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Résumé

Nous cherchons à expliciter certains liens entre la topologie symplectique et l'étude des systèmes dynamiques à travers la notion de code barres d'homéomorphismes hamiltoniens de surfaces et de l'invariant de Calabi de difféomorphismes hamiltoniens du disque unité. Ces deux objets représentent de puissants invariants en topologie symplectique. Plus précisément, nous visons à mettre en avant une interprétation dynamique de ces objets.

Cette thèse se divise en deux parties.

Dans une première partie nous étudierons les codes barres de Floer d'un point de vue dynamique. Notre motivation provient en particulier de l'utilisation récente des codes barres en topologie symplectique permettant d'obtenir des résultats purement dynamiques. Ainsi, nous expliciterons des constructions de codes barres pour certains homéomorphismes hamiltoniens de surfaces à l'aide de la théorie des feuilletages transverses de Le Calvez. Notre stratégie consistera à calquer la construction de l'homologie de Floer et de l'homologie de Morse à l'aide d'outils de systèmes dynamiques tels que des feuilletages. Nous prouverons en particulier que dans les cas les plus simples, nos constructions correspondent aux codes barres de Floer. Dans une seconde partie nous nous intéresserons à l'invariant de Calabi pour les difféomorphismes hamiltoniens du disque unité. Usuellement, l'invariant de Calabi est bien défini sur l'ensemble des difféomorphismes hamiltoniens à support compact du disque unité. Inspirés par l'interprétation dynamique de cet object donné par Fathi dans sa thèse, nous étendrons la définition de ce dernier au groupe des C 1 difféomorphismes hamiltoniens du disque. En particulier, cela nous permettra de calculer l'invariant de Calabi de certaines pseudo-rotations irrationnelles du disque.

Abstract

The goal of this thesis is to give some links between sympletic topology and the study of dynamical systems through the notion of barcodes of Hamiltonian homeomorphisms of surfaces and the Calabi invariant of Hamiltonian diffeomorphisms of the unit disk. These two objects represent powerful invariants in symplectic topology. More precisely, we aim at giving a dynamical interpretation of these objects. This thesis is divided into two parts.

In a first part we will study the Floer Homology barcodes from a dynamical point of view. Our motivation comes from recent results in symplectic topology using barcodes to obtain dynamical results. We will give some constructions of barcodes of some Hamiltonian homeomorphisms of surfaces using Le Calvez's transverse foliation theory. The strategy consists in copying the construction of the Floer and Morse Homologies using dynamical tools like Le Calvez's foliations. In particular, we will prove that for the simplest cases, our constructions coincide with the Floer Homology barcodes.

In a second part we will deal with the Calabi invariant of the Hamiltonian diffeomorphisms of the unit disk. Inspired by the dynamical interpretation of this object developed by Fathi in his thesis, we will extend it to the group of C 1 Hamiltonian diffeomorphisms of the disk. In particular, we will be able to compute the Calabi invariant of some irrational pseudo-rotations of the disk.

Context

Let us begin with some basic definitions of symplectic geometry.

Let us consider pM 2n , ωq a symplectic manifold, meaning that M is an even dimensional manifold equipped with a closed non-degenerate differential 2-form ω called the symplectic form. In particular, if M is a symplectic surface, the symplectic form is an area form.

Let us consider a time-dependent vector field pX t q tPR defined by the equation dH t " ωpX t , ¨q, where H : R ˆM Ñ R is a smooth function 1-periodic in t, meaning that H t`1 " H t for every t P R. The function H is called a Hamiltonian function. If the vector field pX t q tPR is complete, it induces a Hamiltonian flow which is a family pf t q tPR of diffeomorphisms of M preserving ω and satisfying the equation B Bt f t pzq " X t pf t pzqq.

The time one map f 1 of the isotopy pf t q tPr0,1s is called a Hamiltonian diffeomorphism. In particular, a Hamiltonian diffeomorphism on a surface preserves the area.

The case of autonomous Hamiltonian diffeomorphisms can be kept in mind. Considering a C 1 function H on a surface, the previous hamiltonian formalism provides a Hamiltonian flow which follows the level sets of H such that the flux passing through any loop is zero. The time-one map of such a Hamiltonian flow will be called an autonomous Hamiltonian diffeomorphism.

Birkhoff proved [START_REF] Birkhoff | Proof of poincaré's geometric theorem[END_REF] a celebrated result, conjectured and proved in some cases by Poincaré [START_REF] Poincaré | Sur un théorème de géométrie[END_REF], known as the Poincaré-Birkhoff theorem, that asserts that an area-preserving homeomorphism of a closed annulus that satisfies some "twist conditions" admits at least two fixed points. Further generalizations have been obtained by Franks [START_REF] Franks | Generalizations of the Poincaré-Birkhoff theorem[END_REF], using Brouwer's lemma on translation arcs, and other authors.

In one hand, the Poincaré-Birkhoff theorem led to many questions of symplectic geometry such as the Arnold conjecture [START_REF] Arnol | The first steps of symplectic topology[END_REF] and the developement of the Floer Homology theory [START_REF] Floer | Morse theory for fixed points of symplectic diffeomorphisms[END_REF][START_REF] Floer | Morse theory for Lagrangian intersections[END_REF][START_REF] Floer | A relative Morse index for the symplectic action[END_REF][START_REF] Floer | The unregularized gradient flow of the symplectic action[END_REF][START_REF] Floer | Witten's complex and infinite-dimensional Morse theory[END_REF]. Floer introduced the Floer Homology by combining the variational approach of Conley and Zehnder, the elliptic techniques of Gromov and the Morse-Smale-Witten complex in order to answer the Arnold conjecture stated as follows.

Conjecture 0.0.1. A Hamiltonian diffeomorphism of a symplectic manifold M must have at least as many fixed points as the minimal number of critical points of a smooth function on M .

On the other hand, the Poincaré-Birkhoff theorem led to the study of periodic points of homeomorphisms of surfaces and more generally to the study of the dynamics of such homeomorphisms.

The main goal of this thesis is to study some links between the symplectic geometry and the dynamical systems of surfaces. In a first part we will study barcodes for Hamiltonian homeomorphisms on surfaces. In a second part we will study the Calabi invariant for Hamiltonian diffeomorphisms of the unit disk.

Both parts of the thesis contain their own introduction and preliminaries chapters. They are independant.

Part I

Barcodes for Hamiltonian homeomorphisms of surfaces

Chapter 1

Introduction

Goals and motivations

Main question

In the first part of this thesis, we will think about the following question.

Question 1.1.1. Can we construct barcodes for Hamiltonian homeomorphisms of surfaces, equal to the Floer homology barcodes, using dynamical objects as Le Calvez's transverse foliations?

Barcodes

Given a Hamiltonian function pH t q tPr0,1s on a symplectic manifold pM, ωq, we define the action function A H on the space of contractible loops of M by

A H pγq " ´żD u ˚ω `ż 1 0 H t pγptqqdt,
where u is an extension to the disk of the contractible loop γ : S 1 Ñ M , that is, a map u : D " tz P C||z| ď 1u Ñ M such that upe 2iπt q " γptq. If we suppose that π 2 pM q " 0, the function A H does not depend on the choice of u and it will always be the case in this thesis. We will see in the preliminaries that for a Hamiltonian diffeomorphism f , the action function A H does not depend on the choice of the Hamiltonian function H which induces f , hence it defines an action function A f asociated to f .

For example, on surfaces, the difference of action between two points x and y fixed by a Hamiltonian flow can be interpreted as the flux of this flow through any oriented path γ joining x and y.

An important fact is that the critical points of an action function A f are the trajectories of the contractible fixed points of f . The study of the critical values of A f will play a key role in this thesis.

The barcode of a Hamiltonian diffeomorphism f is a countable collection of intervals, called bars whose extremities are the critical values of its action function A f . In the particular case of a generic hamiltonian diffeomorphism, each critical value of A f is the end of one and only one bar.

The construction of these barcodes, recalled in Chapter 3, is based on the Floer Homology theory.

Let us begin with a simple example. We consider a Hamiltonian flow pf t q tPr0,1s induced by an autonomous Hamiltonian function H. In this case, for t small enough, the barcode of the Hamiltonian diffeomorphism f t is equal to the filtered Morse Homology pHM t ˚pH qq tPR of H. To give more details about this example we explain how the filtered homology of H can be interpreted as a collection of bars. In general, the bars of a barcode are of the form I j " pa j , b j s, a j P R, b j P R Y t`8u and satisfy certain finiteness assumptions. The ends of these bars are in correspondence with the critical points of H and can be classified as follows.

• There are the death points which are the critical points x of H ending some homology, meaning that the dimension of the vector spaces pHM t ˚pH qq tPR decreases at Hpxq.

• There are the birth points which are the critical points x of H generating homology in HM ˚H pxqpHq, meaning that the dimension of the vector spaces pHM t ˚pH qq tPR increases at Hpxq. The value Hpxq of a birth point x will be the begining of a bar.

The bars of a barcode can be described by the following classification of the birth points.

• A birth point can be "homological" and associated to the semi-infinite bar pHpsq, `8q in the barcode if the homology it generates in HM Hpxq ˚persists in the vector spaces pHM t ˚qtěHpsq .

• A birth point can be "bound to die" and associated to a death point y and a finite bar pHpxq, Hpyqs in the barcode if the homology it generates in HM Hpxq ˚disapears in HM Hpyq ˚.

The previous filtered homology is an example of a persistence module. In fact, we will see that barcodes use to classify persistence modules up to isomorphisms. Roughly speaking, it is equivalent to consider a barcode as a set of bars or as a filtered homology.

Following this idea, we associate, canonically, a barcode Bpf q to every Hamiltonian diffeomorphism f by considering the filtered Floer Homology of f where the filtration is given by the action function A f .

The barcode Bpf q gives information about the structure of the set of fixed points and the spectral invariants of f . The spectral invariants have been introduced by Viterbo [START_REF] Viterbo | Symplectic topology as the geometry of generating functions[END_REF]. They have been used in numerous deep applications and their theory has been developped in many contexts, we can cite for example the work of Schwarz [?] and Oh [?]. They are powerful tools which took an important place in the development of symplectic topology.

The notion of Barcode provides, in some topology, a continuous invariant of conjugacy on the set of smooth Hamiltonian diffeomorphisms of symplectic manifolds.

Hamiltonian homeomorphisms

In symplectic geometry, we can define the notion of Hamiltonian homeomorphism of a surface Σ by taking the closure of the Hamiltonian diffeomorphisms of Σ. This definition comes from the Gromov-Eliashberg theorem [START_REF] Ya | A theorem on the structure of wave fronts and its application in symplectic topology[END_REF] which states that if a sequence of symplectomorphisms of a symplectic manifold pM, ωq converges in the C 0 topology to a diffeomorphism then this diffeomorphism is a symplectomorphism as well.

For a Hamiltonian homeomorphism of a surface, we are not able to consider directly its Floer Homology as the construction requires at least a C 2 setting. Howeover, on surfaces, the barcode Bpf q depends continuously, in the uniform topology, on f and moreover, extends to Hamiltonian homeomorphisms, see [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF] for more details.

The barcode of a Hamiltonian homeomorphism f is defined by a limiting process and it is natural to wonder if it is possible to describe a direct construction.

Moreover, the notion of Hamiltonian homeomorphism of surfaces is well-known in dynamical systems and has a dynamical interpretation thanks to the notion of rotation vectors. On a symplectic surface pΣ, ωq, ω is an area form which induces a Borel probability measure µ. We will say that a homeomorphism f of an oriented compact surface is Hamiltonian if it is isotopic to the identity and preserves a Borel probability measure µ whose support is the whole surface and whose rotation vector ρpµq is zero.

Le Calvez's transverse foliations

A key motivation for this thesis is to bring a dynamical interpretation of the barcodes for Hamiltonian homeomorphisms of surfaces. Taking this direction, we will give some constructions of barcodes, inspired by the Floer homology constructions, using Le Calvez's foliation theory. Le Calvez's foliations theory has many applications in the study of dynamical systems of surfaces. For example in the study of prime ends by Koropecki, Le Calvez and Nassiri [START_REF] Koropecki | Prime ends rotation numbers and periodic points[END_REF], the study of homoclinic orbits for area preserving diffeomorphisms by Sambarino and Le Calvez [START_REF] Calvez | Homoclinic orbits for area preserving diffeomorphisms[END_REF] or the results about the forcing theory of Le Calvez and Tal [START_REF] Calvez | Forcing theory for transverse trajectories of surface homeomorphisms[END_REF][START_REF] Calvez | Topological horseshoes for surface homeomorphisms[END_REF].

Nowadays, Le Calvez's foliations theory [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF] represents one of the most important dynamical tool in the study of the dynamics of homeomorphisms of surfaces. This theory already found applications to Barcodes of Hamiltonian homeomorphisms of surfaces. For example, for a homeomorphism f which preserves the area, Le Roux, Seyfaddini and Viterbo in [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF] used Le Calvez's foliations theory to extract dynamical informations of the barcode of f without Kislev-Shelukhin's result [START_REF] Kislev | Bounds on spectral norms and barcodes[END_REF].

Here are some details about transverse foliations. Let us consider a homeomorphism f on a surface. There are sets X of fixed points of f , called maximal unlinked sets, such that there exists an isotopy, called maximal isotopy, from id to f fixing all points of X and which are maximal for the inclusion. Le Calvez proved that given a maximal unlinked set X of fixed points of f and an isotopy I fixing all the fixed points of X, there exist oriented foliations F positively transverse to the isotopy I. Roughly speaking, this means that, given a point in the complement of X, its trajectory along the isotopy I is homotopic in ΣzX to a path transverse to F.

Moreover, if we suppose that f is area-preserving, we will see in 2.3.7 that those foliations are gradient-like. To keep it simple, this means that we can see such a foliation as the gradient lines of a function defined on the surface. In particular, every leaf of a gradient-like foliation is an injective path, called a connexion, between two singularities of F and there is no cycle of connexions. In the particular case where f has finitely many fixed points, by a result of Wang [START_REF] Wang | A generalization of classical action of hamiltonian diffeomorphisms to hamiltonian homeomorphisms on fixed points[END_REF], the notion of action function can be extended. A key point is that, for every leaf φ of F the action function A f of f satifsies A f pαpφqq ą A f pωpφqq.

To give an example, we can consider again a Hamiltonian diffeomorphism f induced by an autonomous Hamiltonian function H on a surface. The induced Hamiltonian flow is a maximal isotopy I of f and the gradient flow of H is a gradient-like foliation positively transverse to I. In this case, the only maximal unlinked set of fixed points fixed by I is the set of critical points of H.

Results

We describe briefly the results of the first part of this thesis. We provide distinct constructions of barcodes for Hamiltonian homeomorphisms of surfaces.

First construction

We will describe a first construction in Chapter 4 under some generic hypothesis which is inspired from the Morse and Floer homology constructions. We will consider a Hamiltonian homeomorphism f of an oriented compact surface Σ with a finite number of fixed points which are, in a sense, non degenerate and such that the set of fixed points is unlinked, meaning that there exists an isotopy I " pf t q tPr0,1s from id to f fixing all the fixed points of f . By Le Calvez's theorem we can consider a gradient-like foliation F transverse to I. We will suppose that F satisfies some "generic" hypothesis which allows us to construct a chain complex inducing a filtered homology and then a barcode denoted B gen pFq.

We have the following theorem proved in Chapter 8.

Theorem 1.2.1. The Barcode B gen pFq does not depend on the choice of the foliation F P F gen pIq.

In the case of a Hamiltonian diffeomorphism close enough of the identity and generated by an autonomous hamiltonian function we will obtain the following result. Theorem 1.2.2. If we consider a Hamiltonian diffeomorphism f with a finite number of fixed points which is C 2 -close to the identity and generated by an autonomous Hamiltonian function then the barcode B gen pFq is equal to the Floer homology barcode of f . Let us give the idea of the construction. Since f is area-preserving, we will see that there are three kinds of singularities for the foliation F: sinks, sources and saddle points. We will suppose that F is in the set F gen pIq of "generic" foliations positively transverse to I, meaning that there are finitely many leaves between sources and saddle points and between sinks and saddle points. In the Morse Homology theory, the chain complex is defined by counting modulo 2 the number of trajectories between the critical points of a Morse function f . Following the same ideas we will be able to define a chain complex associated to F by counting modulo 2 the number of leaves between singularities of F and more precisely the number of leaves between sinks and saddle points and between sources and saddle points.

A natural question appears.

Question 1.2.3. Can we generalize the construction to barcodes for every Hamiltonian homeomorphisms of surfaces?

Second construction

In general there is no natural way to construct a chain complex from a positively transverse foliation. The difficulties come from geometrical limitations of the foliations.

Nevertheless, given a Hamiltonian homeomorphism f , we will construct barcodes associated to maximal unlinked sets of fixed points of F .

Let us consider a maximal unlinked set X of fixed points of f , a maximal isotopy I " pf t q tPr0,1s fixing all the fixed points of X, and a gradient-like foliation F, positively transverse to I. We will begin by associating a graph GpFq to the foliation F whose set of vertices is equal to X and for every couple px, yq of vertices there is an edge from x to y if there is a leaf φ of F starting at x and ending at y.

In Chapter 5 we will construct an application β which associates a barcode to triplets pG, A, iq where G is an oriented graph on the set of vertices X equipped with an action function A defined on X, meaning that for every edge e of G from x to y we have Apxq ą Apyq, and an index function i : X Ñ Z.

In Chapter 6, we will consider the barcode βpGpFq, A f , indpF, ¨qq, denoted β F , where A f is the action function of f and indpF, ¨q the index function induced by F and prove some useful properties.

We will prove in Chapter 8 the following result. Theorem 1.2.4. The barcode β F does not depend on the choice of F and only depends on the maximal unlinked set of fixed points X.

Third construction

To prove Theorem 1.2.4 we will construct another barcode associated to X as follows.

In Chapter 7, we will introduce an order on the fixed points of X. For two fixed points x, y P X we will say that x ą y if there exists an oriented path γ from x to y of which any lift r γ on the universal cover D 2 of ΣzX is a Brouwer line for the natural lift r f of f , meaning that r γ is the boundary of an attractor of r f . In the same ideas, we associate to this order a graph Gpąq whose set of vertices is equal to X and for every couple of vertices x and y there is an edge from x to y if x ą y.

We will consider the barcode β ą " pGpąq, A f , indpI, ¨qq which depends only on X and we will prove the following result in Chapter 8.

Theorem 1.2.5. For every foliation F positively transverse to the isotopy I we have

β ą " β F .
In the same chapter, we will prove the following result which enlighten the link between the barcode associated to a maximal set of fixed points and the first construction in a more generic case. Theorem 1.2.6. Let us consider a Hamiltonian homeomorphism f on a compact surface Σ whose set of fixed points is finite, unlinked, and such that each fixed point x P Fixpf q is not degenerate. We consider a maximal isotopy I such that SingpIq " Fixpf q then for a foliation F P F gen pIq we have B gen pFq " β F .

In fact, Theorems 1.0.3, ?? and 1.0.4 will be consequences of the two previous theorems.

Chapter 2

Preliminaries

Morse Homology

We give a quick presentation of Morse homology, largely inspired by the presentation of M. Audin and M. Damian in [START_REF] Audin | Morse Theory and Floer Homology[END_REF]. We fix a n-dimensional compact smooth manifold M . For a function F : M Ñ R, a point x is said to be a critical point if dF x " 0. The function F is said to be a Morse function if each critical point x of F is non degenerate, i.e. D 2 F x is non degenerate.

The local theory of critical points of Morse functions is well understood and we have the following lemma. 

F ˝ψ´1 px 1 , ..., x n q " F pxq ´i ÿ j"1 x 2 j `n ÿ j"i`1 x 2 j .
The integer i is called the Morse index, denoted indpF, xq, of the critical point x and does not depend on the choice of the diffeomorphism ψ. We denote by Crit i pF q the set of critical points of F of index i.

Let us consider a Morse function F : M Ñ R. A pseudo gradient vector field adapted to F is a vector field X on M such that for all x P M we have dF x pX x q ď 0 with equality if and only if x is a critical point of F and for a Morse chart near a critical point of F , the vector field X is equal to the opposite of the gradient vector of F for the canonical metric on R n . That is to say that, in local coordinates, we have

X " i ÿ j"1 2x j B Bx j ´n ÿ j"i`1 2x j B Bx j .
Notice that such a vector field always exists. If we denote by φ s the flow of X, for x a critical point of F we define its stable manifold to be W s pxq "

" y P M | lim sÑ`8
φ s pyq " x * and its unstable manifold to be

W u pxq " " y P M | lim sÑ´8 φ s pyq " x * .
Those manifolds satisfy dimpW u pxqq " codimpW s pxqq " indpF, xq.

Let us consider a pseudo gradient vector field X adapted to a Morse function F : M Ñ R. We say that X satisfies the Smale condition if all stable and unstable manifolds of its critical points meet transversely. Moreover Smale's Theorem assures that we can find a vector field Y on M C 1 -close to X which satisfies the Smale condition.

Let us describe the Morse chain complex C ˚pF q of a Morse function F : M Ñ R and a pseudo gradient X of F on M which satisfy the Smale condition. The i th group of the chain complex C i pf q is given by

C i pf q " $ & % ÿ yPCrit i pf q λ y ¨y, λ y P Z{2Z , .
-.

We define the differential map B X : C i pf q Ñ C i´1 pf q as follows. For two critical points x `and x ´of F we define the set Mpx ´, x `; F, Xq "

" x P M | lim tÑ˘8 φ t pxq " x ˘* .
We have that Mpx ´, x `; F, Xq -W u px ´q X W s px `q, so the transversality condition assures that dimpMpx ´, x `; F, Xqq " indpF, x ´q ´indpF, x `q.

For all c P R, if x is in Mpx ´, x `; F, Xq then we have lim tÑ˘8 φ t`c pxq " x ˘. So it gives a free and proper action of R on Mpx ´, x `; F, Xq. Thus we can define the quotient x

Mpx ´, x `; F, Xq of Mpx ´, x `; F, Xq by this action. The dimension of the manifold x Mpx ´, x `; F, Xq is equal to indpF, x ´q ´indpF, x `q ´1. For all critical points x ´of F of index i we define

B X px ´q " ÿ x `PCrit i´1 npx ´, x `; F, Xq ¨x`,
where npx ´, x `; F, Xq denotes the cardinal of x Mpx ´, x `; F, Xq modulo 2.

Thus we have to verify that B X ˝BX " 0. First, for x P Crit i`2 pF q we compute B X ˝BX pxq "

ÿ zPCrit i pF q ÿ yPCrit i`1 pF q
pnpx, y; F, Xq ˆnpy, z; F, Xqq ¨z

To prove that the previous sum is zero it suffices to prove that given two critical points, x of index i `2 and z of index i the sum

ÿ yPCrit i`1 pF q npx, y; F, Xq ˆnpy, z; F, Xq (2.1) 
is zero. This number equals the cardinal of the union

ď yPCrit i`1 pF q
x Mpx, y; F, Xqq ˆx Mpy, z; F, Xqq.

This union is a set of points and the idea is to prove that it is the boundary of a manifold of dimension 1 which is an even number of points. We introduce the concept of broken gradient trajectories.

Definition 2.1.2. A broken gradient trajectory between two critical points x ´and x `is a family px 1 , ..., x p q of points such that there exists a sequence py 1 , ..., y p`1 q of critical points of F satisfying 1. for all i, x i P x Mpy i , y i`1 ; F, Xq

2. y 1 " x ´and y p`1 " x `.
For two critical points x and z we denote Ě y Mpx, z; F, Xq the space of broken gradient trajectories from x to z. We have the following two theorems. The topology on Ě y Mpx, z; F, Xq is induced by the topology on M . It admits a countable fundamental system of open neighborhoods and the compactness is proved using sequences. We refer to [START_REF] Audin | Morse Theory and Floer Homology[END_REF] for more details. Theorem 2.1.4. Let us consider px, y, zq P Crit i`1 pF q ˆCrit i pF q ˆCrit i´1 pF q, x 1 P x Mpx, y; F, Xq and x 2 P x Mpy, z; F, Xq. There is a continuous embedding ψ, differentiable on the interior of its definition domain, from an interval r0, δq, δ ą 0 to a neighborhood of px 1 , x 2 q in Ě y Mpx, z; F, Xqq such that 1. ψp0q " px 1 , x 2 q P Ě y Mpx, z; F, Xq,

ψpsq P x

Mpx, z; F, Xq for all s ‰ 0.

Moreover, for any sequence px n q nPN in x Mpx, z; F, Xq converging to px 1 , x 2 q and for n large enough, x n lies in the image of ψ.

With some properties about the index, we obtain that

ď yPCrit i pF q x Mpx, y; F, Xq ˆx Mpy, z; F, Xq " B Ě y Mpx, z; F, Xqq,
where px, y, zq is defined as in the above theorem. Moreover, Ě y Mpx ´, x `; F, Xqq is a one dimensional manifold with boundary. His boundary is an even number of points and hence we obtain that B 2 X " 0. The Morse homolgy of a Morse function F will be denoted HM ˚pF q and HM t ˚pF q will refer to the naturally filtered Morse homology induced.

Remark 2.1.5. There is an important fact that we will use in the construction of barcodes and persistence modules: given a Morse function F : M Ñ R and a pseudo gradient vector field adapted to F , the value of F decreases along the flow of a point. Which means that, for every non critical point x we have

F p lim sÑ´8 φ s pxqq ě F p lim sÑ`8 φ s pxqq.
If we consider a Morse function F of a surface Σ then there are three categories of critical points of F , the critical points of index 0 called the sinks, corresponding to the local minimum, those of index 1 called the saddle points and those of index 2 called the sources, corresponding to the maximum local.

Symplectic geometry

For the remainder of this section, we consider a connected symplectic surface pΣ, ωq such that π 2 pM q " 0 and where ω is a 2-form which is closed and nondegenerate. A symplectic diffeomorphism is a diffeomorphism f : Σ Ñ Σ such that f ˚ω " ω.

Hamiltonian diffeomorphisms

A Hamiltonian function on M is a time dependent function

H : S 1 ˆM Ñ R.
The Hamiltonian function generates a Hamiltonian vector field X H defined by the equation

dH t " ωpX H , ¨q,
where we denote H t pxq " Hpt, xq. The flow pf t q tPr0,1s of this vector field is called the Hamiltonian isotopy generated by H. A Hamiltonian diffeomorphism is a symplectomorphism that can be written as the time 1 map of a Hamiltonian isotopy.

We consider two Hamiltonian diffeomorphisms f and g on a symplectic manifold pM, ωq. We denote H : S 1 ˆM Ñ R and G : S 1 ˆM Ñ R two Hamiltonian functions such that f and g are the time-one map of the induced Hamiltonian flows pf t q tPr0,1s and pg t q tPr0,1s . Then the Hamiltonian K : S 1 ˆM Ñ R given by

K t pzq " H t `Gt ˝f ´1 t pzq,
induces a Hamiltonian flow such that f ˝g is its time-one map. Moreover, the Hamiltonian H : S 1 ˆM Ñ R defined by Ht pzq " ´Ht pf t pzqq, induces a Hamiltonian flow such that f ´1 is its time-one map.

Hence the set of Hamiltonian diffeomorphisms of a symplectic manifold is a group that we denote HampM, ωq.

Hamiltonian Action

Let us consider pM, ωq a symplectic manifold and H : R ˆM Ñ R a Hamiltonian function which is periodic in t and satisfies H t`1 " H t for all t P R. We denote pφ t q tPR the Hamiltonian flow defined by H.

We consider a contractible loop γ " pγptqq tPS 1 in M and we denote by Ω the set of loops in M . We can consider the expression

A H pγq " ´żD u ˚ω `ż 1 0 H t pγptqqdt,
where u is an extension of γ : S 1 Ñ M to the disk, that is, a map u : D " tz P C||z| ď 1u Ñ M such that upe 2iπt q " γptq.

The integral does not depend on the choice of the extension u. Indeed if we consider another extension v then ż

D u ˚ω ´żD v ˚ω " ż S 2 w ˚ω,
where w is defined by gluing the two disks along their common boundary. Since we assume that π 2 pM q " 0 we have that the previous equation is equal to zero.

The function A H will be called the action function and satisfies the following property.

Proposition 2.2.1. A loop is a critical point of A H if and only if t Þ Ñ γptq is a 1 periodic solution of the Hamiltonian system 9 γptq " X t pγptqq.

Let us sketch the proof. For a loop γ P Ω, the tangent space T γ Ω at γ consists of the smooth vector fields ξ P C 8 pγ ˚T M q along γ satisfying ξpt `1q " ξptq. Then the computation of the action function at γ in the direction of ξ gives dA H pγqξ "

ż 1 0 tωp 9 γ, ξq `dH t pγptqqrξsudt,
which vanishes for every ξ P T γ Ω if and only if the loop γ is a solution of the Hamiltonian system 9 γptq " X t pγptqq.

The periodic solutions of the flow induced by H will be denoted P H .

Floer Homology

We sketch the construction of the Floer homology in this section. There are many difficulties in making this construction and the purpurse of this section is only to give ideas of how Floer homology works. Thus, we may ignore some of these difficulties to set an understandable and short introduction to Floer homology. The section is inspired by Audin-Damian [START_REF] Audin | Morse Theory and Floer Homology[END_REF] and Hofer-Zehnder [START_REF] Hofer | On the topological properties of symplectic maps[END_REF] presentations.

Let us consider a symplectic manifold pM, ωq and let us choose an almost complex structure J on M compatible with ω. The almost complex structure J is a smooth endomorphism of T M , such that for all x P M , J x P LpT x M, T x M q satisfies J 2

x " ´1 and such that gpξ, ηq " ωpξ, J x ηq, η, ξ P T x M defines a Riemannian metric g on M . We denote ∇H the gradient of H on M with respect to the x-variable in the metric g. Note that we have ∇H " ´JX H .

The crucial objects are the solutions u : R ˆS1 Ñ M of the gradient flow equation (also called the Floer equation)

Bu Bs `Jpuq Bu Bt `∇Hpt, uq " 0. (2.2)
We denote by M the set of "bounded solutions" of equation 2.2. This set is defined as the set of smooth solutions u : R ˆS1 Ñ M of equation 2.2 which are contractible, and have finite energy, i.e. such that the number

Epuq " 1 2 ż `8 ´8 ż 1 0 # ˇˇˇB u Bs ˇˇˇ2 `ˇˇˇB u Bt ´XH pt, uq ˇˇˇ2 + dsdt (2.3) 
is finite. Floer proved in [START_REF] Floer | The unregularized gradient flow of the symplectic action[END_REF] that the space M has a structure similar to the set of broken trajectories defined in section 2. For two critical points y, x, the set Mpy, xq is an invariant subspace. The compactness can be formulated analogously to the finite dimensional Morse theory that we developed in section 2.1. We have the following proposition of Schwarz book [?]. Proposition 2.2.2. Let us consider a sequence pu n q nPN P Mpy, xq. Up to a subsequence, the sequence pu n q nPN satisfies the following property: there is a sequence s j n P R of times, j " 1, 2, ..., m, such that u n ps `sj n q converges together with all derivatives uniformly on compact sets to solutions u j P Mpx j , x j´1 q where x j P P H for j " 0, ..., m, with x 0 " x and x m " y.

We describe the previous proposition by the following Figure 2.1.

x y u n x j x j´1 u j ' ' ' ' Figure 2.1: illustration of proposition 2.2.2
One may prove using Fredholm theory in the appropriate functional analytic setting that for a "generic" choice of the pair pH, Jq the sets Mpy, xq are smooth and finite dimensional manifolds such that the dimension of a set Mpy, xq is equal to the difference ind CZ pyq ´ind CZ pxq, where ind CZ pxq is the Conley-Zehnder index of x whose definition will be recalled in section 2.2.5.

Then we can define the homology groups associated to a pair pH, Jq on pM, ωq. The grading of the chain complex pC k q kPZ is given by the Conley-Zenhder index that we define later in section 2.2.5 and for all k P Z we have

C k " à tZ{2Z ¨x|x P P H & ind CZ pxq " ku,
where P H is the set of non degenerate contractible periodic orbits of H.

If we consider a pair y, x P P H such that ind CZ pyq´ind CZ pxq " 1 then Mpy, xq is a onedimensional manifold and more precisely has finitely many components, each component consists of a connecting orbit together with all its translates by the time s shift. We can now define the differential map B k : C k Ñ C k´1 for y P P H of index k as follows.

B k y " ÿ xPP H |ind CZ pxq"k´1 npy, xqx,
where npy, xq is the number of connected components of Mpy, xq counted modulo 2.

