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Résumé

Nous cherchons à expliciter certains liens entre la topologie symplectique et l’étude des
systèmes dynamiques à travers la notion de code barres d’homéomorphismes hamiltoniens
de surfaces et de l’invariant de Calabi de difféomorphismes hamiltoniens du disque unité.
Ces deux objets représentent de puissants invariants en topologie symplectique. Plus pré-
cisément, nous visons à mettre en avant une interprétation dynamique de ces objets.

Cette thèse se divise en deux parties.

Dans une première partie nous étudierons les codes barres de Floer d’un point de vue dy-
namique. Notre motivation provient en particulier de l’utilisation récente des codes barres
en topologie symplectique permettant d’obtenir des résultats purement dynamiques. Ainsi,
nous expliciterons des constructions de codes barres pour certains homéomorphismes hamil-
toniens de surfaces à l’aide de la théorie des feuilletages transverses de Le Calvez. Notre
stratégie consistera à calquer la construction de l’homologie de Floer et de l’homologie de
Morse à l’aide d’outils de systèmes dynamiques tels que des feuilletages. Nous prouverons
en particulier que dans les cas les plus simples, nos constructions correspondent aux codes
barres de Floer.

Dans une seconde partie nous nous intéresserons à l’invariant de Calabi pour les dif-
féomorphismes hamiltoniens du disque unité. Usuellement, l’invariant de Calabi est bien
défini sur l’ensemble des difféomorphismes hamiltoniens à support compact du disque unité.
Inspirés par l’interprétation dynamique de cet object donné par Fathi dans sa thèse, nous
étendrons la définition de ce dernier au groupe des C1 difféomorphismes hamiltoniens du
disque. En particulier, cela nous permettra de calculer l’invariant de Calabi de certaines
pseudo-rotations irrationnelles du disque.
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Abstract

The goal of this thesis is to give some links between sympletic topology and the study
of dynamical systems through the notion of barcodes of Hamiltonian homeomorphisms of
surfaces and the Calabi invariant of Hamiltonian diffeomorphisms of the unit disk. These
two objects represent powerful invariants in symplectic topology. More precisely, we aim
at giving a dynamical interpretation of these objects.

This thesis is divided into two parts.

In a first part we will study the Floer Homology barcodes from a dynamical point of
view. Our motivation comes from recent results in symplectic topology using barcodes to
obtain dynamical results. We will give some constructions of barcodes of some Hamiltonian
homeomorphisms of surfaces using Le Calvez’s transverse foliation theory. The strategy
consists in copying the construction of the Floer and Morse Homologies using dynamical
tools like Le Calvez’s foliations. In particular, we will prove that for the simplest cases,
our constructions coincide with the Floer Homology barcodes.

In a second part we will deal with the Calabi invariant of the Hamiltonian diffeomor-
phisms of the unit disk. Inspired by the dynamical interpretation of this object developed
by Fathi in his thesis, we will extend it to the group of C1 Hamiltonian diffeomorphisms of
the disk. In particular, we will be able to compute the Calabi invariant of some irrational
pseudo-rotations of the disk.
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Context

Let us begin with some basic definitions of symplectic geometry.

Let us consider pM2n, ωq a symplectic manifold, meaning thatM is an even dimensional
manifold equipped with a closed non-degenerate differential 2-form ω called the symplectic
form. In particular, if M is a symplectic surface, the symplectic form is an area form.

Let us consider a time-dependent vector field pXtqtPR defined by the equation

dHt “ ωpXt, ¨q,

where H : RˆM Ñ R is a smooth function 1-periodic in t, meaning that Ht`1 “ Ht for
every t P R. The function H is called a Hamiltonian function. If the vector field pXtqtPR
is complete, it induces a Hamiltonian flow which is a family pftqtPR of diffeomorphisms of
M preserving ω and satisfying the equation

B

Bt
ftpzq “ Xtpftpzqq.

The time one map f1 of the isotopy pftqtPr0,1s is called a Hamiltonian diffeomorphism. In
particular, a Hamiltonian diffeomorphism on a surface preserves the area.

The case of autonomous Hamiltonian diffeomorphisms can be kept in mind. Con-
sidering a C1 function H on a surface, the previous hamiltonian formalism provides a
Hamiltonian flow which follows the level sets of H such that the flux passing through any
loop is zero. The time-one map of such a Hamiltonian flow will be called an autonomous
Hamiltonian diffeomorphism.

Birkhoff proved [10] a celebrated result, conjectured and proved in some cases by
Poincaré [65], known as the Poincaré-Birkhoff theorem, that asserts that an area-preserving
homeomorphism of a closed annulus that satisfies some "twist conditions" admits at
least two fixed points. Further generalizations have been obtained by Franks [31], using
Brouwer’s lemma on translation arcs, and other authors.

In one hand, the Poincaré-Birkhoff theorem led to many questions of symplectic geom-
etry such as the Arnold conjecture [2] and the developement of the Floer Homology theory
[26, 27, 28, 29, 30]. Floer introduced the Floer Homology by combining the variational
approach of Conley and Zehnder, the elliptic techniques of Gromov and the Morse-Smale-
Witten complex in order to answer the Arnold conjecture stated as follows.
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Conjecture 0.0.1. A Hamiltonian diffeomorphism of a symplectic manifold M must have
at least as many fixed points as the minimal number of critical points of a smooth function
on M .

On the other hand, the Poincaré-Birkhoff theorem led to the study of periodic points
of homeomorphisms of surfaces and more generally to the study of the dynamics of such
homeomorphisms.

The main goal of this thesis is to study some links between the symplectic geometry
and the dynamical systems of surfaces. In a first part we will study barcodes for Hamilto-
nian homeomorphisms on surfaces. In a second part we will study the Calabi invariant for
Hamiltonian diffeomorphisms of the unit disk.

Both parts of the thesis contain their own introduction and preliminaries chapters.
They are independant.

12



Part I

Barcodes for Hamiltonian homeomorphisms
of surfaces

13





Chapter 1

Introduction

1.1 Goals and motivations

Main question

In the first part of this thesis, we will think about the following question.

Question 1.1.1. Can we construct barcodes for Hamiltonian homeomorphisms of surfaces,
equal to the Floer homology barcodes, using dynamical objects as Le Calvez’s transverse
foliations?

Barcodes

Given a Hamiltonian function pHtqtPr0,1s on a symplectic manifold pM,ωq, we define
the action function AH on the space of contractible loops of M by

AHpγq “ ´

ż

D
u˚ω `

ż 1

0
Htpγptqqdt,

where u is an extension to the disk of the contractible loop γ : S1 Ñ M , that is, a map
u : D “ tz P C||z| ď 1u Ñ M such that upe2iπtq “ γptq. If we suppose that π2pMq “ 0,
the function AH does not depend on the choice of u and it will always be the case in this
thesis. We will see in the preliminaries that for a Hamiltonian diffeomorphism f , the action
function AH does not depend on the choice of the Hamiltonian function H which induces
f , hence it defines an action function Af asociated to f .

For example, on surfaces, the difference of action between two points x and y fixed by
a Hamiltonian flow can be interpreted as the flux of this flow through any oriented path γ
joining x and y.

An important fact is that the critical points of an action function Af are the trajecto-
ries of the contractible fixed points of f . The study of the critical values of Af will play a
key role in this thesis.

The barcode of a Hamiltonian diffeomorphism f is a countable collection of intervals,
called bars whose extremities are the critical values of its action function Af . In the par-
ticular case of a generic hamiltonian diffeomorphism, each critical value of Af is the end
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of one and only one bar.

The construction of these barcodes, recalled in Chapter 3, is based on the Floer Ho-
mology theory.

Let us begin with a simple example. We consider a Hamiltonian flow pftqtPr0,1s induced
by an autonomous Hamiltonian function H. In this case, for t small enough, the barcode of
the Hamiltonian diffeomorphism ft is equal to the filtered Morse Homology pHMt

˚pHqqtPR
of H.
To give more details about this example we explain how the filtered homology of H can
be interpreted as a collection of bars. In general, the bars of a barcode are of the form
Ij “ paj , bjs, aj P R, bj P R Y t`8u and satisfy certain finiteness assumptions. The ends
of these bars are in correspondence with the critical points of H and can be classified as
follows.

• There are the death points which are the critical points x of H ending some homology,
meaning that the dimension of the vector spaces pHMt

˚pHqqtPR decreases at Hpxq.

• There are the birth points which are the critical points x of H generating homology
in HM˚HpxqpHq, meaning that the dimension of the vector spaces pHMt

˚pHqqtPR
increases at Hpxq. The value Hpxq of a birth point x will be the begining of a bar.

The bars of a barcode can be described by the following classification of the birth points.

• A birth point can be "homological" and associated to the semi-infinite bar pHpsq,`8q
in the barcode if the homology it generates in HM

Hpxq
˚ persists in the vector spaces

pHMt
˚qtěHpsq.

• A birth point can be "bound to die" and associated to a death point y and a finite
bar pHpxq, Hpyqs in the barcode if the homology it generates in HM

Hpxq
˚ disapears in

HM
Hpyq
˚ .

The previous filtered homology is an example of a persistence module. In fact, we will
see that barcodes use to classify persistence modules up to isomorphisms. Roughly speak-
ing, it is equivalent to consider a barcode as a set of bars or as a filtered homology.

Following this idea, we associate, canonically, a barcode Bpfq to every Hamiltonian
diffeomorphism f by considering the filtered Floer Homology of f where the filtration is
given by the action function Af .

The barcode Bpfq gives information about the structure of the set of fixed points and
the spectral invariants of f . The spectral invariants have been introduced by Viterbo [73].
They have been used in numerous deep applications and their theory has been developped
in many contexts, we can cite for example the work of Schwarz [?] and Oh [?]. They are
powerful tools which took an important place in the development of symplectic topology.
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The notion of Barcode provides, in some topology, a continuous invariant of conjugacy
on the set of smooth Hamiltonian diffeomorphisms of symplectic manifolds.

Hamiltonian homeomorphisms

In symplectic geometry, we can define the notion of Hamiltonian homeomorphism of
a surface Σ by taking the closure of the Hamiltonian diffeomorphisms of Σ. This defini-
tion comes from the Gromov-Eliashberg theorem [19] which states that if a sequence of
symplectomorphisms of a symplectic manifold pM,ωq converges in the C0 topology to a
diffeomorphism then this diffeomorphism is a symplectomorphism as well.

For a Hamiltonian homeomorphism of a surface, we are not able to consider directly its
Floer Homology as the construction requires at least a C2 setting. Howeover, on surfaces,
the barcode Bpfq depends continuously, in the uniform topology, on f and moreover, ex-
tends to Hamiltonian homeomorphisms, see [61] for more details.

The barcode of a Hamiltonian homeomorphism f is defined by a limiting process and
it is natural to wonder if it is possible to describe a direct construction.

Moreover, the notion of Hamiltonian homeomorphism of surfaces is well-known in dy-
namical systems and has a dynamical interpretation thanks to the notion of rotation vec-
tors. On a symplectic surface pΣ, ωq, ω is an area form which induces a Borel probability
measure µ. We will say that a homeomorphism f of an oriented compact surface is Hamil-
tonian if it is isotopic to the identity and preserves a Borel probability measure µ whose
support is the whole surface and whose rotation vector ρpµq is zero.

Le Calvez’s transverse foliations

A key motivation for this thesis is to bring a dynamical interpretation of the barcodes
for Hamiltonian homeomorphisms of surfaces. Taking this direction, we will give some
constructions of barcodes, inspired by the Floer homology constructions, using Le Calvez’s
foliation theory.

Le Calvez’s foliations theory has many applications in the study of dynamical systems
of surfaces. For example in the study of prime ends by Koropecki, Le Calvez and Nassiri
[48], the study of homoclinic orbits for area preserving diffeomorphisms by Sambarino and
Le Calvez [52] or the results about the forcing theory of Le Calvez and Tal [53, 54].

Nowadays, Le Calvez’s foliations theory [49] represents one of the most important
dynamical tool in the study of the dynamics of homeomorphisms of surfaces. This the-
ory already found applications to Barcodes of Hamiltonian homeomorphisms of surfaces.
For example, for a homeomorphism f which preserves the area, Le Roux, Seyfaddini and
Viterbo in [61] used Le Calvez’s foliations theory to extract dynamical informations of the
barcode of f without Kislev-Shelukhin’s result [47].

Here are some details about transverse foliations. Let us consider a homeomorphism
f on a surface. There are sets X of fixed points of f , called maximal unlinked sets, such
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that there exists an isotopy, called maximal isotopy, from id to f fixing all points of X and
which are maximal for the inclusion.

Le Calvez proved that given a maximal unlinked set X of fixed points of f and an iso-
topy I fixing all the fixed points of X, there exist oriented foliations F positively transverse
to the isotopy I. Roughly speaking, this means that, given a point in the complement of
X, its trajectory along the isotopy I is homotopic in ΣzX to a path transverse to F .

Moreover, if we suppose that f is area-preserving, we will see in 2.3.7 that those fo-
liations are gradient-like. To keep it simple, this means that we can see such a foliation
as the gradient lines of a function defined on the surface. In particular, every leaf of a
gradient-like foliation is an injective path, called a connexion, between two singularities of
F and there is no cycle of connexions.
In the particular case where f has finitely many fixed points, by a result of Wang [74], the
notion of action function can be extended. A key point is that, for every leaf φ of F the
action function Af of f satifsies Af pαpφqq ą Af pωpφqq.

To give an example, we can consider again a Hamiltonian diffeomorphism f induced
by an autonomous Hamiltonian function H on a surface. The induced Hamiltonian flow is
a maximal isotopy I of f and the gradient flow of H is a gradient-like foliation positively
transverse to I. In this case, the only maximal unlinked set of fixed points fixed by I is
the set of critical points of H.

1.2 Results

We describe briefly the results of the first part of this thesis. We provide distinct construc-
tions of barcodes for Hamiltonian homeomorphisms of surfaces.

First construction

We will describe a first construction in Chapter 4 under some generic hypothesis which
is inspired from the Morse and Floer homology constructions. We will consider a Hamil-
tonian homeomorphism f of an oriented compact surface Σ with a finite number of fixed
points which are, in a sense, non degenerate and such that the set of fixed points is unlinked,
meaning that there exists an isotopy I “ pftqtPr0,1s from id to f fixing all the fixed points
of f . By Le Calvez’s theorem we can consider a gradient-like foliation F transverse to I.
We will suppose that F satisfies some "generic" hypothesis which allows us to construct a
chain complex inducing a filtered homology and then a barcode denoted BgenpFq.

We have the following theorem proved in Chapter 8.

Theorem 1.2.1. The Barcode BgenpFq does not depend on the choice of the foliation
F P FgenpIq.

In the case of a Hamiltonian diffeomorphism close enough of the identity and generated
by an autonomous hamiltonian function we will obtain the following result.
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Theorem 1.2.2. If we consider a Hamiltonian diffeomorphism f with a finite number of
fixed points which is C2-close to the identity and generated by an autonomous Hamiltonian
function then the barcode BgenpFq is equal to the Floer homology barcode of f .

Let us give the idea of the construction. Since f is area-preserving, we will see that
there are three kinds of singularities for the foliation F : sinks, sources and saddle points.
We will suppose that F is in the set FgenpIq of "generic" foliations positively transverse
to I, meaning that there are finitely many leaves between sources and saddle points and
between sinks and saddle points. In the Morse Homology theory, the chain complex is
defined by counting modulo 2 the number of trajectories between the critical points of a
Morse function f . Following the same ideas we will be able to define a chain complex
associated to F by counting modulo 2 the number of leaves between singularities of F and
more precisely the number of leaves between sinks and saddle points and between sources
and saddle points.

A natural question appears.

Question 1.2.3. Can we generalize the construction to barcodes for every Hamiltonian
homeomorphisms of surfaces?

Second construction

In general there is no natural way to construct a chain complex from a positively trans-
verse foliation. The difficulties come from geometrical limitations of the foliations.

Nevertheless, given a Hamiltonian homeomorphism f , we will construct barcodes asso-
ciated to maximal unlinked sets of fixed points of F .

Let us consider a maximal unlinked set X of fixed points of f , a maximal isotopy
I “ pftqtPr0,1s fixing all the fixed points of X, and a gradient-like foliation F , positively
transverse to I. We will begin by associating a graph GpFq to the foliation F whose set
of vertices is equal to X and for every couple px, yq of vertices there is an edge from x to
y if there is a leaf φ of F starting at x and ending at y.

In Chapter 5 we will construct an application β which associates a barcode to triplets
pG,A, iq where G is an oriented graph on the set of verticesX equipped with an action func-
tion A defined on X, meaning that for every edge e of G from x to y we have Apxq ą Apyq,
and an index function i : X Ñ Z.

In Chapter 6, we will consider the barcode βpGpFq, Af , indpF , ¨qq, denoted βF , where
Af is the action function of f and indpF , ¨q the index function induced by F and prove
some useful properties.

We will prove in Chapter 8 the following result.

Theorem 1.2.4. The barcode βF does not depend on the choice of F and only depends
on the maximal unlinked set of fixed points X.

Third construction
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To prove Theorem 1.2.4 we will construct another barcode associated to X as follows.

In Chapter 7, we will introduce an order on the fixed points of X. For two fixed points
x, y P X we will say that x ą y if there exists an oriented path γ from x to y of which
any lift rγ on the universal cover D2 of ΣzX is a Brouwer line for the natural lift rf of f ,
meaning that rγ is the boundary of an attractor of rf . In the same ideas, we associate to
this order a graph Gpąq whose set of vertices is equal to X and for every couple of vertices
x and y there is an edge from x to y if x ą y.

We will consider the barcode βą “ pGpąq, Af , indpI, ¨qq which depends only on X and
we will prove the following result in Chapter 8.

Theorem 1.2.5. For every foliation F positively transverse to the isotopy I we have

βą “ βF .

In the same chapter, we will prove the following result which enlighten the link between
the barcode associated to a maximal set of fixed points and the first construction in a more
generic case.

Theorem 1.2.6. Let us consider a Hamiltonian homeomorphism f on a compact surface
Σ whose set of fixed points is finite, unlinked, and such that each fixed point x P Fixpfq is
not degenerate.
We consider a maximal isotopy I such that SingpIq “ Fixpfq then for a foliation F P

FgenpIq we have
BgenpFq “ βF .

In fact, Theorems 1.0.3, ?? and 1.0.4 will be consequences of the two previous theorems.
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Chapter 2

Preliminaries

2.1 Morse Homology

We give a quick presentation of Morse homology, largely inspired by the presentation of
M. Audin and M. Damian in [3].

We fix a n-dimensional compact smooth manifold M . For a function F : M Ñ R, a
point x is said to be a critical point if dFx “ 0. The function F is said to be a Morse
function if each critical point x of F is non degenerate, i.e. D2Fx is non degenerate.

The local theory of critical points of Morse functions is well understood and we have
the following lemma.

Lemma 2.1.1. Let x P M a critical point of a Morse function F : M Ñ R. There exists
a neighborhood U of x and a diffeomorphism ψ : pU, xq Ñ pRn, 0q, called a Morse chart,
such that

F ˝ ψ´1px1, ..., xnq “ F pxq ´
i
ÿ

j“1

x2
j `

n
ÿ

j“i`1

x2
j .

The integer i is called the Morse index, denoted indpF, xq, of the critical point x and
does not depend on the choice of the diffeomorphism ψ. We denote by CritipF q the set of
critical points of F of index i.

Let us consider a Morse function F : M Ñ R. A pseudo gradient vector field adapted
to F is a vector field X on M such that for all x PM we have dFxpXxq ď 0 with equality
if and only if x is a critical point of F and for a Morse chart near a critical point of F , the
vector field X is equal to the opposite of the gradient vector of F for the canonical metric
on Rn. That is to say that, in local coordinates, we have

X “

i
ÿ

j“1

2xj
B

Bxj
´

n
ÿ

j“i`1

2xj
B

Bxj
.

Notice that such a vector field always exists. If we denote by φs the flow of X, for x a
critical point of F we define its stable manifold to be

W spxq “

"

y PM | lim
sÑ`8

φspyq “ x

*
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and its unstable manifold to be

W upxq “

"

y PM | lim
sÑ´8

φspyq “ x

*

.

Those manifolds satisfy dimpW upxqq “ codimpW spxqq “ indpF, xq.
Let us consider a pseudo gradient vector field X adapted to a Morse function F : M Ñ

R. We say that X satisfies the Smale condition if all stable and unstable manifolds of its
critical points meet transversely.

Moreover Smale’s Theorem assures that we can find a vector field Y on M C1-close to
X which satisfies the Smale condition.

Let us describe the Morse chain complex C˚pF q of a Morse function F : M Ñ R and
a pseudo gradient X of F on M which satisfy the Smale condition. The ith group of the
chain complex Cipfq is given by

Cipfq “

$

&

%

ÿ

yPCritipfq

λy ¨ y, λy P Z{2Z

,

.

-

.

We define the differential map BX : Cipfq Ñ Ci´1pfq as follows. For two critical points
x` and x´ of F we define the set

Mpx´, x`;F,Xq “

"

x PM | lim
tÑ˘8

φtpxq “ x˘

*

.

We have that Mpx´, x`;F,Xq – W upx´q XW spx`q, so the transversality condition
assures that dimpMpx´, x`;F,Xqq “ indpF, x´q ´ indpF, x`q.

For all c P R, if x is in Mpx´, x`;F,Xq then we have limtÑ˘8 φ
t`cpxq “ x˘. So it

gives a free and proper action of R on Mpx´, x`;F,Xq. Thus we can define the quo-
tient xMpx´, x`;F,Xq ofMpx´, x`;F,Xq by this action. The dimension of the manifold
xMpx´, x`;F,Xq is equal to indpF, x´q ´ indpF, x`q ´ 1.

For all critical points x´ of F of index i we define

BXpx´q “
ÿ

x`PCriti´1

npx´, x`;F,Xq ¨ x`,

where npx´, x`;F,Xq denotes the cardinal of xMpx´, x`;F,Xq modulo 2.

Thus we have to verify that BX ˝ BX “ 0. First, for x P Criti`2pF q we compute

BX ˝ BXpxq “
ÿ

zPCritipF q

ÿ

yPCriti`1pF q

pnpx, y;F,Xq ˆ npy, z;F,Xqq ¨ z

To prove that the previous sum is zero it suffices to prove that given two critical points,
x of index i` 2 and z of index i the sum

ÿ

yPCriti`1pF q

npx, y;F,Xq ˆ npy, z;F,Xq (2.1)
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is zero. This number equals the cardinal of the union
ď

yPCriti`1pF q

xMpx, y;F,Xqq ˆ xMpy, z;F,Xqq.

This union is a set of points and the idea is to prove that it is the boundary of a manifold
of dimension 1 which is an even number of points. We introduce the concept of broken
gradient trajectories.

Definition 2.1.2. A broken gradient trajectory between two critical points x´ and x` is a
family px1, ..., xpq of points such that there exists a sequence py1, ..., yp`1q of critical points
of F satisfying

1. for all i, xi P xMpyi, yi`1;F,Xq

2. y1 “ x´ and yp`1 “ x`.

For two critical points x and z we denote Ě

yMpx, z;F,Xq the space of broken gradient
trajectories from x to z. We have the following two theorems.

Theorem 2.1.3. The space Ě

yMpx, z;F,Xq is compact for all critical points x and z.

The topology on Ě

yMpx, z;F,Xq is induced by the topology onM . It admits a countable
fundamental system of open neighborhoods and the compactness is proved using sequences.
We refer to [3] for more details.

Theorem 2.1.4. Let us consider px, y, zq P Criti`1pF q ˆ CritipF q ˆ Criti´1pF q, x1 P
xMpx, y;F,Xq and x2 P xMpy, z;F,Xq. There is a continuous embedding ψ, differentiable
on the interior of its definition domain, from an interval r0, δq, δ ą 0 to a neighborhood of
px1, x2q in Ě

yMpx, z;F,Xqq such that

1. ψp0q “ px1, x2q PĚyMpx, z;F,Xq,

2. ψpsq P xMpx, z;F,Xq for all s ‰ 0.

Moreover, for any sequence pxnqnPN in xMpx, z;F,Xq converging to px1, x2q and for n large
enough, xn lies in the image of ψ.

With some properties about the index, we obtain that

ď

yPCritipF q

xMpx, y;F,Xq ˆ xMpy, z;F,Xq “ BĚyMpx, z;F,Xqq,

where px, y, zq is defined as in the above theorem. Moreover, ĚyMpx´, x`;F,Xqq is a one
dimensional manifold with boundary. His boundary is an even number of points and hence
we obtain that B2

X “ 0.
The Morse homolgy of a Morse function F will be denoted HM˚pF q and HMt

˚pF q will
refer to the naturally filtered Morse homology induced.
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Remark 2.1.5. There is an important fact that we will use in the construction of barcodes
and persistence modules: given a Morse function F : M Ñ R and a pseudo gradient vector
field adapted to F , the value of F decreases along the flow of a point. Which means that,
for every non critical point x we have

F p lim
sÑ´8

φspxqq ě F p lim
sÑ`8

φspxqq.

If we consider a Morse function F of a surface Σ then there are three categories of
critical points of F , the critical points of index 0 called the sinks, corresponding to the
local minimum, those of index 1 called the saddle points and those of index 2 called the
sources, corresponding to the maximum local.

2.2 Symplectic geometry

For the remainder of this section, we consider a connected symplectic surface pΣ, ωq such
that π2pMq “ 0 and where ω is a 2-form which is closed and nondegenerate. A symplectic
diffeomorphism is a diffeomorphism f : Σ Ñ Σ such that f˚ω “ ω.

2.2.1 Hamiltonian diffeomorphisms

A Hamiltonian function on M is a time dependent function

H : S1 ˆM Ñ R.

The Hamiltonian function generates a Hamiltonian vector field XH defined by the equation

dHt “ ωpXH , ¨q,

where we denote Htpxq “ Hpt, xq. The flow pftqtPr0,1s of this vector field is called the
Hamiltonian isotopy generated by H. A Hamiltonian diffeomorphism is a symplectomor-
phism that can be written as the time 1 map of a Hamiltonian isotopy.

We consider two Hamiltonian diffeomorphisms f and g on a symplectic manifold pM,ωq.
We denote H : S1 ˆM Ñ R and G : S1 ˆM Ñ R two Hamiltonian functions such that
f and g are the time-one map of the induced Hamiltonian flows pftqtPr0,1s and pgtqtPr0,1s.
Then the Hamiltonian K : S1 ˆM Ñ R given by

Ktpzq “ Ht `Gt ˝ f
´1
t pzq,

induces a Hamiltonian flow such that f ˝g is its time-one map. Moreover, the Hamiltonian
H̄ : S1 ˆM Ñ R defined by

H̄tpzq “ ´Htpf
tpzqq,

induces a Hamiltonian flow such that f´1 is its time-one map.

Hence the set of Hamiltonian diffeomorphisms of a symplectic manifold is a group that
we denote HampM,ωq.
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2.2.2 Hamiltonian Action

Let us consider pM,ωq a symplectic manifold and H : RˆM Ñ R a Hamiltonian function
which is periodic in t and satisfies Ht`1 “ Ht for all t P R. We denote pφtqtPR the Hamil-
tonian flow defined by H.

