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A B S T R A C T

Given the ubiquitous nature of interactions across applications
and systems, users often need to alternate between devices, soft-
ware, or techniques to complete a single task. In this thesis, I
investigate retroactive transfer when users alternate between dif-
ferent interfaces. Retroactive transfer is the influence of a newly
learned interface on users’ performance with a previously learned
interface. I explore the theoretical and psychological foundations
behind learning, skill acquisition, and transfer of skill to better
characterize the retroactive transfer phenomenon.

In an interview study, participants described their experiences
when alternating between different interfaces, e.g. different oper-
ating systems, devices, or techniques. Negative retroactive trans-
fer related to text entry was the most frequently reported incident.
I then report on a laboratory experiment that investigated the im-
pact of similarity between two keyboard layouts, and the number
of alternations between them, on retroactive interference. Results
indicate that even small changes in the interference interface pro-
duced a significant performance drop for the entire previously
learned interface. The amplitude of this performance drop de-
creases with the number of alternations.

Based on the findings of this thesis, the retroactive transfer
should receive more attention by designers in Human-Computer
Interaction (HCI). Their interfaces should be more systematically
evaluated not only for intramodal learning and proactive transfer
but also for retroactive transfer.

v





R É S U M É

Compte tenu de la nature omniprésente de l’interaction, les util-
isateurs doivent souvent alterner entre les dispositifs, les logi-
ciels ou les techniques pour effectuer une tâche. Dans cette thèse,
j’étudie le transfert rétroactif lorsque les utilisateurs alternent
entre différentes interfaces. Le transfert rétroactif est l’influence
d’une nouvelle interface sur les competences déjà acquises sur
une autre interface. J’explore les fondements théoriques et psy-
chologiques de l’apprentissage, l’acquisition de compétences et le
transfert de compétences pour mieux caractériser le phénomène
de transfert rétroactif.

Lors d’interviews, les participants ont décrit leurs expériences
où ils alternent entre différentes interfaces, par exemple en-
tre différents systèmes d’exploitation, dispositifs ou techniques.
L’incident le plus fréquemment signalé était le transfert rétroac-
tif négatif lié à l’entrée de texte. Je décris ensuite une expérience
controllée en laboratoire qui étudie l’impact de la similarite entre
deux claviers, et le nombre d’alternances entre ces claviers, sur les
interférences rétroactives. Les résultats indiquent que meme peu
de changements de touches entre les deux claviers introduisent
une baisse de performance importante pour toute l’interface ap-
prise auparavant. L’augmentation du nombre d’alternances fa-
cilite le transfert et limite la baisse de performance.

Les résultats de cette thèse indiquent que le transfert rétroac-
tif devrait recevoir plus d’attention de la part des concepteurs
dans le domaine de l’interaction homme-machine (IHM). Les in-
terfaces devraient être évaluées plus systématiquement non seule-
ment pour l’apprentissage intramodal et le transfert proactif, mais
aussi pour le transfert rétroactif.
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1
I N T R O D U C T I O N

We live in a world surrounded by an abundance of digital inter-
active systems designed to assist or automate human tasks and
activities. Interactive systems drastically changed the way people
act and interact in everyday life. They changed how people ac-
cess services through mobile devices, large displays, augmented
Reality, etc.

Human Computer Interaction (HCI) is a multidisciplinary field
of study, focusing on the design, evaluation and implementation
of interactive systems. It also investigates the action-perception
loop between the user(s) and interactive system(s). Interaction
with a computer is a type of a communication. Users receive com-
puters’ output in the form of perceptual information and respond
by providing input to the computer using keyboards, mice, and
other interactive devices.

In this context, it is important to understand how the users
develop skills to learn, adopt and use interactive systems. Sub-
sequently, to benefit from these interactive systems people must
acquire knowledge and learn necessary skills. A skill is a learned
and goal-oriented activity which is directed toward the attain-
ment of a specific goal. For instance, to benefit from word pro-
cessing interfaces, e.g. Microsoft Word, the users must learn how
to type using a keyboard layout.

Given the ubiquitous nature of interaction, users often need to
alternate between devices, software or techniques to complete a
single task. For instance, they can regularly alternate keyboard
layouts, operating systems (e.g., Mac vs. Windows) or software
applications (e.g., Keynote vs. PowerPoint). Concerning the vari-
ety of systems, one question is how users adapt from one interface
to another one? How quickly will users learn, adopt and master
a novel interface given their previous experience? How will learn-
ing a new interface influence one’s the expertise with previously
learned interfaces? The key concept underlying these questions
is skill transfer. Skill transfer is the influence of learning one skill
on the performance of another skill.

Transfer can be classified as either proactive transfer or retroac-
tive transfer. Several studies investigated proactive (Figure 1) trans-
fer from a previously learned interface to a new interface (Jokinen
et al., 2017; Ramesh et al., 2011b; Scholtz and Wiedenbeck, 1990a),
for instance, how quickly users can master the new azerty key-

1
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Figure 1: Conceptual model of proactive transfer, which is the influence
of previously learned interface A (e.g., QWERTY keyboard lay-
out) on the learning of new interface B (e.g., AZERTY key-
board layout)
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Figure 2: Conceptual model of retroactive transfer, which is the influ-
ence of a newly learned interface B (e.g., AZERTY) on the re-
tention of a previously learned interface A (e.g., QWERTY)

board layout after mastering the previously learned qwerty lay-
out. However, proactive transfer neither captures the return to the
original layout, i.e. the influence of the new azerty on the contin-
uous learning of the qwerty keyboard, nor the effect of regularly
alternating between the two practiced layouts. Retroactive trans-

fer (Edwards, 2010; Schmidt and Lee, 1988) is the influence of a
newly learned skill on the retention of a previously learned skill
(Figure 2).

Retroactive transfer has been investigated in cognitive psychol-
ogy (Bunch, 1946; McGeoch and Irion, 1952; Osgood, 1949). How-
ever, in contrast with proactive transfer, retroactive transfer has
received much less attention in HCI. It is not clear what is the
impact of alternating between interfaces. It is of critical impor-
tance because it is frequent and is likely to be even more frequent
with the increasing number of devices, systems and interactive
contexts.

Given the ubiquitous nature of interaction, it would be dra-
matic if learning a novel interface had a negative impact on a
previous learned interface we are likely to continue to use. There-
fore, maintaining previously acquired skill sets is crucial when
learning how to use new interfaces. This thesis addresses the con-
ditions under which retroactive transfer occurs and investigates
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the impact of retroactive transfer on performance when using dif-
ferent interfaces.

1.1 research goal

The long-term goal (that I do not address in this thesis) is the
design of interfaces that better support alternations. Accordingly,
the main goal of this thesis is to understand the retroactive trans-
fer phenomena in HCI context. The aim is to better understand
how alternating between interfaces influences users’performance.
This main goal can be divided into more concrete subgoals:

RG1: Identify HCI scenarios in which retroactive transfer
(potentially) occurs and understand the specifics of these
scenarios.

RG2: Identify the factors that play a role in retroactive trans-
fer

RG3: Quantify the impact of these factors on performance.

RG4: Provide recommendations and future research direc-
tions.

1.2 research approach

My work includes the following general approaches:

1. theoretical approach. I used concepts, theories and mod-
els in cognitive psychology to (1) better understand the learn-
ing process and skill acquisition which are necessary to in-
troduce retroactive transfer, and (2) identify the main factors
involved in retroactive transfer.

2. empirical approach
Qualitative methods : interview & introspection
I completed an Introspection1 through my personal experi-
ence with using text entry. I also conducted an interview-
based study to understand user experiences when alternat-
ing between interfaces (e.g., devices, applications, operating
systems). This helped me to identify the main tasks that pro-
duce interference.

Quantitative methods: Controlled lab experiment
I conducted a controlled experiment to investigate retroac-
tive interference when users alternate between interfaces

1Introspection involves examining one’s own thoughts, feelings and sensa-
tions in order to gain insight.
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and how the similarity between them affects the magni-
tude of such interference. The experimental design builds
on standard motor learning experiments of retroactive trans-
fer, but is extended to cover multiple alternations and to
apply to a user interface context.

1.3 application domain

For most interactive systems, users interact via text entry devices
such as a keyboard. I focus on text entry in this thesis because it
is one of the most common ways to perform HCI tasks. There are
several contributions in terms of interaction techniques, empirical
studies, models of performance and optimization methods in the
field of text entry. Moreover, in the qualitative study participants
suggested that alternating between keyboard layouts is a common
cause of retroactive interference.

1.4 contributions

- I transpose concepts, theories and models from cognitive
psychology to HCI.

- I report findings from two rounds of interviews and a
controlled experiment, that increase our understanding of
retroactive interference while using interactive systems in a
HCI context.

- I provide recommendations and subsequent research direc-
tions in consideration of retroactive transfer in HCI.

1.5 thesis statement

I believe that retroactive transfer should receive more attention in
HCI, as the ubiquitous nature of interactions across applications
and systems requires users to alternate between similar interfaces
quite often. Thus, measuring and understanding the factors con-
tributing to retroactive transfer can give clues to how interfaces
such as soft keyboards should be designed with transfer and in-
terference in mind.

1.6 thesis overview

The rest of this thesis is organized as follows:

Chapter 2: I present a discussion of the role of memory
in learning from cognitive and psychology point of view.
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I describe cognitive processes involved in learning that oc-
cur in defined memory’s systems. Then, I outline the major
types of long-term memory and describe how information
is encoded and organised in long-term memory. Finally, I
explain how forgetting occurs, and discuss the underlying
causes of forgetting such as memory decay, retrieval failure
and interference.

Chapter 3: I summarize related work in skill acquisition and
provide definitions, factors, theories and models in cogni-
tive psychology literature. I start by introducing skill and
discuss the main characteristics of a skill. Then, I describe
skill acquisition in form of different stages, and present the
three-stage models of Fitts and Posner (Fitts and Posner,
1967). I discuss the basic laws and fundamental principles
of learning, such as the power law of practice. At the end,
I present different interactive techniques designed to facili-
tate skill acquisition and improve user’s performance while
performing text entries’ tasks.

Chapter 4: I focus on skill transfer in this chapter. I follow
the same structure of the previous chapter and discuss def-
initions, factors, theories and models in cognitive psychol-
ogy literature. First I distinguish transfer from one skill to
another skill or to the same skill from one context to an-
other one. Then, I categorize transfer of skill as positive and
negative transfer; and proactive and retroactive transfer. I
discuss retroactive transfer and the related concepts, as well
as the factors influencing retroactive transfer. These factors
are inspiring for designing the controlled experiment de-
scribed in Chapter 6. The theory of identical elements and
other theories representing the reasons behind transfer are
also presented in this chapter.

Chapter 5: I describe two rounds of interview with poten-
tial users who face retroactive interference while working
with different interfaces. The first round of interview was
conducted to understand the retroactive transfer phenom-
ena when using interactive systems. The second round of
interview focuses explicitly on keyboard usage. Since partic-
ipants suggested that alternating between keyboard layouts
is a common cause of retroactive interference; the severity
of which is attributable to the degree of similarity between
them.

Chapter 6: I present the experimental design to study retroac-
tive transfer in a laboratory controlled experiment. I explain



the experimental rational and the operationalization pro-
cess to study a complex phenomena with the constraints
of a laboratory experiment. In particular, I justify the choice
of the factors based on the findings of Chapter 4 and Chap-
ter 5.

Chapter 7: I report the result of the user experiment focus-
ing on Intramodal Improvement, proactive transfer, retroac-
tive transfer in first alternation and retroactive transfer in
second alternation. The results show that having a small
changes in the key’ positions of interference interface is suf-
ficient to produce a significant performance drop for the
entire interface.

Chapter 8: I provide a summary of this thesis’ contribution,
discusses the limitation and give directions for future work.



Part I

T H E O R E T I C A L F O U N D AT I O N S

Chapter 2 includes a comprehensive introduction to
the foundation of psychology and cognitive sciences
regarding human memory process in learning and for-
getting. The aim of this chapter is to provide theoret-
ical foundations to study the phenomena related to
skill acquisition in Chapter 3 and transfer of skill in
Chapter 4.

Chapter 3 is dedicated to summarizing previous
works concerning skill acquisition. Finally, Chapter 4
provides a general overview of transfer of skills and
focuses on retroactive interference in psychology; a
phenomenon that is not well-investigated in HCI. Al-
together, this part contributes toward a better under-
standing of retroactive transfer’s phenomena.





2
M E M O RY: L E A R N I N G A N D F O R G E T T I N G

This chapter offers a general overview of the foundation of psy-
chology and cognitive sciences regarding memory process in
learning and forgetting. This will be useful to understand the
mechanisms involved in retroactive transfer. This chapter begins
with describing different memory systems involved in the process
of encoding, storage and information retrieval. The second part
discusses the underlying causes of forgetting such as memory de-
cay, retrieval failure and interference.

2.1 learning

Learning is the process of acquiring knowledge (Gross, 2015). The
psychology of learning concerns how people learn and interact
with their environments. For learning to occur, it’s critical that
incoming information is processed within the brain. The infor-
mation processing theory holds that humans actively process the
information they receive from their senses and focuses on the
flow of information through the cognitive systems (Card, 1983).
The information processing approach is to characterize humans
as an information processing systems (like a computers), which
encode input, operate on that information, store and retrieve it
from memory, and then produce output in terms of actions.

In the past several decades, a number of psychological models
(Anderson, 2009a; Anderson et al., 1997; Atkinson and Shiffrin,
1968; Card, 1983; Fitts and Posner, 1967; Howes and Young, 1997;
Kieras and Meyer, 1997; Lindsay and Norman, 1977; Newell, Si-
mon, et al., 1972) have been developed to represent the aspects of
human information-processing as a task is being performed. The
most widely used architecture in the psychology is the modal
model, an adapted version of the Atkinson and Shiffrin model
(Atkinson and Shiffrin, 1968). Figure 3 represents the modal
model with the distinct memories, positioned between input and
output. This model is predicated on the metaphor of the mind as
a computer.

Among the psychological models, there are some models that
can be applied to HCI. The Model Human Processor (MHP)1

(1983) (Card, 1983) is a well-known model in this domain. MHP

1It is also known as cmn model. It takes the name after its creators Stuart
Card, Thomas P. Moran and Allen Newell.

9
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Figure 3: The modal model. The conceptualised flow of information
through the memory system, adapted from (Atkinson and
Shiffrin, 1968, 1971)

is a general characterization of human information processing.
It can be described as a set of processors: perceptual, cognitive,
and motor, and their associated memories, as well as their inter-
actions that operate based on a set of principles, see Figure 4. The
goal of this model is to calculate cognitive and motor processing
time. However other more recent models, including the adaptive
control of thought (ACT-R) Model (1997) (Anderson et al., 1997),
the State, Operator, and Result (SOAR) Model (1997) (Howes and
Young, 1997), and the EPIC Model(1997) (Kieras and Meyer, 1997)
have considerable utility for the HCI field.

Figure 4: The Model Human Processor; memories and processors (Card,
1983).
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A complete survey of human models is out of the scope of
the present work (see (Gray and Altmann, 2001; Norman, 2013)
for more details). Nonetheless, I provide here a brief overview of
some of the main common concepts. I aim to illustrate cognitive
processes involved in learning that occur in defined memory’s
systems (i.e., sensory memory, short-term memory and long-term
memory). Most of the models, such as MHP (Figure 4), EPIC (Fig-
ure 5) and the modal model (Figure 3), are based on the assump-
tion that the processing between stimuli and responses consists of
a series of discrete systems for which the output for one system
serves as the input for the next.

Figure 5: The high-level overview of the EPIC cognitive architecture,
(Kieras and Meyer, 1997).

2.2 memory

Memory is an essential cognitive process to encode, store, retain,
and later retrieve the information we have learned or experienced
(Shiffrin and Atkinson, 1969). In order to form new memories, the
perceived information by sensory modalities2, must be changed
into a usable form, which occurs through the process known as
encoding. Once the information has been successfully encoded, it
must be stored in memory for retrieving and later used.

While several different human memory systems have been pro-
posed, the memory system called modal model initially proposed
by Atkinson and Shiffrin (Atkinson and Shiffrin, 1968) (Figure 3)

2The term sensory modality is often used interchangeably with sense. The
basic sensory modalities include: light, sound, taste, temperature, pressure,
and smell (Small and Prescott, 2005)
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is often used to explain the basic structure and function of mem-
ory. It is comprehensive enough to provide a basic foundation for
thinking about memory. Around 50 years after its first publica-
tion, it is still influential in the development of cognitive psychol-
ogy (it has been cited over 11,000 times, as of October 2020, source:
Google Scholar). This model divides human memory into three
distinct systems: sensory memory, short-term memory, and long-
term memory. In overall, when mentioning memory system (sen-
sory, short-term and long-term memory), we intend to character-
ize the storage in which the memory resides. Unlike the system,
processing views concentrate on the type of processing involved
in memory. These two views are not mutually exclusive. There are
different memory systems and how the information is processed
within that particular system will influence how the memory is
encoded, retrieved, etc. Below I focus on different memory sys-
tems and different types of processes within those systems.

2.2.1 Sensory Memory

When a stimulus (e.g., visual or auditory) is presented, it leaves a
sensory trace of that stimulus in the brain. A memory trace, also
know as an engram, is a means by which information is stored as
physical or biochemical change in the brain in response to exter-
nal stimuli (Ryan et al., 2015). For example, the ability to look at
something and remember what it looked like with just a second
of observation is an example of sensory memory. Sensory mem-
ory is very brief and its purpose is to maintain the representation
of a stimulus long enough so that it can be recognized.

Each human physiological sense (sight, hear-ing, taste, smell,
touch) is believed to have a corresponding store in sensory
memory and three of these have been extensively studied: iconic
memory, echoic memory, and haptic memory. Iconic memory
stores visual representations for a very short period, typically
half a second (e.g., the picture we just saw). People rely on visual
representations to recall where they left their keys, for example.
Visual representations are like pictures that can be mentally
manipulated (Burton and Fogarty, 2003).

Echoic memory pertains to auditory stimuli, like the ability to
comprehend and understand language (i.e., to keep sounds in our
memory long enough to be able to make sense of them as words).
Echoic memory hole information longer than iconic memory, gen-
erally for 1 or 2 seconds (Baddeley, 1997).

Haptic memory is used by the sense of touch. Sensory recep-
tors all over the body detect sensations like pressure, itching, and
pain, which are briefly held in haptic memory before vanishing
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or being transported to short-term memory. This type of memory
seems to decay after about two seconds (Shih et al., 2009).

Sensory memory and attention cannot operate without each
other. Memory has a limited capacity, and thus attention deter-
mines what will be encoded (Chun and Turk-Browne, 2007). Pre-
served information enters our brains via sensory receptors. They
are stored in sensory memory just long enough to be transferred
to short-term memory (Carlson et al., 1997). Although thousands
of bits of information have been received through the five senses,
the brain has to filter and select things to pay attention to. At-
tention is the process of consciously concentrating on one aspect
of environment while preventing other things from being a dis-
traction. This conscious perception is the first step of the memory
process.

2.2.2 Short-Term Memory

Short-term memory (Atkinson and Shiffrin, 1968; James, 2007)
is a limited-capacity system that receives information from sen-
sory memory. Once the information has been received, only 7± 2
chunks (Cowan, 2001; Miller, 1956) of information can be held
into short-term memory in consciousness, such as a phone num-
ber. Information is stored in short-term memory for a relatively
brief duration, estimates range from 15 to 30 seconds without re-
hearsal (Sousa, 2016).

There are two major concepts for storing information in short-
term memory: organization and repetition. A related issue to or-
ganization is the concept of chunking or grouping pieces of data.
Chunking is a process by which individual pieces of information
are bound together into a meaningful or familiar pattern. Chunk-
ing is also a type of elaboration that will help get information into
long-term memory (Neath et al., 2003).