Floer proved that B k ˝Bk`1 " 0, for each k P Z. We explain the idea of the proof. Assume that for three elements x P C k`1 , y P C k and z P C k´1 there is a connexion u in Mpx, yq and a connexion v in Mpy, zq. We may view the pair pu, vq as a "broken trajectory" connecting x with z. In this case the set Mpx, zq has dimension two. Floer proved that by a pertubation argument called the gluing method [START_REF] Floer | The unregularized gradient flow of the symplectic action[END_REF] that there exists a unique one parameter family of connexions in Mpx, zq. By taking the quotient by the Raction of the time s-shift one finds a connected 1-dimensional manifold without boundaries of unparametrized orbits which represents one component of Mpx, zq. Such a manifold is either a circle or an interval with two ends. By Proposition 2.2.2 each end converges in a suitable sense to a well-defined broken trajectory pu 1 , v 1 q P Mpx, y 1 qˆMpy 1 , zq for some y 1 P C k . One may prove by the same gluing arguments that there is a correspondence between the "broken trajectories" and the ends of connected component of Mpx, zq. Thus the 1dimensional manifold Mpx, zq{R has an even number of ends and the broken trajectories between x and z occur in pairs. We obtain that

B k ˝Bk`1 pxq " ÿ ind CZ pzq"k´1 ¨ÿ ind CZ pyq"k npx, yqnpy, zq 'z is equal to 0 modulo 2. z x y y 1 u v u 1 v 1 ' ' ' ' Figure 2.2
We can define the Floer homology groups pHF k pM, H, Jqq kPZ by

HF k pM, H, Jq " KerpB k q{ImB k`1 .
Remark 2.2.3. Notice that the energy of a solution u P Mpy, xq is equal to Epuq " A H pyqÁ H pxq and is positive. We deduce that the action function A H decreases along the solution u. We can compare this result to Remark 2.1.5 where a Morse funtion F on M is decreasing along the solutions of a pseudo gradient vector field.

Filtered Floer Homology

Let us consider a non-degenerate Hamiltonian function H on a symplectic manifold pM, ωq which satisfies the hypothesis of the previous section 2.2.3 and let us fix J an almost complex structure on M . We use the same notation as in Section 2.2.3 to define the filtered Floer homology of H from the Floer homology of H.

We consider the natural filtered chain complex pC t k q kPZ,tPR where C t k " À tZ{2Z ẍ|x P P H , ind CZ pH, xq " k, A H pxq ă tu and the natural filtered differential application

B t k : C t k Ñ C t k´1 defined as the restriction of B k on C t k .
The filtered chain complex pC t k , B t k q kPZ,tPR induces an homology denoted pHF t ˚qtPR . This homology is referred to as the filtered Floer homology of the Hamiltonian H. One may prove that the filtered Floer homology of H does not depend on the choice of the almost complex structure J on M , see [START_REF] Audin | Morse Theory and Floer Homology[END_REF] for example.

We have the following property. Proposition 2.2.4. We consider two Hamiltonian flows pφ t H 0 q tPr0,1s and pφ t H 1 q tPr0,1s of two Hamiltonian functions H 0 and H 1 on S 1 ˆM . Let us suppose that pφ t H 0 q tPr0,1s and pφ t H 1 q tPr0,1s are homotopic relative to the endpoints in HampM, ωq. Then there exists a constant c P R such that HF t ˚pH 0 q " HF t`c ˚pH 1 , 1q, @t P R.

Conley-Zehnder index and Maslov index

The Conley-Zehnder index is an important tool in the definition of Barcodes and we will discuss some properties of this index in our constructions. We give a short version of the definition although we will not use it directly.

Given a Hamiltonian function H of a symplectic manifold pM 2n , ωq we want to define the Conley-Zehnder index of any contractible 1-periodic solution xptq of 9

xptq " X t pxq. We consider the symplectic manifold pR 2n , ω 0 q where ω 0 is the standard symplectic form on R 2n written in the coordinates z " px 1 , ..., x n , y 1 , ..., y n q P R 2n as follows

ω 0 " n ÿ i"1 dx i ^dy i .
We denote J 0 the 2n ˆ2n matrix

J 0 " ˆ0 ´1n 
1 n 0 ˙,
which represents a rotation by π{2 and satisfies J 2 0 " ´12n . We denote the group of symplectic matrices by

Sppnq " tM P R 2n ˆR2n |M T J 0 M " J 0 u,
where M T is the transpose matrix of M . We also denote SPpnq the set of paths γ in Sppnq from id to a matrix A which do not have eigenvalue 1.

Let us consider a non degenerate orbit x. There are two steps to compute the index of the critical point x. We associate to the orbit a path ψ : t Þ Ñ Aptq of matrices in Spp2nq. Then to a path ψ we associate an integer which is the Conley-Zenhder index of x.

First step

We fix the orbit xptq " φ t pxp0qq then we can choose a family of symplectic bases, see [START_REF] Audin | Morse Theory and Floer Homology[END_REF] for example, Zptq " pZ 1 ptq, ..., Z 2n ptqq of T xptq M that depends smoothly on t. For every t P R, we can consider the matrix Aptq of the linear map T xp0q φ t in the bases Zp0q and Zptq and we obtain a path ψ : t Ñ Aptq such that Ap0q " id and such that Ap1q does not have eigenvalue 1 because the orbit is supposed to be nondegenerate.

Second step

Definition 2.2.5. Let ρ : Sppnq Ñ S 1 be the continuous map defined as follows. Given A P Sppnq, we consider its positive eigenvalues tλ i u. For an eigenvalue λ " e iφ P S 1 zt˘1u, let m `pλq be the number of positive eigenvalues of the symmetric non degenerate 2-form Q defined on the generalized eigenspace E λ by

Q : E λ ˆEλ Ñ R : pz, z 1 q Ñ ωpz, z1 q.
Hence we have ρpAq " p´1q

1 2 m ´ź λPS 1 zt˘1u λ 1 2 m `pλq , (2.5) 
where m ´is the sum of the algebraic multiplicities m λ " dim C E λ of the real negative eigenvalues.

Theorem 2.2.6. The map ρ : Sppnq Ñ S 1 satisfies the following properties:

1. determinant: if A P U pnq " Sppnq X Op2nq, then ρpAq " det C pX `iY q, where A "

ˆX ´Y Y X ˙.
2. invariance: ρ is invariant under conjugation, i.e. for all B P Sppnq we have ρpBAB ´1q " ρpAq;

3. normalisation: ρpAq " ˘1 for matrices which have no eigenvalue on the unit circle;

4. multiplication: ρ behaves multiplicatively with respect to direct sums e.g if we consider A P Sppmq and B P Sppnq then we have

ρp ˆA 0 0 B ˙q " ρpAqρpBq.
Moreover, the set Sp ˚pnq " tA P Sppnq|detpA ´idq ‰ 0u has two connected components. There are the connected component Sp ´pnq " tA P Sppnq|detpA ´idq ă 0u which contains the matrix ´id, denoted W ´, and the connected component Sp `pnq " tA P Sppnq|detpA ´idq ą 0u which contains the matrix diagp2, 1{2, ´1, ..., ´1q, denoted W `.

Notice that any loop in Sp ˚pnq is contractible in Sppnq.

Then any path ψ : r0, 1s Ñ Sppnq in SPpnq such that ψp1q is in Sp ˚pnq can be extended to a path ψ : r0, 2s Ñ Sppnq such that 1. r ψptq " ψptq for t ď 1;

2. r ψptq is in Sp ˚pnq for any t ě 1;

3. r ψp2q P tW ˘u.

Since pρpidqq 2 " 1 and pρpW ˘qq 2 " 1 we have that ρ 2 ˝r ψ : r0, 2s Ñ S 1 is a loop in S 1 . Moreover one may prove that its degree does not depend on the extension r ψ of ψ.

Definition 2.2.7. The Maslov index of an element ψ of Sppnq is defined by:

µ M : Sppnq Ñ Z | ψ Þ Ñ degpρ 2 ˝ψq, (2.6) 
where ψ is an extension of ψ as above.

Then we define the Conley-Zendher index of a critical point x of H as the Maslov index of the path of symplectic matrices associated to x in the first step.

Remark 2.2.8. If we suppose that the Hamiltonian diffeomorphism f is given by the 1-time map flow of an autonomous Hamiltonian function H : M Ñ R which is C 2 -close to the identity then the Conley-Zehnder index of a fixed point x of f is equal to the Morse index of x where H is seen as a Morse function on M . One may refer to [START_REF] Seyfaddini | Spectral killers and poisson bracket invariants[END_REF] for more details.

Dynamical systems

From now we consider a connected, compact and oriented surface Σ without boundary. Let HomeopΣq be the space of homeomorphisms of Σ equipped with the topology of uniform convergence on Σ. For f P HomeopΣq, Fixpf q represents the set of fixed points of f .

Isotopies and maximal Isotopies

An isotopy is a continuous path t Þ Ñ f t from r0, 1s to HomeopΣq. We say that f P HomeopΣq is isotopic to the identity if there exists an isotopy I " pf t q tPr0,1s such that f 0 " id and f 1 " f . We denote by Homeo 0 pΣq the set of those homeomorphisms.

Given an isotopy I " pf t q tPr0,1s from id to f , we can extend it to an isotopy defined on R by the periodic relation f t`1 " f t ˝f1 . We define the set of singularities SingpIq of I as follows.

SingpIq " tx P Σ| @t P r0, 1s, f t pxq " xu.

The complement of SingpIq in Σ is called the domain of I and denoted DompIq.

For a point z P Σ, the arc γ : r0, 1s Ñ Σ where for each tP r0, 1s, γptq " f t pzq is called the trajectory of z along the isotopy I. For every n ě 0, we denote by γ n pzq the concatenation of the trajectories of z, f pzq, ..., f n´1 pzq.

We fix a homeomorphism f P Homeo 0 pΣq. A set X Ă Fixpf q is say to be unlinked if there exists an isotopy I " pf t q tPr0,1s from id to f such that X is included in the set of singularities of I. We denote by Ipf q the set of couples pX, Iq such that I is an isotopy from id to f and X Ă SingpIq. The set Ipf q is naturally equipped with a pre-order ď, where pX, Iq ď pX 1 , I 1 q, if X Ă X 1 and for each z P ΣzX, its trajectory along I 1 and I are homotopic in ΣzX. The couple pX 1 , Iq is called an extension of pX, Iq. An isotopy I P I is called a maximal isotopy in I if the couple pSingpIq, Iq is a maximal element of pI, ďq.

A recent result by F. Béguin, S. Crovisier and F. Le Roux [8] asserts that for a homeomorphism f P Homeo 0 pΣq isotopic to the identity there always exists a maximal isotopy (a weaker result was previously proved by O. Jaulent [START_REF] Jaulent | Existence d'un feuilletage positivement transverse homorphisme de surface[END_REF]). We will often use Corollary 1.3 of [START_REF] Béguin | Fixed point sets of isotopies on surfaces[END_REF] which we write as the following theorem: Theorem 2.3.1. Let us consider f P Homeo 0 pΣq. For each element pX, Iq P Ipf q there is a maximal element pX 1 , I 1 q P Ipf q such that pX 1 , I 1 q is an extension of pX, Iq.

In the case of the 2-sphere S 2 we have the following result, which can be found in [START_REF] Calvez | Pourquoi les points périodiques des homéomorphismes du plan tournentils autour de certains points fixes ?[END_REF], about the homotopy classes of isotopies of an orientation preserving homeomorphism f of the sphere S 2 . We consider the isotopy R 8 " pr t q tPr0,1s where r t is the rotation of angle 2πt i.e r t pr, θq " pr, θ `2πtq in radial coordinates. The isotopy extends into an isotopy R 2 \ t8u on the sphere. For z P S 2 , we choose an orientation preserving homeomorphism h z : R 2 Ñ S 2 ztzu and we define the isotopy R z " h z ˝R8 ˝h´1 z . If we consider two points z and z 1 of the sphere we choose an orientation preserving homeomorphism h z,z 1 : R 2 Ñ S 2 ztzu such that h z,z 1 p0q " z 1 and we define the isotopy R z,z 1 " h z,z 1 ˝R8 ˝h´1 z,z 1 which fixes the points z and z 1 .

Proposition 2.3.2. Let us consider an orientation preserving homeomorphism f of the sphere S 2 .

1. For each fixed point z P Fixpf q, the set of isotopies from id to f which fix z is not empty. For two such isotopies I and I 1 , there exists a unique integer k P Z such that I 1 is homotopic to R k z I relatively to tzu.

2. If f has at least two fixed points, then for each couple pz, z 1 q of distinct fixed points the set of isotopies from id to f which fix z and z 1 is not empty. For two such isotopies, there exists a unique integer k P Z such that I 1 is homotopic to R k z,z 1 I relatively to tz, z 1 u.

3.

If f has at least three fixed points, then for each triplet pz, z 1 , z 2 q of distinct fixed points the set of isotopies from id to f which fix z, z 1 and z 2 is not empty. All those isotopies are homotopic relatively to tz, z 1 , z 2 u.

Lefschetz index

For a homeomorphism f P HomeopΣq and an isolated fixed point x of f , we define the Lefschetz index indpf, xq of x as follows. let U be a chart centered at x and we denote by Γ a small oriented circle in U around x. For Γ sufficiently small, the map

z Þ Ñ f pzq ´z ||f pzq ´z|| ,
is well defined on Γ and we denote by indpf, xq the degree of this map.

Linking number

Let us consider an orientation preserving homeomorphism f of the plane isotopic to the identity and I " pf t q tPr0,1s an isotopy from id to f . Let us suppose that there exists a periodic point z ˚of f of period q ě 1. If z is a fixed point of f , the quotient of the map t Þ Ñ f t pz ˚q ´ft pzq ||f t pz ˚q ´ft pzq|| , defines a continuous function of the circle R{qZ to S 1 . The degree of this application is called the real linking number of z ˚and is denoted by l I,z ˚pzq. It depends only on the homotopy class of the isotopy I. For another isotopy I 1 of f there exists k P Z such that I 1 is homotopic to R k z I, where R k z was defined in section 2.3.1. We verify that l I 1 ,z ˚pzq " l I,z ˚pzq ´kq. Then the linking number L f,z ˚pzq " l I,z ˚pzq `qZ P Z{qZ is independent on the choice of the isotopy.

Rotation vectors

Let f P Homeo 0 pΣq be the time one map of an isotopy I " pf t q tPr0,1s from the identity to f . Among the many ways to define the rotation vector, we restrict ourselves to positively recurrent points. A point z P Σ is a positively recurrent point of f if for each neighborhood U Ă Σ of z there exists an integer n P N such that f n pzq P U . The integer n ą 0 which is minimal for the previous property is called the first return time and is denoted by τ pzq. The set of positively recurrent points is denoted by Rec `pf q.

Let z P Σ be a positively recurrent point. Fix a 2-ball U Ă Σ containing z and let pf n k pzqq kě0 be a subsequence of the positive orbit of z obtained by keeping the iterates of z by f that are in U . For any k ě 0, choose an arc γ k in U from f n k pzq to z. The homology class rΓ k s P H 1 pΣ, Zq where Γ k is the concatenation of γ n k ´1pzq and γ k do not depend on the choice of γ k . We say that z has a rotation vector ρpzq P H 1 pΣ, Rq if

lim lÑ`8 1 n k l rΓ k l s " ρpzq,
for any subsequence pf n k l pzqq lě0 which converges to z. Notice that the linking number of a periodic point z ˚of an orientation preserving homeomorphism of the plane is equal to the rotation number of z ˚in R 2 ztzu.

In the case where f preserves a Borel probability measure µ, one applies Birkhoff's ergodic theorem to the first return map in U and proves that µ-a.e. point z is positively recurrent and has a rotation vector ρpzq. Moreover, the measurable map ρ is bounded, and one may define the rotation vector of the measure ρpµq " ż Σ ρ dµ P H 1 pΣ, Rq.

We say that f P Homeo 0 pΣq is a Hamiltonian homeomorphism if it preserves a Borel probability measure whose support is the whole surface and rotation vector is zero. We denote by HampΣq the set of Hamiltonians on Σ.

Local isotopies and local rotation set

Let Σ be a connected oriented surface. We write f : pW, z 0 q Ñ pW 1 , z 0 q for an orientation preserving homeomorphism between two neighborhoods W and W 1 of z 0 P Σ such that f pz 0 q " z 0 . Such a local homeomorphism f is called an orientation preserving local homeomorphism at z 0 . We recall the definition of local isotopies of Le Calvez [50]: a local isotopy I " pf t q tPr0,1s from id to f is a continuous family of local homeomorphisms pf t q tPr0,1s fixing z 0 such that

-each f t is a homeomorphism of a neigborhood V t Ă W of z into a neighborhood V 1 t Ă W 1 of z ;
-the sets tpz, tq P Σ ˆr0, 1s|z P V t u and tpz, tq P Σ ˆr0, 1s

| z P V 1 t u are open in Σ ˆr0, 1s ; -the map pz, tq Þ Ñ f t pzq is continuous on tpz, tq P Σ ˆr0, 1s | z P V t u ; -the map pz, tq Þ Ñ f ´1 t pzq is continuous on tpz, tq P Σ ˆr0, 1s | z P V 1 t u ; -we have f 0 " id V 0 and f 1 " f | V 1 ;
-for all t P r0, 1s, we have f t pz 0 q " z 0 .

Let us consider a local orientation preserving homeomorphism f : pW, z 0 q Ñ pW 1 , z 0 q and I " pf t q tPr0,1s a local isotopy from id to f . We want to define the local rotation set of the isotopy I at z 0 . Given two neighborhoods V Ă U of z 0 included in W and an integer n ě 1 we define

EpU, V, nq " tz P U | z R V, f n pzq R V, f i pzq P U for all 1 ď i ď nu.
We define the rotation set of I relative to U and V by ρ U,V pIq "

č mě1 ď něm tρ n pzq | z P EpU, V, nqu Ă r´8, 8s,
where ρ n pzq is the average change of angular coordinate along the trajectory of z during n iterates. We define the local rotation set of I to be

ρ s pI, z 0 q " č U ď V ρ U,V pIq Ă r´8, 8s, where V Ă U Ă W are neighborhoods of z 0 .
The local rotation set is an invariant of local conjugacy in the following sense: let us say that an isotopy I 1 " pf 1 t q tPr0,1s is locally conjugated to I if there exists a homeomorphism φ : W Ñ W 2 between two neighborhood of z 0 which preserves the orientation and fixes z 0 such that for each t P r0, 1s we have f 1 t " φ ˝ft ˝φ´1 . For each neighborhoods V and U of z 0 such that V Ă U Ă W we have ρ U,V pIq " ρ φpU q,φpV q pφIφ ´1q.

In particular we deduce that ρ s pIq " ρ s pφIφ ´1q.

Let us consider a homeomorphism of the plane f isotopic to the identity which preserves the orientation and fixes the origin and an isotopy I " pf t q tPr0,1s from id to f which fixes the origin. Recall that R " pR t q tPr0,1s is the isotopy of the rotation of angle 2π such that R t pzq " ze 2iπt for each z P R 2 and t P r0, 1s. We have the following result about the local rotation set.

Lemma 2.3.3. For each p P Z and q P Z we have ρ s pR p I q q " qρ s pIq `p.

We say that f satisfies the local intersection property at z 0 if we have:

For each non contractible loop γ of W ztz 0 u we have f pγq X γ ‰ H.

(P2.6)

Example 2.3.4. Let us consider a fiber rotation h α : pr, θq Ñ pr, θ`αprqq on the plane where α : p0, 8q Ñ R is continuous and an isotopy I " ph t q tPr0,1s such that h t pr, θq " pr, θ `tαprqq for t P r0, 1s. The local rotation set ρ s pIq of I at the origin is equal to the set of accumulation points of α at 0.

F. Le Roux proved [56,[START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] that a homeomorphism of the plane which preserves the orientation and which fixes the origin has an empty local rotation set at 0 if and only if it is locally conjugated to the following maps:

-the contraction z Þ Ñ z 2 , -the expansion z Þ Ñ 2z, -a holomorphic function z Þ Ñ e 2iπ p
q zp1 `zqr q where q, r P N `and p P Z.

Remark 2.3.5. In particular, in the case where f is area-preserving, Gambaudo and Pécout [START_REF] Gambaudo | A topological invariant for volume preserving diffeomorphisms[END_REF] proved that none of those above cases occurs, then the local rotation set is not empty. Moreover, if we suppose that Fixpf q is finite, 0 is not accumulated by fixed points then if the local rotation set is not empty it does not contain an integer in its interior. Notice that the result holds if we suppose that f satisfies the local intersection property, meaning that for each non contractible loop γ of W ztz 0 u we have f pγq X γ ‰ H.

The rotation number classify the homotopy classes of the isotopies at z 0 . Let us consider a local orientation preserving homeomorphism f : pW, z 0 q Ñ pW 1 , z 0 q of a surface Σ such that f pz 0 q " z 0 and I " pf t q tPr0,1s a local isotopy from id to f which fix z 0 . Let us consider a closed disk D Ă Σ containing z 0 in its interior. For every point z P Dztz 0 u close enough to z 0 , the trajectory of z 0 along I is a loop included in Dztz 0 u. There exists an integer k P Z such that this trajectory is freely homotopic in Dztz 0 u to pBDq k . The integer k depends only on the choice of the isotopy I, it is the rotation number k " ρpI, z 0 q of I at z 0 . We consider the isotopy R 8 defined in the previous section 2.3.1. The isotopy R 8 extends into an isotopy on the sphere R 2 \ t8u and we have ρpR 8 , 8q " 1 while ρpR 8 , 0q " ´1. We refer to [START_REF] Calvez | Pourquoi les points périodiques des homéomorphismes du plan tournentils autour de certains points fixes ?[END_REF] for more details.

The blow-up at a fixed point

Let us consider f : pW, z 0 q Ñ pW 1 , z 0 q an orientation preserving homeomorphism. We say that f can be blown-up at z 0 , if we can "replace" z 0 by a unit circle S 1 and extend f | W ztz 0 u continuously to a homeomorphism between W ztz 0 u\S 1 and W ztz 0 u\S 1 , see [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] for more details. In particular, when f is a diffeomorphism, the extension can be induced by the map v Þ Ñ Df pz 0 qv ||Df pz 0 qv|| on the space of unit tangent vectors.

Let us suppose that f can be blown-up at z 0 , is isotopic to the identity and is not conjugate to a contraction or an expansion. We denote by h the extension of f on S 1 and by I " pf t q tPr0,1s a local isotopy of f . We choose a small disk D which contains z 0 and we consider the universal cover π : r D Ñ Dztz 0 u. We consider the isotopy p r f t q tPr0,1s from id to r f obtain by lifting I and we consider r h the lift of h to R which is a continuous extension of r f 1 . We define the blown-up rotation number ρpI, z 0 q P R to be the rotation number of r h. J.-M. Gambaudo,P. Le-Calvez and E. Pécou [START_REF] Gambaudo | Une généralisation d'un théorème de Naishul[END_REF] proved that the blown-up rotation numbers does not depend on the choice of h.

Naturally we have the following property [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF].

Proposition 2.3.6. Let us consider an isotopy I " pf t q tPr0,1s from id to a homeomorphism of the plane f which preserves the orientation, fixes the origin and can be blown-up at 0. If the local rotation set ρ s pIq is not empty then it is equal to the singleton tρpI, z 0 qu.

Positively transverse foliations

Let us consider an oriented topological foliation F on the complement of a compact set X of a surface Σ. The set X will be called the set of singularities of F. An open flow box of F is a couple pV, hq, where V is an open set of Σ and h : V Ñ p´1, 1q 2 is an orientation-preserving homeomorphism that sends the foliation F| V on the vertical foliation oriented with y decreasing. Writing p 1 : R 2 Ñ R for the first projection, we say that an arc γ : I Ñ Σ is positively transverse to the foliation F if for every t 0 P I, there exists an open flow-box pV, hq such that γpt 0 q P V and the map t Þ Ñ p 1 phpγptqqq defined in a neighborhood of t 0 is strictly increasing. For z P Σ, we write φ z the leaf passing through z and φ z for the positive half-leaf from z. We consider an isolated singularity x of the foliation F, we can define the index indpF, xq of x for the foliation F as follows. We consider a sufficiently small open chart U containing x and an orientation preserving homeomorphism h : U Ñ Dzt0u which sends x to 0. We denote F h the image of the foliation F| U by h and we consider a simple loop Γ : S 1 Ñ Dztxu, one may cover Γ by a finite family pV i q iPJ of flow-boxes of the foliation F h included in Dzt0u. We denote by φ Vi ,z the positive half-leaf from z of the restricted foliation F h | V i . We can find a continuous map ψ defined from the loop Γ to D 1 ztxu such that ψpzq P φ Vi ,z for every i P J and any z P V i . The map θ Ñ ψpΓpθqq ´Γpθq ||ψpΓpθqq ´Γpθq|| , is well defined on Γ and indpF, xq is the degree of this map.

We say that a singularity x of an oriented foliation F is a sink (resp. source) if there is a neighborhood V of x such that the omega-limit point (resp. the alpha-limit point) of each leaf φ of F which is passing through V is equal to x. The sinks and sources of a foliation F have an index equal to 1. Let us draw an example of the neighborhood of a sink on the left and a neighborhood of a source on the right of the following figure. We say that a singularity x of an oriented foliation F is a saddle point of the foliation F if the foliation is locally homeomorphic to a foliation as the one on Figure 2.5, we refer to [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] for more details on saddle points. A maximal connected union of leaves such that their alpha (resp. omega) limit is equal to x is called an unstable (resp. stable) cone of x.

A saddle point has 1´indpF, xq unstable cones and three stable cones which are alternated in the cyclic order. In Figure 2.5 we draw an example of a foliation near a saddle point of index ´2. A leaf of an oriented foliation F whose alpha-limit point and omega-limit point are distinct singularities of F will be called a connexion.

Let us consider f P Homeo 0 pΣq and a maximal isotopy I " pf t q tPr0,1s from the identity to f . A foliation F is said to be positively transverse to the isotopy I if SingpIq " SingpFq and for every z P DompIq, the trajectory γpzq of z is homotopic in DompIq, relatively to its endpoints, to a path γ which is positively transverse to the foliation F. The following fondamental result of Le Calvez [49] asserts that for each maximal isotopy I there exists a dynamically transverse foliation to the isotopy I.

Theorem 2.3.7. Let us consider a homeomorphism f P Homeo 0 pΣq and an isotopy I " pf t q tPr0,1s from id to f , such that SingpIq is a maximal unlinked set of fixed points of f . There exists a foliation F which is dynamically transverse to the isotopy I.

We denote by FpIq the set of foliations positively transverse to I. We will use the following definition of gradient-like foliations. Definition 2.3.8. A foliation F is said to be gradient-like if

• The number of singularities is finite.

• Every leaf defines a connexion.

• There is no closed leaf.

• There is no family pφ i q iPZ{kZ , k ě 1 of leaves such that ωpφ i q " αpφ i`1 q, i P Z{kZ.

For the remaining of the thesis, most of the transverse foliations we will meet will be gradient-like foliations. The notion of connexion will be generalized in chapter 7, but until this chapter, a connexion will always refer to a leaf of a gradient-like foliation.

We refer to [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF] for the proof of the following important properties. Proposition 2.3.9. Consider a Hamiltonian homeomorphism of a surface Σ with a finite number of fixed points then for each maximal isotopy I from id to f , a foliation F positively transverse to I is gradient-like. Moreover we have

• indpF, xq ď 1 for every point x P SingpIq.

• indpF, xq " 1 for every sink or source x P SingpIq

• indpF, xq " indpf, xq for every saddle point x P SingpIq, where indpf, ¨q is the Lefschetz index.

• For every leaf φ P F, the action function A f , defined later, of f satisfies A f pαpφqq ą A f pωpφqq.

For the remaining, we can keep in mind that, for a gradient-like foliation, there are three kinds of singularities: sinks, sources and saddle points.

Remark 2.3.10. For a maximal isotopy I of a Hamiltonian homeomorphism f of a surface Σ and a foliation F P FpIq, if Σ is not the sphere, then the index function indpF, ¨q defined on SingpIq does not depend on the choice of F P FpIq and can be denoted indpI, ¨q.

Let us consider a gradient-like foliation F of a surface Σ and a leaf φ of F. By definition, the omega-limit set (resp. the alpha-limit set) of φ exists and is equal to a singleton txu. To simplify the notations, x will be called the omega-limit point also denoted ωpφq (resp. the alpha-limit point also denoted αpφq) of φ.

Generalized Isotopies

In this section, we consider a Hamiltonian homeomorphism f of a compact surface Σ such that Fixpf q is finite.

We consider the compactification Σ " r Σ Y t8u of r Σ into a 2-sphere.

Let us consider a maximal isotopy I of f on Σ and its natural lift r I on r Σ. The isotopy r I has an infinite number of singularities but for a non zero integer k P Z ˚and a fixed point r

x of r f , R k r x
r I has a finite number of singularities and can be extended to an isotopy Î of a homeomorphism f on Σ which has a finite number of fixed points. The point at infinity in Σ becomes a fixed point of such a homeomorphism f and its rotation number for Î satisfies: ρ Î p8q " ´k.

An isotopy Î from id to f which is homotopic to R k r x,8 r I relatively to Σztr x, 8u such that the rotation number of 8 is equal to ´k is called a generalized isotopy of f . We denote by Îk the set of couples pX, Îq where Î is a generalized isotopy of f such that ρ Î p8q " ´k and X Ă Singp Îq. To simplify notations, we can consider Î P Îk which refers to the couple pSingp Îq, Îq.

The set Îk is naturally equipped with a pre-order ď, where pX, Îq ď pX 1 , Î1 q if 8 P X Ă X 1 are unlinked sets of fixed points and for each z P ΣzX, its trajectory along Î1 and Î are homotopic in ΣzX. The couple pX 1 , Îq is called an extension of pX, Îq. An isotopy Î P Îk is called a maximal generalized isotopy in Îk if the couple pSingp Îq, Îq is a maximal element of p Îk , ďq.

Lemma 2.3.11. Let us consider a generalized isotopy Î P Îk of f with k P Z ˚, #Singp Îq ď #Fixpf q `1,
and for each z P Fixpf q we have #pSingp Îq X π ´1pzqq ď 1.

Proof. By contradiction we prove the second inequality, the first one will follow.

Let us consider a generalized isotopy Î P Î such that there exists x P Fixpf q satisfying #pSingp Îq X π ´1pxqq ą 1 or #Singp Îq ě Fixpf q `2. We consider r I the isotopy from id to f whose compactification is the isotopy Î. There exists two singularities r

x and r x 1 of Î which are in π ´1ptxuq. The linking number between r

x and r x 1 for the isotopy r I is equal to zero.

We consider I 1 a maximal isotopy from id to f which fixes x and we denote r I 1 the isotopy obtained by lifting I 1 on r Σ. We have that r I 1 is homotopic to R ´k r x r I relatively to Σztx, 8u, see Proposition 2.3.2 for more details, and we have π ´1ptxuq Ă Singp r I 1 q. So, the linking number between r

x and r x 1 for the isotopy r I 1 is equal to zero but the linking number between r

x and r x 1 for the isotopy R ´k r

x r I is equal to ´k. Hence we obtain our contradiction.

We deduce the inequality #Singp Îq ď #Fixpf q `1.

Lemma 2.3.12. Let us consider a maximal generalized isotopy Î P Îk of f where k P Z ˚.

There exists a foliation F on the 2-sphere such that F is positively transverse to Î and every foliation which is positively transverse to Î is gradient-like.

Remark 2.3.13. i. For such a foliation F of a maximal generalized isotopy Î, the action function is decreasing along the leaves of F.

ii. The fixed point 8 is a source of F if k ă 0 and a sink of F if k ą 0.

Intersection number

Let Γ and Γ 1 be two oriented, transverse and simple closed curves on an oriented surface Σ. The algebraic intersection number Γ ^Γ1 is defined as the sum of the indices of the intersection points of Γ and Γ 1 , where an index of an intersection point is `1 if the orientation of the intersection agrees with the orientation of Σ and ´1 otherwise.

We keep the same notation Γ ^γ for the algebraic intersection number between a loop Γ and a path γ when it is defined, for example, when γ is proper or when γ is a compact path whose extremities are not in Γ. Similarly, we write γ ^γ1 for the algebraic intersection number of two path γ and γ 1 when it is defined, for example, when γ and γ 1 are compact paths and the ends of γ (resp. γ 1 ) are not on γ 1 (resp. γ).

Action function of a Hamiltonian homeomorphism

In this section we define dynamically the action function of a Hamiltonian homeomorphism f of a compact surface Σ with a finite number of fixed points. Notice that this definition extends the notion of action function defined in section 2.2.2 for Hamiltonian diffeomprhisms.