We consider a contractible loop γ “ pγptqqtPS1 in M and we denote by Ω the set of
loops in M . We can consider the expression

AHpγq “ ´

ż

D
u˚ω `

ż 1

0
Htpγptqqdt,

where u is an extension of γ : S1 Ñ M to the disk, that is, a map u : D “ tz P C||z| ď
1u ÑM such that upe2iπtq “ γptq.

The integral does not depend on the choice of the extension u. Indeed if we consider
another extension v then

ż

D
u˚ω ´

ż

D
v˚ω “

ż

S2
w˚ω,

where w is defined by gluing the two disks along their common boundary. Since we assume
that π2pMq “ 0 we have that the previous equation is equal to zero.

The function AH will be called the action function and satisfies the following property.

Proposition 2.2.1. A loop is a critical point of AH if and only if t ÞÑ γptq is a 1 periodic
solution of the Hamiltonian system 9γptq “ Xtpγptqq.

Let us sketch the proof. For a loop γ P Ω, the tangent space TγΩ at γ consists of
the smooth vector fields ξ P C8pγ˚TMq along γ satisfying ξpt ` 1q “ ξptq. Then the
computation of the action function at γ in the direction of ξ gives

dAHpγqξ “

ż 1

0
tωp 9γ, ξq ` dHtpγptqqrξsudt,

which vanishes for every ξ P TγΩ if and only if the loop γ is a solution of the Hamiltonian
system

9γptq “ Xtpγptqq.

The periodic solutions of the flow induced by H will be denoted PH .

2.2.3 Floer Homology

We sketch the construction of the Floer homology in this section. There are many difficul-
ties in making this construction and the purpurse of this section is only to give ideas of how
Floer homology works. Thus, we may ignore some of these difficulties to set an understand-
able and short introduction to Floer homology. The section is inspired by Audin-Damian
[3] and Hofer-Zehnder [40] presentations.
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Let us consider a symplectic manifold pM,ωq and let us choose an almost complex
structure J on M compatible with ω. The almost complex structure J is a smooth endo-
morphism of TM , such that for all x PM , Jx P LpTxM,TxMq satisfies J2

x “ ´1 and such
that

gpξ, ηq “ ωpξ, Jxηq, η, ξ P TxM

defines a Riemannian metric g onM . We denote ∇H the gradient of H onM with respect
to the x-variable in the metric g. Note that we have ∇H “ ´JXH .

The crucial objects are the solutions u : R ˆ S1 Ñ M of the gradient flow equation
(also called the Floer equation)

Bu

Bs
` Jpuq

Bu

Bt
`∇Hpt, uq “ 0. (2.2)

We denote by M the set of "bounded solutions" of equation 2.2. This set is defined
as the set of smooth solutions u : Rˆ S1 ÑM of equation 2.2 which are contractible, and
have finite energy, i.e. such that the number

Epuq “
1

2

ż `8

´8

ż 1

0

#

ˇ

ˇ

ˇ

ˇ

Bu

Bs

ˇ

ˇ

ˇ

ˇ

2

`

ˇ

ˇ

ˇ

ˇ

Bu

Bt
´XHpt, uq

ˇ

ˇ

ˇ

ˇ

2
+

dsdt (2.3)

is finite. Floer proved in [29] that the spaceM has a structure similar to the set of broken
trajectories defined in section 2.1. The group R acts naturally onM by shifting ups, tq in
the s direction which defines a continuous flow onM. Moreover, for every bounded orbit
u PM there exists a pair x, y P PH such that u is a connecting orbit from y to x, i.e.,

lim
sÑ´8

ups, tq “ yptq, lim
sÑ`8

ups, tq “ xptq, (2.4)

the convergence being uniform in t as |s| Ñ 8 and Bu
Bs converging to zero again uniformly

in t. Given two periodic solutions x, y P PH we denoteMpy, xq the set of solutions u PM
satisfying the asymptotic boundary conditions 2.4. Thus we have

M “
ď

y,xPPH

Mpy, xq.

For two critical points y, x, the set Mpy, xq is an invariant subspace. The compactness
can be formulated analogously to the finite dimensional Morse theory that we developed
in section 2.1. We have the following proposition of Schwarz book [?].

Proposition 2.2.2. Let us consider a sequence punqnPN PMpy, xq. Up to a subsequence,
the sequence punqnPN satisfies the following property: there is a sequence sjn P R of times,
j “ 1, 2, ...,m, such that unps ` sjnq converges together with all derivatives uniformly on
compact sets to solutions uj P Mpxj , xj´1q where xj P PH for j “ 0, ...,m, with x0 “ x
and xm “ y.

We describe the previous proposition by the following Figure 2.1.
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Figure 2.1: illustration of proposition 2.2.2

One may prove using Fredholm theory in the appropriate functional analytic setting
that for a "generic" choice of the pair pH,Jq the sets Mpy, xq are smooth and finite di-
mensional manifolds such that the dimension of a set Mpy, xq is equal to the difference
indCZpyq ´ indCZpxq, where indCZpxq is the Conley-Zehnder index of x whose definition
will be recalled in section 2.2.5.

Then we can define the homology groups associated to a pair pH,Jq on pM,ωq. The
grading of the chain complex pCkqkPZ is given by the Conley-Zenhder index that we define
later in section 2.2.5 and for all k P Z we have

Ck “
à

tZ{2Z ¨ x|x P PH & indCZpxq “ ku,

where PH is the set of non degenerate contractible periodic orbits of H.

If we consider a pair y, x P PH such that indCZpyq´indCZpxq “ 1 thenMpy, xq is a one-
dimensional manifold and more precisely has finitely many components, each component
consists of a connecting orbit together with all its translates by the time s shift. We can
now define the differential map Bk : Ck Ñ Ck´1 for y P PH of index k as follows.

Bky “
ÿ

xPPH |indCZpxq“k´1

npy, xqx,

where npy, xq is the number of connected components ofMpy, xq counted modulo 2.

Floer proved that Bk ˝ Bk`1 “ 0, for each k P Z. We explain the idea of the proof.
Assume that for three elements x P Ck`1, y P Ck and z P Ck´1 there is a connexion
u in Mpx, yq and a connexion v in Mpy, zq. We may view the pair pu, vq as a "broken
trajectory" connecting x with z. In this case the set Mpx, zq has dimension two. Floer
proved that by a pertubation argument called the gluing method [29] that there exists a
unique one parameter family of connexions inMpx, zq. By taking the quotient by the R-
action of the time s-shift one finds a connected 1-dimensional manifold without boundaries
of unparametrized orbits which represents one component ofMpx, zq. Such a manifold is
either a circle or an interval with two ends. By Proposition 2.2.2 each end converges in a
suitable sense to a well-defined broken trajectory pu1, v1q PMpx, y1qˆMpy1, zq for some y1 P
Ck. One may prove by the same gluing arguments that there is a correspondence between
the "broken trajectories" and the ends of connected component of Mpx, zq. Thus the 1-
dimensional manifoldMpx, zq{R has an even number of ends and the broken trajectories
between x and z occur in pairs. We obtain that
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Bk ˝ Bk`1pxq “
ÿ

indCZpzq“k´1

¨

˝

ÿ

indCZpyq“k

npx, yqnpy, zq

˛

‚z

is equal to 0 modulo 2.

z

x

yy1

u

v

u1

v1

‚

‚

‚‚

Figure 2.2

We can define the Floer homology groups pHFkpM,H, JqqkPZ by

HFkpM,H, Jq “ KerpBkq{ImBk`1.

Remark 2.2.3. Notice that the energy of a solution u PMpy, xq is equal to Epuq “ AHpyq´
AHpxq and is positive. We deduce that the action function AH decreases along the solution
u. We can compare this result to Remark 2.1.5 where a Morse funtion F onM is decreasing
along the solutions of a pseudo gradient vector field.

2.2.4 Filtered Floer Homology

Let us consider a non-degenerate Hamiltonian function H on a symplectic manifold pM,ωq
which satisfies the hypothesis of the previous section 2.2.3 and let us fix J an almost
complex structure on M . We use the same notation as in Section 2.2.3 to define the
filtered Floer homology of H from the Floer homology of H.

We consider the natural filtered chain complex pCtkqkPZ,tPR where Ctk “
À

tZ{2Z ¨
x|x P PH , indCZpH,xq “ k, AHpxq ă tu and the natural filtered differential application
Btk : Ctk Ñ Ctk´1 defined as the restriction of Bk on Ctk.

The filtered chain complex pCtk, B
t
kqkPZ,tPR induces an homology denoted pHFt˚qtPR. This

homology is referred to as the filtered Floer homology of the Hamiltonian H. One may
prove that the filtered Floer homology of H does not depend on the choice of the almost
complex structure J on M , see [3] for example.

We have the following property.

Proposition 2.2.4. We consider two Hamiltonian flows pφtH0
qtPr0,1s and pφtH1

qtPr0,1s of
two Hamiltonian functions H0 and H1 on S1 ˆM . Let us suppose that pφtH0

qtPr0,1s and
pφtH1

qtPr0,1s are homotopic relative to the endpoints in HampM,ωq. Then there exists a
constant c P R such that

HFt˚pH0q “ HFt`c˚ pH1, 1q,@t P R.
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2.2.5 Conley-Zehnder index and Maslov index

The Conley-Zehnder index is an important tool in the definition of Barcodes and we will
discuss some properties of this index in our constructions. We give a short version of the
definition although we will not use it directly.

Given a Hamiltonian function H of a symplectic manifold pM2n, ωq we want to define
the Conley-Zehnder index of any contractible 1-periodic solution xptq of 9xptq “ Xtpxq.

We consider the symplectic manifold pR2n, ω0q where ω0 is the standard symplectic
form on R2n written in the coordinates z “ px1, ..., xn, y1, ..., ynq P R2n as follows

ω0 “

n
ÿ

i“1

dxi ^ dyi.

We denote J0 the 2nˆ 2n matrix

J0 “

ˆ

0 ´1n
1n 0

˙

,

which represents a rotation by π{2 and satisfies J2
0 “ ´12n. We denote the group of

symplectic matrices by

Sppnq “ tM P R2n ˆ R2n|MTJ0M “ J0u,

where MT is the transpose matrix of M . We also denote SPpnq the set of paths γ in Sppnq
from id to a matrix A which do not have eigenvalue 1.

Let us consider a non degenerate orbit x. There are two steps to compute the index of
the critical point x. We associate to the orbit a path ψ : t ÞÑ Aptq of matrices in Spp2nq.
Then to a path ψ we associate an integer which is the Conley-Zenhder index of x.

First step

We fix the orbit xptq “ φtpxp0qq then we can choose a family of symplectic bases, see
[3] for example, Zptq “ pZ1ptq, ..., Z2nptqq of TxptqM that depends smoothly on t. For every
t P R, we can consider the matrix Aptq of the linear map Txp0qφ

t in the bases Zp0q and
Zptq and we obtain a path ψ : tÑ Aptq such that Ap0q “ id and such that Ap1q does not
have eigenvalue 1 because the orbit is supposed to be nondegenerate.

Second step

Definition 2.2.5. Let ρ : Sppnq Ñ S1 be the continuous map defined as follows. Given
A P Sppnq, we consider its positive eigenvalues tλiu. For an eigenvalue λ “ eiφ P S1zt˘1u,
let m`pλq be the number of positive eigenvalues of the symmetric non degenerate 2-form
Q defined on the generalized eigenspace Eλ by

Q : Eλ ˆ Eλ Ñ R : pz, z1q Ñ ωpz, z̄1q.

Hence we have
ρpAq “ p´1q

1
2
m´

ź

λPS1zt˘1u

λ
1
2
m`pλq, (2.5)
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where m´ is the sum of the algebraic multiplicities mλ “ dimCEλ of the real negative
eigenvalues.

Theorem 2.2.6. The map ρ : Sppnq Ñ S1 satisfies the following properties:

1. determinant: if A P Upnq “ Sppnq XOp2nq, then

ρpAq “ detCpX ` iY q, where A “
ˆ

X ´Y
Y X

˙

.

2. invariance: ρ is invariant under conjugation, i.e. for all B P Sppnq we have ρpBAB´1q “

ρpAq;

3. normalisation: ρpAq “ ˘1 for matrices which have no eigenvalue on the unit circle;

4. multiplication: ρ behaves multiplicatively with respect to direct sums e.g if we consider
A P Sppmq and B P Sppnq then we have

ρp

ˆ

A 0
0 B

˙

q “ ρpAqρpBq.

Moreover, the set Sp˚pnq “ tA P Sppnq|detpA ´ idq ‰ 0u has two connected compo-
nents. There are the connected component Sp´pnq “ tA P Sppnq|detpA ´ idq ă 0u which
contains the matrix ´id, denoted W´, and the connected component Sp`pnq “ tA P

Sppnq|detpA ´ idq ą 0u which contains the matrix diagp2, 1{2,´1, ...,´1q, denoted W`.
Notice that any loop in Sp˚pnq is contractible in Sppnq.

Then any path ψ : r0, 1s Ñ Sppnq in SPpnq such that ψp1q is in Sp˚pnq can be extended
to a path ψ̃ : r0, 2s Ñ Sppnq such that

1. rψptq “ ψptq for t ď 1;

2. rψptq is in Sp˚pnq for any t ě 1;

3. rψp2q P tW˘u.

Since pρpidqq2 “ 1 and pρpW˘qq2 “ 1 we have that ρ2 ˝ rψ : r0, 2s Ñ S1 is a loop in S1.
Moreover one may prove that its degree does not depend on the extension rψ of ψ.

Definition 2.2.7. The Maslov index of an element ψ of Sppnq is defined by:

µM : Sppnq Ñ Z | ψ ÞÑ degpρ2 ˝ ψ̃q, (2.6)

where ψ̃ is an extension of ψ as above.

Then we define the Conley-Zendher index of a critical point x of H as the Maslov index
of the path of symplectic matrices associated to x in the first step.

Remark 2.2.8. If we suppose that the Hamiltonian diffeomorphism f is given by the 1-time
map flow of an autonomous Hamiltonian function H : M Ñ R which is C2-close to the
identity then the Conley-Zehnder index of a fixed point x of f is equal to the Morse index
of x where H is seen as a Morse function on M . One may refer to [68] for more details.
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2.3 Dynamical systems

From now we consider a connected, compact and oriented surface Σ without boundary. Let
HomeopΣq be the space of homeomorphisms of Σ equipped with the topology of uniform
convergence on Σ. For f P HomeopΣq, Fixpfq represents the set of fixed points of f .

2.3.1 Isotopies and maximal Isotopies

An isotopy is a continuous path t ÞÑ ft from r0, 1s to HomeopΣq. We say that f P HomeopΣq
is isotopic to the identity if there exists an isotopy I “ pftqtPr0,1s such that f0 “ id and
f1 “ f . We denote by Homeo0pΣq the set of those homeomorphisms.

Given an isotopy I “ pftqtPr0,1s from id to f , we can extend it to an isotopy defined on
R by the periodic relation ft`1 “ ft ˝ f1. We define the set of singularities SingpIq of I as
follows.

SingpIq “ tx P Σ| @t P r0, 1s, ftpxq “ xu.

The complement of SingpIq in Σ is called the domain of I and denoted DompIq.

For a point z P Σ, the arc γ : r0, 1s Ñ Σ where for each tP r0, 1s, γptq “ ftpzq is
called the trajectory of z along the isotopy I. For every n ě 0, we denote by γnpzq the
concatenation of the trajectories of z, fpzq, ..., fn´1pzq.

We fix a homeomorphism f P Homeo0pΣq. A set X Ă Fixpfq is say to be unlinked if
there exists an isotopy I “ pftqtPr0,1s from id to f such that X is included in the set of
singularities of I.
We denote by Ipfq the set of couples pX, Iq such that I is an isotopy from id to f and
X Ă SingpIq. The set Ipfq is naturally equipped with a pre-order ď, where

pX, Iq ď pX 1, I 1q,

if X Ă X 1 and for each z P ΣzX, its trajectory along I 1 and I are homotopic in ΣzX.
The couple pX 1, Iq is called an extension of pX, Iq. An isotopy I P I is called a maximal
isotopy in I if the couple pSingpIq, Iq is a maximal element of pI,ďq.

A recent result by F. Béguin, S. Crovisier and F. Le Roux [8] asserts that for a home-
omorphism f P Homeo0pΣq isotopic to the identity there always exists a maximal isotopy
(a weaker result was previously proved by O. Jaulent [44]). We will often use Corollary
1.3 of [8] which we write as the following theorem:

Theorem 2.3.1. Let us consider f P Homeo0pΣq. For each element pX, Iq P Ipfq there is
a maximal element pX 1, I 1q P Ipfq such that pX 1, I 1q is an extension of pX, Iq.

In the case of the 2-sphere S2 we have the following result, which can be found in [50],
about the homotopy classes of isotopies of an orientation preserving homeomorphism f of
the sphere S2. We consider the isotopy R8 “ prtqtPr0,1s where rt is the rotation of angle
2πt i.e rtpr, θq “ pr, θ ` 2πtq in radial coordinates. The isotopy extends into an isotopy
R2 \ t8u on the sphere. For z P S2, we choose an orientation preserving homeomor-
phism hz : R2 Ñ S2ztzu and we define the isotopy Rz “ hz ˝ R8 ˝ h

´1
z . If we consider
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two points z and z1 of the sphere we choose an orientation preserving homeomorphism
hz,z1 : R2 Ñ S2ztzu such that hz,z1p0q “ z1 and we define the isotopy Rz,z1 “ hz,z1˝R8˝h

´1
z,z1

which fixes the points z and z1.

Proposition 2.3.2. Let us consider an orientation preserving homeomorphism f of the
sphere S2.

1. For each fixed point z P Fixpfq, the set of isotopies from id to f which fix z is not
empty. For two such isotopies I and I 1, there exists a unique integer k P Z such that
I 1 is homotopic to RkzI relatively to tzu.

2. If f has at least two fixed points, then for each couple pz, z1q of distinct fixed points the
set of isotopies from id to f which fix z and z1 is not empty. For two such isotopies,
there exists a unique integer k P Z such that I 1 is homotopic to Rkz,z1I relatively to
tz, z1u.

3. If f has at least three fixed points, then for each triplet pz, z1, z2q of distinct fixed
points the set of isotopies from id to f which fix z, z1 and z2 is not empty. All those
isotopies are homotopic relatively to tz, z1, z2u.

2.3.2 Lefschetz index

For a homeomorphism f P HomeopΣq and an isolated fixed point x of f , we define the
Lefschetz index indpf, xq of x as follows. let U be a chart centered at x and we denote by
Γ a small oriented circle in U around x. For Γ sufficiently small, the map

z ÞÑ
fpzq ´ z

||fpzq ´ z||
,

is well defined on Γ and we denote by indpf, xq the degree of this map.

2.3.3 Linking number

Let us consider an orientation preserving homeomorphism f of the plane isotopic to the
identity and I “ pftqtPr0,1s an isotopy from id to f . Let us suppose that there exists a
periodic point z˚ of f of period q ě 1. If z is a fixed point of f , the quotient of the map

t ÞÑ
ftpz

˚q ´ ftpzq

||ftpz˚q ´ ftpzq||
,

defines a continuous function of the circle R{qZ to S1. The degree of this application
is called the real linking number of z˚ and is denoted by lI,z˚pzq. It depends only on
the homotopy class of the isotopy I. For another isotopy I 1 of f there exists k P Z
such that I 1 is homotopic to RkzI, where Rkz was defined in section 2.3.1. We verify that
lI 1,z˚pzq “ lI,z˚pzq ´ kq. Then the linking number Lf,z˚pzq “ lI,z˚pzq ` qZ P Z{qZ is
independent on the choice of the isotopy.
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2.3.4 Rotation vectors

Let f P Homeo0pΣq be the time one map of an isotopy I “ pftqtPr0,1s from the identity to
f . Among the many ways to define the rotation vector, we restrict ourselves to positively
recurrent points. A point z P Σ is a positively recurrent point of f if for each neighborhood
U Ă Σ of z there exists an integer n P N such that fnpzq P U . The integer n ą 0 which
is minimal for the previous property is called the first return time and is denoted by τpzq.
The set of positively recurrent points is denoted by Rec`pfq.

Let z P Σ be a positively recurrent point. Fix a 2-ball U Ă Σ containing z and let
pfnkpzqqkě0 be a subsequence of the positive orbit of z obtained by keeping the iterates
of z by f that are in U . For any k ě 0, choose an arc γk in U from fnkpzq to z. The
homology class rΓks P H1pΣ,Zq where Γk is the concatenation of γnk´1pzq and γk do not
depend on the choice of γk. We say that z has a rotation vector ρpzq P H1pΣ,Rq if

lim
lÑ`8

1

nkl
rΓkls “ ρpzq,

for any subsequence pfnkl pzqqlě0 which converges to z. Notice that the linking number of
a periodic point z˚ of an orientation preserving homeomorphism of the plane is equal to
the rotation number of z˚ in R2ztzu.

In the case where f preserves a Borel probability measure µ, one applies Birkhoff’s
ergodic theorem to the first return map in U and proves that µ-a.e. point z is positively
recurrent and has a rotation vector ρpzq. Moreover, the measurable map ρ is bounded,
and one may define the rotation vector of the measure

ρpµq “

ż

Σ
ρ dµ P H1pΣ,Rq.

We say that f P Homeo0pΣq is a Hamiltonian homeomorphism if it preserves a Borel
probability measure whose support is the whole surface and rotation vector is zero. We
denote by HampΣq the set of Hamiltonians on Σ.

2.3.5 Local isotopies and local rotation set

Let Σ be a connected oriented surface. We write f : pW, z0q Ñ pW 1, z0q for an orientation
preserving homeomorphism between two neighborhoods W and W 1 of z0 P Σ such that
fpz0q “ z0. Such a local homeomorphism f is called an orientation preserving local homeo-
morphism at z0. We recall the definition of local isotopies of Le Calvez [50]: a local isotopy
I “ pftqtPr0,1s from id to f is a continuous family of local homeomorphisms pftqtPr0,1s fixing
z0 such that

- each ft is a homeomorphism of a neigborhood Vt ĂW of z into a neighborhood V 1t ĂW 1

of z ;

- the sets tpz, tq P Σˆr0, 1s|z P Vtu and tpz, tq P Σˆr0, 1s | z P V 1t u are open in Σˆr0, 1s ;

- the map pz, tq ÞÑ ftpzq is continuous on tpz, tq P Σˆ r0, 1s | z P Vtu ;
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- the map pz, tq ÞÑ f´1
t pzq is continuous on tpz, tq P Σˆ r0, 1s | z P V 1t u ;

- we have f0 “ idV0 and f1 “ f |V1 ;

- for all t P r0, 1s, we have ftpz0q “ z0.

Let us consider a local orientation preserving homeomorphism f : pW, z0q Ñ pW 1, z0q

and I “ pftqtPr0,1s a local isotopy from id to f . We want to define the local rotation set of
the isotopy I at z0. Given two neighborhoods V Ă U of z0 included in W and an integer
n ě 1 we define

EpU, V, nq “ tz P U | z R V, fnpzq R V, f ipzq P U for all 1 ď i ď nu.

We define the rotation set of I relative to U and V by

ρU,V pIq “
č

mě1

ď

něm

tρnpzq | z P EpU, V, nqu Ă r´8,8s,

where ρnpzq is the average change of angular coordinate along the trajectory of z during
n iterates. We define the local rotation set of I to be

ρspI, z0q “
č

U

ď

V

ρU,V pIq Ă r´8,8s,

where V Ă U ĂW are neighborhoods of z0.

The local rotation set is an invariant of local conjugacy in the following sense: let us say
that an isotopy I 1 “ pf 1tqtPr0,1s is locally conjugated to I if there exists a homeomorphism
φ : W ÑW 2 between two neighborhood of z0 which preserves the orientation and fixes z0

such that for each t P r0, 1s we have f 1t “ φ ˝ ft ˝ φ
´1. For each neighborhoods V and U of

z0 such that V Ă U ĂW we have

ρU,V pIq “ ρφpUq,φpV qpφIφ
´1q.

In particular we deduce that
ρspIq “ ρspφIφ

´1q.

Let us consider a homeomorphism of the plane f isotopic to the identity which preserves
the orientation and fixes the origin and an isotopy I “ pftqtPr0,1s from id to f which fixes
the origin. Recall that R “ pRtqtPr0,1s is the isotopy of the rotation of angle 2π such that
Rtpzq “ ze2iπt for each z P R2 and t P r0, 1s. We have the following result about the local
rotation set.

Lemma 2.3.3. For each p P Z and q P Z we have

ρspR
pIqq “ qρspIq ` p.

We say that f satisfies the local intersection property at z0 if we have:

For each non contractible loop γ of W ztz0u we have fpγq X γ ‰ H. (P2.6)
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Example 2.3.4. Let us consider a fiber rotation hα : pr, θq Ñ pr, θ`αprqq on the plane where
α : p0,8q Ñ R is continuous and an isotopy I “ phtqtPr0,1s such that htpr, θq “ pr, θ`tαprqq
for t P r0, 1s. The local rotation set ρspIq of I at the origin is equal to the set of accumulation
points of α at 0.

F. Le Roux proved [56, 59] that a homeomorphism of the plane which preserves the
orientation and which fixes the origin has an empty local rotation set at 0 if and only if it
is locally conjugated to the following maps:

- the contraction z ÞÑ z
2 ,

- the expansion z ÞÑ 2z,

- a holomorphic function z ÞÑ e
2iπ p

q zp1` zqrq where q, r P N` and p P Z.

Remark 2.3.5. In particular, in the case where f is area-preserving, Gambaudo and Pécout
[34] proved that none of those above cases occurs, then the local rotation set is not empty.
Moreover, if we suppose that Fixpfq is finite, 0 is not accumulated by fixed points then
if the local rotation set is not empty it does not contain an integer in its interior. Notice
that the result holds if we suppose that f satisfies the local intersection property, meaning
that for each non contractible loop γ of W ztz0u we have fpγq X γ ‰ H.

The rotation number classify the homotopy classes of the isotopies at z0. Let us con-
sider a local orientation preserving homeomorphism f : pW, z0q Ñ pW 1, z0q of a surface Σ
such that fpz0q “ z0 and I “ pftqtPr0,1s a local isotopy from id to f which fix z0. Let us
consider a closed disk D Ă Σ containing z0 in its interior. For every point z P Dztz0u close
enough to z0, the trajectory of z0 along I is a loop included in Dztz0u. There exists an
integer k P Z such that this trajectory is freely homotopic in Dztz0u to pBDqk. The integer
k depends only on the choice of the isotopy I, it is the rotation number k “ ρpI, z0q of
I at z0. We consider the isotopy R8 defined in the previous section 2.3.1. The isotopy
R8 extends into an isotopy on the sphere R2 \ t8u and we have ρpR8,8q “ 1 while
ρpR8, 0q “ ´1. We refer to [50] for more details.

