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Most of the terrestrial matter is made of glassy or amorphous materials. The low-temperature
properties of these materials, particularly below 1 kelvin, are intriguing. For instance, the
thermal conductivity of amorphous materials was initially believed to behave the same way
as crystalline materials, but experimental findings modeled the thermal conductivity with T 2

dependence instead of T 3 dependence, where T is the temperature of the material measured.
The internal friction of the amorphous materials does not show any dependence on temperature
around 1 kelvin and at lower temperatures drops off with T 3 dependence. In the regime where
the internal friction does not depend on T , all amorphous materials with few exceptions shows
quantitative similarity in internal friction within a factor of 20. A phenomenological model
known as the tunneling two-level system model (TTLS model) was proposed by Philips [58]
and Anderson et al. [5] independently in 1972. They postulated two or more positional degen-
erate states exist for entities like atoms, ions, or even molecules to tunnel between them. They
explained the anomalous low-temperature properties of amorphous materials qualitatively and
predicted various nonlinear phenomena like saturation, echoes, hole burning, etc. According to
the TTLS model, the internal friction of amorphous materials can be explained by TLS-phonon
interactions via resonant and relaxation processes. Resonant and relaxational interactions be-
tween TLS and phonons are discussed in detail in Chapter 1. The contribution of resonant
interaction to internal friction is negligible when ~ω << kbT , where kb is the Boltzmann
constant and ω is the measurement frequency. Many experimental findings showed slight de-
viations in the measurements of internal friction and relative change in the speed of sound
from the predicted behavior by the TTLS model. However, the variations were explained by
including some corrections in the TTLS model. For example, in the measurement of internal
friction by Fefferman et al. [26], the linear dependence on temperature below 10 mK was ex-
plained by accounting for Intra-TLS interactions. Leggett et al. [42] argued that discrepancies
not predicted by the TTLS model could not be fixed by mere minor modification. The TTLS
model and its success was based on the interaction of TLSs (as an ensemble) with phonons,
yet the microscopic nature of TLS remains elusive to us. Leggett et al. [42] further suggested
that the measurement of internal friction of amorphous materials when ~ω >> kbT will be an
ultimate test in favor of the TTLS model and existence of TLSs since only non-negligible con-
tribution to internal frictions comes from the resonant process. However, reaching the regime,
where ~ω >> kbT , is not easy. To measure the internal friction using mechanical suspended
structures, the resonant frequency of the fundamental mode should be more than 60 MHz at 5
millikelvins to reach the regime mentioned above. NEMS (nano-electromechanical system) can
support such high resonance frequency.

With the advent of semiconductor technologies and, in turn, the development of novel pro-
cesses in nanofabrication facilities, many different types of NEMS were realized. Cantilevers,
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drums, doubly clamped nanobeams are a few of them. A doubly clamped nanobeam made of
silicon nitride (SiN) is a promising candidate for our measurement of internal friction. Few
arguments in support of SiN doubly clamped nanobeam are, a) SiN is an amorphous material,
and the properties are expected to behave in accord with TTLS model and b) Typically SiN
is deposited on Si wafer using LPCVD (Low-pressure chemical vapor deposition), tweaking
the parameters of deposition controls the stress developed in the thin film of SiN on Si. The
stress in the doubly clamped nanobeams is proportional to the square of resonance frequency.
Thus we can achieve high resonance frequency by developing high stress in SiN thin film during
deposition. The SiN doubly clamped nanobeams with various dimensions were fabricated in
the nanofabrication facility at Institut Néel. The nanobeams were initially characterized using
magntomotive actuation and detection scheme in a 4He cryostat. However, the thermal motion
of the nanobeam is small and is difficult to measure at low temperatures.

We are witnessing a paradigm shift in NEMS’s applications from being an ultrasensitive de-
tector of motion to testing various quantum theories by coupling NEMS to an optical cavity or
superconducting microwave cavity. The field is called cavity optomechanics and has paved
the way for sensitive detection of the position of NEMS and control of its mechanical character-
istics. Teufel et al. [73] were able to cool the fundamental mode of a micron-sized drum coupled
to a superconducting microwave cavity to its quantum ground state using the radiation pressure
forces. We will confine ourselves in detecting the position of NEMS instead of controlling its
mechanical behavior since studying the intrinsic mechanical characteristics at low temperature
is our objective. However, controlling the mechanical characteristics using radiation pressure
forces can help determine the coupling constant between NEMS and the cavity. Therefore, we
fabricated the doubly clamped nanobeam made of SiN with a thin layer of Aluminum coupled
to a superconducting microwave cavity to facilitate the cavity optomechanical measurements
at low temperatures in commercial BlueFors dilution cryostat.

Chapter 1 concerns our motivation to test the theory of the TTLS model. The chapter
begins with various experimental findings suggesting anomalous properties of amorphous ma-
terials at low temperatures in contrast with the predictions of the Debye model. The TTLS
model and TLS-phonon interactions governing the low-temperature properties of amorphous
materials are discussed in detail. We will then discuss the fallacies associated with the TTLS
model and its failure to explain discrepancies in many experimental findings. Following Leggett
et al. to test the validity of the TTLS model and the existence of TLSs, we will explain the
relevance of NEMS. To detect the motion of NEMS, we use the principles of cavity optome-
chanics. We will discuss in brief the various principles of this field and talk about multiple
cavity optomechanical measurements done to date.
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The analytical expression for the resonance frequency of doubly clamped nanobeam can be
derived from Euler-Bernoulli’s principle. Chapter 2 starts with the analytical expression for
calculating the resonance frequency of the doubly clamped nanobeam, which depends on the
stress in the material and its dimensions. Further, the resonance frequency from the analytical
expression can be compared with finite element simulation (COMSOL). As discussed before,
coupling the nanobeam to a superconducting microwave cavity facilitates the former’s sensi-
tive measurements of thermal motion. The thermal motion of the nanobeam can be extracted
from the noise spectrum coming out of the cavity. We derive the noise spectrum from the first
principles using the Heisenberg-Langevin equation of motion. The output field from the cavity
can be written in terms of an input field and the field inside the cavity using Input-Output
formalism, which we have discussed in detail. All the experimental calibrations and techniques
will be discussed in chapter 3. The first step is to fabricate the devices in a nanofabrication
facility. We will discuss the fabrication steps of making NEMS on Silicon/Silicon Nitride chip
and the superconducting microwave cavity made of Niobium or Aluminum. The various obsta-
cles we faced while fabricating these devices will be analyzed. The circuitry for characterizing
the NEMS in 4-kelvin cryostat and the microwave circuitry in the commercial dilution cryostat
will be explained with all calibration issues.

High-quality microwave amplifiers and notch filters can be made from microwave optome-
chanical systems. These amplifiers and filters can rely on optomechanically induced trans-
parency (OMIT) and absorption (OMIA), respectively. Such devices can amplify microwave
signals with large, controllable gain, high dynamic range, and very low noise. Furthermore, ex-
tremely narrowband filters can be constructed with this technique. We briefly review previous
measurements of microwave OMIT and OMIA before reporting our measurements in Chapter
4. Our measurements cover a large parameter space than has been explored in previous works.
We find excellent agreement between our measurements and the predictions of input/output
theory, thereby guiding further development of microwave devices based on nanomechanics.

Although microwave optomechanics is a powerful technique for measuring the thermal vi-
brations of nanomechanical modes all the way down to the quantum ground state, not all the
observed phenomena can be explained in the framework of the optomechanical theory. In par-
ticular, Zhou et al. reported anomalous fluctuations in the apparent vibration amplitude of a
nanomechanical mode that could not be explained by thermal agitation [87]. These fluctuations,
called ’spikes’, appeared below 200 mK. Such spikes have also been observed in the apparent
vibration amplitude of other nanomechanical devices with varying magnitudes and onset tem-
peratures. In Chapter 5, we report detailed measurements of the spikes in the device of Zhou
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et al. It consists of 50 µm × 120 nm × 300 nm Al on SiN string coupled to a high impedance
Nb microwave cavity. At 250 mK, the device behaved in agreement with predictions of the
optomechanical theory. With the sample cell at 10 mK, we applied a pump tone at microwave
resonance frequency ωc

2π = 6 GHz and monitored the output power around ωc + Ωm, where
Ωm

2π
= 4 MHz is the mechanical resonance. At constant pump power, we observed spikes in the
output power with a decay time of 100 msec. Quiet periods with no spikes lasting thousands
of seconds were also observed. These spikes were only observed at ωp ± Ωm where ωp is the
pump frequency, demonstrating that their origin must involve the motion of the nanomechanical
string. We will further discuss plausible reasons responsible for such anomalous spikes in detail.

Most NEMS measured at low temperatures are either made of amorphous insulator with a
thin layer of metal or made of pure metal. To probe the dyanamics of TLS-phonon interaction
in amorphous material, it is relevant to measure the NEMS made of bare amorphous insulator.
We have developed a dual-chip technique where NEMS on-chip will be actuated dielectrically
and measured by coupling it microwave cavity on another chip. The complete experimental
scheme of this dual-chip technique and our latest result will be discussed in Chapter 6.
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Chapter 1

Motivation

Phil Anderson quoted [11] that ”one of the deepest and most interesting unsolved problems in
solid-state theory is probably the nature of glass and the glass transition”. So what is so spe-
cial about glasses? First of all, most of the terrestrial matter is made of glassy or amorphous
materials. Secondly, the static shear modulus is nonzero for all practical purposes below the
glass transition temperature, but there is no long-range order. The static shear modulus is zero
for an ergodic amorphous state (liquids), glasses are liquids that cannot flow. There is a huge
literature on glass transitions, and the thermodynamic properties of glasses at ambient temper-
atures [44]. The low-temperature properties of glasses are even more interesting, and this thesis
focuses on probing the same. Peter debye in 1912 developed the Debye model [24] estimating
the phonon contribution to the specific heat of the solids. He correctly predicted the ∼ T 3

dependence of specific heat at low temperatures, assuming high energy phonons’ contribution
(shorter wavelength phonons) to be negligible. According to the model, the long wavelengths
phonons are the main contributors to carry heat. The low-temperature thermal and mechani-
cal properties of amorphous materials, particularly below 1 kelvin, are intriguing and are very
different from the properties of crystals. Naively, one might expect that amorphous materi-
als should have the same properties as crystals at low temperatures since the long-wavelength
phonons should be insensitive to disorder at length scales comparable to inter-particle spacing.

Pohl et al. [85] measured the thermal conductivity and specific heat of SiO2, Se, silica, and
germanium-based glasses. They observed that the thermal conductivity in these materials below
1 kelvin goes as ∼ T n where n ∼ 1.8, which is in sharp contrast with the thermal conductivity
varying as ∼ T 3 in crystalline solids in the case of temperature independent phonons [7]. They
also observed the same characteristic plateau in thermal conductivity, around 10 kelvin for
all these materials. The different properties of glasses like thermal conductivity and specific
heat, elastic and dielectric properties have been studied extensively after the above-mentioned
experiment. Figure 1.1 (left) shows the thermal conductivity of different amorphous materials
(taken from [18]) below 1 kelvin. The two dashed lines shown in the same figure are proportional
to T 2 and also outline the range spanned by practically all amorphous materials. These lines
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are separated by a factor of 20, and the range is called glassy range. This is the first evidence
of the universal behavior of glasses.

single crystal silicon

glasses

Figure 1.1: (left) Thermal conductivity versus Temperature which goes as T 2

below 1 kelvin (right) Internal friction versus Temperature which is independent
of T around 1 kelvin but then drops off as temperature is reduced

Figure 1.1 (right) (taken from [75]) shows the internal friction Q−1 of amorphous solids
below 10 kelvin. The internal friction is temperature independent in the temperature range
shown in the figure and then shows a drop-off at lower temperatures. The drop-off at the
lower temperatures depends on the frequency of measurement. The drop-off will occur at lower
temperatures with decreasing measuring frequency. The two dashed lines separated by an ar-
row shown in the figure mark the range spanned by all the amorphous solids in the plateau
region studied to date. The range spanned is again a factor of 20 as in thermal conductivity.
However, thin films of a-Si, a-Ge, and, a-C have also shown plateaus below the glassy range [60].

Many experiments confirmed the similar anomalous low-temperature properties of glasses.
One of the plausible explanations is the existence of localized low energy excitation states
(LEEs) in glassy materials given by Philips [58], and by Anderson et al. [5] independently.
They incorporated this idea in their TTLS (Tunneling two-level system) model. The TTLS
model postulated that in amorphous materials, there exist nearly degenerate states, and en-
tities like single atoms, groups of atoms, or even molecules can tunnel between them. The
TTLS model was successful in explaining many properties of glasses, including specific heat,
thermal conductivity, elastic susceptibility, etc., although qualitatively. In addition, the TTLS
model makes qualitative predictions of a variety of nonlinear phenomena (saturation, echoes,
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hole burning) that are all seen experimentally. As discussed before in the glassy range, the
properties of amorphous materials are similar not only qualitatively but also quantitatively
independent of the chemical composition or preparation of the amorphous materials. The
quantitative similarity referred to as universality is not a part of the standard TTLS model.
Many different theoretical effort have been put out focusing mainly on interaction between
tunneling defects by Leggett et al. [41], [83], Burin et al. [17] to explain the universality.

I will commence this chapter by giving a brief review of the TTLS model and its implications
on the properties of glasses. I will then summarize various experiments measuring the mechani-
cal dissipation in mechanical resonators (made of amorphous materials) at low temperatures. A
recent paper titled ’The "Tunneling Two level Systems" Model of the Low-Temperature Proper-
ties of Glasses: Are "Smoking-Gun" Tests possible? by Leggett et al. [42] explains the fallacies
in the TTLS model and proposes a definitive test of the model. I will then discuss the role of
dimensionality of the oscillators and why we need miniature oscillators for probing the TTLS
model. With the advent of the semiconductor industry and, in turn, nanofabrication facilities,
many novel devices were fabricated. One such device is NEMS (nano-electromechanical sys-
tem). These mechanical resonators are typically made of dielectric materials (SiN, SiO2) or
metals (e.g., Aluminum). These devices have shown various applications, i.e., from being an
ultrasensitive detector of motion to its applications in quantum information processing. There-
fore it is critical to understand the dissipation in these mechanical resonators. The recent field
of cavity optomechanics has not only helped to detect the thermal motion of NEMS at low
temperatures but also paved the way to demonstrate various quantum optics experiments such
as sideband cooling of NEMS to its quantum ground state, optomechanically induced trans-
parency, etc. I will then highlight the various achievements in the field of cavity optomechanics
to date.

Many experiments have been carried out with NEMS made of dielectric materials showing
the variation of mechanical dissipation with temperature. Although these materials are made of
dielectrics, typically SiN and SiO2, they usually have a thin layer of metal on top for contacts.
The interface between dielectric and metal provides an additional channel for dissipation. Mea-
suring NEMS made of dielectrics but without metal will give us an insight into the distribution
of two-level systems inside the material and its role in dissipation. I will then illustrate a novel
technique that we are developing in our lab for measuring the bare SiN NEMS. I will then delve
into our recent progress on probing the dynamics of an individual two-level defect in NEMS,
which remains important.
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1.1 TTLS model

In a regular lattice of a crystal, all atoms and molecules occupy a well-defined position, thus
allowing a single configuration. The TTLS model incorporates the fact that in amorphous ma-
terials or glasses, there exist at least two configurational degenerate states embedded randomly.
Figure 1.2 depicts the configuration of amorphous SiO2 where silicon atom and oxygen atom
are represented in blue and white, respectively. Various positional changes available (which
form nearly degenerate states) for atoms to tunnel is also shown in colored circles.
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Figure 1.2: (inset) Schematic of amorphous SiO2 at low temperatures. Several
possible tunneling systems are indicated with their two possible positions indi-
cated in orange and yellow (oxygen) or dark and light blue (silicon) respectively
(image taken from [45]) (right) TLS model showing two minima separated by a

potential ∆ and the tunneling amplitude ∆0

The two nearly degenerate states can be modeled as double potential energy well separated
by a barrier as shown in figure 1.2. There is a series of vibrational states separated by an energy
~Ω, which is of the order of the Debye energy in each of the wells. At low temperatures, we
are interested in the ground states of this double potential well which are denoted as ψl(x) and
ψr(x). The TTLS model is valid for temperatures where thermal transitions between different
states can be ignored, and the only possible position change is through quantum mechanical
tunneling through an energy barrier. The hamiltonian of the single individual TLS in the
position basis is given by,

HTLS = 1
2

∆ ∆0

∆0 −∆

 (1.1)

where ∆ is the difference in energy of two minima also called asymmetry energy and ∆0 = ~Ωe−λ

is the tunneling strength between two potentials. The tunneling parameter λ = d(2mV0/~2) 1
2

represents the overlap of the wave functions ψ1(x) and ψ2(x), d is the separation between the
two wells, m is the effective mass of the tunneling particles and V0 is the barrier between two
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minima. ~Ω is approximately equal to El+Er
2 where El and Er are ground state energies of state

ψl(x) and ψr(x). Diagonalizing the matrix is straightforward and we end up with two energy
eigenstates as

E± = ±1
2

√
∆2 + ∆2

0 (1.2)

Therefore the energy splitting between two eigenstates is E = E+ − E− =
√

∆2 + ∆2
0. Also

the hamiltonian of a single TLS HTLS can be written in terms of Pauli’s matrices as HTLS =
∆
2 σz + ∆0

2 σx.

One of the features of the TTLS model is, in amorphous material, there exists an ensemble
of TLSs leading to the distribution of energy asymmetries ∆ and tunneling amplitudes ∆0.
In the case of asymmetry ∆, the distribution function is assumed to be symmetric as both
positive and negative values of ∆ are equally likely [59]. The scale of energy variation of the
asymmetry is set by glass transition temperature, typically between 200 kelvin and 1000 kelvin.
At low temperatures, the relevant tunneling states have asymmetries much less than 1000 kelvin;
the distribution on asymmetries can be considered constant. The primary dependence of the
energy density of states comes from the WKB exponent. A small change in λ leads to a large
shift in tunneling amplitude ∆0. At low temperatures, the range of ∆0 spanned is small, the
distribution on λ parameter is assumed to be roughly uniform. The probability distribution is
thus,

P (∆, λ)d∆dλ = P0d∆dλ (1.3)

where P0 is number of TLS per unit energy per unit volume. We can further write the dis-
tribution on asymmetries and tunneling matrix elements by doing a simple variable change
as,

P (∆,∆0) = P0

∆0
(1.4)

1.2 Dynamics: TLS and its coupling with strain field

We have discussed the tunneling two-level system and the density of TLSs in amorphous ma-
terials in the previous section. However, they interact with thermal phonons and externally
applied excitations. The experimental observables are the internal friction Q−1 and the relative
change in sound speed (v − v0)/v0 = δv

v0
where v0 is the sound speed at an arbitrary reference

temperature. TLS-phonon interactions contribute to the experimental observables through two
different processes, namely resonant and relaxational. In the resonant process, the externally
applied field at ω0 are scattered by TLSs with energy splitting E = ~ω0 driving the phonon
population back to thermal equilibrium. Thus the internal friction depends on the phonon
scattering rate, and the change in sound velocity can be calculated using Kramers-Kroenig
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relation. On the other hand, in the relaxational process, the externally applied sound wave
interacts with TLSs by perturbing the potential energy and thus changing the energy splitting
of the latter. The phonons then interact with TLSs driving them back to thermal equilibrium
from their perturbed energy state. The externally applied perturbations can be via strain and
electric fields. In this section, we will mainly focus on the strain field as an electric field can
be realized in a similar way. The strain can lead to the change of ∆ and ∆0. The coupling
between stain field e(t) and tunneling system can be written as

Hcoup =
 γ∆ γ∆0

γ∆0 −γ∆

 e(t) (1.5)

where γ∆ and γ∆0 is the change in asymmetry and tunneling amplitude, respectively. We also
assume that strain field only couples to the asymmetry such that γ∆ >> γ∆0 . From here on,
we will denote γ∆ as γ. We can rewrite the total Hamiltonian of the system in the basis of
TTLS energy eigenvalues based on the assumption that TTLS-phonon coupling is diagonal as,

H = Hph + 1
2

E 0
0 −E

+ γ

2

 ∆
ε

∆0
ε

∆0
ε
−∆

ε

 e(t) (1.6)

In the above equation, Hph is the hamiltonian of the phonons present in the system, the second
term is the hamiltonian of the TLS in energy basis, whereas the third term represents the
coupling of TLS and strain field. The diagonal elements of the third term illustrate the change
in the energy eigenvalue due to external perturbation, while the off-diagonal matrix element
stands for transitions between different eigenstates.

All the equations from here follows from the reference [27]. Consider the transition from
TTLS energy state 1 with energy +E to state 2 with energy −E due to an external phonon
field. Let’s denote the transition probability rate from state 1 to state 2 as ω12 and ω21 for
state 2 to state 1. The change in the occupation probability of state 1 and state 2 denoted by
Ṗ1 and Ṗ2 is governed by the following rate equations,

Ṗ1 = −P1ω12 + P2ω21

Ṗ2 = P1ω12 − P2ω21
(1.7)

The above two equations lead to the following equation,

Ṗ1 = −P1(ω12 + ω21) + ω21 (1.8)

Also Ṗ1 = −P1
τ

where τ is the relaxation rate of two level system and is further given by
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τ−1 = ω12(1 + eβE) where β = 1
kbT

, kb being the boltzmann constant. The transition rate ω21

can be further calculated using the Fermi’s golden rule,

ω12 =
∑
α=l,t

2π
~2 | 〈ψ1|Hcoup |ψ1〉 |2

g(E)
eβε − 1 (1.9)

where α is the phonon polarization and g(E) is the phonon density of states. Therefore one
gets the relaxation time of TLS with (∆,∆0) as

τ−1(E) =
∑
α

γ2
α

v5
α

E∆2
0

2πρ~4 coth(1
2βE) (1.10)

The above equation can be further written by omitting the summation over the different polar-
ization of phonon. One can assume the γ

v
and v do not considerably depend on polarization.

Thus,
τ−1(E) = 3γ2

v5
E∆2

0
2πρ~4 coth(1

2βE) (1.11)

The factor of 3 accounts for the one longitudinal and two transverse polarization of phonon
field. Let us consider that the TLS are in thermal equilibrium and the phonon population at
frequency ω has been perturbed from thermal equilibrium. The phonon scattering rate is given
as

τ−1
ph (∆,∆0) = πγ2ω

ρv2
∆2

0
E2 tanh(1

2βE) (1.12)

However due to an ensemble of TLSs one has to sum over all the TLSs with different ∆0

ranging from −E to E to obtain the relaxation rate of phonons due to all the TLSs,

τ−1
ph (∆,∆0) = πωC tanh(1

2βE) (1.13)

where we define the tunneling strength as C = P0γ
2

ρv2 . One can also calculate the change in the
sound velocity using Kramers-Kroenig relation,[

δv

v0

]
res

= C ln(T/T0) (1.14)

where T0 is some reference temperature, where sound velocity is v0. In the relaxational process,
the phonon population is assumed to be in thermal equilibrium barring the drive photons, and
the drive photons change the energy splitting of the TLSs. Here the energy splitting of TLS
need not be equal to drive frequency. In this process, the drive photons interact with all the
TLS changing their asymmetry. Resonant interactions between thermal phonons and the TLS
can bring the TLSs back to thermal equilibrium. These two types of interaction mechanisms
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lead to an anelastic response of the amorphous material. In anelastic material, stress and strain
are related by a complex modulus. In an amorphous solid, the complex modulus is given as,

M = σ

e
= M0 +Mrel +Mres (1.15)

where σ is the stress, e is the strain, M0 is contribution from non TLSs processes, Mrel is
the contribution from relaxational process and Mres is the contribution from resonant process.
M0 is temperature independent at low temperatures and the dissipative part is small. Mrel

and Mres are only relevant contribution to complex modulus at low temperatures. Since we
have already discussed about the experimental observables related to resonant mechanism, the
experimental observables related to relaxational mechanism can be derived in terms of Mrel.
One can now the derive the Maxwell-like relation which links strain dependence of the total
energy to the dependence of the stress on the population of the TLS excited state and consider
n being the volume density of TLS with parameters ∆ and ∆0. The relaxational contribution
to the stress is given by,

σrel,i,j = 2n∆
E
γi,jdP1 (1.16)

where σrel,i,j is the relaxational second order stress tensor, γi,j = 1
2
d∆
dei,j

is the change in asym-

metry due to second order strain tensor ei,j and P1 is the occupation probablity of state 1 (also
the repeated subscripts in stress and strain tensor indicate summation). The detail derivation
of the above expression can be found in Fefferman’s thesis [27]. To find an expression for re-
laxational contribution we need to write dP1 in terms of strain e. Due to periodic perturbation
of the applied strain the instantaneous equilibrium position P i

1 changes continuously. We can
further write,

P i
1 = P 0

1 + dP 0
1

d∆
d∆
dekl

ekl

= P 0
1 + 2dP

0
1

d∆ γk,lekl

(1.17)

Defining δP1 = P1 − P 0
1 and taking Ṗ1 = −P1 − P i

1
τ

we have,

σrel,i,j = n
∆
E
γi,j

dP 0
1

d∆ γk,l
ek,l

1 + iωτ
(1.18)

Again one can further refer to [27] for detailed discussion. Now Mrel,ijmn = σrel,i,j
emn

. Simplifying

the expression forMrel,ijmn by omitting the tensor nature of elastic fields we getMrel = Mrel(0)
1 + iωτ
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where Mrel(0) = nγ2 ∆
E

dP 0
1

d∆ . On further simplification we get,

Mrel = −nγ
2

kbT

(
∆
E

)2

sech2
(

E

2kbT

) 1
1 + iωτ

(1.19)

Deriving the experimental observables i.e. internal friction and relative change in sound velocity
in terms of Mrel is given in [27]. However a summary of results is given in next section.

1.3 Validity of TTLS model

Summarizing the results of the above section, the temperature dependence of internal friction
can be classified into two limiting cases. In the extreme low-temperature limit, the maximum
relaxation rate of TLS τ−1

max << ω where ω is the angular frequency of the applied strain or
perturbation. The occupations of TLS are incapable of reaching the thermal equilibrium in the
time scale of oscillations leading to T 3 dependence of internal friction. At higher temperatures,
the TLS can relax quickly in the time scale of oscillation, and thus, the internal friction remains
constant. Thus,

Q−1 = π4

12C
[
T

TCO

]3
for T << TCO

Q−1 = π

2C for T >> TCO

(1.20)

where C = P0γ
2

ρv
and the crossover temperature between two regimes is denoted by TCO. The

tunneling strength C is obtained by simply fitting the internal friction to a constant value in
the regime T >> TCO. The value of TCO can be obtained by fitting the data in the regime
where T << TCO where there is ∼ T 3 dependent roll-off from the plateau region of internal
friction. The tunneling model also predicts the change in the speed of sound outlined below,

δv

v0
= C lnT for T << TCO

δv

v0
= −C2 lnT for T >> TCO

(1.21)

The tunneling strength C appearing in the temperature dependence of internal friction and
relative change in the sound speed also appears in the low-temperature thermal conductivity
predicted by the TTLS model. Comparing the tunneling strength, C extracted from the mea-
surements of sound attenuation and thermal conductivity in glasses is one way to understand
the validity of the TTLS model. Figure 1.3 taken from [60] compares the tunneling strength Ct
from acoustic attenuation and thermal conductivity measurements for a wide variety of glasses
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Figure 1.3: (left) Plot comparing the tunneling strength Ct (transverse waves)
obtained from thermal conductivity and acoustic attenuation (right)Plot com-
paring the tunneling strength Cl obtained from longitudinal measurements and

flexural measurements

(except a-Si, a-Ge, and a-C). The elastic constant ρv2
t covers two orders of magnitude from

2 ×109 to 2.2 ×1011, yet the plot shows how little the tunneling strength changes. Also, the
similarity in the values of Ct from thermal conductivity and acoustic attenuation measurements
is the remarkable success of the TTLS model, where t in Ct stands for tunneling strength in
transverse direction. The tunneling strengths Cl and Ct are very similar in magnitudes, also
shown in figure 1.3 independent of the samples and the measuring techniques, where. Pohl et
al. [60] also mentioned following key features about the tunneling strength, where l in Cl stands
for tunneling strength in longitudinal direction.
a) They observed the small systematic increase of C with the acoustic frequency used for the
measurements. Over the five orders of frequencies range studied, C has been found to increase
by a factor of 3. Such a variation is not included in the tunneling model.
b) The tunneling strength C appears to be independent of impurities used in a-SiO2. The vari-
ation of OH contents from less than 1 ppm to 1000 ppm does not influence C measured using
acoustic attenuation and shows a 10 % decrease in the thermal conductivity measurements.
c) Heat treatment also has little influence on the tunneling strength C.

The experimental findings reviewed in [60] can be explained in the framework of the TTLS
model with tunneling strength C ∼ lying between 10−4 to 10−3 for all the amorphous materials.
The TTLS model also predicts the dependence of TCO with the frequency of measurement. In
the figure 1.4 taken from [75] shows the dependence of internal friction on temperature. TCO is
the crossover temperature where the maximum relaxation rate of TLS is equal to the angular
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Figure 1.4: Internal friction of a-SiO2 versus temperature measured at different
frequencies

frequency used in the measurement. The data shows the clear variation of TCO with ω 1
3 depen-

dence predicted by the TLS model.

There is an extensive literature on various measurements in favor of the TTLS model. Dis-
cussing them is beyond the scope of this thesis. It is more interesting to highlight the fallacies of
the TTLS model and various results in contradiction with the predicted outcome of the TTLS
model. So what is wrong with this model ?

In this part, I will reiterate the arguments made by Leggett et al. in [42]. Leggett argued
that if the TTLS model is able to explain some of the experimental findings of the properties
of glasses at low temperatures does mean it is correct. He then reviews various predictions of
the TTLS model and talks about the fallacies associated with it.