Let us consider two unlinked fixed points x, y P Fixpf q of f and an isotopy I " pf t q tPr0,1s from id to f such that x, y P SingpIq. Let γ be a simple path from x to y and define the map ρ f,γ on Σ by ρ f,γ pzq " γ ^γpzq where γpzq is the trajectory of z under the isotopy I and γ ^γpzq is the intersection number between γ and γpzq. We define the difference of action between y and x by

A f pxq ´Af pyq " ż Σ ρ f,γ pzqdz, (2.7) 
which does not depend on the choice of γ. Notice that in general for a homeomorphism f , the map ρ f,γ is not integrable. In our case, f admits a finite number of fixed points and one may prove that the previous integral exists, see [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF].

Unfortunately, if we consider two fixed points x, y P Fixpf q they may not be unlinked. The previous arguments fail and to define the action difference between y and x we have to consider the universal cover of Σ. We denote by r Σ the universal cover of Σ, π : r Σ Ñ Σ the covering map and for a homeomorphism f we set G ˚the group of automorphisms of Σ which commute with the lift r f of f on Σ.

The following definition comes from a more general work of Wang [START_REF] Wang | A generalization of classical action of hamiltonian diffeomorphisms to hamiltonian homeomorphisms on fixed points[END_REF]. The construction is more difficult, first we have to extend the linking number used in equation 2.7 then thanks to the work of Wang if the number of fixed points of f is finite then this linking number exists and we can define the action function by integrating this linking number.

Extension of the linking number for a positively recurrent point

Let us consider f the time one map of an isotopy I " pf t q tPr0,1s on Σ and r f the time 1-map of the lifted identity isotopy r I " p r f t q tPr0,1s to the universal cover r Σ of Σ. For every distinct fixed points r

x and r y of r f there exists a non-equivariant isotopy r I 1 from id to r f that fixes r x and r y.

Recall that the set of positively recurrent points is denoted by Rec `pf q.

We consider z P Rec `pf qzπptr x, r yuq and an open disk U Ă Σzπptr x, r yuq which contains z. For each couple pz 1 , z 2 q P U 2 , we choose an oriented simple path γ z 1 ,z 2 in U from z 1 to z 2 . We define the function r Φ by:

r Φ : π ´1pRec `pf qq X π ´1pU q Ñ π ´1pRec `pf qq X π ´1pU q r z Þ Ñ r f τ pzq pr zq,
where z " πpr zq and τ pzq is the first return map in U . r Φ is the lifted function of the first return map Φ define on the recurrent points of U by Φpzq " f τ pzq pzq where z P Rec `pf qXU .

For any r z P π ´1pU q, write r U r z the connected component of π ´1pU q that contains r z. For every j ě 1, recall that τ j pzq " ř j´1 i"0 τ pΦ i pzqq. For every n ě 1, consider the following curve in r Σ:

r Γ n r I 1 ,r z " r I τnpzq 1 pr zqr γ r Φ n pr zq,r zn ,
where r z n P π ´1ptzuq X r U r Φ n pr zq , and r γ r

Φ n pr zq,r zn is the lift of γ Φ n pzq,z which is contained in r U r Φ n pr zq . We can define the infinite product r Γ n r I 1 ,z " ź πpr zq"z r Γ n r I 1 ,r z .
In the annulus A r x,r y we can see r

Γ n r I 1 ,z
as a multi-loop with finite homology. So, if we consider r γ an oriented path in r Σ from r x to r y, the intersection number r γ ^r Γ n r I 1 ,z is well defined and does not depend on r γ nor the isotopy r I 1 but depends on the open set U . We have:

r γ ^r Γ n r I 1 ,z " r γ ^ź πpr zq"z r Γ n r I 1 ,r z " n´1 ÿ j"0 r γ ^r Γ j r I 1 ,r z .
For n ě 1 we define the functions

L n : ppFixp r f q ˆFixp r f qqz r ∆q ˆpRec `pf q X U q Ñ Z, by L n p r f ; r x, r y, zq " r γ ^r Γ n r I 1 ,z " n´1 ÿ j"0 L 1 p r f ; r x, r y, Φ j pzqq,
where U Ă Σzπptr x, r yuq. Again, the function L n depends on U but not on the choice of γ Φ n pzq,z .

Action function Definition 2.3.14. Let us consider z P Rec `pf qzπptr x, r yu. We say that the linking number ip r f ; r x, r y, zq P R is defined if

lim kÑ8 L n k p r f ; r x, r y, zq τ n k pzq " ip r f ; r x, r y, zq
for any subsequence tΦ n k pzqu kě1 of tΦ n pzqu ně1 which converges to z.

J. Wang proved that the linking number ip r f ; r x, r y, zq does not depend on U .

Let us consider µ P Mpf q such that µ is ergodic or the support of µ is the whole surface Σ. In our particular case where I has a finite number of fixed points, the function ip r f ; r x, r y, zq is µ-integrable and we define a function i µ p r f ; r x, r yq as follows.

i µ p r f ; r x, r yq " ż Σzπptr x,r yu ip r f ; r x, r y, zqdµ.
Proposition 2.3.15. For any distinct fixed points r x, r y and r z of r f , we have

i µ p r f ; r x, r yq `iµ p r f ; r y, r zq `iµ p r f ; r z, r xq " 0.
So there exists a function l µ : Fixp r f q Ñ R defined up to an additive constant, such that

i µ p r f ; r x, r yq " l µ p r f , r yq ´lµ p r f , r xq.
If f is a Hamiltonian homeomorphism then ρ Σ,I pLebq " 0 for each isotopy I from id to f on Σ and we have the following result.

Proposition 2.3.16. If we suppose that ρ Σ,I pµq " 0, i µ p r f ; r x, T pr xqq " 0 for every r x P Fixp r f q and every automorphism T P G ˚then there exists a function L µ p r f , ¨q defined on Fixp r f q such that for every two distinct fixed points r x and r y of r f we have

i µ p r f ; r x, r yq " L µ p r f , πpr yqq ´Lµ p r f , πpr xqq.
The function L µ p r f , ¨q is called the action function defined on Fixpf q for the measure µ. If µ " Leb then the function L µ p r f , ¨q will be denoted A f . Proposition 2.3.17. Let us consider a smooth diffeomorphism f of a surface Σ. The action function A f is equal to the action function of section 2.2.2.

Action function along a leaf of a transverse foliation

In particular, if we consider a maximal isotopy I " pf t q tPr0,1s from id to f and a foliation F positively transverse to I we can give a short proof of the last point of Proposition 2.3.9 stated as the following lemma.

Lemma 2.3.18. For every leaf φ P F we have A f pαpφqq ą A f pωpφqq.

Proof. We set x " αpφq and y " ωpφq. We give the ideas of the proof using Wang's work.

Let us consider a small open disk U Ă ΣzX. For almost every point z P U we can define τ pzq the first return map. Meaning that τ pzq is the first integer n ą 0 such that f n pzq P U . We consider the loop Γpzq " I τ pzq´1 pzqγpzq where γpxq Ă U is a path which joins f τ pzq pzq to z. The algebraic intersection of Γpzq and φ does not depend on the choice of γ and is well defined. We will denote δpzq " Γpzq^φ the algebraic intersection number defined on U .

There is a finite number of fixed points, so Wang proved that δ{τ is bounded and then integrable. We can define the limit of Birkhoff's average functions δ ˚and τ ˚of δ and τ . One may prove that the function η " δ ˚{τ ˚is defined almost everywhere on U and does not depend on the choice of U . So we obtain a function defined almost everywhere on ΣzX such that, by the construction of Wang, its integral is equal to the action difference between x and y. Thus, it is enough to prove that δpzq is positive and not zero to obtain the result.

We consider the universal cover Ć ΣzX of ΣzX, which can be identify as the open disk D.

We fix a lift r φ of φ on D, hence δpzq is equal to the finite sum of the algebraic intersection numbers of r φ and the lifts of Γpzq. Let us consider a lift r Γpzq of Γpzq whose algebraic intersection number with r φ is not zero. Roughly speaking, r Γpzq is an oriented path going from one side of Dz r φ to another. Moreover, r φ is a Brouwer line for r f , so r Γ is going from the right hand side of r φ to the left hand side of r φ. Hence the intersection number r Γpzq ^r φ ą 0 and then we have δpzq ą 0.

Chapter 3

Introduction to barcodes and persistence modules

The notion of barcodes and persistence modules was used in topological data analysis, see for example G. Carlsson in [START_REF] Carlsson | Persistence barcodes for shapes[END_REF] or R. Ghrist in [START_REF] Ghrist | Barcodes: the persistent topology of data[END_REF]. Barannikov already noticed the existence of a filtration of the Morse homology in [START_REF] Barannikov | The framed Morse complex and its invariants[END_REF] and we can find the notion of persistence modules in Usher's work [START_REF] Usher | Boundary depth in Floer theory and its applications to Hamiltonian dynamics and coisotropic submanifolds[END_REF][START_REF] Usher | Hofer's metrics and boundary depth[END_REF] but the barcodes have been introduced in symplectic topology by Polterovich and Shelukhin [START_REF] Polterovich | Autonomous Hamiltonian flows, Hofer's geometry and persistence modules[END_REF]. The same year, without the terminology of the barcodes Usher and Zang published some results about the persistent homology in [START_REF] Usher | Persistent homology and Floer-Novikov theory[END_REF]. Recently, the notion of barcodes appears as a great tool to study C 0 symplectic geometry, let us cite for example the work of Buhovski-Humilière-Seyfaddini [START_REF] Buhovsky | Some quantitative results in CalC 0 symplectic geometry[END_REF], Jannaud [?] and Le Roux-Viterbo-Seyfaddini [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF].

Most of the following definitions and results are coming from [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF]. One can also refer to Chazal, De Silva, Glisse and Outdot's book [START_REF] Chazal | The structure and stability of persistence modules[END_REF] or to [START_REF] Edelsbrunner | Topological persistence and simplification[END_REF].

Barcodes

Let us consider a special family of intervals B of the form ppa j , b j sq jPt1,...,nu , with ´8 ď a j ď b j ď `8, where we allow trivial intervals of the form pa, as. We say that two families are equivalent if removing all intervals of the form pa, as from them yields the same family. By convenience, we will often identify a list of intervals with the corresponding barcode.

Let a ď b, c ď d be four elements of RY˘t8}. We set dppa, bs, pc, dsq " maxt|c´a|, |db |u, with convention that dp8, 8q " 0. Note that if c " d " a`b 2 , then dppa, bs, pc, dsq " b´a 2 .

Definition 3.0.2. Let B 1 , B 2 be barcodes and take representatives B 1 " pI 1 j q jPJ , B 2 " pI 2 k q kPK . The bottleneck distance between B 1 , B 2 , denoted by d bot pB 1 , B 2 q, is the infimum of the set of such that there is a bijection σ between two subsets J 1 , K 1 of J, K with the property that for every j P J 1 , dpI 1 j , I 2 σpjq q ď and all the remaining intervals I 1 j , I 2 k for j P JzJ 1 , k P KzK 1 have length less than 2 .

We will denote Barcode the set of barcodes in the next sections.

Persistence module Definition 3.0.3. A persistence module V is a family pV t q tPR of vector spaces equipped with morphisms i s,t : V s Ñ V t , for s ď t, satisfying:

1. For all t P R we have i t,t " id and for every s ď t ď u we have i t,u ˝is,t " i s,u , 2. There exists a finite subset F Ă R, often referred to the spectrum of V , such that i s,t is an isomorphism whenever s, t belong to the same connected component of RzF , 3. For all t P R, lim sÑt,săt

V s " V t ; equivalently, for fixed t, i s,t is an isomorphism for s ă t sufficiently close to t.

Let us consider a persitence module pV t q tPR equipped with the morphisms pi s,t q sďt . For any t P R, there exists such that i s,u : V s Ñ V u is an isomorphism if s, u P pt ´ , ts or if s, u P pt, t ` q. Choose t ´P pt ´ , ts and t `P pt, t ` q and let jptq " dimpKerpi t ´,t `qq codimpImpi

t ´,t `qq. Notice that jptq is zero except for t in the spectrum of V. We say that V is generic if jptq ď 1 for all t P R.

Functorial relations between the barcodes and the persistence modules

To establish the link between the previous objects we consider two functors as follows.

(i) Consider an interval I of the form pa, bs and define Q t pIq " Z{2Z, if t P I, and Q s pIq " t0u, if s R I. Q s pIq is a persistence module, with i s,t equal to id if s, t P I and 0 otherwise. For a set of intervals I for each t P R we define

Q t pIq " à IPI Q t pIq.
(ii) We define a functor β from the set of generic persistence modules into the set of barcodes which associate to a generic persistence module V " pV s q sPR a barcode. We denote pi s,t q sďt the family of morphisms equipped with V. Let us consider the set of t in the spectrum of V such that dimpKerpi t ´,t `qq " 1 and label its elements b 1 , ..., b n . For each b j , there exists a unique a j P R with the following property: Let x P V b j represents a non-zero element in Kerpi t ´,t `q, the element x is in the image of i a j ,b j but x is not in the image of i a j ,b j . We label the remaining elements of the spectrum of V by tc 1 , ..., c m u. The barcode βpVq consists of the list of intervals: ppa j , b j s, pc k , `8qq, where 1 ď j ď n and 1 ď k ď m.

One may prove that the functor β extends to the set of persistence modules, we refer to r61s for more details.

The following theorem holds.

Theorem 3.0.4. The functors defined above satisfy the following properties.

1. β ˝Q " id Barcode .

2. β and Q are isometries for the interleaving distance (see next definition).

We define the interleaving distance.

Definition 3.0.5. Let V " pV s q sPR and W " pW s q sPR be two persistence modules, the pseudo-distance d int pV, Wq, called the interleaving distance, is defined as the infimum of the set of such that there are morphisms φ s : V s Ñ W s` and ψ s : W s Ñ V s` "compatible" with the i s,t , j s,t in the following sense:

V s´ φ s´ / / i s´ ,t´ W s ψs / / js,t V s` φ s` / / i s` ,t` W s`2 i s`2 ,t`2 V t´ φ t´ / / W t ψt / / V t` φ t` / / W t`2
where ψ s ˝φs´ " i s´ ,t` and φ s` ˝ψs " j s,s`2 s.t. the diagrams commute for all s ď t.

The Morse example. To give a good idea of what a barcode is, we describe the case of a Morse function. Let Σ be a compact surface and H : Σ Ñ R a Morse function. The filtered Morse homology pH ˚ptH ă tuqq tPR is a persistence module where the set pi s,t q sďt is given by the inclusions i s,t : H ˚ptH ă suq Ñ H ˚ptH ă tuq. The Figure 3.1 give an example of the barcode of such a Morse function on the sphere. In Figure 3.1 we consider the height function H on the 2-sphere which is a Morse function. In this case, H admits six critical points: two sinks p 1 , p 2 , two saddle points x 1 , x 2 , and two sources s 1 and s 2 . If we compute the filtered homology of F we obtain the bars which are described on the right of the vertical axis. Notice that there are two semi-infinite bars, one which starts at Hpp 1 q and the other one which start at Hps 1 q and there are two finite bars pHpp 2 q, Hpx 1 qs and pHpx 2 q, Hps 2 qs as follows.

H p 1 x 1 p 2 s 1 x 2 s 2 ' ' ' ' ' ' Figure 3.1 Chapter 4
The simplest case of barcode for Hamiltonian homeomorphisms

In this chapter, we consider a Hamiltonian homeomorphism f on a closed surface Σ which satisfies the following assumptions.

1. The set of fixed points is finite and is unlinked, in particular every fixed point is contractible.

2. The fixed points have distinct action values.

3. For every x P Fixpf q, indpf, xq is either 1 or ´1.

Let I " pf t q tPr0,1s be a maximal isotopy from identity to f . Let F P FpIq be a positively transverse foliation associated to I which satisfies the following "generic" assumptions.

1. There is no leaf joining two saddles points.

2. For every saddle point x P Fixpf q, there are exactly two unstable cones composed of one leaf whose alpha-limit point is x and two stable cones composed of one leaf whose omega-limit point is x.

The set of those foliations will be denoted F gen pIq. An important fact is that, for every saddle point x of a foliation F P F gen pIq, the dynamic of F in a neighborhood of x is locally homeomorphic to a foliation as in the following figure. We denote A f the action functional of f defined on Fixpf q.

We have the following result from [START_REF] Calvez | Une version feuilletée équivariante du théorème de translation de Brouwer[END_REF]. Lemma 4.0.1. For every x P Fixpf q and every F P FpIq we have indpf, xq " indpF, xq. So if F P F gen pIq then we have

• indpf, xq " 1 if x is a source or a sink of F. • indpf, xq " ´1 if x is a saddle pont of F.
For the remainder of the section, we consider a foliation F P F gen pf q. Recall that the foliation F is gradient-like and we will use the analogy between Morse Theory and gradient-like foliations to construct a filtered homology from the foliation F. We define a graph associated to the foliation F and we associate to this graph a chain complex in order to compute its filtered homology and obtain a persistence module.

Remember that for a fixed point x of f , being a sink or a source of the foliation F does not depend on the choice of F P FpIq. We define the index ind CZ pf, ¨q on the set of fixed points of f as follows. For x P Fixpf q we set

• ind CZ pf, xq " 0 if x is a sink of F, • ind CZ pf, xq " 1 if x is a saddle point of F, • ind CZ pf, xq " 2 if x is a source of F.
The notation ind CZ of the index function refers to the Conley-Zehnder index function as they are equals under these assumptions. Definition 4.0.2. Let GpFq be the graph whose set of vertices is the set Fixpf q and whose set of edges corresponds to the set of leaves φ of F such that ind CZ pf, αpφqq " ind CZ pf, ωpφqq ´1.

For i P N we consider the set Fix i pf q of fixed points x P Fixpf q which satisfy ind CZ pf, xq " i. Note that Fix i pf q " H if i ě 3. We define a chain complex associated to the graph GpFq following the ideas from Morse homology . Definition 4.0.3. For t P R and i P N, we define the chain complex

C t i " à zPFix i pf q A f pzqăt Z{2Z ¨z,
and the maps B t i :

C t i Ñ C t i´1 such that for every z P C t i B t i pzq " ÿ bPFix i´1 pf q npz, bqb,
where npz, bq is the number modulo 2 of edges from z to b in GpFq. If i is distinct from 1 or 2 then B t i is equal to 0 for every t P R.

Remark 4.0.4. For a fixed point z P Fixpf q, if there exists an edge from z to b in GpFq then by Proposition 2.3.9 we have A f pzq ą A f pbq and for every t ą A f pzq, the element B t i pzq belongs to C t i´1 . So the map B t i is well defined.

We obtain that, for every t P R, pC t i , B t i q is a chain complex thanks to the following property.

Proposition 4.0.5. For each t P R and every i P N the maps B t i satisfy B t i ˝Bt i`1 " 0. We prove Proposition 4.0.5 after the following definition and lemma. Definition 4.0.6. Let x P Fixpf q be a source of the foliation F, the subset Ť tφ P F | αpφq " xu Y txu of Σ will be called the repulsive basin of x and denoted W u pxq.

For a source x of F, we want to describe W u pxq. Let P n Ă C be the filled regular polygon of vertices e iπk n , with k P t0, ..., 2n ´1u. We have the following lemma.

Lemma 4.0.7. Let x P Fixpf q be a source of the foliation F. There exist n ě 1 and a continuous map d :

P n Ñ Σ such that • dpintpP n qq is the repulsive basin of x. • dpe iπk 2n q is a sink of F if k is even and a saddle point of F if k is odd.
• The image of a side of P n is the closure of a leaf of F.

Proof of Lemma 4.0.7. Let us consider a source x P Fixpf q of F. There exists a homeomorphism h : D Ñ W u pxq such that hp0q " x and such that the leaves from x are the images by h of the segments te iθ , t P r0, 1s. For θ P r0, 2πq we will denote φ θ the image by h of the segment te iθ , t P r0, 1s.

There are a finite number of angles pθ k q kPZ{nZ such that the omega-limit point of φ θ k is a saddle point x k of F.

Moreover the attractive basin of a sink x of a foliation is the union of x and the leaves whose omega-limit point is equal to x. The attractive basin of a sink is an open set. So, by connectedness, for every k P Z{nZ there exists a sink of F, denoted s k , such that for every leaf φ θ of angle θ P pθ k , θ k`1 q, the omega-limit point of φ θ is equal to s k . We denote U k the union of the leaves φ θ , with θ P pθ k , θ k`1 q. We draw an example of such a set in Figure 4.2. The set U k is a topological open disk on Σ whose boundary is the closure of four distinct leaves of F: the leaves φ θ k and φ θ k`1 , a leaf ψ k from x k to s k and a leaf φ k from x k`1 to s k . The existence of the leaves φ k and ψ k is deduced from the dynamic of the foliation near the saddle points x k and x k`1 described in Figure 4.1.

U k x φ k ψ k φ θ k φ θ k`1 s k x k`1 x k Figure 4.2: Example of a set U k
We obtain that the repulsive basin of x is equal to the union

rφ θ 0 Y U 0 Y φ θ 1 Y U 1 Y ... Y U n´1 s Y txu.
We define the map d : P n Ñ Σ given by Lemma 4.2 as follows. For every k P t0, ..., n ´1u we set

• dpe i2kπ 2n q " x k , • dpe ip2k`1qπ 2n 
q " s k .

The map d naturally extends to BP n by sending the edges of the boundary of BP n alternatively, in cyclic order, to the leaves φ k , k P Z{nZ and the leaves ψ k , k P Z{nZ. Finally, the map d extends naturally on the interior of P n as follows.

For k P Z{nZ, we consider the slice S k of the polygon P n defined as the set of points of P n whose angle θ in polar coordinates satisfies θ P r ikπ n , ipk`1qπ n s. We extend d by sending the slice S k , k P Z{nZ, of P n on the closure of the set U k defined previously. The map d is well-defined and continuous. Notice that d may not be injective (we give an example at the end of the proof).

Let us draw a repulsive basin of a source x of the foliation F in Figure 4.3. We represent the leaves of U 0 and its boundary in red in Figure 4.3. Example. We give an example of a source x of a foliation such that the map d provided by Lemma 4.0.7 is not injective. We consider the foliation F on the 2-sphere as in Figure 4.4, the repulsive basin of the source x of F is composed of all leaves of F except the two leaves φ 1 and φ 2 whose alpha-limit points are equals to the saddle point y of F. The boundary of the repulsive basin of x is equal to the union φ 1 Y tyu Y φ 2 and is represented in blue on the Figure. Proof of proposition 4.0.5. We consider t P R since B t i is 0 for i distinct from 1 or 2, it is enough to prove that for every source s P Fixpf q we have B t 1 ˝Bt 2 psq " 0. Let x P Fixpf q be a source of the foliation F. Using the same notations of the proof of Lemma 4.0.7, there exists an integer n ą 0 and n leaves which were denoted pφ θ k q kPZ{nZ whose omega-limit points, denoted px k q kPZ{nZ are exactly the saddle points of the foliation F which are connected to x. So we have B t 2 psq "

U 1 U 0 x φ 0 ψ 0 ψ 1 s 0 x 1 x 0
ř n´1 k"0 ωpφ θ k q.
Moreover, for every k P Z{nZ the leaves φ k´1 and ψ k of the proof of Lemma 4.0.7 are exactly the leaves of the foliation F whose alpha-limit point is x k . So we can compute

B t 1 ˝Bt 2 psq " B t 1 p n´1 ÿ k"0 ωpφ θ k qq, " n´1 ÿ k"0 B t 1 pωpφ θ k qq, " n´1 ÿ k"0 pωpφ k´1 q `ωpψ k qq , " n´1 ÿ k"0 ωpφ k q `ωpψ k q, " n´1 ÿ k"0 2s k , " 0.
Hence we obtain the result of Proposition 4.0.5.

Definition 4.0.8. The image of the persistence module H ˚ppC t i , B t i q i,t q under the functor β is called the barcode of f for the foliation F and we will denote it B gen pf, Fq. Remark 4.0.9. For a foliation F P F gen pIq, each value b of the action function A f is the end of a unique bar of the barcode B gen pf, Fq.

Remark 4.0.10 (Similarities with the Morse example). Let us consider a Morse function H on the 2-sphere as in Figure 4.6. We suppose that H induces a Hamiltonian diffeomorphism f whose set of fixed points is equal to the set of critical points of H. In particular, Fixpf q is unlinked. If we consider a Riemannian structure on Σ, the gradient flow of H induced by the Riemannian metric defines a foliation F positively transverse to the natural isotopy induced by the Hamiltonian function H. Moreover the action function A f is given by A f pxq " Hpxq for every x P SingpFq. In this example f has six fixed points, two sinks p 1 , p 2 two saddle points x 1 , x 1 and two sources s 1 , s 2 . We draw the graph GpFq on the left side of the figure and the barcode B gen pf, Fq, as intervals of R, on the right side.

H p 1 x 1 p 2 s 1 x 2 s 2 F B gen pf, Fq ' ' ' ' ' ' GpFq p 1 x 1 p 2 s 1 x 2 s 2 p 1 x 1 p 2 s 1 ' ' ' ' ' ' ' ' ' ' ' ' Figure 4.6
In this example the barcode B gen pf, Fq is equal to the filtered Morse homology of the function H. This is a general phenomenon. Indeed, we will prove in section 8 the following two results.

Proposition 4.0.11. The barcode B gen pf, Fq defined for a foliation F does not depend on the choice of F P F gen pf q.

Hence we can denote B gen pf q " B gen pf, Fq for any choice of F P F gen pf q. With this notation, we have the following theorem.

Theorem 4.0.12. If we consider a Hamiltonian diffeomorphism f with a finite number of fixed points which is C 2 -close to the identity and generated by an autonomous Hamiltonian function then the barcode B gen pf q is equal to the Floer homology barcode of f . We would like to prove in a near future the more general result. First step into the non generic case, construction of the map B

We give an algorithmic way to determine the barcode of certain type of finite graphs. We consider the set G of elements pG, A, indq such that G is a finite oriented and connected graph equipped with a function, called action function, A : V Ñ R decreasing along the edges and a map ind : V Ñ Z where V is the set of vertices of G. We construct a map

B : G Ñ Barcode.
For an element pG, A, indq P G, and a vertex x of G, we will say that x is a sink (resp. a source) of the graph G if there is no edge which begins with x (resp. if there is no edge which ends with x). For any other vertex x of G, we will say that x is a saddle point of the graph G.

For an element pG, A, indq P G, we could suppose that for a vertex x of G indpxq is non positive if x is a saddle point of G and indpxq is equal to 1 if x is a sink or a source of G as it will always be the case in our future applications. Howeover, we do not need to make these assumptions to construct the map B. Definition 5.0.1. Let us consider an element pG, A, indq P G. For a subgraph G 1 of G we define

LpG 1 q " mintApxq|x P V X G 1 u, DpG 1 q " maxtApxq|x P V X G 1 u.
Let us consider an element pG, A, indq P G and let us denote by V the set of vertices of G. For t P R, we define two subgraphs G t and G t as follows.

Definition 5.0.2. For t P R we denote by G t the maximal subgraph of G whose set of vertices is V X A ´1pp´8, tqq. Symmetrically, for t P R we denote by G t the maximal subgraph of G whose set of vertices is V X A ´1ppt, `8qq.

Let us consider t P R such that there exists x P V satisfying Apxq " t. Since V is finite, we can define the graphs G t`" G t` and G t´" G t´ where ą 0 satisfies pAq X ppt ´ , t ` qq " ttu. For every t P pAq there are three categories of bars Category 1. For each element C of C t`s uch that j ´1 t pCq is not empty, the barcode BpG, A, indq contains #j ´1 t pCq ´1 bars as follows. We label C 1 , ..., C n the elements of j ´1 t pCq and we choose i 0 P r1, ns an integer such that LpC i 0 q " min iPr1,ns LpC i q. The bars of category 1 associated to t are the bars pLpC i q, ts for i ‰ i 0 .

P C t , j 1 t pC 1 q is the connected component of G t´w hich contains C 1 .
Category 2. For each element C 1 of C t´s uch that j 1´1 t pC 1 q is not empty, the barcode BpG, A, indq contains #j 1´1 t pC 1 q ´1 bars as follows. We label C 1 1 , ..., C 1 n the elements of j 1´1 t pC 1 q and we choose i 0 P r1, ns an integer such that DpC 1 i 0 q " max iPr1,ns DpC 1 i q. The bars of category 2 associated to t are the bars pt, DpC 1 i qs for i ‰ i 0 .

Category 3. We define k " ř t|indpxq| | x saddle point, Apxq " tu. Let us denote k 1 equal to k minus the number of bars of categories 1 and 2 associated to t. If k 1 ą 0 then the bars of category 3 associated to t are k 1 bars pt, `8q and if k 1 ď 0 there is no bar of category 3 associated to t.

Remark 5.0.5. We refer to Proposition 6.2.4 to enlight the definition of the bars of category 3.

Remark 5.0.6. By construction for every bar I " pa, bs or J " pc, 8q in the barcode BpG, A, indq we have that a, b and c are values of the action function A.

Examples. We compute the barcode of two simple examples.

Example 1. We consider pG, A, indq P G as follows.

' x ' z ' y 2 ' y 1 Apy 2 q Apy 1 q Apxq Apzq G
The map ind satisfies indpxq " ´1 and indpy 1 q " indpy 2 q " indpzq " 1. The values of the map A are represented on the vertical line on the right of the graph.

The bars of category 0 are pApy 2 q, `8q and pApzq, `8q.

The vertex x is the unique saddle point of the graph G. We describe the bars associated to Apxq as follows.

The subgraph G Ápxq `has only one connected component C ´and j ´1 Apxq ptC ´uq " G Ápxq has two connected components C " ty 1 u and C 1 " ty 2 u. In this example we have LpCq " Apy 1 q ą LpC 1 q " Apy 2 q so by construction the bar pApy 1 q, Apxqs is the only bar of category 1 of the barcode BpG, A, indq.

The subgraph that G Àpxq ´has only one connected component C `and j 1 ´1 Apxq ptC `uq "

G Àpxq `has one connected component C " tzu. So by construction there is no bar of category 2 in the barcode BpG, A, indq.

The index of x is equal to ´1 and there is one bar of category 1 and zero bar of category 2 thus there is no bars of category 3 in the barcode BpG, A, indq.

Finally we obtain the barcode

BpG, A, indq " tpApy 2 q, `8q, pApy 1 q, Apxqs, pApzq, `8qu. The index of x is equal to ´1 and there is no bar of category 1 and 2 thus there is a bar pApxq, `8q of category 3 in the barcode BpG, A, indq.

This example corresponds to the barcode of the example

Finally we obtain

BpG, A, indq " tpApwq, `8q, pApyq, `8q, pApxq, `8q, pApzq, `8qu. This example corresponds to the barcode associated to a Morse function on the 2-torus where the graph is given by the connexions of the gradient lines.

Chapter 6

The barcode of a gradient-like foliation Let us consider a gradient-like foliation F, whose set of singularities X is finite, defined on the complement of X in a compact surface Σ. Recall that a gradient-like foliation is a foliation such that every leaf is a connexion and where there is no cycle of connexions, see section 2.3.7 of the preliminaries for more details. In particular, the singularities of F are isolated and are classified in three categories: the sinks, the sources and the saddle points. We suppose that the set of singularities X of F is equipped with an action function A : X Ñ R such that for each leaf φ we have Apαpφqq ą Apωpφqq.

We will consider the oriented graph GpFq of the foliation F whose set of vertices is X and for every couple of vertices x and y of GpFq there exists an edge from x to y if and only if there exists a leaf φ in F such that αpφq " x and ωpφq " y. We want to study the barcode BpGpFq, A, indpF, ¨qq associated to F defined in Chapter 5.

Notice that the graph GpFq is not constructed as the graph of a generic foliation as in chapter 4 but it remains a finite oriented graph. The differences will be enlightened in section 8.

In a first section we give some geometrical properties of the foliation F and in a second section we prove some results about the barcode BpGpFq, A, indpF, ¨qq.

Geometric properties of a gradient-like foliation

We introduce some useful definitions and notation. Saturated set. A subset of ΣzX is said to be saturated if it is equal to a union of leaves of F. We will use the fact that the closure in ΣzX of a saturated set is saturated.

Chain of connexions.

