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Abstract
Automated Machine Learning (AutoML) aims at rendering the application

of machine learning methods as devoid of human intervention as possible.

This ambitious goal has been the object of much research and engineering

ever since the outset of ML. While reaching fully automated ML on any possible

applicationmay still remain out-of-reach for several decades, there are practical

and fundamental motivations to advance the state-of-the-art in this field. The

objective of this thesis is to put a formal framework around this multi-faceted

problem, to benchmark existing methods, and to explore new directions.

In previous work, AutoML is often synonymous of automated hyperparame-

ter optimization (HPO) and/or model selection for a particular learning problem,

as defined by some training data. The final performance evaluation is carried

out on a test set drawn for the same data distribution as the training data

(i.i.d. assumption). Neither training nor test duration are usually considered in

this problem setting.

Our definition of the AutoML problem makes several departures from this

simplified setting: For one, we go beyond the “single task” case and plunge the

AutoML problem is the broader context of a family of tasks of similar nature.

We therefore include in our setting the problems of transfer learning whose

goal is to transfer “knowledge” from task to task, be it for multi-task learning

or domain adaptation. Transfer learning can be tackled with various forms of

meta-learning by making use of examples of tasks from the family of interest

to “meta-train” the learning machine. Secondly, we define learning tasks in

a more realistic and pragmatic way: a task includes not only a dataset (split

into a training and test set), but also a metric of evaluation, a time budget

(for training and testing), and well-defined computational resources (including

memory constraints).

To formulate the AutoML problem in a rigorous way, we first introduce a

mathematical framework that: (1) categorizes all involved algorithms into three

levels (α , β and γ levels); (2) concretely defines the concept of a task (especially

in a supervised learning setting); (3) formally defines HPO and meta-learning;

(4) introduces an any-time learning metric that allows to evaluate learning

algorithms by not only their accuracy but also their learning speed, which

is crucial in settings such as hyperparameter optimization (including neural

architecture search) or meta-learning. This mathematical framework unifies



different sub-fields of ML (e.g. transfer learning, meta-learning, ensemble

learning), allows us to systematically classify methods, and provides us with

formal tools to facilitate theoretical developments (e.g. the link to the No Free

Lunch theorems) and future empirical research. In particular, it serves as the

theoretical basis of a series of challenges that we organized.

Indeed, our principal methodological approach to tackle AutoML with Deep

Learning has been to set up an extensive benchmark, in the context of a

challenge series on Automated Deep Learning (AutoDL), coorganized with

ChaLearn, Google, and 4Paradigm. These challenges provide a benchmark

suite of baseline AutoML solutions with a repository of around 100 datasets

(from all above domains), over half of which are released as public datasets

to enable research on meta-learning. The challenge platform, the starting kit,

the dataset formatting toolkit and all winning solutions are open-sourced. At

the end of these challenges, we carried out extensive post-challenge analyses

which revealed that: (1) winning solutions generalize to new unseen datasets,

which validates progress towards universal AutoML solution; (2) Despite our

effort to format all datasets uniformly to encourage generic solutions, the par-

ticipants adopted specific workflows for each modality; (3) Any-time learning

was addressed successfully, without sacrificing final performance; (4) Although

some solutions improved over the provided baseline, it strongly influenced

many; (5) Deep learning solutions dominated, but Neural Architecture Search

was impractical within the time budget imposed. Most solutions relied on fixed-

architecture pre-trained networks, with fine-tuning. Ablation studies revealed

the importance of meta-learning, ensembling, and efficient data loading, while

data-augmentation is not critical. All code and data (including post-challenge

analyses data) are available at autodl.chalearn.org.

Besides the introduction of a novel general formulation of the AutoML

problem, setting up and analyzing the AutoDL challenge, the contributions of

this thesis include: (1) Developing our own solutions to the problems we posed

to the participants. Our work GramNAS tackles the neural architecture search

(NAS) problem by using a formal grammar to encode neural architectures. This

provides a very robust and versatile solution to algorithm representation and

opens the possibility to analyze learning of algorithms from the essential: after

all, the ultimate representation of an algorithm is its code (together with a

compiler). Two alternative approaches have been experimentally investigated:

one based on Monte-Carlo Tree Search (MCTS) and one based on an evolution-

ary algorithm. As tree structures arise very naturally with formal grammars,

Monte-Carlo Tree Search may be used rather naturally as search algorithm.

autodl.chalearn.org


The MCTS GramNAS algorithm achieves state-of-the-art performance (94%

accuracy) on CIFAR-10 dataset. We also cast on our GramNAS framework

the AgEBO (Aging Evolution with Bayesian Optimisation) algorithm to illus-

trate the other approach. This last algorithm lends itself to parallelism. In a

benchmark on 4 large well-known datasets, it beats state-of-the-art packages

AutoGluon and AutoPytorch. The GramNAS framework provides insights to

the understanding and representation of learning algorithms. A tool-kit was

open-sourced to craft customized formal grammars for novel applications,

allowing users to reuse common underlying search strategies. (2) Laying the

basis for a future challenge on meta-learning. The AutoDL challenge series re-

vealed the importance of meta-learning to succeed in solving AutoDL tasks.

Yet the challenge setting did not evaluate meta-learning in the sense that

meta-learning was not carried out on the challenge platform: code submitted

by participants was only trained and tested independently on several tasks.

With an intern, we are experimenting with various meta-learning challenge

protocols. (3) Making theoretical contributions. During the course of this thesis,

several collaborations were entered to tackle problems of meta-learning and

transfer learning. We formulate meta-learning in a reinforcement learning

setting and prove that under certain conditions, the average performance

of the random search cannot be outperformed. We also make theoretical

analysis on the super-generalization ability of the LEAP nets proposed by us

and prove that when the perturbations of the system are additive, LEAP nets

are capable of achieving super-generalization.





Abstract
(version française) L’apprentissage automatique automatisé (AutoML) vise

à rendre l’application des méthodes d’apprentissage automatique (ML) aussi

dépourvue d’intervention humaine que possible. Cet objectif ambitieux a fait

l’objet de nombreuses recherches et techniques depuis les débuts du ML.

L’objectif de cette thèse est de mettre un cadre formel autour de ce problème

aux multiples facettes, de comparer les méthodes existantes et d’explorer de

nouvelles directions.

Pour formuler le problème AutoML de manière rigoureuse, nous introdui-

sons d’abord un cadre mathématique qui : (1) catégorise tous les algorithmes

impliqués en trois niveaux (niveaux alpha, beta et gamma) ; (2) définit concrè-

tement le concept de tâche (en particulier dans un cadre d’apprentissage

supervisé) ; (3) définit formellement HPO et méta-apprentissage ; (4) introduit

une métrique d’any-time learning qui permet d’évaluer les algorithmes d’ap-

prentissage non seulement par leur précision, mais également par leur vitesse

d’apprentissage. Ce cadre mathématique unifie différents sous-domaines du

ML, nous permet de classer systématiquement les méthodes et nous fournit

des outils formels pour faciliter les développements théoriques et de futures

recherches empiriques. En particulier, il sert de base théorique à une série de

challenges que nous avons organisés.

En effet, notre principale approche méthodologique pour aborder AutoML

avec Deep Learning a été de mettre en place un benchmark étendu, dans le

cadre d’une série de challenges sur l’Automated Deep Learning (AutoDL). Ces

challenges fournissent une suite de référence de solutions AutoML de base

avec un référentiel d’environ 100 datasets, dont plus de la moitié sont publiés

sous forme de datasets publics pour permettre la recherche sur le méta-

apprentissage. À la fin de ces challenges, nous avons effectué des analyses

post-challenge approfondies qui ont révélé que : (1) les solutions gagnantes

se généralisent à de nouveaux datasets invisibles, ce qui valide les progrès

vers la solution universelle AutoML; (2) Malgré nos efforts pour encourager

des solutions génériques, les participants ont adopté des flux de travail spéci-

fiques pour chaque modalité ; (3) L’any-time learning a été abordé avec succès,

sans sacrifier la performance finale ; (4) Bien que certaines solutions se soient

améliorées par rapport à la baseline fournie, elles en ont fortement influencé

plusieurs ; (5) Les solutions d’apprentissage en profondeur dominaient, mais la



recherche d’architecture neuronale n’était pas pratique dans les délais impar-

tis ; (6) Les études d’ablation ont révélé l’importance du méta-apprentissage, de

l’assemblage et du chargement efficace des données, tandis que l’augmenta-

tion des données n’est pas critique. Tous les codes et données sont disponibles

sur autodl.chalearn.org.

Outre l’introduction d’une nouvelle formulation générale du problème Au-

toML, la mise en place et l’analyse du challenge AutoDL, les contributions de

cette thèse comprennent : (1) Développer nos propres solutions aux problèmes

que nous avons posés aux participants. Notre travail GramNAS s’attaque au

problème de la recherche d’architecture neuronale (NAS) en utilisant une gram-

maire formelle pour encoder les architectures neuronales. Deux stratégies de

recherche alternatives ont été étudiées expérimentalement : une basée sur

Monte-Carlo Tree Search (MCTS), qui atteint une précision de 94% sur le data-

set CIFAR-10, et une autre basée sur un algorithme évolutif qui bat les packages

de pointe AutoGluon et AutoPytorch sur 4 grands datasets bien connus ; (2)

Former la base d’un futur challenge sur le méta-apprentissage ; (3) Au cours de

cette thèse, plusieurs collaborations ont été engagées pour aborder des pro-

blèmes de meta-learning et transfer learning. Nous formulons le meta-learning

dans un contexte d’apprentissage par renforcement et prouvons que dans

certaines conditions, la performance moyenne de la recherche aléatoire ne

peut pas être dépassée. Nous effectuons également une analyse théorique sur

la capacité de super-généralisation des réseaux LEAP que nous proposons et

prouvons que lorsque les perturbations du système sont additives, les réseaux

LEAP sont capables de réaliser une super-généralisation.
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List of Symbols
The next list describes a list of symbols that will be later used within

the body of this thesis.

Roman Symbols
α,αi A predictor, also called an α-level algorithm, which takes an

example as input and outputs a label.

β ,βi A learner also called an β -level algorithm, which takes a learning

task T as input and outputs a predictor α .

γ,γi A meta-learner, also called a γ-level algorithm, which takes a

meta-datasetDtr as input and outputs a learner β .

A (X ,Y ) Set of all algorithms going from the input spaceX to the

output space Y .

B Set of learners. Can serve as the problem space in Rice’s model

on Algorithm Selection Problem.

D(X) Probability distribution on the set X .

T Task space, a set of learning tasks. Can serve as the problem

space in Rice’s model on Algorithm Selection Problem.

X Set of examples, often as the input space

Y Set of labels, often as the output space

D,Dtr,Dte Meta-dataset of the form {Ti,βi,Ri}n
i=1. The index tr is for

meta-training set and te is for meta-test set.

p Performance model p : T ×B→Rn
in Rice’s Algorithm Selection

Problem.

D,Dtr,Dte Dataset of the form {xi,yi}n
i=1. The index tr is for training

dataset and te is for test dataset.

L Loss function L : Y ×Y → R+

R(α;D) Risk function evaluated for an α-level algorithm α on the train-

ing/validation/test set D.



R,Ri Abbreviated risk function value. Also used for corresponding

random variables.

T,Ti A learning task of the form (Dtr,L;P).

x, xi An example, often represented by a feature vector or a feature

tensor

y, yi A label (of an example), often represented by a vector of binary

entries



1 - Background and Motivation
Machine learning (Bishop, 2006; Mitchell, 1997) leverages the power

of data to automatically construct (or learn) algorithms. It is used as

an powerful tool to solve real-world problems (especially in this age

of Big Data) and furthermore, to attain some form of Artificial Intelli-

gence (AI). As a sub-field of machine learning, Deep Learning (LeCun

et al., 2015) demonstrates impressive performance when solving prob-

lems in computer vision (He et al., 2015; Krizhevsky et al., 2012), natural

language processing (Devlin et al., 2018; Vaswani et al., 2017), speech

recognition (Graves et al., 2013) and also in more classic settings with

feature-based tabular data. However, just as ‘classic’ machine learn-

ing, deep learning suffers from the tedious trial-and-error process in

model selection (e.g. constructing new neural network architectures)

or tuning hyperparameters (e.g. learning rate, weight decay, batch size,

filter size). To cope with this problem, Automated Machine Learning (Au-

toML) (Hutter et al., 2018) aims at automating such resource-consuming

procedures and applying machine learning algorithms without any hu-

man intervention. This is equivalent to the following objective (AutoML

dream):

Find one single algorithm to solve all learning problems.

With this overarching goal, if AutoML materialized, it would bridge the

supply-demand gap of data scientists and machine learning experts.

Historically, many efforts have been made to achieve this AutoML

dream, both in academia and the private sector. In academia, AutoML

challenges (Guyon et al., 2018) have been organized from 2015 through

2018 and were collocated with top machine learning conferences such

as ICML and NeurIPS to motivate AutoML research in the machine learn-

ing community. The winning approaches from such prior challenges

(e.g. Auto-sklearn (Feurer et al., 2015)) are now widely used both in

research and in industry. More recently, interest in Neural Architecture

Search (NAS) has exploded (Baker et al., 2017; Cai et al., 2018; Elsken

et al., 2019; Liu et al., 2019a; Negrinho and Gordon, 2017b; Zoph and Le,

2016). On the industry side, many companies such as Microsoft (Fusi



et al., 2018) and Google are developing AutoML solutions. Google has

launched their own AutoML platform (Cortes et al., 2017) powered by

NAS (Pham et al., 2018; Real et al., 2017, 2020; Zoph and Le, 2016) and

meta-learning (Finn et al., 2017, 2019). In this thesis, we consider how

one can apply AutoML to automate deep learning, from both theoretical

and empirical aspects. As AutoML is a relatively young field, diverse

problems in both aspects remain to be solved.

Theoretical predictions rightfully indicate that, when there is no sim-

ilarity between tasks and/or algorithms, no single learning algorithm

can outperform all others (Wolpert, 2001, 1996; Wolpert and Macready,

1997). However, in real application scenarios, certain learning algo-

rithms work consistently better than others on particular domains. For

instance, convolutional neural networks (Lecun et al., 1998) demon-

strate astonishing learning ability (in terms of training error and general-

ization error) for the image domain (Krizhevsky et al., 2012) while other

learning algorithms work less well. This poses interesting theoretical

questions on the problem of meta-generalization: whether one can

select algorithms that will perform well on future (test) tasks based on

their performance on on past (training) tasks. This is a problem we will

touch upon in this thesis. Other questions are worthy of theoretical

investigation, such as the trade-off between accuracy and speed of

learning algorithms, especially when time-consuming algorithms such

as model selection and hyperparameter optimization (HPO) are applied

as part of the learning process. In the Neural Architecture Search com-

munity, some approaches can even cost up to 8000 GPU days (Zoph

and Le, 2016). So we would like our algorithms to not only make ac-

curate predictions, but also achieve good accuracy as fast as possible.

Thus an ideal AutoML algorithm should be able to explore potentially

better (hyper-)parameter choices, but also exploit already good ones

to be more frugal. This explore-exploit trade-off plays a central role in

AutoML and we will elaborate on it in this thesis.

From the practical and empirical aspects, we will analyze and test

existing AutoML algorithms on a diverse set of datasets for compar-

ison and benchmarking. We will review a repository of around 100

datasets that are formatted during this PhD and show extensive bench-



Figure 1.1 Data flow in AutoDL challenges. Different types (video,
speech, text, etc) of data are first uniformly formatted in a tensor-based

format then passed to the core part of AutoDL, which applies one single

learning algorithm and tries to maximize the learning performance in

terms of an evaluation metric

marking results. These datasets cover application domains such as

computer vision, natural language processing, speech recognition and

feature-based tabular data. Part of the results come from AutoDL chal-

lenges (Liu et al., 2021), a series of competitions we organized in the

field of Automated Deep Learning (AutoDL). The problem to solve in

these AutoDL challenges is in line with the aforementioned AutoML

dream, as we can see from the data flow of AutoDL challenges shown

in Fig. 1.1. From the figure, we see that all types (video, speech, text,

etc) of data are first uniformly formatted in a tensor-based format.

Then these examples are passed to the core part of AutoDL, which

applies one single learning algorithm and tries to maximize the learning

performance in terms of an evaluation metric.

As we realized how ambitious and challenging this goal of AutoDL

can be, we divided the challenge into several smaller challenges, each

concerning one domain/modality. There challenges are AutoCV (image),

AutoCV2 (image + video), AutoNLP (text), AutoSpeech (audio) and finally

AutoDL (all combined). The participation and some basic facts of AutoDL

challenges are shown in Table 1.1. These challenges clearly define what

the AutoDL problem is, provide the community with an open-source

benchmarking platform with a repository of 100 datasets, and help

advance the state-of-the-art in this domain.



Figure 1.2 Five competitions in the AutoDL challenge series organized
during the thesis: AutoCV (image), AutoCV2 (image + video), AutoNLP

(text), AutoSpeech (audio) and AutoDL (all combined).

Table 1.1 Basic facts on AutoDL challenges.
Challenge Collocated Begin date End date #Teams #Submis-

with 2019 2019-20 sions

AutoCV IJCNN May 1 Jun 29 102 938
AutoCV2 ECML PKDD Jul 2 Aug 20 34 336

AutoNLP WAIC Aug 2 Aug 31 66 420

AutoSpeech ACML Sep 16 Oct 16 33 234

AutoDL NeurIPS Dec 14 Mar 14 54 247

We couldn’t make it happen without the help of many companies,

institutes and conferences. Some of these collaborations are listed in

Figure 1.3.

The general organization of this thesis is as follows.

— Chapter 1 (this chapter) introduces the background and moti-
vation of this work;

— Chapter 2 reviews the state-of-the-art in the literature;
— Chapter 3 clarifies the scope of this work, first introducing
mathematical notations, then defining the empirical problems,

and posing scientific questions addressed thereafter;

— Chapter 4 presents the design, results and post-challenge analy-
ses of the AutoDL challenges;

— Chapter 5 develops our work on Neural Architecture Search
(NAS). As a major distinguishing feature of AutoDL compared



Figure 1.3 Collaborations during this thesis. Google, 4Paradigm and
Microsoft provide technical support and GPU credits. ChaLearn is the

non-profit organization leading the organization of AutoDL challenges.

Challenge results are shared in workshops collocated with conferences

such as NeurIPS 2019, ECML PKDD 2019, ICLR 2020 and ICML 2020.

to AutoML in general, NAS aims to automate the choice of one

important hyperparameter of deep learning models: the neural

network architecture. This hyperparameter is different from

more traditional hyperparameters since (1) it can be encoded by

arbitrarily long strings and thus is discrete and of infinite choices;

(2) it can encode much human knowledge (which could be one

of the major reasons that contributes to the success of deep

learning) that is hard to automate;

— Chapter 6 introducesmeta-learning, which is also an important
component of more classic AutoML. Meta-learning, also known

as learning to learn, tries to gain knowledge from past learning

tasks and improve performance in future tasks. We lay the basis

of the protocol for a future meta-learning challenge and propose

baseline solutions. We also provide theoretical analysis on how

promising meta-learning is useful when the hypotheses of the

No Free Lunch theorems are not satisfied;

— Finally, we wrap up our work with conclusions and lessons
learned in Chapter 7.

In Appendix, we attach some published papers in the course of this

thesis.





2 - Related Work
As a relatively new domain, Automated Deep Learning (AutoDL) has

its root from two domains of machine learning: Deep Learning and

AutoML. In this chapter, we will review algorithms, which have recently

emerged in these two domains. In Chapter 3 we will distinguish for-

mally between three types of algorithms (also sometimes referred to

as ‘model’): (α ) simple predictor functions, (β ) machine learning algorithm

(returning a predictor function), and (γ) meta-learning algorithms return-

ing a chosen machine learning algorithm. In this chapter, we will use

the world ‘model’ indistinguishably when there is no ambiguity on the

type of algorithm, as is commonly done in the literature.

2.1 . Deep Learning

Deep learning is a sub-field of machine learning that uses computa-

tional models that are composed of multiple processing layers to learn

representations of data with multiple levels of abstraction. These pro-

cessing layers are often linear transformation, non-linearity activation

or other modules such as pooling. The entire model is conventionally

called a neural network (NN) (sometimes simply neural net). Deep learn-

ing has its root in the early 20th century (Hebb, 1949; Mcculloch and

Pitts, 1943). Rosenblatt’s 1957 paper on Perceptron (Rosenblatt, 1957)

can be considered as a simple NN with no intermediate layers. Then

more complicated and deeper networks such as multi-layer perceptron

(MLP) and more complex network architectures were proposed in the

1970s and 80s (Rumelhart et al., 1986a,b) in Hinton’s team. Bengio

made several important contributions that helped promote ‘deep’ net-

works and forge the field (Bengio, 2009; Goodfellow et al., 2014). A brief

survey and positional statement on deep learning in general can be

found in (LeCun et al., 2015).

One of the most remarkable features of deep learning is its flexi-

bility in designing network architectures, and the ease of training time

by gradient descent. These architectures can encode much human



knowledge on specific domains, which allows (surprisingly) good per-

formances in many applications. For instance, to attain invariance with

respect to translation on images, convolutional neural networks were

proposed in the late 1980’s. They had great early success in character

recognition (LeCun et al., 1989) and, more recently, in image classifica-

tion (He et al., 2015; Krizhevsky et al., 2012). To model time series data

and capture long-term dependencies between time frames (potentially

non-Markovian), recurrent neural networks (RNN) have been proposed

and deployed in speech recognition (Graves et al., 2014; Hochreiter

and Schmidhuber, 1997; Mozer, 1992) and natural language process-

ing (Devlin et al., 2018; Vaswani et al., 2017), though recent work seems

to indicate that temporal convolutional networks (Waibel et al., 1989)

might perform as well or better (Bai et al., 2018). To get an idea of

how sophisticated neural network design gets, we borrow from (van

Veen, 2017) which compiled following cheatsheet for neural networks

developed in recent years, shown in Figure 2.1.

These are domains in which the network architecture plays a crucial

role. With the maturity of hardware, the ubiquity of data and effective

techniques for training, how to design good neural network architec-

tures becomes one of the most important questions, for both industry

and academia. In this thesis, one chapter (Chapter 5) will focus on

approaching this problem in an automated manner.

2.2 . AutoML

The idea of AutoML could date back to the 1970s (Rice, 1976) with an

accent on algorithm selection. Rice proposed to investigate a function

(which we will call performance model in the future)

p : T ×B→ Rn
(2.1)

where T is the problem space (e.g. set of learning tasks) andB is the

algorithm space. The value space Rn
is a performance measure/metric

that judges the performance of applying an algorithm to a problem.

It can be either a vector or a real number. To achieve AutoML, one

can learn this performance model and use it to recommend good algo-



Figure 2.1 Different types of neural networks developed from 2004
to 2019. Figure taken from (van Veen, 2017). We see that the neural

network family is getting more and more sophisticated and complex.

The automation of designing neural network becomes very crucial.
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rithms for any new problems/tasks. In the 1980s, Schmidhuber (Schmid-

huber, 1987) proposed a self-improving genetic programming system

that can ‘learn to learn’, which can be considered as a form of meta-

learning. In the 2000s, community efforts were focused on fighting

against over-fitting using for example cross-validation (Bengio and

Grandvalet, 2004; Kohavi, 1995) and many of these approaches can be

seen as special cases of a ‘multi-level’ optimization framework (Guyon

et al., 2011) In the 2010s, Bayesian optimization (Hutter et al., 2011a)

has been introduced and the optimization aspect was emphasized. The

term ‘AutoML’ was then coined by Hutter and a comprehensive survey

can be found in (Hutter et al., 2018).

Depending on the specific sub-problem in AutoML, we come up with

following taxonomy for AutoML (Figure 2.2).

— Data ingestion is about all steps we wish to automate before the
learning step. This includes data collecting, pre-processing and

anything that is typically done by a team of data engineers. We

definitely want to automate data ingestion too but this subject is

out of the scope of this thesis;



— Data management is about how one loads, samples and aug-
ments data (after the data are pre-processed) during the learning

process. For example, one can adopt intelligent data loading

strategy (e.g. to load a small batch of data first for learning) to

achieve good any-time performance (Lim et al., 2019b; Liu et al.,

2021). Data augmentation (Shorten and Khoshgoftaar, 2019)

falls also into this category.

— Algorithm selection (AS) is about selecting an algorithm from a
set of possible algorithms. A learning algorithm (often also called

amodel in machine learning community) is often encoded by its

family (such as SVM or Random Forest) plus its hyperparameters

(such as the kernel or number of estimators). Then Hyperparam-

eter Optimization (HPO) and Neural Architecture Search (NAS)

can be considered as special cases of algorithm selection. Algo-

rithm selection will be an important focus of this thesis. Following

(Hutter et al., 2018), we categorize the sub-problems of algorithm

selection into: search space, search strategy and evaluation strat-

egy;

— Meta-learning tries to make use of the knowledge from prior
tasks to improve learning algorithms’ performance in future

tasks. Depending on which level of information is available,

one may categorize meta-learning problems into 3 classes: 1)

S0: zero-order meta-learning only has access to performances;

2) S1: first-order meta-learning additionally has access to (meta-

)features of tasks and algorithms; and 3) S2:second-order meta-

learning has access to full information to all tasks and algorithms.

This categorization is very similar to Vanschoren’s taxonomy (Van-

schoren, 2018) on meta-learning which distinguishes methods

that learn from model evalution, task properties or prior models.

Based on the level of algorithms to evaluate, on can similarly have

a categorization of A0, A1, etc. We will makemore detailed discus-

sion on this in Chapter 6 and SAR tags such as S0,A1,RC|RP,RE
and S2,A0,RE|RP,RC will be introduced, within a reinforcement
learning (RL) formulation;



— Any-time learning, or more generally resources management,
is about delivering learning results under any resources (time,

memory, etc) constraints. Typically, we don’t want HPO or NAS

approaches to try a huge number of models before delivering

learning results. Instead, we wish to have an AutoML algorithm

that is robust to time or memory constraints and can make

predictions at any time with any computational resources.

In the following, we will focus on reviewing the literature for algo-

rithm selection (HPO + NAS) and meta-learning, which are in line with

the major contributions of this thesis.

2.2.1 . Hyperparameter Optimization & Algorithm Selection
Algorithm selection (AS) (Rice, 1976) aims at selecting an algorithm

from a set of possible algorithms, based on data (or a performance met-

ric). It has been an interesting and important problem since its birth.

Hyperparameter Optimization (HPO) is a problem closely related to

algorithm selection and can be considered as one of its subsets. Learn-

ing algorithms often come with some parameters, or hyperparameters,

that need to be set in advance. How to choose these hyperparame-

ters wisely and efficiently forms the central question of HPO. An HPO

problem is an AS problem if one considers the algorithm specified by

a hyperparameter as an independent algorithm. Otherwise, Thorn-

ton et al. (Thornton et al., 2012) still distinguishes them but consider

a problem (the CASH problem) that merges algorithm selection and

hyperparameter optimization. (Escalante et al., 2009) also considers

a Full Model Selection (FMS) problem that deals with HPO (including

selecting the algorithm family) and learning at the same time. We note

that although we will focus on their application to machine learning,

HPO and AS are also widely used in other domains such as solving

satisfiability problem (SAT) (Hutter et al., 2002) and solving differential

equations (Mezine et al., 2015).

In this work, we will mainly consider the case of supervised learning.

Given a dataset of training data Dtr = {(xi,yi)}i=1,...,n, a typical AS/HPO

approach begins by splitting the training data further into two subsets:

one forms the new training set, and another subset (or validation set)

for estimating/validating the model’s performance. A basic AS/HPO



method is to train every candidate model on the (new) training set,

compute the performancemeasure using validation set then choose the

model/hyperparameter with the highest performance. Such method

is called holdout validation. To reduce the variance of the validation

estimation, cross validation (Kohavi, 1995) method splits the training

set into k (typically k = 5 or 10) equal pieces then validate the model k
times using each piece as validation set and the other k−1 pieces as
training set. k validation performances are then averaged to make a
better estimation of the model performance. As the training of a model

can be expensive in terms of computational resources, CV methods are

very costly since they require k times resources. In addition, if the set of
all candidate models is large , one cannot afford to validate all of them

(even for holdout validation methods). Thus many methods are then

proposed to remedy this problem.

Before explaining other HPO methods, we introduce some mathe-

matical notations for convenience. We recall Rice’s performance model

in Equation (2.1) but only consider the real-valued case (i.e. for n = 1):

p : T ×B→ R (2.2)

where again T is the problem space, B is the algorithm space and

the performance (such as the accuracy) is a real number. Most HPO

methods restrict themselves to considering one single problem/task at

a time, i.e. T = {T0} is a singleton (note that this restriction is actually
what distinguishes HPO from meta-learning). As for the algorithm

space,B often involves both continuous and discrete hyperparameters.

Typically, the set of all algorithm families (such as SVM or Random

Forest) is discrete. This set is also conditional in the sense that other

hyperparameters (whether the value or the existence) might rely on

the choice of it. We now introduce some HPO approaches with these

notations.

To avoid trying out every single candidate model (and then just

choosing the best in the end) such as grid search, Bergstra and Bengio

(2012) shows that randomly choosing hyperparameters (for only a few

shots), or random search, already forms a surprisingly strong baseline

for HPO. Otherwise, many approaches exploit a certain structure on



Figure 2.3 Bayesian optimization on real-valued functions. Figure
from (Hutter et al., 2018).

the set of all candidate models, e.g. the correlation of performances

between different models. This allows reducing the computational cost

while still gaining an appropriate amount of information for a better

performance estimation.

Bayesian Optimization (Snoek et al., 2012) methods tries to infer this

structure by setting a prior on the performance model p : {T0}×B→R
(or simply some f : B → R as the task is clear) and progressively
gaining knowledge on this function. The performances of two algo-

rithms/hyperparameters will be correlated when they are ‘close’ in cer-

tain sense. Some first HPO methods use Gaussian Processes (Snoek

et al., 2012) in which all function values (on any finite subset of the hyper-

parameter space) follow a multivariate Gaussian distribution. However,

estimating the performance model using Gaussian Process suffers from

several limitations: 1) one often setsB = [0,1]nHP (with nHP the number

of hyperparameters) and this cannot deal with discrete hyperparame-

ters well; 2) one cannot deal with conditional hyperparameters well; 3)



it is of cubic complexity O(n3
HP) and thus not scalable to the case with

many hyperparameters.

For better scalability in higher dimension, Hutter et al. (Hutter et al.,

2011a) use random forest instead of GP to model the performance func-

tion (and this becomes later a sub-routine of the competition winner

solution Auto-sklearn (Feurer et al., 2015)). Another BO-based approach,

TPE (Tree-structured Parzen Estimator) (Bergstra et al., 2011) also uses

tree-based models to infer the inverse prior (i.e. p(x|y) instead of p(y|x),
where x is the hyperparameter and y is the performance). Budget-aware
BO methods such as (Klein et al., 2017) have been proposed to take

the computational cost into consideration and be time efficient. Then

it’s worth noting that BO methods have also been used for designing

neural network architectures (Snoek et al., 2015).

Besides BO methods, evolutionary algorithms (EA) form another fam-

ily of solutions for HPO. In the EA philosophy, hyperparameters/algorithms

are considered as individuals and a set of individuals (the population) is

considered at the same time, instead of one single individual as in the

case of BO. Thus one can say that EA optimize with respect to a distri-

bution instead of a point. EA approaches model the aforementioned

structure by the continuity of performance among ‘close’ individuals,

related by small changes (i.e. mutations). Escalante’s Particle Swarm

method falls into this category. Later we will see more EA algorithms in

the section of NAS.

Reinforcement learning (RL) provides another path to solve HPO.

Approaches using RL begin by formulating the HPO problem (which is

essentially an optimization problem) as an RL problem. Typically, the

actions are choosing and evaluating a hyperparameter, the reward is the

obtained validation accuracy and the states are current hyperparameter

configurations (or simply stateless). After this re-formulation, many RL

algorithms can be automatically applied to HPO. As an example, Li

et al.’s Hyperband (Li et al., 2016) formulates the HPO problem as a

stateless RL problem and applies multi-armed bandit based algorithm.

Then later Falkner et al. (Falkner et al.) combines this approach with BO

methods.



Besides all above approaches, differentiable methods using a bi-

level formulation such as (Bennett et al., 2006; Franceschi et al., 2018)

also exist.

2.2.2 . Neural Architecture Search
Neural architecture search (NAS) can be regarded as a special form

of algorithm selection or of HPO. Indeed, it concerns particularly the

family of neural networks, which is only a subset of all machine learning

algorithms. However, with the recent success of deep learning, NAS

has gained explosive attention from the research community in the

late 2010s. Due to the specialty of neural network architectures, a

rather independent literature has been formed and it is worth it to

have a separate introduction for NAS. We note that early works such

as NEAT (Miikkulainen, 2002) also search for NN architectures. NEAT

optimizes with respect to the weight parameters AND the architecture

at the same time, while recent works focus on the architecture part in

most cases. Although most recent surveys on NAS (Elsken et al., 2019;

Ren et al., 2020; Wistuba et al., 2019) focus on works since 2016, many

earlier works can be regarded as ancestors of this domain.

From the deep learning literature review above, we can see that the

main focus of many works (He et al., 2015; Hochreiter and Schmidhu-

ber, 1997; Krizhevsky et al., 2012; Szegedy et al., 2015) is proposing a

new neural network architecture. This process of manually designing

architectures is often a long trial-and-error process, which could be

even more tedious than the case of classic machine learning, since the

training of deep learning models require much more time in general.

NAS methods were proposed to automate this process, which obviously

is a special case of AS/HPO.

One of the first works in NAS literature is Zoph and Le’s 2016 pa-

per (Zoph and Le, 2016), which proposes an RL framework for automat-

ically designing NN architectures. In this framework, architectures are

designed in a sequential manner. Each action chooses a configuration

(e.g. convolutional layer or pooling) for next layer and states are the

current configuration of all previous layers. The reward feedback is the

accuracy when the architecture is complete (or zero otherwise). An RNN

controller then is applied to learn a policy of designing architectures,



Figure 2.4 Reinforcement learning approach used in one of the first
NAS works. Figure from (Zoph et al., 2018). States consist of architec-
tures up to current layer. Actions are choices for next layer. The reward

is the accuracy obtained if the architecture is complete and 0 otherwise.

using policy gradient (Sutton and Barto, 2018). This approach man-

aged to design a NN architecture that achieves 96.5% accuracy on the

CIFAR-10 (Krizhevsky, 2009) dataset, which was the state of the art back

then. However this approach consumes huge amount of computational

resource (28 days on 800 GPUs). In the same year, Baker et al. (Baker

et al., 2017) proposed a similar approach also with an RL formulation,

which instead uses Q-learning with ε-greedy (Sutton and Barto, 2018)

method. This approach has a training phase of 8 to 10 days with 10

GPUs. Evolution strategies have been used (Real et al., 2017) for NAS,

which allows parallelization but still needs much resources. By review-

ing the literature extensively, we came up with Table 2.1 which lists a

few NAS approaches with their corresponding computational cost and

we can see that most NAS methods require a considerable amount of

GPU cost.

To remedy the problem of huge computational cost, many NAS

methods are proposed later. NASNet (Zoph et al., 2018) proposes

a particular search space with repeated layers and modules, which

dramatically reduces the search space and saves computational cost.