2.3.6 The blow-up at a fixed point

Let us consider f : pW, z0q Ñ pW 1, z0q an orientation preserving homeomorphism. We say
that f can be blown-up at z0, if we can "replace" z0 by a unit circle S1 and extend f |W ztz0u
continuously to a homeomorphism betweenW ztz0u\S

1 andW ztz0u\S
1, see [59] for more

details. In particular, when f is a diffeomorphism, the extension can be induced by the
map

v ÞÑ
Dfpz0qv

||Dfpz0qv||

on the space of unit tangent vectors.

Let us suppose that f can be blown-up at z0, is isotopic to the identity and is not
conjugate to a contraction or an expansion. We denote by h the extension of f on S1 and
by I “ pftqtPr0,1s a local isotopy of f . We choose a small disk D which contains z0 and we
consider the universal cover π : rD Ñ Dztz0u. We consider the isotopy p rftqtPr0,1s from id to
rf obtain by lifting I and we consider rh the lift of h to R which is a continuous extension
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of rf1. We define the blown-up rotation number ρpI, z0q P R to be the rotation number
of rh. J.-M. Gambaudo,P. Le-Calvez and E. Pécou [33] proved that the blown-up rotation
numbers does not depend on the choice of h.

Naturally we have the following property [59].

Proposition 2.3.6. Let us consider an isotopy I “ pftqtPr0,1s from id to a homeomorphism
of the plane f which preserves the orientation, fixes the origin and can be blown-up at 0.
If the local rotation set ρspIq is not empty then it is equal to the singleton tρpI, z0qu.

2.3.7 Positively transverse foliations

Let us consider an oriented topological foliation F on the complement of a compact set
X of a surface Σ. The set X will be called the set of singularities of F . An open flow
box of F is a couple pV, hq, where V is an open set of Σ and h : V Ñ p´1, 1q2 is an
orientation-preserving homeomorphism that sends the foliation F |V on the vertical folia-
tion oriented with y decreasing. Writing p1 : R2 Ñ R for the first projection, we say that
an arc γ : I Ñ Σ is positively transverse to the foliation F if for every t0 P I, there exists
an open flow-box pV, hq such that γpt0q P V and the map t ÞÑ p1phpγptqqq defined in a
neighborhood of t0 is strictly increasing.

γ

Figure 2.3: An example of a flow box

For z P Σ, we write φz the leaf passing through z and φ`z for the positive half-leaf
from z. We consider an isolated singularity x of the foliation F , we can define the index
indpF , xq of x for the foliation F as follows. We consider a sufficiently small open chart U
containing x and an orientation preserving homeomorphism h : U Ñ Dzt0u which sends
x to 0. We denote Fh the image of the foliation F |U by h and we consider a simple loop
Γ : S1 Ñ Dztxu, one may cover Γ by a finite family pViqiPJ of flow-boxes of the foliation
Fh included in Dzt0u. We denote by φ`Vi,z the positive half-leaf from z of the restricted
foliation Fh|Vi . We can find a continuous map ψ defined from the loop Γ to D1ztxu such
that ψpzq P φ`Vi,z for every i P J and any z P Vi. The map

θ Ñ
ψpΓpθqq ´ Γpθq

||ψpΓpθqq ´ Γpθq||
,

is well defined on Γ and indpF , xq is the degree of this map.

We say that a singularity x of an oriented foliation F is a sink (resp. source) if there
is a neighborhood V of x such that the omega-limit point (resp. the alpha-limit point)
of each leaf φ of F which is passing through V is equal to x. The sinks and sources of a
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foliation F have an index equal to 1. Let us draw an example of the neighborhood of a
sink on the left and a neighborhood of a source on the right of the following figure.

Figure 2.4: An example of a sink and a source of a foliation

We say that a singularity x of an oriented foliation F is a saddle point of the foliation
F if the foliation is locally homeomorphic to a foliation as the one on Figure 2.5, we refer
to [59] for more details on saddle points. A maximal connected union of leaves such that
their alpha (resp. omega) limit is equal to x is called an unstable (resp. stable) cone of x.
A saddle point has 1´ indpF , xq unstable cones and three stable cones which are alternated
in the cyclic order. In Figure 2.5 we draw an example of a foliation near a saddle point of
index ´2.

Figure 2.5

A leaf of an oriented foliation F whose alpha-limit point and omega-limit point are
distinct singularities of F will be called a connexion.

Let us consider f P Homeo0pΣq and a maximal isotopy I “ pftqtPr0,1s from the identity
to f . A foliation F is said to be positively transverse to the isotopy I if SingpIq “ SingpFq
and for every z P DompIq, the trajectory γpzq of z is homotopic in DompIq, relatively to
its endpoints, to a path γ which is positively transverse to the foliation F . The following
fondamental result of Le Calvez [49] asserts that for each maximal isotopy I there exists a
dynamically transverse foliation to the isotopy I.

Theorem 2.3.7. Let us consider a homeomorphism f P Homeo0pΣq and an isotopy
I “ pftqtPr0,1s from id to f , such that SingpIq is a maximal unlinked set of fixed points
of f . There exists a foliation F which is dynamically transverse to the isotopy I.

We denote by FpIq the set of foliations positively transverse to I. We will use the
following definition of gradient-like foliations.

37



Definition 2.3.8. A foliation F is said to be gradient-like if

• The number of singularities is finite.

• Every leaf defines a connexion.

• There is no closed leaf.

• There is no family pφiqiPZ{kZ, k ě 1 of leaves such that ωpφiq “ αpφi`1q, i P Z{kZ.

For the remaining of the thesis, most of the transverse foliations we will meet will be
gradient-like foliations. The notion of connexion will be generalized in chapter 7, but until
this chapter, a connexion will always refer to a leaf of a gradient-like foliation.

We refer to [49] for the proof of the following important properties.

Proposition 2.3.9. Consider a Hamiltonian homeomorphism of a surface Σ with a finite
number of fixed points then for each maximal isotopy I from id to f , a foliation F positively
transverse to I is gradient-like. Moreover we have

• indpF , xq ď 1 for every point x P SingpIq.

• indpF , xq “ 1 for every sink or source x P SingpIq

• indpF , xq “ indpf, xq for every saddle point x P SingpIq, where indpf, ¨q is the Lef-
schetz index.

• For every leaf φ P F , the action function Af , defined later, of f satisfies Af pαpφqq ą
Af pωpφqq.

For the remaining, we can keep in mind that, for a gradient-like foliation, there are
three kinds of singularities: sinks, sources and saddle points.

Remark 2.3.10. For a maximal isotopy I of a Hamiltonian homeomorphism f of a surface
Σ and a foliation F P FpIq, if Σ is not the sphere, then the index function indpF , ¨q defined
on SingpIq does not depend on the choice of F P FpIq and can be denoted indpI, ¨q.

Let us consider a gradient-like foliation F of a surface Σ and a leaf φ of F . By definition,
the omega-limit set (resp. the alpha-limit set) of φ exists and is equal to a singleton txu.
To simplify the notations, x will be called the omega-limit point also denoted ωpφq (resp.
the alpha-limit point also denoted αpφq) of φ.

2.3.8 Generalized Isotopies

In this section, we consider a Hamiltonian homeomorphism f of a compact surface Σ such
that Fixpfq is finite.

We consider the compactification Σ̂ “ rΣY t8u of rΣ into a 2-sphere.

Let us consider a maximal isotopy I of f on Σ and its natural lift rI on rΣ. The isotopy
rI has an infinite number of singularities but for a non zero integer k P Z˚ and a fixed
point rx of rf , Rk

rx
rI has a finite number of singularities and can be extended to an isotopy
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Î of a homeomorphism f̂ on Σ̂ which has a finite number of fixed points. The point at
infinity in Σ̂ becomes a fixed point of such a homeomorphism f̂ and its rotation number
for Î satisfies:

ρÎp8q “ ´k.

An isotopy Î from id to f̂ which is homotopic to Rk
rx,8

rI relatively to Σ̂ztrx,8u such that
the rotation number of 8 is equal to ´k is called a generalized isotopy of f . We denote
by Îk the set of couples pX, Îq where Î is a generalized isotopy of f such that ρÎp8q “ ´k
and X Ă SingpÎq. To simplify notations, we can consider Î P Îk which refers to the couple
pSingpÎq, Îq.

The set Îk is naturally equipped with a pre-order ď, where pX, Îq ď pX 1, Î 1q if 8 P

X Ă X 1 are unlinked sets of fixed points and for each z P Σ̂zX, its trajectory along Î 1 and
Î are homotopic in Σ̂zX. The couple pX 1, Îq is called an extension of pX, Îq. An isotopy
Î P Îk is called a maximal generalized isotopy in Îk if the couple pSingpÎq, Îq is a maximal
element of pÎk,ďq.

Lemma 2.3.11. Let us consider a generalized isotopy Î P Îk of f with k P Z˚,

#SingpÎq ď #Fixpfq ` 1,

and for each z P Fixpfq we have

#pSingpÎq X π´1pzqq ď 1.

Proof. By contradiction we prove the second inequality, the first one will follow.

Let us consider a generalized isotopy Î P Î such that there exists x P Fixpfq satisfying
#pSingpÎq X π´1pxqq ą 1 or #SingpÎq ě Fixpfq ` 2. We consider rI the isotopy from id
to f whose compactification is the isotopy Î. There exists two singularities rx and rx1 of Î
which are in π´1ptxuq. The linking number between rx and rx1 for the isotopy rI is equal to
zero.

We consider I 1 a maximal isotopy from id to f which fixes x and we denote rI 1 the
isotopy obtained by lifting I 1 on rΣ. We have that rI 1 is homotopic to R´k

rx
rI relatively to

Σ̂ztx,8u, see Proposition 2.3.2 for more details, and we have π´1ptxuq Ă SingprI 1q. So, the
linking number between rx and rx1 for the isotopy rI 1 is equal to zero but the linking number
between rx and rx1 for the isotopy R´k

rx
rI is equal to ´k. Hence we obtain our contradiction.

We deduce the inequality #SingpÎq ď #Fixpfq ` 1.

Lemma 2.3.12. Let us consider a maximal generalized isotopy Î P Îk of f where k P Z˚.
There exists a foliation F̂ on the 2-sphere such that F̂ is positively transverse to Î and
every foliation which is positively transverse to Î is gradient-like.

Remark 2.3.13. i. For such a foliation F̂ of a maximal generalized isotopy Î, the action
function is decreasing along the leaves of F̂ .

ii. The fixed point 8 is a source of F̂ if k ă 0 and a sink of F̂ if k ą 0.
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2.3.9 Intersection number

Let Γ and Γ1 be two oriented, transverse and simple closed curves on an oriented surface
Σ. The algebraic intersection number Γ ^ Γ1 is defined as the sum of the indices of the
intersection points of Γ and Γ1, where an index of an intersection point is `1 if the orien-
tation of the intersection agrees with the orientation of Σ and ´1 otherwise.

We keep the same notation Γ^ γ for the algebraic intersection number between a loop
Γ and a path γ when it is defined, for example, when γ is proper or when γ is a compact
path whose extremities are not in Γ. Similarly, we write γ^γ1 for the algebraic intersection
number of two path γ and γ1 when it is defined, for example, when γ and γ1 are compact
paths and the ends of γ (resp. γ1) are not on γ1 (resp. γ).

2.3.10 Action function of a Hamiltonian homeomorphism

In this section we define dynamically the action function of a Hamiltonian homeomorphism
f of a compact surface Σ with a finite number of fixed points. Notice that this definition ex-
tends the notion of action function defined in section 2.2.2 for Hamiltonian diffeomprhisms.

Let us consider two unlinked fixed points x, y P Fixpfq of f and an isotopy I “ pftqtPr0,1s
from id to f such that x, y P SingpIq. Let γ be a simple path from x to y and define the
map ρf,γ on Σ by ρf,γpzq “ γ ^ γpzq where γpzq is the trajectory of z under the isotopy I
and γ ^ γpzq is the intersection number between γ and γpzq. We define the difference of
action between y and x by

Af pxq ´Af pyq “

ż

Σ
ρf,γpzqdz, (2.7)

which does not depend on the choice of γ. Notice that in general for a homeomorphism f ,
the map ρf,γ is not integrable. In our case, f admits a finite number of fixed points and
one may prove that the previous integral exists, see [49].

Unfortunately, if we consider two fixed points x, y P Fixpfq they may not be unlinked.
The previous arguments fail and to define the action difference between y and x we have
to consider the universal cover of Σ. We denote by rΣ the universal cover of Σ, π : rΣ Ñ Σ
the covering map and for a homeomorphism f we set G˚ the group of automorphisms of
Σ which commute with the lift rf of f on Σ.

The following definition comes from a more general work of Wang [74]. The construc-
tion is more difficult, first we have to extend the linking number used in equation 2.7
then thanks to the work of Wang if the number of fixed points of f is finite then this link-
ing number exists and we can define the action function by integrating this linking number.

Extension of the linking number for a positively recurrent point

Let us consider f the time one map of an isotopy I “ pftqtPr0,1s on Σ and rf the time
1-map of the lifted identity isotopy rI “ p rftqtPr0,1s to the universal cover rΣ of Σ. For every
distinct fixed points rx and ry of rf there exists a non-equivariant isotopy rI1 from id to rf
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that fixes rx and ry.

Recall that the set of positively recurrent points is denoted by Rec`pfq.

We consider z P Rec`pfqzπptrx, ryuq and an open disk U Ă Σzπptrx, ryuq which contains
z. For each couple pz1, z2q P U2, we choose an oriented simple path γz1,z2 in U from z1 to
z2. We define the function rΦ by:

rΦ : π´1pRec`pfqq X π´1pUq Ñ π´1pRec`pfqq X π´1pUq

rz ÞÑ rf τpzqprzq,

where z “ πprzq and τpzq is the first return map in U . rΦ is the lifted function of the first
return map Φ define on the recurrent points of U by Φpzq “ f τpzqpzq where z P Rec`pfqXU .

For any rz P π´1pUq, write rU
rz the connected component of π´1pUq that contains rz. For

every j ě 1, recall that τjpzq “
řj´1
i“0 τpΦ

ipzqq. For every n ě 1, consider the following
curve in rΣ:

rΓn
rI1,rz

“ rI
τnpzq
1 przqrγ

rΦnprzq,rzn
,

where rzn P π
´1ptzuq X rU

rΦnprzq
, and rγ

rΦnprzq,rzn
is the lift of γΦnpzq,z which is contained in

rU
rΦnprzq

. We can define the infinite product

rΓn
rI1,z

“
ź

πprzq“z

rΓn
rI1,rz
.

In the annulus A
rx,ry we can see rΓn

rI1,z
as a multi-loop with finite homology. So, if we

consider rγ an oriented path in rΣ from rx to ry, the intersection number rγ ^ rΓn
rI1,z

is well

defined and does not depend on rγ nor the isotopy rI1 but depends on the open set U . We
have:

rγ ^ rΓn
rI1,z

“ rγ ^
ź

πprzq“z

rΓn
rI1,rz

“

n´1
ÿ

j“0

rγ ^ rΓj
rI1,rz
.

For n ě 1 we define the functions

Ln : ppFixp rfq ˆ Fixp rfqqzr∆q ˆ pRec`pfq X Uq Ñ Z,

by

Lnp rf ; rx, ry, zq “ rγ ^ rΓn
rI1,z

“

n´1
ÿ

j“0

L1p rf ; rx, ry,Φjpzqq,

where U Ă Σzπptrx, ryuq. Again, the function Ln depends on U but not on the choice of
γΦnpzq,z.

Action function

Definition 2.3.14. Let us consider z P Rec`pfqzπptrx, ryu. We say that the linking number
ip rf ; rx, ry, zq P R is defined if

lim
kÑ8

Lnkp
rf ; rx, ry, zq

τnkpzq
“ ip rf ; rx, ry, zq
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for any subsequence tΦnkpzqukě1 of tΦnpzquně1 which converges to z.

J. Wang proved that the linking number ip rf ; rx, ry, zq does not depend on U .

Let us consider µ P Mpfq such that µ is ergodic or the support of µ is the whole
surface Σ. In our particular case where I has a finite number of fixed points, the function
ip rf ; rx, ry, zq is µ-integrable and we define a function iµp rf ; rx, ryq as follows.

iµp rf ; rx, ryq “

ż

Σzπptrx,ryu
ip rf ; rx, ry, zqdµ.

Proposition 2.3.15. For any distinct fixed points rx, ry and rz of rf , we have

iµp rf ; rx, ryq ` iµp rf ; ry, rzq ` iµp rf ; rz, rxq “ 0.

So there exists a function lµ : Fixp rfq Ñ R defined up to an additive constant, such that

iµp rf ; rx, ryq “ lµp rf, ryq ´ lµp rf, rxq.

If f is a Hamiltonian homeomorphism then ρΣ,IpLebq “ 0 for each isotopy I from id
to f on Σ and we have the following result.

Proposition 2.3.16. If we suppose that ρΣ,Ipµq “ 0, iµp rf ; rx, T prxqq “ 0 for every rx P

Fixp rfq and every automorphism T P G˚ then there exists a function Lµp rf, ¨q defined on
Fixp rfq such that for every two distinct fixed points rx and ry of rf we have

iµp rf ; rx, ryq “ Lµp rf, πpryqq ´ Lµp rf, πprxqq.

The function Lµp rf, ¨q is called the action function defined on Fixpfq for the measure
µ. If µ “ Leb then the function Lµp rf, ¨q will be denoted Af .

Proposition 2.3.17. Let us consider a smooth diffeomorphism f of a surface Σ. The
action function Af is equal to the action function of section 2.2.2.

Action function along a leaf of a transverse foliation

In particular, if we consider a maximal isotopy I “ pftqtPr0,1s from id to f and a foliation
F positively transverse to I we can give a short proof of the last point of Proposition 2.3.9
stated as the following lemma.

Lemma 2.3.18. For every leaf φ P F we have Af pαpφqq ą Af pωpφqq.

Proof. We set x “ αpφq and y “ ωpφq. We give the ideas of the proof using Wang’s work.

Let us consider a small open disk U Ă ΣzX. For almost every point z P U we can define
τpzq the first return map. Meaning that τpzq is the first integer n ą 0 such that fnpzq P U .
We consider the loop Γpzq “ Iτpzq´1pzqγpzq where γpxq Ă U is a path which joins f τpzqpzq
to z. The algebraic intersection of Γpzq and φ does not depend on the choice of γ and is
well defined. We will denote δpzq “ Γpzq^φ the algebraic intersection number defined on U .
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There is a finite number of fixed points, so Wang proved that δ{τ is bounded and then
integrable. We can define the limit of Birkhoff’s average functions δ˚ and τ˚ of δ and τ .
One may prove that the function η “ δ˚{τ˚ is defined almost everywhere on U and does
not depend on the choice of U . So we obtain a function defined almost everywhere on
ΣzX such that, by the construction of Wang, its integral is equal to the action difference
between x and y. Thus, it is enough to prove that δpzq is positive and not zero to obtain
the result.

We consider the universal cover ĆΣzX of ΣzX, which can be identify as the open disk
D.

We fix a lift rφ of φ on D, hence δpzq is equal to the finite sum of the algebraic intersection
numbers of rφ and the lifts of Γpzq. Let us consider a lift rΓpzq of Γpzq whose algebraic
intersection number with rφ is not zero. Roughly speaking, rΓpzq is an oriented path going
from one side of Dzrφ to another. Moreover, rφ is a Brouwer line for rf , so rΓ is going from the
right hand side of rφ to the left hand side of rφ. Hence the intersection number rΓpzq^ rφ ą 0
and then we have δpzq ą 0.
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Chapter 3

Introduction to barcodes and persistence
modules

The notion of barcodes and persistence modules was used in topological data analysis, see
for example G. Carlsson in [15] or R. Ghrist in [35]. Barannikov already noticed the exis-
tence of a filtration of the Morse homology in [6] and we can find the notion of persistence
modules in Usher’s work [70, 71] but the barcodes have been introduced in symplectic
topology by Polterovich and Shelukhin [67]. The same year, without the terminology of
the barcodes Usher and Zang published some results about the persistent homology in [72].
Recently, the notion of barcodes appears as a great tool to study C0 symplectic geometry,
let us cite for example the work of Buhovski-Humilière-Seyfaddini [14], Jannaud [?] and
Le Roux-Viterbo-Seyfaddini [61].

Most of the following definitions and results are coming from [61]. One can also refer
to Chazal, De Silva, Glisse and Outdot’s book [16] or to [18].

Barcodes

Let us consider a special family of intervals B of the form ppaj , bjsqjPt1,...,nu, with ´8 ď
aj ď bj ď `8, where we allow trivial intervals of the form pa, as. We say that two families
are equivalent if removing all intervals of the form pa, as from them yields the same family.

Definition 3.0.1. A barcode B is an equivalence class of family of intervals B.

By convenience, we will often identify a list of intervals with the corresponding barcode.

Let a ď b, c ď d be four elements of RY˘t8}. We set dppa, bs, pc, dsq “ maxt|c´a|, |d´
b|u, with convention that dp8,8q “ 0. Note that if c “ d “ a`b

2 , then dppa, bs, pc, dsq “ b´a
2 .

Definition 3.0.2. Let B1, B2 be barcodes and take representatives B1 “ pI1
j qjPJ , B2 “

pI2
kqkPK . The bottleneck distance between B1, B2, denoted by dbotpB1, B2q, is the infimum

of the set of ε such that there is a bijection σ between two subsets J 1,K 1 of J,K with the
property that for every j P J 1, dpI1

j , I
2
σpjqq ď ε and all the remaining intervals I1

j , I
2
k for

j P JzJ 1, k P KzK 1 have length less than 2ε.
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We will denote Barcode the set of barcodes in the next sections.

Persistence module

Definition 3.0.3. A persistence module V is a family pVtqtPR of vector spaces equipped
with morphisms is,t : Vs Ñ Vt, for s ď t, satisfying:

1. For all t P R we have it,t “ id and for every s ď t ď u we have it,u ˝ is,t “ is,u,

2. There exists a finite subset F Ă R, often referred to the spectrum of V , such that is,t
is an isomorphism whenever s, t belong to the same connected component of RzF ,

3. For all t P R, lim
sÑt,săt

Vs “ Vt ; equivalently, for fixed t, is,t is an isomorphism for

s ă t sufficiently close to t.

Let us consider a persitence module pVtqtPR equipped with the morphisms pis,tqsďt. For
any t P R, there exists ε such that is,u : Vs Ñ Vu is an isomorphism if s, u P pt´ ε, ts or if
s, u P pt, t` εq. Choose t´ P pt´ ε, ts and t` P pt, t` εq and let jptq “ dimpKerpit´,t`qq `
codimpImpit´,t`qq. Notice that jptq is zero except for t in the spectrum of V. We say that
V is generic if jptq ď 1 for all t P R.

Functorial relations between the barcodes and the persistence modules

To establish the link between the previous objects we consider two functors as follows.

(i) Consider an interval I of the form pa, bs and define QtpIq “ Z{2Z, if t P I, and
QspIq “ t0u, if s R I. QspIq is a persistence module, with is,t equal to id if s, t P I
and 0 otherwise. For a set of intervals I for each t P R we define

QtpIq “
à

IPI
QtpIq.

(ii) We define a functor β from the set of generic persistence modules into the set of
barcodes which associate to a generic persistence module V “ pVsqsPR a barcode.
We denote pis,tqsďt the family of morphisms equipped with V. Let us consider the
set of t in the spectrum of V such that dimpKerpit´,t`qq “ 1 and label its elements
b1, ..., bn. For each bj , there exists a unique aj P R with the following property: Let
x P Vb´j

represents a non-zero element in Kerpit´,t`q, the element x is in the image
of ia`j ,b´j but x is not in the image of ia´j ,b´j . We label the remaining elements of
the spectrum of V by tc1, ..., cmu. The barcode βpVq consists of the list of intervals:
ppaj , bjs, pck,`8qq, where 1 ď j ď n and 1 ď k ď m.
One may prove that the functor β extends to the set of persistence modules, we refer
to r61s for more details.

The following theorem holds.

Theorem 3.0.4. The functors defined above satisfy the following properties.
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1. β ˝Q “ idBarcode.

2. β and Q are isometries for the interleaving distance (see next definition).

We define the interleaving distance.

Definition 3.0.5. Let V “ pVsqsPR and W “ pWsqsPR be two persistence modules, the
pseudo-distance dintpV,Wq, called the interleaving distance, is defined as the infimum of
the set of ε such that there are morphisms φs : Vs ÑWs`ε and ψs : Ws Ñ Vs`ε "compatible"
with the is,t, js,t in the following sense:

Vs´ε
φs´ε //

is´ε,t´ε
��

Ws
ψs //

js,t
��

Vs`ε
φs`ε //

is`ε,t`ε
��

Ws`2ε

is`2ε,t`2ε

��
Vt´ε

φt´ε //Wt
ψt // Vt`ε

φt`ε //Wt`2ε

where ψs ˝ φs´ε “ is´ε,t`ε and φs`ε ˝ ψs “ js,s`2ε s.t. the diagrams commute for all s ď t.

The Morse example. To give a good idea of what a barcode is, we describe the case
of a Morse function. Let Σ be a compact surface and H : Σ Ñ R a Morse function. The
filtered Morse homology pH˚ptH ă tuqqtPR is a persistence module where the set pis,tqsďt
is given by the inclusions is,t : H˚ptH ă suq Ñ H˚ptH ă tuq. The Figure 3.1 give an
example of the barcode of such a Morse function on the sphere.
In Figure 3.1 we consider the height function H on the 2-sphere which is a Morse function.
In this case, H admits six critical points: two sinks p1, p2, two saddle points x1, x2, and
two sources s1 and s2. If we compute the filtered homology of F we obtain the bars which
are described on the right of the vertical axis. Notice that there are two semi-infinite bars,
one which starts at Hpp1q and the other one which start at Hps1q and there are two finite
bars pHpp2q, Hpx1qs and pHpx2q, Hps2qs as follows.

H

p1

x1

p2

s1

x2

s2

‚

‚

‚

‚

‚

‚

Figure 3.1
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Chapter 4

The simplest case of barcode for
Hamiltonian homeomorphisms

In this chapter, we consider a Hamiltonian homeomorphism f on a closed surface Σ which
satisfies the following assumptions.

1. The set of fixed points is finite and is unlinked, in particular every fixed point is
contractible.

2. The fixed points have distinct action values.

3. For every x P Fixpfq, indpf, xq is either 1 or ´1.

Let I “ pftqtPr0,1s be a maximal isotopy from identity to f . Let F P FpIq be a positively
transverse foliation associated to I which satisfies the following "generic" assumptions.

1. There is no leaf joining two saddles points.

2. For every saddle point x P Fixpfq, there are exactly two unstable cones composed
of one leaf whose alpha-limit point is x and two stable cones composed of one leaf
whose omega-limit point is x.

The set of those foliations will be denoted FgenpIq. An important fact is that, for every
saddle point x of a foliation F P FgenpIq, the dynamic of F in a neighborhood of x is
locally homeomorphic to a foliation as in the following figure.

Figure 4.1

We denote Af the action functional of f defined on Fixpfq.