When information is placed in short-term memory, if it is ac-
tively repeated in mind, the incoming information can spend an
extended period of time in short-term memory. The process of in-
formation repetition is called rehearsal. An example of this would
be repeating the digits of a phone number until we dial them.
This kind of mental repetition in order to maintain information
in short-term memory is called maintenance rehearsal. Although
this simple repetition does not appear to be very efficient at trans-
ferring information into permanent memory. Rather, deliberate
efforts and elaborative rehearsal appears to be the most effective
set of processes for the encode and transfer of information from
short-term memory into long-term memory (Sousa, 2016; Willis,
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2006) (I will discuss the long-term memory and elaborative re-
hearsal in the next section).

Relationship with working memory

Short-term memory is often used synonymously with working
memory (e.g., in model human processor of Card et al.). However,
an alternative model of human memory proposed by Baddeley
(Baddeley, 1992) holds that there are two forms of memory dis-
tinct. It assumes that working memory allows for processing of
information that can be used to solve problems, respond to en-
vironmental demands or achieve goals (Baddeley, 1992), whereas
short-term memory is defined as the ability to store information
temporarily (Brown et al., 2005; Klingberg, 2010).

According to this model, working memory includes both a
storage capacity and a processing capacity. Processes such as re-
hearsal and reasoning are the work of a limited-capacity central
executive system. The central executive is responsible for direct-
ing attention to relevant information, suppressing irrelevant in-
formation, and making decisions when two tasks are simultane-
ously performed. On the other hand, some studies suggest that
working memory is not completely distinct from short-term mem-
ory (Cowan, 2008; Nadel and Hardt, 2011). But, some have sug-
gested that both concepts represent the same cognitive process
(e.g., (Nash, 2007)). Figure 6 illustrate several models to hypothe-
size the relation between short-term memory and working mem-
ory (Aben et al., 2012). In this chapter, short-term memory and
working memory are considered the same entity.

The short-term and long-term memory distinction

In MHP, as represented in Figure 4 working memory is not com-
pletely distinct from long-term memory, since working memory
consists of subset of activated chunks in the long-term memory
(Card and Henderson Jr, 1986). In contrast, the modal model of
Atkinson distinguished short-term from long-term memory. One
of the most compelling pieces of evidence for this idea is the
serial-position effect, Figure 7, which is the tendency to remember
the items early in a list (i.e., the primacy effect) and later in a list
(i.e., the recency effect) better than those in the middle (Henson,
1996). Primacy and recency effects are evidence that short-term
and long-term memory rely on distinct systems. Recency effect
arises because the last items are likely to be present in short-term
memory, while primacy effect indicates that the first few items en-
tered short-term memory and had time to be rehearsed and pass
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Figure 6: (Adapted from (Aben et al., 2012)) Hypothetical models of the
relation between short-term memory (stm) and working mem-
ory (wm). (A) two independent, (B) identical entities.(C,D) stm
is a part of wm and vice versa. (E) no transfer of information
from stm to wm (or vice versa). (F) wm is stm plus additional
processes. (G) information entering stm can be transferred to
wm in order to undergo manipulation. (G) wm and stm as two
different, but strongly collaborative entities.

on to long-term memory. The middle portion items probably can
not be remembered because the increasing number of items fills
the limited capacity of short-term memory and those items are
unable to be properly transfer to the long-term memory. It shows
that the items are recalled from two separate memory systems
(Bjork and Bjork, 1996; Glanzer, 1972; Murdock Jr, 1962)
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Figure 7: Serial position effect.

2.2.3 Long-Term Memory

Once the information has been encoded, the brain needs to retain
the information over time and stores the encoded information in a
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permanent storage. Several types of information are represented
in long-term memory, including such things as facts and events,
motor and perceptual skills, knowledge of physical laws, a spa-
tial model of the environment, attitudes and beliefs, etc (Hewett,
1999). Long-term memory has a large capacity for storage of infor-
mation for long periods of time. Thus, information can be main-
tained in long-term memory from hours to days or months, or
even a lifetime (Roberson and Sweatt, 1999; Shiffrin and Atkin-
son, 1969) (see Table 1 for more details).

There is, however, no easy or obvious way to determine the lim-
its of how much can be stored, or for how long it can be stored.
According to the modal model, the longer information remains
in short-term memory, the more likely it is to make a permanent
trace in long-term memory. Recovering information from long-
term memory, known as retrieval, involves pulling information
from the subconscious long-term memory and making it immedi-
ately accessible to the conscious mind (i.e., bringing information
back into short-term memory).

2.2.3.1 Varieties of long-term memory

Long-term memory

Way knowledge is 
expressed

Implicit memory 
(memory expressed 

in behaviour)
Explicit memory

Recall Recognition

Type of 
knowledge stored

Procedural
memory 

(skills, habits)

Declarative
memory

Semantic
(general knowledge)

Episodic
(Specific events)

Figure 8: (Adapted from (Burton et al., 2014)) model of the different
types of long-term memory.

Types of long-term memory can be distinguished by kind of
stored knowledge and the way this knowledge is retrieved and
expressed. In general, two kinds of information are stored in
memory: declarative and procedural memories. Declarative mem-
ory refers to memory for facts and events, that are explicitly
stored and consciously ’declared’ (Squire, 1986). Calling up a
memory from the past, requires access to declarative memory.
Declarative memory can be semantic or episodic (Tulving, 1987;
Tulving et al., 1972). Semantic memory refers to general world
knowledge or facts (Tulving et al., 1972). Episodic memory con-
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sists of memories of particular events, rather than general knowl-
edge (Tulving, 2002). Episodic memory allows people to remem-
ber thoughts and feelings from the recent or distant past, or to
imagine the future (Wheeler et al., 1997)

Procedural memory refers to ’how to’ knowledge of proce-
dures, skills or habit. Although procedural memories often form
without conscious effort (how to ride a bike), at other times pro-
cedural memories are residues of prior conscious knowledge and
strategies, which have become automatic and highly efficient.

For example, when we learn to type, we study the layout of the
keyboard, tapped out the letter one-by-one using hunt-and-peck3

(Figure 9). In this stage, we are trying to form declarative memo-
ries. As we are typing our first words, we also hold in short-term
memory (or working memory) the sequence of keys to hit and
knowledge about which fingers to use for each key. Over time,
however, our speed and accuracy improve, while conscious effort
diminishes. Practice allows to build up memory of keys, therefore
specific letters can be accessed without thinking about key loca-
tions (Goldberg and Richardson, 1993). This process reflects the
formation of procedural memory for typing. In the end, we think
only of the words we want to type without looking at the key-
board layout 4 and would have difficulty describing the layout
of the keyboard (declarative memory), even though our fingers
’remember’, Figure 9.

Figure 9: Left, hunt-and-peck method (declarative memories); Right,
touch-typing (procedural memory).

Knowledge can be retrieved explicitly or implicitly (Schacter and
Buckner, 1998). Explicit memory refers to the conscious retrieval
of information, whereas implicit memory refers to memory that
is evident in skills, conditioned learning, associative memory and
behaviour. Some psychologists use explicit and implicit memory

3Hunt-and-peck is a method of typing in which one looks at the keyboard
and types using usually the index fingers.

4Touch-typing is typing in a chains of anticipated motor actions that are ex-
ecuted semi-autonomously. It enables “eyes-free” operation in which the typist
keeps their eyes on the source copy at all times (Uddin et al., 2017).
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as synonyms for declarative and procedural memory. Although
there is clearly some overlap, the declarative-procedural refers
more to the type of knowledge that is stored, whereas the ex-
plicit–implicit distinction refers more to the way this knowledge is
retrieved and expressed. There are two kinds of explicit retrieval:
recall is the spontaneous conscious retrieval of information from
long-term memory, as when a person brings to mind the name of
a country (Anderson and Bower, 1972; Henderson, 1999). Recog-
nition is memory for whether something currently perceived has
been previously encountered or learned (Burton et al., 2014). Fig-
ure 8 provides different types of long-term memory.

2.2.3.2 Encoding and organisation

After discussing the varieties of long-term memory, it is worth
considering how does information find its way into long-term
memory at first? How is information organised in the mind to be
retrieved? For information to be retrievable from memory, it must
be encoded. Encoding refers to any mental operations performed
on information to cast into a representational form, or ’code’ that
can be readily accessed. How to pay attention and how to encode
the information has a substantial influence on its accessibility. The
evidence suggests that memory retrieval is an almost automatic
process. Thus, distraction at the encoding time, can extremely re-
duce retrieval success (Healey and Miyake, 2009).

Some encoding is deliberate, such as studying for an exam.
However, much of the time encoding simply occurs as a by-
product of thought, perception or emotional arousal. For example
many people can recall precisely where and when they first heard
the news of the September 11 attacks on the United States in 2001.
This is called Flashbulb memories, which is the vivid memories
of exciting or highly consequential events (Neisser and Winograd,
1993).

As noted earlier, the simple repetitive rehearsal that main-
tains information temporary is not optimal for long-term memory.
Thus, elaboration on rehearsal seems to be one of the most effec-
tive strategies to get information into long-term memory. Elabo-
rative rehearsal goes beyond simple repetition. It is the process
of linking new information to pre-existing knowledge stored in
memory and looking for relationships between information. Elab-
orative rehearsal of a telephone number may involve looking for
patterns or associations. This approach requires the learner to
engage with new information in a way that creates meaningful
connections to previously-learned things. One explanation (An-
derson and Reder, 1979) suggests that the memory traces that
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Feature Sensory

memory

Short-term

memory

Long-term

memory

Entry of

information
Preattentive Requires attention Rehearsal

Maintenance of

information
Not possible - Continued attention

- Rehearsal

- Repetition

- Organization

Format of

information

Literal copy

of input

- Phonemic

- Probably visual

- Possibly semantic

- Largely semantic

- Some auditory

and visual

Capacity Large Small No known limit

Information

loss
Decay - Displacement

- Possibly decay

- Possibly no loss

- Loss of accessibility

or discriminability

by interference

Trace duration 0.25-2 Seconds Up to 30 seconds Minutes to years

Retrieval Readout
- Probably automatic

- Items in consciousness

- Temporal cues

- Retrieval cues

- Possibly search

process

Table 1: Commonly accepted differences between memory systems
(Craik and Lockhart, 1972).

elaborate the previously stored information provide additional
routes to new information.

Information that is encoded on a deeper level, through mean-
ingful association, is easier to remember. The degree to which
information is elaborated and processed during encoding is re-
ferred to level of processing (Craik and Lockhart, 1972; Lock-
hart and Craik, 1990). Information can be processed to different
depths:

• Shallow or structural level: focusing on physical character-
istics of the stimulus

• Phonemic level or intermediate level: focusing on simple
characteristics of stimulus

• Semantic level: focusing on the meaning of the stimulus

Aside from the level of processing, two other variables influ-
ence accessibility of memory, the spacing effect and the use of



20 memory : learning and forgetting

multiple representational modes. The spacing effect refers to dis-
tributed learning over time rather than massed together within
a shorter period. Studies on spacing rehearsal (Bahrick et al.,
1993; Callan and Schweighofer, 2010) demonstrate that spacing
sessions over longer intervals tends to double long-term reten-
tion of information. Spacing the rehearsal of information provides
time for memory to consolidate some information before encod-
ing new information. Consolidation is a time-dependent process
occurring after encoding, presumably by structural and chemical
changes in trace memories. In this process a temporary, unstable
memory is transformed into a more stable, long-lasting form dur-
ing intervals (Squire et al., 2015). Experts emphasize on sleep’s
critical role in the consolidation process (Rasch and Born, 2013).

Encoding the information in multiple representational modes
such as words, images and sounds, increases the ability to retrieve
information from long-term memory (Paivio, 1991). For instance,
many people remember the passwords not only by memorising
the digits but also by forming a mental map of the buttons they
need to push and a motor control (procedural) representation of
the pattern of buttons to push that becomes automatic and is
expressed implicitly.

Important information needs to be organized based on mean-
ing or semantic codes to be gradually transferred into long-term
memory (e.g., learning the country’s names on the same conti-
nent) (Sousa, 2016). In this case, information is stored in networks
of association and each piece of information within the network
is called a node. Nodes may be thoughts, images, concepts or any
other piece of information. That one node may have connections
to many other nodes leads to networks of association. Activat-
ing one node in a network triggers activation in closely related
nodes. Memory research (Bradshaw and Anderson, 1982; Budiu
et al., 2009) has shown that, when people are provided with addi-
tional information that is highly semantically related to the con-
tent they are learning, they typically show better memorisation as
compared to the random content.

2.3 forgetting

Forgetting is the opposite of remembering. Forgetting is the
temporary or permanent failure to retrieve information already
stored in memory (Fleming, 2019). According to the Ebbinghaus’s
study (Ebbinghaus, 1964), forgetting follows a standard pattern
that occurs with many kinds of declarative knowledge. It hap-
pens with rapid initial loss of information after learning and only
gradual decline thereafter. As shown in Figure 10, increasing ini-
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tial study time (the dotted line) increases retention, but forgetting
occurs at the same rate.

Time
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Figure 10: (Adapted from (Burton et al., 2014)) Rate of forgetting.

Forgetting may occur in relation to both short- and long-
term memory. Forgetting from short-term memory is usually ex-
plained in terms of the information simply being lost due to its
limited-capacity (Murdock Jr, 1962) and limited-duration (Brown,
1958). But what about forgetting from long-term memory? Psy-
chologists often distinguish between the unavailability of infor-
mation in long-term memory or its inaccessibility (the ease with
which it can be retrieved) as forgetting. The tip-of-the-tongue phe-
nomenon is a good example of information that is available but
inaccessible. People sometimes experience this phenomenon in
which the person knows the information is ’in there’ but is not
quite able to retrieve it (Brown and McNeill, 1966). Another ex-
ample is that people learn seemingly forgotten information much
more rapidly the second time it is presented as compared to the
first time. In other words, relearning is faster than initial learn-
ing, since the information is still available in memory (Miend-
larzewska et al., 2018; Sadeh et al., 2014). But if the information is
available, why do people sometimes forget things entirely? Psy-
chologists have proposed several explanations, including decay,
retrieval failure and interference (Fleming, 2019; McLeod, 2007).

2.3.1 Decay theory

Decay theory explains forgetting as a result of a fading memory
trace over time. When new information is learned, it leaves a trace
in the brain. Under this theory, to retrieve a memory, a certain
pathway or trace needs to be followed to the place where it is
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stored. These traces fade with disuse over time (Brown, 1958; Pe-
terson and Peterson, 1959; Ricker et al., 2016). Disuse of informa-
tion leads to a gradual decrease in the strength of memory traces,
which will ultimately cause retrieval failure. Thus, even though
the information remains in memory, it is inaccessible.

2.3.2 Retrieval failure

Retrieval failure is caused by encoding failures and lack of re-
trieval cues. A common reason why we don’t remember informa-
tion is because a memory was never encoded and formed into
long-term memory in the first place (Coon and Mitterer, 2012;
Kirchhoff, 2009; Nickerson and Adams, 1979). Moreover, retrieval
fails due to the absence of memory cues (Eysenck, 2001; Tulving,
1974). In other words, the information is available, but since the
retrieval cues are not associated with that piece of information,
it is not accessible. More elaborately encoded memories can ef-
fectively improve memory, enhance retention of information and
help prevent retrieval failure (Jerabek and Standing, 1992).

2.3.3 Interference theory

One of the prime cause of memory failure is interference (Radvan-
sky et al., 2011), the intrusion of similar memories on each other
(Eysenck, 2001). For example, when people confuse typing with
two similar keyboard layouts (e.g., French and English). In this ex-
ample on the French layout, key A (i.e., stimulus) is in the location
of (1,1) (i.e., response), but on the English layout it locates in (2,1).
The theory states that the occurrence of interference is maximal
when two different responses have been associated with the same
stimuli. The interference is intermediate when the same stimu-
lus is associated with two similar responses, and minimal when
there are two different stimuli (Osgood, 1949; Underwood and
Postman, 1960). One explanation for this phenomenon is retrieval
competition (Dudai, 2004; Wixted, 2004). If a retrieval stimulus
elicits multiple memories, there will be a competition between a
new association to that stimulus with an older association to de-
termine which will be recalled (e.g., key A has been associated
with two locations). The new association prevents the older one
from being remembered.

There are two ways in which interference in long-term mem-
ory can cause forgetting. When new memories tend to impair
retrieval of existing memories, there is a retroactive interference,
and when old memories alters new memories, there is proactive
interference. I will discuss both proactive and retroactive interfer-
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ence in detail further on Chapter 4.

Decay and interference: similarities and differences
Both decay and interference may cause forgetting which is the
loss of stored (old) memories with the passage of time. Memory
traces fade over time in decay theory. In interference theory,
memories are lost when new memories are created.

Decay and interference theory differ in that interference occurs
when new information interfere with the ability to recall old in-
formation, however decay is caused by disuse over time. Decay
theory is a passive method of forgetting as no interference is pro-
duced. Interference theory is an active process because the act
of learning new information directly prevent the recollection of
previously learned information (Fleming, 2019).

2.4 conclusion

The focus of this thesis is the interference of previously learned
information with learning new information while alternating be-
tween interfaces. Although a detailed discussion of this topic
is left for later in Chapter 4, the present chapter provided an
overview of various phenomena related to memory process of
learning and forgetting from cognitive psychology literature. I be-
lieve that these topics are critical to our understanding of how
interference occurs in the memory when we alternate between
different interfaces.

Therefore, this chapter began with describing memory and out-
lined the model of information processing. The standard model
of memory is predicated on the metaphor of the mind as a com-
puter and distinguishes three memory systems: sensory memory,
short-term memory and long-term memory. Making a memory is
a multi-step process that includes encoding, storing, and retriev-
ing information in these memory systems. Encoding is the act of
getting information into the memory system processing (sensory
memory). Storage is retention of the information (long-term mem-
ory), and retrieval is the act of getting information out of storage
and into conscious awareness (short-term memory).

The major types of long-term memory were also identified
and thoroughly discussed in this chapter. Types of long-term
memory can be distinguished by the kind of knowledge stored
and the way this knowledge is retrieved. Two kinds of informa-
tion, declarative and procedural can be stored in the long-term
memory. Declarative memory refers to memory for facts and
events and is subdivided into semantic: general world knowledge
and episodic memory: memories of particular events. Procedu-



ral memory refers to ’how to’ knowledge of procedures or skills.
Moreover, it explained that Information can be retrieved either ex-
plicitly or implicitly. After introducing the varieties of long-term
memory, I discussed how information can be encoded and organ-
ised in long-term memory, such as the spacing of practice, elab-
oration practice, as well as encoding the information in multiple
representational modes.

Finally, I explored different types of forgetting. One possibility
in short-term memory is that memories simply decay in passage
of time. Forgetting occurs in long-term memory due to decay, re-
trieval failure, and interference. Interference is the main reason of
forgetting memory. The next chapter gives an overview of learn-
ing and skill acquisition.
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S K I L L A C Q U I S I T I O N

This chapter provides definitions, factors, theories and models re-
lated to the skill acquisition from cognitive psychology literature.
First discussed is the most widely accepted model of learning; the
three-stage model proposed by Fitts and Posner. Then, this chap-
ter explains the basic laws and fundamental principles of learning,
such as performance, power law of Practice and the asymptotic
nature of learning. At the end, it presents different interaction
techniques to improve user performance on text entry tasks. In
the next chapter, another fundamental principles of learning, the
transfer of skill, will be discussed.

3.1 definitions

In this section, I provide the definitions related to the skill acqui-
sition.

3.1.1 Skill

A skill, such as typing, playing the piano, or driving, is a learned
and goal-directed activity that entails a broad range of human be-
haviors (Edwards, 2010). Everyone has learned a new skill. Learn-
ing (as discussed in Chapter 2) is the process by which people
acquire the capacity to perform a new skill. Generally, learning
a skill requires practice. With enough practice, task performance
improves, and may become automatic, with little or no need of
attention. Touch-typing is an example of a highly practiced skill.

