⟶2/3Fe3O4+2/3H2+1/3CO      (2-3) 
2/3Fe3O4+2/3CH4⟶2FeO+4/3H2+2/3CO      (2-4) 
2FeO+2CH4⟶2Fe+4H2+2CO       (2-5) 

 
The summation of the above reactions corresponds to: 
 

Fe2O3+3CH4→2Fe+6H2+3CO H0= 715 kJ/mol    (2-6) 
 

The enthalpy of CLRM with Fe2O3 (Eq. 2-6) is three times higher than those of 
conventional reforming (Eqs. 2-1 and 2-2); thus, the use of solar energy as energy source of 
process heat is appropriate to drive the chemical reaction of CLRM. 

 Possible side reactions related to methane cracking and direct reaction of Fe2O3 with 
carbon may also occur during iron oxide reduction with methane:  
 

CH4⟶C+2H2          (2-7) 
Fe2O3+3C→2Fe+3CO        (2-8) 
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The exothermic oxidation reaction of metallic iron with H2O is represented as: 
 

3Fe+4H2O⟶Fe3O4+4H2  H0= -151 kJ/mol     (2-9) 
 
Fe3O4 re-oxidation to Fe2O3 with H2O is not thermodynamically possible. 
Possible side reactions during oxidation step are carbon deposition gasification with H2O: 
 

C+H2O⟶CO+H2         (2-10) 
C+2H2O⟶CO2+2H2         (2-11) 

 
The thermodynamic feasibility of chemical reactions involving iron oxide species 

reduction with methane can be assessed from the Gibbs free enthalpy change (∆G°) (Fig. 2-1). 
The ∆G° values decrease with temperature (∆G° equals zero at 400 °C for 3Fe2O3+CH4, and 
at above 600 °C for the other reactions), which means that all the reduction reactions are 
thermodynamically favorable when increasing the temperature. 

 

Figure 2-1. ∆G° variations for iron oxides reduction with methane as a function of 
temperature. 

Regarding the possible side reactions (Fig. 2-2), the direct reductions of Fe3O4 with C 
and H2 are thermodynamically favorable (Fe3O4+2C and Fe3O4+4C proceed spontaneously at 
above 700 °C, and Fe3O4+4H2 proceeds at above 1100 °C). In contrast, the direct reduction of 
Fe3O4 with CO is not thermodynamically possible. 
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Figure 2-2. Variations for the reactions of Fe3O4 with H2, CO, and C as a function of 

temperature. 
 

The thermodynamic equilibrium composition was calculated with HSC Chemistry 
software to appraise the species distribution and system composition as a function of 
temperature. It provides a realistic overview of the chemical product species and the most 
favorable conditions for carrying out the reduction reaction with CH4 and for reaching 
completion. The main assumptions of the method must be reminded, including closed system 
approach without any gas flow and available thermodynamic properties for any chemical 
species to represent the system as closely as possible. 

The equilibrium species composition of Fe2O3+3CH4 at 1 bar as a function of 
temperature is shown in Fig. 2-3 (and in Fig. A-1 for Fe3O4+4CH4 in Appendix A). Fe2O3 is 
first reduced to Fe3O4 while methane is decomposed to C and H2 when the temperature exceeds 
400 °C. Then, Fe3O4 is reduced to FeO, along with intermediate non-stoichiometric species 
(Fe0.945O, Fe0.947O, and FeO1.056) while H2, C, and H2O(g) become the main product 
components. Above 400 °C, FeO starts reducing into Fe, along with CO and CO2 formation. 
Complete reduction to Fe is reached above 700 °C, while C, H2O, and CO2 decrease constantly. 
Finally, the main products are both H2 and CO with H2/CO ratio approaching two, and Fe above 
1000 °C. 

 
Figure 2-3. Thermodynamic equilibrium composition of methane reforming over Fe2O3 as a 

function of temperature at 1 bar. 
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Regarding carbothermal reduction of Fe2O3 in Fig. 2-4 (and in Fig. A-2 for Fe3O4+4C), 
Fe2O3 is first reduced to Fe3O4 along with the formation of CO2 above 200 °C. Subsequently, 
Fe3O4 is reduced to FeO and non-stoichiometric compounds (Fe0.945O, Fe0.947O, and FeO1.056) 
above 400 °C, and FeO is finally reduced to Fe along with CO formation above 500 °C. 
Reduction to Fe reaches completion at above 800 °C, while CO2 declines continuously. The 
global reaction approaches completion at above 1000 °C, yielding Fe and CO.  

 

 
Figure 2-4. Thermodynamic equilibrium composition of Fe2O3 carbothermal reduction as a 

function of temperature at 1 bar. 
 

2.2.2  Cerium oxide 

Solar CLRM based on non-stoichiometric cerium oxide is represented as: 
 

Reduction step: CeO2 + �CH4 ⟶ CeO2-� + �CO + 2�H2    (2-12) 
Oxidation step: CeO2-� + �H2O(δCO2) ⟶ CeO2 + �H2(δCO)   (2-13) 

 
The thermodynamic equilibrium composition for the reduction step (Fig. 2-5) shows 

that CH4 first starts thermally decomposing into both solid carbon and H2(g), while the 
reduction of CeO2 proceeds with the formation of CeO1.81 and CeO1.78. Meanwhile, small 
amounts of both H2O(g) and CO2(g) are formed at the beginning of reaction. Subsequently, C 
deposition starts reacting with oxygen released from ceria resulting in CO formation at above 
500 °C. Non-stoichiometric compounds (CeO1.72 and CeO1.83 mainly, and CeO1.67 in negligible 
amount) are formed as intermediate species, which provide a good representation of the overall 
reduction mechanism during Ce(IV) reduction into Ce(III) species. The reaction reaches 
completion at above 1000 °C, yielding Ce2O3 and H2/CO mixture (with H2/CO ratio 
approaching two). 
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Figure 2-5. Thermodynamic equilibrium composition of methane reforming over ceria as a 

function of temperature at 1 bar. 
 

2.3  Experimental section 

2.3.1 Material synthesis 

Iron and cerium oxides were employed as oxygen carrier for solar-driven CLRM using 
two structures including powder and porous foam. For powder preparation, both cerium and 
iron oxide powders were mechanically grinded with a mortar and then loaded into the cavity 
receiver as shown in Fig. 2-6a and Fig. 2-6d. For ceria powder mixed with Al2O3, the Al2O3 
particles (1.2 mm size and 1.72 g/cm3 apparent density) were calcined at 1000 °C for 2 h under 

air to ensure their structural and chemical stability and to eliminate their moisture content. 
Then, the calcined Al2O3 particles and ceria powder with a mass ratio of 2.2:1 were mixed 
homogeneously (61.54 vol% of alumina) before performing the tests as presented in Fig. 2-6b. 
The Al2O3 particles with large particle sizes were used to favor the dispersion of ceria powder 
bed and improve the gas flow through the reactive bed (at the expense of a higher bed volume: 
56.79 cm3 for CeO2-Al2O3 blend compared to 24.16 cm3 for CeO2 without Al2O3). For foam 
structure, both cerium and iron oxides were synthesized via a replication technique and further 
subjected to thermal stabilization. Regarding the ceria reticulated porous foam, a slurry of 
cerium oxide powder (Sigma Aldrich, particle size < 5µm, 99.9% purity, 1.12 g/cm3 apparent 
density) was prepared. To increase the micro-scale porosity, solid carbon particles (graphite 
purchased from TIMCAL, particle size 5-10 µm) were added as pore-forming agent in a ratio 
50 vol% of ceria. The mixture of the ceria slurry and solid carbon particles was achieved by 
magnetic stirring under heating at 60 °C. The organic polyurethane template with a cylindrical 
shape (5 pores/inch) was completely and repeatedly immersed into the ceria slurry. After 20 
min drying at ambient temperature, the coated foams were fired in a furnace (Nabertherm, 
model: L9/12/C6) under air at 1000 °C for 6 h to totally burn the carbon particles, organic 
binder, and organic polyurethane matrix. The ceria foams annealed at 1000 °C are designated 
as ST-1000. Finally, one ceria foam was annealed again in a small furnace (Nabertherm, model: 
LTH 02/16) for 2 h at 1400 °C in air to further sinter the structure and it is designated as ST-
1400. In case of iron reticulated porous foam, the applied method was the same. Fig. 2-6c and 



Chapter 2: Solar chemical looping reforming  

39 
 
 

Fig. 2-6e show photographs of the cerium and iron oxide porous foams loaded in the solar 
cavity receiver.  

 

 

Figure 2-6. Photographs of (a) ceria powder, (b) ceria powder mixed with calcined Al2O3 
particles, (c) ceria porous foam, (d) iron oxide powder, and (e) iron oxide porous foam. 

 

2.3.2 Solar reactor configuration and experimental method 

The solar reactor concept is schematically shown in Fig. 2-7. The solar reactor consists 
of a cylindrical metallic cavity receiver with a conical part (60° angle) at its bottom (volume: 
0.299 L and total height: 115 mm), wrapped by a 30 mm-thick alumino-silicate insulation layer. 
The insulated cavity receiver is vertically placed in a water-cooled cylindrical stainless-steel 
shell and then closed by an alumina cap with a 20 mm-diameter aperture for the access of 
concentrated sunlight. A protective graphite plate (2 mm-thick) with a 15 mm-diameter 
aperture is positioned on top of the alumina cap to protect it. A hemispherical transparent glass 
window equipped with a small fluorine window is lastly attached to the front flange edge of 
the reactor shell. A 2-m diameter parabolic mirror with a solar concentration ratio above 10000 
suns (peak flux density of ~10.5 MW/m2 at the focal plane for a DNI of 1 kW/m2) is employed 
to concentrate sunlight to the focal point where the reactor aperture is positioned. 
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Figure 2-7. Schematic of the 1.5 kWth directly-irradiated solar reactor and external 

components (left) and 3D cross section of the solar reactor (right). 
 
Three temperatures are measured by B-type thermocouples inside the alumina wool 

supporting the reactive material (T1), at the external cavity wall surface (T2), and in the middle 
of samples (T3); and an optical pyrometer (operating at 4.8-5.2 µm in a H2O absorption band) 
also measures the temperature at the uppermost sample surface (Tpyrometer) through the fluorine 
window. In addition, the operating pressure (P) inside the cavity receiver is measured by a 
pressure transducer. CH4 and Ar (gases purity of 99.999%) flow-rates are controlled by 
electronic Mass Flow Controllers (MFC, Brooks Instruments model SLA5850S, range 0-5 
Nl/min ±0.2% of full scale), while liquid water (H2O) flow-rate is also regulated by a MFC 
(range 0-30 g/h ±1% of full scale). 

A given amount of cerium or iron oxide is loaded within the cavity receiver directly 
subjected to concentrated sunlight. Three types of materials structures for each oxide (powders, 
powders mixed with inert particles, and porous foams) were assessed to compare their 
thermochemical reactivity. Since the objective is to conduct the thermochemical reactions in a 
solar reactor, efficient solar radiation absorption and high heat and mass transfer rates are 
necessary to warrant homogeneous material heating and reaction in the whole structure for 
utilization of the entire reactant mass. Therefore, using reticulated porous foam may be an 
attractive option for volumetric solar radiative absorption while offering a large available 
interface for gas species access and solid/gas reactions. Reactive gases (CH4 or H2O/CO2) and 
Ar carrier gas are fed via the single inlet port at the bottom of the cavity receiver. Prior to gas 
analysis, product gases flow through a gas scrubber composed of both bubbler and gas filtering 
unit (two micro filters with 0. 1 µm pore diameter) to remove moisture and entrained solid 
carbon particles. The gas composition is then analyzed by an on- line syngas analyzer ( GEIT 
3100, uncertainty <±0.1% of full scale), and all the measured data are recorded by an automated 
data acquisition system (BECKHOFF). 
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The reactor cavity was initially flushed by Ar and sucked by a Venturi pump to 
eliminate residual air from the system. Ar protective gas (2.0 Nl/min) was also provided to the 
window area to prevent the hot gas contact with the transparent window. Subsequently, the 
reactor was gradually heated by concentrated sunlight to the desired temperature (referred by 
T3) under Ar. The solar power input was regulated by means of shutter opening to stabilize T3. 

Figs. A-3, A-4, and A-5 represent the evolution of temperatures and cavity pressure in 
the directly irradiated solar reactor during heating phase, ceria reduction with methane, and 
subsequent oxidation with H2O at different operating cycle temperatures. While the cavity 
pressure remained stable at 0.86 bar (Patm= ~0.85 bar at site elevation 1,500 m above sea level), 
the temperature increased gradually from the ambient temperature to the targeted temperature 
(1000 °C) for 35 min. It then changed in relation to endothermic and exothermic reactions and 
nominal operating cycle temperature defined, while the cavity pressure was constant (~0.9 bar) 
all over the cycles. According to Fig. A-3, the homogeneous temperature inside the ceria foam 
as well as the reactor cavity receiver was confirmed by narrow gaps between T1 (below the 
foam), T3 (inside the foam), and Tpyrometer (upper surface of the foam) while the external cavity 
wall temperature (T2) was ~150 °C lower than those temperatures. 

Once T3 was at steady-state, a CH4/Ar gas mixture (50% CH4 concentration) was 
delivered to the reaction zone to drive the reduction reaction. After finishing reduction, 
reflected by H2 and CO concentrations approaching zero, CH4 flow was stopped and only Ar 
flow was fed to remove residual CH4. Subsequently, oxidation was performed by injecting the 
reacting gases (either H2O or CO2) at the same temperature. The reacting gases flow was 
stopped when H2 or CO evolution ceased. The pressure was maintained at ~0.9 bar for both 
steps.  

During partial oxidation of methane with metal oxides, the formation of both H2O and 
CO2 is also possible according to Eq. 2-14:  
 

4MxOy+�CH4⟶4MxOy-δ +�CO2+2�H2O      (2-14) 
 

Therefore, oxygen released from the oxide structure is recovered in the forms of CO, 
CO2, and H2O (twice the amount of CO2). The global amount of oxygen released from the 
oxide structure (nO,red) is therefore determined by: 
 ��,��� = ��� + 2���2

+ ��2�      (2-15) 

where ni are the mole amounts of species i. 
 

The replenished amount of oxygen (nO,ox) during oxidation with H2O (Eq. 2-9 and Eq. 
2-13) can be calculated from oxygen mass balance (equal to total amount of produced H2 minus 
amounts produced from carbon gasification with H2O according to Eq. 2-10 and Eq. 2-11):  
 ��,�� = ��2

− ��� − 2���2
       (2-16) 
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Contrary to iron oxide (Fe3O4 cannot be reversibly oxidized with H2O to Fe2O3), the 
partially-reduced ceria (CeO2-δ) can be completely re-oxidized to CeO2. The oxygen non-
stoichiometry during reduction (δred) can be defined by: 
 ���� =

��,�������2

       (2-17) 

The replenished oxygen (δox) during ceria oxidation with H2O (Eq. 2-13) can be 
calculated as follows: 
 ��� =

��,������2

       (2-18) 

When using CO2 as oxidant (Eq. 2-13), the replenished oxygen (δox) is calculated by the 
mass balance of oxygen: 

 

δox=
2nCO2,in

-nCO,out-2nC�2,out

nCeO2

     (2-19) 

For reduction, the CH4 conversion is defined by:
 ���4

= 1− �̇��������� ��4�̇��4

     (2-20) 

where �̇��������� ��4
 is the mass flow rate of unreacted CH4, and �̇��4

is the mass flow rate 
of injected CH4. 

Moreover, the quality of products is assessed from the selectivity of H2 (SH₂) and CO 
(SCO) towards syngas products:  

 ��2
=

��2��2
+��2�      (2-21) ��� =
������+���2

      (2-22) 

 
where ��2

and ��� are the total moles of produced H2 and CO during oxidation and reduction 
steps, ��2� and ���2

 are the moles of produced H2O (equal to twice the mole of CO2) and CO2 
during reduction step. 

The performance metrics of the solar reactor for the chemical-looping process are 
encompassing methane conversion, solar-to-fuel energy conversion efficiency, and energy 
upgrade factor.  

The solar- to- fuel energy conversion efficiency (solar-to-fuel) is defined as the ratio of the 
total chemical energy content of the produced syngas to the total energy input (including solar 
power input in both the reduction and oxidation steps and heating value of the converted 
methane): 

η
solar-to-fuel

=
(ṁH2

∙LHVH2
+ṁCO∙LHVCO)

cycle

Ṗsolar+(XCH4
∙ṁCH4

∙LHVCH4
)      (2-23) 

 
where LHV represents the Lower Heating Value (J/kg), �̇H2

 and  �̇CO are the mass flow 

rates of H2 and CO produced in the cycle (kg/s), �̇CH4
 is the mass flow rate of injected 

methane, �̇solar  is the total solar power input in the cycle (W), and �CH4
 is the methane 

conversion. 
The energy upgrade factor (U) is obtained by the ratio of the energy contained in the 

outlet gas species to the energy content of the inlet flow:
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U=
(�̇H2

∙���H2
+�̇CO∙���CO)cycle+((1−�CH4

)∙�̇ CH4
∙LHVCH4

)(�̇CH4
∙LHVCH4

)    (2-24) 

 
All the operating conditions and experimental results for 55 runs with 8 different ceria 

and irons oxide samples performed in the solar reactor are summarized in Appendix A (Table 
A-1). 
 

2.4 Result and discussion 

2.4.1 Methane reforming over iron oxide 

Pure raw Fe2O3 powder (total mass: 20.52 g) (Figure 2-6d) was employed as an oxygen 
carrier material for the solar CLRM test. Experiments were conducted with 4 cycles at 950-
1100 °C. Both CH4 and Ar carrier gas flow-rates were injected at 0.2 Nl/min for reduction step 
(50% inlet CH4 mole fraction), while H2O flow-rate was fed at 200 mg/min along with Ar 
carrier gas (0.2 Nl/min) for subsequent oxidation step, yielding 55% steam mole fraction at 
inlet. 

The transient syngas production rates along with nominal reactor temperature (T3) 
during iron oxide powder reduction with methane and during reduced iron oxidation with H2O 
for four consecutive cycles are plotted for the respective temperatures of 1000, 1100, 950, and 
1000 °C (Fig. 2-8). During reduction step, the maximum CO2 production rate (0.09 Nl/min) 
was noticed at the initial stage of the reaction at cycle #1 (Fig. 2-8a); moreover, its amount was 
higher than those of CO and H2. Actually, H2O was also formed simultaneously in accordance 
with thermodynamic analysis; however, it cannot be detected from gas analysis. The CO2 
production rate was observed again at cycle #2 (but it was lower than cycle #1) when increasing 
the temperature to 1100 °C (Fig. 2-8c), and after initial stage its trend remained stable along 
with H2 and CO production rates. The peak H2 and CO production rates (0.07 and 0.04 Nl/min) 
were found at the highest reduction temperature (1100 °C, Fig. 2-8c). After cycle #2, the syngas 
(H2, CO, and CO2) production rates during reduction were found in negligible amounts (Fig. 
2-8e and Fig. 2-8g). During oxidation step, the peak of H2 production rate (0.077 Nl/min) was 
also found at the same temperature (1100 °C, Fig. 2-8d), followed by 1000 °C (0.052 Nl/min, 
Fig. 2-8b) and 950 °C (0.035 Nl/min, Fig. 2-8f), while extremely small evolution of CO and 
CO2 was noticed for any oxidation temperatures. Thus, the negligible impact of carbon 
deposition from methane cracking was demonstrated for the CLRM over iron oxide. 
Noticeably, the methane reforming over iron oxide required long duration to reach completion 
(because of strong oxide sintering during reduction and low available specific surface area) and 
strongly depended on the reduction temperature as evidenced in Fig. 2-8c (the required 
reduction temperature was higher than the one for CH4 reforming over ceria). First, the 
reduction of fresh Fe2O3 to Fe3O4 in cycle #1 resulted in a large amount of oxygen released 
(nO,red=0.095 vs. nO,ox=0.012, Fig. 2-9) in the form of CO2. Then, during the oxidation step of 
cycle #1, re-oxidation to Fe2O3 is not possible (only Fe3O4 can be formed, Eq. 2-9)[142], as 
evidenced by nO,ox much lower than nO,red (Fig. 2-9). The material was deactivated after cycle 
#2 because operation at 1100 °C resulted in strong sintering despite achieving high reduction 
rate, as reflected by increased CO and H2 production rates and maximum XCH₄ (33.8%).  
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Figure 2-8. Evolution of the production rates of H2, CO, CO2, and CH4 in the syngas along 
with nominal reactor temperature for reduction with CH4 (a, c, e, and g) and oxidation with 
H2O (b, d, and f) of iron oxide powder cycled isothermally at 1000, 1100, 950, and 1000°C. 
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Figure 2-9. Comparison of nO,red and nO,ox along with CH4 conversion during four consecutive 

redox cycles with iron oxide powder performed at 950-1100 °C. 
 

Fig. 2-10 shows the syngas yields quantified from the integration of the measured syngas 
production rates (Fig. 2-8) during reduction and oxidation steps. As expected, the highest CO2 
yield (1.06 mmol/gFe₂O₃) was found in cycle #1, followed by cycle #2 (0.5 mmol/ gFe₂O₃) while 
the maximum total syngas yield (4.0 mmol/gFe₂O₃) was produced in cycle #2 (Fig. 2-10a), and 
no effect of CH4 cracking reaction (Eq. 2-7) was observed as evidenced by a zero amount of 
H2 (CH4 cracking). Note that the amount of H2 (CH4 cracking) was quantified by the total H2 
yield measured by gas analysis minus the H2 yield produced by the main reaction of iron oxide 
with methane (Eq. 2-6), which is equivalent to twice the quantity of produced CO. In addition, 
no syngas production was observed in cycle #3 (the reduction reaction was negligible as 
evidenced by XCH₄=0%, Fig. 2-9), and a negligible syngas yield was found in cycle #4. These 
are because of a dramatic decrease in available surface area resulting from high 
sintering/coarsening and densification of the new-formed metallic iron particles after being 
reduced at high temperature (1100 °C, cycle #2), thereby leading to material deactivation and 
negligible re-oxidation. For these reasons, its powder structure cannot be backed to the initial 
stage despite passing re-oxidation step, thus adversely influencing the CLRM process in cycles 
#3 and #4 and thereby leading to negligible amounts of syngas produced. This was confirmed 
by the high sintering of iron powder structure observed after 4 cycles (Fig. A-6). 

 
Figure 2-10. Syngas yields for (a) iron oxide powder reduction with CH4 and (b) oxidation 

with H2O during isothermal cycles at temperatures in the range 950-1100 °C. 



Chapter 2: Solar chemical looping reforming  

46 
 
 

Fig. 2-10b shows that most of the produced syngas yields during oxidation step was 
coming from H2 associated with the main reaction (Eq. 2-9), and the maximum total syngas 
yield (2.15 mmol/gFe₂O₃) was found in cycle #2 in accordance with high syngas production rate 
in the reduction step. Moreover, negligible CO (C+H2O), CO2 (C+2H2O), H2 (C+H2O), and H2 
(C+2H2O) yields formed by side reactions (Eq. 2-10 and Eq. 2-11) were noticed, confirming 
that methane cracking reaction over iron oxide is not favored at 950-1100 °C. In addition, the 
H2 (Eq. 2-21) and CO (Eq. 2-22) selectivity (Table A-1) rose sharply during cycling (e.g. from 
28.6 and 34.8% at cycle #1 to 59.2 and 96.6% at cycle #3, respectively), because of the drop 
of H2O and CO2 yields. The reduced iron oxide after reduction step in cycle #4 was not re-
oxidized, as it was kept for X-ray diffraction (XRD) analysis to characterize its phase 
composition (Fig. A-7). Phase identification shows the presence of mainly FeO, followed by 
traces of Fe3O4 and Fe. Thus, most of the iron oxide powder did not completely reduce to Fe 
despite already passing the reduction step with methane, thereby confirming material 
deactivation. 

In order to confirm experimental repeatability and compare the results, another iron 
oxide structure (reticulated porous foam, total Fe2O3 mass: 13.91 g) was prepared (Fig. 2-6e) 
via a replication technique [98] and subsequently employed as an oxygen carrier material for 
the solar-driven CLRM. Experiments were conducted with seven consecutive cycles at 
different reduction temperatures in the range 1000-1150 °C, while the flow rates of CH4, H2O, 
and Ar were the same as the previous tests with iron oxide powder (CH4: 0.2 Nl/min, H2O: 200 
mg/min, and total Ar: 2.2 Nl/min). 

During reduction step, the peak rates of CO2 production decreased, while the peak of 
H2 and CO remained stable with cycles repetition from cycle #1 to cycle #3 at 1000 °C (Fig. 
2-11). For example, the peak rates of CO2, H2, and CO production are 0.11, 0.02, and 0.02 
Nl/min at cycle #1 compared to 0.01, 0.02, and 0.02 Nl/min at cycle #3. During oxidation step, 
the peak rate of H2 production seemed to decrease slightly (0.07 Nl/min at cycle #1 compared 
to 0.06 Nl/min at cycle #3) while no CO and CO2 production was evidenced. XCH₄ decreased 
dramatically from 24.9% at cycle #1 to 3.7% at cycle #3 (Fig. 2-12) arising from the sharp 
decline in oxygen release during reduction steps of cycles #2 (nO,red=0.012) and #3 
(nO,red=0.009) compared to cycle #1 (nO,red=0.059), caused by non-reversible Fe2O3 reduction 
to Fe3O4, in agreement with thermodynamic analysis (Fig. 2-3). 
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Figure 2-11. Evolution of the production rates of H2, CO, CO2, and CH4 in the syngas along 
with nominal reactor temperature for reduction with CH4 (a, c, e, and g) and oxidation with 

H2O (b, d, and f) of iron oxide reticulated porous foam cycled isothermally for 7 consecutive 
cycles at 1000-1150 °C.  
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Figure 2-12. Comparison of nO,red and nO,ox along with CH4 conversion during seven 

consecutive redox cycles with iron oxide foam performed at 1000-1150 °C. 
 
Similar to previous tests with iron oxide powder, the kinetics of methane reforming 

with iron oxide porous foam were too slow at 1000 °C to allow reaching completion (CH4 
injection was therefore stopped before H2 and CO approached zero (cycles #1-3, Fig. 2-11a, 2-
11c, and 2-11e)). The reaction rates were enhanced when increasing the temperature to 1050 °C 
according to Fig. 2-11g and Fig. 2-11h. For example, the peak rates of H2 and CO production 
were 0.09 and 0.05 Nl/min during reduction step (Fig. 2-11g), while the peak rate of H2 
production was 0.11 Nl/min during oxidation step at 1050 °C, and negligible CO and CO2 
production rates were observed (Fig. 2-11h), confirming the absence of carbon formation 
during reduction step. 

The temperature was increased to 1150 °C in cycle #5 (Fig. 2-11i and Fig. 2-11j) to 
further hasten the kinetic rate of reduction. As a result, the syngas evolution profile (Fig. 2-11i) 
increased considerably; however, the effect of methane cracking reaction was detected as 
reflected by the peak of H2 after 18 min with the maximum XCH₄ (68.3%, Fig. 2-12) while CO 
approached zero (thus indicating the end of iron oxide reduction). Note that the formed carbon 
can also act as reducing agent (Fe3O4 reduction) according to thermodynamics (Fig. 2-4 and 
Fig. A-2), and the cracking reaction may also be catalyzed by the newly formed metallic iron 
[90]. During oxidation with H2O, both a sharp growth in CO (consistent with the H2 evolution 
profile) and a significant increase in CO2 were noticed (Fig. 2-11j), arising from the reaction 
of deposited C with H2O and confirming that 1150 °C is favorable for CH4 cracking reaction 
in this cycle. When the rate of oxide reduction is lower than the rate of methane decomposition, 
chemisorbed carbon may accumulate at the surface. This occurs when the rate of bulk lattice 
oxygen diffusion to the surface becomes lower than the CH4 supply rate. In other words, when 
a lack of oxygen at the surface occurs, carbon deposition is fastened, which is increasingly 
favored as oxygen is being depleted during the iron oxide reduction progress. 

The temperature was then decreased by 50 °C in cycle #6 to alleviate the adverse impact 
of CH4 cracking reaction; nevertheless, the resulting syngas associated with CH4 
decomposition remained high as reflected by a stable H2 evolution profile in the reduction step 
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even if CO approached zero (Fig. 2-11k) and a steep increase of the CO along with H2 in the 
oxidation step (Fig. 2-11l). This may possibly be also due to the carbon accumulation from the 
previous cycle. 

The cycling experiment was completed with the reduction step performed at 1000 °C 
(cycle #7, Fig. 2-11m). It was found that no CO2 production was evolved; in contrast, the peak 
H2 production rate was higher (0.06 Nl/min) while the peak CO production rate remained the 
same (0.02 Nl/min) as compared to those obtained from cycles #1-3. This suggests that the 
amount of excess available oxygen at the iron oxide surface was restrained in this last cycle, 
explaining the preferential formation of CO rather than CO2 (and H2O). Indeed, CO2 and H2O 
formation is favored when an excess amount of surface oxygen is available, thus occurring 
during the first cycle because the pristine oxide is Fe2O3. In the subsequent cycles, the 
participating oxide during reduction is either FeO or Fe3O4 (because re-oxidation to Fe2O3 is 
not thermodynamically possible when using H2O as oxidant) with less available oxygen for the 
reduction step. Moreover, selectivity increased from 23.2% to 99.7% (H2) and 33.5% to 99.9% 
(CO), in agreement with the decline in CO2 and H2O formation during cycling.  

Once again, the time integration of the measured syngas production rates in Fig. 2-13 
during reduction and oxidation steps was used to calculate the syngas yields according to Fig. 
2-11. Note that the reduced iron after reduction in the last cycle (cycle #7) was not re-oxidized, 
as it was kept for analyzing its phase composition via XRD. Therefore, no syngas yield during 
oxidation at cycle #7 was presented. 

During reduction step (Fig. 2-13a), as expected a large amount of CO2 was observed 
during the first reduction (1.00 mmol/gFe₂O₃) arising from Fe2O3 reduction to Fe3O4 (0.059 mole 
of oxygen released, Fig. 2-12), and total syngas yield decreased with cycles repetition (cycles 
#1-3). The syngas yields (especially H2 and CO) grew with increasing reduction temperature 
(cycles #4-6), thereby confirming that the partial oxidation of CH4 over iron oxide strongly 
depends on the reduction temperature, and temperatures higher than 1000 °C were required to 
favor reactions. However, a remarkable amount of H2 associated with CH4 cracking (3.01-5.57 
mmol/gFe₂O₃) was inherently measured at cycles #5-6 because of higher reduction temperatures 
(1100-1150 °C). Noticeably, CO2 yield decreased with cycles repetition (except in cycle #5 at 
which the amount of CO2 was higher than that obtained from cycle #1 as a result of the 
exacerbated temperature effect at 1150 °C), and it was not observed during the last cycle (cycle 
#7). This is because a large amount of the oxygen contained in the iron oxide lattice structure 
was released during the previous cycles favoring CO2 formation. In fact, Fe3O4 reduction takes 
place into two stages: first the reduction from Fe3O4 to FeO (Eq. 2-4) and then FeO to Fe (Eq. 
2-5). The first stage is faster than the second one presumably as a result of produced H2 that 
reacts with Fe3O4 (Fig. 2-2) but not with FeO [90]. The slower second reaction stage is caused 
by the material surface reduction resulting from sintering [90]. These variations may explain 
the decrease of CO2 with cycles repetition (as evidenced in cycles #1-7) since the iron oxide 
structure does not completely return to the initial state despite passing the oxidation step (as 
proved by nO,ox values always lower than nO,red, Fig. 2-12), thereby leading to lower available 
oxygen for the subsequent reduction reaction. 
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Figure 2-13. Syngas yields for (a) iron oxide reticulated porous foam reduction with CH4 and 

(b) oxidation with H2O cycled isothermally at temperatures in the range 1000-1150 °C. 
 

During oxidation step (Fig. 2-13b), most of the produced syngas yield at cycles #1-4 
was ascribed to the production of H2 formed by Eq. 2-9. The CO (C+H2O), CO2 (C+2H2O), H2 

(C+H2O), and H2 (C+2H2O) yields formed by side reactions (Eq. 2-10 and Eq. 2-11) were 
negligible, implying negligible amount of carbon deposition. In contrast, they were found in 
significant amounts in cycles #5-6, suggesting important impact of carbon deposition on syngas 
yields at 1100-1150 °C. Likewise, the reduced iron oxide composition after reduction in cycle 
#7 was characterized by XRD. Its phase identification is presented in Fig. A-8. 

The material is mainly composed of Fe, followed by traces of FeO, in agreement with 
the hard structure of iron in Fig. A-9. Most of the iron oxide foam was converted to metallic 
Fe. It can be assumed that the iron oxide porous foam structure might be lastingly converted to 
metallic iron coarsened structure after being reduced at 1150 °C (cycle #5), and that the process 
is not reversible due to extremely high sintering entailing low re-oxidation ability, as observed 
in Fig. A-9b. This assumption can be evidenced by a sharp drop of H2 (Fe+H2O) yield 
associated with the oxidation reaction in cycles #5-6 (ranging between 0.80-0.92 mmol/gFe₂O₃, 
Fig. 2-13b) with extremely low oxygen uptake (0.013 mole for cycle #5 and 0.011 mole for 
cycle #6, Fig. 2-12). 

In conclusion, the CLRM over both iron oxide powder and foam dramatically suffers 
from morphological instability (high sintering), slow reaction kinetics, and unfavorable 
oxidation because of strong material coarsening and densification, thus strongly altering the 
oxygen exchange reversibility. Then, the oxygen uptake during oxidation is always lower than 
the oxygen released during reduction because of low material thermal stability. For these 
reasons, iron oxide is not suitable for CLRM process and would require stabilization for high-
temperature processing (e.g. using inert ceramic support for improving material stability). 
Alternatively, iron oxide reduction using CH4 is suitable for producing both metallic iron and 
syngas in a solar metallurgical process. 
 

2.4.2 Influence of sintering temperature for ceria foams  

In order to experimentally study the effect of calcination temperature during ceria foam 
elaboration on the evolved syngas yield, two ceria reticulated porous foams were prepared and 
subsequently annealed under air at 1000 °C (for 6 h) and one of them was further sintered at 
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1400 °C for 2 h for densifying the structure. Thus, the obtained sintered foams were labeled as 
ST-1000 and ST-1400, respectively. The initial volumes of ST-1000 and ST-1400 were 46.76 
and 83.13 cm3 (after ceria coating process), and they were shrunk to 30.88 cm3 (Fig. A-10a, 
ST-1000) and 31.10 cm3 (Fig. A-10b, ST-1400) after heat treatment, representing a decrease 
of 34% and 63% of their initial volume, respectively. The final properties of the ceria foams 
are: porosity: 91.8% and 89.1%, mean cell size: 3.5 and 2.5 mm, and apparent density: 0.595 
and 0.780 g/cm3 for ST-1000 and ST-1400, respectively. Both ceria foams were cycled in the 
temperature range 900–1050 °C to experimentally study the influence of temperature on syngas 
evolution as well as reactor performance. Fig. A-11 shows the syngas production rate along 
with nominal reactor temperature during ceria foam (ST-1400) reduction in the range 900-1050 
°C (CH4 flow-rate: 0.2 NL/min, Ar flow rate: 0.2 NL/min, 50% CH4 mole fraction). It was 
followed by subsequent ceria oxidation with H2O carried out at the same temperature (H2O: 
200 mg/min, Ar: 0.2 NL/min, 55% steam mole fraction at inlet). 

During reduction step, CO2 production rate was maximal at the initial stage of the 
reaction, and it increased with temperature. In fact, H2O was also formed simultaneously [108]; 
however, it cannot be detected from gas analysis. An increase in the operating cycle 
temperature promoted both the syngas production rate (especially H2 and CO) and ceria 
reduction rate (as evidenced by a shortened reaction duration). The peak rates of CO and H2 
produced were 0.02 and 0.04 Nl/min at 900 °C compared to 0.11 and 0.24 Nl/min at 1050 °C, 
and the operating duration was 25.4 min at 900 °C compared to 18.4 min at 1050 °C. It is 
interesting to note that the H2/CO mole ratio is constantly ~2 for any reduction temperatures 
[108]. Moreover, the significant H2 evolution still continuing after 12 min (Fig. A-11e) was the 
result of the methane cracking reaction that is thermodynamically favorable at high temperature 
(>1000 °C) [100]. 

During oxidation step, the H2 production rate increased with temperature while the CO 
and CO2 production rates were negligible over the considered temperature range, thus 
demonstrating negligible impact of carbon formation associated with methane cracking for ST-
1400. 

Fig. 2-14 compares the H2, CO, and CO2 production rates (both reduction and oxidation 
steps) of ceria foam ST-1400 to those of ST-1000 at an operating cycle temperature of 1000 
°C. During reduction step (Fig. 2-14a), increasing the sintering temperature (ST-1400) 
decreased syngas production rates while increasing the operating duration. This is because the 
high densification of the structure (at high sintering temperature of 1400 °C) leads to a decline 
of the porosity and hinders the access of the reacting gas to the solid surface and hollow struts 
of the foam. Likewise, higher sintering temperature (ST-1400) also led to lower reaction rates 
during oxidation step (Fig. 2-14b). Decreasing the sintering temperature (ST-1000) favored the 
oxidation rate and the formation of CO/CO2 (because the formation of carbon during the 
reduction step was also favored). 
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Figure 2-14. Influence of sintering temperature on H2 and CO production rates during both 

reduction and oxidation of ceria foam at 1000 °C: (a) CH4 was utilized as reducing agent and 
(b) H2O was utilized as oxidizing agent. 

 
Figure 2-15 presents the comparison of syngas yields (calculated by time-integration of 

the measured syngas production rates) produced per gram of CeO2 (mmol/gCeO₂) between ST-
1000 and ST-1400 at the operating cycle temperature of 1000 and 1050 °C during ceria 
reduction with CH4 (Fig. 2-15a) and oxidation with H2O (Fig. 2-15b). The syngas yields 
ascribed to the main reactions (Eqs. (2-12) and (2-13)) and side reactions (methane cracking 
during reduction step: CH4⟶C+2H2 (Eq. 2-7), and carbon gasification during oxidation step: 
C+H2O⟶CO+H2 (Eq. 2-10) and C+2H2O⟶CO2+2H2 (Eq. 2-11)) are presented separately. 

Fig. 2-15a shows that the syngas yields produced during reduction step decreased 
significantly with sintering temperature at the operating cycle temperatures of 1000 and 1050 
°C, thus leading to a decline in δred (e.g., from 0.36 for ST-1000 to 0.34 for ST-1400 at 1000 
°C). Furthermore, the H2 yield produced from CH4 cracking reaction (quantified by the total 
H2 yield measured by gas analysis minus the H2 yield produced by the reaction of ceria with 
methane, which is equivalent to twice the quantity of produced CO, according to Eq. 2-12) 
decreased considerably when increasing the sintering temperature (e.g. from 0.67 mmol/gCeO₂ 
for ST-1000 to 0.07 mmol/gCeO₂ for ST-1400 at 1000 °C). This can be explained by the fact 
that increasing the sintering temperature lowers the available geometrical surface area for the 
heterogeneous reaction, which declines the surface concentration of adsorbed methane and 
alleviates the methane cracking reaction. 
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Likewise, Fig. 2-15b confirms that the methane cracking reaction is not favored for the 
sintered ceria foam (ST-1400), as evidenced by a sharp drop in the quantities of CO (C+H2O), 
CO2 (C+2H2O), H2 (C+H2O), and H2 (C+2H2O) formed by the side reactions (carbon deposit 
gasification with H2O). Note that the H2 (C+H2O) yield is equal to the CO yield measured by 
gas analysis (C+H2O⟶CO+H2), while the H2 (C+2H2O) yield is equal to twice the CO2 yield 
measured by gas analysis (C+2H2O⟶CO2+2H2). In addition, an increase in the sintering 
temperature decreased the H2 (CeO2-δ +H2O) yield (e.g., from 2.04 mmol/gCeO₂ for ST-1000 to 
1.84 mmol/gCeO₂ for ST-1400 at 1000 °C, then resulting in a decrease of δox from 0.35 to 0.32). 
Noticeably, δred matched well δox values at both cycle temperatures of 1000 and 1050 °C, 
thereby confirming complete re-oxidation. 