We have the following result from [49].
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Lemma 4.0.1. For every x P Fixpfq and every F P FpIq we have indpf, xq “ indpF , xq.
So if F P FgenpIq then we have

• indpf, xq “ 1 if x is a source or a sink of F .

• indpf, xq “ ´1 if x is a saddle pont of F .

For the remainder of the section, we consider a foliation F P Fgenpfq. Recall that
the foliation F is gradient-like and we will use the analogy between Morse Theory and
gradient-like foliations to construct a filtered homology from the foliation F . We define
a graph associated to the foliation F and we associate to this graph a chain complex in
order to compute its filtered homology and obtain a persistence module.

Remember that for a fixed point x of f , being a sink or a source of the foliation F does
not depend on the choice of F P FpIq. We define the index indCZpf, ¨q on the set of fixed
points of f as follows. For x P Fixpfq we set

• indCZpf, xq “ 0 if x is a sink of F ,

• indCZpf, xq “ 1 if x is a saddle point of F ,

• indCZpf, xq “ 2 if x is a source of F .

The notation indCZ of the index function refers to the Conley-Zehnder index function
as they are equals under these assumptions.

Definition 4.0.2. Let GpFq be the graph whose set of vertices is the set Fixpfq and
whose set of edges corresponds to the set of leaves φ of F such that indCZpf, αpφqq “
indCZpf, ωpφqq ´ 1.

For i P N we consider the set Fixipfq of fixed points x P Fixpfq which satisfy indCZpf, xq “
i. Note that Fixipfq “ H if i ě 3. We define a chain complex associated to the graph
GpFq following the ideas from Morse homology .

Definition 4.0.3. For t P R and i P N, we define the chain complex

Cti “
à

zPFixipfq
Af pzqăt

Z{2Z ¨ z,

and the maps Bti : Cti Ñ Cti´1 such that for every z P Cti

Btipzq “
ÿ

bPFixi´1pfq

npz, bqb,

where npz, bq is the number modulo 2 of edges from z to b in GpFq. If i is distinct from 1
or 2 then Bti is equal to 0 for every t P R.

Remark 4.0.4. For a fixed point z P Fixpfq, if there exists an edge from z to b in GpFq
then by Proposition 2.3.9 we have Af pzq ą Af pbq and for every t ą Af pzq, the element
Btipzq belongs to C

t
i´1. So the map Bti is well defined.
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We obtain that, for every t P R, pCti , Btiq is a chain complex thanks to the following
property.

Proposition 4.0.5. For each t P R and every i P N the maps Bti satisfy B
t
i ˝ B

t
i`1 “ 0.

We prove Proposition 4.0.5 after the following definition and lemma.

Definition 4.0.6. Let x P Fixpfq be a source of the foliation F , the subset
Ť

tφ P

F | αpφq “ xu Y txu of Σ will be called the repulsive basin of x and denoted W upxq.

For a source x of F , we want to describe W upxq. Let Pn Ă C be the filled regular
polygon of vertices e

iπk
n , with k P t0, ..., 2n´ 1u. We have the following lemma.

Lemma 4.0.7. Let x P Fixpfq be a source of the foliation F . There exist n ě 1 and a
continuous map d : Pn Ñ Σ such that

• dpintpPnqq is the repulsive basin of x.

• dpe
iπk
2n q is a sink of F if k is even and a saddle point of F if k is odd.

• The image of a side of Pn is the closure of a leaf of F .

Proof of Lemma 4.0.7. Let us consider a source x P Fixpfq of F . There exists a homeo-
morphism h : D Ñ W upxq such that hp0q “ x and such that the leaves from x are the
images by h of the segments teiθ, t P r0, 1s. For θ P r0, 2πq we will denote φθ the image by
h of the segment teiθ, t P r0, 1s.

There are a finite number of angles pθkqkPZ{nZ such that the omega-limit point of φθk
is a saddle point xk of F .

Moreover the attractive basin of a sink x of a foliation is the union of x and the leaves
whose omega-limit point is equal to x. The attractive basin of a sink is an open set. So,
by connectedness, for every k P Z{nZ there exists a sink of F , denoted sk, such that for
every leaf φθ of angle θ P pθk, θk`1q, the omega-limit point of φθ is equal to sk. We denote
Uk the union of the leaves φθ, with θ P pθk, θk`1q. We draw an example of such a set in
Figure 4.2. The set Uk is a topological open disk on Σ whose boundary is the closure of
four distinct leaves of F : the leaves φθk and φθk`1

, a leaf ψk from xk to sk and a leaf φk
from xk`1 to sk. The existence of the leaves φk and ψk is deduced from the dynamic of
the foliation near the saddle points xk and xk`1 described in Figure 4.1.

Uk

x

φk

ψk

φθk

φθk`1

skxk`1

xk

Figure 4.2: Example of a set Uk
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We obtain that the repulsive basin of x is equal to the union rφθ0 Y U0 Y φθ1 Y U1 Y

...YUn´1sYtxu. We define the map d : Pn Ñ Σ given by Lemma 4.2 as follows. For every
k P t0, ..., n´ 1u we set

• dpe
i2kπ
2n q “ xk,

• dpe
ip2k`1qπ

2n q “ sk.

The map d naturally extends to BPn by sending the edges of the boundary of BPn alter-
natively, in cyclic order, to the leaves φk, k P Z{nZ and the leaves ψk, k P Z{nZ. Finally,
the map d extends naturally on the interior of Pn as follows.

For k P Z{nZ, we consider the slice Sk of the polygon Pn defined as the set of points of
Pn whose angle θ in polar coordinates satisfies θ P r ikπn ,

ipk`1qπ
n s. We extend d by sending

the slice Sk, k P Z{nZ, of Pn on the closure of the set Uk defined previously. The map d
is well-defined and continuous. Notice that d may not be injective (we give an example at
the end of the proof).

Let us draw a repulsive basin of a source x of the foliation F in Figure 4.3. We represent
the leaves of U0 and its boundary in red in Figure 4.3.

U1 U0

x

φ0

ψ0ψ1

s0x1

x0

Figure 4.3: The repulsive basin of a source x

Example. We give an example of a source x of a foliation such that the map d provided
by Lemma 4.0.7 is not injective. We consider the foliation F on the 2-sphere as in Figure
4.4, the repulsive basin of the source x of F is composed of all leaves of F except the
two leaves φ1 and φ2 whose alpha-limit points are equals to the saddle point y of F . The
boundary of the repulsive basin of x is equal to the union φ1YtyuYφ2 and is represented
in blue on the Figure.

52



A

x

p1

y

p2
φ1φ2

Figure 4.4

The polygon P provided by Lemma 4.0.7 has four edges which are sent alternatively
on φ1 and φ2. We can represent P as in Figure 4.5.

p2

p1

y y

φ1

φ2

φ1

φ2

x

Figure 4.5

Now, we can give the proof of proposition 4.0.5.

Proof of proposition 4.0.5. We consider t P R since Bti is 0 for i distinct from 1 or 2, it is
enough to prove that for every source s P Fixpfq we have Bt1 ˝ Bt2psq “ 0.
Let x P Fixpfq be a source of the foliation F . Using the same notations of the proof of
Lemma 4.0.7, there exists an integer n ą 0 and n leaves which were denoted pφθkqkPZ{nZ
whose omega-limit points, denoted pxkqkPZ{nZ are exactly the saddle points of the foliation
F which are connected to x. So we have Bt2psq “

řn´1
k“0 ωpφθkq.

Moreover, for every k P Z{nZ the leaves φk´1 and ψk of the proof of Lemma 4.0.7 are
exactly the leaves of the foliation F whose alpha-limit point is xk. So we can compute
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Bt1 ˝ B
t
2psq “ B

t
1p

n´1
ÿ

k“0

ωpφθkqq,

“

n´1
ÿ

k“0

Bt1pωpφθkqq,

“

n´1
ÿ

k“0

pωpφk´1q ` ωpψkqq ,

“

n´1
ÿ

k“0

ωpφkq ` ωpψkq,

“

n´1
ÿ

k“0

2sk,

“ 0.

Hence we obtain the result of Proposition 4.0.5.

Definition 4.0.8. The image of the persistence module H˚ppCti , B
t
iqi,tq under the functor

β is called the barcode of f for the foliation F and we will denote it Bgenpf,Fq.

Remark 4.0.9. For a foliation F P FgenpIq, each value b of the action function Af is the
end of a unique bar of the barcode Bgenpf,Fq.

Remark 4.0.10 (Similarities with the Morse example). Let us consider a Morse function H
on the 2-sphere as in Figure 4.6. We suppose thatH induces a Hamiltonian diffeomorphism
f whose set of fixed points is equal to the set of critical points of H. In particular, Fixpfq
is unlinked. If we consider a Riemannian structure on Σ, the gradient flow of H induced
by the Riemannian metric defines a foliation F positively transverse to the natural isotopy
induced by the Hamiltonian function H. Moreover the action function Af is given by
Af pxq “ Hpxq for every x P SingpFq.
In this example f has six fixed points, two sinks p1, p2 two saddle points x1, x1 and two
sources s1, s2. We draw the graph GpFq on the left side of the figure and the barcode
Bgenpf,Fq, as intervals of R, on the right side.
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H

p1

x1

p2

s1

x2

s2

F Bgenpf,Fq

‚

‚

‚

‚

‚

‚

GpFq

p1

x1

p2

s1

x2

s2

p1

x1

p2

s1

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

Figure 4.6

In this example the barcode Bgenpf,Fq is equal to the filtered Morse homology of the
function H.

This is a general phenomenon. Indeed, we will prove in section 8 the following two
results.

Proposition 4.0.11. The barcode Bgenpf,Fq defined for a foliation F does not depend on
the choice of F P Fgenpfq.

Hence we can denote Bgenpfq “ Bgenpf,Fq for any choice of F P Fgenpfq. With this
notation, we have the following theorem.

Theorem 4.0.12. If we consider a Hamiltonian diffeomorphism f with a finite number of
fixed points which is C2-close to the identity and generated by an autonomous Hamiltonian
function then the barcode Bgenpfq is equal to the Floer homology barcode of f .

We would like to prove in a near future the more general result.

Question 4.0.13. Is the result of Theorem 4.0.12 holds if only consider a Hamiltonian
homeormorphism f whose set of fixed points is finite and unlinked?
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Chapter 5

First step into the non generic case,
construction of the map B

We give an algorithmic way to determine the barcode of certain type of finite graphs. We
consider the set G of elements pG,A, indq such that G is a finite oriented and connected
graph equipped with a function, called action function, A : V Ñ R decreasing along the
edges and a map ind : V Ñ Z where V is the set of vertices of G. We construct a map

B : G Ñ Barcode.

For an element pG,A, indq P G, and a vertex x of G, we will say that x is a sink (resp.
a source) of the graph G if there is no edge which begins with x (resp. if there is no edge
which ends with x). For any other vertex x of G, we will say that x is a saddle point of
the graph G.

For an element pG,A, indq P G, we could suppose that for a vertex x of G indpxq is non
positive if x is a saddle point of G and indpxq is equal to 1 if x is a sink or a source of G
as it will always be the case in our future applications. Howeover, we do not need to make
these assumptions to construct the map B.

Definition 5.0.1. Let us consider an element pG,A, indq P G. For a subgraph G1 of G we
define

LpG1q “ mintApxq|x P V XG1u,

DpG1q “ maxtApxq|x P V XG1u.

Let us consider an element pG,A, indq P G and let us denote by V the set of vertices of
G. For t P R, we define two subgraphs G´t and G`t as follows.

Definition 5.0.2. For t P R we denote by G´t the maximal subgraph of G whose set of
vertices is V XA´1pp´8, tqq.
Symmetrically, for t P R we denote by G`t the maximal subgraph of G whose set of vertices
is V XA´1ppt,`8qq.

Let us consider t P R such that there exists x P V satisfying Apxq “ t. Since V
is finite, we can define the graphs G´

t`
“ G´t`ε and G`

t´
“ G`t´ε where ε ą 0 satisfies

=pAq X ppt´ ε, t` εqq “ ttu.
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Definition 5.0.3. Let us considet t P R.
We denote by C´t (resp. C`t ) the set of connected components of G´t (resp. of connected
components of G`t ).
We denote by C´

t`
the set of connected components of G´

t`
and we denote by C`

t´
the set of

connected components of G`
t´
.

Definition 5.0.4. The inclusions G´t Ă G´
t`

and G`t Ă G`
t´

induce natural maps jt :
C´t Ñ C´

t`
and j1t : C`t Ñ C`

t´
where for C P C´t , jtpCq is the connected component of

G´
t`

which contains C and for C 1 P C`t , j1tpC 1q is the connected component of G`
t´

which
contains C 1.

Now, we can give the definition of the map B. Given an element pG,A, indq of G we
describe the bars of BpG,A, indq.

The map B. The barcode BpG,A, indq is composed of the bars of the following four
categories.

Category 0. The bars pLpGq,`8q and pDpGq,`8q are bars of BpG,A, indq.

For every t P =pAq there are three categories of bars Category 1. For each element C
of C´

t`
such that j´1

t pCq is not empty, the barcode BpG,A, indq contains #j´1
t pCq´ 1 bars

as follows.
We label C1, ..., Cn the elements of j´1

t pCq and we choose i0 P r1, ns an integer such that
LpCi0q “ miniPr1,ns LpCiq.
The bars of category 1 associated to t are the bars pLpCiq, ts for i ‰ i0.

Category 2. For each element C 1 of C`
t´

such that j1´1
t pC 1q is not empty, the barcode

BpG,A, indq contains #j1´1
t pC 1q ´ 1 bars as follows.

We label C 11, ..., C 1n the elements of j1´1
t pC 1q and we choose i0 P r1, ns an integer such that

DpC 1i0q “ maxiPr1,nsDpC
1
iq.

The bars of category 2 associated to t are the bars pt,DpC 1iqs for i ‰ i0.

Category 3. We define k “
ř

t|indpxq| | x saddle point, Apxq “ tu. Let us denote k1

equal to k minus the number of bars of categories 1 and 2 associated to t. If k1 ą 0 then
the bars of category 3 associated to t are k1 bars pt,`8q and if k1 ď 0 there is no bar of
category 3 associated to t.

Remark 5.0.5. We refer to Proposition 6.2.4 to enlight the definition of the bars of category
3.

Remark 5.0.6. By construction for every bar I “ pa, bs or J “ pc,8q in the barcode
BpG,A, indq we have that a, b and c are values of the action function A.

Examples. We compute the barcode of two simple examples.

Example 1. We consider pG,A, indq P G as follows.
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‚x

‚z

‚y2

‚y1

Apy2q

Apy1q

Apxq

Apzq

G

The map ind satisfies indpxq “ ´1 and indpy1q “ indpy2q “ indpzq “ 1. The values of
the map A are represented on the vertical line on the right of the graph.

The bars of category 0 are pApy2q,`8q and pApzq,`8q.

The vertex x is the unique saddle point of the graph G. We describe the bars associated
to Apxq as follows.

The subgraph G´
Apxq`

has only one connected component C´ and j´1
ApxqptC

´uq “ G´
Apxq´

has two connected components C “ ty1u and C1 “ ty2u. In this example we have
LpCq “ Apy1q ą LpC1q “ Apy2q so by construction the bar pApy1q, Apxqs is the only
bar of category 1 of the barcode BpG,A, indq.

The subgraph that G`
Apxq´

has only one connected component C` and j1´1
ApxqptC`uq “

G`
Apxq`

has one connected component C “ tzu. So by construction there is no bar of cate-
gory 2 in the barcode BpG,A, indq.

The index of x is equal to ´1 and there is one bar of category 1 and zero bar of category
2 thus there is no bars of category 3 in the barcode BpG,A, indq.

Finally we obtain the barcode

BpG,A, indq “ tpApy2q,`8q, pApy1q, Apxqs, pApzq,`8qu.

This example corresponds to the barcode of the example Figure 4.4 where the graph
corresponds to the connexions of the gradient of the Morse function. See next Chapter 6
for a more precise definition.

Example 2. We consider pG,A, indq P G as follows.
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‚x

‚z

‚y

‚w

Apyq

Apxq

Apzq

Apwq
G

The map ind satisfies indpxq “ indpyq “ ´1 and indpzq “ indpwq “ 1. The values of
the map A are represented on the vertical line on the right of the graph.

The bars of category 0 are the bars pApwq,`8q and pApzq,`8q.

The vertex x and y are the saddle points of the graph G. We describe the bars associ-
ated to Apxq and Apyq as follows.

First we compute the bars associated to Apyq. The subgraph G´
Apyq`

has only one
connected component C´y and j´1

ApyqptC
´
y uq “ G´

Apyq´
has one connected component equal

to twu. By construction there is no bar of category 1 associated to the saddle point y in
the barcode BpG,A, indq.
In this example G`

Apyq´
has only one connected component C1`y and j1´1

ApyqptC
1`
y uq “ G`

Apyq`

has one connected component which contains the vertices z and x and one edge. Again,
by construction there is no bar of category 2 associated to y in the barcode BpG,A, indq.
The index of y is equal to ´1 and there is no bar of category 1 and 2 thus there is a bar
pApyq,`8q of category 3 in the barcode BpG,A, indq.

Secondly we compute the bars associated to Apxq. The subgraph G´
Apxq`

has only one
connected component C´x and j´1

ApxqptC
´
x uq “ G´

Apxq´
has one connected component which

contains y and w. By construction there is no bar of category 1 associated to the saddle
point y in the barcode BpG,A, indq.
The subgraph G`

Apxq´
has only one connected component C1`x and j1´1

ApxqptC
1`
x uq “ G`

Apxq`

has one connected component equal to tzu. So by construction there is no bar of category
2 associated to x in the barcode BpG,A, indq.
The index of x is equal to ´1 and there is no bar of category 1 and 2 thus there is a bar
pApxq,`8q of category 3 in the barcode BpG,A, indq.

Finally we obtain

BpG,A, indq “ tpApwq,`8q, pApyq,`8q, pApxq,`8q, pApzq,`8qu.

This example corresponds to the barcode associated to a Morse function on the 2-torus
where the graph is given by the connexions of the gradient lines.
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Chapter 6

The barcode of a gradient-like foliation

Let us consider a gradient-like foliation F , whose set of singularities X is finite, defined
on the complement of X in a compact surface Σ. Recall that a gradient-like foliation is
a foliation such that every leaf is a connexion and where there is no cycle of connexions,
see section 2.3.7 of the preliminaries for more details. In particular, the singularities of
F are isolated and are classified in three categories: the sinks, the sources and the saddle
points. We suppose that the set of singularities X of F is equipped with an action function
A : X Ñ R such that for each leaf φ we have Apαpφqq ą Apωpφqq.

We will consider the oriented graph GpFq of the foliation F whose set of vertices is X
and for every couple of vertices x and y of GpFq there exists an edge from x to y if and
only if there exists a leaf φ in F such that αpφq “ x and ωpφq “ y. We want to study the
barcode BpGpFq, A, indpF , ¨qq associated to F defined in Chapter 5.

Notice that the graph GpFq is not constructed as the graph of a generic foliation as
in chapter 4 but it remains a finite oriented graph. The differences will be enlightened in
section 8.

In a first section we give some geometrical properties of the foliation F and in a second
section we prove some results about the barcode BpGpFq, A, indpF , ¨qq.

6.1 Geometric properties of a gradient-like foliation

We introduce some useful definitions and notation.

Saturated set. A subset of ΣzX is said to be saturated if it is equal to a union of
leaves of F . We will use the fact that the closure in ΣzX of a saturated set is saturated.

Chain of connexions. A chain of connexions in Σ is a finite union of the closure of
leaves ψ1, ..., ψk of F such that αpψ1q “ x, ωpψiq “ αpψi`1q for every i P r1, k ´ 1s and
ωpψkq “ y. We will say that a chain of connexions is associated to the leaves ψ1, ..., ψk.
If we consider two singularities x and y of F , we say that there is a chain of connexions
from x to y if there exists a chain of connexions, associated to leaves ψ1, ..., ψk such that
αpφ1q “ x and ωpφkq “ y. In this case, x will be called the starting point of the chain and
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y its ending point.

Trivialization. Let us consider a saddle point x P X of F . We denote by Σ´x the
union of leaves φ P F whose alpha-limit point is equal to x and by Σ`x the union of leaves
ψ P F whose omega-limit point is equal to x. We will call a trivialization of F at x a couple
ph, V q where V is a neighborhood of x such that XXV “ txu and h : V Ñ D is a map that
sends the foliation F |V to the model foliation described in the appendix of [59] proposition
B.5.4. which we now describe. To simplify the notations we set n “ 1 ´ indpF , xq. In
this model foliation, for each leaf φ of F , φ X V is connected and h sends Σ´x to n cones
centered around the angles 2πp2kq

2n where 0 ď k ď n´ 1 and sends Σ`x to n cones centered
around the angles 2πp2k`1q

2n where 0 ď k ď n´ 1. We have

• The two sets Σ´x and Σ`x are composed of n connected components. Using the map
h we can label these connected components pσ´k q0ďkďn´1 and pσ`k q0ďkďn´1 in cyclic
order around x.

• The connected components pσ´k q0ďkďn´1 will be called the unstable cones of x and
the connected components pσ`k q0ďkďn´1 will be called the stable cones of x.

• Every stable cone and an unstable cone which are consecutive, in cyclic order, are
separated by hyperbolic sectors of x. We denote Uk, 0 ď k ď 2n ´ 1 the hyperbolic
sectors such that we have in cyclic order V “ σ´0 Y U0 Y σ

`
0 Y U1 Y ...Y U2n´1.

σ`1

σ`0

σ´1 σ´0

U0U1

U2 U3

Figure 6.1: An example of a trivialization of a saddle point x of index ´1

Notice that a stable or unstable cone of x can be composed of a unique leaf, see Figure
2.5 for example.

Local model. Let us consider a leaf φ of F . We describe in Σ the leaves of F which
are close to φ. It will be called the local model near φ. We parametrize the leaves of F
near φ by a small arc γ : p´1, 1q Ñ ΣzX transversal to F such that γp0q P φ. For every
t P p´1, 1q we denote φt the leaf of F passing through γptq.
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We prove the following property.

Proposition 6.1.1. We have that the sets

Γ`φ “
č

εą0

ď

tPp0,εq

φt, and Γ´φ “
č

εą0

ď

tPp´ε,0q

φt,

are chains of connexions containing the leaf φ and there exists s P p0, 1q such that

• Every leaf φt, t P p0, sq satisfies: αpφtq is equal to the start of Γ`φ and ωpφtq is equal
to its end.

• Every leaf φt, t P p´s, 0q satisfies: αpφtq is equal to the start of Γ´φ and ωpφtq is equal
to its end.

Proof. We prove the result for the leaves φt, t ą 0 as it is the same proof for the leaves φt,
t ă 0.

We start by studying the "future" of the connexions pφtqtPp0,1q and then, symmetrically,
we study the "past" of these connexions.

We will prove that there exists a chain of connexions contained in Γ`φ passing through φ
from x to a singularity y` such that for every t ą 0 small enough we have ωpφtq “ y. The
omega-limit point x1 of φ is a sink of F or a saddle point. If x1 is a saddle point then φ is in
the interior of a stable cone of x1 or in its boundary. We split the discussion into three cases.

Case 1. Suppose that x1 is a sink of F , since the set of leaves of which x1 is the ending
point is open, there exists t1 P p0, 1s such that for each t P r0, t1q, ωpφtq is equal to x1 and
the chain of connexions we are looking for is associated to the leaf φ.

Case 2. We suppose that x1 is a saddle point and the leaf φ is in the interior of a stable
cone σ` of x1. There exists t1 P p0, 1s such that for each t P r0, t1q, the leaf φt satisfies
ωpφtq “ x1. The chain of connexions we are looking for is associated to the leaf φ.

Case 3. We suppose that x1 is a saddle point and the leaf φ is in the boundary of a
stable cone σ` of x1. In this case, the leaf φ is in the boundary of the hyperbolic sector U
of x1 preceding σ´. We can consider a trivialisation of F at x1 and t1 P p0, 1q such that
each leaf φt, t P p0, t1s, is a leaf of the sector U . The closure of the union of the leaves
pφtqtPp0,t1s contains a leaf φ1 of the unstable cone of x which is adjacent to U . Notice that
we have a chain of connexions associated to the leaves φ and φ1.

We do the same discussion about the omega limit point of φ1. If the omega limit point
of φ1 corresponds to the case 1 or the case 2, then we stop the process and if we are in
case 3 then, we do the same discussion with the leaf φ2 provided by case 3. If so, a chain
of connexions is associated to the leaves φ, φ1, φ2. Since the number of singularities of F
is finite, the process stops after a finite number of steps and we finally obtain a chain of
connexions Γfuture associated to a finite number of leaves φ, φ1, ..., φn. We denote y the
omega-limit point of the leave φn and there exists tn P p0, 1q such that each leaf φt with
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t P p0, tns satisfies ωpφtq “ y`.

Let us draw an example of a chain of connexions provided by the previous process.
In Figure 6.2 the horizontal line represents the chain of connexions from x to ωpφnq and
each line above represents a leaf φt where t P p0, 1s. It is enough to re-parametrize the
trivialization h to obtain the result we are looking for.

‚
x φ

‚
y`φn

tn

‚
x1

‚

Figure 6.2

By symmetrical arguments there is another chain of connexions Γpast from a singularity
z` to ωpφq, passing through φ, such that every leaf φt, t ą 0, satisfies αpφtq “ z`.

Moreover, by the previous construction, we obtain that Γ`φ is a chain of connexions
and is equal to the union of Γpast and Γfuture. So z` is its starting point and y` its ending
point.

Remark 6.1.2. The space of leaves of a gradient-like foliation F is a non-Hausdorff manifold.
The chains of connexions correspond to the set of non separated leaves.

Let us draw two examples of a local model of a leaf φ.

We consider a first example in Figure 6.3. The leaves above φ represent the leaves φt
with t P p0, 1q and the leaves below φ represent the leaves φt with t P p´1, 0q. The chain
of connexions Γ`φ is a chain from z` to y` passing through φ and the chain of connexions
Γ´φ is a chain of connexions from z´ to y´ passing through φ.

‚
x φ

‚
y`

‚
x1

‚‚

‚
z`

‚
z´

‚
y´

Figure 6.3: First example of the local model of a leaf φ

We draw a second example of a leaf φ in Figure 6.4. We consider γ in blue and the
chains of connexions Γ´φ and Γ`φ are both equal to φ.
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γ

‚x
φ

‚x1

Figure 6.4: Second example of the local model of a leaf φ

The graph of the foliation F . We consider the oriented graph GpFq whose set of
vertices is equal to SingpFq and for every couple of vertices x and y there exists an edge
from x to y if and only if there exists a leaf φ of F such that αpφq “ x and ωpφq “ y. For
t P R we consider the subgraphs G´t pFq (resp. G`t Fq) which is the maximal subgraph of
GpFq whose set of vertices is X XA´1pp´8, tqq (resp. X XA´1ppt,`8qq).