3.1.1.1 Skill domains

A skill domain is a classification system for similar skills based
on the essential capacities for successfully accomplishing them. A
skill belongs to one of three domains: cognitive, perceptual, or
motor. In a cognitive skill, successfully accomplishing the skill is
primarily determined by person’s knowledge and cognitive abili-
ties ( e.g., reading, writing, memorizing a list of words and com-
puter programming). Perceptual skill is the ability to recognize im-
portant information among sensory stimuli in the environment
(e.g., adjusting the color on a monitor set and sorting things by
size). Motor skill is movement through muscular contributions

25
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(e.g., typing and playing football) but are not performed in iso-
lation from perceptual and cognitive skills. Where cognitive skills
emphasize knowing what to do, and perceptual skills getting the
information to do it, motor skills are concerned with doing it cor-
rectly (Edwards, 2010).

3.1.1.2 Skill components

There are three components influencing the performance of motor
skills (Figure 11). According to the Newell’s Model (Newell, 1986),
these components include the person performing the skill (who),
the task that is performed (what), and the environment in which
the skill is performed (where). All components must be taken into
account for the fullest understanding of skill.

Each individual person brings a unique composition of struc-
tural and functional characteristics: structural such as height,
weight, and body type, and functional characteristics including
cognitive, motivational, emotional, and other psychological at-
tributes. In addition, factors such as previous experiences (i.e.,
novice (Dix et al., 2003; Nielsen, 1994) or expert (Butler, 1985)) are
included in this component. These features play a significant role
in performance of skill.

The second component influencing skill performance is the en-
vironment in which a person executes the skill. Skills may be
performed within environments that are predictable or unpre-
dictable, similar or dissimilar to practice conditions, recreational
or competitive. For example, one can practice typing with a QW-
ERTY keyboard layout, but at workplace there exists only DVO-
RAK keyboard layout. Skills may also be performed alone or in
the presence of others. Physical conditions of the performance
context may also influence performance characteristics. Lighting
conditions, temperature and humidity significantly alter the per-
formance of many skills.

The nature of the task is the third influential component that
includes: the goal of the task, the rules, and the tools used in
performing the task. For example, considering typing as a task,
the goal is to write down the words, with minimum error (rule)
and using a keyboard layout (tool).

3.1.2 Skill acquisition

Skill acquisition is described as the internal processes that
bring relatively permanent changes in the learner’s capabilities
(Schmidt and Wrisberg, 2008). For example, a skill such as rid-
ing a bicycle requires a good deal of practice for the learner to
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Person
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Figure 11: Three components influencing skill performance.

perform it successfully. In order to acquire a skill, learner needs
to interact effectively with the environment, detect important in-
formation and time to response appropriately. It should result in
coordination patterns that are adaptable to a range of varying per-
formance characteristics. Adaptive behavior is important because
conditions like the environment, task requirements, and motiva-
tions can change the skill performance (Davids et al., 2006). One
way researchers have tried to understand skill acquisition is by
examining performance changes over time (Davids et al., 2008).

3.1.3 Performance

Performance (Edwards, 2010) is qualitative or quantitative assess-
ment of what can be observed during the execution of a skill at a
specific time and in a specific location or situation. Performance
could have a wide range of definitions, such as completion times,
error rates, or percentage of functionality understood (Grossman
et al., 2009). In this thesis, I consider performance as selection
times.

3.1.4 ART measures

There are three measurements of performance that generally are
assessed to accurately determine the degree of learning (Edwards,
2010). These measures contribute to our understanding of the
learning process:

Acquisition measurements refer to the direct measurement
of performance observed over time. It determines the rate of
learning. A series of acquisition measures may be graphed
to illustrate changes in performance over the course of prac-
tice and is referred to as a performance curve.

Retention tests refer to performance measurements con-
ducted subsequent to acquisition observations. They pro-
vide sufficient time to allow any effects of performance vari-
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ables to dissipate. Retention refers to the persistence of orig-
inal learning over a period of no practice.

Transfer tests measures how effectively a person can trans-
fer the learning of a skill from one condition to another.
(Transfer of skill will be discussed in greater detail in Chap-
ter 4)

ART measures is an acronym for these three types of measure-
ments.

3.1.5 Intramodal improvement

Intramodal improvement (Cockburn et al., 2014) refers to the mag-
nitude of skill performance improvement through practice with a
certain method and task. As illustrated in Figure 14, improvement
in performance continues as long as practice continues, but the
amount of improvement gradually and predictably diminishes
over time.

3.2 theories

When learning skills, there are distinct behavioral stages that
learners experience. These stages may be experienced at differ-
ent rates, but passage through each stage seems essential for the
learners. Several theories1 and models have been proposed for
identifying these stages (Adams, 1971; Anderson, 1982; Cockburn
et al., 2014; Fitts and Posner, 1967; Gentile, 1987; Newell and Van
Emmerik, 1989; Rasmussen, 1986; Vereijken et al., 1992).

Figure 12: Theory of learning in the three stages. Adapted from (Kim
et al., 2013).

1A scientific theory is a statement or set of statements that relates a large
number of observations into a logical and testable framework (Edwards, 2010)
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3.2.1 Fitts three-stage model

In 1967, two psychologists, Paul Fitts and Michael Posner, pro-
posed a three-stage model of motor skill learning that became
the most widely accepted and used in fields concerned with the
learning and motor skills. Based on observations that different
cognitive, perceptual, and motor abilities are involved at differ-
ent points in the learning process, they proposed three learning
stages: cognitive, associative and autonomous (Fitts and Posner,
1967). The model represents a cognitive theoretical approach to
classifying learning stages, with the progression from declarative
to procedural memory to explain changes in behaviors in each
stage. As shown in Figure 12, it is based on acquiring declara-
tive and procedural knowledge at first stage, consolidating the
acquired knowledge at the second stage, and finally with suffi-
cient practice, converts the acquired knowledge into procedural
at the third stage (Kim et al., 2013).

Associative stage

Autonomous  
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Cognitive stagelow
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Figure 13: Fitts and Posner’s model of skill acquisition (Fitts and Posner,
1967) as a function of the cognitive demands placed on the
learner and his level of experience.

3.2.1.1 Cognitive stage

The cognitive stage is the initial stage of skill acquisition. dur-
ing this stage users are learning and understanding what to do.
The learners have to be intellectually aware of the task in the con-
text of understanding task instructions, general conceptualization
with task goals, developing strategies for task accomplishment
and determining how a task should be evaluated. These efforts re-
quire a high degree of cognitive activity including attention. The
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cognitive stage is also characterized by frequent errors, awkward-
ness, and some disorientation. Thus, learners require continuous
feedback or information on their progress.

Once the learners have acquired the basic procedures, they pro-
ceed to the associative stage of skill acquisition. To go beyond this
stage, the learners need to experiment with a variety of strategies,
abandoning those that do not work and developing consistent
strategies. Thus, the improvements in performance are quite large
in this stage, as a result of selecting the most effective strategy for
the task.

3.2.1.2 Associative stage

After the cognitive stage, learners enter the associative stage and
begin to develop associations between specific stimuli and suit-
able action responses. During this stage users are learning how
to do the task. By this time, the learners have selected the best
strategy for the task to refine the skill and make performance
quicker and less error-prone.

This stage is the largest and longest stage and may last for days
and months, depending on the intensity of practice. Performance
improvement occurs more slowly, as the learners focus more on
refining a particular pattern rather than selecting among alterna-
tive strategies (Schmidt and Lee, 1988).

3.2.1.3 Autonomous stage

When learners can perform consistently, often with little or no
attentional effort, they are said to have reached the autonomous
stage. During this stage cognitive processes are low or automatic.
The main characteristics of the autonomous stage are the opposite
of the consciously controlled cognitive stage. Performance at this
stage of skill acquisition is very quick and very accurate (Acker-
man, 1992). In this stage, the learners can devote their attentions
to the other aspects of the skill or focus on a secondary task. Most
learners move from stage to stage as they learn skills. However,
some might not move on to the last stage, due to the training
demands, the complexity of the task or a lack of motivation.

3.2.2 Other theories

Other theories influenced by Fitts and Posner, such as theory of
cognitive skill acquisition (ACT-R) by Anderson (Anderson, 1982)
comprises three stages: declarative, transitional and procedural.
Rasmussen (Rasmussen, 1986) proposed learning stages as knowl-
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Figure 14: Adapted from (Cockburn et al., 2014). Conceptual model of
intramodal power law of learning performance over time for
one one particular interface. (a1) initial performance, (a2) ex-
tended learnability, (a3) ultimate performance

edge based, rule-based and skill-based. VanLehn (VanLehn, 1996)
also described three stages of skill learning: early, intermediate
and late. Cockburn (Cockburn et al., 2014) subdivided intramodel
improvement into three stages (Figure 14) as initial performance
(i.e., initial performance with the task), extended learnability (i.e.,
change in performance over time), and ultimate performance (i.e.,
maximum level of performance) which are suggestive of Fitts’s
model. Therefor, initial skill is processed through cognitive stage,
followed by forming the conceptual associations, that result in
the autonomous skills development. In overall, it appears that (1)
All of these theories have three stages and they (2) share a high
degree of similarity.

3.3 factors

This section discusses a number of factors responsible for the de-
velopment of skills.

3.3.1 practice

Practice is the single most critical factor in the learning of skills.
Although almost any practice improves the performance of skills,
the way in which it is organized plays an important role in the sta-
bility and amount of learning that results. For example, interskill
practice can promote better practice performance levels. Interskill
practice is the scheduling of different skills within a practice ses-
sion. Interskill practice can be arranged into two ways: blocked
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practice (i.e., the same skill is rehearsed in repetitive way) and ran-
dom practice (i.e., different skills are rehearsed in an unpredictable
order) (Edwards, 2010). For example, if three skills labeled A, B,
and C are presented during a practice period, a blocked practice
is as follow: AAA. . . BBB. . . CCC. . . . In random practice, the same
number of practice trials for each skill may be completed, but the
trials are presented in random order: BCACBBACBCAA. . . . In
scheduling interskill practice sessions, blocked practice promotes
better practice performance levels, although random practice of-
ten results in superior levels of learning.

3.3.2 Distribution of practice

After deciding the ordering of skills in a practice, the next im-
portant factor to be considered is the distribution or spacing of
practice (Carpenter et al., 2012; Cepeda et al., 2006). The balanc-
ing of periods of rest and work within a practice session can influ-
ence the learning of skills. Rest periods between sessions improve
performance, and longer rest periods being more beneficial than
short ones. Distribution of practice is specified as being either
massed or distributed. distributed practice involves longer periods
of rest and shorter periods of work, and massed practice involves
less time in rest and longer periods work. This distribution can
apply across several practice sessions or within a single session.
Research (Cepeda et al., 2006) shows that distributed practice has
far more impact on performance than massed practice.

3.3.3 Deliberate practice

In addition to the amount and distribution of practice, the quality
of that practice is critical to skill learning (Ericsson et al., 1993,
2006). Deliberate practice is a effortful, highly structured and
organized form of practice. It generates no immediate rewards,
and is motivated by the goal of performance improvement rather
than enjoyment. Consequently, when engaging in sufficient delib-
erate practice, learners attain expertise in a skill (Anders Ericsson,
2008).

Deliberate practicing can distinguish an expert from somebody
who is highly skilled in everyday activities. The goal for every-
day activities is to quickly reach an acceptable level of mastery
that is stable and autonomous and then executed with a minimal
amount of effort (see Figure 15). In contrast, the expert perfor-
mance continues to improve as a function of deliberate practice.
Expert performers remain within the cognitive/associative stages
to attain higher levels of control of their performance, thus coun-
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teract automaticity. At some point, the experts stop engaging in
deliberate practice and focus only on maintaining their perfor-
mance, which results in premature automation (arrested develop-
ment) (Starkes and Ericsson, 2003).
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Figure 15: An illustration of the difference between the improvement of
expert performance and everyday activities. Adapted from
(Ericsson, 1998).

3.3.4 Decay

The next important factor relates to the learning of skill is decay
(discussed in Chapter 2). As the time between instances of expo-
sure increases, the memory starts to decay and performance gets
worse.

3.4 models

In this section, I discuss the computational models related to the
main factors of skill acquisitions such as practice (i.e., number of
repetition), spacing effect and decay (i.e., time since last presenta-
tion).

3.4.1 Power law of practice

Improvement in performance continues as long as practice con-
tinues, but the rate at which it occurs gradually and predictably
diminishes over time. It can be expressed mathematically as a
power function and in the form of learning curves. Accordingly,
intramodal improvement is well characterized by the equation of
the "power law of practice (plp)". The law of practice is one of
the most ubiquitous and highly reliable laws in learning theory
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(Anderson, 1982; Newell and Rosenbloom, 1981; Roessingh and
Hilburn, 2000).

TX = a.X-b + c (1)

where TX is task completion time, that allows us to estimate
temporal performance of a task in the future practice (Wob-
brock, 2007).

X is the amount of practice time.
a is the amount to be learned
b is the learning rate (i.e. the curve steepness).
c is the asymptotic selection time (Figure 14a3).

A main conclusion of this law is that as long as practice contin-
ues, learning never really stops which is known as the monotonic
benefits assumption. Furthermore, the law of practice expresses that
there exists some upper limit to learning that is progressively ap-
proached with practice but that is never reached and is called an
asymptotic nature of learning.

3.4.2 Predictive performance equation

Predictive performance equation (ppe) (Walsh et al., 2018) is a
computational model of learning and retention that makes per-
formance predictions at the user level based on (1) prior perfor-
mance and (2) the learning schedule of a user. It attempts to ac-
count for three factors of learning: amount of practice, decay, and
distributed practice.

ppe is composed of five equations. In PPE, the effects of practice
and temporal decay on activation M of item n are multiplicative
(Equation 2). Practice as the first factor is used in the equation
of power law of practice (Equation 2, Tx). In plp, as stated above
(Section 3.4.1), performance improves with increasing the number
of exposures to a task (X). The second factor is the power law of
decay (Equation 2, T-d):

Mn = TX ⇤ T-d (TX = a.Xb + c) (2)

X is the number of practice repetitions, T is temporal decay in
seconds, a is the amount to be learned, b is the learning rate, c is
the asymptotic selection time and d is the decay rate.

In PPE, temporal decay is calculated as the weighted sum of
the time since each of the previous practice events(Equation 3):

Tn =
n-1X

i=1

wi.ti (3)
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The weight assigned to each event decreases with time (Equa-
tion 4):

wi = t-x
i

n-1X

j=1

1

t-x
j

(4)

where the variable x controls the steepness of weighting, wherein
higher values result in larger weights for the more recent practice
events.

The third factor is temporal distribution of practice over time or
spacing effect, which is represented within the decay parameter,
d (Equation 5).

dn = f+m.

0

@ 1

n- 1

n-1X

j=1

1

ln
�
lagj + e

�

1

A (5)

Spacing used two parameters f (decay intercept parameter),
and m (decay slope parameter), and also cumulative average
lag time between trail. As practice sessions occur together (i.e.,
massed), the decay increases. As practice becomes distributed
(i.e., spaced), the decay decreases. Finally, activation (Mn) is
placed within a logistic function and adjusted according to a
threshold parameter (Equation 6).

Performancen =
1

1+ exp⌧-Mn
s

(6)

where the parameters ⌧ and s control the slope and intercept of
the logistic function. Small value of s increase sensitivity of per-
formance to changes in activation. Small or negative values of ⌧,
in turn, increase the overall level of performance

ppe model assumes that performance follows a continuous per-
formance curve which derive from evaluation aggregate learn-
ing curves which is not inline with skill acquisition literature.
It shows that users have gone through discrete learning phases.
Thus, Collins et al. (Collins et al., 2020) proposed TAPPED model
to refine previous ppe model.

3.5 interaction

In the previous sections, I discussed the foundations of skill ac-
quisition in cognitive science. In this section I discuss how these
finding are used in HCI and more precisely in text entry.
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3.5.1 Use-case: text input

I focus on text input as it is one of the most common task in HCI
with several contributions in term of interaction techniques (Kris-
tensson and Zhai, 2007; Shi et al., 2018; Zhai and Kristensson,
2003), empirical studies (Clarkson et al., 2005; MacKenzie and
Zhang, 2001), models of performance (Jokinen et al., 2017; Kieras
and Bovair, 1986a) as well as optimization methods (Bi and Zhai,
2016; Bi et al., 2010; Dunlop and Levine, 2012). Text input includ-
ing writing emails and messages, writing articles, filling forms,
typing commands, and coding, is used in everyday tasks through
textual interfaces. An efficient textual interface should be learned
with a low initial learnability and sufficient amount of practice.
Therefore, an average user should be able to type with a suffi-
cient speed without many errors (Zhai et al., 2005).

There are various layouts such as QWERTY layout for English,
AZERTY layout for French, QWERTZ layout for German. Such
layouts can be used with different keyboards such as physical
and virtual keyboard.

Physical keyboard are available in different sizes: desktop-size,
laptop-size or thumb-sized2. Virtual keyboards are on-screen key-
board with active graphical keys that allows to input the charac-
ters mostly via a touchscreen interface.

In addition, Dvorak is an optimized layout designed to be eas-
ier to learn, more accurate, faster, and less fatiguing than the Qw-
erty (MacKenzie and Tanaka-Ishii, 2010). Based on a study where
participants already learned the QWERTY layout (Lessley, 1978),
participants were about 17% faster with the DVORAK layout.

In the rest of this thesis, the term method refers to the keyboard
layouts and interaction techniques to input text. Keyboard layout
refers to both the arrangement of the keys (i.e. position and size)
as well as the mapping between keys and characters. Interaction
techniques refer to the interaction sequence to select characters.

In the next section, I will discus different interaction techniques
for text input that have been proposed to improve skill acquisition
in different stages of learning.

3.5.2 Interaction technique

At the first stage of learning, when users encounter a new inter-
face, for example a new keyboard layout, they search visually and
rely on their prior experiences to find the new key locations. Two

2Thumb-sized keyboard is a small external keyboards used for devices
without a built-in keyboard, such as PDAs, and smartphones
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user studies (MacKenzie and Zhang, 1999; Smith and Zhai, 2001)
indicate that the initial typing speed is moderate (around 10–15
words per minute) for novice users when the layout is new or un-
familiar to them. MacKenzie and Zhang (MacKenzie and Zhang,
1999) compared their new design opti (MacKenzie and Zhang,
1999) with a QWERTY layout in a 20 sessions of text entry. Aver-
age entry rates for opti layout was weak at first, 17.0 wpm and
increased to 44.3 wpm at session 20. The average entry rates for
participants having prior experience with qwerty were 28 wpm
initially (Figure 16).
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Figure 16: Adapted from (MacKenzie and Zhang, 1999). Left, The opti
soft keyboard layout, in which 10 most frequent letters were
placed in the center of the keyboard. The 10 most frequent di-
graphs were assigned to the top 10 keys, then the remaining
letters were placed. Right, Entry speed by keyboard layout
and session.

To reduce the impact of visual search on the performance of
novice users, Smith and Zhai (Smith and Zhai, 2001) introduced
an alphabetical ordering layout. They conducted a study to test
whether alphabetical ordering could offer the advantage in the
initial stage of learning a new layout. Results show that partic-
ipants’ average speed was 9% faster with a new alphabetically
tuned keyboard.

With this layout, users with no prior experience could reduce
their visual search time. Because the area that a letter is located,
can be easily anticipated comparing to the location of the other
letters. Particularly in the case that letters are at the beginning or
the end of the alphabet, novice users type faster, see Figure 17.
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Figure 17: Adapted from (Smith and Zhai, 2001). Left, an alphabetical
ordering keyboard layout. Right, participants’ typing speed,
with and without alphabetical order.