 

 
Figure 2-15. Effect of sintering temperature and cycle operating temperatures on syngas 

yields, δred, and δox for (a) reduction and (b) oxidation of ceria foam cycled isothermally at a 
CH4 flow-rate of 0.2 NL/min. 

 

According to Fig. 2-16a, the reduction yield (Xred=δred/δmax where δmax=0.5 for complete 
reduction of Ce4+ into Ce3+), oxidation yield (Xox=δox/δred), methane conversion (XCH₄) and 
solar-to fuel energy conversion efficiency (ηsolar-to-fuel) were decreased when increasing the 
sintering temperature (e.g., Xred, Xox, XCH₄, and ηsolar-to-fuel ranging from 71.5%, 98.3%, 46.9%, 
and 3.8% for ST-1000 to 67.3%, 94.2%, 23.0%, and 2.8% for ST-1400, respectively, during 
cycling at 1000 °C). In addition, an increase in operating cycle temperature enhanced Xred, XCH₄, 
and ηsolar-to-fuel.  

Fig. 2-16b compares the total syngas yields obtained for both reduction and oxidation 
steps of ceria foams (ST-1000 compared to ST-1400) during cycling at 1000 and 1050 °C. 
Increasing sintering temperature considerably decreased total H2 and CO yields (from 6.48 and 
1.93 mmol/gCeO₂ for ST-1000 to 5.29 and 1.68 mmol/gCeO₂ for ST-1400, respectively, at 1000 
°C); however, the CO2 and H2O yields tended to decrease slightly. A growth in the energy 
upgrade factor (U) with increasing sintering temperature was observed (e.g., from 1.03 for ST-
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1000 to 1.08 for ST-1400). This is because a high sintering of the ceria foam lowers the gaseous 
reactant access to the reactive surface and the ceria bulk reduction, thus increasing the 
unreacted CH4 (much lower XCH₄ for ST-1400, Fig. 2-16a) and thereby leading to an increase 
in U. From these observations, it can be summarized that decreasing sintering temperature 
enhanced syngas production; however, at the expense of weakened structure, with reduced 
thermo-mechanical resistance. 
 

 
Figure 2-16. Effect of sintering temperature and cycle operating temperatures on (a) ceria 

reduction yield, ceria oxidation yield, methane conversion, and solar-to-fuel energy 
conversion efficiency, and (b) energy upgrade factor and total syngas yields obtained from 

both reduction and oxidation steps. 
 

2.4.3 Influence of methane flow-rate and ceria macrostructure on syngas yield  

The impact of methane flow-rate on syngas yields was experimentally studied with 
different ceria structures. Three ceria structures consisting of pure ceria powder (25.0052 g, 
bulk density: 1.12 g/cm3, loose bed porosity: 84.5%), ceria powder (27.0605 g) mixed with 
inert Al2O3 promoter (bulk mixture density: 1.53 g/cm3, loose bed porosity: 69.1%), and ceria 
reticulated foam (18.3705 g, ST-1000, bulk density: 0.595 g/cm3, porosity: 91.8%) were 
employed to investigate the influence of ceria structure and reactive bed layout on syngas yield 
and reactor performance. During ceria reduction step, the CH4 flow-rate was injected at 0.1, 
0.2, 0.3, and 0.4 NL/min (with constant Ar carrier flow of 0.2 NL/min) at 1000 °C. In the 
oxidation step performed at the same temperature (1000 °C), H2O was delivered at a constant 
flow-rate of 200 mg/min (with Ar carrier gas flow of 0.2 NL/min). 

Fig. 2-17 shows the influence of CH4 flow rate on syngas yields for each ceria structure. 
According to Fig. 2-17a, the H2 and CO yields first increased significantly within a CH4 flow-
rate range of 0.1-0.2 NL/min and then tended to grow minimally at above 0.2 NL/min. For 
example, the H2 and CO yields for ceria foam rose from 3.25 and 1.66 mmol/gCeO₂ at 0.1 
NL/min to 3.64 and 1.82 mmol/gCeO₂ at 0.2 NL/min, and 3.78 and 1.89 mmol/gCeO₂ at 0.4 
NL/min. The CO2 yields for each ceria structure remained stable in negligible amounts (0.05-
0.10 mmol/gCeO₂ within the considered range). A plateau in the H2 and CO (at CH4 above 0.2 
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NL/min) indicates that the final state completion of ceria reduction for each ceria structure is 
being approached, thereby leading to an excess in CH4 flow-rate supply, which in turn favors 
CH4 cracking reaction. Note that if the rate of ceria reduction is lower than the rate of methane 
decomposition, chemisorbed carbon may accumulate at the surface. This occurs when the rate 
of bulk lattice oxygen diffusion to the surface becomes lower than the CH4 supply rate. In other 
words, when a lack of oxygen at the surface occurs, then carbon deposition is fastened, which 
is increasingly favored as oxygen is being depleted during the ceria reduction progress. It is 
interesting to highlight that when accounting for H2 produced by CH4 cracking reaction (Fig. 
2-17b), the H2 yield increased steeply (3. 25- 6.54 mmol/gCeO₂ for ceria foam) over the 
considered range, thus confirming that the CH4 cracking reaction is favored when increasing 
CH4 flow-rate, and leading to a sharp increase in H2 yield along with carbon deposition. 

The CO and H2 productions for each ceria structure were not significantly different, 
although a slightly higher H2 and CO production was noticed for ceria powder (presumably 
due to non-uniform heating of the bed (Tpyrometer>T3) as evidenced by Fig. A-4 for ceria powder 
and Fig. A-5 for ceria powder mixed with inert Al2O3 promoter). This advantageously confirms 
that the shaping of ceria as foam does not downgrade the reactivity. 

 

 
Figure 2-17. Effect of CH4 flow-rate on H2, CO, and CO2 yields during (a,b) reduction of 

different ceria structures at 1000 °C: (a) not accounting and (b) accounting for H2 produced 
by CH4 cracking reaction; and during (c,d) oxidation of different ceria structures with H2O at 

1000 °C: (c) not accounting and (d) accounting for H2 produced by carbon gasification 
reactions. 



Chapter 2: Solar chemical looping reforming  

57 
 
 

During subsequent ceria oxidation with H2O at 1000 °C (Fig. 2-17c and 2-17d), H2 
yield (produced by Eq. 2-13) increased in accordance with an increase in CH4 flow-rate during 
the reduction step, while the CO and CO2 yields (produced by side reactions) also rose due to 
carbon deposition increase (Fig. 2-17c). For instance, the yields of H2, CO, and CO2 for ceria 
foam were 2.01, 0.11, and 0.01 mmol/gCeO₂ at 0.1 NL/min compared to 2.16, 0.20, and 0.04 
mmol/gCeO₂ at 0.4 NL/min. Likewise, the H2 yield increased sharper when including the amount 
of H2 associated with carbon gasification (e.g. from 2.14 to 2.45 mmol/gCeO₂ at 0.1–0.4 NL/min 
for ceria foam), according to Fig. 2-17d. However, no significant effect of the ceria structure 
on H2, CO, and CO2 yields can be evidenced whether or not accounting for H2 yields from 
carbon gasification reactions. 

In order to emphasize the influence of CH4 flow-rate on reactor performance, the 
evolution of the relevant metrics (δred and δox, Xred, Xox, XCH₄, U, and ηsolar-to-fuel) is presented in 
Fig. 2-18. Both δred (Fig. 2-18a) and δox (Fig. 2-18b) are enhanced with a CH4 flow-rate increase 
(e.g., maximum δred and δox of 0.41 and 0.39 at 0.4 NL/min, respectively, for ceria powder). 
Besides, the δox values were consistent with δred for any ceria structures, thereby confirming 
complete ceria re-oxidation with H2O. As expected, the δred (Fig. 2-18a) of ceria powder (0.37-
0.41) was slightly higher than those of other materials, in agreement with the higher syngas 
yields during reduction (Fig. 2-17a). The δox values were not different (Fig. 2-18b) (0.34-0.39 
for ceria powder and 0.35-0.37 for ceria reticulated foam), in agreement with the similar syngas 
yields during oxidation (Fig. 2-17c). Xred grew with increasing CH4 flow-rate (Fig. 2-18c), e.g. 
from 74.7% at 0.1 NL/min to 81.3% at 0.4 NL/min for ceria powder, and no significant 
influence of ceria structure on Xred can be observed. Xox values were close to ~100% for any 
ceria structures, thereby demonstrating complete ceria re-oxidation. XCH₄ was reduced 
noticeably with increasing CH4 flow-rate for each ceria structure (Fig. 2-18d) (e.g., from 76.4 
to 43.0% at 0.1-0.4 NL/min, respectively, for ceria powder). The decrease in XCH₄ is attributable 
to the CH4 supply rate that exceeds the rate of oxygen released by ceria, as noticed by a stable 
profile in Xred at 0.3-0.4 NL/min (Fig. 2-18c). U tended to decrease with CH4 flow-rate (Fig. 2-
18e). This variation is attributed to the carbon formation increase with CH4 flow-rate, and 
partial entrainment out of the reactor cavity, as confirmed by the presence of carbon particles 
in the filtering unit (Fig. A-12), thus losing their heating value and lowering U. As expected, 
ηsolar-to-fuel rose with CH4 flow-rate as a result of the substantial syngas yield improvement (Fig. 
2-17), and the highest ηsolar-to-fuel was obtained for ceria foam (3.1%–5.6%), followed by CeO2-
Al2O3 blend (3.6%–5.0%), and CeO2 powder (3.1%–3.6%), according to Fig. 2-18f. This can 
be explained by the different solar power inputs required for different ceria structures (1.06-
1.14 kW for ceria powder, followed by 0.96-1.06 kW for CeO2-Al2O3 blend, and 0.76-0.86 kW 
for ceria foam). Ceria foam thus requires lower solar power consumption than CeO2-Al2O3 
blend and CeO2 powder. This is because the CeO2-Al2O3 blend stands out from its high bed 
thickness (1.19 cm) and additional Al2O3 heating (Fig. A-13), while the CeO2 powder layer 
(0.46 cm thickness) shows high opacity, which is not suitable for efficient radiative heat 
transfer in the whole volume. Both issues thus lead to temperature gradient, as evidenced in 
both Fig. A-4 (for CeO2 powder) and Fig. A-5 (for CeO2-Al2O3 blend), with a higher 
temperature at the bed uppermost surface (Tpyrometer>T3). However, the CeO2-Al2O3 blend offers 
a favored dispersion of ceria powder, which improves the gas flow through the reactive bed 
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and heat transfer and promotes the syngas yield (thereby leading to higher ηsolar-to-fuel than the 
one for ceria powder). The ceria foam consumed the lowest solar power input (thus enhancing 
ηsolar-to-fuel), arising from the effective heat transfer through the semi-transparent medium and 
the uniform heating (as evidenced by the narrow temperature gap between ceria surface 
Tpyrometer and T3 in Fig. A-3). In summary, the ceria foam structure is the most efficient in term 
of heat transfer (as reflected by uniform heating with lower solar power consumption), thereby 
leading to higher ηsolar-to-fuel, and it is thus the most suitable for the chemical-looping methane 
reforming. 

 
Figure 2-18. Effect of CH4 flow-rate on (a) δred, (b) δox, (c) reduction yield (Xred) and 

oxidation yield (Xox), (d) CH4 conversion (XCH₄), (e) energy upgrade factor (U), and (d) solar-
to-fuel energy conversion efficiency (ηsolar-to-fuel) for different ceria structures at 1000 °C. 
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2.4.4 Influence of temperature on syngas yield 

The influence of temperature on syngas yield was investigated for the different ceria 
structures at 900, 950, 1000, and 1050 °C (T3 is the nominal-mentioned temperature for 
experiments).  

Fig. 2-19a and Fig. 2-19b show the H2, CO, and CO2 yields obtained from ceria reduction 
with CH4 as a function of reduction temperature. As expected, both H2 and CO yields increased 
sharply, while CO2 tended to rise minimally with temperature (Fig. 2-19a), regardless of the 
ceria structures. For example, H2, CO, and CO2 yields rose from 2.38, 1.21, and 0.05 
mmol/gCeO₂ at 900 °C to 3.84, 1.92, and 0.09 mmol/gCeO₂ at 1050 °C, respectively, for CeO2-
Al2O3 blend. This is because increasing temperature accelerates the kinetic rate of ceria 
reduction with faster oxygen release, as evidenced by Arrhenius plot (Fig. A-14). The 
activation energy obtained for each ceria structure (92.8-114.2 kJ/mol for H2 and 92.8-95.1 
kJ/mol for CO, Table A-2) is consistent with previously reported data [100]. When accounting 
for the H2 produced by CH4 cracking reaction (Fig. 2-19b), the trends of H2 became steeper,
thus pointing out the significant influence of the reduction temperature on the H2 formation 
from CH4 cracking. Noticeably, the H2 yield at 900 °C (CeO2-Al2O3 blend) remained the same 
(2.38 mmol/gCeO₂) whether or not accounting for H2 produced by cracking reaction, thus 
indicating that CH4 decomposition was negligible at 900 °C. In comparison, the ceria powder 
showed the highest H2 and CO yields at 950-1000 °C, as a result of the higher bed surface 
temperature and lower bed height, as previously mentioned. 

 
Figure 2-19. Effect of temperature on H2, CO, and CO2 yields during (a,b) ceria materials 

reduction with CH4 (0.2 NL/min, inlet CH4 mole fraction: 50%): (a) not accounting and (b) 
accounting for H2 produced by CH4 cracking reaction; and during (c,d) ceria materials 

oxidation with H2O (200 mg/min, inlet steam mole fraction: 55%): (c) not accounting and (d) 
accounting for H2 produced by carbon gasification reactions. 
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Fig. 2-19c and Fig.2-19d depict the H2, CO, and CO2 yields measured during ceria 
oxidation with H2O as a function of temperature. The H2 yields (from Eq. 2-13) rose 
significantly with temperature (1.39-2.12 mmol/gCeO₂ for CeO2-Al2O3 blend), while a slight 
increase in CO and CO2 yields was noticed (Fig. 2-19c). The presence of CO and CO2 (e.g., 
ranging between 0.06-0.23 for CO and 0.01-0.03 mmol/gCeO₂ for CO2 in the case of CeO2-
Al2O3 blend) is attributed to the side reactions of carbon gasification forming additional H2, 
CO, and CO2. These side reactions are beneficial to eliminate the deposited carbon on the 
surface of ceria structure, thereby avoiding deactivation. When including the H2 produced by 
the carbon gasification (Fig. 2-19d), the H2 yield for each ceria structure was higher (1.46-2.40 
mmol/gCeO₂ for CeO2-Al2O3 blend), thus confirming the growing effect of temperature on 
carbon formation.  

Fig. 2-20 presents the evolution of δred, δox, Xred, Xox, XCH₄, U, and ηsolar-to-fuel as a function 
of temperature for each ceria structure. The temperature increase improved steadily the 
reduction extent of ceria δred (Fig. 2-20a), e.g. from 0.24 at 950 °C to 0.39 at 1050 °C for CeO2-
Al2O3 blend owing to a significant beneficial enhancement of the reduction kinetics (Fig. A-
14). δox also increased with temperature (ranging between 0.24-0.36 for CeO2-Al2O3 blend, 
Fig. 2-20b) due to the oxygen vacancies consistently increasing with temperature. The impact 
of the considered ceria structures on both δred and δox was not significant. δox values were similar 
to δred values, thus validating complete ceria re-oxidation for any ceria structures. Xred rose 
considerably with temperature (e.g., in the range 48.8-78.0% for CeO2-Al2O3 blend), while Xox 
remained quite constant at ~100% for any ceria structures (Fig. 2-20c), thereby confirming 
complete ceria re-oxidation. XCH₄ rose with temperature (Fig. 2-20d), and the highest XCH₄ was 
attained at 1050 °C (77.4% for CeO2-Al2O3 blend). This is because the faster rate of oxygen 
release better matched the constant inlet flow of CH4, which leads to XCH₄ increase. The XCH₄ 
for both ceria foam and CeO2-Al2O3 blend was higher than that of ceria powder, presumably 
due to both better gas flow through the structure and solid/gas contact between ceria and CH4. 
Moreover, U (Fig. 2-20e) first increased slightly within 900-950 °C and then decreased above 
950 °C, as a result of carbon formation issue. Indeed, the carbon deposition increased with 
increasing temperature, and some particles escaped from the reactor cavity via gas flow, thus 
lowering U. This issue can be tackled by decreasing temperature to favor U at the expense of 
lower syngas yield. ηsolar-to-fuel (Fig. 2-20f) was improved by increasing temperature (e.g., in the 
range of 3.0-4.3% for ceria foam). The lowest ηsolar-to-fuel values were observed for ceria powder 
(2.75%–2.97% at 950-1000 °C) because of the higher solar power consumption (0.88-0.96 kW 
for ceria powder compared to 0.67-0.68 kW for ceria foam in the temperature range 950-
1000 °C), confirming that ceria foam structure is the most suitable for the solar combined 
process. 
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Figure 2-20. Effect of temperature on (a) δred, (b) δox, (c) reduction yield (Xred) and oxidation 
yield (Xox), (d) CH4 conversion (XCH₄), (e) energy upgrade factor (U), and (d) solar-to-fuel 

energy conversion efficiency (ηsolar-to-fuel) for different ceria structures. 
 

2.4.5 Oxidation step with CO2 during ceria cycling 

Another ceria powder (27.0892 g) mixed with Al2O3 (50 g) was employed to study the 
influence of temperature (950-1050 °C) on syngas yield and reactor performance during ceria 
oxidation with CO2. This ceria was first reduced with a constant CH4 flow-rate of 0.2 NL/min 
(50% CH4 mole fraction at inlet) and subsequently re-oxidized with a constant CO2 flow-rate 
of 0.2 NL/min (50% CO2 mole fraction at inlet) at the same temperature. 
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Syngas production rates along with reactor temperature for both steps are presented in Fig. 
2-21. During reduction step, the syngas production rates were higher at 1050 °C than at 1000 
and 950 °C. For instance, the peak H2 and CO production rates were 0.32 and 0.14 NL/min at 
1050 °C compared to 0.21 and 0.10 NL/min at 950 °C. The reaction duration declined 
considerably with increasing temperature due to improved ceria reduction kinetics (from 24.4 
min at 950 °C to 15.1 min at 1050 °C). During oxidation step, the peak CO production rate 
increased minimally from 0.14 to 0.16 NL/min while the oxidation duration decreased slightly 
(from 26 min at 950 °C to 22 min at 1050 °C). Therefore, the effect of temperature is not 
significant for the oxidation step with CO2, which thus suggests low impact of kinetic reaction 
control for this step. 

 
Figure 2-21. Evolution of the production rates of H2, CO, CO2, and CH4 in the syngas along 

with nominal reactor temperature for reduction with CH4 (a, c, and e) and oxidation with CO2 
(b, d, and f) of CeO2-Al2O3 blend cycled isothermally at 950, 1000, and 1050 °C. 
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Fig. 2-22 shows the syngas yields quantified from the integration of the measured syngas 
production rates (Fig. 2-21) and reactor performance during reduction and oxidation steps. As 
expected, the CO (CeO2+CH4), H2 (CeO2+CH4), H2 (CH4 cracking) yields, and δred increased 
with temperature, while the CO2 (CeO2+CH4) yield remained the same (Fig. 2-22a). During 
oxidation step (Fig. 2-22b), an increase in the CO yield (2.89-3.12 mmol/gCeO₂) was observed 
when increasing the temperature in the range of 950-1050 °C, thereby enhancing the δox (0.37-
0.40). The δox values were similar to δred, thus confirming complete ceria re-oxidation with 
CO2.  

 

Figure 2-22. Effect of temperature on (a) syngas yields and δred for reduction with CH4, (b) 
CO yield and δox for oxidation with CO2 of CeO2-Al2O3 blend cycled isothermally (CH4 and 

CO2 flow-rate of 0.2 NL/min), (c) ceria reduction/oxidation yields (Xred, Xox), methane 
conversion (XCH4), and solar-to-fuel energy conversion efficiency (ηsolar-to-fuel), and (d) energy 
upgrade factor (U) and total syngas yields obtained from both reduction and oxidation steps. 

 
A temperature increase significantly enhanced the reactor performance (Fig. 2-22c), 

especially methane conversion (37.2%–75.8%). Fig. 2-22d compares the total syngas yield 
obtained from ceria cycles (sum of both steps) to the theoretical maximum yield (assuming that 
δmax=0.5 in Eqs. 2-12 and 2-13, thereby yielding both 1 mol CO and 1 mole H2 per mole CeO2). 
Increasing temperature promoted the overall H2 and CO yields with maximum measured values 
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of 5.11 and 5.04 mmol/gCeO₂ at 1050 °C, respectively, while the maximum theoretical H2 and 
CO yields that can be expected with CO2 are 5.81 mmol/gCeO₂. Note that the amounts of both 
H2 and CO produced by side reactions (CH4 cracking: CH4 →C+2H2 and carbon gasification: 
C+CO2→2CO) in both steps were taken into account in Fig. 2-22d). The CO yield was close to 
the H2 yield throughout the range. In addition, U was in the range 1.11-1.19 (vs. 1.31 for a 
stoichiometric reaction with δmax=0.5). 

 

2.4.6 Comparison of oxidation with H2O and CO2  

Fig. 2-23 compares the syngas production rates during exothermic ceria foam oxidation 
with H2O (Fig. 2-23a) and with CO2 (Fig. 2-23b) at 1000 °C, using the same operating 
conditions during reduction step (cycle 12 compared to cycle 15 for a ceria foam with 18.3057 
g, ST-1000). 

Using CO2 as an oxidant resulted in longer oxidation duration (13.6 min for CO2 vs. 10.6 
min for H2O) to reach completion, thereby denoting slower oxidation kinetics with CO2 
compared to H2O. The slower syngas production rate during oxidation with CO2 could also be 
due to reduced thermodynamic driving force and kinetics to gasify the deposited carbon via the 
Boudouard reaction compared to steam gasification and not due to the kinetics of ceria 
oxidation. The total CO yield with CO2 as oxidant was higher when compared with the H2 yield 
obtained with H2O as oxidant (Table 2-1). This is because carbon from methane decomposition 
reacts with CO2 (C+CO2→2CO), thus forming an additional amount of CO. However, the CO 

yield from CeO2-δ+CO2 reaction was very similar to the H2 yield from CeO2-δ+H2O (Eq. 2-13), 
thus confirming data consistency. For this reason, δox and δred were also similar either using 
CO2 or H2O during ceria oxidation (Table 2-1). 

 

 
Figure 2-23. CO, CO2 and H2 evolution rates along with nominal reactor temperature during 
reduced ceria oxidation with (a) H2O (H2O flow-rate of 200 mg/min, inlet mole fraction of 

55%) and (b) CO2 (CO2 flow-rate of 0.2 Nl/min, inlet mole fraction of 50%) at 1000 °C (total 
Ar flow of 2.2 Nl/min). 
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Table 2-1. Comparison of the syngas yields obtained during reduced ceria oxidation with 
H2O and with CO2 at 1000 °C.  

Oxidizing agent 

Total syngas yield 
during oxidation step 

(mmol/gCeO₂) 

H2 yield from 
CeO2-δ+H2O 
(mmol/gCeO₂) 

CO yield from 
CeO2-δ+CO2 

(mmol/gCeO₂) 
δred  δox  

H2 CO CO2 

H2O (200 mg/min) 2.305 0.178 0.042 2.043 - 
0.36 ± 
0.01 

0.35 ± 
0.01 

CO2 (0.2 Nl/min) - 2.504 - - 2.064 
0.36 ± 
0.01 

0.36 ± 
0.01 

 

2.4.7 Assessment of thermochemical stability during cycling  

The cycling stability of ceria was experimentally studied. Ceria foam (18.3705 g, ST- 
1000) was subjected to a total of 15 cycles (Table A-1), for which 10 of them (cycles 1, 3-5 
and 10-15) were operated under the same conditions in order to investigate performance 
stability and to confirm experimental repeatability (the other cycles were performed using 
different conditions of temperatures and CH4 flow-rates and were thus not reported). For these 
cycles (Fig. 2-24), both reduction (CH4 flow-rate of 0.2 Nl/min) and oxidation (H2O flow-rate 
of 200 mg/min) were performed at 1000 °C (total Ar carrier gas flow-rate of 2.2 Nl/min, N2 
was used in place of Ar in cycles 13 and 14 to confirm that the type of carrier gas does not 
change the cycling performances). 

As a result, the CO, CO2 and H2 yields produced from CeO2+CH4 reaction during 
reduction step were constant throughout the 10 non-consecutive cycles (Fig. 2-24a), despite a 
slight fluctuation in the H2 yield associated with CH4 cracking (0.35-1.27 mmol/gCeO₂). This is 
simply because the amount of H2 from methane cracking depends on the reduction step 
duration that was not exactly the same for each cycle (as methane is continuously injected, the 
injection duration, and thus the amount of H2 produced is different). The δred values were 
reasonably stable in the range 0.35-0.38 and the δox values (in the range 0.35-0.37, Fig. 2-24b) 
were also similar to the δred values throughout the cycles, thereby highlighting stable oxygen 
exchange capacity of ceria foam for relatively large changes in oxygen stoichiometry. 

During oxidation (Fig. 2-24b), a stable pattern in the H2 yield from CeO2-δ+H2O in the 
range of 2.04-2.17 mmol/gCeO₂ was evidenced while the other H2 yields produced by the 

reaction of carbon with H2O (C+2H2O, C+H2O) were also constant. The amounts of CO and 
CO2 were in the range of 0.11-0.18 and 0.02-0.05 mmol/gCeO₂, respectively. Note that the result 
of syngas yields in the cycle 15 was not shown because ceria was re-oxidized with CO2.  
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Figure 2-24. Cycling stability related to syngas yields (with associated tendency lines) and δ 

for both (a) reduction and (b) oxidation of ceria foam performed at 1000 °C.  
 
The H2 and CO production rates (cycles n° 12, 13 and 14) were plotted to demonstrate 

the repeatability for both reduction (Fig. 2-25a) and oxidation (Fig. 2-25b) of ceria. The H2 
profiles in the reduction step showed a slight difference (Fig. 2-25a) attributed to a variation in 
the H2 produced by CH4 cracking. Nevertheless, the CO flow-rate showed overlapping profiles. 
Additionally, the H2 and CO flow-rates regarding oxidation step were also similar through 
cycles 12-14 (Fig. 2-25b), thereby corroborating excellent repeatability of syngas production 
rates. 

 
Figure 2-25. H2 and CO evolution profiles for both reduction and oxidation of ceria foam at 
1000 °C: (a) CH4 was utilized as reducing agent and (b) H2O was utilized as oxidizing agent.  

 

Fig. 2-26a shows the reduction yield (Xred), oxidation yield (Xox), methane conversion 
(XCH₄) and solar-to-fuel energy conversion efficiency (ηsolar-to-fuel) for the 10 non-consecutive 
cycles. Both Xred and Xox fluctuated minimally in the ranges of 70.7-75.4% and 94.1-100%, 
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respectively, thus leading to a stable ηsolar-to-fuel (3.3-4.3%). Fluctuating pattern of XCH₄ between 
47-61% was observed due to a small variation in the rate of ceria reduction with methane that 
directly modifies the operating duration (in the range 9.4-11.4 min). This results in a variation 
of the total injected methane quantity (1.35-1.63 g), thereby affecting U in the 0.99-1.07 range 
(Fig. 2-26b). Noticeably, the U evolution is reverse to that of XCH₄ since the increase of XCH₄ 
may imply an increase in the amount of carbon deposition that leads to a lowered U (e.g., cycles 
5 and 10). The total H2 and CO yields over cycling (Fig. 2-26b) were also stable (5.55-5.80 and 
1.74-1.82 mmol/gCeO₂, respectively), thus leading to fairly constant H2/CO ratio (3.13-3.2) and 

overall syngas yield (7.55-7.89 mmol/gCeO₂). Small amounts of CO2 (0.07-0.1 mmol/gCeO₂) and 

H2O (0.13-0.2 mmol/gCeO₂) were also detected.  
The material thermal stability upon the cycling conditions was satisfactory. The foam 

shape and dimensions remained intact in the cavity after the cycling series, with some cracks 
making the structure more brittle than the original one.  

 
Figure 2-26. Cycling stability of ceria regarding (a) reduction yield, methane conversion, and 

solar-to fuel energy conversion efficiency, and (b) energy upgrade factor and total syngas 
yields (from both CeO2+CH4 and CeO2-δ+H2O).  

 
To validate the cycling stability of ceria, a pristine ceria reticulated foam (17.0152 g) 

sintered at 1000 °C for 6 h was used (Fig. A-15a) to experimentally investigate the cycling 
stability during 6 consecutive cycles at 1000 °C (CH4 flow rate of 0.2 NL/min for reduction 
step and H2O flow-rate of 200 mg/min for oxidation step). N2 was used as a carrier gas (2.2 
NL/min). Fig. 2-27 shows the syngas yields and reaction extents over six consecutive cycles 
during ceria reduction with methane (Fig. 2-27a) and ceria oxidation with H2O (Fig. 2-27b). 
As expected, the H2 (CeO2+CH4), CO, and CO2 yields were constant over the whole cycling 
(ranging between 3.39-3.68 mmol/gCeO₂ for H2, 1.69-1.84 mmol/gCeO₂ for CO, and 0.05-0.07 
mmol/gCeO₂ for CO2, Fig. 2-27a), thus validating ceria cycling stability. However, both small 
sintering and cracking lines within the sample were observed after the last cycle (Fig. A-15b), 
presumably due to its weakened structure associated with low sintering temperature (1000 °C). 
Nevertheless, the redox cycling performance of ceria was not altered as reflected by a minimal 
fluctuation of reduction extent (δred in the range of 0.32-0.36). The H2 (CH4 cracking) yield 
fluctuated slightly (0.64-1.16 mmol/gCeO₂), except for cycle 1 (2.00 mmol/gCeO₂) in which the 
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H2 yield and δred were much higher due to a higher reduction temperature (1050 °C) than the 
other cycles (the CO and CO2 formed in the oxidation step were thus also higher, Fig. 2-27b). 

Likewise, the H2 (CeO2-δ+H2O) yield produced by Eq. 2-13 (Fig. 2-27b) was fairly 
stable (1.94-2.05 mmol/gCeO₂) thus leading to a similar stable δox pattern (0.33-0.35). In 
addition, the quantities of H2(C+2H2O), H2(C+H2O), CO(C+H2O), and CO2(C+2H2O) 
remained similar except for cycle 1 as mentioned above. Stable patterns in Xred, Xox, XCH4, ηsolar-

to-fuel and total syngas yield were consistently noticed (Fig. A-16). Thus, the cycling stability of 
ceria can fairly be validated. 

 
Figure 2-27. Syngas yield and δ for both (a) reduction and (b) re-oxidation of ceria during 6 

consecutive redox cycles performed at 1000 °C.  
 

2.5 Conclusions 

A solar process for chemical looping reforming of methane (CLRM) using solid 
oxidants has been developed, with final aim of producing syngas according to the following 
reaction: CH4 + MxOy → MxOy-1 + CO + 2H2. The key advantages of such a process with 
respect to the conventional process are: (i) generation of a gaseous mixture suitable for 
methanol synthesis, (ii) utilization of a solid oxidant instead of gaseous oxygen or steam water, 
(iii) absence of costly catalysts, and (iv) possible production of H2 (or CO)-rich gas in a second 
step enabling the regeneration of the starting oxide. This chemical looping reforming process 
has been fully demonstrated using CeO2 and Fe2O3 as the oxygen carrier materials in the form 
of powders and reticulated porous foams within both fixed bed and volumetric solar reactor. 
Indeed, a directly irradiated 1.5 kWth solar reactor has been successfully operated for solar-
driven CLRM and isothermal H2O/CO2 splitting using different cerium and iron oxide 
structures as oxygen carriers, demonstrating the reliability and flexibility of the combined 
process towards syngas production. A parametric study was carried out focusing on the 
influence of sintering temperature of the ceria foam structure, CH4 flow-rate, operating 
temperature, type of oxidant (H2O or CO2) and oxygen carrier structures on lattice oxygen 
transfer (nO) and averaged oxygen non-stoichiometry (δ), CH4 conversion, syngas production, 
reactor performance, and thermochemical cycling stability. The thermodynamic analysis 
provided insights into the theoretically possible chemical reactions and equilibrium species 
distribution for comparison with experimental results.  
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- A high sintering temperature (1400 °C) adversely affects the syngas yield, methane 
conversion, and reactor performance, because of both lowered solid/gas interface area and 
lattice oxygen mobility, thus decreasing oxygen exchange capacity. 

- Increasing the CH4 flow-rate enhances δ (maximum value up to 0.41 for ceria powder), 
syngas production rate, and syngas yield. However, a remarkable decrease in CH4 conversion 
is concomitantly observed (minimum value as low as 43% for CeO2 powder). High CH4 flow 
rate also favors CH4 cracking reaction and carbon deposition, since the rate of methane 
decomposition exceeds the rate of ceria reduction. Such carbon deposition is not detrimental 
for the whole process since carbon is gasified in the oxidation step. 

- Increasing the temperature (between 900-1050 °C) accelerates the rate of ceria 
reduction, which in turn significantly enhances the methane conversion (up to 77.4% for CeO2-
Al2O3 blend) and syngas yield and decreases the reduction step duration. However, it comes at 

the expense of favoring methane cracking, especially at 1050 °C. The solar-to-fuel is increased 
with both CH4 flow-rate and temperature (values in the range 1.14%-5.60%), while the energy 
upgrade factor up to 1.19 is accomplished with CO2 as oxidant. 

- The shape of ceria materials (packed-bed powder, foam) does not show any significant 
impact on both the syngas yield and δ but rather on CH4 conversion and efficiency. The ceria 
foam shows better performance in terms of volumetric solar radiation absorption and uniform 
heating with lower solar power consumption compared to the other structures, thereby 

upgrading solar-to-fuel (maximum value up to 5.6%). This implies that the foam structure is the 
most suitable to achieve high specific syngas production with reduced solar energy input. 

- The ceria re-oxidation step is always complete (δox and δred are similar), which means 
it is not kinetically limited, and it depends only on the extent of ceria reduction achieved 
during the previous reduction step. Ceria reduction (δred) is strongly dependent on temperature 
or methane flow rate, which thus denotes kinetically-controlled reaction rate. 

- Stable patterns in the ceria reduction and oxidation extents, CH4 conversion, and 
syngas yields during cycles for reticulated porous foam demonstrated remarkable 
thermochemical cycling stability.  

- Iron oxide (Fe2O3) in the form of powder or porous foam showed relatively low 
reaction rate when reacting with methane at 1000 °C, and the reduction extent strongly 
depended on temperature. However, increasing the temperatures (≥1100 °C) resulted in strong 
sintering (dense structure), lowered syngas yield, and material deactivation. In contrast, cerium 
oxide (CeO2) showed faster reaction rates than iron oxide when reacting with methane at 
1000 °C. Thus, utilizing iron oxide (Fe2O3) as oxygen carrier is not suitable for solar CLRM 
with respect to poor material re-oxidation capability; instead, iron oxide reduction with CH4 
could be an attractive route for producing both metallic iron and syngas via CO2-free solar 
metallurgical process. For these reasons, the use of cerium oxide as oxygen carrier for solar 
CLRM is more appropriate than iron oxide 

The solar reactor concept is expected to be flexible in processing different oxygen 
carrier structures with varying particle sizes or geometries. Combining concentrated solar 
energy and CLRM was shown to be a promising and sustainable pathway toward clean solar 
fuels.
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Chapter 3: Solar gasification of biomass in 

a continuous spouted-bed solar reactor2 

 

3.1 Introduction  

The solar-driven gasification of carbonaceous feedstock represents a promising pathway 
for producing synthesis gas [31]. It also enables solar energy storage in a chemical form [26], 
and improves the fuel yield without CO2 emissions compared to conventional gasification. The 
carbonaceous feedstock is gasified with an oxidant such as H2O/CO2 by utilizing concentrated 
solar power as an external energy source to drive the gasification reaction. In addition, the 
process is carbon-neutral when biomass is utilized as carbonaceous feedstock [38]. 

To reach greater performance, either the improvement of the solar reactor or the 
optimization of operating conditions is required. In this chapter, an experimental study of 
continuous solar gasification of biomass is investigated to convert both solid biomass and solar 
energy into synthesis gas and to optimize syngas production capacity as well as reactor 
performance through parametric investigation. A parametric study considering a variety of 
operating parameters with respect to different lignocellulosic biomass feedstocks (wood type), 
biomass feeding rates (0.6-2.7 g/min), steam/biomass molar ratios (1.6-2.8), carrier gas flow 
rates (2-3.3 Nl/min) and reaction temperatures (1100-1300 °C) was conducted in a 1.5 kWth 
continuous spouted-bed solar reactor utilizing highly concentrated sunlight provided by a solar 
concentrating system.  

 

3.2 Experimental set-up and methods 

3.2.1 Feedstocks 

Prior to the solar-driven tests, the outlet components (outlet tubes, bubbler and filters) 
as well as the pre-loaded biomass feedstock are precisely weighed with a digital balance (0.01 
g readability) for obtaining their initial weights. Five types of biomass feedstocks consisting of 
beech wood (Type A and B) or a mix of pine and spruce wood (Type C, D and E) with different 
sizes (Fig. 3-1), compositions and properties (Table 3-1) were utilized in the solar-driven 
experiments for investigating the influence of both biomass type and particle size on the syngas 
production, gasification performance, and biomass injection stability in a continuous feeding 
mode of operation. 

 
2 Details of this chapter consist of three peer-reviewed articles: 

• S. Chuayboon, S. Abanades, S. Rodat, Chem. Eng. Process. Process Intensif. 125 (2018) 253-265. 
• S. Chuayboon, S. Abanades, S. Rodat, Renew. Energy. 130 (2019) 360–370. 
• S. Chuayboon, S. Abanades, S. Rodat, Fuel Process. Technol. 182 (2018) 1–14.  
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Figure 3-1. Photographs of the different biomass feedstocks. Types A and B are beech wood 
while types C, D and E are resinous mix wood (the unit scale on the ruler is 1 cm). 

 

Table 3-1. Characteristics of the different biomass feedstocks (elemental composition 
determined via flash combustion to quantify C, H, N, S, and O by difference). 