The various non-linear phenomena (such as saturation, echoes, hole-burning) predicted by
the TTLS model have been experimentally verified. Leggett argues that these non-linear phe-
nomena are not unique to TLSs, but any model with the system energy levels and stress matrix
elements other than familiar, simple harmonic oscillators are sufficient to reproduce the results.
The TTLS model is also phenomenological and lacks quantitative calculations. TTLS model
predicts that the specific heat of amorphous materials is linearly dependent on temperature.
However, experimental findings suggest T n where n ∼ 1.2 − 1.3 dependence is inconsistent
with the theory. The universal quantitative behavior of glasses, e.g., the internal friction of
the amorphous solid in the regime where T >> TCO, i.e., in the plateau region, is of the order
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of (3± 2)×10−4 for almost all amorphous materials which are striking. Leggett further argues
this universality can be attributed to a mind-boggling degree of coincidence as the internal
friction depends on four different independent parameters. He then further commented that ul-
trasonic absorption might be smoking gun to test the existence of TLSs in amorphous materials.

As outlined in the previous section, the TLS-phonon interaction occurs via two mechanisms
(resonant and relaxation). In the relaxation mechanism, the phonon modulates the energy
splitting of the TLS, perturbing the TLS population away from the equilibrium distribution.
The TLS relax by exchanging energy with sound waves leading to damping of the sample’s

vibration. As mentioned before, the internal friction varies as ∼
(
T

TCO

)3
for T << TCO and

Q−1 = π

2C for T >> TCO. Fefferman et al. [26] measured the internal friction and change in
sound velocity of oscillators made of vitreous silica as shown in figure 1.5. The measurement
was done at three different frequencies, and they observed another crossover temperature at
10 millikelvin where Q−1 goes from ∼ T 3 dependence to ∼ T dependence. The T dependence
of the internal friction is not in accord with the standard TTLS model. However, the T

dependence can be predicted by the model if interactions between pairs of TLS are accounted
for. It is argued that the existence of such 4-particle clusters leads to a relaxation rate linear in

temperature [16]. Also, the ratio of
d δv
v0

d log 10T is 1:-1 for both high and low temperature, which is
in sharp contrast with the ratio predicted by the TTLS model, i.e., 2:-1. They also highlighted
that δv

v0
departs from the usual d log 10T dependence below 3 mK. According to them, the

slope ratio can be accounted for by modifying the distribution function of the TLSs. Thus
measurement of internal friction and relative change in the sound velocity in the relaxational
regime is not the test for the TTLS model as the discrepancies not predicted by the TTLS
model cannot be fixed by mere minor modifications, argues Leggett.

In the high frequency, low temperature regime (~ω >> kbT ) the only non-negligible con-
tribution to internal friction comes from the resonant mechanism, where the internal friction
is given by Q−1 = πωC tanh(1

2βE). To enter into this regime, one needs oscillators with high
resonance frequency. For instance, at T = 5mK, one needs to have the resonance frequency of
the order of ∼ 60 MHz. The only way to achieve such a high frequency is to reduce the size of
the oscillators. With the rapid improvement in nanofabrication, one can now make these small
oscillators referred to as NEMS (doubly clamped nanobeams, cantilevers, drums, etc.) from
amorphous materials capable of reaching the desired resonance frequency. Also, coupling these
NEMS with superconducting microwave cavities has opened up the path to detect the motion
of NEMS at low temperatures. The field is called Cavity Optomechanics.
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Figure 1.5: (left) Internal friction versus Temperature for three different mea-
suring frequencies and the parameter ’b’ is the fitting parameter for ∼ T de-
pedence of the internal friction below 10 millikelvin (taken from [26]) (right)
Change in sound velocity versus temperature for three different measuring fre-

quencies (again taken from [26] )

Another aspect of the TTLS model which remains elusive to us is the microscopic nature of
TLSs. Ramos et al. [62] proposed a scheme to probe the individual TLS using cavity optome-
chanics. They postulated that under some conditions, there might be a strong coupling between
single TLS and the mechanical mode inducing Jaynes Cummings like hamiltonian leading to
the splitting of the mechanical mode. The output spectrum can be measured using the mi-
crowave cavity coupled to the mechanical resonator. Thus with the developing field of cavity
optomechanics, it is possible to test the validity of the TTLS model and probe an individual
TLS. However, there are other complications related to the technique of cavity optomechanics
prohibiting us from measuring the internal friction and change in the sound velocity in NEMS
at low temperatures. The concepts behind cavity optomechanics are discussed in the next sec-
tion. I will also discuss the current problems we are facing and the prospect of measuring the
NEMS just made of amorphous material.

1.4 Cavity Optomechanics

The field of cavity optomechanics [51], [8] is a rapidly growing field with its applications in de-
tecting the small motion of mechanical resonators, quantum information processing, and testing
various quantum theories. In a cavity optomechanical setup, a mechanical resonator is coupled
to an electromagnetic cavity. The field of cavity optomechanics encompasses a large range of
mechanical frequencies i.e., from 100 kHz to 1 GHz, and electromagnetic fields from GHz to
THz range. We can span such a large range of mechanical and electromagnetic frequencies due
to various designs and fabrication of the above entities in nanofabrication facilities. Coupling
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the mechanical resonator to an electromagnetic cavity gives us information about the position
of the former. On the other hand, the radiation pressure forces (due to standing waves inside
the cavity) on the mechanical resonator influence the mechanical properties.

𝑎𝑖𝑛(𝑡)

𝑎𝑜𝑢𝑡(𝑡)

𝑎(𝑡)

𝑥(𝑡)0

Spring

Cavity

Change in cavity length

𝑑𝑥

𝑑𝜑

𝜆

2ℱ

Figure 1.6: (left) Schematic showing an optical cavity with a mechanically com-
pliant resonator (right) The small motion of the mechanically compliant mirror

induces a large change in the phase of the output signal

The basic cavity optomechanical setup consists of a mechanical resonator coupled to an
optical (microwave) cavity as shown in figure 1.6. The cavity consists of one highly reflective
(right) and a partially reflecting mirror (left) separated by a distance l. The cavity can be
modeled as a simple Fabry Perot resonator. The cavity undergoes a series of resonances with
angular frequencies give as ωc ≈ mπ

c

l
where c is the speed of light, and m is an integer mode

number. The cavity is also characterized by its finesse which gives the average number of round
trips before the photons leave the cavity. The optical finesse is given as F = ∆ωFSR

κ
where

∆ωFSR = π
c

l
is the free spectral range of the cavity and κ−1 is the photon lifetime (cavity loss

rate). The cavity loss rate for an optical cavity can further be decomposed into κext and κi such
that κ = κext + κi. κext characterizes the coupling or the loss rate associated with waveguide
and resonator, and κi is related to absorption of light inside the cavity. Now the quantum
mechanical model of any cavity can be given in terms of input-output theory which relates
the output field aout(t) (either reflected or transmitted from the cavity) in terms of input field
ain(t) and the field inside the cavity a(t). The evolution of the field inside the cavity is generally
given by Heisenberg-Langevin equation of motion. We will analyze the Heisenberg-Langevin
equation and its solution in the chapter dedicated to theory.

As shown in figure 1.6, one of the mirrors is not fixed. For a general optomechanical system,
the movable mirror can have a mechanical degree of freedom about any direction subject to
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boundary conditions. For the schematic shown in the figure, we assume the mirror is only free
in a single direction, i.e., x. The motion of this mirror changes the length of the cavity, which
in turn changes the resonance frequency of the cavity. For the fundamental mode of the cavity,
the resonance frequency is now given as ωc = ω0 + Gx where ω0 is the resonance frequency
of the cavity when the mirror is at its equilibrium position, and G = ∂ωc

∂x
is the change in

resonance frequency of the cavity with the displacement of the movable mirror. The change in
the resonance frequency imparts a change in the phase of the outgoing field aout(t). As shown in
figure 1.6 a slight change in the length of the cavity induces a significant change in the phase of
the outgoing field. The sensitivity of the measurement can further be increased by fabricating
cavities with low losses.

Most of the optomechanical experiments rely on this simple Fabry Perot resonator with
movable mirror, or the electrical setup of a mechanically compliant variable capacitance in mi-
crowave cavities [63]. Recent progress has led to various other optomechanical setups such as
microtoroid [67] resonator which supports whispering-gallery optical modes around its circum-
ference. The mechanical mode can change the circumference, thereby changing the resonance
frequency of the optical modes. Then there is a mechanical beam that has been patterned with
photonic crystal structure [66] such that photonic and phononic modes exist and couple in a
single structure.

1.4.1 Mechanical control by dynamical radiation pressure forces

The basic idea behind the radiation pressure force is simple to understand. If a continuous
electromagnetic wave with power P is continuously reflected from a surface, then the force on
the surface will be F = dP

dt
= 2P

c
where c is the speed of light. The phase with which radiation

pressure force acts on the mechanical resonator can cause the amplification or damping of its
harmonic motion.

For a simple optomechanical system such as Fabry Perot resonator with one mirror partially
reflecting and other fully reflecting separated by distance l resonates at frequency ωc = πc

l
. The

total loss associated with the resonator is κ. The energy stored in the cavity can be charac-
terized by the number of photons stored in the cavity given as nd = E

~ωd
where ωd is the

frequency of light entering the resonator. On the other hand, the full reflecting mirror is me-
chanically compliant characterized by its mechanical resonance frequency Ωm. The mechanical
dissipation rate is given by Γm. We can now define a detuning parameter ∆ = ωd − ωc. The
various regimes of cavity optomechanical experiments can be classified depending on the sign
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of ∆. When ∆ ≈ −Ωm we observe the damping of mechanical mode resonating with Ωm. This
scheme of pumping the optical cavity is called red detuned pumping. We can also observe
the anti-damping of mechanical mode when ∆ ≈ +Ωm and the scheme of pumping is called
blue detuned pumping. The resonant in cavity pumping where ∆ = 0 does not influence the
mechanical damping rate. Figure 1.7 shows the three different pumping schemes. Each of the

𝜔𝑑 𝜔𝑑 + Ω𝑚𝜔𝑑 − Ω𝑚 𝜔𝑑 𝜔𝑑 + Ω𝑚𝜔𝑑 − Ω𝑚 𝜔𝑑 − Ω𝑚 𝜔𝑑 𝜔𝑑 + Ω𝑚

𝜅

𝜔𝑐

𝜅 𝜅

In cavity pumping
𝜔𝑑 = 𝜔𝑐

Blue pumping

𝜔𝑑 = 𝜔𝑐 + Ω𝑚

Red pumping
𝜔𝑑 = 𝜔𝑐 − Ω𝑚

𝜔𝑐 𝜔𝑐

Figure 1.7: The schematic showing three different pumping schemes (left) in-
cavity pumping (center) Blue pumping and (right) red pumping

schemes shown in figure 1.7 have cavity lineshape with κ denoting its linewidth and ωc its
resonance frequency. The tallest arrow represents the drive/pump field, and the smaller ar-
rows represent the two sidebands in the noise spectrum due to the motion of the mechanically
compliant mirror. When ωd = ωc the areas under two sidebands are same if kbT >> ~Ωm

where kb is the Boltzmann constant and T is the temperature under consideration. For blue
pumping, ωd ≈ ωc+ Ωm. The lower sideband for this pumping shown in green will be enhanced
to cavity density of state, and the upper sideband will be suppressed. The pump down-converts
the photon by giving a phonon to the mechanical resonator. Therefore, blue detuned pumping
preferentially gives energy to the mechanical resonator, thus amplifying its motion. On the
other hand, when ωd ≈ ωc − Ωm, there is up-conversion of phonon from the mechanical res-
onator to photon in the cavity, thus removing energy from the mechanical resonator (in turn
cooling the mechanical mode of interest). The quantitative description of cavity optomechanics
is given in chapter 2 (Theory: quantum noise in microwave optomechanics).

One of the long-standing goals in the field of cavity optomechanics is the cooling of me-
chanical mode to its quantum ground state as it is a prerequisite to many experiments in
the field of quantum information processing and tests for quantum theories. Teufel et al. [73]
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were able to cool down the mechanical mode resonating at 10.56 MHz of their mechanical res-
onator (Aluminum drum) to its quantum ground state using active cooling technique of cavity
optomechanics. The Aluminum drum was coupled inductively to a superconducting LC cir-
cuit (microwave cavity). The resonance frequency of the fundamental mode of the cavity was
7.54 GHz. They demonstrated the average final occupancy of their mechanical mode was ≈ 0.3.

Inspired by the above exciting result encouraged the notions that mechanical resonators
may perform useful functions in the processing of quantum information and superconducting
circuits. Palomaki et al. [56] demonstrated coherent transfer of the state of microwave field
transferred into, stored in, and retrieved from a mechanical resonator with amplitudes at a
single quanta level. Zhou et al. [88] realized the slowing and advancing of microwave signals
with millisecond distortion-free and negligible losses using the technique of optomechanically
induced transparency which is a characteristic of any optomechanical setup. Chapter 4 is dedi-
cated to measurements of optomechanically induced transparency and absorption. Wollman et
al. [80] utilized the microwave radiation pressure to prepare their mechanical resonator in the
quantum ground state and then manipulated its thermal fluctuations to produce a quadrature
squeezed state. The variance of one motional quadrature was 0.8 times the zero-point level.
Barzanjeh et al. [12] used reservoir engineered optomechanical interactions to demonstrate on-
chip magnetic free circulators, which could pave the way for superconducting qubit processors
with multiplexed on-chip signal processing and readout.

The success of superconducting microwave optomechanics gave us an impetus to measure
the dissipation and frequency shift of the mechanical resonator based on glassy materials with
temperature. Therefore we coupled the suspended nanobeam made of SiN capacitively to a
superconducting microwave cavity. The design features of the microwave cavity and NEMS
are given in detail in the chapter on experimental techniques. The devices were fabricated at
nano-fabrication facilities in Institut Neel/CNRS. For our experiments aiming at the careful
characterization of mechanical properties at different temperatures, we need the whole system
to be in thermal equilibrium. The mechanical beam, as well as its mode, should be in equilib-
rium with the temperature of the cryostat. The chip containing the mechanical resonator and
the microwave cavity was installed in a cell made of annealed Cu. The cell is pressed against
the mixing chamber plate of our cryogen-free dilution cryostat. Inside the cell, the input and
the output coaxial transmission lines are soldered to gold coplanar waveguides (CPW) on a
circuit board, which in turn is micro bonded to the ends of a niobium CPW on the chip. The
pump tone was generated by microwave generators at room temperature. The signal then
passes through a series of attenuators, which decrease the thermal noise level, and a bandpass
filter before reaching the input port of the experimental cell. The transmitted signal that exits
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the cell passes through two circulators, which prevent noise traveling down the detection line
from entering the output of the cell. The resulting signal was amplified by a series of two high
electron mobility transistors (HEMT) at 4-kelvin plate and room temperature before being
measured by spectrum analyzer or lock-in amplifier.

In a simple experiment, the microwave cavity is pumped by a pump tone, and mechanical
characteristics are determined by demodulating the signal at sidebands. With in-cavity pump-
ing where ωd = ωc we can measure the signal at both ωc + Ωm and ωc − Ωm thus deducing
the intrinsic linewidth or the mechanical dissipation rate Γm. However, the signal correspond-
ing to the frequencies at ωc ± Ωm are suppressed. At lower temperatures, it is impossible to
characterize the sideband due to the small amplitude of the signal corresponding to the small
thermal motion of the mechanical resonator. We can further take advantage of red or blue
pumping with smaller pumping drives such that damping and anti-damping due to radiation
pressure forces are negligible. The upper sideband is amplified due to cavity density of state
while pumping red, whereas the lower sideband is amplified while pumping blue. We measured
the sidebands and deduced the mechanical characteristics, which are in agreement with the
theory above T>200 mK, where T is the temperature of the mixing chamber plate of the cryo-
stat. Below T < 200 mK the signal is marred by anomalous force noise, prohibiting us from
measuring the signal accurately. We observe very large amplitude fluctuations (spikes) below
T < 200 mK and get worse for lower temperatures regardless of the pumping schemes. The
statistics of these fluctuations or events are complex and are subject to chapter Anomalous force
noise of mechanical resonators. However, I will mention few key points here. These spikes are
only detected on mechanical sidebands, and sometimes these spikes trigger the self-oscillation.
We cannot attribute the fluctuations to the input field as one of the plausible reasons. With
higher power due to the input field, the nanobeam would subsequently be heated to higher tem-
peratures leading to broad peaks which are shifted in frequency. These anomalous amplitude
fluctuations are rarely mentioned in the literature. Massel et al. [49] mentioned intermittent
heating in their beam devices below 150 mK. There is also a mention of anomalous force noise
by Rocheleau et al. [64], where they also used Aluminum beam devices for their cavity optome-
chanical measurements.

The cause of these spikes remains elusive to us. One of the plausible causes could be
strongly coupled TLSs since these TLSs are responsible for low-temperature properties of glasses
governing the damping, frequency shifts, and phase fluctuations within the standard tunneling
model. Our results are also similar to those of [53] obtained with macroscopic mechanical glass
sample, where spiky events were attributed to the interaction of mechanical resonator with
gamma rays. The different possible sources of these spiky events will be discussed in detail in
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Chapter 5.

1.5 Dielectric actuation of SiN nanobeam

The superconducting microwave cavity optomechanics so far has been limited to measurements
of mechanical resonators made of metals (typically Aluminum) or dielectrics (Si, SiN) with a
thin layer of metal on top. As discussed before it is imperative to measure the mechanical
properties of resonators made just of the dielectric to study the interactions of TLSs with
phonons. It is difficult to couple a mechanical resonator made of dielectric to a microwave
cavity owing to fabrication as well as measurement challenges. We have developed a novel
dual-chip scheme where the chip with MWC will be coupled to the chip with NEMS through
wire bonds as shown in figure 1.8. This scheme was inspired by Faust et al. [25]. While
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Figure 1.8: Schematic showing the dual-chip technique

previous works mostly relied on capacitive coupling between the cavity and metalized resonator,
in this scheme, we take advantage of dielectric gradient forces. When a dielectric beam is
placed in between two electrodes, its vibration will induce periodic modulation of their mutual
capacitance. The capacitative modulation will thus alter the response of the microwave cavity
connected to one of the electrodes via a wire bond. The response of the microwave cavity
can be demodulated to probe the position of the mechanical resonator. This scheme will not
be limited to just measuring the thermal motion of the mechanical resonator but also have
the capability to actuate the motion by applying an RF drive to an electrode at a frequency
near its resonance. Apart from measuring the dissipation and frequency shift of mechanical
resonator with temperature, we would also be able to test our hypothesis i.e., if the spikes
(random amplitude fluctuations) as discussed in the previous section are due to the presence
of metal. The detail of these experiments is given in Chapter 6.
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Chapter 2

Theory: quantum noise in microwave
optomechanics

2.1 Introduction

In the previous chapter, we discussed the substantial applications of optomechanical systems
i.e. from being an ultrasensitive detector of motion to their ubiquitous nature in quantum
information applications and tests for quantum theory. We also discussed our motivation to
cool down the mechanical resonator to its quantum ground state to explore the dissipation and
decoherence due to thermal bath and probe the individual intrinsic two level defects. We also
discussed why cooling the environment along with the mechanical mode of interest is vital. In
this chapter, we are concerned with the equations governing the mechanical resonators and op-
tomechanical systems. We will commence this chapter by deriving the resonance frequency of
the nanobeam which depends on its dimension, stress and Young’s modulus of the material [72]
using Euler Bernouilli’s theory of beam. Although the theory predicts the resonance frequency
of the beam precisely it does not take into account the undercut in the devices made in the
cleanroom which influences the resonance frequency. Simulation of mechanical objects using
finite element methods thus become pivotal in determining the same. We will then switch to
the classical equation of motion for a damped harmonic oscillator and derive the amplitude of
motion of the center of mass of nanobeam. Using the Fluctuation-Dissipation theorem we will
then calculate the spectral density of position fluctuation which will be crucial to link it to
the spectral density of the output field in the optomechanical systems. Quantum mechanical
models for both NEMS and MWC will also be addressed.

We will then shift our attention to the quantum langevin equation of motion for coupled
MWC and NEMS interacting with multiple heat baths. For deriving the equations we will
follow the input-output formalism from Gardiner and Zoller [29]. Several optomechanical prop-
erties such as optical spring effect, heating and cooling of the mechanical mode by following
various pumping schemes i.e. pumping at MWC’s resonance frequency or detuned from MWC’s
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resonance frequency by mechanical resonance frequency will be mentioned. The spectral den-
sity of the output field which is the measurable quantity will be extracted from solving the
quantum langevin equation for various pumping schemes which is important for quantitative
description of characteristics of the mechanical object at different temperatures.

2.2 Mechanical Resonators

The various eigenmodes of a resonator can be calculated by solving the linear theory of elasticity
using appropriate boundary conditions. For beam we can use Euler Bernoulli’s beam equation
[13]. Consider a rectangular beam of length l, width w and thickness t such that l >> w, t

shown in figure 2.1 (z is along the length of the beam, y is along the width and x is out of
plane); the Euler Bernoulli equation is given by,

EI
∂4u(z, t)
∂z4 + ρA

∂2u(z, t)
∂t2

− σA∂
2u(z, t)
∂z2 = 0 (2.1)

where E is Young’s modulus, A = wt, I is the second moment of area (I = wt3/12), ρ is
the mass density, σ is the inbuilt stress and T = ρA. The displacement field u(z, t) can be
separated into displacement profile ψ(z) and time dependent oscillation of the center of mass,
x(t). The oscillation is considered sinusoidal here, so x(t) = x0e

iωt.

u(z, t) = ψ(z)x(t) (2.2)

Substituting (2.2) in (2.1) we get,

EI
∂4ψ(z)
∂z4 − ρAω2ψ(z)− σA∂

2ψ(z)
∂z2 = 0 (2.3)

The displacement profile can be approximated as,

ψ(z) = c1 sinh(Mz

l
) + c2 cosh(Mz

l
) + c3 sin(Nz

l
) + c4 cos(Nz

l
) (2.4)

where c1, c2, c3, c4,M,N are real and constants.
Substituting (2.4) in (2.3) we get,

[EI(M
l

)
4
− T (M

l
)
2
− ρAω2][c1 sinh(Mz

l
) + c2 cosh(Mz

l
)]+

[EI(N
l

)
4

+ T (N
l

)
2
− ρAω2][c3 sin(Nz

l
) + c4 cos(Nz

l
)] = 0 (2.5)

Since c1 sinh(Mz
l

) + c2 cosh(Mz
l

) and c3 sin(Nz
l

) + c4 cos(Nz
l

) cannot be zero in (2.5), we have
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Figure 2.1: A schematic showing the length, width and thickness of nanobeam

EI(M
l

)4 − T (M
l

)2 − ρAω2 = 0 and EI(N
l
)4 + T (N

l
)2 − ρAω2 = 0 thus giving

M = l(T +
√
T 2 + 4ρω2AEI

2EI )

N = l(−T +
√
T 2 + 4ρω2AEI

2EI )

Since we are considering the doubly clamped beam, following are the boundary conditions
imposed,

ψ(0) = 0, ψ(l) = 0

dψ(z)
dz
|z=0 = 0, dψ(z)

dz
|z=l = 0

Imposing these boundary conditions on (2.4) we get the following 4 equations,

c2 + c4 = 0

c1 sinh(M) + c2 cosh(M) + c3 sin(N) + c4 cos(N) = 0

c1M + c2N = 0

c1M cosh(M) + c2M sinh(M) + c3N cos(N)− c4N sin(N) = 0
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Figure 2.2: Comsol simulation of a beam with dimensions given in the text
and showing two eigenmodes corresponding to motion in direction x. The colors

represent the displacement of the beam from the equilibrium position

The constants c1, c2, c3 and c4 can be eliminated giving the following transcendental equa-
tion,

(M2 −N2) sin(M) sin(N) + 2MN − 2MN cosh(M) cos(N) = 0 (2.6)

Since M and N depend only on frequency ω and the rest of the parameters are known, we can
plot the function P (ω) where P (ω) = (M2−N2) sin(M) sin(N)+2MN−2MN cosh(M) cos(N)
and look for the points where P (ω) = 0 thus giving the eigenfrequencies of the doubly clamped
beam.

Taking l = 5 µm, w = 300 nm, t = 120 nm, E = 250 MPa, σ = 0.9 GPa, ρ = 2.8e3 Kg/m3,
P (ω) is plotted in figure 2.3. The values of the parameters taken are typical values of the actual
device. The values of frequency where the function takes the value 0 are the resonant mode
frequencies. The resonant frequencies matches within 1% as calculated from the finite element
simulation of nanobeam as shown in figure 2.2.

2.2.1 Time dependence of damped harmonic oscillator

The temporal evolution of x(t) can be calculated using the basic equation of motion for the
damped harmonic oscillator.

meff
∂2x(t)
∂t2

+meffΓm
∂x(t)
∂t

+meffΩ2
mx(t) = F (t) (2.7)

The above equation can be written for different eigenmodes of the mechanical resonator.
We will deal with fundamental eigenmode here. The effective mass of the mechanical resonator
is meff = ρA

∫
ψ(z)2dz [68], where ψ(z) is the shape factor defined in above section and ρ

is the mass density and A = wt. Γm is the damping rate of mode and Ωm is its resonance
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frequency. The above equation can easily be solved in frequency space. Let the actuating
force be F (t) = F0e

−iωt such that the motion of the NEMS also follows sinusoidal motion i.e.
x = x0e

−iωte−iφ where φ is the phase difference. x0 is the vibration amplitude of the mechanical
resonator. Putting F (t) and x(t) in (2.7) we get,

x0e
−iφ = F0

meff (Ω2
m − ω2 − iωΓm) (2.8)
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Figure 2.3: Plotting the transcenden-
tal function, P (ω) derived from Euler-
Bernouill’s beam theory and extracting

the resonance frequency

The two quadratures of the motion are thus the
real and the imaginary parts of the x0. The real
and imaginary parts of x0e

−iφ is given as <(x0e
−iφ)=

X(ω) = F0

meff

Ω2
m − ω2

(Ω2
m − ω2)2 + Γ2

mω
2 and =(x0e

−iφ)=

Y (ω) = F0

meff

Γmω
(Ω2

m − ω2)2 + Γ2
mω

2 describing the mo-

tion of mechanical resonator in complex plane. X(ω)
is called the absorption part of the mechanical re-
sponse and Y (ω) the dispersion part. If the force is ap-
plied at mechanical resonance frequency then Y (ω) =

F0

meffΓmΩm

and X(ω) = 0. The mechanical response
has the lorentzian line shape with vibration amplitude
given as |x0| =

√
(X(ω)2 + Y (ω)2).

2.2.2 Quantum mechanical treatment
of mechanical resonator

In the above section, we considered the classical equa-
tion of motion to deduce the vibration amplitude of
the mechanical resonator. Considering the mechanical
resonator as a harmonic oscillator we can write the hamiltonian as,

H = ~Ωmb
†b+ 1

2~Ωm (2.9)

In the above equation, b† and b are the phonon creation and annihilation operators and 1
2~Ωm

is the zero-point energy of the harmonic oscillator corresponding to the zero-point fluctuation.
The position operator x = xzpf (b+ b†) and the momentum operator p = −imeffΩmxzpf (b− b†)

satisfy the commutation relation [x, p] = i~. xzpf =
√

~
2meffΩm

is the zero-point fluctuation of

the mechanical resonator corresponding to its ground state. We have not yet discussed the ef-
fects of dissipation in this quantum mechanical treatment. An exhaustive quantum mechanical
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treatment of mechanical resonator interacting with thermal bath inducing dissipation is done
in section 2.3.

Spectral density is an indispensable quantity in the study of random signals which is a mea-
sure of intensity of signal at a given frequency. Consider a random signal V (t) characterized by
mean 〈V (t)〉 = 0 and autocorrelation function Gvv(t, t + τ) = 〈V (t)V (t + τ)〉. 〈V (t)V (t + τ)〉
is average of product of instantaneous values of V (t) at two different time instances t and t′ .
We also assume V (t) is Gaussian distributed therefore the mean and autocorrelation function
completely specify the statistics and probability distribution of V (t). We also assume that
signal is stationary which means 〈V (t)〉 and Gvv(t, t+ τ) do not vary as t varies. Therefore the
autocorrelation function is dependent only on time displacement i.e. Gvv(t, t+ τ) = Gvv(τ).

According to the Wiener-Khinchin theorem spectral density is the fourier transform of the
autocorrelation function [22].

Svv[ω] =
∫ ∞
−∞

dteiωtGvv(t) (2.10)

Once we have defined the spectral density classically we can lay emphasis on calculating
the position spectral density of the mechanical resonator [22]. The position operator of the
mechanical resonator can be written in terms of two quadratures X and Y describing the
smooth envelope of the motion.

x(t) = X cos(Ωmt) + Y sin(Ωmt) (2.11)

We can write the momemtum operator as,

p(t) = [−X sin(Ωmt) + Y cos(Ωmt)]meffΩm (2.12)

X and Y can thus be solved using above equations yielding

X = x(t) cos(Ωmt)−
p(t)

meffΩm

sin(Ωmt)

Y = x(t) sin(Ωmt) + p(t)
meffΩm

cos(Ωmt)
(2.13)

Therefore we can write x(t) + i
p(t)

meffΩm

= [X + iY ]e−iΩmt. X and Y are canonically conjugate
variables and hence do not commute with each other. They are hermitian and thus observables.
X + iY is the quantum-mechanical analog of the resonator’s classical complex amplitude. It’s
now straightforward to show that [X, Y ] = i~

meffΩm

= 2ix2
xpf since the position and momentum

operator follows [x, p] = i~. At time t = 0, x(0) = X and p(0) = Y meffΩm. x(t) and p(t) can



2.2. Mechanical Resonators 27

be further written in terms of their values at time t = 0:

x(t) = x(0) cos(Ωmt) + p(0)
meffΩm

sin(ωt)

p(t) = p(0) cos(Ωmt)− x(0) sin(Ωmt)meffΩm

(2.14)

Considering the case where the mechanical oscillator is not perturbed by any dissipation and
is completely isolated from the environment, the autocorrelation function is

Gxx(t) = 〈x(t)x(0)〉 = 〈x(0)x(0)〉 cos(Ωmt) + 〈p(0)x(0)〉 1
meffΩm

sin(Ωmt) (2.15)

Quantum mechanically there must be some correlation between x and p as they are canonically
conjugate variables. The following equation holds true for x and p which can easily be evaluated
by converting them to creation and annihilation operators.