After first stage (i.e., initial learning) and during training, prac-
tice and effort, as well as interfaces’ feedback, allow users to attain
a maximal level of performance (Nielsen, 1994). The required time
to reach a specified level of proficiency in initial stage of learning
can be easily measured, as only the users with no prior experi-
ence with that method are needed. However, it is not obvious
when the first stage stops and the next stage starts. Moreover, the
measurement of second stage can last over a long period of time
(months to years) to accurately evaluate the next stages (Nielsen,
1994).

At the third stage (i.e., ultimate performance), users reach an
asymptote, which is a high level of expertise given a certain
method (e.g., a keyboard layout) and task (e.g., text input). This
stage indicates the potential benefits of a method after enough
practice. For instance, the dvorak keyboard has shown highest
ultimate performance to qwerty by 4-5% (Buzing, 2003; West et
al., 1998).

However, ultimate performance does not inform how quickly
users learn the method. According to Cooper’s study (Cooper,
1983), typists need more than 100 hours of practice on Dvorak
keyboard to surpass their old QWERTY performance. Therefor,
the process of assessing ultimate performance of a new keyboard
can be costly, especially if many participants are employed (Zhai
et al., 2005).

The learning curve has been observed in many text editing tech-
niques (Card, 1983; Kristensson and Zhai, 2007; MacKenzie and
Zhang, 1999; Oney et al., 2013; Shi et al., 2018; Zhai and Kristens-
son, 2003; Zhai et al., 2002; Zhu et al., 2018). For instance, Shi et
al. compared the method GestAKey (Shi et al., 2018) with two
regular methods (hotkey and long press) and show that users
reach ultimate performance faster with the GestAKey. MacKen-
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zie et al (MacKenzie and Zhang, 1999) used the plp model to
predict the upper-bound text entry rate for soft keyboards, and
then designed a new keyboard layout "OPTI" with a predicted
upper-bound entry rate of 35% faster than the predicted rate for
a QWERTY layout.

plp also has been used to predict the novice users’ learning
rate (i.e. words per minute rates) on the Twiddler, a mobile
one–handed chording keyboard (Lyons et al., 2004). Isokoski et al.
(Isokoski and MacKenzie, 2003) combined the plp and theoretical
upper limit predictions to describe the development of text entry
rates from users’ first contact to asymptotic expert usage. Their
proposed combined model makes comparing text entry methods
easier.

3.6 conclusion

In the first part of this chapter, I gave an overview about skill ac-
quisition on psychology and cognitive sciences. I described that
when people learn new skills, they exhibit similar behavioral char-
acteristics that can be identified with distinct stages of learning.
The most widely accepted and used model of learning proposed
by Fitts consists of three stages: cognitive stage, associative stage
and autonomous stage. Then, I described the power law of prac-
tice to state that as practice continues, the time required to per-
form certain tasks will subsequently reduce. Finally, I discussed
different interaction techniques designed to facilitate skill acqui-
sition and improve user’s performance while performing text en-
tries’ tasks. In the next chapter, I will explain the transfer of skill
from one task to another, and its consequences.





4
T R A N S F E R O F S K I L L

The study of transfer is the study of how the acquired skill in one
situation applies, or fails to apply, in other situations (Singley and
Anderson, 1989). The main purpose of any learning or skill acqui-
sition is that the persons who acquire some knowledge or skill
in a formal and controlled situation like a training situation, will
be able to transfer such knowledge and skill to real life situations
and adapt themselves more effectively.

This chapter provides definitions, factors, theories and models
related to the transfer of skills from cognitive psychology litera-
ture. It begins with an overview on positive, negative, proactive
and retroactive transfer of skills. Then it discusses the theories
trying to explain the transfer between two skills. Under the Iden-
tical Elements theory, the degree to which two skills are similar
determines the efficacy of transfer. In the next chapters, I investi-
gate retroactive transfer phenomena through different qualitative
and quantitative analysis.

4.1 definitions

4.1.1 Transfer

Transfer refers to the influence of learning one skill on the per-
formance of another skill (Gick and Holyoak, 1987). For example,
learning mathematics prepares students to learn physics, learning
to play rollerblading may prepare one for better ice skating, and
experience typing with a English keyboard layout qwerty may
help a person later to learn more quickly to type with a French
keyboard layout azerty. Transfer is a key concept in learning the-
ory, which generally aims to convey skills (Mayer, 2002; Perkins,
Salomon, et al., 1992). The ultimate goal of transfer has been to
improve users’ performance by applying the acquired skills in
similar contexts with shared elements and features, and to ex-
tend that learning to the new skills (Hendrickson and Schroeder,
1941).

In addition to transfer from one skill to another skill, transfer
can occur from one context to another context (Perkins, Salomon,
et al., 1992). In this case, transfer is beyond the original ordinary
learning, and called desired transfer (Hajian, 2019). For example,
airline pilots spend many hours training in flight simulators us-

41
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ing a virtual reality (VR) environment to experience a range of
scenarios in complete safety. A user may have very good perfor-
mance with VR flight simulators (ordinary learning) but not as
a pilot in a real flight (the desired transfer1). Accordingly, in this
situation, the learning process cannot be completed unless the
transfer of skill from VR to physical environment occurs.

Transfer has attracted researchers’ attention in various fields
(e.g., psychology, neuropsychology, computer science, motor con-
trol, etc. ) and many studies have been conducted in different
domains, such as education (Bransford et al., 2000; Soini, 1999),
linguistics (Jiang and Kuehn, 2001; Odlin, 1989), VR (Boyle and
Lee, 2010; Lehmann et al., 2005), and interactive system (Jokinen
et al., 2017; Ramesh et al., 2011a). In overall, transfer of skill can
be classified into two types: positive and negative.

4.1.2 Positive transfer (or Facilitation)

When experience of one skill enhances the level of performance in
a new skill, transfer is said to be positive. Thus, in positive transfer
or facilitation some part of the learned skill has a beneficial effect
on the performance of other skills. The degree of positive transfer
could be strong or minimal, but as long as some improvements
are observed in the new skill, it is considered as a positive transfer
(Edwards, 2010). For example, learning a second language that is
closely related to the first language is considered easier than learn-
ing a non-related language. This example also can be applied to
the learning programming languages. Learning second (and sub-
sequent) programming languages is easier than learning a first
programming language because many concepts and constructs
are shared (Scholtz and Wiedenbeck, 1990b).

4.1.3 Negative transfer (or Interference)

When learning one skill negatively influences the learning of an-
other skill or of the same skill in a new context, we say that neg-
ative transfer or interference occurs. For example, there is negative
transfer from tennis to badminton. Although the two skills seem
similar and we might expect positive transfer, learning one of
these skills typically reduces the learning of the other. Interfer-
ence causes a disturbance and interruption typically in the ini-
tial stages of learning a new task (Perkins, Salomon, et al., 1992).
However, through practice and experience over later stages of

1It also called target context; the environmental situation in which a person
wishes to perform a particular skill as a result of practice (Edwards, 2010).
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learning, the impacts of interference can be reduced and even
eliminated.

Whether transfer is negative or positive, we distinguish either
proactive or retroactive transfer.

4.1.4 Proactive transfer

Proactive transfer (Schmidt and Lee, 1988) refers to the gain or
loss of performance with the New method N as a result of prac-
tice with the Previous method P on a given task (Figure 18b). Neg-
ative proactive transfer is also called as anterograde interference
for visuomotor learning (Krakauer, 2009; Krakauer et al., 2005,
2006; Wigmore et al., 2002). In this case we say that practicing P
interferes with the learning of N2.

4.1.5 Retroactive transfer

In contrast to proactive transfer, retroactive transfer is the influ-
ence of the new skill on the acquisition of a previously learned skill
(Bunch, 1946; Postman, 1971). Negative retroactive transfer occurs
when the skill learned later disrupts retrieval of the skill learned
earlier. Negative retroactive transfer is also known as retroactive
interference (Edwards, 2010; Schmidt and Lee, 1988), retroactive
inhibition (Briggs, 1954; Bunch, 1946; Johnson, 1933; Muller and
Pilzecker, 1900), after-effects (Bastian, 2008; Malone et al., 2011),
retrograde interference (Krakauer, 2009; Krakauer et al., 2006;
Wigmore et al., 2002), catastrophic interference (Robins, 1995) or
catastrophic forgetting (French, 1999; Goodfellow et al., 2013).

Retroactive transfer has been investigated in contexts includ-
ing free recall (Briggs, 1954; McGeoch and Irion, 1952), visual
perception (Mareschal et al., 2002), language acquisition (Pallier
et al., 2003), machine learning (Coop et al., 2013), motor learn-
ing of discrete (Koedijker et al., 2010) or continuous movements
(Brashers-Krug et al., 1995; Healy et al., 2011), visuomotor learn-
ing (Krakauer et al., 2005), advertisement (Burke and Srull, 1988)
and games (Gray and Berry, 2018b).

4.1.6 Related concepts

I distinguish three concepts related to retroactive transfer which
are more often studied in HCI.

2Zero transfer is also possible when the practice of P has no effect on the
use of N (Edwards, 2010)
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Figure 18: Conceptual model illustrating the alternation between a pre-
vious method (P) in blue and a new method (N) in orange
color, as well as the corresponding phenomena: (a1) Ulti-
mate performance, (a2) Intramodal improvement, (b) Proac-
tive transfer, (c) Retroactive transfer (first alternation) and
(d) Retroactive transfer (second alternation). Temporal perfor-
mance drop (tpd ) indicates the temporal difference between
the end of one method and the beginning of another method.
Rest time (rt) shows the interval time between learning of
two methods.

4.1.6.1 Task switching

People frequently perform multiple tasks in the same time period,
called multi-tasking, task switching or task interleaving. There
are two problems associated with task switching: the amount of
time it takes and the mental complexity of remembering how to
invoke the other task and of trying to get into previous mental
context, such as working on a project, then switching to email
before returning to the project (Card and Henderson Jr, 1986).

Task switching is well studied in HCI (Czerwinski et al., 2004;
González and Mark, 2004; Iqbal and Horvitz, 2007; Warr et al.,
2016) but differs from retroactive interference in that it refers to
a temporary distraction (e.g. a notification when writing a docu-
ment) rather than a learned skill. Moreover, the tasks are categori-
cally different, though the same interface is usually used for both.
In retroactive transfer the tasks can be the same, or differ little,
and the interface change is the source of the confusion.

4.1.6.2 Deskilling

Deskilling refers to manual skill degradation through the use of
automation. Deskilling is a familiar theme in the psychology and
sociology of work going back to the first industrial revolution.
It is often a consequence of technological advancements and or-
ganizational change. Through the process of deskilling, skilled
workers are eliminated by the introduction of technologies oper-
ated by semiskilled or unskilled workers. However this results in
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cost savings due to lower investment in human capital, the work-
ers can lose their psychomotor and cognitive skills (Carroll, 2003;
Christoffersen et al., 1996). For example loosing of the manual
driving skills when operating advanced automated vehicles is a
byproduct of vehicle automation (Trösterer et al., 2016). In addi-
tion to vehicle automation, deskilling can occur for the pilots on
highly automated flight. They are needed to take over from the
automation in cases of failure or undesired system behavior. One
problem with this task allocation is that, over time, continued and
extensive use of automation can lead to overreliance on technolog-
ical assistance and the loss of cognitive skills required for manual
flight. Thus, in those circumstances when pilots need to manually
control the airplane, they may struggle, especially since they are
now required to manually control a system that is not functioning
properly (Sarter et al., 1997). Deskilling can also lead to a "vicious
cycle" of performance degradation (Parasuraman and Riley, 1997)
when pilots realize of their deskilling, it leads to even heavier
reliance on automation (Ferris et al., 2010). Unlike deskilling, in
retroactive interference both tasks are manually controlled.

4.1.6.3 Tetlag

Tetlag (Gray and Berry, 2018a; Gray and Berry, 2018b) has been
inspired by the Tetris game community, and refers to the brief
period of confusion when switching between different versions
of the popular game with different rotation rules and other be-
haviors. Some gamers regularly alternate Tetris versions (i.e., be-
tween normal version of Tetris and the upside down version of
the game), just as some users regularly alternate computer oper-
ating systems, e.g. Mac and Windows, resulting in a brief adjust-
ment period. Tetlag seems like task switching but studies of task
switching look at switch costs over the course of 100 to 800 of
milliseconds (Altmann and Gray, 2008), but switch costs in Tet-
Lag are measured in minutes, hours, and days. A key difference
of Tetlag from retroactive interference is that the two interfaces in
Tetlag are both very well-learned and their alternation is a common
occurrence.

4.1.7 Transfer measurement

The amount of transfer is measured by the methods illustrated in
Table 2. In this design, two groups of participants matched on age,
education, intelligence and prior learning and also background
are selected. One of them is designated as an experimental group
and the other as the control group and they are compared on
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the transfer criterion. For measuring proactive transfer, the ex-
perimental group practices one skill (Task A), and then a second
skill is practiced (Task B). The control group practices only Task
B. Through this test, we aim to understand whether practice of
Task A will have an influence on the experimental group’s perfor-
mance when practicing Task B. For example any inferiority in the
performance of the experimental group could be attributed to the
negative effect of transfer from learning task A.

By conducting a retroactive transfer test, we aim at understand-
ing whether a skill practiced on task B after the skill of task A will
influence subsequent performance of task A. For example, if the
participants of experimental group have more errors than the con-
trol group that only perform task A, then retroactive interference
has happened (Coon and Mitterer, 2012).

4.2 theories

One challenge is to predict whether transfer would be positive
or negative from one task to another (Kieras and Bovair, 1986b;
Osgood, 1949; Royer, 1979; Taatgen, 2013). Explanations of why
transfer occurs (or fails to occur) were typically based on the
theory of Identical Elements and expressed in form of stimulus-
response (s-r) language of interference theory. The interference
theory research uncovered important phenomena about transfer
(primarily negative transfer) and forgetting (primarily retroactive
interference).

4.2.1 Identical Elements theory

Thorndike and Woodworth propose the Identical Elements the-
ory in 1901 (Woodworth and Thorndike, 1901). They suggested
that transfer from one task to another would only occur when

Proactive interference

Experimental group Learn A Learn B Retention test B
Control group Learn B Retention test B

Retroactive interference

Experimental group Learn A Learn B Retention test A
Control group Learn A Rest Retention test A

Table 2: Testing methods for proactive and retroactive interference.
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Figure 19: Osgood’s transfer surface.

both tasks shared identical elements. For example, the only reason
why it is easier to learn French after Latin, is that many words
in Latin are similar in French (Taatgen, 2013). Further, they pro-
posed that the greater the number of shared elements, the greater
the amount of transfer. What they meant by the term "elements"
was shared features of the stimulus of the two tasks. Thus, two
tasks which share some set of stimulus features are possible can-
didates for transfer (Royer, 1979).

Theory of Identical Elements by Thorndike and Woodworth
has influenced many of the subsequent theories of transfer. For
example, Osgood (1949) (Osgood, 1949), formalized what was
known about transfer at the time in his influential research on
"the transfer and retroaction surface", Figure 19. He indicated that
facilitation and interference in transfer were related to the similar-
ity and difference relationships between stimuli and responses
in a previous and new task. Osgood (Osgood, 1949) showed
how the amount of transfer is influenced by similarity during
paired-associate list3 learning. Paired-associate learning involves
the pairing of two items: a stimulus and a response. For example
in the qwerty keyboard layout, a character (i.e., stimulus) like
Z and its key location (i.e., response) like (2,0) on the keyboard

3Paired-associate learning is a classic memory paradigm that is used to
understand how people encode and retrieve newly formed associations among
stimuli. In a typical study using paired-associate learning, people are asked to
learn unrelated word pairs (e.g., stove–letter). At a later time, memory for those
pairs is typically tested by having them recall one of the words in response to
the word it was paired with during encoding (e.g., recall the word that was
paired with "stove")(Arndt, 2012)
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are paired, and when the learner is prompted with the stimulus,
she responses with pressing the appropriate key’s location, Z(2,0).
The mentioned surface draws the amount of transfer as a function
of the amount of similarity between stimulus and response:

At = f(Sr,Ss) (7)

where A is the amount of transfer, Ss is the amount of similar-
ity between stimuli and Sr is the amount of similarity between
responses. A can be positive (positive transfer) or negative (neg-
ative transfer). Positive transfer reflects savings in learning new
task and negative transfer reflects interference. According to the
transfer surface, interference increases when the stimuli in both
layouts are identical, but the responses are different (Dey, 1969),
(e.g., similar keys Z in both layouts P and N), but different loca-
tions (i.e., Z(2, 0) in layout P and Z(0, 1) in layout N).

Likewise, Ellis’(1965) (Ellis, 1965) followed the essential details
of the theory of Identical Elements and simply updates the gen-
eralization contained in Osgood’s study. He argued that transfer
is maximized when a variety of similar learned stimuli are em-
ployed in new task. Thus, stimulus generalization occurs when
a response learned in the presence of a particular stimulus is
also elicited in the presence of a similar stimulus (Royer, 1979).
Theory of Identical Elements, and the subsequent elaborations of
that theory, describes the boundary conditions of most situations.
However, this theory still lacked precision on what exactly is an
element, and when are two elements truly identical? Such a lack
of definition has made the theory difficult to test and interpret.
Singley and Anderson (1989) proposed a modern version of the
theory to clarify these lack of precision (Singley and Anderson,
1989; Taatgen, 2013).

4.2.2 ACT theory of transfer

Singley and Anderson (Singley and Anderson, 1989) restore the
Identical Elements’ theory of Thorndike from the perspective of
cognitive psychology. Making use of knowledge-representation
language, they recast his elements into units of procedural and
declarative knowledge in the ACT theory of skill acquisition (An-
derson, 1983). ACT is a cognitive theory about how human cog-
nition works and made of memory modules: declarative memory
which is represented in structures called chunks, consisting of
facts such as 2+3=5, and procedural memory, made of productions.
Productions represent knowledge about how we do things, for in-
stance knowledge about how to type the letter "R" on a keyboard.
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Singley and Anderson in their theory of transfer developed the
production rule as the element of transfer, and used the number
of identical productions between two tasks as a measure of poten-
tial transfer. As a demonstration of this approach, they examined
transfer between text editors. In one of their experiments, sub-
jects had to learn to edit text using one of three editors, and then
switched to a different text editor. The experiment demonstrated
substantial transfer between text editors. According to ACT the-
ory of transfer, the greater the production overlap, the greater the
transfer. Thus, transfer is a matter of taking task-specific knowl-
edge from one task and using it for another, semantically similar,
task (Koedinger et al., 2016; Taatgen, 2013).

4.2.3 Transfer-appropriate processing theory

The next theory discussed in this chapter is Transfer-appropriate
processing proposed by Bransford et al. in 1979 (Bransford et al.,
2014). This theory is analogous to Identical Elements theory from
some aspects but argues that transfer effects depend on the sim-
ilarity of cognitive processing features between skills and not so
much on how elements are related. In this theory, the transfer is
positively related to similarities in mental operations shared by
the skills. For example, problem-solving skills, speed of decision
making, attentional focus, and the application of rules that are
shared between skills, determine the degree of possible transfer
(Edwards, 2010).

Concluding the discussion of theories, leads to a general ob-
servation. Schmidt and Young (Schmidt and Young, 1987) identi-
fied that research does not support strong transfer effects except
when two skills are very similar. The term near transfer is often
used to explain such transfer effects between similar skills. Far
transfer refers to transfer effects between skills that are dissimilar
and do not share many common elements. Therefore, the "nearer"
two skills are in shared common elements, the greater will be the
amount of transfer between the two. Generally, similarity between
skills facilitates transfer, at least to some degree. When two skills
are similar in common elements, however, negative transfer is fre-
quently observed between them at least initially.

4.3 factors

Proactive transfer depends on several factors such as the amount
of practice, the nature of the task, the rest time (Edwards, 2010), or
the similarity between the previous and new methods (Schmidt
and Lee, 1988). However, since retroactive transfer is the main
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focus of this thesis, in the following I identify these factors con-
sidering their effects on retroactive transfer.