Type 
Biomass 
specie 

Low 
heating 
value 

(MJ/kg) 

Mean 
particle 

size 
(mm) 

Apparent
density 
(g/cm3) 

Proximate analysis (wt 
%) 

Ultimate analysis 
(wt %) 

Moisture Ash C H O S N 

Type A 
Beech 
(C6H9O4) 

18.29 1 0.201 8.9 0.46 48.3 6.7 44.4 <0.1 0.11 

Type B 
Beech 
(C6H9O4) 

18.38 4 0.222 8.9 0.57 48.5 6.7 44.1 <0.1 0.11 

Type C 
Resinous mix 
(C6H11O4) 

17.66 0.55 0.194 7.3 0.46 49.9 7.1 42.4 <0.1 0.12 

Type D 
Resinous mix 

(C7H11O4) 
18.3 0.3 0.140 9.3 0.29 52.8 7.1 40.7 <0.1 0.14 

Type E 
Resinous mix 
(C7H11O4) 

17.4 2 0.124 9.2 0.28 52.3 7.2 40.1 <0.1 0.09 

 

3.2.2 Solar reactor 

Fig. 3-2 shows the schematic diagram of the continuously particle-fed solar biomass 
gasifier driven by real high-flux solar radiation. The system includes the solar gasifier coupled 
with an automatic feedstock delivery system, gas injection, gas cleaning, particle separation 
and gas analysis unit. This solar reactor was designed and tested by Bellouard et. al [143], and 
the main details on this solar reactor have already been described in the previous Chapter. The 
additional information is summarized here. 

The design of the solar reactor is based on the concept of conical spouted bed reactor. 
This reactor is flexible and displays high solid and gas residence times and enhanced heat and 
mass transfer via particle-gas circulation [122]. The stainless steel water-cooled reactor shell 
is cylindrical. Its reaction chamber consists of an axisymmetric cylindrical cavity receiver made 
of FeCrAl alloy, and its bottom part features a conical shape with a 60° angle according to 
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Fig.3-3 left. The cavity is insulated with a 30 mm thick layer of alumino- silicate, which can 
withstand temperatures up to 1600 °C. The top of the cavity is covered by an alumina cap with 
a 20 mm-diameter aperture and then a 2 mm-thick zirconia felt to minimize heat losses. 
Subsequently, an additional protective graphite layer (2 mm-thick) with a 15 mm diameter 
aperture is positioned at the focal point above the zirconia felt to protect the alumina cap from 
the high-flux radiation in the case of sudden changes in focal point position. The solar reactor 
is closed by a hemispherical transparent glass window and heated by the high-flux solar 
radiation delivered by a solar concentrator (2 m diameter parabolic dish with 0.85 m focal 
distance and with peak flux density of ~10 MW/m2 for a DNI of 1 kW/m2). The maximum 
solar power absorbed by the cavity via the aperture is 1526 ± 30 W (for a DNI of 1 kW/m2). 
 

 
Figure 3-2. Schematic of the continuously-fed solar biomass gasifier and auxiliary 

components. 
 

 
Figure 3-3. 3D cross section of the spouted bed solar reactor (left) and particle trajectory in 

the reactor cavity (right) [122]. 
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The automatic biomass feeding system is composed of a hopper (1.15 L capacity) and 
a screw feeder (40 cm length) driven by an electrical motor. B-type thermocouples are inserted 
inside the conical part of the cavity for measuring the temperatures during experiments (T1 at 
the cavity center, and T3 near the bottom of the cavity in the conical region) and at the external 
cavity surface (T2). Their tips are enveloped within an alumina shielding tube in order to protect 
them from the reacting gases.  To confirm the thermocouple measurements, a “ solar- blind” 

optical pyrometer ( Impac, operating at 4. 8- 5. 2 µm in a H2O absorption band)  placed at the 
center of the parabolic mirror is utilized to directly measure the temperature inside the cavity 
through a calcium fluoride window (installed at the top of the transparent window). Three 
pressure measurements are employed for monitoring the pressures in the window area (P1), 
cavity (P2), and hopper (P3). A Venturi pump is positioned at the end of the outlet tube for 
controlling and maintaining the chamber pressure below 1 bar (~0. 85 bar for atmospheric 
pressure at site elevation) throughout the tests, and a pressure safety valve is also installed. 
The injected gases consist of Ar and steam flows. The Ar flows are supplied and controlled by 
mass flow controllers (MFC, Brooks Instruments model SLA5850S, 0-5 Nl/min ± 0.2% of full 
scale) , while the liquid water flow is supplied by a mass flow controller ( Horiba, 0-30 g/h ± 
1% of full scale) . Filtering and gas cleaning units comprising a bubbler and two micro filters 

( pore diameter:  0. 1µm) are installed at the outlet tube to eliminate steam and condensed 
particles (char and tars) from the gas products prior to gas analysis. 

The gas analysis unit consists of an on- line syngas analyzer ( GEIT 3100)  and a gas 
chromatograph (micro GC, Varian CP4900). The syngas analyzer measures continuously the 
syngas composition (one recording every 3 s).  H2 concentration is measured by utilizing a 
thermal conductivity detector, while the concentrations of CO, CO2, and CH4 are measured by 
using sensors equipped with NDIR cells.  In addition, the GC is utilized for measuring the H2, 
CO, CO2, CH4, and C2Hm (C2H2, C2H4 and C2H6) concentrations after gas sampling every ~2 
min. Finally, all the data derived from the mass flow controllers, thermocouples, pyrometer, 
and pressure transducers are recorded by an automated data acquisition system (BECKHOFF). 

 

3.2.3 Procedures  

Prior to solar-driven experiments, the particle screw feeder was calibrated at ambient 
temperature for the different biomass feedstocks, in order to achieve the targeted particle mass-
flow rate during solar experiments. A given amount of biomass feedstock is placed into the 

hopper, and subsequently the feeding system is tightened to the injection port on the side of the 
reactor. The reactor cavity is then flushed with Ar and concomitantly sucked with the Venturi 
pump to remove residual air from the system. Then, the solar gasifier is progressively solar-
heated (Fig. 3-4a) to the targeted temperature in the range of 1100-1300 °C. 
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Figure 3-4. (a) On-sun experimental testing of the biomass gasifier and (b) hot reactor cavity 

after solar heating: (1) pyrometer; (2) 2-m diameter parabolic solar concentrator; (3) solar 
reactor; (4) gas product outlet tube; (5) reactor frame to adjust the reactor in 

upward/downward directions with respect to the focal plane; (6) electrical motor; (7) Ar inlet 
tube; (8) hopper; (9) reactor aperture; (10) protective graphite plate. 

 
During solar heating, the Ar protective flow (2 Nl/min) is fed in the upward direction 

into the transparent window area via two stainless steel tubes, which are inserted through the 
insulation layer, and subsequently enters the cavity through the aperture in the downward 
direction, thereby preventing the hot gases as well as the particles deposition on the window 
surface. Another Ar protective flow (0.5 Nl/min) is also injected through the feeding system to 
prevent back-flow of hot gases from the cavity into the biomass injector passage. The 
homogeneous temperature and low gradient in the reaction zone is confirmed by a small gap 
between T1 and T3, while Tpyrometer is lower as a result of the selected slightly over-estimated 
emissivity (=1) for the cavity (Fig. 3-5a). 

 

 
Figure 3-5. (a) Pressure, temperatures and syngas species evolution during heating phase and 

feedstock injection, (b) solar power input and DNI evolution during feedstock injection 
period (Run No.12). 

Once the desired temperature is reached (40 min to reach 1300 °C in the cavity, Fig. 3-
5a), the water is introduced along with Ar carrier gas (0.2 Nl/min) through a vertical alumina 
tube (2 mm i.d.) at the bottom of the conical cavity. Water is first vaporized before entering the 
cavity and then steam is entrained by the Ar flow, thereby delivering continuous steam flow 
inside the cavity. Subsequently, biomass feedstock is continuously fed into the hot cavity 
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receiver (Fig. 3-4b) until complete feedstock load injection. Therefore, the steam gasification 
reaction proceeds in a continuous mode.  The trajectory of the biomass particles is presented 
schematically in Fig. 3-3b. Note that the steam/biomass ratio was kept constant at a slightly 
over-stoichiometric ratio (10% of excess water) by referring to Fig. 3-6. 

 

Figure 3-6. Relation between the mass flow rates of steam and biomass feedstocks for a 
stoichiometric ratio (H2O/biomass molar ratios of 2 for biomass types A, B and C and 3 for 

biomass types D and E, including biomass moisture content in the calculation). 
 

During feeding, the solar power input is adjusted by the means of a shutter to stabilize 
the operating temperature while the DNI remained stable throughout the tests (Fig.3-5b). The 
produced gases constantly exit the reactor and subsequently flow into the gas cleaning and 
filtering prior entering the gas analysis system. The gas species concentrations are continuously 
measured by the online-gas analyzer while the GC measurements are performed every 2 min 
(Fig. B-1in Appendix B). The production rates of secondary hydrocarbons (CnHm) measured 
by GC include the C2H2, C2H4, and C2H6 (the latter being in negligible amounts). After the test, 
the outlet components are weighted again for mass balance.  

The time-dependent production rate of each gas species (��) is calculated from the known 
flow rate of inert gas (FAr) and the measured species mole fractions (��): (�� = ��� ∙ �� ���⁄ ). 
Then, both the averaged syngas composition (over the experiment duration) and the syngas 
yields (mol/g of dry biomass) are calculated by time integration of the gas production rates. 
The performances of the reactor are then quantified. A representative experiment of steam 
gasification with continuous biomass injection and the evolutions of syngas production rates at 
1300 °C are shown in Figs. B-1 and B-2. 

The energy upgrade factor (U) represents the ratio of the energy content of the chemical 
products to the calorific value of the biomass feedstock: � =

��������� ∙ �̇������������������  ∙ �̇���������     (3-1) 

Where LHVsyngas and LHVfeedstock are the lower heating values (J/kg) of syngas products and 
biomass feedstock, and �̇������  and �̇���������  are the mass flow rates (kg/s) of syngas 
products and biomass feedstock, respectively. 
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The solar- to- fuel energy conversion efficiency (������−��−����) represents the ratio of 
the chemical energy of the syngas produced to the total energy input (both solar power and 
calorific value of the biomass feedstock): 

 ������−��−���� =
(��������� ∙ �̇������)�̇�����+(������������ ∙ �̇���������)   (3-2) 

Where �̇����� is the solar power input (W).  
 

The thermochemical reactor efficiency represents the ratio of solar energy absorbed by 
the reactor that is used to drive the chemical reaction, and to heat steam, inert gas, and solid 
reactant: �������� =

�̇ℎ������+�̇���������̇�����      (3-3) 

 
The mass conversion rate is defined as the ratio of net output ( syngas, solid products 

and unconverted water) to net input (biomass and water), which indicates if the mass balance 
is well closed: � =

������� + ������ ��������+������������� + ��������      (3-4) 

 
The carbon conversion is defined as the ratio of the carbon yield in the syngas to the 

initial amount of carbon in the biomass feedstock (Fi represents the molar flow rate of species 
i, mol/s): �� =

∫ ���(�)�
0

�� + ∫ ���2
(�)�

0
�� +∫ ���4

(�)�
0

�� +∫ 2��2��(�)�
0

��∫ ��������(�)�
0

��    (3-5) 

 
Note that incomplete carbon conversion is the results of some unconverted tars and char 

remaining after the experiments and collected in the different outlet components.  

The mean gas residence time () represents the average amount of time that the gases 

spend inside the cavity volume at the actual reactor temperature and pressure. 

The solar energy storage fraction (������ ��������) is defined as the ratio of the solar-

upgraded chemical energy of the produced syngas to the solar energy input: 
 ������ �������� =

  ������������ ∙ �̇����������̇����� (� − 1)    (3-6) 

 
The whole operating conditions and experimental results for 64 solar-driven 

experiments using the directly-irradiated solar gasifier are summarized in Appendix B (Table 
B-1). 
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3.3 Experimental study of the solar gasification process 

3.3.1 Material mass balance 

Based on the initial amount of reactants fed into the solar gasifier (biomass and steam) 
converted into the syngas (quantified by integrating the calculated mass flow-rates of the main 
gas products), the solid char (recovered in the outlet components) and the unconverted water 
(trapped in the bubbler), the material mass balance was performed. Char was not found in the 
cavity after solar tests confirming complete gasification and it was only recovered in the outlet 
components (trapped in bubbler along with unconverted water and filters). Fig. 3-7 shows the 
overview of the mass balance, using the data from typical experiments regarding the highest 
energy upgrade factor for each biomass type at 1300 °C. The mass balances were closed beyond 
99% for biomass types A, D and E (Fig. 3-7). Actually, most of them achieved values above 
95%, thereby indicating that complete feedstock gasification was reached. Remarkably, the 
amount of solid residues remaining in the cavity after experiments was negligible (due to low 
ash content in the range of 0.28-0.46 wt % in the initial biomass as shown in Table 3-1). 
 

 
Figure 3-7. Overview of representative mass balances for biomass gasification at 1300 °C 
(biomass types A: Run No.17, B: Run No.32, C: Run No.42, D: Run No.54 and E: Run 

No.64). 
 
3.3.2 H2O/biomass molar ratio influence 

The influence of H2O/biomass molar ratio on the gas species molar fraction and yield 
(on dry matter basis) was experimentally investigated at 1200 °C for biomass type B and 
1300 °C for biomass Type A. At 1200 °C, the biomass flow-rate was set at 1.2 g/min while the 
steam flow-rates were controlled at 163, 200, and 500 mg/min, resulting in H2O/biomass molar 
ratios of 2 (stoichiometric ratio), 2.3 (slightly over-stoichiometric ratio) and 4.5 (largely over-
stoichiometric ratio), respectively. At 1300 °C, the biomass feeding rate was kept constant at 
~2.2 g/min while adjusting H2O flow-rates at 200, 300 and 500 mg/min, leading to 
H2O/biomass molar ratios of 1.6 (under-stoichiometric ratio), 2.1 (slightly over-stoichiometric 
ratio) and 2.8 (largely over-stoichiometric ratio), respectively. Note that stoichiometric ratio 
(based on Eq. 1-16) of both biomass type A and type B was 2 and the moisture content (8.9% 
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wt. in Table 3-1) contained in the biomass was taken into account for the calculation of 
H2O/biomass ratio. 

At 1200 °C (Fig. 3-8a and Fig.3-8b), the CO2 and H2 mole fractions increased when 
increasing H2O/biomass ratio, then resulting in the increase of total syngas yield, from 66.1 
mmol/gbiomass at stoichiometric ratio of 2 to 69.0 mmol/gbiomass at stoichiometric ratio of 4.5. 
The highest mole fractions of CO2, H2, and CH4, and the lowest mole fraction of CO were 
found at the highest H2O/biomass ratio. The variations of CO, H2, and CO2 mole fractions can 
be explained by the excess of water that reacts with CO and favors CO2 and H2 formation via 
the water gas shift reaction (CO+H2O → CO2+H2). Regarding stoichiometric ratio 
(H2O/biomass =2), CO mole fraction was lower while C2Hm and CH4 mole fractions were 
higher when compared with H2O/biomass ratio of 2.3, while the lowest CO2 mole fraction 
(0.047) was noticed. The CH4 mole fraction increased considerably either at the lowest or at 
the highest H2O/biomass ratio. On the one hand, the lack of water implies that CH4 reforming 
is not favored (CH4+H2O → CO+3H2), explaining the high CH4 content. On the other hand, a 
large excess of steam injected induces an increase of the volumetric gas flow that reduces the 
gas residence time, which in turn results in high CH4 content in the produced syngas. For these 
reasons, an indication about the optimal syngas production was found at the H2O/biomass 
molar ratio of 2.3 with regard to the highest mole fraction of CO and H2 and the lowest mole 
fraction of CH4 and C2Hm produced. Similar to the results shown in Fig. 3-8a and Fig.3-8b, the 
optimal syngas production at 1300 °C was found at the slightly over-stoichiometric ratio 
(H2O/biomass = 2.1), regarding the highest H2 and CO production, which results in the H2/CO 
molar ratio of 1.35, according to Fig. 3-8c and Fig.3-8d). This condition also leads to the 
maximum energy upgrade factor (U) of 1.12 (1.17 when accounting for the amount of C2Hm) 
and syngas yield (75.1 mmol/gbiomass) and the lowest amounts of C2Hm and CH4. Therefore, the 
limited excess of H2O with respect to the stoichiometry is very necessary for favoring H2 and 
CO production. In addition, the increased amount of C2Hm at the highest and the lowest 
H2O/biomass molar ratios has a positive impact on the increase of U (due to the high calorific 
value of C2Hm) but a negative impact on syngas quality. Hence, the highest value of U when 
accounting for the C2Hm quantity cannot point out the optimal condition of syngas production. 
The values of U without including the calorific value of C2Hm are thus also specified to better 
reflect the parameters influence on syngas quality. 



Chapter 3: Solar gasification of biomass 

80 
 
 

 
Figure 3-8. Influence of H2O/biomass molar ratio on (a,c) average syngas composition and 

(b,d) syngas yield and energy upgrade factor (1200 °C (biomass type B) and 1300 ºC 
(biomass type A)). 

 

3.3.3  Gas residence time influence 

The residence time () that gases spend inside the cavity volume, where the reaction 
happens, was evaluated (calculated as the ratio of the cavity volume to the total output syngas 
volumetric flow-rate produced at the actual reactor pressure and temperature conditions). It is 
a crucial factor that affects the performance of a gasification process. In fact, the residence time 
is directly changed by adjusting the carrier gas flow rate. For this study, argon (Ar) was used 
as carrier gas while both biomass type A and type B were employed as carbonaceous feedstock 
to experimentally determine the influence of residence time on syngas production at 1200 °C 

for type B and 1300 °C for type A under a continuous biomass injection. At 1200 °C, biomass 
type B (30 g) was fed at 1.2 g/min while keeping a constant steam flow at 200 mg/min 
(H2O/biomass molar ratio=2.3); then, the total Ar flow-rates were varied at 2, 2.7, and 3.2 
Nl/min. At 1300 °C, biomass type A (30g) was fed at 1.5 g/min while injecting steam at 200 
mg/min (H2O/biomass molar ratio=2.1). Then experiments were carried out by changing Ar 
flow-rate at 2, 2.3 and 3.3 Nl/min. Although the inert gas flow rate also affects the steam partial 
pressure, the steam fed at the cavity bottom is well mixed with the feedstock and char 
gasification should not be limited by steam supply. It is however possible that the steam partial 
pressure modification (due to dilution with inert gas) could affect the gas-phase reactions. 
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Fig. 3-9a depicts the average mole fraction and quantity of syngas produced at different 
flow-rates of carrier gas at 1200 °C. H2 and CO2 mole fractions decreased, but C2Hm and CH4 

mole fractions increased while CO mole fraction tended to slightly increase when increasing 
the carrier gas flow-rate. According to Fig. 3-9b, the amounts of H2, CO and CO2 dropped 
markedly while the amounts of C2Hm, and CH4 increased slightly with the increase of carrier 
gas flow-rate, thus resulting in the reduction of the total syngas yield and energy upgrade factor. 
These results can be explained by the reduction of the gas residence time (from 0.87 second at 
2 Nl/min to 0.67 second at 3.2 Nl/min) that directly decreases when increasing the carrier gas 
flow-rate. Therefore, the reaction duration in the gas phase is reduced, thus lowering the extent 
of gasification reactions. Hence, the higher the carrier gas flow-rate, the lower the amount of 
H2 and CO and the higher the amount of C2Hm, CH4, and CO2. Similar to the results shown in 
Fig. 3-9a and Fig. 3-9b, increasing the carrier gas flow also has adverse influence on syngas 
yield and energy upgrade factor at 1300 °C, according to Fig. 3-9c and Fig. 3-9d. As a result, 
the carrier gas flow should be maintained as low as possible in order to increase the gas 
residence time; nevertheless, sufficient amounts of carrier gas flow are essential to sweep 
product gases as well as to protect the window at the expense of additional energy consumed 
for inert gas heating. 

 

 
Figure 3-9. Influence of carrier gas flow-rate (residence time) on (a,c) average syngas 

composition and (b,d) syngas yield and energy upgrade factor (1200 °C (biomass type B) and 
1300 ºC (biomass type A)). 
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3.3.4 Temperature influence 

Five different carbonaceous feedstocks were utilized for examining the influence of the 
temperature on syngas production from steam biomass gasification at the considered operating 
temperatures of 1100 ºC, 1200 ºC and 1300 ºC (T3 is the nominal-mentioned temperature for 
experiments). The continuous biomass feeding rate was set at 1.2 g/min while the steam flow-
rate was controlled at the slightly over-stoichiometric flow (10% of excess water) by referring 
Fig. 3-6 (depending on biomass type). Ar flow rates were set at 2.7 Nl/min, except at 1100 °C 
for biomass types A and D (3.3 Nl/min). Note that when focusing on the effect of biomass 
feeding rate, it is quite difficult to operate the solar reactor during long-duration biomass 
injection at high biomass feeding rate (>1.2 g/min) when considering low operating 
temperature (1100 °C). Indeed, the kinetic rate of the gasification reaction is slow, which in 
turn leads to the biomass accumulation in the reactor cavity (the rate of the gasification reaction 
is lower than the biomass feeding rate). This effect can sometimes be visually observed by the 
excessive presence of smoke (pyrolysis gases) in the reactor during the gasification process, 
dirtying the window, as depicted in Fig. B-3. For this reason, the biomass feeding rate was 
maintained below 1.2 g/min. 

The syngas yields at different temperatures along with the evolution of energy upgrade 
factors (U) (either accounting for the calorific value of C2Hm or not) during steam gasification 
are represented in Fig. 3-10 for each type of biomass. Additional experiments were also 
performed with different operating parameters (steam and biomass feeding rate) to validate the 
effect of temperature (Fig. B-4). 

 

 
Figure 3-10. Temperature influence on syngas yields and energy upgrade factors for biomass 

types A- E (biomass feeding rate: 1.2 g/min). 
 

Overall, the quantities of produced H2 and CO increased strongly while the amounts of 
C2Hm, CH4, and CO2 decreased significantly with temperature, independently of the biomass 
type and particle size. For example, the quantities of H2 and CO for biomass type C increased 
(from 24.9 and 21.2 mmol/gbiomass at 1100 °C to 35.8 and 26.7 mmol/gbiomass at 1300 °C), while 
the quantities of C2Hm, CH4 and CO2 decreased (from 1.9, 4.4 and 4.1 mmol/gbiomass at 1100 °C 
to 0.9, 1.7 and 2.5 mmol/gbiomass at 1300 °C, respectively). The substantial increase in the 
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produced H2 and CO with the temperature induces the rise of the total syngas yield (despite the 
reduction of C2Hm, CH4 and CO2 quantities), thus resulting in high-quality syngas. These 
results are chiefly explained by the significant enhancement of the kinetic rate of gasification 
(C + H2O → CO + H2) and steam methane reforming (CH4 + H2O → CO + 3H2). Thus, the higher 
the temperature, the higher the reaction kinetics and the higher the syngas yield. This was 
confirmed by an increase of the H2 and CO production rates with temperature according to both 
Fig. 3-11a and the Arrhenius equation (Fig. B-5). The maximum H2 and CO production rates 
were noticed for the lowest biomass particle size (type D, 0.3 mm) with high H and C contents 
(Table 3-1). 
 

 
Figure 3-11. (a) Nominal H2 and CO production rates measured at steady state and (b) carbon 

feeding and carbon consumption rates for each biomass type as a function of temperature 
(constant biomass feeding rate of 1.2 g/min for each biomass). 

 
  The obtained activation energy (Ea) of the syngas production mechanism, determined 
from the slope of the line in Fig. B-5, was consistent with biomass particle size (low particle 
sizes feature a lower Ea, thus favoring rapid gasification rates). For example, the Ea values 
(Table B-3) for H2 and CO increased from ~24 kJ/mol (at 0.3 mm size for biomass type D) to 
~29 kJ/mol (at 4 mm size for biomass type B). This denotes the sensitivity of the gasification 
rate to the particle size. Moreover, the Ea values obtained independently from H2 and CO rates 
evolution were similar for any biomass type, thus indicating that the H2 and CO production 
rates are mainly governed by the same global reaction mechanism (Eq. 1-16). 

In addition, the carbon consumption rate was determined (Fig. 3-11b) by assuming that 
it is equivalent to the summation of the carbon production rates contained in the produced CO, 
CO2 and CH4. The carbon consumption rate increased significantly with temperature, while the 
carbon feeding rate (i.e., the carbon contained in the fed biomass) for each biomass type was 
kept constant. This clearly demonstrates that increasing temperature hastened the rate of 
biomass gasification, thus enhancing ultimately the syngas yield. The lowest carbon 
consumption rates were observed at the lowest temperature (1100 °C), which denotes that the 
gasification rate is too low to completely convert the injected biomass, as confirmed by the 
presence of smoke (Fig. B-3). Moreover, the biomass type D (smallest size) shows higher 



Chapter 3: Solar gasification of biomass 

84 
 
 

carbon consumption rate than other biomass types and the carbon consumption rate matches 
the carbon feeding rate at 1300 °C, thus confirming complete conversion of biomass feedstock 
and proper reactor operation (the feeding rate must equal the consumption rate for reliable 
continuous operation). This also points out that small particle sizes favor the reactivity [144].  

Due to very similar chemical compositions between biomass types A and B and 
between biomass types D and E, the effect of their particle size can be studied and compared. 
According to Fig. 3-10, both the syngas yields and energy upgrade factors (U) of biomass type 
A were not significantly different as compared to those of biomass type B (except for biomass 
type A at 1100 °C for which a higher amount of C2Hm and CO and a lower amount of H2 were 
observed, resulting from a higher carrier gas (Ar) flow that directly results in a drop of the 
residence time as described in the previous section). Concerning biomass type D compared to 
type E, the total syngas yields and energy upgrade factors were slightly greater at 1300 °C for 
biomass type D, but the inverse trend was detected at 1200 °C while their results at 1100 °C 
cannot be compared due to the effect of different Ar flow. Despite this issue, the effect of 
temperature on syngas production can clearly be observed. Regarding the particle size 
influence, it can be presumed that the syngas yields were not significantly affected by the 
considered particle size in the range of 0.3-4 mm. This means that heat and mass transfers are 
not limiting factors for the gasification reaction in this particle size range. 

Besides, it is interesting to notice that the evolution trend of U when accounting for 
C2Hm is less sensitive to temperature than without accounting for C2Hm because the C2Hm 

production is favored at lower temperature due to lower gasification kinetics. This leads to the 
highest C2Hm produced at the lowest temperature, which in turn increases U because of the 
high calorific value of C2Hm.  

Furthermore, the presence of ashes remaining in the reactor after experiments decreased 
considerably with increasing temperature according to Fig. B-6. This indicates that ashes were 
melted when the temperature increased 

Fig. 3-12 displays the influence of temperature on performance indicators (U, XC, solar-

to-fuel, reactor, solar power and solar energy inputs) for different biomass types at 1.2 g/min. 
According to Fig. 3-12a, U increased with temperature as a result of the increase of XC (Fig. 
3-12b). The lowest U value of 0.91 was obtained for biomass types A and C at 1100°C, while 
the highest U value of 1.13 was obtained for biomass type D at 1300 °C. A temperature increase 
improved XC, and the highest XC value of 80.6 % was reached at 1300 °C (biomass type A) 
while the dependence of XC on biomass type was observed.  

Small gaps in U between biomass types A and B and between biomass types D and E 
were noticed due to their similar chemical compositions, thus unveiling that the variations of 
U are related to their elemental composition as a characteristic of the carbonaceous feedstock 

[126]. However, the effect of particle size on U and XC was not obvious. Noticeably, solar-to-

fuel (Fig. 3-12c) reached the highest values at 1200 °C (e.g., 20.4% for biomass type D). It 
subsequently decreased slightly at 1300 °C. This is because the required solar power input was 
higher at 1300 °C (above 1.2 kW according to Fig. 3-12d), which in turn results in higher heat 

losses. The solar-to-fuel of biomass type D at 1200-1300°C were greater than those of other 
biomass types. This can be attributed to its different physical and chemical properties (smallest 
mean particle size and highest H and C content, Table 3-1) that favor both reaction rates [144] 
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and reaction extent (enhanced H2 and CO yields) while the required solar energy input remains 

similar (Fig. 3-12f), thereby leading to higher solar-to-fuel. In addition, reactor (Fig. 3-12e) 

followed the same trends as solar-to-fuel with the highest reactor values of 20.3% at 1200 °C for 
biomass type D. This is explained by the increased heat losses when increasing the temperature. 
However, a temperature increase offered significant benefits in promoting syngas yield, quality 
and reaction kinetics while reducing the formation of tars. For these reasons, a temperature 
trade-off needs to be considered to attain high syngas yield while minimizing heat losses. 

 
Figure 3-12. Temperature influence on (a) energy upgrade factor, (b) carbon conversion, (c) 
solar-to-fuel energy conversion efficiency, (d) solar power input (e) thermochemical reactor 
efficiency, and (f) solar energy input for different biomass feedstocks (C2Hm not included in 

the calculation). 
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3.3.5 Effect of biomass feeding rate on syngas production yield and rate 

The effect of biomass feeding rate (�̇feedstock) on both syngas production and reactor 
performance was investigated.  

The feedstocks (total amount of 30 g) were continuously fed (feeding rates in the range 
of 0.8-1.5 g/min (1100 °C), 0.6-2.2 g/min (1200 °C) and 0.6-2.7 g/min (1300°C)) and 

subsequently steam gasified at 1100, 1200 and 1300 °C. Note that the considered ranges of 
biomass feeding rate for each biomass type are different due to their physical characteristics 
(particle size and shape). The steam/biomass ratio was kept constant (10% of excess water) at 
a slightly over-stoichiometric ratio (Fig. 3-6). This ratio was selected based on the study of the 
H2O/biomass molar ratio influence. The stoichiometric H2O/biomass ratio is 2 for biomass 
types A, B and C and 3 for biomass types D and E, according to Eq. (1-16). Finally, the total 
Ar flow-rate was supplied at a constant flow of 2.7 Nl/min. 

Fig. 3-13 presents the syngas yields of H2, CO, CH4, CO2 and C2Hm for each biomass 
type as a function of biomass feeding rate at 1100, 1200, and 1300 °C (the effect of biomass 
feeding rate on syngas yield is detailed separately in Figs. B-7 at 1200 °C and B-8 at 1300 °C, 
Appendix B) .  

At 1100 °C, the lowest H2 and CO yields and the highest CO2, CH4, and C2Hm yields 
were observed, resulting from low gasification kinetics evidenced by the presence of pyrolytic 
gases as mentioned before. As a result, the maximum �̇feedstock can only reach 1.5 g/min, and 
no optimal �̇feedstock could be identified at this temperature. At 1200 °C, �̇feedstock was increased 
up to 2.2 g/min, and all gas yields rose with increasing �̇feedstock. When compared to 1100 °C, 
H2 (Fig. 3-13a) and CO (Fig. 3-13b) yields at 1200 °C were higher while CO2 (Fig. 3-13c), 
CH4 (Fig. 3-13d) and C2Hm (Fig. 3-13e) yields were lower as a result of the improved kinetics 
of gasification. At this temperature, the �̇feedstock of biomass type C reached its optimal point 
at 2.2 g/min (reflected by a stable pattern in H2, a slight decrease in CO, and a significant 
increase in CO2, CH4, and C2Hm). At 1300 °C, the highest H2 and CO yields and the lowest 
CO2, CH4, and C2Hm yields were noticed, demonstrating the highest syngas quality as well as 
syngas yield at this temperature. Moreover, the optimal �̇feedstock of biomass type A was highly 
approached, as evidenced by stable H2 and CO yields at 2.5-2.7 g/min, while that of biomass 
type C and biomass type D were determined to be 2.5 and 1.8 g/min, respectively. For example, 
the H2 and CO yields for biomass type C reached the maximum value of 39.2 and 29.1 
mmol/gbiomass at 2.5 g/min and then reduced to 37.6 and 27.9 mmol/gbiomass, respectively, at 2.7 
g/min, while the amounts of CO2, CH4, and C2Hm for biomass type C reached the maximum 
value of 4.0, 3.2, and 1.4 mmol/gbiomass, respectively, at 2.7 g/min, thus confirming the optimal 
feeding rate at 2.5 g/min. However, the optimum feeding point could not be found for the other 
biomass types due to the limitation of the maximum feeding rate. Trends of H2 yield between 
biomass types A and B and between biomass types D and E for any temperatures were not 
significantly different as a result of their similar initial chemical composition (Table 3-1). The 
H2 yields for biomass types D and E were considerably higher than for the other types owing 
to their higher initial hydrogen content (Table 3-1) while the trends of CO for each biomass 
were similar. In addition, smaller particle size showed a positive effect on syngas yield 
resulting from enhanced heat and mass transfer rates [145–147]. However, their compared 
trends (type A vs. type B, and type D vs. type E) remained similar. Hence, the biomass type 



Chapter 3: Solar gasification of biomass 

87 
 
 

(composition) showed more significant influence on syngas yield than the biomass particle size 
in the considered size range (0.3-4 mm). In summary, increasing the �̇feedstock enhanced syngas 
yield, at the expense of an increase in CO2, CH4, and C2Hm yields due to a lowered gas 
residence time, thereby showing adverse impact on syngas quality. This issue can be tackled 
by increasing the temperature to hasten the reaction kinetics, which in turn increases biomass 
consumption and syngas quality. However, exceeding an optimal �̇ feedstock point led to a 
reduction in syngas yield and biomass accumulation, as evidenced by biomass type C at 2.7 
g/min. The optimal biomass feeding rate was 2.2 g/min (1200 °C) and 2.5 g/min (1300 °C) for 
biomass type C, 1.8 g/min (1300 °C) for biomass type D, and was approached at 2.7 g/min for 
biomass type A. It could not be determined at 1100 °C because of pyrolytic gases generating 
smoke issue caused by low reaction kinetics as mentioned before. 

 
Figure 3-13. Syngas yields for different biomass feedstocks as a function of biomass feeding 

rate at 1100 °C, 1200 °C, and 1300 °C. 
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The biomass feeding rate influence on syngas production rates evolution at 1300 °C is 
presented in Fig 3-14 (representative biomass type A). It is clear that increasing biomass 
feeding rate both increased syngas production rates and decreased the operating duration time, 
thus improving both syngas yield and reactor performance (reduced heat losses). For instance, 
the biomass injection duration decreased significantly from 40-45 min at ~0.8 g/min to 11-18 
min at ~2.7 g/min, while the nominal H2 and CO production rates were 0.6 and 0.5 Nl/min at 
0.8 g/min compared to 2.4 and 2 Nl/min at 2.7 g/min respectively. 

 
Figure 3-14. Biomass feeding rate influence on (a) H2, (b) CO, (c) CH4 and (d) CO2 

production rates during gasification at 1300 °C (Biomass type A). 
 

Fig. 3-15 represents the H2 and CO production rates as a function of biomass feeding 
rate at 1200 and 1300 °C. Increasing the biomass feeding rate led to a substantial rise in H2 and 
CO production rates. For example, the H2 and CO production rates for biomass type D 
increased from 0.9 and 0.7 Nl/min at 0.8 g/min to 2.3 and 1.8 Nl/min at 2.2 g/min, respectively. 
Both the H2 and CO production rates at 1300 °C for any biomass type were obviously higher 
compared to those obtained at 1200 °C because the kinetic rate of gasification reaction at 
1300 °C was higher. The increase of syngas production rate with biomass feeding rate (linear 
correlation) was demonstrated.
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Figure 3-15. (a) H2 and (b) CO production rates (nominal steady-state values) as a function of 

biomass feeding rate at 1200 and 1300 °C. 
 

The biomass gasification rate (equivalent to the carbon consumption rate) was 
determined as a function of the carbon feeding rate at 1100, 1200, and 1300 °C for biomass 
types A, B, C, D, and E, and was further compared to the ideal carbon consumption rate for 
each biomass type (equal to the carbon feeding rate, i.e. the carbon contained in the fed 
biomass), as presented in Fig. 3-16. The carbon consumption rate is quantified by the 
summation of the nominal production rates of CO, CO2, and CH4 contained in the produced 
syngas (assuming that the C consumption rate and the summation of production rates of carbon-
containing gas species are equivalent), and achieved during continuous biomass injection (at 
steady state). The carbon consumption rate increased when increasing both temperature and 
biomass feeding rate regardless of biomass type. Typically, at 1300 °C the carbon consumption 
rate closely matched the carbon feeding rate at low feeding rates (linear tendency at 0.4-0.7 
g/min), which also means that the reactant feeding rate closely matched the rate of the 
gasification reaction. From a threshold value of carbon feeding rate, the carbon consumption 
rate became slightly lower than the carbon feeding rate at above 0.8 g/min (1300 °C), which 
means that the gasification rate was not high enough to convert totally the injected biomass. In 
other words, from this point, carbon accumulation in the reactor (due to incomplete biomass 
gasification) may occur if the feeding rate is too high with respect to the reactor capacity. An 
optimal value was observed for biomass type C at a carbon feeding rate of ~1.16 g/min 
(corresponding to 2.5 g/min of biomass feeding rate at 1300 °C). Both the carbon consumption 
rates and carbon feeding ranges at 1300 °C were greater and closer to the ideal carbon 
consumption rates for any biomass types, compared to those obtained at 1200 °C and 1100 °C. 
This is because the higher gasification kinetics at 1300 °C resulted in both higher carbon 
consumption rate and carbon feeding range. The impact of biomass feeding rate on syngas 
production capacity and reactor performance was thus evidenced. The carbon consumption rate 
at 1300°C matched closely the carbon feeding rate (provided the feeding rate was below a 
threshold value regardless of the biomass type). This means that 1300°C is a suitable 
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temperature to operate reliably the solar biomass gasifier in a stable continuous mode with a 
biomass conversion rate equal to the feeding rate.  

 

 
Figure 3-16. Comparison of the effect of carbon feeding rate on carbon consumption rate for 

each biomass type at 1100, 1200 and 1300 °C. 
 

3.3.6 Solar reactor performance and efficiencies 

The solar reactor performance at 1000 °C, 1200 °C, and 1300 °C for the representative 
biomass types A, C, and D was compared, according to Fig. 3-17. Note that the results of 
biomass types B and E were omitted as they are similar to the ones of biomass types A and D, 
respectively, due to similar chemical biomass composition; instead, the solar reactor 
performance for all biomass types at 1200 °C and 1300 °C is presented separately in Fig. B-9 

and Fig. B-10, respectively. As expected, both U (Fig. 3-17a) and XC (Fig. 3-17b) increased 
with �̇feedstock regardless of temperature and biomass type. At 1300 °C, trends in U and XC 
clearly leveled off at above 1.8 g/min, pointing out the optimal biomass feeding rate, and the 
maximum U values of 1.14, 1.10, 1.16, 1.20 and 1.15 (1.19, 1.15, 1.22, 1.24 and 1.19 when 
accounting for C2Hm) were identified for biomass types A (at 2.7 g/min), B (at 2.2 g/min), C 
(at 2.5 g/min), D (at 1.8 g/min) and E (at 1.5 g/min), respectively. The optimal �̇���������  with 

respect to the highest U value at 1300 °C was found at 2.5 and 1.8 g/min for biomass types C 
and D, respectively. These types of biomass exhibit the lowest particle sizes; hence, their 
gasification rate is more sensitive to the feeding rate. The overlapped trends of U between 
biomass types A and B and between biomass types D and E were due to their similar chemical 
properties, indicating a negligible impact of the biomass particle size on U for the considered 
size range (0.3−4 mm). In addition, the evolution of U consistently followed the same trend as 

XC (Fig. 3-17b). The highest and lowest XC values of 88.6% and 72.9% (90.4% and 76.2% 
when accounting for C2Hm) were obtained for biomass type A at 1300 °C (2.7 g/min) and 
biomass type E at 1100 °C (0.8 g/min), respectively. In comparison, both U and XC values at 
1300 °C were higher than those obtained at 1200 and 1100 °C (U and XC in the range of 1.04-
1.10 and 80.4-84.2% at 1300 °C compared to 0.91-0.95 and 77.6-79.8% at 1100 °C for biomass 
type A), thus confirming the enhancement of syngas yield and reaction extent at 1300 °C. 
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Moreover, a rise in �̇feedstock increased solar-to-fuel (Fig. 3-17c) because the total solar energy 
input (Fig. 3-17d) was lowered (due to the significant reduction in the biomass injection 
duration) even though the solar power input (Fig. 3-17f) was increased consistently with �̇feedstock for maintaining the isothermal operating temperature. For example, solar-to-fuel for 

biomass type A increased from 12.4% at 0.8 g/min to 26.6% at 2.7 g/min. The maximum solar-

to-fuel values of 26.6%, 25%, 27.6%, 25.3%, and 21.2% (27.8%, 26.0%, 29.0%, 26.3%, and 
21.8% when accounting for C2Hm) were achieved for biomass types A (at 2.7 g/min), B (at 2.2 

g/min), C (at 2.5 g/min), D (at 2.2 g/min) and E (at 1.5 g/min), respectively. The solar-to-fuel of 
biomass type C noticeably decreased at 2.7 g/min, confirming that exceeding the optimal �̇ feedstock feeding point adversely resulted in incomplete gasification, thus leading to solid 
reactant accumulation and temporal stop in the biomass feeding to let the accumulated reactant 
being gasified. In this case, the injection duration was in turn extended, leading to an increase 

in the solar energy input (Fig. 3-17d). In comparison, solar-to-fuel (Fig. 3-17c) at 1200 °C was 
slightly higher that that at 1300 °C as both the solar energy (Fig. 3-17d) and power inputs (Fig. 
3-17f) were considerably lower, while the product syngas yield was not drastically different. 