Many later works (Liu et al., 2018a, 2019a; Pham et al., 2018; Wang

et al., 2018) followed this idea and adopted the same search space. An

important step for reducing the search time in the NAS literature is the

use of weight sharing (or warm start to not be confused by the concept



Table 2.1 Computational resources required in state-of-the art NAS
works. We list several AutoDL methods with their consumed computa-
tional resources for running their experiments. The equivalent amount

of GPU days on an Nvidia Tesla V100 card is computed in the last bold

column. Note that these amounts of computing resources correspond

to only a single run of the experiment. The work behind is usually
multiplied by a factor of at least 3.

GPU Model Duration exaFLOP GPU·hour GPU·day
Methods (Nvidia) # GPU /hours (1018

FLOPs) (V100) (V100)
NAS (2016) Tesla K40 800 672 9754.21 181858.1 7577.4

MetaQNN (2017) Tesla K40 10 240 43.55 811.9 33.8
ENAS (2018) GTX 1080Ti 1 16 0.65 12.2 0.5
PNAS (2018a) Tesla P100 100 96 174.18 3247.5 135.3
LSE (2017) Tesla K40 1000 300 5443.20 101483.3 4228.5

DARTS (2018b) GTX 1080Ti 4 24 3.92 73.1 3.0
NASNet (2018) Tesla K40 500 96 870.91 16237.3 676.6
EAS (2017) GTX 1080 5 48 7.67 142.9 6.0
AlphaX (2018) GTX 1080 17 120 65.16 1214.9 50.6

of weight sharing in the case of convolutional neural networks), which

reuses the weights in previously trained architectures instead of training

each architecture from scratch each time. ENAS (Pham et al., 2018)

proposes this idea and costs only 16 hours on one single GPU. More

later approaches followed this idea of weight sharing (Chu et al., 2020;

Zhang et al., 2020). Another path that is worth mentioning is the use of

relaxation of hard choices of configurations and uses gradient-based

methods for NAS. DARTS (Liu et al., 2019a) uses a probabilistic approach

to relax the (hard) choices of configurations (such as convolutional or

max-pooling) to a softmax combination on these choices. Then one can

use gradient-descent to train the softmax coefficients using validation

data. This approach can find reasonably good architectures in a one-day

time window with one single GPU.

2.2.3 . Meta-learning
In contrast to HPO where only the data of the current task is ex-

ploited, meta-learning tries to make use of the knowledge from prior

tasks to improve learning algorithms’ performance in future tasks. This

improvement of performance can be in terms of either the computa-



tional aspect (e.g. in an any-time learning setting) or statistical aspect

(e.g. in a few-shot learning setting). As stated previously, meta-learning

can date back to the 1970s (Rice, 1976) and 1980s (Schmidhuber, 1987).

Systematic survey work exists as early as 2008 (Brazdil et al., 2008).

For meta-learning, there is also a form of the previously mentioned

structure. This time, it exists in the relationship among different tasks

and could be interpreted as the similarity between tasks. If two tasks

are by no means ‘similar’, it would be hard to apply useful knowledge

from one task to another.

Very often, characterizing the similarity between tasks reduces to

finding appropriate task representation. Typically, this task represen-

tation could be a set of (hand-crafted) meta-features (e.g. number of

examples, shape of images) computed for each task. Then algorithms

from supervised learning or recommender systems (Bobadilla et al.,

2013; Mısır and Sebag, 2017) can be applied to recommend promising

learning algorithms (model or hyperparameters). This is the approach

used in, for instance, the meta-learning step of Auto-Sklearn (Feurer

et al., 2015) and (Muñoz et al., 2018). Note that such approaches could

use not only a task representation but also an algorithm representation

for learning algorithms. But since HPO naturally adopts such an algo-

rithm representation (typically an algorithm family plus the values of

hyperparameters), we can directly borrow ideas from HPO literature.

Besides above approaches using explicit task representation and/or

algorithm representation, there also exist methods that are only based

on performance data (i.e. past performances of applying algorithms to

tasks). (Sun-Hosoya, 2019) and (Mısır and Sebag, 2017) borrow ideas

from recommendation systems and apply them to the performance

data. (Van Rijn and Hutter, 2018) analyzes performances data and

evaluate the importance of hyperparameter, which gives an interesting

example of applying meta-learning to HPO.

Above works concernmostly tabular datasets (e.g. fromOpenML (Van-

schoren et al., 2014)) and the computational aspect of meta-learning for

accelerating HPO. There also exist approaches discussing the statistical

aspect of meta-learning under the form of few-shot learning. In few-

shot learning, one wishes to solve classification tasks with only a few



(e.g. one) examples per class, by borrowing knowledge from prior tasks.

An important amount of works in this direction deals with image classi-

fication tasks. Instead of learning a representation per task, MAML (Finn

et al., 2017) tries to learn a convenient common representation for all

examples across all tasks. The learning follows a gradient-based bi-level

formulation scheme and the common representation is updated based

on a loss function on the validation set. Similar ideas with bi-level for-

mulation can be found in (Franceschi et al., 2018; Liu et al., 2019a). More

review and discussion on few-shot learning will be presented in Chapter

6 of meta-learning.

In Chapter 6, we will also give a reinforcement learning formulation

for meta-learning, which allows us to classify meta-learning approaches

conveniently and systematically.

2.2.4 . Challenges and Benchmarks
To fairly evaluate AutoML/AutoDL methods and help enhance com-

munity efforts towards reproducibility (Pineau et al., 2020), several chal-

lenges and benchmarks were organized. A first example is OpenML (Van Rijn

et al., 2013; Vanschoren et al., 2014), which we alreadymentioned above.

OpenML is a machine learning benchmarking platform that consists of

(as of 2020) more than 20,000 tabular datasets and more than 15,000

algorithms (called flows). Performances of algorithms executed on dif-

ferent datasets/tasks are recorded in the database. Open-source API’s

are provided to open the access of these results, in the purpose of

enabling meta-learning. Figure 2.5 from (Sun-Hosoya, 2019) shows a

hierarchical clustering of dataset-algorithm performances for a subset

of OpenML. We see very clear block structure in the figure. Thus certain

‘structure’ does exist in this meta-dataset, opening the possibility of

meta-learning.

Apart from OpenML, Guyon et al. (Guyon et al., 2015, 2018) orga-

nized a series of AutoML challenges from 2015 to 2018, where tabular

datasets defining 30 supervised learning (classification and regression)

tasks are provided. Figure 2.6 shows some statistics of the datasets

used in these AutoML challenges. These datasets cover diverse domains

(finance, medical, digits, etc) and vary a lot in terms of number of train-

ing/validation/test examples (Ptr, Pva and Pte respectively). The task



Figure 2.5 Hierarchical clustering of dataset-algorithm perfor-
mances for the OpenML meta-dataset (Sun-Hosoya, 2019). A sub-
set of 292 datasets of OpenML (Vanschoren et al., 2014) is considered.

Performances of 76 learning algorithms are recorded, making the shape

of the performance matrix 76×292.

(multilabel, regression, etc) was also different from dataset to dataset.

Some aggregated results of AutoML challenges are shown in Figure 2.7.

We see that the modeling difficulty (i.e. the variance of performances

among different approaches) of datasets in AutoML challenges varies a

lot, showing how challenging the AutoML problem is and how robust

an AutoML algorithm should be.

The top-1 AutoML challenges winner’s solution Auto-sklearn (Feurer

et al., 2015) (Figure 2.8) combines meta-learning, Bayesian optimization

and ensemble methods (Caruana et al., 2004) and is widely used in both

academia and industry.

Benchmarks focusing on NAS were proposed recently too. NAS-

Bench-101 (Ying et al., 2019) constructed a NAS benchmark on the

CIFAR-10 (Krizhevsky, 2009) dataset, with a particularly crafted search

space inspired by NASNet (Zoph et al., 2018) search space. This bench-

mark provides a quick way to benchmark NAS algorithms on an exhaus-

tively pre-computed performance dataset, which is important since it



Figure 2.6 Statistics of datasets used in AutoML challenges (Guyon et al.,

2015).

could be very hard to evaluate NAS algorithms from scratch (Yang et al.,

2020). Similar benchmarks such as NAS-Bench-1Shot1 (Zela et al., 2020)

and NAS-Bench-201 (Dong and Yang, 2020) extend this benchmark.

Besides works in the machine learning community, competitions

in algorithm selection (Lindauer et al., 2017, 2019) have also been

organized recently and are highly relevant.

2.2.5 . Prior work highlights and open problems
In view of the literature review, we identified a number of research

directions worthy of our attention.

— Gaining a unified view for HPO,NAS andmeta-learning. Works
in the literature often treat these three domains separately. How-

ever, what is the relationship between them and can one gain a

unified view for them? We will discuss this in Chapter 3;

— Fairly comparing AutoDL methods. Comparing AutoDL meth-
ods such as HPO and NAS is not easy. We will introduce in

Chapter 4 a series of competitions, the AutoDL challenges, which

aim to fairly comparing AutoDL methods. In Chapter 6, we will

also introduce the MetaDL challenge that has a focus on few-shot

learning;



Figure 2.7 Results of participants’ solutions from AutoML chal-
lenges (Guyon et al., 2018). For each dataset, the blue part shows
the baseline performance. The orange part shows the performance

difference between baseline and best participant solution. The white

part is the difference between the maximum performance (which 1.0 in

this case) and the best participant. The modeling difficulty of datasets

in AutoML challenges varies a lot, showing how challenging the AutoML

problem is and how robust an AutoML algorithm should be.

Figure 2.8 Pipeline of Auto-sklearn(figure from (Feurer et al., 2015)),
the winner of AutoML challenges (Guyon et al., 2015). Auto-sklearn

combines meta-learning, Bayesian optimization and ensemble meth-

ods.

— Finding efficient algorithm representations. Using a good
algorithm representation is crucial to many HPO and NAS meth-

ods. We will propose an algorithm representation with formal

grammar in Chapter 5;





3 - Scope of Work
In this chapter, we formulate the problems treated in this thesis and

describe the scope of work. First, we give a mathematical formulation

of the problem of meta-learning (Section 3.1), then we describe in that

setting the meta-learning problems addressed in this thesis (Section

3.2), and finally we outline the contributions made in this thesis (Section

3.3).

3.1 . Mathematical Problem Formulation

The central problem of this thesis is Automated Deep Learning

(AutoDL). In this section, we frame the problem in the larger context

of Automated Machine Learning (AutoML), and bring it back to that of

meta-learning. We first position this problem in the more general scope

of “algorithm selection” (Rice’s setting), which concerns solving problems

outside of machine learning, then specialize it to meta-learning. We

introduce a hierarchy of sub-problems. This will allow us, in Section 3.2,

to position the main themes of this thesis, including Hyperparameter

Optimization (HPO) and Neural Architecture Search (NAS), determining

a challenge winner, and active meta-learning.

3.1.1 . Rice’s Algorithm Selection Problem
In his 1975 paper, Rice formulated the Algorithm Selection Problem,

of which meta-learning is a special case, and introduced the following

abstract model (Rice, 1976). Consider a problem space T , an algorithm

spaceB and a function p called the performance model:

p : T ×B→ Rn, (3.1)

where p(T,β ) (for T ∈ T and β ∈B) is the performance measure ob-

tained when applying the algorithm β on the problem T . Then the
Algorithm Selection Problem is: to determine a selection mapping

S : T →B (3.2)



that verifies certain optimality criterion. For instance, one example of

such optimality criterion given by Rice is called ‘Best Selection’, which

chooses the selection mapping S to be certain oracle function that
verifies

1

∥p(T,S(T ))∥ ≤ ∥p(T,β )∥, for any β ∈B (and any T ∈T ), (3.3)

where ∥ · ∥ is a norm on Rn
.

As we shall see in the following, many problems treated in this thesis

such as neural architecture search and meta-learning are some form

of the Algorithm Selection Problem, which can thus serve as a central

piece that relates all future chapters. In this thesis, we will only consider

the case n = 1 and directly treat p(T,β ) as an algorithm performance in
R (instead of a multi-dimensional ‘performance measure’ in Rn

).

When the performance model p is known and can by easily com-

puted, the Algorithm Selection Problem can be simply solved by the

following selection mapping

S(T ) := argmin
β∈B

p(T,β ). (3.4)

However, this solution is almost never realizable in practice, since every

component of p, T and β can be very complex, see next section. We

also note here that the right-hand side of (3.4) is exactly what the ‘Best

Selection’ criterion in (3.3) demands.

We will now specialize Rice’s framework in two respects to relate it

to meta-learning:

1. define machine learning tasks T and algorithmsB,

2. discuss how performances are obtained in machine learning,

using empirical data.

3.1.2 . Problem Space for Machine Learning
First we consider specializing the space of tasks T (called “problem

space” by Rice).

1. In this chapter we suppose that the performance model p corresponds to
‘negative performance’, i.e. the smaller the better.



In the field of machine learning, the tasks in the problem space T

take particular forms. As we will focus on supervised learning scenarios

in this work, we will consider learning tasks T ∈T taking the form

T = (Dtr,L;P),

composed of a training dataset of n examples Dtr = {(xi,yi)}n
i=1 ⊆ (X ×

Y )n
, a loss function L and an unknown underlying distribution P on

X ×Y (the semi-colon separates the known arguments and the un-

known/hidden arguments). We further assume that the examples are

i.i.d. realizations (xi,yi)
iid∼ P and L(y′,y) is a function measuring the dis-

crepancy between a prediction y′ and a target value y. Given the task
T , we look for an algorithm α that can predict a label y as correct as
possible given an example x. That is, α has the following signature

α : x 7→ y. (3.5)

We will call such an algorithm α a predictor (also commonly called
a model and sometimes called an α-level algorithm by us). We will

also say that such an algorithm is in α-level. The expected risk (or
generalization error) measuring the expected performance of a predictor

α on the task T is defined to be

R(α) :=
∫

L(α(x),y) dP(x,y) . (3.6)

The goal of the learning task T is to find a predictor α∗ that minimizes the
expected risk. That is, we wish to solve the following supervised learning

problem

α
∗ = argmin

α∈A (X ,Y )

R(α) (3.7)

whereA (X ,Y )⊆ Y X
, which we will call a predictor set, is the set of

all possible algorithms that go fromX to Y .

Here one should note the difference between a predictor set and

a hypothesis set. A hypothesis set is a choice of the learning algorithm

and is often a small subclass of the predictor set, while a predictor set



is a theoretical set that only depends on the input space X and the

output space Y .

3.1.3 . Algorithm Space for Machine Learning
Second we specialize the space of learning algorithms considered

B (called “algorithm space” by Rice).

Algorithm selection, in application to machine-learning corresponds

to selecting an algorithm β (which in turn returns a predictor α , Eq. 3.5).

Formally, the goal of a learning task

T = (Dtr,L;P)

is to find a predictor α that minimizes the expected risk. An algorithm

β (which we will call a learner, or a β -level algorithm) solving this task
should thus have the following signature:

β : T 7→ α . (3.8)

Following Eq. 3.6, the performance model p for machine learning can

be defined as

p(T,β ) =
∫

L(β (T )(x),y) dP(x,y). (3.9)

We recall that the components L and P come with the task T and are
specific to this task. Also, as P is unknown to β , the learner β can only

make use of Dtr and L.

3.1.4 . Two-level learner
In this section, we introduce a particular case of learner, called two-

level learner, often identified in machine learning with the process of

performing both hyperparameter selection (and/or model selection)

and parameter optimization.

We recall that the goal of the Algorithm Selection Problem is to find

a selection mapping

S : T →B (3.10)

that verifies for example the ‘Best Selection’ optimality criterion.

If one thinks of such S as an HPO algorithm (e.g. grid search or
random search with cross-validation (Bergstra and Bengio, 2012) for



SVM (Boser et al., 1992)) one can further define a two-level learner βS

by

βS : T 7→ α = S(T )(T ), (3.11)

which chains HPO and parameter optimization. For instance, one can

think of T as the task corresponding to the MNIST dataset (Lecun et al.,
1998) and S as the HPO algorithm that finds an optimal set of hyper-
parameters of the SVM algorithm from T , thus the SVM with these
hyperpameters correspond to the learner S(T ) (higher-level optimiza-
tion). Then what βS does is nothing but applying the found SVM S(T )
on the MNIST task T to adjust the SVM parameters (lower level opti-
mization). The obtained predictor S(T )(T ) is then used for predictions.
The whole process going from a task T to a predictor S(T )(T ) defines a
learner, which only depends on S.
We have thus brought back any selection mapping S to a two-level

learner βS, in the specific context of machine learning. Thus we have

made connections between Rice’s framework and HPO/“model selec-

tion”. In the setting we described in this section, Rice’s quest for a selec-

tion mapping S (i.e. the Algorithm Selection Problem) becomes in the
machine learning framework of neural architecture search and meta-

learning the quest for a learner βS that one can apply to any learning

task. More generally, finding an optimal β is the goal of meta-learning,

the principal constituent of AutoML. Conversely, any β algorithm can

be thought of as a βS, with one trivial higher-level S returning always
the same learner β . Thus, from now on we drop the index S of βS.

3.1.5 . Meta-learning: Optimizing approximations of the perfor-
mance model

Meta-learning aims to solve the Algorithm Selection Problem for

machine learning (with the help ofmeta-data). This can be done by, for

example, solving the optimization problem in Eq. (3.4), with the perfor-

mance model p. Solving (3.4) is trivial when the performance model

can be easily computed (just select the algorithm with the best perfor-

mance). Hence, the difficulty lies in approximating the performance

model p as well as possible, which is the object of this section.



Typically, in machine learning, the performance model p defined in

(3.9)

p(T,β ) =
∫

L(β (T )(x),y) dP(x,y) = R(β (T )) (3.12)

cannot be directly computed analytically for multiple reasons (firstly, the

distribution P is unknown; secondly, even when P is known, computing
an expectation usually cannot be done in closed forms). However,

examples drawn from P are given, which allows to compute empirical
estimates.

In this context, the Algorithm Selection Problem solution in Eq. (3.4)

is approximated by the selection mapping defined as:

S : T 7→ argmin
β∈B

p̂(T,β ). (3.13)

where p̂ is an estimation of p. How to obtain such estimation p̂ is a

crucial problem in meta-learning.

Many works (Feurer et al., 2015; Hutter et al., 2011a; Jin et al., 2019;

Sun-Hosoya et al., 2018a) proposed tomodeling or approximating the

performance model p based on past experiences (i.e. meta-data) of
trying different algorithms on different problems and recording the

performances. Concretely, a set of past experience called a meta-
dataset

Dtr = {(Tj,β j,R j)| j ∈ J} (3.14)

is considered. Here J is an index set and R j is an estimation of the

true performance p(Tj,β j) and one can use, for example, the validation

error on the task Tj.

We will call an algorithm solving the Algorithm Selection Problem

(for machine learning) given a meta-dataset ameta-learner (or a γ-level
algorithm), having the signature

γ : Dtr 7→ β .

Here we reduced the problem of finding a selection mapping to that of

finding a learner, as introduced previously in Section 3.1.4.

According to the exploitation of the information inDtr, we categorize

methods learning the performance model to 3 classes (Figure 3.1):



— Zero-order meta-learning methods, related to the notion of
learning from model evaluations according to Vanschoren (2018),

only make use of the performance values R j and consider meta-

datasets of the following form

Dtr = {R j| j ∈ J}

or

Dtr = {Ri, j|i ∈ I, j ∈ J}

where i and j are indices of the task and the learner respectively;
— First-order meta-learning methods, related to the notion of

learning from task properties according to Vanschoren (2018),

additionally make use of (meta-)features of the tasks and/or

those of the learners. For these methods, the meta-dataset

takes the form

Dtr = {(Φ(Tj),Ψ(β j),R j)| j ∈ J}

where Φ and Ψ are some (meta-)feature extractors for the tasks

and the learners respectively. Methods using hyperparame-

ters to encode learning algorithms and using meta-features of

datasets fall into this category;

— Second-order meta-learningmethods, related to the notion of
learning from prior models according to Vanschoren (2018), use

the full information with

Dtr = {(Tj,β j,R j)| j ∈ J}.

A contrast of these three classes of methods is visualized in Figure 3.1.

3.1.6 . Three-level formulation of algorithms
We now summarize the three levels (α,β ,γ) of algorithms intro-

duced before in Table 3.1. For ease of understanding, we associate

each level to a method in the popular machine learning toolkit scikit-

learn (Pedregosa et al., 2011).



(a) Zero-order meta-
learning algorithms

use only previously

known performances

of algorithms on tasks.

(b) First-order meta-
learning algorithms

use previously known

performances plus

meta-features of tasks

and/or algorithms.

(c) Second-order
meta-learning al-

gorithms use full

information of past

tasks and algorithms

(including all examples

and all algorihtm code).

Figure 3.1 Categorization of meta-learning in terms of the informa-
tion used in the meta-dataset.

This three-level formulation of algorithms serves as a footstep for this

thesis. Many of our works are inspired or guided by this formulation.

This includes the design of the AutoDL challenge (Chapter 4), the design

of the MetaDL challenge (Chapter 6) and the theoretical analysis of zero-

order meta-learning (Chapter 6). The reflection on GramNAS can also

be retroactively absorbed by this three-level formulation (see Section

3.2.3).

3.2 . Meta-learning problems considered in this thesis

In this section, we position several main problems addressed in this

thesis using the terminology we just defined.

3.2.1 . Algorithm selection in multi-phase challenges
In the AutoDL challenges that we will introduce in detail in Chapter

4, different participants’ approaches (the learners) are evaluated on

different datasets (the tasks). The leaderboard (of the first phase called

the feedback phase) is thus a meta-dataset of the form

Dtr = {Ri, j|i ∈ I, j ∈ J} (3.15)



Table 3.1 Algorithms in the three-level formulation and the cor-
responding programmatic interface methods in scikit-learn and
MetaDL challenge.
Level Type Signature Method name Examples

α-level predictor α : x 7→ y predict in scikit-
learn

Trained or “hard-

coded” image

classifiers such

as (Dalal and

Triggs, 2005;

Lowe, 2004)

β -level learner β : T 7→ α fit in scikit-

learn

Learner al-

gorithms of

SVM (Boser

et al., 1992),

NAS (Baker

et al., 2016;

Zoph and Le,

2016)

γ-level meta-learner γ : Dtr 7→ β meta_fit in

MetaDL chal-

lenge

Meta-learners

of MAML (Finn

et al., 2017),

ActivMetaL (Sun-

Hosoya et al.,

2018b)

where I indexes the set of tasks and J indexes the set of participants.
The job of the challenge organizers is thus to select the top partici-

pants/learners that can obtain good performances on unseen tasks in

the second phase (called the final phase).

From the point of view of the challenge organizers, this forms a

zero-order meta-learning problem.

3.2.2 . Active learning with dynamic meta-datasets
In the section 6.4 of Chapter 6, we will consider a problem setting

where one can evaluate different learners on a new task and update the

meta-dataset with these new evaluations.



Although the meta-dataset of this problem has similar form with

the one in the previous section

Dtr = {Ri, j|i ∈ I, j ∈ J}, (3.16)

we should keep in mind that for this problem, the meta-dataset Dtr

changes dynamically during the learning process. Obviously, this is a

zero-order meta-learning problem.

Having a dynamic meta-dataset is very common in practice. This is

the case for most NAS and HPO methods.

3.2.3 . NAS for one single task
The Neural Architecture Search (NAS) problem is a special form of

Hyperparameter Optimization for Deep Learning. NAS composes an

important research domain for Automated Deep Learning.

In NAS, one typically only considers one single task T0 at a time (think

of the CIFAR-10 (Krizhevsky, 2009) task for example). The corresponding

meta-dataset thus has the form

Dtr = {(T0,Ψ(β j),R j)| j ∈ J}. (3.17)

Here the β j ’s correspond to some learners defined by different neural

network architectures and the Ψ can be, for example, a list of strings

containing description of each layer in the network. Due to the meta-

dataset form (3.17), NAS can be considered as first-order meta-learning.

We note that NAS approaches often have an aspect of active learning

as introduced in the previous section. A NAS algorithm typically repeats

the following iteration:

1. Recommend new promising learner (based on the meta-dataset

Dtr) and evaluate it on T0;

2. Record this evaluation and update the meta-datasetDtr.

Although here we consider NAS as a special form of meta-learning,

we still assign a separate chapter (Chapter 5) to NAS due to its specialty

and importance.

3.2.4 . Few-shot learning



In Chapter 6, we will introduce the AAAI-2020 MetaDL challenge (Baz

et al., 2021), which focuses on the few-shot learning problem in the

meta-learning community.

In few-shot learning, the meta-dataset has the most general form

Dtr = {(Tj,β j,R j)| j ∈ J} (3.18)

where the learners β j are typically defined by a fixed neural network

architecture with different weight initialization. The full information on

the tasks Tj is also exploited since all examples of the tasks inDtr are

used.

Few-shot learning is thus categorized as second-ordermeta-learning.

3.2.5 . Empirical Evaluation Setting
We now briefly introduce the datasets formatted and used during

this thesis. These datasets constitute an important problem spaceB

for this thesis.

In the AutoML community, datasets were essentially feature-based

data, such as those in AutoML challenges (Guyon et al., 2015, 2018) or

in benchmarking platforms such as OpenML (Vanschoren et al., 2014).

However, feature-based data are not well suited for deep learning

because learning directly from raw data (such as images or text) is a

huge advantage of deep learning. So the data we use in this thesis

follow, in most cases, a 4D-tensor format described as follows. Each

dataset is a set of example-label pairs. Each example is a 4D-tensor of

shape [t,H,W,C] with t for time axis,H andW for two space axes, and

C for channel axis. Some of these four dimensions can be not fixed to
an integer (think of documents or videos of different lengths). While for

the labels, each is a vector of dimension K when there are K classes.
Each of these K entries is 0 or 1 representing if the corresponding class
is present in the given example.

This data format allows us to encode examples from many popular

data domains such as image, video, speech, text and tabular. We note

that multi-modal data such as videos with audio tracks or even with

subtitles are not considered in our scope. How data from each domain

are encoded is visualized in Figure 3.2.



Figure 3.2 4D-tensor format of the datasets we formatted during
this thesis. This format can encode data for which each example can
be an image, a video, a document, an audio or a feature vector. All data

are provided raw without pre-processing, in TensorFlow (Abadi et al.,

2016) TFRecord format.

We list all datasets that are used in the AutoDL challenges (i.e. Au-

toCV, AutoCV2, AutoNLP, AutoSpeech and AutoDL) as well as in this

thesis in Table 3.2. These datasets come from diverse domains. Some

of them are used in more than two phases and/or challenges. We hope

that this enriching repository of datasets can help the community to

advance in the research of AutoML, especially meta-learning.

Table 3.2 Datasets used in AutoDL challenges. “HWR” means hand-
writing recognition, “chnl” channel, and “var” variable size.

Class Sample number Tensor dimension

# Dataset Challenge(s) Phase Domain Type num. train test time row col chnl

1 Munster AutoCV1 public HWR image 10 60000 10000 1 28 28 1

2 Chucky AutoCV1 public objects image 100 48061 11939 1 32 32 3

3 Pedro AutoCV1 public people image 26 80095 19905 1 var var 3

4 Decal AutoCV1 public aerial image 11 634 166 1 var var 3

5 Hammer AutoCV1 public medical image 7 8050 1965 1 600 450 3

6 Ukulele AutoCV1 feedback HWR image 3 6979 1719 1 var var 3

7 Caucase AutoCV1 feedback objects image 257 24518 6089 1 var var 3

8 Beatriz AutoCV1 feedback people image 15 4406 1094 1 350 350 3

9 Saturn AutoCV1 feedback aerial image 3 324000 81000 1 28 28 4

10 Hippocrate AutoCV1 feedback medical image 2 175917 44108 1 96 96 3

11 Loukoum AutoCV1 final HWR image 3 27938 6939 1 var var 3

AutoCV2 final

12 Tim AutoCV1 final objects image 200 80000 20000 1 32 32 3

13 Apollon AutoCV1 final people image 100 6077 1514 1 var var 3

AutoCV2 final

AutoDL feedback

14 Ideal AutoCV1 final aerial image 45 25231 6269 1 256 256 3

AutoCV2 feedback

15 Ray AutoCV1 final medical image 7 4492 1114 1 976 976 3

AutoDL final

16 Kraut AutoCV2 public action video 4 1528 863 var 120 160 1

17 Katze AutoCV2 public action video 6 1528 863 var 120 160 1

18 Kreatur AutoCV2 public action video 4 1528 863 var 60 80 1

19 Freddy AutoCV2 feedback HWR image 2 546055 136371 1 var var 3



20 Homer AutoCV2 feedback action video 12 1354 353 var var var 3

21 Isaac2 AutoCV2 feedback action video 249 38372 9561 var 102 78 1

22 Formula AutoCV2 feedback misc. video 4 32994 8203 var 80 80 3

23 Fiona AutoCV2 final action video 6 8038 1962 var var var 3

AutoDL final

24 Monica1 AutoCV2 final action video 20 10380 2565 var 168 168 3

AutoDL feedback

25 Kitsune AutoCV2 final action video 25 18602 4963 var 46 82 3

26 data01 AutoSpeech public speech time 100 3000 3000 var 1 1 1

27 data02 AutoSpeech public speech time 7 428 107 var 1 1 1

28 data03 AutoSpeech public speech time 3 796 200 var 1 1 1

29 data04 AutoSpeech public speech time 20 939 474 var 1 1 1

30 data05 AutoSpeech public speech time 10 199 597 var 1 1 1

31 data11 AutoSpeech feedback speech time 55 1300 2000 var 1 1 1

32 data12 AutoSpeech feedback speech time 5 3120 346 var 1 1 1

33 data13 AutoSpeech feedback speech time 3 5000 1330 var 1 1 1

34 data14 AutoSpeech feedback speech time 8 767 191 var 1 1 1

35 data15 AutoSpeech feedback speech time 76 2286 571 var 1 1 1

36 data21 AutoSpeech final speech time 50 800 1200 var 1 1 1

37 data22 AutoSpeech final speech time 4 2649 294 var 1 1 1

38 data23 AutoSpeech final speech time 3 2000 264 var 1 1 1

Oreal AutoDL final

39 data24 AutoSpeech final speech time 16 384 386 var 1 1 1

40 data25 AutoSpeech final speech time 100 3008 752 var 1 1 1

Sahak AutoDL feedback

41 O1 AutoNLP public english text 2 7792 1821 var 1 1 1

42 O2 AutoNLP public english text 20 11314 7532 var 1 1 1

43 O3 AutoNLP public english text 2 60000 40000 var 1 1 1

44 O4 AutoNLP public chinese text 10 55000 10000 var 1 1 1

45 O5 AutoNLP public chinese text 18 156000 72000 var 1 1 1

46 PU1 AutoNLP feedback english text 9 2822 499 var 1 1 1

47 PU2 AutoNLP feedback english text 5 132651 23409 var 1 1 1

48 PU3 AutoNLP feedback chinese text 2 1110203 195919 var 1 1 1

49 PU4 AutoNLP feedback chinese text 11 100000 50000 var 1 1 1

50 PU5 AutoNLP feedback chinese text 31 600000 400000 var 1 1 1

51 PR1 AutoNLP final english text 20 33807 5967 var 1 1 1

52 PR2 AutoNLP final english text 2 42500 7501 var 1 1 1

Tanak AutoDL feedback

53 PR3 AutoNLP final english text 4 90000 30000 var 1 1 1

54 PR4 AutoNLP final chinese text 11 100000 50000 var 1 1 1

55 PR5 AutoNLP final chinese text 15 250000 132688 var 1 1 1

Tal AutoDL final

56 Adult AutoDL public categorical tabular 5 39074 9768 1 1 24 1

57 Dilbert AutoDL public objects tabular 5 14860 9720 1 1 2000 1

58 Digits AutoDL public HWR tabular 10 35000 35000 1 1 1568 1

59 Madeline AutoDL public artificial tabular 2 4220 3240 1 1 259 1

60 Barak AutoDL feedback CE pair tabular 4 21869 2430 1 1 270 1

61 Bilal AutoDL final audio tabular 20 10931 2733 1 1 400 1

62 Cucumber AutoDL final people image 100 18366 4635 1 var var 3

63 Yolo AutoDL final action video 1600 836 764 var var var 3

64 Marge AutoDL final music time 88 9301 4859 var 1 1 1

65 Viktor AutoDL final english text 4 2605324 289803 var 1 1 1

66 Carla AutoDL final neural tabular 20 10931 2733 1 1 535 1

We show a distribution of these datasets in Figure 3.3, using meta

information of each dataset such as the number of examples and the

compressed size. Each domain has a corresponding color.

3.3 . Contributions of the Author



Figure 3.3 Distribution of AutoDL challenge datasets with respect to
compressed storage size in giga-bytes and total number of examples

for all 66 AutoDL datasets. We see that the text domain varies a lot in

terms of number of examples but remains small in storage size. The

image domain varies a lot in both directions. Video datasets are large

in storage size in general, without surprise. Speech and time series

datasets have fewer number of examples in general. Tabular datasets

are concentrated and are small in storage size.

To end this chapter, we briefly summarize the major contributions

of the author during this thesis, under the previously introduced scope.

— Mathematical formulation and unified framework for Au-
toML. To formulate the AutoML problem in a rigorous way, we
introduce in Chapter 3 amathematical framework that: (1) formu-

lates all problems treated in this thesis as an Algorithm Selection

Problem (Rice, 1976) and categorizes all involved algorithms into

three levels (α , β and γ levels); (2) concretely defines the con-

cept of a task (especially in a supervised learning setting); (3)

formally relates HPO and meta-learning; (4) introduces in Chap-

ter 4 an any-time learning metric that allows to evaluate learning

algorithms by not only their accuracy but also their learning

speed, which is crucial in settings such as hyperparameter opti-

mization (including neural architecture search) or meta-learning.

This mathematical framework unifies different sub-fields of ML

(e.g. HPO, NAS and meta-learning), allows us to systematically

classify methods, and provides us with formal tools to facilitate

theoretical developments and empirical research. In particular,



it serves as the theoretical basis of a series of challenges that we

organized;

— Large-scale AutoDL benchmark. Our principal methodological
approach to tackle AutoML with Deep Learning has been to

set up an extensive benchmark, in the context of a challenge

series on Automated Deep Learning (AutoDL), co-organized with

ChaLearn, Google, and 4Paradigm. These challenges provide a

benchmark suite of baseline AutoML solutions with a repository

of around 100 datasets (from all above domains), over half of

which are released as public datasets to enable research on

meta-learning. The author developed and maintained the data

formatting toolkit, the code (i.e. ingestion program
2
and scoring

program
3
) defining the logic behind the challenges, the code of

several baselines and also the toolkit for post-challenge analysis.