A chain of connexions in Σ is a finite union of the closure of leaves ψ 1 , ..., ψ k of F such that αpψ 1 q " x, ωpψ i q " αpψ i`1 q for every i P r1, k ´1s and ωpψ k q " y. We will say that a chain of connexions is associated to the leaves ψ 1 , ..., ψ k . If we consider two singularities x and y of F, we say that there is a chain of connexions from x to y if there exists a chain of connexions, associated to leaves ψ 1 , ..., ψ k such that αpφ 1 q " x and ωpφ k q " y. In this case, x will be called the starting point of the chain and y its ending point.

Trivialization. Let us consider a saddle point x P X of F. We denote by Σ x the union of leaves φ P F whose alpha-limit point is equal to x and by Σ x the union of leaves ψ P F whose omega-limit point is equal to x. We will call a trivialization of F at x a couple ph, V q where V is a neighborhood of x such that X X V " txu and h : V Ñ D is a map that sends the foliation F| V to the model foliation described in the appendix of [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] proposition B.5.4. which we now describe. To simplify the notations we set n " 1 ´indpF, xq. In this model foliation, for each leaf φ of F, φ X V is connected and h sends Σ x to n cones centered around the angles 2πp2kq 2n where 0 ď k ď n ´1 and sends Σ x to n cones centered around the angles 2πp2k`1q 2n where 0 ď k ď n ´1. We have

• The two sets Σ x and Σ x are composed of n connected components. Using the map h we can label these connected components pσ ḱ q 0ďkďn´1 and pσ k q 0ďkďn´1 in cyclic order around x.

• The connected components pσ ḱ q 0ďkďn´1 will be called the unstable cones of x and the connected components pσ k q 0ďkďn´1 will be called the stable cones of x.

• Every stable cone and an unstable cone which are consecutive, in cyclic order, are separated by hyperbolic sectors of x. We denote U k , 0 ď k ď 2n ´1 the hyperbolic sectors such that we have in cyclic order Notice that a stable or unstable cone of x can be composed of a unique leaf, see Figure 2.5 for example.

V " σ 0 Y U 0 Y σ 0 Y U 1 Y ... Y U 2n´1 . σ 1 σ 0 σ 1 σ 0 U 0 U 1 U 2 U 3
Local model. Let us consider a leaf φ of F. We describe in Σ the leaves of F which are close to φ. It will be called the local model near φ. We parametrize the leaves of F near φ by a small arc γ : p´1, 1q Ñ ΣzX transversal to F such that γp0q P φ. For every t P p´1, 1q we denote φ t the leaf of F passing through γptq.

We prove the following property. Proposition 6.1.1. We have that the sets

Γ φ " č ą0 ď tPp0, q φ t , and Γ φ " č ą0 ď tPp´ ,0q φ t ,
are chains of connexions containing the leaf φ and there exists s P p0, 1q such that • Every leaf φ t , t P p0, sq satisfies: αpφ t q is equal to the start of Γ φ and ωpφ t q is equal to its end.

• Every leaf φ t , t P p´s, 0q satisfies: αpφ t q is equal to the start of Γ φ and ωpφ t q is equal to its end.

Proof. We prove the result for the leaves φ t , t ą 0 as it is the same proof for the leaves φ t , t ă 0.

We start by studying the "future" of the connexions pφ t q tPp0,1q and then, symmetrically, we study the "past" of these connexions.

We will prove that there exists a chain of connexions contained in Γ φ passing through φ from x to a singularity y `such that for every t ą 0 small enough we have ωpφ t q " y. The omega-limit point x 1 of φ is a sink of F or a saddle point. If x 1 is a saddle point then φ is in the interior of a stable cone of x 1 or in its boundary. We split the discussion into three cases.

Case 1. Suppose that x 1 is a sink of F, since the set of leaves of which x 1 is the ending point is open, there exists t 1 P p0, 1s such that for each t P r0, t 1 q, ωpφ t q is equal to x 1 and the chain of connexions we are looking for is associated to the leaf φ.

Case 2. We suppose that x 1 is a saddle point and the leaf φ is in the interior of a stable cone σ `of x 1 . There exists t 1 P p0, 1s such that for each t P r0, t 1 q, the leaf φ t satisfies ωpφ t q " x 1 . The chain of connexions we are looking for is associated to the leaf φ.

Case 3. We suppose that x 1 is a saddle point and the leaf φ is in the boundary of a stable cone σ `of x 1 . In this case, the leaf φ is in the boundary of the hyperbolic sector U of x 1 preceding σ ´. We can consider a trivialisation of F at x 1 and t 1 P p0, 1q such that each leaf φ t , t P p0, t 1 s, is a leaf of the sector U . The closure of the union of the leaves pφ t q tPp0,t 1 s contains a leaf φ 1 of the unstable cone of x which is adjacent to U . Notice that we have a chain of connexions associated to the leaves φ and φ 1 .

We do the same discussion about the omega limit point of φ 1 . If the omega limit point of φ 1 corresponds to the case 1 or the case 2, then we stop the process and if we are in case 3 then, we do the same discussion with the leaf φ 2 provided by case 3. If so, a chain of connexions is associated to the leaves φ, φ 1 , φ 2 . Since the number of singularities of F is finite, the process stops after a finite number of steps and we finally obtain a chain of connexions Γ future associated to a finite number of leaves φ, φ 1 , ..., φ n . We denote y the omega-limit point of the leave φ n and there exists t n P p0, 1q such that each leaf φ t with t P p0, t n s satisfies ωpφ t q " y `.

Let us draw an example of a chain of connexions provided by the previous process. In Figure 6.2 the horizontal line represents the chain of connexions from x to ωpφ n q and each line above represents a leaf φ t where t P p0, 1s. It is enough to re-parametrize the trivialization h to obtain the result we are looking for.
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By symmetrical arguments there is another chain of connexions Γ past from a singularity z `to ωpφq, passing through φ, such that every leaf φ t , t ą 0, satisfies αpφ t q " z `.

Moreover, by the previous construction, we obtain that Γ φ is a chain of connexions and is equal to the union of Γ past and Γ future . So z `is its starting point and y `its ending point. Remark 6.1.2. The space of leaves of a gradient-like foliation F is a non-Hausdorff manifold. The chains of connexions correspond to the set of non separated leaves.

Let us draw two examples of a local model of a leaf φ.

We consider a first example in Figure 6.3. The leaves above φ represent the leaves φ t with t P p0, 1q and the leaves below φ represent the leaves φ t with t P p´1, 0q. The chain of connexions Γ φ is a chain from z `to y `passing through φ and the chain of connexions Γ φ is a chain of connexions from z ´to y ´passing through φ. The graph of the foliation F. We consider the oriented graph GpFq whose set of vertices is equal to SingpFq and for every couple of vertices x and y there exists an edge from x to y if and only if there exists a leaf φ of F such that αpφq " x and ωpφq " y. For t P R we consider the subgraphs G t pFq (resp. G t Fq) which is the maximal subgraph of GpFq whose set of vertices is X X A ´1pp´8, tqq (resp. X X A ´1ppt, `8qq).
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Attractive basin. Let us consider t P R and a connected component C of G t pFq. We define the attractive basin of C, denoted W s pCq, as the union of the leaves of F whose omega-limit point is a singularity of C. Notice that it is a subset of Σ.

In particular we have W s pCq "

ď xPXXC W s pxq.
Lemma 6.1.3. Let us consider a saddle point x in the frontier of W s pCq. There exists a neighborhood V of x such that each hyperbolic sector U of x in V is either included in W s pCq or disjoint of it.

Proof. Let us fix a neighborhood V of x. We consider an unstable cone σ ´of x and U a hyperbolic sector of x in V adjacent to σ ´. We denote φ the leaf of F such that φ " σ ´XU . Let γ : r0, 1q Ñ U be a small arc transverse to the foliation F and such that γp0q P φ. For every t P r0, 1q we denote φ t the leaf of F passing through γptq.

We denote by y `the ending point of Γ φ " Ş ą0 Ť tPp0, q φ t .

By the local model there exists s P p0, 1q such that every leaf φ t , t P p0, sq, satisfies ωpφ t q " y `.

So if y `is in C then every leaf φ t , t P p0, sq, is in W s pCq and if y `is not in C then no leaf φ t , t P p0, sq, is in W s pCq. Hence, up to a smaller neighborhood V 1 of x we can suppose that every leaf of the hyperbolic sector U in V 1 is either in W s pCq or disjoint of it. Moreover, x has finitely many hyperbolic sectors so we can suppose that we have the same property for each one of them and we obtain the result.

In the next chapter we will need a precise description of W s pCq. We describe it with the following proposition. Let us consider a stable or unstable cone σ of a saddle point x in the frontier of W s pCq, we say that σ is adjacent to W s pCq if one and only one of the two hyperbolic sectors adjacent to σ is in W s pCq and we say that σ is surrounded by W s pCq if the two hyperbolic sectors of x which are adjacent to σ is W s pCq. Proposition 6.1.4. The set W s pCq, is open, connected and its frontier is the closure of a finite union of leaves of F contained in stable or unstable cones of saddle points. More precisely, for each saddle point x in the frontier of W s pCq, the stable and unstable cones satisfy the following properties.

1. Let us consider a stable cone σ `of x. If σ `is surrounded by W s pCq then the leaves of Bσ `are the only leaves of σ `in the frontier of W s pCq. If σ `is adjacent to W s pCq then the leaf of Bσ `X BU , where U is the adjacent hyperbolic sector of x in W s pCq adjacent to σ `, is the only leaf of σ `in the frontier of W s pCq. If none of the previous situation holds then σ `is disjoint from the frontier of W s pCq.

Let us consider an unstable cone σ ´of

x. There is a finite set of leaves of σ ´, possibly empty if σ ´is not adjacent to W s pCq, in the frontier of W s pCq.

Every property of Proposition 6.1.4 is obvious except the finiteness property which is deduced from Lemma 6.1.11.

The first point of Proposition 6.1.4 is a straigthforward consequence of the definition of W s pCq. Unfortunately, the second point of Proposition 6.1.4 can not be more precise and we draw three examples to illustrate this. After these examples, we prove that W s pCq is open in Σ and that there are finitely many leaves of F in its frontier.

First example. Let us consider a sink y of a gradient-like foliation F such that there exists a saddle point x in the frontier of W s pyq as in the Figure 6.5. In this example we draw in red the leaves of W s pyq and in blue the leaves in its frontier whose omega-limit point equals to x. There exists an unstable cone σ ´of x surrounded by W s pyq. The sectors U and U 1 of x which are adjacent to σ ´are in W s pyq and by the first point of Proposition 6.1.4 there are two leaves φ and φ 1 in the stable cones of x which are adjacent to U and U 1 and in the frontier of W s pyq. In our example there exists a leaf ψ of the cone σ ´which is in the frontier of W s pyq. It is enough to suppose that Apxq ą Apzq ą Apyq to obtain this example. In our example we choose to draw ψ in the boundary of the unstable cone σ but it could be any leaf of σ

´. Second example. Let us consider a sink y of a gradient-like foliation F such that there exists a saddle point x in the frontier of W s pyq as in the Figure 6.6. In this example we draw in red the leaves of W s pyq and in blue the leaves of its frontier whose alpha-limit point is equal to x. The unstable cone σ ´of x is adjacent to W s pyq. In this example there exist two leaves ψ and ψ 1 of the unstable cone σ ´from x to two singularities z and z 1 which are in the frontier of W s pyq.
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Third example. Let us consider a sink y of a gradient foliation F such that there exists a saddle point x in the frontier of W s pyq as in Figure 6.7. In this example we draw in red leaves of W s pyq and in blue the leaves on its frontier. The unstable cone σ ´is not adjacent to W s pyq. In this example there exist leaves in the interior of σ ´whose omega-limit point is y and two leaves ψ of Bσ ´and ψ 1 in the interior of σ ´are in the frontier of W s pyq The omega limit-points of ψ and ψ 1 are two saddle points z and z 1 of F.
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The remaining part of this chapter aims to give the proof of Proposition 6.1.4. The proof is divided into several lemmas. Notice that the following lemma will be useful in the next section. Lemma 6.1.5. Let us consider a saddle point x of F. For each unstable cone σ ´of x there exists a unique connected component C of G Ápxq pFq such that each leaf φ of the cone σ ´is in the attractive basin of C.

Proof. Let us consider an unstable cone σ ´of x and φ a leaf of σ ´. We denote by C the connected component of G Ápxq pFq which contains the singularity ωpφq. By the local model there exist two chains of connexions Γ φ and Γ φ , whose ending points are denoted y `and y ´, containing φ such that each leaf ψ of σ ´close enough to φ satisfies ωpψq " y `or ωpψq " y ´. We have that Γ φ and Γ φ contain φ, so by definition y `and y ´are also in C and we deduce that every leaf ψ of σ ´close enough to φ is in W s pCq.

Moreover, if we consider a leaf φ 1 P σ ´in the closure of a sequence pφ 1 n q nPN of leaves in W s pCq then by the local model, there is a chain of connexions Γ in the closure of the sequence pφ 1 n q nPN which contains φ 1 . Notice that Apωpφ 1 qq ă Apxq so ωpφ 1 q and the ending point of the chain Γ are in the same connected component of G Ápxq pFq. So ωpφ 1 q is in C and then φ 1 is in W s pCq.

Thus we obtain that the intersection of σ ´and W s pCq is open and closed in σ ´. So, since σ ´is connected we have that every leaf of σ ´is in W s pCq. Remark 6.1.6. Lemma 6.1.5 does not hold if Apxq is replaced by some t ă Apxq. Indeed if we only suppose that C is a connected component of G t pFq with t ă Apxq then the unstable cone σ ´is not necessarily included in the attractive basin of C. See example 6.6 above where the leaf ψ 1 is not a leaf of the attractive basin of the connected component tyu of G Ápyq `pF q.

We prove that the attractive basin of a connected component of G t pFq with t P R is open with the two following lemmas. Lemma 6.1.7. Let us consider t P R and C a connected component of G t pFq. Each singularity x of C is in the interior of W s pCq.

Proof. Let us consider a singularity x of F in C. It is either a sink, a source or saddle. We separate those three cases.

1. If x is a sink, then each leaf in a neighborhood of x is in W s pCq.

If

x is a source, then each leaf φ in a neighborhood of x satisfies Apωpφqq ă Apxq and is in W s pCq.

If

x is a saddle point, we consider a trivialization ph, V q of F at x on a neighborhood V given by Lemma 6.1.3. By definition of W s pCq, each leaf of Σ x and Σ x is in W s pCq. Moreover, let us consider a leaf φ in the boundary of an unstable cone σ ´of x and U the hyperbolic sector adjacent to φ, by the local model there exists a chain of connexions from x to a singularity y such that every leaf of the hyperbolic sector U admits y as its omega limit. By definition, the singularity y is in C hence the leaves of the hyperbolic sector U are in W s pCq. Since it holds for each hyperbolic sector of x we obtain the result.

Let us consider t P R and C a connected component of G t pFq. We describe the attractive basin of C and its frontier. Proof. We consider a leaf φ in W s pCq, by the local model there exists a small neighborhood V of φ and two chains of connexions φ 1 , ..., φ k and φ 1 1 , ..., φ 1 k 1 of F which contain φ such that each leaf ψ passing through V satisfies ωpψq " ωpφ k q or ωpψq " ωpφ 1 k 1 q. By construction ωpφ k q and ωpφ 1 k 1 q are in the same connected component of G t pFq and so every leaf passing through V is in W s pCq.

The following corollary is a consequence of Lemmas 6.1.7 and 6.1.8. Corollary 6.1.9. The attractive basin of C is an open surface in Σ.

We deduce the following lemma. Lemma 6.1.10. The attractive basin of C is connected. Proof. For every x P X X C, W s p §q is connected as it is arc-connected. Let us consider two singularities x and y of C such that there exists an edge from x to y. So there is a leaf φ such that αpφq " x and ωpφq " y. The point x is in the frontier of W s pyq and is either a saddle point or a source. Since we proved previously that x is in the interior of W s pCq we deduce that φ Ă W s pxq Y W s pyq. We deduce easily that W s pCq " Ť xPXXC W s pxq is connected.

We prove a last result which concludes the proof of Proposition 6.1.4.

Lemma 6.1.11. The number of leaves included in the frontier of the attractive basin of C is finite.

Proof of Lemma 6.1.11. Let us consider a leaf φ of the frontier of W s pCq. The singularity ωpφq can not be a sink nor a source so it is a saddle point. So φ is a leaf of a stable cone of ωpφq. So by the first point of Proposition 6.1.4 and the fact that the number of singularities of F is finite, there exists a finite number of such leaves and we obtain the result.

Remark 6.1.12. Let us describe an example. We consider a foliation F on a 2-sphere such that F has two sources s 1 , s 2 , one saddle point x one sink p and the foliation is the gradient-lines of the Morse function A : S 2 Ñ R represented in green in figure 6.8.
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We consider the connected component C " tpu of G Ápxq pFq and we want to describe the attractive basin of C. In our example, we see that each leaf φ of F satisfies ωpφq " p except two leaves φ 1 and φ 2 such that φ 1 is a leaf between s 1 and x and φ 2 is a leaf between s 2 and x. Let us consider a trivialization ph, V q at x of the foliation F represented in figure 6.9.

φ 1 φ 2 x U 1 U 4 U 2 U 3 Figure 6.9
In the example the four hyperbolic sectors U 1 , ..., U 4 of x are in W s pCq and in Figure 6.9 the leaves of W s pCq are represented in red. The frontier of W s pCq is the union of the three singularities x,s 1 and s 2 and the two leaves φ 1 and φ 2 in Σ. Remark 6.1.13. Each result about a connected components of G t pFq, where t P R, has its symmetrical result for a connected component of G t pFq.

Some properties of the Barcode BpGpFq, A, indpF, ¨qq

Let us consider a gradient-like foliation F defined on the complement of a finite set X of a compact surface Σ. We suppose that X is equipped with an action function A : X Ñ R such that for each leaf φ we have Apαpφqq ą Apωpφqq. We prove some properties about the Barcode BpGpFq, A, indpF, ¨qq, which will be denoted β F .

We set A m the minimum value of the action function A on X and A M its maximum value.

Notice that, by construction of the map B, for every singularity z of F of index zero there is no bar in BpGpFq, A, indpF, ¨qq one end of whose is equal to Apzq. Indeed, the point z does not connect distinct connected components of the graphs G Áf pzq pFq and G Àf pz pFq so if we follow the construction in Chapter 5, there is no bar of category 1 or 2 induced by z. So, since indpF, zq " 0 there is no bar of category 3 induced by z neither.

We consider the graph GpFq associated to F and the subgraphs pG t pFqq tPR and pG t pFqq tPR . We will use some notations from Chapter 5. For t P R we denote C t and C t the set of connected components of G t pFq and G t pFq. We set the maps j t : C t Ñ C t`a nd j 1 t : C t Ñ C t´w here for C P C t , j t pCq is the connected component of G t`w hich contains C and for C 1 P C t j 1 t pC 1 q is the connected component of G t´w hich contains C 1 . For a connected component C of G t pFq we consider LpCq " mintApyq | y vertex of Cu. Lemma 6.2.1. For each sink y of F satisfying A m ă Apyq there exists at least one saddle point x of F such that the barcode β F contains a bar b " pApyq, Apxqs. For each source y of F satisfying Apyq ă A M there exists at least one saddle point x of F such that the barcode β F contains a bar b " pApxq, Apyqs.

In the situation of Lemma 6.2.1 we say that the pair px, yq is associated to the finite bar b of β F .

Proof. Let us fix a value t ą A m of the action function A. We label y 1 , ..., y n the sinks of X whose action value is t. We prove that for every i P t1, ..., nu there exists a saddle point x i of F such that the barcode β F contains a bar pApy i q, Apx i qs.

For i P r1, ns there is a map c i : s Þ Ñ C s i defined for s ą t where C s i is the connected component of the graph G ś pFq which contains y i . For a value s ą t such that A ´1ppt, sqq " H, the connected components C s 1 , ..., C s n are distinct.

For s ą t close to t, the elements c i psq, i P r1, ns, are distincts and for s ą A M , we have that c i psq " GpFq for every i P r1, ns, hence we have Lpc i psqq " t for s ą 0 close to t and Lpc i psqq " A m for t ą A M . Thus, for every i P r1, ns, there exists an action value, denoted s i , such that Apy i q " Lpc i ps i qq and t ą Lpj s pc i ps i qqq. In other words, there exists a saddle point x i of F of action s i such that

• Lpc i ps i qq " t " Apy i q • x i connects the connected component c i ps i q and another connected component C of G ś pFq such that LpCq ă t.

By construction of the barcode β F there exists a bar pApy i q, s i s of category 1 (see Chapter 5).

Notice that the points x i , i P t1, ..., nu are not sources. Indeed, by contradiction we suppose that a source z of action s connects two distinct connected components C 1 and C 2 of the graph G ś pFq. Thus, by hypothesis, there exist two singularities x 1 P C 1 and x 2 P C 2 in the frontier of W u pzq. By Proposition 6.1.4, there exists a path of connexions Γ between x 1 and x 2 such that every singularity y in Γ satisfies Apyq ă s, so x 1 and x 2 are in the same connected component of G ś pFq and we have a contradiction.

We obtain the symmetrical results for sources of F by considering bars of category 2. Remark 6.2.2. For a singularity y of F of index 1, there may exist two saddle points x and x 1 with Apxq " Apx 1 q such that the couples px, yq and px 1 , yq are associated to the same bar b. Lemma 6.2.3. We label y 1 , ..., y n the sinks of F of action A m . There exist n ´1 finite bars J 1 , ..., J n´1 whose lower bound is equal to A m and upper bound is the action value of a saddle point of F and one semi-infinite bar pA m , 8q in the barcode β F . Proof. For s ą A m such that A ´1ppA m , sqq " H, we denote C s i the connected component of G ś pFq which contains the singularity y i .

For i P r1, ns there is a map c i : s Þ Ñ C s i defined for s ą t where C s i is the connected component of the graph G ś pFq which contains y i .

For s ą A m close to A m , we have C s i " ty i u, i P r1, ns.

Let us consider s ą A m , such that there exists a subset K of t1, ..., nu of cardinal at least two such that the connected components c i psq, i P K are distinct but the connected component j s pc i psqq, i P K, are equal. We have Lpc i psqq " A m for i P K so, by construction, it induces the existence of #K ´1 bars pA m , ss in the barcode β F . Moreover, for each i ‰ j in t1, ..., nu there exists s ą A m such that j s pc i psqq " j s pc j psqq and c i psq ‰ c j psq. Hence we obtain n ´1 finite bars such that A m is the lower bound of the bar.

The existence of a semi-infinite bar pA m , 8q in the barcode BpGpFq, A, indpF, ¨qq is provided by the construction of B : it is a bar of category 0.

Let us consider a sink y m of the foliation F such that Apy m q " A m and a source y M of the foliation F such that Apy M q " A M . We denote X ă0 Ă X the set of negative index singularities of F and X 1 Ă X the set of singularities of index 1.

By Lemmas 6.2.1 and 6.2.3 there exists a map, which may be not unique, ι : X 1 zty m , y M u Ñ X ă0 , (

where ιpyq " x is a saddle point x of the foliation F given by Lemmas 6.2.1 and 6.2.3 such that the couple px, yq is associated to a finite bar of β F .

In particular, if A is injective and each singularity x of X ă0 has an index equal to ´1 then, every bar pa, bs of the barcode is naturally associated to a unique couple x, y P X by Lemma 6.2.1. In this case, ι is unique and an injection. Indeed, by construction, for every saddle point x of X ă0 there exists a unique bar one end of which is equal to Apxq. notice that this bar is either a finite interval whose infimum is Apxq, maximum is Apxq or a semi-infinite interval whose infimum is Apxq.

We have the following result. Proposition 6.2.4. Let x be a saddle point of F of action value t P R such that A ´1ptq " txu. We have #j ´1 t pC x q `#j 1´1 t pC 1 x q ď |indpF, xq| `2, where C x (resp. C 1

x ) is the connected component of G t`p Fq (resp. G t´p Fq) which contains x.

In general, Proposition 6.2.4 certifies that for a saddle point x of F such that A ´1ptq " txu, there are |indpf, xq| bars of which t is an end. We can link this result to Proposition 28 of [START_REF] Le Roux | Barcodes and area-preserving homeomorphisms[END_REF] which asserts that for a Hamiltonian function H on a manifold the number of bars of which t P R is an ending value is given by the dimension of the local Floer Homology at t.

Proof of Proposition 6.2.4. We set t " Apxq and i " indpF, xq. We label Σ x the set of the unstable cones of x and Σ x the set of the stable cones of x. Both Σ x and Σ x are equipped with a cyclic order and a natural cyclic transformation τ x : Σ x Y Σ x Ñ Σ x Y Σ x which sends Σ x into Σ x and Σ x into Σ x such that every element σ ´P Σ x (resp. σ `P Σ x ) is sent to the element of Σ x (resp. Σ x ) right after it in cyclic order. By Lemma 6.1.5, for every σ ´P Σ x there is a connected component C ´of G t pFq such that ωpφq is a vertex of C ´for every leaf φ P σ ´. So we can define a map ω : Σ x Ñ C t pFq given by ωpσ ´q " C

´.

Symmetrically, for every σ `P Σ x there is a connected component C `of G t pFq such that αpφq is a vertex of C `for every leaf φ P σ `. So we can define a map α : Σ x Ñ C t pFq given by αpσ `q " C `.

We will denote by Impαq and Impωq the image sets of α and ω and the result consists in establishing the inequality #Impαq `#Impωq ď i `2.

(6.2)

We introduce a combinatorial context to facilitate the proof.

Let us consider two sets E `and E ´and a couple of maps α : Σ `Ñ E `and ωΣ ´Ñ E defined on sets Σ `Ă Σ x , Σ ´Ă Σ x such that there is, in cyclic order, alternatively an element of Σ `and an element of Σ ´in Σ x Y Σ x . In particular, Σ `and Σ ´have the same cardinal and are naturally equipped with a cyclic transformation τ . We define some useful notation.

Let c be in the image of ω. We set J " ω ´1pcq and we will say that • An element σ `P Σ `is adjacent to J in Σ `if one and only one of the two elements τ pσ `q and τ ´1pσ `q is in J. More precisely we will say that an element σ `P Σ `is adjacent and before J in Σ `if τ pσ `q is in J and τ ´1pσ `q is not. Symmetrically we will say that an element σ `P Σ `is adjacent and after J in Σ `if τ ´1pσ `q is in J and τ pσ `q is not.

• An element σ `P Σ `is surrounded by J in Σ `if the two elements τ pσ `q and τ ´1pσ `q are in J.

A maximal set of consecutive elements of J in Σ ´will be called a maximal interval of J.

We prove the following lemma about the maps α and ω. Lemma 6.2.5. Suppose that for every c P Impωq and every σ `P Σ `adjacent to ω ´1pcq in Σ `, there exists σ 1`P Σ `ztσ `u adjacent to ω ´1pcq in Σ `such that αpσ 1`q " αpσ `q.

Then we have #Impαq `#Impωq ď i `2,

where i `1 is the cardinal of the sets Σ `and Σ

´.

Proof. Let i " 0, for a couple pα, ωq defined on sets Σ `and Σ ´of cardinal equal to 1, the inequality is trivial.

Let i ě 1, we suppose by induction that couples defined on sets of cardinal less than i satisfying the hypothesis of Lemma 6.2.5 satisfy the result.

We consider a couple pα, ωq defined on sets Σ `and Σ ´of cardinal equals to i `1 satisfying the hypothesis of Lemma 6.2.5. We prove that #Impαq `#Impωq ď i `2.

We divide the proof of the inequality into three cases.

Case 1. Suppose that ω is constant. In this case we have by definition #Impωq " 1 and #Impαq ď i `1 so the result is trivial.

Case 2. Suppose that for each c P Impωq we have #ω ´1pcq " 1. By hypothesis, we obtain that α is constant on Σ `. So we compute #Impαq `#Impωq " 1 `pi `1q, and we obtain the result.

Case 3. Suppose that there exists c P Impωq such that i `1 ą #ω ´1pcq ą 1. We will modify the couple pα, ωq into another couple pα 1 , ω 1 q defined on subsets of Σ `and Σ ´and we prove that the couple pα 1 , ω 1 q satisfies the hypothesis of Lemma 6.2.5. We denote J " ω ´1pcq and we define new maps on Σ 1 " Σ ´zJ and Σ 1 " Σ `zτ pJq. We set ω 1 : Σ 1 Ñ E ´ztcu, defined as the restriction of ω. We define α 1 : Σ 1 Ñ E `{αpτ pJq∆τ ´1pJ qq, where we have • τ pJq∆τ ´1pJ q is the symmetric difference of τ pJq and τ ´1pJ q.

• E `{αpτ pJq∆τ ´1pJ qq is the set obtained by identifiyng the elements of αpτ pJq∆τ ´1pJ qq.

• α 1 is the natural map induced by α.

Notice that the set τ pJq∆τ ´1pJ q is composed of the elements of Σ `which are adjacent to J. Moreover, the sets Σ 1 and Σ 1 are not empty.

We prove that pα 1 , ω 1 q satisfies the hypothesis of Lemma 6.2.5.

Let us consider c 1 P Impω 1 q. We set J 1 " ω ´1

1 pc 1 q and we consider σ 1 P Σ 1 adjacent to J 1 in Σ 1 . Our goal is to find an element of Σ 1 distinct from σ 1 and adjacent to J 1 in Σ 1 whose α 1 value is equal to the α 1 value of σ 1 . The element σ 1 may not be adjacent to J 1 in Σ `. There are two possibilities. 1) σ 1 is adjacent to J 1 in Σ `.

2) σ 1 is adjacent and before a maximal interval K of J in Σ `and there exists σ 1 1 P J which is adjacent and after the interval K of J in Σ `and adjacent and before J 1 in Σ `.

We separate these two cases.

In case 1), by hypothesis, there exists σ 2 P Σ `ztσ 1 u adjacent to J 1 in Σ `such that αpσ 1 q " αpσ 2 q. Again, there are two possibilities. i) If σ 2 R τ pJq then σ 2 is adjacent to J 1 in Σ 1 and α 1 pσ 1 q " α 1 pσ 2 q by definition. We obtain the result.

ii) If σ 2 P τ pJq then σ 2 is adjacent and after a maximal interval K 2 of J in Σ `. So σ 2 is before an interval K 1 of J 1 in Σ `and after the interval K 2 of J in Σ `. We consider σ 1 2 in Σ `just before the interval K 2 in Σ `. We have that σ 1 2 R τ pJq and σ 1 2 ‰ σ 1 . Indeed, if we supposed that σ 1 " σ 1 2 then since σ 1 is adjacent to J 1 in Σ `it is after an interval K 1 1 of J 1 in Σ `and just before the interval K 2 of J in Σ `. Hence in the cyclic order we have in

Σ `K1 1 , σ 1 " σ 1 2 , K 2 , σ 2 , K 1 .
So in Σ 1 we obtain in the cyclic order

K 1 1 , σ 1 , K 1 .
Meaning that σ 1 is surrounded by J 1 in Σ 1 and so it contradicts the fact that σ 1 is adjacent to J 1 in Σ 1 . Moreover, by hyothesis, αpσ 1 q " αpσ 2 q P αpτ pJq∆τ ´1pJ qq so by construction α 1 pσ 1 q " α 1 pσ 1 2 q and we obtain the result.

In case 2), σ 1 1 is just before a maximal interval K 1 1 of J 1 in Σ `. Moreover, by hypothesis, there exists σ 2 P Σ `ztσ 1 1 u adjacent to J 1 in Σ `such that αpσ 1 1 q " αpσ 2 q. Again, there are two possibilities. i) If σ 2 R τ pJq then σ 2 is adjacent to J 1 in Σ 1 and distinct from σ 1 . Indeed, if we suppose that σ 2 " σ 1 then σ 1 is before the maximal interval K of J in Σ `and after a maximal interval K 1 of J 1 in Σ `. Hence, in Σ `, we have and in the cyclic order

K 1 , σ 1 " σ 2 , K, σ 1 1 , K 1 1 .
So in Σ 1 we obtain in the cyclic order

K 1 , σ 1 , K 1 1 .
Meaning that σ 1 is surrounded by J 1 in Σ 1 and it contradicts the fact that σ 1 is adjacent to J 1 in Σ 1 . Moreover, by hypothesis, αpσ 1 1 q " αpσ 2 q P αpτ pJq∆τ ´1pJ qq and by definition αpσ 1 q P αpτ pJq∆τ ´1pJ qq. So, by construction, we have α 1 pσ 1 q " α 1 pσ 2 q and we obtain the result.

ii) If σ 2 P τ pJq then σ 2 is adjacent and after a maximal interval K 2 of J in Σ `. We consider σ 1 2 in Σ `just before the interval K 2 in Σ `. We have K ‰ K 2 then σ 1 2 ‰ σ 1 and αpσ 1 2 q " αpσ 1 q. Indeed, if we suppose that K 2 " K then it contradicts the fact that σ 2 ‰ σ 1 2 and we obtain the result. Now, we prove that #Impαq `#Impωq ď i `2.