Attractive basin. Let us consider t P R and a connected component C of G´t pFq.
We define the attractive basin of C, denoted W spCq, as the union of the leaves of F whose
omega-limit point is a singularity of C. Notice that it is a subset of Σ.
In particular we have

W spCq “
ď

xPXXC
W spxq.

Lemma 6.1.3. Let us consider a saddle point x in the frontier of W spCq. There exists
a neighborhood V of x such that each hyperbolic sector U of x in V is either included in
W spCq or disjoint of it.

Proof. Let us fix a neighborhood V of x. We consider an unstable cone σ´ of x and U a
hyperbolic sector of x in V adjacent to σ´. We denote φ the leaf of F such that φ “ σ´XU .
Let γ : r0, 1q Ñ U be a small arc transverse to the foliation F and such that γp0q P φ. For
every t P r0, 1q we denote φt the leaf of F passing through γptq.

We denote by y` the ending point of Γ`φ “
Ş

εą0

Ť

tPp0,εq φt.

By the local model there exists s P p0, 1q such that every leaf φt, t P p0, sq, satisfies
ωpφtq “ y`.

So if y` is in C then every leaf φt, t P p0, sq, is in W spCq and if y` is not in C then
no leaf φt, t P p0, sq, is in W spCq. Hence, up to a smaller neighborhood V 1 of x we can
suppose that every leaf of the hyperbolic sector U in V 1 is either in W spCq or disjoint of
it. Moreover, x has finitely many hyperbolic sectors so we can suppose that we have the
same property for each one of them and we obtain the result.

In the next chapter we will need a precise description of W spCq. We describe it with
the following proposition. Let us consider a stable or unstable cone σ of a saddle point x
in the frontier of W spCq, we say that σ is adjacent to W spCq if one and only one of the two
hyperbolic sectors adjacent to σ is in W spCq and we say that σ is surrounded by W spCq if
the two hyperbolic sectors of x which are adjacent to σ is W spCq.
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Proposition 6.1.4. The set W spCq, is open, connected and its frontier is the closure of a
finite union of leaves of F contained in stable or unstable cones of saddle points.
More precisely, for each saddle point x in the frontier of W spCq, the stable and unstable
cones satisfy the following properties.

1. Let us consider a stable cone σ` of x. If σ` is surrounded by W spCq then the leaves
of Bσ` are the only leaves of σ` in the frontier of W spCq. If σ` is adjacent to W spCq
then the leaf of Bσ` X BU , where U is the adjacent hyperbolic sector of x in W spCq
adjacent to σ`, is the only leaf of σ` in the frontier of W spCq. If none of the previous
situation holds then σ` is disjoint from the frontier of W spCq.

2. Let us consider an unstable cone σ´ of x. There is a finite set of leaves of σ´, possibly
empty if σ´ is not adjacent to W spCq, in the frontier of W spCq.

Every property of Proposition 6.1.4 is obvious except the finiteness property which is
deduced from Lemma 6.1.11.

The first point of Proposition 6.1.4 is a straigthforward consequence of the definition
of W spCq. Unfortunately, the second point of Proposition 6.1.4 can not be more precise
and we draw three examples to illustrate this. After these examples, we prove that W spCq
is open in Σ and that there are finitely many leaves of F in its frontier.

First example. Let us consider a sink y of a gradient-like foliation F such that there
exists a saddle point x in the frontier of W spyq as in the Figure 6.5. In this example we
draw in red the leaves of W spyq and in blue the leaves in its frontier whose omega-limit
point equals to x. There exists an unstable cone σ´ of x surrounded byW spyq. The sectors
U and U 1 of x which are adjacent to σ´ are in W spyq and by the first point of Proposition
6.1.4 there are two leaves φ and φ1 in the stable cones of x which are adjacent to U and U 1

and in the frontier of W spyq. In our example there exists a leaf ψ of the cone σ´ which is
in the frontier of W spyq. It is enough to suppose that Apxq ą Apzq ą Apyq to obtain this
example. In our example we choose to draw ψ in the boundary of the unstable cone σ´

but it could be any leaf of σ´.
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x

φ1

φ

σ´ y

U

U 1

ψ
‚
z

Figure 6.5

Second example. Let us consider a sink y of a gradient-like foliation F such that there
exists a saddle point x in the frontier of W spyq as in the Figure 6.6. In this example we
draw in red the leaves of W spyq and in blue the leaves of its frontier whose alpha-limit
point is equal to x. The unstable cone σ´ of x is adjacent to W spyq. In this example there
exist two leaves ψ and ψ1 of the unstable cone σ´ from x to two singularities z and z1

which are in the frontier of W spyq.

x
¨ σ´

ψ1
‚
z1

ψ

U

y
‚z

Figure 6.6

Third example. Let us consider a sink y of a gradient foliation F such that there exists
a saddle point x in the frontier of W spyq as in Figure 6.7. In this example we draw in red
leaves ofW spyq and in blue the leaves on its frontier. The unstable cone σ´ is not adjacent
to W spyq. In this example there exist leaves in the interior of σ´ whose omega-limit point
is y and two leaves ψ of Bσ´ and ψ1 in the interior of σ´ are in the frontier of W spyq The
omega limit-points of ψ and ψ1 are two saddle points z and z1 of F .
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x σ´ y

U

U 1

ψ ‚
z

ψ1 ‚
z1

Figure 6.7

The remaining part of this chapter aims to give the proof of Proposition 6.1.4. The
proof is divided into several lemmas. Notice that the following lemma will be useful in the
next section.

Lemma 6.1.5. Let us consider a saddle point x of F . For each unstable cone σ´ of x
there exists a unique connected component C of G´ApxqpFq such that each leaf φ of the cone
σ´ is in the attractive basin of C.

Proof. Let us consider an unstable cone σ´ of x and φ a leaf of σ´. We denote by C the
connected component of G´ApxqpFq which contains the singularity ωpφq. By the local model
there exist two chains of connexions Γ`φ and Γ´φ , whose ending points are denoted y` and
y´, containing φ such that each leaf ψ of σ´ close enough to φ satisfies ωpψq “ y` or
ωpψq “ y´. We have that Γ`φ and Γ´φ contain φ, so by definition y` and y´ are also in C
and we deduce that every leaf ψ of σ´ close enough to φ is in W spCq.

Moreover, if we consider a leaf φ1 P σ´ in the closure of a sequence pφ1nqnPN of leaves
in W spCq then by the local model, there is a chain of connexions Γ in the closure of the
sequence pφ1nqnPN which contains φ1. Notice that Apωpφ1qq ă Apxq so ωpφ1q and the ending
point of the chain Γ are in the same connected component of G´ApxqpFq. So ωpφ1q is in C
and then φ1 is in W spCq.

Thus we obtain that the intersection of σ´ and W spCq is open and closed in σ´. So,
since σ´ is connected we have that every leaf of σ´ is in W spCq.

Remark 6.1.6. Lemma 6.1.5 does not hold if Apxq is replaced by some t ă Apxq. Indeed
if we only suppose that C is a connected component of G´t pFq with t ă Apxq then the
unstable cone σ´ is not necessarily included in the attractive basin of C. See example 6.6
above where the leaf ψ1 is not a leaf of the attractive basin of the connected component
tyu of G´

Apyq`
pFq.

We prove that the attractive basin of a connected component of G´t pFq with t P R is
open with the two following lemmas.
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Lemma 6.1.7. Let us consider t P R and C a connected component of G´t pFq. Each
singularity x of C is in the interior of W spCq.

Proof. Let us consider a singularity x of F in C. It is either a sink, a source or saddle. We
separate those three cases.

1. If x is a sink, then each leaf in a neighborhood of x is in W spCq.

2. If x is a source, then each leaf φ in a neighborhood of x satisfies Apωpφqq ă Apxq
and is in W spCq.

3. If x is a saddle point, we consider a trivialization ph, V q of F at x on a neighborhood
V given by Lemma 6.1.3. By definition of W spCq, each leaf of Σ´x and Σ`x is in W spCq.
Moreover, let us consider a leaf φ in the boundary of an unstable cone σ´ of x and U the
hyperbolic sector adjacent to φ, by the local model there exists a chain of connexions from
x to a singularity y such that every leaf of the hyperbolic sector U admits y as its omega
limit. By definition, the singularity y is in C hence the leaves of the hyperbolic sector U
are in W spCq. Since it holds for each hyperbolic sector of x we obtain the result.

Let us consider t P R and C a connected component of G´t pFq. We describe the
attractive basin of C and its frontier.

Lemma 6.1.8. The intersection of W spCq and ΣzX is open.

Proof. We consider a leaf φ inW spCq, by the local model there exists a small neighborhood
V of φ and two chains of connexions φ1, ..., φk and φ11, ..., φ1k1 of F which contain φ such that
each leaf ψ passing through V satisfies ωpψq “ ωpφkq or ωpψq “ ωpφ1k1q. By construction
ωpφkq and ωpφ1k1q are in the same connected component of G´t pFq and so every leaf passing
through V is in W spCq.

The following corollary is a consequence of Lemmas 6.1.7 and 6.1.8.

Corollary 6.1.9. The attractive basin of C is an open surface in Σ.

We deduce the following lemma.

Lemma 6.1.10. The attractive basin of C is connected.

Proof. For every x P XXC, W sp§q is connected as it is arc-connected. Let us consider two
singularities x and y of C such that there exists an edge from x to y. So there is a leaf φ
such that αpφq “ x and ωpφq “ y. The point x is in the frontier of W spyq and is either a
saddle point or a source. Since we proved previously that x is in the interior of W spCq we
deduce that φ ĂW spxq YW spyq.
We deduce easily that W spCq “

Ť

xPXXCW
spxq is connected.

We prove a last result which concludes the proof of Proposition 6.1.4.

Lemma 6.1.11. The number of leaves included in the frontier of the attractive basin of C
is finite.
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Proof of Lemma 6.1.11. Let us consider a leaf φ of the frontier of W spCq. The singularity
ωpφq can not be a sink nor a source so it is a saddle point. So φ is a leaf of a stable
cone of ωpφq. So by the first point of Proposition 6.1.4 and the fact that the number of
singularities of F is finite, there exists a finite number of such leaves and we obtain the
result.

Remark 6.1.12. Let us describe an example. We consider a foliation F on a 2-sphere
such that F has two sources s1, s2, one saddle point x one sink p and the foliation is the
gradient-lines of the Morse function A : S2 Ñ R represented in green in figure 6.8.

A

p

s1

x

s2
φ1 φ2

Figure 6.8

We consider the connected component C “ tpu of G´ApxqpFq and we want to describe
the attractive basin of C. In our example, we see that each leaf φ of F satisfies ωpφq “ p
except two leaves φ1 and φ2 such that φ1 is a leaf between s1 and x and φ2 is a leaf between
s2 and x. Let us consider a trivialization ph, V q at x of the foliation F represented in figure
6.9.

φ1

φ2

x

U1

U4

U2

U3

Figure 6.9

In the example the four hyperbolic sectors U1, ..., U4 of x are in W spCq and in Figure
6.9 the leaves of W spCq are represented in red. The frontier of W spCq is the union of the
three singularities x,s1 and s2 and the two leaves φ1 and φ2 in Σ.

Remark 6.1.13. Each result about a connected components of G´t pFq, where t P R, has its
symmetrical result for a connected component of G`t pFq.
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6.2 Some properties of the Barcode BpGpFq, A, indpF , ¨qq
Let us consider a gradient-like foliation F defined on the complement of a finite set X of
a compact surface Σ. We suppose that X is equipped with an action function A : X Ñ R
such that for each leaf φ we have Apαpφqq ą Apωpφqq. We prove some properties about
the Barcode BpGpFq, A, indpF , ¨qq, which will be denoted βF .

We set Am the minimum value of the action function A on X and AM its maximum
value.

Notice that, by construction of the map B, for every singularity z of F of index zero
there is no bar in BpGpFq, A, indpF , ¨qq one end of whose is equal to Apzq. Indeed, the point
z does not connect distinct connected components of the graphs G´Af pzqpFq and G

`

Af pz
pFq

so if we follow the construction in Chapter 5, there is no bar of category 1 or 2 induced by
z. So, since indpF , zq “ 0 there is no bar of category 3 induced by z neither.

We consider the graph GpFq associated to F and the subgraphs pG´t pFqqtPR and
pG`t pFqqtPR. We will use some notations from Chapter 5. For t P R we denote C´t and C`t
the set of connected components of G´t pFq and G`t pFq.
We set the maps jt : C´t Ñ C´

t`
and j1t : C`t Ñ C`

t´
where for C P C´t , jtpCq is the

connected component of G´
t`

which contains C and for C 1 P C`t j1tpC
1q is the connected

component of G`
t´

which contains C 1. For a connected component C of G´t pFq we consider
LpCq “ mintApyq | y vertex of Cu.

Lemma 6.2.1. For each sink y of F satisfying Am ă Apyq there exists at least one saddle
point x of F such that the barcode βF contains a bar b “ pApyq, Apxqs.
For each source y of F satisfying Apyq ă AM there exists at least one saddle point x of F
such that the barcode βF contains a bar b “ pApxq, Apyqs.

In the situation of Lemma 6.2.1 we say that the pair px, yq is associated to the finite
bar b of βF .

Proof. Let us fix a value t ą Am of the action function A. We label y1, ..., yn the sinks of
X whose action value is t. We prove that for every i P t1, ..., nu there exists a saddle point
xi of F such that the barcode βF contains a bar pApyiq, Apxiqs.

For i P r1, ns there is a map ci : s ÞÑ Csi defined for s ą t where Csi is the connected
component of the graph G´s pFq which contains yi.

For a value s ą t such that A´1ppt, sqq “ H, the connected components Cs1, ..., Csn are
distinct.

For s ą t close to t, the elements cipsq, i P r1, ns, are distincts and for s ą AM , we have
that cipsq “ GpFq for every i P r1, ns, hence we have Lpcipsqq “ t for s ą 0 close to t and
Lpcipsqq “ Am for t ą AM .

Thus, for every i P r1, ns, there exists an action value, denoted si, such that Apyiq “
Lpcipsiqq and t ą Lpjspcipsiqqq. In other words, there exists a saddle point xi of F of action
si such that
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• Lpcipsiqq “ t “ Apyiq

• xi connects the connected component cipsiq and another connected component C of
G´s pFq such that LpCq ă t.

By construction of the barcode βF there exists a bar pApyiq, sis of category 1 (see Chapter
5).

Notice that the points xi, i P t1, ..., nu are not sources. Indeed, by contradiction we
suppose that a source z of action s connects two distinct connected components C1 and
C2 of the graph G´s pFq. Thus, by hypothesis, there exist two singularities x1 P C1 and
x2 P C2 in the frontier of W upzq. By Proposition 6.1.4, there exists a path of connexions Γ
between x1 and x2 such that every singularity y in Γ satisfies Apyq ă s, so x1 and x2 are
in the same connected component of G´s pFq and we have a contradiction.

We obtain the symmetrical results for sources of F by considering bars of category
2.

Remark 6.2.2. For a singularity y of F of index 1, there may exist two saddle points x and
x1 with Apxq “ Apx1q such that the couples px, yq and px1, yq are associated to the same
bar b.

Lemma 6.2.3. We label y1, ..., yn the sinks of F of action Am. There exist n ´ 1 finite
bars J1, ..., Jn´1 whose lower bound is equal to Am and upper bound is the action value of
a saddle point of F and one semi-infinite bar pAm,8q in the barcode βF .

Proof. For s ą Am such that A´1ppAm, sqq “ H, we denote Csi the connected component
of G´s pFq which contains the singularity yi.

For i P r1, ns there is a map ci : s ÞÑ Csi defined for s ą t where Csi is the connected
component of the graph G´s pFq which contains yi.

For s ą Am close to Am, we have Csi “ tyiu, i P r1, ns.

Let us consider s ą Am, such that there exists a subset K of t1, ..., nu of cardinal at
least two such that the connected components cipsq, i P K are distinct but the connected
component jspcipsqq, i P K, are equal. We have Lpcipsqq “ Am for i P K so, by construc-
tion, it induces the existence of #K ´ 1 bars pAm, ss in the barcode βF .

Moreover, for each i ‰ j in t1, ..., nu there exists s ą Am such that jspcipsqq “ jspcjpsqq
and cipsq ‰ cjpsq. Hence we obtain n ´ 1 finite bars such that Am is the lower bound of
the bar.

The existence of a semi-infinite bar pAm,8q in the barcode BpGpFq, A, indpF , ¨qq is
provided by the construction of B : it is a bar of category 0.

Let us consider a sink ym of the foliation F such that Apymq “ Am and a source yM
of the foliation F such that ApyM q “ AM . We denote Xă0 Ă X the set of negative index
singularities of F and X1 Ă X the set of singularities of index 1.
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By Lemmas 6.2.1 and 6.2.3 there exists a map, which may be not unique,

ι : X1ztym, yMu Ñ Xă0, (6.1)

where ιpyq “ x is a saddle point x of the foliation F given by Lemmas 6.2.1 and 6.2.3 such
that the couple px, yq is associated to a finite bar of βF .

In particular, if A is injective and each singularity x of Xă0 has an index equal to ´1
then, every bar pa, bs of the barcode is naturally associated to a unique couple x, y P X
by Lemma 6.2.1. In this case, ι is unique and an injection. Indeed, by construction, for
every saddle point x of Xă0 there exists a unique bar one end of which is equal to Apxq.
notice that this bar is either a finite interval whose infimum is Apxq, maximum is Apxq or
a semi-infinite interval whose infimum is Apxq.

We have the following result.

Proposition 6.2.4. Let x be a saddle point of F of action value t P R such that A´1ptq “
txu. We have

#j´1
t pCxq `#j1´1

t pC1xq ď |indpF , xq| ` 2,

where Cx (resp. C1x) is the connected component of G´
t`
pFq (resp. G`

t´
pFq) which contains

x.

In general, Proposition 6.2.4 certifies that for a saddle point x of F such that A´1ptq “
txu, there are |indpf, xq| bars of which t is an end. We can link this result to Proposition 28
of [61] which asserts that for a Hamiltonian function H on a manifold the number of bars
of which t P R is an ending value is given by the dimension of the local Floer Homology at
t.

Proof of Proposition 6.2.4. We set t “ Apxq and i “ indpF , xq. We label Σ´x the set of the
unstable cones of x and Σ`x the set of the stable cones of x. Both Σ´x and Σ`x are equipped
with a cyclic order and a natural cyclic transformation τx : Σ´x Y Σ`x Ñ Σ´x Y Σ`x which
sends Σ´x into Σ`x and Σ`x into Σ´x such that every element σ´ P Σ´x (resp. σ` P Σ`x ) is
sent to the element of Σ`x (resp. Σ´x ) right after it in cyclic order.

By Lemma 6.1.5, for every σ´ P Σ´x there is a connected component C´of G´t pFq such
that ωpφq is a vertex of C´ for every leaf φ P σ´. So we can define a map ω : Σ´x Ñ C´t pFq
given by ωpσ´q “ C´.

Symmetrically, for every σ` P Σ`x there is a connected component C`of G`t pFq such
that αpφq is a vertex of C` for every leaf φ P σ`. So we can define a map α : Σ`x Ñ C`t pFq
given by αpσ`q “ C`.

We will denote by Impαq and Impωq the image sets of α and ω and the result consists
in establishing the inequality

#Impαq `#Impωq ď i` 2. (6.2)

We introduce a combinatorial context to facilitate the proof.
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Let us consider two sets E` and E´ and a couple of maps α : Σ` Ñ E` and ωΣ´ Ñ E´

defined on sets Σ` Ă Σ`x , Σ´ Ă Σ´x such that there is, in cyclic order, alternatively an
element of Σ` and an element of Σ´ in Σ´x YΣ`x . In particular, Σ` and Σ´ have the same
cardinal and are naturally equipped with a cyclic transformation τ . We define some useful
notation.

Let c be in the image of ω. We set J “ ω´1pcq and we will say that

• An element σ` P Σ` is adjacent to J in Σ` if one and only one of the two elements
τpσ`q and τ´1pσ`q is in J . More precisely we will say that an element σ` P Σ` is
adjacent and before J in Σ` if τpσ`q is in J and τ´1pσ`q is not. Symmetrically we
will say that an element σ` P Σ` is adjacent and after J in Σ` if τ´1pσ`q is in J
and τpσ`q is not.

• An element σ` P Σ` is surrounded by J in Σ` if the two elements τpσ`q and τ´1pσ`q
are in J .

A maximal set of consecutive elements of J in Σ´ will be called a maximal interval of J .

We prove the following lemma about the maps α and ω.

Lemma 6.2.5. Suppose that for every c P Impωq and every σ` P Σ` adjacent to ω´1pcq
in Σ`, there exists σ1` P Σ`ztσ`u adjacent to ω´1pcq in Σ` such that αpσ1`q “ αpσ`q.
Then we have

#Impαq `#Impωq ď i` 2,

where i` 1 is the cardinal of the sets Σ` and Σ´.

Proof. Let i “ 0, for a couple pα, ωq defined on sets Σ` and Σ´ of cardinal equal to 1, the
inequality is trivial.

Let i ě 1, we suppose by induction that couples defined on sets of cardinal less than i
satisfying the hypothesis of Lemma 6.2.5 satisfy the result.

We consider a couple pα, ωq defined on sets Σ` and Σ´ of cardinal equals to i ` 1
satisfying the hypothesis of Lemma 6.2.5. We prove that #Impαq `#Impωq ď i` 2.

We divide the proof of the inequality into three cases.

Case 1. Suppose that ω is constant. In this case we have by definition #Impωq “ 1
and #Impαq ď i` 1 so the result is trivial.

Case 2. Suppose that for each c P Impωq we have #ω´1pcq “ 1. By hypothesis, we
obtain that α is constant on Σ`. So we compute

#Impαq `#Impωq “ 1` pi` 1q,

and we obtain the result.

Case 3. Suppose that there exists c P Impωq such that i ` 1 ą #ω´1pcq ą 1. We will
modify the couple pα, ωq into another couple pα1, ω1q defined on subsets of Σ` and Σ´ and
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we prove that the couple pα1, ω1q satisfies the hypothesis of Lemma 6.2.5.

We denote J “ ω´1pcq and we define new maps on Σ´1 “ Σ´zJ and Σ`1 “ Σ`zτpJq.
We set ω1 : Σ´1 Ñ E´ztcu, defined as the restriction of ω.
We define α1 : Σ`1 Ñ E`{αpτpJq∆τ´1pJqq, where we have

• τpJq∆τ´1pJq is the symmetric difference of τpJq and τ´1pJq.

• E`{αpτpJq∆τ´1pJqq is the set obtained by identifiyng the elements of αpτpJq∆τ´1pJqq.

• α1 is the natural map induced by α.

Notice that the set τpJq∆τ´1pJq is composed of the elements of Σ` which are adjacent to
J . Moreover, the sets Σ´1 and Σ`1 are not empty.

We prove that pα1, ω1q satisfies the hypothesis of Lemma 6.2.5.

Let us consider c1 P Impω1q. We set J1 “ ω´1
1 pc1q and we consider σ`1 P Σ`1 adjacent

to J1 in Σ`1 . Our goal is to find an element of Σ`1 distinct from σ`1 and adjacent to J1 in
Σ`1 whose α1 value is equal to the α1 value of σ`1 .
The element σ`1 may not be adjacent to J1 in Σ`. There are two possibilities.
1) σ`1 is adjacent to J1 in Σ`.
2) σ`1 is adjacent and before a maximal interval K of J in Σ` and there exists σ1`1 P J
which is adjacent and after the interval K of J in Σ` and adjacent and before J1 in Σ`.

We separate these two cases.

In case 1), by hypothesis, there exists σ`2 P Σ`ztσ`1 u adjacent to J1 in Σ` such that
αpσ`1 q “ αpσ`2 q. Again, there are two possibilities.

i) If σ`2 R τpJq then σ`2 is adjacent to J1 in Σ`1 and α1pσ
`
1 q “ α1pσ

`
2 q by definition.

We obtain the result.

ii) If σ`2 P τpJq then σ
`
2 is adjacent and after a maximal interval K2 of J in Σ`. So σ`2

is before an interval K1 of J1 in Σ` and after the interval K2 of J in Σ`. We consider σ1`2
in Σ` just before the interval K2 in Σ`. We have that σ1`2 R τpJq and σ1

`
2 ‰ σ`1 . Indeed,

if we supposed that σ`1 “ σ1`2 then since σ`1 is adjacent to J1 in Σ` it is after an interval
K 1

1 of J1 in Σ` and just before the interval K2 of J in Σ`. Hence in the cyclic order we
have in Σ`

K 1
1, σ

`
1 “ σ1

`

2 ,K2, σ
`
2 ,K1.

So in Σ`1 we obtain in the cyclic order

K 1
1, σ

`
1 ,K1.

Meaning that σ`1 is surrounded by J1 in Σ`1 and so it contradicts the fact that σ`1 is
adjacent to J1 in Σ`1 .
Moreover, by hyothesis, αpσ`1 q “ αpσ`2 q P αpτpJq∆τ

´1pJqq so by construction α1pσ
`
1 q “

α1pσ
1`
2 q and we obtain the result.
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In case 2), σ1`1 is just before a maximal interval K 1
1 of J1 in Σ`. Moreover, by hypoth-

esis, there exists σ`2 P Σ`ztσ1`1 u adjacent to J1 in Σ` such that αpσ1`1 q “ αpσ`2 q. Again,
there are two possibilities.

i) If σ`2 R τpJq then σ`2 is adjacent to J1 in Σ`1 and distinct from σ`1 . Indeed, if we
suppose that σ`2 “ σ`1 then σ`1 is before the maximal interval K of J in Σ` and after a
maximal interval K1 of J1 in Σ`. Hence, in Σ`, we have and in the cyclic order

K1, σ
`
1 “ σ`2 ,K, σ

1`

1 ,K
1
1.

So in Σ`1 we obtain in the cyclic order

K1, σ
`
1 ,K

1
1.

Meaning that σ`1 is surrounded by J1 in Σ`1 and it contradicts the fact that σ`1 is adjacent
to J1 in Σ`1 .
Moreover, by hypothesis, αpσ1`1 q “ αpσ`2 q P αpτpJq∆τ

´1pJqq and by definition αpσ`1 q P
αpτpJq∆τ´1pJqq. So, by construction, we have α1pσ

`
1 q “ α1pσ

`
2 q and we obtain the result.

ii) If σ`2 P τpJq then σ
`
2 is adjacent and after a maximal interval K2 of J in Σ`. We

consider σ1`2 in Σ` just before the interval K2 in Σ`. We have K ‰ K2 then σ1`2 ‰ σ`1
and αpσ1`2 q “ αpσ`1 q. Indeed, if we suppose that K2 “ K then it contradicts the fact that
σ`2 ‰ σ1`2 and we obtain the result.

Now, we prove that #Impαq `#Impωq ď i` 2.

The image of ω is the union of the image of ω1 and the singleton tcu. So we have
#Impωq “ #Impω1q ` 1.