〈x(0)p(0)〉 − 〈p(0)x(0)〉 = i~ (2.16)

Also 〈p(0)x(0)〉 = −i~2 and 〈x(0)p(0)〉 = i
~
2 [22]. We can write 〈x(0)x(0)〉 = x2

zpf{nb(~Ωm) +
[nb(~Ωm) + 1]} since x(0) = xzpf (b + b†). Putting the values of 〈x(0)x(0)〉 and 〈p(0)x(0)〉 in
equation (2.15) we get,

Gxx(t) = x2
zpf [nb(~Ωm) + nb(~Ωm) + 1] cos(Ωmt)− i

~
2

1
meffΩm

sin(Ωmt)

= x2
zpf [(nb(~Ωm) + nb(~Ωm) + 1) cos(Ωmt)− i sin(Ωmt)]

= x2
zpf [(nb(~Ωm) + nb(~Ωm) + 1) cos(Ωmt) + i(nb(~Ωm)− nb(~Ωm)− 1) sin(Ωmt)]

= x2
zpf (nb(~Ωm)e−iΩmt + (nb(~Ωm) + 1)eiΩmt)

(2.17)

where nb(~Ωm) = 1
e~Ωm/kbT − 1 is bose einstein occupation number which depends on temper-

ature and the harmonic oscillator’s resonance frequency. The spectral density which is the
fourier transform of the Gxx(t) is not symmetric in frequency and is given as,

Sxx[ω] = 2πx2
zpf [nbδ(ω + Ωm) + (nb + 1)δ(ω − Ωm)] (2.18)

When kbT >> ~Ωm i.e. in the classical limit nb ≈ nb+1 and spectral density becomes symmetric
in frequency.
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2.2.3 Fluctuation-Dissipation Theorem

In the previous section, we have derived the position spectral density when the harmonic oscil-
lator is isolated from the environment. In reality, NEMS is not isolated from the environment.
It is coupled to different temperature baths comprising clamps, two-level defects, electrons in
the metallic layer, external impedances, etc. This coupling of NEMS to external degrees of
freedom can be characterized by its dissipation rate denoted as Γm = ∑

i Γi where Γi is dissipa-
tion through a particular bath. According to the fluctuation-dissipation theorem, the quantum
position spectral density is given as [69],

Sxx[ω] = 2~
(1− e−~ω/kbT )=(χm(ω)) (2.19)

In the above equation χm(ω) is mechanical susceptibility which we have derived in 2.8. The
imaginary part of mechanical susceptibilty is ,

=(χm(ω)) = Γmω
meff [(ω2 − Ω2

m)2 + (Γ2
mω

2)] (2.20)

Thus,
Sxx[ω] = 2~

(1− e−~ω/kbT )
Γmω

meff [(ω2 − Ω2
m)2 + (Γ2

mω
2)] (2.21)

which is not symmetric in frequency as

Sxx[ω]
Sxx[−ω] = (1− e~ω/kbT )

(1− e−~ω/kbT ) (2.22)

For the NEMS with the high quality factor, ω ≈ Ωm and =(χm(ω)) can be approximated as,

=(χm(ω)) ≈ Γm
4meffΩm[(ω − Ωm)2 + (Γm/2)2] (2.23)

The quantum position spectral density is now,

Sxx[ω] ≈ 2~
(1− e−~ω/kbT )

Γm
4meffΩm[(ω − Ωm)2 + (Γm/2)2] (2.24)

In the classical limit where kbT >> ~ω, the expression 1
(1− e−~ω/kbT ) can be approximated as

~ω
kbT

. Thus classical position spectral density is,

Sxx[ω] ≈ kbT

2meffΩ2
m

Γm
[(ω − Ωm)2 + (Γm/2)2] (2.25)
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In experiments we are concerned with single sided position spectral density which is twice the
double sided spectral density. Thus single side spectral density is,

Sx[ω] ≈ kbT

meffΩ2
m

Γm
[(ω − Ωm)2 + (Γm/2)2] (2.26)

2.3 Input-output formalism

Input-output formalism is one of the ways to describe the quantum mechanical behavior of any
system coupled to multiple heat baths comprising of a continuum of harmonic oscillators with
different frequencies [30]. More specifically input-output formalism relates the field emitted by
a system to the input field and the field inside the system. If the system under consideration is
a microwave cavity, then both signal (coherent microwave drive from the generator) and noise
(fluctuations in the microwave drive, fluctuations due to heat baths, etc.) may be embodied
together as an input drive. The derivation of the input-output formalism follows from [29].
The ideal Hamiltonian can be written as,

H = Hsys +Hbath +Hint (2.27)

Hbath =
∑
l

~
∫ ∞
−∞

dω ωb†l (ω)bl(ω) (2.28)

In equation (2.28), l represents one of the multiple heat baths and bl(ω) the boson annihilation
operator of that bath with [bl(ω), b†l (ω)] = δ(ω−ω′). The heat bath operator bl(ω) is coupled to
cl where cl is one of the system’s operator. If the coupling between heat bath and the system’s
operator is linear, the interaction hamiltonian can be written as,

Hint = i~
∑
l

∫ ∞
0

dωγl(ω)[b†l (ω) + bl(ω)][cl − c†l ] (2.29)

Applying rotating wave approximation to equation (2.29) we get the interaction hamiltonian
as,

Hint = i~
∑
l

∫ ∞
−∞

dωγl(ω)[b†l (ω)cl − c†l bl(ω)] (2.30)

where γl(ω) is the coupling constant. In equation (2.30) we have dropped the terms bl(ω)cl
and b†l (ω)c†l as they are fast oscillating compared to other terms. If the system’s operator c†l is
rotating with Ω and b†l (ω) with ω then b†l (ω)c†l will have a time dependence as ei(ω+Ω)t which
is rapidly oscillating compared to b†l (ω)cl with time dependence as ei(ω−Ω)t. We have also ex-
tended the lower limit of the integral from 0 to −∞. This approximation can only be made
if the rotating wave approximation has already been made otherwise the terms having time
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dependence term as ei(ω+Ω)t will be resonant and thus producing spurious effects.

We can now proceed by writing the Heisenberg’s equation of motion for the bath’s operator
bl(ω) and for an arbitrary system’s operator a.

ḃl(ω) = i

~
[bl(ω), H] (2.31)

ȧ = i

~
[a,H] (2.32)

Equations (2.31) and (2.32) yields,

ḃl(ω) = −iωbl(ω) + γl(ω)cl (2.33)

ȧ = − i
~

[a,Hsys] +
∑
l

∫ ∞
−∞

dωγl(ω)[b†l (ω)[a, cl]− [a, c†l ]bl(ω)] (2.34)

Equation (2.33) can be expanded as,

bl(ω) = e−iω(t−t0)b0,l(ω) + γl(ω)
∫ t

t0
e−iω(t−t′ )cl(t

′)dt′ (2.35)

where b0,l(ω) is the value of bl(ω) at time t = t0. The first term denotes the time dependence
of the bath operator bl(ω) when it is not coupled to any system. The second term is due to the
irradiation of waves by an arbitrary system operator cl into the bath. Equation (2.35) can be
substituted into equation (2.34) giving the following equation,

ȧ = − i
~

[a,Hsys] +
∑
l

∫ ∞
−∞

dωγl(ω)
[
b†0,l(ω)eiω(t−t0)[a, cl]− [a, c†l ]e−iω(t−t0)b0,l(ω)

]
+
∑
l

∫ ∞
−∞

dω[γl(ω)]2
∫ t

t0
dt
′
[
eiω(t−t′ )c†l (t

′)[a, cl]− [a, c†l ]e−iω(t−t′ )cl(t
′)
] (2.36)

Also we have dropped time dependence of ȧ, a and cl for notational convenience.

2.3.1 Markov approximation

We now make the markov approximation which assumes the coupling constant γl(ω) is constant
over a range of frequencies. Therefore we can simplify γl(ω) as,

γl(ω) =
√
κl
2π (2.37)
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We can simplify (2.36) using,
∫ ∞
−∞

dωe−iω(t−t′ ) = 2πδ(t− t′) (2.38)

and ∫ t

t0
cl(t

′)δ(t− t′)dt′ = 1
2cl(t) (2.39)

We can define the input field as,

bin,l(t) = 1√
2π

∫ ∞
−∞

dωe−iω(t−t0)b0,l(ω) (2.40)

Putting equations (2.37)-(2.40) in (2.36) we can readily derive the quantum langevin equation,

ȧ = − i
~

[a,Hsys] +
∑
l

√
κl
[
b†in,l[a, cl]− [a, c†l ]bin,l(t)

]
+
∑
l

κl
2π

∫ t

t0
dt
′ [2πδ(t− t′)c†l (t′)[a, cl]− [a, c†l ]2πδ(t− t

′)cl(t
′)
]

= − i
~

[a,Hsys] +
∑
l

√
κl
[
b†in,l[a, cl]− [a, c†l ]bin,l(t)

]

+
∑
l

κl

[
c†l (t)

2 [a, cl]− [a, c†l ]
c(t)
2

]
(2.41)

Thus we have,

ȧ = − i
~

[a,Hsys]−
∑
l

[a, c†l ][
κl
2 cl +√κlbin,l(t)] +

∑
l

[κl2 c
†
l +√κlb†in,l(t)][a, cl] (2.42)

Once the system interacts with the input field bin,l(t) we get an output field bout,l(t). If the
system does not respond to the input field, the output field will simply be the same as the
input field. While if the system interacts with the input field, the output field will thus contain
the waves radiated by the system. Let us consider the time t1 in the distant future after the
system has interacted with the input field. The bath operators can be written as,

bl(ω) = e−iω(t1−t)b0,l(ω)− γl(ω)
∫ t1

t
e−iω(t−t′ )cl(t

′)dt′ (2.43)

The above equation serves as the final condition rather than initial condition as done in equation
(2.35). We define the output field as,

bout,l(t) = 1√
2π

∫ ∞
−∞

dωe−iω(t1−t)b0,l(ω) (2.44)
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We can thus write the quantum langevin equation in terms of the output field following a
procedure analogous to the one used to derive the quantum langevin equation in terms of input
field.

ȧ = − i
~

[a,Hsys] +
∑
l

[a, c†l ][
κl
2 cl −

√
κlbout,l(t)]−

∑
l

[κl2 c
†
l −
√
κlb
†
out,l(t)][a, cl] (2.45)

2.3.2 Relation between input and output field

Subtracting equation (2.45) from (2.42) yields an input-output relation involving sums of con-
tributions from different baths. More useful input-output relations, each pertaining to a single
bath can be obtained by returning to equation (2.35) and its dual (2.43). We can integrate
equation (2.35) and write an alternative form for bin,l(t).

1√
2π

∫ ∞
−∞

dωbl(ω) = 1√
2π

∫ ∞
−∞

dωe−iω(t−t0)b0,l(ω) +
√
κl

2π

∫ t

t0
cl(t

′)dt′
∫ ∞
−∞

dωe−iω(t−t′ ) (2.46)

After simplifying the above equation we can write,

1√
2π

∫ ∞
−∞

dωbl(ω) = bin,l(t) +
√
κl
2 cl(t) (2.47)

Similarly we can write an alternative for bout,l(t) by integrating equation (2.43),

1√
2π

∫ ∞
−∞

dωbl(ω) = bout,l(t)−
√
κl
2 cl(t) (2.48)

Therefore one can relate the input and output field using equations (2.47) and (2.48),

bout,l(t) = bin,l(t) +√κlcl(t) (2.49)

2.4 Microwave cavity

In our optomechanical system, the mechanical resonator is embedded into the microwave cavity
such that the motion of NEMS modulates the capacitance of the MWC and, therefore the
resonance frequency. The superconducting microwave cavity can be modeled using a parallel
LC circuit as shown in figure 2.4. We will discuss the design issues and simulations in the next
chapter. In this section, only the quantum mechanical model of the MWC will be elaborated.

The energy stored in the circuit is

Ecircuit = 1
2Li(t)

2 + 1
2Cv(t)2 = 1

2Lq̇
2 + 1

2
q2

C
(2.50)
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where i(t) = ∂q(t)
∂t

is the current flowing into the inductor and v(t) is the voltage across the
capacitor. q(t) is the charge stored in the capacitor. The lagrangian of the system is,

Lcircuit = 1
2Lq̇

2 − 1
2
q2

C
∂Lcircuit
∂q̇

= Lq̇ = φ
(2.51)

where we introduce φ as the canonical conjugate variable to charge q. The Hamiltonian of the
circuit can be written in terms of canonical conjugate variables i.e. q and φ,

H = φ2

2L + q2

2C
[q, φ] = −i~

(2.52)

𝐶𝐿

𝑣(𝑡)

𝑖(𝑡)

Figure 2.4: A superconducting mi-
crowave cavity represented as parallel LC
circuit with current i flowing into the in-
ductor and voltage v across the capacitor

Going further we can define the creation and annihila-
tion operators for MWC by defining,

a =
√
Lωc
2~ q − i

√
1

2Lωc~
φ

a† =
√
Lωc
2~ q + i

√
1

2Lωc~
φ

(2.53)

such that [a, a†] = 1 and hamiltonian of the cavity is
H = ~ωc(a†a+ 1

2).

2.5 Capacitively coupled NEMS
and microwave cavity

Our system comprises of MWC and NEMS coupled ca-
pacitively as shown in figure 2.5 such that the resonance
frequency of the MWC is modulated by the mechanical
amplitude of the NEMS, x. We denote the operator
corresponding to MWC as a and NEMS as b. Writ-
ing the taylor expansion of the resonance frequency of
MWC up to first order we get,

ωc(x) = ωc + ∂ωc
∂x

x (2.54)

In the above equation, ωc is the resonance frequency of the MWC when the mechanical resonator
is at its equilibrium position. Since both NEMS and microwave cavity are harmonic oscillators,
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Figure 2.5: A schematic showing the coupling between MWC and NEMS and
also the coupling of MWC and NEMS to external heat baths.

the hamiltonian of our system can be written as,

Hsys = ~ωc(x)a†a+ ~Ωmb
†b (2.55)

The change in the resonance frequency of the MWC per unit displacement of the NEMS is
defined as G = ∂ωc

∂x
. We can also define vacuum optomechanical coupling as g0 = Gxzpf where

xzpf =
√

~
2meffΩm

is the zero point fluctuation of the mechanical resonantor. meff is the

effective mass of the mechanical resonator when vibrating and Ωm is the mechanical resonance
frequency. Equation (2.55) can be expanded as ,

Hsys = ~ωca†a+ ~Ωmb
†b+ ~g0(b+ b†)a†a (2.56)

where x = xzpf (b+ b†).

2.6 Quantum langevin equations of motion

Let a be the phonon annihilation operator of microwave cavity. The input field is denoted as
ain,k(t). Replacing c with a and bin,k(t) with ain,k(t) the quantum langevin equation (2.42) is
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modified as,
ȧ = − i

~
[a,Hsys]−

∑
k

κk
2 a−

∑
k

√
κkain,k(t) (2.57)

Let b be the annihilation operator for phonons occupying the mechanical mode of the nanome-
chanical resonator. The input field is denoted as bin,k(t) here. We also replace κk with Γk in
equation (2.42) to have a distinction between the coupling constants of MWC and NEMS in-
teracting separately with external thermal baths, and thus we can write the quantum Langevin
equation for NEMS as,

ḃ = − i
~

[b,Hsys]−
∑
k

Γk
2 b−

∑
k

√
Γkbin,k(t) (2.58)

MWC will interact with transmission line through two different ports with coupling constants
as κl and κr respectively and to thermal bath with coupling constant κ0. The coupling of the
mechanical resonator to external degrees of freedom is characterized by its dissipation rate as
Γm. The thermal noise operator will be denoted as δal, δar, and δa0 for left and right port of
transmission line and cavity thermal bath, respectively. For the NEMS, it is δb.

We can further define κtotal = κl + κr + κ0 and input field as ain,l = αin,l + δain,l which
comprises of the driving field as well as the noise which in incident from the left port. The
output field aout,l will always be defined to the right in the transmission geometry as shown
in figure 2.5. Substituting κtotal = κl + κr + κ0 and ain,l = αin,l + δain,l we can finally write
the langevin equation for the MWC and NEMS with their respective coupling constants to the
external thermal bath as,

ȧ = − i
~

[a,Hsys]−
κtotal

2 a−
√
κlαin,l(t)−

∑
k=l,r,0

√
κkδain,k(t) (2.59)

For the NEMS with operator denoted as b we can write it’s quantum langevin equation when
it is thermal equilibrium but weakly coupled to the bath,

ḃ = − i
~

[b,Hsys]−
Γm
2 b−

√
Γmδbin(t) (2.60)

2.6.1 Solutions to equations of motion

The input field, ain,l comprises of driving field and the noise. The resulting field in the MWC also
displaces the equilibrium position of the NEMS with a radiation pressure force. The radiation
pressure force, F is simply the derivative of the interaction hamiltonian, Hint = ~g0(b+ b†)a†a
between NEMS and MWC with respect to displacement.

F = −∂Hint

dx
= ~

g0

xzpf
a†a (2.61)
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In the above equation, F varies linearly with a†a, which is the number of photons in the
MWC. The interaction can thus be enhanced by injecting more power in the MWC, thereby
increasing the number of photons. The coherent drive thus induces coherent oscillations in
the MWC. The cavity field, a will thus have a large component at driving frequency, ωd and
a small fluctuating term δa and the mechanical field can be split into an average shift of the
equilibrium position, bshift and the fluctuating term δb. Thus,

ain,l = αin,l + δain,l = αine
−iωdte−iφ + δain,l

a = αe−iωdt + δa

b = bshift + δb

(2.62)

Putting (2.62) and (2.56) in (2.59) and (2.60) we get,

−iωdαe−iωdt + δȧ = −(iωc + κtotal
2 )(αe−iωdt + δa)− ig0(bshift + δb+ b∗shift + δb†)(αe−iωdt + δa)

−
√
κl(αine−iωdte−iφ)−

∑
k=l,r,0

√
κkδain,k

(2.63)

δḃ = −(iΩm + Γm
2 )(bshift + δb)− ig0(αe−iωdt + δa)(αeiωdt + δa†)−

√
Γmδbin (2.64)

We can set all the noise terms to zero to obtain the response of the cavity which is coherent with
the drive thus considering all the terms with a large component at ωd. The above equations will
give us coherent amplitude in the MWC i.e. α in terms of αin and change in the equilibrium
position of NEMS, bshift.

α = −√κlαine−iφ

i(ω′c − ωd) + κtotal/2
(2.65)

bshift = −ig0α
2

iΩm + Γm
2

(2.66)

In above equation, ω′c = ωc+g0(bshift+b∗shift) is the new shifted resonance frequency. From here
we will denote the shifted resonance frequency ω′c as ωc. The coherent cavity photon numbers
in the cavity is given as,

nd = |α|2 = κl|αin|2

κ2
total/4 + (ωc − ωd)2 = 4κlPin

~ωd(κ2
total + 4(ωc − ωd)2) (2.67)
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2.6.2 Linearized equations of motion

Now we consider the noise terms in (2.63),

δȧ = −(iωc + κtotal
2 )δa− ig0(δb+ δb†)αe−iωdt −

∑
k=l,r,0

√
κkδain,k (2.68)

In the above equation we have neglected the terms δaδb and δaδb† which are very small. The
term ig0(bshift + b†shift)δa is merged with the term (iωc + κtotal

2 )δa and we can write ωc =
ωc + ig0(bshift + b†shift) where ig0(bshift + b†shift) is very small shift in resonance frequency of
MWC.

Similarly we can write the equation of motion for NEMS,

δḃ = −(iΩm + Γm
2 )δb− ig0α(δαeiωdt + δa†e−iωdt)−

√
Γmδbin (2.69)

The time dependence of (2.68) and (2.69) can be eliminated by going to a rotating frame. A
change of variables is done for cavity δa with new operators given by δa = δae−iωdt,δain,k =
δain,ke

−iωdt thus yielding following equations,

δȧ = (i∆− κtotal
2 )δa− ig0(δb+ δb†)α−

∑
k=l,r,0

√
κkδain,k (2.70)

δḃ = −(iΩm + Γm
2 )δb− ig0α(δa+ δa†)−

√
Γmδbin (2.71)

We will first solve the equation of motion for in-cavity pumping where ∆ = ωd − ωc = 0. We
will call this scheme as green pumping from here on.

Green pumping scheme

Writing the linearized equations of motion with ∆ = 0 we get,

δȧ = −κtotal2 δa− ig0(δb+ δb†)α−
∑

k=l,r,0

√
κkδain,k (2.72)

δḃ = −(iΩm + Γm
2 )δb− ig0α(δa+ δa†)−

√
Γmδbin (2.73)

a and b are time-dependent operators, it is simple to solve the above equations in Fourier space.
a[ω] and b[ω] are the Fourier transforms of a and b respectively. Writing the Fourier transforms
of the above equations we get,

− iωδa[ω] = −κtotal2 δa[ω]− ig0(δb[ω] + δb†[ω])α−
∑

k=l,r,0

√
κkδain,k[ω] (2.74)
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− iωδb[ω] = −(iΩm + Γm
2 )δb[ω]− ig0α(δa[ω] + δa†[ω])−

√
Γmδbin[ω] (2.75)

While writing the fourier transform we have used F(δȧ) = −iωδa[ω] and F(δḃ) = −iωδb[ω]
where F denotes the fourier transform operator. Since there are four variables i.e. δa[ω], δb[ω],
δa†[ω], δb†[ω] we can take the conjugate of above two equations thus satisfying the need for four
equations to solve for the variables. We have also defined g = g0α, χc(ω) = 1

κtotal
2 − iω

and

χm(ω) = 1
Γm
2 − i(ω − Ωm)

. While taking the conjugate we have used the relation [δa[ω]]† =

δa†[−ω] and replaced −ω with ω thus yielding,

δa†[ω] =
ig(δb[ω] + δb†[ω])−

∑
k=l,r,0

√
κkδa

†
in,k[ω]

χ∗c(−ω) (2.76)

δb†[ω] =
[
ig(δa[ω] + δa†[ω])−

√
Γmδb†in[ω]

]
χ∗m(−ω) (2.77)

We can write equations (2.74), (2.75), (2.76) and (2.77) in the matrix notation such that,


1 0 igχc(ω) igχc(ω)
0 1 −igχ∗c(−ω) −igχ∗c(−ω)

igχm(ω) igχm(ω) 1 0
−igχ∗m(−ω) −igχ∗m(−ω) 0 1




δa[ω]
δa†[ω]
δb[ω]
δb†[ω]

 =


−∑k=l,r,0

√
κkδain,k[ω]χc(ω)

−∑k=l,r,0
√
κkδa

†
in,k[ω]χ∗c(−ω)

−
√

Γmδbin[ω]χm(ω)
−
√

Γmδb†in[ω]χ∗m(−ω)


(2.78)

which can be further written as,

δa[ω]
δa†[ω]
δb[ω]
δb†[ω]

 = A−1


−∑k=l,r,0

√
κkδain,k[ω]χc(ω)

−∑k=l,r,0
√
κkδa

†
in,k[ω]χ∗c(−ω)

−
√

Γmδbin[ω]χm(ω)
−
√

Γmδb†in[ω]χ∗m(−ω)

 (2.79)

whereA−1 is the inverse of the matrixA =


1 0 igχc(ω) igχc(ω)
0 1 −igχ∗c(−ω) −igχ∗c(−ω)

igχm(ω) igχm(ω) 1 0
−igχ∗m(−ω) −igχ∗m(−ω) 0 1


Since we are interested in noise output from MWC we can solve for δa[ω] from above

equations,

δa[ω] = −
∑

k=l,r,0

√
κkδain,k[ω]χc(ω)X1 −

∑
k=l,r,0

√
κkδa

†
in,k[ω]χ∗c(−ω)X2

−
√

Γmδbin[ω]χm(ω)X3 −
√

Γmδb†in[ω]χ∗m(−ω)X4

(2.80)
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where,
X1 = −χc(ω)χm(ω)g2 + χc(ω)χ∗m(−ω)g2 + 1

X2 = χc(ω)g2(−χm(ω) + χ∗m(−ω))

X3 = −igχc(ω)

X4 = −igχc(ω)

We can write the input-output relation for left and right coupling of transmission line to MWC,

aout,l[ω] = ain,l[ω] +√κla[ω]

aout,r[ω] = ain,r[ω] +√κra[ω]
(2.81)

We are interested in transmission of the field, we need to calculate aout,r[ω]. The above input
output relation can also be written in terms of noise operators such that δaout,r[ω] = δain,r[ω] +
√
κrδa[ω]. The state of the mechanical resonator can be characterized through its spectral

density. According to the Wiener-Khinchin theorem, the spectral density of any operator is the
Fourier transform of the autocorrelation function. So,

Sbb[ω] =
∫ ∞
−∞

Gbb(t)eiωtdt

=
∫ ∞
−∞
〈b(t)b(0)〉 eiωtdt

=
∫ ∞
−∞

〈
b†(−t)b(0)

〉
eiωtdt∫ ∞

−∞

〈
b†(0)b(t)

〉
eiωtdt

(2.82)

where Gbb(t) =
〈
b†(0)b(t)

〉
is the autocorrelation function. Considering b[ω] as the fourier

transform of b(t) we can write
〈
b†[ω2]b[ω1]

〉
in terms of windowed fourier transform of its time

dependent analogue.

〈
b†[ω2]b[ω1]

〉
= lim

T→∞

1
T

∫ T/2

−T/2

∫ T/2

−T/2
eiω2t2eiω1t1

〈
b†(t2)b(t1)

〉
dt2dt1

= lim
T→∞

1
T

∫ T/2

−T/2

∫ T/2+t2

−T/2+t2
eiω2t2eiω1(t2+τ)

〈
b†(t2)b(t2 + τ)

〉
dt2dτ

= lim
T→∞

1
T

∫ T/2

−T/2

∫ ∞
−∞

eiω2t2eiω1(t2+τ)
〈
b†(0)b(τ)

〉
dt2dτ

= lim
T→∞

1
T

∫ T/2

−T/2
ei(ω2+ω1)t2dt2

∫ ∞
−∞

eiω1(τ)
〈
b†(0)b(τ)

〉
dτ

= δω2,−ω1Sbb[ω1]

(2.83)
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The spectral density of mechanical resonator with state b can thus be defined as,

Sbb[ω] =
〈
b†[−ω]b[ω]

〉
(2.84)

In order to infer the state of mechanical resonator from measurement, we need to relate it to
the output field immediately at the output of the cavity. The spectral density of the noise field
output immediately after the cavity is,

Sδaout,rδaout,r =
〈
δa†out,r[−ω]δaout,r[ω]

〉
(2.85)

We can further derive the spectrum of the output field,

Sδaout,rδaout,r =
〈
δa†in,r[−ω]δain,r[ω]

〉
+ κr

〈
δa†[−ω]δa[ω]

〉
+

√
κr
〈
δa†in,r[−ω]δa[ω]

〉
+√κr

〈
δa†[−ω]δain,r[ω]

〉
=
〈
δa†in,r[−ω]δain,r[ω]

〉
+

∑
k=l,r,0

κk
〈
δa†in,k[−ω]δain,k[ω]

〉
χ∗c(ω)χc(ω)X1X

∗
1κr

+
∑

k=l,r,0
κk
〈
δain,k[−ω]δa†in,k[ω]

〉
χ∗c(−ω)χc(−ω)X2X

∗
2κr

+Γmκr
〈
δb†in[−ω]δbin[ω]

〉
χ∗m(ω)χm(ω)X3X

∗
3

+Γmκr
〈
δbin[−ω]δb†in[ω]

〉
χ∗m(−ω)χm(−ω)X4X

∗
4

(2.86)

The expectation value of noise operators are [22],

〈
δa†k(t)δak(t

′)
〉

= nk,thδ(t− t
′) (2.87)

〈
δak(t)δa†k(t

′)
〉

= (nk,th + 1)δ(t− t′) (2.88)

where k = (l, r, 0). If the bath is being probed over a narrow range of frequencies around the
frequency of interest (ωc for MWC) which we had done when we applied the Markov approx-
imation, then the above expectation values of the noise operators are a good approximation.
nk,th is the thermal occupancy number of the bath. Similarly, for the NEMS, we can write the
expectation value of the noise operator δb as,

〈
δb†(t)δb(t′)

〉
= nbδ(t− t

′) (2.89)

〈
δb(t)δb†(t′)

〉
= (nb + 1)δ(t− t′) (2.90)
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Equation (2.86) can be further expanded into noise spectrums input from left, right, internal
or thermally,

Sδaout,rδaout,r = nc,r + κ2
rnc,r|χc(ω)|2|X1|2 + κ2

r(nc,r + 1)|χc(−ω)|2|X2|2

+κrκlnc,l|χc(ω)|2|X1|2 + κrκl(nc,l + 1)|χc(−ω)|2|X2|2

+κrκ0nc,0|χc(ω)|2|X1|2 + κrκ0(nc,0 + 1)|χc(−ω)|2|X2|2

+Γmκrnb|χm(ω)|2|X3|2 + Γmκr(nb + 1)|χm(−ω)|2|X4|2

(2.91)

where 〈
δa†in,r[−ω]δain,r[ω]

〉
= nc,r and

〈
δain,r[−ω]δa†in,r[ω]

〉
= nc,r + 1〈

δa†in,l[−ω]δain,l[ω]
〉

= nc,l and
〈
δain,l[−ω]δa†in,l[ω]

〉
= nc,l + 1〈

δa†in,0[−ω]δain,0[ω]
〉

= nc,0 and
〈
δain,0[−ω]δa†in,0[ω]

〉
= nc,0 + 1〈

δb†in[−ω]δbin[ω]
〉

= nb and
〈
δbin[−ω]δb†in[ω]

〉
= nb + 1

nc,r, nc,l, nc,0 are the thermal occupancy of the right port, left port, internal port, thermal
baths for MWC and nb is the thermal occupancy of NEMS. We will first discuss the mechanical
noise spectrum in the output noise spectrum. The last two terms in the expression for the
output noise spectrum characterizes the mechanical behavior. Expanding the last two terms in
the expression for output noise spectrum we get,

S = 16Γmκrnbg2

Γ2
m + 4(ω − Ωm)2

1
κ2
total + 4Ω2

m

+ 16Γmκr(nb + 1)g2

Γ2
m + 4(−ω − Ωm)2

1
κ2
total + 4Ω2

m

(2.92)

While expanding the last two terms of (2.91) we have appoximated |χc|2 = 1
(κtotal2 )2 + ω2

as

|χc|2 = 1
(κtotal2 )2 + Ω2

m

since we have made a rotating wave approximation and the derivation is

done in a frame rotating with ωc and thus ω ≈ Ωm. We can the write (2.92) in the laboratory
frame as,

S = 16Γmκrnbg2

Γ2
m + 4(ωc − ω − Ωm)2

1
κ2
total + 4Ω2

m

+ 16Γmκrg2(nb + 1)
Γ2
m + 4(ω − ωc − Ωm)2

1
κ2
total + 4Ω2

m

(2.93)

The above equation comprises of two lorentzian curves peaked at ωc + Ωm and ωc − Ωm as
shown in figure 2.6.
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Figure 2.6: The mechanical noise spectrum while pumping on the MWC’s
resonance frequency (green pump) with different pump powers applied at the
generator mentioned in the legend. The plots show two sidebands at ωc − Ωm

(left) and ωc + Ωm (right)

Red pumping scheme

Previously in the green pumping scheme, we derived the spectrum of output cavity response
when we pumped at ωc. Various interesting phenomena can occur if we pump off-resonance
particularly at ωc+Ωm (blue pumping) and ωc−Ωm (red pumping). We will discuss phenomena
such as heating and cooling of mechanical mode after we derive the expression for the cavity
output response when pumping red and blue. Starting with (2.70) and (2.71) we write the
equations in Fourier space.