For example, solar-to-fuel for biomass type A was in the range of 18.1-20.6% at 1200 °C 

compared to 17.3-20.8% at 1300 °C, respectively. However, solar-to-fuel at 1100 °C was still 
lower than that at 1200 °C as a result of the downgraded gasification performance. Similar to 

solar-to-fuel, reactor (Fig. 3-17e) rose with �̇feedstock, ranging between 15.3-25.3%, 17.3-24.2%, 
17.9-27.0%, 16.1-24.0% and 15.7-21.2% for biomass types A, B, C, D and E, respectively, 
indicating an efficient solar energy utilization and conversion, and leading to a reduction of the 
heat losses. Moreover, ��������  dropped when �̇���������  was over its optimum point (2.5 

g/min for biomass type C) as a result of biomass accumulation and extension of the reaction 
duration, as mentioned before. In summary, an increase in both biomass feeding rate and 
temperature is substantially favorable for increasing solar gasification performance because 
reaction kinetics and biomass consumption rates are enhanced. However, heat losses increase 

consistently with temperature, which adversely leads to a reduction in both solar-to-fuel and 

reactor at 1300 °C. The maximum U, XC, solar-to-fuel, and reactor were consistently obtained at 
the optimal feeding point, in agreement with maximum syngas yield and biomass gasification 
rate (Fig. 3-13 and 3-16).  



Chapter 3: Solar gasification of biomass 

92 
 
 

 
Figure 3-17. Comparison of the effect of biomass feeding rate at 1100 °C, 1200 °C and 1300 
°C on (a) energy upgrade factor, (b) carbon conversion,(c) solar-to-fuel energy conversion 
efficiency, (d) solar energy input, (e) thermochemical reactor efficiency and (f) solar power 

input (C2Hm not included in the calculation). 
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3.3.7 Energy balance 

Fig. 3-18 shows the distribution of the solar power consumption and energy partition 
of the solar reactor at different biomass feeding rates at 1300 °C (biomass type A). The solar 

power consumed for heating biomass (�̇�������) and steam (�̇�����) at 1300 °C increased 

consistently with �̇��������� (from 0.024 and 0.016 kW at 0.8 g/min to 0.058 and 0.034 kW at 

2.7 g/min). The amount of solar power devoted to the chemical reaction (�̇��������) increased 
sharply with the rise of �̇��������� (from 0.090 kW at 0.8 g/min to 0.219 kW at 2.7 g/min) 

because it is utilized for providing the reaction enthalpy (∆H° = 0.8 MJ/mol, 1.2 MJ/mol at 

Treactor (1200 °C)). The amount of solar power consumed for inert gas heating (�̇��) remained 
the same (0.054 kW) as the inert gas flow rate was kept constant at 2.7 Nl/min over all 
experimental tests (dilution factor of the syngas by Ar in the range of 1.6-3.3 for the conditions 
displayed in Fig. 3-18). Thus, the sensible heat losses associated to the energy consumed by 
inert gas were significantly reduced when increasing �̇���������  as the processing duration 

was shortened. Obviously, increasing �̇���������   resulted in the increase of the total solar 

power consumption ranging from 0.185-0.364 kW at 0.8-2.7 g/min, which is accompanied by 
the increase of solar power input ranging from 1.20-1.44 kW. As mentioned above, the major 
part of the solar energy was devoted to chemical reaction, followed by inert gas, biomass, and 

lastly steam heating, but �̇������� became higher than �̇�� above 2.5 g/min.  
The results from Fig. 3-18a were used to calculate the energy partition for the solar 

reactor given as percentage of the average solar power input over the entire experimental tests 
(Fig. 3-18b). The amounts of heat losses decreased considerably with �̇���������  (from 84.7% 

at 0.8 g/min to 74.7% at 2.7 g/min). Thus, increasing �̇��������� enhances the efficient 

utilization of the solar energy input leading to a reduction of the heat losses, thereby pointing 
out the benefits of biomass feeding rate adjustments. This asset also allows for the treatment 
and conversion of a higher amount of biomass with the same amount of solar energy input and 
determines the reactor potential. 

Nevertheless, exceeding the optimal point of �̇���������  (2.7 g/min for biomass type C 

in Fig. 3-19a) resulted in a reduction of the solar power consumption because of an adverse 
impact of both the lowered gas residence time and the solid reactant accumulation in the reactor 
cavity. In this case, the injection of biomass needs to be temporarily stopped to let the residual 
reactants being steam gasified at the expense of the additional solar energy consumption due 
to the extension of injection duration, which in turn results in the increase of the heat losses 
(Fig. 3-19b at 2.7 g/min) in agreement with a decrease in syngas yield (Fig.3-13), biomass 
gasification rate (Fig. 3-15 and 3-16), and reactor performance (Fig. 3-17).  
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Figure 3-18. Solar power consumption for biomass type A and (b) energy partition for the 

solar reactor given as percentage of the total solar power input averaged over the entire 
experimental test at 1300 °C.  

 
Figure 3-19. (a) Solar power consumption for biomass type C and (b) energy partition for the 

solar reactor given as percentage of the solar power input averaged over the entire 
experimental test at 1300 °C.  
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3.3.8 Solar energy storage fraction  

The solar energy storage fraction (������ ��������) represents the amount of solar energy 

actually stored and upgraded in the form of syngas with respect to the energy content of the 
biomass feedstock. Fig. 3-20 shows the ������ ��������  for biomass type C as a function of 

biomass feeding rate compared with the theoretical solar energy storage fraction at different 
values of energy upgrade factors (assuming U values from 1.05 to 1.25 in Eq. 3-6) at 1300 °C. 

The experimental pattern approached the theoretical solar storage fraction, which can be used 
to estimate the solar energy stored in the produced fuel at different �̇��������� . The  ������ �������� increased with �̇���������  and attained the optimal value of 8.3% (11.6% when 

accounting for C2Hm) at 2.5 g/min for biomass type C, meaning that this portion of the solar 
energy input was successfully stored in the produced syngas.  

 
Figure 3-20. Solar energy storage fraction for biomass type C as a function of biomass 

feeding rate at 1300 °C (using Qsolar reported in Fig. 3-19a for the calculation). 
 

3.4 Conclusion 

The performance assessment of a continuous solar biomass gasifier was performed in the 
temperature range of 1100-1300 °C with different lignocellulosic biomass feedstocks. The 
influence of operational conditions considering steam flow-rate (H2O/biomass molar ratio), gas 
residence time, gasification temperature, starting carbonaceous feedstocks and biomass feeding 
rate on syngas production and performance was emphasized during continuous biomass 
gasification. The solar gasifier was successfully operated at the different processing conditions 
under real concentrating solar flux and several key points in the performance outputs can be 
outlined as follows. 

- Complete biomass gasification was supported by the global mass balance achieved 
above 95% and the carbon conversion up to 90.4%, confirming the efficient biomass feedstock 
conversion into syngas. 

- Either a lack or an excess of water regarding the reaction stoichiometry resulted in a 
significant increase in the C2Hm, CH4 and CO2 and a decrease in the produced CO and H2. A 
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slightly over-stoichiometric amount of water was thus suited for complete gasification reaction, 
leading to high quality syngas with low C2Hm, CH4 and CO2 content and high syngas yield (CO 
and H2). 

- A decrease in the gas residence time (adjusted via the inert carrier gas flow rate) showed 
a negative effect on syngas composition and yield in terms of both a considerable increase of 
the C2Hm, CH4 and CO2 contents and a reduction of the CO and H2 quantities.  

- Substantial improvement of syngas production rates, yields and quality through the 
increase of temperature was highlighted. However, a temperature increase enhanced the heat 

losses, thereby adversely altering both solar-to-fuel and reactor. 
- A smaller particle size led to higher gasification rates and syngas yields, due to higher 

particle reactivity (as denoted by the lower activation energy). However, the biomass type 
(composition) showed more significant impact than the biomass particle size in the considered 
range (0.3-4 mm). 

-An increase in biomass feeding rate significantly promoted syngas yield and reactor 
performance; however, exceeding the optimal biomass feeding point showed an adverse effect 
on produced syngas. Indeed, H2 and CO yields decreased at the expense of a growth in C2Hm, 
CH4, and CO2 due to a reduction of the gas residence time, and eventually biomass 
accumulation issues and pyrolytic gases emissions may occur. Increasing temperature (1100-
1300°C) significantly enhanced reaction extent, and reaction kinetics, which in turn increased 
biomass consumption rates matching biomass feeding rate. At 1300 °C, the biomass feeding 
rate reached its optimum point at up to 2.5 g/min for biomass type C (1.8 g/min for biomass 
type D) and approached the optimal biomass feeding rate of biomass type A at 2.7 g/min, 
whereas at 1200 °C the optimal biomass feeding point was found at 2.2 g/min (biomass type 
C) corresponding to the nominal feeding rate for this 1.5 kWth solar reactor. However, heat 

losses rose consistently with temperature, which adversely led to a reduction in both solar-to-fuel 

and reactor at 1300 °C. Moreover, increasing temperature and biomass feeding rate enhanced 
biomass gasification rate (carbon consumption rate). At 1300 °C, the carbon consumption rates 
were greater than those obtained at 1200 and 1100 °C, and their values were closer to the ideal 
maximum carbon consumption rate for any biomass type. The energy upgrade factor, reaction 
extent (carbon conversion), solar-to-fuel energy conversion efficiency, and thermochemical 
reactor efficiency increased with biomass feeding rate because the total solar energy input 
during processing was decreased, resulting from a shortened biomass injection duration 
(maximum achieved values (accounting for C2Hm) up to 1.24, 90.4%, 29.0%, and 27.0%, 
respectively). Optimizing the biomass feeding rate consistently with operating temperature is 
beneficial for continuous solar biomass gasification. It aims to enhance biomass consumption 
rate, reaction kinetics, as well as reaction extent (carbon conversion) for maximizing syngas 
yield and quality and minimizing heat losses. Although increasing the heat losses, the 
temperature of 1300 °C is appropriate to operate reliably the solar biomass gasifier in a stable 
continuous mode with a biomass conversion rate matching well the feeding rate. 

The measured efficiencies reported here for a 1.5 kWth solar gasifier could possibly be 
upgraded by scaling-up for enhancing syngas production capacity. Automated control of the 
biomass feeding rate could be used as a suitable dynamic control tool of continuous solar 
gasifiers under variable or intermittent solar conditions.
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Chapter 4: Solar carbothermal reduction of 

ZnO and MgO3 
 

4.1 Introduction  

The solar chemical looping reforming of methane (CLRM) and continuous solar 
gasification of biomass was presented in Chaps. 2 and 3, respectively, providing insights into 
how gaseous (methane) and solid carbonaceous feedstock (biomass) can be converted into 
syngas via promising solar thermochemical processes. In this Chapter, the solid carbonaceous 
feedstock was utilized as reducing agents to both lower the thermodynamic barrier and extract 
oxygen from ZnO and MgO to produce Zn and Mg via solar carbothermal reduction (CTR). 

This work focuses on the experimental study of solar CTR of ZnO and MgO in a new 
prototype solar reactor operated on-sun. Experiments were conducted with different reducing 
agents including pure carbons and beech wood biomass in batch and continuous operation 
modes under vacuum and atmospheric pressures to demonstrate flexibility, reliability, and 
robustness of this scalable metallurgical process for Zn and Mg production.  In addition, a 
parametric study of CTR of ZnO and MgO regarding the influence of pressure, carbonaceous 
feedstocks (different solid carbon types), and C/MgO or C/ZnO molar ratio on CO production 
rate, products yield (CO and Mg/Zn), and reactor performance was conducted . 

 

4.2 Thermodynamic analysis 

4.2.1 ZnO 

The overall solar carbothermal reduction (CTR) of ZnO with solid carbon is represented 
as: 

ZnO(s)+C(s)→Zn(g)+CO(g)       (4-1) 
 

If employing wood biomass as a reducing agent (with molecular formula assumed to 
be C6H9O4), the reaction can be written as: 
 

ZnO(s)+1/2C6H9O4(s)→ Zn(g)+3CO+9/4H2(g)    (4-2) 
 

The possible solid-gas reactions occurring during ZnO reduction with solid 
carbonaceous feedstock are:  
 

ZnO(s)+CO(g)  Zn(g)+CO2(g)     (4-3) 

C(s)+CO2(g)  2CO(g)      (4-4) 
 

 
3 Details of this chapter consist of one peer-reviewed article: 

• S. Chuayboon, S. Abanades, J. Clean. Prod. 32 (2019) 784-795. 
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According to Eq. 4-3, ZnO can be reduced by CO produced from Eq.4-1 to Zn and CO2 
(global reaction: 2ZnO+C→2Zn+CO2), and the produced CO2 is subsequently reduced by 
carbon according to the Boudouard reaction (Eq. 4-4). 

Fig. 4-1 displays the variations of Gibbs free energy change (∆G°) with temperature for 

the possible reduction reactions of ZnO with or without carbonaceous materials at 1 bar. 
Overall, all the considered reduction reactions of ZnO are thermodynamically favorable when 
increasing the temperature (∆G°<0). The direct thermal dissociation of ZnO proceeds at above 

~2000 °C. In contrast, the required temperature decreases significantly to 950 and 850 °C when 
ZnO is reduced with C and CH4, respectively. The formation of CO2 can be obtained from 
ZnO+CO, 2ZnO+C, and Boudouard reactions at above 1300, 1050, and 700 °C, respectively 
(H2O can theoretically be formed from the ZnO+H2 reaction at above ~1200 °C). 
 

 
Figure 4-1. Variation of ∆G° for various ZnO reduction reactions as a function of temperature 

at 1 bar. 
 

Fig. 4-2 shows thermodynamic equilibrium products distribution for CTR of ZnO 
calculated by HSC Chemistry software. At 1 bar (Fig. 4-2a), the CTR reaction of ZnO with 
pure carbon theoretically begins at 600 °C and reaches completion above 800 °C, yielding an 
equimolar gas mixture of Zn(g) and CO(g) (formation of CO2 is predicted below 800 °C). 
When decreasing the pressure to 0.1 bar, the starting reaction temperature becomes 500 °C, 
and the reaction reaches completion at above 700 °C, thus shifting the chemical equilibrium to 
lower temperature. In addition, the reaction requires lower pressures when decreasing the 
temperature to reach completion (e.g. below 0.4 bar at 750°C vs. below 0.2 bar at 700°C, 
according to Fig. 4-2b). 
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Figure 4-2. Thermodynamic equilibrium products distribution of ZnO carbothermal reduction 

as a function of (a) temperature (at 0.1 and 1.0 bar) and (b) pressure (at 700 and 750 °C).  
 

The equilibrium products distribution of ZnO carbothermal reduction is plotted as a 
function of C/ZnO molar ratio at 800 °C and 1 bar (Fig. 4-3). At C/ZnO molar ratios above 1, 
the ZnO+C reaction yields almost 1 mol of CO (CO2 is negligible), along with the formation 
of Zn in both gas and liquid states, thus confirming that excess carbon is required to achieve 
ZnO reduction completion.  
 

 
Figure 4-3. Thermodynamic equilibrium products distribution of ZnO carbothermal reduction 

as a function of C/ZnO molar ratio. 
 

4.2.2 MgO 

The carbothermal reduction reaction of MgO is written as: 
 

MgO + C → Mg + CO      (4-5) 
 

Possible side reactions may also occur during MgO reduction with carbon according to 
Eq. 4-4. 
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The thermodynamic stability domain of chemical species for various MgO reduction 
reactions either with or without carbonaceous materials is represented by the Gibbs free energy 
change (∆G°) in Fig. 4-4. According to the ∆G° variations, the thermodynamically favorable 

reactions are MgO+C, and C+CO2 that proceed at above 1800, and 700 °C, respectively. In 
contrast, the other reactions (in particular, MgO+H2 and MgO+CO) are not able to produce Mg 
below 2000 °C, according to thermodynamics. Direct thermal reduction of MgO to Mg(g) and 
O2(g) would require temperature in excess of 3430 °C, thus making the process not feasible in 
practice. Note that the formation of CO2 can only be obtained from Boudouard equilibrium 
(CO disproportionation is favored below 700°C, Eq. 4-4), since the reaction of MgO with CO 
is not favorable. 

 
Figure 4-4. Variations of ∆G° for various MgO reduction reactions as a function of 

temperature. 
 

In addition, thermochemical equilibrium compositions were calculated for MgO/C. The 
calculated equilibrium compositions of MgO carbothermal reduction as a function of 
temperature and pressure are shown in Fig. 4-5. At 1 bar, the MgO+C reaction (Fig. 4-5a) starts 
at 1200 °C and reaches completion at 1600 °C, thereby yielding an equimolar gas mixture of 
Mg(g) and CO(g). For a pressure decreased to 0.1 bar, the MgO+C reaction starts at 1000 °C, 
and reaches completion at 1400 °C, confirming that reduced pressure can theoretically shift the 
chemical equilibrium to lower temperature. Fig. 4-5b further validates that lower temperatures 
require larger pressure reduction to reach Mg formation (below 0.4 bar at 1500°C vs. below 
0.1 bar at 1400°C). 
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Figure 4-5. Thermodynamic equilibrium composition of MgO carbothermal reduction as a 

function of (a) temperature (at 0.1 and 1 bar) and (b) pressure (at 1400 and 1500 °C). 
 

4.3 Experimental set-up and methods 

4.3.1 Materials 

 Different solid carbonaceous feedstocks were considered for ZnO and MgO 
carbothermal reduction according to Table C-1 in Appendix C. Pure solid carbon powders 
(activated charcoal (AC),carbon black (CB), and graphite) and beech wood biomass (C6H9O4) 
with ~1 mm particle size were employed as reducing agents. For reactant powder preparation, 
ZnO (99.8% purity, 1-5 µm, PROLABO) and MgO (particle size: 1-2 μm, 99.8% purity, Alfa 
Aesar) powders were well grinded with a mortar and then mechanically mixed with  AC (99.9% 
purity, <149µm),CB (99.9% purity, 15.10-3µm), or graphite (99.9% purity, <20 µm) with 

C/MO molar ratios () of 1.5 (50% excess of carbon with respect to stoichiometry) for ZnO 
and 1.5 and 2 for MgO carbothermal reduction experiments. For reactant pellets, well mixed 
ZnO+CB powder (CB/ZnO molar ratio = 1.5) and ZnO+C6H9O4 powder (C6H9O4/ZnO molar 
ratio = 0.75, 50% excess of reducer with respect to stoichiometry) were prepared. Then the 
pellets (volume: 0.471 cm3/pellet, 10 mm diameter) were obtained with manual hydraulic press 
at a pressure of ~75 kg/cm2 for 2 min/pellet (Fig. C-1 in Appendix C). 
 

4.3.2 Reactor prototype 

A new 1.5 kWth prototype solar vacuum reactor was designed and constructed, based on 
the concept of directly-irradiated cavity-type solar reactor (Fig. 4-6). This reactor can be 
operated in either batch or continuous modes under vacuum pressure conditions at high 
reduction temperatures up to ~1650 °C. The reactor is composed of an inner cylindrical cavity 
receiver made of alumina surrounded by a layer of porous ceramic insulation (Fig. C-2), 
thereby enabling rapid solar heating to the desired temperature. The bottom of the cavity is 
sealed with a circle alumina plate pierced at its center so that a small alumina tube can be 
inserted for the injection of nitrogen (N2) carrier gas to the cavity receiver. N2 protective gas is 
also directly injected into the window area and then subsequently enters downwardly the cavity 
through the aperture before exiting with the product gases through the outlet port, thereby 
protecting the transparent window from products deposition. A packed bed of inert alumina 
particles (2 mm diameter) is placed at the bottom of the cavity receiver above a layer of alumina 
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wool to support the reacting powder at the cavity center. The top of the cavity receiver is closed 
by an alumina cap with a 17 mm-diameter aperture where concentrated solar radiation enters, 
and a protective graphite plate (2 mm-thick) with a 15 mm-diameter aperture is then placed on 
top of the alumina cap to protect it (Fig. C-2). A hemispherical transparent glass window is 
lastly attached to the front flange edge of the reactor shell to operate under controlled 
atmosphere. 

During reactor operation, the temperature within the cavity receiver (in the center of the 
packed bed) was measured with a type-B thermocouple (T1), and the uppermost sample surface 
temperature was measured with a solar-blind optical pyrometer (operating at 4.8-5.2 µm in a 
H2O absorption band). The cavity pressure (P) was measured by a pressure transducer while 
N2 and CH4 flow-rates (purity of 99.999%) were regulated by electronic Mass Flow Controllers 
(MFC, Brooks Instruments model SLA5850S, range 0-5 Nl/min ±0.2% of full scale). 

In case of continuous operation (Fig. C-3), the reactor was equipped with an automatic 
particle delivery system consisting of a hopper and a screw feeder driven by an electrical motor 
for reactant powder injection. Alternatively, it was equipped with the alumina feeding tube 
with a pushing rod for reactant pellets injection. All the product gases including N2 carrier gas 
exit the reactor through a single outlet port (20 mm in-diameter alumina tube) at the upper 
cylindrical sidewall of the cavity and subsequently flow into a ceramic filter where the main 
solid products (Mg or Zn) are deposited. Indeed, the Mg or Zn formed at the reaction 
temperature are gaseous, vapors are thus entrained by the carrier gas out of the reactor and 
subsequently condense as small particles upon gas cooling. Solid particles are thus collected in 
the outlet deposits on the inner tube walls (zone A) and in the filter (zone B). 

 
Figure 4-6. Schematic diagram of the 1.5 kWth directly irradiated prototype solar reactor and 

external components. 
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4.3.3  Procedure 

The solar vacuum reactor is positioned at the focus of a vertical axis parabolic dish solar 
concentrator with a solar concentration ratio up to 10,551 suns (2 m diameter, 0.85 m focal 
distance, peak flux density of ~10.5 MW/m2 for a DNI of 1 kW/m2) at CNRS-PROMES, 
Odeillo (France). The incident concentrated solar power is controlled manually by opening a 
shutter placed above the sun-tracking heliostat that vertically reflects incident solar radiation 
toward the facing down concentrator. Prior to the on-sun tests, homogeneous reacting samples 
are positioned in either the cavity receiver (batch test, Fig. 4-7a), hopper (continuous reactant 
powder injection, Fig.4-7b), or alumina feeding tube (continuous reactant pellets injection, Fig. 
4-7c and Fig. 4-7d). The solar reactor is primarily flushed by a N2 flow and concomitantly 
sucked by a Venturi pump to purge residual air from the system and then heated by highly 
concentrated sunlight. During solar heating, both N2 carrier gas (via the cavity bottom and the 
screw feeder) and N2 protective gas are supplied to the cavity receiver and window area, 
respectively. 

Regarding vacuum and non-isothermal operation (Fig. 4-7a), once reaching the 
temperatures of ~650 °C (for CTR of ZnO) and 900 °C (for CTR of MgO), the reactor is 
evacuated with a rotary vane vacuum pump (Alcatel) to the targeted pressure (0.11-0.40 bar). 
Reduction reaction occurs from ~750 °C (ZnO) and ~1000-1200 °C (MgO depending on total 
pressure) during temperature rising as reflected by CO and CO2 formation detected from an 
online gas analyzer. Solar heat supply rate is kept constant (~50 % shutter opening for CTR of 
ZnO and 100% shutter opening for CTR of MgO). Otherwise, it can be varied (by adjusting 
the shutter opening) to stabilize the targeted temperature for isothermal experiments 
(continuous operation with reactant injection). In addition, DNI remained stable throughout the 
on-sun tests. The product gas species (CO, CO2, and Zn or Mg) exit the reactor from the single 
outlet port (20 mm in-diameter alumina tube) and then flow through a ceramic filter to separate 
and recover the condensed Zn or Mg particles from the gas. A small stream of product gases is 
then sampled by a secondary membrane pump to an on-line syngas analyzer for continuous gas 
analysis ( using infrared detectors for CO, CO2, CH4 and thermal conductivity detector for H2, 
uncertainty <0.5% of full scale). All the measured data are continuously recorded by an 

automated data acquisition system. Finally, the condensed products contained in the removable 
outlet components (zone A and zone B) are collected and then analyzed by calibrated X-ray 
diffraction (XRD) for phase identification (Philips PW 1820 diffractometer) with the Cu Kα 

radiation (αCu = 1.5418 Å, angular range = 20–100° in 2-Theta, step size of 0.02°, recording 
time = 2 s). Particle morphology analysis was carried out using a field emission scanning 
electron microscope (FESEM, Hitachi S4800) and Zn/Mg powders reactivity was assessed via 
thermogravimetric analysis (TGA, Netzsch STA449).  
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Figure 4-7. On-sun testing of ZnO carbothermal reduction in the different configurations of 

the prototype solar reactor: (1) alumina tube plug; (2) ceramic filter (zone B); (3) filter outlet 
where a vacuum pump is connected; (4) reactant powder feeding system; (5) outlet tube (zone 
A); (6) connector (zone A); (7) transparent window; (8) cylindrical reactor shell; (9) Type-B 

thermocouple; (10) N2 inlet tube; (11) pushing rod; (12) alumina feeding tube for pellets; (13) 
cartridge filter. 

 
 To assess how well the reactant feedstock is converted into the products, the global 
mass balance (M) is estimated:  
 � =

���� ��������+������ �����������+������������� ���������      (4-6) 

 
 where ���� �������� , ������ �������� ,  ��� , and ������������� ���������  are the 

amounts (g) of gas product, solid product, metal oxide, and solid carbonaceous feedstock, 
respectively. 
 The ZnO or MgO conversion (XZnO or XMgO) represents the net fraction of ZnO or 
MgO converted to Zn or Mg (also corresponding to Zn or Mg yield). It was calculated based 
on gas analysis using an oxygen mass balance:  
 ����(����) =

���+2���2����(����)
       (4-7) 
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 where nCO and nCO2 denote the mole amounts of produced CO and CO2 obtained by 
time integration of their production rates over the experiment duration.  
 The energy upgrade factor (U) is defined as the ratio of energy content of the 
chemical products to the calorific value of the carbonaceous feedstock: 
 � =

(������ ��������∙�̇��� ��������)+(�̇�∙∆��+0.5�2→��)��������������� ���������∙�̇������������ ���������     (4-8) 

where LHV, �̇, and ∆� represent the Lower Heating Value (J/kg), mass flow rate (kg/s), and 
standard enthalpy change (J/kg), respectively. 
 The solar-to-fuel energy conversion efficiency (ηsolar-to-fuel) represents the ratio of the 
chemical energy of the products to the total energy input (solar power and calorific value of 
the carbonaceous feedstock): 
 ������−��−���� =

(������ ��������∙�̇�����������)+(�̇�∙∆��+0.5�2→��)�̇�����+(��������������� ���������∙�̇������������ ���������)
  (4-9) 

where �̇����� is the solar power input (W) during reaction 
 The carbon conversion (XC) represents the ratio of the carbon yield in the form of 
gas products to the initial carbon in the carbonaceous feedstock: 
 �� =

∫ ���(�)�
0

�� + ∫ ���2
(�)�

0
�� +∫ ���4

(�)�
0

�� +∫ 2��2��(�)�
0

��∫ ��������(�)�
0

��    (4-10) 

where Fi are the molar flow rates of species i, mol/s 
 

4.4 Experimental results  

4.4.1 Carbothermal reduction of ZnO 

4.4.4.1 Solar reactor performance assessment 

  The operating conditions and experimental results for 17 solar runs of CTR of ZnO with 
different carbon types and shapes in batch or continuous operation are summarized in Table 4-
1. On-sun experiments were conducted with the following range of parameters: initial reactant 
mass = 2.44-12.21 g, carbon types = AC, CB, and C6H9O4, P = 0.15-0.90 bar, ṁN2=2.2-3.84 

NL/min, T1=950-1350 °C, and Q̇solar = 0.73-1.19 kWth.  
 M was in the ranges of 71.2-87.6% for packed-powder, 63.9-66.6% for continuous 
powder injection, and 75.2-97.2% for continuous pellet injection. Thus, the continuous powder 
injection process exhibited the lowest values of M, presumably resulting from sticky reactant 
deposition on the screw path or diffusion/interaction within the reactor and insulation materials 
[41], which cannot be quantified. Actually, the ZnO conversion in the reaction zone was total 
as no ZnO remained in the cavity (only carbon remained because in excess). However, a part 
of ZnO was recovered at the outlet due to partial Zn recombination or ZnO particle entrainment, 
thus somewhat lowering the net fraction of ZnO converted to Zn. XZnO was found in the ranges 
of 66.8-78.2% for batch runs and 44.3-73.2% for continuous runs, thus pointing out that batch 
operation results in higher reaction extent due to lower products recombination and particle 
entrainment. Most of U values were above one and approached the theoretical U (1.61 for 
ZnO+C according to Eq. 4-1 and 1.31 for ZnO+C6H9O4 according to Eq. 4-2), thereby 
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efficiently storing solar energy into chemical fuels. However, the obtained U values related to 
continuous powder injection (Run. No. 7-9) were below one as a result of low ZnO conversion 
(44.3-47.1%). ηsolar-to-fuel was in the ranges of 1.1-1.6% for batch runs and 2.6-5.9% for 
continuous runs, indicating that continuous operation outperforms batch operation due to lower 
heat losses, reduced power consumption and better utilization of solar power input thanks to 
isothermal operation. XC was in the ranges of 40.8-52.1% for (ZnO+C) packed-powder, 25.8-
27.8% for continuous (ZnO+C) powder injection, 42.5-50.7% for continuous (ZnO+C) pellet 
injection, and 56.5-84.6% for continuous (ZnO+C6H9O4) pellet injection. This clearly reveals 
that XC from batch tests were significantly higher than those obtained from continuous tests 
with powder, due to higher reaction extent. However, XC values in continuous mode were 
improved markedly by increasing temperatures (1100-1350 °C, pellet reactants). In addition, 
the maximum XC range was achieved with continuous (ZnO+C6H9O4) pellet injection. This is 
because the excess of biomass was pyrolyzed to form additional gas species, thus enhancing 
XC.  
Table 4-1. Operating conditions and solar reactor performance assessment 

Run 
No. 
  

initi
al 
react
ant 
(g) 

C/Zn
O 

C 
type 

shap
e 

Oper
ating 
mod
e 

P 
(bar) 

ṁN₂ 
(NL/
min) 

T1  
(°C) 

�̇����� 
(kW
) 
  

CO 
yield 
(mm
ol/gZ

nO)(±
2%)

CO2 
yield 
(mm
ol/gZ

nO)(±
2%) 

M 
(%) 

XZnO 
(±2
%) 

U 
(±2
%) 
  

ηsolar-

to-fuel 

(±2
%) 

XC 
(±2
%) 

SCO 

1 2.44 1.50 AC 
powd
er 

batch 0.15 2.20 
1167
* 

0.82 4.22 2.59 73.4 76.5 1.2 1.1 49.1 0.62 

2** 2.44 1.50 AC 
powd
er 

batch 0.40 2.20 974* 0.90 4.52 1.85 71.2 66.8 1.0 1.2 40.8 0.71 

3 2.45 1.50 AC 
powd
er 

batch 0.90 2.20 
1139
* 

0.88 6.10 1.50 80.3 74.0 1.2 1.6 50.5 0.80 

4** 2.44 1.50 CB 
powd
er 

batch 0.15 2.20 
1106
* 

1.05 4.07 2.43 80.5 72.6 1.1 1.2 42.5 0.63 

5 2.44 1.50 CB 
powd
er 

batch 0.40 2.20 
1248
* 

0.98 5.48 2.07 87.6 78.2 1.2 1.2 49.1 0.73 

6 2.44 1.50 CB 
powd
er 

batch 0.90 2.20 
1233
* 

0.81 5.96 1.71 86.9 76.2 1.2 1.4 52.1 0.78 

7 12.21 1.50 CB 
powd
er 

Conti
nuou
s (0.5 
g/min
) 

0.90 4.20 950 0.80 2.08 1.68 63.9 44.3 0.9 3.3 25.8 0.55 

8 12.20 1.50 CB 
powd
er 

Conti
nuou
s 
(0.5 
g/min
) 

0.90 4.20 950 0.73 2.25 1.77 64.3 47.1 0.9 3.2 27.8 0.56 

9 12.00 1.50 AC 
powd
er 

Conti
nuou
s 
(1.0 
g/min
) 

0.90 4.20 950 0.78 2.43 1.67 66.6 47.0 0.9 4.6 26.6 0.59 

10 6.34 1.50 CB pellet 
conti
nuou
s 

0.90 3.64 1100 0.81 5.33 1.53 82.5 68.3 1.0 2.8 42.5 0.78 

11 6.24 1.50 CB pellet 
conti
nuou
s 

0.90 3.64 1200 1.01 6.68 1.00 80.3 70.7 1.1 2.6 48.5 0.87 

12 5.10 1.50 CB pellet 
conti
nuou
s 

0.90 3.64 1300 1.04 7.57 0.65 82.9 72.2 1.1 2.7 50.4 0.92 

13 5.03 1.50 CB pellet 
conti
nuou
s 

0.90 3.64 1350 1.19 7.86 0.57 75.2 73.2 1.1 2.7 50.7 0.93 

14** 4.16 0.75 
C6H9

O4 
pellet 

conti
nuou
s 

0.90 3.64 1100 0.96 20.43 3.16 89.1 - 0.7 3.1 56.5 0.87 

15 5.02 0.75 
C6H9

O4 
pellet 

conti
nuou
s 

0.90 3.84 1200 1.04 32.32 4.63 96.9 - 1.0 5.9 81.8 0.87 

16 4.99 0.75 
C6H9

O4 
pellet 

conti
nuou
s 

0.90 3.84 1300 1.12 33.96 3.88 94.9 - 1.0 5.6 84.6 0.90 

17 5.01 0.75 
C6H9

O4 
pellet 

conti
nuou
s 

0.90 3.84 1350 1.14 34.80 3.36 97.2 - 1.0 5.6 84.6 0.91 

*Tmax ** DNI fluctuation  
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4.4.4.2 Parametric study  

• Influence of carbon type and pressure in batch tests 

ZnO carbothermal reduction was experimentally studied in batch mode at different 
pressures (0.15, 0.40, and 0.90 bar). ZnO/C blend powders (2g of ZnO with 0.44g of either AC 
or CB, resulting in a constant C/ZnO molar ratio of 1.5) were prepared by mechanical mixing 
and placed in the cavity receiver for batch tests under non-isothermal condition.  

The evolution of species production rates (CO and CO2) are plotted in Fig. 4-8. 
According to Fig. 4-8, the reaction started at ~750 °C with the formation of CO2 occurring 
before CO regardless of the pressures and reducing agents, thus indicating negligible impact of 
the considered pressure range on the temperature of reaction start. When decreasing the 
pressure from 0.90 to 0.15 bar, the kinetic rate of reduction reaction increased, as reflected by 
the increase in the slope of CO production rates and reaction duration decrease (especially for 
CB), in agreement with thermodynamics and previous experimental study [58]. However, the 
peak CO production rates remained similar while those of CO2 increased significantly: for 
example, the peak CO and CO2 production rates were 13.4 and 2.8 mL min-1 gZnO

-1 at 0.90 bar 
(Fig. 4-8d) compared to 13.4 and 8.7 mL min-1 gZnO

-1 at 0.15 bar (Fig. 4-8f). The presence of 
CO2 is detrimental as it favors the re-oxidation of Zn products into ZnO and CO at the reactor 
outlet (when temperature decreases), thus adversely affecting the Zn production yield but 
increasing the CO yield. Hence, atmospheric pressure operation is preferable to lower the 
amount of CO2 and increase the Zn yield. Small variations in CO and CO2 trends (Figs. 4-8b 
and 4-8f) were because of DNI variations (direct normal irradiance) caused by clouds passage, 
leading to unstable temperature, which directly modified the ZnO reduction rate. Fig. 4-9 
confirms that reducing pressure did not significantly influence the starting reaction temperature 
(~750 °C) but had a beneficial effect on the kinetic rate of CTR [70], particularly at 0.15 bar. 
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Figure 4-8. CO and CO2 production rates along with reactor temperatures for ZnO 
carbothermal reduction over AC and CB at different total pressures (C/ZnO=1.5). 

 
Figure 4-9. CO yield as a function of temperature for different total pressures (CB/ZnO=1.5). 
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Fig. 4-10 reports the global CO and CO2 yields over the entire reaction duration along 
with ZnO conversion (XZnO) as a function of total pressure for AC and CB. As expected, the 
CO yield dropped when decreasing pressure at the expense of CO2 increase, (CO selectivity, 
SCO= ���/(��� + ���2

), thus declined from 0.80 at 0.90 bar to 0.62 at 0.15 bar for AC). For 

instance, the CO and CO2 yields for AC were 6.12 and 1.50 mmol/gZnO at 0.90 bar compared 
to 4.22 and 2.59 mmol/gZnO at 0.15 bar, respectively. The reaction mechanism is expected to 
proceed via two solid-gas reactions in which ZnO is first reduced by CO to Zn and CO2 (Eq. 
4-3), and the produced CO2 is then reduced by C (Eq. 4-4). Because the gas residence time is 
decreased with pressure decrease, the CO2 reduction with C may be kinetically limited, thereby 
leading to the CO2 increase. XZnO remained quite stable with decreasing pressure (e.g. 74.2% 
at 0.90 bar vs. 76.5% at 0.15 bar for AC) although the ZnO reduction rate was enhanced [58]. 
Differences in CO and CO2 yields between AC and CB were not significant, which thus 
suggests that the different carbon types and properties do not affect the reaction extent. In the 
following tests, atmospheric pressure was selected to keep the amount of CO2 evolved at the 
minimum. 

 

 
Figure 4-10. CO and CO2 yields along with ZnO conversion (XZnO) for ZnO carbothermal 

reduction with AC and CB in batch mode as a function of total pressure (C/ZnO=1.5). 
 