Let us consider the natural projection p : E` Ñ E`{αpτpJq∆τ´1pJqq, we have the
following diagram

Σ`1
α //

α1

''

E`

p

��
E`{αpτpJq∆τ´1pJqq

We denote e P E`{αpτpJq∆τ´1pJqq such that ppαpσqq “ e, for every ppcq P τpJq∆τ´1pJq.

The image of α satisfies

Impαq “ αpτpJq Y τ´1pJqq Y αpΣ`ztτpJq Y τ´1pJquq.

By definition, we have

τpJq Y τ´1pJq “ pτpJq∆τ´1pJqq Y pτpJq X τ´1pJqq.

So, we deduce

αpτpJq Y τ´1pJqq “ αpτpJq∆τ´1pJqq Y αpτpJq X τ´1pJqq.
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We denote byK the number of maximum intervals of J .Since J ‰ Σ`, we have #τpJq∆τ´1pJq “
2K and #pτpJq X τ´1pJqq “ #J ´K. Indeed, the set τpJq∆τ´1pJq is the set of elements
of Σ` which are adjacent to J and the set τpJqXτ´1pJq is the set of elements of Σ` which
are surrounded by J .

By hypothesis, for every element σ` P τpJq∆τ´1pJq there exists another element σ1` P
τpJq∆τ´1pJq such that αpσ`q “ αpσ1`q. So we obtain

#αpτpJq∆τ´1pJqq ď
2K

2
ď K.

Hence we compute

#αpτpJq Y τ´1pJqq ď #αpτpJq∆τ´1pJqq `#αpτpJq X τ´1pJqq

ď K `#J ´K

ď #J.

It remains to estimate the cardinal of C “ ImpαqztαpτpJqYτ´1pJququ. For every c P C
and σ P α´1pcq, we have σ R αpτpJq Y τ´1pJqq. So in particular, σ P Σ`1 and ppcq ‰ e. We
deduce that

ppcq “ α1pσq.

It implies that
ppCq Ă Impα1qzteu.

Moreover, by definition C X p´1peq “ H, so p|C is a bijection and, since teu P Impα1q, we
obtain

#C ď #Impα1q ´ 1.

Thus we have
Impαq ď #J `#Impα1q ´ 1.

The couple pα1, ω1q is defined on a set of cardinal i´#J ` 1 and satisfies the hypothesis
of Lemma 6.2.5, so we compute

#Impαq `#Impωq ď p#J `#Impα1q ´ 1q `#Impω1q ` 1

ď #Impα1q `#Impω1q `#J

ď pi´#J ` 2q `#J

ď i` 2,

where the third inequality is given by the induction step.

Notice that if J is composed of at least 2 maximal intervals, the previous inequality is
strict.

To complete the proof of Proposition 6.2.4 we will prove that the couple of maps
α : Σ`x Ñ C`t pFq and ω : Σ´x Ñ C´t pFq defined at the begining of the proof satisfies the
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hypothesis of Lemma 6.2.5.

Let C be a connected component of G´t pFq in the image of ω. We denote B “ W spCq
and we want to desingularize its frontier FrpBq as follows.

Desingularization. We cut the surface Σ along FrpBq (see [11] for example) to obtain
a manifold with boundary B̂ and a natural projection π : B̂ Ñ B such that

• πpBB̂q “ FrpBq.

• πpB̂zBB̂q » B.

Let us draw simple examples to explain what we are doing.

First example. In Figure 6.10, we consider on the left a saddle point y in FrpBq such
that

• There are two hyperbolic sectors U 1 and U2 separated by a cone σ in B . We denote
φ1 and φ2 the leaves of U 1 and U2 in FrpBq.

• There exists a leaf ψ in σ X FrpBq.

We draw in red the leaves in B and in blue the leaves in FrpBq. We cut along leaves of
FrpBq in blue to obtain B̂ on the right and we have

• π´1pyq “ tŷ1, ŷ2u.

• π´1pψq “ tψ̂1, ψ̂2u .

• π´1pφ2q “ tφ̂1u.

• π´1pφ1q “ tφ̂2u.

σ

‚ψ

‚
y

U 1 U2

φ1 φ2  

σ̂

‚

‚ ‚φ̂1 φ̂2

ψ̂2ψ̂1

ŷ1 ŷ2

U 1 U2

Figure 6.10

Second example. In Figure 6.11 we consider a saddle point y in FrpBq such that

• There is a stable cone surrounded by B which contains two leaves φ1 and φ2 in FrpBq.

• There are two leaves φ1 and φ2 of stable cones of y in FrpBq.
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We draw in red the leaves in B, in blue the leaves in FrpBq. We cut along the leaves of
FrpBq to obtain B̂ on the right and we have

• π´1pyq “ tŷ1, ŷ2u.

• π´1pψ1q “ tψ̂1u.

• π´1pψ2q “ tψ̂2u

• π´1pφ2q “ tφ̂1u.

• π´1pφ1q “ tφ̂2u.

‚
ψ2ψ1

‚
y

φ1 φ2  

‚

‚ ‚φ̂1 φ̂2

ψ̂2ψ̂1

ŷ1 ŷ2

Figure 6.11

We have that B̂ is a manifold with boundary whose boundary is a union of disjoint
circles. By Proposition 6.1.4, each circle of BB̂ is composed of chains of connexions of the
foliation F such that for every leaf φ in FrpBq we have

• #π´1pφq “ 1 if φ is adjacent to B.

• #π´1pφq “ 2 if φ is in the interior of B.

Remark 6.2.6. As we saw in the second example with the leaves ψ1 and ψ2, a leaf φ can
be adjacent to B and in a stable cone of a saddle point of FrpBq which is surrounded by B

We set J “ ω´1pCq and recall that we set t “ Apxq at the begining. By definition, the
saddle point x is in the boundary of B. We consider a stable cone σ` P Σ` of x adjacent
to J in Σ`. To prove that the applications α and ω satisfy the hypothesis of Lemma 6.2.5
it is sufficient to prove that there exists another stable cone σ1` of x adjacent to J in Σ`

such that αpσ1`q “ αpσ`q.

The cone σ` is adjacent to B so, by Proposition 6.1.4, there is a unique leaf φ`0 in
σ`XFrpBq. The cone σ` is adjacent to J in Σ`, so we can denote π´1pφ`0 q “ tφ̂

`
0 u Ă BB̂.

Moreover, x is the only singularity of action t, so each singularity ŷ of BB̂zπ´1pxq satis-
fies Af pπpŷqq ą t. So, if we consider a circle γ of BB̂, the singularities in a same connected
component of γzπ´1pxq are the lift of singularities which are in the same connected com-
ponent of G`t pFq. Notice that γzπ´1pxq may be composed of more than one connected
components.
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We consider the circle γ0 of BB̂ containing φ̂`0 . The connected component of γ0zπ
´1pxq

containing φ̂`0 contains a leaf φ̂1
`

0 distinct from φ̂`0 such that ωpπpφ̂10qq “ x. There are two
cases.

1) If πpφ̂10q is in a stable cone of x adjacent to J in Σ` then we obtain the result.

2) Suppose that πpφ̂10q is in a stable cone σ`1 of x surrounded by J in Σ`. By con-
struction, there exists another leaf φ̂`1 P BB̂ distinct from φ̂1

`

0 such that πpφ̂`1 q, which may
be equal to πpφ̂1

`

0 q, is in σ
`
1 .

By Lemma 6.1.5, we have that αpπpφ̂`1 qq “ αpπpφ̂1
`

0 qq. So we apply the same argu-
ments to φ̂`1 and then there exists a leaf φ̂1

`

1 Ă BB̂ such that φ̂1
`

1 and φ`1 are in the same
connected component of γ1ztπ

´1pxqu and ωpπpφ̂1
`

1 qq “ x . If φ1`1 is in a stable cone of x
adjacent to J in Σ` we stop the process and if not we do the same discussion for φ1`1 as
we did for φ1`0 in case 2).

Since x has finitely many stable cones, the process stops after a finite number of times
and we obtain a leaf φ1` in the frontier of the attractive basin of C distinct from φ` which
is in a stable cone σ1` of x adjacent to J in Σ` such that αpσ1`q “ αpσ`q and this ends
the proof of Proposition 6.2.4.

By construction of B, we deduce the following corollary.

Corollary 6.2.7. Let us suppose that the singularities of F have distinct action values
and consider a saddle point x of F . There exist exactly ´indpf, xq bars J1, ..., J´indpf,xq of
which Apxq is an end point.
Moreover, for each source or sink y of X there exists exactly one bar J of which Apyq is
an end point.

Proof. Let us consider a saddle point x of F of action t. We denote Cx (resp. C1x the
connected component of G´

t`
pFq (resp. G`

t´
pFq) which contains x. By construction, there

are #j´1
t pCxq bars of category 1 such that Apxq is the maximum and #j1´1

t pC1xq bars of
category 2 such that Apxq is the infimum. Finally, by Proposition 6.2.4 we have k “
|indpF , xq| ´#j´1

t pCxq ´#j1´1
t pC1xq ě 0 so there exists k bars pAf pxq,`8q of category 3.

Thus there are exactly ´indpF , xq bars of which Af pxq is an end.

Recall that Xă is the set of singularities of X of negative index and X1 the set of sin-
gularities of X of index 1. We set Să0 “ ApXă0q and we consider a sink ym of the foliation
F such that Apymq “ Am and a source yM of the foliation F such that ApyM q “ AM and
an application ι : Xztym, yMu Ñ Xă0 given by 6.1. We will prove the following result
about the semi-infinite bars of βF .

Lemma 6.2.8. There exist exactly 2g ` 2 semi-infinite bars in βF , where g is the genus
of Σ.

Proof. By Lemma 6.2.1 for each value t P Să0 the number of finite bars of which one end
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is the action value of t is equal to
¨

˚

˝

ÿ

CPC´
t`

p#j´1
t ptCuq ´ 1q `

ÿ

C1PC`t´

p#j1
´1
t ptC

1uq ´ 1q

˛

‹

‚

.

Moreover, the existence of the application ι asserts that the total number of finite bars
is equal to the number of singularities of index 1 minus two. So we compute

ÿ

yPX1

1 “ 2`
ÿ

yPX1ztym,yM u

indpF , yq

“ 2`
ÿ

tPSă0

¨

˚

˝

ÿ

CPC´
t`

p#j´1
t ptCuq ´ 1q `

ÿ

CPC`t´

p#j1
´1
t ptC

1uq ´ 1q

˛

‹

‚

.

(6.3)

Moreover, we have

2´ 2g “
ÿ

xPX

indpF , xq

“ 2`
ÿ

xPXztym,yM u

indpF , xq.

“ 2`
ÿ

xPXă0

indpF , xq `
ÿ

yPX1ztym,yM u

indpF , yq.

Where the last equality is given by separating the fixed points of negative index and the
fixed points of index 1.

For t P Să0 we define
kt “ ´

ÿ

xPXă0
Apxq“t

indpF , xq.

By equation 6.3, we get

2´ 2g “ 2`
ÿ

tPSă0

¨

˚

˚

˝

ÿ

xPXă0
Apxq“t

indpF , xq

˛

‹

‹

‚

`
ÿ

tPSă0

¨

˚

˝

ÿ

CPC´
t`

p#j´1
t ptCuq ´ 1q `

ÿ

C1PC`t´

p#j1
´1
t ptC

1uq ´ 1q

˛

‹

‚

“ 2´
ÿ

tPSă0

¨

˚

˝

kt ´
ÿ

CPC´
t`

p#j´1
t ptCuq ´ 1q ´

ÿ

C1PC`t´

p#pj1
´1
t ptC

1uq ´ 1q

˛

‹

‚

“ 2´ p#tsemi-infinite barsu ´ 2q.

The last equation is given by the construction of the bars of category 3 in the construction
of B. Indeed, for action value t, the number of bars pt,`8q in the barcode is equal, by

81



definition, to kt ´
ř

CPC´
t`
p#j´1

t ptCuq ´ 1q ´
ř

C1PC`t´
p#pj1´1

t ptC
1uq ´ 1q. The ´2 comes

from the two semi-infinite bars pAm,`8q and pAM ,`8q. So the number of semi-infinite
bars is equal to 2g ` 2.

Remark 6.2.9. Let us suppose that for each value t in the image of A, the set A´1pttuq is
a singleton and each singularity x of Xă0 has index ´1. In this case the proof is simpler
to understand because ι is an injection.

The number of semi-infinite bars is equal to #pXă0zImpιqq ` 2 and we compute

2´ 2g “
ÿ

xPX

indpF , xq

“ 2`
ÿ

yPX1ztym,yM u

indpF , yq `
ÿ

xPXă0

indpF , xq

“ 2`
ÿ

yPX1ztym,yM u

1´
ÿ

xPImpιq

1´ p#tsemi-infinite barsu ´ 2q

“ 4´#tsemi-infinite barsu.

We obtain the result.
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Chapter 7

A barcode with an order on a maximal
unlinked set of fixed points

We consider a homeomorphism f of a compact surface Σ with a finite number of fixed
points. We fix a maximal unlinked set of fixed points X of f . We denote by D the unit
disk.

For a set U Ă D we will denote by AdhDpUq its closure in D and by AdhR2U its closure
in R2. A line γ will be a proper oriented topological embedding of the interval p0, 1q. If an
oriented line γ : p0, 1q Ñ D separates D in two connected components, we will consider its
left hand side, denoted Lprγq, and its right-hand side, denoted Rprφq.

Let us consider a maximal isotopy I from id to f such that SingpIq “ X. We equipped
ΣzX with a hyperbolic metric m such that the universal cover ĆΣzX of ΣzX with the pull
back metric is isomorphic to D.

We consider a singularity x P X and a path γ : r0, 1s Ñ Σ such that limtÑ1 γptq “ x
and γpp0, 1sq Ă ΣzX. We fix a lift rγ : p0, 1q Ñ D of γ|p0,1q. We consider a horospherical
neighborhood V of x in pΣzX,mq. Meaning that π´1pV q is a disjoint union of horodisks
where a horodisk is a disk internally tangent to the unit circle. Notice that V Y txu is a
topological neighborhood of x in Σ.

Moreover, rγpp0, εsq is connected so there exists a unique horoball rV Ă π´1pV q which
contains rγpp0, εsq. By definition, the closure of a horoball intersects the boundary S1 of D
in exactly one point and we set rx “ AdhR2pV q X S1. Since the alpha-limit point of rγ is a
point of S1 we obtain that limtÑ0 rγptq “ rx.

Thus, if we consider a path γ : r0, 1s Ñ Σ such that αpγq “ x P X, ωpγq “ y P X and
γpp0, 1qq Ă ΣzX, then for every lift rγ of γ is line in D such that there are two points rx and
ry of S1 which satisfy

lim
tÑ0

rγptq “ rx, and lim
tÑ1

rγptq “ ry.

The point rx (resp. ry) will be denoted αprγq (resp. ωprφq). We refer to Ratcliffe’s book [?],
chapter 9.8 for more details.
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For two distinct points rx and ry of S1, we define rrx, rys Ă S1 the arc joining rx to ry for
the usual orientation. We set prx, ryq “ rrx, rysztrx, ryu.

Let us consider two proper paths φ : r0, 1s Ñ ΣzX and φ1 : r0, 1s Ñ ΣzX whose al-
pha and omega limit points are in X and satisfy φpp0, 1qq Ă ΣzX and φ1pp0, 1qq Ă ΣzX.
We say that φ and φ1 strongly intersect if there exist two lifts rφ and rφ1 of φ and φ1 as follows.

If we denote

• αprφq “ rx,

• ωprφq “ ry,

• αprφ1q “ rx1,

• ωprφ1q “ ry1,

then we have

• rx, ry, rx1, ry1 are distinct,

•
"

rx1 P prx, ryq
ry1 P pry, rxq

or
"

rx1 P pry, rxq
ry1 P prx, ryq

.

The homeomorphism rf can be extended on the closed unit disk AdhR2pDq. A line
γ Ă D is said to be a Brouwer line of rf if it separates D in two connected components such
that the one on the left-hand side, denoted Lpγq, contains rfpγq and the one on the right-
hand side, denoted Rpγq, contains rf´1pγq. In particular, we have rfpAdhDpLpγqqq Ă Lpγq.
We have the following definition.

Definition 7.0.1. For a couple x, y P X, an oriented path γ : r0, 1s Ñ Σ such that
αpγq “ x P X, ωpγq “ y P X and γpp0, 1qq Ă ΣzX is called a connexion from x to y if
every lift rγ of γ is an oriented Brouwer line of rf .

Remark 7.0.2. If we consider a maximal isotopy I “ pftqtPr0,1s from id to f and a foliation
F positively transverse to I then each leaf φ of F is a connexion in the previous sense.
Indeed, if we consider a leaf φ of F , then a lift rφ of φ is an oriented line which separates D
in two connected components Lprφq and Rprφq such that rfprφq Ă Lprφq and we deduce that
rfpAdhDpLprφqqq Ă Lprφqq.

We will prove the following lemma which will be useful in Chapter 8.

Lemma 7.0.3. Let us consider x, x1, y, y1 P X fixed points of f such that there exist a
connexion φ from x to y and a connexion φ1 from x1 to y1. If φ and φ1 strongly intersect
then there exists a connexion from x to y1 and a connexion from x1 to y.

Remark 7.0.4. The result stands for non area-preserving homeomorphisms isotopic to
the identity and no foliations are involved in the statement. Moreover, the fixed points
x, y, x1, y1 do not have to be distincts to obtain the result. Nevertheless, if we suppose that
f is a Hamiltonian homeomorphism, then for every connexion φ between two fixed points
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x and y, we have Af pxq ą Af pyq where Af is the action function of f , see 2.3.18 in the
preliminaries. So, if we consider four fixed points satisfying the hypothesis of Lemma 7.0.3,
then, by hypothesis, we have x ‰ y and x1 ‰ y1 and the result implies that x ‰ y1 and
x1 ‰ y.

We will need a result of Kerékjártó [46] which asserts that each connected component
of the intersection of two Jordan domains is a Jordan domain. A Jordan domain is the
relatively compact connected component of the complement of a simple closed curve of the
plane, called a Jordan curve. We refer to [55] for the proof of the following result.

Theorem 7.0.5. Let U and U 1 be two Jordan domains of the plane. Every connected
component of U X U 1 is a Jordan domain.

We now prove Lemma 7.0.3.

Proof of Lemma 7.0.3. We consider the lifts rφ and rφ1 of φ and φ1 given by the hypothesis.
We denote

• αprφq “ rx,

• ωprφq “ ry,

• αprφ1q “ rx1,

• ωprφ1q “ ry1.

By symmetry we can suppose that rx1 P pry, rxq as in Figure 7.1.

We consider the oriented loops Γ
rφ
“ rφY rry, rxs and Γ

rφ1
“ φ1 Y rry1, rx1s in R2. The loops

Γ
rφ
and Γ

rφ1
are the frontier of the domains AdhR2pLprφqq and AdhR2pLprφ1qq and are Jordan

curves.

For every rz “ eiθ P pry, rxq there exist ε ą 0 and η ą 0 such that

|θ1 ´ θ| ă η and 1´ ε ă r ă 1 ñ reiθ
1

P Lprφq.

Symmetrically, for every rz “ eiθ P pry1, rx1q there exist ε ą 0 and η ą 0 such that

|θ1 ´ θ| ă η and 1´ ε ă r ă 1 ñ reiθ
1

P Lprφ1q.

We denote rx1 “ eiα and ry “ eiβ with β ă α ă β ` 2π. There exists a continuous map
ψ : pβ, αq Ñ r0, 1s such that for every θ P pβ, αq, we have

ψpθq ă r ă 1 ñ reiθ P Lprφq X Lprφ1q.

We will consider the small croissant K Ă D, as in figure 7.1, defined by

K “ tz “ reiθ| θ P pβ, αq, ψpθq ă r ă 1u.

By Theorem 7.0.5, the connected component U of Lprφ1 X Lprφ1q which contains K is a
Jordan domain in R2. Since K Ă U , the boundary of AdhR2pUq is the union of an arc in
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S1 and an oriented curve J in D from rx1 to ry.

Since rφ and rφ1 are Brouwer lines of rf , we have that rfpAdhDpUqq is connected and
satisfies rfpAdhDpUqq Ă Lprφq X Lprφ1q. Moreover, we have rfpKq Ă U , so we deduce

rfpAdhDpUqq Ă U.

In other words, the line J is a Brouwer line for rf . Hence J induces a connexion in Σ from
x1 to y.

By considering the intersection Rprφq X Rprφ1q, with the same arguments we obtain a
connexion in Σ from x to y1.

D

K

rφ

rφ1
rx1 ry1

rx

ry

Figure 7.1

For the remainderof the section, we also suppose that f is a Hamiltonian homeomor-
phism, we will define a barcode associated to X.

The notion of connexion induces an order on X where, for x, y P X, we say that x ą y
if there exists a connexion from x to y.

We saw in section 2.3.7 that the index function indpF , ¨q defined on X does not depend
on the choice of the foliation F positively transverse to I and we denote this index function
indpI, ¨q. We will study the following barcode.
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Definition 7.0.6. We define the graph of connexion Gpąq whose set of vertices is equal
to X and in which there is an edge between two vertices x and y if and only if x ą y in Σ.
We denote by βą the barcode BpGpąq, Af |X , indpI, ¨qq.

Remark 7.0.7. If we consider a foliation F P FpIq, the graph GpFq is a subgraph of Gpąq.

Remark 7.0.8 (The Morse example). Let us consider a Morse function H on the 2-sphere
as in Figure 4.6. We suppose that H induces a Hamiltonian diffeomorphism f with a finite
number of fixed points such that Fixpfq is unlinked. On Figure 7.2, we draw on the left
the graph Gpąq associated to the isotopy I “ pftqtPr0,1s induced by H. Notice that this
graph is distinct from the graph GpFq of Figure 4.6 which were associated to a foliation
F P FpIq positively transverse to I. To simplify the reading of the graph, the connexions
between sources and sinks are represented by dotted edges. We draw on the right part the
barcode βą of this example. We can also notice that the barcode βą of Figure 7.2 is equal
to the barcode BgenpFq of Figure 4.6.

f : S2 Ñ S2

Af

p1

x1

p2

s1

x2

s2

βą

‚

‚

‚

‚

‚

‚

Gpąq

p1

x1

p2

s1

x2

s2

p1

x1

p2

s1

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

Figure 7.2
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Chapter 8

Equalities of the previous constructions and
independence of the foliation

In this chapter, we fix a Hamiltonian homeomorphism f of a closed and oriented surface
Σ with a finite number of fixed points. Let X Ă Fixpfq be a maximal unlinked set of
fixed points and I “ pftqtPr0,1s an isotopy from id to f such that SingpIq “ X. The action
functional of f will be denoted Af .
For a foliation F positively transverse to the isotopy I, we denote by GpFq the graph, de-
fined in Chapter 6, whose set of vertices is the set X such that for every couple of vertices
x and y of GpFq there exists an edge from x to y if and only if there exists a leaf in F
from x to y. We will also consider the subgraphs pG´t pFqqtPR and pG`t pFqqtPR given by
the natural filtration of GpFq by Af .

We will use some notation of Chapter 5. For t P R we denote C´t and C`t the sets of
connected components of G´t pFq and G`t pFq and for a connected component C of G´t pFq
we define LpCq “ mintAf pyq | y vertex of Cu.

We consider the graph of connexion Gpąq, defined in Chapter 7, whose set of vertices
is equal to X such that there is an edge between two vertices x and y if and only if there
exists a connexion between x and y in Σ.

We will consider the barcode BpGpFq, Af |X , indpF , ¨qq, denoted βF , constructed in
Chapter 6 and associated to the foliation F . Recall that the index function indpF , ¨q de-
fined on X does not depend on the choice of F P FpIq and we denote this index function
indpI, ¨q. We will consider the barcode BpGpąq, Af |X , indpI, ¨qq, denoted βą, defined in
Chapter 7.

In the first section, we compare these two barcodes and in the second section we compare
the barcode βF with the barcode constructed in Chapter 4 in the generic case.

8.1 Equality between the barcode βF and the barcode βą

In this section, we prove the following theorem.
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Theorem 8.1.1. The barcode βF does not depend on the choice of F P FpIq and satisfies
βF “ βą.

For the proof, we fix a foliation F P FpIq positively transverse to the isotopy I. We
will need the following lemma.

Lemma 8.1.2 (Fundamental). For each t P R, the set of connected components of G´t pFq
defines the same partition of X X A´1

f pp´8, tqq than the set of connected components of
G´t pąq.

If we suppose Lemma 8.1.2 true, the proof of Theorem 8.1.1 is straigthforward since the
action functions and the index functions are equals and the constructions of the barcodes
βą and βF in Chapter 5 depend only on the connected components of the graphs GpFq
and Gpąq and the action and index values of the singularities of X.

Proof of Lemma 8.1.2. For t P R and for each fixed points x, y P X of action less than t,
we want to prove the equivalence of the following two properties.

(i) The elements x, y are in the same connected component Cą of G´t pąq,

(ii) The elements x, y are in the same connected component CF of G´t pFq.

(ii) ñ (i). Since x and y are in the same connected component C of G´t pąq, there
exists a family pxiq0ďiďk of singularities of X such that

• x0 “ x and xk “ y.

• Af pxiq ă t for every i P t0, ..., ku

• For every i P t1, ..., ku there exists a leaf φi of F either from xi to xi´1 or from xi´1

to xi

Moreover, each leaf of the foliation F is by definition a connexion, so pφiq0ďiďk is a
family of connexions and then the singularities xi, i P t0, ..., ku, are in the same connected
component of G´t pąq and we obtain the result.

(i) ñ (ii). We will prove the following lemma.

Lemma 8.1.3. Let us consider F P FpIq and px, yq P X2. If x ą y then x and y are in
the same connected component of G´t pFq for every t ą Af pxq.

Let us assume that Lemma 8.1.3 is true and consider x, y P X and t ą Af pxq such that
piq is satisfied, we prove that piiq holds.

Since x and y are in the same connected component C of G´t pąq, there exists a family
pxiq0ďiďk of singularities of X such that

• x0 “ x and xk “ y.

• Af pxiq ă t for every i P t0, ..., ku

• For every i P t1, ..., ku there exists a connexion φi either from xi to xi´1 or from xi´1

to xi
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Moreover, by Lemma 8.1.3 xi´1 and xi are in the same connected component of G´t pFq
for every i P t1, ..., ku so x and y are also in the same connected component of G´t pFq.

To complete the proof of Lemma 8.1.2, it remains to prove Lemma 8.1.3.

Proof of Lemma 8.1.3. We consider two fixed points x, y P X such that x ą y. Every
attractive or repulsive basin in this proof will be defined relatively to the foliation F . We
will divide the proof in three cases, in the first one x will be a sink of F , in the second one
x will be a saddle and in the last one x will be a source of F .

First case. We suppose that x is a sink. We will prove that there is no connexion from
x to another singularity of F .

We say that the orbit of a q-periodic point z of f is contractible if the concatenation of
the trajectories of the points fkpzq, k P t0, ..., q ´ 1u, along the isotopy I is a contractible
loop , denoted γz, in Σ. The loop γz is called the trajectory of the periodic orbit of z.
We say that a contractible q-periodic orbit has type pp, qq associated to I at x P Fixpfq
if its trajectory along I is homotopic to pΓ in ΣzSingpIq, where Γ is the boundary of a
sufficiently small Jordan domain containing x.