δa[ω] =
−ig(δb[ω] + δb†[ω])−

∑
k=l,r,0

√
κkδain,k[ω]

χc(ω) (2.94)

δb[ω] =
[
−ig(δa[ω] + δa†[ω])−

√
Γmδbin[ω]

]
χm(ω) (2.95)

Again we define the mechanical and cavity susceptibilities as χm(ω) = 1
Γm
2 − i(ω − Ωm)

and

χc(ω) = 1
κtotal

2 − i(ω + ∆)
respectively. We have defined detuning as ∆ = ωd − ωc. If ∆ < 0

we call the pumping red detuned, and if ∆ > 0, the pumping is blue detuned. We will
first derive the output noise spectrum for red detuned pumping while making a rotating wave
approximation, and then we will follow up with blue detuned pumping. Since ∆ ≈ −Ωm for red
pumping, the effective frequency of the MWC will be close to mechanical resonance frequency
i.e. the cavity susceptibility is approximately 2

κtotal
. In this case terms like b†[ω] and a†[ω] can
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Figure 2.7: Theoretical plots for effective linewidth (left) and change in me-
chanical resonance frequency shift (right) versus relative change in the detuning

(red) for different pump powers.

be ignored following rotating wave approximation. Putting (2.94) in (2.95) we get,

δb[ω] = χm(ω)
1 + g2χm(ω)χc(ω)

igχc(ω)
∑

k=l,r,0

√
κkδain,k[ω]−

√
Γmδbin[ω]

 (2.96)

Expanding the modified mechanical susceptibility we get,

χm(ω) = 1
Γm
2 + g2κtotal/2

κ2
total/4 + (ω + ∆)2 − i(ω − Ωm − g2 Ωm + ∆

κ2
total/4 + 4(ω + ∆)2 )

(2.97)

The modified dissipation rate is Γeff = Γm + 4g2κtotal
κ2
total + 4(Ωm + ∆)2 and the modified mechanical

resonance frequency is Ω′m = Ωm+ 4g2(Ωm + ∆)
κ2
total + 4(Ωm + ∆)2 . We also approximated ω ≈ Ωm as term

1
κ2
total/4 + (ω + ∆)2 is proportional to MWC’s susceptibility which varies slowly compared to

mechanical response. Thus it can be approximated by its value at the mechanical resonance.
Since ∆ ≈ −Ωm we can write Γeff = Γm + 4g2

κtotal
and change in the mechanical resonance

frequency is negligible. The plots for Γeff and change in mechanical resonance frequency
versus relative change in the red detuning is shown in figure 2.7. When ∆ ≈ −Ωm, χc can be
approximated as 2

κtotal
. Putting χc = 2

κtotal
in (2.96) and (2.96) in (2.94) we can write δa[ω] in

terms of other noise inputs.
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δa[ω] = 4g2

κ2
total

χm(ω)
∑

k=l,r,i,0

√
κkδain,k[ω] + 2ig

κtotal

√
Γmχm(ω)δbin[ω]− 2

κtotal

∑
k=l,r,0

√
κkδain,k[ω]

(2.98)
Following the input and output relation as done in Green pumping scheme, the spectral density
of the noise field output after the cavity is, Sδaout,rδaout,r =

〈
δa†out,r[−ω]δaout,r[ω]

〉
which can be

expanded as,

Sδaout,rδaout,r = ( 4g2

κ2
total

χm(ω)− 2
κtotal

)( 4g2

κ2
total

χ∗m(ω)− 2
κtotal

)κr
∑

k=l,r,0
κk
〈
δa†in,k[−ω]δain,k[ω]

〉

+(1 + 4g2

κ2
total

χm(ω)κr −
2

κtotal
κr)(1 + 4g2

κ2
total

χ∗m(ω)κr −
2

κtotal
κr)

〈
δa†in,l[−ω]δain,l[ω]

〉
+4g2Γm

κr
κ2
total

|χm(ω)|2
〈
δb†in[−ω]δbin[ω]

〉
(2.99)

Since we are only concerned with the mechanical noise spectrum in the output noise spectrum
of the cavity, the term relevant to us is 4g2Γm

κr
κ2
total

|χm(ω)|2
〈
δb†in[−ω]δbin[ω]

〉
which when

expanded yields,
S = 4 κr

κtotal

ΓomΓmnb
(Γom + Γm)2 + 4(ω − Ω′m)2 (2.100)

In the above equation nb =
〈
δb†in[−ω]δbin[ω]

〉
is the thermal occupancy of the mechanical res-

onator. Ω′m is the modified resonance frequency due to optical spring effect and Γom = 4g2

κtotal
is

the optomechanical damping rate. The spectrum S are in the units of photons and is lorentzian.
The lorentian signal has to be greater than the noise floor of the measurement set up in order to
be resolved. We can therefore write the spectrum as S = nf+4 κr

κtotal

ΓomΓmnb
(Γom + Γm)2 + 4(ω − Ω′m)2

where nf is the noise floor. As discussed before position spectral density measured by spectrum
analyzer Sx = 2Sxx = 4kbT

meffΩ2
m

Γm
(Γom + Γm)2 + 4(ω − Ωm)2 according to fluctuation-dissipation

theorem. Therefore one can derive the position spectral density from the spectral density of
the output field by replacing nb with

kbT

~Ωm

, Γom with 4g2

κtotal
and finally g with G√ndxzpf and
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Figure 2.8: (left) Spectrum of the output field for red pumping at different
pump powers applied at the generator at 250 mK. (right) Position spectral density
of the mechanical resonator derived from the spectrum of the output field. One

can refer chapter 4 for details about the device.

using xzpf =
√

~
2meffΩm

,

S = nf + 4 κr
κtotal

ΓomΓmnb
(Γom + Γm)2 + 4(ω − Ω′m)2

= nf + 16 kbTκrg
2

~Ωmκ2
total

Γm
(Γom + Γm)2 + 4(ω − Ω′m)2

= nf + 16 kbTκrG
2nd~

2meff~Ω2
mκ

2
total

Γm
(Γom + Γm)2 + 4(ω − Ω′m)2

= nf + 8 kbTκrG
2nd

meffΩ2
mκ

2
total

Γm
(Γom + Γm)2 + 4(ω − Ω′m)2

= nf + 2κrG
2nd

κ2
total

Sx

(2.101)

In figure 2.8 we have plotted the spectrum of the output field with different pump power
applied at the generator. With the increase in the pump power, we can see an increase in the
amplitude of the signal. Also, it is expected that the linewidth of the signal will also increase
with an increase in pump power due to damping of the mechanical resonator by radiation
pressure forces applied by the microwave cavity. In figure ?? Linewidth of the spectrum of
the output field is plotted against the power applied at the cell. Since Γeff = Γm + 4g2

0nd
κtotal

one can estimate the value of g0 by extracting the slope of linear fit in figure 2.9. Here g0 is
approximately 0.45 Hz. Hence G = g0xzpf can easily be calculated as we know the dimensions
of the device, and consequently, Sxx can be retrieved from S. Since the mechanical resonator is
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Figure 2.9: Linewidth of the spectral density of the output field versus Power
applied to the chip. One can refer chapter 4 for details about the device.

damped due to radiation pressure forces, it will be cooled subsequently. This cooling process of
the mechanical resonator is analogous to the Raman scattering picture. If the pump frequency
is optimally detuned from the cavity, in this case, ωd = ωc−Ωm, there is a sideband asymmetry
due to cavity density of states. The mechanical resonator is either cooled or heated depending
on the asymmetry in the power levels of stokes and anti-stokes sidebands. If the power emitted
in the stokes sideband is more than the anti-stokes sideband, the mechanical resonator is heated
and cooled, if vice versa. For red detuned pumping power emitted in anti-stokes sideband is
more than the stokes, so it leads to extraction of phonons from the mechanical resonator. If
ωd = ωc + Ωm, blue detuned pumping, the power emitted in stokes sideband is more than
the anti-stokes sideband leading to heating of mechanical resonator and consequently to self-
oscillation if the asymmetry between the sidebands crosses a certain threshold.

2.6.3 Blue pumping scheme

Similarly, we can derive the spectrum of the output field when we are pumping at ωd = ωc+Ωm.
As we have done for red pumping we will start with equations, (2.70) and (2.71)

δa[ω] =
−ig(δb[ω] + δb†[ω])−

∑
k=l,r,0

√
κkδain,k[ω]

χc(ω) (2.102)

δb[ω] =
[
−ig(δa[ω] + δa†[ω])−

√
Γmδbin[ω]

]
χm(ω) (2.103)
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Figure 2.10: Theoretical plots for effective linewidth (left) and change in me-
chanical resonance frequency shift (right) versus relative change in the detuning
(blue) for different pump powers. One can refer chapter 4 for details about the

device.

Following the same procedure we make the rotating wave approximation and eliminate the
terms like a[ω] and b[ω]. Putting (2.102) in (2.103) we get,

δb[ω] = χm(ω)
1− g2χm(ω)χ∗c(−ω)

igχ∗c(−ω)
∑

k=l,r,0

√
κkδa

†
in,k[ω]−

√
Γmδbin[ω]

 (2.104)

The modified mechanical susceptibility is χm(ω) = χm(ω)
1− g2χm(ω)χ∗c(−ω) and the effective dissi-

pation rate is Γeff = Γm −
4g2κtotal

κ2
total + 4(∆− Ωm)2 . For ∆ = Ωm we can write Γeff = Γm −

4g2

κtotal
.

The mechanical resonance frequency will also be modified due to altered mechanical spring
constant given as Ω′m = Ωm + 4g2(∆− Ωm)

κ2
total + 4(∆− Ωm)2 We can write δb†[ω] from equation (2.104),

δb†[ω] = χ∗m(−ω)
−igχc(ω)

∑
k=l,r,0

√
κkδain,k[ω]−

√
Γmδb†in[ω]

 (2.105)

Putting (2.105) in equation (2.102) we get,

δa[ω] = −4g2

κ2
total

χ∗m(−ω)
∑

k=l,r,0

√
κkδain,k[ω] + 2ig

κtotal

√
Γmχ∗m(−ω)δbin[ω]− 2

κtotal

∑
k=l,r,0

√
κkδain,k[ω]

(2.106)
Again following the input and output relation as done in subsection 2.6.2, the spectral density
of the noise field output after the cavity is, Sδaout,rδaout,r =

〈
δa†out,r[−ω]δaout,r[ω]

〉
which can be
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Figure 2.11: (left) Spectrum of the output field for blue pumping at different
pump powers applied at the generator at 250 mK. (right) Position spectral density
of the mechanical resonator derived from the spectrum of the output field. One

can refer chapter 4 for details about the device.

expanded as,

Sδaout,rδaout,r = (−4g2

κ2
total

χm(−ω)− 2
κtotal

)(−4g2

κ2
total

χ∗m(−ω)− 2
κtotal

)κr
∑

k=l,r,0
κk
〈
δa†in,k[−ω]δain,k[ω]

〉

+(1− 4g2

κ2
total

χm(−ω)κr −
2

κtotal
κr)(1 + 4g2

κ2
total

χ∗m(−ω)κr −
2

κtotal
κr)

〈
δa†in,l[−ω]δain,l[ω]

〉
+4g2Γm

κr
κ2
total

|χm(−ω)|2
〈
δbin[−ω]δb†in[ω]

〉
(2.107)

Once again, we are interested in the mechanical noise spectrum in the output noise spectrum of
the cavity. Therefore the term relevant to us if 4g2Γm

κr
κ2
total

|χm(−ω)|2
〈
δbin[−ω]δb†in[ω]

〉
which

when expanded yields,
S = 4 κr

κtotal

ΓomΓm(nb + 1)
(Γom + Γm)2 + 4(−ω − Ω′m)2 (2.108)

In the above equation nb + 1 =
〈
δbin[−ω]δb†in[ω]

〉
where nb is the thermal occupancy of the

mechanical resonator. As done previously for the red detuned pumping we can write the
mechanical noise spectral density in terms of the position spectral density in this case as,

S = nf + 2 κr
κtotal

G2nd
κtotal

Sx (2.109)

In figure ?? linewidth of the output, spectrum is plotted against the power applied to the
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Figure 2.12: Linewidth of the spectral density of the output field versus Power
applied to the chip. One can refer chapter 4 for details about the device.

transmission line. One can extract the slope of the linear fit and estimate the value of g0, which
is approximately 0.45 Hz.
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Chapter 3

Experimental Techniques

3.1 Introduction

The continuous demand for faster computing has resulted in the fabrication of billions of tran-
sistors on a single chip, e.g., 7980xe has around 7 billion transistors [1]. These chips are typically
fabricated in nanofabrication facilities. The nanofabrication technologies have paved the way
for faster computing by fabricating smaller transistors and developing novel devices such as
superconducting qubits, MEMS/NEMS etc. We will begin this chapter by discussing the fab-
rication steps of SiN based mechanical resonator (in our case, doubly clamped nanobeam)
and superconducting microwave cavity. We will report several problems associated with the
fabrication of these devices. We will then talk about the characterization of nanobeams in a
4-kelvin cryostat. We will also delve into different techniques to actuate and detect the motion
of nanobeams. In particular, we will outline the ideas behind magneto-motive detection and
actuation. The advent of cavity optomechanics has resulted in the sensitive detection of motion
of NEMS. The majority of the experiments were done using silicon-nitride-based nanobeam ca-
pacitively coupled to the microwave cavity. The sensitivity of detecting the mechanical motion
depends mainly on the quality factor of the cavity. Fabricating the superconducting cavities
with high-quality factors and subsequently characterizing them is an important step. The char-
acterization of the microwave cavities and the cavity optomechanical experiments were done in
a commercial Bluefors dry dilution fridge. We will highlight the basic principles of the dilution
cryostat. The circuit diagram for measurement of mechanical noise spectrum will be illus-
trated with all the calibrations carried out for measurement down to 7 mK. Different pumping
schemes, i.e., red, blue, and in-cavity pumping, will also be discussed.

3.2 Fabrication of NEMS

NEMS comprises various suspended mechanical systems like drums, cantilevers, and nanobeams,
as shown in figure 3.1. Nanobeams made of silicon nitride clamped at both ends give us an
advantage of controlling the stress in the structure, which regulates the resonance frequency
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of the mechanical mode. The typical approaches taken for fabricating NEMS are top-down
and bottom-up. For NEMS made of graphene or carbon nanotubes (CNTs), the bottom-up
approach is generally followed. We take the top-down approach to fabricate NEMS made of
solid-state materials (SiN in our case). In a top-down approach, the solid-state material like
SiN, Si, Al, etc., is patterned using various lithographic techniques and then etched to release
the structure. This section will discuss the fabrication of doubly clamped nanobeams made of
SiN with a thin layer of Aluminum on top. The process was optimized at the nanofabrication
facility in Institut Néel. This process involves e-beam lithography, e-beam evaporation, reactive
ion etching, and XeF2 etching on a Silicon chip (1 cm2) covered with 100 nm of Silicon Nitride.
All the fabrication steps are illustrated in figure 3.2.

Figure 3.1: Different types of NEMS (left) Cantilever (middle) Doubly clamed
nanobeam and (right) Toroidal whispering gallery microresonators

3.2.1 e-beam lithography

The 1 cm2 chip is cleaned with acetone and kept in an ultrasonic bath for 5 minutes to remove
any organic/oil residues. The residues left by acetone are cleaned by Isopropyl alcohol (IPA)
and the chip is kept in an ultrasonic bath for 5 minutes. The chip is then rinsed with RBS
solution and rinsed with abundant de-ionized water, and then exposed with O2 plasma for 5
minutes. 250 nm of PMMA 4% resist is spin-coated on the chip at a speed of 6000 rpm with
an acceleration of 4000 rpm/s for 30 s followed by baking at 180 0C.

The chip is then exposed with 20 keV electrons in a scanning electron microscope. The
nanobeam is exposed with 7.5 µm aperture and the pads with 120 µm aperture. The typical
dosage is around 250 µC/cm2. The sample is then developed using MIBK: IPA (1:3) solution
for 35 s and then put in IPA for 1 minute to stop the further development due to residual
MIBK.
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Figure 3.2: Schematics of fabrication process of doubly clamped nanobeam

3.2.2 e-beam evaporation

The chip is cleaned in O2 plasma for 5 seconds to remove any residual resist before evaporating
metal on the sample for electrical contacts. 30 nm of Aluminum is deposited on the sample
using e-beam evaporation at a pressure of 10−6 torr. The rate of deposition is 0.1 nm/s. The
metal outside the pattern (deposited on resist) is stripped using a lift-off process where the
chip is kept in NMP solution at 80 0C for at least 2 hours. The lift-off is done by squeezing
the NMP solution using a pipette directly on the chip and then slowly agitating the chip in
an ultrasonic bath. The process is followed by solvent cleaning (Acetone and IPA) of the chip.
One of the problems we faced during the lift-off process is the presence of holes on Aluminum
pads, as shown in figure 3.3. The problem mentioned above hampered our process for further
processing of chips. Some of these holes were also present on beams, thus causing a discontinuity
in the metallic layer. These holes were approximately 200 nm in size. After several tests, we
concluded that these holes were caused by Ag particles that we usually use for calibrating the
focus while doing e-beam lithography. Once we substituted alignment marks patterned by laser
lithography for the silver paste, the holes did not appear on Al pads.

3.2.3 Etching Silicon Nitride and releasing the structure

Silicon-Nitride is etched using reactive Ion etching with SF6 chemistry. The etching rate is 40
nm/min , and thus etching is done for approximately 2 min 30 s. The etching is anisotropic and
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Figure 3.3: SEM images of Aluminum pads with holes formed due to Ag par-
ticles on chip

selective (does not etch Aluminum) and can also etch silicon. However, the process of etching
silicon to release the structure using reactive ion etching is inefficient. The silicon under-etching
is done using XeF2 gas. XeF2 has high selectivity in favor of silicon compared to silicon nitride.
The silicon underneath the clamps is also etched. This part of the clamp is called an undercut.
The undercut is also responsible for modifying the resonance frequency of the mechanical mode.
The image depicting the released nanobeam with undercut is shown in figure 3.5. Lately, we
have been facing problems with the XeF2 etching. We are constantly seeing the transparent
foils being developed underneath the nanobeam shown in figure 3.4. The problem mentioned
above is one of the major hindrances in fabricating released nanobeams reliably. A careful
study in collaboration with the team of Xin Zhou at IEMN in Lille implied that the foils are
caused by a problem with our XeF2 machine, not a problem with the samples. Several samples
were XeF2 etched in Grenoble or in Lille. The same XeF2 process was used in each case.
Some samples were patterned in Grenoble and others were patterned in Lille. Samples that
were XeF2 etched in Lille never had foils, regardless of where they were patterned. Samples
that were XeF2 etched in Grenoble almost always had foil, independently of where they were
patterned. A further possibility, which is difficult to test but seems unlikely, is that the foils
are caused by the essential, short RIE etch done just before XeF2 etching in Grenoble. It is not
desirable to make this RIE etch in Lille because the shipping time could allow the formation of
oxide that inhibits the subsequent XeF2 etch.

3.3 Magnetomotive actuation and detection

The various actuation and detection schemes for measuring the motion of NEMS are capacitive
actuation and detection, dielectric detection, piezoelectric technique, and frequency modulation
techniques for graphene and CNT’s based mechanical resonators. The magnetomotive scheme
is also a well-established technique for actuation and detection of viscometers, bolometers in
superfluid 3He community. Cleland and Roukes introduced this technique for actuating and
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Figure 3.4: SEM images showing transparent foil like material hanging beneath
the nanobeam

Figure 3.5: SEM images of the final released nanobeam with undercut

detecting NEMS [21]. Since our NEMS is made of SiN, which is amorphous and dielectric, we
deposit a thin layer of Al on top of the SiN. We pass a current I(t) through this thin layer of Al
on suspended SiN nanobeam (along z direction as shown in figure 3.6) in a constant magnetic
field, B(y) (along y direction) which is perpendicular to nanobeam, the nanobeam experience
a Lorentz force, Fnems along direction x (figure 3.6). We assume the current applied to be
sinusoidal with a frequency close to the resonance frequency of nanobeam’s mechanical mode.
For simplicity, we assume the resonance frequency of the fundamental mode of the mechanical
resonator. The length of the nanobeam is l. For the infinitesimal length of nanobeam dl(z),
the infinitesimal force will be,

dFnems = I(t)dl(z)×B(y) (3.1)

We can further approximate dl(z) ≈ ψ(z)dz if the maximum displacement of the beam in
direction x is much less than its length where ψ(z) is the shape factor discussed in section 2.2
of chapter 2. Therefore integrating equation 3.1 over the length of the beam, we get total force
as,

Fnems = I(t)lB (3.2)
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where ξ =
∫ l/2
−l/2 ψ(z)dz is a factor that accounts for the fact that force is not uniform along the

length of nanobeam. Due to the sinusoidal dependence of Lorentz force, the motion of NEMS
will also be sinusoidal. The displacement of beam will be u(z, t) = ψ(z)x(t) where x(t) is the
maximum displacement of the beam. An effective area is swept between the instantaneous and
rest position of the beam. The magnetic flux across this differential area dA will be,

d2φ(t) = BdA(t) (3.3)

We approximate the differential area as dA(t) ≈ ψ(z)dzx(t) for small maximum displacement.
Integrating equation 3.3 along the length of beam we get the differential magnetic flux as,

dφ(t) = ξlBdx(t) (3.4)

According to Faraday’s law time dependent magnetic flux will induce an electromotive force
given as,

e(t) = −dφ
dt

= −ξlBdx
dt

= −ξlBẋ(t) (3.5)
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Figure 3.6: Schematic representation of the magnetomotive actuation and de-
tection principle for the first flexural mode

3.3.1 Electrical circuit

The circuit diagram for magnetomotive actuation and detection is shown in figure 3.8. The
sinusoidal voltage is applied using Tektronix AF3252 arbitrary function generator to NEMS
with resistance Rnems. We have also added a bias resistor Rbias in the injection line to protect
NEMS with low resistance. Typically, the resistance of NEMS of length 100 µm is 1 kΩ. The
voltage V (t) across NEMS is detected using the Stanford SR844 lockin amplifier. The current,
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I(t) flowing through NEMS according to ohm’s law is given by,

I(t) = Va(t) + e(t)
Rbias +Rnems

(3.6)

where Va(t) is the applied voltage by function generator. Therefore the force on NEMS will be

Fnems = ξBl
Va(t) + e(t)
Rbias +Rnems

. The temporal evolution of NEMS x(t) can be derived by solving
the equation of motion of the damped harmonic oscillator.

meff
∂2x(t)
∂t2

+meffΓm
∂x(t)
∂t

+meffΩ2
mx(t) = Fnems (3.7)

Putting Fnems in 3.7 we get,

meff
∂2x(t)
∂t2

+meffΓm
∂x(t)
∂t

+meffΩ2
mx(t) = ξBl

Va(t)− ξlBẋ(t)
Rbias +Rnems

(3.8)

Since the motion of NEMS is sinusoidal the displacement x(t) can be written as x(t) = x0e
−iωt

and Va(t) = V0e
−iωte−iφ where φ is the phase difference between the voltage applied and the

motion of NEMS. Solving for x0 we get,

x0 = ξBLV0e
−iφ

meff (Rbias +Rnems)
1

(Ω2
m − ω2)− iωΩmQ−1 (3.9)

In the above equation, Q is the quality factor of NEMS, which is composed of intrinsic dissi-
pation and dissipation due to the electric circuit.

Q−1 = Q−1
electric +Q−1

intrinsic (3.10)

where Q−1
electric = ξ2B2l2

meffΩm(Rbias +Rnems)
and Q−1

intrinsic = Ωm

Γm
.

x0 can be decomposed into real and imaginary parts which can be measured by lock in amplifier
separately.

3.3.2 Cryogenics and Themometry

The sample is glued on a copper PCB using GE varnish, which facilitates thermalization. The
chip is then wire bonded to the electrical tracks on PCB. The electrical tracks are further
connected to RF injection and detection lines. The injection line connected to the function
generator is used for driving the NEMS. The detection line is connected to the lock-in amplifier.
The PCB is mounted on a copper plate which is part of stainless steel flange. The stainless
steel flange is then connected to the lower part of the dipstick as shown in figure 3.9. The lower
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Figure 3.7: Typical responses of two quadratures for nanobeams of length a)
4.8 µm and b) 5.7 µm
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Figure 3.8: Schematic showing the electric circuit for actuation and detection
of NEMS using magnetomotive technique

part of the dipstick also includes a solenoid. The upper part of the dipstick is connected to
a room temperature flange. The cell containing the sample is sealed with an indium ring.The
room temperature flange includes connectors for RF injection and detection, thermometer, and
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heater. The cell containing the sample is sealed with an indium ring. The dipstick is then
put inside a 4He cryostat. The closed-cell is then pumped down to 1e-3 mbar using a rotary
vane pump and further down to 1e-6 mbar using turbopump. The measurement of the sample
under vacuum prevents the gas damping of the NEMS. The cryostat is made of stainless steel
with two compartments for liquid nitrogen and 4He separated by a vacuum space.The role
of vacuum space is to minimize heat conduction through gas between room temperature, the
liquid nitrogen reservoir and the helium reservoir. Liquid nitrogen is used for precooling and
acts as a radiation shield for the inner part, thus lowering the 4He boiling rate. The working
temperature is 4.2 K which can be further reduced by pumping on the 4He bath. However,
pumping on 4He bath is quite uneconomical as 40 % of liquid 4He has to be evaporated to cool
it from 4.2 K to 1.3 K due to significant change of its specific heat in this temperature range.

Solenoid, lower part of dipstick Dipstick

Copper plate

Indium ring

Injection and 
Detection lines

Thermometer

Figure 3.9: Image showing the part of the experimental dipstick which in im-
mersed in 4He cryostat

3.4 Superconducting microwave resonators

The microwave resonators in our experiments operate in the 4-8 GHz band designated as C band
by IEEE. Operating at such high frequencies reduces the thermal excitation of our resonators.
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2D geometries are preferred if we want to couple mechanical resonators to microwave cavities.
Also, planar structures are easy to fabricate in the cleanroom. We have primarily used a
coplanar waveguide resonator (CPW) in this work. In CPW, we have a central conductor with
ground planes on both sides. The signal is fed to the resonator by capacitively coupling a CPW
transmission line with an impedance of 50 ohms matched to the external feedline circuit.

3.4.1 Transmission lines

A transmission line supports the propagation of an electromagnetic wave. For TEM mode, the
infinitesimal element of the transmission line can be modeled by an elementary circuit as shown
in figure 3.10 where L and C are the inductance and capacitance of transmission line per unit
length [61]. Let a wave is incident from a source at z < 0 as shown in figure 3.11 of the form
V (z) = V0e

−iβz where β = ω
√
LC is the propagation constant and ω is the applied frequency.

The ratio of voltage to current for a traveling wave is Z0 =
√
L

C
, which is the characteristic

property of any transmission line. Let us consider the line terminated by impedance ZL (figure
3.11). At the terminal point of the line, the ratio of voltage to current must be Zl. The total
voltage on the line can be written in terms of incident and reflected wave.

B E

V(z,t) I(z,t)

Ldz
Cdz

dz

Transmission line 
and CPW 
resonator

W SS

Figure 3.10: Schematic showing the transmission line coupled to CPW res-
onator (inset: Circuit model of an infinitesimal part of transmission line)

V (z) = V +
0 e
−iβz + V −0 e

iβz (3.11)

The total current at any point on the circuit is,

I(z) = V +
0
Z0

e−iβz − V −0
Z0

eiβz (3.12)
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However at z = 0 we have,

Zl = V (0)
I(0) = V +

0 + V −0
V +

0 − V −0
Z0 (3.13)

We can thus write the voltage reflection coefficient as,

Γ = V −0
V +

0
= Zl − Z0

Zl + Z0
(3.14)

Let the source be at z = −l. The input impedance seen by the source is,

Zin = V (−l)
I(−l) = 1 + Γle−2iβl

1− Γle−2iβlZ0 (3.15)

Putting the value of Γl = V −0
V +

0
= Zl − Z0

Zl − Z0
we get,

Zin = Zl + iZ0tan(βl)
Z0 + iZltan(βl)Z0 (3.16)

The characteristic impedance of the external feedline circuit in our experiments is 50 Ω matched

𝑍0, 𝛽

𝑉 𝑧 , 𝐼(𝑧)

+

−

𝑉𝑙 𝑍𝑙

𝑧0𝑙

𝐼𝑙

Figure 3.11: A transmission line terminated in a load impedance Zl)

to the output impedance of the source (Microwave generators) and the input impedance of
the measurement apparatus such as spectrum analyzer and lock-in amplifier. In most of our
experiments, we are concerned with transmission measurement. Therefore it is imperative to
avoid any reflections from any part of the circuit. We thus design our coplanar waveguide(CPW)
transmission line to have a characteristic impedance of 50 Ω. LetW be the width of the central
conductor and S be the spacing between the ground plane and the central conductor of the
CPW transmission line. The impedance of the transmission line for the infinitely thick dielectric
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substrate is given by [31],

Z0 = 30π
εre

K
′(k1)

K(k1) (3.17)

where εre = εr + 1
2 , εr is the dielectric constant of the substrate. The ration K

′(k1)
K(k1) depends

of the value of k1 which in turn depends of S and W.

k1 = S

S + 2W (3.18)

K
′(k1)

K(k1) = π

ln
[
2(1 +

√
k
′
1)/(1−

√
k
′
1)
] for 0 <= k1 <= 0.707

K
′(k1)

K(k1) =
ln
[
2(1 +

√
k1)/(1−

√
k1)
]

π
for 0.707 < k1 <= 1

(3.19)

Also k′1 =
√

1− k2
1. The derivation is done using Schwarz-Christoffel conformal transformation.