4.4.4.3 Continuous isothermal tests  

• Influence of carbon type and feeding rate during reactant powder injection 

The same carbon reducers (AC and CB) were employed for CTR of ZnO with 
continuous reactant powder injection. The screw feeder was first calibrated for the blend 
powders (ZnO mixed with either AC or CB) to control the reactant powder mass feeding rate. 
A homogenous mixture of reactant powder (12.2g in total with a fixed C/ZnO molar ratio of 
1.5) was fed into the cavity receiver operated under atmospheric pressure and isothermal 
condition (Fig. 4-7b). The feeding rate was kept constant at 0.5 g/min, and the operating 
temperature (T1) was fixed at 950 °C in order to keep the steel screw feeder tip below its melting 
point, as it was directly inserted in the cavity receiver area. The gas yields were calculated from 
the measured CO and CO2 production rates (Fig. C-4).  
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Fig. 4-11 shows that higher CO yield is achieved with AC while CO2 yield remains 
similar (total gas yield is 4.10 mmol/gZnO for AC vs. 3.76 mmol/gZnO for CB), thereby 
enhancing XZnO (47.0% for AC vs. 44.3% for CB). The higher available surface area of AC 
compared to CB (Table C-1) promotes contact between ZnO and AC and favors the solid-solid 
reaction. 

 

 
Figure 4-11. CO and CO2 yields along with ZnO conversion (XZnO) for ZnO carbothermal 

reduction with AC and CB (C/ZnO=1.5) during continuous powder injection. 
 

 The influence of reactant powder feeding rate was then studied by increasing the 
feeding rate to 1 g/min for ZnO+CB while the other operating parameters were the same (~12g 
in total, CB/ZnO=1.5, T=950 °C, P=0.9 bar, Run. No.8, Fig. C-5). The CO and CO2 yields 
increased slightly to 2.25 and 1.17 mmol/gZnO at 1.0 g/min, yielding XZnO=47.1% (Fig. 4-11). 
Low feeding rate thus results in low gas production whereas high feeding rate may lead to 
reactant accumulation due to kinetic limitation inducing incomplete reaction. Indeed, the 
reactant feeding rate must match the ZnO reduction reaction rate during continuous reactant 
injection. In comparison, XZnO values obtained in continuous tests (44.3-47.1%) were much 
lower than those obtained in batch tests (66.8-78.2%). This is due to lower reaction kinetics 
during isothermal operation (at 950 °C) whereas the temperature was increased constantly over 
950°C (up to ~1200°C) until reaction completion for batch tests. In addition, a particle 
entrainment issue may also occur during continuous powder injection, and some particles can 
be entrained by the carrier gas before reaction occurring. To overcome these issues, the 
reactants were then continuously injected as pressed pellets under isothermal conditions at 
higher temperatures to enhance the reaction kinetics. 

 

• Continuous reactant pellets injection 

The continuous Zn production from CTR of ZnO was investigated at higher 
temperatures (1100, 1200, 1300, and 1350 °C) with reactant pellets injection. This method 
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aimed to alleviate the particle entrainment issue. Two types of reducers including pure carbon 
(CB) and beech wood biomass (C6H9O4) were selected. CB was selected in place of AC since 
it also acts as a cohesive binder during the pellets making process. 

The pellets with 10 mm diameter (~0.7 g/pellet for ZnO+CB and 0.35 g/pellet for 
ZnO+C6H9O4) were prepared with 50% of excess carbon reducer content (C/ZnO and 
C6H9O4/ZnO molar ratios of 1.5 and 0.75, respectively). The pellets (10 pellets/run for 
ZnO+CB and 15 pellets/run for ZnO+C6H9O4, Fig. C-1) were loaded into the alumina feeding 
tube equipped with a pushing rod and the delivery system was then installed at the injection 
port of the reactor (Fig. 4-7c and 4-7d). On-sun continuous tests were performed isothermally 
in the temperature range 1100-1350 °C under atmospheric pressure (0.9 bar). Each pellet was 
injected once the gas production rates (mainly CO) tended to drop, as observed by gas analysis. 

 The evolution of gas species production rates and reactor temperatures are presented 
in Fig. 4-12 (ZnO+1.5CB) and Fig. 4-13 (ZnO+0.75C6H9O4). According to Fig. 4-12, the CO 
and CO2 production rates increased and the total reaction duration decreased noticeably when 
increasing the temperature. For instance, the peak CO and CO2 production rates were 11.40 
and 4.76 mL min-1 gZnO

-1 at 1100 °C (27 min duration) compared to 34.69 and 3.53 mL min-1 
gZnO

-1 at 1350 °C (17 min duration), demonstrating the beneficial impact of temperature on gas 
production rates and reaction kinetics. Fig. 4-14a confirms that the increase of temperature 
remarkably enhanced CO selectivity and decreased CO2 yield (5.33 and 1.53 mmol/gZnO at 
1100 °C compared to 7.86 and 0.57 mmol/gZnO at 1350 °C for CO and CO2, respectively). 
These variations also resulted in the rise of total gas yield (6.4 to 8.2 mmol/gZnO approaching 
the maximum theoretical yield of 12.29 mmol/gZnO), and XZnO reached up to 73.2% at 1300 °C.  
 Regarding the ZnO+0.75C6H9O4 reaction (Fig. 4-13), the increase of the temperature 
enhanced the CO and H2 production rates, whereas CO2 and CH4 production rates tended to 
decline, and the total experimental duration was also reduced. For example, the peak CO, H2, 
CO2, and CH4 production rates were 303.53, 236.30, 62.24, and 49.85 mL min-1 gZnO

-1 at 
1100 °C (~10 min duration) compared to 532.26, 402.17, 55.29, and 26.68 mL min-1 gZnO

-1 at 
1350 °C (~5 min duration). In contrast to the reaction with pure carbon producing only CO and 
CO2 (Fig. 4-12), H2 and CH4 were also formed with biomass (C6H9O4) because of the pyrolysis 
process producing mainly incondensable gases and char at the elevated reactor temperature 
(the amount of tar was negligible). Meanwhile, ZnO can be thus reduced with the pyrolysis 
products such as char, CH4, CO, and H2 according to the possible reactions shown in Fig. 4-1, 
then producing Zn and syngas. Fig. 4-14b clearly emphasizes that increasing temperature from 
1000 to 1350 °C substantially increased H2 and CO yields and decreased CO2 and CH4 yields. 
Moreover, the measured syngas yield was compared with theoretical maximum syngas yield 
calculated from Eq. 4-2. The syngas yields experimentally obtained at 1200, 1300, and 1350 °C 
were higher, which can be simply explained by the pyrolysis of the biomass excess 
(1/4C6H9O4→char(carbon)+CO+CO2+H2+CH4+tars), thereby leading to higher experimental 
syngas yield than theoretical one. As a conclusion, combining ZnO reduction and biomass 
gasification represents an attractive option to produce both metallic Zn and high-quality syngas 
in a single process. 
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Figure 4-12. CO and CO2 production rates along with reactor temperatures for ZnO 

carbothermal reduction with CB during continuous pellet reactant injection at (a) 1100, (b) 
1200, (c) 1300, and (d) 1350 °C. 

 
Figure 4-13. H2, CO, CO2, and CH4 production rates along with reactor temperatures for ZnO 
carbothermal reduction with beech wood biomass (C6H9O4) during continuous pellet reactant 

injection at (a) 1100, (b) 1200, (c) 1300, and (d) 1350 °C. 
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Figure 4-14. (a) CO and CO2 yields along with ZnO conversion (XZnO) for ZnO carbothermal 

reduction with CB and (b) syngas yield for ZnO carbothermal reduction with beech wood 
biomass (C6H9O4). 

 
4.4.4.4 Characterization of Zn products 

Solid products, mainly Zn particles, were deposited in the removable outlet components 
including: (1) alumina tube and connector (zone A) and (2) ceramic filter (zone B), as shown 
in Fig. 4-6 and Fig. 4-7. Their amounts were quantified by weighing the outlet components 
with a digital balance (0.01g readability) before and after experiments and then sampled for 
FESEM and XRD analysis. A few samples of the unreacted excess carbon remaining in the 
cavity receiver (Fig. C-6) were also analyzed.  

Fig. 4-15 shows the XRD patterns of the collected solid products in both zone A and zone 
B for CTR of ZnO with AC (Fig. 4-15a) and CB (Fig. 4-15b) in batch mode at 0.15, 0.40, and 
0.90 bar, compared to the commercial pure Zn reference pattern. Overall, the products were 
very well crystallized and mainly composed of Zn regardless of the pressure and solid carbon 
type. This confirms that high-purity Zn production was achieved, in agreement with the high 
XZnO up to 78.2% (Fig. 4-10). However, partial Zn recombination (most probably with CO2) 
localized only at the outlet tip where the crystallized gray chunks occur was presumed (Fig. C-
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7). This recombination occurs at a given location corresponding to the condensation zone of 
Zn vapor. The formed chunks in the first cm of zone A were indeed mainly composed of ZnO, 
thus confirming partial products recombination and explaining incomplete global ZnO 
conversion (XZnO < 100%). Downstream this zone, the condensed Zn particles were carried by 
the gas, and the temperature was low enough to avoid recombination, thus recovering pure Zn 
powder in both the outlet tube and the filter. 

 

 
Figure 4-15. XRD patterns of the collected solid products in zone A and zone B for the 

reduction of ZnO with AC and CB during batch tests (AC/ZnO and CB/ZnO molar ratio of 
1.5). 

 
Fig. 4-16 shows the XRD patterns of solid products collected in zone A and zone B for 

continuous reactant powder injection at feeding rates of 0.5 and 1 g/min. In this case, small 
traces of ZnO are detected for both zones whatever the feeding rates and carbon types (ZnO 
peaks intensity appears more obvious in zone A). This presence of ZnO traces in continuous 
tests (not detected in batch tests) comes from the weak fine particles entrainment by carrier gas 
as mentioned before, which also agrees with the lower ZnO conversion (Fig. 4-11) when 
compared with batch operation (Fig. 4-10). Nonetheless, Zn contents were found to be above 
90%wt for both zone A and zone B (Table. C-2). 
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Figure 4-16. XRD patterns of the collected solid products in zone A and zone B for the 

reduction of ZnO with AC and CB during continuous powder injection tests at 0.5 and 1 
g/min. 

 
Regarding continuous pellets injection (Fig. 4-17), XRD patterns of solid products 

collected in zone A and zone B for the ZnO reduction with CB (Fig. 4-17a) and C6H9O4 (Fig. 
4-17b) also reveal small peaks ascribed to ZnO mainly found in zone A for any temperatures. 
However, high Zn content exceeding 90%wt was determined (Table C-2), demonstrating high-
purity Zn production. At zone B, most collected products were composed of pure Zn with only 
the occurrence of ZnO traces at 1350 °C (ZnO+1.5CB) and at 1200 °C (ZnO+0.75C6H9O4). In 
addition, no trace of ZnO was evidenced from the carbon residue collected in the cavity 
receiver, thus confirming complete ZnO conversion in the reaction zone. 
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Figure 4-17. XRD patterns of the collected solid products in zone A and zone B for reduction 
of ZnO with (a) CB and (b) C6H9O4 during continuous pellets injection at 1100, 1200, 1300, 

and 1350 °C. 
 
  The morphology of solid products collected in the outlet (zone A) and filter (zone 
B) for continuous tests (powder and pellet) was analyzed by SEM (Fig. 4-18 and Fig. C-9). 
Overall, the condensed Zn product was formed as micrometer size particles, with clear crystal 
hexagonal structure, and the presence of fine particles of solid carbon was also observed in 
both zone A and zone B (Fig. 4-18b). The collected Zn products from the reduction of ZnO 
with CB (Fig. 4-18a and 4-18b) revealed clearer morphology regarding large scattered droplets 
of condensed Zn vapor with hexagonal shape when compared to those obtained from the 
reduction of ZnO with C6H9O4 (Fig. 4-18c and 4-18d), the latter being wrapped by the 
deposition of fine char particles. Besides, smaller particle sizes (0.2-0.5 µm) of the condensed 
Zn were evidenced when employing C6H9O4 as reducing agent (Fig. 4-18c and 4-18d). 
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Figure 4-18. Representative SEM micrographs of solid products from the outlet tube (zone A) 
and filter (zone B) during (a,b) Run No. 8 and (c,d) Run No. 16. 

 
The reactivity of the produced Zn powder during oxidation with CO2 was investigated 

both to evidence its recombination ability at the reactor outlet and to highlight its potential to 
produce solar fuel in a second oxidation step (CO2-splitting step). TGA confirmed the high 
reactivity of produced Zn with CO2, and the complete Zn conversion (Fig. C-10). This further 
points out that the pure Zn produced from solar carbothermal ZnO reduction is highly reactive, 
which contrasts with previous studies reporting the superior oxidation reactivity of Zn in 
presence of ZnO as reaction promoter [148,149]. The produced pure Zn can thus be used to 
generate additional CO (or H2) and solid ZnO that can be recycled to the solar step for closing 
the cycle. 

 

4.4.2 Carbothermal reduction of MgO 

4.4.2.1 Solar reactor performance assessment 

  Table 4-2 summarizes both the operating conditions and experimental results for the 
tests of the prototype vacuum solar reactor for producing Mg and CO. For this study, 
experiments were carried out to evaluate the solar reactor performance under the following 

range of parameters: P = 0.11-0.90 bar, ṁN2=1.2-2.2 Nl/min, Q̇solar = 1.25-1.47 kWth, reducing 
agents including different solid carbon (AC, CB, and graphite), and C/MgO molar ratio = 1.5-
2. The ranges of maximum temperatures were 1437-1668 °C for T1 and 1464-1622 °C for 
TPyrometer, confirming homogeneous temperature inside the cavity receiver. The global material 
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mass balance was also performed to quantify the amount of reactant actually converted into the 
products, which are syngas productions, Mg deposits and solid residues (details are given in 
Appendix C, Tables C-3 and Table C-4). As a result, the carbon conversion (XC) was found in 
the range 60.9-73.1% for C/MgO=1.5 and 47.2-55.5% for C/MgO=2. This clearly indicates 
that a lower C/MgO molar ratio resulted in an enhanced XC because a higher C/MgO excess 
ratio means a higher amount of unreacted carbon remaining inside the cavity (Run. No 5-8 in 
Table C-5). However, an excess of carbon with respect to stoichiometry (C/MgO = 1) is 
necessary to both favor CO yield and completely convert MgO to Mg. The MgO conversion 
was found in the range 68.6-99.9%, and the CO selectivity was in the range 0.98-1.00 (the 
amount of CO2 stemming from CO disproportionation was negligible). U values were in the 
range 1.1-1.9, demonstrating successful solar energy storage in the chemical products. The 
highest U value (1.9), which approaches the maximal theoretical U (2.25) calculated from Eq. 
4-5, was found with the following conditions: P=0.11 bar (the lowest pressure) and C/MgO=1.5 
(Run. No.1), demonstrating a significant beneficial influence of pressure decrease and C/MgO 
molar ratio on U. The ηsolar-to-fuel for batch tests was found in the range of 1.1-1.8%, implying 
high heat losses due to a long non-isothermal period. This issue can be tackled by operating 
the process in an isothermal continuous mode, which directly lowers the processing duration 
and heat losses, thereby improving ηsolar-to-fuel (7.8% for a continuous test). 
 

Table 4-2. Operating conditions and solar reactor performance assessment. 

Run 
No. 

C/Mg
O 

P 
(bar) 

C 
type 

ṁN2 
(Nl/m
in) 

T1 
(°C) 

Tpyro
meter 
(°C) 

�̇����� 
(kW) 

CO 
yield 
(mmo
l/gMgO

±2%) 

CO2 
yield 
(mmo
l/gMgO

±2%) 

Globa
l mass 
balan
ce 
(%) 

U 
(±2%
) 

solar-

to-fuel 
(±2%
) 

XC 
(±2%
) 

XMgO 
(±2%
) 

CO 
select
ivity 

1 1.5 0.11 AC 1.2 1551 1517 1.32 23.80 0.23 84.2 1.9 1.7 73.1 97.8 0.99 

2 1.5 0.16 AC 2.2 1546 1464 1.25 20.21 0.22 78.3 1.7 1.8 64.3 83.2 0.99 

3 1.5 0.90 AC 2.2 1668 1622 1.47 20.10 0.12 67.5 1.6 1.1 62.4 82.0 0.99 

4* 1.5 0.11 CB 1.2 1437 1576 1.26 20.76 0.04 81.6 1.5 1.2 60.9 84.0 1.00 

5* 2 0.11 CB 1.2 1534 1508 1.29 21.16 0.02 82.7 1.1 1.2 47.9 85.5 1.00 

6 2 0.11 AC 1.2 1538 1528 1.32 24.59 0.10 85.6 1.4 1.5 55.5 99.9 1.00 

7* 2 0.16 AC 2.2 1568 1538 1.39 21.21 0.17 52.5 1.3 1.6 52.1 86.8 0.99 

8 2 0.16 
Grap
hite 

2.2 1581 1545 1.39 16.53 0.25 64.5 1.4 1.2 47.2 68.6 0.99 

9** 1.5 0.11 AC 1.4 1501 1551 1.47 21.11 0.39 84.8 1.4 7.8 59.5 88.2 0.98 

*Auto-combustion with air occurred, **continuous test 
 

4.4.2.2 Parametric study of MgO carbothermal reduction 

• Influence of pressure 

The influence of total pressure on CO and CO2 production rates and yields for the MgO 
carbothermal reduction with solid carbon was experimentally investigated in a batch mode (the 
MgO/C mixture was thus preloaded in the reactor before heating). Activated charcoal (AC) 
was employed as reducing agent with fixed AC/MgO molar ratios of 1.5 and 2. The total 
pressures varied from slightly over-atmospheric (0.9 bar) to rough vacuum pressures (0.16 and 
0.11 bar), while the MgO reduction occurred during non-isothermal heating (heating rate 
controlled by adjusting the shutter opening). 
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The transient CO and CO2 production rates for carbothermal reduction of MgO over 
AC are plotted in Fig. 4-19 (AC/MgO=1.5) and in Fig. 4-20 (AC/MgO=2). The effect of 
pressure was obvious with respect to the peak rates of CO production and CO evolution 
durations. For example, the peak CO production rate was 20 mL min-1 gMgO

-1 (50 min duration) 
at 0.9 bar compared to 26 mL min-1 gMgO

-1 (40 min duration) at 0.11 bar. Therefore, the kinetic 
rate of MgO carbothermal reduction reaction was enhanced by decreasing the total pressure, in 
agreement with thermodynamic analysis. The peak rate of CO production was observed before 
reaching the maximal temperature (below 1600°C) at reduced pressure (0.16 and 0.11 bar), 
whereas the reaction required temperatures above 1600 °C at atmospheric pressure to reach 
completion. 

 
Figure 4-19. CO and CO2 production rates along with reactor temperatures for the 

carbothermal reduction of MgO over AC at different total pressures (AC/MgO=1.5). 
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Figure 4-20. CO and CO2 production rates along with reactor temperatures for the 
carbothermal reduction of MgO over AC at different total pressures (AC/MgO=2). 

 
Fig. 4-21 shows the CO and CO2 yields calculated by integrating the measured CO and 

CO2 flow rates (Figs. 4-19 and 4-20) over the entire reaction duration as a function of total 
pressure for different carbon types and C/MgO molar ratios (1.5 and 2). As expected, the CO 
yield at both AC/MgO molar ratios increased considerably with decreasing total pressure. For 
example, the CO yield increased from 21.21 mmol/gMgO at 0.16 bar to 24.59 mmol/gMgO at 0.11 
bar (AC/MgO molar ratio of 2), thus reaching 99.1% of the theoretical maximal CO yield 
(24.81 mmol/gMgO) (1 mol CO per mol MgO according to Eq. 4-5). The enhanced CO yield 
means that the recombination of Mg and CO was lowered when decreasing the pressure 
(according to Le Châtelier’s principle). In addition, CO2 yields were found in a negligible 
amount (e.g. 0.10-0.17 mmol/gMgO for a AC/MgO molar ratio of 2) and the selectivity to CO 
was thus above 99%. This low CO2 production may presumably occur from the Boudouard 
equilibrium (Eq. 4-4), since the solid–gas reaction between MgO and CO 
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(MgO+CO→Mg+CO2) is not thermodynamically favorable (Fig. 4-4). Thus, the MgO 
reduction reaction chiefly occurs via the solid–solid reaction (Eq. 4-5). 

 

 
Figure 4-21. CO and CO2 yields for MgO carbothermal reduction with AC and CB as a 

function of total pressure at C/MgO molar ratios of 1.5 and 2. 
 

• Influence of solid carbon type  

The influence of solid carbon type (AC, CB, and graphite) was experimentally 
investigated at C/MgO molar ratios of 1.5 and 2, while total pressure was kept constant at 0.11 
bar. The progress of CO and CO2 production rates for AC and CB are shown in Fig. C-11 
(C/MgO=1.5) and Fig. C-12 (C/MgO=2). The highest reaction rates were found for AC at both 
C/MgO molar ratios, as evidenced by the higher peak of CO production rate for AC compared 
to that of CB, while the reaction duration for AC seemed to be lower than for CB, 
demonstrating faster reduction rate.  

Fig. 4-21 also confirms that utilizing AC as reducing agent led to the highest CO and 
CO2 yields at both C/MgO molar ratios when compared to CB. This can be explained by the 
significantly higher available surface area accessible for particle contact between MgO and 
AC, favoring the solid-solid reaction and thereby leading to higher CO yield. Note that the 
same result was also observed in the case of ZnO. 

To further confirm the effect of carbon type, the carbothermal reduction of MgO with 
graphite was also tested and compared with that of AC. As expected, remarkable higher 
reaction rates were obtained for AC (Fig. C-13). The peak CO production rate was 25 mL min-

1 gMgO
-1 for AC compared to 10 mL min-1 gMgO

-1 for graphite at 0.16 bar (C/MgO=2). 
Additionally, the higher reaction rates when using AC led to a substantially higher CO yield 
(21.21 mmol/gMgO for AC compared to 16.53 mmol/gMgO for graphite, Fig. C-14), in agreement 
with TGA experiments [54]. The use of AC as solid reducing agent is thus the most suitable 
option for solid-to-solid contact between MgO and AC, which promotes reaction rate and 
extent, thereby leading to higher CO and Mg yields. 
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•  Influence of C/MgO molar ratio 

The influence of C/MgO molar ratios was investigated with different solid carbon types 
(AC and CB) and total pressures (0.11 and 0.16 bar). The transient CO and CO2 production 
rates are plotted for C/MgO molar ratios of 1.5 and 2 in Fig. C-15 (AC, 0.11 bar), Fig. C-16 
(CB, 0.11 bar), and Fig. C-17 (AC, 0.16 bar). The influence of C/MgO molar ratios was nearly 
unnoticeable as evidenced by both similar peak CO production rates that occurred at the same 
temperatures and similar durations for both AC and CB.  

As expected, similar CO and CO2 yields (Fig. 4-21) between the C/MgO molar ratios 
of 1.5 and 2 were noticed for both solid carbon types, even though the CO yields at C/MgO=2 
were slightly higher. Thus, increasing C/MgO molar ratio in excess from 1.5 to 2 did not 
significantly influence the CO and CO2 yields.  
 

4.4.2.3 Characterization of Mg products 

The solid products were collected after each experiment in the removable outlet 
components of the solar reactor where solid products are condensed and deposited (detailed 
information are provided in Appendix C in the section of solid products analysis, Figs. C-18, 
C-19, C-20, and C-21 and Tables C-5,C-6). Mg was recovered in the outlet products as a 
pyrophoric fine powder having strong reactivity with air. All the samples were inevitably 
exposed to ambient air prior their analysis. Fig. 4-22 shows the XRD patterns of the collected 
solid products in zones A (outlet tube) and B (filter) after experiments at (a) AC/MgO=1.5 and 
(b) AC/MgO=2. The products were well crystallized with low contamination of carbon. Phases 
ascribed to Mg and MgO were identified in both zones, suggesting partial Mg recombination 
at the outlet (with CO) or oxidation after sample collection (with air). Indeed, the condensed 
Mg can be oxidized during its inevitable exposure to air when opening the reactor or 
transferring the powder for analysis, leading to a subsequent artificial increase of MgO content 
in the solid products after their collection from the reactor (auto-ignition observed at room 
temperature). Nevertheless, the high MgO conversion (99.9%, Table 4-2) was ascertained from 
the measured CO production, which confirmed that a high Mg yield was achieved in the 
reactor. The influence of pressure on Mg yield is noticeable at both AC/MgO molar ratios, 
especially in zone B (filter). The amount of Mg phase is higher when decreasing pressure, 
consistently with the higher CO yield in Fig. 4-21, thereby confirming that decreasing pressure 
favored CO and Mg production. 
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Figure 4-22. XRD patterns of the collected solid products in zone A and zone B for the 

reduction of MgO with AC at (a) AC/MgO=1.5 and (b) AC/MgO=2. 

 
Regarding the influence of solid carbon type, the XRD patterns of the solid products 

collected in each zone at both molar ratios were not significantly different between AC and CB 
(Fig. C-22). However, higher Mg intensity was observed in zone B when compared with zone 
A. In contrast, very small Mg intensities of the XRD peaks were observed when employing 
graphite as reducing agent (Fig. C-23), due to the weak reaction rate, in agreement with the 
low CO yield (Fig. C-14). The XRD patterns between C/MgO=1.5 and C/MgO=2 for both solid 
carbon types were similar (Figs. C-24 and C-25), denoting that MgO and carbon were 
sufficiently in contact and confirming the low influence of the C/MgO ratio. 
 The particle morphology was analyzed by FESEM (Fig. 4-23 at nanoscale and Fig. 
C-26 at microscale) regarding the condensed solid products in the outlet (zone A) and filter 
(zone B) for two pressures (0.11 and 0.9 bar) and two solid carbon types (AC and CB). Overall, 
the condensed Mg was produced as nanoparticles (60−300 nm, Fig. 4-23), with morphology 
exhibiting spherical shapes arising from the droplet condensation during cooling (Mg melting 
point: 650°C). The size of condensed Mg from zone A appeared larger than zone B (e.g. Fig. 
4-23e compared to Fig. 4-23f). The presence of condensed Mg in zone A was less obvious than 
in zone B (Fig. 4-23a) because of the oxidation with air issue. The presence of solid carbon and 
MgO product was also observed in the filter (Fig. 4-23d). Besides, a noticeable increase of the 
condensed Mg was observed when decreasing pressure to 0.11 bar (Fig. 4-23b compared to 
Fig. 4-23d). Employing CB as reducing agent resulted in smaller sizes of the produced Mg 
(Fig. 4-23f). 
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Figure 4-23. SEM micrographs of solid products from the outlet tube (zone A) and filter 
(zone B) during (a,b) Run No. 3, (c,d) Run No. 1, and (e,f) Run No. 4.  

 
Furthermore, the high reactivity of solar Mg powders with CO2 was evidenced by TGA, 

thus demonstrating their high oxidation capability for cycle closure (Figs. C-27 and C-28). The 
reaction was composed of a fast initial step (about 70% Mg conversion reached after the first 
5 min period) followed by a slower reaction regime due to diffusion limitation in the packed 
powder layer, and complete Mg conversion was achieved at 380°C regardless of the starting 
Mg material, thus producing additional CO and solid MgO that can be recycled to the solar 
step. 
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4.4.2.4  Continuous process demonstration  
  A proof-of-concept MgO carbothermal reduction experiment was performed to 
demonstrate the feasibility of solar reactor operation with continuous reactant injection under 
vacuum and isothermal conditions. A homogeneous mixture of MgO (10 g) and AC (4.5 g) 
resulting in a C/MgO molar ratio of 1.5 was prepared and then placed into the hopper equipped 
with a screw feeder (Fig. C-3). The reacting powder was injected through the inlet path exiting 
into the reactor cavity with a constant feeding-rate of ~0.7 g/min (21 min injection duration) at 
a constant temperature of 1500 °C, while the pressure was maintained at ~0.11 bar over the 
entire run. Overall, product gases were produced continuously until finishing injection under 
isothermal and vacuum conditions (Fig. 4-24). A narrow gap of the stable temperature between 
T1 and Tpyrometer throughout the test was identified, indicating homogenous reactor cavity 
temperature and isothermal condition. However, a fluctuating pattern in the CO production rate 
was observed. This can be attributed to slight particle feeding rate instabilities and to reactant 
accumulation during injection occurring when the reactant feeding rate was higher than the rate 
of MgO carbothermal reduction. Noticeably, the experimental duration (25 min) was slightly 
higher than the expected duration (21 min), thereby confirming the reactant accumulation issue. 
The CO and CO2 production rates decreased progressively until reaching zero at the end of 
reaction, in close agreement with batch tests. After experiment, the amount of unreacted carbon 
remaining inside the cavity receiver (~1.3 g) corresponded roughly to the excess of fed carbon, 
and the presence of MgO particles was not observed in the cavity. The CO and CO2 yields (Run 
No.9) were compared with those obtained from a batch test (Run No.1) under the same pressure 
(0.11 bar) and C/MgO molar ratio (1.5), according to Table 4-2. The CO yield was somewhat 
lower in comparison with a batch test, presumably because of a weak particle entrainment by 
the gas flow before reacting inside the cavity, thus explaining the slightly lower global MgO 
conversion. The feasibility of continuous solar Mg production with high yields was evidenced. 
The energy content of the feedstock (MgO and C) was upgraded by the solar power input in 
the form of both CO and Mg and a solar-to-fuel energy conversion efficiency of ~8% was 
achieved with continuous solid reactants injection. The �solar-to-fuel increased during continuous 
isothermal operation when compared to batch tests, due to enhanced MgO reduction rate and 
more efficient utilization of solar energy input. This study is the first solar process 
demonstration with continuous reactant injection in a high-temperature solar reactor under 
vacuum operation. 

 
Figure 4-24. CO and CO2 production rates along with reactor temperatures for MgO 

reduction with AC with continuous reactant injection under vacuum pressure (P=0.11 bar).  
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4.5 Conclusion 

Solar carbothermal reduction of ZnO and MgO has been performed in a prototype solar 
reactor with different reducing agents including pure carbons and beech wood biomass in batch 
and continuous operation modes under vacuum and atmospheric pressures, thus demonstrating 
flexibility, reliability, and robustness of this scalable metallurgical process for high-purity Zn 
and Mg production. Gas species production rates, gas yields, metal oxides (ZnO and MgO) 
conversion, Zn and Mg production yield, and reactor performance have been experimentally 
evaluated. 

Concerning ZnO reduction, batch tests showed that a pressure decrease promoted both 
the ZnO reduction rate and conversion up to 76.5% at 0.15 bar, thus enhancing Zn production, 
but CO selectivity was decreased at the expense of higher CO2 due to the reduction of residence 
time. Regarding continuous reactant powder injection tests, increasing reactant feeding rate 
hastened ZnO consumption (ZnO conversion of 47.1% of at 1 g/min and 950 °C). In 
comparison, batch tests achieved significantly higher reaction extents than continuous tests, 
with maximum ZnO conversion exceeding 78% and energy upgrade factor up to 1.2. 
Nevertheless, non-isothermal operation induced higher heat losses, thus downgrading solar-to-
fuel conversion efficiency (1.1-1.6%). The ZnO conversion was higher for AC exhibiting larger 
specific surface area than CB, thus favoring solid-solid reaction. The continuous injection of 
reactant pellets was considered to alleviate particle entrainment and offer continuous ZnO 
reduction process at higher temperatures (up to 1350 °C). This approach was proved to be 
effective to produce high-purity solar-driven metallic Zn whether using pure carbon or biomass 
as reducing agent. Through the temperature increase in the range of 1100-1350 °C, a 
remarkable enhancement of gas production rates, yields, ZnO conversion, and CO selectivity 
with solar-to-fuel energy conversion efficiency up to ~6% was highlighted. Utilizing wood 
biomass as a reducing agent is an attractive option to produce both metallic Zn and high-quality 
syngas in a single process. High-purity Zn content exceeding 90%wt with well crystallized 
structure and micrometric particle size was also achieved. This solar carbothermal 
metallurgical process can thus be used to produce both metal Zn and high-value syngas by 
combining biomass gasification with ZnO reduction, thus representing a new promising path 
towards sustainable solar fuels. 

Regarding MgO reduction, solar carbothermal MgO reduction was investigated at 
temperature up to 1650 °C. Mg production was successfully achieved using different solid and 
gaseous reducing agents and operating parameters (pressure and C/MgO molar ratio) in 
continuous and batch modes under atmospheric or vacuum conditions (0.1-0.9 bar). The 
feasibility of vacuum MgO carbothermal reduction with continuous reactant injection was 
demonstrated for the first time. Decreasing pressure significantly enhanced the rate of MgO 
carbothermal reduction, MgO conversion, and CO yield, in agreement with thermodynamics. 
The highest CO yield (24.59 mmol/gMgO) obtained for activated charcoal at the lowest pressure 
closely approached the theoretical yield (24.81 mmol/gMgO), demonstrating nearly complete 
MgO conversion. MgO conversion up to 99.9% was achieved (at P=0.11 bar). High energy 
upgrade factor (up to 1.9) revealed efficient storage of solar energy into chemical fuels. 
Utilizing activated charcoal as reducing agent showed the best MgO conversion due to effective 
solid-to-solid contact (similar to ZnO). No significant impact of excess C/MgO molar ratios 
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(between 1.5 and 2) on MgO conversion was noticed. Mg product was produced as condensed 
nanosized particles, which highly favors their reactivity and oxidation when exposed to air 
(auto-ignition observed at room temperature). The new prototype vacuum reactor is expected 
to be flexible in processing different carbonaceous feedstocks for both MgO and ZnO reduction 
in both batch and continuous modes under vacuum condition.  
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Chapter 5: Solar gasification of biomass 

combined with carbothermal reduction of 

ZnO4 
 

5.1 Introduction 

 
The possibility of solar carbothermal reduction of ZnO combined with gasification of 

biomass was presented in Chapter 4. The beech wood served as reducing agent of ZnO, 
producing high-purity Zn and high-quality syngas. The obtained results motivated interest in 
combining gasification of biomass with carbothermal reduction of ZnO. In this Chapter, the 
aim is thus to prove the concept of the combined biomass pyro-gasification and carbo-thermal 

reduction of ZnO under continuous process operation for co-production of syngas and metallic 

Zn in a single process. The overall endothermic chemical reaction consisting of combined ZnO 
carbo-thermal reduction and biomass gasification (with molecular formula assumed as C6H9O4) 

is shown according to Eq. 4 -2. The stoichiometric molar ratio of biomass to ZnO is thus 0.5, 

and the reaction releases not only syngas composed of H2 and CO, but also lower-valence metal 

species (Zn).  On-sun experiments were carried out in a continuously-fed spouted-bed solar 

reactor (1. 5 kWth). The feasibility of syngas and Zn particles co- production in continuous 

operation and the influence of temperature and reactant molar ratio on reactor performance are 
demonstrated. 
 

5.2 Materials and methods 

5.2.1 Materials 

Two types of beech wood biomass feedstocks with respect to biomass type A (C6H9O4) and 
biomass type D (C7H11O4) were used as reducing agents for both carbo-thermal ZnO reduction 

and pyrolysis/gasification experiments  (the mass concentration of the main elements in 
lignocellulosic biomass is shown in Table 3-1 for both types of biomass). ZnO was purchased 
from PROLABO (chemical purity 99%, particle size 1-5 µm). 

 

5.2.2 Apparatus and procedures 

The experimental set- up was previously presented in Chapter 3. The additional details of 
this reactor for this study are reported here. Reacting samples were prepared by mechanical 
mixing of ZnO and wood biomass particles with fixed reactant molar ratios ( Table D-1 in 
Appendix D)  and were then placed in the hopper.  The ZnO particles were homogeneously 
spread and dispersed at the surface of the biomass particles ( as ZnO particle size is much 

 
4 Details of this chapter consist of one peer-reviewed article: 

• S. Chuayboon, S. Abanades, S. Rodat, Fuel. 215 (2018) 66–79. 



Chapter 5: Solar gasification combined with carbothermal reduction 

130 
 
 

smaller in comparison with biomass) , thereby warranting optimal surface- to- surface contact 
between ZnO and biomass particles.  Given the very large discrepancy of particles sizes, the 
ZnO particles spread and coat uniformly the surface of the wood particles (the dispersion of 
ZnO at the wood particle surface is simply achieved by mechanical mixing of the powders 
mixture). Additional experiments consisting of wood biomass pyrolysis (without any oxidant) 
were carried out to compare with the combined process (with the use of ZnO as an oxidizing 
agent).  Ar was fed into both the window area and the hopper so that residual oxygen was 
purged.  Furthermore, this gas flow protects the glass window from deposits as it carries the 
ascending products in the downward direction toward the reactor exit.  At the same time, the 
reactor was sucked by the air Venturi pump to remove the oxygen and to control the total 
pressure in the cavity just above atmospheric pressure (~0.87 bar). Then, the reactor was solar-
heated up to the targeted temperature under Ar flow using concentrated sunlight.  

Fig.  D-1 (in Appendix) represents the temporal evolution of temperatures and cavity 

pressure in the solar reactor during the heating phase.  The temperature started to increase 
continuously from the ambient temperature to the targeted temperature, while the cavity 
pressure first remained constant and then increased slightly during the reactant injection.  In 
order to reach the high temperature smoothly and to avoid thermal shocks, a shutter ( 4 m2) 
settled between the heliostat and the reactor was periodically and gradually opened. The desired 
steady- state temperature was reached after about 45 minutes, and the solid reactants were 
subsequently injected into the cavity in a continuous mode ( at a biomass injection rate of ~2 

g/ min)  for 10 minutes.  Because of the required energy to heat reactants and to carry out the 
endothermic reaction, the temperature decreased slightly (30-50ºC) after the start of injection. 

Therefore, the shutter opening was increased slightly to balance the energy consumption by the 
reaction and to hold in the operating temperature. As a result, the temperature rose rapidly in a 
few minutes and was then stable again throughout the experiment. T3 was slightly affected by 

some of the particles falling on it during injection, but isothermal experiments were fairly 
achieved.  The homogeneous temperature inside the cavity was confirmed by a narrow gap 
between T1 and T3, which was also confirmed by the pyrometer measurement. Syngas products 
exited the reactor along with Zn particles and then flowed into the filter. 

After completing the reactant injection, all the temperatures decreased rapidly due to 
the shutter being closed.  Next, the solid residues collected in the different parts of the outlet 
system ( composed of an alumina tube (deposit A), a long- steel tube (deposit B), and a filter 
(deposit C), Fig. D-2) were weighted for mass balance and then analyzed by X-ray diffraction 
(XRD) for phase identification and quantification. 
 

5.3 Experimental results  

5.3.1 Influence of temperature and type of biomass 

The effect of temperature on syngas composition during combined gasification of biomass and 
carbo- thermal reduction of ZnO was studied and compared with the pyrolysis process.  The 

temperatures (referred by T3)  of 1050ºC, 1100ºC, 1150ºC, 1200ºC, 1250°C and 1300ºC were 

considered for the biomass/ ZnO molar ratio of 1 and the temperatures of 1100°C, 1200ºC, 

1300°C and 1350ºC for the pyrolysis process, according to Table D-1 and Fig. 5-1. The syngas 
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flow-rate evolution is dependent on the temperature. The total amount of gas produced during 

each run was obtained from time integration of the gas flow-rates. The averaged mole fraction 
of the produced syngas over the entire duration of each experiment is represented in Fig.  5-2 . 

In order to check the reproducibility of the results, pyrolysis was completed twice at 1300ºC 

using the same condition (Run No. 10 and 11). 
Both the H2 and CO flow- rates increased when increasing the temperature for both the 

combined gasification/ carbo- thermal reduction ( biomass/ ZnO)  and the pyrolysis ( biomass 
only) , but the H2 and CO flow-rates were significantly lowered for pyrolysis when compared 
with combined gasification/carbo-thermal reduction. The flow-rates of CO2 and CH4 decreased 
markedly when increasing the temperature. Moreover, the CO2 and CH4 flow rates for pyrolysis 
were lower than for combined gasification/carbo-thermal reduction.  