The challenge platform, the starting kit, the dataset formatting

toolkit and all winning solutions are open-sourced at https://

autodl.chalearn.org/;

— Extensive post-challenge analyses and meta-study. At the
end of these challenges, we carried out extensive post-challenge

analyses which revealed that: (1) winning solutions generalize to

new unseen datasets, which validates progress towards universal

AutoML solution; (2) Despite our effort to format all datasets uni-

formly to encourage generic solutions, the participants adopted

specific workflows for each modality; (3) Any-time learning was

addressed successfully, without sacrificing final performance; (4)

Although some solutions improved over the provided baseline,

it strongly influenced many; (5) Deep learning solutions domi-

nated, but Neural Architecture Search was impractical within the

time budget imposed. Most solutions relied on fixed-architecture

pre-trained networks, with fine-tuning. Ablation studies revealed

the importance of meta-learning, ensembling, and efficient data

2. What is an ingestion program: https://github.

com/codalab/codalab-competitions/wiki/User_

Building-an-Ingestion-Program-for-a-Competition

3. What is a scoring program: https://github.

com/codalab/codalab-competitions/wiki/User_

Building-a-Scoring-Program-for-a-Competition

https://autodl.chalearn.org/
https://autodl.chalearn.org/
https://github.com/codalab/codalab-competitions/wiki/User_Building-an-Ingestion-Program-for-a-Competition
https://github.com/codalab/codalab-competitions/wiki/User_Building-an-Ingestion-Program-for-a-Competition
https://github.com/codalab/codalab-competitions/wiki/User_Building-an-Ingestion-Program-for-a-Competition
https://github.com/codalab/codalab-competitions/wiki/User_Building-a-Scoring-Program-for-a-Competition
https://github.com/codalab/codalab-competitions/wiki/User_Building-a-Scoring-Program-for-a-Competition
https://github.com/codalab/codalab-competitions/wiki/User_Building-a-Scoring-Program-for-a-Competition


loading, while data-augmentation is not critical. All code and

data (including post-challenge analyses data) are available at

autodl.chalearn.org. The post-challenge analysis is introduced

in Chapter 4 and the corresponding paper (Liu et al., 2021) is

published in IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI);

— Development of custom AutoDL methods. In Chapter 5, our
proposedmethodGramNAS tackles the neural architecture search

(NAS) problem by using a formal grammar to encode neural ar-

chitectures. This provides a solution to algorithm representa-

tion and opens the possibility to analyze learning of algorithms

from the essential: after all, the ultimate representation of an

algorithm is its code (together with a compiler). Two alternative

approaches have been experimentally investigated: one based

on Monte-Carlo Tree Search (MCTS) and one based on an evo-

lutionary algorithm. As tree structures arise very naturally with

formal grammars, Monte-Carlo Tree Search may be used rather

naturally as search algorithm. The MCTS GramNAS algorithm

achieves near state-of-the-art performance (94% accuracy) on

CIFAR-10 dataset. We also cast on our GramNAS framework the

AgEBO (Aging Evolution with Bayesian Optimisation) algorithm

to illustrate the other approach. This last algorithm lends itself

to parallelism. In a benchmark on 4 large well-known datasets,

it beats state-of-the-art packages AutoGluon and AutoPytorch.

The GramNAS framework provides insights to the understand-

ing and representation of learning algorithms. A tool-kit was

open-sourced to craft customized formal grammars for novel

applications, allowing users to reuse common underlying search

strategies.

— Laying the basis for a future challenge on meta-learning.
The AutoDL challenge series revealed the importance of meta-

learning to succeed in solving AutoDL tasks. Yet the challenge

setting did not evaluate meta-learning in the sense that meta-

learning was not carried out on the challenge platform: code

submitted by participants was only trained and tested indepen-

autodl.chalearn.org


dently on several tasks. With an intern Adrian El Baz, we de-

signed a newmeta-learning challenge protocol and proposed the

MetaDL challenge for evaluating few-shot learning approaches.

The MetaDL challenge is accepted as an official competition of

NeurIPS 2021
4
and will terminate in October 2021. A reposi-

tory, Meta-Album (Ullah et al., 2021), of 15 meta-datasets that

aim to bridge the gap between small-scale benchmarks (such as

Omniglot (Lake et al., 2015)) and large-scale benchmarks (such

as Meta-dataset (Triantafillou et al., 2019)) is proposed and the

corresponding paper is under review for NeurIPS 2021 Datasets

and Benchmarks Track;

— Theoretical contributions. During the course of this thesis, sev-
eral collaborations were entered to tackle problems of transfer

learning and expressiveness of neural networks. In Chapter 6,

we formulated meta-learning in a reinforcement learning setting

and proved that under certain conditions, the average perfor-

mance of the random search cannot be beaten (Liu and Guyon,

2021). Also in Chapter 6, we made theoretical analysis on the

super-generalization ability of the LEAP nets proposed by us and

proved that when the perturbations of the system are additive,

LEAP nets are capable of super-generalization (Donnot et al.,

2019; Donon et al., 2020b).

4. https://neurips.cc/Conferences/2021/CompetitionTrack

https://neurips.cc/Conferences/2021/CompetitionTrack




4 - AutoDL challenges
In this chapter, we present the design and results of a series of

competitions in Automated Deep Learning (AutoDL). In this AutoDL

challenge series 2019, we organized 5 machine learning challenges:

AutoCV, AutoCV2, AutoNLP, AutoSpeech and AutoDL. If we use the

terminology in Chapter 3, all of these challenges are in β -level (i.e.

participants need to provide a β -level algorithm for submission). While

for the organizers, they are facing a γ-level problem with the meta-

dataset of the form

Dtr = {Ri, j|i ∈ I, j ∈ J}

where I indexes the tasks and J indexes the participants. The first 4 chal-
lenges concern each a specific application domain, namely computer

vision, natural language processing and speech recognition respectively.

And the last one AutoDL combines all domains together. Some high-

lights of this chapter include: (1) a benchmark suite of baseline AutoML

solutions, with emphasis on domains for which Deep Learning methods

have had prior success (image, video, text, speech, etc); (2) a novel “any-

time learning” framework, which opens doors for further theoretical

consideration; (3) a repository of around 100 datasets (from all above

domains) over half of which are released as public datasets to enable

research on meta-learning; (4) analyses revealing that winning solutions

generalize to new unseen datasets, validating progress towards univer-

sal AutoML solution; (5) open-sourcing of the challenge platform, the

starting kit, the dataset formatting toolkit, and all winning solutions. All

information available at autodl.chalearn.org.

Organizing AutoDL challenges serves as an important link to other

parts of this thesis and is of great scientific value in itself too. In the

following, we list somemajor motivations on the organization of AutoDL

challenges.

— Solving the AutoDL problem is scientifically very challenging and

could be too hard for anyone to solve alone. Thus the commu-

nity effort should be at help. Organizing challenges is a great

autodl.chalearn.org


way to call for community efforts and also to standardize the

problem. Besides learning a great deal of organizational skills

and coordinating skills, organizing challenges allows the author

to make one essential contribution: formulate the problem in

a way that one can get conclusive results. By formulating the

problem in a standard and mathematical, the author learned

about the experimental design and came up with the definition

of any-time learning;

— By organizing open and shared benchmarks and challenges, one

can avoid the inventor-evaluator bias, which happens very often

when one defines his/her problem and evaluate alone. Biases on

the data or on the evaluation are often introduced unintention-

ally. With a community, the evaluation is more robust and fairer.

In addition, I can put my own contributions together with others

in some cases. This happened typically during the preparation

of several baseline methods;

— Organizing challenges is an effective way to speed up getting

results and accelerate research. The results come from many

people and new ideas are more likely to occur since one’s ideas

constantly inspire the others’. Also, the fact that results come

from many people allows us to carry out meta-study (paper

accepted at TPAMI (Liu et al., 2021)). Such meta-studies allow us

to provide a global view on the state of the community and help

identify the bottlenecks of research to guide next steps;

— Formatting a large set of benchmark tasks allows us to pave

the way of meta-learning research. Indeed, the work on dataset

formatting provides a rich repository for the community to do re-

search on meta-learning, which is of long-lasting scientific value.

4.1 . Introduction

Machine Learning (ML) keeps delivering impressive novel applica-

tions in our daily lives. But it is still facing enormous challenges, pre-

venting its more universal deployment by users having direct needs but

no time or resources to hire ML experts. In fact, even for ML experts,



effectively tuning hyper-parameters is still a daunting task, particularly

for Deep Learning models, let alone addressing higher level aspects of

model design, including problem definition, experimental design, data

collection, pre-processing, design of metrics, computation of error bars,

detection of bias in data, etc. Certainly, automating the entire model-

ing pipeline is still a far reaching goal, but the challenges we present

in this paper allowed us to make great strides. We present here the

results of the Automated Deep Learning (AutoDL) challenge series, ad-

dressing tasks in Computer Vision (Liu et al., 2019b), Natural Language

Processing (NLP), Speech Recognition, etc. With the solutions provided

(and open-sourced) by the winners, users must only preprocess data

to horseshoe-fit them in a generic tensor format to have automated

algorithms train and test Deep Learning neural networks for them.

The problems addressed are multi-label classification, in an amazingly

broad range of application domains (medical imaging, object or gesture

classification, satellite imaging, to name a few). Besides saving human

effort, the benefit of such automated solutions include reproducibility

and accountability, freeing us potentially from the variability of human

solutions and possibly increasing reliability.

The AutoDL challenge series is part of a larger effort on Automated

Machine learning (AutoML) with code submission in which the solu-
tions of participants are blind tested on the CodaLab challenge platform.

In all of our AutoML challenges we seek to enforce learning within a

fixed time budget and limited computational resources. One particular-

ity of AutoDL challenges, compared to previous AutoML challenges, is

that we seek to enforce any-time learning, which encourages solutions
performing reasonably good early on in the whole learning process.

This is achieved by using the Area under the Learning Curve (ALC) metric,

as explained in Section 4.2.1. To help participants develop their code,

we provide a starting kit in Python with TensorFlow/PyTorch interfaces,

sample “public” datasets and sample code submissions. Some basic

facts about the challenge series are summarized in Table 1.1.

While most of our challenges are run in two phases (a feedback
phase with immediate feedback on a leaderboard on N = 5 practice
datasets and a final phase with a single evaluation on N = 5 final test

http://autodl.chalearn.org
http://automl.chalearn.org
http://competitions.codalab.org
https://github.com/zhengying-liu/autodl_starting_kit_stable


datasets), in AutoCV, we evaluated the participants on the results of the

feedback phase, to make it slightly easier. However, we ran privately a

final test phase of which we report here the results. Since the 5 AutoCV

final phase datasets were not disclosed, we re-used some in subsequent

phases. AutoCV2 was run regularly in 2 phases. Even practice datasets

during the feedback phase were not revealed to the participants (they

were solely visible to their “autonomous agent”).

4.2 . Data

In AutoDL challenges, raw data (images, videos, audio, text, etc)

are provided to participants formatted in a uniform tensor manner

(namely TFRecords, a standard generic data format used by TensorFlow).

Statistics and meta-features of all AutoDL datasets are presented in

Table 3.2.

For images with native compression formats (e.g. JPEG, BMP, GIF),

we directly use the bytes. Our data reader decodes them on-the-fly to

obtain a 4D tensor. Video files in mp4/avi format (without the audio

track) are used in a similar manner. For text datasets, each example (i.e.

a document) is a sequence of integer indices. Each index corresponds

to a word (for English) or character (for Chinese) in a vocabulary given

in the metadata. For speech datasets, each example is represented by

a sequence of floating numbers specifying the amplitude at each times-

tamp, similar to uncompressed WAV format. Lastly, tabular datasets’

feature vector representation can be naturally considered as a special

case of our 4D tensor representation.

For practical reasons, each dataset was kept under 4GB, which re-

quired sometimes reducing image resolution, cropping, and/or down-

sampling videos. Wemade sure to include application domains in which

the scales varied a lot. We formatted around 100 datasets in total and

used 61 of them for AutoDL challenges: 16 image, 9 video, 15 text, 15

speech and 6 tabular. All datasets marked “public” can be downloaded

on corresponding challenge websites, for example on the Get Data page

of AutoDL challenge. All tasks are supervised multi-label classification

problems, i.e. data samples are provided in pairs {X ,Y}, X being an

https://autodl.lri.fr/competitions/162#learn_the_details-get_data


input 4D tensor of shape (time, row, col, chnl) and Y a target binary
vector (withheld from in test data).

4.2.1 . Evaluation Metrics
AutoDL challenges enforce any-time learning by scoring participants

with the Area under the Learning Curve (ALC) (Figure 4.1).

Figure 4.1 Example of learning curve. We modified the CodaLab com-
petition platform (noa) so participants can save their results, at any

intervals they choose, to incrementally improve their performance, un-

til the time limit is attained. In this way, we can plot their learning

curves: performance as a function of time. By evaluating them with the

area under the learning curve, we push them to implement any-time

learning methods. The x-axis corresponds to timestamp but normalized

to [0,1]. This figure shows an example of possible over-fitting in which

the participant could have stopped further training earlier.

The participants can train in increments of a chosen duration (not

necessarily fixed) to progressively improve performance, until the time

limit is attained. Several predictions can be made during the learning

process and this allows us to plot their learning curves, i.e., “perfor-

mance” as a function of time. More precisely, for each prediction made

at a timestamp, we compute for each (binary) class the Area Under ROC

Curve (AUC), then normalize it (and average over all classes) by

NAUC = 2×AUC−1.



Then for each dataset, we compute the Area under Learning Curve (ALC)

of a submission as follows:

— at each timestamp t, we compute s(t), the NAUC (see above) of
the most recent prediction. In this way, s(t) is a step function
with respect to timestamp t;

— in order to normalize time to the [0,1] interval, we perform a
time transformation by

t̃(t) =
log(1+ t/t0)
log(1+T/t0)

where T is the time budget (e.g. 1200 seconds = 20 minutes) and
t0 is a reference time amount (e.g. 60 seconds).

— then compute the area under learning curve using the formula

ALC =
∫ 1

0
s(t)dt̃(t)

=
∫ T

0
s(t)t̃ ′(t)dt

=
1

log(1+T/t0)

∫ T

0

s(t)
t + t0

dt

we see that s(t) is weighted by 1/(t + t0), giving a stronger im-
portance to predictions made at the beginning of th learning

curve.

The ALC gives the evaluation score for one task. Finally, when ALC score
is computed for all tasks, the final score is obtained by the average
rank (over all tasks among all submissions). It should be emphasized
that multi-class classification metrics are not being considered, i.e., each

class is scored independently.

4.3 . Baselines

As each challenge (except for AutoDL) involves a specific domain,

different baselines are provided for different challenges.

4.3.1 . Baselines for AutoCV & AutoCV2



For AutoCV and AutoCV2, we introduced 3 baseline methods with

varied complexity and computer resource requirements. Baseline 0
makes one single all-zero prediction and always gets 0 NAUC score

(hence 0 ALC as well). Baseline 1 is a linear classifier. It uses a cross
entropy loss and an Adam optimizer (Kingma and Ba, 2014). If the input

shape is variable, resize all images to a fixed shape 112× 112. When
the number of frames (time axis) is variable, sample 10 consecutive

frames at random, both for training and testing. The scheduling strat-

egy is to double the number of training steps at each iteration. Stop

training and predicting when time budget is not enough for next itera-

tion. Baseline 2 uses a neural network architecture determined by the
tensor shape of the input examples. More concretely, 3D convolutional

layer is repeatedly applied followed by a 3D max-pooling layer, until

the number of neurons of the hidden layer is less than a pre-defined

number (e.g. 1000), then apply a fully connected layer for classification.

More details on these baselines can be found in Liu et al. (2020a). Lastly,

we also prepared two private baselines with fixed backbone architec-

ture ResNet-50 (He et al., 2015) and Inception-V3 (Szegedy et al., 2016)

but these baselines are only used by the organizers for testing and

comparison purpose.

4.3.2 . Baselines for AutoNLP
For AutoNLP, Baseline 0 uses a Support Vector Machine (SVM) as

classifier. The input text is preprocessed by keeping only the alphanu-

meric characters and been vectorized with the Term Frequency Inverse

Document Frequency (TF-IDF) vectorizer with a maximum vocabulary

size of 20000.

Baseline 1 follows and uses a convolutional neural network (CNN).
In this method, the text input data is preprocessed like in the previous

baseline. The vocabulary is indexed and the integer sequence is then

padded with a maximum sequence length. The model architecture

consists of an Embedding layer with a dimension of 200, two 1D con-

volutional layers, a Maxpooling layer, two 1D convolutional layers, a

Global Average pooling layer and a fully connected layer.

Compared to Baseline 1, Baseline 2 uses pre-trained word embed-
ding weights in addition. This method uses the same pre-processing,



vectorization and model architecture from the previous baseline with

an embedding layer of dimension 300. The embedding layer weights

are loaded with a pre-trained embedding from FastText (Joulin et al.,

2017).

4.3.3 . Baseline for AutoSpeech
The baseline method for AutoSpeech is relatively straightforward.

Features are extracted on each dataset using Mel-Frequency Cepstral

Coefficients (MFCC) (Mermelstein, 1976), with shape padding. We then

apply a CNN backbone model on the extracted preprocessed features,

automatically adapting the number of layers according to the number

of features. We train only one iteration or perform early stopping at

convergence. For prediction, the same MFCC feature pre-processing is

applied and use the trained model for inference.

4.3.4 . Baseline for AutoDL
For the final AutoDL challenge, we provide a baseline referred to as

Baseline 3, which is a combination of the winner solutions of AutoCV
(kakaobrain), AutoNLP (upwind_flys) and AutoSpeech (PASA_NJU), using

domain inference which depends only on the input shape of the 4D

tensor. On tabular datasets (which are never used in above challenges),

the model chosen is simply a fully connected neural network with 2

hidden layers of 256 neurons.

4.4 . Challenge results for AutoCV, AutoCV2, AutoNLP and Au-
toSpeech

In this section, we present the results and analysis of AutoCV, Au-

toCV2, AutoNLP and AutoSpeech. As AutoDL is a combination of do-

mains for these challenges, its results will be presented in a separated

section.

We only consider the top-10 participants in the final phase of
each challenge for all analyses. The names of the top-3 teams can be

found in Table 4.1.

4.4.1 . Learning curves obtained in each challenge



Table 4.1 Top-3 winners and Pearson correlation coefficient be-
tween average ranking vectors in feedback phase and final phase, with

corresponding p-value. For all challenges except AutoCV2, the Pearson
correlation is close to 1 with significant p-value, which means that the
feedback phase results and final phase results are consistent, suggest-

ing the generalization ability of these AutoDL methods. For AutoCV2,

top-10 participants used very similar approaches (all similar to the so-

lution of kakaobrain, in AutoCV), which makes the performances of

different teams very close.

Challenge Top-3 teams Pearson’s r p-value
AutoCV kakaobrain, DKKimHCLee,

base_1

0.8321 2.836×10−3

AutoCV2 kakaobrain, tanglang, kvr 0.3555 3.133×10−1

AutoNLP DeepBlueAI, upwind_flys, txta 0.8718 1.010×10−3

AutoSpeech PASA_NJU, DeepWisdom, Kon 0.8761 8.844×10−4

AutoDL DeepWisdom, Deep-

BlueAI, PASA_NJU and

Inspur_AutoDL (tied)

0.9106 5.843×10−4

For a given task, we plot all learning curves of top-10 participants

in the same figure, for a clear comparison. In Figure 6.17, four of such

figures are shown, each from a different challenge. From these curves,

one can spot very different learning curve patterns, suggesting very

different learning and predicting strategies.

4.4.2 . Generalization ability of AutoML methods
To evaluate the generalization ability of AutoML methods on unseen

datasets, we compute the average rank over 5 datasets in both phases

and consider their correlation (recall that datasets are DIFFERENT in

each phase). This gives an average rank pair (r1,r2) ∈ R2
for each

participant. When r1 is close to r2, the method is considered to super-

generalize,i.e. generalize in the AutoML sense to NEW datasets, not

just to a different test set from the same datasets as in common ML

challenges. We plot all these pairs (r1,r2) in Figure 4.3. We observe

that most participants’ rank pairs are close to the diagonal, suggesting

generalization ability for most methods. Some outliers such as LEAD are

due to technical failure of code execution, e.g. with an out of memory



Figure 4.2 Learning curves for one specific task in each challenge.
From these curves, we can already see that the strategies used by

participants vary a lot. The number of predictions (i.e. number of points

on a learning curve) ranges from 1 (e.g. in (c), Kon on PR5 in AutoNLP

final phase) to 789 of DeepWisdom on data24 in AutoSpeech final phase,

in (d). And from whether the curve decreases dramatically at some

point (e.g. in (a), base_1 and XH on ukulele), we can infer whether the

submitted method uses a validation set to determine if a prediction

should be made.

(OOM) error. And to evaluate the soundness of the choice of datasets

for evaluating generalization, we also compute the Pearson correlation

coefficient for all r1,r2 in Table 4.1 using ρX ,Y = cov(X ,Y )/(σX σY ).

4.4.3 . Modeling difficulty of datasets
To benchmark the modeling difficulty of each task/dataset, Figure

4.4 shows the best-vs-worst performances among top-10 participants.



Figure 4.3 Generalization abil-
ity of AutoML methods. For
each participant in a chal-

lenge, the average rank (over

5 datasets) in both phases is

computed as x-axis and y-axis.

When the scattered point is

close to the diagonal, the feed-

back phase (with leaderboard

feedback) result and final phase

(with unseen datasets) result are

consistent.

Figure 4.4 Modeling difficulty
of each task/dataset. The x-

axis (resp. y-axis) is the min-

imum (resp. maximum) ALC

among top-10 participants in

each challenge-phase. Tasks on

top-left have larger modeling

difficulty, while those close to

the diagonal have small perfor-

mance variance and model diffi-

culty.

We see that many datasets from AutoNLP such as PR1 to PR5 are found

on the top-right, meaning that the performance variance is small. This

could be due to the pre-trained word embedding weights from Fast-

Text (Joulin et al., 2017) or BERT (Devlin et al., 2018) we provide in a

Docker image shared by all participants. With these pre-trained word

embedding, even weak classifiers could obtain relatively good perfor-

mance. On the other hand, datasets from AutoSpeech such as data11

and data25 have large modeling difficulty, which might be related to

the fact that raw speech datasets often require careful pre-processing

steps in order to train a successful classifier.

4.4.4 . Addressing the any-time learning problem
The Figure 4.5 informs on participant’s effectiveness to address the

any-time learning problem. We first factored out dataset difficulty by re-

scaling ALC and NAUC scores (resulting scores on each dataset having



Figure 4.5 CORR vs FRAC (%(ALC > NAUC) vs correlation(ALC, NAUC)).
ALC and NAUC were “scaled” (see text). The numbers in the legend are

average scaled ALC and average rank of each participant. The marker

size increases monotonically with average scaled ALC. 34 out of 40

participants have a CORR greater than 0.5 and 30 out of 40 participants

have a FRAC above 0.5.

mean 0 and variance 1). Then we plotted, for each participant, their

fraction of submissions in which ALC is larger than NAUC (FRAC for

short) vs. correlation(ALC,NAUC) (CORR for short).

The participants in the bottom half of the figure did not address well

the any-time learning problem because their FRAC is lower than 50%.
Those participants did not perform well in the challenge either (small

symbols). The participants that did well in the challenge (large symbols)

are all in the upper right quadrant, with both FRAC larger than 50% and
CORR larger than 0.7.

4.5 . Challenge results for AutoDL

The AutoDL challenge (the last challenge in the AutoDL challenges

series 2019) lasted from 14 Dec 2019 (launched during NeurIPS 2019) to

3 Apr 2020. It has had a participation of 54 teams with 247 submissions

in total and 2614 dataset-wise submissions. Among these teams, 19 of

them managed to get a better performance (i.e. average rank over the

5 feedback phase datasets) than that of Baseline 3 in feedback phase

and entered the final phase of blind test. According to our challenge

rules, only teams that provided a description of their approach (by filling

out some fact sheets we sent out) were eligible for getting a ranking



in the final phase. We received 8 copies of these fact sheets and thus

only these 8 teams were ranked. These teams are (alphabetical order):

DeepBlueAI, DeepWisdom, frozenmad, Inspur_AutoDL, Kon, PASA_NJU, sur-

romind, team_zhaw. One team (automl_freiburg) made a late submission

and isn’t eligible for prizes but will be included in the post-analysis for

scientific purpose.

The final ranking is computed from the performances on the 10

unseen datasets in the final phase. To reduce the variance from diverse

factors such as randomness in the submission code and randomness

of the execution environment (which makes the exact ALC scores very

hard to reproduce since the wall-time is hard to control exactly), we

re-run every submission several times and average the ALC scores. The

average ALC scores obtained by each team is shown in Figure 4.6 (the

teams are ordered by their final ranking). From this figure, we see that

some entries failed constantly on some datasets such as frozenmad

on Yolo, Kon on Marge and PASA_NJU on Viktor, due to issues in their

code (e.g. bad prediction shape or out of memory error). On the other

hand, some entries crashed only sometimes on certain datasets, such

as Inspur_AutoDL on Tal, whose cause is related to some pre-processing

procedure on text datasets concerning stop words. Otherwise, the

error bars show that the performances of most runs are statistically

consistent.

4.6 . Winning approaches

In this section, we present in detail the winning solutions from

top-3 winning teams (DeepWisdom, DeepBlueAI and PASA_NJU) and the

team automl_freiburg which made a late submission in feedback phase

but ranked 5th in final phase. We considered interesting to introduce

automl_freiburg’s approach due to their contributions and for scientific

purpose.

A summary of the winning approaches on each domain can be found

in Table 4.2. Another summary using a categorization by machine

learning techniques can be found in Table 4.3. We see in Table 4.2

that almost all approaches used 5 different methods from 5 domains.



Figure 4.6 ALC scores of top 9 teams in AutoDL final phase averaged
over repeated evaluations (and Baseline 3, for comparison). The entry

of top 6 teams are re-run 9 times and 3 times for other teams. Error bars

are shown with (half) length corresponding to the standard deviation

from these runs. Some (very rare) entries are excluded for computing

these statistics due to failures caused by the challenge platform back-

end. The team ordering follows that of their average rank in the final

phase. The domains of the 10 tasks are image, video, speech/times

series, text, tabular (and then another cycle in this order). More infor-

mation on the task can be found in Table 3.2.

For each domain, the winning teams’ approaches are much inspired

by Baseline 3. In Table 4.3, we see that almost all different machine

learning techniques are actively present and frequently used in all

domains (exception some rare cases for example transfer learning

on tabular data). We’ll introduce below in detail the top-3 winning

solutions.



Table 4.2 Summary of the five top ranking solutions and their av-
erage rank in the final phase. The participant’s average rank (over all

tasks) in the final phase is shown in parenthesis (automl_freibug and

Baseline 3 were not ranked in the challenge). Each entry concerns the al-

gorithm used for each domain and is of the form “[pre-processing / data

augmentation]-[transfer learning/meta-learning]-[model/architecture]-

[optimizer]” (when applicable).

Team image video speech text tabular

1.DeepWis-

dom

(1.8)

[ResNet-18 and

ResNet-9 models]

[pre-trained on

ImageNet]

[MC3 model]

[pre-trained on

Kinetics]

[fewshot learning ] [LR,

Thin ResNet34 models]

[pre-trained on

VoxCeleb2]

[fewshot learning]

[task difficulty and

similarity evaluation

for model selection]

[SVM,

TextCNN,[fewshot

learning] RCNN,

GRU, GRU with

Attention]

[LightGBM, Xgboost,

Catboost, DNN

models] [no

pre-trained]

2.Deep-

BlueAI

(3.5)

[data augmentation

with Fast

AutoAugment]

[ResNet-18 model]

[subsampling

keeping 1/6 frames]

[Fusion of 2 best

models ]

[iterative data loader (7,

28, 66, 90%)] [MFCC and

Mel Spectrogram

pre-processing] [LR,

CNN, CNN+GRU

models]

[Samples truncation

and meaningless

words filtering]

[Fasttext, TextCNN,

BiGRU models]

[Ensemble with

restrictive linear

model]

[3 lightGBM

models] [Ensemble

with Bagging]

3.In-

spur_AutoDL

(4)

Tuned version of Baseline 3

[Incremental data

loading and train-

ing][HyperOpt][LightGBM]

4.PASA_NJU

(4.1)

[shape

standardization and

image flip (data

augmentation)][ResNet-

18 and

SeResnext50]

[shape

standardization and

image flip (data

augmentation)][ResNet-

18 and

SeResnext50]

[data truncation(2.5s to

22.5s)][LSTM, VggVox

ResNet with pre-trained

weights of DeepWis-

dom(AutoSpeech2019)

Thin-ResNet34]

[data

truncation(300 to

1600 words)][TF-IDF

and word

embedding]

[iterative data

loading] [Non

Neural Nets

models] [models

complexity

increasing over

time] [Bayesian

Optimization of

hyperparameters]

5.frozen-

mad

(5)

[images resized

under 128x128]

[progressive data

loading increasing

over time and

epochs] [ResNet-18

model] [pre-trained

on ImageNet]

[Successive frames

difference as input

of the model]

[pre-trained

ResNet-18 with

RNN models]

[progressive data

loading in 3 steps 0.01,

0.4, 0.7] [time length

adjustment with

repeating and clipping]

[STFT and Mel

Spectrogram

pre-processing] [LR,

LightGBM, VggVox

models]

[TF-IDF and BERT

tokenizers] [ SVM,

RandomForest ,

CNN, tinyBERT ]

[progressive data

loading] [no

pre-processing]

[Vanilla Decision

Tree,

RandomForest,

Gradient Boosting

models applied

sequentially over

time]

au-

toml_freiburg

Architecture and hyperparameters

learned offline on meta-training tasks

with BOHB. Transfer-learning on unseen

meta-test tasks with AutoFolio. Models:

EfficientNet [pre-trained on ImageNet

with AdvProp], ResNet-18 [KakaoBrain

weights], SVM, Random Forest, Logistic

Regression

Baseline 3

Baseline 3

[Data augmentation

with Fast

AutoAugment,

adaptive input

size][Pretrained on

ImageNet][ResNet-

18(selected

offline)]

[Data augmentation

with Fast

AutoAugment,

adaptive input size,

sample first few

frames, apply stem

CNN to reduce to 3

chan-

nels][Pretrained on

ImageNet][ResNet-

18(selected

offline)]

[MFCC/STFT feature][LR,

LightGBM,

Thin-ResNet-34, VggVox,

LSTM]

[resampling training

exam-

ples][LinearSVC,

LSTM, BERT]

[interpolate missing

value][MLP of four

hidden layers]
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4.6.1 . Approach of DeepWisdom (1st prize)
The team DeepWisdom proposed a unified learning framework fol-

lowing a meta-learning paradigm. The framework consists of two parts:

meta-train and meta-inference. The meta-train module takes as input

the "public" datasets, which are augmented by the internal data aug-

mentation engine, and the objective function (the ALCmetric in the case

of the challenge). The meta-trainer generates solution agents, whose

objective is to search for best models, using search operators. In the

meta-inference step, a new task is processed taking in one dataset of

the challenge. Initial metadata and seed data (few-shot samples) are

acquired from the raw dataset.This constitutes the input of the solution

agents obtained by meta-training. Solution workflow starts after taking

in the seed input data, then it receives more raw data in a streaming

way, and interacts with a whole set of tables for storage to cache in-

termediate results and models. Next, we explain the domain-specific

contributions of this team.

In the image domain, ResNet-18 is used in the early stages of the

training and then switched to ResNet-9 in more advanced stages (The

reason is the instability of ResNet-18). When switching from ResNet-18

to ResNet-9, to reduce I/O cost, they cache the mini batches, which have

been used for ResNet-18 training in GPU and reuse them for the initial

training phase of ResNet-9, until all these mini batches are exhausted.

The networks are fine-tuned by initialing from Imagenet pre-trained

networks. However, for a fast transfer learning batch normalization

and bias variables are initialized from scratch. To avoid overfitting,

fast auto augmentation is used in the later training phase, which can

automatically search for the best augmentation strategy on the given

dataset, according to the validation AUC. The searching process is quite

time-consuming but effectively increase the top-AUC.

In the video domain, a mixed convolution (MC3) network Tran et al.

(2018) is adopted which consists of 3D convolutions in the early layers

and 2D convolutions in the top layers of the network. The network

is pre-trained on the Kinetics dataset and accelerated transferring to

other datasets by re-initializing linear weights and bias and freezing the

first two layers. Due to the slower speed of 3D than 2D convolution,



3 frames are extracted at the early phase. Then for longer videos, an

ensemble strategy is applied to combine best predictions from MC3

with 3-,10- and 12-frames data.

In the speech domain, a model search is applied in the meta-training

part and LogisticRegression and ThinResnet34 achieve best perfor-

mance in non-neural and neural models, respectively. The meta-trainer

firstly learned that validating in the beginning was wasting the time

budget without any effect on ALC, thus the evaluation agent did not val-

idate when model was fitting new streaming data. Secondly, if amount

of training samples was not very large, evaluation metric on training

data could avoid overfitting partly while last best predictions ensemble

strategy was applied.

In the text domain, they decode maximum 5500 samples for each

round. Various data pre-processing methods are applied, including

email data structure pre-processing, word frequency filtering and word

segmentation. After tokenization and sequence padding, both pre-

trained and randomly initialized word embedding (with various dimen-

sions) are used as word features. The meta-trainer includes several

solutions such as TextCNN, RCNN, GRU, and GRU with attention Kim

(2014), Girshick et al. (2014). Hyperparameters are set after a neural net-

work architecture is selected. Also a weighted ensembling is adopted

among top 20 models based AUC scores.

Finally, in the tabular domain, they batch the dataset and convert

tfdatasets to numpy format progressively, a weighted ensembling is ap-

plied based on several optimized models including LightGBM, Catboost,

Xgboost and DNN on the offline datasets. To do so, data is split to

several folds. Each fold has a training set and two validation sets. One

validation set is used to optimize model hyperparameters and other

set to compute ensembling weights.

4.6.2 . Approach of DeepBlueAI (2nd prize)
The DeepBlueAI solution is a combination of methods that are spe-

cific to each modality. Nevertheless, three concepts are applied across

all modalities: 1) optimizing time budget by reducing the time for data

processing, start with light models and parameters setting to acceler-



ate first predictions; 2) dataset adaptive strategies and 3) ensemble

learning.

For images, the DeepBlueAI team applies a strategy adapted to each

specific dataset. They apply a pre-trained ResNet-18 model. The dataset

adaptive strategy is not applied to model selection but to parameters

settings including: image size, steps per epoch, epoch after which start-

ing validating and fusing results. With the aim to optimize for final AUC,

and make results more stable, they apply a progressive ensemble learn-

ing method, i.e. for epochs between 5 to 10, the latest 2 predictions are

averaged, while after 10 epochs the 5 latest predictions are averaged.

When the score on validation set improves a little, data augmentation

strategy is adopted by searching for the most suitable data augmenta-

tion strategy for each image dataset with a small scale version of Fast

AutoAugment Lim et al. (2019a) limiting the search among 20 iterations

in order to preserve more time for training.

For video, ResNet-18 is used for classification. In the search for a

good trade-off between calculation speed and classification accuracy,

1/6 of the frames with respect to the total number are selected. For

datasets with a large number of categories, image size is increased to

128 to get more details out of it. During training, when the score of

the validation set increases, predictions are made on the test set, and

submitted as the average of the current highest 5 test results.

For speech, features are extracted with Mel spectrogram Bridle and

Brown (1974) for Logistic Regression (LR) model and MFCC Davis and

Mermelstein (1980) for deep learning models. In order to accelerate the

extraction long sequences are truncated but covering at least 90% of

the sequence. Then, to accelerate first score computation, training data

are loaded progressively, 7% for the first iteration, then 28%, 66% and

then all data at 4th iteration, with care to balance multiple categories,

to ensure the models can learn accurately. As for the models, LR is

used for the first 3 iterations, then from the 4th iteration using all the

data deep learning models, CNN and CNN+GRU Cho et al. (2014) are

employed. At the end, the overall 5 best models and the best version

of each of the 3 models are averaged to build a final ensemble. The

iterative data loading is especially effective on large dataset and play



a significant role in the performance measured by the metric derived

from the ALC.