The image of ω is the union of the image of ω 1 and the singleton tcu. So we have #Impωq " #Impω 1 q `1.

Let us consider the natural projection p : E `Ñ E `{αpτ pJq∆τ ´1pJ qq, we have the following diagram

Σ 1 α / / α 1 ' ' E p E `{αpτ pJq∆τ ´1pJ qq
We denote e P E `{αpτ pJq∆τ ´1pJ qq such that ppαpσqq " e, for every ppcq P τ pJq∆τ ´1pJ q.

The image of α satisfies

Impαq " αpτ pJq Y τ ´1pJ qq Y αpΣ `ztτ pJq Y τ ´1pJ quq.

By definition, we have τ pJq Y τ ´1pJ q " pτ pJq∆τ ´1pJ qq Y pτ pJq X τ ´1pJ qq.

So, we deduce

αpτ pJq Y τ ´1pJ qq " αpτ pJq∆τ ´1pJ qq Y αpτ pJq X τ ´1pJ qq.

We denote by K the number of maximum intervals of J.Since J ‰ Σ `, we have #τ pJq∆τ ´1pJ q " 2K and #pτ pJq X τ ´1pJ qq " #J ´K. Indeed, the set τ pJq∆τ ´1pJ q is the set of elements of Σ `which are adjacent to J and the set τ pJq X τ ´1pJ q is the set of elements of Σ `which are surrounded by J.

By hypothesis, for every element σ `P τ pJq∆τ ´1pJ q there exists another element σ 1 `P τ pJq∆τ ´1pJ q such that αpσ `q " αpσ 1 `q. So we obtain

#αpτ pJq∆τ ´1pJ qq ď 2K 2 ď K.

Hence we compute

#αpτ pJq Y τ ´1pJ qq ď #αpτ pJq∆τ ´1pJ qq `#αpτ pJq X τ ´1pJ qq ď K `#J ´K ď #J.

It remains to estimate the cardinal of C " Impαqztαpτ pJq Y τ ´1pJ ququ. For every c P C and σ P α ´1pcq, we have σ R αpτ pJq Y τ ´1pJ qq. So in particular, σ P Σ 1 and ppcq ‰ e. We deduce that ppcq " α 1 pσq.

It implies that ppCq Ă Impα 1 qzteu.

Moreover, by definition C X p ´1peq " H, so p| C is a bijection and, since teu P Impα 1 q, we obtain #C ď #Impα 1 q ´1.

Thus we have

Impαq ď #J `#Impα 1 q ´1.

The couple pα 1 , ω 1 q is defined on a set of cardinal i ´#J `1 and satisfies the hypothesis of Lemma 6.2.5, so we compute

#Impαq `#Impωq ď p#J `#Impα 1 q ´1q `#Impω 1 q `1 ď #Impα 1 q `#Impω 1 q `#J ď pi ´#J `2q `#J ď i `2,
where the third inequality is given by the induction step.

Notice that if J is composed of at least 2 maximal intervals, the previous inequality is strict.

To complete the proof of Proposition 6.2.4 we will prove that the couple of maps α : Σ x Ñ C t pFq and ω : Σ x Ñ C t pFq defined at the begining of the proof satisfies the hypothesis of Lemma 6.2.5.

Let C be a connected component of G t pFq in the image of ω. We denote B " W s pCq and we want to desingularize its frontier FrpBq as follows.

Desingularization. We cut the surface Σ along FrpBq (see [START_REF] Bounemoura | Simplicité des groupes de transformations de surfaces, volume 14 of Ensaios Matemáticos[END_REF] for example) to obtain a manifold with boundary B and a natural projection π : B Ñ B such that

• πpB Bq " FrpBq. • πp BzB Bq » B.

Let us draw simple examples to explain what we are doing.

First example. In Figure 6.10, we consider on the left a saddle point y in FrpBq such that • There are two hyperbolic sectors U 1 and U 2 separated by a cone σ in B . We denote φ 1 and φ 2 the leaves of U 1 and U 2 in FrpBq.

• There exists a leaf ψ in σ X FrpBq.

We draw in red the leaves in B and in blue the leaves in FrpBq. We cut along leaves of FrpBq in blue to obtain B on the right and we have

• π ´1pyq " tŷ 1 , ŷ2 u.
• π ´1pψq " t ψ1 , ψ2 u .

• π ´1pφ 2 q " t φ1 u.

• π ´1pφ 1 q " t φ2 u.

σ 'ψ ' y U 1 U 2 φ 1 φ 2 σ ' ' ' φ1 φ2 ψ2 ψ1 ŷ1 ŷ2 U 1 U 2 Figure 6.10
Second example. In Figure 6.11 we consider a saddle point y in FrpBq such that

• There is a stable cone surrounded by B which contains two leaves φ 1 and φ 2 in FrpBq.

• There are two leaves φ 1 and φ 2 of stable cones of y in FrpBq.

We draw in red the leaves in B, in blue the leaves in FrpBq. We cut along the leaves of FrpBq to obtain B on the right and we have

• π ´1pyq " tŷ 1 , ŷ2 u.

• π ´1pψ 1 q " t ψ1 u.

• π ´1pψ 2 q " t ψ2 u

• π ´1pφ 2 q " t φ1 u.

• π ´1pφ 1 q " t φ2 u.

' ψ 2 ψ 1 ' y φ 1 φ 2 ' ' ' φ1 φ2 ψ2 ψ1 ŷ1 ŷ2 Figure 6.11
We have that B is a manifold with boundary whose boundary is a union of disjoint circles. By Proposition 6.1.4, each circle of B B is composed of chains of connexions of the foliation F such that for every leaf φ in FrpBq we have

• #π ´1pφq " 1 if φ is adjacent to B. • #π ´1pφq " 2 if φ is in the interior of B.
Remark 6.2.6. As we saw in the second example with the leaves ψ 1 and ψ 2 , a leaf φ can be adjacent to B and in a stable cone of a saddle point of FrpBq which is surrounded by B We set J " ω ´1pCq and recall that we set t " Apxq at the begining. By definition, the saddle point x is in the boundary of B. We consider a stable cone σ `P Σ `of x adjacent to J in Σ `. To prove that the applications α and ω satisfy the hypothesis of Lemma 6.2.5 it is sufficient to prove that there exists another stable cone σ 1 `of x adjacent to J in Σ such that αpσ 1 `q " αpσ `q.

The cone σ `is adjacent to B so, by Proposition 6.1.4, there is a unique leaf φ 0 in σ `X FrpBq. The cone σ `is adjacent to J in Σ `, so we can denote π ´1pφ 0 q " t φ0 u Ă B B.

Moreover, x is the only singularity of action t, so each singularity ŷ of B Bzπ ´1pxq satisfies A f pπpŷqq ą t. So, if we consider a circle γ of B B, the singularities in a same connected component of γzπ ´1pxq are the lift of singularities which are in the same connected component of G t pFq. Notice that γzπ ´1pxq may be composed of more than one connected components.

We consider the circle γ 0 of B B containing φ0 . The connected component of γ 0 zπ ´1pxq containing φ0 contains a leaf φ1 0 distinct from φ0 such that ωpπp φ1 0 qq " x. There are two cases.

1) If πp φ1

0 q is in a stable cone of x adjacent to J in Σ `then we obtain the result.

2) Suppose that πp φ1 0 q is in a stable cone σ 1 of x surrounded by J in Σ `. By construction, there exists another leaf φ1 P B B distinct from φ1 0 such that πp φ1 q, which may be equal to πp φ1 0 q, is in σ 1 .

By Lemma 6.1.5, we have that αpπp φ1 qq " αpπp φ1 0 qq. So we apply the same arguments to φ1 and then there exists a leaf φ1 1 Ă B B such that φ1 1 and φ 1 are in the same connected component of γ 1 ztπ ´1pxqu and ωpπp φ1 1 qq " x . If φ 1 1 is in a stable cone of x adjacent to J in Σ `we stop the process and if not we do the same discussion for φ 1 1 as we did for φ 1 0 in case 2). Since x has finitely many stable cones, the process stops after a finite number of times and we obtain a leaf φ 1`i n the frontier of the attractive basin of C distinct from φ `which is in a stable cone σ 1 `of x adjacent to J in Σ `such that αpσ 1 `q " αpσ `q and this ends the proof of Proposition 6.2.4.

By construction of B, we deduce the following corollary. Corollary 6.2.7. Let us suppose that the singularities of F have distinct action values and consider a saddle point x of F. There exist exactly ´indpf, xq bars J 1 , ..., J ´indpf,xq of which Apxq is an end point. Moreover, for each source or sink y of X there exists exactly one bar J of which Apyq is an end point.

Proof. Let us consider a saddle point x of F of action t. We denote C x (resp. C 1

x the connected component of G t`p Fq (resp. G t´p Fq) which contains x. By construction, there are #j ´1 t pC x q bars of category 1 such that Apxq is the maximum and #j 1 ´1 t pC 1 x q bars of category 2 such that Apxq is the infimum. Finally, by Proposition 6.2.4 we have k " |indpF, xq| ´#j ´1 t pC x q ´#j 1´1 t pC 1 x q ě 0 so there exists k bars pA f pxq, `8q of category 3. Thus there are exactly ´indpF, xq bars of which A f pxq is an end.

Recall that X ă is the set of singularities of X of negative index and X 1 the set of singularities of X of index 1. We set S ă0 " ApX ă0 q and we consider a sink y m of the foliation F such that Apy m q " A m and a source y M of the foliation F such that Apy M q " A M and an application ι : Xzty m , y M u Ñ X ă0 given by 6.1. We will prove the following result about the semi-infinite bars of β F . Lemma 6.2.8. There exist exactly 2g `2 semi-infinite bars in β F , where g is the genus of Σ.

Proof. By Lemma 6.2.1 for each value t P S ă0 the number of finite bars of which one end is the action value of t is equal to

¨ÿ CPC t`p #j ´1 t ptCuq ´1q `ÿ C 1 PC t´p #j 1 ´1 t ptC 1 uq ´1q ‹ '.
Moreover, the existence of the application ι asserts that the total number of finite bars is equal to the number of singularities of index 1 minus two. So we compute

ÿ yPX 1 1 " 2 `ÿ yPX 1 ztym,y M u indpF, yq " 2 `ÿ tPS ă0 ¨ÿ CPC t`p #j ´1 t ptCuq ´1q `ÿ CPC t´p #j 1 ´1 t ptC 1 uq ´1q ‹ '. (6.3)
Moreover, we have

2 ´2g " ÿ xPX indpF, xq " 2 `ÿ xPXztym,y M u indpF, xq. " 2 `ÿ xPX ă0 indpF, xq `ÿ yPX 1 ztym,y M u indpF, yq.
Where the last equality is given by separating the fixed points of negative index and the fixed points of index 1.

For t P S ă0 we define k t " ´ÿ xPX ă0

Apxq"t indpF, xq.

By equation 6.3, we get

2 ´2g " 2 `ÿ tPS ă0 ¨ÿ xPX ă0 Apxq"t indpF, xq ‹ ‹ ' `ÿ tPS ă0 ¨ÿ CPC t`p #j ´1 t ptCuq ´1q `ÿ C 1 PC t´p #j 1 ´1 t ptC 1 uq ´1q ‹ ' " 2 ´ÿ tPS ă0 ¨kt ´ÿ CPC t`p #j ´1 t ptCuq ´1q ´ÿ C 1 PC t´p #pj 1 ´1 t ptC 1 uq ´1q ‹ ' " 2 ´p#tsemi-infinite barsu ´2q.
The last equation is given by the construction of the bars of category 3 in the construction of B. Indeed, for action value t, the number of bars pt, `8q in the barcode is equal, by definition, to k t ´řCPC t`p #j ´1 t ptCuq ´1q ´řC 1 PC t´p #pj 1 ´1 t ptC 1 uq ´1q. The ´2 comes from the two semi-infinite bars pA m , `8q and pA M , `8q. So the number of semi-infinite bars is equal to 2g `2.

Remark 6.2.9. Let us suppose that for each value t in the image of A, the set A ´1pttuq is a singleton and each singularity x of X ă0 has index ´1. In this case the proof is simpler to understand because ι is an injection. The number of semi-infinite bars is equal to #pX ă0 zImpιqq `2 and we compute

2 ´2g " ÿ xPX indpF, xq " 2 `ÿ yPX 1 ztym,y M u indpF, yq `ÿ xPX ă0 indpF, xq " 2 `ÿ yPX 1 ztym,y M u 1 ´ÿ xPImpιq 1 ´p#tsemi-infinite barsu ´2q " 4 ´#tsemi-infinite barsu.
We obtain the result.

Chapter 7

A barcode with an order on a maximal unlinked set of fixed points

We consider a homeomorphism f of a compact surface Σ with a finite number of fixed points. We fix a maximal unlinked set of fixed points X of f . We denote by D the unit disk.

For a set U Ă D we will denote by Adh D pU q its closure in D and by Adh R 2 U its closure in R 2 . A line γ will be a proper oriented topological embedding of the interval p0, 1q. If an oriented line γ : p0, 1q Ñ D separates D in two connected components, we will consider its left hand side, denoted Lpr γq, and its right-hand side, denoted Rp r φq.

Let us consider a maximal isotopy I from id to f such that SingpIq " X. We equipped ΣzX with a hyperbolic metric m such that the universal cover Ć ΣzX of ΣzX with the pull back metric is isomorphic to D.

We consider a singularity x P X and a path γ : r0, 1s Ñ Σ such that lim tÑ1 γptq " x and γpp0, 1sq Ă ΣzX. We fix a lift r γ : p0, 1q Ñ D of γ| p0,1q . We consider a horospherical neighborhood V of x in pΣzX, mq. Meaning that π ´1pV q is a disjoint union of horodisks where a horodisk is a disk internally tangent to the unit circle. Notice that V Y txu is a topological neighborhood of x in Σ.

Moreover, r

γpp0, sq is connected so there exists a unique horoball r V Ă π ´1pV q which contains r γpp0, sq. By definition, the closure of a horoball intersects the boundary S 1 of D in exactly one point and we set r

x " Adh R 2 pV q X S 1 . Since the alpha-limit point of r γ is a point of S 1 we obtain that lim tÑ0 r γptq " r x.

Thus, if we consider a path γ : r0, 1s Ñ Σ such that αpγq " x P X, ωpγq " y P X and γpp0, 1qq Ă ΣzX, then for every lift r γ of γ is line in D such that there are two points r x and r y of S 1 which satisfy lim tÑ0 r γptq " r x, and lim tÑ1 r γptq " r y.

The point r x (resp. r y) will be denoted αpr γq (resp. ωp r φq). We refer to Ratcliffe's book [?], chapter 9.8 for more details.

For two distinct points r

x and r y of S 1 , we define rr x, r ys Ă S 1 the arc joining r x to r y for the usual orientation. We set pr x, r yq " rr x, r ysztr x, r yu.

Let us consider two proper paths φ : r0, 1s Ñ ΣzX and φ 1 : r0, 1s Ñ ΣzX whose alpha and omega limit points are in X and satisfy φpp0, 1qq Ă ΣzX and φ 1 pp0, 1qq Ă ΣzX. We say that φ and φ 1 strongly intersect if there exist two lifts r φ and r φ 1 of φ and φ 1 as follows.

If we denote

• αp r φq " r x,
• ωp r φq " r y,

• αp r φ 1 q " r x 1 ,

• ωp r φ 1 q " r y 1 , then we have

• r x, r y, r x 1 , r y 1 are distinct,

• " r x 1 P pr x, r yq r y 1 P pr y, r xq or " r x 1 P pr y, r xq r y 1 P pr x, r yq .

The homeomorphism r f can be extended on the closed unit disk Adh R 2 pDq. A line γ Ă D is said to be a Brouwer line of r f if it separates D in two connected components such that the one on the left-hand side, denoted Lpγq, contains r f pγq and the one on the righthand side, denoted Rpγq, contains r f ´1pγq. In particular, we have r f pAdh D pLpγqqq Ă Lpγq. We have the following definition. Definition 7.0.1. For a couple x, y P X, an oriented path γ : r0, 1s Ñ Σ such that αpγq " x P X, ωpγq " y P X and γpp0, 1qq Ă ΣzX is called a connexion from x to y if every lift r γ of γ is an oriented Brouwer line of r f . Remark 7.0.2. If we consider a maximal isotopy I " pf t q tPr0,1s from id to f and a foliation F positively transverse to I then each leaf φ of F is a connexion in the previous sense. Indeed, if we consider a leaf φ of F, then a lift r φ of φ is an oriented line which separates D in two connected components Lp r φq and Rp r φq such that r f p r φq Ă Lp r φq and we deduce that

r f pAdh D pLp r φqqq Ă Lp r φqq.
We will prove the following lemma which will be useful in Chapter 8.

Lemma 7.0.3. Let us consider x, x 1 , y, y 1 P X fixed points of f such that there exist a connexion φ from x to y and a connexion φ 1 from x 1 to y 1 . If φ and φ 1 strongly intersect then there exists a connexion from x to y 1 and a connexion from x 1 to y.

Remark 7.0.4. The result stands for non area-preserving homeomorphisms isotopic to the identity and no foliations are involved in the statement. Moreover, the fixed points x, y, x 1 , y 1 do not have to be distincts to obtain the result. Nevertheless, if we suppose that f is a Hamiltonian homeomorphism, then for every connexion φ between two fixed points

x and y, we have A f pxq ą A f pyq where A f is the action function of f , see 2.3.18 in the preliminaries. So, if we consider four fixed points satisfying the hypothesis of Lemma 7.0.3, then, by hypothesis, we have x ‰ y and x 1 ‰ y 1 and the result implies that x ‰ y 1 and x 1 ‰ y.

We will need a result of Kerékjártó [START_REF] Kerekjarto | Vorlesungen ueber topologie[END_REF] which asserts that each connected component of the intersection of two Jordan domains is a Jordan domain. A Jordan domain is the relatively compact connected component of the complement of a simple closed curve of the plane, called a Jordan curve. We refer to [START_REF] Calvez | Un theoreme d'indice pour les homeomorphismes du plan au voisinage d'un point fixe[END_REF] for the proof of the following result.

Theorem 7.0.5. Let U and U 1 be two Jordan domains of the plane. Every connected component of U X U 1 is a Jordan domain.

We now prove Lemma 7.0.3.

Proof of Lemma 7.0.3. We consider the lifts r φ and r φ 1 of φ and φ 1 given by the hypothesis. We denote

• αp r φq " r x,
• ωp r φq " r y,

• αp r φ 1 q " r x 1 ,

• ωp r φ 1 q " r y 1 .

By symmetry we can suppose that r x 1 P pr y, r xq as in Figure 7.1.

We consider the oriented loops Γ For every r

z " e iθ P pr y, r xq there exist ą 0 and η ą 0 such that |θ 1 ´θ| ă η and 1 ´ ă r ă 1 ñ re iθ 1 P Lp r φq.

Symmetrically, for every r z " e iθ P pr y 1 , r x 1 q there exist ą 0 and η ą 0 such that |θ 1 ´θ| ă η and 1 ´ ă r ă 1 ñ re iθ 1 P Lp r φ 1 q.

We denote r x 1 " e iα and r y " e iβ with β ă α ă β `2π. There exists a continuous map ψ : pβ, αq Ñ r0, 1s such that for every θ P pβ, αq, we have ψpθq ă r ă 1 ñ re iθ P Lp r φq X Lp r φ 1 q.

We will consider the small croissant K Ă D, as in figure 7.1, defined by K " tz " re iθ | θ P pβ, αq, ψpθq ă r ă 1u.

By Theorem 7.0.5, the connected component U of Lp r φ 1 X Lp r φ 1 q which contains K is a Jordan domain in R 2 . Since K Ă U , the boundary of Adh R 2 pU q is the union of an arc in S 1 and an oriented curve J in D from r

x 1 to r y.

Since r φ and r φ 1 are Brouwer lines of r f , we have that r f pAdh D pU qq is connected and satisfies r f pAdh D pU qq Ă Lp r φq X Lp r φ 1 q. Moreover, we have r f pKq Ă U , so we deduce

r f pAdh D pU qq Ă U.
In other words, the line J is a Brouwer line for r f . Hence J induces a connexion in Σ from x 1 to y.

By considering the intersection Rp r φq X Rp r φ 1 q, with the same arguments we obtain a connexion in Σ from x to y 1 .

D K r φ r φ 1 r x 1 r y 1 r x r y Figure 7.1
For the remainderof the section, we also suppose that f is a Hamiltonian homeomorphism, we will define a barcode associated to X.

The notion of connexion induces an order on X where, for x, y P X, we say that x ą y if there exists a connexion from x to y.

We saw in section 2.3.7 that the index function indpF, ¨q defined on X does not depend on the choice of the foliation F positively transverse to I and we denote this index function indpI, ¨q. We will study the following barcode. Definition 7.0.6. We define the graph of connexion Gpąq whose set of vertices is equal to X and in which there is an edge between two vertices x and y if and only if x ą y in Σ. We denote by β ą the barcode BpGpąq, A f | X , indpI, ¨qq.

Remark 7.0.7. If we consider a foliation F P FpIq, the graph GpFq is a subgraph of Gpąq.

Remark 7.0.8 (The Morse example). Let us consider a Morse function H on the 2-sphere as in Figure 4.6. We suppose that H induces a Hamiltonian diffeomorphism f with a finite number of fixed points such that Fixpf q is unlinked. On Figure 7.2, we draw on the left the graph Gpąq associated to the isotopy I " pf t q tPr0,1s induced by H. Notice that this graph is distinct from the graph GpFq of Figure 4.6 which were associated to a foliation F P FpIq positively transverse to I. To simplify the reading of the graph, the connexions between sources and sinks are represented by dotted edges. We draw on the right part the barcode β ą of this example. We can also notice that the barcode β ą of Figure 7.2 is equal to the barcode B gen pFq of Figure 4.6.

f : S 2 Ñ S 2 A f p 1 x 1 p 2 s 1 x 2 s 2 β ą ' ' ' ' ' ' Gpąq p 1 x 1 p 2 s 1 x 2 s 2 p 1 x 1 p 2 s 1 ' ' ' ' ' ' ' ' ' ' ' ' Figure 7.2 Chapter 8

Equalities of the previous constructions and independence of the foliation

In this chapter, we fix a Hamiltonian homeomorphism f of a closed and oriented surface Σ with a finite number of fixed points. Let X Ă Fixpf q be a maximal unlinked set of fixed points and I " pf t q tPr0,1s an isotopy from id to f such that SingpIq " X. The action functional of f will be denoted A f . For a foliation F positively transverse to the isotopy I, we denote by GpFq the graph, defined in Chapter 6, whose set of vertices is the set X such that for every couple of vertices x and y of GpFq there exists an edge from x to y if and only if there exists a leaf in F from x to y. We will also consider the subgraphs pG t pFqq tPR and pG t pFqq tPR given by the natural filtration of GpFq by A f . We will use some notation of Chapter 5. For t P R we denote C t and C t the sets of connected components of G t pFq and G t pFq and for a connected component C of G t pFq we define LpCq " mintA f pyq | y vertex of Cu.

We consider the graph of connexion Gpąq, defined in Chapter 7, whose set of vertices is equal to X such that there is an edge between two vertices x and y if and only if there exists a connexion between x and y in Σ.

We will consider the barcode BpGpFq, A f | X , indpF, ¨qq, denoted β F , constructed in Chapter 6 and associated to the foliation F. Recall that the index function indpF, ¨q defined on X does not depend on the choice of F P FpIq and we denote this index function indpI, ¨q. We will consider the barcode BpGpąq, A f | X , indpI, ¨qq, denoted β ą , defined in Chapter 7.

In the first section, we compare these two barcodes and in the second section we compare the barcode β F with the barcode constructed in Chapter 4 in the generic case.

Equality between the barcode β F and the barcode β ą

In this section, we prove the following theorem. For the proof, we fix a foliation F P FpIq positively transverse to the isotopy I. We will need the following lemma. Lemma 8.1.2 (Fundamental). For each t P R, the set of connected components of G t pFq defines the same partition of X X A ´1 f pp´8, tqq than the set of connected components of G t pąq.

If we suppose Lemma 8.1.2 true, the proof of Theorem 8.1.1 is straigthforward since the action functions and the index functions are equals and the constructions of the barcodes β ą and β F in Chapter 5 depend only on the connected components of the graphs GpFq and Gpąq and the action and index values of the singularities of X.

Proof of Lemma 8.1.2. For t P R and for each fixed points x, y P X of action less than t, we want to prove the equivalence of the following two properties. (ii) ñ (i). Since x and y are in the same connected component C of G t pąq, there exists a family px i q 0ďiďk of singularities of X such that • x 0 " x and x k " y.

• A f px i q ă t for every i P t0, ..., ku

• For every i P t1, ..., ku there exists a leaf φ i of F either from x i to x i´1 or from x i´1 to x i Moreover, each leaf of the foliation F is by definition a connexion, so pφ i q 0ďiďk is a family of connexions and then the singularities x i , i P t0, ..., ku, are in the same connected component of G t pąq and we obtain the result.

(i) ñ (ii). We will prove the following lemma. Let us assume that Lemma 8.1.3 is true and consider x, y P X and t ą A f pxq such that piq is satisfied, we prove that piiq holds. Since x and y are in the same connected component C of G t pąq, there exists a family px i q 0ďiďk of singularities of X such that • x 0 " x and x k " y.

• A f px i q ă t for every i P t0, ..., ku

• For every i P t1, ..., ku there exists a connexion φ i either from x i to x i´1 or from x i´1 to x i Moreover, by Lemma 8.1.3 x i´1 and x i are in the same connected component of G t pFq for every i P t1, ..., ku so x and y are also in the same connected component of G t pFq.

To complete the proof of Lemma 8.1.2, it remains to prove Lemma 8.1.3.

Proof of Lemma 8.1.3. We consider two fixed points x, y P X such that x ą y. Every attractive or repulsive basin in this proof will be defined relatively to the foliation F. We will divide the proof in three cases, in the first one x will be a sink of F, in the second one x will be a saddle and in the last one x will be a source of F.

First case. We suppose that x is a sink. We will prove that there is no connexion from x to another singularity of F.

We say that the orbit of a q-periodic point z of f is contractible if the concatenation of the trajectories of the points f k pzq, k P t0, ..., q ´1u, along the isotopy I is a contractible loop , denoted γ z , in Σ. The loop γ z is called the trajectory of the periodic orbit of z. We say that a contractible q-periodic orbit has type pp, qq associated to I at x P Fixpf q if its trajectory along I is homotopic to pΓ in ΣzSingpIq, where Γ is the boundary of a sufficiently small Jordan domain containing x.

We will use the following version of a result of Yan and we refer to [START_REF] Yan | Existence of periodic points near an isolated fixed point with Lefschetz index one and zero rotation for area preserving surface homeomorphisms[END_REF], Theorem 1.1, for a proof. Theorem 8.1.4. Let us consider a fixed point z of f of Lefschetz index equal to 1 fixed by the isotopy I, and such that the rotation set ρ s pI, zq is reduced to t0u. The point z is accumulated by periodic points. More precisely, the following property holds: there exists ą 0, such that, for every neighborhood of z, either for every irreducible p{q P p0, q, or for every irreducible p{q P p´ , 0q, there exists a contractible periodic orbit O p{q of type pp, qq.

Let us prove that there is no connexion from x to another singularity of F. We suppose that there exists a connexion φ from x to another singularity y of F, we want to find a contradiction.

The singularity x is a sink of the foliation F which is positively transverse to the isotopy I, so the local rotation set ρ s,I pxq of x, introduced in section 2.3.5, is included in p´8, 0s. Moreover, it is not difficult to prove that the existence of the connexion φ implies that the rotation set ρ s,I pxq of x is included in r0, `8q. Indeed, locally, a connexion whose alphalimit is x is a positive arc, which means that in polar coordinates where γ corresponds to the semi-line tθ " 0u, for every point z close enough to x, the variation of θ along the trajectory is positive. We refer to Theorem 3.2.4 and section 2.4 of [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] for more details. So the local rotation set of x for the isotopy I is reduced to the integer t0u.

If the Lefschetz index of x is not equal to 1, by a result of Le Roux, see [START_REF] Roux | L'ensemble de rotation autour d'un point fixe[END_REF] Theorem 4.1.1, the foliation F and the homeomorphism f have the same index at x for the isotopy I. But, by hypothesis, x is a sink of the foliation F so indpF, xq " 1 and we obtain a contradiction.

If the Lefschetz index of x is equal to 1 then we can apply Theorem 8.1.4. More precisely, the singularity x is a sink of F so there exists ą 0 such that x is accumumated by periodic orbits O p{q of type pp, qq where p{q P p0, q. So the rotation number ρ s,I pxq is not reduced to t0u and we obtain a contradiction.

Second case. We suppose that x is a saddle point. We prove the result by contradiction.

We suppose that there exists a connexion γ : r0, 1s Ñ Σ from x to some y and that x and y are not in the same connected component of G Áf pxq `pF q. We denote by W s pC x q Ă Σ the attractive basin of C x , where C x is the connected component of G

Áf pxq

`pF q which contains x. By Lemma 6.1.7, the fixed point x is in the interior of W s pC x q and every singularity z of F in the frontier of W s pC x q satisfies A f pzq ą A f pxq. The existence of the connexion γ implies that A f pxq ą A f pyq so the fixed point y is not in the frontier of W s pC x q and is in ΣzW s pC x q. We consider the universal cover Ć ΣzX of ΣzX which is identified to the unit disk D and π : D Ñ ΣzX the universal covering map. Let U be a connected component of π ´1pC x zXq and r γ a lift of the connexion γ such that there exists ą 0 such that r γpp0, qq Ă U . By hypothesis on y, there exists 1 ą 0 such that r γpp1 ´ 1 , 1qq R U . Recall that π naturally extends to S 1 . Moreover, we saw that lim tÑ0 r γptq and lim tÑ1 r γptq are well-defined on S 1 and will be denoted r

x and r y.

The set U is an open connected set of D whose frontier is a union of lifted leaves. Then there exists a lifted leaf r ψ of FrpU q which separates D such that U is on one side and r y is in the other. By hypothesis, the points ωp r ψq and αp r ψq are distinct from r x and r y, indeed, x is in the interior of W s pC x q and y R FrpW s pC x qq. Since r ψ is the lift of a connexion, we obtain that ψ and γ are two connections which intersect strongly, hence by Lemma 7.0.3 there exists a connexion from x to ωpψq which is impossible because by definition ωpψq P FrpW s pC x qq and then A f pωpψqq ą A f pxq.

Third case. Suppose that x is a source of F. The point y is either in the frontier of the repulsive basin W u pxq of x or in the complement of W u pxq. We separate these two cases.

1)

We suppose that y is in the frontier of W u pxq. There exists a chain of connexions from x to y and so we deduce the result. Indeed, by definition, the singularity y is accumulated by leaves pφ j q jPJ of W u pxq whose alpha-limit point is x. By the local model described in Chapter 6.1, the closure of these leaves contains a chain of connexions which starts at x and also contains y.

2) We suppose that y is in the complement of W u pxq. We consider U a connected component of π ´1pW u pxqztxuq where π : D Ñ ΣzX the covering map defined in the second case. We can consider a lift r γ of the connexion γ such that there exists ą 0 such that r γpp0, qq Ă U . By hypothesis on y, there exists 1 ą 0 such that r γpp1 ´ 1 , 1qq R U . The limits lim tÑ0 r γptq and lim tÑ1 r γptq are well-defined on S 1 and will be denoted r x and r y.

We apply similar arguments as in the second case. The set U is an open connected set of D whose boundary is a union of lifted leaves. Then there exists a lifted leaf r ψ of FrpU q separating D such that U is on one side and r y is on the other. By hypothesis, the points ωp r ψq and αp r ψq are distinct from r x and r y, indeed, x is in the interior of W s pC x q and y R FrpW s pC x qq. Since r ψ is the lift of a connexion, we obtain that ψ and γ are two connections which intersect strongly, hence by Lemma 7.0.3 there exists a connexion from αpψq to y. The singularity αpψq can not be a source nor a sink so it is a saddle point of F, hence we apply the result of the second case which asserts that the existence of a connexion from αpψq to y implies that αpψq and y are in the same connected component of G Áf pαpψqq `pF q. Moreover, by hypothesis, αpψq and x are in the same connected component of G

Áf pxq

`pF q thus we deduce that x and y are also in the same connected component of G Áf pxq `pF q.