We will use the following version of a result of Yan and we refer to [75], Theorem 1.1,
for a proof.

Theorem 8.1.4. Let us consider a fixed point z of f of Lefschetz index equal to 1 fixed
by the isotopy I, and such that the rotation set ρspI, zq is reduced to t0u. The point z is
accumulated by periodic points. More precisely, the following property holds: there exists
ε ą 0, such that, for every neighborhood of z, either for every irreducible p{q P p0, εq, or for
every irreducible p{q P p´ε, 0q, there exists a contractible periodic orbit Op{q of type pp, qq.

Let us prove that there is no connexion from x to another singularity of F . We suppose
that there exists a connexion φ from x to another singularity y of F , we want to find a
contradiction.

The singularity x is a sink of the foliation F which is positively transverse to the isotopy
I, so the local rotation set ρs,Ipxq of x, introduced in section 2.3.5, is included in p´8, 0s.
Moreover, it is not difficult to prove that the existence of the connexion φ implies that the
rotation set ρs,Ipxq of x is included in r0,`8q. Indeed, locally, a connexion whose alpha-
limit is x is a positive arc, which means that in polar coordinates where γ corresponds to
the semi-line tθ “ 0u, for every point z close enough to x, the variation of θ along the
trajectory is positive. We refer to Theorem 3.2.4 and section 2.4 of [59] for more details.
So the local rotation set of x for the isotopy I is reduced to the integer t0u.

If the Lefschetz index of x is not equal to 1, by a result of Le Roux, see [59] Theorem
4.1.1, the foliation F and the homeomorphism f have the same index at x for the isotopy
I. But, by hypothesis, x is a sink of the foliation F so indpF , xq “ 1 and we obtain a
contradiction.
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If the Lefschetz index of x is equal to 1 then we can apply Theorem 8.1.4. More pre-
cisely, the singularity x is a sink of F so there exists ε ą 0 such that x is accumumated by
periodic orbits Op{q of type pp, qq where p{q P p0, εq. So the rotation number ρs,Ipxq is not
reduced to t0u and we obtain a contradiction.

Second case. We suppose that x is a saddle point. We prove the result by contradiction.

We suppose that there exists a connexion γ : r0, 1s Ñ Σ from x to some y and that x and
y are not in the same connected component of G´

Af pxq`
pFq. We denote byW spC´x q Ă Σ the

attractive basin of C´x , where C´x is the connected component of G´
Af pxq`

pFq which contains
x. By Lemma 6.1.7, the fixed point x is in the interior of W spC´x q and every singularity z
of F in the frontier of W spC´x q satisfies Af pzq ą Af pxq. The existence of the connexion γ
implies that Af pxq ą Af pyq so the fixed point y is not in the frontier of W spC´x q and is in
ΣzW spC´x q.
We consider the universal cover ĆΣzX of ΣzX which is identified to the unit disk D and
π : DÑ ΣzX the universal covering map. Let U be a connected component of π´1pC´x zXq
and rγ a lift of the connexion γ such that there exists ε ą 0 such that rγpp0, εqq Ă U . By
hypothesis on y, there exists ε1 ą 0 such that rγpp1´ ε1, 1qq R U .
Recall that π naturally extends to S1. Moreover, we saw that limtÑ0 rγptq and limtÑ1 rγptq
are well-defined on S1 and will be denoted rx and ry.

The set U is an open connected set of D whose frontier is a union of lifted leaves. Then
there exists a lifted leaf rψ of FrpUq which separates D such that U is on one side and ry is
in the other. By hypothesis, the points ωp rψq and αp rψq are distinct from rx and ry, indeed,
x is in the interior of W spC´x q and y R FrpW spC´x qq. Since rψ is the lift of a connexion,
we obtain that ψ and γ are two connections which intersect strongly, hence by Lemma
7.0.3 there exists a connexion from x to ωpψq which is impossible because by definition
ωpψq P FrpW spC´x qq and then Af pωpψqq ą Af pxq.

Third case. Suppose that x is a source of F . The point y is either in the frontier of the
repulsive basin W upxq of x or in the complement of W upxq. We separate these two cases.

1) We suppose that y is in the frontier of W upxq. There exists a chain of connexions
from x to y and so we deduce the result. Indeed, by definition, the singularity y is ac-
cumulated by leaves pφjqjPJ of W upxq whose alpha-limit point is x. By the local model
described in Chapter 6.1, the closure of these leaves contains a chain of connexions which
starts at x and also contains y.

2) We suppose that y is in the complement of W upxq. We consider U a connected com-
ponent of π´1pW upxqztxuq where π : D Ñ ΣzX the covering map defined in the second
case. We can consider a lift rγ of the connexion γ such that there exists ε ą 0 such that
rγpp0, εqq Ă U . By hypothesis on y, there exists ε1 ą 0 such that rγpp1 ´ ε1, 1qq R U . The
limits limtÑ0 rγptq and limtÑ1 rγptq are well-defined on S1 and will be denoted rx and ry.

We apply similar arguments as in the second case. The set U is an open connected
set of D whose boundary is a union of lifted leaves. Then there exists a lifted leaf rψ of
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FrpUq separating D such that U is on one side and ry is on the other. By hypothesis, the
points ωp rψq and αp rψq are distinct from rx and ry, indeed, x is in the interior of W spC´x q
and y R FrpW spC´x qq. Since rψ is the lift of a connexion, we obtain that ψ and γ are two
connections which intersect strongly, hence by Lemma 7.0.3 there exists a connexion from
αpψq to y. The singularity αpψq can not be a source nor a sink so it is a saddle point
of F , hence we apply the result of the second case which asserts that the existence of a
connexion from αpψq to y implies that αpψq and y are in the same connected component of
G´
Af pαpψqq`

pFq. Moreover, by hypothesis, αpψq and x are in the same connected component
of G´

Af pxq`
pFq thus we deduce that x and y are also in the same connected component of

G´
Af pxq`

pFq.

8.2 Equality between the barcode βF and the barcode Bgenpf,Fq in the
generic case

We consider a Hamiltonian homeomorphism f of a closed and oriented surface Σ with a
finite number of fixed points. We suppose that Fixpfq is finite and unlinked, each fixed
point x P Fixpfq satisfies indpf, xq P t´1, 1u and that the action function Af : Fixpfq Ñ R
is injective. Let I “ pftqtPr0,1s be a maximal isotopy from id to f fixing all fixed points of
f . We denote Af the action functional of f .

Recall that a foliation F P FgenpIq does not have connexions between saddle points,
and the stable and unstable cones of a saddle point x of F are both composed of a unique
leaf which will be referred to as the stable and unstable leaves of x.

Let us consider the graph GgenpFq given by Definition 4.0.2. Remember that GgenpFq
is the graph whose set of vertices is the set Fixpfq and whose edges correspond to leaves
φ of F such that indCZpf, αpφqq “ indCZpf, ωpφqq ´ 1, where indCZpf, ¨q is the Conley-
Zehnder index, defined in Chapter 4, equals to 1 on sources and sinks and equals to ´1 on
saddle points. Notice that Ggen is distinct from the graph GpFq given in the introduction
of this chapter.

In this section we want to compare the barcode BgenpFq to the barcode

BpGpFq, Af |X , indpF , ¨qq,

denoted βF , constructed in Chapter 6. We will prove the following result.

Theorem 8.2.1. Let us consider a Hamiltonian homeomorphism f on a compact surface
Σ. We suppose that Fixpfq is finite and unlinked, each fixed point x P Fixpfq satisfies
indpf, xq P t´1, 1u and the action function is injective. We consider a maximal isotopy I
such that SingpIq “ Fixpfq then for a foliation F P FgenpIq we have

BgenpFq “ βF .

We recall the definition of the functor β. Let V “ pVsqsPR be a persistence module. Let
us consider the set of t P R in the spectrum of V such that dimpKerpit´,t`qq is equal to 1
and label its elements b1, ..., bn. For each bj , there exists a unique aj P R with the following
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property: Let x P Vb´j represents a non-zero element in Kerpit´,t`q “ 1, the element x is in
the image of ia`j ,b´j but x is not in the image of ia´j ,b´j ; if we label the remaining elements
of the spectrum of V by tc1, ..., cmu then the barcode βpVq consists of the list of intervals
paj , bjs and pck,`8q, where 1 ď j ď n and 1 ď k ď m.

We will consider G´gen,tpFq, G`gen,tpFq the associated filtered graphs and we denote by
pHt

˚qtPR the persistence module of the chain complex pCti qiPt0,1,2u,tPR of Definition 4.0.3.
Finally, we denote by BgenpFq the barcode βppHt

˚qtPRq where β is the functor defined in
Chapter 3.

To avoid any confusion, we will always refer to the chain complex by Cti where i P
t0, 1, 2u and t P R. We will refer to connected components of the graph GpFq by C or C1
and to a connected component of the graph GgenpFq by Cgen. For t P R and a connected
component C of G´t pFq we denote LpCq the minimum of the action function on the sinks
of C and for t P R and a connected component C1 of G`t pFq we denote DpCq the maximum
of the action function on the sources of C1. Moreover, to simplify the notation, we provide
the filtered chain complex pCitqiPt0,1,2u,tPR with a natural scalar product x.|.y associated to
the canonical basis. Meaning that we consider the bilinear function x.|.y on the space Cit
such that for every couple of fixed points x and y of f in Cit , we have xx, yy “ 1 if and only
if x “ y and xx, yy “ 0 otherwise.

Theorem 8.2.1 allows us to prove Property 4.0.11 of Chapter 4 which states that the
barcode Bgenpf,Fq does not depend on the choice of F P FgenpIq. We recall that assump-
tions of Theorem 8.2.1 are satisfies in this particular case.

Proof of Proposition 4.0.11. By Theorem 8.2.1, for each foliation F P FgenpIq we have that
BgenpFq “ βF . Moreover, by Theorem 8.1.1, the barcode βF does not depend on the
choice of the foliation F P FgenpIq. So we obtain that Bgenpf,Fq does not depend on the
choice of F P FgenpIq which is the result.

We fix a foliation F P Fgen for the remaining of the section.

Proof of Theorem 8.2.1. By Remark 4.0.9, each action value of Af is the end of a unique
bar of the barcode BgenpFq and by Corollary 6.2.7, we have the same result for the barcode
βF so it is enough to prove the inclusion βF Ă BgenpFq to prove that these barcodes are
equal.

Moreover, Corollary 6.2.7 states that exactly one end point of every bar of the barcode
βF , except the bars pminAf ,`8q and pmaxAf ,`8q, is the action value of a saddle point
of F . So it is enough to prove that finite bars of the barcode βF are also bars of the bar-
code Bgen to prove the inclusion βF Ă BgenpFq. Indeed, the remaining bars of the barcode
would be the same semi-infinite bars as they would be associated to the same saddle points.

We will prove that for every saddle point x of f , if the bar J of βF , of which Af pxq is an
end, is a finite bar, then it is also a bar of the barcode BgenpFq. Notice that, by construc-
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tion, the bars pminAf ,`8q and pmaxAf ,`8q of βF are also bars of the barcode BgenpFq.

For the remainder of the proof, we consider a saddle point x of f , we denote by t its
action value and by Cx the connected component of G´

t`
pFq which contains x. By Lemma

6.2.4 the set of connected components of G´t pFq which are included in Cx, which were
labeled j´1

t pCxq in Chapter 5, has one or two elements. We separate those two cases.

Case 1. The set j´1
t pCxq consists of two connected components of G´t pFq denoted C and

C1. By symmetry, we can suppose that LpCq ą LpC1q and, by the construction described
in Chapter 5, there is a bar pLpCq, ts in the barcode βF . Let us prove that this bar is also
a bar of the barcode BgenpFq. It means that there is an element of Kerpit´,t`q which is in
the image of iLpCq`,t´ but not in the image of iLpCq´,t´ .

By hypothesis, the omega-limit points of the unstable leaves of x are distinct sinks y
and y1 of F where y P C and y1 P C1. We have Bt`1 pxq “ y ` y1 so the element y ` y1 P Ct`0
satisfies ry ` y1s P Kerpit´,t`q. It remains to prove that ry ` y1s is in the image of iLpCq`,t´
and not in the image of iLpCq´,t´ . For that, we will consider another cycle in Ct`0 repre-
senting ry ` y1s in homology.

We will use some geometric lemmas.

We will call a path of leaves a path Γ in Σ which is the concatenation of leaves of F .
The singularities of a path of leaves will refer to the alpha-limit points and omega-limit
points of those leaves.

Lemma 8.2.2. Let us consider s P R, and two sinks y1 and y2 of F in the same connected
component Cs of G´s pFq. There exists a path of leaves from y1 to y2 whose singularities
are alternatively sinks and saddle points of Cs.

Proof of Lemma 8.2.2. By definition of the connected component Cs of G´s , there exists a
path of leaves Γ from y1 to y2 in Σ. The path Γ may contain sources. For a source z in Γ
we will modify Γ into a path which does not contain z.

If there is a source z in Γ, there exist two leaves φ1 Ă Γ and φ2 Ă Γ whose alpha-limit
points are equal to z and omega-limit points are either saddle points or sinks of F that we
denote x1 and x2. The singularities x1 and x2 are in the repulsive basin of z for F so, by
Lemma 4.0.7, there exists a path γ of leaves of G´s pFq from x1 to x2 whose singularities
are alternatively saddle points and sinks of F .
We cut the union φ1 Y tzu Y φ2 from the path Γ and replace this portion by the path γ
given by Lemma 4.0.7. We obtain a new path Γ1 from y to y1 such that the source z is not
in Γ1.

We do the same process for every source of Γ and we finally obtain a path from y to y1

as wanted.

We prove the following lemma.
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Lemma 8.2.3. For every s P R and every couple of sinks y1 and y2 of F in the same
connected component Cs of G´s pFq we have ry1s “ ry2s in Hs

0 .

Proof of Lemma 8.2.3. Let us consider s P R, and two sinks y1 and y2 of F in the same
connected component Cs of G´s pFq. By Lemma 8.2.2 there exists a path of leaves in Σ
from y1 to y2 whose singularities are alternatively sinks and saddle points of Cs. We denote
by pxiq0ďiďns the saddle points of the path Γ and by a simple computation we obtain

Bs1

˜

n
ÿ

i“0

xi

¸

“ y1 ` y2.

So, by definition, ry1s “ ry2s in Hs
0 .

Let us come back to the first case of the proof of Theorem 8.2.1. By Lemma 8.2.3 each
sink z P C of F (resp. each sink z1 P C1 of F) satisfies rzs “ rys (resp. rz1s “ ry1s) in
Ht

0. So for every couple of sinks z P C and z P C1 of F , the element z ` z1 P Ct
`

0 satisfies
rz ` z1s “ ry ` y1s P Kerpit´,t`q. We denote by zC and zC1 the sinks of C and C1 such that
Af pzCq “ LpCq, Af pzC1q “ LpC1q.
We supposed that Af pzCq “ LpCq ą Af pzC1q “ LpC1q so the sink zC is not a cycle in CLpCq

´

0

so the element rzC ` zC1s is not in the image of iLpCq´,t´ . Moreover, the sinks zC and zC1
are not in the same connected component of Gt´pFq and so we deduce that rzC ` zC1s is
in the image of iLpCq`,t´ .

So, by construction, there exists a bar pLpCq, ts in the barcode BgenpFq.

Case 2. The set j´1
t pCxq is a unique element. We will consider the connected compo-

nents of the subgraphs pG`t qtPR instead of connected components of the subgraphs pG´t qtPR.
We consider the connected component C1x of G`

t´
pFq which contains x. By Lemma 6.2.4

the set of connected components of G`t pFq included in C1x, which were labeled j1´1
t pC´x q in

Chapter 5, is composed of 1 or 2 elements. We separate those two cases.

1) Suppose that j1´1
t pC1xq is composed of one connected component, then, by construc-

tion, there is no finite bar J in the barcode βF of which t is an end point. We have nothing
to prove in this case.

2) Now we suppose that j1´1
t pC1xq is composed of two connected components of the

graph G`
t`
pFq denoted C and C1. By symmetry we can suppose that DpCq ă DpC1q and by

construction there is a bar pt,DpCqs in the barcode βF . Let us prove that this bar is also a
bar of the barcode BgenpFq. It means that there is an element in KerpiDpCq´,DpCq`q which
is in the image of it`,DpCq´ but not in the image of it´,DpCq´ . We will need the following
lemma about the repulsive basin W spCq of C.

Lemma 8.2.4. We label x1, ..., xn the saddle points in the frontier of W spCq. Then, for
every T ą DpCq, the element Y “

ř

yPC
y source

y of CT2 satisfies

BT2 pY q “
n
ÿ

i“1

xi.
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Proof. For each source y of C, by definition, BT2 pyq is equal to the sum of the saddle points
in the frontier of the repulsive basin of y. These saddle points have either one or both of
their stable leaves in W spCq. We separate those cases.

Firstly, we label x1, ..., xn the saddle points of F of which only one stable leaf have its
alpha-limit point in C. For every i P r0, ns we have xBT2 pY q|xiy “ 1 for every i P r0, ns.
Moreover, the action values of these saddle points is less then or equal to t and it is simple
to see that this belong to the frontier of W spCq.

Secondly, we label x11, ..., x1m the saddle points such that both stable leaves have their
alpha-limit points in C. For every i P r0,ms we have xBT2 pY q|x1iy “ 2. Those saddle points
are nondegenerate saddle points of F so that they are in the interior W spCq and not in its
frontier. Indeed, both stable cones of a saddle point x whose action satisfies Af pxq ą t are
leaves of F whose alpha-limit points are in the same connected component of G`t pFq.

Finally, we compute BT2 pY q as follows.

BT2 pY q “
ÿ

yPC,
y source

BT2 pyq

“

n
ÿ

i“1

xi `
m
ÿ

i“1

2x1i

“

n
ÿ

i“1

xi.

And we obtain the result.

Let us denote c “ DpCq, we will consider the element Y “
ř

yPC
y source

y in Cc
`

2 . By

Lemma 8.2.4, Y satisfies

Bc
`

2 pY q “
n
ÿ

i“1

xi,

where x1, ..., xn are the saddle points of the frontier of W spCq. So we have r
řn
i“1 xis P

Kerpic´,c`q.

By hypothesis, the saddle point x is one of the saddle points pxiqiPr1,ns and each xi sat-
isfies Apxiq ď Apxq since C is a connected component of G`t pFq. So we have that r

řn
i“1 xis

is in the image of it`,c´ .

Moreover, the singularity x is not homologous in Cc´1 to a chain of singularities of Ct´1 .
Indeed, if it was the case then, by definition, it would exist X 1 P Ct´1 and Y 1 P Cc´2 such
that x “ X 1 ` Bc

´

2 pY
1q.

We set yx P C and y1x P C1 the only two sources of F such that x is in the frontier of the
sets W upyxq and W upy1xq. The equality x “ X 1 ` Bc

´

2 pY
1q would imply that xY 1|yxy “ 1
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or xY 1|y1xy “ 1, which is impossible because, by hypothesis, Af py1xq ą Af pyxq “ c. In-
deed, if we have Bc´2 pY 1q “ x ´X 1 then, there exists a source y such that xY |yy “ 1 and
xBc

´

2 pyq|xy “ 1 , which means that x is in the frontier of W upyq. So y is either equal to yx
or y1x.

So, we have the same result for
řn
i“1 xi and so r

řn
i“1 xis R Impit´,c´q.

Thus, by construction, there exists a bar pApxq, DpCqs in the barcode BgenpFq.

Now we can prove Theorem 4.0.12 from Chapter 4 stated as follows.

Theorem 8.2.5. If we consider a Hamiltonian diffeomorphism f with a finite number of
fixed points which is C2-close to the identity and generated by an autonomous Hamiltonian
function then the barcode BgenpFq is equal to the Floer homology barcode of f .

Proof. If we suppose that the autonomous Hamiltonian function H is C2 close to a con-
stant then the Floer homology of H is equal to the Morse homology of H, we refer to [3]
for a proof. We deduce that the Morse Homology barcode βpHMt

˚pHqqtPRq of H is equal
to the Floer Homology barcode βpHFt˚pHqqtPRq of H, where β is the functor defined in
Chapter 3 which associate a persistence module to its barcode.

The time one map f1 “ f of the Hamiltonian flow is C1 close the the identity and its
set of fixed points is unlinked.

Moreover, the gradient-lines of H provides a C1 foliation F positively transverse to
the natural Hamiltonian isotopy induces by H. This isotopy is maximal and so fixes every
fixed points of f . The foliation F is gradient-like and there is no cone of leaves at the
saddle points of F .

Moreover, the construction of the map B in Chapter 5 follows the ideas of the Morse ho-
mology theory then we can assert that the barcode βF is equal to the barcode βpHMt

˚pHqqtPR,

Thus, by Theorem 8.2.1 we have

Bgenpfq “ βF “ βpHMt
˚pHqqtPR “ βpHFt˚pHqqtPR.

So we obtain the result.
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Chapter 9

Perspectives

Let us consider a Hamiltonian homeomorphism f of a surface with a finite number of fixed
points. In the previous chapter, every construction of barcodes depends on the choice of a
maximal unlinked set of fixed points X of f . A natural question remains.

Question 9.0.1. Can we construct a barcode associated to f which is equal to the Floer
Homology barcode in the case of a generic diffeomorphism?

We have some ideas to study this question. In this short chapter we explain the diffi-
culties to generalize our constructions and the objects we may use in a near future.

Conley-Zehnder index

The first problem we will have to deal with is the Conley-Zehnder index. The Floer
Homology is indexed by the Conley-Zehnder index, denoted indCZp¨q, which is well-defined
for C1 diffeomorphisms.

Nevertheless, the Conley-Zehnder index can be extended for Hamiltonian homeomor-
phisms at isolated fixed points. We found an interesting way to describe this extension
using generalized isotopies, defined in the preliminaries. Let us recall a quick definition.
If we consider a Hamiltonian homeomorphism f on Σ, we denote rΣ the universal cover of
Σ and we can consider its compactification into a 2-sphere S2 by adding a point 8, then
a lift rf of f can be compactified into a homeomorphism f̂ of S2. An isotopy from id to
f̂ on S1 which fixes 8 is called a generalized isotopy. In the next section we will see why
considering generalized isotopies can be useful in our studies.

Moreover, let us consider the Floer homology barcode of a Hamiltonian diffeomorphism
f . We denote Af the action function of f . For every finite bar J “ pAf pxq, Af pyqs where
x, y P Fixcpfq, we have indCZpyq ´ indCZpxq “ 1. We refer to the construction of Floer
Homology for more details [3].

Now, let us consider a Hamiltonian homeomorphism f with a finite number of fixed
points, a maximal unlinked set of fixed points X of f and an isotopy I from id to f which
fixes X and a foliation F positively transverse to I. We denote indCZp¨q the extension of
the Conley-Zehnder index defined on Fixcpfq. For every fixed point x P X one may prove
that we have

• if indCZpxq “ 1, then x is a saddle point for F ,
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• if indCZpxq ‰ 1, then x is either a sink or a source for F .

So, the barcode βF defined in Chapter 6 may have finite bars J “ pAf pxq, Af pyqs such
that indCZpyq ´ indCZpxq ‰ 1. Indeed, it can be the case if Fixcpfq is not unlinked. Thus
it is not enough to work only with maximal isotopies of f .

Torsion-low isotopies

Let us consider of a Hamiltonian homeomorphism f on a surface Σ. Yan [76] introduced
the notion of torsion-low isotopies. Roughly speaking, an isotopy I from id to f is said to
be torsion-low at x P SingpIq if ρspI, xq Ă r´1, 1s, where ρspI, xq is the local rotation set
of x for I, defined in the preliminaries.

Now, we consider a maximal generalized isotopy Î of a Hamiltonian homeomorphism
f on Σ. Every fixed point rx of Î is a lift of a fixed point x of f . The isotopy Î is said
to be a maximal torsion-low generalized isotopy if Î is torsion-low at every fixed point of
SingpÎq except at 8 and Î is a maximal isotopy.

A result of Yan [76] asserts the existence of maximal torsion-low generalized isotopies.

Moreover, for a maximal torsion-low generalized isotopy Î of f , the Conley-Zehnder
indices of the points of SingpÎqzt8u is linked to the rotation number of the point 8.
Indeed, one may prove that if the rotation number of 8 for the isotopy Î is equal to ´k,
then it holds that:

• every saddle point rx of Î is the lift of a fixed point x of f such that indCZpxq “ 2k`1,

• every sink rx of Î is the lift of a fixed point x of f such that indCZpxq “ 2k,

• every source rx of Î is the lift of a fixed point x of f such that indCZpxq “ 2k ` 2.

We can consider a gradient-like foliation F̂ positively transverse to the maximal torsion-
low generalized isotopy Î. Moreover, F̂ is equipped with the action function Af of f and
an index function indpF̂ , ¨q.

Thus, we can consider the barcode βF̂ associated to F̂ as defined in Chapter 6. We
can prove that for every finite bar J of βF̂ , there exist x, y P Fixcpfq and lifts rx, ry of x and
y fixed by Î such that J “ pAf pxq, Af pyqs and indCZpyq ´ indCZpxq “ 1.

In a near future, we hope to define a Barcode using the barcodes associated to maximal
torsion-low generalized isotopies but two important questions remain.

Question 9.0.2. We consider a Hamiltonian diffeomorphism f and a bar J of its Floer
homology barcode. Does there exist a torsion-low generalized isotopy of f such that for a
positively transverse foliation F̂ , J is a bar of βF̂?

If we consider every torsion-low generalized isotopy of a Hamiltonian diffeomorphism
f and every bar of their associated barcodes, then we may have too many bars to obtain
a barcode equal to the Floer homology barcode of f .

Question 9.0.3. Is there a natural way to select the "good" bars to keep?
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Part II

Calabi invariant for Hamiltonian
diffeomorphism of the unit disk
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Chapter 1

Introduction

In this second part of the thesis, we study the Calabi invariant on the unit disk usually
defined on compactly supported Hamiltonian diffeomorphisms of the open disk. In partic-
ular we extend the Calabi invariant to the group of C1 diffeomorphisms of the closed disk
which preserves the standard symplectic form. We also compute the Calabi invariant for
some diffeomorphisms of the disk which satisfy some rigidity hypothesis.

Let us begin with some basic definitions of symplectic geometry.

Let us consider pM2n, ωq a symplectic manifold, meaning thatM is an even dimensional
manifold equipped with a closed non-degenerate differential 2-form ω called the symplectic
form. We suppose that π2pMq “ 0 and that ω is exact, meaning that there exists a 1-form
λ, called a Liouville form, which satisfies dλ “ ω.

Let us consider a time-dependent vector field pXtqtPR defined by the equation

dHt “ ωpXt, .q, (1.1)

where

H : RˆM Ñ R
pt, xq ÞÑ Htpxq

is a smooth function 1-periodic on t, meaning that Ht`1 “ Ht for every t P R. The function
H is called a Hamiltonian function. If the vector field pXtqtPR is complete, it induces a
family pftqtPR of diffeomorphisms of M that preserve ω, also called symplectomorphisms
or symplectic diffeomorphisms, satisfying the equation

f0 “ id and
B

Bt
ftpzq “ Xtpftpzqq.