For text, the data set size, text length and other characteristics are

automatically obtained, and then a pre-processing method suitable for

the data set is adopted. Long texts, over 6000 words are truncated, and

NLTK stemmer is used to extract root features and filter meaningless

words with frequency below 3. As for model selection, FastText Joulin

et al. (2017), TextCNN Kim (2014), BiGRU Cho et al. (2014) are used

by their system that generate different model structures and set of

parameters adapted to each dataset. The size of the data set, the

number of categories, the length of the text, and whether the categories

are balanced are considered to generate the most suitable models and

parameter settings.

For tabular, three directions are optimized: accelerating scoring

time, adaptive parameter setting, ensemble learning.

Data is first split into many batches to significantly accelerate the

data loading and converted from TFrecords to numpy format. In terms

of models, decision trees LightGBM are adopted to get faster scoring

than with deep learning models. Because LightGBM supports contin-

uous training, and the model learns faster in the early stage. During

the training phase, earnings from the previous epochs are much higher

than those from the latter. Therefore, a complete training is intelligently

divided into multiple parts. The result is submitted after each part to

get score faster.

In terms of adaptive parameter setting, some parameters are auto-

matically set according to the size of data and the number of features

of the tables. If the number of samples is relatively large, the ensemble

fraction is reduced. If the original features of the sample are relatively

large, the feature fraction is reduced. A learning rate decay is applied,

starting with a large value to ensure a speed up in the early training.

An automatic test frequency is adopted. Specifically, the frequency of

testing is controlled based on training speed and testing speed. If the

training is slow and the prediction is fast, the frequency of the test is

increased. On the contrary, if training is fast and prediction is slow, the

frequency is reduced. This strategy can improve to higher early scores.



In order to improve generalization, multiple lightGBM models are

used to make an ensemble with a bagging method.

4.6.3 . Approach of PASA_NJU (3rd prize)
The PASA_NJU team modeled the problem as three different tasks:

CV (image and video), Sequence (speech and text) and Tabular (tabular

domain).

For the CV task, they preprocessed the data by analysing few sample

instances of each dataset at training stage (such as image size, number

of classes, video length, etc) in order to standardize the input shape of

their model. Then, simple transformations (image flip) were used to

augment the data. Random frames were obtained from video files and

treated as image database. For both Image and Video tasks, ResNet-18

He et al. (2015) is used. However, SeResnext50 Hu et al. (2018) was

used at later stages. Basically, they monitor the accuracy obtained by

the ResNet-18 model and change the model to the SeResnext50 if no

significant improvement is observed.

Speech and Text data are treated similarly, i.e., as a Sequence task.

In a pre-processing stage, data samples are cut to have the same shape.

Their strategy was to increase the data length as time pass. For ex-

ample, they use raw data from 2.5s to 22.5s in speech task, and from

300 to 1600 words when Text data is considered. In both cases, hand-

crafted feature extraction methods are employed. For speech data,

mel spectrogram, MFCC and STFT Lowe (2004) is used. When Text is

considered, TF-IDF and word embedding is used. To model the problem,

they employed Logistic Regression at the first stages and use more

advanced Neural Networks at later stages, such as LSTM and Vggvox

Resnet Chung et al. (2018) (for speech data), without any hyperparam-

eter optimization method. In the case of Vggvox Resnet, pre-trained

model from Deepwisdom’s team from AutoSpeech Challenge 2019 Liu

et al. (2020b) was used.

For Tabular data, they divided the entire process into three stages

based on the given time budget, named Retrieve, Feature, and Model,

and employed different models and data pre-processing methods at

each stage, aiming to have quick responses at early stages. The main

task of the Retrieve stage is to get the data and predict as soon as



possible. Each time a certain amount of data is acquired, a model is

trained using all the acquired data. Thus, the complexity of the model

is designed to increase with time. The main task of the Feature stage

is to search for good features. As the Neural Feature Seacher(NFS)

Chen et al. (2019) method uses RNN as the controller to generate

the feature sequence, they used the same method and speed up the

process by parallelizing it. Finally, at the Model stage, the goal is to

search for a good model and hyperparameters. For this, they use

hyperopt Bergstra et al. (2013), which is an open-source package that

uses Bayesian optimization to guide the search of hyperparameters.

4.6.4 . Approach of automl_freiburg
In contrast to other teams, automl_freiburg adopts a domain-independent

approach but focused only the computer vision tasks (i.e. image and

video datasets) of this challenge. While for all other tasks automl_freiburg

simply submitted the baseline to obtain the baseline results, they

achieved significant improvement on the computer vision tasks w.r.t.

the baseline method. To improve both efficiency and flexibility of the ap-

proach, they first exposed relevant hyperparameters of the previous Au-

toCV/AutoCV2 winner code Brain (2019) and identified well-performing

hyperparameter configurations on various datasets through hyperpa-

rameter optimization with BOHB Falkner et al.. They then trained a

cost-sensitive meta-model Xu et al. (2012) with AutoFolio Lindauer et al.

(2015) – performing hyperparameter optimization for the meta-learner

– that allows to automatically and efficiently select a hyperparameter

configuration for a given task based on dataset meta-features. The

proposed approach on the CV task is detailed next.

First, they exposed important hyperparameters of the AutoCV/AutoCV2

winner’s code Brain (2019) such as the learning rate, weight decay or

batch sizes. Additionally, they exposed hyperparameters for the on-

line execution (which were hard-coded in previous winner solution)

that control, for example, when to evaluate during the submission and

the number of samples used. To further increase the potential of the

existing solution, they extended the configuration space to also include:



— An EfficientNet Tan and Le (2019) (in addition to kakaobrain’sBrain

(2019) ResNet-18) pre-trained on ImageNet Russakovsky et al.

(2015);

— The proportion of weights frozen when fine-tuning;

— Additional stochastic optimizers (Adam Kingma and Ba (2014),

AdamW Loshchilov and Hutter (2019), Nesterov accelerated gradi-

ent Nesterov (1983)) and learning rate schedules (plateau, cosine

Loshchilov and Hutter (2017));

— A simple classifier (either a SVM, random forest or logistic regres-

sion) that can be trained and used within the first 90 seconds of

the submission.

After the extension of the configuration space, they optimized the

hyperparameters with BOHB Falkner et al. across 300 evaluation

runs with a time budget of 300 seconds on eight different datasets

(Chucky Krizhevsky et al. (2009), Hammer ham (2018), Munster Le-

Cun et al. (2010), caltech_birds2010 Welinder et al. (2010), cifar100

Krizhevsky et al. (2009), cifar10 Krizhevsky et al. (2009), colorectal_histology

Kather et al. (2016) and eurosat Helber et al. (2017)). These eight

datasets were chosen from meta-training data to lead to a portfolio of

complementary configurations Feurer et al. (2018); Xu et al.. Addition-

ally, they added a robust configuration to the portfolio of configurations

that performed best on average across the eight datasets. Then, they

evaluated each configuration of the portfolio for 600 seconds on all

21 image datasets they had collected. In addition, they searched for a

tenth configuration (again with BOHB), called the generalist, that they

optimized for the average improvement across all datasets relative

to the already observed ALC scores. In the end, the meta-train-data

consisted of the ALC performance matrix (portfolio configurations ×
datasets) and the meta-features from the 21 datasets. These meta-

features consisted of the image resolution, number of classes, number

of training and test samples and the sequence length (number of video

frames, i.e. 1 for image datasets). In addition, they studied the im-

portance of the meta features for the meta-learner, and selected an

appropriate subset. To optimize the portfolio further, they applied a

greedy submodular optimization Feurer et al. (2018); Xu et al. (2011) to
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Figure 4.7Workflow of automl_freiburg. The approach first optimizes
the hyperparameter configuration (including choices for training, in-

put pipeline, and architecture) for every task (dataset) in our meta-

training set using BOHB Falkner et al.. Afterwards, for each dataset

i, the best found configuration λ ∗i is evaluated on the other datasets
j ∈ {1,2, ...,N}, j ̸= i to build the performance matrix (configurations ×
datasets). For training and configuring the meta-selection model based

on performance matrix and the meta-features of the corresponding

tasks, the approach uses AutoFolio Lindauer et al. (2015). At meta-test

time, the model fitted by AutoFolio uses the meta-features of the test

tasks in order to select a well-performing configuration.

minimize the chance of wrong predictions in the online phase. Based

on this data, they trained a cost-sensitive meta-model Xu et al. (2012)

with AutoFolio Lindauer et al. (2015), which applies algorithm configu-

ration based on SMAC Hutter et al., 2011b) to efficiently optimize the

hyperparameters of the meta-learner. Since the meta-learning dataset

was rather small, HPO for the meta-learner could be done within a few

seconds. Lastly, they deployed the learned AutoFolio model and the

identified configurations into the initialization function of the winner’s

solution code. The workflow of this approach is shown in Figure 4.7.

4.7 . Post-challenge analyses

4.7.1 . Ablation study
To analyze the contribution of different components in each win-

ning team’s solution, we asked 3 teams (DeepWisdom, DeepBlueAI and

automl_freiburg) to carry out an ablation study, by removing or disabling

certain component (e.g. meta-learning, data augmentation) of their



approach. We will introduce in the following more details on these

ablation studies by team and synthesize thereafter.

DeepWisdom
According to the team DeepWisdom, three of the most important

components leading to the success of their approach are: meta-learning,

data loading and data augmentation. For the ablation study, these com-

ponents are removed or disabled in the following manner:

— Meta-learning (ML): Here meta-learning includes transfer learn-
ing, pretrain models, and hyperparameter setting and selection.

Meta learning is crucial to both the final accuracy performance

and the speed of train-predict lifecycle. For comparison we train

models from scratch instead of loading pre-trained models for

image, video and speech data, and use the default hyperparam-

eter settings for text and tabular subtasks.

— Data Loading (DL): Data loading is a key factor in speeding up
training procedures to achieve higher ALC score. We improve

data loading in several aspects. Firstly, we can accelerate decod-

ing the raw data formatted in a uniform tensor manner to numpy

formats in a progressive way, and batching the dataset for text

and tabular data could make the conversion faster. Secondly,

the cache mechanism is utilized in different levels of data and

feature management, and thirdly, video frames are extracted in

a progressive manner.

— Data Augmentation (DA): Fast auto augmentation, time aug-
mentation and a stagewise spec_len configuration for thinres-

net34 model are considered as data augmentation techniques

for image, video and speech data respectively.

We carried out experiments on the 10 final phase datasets with

above components removed. The obtain ed ALC scores are presented

in Figure 4.8. As it can be seen in Figure 4.8, Meta-Learning can be con-

sidered one of the most important single component in DeepWisdom’s

solution. Pre-trained models contribute significantly to both accelerat-

ing model training and obtaining higher AUC scores for image, video

and speech data, and text and tabular subtasks benefit from hyperpa-



Figure 4.8 Ablation study for DeepWisdom: We compare different
versions of DeepWisdom’s approach, with one component of their work-

flow disabled. “DeepWisdom \ ML” represents DeepWisdom’s original

approach but with Meta-Learning disabled. “DA” code for Data Augmen-

tation and “DL” for Data Loading. The method variants are ordered by

their average rank from left to right. Thus we observe that removing

Data Augmentation does not make a lot of difference, while removing

both Meta-Learning and Data Loading impacts the solution a lot. See

Section 4.7.1 for details.

rameter setting such as model settings and learning rate strategies. For

image, we remove pre-trained models for both ResNet-18 and ResNet-9,

which are trained on the ImageNet dataset with 70% and 65% top1 test

accuracy; for video, we remove the parts of freezing and refreezing the

first two layers. Then the number of the frames for ensemble models

and replace MC3 model with ResNet-18 model. For speech, we do not

load the pre-trained model which is pre-trained on VoxCeleb2 dataset,

that is we train the thin-resnet34 model from scratch. For text, we use

default setting, i.e. do not perform meta strategy for model selections

and do not perform learning rate decay strategy selections. For tabular,

with the experience of datasets inside and outside this competition,

we found two sets of params of lightgbm. The first hyperparameters

focus on the speed of lightgbm trainning, it use smaller boost round

and max depth, bigger learning rates and so on. While the second

hyperparameters focus on the effect of lightgbm trainning, it can give

us a generally better score. We use the default hyperparameters in

lightgbm in the minus version.



Data Loading is a salient component for the ALC metric in any-

time learning. For text, speech and tabular data, data loading speeds

up numpy data conversion to make the first several predictions as

quickly as possible, achieving higher alc scores. In the minus version,

we convert all train tfdatasets to numpy array in the first round, and

alc scores of nearly all datasets on all modalities decrease steadily

compared with full version solution.

The data augmentation component also helps the alc scores of

several datasets. In the minus version for speech data we use the

fixed spec_len config, the default value is 200. Comparison on Marge

and Oreal datasets is obvious, indicating that longer speech signal se-

quences could offer more useful information. Fast auto augmentation

and test time augmentation enhance performance on image and video

data marginally.

DeepBlueAI
According to the team DeepBlueAI, three of the most important

components leading to the success of their approach are: adaptive

strategies, ensemble learning and scoring time reduction. For the abla-

tion study, these components are removed or disabled in the following

manner:

— Adaptive Strategies (AS): In this part, all adaptive parameter
settings have been cancelled, such as the parameters settings

according to the characteristics of data sets and the dynamic

adjustments made during the training process. All relevant pa-

rameters are changed to default fixed values.

— Ensemble Learning (EL): In this part, all the parts of ensemble
learning are removed. Instead of fusing the results of multiple

models, the model that performs best in the validation set is

directly selected for testing.

— Scoring Time Reduction (STR): In this part, all scoring time re-
duction settings were modified to default settings. Related pa-

rameters and data loading methods are same as those of base-

line.



Figure 4.9 Ablation study for DeepBlueAI: Comparison of different
versions of DeepBlueAI’s approach after removing some of the method’s

components. “DeepBlueAI \ AS” represents their approach with Adap-

tive Strategy disabled. “EL” codes for Ensemble Learning and “STR” for

Scoring Time Reduction. For each dataset, the methods are ordered by

their average rank from left to right. While disabling each component

separately yields moderate deterioration, disabling all of them yields a

significant degradation in performance. See Section 4.7.1.



As it can be observed in Figure 4.9, the results of DeepBlueAI have

been greatly improved compared with those of DeepBlueAI \AS \EL \STR

(i.e., blue bar), indicating the effectiveness of the whole method. After

removing the AS, the score of most data sets has decreased, indicating

that adaptive strategies are better than fixed parameters or models,

and has good generalization performance on different data sets. When

STR is removed, the score of most data sets is reduced. Because the

efficient data processing used can effectively reduce the scoring time,

thereby improving the ALC score, which shows the effectiveness of

the scoring time reduction. After EL is removed, the score of the vast

majority of data sets has decreased, indicating the effectiveness of

ensemble learning to improve the results.

automl_freiburg
According to the team automl_freiburg, two of the most important

components leading to the success of their approach are: meta-learning

and hyperparameter optimization. For the ablation study, these com-

ponents are removed or disabled in the following manner:

— Meta-Learningwith Random selector (MLR): This method ran-
domly selects one configuration out of the set of most comple-

mentary configurations (Hammer, caltech_birds2010, cifar10,

eurosat).

— Meta-Learning Generalist (MLG): This method does not use
AutoFolio and always selects the generalist configuration that

was optimized for the average improvement across all datasets.

— Hyperparameter Optimization (HPO): Instead of optimizing
the hyperparameters of themeta-selectionmodel with AutoFolio,

this method simply uses the default AutoFolio hyperparameters.

As previously mentioned, automl_freiburg focused on the computer

vision domain (i.e., datasets Ray, Fiona, Cucumber, and Yolo). The re-

sults of their ablation study, shown in Figure 4.10, indicate that the

hyperparameter search for the meta-model overfitted on the eight

meta-train-datasets used (original vs HPO); eight datasets is generally

regarded as insufficient in the realm of algorithm selection, but the

team was limited by compute resources. However, the performance



Figure 4.10 Ablation study for automl_freiburg: Comparison of dif-
ferent versions of automl_freiburg’s approach. Since the approach ad-

dresses only computer vision tasks, only results on image datasets (Ray,

Cucumber) and video datasets (Fiona, Yolo) are shown. Average and

error bars of ALC scores are computed over 9 runs. “automl_freiburg \

HPO” represents automl_freiburg’s approach with default AutoFolio hy-

perparameters. Likewise, “MLG” stands for the generalist configuration

and “MLR” for randomly selecting a configuration from the pool of the

most complementary configurations. See Section 4.7.1.

of the non-overfitted meta-model (HPO) clearly confirms the superior-

ity of the approach over the random (MLR) and the generalist (MLG)

baselines on all relevant datasets. More importantly, not only does this

observation uncover further potential of automl_freiburg’s approach,

it is also on par with the top two teams of the competition on these

vision datasets: average rank 1.75 (automl_freiburg) versus 1.75 and

2.5 (DeepWisdom, DeepBlueAI). The authors emphasize that training the

meta-learner on more than eight meta-train datasets could potentially

lead to large improvements in generalization performance. Despite the

promising performance and outlook, results and conclusions should

be interpreted conservatively due to the small number of meta-test

datasets relevant to automl_freiburg’s approach.

4.7.2 . AutoML generalization ability of winning methods
One crucial question for all AutoML methods is whether the method

can have good performances on unseen datasets. If yes, we will say the

method has AutoML generalization ability. To quantitatively measure this

ability, we propose to compare the average rank of all top-8 methods in

both feedback phase and final phase, then compute the Pearson cor-



5

Figure 4.11 Task over-modeling: We compare performance in the feed-
back and final phase, in an effort to detect possible habituation to the

feed-back datasets due to multiple submissions. The average rank of

the top-8 teams is shown. The figure suggests no strong over-modeling

(over-fitting at the meta-learning level): A team having a significantly

better rank in the feed-back phase than in the final phase would be

over-modeling (far above the diagonal). The Pearson correlation is

ρX ,Y = 0.91 and p-value p = 5.8×10−4
.

relation (Pearson’s ρ) of the 2 rank vectors (thus similar to Spearman’s

rank correlation noa (2020a)). Concretely, let rX be the average rank

vector of top teams in feedback phase and rY be that in final phase,

then the Pearson correlation is computed by ρX ,Y = cov(rX ,rY )/σrX σrY .

The average ranks of top methods are shown in Figure 4.11, with a

Pearson correlation ρX ,Y = 0.91 and p-value p = 5.8×10−4
. This means

that the correlation is statistically significant and no leaderboard over-

fitting is observed. Thus the winning solutions can indeed generalize to

unseen datasets. Considering the diversity of final phase datasets and

the arguably out-of-distribution final-test meta-features shown in Table

3.2, this is a feat from the AutoML community. Thus it’s highly plausible

that we are moving one step closer to a universal AutoML solution.

4.7.3 . Impact of t0 in the ALC metric
We recall that the Area under Learning Curve (ALC) is defined by

ALC =
∫ 1

0
s(t)dt̃(t)

=
∫ T

0
s(t)t̃ ′(t)dt

=
1

log(1+T/t0)

∫ T

0

s(t)
t + t0

dt

(4.1)

where

t̃(t) =
log(1+ t/t0)
log(1+T/t0)

(4.2)

Thus t0 parameterizes a weight distribution on the learning curve for
computing the ALC. When t0 is small, the importance weight at the



(a) Learning curves for

the task Carla

(b) Impact of t0 on

the ALC scores for task

Carla.

(c) Average rank among

AutoDL final phase par-

ticipants, using differ-

ent t0. The legend is hid-
den and is the same as

that of Figure 4.12b.

Figure 4.12 Any-time learning vs. fixed-time learning: We evaluate
the impact of parameter t0 on the ALC scores and the final rank. This
parameter allows us to smoothly adjust the importance of the beginning

of the learning curve (and therefore the pressure imposed towards

achieving any-time learning). When t0 is small, the ALC puts more

emphasis on performances at the beginning of the learning curve and

thus favors fast algorithms. When t0 is large, similar weight is applied
on the whole learning curve, performances are uniformly averaged, so

being a little bit slow at the beginning is not that bad, and it is more

important to have good final performance when the time budget is

exhausted (fixed-time learning). The tabular dataset Carla is taken

as example. The fact that two learning curves cross each other is a

necessary condition for the impact of t0 on their ranking on this task.
Learning curves of top teams on this dataset are shown in 4.12a. The

impact of t0 on the ALC scores of these curves is shown in 4.12b. We
see that when t0 changes, the ranking among participants can indeed
change, typically the ALC of frozenmad is larger than that of Kon but this

is not true for large t0. In 4.12c, the fact that the average rank (over all
10 final phase datasets) varies with t0 also implies that t0 can indeed
affect the ranking of ALC on individual tasks. However, we see that the

final ranking (i.e. that of average rank) is quite robust against changes

of t0. Very few exceptions exist such as PASA_NJU and Inspur_AutoDL.
Overall, t0 proved to have little impact, particularly on the ranking of
the winners, which is another evidence that top ranking participants

addressed well the any-time learning problem.



beginning of the curve is large. Actually when t0 varies from 0 to infinity,
we have

lim
t0→0+

ALC(t0) = s(0)

and

lim
t0→+∞

ALC(t0) =
1
T

∫ T

0
s(t)dt.

So different t0 might lead to different ALC ranking even if the learning
curve s(t) is fixed. It is then to be answered whether the choice of
t0 = 60 in AutoDL challenge is reasonable. For this, we reflect the impact
of t0 on the ALC scores and the final average ranking in Figure 4.12.
Observation and discussion can be found in the caption. We conclude

that t0 does affect the ranking of ALC scores but the final ranking is
robust to changes of t0, justifying the choice of t0 and the challenge
setting.

4.8 . Conclusion

In conclusion, we are encouraged to continue our challenge series

in machine learning with code submission and blind testing in a well-

defined identical computer environment, with a fixed time and memory

budget. The latest one, the AutoDL challenge, helped pushing the state

of the art in Automated Deep Learning. Our novel challenge design,

with emphasis on “any-time learning", permitted to harvest answers to

new questions.

Among other things, the challenge revealed that Automated Deep

Learning methods are ripe for modalities such as image, video, speech,

and text, but no unified solution emerged across modalities, and Deep

Learning remained weaker than other methods for tabular data. This

raises the question of developing new universal coding, generic work-

flows, or universal neural architectures. A step in this direction could be

to organize a cross-modal Neural Architecture Search (NAS) challenge,

to search for universal architectures. Intensive search in architecture

space was impractical with the constrained time budget we provided

for the AutoDL challenge, but with one order of magnitude more com-

putational resources, it may be feasible.



Deep Learning methods have earned the reputation of being noto-

riously slow to train and require prohibitive computational resources

in domains such as video processing. Not so anymore with “any-time

learning methods” allowing users to stop training early and get rea-

sonable performance. The wining teams succeeded in climbing the

learning curve fast, without sacrificing the final performance. Transfer

learning (fine tuning of pre-trained models), progressive increase in

model complexity, fast data loading, and efficient exploration of data

space, were key components to achieve these results.

The post-challenge analyses revealed the importance ofmeta-learning,

through ablation studies conducted by winning teams. The teams

demonstrated that generalizing to new unseen datasets is possible,

and improves by meta-learning, thus they effectively achieved a form

of transfer learning. This calls for further research and we envision

that a meta-learning challenge should be organized, to conduct a more

controlled study. Several settings have been proposed, including: (1) a

challenge on model recommendation, similar to the movie recommen-

dation Netflix challenge, in which a sparse matrix with just a few scores

of models on a few datasets is initially provided and the goal is to find

as quickly as possible the best performing model on a new dataset;

(2) a challenge proposing training tasks and test tasks, aiming at train-

ing search agents capable of selecting the best performing models to

solve the test tasks; (3) an on-line meta-learning challenge (or life-long-

learning challenge) in which tasks are made available sequentially to

models, who can retain some “memory” of past tasks to perform better

in future tasks.

This challenge was limited to tensor data and multi-label problems.

Other steps towards enlarging the scope of automated machine learn-

ing include generalizing to more complex data structures. This is par-

tially addressed by the on-going AutoGraph challenge. Generalization

to other types of tasks was addressed by the AutoSeries challenge.

We intend to keep proposing more diverse types of data and tasks to

stimulate the community to make progress.

Lastly, challenges are meant to provide fair and reproducible evalu-

ations removing the inventor-evaluator bias. However, other types of



biases can crop up. One such bias stems from the choice of datasets. As

organizers, we had to chose datasets with sufficient modeling difficulty

to separate well the participants, yet not a too high intrinsic difficulty.

By modeling difficulty, we mean the variance in performance between

participants. By intrinsic difficulty we mean (1- the best attainable per-

formance). Neither quantity being available to the organizers at the

time of selection of the datasets, they must rely on the performances

of the baseline methods to evaluate the difficulty of the tasks and thus

the choice may be biased. Yet another type of bias is introduced by the

baselime methods provided to the participants (such as Baseline 3 in

this challenge).

Beyond research results, our challenges have a long lasting impact

since we make available a large number of “public” datasets, and the

code of winning solutions.

All in all, we conclude this chapter by listing the major lessons

learned from AutoDL challenges and providing links to the following

chapters:

— The winning methods are capable of generalizing on new
unseen datasets. This validates the whole point of finding a
universal AutoML algorithm and thus the goal of this thesis;

— NAS approaches are proven not suited for the any-time learn-
ing setting of our challenges, at least within the given time
budget limit (less than 40 minutes). It is also worthy to men-
tion that NAS methods could be done prior to the evaluation

process with massive computation and the submission only con-

sists of the found architecture. Even though this process is not

reflected in our challenges, the importance of NAS methods is

still worth further investigation. Wewill present an NAS algorithm

that falls into this category in Chapter 5.

— Meta-learning is proven effective to achieve universal Au-
toML.However, this observation only comes after post-challenge
analysis with ablation study. In Chapter 6, we will introduce a

meta-learning challenge in preparation to fairly evaluate and

compare the effectiveness of meta-learning for all approaches.





5 - Neural Architecture Search
In this chapter, we introduce GramNAS, a framework based on for-

mal grammars that we propose in this thesis as a versatile tool for

encoding the search space for neural architecture search (NAS). Using

the terminology from Chapter 3, most NAS solutions can be considered

as a form of first-order meta-learning solution where the meta-dataset

has the form

Dtr = {(T0,Ψ(β j),R j)| j ∈ J}.

One can see that here Ψ plays an important role for the representation

of each algorithm β j and thus will be the major subject of research in

this chapter. In addition to proposing a custom algorithm represen-

tation method that defines the search space, various heuristic search

strategies are also adapted and deployed to explore this search space:

Mote-Carlo Tree Search (MCTS) and Evolutionary Algorithms.

5.1 . Motivation and Background

As started in Elsken et al. (2019), the basic ingredients of NAS are:

— search space,

— search strategy, and

— evaluation method.

This chapter tackles the problem of facilitating the formal descrip-

tion of the search space, not precluding from any particular search

strategy or evaluation method. To illustrate this point, we show results

for two rather different search strategies: MCTS and EA.

The need for a new formal description attracted our attention be-

cause of our interest in benchmarks. Although the research on Neural

Architecture Search (NAS) (Baker et al., 2017; Cai et al., 2018; Liu et al.,

2018a, 2019a; Pham et al., 2018; Zoph and Le, 2016) has been very

active in recent years, it remains difficult to reproduce results and fairly

compare their performances (Yang et al., 2020). As pointed out in many

benchmark works (Ying et al., 2019; Zela et al., 2020), one important



hurdle preventing reproducibility and fair comparisons is the lack of

consistency in the formalization of search spaces.

The NAS problem is often brought back to a combinatorial optimiza-

tion problem and as such is amenable to a variety of search strategy,

including Reinforcement Learning (Baker et al., 2016; Cai et al., 2017;

Negrinho and Gordon, 2017a; Zoph and Le, 2016), Bayesian Optimiza-

tion (Jin et al., 2019), evolutionary algorithms (Miikkulainen, 2002; Real

et al., 2017; Xie and Yuille, 2017), surrogate model-based optimiza-

tion (Liu et al., 2018a; Luo et al., 2018) according to Wistuba et al. (2019).

Differential methods with weight sharing (Chen et al., 2021; Liu et al.,

2019a) (sometimes called one-shot architecture search (Wistuba et al.,

2019; Zela et al., 2020)).

Our approach aims at simultaneously addressing the issues of (1)

extensibility and diversity; and (2) uniformity and consistent formalism.

The corresponding means are:

1. Extensibility and diversity: Avoiding to rely on ameta-architecture,

which limits design of search spaces to a finite pre-defined num-

ber of possibilities, and constrains the emergence of novel archi-

tectures;

2. Extensibility and diversity: Not restricting to "vocabulary" of

search (modules and connectors) to a pre-defined finite set.

3. Uniformity and consistent formalism: Avoiding ad-hoc definitions

of production rules, without refering to an established theory;

4. Uniformity and consistent formalism: Fostering reproducibility

by providing concrete guidelines for writing the search space.

Thus, what we want is a unified framework that allows fair com-

parison and at the same time, leaves open the possibility for pushing

forward the state-of-the-art with novel architectures and more. This is

the major motivation behind our proposed method which encodes NAS

search spaces with formal grammars.

As we know, the theory behind formal grammars lay the ground for

modern programming languages and computer science in general. It

is thus not surprising that diverse search space encoding paradigms

are within the reach of formal grammars. Indeed, we will show in this



chapter that our approach, GramNAS, encompasses the search spaces

considered by almost all existing works (e.g. (Ying et al., 2019; Zoph and

Le, 2016; Zoph et al., 2018)) and demonstrates satisfying expressivity.

With GramNAS, it is thus possible to include previous approaches in

the same framework and allow fair comparisons. Furthermore, due

to the robustness and expressivity of our framework, we suggest in

discussion the possibility to carry outmeta-learning that can allow faster

search based on prior tasks. Finally, we point out the fact that the tree

structures, which naturally arise in the formal grammar context, allow

in-depth analysis using metric and distance on graph. In fact, any a tree

linking the searched neural network architectures naturally defines a

distance/metric on these architectures. This distance can be further

used for representing the similarity between different architectures. Jin

et al. (2019) used a similar notion (the edit distance) and applied it with

Bayesian Optimization. Another similar idea on graph distance can be

found in Das et al. (2014).

In the following, we will first introduce some basic notions on for-

mal grammars, especially on context-free grammars. Then we will show

how one can encode search spaces of NAS using the formal gram-

mar framework (GramNAS) and illustrate its expressivity. Lastly, we

combine GramNAS with two search strategies (MCTS and evolutionary

algorithms) and compare their performances with other related works.

5.2 . Proposed Method

5.2.1 . Encoding Search Space with Formal Grammar
A string along with a given formal grammar (Sipser, 1997) parsing it

has always been the natural way to define a neural network architec-

ture.

Whether it be code written in C++, in Python or even mathematical

formulas, they all come along with strings structured according to a

certain grammar. In addition, almost all modern programming lan-

guages (e.g. C++
1
, Python

2
) use a context-free grammar parser (after a

1. https://www.nongnu.org/hcb/

2. https://docs.python.org/3/reference/grammar.html

https://www.nongnu.org/hcb/
https://docs.python.org/3/reference/grammar.html


tokenization step). Thus we propose to use context-free grammars to

encode the search space of NAS.

We first introduce some basic notations and definitions, following

notations in Sipser (1997). For a finite set A (the alphabet) of charac-
ters (or letters), we denoteA ∗ = {x1x2 . . .xk|k ∈N and xi ∈A ∀1≤ i≤ k}
the set of all strings (also called words) concatenatin characters from
A . For k = 0, the empty string is denoted by ε .

Definition 1. A context-free grammar is a 4-tuple (V,Σ,R,S), where V is

a finite set called the non-terminals (or variables); Σ is a finite set, disjoint

from V , called the terminals; R is a finite set of (production) rules, with
each rule stating that a given variable can be rewritten as a string of non-

terminals and terminals; and S ∈V is the start variable.

If A ∈ V , u,v,w ∈ (V ∪Σ)∗ and r = A→ w is a rule of the grammar,
we say that uAv yields uwv following the rule r, written uAv⇒ uwv (or
uAv r⇒ uwv). It is said that u derives v, written u ∗⇒ v, if u = v or if there
exists a sequence u1,r1,u2, . . . ,uk,rk with k > 0 and

u
r0⇒ u1

r1⇒ u2
r2⇒ . . .

rk−1⇒ uk
rk⇒ v. (5.1)

Such a sequence is called a derivation from u to v.
By definition, word v is terminal iff all its letters are terminal (vinΣ∗);

one can no more apply any rule on v. For a grammar G = (V,Σ,R,S), we
denote by L(G) the set of all terminal words of G. We say L(G) is the

language recognized by G.
In this work, we only consider leftmost derivations, for which all

rules ri apply on the leftmost non-terminal of the string ui. Since we will

only consider derivations that end by a terminal word, this constraint

does not induce any loss of generality. This is because all derivations

can be transformed into a leftmost derivation by making a permutation

on the order of applying ri’s
3
. In practice, one often uses tokens (i.e.

strings) to represent non-terminals. For example, the start symbol

S can be represented by a string ‘start’. The vocabulary is often
omitted since one can always think of a general encoding method such

3. This fact is only valid for context-free grammars, not for context-sensitive gram-

mars.



as Unicode (noa, 2020b). An example of a simple formal grammar is as

follows.

start: layers

layers: layer layers
| layer

layer: "<conv2d>"

Here we use tokens such as start, layer and layers instead of letters.

The above grammar defines a class of feed-forward neural networks

with only convolutional layers. Note that this grammar is written in

Backus-Naur form (BNF) (wik, 2020a), with non-terminals represented

by strings and ‘|’ to write rules with the same starting non-terminal in a

more compact way. In this work, all grammars will be written in either

BNF or in the Extended Backus-Naur form (EBNF) (wik, 2020b), which

are both supported by the Lark parser generator (https://github.com/

lark-parser/lark).

Code examples of grammars we used can be found at

https://github.com/zhengying-liu/GramNAS

5.2.2 . Semantics of formal grammars
Formal grammars allow us to encode objects using strings. How-

ever, the meaning of each string requires further efforts to specify.

The process of associatingmeaning, also known as semantics, to terms

of formal grammars is called interpretation. For example, when an-

alyzing the grammar from previous section, one may wonder what

"<conv2d>" mean exactly. In this case, one may interpret "<conv2d>" as a

convolutional layer with certain filter size (which could be concretely im-

plemented with say TensorFlow (Abadi et al., 2016) or PyTorch (Paszke

et al.)). In our work, we reuse the implementation of the Lark parser

framework
4
and the part of work on semantics is done in a separate

Python file which defines a Transformer class specifying the transfor-

mations during the parsing process.

4. Lark parser: https://github.com/lark-parser/lark

https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark


5.2.3 . Expressivity of context-free grammars
Chomsky hierarchy
Chomsky hierarchy (Chomsky, 1956) categorizes all formal gram-

mars into four categories, namely Type 0, Type 1, Type 2 and Type 3.

Corresponding languages are called recursively enumerable languages,

context-sensitive languages, context-free languages and regular languages.

Each language type is (strictly) included in previous types, as shown in

Figure 5.1.

Figure 5.1 Chomsky hierarchy for formal grammars/languages.