 
Figure 5-1. Temperature influence on (a) CO, (b) H2, (c) CO2, and (d) CH4 flow rates for 

combined gasification/carbo-thermal reduction (biomass/ZnO molar ratio of 1) and pyrolysis 
process. 

 
Fig. 5-2 shows that the global mole fraction of H2 in the produced syngas increased 

significantly when increasing the temperature, while the mole fraction of CO2 and CH4 

decreased moderately. CO mole fraction increased slightly between 1050°C and 1300°C.  
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Concerning the pyrolysis process, a significant increase of the H2 mole fraction was noticed 
when increasing the temperature, whereas a slight decrease of CO2 and CH4 was observed. The 

temperature influence on CO was not clear because its proportion remained quite stable from 

1100ºC (Run No.8) to 1350ºC (Run No.13).  

The decrease in the amount of CH4 when increasing the temperature for both the 

gasification/ carbo- thermal reduction and pyrolysis can be evidenced by equilibrium gas 
composition.  According to thermodynamics, CH4 formation is not favored when increasing 
temperature [14].  Noticeably, the syngas composition produced at the highest temperature is 
near of the thermodynamic equilibrium.  

In comparison with pyrolysis at 1100 ºC (Run No.2 and 8), the CO and CH4 mole 
fraction produced by combined gasification/ carbo- thermal reduction was quite similar, CO2 
was moderately higher, while the H2 mole fraction was slightly lower. Conversely, the mole 
fraction of CH4, CO, and CO2 produced by combined gasification/ carbo- thermal reduction 
compared to pyrolysis at 1200ºC ( Run No.  4 and 9 )  and 1300ºC (Run No.  7 and 1 0 ) was 

moderately higher, whereas the H2 mole fraction was considerably lower. The lower H2 mole 
fraction can be attributed to its possible partial consumption by the reaction with ZnO 
(ZnO+H2→Zn+H2O).  Concomitantly, H2, CO, and CH4 formation potentially favored the 
reduction of ZnO, but H2 was shown to be the most consumed specie during ZnO reduction as 
its amount was reduced when compared with the pyrolysis process. 

Regarding the effect of different types of biomass, the syngas mole fraction was 
different in the case of the combined gasification/carbo-thermal reduction (Run No. 4 and No. 

5 at 1200°C)  because of the different size of biomass particles.  Syngas production was thus 
sensitive to initial biomass particle size because the biomass serves as a support for the ZnO 
particles. Lower initial particle size favors contact between reactants thanks to enhanced ZnO 
dispersion on a larger surface and promotes solid/ solid reactions, thereby increasing both H2 
and CO production.  In contrast, there was a slight difference in the syngas mole fraction for 
pyrolysis (Run No. 11 and No. 12 at 1300°C). 

Figure 5-2. Averaged syngas composition for combined gasification/carbo-thermal reduction 
(biomass/ZnO molar ratio of 1) and pyrolysis as a function of temperature (Ar not included). 
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The total yield of syngas production ( molesyngas/ molebiomass)  for the combined 
gasification/carbo-thermal reduction (Run No.1-7) is not directly correlated to the temperature, 
although higher temperatures tend to increase the amount of H2 and CO and to decrease the 
amount of CH4 (Fig. 5-3). In contrast, the total yield of syngas produced by pyrolysis increased 
significantly when increasing the temperature. Nevertheless, the syngas yield of the combined 
gasification/ carbo- thermal reduction was much higher in comparison with pyrolysis at the 
temperatures of 1100ºC ( Run No. 2 compared to Run No 8) , 1200ºC ( Run No. 4 compared to 
Run No 9) , and 1300ºC ( Run No. 7 compared to Run No 10)  because of the higher H2, CO, 
CO2, and CH4 yield resulting from char gasification. Therefore, the gasification process is more 
advantageous as it produces more syngas output per unit of feedstock than the pyrolysis process 
at a given temperature. 

 

 
Figure 5-3. Averaged syngas yield (mole syngas/mole biomass) for combined 

gasification/carbo-thermal reduction (biomass/ZnO molar ratio of 1) and pyrolysis at various 
temperatures. 

 

5.3.2 Influence of biomass/ZnO molar ratio  

The influence of biomass/ ZnO molar ratio ( 0. 5, 0. 75, and 1)  on syngas production was 
studied at 1100ºC.  Fig. 5-4 depicts the evolution of H2, CO, CO, and CH4 flow- rates at the 
various molar ratios.  Indications about the optimum of syngas production was found at the 

biomass/ ZnO molar ratio of 0. 75 in regard to the highest mole fraction of H2 and CO and the 
lowest mole fraction of CH4 and CO2, according to Fig. 5- 5.  For these reasons, an excess of 
biomass with respect to the stoichiometry ( stoichiometric biomass/ ZnO molar ratio is 0. 5) 

should be necessary in order to favor syngas production ( both H2 and CO)  and complete 
conversion of the ZnO. 
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Figure 5-4. Influence of biomass/ZnO molar ratio on (a) CO, (b) H2, (c) CO2, and (d) CH4 

flow rates for combined gasification/carbo-thermal reduction at 1100°C. 

 
In addition, the yield of syngas production at the biomass/ZnO molar ratio of 0.75 was 

also higher in comparison with the biomass/ZnO molar ratio of 1 (Fig 5-6). This trend means 
an optimum ratio between 0.5 and 1 exists in order to favor both complete consumption of the 
injected ZnO and complete conversion of the char resulting from pyrolysis.  In other words, 
insufficient amount of biomass with respect to ZnO results in incomplete ZnO conversion, 
whereas insufficient amount of ZnO with respect to biomass results in lowered syngas 
production due to incomplete char conversion.  Hence, a biomass/ZnO mole ratio of 0.75 was 
a good compromise to favor both complete consumption of the fed ZnO and high syngas output 
per unit of feedstock.  
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Figure 5-5. Averaged syngas composition for combined gasification/carbo-thermal reduction 

as a function of biomass/ZnO molar ratio at 1100°C (Ar not included). 
 

 
Figure 5-6. Averaged syngas yield for combined gasification/carbo-thermal reduction as a 

function of biomass/ZnO molar ratio at 1100°C 

 

5.3.3  Solar reactor performance assessment 

Experiments were carried out to evaluate the potential of the reactor during continuous 

operation.  Table 5-1 summarizes the experimental results and performance indicators during 

continuous runs.  The mass conversion rate is defined as the ratio of net output ( products)  to 
net input ( reactant mixture) , and the carbon conversion rate is defined as the ratio of carbon 
contained in the syngas products to carbon contained in fed biomass.  The gas residence time 
represents the average duration that the gas needs to sweep the cavity volume at the actual 
reactor temperature. 
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Table 5-1. Experimental results and performance indicators of the solar reactor during 
continuous operation.  

Run 

No. 

Types 
of 

Biomass 

Temperature 

(°C) 

Solar 
input 

(kW) 

Biomass/ZnO 

molar ratio 

Gas 
residence 

time (s) 

Mass 
conversion 

rate (%) 

Carbon 
conversion 

rate (%) 

U 

 
Solar

 
(%) 

1 type A 1050 0.89 1 0.562 84.9 80.4 1.04 19.5 
2 type A 1100 0.92 1 0.546 90.1 74.3 0.98 17.2 
3 type A 1150 1.10 1 0.712 91.3 80.2 1.06 11.2 
4 type A 1200 1.21 1 0.504 80.1 77.1 1.04 15.4 
5 type D 1200 1.14 1 0.660 84.4 67.2 0.98 11.5 
6 type A 1250 1.42 1 0.471 84.3 68.1 0.95 18.9 
7 type A 1300 1.51 1 0.408 83.3 72.2 0.99 15.4 
8 type A 1100 0.91 - 0.618 79.6 60.9 0.71 13.0 
9 type A 1200 1.13 - 0.786 80.4 60.1 0.72 12.4
10 type A 1300 1.45 - 0.706 84.6 63.2 0.80 12.8 
11 type A 1300 1.43 - 0.680 85.4 63.9 0.80 12.9 
12 type D 1300 1.48 - 0.734 93.9 68.2 0.91 11.2 
13 type A 1350 1.50 - 0.661 92.8 75.7 1.0 16.0 
14 type A 1100 0.89 0.5 0.629 81.5 76.3 1.07 19.9 
15 type A 1100 0.94 0.75 0.562 85.5 73.6 1.01 19.2 
16 type A 1250 1.37 0.75 0.484 93.8 85.1 1.17 19.8 

 

5.3.4 Material mass balance 

The material mass balance was performed to quantify the amount of reactant actually 

converted into the products, which are syngas productions, Zn deposits and solid residues. The 
overview of the mass balance for biomass/ZnO molar ratios of 0.75 and 1 at 1250ºC is shown 

in Tables D-2 and D-3, respectively. 
Noticeably, the solid carbon remaining in the cavity after the reaction was not fully recovered 
and was roughly quantified, which affects the global mass balance and explains to a large extent 
the lower mass output with respect to the input, as well as the incomplete carbon conversion 
rate. Furthermore, it must be noticed that the steam was not analyzed at the outlet and a part of 
the moisture initially contained in the biomass (content of ~9 wt%, Table 3-1) may exit the 
reactor, and it is thus omitted in the mass balance. Regarding the carbon conversion rate (Table 
5-1), it is generally higher for the gasification because most of the chars are converted to 
syngas, in contrast to pyrolysis. 

For a stoichiometric biomass/ZnO ratio (Run No. 14), the remaining solid particles inside 
the cavity were composed of char along with a significant amount of unreacted ZnO (Fig.  D-

3), because of insufficient particle mixing and incomplete ZnO conversion. This confirms that 
an excess of biomass with respect to stoichiometry is required to convert the whole ZnO 
particles. Complete ZnO conversion was achieved for biomass/ZnO molar ratio of 0.75 and 1 
(excess of biomass with respect to ZnO) with only char remaining inside the cavity after the 
reaction.  Similarly, incomplete ZnO conversion was observed for the run at the lowest 
temperature (Run No. 1).  

5.3.5 Cold gas and energy conversion efficiencies  

The cold gas efficiency (energy upgrade factor) represents the ratio of the energy content 
of the chemical products to the calorific value of the biomass feedstock.  It quantifies the 
fraction of solar energy stored in the reaction products (both syngas and Zn), according to Eq.4-
8.  Note that the energy content of the char by-product remaining in the cavity was not taken 
into account in the calculation. 
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 The energy upgrade factor is higher than 1 when the energy content of the products is 
higher than the energy content of the feedstock, which means that solar energy has been stored 
in the reaction products. The highest cold gas efficiency reached 1. 17 at 1250°C for the 

biomass/ZnO molar ratio of 0.75 (Run No.  16) , thereby approaching the theoretical cold gas 
efficiency (1.31) attained at the thermodynamic equilibrium according to Eq. 4-2 (theoretically 
reached above 1000 °C).  It was generally close to or above 1 for biomass gasification with 
ZnO, confirming solar energy storage.  In contrast, pyrolysis showed values below 1, because 
of the high-energy content still contained in the unconverted char product. Pyrolysis is thus not 
suitable to solar up- grade the calorific value of the feedstock in the form of syngas.  This 
confirms that the addition of ZnO is energetically beneficial since it consumes part of the char 
by-product to produce Zn, thereby contributing to solar energy storage into solid metal products 
with high energy density.  

In order to assess how well solar energy is used as the energy source for thermochemical 
processes, the solar- to- fuel energy conversion efficiency was estimated according to Eq.4-9. 
Solar-to-fuel energy conversion efficiencies of up to ~15-20% were estimated for the combined 
biomass/ZnO gasification.  

The total yield of syngas was up to 8.1 molsyngas/molbiomass (Run No.16, 43.2% CO, 44.4% 
H2, 6.1% CO2 and 6.0% CH4, with total heating value of 186 kJ), while the theoretical yield of 
syngas obtained from the thermodynamic equilibrium (Eq. 4-2) was 10.5 molsyngas/molbiomass 

(57.1% CO and 42.9% H2). The evolution of syngas flow- rates for Run No. 16 leading to the 
best performance is depicted in Fig. D-4. Furthermore, the gas flow-rates produced during the 

combined gasification/ carbo- thermal reduction were considerably higher in comparison to 
pyrolysis ( Figs.  5-7, 5-8, and 5-9) .  These results are confirmed by the comparison of syngas 
yields in Fig.  5-3 ( Run No. 2 compared to Run No.8, Run No. 4 compared to Run No. 9 , and 
Run No.7 compared to Run No.10). The effect of ZnO addition as a gasifying agent promoting 
syngas production is thus evidenced. 

 

Figure 5-7. Syngas flow rates for (a) biomass/ZnO molar ratio of 1 and (b) pyrolysis during a 
continuous experiment at 1100°C. 
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Figure 5-8. Syngas flow rates for (a) biomass/ZnO molar ratio of 1 and (b) pyrolysis during a 

continuous experiment at 1200°C. 

 
Figure 5-9. Syngas flow rates for (a) biomass/ZnO molar ratio of 1 and (b) pyrolysis during a 

continuous experiment at 1300°C. 
 

5.3.6 Characterization of Zn products 

Solid products were collected after each experiment. In order to analyze separately the 
samples, three zones of the solid products collection were defined: (i) zone A corresponds to 
the outlet alumina tube, (ii) zone B corresponds to the stainless-steel tube connected between 
the alumina tube and the filter, (iii) zone C corresponds to the filter (Fig. D-2). In addition, the 

remaining particles inside the cavity of the reactor consisting mainly of char and/or unreacted 
ZnO were also collected. 
The different removable components of the reactor in which the deposits occurred were 
weighed before and after the experiments to quantify the amount of solid product in each 
component (Table 5-2).  
 
Table 5-2. Amount of the solid deposits in each zone of the reactor. 

Residue 
Run No.  

1 2 3 4 5 6 7 14 15 16 
Zone A (g) 2.00 1.60 2.48 1.70 2.40 1.70 2.55 3.10 3.10 2.00 
Zone B (g) 2.40 3.20 2.20 1.70 1.90 3.50 1.90 2.40 2.2 4.00 
Zone C (g) 1.50 3.00 1.90 1.90 1.80 1.80 1.60 2.40 2.60 1.90 
Remainder inside 
cavity 

0.30 0.20 0.40 0.10 0.10 0.30 0.5 NA NA 0.20 

Total 6.20 8.00 6.98 5.40 6.20 7.30 6.55 7.90 7.90 8.10 
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After collecting Zn products from the outlet components, the Zn/ZnO composition was 
characterized via calibrated XRD for phase identification and quantitative analysis (Fig. C-8), 

and the powder morphology was investigated using scanning electron microscopy (SEM). 
Fig.  5-10 shows XRD patterns for commercial Zn and the solid products collected at 

the biomass/ ZnO molar ratio of 1 for different operating temperatures.  The powder collected 
inside the reactor cavity is pure carbon (amorphous), except at 1100°C (Run N°2) that shows 

a very small amount of ZnO remaining in the collected char ( Fig.  5-10a) .  This is consistent 
with the temperature influence on the reaction conversion.  In addition, a biomass/ ZnO molar 
ratio of 1 resulted in only char remaining inside the cavity (Fig. D-5). 

Traces of recombined ZnO were only evidenced in zone A according to Fig.  5-10b. 

This low recombination is mainly located in the first part of the alumina tube where Zn 
condenses and possibly oxidizes with CO2 and/or H2O, forming a hard deposit of ZnO in a well 
precise zone of ~1 cm long where the clogging occurred ( corresponding to the zone of the 
transition temperature of Zn( g) - Zn( l) ) .  Recombined ZnO can be likely explained by the 
reaction of Zn with either moisture from the biomass or H2O/CO2 produced from gasification 
reactions. 
 Fig. 5-10c and 5-10d confirms that the samples collected from zone B and C consist of 
pure Zn.  These results thus demonstrate that the reactor can efficiently be used for producing 
both Zn and syngas under continuous process operation.  

 
Figure 5-10. Representative XRD patterns of products collected from (a) cavity, (b) zone A, 

(c) zone B, and (d) zone C (biomass/ZnO molar ratio of 1). 
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XRD patterns regarding the influence of biomass/ ZnO ratio on samples composition 
collected in zones A and C are showed in Fig. D-6.  The lowest ZnO recombination was 

evidenced at biomass/ ZnO molar ratio of 0. 5, possibly due to an incomplete reaction ( low 
amount of CO2 and/ or H2O produced from gasification) .  The powders collected in the filter 
(zone C) are composed of Zn only without any trace of ZnO contamination. 

XRD patterns of the solid products obtained at the optimal condition leading to the 
highest reactor performance are presented in Fig. D-7.  The particles collected from the zones 

B and C were not contaminated by ZnO, while low recombination to ZnO was only found in 

the zone A.  In spite of having recombined ZnO in this zone, the amount of solid product was 
lower compared with zone B and C containing pure Zn ( 25%  of the total as seen in Table D-
2). The Zn mass fractions of the powders collected in the alumina tube (zone A) were estimated 
by quantitative XRD analysis (Fig. 5-11). High Zn contents were evidenced supporting the low 
recombination to ZnO in zone A ( ~80%  of average Zn mass fraction was achieved) .  As 
previously mentioned, pure Zn was obtained in zones B and C. In addition to Zn, the collected 
samples also contained a fraction of carbon that was entrained by gas flow (the carbon content 
was quantified precisely as described in the Table D-4). 

 
Figure 5-11. Weight fractions of Zn calculated from calibrated XRD (Fig. C-8) for the solid 

products collected in zone A. 
 

The mean crystallite size of the solid products in each zone was calculated by Scherrer’s 
equation (Fig. D-8). The largest crystallite size of Zn ranged from 120 to 160 nm and was found 
in zone A where products exited from the reactor.  The crystallite size decreased in the range 
85 to 121 nm in zone B, and 43 to 100 nm in zone C, while the size of ZnO crystallites in zone 
A ranged from 57 to 67 nm.  Besides, most of the crystallite sizes ( zones A, B, and C)  are 

closely consistent with the SEM observations. 
Fig.  5-12a and 5-12b shows SEM images of carbon remaining inside the cavity.  The 

products collected from the alumina tube ( Fig. 5-12c and 5-12d)  mainly consisted of small 
dispersed spherical nanoparticles of Zn as well as recombined ZnO.  In Fig.  5- 1 2e and 5-12f, 
the powders collected from the stainless tube are composed of pure Zn nanoparticles ( as 
confirmed by XRD), including also some carbon contamination. Likewise, the morphology of 
the powder collected from the filter is similar (Fig.5-12g and 5-12h), denoting the presence of 
agglomerates of condensed Zn nanoparticles contaminated by a small amount of carbon 
product. 
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Figure 5-12. SEM micrographs of (a, b) powder in the cavity, (c, d) products in the alumina 
tube (zone A), (e, f) products in the stainless tube (zone B), and (g, h) products in the filter 

(zone C). 
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5.4 Conclusion 

The feasibility of gasification of biomass with the ZnO/Zn redox system in a continuously-

fed solar reactor was successfully demonstrated for the first time.  The solar process produced 

both synthesis gas and Zn from the combined biomass gasification/carbo-thermal reduction of 
ZnO.  These reactions proceeded endothermically at moderate temperatures from 1050°C to 
1300°C, which can be reasonably achieved in large- scale solar concentrating systems.  The 
temperature of Zn production was thus much reduced when compared with that required for 
ZnO thermal dissociation.  Moreover, efficient solar energy storage into the reaction products 
(both syngas and Zn) was evidenced from the energy upgrade factor estimation. The influence 
of temperature, type of biomass and biomass/ZnO molar ratios, on the reactor performance was 
also investigated, and the benefits of the combined gasification/ carbo- thermal reduction 
process over a pyrolysis process (without any oxidant) were emphasized.  Such pyrolysis 
process was shown to be not energetically efficient for up- grading the solar power input into 
syngas because of the unconverted remaining char.  The efficient conversion of biomass to 
syngas using ZnO as a gasifying agent was evidenced by global mass balance and carbon 
conversion rate assessment.  An excess of biomass with respect to reaction stoichiometry is 
necessary to warrant complete ZnO conversion.  A suitable biomass/ ZnO molar ratio of 0. 75 
was highlighted, yielding maximum syngas production and energy conversion efficiencies at 
1250°C, while production of pure Zn was achieved.  The produced Zn particles can be further 
processed in a subsequent H2O/CO2 splitting step in order to form additional H2/CO and ZnO 
that is recycled to the first step, thus closing the chemical looping process.  The developed 
continuous solar reactor could be scaled-up in a next step and further applied to the novel 
combined process presented here, consisting of solar gasification of carbonaceous feedstock 
using various types of solid metal oxides. 
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General conclusion and perspectives 
 

Solar thermochemical processes offer environmentally friendly and attractive avenues 
to convert gaseous and solid carbonaceous feedstocks to synthesis gas (syngas) and to further 
produce metals products from their corresponding metal oxides. The produced syngas can be 
catalytically converted to gaseous or liquid hydrocarbon fuels such as H2 (via water-gas shift 
reaction) and diesel/kerosene (via Fischer-Tropsch synthesis), while the produced metals can 
be used as metal commodities. This work focused on the experimental investigation of three 
key solar thermochemical approaches with respect to gasification of biomass, chemical looping 
reforming of methane (CLRM), and carbothermal reduction (CTR) of metal oxides (ZnO and 
MgO). Gasification and CLRM were applied to convert solid and gaseous carbonaceous 
feedstocks (wood biomass and methane) into syngas, while CTR was applied to produce metals 
from ZnO and MgO. The influence of controlling parameters of the considered pathways on 
the reaction mechanism, conversion, yields, process performance, and on-sun testing behavior 
was experimentally investigated and evaluated. The experimental study was performed in 1.5 
kWth prototype solar chemical reactors consisting of spouted bed and high-temperature cavity-
type solar reactors, utilizing highly concentrated sunlight provided by a solar concentrating 
system at PROMES laboratory, Odeillo, France. The spouted bed solar reactor with continuous 
particle injection was used for the solar biomass gasification and combined biomass 
gasification/CTR of ZnO and further adapted with fixed reactive solid oxide structure for the 
CLRM process, while the high-temperature cavity-type solar reactor was used for the CTR of 
both ZnO and MgO in batch and continuous operation under vacuum and atmospheric 
pressures. Overall, such solar-driven processes allow for improvements of conversion yields, 
elimination of feedstock combustion and associated CO2 emissions, and storage of intermittent 
solar energy in storable and transportable chemical fuels, thereby outperforming the 
conventional processes. In addition, their feasibility, reliability, and robustness in converting 
both gaseous and solid carbonaceous feedstocks to syngas and producing metals in solar 
reactors in batch and continuous modes during on-sun testing were successfully demonstrated. 
In summary, the experimental demonstration of each thermochemical process was addressed 
as follows: 

The first investigated process is the solar CLRM through non-volatile oxides including 
ceria (CeO2) and iron (Fe2O3) oxides. Fifty-five on-sun cycling conditions were carried out via 
two-step redox cycling encompassing endothermic CeO2 or Fe2O3 reduction with methane 
(partial oxidation of methane) and exothermic oxidation of reduced metal oxides with H2O/CO2 
at the same operating temperature, demonstrating the capability to operate the cycle 
isothermally. The influence of metal oxides macrostructure (packed powder, packed powder 
mixed with inert Al2O3 particles, and reticulated porous foam), oxidants variants (H2O and 
CO2), methane flow-rates (0.1-0.4 NL/min), reduction temperatures (900-1150 °C), sintering 
temperatures of metal oxide structure (1000-1400 °C) on the syngas production rate, syngas 
yield, bed-averaged oxygen non-stoichiometry (δ), methane conversion (XCH4), and solar 
reactor performance (energy efficiencies) was evidenced. The metal oxides cycling stability 
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was also demonstrated. Iron oxide reduction with methane is strongly dependent on 
temperature and displays relatively lower reaction rate than CeO2. The reduced iron (Fe) is not 
completely re-oxidized to iron oxide (Fe3O4) after water-splitting step because of its low 
thermal stability resulting in strong sintering and agglomeration, leading to material 
deactivation. Employing Fe2O3 as oxygen carrier is thus not suitable for solar CLRM, but iron 
oxide reduction with methane could be an alternative option for solar metallurgy aiming at 
producing both metallic iron and syngas. In contrast, cerium oxide exhibits fast reaction rate 
and stable syngas yield with H2/CO molar ratios approaching two over several repeated cycles, 
demonstrating complete ceria oxidation with either H2O or CO2. Successive ceria redox cycles 
with stable patterns in δ, syngas production yield, and reactor performance validated material 
stability. A decrease in sintering temperature of the ceria foam results in an increase in syngas 
selectivity, methane conversion, and reactor performance, at the expense of structure 
embrittlement. The increase of both the methane flowrate and reduction temperature promotes 
δ up to 0.41, in turn leading to a substantial enhancement in the syngas yields (up to 8.08 
mmol/gCeO2) but concomitantly favoring CH4 cracking reaction. The ceria reticulated porous 
foam shows better performance in terms of effective heat transfer, due to volumetric absorption 
of concentrated solar radiation and uniform heating with lower solar power consumption. Using 
CO2 as an oxidant results in longer oxidation duration compared to H2O, and slower oxidation 
kinetics. Solar energy storage is confirmed by the maximum solar-to-fuel energy conversion 
efficiency of 5.60% and the energy upgrade factor up to 1.19. 

 
The second process is solar steam gasification of wood biomass with continuous 

feedstock injection in a spouted solar reactor. The experimental assessment of continuous solar 
gasification of biomass was performed via sixty-four on-sun runs. A comprehensive parametric 
study considering different lignocellulosic biomass feedstocks (five wood biomass types), 
biomass feeding rates (0.6-2.7 g/min), steam/biomass molar ratios (1.6-2.8), carrier gas flow 
rates (2-3.3 NL/min), and reaction temperatures (1100-1300 °C) was conducted for optimizing 
the syngas production capacity, energy upgrade factor, and gasifier performance. Different 
wood feedstocks were continuously gasified with H2O during on-sun testing, and syngas was 
continuously produced, thus successfully demonstrating the reliability of the reactor operated 
compatibly with different particle types, sizes, and shapes. A small excess of water with respect 
to stoichiometry is beneficial for biomass gasification regarding the increase of H2 and CO and 
the decrease of CH4, CO2, and C2Hm production. An increase in the gas residence time through 
the decrease of total gas carrier flow results in the improvement of the syngas yield and quality. 
A significant enhancement of syngas yields and production rates through the rise of operating 
temperature is highlighted with activation energy in the range of 24-29 kJ/mol. Increasing both 
biomass feeding rate and temperature improves the syngas yields, gasification rates, and syngas 
quality because both biomass consumption rates and reaction kinetics are enhanced, in turn 
improving reactor performance. However, the performance outputs are reduced, and reactants 
accumulation within the cavity receiver occurs when biomass feeding rate exceeds its optimal 
feeding point. The optimal biomass feeding rate regarding maximum syngas yield exits at 2.2 
g/min at 1200 °C and 2.5 g/min at 1300 °C. The solar reactor temperature of 1300°C is 
recommended to operate reliably the biomass gasifier with the considered biomass particle size 
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range (0.3-4 mm) in a continuous feeding mode enabling complete biomass conversion, as 
verified by the carbon consumption rate that matches closely the carbon feeding rate. By 
optimizing biomass feeding rate consistently with operating temperature, the calorific value of 
the biomass feedstock is solar upgraded by 24% with carbon conversion extent above 90%, 
solar-to-fuel energy conversion efficiency up to 29%, and thermochemical reactor efficiency 
above 27%. 

 
The last process is the production of Mg and Zn via the solar CTR of MgO and ZnO 

using solid carbonaceous feedstocks such as solid carbon or biomass as reducing agents. The 
reactions also produce CO or syngas, as valuable co-products. The solar CTR of ZnO and MgO 
was studied as a function of different reducing agents (activated charcoal, carbon black, 
graphite, and beech wood biomass as particles or pellets), carbon/metal oxide molar ratios (1.5-
2), pressures (vacuum and atmospheric), and temperatures (950-1650 °C) in batch and 
continuous operation, thus demonstrating flexibility, reliability, and robustness of this scalable 
metallurgical process for Zn and Mg production. The equilibrium thermodynamics of the CTR 
of ZnO and MgO were also analyzed. ZnO and MgO conversion, reduction rate, and CO yield 
increased with decreasing pressure and increasing temperature, in agreement with 
thermodynamic analysis. High-purity Zn and Mg production was achieved with net conversion 
above 78% and 99%, respectively. Utilizing activated charcoal as reducing agent led to the 
highest MgO and ZnO conversion and CO yield. Mg recovery in the outlet products was 
identified as one of the most critical process challenges because of the pyrophoric property of 
the produced nanopowder and its strong oxidation reactivity with air. Alternatively, utilizing 
wood biomass as a sustainable reducer was proved to be an attractive choice to produce both 
metallic Zn and high-quality syngas in a single process, demonstrating the feasibility of 
combined gasification of biomass with the ZnO/ Zn redox system in continuous operation for 
the first time. High conversion efficiency and solar energy storage were demonstrated with the 
maximum energy upgrade factor up to 1.2 and 1.9 and the maximum solar-to-fuel energy 
conversion efficiency up to 6% and 7.8 % for the CTR of ZnO and MgO, respectively. The 
produced Zn and Mg were proved to be further reactive in a second step to produce fuel via 
CO2-splitting in a complete and fast reaction. 

 
Finally, the feasibility of the combination of biomass gasification and CTR of ZnO was 

experimentally investigated in the particle-fed reactor using biomass feedstock as ZnO reducer, 
as demonstrated in the previous study. The goal was thus to prove the concept of producing 
syngas and metal Zn continuously in a single process. Experiments were performed in spouted 
bed with biomass/ ZnO molar ratios of 0. 5-1 at 1050-1300 °C, using beech wood biomass in 
continuous feeding mode.  The influence of temperature and reactant molar ratio on ZnO 
conversion as well as syngas production was studied and additionally compared to pyrolysis 
tests (without any oxidant).  As a result, the feasibility of continuous biomass gasification 
combined with pure Zn production was experimentally proved.  Increasing the temperature 
significantly increased H2 and slightly increased CO, while CO2 and CH4 decreased. The 
optimal biomass/ZnO molar ratio was evidenced at 0.75 yielding maximum syngas production 
up to ~8 molsyngas/ molbiomass at 1250 °C.  The syngas yield of the combined 
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gasification/carbothermal reduction was much higher in comparison with pyrolysis because of 
higher feedstock conversion thanks to ZnO. The energy upgrade factor of the feedstock by the 
solar power input and the solar- to- fuel energy conversion efficiency were 1. 17 and 19.8% 

respectively. 
Table 6-1 summarizes the temperature at which the standard ΔG° equals zero 

(T@ΔG0=0), enthalpy change of reaction (ΔH0), theoretical energy upgrade factor (theoretical 
U), maximal achieved energy upgrade factor (Max U), percentage of achieved U compared to 
theoretical U (% of max value), and solar-to-fuel energy conversion efficiency obtained at Max 
U (������−��−����) for each considered reaction. The highest energy upgrade factor (Max U) of 
each reaction approached their theoretical ones in the range of 74-93 %, demonstrating high 
conversion and solar energy storage potential into the chemical products. The theoretical U of 
CTR of MgO is the highest (2.25) compared to other considered reactions, as the enthalpy 
change of Mg formation is very high (601.1 kJ/mol), demonstrating high potential for the 
storage of solar energy. However, the ������−��−���� @ max U for CTR of ZnO and CTR of 
MgO is quite low as a result of high heat losses, caused by long non-isothermal duration (batch 
operation) and high reduction temperature (CTR of MgO), while that of CLRM with ceria was 
greater due to isothermal operation (reduction + oxidation steps). The maximum ������−��−���� 
@ max U was obtained for biomass gasification (27.8%), followed by biomass gasification 
combined with CTR of ZnO (19.8%). This is because such processes were both operated 
isothermally in continuous mode, thereby significantly reducing heat losses. It can be pointed 
out that high temperature process with respect to CTR of MgO allowed higher capacity for 
solar energy storage into the chemical products than low temperature process; however, at the 
expense of higher heat losses, leading to lower ������−��−����. The heat losses can be decreased 
by operating the process in both isothermal and continuous mode to improve the ������−��−���� . Additionally, higher ������−��−����  implies a smaller solar concentrating 
system for the same fuel output, which directly leads to lower specific production cost, as the 
major costly component is attributed to the investment of the solar collecting and concentrating 
infrastructure. 

 
Table 6-1. T@ΔG0=0, ΔH0, theoretical U, Max U, % of max value, and ������−��−���� @ 
max U of each considered reaction. 

Route Reaction 
T@ΔG0=0 

(K) 

ΔH0 

(kJ/mol) 

Theoretical 

U 

Max 

U 

% of 
max 

value 

������−��−���� 
@ max U 

(%) 

CLRM Fe2O3+3CH4→2Fe+6H2+3CO 890 715 
NA NA NA NA 

3Fe+4H2O⟶Fe3O4+4H2 1285 -151 

CLRM CeO2+�CH4⟶CeO2-�+�CO+2�H2 1058* 166* 
1.26 1.15 91 5.24 

CeO2-�+�H2O⟶CeO2+�H2 1561* -64* 
Gasification C6H9O4+2H2O→6CO+6.5H2 NA 800 1.28 1.19 93 27.8 

CTR ZnO+C→Zn+CO 1220 370 1.61 1.20 74 1.6 
CTR MgO+C→Mg+CO 2130 638 2.25 1.9 84 1.7 

Gasification+CTR 2ZnO+C6H9O4→2Zn+6CO+4.5H2 NA 1278 1.31 1.17 89 19.8 

*values given for �=0.5 
To conclude, this work provides a useful experimental database to gain understanding 

on the solar gasification of biomass, CLRM, and CTR of ZnO and MgO in prototype solar 
chemical reactors. In addition, the experimental results of each lab-scale process are very useful 
to support modelling as well as developing large-scale processes. 
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Perspectives for future research on such processes are recommended in the domains of 
new reactor designs, testing and optimization, modeling, as well as reactor scale up.  

Concerning CLRM, the optimization of the morphological characteristics of redox 
materials and their integration in solar reactors should be conducted to enhance incident solar 
radiative flux absorption and volumetric heat transfer, reactive gas flow through cell channels, 
in turn improving reaction kinetics and reactor efficiency. The use of biomethane, biogas, 
biohythane as gaseous feedstocks instead of methane is also an alternative to produce 
renewable fuel. In addition, the on-sun long-term testing of materials over a large number of 
repeated cycles should be achieved to ensure their performance stability.  

The study of solar gasification of other types of solid biomass feedstocks from 
agriculture plant residues such as empty fruit bunches, rice husk, sugar cane or waste 
feedstocks such as municipal solid wastes or solid recovered fuels is recommended. Moreover, 
the investigation of solar CLG of biomass with various non-volatile metal oxides in the spouted 
bed reactor is interesting because the oxygen carrier particles can simultaneously act as reactive 
heat transfer solids. Air separation unit is also avoided. Moreover, the corrosion issues 
attributed to H2O oxidant may be avoided. Finally, continuous solar/autothermal hybrid 
gasification of biomass should be investigated to operate the process around-the-clock under 
intermittent or fluctuating solar power input.  

Regarding metallurgical processes, the combination of biomass gasification with metal 
oxide reduction is a promising approach. The influence of reactant feeding rate and reducing 
agents (biomass types, sizes, and shapes) on the thermochemical performance of continuous 
ZnO reduction needs to be further investigated to identify the optimal operating conditions. In 
addition, the continuous CTR of MgO under vacuum operation is recommended, which 
requires reactor testing to demonstrate the process reliability and stability during continuous 
Mg production. Finally, using biomass feedstock as reducing agent for MgO is also attractive, 
as the required reduction temperature is high (exceeding 1400 °C), which should favor the 
kinetic rate of biomass gasification.  

In the field of solar reactor modelling for the above solid-gas thermochemical 
processes, numerical reactor simulations considering a multiphase approach while coupling the 
fluid flow, heat and mass transfer, and chemical reactions are recommended to optimize the 
reactor, which can be used for reactors design and scale-up. New reactor concepts based on 
direct or indirect heating should be devised and developed aiming to increase residence time 
of reactants and solar radiative absorption. Upscaling the reactors is finally advised to improve 
the solid and gas residence time and reduce heat losses, which should enhance chemical 
conversion, products yields, and solar-to-fuel efficiency. 
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Appendix 
 

Appendix A: Solar chemical looping reforming of methane 

through iron and ceria oxides 
 
a. Thermodynamics 

Fig. A-1 displays the equilibrium species distribution of Fe3O4+4CH4 at 1 bar as a 
function of temperature. Similar to the results shown in Fig. 2-3, Fe3O4 starts reducing to FeO 
with the occurrence of intermediate non-stoichiometric species (Fe0.945O, Fe0.947O, and 
FeO1.056), while H2, C, and H2O are simultaneously formed as main components above 400 °C, 

and FeO is then reduced to Fe along with the formation of CO and CO2 above 500 °C. Reduction 

to Fe reaches completion at above 700 °C, while C, H2O, and CO2 decline continuously. Above 

1000 °C, the syngas (with H2/CO ratio approaching two) and solid Fe are the stable species. 

 
Figure A-1. Thermodynamic equilibrium composition of methane reforming over Fe3O4 as a 

function of temperature at 1 bar.  
Fig. A-2 shows the equilibrium species composition of Fe3O4+4C at 1 bar as a function 

of temperature. Similar to the results in Fig. 2-4, a temperature increase leads to Fe3O4 
reduction to FeO, followed by Fe and CO production. Above 800 °C, complete reduction to Fe 

and H2/CO ratio approaching two are obtained. 

 
Figure A-2. Thermodynamic equilibrium composition of Fe3O4 carbothermal reduction as a 

function of temperature at 1 bar. 
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b. Temperature and pressure evolution in the reactor 

The transient temperature and cavity pressure evolutions in the solar reactor during both 
heating phase and ceria powder reduction with methane, followed by ceria powder oxidation 
with H2O at different cycle operating temperatures are presented for ceria foam (cycles No.: 5-
10, ST-1000, 18.3705 g) according to Fig. A-3, for ceria powder (cycles No.: 3-6, 25.0052 g) 
according to Fig. A-4 and for ceria powder mixed with Al2O3 (cycles No.: 3-6, 27.0605 g of 
ceria powder with Al2O3) according to Fig. A-5.  

The homogeneous temperature inside the ceria foam as well as the reactor cavity 
receiver was confirmed by narrow gaps between T1 (below the foam), T3 (inside the foam), and 
Tpyrometer (upper surface of the foam) while the external cavity wall temperature (T2) was ~150 
°C lower than these temperatures (Fig. A-3). Regarding powder, during each reduction step 
(Fig. A-4), the temperature inside the ceria powder (T3) was lower than that of ceria bed surface 
(Tpyrometer) by ~50-70 °C, while the temperature inside the alumina wool (T1) was also lower 
than T3 by 50-72 °C because the ceria powder exhibits high opacity. Therefore, incident solar 
thermal radiation can be mainly absorbed on the exposed surface, thereby leading to different 
temperature gradients across the thickness of the ceria powder bed. During each oxidation step 
(Fig. A-4), T3 was conversely higher than Tpyrometer because of the exothermic reaction. A 
similar temperature gradient across the particle bed layer was observed when employing ceria 
powder mixed with Al2O3 particles, but the temperature homogeneity was improved as 
illustrated in Fig. A-5 (smaller gaps between Tpyrometer, T1, and T3 compared to those for ceria 
powder (Fig. A-4)), presumably because of facilitated gas circulation inside the bed and 
enhanced heat and mass transfer. The cavity pressure for any structure was constant at ~0.9 bar 
during cycling. 