8.2 Equality between the barcode β F and the barcode B gen pf, Fq in the generic case

We consider a Hamiltonian homeomorphism f of a closed and oriented surface Σ with a finite number of fixed points. We suppose that Fixpf q is finite and unlinked, each fixed point x P Fixpf q satisfies indpf, xq P t´1, 1u and that the action function A f : Fixpf q Ñ R is injective. Let I " pf t q tPr0,1s be a maximal isotopy from id to f fixing all fixed points of f . We denote A f the action functional of f .

Recall that a foliation F P F gen pIq does not have connexions between saddle points, and the stable and unstable cones of a saddle point x of F are both composed of a unique leaf which will be referred to as the stable and unstable leaves of x.

Let us consider the graph G gen pFq given by Definition 4.0.2. Remember that G gen pFq is the graph whose set of vertices is the set Fixpf q and whose edges correspond to leaves φ of F such that ind CZ pf, αpφqq " ind CZ pf, ωpφqq ´1, where ind CZ pf, ¨q is the Conley-Zehnder index, defined in Chapter 4, equals to 1 on sources and sinks and equals to ´1 on saddle points. Notice that G gen is distinct from the graph GpFq given in the introduction of this chapter.

In this section we want to compare the barcode B gen pFq to the barcode BpGpFq, A f | X , indpF, ¨qq, denoted β F , constructed in Chapter 6. We will prove the following result. Theorem 8.2.1. Let us consider a Hamiltonian homeomorphism f on a compact surface Σ. We suppose that Fixpf q is finite and unlinked, each fixed point x P Fixpf q satisfies indpf, xq P t´1, 1u and the action function is injective. We consider a maximal isotopy I such that SingpIq " Fixpf q then for a foliation F P F gen pIq we have

B gen pFq " β F .
We recall the definition of the functor β. Let V " pV s q sPR be a persistence module. Let us consider the set of t P R in the spectrum of V such that dimpKerpi t ´,t `qq is equal to 1 and label its elements b 1 , ..., b n . For each b j , there exists a unique a j P R with the following tion, the bars pmin A f , `8q and pmax A f , `8q of β F are also bars of the barcode B gen pFq.

For the remainder of the proof, we consider a saddle point x of f , we denote by t its action value and by C x the connected component of G t`p Fq which contains x. By Lemma 6.2.4 the set of connected components of G t pFq which are included in C x , which were labeled j ´1 t pC x q in Chapter 5, has one or two elements. We separate those two cases.

Case 1. The set j ´1 t pC x q consists of two connected components of G t pFq denoted C and C 1 . By symmetry, we can suppose that LpCq ą LpC 1 q and, by the construction described in Chapter 5, there is a bar pLpCq, ts in the barcode β F . Let us prove that this bar is also a bar of the barcode B gen pFq. It means that there is an element of Kerpi t ´,t `q which is in the image of i LpCq `,t ´but not in the image of i LpCq ´,t

´.

By hypothesis, the omega-limit points of the unstable leaves of x are distinct sinks y and y 1 of F where y P C and y 1 P C 1 . We have B t 1 pxq " y `y1 so the element y `y1 P C t 0 satisfies ry `y1 s P Kerpi t ´,t `q. It remains to prove that ry `y1 s is in the image of i LpCq `,t ánd not in the image of i LpCq ´,t ´. For that, we will consider another cycle in C t 0 representing ry `y1 s in homology.

We will use some geometric lemmas.

We will call a path of leaves a path Γ in Σ which is the concatenation of leaves of F. The singularities of a path of leaves will refer to the alpha-limit points and omega-limit points of those leaves. Lemma 8.2.2. Let us consider s P R, and two sinks y 1 and y 2 of F in the same connected component C s of G ś pFq. There exists a path of leaves from y 1 to y 2 whose singularities are alternatively sinks and saddle points of C s .

Proof of Lemma 8.2.2. By definition of the connected component C s of G ś , there exists a path of leaves Γ from y 1 to y 2 in Σ. The path Γ may contain sources. For a source z in Γ we will modify Γ into a path which does not contain z.

If there is a source z in Γ, there exist two leaves φ 1 Ă Γ and φ 2 Ă Γ whose alpha-limit points are equal to z and omega-limit points are either saddle points or sinks of F that we denote x 1 and x 2 . The singularities x 1 and x 2 are in the repulsive basin of z for F so, by Lemma 4.0.7, there exists a path γ of leaves of G ś pFq from x 1 to x 2 whose singularities are alternatively saddle points and sinks of F. We cut the union φ 1 Y tzu Y φ 2 from the path Γ and replace this portion by the path γ given by Lemma 4.0.7. We obtain a new path Γ 1 from y to y 1 such that the source z is not in Γ 1 .

We do the same process for every source of Γ and we finally obtain a path from y to y 1 as wanted.

We prove the following lemma. Lemma 8.2.3. For every s P R and every couple of sinks y 1 and y 2 of F in the same connected component C s of G ś pFq we have ry 1 s " ry 2 s in H s 0 .

Proof of Lemma 8.2.3. Let us consider s P R, and two sinks y 1 and y 2 of F in the same connected component C s of G ś pFq. By Lemma 8.2.2 there exists a path of leaves in Σ from y 1 to y 2 whose singularities are alternatively sinks and saddle points of C s . We denote by px i q 0ďiďns the saddle points of the path Γ and by a simple computation we obtain

B s 1 ˜n ÿ i"0 x i ¸" y 1 `y2 .
So, by definition, ry 1 s " ry 2 s in H s 0 .

Let us come back to the first case of the proof of Theorem 8.2.1. By Lemma 8.2.3 each sink z P C of F (resp. each sink z 1 P C 1 of F) satisfies rzs " rys (resp. rz 1 s " ry 1 s) in H t 0 . So for every couple of sinks z P C and z P C 1 of F, the element z `z1 P C t 0 satisfies rz `z1 s " ry `y1 s P Kerpi t ´,t `q. We denote by z C and z C 1 the sinks of C and C 1 such that A f pz C q " LpCq, A f pz C 1 q " LpC 1 q.

We supposed that A f pz C q " LpCq ą A f pz C 1 q " LpC 1 q so the sink z C is not a cycle in C LpCq 0 so the element rz C `zC 1 s is not in the image of i LpCq ´,t ´. Moreover, the sinks z C and z C 1 are not in the same connected component of G t ´pF q and so we deduce that rz C `zC 1 s is in the image of i LpCq `,t

´.

So, by construction, there exists a bar pLpCq, ts in the barcode B gen pFq. Case 2. The set j ´1 t pC x q is a unique element. We will consider the connected components of the subgraphs pG t q tPR instead of connected components of the subgraphs pG t q tPR . We consider the connected component C 1

x of G t´p Fq which contains x. By Lemma 6.2.4 the set of connected components of G t pFq included in C 1

x , which were labeled j 1´1 t pC x q in Chapter 5, is composed of 1 or 2 elements. We separate those two cases. 1) Suppose that j 1´1 t pC 1 x q is composed of one connected component, then, by construction, there is no finite bar J in the barcode β F of which t is an end point. We have nothing to prove in this case.

2) Now we suppose that j 1´1 t pC 1 x q is composed of two connected components of the graph G t`p Fq denoted C and C 1 . By symmetry we can suppose that DpCq ă DpC 1 q and by construction there is a bar pt, DpCqs in the barcode β F . Let us prove that this bar is also a bar of the barcode B gen pFq. It means that there is an element in Kerpi DpCq ´,DpCq `q which is in the image of i t `,DpCq ´but not in the image of i t ´,DpCq ´. We will need the following lemma about the repulsive basin W s pCq of C. Lemma 8.2.4. We label x 1 , ..., x n the saddle points in the frontier of W s pCq. Then, for every T ą DpCq, the element Y " ř yPC y source

y of C T 2 satisfies B T 2 pY q " n ÿ i"1 x i .
or xY 1 |y 1 x y " 1, which is impossible because, by hypothesis, A f py 1 x q ą A f py x q " c. Indeed, if we have B c 2 pY 1 q " x ´X1 then, there exists a source y such that xY |yy " 1 and xB c 2 pyq|xy " 1 , which means that x is in the frontier of W u pyq. So y is either equal to y x or y 1

x .

So, we have the same result for ř n i"1 x i and so r

ř n i"1 x i s R Impi t ´,c ´q.
Thus, by construction, there exists a bar pApxq, DpCqs in the barcode B gen pFq.

Now we can prove Theorem 4.0.12 from Chapter 4 stated as follows.

Theorem 8.2.5. If we consider a Hamiltonian diffeomorphism f with a finite number of fixed points which is C 2 -close to the identity and generated by an autonomous Hamiltonian function then the barcode B gen pFq is equal to the Floer homology barcode of f .

Proof. If we suppose that the autonomous Hamiltonian function H is C 2 close to a constant then the Floer homology of H is equal to the Morse homology of H, we refer to [START_REF] Audin | Morse Theory and Floer Homology[END_REF] for a proof. We deduce that the Morse Homology barcode βpHM t ˚pH qq tPR q of H is equal to the Floer Homology barcode βpHF t ˚pH qq tPR q of H, where β is the functor defined in Chapter 3 which associate a persistence module to its barcode.

The time one map f 1 " f of the Hamiltonian flow is C 1 close the the identity and its set of fixed points is unlinked.

Moreover, the gradient-lines of H provides a C 1 foliation F positively transverse to the natural Hamiltonian isotopy induces by H. This isotopy is maximal and so fixes every fixed points of f . The foliation F is gradient-like and there is no cone of leaves at the saddle points of F.

Moreover, the construction of the map B in Chapter 5 follows the ideas of the Morse homology theory then we can assert that the barcode β F is equal to the barcode βpHM t ˚pH qq tPR , Thus, by Theorem 8.2.1 we have B gen pf q " β F " βpHM t ˚pH qq tPR " βpHF t ˚pH qq tPR .

So we obtain the result.

Chapter 9

Perspectives

Let us consider a Hamiltonian homeomorphism f of a surface with a finite number of fixed points. In the previous chapter, every construction of barcodes depends on the choice of a maximal unlinked set of fixed points X of f . A natural question remains.

Question 9.0.1. Can we construct a barcode associated to f which is equal to the Floer Homology barcode in the case of a generic diffeomorphism?

We have some ideas to study this question. In this short chapter we explain the difficulties to generalize our constructions and the objects we may use in a near future.

Conley-Zehnder index

The first problem we will have to deal with is the Conley-Zehnder index. The Floer Homology is indexed by the Conley-Zehnder index, denoted ind CZ p¨q, which is well-defined for C 1 diffeomorphisms.

Nevertheless, the Conley-Zehnder index can be extended for Hamiltonian homeomorphisms at isolated fixed points. We found an interesting way to describe this extension using generalized isotopies, defined in the preliminaries. Let us recall a quick definition. If we consider a Hamiltonian homeomorphism f on Σ, we denote r Σ the universal cover of Σ and we can consider its compactification into a 2-sphere S 2 by adding a point 8, then a lift r f of f can be compactified into a homeomorphism f of S 2 . An isotopy from id to f on S 1 which fixes 8 is called a generalized isotopy. In the next section we will see why considering generalized isotopies can be useful in our studies.

Moreover, let us consider the Floer homology barcode of a Hamiltonian diffeomorphism f . We denote A f the action function of f . For every finite bar J " pA f pxq, A f pyqs where x, y P Fix c pf q, we have ind CZ pyq ´ind CZ pxq " 1. We refer to the construction of Floer Homology for more details [START_REF] Audin | Morse Theory and Floer Homology[END_REF]. Now, let us consider a Hamiltonian homeomorphism f with a finite number of fixed points, a maximal unlinked set of fixed points X of f and an isotopy I from id to f which fixes X and a foliation F positively transverse to I. We denote ind CZ p¨q the extension of the Conley-Zehnder index defined on Fix c pf q. For every fixed point x P X one may prove that we have

• if ind CZ pxq " 1, then x is a saddle point for F,
• if ind CZ pxq ‰ 1, then x is either a sink or a source for F.

So, the barcode β F defined in Chapter 6 may have finite bars J " pA f pxq, A f pyqs such that ind CZ pyq ´ind CZ pxq ‰ 1. Indeed, it can be the case if Fix c pf q is not unlinked. Thus it is not enough to work only with maximal isotopies of f .

Torsion-low isotopies

Let us consider of a Hamiltonian homeomorphism f on a surface Σ. Yan [START_REF] Yan | Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms[END_REF] introduced the notion of torsion-low isotopies. Roughly speaking, an isotopy I from id to f is said to be torsion-low at x P SingpIq if ρ s pI, xq Ă r´1, 1s, where ρ s pI, xq is the local rotation set of x for I, defined in the preliminaries. Now, we consider a maximal generalized isotopy Î of a Hamiltonian homeomorphism f on Σ. Every fixed point r

x of Î is a lift of a fixed point x of f . The isotopy Î is said to be a maximal torsion-low generalized isotopy if Î is torsion-low at every fixed point of Singp Îq except at 8 and Î is a maximal isotopy.

A result of Yan [START_REF] Yan | Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms[END_REF] asserts the existence of maximal torsion-low generalized isotopies.

Moreover, for a maximal torsion-low generalized isotopy Î of f , the Conley-Zehnder indices of the points of Singp Îqzt8u is linked to the rotation number of the point 8. Indeed, one may prove that if the rotation number of 8 for the isotopy Î is equal to ´k, then it holds that:

• every saddle point r

x of Î is the lift of a fixed point x of f such that ind CZ pxq " 2k `1,

• every sink r x of Î is the lift of a fixed point x of f such that ind CZ pxq " 2k,

• every source r x of Î is the lift of a fixed point x of f such that ind CZ pxq " 2k `2.

We can consider a gradient-like foliation F positively transverse to the maximal torsionlow generalized isotopy Î. Moreover, F is equipped with the action function A f of f and an index function indp F, ¨q.

Thus, we can consider the barcode β F associated to F as defined in Chapter 6. We can prove that for every finite bar J of β F , there exist x, y P Fix c pf q and lifts r

x, r y of x and y fixed by Î such that J " pA f pxq, A f pyqs and ind CZ pyq ´ind CZ pxq " 1.

In a near future, we hope to define a Barcode using the barcodes associated to maximal torsion-low generalized isotopies but two important questions remain. Question 9.0.2. We consider a Hamiltonian diffeomorphism f and a bar J of its Floer homology barcode. Does there exist a torsion-low generalized isotopy of f such that for a positively transverse foliation F, J is a bar of β F ?

If we consider every torsion-low generalized isotopy of a Hamiltonian diffeomorphism f and every bar of their associated barcodes, then we may have too many bars to obtain a barcode equal to the Floer homology barcode of f . Question 9.0.3. Is there a natural way to select the "good" bars to keep? Chapter 1

Introduction

In this second part of the thesis, we study the Calabi invariant on the unit disk usually defined on compactly supported Hamiltonian diffeomorphisms of the open disk. In particular we extend the Calabi invariant to the group of C 1 diffeomorphisms of the closed disk which preserves the standard symplectic form. We also compute the Calabi invariant for some diffeomorphisms of the disk which satisfy some rigidity hypothesis.

Let us begin with some basic definitions of symplectic geometry.

Let us consider pM 2n , ωq a symplectic manifold, meaning that M is an even dimensional manifold equipped with a closed non-degenerate differential 2-form ω called the symplectic form. We suppose that π 2 pM q " 0 and that ω is exact, meaning that there exists a 1-form λ, called a Liouville form, which satisfies dλ " ω.

Let us consider a time-dependent vector field pX t q tPR defined by the equation dH t " ωpX t , .q, (

where

H : R ˆM Ñ R pt, xq Þ Ñ H t pxq
is a smooth function 1-periodic on t, meaning that H t`1 " H t for every t P R. The function H is called a Hamiltonian function. If the vector field pX t q tPR is complete, it induces a family pf t q tPR of diffeomorphisms of M that preserve ω, also called symplectomorphisms or symplectic diffeomorphisms, satisfying the equation f 0 " id and B Bt f t pzq " X t pf t pzqq.

In particular the family I " pf t q tPr0,1s defines an isotopy from id to f 1 . The map f 1 is called a Hamiltonian diffeomorphism. It is well known that the set of Hamiltonian diffeomorphisms of a symplectic manifold M is a group which we denote HampM, ωq, we refer to [START_REF] Mcduff | Introduction to symplectic topology[END_REF] for more details.

Let us consider pM, ωq a symplectic manifold which is boundaryless, π 2 pM q " 0 and such that ω is exact. We say that H is a compactly supported Hamiltonian function if there exists a compact set K Ă M such that H t vanishes outside K for every t P R. A compactly supported Hamiltonian function induces a compactly supported Hamiltonian diffeomorphism f . Such a map is equal to the identity outside a compact subset of M . Let us consider a compactly supported Hamiltonian diffeomorphism f and λ a Liouville form on M . The form f ˚λ ´λ is closed because f is symplectic but we have more, it is exact. More precisely there exists a unique compactly supported function A f : M Ñ R, also called action function, such that dA f " f ˚λ ´λ.

In the literature the Calabi invariant Calpf q of f is defined as the mean of the function A f and we have

Calpf q " ż M A f ω n , (1.2) 
where ω n " ω ^... ^ω is the volume form induced by ω, see [START_REF] Mcduff | Introduction to symplectic topology[END_REF] for more details. We will prove later that the number Calpf q does not depend on the choice of λ.

Let us give another equivalent definition of the Calabi invariant for a compactly supported Hamiltonian diffeomorphism f . We note H a compactly supported Hamiltonian function defining f . The Calabi invariant of f can also be defined by the equation Calpf q " pn `1q

ż 1 0 ż M H t ω n dt. (1.3) 
To prove that ş M A f ω n does not depend on the choice of the Liouville form λ, one may use the fact that the action function A f satisfies A f pzq " ż 1 0 pιpX s qλ `Hs q ˝fs pzqds, (1.4) where pX s q sPR is the time dependent vector field induced by H by equation (1.1) and pf s q sPR is the isotopy induced by the vector field pX s q sPR . Moreover, ş 1 0 ş M H t ω n dt does not depend on the compactly supported Hamiltonian function H defining f . The function Cal defines a real valued morphism on the group of compactly supported Hamiltonian diffeomorphisms of M and thus it is a conjugacy invariant. It is an important tool in the study of difficult problems such as the description of the algebraic structure of the groups HampM, ωq: A.Banyaga proved in [START_REF] Banyaga | Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique[END_REF] that the kernel of the Calabi invariant is always simple, which means that it does not contain nontrivial normal subgroups.

In this article, we study the case of the dimension two and more precisely the case of the closed unit disk which is a surface with boundary. We denote by ||.|| the usual Euclidian norm on R 2 , by D the closed unit disk and by S 1 its boundary. The group of C 1 orientation preserving diffeomorphisms of D will be denoted by Diff 1 `pDq. We consider Diff 1 ω pDq the group of C 1 symplectomorphisms of D which preserve the normalized standard symplectic form ω " 1 π du ^dv, written in cartesian coordinates pu, vq. In the case of the disk, the group Diff 1 ω pDq is contractible, see [START_REF] Hirsch | Differential topology[END_REF] for a proof, and coincides with the group of Hamiltonian diffeomorphisms of D. Moreover, the 2-form ω induces the Lebesgue probability measure denoted by Leb and the symplectic diffeomorphisms are the C 1 diffeomorphisms of D which preserve the Lebesgue measure and the orientation.

Let us begin by the case of the unit open disk D. The open disk is boundaryless hence we already have two equivalent definitions of the Calabi invariant given by equations 1.2 and 1.3 on the set of compactly supported symplectic diffeomorphisms of D. Let us give a third one. A. Fathi in his thesis [START_REF] Fathi | Transformations et homeomorphismes préservant la mesure. systèmes dynamiques minimaux[END_REF] gave a dynamical definition which is also described by J.-M. Gambaudo and É. Ghys in [START_REF] Gambaudo | Enlacements asymptotiques[END_REF]: if we consider an isotopy I " pf t q tPr0,1s from id to f , there exists an angle function Ang I : D ˆDz∆ Ñ R where ∆ is the diagonal of D ˆD such that for each px, yq P D ˆDz∆, the quantity 2πAng I px, yq is the variation of angle of the vector f t pyq ´ft pxq between t " 0 and t " 1. If f is a compactly supported C 1 symplectic diffeomorphism then this angle function is integrable (see section 3) and it holds that

Calpf q " ż DˆDz∆ Ang I px, yqdLebpxqdLebpyq, (1.5) 
where the integral does not depend on the choice of the isotopy.

In this article we will give an answer to the following question.

Question 1.0.1. How to define an extension of the Calabi invariant to the group Diff 1 ω pDq?

M. Hutchings [START_REF] Hutchings | Mean action and the Calabi invariant[END_REF] extended the definition given by equation 1.3 to the C 1 symplectic diffeomorphisms which are equal to a rotation near the boundary. In another point of view, V. Humilière [START_REF] Humilière | The Calabi invariant for some groups of homeomorphisms[END_REF] extended the definition given by equation 1.3 to certain group of compactly supported symplectic homeomorphisms of an exact symplectic manifold pM, ωq where a compactly supported symplectic homeomorphism f of M is a C 0 limit of a sequence of Hamiltonian diffeomorphisms of M supported on a common compact subset of M .

In the case of the open disk, for a compactly supported symplectomorphism f , the choice of the isotopy class of f is natural. But if f is a symplectic diffeomorphism of the closed disk such that its restriction to the open disk is not compactly supported then there is no such natural choice of an isotopy from id to f . The rotation number is a well-known dynamical tool introduced by Poincaré in [START_REF] Poincaré | Mémoire sur les courbes définies par une équation différentielle[END_REF] on the group Homeo `pS 1 q of homeomorphisms of S 1 which preserve the orientation. Let us consider the set of homeomorphisms r g : R Ñ R such that r gpx `1q " r gpxq, denoted Č Homeo `pS 1 q. One may prove that there exists a unique r ρ P R such that for each z P R and n P Z we have |r g n pzq ´z ´nr ρ| ă 1. The number r ρ " r ρpr gq is called the rotation number of r g. Let us consider g P Homeo `pS 1 q and two lifts r g and r g 1 of g in Č Homeo `pS 1 q, there exists k P Z such that r g " r g 1 `k and so r ρpr gq " r ρpr g 1 q `k. Consequently we can define a map ρ : Homeo `pS 1 q Ñ T 1 such that ρpgq " r ρpr gq `Z where r g is a lift of g. The number ρpgq is called the rotation number of g. We give further details about the rotation number in the next section.

We now state the results of this article. The following proposition allows us to consider a natural choice of an action function of a symplectomorphism of the closed disk. Proposition 1.0.2. Let us consider f P Diff 1 ω pDq, A f : D Ñ R a C 1 function such that dA f " f ˚λ ´λ and µ an f invariant Borel probability measure supported on S 1 . Then the number ş S 1 A f dµ does not depend on the choice of µ and λ. The first theorem follows.

Theorem 1.0.3. For each f P Diff 1 ω pDq there exists a unique function A f : D Ñ R such that dA f " f ˚λ ´λ and ş S 1 A f dµ " 0 where λ is a Liouville form and µ a f -invariant probability measure on S 1 . The map Cal 1 : Diff 1 ω pDq Ñ R defined by

Cal 1 pf q " ż D A f pzqωpzq
does not depend on the choice of λ and µ. Moreover the map Cal 1 is a homogeneous quasi-morphism that extends the Calabi invariant.

In another direction, the definition given by equation 1.3 and the definition given by equation 1.5 are based on isotopies. Then we consider the universal cover Ą Diff

1 ω pDq of Diff 1
ω pDq which is composed of couples r f " pf, rIsq where f P Diff 1 ω pDq and rIs is an homotopy class of isotopies from id to f . We will prove that for f P Diff 1 ω pDq and I an isotopy from id to f , the angle function Ang I does not depend on the choice of I P rIs.

Hence, for r f " pf, rIsq P Ą Diff 1 ω pDq we can denote Ang r f " Ang I for I P rIs. Moreover, for a diffeomorphism f P Diff 1 pDq two isotopies I " pf t q tPr0,1s and I 1 " pf 1 t q tPr0,1s from id to f are homotopic if and only if their restriction I| There exists a Hamiltonian function H : T 1 ˆM Ñ R such that H t is equal to 0 on S 1 for every t P R which induces an isotopy pφ t q tPr0,1s from id to f where the lifted isotopy p r φ t q tPr0,1s satisfies r φ 1 " r φ . The number where i P t2, 3u.

The link between these three extensions is given by the following result:

Theorem 1.0.7. The morphisms Ą Cal 2 and Ą Cal 3 are equal and for r f " pf, r φq P Ą Diff

1 ω pDq we have the following equality Ą Cal 2 p r f q " Cal 1 pf q `r ρp r φq.

Moreover the maps Cal 1 , Ą Cal 2 , Cal 2 , Ą Cal 3 and Cal 3 are continuous in the C 1 topology.

In the following, Ą Cal 2 and Ą Cal 3 will be denoted Ą Cal. Since the morphism Ą Cal and the quasi-morphism Cal 1 are not trivial we obtain the following corollary about the perfectness of the groups Ą Diff 1 ω pDq and Diff 1 ω pDq. Recall that a group G is said to be perfect if it is equal to its commutator subgroup rG, Gs which is generated by the commutators rf, gs " f ´1g ´1f g where f and g are elements of G. The non simplicity of those groups was already known since the group of compactly supported Hamiltonian diffeomorphisms is a non trivial normal subgroup of Diff 1 ω pDq. The questions of the simplicity and the perfectness of groups of diffeomorphisms and Hamiltonian diffeomorphism have a long story, especially the case of the group of areapreserving and compactly supported homeomorphisms of the disk D. The question appears on McDuff and Salamon's list of open problems in [START_REF] Mcduff | Introduction to symplectic topology[END_REF] and we can refer for example to [START_REF] Banyaga | Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique[END_REF][START_REF] Bounemoura | Simplicité des groupes de transformations de surfaces, volume 14 of Ensaios Matemáticos[END_REF][START_REF] Entov | On continuity of quasimorphisms for symplectic maps[END_REF][START_REF] Fathi | Structure of the group of homeomorphisms preserving a good measure on a compact manifold[END_REF][START_REF] Roux | Six questions, a proposition and two pictures on Hofer distance for Hamiltonian diffeomorphisms on surfaces[END_REF][START_REF] Roux | Simplicity of HomeopD 2 , BD 2 , Areaq and fragmentation of symplectic diffeomorphisms[END_REF][START_REF] Oh | The group of Hamiltonian homeomorphisms and continuous Hamiltonian flows[END_REF][START_REF] Oh | The group of Hamiltonian homeomorphisms and C 0symplectic topology[END_REF]. Recently D. Cristofaro-Gardiner, V. Humilière, S. Seyfaddini in [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF] proved that the connected component of id in the group of area-preserving homeomorphisms of the unit disk D is not simple. The proof requires the study of the Calabi invariant on the group of compactly supported Hamiltonian of D but also strong arguments of symplectic geometry as Embedded Contact Homology (also called ECH) developed by M. Hutchings and D. Cristofaro-Gardiner in [START_REF] Cristofaro-Gardiner | Proof of the simplicity conjecture[END_REF].

To give an illustration of the extension we compute the Calabi invariant Cal 1 of non trivial symplectomorphisms in Sections 5 and 6. We study the Calabi invariant Cal 1 of some irrational pseudo-rotations. An irrational pseudo-rotation of the disk is an area-preserving homeomorphism f of D that fixes 0 and that does not possess any other periodic point. To such a homeomorphism is associated an irrational number α R Q{Z, called the rotation number of f that measures the rotation number of every orbit around 0 and consequently is equal to the rotation number of the restriction of f to S 1 . We refer to the next section for more details.

The following results of this paper are well-inspired by M. Hutchings's recent work. M. Hutching proved as a corollary in [START_REF] Hutchings | Mean action and the Calabi invariant[END_REF] that the Calabi invariant Cal 3 of every C 8 irrational pseudo-rotation f of the closed unit disk D such that f is equal to a rotation near the boundary is equal to the rotation number of f . This means that for an irrational pseudo-rotation f which is equal to a rotation near the boundary, Cal 1 pf q is equal to 0. The proof uses strong arguments of symplectic geometry such as the notion of open-books introduced by Giroux (see [START_REF] Giroux | Géométrie de contact: de la dimension trois vers les dimensions supérieures[END_REF] for example) and the Embedded Contact Homology theory. We want to adopt a more dynamical point of view and we partially answer the following question.

Question 1.0.9. Is the Calabi invariant Cal 1 pf q equal to 0 for every C 1 irrational pseudorotation f of D?

With the continuity of Ą Cal in the C 1 topology, we can deduce the first result of C 1rigidity as the following result.

Theorem 1.0.10. Let f be a C 1 irrational pseudo-rotation of D. If there exists a sequence pg n q nPN in Diff 1 ω pDq of C 1 diffeomorphisms of finite order which converges to f for the C 1 topology, then Cal 1 pf q " 0.

Corollary 1.0.11. Let f be a C 1 irrational pseudo-rotation of D. If there exists a sequence pn k q kPN such that f n k converges to the identity in the C 1 topology, then we have Cal 1 pf q " 0.

The morphisms Ą Cal and Cal are not continuous in the C 0 topology, see proposition 4.2.5. Nevertheless, by a more precise study of the definition of Cal we obtain a C 0 -rigidity result as follows.

Theorem 1.0.12. Let f be a C 1 irrational pseudo-rotation of D. If there exists a sequence pn k q kPN of integers such that pf n k q kPN converges to the identity in the C 0 topology, then we have Cal 1 pf q " 0.

There are already general results of C 0 -rigidity of pseudo-rotations. Bramham proved [START_REF] Bramham | Periodic approximations of irrational pseudo-rotations using pseudoholomorphic curves[END_REF] that every C 8 irrational pseudo-rotation f is the limit, for the C 0 topology, of a sequence of periodic C 8 diffeomorphisms. Bramham [START_REF] Bramham | Pseudo-rotations with sufficiently Liouvillean rotation number are C 0rigid[END_REF] also proved that if we consider an irrational pseudo-rotation f whose rotation number is super Liouville (we will recall what it means later) then f is C 0 -rigid. That is, there exists a sequence of iterates f n j that converges to the identity in the C 0 -topology as n j Ñ 8. Le Calvez [START_REF] Calvez | A finite dimensional approach to Bramham's approximation theorem[END_REF] proved similar results for C 1 irrational pseudo-rotation f whose restriction to S 1 is C 1 conjugate to a rotation.

Then for f a C 1 pseudo-rotation of the disk D the results of Bramham and Le Calvez provide a sequence of periodic diffeomorphisms pg n q nPN which converges to f , the diffeomorphism g n may not be area-preserving but let us hope to completely answer question 1.0.9.

In the last section we give examples where the rotation number of a pseudo-rotation satisfies some algebraic properties and where the hypothesis of Theorem 1.0.12 and Corollary 1.0.11 are satisfied.

Organization

We begin to give some additional preliminaries in chapter 1. In a second chapter we give the formal definitions of the Calabi invariant of equations 1.2, 1.3 and 1.5 and their natural extensions given by Theorems 1.0.3, 1.0.4 and 1.0.5. In chapter 3 we give the proof of the link between these extensions given by Theorem 1.0.7. The last chapter concerns the results about the computation of the Calabi invariant for pseudo-rotations.

Chapter 2

Preliminaries

This chapter aims to complete the preliminaries of part I. To simplify the reading, some notions and notation are re-introduced.

Invariant measures. Let us consider f a homeomorphism of a topological space X. A Borel probability measure µ is f -invariant if for each Borel set A we have µpf ´1pAqq " µpAq.

In other terms, the push forward measure f ˚µ is equal to µ. We denote by Mpf q the set of f -invariant probability measures on X. It is well-known that the set Mpf q is not empty if X is compact.

For a probability measure µ on D we will note Diff 1 µ pDq the subgroup of Diff 1 `pDq that is the set of orientation preserving C 1 diffeomorphisms which preserve µ.

Quasi-morphism. A function F : G Ñ R defined on a group G is a homogeneous quasi-morphism if 1. there exists a constant C ě 0 such that for each couple f, g in G we have |F pf ˝gq F pf q ´F pgq| ă C, 2. for each n P Z we have F pf n q " nF pf q.

Rotation numbers of homeomorphisms of the circle. The rotation number is defined on the group Homeo `pS 1 q of homeomorphisms of S 1 which preserve the orientation. We begin to give the definition of the rotation number on the lifted group Č Homeo `pS 1 q which is the set of homeomorphisms r g : R Ñ R such that r gpx `1q " r gpxq `1. There exists r ρ P R such that for each z P R and n P Z we have |r g n pzq ´z ´nr ρ| ă 1, see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] for example. The number r ρ is called the rotation number of r g and denoted r ρpr gq. It defines a map r ρ : Č Homeo `pS 1 q Ñ R.