Regular languages are those that can be recognized by regular ex-

pressions. This includes all integers, floating numbers, URLs, etc. In

the following, we will introduce corresponding grammars that encode

these sets to enable further usage in our proposed NAS approach.

Encoding natural numbers and floating numbers
One can encode the set of all natural numbers

5
by following context-

free grammar in Figure 5.2.

We note that this grammar is actually regular since one can write

all rules in one of the following three forms: A→ ε , A→ a or A→ Ba,
where A,B ∈V and a ∈ Σ.

Similarly, one can have a context-free grammar for decimal numbers,

as shown in Figure 5.3.

5. Here we allow beginning zeros for illustrative purpose. One can easily avoid this

by using some more specific rules.



start: integer

integer: integer digit
| digit

digit: "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Figure 5.2 Grammar for encoding natural numbers

start: decimal

decimal: sign integer "." integer

sign: "" | "-"

integer: integer digit
| digit

digit: "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Figure 5.3 Grammar for encoding decimal numbers

Note that the non-terminal integer can actually be reused from

above. And in the future, we will omit the rules for terms such integer

when the context is clear.

Encoding directed graphs
Directed graphs are very important objects in computer science and

in particular, very relevant to our work since neural network architec-

tures are often under a form of directed graph. We show how to encode

the set of all directed graphs (each with a finite number of nodes) using

a context free grammar.

Given a directed graph G = (V,E), we can order its nodes and use an
index (an integer) to represent each node. Thus for a graph with n nodes,
we can always assume without loss of generality thatV = {0,1, ...,n−1}.
Then a directed graph can be completely characterized by the lists of

out-going edges for each node. Each list is then a list of integers. Hence



the following grammar gives a possible encoding of directed graphs.

Here we omit the rules for integer (reused from the definition above).

start: graph

graph: "[" lists "]"

lists: list "," lists
| list

list: "[" integers "]"

integers: integer "," integers
| integer
| ""

integer: [...]

Figure 5.4 Grammar for encoding directed graphs

As an example, a valid word of this grammar is

[[1,3],[3],[3],[]]

which specifies a directed graph with 4 nodes, as shown in Figure 5.5.

Note that this grammar allows graphs with repetitive edges (there is

Figure 5.5 Directed graph specified by the given string
[[1,3],[3],[3],[]] and the given grammar.

nothing preventing a same integer to appear twice in a list). This issue

can be avoided using another grammar, such as the one shown in

Figure 5.6.

which encodes the list of arriving nodes by a string of 0’s and 1’s as

positional code, instead of a list of integers. Then one possible string

that encodes the graph in Figure 5.5 will be



start: graph

graph: "[" lists "]"

lists: str "," strs
| str

str: (0|1)*

Figure 5.6 Grammar for encoding directed graphs, without repeti-
tive edges.

[0101,0001,0001,0000]

In the following, we will still focus on the first grammar with list of

integers for simplicity, as the issue of repetitive edges does not harm

the expressivity of the language.

Encoding directed acyclic graphs (DAG)
For classification or regression tasks, most neural network architec-

tures are feed-forward networks with no recurrent units or any loop.

In this case, NN architectures, when considered as directed graphs

with neurons (or layers) being nodes and connections edges, are di-

rected acyclic graphs (DAG). As an example, we use the formulation of

(Elsken et al., 2019) and consider layers as nodes in the following. Let

L0,L1, ...,Ln be the layers of an NN architecture, with L0 being the input

layer and Ln being the output layer. Each layer takes the output from

other layers and perform some operations such as addition, multipli-

cation or concatenation. For each layer Li, let Lout
i denote its output

after its operation. Then to guarantee that there is no cycle among the

layers, we only allow Lout
i to be a function of previous layers, i.e.

Lout
i = gi(Lout

i−1,L
out
i−2, ...,L

out
0 ), i = 1, ...,n, (5.2)

where gi is some function defining the operation of the layer Li. (Elsken

et al., 2019) dubs this very general representation of neural network

architecturemulti-branch networks. An example architecture is shown



in figure 5.7. We observe that Equation 5.2 is equivalent to saying that

Figure 5.7 Multi-branch networks defined in (Elsken et al., 2019) are

equivalent to the fact that the underlying graph of the architecture is a

directed acyclic graph (DAG).

the layers L0, ...,Ln are aligned in a topological ordering. Given a graph

G = (V,E), a topological ordering is defined to be an ordering of all
nodes in which for each edge (u,v) ∈ E , u always comes before v. It is
known that the existence of topological ordering is actually equivalent

to saying that the graph is a DAG; see e.g., (Kahn, 1962).

Once we represent a graph using a topological ordering, we can use

an idea very similar to that in previous section to encode DAGs using

formal grammars. Given a graph with n nodes, we again suppose the
nodes are the set V = {0, ...,n−1}. Then this graph is determined by a
list of lists of arriving nodes. Concretely, this means a node list ℓi ⊆V
for each node i ∈V . Since this is a topological ordering, we have

i < j,∀ j ∈ ℓi. (5.3)



If we make following transformation on ℓi and define

ℓ̃i := { j̃ := j− i−1| j ∈ ℓi}, (5.4)

then this gives a 1-1 map on all ℓi and ℓ̃i and thus on all DAGs. This

means that one can also use the representation from Equation 5.4 to

encode any DAG. As the j̃’s are just natural numbers, this allows us
to use the exact same grammar as that of directed graphs (Figure 5.4),

while taking the above transformation into account when interpreting

(i.e. defining the semantic).

As an example, we give the string under this grammar (Figure 5.4

but with a different semantic) for the graph in Figure 5.5:

[[0,2],[1],[0],[]]

We notice the difference between above string and the string in Figure

5.5 ([[1,3],[3],[3],[]]), due to a different semantic defined by the
transformation in equation 5.4.

To summarize, we managed to encode the set of all DAGs using

a context-free grammar, which is the same as in previous section on

directed graphs but with a different interpretation.

5.2.4 . Example search spaces encoded with a grammar
In this section, we show that many popular search spaces in the NAS

literature can all be encoded with formal grammars.

Search space from the original NAS paper
As one of the first works in the current NAS literature, Zoph and Le

(2016) has a relatively simple search space, shown in Figure 5.8.

Each neural network in the search space consists of several convo-

lutional layers. Each layer is defined by filter height, filter width and

the number of filters
6
. Possible choices for filter height and width are

1, 3, 5 and 7, and those for number of filters are 24, 36, 48 and 64.

ReLU activation (Nair and Hinton, 2010), batch normalization (Ioffe and

6. The stride height and width are fixed to be 1 in the first experiments of their

work.



Figure 5.8 Search space defined in Zoph and Le (2016). Each neural

network in the search space consists of several convolutional layers.

Each layer is defined by filter height, filter width and the number of

filters.

Szegedy, 2015) are applied after each layer. Before the output layer, a

fully connected layer is applied.

We can encode this simple search space with following grammar, in

a straight-forward manner
7
.

start: layers

layer: "[" "<conv2d>" filter_height filter_width num_filters "]"

filter_height: /1|3|5|7/

filter_width: /1|3|5|7/

num_filters: /24|36|48|64/

layers: layer layers
| layer

Figure 5.9 Grammar for encoding the search space of the first NAS
paper (Zoph and Le, 2016).

The fact that one can use an arbitrarily large number of layers is

implemented by the last two rules for the non-terminal layers. Note

7. The implementation can be fount at https://github.com/zhengying-liu/

GramNAS/blob/master/gramnas/examples/NAS/nas.lark

https://github.com/zhengying-liu/GramNAS/blob/master/gramnas/examples/NAS/nas.lark
https://github.com/zhengying-liu/GramNAS/blob/master/gramnas/examples/NAS/nas.lark


Figure 5.10 Neural network architectures in NASNet Space (Zoph
et al., 2018) for CIFAR-10 dataset. N is chosen to be 4 or 6.

that we used /1|3|5|7/ instead of 1|3|5|7 due to the syntax of Lark
parser.

NASNet search space
A popular choice of NAS search space is the NASNet space (Zoph et al.,

2018), which defines two types of cells: Normal Cell and Reduction Cell.

Normal Cells do not modify the image dimension (although the number

of filters may vary) while Reduction Cells reduce the image dimension

(by for example applying max pooling). Then for the search space, one

focuses on the structure of these 2 cells. Once these two cell structures

are chosen, Normal Cells and Reduction Cells are stacked several times

to form a complete architecture, as shown in Figure 5.10.

For determining the structure inside a cell (either a Normal Cell or

a Reduction Cell), the procedure goes as follows. Each cell receives as

input two hidden states hi−1 and hi from two previous cells. Then in

each iteration, two states (not necessarily different) are chosen from

existing states. Each of both states is applied with a unary operation



Figure 5.11 Search for cells in NASNet space. The architecture gener-

ating procedure is equivalent to iteratively generating nodes of a DAG,

while each new node (apart from the two initial ones hi−1 and hi) must

have two parent nodes (though they can be the same). Then all nodes

with no children (i.e. all leaf nodes) are concatenated along the filter

dimension to give the output hidden state hi+1. Here the number of

newly generated nodes is chosen to be B = 5, as in (Zoph et al., 2018).

(from a predefined list). Then the two output states are combined us-

ing element-wise addition or concatenation along the filter dimension.

Finally the resulting state is added to existing list of states before be-

ginning next iteration. An example of this procedure is shown in Figure

5.11. We see that this procedure is very similar to that of generating a

DAG, except that each newly generated nodes must have two parent

nodes.

Now we show that this search space is also a special case of our

proposed language. Specifically, one possible formal grammar that en-

codes this search space is given in Figure 5.12, where the rules for u_op

have been omitted; u_op involves a pre-defined list of unary operations:

— identity

— 1x7 then 7x1 convolution

— 3x3 average pooling

— 5x5 max pooling

— 1x1 convolution

— 3x3 depthwise-separable

conv

— 7x7 depthwise-separable

conv

— 1x3 then 3x1 convolution

— 3x3 dilated convolution

— 3x3 max pooling

— 7x7 max pooling

— 3x3 convolution

— 5x5 depthwise-seperable

conv.

Then integer is omitted as usual. However we note that the integers

here require more careful treatment, e.g. with a modulo operation to



start: nodes

nodes: node "," nodes
| node

node: "[" parent "," u_op "," parent "," u_op "," bi_op "]"

par: integer

u_op: [...]

bi_op: "add"
| "concat"

integer: [...]

Figure 5.12 Grammar for encoding the NASNet search space (Zoph
et al., 2018).

guarantee that the parent nodes are from previous nodes. This can be

easily implemented in the semantic of the grammar.

The above two examples confirm that grammars can generate di-

verse structures. We will show more example search spaces in the

Section 5.3 of experimental results.

Expressivity of GramNAS
In conclusion, our proposed method GramNAS has satisfying ex-

pressivity. As GramNAS can encode directed acyclic graphs (DAG), it can

encode chain-structured search space and multi-branch search space

with skip connections (Zoph and Le, 2016), which are both special case

of DAGs. Additional labels or types of different nodes or edges can be

implemented with addition non-terminals with a finite number of termi-

nal values. Cell-based search space can also be encoded with GramNAS

with different cell types represented by corresponding non-terminals.

Up till now, we have shown that GramNAS is expressive enough to

encode the search space of almost all existing approaches, while bring

everything to a unified framework. It opens then the possibility to fairly



compare approaches within this framework and furthermore lays a firm

ground for meta-learning or life-long learning.

5.2.5 . Random generation of valid words
Once a grammar encoding the search space is given, one can ran-

domly sample valid words based on the grammar by applying leftmost

derivation consecutively until one hits a terminal word. Any sampling

method can not only be used to make sanity check of the implementa-

tion but also be used as a sub-routine (the roll-out) of MCTS that we will

introduce later.

For each leftmost derivation, there is a finite set of actions, namely

the set of rules that has the current leftmost non-terminal A as left hand
side letter. We will denote this set by RA. A naïve sampling approach

could be: at each leftmost derivation for a non-terminal A, choose the
action uniformly with respect to RA. However, as the number of non-

terminals can increase explosively, this sampling method can easily

be never-ending. For this reason, we use a distribution (a Boltzmann

distribution) that favors actions generating less new non-terminals:

p(r|r ∈ RA) ∝ exp(−β · ℓ(r)) (5.5)

where β is a pre-defined parameter and ℓ(r) is the number of non-
terminals on the right hand side of the rule, i.e. the number of newly

generated non-terminals following the rule r.
In our experiments, we uniformly sample a β ∈ [0,3] at each step

of word generation. And we observed termination through out our

experiments, for all involved grammars.

5.2.6 . MCTS as Search Strategy
As tree structures arise very naturally with formal grammars, we first

propose to apply Monte-Carlo Tree Search (MCTS) as search strategy.

MCTS extends the celebratedmulti-armed bandit algorithm (Auer, 2003)

to tree-structured search spaces. It has already been applied to AutoML

in ‘classic’ machine learning (Rakotoarison et al.), natural language pro-

cessing (Kumagai et al., 2016) and also in NAS (Wang et al., 2018). But to



our knowledge, our approach is the first to combine formal grammars

and MCTS to apply to NAS.

Multi-armed bandit problem
A multi-armed bandit (or k-armed bandit in this case) is defined to

be B = {R1, . . . ,Rk}, a set of k real distributions. Each Ri corresponds to

the reward when pulling the i-th arm. Let µ1, . . . ,µk to be the expected

values associated with these distributions and let µ∗ = maxi=1,...,k{µi}.
Consider a gambler who iteratively pulls one arm per round and ob-

serves the associated reward. The objective is to maximize the sum of

the collected rewards (or the return). As the gambler has no information

on the k distributions, he cannot just pull the arm corresponding to µ∗

in every round. After playing T rounds, we define the regret to be

ρ = T µ
∗−

T

∑
t=1

r̂t (5.6)

where r̂t is the reward observed in round t. Then equivalently, the
objective is to minimize this regret. As a classic solution to the multi-

armed bandit problem, the UCB1 algorithm (Auer, 2003) defines such an

arm selection policy, selecting in each round the arm i that maximizes
the following value:

µ̂i +

√
2logn

ni
(5.7)

where µ̂i is the sampled average obtained by playing arm i, ni is the

number of times arm i has been pulled and n = ∑ni is the total number

of rounds so far. (Note that, although UCB1 provably yields an optimal

logarithmic regret, it is not optimal; the reader is referred to (Bubeck

and Cesa-Bianchi, 2012) for a more comprehensive presentation).

We note that the above multi-armed bandit problem is equivalent to

a Markov decision process (Sutton and Barto, 2018) with one single state.

However, the problems we will consider often involve more than one

state, which means that the bandit Bs might be different in different

state s and when one makes an action (e.g. pulls an arm) there might be
a transition of state. When solving this more general Markov decision

process problem, one can generalize bandit algorithms (such as the



UCB1 algorithm) to the Monte-Carlo Tree Search (MCTS) algorithm in

the following way.

Monte Carlo Tree Search algorithm
The MCTS algorithm maintains a tree of states, with root node corre-

sponding to the initial state, and different states are connected via the

action that does the transition. At the beginning, there is only the root

node in the tree. Then the MCTS algorithm iterates four phases (Chaslot

et al., 2008): selection, expansion, playout (or roll-out / simulation) and

back-propagation, illustrated in Figure 5.13:

Figure 5.13 Outline of a Monte-Carlo Tree Search, figure from
(Chaslot et al., 2008).

— Selection: In each node of the tree, the child node is selected
following a multi-armed bandit strategy, e.g. the UCB1 algorithm

or more generally the UCT (Upper Confidence bound applied to

Trees) algorithm (Kocsis and Szepesvári, 2006) selects the child

node such that it maximizes:

µ̂i + c

√
logn

ni
, (5.8)

where, similar to previous section, µ̂i is the value of node i, n
is the number of times the parent node was visited, ni is the

number of times node i is visited, and c is a problem-dependent
constant which balances exploration and exploitation.



— Expansion: When a leaf node is reached, an expansion is re-
quired. We add the first encountered node that has not been

visited to the tree. One can also add more than one nodes by

adding first several such nodes.

— Playout (or roll-out): When reaching the limits of the visited
tree, a roll-out strategy is used to select the options/actions until

reaching a terminal node and computing the associated reward.

This part explains the name Monte-Carlo in that actions are taken

randomly until reach a terminal node, simulating a complete

episode.

— Back-propagation: The reward value is propagated back, i.e. it
is used to update the value associated to all nodes along the

visited path up to the root node. Typically, all values such as µ̂i, n
and ni of these nodes need to be updated.

To apply MCTS to a search in a seach space defined by a grammar,

we can consider the process of leftmost derivation as a Markov Decision

Process (Sutton and Barto, 2018). Then there is only a finite number of

actions to make at each step. The state is the current (non-terminal)

architecture configuration and the reward is the classification accuracy

at the final step (with a complete architecture configuration) or zero

otherwise. Then the problem of searching a good architecture becomes

an RL problem
8
. We dub this approach combining formal grammars

and MCTS GramNAS. In the future, we will see that MCTS is far from
being the only possibility as search strategy and we will demonstrate

this with an evolutionary strategy (AgEBO) in the next section. We will

also consider this approach as an example of GramNAS. To distinguish

these two methods, we will name them GramNAS-MCTS and GramNAS-

AgEBO.

5.2.7 . Evolution as Search Strategy: the AgEBO algorithm
In addition to MCTS, we also show the possibility of combining other

search strategies with formal grammars. Specifically, we adopt an

evolutionary algorithm based on Real et al. (2019) and apply it on 4

8. Actually the solution of an RL problem is a policy instead of a state. But in our

case, we can generate the final state as soon as we have learned a good policy. And

this final state can serve as the solution to the NAS problem



large tabular datasets from OpenML (Vanschoren et al., 2014) for our

study. We note that although our approach is based on recent research

works, combining evolutionary algorithms (or genetic programming)

and formal grammars have a long history which can date back to the

1990s (Geyer-Schulz, 1995; Ratle and Sebag, 2000; Whigham, 1995;

Wong and Leung, 1997) and a relatively recent survey can be found in

(Mckay et al., 2010).

Figure 5.14 represents the search space in the form of a graph. It

includes the main backbone consisting of repeatable stacks. Each stack

consists of two sub-modules: N1 (either identity or some fully con-

nected dense layers with various number of connections and various

activation functions), and similarly constructed sub-module N2. On

either side of the backbone, we have optional skip-connection modules:

S C 2
1,S C 3

2,S C 3
1. This is expressed by selecting either 0 or identity for

the connection (SC = skip-connections). The nodes shown in red are

used to manage the different tensor sizes. For details, please refer to

the paper Egele et al. (2021).

With respect to searching, the graph skeleton is fixed. Hence the

grammar of this search space is particularly simple: all derivations

terminate within 2 steps. Non-terminal nodes include neural network

layers (N1,N2), skip-connections (S C 2
1,S C 3

2,S C 3
1).

To perform neural architecture search, the main algorithm is aging

evolution (Real et al., 2019), as described in black in the pseudo-code

of Algorithm 1. The aging evolution algorithm is a particularly simple

evolutionary algorithm based on the first-in-first-out (FIFO) principle.

Each parent has a single offspring. The successive generations are kept

in a queue of fixed length. When the number of individuals (candidate

neural network architectures) exceeds the length of the queue, the

oldest one is removed. Mutations consist in altering one of the terminal

nodes in the grammar, one at a time.

One contribution of the approach is to do jointly neural architec-

ture search (a) and hyperparameter/model search (m) (in blue text in

Algorithm 1). The joint neural architecture and hyperparameter search

space H is indeed subdivided into Ha and Hm. The problem of joint neu-

ral architecture and hyperparameter search is formulated as a bilevel



Output

Input

Repeat

Figure 5.14 Neural architecture search space for AgEBO. The nodes
N1 andN2 represent dense layers Dense(x,y), where x is the number of
neurons and y is the activation function. The nodesS C 2

1,S C 3
1,S C 3

2
represent the possible skip-connection nodes, when idR is chosen for
each of them. The nodeN2 is connected to input node throughS C 2

1.

The output node is connected to input and N1 nodes through S C 3
1

and S C 3
2, respectively. The nodes shown in red are used to manage

the different tensor sizes and apply an element-wise sum (represented

by the plus symbol inside a circle). This stack is repeated 10 times to

construct the complete architecture.

optimization problem:

h∗a,h
∗
m = argmax

(ha,hm)∈Ha×Hm

M val
w∗ (ha,hm)

s.t.w∗ = argmin
w

L train
ha,hm

(w),
(5.9)



start: "N:" N ";" N "SC:" SC ";" SC ";" SC

N: "id" | dense

dense: "Dense(" n_neurons "," activation ")"

n_neurons: /16|32|48|64|80|96/

activation: "id_act" |"relu" | "swish" | "tanh" | "sigmoid"

SC: "0" | "id"

Figure 5.15 Grammar for encoding the search space of AgEBO algo-
rithm (Egele et al., 2021).

whereM val
w∗ (ha,hm) is accuracy on a validation accuracy (measured on

a validation subset of the training data) and L train
ha,hm

(w) is a training
accuracy (measured on a training subset of the training data). Test data

are used only for final evaluation.

However, at this stage, this two-level procedure is not incorporated

in the grammar. For more details, see the paper (Egele et al., 2021).

5.3 . Experimental Results

This experimental section is divided in three parts. In the first two,

we report results on a classical benchmark called NAS-Bench-101 (Ying

et al., 2019), consisiting of a well-known small-image classification prob-

lem (CIFAR-10) Krizhevsky (2009). We first re-use the pre-computed

evaluations performed on a pre-defined finite number of combinations

of architectures (with fixed hyper-parameters). We then perform a

“real” search, including production of new architectures and their eval-

uation. Finally, in the last subsection, we present results on tabular

data, of a search method combining neural architecture search and

hyper-parameter selection, using evolution as search strategy.

A toy example on real number approximation is given in Appendix A

as a proof-of-concept.



Figure 5.16 Search space defined by NAS-Bench-101 (Yang et al.,
2020). Left: Each architecture consists of 3 stacks, each of which com-
posed of 3 cells. All cells (and stacks) share the same architectures.

Each cell contains a sub-network consisting of five nodes (among three

types called “labels” and denoted by ‘3x3’ (3×3 convolution), ‘1x1’ (1×1
convolution) and ‘MP’ (3× 3 max-pooling)) plus the input and output
nodes, interconnected according to a 7x7 adjacency matrix, to be deter-

mined by search. Right: Example of (the internal structure of) a cell in

this search space.

5.3.1 . GramNAS-MCTS applied to NAS-Bench-101 benchmark
Wepresent a first application of GramNAS using NAS-Bench-101 (Ying

et al., 2019).

This benchmark consists of pre-computed performances on a va-

riety of convolutional neural networks similar to NASNet (Zoph et al.,

2018), shown in Figure 5.12. The search space is based on the structure

shown in Figure 5.16. It consists of a fixed backbone of three stacks

of three cells. The cell architectures are the only degrees of freedom

and the same cell architecture is applied everywhere (different than

that of AgEBO). According to the authors, there are approximately 423k

(unique) graphs in the search space after de-duplication.

We refer the reader to the NAS-Bench-101 paper (Ying et al., 2019)

for more technical details.

Our first task was to formulate the pre-defined search space as a

grammar. Then we used MCTS to carry out the search. The grammar is

shown in Figure 5.17.



start: edges | labels

labels: [label]*5

label: "1x1" | "3x3" | "MP"

edges: [edge]*21

edge: "0" | "1"

Figure 5.17 Grammar for encoding the search space of NAS-Bench-
101 (Ying et al., 2019). We use [label]*5 to denote label | label
| label | label | label, i.e. repeating the non-terminal label five
times, connected by ‘|’. Idem for [edge]*21.

Aside some technicalities (such as a restriction on the number of

edges within each cell) that can be found in the code
9
, the grammar

is relatively simple, as shown in Figure 5.17. It just encodes searching

through the architecture of the cells, since the overall structure of the

neural network is fixed (Figure 5.16, Left). We note that the adjacency

matrix needs only to be filled half-way because the cell architecture is

necessarily a DAG, hence only 21 =
(7

2

)
edges are needed of the 7x7

adjacency matrix.

For each architecture in the search space, NAS-Bench-101 provides

the classification accuracy on the CIFAR-10 (Krizhevsky, 2009) dataset

after a training of 4, 12, 36 or 108 epochs. The authors provide an API

to easily query the accuracy along with the training time by giving an

adjacency matrix and a list of 3 labels. So no training is needed but

the training time can be recorded to compare the efficiency of different

methods.

We evaluated random search (rs), regularized evolution (re) (Real

et al., 2019) and our approach GramNAS with MCTS (mcts). Random

search consists of randomly generating architectures following the

method introduced in 5.2.5, evaluating it and then return the archi-

tecture with maximum validation accuracy in the end. Regularized

9. https://github.com/zhengying-liu/GramNAS/blob/master/

gramnas/examples/NasBench/env_mcts_vanilla.py

https://github.com/zhengying-liu/GramNAS/blob/master/gramnas/examples/NasBench/env_mcts_vanilla.py
https://github.com/zhengying-liu/GramNAS/blob/master/gramnas/examples/NasBench/env_mcts_vanilla.py


Figure 5.18 Comparison of NAS methods on NAS-Bench-101 bench-
mark. The NAS methods are: our approach (mcts), random search
(rs) and regularized evolution (Real et al., 2019) (re). Errors bars are

computed over 10 runs. Regret is the difference between the current

best obtained test accuracy of the search and the global optimum. Time

is in seconds.)

evolution is the same as that introduced in AgEBO (the black part in

Algorithm 1).

The results are shown in Figure 5.18. We follow Ying et al. (2019) to

demonstrate results using regret vs training time. The regret is defined

to be the difference between the current best obtained test accuracy of

the search and the global optimum (which is known in the NAS-Bench-

101 search space, around 94% of accuracy). Time is in second and

corresponds to the total training time of all evaluated architectures

so far. The results show that no significant difference between the

3 methods is found. On one hand this shows the effectiveness of

our approach GramNAS (94% accuracy on CIFAR-10 dataset) but on

the other hand, the fact that even random search can obtain similar

performances suggests that the problem is too simple, due to the fact

that the search space is overly constrained.

5.3.2 . GramNAS-MCTS with a grammar based on NAS-Bench-101
In this section, we show the results of applying GramNAS-MCTS to a

search space different to that of NAS-Bench-101 but is inspired by it. As

the architectures we consider might not be included in the NAS-Bench-

101 search space, we cannot use the performance query API of Ying



et al. (2019). So for each architecture to be evaluated, we train it from

scratch with a TensorFlow (Abadi et al., 2016) implementation.

We now present more details on the search space and the corre-

sponding grammar in the following. We consider the best cell found in

the NAS-Bench-101 search space, which is shown in Figure 5.19.

Figure 5.19 Best cell architecture found in the NAS-Bench-101
search space. Figure from Ying et al. (2019).

We wish to explore the architectures that use this cell as sub-routine.

The grammar is shown in Figure 5.20. Each architecture has the same

backbone as in the left figure of Figure 5.16, except that there is no

restriction on the number of stacks and the number of cells in each

stack. The terminal nasb_best corresponds to the best cell found in
the NAS-Bench-101 search space (Figure 5.19). The module reduction
corresponds to the ‘downsample’ module in Figure 5.16. And the mod-

ule nasb_best_dc is the best cell with doubled number of channels
(convolutional filters).

For each architecture in our search space, we train it from scratch

on the CIFAR-10 dataset (Krizhevsky, 2009). The number of epochs is

chosen to be 1 and the training is done with Adam optimizer Kingma

and Ba (2014) of default hyperparameters (e.g. with a learning rate of

0.001). The accuracy on the validation set is used as reward for MCTS.

We compare the performances of our approach with two baselines:

DARTS (Liu et al., 2019a) and random search within the same grammar.

DARTS is a differentiable NAS method where the (hard) choice of labels



start: stacks

stacks: "[[" stacks "-" stack "]]"
| cells

stack: "reduction" "[" nasb_best_dc "-" cells "]"

// Add "[" and "]" for disambiguity
cells: "[" cells "//" cells "]"

| "[" cells "-" cells "]"
| module

cell: "id"
| "nasb_best"

// Double channels (right after reduction)
nasb_best_dc: "nasb_best_dc"

Figure 5.20 Grammar for encoding a search space based on the
best cell architecture found in NAS-Bench-101 (Ying et al., 2019).
The terminal "nasb_best" corresponds to the best cell shown in Figure
5.19.

(e.g. 1x1, 3x3 or MP) for each layer is softened using a softmax function

ō(x) = ∑
o∈O

eαo

∑o′∈O eαo
o(x) (5.10)

where o ∈ O is an operation such as choosing 3x3 convolution for a

layer. Then the parameters αo are optimized using gradient descent on

the validation set. Finally an argmax over αo is performed to obtain the

final architecture. Another baseline we used is random search, which

as before generates random architectures according to Section 5.2.5

and return the architecture with best validation accuracy so far.

The results are shown in Figure 5.21. The performance of random

search and GramNAS are inferior to that of DARTS, at least before 70000

seconds. However there is no significant difference between GramNAS

and random search. This means that the advantages of MCTS might



not be unleashed with very few number of iterations (only up to 80

iterations).

Figure 5.21 Comparison of GramNAS to DARTS and random search
on CIFAR10. We see that the performance of random search and Gram-
NAS are inferior to that of DARTS, at least before 70000 seconds. There

is no significant difference between GramNAS and random search.

5.3.3 . GramNAS-AgEBO on Four Tabular Datasets
Now we apply GramNAS with AgEBO (Section 5.2.7) to four tabular

datasets. The datasets we use are the four largest ones in terms of

number of data points from a recent AutoGluon work (Erickson et al.,

2020). For each of these datasets, 33% data are kept for testing, 25%

are kept for validation and 42% are kept for training. These 4 datasets

are:

1. Covertype from the UCI KDD archive (Hettich and Bay, 1999).
This dataset aims to predict the forest cover type given carto-

graphic variable input data. It contains 581,012 data-points, 54

input features and 7 classes.

2. Airlines from Elena Ikonomovska (Albert Bifet, 2009), the goal is
to predict whether a given flight will be delayed or not given input

data of the scheduled departure. It contains 539,383 data-points,

8 input features and 2 classes.

3. Albert. A competition dataset from the AutoML Challenge series
(2015-2018) (Guyon et al., 2018). It contains 425,240 data-points,

79 input features and 2 classes.



4. Dionis. A competition dataset from the AutoML Challenge series
(2015-2018) (Guyon et al., 2018). It contains 416,188 data-points,

61 input features and 355 classes.

The grammar we used is introduced in Section 5.2.7. And the base-

lines we used for comparison are aging evolution (AgE-1) (Real et al.,

2019), Auto-Pytorch (Zimmer et al., 2020) and AutoGluon (Erickson

et al., 2020). Aging evolution is introduced in Section 5.2.7. AutoGluon

combines different supervised learning models such as neural net-

works, LightGBM, CatBoost, random forest, extra trees, and K-nearest

neighbors, the hyperparameters of which are automatically tuned. In

contrast, Auto-PyTorch only adopts neural network models but also

uses an ensemble strategy to improve the accuracy. As for our ap-

proach, we use AgEBO-NR-LR-BS to indicate that the number of ranks

for parallelization (NR), learning rate (LR) and batch size (BS) are also

optimized using Bayesian optimization. The population size is fixed to

100 and the sample size is 10. More implementation details can be

found in Egele et al. (2021) and the code can be found in the GitHub

repo https://github.com/deephyper/NASBigData.

The comparison of AgE, AgEBO and Auto-Pytorch is shown in Figure

5.22. One can see that AgEBO achieves validation accuracy values that

are higher than those of Auto-PyTorch within 30 minutes of search time.

The observed differences in the accuracy values can be explained by

two factors. First, Auto-PyTorch is not designed to generate a single

neural network model but to generate multiple models and combine

them using an ensemble strategy to have a good accuracy. Second, the

architecture space of Auto-PyTorch is restricted to a smaller number of

trainable parameters and smaller number of layers.

Table 5.1 shows the accuracy values of the best models and the cor-

responding inference time of AgEBO and AutoGluon. The table shows

that the test accuracy values of AgEBO and AutoGluon are compara-

ble on all four data sets. The accuracy improvement over AutoGluon

is significant on Airlines and less significant on Covertype and Dionis.

However, the key advantage stems from the inference time with the

trained model. Given that AgEBO generates a single neural network

model, the inference time is between 2.7 and 4.3 seconds. On the other

https://github.com/deephyper/NASBigData


hand, AutoGluon relies on stacking a number of models, resulting in an

inference time of about 7 minutes.

(a) AIRLINES (b) ALBERT

(c) COVERTYPE (d) DIONIS

Figure 5.22 Performances of AgEBO-NR-LS-BS on 4 large tabular
datasets: Airlines (5.22a), Albert (5.22b), Covertype (5.22c) and Dionis
(5.22d). AgE-1 (Aging Evolution without data-parallelism) is the base-

line experiment. A horizontal line shows the validation accuracy at the

20
th
epoch of the model with the best validation accuracy found by

Auto-Pytorch. Figures from (Egele et al., 2021).

5.4 . Discussion and Conclusion

5.4.1 . Grammars: Pros & Cons
Following recent popularity of NAS and AutoML in general, some

recent works that also encode the search space of AutoML/NAS meth-

ods using formal grammars exist in the literature (Assunção et al., 2020;

Estevez-Velarde et al., 2019; Katz et al., 2020). But these methods are

far from being trending and remain a minority. In the following, we

discuss some pros and cons of using grammars.

Some advantages of our approach using formal grammars are:



— Generality. As we discussed in the beginning of this chapter and
showed with concrete examples later, context-free grammars

are versatile enough to encode complex search spaces. Also,

using grammars aligns very well with problems of algorithm

search since the ultimate representation of algorithms is nothing

but its code, written according to some grammar (think of C++

or Python). This means that the effective search space can be

included in a context-free grammar search space;

— Expressivity. Context-free grammars are more expressive than
regular grammars (or regular expressions), which in turn are

more expressive than a finite search space;

— Flexibility. Once a grammar is given for a problem, the MCTS
search strategy can be used straightforwardly without any modi-

fication. This is shown from the example results in previous sec-

tion since we changed the grammar but used the same search

strategy.

— Explainability. With grammars, one can analyze the learned
syntax tree paths which are in the most cases comprehensive in

a direct way. This gives edges to explainable solutions.

On the other hand, there are also some inconvenience of approaches

using grammars.

— Relatively high threshold. The population familiar with formal
grammars is relatively small. Formal grammars remain a domain

reserved to computer scientists in general. Most importantly, the

same grammar search space can be expressed in different ways,

not all amenable to the same exploration. Hence designing gram-

mars requires careful consideration. All these leave a relatively

high threshold for applying grammars to real applications.

— Learning difficulty. When the grammar becomes complicated,
many choices are involved and the number of possibilities grows

exponentially (given the depth in the derivation tree). This raises

challenges for the learning/search/optimization algorithms. This

can be partially implied from the last example in the previous sec-

tion. To overcome this one can think of meta-learning algorithms

or algorithms that are capable of learning useful modules/bricks.



— Unsolved problems. During the experiments with the toy exam-
ple in Appendix A, we noticed that if we change the rule

integer: digit integer

to

integer: integer digit

then the random generation method introduced in 5.2.5 (which

we recall that the leftmost non-terminal is derived according

to a distribution that favors rules with less non-terminal on the

right hand side) tends to be never-ending, especially with small β .

This means that even for grammars that encode the same search

space, there may be very different search behavior. In the above

case, this is related to the fact that we used leftmost derivation.