In this thesis, we are concerned with two designs shown in figure 3.12. The parameters specifying
the width of the central conductor, spacing between the central conductor and the ground plane,
dielectric constant of the substrate, and the impedance is shown in the table below.

Designs W S εr Z0
1 10 µm 5 µm 11.9 50 Ω
2 150 µm 94 µm 11.9 50 Ω

Table 3.1: Table showing parameters of the transmission lines

Figure 3.12: Designs of MWCs, left) open λ

2 MWC corresponding to entry 2 in

the table above right) Shorted λ

4 MWC, the end far from the transmission line
is shorted
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3.4.2 CPW resonators

In the previous section, we discussed the CPW transmission line and the parameters governing
its impedance. In this section, we will investigate various designs and properties of microwave
resonators. These resonators are coupled capacitively or inductively coupled to the transmission
line. There are different types of resonators, such as rectangular waveguide cavity resonators,
circular waveguide resonators, microstrip resonators, coplanar waveguide resonators (CPW).
Discussing different resonators is beyond the scope of this thesis since our designs are primarily
CPW type. The CPW resonator is just a piece of CPW transmission line with a central
conductor and ground plane on both sides with open or grounded terminals. The characteristic
impedance of these resonators is 50 Ω. From the practical point of view, the design of the
CPW resonator is classified mainly into λ/2 and λ/4 types. Also, these resonators are modeled
as parallel RLC circuits. Before discussing the λ/2 and λ/4 type resonators, it is essential to
highlight the properties of a parallel RLC circuit to make an analogy with these resonators [61].
For a parallel RLC circuit shown in figure 3.13 the input impedance of the circuit is,

Zin =
( 1
R

+ 1
iωL

+ iωC
)−1

(3.20)

The input impedance can be simplified by letting ω = ω0 + ∆ω where ∆ω is very small using
taylor’s expansion,

Zin ≈
R

1 + 2i∆ωRC (3.21)

The input impedance of a shorted transmission line of length l is

Zin = Z0 tanh(α + iβ)l = Z0
1− i tanhαl cot βl
tanhαl − i cot βl (3.22)

where γ = α + iβ is the complex propagation constant and Z0 =
√
L

C
is the characteristic

impedance of the transmission line. Assuming l = λ/4 and low loss transmission line such that
αl << 1, then tanhαl ≈ αl. Also let ω = ω0 + ∆ω where ∆ω is small. Then,

βl = ωl

vp
= ω0l

vp
+ ∆ωl

vp
= π

2 + π∆ω
2ω0

(3.23)

where vp is the phase velocity and cot βl ≈ −π∆ω
2ω0

Therefore the input impedance can now be
written as,

Zin = Z0
1 + iαlπ∆ω0/2ω0

αl + iπ∆/2ω0
≈ Z0

αl + iπ∆ω/2ω0
(3.24)
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Figure 3.13: Voltage distribution across the length of shorted λ

4 resonator for
the fundamental mode. Voltage is maximum at the one end and zero at the

shorted end. Also the resonator can be modeled as parallel RLC circuit

The above equation is of the same form as equation 3.21 where R = Z0

αl
, C = π

4ω0Z0
and

L = 4Z0

πω0
.

Similarly we can write the input impedance of an open transmission line of length as

Zin = Z0 coth(α + iβ)l = Z0
1 + i tanhαl tan βl
tanhαl + i tan βl (3.25)

Using the same approximations as above and considering l = λ

2 we can approximate input
impedance as,

Zin ≈
Z0

αl + iπ∆ω/ω0
(3.26)

where R = Z0

αl
, C = π

2ω0Z0
and L = 2Z0

πω0

We are concerned with two designs of CPW resonators as shown in figure 3.12. Design 1,
where there many CPW resonators coupled to the same transmission line, is shorted λ

4 type,
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whereas design 2 is open λ

2 type. Since these resonators will have NEMS capacitively coupled
to them, it is vital to know the maximum of the voltages in the resonator to enhance the
coupling. For design one, the nanobeam made of SiN with a thin layer of Aluminum on the
top will be fabricated on the same chip, whereas design two will be used for the dual-chip
technique mentioned in previous chapters. Apart from analytical calculations, these resonators
are simulated using FEM (comsol) to predict the exact resonance frequency. The typical voltage
distribution of open λ2 type resonator is shown in figure 3.14. The next step is to fabricate these
MWCs in the nano-fabrication facility. Since we are dealing with superconducting MWCs, one
needs to choose the superconducting material. Conventionally these MWCs are made using
Aluminum or Niobium on the dielectric substrate, but now many new materials such as TiN
and NbN are also being used. We chose both Aluminum and Niobium as our superconducting
material for MWC. The Tc or critical temperature of bulk Al is 1.2 kelvin, whereas, for Nb, it
is 9.2 kelvin. The elevated Tc of Nb adds an added advantage to test these cavities in 4-kelvin
cryostat, which is easy to cool down. The following section deals with the fabrication steps for
these cavities.
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3.4.3 Fabrication of Niobium microwave resonator

The first step to any fabrication process is the cleaning of the sample. The chip with silicon
nitride on silicon or the silicon was cleaned by acetone kept in an ultrasonic bath for 5 mins to
remove any oil/organic impurities and then by isopropyl alcohol to remove the residue left by
acetone. The sample is then cleaned using RBS detergent and then rinsed in de-ionized water
for 5 minutes.

The sample is then quickly transferred to an Ultra-high vacuum e-beam evaporator. The
load-lock is first primarily pumped to a pressure of about 2 mbar before turning on the turbop-
ump. Once the pressure in the load-lock reaches 1e-6 mbar, the sample holder is transferred
into the deposition chamber, which is continuously being pumped using an ion vacuum pump,
maintaining the pressure around 1e-10 mbar. The sample is then heated for 3 hours at 3000

before depositing 120 nm of Nb.

After depositing Nb, the sample is again cleaned using RBS detergent and rinsing with
de-ionized water. Acetone and IPA are used for further cleaning. The chip is then pre-baked
(dehydration bake) for about 2 mins at 180 0C, thus removing moisture from the substrate.
LOR 3A resist is then spin-coated on the sample at 6000 rpm for 30 s followed by a soft bake
for 2 mins at 2000. Then 420 nm of S1805 resist is coated at 6000 rpm for 30 s and again
followed by a soft bake for 2 mins at2000. Next, the microwave cavity is patterned using laser
lithography. The resist is developed using the base MF26A for 1 min. The sample is then rinsed
with de-ionized water and dried using N2. 30 nm of Aluminum is deposited on the sample using
an e-beam evaporator which acts as a mask while etching Nb. Al is removed using the lift-off
process to expose the parts where Nb has to be etched. NMP is used as a solvent for the lift-off
process at 800 The sample is then cleaned with usual acetone, IPA, and de-ionized water. Nb is
etched using SF6 chemistry in Plassys RIE machine. The schematic of the fabrication process
is shown in figure 3.15

3.4.4 Fabrication of Aluminum microwave resonator

The fabrication steps of Al-based microwave resonators are slightly different from Nb-based
resonators. In the latter, Nb is deposited before lithography and then etched away since we
have to heat the sample at 3000 for 3 hours in the evaporator to remove any moisture from the
substrate as Nb is very susceptible to degradation due to oxidation. However, the quality of
the Al resonator is not so sensitive to oxidation (aluminum oxide forms very quickly on bare
aluminum in air), and we can deposit it after lithography, followed by a lift-off process. The
cleaning steps remain the same as in the case of Nb resonators. We again use LOR 3A and
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Figure 3.15: Schematics of fabrication process of Niobium based microwave
cavity

S1805 resists with the same parameters and exposes them using laser lithography. The resist
is developed with MF62A for 1 min and rinsed with deionized water. 120 nm of Al is then
deposited in the e-beam evaporator at 0.1 nm/sec. The lift-off process is carried out in the
NMP solution at 800. The schematics of the fabrication process is shown in figure 3.16
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Figure 3.16: Schematics of fabrication process of Aluminum based microwave
cavity
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3.4.5 Characterization of superconducting microwave resonator

We use S-parameters to characterize the microwave cavities. For high-frequency measurements
such as microwave, an ideal representation of the circuit according to the measurements, inci-
dent, reflected, and transmitted wave is given by scattering (S) matrix. For a two-port network
as shown in figure 3.17, the S matrix is defined as,V −1

V −2

 =
S11 S12

S21 S22

V +
1

V +
2

 (3.27)

where V +
1 and V +

2 are the amplitudes of the voltage incident on port 1 and 2 and V −1 and V −2

𝑉1
+, 𝐼1

+

𝑉1
−, 𝐼1

−

𝑉2
+, 𝐼2

+

𝑉2
−, 𝐼2

−

Port 1 Port 2

Figure 3.17: A two-port network

are the amplitudes of the voltage reflected from the respective ports. In general, for a system
with n ports, the specific element of the scattering matrix can be determined as

Sij = V −i
V +
j

(3.28)

Sij is extracted by driving the port j with an incident wave of voltage V +
j and measuring the

wave amplitude V −i coming out of port i. For our system, we apply the driving voltage to
port 1 and measure the signal coming out of port 2. Thus we are interested in measuring the
scattering parameter S21. Experimentally, when we apply the voltage with a frequency near the
cavity’s resonance frequency to port 1 of the transmission line, the signal is partially absorbed
in the cavity, and we see transmission spectra while measuring S21. To fit the transmission
spectra (S21), we need to theoretically determine S21 by modeling our MWC with transmission
line as an RLC circuit.

As discussed before, the CPW resonator is an analogue of a parallel RLC circuit. As shown
in figure 3.18 a parallel RLC circuit (resonator) is coupled to the transmission line through a
coupling capacitance Cc. R, L and C are the parameters of this RLC circuit with impedance
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Figure 3.18: (left) Parallel RLC circuit with coupling capacitance Cc modeled
as series RLC circuit (right) Circuit diagram of the RLC circuit coupled to the

transmission line with coupling capacitance Cc

ZR. The parallel RLC circuit along with coupling capacitance can be transformed to a series
RLC circuit with parameters R1, C1 and L1 with impedance Z ′R also shown in figure 3.18. The
transformed parameters can be written in terms of original parameters as

L1 = L
(
C + Cc
Cc

)2

R1 = L

(
C + Cc
RC2

c

)

C1 = C2
c

C + Cc

(3.29)

The complex impedance of the series RLC circuit is

Z
′

R = iωL1 +R1 + 1
iωC1

(3.30)

One can approximate ω = ωc+∆ω where ∆ω is very small and in turn appoximate the complex
impedance as

Z
′

R = iωL1 +R1 + 1
iωC1

+ i∆ωL1 −
∆ω
iω2

cC1
= R1 + 2i∆ωL (3.31)
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In the experimental characterization, it was found that the resonant response or the ab-
sorption spectra (S21) is not symmetrical around resonance frequency ωc. This may be because
of the parasitic inductances associated with the wire bonds. To include this effect we have
included impedances Z ′1 = iX1Z0 and Z ′2 = iX2Z0 in our model as shown in figure 3.18 where
X1 and X2 are reactances through which transmission line is connected to the injection and
detection lines. To calculate S21, one can take advantage of the impedance matrix. Similar to
scattering matrix, impedance matrix’s components can be defined as

Zik = Vi
Ik

(3.32)

Zik can be found by driving port k with the current Ik , opencircuiting all other ports (so Ij = 0
for j 6= k ), and measuring the open-circuit voltage Vi at port i. Our circuit can be compared
to T-equivalent circuit as shown in figure 3.19. Thus,

𝑍1
′ 𝑍2

′

𝑍𝑅
′

𝑍11 − 𝑍12

𝑍12

𝑍22 − 𝑍12

Figure 3.19: (left) The device under test can be represented as a tee formed
by three impedances (see text). (right) The three impedances of the tee can be

written in terms of the elements of the impedance matrix as shown in [61]

Z12 = Z
′

R

Z11 = Z
′

R + Z1 − Z0

Z22 = Z
′

R + Z2 − Z0

(3.33)

where Z1 = Z
′
1 + Z0 and Z2 = Z

′
2 + Z0 According to Pozar, S21 for T-equivalent impedance

circuit is given as
S21 = 2Z21Z0

∆Z (3.34)
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where ∆Z = (Z11 + Z0)(Z22 + Z0)− Z12Z21 Thus,

S21 = 2Z ′RZ0

Z
′
R(Z1 + Z2) + Z1Z2

= 2Z0

Z1 + Z2

1−

Z1Z2

Z1 + Z2

R1 + 2i∆ωL1 + Z1Z2

Z1 + Z2

 (3.35)

We can define κext = Z1Z2

L1(Z1 + Z2) and κi = R1

L1
such that

S21 = 2Z0

Z1 + Z2

(
1− κext

κtotal + 2i(ω − ωc)

)
(3.36)

where κtotal = κext + κi If the reactances due wirebonds present in the circuit are negligible
then S21 is simply

S21 = 1− κext
κtotal + 2i(ω − ωc)

(3.37)

In 3.20 I have plotted the typical transmission response of the MWC measured by either VNA

Figure 3.20: a) Typical transmission curve for open λ

2 MWC (Design 2) b)

Typical transmission curve for shorted λ

4 MWC (Design 1)

or spectrum analyzer. The different measurement tools and schemes are subject to another
section. Here we will discuss the parameters corresponding to these designs. The λ

2 MWC
was designed to resonate at 6.2 GHz, yet we observe the cavity’s resonance to be at 5.8 GHz.
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This is because the central conductor of the cavity was bonded to the gate of the nanobeam
which is on the other chip. The inductance and the parasitic capacitance induced due to this
bonding down-shifted the resonance frequency. The κext and κtotal corresponding to this cavity
were approximately 500 kHz and 2.5 MHz, respectively hence a Q of 2500. The relatively low
Q could be due to the presence of an interdigitated capacitor in the ground plane (see Chapter
6 ). On the other hand, the quality factor of λ4 MWC was about 4 × 104. The λ4 MWC was

fabricated on Si wafer (thickness around 550 µm) with 100 nm of SiN on top, whereas λ2 cavity
is fabricated on intrinsic Si wafer (thickness around 300 µm). Both these MWCs were made
using Niobium deposited in an Ultra-high vacuum e-beam evaporator. The low-quality factor
of λ2 cavities led us to believe that the quality of Niobium deposited was not good. One way to
characterize the quality of the superconducting thin film is to measure its critical temperature.
The superconducting transition temperature Tc for bulk Nb is 9.26 kelvin. The Tc was measured
using PPMS (Physical property measuring system). We observed a sharp dip in the resistivity
of the Nb thin film at 9.0 kelvin, which is very close to bulk Tc, and residual resistivity ratio
greater than 4, as shown in figure 3.21.Considering that higher MWC Q was obtained with
much lower Tc ( [55]), we concluded that the quality of the Nb was sufficient. We have tested
more than five λ2 cavities in 4-kelvin cryostat and have not succeeded in getting quality factors
above 1 × 104. One plausible reason for such a low-quality factor may be related to design.
One needs to completely simulate these cavities in Sonnet or any other HFSS software to get
a complete picture of different loss mechanisms leading to degradation of quality factors which
is a work in progress.
The main contributors to internal losses characterized by κi are TLS (two-level systems)
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Figure 3.21: (left) Resistivity of Nb thin film versus Temperature (right) Re-
sistivity of Nb this film versus Temperature around Tc

present at metal-substrate or substrate-air, or metal-air interfaces. Much effort has been put
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into minimizing the TLS induced losses owing to different superconducting materials and sub-
strates used. Also, thermal and infrared radiations induce losses in the superconducting ma-
terial due to quasi-particle generation. For efficiently shielded and properly designed, MWC
quality factors reaching one million can be obtained. Once the chips are fabricated, they are
mounted in the cryostat for measurements. The different components of the cryostat and
microwave circuitry are subject to the next section.

3.5 Experimental setup

In this section, we describe the equipment and the components that are employed in the mi-
crowave experiment. We will start by outlining the principles of dilution cryostat, and later
the components installed in the dilution cryostat for microwave measurements.

3.5.1 Dilution Cryostat

It is straightforward to reach a temperature of 4 kelvin using 4He cryostat where the sample
mounted on the dipstick is immersed in a bath of 4He. One can lower the temperature by
pumping on the bath so that the energetic 4He vapors are pumped out. We can reach the
temperature down to 7 millikelvins by taking advantage of the dilution cryostat. The detailed
principles parts of the dilution cryostat is illustrated in 3.22. Most of our experiments are
carried out in a commercial BlueFors dilution cryostat. The environment is first pre-cooled to
approximately 3 kelvin using a pulse tube to operate the dilution cryostat. The pulse tube
cryocooler is cryogen-free, thus giving us an advantage to not replenish the 4He in the cryo-
stat regularly to maintain the environment near 3 kelvin, although the pulse tube cryocooler
may add vibration to the setup. The environment inside the cryostat is also pumped down to
1× 10−6 mbar to prevent any heat leaks. A series of thermal screens also protect the dilution
unit for minimizing heat radiation.

The 3He-4He mixture is condensed using a compressor after the cryostat is pre-cooled to
3 kelvin. The mixture separates into two phases below 870 mK. Phase 1 is concentrated in
3He, and phase 2 is diluted 3He in 4He, and below 200 mK, phase 1 is primarily pure 3He
while phase 2 contains 6.4% 3He in 4He. The phase boundary is at the mixing chamber plate
(MXC), the coldest part of the cryostat. A pumping line connected to the still shown in figure
3.22 helps circulate the mixture. 3He atoms are mostly evaporated from the mixture due to
pumping owing to its higher saturated vapor pressure than 4He. To maintain the concentration
is phase 2 3He moves from phase 1 to phase 2. The transfer of 3He from phase 1 to phase 2 is an
endothermic process, thus facilitating cooling. The evaporated 3He atoms from the pumping
line returns to the mixing chamber via an injection line. The cooling power depends on the
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flow rate of 3He in the pumping line. The flow rate, in turn, depends on the heating power
applied to the still plate. Once pumped out of the pumping line, the evaporated mixture goes
outside the cryostat to a liquid nitrogen trap to trap any impurities before being reinjected in
the cryostat. The mixture recondenses through an impedance cooling it down to 1 kelvin. The
mixture is then thermalized using heat exchangers that connect the condensing and pumping
line between the MXC plate and the still plate. We can reach the temperature down to 7 mK
in 48 hours with dilution operation running continuously.

The temperature is measured using resistance thermometers (resistors) mounted to different
plates, i.e., 50 kelvin, 4 kelvin, still, and MXC. The thermometers are not primary, and they have
to be calibrated using another thermometer. These resistors are then measured by applying
currents down to a few hundred pA (thus preventing heat load) by a homemade resistance
bridge called TRMC2 through proper filtering lines. On the mixing chamber plate, resistors
made of carbon or Ruthenium oxide are mounted. The carbon resistor is well-calibrated down
to 11 mK. In addition to resistance thermometers, a noise thermometer, SQUID MFFT from
Magnicon, is also installed on the MXC plate. It measures the magnetic field fluctuations due
to Nyquist currents in a copper sample that is thermally coupled to the MXC plate and the
integrated noise spectrum is proportional to temperature. We have measured temperatures
down to 2 mK using the Magnicon MFFT.

3.5.2 Microwave lines

The commercial Bluefors dilution cryostat is also accompanied by microwave lines for carrying
out high-frequency measurements. These coaxial cables can be a dominant source of heat load-
ing in the cryostat. To minimize heat loading, microwave lines are generally made of materials
with low thermal conductivity. However, with the exception of superconducting materials, these
materials are also poor electrical conductors leading to dissipation when microwave signals are
fed. Nevertheless, dissipation or attenuation is desired to minimize the thermal radiation com-
ing from room temperature. These microwave lines are made of superconducting NbTi (both
inner and outer conductors) and CuNi coaxial cables. CuNi coaxial cables are used from room
temperature to 4-kelvin plate while superconducting NbTi coaxial cable is used from 4-kelvin
plate to MXC plate. Also, the characteristic impedance of these coaxial cables is 50 Ω.

Apart from feeding the coaxial cables with high-frequency microwave signals for carrying out
different quantum measurements, DC wiring is also required. The DC wiring generally serves
the purpose of biasing the HEMT (high electron mobility transistor amplifier), microwave
switches, or flux bias qubits on the chip. This DC wiring is made of twisted pairs of Cu based
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Figure 3.22: Dilution cryostat principle parts

alloy wires from room temperature to 4-kelvin plate due to their large thermal conductivity.

Attenuation in the microwave lines

The signal required at the chip level to measure the position of the mechanical resonator
by increasing the coupling between the mechanical resonator and microwave cavity is small.
However, a considerable power (orders of magnitude larger than required) is applied at the
input of the dilution cryostat. This is because the signal needs to be attenuated to reduce
the room temperature black body radiation present in cables at room temperature reaching
the sample at mixing chamber plate. Typically ∼ 60 dB of attenuation is required to serve
the above purpose. This black body radiation in cables is also called Johnson-Nyquist noise in
electronics. Therefore, to prevent the thermal phonons running from room temperature to the
coldest part of the cryostat, a cascade of attenuators is used at different stages of the cryostat.
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An attenuator with an attenuation of 20 dB is analogous to a beam splitter which transmits 1
% of the incident signal power and dissipates 99 % of the signal as black body emission. In our
cryostat, we have 20 dB of attenuation at 4-kelvin plate, 10 dB at still, and another 20 dB at
cold plate. Distributing the attenuation enables to keep the heat load well below the cooling
power at lower and colder stages.

3.5.3 Sample holder

The chip with MWC and NEMS is mounted in a sample holder (cell) made of annealed highly
pure Cu. The cell comprises four SMA connectors, two on each side. The four SMA connectors
can serve two purposes. First, we can mount two chips at the same time to perform the
transmission measurements. Secondly, the additional two SMA connectors can be used for
RF driving of NEMS in dual-chip configuration. The cell also acts as a shield protecting the
superconducting material from quasi-particle generation from stray radiations. Inside the cell,
the input and the output coaxial transmission lines are soldered to gold coplanar waveguides
on a circuit board, which are in turn micro bonded to the ends of superconducting CPW on
the chip. A Cu clamp is used to press the chip against the Cu cell for thermalization. A thin
layer of indium is placed between the clamp and the chip to distribute the clamping forces and
ground the chip’s ground plane. The whole cell is pressed against the mixing chamber plate of
the Bluefors cryogen-free dilution cryostat.

CHIP

Cu clamps

Port 1

Port 2

Figure 3.23: Cell made of highly pure Cu on which chip is mounted. Also the
lid of the corresponding cell is shown at the bottom
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3.5.4 RF switch

We have also installed an RF switch at the 4-kelvin plate. The switch generally serves the
purpose of routing a signal to different lines corresponding to different applications. In our
cryostat, it is used for bypassing the HEMT amplifier also installed at 4 kelvin. We use a
commercial latching mechanical type switch from RADIALL (R577433000, 3-8 GHz). The
latching type switch is a switch that, once triggered, remains in the same state even if the
power that triggers the state is turned off. The characteristic impedance of the switch is 50 Ω
with an insertion loss of about 1 dB. These switches have been successfully used for setups in
dilution cryostat, yet the heat load from the solenoid used to move the mechanical parts can
slightly increase the temperature, and then it would take some time to thermalize back to the
temperature of the plate where it is installed. Since we have installed it at the 4-kelvin plate,
the temperature change due to the heat load is minimal.The switch is directly connected to the
HEMT amplifier in our case as shown in figure 3.24.

The switch is a 4 port network whose schematic is shown in figure 3.24. The voltage applied
for switching between different states is 28 V.

Cryo-HEMT

To Room Temperature

Switch

3

1

4

From Low Temperature

2

Power input terminals

Latching mechanism
+a

+b

-C

Voltage RF continuity

-C+a 1 -3 / 2-4

-C+b 1-2/3-4

Figure 3.24: A schematic diagram of switch showing two different states and
the latching mechanism

3.5.5 Band pass filter and Circulators

We have also installed a band-pass filter at the MXC level just before the cell, offering rejection
of both low frequency and high-frequency signal, thus selecting a particular pass-band i.e., 4-8
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GHz. On the other side of the cell, we installed an array of two microwave circulators. These
circulators prevent the noise from the detection side from entering the output port of the cell.

3.5.6 High electron mobility transistor (HEMT) amplifier

We have installed two amplifiers based on high electron mobility transistor at 4-kelvin plate
and at room temperature. These amplifiers are from Low noise factory and work in 4-8 GHz
bandwidth. According to specifications from the company, the gain of cryogenic HEMT is close
to 40 dB at 6 GHz. However, we measured the gain to be 34 dB at 6 GHz. The measured gain
of room temperature HEMT was 40 dB at 6 GHz in accord with the specifications. During
the course of our experiments, we observed a sudden drop in the gain close to ∼ 10 dB while
measuring the transmission of the cavity. After extensive tests of the bias circuit, we concluded
the problem was with the cryogenic HEMT, which we sent to the company to be repaired. After
replacing the cryogenic HEMT with another HEMT, the transmission of the cavity returned
to normal.

3.6 Experimental set-up

The basic circuit diagram for cavity optomechanics measurements is shown in figures 3.25 and
3.26. At room temperature, the microwave sinusoidal signal is generated by microwave genera-
tors. For our measurements, we use Keysight or Ananpico dual-channel microwave generators
for pumping the cavity. The microwave pump signal with frequency ωd is divided into two
routes using a power divider. The pump signal ωd is generally detuned from the resonance
frequency of the microwave cavity ωc by ±Ωm, where Ωm is the resonance frequency of the me-
chanical mode of interest and ωc is the resonance frequency of the cavity. The weak microwave
probe signal with frequency ωp is combined with the pump signal at room temperature using a
power combiner (3 dB of insertion loss) before being fed to the microwave coaxial cables in the
cryostat. The weak probe tone is used to measure the transmission of the cavity. The combined
signal is attenuated by a cascade of attenuators, as mentioned before. The signal is then filtered
using a band-pass filter installed at the mixing chamber plate. The signal coming out of the
cell goes through the circulators before combining with another pump signal coming from room
temperature to 4-kelvin plate through an opposition line. This serves the purpose of attenu-
ating the strong pump signal at ωd before reaching the cryogenic HEMT amplifier at 4 kelvin.
The pump signal can be canceled by tweaking the variable attenuator and phase shifter at room
temperature installed on the opposition line. The cancellation of the pump signal prevents the
HEMT amplifier from getting saturated. The signal is again amplified using another HEMT at
room temperature. The signal is detected using a Keysight spectrum analyzer. Another way to
detect signals is by using a Lockin amplifier (Zurich instruments). For cavity optomechanical
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Figure 3.25: A schematic circuit diagram with spectrum analyzer as measuring
instrument

experiments, the signal of interest is at frequency ωc for the above-specified pump frequency.
The signal coming out from the fridge is down-converted using a mixer as shown in figure 3.26.
For most of our experiments, a Keysight generator is used for pump signals. Channel 1 of the
Anapico dual-channel microwave generator is used for probe signal, and channel 2 is used as a
local oscillator for down-conversion of the signal using a mixer. The down-converted signal is
then fed to the lockin amplifier. The Zurich instrument lockin amplifier can be used in different
modes, which we will discuss in chapter 5, Anomalous force noise on mechanical resonators at
low temperature.
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Figure 3.26: A schematic circuit diagram with Zurich lockin amplifier as mea-
suring instrument

3.7 Experimental calibrations

The mechanical noise spectrum is measured using in-cavity pumping, red-detuned, and blue-
detuned pumping. We have discussed the consequences of different schemes of pumping on
mechanical characteristics previously. Here, we will give an experimental result based on blue-
detuned pumping. 50 µm × 120 nm × 300 nm nanobeam made of SiN with a thin layer of Al
is capacitively coupled to a 6 GHz shorted λ

4 type MWC. We apply a pump signal using one of
the channels of the Anapico microwave generator. The other channel of the generator is used
to generate a weak probe signal to measure the transmission of the cavity. The circuit diagram
for such a measurement is shown in figure 3.25. The signal is measured using the spectrum
analyzer. The plot in figure 3.27 shows the noise spectrum of power output of the MWC
measured at ωc for different pump powers applied at the generator (5 dBm, 6 dBm, 7 dBm, 8
dBm, 9 dBm, 10 dBm) at ωc + Ωm. The pump signal goes through a series of attenuators such
that the power input at the cell installed at the mixing chamber plate is considerably smaller
than at room temperature. The proper calibration is required to measure the power input at
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the cell accurately. However, for this section, we will bypass these calibrations and will talk
about the power applied at the generator. The gain in the circuit due to the presence of HEMTs
at 4-kelvin plate and at room temperature was measured to be 65±1 dB. The measurements
were done at 250 mK.