4.3.1 Practice

One major factor influencing retroactive transfer is the amount
of practice of the previous and new method (A. Schmidt and
Nacson, 1971; Brashers-Krug et al., 1995; Lewis and Miles, 1956).
Although increasing practice time of the new method seems
to increase interference, increasing the practice of the previous
method seems to be context sensitive. While some studies found
that increasing the learning of the previous method reduces the
interference (Lewis and Miles, 1956; Panzer and Shea, 2008), oth-
ers found the opposite (A. Adams, 1987). Notably, the practice
does not necessarily need to be physical (i.e. repeating a physi-
cal movement), but can be also mental. For instance, Wohldmann
shows that mental practice can reduce the retroactive interference
(Wohldmann et al., 2008). Moreover, the distribution of the amount
of practice can also have an impact of retroactive transfer (Healy
et al., 2011).

4.3.2 Similarity

Only few studies focused on controlling the similarity factor
for retroactive interference (Healy et al., 2011). As stated above,
Osgood (Osgood, 1949) showed that the amount of retroactive
transfer is affected by similarity during a paired-associate task
learning. According to the Osgood’s theory of learning transfer,
retroactive interference increases when the stimuli in both layouts
are constant but their responses differ.

Similarity is a relevant factor to HCI as designers can more
easily manipulate it. Several optimization methods have been pro-
posed to maximize both the performance of the new layout and its
similarity with the previous layout (Bailly et al., 2013; Bi and Zhai,
2016; Bi et al., 2010; Dunlop and Levine, 2012; Oney et al., 2013;
Zhai and Kristensson, 2003). Similarity is defined as the number
of identical elements shared in the two methods (Cormier and
Hagman, 2014; Edwards, 2010).

4.3.3 Rest time

The time interval between the learning of two methods can also in-
fluence retroactive transfer (Bunch, 1946; Schmidt and Lee, 1988).
More precisely, when the retention test was immediate (short rest
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time), they attribute retroactive interference to recency effects, but
when the retention test is delayed (long rest time), the original re-
sponse is more likely. When time is delayed overnight, it further
fosters consolidation (Ficca et al., 2000) and can also play a role
in the magnitude of the transfer (Healy et al., 2011; Krakauer et
al., 2005). Previous research clearly shows that the human brain
needs downtime between different learning experiences in order
to undertake the necessary processes and begin to make new
memories of the newly experienced material (Doyle and Zakra-
jsek, 2018).

4.3.4 Task

The nature of the task, recognition-based vs. recall-based also in-
fluences the retroactive transfer (Anderson and Neely, 1996): In
cognitive memory tests of retroactive transfer, participants expe-
rience several memory deficits in recall tests, but retroactive inter-
ference is almost completely eliminated with the recognition tests
(Anderson and Neely, 1996).

4.4 models

4.4.1 Proactive transfer models

Several models of proactive transfer have been proposed (Jokinen
et al., 2017; Kieras and Bovair, 1986a; Monsell, 1978). Jokinen et
al. (Jokinen et al., 2017) recently presented a model aiming to
explain the negative impact of keyboard layout change on typing
performance. This model relies on some important components of
the cognitive architecture of ACT-R. It predicts visual search time
for a given key’s location on a partially changed layout based
on the interplay of four components: vision, visual short-term
memory, long-term memory and controller.

An overview of the model’s components is given in Figure 20.
The input to the model is a keyboard layout, defined as locations
of keys (x,y). The next inputs are the starting location for search-
ing the target key. It outputs a sequence of (x, y) locations of eye
fixations, along with the total search time for a key.

The model uses at first the visual search component to encode
the given key, then encoded key location is placed in the visual
short term memory and finally it will transit to long term mem-
ory. The key aspect, regarding skill transfer, is the use of a utility
learning mechanism to decide between conflicting entries (the old
and the new one) in the long-term memory.
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Model

[1] Jussi P. P. Jokinen, Sayan Sarcar, Antti Oulasvirta, Chaklam Silpasuwanchai, Zhenxin Wang, and Xiangshi Ren. 2017. Modelling Learning of New Keyboard Layouts. 

Proposed by:
Jussi P.P. Jokinen1

Figure 20: The model of Keyboard layout learning (Jokinen et al., 2017)

When the users encounter new or partially changed keyboard
layout after learning the first layout, it assumes that there is a
competition between conflicting entries. Thus, the authors used a
controller to retrieve the key’s location from long-term memory. As
more than one response (key’s location) can match the stimulus
(the key’s letter) in long-term component, they propose to use
the utility learning in their model. In this case the key with the
highest utility is selected over another. The utility can be learned
from experience and reward.

If Ui(n- 1) is the utility of a key i (i.e., key is a pair of (charac-
ter, location)) after its n- 1st recall, and Ri(n) is the reward the
key receives for its nth recall, then its utility Ui(n) after its nth
recall will be given by the difference learning equation:

Ui(n) = Ui(n- 1) +↵[Ri(n)-Ui(n- 1)] (8)

where ↵ is the learning rate around 0.2, and the initial utility is
equal to zero when a new key is first recalled (Anderson, 2009b;
Jokinen et al., 2017). Here, Ri(n) is calculated as the temporal
distance between the recall and finding of the target.

The result of this model, as can be seen in Figure 21 left, shows
the average key search times decrease as the model learns a qw-
erty layout. After the swapping of four keys, the search time im-
mediately increase to learn the new locations, but again it can
decrease up to the ultimate performance.
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Figure 1. The model predicts how users learn the positions of keys on a new keyboard or one that has changed partially. Pane a shows how average key
search times decrease as the model learns the layout. In pane b, the model gradually relearns a layout with two swapped pairs of keys. Pane a contains
a subset of the whole data, presented in pane b.

skill, most task time is spent in motor performance, selecting
the keys. The model described here does not cover this aspect;
it focuses instead on the change in visual search times in the
early stages of learning. To explain how changes in a layout
affect learning, the model employs 3) utility learning, which
allows adapting to changes in the model’s environment. With
utility learning, the model can store multiple locations for the
same key in LTM and still, in accordance with the layout,
retrieve the correct location.

This model complements models of learning in HCI. Existing
mathematical models are straightforward to apply but reveal
fewer details about learning. In particular, our model goes be-
yond the most widely used mathematical model, the power law
of learning [7, 14, 18, 15, 46], by modelling how search pat-
terns change and by predicting the effects of specific changes
to the layout on search times. To account for the time- and
content-contingent phenomena involved, it includes a produc-
tion system, which controls the oculomotor system by means
of input from the two memory systems. This assumption is
similar to those in ACT-R and EPIC [3, 12, 36, 35] but tailored
to the case of 2D layouts. Hence, we apply not a universal
model of the user but a simplified task-specific model used for
predicting visual search. The benefits are that 1) complexity is
reduced, 2) explanations for observed behaviour can be better
identified, and 3) the model is easier to use.

For development and evaluation of the model, two datasets
were collected. The first comprised visual search patterns
and search times among users encountering a completely new
keyboard layout and learning to search its keys over four
days. The second dataset was from a more naturalistic task,
wherein the participants, already familiar with the Qwerty
layout, were given a modified Qwerty layout and asked to
type words with it on a smartphone. This dataset was used for
fitting the relearning parameters in the model. Results from
several evaluations of the model are presented.

The model can serve as a tool for anticipating users’ learning
experience when practitioners tackle design problems such as:

• Comparison: Which of the given layout alternatives has
the lowest learning costs?

• Immediate cost: What is the impact of layout changes on
visual search performance immediately after the change?

• Learning time: How long does it take the user to learn a
new layout to some desired level of visual search?

RELATED WORK AND GOALS
Whilst there is extensive work on modelling of learning in
skilled activities [1, 3, 5, 4, 45, 61, 29] and visual search [31,
55, 34], models directly applicable to the domain of keyboards
are lacking. Here we present a review of empirical findings
on the effects of changing a keyboard, conducted to compile a
list of phenomena that were taken as goals for the modelling
effort and for discussing how existing models address these.

Empirical Studies of Layout Learning
Prior work has established that learning accounts for a large
proportion of user performance in typing. In a study where
the keyboard was randomised after each keypress, the attained
performance (5.5 words per minute; WPM) was inferior to that
in a condition wherein an unchanged Qwerty layout was used
(20.5 WPM) [42]. This finding suggests that efforts to model
visual search are important for understanding the development
of typing performance.

The effect of changing a keyboard has constituted a major issue
in the development of optimised layouts. Results are mixed.
When words are learnt repetitively, an optimised keyboard
may perform better than Qwerty [11, 10]. However, if full
phrases are used, relearning takes longer and it may not even
surpass Qwerty in the course of an experiment. Dunlop et al.
[21] reported that Sath – a layout optimised for familiarity and
word disambiguation – did not outperform the Qwerty layout
in learning during their study. Upon change, speed dropped
from 21 WPM to 13 WPM, though it rose to 18 WPM after
about four hours. Such results highlight the importance of
understanding how relearning is conditioned to the previous
layout and how quickly a set desired level can be reached.

In attempts to explain the negative impact of layout change
on typing performance, several causes have been pointed out:
visual search for keys [42, 57, 66], unfamiliar arrangement of
the keys (an alphabetical arrangement yields shorter search
times than Qwerty) [65, 41], phrase set [66], and the number
of keys affecting choice [63] (according to the Hick–Hyman
law [25, 28]. See the work of Keele [32] for a review. Such
effects are also influenced by top-down learning strategies
that users may adopt. In a study wherein participants were
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Figure 21: Prediction of how users learn the locations of keys on a
new keyboard and on a partially changed keyboard. Adapted
from (Jokinen et al., 2017)

We need to consider that in ACT-R there are two memory stores
for two types of knowledge: a declarative memory module that
stores factual knowledge about the domain, and a procedural
memory module that stores the system’s knowledge about how
tasks are performed (Peebles and Banks, 2010). Declarative knowl-
edge is represented in a structure called chunk. Each chunk (e.g.,
key Z(0,2) in a old layout is a chunk) has a level of activation
which determines its availability for retrieval, the level of which
reflects the recency and frequency of its use. Only chunks that
exceed a certain amount of activation, as defined by the retrieval
threshold, can be retrieved. The activation equation is the follow-
ing:

Ai = Bi + " Bi = ln(
nX

j=1

t-d
j ) (9)

This equation shows Bi for a chunk i, where n is the number of
presentations for a chunk i, tj the time since the jth use and d the
decay parameter (Veksler et al., 2014). As presented in (Anderson
and Schooler, 1991), activation value allows models to predict the
retrieval and forgetting of a chunk.

Moreover, procedural knowledge is represented as rules called
productions. Production can be represented in the form of "IF
<condition> THEN <action>" rule. For example to type a key on
a keyboard there are at least two production rules: 1) IF a letter
is displayed on the screen, THEN its location will be retrieved
from memory and 2) IF the location has been retrieved, THEN
the letter can be typed. These rules are representing the skill of
typing. Each productions is associated with a utility, which are
responsible for determining which productions get selected when
there is a conflict.

The Jokinen’s model assumption is not inline with the compo-
nents of the cognitive architecture of ACT-R, as a chunk of key
and its location is a declarative knowledge, and only can be com-
pared to another chunk using their activation values. Since find-
ing a key in a keyboard reflects the declarative memory, there are
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no competing production rules. Therefore, when there are two
conflicting entries, the key with more activation is returned and
there is no need to use the utility equation.

I come back to this model in the final chapter of this thesis
as some components could be used to model retroactive transfer
phenomena.

4.4.2 Retroactive transfer models

I am not aware of retroactive models in psychology literature.

4.5 interaction

4.5.1 Proactive transfer in text entry

Proactive transfer has received a lot of attention in different do-
main of HCI (Lafreniere and Grossman, 2018; Ramesh et al.,
2011b; Scholtz and Wiedenbeck, 1990a), specially in text entry
(Jokinen et al., 2017; Matias et al., 1993; Polson et al., 1986). Users
want to build on previous knowledge when learning a new inter-
face. For example, Half-QWERTY is an one-handed typing tech-
nique on a special half keyboard, designed to facilitate the trans-
fer of two-handed typing skill to the one-handed condition. It has
been reported that QWERTY touch-typists reached 50% of their
full QWERTY speed in a relatively short period of time (8 hr) in
a Half-QWERTY layout (Matias et al., 1993).

Similarity, as one of the main influential factor in transfer, ap-
pears to be critical for interaction design (Schmidt and Lee, 1988).
Polson et al. (Polson et al., 1986) showed better skill transfer in
text editors when there is a high level of similarity between the
two tested interfaces. In contrast, switching from a qwerty to
an azerty keyboard layout can introduce some interference even
with a few key differences between these two designs (Berard and
Rochet-Capellan, 2015; Koedijker et al., 2010).

Consequently, several novel keyboard layouts manipulated the
similarity factor to optimize performance with the traditional qw-
erty layout (Bi and Zhai, 2016; Bi et al., 2010; Dunlop and Levine,
2012; Oney et al., 2013; Zhai and Kristensson, 2003). These stud-
ies showed the evidence that users rarely want to spend the time
needed to learn a new keyboard layout. Thus, based on these
evidences, Chun Yat Li et al. (Li et al., 2011) leverage the QW-
ERTY keyboard layout instead of using different layouts and in-
put modalities to design their 1line keyboard layout. It is a soft
QWERTY keyboard that is only 40% of the height of the native
iPad QWERTY keyboard. Their keyboard condenses the three
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rows of keys in the normal QWERTY layout into a single line with
eight keys. Through an evaluation, they showed that participants
are able to quickly learn how to use the 1Line keyboard and type
at a rate of over 30 WPM after just five 20-minute typing sessions.

4.5.2 Retroactive transfer in HCI

In HCI, retroactive transfer has received only little attention. In
the comprehensive book Human Computer Interaction: Funda-
mentals (Sears and Jacko, 2009) retroactive interference is only
briefly mentioned as a false memory phenomenon (Proctor and
Vu, 2007). One exception is the study of Walker & Olson (1988)
who investigated proactive and retroactive transfer of command
shortcuts in two text editors (Walker and Olson, 1988). While they
did not observe proactive transfer, they observed a retroactive
transfer effect between the two sets of shortcuts (emacs and ex-
press). express appeared more robust to interference than emacs.
However, in this study, participants did not perform a visual-
motor learning task involved with an interactive system as they
did not execute the memorized shortcuts (they wrote them on
paper).

4.6 conclusion

In this chapter, I gave an overview about transfer of skill on psy-
chology and cognitive sciences. I described that learning of one
skill often has an effect on the learning of other skills, a phe-
nomenon called transfer. It can be categorized as proactive or
retroactive transfer. In proactive transfer the previous skill affect
the acquisition of new skill, while in retroactive transfer the new
skill influences on the performance of previously learned skill.
The negative form of proactive and retroactive is called interfer-
ence. Retroactive interference occurs because the new informa-
tion in the memory interferes with retrieval of old information.
Retroactive interference is less investigated in HCI. Hence, in this
thesis I focus mainly on retroactive transfer phenomenon. In the
next chapter I described an introspection and two rounds of inter-
views conducted to understand retroactive transfer scenarios in
HCI.
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R E T R O A C T I V E T R A N S F E R I N R E A L - W O R L D

Working life today regularly requires people to switch between in-
terfaces to complete a single task or a project. For instance switch-
ing between programming languages is something that happens
to every programmer. They have to write a program in C++,
then another project is in C, then they are programming in Java,
then they are programming again in C++1. Another example is a
graphists trying to create one file, but using illustrator and pho-
toshop interchangeably. Illustrator, is much easier to work with
when creating graphics (as far as strokes, type, live color, etc.)
and photoshop proves to be necessary for editing rasterized im-
ages, clearing background, cropping, etc 2.

Alternating between interfaces are likely to affect user’s perfor-
mance as users have to learn or relearn how to use the current
interface and can experience negative proactive and retroactive
interference.

In order to understand the retroactive transfer phenomena
when using interactive systems, I conducted the qualitative stud-
ies. First, I performed an introspection through my personal ex-
perience in using text entry. This introspection was at the origin
of this thesis. Then, I run an interview-based study with several
potential users, who face this phenomena while working with dif-
ferent interfaces. I created and conducted the interview to elicit
information from users’ experiences to understand:

1. The type of scenarios involving retroactive transfer

2. The reasons why users need to alternate between interfaces

3. The nature of the retroactive transfer (positive, negative or
neutral)

4. The strategies to avoid retroactive transfer

Third, I refined the interview-based study with two HCI ex-
perts experiencing retroactive phenomena in using text entry. I
now report on these two qualitative studies. I use these findings
to motivate and design a controlled experiment (described in the

1check this link for more examples of the coders that switching between
different languages: https://www.quora.com/Is-it-weird-for-programmers-
when-they-switch-between-languages

2The example reference: https://graphicdesign.stackexchange.com/quest-
ions/16914/working-in-illustrator-photoshop-interchangeably
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next chapter) to investigate user performance after experiencing
a retroactive transfer.

5.1 introspection

Introspecting through my personal experience in using text entry
helped me to better clarify retroactive transfer phenomena.

5.1.1 Methods

Introspection is a self-observation with the intent to learn more
about the self by describing current thoughts, feelings and activ-
ities (Gould, 1995). Introspection is the opposite of extrospection
(Valsiner, 2017), the observation or examination of things external
to one’s self.

As experiential beings, the people introspect in everyday life
to profound self-awareness and self-understanding when interact
with the external world. Interaction designers and researcher also
take advantage of this technique to learn about the user’s per-
spective, internal state and interaction with interactive systems
(Wagenknecht, 2017).

When you are aware of an ongoing experience and searching
for answers for such questions by thinking 3:

- What did you want to do? (goal)

- How did you interact with the system? (user action)

- How did the system react? (system response)

- Did it do what you expected? (comment)

- Highlight breakdowns, bugs, unusual positive or negative
events. (surprises)

you are introspecting, though it often happens in an automatic
and unstructured way (Xue and Desmet, 2019).

It is necessary to consider that introspection is not a valid scien-
tific approach (Xue and Desmet, 2019). However, it can be a valid
design technique, as long as it provides useful perceptions to in-
vestigate experiential aspects to go beyond a purely functional
view of the system.

3The source of self-reflective questions: https://ex-situ.lri.fr/content/1-
workshops/6-hci-bootcamp-2018/1-handouts/doit-book-method-
introspection-oct.pdf
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5.1.2 Finding

My mother language is Persian and I communicate with my fam-
ily using Persian keyboard layout. On the other hand, my laptop’s
keyboard has an English qwerty layout which I used at work for
programing, writing and emailing. I am based in France and in
addition to my research activities, I have some teaching courses
wherein the keyboards of workstations are in French azerty key-
board. Therefore in a typical day I use several keyboards with
different layouts and multiple times per day.

Although these keyboards share a lot of similarities and glob-
ally have the same geometry, there are some key differences in
the qwerty and azerty keyboard. Personally, the problem ap-
pears when alternating between two similar keyboard layouts (i.e.
qwerty and azerty) but not between Persian and qwerty layouts
that have very few common features.

The result of self-introspection gave a deeper understanding
of the occurrence of negative retroactive transfer. It encouraged
to think about the impact of alternations on performance, in
particular the impact of similarity between two interface on the
performance change. This experience of retroactive interference
were made explicit when working on a model of proactive trans-
fer with keyboard. I thus decided to further investigate this
phenomenon by conducting interviews and extending the scope
(from keyboard to interactive systems).

5.2 interview 1 : general experiences of retroactive
transfer

5.2.1 Methodology

In this qualitative interview, the initial methodology was to use
questions deliberately broad and open-ended. Qualitative inter-
views might feel more like a conversation than an interview to
respondents, but the researcher is in fact usually guiding the con-
versation with the goal in mind of gathering information from
a respondent. Open-ended questions do not provide answer op-
tions. They are more demanding than closed-ended questions, be-
cause they require participants to come up with their own words,
phrases, or sentences to respond (Bernard and Bernard, 2013). The
questions of this interview aimed at understanding the impact
of switching between two interfaces on the user’s performance.
Participants are asked to compare the performance with the inter-
face P before and after using the interface N, in order to realize
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how the interface N interfered with the learning of interface P (i.e.
P �! N �! P).