Some possible ideas to remedy this is to consider restrictions on

the size of the final expression produced. Ratle and Sebag (2000)

made a very relevant investigation on this topic;

5.4.2 . Accelerating GramNAS Using Meta-learning
One main limitation of applying MCTS to achieve automatic neu-

ronal architecture identification in the search space (architecture space)

defined by a grammar − defining the GramNAS method proposed
previously − is the slow convergence on image classification applica-
tions. The convergence is slow in particular compared to differentiable

methods such as DARTS (Liu et al., 2019a).

Indeed, the evaluation of the leaf node (i.e. training a neural network

from scratch) is quite time-consuming; however this is unavoidable if

each architecture is evaluated without warm starting or weight sharing.

Let us focus on the MCTS part of the algorithm and discuss how to

accelerate the identifiction of good subtrees.

Let us consider the simple case of two grammars:

G1 = (V,Σ,R1,S)

G2 = (V,Σ,R2,S)
(5.11)

If the derivation rules in G1 are included in those of G2 (R1 ⊆ R2), it

follows that the full tree of G1 is included in that of G2. Therefore the

MCTS tree constructed with G1 can be reused (the evaluations still hold,



assuming of course that one consider the same training dataset) and

it can serve as warm start to conduct an MCTS process with G2. This

is analogous to the usage of pre-trained neural network in transfer

learning.

As we have pointed out, the ultimate representation of algorithms is

their code with a grammar. So the real power of using grammars comes

in when one thinks of a universal encoding with a powerful grammar

(think of any modern programming language that is Turing complete)

G∗ = (V,Σ,R∗,S) (5.12)

which encompasses grammars with which we have done search on

Gi = (V,Σ,Ri,S), i = 1,2,3, ... with

Ri ⊆ R∗, i = 1,2,3, ... (5.13)

Formally, we can embed all learned MCTS trees of all Gi’s into that of

G∗, and reuse their statistics (µ̂i,n,ni, see Chapter 5). The real difficulty

comes from finding an appropriate schedule: how to order the gram-

mars Gi’s and when to switch from Gi to Gi+1. At an abstract level, we

face the same issue as an MCTS where each node corresponds to a

Many-Armed Bandit, entailing a risk of over-exploration (Teytaud et al.,

2007; Wang et al., 2008). In practice, this issue can be handled using a

Progressive Widening strategy, gradually increasing the number of child

nodes allowed in a visited node depending on the number of times it is

visited Auger et al. (2013).

Another perspective for further work is to integrate a task represen-

tation in the above gradual GramNAS approach, supporting e.g. the

initialisation of the MCTS tree depending on the problems archive and

the representation of the current task.

This direction of research can take inspiration from similar ideas

related to transfer learning and more generally meta-learning, currently

explored in the communities of genetic programming (Dinh et al., 2015)

and probabilistic context-free grammar (PCFG) (Han et al., 2020).

5.4.3 . Conclusion



We introduced a novel NAS framework combining formal grammars

and search strategies such as Monte-Carlo Tree Search and evolutionary

algorithms. We showed the generality and expressivity of context-free

grammars for encoding search spaces and give some concrete exam-

ples for popular search spaces in the literature. The combination of

grammar and MCTS was shown to be effective, on both the toy example

in Appendix A and NAS problems. For the NAS-Bench-101 example,

we achieved an accuracy of 94% on CIFAR-10 dataset, similar to state-

of-the-art approaches such as aging evolution (Real et al., 2019). Our

proposed GramNAS-AgEBO algorithm is proven effective and robust,

and is competitive to some state-of-the-art approaches, at least when

applied on tabular datasets. The search space (defined in Figure 5.14

and Figure 5.15) mainly consists of fully connected neural networks with

skip-connections and would possibly show less advantages against con-

volutional neural networks when applied on for example image tasks.

In terms of the usage of grammar, we discovered some unsolved prob-

lems concerning the derivation and observed the difficulty of learning

when the grammar becomes more and more complicated. Finally, we

drew attention from the research community of applying meta-learning

for more efficient searching algorithms with grammars.



Algorithm 1: AgE (black) and AgEBO (black + blue)
inputs :P: population size, S: sample size, W: workers
output :highest-accuracy model in history
/* Initialization */

1 population← create_queue(P) // Alloc empty Q of size P
2 optimizer← optimizer()
3 for i← 1 toW do
4 model.hm← random_point(Hm)
5 model.ha← random_point(Ha)
6 submit_evaluation(model) // Not blocking
7 end
/* Main loop */

8 while not done do
// Query results

9 results← get_finished_evaluations ()
10 if |results|> 0 then
11 population.push(results) // Aging population

// Generate hyperparameter configs
12 optimizer.tell(results.ha,results.m)
13 next← optimizer.ask(|results|)

// Generate model hyperparameter configs
14 for i← 1 to |results| do
15 if |population|= P then
16 sample← random_sample(population,S)
17 parent← select_parent(sample)
18 child.hm← mutate(parent.hm)
19 else
20 child.hm← random_point(Hm)
21 end
22 child.ha← next[i].ha

23 submit_evaluation(child) // Not blocking
24 end
25 end
26 end



AgEBO-NR-LR-BS AutoGluon
dataset Test Accuracy Timing Test Accuracy Timing
Airlines 0.652 ± 0.002 3.1 0.641 1124.9

Albert 0.661 ± 0.001 2.7 0.688 409.3

Covertype 0.963 ± 0.001 4.3 0.961 906.6

Dionis 0.915 ± 0.0005 3.2 0.907 1900.5

Table 5.1 Evaluation of predictions with the best model from
AgEBO with optimized learning rate (LR), batch size (BS) and number of
ranks (NR) against AutoGluon (Erickson et al., 2020) The table summa-

rizes the test accuracy of the model on the same test sets as well as the

time (seconds) taken to make these predictions on the same hardware

also referred as inference time. Errors bars are obtained by training

the best architecture from scratch for 5 times. Table from (Egele et al.,

2021).



6 - Meta-learning
Meta-learning (Brazdil et al., 2008; Vanschoren, 2018) aims at lever-

aging past learning experiences to improve or accelerate the learning

process for future tasks. Inspired by Sun-Hosoya (2019) and Rakotoari-

son et al. (2019), this chapter first presents a taxonomy of meta-learning

solutions (complementing the categorization of meta-learning problems

in Chapter 3) in terms of reinforcement learning, to situate the posi-

tion of the problem. The international challenge MetaDL, organized

to benchmark Few-Shot learning algorithms, is then presented and

discussed, together with a real-world case study devoted to power sys-

tems. Lastly, some initial theoretical results for zero-order meta-learning

(defined in Chapter 3) are presented.

6.1 . Reinforcement Learning Formulation of Meta-learning

To gain a global view of meta-learning, we first formulate the meta-

learning problem in the setting of reinforcement learning (RL), inspired

by the approaches of (Sun-Hosoya, 2019) and (Rakotoarison et al., 2019).

We will see that this allows us to create a comprehensive taxonomy of

meta-learning.

6.1.1 . The Reinforcement Learning Problem
We recall the classical setting of RL following (Sutton and Barto,

2018), as shown in Figure 6.1. An agent-environment interface defines

the dynamics and the interactions. The agent can learn and make

decisions and the environment can give feedback such as the reward

and the state information to the agent. Formally, all possible states

of the agent form the state space S and all possible actions of the

agent form the action space A . At each time step t = 0,1,2, . . . , the
agent receives the state info st ∈S and can choose an action at ∈A (or

at ∈A (st) that is specific to the current state st , with A (st)⊆A ). Then

one time step later, the agent receives a numerical reward rt+1 ∈ R and
finds itself in a new state st+1 ∈S .



Figure 6.1 Reinforcement Learning with the agent-environment inter-
face. Figure from (Sutton and Barto, 2018).

The goal is to find a policy π : S×A→ [0,1] that indicates the prob-
ability π(s,a) of choosing action a while in state s. This policy should
maximize the cumulative expected return:

Rt = E

[
∞

∑
k=0

γ
krt+k+1

]
(6.1)

where the rt is obtained by applying the policy π at each step. The

discount rate γ ∈ [0,1] is a pre-defined parameter. Reinforcement learn-
ing problems are most often formalized within the Markov decision

process (MDP) framework Sutton and Barto (2018), where the future

only depends on the current state and current action. Sometimes the

agent does not have access to the full information of the state variable

st and can only make an observation ot that only partially reveals st .

Then we are in the case of partially observable Markov decision process

(POMDP) (Åström, 1965) and this is the case for many games such as

Battleship, Texas hold’em poker (Brown and Sandholm, 2017), Star-

craft (Arulkumaran et al., 2019) and many others. These games are also

called imperfect-information games.

The above reinforcement learning problem is very general and can

be applied to countless scenarios and plays a very important role in

artificial intelligence in general. In addition, we find it appropriate to

indicate a correspondence between several fields of study. The notions

of state (or system and environment), action, reward and information

(SARI for all above) can be found in not only in RL, but also in optimiza-

tion, game theory, machine learning in general and algorithm selection.

For example, the PAPI (Rasmusen, 2005) (for Player, Action, Payoff,



Information) formulation in game theory corresponds well to the SARI
formulation in reinforcement learning. Other similar formulations also

exist such as PEAS (Russell and Norvig, 2002) (for Performance mea-
sure, Evironment, Actuators and Sensors) in the artificial intelligence
community. The correspondence between the different concepts used

in the different disciplines is indicated in Table 6.1.

Optimiza-

tion

Reinforce-

ment

Learning

(SARI)

Game

Theory

(PAPI)

Super-

vised

Learning

Algorithm

Selection

Artificial In-

telligence

(PEAS)

S
Search

Space

System /

World / En-

vironment

/ State

Space

Players

(PAPI)

Task /

Dataset /

Genera-

tive

Model

Task
Environ-

ment

A
Algorithm

Step

Agent

Action
Action

Learning

Machine

Output (α ,

β or γ)

Algorithm Actuators

R

Risk /

Objective

Change /

Loss

Reward /

Return /

Regret

Payoff /

Utility

Risk / Loss

/ Score /

Cost

function /

Metric /

Perfor-

mance

Perfor-

mance /

Score

Perfor-

mance

measure

I

Informa-

tion /

Latent

variables /

missing

data

Informa-

tion

Informa-

tion

Informa-

tion /

Latent

variables

Informa-

tion
Sensors

Table 6.1 SARI/PAPI terminology across several fields. Many notions
are very similar and/or closely related. However, some correspondence

relationships (such as the ‘S’ and ‘A’ in optimization and RL) are rather

loose and are not equivalent in a rigorous way. Note that the row ‘I’

for information is absorbed into the row ‘S’ in the RL formulation of

Sutton and Barto (2018) but can be relevant in the context of partially

observable Markov decision process (POMDP) (Åström, 1965).



6.1.2 . RL notions in Meta-learning
We now translate the very general reinforcement learning notions

in the context of meta-learning. We recall from Chapter 3 that in meta-

learning, we wish to find a γ-level algorithm that takes a meta-training

set of past learning experiences as input and output a learning algo-

rithm (or those with HPO), i.e. a β -level algorithm. For convenience, we

recall some notations. The past experience is described by

D= {(Tj,β j,R j)}N
j=1 ∈D (6.2)

where the Tj ’s are learning tasks and R j are β -level algorithms (i.e.

learning algorithms, HPO, etc). And we wish to construct ameta-learning

algorithm γ : D →B that learns a β -level algorithm β = γ(D) ∈B by

exploiting past experience inD ∈D .

The objective of meta-learning problem (and more generally γ-level

problem) is

γ
∗ = argmin

γ

1
|Dte| ∑

T∈Dte

R( ˆ̂α;Dte)

where ˆ̂α = β̂ (T ) and β̂ = γ(D).

(6.3)

Formulating the meta-learning problem as trying to find a γ seems

very simple at first sight, but within this γ , there could be very complex

dynamics. Very often, there is an estimation of the reward (typically the

averaged accuracy) and iterations of adjusting and learning. And in the

course of these iterations, RL notions naturally arise.

Example with a Meta-learning Competition
To show the above observationmore concretely, we consider a meta-

learning competition (similar to MetaDL challenge that we will introduce

later in this chapter) as an illustrative example. This will also help to

understand the context of the section on MetaDL challenge. In the con-

sidered meta-learning competition, a meta-dataset (i.e. meta-training

set) is provided as input data and participants need to implement a

meta-learner z (as shown in Figure 6.2) that can meta-learn with the
method meta_fit, then learn with the method fit and predict with
the method predict. An ingestion program, implemented by the orga-



Figure 6.2 Interaction of ingestion program and scoring program in
a meta-learning competition. A meta-dataset (i.e. meta-training set)
is provided as input data and participants need to implement a meta-

learner z that can meta-learn with the method meta_fit, then learn
with the method fit and predict with the method predict. An ingestion
program takes care of meta-learning, learning and prediction. Then

a scoring program takes the predictions made by ingestion program,

compares them to the ground truth ( reference data) and returns the

accuracy as performance, to be shown on the leaderboard.

nizer of the competition, serves to call these methods on input data. In

other words, ingestion program takes care of all following three steps:

meta-learning, learning and prediction. Then a scoring program, also

implemented by the organizer, takes the predictions made by ingestion

program, compares them to the ground truth (named reference data)

and returns the accuracy as performance, which is to be shown on the

leaderboard. This is in general how a competition with code submission

works. To understand that RL notions naturally arise, we look into the

inner part of the ingestion program, as shown in Figure 6.3. Since the

agent (i.e. the z implemented by the participant) does not know the
ground truth, it often needs a surrogate scoring program (in the same

idea as Rice’s performance model (Rice, 1976) as stated in Chapter 2) for

estimating the actually outcome performance in the final evaluation.

For any potential meta-learner _z, this surrogate scoring program esti-



mates its performance which can then be considered as reward. Note

that although this reward serves as an estimation of the true reward

on the test set, it can still be considered as a ‘true’ reward, but on a

validation set instead. This convention is adopted by many works in the

AutoML literature (Liu et al., 2019a; Rakotoarison et al., 2019; Zoph and

Le, 2016).

This choice of _z is then an action. And lastly, all records of past
performances can be defined as states. Then this inner iteration in

Figure 6.3 can be run to adjust the choice of _z and learn little by little.

Figure 6.3 Iterations inside the ingestion program in Figure 6.2.

We note that this example only gives one possible way that RL notions

arise in meta-learning.

In the following, we will discuss RL notions one by one in the context

of meta-learning.

State Space
For us, the state space for meta-learning is defined to be the current

state of the (meta-)dataset of past learning experiences (i.e. the meta-

training set). According to the definition of meta-learning problem

(γ-level problem) in the three-level formulation, the initial state is thus

given by

s0 :=D= {(Tj,β j,R j)}N
j=1



identical to that in Equation (6.2). As the agent can try different algo-

rithms on different tasks/datasets, this meta-training setD can be en-

riched iteratively (however we still consider the input of a meta-learning

algorithm γ to be s0 =D).

Although we wrote D = {(Tj,β j,R j)}N
j=1, the objects Tj, R j remain

somewhat abstract and their concrete representation (e.g. data format)

can vary from scenario to scenario. In some cases, they are only indexed

by their ID and no further details are provided. Sometimes some meta-

features (or statistics) on the algorithm R j and/or on the task Tj are pre-

computed and recorded. In others, full information (such as the code or

the data) on R j and task Tj is recorded (thus one can retrieve their exact

definition and re-run any algorithms on any datasets as we want). And

this observation exactly corresponds to what we introduced in Chapter

3 on the 3 classes of meta-learning problems and for convenience, we

associate a tag for each of them:

1. S0: Zero-order meta-learning;
2. S1: First-order meta-learning;
3. S2: Second-order meta-learning;

Here the letter ‘S’ represents ‘state’.

Action Space
The state space being defined, we now discuss what the actions

can be in meta-learning. Actually what most meta-learning approaches

in the literature do is to try an algorithm on a task and observe the

outcome performance. So the agent is basically enriching the meta-

dataset D = {(Tj,β j,R j)}N
j=1. This observation is also shared by Sun-

Hosoya (2019), who defined a form of meta-learning as what is called

a REVEAL game. In this REVEAL game, the agent iteratively reveals

information from executing an algorithm on a task.

Although in most cases, the algorithm chosen at each step for evalu-

ation is a β -level algorithm, it can be the case where the agent directly

chooses an α for the given task (and in this case only the validation set

is required for evaluation and no training is needed). We shall see an

example in the next section on our proposed approach on LEAP nets.



According to above discussion, we simply distinguish two cases for

a meta-learning agent:

1. A0: choose an α ;

2. A1: choose a β ;

We will show examples later in Table 6.2.

Reward and Return
In meta-learning, we often have multiple objectives, thus several

quantities can be considered as reward (and we recall that the return

is the cumulative reward, possibly discounted). There is always the

accuracy of classification in consideration but meta-learning often tries

to optimize other aspects without losing much (or at all) on accuracy.

These aspects include the number of examples (i.e. the amount of data)

and the computational resources:

1. RP: Performance / accuracy
2. RE: number of examples
3. RC: computational resources
If one wishes to obtain similar accuracy but with very few examples

(i.e. we are in the few-shot learning setting), one can use the notation

for this type of reward by

RE|RP,RC

meaning that we want to optimize (minimize in this case) required RE
(number of examples) while fixing similar RP (accuracy) and RC (com-
putational resources). Sometimes we wish to minimize the required

computational resources (for example in this case of mobile devices),

then we can use the notation

RC|RP,RE

This is typically the case in any-time learning as in the AutoDL chal-

lenges (Liu et al., 2021) introduced in Chapter 4, where algorithms are

required to make good predictions even when time budget is small.

We note that to compute the cumulative reward (i.e. the return),

the horizon, that is the number of total steps, depends on the number



of tasks and algorithms we consider. As we always consider a finite

number of algorithms and tasks, we are in an episodic RL setting (Sutton

and Barto, 2018) rather than in a continuous setting.

Lastly, it is also possible to tackle a multi-objective optimization

problem by considering all three objectives RP,RE,RC at the same time.
Multi-objective RL approaches (Drugan and Nowe, 2013; Perez et al.,

2014; Wang and Sebag, 2012) can thus be applied in this case.

Information
The notion of information in meta-learning is closely related to the

notion of state. Actually the notion of information formulated in Sutton

and Barto (2018) is completely absorbed in the notion of state, as we

pointed out earlier. Thus in most cases, we can ignore the distinction

between these two notion and always consider the state. However, we

still list several cases in terms of information for the reader to gain

some insights.

Without loss of generality, we suppose we are in the case of second-

order meta-learning (since other cases can be considered as this case

with different information), where a (data-)set of tasks (or a generative

model of tasks) and a (data-)set of algorithms are considered. Then we

can have following non-exhaustive list of scenarios:

1. No meta-features/statistics are recorded. Just partial data are

given and meta-features are considered as unknown or latent

variables. This is the case of AutoML challenges (Guyon et al.,

2015, 2018) when the meta-features are not revealed to the

participants. This is also the case in some scenarios related

finance (e.g. Numerai(https://numer.ai/));

2. We know the summary statistic or generative model of the tasks.

This is the case of LEAP net that we will introduce in Section 6.3;

3. We recorded meta-features of all past tasks. For example, con-

sider data generated in some chemical experiments, then the

data of the operator, the weather and the temperature are meta-

features of these tasks. In the case of AutoDL challenges (see

Chapter 4), the source, shape, number of examples, etc., are all

https://numer.ai/


meta-features that we can record. It makes differences whether

one has access to the above information.

Engineer and the Oracle
Here we briefly point out the fact that besides the agent-environment

interface we mentioned above, some important external factors also

exist. Typically, two of these external factors are the engineer who imple-

ments the algorithm (α , β or γ) and the oracle who knows the ground

truth and makes the final judge/evaluation of the algorithm. In the

context of a competition, the engineer is typically any participant and

the oracle is the competition organizer. In most cases, the above two

external factors have access to information that remains hidden to the

agent (i.e. the implemented algorithm). The engineer can read the

description of the competition, understand the semantic of the data

and judge whether the competition is really useful (for his/her career

or for the society). The organizer knows about the ground truth and

maybe more information on the used datasets. These external factors

are often neglected in academic discussions but they are the essential

actors behind everything. Also, the whole point of AutoML is actually

reducing the burden of the engineer. And each time when one jumps to

one level up (e.g. from α-level to β -level, or from β -level to γ-level), one

passes the job that was originally done by the engineer/human to the

implemented agent. The higher level we are in, the more automation

we achieve.

Although a further discussion on this topic is not in the scope of

this thesis, we should keep the existence of these external factors (the

engineer and the oracle) in mind.

Classification of Existing Works
Until now, we characterize meta-learning in turns of its SARI (State,

Action, Reward, Information) which enabled us to characterize papers

from the literature (see Table 6.2), and this allowed us also to position

our own contributions. In what follows, we illustrate three cases in

Section 6.2, 6.3 and 6.4.



6.2 . MetaDL Challenge

Although much research has been done in meta-learning (Brazdil

et al., 2008; Finn et al., 2017; Vanschoren, 2018; Vanschoren et al., 2014;

Vilalta and Drissi, 2002), it is still hard to fairly benchmark existing meta-

learning approaches. During this thesis, we organize a meta-learning

competition which will serve as an open and fair platform for evaluating

meta-learning approaches and inspiring community efforts to advance

this domain. In this competition, we choose to focus on a specific sub-

field ofmeta-learning: few-shot learning (FSL). Following the taxonomy
of the previous section, FSL corresponds to the RE|RP,RC category in
terms of the reward, which minimizes the need of traning examples

while maintaining similar computational resources and performance

(classification accuracy). And for state and action, the general setting of

this competition corresponds to S2 and A1 respectively. Thus the SAR

tags are S2, A1, RE|RP,RC.
Among diverse applications of few-shot learning, few-shot image

classification has been receiving a lot of attention lately (Finn et al., 2017;

Ravi and Larochelle, 2016; Snell et al., 2017; Sung et al., 2018), see Wang

et al. (2020) for a recent survey). A lot of modern applications benefit

from improving our understanding and results of such techniques. A

simple application would be to tag photos on Facebook based on very

few labels provided by the user. Also, one powerful feature of working

with images is our natural ability to assess if an algorithm is perform-

ing well for the right reasons using tools such as GradCam (Selvaraju

et al., 2017) (Gradient-weighted Class Activation Mapping) that can ex-

plain why a convolutional neural network makes a decision, therefore

providing an extremely valuable resource for post-challenge analysis.

In order to fairly benchmark existing few-shot learning approaches

and push forward the state of the art, we organized a competition in

meta-learning dubbed MetaDL challenge, which is still on-going by the

time of September 2021. This challenge is the first one to tackle the

particular problem of few-shot learning for image classification. The

crucial part of the challenge organization is to provide participants an

easy API to create their solutions, as well as a general API so that the

community can reuse it for problems in related areas (e.g. coupling



FSL with NAS and also RL problems). Therefore, it is important to

provide a flexible framework that allows them to submit any type of

FSL algorithm. We took inspiration from the design of famous python

packages such as the Scikit-Learn package (Pedregosa et al., 2011) and
also the three-level formulation introduced in Chapter 3.

6.2.1 . Competition workflow
The competition is currently running online, which means that the

participants need to submit a Python script (probably with other files)

implementing their meta-learning algorithm. The competition will be

hosted on a dedicated challenge platform CodaLab (noa) and the sub-

missions will be executed on some virtual machines (supported by

Microsoft Azure). The script will have to respect a specific API that we

defined as the challenge organizer. This API is designed to be flexible

to be used for describing any meta-learning procedure. And this is be-

cause we actually provide the possibility for second-order meta-learning

(as described in Chapter 3) with all meta-training data provided. It de-

fines 3 main classes for which their methods need to be overridden to

define a meta-learning algorithm. Its design relies on the definition of

the different levels of algorithms that have been described in Chapter

3. These 3 classes are
1
:

— AMetaLearner class: It has ameta_fit()method that encapsu-
lates the meta-training procedure. Using the previously defined

notation, it essentially process the meta-dataset and capture

the reusable information across meta-training tasks. It takes a

meta-training set Dtr as an argument and outputs a Learner
object (defined below). This corresponds to a meta-learner γ in

the three-level formulation in Chapter 3.

— A Learner class: It has a fit() method that encapsulates the
training procedure. It takes the training dataset Di

tr as an argu-

ment from a task Ti along with the associated information from

the meta-learning procedure to output a Predictor object. This
corresponds to a learner β in the three-level formulation.

1. Code available at https://github.com/ebadrian/metadl

https://github.com/ebadrian/metadl


— A Predictor class: It has a predict() method that predicts the
labels of test examples. It takes a test set Di

te as an argument

from the associated Ti. This corresponds to a predictor α (applied

to a set of examples) in the three-level formulation.

Each participant has to override these methods to create their own

meta-learning algorithm. We will discuss the implementation details in

the results section.

The learning procedure
Once a participant submits an algorithm, the ingestion program (in

Figure 6.2) feeds data in form of episodes. Each episode (forming a

learning task) is defined by Ti = (Di
tr,L

i|Pi,Di
te) (here we associate an

unknown test set Di
te with unlabeled examples to the task) or simply

Ti = (Di
tr,D

i
te)

when there is no confusion on the other components. A typical task,

referred to as N-way K-shot task, involves a training set with N classes
and K examples (typically N = 5, K = 1)

N = 5, K = 1

but other settings can be easily integrated in CodaLab.

Meta-training step. The ideal few-shot learning algorithm is able
to leverage the knowledge gathered from all prior tasks in Dtr to in-

crease performance on unseen tasks at meta-test time. The tasks are

first sampled from the original tasks distribution, forming a Dtr. The

way we sample these tasks will be described in the next sub-section

data. Episodes are then fed to the Meta-Learner through themeta_fit
method.

Meta-testing step. During this step, a pre-defined number of tasks
would be sampled (e.g. 600 in the competition). Each of these tasks is

also of the form Ti = (Di
tr,D

i
te) and the submitted algorithm does not

have access to the test labels. For each new task, we use the learner

generated from the meta-training part, to output a predictor using Dtr.

This process is encapsulated in the Learner’s fit function. Then, we’d



predict the labels of test examples using the resulting predictor. The

different meta-learning algorithms differ in the way they generate a

Learner and how they use the information from Dtr coupled with Di
tr

to perform well on Di
te. This way, we measure the capacity to quickly

adapt to a new task from just a few examples.

Evaluating performance. One crucial design choice is the way we
assess an algorithm’s performance. Performance is measured with the

standard classification performance,

ACC =
1
|Dte| ∑

y∈Dte

1ŷ=y (6.4)

with Dte the test set, where ŷ and y are respectively the predicted label
and the true label.

Few-shot learning algorithms perform differently under different

regimes. More specifically, the rate at which they benefit from adding

more examples in Dtr vary (c.f. Figure 6.4). We are interested in this

particular insight developed in (Triantafillou et al., 2019), i.e. a way to

measure an algorithm’s performance across these different regimes. At

the moment, we are considering the possibility to use a more sophis-

ticated metric than the simple categorical accuracy by computing the

area under learning curves in which the x-axis is denoting shots, while

the y-axis could represent accuracy. As an example, the following figure

taken from (Triantafillou et al., 2019) displays the accuracy for different

algorithms across various regimes (i.e. different N and K).

6.2.2 . Data
Task generation
Tasks (or episodes) in this competition are generated as follows.

Consider a dataset (for example the Omniglot (Lake et al., 2015) dataset)

that contains a large number of classes. We divide the classes into

2 disjoint sets Ctr and Cte. These sets represent “pools” from which

classes we generate episodes for the meta-train and meta-test part

respectively.

An episode is defined by selecting uniformly N=5 classes, and select-

ing K = 1 (respectively K = 19) examples in each selected class to form



Figure 6.4 Shots analysis, figure from (Triantafillou et al., 2019). Each
curve represents a few-shot learning algorithm meta-trained on various

datasets and evaluated only on ImageNet (Krizhevsky et al., 2012) tasks.

Di
tr (resp. Di

te). Indeed, Omniglot contains over 1600 classes of 20 exam-

ples each. This number essentially depends on how much examples

are available in a dataset. Also it is possible for participants to use the

type of data augmentation they want on theDtr. It is worth noting that

the sampling procedure is controlled on the challenge organizer’s side.

In order to generate tasks/episodes in the meta-test set, we proceed

in the same way with classes in Cte (without the data augmentation).

(Meta-)Datasets
We previously mentioned that tasks are generated using only one

(meta-)dataset. This procedure could be extendedwithmultiple datasets

by simply adding the corresponding classes in Ctr and Cte. The competi-

tion is divided into 3 different phases. In each phase, we construct a

meta-training setDtr and a meta-test setDte as described above.

1. Public phase: This first phase consists of letting participants
have full access to famous datasets in the few-shot learning

literature. They can test their algorithms and analyse their results

using directly the labeled examples.

2. Feedback phase: Participants can submit their code and have a
performance feedback on the meta-test dataset associated to

this phase.



3. Final phase: The performance on these private tasks are the one
we use to rank participants at the end of the competition. The

data we use for this phase are not public and are not available

on the internet.

For public phase, we use the Omniglot dataset. We divided the

classes from Omniglot dataset in two sets. Omniglot has 1622 classes

and the assignment of classes in each of these set is identical to the

original split of the authors. The number of classes in each classes set

is as follows : |Ctr| = 1200 and |Cte| = 422. A sample of the Omniglot
classes is displayed in Figure 6.5.

Figure 6.5 A sample of classes taken from the Omniglot dataset.
(Lake et al., 2015)

Some meta-datasets we consider using in the feedback phase are:

— Omniglot dataset (Lake et al., 2015) : handwritten characters

across 1623 classes.

— Caltech UCSD Birds 200 (Wah et al., 2011): 6033 images across

200 classes.

— A subset of Quick Draw (https://quickdraw.withgoogle.com/): 50

millions drawings across 375 classes.

— Hammer, Hippocrate which are medical image datasets from

AutoDL challenges (see Chapter 4): respectively containing 7

classes, 10015 images and 2 classes, 220025 images.

https://quickdraw.withgoogle.com/


— Ideal and Saturn datasets, which are aerial datasets from AutoDL

challenges(see Chapter 4), respectively containing 45 classes,

31500 images and 3 classes, 405000 images

The choice of datasets and specifically the classes in Ctr and Cte from

which we create our meta-training set and meta-test set is not the only

important issue. The type of classes we consider together in a same

meta-dataset should also be explored. Indeed, some datasets contain

very subtle difference among some of their classes (fine-grained image

classification) while others are more coarse. Often, the meta-learning

algorithm performances would be drastically different if we meta-train

algorithms with the former type of classes and evaluate on the latter

type of classes. It is our responsibility as challenge organizers to design

the selection of classes in order to gain as precise and wide knowledge

about the algorithms capabilities as possible. These considerations

are also discussed in Triantafillou et al. (2019) and we will continue to

investigate these concerns.

6.2.3 . Baseline Methods
We provide two baseline methods to the participants. The first

baseline is the first order approximation of MAML algorithm (fo-MAML)

(Finn et al., 2017) (along with its original version). The second baseline

is Prototypical Networks (Snell et al., 2017), which was not yet ready

for generating baseline results when writing. Thus for comparison,

we adopted a naïve baseline of a fully connected neural network (Fully

Connected) with no hidden layer and with no meta-learning at all. Along

with the implementation of baselines as well as their testing script to

perform crucial sanity checks, we also implemented scripts to make any

datasets that was used in a previous AutoDL competition to be usable

in the data generation pipeline format presented in (Triantafillou et al.,

2019).

In the next section, we present the results we obtained by meta-

training our implementation of the fo-MAML algorithm on the Omniglot

dataset (Lake et al., 2015).

6.2.4 . Baseline Results



Figure 6.6 Leaderboard of MetaDL challenge by the time of Oct 2020.

We meta-trained the algorithm on Dtr constructed with Ctr and

performed the evaluation on 600 episodes generated with the classes

in Cte. The meta-training part outputs a Learner, which is a neural

network with specific initial weights θ ∗, which allows to fine-tune the
model with Di

tr and evaluate on Di
te for each unseen task/episode Ti.

The fine-tuning part is performed with the Stochastic Gradient Descent

(SGD) algorithm.

Table 6.3 shows the results from our fo-MAML implementation. The

different learning rate values are presented in the first column. The

second column represents the average categorical accuracy across 600

episodes along with its standard deviation. The third column repre-

sent the accuracy of the same neural network (architecture-wise) with

randomly initialized weights that were trained with Di
tr of each task.

We see that small changes of hyperparameters (learning rate in this

case) can drastically improve the performance of this algorithm up to

99% accuracy across tasks and won’t be discussed here. However, we

can already notice the meta-learning effect by comparing the results

between the fo-MAML and Fully Connected implementation.

We meta-trained our meta-learning algorithms on one Microsoft

Azure machine with one Nvidia Tesla M60 GPU for about 7 hours. From

the result, we see that meta-learning extremely helps to improve the

accuracy in the few-shot setting indeed.

By the time of September 2021, the MetaDL for NeurIPS 2021 is

still on-going via the website https://autodl.lri.fr/competitions/210. We

show the state of the leaderboard of MetaDL for AAAI 2020 in Figure

6.6

6.3 . LEAP nets and Super-generalization

https://autodl.lri.fr/competitions/210


In this section, we introduce an application of a special form of meta-

learning. It concerns a type of transfer learning (Pan and Yang, 2010)

that is capable of achieving super-generalization which we will define in

Section 6.3.2.

The application domain will be power systems with a grid transport-

ing electricity. The goal here is to develop a neural network model of

the power grid, which allows us to replace computationally costly simula-

tors using first principles of physics in the computation of power flows,

following other prior work (Donnot et al., 2018a,b; Hossen et al., 2017;

Nguyen, 1995). Following the taxonomy in Section 6.1, this approach

corresponds to the SAR tags

S1, A0, RC|RP,RE.

This work is a collaboration with Benjamin Donnot, Balthazar Donon

and others. One paper on this topic is published in Elsevier’s Neuro-

computing 2020 (Donon et al., 2020a).

6.3.1 . The Problem Setting with a Power Grid
Figure 6.7 illustrates the problem setting on a small power grid. A

line going over its thermal limit will be put out of service. Hence, the

grid must be reconfigured quickly to re-balance current flows before

that happens. Although many types of actions/reconfigurations can be

considered, we limit ourselves to one particular type of action: recon-

figuration of the grid by splitting ormerging nodes at substations. The

figure shows a solution consisting of a node splitting in a substation.

We call that a grid topology change. The space of possible grid topolo-

gies grows exponentially with the number of substations (nodes in the

grid). For example, the French high-voltage transmission grid includes

N ≈ 6200 substations, with more than a dozen possible configurations
per substation and thus ⪆ 10N

possible grid topologies. Even if only a

small number of those are achievable, the search space is still humon-

gous. Our challenge is to devise a neural architecture and a training

method such that, using a training dataset that contains only a few grid

topologies, power flows can still be accurately predicted for topologies

never seen before.



Figure 6.7 Problem setting for the LEAP nets. Electricity is trans-
ported from production nodes (top) to consumption nodes (bottom),

through lines (green and red edges) connected at substations (black

circles), forming a transmission grid of a given topology τττ . Injections

xxx = (x1,x2,x3,x4) (production or consumption) add up to zero. Grid
operators (a.k.a. dispatchers) should maintain current flows yyy = S(xxx;τττ)
below thermal limits. Left: Line yyy4 goes over its thermal limit 100. Right:

A change in topology (splitting of bottom right node) brings yyy4 back to

its thermal limit.