Figure 3.27: (left) Mechanical noise spectrum measured at ωc for different
pump powers applied at ωc + Ωm (right) Background noise floor increasing with

pump powers

In Chapter 2, we derived the output noise spectrum of the output power from the MWC. The
output noise spectrum at ωc for the pump power applied at ωc + Ωm is given by,

S = nf + 2 κr
κtotal

G2nd
κtotal

Sx (3.38)

where nf is the noise floor added by the external circuit, which is assumed to be constant. We
observed that the background noise floor depends on the pump power applied at the generator.
The background noise floor increased with an increase in the pump power shown in figure 3.27.
We have also converted the units of noise spectrum generally measured in dBm/Hz in a 1 Hz
resolution bandwidth by the spectrum analyzer to the units of the number of photons. We
suspected that there is some non equilibrium population of the MWC due to some additional
noise which seems to be increasing with pump power. To test our hypothesis, we measured the
noise spectrum in a large span of 1 MHz with central frequency at ωc2π with 10 Hz resolution
bandwidth using the spectrum analyzer. The plot with power spectral density in the large span
is shown in figure 3.28.

The measured area under the power spectral density shown in figure 3.28 outlines the
number of photons inside the cavity. Since the area under the curve increases with an increase
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Figure 3.28: (left) Cavity power spectral density of the cavity resonating at
6 GHz measured by spectrum analyzer in 1 MHz span using 10 Hz resolution
bandwidth for different pump powers (right) Peak of the power spectral density

versus the detuning of the pump frequency from the cavity resonance

in pump power applied at the generator, we concluded that the MWC is being populated by
some additional noise accompanying the pump signal. The mechanical noise spectrum sits at
the peak of these curves. Therefore we attributed the change in the noise floor of the mechanical
noise spectrum to the corresponding phenomena. We also characterized the peak of the cavity
noise spectrum with the pump frequency detuning from the cavity resonance frequency. The
results of the above measurement are shown in figure 3.28. Therefore, it is observed that
the background noise floor increases if the pump frequency is closer to the cavity resonance
frequency. To test the source of the heating of the MWC, i.e., if the source is present in
an external circuit or is it something related to the chip itself, we measured the cavity noise
spectrum of another cavity present on the chip with the resonance frequency of 6.2 GHz. We
observed a similar behavior as the MWC with 6 GHz resonance frequency for the background
noise dependence on the pump detuning, as shown in figure 3.29. One possibility is the heating
of the chip itself due to non-equilibrium population of the cavity. We see no effect on the
background noise floor of the MWC with resonance frequency of 6.2 GHz while pumping at
ωc + Ωm where ωc = 6 GHz and Ωm is the mechanical resonance frequency. So the peak of the
cavity spectral density or the background noise floor of the mechanical noise spectrum depends
not only on the pump power but also on its detuning from the cavity resonance frequency. We,
therefore, plotted the peak of the cavity spectral density with the number of drive photons nd.
The peak of the cavity spectral density is plotted versus drive photons for both the cavities
(6 GHz and 6.2 GHz) shown in figure 3.30. We see that the number of photons in the cavity,
not the number of photons flowing through the on-chip feedline, determines the cavity noise
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Figure 3.29: (left) Cavity power spectral density of the cavity resonating at
6.2 GHz measured by spectrum analyzer in 1 MHz span using 10 Hz resolution
bandwidth for different pump powers (right) Peak of the power spectral density

versus the detuning of the pump frequency from the cavity resonance

level. In figure 3.30, we see the peak of the cavity noise spectrum is close to 40 when the
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Figure 3.30: (left) Peak of the cavity spectral density versus the input drive
photons in the cavity (right) Phase noise comparison of the Anapico and Keysight

generators

number of drive photons is much less than nd <<∼ 105. The noise floor of the setup with 50 Ω
termination on all input of the cryostat is also ∼ 40. The increase in the noise floor with pump
power led us to believe that there is some additional noise accompanying the pump signal which
is populating the MWC. One of the plausible reasons for this behavior may be due to the phase
noise of the microwave generator. We measured the phase noise of the Anapico microwave
generator and compared it with the phase noise of the Keysight generator. For measuring the
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phase noise, we applied a signal at 6.05 GHz with 9 dBm power and measured the spectrum in
a span of 100 MHz. As evident from figure 3.30, the phase noise of the Anapico generator is
much larger than the Keysight generator. We switched to the Keysight generator to pump the
cavity. We did not see such behavior while pumping with the Keysight generator.
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Chapter 4

Optomechanically induced
transparency and absorption

4.1 Introduction

One of the fundamental processes occurring in nature is the interaction between matter and
electromagnetic fields. The quantum theory developed in the early 1900s mainly resulted from
the interaction of light with subatomic particles like electrons. The advent of the laser has led
to further discoveries and applications. One such application is the laser cooling of atoms de-
veloped in the 1980s. Atoms and molecules moving with random motion with a certain velocity
can be slowed in the direction of the incident laser beam under certain conditions. Applying
laser fields in multiple directions allows 3-dimensional cooling. The work was awarded the
Nobel prize in Physics in 1997 [2]. Furthermore, evaporative cooling was employed to cool the
atoms even further. As a result of these cooling techniques, Ketterle reported the Bose-Einstein
condensates (BEC) of Na atoms. This experimental evidence of BEC was awarded the Nobel
prize in Physics in 2001 [3]. The field of cavity-QED deals with the interaction of electromag-
netic field and matter inside a high Q-cavity. Various quantum optics experiments have been
carried out demonstrating dressed states [81], Autler-Townes splitting [71], electromagnetically
induced transparency [14] etc. by trapping atoms inside an optical cavity interacting with dif-
ferent modes of the electromagnetic field in the cavity.

Superconducting microwave circuits provide an alternative route to perform the quantum
optics experiments using microwave photons, superconducting artificial atoms, and other quan-
tum devices. The superconducting artificial atom or quantum bits/qubits based on the Joseph-
son junction are building blocks of quantum information processing [6]. The superconducting
qubits can be designed, fabricated, and tailored according to different research purposes in
contrast to natural atoms. Various quantum optics experiments with atoms trapped inside
an optical cavity can be manifested with this platform. Superconducting qubits coupled to
transmission lines outperform different platforms (like trapped ions in an optical cavity) to
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implement quantum algorithms. However, these qubits are prone to fluctuations from the en-
vironment or internal two-level defects in the material leading to memory loss. Massive efforts
in the field have led to run quantum error correction algorithms, thus preserving the qubit’s
state and protecting it from bit error [37]. The superconducting circuits are also used as highly
sensitive astrophysical detectors. KID’s or kinetic inductive detectors based on superconduct-
ing circuits are promising candidates for millimeter and submillimeter astronomy and also for
high-energy particles. NIKA2, an instrument based on these detectors, are currently installed
at a 30 m telescope of IRAM in Spain [19].

Recently, the field of superconducting microwave optomechanics wherein the mechanical
degree of freedom is coupled to an electromagnetic field has led to many fascinating results
that we have already discussed in chapter 1. The field has also led to the development of
various microwave components such as circulators [70], amplifiers [23], switches [39] etc. which
are crucial components for measuring superconducting quantum devices. Amplifiers and notch
filters can rely on optomechanically induced transparency and absorption, respectively. Op-
tomechanically induced transparency and absorption (OMIT/OMIA) are phenomena observed
in cavity optomechanical experiments when the cavity is probed using a weak field in the pres-
ence of a strong pump field. Also, optomechanically induced transparency is an analogue of
electromagnetically induced transparency observed in a 3-level atomic system. We will com-
mence this chapter by giving a brief introduction to electromagnetically induced transparency.
A summary of different experiments done till now showing OMIT/OMIA and its applications
will be discussed. We will then derive the formula for the transmission of a cavity coupled to a
mechanical resonator in the presence of a strong pump field. Finally, we will show the results of
our two-tone optomechanical measurements spanning a larger parameter space than has been
covered in previous works. In particular, we vary probe frequency, pump frequency, pumping
scheme (red/blue), probe power, pump power, and temperature. We demonstrate that the
theoretical transmission derived from input/output theory is in excellent agreement with our
measurements over the entire parameter range.

4.2 Electromagnetically induced transpareny

Optomechanical induced transparency (OMIT) in an optomechanical system is an analogue
of electromagnetically induced transparency first observed in absorption spectra of gas-phase
atomic medium [14]. In electromagnetically induced transparency, the absorption of the elec-
tromagnetic field is canceled by applying another electromagnetic field detuned adequately
from the resonance of the cavity. Understanding the physics behind EMIT can simplify our
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Figure 4.1: (left) Bare state picture of λ type three level system. After the
control field is on we can transform the bare state picture of the system to dressed

state system (right)

understanding of OMIT. EMIT has long been observed in atomic gases [33], atomic and molec-
ular systems [52], solid-state systems [43], superconductors [4], plasmonics [86], photonic crys-
tals [82], etc. In a gas phase medium consisting of a 3 level atomic ensemble [32], the absorption
spectra are canceled by an auxiliary field due to quantum interference phenomena where the
transition amplitudes between different pathways destructively interfere.

Consider a λ type 3 level atomic system shown in figure 4.1. |1〉 is the ground state, |2〉 is
the metastable state, and |3〉 is the excited state. The transitions |1〉-|3〉 and |2〉-|3〉 are allowed
and |1〉-|2〉 is dipole forbidden. The states |1〉 and |3〉 are coupled by weak probe field while the
states |2〉 and |3〉 are coupled by strong control field. The strong control field coupling between
|2〉 and |3〉 induces a dressed state as shown in figure 4.1. Once the control field is on, there is
splitting in the excited state level, thus leading to the formation of so-called dark state. In other
words, the contribution from these two split levels is equal and opposite in sign, thus leading
to the cancellation of the response opening a transition window. The energy splitting between
these two split levels is proportional to the amplitude of the control field. If we increase the
amplitude of the control field, the transparency window in the response also increases. To dis-
cuss the mathematics and the derivation of the transmission spectrum is currently beyond the
scope of this thesis. The optomechanically induced transparency where the MWC is coupled
to NEMS can also be represented in the same picture.

In one of the early experimental evidence of EMIT shown in figure 4.2 Harris et al. [28]
observed EMIT on collisionally broadened resonance line of PB vapor. They observed that by
applying a 1064-nm laser beam, the transmission at 283 nm is increased by at least a factor of
e10, with nearly all of the Pb atoms remaining in the ground state.
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Figure 4.2: (left) Energy-level diagram of neutral Pb atoms (inset : Dressed
state picture) (right) Transmission versus probe laser detuning at 18 torr. In the
upper plot the control field is off while in lower plot the control field is on. The

solid line represents the fitted transmission spectrum

4.3 Summary of previous works on OMIT and OMIA

In one of the early demonstrations of OMIT, Weis et al. [78] observed OMIT in toroidal
whispering-gallery-mode microresonators illuminated by a laser operating at a wavelength of
775 nm. They measured the transmission of the cavity for different control/pump frequen-
cies at constant control power of 0.5 mW. They varied the control power from 0.125 mW to
6.5 mW at constant control frequency. Their experimental observations were in agreement
with their theoretical model. Following this work, Teufel et al. [74] performed a similar ex-
periment but with the superconducting circuit, Al drum as the mechanical degree of freedom
and microwaves. They performed the two-tone measurements and demonstrated the OMIT
and subsequently split in the microwave cavity’s transmission by entering the strong coupling
regime. Shortly after that, an analysis of the use of OMIT for microwave amplification, as well
as the observation of OMIA at microwave frequencies, was presented by Massel et al. [50] .
Any detector or amplifier necessarily adds a certain amount of noise. This noise can be equal
or at least the noise added by quantum fluctuations. Massel et al. studied the dependence of
probe transmission on pump power and demonstrated an overall gain of 25 dB with 20 quanta
of added noise. Hocke et al. [35] focused on microwave OMIA and reported transmission as a
function of detuning and drive power up to mechanical parametric instability. Zhou et al. [88]
returned to microwave OMIT and scanned the probe power, thereby driving the mechanical
resonator strongly enough so that its Duffing non-linearity became significant. They also re-
alized the slowing and advancing of microwave signals with millisecond distortion-free delay
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and negligible losses. They also showed that by temporally modulating the electromechanical
coupling and correspondingly the transparency window, switching of microwave signals could
be demonstrated. Recent work has demonstrated the advantage of combining mechanical para-
metric amplification with OMIT [15] and microwave amplification in the absence of dynamical
backaction responsible for amplification of mechanical motion [23].

4.4 Theory: OMIT/OMIA

As discussed before, OMIT and OMIA can be observed in systems where a mechanical resonator
is coupled to an electromagnetic resonator (the cavity) so that the motion of the former changes
the resonance frequency of the latter. The interaction between a single phonon and a single
photon is characterized by g0, the vacuum optomechanical coupling strength, which is the
frequency shift of the cavity due to a zero-point motion of the mechanical resonator. When
the cavity is driven by a pump at frequency ωd and a probe at frequency ωp (Fig. 4.3),
there is a component of the resulting radiation pressure force at the difference frequency Ω =
ωp − ωd. We denote the mechanical resonance frequency by Ωm. When ||Ω| − Ωm| is less than
or approximately equal to the mechanical linewidth, the response of the mechanical element
is appreciable. Now its motion yields up-conversion or down-conversion of the photons by an
amount |Ω|, yielding sidebands in the microwave spectrum. One of the two sidebands of the
pump is at a frequency that coincides with the probe frequency. Whether this is the upper
or lower sideband depends on the sign of Ω. The probe and the coincident sideband interfere
constructively or destructively depending on their relative phases, resulting in a change in the
transmission of the probe relative to the value it would have in the absence of optomechanical
coupling. This effect is most significant when the probe frequency is within about one-half
linewidth κtotal of the cavity resonance frequency ωc. This is equivalent to |∆ + Ω| <≈ κtotal

2 ,
where we define ∆ = ωd − ωc.

The magnitude of the response of the mechanical resonator to the radiation pressure at the
beat frequency Ω influences the probe transmission. The mechanical response depends not only
on the difference between the driving frequency and the mechanical resonance |Ω| − Ωm and
the intrinsic linewidth of the mechanical resonator Γm but also on dynamical backaction due
to the pump [8]. The backaction yields an effective mechanical linewidth Γeff , which is greater
than Γm for ωc−ωd ≈ Ωm (“red pumping”) and less than Γm for ωc+ωd ≈ Ωm (“blue pumping”).

We will now proceed to derive the probe transmission, which is generally denoted as S21. S21

can be derived by solving the coupled quantum Langevin equation for cavity and mechanical
resonator (as done in the chapter Theory: quantum noise in microwave optomechanics to derive
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Figure 4.3: The pump and the probe scheme for two tone measurements for
observing OMIT/OMIA.

the noise spectrum). We will use the quantum Langevin equation for the cavity and the classical
equation of motion for the mechanical resonator. The quantum Langevin equation for MWC
is given as,

ȧ = − i
~

[a,Hsys]−
κtotal

2 a−
√
κlαin,l −

∑
k=l,r,0

√
κkδain,k (4.1)

where Hsys = ~ωca†a+ ~Ωmb
†b+ ~g0(b+ b†)a†a and g0(b+ b†) = Gx. Putting Hsys in equation

4.1 we get,
ȧ = −(iωc + κtotal

2 )a− iGxa−√κlαin,l −
∑

k=l,r,0

√
κkδain,k (4.2)

In the above equation we have the input field as ain,l = αin,l+δain,l where αin,l(t) = αine
−iωdte−iφ

is the driving field and δain,l(t) is the fluctuating term. The cavity field can be written as
a = αe−iωdt + δa. Similarly we can write the classical equation of motion for NEMS as,

dx

dt
= p

meff

(4.3)

dp

dt
= −meffΩ2

mx(t)− FRP − Γmp (4.4)

In the above equations, x and p are position and momentum operators of the mechanical degree
of freedom with effective massmeff . FRP is the radiation pressure force which is equal to ~Ga†a.
Analogous to cavity field, the displacement x can be written in terms of static displacement
xshift and fluctuation term δx. As done previously, we can solve for intracavity field α and
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static mechanical displacement xshift.

α = − κlαine
−iφ

i(ω′c − ωd) + κtotal
2

(4.5)

meffΩ2
mxshift + ~G|α|2 = 0 (4.6)

where ω′c = ωc − Gxshift. We can now write equations of motion for cavity and NEMS by
considering the noise terms similar to what we did while computing the noise spectrum in
previous chapter.

δȧ = −i(ω′c + κtotal
2 )δa− iGδx(αe−iωdt + δa)−

∑
k=l,r,0

√
κkδain,k(t) (4.7)

meff

(
d2δx

dt2
+ Γm

dδx

dt
+ Ω2

mδx

)
= −~Gα(δaeiωdt + δa†e−iωdt) (4.8)

The time dependence of above equations can be eliminated by writing equations 4.7 and 4.8 in
the frame rotating with ωd. Thus equations 4.7 and 4.8 are modified as,

δȧ = (i∆− κtotal
2 )δa− iGδx(α + δa)−

∑
k=l,r,0

√
κkδain,k (4.9)

meff

(
d2δx

dt2
+ Γm

dδx

dt
+ Ω2

mδx

)
= −~Gα(δa+ δa†) (4.10)

We will solve the above coupled equations in the presence of pump field at ωd and a probe field
at ωp and neglect all the fluctuations. We denote the probe field as δβ. The above coupled
equations then become,

δȧ = (i∆− κtotal
2 )δa− iGδx(α + δa)−√κlδβ (4.11)

meff

(
d2δx

dt2
+ Γm

dδx

dt
+ Ω2

mδx

)
= −~Gα(δa+ δa†) (4.12)

For a given Ω = ωp − ωd, and a probe field δβ = Be−iΩt we use the ansatz,

δa = A−e−iΩt + A+eiΩt

δa∗ = (A+)∗e−iΩt + (A−)∗eiΩt

δx = X−e−iΩt +X+eiΩt

(4.13)
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Putting the above ansatz in the coupled equations 4.11 and 4.12 and writing only the terms
with e−Ωt we get the following eqautions,

A− (−i(Ω + ∆) + κtotal/2) = −iGαX −√κlB

A+ (i(Ω−∆) + κtotal/2) = −iGαX∗

meff

(
Ω2
m − Ω2 − iΓmΩ

)
X = −~Gα(A− + (A+)∗)

(4.14)

We can further define the cavity susceptibilities as χc(Ω) and χa(Ω) and mechanical suscepti-
bility as χm(Ω).

χc(Ω) = κtotal
2 − i(Ω + ∆)

χa(Ω) = κtotal
2 − i(Ω−∆)

χm(Ω) = Γm
2 − i(Ω− Ωm)

(4.15)

Equation 4.14 can be rewritten with an approximation Ω ≈ Ωm as,

χc(Ω)A− = −iGαX +√κlB

χm(Ω)(A+)∗ = iGαX

2meffΩmχm(Ω)X = −i~Gα(A− + (A+)∗
(4.16)

Solving the set of above equations we can obtain,

A− = √κlB
χc(Ω)(1− g2

0α
2χm(Ω)χa(Ω))

1 + g2
0α

2χm(Ω)(χc(Ω)− χa(Ω)) (4.17)

Following the input-output relation we can thus write the probe transmission as,

S21 = 1− κl
χc(Ω)(1− g2

0α
2χm(Ω)χa(Ω))

1 + g2
0α

2χm(Ω)(χc(Ω)− χa(Ω)) (4.18)

For the case of sideband resolved system we can neglect A+ and up with a simplified version
of S21 which is,

S21 = 1− κl
χc(Ω)

1 + g2
0α

2χm(Ω)χc(Ω) (4.19)

Expanding the above equation we get,

S21 = 1−
κext

2
κtotal

2 − i(ωp − ωc) + g2
0α

2

Γm/2− i(ωp − ωd − Ωm)

(4.20)
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We can do the similar analysis for blue pumping where ∆ > 0 and S21 for the same is,

S21 = 1−
κext

2
κtotal

2 − i(ωp − ωc)−
g2

0α
2

Γm/2− i(ωp − ωd + Ωm)

(4.21)

4.5 Experimental setup

Our optomechanical device and microwave measurement circuit are similar to ones used in
previous works. A circuit diagram is shown in figure 4.4. The pump and probe tones are
combined at room temperature. These signals then pass through attenuators, which decrease
the thermal noise, and a bandpass filter before reaching the input port of the experimental
cell. The pump signal is attenuated by approximately 59.5 ± 0.5 dB, while the probe tone is
attenuated by approximately 56.5 ± 0.5 dB. The estimate of these attenuations was obtained
by carefully measuring the attenuation of every single component in the driving side. The
transmitted signal that exits the cell passes through two circulators, which prevent the noise
traveling down the detection line from entering the output port of the cell. At the 4 kelvin
plate, the pump signal that was transmitted through the cell is canceled to avoid saturating the
amplifiers. The resulting signal passes through the series of high electron mobility transistor
(HEMT) amplifier installed at 4-kelvin plate and room temperature before detecting the signal
by the spectrum analyzer.

The experimental cell is a box made of annealed Cu. It is pressed against the mixing cham-
ber plate of the cryogen-free dilution refrigerator. Inside the cell, the input and output coaxial
transmission lines are soldered to gold coplanar waveguides (CPW) on a circuit board, which
are in turn microbonded to the ends of a niobium CPW on a chip. The chip is made of silicon
and is coated with 100 nm of high-stress silicon nitride. A λ

4 CPW resonator is also present

on the chip and forms a cavity with resonance frequency ωc
2π = 6 GHz. The open end of the

λ

4 resonator is precisely situated relative to the CPW feedline to achieve the desired coupling.

The strength of the coupling is characterized by an external cavity linewidth κext
2π = 44 kHz.

The total cavity linewidth is κtotal2π ≈ 100 kHz, so that the coupling is nearly critical.

The mechanical element is a vibrating string made from silicon nitride at the open end of
the cavity (Fig. 1c). Its geometry was defined by a 30 nm thick aluminum layer that served as
a reactive ion etch (RIE) mask. After the anisotropic RIE, the string was released by selective
XeF2 etching of the silicon substrate. The aluminum was not removed after etching, and it
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Figure 4.4: The microwave circuit

yields electrostatic coupling between the vibrating string and the cavity characterized by the
coupling strength g0

2π = 0.56 Hz. The string has a length of 50 µm and a resonance frequency
Ωm

2π = 3.8 MHz. The detailed parameters for fabrication can be found in previous chapter.

4.6 Results and Discussion

The measurements were carried out at sample temperatures of 250, 350, and 450 mK. For each
temperature, pump power, and probe power setting, the pump and probe frequencies were
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scanned, and the probe transmission was measured. Figure 4.5 shows our measurements at
250 mK with red pumping yielding ncav = 1.3 × 106 and a probe power of -116 dBm at the
input of the cell. The transmission measurements were made by setting ωd and sweeping the
probe frequency ωp over a narrow range around ωd + Ωm for red pumping and around ωd−Ωm

for blue pumping. The width of the probe frequency sweeps was comparable to the mechani-
cal linewidth, so that it encompassed the OMIT/OMIA resonance. These measurements were
made at a range of pump frequencies ωd such that the set of center frequencies of the narrow
probe frequency sweeps spanned the microwave resonance. These narrow sweeps appear as
vertical lines on the scale of the main panel of figure 4.5; two of the sweeps are enlarged in the
insets.

Figure 4.5: Probe transmission measurements at 250 mK with red pumping
yielding ncav = 1.3× 106 and a probe power of -116 dBm at the input of the cell.
The narrow probe frequency sweeps appear as vertical lines. The insets show

enlargements of the indicated sweeps.

Figure 4.6 shows OMIT at the microwave resonance. Any residual detuning is very small
compared with the cavity linewidth. These data were acquired under red pumping (ωd =
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ωc − Ωm), and the dependence on temperature, probe power and pump power is shown. The
intracavity pump photon numbers and probe powers at the input of the cavity are based on
a careful measurement of the attenuation of the transmission line connecting the generator to
the microwave cavity. At constant temperature and probe power the amplitude of the OMIT
resonance increases with pump power because (1) the mechanical mode is driven more strongly
and (2) more pump photons are available for up-conversion to the probe frequency by inter-
action with the mechanical mode. The resulting upper sideband interferes constructively with
the probe. The width of the OMIT resonance increases with pump power due to dynamical
backaction on the mechanical mode. The curves represent fits of the theoretical |S21| (Equation
4.20) to the data. Single values of Ωm and Γm were chosen for each temperature to optimize
the fits of the theoretical transmission to the entirety of our measurements of this device. At
350 (450) mK, Ωm

2π is higher than its 250 mK value by 7 (12) Hz. The intrinsic mechanical

linewidths Γm
2π at 250, 350 and 450 mK are 15.3, 20.0 and 26.8 Hz, respectively.The values of

ωc and κtotal were allowed to vary to account for the dependence of these parameters on cavity
temperature and photon population. The dependence of κtotal on probe power is primarily
responsible for the dependence of the transmission on probe power shown in figure 4.6.
Figure 4.7 shows OMIA on the microwave resonance at the same probe powers and tempera-
tures as in Fig. 3. These data were acquired under blue pumping (ωd = ωc + Ωm). As for red
pumping, the driving force acting on the string and the number of pump photons stored in the
cavity increase with pump power. But for blue pumping the lower sideband interferes destruc-
tively with the probe, yielding decreased transmission of the probe in figure 4.7. Furthermore,
the width of the optomechanical resonance decreases with pump power due to dynamical back-
action on the mechanical mode. At pump powers that are higher than those shown in figure
4.7, Γeff vanishes and the mechanical mode undergoes self-sustained oscillations. The curves
represent fits of the theoretical |S21| (equation 4.20) to the data, where the values of Ωm and
Γm at each temperature are the same as the ones used to fit the red pumping data (Figure 4.6).

The theoretical transmission is also in excellent agreement with our measurements made
further from the microwave resonance. The top row of panels in figure 4.8 shows |S21| as a
function of Ω and ∆ at the maximum red pumping power (ncav = 1.3× 106 ) and the specified
temperatures and probe powers. Horizontal line cuts in this figure correspond to particular
pump frequencies ωd and narrow sweeps of ωp centered on ωd + Ωm. Thus each spectrum ap-
pearing as a vertical line in figure 4.5 corresponds to a horizontal line-cut at a particular value
of ∆ in the upper-left panel of figure 4.10.

In figures 4.6 and 4.8, the OMIT signal decreases significantly, as expected, when the fre-
quency of the upper mechanical sideband of the pump is not well-aligned with the microwave
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Figure 4.6: Main panel: Probe transmission measurements at the indicated
temperatures and probe powers referenced to the input of the cavity. Red pump-
ing was applied, yielding the specified intracavity pump photon numbers. The
transmission curves are offset vertically for clarity. Grey curves are fits of equa-

tion 4.20 to the data.

resonance. In figure 4.6 this condition corresponds to the left and right extremities of the plot
and in figure 4.8 it corresponds to the upper and lower extremities of each panel. The fact that
the size of the OMIT resonance is figure 4.8 is largest for |∆/Ωm + 1| <≈ 0.5κtotal/Ωm ≈ 10−2

follows from the condition |∆ + Ω| <≈ κtotal/2.
The black dashed lines in figure 4.8 are at the optimal pump detuning ∆ = Ωm and cor-

respond to data shown in the top row and left column of panels of figure 4.6. Note that for
the pump detuning ωd = ωc − Ωm used in figure 4.6 the quantity on the x-axis of that figure
(ωp − ωc) is equivalent to the one on the x-axis of figure 4.8 (Ω − Ωm). Thus we have already
demonstrated excellent agreement between theory and the data along the black dashed lines in
figure 4.8. The panels in the bottom row of figure 4.8 demonstrate the same level of agreement
for the case where the upper mechanical sideband of the pump is slightly detuned from the
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Figure 4.7: Probe transmission measurements at the indicated temperatures
and probe powers referenced to the input of the cavity. Blue pumping was applied,
yielding the specified intracavity pump photon numbers. The transmission curves
are offset vertically for clarity. Grey curves are fits of equation 4.20 to the data.

microwave resonance. These panels show |S21| from equation 4.20 with the values of Ωm and
Γm corresponding to the temperatures given in the respective upper panels and the indicated
best-fit values of κtotal and ωc.