However, this methodology did not appear informative in pilot
study. Indeed, the difficulty in extracting incidents of retroactive
transfer is that participants need to recall a fairly complex combi-
nation of sequential actions. First, they need to recall their perfor-
mance level while using a previous interface P, recall interacting
with a new interface N for a certain period and, finally, recall
their performance when returning back to previous interface P.
I thus decided to adopt a semi-structured methodology, with sev-
eral memory aids in this interview. In a semi-structured interview,
there is a general outline, but may different questions have been
asked (Fontana and Frey, 1994). The interviewer has a particular
topic about which response would like to be heard, but questions
are open ended and may not be asked in exactly the same way
or order to each participants. In in-depth interviews, the primary
aim is to hear what the interviewee thinks is important about the
topic (Bernard and Bernard, 2013).

I conducted the study in participants’ working environment to
aid the recall of relevant situations. I explained to participants the
concept of retroactive transfer by using the example of a person
alternating between right-side and left-side driving when chang-
ing countries. I emphasized that I am interested to know what
happened to their driving performances once they returned back
to their hometowns. I emphasized the fact that the "transfer" can
be positive, negative or neutral to not bias participants. I finally
explained the goal of the interview as to see if similar phenom-
ena occur with their interactive systems (e.g. mobile phone and
computer).

The interview was audio-recorded, lasted about 1 hour and
then analyzed using annotations and timestamps on Camtasia.
The time-stamped notes were further analyzed in spreadsheet
software to help index episodes of interest.

5.2.1.1 Sample scenarios

I showed the participants a printout of interface examples’
images. I picked general and most common interfaces that can
be adapted to a range of situations as well as different users.
But they were free to discard the scenarios which do not apply
and/or report alternative scenarios. The scenarios included (the
category is inspired by (Foley et al., 1984)):

Pointing

Alternating among different mouse devices using different mouse
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or touch-pad device, or the same mouse but with different be-
haviour e.g., the cursor reacts differently, i.e. mouse acceleration,
Figure 22.

Pointing

Figure 22: Examples of sample scenarios: different input devices for the
same task.

Command selection

-Alternating between different keyboard shortcuts e.g. to use differ-
ent shortcuts for the same commands or the same shortcut for
different commands, Figure 23.

Keyboard Shortcut

Figure 23: Examples of sample scenarios: same shortcut for different
commands

-Graphical menus of interfaces that have different item organisa-
tions i.e. same items but at different locations(e.g. launch menus
on smartphone or two similar applications (Photoshop / GIMP)
on desktop, or item locations on websites, etc.), Figure 24.

Menu Interaction Chrome

Safari

Firefox

Figure 24: Examples of sample scenarios: different graphical menus.
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Gestures

Gestures shortcuts, e.g. different gestures for the same commands
or the same gesture for different commands, Figure 25.

Gesture Shortcut

Swipe leftSwipe right

Reply in 
WhatsApp

Reply in 
Telegram

Figure 25: Examples of sample scenarios: left, different gestures for the
same command and right, set of gestures.

Text input

-Keyboard devices with different shapes (e.g. portrait vs. land-
scape on a smartphone), or keys which are larger or smaller (e.g.
Return key), Figure 26 left.

-Keyboard devices with different key organizations (e.g. French
(azerty), American (qwerty)). They have different position of
letter keys, but also of special keys such as Ctrl, Shift, Return, etc,
Figure 26 right.

Keyboard Shapes Keyboard Layout

Figure 26: Examples of sample scenarios: left, the same keyboard device
with different shapes; and right, different key organizations
in similar keyboard layouts

Operating systems

Different operating systems, e.g. Microsoft Windows, Apple ma-
cOS, Linux, etc, Figure 27.
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Operating System

Figure 27: Examples of sample scenarios: switching among different op-
erating systems

Application and programming language

-Switching among different release versions of the same app (i.e.
different versions of IDEs, Matlab, Photoshop), Figure 28.

Versions

Figure 28: Examples of sample scenarios: different versions of the same
app.

-Switching among different platforms for the same application. (i.e.
Microsoft excel for Windows/macOS or for Mobile, or Gmail in
PC and Mobile), Figure 30.

Platforms

Figure 29: Examples of sample scenarios: switching among different
platforms for the same application.
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-Alternating between different programming languages (e.g. Java,
Python, etc.), Figure 30.

Programming language

Figure 30: Examples of sample scenarios: switching among different
programming languages. Hello World in different program-
ming languages.

5.2.1.2 Participant

I interviewed 6 adults (< 40 years), 4 male, 2 female, 4 French, one
Australian and one Taiwanese. Two were professional program-
mers in different application areas: embedded systems and haptic
devices. The other 4 were researchers in different domains: med-
ical, bio-mechanics, information theory, and sociology (Table 3),
(Table 4).

ID Gender Origin Occupation

1 Male French Professional programmer in
embedded systems (robotics)

2 Male French Professional programmer in
haptic devices

3 Male Australian Researcher in medical research

4 Female Taiwanese Researcher in biomechanics

5 Male French Researcher in information theory

6 Female French Researcher in sociology

Table 3: Participants’ ID and their profiles.

5.2.1.3 Data collection & analysis

Participants reported a total of 71 incidents of alternation between
previously (P) and new (N) interfaces (P �! N �! P) which were
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ID Primary OS Secondary Os Comments

1 Linux Windows
macOS

Having 3 to 4 even more OS,
some with the only command
line (LINUX). Using windows,
Linux and macOS because he
needs to code for different people

2 Ubuntu Windows

All his computers have a
dual boot: Ubuntu and windows,
because some applications
work only on windows

3 Windows macOS

Windows at work, macOS at home
Strong preferences to do different
tasks with each system, but
sometimes he works at home.

4 Windows Ubuntu

Dual boot. Mostly using windows,
use Ubuntu only when she obliges.
She may use a macOS on
somebody else’s computer.

5 Ubuntu Windows
macOS

Ubuntu at work. Uses windows to
be compatible with his
advisor. At home uses the macOS.

6 Ubuntu Windows
macOS

Dual boot Ubuntu and Win.
macOs on her husbands computer.
Used to have Windows DOS.
Uses also macOS since the age of 8.

Table 4: Participants’ primary and secondary Operating System (OS).

either negative (33) or positive (18) retroactive transfer. Regarding
the 20 remaining incidents, participants could not recall whether
there was a change in their initial performance. I summarize my
observations using the notation (xi, yp), when one observation
appears in more than one incidents. x indicates the number of
incidents and the y to the number of participants. For example, if
2 participants mentioned a total of 5 incidents when typing text,
the notation is (5i, 2p).

5.2.2 Findings

5.2.2.1 Why do users alternate between interfaces?

Some alternations are due to external factors (30i, 6p), such as a
programmer who has to code for clients who use different sys-
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tems. Other alternations occur because of the need to use com-
plementary functionalities between two interfaces (41i, 6p), such
as the mobile version of a desktop application. In both cases, the
alternation appeared as a necessity rather than a choice.

5.2.2.2 Positive retroactive transfer

All participants reported incidents of positive retroactive transfer
(18i, 6p), e.g., the new version of Microsoft Office (docx version)
was so annoying for a user, so once he came back to the old ver-
sion, appreciated it more, have better control and felt faster. A
common pattern was when interface N highlights an unknown
functionality of interface P (13i, 6p), e.g., learning the new lan-
guage C helped to learn Python (familiar language) in more
depth. Another example is the gesture vocabulary (e.g., three fin-
gers interactions) of macOS, as an interference interface, encour-
age them to try configure this gesture in their primary interface
(Linux). In addition they found new functionalities highlighted
in the mobile version, which they did not know existed on the
windows, and it made them realize improving their performance
on windows. Generally with all language alternations, the more
interference the better she understands the initial language.

5.2.2.3 Negative retroactive transfer

All participants reported incidents involving retroactive interfer-
ence (33i, 6p). Most of them involved using a keyboard (16i, 6p),
for example, when alternating between qwerty and azerty lay-
outs. They reported a drop in their typing speed on their primary
keyboard after experiencing the new layout. They also recalled
being frustrated with typing errors, especially when executing
an incorrect keyboard shortcut, leading sometimes to a "disas-
ter", e.g., executing Ctrl+Q ("quit") instead of Ctrl+A ("select all").
Some participants also reported a retroactive interference while
searching for a functionality in a graphical menu (4i, 4p), for in-
stance, when alternating between different versions of the same
application. Others reported making more errors with their pre-
viously learned programming language after learning a new one
(5i, 3p). An expert gamer reported a drop in his gaming perfor-
mance while alternating his fast mouse at home with his regular
mouse device at work.

5.2.2.4 Retroactive transfer factors

Several participants spontaneously elaborated on reasons that can
increase/reduce the previously mentioned interference. The most
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pronounced comment that all participants reported was the de-
gree of similarity between interfaces as the main root of inter-
ference (6p). For example, one user reported that their mouse
configuration on Linux is faster then the mouse configuration on
windows. So after coming back to windows, it feels faster, which
results in making mistakes at the beginning.

Others argued that the amount of practice with the new inter-
face is the factor that will determine the amount of interference
later on (4p), e.g., practicing new version of Matlab for a long
time increases the interference on old version. Another factor pre-
sented by participants was the number of alternation between two
interfaces (2p). E.g., he faces no big problem in the period that
the alternation between azerty and qwerty is very frequent. The
problem arises when the alternation frequency decreases and it
involves larger periods.

5.2.2.5 Strategies to avoid retroactive transfer

To overcome retroactive interference produced by similarity, some
often try to consciously emphasize the differentiating factors be-
tween the two interfaces (2p). The deficit caused by retroactive
interference can be reduced by preparation, however they men-
tioned that they cannot fully avoid the interference. E.g., trying to
think only in French while using AZERTY, and in English while
using QWERTY.

One participant also said that alternating between similar lan-
guages on a keyboard can be generally confusing. But if the lan-
guage is Chinese, she makes no errors. Since in her mind the
Chinese language has fundamental differences from the latin lan-
guages. Another participant mentioned that he differentiates the
way he interacts with each interface to avoid confusion; using
mostly keyboard shortcuts with Windows at work and rather
“point and click” style of interaction with his macOS at home.

Furthermore, one programmer reported that he tries intention-
ally reduce his exposure to the new interface to alleviate the im-
pact of practice on the amount of retroactive interference. He is
avoiding to write code on macOS, doing only final compatibility
check of his code, so as not to be confused when returning back to
his primary system (Linux). In more extreme cases, participants
reduced the amount of practice to zero, sacrificing functionalities
for consistency. For instance, a programmer abandoned the Visual
Studio code editor while having unique useful features, to benefit
from a consistent work flow, using solely the Geany code editor
as it is the only one compatible across all operating systems.
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5.2.2.6 Conclusion

Several factors involving retroactive transfer were spontaneously
mentioned by participants. The reported factor by all the par-
ticipants is the amount of similarity between two interfaces (6p).
Based on a research work (Osgood, 1949), the amount of retroac-
tive transfer is affected by similarity during switching between
two tasks. The principle that appears to operate in such situa-
tions is that the greater the similarity, the greater the degree of
negative transfer. The next factor influencing retroactive transfer
is the amount of practice of the previous and new method (Lewis
and Miles, 1956) which experienced by three participants. More-
over, the distribution of the amount of practice, as mentioned by
the interviewees, can also have an impact on retroactive transfer
(Healy et al., 2011). Therefore participants’ elaborated observa-
tions appear consistent with the literature described in the pre-
vious section. Entering text on different keyboards appears to be
both a frequent task and a source of retroactive interference. I
thus decided to conduct another round of interviews with two
additional participants focusing on keyboard layouts.

5.3 interview 2 : post-study focusing on keyboard us-
age

The second round of interview focuses explicitly on keyboard us-
age based on the findings of the first round. As shown in the Fig-
ure 31, 35% of negative retroactive transfer’s incidents occurred
through typing with different keyboard layouts. In order to better
understand the user behaviour and investigate the source of inter-
ference, this interview was conducted with two HCI researchers.
As computer scientists they extensively use keyboards, and since
they are French, they used regularly two keyboards, both azerty
and qwerty. The second reason that makes these interviews suit-
able is that we are colleague and I am familiar with the way they
switch between keyboards. Lastly, as HCI researcher, they possi-
bly have the ability to better reflect on their own usage of technol-
ogy.

During the interview I was focusing on their episodic experi-
ences from 3 weeks to 3 years in their life, when they experienced
retroactive interference while using a keyboard.
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Figure 31: Based on user’s experience, using a keyboard is a main
source of retroactive interference.

5.3.1 Participant

I interviewed 2 adults (< 40 years), 2 male and French. They were
HCI researchers for more than 10 years and have the experience
to work with keyboard layouts for more than 20 years.

5.3.2 Text input

The first participant was regularly alternating between his azerty
laptop (personal and professional usage) and a qwerty keyboard
dedicated to a professional platform for about two years. During
this episode, he was looking at the keyboard using several fingers.
He reported doing frequent errors especially when he knew that
the consequences of an error were not important. After some time,
he was able to anticipate potential sequences of characters that
could lead to typing errors and voluntary slow down his typing
speed to avoid them.

The second participant was using an azerty laptop at home,
but an external qwerty keyboard connected to this laptop at work
during 3 weeks. He was able to enter text without looking at the
keyboard. He reported doing errors and additional visual search
for non frequent special characters. However, he reported that
switching keyboards was like switching modes: “I was doing one
error but not two. I need to recall which mode I was using”. The sec-
ond participant was also using the swift keyboard on his smart-
phone, but for some unidentified reason the system sometimes
display the default ios keyboard. The two layouts are very simi-
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lar, except that ’.’ is closer to the return key on the ios keyboard.
He reported doing much more errors than the previous experi-
ence and did not have the impression of "switching mode". When
he was asked why, he attributed this difference to the "degree of
similarity" between the two interfaces.

5.3.3 Keyboard shortcuts

The first participant regularly uses Inkscape on macOS which is
the only software using Ctrl instead of Cmd as main modifier.
He reported doing ”one, max two errors” and then being comfort-
able using these keyboard shortcuts. This echoes the impression
of "switching mode" of the first participant when alternating key-
board layouts. He also reported that the context is so different
that coming back to "normal" software is fast.

5.4 discussion and conclusion

To summarize, I discuss the main findings of this chapter in the
following:

5.4.1 What are the interview’s findings?

The complementary functionalities between two interfaces is the
primary reason for people to alternate between interfaces to per-
form a single task. The negative impact of this alternation rises
up especially at the beginning of switching, which results in a
performance decrease.

5.4.2 Necessity of investigating retroactive transfer

All the respondents experience retroactive interference. Moreover,
most of them experience retroactive interference several times.
Also, the reported incidents mainly focused on text entry inter-
faces. This is surprising as the HCI literature did not focus on this
phenomenon. A lot of research has been done on proactive trans-
fer but I am not aware of work on retroactive transfer. These mo-
tivate me to further investigate retroactive transfer phenomenon,
focusing on text entry.

5.4.3 Factors

My review of the psychology literature highlighted several fac-
tors that contribute to retroactive transfer, Chapter 4. Similarity
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and practice were the more commonly factors, that reported in
my interview study as well. Similarity has been considered as
an important criterion in the optimization of user interfaces for
proactive transfer (Grudin, 1989; Kellogg, 1987).

One interesting factor is alternations. Indeed, this factor was not
really discussed and studied in experimental study. However, the
participants reported performing multiple alternations between
user interfaces. This factor is especially relevant in HCI because
of the ubiquitous nature of interaction.

5.4.4 Implications

In the following chapter, I build on these findings to design a
controlled experiment. I aim to understand whether retroactive
transfer occurs when interacting with user interfaces. In particu-
lar, I investigate the impact of similarity and number of alterna-
tions on user performance when entering text.

5.4.5 conclusion

In this chapter, I described introspection and two rounds of inter-
views to investigate different scenarios involving retroactive trans-
fer phenomena. The interviews provided insights about users’
experience and challenges when alternating with interactive sys-
tems. The impactful factors on retroactive transfer magnitude de-
rived from result of interviews are the amount of practice, simi-
larity and the number of alternation.





6
E X P E R I M E N T

I investigate retroactive transfer from several perspectives. I used
a theoretical approach in Chapter 3 and Chapter 4 by presenting
the previous work on skill acquisition and transfer of skills. They
revealed several investigations of retroactive transfer phenomena
in psychology, but not in HCI. This is surprising as users are
frequently alternating between interfaces. In Chapter 5, I investi-
gated retroactive transfer in HCI with qualitative methods confirm-
ing that users experience the negative impact of retroactive inter-
ference with interactive systems, especially in the context of text
entry. In this chapter and the next chapter, I investigate retroactive
transfer with quantitative methods. I conduct a laboratory experi-
ment to study the main factors on a HCI task (text entry). In this
chapter, I detail the experimental design to collect data. In the
next chapter, I analyse the results and discuss the findings.

6.1 design rationale

Our review of the psychology literature (Chapter 4) highlighted
several factors that contribute to retroactive transfer, from which
similarity and practice were the more commonly reported in the
interview study (Chapter 5). The impact of similarity on retroac-
tive interference was reported as task-dependent, especially in the
second part of the interviews. It means similar tasks lead to im-
paired performance and false memories by priming other related
tasks. In addition to these factors, participants reported perform-
ing repeated alternations between user interfaces.

This chapter presents an experiment based on the results of two
rounds of interviews, that aims to deepen the understanding of
retroactive transfer in interactive system. During the interviews,
I exposed participants to several UI scenarios (mouses, menus,
browsers, etc.). The reported incidents mainly focused on text en-
try interfaces. Thus the experimental task was constructed by ab-
stracting a real text entry task, to operationalize several important
factors.

6.1.1 Abstraction & operationalizing

Initially I contemplated to use a regular text entry task to study
retroactive transfer phenomena. However, mastering a single key-
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Figure 32: Interface displayed on the tablet. Four target symbols are dis-
played on the top. The green check marks confirm correct se-
lections. Participants select the symbols from the grid at the
bottom. Digits were not present in the interface. They serve
to identify a symbol in this paper.

board layout requires a lot of time, i.e. several days, and studying
retroactive transfer with two keyboard layouts and alternations
would require at least 3 times that amount, which was not a feasi-
ble option for a lab experiment (~1h30). Thus I present an abstract
task (Figure 32) that operationalizes the key aspects of alternating
between two keyboard layouts, alleviating possible bias related to
their previous experience, accelerating users’ expertise and allows
us to focus on transfer of skills. The proposed abstract grid layout
contains fundamental structure of the real keyboard buttons and
the ability of key selecting.

Abstraction of the real-world task and operationalized factors
to perform a lab experiments is a standard evaluation method
in HCI. Operationalization means turning abstract concepts into
measurable observations. There are widely used examples in the
HCI literature.

For instance, several simple and abstract variants of "Fitts’ Law
pointing" experiments (Fitts, 1954) have been considered in HCI.
Accot and Zhai (Accot and Zhai, 1999) developed the Steering
Law as an evaluation paradigm for input devices. In their ex-
periment the participants performed two types of steering tasks
with straight and circular tunnels with five different input devices.
With this quantitative model, they were able to classify these de-
vices into three categories based on statistical differences in per-
formance.

Card et al. (Card et al., 1980) proposed the Keystroke-Level ab-
stract model for predicting user performance time for a given
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task. This simple model evaluates time by counting keystrokes
and other low-level operations such as the user’s mental prepara-
tions and the system’s responses. It has been tested with several
systems and shown to be accurate and flexible enough to help
practical design and evaluation.