Our approach uses a neural network

ŷyy = NN(xxx;τττ) (6.5)

to emulate the power grid

yyy = S(xxx;τττ) (6.6)

(do not mix up this S with the S as a selection mapping in Chapter 3)
in which the inputs xxx are so-called “injections” (productions and con-
sumptions) and the outputs yyy are the power flows on all the connecting
lines of the grid. The system is parameterized by structural parameter

vector τττ encoding various grid topologies, which includes our action-

able parameters. We use τττ to encode changes in our neural network

architecture.

6.3.2 . Proposed LEAP Architecture
Our objective is to approximate a function yyy = S(xxx,τττ) that maps

input data xxx (e.g. power production and consumption) to output data
yyy (e.g. power flows), parameterized by a discrete “grid topology vector”
τττ , taking values in an action space (all possible power-grid topologies

e.g. line interconnections). For any fixed topology τττ , training data pairs



{xxx,yyy} are drawn i.i.d. according to an unknown probability distribution.
In our application setting, xxx is drawn randomly, but S(xxx,τττ) is a deter-
ministic function implementing Kirchhoff’s circuit laws, calculated by a

physical simulator that we wish to approximate.

We call simple generalization the capability of a neural net ŷyy=NN(xxx,τττ)
to approximate yyy = S(xxx,τττ) for test inputs xxx not pertaining to the training
set, when τττ values are drawn i.i.d. from a distribution that remains

the same in training and test data (this includes the case of a fixed τττ).

Conversely, if values of τττ are drawn according to a source domain distri-

bution in training data and from a different target domain distribution

in test data, then we will talk about super-generalization.

One particularity of our application domain in terms of transfer

learning is that we have one primary “reference” source domain (corre-

sponding in the power grid to a reference grid topology τττ /0 = (0,0,0, . . .),
around which small variations are made. This is a generic scenario in

the industry for systems that operate around nominal conditions, thus

we anticipate that our method could be extended to other similar situa-

tions. In our application setting, we can easily get a lot of training data

in the reference topology (corresponding to the typical way in which

the grid is operated). We have comparably very little data available for

training from other secondary source domains, corresponding to unary

changes in grid topology τττ i = (0,0,1, . . .) (a single 1 at position i). Finally,
we have extremely scarce data or no data at all available for training

from domains corresponding to double changes τττ i j
, or higher order

changes (considered target domains). This motivates our architectural

design.

Our proposed Latent Encoding of Atypical Perturbations network,

or LEAP net (Figure 6.8), is composed of three parts: An Encoder EEE ,
learning an embedding of the input data x; a Decoder DDD, learning how
to perform the required task within this latent representation; and a

Latent module LLLτ , placed between the EEE and DDD where τττ intervenes.

The overall arhitecture is given by:

LLLτ : h → ddd(eee(h)⊙ τττ) (6.7)

ŷ = DDD◦ (III +LLLτ)◦EEE(x) (6.8)



Figure 6.8 Baseline and LEAP architecture: Top: ResNet (He et al.,
2016) architecture, with τττ as input. Bottom: Proposed LEAP net: τττ

intervenes in the latent embedding space. The effect is to make a “leap”

in latent space.

where EEE and eee (encoders) and DDD and ddd (decoders) are all differentiable
functions (typically implemented as artificial neural networks). The

⊙ operation denotes the component-wise multiplication and ◦ the
function composition. If the system is in the reference topology τττ /0

,

predictions are made according to ŷyy = DDD◦EEE(xxx). A typical way in which
we train LEAP nets is to use a lot of training data in the reference

topology τττ /0
(primary source domain), very few examples for each of

the unary changes τττ i
(secondary source domains), and we wish the

network to generalize to target domains corresponding to double τττ i j
or

higher level changes.

While our architecture draws inspiration from both Dropout (Srivas-

tava et al., 2014) and Residual Neural Networks (He et al., 2016), in its

mathematical formulation, the underlying concept is quite different.

Here we first embed x in a latent space by applying EEE(x). Then, based
on τττ and the location of EEE(x) within the latent space, we compute the
corresponding leap LLLτ ◦EEE(x). Then we decode the signal by applying DDD.
Those latent leaps contain information about how much the system ac-

tually deviates from the reference state, and in which direction. Hence,

our architecture only needs to learn to modulate the system response

around its nominal value.

6.3.3 . Experimental Results
We present experimental results for our target application on sim-

ulated and real data. Synthetic data allows us to perform controlled

systematic experiments and compare neural network approaches with



a standard baseline (DC approximation, in which one writes the vector

of power injections as a linear function of the vector of voltage angles.

Here ‘DC’ is for Direct Current) in power systems. Real data allows us

to check whether our method scales computationally while providing

prediction accuracies that are acceptable for our application domain.

Case 118 synthetic data benchmark
We conducted controlled experiments on a standard medium-size

benchmark from "Matpower" (Zimmerman and et al., 2011), a library

commonly used to test power system algorithms (Alsac and Stott, 1974):

case118, a simplified version of the Californian power grid (dim xxx = 153
injections and dim yyy = 186 power lines). Topology changes consist in re-
configuring line connections in one or more substations (see Figure 6.7).

Such changes are more complex than simple line disconnections consid-

ered in (Donnot et al., 2018a). There are 11 558 possible unary actions
(corresponding to single node splitting or merging, compared to the

reference topology). To build the Source domain training and test sets,

we sampled randomly 100 τττ(i) ∈T Source
. In the reference topology (τττ /0

),

we sampled 50000 input vectors xxx. But for each τττ(i), we sampled only

1000 input vectors xxx. We used Hades2 2 to compute the flows yyy in all
cases. This resulted in a training set of 150 000 rows (each row being
one triplet (xxx,τττ(i),yyy)). We created an independent test set of the same
size in a similar manner.

We proceeded differently for the Target dataset. We sampled 1500
(Target domains: τττ(i j) ∈ T Target

) among the 4950 possible double ac-
tions τττ(i j) = τττ(i) ∨ τττ( j)

, τττ(i) and τττ( j) ∈ T train
. Then, for each of these

1500 τττ(i j)
, we sampled 100 inputs xxx (with the same distribution as the

one used for the training and regular test set). We used the same

physical simulator to compute the yyy from the xxx and the τττ . The super-

generalization set counts then 150 000 rows, corresponding to 150 000
different triplets (xxx,τττ(i j),yyy).
We compare the proposed LEAP net with two benchmarks: the

DC approximation, a standard baseline in power systems, which is

a linearization of the AC (Alternative Current) non-linear powerflow

2. Freeware available at http://www.rte.itesla-pst.org/.

http://www.rte.itesla-pst.org/


equations, and the baseline neural network architecture (Figure 6.8)

in which τττ is simply an input. The mean-square error was optimized

using the Tensorflow Adam optimizer. To make the comparison least

favorable to LEAP net, all hyperparameters (learning rates, number of

units) were optimized by cross-validation for the baseline network.

Figure 6.9 indicates that the LEAP net (blue curves) performs better

than the DC approximation (black line) both for regular and super

generalization. Figure 6.9b shows that the baseline neural network

architecture (green curve) is not viable: not only does it perform worse

than the DC approximation, but its variance is quite high. While it is

improving in regular generalization with the number of training epochs,

its super-generalization performances get worse.
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Figure 6.9 Synthetic data (case 118). Neural nets trained with 15000
injections, for τττ /0

and unary changes τττ(i). (a) Regular generalization.
Test injections for unary changes τττ(i). (b) Super-generalization. Test
injections for double changes τττ(i j)

. Error bars are [20%, 80%] intervals,

computed over 30 repeat experiments.

Real French ultra-high voltage power grid data
We now present results on a part of the French ultra-high voltage

power grid: the "Toulouse" area with 246 consumption nodes, 122
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Figure 6.10 Real data from the ultra high voltage power grid. The
neural net in both cases is trained from data until May 2017. (a)
Regular generalization. Test set made of randomly sampled data in
same time period as training data. (b) Super-generalization. Test set
made of the months of June and July 2017.

production nodes, 387 lines and 192 substations often split in a variable
number of nodes. The inputs xxx representing injections (production
and consumption) are of dim xxx = 368) and the outputs yyy (flows) of dim
yyy = 387. In this study, xxx and yyy come from real historical data from the
company RTE

3
. One important difference when using played-back data,

compared to simulation, is that we cannot intervene (this is strictly

observational data). To place ourselves in a realistic transfer learning

setting, we used data from 2012 to May 2017 for T Source
and data from

June and July 2017 for T Target
. This favored changes in τττ distribution.

Another key difference in real data is “actions space”. In real data

actual grid topologies (specifying line interconnections) are not precisely

recorded. Only information on line outages is available to us as surrogate

information on topology. This makes the neural net task harder: it must

learn the effects of latent topological changes. This unfortunate loss of

information on exact grid topology interventions makes it impossible

for us to compare our method to the DC approximation: computing

3. Even in real records, flows are estimated, not measured.



this approximation requires a full description of the topology. The

results of Figure 6.10 yield the same conclusions as in the previous

section: the LEAP model generalizes not only to data drawn from a

similar distribution it was trained on (Figure 6.10a) but also to unseen

grid states (Figure 6.10b), better than the reference architecture, which

is a critical property for our application.

6.3.4 . Theoretical Analysis of Super-generalization
In this section we formally prove the super-generalization ability of

LEAP nets, when modeling systems with additive perturbation. It is

important to note that LEAP nets are not limited to modeling additive

perturbations. This simple theoretical analysis can be thought of as

a “sanity check”. In our experimental section we will show various

empirical cases of super-generalization in our application setting of

power system, not limited to additive perturbations.

A system with additive perturbations is defined as a system S(xxx,τττ)
that satisfies





S(xxx,τττ /0) = F(xxx)

S(xxx,τττ i) = F(xxx)+ εi(xxx), i = 1, . . . ,c
(6.9)

and

S(xxx,τττI ) = F(xxx)+ ∑
i∈I

εi(xxx), |I | ≥ 2 (6.10)

for some (unknown) deterministic functions F(xxx),ε1(xxx), . . . ,εc(xxx).
We begin with a theorem showing the super-generalization ability of

LEAP nets in the case where a trained model makes perfect predictions

on data coming from the same distribution as the training data. Then

we generalize this result to the noisy case with imperfect predictions.

Theorem 2. (Super-generalization) Let S(xxx,τττ) be a system satisfying

Equations 6.9 and 6.10 ; and let NN(xxx,τττ) be a LEAP net with linear de-

coders ddd and DDD . If NN(xxx,τττ) is trained to make perfect predictions on

simple perturbations (data triplets (xxx,τττ,yyy) coming from distribution

defined by Equation 6.9 ), then it will make perfect predictions on combi-

nations of perturbations (data coming from test distribution defined by

Equation 6.10).



Proof. We recall the LEAP Net architecture NN(xxx,τττ) which gives predic-
tions

ŷyy = NN(xxx,τττ) = DDD(EEE(xxx)+ddd(eee(EEE(xxx))⊙ τττ)) ∈ R.

Since we assumed l = 1, DDD is actually a scalar linear function. By writing
τττ = (τ1, . . . ,τc) = ∑

c
i=1 τiτττ

i
, we can use the linearity of ddd and DDD to write

the output of LEAP Net as

ŷyy = DDD

(
EEE(xxx)+ddd

(
eee(EEE(xxx))⊙

c

∑
i=1

τiτττ
i

))

= DDD

(
EEE(xxx)+

c

∑
i=1

τiddd
(
eee(EEE(xxx))⊙ τττ

i)
)

= f0(xxx)+
c

∑
i=1

τi fi(xxx)

where

f0(xxx) = DDDEEE(xxx)

fi(xxx) = DDDddd
(
eee(EEE(xxx))⊙ τττ

i) , i = 1, . . . ,c.

As NN(xxx,τττ) makes perfect predictions for any data point (xxx,τττ,yyy)
coming from training domainswe have:

S(xxx;τττ) = N(xxx,τττ)

which means that the following equalities hold

F(xxx) = f0(xxx)

F(xxx)+ εi(xxx) = f0(xxx)+ fi(xxx), ∀i = 1, . . . ,c.

So we must have

F(xxx) = f0(xxx)

εi(xxx) = fi(xxx), ∀i = 1, . . . ,c.

for all xxx. As in our case the distribution D(X ) of xxx does not depend on
τττ ,the above equality holds for all xxx.



So when we use the trained NN(xxx,τττ) to make predictions for differ-
ent τττ ,

NN(xxx,τττI )= f0(xxx)+
c

∑
i=1

τi fi(xxx)= f0(xxx)+ ∑
i∈I

fi(xxx)=F(xxx)+ ∑
i∈I

εi(xxx)= S(xxx,τττI )

holds for any τττI
, which concludes the proof.

The above theorem shows that, under some conditions, LEAP nets

are indeed capable of performing super-generalization: making good

predictions on complex structural parameters τττ while it was only trained

with unary cases τττ i
. The fact that ddd and DDD are linear is essential for cap-

turing the additivity of perturbations. For other types of perturbations

such as the multiplicative case defined as follows

S(xxx,τττI ) = F(xxx) ∏
i∈I

(1+ εi(x)),

LEAP nets can achieve similar results ifDDD has, for example, an exponential-
like behavior (i.e. it transforms additions into multiplications).

Despite its limitations, the fact that Theorem 2 works for any un-

known functions εi(xxx)makes the results very general. We can consider
for example linear perturbations with εi(xxx) = WWW ixxx, constant additive
perturbations with εi(xxx) = ααα i or heteroskedastic perturbations with

εi(xxx) = ααα iG(zzz), etc. And all these types of perturbation are special cases
of the above theorem.

Theorem 2 gives a strong theoretical guarantee, but one may won-

der if the condition of making perfect predictions can be too restrictive.

So we also investigated the slightly more general case of imperfect

predictions, when the LEAP net is trained only on unary changes.

To do this, we first need to introduce a notion of distance between

functions. As we used Mean Square Error (MSE) in our work for the

regression problem, the distance we use will be defined in the same

flavor. LetX ⊆ Rp
be the support of xxx, Y ⊆ Rl

be the support of yyy. Let
µ be a probability measure onX , and f ,g two functions fromX to Y .



We define the distance dµ( f ,g) between f and g to be :

d2
µ( f ,g) =

∫

X
∥ f (xxx)−g(xxx)∥2dµ(xxx) (6.11)

Here ∥ · ∥ represents the ℓ2-norm on Rl
. Notice that this distance de-

pends on the probability measure µ . If we put µ = D(X ) (the ground

truth distribution of xxx) and write yyy = g(xxx), the right hand side be-
comes nothing but the generalization error

4
of f . If we instead select

µ = 1
m ∑

m
i=1 δxxxi (the empirical distribution), the right hand side becomes

the MSE test error (or training error). We are now ready to formulate

our theorem on the imperfect prediction case.

Theorem 3. Let S(xxx,τττ) be a system satisfying Equations 6.9 and 6.10. Let

NN(xxx,τττ) be a LEAP net with linear submodules ddd and DDD such that

dµ

(
NN(·,τττ /0),S(·,τττ /0)

)
≤ d0

dµ

(
NN(·,τττ i),S(·,τττ i)

)
≤ di, i = 1, . . . ,c.

(6.12)

for some constant d0,d1, . . . ,dc ∈ R. Then, for any I ⊂ {1, . . . ,c}, we have

dµ

(
NN(·,τττI ),S(·,τττI )

)
≤ (|I |+1)d0 + ∑

i∈I
di. (6.13)

Proof. According to (6.9) and (6.10) in Theorem 2, we can write S(·,τττ /0) =

F and S(·,τττ i) = F + εi. And since ddd and DDD are linear, we can write
NN(·,τττ /0) = f0 and NN(·,τττ i) = f0 + fi according to the same argument

in the proof of Theorem 2. Then we can rewrite (6.12) as

dµ ( f0,F)≤ d0

dµ ( f0 + fi,F + εi)≤ di, i = 1, . . . ,c.

4. We remind that in our problem setting, the system S(·,τττ) we want to identify is
deterministic (solutions of differential equations), the labels yyy are thus deterministic
given xxx and τττ . So we don’t need to consider the joint distribution on the pair (xxx,yyy).



Because the distance dµ defined above satisfies triangle inequality (and

is translation invariant), we have

dµ

(
NN(·,τττI ),S(·,τττI )

)
= dµ

(
f0 + ∑

i∈I
fi,F + ∑

i∈I
εi

)

= dµ

(
f0 + ∑

i∈I
[( f0 + fi)− f0],F + ∑

i∈I
[(F + εi)−F ]

)

≤ dµ( f0,F)+ ∑
i∈I

dµ( f0 + fi,F + εi)+ ∑
i∈I

dµ( f0,F)

≤ d0 + ∑
i∈I

di + ∑
i∈I

d0

= (|I |+1)d0 + ∑
i∈I

di,

which concludes the proof.

Theorem 3 shows that as long as a LEAP net approximates well the

ground truth functions 6.9 by fitting data from a given distribution of

(xxx,τττ), its error on any points where τττ is altered and results in combina-

tion of the vector observed in the training set can be bounded too. This

can indeed be considered as a super-generalization property. Notice

that the weight of d0 is larger than that of the others, which suggests we

should make more efforts on improving the accuracy of the predictions

on the reference topology case τττ = τττ /0
. This was the case in all our

experiments where more data came from this distribution.

Obviously, Theorem 2 is a special case of Theorem 3 with d0 = d1 =

· · ·= dc = 0.
At last, we emphasize that the distance dµ is a very flexible notion

as it can be defined as the generalization error or more importantly in

practice, as the test error.

6.3.5 . Connection with Transfer Learning and Meta-learning
In this work of LEAP we have cast our problem as a machine learning

problem from iid data, lumping distributional changes in our objective

function, which re-balances the importance of various values of τττ . An-

other angle would be to treat our problem as a true change in distribu-

tion. The issue of having to deal with changes in distributions has been



extensively studied in the framework of transfer learning (TL) (Good-

fellow et al., 2016; Pan and Yang, 2010)
5
. To make the analogy with

our problem setting, we can think of our reference case τττ /0
as a source

domain, and other τττ values as target domains. 6 Future work includes

using LEAP nets to model changes in distributions in which τττ is a latent

variable rather than an actionable variable.

Among many cases in the taxonomy of TL (Pan and Yang, 2010) we

discuss here two cases closely related to LEAP nets: Domain Adaptation

(DA) and Multi-Task learning (MT). To make the connection, it is useful

to consider two possible factorizations of the joint distribution of inputs

and outputs:

P(xxx,yyy) = P(xxx)P(yyy|xxx) = P(xxx|yyy)P(yyy) (6.14)

DA and TL make different assumptions on what changes in P(xxx,yyy) be-
tween source and target domains: DA assumes that P(xxx) changes, but
P(yyy|xxx) remains unchanged. MT assumes that P(yyy) changes, but P(xxx|yyy)
remains unchanged. Behind that are some implicit causal assumptions

about the data generative process, which we will discuss in the following.

Obviously there are cases in which variables in xxx and yyy are inter-related
in a complex manner and this simple factorization does not make sense,

but here we limit ourselves to a discussion of DA and MT.

For our power network application setting, DA has a more natural

interpretation since P(xxx,τττ) changes, but P(yyy|xxx,τττ) does not (in fact, it is
a deterministic function). But both groupings of variables are possible

and our LEAP net architecture does not preclude of either.

As illustrated in Figure 6.11, we argue that, in applications to both

DA and TL problems, LEAP nets could present distinct advantages over

other architectures because of the flexibility of making leaps induced

5. We recall that due to the generality of our definition of meta-learning, transfer

learning is a special case of second-order meta-learning (i.e. S2), with only one single

task in the meta-training set

6. Alternatively, the reference case and unary changes can be lumped in the

source domain, then combinations of changes would make the target domain. In

this context, the LEAP net architecture, as exemplified in our experimental section,

can be interpreted as an architecture capable of “zero shot learning”, i.e. learning

combinations of perturbations from zero examples. Structural variable τττ should be

interpreted as a latent variable (rather than an actionable variable) and may take

continuous values.



Figure 6.11 Different types of transfer learning. From left to right:
Multi-Task learning or MT (the encoder EEE is common to both tasks,
which have the same input domain, but the decoders DDD1 and DDD2 are

task-specific); Domain Adaptation or DA (each input domain has a

separate encoder EEE1 and EEE2 creating a common embedding hhh ∈H
then processed by DDD, i.e. we have different domains but the same task);
LEAP transfer learning (our proposed setting: a combination of MT and

DA in which changes in domain are encoded as a LEAP inH permitting

to combine combinatorially unary changes).

Figure 6.12 Examples of transfer learning. This illustrates with
some handwriting recognition examples the different types of transfer

learning of Figure 6.11. For Multi-task Learning and Domain Adap-

tation, we have a simple division between source domain (top) and

target domain (bottom). For LEAP transfer learning, we have a ref-

erence source domain for which τ = [0,0,0] and multiple target do-
mains, some corresponding to unary changes (τ = [1,0,0]→slanted,
τ = [0,1,0]→skeletonized, τ = [0,0,1]→inverted) and some to combi-
nations of changes (τ = [1,1,0],τ = [0,1,1],τ = [1,0,1],τ = [1,1,1]). The
avantage of this setting is that we can train on unary changes and obtain

super-generalization on combinations of changes never seen during

learning.



by τττ in latent space encoding combinations of unary perturbations

(Figure 6.12).

Please note that some of the values of τττ in our examples of digit

distortions could be continuous (e.g. continuous change in skew).

In many ways the LEAP framework generalizes both DA and TL,

as further illustrated in Table 6.4. The TL taxonomy (Pan and Yang,

2010) also separate various types of TL according to the availability of

labeled examples in the source and/or target domains. The LEAP net

architecture, as exemplified in our experimental section, lends itself

to “zero shot learning”, i.e. learning from zero examples in the target

domain. This is what we have called “super-generalization” in the rest

of the work.

Finally this analysis allows us to position this work in the context of

meta-learning taxonomy. The τττ hyperparameter can be interpreted as

a meta-feature hence the search space is S1 (we don’t need all concrete

examples since we can generate them from τττ). The LEAP nets, once

trained, are capable of super-generalization, i.e. to make predictions for

new τττ without re-training. Hence the meta-learning procedure directly

returns an α-level algorithm, which is an A0 action. Finally the objective

of training a surrogate model is to improve speed of simulation without

sacrificing accuracy. Hence the reward is RC|RP,RE.

6.4 . Theoretical Analysis of Zero-order Meta-learning

In this section, wemake an attempt to prove some theoretical results

for meta-learning.

We consider a simplified meta-learning setting where only a matrix

of performances is available, i.e. we are in the zero-order meta-learning

setting. The corresponding SAR tags of this section are S0, A1, RC|RP,RE,
i.e. only performances in the DA matrix are considered (no detailed

information or meta-features of the tasks and the algorithms) (S0) and
the action in each iteration is to choose a β -level algorithm (A1). Then
one wishes to improve computational aspect by maintaining the perfor-

mance/accuracy and the number of examples.



Concretely, we have access to a meta-dataset of past performances

(we use the notation from Chapter 3)

Dtr = {(Tj,β j,R j)} j∈J

with J = {1, ...,N} where the tuple (Tj,β j) traverses a finite set T ×B

for T = {T1, . . . ,Tn} andB = {β1, . . . ,βp}. Furthermore, we only consider
R j ∈ {0,1} with R j = 0 indicating that we applied a ‘good’ learning algo-
rithm on the task/dataset and R j = 1 otherwise. All above hypotheses
reduce our situation to the case where we only know a performance

matrix

R ∈ {0,1}n×p

for carrying out meta-learning. Recall from Section 2.2.3 that we call

this matrix the DA matrix since dataset-algorithm pairs are considered.

This is the setting adopted by (Sun-Hosoya, 2019).

Now the question is, when a new task Tn+1 (from a meta-test setDte)

arrives, which algorithm in B = {β1, . . . ,βp} should one recommend
such that it is probably a ‘good’ algorithm on this new task? We consider

an agent that applies each algorithm β j on Tn+1 one by one following

certain order. This order is denoted by t j ∈ {1, . . . , p} for each step
j = 1,2, ..., p. A visualization of the setting of the problem is shown in
Figure 6.13.

Figure 6.13 DA matrix for meta-learning with zero-order informa-
tion. Ri j is the performance obtained by applying the algorithm Ri on

the dataset/task Tj. The problem to recommend one algorithm for a

new task Tn+1.

6.4.1 . Notations and Problem Setting



The DA Matrix
We consider the setting in which a DA matrix is available for meta-

learning, that is amatrix of performances of algorithms on datasets/tasks.

To simplify the analysis, we assume that scores are binary: 0 means
algorithm failure and 1 algorithm success. We further assume that

tasks/datasets (lines of the DA matrix) are drawn i.i.d. according to

an unknown but fixed meta-distribution. Performances of algorithms

on tasks/datasets can be thought of as random variables R j, j = 1 . . .n,
where n is the total number of algorithms considered. We call R the
random vector [R1,R2, . . . ,Rn].

The goal of meta-learning is to learn from m samples of R consti-
tuting a training DA matrix, to devise ameta-predict strategy. After
learning, this strategy is applied to find a successful algorithm as fast as

possible, given a new task/dataset not seen before, i.e. . by querying

the performance of as few algorithms as possible.

Here we assume that we have an infinite number of training exam-

ples, such that the joint distribution P(R1,R2, . . . ,Rn) is known perfectly.

Hence themeta-training procedures considered search for an optimal
order of algorithms, knowing the meta-distribution perfectly. We ask

ourselves the following questions: (i) Does the perfect knowledge of

P(R1,R2, . . . ,Rn) allow us to outperform random search. (ii) Under what

conditions (if any).

Criterion of evaluation
To evaluate the performance of any given meta-predict strategy,

we consider as metric the area under the (meta-)learning curve. A

learning curve lc(i), i = 1 . . .n, is defined as the performance of the best
algorithm queried so far, as a function of the number of algorithms

queried. That is:

lc(i) = max
t j, j=1...i

{Rt1,Rt2, . . . ,Rti} , (6.15)

where we denote by Rti the score of the ith algorithm queried. Next,
we adopt a probabilistic notion of learning curve, considering a meta-

test example (new task or dataset) as a random variable, i.e. the ex-



pectation of lc(ti) over possible meta-test examples (a form of meta-
generalisation):

LC(i) = E
[

max
t j, j=1...i

{Rt1,Rt2, . . . ,Rti}
]
. (6.16)

Given that scores are either 0 or 1, the expected value of the maximum

score seen so far is the probability that at least one algorithm was

successful (score 1). This is also one minus the probability that all

algorithms seen so far failed:

LC(i) = 1−P(Rt1 = 0,Rt2 = 0, . . . ,Rti = 0) . (6.17)

To evaluate the performance ofmeta-predict strategies having a stochas-

tic component, we define

LC(i) = E [1−P(Rt1 = 0,Rt2 = 0, . . . ,Rti = 0)] (6.18)

where the expectation runs over possible algorithm orderings. For

strategies with a fixed pre-determined order of algorithms to be queried,

taking this second expectation is not necessary. It is necessary for the

Random strategy and when ties are broken at random.

Finally, we define the area under the learning curve, which we wish

to maximize it over meta-predict strategies:

ALC(n) =
n

∑
i=1

LC(i) . (6.19)

Meta-predict strategies
We consider four meta-predict strategies:

— Random: Query algorithms in uniformly random order.
— Mean: Query algorithms in order of their mean score value

E[R j] = P(R j = 1).
— Greedy: Query first the algorithm with largest P(Rt1 = 1). Then,
query iteratively the next algorithm having the largest P(Rti =

1|Rt1 = 0,Rt2 = 0, . . . ,Rti−1 = 0), until we find one successful al-
gorithm; then the order of the remaining algorithms does not

matter.



— Optimal: Query algorithms in the optimal order, maximizing
ALC(n).

For the Mean, Greedy, and Optimal strategies, we assume that ties are

broken at random. When the number of training examples is finite (as

what we have in the Empirical Results section), all above probabilities

can be empirically estimated by the corresponding average.

Meta-distributions
We consider four types of meta-distributions:

— NFL:No Free Lunch distribution: P(R1,R2, . . . ,Rn)=P(R1)P(R2) . . .P(Rn)

and P(R j) = 0.5,∀ j = 1 : n.
— Indep: P(R1,R2, . . . ,Rn)=P(R1)P(R2) . . .P(Rn) but for some j P(R j) ̸=

0.5. To make it more comparable to NFL, we assume that
(1/n)∑

n
j=1 P(R j) = 0.5.

— Dep: P(R1,R2, . . . ,Rn) ̸= P(R1)P(R2) . . .P(Rn). We keep assuming

(1/n)∑
n
j=1 P(R j) = 0.5.

— DepU: Dep with uniform marginals P(R j) = 0.5,∀ j.

6.4.2 . Theoretical Results
In what follows, we prove the following propositions:

1. For the NFL distribution, the Randommeta-predict strategy is
as good as anything else.

2. For Indep, theMean strategy is optimum.
3. For the Dep distribution, we might expect that the performance
order should be Random ≤ Mean ≤ Greedy ≤ Optimal, how-
ever a variety of cases can arise:

(a) “Worst case”: All strategies perform at chance level.
(b) “Best case”: Greedy is optimal.
(c) Greedymakes best “local” decisions, i.e. increasing most the
learning curve at any given point.

(d) Greedy can be worse than Optimal
(e) Greedy can be worse than Random
(f) Greedy can be worse thanMean



(a) 3.a: Worst case sce-

nario

(b) 3.b: Best case sce-

nario

(c) Legend

(d) 3.d: Greedy worse

than Optimal

(e) 3.f: Greedy worse

than Mean.

(f) 3.g: Mean worse

than Random

Figure 6.14 Learning curves on constructed examples. (a) 3.a:
“Worst-case” scenario: All algorithms are identical. Random search
is as good as anything else. (b) 3.b: “Best-case” scenario: Two algo-
rithms are exactly complementary (one succeeds when the other one

fails). All other algorithms are independent of the two first ones and of

one another. Greedy is optimal. (d) 3.d: Greedy worse than Optimal:
Both mean and greedy do not choose optimally the first point: it is the

best performing algorithm by itself, but does not belong to the best

performing pair. (f) 3.f: Greedy worse than Mean: Mean provides by
coincidence the optimal order, which Greedy does not select. We use

ε = 0.1 (see text). ALCs are shown in legend. (g) 3.g: Mean worse than
Random: Redundant versions of the best performing algorithm are in-
cluded. Mean ranks them all first rather than selecting complementary

algorithm.

(g) Mean can be worse than Random
4. For the DepU distribution, theMeanmeta-predict strategy per-
forms no better than Random. We define a notion of meta-
learning complexity C as the cardinal of the minimal clique of
complementary columns (i.e. columns having at least one suc-

cessful algorithm in each line). There exists a meta-predict strat-

egy such that LC(C) = 1, i.e. the learning curve asymptote is
reached inC steps.

6.4.3 . Proofs



We simplify notations using: P(Rti = 1) = pi = 1− qi. For NFL and
Indepmeta-distributions, learning curves are:

LC(i) = 1−P(Rt1 = 0)P(Rt2 = 0) . . .P(Rti = 0)

= 1−q1q2 . . .qi (6.20)

1. For the NFL distribution, the Random meta-predict strategy is
as good as anything else.
For the NFLmeta-distributions, pi = 1−qi = 0.5. Thus,

LC(i) = 1− (0.5)i , (6.21)

for all strategies. Thus Random is as good as anything else.

2. For Indep, Mean is optimum.
For the Indep distribution, the Mean strategy provides a ranking

such that q1 ≤ q2 ≤ ·· · ≤ qi. Therefore the product q1q2 . . .qi for the

Mean strategy will be smaller (or equal) to that obtained for any other
order of algorithms.

LC(i) = 1−q1q2 . . .qi

≤ 1− (0.5)i
(6.22)

3.a. Worse case scenario: All strategies perform at chance level
This case arises simply when all algorithms are identical: R1 = R2 =

· · · = Rn. In that case, by our previous assumption that on average

algorithms perform at chance level, we have P(R j = 1) = 0.5. For indi-
vidual tasks, the (unique) algorithm we have will either be successful or

fail, hence lc(i) = 0 of all i or lc(i) = 1 of all i. Thus LC(i) = 0.5 for all i,
regardless of the strategy chosen.

3.b. Best case scenario: Greedy is optimal
This case arises, for example, when we have only 2 types of al-

gorithms: an algorithm with scores R1, and another one with exactly



complementary scores: R2 = 1−R1. All n algorithms are either of the
first or the second type. We recall that by hypothesis, on average, al-

gorithms perform at chance level. When we query a first algorithm,

regardless of the strategy, predictions are therefore at chance level

LC(1) = 0.5. But, as soon as we query a second algorithm with the
greedy strategy, we get LC(i > 1) = 1 because P(R2 = 1|R1 = 0) = 1 and
P(R1 = 1|R2 = 0) = 1 , hence the Greedy strategy will pick up one of
the versions of the complementary algorithm. The Optimal algorithm
cannot beat it because LC(1) = 0.5 regardless of strategy.

3.c. Greedy makes the best local decision
This can be straightforwardly proven by the definition of Greedy.

The best local decision is the decision that increases most the learning

curve at any given point. By definition,

LC(i) = 1−P(Rt1 = 0,Rt2 = 0, . . . ,Rti = 0) = 1−P

= 1−P(Rti = 0|Rt1 = 0, . . . ,Rti−1 = 0) (6.23)

·P(Rt1 = 0, . . . ,Rti−1 = 0)) .

Hence the variation of learning curve is:

∆LC(i) = LC(i+1)−LC(i)

= P · (1−P(Rti+1 = 0|Rt1 = 0, . . . ,Rti = 0)

= P ·P(Rti = 1|Rt1 = 0, . . . ,Rti = 0) (6.24)

By definition of the greedy strategy, unless the learning curve has

already reached its maximum value, Greedy chooses at step i the al-
gorithm with the largest P(Rti = 1|Rt1 = 0,Rt2 = 0, . . . ,Rti = 0). Hence
greedy makes the choice that increases most the learning curve, given

past decisions, and ignoring what will happen in the future.

3.d. Greedy can be worse than Optimal
In this example we exploit the fact that the first step of the Greedy

strategy is to choose the algorithm with best mean score (the same



as theMean strategy). But this algorithm is not necessarily the most
informative about what second algorithm should be chosen.

Assume that we have four types of algorithms: R1, R2, R3, and

R4 = 1−R3, with P(R1 = 1) = 0.5+ ε and P(R2 = 1) = 0.5− ε , 0 < ε ≪ 1,
P(R3 = 1) = P(R4 = 1) = 0.5, R1 ⊥⊥ R2 ⊥⊥ (R3|R4), R3 ⊥̸⊥ R4.

Greedy will choose algorithm 1 first, then R3 or R4 without distinc-

tion (assume it chooses R3), then finally it will choose R4 (as perfectly

complementing R3) and R2 last. Therefore the learning curve of Greedy
will be:

LC(1)≃ 0.5, LC(2)≃ 1− (0.5)2, LC(i≥ 3) = 1 .

In contrast the optimal strategy is to choose R3 or R4 first, without

distinction. Assume it chooses R3 first, then it will choose R4 and reaches

perfect prediction in only two steps. Therefore the learning curve of

Optimal will be:

LC(1)≃ 0.5, LC(i≥ 2) = 1 ,

and therefore Optimal is better than Greedy.