The top row of panels in figure 4.10 shows |S21| as a function of Ω and ∆ at the maximum
blue pumping power (ncav = 3.4× 105) and the specified temperatures and probe powers. The
panels in the bottom row of figure 4.10 show |S21| from equation 4.20 with the values of Ωm and
Γm corresponding to the temperatures given in the respective upper panels and the indicated
best-fit values of κtotal and ωc. The agreement between theory and experiment is again excellent.
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Figure 4.8: Measured (upper panel) and theoretical (lower panel) probe trans-
mission at the maximum red pumping power (ncav = 1.3×106 ). From left to right
the values of [temperature (mK), probe power (dBm),κtotal (kHz) and ∆ωc(kHz)]
are [250,- 116,84,0],[350,-116,82,52],[450,-116,83,93],[250,-96,96,-10],[250,-86,95,-
9], where ∆ωc is the shift in ωc relative to its value in the leftmost panels. The
black dashed lines correspond to data shown in the top row and left column of

panels of figure 4.6.
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Figure 4.9: Measured (upper panel) and theoretical (lower panel) probe trans-
mission at the maximum blue pumping power (ncav = 3.4 × 105 ). From left to
right the values of [temperature (mK), probe power (dBm),κtotal (kHz) and ∆ωc
(kHz)] are [250,- 116,83,0],[350,-116,80,37],[450,-116,78,80],[250,-96,103,-17],[250,-
86,98,-19], where ∆ωc is the shift in ωc relative to its value in the leftmost panels.
The black dashed lines correspond to data shown in the top row and left column

of panels of figure 4.7
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4.6.1 Non-linear OMIA at high pump powers

Although we had an excellent agreement with theory and experiments for OMIT and OMIA
measurements, we were unable to fit the OMIA data for high pump powers at 250 mK. As
shown in figure 4.10 we observed duffing type non-linearity in transmission while pumping blue
i.e. at ωc + Ωm. The pump power referenced to the output of the microwave generator was
-4 dBm leading to ncav ∼ 1.3 × 106 photons in the cavity. The probe power was -116 dBm
at the input of the cell. The intrinsic linewidth was same as discussed before i.e. Γm

2π = 15.3
Hz. The transmission was linear while pumping red i.e. at ωc − Ωm and there is an excellent
agreement with the theory with the same pump and probe powers used. S21 can be derived

Figure 4.10: Probe transmission measurements at 250 mK and pump powers
referenced to the generator indicated in the plot . Blue pumping was applied.
The transmission curves are offset vertically for clarity. Dotted black curves are

fits of equation 4.20 to the data

again by introducing a non-linear term in the mechanical equation of motion [88]. Eqaution
4.4 is now modified consisting of duffing nonlinear term as,

dp

dt
= −meffΩ2

mx(t)− FRP − Γmp−Dx3(t) (4.22)

where D is the duffing non-linear parameter which depends on material and the geometry.
Solving for intracavity field and static mechanical displacement xshift as done previously in this
chapter yields,

α = − κlαine
−iφ

i(ω′c − ωd) + κtotal
2

(4.23)

meffΩ2
mxshift + ~G|α|2 +Dx3

shift = 0 (4.24)
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The dynamical equations in the frame rotating with ωd are now given as,

δȧ = (i∆− κtotal
2 )δa− iGδx(α + δa)−√κlδβ (4.25)

meff

(
d2δx

dt2
+ Γm

dδx

dt
+ Ω2

mδx

)
= −~Gα(δa+δa†)−Dδx3−3Dx2

shiftδx−3Dδx2xshift−~Gδaδa†

(4.26)
Using the same ansatz as described in equation 4.14 and writing only the terms with e−iΩt we
get the following equations,

A− (−i(Ω + ∆) + κtotal/2) = −iGαX + κlB (4.27)

where we have defined B before.

meff

(
Ω2
m − Ω2 − iΓmΩ

)
X + 3DX3 = −A−αg0

√
2Ω~meff (4.28)

Using some algebra and putting the value of A− from equation 4.27 in equation 4.28 we get
the following equation of motion under blue pumping,

meff

(
Ω2
m − Ω2 − i(Γm −

4g2

κtotal
)Ω
)
X + 3DX3 = 2~αG√κlB

κtotal
(4.29)

Since under blue pumping, Γeff = Γm −
4g2

κtotal
we can further write the above equation as,

meff

(
Ω2
m − Ω2 − iΓeffΩ

)
X + 3DX3 = 2~αG√κlB

κtotal
(4.30)

Equation 4.30 is a general equation of motion with duffing nonlinear terms. The displacement
of the mechanical resonator depends on Γeff rather than intrinsic linewidth Γm. Since for

red pumping scheme, Γeff = Γm + 4g2

κtotal
which is greater than Γeff while pumping blue, we

concluded that there is no nonlinearity under the same conditions while pumping red. We
then tried to fit the data with the nonlinear theory and could not get a good fit. It would be
interesting to acquire more data in the nonlinear regime to further study the nonlinearity in
the OMIA measurements, which is the work for the future.

4.7 Conclusions

Nanomechanical resonators coupled to microwave cavities by radiation pressure constitute ideal
systems for microwave amplification and absorption. The amplifiers or filters can have a very
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low noise level or a very narrow bandwidth, and the gain or attenuation depends very strongly
on pump power. Our measurements confirm the applicability of the theoretical transmission
Eq. 1 to a larger parameter space than has been covered in previous works. We demonstrated
excellent agreement with theory over a wide range of probe frequencies, pump frequencies, probe
powers, pump powers and temperatures for both red and blue pumping, thereby facilitating
further development of microwave devices based on nanomechanics.
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Chapter 5

Anomalous force noise

The dependence of dissipation of the mechanical resonator at low temperatures (1 mK to 1
kelvin) is critical to test the validity of the tunneling two-level system (TTLS) model. The
mechanical resonator with the fundamental resonance mode of 60 MHz will be in the ground
state at approximately 5 mK. The chip with the mechanical resonator is typically measured by
installing it at the mixing chamber of the dilution cryostat. The commercial Bluefors dilution
cryostat has a base temperature of 7±1 mK subject to heat leaks. Therefore, the base tempera-
ture of the cryostat is not enough to measure the dissipation of the mechanical resonator in the
desired regime of temperature (i.e., below 5 mK). To solve this issue, we are also trying to add
a demagnetization stage in our cryostat. The demagnetization can lower the base temperature
of our cryostat to 1 mK and below. Discussing the principles of the demagnetization stage
is out of scope for this chapter. However, it is an essential step for our future endeavor to
measure the dissipation of the mechanical resonator below 5 mK. The initial characterization
of our mechanical resonator (nanobeam) is done using just the dilution unit of the cryostat. We
started with the measurement of the noise spectrum of 50 µm × 300 nm × 90 nm silicon nitride
nanobeam with 30 nm of a thin layer of Al coupled capacitively to the λ4 CPW superconducting
microwave resonator. The device works according to the optomechanical theory above 200 mK
and departs from the theory below 200 mK. We will discuss this behavior later, but firstly, it
is imperative to look into literature if there is any record of the departure of the behavior from
the usual optomechanical theory for similar kinds of devices as ours.

In chapter 2, we discussed the various pumping schemes for the measurement of the me-
chanical noise spectrum. Pumping the microwave cavity with frequency ωc+Ωm (blue-detuned)
and ωc − Ωm (red-detuned) leads to back action forces on the mechanical resonator. The back
action forces change the mechanical properties, including the optical spring effect and changes
in the linewidth of the mechanical mode. However, at low powers, the back action forces are
small and mechanical properties extracted from the mechanical noise spectrum are intrinsic and
only depend on the temperature at which the experiment is being conducted. The area under
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the mechanical noise spectrum at low pump powers is linear and proportional to the tempera-
ture. Massel et al. [49] measured the mechanical noise spectrum of two mechanical resonators
coupled to a single microwave cavity. These mechanical resonators were made of 150 nm thick
Aluminum with fundamental modes at 32.1 MHz and 32.5 MHz. For the initial calibration of
their mechanical resonators, they measured the area under the mechanical noise spectrum with
red-detuned pumping at low powers. The area under the mechanical noise spectrum is linear
with temperature, but according to them, the linearity holds to about 150 mK, below which
they observed intermittent heating. Similar behavior was observed by Rocheleau et al. [63]
where they measured the mechanical noise spectrum of SiN based nanobeam with Aluminum
on top. They observed fluctuations in the area under the mechanical noise spectrum also below
150 mK, apparently due to non-thermal intermittent force noise. The dependence of the area
under the mechanical noise spectrum with temperature for both the above-mentioned articles
is shown in figure 5.1.

Fluctuations in the area of the 
mechanical noise spectrum 
below 150 mK

Massel et al. Rocheleau et al.

Figure 5.1: (left) Dependence of area under the mechanical noise spectrum
with temperature taken from Massel et al. [49] (right) Dependence of area under
the mechanical noise spectrum with temperature taken from Rocheleau et al. [63]

We observed similar behavior in our 50 µm × 300 nm × 90 nm silicon nitride nanobeam
with 30 nm of a thin layer of Al coupled capacitively to the λ4 CPW superconducting microwave
resonator. The fluctuations in the area under the mechanical noise spectrum are due to huge
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amplitude fluctuations. These fluctuations were observed by several other groups in the mea-
surement of beam-based optomechanical devices with a thin layer of Aluminum. However, the
amplitude fluctuations were never seen in the measurement of Al and SiN nanobeams via mag-
netomotive technique [36], [46], or laser-based measurements of Si beams [34]. In this chapter,
we will discuss the features and characteristics of the amplitude fluctuations, which we call
spikes, for the above-mentioned device.

5.1 Experimental setup

The cell made of annealed Cu containing the chip with the optomechanical device was installed
at the mixing chamber plate of the commercial Bluefors dilution cryostat. The optomechanical
device is the same device used for optomechanically induced transparency and absorption mea-
surements (OMIT/OMIA). The reader can therefore consult chapter 4 for details about the
device. The pump and the probe signal were combined at room temperature before reaching
the cell passing through a series of attenuators and a bandpass filter inside the cryostat as
shown in figure 5.2. For in-cavity pumping, the pump signal is applied at ωc, where ωc is the
resonance frequency of the microwave cavity. The modulation of the resonance frequency of the
MWC due to thermal motion of the mechanical resonator leads to the generation of mechanical
sidebands at ωc ± Ωm, where Ωm is the resonance frequency of the fundamental mode of the
mechanical resonator. The pump signal transmitted by the cell is canceled at 4-kelvin plate
to avoid the saturation of the cryogenic HEMT. The typical residual pump power reaching the
cryogenic HEMT after cancellation is -30 dBm. The signal at ωc±Ωm coming out the cryostat
is further amplified by room temperature HEMT before down-conversion by mixing it with
another microwave signal of frequency ωc + Ωm + δ at room temperature, where δ = 3 MHz is
an arbitrary detuning. The Keysight generator was used to pump the MWC. Anapico channel
2 was used to generate the local oscillator’s frequency for the down-conversion of the signal.
Anapico channel 1 was used to probe the transmission of the MWC. The down-converted signal
is then fed to the Zurich Instrument’s UHF lockin amplifier. The lockin amplifier can measure
the noise spectrum using the spectrum mode. The signal is then demodulated at δ for mea-
suring the signal originally at ωc + Ωm and at 2Ωm + δ for the signal at ωc − Ωm, where δ is
some detuning frequency, 3 MHz in our case. The time constant of the lockin amplifier was
set to 690.4 µs leading to 3 dB BW of 100 Hz and NEP BW of 113 Hz. Similar procedures
were followed for the red and blue detuned pumping. The circuit diagram for the red detuned
pumping is shown in figure 5.3.
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Figure 5.2: Circuit diagram for measurement of the device with in-cavity pump-
ing

5.2 Introduction to spikes
We derived the output mechanical noise spectrum for in-cavity pumping in chapter 2. The
output noise spectrum in the frame rotating with ωc is given by,

S = 16Γmκrnbg2

Γ2
m + 4(ω − Ωm)2

1
κ2
total + 4Ω2

m

+ 16Γmκr(nb + 1)g2

Γ2
m + 4(−ω − Ωm)2

1
κ2
total + 4Ω2

m

(5.1)

where Γm is the intrisic linewidth of the mechanical mode, κr is the coupling of any field coming
from port 2 of the transmission line to the MWC, κtotal is the total linewidth of the MWC,
Ωm is the resonance frequency of the mechanical mode, nb is the bose einstein occupancy of
the mechanical resonator at temperature T , and g = g0

√
nd. g0 is the vacuum optomechanical

coupling and nd is the number of drive photons inside the cavity. In classical regime, nb ≈ nb+1
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and the output spectrum is modified in laboratory’s frame as,

S = 16Γmκrnbg2

Γ2
m + 4(ωc − ω − Ωm)2

1
κ2
total + 4Ω2

m

+ 16Γmκrnbg2

Γ2
m + 4(ω − ωc − Ωm)2

1
κ2
total + 4Ω2

m

(5.2)

The left term of the above equation represents mechanical noise spectrum at ωc + Ωm and the
right terms represents the signal at ωc − Ωm. The area under both sidebands is equal and
proportional to the temperature of the cryostat. One can further write the mechanical noise
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Figure 5.3: Circuit diagram for measurement of the device with red-detuned
pumping

spectrum for each sideband in terms of single sided position spectral density as,

S = κextG
2nd

κ2
total

Sx + nf (5.3)

where κext = 2κr,G = g0/xzpf , Sx = 2Sxx = 8kbT
meffΩ2

m

Γm
Γ2
m + 4(ω − Ωm)2 is the single sided

position spectral density and nf is the noise floor of the circuit. The typical mechanical
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output noise spectrum transmitted from the MWC is shown in figure 5.4. The measurements
were done using the spectrum mode of the Zurich Instrument’s UHF lock-in amplifier. The
raw data is acquired in Volts. Since we are interested in power spectral density, we convert
the units from volts to Watts/Hz. The frequency range of the each spectra depends on the
sampling rate. The sampling rate was set 429 samples/sec which is appropriately higher than
demodulator’s NEP BW to avoid aliasing effects. The number of samples were 1024 which leads
to a resolution bandwidth (RSBW) of Sampling rate

Number of samples = 0.418 Hz. The PSD in Watts/Hz

can thus be calculated as V 2

RSBW ×WF× 50 where V is the raw data in volts, WF is the
factor accommodating for the Hann window used to perform the fourier transform. The WF
is 1.5 in our case. The onset of spikes below 200 mK hampers our measurements and makes
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𝜔𝑐 − Ω𝑚 𝜔𝑐 + Ω𝑚𝜔𝑐

Pump frequency
𝜔𝑑 = 𝜔𝑐

Measuring upper sideband

Figure 5.4: (upper) Sidebands generated at ωc±Ωm while pumping the MWC
at ωc (bottom left) Mechanical sideband at ωc + Ωm at 500 mK (bottom right)

Mechanical sideband at ωc + Ωm at 245 mK

it difficult to extract mechanical characteristics. Therefore, we use area under the mechanical
sideband at ωc + Ωm at 500 mK as calibration to compare the area under the curves below
this temperature. The mechanical sideband at two different temperatures is shown in figure
5.4. It is also worthwhile to mention that the mechanical sideband plotted in figure 5.4 is the
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average of 15000 individual spectra. Also, the measurements were done at a constant pump
power of -4 dBm at the generator for both the temperatures. The area under the mechanical
sidebands is calculated by extracting the linewidth and the height of the peak. Since the
mechanical sidebands are lorentzian, the area is π2 × linewidth × height. The area under the
mechanical sideband at 245 mK is 5.85 × 10−15 Watts and at 500 mK is 1.07× 10−14 Watts.
The ratio of area under the curves is approximately the same as ratio of the temperatures.
Let the temperature extracted from the mechanical sideband be denoted as Tmode. Since we
have established the temperature of the cryostat Tcryo is equal to Tmode from our previous
measurements at 500 mK and 245 mK, we can further extract the apparent temperature of the
mode at lower temperature using a simple relation,

Tmode = A

MPin
Γm
Γeff

(5.4)

where A is the area under the mechanical sideband, Pin is the pump power applied, Γm is the
intrinsic mechanical linewidth and Γeff is effective linewidth due to backaction forces and M
is a constant discussed below. For in-cavity pumping Γm = Γeff , the above equation simplifies
to Tmode = A

M
. We also have omitted Pin, since all the measurements were taken at constant

pump power. Using the same procedures we calculated Tmode at Tcryo = 95 mK. We calculated

T = 95 mK

Figure 5.5: (left) Average of 15000 spectra taken at 95 mK leading to higher
mode temperature (right) 15000 spectra superimposed on each other

the factorM at 500 mK. The factorM depends on the cavity parameters, attenuation and gain
in the circuit. The cavity parameters may depend on Tcryo. We have ignored these effects in
the calculation of Tcryo because the change in the cavity parameters with temperature is very
small, as we shall see when we delve into the dependence of cavity parameters with temperature
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in later sections. Tmode = 265 mK at Tcryo = 95 mK, where M = 2.14 × 10−14 Watts/kelvin.
The average of 15000 spectra leading to mechanical sideband at 95 mK is shown in figure 5.5.
This anomalous behavior is due to large amplitude fluctuations at the mechanical sideband
frequency in some spectra. The plot of 15000 individual spectra is superimposed and also
shown in figure 5.5. As evident from the large fluctuations in some of the spectrum, the area
under the averaged spectra will be higher leading to larger area and in turn higher Tmode. The
spikes were present at all temperatures below Tcryo < 200 mK at different pumping schemes
(i.e. red-detuned, blue-detuned and in-cavity). To understand the characteristics of spikes and
their source, we lowered the Tcryo = 13 mK and took data at different pump powers.

5.3 Spikes at 13 mK

In this section, we will discuss the dependence of the position spectral density of the mechanical
sideband at ωc+Ωm on the pump power applied at the generator. The measurements were done
using in-cavity pumping where the pump frequency is at ωc, where ωc is the resonance frequency
of the MWC. The lock-in settings for these measurements were discussed in the previous section.
The temperature of the cryostat, Tcryo is always 13 mK unless stated otherwise. The time taken
for each spectra is given by Number of samples

Sampling rate which is approximately 2.8 secs. To characterize
the time dependence of the spikes, we converted the power spectral density to apparent string
amplitude. From equation 5.3, we can calculate single-sided position spectral density using the
power spectral density.

Sx = S − nf
αnd

(5.5)

S and nf have the units of Watts/Hz. nd = 2κextPin
~ωcκ2

total

is the number of drive photons in the

cavity and α = ~ωcκextG2

κ2
total + 4Ω2

m

. Following are the parameters used for calculating nd and α.

Parameters Values
κext
2π 90 kHz
κtotal
2π 140 kHz
ωc
2π 6 GHz
Ωm

2π 3.8 MHz

κext and κtotal do depend on Pin but the dependence is quite weak. G = g0

xzpf
where g0 is the

vacuum optomechanical coupling strength and xzpf is the zero point motion of the mechanical
resonator. g0 can be calculated from the linewidth dependence of the mechanical mode with
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Figure 5.6: 3000 position spectra density superimposed for different pump
powers at 10 mK. In these plots 0 in the x-axis is referenced to Ωm/2π where Ωm

is the resonance frequency of the mechanical resonator
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pump power and xzpf =
√

~
2meffΩm

. meff is the effective mass of the mechanical mode in

consideration. meff = m

2 where m = ρ × l × w × t. l = 50µm is the length of the string,
w = 300nm is the width and t = 120 nm is the thickness. To calculate g0 we pump the
MWC at ωc + Ωm and measure the mechanical sideband at ωc. The circuit diagram for this
measurement is shown in figure 5.3. The lock-in settings were same as mentioned before. The
effective linewidth Γeff = Γm−

4g2
0nd

κtotal
depends on the number of drive photons inside the cavity.

We can obtain the g0 by simply linearly fitting the effective linewidth Γeff versus the pump
power applied. The measurement was taken at 245 mK.

Figure 5.7: (left) Power spectral density at ωc while pumping at ωc + Ωm for
different pump powers applied at the generator (right) Effective linewidth versus

pump power applied the cell

The value of g0
2π obtained is 0.45 ± 0.05 Hz. To obtain the position spectral density in x2/Hz

we subtract the noise floor nf = 1.68e− 22 Watts/Hz from the power spectral density. Also, α
= 8.85 ×10−6. The position spectra density was taken for different pump powers applied at the
generator from -25 dBm to 0 dBm. Figure 5.6 shows 3000 position spectra superimposed for
different pump powers. One can clearly see that there is a huge fluctuation in the amplitude.
The amplitude of these fluctuations does not depend on the pump power applied at the gen-
erator. Also, these huge amplitude fluctuations are time-dependent, i.e., they come in sudden
bursts and remain for some time. The apparent string vibration amplitude is calculated by
integrating the position spectral density in a 60 Hz bandwidth discarding the negative points
(which are obtained by subtracting the nf from power spectral density), and then taking its
square root. The apparent string amplitude versus time for different pump powers in shown in
figure 5.8. The time resolution of the plots is approximately 2.8 secs. One can infer that there is
no apparent dependence of the string vibration amplitude on the pump powers. The maximum
string vibration amplitude was approximately 50 pm. These measurements were taken in May
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2020 after the 1st lockdown due to COVID-19. We were performing these measurements before
the lockdown before abruptly warming up the cryostat. We obtained similar results, but the
maximum string vibration extracted was about 300 pm.

The next step we followed is to check if these spikes were present at other frequencies. We
started by checking the power spectral density at ωc−Ωm, the lower mechanical sideband. For
the measurement of the lower sideband, the local oscillator’s frequency in the lock-in amplifier
was set to 2ωm + δ as the downconverted signal is at 2ωm + δ as shown in figure 5.2. Instead
of looking at the time dependence of the string vibration amplitude, we plotted the integrated
power versus time shown in figure 5.9. We again integrated the power spectral density in a
60 Hz bandwidth. The plots clearly show the spikes also at the lower sideband at ωc − Ωm.
Evidently, the spikes are present at both the mechanical sideband frequencies, i.e., ωc ± Ωm.
This suggests that the spikes are caused by the vibration of the mechanical resonator. Although
we checked for the spikes at ωc ± Ωm, it is imperative to check the power spectral density in
a broader bandwidth to look for spikes at other frequencies to strengthen our hypothesis. For
these measurements, we set the bandwidth of the lock-in amplifier to 5642 Hz and the sampling
rate to 27465 samples/sec leading to the resolution bandwidth of the spectra to be 0.2 Hz, and
the time taken for each spectrum is 4.86 secs. Next, we measured the power spectral density
at the upper sideband, i.e., at ωc + Ωm for different pump powers (-10 dBm to 0 dBm) at the
generator. We also calculated the apparent string amplitude and plotted it with time. Again,
the spikes were present only at the mechanical sideband. Figure 5.10 shows the power spec-
tral density and the corresponding string amplitude for a pump power of -10 dBm. We also
checked for power spectral density for other pump powers and found the spikes present only at
ωc + Ωm. The fact that the spikes only occur at the mechanical sidebands demonstrates that
their mechanism must involve the motion of the string.

From equation 5.5, the spikes in the power spectral density must be caused by the spikes
in either α, nd (the number of photons inside the cavity due to pump) or Sx. To calculate
nd we kept Sx to be constant. The noise floor nf was subtracted from the power spectral
density. The negative points were omitted. Therefore, the new power spectral density is
Snew = S − nf = Sxα(nd + ∆nd). ∆nd corresponds to hypothetical spikes in the number
of photons inside the cavity. We calculated ∆nd for different pump powers applied at the
generator. Figure 5.11 shows the power spectral density and the corresponding spikes in nd

at -7 dBm pump power. As shown in figure 5.11, for -7 dBm of pump power applied at the
generator, the steady state number of photons circulating inside the cavity is nd ∼ 6 ×107. The
maximum spikes in nd i.e. ∆nd is approximately 4× 1012. This would be an enormous spike in
nd considering that we already observe degradation of the cavity line shape at nd= (figure 5.12).
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Figure 5.8: Apparent string amplitude versus time for different pump powers
applied at the generator
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Figure 5.9: Integrated power from the power spectral density at the lower
sideband i.e. at ωc − Ωm versus time for different pump powers applied at the

generator
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Figure 5.10: Power spectral density in a wide bandwidth at -10 dBm of pump
power(blue curve shows the individual spectra superimposed and the black curve
is the average of all the spectra ) and the corresponding apparent string ampli-
tude, again 0 in the x-axis of the power spectral density is referenced to Ωm
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Figure 5.11: Individual power spectra density(blue curve) at -7 dBm of pump
power (black curve is the average of all the spectra) and the corresponding spikes
in nd, again 0 in the x-axis of the power spectral density is referenced to ωc+ Ωm

As expected, we don’t observe such enormous spikes in the cavity population when looking at
the microwave output spectrum at the cavity resonance. We don’t see spikes in nd so this leaves
spikes in Sx. But where could such large spikes come from? A rms spike amplitude of 300 pm
and an effective spring constant of 1 N/m corresponds to a potential energy of 5× 10−20 J and
a temperature of 6000 Kelvin. For comparison, -25 dBm pump power corresponds to nd = 106

photons circulating in the cavity, which corresponds to 5× 10−18 J. And a 3 MeV gamma ray
corresponds to 5× 10−13 J. Therefore, the spikes we observe at the mechanical sidebands must
be caused by real spikes in the vibration amplitude of the string or spikes in the optomechanical
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Figure 5.12: Typical transmission curves of the MWC at different pump powers
applied at the generator. For pump power of -1 dBm and 0 dBm, one can clearly

notice the distortion in the curve

gain that are not consistent with optomechanical theory (equation 5.5). We also see spikes with
the other two pumping schemes, i.e., red and blue. We do not perform a similar analysis for
these pumping schemes as we want to keep the back-action forces out of play.

5.4 Plausible sources of spikes

5.4.1 Impact of ionizing radiation

Vepsäläinen et al. [77] measured the impact of ionizing radiation from the environment on the
coherence time of superconducting qubits. When the qubit is in excited state the probablity for
qubit in excited state decays as p(t) = e−Γ1t where Γ1 = 1

T1
is the relaxation rate corresponding

to qubit’s decoherence time T1. According to them, the relaxation rate Γ1 = Γqp + Γother where
Γqp is the relaxation rate contribution from the generation of quasi particles in the supercon-
ducting material and Γother corresponds to other loss channels (like two level fluctuators). The
relaxation rate Γqp depends on the normalized quasi-particle density xqp = nqp

nc
where nqp is the

number of quasi particles and nc is the number of cooper pairs in the qubit. In order to calculate
the number of quasi particles generated due to the background radiation, they measured the
background radiation using NaI scintillation detector. They found the background radiation
flux of approximately ∼ 7 cm2/s, ’consistent with typical values of concrete’. Nazaretski et
al. [53] studied the acoustic properties of the torsional oscillator between 1 mK and 100 mK.
They observed distorted lorentzian response of the oscillator below 10 mK as shown in figure
5.13 accompanied by random noise. They also attributed the random noise shown in figure
5.13 to the background radiation in the energy range of 0.05 to 2.65 MeV.

Can this background radiation be responsible for the spikes we see in our mechanical res-
onators? The area of the nanostring is very small ∼ 2×10−7 cm2. The total flux absorbed on
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Figure 5.13: Non-Lorentzian response of the torsional detector due to back-
ground radiation taken from [53]

the string will be ∼ 1.4×10−6/s. Thus gamma flux incident on the string cannot explain the
frequency of spikes we observe. It is possible that gammas create phonons in the 1 cm2 square
chip, which in turn cause spikes in the string motion. Even so, the gamma flux may be too low
to explain the frequency of spikes that we observe, since a significant fraction of the gammas
have low energies and can be excluded by a modest thickness of Cu. The fact that the spikes
are clustered in time (Figs. 5.8and 5.9) also seems inconsistent with an explanation in terms
of background radiation.

5.4.2 Cracks in the chip

Åström et al. [9] discussed about the fracture processes observed with a cryogenic detector.
In the early attempts for CRESST dark matter search using the sapphire detectors at low
temperatures, they observed unexpected huge signal pulses. They traced back the occurrence
of a random signal to fracture events in the sapphire due to tight clamping of the detectors.
Working in the vicinity of 10 mK, CRESST cryogenic detector was well shielded against cosmic
rays and carefully designed to minimize the effects of radioactive background. The sapphire
crystal was held tightly using sapphire balls. They initially feared that this might be due to
some radioactive contamination of an unknown type. Since the unexpected pulses they ob-
served come in sudden bursts or avalanches, they disregarded the source to be of radioactive
origin as they are poisson distributed in time. In our case, we also observed spiky events that
come in sudden bursts. This led us to believe if our chip made of SiN/Si is also cracking due
to clamping forces. However, instead of sapphire balls, we are using a thin indium sheet as a
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clamp leading to uniform distribution of forces on the chip.

To delve more into the statistics of the avalanches, they plotted number of event per unit
energy with energy and fitted the data with a simple power law distribution as,

dN

dE
∝ E−β (5.6)

where β ≈ 1.9. This power law is called Gutenberg-Richter law, often used for measurements
of magnitudes in an earthquake event. Therefore, to probe our suspicion, we decided to do a
similar analysis. Instead of measuring the power spectral density, we measured the fluctuation
of RMS voltage measured by the lock-in amplifier with time. Using the same settings for the
lock-in amplifier as described in the previous section, we measured the R2 with time as shown
in figure 5.14. The time-domain data was taken for 54000 secs with a 2 msec time resolution.
We call each time-domain data for 54000 secs as a single run. R2 is the integrated area under
the power spectral density also shown in figure 5.14 at ωc + Ωm from -BW to BW where BW
= 113 Hz. Several runs were performed for few different temperatures, i.e., 7 mK, 13 mK, 25
mK, and 50 mK. The pump power applied at the generator was -4 dBm at ωc.

Figure 5.14: (left) Time domain data with time resolution of 2 msec at two
different specified temperatures (right) The R2 in the y-axis in left plot is the area
under the mechanical sideband. The typical mechanical spectrum in frequency

domain is shown in the figure

We then divided the amplitude R2 in 200 equally sized bins of size 2 ×10−12 V 2 in the
range of [0.5×10−10] V 2. We counted the number of points in each bin and plotted the his-
tograms for different runs and temperatures as shown in figure 5.15. The different runs at
a particular temperature are shown in transparent colors, and the average of all the runs is
shown in opaque. From the plots, it is evident that there are no reproducible statistics for
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the distribution of the R2 for different runs at a particular temperature. At 7 mK, there is a
somewhat flat distribution of the R2 in an intermediate range of amplitudes shown between
dotted lines in figure 5.15 for some runs. This flatness of the distribution of R2 or the change
of slope in the distribution is also a feature at 13 mK shown between dotted lines. We do
not observe such behavior at higher temperatures. Is this feature only observed at lower tem-
peratures is subject to further theoretical inputs. Another interesting analysis is to plot the
distribution of R2 for all temperatures in the same plot to probe if the distribution depends
on the temperature itself. Therefore, in figure 5.16 the distribution of R2 is plotted for differ-
ent temperatures. The distribution of R2 for higher temperatures (247 mK, 173 mK, 95 mK)
looks the same. Since the area under the power spectral density scales with the temperature,
the average value of R2 should scale with temperature. However, we found that the average
value of R2 was higher at 95 mK and 173 mK than 247 mK. This discrepancy can be due
to the presence of smaller amplitudes of spikes at 95 and 173 mK, which is not resolvable in
the figure 5.16. The distribution of R2 for lower temperatures (50 mK, 25 mK, 13 mK, 7 mK
) follows the trace of distribution of R2 at 247 mK for lower amplitudes and then diverges.
One can further conclude that the number of events with higher amplitudes of R2 depends on
temperature. The number of events with high amplitudes of R2 is more at lower temperatures.