 

 
Figure A-3. Temperatures and pressure evolution in the reactor during heating phase, ceria 

foam reduction with methane and oxidation with H2O (sample: ceria foam, ST-1000, 18.3705 
g, cycles: 5-10 in Table 2-1). 
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Figure A-4. Temperatures and pressure evolution in the reactor during heating phase, ceria 

powder reduction with methane and ceria powder oxidation with H2O (sample: ceria powder 
25.0052 g, cycles: 3-6). 

 
Figure A-5. Temperatures and pressure evolution in the reactor during heating phase, ceria 
reduction with methane and ceria oxidation with H2O (sample: ceria powder (27.0605 g) 

mixed with Al2O3 (60 g), cycles: 3-6). 
 

c. Experimental conditions and solar reactor performance assessment 

Table A-1 summarizes the operating conditions and experimental results for 55 solar-
driven experiments using the directly-irradiated solar reactor. The solar reactor was operated 
under the following range of operating parameters: CH4 flow-rates (0.1–0.4 NL/min), operating 
cycle temperatures (900–1150 °C), steam flow-rate (200 mg/min), CO2 flow rate (0.2 NL/min), 
and carrier gas flow-rates (either Ar or N2, 2–2.2 NL/min). Each type of material was cycled 
several times to confirm experimental repeatability and materials stability. 

For all the tests relating to Table A-1, �̇�����,���, �̇�����,��, δred, δox, XCH₄, U, and ηsolar-

to-fuel were in the ranges of 0.62-1.25 kW, 0.55-0.96 kW, 0.12–0.41, 0.12-0.40, 5.20-77.41%, 
0.89-1.19 and 1.14-5.60%, respectively. 
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Table A-1. Operating conditions and experimental performance indicators for the solar 
reactor.  

# 
Sample 

structure 

Initial

ceria 

mass 

(g) 

Cycle 

No. 

�̇�� 
(NL/mi

n) 

�̇��� 
(NL/

min) 

T3 (°C) 
�̇�����,��
(kW) 

�̇�����,��
(kW) 

δred XCH₄ �̇��� 

(mg/m

in) 

�̇���
(NL/

min) 

δox 
U 

(%) 

ηsolar-to-fuel 

(%) 

1 

CeO2 

(Foam, 
ST-

1400) 

27.9810

1 2.2 0.2 1000 0.80 0.71 0.37 26.25 200   0.32 1.00 2.52 

2 2 2.2 0.2 1000 0.83 0.72 0.35 27.32 200   0.31 1.03 2.55 

3 3 2 0.4 1000 0.89 0.74 0.33 34.20 200   0.29 0.93 3.57 

4 4 2.2 0.2 1000 0.82 0.66 0.34 23.00 200   0.32 1.08 2.75 

5 5 2.2 0.2 900 0.62 0.65 0.12 5.20 200   0.12 1.07 1.44 

6 6 2.2 0.2 1050 0.95 0.78 0.37 47.03 200   0.34 1.09 3.18 

7 

CeO2 
(Foam, 

ST-
1000) 

18.3705

1 2.2 0.2 1000 0.85 0.78 0.38 59.69 200   0.35 1.01 4.20 

8 2 2.2 0.1 1000 0.76 0.78 0.35 68.52 200   0.35 0.97 3.12 

9 3 2.2 0.2 1000 0.85 0.77 0.37 56.80 200   0.36 0.99 3.45 

10 4 2.2 0.2 1000 0.85 0.69 0.38 60.00 200   0.36 1.04 4.31 

11 5 2.2 0.2 1000 0.87 0.78 0.38 49.58 200   0.36 1.07 3.63 

12 6 2.2 0.3 1000 0.94 0.67 0.38 60.46 200   0.36 0.97 5.10 

13 7 2.2 0.4 1000 0.86 0.60 0.38 53.82 200   0.37 0.98 5.60 

14 8 2.2 0.2 1050 0.76 0.87 0.38 65.91 200   0.37 1.07 4.31 

15 9 2.2 0.2 950 0.67 0.55 0.33 18.59 200   0.33 1.09 3.02 

16 10 2.2 0.2 1000 0.81 0.72 0.38 60.89 200   0.37 0.99 3.76 

17 11 2.2 0.2 1000 0.85 0.82 0.37 51.88 200   0.36 1.01 3.67 

18 12 2.2 0.2 1000 0.68 0.68 0.36 46.86 200   0.35 1.03 3.78 

19 13 2.2* 0.2 1000 0.94 0.70 0.35 51.54 200   0.36 1.00 3.62 

20 14 2.2* 0.2 1000 0.88 0.78 0.37 47.96 200   0.36 1.07 3.26 

21 15 2.2 0.2 1000 0.81 0.68 0.36 48.08   0.2  0.36 1.10 3.52 

22 

CeO2 
(Foam, 

ST-
1000) 

17.0152

1 2.2* 0.2 1000 0.97 0.82 0.36 60.25 200   0.35 1.04 3.43 

23 2 2.2* 0.2 1000 0.98 0.78 0.34 44.25 200   0.35 1.09 2.76 

24 3 2.2* 0.2 1000 1.00 0.89 0.34 49.95 200   0.35 1.06 2.54 

25 4 2.2* 0.2 1000 0.88 0.91 0.32 40.77 200   0.33 1.12 2.72 

26 5 2.2* 0.2 1000 0.95 0.74 0.34 43.89 200   0.35 1.10 3.10 

27 6 2.2* 0.2 1000 0.89 0.68 0.33 44.18 200   0.35 1.15 2.43 

28 

CeO2+Al

2O3 

(Powder) 
27.0605 

1 2.2 0.2 1000 1.03 0.93 0.37 66.56 200   0.34 1.15 5.24 

29 2 2.2 0.2 1000 0.98 0.67 0.39 60.19 200   0.33 1.02 4.34 

30 3 2.2 0.2 1000 0.96 0.75 0.36 56.76 200   0.34 0.98 3.64 

31 4 2.2 0.2 1050 1.25 0.81 0.39 77.41 200   0.36 1.06 4.01 

32 5 2.2 0.4 1000 1.06 0.78 0.37 53.64 200   0.37 0.94 4.99 

33 6 2.2 0.2 900 0.86 0.63 0.24 18.40 200   0.24 1.08 2.49 

34 

CeO2+Al

2O3 
(Powder) 

27.0892

1 2.2 0.2 1000 1.01 0.72 0.37 60.14   0.2  0.37 1.04 3.46 

35 2 2.2 0.2 950 0.81 0.61 0.39 48.05 200   0.33 1.02 3.93 

36 3 2.2 0.2 1000 0.91 0.77 0.38 61.00   0.2  0.39 1.11 3.67 

37 4 2.2 0.2 950 0.89 0.69 0.38 37.21   0.2  0.37 1.12 2.82 
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38 5 2.2 0.2 1050 1.22 0.64 0.40 75.80   0.2  0.40 1.19 3.86 

39 

CeO2 

(Powder) 
25.0052

1 2.2* 0.2 1000 0.96 0.90 0.37 44.33 200   0.36 1.09 2.97 

40 2 2.2* 0.1 1000 1.06 0.57 0.37 76.35 200   0.34 1.06 3.13 

41 3 2.2* 0.3 1000 0.98 0.73 0.39 50.90 200   0.35 0.89 3.45 

42 4 2.2* 0.4 1000 1.14 0.96 0.41 43.00 200   0.39 0.95 3.64 

43 5 2.2* 0.2 1000 0.93 0.80 0.37 39.01 200   0.36 1.13 3.07 

44 6 2.2* 0.2 950 0.88 0.75 0.35 24.03 200   0.35 1.12 2.75 

45 

Fe2O3 
(Powder) 

20.52 

1 2.2 0.2 1000 - - 
0.09
5** 

24.7 200 - 
0.01
2*** 

- - 

46 2 2.2 0.2 1100 - - 
0.06
8** 

33.8 200 - 
0.04
0*** 

- - 

47 3 2.2 0.2 950 - - 
0.00
0** 

0.0 200 - 
0.00
4*** 

- - 

48 4 2.2 0.2 1000 - - 
0.00
3** 

0.2 200 - - - - 

49 

Fe2O3 
(Foam) 

13.91 

1 2.2 0.2 1000 - - 
0.05
9** 

24.9 200 - 
0.00
9*** 

- - 

50 2 2.2 0.2 1000 - - 
0.01
2** 

9.3 200 - 
0.01
1*** 

- - 

51 3 2.2 0.2 1000 - - 
0.00
9** 

3.7 200 - 
0.00
8*** 

- - 

52 4 2.2 0.2 1050 - - 
0.07
5** 

27.6 200 - 
0.06
3*** 

- - 

53 5 2.2 0.2 1150 - - 
0.13
1** 

68.3 200 - 
0.01
3*** 

- - 

54 6 2.2 0.2 1100 - - 
0.01
9** 

40.3 200 - 
0.01
1*** 

- - 

55 7 2.2 0.2 1000 - - 
0.00
8** 

9.1 200 - - - - 

*Using N2 as carrier and protective gases, ** nO,red (mol), and *** nO,ox (mol) 
 

d. Iron oxide powder 

Photograph of iron oxide powder after four cycles is shown in Fig. A-6.  
 

 
Figure A-6. Iron oxide powder after four cycles at different temperatures.  

 
Phase identification via XRD of the reduced iron oxide powder after the reduction 

step of cycle #4 is presented in Fig. A-7 
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Figure A-7. Representative XRD patterns of iron oxide powder collected after the reduction 
step of cycle #4.  

 
e. Iron oxide porous foam 

Phase identification via XRD of the reduced iron oxide foam after the reduction step 
of cycle #7 is presented in Fig. A-8. 

 
Figure A-8. Representative XRD patterns of iron oxide reticulated foam collected after the 

reduction step of cycle #7. 
 

Fig. A-9 shows photographs of iron oxide porous foam before and after seven cycles. 
It is obvious that iron oxide exhibits strong sintering and coarsening, which results in large loss 
of specific surface area, thereby leading to material deactivation. 

 

 
Figure A-9. Iron oxide reticulated foam (a) before the cycling test and (b) after seven 

isothermal cycles at different temperatures.  



Appendix A 

165 
 
 

f. Chemical-looping methane reforming over ceria foams 

The obtained sintered foams at 1000 °C (ST-1000) and 1400 °C (ST-1400) that were 
prepared for the solar experiments are shown in Fig. A-10.  

 
Figure A-10. Ceria reticulated foam fabricated for the solar cavity receiver: (a) after final heat 
treatment at 1000 °C (13 mm thickness, 55 mm diameter) and (b) after final heat treatment at 

1400 °C (11 mm thickness, 60 mm diameter). 
 

Fig. A-11 shows the syngas production rates along with nominal reactor temperature 
during ceria foam (ST-1400) reduction in the range 900–1050 °C (CH4 flow-rate: 0.2 Nl/min, 
Ar flow rate: 0.2 Nl/min, 50% CH4 mole fraction). It was followed by subsequent ceria 
oxidation with H2O carried out at the same temperature (H2O: 200 mg/min, Ar: 0.2 Nl/min, 
55% steam mole fraction at inlet). 

 
Figure A-11. Evolution of the production rates of H2, CO, CO2 and CH4 in the syngas along 

with nominal reactor temperature for reduction (a, c, and e) and oxidation (b, d, and f) of 
ceria foam (ST-1400) cycled isothermally at different temperatures. 
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g. Carbon deposition on the filter 

 
 Fig. A-12 shows the presence of carbon deposition on the filter after 4 cycles, thereby 
confirming carbon particles entrainment at the reactor outlet. 

 
Figure A-12. Carbon deposition on the filter (sample: ceria foam ST-1000, 18.3705 g, cycles: 

1-4). 
 

h. Ceria mixed with Al2O3 samples 

The homogeneous mixture of ceria powder (mass: 27.0605 g, <5 µm particle size) with 
Al2O3 (mass: 60 g, 1.2 mm particle size) was placed in the reactor cavity receiver exposed to 
high-flux concentrated solar irradiation prior to solar-driven experiments (Fig. A-13a). Fig. A-
13b shows the ceria powder after 6 successive experimental runs with trace of remaining 
carbon deposit at the surface only.  

 
Figure A-13. Ceria powder mixed with Al2O3 particles as dispersion promoter for the solar 

cavity receiver: (a) before experiments, (b) after experiments for 6 cycles. 
 

g. Kinetic study  

In order to investigate the reaction kinetics during methane induced reduction, the 
Arrhenius expression was utilized to evaluate the effect of temperature on the rates of ceria 
reduction. � = � ∙ exp(−��/��)     (A-1) 
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where k is the reaction rate constant, A is the pre-exponential factor, Ea is the activation 
energy, R is the gas constant, and T is absolute temperature. 

The reaction rate constants (k) were quantified from the peak production rates of H2 and 
CO for each ceria structure during reduction step at 950 °C (900 °C for CeO2-Al2O3 blend), 
1000 °C, and 1050 °C. The logarithm evolution of the reaction rates versus inverse temperature 
(Eq. A-1) was subsequently plotted (Fig. A-14) to determine the activation energy (Ea) of the 
ceria reduction process. A beneficial effect of the temperature increase on the H2 and CO 
production rates was observed, thus confirming an improvement of the kinetics of ceria 
reduction with CH4. The Ea values for different ceria structures were in the range of 92.8-114.2 
kJ/mol for H2 and 92.8-95.1 kJ/mol for CO, according to Table A-2. The Ea values related to 
H2 production rates for CeO2 foam (Fig. A-14a) and CeO2-Al2O3 blend (Fig. A-14b) were 
slightly higher compared to those of CO as a result of the side reaction effect attributed to CH4 
cracking. However, the same Ea value between H2 and CO production rates was noticed for 
CeO2 powder (Fig. A-14c) as a result of lower methane cracking reaction impact, as evidenced 
by the lower methane conversion (Fig. 2-20d). 

 

 

 
Figure A-14. Arrhenius plot for H2 and CO production rates at 950-1050 °C for (a) ceria 

foam ST-1000, (b) CeO2-Al2O3 blend, and (c) CeO2 powder (CH4 flow-rate of 0.2 NL/min). 
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Table A-2. Activation energy related to the H2 and CO production rates obtained by 
Arrhenius plot.  

Ceria structure Gaseous Species 
Ea 

(kJ/mol) 

CeO2 porous foam  
H2 114.2±2 
CO 93.4±2 

CeO2-Al2O3 powder 
H2 106.1±2 
CO 95.1±2 

CeO2 powder 
H2 92.8±3 
CO 92.8±3 

 

h.  Thermochemical cycling stability 

Fig. A-15a shows a pristine ceria reticulated foam (17.0152 g) sintered at 1000 °C for 6 
h that was used to investigate the cycling stability during 6 consecutive cycles at 1000 °C. 
Both small sintering and cracking lines within the sample were observed after the last cycle 
(Fig. A-15b). 

 
Figure A-15. Ceria reticulated foam (ST-1000) (a) before the cycling stability test and (b) 

after six consecutive cycles at 1000 °C. 
 

The reduction yield (Xred), oxidation yield (Xox), methane conversion (XCH₄), and solar-

to-fuel energy conversion efficiency (solar-to-fuel) for 6 consecutive cycles are presented in Fig. 
A-16a. Their values remained quite stable over the considered range (64.9-68.6% for Xred, 

100% for Xox, 40.8-44.2% for XCH₄, and 2.4-3.1% for solar-to-fuel, for cycles 2-6 at 1000 °C), 

except at cycle 1 (72.8% for Xred, 96.8% for Xox, 60.2% for XCH₄, and 3.4% for solar-to-fuel) 
because of a higher reduction temperature (1050 °C). Similarly, the total H2, CO, CO2, and 
H2O yields (Fig. A-16b) were stable in the range of 6.29-7.13, 1.81-1.98, 0.11-0.15, and 0.10-
0.11 mmol/gCeO₂, respectively, for cycles 2-6, while the yields for cycle 1 were higher (8.59, 
2.29, 0.28, and 0.14 mmol/gCeO₂, respectively). The energy upgrade factor (U) fluctuated 
slightly in accordance with the variation in the total produced syngas yield (1.04 -1.15). Thus, 
the cycling stability of ceria can fairly be validated. 
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Figure A-16. Cycling stability of ceria foam (ST-1000) regarding (a) reduction (Xred)-
oxidation (Xox) yields, methane conversion (XCH₄), and solar-to-fuel energy conversion 

efficiency (solar-to-fuel), and (b) energy upgrade factor (U) and total syngas yields from both 
steps. 
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Appendix B: Solar gasification of biomass in a continuous 

spouted-bed solar reactor  
 

a. Typical evolution of syngas production rates during continuous biomass 

injection  

Fig. B-1 presents a representative experiment of steam gasification with continuous 
biomass injection. For this experiment, a total of 30 g of biomass type A was introduced at a 
biomass feeding rate of ~2.2 g/min (~15 minutes of injection time) while the steam was set at 
300 mg/min throughout the test, resulting in a H2O/biomass molar ratio of 2.1 (slightly over-
stoichiometric ratio). The experiment was carried out at a temperature of 1300 °C. The GC 
measurements at different sampling times are also plotted (dots) to confirm and compare the 
consistency of experimental results obtained from the online gas analyzer. The resulting syngas 
production rates measured by the two techniques matched well. Stable patterns in the flow-
rates of H2 and CO were achieved during biomass injection, while CO2 and CH4 flow-rates 
were also stable throughout the experiment, thus confirming stable biomass feeding rate 
injection. The production rates of secondary hydrocarbons (CnHm) measured by GC include the 
C2H2, C2H4, and C2H6 (the latter being in negligible amounts) (Fig. B-2). 

 
Figure B-1. Evolution of the syngas production rates of H2, CO, CO2, CH4 and CnHm along 
with nominal reactor temperature during continuous steam gasification of biomass type A at 

~1300 °C (Run No.14). 

 
Figure B-2. Evolution of C2H2, C2H4, and C2H6 production rates from GC measurements 

during continuous steam gasification of biomass type A at 1300 °C (Run No.14). 
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b. Operating conditions and solar reactor performances assessment  

A summary of the operating conditions and experimental results for 64 experimental runs 
of the continuously-fed solar reactor is shown in Table B-1. Solar-driven experiments were 
carried out with five biomass feedstocks in a continuous process. The solar reactor was 
operated under the following range of parameters: biomass feeding rates: 0.6-2.7 g/min, 
H2O/biomass molar ratio: 1.6-7 (accounting for the initial moisture content in the biomass 
feedstocks), carrier gas flow rate: 2-3.3 Nl/min, reactor temperature: 1100-1300 °C and solar 
power input: 0.86-1.44 kW in order to optimize the synthesis gas production and assess the 
performance of the solar biomass gasifier. 

In this Table, the different solar reactor performances are also highlighted related to the 

energy upgrade factor (U), thermochemical reactor efficiency (reactor), solar-to-fuel energy 

conversion efficiency (solar-to-fuel), and carbon conversion (XC) whether or not accounting for 
the calorific value of C2H2 and C2H4 (total amount noted as C2Hm) in the produced syngas 

obtained from GC measurements. If accounting for C2Hm, the values of U, solar-to-fuel and XC 
are consistently increased. 
Table B-1. Operating conditions and experimentally measured performance of the solar 
reactor during continuous operation. 

Run 
# 

Biomass 
type 

�̇��������� 
(g/min) 

�̇��� 
(mg/min) 

������������ 
�̇�� 

(Nl/min) 
T3 
(°C) 

�̇����� 
(kW) 

�������� 
(%) 

� 
(sec) 

Not accounting for C2H2 and C2H4 Accounting for C2H2 and C2H4 

U 
������−��−���� 
(%) 

Xc 
(%) 

U 
������−��−���� 
(%) 

Xc 
(%) 

1 Type A 1.2 200 2.3 3.3 1100 0.89 18.2 0.83 0.91 13.3 79.2 1.03 15.1 83.7 

2 Type A 1.5 200 2.1 3.3 1100 0.93 24.1 0.77 0.95 20.4 79.8 1.05 22.4 83.1 

3 Type A 1.2 200 2.3 2.7 1200 1.08 20.2 0.98 0.97 18.1 78.8 1.04 19.5 81.5 

4 Type A 1.5 200 2.1 2.7 1200 1.09 20.6 0.61 1.01 19.3 80.0 1.10 20.9 83.2 

5 Type A 1.5 200 2.1 3.3 1200 1.16 17.9 0.85 1.01 15.7 83.8 1.11 17.3 87.4 

6 Type A 1.8 300 2.3 2.7 1200 1.15 21.7 0.63 1.03 20.6 82.7 1.12 22.4 85.8 

7 Type A 0.8 200 3 2.7 1300 1.20 15.3 0.96 0.94 12.4 75.0 0.99 13.0 77.0 

8 Type A 1.2 200 2.3 2.7 1300 1.22 18.3 0.76 1.04 17.3 80.4 1.08 18.0 82.5 

9 Type A 1.5 200 2.1 2 1300 1.22 17.3 0.95 1.14 19.4 86.2 1.17 19.9 87.7 

10 Type A 1.5 200 2.1 2.3 1300 1.27 18.5 0.79 1.08 18.9 85.0 1.14 20.0 87.3 

11 Type A 1.5 200 2.1 3.3 1300 1.22 17.7 0.74 1.05 15.5 84.8 1.14 16.9 88.2 

12 Type A 1.8 200 1.8 2.7 1300 1.28 20.1 0.59 1.10 20.8 84.2 1.15 21.8 86.4 

13 Type A 2.2 200 1.6 2.7 1300 1.25 20.1 0.59 1.03 19.4 80.3 1.13 21.2 83.9 

14 Type A 2.2 300 2.1 2.7 1300 1.34 23.9 0.54 1.12 25.1 85.7 1.17 26.1 87.7 

15 Type A 2.2 500 2.8 2.7 1300 1.33 24.9 0.53 1.10 24.6 85.4 1.17 26.3 88.3 

16 Type A 2.5 400 2.2 2.7 1300 1.43 24.7 0.48 1.13 25.1 88.3 1.18 26.3 90.2 

17 Type A 2.7 450 2.3 2.7 1300 1.44 25.3 0.47 1.14 26.6 88.6 1.19 27.8 90.4 

18 Type B 1.2 200 2.3 2.7 1100 1.03 16.1 0.83 0.93 13.6 78.5 1.01 14.7 81.2 

19 Type B 1.2 500 4.5 2.7 1100 1.01 23.1 0.84 0.96 18.9 80.6 1.09 21.5 85.2 

20 Type B 0.8 500 6.4 2.7 1200 1.13 19.4 0.85 1.00 15.9 81.1 1.07 17.0 83.8 

21 Type B 1.2 163 2 2.7 1200 1.13 18.2 0.74 0.99 16.8 78.4 1.09 18.5 82.0 

22 Type B 1.2 200 2.3 2 1200 1.12 17.4 0.87 1.06 17.8 84.1 1.10 18.5 85.9 

23 Type B 1.2 200 2.3 2.7 1200 1.16 18.6 0.68 1.01 17.7 81.0 1.07 18.7 83.3 

24 Type B 1.2 200 2.3 3.2 1200 1.16 20.3 0.67 0.98 18.1 78.6 1.08 19.9 82.3 

25 Type B 1.2 500 4.5 2.7 1200 1.18 21.0 0.74 1.01 18.1 81.3 1.08 19.4 83.8 

26 Type B 1.5 500 3.8 2.7 1200 1.20 24.5 0.71 1.02 22.3 81.4 1.08 23.7 83.6 

27 Type B 1.8 500 3.3 2.7 1200 1.20 24.9 0.69 1.02 22.8 81.8 1.11 24.6 84.7 
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28 Type B 0.8 140 2.4 2.7 1300 1.17 17.3 0.78 0.99 15.7 78.7 1.03 16.3 80.3 

29 Type B 1.2 200 2.3 2.7 1300 1.23 17.5 0.67 1.03 17.5 78.6 1.08 18.3 80.8 

30 Type B 1.2 500 4.5 2.7 1300 1.22 20.7 0.70 1.03 20.4 81.5 1.07 21.2 83.4 

31 Type B 1.8 250 2 2.7 1300 1.24 23.6 0.58 1.09 24.0 83.1 1.1 25.0 85.1 

32 Type B 2.2 300 2 2.7 1300 1.29 24.2 0.52 1.10 25.0 84.2 1.15 26.0 86.1 

33 Type C 1.2 200 2.1 2.7 1100 0.86 17.5 0.85 0.91 16.1 71.7 1.05 18.5 76.3 

34 Type C 1.2 200 2.1 2.7 1200 1.08 18.7 0.78 1.01 16.6 75.8 1.09 17.9 78.6 

35 Type C 1.5 250 2.1 2.7 1200 1.09 19.6 0.73 1.03 17.5 79.2 1.10 18.7 81.6 

36 Type C 1.8 300 2.1 2.7 1200 1.10 26.5 0.61 1.10 26.5 81.5 1.17 28.2 83.7 

37 Type C 2.2 350 2.1 2.7 1200 1.15 27.1 0.55 1.11 26.8 82.3 1.21 29.2 85.6 

38 Type C 1.2 200 2.1 2.7 1300 1.21 17.9 0.71 1.04 16.2 75.4 1.09 17.0 77.5 

39 Type C 1.5 200 1.8 2.7 1300 1.22 20.0 0.54 1.12 19.8 79.1 1.17 20.8 81.4 

40 Type C 1.8 300 2.1 2.7 1300 1.25 22.4 0.57 1.13 22.4 80.7 1.19 23.6 83.0 

41 Type C 2.2 350 2.1 2.7 1300 1.26 26.5 0.54 1.14 26.7 81.1 1.20 28.1 83.3 

42 Type C 2.5 450 2.2 2.7 1300 1.30 27.0 0.51 1.16 27.6 84.0 1.22 29.0 86.1 

43 Type C 2.7 500 2.3 2.7 1300 1.43 24.2 0.51 1.14 24.3 84.3 1.24 26.4 87.6 

44 Type D 0.8 200 3.3 2.7 1100 0.89 16.4 0.95 0.97 14.0 77.5 1.06 15.2 80.3 

45 Type D 1.2 200 2.5 3.3 1100 0.87 17.5 0.76 0.97 13.1 75.5 1.06 14.3 78.9 

46 Type D 0.8 200 3.3 2.7 1200 1.03 15.8 0.92 1.02 13.6 78.5 1.07 14.2 80.5 

47 Type D 1.2 200 2.5 2.7 1200 1.18 20.3 0.65 1.06 20.4 79.5 1.11 21.4 81.3 

48 Type D 1.2 200 2.5 3.3 1200 1.15 14.9 0.66 0.99 11.8 77.0 1.04 12.4 79.0 

49 Type D 1.8 450 3.3 2.7 1200 1.15 26.5 0.64 1.07 25.4 79.2 1.13 26.8 81.2 

50 Type D 0.8 200 3.3 2.7 1300 1.17 16.1 0.81 1.07 14.8 76.4 1.12 15.5 78.6 

51 Type D 1.2 360 3.8 2.7 1300 1.29 19.9 0.66 1.13 20.0 80.6 1.18 20.8 82.4 

52 Type D 1.2 200 2.5 3.3 1300 1.20 16.9 0.68 1.02 17.5 73.3 1.06 18.3 75.1 

53 Type D 1.5 450 3.8 2.7 1300 1.27 22.3 0.61 1.14 22.4 80.3 1.20 23.6 82.4 

54 Type D 1.8 500 3.6 2.7 1300 1.30 22.6 0.60 1.20 23.4 84.9 1.24 24.3 86.7 

55 Type D 2.2 500 3.1 2.7 1300 1.43 24.0 0.58 1.16 25.3 82.7 1.20 26.3 84.3 

56 Type E 0.8 500 7 2.7 1100 0.98 19.4 0.95 1.00 15.4 72.9 1.10 17.0 76.2 

57 Type E 1.2 300 3.3 2.7 1100 0.99 17.4 0.86 1.03 14.6 74.8 1.14 16.2 78.3 

58 Type E 0.6 200 4.1 2.7 1200 1.07 15.0 1.02 0.98 11.8 69.9 1.02 12.3 71.7 

59 Type E 0.8 200 3.3 2.7 1200 1.08 16.0 0.88 1.00 13.7 70.6 1.05 14.4 72.6 

60 Type E 1.2 300 3.3 2.7 1200 1.12 19.5 0.81 1.11 18.7 76.3 1.15 19.4 78.0 

61 Type E 1.5 350 3.2 2.7 1200 1.13 20.4 0.70 1.15 20.0 80.6 1.20 20.8 82.4 

62 Type E 0.8 200 3.3 2.7 1300 1.19 15.7 0.82 1.13 15.0 77.0 1.16 15.4 78.3 

63 Type E 1.2 300 3.3 2.7 1300 1.28 19.0 0.80 1.12 16.6 76.1 1.14 16.9 77.4 

64 Type E 1.5 350 3.2 2.7 1300 1.24 21.2 0.67 1.15 21.2 76.7 1.19 21.8 78.2 

 

The U values were in the ranges of 0.91-1.14, 0.93-1.10, 0.91-1.16, 0.97-1.20 and 0.98-
1.15 for biomass types A, B, C, D and E, respectively. When accounting for C2Hm, the U 
(C2Hm) values were in the ranges of 1-1.19, 1.01-1.15, 1.05-1.24, 1.04-1.24 and 1.02-1.20 for 
biomass types A, B, C, D and E, respectively. A few experiments show a value of U below 
one, especially at both the lowest operating temperature or at the lowest biomass feeding rates 
due to low reaction kinetics and low conversion rates. However, when accounting for the 
calorific value of C2Hm, all of the U values are above one. On the one hand, the values of U 
lower than one mean that the solar energy was not stored efficiently in the chemical form and 
the upgrading of the calorific value of the feedstock was not successful. On the other hand, the 
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values of U higher than one indicate that the solar energy was successfully stored in chemical 
form and the calorific value of the feedstock was upgraded by the solar gasification process. 

Table B-2 compares the highest energy upgrade factor at 1300 °C to the theoretical 
maximum values attained at the thermodynamic equilibrium reached above 1000 °C when 
assuming complete biomass conversion into only H2 and CO species. Considering the U values 
when accounting for C2Hm, biomass type A shows the highest percentage of U achieved as 
compared to equilibrium (93%). 

Table B-2. Comparison of highest energy upgrade factor to theoretical one based on 
equilibrium.  

Type Run No. 
�̇��������� 
(g/min) 

T3 
(°C) 

Energy upgrade factor (U) 

Theoretical 
U 

U 
U 

(accounting 
for C2Hm) 

% of 
maximum 
achievable 

value 

Type A 17 2.7 1300 1.28 1.14 1.19 93 
Type B 32 2.2 1300 1.28 1.10 1.15 90 
Type C 42 2.5* 1300 1.40 1.16 1.22 87 
Type D 54 1.8* 1300 1.44 1.20 1.24 86 
Type E 64 1.5 1300 1.44 1.15 1.19 83 

*at optimal biomass feeding rate  
 

Note that the conventional autothermal gasification achieves a U value of approximately 
0.7 depending on feedstock [126], as a result of a significant portion of the feedstock being 
combusted for supplying process heat to the endothermic reaction. The calorific value of the 
produced syngas was solar upgraded by 15-24% with respect to the feedstock, thus highly 
outperforming the U obtained from conventional autothermal gasification process. 

The solar-to-fuel varies in the ranges of 12.4-26.6%, 13.6-25.0%, 16.1-27.6%, 11.8-25.4% 
and 11.8-21.2% for biomass types A, B, C, D and E, respectively. When accounting for C2Hm, 
the values in the ranges of 13.0-27.8%, 14.7-26.0%, 17.0-29.2%, 12.4-26.8% and 12.3-21.8% 
were achieved. The lowest solar-to-fuel were found at low biomass feeding rates as a result of 
inefficient utilization of the solar energy and limited syngas production, at the expense of 
higher heat losses. Obviously, increasing biomass feeding rate significantly enhanced the solar-

to-fuel. Conversely, excessively high biomass feeding rate reduced the solar-to-fuel. Thus, optimal 
biomass feeding rate was evidenced for achieving maximum reactor performance as well as 
syngas production.  

Likewise, the reactor increased with biomass feeding rate ranging between 15.3-25.3 %, 
16.1-24.9%, 17.5-27.1%, 14.9-26.5% and 15-21.2% for biomass types A, B, C, D and E, 
respectively. The lowest reactor values were observed at the lowest biomass feeding rate, 
meaning that high heat losses occurred because of the extended biomass injection duration (for 
the same amount of feedstock injected). Increasing the biomass feeding rate inherently reduced 
the processing duration (for a given amount of biomass) and thus the amount of solar energy 
absorbed by the reactor, which in turn drastically enhanced the reactor efficiency with 
maximum values typically above 25%. Based on all of the experimental results, the peak values 
of the performance indicators achieved were: U=1.24 obtained for biomass types C and D, 
solar-to-fuel = 29.2 % obtained for biomass type C, XC= 90.4% obtained for biomass type A, 
reactor = 27.1% obtained for biomass type C. 
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c. Window deposit due to the presence of smoke at low temperature 

Fig. B-3 shows the dirt on the window as a result of smoke release during gasification 
process at 1100 °C. 

 
Figure B-3. Dirt deposits on the window observed at low temperature (1100°C). 

 
d. Effect of temperature on syngas yield and energy upgrade factor  

Additional experiments (Fig. B-4) were carried out to validate the effect of temperature 
(1100-1300 °C) on syngas production and energy upgrade factor (U). The biomass feeding 
rates were 1.5 g/min for biomass type A (Fig. B-4a) and 1.2 g/min for biomass types B (Fig. 
B-4b) and D (Fig. B-4c). Ar and steam flow rates were fixed (3.3 Nl/min and 200 mg/min for 
biomass types A and D, 2.7 Nl/min and 500 g/min for biomass type B, respectively). 
The results confirm that an increase in the temperature promoted total syngas yield, regardless 
of operating conditions and biomass types (Fig. B-4). H2 and CO yields increased while C2Hm, 
CH4, and CO2 yields decreased with increasing temperature. Moreover, a substantial 
enhancement of the syngas yield consistent with temperature led to an increase in U. It can be 
noticed again that a higher C2Hm production occurred when reducing temperature, which in 
turn increased U(C2Hm) because of the high calorific value of C2Hm. 
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Figure B-4. Temperature influence on syngas yields and energy upgrade factors for biomass 
types A (a), B (b), and D (c). 

 
e. Kinetic study 

The Arrhenius kinetic rate expression is generally utilized to evaluate the influence of 
temperature on the rates of chemical reactions. 

 � = � ∙ exp(−��/��)      (B-1) 

Where k is the reaction rate constant, A is the pre-exponential factor, Ea is the activation energy, 
R is the gas constant and T is the absolute temperature. 

In this study, the reaction rate constants (k) were obtained for each biomass type and 
temperatures from the average nominal syngas production rates of H2 and CO at steady state, 
which are the main gaseous species contained in the produced syngas during continuous 
biomass feeding. The logarithm evolution of the reaction rates versus inverse temperature (Eq. 
B-1) was subsequently plotted from 1100 to 1300 °C, and the values of activation energy (Ea) 
for each biomass type were consequently obtained as presented in Fig. B-5. A significant 
beneficial effect of the temperature on the production rates of H2 and CO was observed. The 
obtained activation energy (Ea) of the syngas production mechanism, determined from the 
slope of the line in Fig. B-5, was consistent with biomass particle size (low particle sizes feature 
a lower Ea, thus favoring rapid gasification rates). For example, the Ea values (Table B-3) for 
H2 and CO increased from ~24 kJ/mol (at 0.3 mm size for biomass type D) to ~29 kJ/mol (at 4 
mm size for biomass type B). This denotes the sensitivity of the gasification rate to the particle 
size. Moreover, the Ea values obtained independently from H2 and CO rates evolution were 
similar for any biomass types, thus indicating that the H2 and CO production rates are mainly 
governed by the same global reaction mechanism (Eq. 1-16).  
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Figure B-5. Arrhenius plot based on H2 and CO production rates for biomass types A (a), B 
(b), C (c), D (d) and E (e) at 1100-1300 °C (biomass feeding rate of 1.2 g/min). 

 
Table B-3. Activation energy related to the H2 and CO production rates obtained by 
Arrhenius plot.  

Biomass type Gaseous Specie Ea (kJ/mol) 

Type A 
(1 mm) 

H2 26.5±3 
CO 27.5±3 

Type B 
(4 mm) 

H2 28.8±4 
CO 29.5±4 

Type C 
(0.55 mm) 

H2 25.6±3 
CO 27.3±3 

Type D 
(0.30 mm) 

H2 23.7±4 
CO 24.3±4 

Type E 
(2 mm) 

H2 25.9±5 
CO 26.1±5 



Appendix B 

177 
 
 

f. Ashes remaining in the reactor cavity  

Fig. B-6 shows the presence of ashes remaining inside the reactor cavity (brown color 
particles covering the black SiC particles), which decreased when increasing the temperature 
from 1100 °C to 1300 °C. This indicates that ashes were presumably melted when the 
temperature increased, which may in turn favor the corrosion of the cavity walls (because of 
the presence of alkali metal chlorides) in accordance with the black circles on the wall surface 
(note that the cavity bottom was filled with SiC particles to avoid the trickling of melted ashes 
that may clog the gas inlet). At the lowest temperatures, non-melted ashes can be evacuated by 
the gas flow that is why they do not accumulate inside the reactor. 

 

 
Figure B-6. Ashes remaining inside the reactor cavity for biomass type A at (a) 1100 °C, (b) 

1200 °C, and (c) 1300 °C (same amount of biomass injected, 30 g). 
 

g. Effect of biomass feeding rate on syngas yield at 1200 and 1300 °C 

Fig. B-7 presents the syngas yields of H2, CO, CH4, CO2 and C2Hm for each biomass 
type as a function of biomass feeding rate at 1200 °C. Overall, the H2 and CO yields increased 

significantly with biomass feeding rate (Figs. B-7a and B-7b). For example, the H2 and CO 
quantities for biomass type E rose from 30.5 and 23 mmol/gbiomass at 0.6 g/min to 38.9 and 27.8 
mmol/gbiomass at 1.5 g/min, respectively. The CO2, CH4 and C2Hm yields first fluctuated slightly 
between 0.6-0.8 g/min (especially for biomass type E due to a feeding interruption issue in the 
biomass delivery), and then increased consistently with biomass feeding rate (Figs. B-7c and 
B-7d). For example, the CO2, CH4 and C2Hm yields for biomass type C increased form 3.2, 2.7 
and 1.2 mmol/gbiomass at 1.2 g/min to 3.5, 3.5 and 1.3 mmol/gbiomass at 2.2 g/min, respectively. 
Thus, increasing biomass feeding rate accelerated the consumption rate of biomass, which 
directly promoted syngas yields. Nevertheless, an increase in biomass feeding rate favored the 
formation of C2Hm, CH4 and CO2 because of the produced gas flow-rate increase (gas 
expansion) and gas residence time decrease (e.g., decreasing from 0.98 s at 1.2 g/min to 0.63 s 
at 1.8 g/min for biomass type A).  

The effect of biomass type (composition) on syngas yield was observed. For instance, 
biomass types E and D exhibit higher syngas yields, particularly H2, CO and CO2, than biomass 
types A and C. In contrast, the effect of particle size on syngas yield was negligible (biomass 
type E compared to D).  
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Figure B-7. Influence of biomass feeding rate on syngas yield for different biomass 

feedstocks at 1200 °C.  