6.1.2 Interface design

Now I will describe the grid layout design in more details:
Figure 32 illustrates the interface, a virtual grid layout of 3⇥6

common symbols (e.g. hat, rabbit, etc.) designed according to the
following criteria: First, the interface captures the key phenom-
ena of text input. The grid in Figure 32 represents an abstrac-
tion of a (virtual) keyboard layout. Selecting an element in the
grid involves visual search, pointing, chunking, learning and mo-
tor control. The two-sided layout further allows for multi-finger
and two-handed interaction, see Figure 33. Consequently, the ab-
stracted grid acts as an informative proxy for a wider class of
interfaces such as numpads or grid menus.

Figure 33: experimental setup. The sequence of four target symbols is
displayed at the top of the interface. A user selects the cor-
responding symbols by touching the grid at the bottom. Se-
lecting an element in the grid layout involves visual search,
pointing and motor control.
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Second, the interface fosters rapid skill acquisition within the
time constraints of the experiment. While the number of rows (3)
was similar to keyboard layouts, I used 6 instead of 10 columns
to enable participants to reach a performance plateau. The advan-
tage of the simplified grid over a real keyboard is that it can re-
duce visual search time and simplify finger-key assignation, both
contributing to touch typing skills.

Third, I wanted to prevent confounding factors from prior user
experience. Therefore, I replaced letters with symbols to ensure
that the chosen interface would not remind users of existing key-
board layouts to avoid unintended skill transfer.

Finally, I wanted to isolate mapping-related errors from retroac-
tive interference. Thus I increased slightly the size of the buttons
from 0.6 to 0.9 inches to reduce irrelevant pointing errors due to
the fat finger problem (Siek et al., 2005).

In summary, I developed an abstracted layout to study retroac-
tive transfer within an interactive system. If I were to use real
keyboards, I would probably face differences in skill level with
the chosen keyboards among participants. The nature of the key-
board layouts and the frequency of the letters would also intro-
duce additional factors difficult to disentangle. It is likely that the
targeted phenomenon will be more difficult to observe and/or
to explain. This interface maintained the key aspect of text input
while remaining flexible enough to control the design factors de-
scribed below.

6.2 objective

The primary goal of this experiment was to understand the
retroactive interference phenomena and how learning a New lay-
out (N) interferes with the retention of a Previously learned lay-
out (P), as described in the sequence below:

P ! N ! P (10)

First, I investigated the impact of the similarity on retroactive
transfer. The degree of similarity has been manipulated between
N and P by modifying the location of certain elements in the
layout. I controlled both the number of changes between the two
layouts as well as the spatial proximity of these changes (i.e. how
far an element has been moved).

Second, I investigated the impact of alternation on retroactive
transfer. So I tested two alternations rather than the typical one
alternation by extending the learning sequence:

P ! N ! P ! N ! P (11)
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Where participants alternate two times between the layouts P
and N before measuring the performance with the layout P.

In this chapter, I thus answer the following research questions:

• What is the impact of alternations on the performance?

• What is the impact of similarity between the layouts on the
performance?

6.3 experimental materials

All experimental materials are available on OSF.
The Open Science Framework (OSF) is a tool that promotes

open, centralized workflows by enabling capture of different as-
pects and products of the research lifecycle, including developing
a research idea, designing a study, storing and analyzing collected
data, and writing and publishing reports or papers. It is devel-
oped and maintained by the Center for Open Science (COS), a
nonprofit organization founded in 2013 that conducts research
into scientific practice, builds and supports scientific research
communities, and develops research tools and infrastructure to
enable managing and archiving research (Foster and Deardorff,
2017).

6.4 participants

58 university engineers and students aged 18-40 participated to
the experiment and were divided into three groups, one group
per condition (see below). 4 participants were removed due to
under-performance during the training phase to fairly ensure sim-
ilar initial performance across conditions. It results that each con-
dition was tested with 18 participants. The exclusion rule was de-
cided before running the statistical analysis to prevent p-hacking
(Head et al., 2015; Wicherts et al., 2016). Participants received 15
euros for their participation. A bonus of 10 euros was awarded
to the 3 fastest participants of each condition to motivate them to
quickly reach a high level of performance.

6.5 apparatus

I used a Galaxy Note multi-touch tablet on Android 5.1. The dis-
play was 10.1 inches with a resolution of 2560x1600 pixels. The
tablet was lying on a table with the landscape orientation. Partic-
ipants sat on a chair and were free to move the tablet on the table
to have a high level of comfort (Figure 33).

https://osf.io/yvdrx/?view_only=71fa4ad22ec64998afa63fcc9b4383b6
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6.6 experimental design

Figure 34: For controlling the similarity, I have a control layout P as
previously learned interface. To study the impact of similarity
on retroactive transfer, two new layouts was designed that
differed from the layout P. The layout N4 is identical to layout
P except two pairs of symbols which are swapped, one is far
and one is close to control the proximity. The new layout N8

is identical to N4 except two more pairs of symbols which
are swapped.

6.6.1 Task and stimulus

A sequence of four target symbols was displayed at the top of
the interface (Figure 32 ). Participants selected the correspond-
ing symbols by touching the grid at the bottom. When the target
symbol was correctly selected, a green check mark confirmed the
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a Phase 1 ! 2 ! 3 ! 4 ! 5

b Alternation Sequence P ! N ! P ! N ! P

c Condition control P ! ? ! P ! ? ! P

d Condition 4-change p ! N4 ! p ! N4 ! p

e Condition 8-change p ! N8 ! p ! N8 ! p

f Practice Time (min) 10 ! 10 ! 10 ! 10 ! 10

Table 5: Summary of phases, alternations, conditions and practice time
for each condition. Blue colors indicate the layout P and or-
ange colors the layout N. (a) Phase: an index of exposure to
the layouts. (b) Alternation Sequence: the order of appearance
of the layouts. (c, d, e) the conditions determined the number
of changes between layouts P and N. (f) Practice time for each
phase.

selection and participants proceeded to the next target in the se-
quence. When an error was made, a beep informed participants
to re-select the symbol. Once the sequence was successfully com-
pleted, a novel sequence was displayed.

6.6.2 Procedure and phases

Participants filled out a consent form and turned off all personal
devices. The experimenter explained the task and asked partic-
ipants to complete it as quickly as possible. The experimenter
encouraged the participants to use both hands and several fin-
gers to maximize their performance. Table 5a shows the 5 phases
( 1 2 3 4 5 ) of the experiment. Each phase lasted about 10
min. Between phases there was minimum 1 minute break. Dur-
ing the phases 1 , 3 and 5 , all participants selected symbols
using the layout P (the selection task was detailed in the section
Task). During the phases 2 and 4 , the participants of the condi-
tion control took a break (10+1 min), while the participants of the
two other conditions selected symbols using the layout N. The
configuration of the layout P is illustrated in Figure 32. The lay-
out N differs depending on the condition (condition 4-change or
condition 8-change). I next describe the design of the layout N.
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6.6.3 Layout N and similarity

The layout N was used in the phases 2 and 4 . To study the
impact of similarity on retroactive transfer, the layout N differed
from the layout P in two components of similarity (as shown in
the Figure 34 N4 and N8):

6.6.3.1 Number of changes

Our primary measure of similarity and dissimilarity was the num-
ber of paired symbols swapped between the layouts. More pre-
cisely, the layouts N and P were identical in geometry (3⇥6 cells)
and in list of symbols. The dissimilarity between N and P was de-
termined by the minimum number of (swap) operations needed
to transform the layout N into the layout P. Thus the layouts N
and P differed only on the location of swapped symbols.

6.6.3.2 Proximity

The number of changes alone does not capture the nature of the
changes. I thus introduced a second similarity measure termed
proximity. Proximity indicated the number of cells that existed
between the previous and the new location of a symbol. Consider
a keyboard layout; swapping either two adjacent keys or two keys
far from each other might affect user strategies and the risk of
errors. I considered two proximity conditions (Figure 35):

• Close. The two locations are adjacent.

• Far. There are at least 5 cells between the two locations. Con-
sequently, the previous and the new location of the symbol
are in different sides of the grid.

Figure 35: Close and far proximity between previous and new location
of a symbol.
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P

Figure 36: Targets in orange borders illustrate the static target symbols
and the red targets illustrate the dynamic targets used in this
experiment.

6.6.3.3 Configuring the layout N

In accordance with the similarity measures, I designed two lay-
outs N: N4 and N8. In condition 4-change, participants used the
layout N4 as interference layout, and in condition 8-change, the
layout N8.

Specifically, the layout N4 was identical to P except 2 pairs
of symbols which were swapped. Swapping means 4 symbols
changed location and 14 symbols remained at the same location
in the grid. Among the two swaps, one was close and one was
far to control the proximity. The layout N8 was identical to N4

except 2 (extra) pairs of symbols which were swapped. Among
the 2 swaps, one was close and one was far. Comparing N8 to
P, 4 pairs of symbols were swapped (i.e. 8 symbols changed lo-
cation) containing 2 close and 2 far swaps. In summary, layout
N4 in comparison with layout N8 was more similar to layout P,
because N4 had fewer number of changes (i.e. only 4 symbols),
but for designing the layout N8, 8 symbols of layout P have been
changed. Thus by comparing the performance of the 4-change
condition (using N4) and 8-change condition (using N4), I tested
the impact of similarity on retroactive interference.

6.6.4 Target symbols: static and dynamic

From the 18 (3⇥6) symbols of each layout, participants had to se-
lect 8 of them. Table 6 shows these 8 target symbols. Figure 36
illustrates the static targets symbols in orange borders and illus-
trates the dynamic targets in red color. I distinguish between static
and dynamic targets. Static targets had identical locations in all lay-
outs (P, N4 and N8). Dynamic targets had changed locations be-
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Location

Previous New

Prox. No. Icon control 4-change 8-change

1 (1,3) (1,3) (1,3)

2 (3,5) (3,5) (3,5)

3 (2,1) (2,1) (2,1)S
ta

ti
c

Fix

4 (1,6) (1,6) (1,6)

1 (1,4) (1,5) (1,5)
Close

2 (3,2) (3,2) (2,2)

3 (2,6) (3,1) (3,1)

D
y

n
a

m
ic

Far
4 (1,1) (1,1) (2,5)

Table 6: Target symbols’ locations (as shown in Figure 32) for the three
layouts. These targets are divided into two types: static and
dynamic.

tween the layout P and the layouts N4 and/or N8. The reason for
asking participants to also select static targets was to understand
whether changing the location of the learned symbols (dynamic)
can influence the performance of the unchanged symbols (static).

To be able to compare the performance of static and dynamic
targets, the locations of the static symbols vertically mirrored the
locations of dynamic symbols (i.e., mirrored in Figure 32).
To measure the effect of proximity, half of the dynamic targets
were involved in a close change and half in a far change.

6.6.5 Design

The experiment had a mixed design. As seen in Figure 37 The
participants of condition control (Table 5c) learned only the lay-
out P performing phases (1, 3, 5). The participants of condition
4-change (Table 5d) learned both layouts P and N4 performing
all phases (1,2,3,4,5). The participants of condition 8-change (Ta-
ble 5e) learned both layouts P and N8 performing also all phases.
Each phase contained 9 blocks. Each block contained 16 trials.
In each trial, participants selected 4 target symbols (a total of 64
selections per block). The 8 target symbols appeared randomly
within the block following a uniform distribution similar to (Alt-
mann and Gray, 2008).
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Figure 37: In overall there are three conditions, the control condition,
in which the users learned only the layout P, and had the
rest-time in between. The users of condition N4 learned both
layouts P and N4 and the users of condition N8 learned both
layouts P and N8.
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In summary, the design was: 3 conditions ⇥ 18 participants ⇥
5 phases (only 3 phases for the condition 1)⇥ 9 blocks ⇥ 16 trials
⇥ 4 targets = 134 784 selections.

6.7 data interpretation

6.7.1 Independent variables

I considered five independent variables. The between factor was:

• condition (control, 4-change and 8-change) indicating the
number of changes.

The within factors were:

• type (static and dynamic)

• proximity (close and far)

• alternation (1, 2) Alternation-1 occurred in phase 3 and
alternation-2 in phase 5 .

• block (1-9)

6.7.2 Dependent variables

Retroactive transfer is analysed concerning the first and second
alternation. Dependent variables for each of them is as follow:

6.7.2.1 Retroactive transfer, Alternation-1

(Figure 18c): To investigate the effect of learning a new layout
(first exposure to layout N) on the performance of the layout P, I
measured the temporal performance drop between phases 1 and 3
(Yotsumoto et al., 2013).

6.7.2.2 Retroactive transfer, Alternation-2

(Figure 18d): To investigate the effect of alternation (second ex-
posure to layout N) on the performance of layout P, I compared
the temporal performance drop between phases 1 and 3 with the
temporal performance drop between phases 3 and 5 .

I also measured error per block, i.e. The number of incorrect
attempts to select a target for these phenomena.
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6.7.3 Statistics

To be consistent with previous retroactive transfer studies, I ana-
lyzed the data using two-way mixed anova (Healy et al., 2011).
To better communicate the findings (Dragicevic, 2016), I con-
ducted a second analysis of the same data using 95% confidence
intervals (CI), which I report visually in Figure 40. The results
with both methods were consistent.

6.8 conclusion

In this chapter, I described an experimental design to investigate
retroactive transfer phenomena while alternating between two ab-
stract grid layouts. The experimental task and the controlled fac-
tors are inspired by the result of two interviews and based on
real experiences of the users, Chapter 5. Instead of using the real
keyboard, an abstract grid layouts was used. It eliminates the cog-
nitive aspects of learning a new complex keyboard and focuses on
the transfer level, so that the drop of performance after a retroac-
tive transfer can be measured and compared across experimental
conditions. The task is controllable with several impactful factors
(i.e., the amount of similarity, practice time and number of alter-
nation) on amplitude of interference, thus allowing to quantita-
tively compare the results and user behaviors while performing
the experiment.

I will describe the results of this experiment in the following
chapter and explain four parts of the experiment: intramodal im-
provement, proactive transfer, retroactive transfer in first alterna-
tion and retroactive transfer in second alternation.





Part III

D ATA A N A LY S I S





7
S TAT I S T I C A L R E S U LT S

As explained in previous chapter, a controlled lab experiment has
been run to investigate the influence of retroactive transfer phe-
nomena on user’s performance. This chapter describes the data
analysis of the study presented in the previous chapter (Chap-
ter 6) to uncover the effects of retroactive interference. It also
present the result concerning other learning phenomena related
to the retroactive transfer, intramodal improvement and proac-
tive transfer. In overall the analysis focused on four phenomena:
intramodal improvement, proactive transfer and retroactive trans-
fer for first and second alternations.

More precisely, each phenomena had its own dependent vari-
ables. Intramodal Improvement (Figure 18a) and the effect of prac-
tice on learning process of P in phase 1, has been measured using
the average selection time per block. Proactive transfer has been mea-
sured by the temporal performance drop between phase 1 and phase
2. It shows the effect of learning a previously learned layout P on
the performance of the layout N. This measurement is based on
reviewed previous works in Chapter 4. It is defined as the differ-
ence of average selection time between the end of phase 1 (last
block 1) and the beginning of phase 2 (first block) (Schmidt and
Lee, 1988; Singley and Anderson, 1989).

Retroactive transfer, alternation_1 (Figure 18c) has been measured
by the Temporal Performance Drop (tpd) between phases 1 and
3 (Yotsumoto et al., 2013). This measurement gives the effect of
learning a new layout (first exposure to layout N) on the per-
formance of the layout P. Finally to investigate Retroactive trans-
fer, alternation_2 (Figure 18d), I compared the temporal performance
drop between phases 1 and 3 with the temporal performance drop
between phases 3 and 5. The result shows the effect of alterna-
tion (second exposure to layout N) on the performance of layout
P. I analyze these dependent variables regarding the following
independent variables:

• condition (control, 4-change and 8-change) which indi-
cates the number of changes

1I also considered the best block (instead of the last block) for proactive
and retroactive transfer. I considered the best block as some participants could
experience fatigue at the end of each block. However, the results were consis-
tent for both analysis (last block vs. best block). I thus decided to only report
data for the last block.

91



92 statistical results

• type (static and dynamic)

• proximity (close and far)

• block (1 to 9)

• alternation (1 and 2) in which alternation_1 occurred in
phase 3 and alternation_2 in phase 5

Condition is the only between factor, and the rest of variables are
within factors. anova and confidence intervals are the methods I
used to make a link between these independent and dependent
variables.
7.1 methodology

7.1.1 Analysis of variance

In this chapter, I use Two-way mixed anova as a main method.
Analysis of variance (anova) was devised originally to test the dif-
ferences between several different groups of treatments (Snedecor
and Cochran, 1980). anova is a method of great complexity and
subtlety with many different variations, each of which applies in
a particular experimental context. Two-way analysis of variance
(anova) examines the influence of two different independent vari-
ables on one continuous dependent variable. The two-way anova
not only aims at assessing the main effect of each independent
variable but also if there is any interaction between them (Fu-
jikoshi, 1993).

7.1.2 Confidence interval

Figure 38: Distribution of sample means around population mean.

In all plots, error bars show the 95% Confidence Interval (CI). CI
is a type of estimate computed from the statistics of the observed
data. It indicates that the true population mean probably lies
based upon a much smaller random sample taken from that pop-
ulation (Smithson, 2002). In statistical analysis, most commonly a
95% confidence level is used (Zar, 1999). A 95% Confidence Inter-
val of a Mean (Figure 38) is the interval that has a 95% chance of
containing the true population mean.
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Figure 39: (a) Intramodal improvement (time) of layout P for all phases
per block ⇥ condition for all targets. (b) Proactive Trans-
fer. (c) Retroactive Transfer in alternation_1. (d) Retroactive
Transfer in alternation_2. (mean tpd per condition (number
of changes) ⇥ type of targets (static vs. non-static) was cal-
culated for b,c,d). Error bars indicate 95% CI.
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Figure 40 compares the learning curves for the conditions con-
trol, 4-change and 8-change. Blue colors indicate the analysis of
the layout P and orange colors the analysis of the layout N. I re-
port both analyses (two-way mixed anova and CI) on intramodal
improvement (a), proactive transfer (b), and retroactive transfer
for alternation_1 (c) and alternation_2 (d). I only report selection
time and mean temporal performance drop among participants
(tpd) along with CI, as I did not find effects of the different fac-
tors on error.

7.2 intramodal improvement

Figure 40: (a) Intramodal improvement (time) of layout P for all phases
per block ⇥ condition for all targets. Error bars indicate
95% CI.

To measure intramodal improvement, I analyzed all blocks of
phase 1 for all conditions. A condition (control, 4-change, 8-
change) ⇥ block (1-9) anova was performed on time with a re-
peated measures analysis of the last factor. It yielded a significant
effect of block, F8,408 = 83.68,p < 0.0001. Post-hoc comparisons
with Tukey HSD test indicated that participants saved 300ms (25%
improvement) from block 1 to block 4 and no significant differ-
ences from block 4 to 9. It indicates that participants reached a
plateau of performance with the layout P. I did not observe an
effect of condition. As all participants used the same layout P,

it confirms similar initial performance across conditions. The
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CI analysis, illustrated in Figure 40a, also shows no observable
difference in performance among the participants of the different
conditions.

7.3 proactive transfer
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Figure 41: Proactive transfer. Mean temporal performance drop (tpd)
per condition (number of changes) ⇥ type of targets
(static vs. non-static) was calculated. Error bars indicate 95%
CI.

Proactive transfer has been measured by the temporal performance
drop (tpd) to show the difference of average selection time be-
tween the end of phase 1 (last block 1) and the beginning of phase
2 (first block).

7.3.1 All targets

I first compared the two conditions 4-change and 8-change
considering all targets. anova revealed a significant effect of
condition on tpd, F1,34 = 4.48,p < 0.05. A post-hoc Tukey
HSD test shows that tpd with N4 (+86 ± 59ms) is significantly
smaller than the one with N8 (+170 ± 59ms), suggesting that
the tpd increases with the number of changes. The CI analysis,
illustrated in Figure 41 (All targets), confirms a difference
between the two conditions and that both conditions are affected
by a performance drop (0 is not included in the CI).