After considerable devotion of time to understand the dependence of the amplitude of
spikes on different parameters, we did found some dependence on temperature. However, one
can question if this dependence is reproducible. In figure 5.17, we have plotted the histograms
of different runs at various temperatures. We can notice that it is not evident that the runs at
lower temperatures have more number of points at higher amplitudes. The distribution at 7
mK and 13 mK for different runs are random, and there is no clear evidence that the number
of events with higher amplitude at 7 mK is always more than at 13 mK and is the same for
higher temperatures. To get a more accurate picture of the temperature dependence, one can
certainly measure for a longer period of time. We did measure R2 close to 75 hours at 7 mK
and 165 hours at 13 mK. We can now compare our measurements with the data presented by
Åström et al. [9]. Åström et al. plotted the distribution, which was reproducible and followed
the simple power-law mentioned above in this section. Our distribution is far from the simple
power-law dependence and is not reproducible. We certainly cannot discard cracking as one of
the plausible sources of spikes since it may follow a different mechanism, and the distribution
is not given by a simple power law.
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Figure 5.15: Distribution of R2 at different specified temperatures. The trans-
parent color represents different runs and the opaque color represents the average

of all the runs

5.5 Conclusions

We reported very high amplitude fluctuations at the mechanical sidebands while pumping the
MWC at ωc, which were also observed at various other groups. These spikes were present
only at the mechanical sidebands implying that there is some stochastic force noise acting on
the mechanical resonator or that the standard theory of optomechanical transduction does not
apply. The amplitude fluctuations appear below 200 mK. The source of the force noise is still
unclear. Our analysis of ionizing radiations or cracks in the silicon chip due to clamping did
not provide sufficient information to link these amplitude fluctuations to the formers. It is also
tempting to connect these fluctuations/stochastic force noise to the TLSs present in the string,
which is driven by the microwaves. One can also argue if there is any temperature-dependent
non-linearity present in these devices leading to amplitude fluctuations. Also, these amplitude
fluctuations are present only on devices made of Aluminum or having a thin layer of Aluminum.
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Figure 5.16: Distribution of R2 at different specified temperatures plotted on
same graph.

Figure 5.17: Distribution of R2 for all the runs at different specified tempera-
tures plotted on same graph. The transparent color represents different runs and

the opaque color represents the average of all the runs

Thus, it becomes imperative to test devices made of other materials for the presence of spikes.
We then created another platform to measure the nanobeams made of SiN without any metal
present on them, which is the subject of interest for the next chapter.
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Chapter 6

Dielectric actuation and detection of
nanobeams made of SiN at low
temperatures

The smaller dimensions of nanomechanical resonators make the transduction of the Brown-
ian motion of mechanical resonators at low temperatures arduous. The recent field of cavity
optomechanics wherein the mechanical resonator is coupled to an optical cavity, or supercon-
ducting microwave cavity, has paved the sensitive detection of its motion at low temperatures.
However, microwave cavity optomechanical experiments have relied on the coupling of supercon-
ducting mechanical resonators to superconducting microwave cavities focusing on ground-state
cooling [73], quantum non-demolition measurements [40], entanglement between different me-
chanical resonators [54], etc. Most of the achievements in the field of superconducting microwave
cavity optomechanics were carried out with massive drums made of Aluminum coupled capac-
itively to the microwave cavity. In a recent experiment by Cattiaux et al. [20], the mechanical
resonator (Aluminum drum) was cooled down to ∼ 0.5 millikelvins, and the Brownian motion
was measured successfully using the superconducting MWC. Although the use of mechani-
cal drums made of superconducting material induces large coupling with the MWC favoring
sensitive detection of its motion at low temperatures, it is generally marred with low-quality
factors. To further increase the performance of such devices, one can benefit from high-quality
factors of mechanical resonators made of pre-stressed Silicon Nitride. Typically, the mechanical
resonators made of Silicon nitride are metalized (Al, Nb) and are capacitively coupled to the
MWC. The detection of Brownian motion of the metalized (Al) doubly clamped SiN nanobeam
coupled to the MWC is tarnished by huge amplitude fluctuations due to anomalous force noise
below 200 mK as discussed in the Chapter 5. On the other hand, vacuum optomechanical
coupling of non-metalized SiN nanobeam to the MWC is quite low. Pernpeintner et al. [57]
extracted the vacuum coupling rate g0

2π = 11.5 mHz by coupling 20 µm long bare SiN nanobeam
to λ

2 MWC cavity. This coupling strength is much smaller compared to the coupling strength
observed in metalized beam. For example, Sulkko et al. [72] measured g0

2π = 20 Hz. Thus,
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integrating bare SiN mechanical resonators into the electric circuit is still a challenging task.
Recently flip-chip techniques are used to capacitively couple SiN membranes with a thin layer
of Al to 3-d MWC [84].

Maillet et al. [47] reported the damping rate and frequency shift of high quality, metalized
pre-stressed SiN nanobeams between 30 mK and 1 kelvin. The results supported the idea that
electron-driven TLS relaxation is the dominant mechanism of damping. Their results may
explain the several issues raised with the nanomechanical damping mechanisms at low tem-
peratures. Thus, it becomes imperative to measure the mechanical characteristics of bare SiN
mechanical resonators to test the validity of the TTLS model.

Faust et al. [25] presented an integrated NEMS transducer based on MWC dielectrically
coupled to an array of doubly clamped pre-stressed SiN nanobeam. The MWC was based on
strip resonator forming λ

4 geometry. One end of the strip was grounded and inductively coupled
to the feedline, and the other end was wire bonded to another chip with an array of mechanical
resonators. The MWC was fabricated using copper on a ceramic substrate. The mechanical
resonator was actuated using a piezo inertial drive. The coupling of the mechanical resonator
to the MWC induces periodic modulation of the microwave resonance frequency causing side-
bands at ωc ± Ωm where ωc and Ωm are the microwave and mechanical resonance frequency,
respectively. The scheme allows probing the motion of the mechanical resonator between 4
kelvin and room temperature. To further measure the motion of the mechanical resonator
below 4 kelvin, superconducting microwave cavities are ideally suited. Pernpeintner et al. [57]
integrated a pure insulating silicon nitride nanobeam to a superconducting coplanar waveguide
microwave resonator. However, vacuum optomechanical coupling strength g0/2π was 11.5 mHz
which is quite low. Unable to measure the thermal motion of the mechanical resonator at 500
mK, they excited the mechanical resonator with a piezo inertial drive. They could not carry
out the measurements below 500 mK, possibly due to heat loads by piezo drive.

This chapter will discuss a novel scheme for detecting non-metalized doubly clamped SiN
nanobeam coupled to a superconducting microwave cavity on a separate chip using wire bonds.
The mechanical resonators will be placed between two metallic plates and will be driven using
dielectric forces. This dual-chip dielectric actuation and detection using microwave cavity is
related to the scheme presented by Faust et al. [25]. I will start this chapter by discussing
various experimental tools and challenges. I will then report the measurements of 100 µm long
metalized doubly clamped nanobeam using the dual chip technique before switching to bare SiN
nanobeams. We again measured huge amplitude fluctuations in the long metalized nanobeam,
which is the subject of discussion for later in this chapter.
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6.1 Experimental tools

The foremost step is the design of the microwave cavity for the transduction of the motion of
the mechanical resonator. The microwave cavity is based on the superconducting material. We
made both Niobium and Aluminum microwave cavities. The section will start with the design
issues of the microwave cavity before delving into the circuit for the measurement.

6.2 Superconducting microwave cavity

The superconducting microwave cavity was fabricated using either Al or Nb as superconducting
material on an intrinsic Si wafer. For details on the fabrication methods, the reader can consult
chapter 3 for more information. The superconducting MWC was based on coplanar waveguide
forming open λ

2 type geometry. The CPW resonator was in turn coupled to the CPW trans-
mission line as shown in figure 6.1. S specifies the spacing between the central conductor and
either of the ground plane, while W specifies the width of the central conductor. The param-
eters S= 94 µm and W=150 µm are chosen such that the impedance of the transmission line
and the MWC is 50 Ω. The whole structure was made on 1 cm2 chip. The larger dimension of
the central conductor enables us to have enough space for wire bonding it to another chip with
the mechanical resonator. The GDS image of the chip and the FEM simulation of the MWC
is shown in figure 6.2.

B E

Transmission line 
and CPW 
resonator

W SS

Interdigited
capacitor (IDC)

Figure 6.1: Design of the open λ
2 MWC coupled to the transmission line. The

design was fabricated on 1 cm2 chip. One end of the central conductor is coupled
to the transmission line while the other end is for the wire bonding. There is
also an interdigitated capacitor (IDC) running across the chip near one end of the
central conductor. The paramenters S andW are chosen such that the impedance

of the MWC is 50 Ω
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As shown in the FEM simulation in figure 6.2, the voltages are maximum at two open ends
of the central conductor on the MWC. One end of the central conductor is capacitively coupled
to the transmission line for the transmission measurements at GHz frequencies, and another
end is meant for the wire bonding to another chip with NEMS. From the simulation, we found
the resonance frequency of the fundamental mode of the MWC to be at 6.2 GHz. The central
conductor of the transmission is also widened at the two open ends to match with the dimension
of the gold coplanar waveguides on a circuit board. The input and the output of the coaxial
transmission line in the cryostat are soldered to the gold CPW.

MWC

Trasnsmission line

Capacitive coupling

Figure 6.2: (left) The GDS file of the MWC which was used to perform laser
lithography on 1 cm2 chip(right) FEM simulation of the MWC showing the volt-
age distribution in the MWC at the fundamental mode of MW resonance. The
resonance frequency was extracted to be 6.2 GHz. Blue color corresponds to

minimum voltage and red the maximum

There is also an interdigitated capacitor (IDC) running across the chip near one end of the
central conductor of the MWC shown in figure 6.1. The role of IDC is the subject of discussion
for the upcoming sections. However, in this section, we will try to approximate the capacitance
of the IDC using analytical solutions. The IDC is a multi-finger periodic structure that utilizes
the capacitance across a narrow gap between two thin films. The gaps are essentially very long
and folded to use a small amount of area, as shown in figure 6.3. The approximate solution of
the total capacitance of an IDC of length l is given by [79],

C = εre10−3

18π
K(k)
K ′(k)(N − 1)l (pF) (6.1)
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𝑙
𝑤

𝑠 𝐿

Figure 6.3: Schematic of the interdigitated capacitor

where C is the total capacitance, l is the length of IDC, N is the number of fingers. The
spacing s between two fingers of IDC is same as the width of the finger w. The substrate
is intrinsic Si with relative permittivity εr = 11.7. The ratio K(k)

K ′(k) = π

ln

[
21 +

√
k′

1−
√
k′

] where

k
′ =
√

1− k2 and k = tan2[0.25πw
w + s

]. We fabricated IDCs with different dimensions giving us
following capacitances,

l (µm) w (µm) g (µm) N CIDC (pF)
780 90 90 90 68
650 100 100 64 25
600 100 100 49 14
400 100 100 49 9

6.3 NEMS

The NEMS under consideration in this chapter is doubly clamped pre-stressed Silicon nitride
nanobeams. The two kinds of nanobeams are 1) 100 µm × 300 nm × 100 nm SiN nanobeam
with 30 nm of thin Al layer. 2) a harp of SiN nanobeams with different lengths encompassed
with Al electrodes on either side. The nanobeam with a thin layer of Al on top was fabricated
using the usual step discussed in chapter 3. The device is shown in figure 6.4. This gate of this
device was connected to one of the open ends of the central conductor of the MWC via wire
bonds. The pads of the nanobeam were connected to an RF source such that the nanobeam
is excited using a capacitive drive. The fabrication process was hampered due to the pres-
ence of the foils beneath the surface of SiN that appeared after XeF2 Si etch that released the
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string, as discussed in chapter 3. Therefore, the final etching step to release the structure was
carried out at IEMN, Lille on a different XeF2 machine that never produces ’foils’. The gap
between the nanobeam and the gate was approximately ∼ 90 nm. These devices were fabri-
cated very close to one of the edges of 1 cm2 chip such that the length of the wire bonds from
MWC to gate is small to minimize the extraneous inductance due to them. The extraneous
inductance can modify the resonance frequency and the quality factor of the microwave cavity. .

Figure 6.4: SEM image of the device used for measurement using capacitive
drive and detection using microwave cavity. The devices were made very close
to the edge of the chip. There were no foils beneath the surface of SiN in these
devices. The nanobeam was 100 µm long, 300 nm wide and 100 nm thick with

30 nm of thin Al on top

The chip consisting of bare silicon nitride nanobeams was fabricated Klaß et al. at the
University of Konstanz. However, the final release of the structure was intended to be done by
us. The electrodes surrounding the nanobeam were 1 µm wide in the initial design. Performing
the final etching in the XeF2 dry etching machine led to the collapse of the electrodes, as shown
in figure 6.5. The Silicon etching process in XeF2 dry etching machine is calibrated to produce
a minimum of 1 µm undercuts in the structures. The released nanobeams also possessed foils,
as discussed previously. Therefore, it becomes essential to increase the width of the electrodes
to prevent them from collapsing while etching. The adequate electrode width should be 3 µm
and more.

For the reasons to be discussed in the next section, the gate capacitance Cg between two
electrodes of the harp of nanobeams have to be much less than capacitance across the CIDC .
Therefore we calculated the approximate capacitance between the two electrodes of the harp
using finite element method simulations. Figure 6.6 shows the finite element simulation be-
tween two electrodes of the harp for different thicknesses of the substrate. The left simulation
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Figure 6.5: Collapse of the electrodes which encompasses the SiN nanobeams.
The electrodes with width of 1 µm were too small to survive a single calibrated

cycle of dry etching with XeF2

in the figure has an electrode width of 3 µm with a substrate thickness of 20 µm. The spacing
between two electrodes in the simulation was 600 nm. The static capacitance we get was 0.05
pF. The middle simulation is with 80 µm thick substrate, and the calculated capacitance was
0.053 pF. The substrate with a thickness of 160 µm has approximately the same capacitance.

Figure 6.6: (left) FEM simulation to calculate the capacitance between elec-
trodes with substrate thickness of 20 µm (middle) FEM simulation to calculate
the capacitance between electrodes with substrate thickness of 80 µm (right)
FEM simulation to calculate the capacitance between electrodes with substrate
thickness of 160 µm. The blue color corresponds to ground or 0 Volt and red

color corresponds to 1 Volt

The new chip with an electrode width of 6 µm was fabricated by Klaß et al.. This harp
consists of 5 nanobeams made of bare silicon nitride with different lengths (80 µm, 70 µm, 60
µm, 50 µm, and 40 µm). The width of these nanobeams was approximately 350 nm, and they
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are 100 nm thick. These devices were finally etched at IEMN, Lille, and SEM images are shown
in figure 6.7.

Aluminum

Aluminum

Silicon 
Nitride

Figure 6.7: SEM image of the final device having an electrode thickness of 6
µm.

6.4 Electrical circuit

The cell made of annealed Cu containing two chips was installed at the mixing chamber plate
of the Bluefors cryostat. Inside the cell, the chip consisting of a microwave cavity was placed
in the space carved from the printed circuit board as shown in figure 6.8 (right). The printed
circuit board was made from ROGERS polymer substrate optimized for operation with GHz
frequencies. The coplanar waveguide made of gold was printed on the circuit board. The input
and the output coaxial lines inside the fridge were soldered to the gold CPW. The transmission
line on the PCB was, in turn, wire bonded to the transmission line on the chip. The chip
consisting of a mechanical resonator was placed very near to the chip with the MWC, also
shown in figure 6.8. Both the chips were clamped using a copper piece with a thin layer of
Indium between the copper and the chip.

One end of the central conductor of the MWC was wire bonded to the gate electrode of
the mechanical resonator. The upper part of the IDC was wire bonded to the Al pad of the
nanobeam. The Cu pad on the PCB designed for the RF drive is also connected to the upper
part of the IDC. This scheme of wire bonds is clearly shown in figure 6.8. We always make an
effort to keep the wire bonds as short as possible to prevent spurious inductances.

The IDC acts as a capacitive ground for microwaves and allows us for actuation and detec-
tion dielectrically or capacitively using a pair of electrodes. The drive and detection circuit is
shown in figure 6.9. The capacitance of the IDC was chosed so that it was approximately a
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Figure 6.8: (left) Schematic of the measurement circuit inside the cell installed
at the mixing chamber plate for measurement of the bare SiN string. (right)
Schematic showing the two chips which are placed very close to each other to
shorten the length of the wirebonds reducing spurious inductance. The NEMS

chip contains the metalized string

short circuit at the microwave resonance and approximately an open circuit at the mechanical
resonance, thereby enabling the RF drive of the string. Since the impedance of the IDC was low
compared with that of the gate capacitor, motion of the sting caused a significant change in the
total capacitance of the microwave resonator (figure 6.9). The Keysight microwave generator
generated the microwave pump tone at ωc, where ωc is the resonance frequency of the cavity.
The pump tone was kept at a constant pump power of 16 dBm. The pump tone was divided
into two microwave lines. One of the lines acts as a local oscillator for the mixer at room
temperature for the downconversion of the signal. The other line is attenuated (attenuation
depends on how much power we want at the cell level), which is further split into two lines.
The line going inside the cryostat to the mixing chamber plate can be combined with a weak
probe signal to measure the transmission of the cavity. The transmitted pump signal from the
cell at ωc was canceled by combining with another line at the 4-kelvin plate to avoid the satu-
ration of the cryogenic HEMT. Due to the motion of nanobeam with a fundamental resonance
frequency at Ωm, the signal at ωc is periodically modulated, causing sidebands at ωc±Ωm. The
sideabands were further amplified using room temperature HEMT before being downconverted
at the mixer. The details about the attenuation in the coaxial line inside the cryostat and the
gain of HEMTs were given in Chapter 3. The downconverted signal at Ωm was fed to the Zurich
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Figure 6.9: Circuit diagram for the measurement of the mechanical sideband.
The circuit was similar to measurements used in previous chapters. The green
line is the therocoaxial line for feeding an RF signal to the mechanical resonator

instruments UHF lockin amplifier. A signal oscillator inside the lockin amplifier was used to
generate the RF drive at Ω (close to half the mechanical resonance frequency) and the reference
at 2Ω going into the lockin’s mixer. The RF signal from room temperature to the cell was fed
using a thermocoaxial cable (shown in green in the circuit diagram), having a capacitance of
600 pF and resistance of 150 Ω.

According to the simple circuit model of figure 6.9, the change in the capacitance of the
microwave cavity due to the motion of nanobeam dC

dx
is attenuated by a factor 1

(1 + Cg
CIDC

)2

where Cg is the gate capacitance between two electrodes and CIDC is the capacitance across
the interdigitated capacitor. Therefore, as long as CIDC >> Cg, the impedance of the IDC
should not degrade the detection sensitivity. However, we have not ruled out the possibility
that the IDC degrades the quality factor of the microwave cavity. The calculated approximate
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solution of the capacitance across IDC was ∼ 60 pF, which is much greater than the simulated
gate capacitance across the electrodes.

6.5 Measurement of 100 µm SiN nanobeam with 30 nm
of Al

The pre-stressed SiN nanobeam with a thin layer of Aluminum was fabricated on a 1 cm2 chip.
The nanobeams were 100 µm long, 100 nm thick, and 300 nm wide with 30 nm of Aluminum
on top. The gap between nanobeams and the gate is close to ∼ 90 nm. Before wire bonding the
chip containing the NEMS to the central conductor of the MWC, we measured the transmission
of the microwave cavity. We found the resonance frequency of the MWC, ωc2π = 6.23 GHz at 4
kelvin. The resonance frequency extracted from the transmission measurements was similar to
the value obtained using FEM simulation on COMSOL. After wire bonding to the gate of the
nanobeam, the resonance frequency of the MWC decreased to 5.8 GHz, which is expected due
to spurious inductance added by wire bonds and added capacitance by pads and nanobeam.
The MWC used in this measurement was made from Niobium deposited using ultra-high vac-
uum e-beam evaporator. The cavity parameters extracted from the transmission measurement
at 95 mK is also shown in figure 6.10. We measured the transmission of the MWC at vari-

𝜔𝑐

2𝜋
=5.8 GHz

𝜅𝑒𝑥𝑡

2𝜋
=480 kHz

𝜅𝑡𝑜𝑡𝑎𝑙

2𝜋
=2.48 MHz

Figure 6.10: (left) Transmission measurement of the MWC when not connected
to another chip with nanobeam. The resonance frequency extracted was 6.23
GHz. (right) Transmission measurement of the MWC when connected to the

gate of the nanobeam. The resonance frequency decreased to 5.8 GHz

ous temperatures from 500 mK to the base temperature and found the resonance frequency
to be approximately the same. After characterizing the MWC, we pumped the MWC at ωc
while nanobeam is grounded. The in-cavity scheme will lead to the generation of mechanical
sidebands at ωc ± Ωm due to periodic modulation of the MWC by the thermal motion of the
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mechanical resonator coupled to it. Ωm is the resonance frequency of the fundamental mode of
the mechanical resonator. Using the circuit shown in figure 6.9, we can measure both the side-
bands. The upper sideband was measured using the spectrum mode of the Zurich Instrument’s
UHF lockin amplifier. The sampling rate was set to 1716 samples/sec, which sets the span
of the spectrum. The lockin amplifier’s NEP bandwidth was set to 565 Hz. The mechanical
sideband was measured at different temperatures (495 mK, 405 mK, 318 mK, 231 mK, 187 mK,
140 mK, 95 mk, 48 mK), and the power spectral density was plotted as shown in figure 6.11.
The pump power applied by the Keysight generator was kept the same. As mentioned in previ-
ous chapters, the area under the mechanical sideband while pumping in-cavity is proportional
to the temperature; we plotted the area under the mechanical sideband versus temperature
to check for the linearity. The plot is also shown in figure 6.11. At 495 mK, the resonance
frequency of the mechanical resonator Ωm/2π was 2.39 MHz, and linewidth Γm/2π was 89 Hz.
The linewidth and the resonance frequency decreased with a decrease in temperature.

The area under the mechanical sideband is linear in temperature at high temperatures, but
departs from linearity below 200 mK. In the plot of the area under the mechanical sideband ver-
sus the temperature shown in figure 6.11, blue dots represents the points where the area is linear
with temperature and the orange dots are the one which departs from the linearity. We have
discussed this behavior with another device in Chapter 5. To check if the elevated area under
the sideband below 200 mK is due to the presence of amplitude fluctuations or spikes, we plot-
ted the individual superimposed spectra, and indeed, we found spikes also shown in figure 6.11.

Therefore, we cannot use this device to measure the linewidth and the change in resonance
frequency with temperature (below 200 mK) due to spikes whose origin remains elusive to us.
However, the device can be used to test the RF drive capability of our platform. The MWC is
again pumped at ωc. The oscillator of lockin amplifier is used to produce a sinusoidal output
signal at Ωm+δ

2 which is fed to the mechanical resonator using thermocoaxial cable installed in
the cryostat where Ωm+δ is the frequency in the vicinity of Ωm and δ depends on the linewidth
of the mechanical resonator. The force exerted on the mechanical resonator due to the me-
chanical RF drive of Vac cos

[
Ωm+δ

2 t
]
is proportional to

(
Vac cos

[
Ωm+δ

2 t
])2

where Vac is the RMS
amplitude of the RF signal.
The term

(
Vac cos

[
Ωm+δ

2 t
])2

when expanded has term V 2
ac cos [Ωm+δt] which excites the me-

chanical resonator. The oscillation of the mechancial resonator with frequency Ωm+δ leads to
periodic modulation of the MWC’s resonance frequency leading to generation of the sidebands
at ωc±Ωm+δ. The siganl transmitted by the cell was down-converted using a mixer to produce
the signals at Ωm+δ and −Ωm+δ which is fed to lockin amplifier. The second harmonic of the
oscillator (used to generate the RF signal) is used to demodulate the signal inside the lockin
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Figure 6.11: (top left) Mechanical noise spectrum at ωc+Ωm while pumping the
MWC at ωc for specified temperatures. (top right) Area under the mechanical
sideband versus the temperature. The orange points shows the departure of
linearity below 200 mK (bottom left) Mechanical noise spectrum at 48 mK. The
increased area under the noise spectrum is due to the presence of amplitude
fluctuations or spikes (bottom right) The individual spectra were plotted at 48

mK showing spikes

amplifier. The RF frequency generated from the oscillator was swept from Ωm−δ
2 to Ωm+δ

2 .

Figure 6.12 shows the mechanical response of the signal at two different values of Vac. The
Vac applied 2.6 mVolts and 1.96 mVolts. Normalizing the drive level leads to the overlap of
the signal for two different levels demonstrating linear response. The measurements were done
at 495 mK and 230 mK. The response of the mechanical drive becomes very noisy near the
mechanical resonance frequency below 200 mK as shown in figure 6.13 possibly due to spikes.
We then tried applying Vdc + Vac cos[Ωm+δ] as RF drive to see how the resonance frequency
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Figure 6.12: (top left) Mechanical response of the nanobeam at 495 mK when
it is capacitively driven with an RF signal. The plots are the mechanical response
at two different amplitude of RF signal ( top right) The two plots on the top left
plot were normalized by the square of the driving voltage, demonstrating linearity

(bottom middle) The linearity was also demonstrated at 243 mK

varies with variation in Vdc (DC RF voltage). Applying Vdc can nullify any inbuilt charge in
the nanobeam.

6.6 Measurement of non-metalized SiN strings below 500
mK

The typical actuation schemes of nanomechanical resonators are capacitive [65], piezoelec-
tric [48], magnetomotive [38], electrothermal [10], etc. These actuation schemes are highly in-
tegrable and efficient but put many constraints on material choice and geometry. For example,
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Figure 6.13: Mechanical response of the metalized string at different drive levels
at 187 mK

capacitive actuation relies on the interaction between two metallic plates. The magnetomotive
actuation is also based on the current passing through NEMS made entirely of metal or met-
alized dielectrics. The internal piezoelectric actuation scheme demands the material used for
fabricating NEMS to be piezoelectric. Since the dissipation of metalized SiN strings is primarily
due to the presence of metal [47], it is important to measure the NEMS made of non-metalized
SiN. Unterreithmeier et al. [76] first measured the SiN strings actuated via dielectric forces. A
polarizable material experiences an attractive force in an inhomogeneous electric field directed
towards maximum field strength. Here, the doubly clamped pre-stressed SiN string acts as a
polarizable material as shown in figure 6.7. The inhomogeneous field is created by two Alu-
minum electrodes also shown in figure 6.7. An AC voltage Vac cos(Ωt

2 ) was applied to one of the
electrode resulting in oscillating force component that drives the string perpendicular to the
chip plane, where Ω ≈ Ωm and Ωm is the resonance frequency of the string. The circuit diagram
for the measurement of SiN string is shown in figure 6.9. We measured the transmission of the
MWC before and after bonding the electrode of SiN strings to the central conductor of the
MWC. Unlike in the case of the metalized string, the microwave cavity’s linewidth increased
considerably upon bonding the NEMS chip to the cavity chip as shown in the plot 6.14 (there
are offsets in both x and y). The reason for this is uncertain. We observed similar broaden-
ing of the microwave resonance with two different NEMS chips (K1 and K3) with bare SiN
strings. The resonance frequency shifted from 6.1855 GHz before bonding to 6.607 GHz after
wire bonding. Because the devices on chip K3 were close to the edge of the chip, we used much
shorter wirebonds to connect chip K3 than to connect chip K1, but this did not improve the
Q of the microwave resonance.

We are using 16 dBm microwave pump on the cavity resonance (ωc). We tried increasing
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Figure 6.14: Transmission of the MWC before and after bonding to the chip
with the bare SiN string (sample K1)

the microwave drive from 16 dBm to 18 dBm but this caused the noise level measured by the
lockin amplifier to increase. Drive levels above 16 dBm also make the opposition line unstable,
leading to saturation of the HEMT. The power into the cell is about -46 dBm, corresponding
to about 25 nW. Applying an RF drive Vac cos(Ωt

2 ) where Vac = 200 mV and Ω was swept from
3.161 to 3.167 MHz, we found the signal corresponding to the resonance of the longest string i.e.
81 µm. However, we were not able to resolve the signal in linear regime by applying lower drive
voltage. The measurements were done at the mixing chamber plate temperature of 284 mK.
The plot 6.15 shows the signal at different drive levels. Even at 35 mV rms drive, the resonance
may remain non-linear. The measurement at 35 mV was averaged over 12 hours. Also, it’s not
clear why the offset depends on drive level shown in plot 6.15. Using the same procedures, we
found the resonance frequency of strings with different lengths. For the string of length 61 µm,
we have to increase the maximum drive voltage to 600 mV and to 700 mV for string lengths of
51 µm and 41 µm. The resonance frequency was approximated by plotting the jump frequency
of the non-linear response of the string against the square of the driving voltage as shown in
figure 6.15. The typical response of the strings of different lengths at different voltages are
shown in figures 6.16, 6.17, 6.18, 6.19, 6.20. The figures also comprise the plot showing the
jump frequency of the non-linear response against the square of the driving voltage.

The jump frequency at the lowest drive voltage for strings of different lengths was plotted
against the length of the string shown in figure 6.21. The experimental data were compared with
the resonance frequency of strings of different lengths extracted from the numerical solution of
the Euler-Bernoulli’s beam discussed by Bokaian et al. [13]. The experimental data were also
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Figure 6.16: (left)Response of 81 µm string (right) Jump frequency against the
square of the driving voltage

compared with the FEM simulation done in COMSOL.

6.7 Conclusions

In this chapter, we presented a scheme to measure the motion of the non-metalized SiN string
below 500 mK. The polarizable SiN string is driven out off to the chip plane using an inho-
mogeneous electric field between two electrodes. We were able to measure all the SiN strings
of different lengths shown in figure 6.7 although in the non-linear regime at 284 mK. We also
measured the strings at a mixing chamber temperature of 13 mK in the non-linear regime and
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Figure 6.17: (left)Response of 71 µm string (right) Jump frequency against the
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Figure 6.18: (left)Response of 61 µm string (right) Jump frequency against the
square of the driving voltage

found no signs of spikes. The resonance frequency of different strings was plotted against their
length. The experimental data were compared with the numerical solution of Euler-Bernoulli’s
beam equation and FEM simulation. We also measured a 100 µm metalized SiN string using
the dual-chip scheme and observed its response. The mechanical spectrum was again tarnished
by the presence of spikes. We can measure the non-metalized SiN string in the linear regime
by increasing the coupling between the string and the MWC. The coupling can be increased
by reducing the gap between the string and the electrodes.
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Figure 6.19: (left)Response of 51 µm string (right) Jump frequency against the
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Figure 6.21: Jump frequency at the lowest drive voltage for strings of different
lengths versus the length of the string. The experimental data was compared
with the numerical solution (Bokaian et al.) considering the stress in the string

to be 900 MPa.
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