Moreover, r ρpr gq naturally lifts a map ρ : Homeo `pS 1 q Ñ T 1 . Indeed, if we consider g P Homeo `pS 1 q and two lifts r g and r g 1 of g there exists k P Z such that r g 1 " r g hence we have r ρpr g 1 q " r ρpr gq `k. By the Birkhoff ergodic theorem for every g-invariant measure µ we have r ρpr gq " ż S 1 δdµ.

We denote by r δ : R Ñ R the displacement function of r g where r δpzq " r gpzq ´z is oneperiodic and lifts a function δ such that for every r g P Homeo `pS 1 q lifting a homeomorphism g and every g-invariant measure µ we have

r ρpr gq " ż S 1 δdµ " lim nÑ8 1 n n ÿ i"1 δpg i pzqq,
for every z P S 1 . The map r ρ is the unique homogeneous quasi-morphism from Ą Diff 1 `pS 1 q to R which takes the value 1 on the translation by 1, see [START_REF] Ghys | Groups acting on the circle, volume 6 of Monografías del Instituto de Matemática y Ciencias Afines[END_REF] for example. More precisely for each r f , r g P Č Homeo `pS 1 q it holds that |r ρp r f q ´r ρpr gq| ă 1 and for each n P Z we have r ρp r f n q " nr ρp r f q. Let us describe why r ρ is not a morphism and only a quasi-morphism. A homeomorphism of the circle has a fixed point if and only if its rotation number is zero, see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] chapter 11 for more details. Below we give an example of two homeomorphisms φ and ψ of S 1 of rotation number zero such that the composition φ ˝ψ gives us a homeomorphism as in For g P Homeo `pS 1 q there is a bijection between the lifts of g to R and the isotopies from id to g as follows. Let I " pg t q tPr0,1s be an isotopy from id to g, the lifted isotopy r I " pr g t q tPr0,1s of I defines a unique lift r g 1 of g. Then for an isotopy I from id to g, let us denote r g the time-one map of the lifted isotopy r I on R, we can define the rotation number r ρpIq P R of I to be the rotation number r ρpr gq of r g. If we consider f a homeomorphism of the disk isotopic to the identity and I " pf t q tPr0,1s an isotopy from id to f then we will denote r ρpI| S 1 q P R the rotation number of the restriction of the isotopy I to S 1 . If we consider another isotopy I 1 from id to g one may prove that there exists an integer k P Z such that I 1 is homotopic to R k I where the isotopy R " pR t q tPr0,1s satisfies R t pzq " ze 2πit for every z P S 1 and every t P r0, 1s. We consider r I the lifted isotopy of I 1 and we denote r g 1 its timeone map. Hence r g and r g 1 are two lifts of g such that r g 1 " r g `k and r ρpr g 1 q " r ρpr gq `k and so the number r ρpIq does not depend on the choice of the isotopy in the homotopy class of I.

Irrational pseudo-rotation. An irrational pseudo-rotation is an area-preserving homeomorphism f of D that fixes 0 and that does not possess any other periodic point. To such a homeomorphism is associated an irrational number α P R{ZzQ{Z, called the rotation number of f , characterized by the following : every point admits α as a rotation number around the origin. To be more precise, choose a lift r f of f | Dzt0u to the universal covering space r D " R ˆp0, 1s. There exists r α P R such that r α `Z " α and for every compact set K Ă Dzt0u and every ą 0, one can find N ě 1 such that @n ě N, r z P π ´1pKq X r f ´npπ ´1pKqq ñ | p 2 p r f n pr zqq ´p2 pr zq n ´r α| ď , where π : pr, θq Þ Ñ pr cosp2πθq, r sinp2πθqq is the covering projection and p 2 : pr, θq Þ Ñ θ the projection on the second coordinate. If moreover f is a C k diffeomorphism 1 ď k ď `8 we will call f a C k irrational pseudo-rotation.

Notice that the rotation number α of an irrational pseudo-rotation f is equal to ρpf | S 1 q.

One can construct irrational pseudo-rotations with the method of fast periodic approximations, presented by Anosov and Katok [START_REF] Anosov | New examples in smooth ergodic theory. Ergodic diffeomorphisms[END_REF]. One may see [START_REF] Fathi | Existence de difféomorphismes minimaux[END_REF][START_REF] Fayad | Constructions in elliptic dynamics[END_REF][START_REF] Fayad | Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary[END_REF][START_REF] Handel | A pathological area preserving C 8 diffeomorphism of the plane[END_REF][START_REF] Le | The anosov-katok method and pseudo-rotations in symplectic dynamics[END_REF] for further developments about this method and see [START_REF] Béguin | Pseudo-rotations of the closed annulus: variation on a theorem of J. Kwapisz[END_REF][START_REF] Béguin | Pseudo-rotations of the open annulus[END_REF] for other results on irrational pseudorotations.

113

Chapter 3

Three extensions

In this section we will explain why the functions Cal 1 , Ą Cal 2 and Ą Cal 3 are well-defined and we will establish the relations between them. The full statement like the continuity or the quasi-morphism property will be proved in the next section.

Action function

Let us consider f P Diff 1 ω pDq and λ a Liouville 1-form such that dλ " ω. The fact that H 1 pD, Rq " 0 implies that the closed 1-form f ˚λ ´λ is exact. More precisely its integral along each loop γ Ă D is zero. Consequently the map z Þ Ñ ş γz f ˚λ ´λ is a C 1 primitive of f ˚λ ´λ, equal to 0 at the origin, where for every z P D the path γ z : r0, 1s Ñ D is such that γ z ptq " tz.

If we suppose that f is compactly supported on D then it is natural to consider the unique C 1 function A : D Ñ R that is zero near the boundary of D and that satisfies dA " f ˚λ ´λ.

(3.1)

Without the compact support hypothesis we have the following proposition. Proof. To prove the independence over µ there are two cases to consider.

' If there exists only one f | S 1 -invariant probability measure on S 1 the result is obvious. In this case f | S 1 is said to be uniquely ergodic.

' If f | S 1 is not uniquely ergodic then by Poincaré's theory ρpf | S 1 q " p q `Z is rational with p ^q " 1. The ergodic decomposition theorem, see [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] for example, tells us that an f | S 1 -invariant measure is the barycenter of ergodic f | S 1 -invariant measures. Moreover, each ergodic measure of f | S 1 is supported on a q-periodic orbit as follows. For z a q-periodic point of f | S 1 , we define the probability measure µ z supported on the orbit of z by

µ z " 1 q q´1 ÿ k"0 δ f k pzq ,
where δ z is the Dirac measure on the point z P S 1 . Hence it is sufficient to prove that ş D Apf, λ, µ z qω does not depend on the choice of a periodic point z P S 1 .

Let us consider two periodic points z and w of f | S 1 . We consider an oriented path γ Ă S 1 from z to w. We compute

ż S 1 Adµ z ´żS 1 Adµ w " 1 q q´1 ÿ k"0 Apf k pzqq ´Apf k pwqq " 1 q q´1 ÿ k"0 ż f k pγq dA " 1 q q´1 ÿ k"0 ż f k pγq f ˚pλq ´λ " 1 q p ż f q pγq λ ´żγ λq " 0
where the last equality is due to the fact that f q pγq is a reparametrization of the path γ.

Proposition 3.1.1 allows us to make a natural choice of the action function to define an extension of the Calabi invariant as follows.

Theorem 3.1.2. For each f P Diff 1 ω pDq we consider the unique C 1 function A f of f such that dA f " f ˚λ´λ and ş S 1 A f dµ " 0 where λ is a Liouville form of ω and µ an f -invariant probability measure on S 1 . The number

Cal 1 pf q " ż D A f pzqωpzq
does not depend on the choice of λ or µ.

Proof. The independence on the measure µ comes from Proposition 3.1.1 and it remains to prove the independence on λ. Let us consider another primitive λ 1 of ω. We denote A and A 1 the two functions such that dA " f ˚λ ´λ and dA 1 " f ˚λ1 ´λ1 and such that for each µ P Mpf | S 1 q we have ş

S 1 Adµ " ş S 1 A 1 dµ " 0.
The 1-form λ ´λ1 is closed because dλ ´dλ 1 " ω ´ω " 0. So there exists a smooth function u : D Ñ R such that λ 1 " λ `du. We compute dA 1 " f ˚pλ `duq ´pλ `duq " f ˚λ ´λ `dpu ˝f ´uq " dA `dpu ˝f ´uq.

Thus there exists a constant c such that

A 1 " A `u ˝f ´u `c. For a measure µ P Mpf | S 1 q the condition ş S 1 A 1 dµ " 0 " ş S 1 Adµ implies that ż S 1 A 1 dµ " ż S 1 Adµ `żS 1 pu ˝f | S 1 ´uqdµ `c " ż S 1
Adµ,

Howeover ş S 1 pu ˝f | S 1 ´uqdµ " 0 since f | S 1 preserves µ we have c " 0.
Finally f preserves ω hence ş D pu ˝f ´uqω " 0 and we can conclude that ż

D A 1 ω " ż D Aω.
We show that the extension Cal 1 vanishes on rotations of the disk.

Proposition 3.1.3. For θ P R the rotation R θ of angle θ satisfies Cal 1 pR θ q " 0.

Proof. For the Liouville form λ " r 2 2π dθ of ω we have R θ λ ´λ " 0 thus the action function A is constant. So it is equal to 0 and we obtain the result.

Angle function

The following interpretation is due to Fathi in his thesis [START_REF] Fathi | Transformations et homeomorphismes préservant la mesure. systèmes dynamiques minimaux[END_REF] in the case of compactly supported symplectic diffeomorphisms of the unit disk. This interpretation is also developped by Ghys and Gambaudo in [START_REF] Gambaudo | Enlacements asymptotiques[END_REF].

Let us consider f P Diff 1 `pDq and I " pf t q tPr0,1s an isotopy from id to f . For x, y P D distinct we can consider the vector v t from f t pxq to f t pyq and we denote by Ang I px, yq the angle variation of the vector v t for t P r0, 1s defined as follows.

We have the polar coordinates pr, θq and a differential form

dθ " udv ´vdu u 2 `v2 ,
where pu, vq are the cartesian coordinates. For every couple px, yq P D 2 z∆ we define

Ang I px, yq " 1 2π ż γ dθ, (3.2) 
where γ : t Þ Ñ f t pxq ´ft pyq.

The function Ang I is continuous on the complement of the diagonal of D ˆD. Moreover, if f is at least C 1 then the function Ang I can be extended on the diagonal into a bounded function on D ˆD. Indeed, we consider K the compact set of triplets px, y, dq where px, yq P D ˆD and d a half line in R 2 containing x and y and oriented by the vector joining x to y if x ‰ y. If x and y are distinct, the half line d is uniquely determined and D ˆDz∆ can be embedded in K as a dense and open set. We define Ang I px, x, dq as the variation of angle of the half lines df t pdq for t P r0, 1s. This number is well-defined and extends Ang I into a continuous function on K.

For r

f " pf, r φq P Ą Diff 1 ω pDq and two Hamiltonian isotopies I " pf t q tPr0,1s and I 1 " pf 1 t q tPr0,1s from id to f associated to r φ. The isotopies I 1 and I are homotopic so for every couple px, yq P D Let us consider r f " pf, r φq and r g " pg, r φ 1 q two elements of Ą Diff 1 ω pDq and two isotopies I " pf t q tPr0,1s P rIs from id to f associated to r φ and I 1 " pg t q tPr0,1s from id to g associated to r φ 1 . We consider the concatenation I ¨I1 of the isotopy I and I 1 which gives an isotopy from id to f ˝g associated to r φ˝r φ 1 and we define the element r f ˝r g " pf ˝g, r φ˝r φ 1 q P Ą Diff Birkhoff ergodic theorem gives another way to compute r C µ p r f q for r f " pf, r φq P Ą Diff 1 pDq. Let us consider an isotopy I " pf t q tPr0,1s from id to f associated to r φ. For px, yq P D ˆDz∆ we have Ang I n px, yq " Ang I px, yq `Ang I pf pxq, f pyqq `... `Ang I pf n´1 pxq, f n´1 pxqq.

(3.

3)

The function Ang I is bounded so the function y Ang I px, yq " lim 

We state the proposition of topological invariance, see [START_REF] Gambaudo | Enlacements asymptotiques[END_REF].

Proposition 3.2.4. Let us consider two probability measures µ 1 and µ 2 of D without atom and two compactly supported elements of Diff 1 µ 1 pDq and Diff 1 µ 2 pDq denoted φ 1 and φ 2 such that there exists a homeomorphism h P Diff 0 `pDq satisfying φ 2 " h ˝φ1 ˝h´1 and h ˚pµ 1 q " µ 2 . We have that C µ 1 pφ 1 q " C µ 2 pφ 2 q.

For a probability measure µ of the disk, there is the equivalent result to extend the invariant C µ . 

C µ pf q " r C µ p r f q `Z,
where r f P Ą Diff 1 µ pDq is a lift of f . The proof of the previous theorem is basically the same as Theorem 3.2.2 and if we consider the Lesbegue measure Leb then we have

r C Leb " Ą Cal 2 .
We have the following computation in the case of the rotations.

Lemma 3.2.6. For θ P R we consider r R θ " pR θ , r rq P Ą Diff Proof. Let us consider R " pR t q tPr0,1s the isotopy from id to R θ given in section 2. For a couple px, yq P D ˆDz∆ we consider the complex z " x ´y and we have for each t P r0, 1s R t pzq " ze itθ and we can compute Ang R px, yq " θ. By integration on D ˆDz∆ we obtain Ą Cal 2 p r R θ q " θ " r ρpr rq.

Hamiltonian function

In this section, the goal is to detail the construction of the Calabi invariant given by equation 1.3 in the case of compactly supported diffeomorphisms of the disk. This construction leads to Theorem 1.0.5 and we explain the definition of Ą Cal 3 given by this theorem but we refer to the next section for the proofs of certain results.

Let us consider f P Diff 1 ω pDq and a Hamiltonian isotopy I " pf t q tPr0,1s from id to f . We consider the Hamiltonian function pH t q tPR which induces the isotopy I. We denote pX t q tPR the associated vector field. We have that for every t P R, X t is tangent to S 1 . So each H t is constant on S 1 and we can consider pH t q tPR the associated Hamiltonian function such that H t | S 1 " 0.

We have the following lemma. Proof. The result will be a corollary of Theorem 1.0.7.

Theorem 3.3.2. Let us consider an element r f " pf, r φq P Ą Diff 1 ω pDq and a Hamiltonian function H : S 1 ˆD Ñ R of f which induces the flow pφ t q tPr0,1s such that the lift of φ 1 | S 1 is equal to r φ and such that H t is equal to 0 on S 1 for every t P R. The number

Ą Cal 3 p r f q " 2 ż 1 0 ż D H t pzqωpzqdt,
does not depend on the choice of H. Moreover the map Ą Cal 3 : Ą Diff 1 ω pDq Ñ R is a morphism and Ą Calp r f q `Z depends only on f . It induces a morphism

Cal 3 pf q " 2 ż 1 0 ż D H t pzqωpzqdt `Z, defined on Diff 1 ω pDq.
The proof comes from the equality between Ą Cal 2 and Ą Cal 3 which will be proven in the next section. Moreover, the definition of Cal 3 comes from Lemma 3.3.1 and we obtain the following commutative diagram where the horizontal arrows are the universal covering maps.

Ą Diff 1 ω pDq / / Ą Cal 3 Diff 1 ω pDq Cal 3 R / / T 1 121
Chapter 4

Proof of Theorem 1.0.7

In this section, we prove Theorem 1.0.7. f q " Cal 1 pf q `r ρp r φq.

Moreover Cal 1 , Ą Cal 2 and Ą Cal 3 are continuous in the C 1 topology.

We separate the proof into two subsections, in the first one we establish the links between the previous definitions then we prove the continuity of Ą Cal 2 and Ą Cal 3 .

Equality between Ą

Cal 2 and Ą Cal 3 . Proof. The proof is essentially the same as in [START_REF] Shelukhin | Enlacements asymptotiques" revisited[END_REF], the only difference is that our symplectic form is normalized and the Hamiltonian diffeomorphisms that we consider is not compactly supported in the open unit disk. Nevertheless, we verify that the proof is still relevant in our case.

Let us consider r f " pf, r φq P Ą Diff 1 ω pDq and a Hamiltonian isotopy I " pf t q tPr0,1s from id to f associated to r φ. For the proof we will give a definition of the angle function Ang I in complex coordinates as follows. We define a 1-form α by α " 1 2π

dpz 1 ´z2 q z 1 ´z2 . 
The imaginary part satisfies dθ " 2πImpαq, where θ is the angle coordinate in radial coordinates. For an element Z " pz 1 , z 2 q P D 2 z∆ we consider the curve I Z Ă D ˆDz∆ defined by t Þ Ñ I Z ptq " pf t pz 1 q, f t pz 2 qq, for each t P r0, 1s and that for every element Z " pz 1 , z 2 q P D ˆDz∆ we have

Ang I pz 1 , z 2 q " 1 2π ż I Z dθ. (4.1) 123 
Let us consider the Hamiltonian pH t q tPr0,1s which induces the flow of the isotopy I and which is equal to 0 on the boundary of D. We consider the symplectic form ω " i 2π dz ^dz written in complex coordinates on D. We define ξ t " dzpX t q and then it satisfies We compute the integral of the angle function

ż DˆDz∆ Ang I pz 1 , z 2 qωpz 1 qωpz 2 q " ż DˆDz∆ ż I pz 1 ,z 2 q 1 2π dθ ωpz 1 qωpz 2 q " Im ˜żDˆDz∆ ż I pz 1 ,z 2 q α ωpz 1 qωpz 2 q ¸.
The following computation is well-inspired by the proof in [START_REF] Shelukhin | Enlacements asymptotiques" revisited[END_REF].

ż DˆDz∆ ż I pz 1 ,z 2 q α ωpz 1 qωpz 2 q " 1 2π ż DˆDz∆ ż I pz 1 ,z 2 q dpz 1 ´z2 q z 1 ´z2 ωpz 1 qωpz 2 q " 1 2π ż DˆDz∆ ż 1 
t"0 ξ t pf t pz 1 qq ´ξt pf t pz 2 qq f t pz 1 q ´ft pz 2 q dtωpz 1 qωpz 2 q, " 1 2π

ż 1 t"0 ż DˆDz∆ ξ t pf t pz 1 qq ´ξt pf t pz 2 qq f t pz 1 q ´ft pz 2 q ωpz 1 qωpz 2 qdt, " 2 ˆ1 2π ż 1 t"0 ż z 2 PD ż z 1 PDztz 2 u ξ t pz 1 q z 1 ´z2 ωpz 1 qωpz 2 qdt " 1 π ż 1 0 ż D ż Dztz 2 u ´2iπ BH t Bz i 2π dz 1 ^dz 1 z 1 ´z2 ωpz 2 qdt " 2i ż 1 0 ż D ż Dztz 2 u 1 2iπ BH t Bz dz 1 ^dz 1 z 1 ´z2 ωpz 2 qdt.
The third equality is obtained by Fubini because the integral is absolutely integrable, see Lemma 4.1.2 below. The fourth equality is due to the absolute integrability of both terms. We established the penultimate with equation 4.2 and the definition of ω.

We use the Cauchy formula for smooth functions (see [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF]). To obtain the result it remains to prove the absolute integrability we used in the computation.

Lemma 4.1.2. We have the following inequality ż DˆDz∆ ż 1

t"0 ˇˇˇξ t pf t pz 1 qq ´ξt pf t pz 2 qq f t pz 1 q ´ft pz 2 q ˇˇˇω pz 1 qωpz 2 qdt ă 8.

Proof. The total measure of D ˆDz∆ for ω and r0, 1s for the Lebesgue measure is finite so by Tonnelli's theorem it is sufficient to have the following inequalities Proof. Let us consider an element r f " pf, r φq P Ą Diff 1 ω pDq and a Hamiltonian isotopy I " pf t q tPr0,1s from id to f associated to r φ. There exists a unique Hamiltonian function pH t q tPR which induces the isotopy I and such that H t is zero on the boundary S 1 of D for each t P R.

ż
We know that Cal 1 does not depend on the choice of the primitive of ω. We consider the Liouville 1-form λ " r 2 2π dθ in radial coordinates. We consider a probability measure µ P Mpf | S 1 q.

We describe the link between the action function of the first definition and the Hamiltonian of the third definition. We consider a C 1 family of functions pA t q tPr0,1s , where A t : D Ñ R satisfies for each t P r0, 1s dA t " f t λ ´λ, and such that the map A 1 is equal to Apf, λ, µq. So the isotopy pA t q tPr0,1s satisfies d 9 A t " d dt pf t λq " f t L Xt " f t pi Xt pdλq `dpλpX t qqq " dpH t ˝ft `λpX t q ˝ft q.

Then, for every t P r0, 1s, there exists a constant c t such that 9 A t " H t ˝ft `λpX t q ˝ft `ct , and the map A : D Ñ R satisfies for each z P D A 1 pzq "

ż 1 0 pH t `iXt λqpf t pzqqdt `ż 1 0 c t dt.
We denote by C the constant ş 1 0 c t dt. Since the restriction of λ to S 1 is equal to 1 2π dθ then for every z P S 1 we have δpzqdµpzq. We know that r ρ is a homogeneous quasi-morphism, it gives us the following corollary. Proof. The result is straightforward because Cal 1 is equal to the sum of a morphism and a homogeneous quasi-morphism.

We obtain ż

Notice that Lemma 3.2.6 ensures that the morphisms Ą Cal (resp. Cal) is not zero, then its kernel is a normal non trivial subgroup of Ą Diff We denote d 1 the distance between two maps f and g of Diff 1 pDq defined by We denote r id " pid D , id R q P Ą Diff 1 ω pDq. In this section we prove the following result. Moreover the function arccos is defined on r0, 1s and of class C 1 on r0, 1q such that for every x P p0, 1s we have

d
parccosp1 ´xqq 1 " 1 ? 2x ´x2 ď 1 ?
x .

We obtain that for every x P r0, 1s we have arccosp1 ´xq ď 2 ?

x.

Hence we have 2π|Ang Moreover D 2 z∆ is path connected. Indeed, let us prove that every couple px, yq P D 2 z∆ is connected to pp0, 0q, p1, 0qq by a path as follows. We set d the line of D 2 passing through x and y. The line d intersects S 1 in two points which we denote x and ŷ such that x is closer to x than y and ŷ is closer to y than x as in figure 4.1 Let us consider the path γ y : r0, 1s Ñ D defined by γ y ptq " tpŷ ´yq `y from y to ŷ. The path Γ y : t Ñ px, γ y ptqq defined on r0, 1s sends the couple px, yq to px, ŷq.

' x ' y ' x ' ŷ d
Let us consider the path γ x : r0, 1s Ñ D defined by γ x ptq " p1 ´tqx from x to p0, 0q. The path Γ x : t Ñ pγ x ptq, ŷq defined on r0, 1s sends the couple px, ŷq to p0, ŷq. Now we consider R α the rotation of D of angle α " argpŷq. The rotation R ´1 α sends ŷ to p1, 0q. We denote pR t q tPr0,1s the isotopy from id to R α such that for every t P r0, 1s R t is the rotation of angle tα.

Hence the composition of the path Γ y , Γ x and t Ñ pp0, 0q, R ´1 t pŷqq sends px, yq to pp0, 0q, p0, 1qq.

Moreover Ang r f is continuous on D 2 z∆ we deduce from the last inequality that k does not depend on the choice of px, yq. The fact that r d 1 p r f , r idq ď ď 1{2 implies that k " 0 and we obtain that for every px, yq P D 2 z∆ |Ang r f px, yq| ď ? {π.

We now prove the continuity of Cal 1 in C 1 topology. By integration on D 2 z∆ we obtain that

| Ą Calp r f q| ď ? 2 π .
Hence Ą Cal is continuous at the identity.

Moreover, it is well-known that the rotation number r ρ : Č Homeo `pS 1 q Ñ R is continuous and we deduce from Theorem 4.0.1 the following corollary. We give a counterexample which also prove that the Calabi invariant defined in the introduction is also not continuous in the C 0 topology, this counterexample can be found in [START_REF] Gambaudo | Enlacements asymptotiques[END_REF] Proof. Let us consider a sequence ph n q ně1 of smooth functions h n : r0, 1s Ñ R such that 1. h n is constant near the origin, 2. h n prq is zero for r ą 1{n,

3.

ş 1 0 h n prq2πrdr " 1. We consider the Hamiltonian functions H n : D Ñ R by H n pzq " h n p|z|q. Each function H n defines a time independent vector field X n , whose induced flow is denoted φ t n . We have the following property [START_REF] Gambaudo | Enlacements asymptotiques[END_REF] about the computation of the Calabi invariant for compactly supported and autonomous Hamiltonian functions This result allows us to compute the Calabi invariant for φ 1 n and we obtain for each n ě 1 Calpφ 1 n q " ´2π.

For each n ě 1 we consider pφ 1 n , idq P Ą Diff If there exists a sequence pq k q kPN of integers such that pf q k q kPN converges to the identity in C 0 topology then we have Cal 1 pf q " 0.

To prove the previous statement we will give an estimation of the angle function of f qn for a given isotopy I from id to f . For that we will consider two cases, the first one if x is close to y and the other if x is not close to y. .

We obtain the following lemma. With these two lemmas we can give a proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. We can consider I " pf t q tPr0,1s an isotopy from id to f which fixes a point of D. Up to conjugacy we can suppose that I fixes the origin and we denote I| S 1 the restriction of I on S 1 . We lift I| S 1 to an isotopy p r φ t q tPr0,1s on the universal covering space R of S 1 such that r φ 0 " id and set r φ " r φ 1 . We will prove that Ą Cal 2 pf, r φq " r ρp r φq and from Theorem 4.0.1 we will obtain Ą Cal 2 pf, r φq ´r ρp r φq " Cal 1 pf q " 0.

For q P N we define the isotopy I q from id to f q as follows. We write I q " pf q t q tPr0,1s and for every z P D and t P r k´1 q , k q s we set f q t pzq " f qt´k`1 ˝pf ˝... ˝f q looooomooooon k´1 times .

We will denote n " d 0 pf qn , idq. For every k P Z we can separate the difference between the integral of the angle function of f qn and k into two parts as follows Moreover, by definition of the rotation number there exists a sequence pξ n q nPN of 1-periodic functions ξ n : R Ñ R such that ||ξ n || 8 ď 1 for every n P N and such that for every y P S 1 and every lift r y P R of y we have Ang I qn p0, yq " r φ qn pr yq ´r y " q n r ρp r φq `ξn pr yq.

So, for every y P S ω pDq in C 0 topology where for each n P N, g n is a periodic diffeomorphism of the disk and f is an irrational pseudo-rotation, then the previous method fails to prove that Ą Cal 2 pg n , r φ n q converges to Ą Cal 2 pf, r φq. It is easy to see that Ang Bramham already showed in [START_REF] Bramham | Pseudo-rotations with sufficiently Liouvillean rotation number are C 0rigid[END_REF] that any C 8 irrational pseudo-rotation f of the disk with super Liouville rotation number is C 0 rigid, meaning that f is the C 0 -limit of a sequence of periodic diffeomorphisms. More recently Le Calvez [51] proved that any C 1 irrational pseudo-rotation which is C 1 conjugated to a rotation on the boundary is C 0 rigid. These results go as follows. Theorem 6.1.1. Let us consider either a C 8 irrational pseudo-rotation or a C 1 irrational pseudo-rotation f which is C 1 conjugated to a rotation on the boundary.We consider α P R such that α `Z is equal to the rotation number of f . For a sequence of rationals p pn qn q nPN which converges to α there exists a sequence pg n q nPN : D Ñ D of q n -periodic diffeomorphims of the unit disk which converges to f for the C 0 topology. Moreover there exists a constant C depending on f such that for every n P N we have d 0 pf, g n q ă Cpq n α ´pn q 1 2 .

We deduce the following corollary. Corollary 6.1.2. Let us consider either a C 8 irrational pseudo-rotation or a C 1 irrational pseudo-rotation f which is C 1 conjugated to a rotation on the boundary. If the rotation number of f is super Liouville then we have Cal 1 pf q " 0.

Proof of Corollary 6.1.2. Let us consider f which is either a C 8 irrational pseudo-rotation or a C 1 irrational pseudo-rotation. We consider α P R such that α `Z is equal to the rotation number of f . We will prove that f satisfies the hypothesis of Theorem 5.2.1. We consider α P R such that α `Z is equal to the rotation number of f and we consider the sequence of rationals pp n {q n q nPN , defined above, which converges to α such that q n satisfies equation 6.1. Let pg n q nPN be the sequence of q n periodic diffeomorphisms given by Theorem 6.1.1 associated to f and the sequence pp n {q n q nPN . We denote by K the C 1 norm of f and we set n " Cpq n α ´pn q 1{2 where C is the constant given by Theorem 6.1.1.

For all k P N and each n P N the following inequality holds to obtain for k " q n the inequality dpf qn , idq ă K qn C pq n`1 q 1 2 . (6.4) Equation 6.2 assures that lim sup n K qn pq n`1 q 1{2 " 0.

d 0 pf k , g k n q ă K k n . ( 6 
Thus we obtain that lim sup n d 0 pf qn , idq " 0.

Lemma 2 . 1 . 1 .

 211 Let x P M a critical point of a Morse function F : M Ñ R. There exists a neighborhood U of x and a diffeomorphism ψ : pU, xq Ñ pR n , 0q, called a Morse chart, such that

Theorem 2 . 1 . 3 .

 213 The space Ě y Mpx, z; F, Xq is compact for all critical points x and z.
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 3 0.1. A barcode B is an equivalence class of family of intervals B.
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Question 4 .

 4 0.13. Is the result of Theorem 4.0.12 holds if only consider a Hamiltonian homeormorphism f whose set of fixed points is finite and unlinked?Chapter 5

  Now, we can give the definition of the map B. Given an element pG, A, indq of G we describe the bars of BpG, A, indq. The map B. The barcode BpG, A, indq is composed of the bars of the following four categories. Category 0. The bars pLpGq, `8q and pDpGq, `8q are bars of BpG, A, indq.

  Figure 4.4 where the graph corresponds to the connexions of the gradient of the Morse function. See next Chapter 6 for a more precise definition. Example 2. We consider pG, A, indq P G as follows. The map ind satisfies indpxq " indpyq " ´1 and indpzq " indpwq " 1. The values of the map A are represented on the vertical line on the right of the graph. The bars of category 0 are the bars pApwq, `8q and pApzq, `8q. The vertex x and y are the saddle points of the graph G. We describe the bars associated to Apxq and Apyq as follows. First we compute the bars associated to Apyq. The subgraph G Ápyq `has only one connected component C ý and j ´1 Apyq ptC ý uq " G Ápyq ´has one connected component equal to twu. By construction there is no bar of category 1 associated to the saddle point y in the barcode BpG, A, indq. In this example G Àpyq ´has only one connected component C 1 ỳ and j 1´1 Apyq ptC 1 ỳ uq " G Àpyq has one connected component which contains the vertices z and x and one edge. Again, by construction there is no bar of category 2 associated to y in the barcode BpG, A, indq. The index of y is equal to ´1 and there is no bar of category 1 and 2 thus there is a bar pApyq, `8q of category 3 in the barcode BpG, A, indq. Secondly we compute the bars associated to Apxq. The subgraph G Ápxq `has only one connected component C x and j ´1 Apxq ptC x uq " G Ápxq ´has one connected component which contains y and w. By construction there is no bar of category 1 associated to the saddle point y in the barcode BpG, A, indq. The subgraph G Àpxq ´has only one connected component C 1 x and j 1´1 Apxq ptC 1 x uq " G Àpxq has one connected component equal to tzu. So by construction there is no bar of category 2 associated to x in the barcode BpG, A, indq.

Figure 6 . 1 :

 61 Figure 6.1: An example of a trivialization of a saddle point x of index ´1
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Lemma 6 . 1 . 8 .

 618 The intersection of W s pCq and ΣzX is open.

r φ " r φ Y rr y, r xs and Γ r φ 1 "r φ and Γ r φ 1

 11 φ 1 Y rr y 1 , r x 1 s in R 2 . The loops Γ are the frontier of the domains Adh R 2 pLp r φqq and Adh R 2 pLp r φ 1 qq and are Jordan curves.

Theorem 8 . 1 . 1 .