7.3.2 Static vs. dynamic targets

I then refined the analysis by distinguishing static vs. dynamic tar-
gets (see the list of static and dynamic targets in both layouts
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N4 and N8 in Table 6). I conducted a condition (4-change, 8-
change)⇥type (static, dynamic) ANOVA with a repeated mea-
sures analysis of the last factor.

It yielded a significant effect of type on tpd (F1,34 = 7.86,p <
0.01). A post-hoc Tukey HSD test shows the tpd caused by static
targets (+70 ± 53ms) is significantly smaller than the one caused
by dynamic targets (+240 ± 76ms). However, I did not have an
effect of condition on tpd (p = 0.3) or condition⇥type interac-
tion effect (p = 0.2). It suggests that the larger performance drop

of N8 is due to the extra number of changes. However this extra

number of changes does not affect the tpd of the other static

and dynamic targets.

7.3.3 Proximity

Finally, I refined again the analysis to study the impact of prox-
imity on the tpd of dynamic targets. I conducted a condition (4-
change, 8-change)⇥proximity (close, far) anova with a repeated
measures analysis of the last factor. anova revealed no effect of
condition (p = 0.1), proximity (p = 0.7) or their interaction
(p = 0.7) on tpd.

7.4 retroactive transfer : alternation_1
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Figure 42: Retroactive transfer, alternation_1. Mean temporal perfor-
mance drop (tpd) per condition (number of changes) ⇥
type of targets (static vs. non-static) was calculated. Error
bars indicate 95% CI.

Retroactive transfer, alternation_1 has been measured by the tem-
poral performance drop (tpd) between phases 1 and 3. This mea-
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surement gives the effect of learning a new layout N on the per-
formance of the layout P.

7.4.1 All targets

I first compared the three conditions (control, 4-change and 8-
change) and considered all targets . ANOVA yielded a significant
effect of condition on tpd, F2,51 = 6.8,p < 0.005. Post-hoc com-
parisons using Tukey HSD test indicated that condition control (-
37 ± 48ms) has a significant smaller tpd than condition 4-change
(+52 ± 51ms) and condition 8-change (+95 ± 61ms). But there was
no significant difference between the conditions 4-change and 8-
change. The CI analysis, illustrated in Figure 42 (All targets), con-
firms a difference between the conditions and that conditions 4-
change and 8-change are affected by a performance drop (0 is not
included in the CI).

I next refined the analysis by investigating static and dynamic
targets. As condition control does not have dynamic targets, I
first performed an analysis focusing only on static targets for all
conditions.

I then excluded the condition control and compared static vs.
dynamic targets by considering only conditions 4-change and 8-
change. (similar to the analysis of proactive transfer).

7.4.2 Static targets for all conditions

I run a condition (control, 4-change, 8-change) ANOVA which
showed no significant effect of condition on tpd (p = 0.3). The
average tpd for static target is -37 ± 48ms in condition control,
+45 ± 60ms in condition 4-change and +72 ± 126ms in condition
8-change.

7.4.3 Static vs. dynamic targets (conditions N4 and N8)

I conducted a condition (4-change, 8-change)⇥type (static, dy-
namic) ANOVA with a repeated measures analysis of the last fac-
tor. It showed a significant effect of type on tpd (F1,34 = 5.2,p <
0.05). A post-hoc Tukey HSD test shows the tpd caused by static
targets (+59 ± 69ms) is significantly smaller than the one caused
by dynamic targets (+174 ± 81ms). However, an effect of condi-
tion on tpd (p = 0.2) or condition⇥type interaction effect (p =
0.6) was not observed. It suggests that the larger performance

drop of N8 is due to the extra number of changes. However this
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extra number of changes does not affect the tpd of the other

static and dynamic targets.

7.4.4 proximity

Finally, I studied the impact of proximity on tpd of dynamic tar-
gets. I run a condition (4-change, 8-change)⇥proximity (close,
far) anova. It showed no effect of condition (p = 0.1), proxim-
ity (p = 0.2) or their interaction (p = 0.5) on tpd.

7.5 second retroactive transfer : alternation_2
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Figure 43: Retroactive transfer, alternation_2. Mean temporal perfor-
mance drop (tpd) per condition (number of changes) ⇥
type of targets (static vs. non-static) was calculated. Error
bars indicate 95% CI.

Retroactive transfer, alternation_2 has been measured by the
temporal performance drop (tpd) between phases 1 and 3 with
the tpd between phases 3 and 5. The result shows the effect of
alternation (second exposure to layout N) on the performance of
layout P.

7.5.1 All targets

I considered all targets and performed a condition (control, 4-
change, 8-change)⇥alternation (1,2) anova on tpd with a re-
peated measures analysis of the last factor. It yielded a significant
effect of condition, F2,51 = 11.56,p < 0.0001 and alternation,
F1,51 = 6.35,p < 0.05 on tpd. Post-hoc comparisons using Tukey



7.6 another perspective on data 99

HSD test revealed that condition 8-change (+91 ± 51ms) has a
significant larger tpd than conditions control (-41 ± 34ms) and
4-change (+12 ± 43ms), confirmed by the CI analysis in Figure 43
(All targets). Moreover, Post-hoc comparisons using Tukey HSD
test shows that tpd during the alternation_1 (+52 ± 36ms) was sig-
nificantly higher than the one during alternation_2 (-11 ± 34ms).

Similar to the previous subsection, I refined the analysis com-
paring static targets for all conditions and comparing static vs.
dynamic targets for conditions 4-change and 8-change.

7.5.2 Static targets for all condition

I conducted a condition (control, 4-change, 8-change) ⇥ alter-
nation (1,2) ANOVA which showed no significant effect of con-
dition (p = 0.09) or alternation (p = 0.1) on tpd. The average
tpd for static target is -41 ± 33ms in condition control, 0 ± 58ms
in condition 4-change and +40 ± 74ms for condition 8-change.

7.5.3 Static vs. dynamic targets (conditions N4 and N8)

I conducted a condition (4-change, 8-change) ⇥ type (static, dy-
namic) ⇥ alternation (1,2) ANOVA with a repeated measures
analysis of the last factor. It revealed a significant effect of type
(F1,34 = 10.16,p < 0.005), as well as a significant effect of al-
ternation on tpd (F1,34 = 4.97,p < 0.05) on tpd. A post-hoc
Tukey HSD test shows the tpd caused by static targets (+20 ±
47ms) is significantly smaller than the one caused by dynamic
targets (+126 ± 55ms). It also shows tpd for alternation_1 (+108
± 52ms) is significantly higher than alternation_2 (+22 ± 49ms).

7.5.4 Proximity

In another ANOVA I investigated the effect of proximity on the
tpd of dynamic targets. There was no significant effect of condi-
tion (p = 0.3), proximity (p = 0.07), alternation (p = 0.1), or
of their interactions, on tpd.

7.6 another perspective on data

Figure 40 illustrates the comparison of conditions but Figure 44
illustrates the comparison of phases offering another perspective
on the same dataset. Figure 44 compares the performance im-
provement for each phase given a condition. It illustrates that at
the end of each phase, the selection time is similar regardless the
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Figure 44: Intramodal improvement (selection time) for each phase for
each condition.

phase indicating that users reached a plateau of performance. It
also shows the initial selection time (block 0) decreases with the
number of alternations but increases with the number of changes.

7.7 self estimation of temporal performance drop

At the end of the experiment, participants of conditions 4-change
and 8-change rated the evolution of their performance for proac-
tive and retroactive transfer (7-Likert scale). Participants reported
a tpd for both proactive and retroactive transfer, which increased
with the number of changes in the new layouts (Figure 45).
Therefore, participants subjective performance appeared consis-
tent with the objective metrics. However, especially for 4-change,
I note that about 33.34% participants reported the impression to
improve their performance when returned to the layout P.

80 40 0 40 [%]

Much more slower Much more faster

Performance of N8 after P

Performance of N4 after P

Performance of P after N8

Performance of P after N4

Figure 45: Participants’ self estimation of their temporal performance
drop (tpd) per transfer (proactive - Top and retroactive -
Bottom) and condition (4-change vs. 8-change).
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7.8 discussion

The findings of the results are as following:

R1: What is the impact of alternations on the performance?
The primary objective of this chapter was to investigate the effect
of learning a new layout N on the performance of previously
learned layout P. The results show that retroactive interference
occurs when participants are temporally exposed to a partially
changed layout (i.e. N4 or N8). The performance drop is +52ms
for condition 4-change and +95ms for condition 8-change which
represents 16% and 37%, respectively. I was expecting some
interference, but these results remain surprising, especially for
N4. Indeed, given the experimental design, 6 out of 8 targets
(75%) are at the same location in P and N4. So, for 75% of
the targets, users should benefit practicing N4 as it should be
equivalent to continue practicing P. However, having just the two
targets with different positions in N4 were sufficient to produce
a significant performance drop for the entire interface. In other
words, even a few changes in the interference interface results in
retroactive interference which significantly impairs the overall
performance with the previously learned interface.

R2: What is the impact of similarity between the layouts on the
performance?
The anova did not indicate a difference in temporal performance
drop (tpd) between conditions 4-change and 8-change at either
the layout level (condition) or the target level (static vs. dynamic).
A key feature of the experimental design was to control two
aspects of similarity: number of changes and proximity. However,
neither revealed an effect on tpd. However, CI-based analysis
(Figure 42) at both the layout (-all targets) and target (-static,
-dynamic) levels suggest that tpd increases linearly with the
dissimilarity between P and N (i.e. N8 is less similar than N4 to
P). One possible explanation is that the effect exists but somehow
was not captured by the experimental design or analysis. Further
investigation should consider larger sample sizes, conditions
with a larger number of changes and potentially more training
with both P and the interference layout.

Our study aimed to evaluate users’ behaviour when alternating
between interfaces. The results show that the tpd significantly
decreases (31%) with the number of alternations. Figure 40a illus-
trates this clearly with a continual decrease in the initial selection
time for each phase. It suggests that retroactive interference can
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be reduced with alternations and practice.

Error
Contrary to expectations, I did not find a significant effect on
error for the different factors. One possible explanation is that
the task was cognitively demanding. In more realistic scenarios,
users might focus on higher level tasks (e.g. writing an email)
decreasing their attention to the keyboard. I foresee that the tpd
would then translate into more errors in more ecological settings,
but more investigation is necessary.

Proactive vs. retroactive interference
Most results about retroactive interference are in line with proac-
tive interference such as the effect of type (static vs. dynamic)
on tpd, the lack of effect of proximity and also experiencing a
tpd with both conditions 4-change and 8-change by users. It con-
firms that switching from one interface to another one (P ! N
or N ! P) produces interference. However, for proactive interfer-
ence, the condition 4-change appeared significantly less affected
by the tpd than the condition 8-change, probably because its
larger effect size.

7.9 conclusion

To summarize this chapter, I analysed different phenomena re-
lated to retroactive interference while alternating between two
layouts. The results show that having a small changes in the key’
positions of interference interface is sufficient to produce a signif-
icant performance drop for the entire interface. However, increas-
ing the number of alternation facilitates the transfer and decreases
the amount of performance drop. Furthermore, the results do not
show evidence of the performance drop incurred by similarity be-
tween the previous and new learned layouts. The analysis could
not possibly provide insight about similarity since larger sample
sizes are needed or even the effect could not captured by anova
analysis.
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C O N C L U S I O N S

8.1 summary

Given the ubiquitous nature of interaction, it is common to use
different devices (keyboard layout), operating systems (Windows,
Mac) or software (text editors) to achieve a single task. In this
thesis, I investigated retroactive transfer phenomena while alter-
nating between interfaces. Retroactive transfer is the influence of
a newly learned interface on the performance of a previously
learned interface. Based on interview findings (Chapter 5), neg-
ative retroactive transfer appears more likely to occur when al-
ternating keyboard layouts than other interfaces. Therefore, I con-
ducted an experiment (Chapter 6) investigating retroactive trans-
fer between two abstract keyboard layouts. I controlled the degree
of similarity between the keyboard layouts as theories in Chap-
ter 4 suggest that similarity is an impactful factors on retroactive
transfer. It is also a relevant factor to HCI as designers can more
easily manipulate it. A key aspect of the experiment is to study
retroactive transfer not only for the first alternation, but also for
the second alternation. One of the main finding is that the am-
plitude of performance drop decreases by the number of alterna-
tions. Another key finding is that even small changes in the new
interface produced a significant performance drop for the entire
previously learned interface (Chapter 7).

8.2 implications

HCI researchers generally focus on skill acquisition, intramodal
learning and transfer of learning. Now through describing
retroactive transfer phenomena in this thesis, I aimed at encour-
age designers to pay more attention to the impact of introduc-
ing novel interfaces on previously learned skills because of the
ubiquitous nature of interaction across applications. The inter-
views (Chapter 5) revealed that there are many situations in users’
daily routine where they alternate between devices, interfaces,
software, or operating systems for the same type of tasks (e.g.,
pointing, entering text, executing commands, etc.).

So designers and researchers should not assume that providing
a new system, interface or device will replace the previous one,
but it is likely to co-exist with the previous one. They should thus
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consider the transition from the previous to the new interface but
also from the new interface to the previous one. Empirically eval-
uating retroactive transfer seems essential for ecologically valid
investigation of interface design.

8.3 future work

8.3.1 Investigating additional factors

The experiment in this thesis, focused on similarity as it is a crit-
ical factor for interaction design (Bi et al., 2010). However, there
were several factors I left aside that would require further inves-
tigation. For instance, manipulating the amount of practice and
rest time might indicate whether expert users (i.e. skilled touch
typists) would experience these phenomena to the same degree.

Also, one might investigate how the distribution of target fre-
quency influences proactive and retroactive transfer. In the exper-
imental design, I used a uniform distribution (i.e. each target had
the same probably of appearing within a block). However, in real
scenarios, the frequency of each character and bigrams depend on
the language. According to results in sequential learning (Koedi-
jker et al., 2010), the magnitude of the interference could be larger
for frequent bigrams. In addition, one should investigate the im-
pact of different modalities, e.g. gestures, on retroactive interfer-
ence. Which modalities minimize retroactive interference? Finally,
future research is necessary to generalize the results to real-world
problems, e.g., real keyboard layouts.

8.3.2 Modeling human performance when experiencing multiple alter-
nations

The first part of the thesis builds on theoretical findings from cog-
nitive psychology to study retroactive transfer in HCI. The second
part of the thesis relies on an empirical approach with both qual-
itative and quantitative experiments. As future work, we aim to
investigate a model-based approach by elaborating computational
models to predict human performance when alternating inter-
faces.

Computational models of human performance have several ad-
vantages. They can translate observations into an anticipation of
future events and predict human behaviors. The outcome of the
models are then used to understand, design, manage and predict
the workings of complex systems and processes. Computational
modeling can empower designers and researchers of HCI domain.
Because the three elements of HCI (i.e., the human, the computer,



8.3 future work 107

and interaction) are extremely complex, models can help to ex-
plain such complexity (Oulasvirta, 2019). They can also help to
design more efficient interactive systems without expensive em-
pirical studies. Moreover, the powerful models can even be incor-
porated into interactive design tools (Bailly et al., 2014).

I plan to elaborate models of human performance at two levels
of granularity:

- Behavioral models (short-term)

- Cognitive models (long-term)

Behavioral models are more understandable and easy to imple-
ment than cognitive models. In other hand, cognitive models are
more flexible and can explain how the human behavior emerges
from cognitive constraints.

8.3.2.1 Behavioral model

A promising approach to elaborate a predictive model of retroac-
tive transfer is the model of Predictive Performance Equation
(ppe), described in Chapter 3. ppe covers three phenomena: learn-
ing which is presented in the form of Power Law of Practice (plp),
decay that can appear in the form of an activation equation, and
distributed effect which is equivalent to the rest time in retroactive
transfer’s experiment.

However, there are two potential challenges. The first one is to
study how well this model can be extended to capture retroac-
tive transfer phenomena and the effects of multiple alternations.
It currently focuses on learning and skill acquisition. The second
challenge is to integrate a mechanism to capture the effect of sim-
ilarity on the three components of the model.

I have started to investigate how to introduce the effect of simi-
larity on the plp. As first step, I have modified the equation of plp
to integrate the amount of similarity, as well as the number of al-
ternation. I tested this part of the model on the data of user exper-
iment explained in the Chapter 6. The modified plp have yielded
progress in predicting retroactive transfer, but it still needs more
work. Also, the type of targets which are static and dynamic need
to take into consideration. The selection time for each condition
predicted by the current model (up to now), is displayed in Fig-
ure 46. Implementing two other components are the future direc-
tion of this work.
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Figure 46: Model of retroactive transfer. The first row illustrates the
learning curve while there are rest times in between. The two
other rows illustrate the learning curve affected by retroactive
interference by 2 different similar keyboard layouts.

8.3.2.2 Cognitive model

The long-term perspective is to elaborate cognitive models. One
of the main advantage of cognitive models is their generalizability.
The advantage of cognitive model over behavioural model is that
the cognitive model can be used to derive new predictions for
new relationships that go far beyond the original data (Busemeyer
and Diederich, 2010).

Several approaches are possible to elaborate cognitive models.
One approach consists of building models based on well estab-
lished cognitive architecture such as ACT-R. This approach in-
cludes integrating many advanced cognitive components. ACT-
R offers various interacting modules, mainly perceptual systems
(e.g., vision module), motor systems (e.g., manual module), and
memory coordinated through a production system.

A trend in HCI is to build simpler models using only a subset
of relevant components of ACT-R, such as the proactive trans-
fer model proposed by Jokinen et al. (Jokinen et al., 2017). Their
model explains the negative impact of switching to a partially
changed keyboard layout on typing performance. My work pro-
vides two main directions to extend this model. First, the results
show that the dynamic targets influence performance time of
other targets when switching to the new layout (proactive trans-
fer). Such model should thus introduce mechanisms to explain
how changed keys influence the performance of other keys. Sec-
ond, the model could be extended to integrate phenomena related
to retroactive transfer.
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As described in Chapter 4, their model relies on some impor-
tant components of the cognitive architecture of ACT-R (Ander-
son, 1982, 1983). I was expecting that the mechanisms like mem-
ory activation (Anderson et al., 1998) should explain the retroac-
tive transfer. Since retroactive transfer is pretty much like the
proactive transfer, but from new to old layout.

During this thesis, I started to investigate how to extend their
model. However, I realized that the output generated by the simu-
lation code (provided by J.Jokinen) does not capture retroactive in-
terference phenomenon. As it is shown the temporal performance
drop (tpd) between Phase 1 and Phase 3 is not confirming an in-
terference.
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Figure 47: Retroactive transfer scenario, output of model developed in
(Jokinen et al., 2017)

Therefore, to find the source of this problem, I’ve reimple-
mented the model. However, some theoretical flaws in their
model have also been identified. As explained in Chapter 4, when
there is a competition between two similar key’s letters with dif-
ferent locations (i.e., between two chunks in declarative memory),
the authors proposed to compare the utility values instead of acti-
vation values. Utility values are allocated to the production rules,
and they can be compared when there are a conflict between simi-
lar production rules (in procedural memory). As future work, we
thus aim to investigate how to exploit key components of ACT-
R to elaborate a model capturing retroactive transfer phenomena
while keeping simple enough to be easily integrated in design
tools.



8.3.3 Intelligent systems

The ultimate goal is to integrate the above models in intelligent
systems. Typically, intelligent systems with the capacity to cap-
ture alternations can avoid/reduce retroactive interference. For
instance, they can provide some recommendations such as in-
creasing rest time at a given alternation or increasing training
to reduce the risk of interference. It can be a system that get dif-
ferent keyboard layout that is used in different devices as input
(e.g., layouts in laptop, smartphone, etc.). When a new layout en-
ters, the system recommends to use it, modify it (i.e., modify the
key locations based on the previously learned keyboard layouts),
gives the notification for finding the new key locations or gives
the notification to prevent the possible errors.
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