Fig. B-8 shows the H2, CO, CO2, CH4 and C2Hm yields as a function of biomass feeding 
rate for each biomass type at 1300 °C. The H2 and CO yields increased considerably with 

biomass feeding rate, and some of them then diminished after their optimal biomass feeding 
point. For example, the H2 and CO yields for biomass type C reached the maximum value of 
39.2 and 29.1 mmol/gbiomass at 2.5 g/min and then reduced to 37.6 and 27.9 mmol/gbiomass, 
respectively, at 2.7 g/min. Similarly, with the increase of biomass feeding rate, the amounts of 
CO2 and CH4 for biomass type C increased in the ranges of 2.5-4.0 and 1.7-3.2 mmol/gbiomass, 
respectively, while the C2Hm yields increased slightly in the range of 0.9-1.4 mmol/gbiomass. 
Increasing the biomass feeding rate promoted syngas yield; however, an increase in CO2, CH4 
and C2Hm yields due to a lowered gas residence time led to a negative impact on syngas quality. 
Small fluctuation in the CO2 yields (Fig. B-8c) is attributed to temporal changes in the 
H2O/biomass ratio, which influences water-gas shift reaction (CO+H2O→CO2+H2), because of 
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transient variations in feedstock delivery. Similar trends of H2 yield between biomass types A 
and B and between biomass types D and E were observed thanks to their similar initial chemical 
composition. The H2 yields for biomass types D and E were higher than the other types owing 
to their higher initial hydrogen content in the feedstock.  

 
Figure B-8. Influence of biomass feeding rate on syngas yield for different biomass 

feedstocks at 1300 °C. 
 

h. Effect of biomass feeding rate on reactor performance at 1200 and 1300 °C 

The effect of biomass feeding rate on U, XC, solar-to-fuel, reactor, solar power and solar 
energy inputs was studied at 1200 °C (Fig. B-9). As expected, U increased with biomass 
feeding rate (Fig. B-9a) with the maximum value of 1.15 (1.20 if accounting for C2Hm) at the 
maximum biomass feeding rate for biomass type E while the U values for all the biomass types 
were in the range of 0.97-1.15 (1.04-1.20 if accounting for C2Hm). Increasing biomass feeding 
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rate favored syngas production capacity, thus resulting in a significant improvement of XC with 
a maximum value of 82.7% (85.8% if accounting for C2Hm) at 1.8 g/min for biomass type A 
(Fig. B-9b) and thereby leading to an increase in U. In addition, both U and XC tended to level 
off when increasing biomass feeding rate (above 1.5 g/min), especially for biomass type C, 
thus indicating that the optimal feeding point would be approached.  

A significant beneficial enhancement of solar-to-fuel while increasing biomass feeding 

rate was highlighted (Fig. B-9c). solar-to-fuel in the range of 11.8-26.8% (12.3-29.2% if 
accounting for C2Hm) was achieved (previous studies on solar gasifiers reported maximum 
efficiencies of 35% for a 150 kW packed-bed reactor [126], 30% for a prototype 2.2 kW molten 
salt reactor [131] and 20% for a continuous 3 kW vortex flow reactor [118]). In addition, 
increasing biomass feeding rate drastically decreased the solar energy input (Fig. B-9d), arising 
from the shortened biomass injection duration time, whereas the solar power input was 
increased (between 1.03-1.15 kW depending on the biomass type, Fig. B-9f) to stabilize the 
operating temperature. Otherwise, the increase of the amount of injected biomass (as well as 
concomitant steam flow rate increase to maintain constant the steam/biomass ratio) would 
result in exacerbating the temperature decrease because of the energy consumed by the reaction 
and the reactants heating (see the section on energy balance number 3.3.7). Furthermore, a 

sharp increase of reactor with biomass feeding rate was also highlighted (reactor ranging 
between 15.0 and 27.1%), regardless of the biomass types (Fig. B-9e). Increasing the biomass 
feeding rate inherently reduced heat losses by lowering the operating duration time, which 

directly decreased the required solar energy input and increased reactor. For the considered 
range of biomass feeding rate (0.6-2.2 g/min) at 1200 °C, it can be concluded that the higher 

the biomass feeding rate (within the feeder capacity range), the higher the solar-to-fuel and the 

reactor, demonstrating efficient utilization of solar energy. Moreover, the additional tests with 
higher feeding rate for each biomass type are necessary to find their optimal feeding rate. 
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Figure B-9. Influence of biomass feeding rate on (a) energy upgrade factor, (b) carbon 
conversion,(c) solar-to-fuel energy conversion efficiency, (d) solar energy input, (e) 

themochemical reactor efficiency and (f) solar power input at 1200 °C (C2Hm not included in 
the calculation). 
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The influence of biomass feeding rate on sola r reactor performance at 1300 °C is shown 
in Fig. B-10. The energy upgrade factor increased with �̇���������  and then leveled off above 
1.8 g/min (Fig. B-10a), thereby pointing out the optimal biomass feeding rate. The maximum 
U values of 1.14, 1.10, 1.16, 1.20 and 1.15 (1.19, 1.15, 1.22, 1.24 and 1.19 when accounting 
for C2Hm) were identified for biomass types A (at 2.7 g/min), B (at 2.2 g/min), C (at 2.5 g/min), 
D (at 1.8 g/min) and E (at 1.5 g/min), respectively. The optimal �̇���������   regarding the 
highest U value was found at 2.5 and 1.8 g/min for biomass types C and D, respectively. These 
biomass types exhibit the lowest particle sizes; therefore, their gasification is more sensitive to 
the feeding rate. In contrast, the optimum could not be found for the other biomass types due 
to the limitation of the maximum feeding rate offered by the delivery system. The overlapped 
trends for U between biomass types A and B and between biomass types D and E were 
observed, presumably due to their similar chemical properties, indicating a negligible impact 
of the biomass particle size on U for the considered size range (0.3−4 mm). In addition, the 
evolution of U consistently followed the same trend as XC (Fig. B-10b). Both the highest and 
the lowest XC values of 88.6 and 75.0% (90.4 and 77.0% when accounting for C2Hm) were 
obtained for biomass type A at 2.7 and 0.8 g/min, respectively. With the increase of �̇���������, 
a sharp increase in the solar-to-fuel energy conversion efficiency ( ������−��−���� ) was 
highlighted (Fig. B-10c), e.g., increasing from 12.4 % at 0.8 g/min to 26.6 % at 2.7 g/min for 
biomass type A. This is because the solar energy input (Fig. B-10d) dropped considerably by 
increasing �̇���������, because of a significant reduction in the biomass injection duration time 
although the solar power input (Fig. B-10f) was oppositely increased to stabilize the operating 
temperature when increasing �̇���������. 

As illustrated in Fig. B-10c, ������−��−���� for biomass type C dropped noticeably at 
the highest biomass feeding rate because excessively high �̇���������  (2.7 g/min) caused the 
incomplete reactions of biomass gasification, which in turn results in both the solid reactants 
accumulation and the presence of smoke in the reactor cavity. This necessitates intermittent 
stops in the biomass feeder in order to let the accumulated reactants being gasified with steam. 
For this reason, the biomass injection time was expanded, thereby resulting in the increase of 
solar energy input (Fig. B-10d). The ������−��−���� showed the inverse trend of solar energy 
input, thus pointing out efficient utilization of the solar energy input with lower heat losses by 
the biomass feeding rate adjustment. The maximum ������−��−����  values of 26.6%, 25%, 
27.6%, 25.3% and 21.2% (27.8%, 26.0%, 29.0%, 26.3% and 21.8% when accounting for 
C2Hm) were reached for biomass types A (at 2.7 g/min), B (at 2.2 g/min), C (at 2.5 g/min), D 
(at 2.2 g/min) and E (at 1.5 g/min), respectively.  
 Fig. B-10e depicts the effect of �̇���������   on the thermochemical reactor efficiency 

(��������), which is defined as the fraction of solar power input dedicated to the reaction 
(energy consumed by the endothermal reaction and the reactant heating), while the remaining 
energy represents the energy losses by conduction, convection and radiation. The �������� 
increased with �̇���������  , ranging between 15.3-25.3%, 17.3-24.2%, 17.9-27.0%, 16.1-
24.0% and 15.7-21.2% for biomass types A, B, C, D and E, respectively. This indicates that 
increasing �̇���������   directly entails an efficient solar energy conversion, which in turn 

results in a reduction of the heat losses. The lowest �������� values were observed at the lowest �̇���������, meaning that high heat losses occurred because of the extended biomass injection 
duration (for the same amount of feedstock injected). 
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Besides, the ��������  follows the same trend as ������−��−����  (Fig. B-10c). The �������� decreased when injecting biomass at �̇���������  over an optimum point (2.5 g/min 
for biomass type C). At this point, the reactant consumption rate by the gasification reaction 
becomes lower than the injection rate, which leads to accumulation and extension of the 
reaction duration, thereby leading to higher heat losses. 

According to Fig. B-10f, the solar power inputs consumed by any biomass variants 
were not significantly different within the range of 0.8-1.8 g/min but they tended to be 
significantly different at higher feeding rates. For example, biomass type D required higher 
solar power input than the other variants when considering �̇���������  in the range of 1.8-2.2 
g/min, which may be attributed to its smallest particle size favoring the gasification rate, thus 
implying higher solar power consumption than other biomass variants. 

 
Figure B-10. Influence of biomass feeding rate on (a) energy upgrade factor, (b) carbon 

conversion,(c) solar-to-fuel energy conversion efficiency, (d) solar energy input, (e) 
themochemical reactor efficiency and (f) solar power input at 1300 °C (C2Hm not included in 

the calculation).
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Appendix C: Solar carbothermal reduction of ZnO and MgO 
a. Carbothermal reduction of ZnO 

1. Materials  

 
Table C-1 Physical properties of solid carbonaceous materials. 

Material Supplier 
Purity 

(%) 

Average 

particle 

size (µm) 

Specific 

surface area 

(m²/g) 

(data sheet) 

Specific 

surface area 

(m²/g) 

(measured) 

Activated charcoal (AC) 

Darco® 
Sigma Aldrich 99.9 <149 732 811 

Carbon black (CB), 

SB905 powder 
Asahi Carbon (Japan) 99.9 15.10-3 210 181 

Graphite Sigma Aldrich 99.9 <20 77 65 

Beech wood (C6H9O4) 
Proximate analysis (wt%) 

moisture:8.9, ash: 0.46  

Ultimate analysis (wt%) 

C: 48.3, H: 6.7, O: 44.4, N: 0.11, S: <0.1 

 

 
Figure C-1. Photographs of (a) ZnO+1.5CB pellets and (b) ZnO+0.75C6H9O4 pellets. 

 
2. Reactor prototype 

The reactor is composed of an inner cylindrical cavity receiver made of alumina (Fig. C-
2a) with a 0.121 L volume (47 mm ID, 56 mm OD, and 70 mm height) surrounded by a layer 
of porous ceramic insulation (40 mm-thick alumino-silicate layer, Fig. C-2b), thereby enabling 
rapid solar heating to the desired temperature. The bottom of the cavity is sealed with a circle 
alumina plate pierced at its center (4 mm diameter) so that a small alumina tube (4 mm O.D. 
and 2 mm I.D.) can be inserted for the injection of nitrogen (N2) carrier gasto the cavity 
receiver. The whole cavity and insulation is vertically placed in a water-cooled cylindrical 
stainless-steel shell (Fig. C-2b, 170 mm O.D., 150 mm I.D., and 151 mm height, volume: 2.67 
L). Two stainless-steel tubes (6 mm O.D. and 4 mm I.D.) are inserted vertically in the insulation 
layer exiting into the transparent window area (Fig. C-2b) to inject N2 protective gas directly 
into the window area. This gas subsequently enters downwardly the cavity through the aperture 
before exiting with the product gases through the outlet port, thereby protecting the transparent 
window from products deposition. A packed bed of inert alumina particles (2 mm diameter) is 
placed at the bottom of the cavity receiver above a layer of alumina wool to support the reacting 
powders (Fig. C-2c). The top of the cavity receiver is covered by an alumina cap with a 17 
mm-diameter aperture where concentrated solar radiation enters the cavity receiver (Fig. C-
2d), and a protective graphite plate (2 mm-thick) with a 15 mm-diameter aperture is then placed 
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on top of the alumina cap to protect it (Fig. C-2e). A hemispherical transparent glass window 
is lastly attached to the front flange edge of the reactor shell (Fig. C-2f). 

 
Figure C-2. Photographs of (a) reactor cavity receiver, (b) 40 mm-thick alumino-silicate 

insulation layer, (c) installation of cavity, insulation, thermocouple, alumina particle, inlet 
tube, and outlet tube, (d) alumina cap, (e) protective graphite plate, and (f) red hot cavity after 

a solar run at 1650 °C.  
 

During continuous operation (Fig. C-3), the reactor was equipped with an automatic 
particle delivery system consisting of a hopper (1.15 L capacity) and a screw feeder (40 cm 
length) driven by an electrical motor, in order to directly inject the MgO particles in the reactor 
cavity. 

 
Figure C-3. Schematic diagram of the 1.5 kWth prototype vacuum solar reactor equipped with 

an automatic particle delivery system. 
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3. Influence of carbon type and feeding rate during reactant powder injection 

 

Figure C-4. CO and CO2 production rates along with reactor temperatures for the ZnO 
carbothermal reduction with continuous reactant powder injection for (a) ZnO+CB and (b) 

ZnO+AC at a reactant feeding rate of 0.5 g/min. 
 

The transient CO and CO2 production rates for both feeding rates are compared (Fig. 
C-5). Differences between the two reactant feeding rates were not discernable at the beginning 
but more obvious after 25 min (higher CO peak production rate for 1 g/min than for 0.5 g/min). 
However, at 1 g/min, a temporal reactant blockage issue in the feeder was still noticed, 
evidenced by CO and CO2 production rates decline between 17-27 min injection time. In 
addition, the reactant accumulation issue may occur for both feeding rates since experimental 
reaction durations were longer than the theoretical ones (experimental durations of 37 and 44 
min compared to 24 and 12 min for theoretical durations at 0.5 and 1 g/min, respectively, for 
~12g reactant). This issue occurs when the reactant feeding rate is higher than the reduction 
rate, and it can be overcome by increasing the temperature to accelerate the reaction kinetics. 

Figure C-5. CO and CO2 production rates along with reactor temperatures for the ZnO 
carbothermal reduction with continuous reactant powder injection for (a) 0.5 g/min and (b) 1 

g/min.  
 

4. Solid products analysis  

Fig. C-6 shows the excess carbon remaining in the cavity receiver (unreacted because in 
excess with respect to ZnO) after experiments for (a) batch test, (b) continuous reactant powder 
injection test, (c) continuous ZnO+1.5CB reactant pellet injection test, and (d) continuous 
ZnO+0.75C6H9O4 reactant pellet injection test. The collected carbon from ZnO+1.5CB 
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reactant remained in the initial pellet shape (Fig. C-6c), as a result of compression in the pellets 
making process. This was not observed for ZnO+0.75C6H9O4 pellets (Fig. C-6d) because of 
their lower density. 

 
Figure C-6. Carbon remaining in the cavity receiver after experiments: (a) Run. No.1, (b) 

Run. No.7, (c) Run. No.12, and (d) Run.No.16. 

 
Figure C-7. Crystallized gray chunks (recombined ZnO) located only at the tip of the alumina 

tube where Zn is condensed (over ~ 1 cm length). 
Moreover, all the collected samples were analyzed for quantifying the Zn content 

utilizing a non-destructive analytical calibration method according to XRD peak intensity 
patterns. Standard samples were prepared by precisely mechanically mixing known amounts 
of commercial pure Zn and ZnO as reference with Zn mass fractions of 50%, 60%, 70%, 80%, 
and 90%. They were subsequently analyzed by XRD, and the intensity ratios of the main peaks 
of Zn (43.2°) to ZnO (31.7°) were evaluated and plotted against Zn mass fraction (wt%) in Fig. 
C-8. 



Appendix C 

188 
 
 

 
Figure C-8. Calibration curve for Zn mass fraction quantification from XRD patterns of the 

collected solid products.  
 

Table C-2 lists the amounts of collected solid products (g) in zone A, zone B, and in the 
cavity receiver after experiments and the weight fraction of condensed Zn (wt%) in the 
collected solid products calculated by calibrated XRD (Fig. C-8). As a result, a large amount 
of condensed Zn was collected from zone A in the range 0.84-4.14 g (Table. C-2), with the 
occurrence of small crystallized gray chunks only at the tip of the alumina tube where the 
products exit (Fig. C-7). The amounts of products collected from filter (zone B) were in the 
range 0.21-1.91 g and they appeared to be darker in color than those of outlet (zone A) as a 
result of unreacted carbon deposition, especially with beech wood biomass. Furthermore, 
residues in the cavity receiver were found in the range 0.12-0.63 g. Zn content (continuous 
tests) was in the range of 90-98%wt for zone A and 92-99%wt for zone B, and pure Zn (no 
detection of any other species) was observed in both zones for batch tests (Run No.1-6). 

 
Table C-2. Amounts of solid deposits and Zn content in each zone of the reactor. 

Run No. 
Solid product (g) Zn content (%wt) 

Zone A Zone B cavity receiver Total  Zone A Zone B 

1 0.90 0.21 0.12 1.23 100 100 
2 0.84 0.30 0.13 1.27 100 100 
3 0.95 0.33 0.13 1.41 100 100 
4 1.11 0.21 0.14 1.46 100 100 
5 1.12 0.33 0.13 1.58 100 100 
6 1.02 0.39 0.14 1.55 100 100 
7 4.14 1.52 0.60 6.26 90 92 
8 4.07 1.52 0.62 6.21 92 94 
9 3.93 1.91 0.58 6.42 91 93 
10 2.45 1.24 0.31 4.00 98 99 
11 2.33 1.05 0.30 3.68 97 100 
12 1.98 0.90 0.25 3.13 97 100 
13 1.75 0.69 0.24 2.68 90 100 
14 1.14 0.50 0.63 2.27 96 100 
15 0.97 0.60 0.29 1.86 97 100 
16 1.12 0.60 0.38 2.10 97 98 
17 1.35 0.60 0.29 2.24 97 100 
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5. Particle morphology 

 

 
Figure C-9. SEM micrographs of solid products from the outlet tube (zone A) and filter (zone 

B) during (a,b) Run No. 8 and (c,d) Run No. 16. 

6. Reactivity of Zn powder with CO2  

The reactivity of the solar-produced pure Zn powder (collected in the filter) was studied by 
thermogravimetry analysis / differential scanning calorimetry (TGA/DSC, Netzsch STA449). 
The Zn powder was placed as a packed-bed in an alumina crucible and heated up to 400°C in 
Ar (10 °C/min). When the targeted temperature was reached, CO2 (50% in Ar) was injected 
under isothermal conditions during 30 min for monitoring the sample mass increase during the 
Zn exothermal oxidation reaction (Zn(s) + CO2 → ZnO(s) + CO). Complete and rapid Zn 
conversion was achieved, thus producing additional CO and solid ZnO that can be recycled to 
the solar step for closing the cycle (Fig. C-10). 

 
Figure C-10. Zn conversion evolution during oxidation with CO2 (50% in Ar) at 400 °C in 
TGA/DSC (Netzsch STA449, solar-produced powder collected in the filter (Run No.6)). 
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b. Carbothermal reduction of MgO 

1. Material mass balance  

The material mass balance was performed to compare the amount of reactant (MgO/C) 
distributed between the products (CO, CO2, and Mg) and the solid carbon residue in the cavity. 

The overview of the mass balance for CB/ MgO=2 and AC/MgO=2 at 0.11 bar is shown in 
Tables C-3 and C-4, respectively. 

 
Table C-3. Overview of the mass balance for a CB/MgO molar ratio of 2 at 0.11bar (Run No. 

5). 
Input Output 

Syngas Solid deposit rest of the reactor 
MgO 2.008 g CO 1.190 g Zone A 0.87 g remainder 0.45 g 
CB 1.200 g CO2 0.002 g Zone B 0.14 g   

  Total 
gas 

1.192 g Total 
deposit 

1.01 g Total 
remainder 

0.45 g 

Total input 3.208 g Total output 2.652 g 
 
Table C-4. Overview of the mass balance for a AC/MgO molar ratio of 2 at 0.11 bar (Run 
No. 6) 

Input Output 
Syngas Solid deposit rest of the reactor 

MgO 2.005 g CO 1.408 g Zone A 0.72 g remainder 0.40 g 
AC 1.206 g CO2 0.018 g Zone B 0.20 g   

  Total 
gas 

1.426 g Total 
deposit 

0.92 g Total 
remainder 

0.40 g 

Total input 3.211 g Total output 2.746 g 
 

Overall, the mass balance was in the range 52.5-85.6% for all runs, and most values 
were accomplished above 70% (Table 4-2). However, because of the burning or explosion 
issue encountered during collecting samples (Mg-rich powders are unstable in air), the global 
mass balance was impaired, which thus explains to a large extent the lower mass output 
regarding the input. 
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2. Influence of solid carbon type  

 
Figure C-11. CO and CO2 production rates along with reactor temperatures for MgO 

carbothermal reduction with different carbon types (C/MgO=1.5, P=0.11 bar).  

 
Figure C-12. CO and CO2 production rates along with reactor temperatures for MgO 

carbothermal reduction with different carbon types (C/MgO=2, P=0.11 bar).  
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Figure C-13. CO and CO2 production rates along with reactor temperatures for MgO 
carbothermal reduction with AC and graphite (C/MgO=2, P=0.16 bar).  

 
Figure C-14. CO and CO2 yields for different carbon types (C/MgO=2, P=0.16 bar). 
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3. Influence of C/MgO molar ratio 

 
Figure C-15. CO and CO2 production rates along with reactor temperatures for MgO 

carbothermal reduction with AC at different C/MgO molar ratios (P=0.11 bar).  

 
Figure C-16. CO and CO2 production rates along with reactor temperatures for MgO 

carbothermal reduction with CB at different C/MgO molar ratios (P=0.11 bar).  
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Figure C-17. CO and CO2 production rates along with reactor temperatures for MgO 

carbothermal reduction with AC at different C/MgO molar ratios (P=0.16 bar). 

4. Solid products analysis  

The solid products were collected after each experiment in the removable outlet 
components of the solar reactor where solid products are condensed and deposited (zone A and 
zone B, Fig. C-3. In addition, the quantity of remaining unreacted carbon in the cavity receiver 
was also quantified (Fig. C-18).  
 

 
Figure C-18. Carbon remaining in the cavity receiver after experiments (Run. No. 6).  

 
 Table C-5 provides the amounts of collected solid products in zone A, zone B (Figs. C-
19 and C-20), and the cavity receiver after experiments.  Notably, some parts of the solid 
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products were lost during their recovery from the outlet components caused by their auto-
combustion at room temperature (because the produced Mg-rich powder as nanosized particles 
is highly flammable in air). The typical surface area of the solid product powder collected in 
the ceramic filter was 63.8±0.1 m2/g (measured by N2 sorption at 77 K). The produced powder 
is pyrophoric when mainly composed of Mg (auto-ignition observed at room temperature when 
powder exposed to air). The total amount of solid products collected from both zones A and B 
is in the range 0.52-1.01 g (the theoretical yield of Mg is 1.21 g converted from 2 g of MgO). 
The remaining carbon in the cavity was the result of an excess carbon with respect to 
stoichiometry. Thus, the higher the excess carbon, the higher the remainder in the cavity.  
 
Table C-5. Amount of solid deposits collected in each zone of the reactor. 

Product 
Run No. 

1 2 3 4* 5* 6 7** 8 9  
Zone A (g) 0.64 0.48 0.29 0.82 0.87 0.72 NA 0.24 3.84  
Zone B (g) 0.14 0.33 0.23 0.09 0.14 0.20 NA 0.42 1.02  
Remainder in the cavity (g) 0.28 0.30 0.30 0.29 0.45 0.40 NA 0.45 1.30  
Total (g) 1.06 1.11 0.82 1.20 1.46 1.32 NA 1.11 6.16  

The solid products *partly or **entirely burned during collection before weighting  
 

 
Figure C-19. Photographs of the solid products deposition on the ceramic filter: (a) Run No.2, 

(b) Run No.3, and (c) Run No.6. 
 

 
Figure C-20. Photograph of the solid products after their collection from the ceramic filter. 
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To analyze the crystal structure, chemical composition, and microstructure of the 

produced materials, the collected solid products were characterized via powder X-ray 
diffraction (XRD) and particle morphology analysis using a field emission scanning electron 
microscope (FESEM, Hitachi S4800). Additionally, a non-destructive analytical calibration 
method was applied to evaluate Mg mass fraction in accordance with XRD peak intensity 
patterns. Standard samples were prepared by precisely mixing known amounts of commercial 
pure Mg and MgO as reference with Mg mass fractions of 15%, 30%, 45%, 60%, 75%, and 
90%. They were then analyzed by XRD and the intensity ratios of the main peaks of Mg 
(36.53°) to MgO (42.71°) were calculated and plotted versus Mg mass fraction (%wt) 
according to Fig. C-21.  

 
Figure C-21. Calibration curve for Mg mass fraction quantification from XRD patterns of the 

collected solid products. 
 

 Table C-6 shows the weight fraction of condensed Mg collected in zone A and zone B 
calculated with the calibrated XRD curve (Fig. C-21). The Mg fraction was in the range of 4.3-
30.0% for zone A and 2.0-32.8% for zone B, thus revealing low Mg content in the solid 
products after their exposure to air. This is because of the strong Mg oxidation with air at room 
temperature (after opening the reactor). Indeed, the produced Mg-rich powder is highly 
flammable, especially in the form of nanoparticles. This property favors oxidation with air even
at room temperature, which may lead to an auto-combustion and/or even explosion issue. This 
issue can be alleviated by using a hands-in-bag atmospheric chamber during collecting the solid 
products for safe handling of pyrophoric powders; however, the condensed Mg can still be 
oxidized with air while opening the reactor or transferring/preparing the powder for XRD 
analysis, leading to a subsequent increase of MgO content in the solid products after their 
collection from the reactor. Nevertheless, the high MgO conversion calculated from CO 
production (Table C-6) confirmed that a high Mg yield was achieved although the final Mg 
fraction in the solid products was low after their characterization due to their inevitable 
exposure to air.  
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Table C-6. Mg weight fraction calculated from calibrated XRD. 

Run No. reactant 
XMgO 
(%mol) 

Mg weight fraction 
Zone A (%wt) Zone B (%wt) 

1 MgO+1.5AC 97.8 8.9 30.9 
2 MgO+1.5AC 83.2 6.4 8.5 
3 MgO+1.5AC 82.0 9.8 5.3 
4* MgO+1.5CB 84.0 18.8 32.8 
5* MgO+2CB 85.5 6.0 20.7 
6 MgO+2AC 99.9 30.0 31.9 
7* MgO+2AC 86.8 28.0 4.4 
8 MgO+2Graphite 68.6 4.3 2.0 
9 MgO+1.5AC 88.2 25.0 28.2 

*Auto-combustion occurred 
 

5. XRD analysis of produced powders 

5.1 Influence of solid carbon type: 

The XRD patterns of the solid products collected in each zone at both molar ratios were 
not significantly different between AC and CB (Fig. C-22). However, higher Mg intensity was 
observed in zone B when compared with zone A.

 
Figure C-22. XRD patterns of the collected solid products in zone A and zone B for the 
reduction of MgO with AC and CB at (a) C/MgO=1.5 and (b) C/MgO=2 (P=0.11 bar).  

 
Fig. C-23 shows that very small intensities of the Mg peaks were observed when employing 
graphite as reducing agent, due to the weak reaction rate, in agreement with the low CO yield.  
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Figure C-23. XRD patterns of the collected solid products in zone A and zone B for the 

reduction of MgO with graphite and AC at C/MgO=2 (P=0.16 bar).  

5.2 Influence of C/MgO ratio: 

Fig. C-24 shows that the XRD patterns between C/MgO=1.5 and C/MgO=2 for both solid 
carbon types were similar, denoting that MgO and carbon were sufficiently in contact and 
confirming the low influence of the C/MgO ratio.  

 
Figure C-24. XRD patterns of the collected solid products in zone A and zone B as a function 

of C/MgO molar ratio: (a) MgO+AC (b) MgO+CB (P=0.11 bar).  
 

In addition, the XRD patterns of solid products as a function of C/MgO molar ratio (Fig. 
C-25) show that both MgO and Mg products were identified, while their differences between 
C/MgO=1.5 and C/MgO=2 were not obvious. 
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Figure C-25. XRD patterns of the collected solid products in zone A and zone B as a function 

of C/MgO molar ratio (P=0.16 bar).  

6. Particle morphology 

 
Figure C-26. SEM micrographs of solid products from the outlet tube (zone A) and filter 

(zone B) during (a,b) Run No. 3, (c,d) Run No. 1, and (e,f) Run No. 4.  
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7. Reactivity of Mg powder with CO2 

The reactivity of the solar-produced powder (collected in the filter) was studied by 
thermogravimetry analysis using different apparatuses (Setaram Setsys Evolution and Netzsch 
STA449). The powder was placed as a packed-bed in an alumina crucible and heated up to 
380°C in Ar (10°C/min). When the targeted temperature was reached, CO2 was injected under 
isothermal conditions during 60 min for monitoring the sample mass increase during the Mg 
oxidation reaction (Mg(s) + CO2 → MgO(s) + CO). Similar Mg oxidation patterns were observed 
regardless of the starting Mg material and used apparatus, with a fast initial reaction rate 
followed by a diffusion-limited regime arising from mass transfer limitation in the packed 
powder (Figs. C-27 and C-28). Complete Mg conversion was achieved, thus producing 
additional CO and solid MgO that can be recycled to the solar step for closing the cycle. 

 

 
Figure C-27. Mg conversion evolution during oxidation with CO2 (50% in Ar) at 380°C in 

TGA (Setaram Setsys Evolution, downward flow configuration, solar-produced powder 
collected in the filter and obtained from MgO+1.5AC at P=0.11 bar). 

 

 
Figure C-28. Mg conversion evolution during oxidation with CO2 (20% in Ar) at 380°C in 

TGA (Netzsch STA 449, upward flow configuration, solar-produced powders collected in the 
filter and obtained from MgO+2CB, MgO+1.5AC and MgO+2AC at P=0.11 bar).
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Appendix D: Solar gasification of biomass combined with 

carbothermal reduction of ZnO  
 

a. A list of experimental conditions 

 
Table D-1. Summary of experimental conditions for combined gasification/carbo-thermal 
reduction and pyrolysis at different temperatures.  

Run 
No. 

Types of 
Biomass 

Reactant biomass/ZnO 
molar ratio 

Initial 
mass 
(g) 

Ar flow 
rate 
(NL/min) 

Temperature 
(ºC) 

1 type A ZnO+biomass 1 20 5 1050 
2 type A ZnO+biomass 1 20 5 1100 
3 type A ZnO+biomass 1 20 3.2 1150 
4 type A ZnO+biomass 1 20 3 1200 
5 type D ZnO+biomass 1 18.2 3 1200 
6 type A ZnO+biomass 1 20 5 1250 
7 type A ZnO+biomass 1 20 5 1300 
8 type A biomass - 10 3.3 1100 
9 type A biomass - 10 3.3 1200 
10 type A biomass - 10 3.3 1300 
11 type A biomass - 10 3.3 1300 
12 type D biomass - 10 3.2 1300 
13 type A biomass - 15.65 3 1350 
14 type A ZnO+0.5 biomass 0.5 20 5 1100 
15 type A ZnO+0.75 biomass 0.75 20 5 1100 
16 type A ZnO+0.75 biomass 0.75 20 5 1250 

 
Temperatures and pressure evolution in the reactor during heating phase and particle 

injection is presented in Fig. D-1 
 

 
Figure D-1. Temperatures and pressure evolution in the reactor during heating phase and 

particle injection. 
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b. Mass balance 

Table D-2. Overview of the mass balance for biomass/ZnO molar ratio of 0.75 at 1250ºC 

(Run No. 16). 

Input 
Output 

Syngas Solid deposit rest of the reactor 
ZnO 8.56 g CO 7.702 g Zone A 2 g remainder 0.2 g 

Biomass 11.44 g CO2 1.702 g Zone B 4 g   

  CH4 0.616 g Zone C 1.9 g   

  CnHm 0.070 g     

  H2 0.565 g     

  Total gas 10.658 g 
Total 
deposit 7.9 g 

Total 
remainder 0.2 g 

Total input 20 g Total output 18.758 g 
 
Table D-3. Overview of the mass balance for biomass/ZnO molar ratio of 1 at 1250ºC (Run 
No. 6). 

Input 
Output 

Syngas Solid deposit rest of the reactor 
ZnO 8.56 g CO 7.102 g Zone A 1.7 g remainder 0.3 g 
Biomass 11.44 g CO2 1.294 g Zone B 3.5 g   
  CH4 0.507 g Zone C 1.8 g   
  CnHm 0.029 g     
  H2 0.532 g     

  Total gas 9.464 g 
Total 
deposit 

7 g 
Total 
remainder 

0.3 g 

Total input 20 g Total output 16.764 g 
 

c. Quantification of carbon content in the samples 

 

 
Figure D-2. Thermocouples positions and reactor output zones where the solid products are 

collected. 
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The carbon content in the collected samples from zone A, zone B, zone C, and the 
cavity was estimated by mass balance.  Given amounts of solid product were exactly weighed 
and then burned at 650°C in air to remove carbon and oxidize Zn, thereby providing the amount 
of both carbon and Zn in the samples.  After the burning process, the selected samples were 
precisely weighed again to determine the mass of carbon and Zn in the initial samples.  The 
mass variation indeed corresponds to the carbon lost during the combustion minus the oxygen 
gained during Zn oxidation to ZnO. Table D-4 shows the carbon content of selected samples 
in each zone of the reactor. 

The results first show that the weights of the selected samples in zone A and zone B 
increased slightly after the burning process because of the prevailing oxidation reaction of Zn 
with O2.  This means the solid products contained in zone A and zone B are minimally 
contaminated by carbon (17.7 wt% carbon content in zone A, and 8.8 wt% carbon content in 

zone B) .  In other words, the presence of significant carbon content was mainly evidenced in 
zone C (41.9 wt%) because the remaining particulate residues (char)  separated from the gas 
stream was collected in this zone ( filter) .  Besides, 88.5 wt% of carbon content was found in 
the cavity (char), while the remainder (0.16 mg) in this sample was supposed to be the deposited 
ashes.  
 
Table D-4. Carbon content estimated by mass balance in each zone of the reactor.  

Residue 
mtotal 
(before) 

(mg) 

mtotal 
(after) 
(mg) 

Δm 
(mg) 

mZn 

(mg) 
mcarbon 

(mg) 
Ash 
(mg) 

Carbon 
content 
(wt%) 

Zone A* 99.5 101.9 2.4 81.9 17.6 - 17.7 
Zone B* 30.7 34.8 4.1 28.0 2.7 - 8.8 
Zone C* 27.7 20.1 7.6 16.1 11.6 - 41.9 
Remainder 
inside cavity** 

1.4 0.2 1.2 - 1.24 0.16 88.5 

*The selected samples in zone A, zone B, and zone C were collected form Run No.14. 
**The selected sample in the cavity was collected from Run No.4. 
 

 

Figure D-3. Char and ZnO remaining inside the cavity of the reactor for a biomass/ZnO 
molar ratio of 0.5 at 1100 °C. 
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Figure D-4. Syngas flow rates during a continuous experiment for a biomass/ZnO molar ratio 

of 0.75 at 1250°C. 
 

 
Figure D-5. Char remaining inside the cavity of the reactor for a biomass/ZnO molar ratio of 

1 at 1100°C. 
 

 
Figure D-6. Representative XRD patterns of products collected from (a) zone A, and (b) zone 

C at different biomass/ZnO molar ratios (1100°C).
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Figure D-7. Representative XRD patterns of the products collected from each zone at 1250°C 

(biomass/ZnO molar ratio of 0.75). 
 

Figure D-8. Mean crystallite size of (a) Zn collected from zone A, zone B, and zone C and (b) 

ZnO collected from zone A. 
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Solar fuels production from thermochemical gasification and reforming of carbonaceous 

feedstocks 

Abstract 
The investigated solar thermochemical processes consist of the thermochemical conversion of 
solid and gaseous carbonaceous feedstocks into syngas as well as metal oxides reduction into 
metal commodities utilizing concentrated solar energy to drive endothermic chemical 
reactions, thereby enabling intermittent solar energy storage into solar fuels and avoiding CO2 
emissions. This work aims to experimentally investigate three key solar thermochemical 
conversion approaches regarding biomass gasification, chemical looping reforming of 
methane, and carbothermal reduction of ZnO and MgO. Solar gasification and solar chemical 
looping reforming allowed valorizing wood biomass and methane into syngas, while solar 
carbothermal reduction was applied to produce Zn and Mg from ZnO and MgO. Such solar 
thermochemical processes were performed in 1.5 kWth prototype solar chemical reactors, 
utilizing highly concentrated sunlight provided by a solar concentrator at PROMES laboratory, 
Odeillo, France. The impact of controlling parameters of each process on the reaction 
mechanism, conversion, yields, and process performance, during on-sun testing was 
investigated and evaluated thoroughly. Such processes were proved to significantly improve 
the chemical conversion, syngas yields, energy efficiency, with solar energy storage into 
transportable fuels, thereby outperforming the conventional processes. Moreover, their 
feasibility, reliability, and robustness in converting both methane and biomass feedstocks to 
syngas as well as producing Mg and Zn metals in batch and continuous operation under vacuum 
and atmospheric conditions during on-sun operation were successfully demonstrated. 
Keywords: gasification, chemical looping reforming, carbothermal reduction, solar reactor, 
concentrated solar power, syngas, solar metallurgy. 
 
Production de combustibles solaires par voie thermochimique à partir de gazéification et 

reformage de ressources hydrocarbonées 

Résumé 
Les procédés thermochimiques solaires étudiés concernent la conversion de charges 
hydrocarbonées solides ou gazeuses en syngas, ainsi que la réduction d’oxydes en métaux en 
utilisant l’énergie solaire concentrée pour effectuer les réactions endothermiques, permettant 
ainsi le stockage de l’énergie solaire intermittente en carburants sans émissions de CO2. Ce 
travail a pour objectif l’étude expérimentale de trois procédés solaires incluant la gazéification 
de biomasse, le reformage de méthane en boucle chimique, et la carboréduction de ZnO et 
MgO. La gazéification et le reformage permettent la valorisation de biomasse bois et de 
méthane en syngas, tandis que la carboréduction permet de produire Zn et Mg à partir de ZnO 
et MgO. Ces procédés ont été étudiés dans des réacteurs solaires de 1.5 kWth, en utilisant le 
rayonnement concentré fourni par des systèmes à concentration du laboratoire PROMES, 
Odeillo, France. L’impact des paramètres opératoires de chaque procédé sur les mécanismes 
réactionnels, conversion, rendement, et performances énergétiques a été évalué en détail. Ces 
procédés ont permis d’améliorer la conversion chimique, les rendements en syngas, les 
efficacités énergétiques tout en permettant un stockage de l’énergie solaire en combustibles 
transportables, avec des performances globales supérieures aux procédés conventionnels. De 
plus, leur faisabilité, fiabilité et robustesse pour la conversion de méthane et biomasse en 
syngas et la production de Mg et Zn en fonctionnement batch ou continu sous pression réduite 
ou atmosphérique en conditions solaires réelles ont été démontrés. 
Mots-clé: gazéification, reformage, carboréduction, réacteur solaire, énergie solaire 
concentrée, syngas, métallurgie solaire. 

 