3.e. Greedy can be worse than Random
True since Greedy can be worse that Optimal and Random can

reach Optimal by chance. However, it is more interesting to find out

whether Greedy can perform well in “most cases” than Random does

on average, since Greedy is a deterministic algorithm, while Random

has a lot of variance. See Sections Empirical Results and Computational

Considerations.

3.f. Greedy can be worse than Mean
In this example, we exploit the fact that “by chance”,Mean, which

is ordering its algorithms with the marginal probabilities, would order

them in an optimal order, while Greedy would choose a sub-optimal
order. This construction is possible with at least 4 algorithms that we

call A,B,C, and D.



We recall that the construction is possible with at least 4 algorithms

that we call A,B,C, and D. Without loss of generality, we assume that
P(A = 0)< P(B = 0)< P(C = 0)< P(D = 0) (no ties). In this example we
chose that:

— P(A = 0) = 0.5−2ε , P(B = 0) = 0.5−ε , P(C = 0) = 0.5+ε , P(D =

0) = 0.5+2ε , where 0 < ε ≪ 1.
— P(A = 0,B = 0,C = 0) = 0. Note that this also means that P(A =

0,B = 0,C = 0,D = 0) = 0.
The example leads Mean to choose the optimal order A,B,C,D that
reaches the asymptote of the learning curve in 3 steps, whereas Greedy
does not: Greedy chooses A,D,C,B. This can happen if we have the
following conditional probabilities:

Step Mean Greedy
1 P(A = 0) = 0.5−2ε P(A = 0) = 0.5−2ε

2 P(B = 0|A = 0) = 0.5+2ε P(D = 0|A = 0) = 0.5

P(C = 0|A = 0) = 0.5+2ε

3 P(C = 0|A = 0,B = 0) = 0 P(C = 0|A = 0,D = 0) = 0.5

P(B = 0|A = 0,D = 0) = 0.5

With these values the learning curve cross each other. We can

compute the learning curves values and the ALC:

LC(i) = 1−P(Rt1 = 0,Rt2 = 0, . . . ,Rti = 0) .

ALC =
n

∑
i=1

LC(i)

Mean Greedy
1−LC(1) 0.5−2ε 0.5−2ε

1−LC(2) (0.5−2ε)(0.5+2ε) (0.5−2ε) ·0.5

1−LC(3) 0 (0.5−2ε) ·0.5 ·0.5

1−LC(4) 0 0

Let us verify that ALC(Mean)> ALC(Greedy). ALC(Mean)> ALC(Greedy),
if and only if LC(2)+LC(3) is larger for Mean than for Greedy since
LC(1) and LC(4) are identical. Equivalently, 2−LC(2)−LC(3) is smaller



forMean than for Greedy. We have

ALC(Mean)−ALC(Greedy)

= (0.5−2ε) ·0.52 +(0.5−2ε) ·0.5− (0.5−2ε)(0.5+2ε)

= 1/8− ε/2+1/4− ε−1/4+4ε
2

(6.25)

= 1/8− 3
2

ε +4ε
2

which is positive for small enough ε . For e.g. ε = 0.1,Mean has a better
ALC than Greedy (we get 0.015 > 0).

3.g. Mean can be worse than Random
This case arises in a similar example as example 3.b. We still have

R2 = 1− R1. But we assume that there is a small difference in the

average score of two types of algorithms considered: P(R1) = 0.5+ ε

and P(R2) = 0.5− ε , with 0 < ε ≪ 1. In this case, theMean strategy will
rank first all the algorithms of type 1. Hence for theMean strategy:

LC(i≤ n/2)≃ 0.5, LC(i > n/2) = 1 . (6.26)

For the random strategy, we also have LC(i > n/2) = 1 because half of
the algorithms are of a complementary type, so even in case of extreme

bad luck where we draw first all the algorithms that fail on a particular

task, at n/2+ 1 we get one that succeeds (its complement). For the
Random strategy, between at each step, we increase our probability of
getting a good algorithm, yielding the learning curve:

LC(i≤ n/2)≃ 1−0.5i, LC(i > n/2) = 1 . (6.27)

4. For the DepU distribution, the Optimal algorithm attains LC = 1
inC steps.
First, note that, for the DepU distribution, since all marginal distribu-

tions are identical (average performance of algorithms identical), the

Mean strategy performs like the Random strategy (since ties are broken

at random).



A set of algorithms {R j}, j = 1 · · · p will be called complementary
if and only if P(R1 = 0,R2 = 0, · · · ,Rp = 0) = 0. Hence, for each task,
there exists at least one successful algorithm in that set. Further, we

call a clique a minimal set of complementary algorithms, i.e. such
that removing any of its members breaks complementarity. Finally,

we define a notion of complexity of a meta-learning problem C as
the cardinal of the smallest clique (when there is one), and C = n
otherwise.

For a meta-learning problem of complexityC, there exists an meta-
predict strategy such that LC(C) = 1. Indeed, it suffices to rank first the
algorithms of the smallest clique. Note however that neither the Greedy

not the Optimal strategies attain necessarily LC(C) = 1. Nonetheless,
we will see in the experimental section (Section Empirical Resutls) that

the smallerC, the larger the ALC of Greedy and Optimal.

6.4.4 . Empirical Results
In this section, we compare the four meta-predict strategies con-

sidered on various meta-distributions. The theoretical results offer no

guarantee of optimality of the Greedymethod. But we offer empirical
evidence of its effectiveness.

First we report results on synthetic data constructed such that the

meta-distribution includes a single clique, and we vary the complexity

C (size of the clique). Specifically, a DA matrix is constructed as follows:
All values are initialized with −1 (missing); for C of its columns, a 1 is
randomly placed in each line; the remaining -1 values are replaced by 0

or 1 randomly, such that the average values of each column is 0.5. In

these experiments we use n = 5 and m = 10000 both for training and
testing.

Figure 6.15 shows the learning curves for the various meta-predict

strategies whenC varies. We see that ALC performance does not change
with C for the Random, Mean, and vanilla Greedy algorithms. It does
improve for smallerC for the optimal strategy. We introduce a variant
of the Greedy strategy called Greedy+ in which, at meta-training time,

all algorithms are tried for the first position, then greedy search is

performed. This algorithm is more computationally costly at meta-

training time, but it results in a single algorithm ordering, hence is not



more costly at meta-predict time. Greedy+ performs nearly as well as

Optimal.

Figure 6.16 shows the relationship between the ALC (Area under

Learning Curve) and complexityC.

(a) Random or Mean (b) Greedy

(c) Greedy+ (d) Optimal

Figure 6.15 Learning curves for toy data, for varying complexity
(clique cardinal). All marginals (ave. algo. perf.) are identical to 0.5.
Hence Mean has not advantage over Random. More subtly, neither

does Greedy on average. Greedy+ however selects first the algorithms

of the clique and performs as well as Optimal. ALC shown next to the

clique cardinal in legend.

To illustrate the behavior of the meta-predict strategies consid-

ered, we also report results on benchmark meta-datasets used in (Sun-

Hosoya et al., 2018b). These meta-datasets are Statlog (Australian

Credit Approval) Data Set (21 tasks 24 algorithms), AutoML challenge

dataset (Guyon et al., 2015, 2018) (30 tasks 17 algorithms), a subset

of OpenML (Van Rijn et al., 2013; Vanschoren et al., 2014) (76 datasets

292 algorithms) and an artificially generated dataset by (Sun-Hosoya

et al., 2018b) (50 tasks 20 algorithms). Since our setting considers only

binary algorithm scores (failure or success), we binarized the meta-

datasets (using the median value as threshold). We omit the Optimal

strategy due to its prohibitive computational requirement, with a time

complexity of O(n!) (where n is the number of algorithms). Meta-predict

http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)
http://archive.ics.uci.edu/ml/datasets/statlog+(australian+credit+approval)


Figure 6.16 ALC vs Clique cardinal C. For Random, Mean, and Greeedy,
the ALC does not vary (within the experimental error bar ≃ VAL. For
Greedy+ and Optimal, the ALC decreases with C.

performances are evaluated using the leave-one-dataset out estimator,

as in the original paper.

The learning curves, shown in Figure 6.17, are qualitatively similar to

those of the original paper (Sun-Hosoya et al., 2018b). Remarkably, for

the first dataset (Figure 6.17a), the performance of Mean is worse than

others both in the original and the binarized data. Notably, the Greedy

algorithm generally performs best (or closely as well as the best), and

always better than the Random strategy does on average.

6.4.5 . Computational Considerations
Although this paper focuses on asymptotic analyses (infinite sample

limit), for all practical purposes, we must evaluate the conditional prob-

abilities from data, i.e. a finite set of m training tasks. We provide a brief
comparison of meta-predict strategies in that respect.

Unlike all the other strategies, which are deterministic and advocate

one given ranking of algorithms, the Random strategy has a large

variance. At the first step, for instance, the variance of LC(1) is p1q1.

To beat this variance, one would need to repeat random search many

times, which defeats the purpose because after trying all n algorithms
one is certain of finding the best one. Hence, although it may perform

well on average, it is only useful as a theoretical baseline.

The three other strategies differ greatly in computational complexity

at meta-training time:



(a) Artificial (b) AutoML

(c) Statlog (d) OpenML

Figure 6.17 Learning curves on benchmark datasets. The shaded
areas represent quantiles for the Random strategy.

— Optimal: To determine the optimal order of algorithms of the
Optimal strategy, we need to conduct a search in a search space

of n! permutations, to find the permutation thatmaximize ALC(n).
For each permutation, we need to evaluate n conditional proba-
bilities.

— Greedy: In contrast, the Greedy strategy evaluates only n(n+
1)/2 conditional probabilities. The Greedy+ strategy requires
repeating the search n times.

— Mean: The Mean strategy is much faster, since it requires only
evaluation nmarginal probabilities.

Conditional probabilities are estimated with fewer samples than

marginal probabilities. This can yield to uncertainty in algorithm rank-

ing for the Random and Optimal strategies. While Mean has n examples
to evaluate all P(R j = 1). The number of examples decays exponen-
tially with the number of conditions to evaluate P(Rti = 1|Rt1 = 0,Rt2 =

0, . . . ,Rti−1 = 0).



6.4.6 . Discussion
Meta-learning as an algorithm recommendation problem is, to some

extent, what every overview paper is doing: Analyzing results on past

tasks, the authors generally attempt to rank algorithms in order of

preference, such that readers would save time by trying the smallest

possible number of algorithms before obtaining satisfactory results.

This paper puts a formal framework around this problem and shows

that, when algorithms are not independent of one another, ranking with

the Mean strategy generally does not perform as well as the Greedy

strategy, which in turns is often nearly optimum. We prove theoretically

that if algorithms are independent of one another and have same aver-

age performance, all strategies perform at chance level. This situation

is analogous the that of the NLF theorem. If they are independent

but have different average performance, then the Mean strategy is

optimal. If they have the same average performance, but are not mu-

tually independent, the Mean algorithm performs at chance level, but

the Greedy algorithm can potentially do better. However, seeding the

Greedy algorithm properly is important. At the expense of a slightly

slower meta-training time, the Greedy+ algorithm performs a lot better.

Greedy algorithms make decisions that are only “locally” optimal, hence

can be outperformed by the Optimal algorithm. However, they are

much faster and are therefore good candidates for use in algorithm

recommendation.

Further work includes moving from binary performance scores of al-

gorithms to continuous scores, re-defining in this context the complexity

of meta-learning, and studying the final sample case. Other extensions

could be done to address the problem of missing data, and the problem

of “warm starting” recommendation using algorithm meta-features (a

first-ordermeta-learning problem). However, at least qualitatively, our

binary zero-ordermeta-learning problem setting captures the essence

of meta-learning as a recommendation problem, allowing us to sort out

when and how meta-learning is possible.

6.5 . Conclusion



In this chapter, we introduced three separate but related works,

all of which in the context of meta-learning. Before introducing these

works, we first came up with a fairly general reinforcement learning

formulation of meta-learning, based on a taxonomy according their

SARI tags. To our best knowledge, existing works (in the literature or

proposed by us) can be comprehensively classified under this taxon-

omy.

Then the first work we introduced is the design and baseline results

of one of our competitions in meta-learning: MetaDL challenge. This

challenge is the first of a series in meta-learning. Few-shot learning

problem is mainly considered here. We designed an API flexible enough

to be reused for future challenges. Baseline methods such as fo-MAML

and Prototypical Networks were implemented. Performance results of

one baseline (fo-MAML) are presented, which confirm the advantage

of meta-learning against approaches with no meta-learning at all. The

challenge was accepted for the AAAI 2021 conference and a workshop

will be organized on February 2021.

The second work we presented was a concrete application to power

systems. We showed both theoretically and empirically that our pro-

posed LEAP nets were capable of “super-generalization”, which means

that the neural network is trained on a dataset generated with certain

variables τττ but can generalize on datasets generated by τττ of completely

different values. This gives an interesting and somewhat extreme ex-

ample of what meta-learning (and transfer learning in particular) can

achieve: one can find one algorithm that generalizes even on unseen

data, with very little training or no training at all. This fact gives an

excellent footnote on how meta-learning can be powerful.

The third work we introduced in this chapter was our first attempt

on the theoretical analysis of a very simple case of meta-learning. We

showed mathematically what the optimal meta-learning strategy can

be under certain conditions. In our case, only zero-order meta-learning

is considered and the performances are assumed to be generated in

a very simplistic way. We hope that our attempts can motivate the

community to make further research on the theoretical aspect of meta-



learning and inspire a standard setting and formulation in the near

future.



Method
Refer-

ence
Description State Action Reward

ActivMetaL

Sun-

Hosoya

(2019)

For a new task, try promising

learning algorithms one by one

suggested by matrix

factorization of the DA matrix,

S0 A1
RC|RP,RE

MAML
Finn et al.

(2017)

Adjust shared weights based on

average validation score over all

meta-train tasks and by

summing gradients

S2 A1
RE|RP,RC

Prototypical

networks

Snell

et al.

(2017)

Find a common embedding and

a prototype (centroid) for each

class and classify examples

according to distances to these

prototypes

S2 A1
RE|RP,RC

Auto-

Sklearn

(meta-

learning

step)

Feurer

et al.

(2015)

Pre-compute good

hyperparameters / learning

algorithm for known datasets

with meta-features, recommend

learning algorithms based on

new task’s meta-features

S1 A1
RC|RP,RE

MOSAIC

(meta-

learning

step)

Rako-

toarison

et al.

(2019)

Pre-compute best 25

hyperparameter configurations

for known datasets with selected

meta-features, recommend

learning algorithms based on

new task’s meta-features

S1 A1
RC|RP,RE

Instance

spaces

Muñoz

et al.

(2018)

Meta-features are computed

and selected for datasets, based

on which performance

predictors are trained then

applied for algorithm selection

S1 A1
RC|RP,RE

Case study
Aha

(1992)

Compute and select

meta-features then fit

performance model on

artificially generated tasks for

algorithm selection

S1 A1
RC|RP,RE

Hyperpa-

rameter

importance

Hutter

et al.

(2014)

Van Rijn

and

Hutter

(2018)

Use ANOVA to find most

important hyperparameters of

algorithms then suggest good

configurations based on

hyperparameters’ importance

S2 A1
RC|RP,RE

LEAP nets

Donnot

et al.

(2019)

Identify the meta-feature (τττ) of

the generative model and plug

in the learning algorithms to be

able to train on a few τττ but

generalize on datasets with

unseen τττ (details in Section 6.3)

S1 A0
RC|RP,RE

Table 6.2 Classification of existing works using our taxonomy in the
RL formulation in Section 6.1.2. The values in the three right columns

are call SAR tags.



Table 6.3 Accuracy of baseline methods evaluated on 600 episodes in
meta-test set of Omniglot dataset. The inner learning rate of fo-MAML is

. Comparison with the performance of a fully connected neural network

with no meta-learning. We see that meta-learning extremely helps to

improve the accuracy in the few-shot setting indeed.

Inner learning rate αAccuracy fo-MAMLAccuracy Fully Connected
0.10 0.58 ± 0.12 0.30 ± 0.10
0.12 0.61 ± 0.13 0.28 ± 0.08
0.15 0.53 ± 0.12 0.25 ± 0.06
0.20 0.44 ± 0.16 0.24 ± 0.06
0.30 0.33 ± 0.14 0.27 ± 0.07

Table 6.4 Learning generalization for MT, DA and LEAP:We compare
the type of generalization for Multi-task Learning (MT), Domain Adap-

tation (DA) and the LEAP framework. DA can learn from unlabeled

examples. LEAP is capable of generalization without having seen any

example (zero shot learning) on combinations of transformations, once

supervised learning was performed on unary transformations.

Transfer Data Source Domain Target Domains Target Domains

Method Set Reference config. Unary Transform. Combined Transform.

τ = [0,0,0] τ ∈ {[1,0,0], τ ∈ {[1,1,0], [0,1,1],
[0,1,0], [0,0,1]} [1,0,1], [1,1,1]}

MT
Train Labeled Labeled NA

Test Generalization Generalization NA

DA
Train Labeled Few or no labeled data NA

Test Generalization (Super-)generalization NA

LEAP
Train Labeled Labeled No example
Test Generalization Generalization Super-generalization



7 - Conclusion and Lessons Learned
This thesis concerns the problem of AutoML, focusing more partic-

ularly on Automated Deep Learning (AutoDL), which is a discipline in

its infancy. Our contributions are both theoretical and practical, and

include the organization of two challenges, a formal framework posi-

tioning the approaches in AutoML and AutoDL, novel algorithms, and

their theoretical analyses.

The organization of two challenges has punctuated our work and

both motivated and illustrated the formal framework introduced in

Chapter 3: First, the AutoDL challenge (Chapter 4) has been a footstep

of this thesis by allowing us to identify problem bottlenecks. Second,

the design of the MetaDL challenge can be considered the end prod-

uct of this thesis, handing over the problem to a new generation of

researchers.

The formal framework (Chapter 3) structuring the AutoML and Au-

toDL problematic allowed us to understand and regroup contributions

found in the literature and our own. Specifically, algorithms are catego-

rized into three levels: α-level, β -level and γ-level. An α-level algorithm

(called a predictor) performs only predictions (no training), a β -level

algorithm (called a learner) is trained to return an α-level algorithm,

a γ-level algorithm (called a meta-learner) is meta-trained to return a

β -level algorithm.

In particular, the AutoDL challenge can be thought of as a β -level

challenge, in the sense that participants had to submit β -level algo-

rithms, including a train and test method, but no meta-train method.

Still, in the perspective of the organizers the AutoDL challenge can

also be considered as a γ-level challenge, because we provided sample

tasks resembling the test tasks, which could be used for meta-learning

outside the platform. Meta-learning on the platform itself was then

addressed in a subsequent challenge, the MetaDL challenge (Chapter

6). Thus the MetaDL challenge is a true γ-level challenge.

The lessons learned from the AutoDL challenges, discussed in Chap-

ter 4, shed light on the difficulties that a practitioner has to deal with,



and that we also had to face, including: (1) Solving the cross-domain

AutoDL problem in a generic way, rather than injecting domain-specific

knowledge; and (2) Finding effective methods returning good solutions

with parsimonious computational resources. Regarding the first point,

it is fair to say that the competitors made no serious effort to find

a generic solution: despite the fact that all data were formatted in a

uniform way, it was possible to guess the domain and naturally, they ex-

ploited it, because of the competitive nature of challenges. This resulted,

in particular, in exploiting pre-trained networks or existing backbone

architectures. However, in our own work, we tackled the problem of

creating generic de novo cross-domain solutions (Chapter 5). Regarding

the second point, the importance of clever engineering, and particularly

effective data loading, was revealed by the challenge. This stresses

the complementarity of basic research and engineering in solving real

world problems. This thesis focused more on basic research.

The AutoDL challenge analysis, published in (Liu et al., 2021), moti-

vated several contributions related to neural architecture search and

meta-learning:

Neural architecture search (NAS). Formally, any hyper-parameter

and architecture search problem has three ingredients: search space,

search strategy, and performance evaluation method (Elsken et al.,

2019). Much work has been put into improving on search strategy by

importing classical optimization techniques (Boyd et al., 2004) in ML,

and in performance evaluation by leveraging learning theory (Vapnik,

2013). In contrast, the definition of search space has received less atten-

tion and to our best knowledge is limited to graphs of various kinds in

the literature. Indeed new toolkits such as e.g., TensorFlow (Abadi et al.,

2016) and PyTorch (Paszke et al.) use a more expressive language. Still,

the grammar underlying this language is not used directly as search

space. The GramNAS approach proposed in this thesis takes advantage

explicitly of the description of the search space, hypothesizing that this

should allow us to find more powerful architectures. Initial explorations

are promising, but an important limitation is the extensive computa-

tional cost of GramNAS, comparared to approaches based on graph



search. Future work includes using meta-learning strategies to initialize

the search of GramNAS.

Meta-learning. Our review of the state of the art establishes that

the literature abounds of meta-learning approaches; however they all

tackle different tasks, making it hard to compare with one another. We

thus proposed in Chapter 6 a taxonomy of meta-learning solutions

complementing the taxonomy of problems proposed in Chapter 3. This

classification is organized along 3 dimensions:

1. Search space “S”: S0=scorematrix; S1=scorematrix+meta-features;

S2=all datasets and algorithms

2. Actions “A” taken by meta-learning γ-level algorithms: A0=choose

an α-level algorithm; A1=choose a β -level algorithm.

3. Reward “R” improvement goal(s): RP=higher Performance; RE =

lesser number of training Examples; RC=lesser Computational

resources (RC).

Three settings have been explored in more depth:

— A few-shot learning setting is inspired by MAML (Finn et al., 2017),

which is in the proposed taxonomy an (S2,A1,RE|RP,RC) sce-

nario. The challenge we designed on this topic is on-going.
1

— A super-generalization setting is motivated by a real-world ap-

plication to predict flows of electricity in power lines (Donon

et al., 2020a). In our taxonomy, this is a (S1,A0,RC|RP,RE) sce-
nario. The results show that super-generalization is achieved

in the application setting of interest, namely, one can train a

neural network to predict power flows for given power grid ar-

chitectures and generalize to other grid architectures (unseen

during training), without retraining the network, just by inputting

the meta-feature corresponding of to the novel grid architec-

ture. Theoretical results have corroborated experimental results,

under some hypotheses.

— An active meta-learning setting, developed previously in (Sun-

Hosoya, 2019), is theoretically analyzed. In our taxonomy, this

1. The results, hopefully known by the thesis defense, will be presented then.



is a (S0,A1,RC|RP,RE) scenario. Given a score matrix Ri j , we

demonstrated that NFL is indeed an intrinsic limitation when

Ri j is drawn i.i.d from a given mother distribution: the average

performance of the random search cannot be beaten. However,

when there are dependencies between lines and/or columns, the

NLF does not apply.

The legacy and perspective of this thesis includes:

— Datasets. A repository of around 100 datasets was made avail-
able in a tensor format (with much effort). 26 of these datasets

were already published along with the AutoDL challenge
2
. More

datasets will soon bemade public after the organization of future

challenges. The community is invited to utilize this repository to

push forward meta-learning research;

— Toolkits. Python toolkits and packages for formatting datasets
have been developed and open-sourced

3
. This provides the com-

munity a convenient tool to format their own data in the same

format and apply winning solutions and related approaches eas-

ily;

— Open-sourced winning solutions. Winning solutions of the Au-
toDL challenges are open-sourced too

4
and the anyone can run

them very easily, especially on datasets in the above repository

and those customizedly formatted. Also, the fact sheets describ-

ing more details of each winning method were collected and

published after each challenge (Liu et al., 2021);

— Meta-dataset and benchmark. The AutoDL challenges provide
a natural meta-dataset in its own nature. We released this meta-

dataset in our TPAMI paper (Liu et al., 2021) and on the website

https://autodl.chalearn.org/benchmark. We note that AutoDL

challenges also provide an extensible benchmark since most of

the challenges are still open for solutions (although no prizes are

provided). We also submitted a paper (Ullah et al., 2021) on the

2. https://autodl.lri.fr/competitions/162#learn_the_details-get_data

3. https://github.com/zhengying-liu/autodl-contrib

4. https://autodl.chalearn.org/

https://autodl.chalearn.org/benchmark
https://autodl.lri.fr/competitions/162#learn_the_details-get_data
https://github.com/zhengying-liu/autodl-contrib
https://autodl.chalearn.org/


datasets of the MetaDL challenge to the NeurIPS 2021 Datasets

and Benchmarks Track.

In retrospect, the organization of a challenge offers a PhD student

a rare opportunity to define and tackle a research question, identify

their factors of difficulty, and ultimately leverage the help of the whole

community of participants to solve this question, while enforcing repro-

ducible research. However, this is very time consuming, and leveraging

challenges or benchmarks organized by others may also be another

way to conduct sound experimental validations. The legacy of this thesis

should facilitate the work of the next generation of PhD students.

Many directions of research we have started exploring could be

pursued using the benchmarks we created. For one, the possibilities of

GramNAS remained under-exploited. As discussed in Chapter 5, one

could warm start the search part of the Monte-Carlo Tree Search by

using a hierarchy of formal grammars. In Chapter 3 and 6 we started de-

vising a theory of meta-learning. Much remains to be done, in particular

mitigating over-fitting at the meta-learning level, computing perfor-

mance bounds, and deriving regularized meta-learning algorithms. We

started doing work in this direction. While the MetaDL challenge offers

a benchmark of any-level of meta-learning, our theory is so-far limited

to zero-order (meta-learning solely from a performance matrix). Ex-

tending meta-learning theory to first and second order meta-learning

remains to be done. Finally, when the MetaDL challenge terminates,

its analysis reveals new interesting results and kick-start new research

avenues.
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A - Toy Example on Real Number Approxima-
tion with GramNAS
To have a proof-of-concept and also show that the approach Gram-

NAS is not specific to NAS, we first applied it to the problem of real

number approximation. In this problem, a real number x∗ ∈R is chosen
by the system in advance and the agent can make guesses to approx-

imate this number as much as possible. If the agent makes a guess

x ∈ R, then a reward
r =− log10 |x− x∗| (A.1)

is given to the agent as feedback. So the closer x is to x∗, the more
reward the agent will get.

Data. There is no dataset in this problem. The only data is the
ground truth x∗ which is chosen to be 1/α ≈ 137.035999139 1 in our
experiments.

Grammar. The search space in this problem is the set of all real
numbers R. We will consider all decimal numbers instead for practical
reasons. The grammar we use is similar to the one on floating numbers

we saw in a previous section and we recall it as follows (note that this

time we only consider positive numbers).

start: decimal

decimal: integer "." integer

integer: digit integer
| digit

digit: "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

In this grammar, there are two rules starting from integer, namely either

add a digit then continue or become a digit then stop. Thus the search-

1. Related to the fine-structure constant α in physics. We have also run similar

experiments for π ≈ 3.14159265358... and got similar results.



ing agent needs to make this decision each time when it encounters

the non-terminal integer.

Baseline. The baseline we use is random search within the gram-

mar, which just repetitively samples random words using the method

introduced in 5.2.5 (with β = 0.1).
Results. We run both approach for 1000 iterations. The UCB con-

stant for MCTS is set to 0.1. We plot the reward of the best guess so

far vs number of iterations, as shown in Figure A.1. We see that our ap-

Figure A.1 GramNAS (mcts) vs random search within grammar (ran-

dom_search). Best score in y-axis is the maximum value of log10 |xi∗−x∗|
for the best guess xi∗ so far.

proach (the green line) finds good approximation (with a difference less

than 10 to the ground truth) after around 200 iterations, consistently

superior to random search. Firstly, this result validates our approach of

grammar + MCTS since the curve consistently goes up and continues

to explore better approximation. Secondly, this result and also shows

the effectiveness of MCTS since the two methods only differ in search

strategy.
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Titre: Apprentissage profond automatisé : principes et pratique
Mots clés: apprentissage automatique automatisé, apprentissage profond, plans d’experiences, sélec-
tion de modele

Résumé: L’apprentissage automatique automa-
tisé (AutoML) vise à rendre l’application des
méthodes d’apprentissage automatique (ML) aussi
dépourvue d’intervention humaine que possible.
Cet objectif ambitieux a fait l’objet de nombreuses
recherches depuis les débuts du ML. L’objectif de
cette thèse est de mettre un cadre formel autour
de ce problème aux multiples facettes, de com-
parer les méthodes existantes et d’explorer de nou-
velles directions. Pour formuler le problème Au-
toML de manière rigoureuse, nous introduisons
d’abord un cadre mathématique qui: (1) catégorise
tous les algorithmes impliqués en trois niveaux
(niveaux alpha, beta et gamma); (2) définit con-
crètement le concept de tâche (en particulier dans
un cadre d’apprentissage supervisé); (3) définit
formellement HPO et méta-apprentissage; (4) in-
troduit une métrique d’any-time learning qui per-
met d’évaluer les algorithmes d’apprentissage non
seulement par leur précision, mais également par
leur vitesse d’apprentissage. Ce cadre mathé-
matique unifie différents sous-domaines du ML,
nous permet de classer systématiquement les méth-
odes et nous fournit des outils formels pour fa-
ciliter les développements théoriques et de fu-
tures recherches empiriques. En particulier, il
sert de base théorique à une série de challenges
que nous avons organisés. En effet, notre princi-
pale approche méthodologique pour aborder Au-
toML avec Deep Learning a été de mettre en
place un benchmark étendu, dans le cadre d’une
série de challenges sur l’Automated Deep Learn-
ing (AutoDL). Ces challenges fournissent une suite
de référence de solutions AutoML de base avec
un référentiel d’environ 100 datasets, dont plus
de la moitié sont publiés sous forme de datasets
publics pour permettre la recherche sur le méta-
apprentissage. À la fin de ces challenges, nous
avons effectué des analyses post-challenge appro-
fondies qui ont révélé que: (1) les solutions gag-
nantes se généralisent à de nouveaux datasets in-
visibles, ce qui valide les progrès vers la solution

universelle AutoML; (2) Malgré nos efforts pour en-
courager des solutions génériques, les participants
ont adopté des flux de travail spécifiques pour
chaque modalité; (3) L’any-time learning a été
abordé avec succès, sans sacrifier la performance
finale; (4) Bien que certaines solutions se soient
améliorées par rapport à la baseline fournie, elles
en ont fortement influencé plusieurs; (5) Les so-
lutions d’apprentissage en profondeur dominaient,
mais la recherche d’architecture neuronale n’était
pas pratique dans les délais impartis; (6) Les
études d’ablation ont révélé l’importance du méta-
apprentissage, de l’assemblage et du chargement
efficace des données, tandis que l’augmentation
des données n’est pas critique. Tous les codes et
données sont disponibles sur autodl.chalearn.org.
Outre l’introduction d’une nouvelle formulation
générale du problème AutoML, la mise en place
et l’analyse du challenge AutoDL, les contribu-
tions de cette thèse comprennent: (1) Dévelop-
per nos propres solutions aux problèmes que
nous avons posés aux participants. Notre travail
GramNAS s’attaque au problème de la recherche
d’architecture neuronale (NAS) en utilisant une
grammaire formelle pour encoder les architectures
neuronales. Deux stratégies de recherche alter-
natives ont été étudiées expérimentalement: une
basée sur Monte-Carlo Tree Search (MCTS), qui
atteint une précision de 94% sur le dataset CIFAR-
10, et une autre basée sur un algorithme évolutif
qui bat les packages de pointe AutoGluon et Au-
toPytorch sur 4 grands datasets bien connus; (2)
Former la base d’un futur challenge sur le méta-
apprentissage; (3) Apporter plusieurs contributions
théoriques. Au cours de cette thèse, plusieurs
collaborations ont été engagées pour aborder les
problèmes de transfer learning et d’expressivité des
réseaux de neurones. Les enquêtes sur le théorème
d’approximation universelle nous ont aidés à com-
prendre la garantie théorique derrière les systèmes
d’apprentissage profond que nous déployons.



Title: Automated Deep Learning: Principles and Practice
Keywords: automated machine learning, deep learning, experimental design, model selection

Abstract: Automated Machine Learning (Au-
toML) aims at rendering the application of ma-
chine learning (ML) methods as devoid of human
intervention as possible. This ambitious goal has
been the object of much research and engineering
since the outset of ML. The objective of this the-
sis is to put a formal framework around this multi-
faceted problem, to benchmark existing methods,
and to explore new directions. To formulate the
AutoML problem in a rigorous way, we first intro-
duce a mathematical framework that: (1) catego-
rizes all involved algorithms into three levels (alpha,
beta and gamma levels); (2) concretely defines
the concept of a task (especially in a supervised
learning setting); (3) formally defines HPO and
meta-learning; (4) introduces an any-time learn-
ing metric that allows to evaluate learning algo-
rithms by not only their accuracy but also their
learning speed, which is crucial in settings such
as hyperparameter optimization (including neural
architecture search) or meta-learning. This math-
ematical framework unifies different sub-fields of
ML (e.g. transfer learning, meta-learning, ensem-
ble learning), allows us to systematically classify
methods, and provides us with formal tools to fa-
cilitate theoretical developments (e.g. the link to
the No Free Lunch theorems) and future empiri-
cal research. In particular, it serves as the theo-
retical basis of a series of challenges that we or-
ganized. Indeed, our principal methodological ap-
proach to tackle AutoML with Deep Learning has
been to set up an extensive benchmark, in the
context of a challenge series on Automated Deep
Learning (AutoDL), co-organized with ChaLearn,
Google, and 4Paradigm. These challenges provide
a benchmark suite of baseline AutoML solutions
with a repository of around 100 datasets, over half
of which are released as public datasets to enable
research on meta-learning. At the end of these
challenges, we carried out extensive post-challenge
analyses which revealed that: (1) Winning solu-
tions generalize to new unseen datasets, which val-

idates progress towards universal AutoML solution;
(2) Despite our effort to encourage generic solu-
tions, the participants adopted specific workflows
for each modality; (3) Any-time learning was ad-
dressed successfully, without sacrificing final perfor-
mance; (4) Although some solutions improved over
the provided baseline, it strongly influenced many;
(5) Deep learning solutions dominated, but Neu-
ral Architecture Search was impractical within the
time budget imposed; (6) Ablation studies revealed
the importance of meta-learning, ensembling, and
efficient data loading, while data-augmentation is
not critical. All code and data are available at
autodl.chalearn.org. Besides the introduction of a
novel general formulation of the AutoML problem,
setting up and analyzing the AutoDL challenge,
the contributions of this thesis include: (1) Devel-
oping our own solutions to the problems we posed
to the participants. Our work GramNAS tackles
the neural architecture search (NAS) problem by
using a formal grammar to encode neural architec-
tures. Two alternative search strategies have been
experimentally investigated: one based on Monte-
Carlo Tree Search (MCTS), which achieves 94%
accuracy on CIFAR-10 dataset, and another one
based on an evolutionary algorithm which beats
state-of-the-art packages AutoGluon and AutoPy-
torch on 4 large well-known datasets; (2) Laying
the basis for a future challenge on meta-learning.
The AutoDL challenge series revealed the impor-
tance of meta-learning but the challenge setting
did not evaluate meta-learning properly. With an
intern, we experiment with various meta-learning
challenge protocols; (3) Making several theoreti-
cal contributions. During the course of this the-
sis, several collaborations were entered to tackle
problems of transfer learning and expressiveness of
neural networks. Investigations on the Universal
Approximation Theorem helped us understand the-
oretical guarantee behind Deep Learning systems
we deploy.
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