 811 The barcode β F does not depend on the choice of F P FpIq and satisfies β F " β ą .

  (i) The elements x, y are in the same connected component C ą of G t pąq, (ii) The elements x, y are in the same connected component C F of G t pFq.

Lemma 8 . 1 . 3 .

 813 Let us consider F P FpIq and px, yq P X 2 . If x ą y then x and y are in the same connected component of G t pFq for every t ą A f pxq.

1 ω 1 ω 1 ω 1 ω

 1111 S 1 and I 1 | S 1 to S 1 are homotopic and so define the same lift Ą f | S 1 of f | S 1 on the universal cover of S 1 . Hence it is equivalent to consider Ą Diff pDq as the set of couples r f " pf, r φq where f P Diff 1 ω pDq and r φ a lift of f | S 1 to the universal cover of S 1 . Theorem 1.0.4. Let us consider an element r f of Ą Diff pDq Ñ R which induces a morphism Cal 2 : Diff 1 ω pDq Ñ T 1 defined for every f P Diff 1 ω pDq by Cal 2 pf q " Ą Cal 2 p r f q `Z, where r f is a lift of f to Ą Diff 1 ω pDq. Along the same lines, we have the following result. Theorem 1.0.5. Let us consider an element pf, r φq of Ą Diff pDq.

Ą Cal 3

 3 pf, r φq " on the choice of such a Hamiltonian function H. Moreover the map Ą Cal 3 : Ą Diff 1 ωpDq Ñ R is a morphism and induces a morphism Cal 3 : Diff 1 ωpDq Ñ T 1 defined by Cal 3 pf q " Ą Cal 3 pf, r φq `Z. Remark 1.0.6. We have the following commutative diagram

Corollary 1 . 0 . 8 . 1 ω

 1081 The groups Ą Diff pDq and Diff 1 ω pDq are not perfect.

Figure 2 . 1 φFigure 2 . 2

 2122 Figure 2.1

Proposition 3 . 1 . 1 . 1 A|

 3111 If we consider a C 1 function A : D Ñ R such that dA " f ˚λ ´λ then the number ż S BD dµ does not depend on the choice of µ in Mpf | S 1 q.

nÑ8 1 n

 1 Ang I n px, yq, is defined µ ˆµ almost everywhere and depends only on the homotopy class of I. Hence we can define y Ang r f " y Ang I . Thus we obtain the following equality r C µ p r f q " ż ż DˆD y Ang r f px, yqdµpxqdµpyq.

Theorem 3 . 2 . 5 .Ą Diff 1 µ 1 µ

 32511 Let us consider an element r f P pDq Ñ R which induces a morphism C µ : Diff 1 µ pDq Ñ T 1 defined for every f P Diff 1 µ pDq by

1 ω

 1 pDq where R θ is the rotation D Ñ D of angle θ. We have Ą Cal 2 p r Rq " r ρpr rq.

ż zPD ż 1 0H

 1 t pzqωpzqdt ´r ρpI| S 1 q, depends only on f .

Theorem 4 .0. 1 .

 41 The morphisms Ą Cal 2 and Ą Cal 3 are equal. For r f " pf, r φq P Ą Diff 1 ω pDq we have the following equality Ą Cal 2 p r

Proposition 4 . 1 . 1 .

 411 The morphisms Ą Cal 2 and Ą Cal 3 are equal.

  For any C 1 -function g : D Ñ C, we have gpwq " Moreover H t is equal to zero on the boundary S 1 and we have ż DˆDz∆ ż I pz 1 ,z 2 q α ωpz 1 qωpz 2 q " 2i ż 1 0 ż D H t pz 2 qωpz 2 qdt. It leads to ż DˆDz∆ Ang I pz 1 , z 2 qωpz 1 qωpz 2 q "

Remark 4 . 1 . 3 .Ą Diff 1 ω

 4131 The number Ą Cal 2 pf, r φq does not depend on the choice of the isotopy in the homotopy class of I, we obtain the same result for the construction of Ą Cal 3 pf, r φq which completes the proof of Lemma 3.3.1. Proposition 4.1.4. For each element r f " pf, r φq P pDq we have Ą Cal 3 p r f q " Cal 1 pf q `r ρp r φq.

ż 1 0i

 1 Xt λpf t pzqqdt " Notice that the last integral is equal to the displacement function δ : R Ñ R of r φ.Moreover, the rotation number r ρp r φq of the isotopy I satisfies for each z P S 1The map z Þ Ñ δpzq is µ integrable and the Birkhoff ergodic theorem gives us ż

Corollary 4 . 1 . 5 .

 415 The map Cal 1 : Diff 1 ω pDq Ñ R is a homogeneous quasi-morphism.

1 ω

 1 pDq (resp. Diff 1 ω pDqq and we obtain the following corollary.

Corollary 4 . 1 . 6 . 1 ω

 4161 The groups Ą Diff pDq and Diff 1 ω pDq are not perfect.

4. 2

 2 Continuity of Ą Cal.For every continuous map f from D to C we set ||f || 8 " max xPD |f pxq|. We denote d 0 the distance between two maps f and g of Diff 0 pDq defined by d 0 pf, gq " maxp||f ´g|| 8 , ||f ´1 ´g´1 || 8 q.

Theorem 4 . 2 . 1 . 1 ω

 4211 The map Ą Cal : Ą Diff pDq Ñ R is continuous in C 1 topology. We need some results about the angle function.

Lemma 4 . 2 . 2 .y ´x| ´|f pyq ´f pxq| |y ´x| ˇˇď 2 ˇˇˇh pyq ´hpxq y ´x ˇˇď 2 .

 4222 Let us consider r f " pf, r φq P Diff 1 `pDq such that r d 1 p r f , r idq ď ď 1{2, then for every px, yq P D 2 z∆, it holds that | cosp2πAng r f px, yqq ´1| ď 2 . Proof of Lemma 4.2.2. The proof is a simple computation. Let us consider x, y P D such that x ‰ y. One can write f " id `h where ||h|| 8 ď and ||Dh|| 8 ď . By the mean theorem we have ˇˇˇh pyq ´hpxq y ´x ˇˇˇď . where x.|.y is the canonical scalar product on R 2 . We compute | cosp2πAng r f px, yqq ´1| " ˇˇˇB f pyq ´f pxq |f pyq From Lemma 4.2.2, we deduce the following result.

Corollary 4 . 2 . 3 .Ą Diff 1 ω

 4231 Let us consider r f P pDq such that d 1 p r f , r idq ď ď 1{2. For every couple px, yq P D 2 z∆ there exists a unique k P Z such that Ang r f px, yq´k P r´1{2, 1{2q. So by Lemma 4.2.2 we have1 ě cosp|2πAng r f px, yq ´k|q ě 1 ´2 ě 0.The function arccos is decreasing so we obtain 0 ď arccospcosp|2πAng r f px, yq ´k|qq ď arccosp1 ´2 q.

r f px, yq ´k| ď 2 ?

 2 
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 424 The map Cal 1 : Diff 1 ω pDq Ñ R is continuous in C 1 topology. Let us prove that the Calabi invariant is not continuous in C 0 topology. Proposition 4.2.5. The morphism Ą Cal is not continuous in C 0 topology.

Proposition 4 . 2 . 6 .

 426 Let us consider H : D Ñ R a Hamiltonian function with compact support. We denote φ t the induced Hamiltonian flow and we haveCalpφ t q " ´2πt ż D Hpzqωpzq,where Cal is the Calabi invariant defined by equation 1.3.

1 ω 3 . 5 . 2 . 1 .

 13521 pDq and we haveĄ Cal 2 ppφ 1 n , idqq " ´2π.Moreover, φ 1 n converges to the identity in C 0 topology and we obtain the result. 1315.2 C 0 -rigidityThe following theorem is a stronger version of Corollary 5.1.Theorem Let us consider f P Diff 1 ω pDq.

Lemma 5 . 2 . 3 .

 523 Under the same hypothesis, there exists an integer k P Z, uniquely defined, such that for every couple px, yq P D ˆD such that |x ´y| ě ? , we have |Ang I px, yq ´k| ď 2 4 ? {π ă 1{2.(5.4)

n 4 ?

 4 ş ş DˆD Ang I qn px, yqωpyqωpxq ´k " ş D ´şB ? n pxq Ang I qn px, yqωpyq ´k¯ω pxq `şD ˆşB c ? n pxq Ang I qn px, yqωpyq ´k˙ω pxq, pxq is the complementary of B ? n pxq in D. We can suppose that n ă 1{16 and by Lemma 5.2.3, there exists a unique k n P Z such that for each couple px, yq P D ˆD such that |y ´x| ě ? n we have |Ang I qn px, yq ´kn | ď 2

1

 1 

rf

  is close to Ang r gn but if we compute the difference Ą Calpg n , r φ n q ´Ą Calpf, r φq, as we did in equation 5.5, we do not have a control of ||Ang r gn || 8 so we cannot estimate properly the integral ż yqωpxqωpyq, where n " ||g n ´f || 8 . 137 r α P T 1 is super Liouville.

. 3 )

 3 By equation 6.1 we can majorate n byC pq n`1 q 1 2

  Given two periodic solutions x, y P P H we denote Mpy, xq the set of solutions u P M satisfying the asymptotic boundary conditions 2.4. Thus we have

	ď	
	M "	Mpy, xq.
	y,xPP H	

1. The group R acts naturally on M by shifting ups, tq in the s direction which defines a continuous flow on M. Moreover, for every bounded orbit u P M there exists a pair x, y P P H such that u is a connecting orbit from y to x, i.e., lim sÑ´8 ups, tq " yptq, lim sÑ`8 ups, tq " xptq,

(2.4)

the convergence being uniform in t as |s| Ñ 8 and Bu Bs converging to zero again uniformly in t.

  Definition 5.0.3. Let us considet t P R. We denote by C t (resp. C t ) the set of connected components of G t (resp. of connected components of G t ). We denote by C t`t he set of connected components of G t`a nd we denote by C t´t he set of connected components of G t´. The inclusions G t Ă G t`a nd G t Ă G t´i nduce natural maps j t : C t Ñ C t`a nd j 1 t : C t Ñ C t´w here for C P C t , j t pCq is the connected component of G t`w hich contains C and for C 1

	Definition 5.0.4.

  2 z∆ we have ż where γ : t Þ Ñ f t pxq ´ft pyq and γ 1 : t Þ Ñ f 1 t pxq ´f 1 t pyq. Hence, we can define the angle function Ang We have the following lemma. Ang h given by equation 4.1 we have Ang R k 2π I " Ang I `k. Moreover I 1 is in the same homotopy class of R k 2π I and we obtain Ang I 1 " Ang I `k. Since the rotation number also satisfies r ρpI 1 | S 1 q " r ρpI| S 1 q `k, the result follows.

					ż
				dθ "	dθ,
				γ	γ 1
	r f of r f by		
				Ang
	Lemma 3.2.1. Let us consider r f " pf, r φq P Ą Diff
	Lemma 3.2.1 allows us to extend the Calabi invariant on the lifted group Ą Diff	1 ω pDq as
	follows.			
	Theorem 3.2.2. Let us consider r f " p r f , r φq P Ą Diff	1 ω pDq. The number
				ż
		Ą Cal 2 p r f q "	D 2 z∆	Ang	r f px, yqωpxqωpyq,
	defines a morphism Ą Cal 2 : Ą Diff	1 ω pDq Ñ R and induces a morphism on Diff 1 ω pDq defined by
			Cal 2 pf q " Ą Cal 2 p r f q `Z,
	where r f P Ą Diff	1 ω pDq is a lift of f .	
	Proof. First, Ą Cal is well-defined since the angle function Ang

r f " Ang I . 1 ω pDq. For every px, yq P D 2 z∆ the number Ang r f px, yq ´r ρp r φq only depends on f . Proof. Let us consider I 1 another isotopy from id to f . There exists k P Z such that I 1 is homotopic to R k 2π I and by definition of r f is integrable on D 2 z∆.

  For each px, yq P D 2 z∆ we have Ang I¨I 1 px, yq " Ang I 1 px, yq `Ang I pgpxq, gpyqq. Cal 2 induces the morphism Cal 2 from Diff 1 ω pDq to T 1 . Notice that the morphisms Ą Cal 2 and Cal 2 satisfy the following commutative diagram

	Hence we obtain			
	Ang	r f ˝r g px, yq " Ang	r g px, yq `Ang	r f pgpxq, gpyqq.
	We integrate the previous equality and since g preserves ω we deduce that Ą Cal 2 is a mor-phism from Ą Diff 1 ω pDq to R.
	Moreover, Lemma 3.2.1 assures that Ą
		Ą Diff	1 ω pDq	/ / Diff 1 ω pDq
		Ą Cal 2			Cal 2
		R		/ / T 1
	where the horizontal arrows are the covering maps.
	This interpretation allows us to generalize the definition to other invariant measures of
	the disk. Let us consider r f " pf, r φq P Ą Diff
					We
	define the number r C µ pIq by		
		ż ż	
	r C µ p r f q "	D 2 z∆	Ang	r f px, yqdµpxqdµpyq.
	By Lemma 3.2.1 we obtain the following corollary.
	Corollary 3.2.3. Let us consider r f " pf, r φq P Ą Diff

1 ω pDq.

1

pDq and an isotopy I from id to f associated to r φ. We consider a probability measure µ on D without atom which is f -invariant.

1 ω pDq. For every px, yq P D 2 z∆ the number r C µ p r f q ´r ρp r φq only depends on f .

  DˆDz∆ˇˇˇξ t pf t pz 1 qq ´ξt pf t pz 2 qq f t pz 1 q ´ft pz 2 q ˇˇˇω pz 1 qωpz 2 qdt " ż 1 DˆDz∆ ˇˇˇξ t pz 1 q ´ξt pz 2 q z 1 ´z2 ˇˇˇω pz 1 qωpz 2 qdt

	1	ż			ż		
	t"0			t"0		
				ď 2	ż 1 t"0	ż z 1 PD	|ξ t pz 1 q|	ż z 2 PDztz 1 u	1 |z 1 ´z2 |	ωpz 1 qωpz 2 qdt
					ż 1	ż	
				ď 8π			|ξ t pz 1 q|ωpz 1 qdt
					t"0	z 1 PD
				ă 8.		
	To prove the second last inequality one may prove that	
		ż z 2 PDztz 1 u	1 |z 1 ´z2 |	ωpz 2 q ď 4π.	

  Moreover, the Hamiltonian H t is equal to zero on S 1 . So if z P S 1 it holds that A 1 pzq " δpzq `C and consequently So the condition on A implies that C " ´r ρp r φq. Xt pλqpf t pzqqdtωpzq ´r ρp r φq. Xt pλqpf t pzqqdtωpzq. Each 3-form is zero on the disk so we have 0 " i Xt pλ ^ωq " i Xt pλqω ´λ ^iXt pωq " i Xt pλqω ´λ ^dH t " i Xt pλqω `dH t ^λ " i Xt pλqω `dpH t λq ´Ht ω.where the first equality is due to the fact that f t preserves ω. Moreover H t is equal to zero on the boundary S 1 . We obtain

	Thus						
	ż		ż		ż 1		
	Apzqωpzq "			pH t `iXt λqpf t pzqqdtωpzq ´r ρp r φq
	D		D	0		
			ż		ż 1			ż 1
	" i We compute D 0 H t pf t pzqqdtωpzq `żD 0 ş D ş 1 0 i We deduce that
	ż	ż 1					ż	ż 1
		i Xt pλqpf t pzqqdtωpzq "		pH t ω ´dpH t λqqdt
	D	0					D	0
						"	ż	ż 1	H t ωdt	´ż 1	ż	H t λdt
							D	0	0	S 1
							ż	ż 1
						"		H t ωdt,
							D	0
			ż		ż	ż 1
					Apzqωpzq " 2		H
			D	D	0	
		ż 1				ż
		1	0	i Xt λpf t pzqqdtdµpzq "	S 1	r ρp r φqdµpzq " r ρpI| S 1 q.
					ż		
					S 1		

A 1 pzqdµpzq " C `r ρp r φq. t pzqωpzqdt ´r ρp r φq.

  1 pf, gq " maxpd 0 pf, gq, ||Df ´Dg|| 8 , ||Df ´1 ´Dg ´1|| 8 q, where for every C 1 diffeomorphism f of D, ||Df || 8 " max xPD ||D x f ||. The distances d 0 and d 1 define naturally two distances, denoted r d 0 and r d 1 , on Ą Diff gq " maxpd 0 pf, gq, || r φ ´r ψ|| 8 , || r φ ´1 ´r ψ ´1|| 8 q, r d 1 p r f , r gq " maxpd 1 pf, gq, || r φ ´r ψ|| 8 , || r φ ´1 ´r ψ ´1|| 8 q.

			1
	defined as follows. Let us consider r f " pf, r φq and r g " pg, r ψq in Ą Diff	1 ω pDq, we have	ω pDq
	r d 0 p r f , r		

  Proof of theorem 4.2.1. By Theorem 3.2.2 we know that Ą Cal is a group morphism. So it is sufficient to prove the continuity at the identity. Let us consider r f " pf, r φq P Ą Diff 1{2. By Corollary 4.2.3 we have for every couple px, yq P D 2 z∆ |Ang

	1
	ω pDq
	such that r d 1 p r f , r idq ď ď

r f px, yq| ď ? {π.

  The following lemma gives us an evaluation of what close means. Lemma 5.2.2. Let us consider f a C 1 diffeomorphism of the unit disc D, I an isotopy from id to f . If d 0 pf, idq ď ď 1{4 then for every couple px, yq P D ˆD which satisfies |x ´y| ě ? , we have | cosp2πAng I px, yqq ´1| ď 4 ? . Proof. Let px, yq P D ˆD be a couple such that |x ´y| ě ? . One can write f " id `h where h : D Ñ R 2 satisfies ||h|| 8 ď and we have

			ˇˇˇh pyq ´hpxq y ´x ˇˇˇď 2 ? " 2 ?	.	(5.1)
	We use the equation					
			cosp2πAng I px, yqq "	xf pyq ´f pxq, y ´xy |f pyq ´f pxq| |y ´x|	(5.2)
	Moreover, if we write 1 " x y´x |y´x| , y´x |y´x| y we obtain		
		cospAng I px, yqq ´1 " x	f pyq ´f pxq |f pyq ´f pxq|	´y |y ´x| ´x	,	y |y ´x| ´x	y	(5.3)
	Equation 5.3 becomes					
	ˇˇˇf pyq ´f pxq |f pyq ´f pxq|	´y |y ´x| ´x	ˇˇˇď |f pyq ´f pxq| ˇˇˇ1 |f pyq ´f pxq| ´1 |y ´x|	|y ´x| ˇˇˇ`ˇˇˇf pyq ´f pxq ´py ´xq	ˇˇ"
			ˇˇˇ| y ´x| ´|f pyq ´f pxq|	ˇˇˇ`ˇˇˇh pyq ´hpxq	ˇˇď
			|y ´x|				|y ´x|
			2 ˇˇˇh pyq ´hpxq y ´x ˇˇď 4 ?

  1 we have |Ang I qn p0, yq ´kn | " |q n r ρp r φq `ξn pr yq ´kn | ď 2 4 ? We know that for every couple px, yq P D 2 z∆ and for every n P N we have Ang I qn px, yq " Ang I px, yq `Ang I pf pxq, f pyqq `... `Ang I pf qn´1 pxq, f qn´1 pyqq. (5.8) Hence for every n P N the angle function satisfies ||Ang I qn || 8 ď q n ||Ang I || 8 . (5.9) We can estimate the first integral of equation 5.5 as follows ˇˇˇˇż D ˜żB ? n pxq pAng I qn px, yq ´kn qωpyq ¸ωpxq ˇˇˇˇď n pq n ||Ang I || 8 `|k n |q. (5.10) So we can deduce from the previous equations a new estimation of the Calabi invariant ˇˇˇż ż DˆD Ang I qn px, yqωpyqωpxq ´kn ˇˇˇď 2 4 ? n {π ` n pq n ||Ang f || 8 `|k n |q. Remark 5.2.4. If we consider a sequence pr g n " pg n , r φ n qq nPN P Ą Diff

							(5.11)
	By definition we obtain					
	ˇˇˇĄ Cal 2 pf, r φq	´kn q n	ˇˇˇď 2 4 ?	|k n | q n	.	(5.12)
	Hence we have					
	ˇˇĄ Cal 2 pf, r φq ´r ρp r φq ˇˇď ˇˇˇĄ Calpf, r φq 4 4 ? n q n π ` n ||Ang f || 8 ´kn q n ˇˇˇ`ˇˇˇr ρp r φq `1 q n ´kn q n ` n ˇˇď |k n | q n .
	By taking the limit on n P N, we conclude that
						Ą Cal 2 pf, r φq " r ρp r φq.
							1 ω pDq which converges to
	r f " pf, r φq P Ą Diff						n {π,
	where r y is a lift of y. Hence we obtain
					|q n r ρp r φq ´kn | ď 2 4 ?	n {π `1.
	Thus we have					r ρp r φq " lim nÑ8	k n q n	.
	By equation 5.6 we obtain			
	ˇˇˇˇż D ˜żB c ?	n	pxq	pAng I qn px, yq ´kn qωpyq ¸ωpxq ˇˇˇˇď 2 4 ?	n {π.	(5.7)
						136

n q n π ` n ||Ang f || 8 ` n

Remerciements

property: Let x P V b j represents a non-zero element in Kerpi t ´,t `q " 1, the element x is in the image of i a j ,b j but x is not in the image of i a j ,b j ; if we label the remaining elements of the spectrum of V by tc 1 , ..., c m u then the barcode βpVq consists of the list of intervals pa j , b j s and pc k , `8q, where 1 ď j ď n and 1 ď k ď m.

We will consider G ǵen,t pFq, G gen,t pFq the associated filtered graphs and we denote by pH t ˚qtPR the persistence module of the chain complex pC t i q iPt0,1,2u,tPR of Definition 4.0.3. Finally, we denote by B gen pFq the barcode βppH t ˚qtPR q where β is the functor defined in Chapter 3.

To avoid any confusion, we will always refer to the chain complex by C t i where i P t0, 1, 2u and t P R. We will refer to connected components of the graph GpFq by C or C 1 and to a connected component of the graph G gen pFq by C gen . For t P R and a connected component C of G t pFq we denote LpCq the minimum of the action function on the sinks of C and for t P R and a connected component C 1 of G t pFq we denote DpCq the maximum of the action function on the sources of C 1 . Moreover, to simplify the notation, we provide the filtered chain complex pC i t q iPt0,1,2u,tPR with a natural scalar product x.|.y associated to the canonical basis. Meaning that we consider the bilinear function x.|.y on the space C i t such that for every couple of fixed points x and y of f in C i t , we have xx, yy " 1 if and only if x " y and xx, yy " 0 otherwise. Theorem 8.2.1 allows us to prove Property 4.0.11 of Chapter 4 which states that the barcode B gen pf, Fq does not depend on the choice of F P F gen pIq. We recall that assumptions of Theorem 8.2.1 are satisfies in this particular case.

Proof of Proposition 4.0.11. By Theorem 8.2.1, for each foliation F P F gen pIq we have that B gen pFq " β F . Moreover, by Theorem 8.1.1, the barcode β F does not depend on the choice of the foliation F P F gen pIq. So we obtain that B gen pf, Fq does not depend on the choice of F P F gen pIq which is the result. We fix a foliation F P F gen for the remaining of the section.

Proof of Theorem 8.2.1. By Remark 4.0.9, each action value of A f is the end of a unique bar of the barcode B gen pFq and by Corollary 6.2.7, we have the same result for the barcode β F so it is enough to prove the inclusion β F Ă B gen pFq to prove that these barcodes are equal.

Moreover, Corollary 6.2.7 states that exactly one end point of every bar of the barcode β F , except the bars pmin A f , `8q and pmax A f , `8q, is the action value of a saddle point of F. So it is enough to prove that finite bars of the barcode β F are also bars of the barcode B gen to prove the inclusion β F Ă B gen pFq. Indeed, the remaining bars of the barcode would be the same semi-infinite bars as they would be associated to the same saddle points.

We will prove that for every saddle point x of f , if the bar J of β F , of which A f pxq is an end, is a finite bar, then it is also a bar of the barcode B gen pFq. Notice that, by construc-Proof. For each source y of C, by definition, B T 2 pyq is equal to the sum of the saddle points in the frontier of the repulsive basin of y. These saddle points have either one or both of their stable leaves in W s pCq. We separate those cases. Firstly, we label x 1 , ..., x n the saddle points of F of which only one stable leaf have its alpha-limit point in C. For every i P r0, ns we have xB T 2 pY q|x i y " 1 for every i P r0, ns. Moreover, the action values of these saddle points is less then or equal to t and it is simple to see that this belong to the frontier of W s pCq.

Secondly, we label x 1 1 , ..., x 1 m the saddle points such that both stable leaves have their alpha-limit points in C. For every i P r0, ms we have xB T 2 pY q|x 1 i y " 2. Those saddle points are nondegenerate saddle points of F so that they are in the interior W s pCq and not in its frontier. Indeed, both stable cones of a saddle point x whose action satisfies A f pxq ą t are leaves of F whose alpha-limit points are in the same connected component of G t pFq.

Finally, we compute B T 2 pY q as follows.

x i .

And we obtain the result.

Let us denote c " DpCq, we will consider the element Y "

where x 1 , ..., x n are the saddle points of the frontier of W s pCq. So we have r

By hypothesis, the saddle point x is one of the saddle points px i q iPr1,ns and each x i satisfies Apx i q ď Apxq since C is a connected component of G t pFq. So we have that r

´.

Moreover, the singularity x is not homologous in C c 1 to a chain of singularities of C t 1 . Indeed, if it was the case then, by definition, it would exist X 1 P C t 1 and Y 1 P C c 2 such that x " X 1 `Bc 2 pY 1 q.

We set y x P C and y 1

x P C 1 the only two sources of F such that x is in the frontier of the sets W u py x q and W u py 1

x q. The equality x " X 1 `Bc 2 pY 1 q would imply that xY 1 |y x y " 1

Part II

Calabi invariant for Hamiltonian diffeomorphism of the unit disk

Chapter 5

Computation of Cal 1 in some rigid cases

In this section, we prove several results about the Calabi invariant of irrational pseudorotations.

A simple case of C 1 -rigidity

Let us begin by the simple computation of the Calabi invariant for periodic symplectic maps.

Lemma 5.1.1. If f P Diff 1 ω pDq has a finite order, then we have Cal 1 pf q " 0.

Proof. By assumption there exists p ě 1 such that f p " id and so Cal 1 pf p q " p Cal 1 pidq " 0.

We deduce the following properties Proposition 5.1.2. Let us consider f P Diff 1 ω pDq. If there exists a sequence of periodic diffeomorphisms pg k q kPN in Diff 1 ω pDq which converges to f fin C 1 topology, then we have Cal 1 pf q " 0.

Proof. By Lemma 5.1.1 for each n P N we have Cal 1 pg n q " 0 and we obtain the result by the continuity of the map Cal 1 in C 1 topology.

Proposition 5.1.3. Let us consider f P Diff 1 ω pDq. If there exists a sequence pq k q kPN such that f q k converges to the identity in C 1 topology then we have Cal 1 pf q " 0.

Proof. We have Cal 1 pf q k q " q k Cal 1 pf q and Cal 1 pf q k q converges to Cal 1 pidq " 0 so Cal 1 pf q " 0.

Proof. We consider P p0, 1{16q and a couple px, yq P D such that |y ´x| ě ?

. By definition of the floor function there exists a unique k P Z such that 2πAng I px, yq ´2πk P r´π, πq and we have

The function arccos is decreasing so we obtain 0 ď arccospcosp|2πAng I px, yq ´2πk|qq ď arccosp1 ´4? q.

The function arccos is defined on r0, 1s and of class C 1 on r0, 1q. Moreover we have for every x P r0, 1q

x .

We obtain that for every x P r0, 1s arccosp1 ´xq ď 2 ?

x.

Hence we have |2πAng I px, yq ´2πk| ď arccosp1 ´4? q ď 4 4 ? .

Thus we have |Ang I px, yq ´k| ď 2 4 ? {π ă 1{2.

Now we prove that k does not depend of px, yq. Indeed the set of couples px, yq P D 2 such that |x´y| ě ? is connected in D 2 . Indeed for a couple px, yq P D 2 such that |x´y| ě ? , let us construct a path from px, yq to pp´1, 0q, p1, 0qq. We set d the line of D 2 passing through x and y. The line d intersects S 1 in two points which we denote x and ŷ such that x is closer to x than y and ŷ is closer to y than x as in the previous figure 4. 1. Let us consider the path γ x : r0, 1s Ñ D defined by γ x ptq " tpx ´xq `x from x to x and the path γ y : r0, 1s defines by γ y ptq " tpŷ ´yq `y from y to ŷ. So the path Γ : t Þ Ñ pγ x ptq, γ y ptqq defined on r0, 1s sends the couple px, yq to px, ŷq.

We consider a path Γ 1 : t Ñ px, γptqq which fixes x and send ŷ on x along the arc of S 1 such that γptq P S 1 ztxu. Now we consider R α the rotation of D of angle α " argpxq. Notice that the rotation R ´1 α sends x to p1, 0q. We denote pR t q tPr0,1s the isotopy from id to R α such that for every t P r0, 1s R t is the rotation of angle tα.

Hence the composition of the path Γ, Gamma 1 and the path t Þ Ñ pR ´1 t pxq, R ´1 t pŷqq sends px, yq to pp1, 0q, p´1, 0qq.

Moreover, 2 4 ? {π ă 1{2 so k does not depend on the choice of px, yq P D such that |x ´y| ą ? .

Chapter 6

Examples

In this section, we will be interested in irrational pseudo-rotations with specific rotation numbers.

Best approximation: Any irrational number α P RzQ can be written as a continued fraction where pa i q iě1 is a sequence of integers ě 1 and a 0 " tαu. Conversely, any sequence pa i q iPN corresponds to a unique number α. We define two sequences pp n q nPN and pq n q nPN as follows p n " a n p n´1 `pn 2 for n ě 2, p 0 " a 0 , p 1 " a 0 a 1 `1 q n " a n q n´1 `qn´2 for n ě 2, q 0 " 1, q 1 " a 1 .

The sequence pp n {q n q nPN is called the best approximation of α and for every n ě 1 we have tq n´1 αu ď tkαu, @k ă q n where txu is the fractional part of x P R. And for every n P N we have 1 q n pq n `qn`1 q ď p´1q n pα ´pn {q n , q ď 1 q n q n`1 . (6.1)

The numbers q n are called the approximation denominators of α.

An example of C 0 -rigidity, the super Liouville type

In this section, we show that a C 1 irrational pseudo-rotation with a super Liouville rotation number satisfies the assumptions of Theorem 5.2.1.

Super Liouville. A real number α P RzQ is called super Liouville if the sequence pq n q nPN of the approximation denominators of α satisfies lim sup n q ´1 n logpq n`1 q " `8.

(6.2)

If we consider a real α P R which has super Liouville type then for each k P Z the real α `k is also super Liouville and to simplify the notations we will say that an element Hence up to a subsequence we can suppose that d 0 pf qn , idq Ñ 0.

So f satisfies the hypothesis of Theorem 5.2.1 and we conclude Cal 1 pf q " 0.

An example of C 1 -rigidity, the non Bruno type

Bruno type. A number α P RzQ will be said to be Bruno type if the sequence pq n q nPN of the approximation denominators of α satisfies 8 ÿ n"0 logpq n`1 q q n ă `8.

If we consider α P R which is not Bruno type then for each k P Z the real α `k is also not Bruno type and to simplify the notation we will say that an element r α P T 1 is non Bruno type. Avila, Fayad, Le Calvez, Xu and Zhang proved in [START_REF] Avila | On mixing diffeomorphisms of the disc[END_REF] that if we consider a number α P RzQ which is not Bruno type, for H ą 1 there exists a subsequence q n k of the sequence of the approximation denominators of α such that for every n P N q n j`1 ě H qn j and there exists an infinite set J Ă N such that for every j P J we have tq n j αu ă e ´qn j j 2 .

(6.5)

We can also find the following result in the same paper.

Proposition 6.2.1. Let us consider a C 2 irrational pseudo-rotation f P Diff 1 ω pDq. Suppose that ρpf | S 1 q is not Bruno type, then the sequence q n j satisfies d 1 pf qn j , Idq Ñ 0.

Hence a C 2 irrational pseudo-rotation f P Diff 1 ω pDq satisfies the hypothesis of Corollary 5.1.3 and we obtain the following corollary. Corollary 6.2.2. Let us consider a C 2 irrational pseudo-rotation f P Diff 1 ω pDq. Suppose that ρpf q is not Bruno type, then we have Cal 1 pf q " 0.