In particular the family I “ pftqtPr0,1s defines an isotopy from id to f1. The map f1 is
called a Hamiltonian diffeomorphism. It is well known that the set of Hamiltonian diffeo-
morphisms of a symplectic manifold M is a group which we denote HampM,ωq, we refer
to [62] for more details.

Let us consider pM,ωq a symplectic manifold which is boundaryless, π2pMq “ 0 and
such that ω is exact. We say that H is a compactly supported Hamiltonian function if
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there exists a compact set K Ă M such that Ht vanishes outside K for every t P R.
A compactly supported Hamiltonian function induces a compactly supported Hamiltonian
diffeomorphism f . Such a map is equal to the identity outside a compact subset of M .
Let us consider a compactly supported Hamiltonian diffeomorphism f and λ a Liouville
form on M . The form f˚λ ´ λ is closed because f is symplectic but we have more, it is
exact. More precisely there exists a unique compactly supported function Af : M Ñ R,
also called action function, such that

dAf “ f˚λ´ λ.

In the literature the Calabi invariant Calpfq of f is defined as the mean of the function
Af and we have

Calpfq “

ż

M
Afω

n, (1.2)

where ωn “ ω^ ...^ω is the volume form induced by ω, see [62] for more details. We will
prove later that the number Calpfq does not depend on the choice of λ.

Let us give another equivalent definition of the Calabi invariant for a compactly sup-
ported Hamiltonian diffeomorphism f . We note H a compactly supported Hamiltonian
function defining f . The Calabi invariant of f can also be defined by the equation

Calpfq “ pn` 1q

ż 1

0

ż

M
Htω

ndt. (1.3)

To prove that
ş

M Afω
n does not depend on the choice of the Liouville form λ, one may

use the fact that the action function Af satisfies

Af pzq “

ż 1

0
pιpXsqλ`Hsq ˝ fspzqds, (1.4)

where pXsqsPR is the time dependent vector field induced by H by equation (1.1) and
pfsqsPR is the isotopy induced by the vector field pXsqsPR. Moreover,

ş1
0

ş

M Htω
ndt does

not depend on the compactly supported Hamiltonian function H defining f .

The function Cal defines a real valued morphism on the group of compactly supported
Hamiltonian diffeomorphisms ofM and thus it is a conjugacy invariant. It is an important
tool in the study of difficult problems such as the description of the algebraic structure of
the groups HampM,ωq: A.Banyaga proved in [5] that the kernel of the Calabi invariant is
always simple, which means that it does not contain nontrivial normal subgroups.

In this article, we study the case of the dimension two and more precisely the case of the
closed unit disk which is a surface with boundary. We denote by ||.|| the usual Euclidian
norm on R2, by D the closed unit disk and by S1 its boundary. The group of C1 orientation
preserving diffeomorphisms of D will be denoted by Diff1

`pDq. We consider Diff1
ωpDq the

group of C1 symplectomorphisms of D which preserve the normalized standard symplectic
form ω “ 1

πdu ^ dv, written in cartesian coordinates pu, vq. In the case of the disk, the
group Diff1

ωpDq is contractible, see [39] for a proof, and coincides with the group of Hamil-
tonian diffeomorphisms of D. Moreover, the 2-form ω induces the Lebesgue probability
measure denoted by Leb and the symplectic diffeomorphisms are the C1 diffeomorphisms
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of D which preserve the Lebesgue measure and the orientation.

Let us begin by the case of the unit open disk D̊. The open disk is boundaryless hence
we already have two equivalent definitions of the Calabi invariant given by equations 1.2
and 1.3 on the set of compactly supported symplectic diffeomorphisms of D̊. Let us give a
third one. A. Fathi in his thesis [22] gave a dynamical definition which is also described by
J.-M. Gambaudo and É. Ghys in [32]: if we consider an isotopy I “ pftqtPr0,1s from id to f ,
there exists an angle function AngI : D̊ˆ D̊z∆ Ñ R where ∆ is the diagonal of D̊ˆ D̊ such
that for each px, yq P D̊ˆ D̊z∆, the quantity 2πAngIpx, yq is the variation of angle of the
vector ftpyq ´ ftpxq between t “ 0 and t “ 1. If f is a compactly supported C1 symplectic
diffeomorphism then this angle function is integrable (see section 3) and it holds that

Calpfq “

ż

D̊ˆD̊z∆
AngIpx, yqdLebpxqdLebpyq, (1.5)

where the integral does not depend on the choice of the isotopy.

In this article we will give an answer to the following question.

Question 1.0.1. How to define an extension of the Calabi invariant to the group Diff1
ωpDq?

M. Hutchings [43] extended the definition given by equation 1.3 to the C1 symplectic
diffeomorphisms which are equal to a rotation near the boundary. In another point of
view, V. Humilière [42] extended the definition given by equation 1.3 to certain group of
compactly supported symplectic homeomorphisms of an exact symplectic manifold pM,ωq
where a compactly supported symplectic homeomorphism f of M is a C0 limit of a se-
quence of Hamiltonian diffeomorphisms of M supported on a common compact subset of
M .

In the case of the open disk, for a compactly supported symplectomorphism f , the
choice of the isotopy class of f is natural. But if f is a symplectic diffeomorphism of the
closed disk such that its restriction to the open disk is not compactly supported then there
is no such natural choice of an isotopy from id to f .

The rotation number is a well-known dynamical tool introduced by Poincaré in [66]
on the group Homeo`pS

1q of homeomorphisms of S1 which preserve the orientation. Let
us consider the set of homeomorphisms rg : R Ñ R such that rgpx ` 1q “ rgpxq, denoted
ČHomeo`pS

1q. One may prove that there exists a unique rρ P R such that for each z P R and
n P Z we have |rgnpzq ´ z´ nrρ| ă 1. The number rρ “ rρprgq is called the rotation number of
rg. Let us consider g P Homeo`pS

1q and two lifts rg and rg1 of g in ČHomeo`pS
1q, there exists

k P Z such that rg “ rg1 ` k and so rρprgq “ rρprg1q ` k. Consequently we can define a map
ρ : Homeo`pS

1q Ñ T1 such that ρpgq “ rρprgq `Z where rg is a lift of g. The number ρpgq is
called the rotation number of g. We give further details about the rotation number in the
next section.

We now state the results of this article. The following proposition allows us to consider
a natural choice of an action function of a symplectomorphism of the closed disk.
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Proposition 1.0.2. Let us consider f P Diff1
ωpDq, Af : D Ñ R a C1 function such that

dAf “ f˚λ´ λ and µ an f invariant Borel probability measure supported on S1. Then the
number

ş

S1
Afdµ does not depend on the choice of µ and λ.

The first theorem follows.

Theorem 1.0.3. For each f P Diff1
ωpDq there exists a unique function Af : D Ñ R such

that dAf “ f˚λ ´ λ and
ş

S1
Afdµ “ 0 where λ is a Liouville form and µ a f -invariant

probability measure on S1. The map Cal1 : Diff1
ωpDq Ñ R defined by

Cal1pfq “

ż

D
Af pzqωpzq

does not depend on the choice of λ and µ. Moreover the map Cal1 is a homogeneous
quasi-morphism that extends the Calabi invariant.

In another direction, the definition given by equation 1.3 and the definition given by
equation 1.5 are based on isotopies. Then we consider the universal cover ĄDiff

1

ωpDq of
Diff1

ωpDq which is composed of couples rf “ pf, rIsq where f P Diff1
ωpDq and rIs is an

homotopy class of isotopies from id to f . We will prove that for f P Diff1
ωpDq and I an

isotopy from id to f , the angle function AngI does not depend on the choice of I P rIs.
Hence, for rf “ pf, rIsq P ĄDiff

1

ωpDq we can denote Ang
rf
“ AngI for I P rIs.

Moreover, for a diffeomorphism f P Diff1pDq two isotopies I “ pftqtPr0,1s and I 1 “ pf 1tqtPr0,1s
from id to f are homotopic if and only if their restriction I|S1 and I 1|S1 to S1 are homotopic
and so define the same lift Ąf |S1 of f |S1 on the universal cover of S1. Hence it is equivalent
to consider ĄDiff

1

ωpDq as the set of couples rf “ pf, rφq where f P Diff1
ωpDq and rφ a lift of

f |S1 to the universal cover of S1.

Theorem 1.0.4. Let us consider an element rf of ĄDiff
1

ωpDq. The number

ĄCal2p rfq “

ż

D2z∆
Ang

rf
px, yqωpxqωpyq,

defines a morphism ĄCal2 : ĄDiff
1

ωpDq Ñ R which induces a morphism Cal2 : Diff1
ωpDq Ñ T1

defined for every f P Diff1
ωpDq by

Cal2pfq “ĄCal2p rfq ` Z,

where rf is a lift of f to ĄDiff
1

ωpDq.

Along the same lines, we have the following result.

Theorem 1.0.5. Let us consider an element pf, rφq of ĄDiff
1

ωpDq. There exists a Hamiltonian
function H : T1 ˆM Ñ R such that Ht is equal to 0 on S1 for every t P R which induces
an isotopy pφtqtPr0,1s from id to f where the lifted isotopy prφtqtPr0,1s satisfies rφ1 “ rφ . The
number

ĄCal3pf, rφq “

ż 1

0

ż

D
Htpzqωpzqdt,

does not depend on the choice of such a Hamiltonian function H. Moreover the map
ĄCal3 : ĄDiff

1

ωpDq Ñ R is a morphism and induces a morphism Cal3 : Diff1
ωpDq Ñ T1 defined

by
Cal3pfq “ĄCal3pf, rφq ` Z.
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Remark 1.0.6. We have the following commutative diagram

ĄDiff
1

ωpDq
rπ //

ĄCali
��

Diff1
ωpDq

Cali
��

R π // T1

where i P t2, 3u.

The link between these three extensions is given by the following result:

Theorem 1.0.7. The morphisms ĄCal2 and ĄCal3 are equal and for rf “ pf, rφq P ĄDiff
1

ωpDq
we have the following equality

ĄCal2p rfq “ Cal1pfq ` rρprφq.

Moreover the maps Cal1, ĄCal2, Cal2, ĄCal3 and Cal3 are continuous in the C1 topology.

In the following, ĄCal2 and ĄCal3 will be denoted ĄCal. Since the morphism ĄCal and the
quasi-morphism Cal1 are not trivial we obtain the following corollary about the perfectness
of the groups ĄDiff

1

ωpDq and Diff1
ωpDq. Recall that a group G is said to be perfect if it is

equal to its commutator subgroup rG,Gs which is generated by the commutators rf, gs “
f´1g´1fg where f and g are elements of G.

Corollary 1.0.8. The groups ĄDiff
1

ωpDq and Diff1
ωpDq are not perfect.

The non simplicity of those groups was already known since the group of compactly
supported Hamiltonian diffeomorphisms is a non trivial normal subgroup of Diff1

ωpDq.
The questions of the simplicity and the perfectness of groups of diffeomorphisms and
Hamiltonian diffeomorphism have a long story, especially the case of the group of area-
preserving and compactly supported homeomorphisms of the disk D. The question appears
on McDuff and Salamon’s list of open problems in [62] and we can refer for example to
[5, 11, 20, 21, 58, 57, 63, 64]. Recently D. Cristofaro-Gardiner, V. Humilière, S. Seyfaddini
in [17] proved that the connected component of id in the group of area-preserving home-
omorphisms of the unit disk D is not simple. The proof requires the study of the Calabi
invariant on the group of compactly supported Hamiltonian of D but also strong arguments
of symplectic geometry as Embedded Contact Homology (also called ECH) developed by
M. Hutchings and D. Cristofaro-Gardiner in [17].

To give an illustration of the extension we compute the Calabi invariant Cal1 of non
trivial symplectomorphisms in Sections 5 and 6. We study the Calabi invariant Cal1 of some
irrational pseudo-rotations. An irrational pseudo-rotation of the disk is an area-preserving
homeomorphism f of D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number α R Q{Z, called the rotation
number of f that measures the rotation number of every orbit around 0 and consequently
is equal to the rotation number of the restriction of f to S1. We refer to the next section
for more details.

The following results of this paper are well-inspired by M. Hutchings’s recent work.
M. Hutching proved as a corollary in [43] that the Calabi invariant Cal3 of every C8
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irrational pseudo-rotation f of the closed unit disk D such that f is equal to a rotation
near the boundary is equal to the rotation number of f . This means that for an irrational
pseudo-rotation f which is equal to a rotation near the boundary, Cal1pfq is equal to 0.
The proof uses strong arguments of symplectic geometry such as the notion of open-books
introduced by Giroux (see [37] for example) and the Embedded Contact Homology theory.
We want to adopt a more dynamical point of view and we partially answer the following
question.

Question 1.0.9. Is the Calabi invariant Cal1pfq equal to 0 for every C1 irrational pseudo-
rotation f of D?

With the continuity of ĄCal in the C1 topology, we can deduce the first result of C1-
rigidity as the following result.

Theorem 1.0.10. Let f be a C1 irrational pseudo-rotation of D. If there exists a sequence
pgnqnPN in Diff1

ωpDq of C1 diffeomorphisms of finite order which converges to f for the C1

topology, then
Cal1pfq “ 0.

Corollary 1.0.11. Let f be a C1 irrational pseudo-rotation of D. If there exists a sequence
pnkqkPN such that fnk converges to the identity in the C1 topology, then we have

Cal1pfq “ 0.

The morphisms ĄCal and Cal are not continuous in the C0 topology, see proposition
4.2.5. Nevertheless, by a more precise study of the definition of Cal we obtain a C0-rigidity
result as follows.

Theorem 1.0.12. Let f be a C1 irrational pseudo-rotation of D. If there exists a sequence
pnkqkPN of integers such that pfnkqkPN converges to the identity in the C0 topology, then
we have

Cal1pfq “ 0.

There are already general results of C0-rigidity of pseudo-rotations. Bramham proved
[12] that every C8 irrational pseudo-rotation f is the limit, for the C0 topology, of a se-
quence of periodic C8 diffeomorphisms. Bramham [13] also proved that if we consider an
irrational pseudo-rotation f whose rotation number is super Liouville (we will recall what
it means later) then f is C0-rigid. That is, there exists a sequence of iterates fnj that
converges to the identity in the C0-topology as nj Ñ 8. Le Calvez [51] proved similar
results for C1 irrational pseudo-rotation f whose restriction to S1 is C1 conjugate to a
rotation.

Then for f a C1 pseudo-rotation of the disk D the results of Bramham and Le Calvez
provide a sequence of periodic diffeomorphisms pgnqnPN which converges to f , the diffeo-
morphism gn may not be area-preserving but let us hope to completely answer question
1.0.9.

In the last section we give examples where the rotation number of a pseudo-rotation
satisfies some algebraic properties and where the hypothesis of Theorem 1.0.12 and Corol-
lary 1.0.11 are satisfied.
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Organization

We begin to give some additional preliminaries in chapter 1. In a second chapter we
give the formal definitions of the Calabi invariant of equations 1.2, 1.3 and 1.5 and their
natural extensions given by Theorems 1.0.3, 1.0.4 and 1.0.5. In chapter 3 we give the proof
of the link between these extensions given by Theorem 1.0.7. The last chapter concerns
the results about the computation of the Calabi invariant for pseudo-rotations.
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Chapter 2

Preliminaries

This chapter aims to complete the preliminaries of part I. To simplify the reading, some
notions and notation are re-introduced.

Invariant measures. Let us consider f a homeomorphism of a topological space X.
A Borel probability measure µ is f -invariant if for each Borel set A we have

µpf´1pAqq “ µpAq.

In other terms, the push forward measure f˚µ is equal to µ. We denote byMpfq the set
of f -invariant probability measures on X. It is well-known that the setMpfq is not empty
if X is compact.

For a probability measure µ on D we will note Diff1
µpDq the subgroup of Diff1

`pDq that
is the set of orientation preserving C1 diffeomorphisms which preserve µ.

Quasi-morphism. A function F : G Ñ R defined on a group G is a homogeneous
quasi-morphism if

1. there exists a constant C ě 0 such that for each couple f, g in G we have |F pf ˝ gq´
F pfq ´ F pgq| ă C,

2. for each n P Z we have F pfnq “ nF pfq.

Rotation numbers of homeomorphisms of the circle. The rotation number is
defined on the group Homeo`pS

1q of homeomorphisms of S1 which preserve the orientation.
We begin to give the definition of the rotation number on the lifted group ČHomeo`pS

1q

which is the set of homeomorphisms rg : R Ñ R such that rgpx ` 1q “ rgpxq ` 1. There
exists rρ P R such that for each z P R and n P Z we have |rgnpzq ´ z ´ nrρ| ă 1, see [45] for
example. The number rρ is called the rotation number of rg and denoted rρprgq. It defines a
map rρ : ČHomeo`pS

1q Ñ R.

Moreover, rρprgq naturally lifts a map ρ : Homeo`pS
1q Ñ T1. Indeed, if we consider

g P Homeo`pS
1q and two lifts rg and rg1 of g there exists k P Z such that rg1 “ rg hence we

have rρprg1q “ rρprgq`k. By the Birkhoff ergodic theorem for every g-invariant measure µ we
have

rρprgq “

ż

S1
δdµ.
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We denote by rδ : RÑ R the displacement function of rg where rδpzq “ rgpzq ´ z is one-
periodic and lifts a function δ such that for every rg P Homeo`pS

1q lifting a homeomorphism
g and every g-invariant measure µ we have

rρprgq “

ż

S1
δdµ “ lim

nÑ8

1

n

n
ÿ

i“1

δpgipzqq,

for every z P S1.
The map rρ is the unique homogeneous quasi-morphism from ĄDiff

1

`pS
1q to R which takes

the value 1 on the translation by 1, see [36] for example. More precisely for each rf, rg P
ČHomeo`pS

1q it holds that |rρp rfq ´ rρprgq| ă 1 and for each n P Z we have rρp rfnq “ nrρp rfq.
Let us describe why rρ is not a morphism and only a quasi-morphism. A homeomor-

phism of the circle has a fixed point if and only if its rotation number is zero, see [45] chapter
11 for more details. Below we give an example of two homeomorphisms φ and ψ of S1 of
rotation number zero such that the composition φ˝ψ gives us a homeomorphism as in Fig-
ure 2.2 without fixed point and so the rotation number of the composition is not equal to 0.

Let us consider the two homeomorphisms of rotation number 0 with one fixed point as
in Figures 2.1 and 2.2.

φ ψ

Figure 2.1

φ ˝ ψ

Figure 2.2

For g P Homeo`pS
1q there is a bijection between the lifts of g to R and the isotopies

from id to g as follows. Let I “ pgtqtPr0,1s be an isotopy from id to g, the lifted isotopy
rI “ prgtqtPr0,1s of I defines a unique lift rg1 of g. Then for an isotopy I from id to g, let us
denote rg the time-one map of the lifted isotopy rI on R, we can define the rotation number
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rρpIq P R of I to be the rotation number rρprgq of rg. If we consider f a homeomorphism of the
disk isotopic to the identity and I “ pftqtPr0,1s an isotopy from id to f then we will denote
rρpI|S1q P R the rotation number of the restriction of the isotopy I to S1. If we consider
another isotopy I 1 from id to g one may prove that there exists an integer k P Z such that
I 1 is homotopic to RkI where the isotopy R “ pRtqtPr0,1s satisfies Rtpzq “ ze2πit for every
z P S1 and every t P r0, 1s. We consider rI the lifted isotopy of I 1 and we denote rg1 its time-
one map. Hence rg and rg1 are two lifts of g such that rg1 “ rg ` k and rρprg1q “ rρprgq ` k and
so the number rρpIq does not depend on the choice of the isotopy in the homotopy class of I.

Irrational pseudo-rotation. An irrational pseudo-rotation is an area-preserving
homeomorphism f of D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number α P R{ZzQ{Z, called the
rotation number of f , characterized by the following : every point admits α as a rotation
number around the origin. To be more precise, choose a lift rf of f |Dzt0u to the universal
covering space rD “ R ˆ p0, 1s. There exists rα P R such that rα ` Z “ α and for every
compact set K Ă Dzt0u and every ε ą 0, one can find N ě 1 such that

@n ě N, rz P π´1pKq X rf´npπ´1pKqq ñ |
p2p rf

nprzqq ´ p2przq

n
´ rα| ď ε,

where π : pr, θq ÞÑ pr cosp2πθq, r sinp2πθqq is the covering projection and p2 : pr, θq ÞÑ θ the
projection on the second coordinate. If moreover f is a Ck diffeomorphism 1 ď k ď `8
we will call f a Ck irrational pseudo-rotation.

Notice that the rotation number α of an irrational pseudo-rotation f is equal to ρpf |S1q.

One can construct irrational pseudo-rotations with the method of fast periodic ap-
proximations, presented by Anosov and Katok [1]. One may see [23, 24, 25, 38, 60] for
further developments about this method and see [9, 7] for other results on irrational pseudo-
rotations.
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Chapter 3

Three extensions

In this section we will explain why the functions Cal1, ĄCal2 and ĄCal3 are well-defined and
we will establish the relations between them. The full statement like the continuity or the
quasi-morphism property will be proved in the next section.

3.1 Action function

Let us consider f P Diff1
ωpDq and λ a Liouville 1-form such that dλ “ ω. The fact that

H1pD,Rq “ 0 implies that the closed 1-form f˚λ ´ λ is exact. More precisely its integral
along each loop γ Ă D is zero. Consequently the map z ÞÑ

ş

γz
f˚λ´ λ is a C1 primitive of

f˚λ ´ λ, equal to 0 at the origin, where for every z P D the path γz : r0, 1s Ñ D is such
that γzptq “ tz.

If we suppose that f is compactly supported on D̊ then it is natural to consider the
unique C1 function A : DÑ R that is zero near the boundary of D and that satisfies

dA “ f˚λ´ λ. (3.1)

Without the compact support hypothesis we have the following proposition.

Proposition 3.1.1. If we consider a C1 function A : DÑ R such that dA “ f˚λ´λ then
the number

ż

S1
A|BDdµ

does not depend on the choice of µ inMpf |S1q.

Proof. To prove the independence over µ there are two cases to consider.

‚ If there exists only one f |S1-invariant probability measure on S1 the result is obvious.
In this case f |S1 is said to be uniquely ergodic.

‚ If f |S1 is not uniquely ergodic then by Poincaré’s theory ρpf |S1q “
p
q ` Z is rational

with p^ q “ 1. The ergodic decomposition theorem, see [45] for example, tells us that an
f |S1-invariant measure is the barycenter of ergodic f |S1-invariant measures. Moreover, each
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ergodic measure of f |S1 is supported on a q-periodic orbit as follows. For z a q-periodic
point of f |S1 , we define the probability measure µz supported on the orbit of z by

µz “
1

q

q´1
ÿ

k“0

δfkpzq,

where δz is the Dirac measure on the point z P S1. Hence it is sufficient to prove that
ş

DApf, λ, µzqω does not depend on the choice of a periodic point z P S1.

Let us consider two periodic points z and w of f |S1 . We consider an oriented path
γ Ă S1 from z to w. We compute

ż

S1
Adµz ´

ż

S1
Adµw “

1

q

q´1
ÿ

k“0

Apfkpzqq ´Apfkpwqq

“
1

q

q´1
ÿ

k“0

ż

fkpγq
dA

“
1

q

q´1
ÿ

k“0

ż

fkpγq
f˚pλq ´ λ

“
1

q
p

ż

fqpγq
λ´

ż

γ
λq

“ 0

where the last equality is due to the fact that f qpγq is a reparametrization of the path
γ.

Proposition 3.1.1 allows us to make a natural choice of the action function to define an
extension of the Calabi invariant as follows.

Theorem 3.1.2. For each f P Diff1
ωpDq we consider the unique C1 function Af of f such

that dAf “ f˚λ´λ and
ş

S1
Afdµ “ 0 where λ is a Liouville form of ω and µ an f -invariant

probability measure on S1. The number

Cal1pfq “

ż

D
Af pzqωpzq

does not depend on the choice of λ or µ.

Proof. The independence on the measure µ comes from Proposition 3.1.1 and it remains
to prove the independence on λ.
Let us consider another primitive λ1 of ω. We denote A and A1 the two functions such
that dA “ f˚λ ´ λ and dA1 “ f˚λ1 ´ λ1 and such that for each µ P Mpf |S1q we have
ş

S1
Adµ “

ş

S1
A1dµ “ 0.

The 1-form λ ´ λ1 is closed because dλ ´ dλ1 “ ω ´ ω “ 0. So there exists a smooth
function u : DÑ R such that λ1 “ λ` du. We compute

dA1 “ f˚pλ` duq ´ pλ` duq

“ f˚λ´ λ` dpu ˝ f ´ uq

“ dA` dpu ˝ f ´ uq.
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Thus there exists a constant c such that

A1 “ A` u ˝ f ´ u` c.

For a measure µ PMpf |S1q the condition
ş

S1
A1dµ “ 0 “

ş

S1
Adµ implies that

ż

S1
A1dµ “

ż

S1
Adµ`

ż

S1
pu ˝ f |S1 ´ uqdµ` c “

ż

S1
Adµ,

Howeover
ş

S1
pu ˝ f |S1 ´ uqdµ “ 0 since f |S1 preserves µ we have

c “ 0.

Finally f preserves ω hence
ş

Dpu ˝ f ´ uqω “ 0 and we can conclude that
ż

D
A1ω “

ż

D
Aω.

We show that the extension Cal1 vanishes on rotations of the disk.

Proposition 3.1.3. For θ P R the rotation Rθ of angle θ satisfies

Cal1pRθq “ 0.

Proof. For the Liouville form λ “ r2

2πdθ of ω we have R˚θλ´λ “ 0 thus the action function
A is constant. So it is equal to 0 and we obtain the result.

3.2 Angle function

The following interpretation is due to Fathi in his thesis [22] in the case of compactly sup-
ported symplectic diffeomorphisms of the unit disk. This interpretation is also developped
by Ghys and Gambaudo in [32].

Let us consider f P Diff1
`pDq and I “ pftqtPr0,1s an isotopy from id to f . For x, y P D

distinct we can consider the vector vt from ftpxq to ftpyq and we denote by AngIpx, yq the
angle variation of the vector vt for t P r0, 1s defined as follows.

We have the polar coordinates pr, θq and a differential form

dθ “
udv ´ vdu

u2 ` v2
,

where pu, vq are the cartesian coordinates. For every couple px, yq P D2z∆ we define

AngIpx, yq “
1

2π

ż

γ
dθ, (3.2)

where γ : t ÞÑ ftpxq ´ ftpyq.
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The function AngI is continuous on the complement of the diagonal of D ˆ D. More-
over, if f is at least C1 then the function AngI can be extended on the diagonal into a
bounded function on D ˆ D. Indeed, we consider K the compact set of triplets px, y, dq
where px, yq P DˆD and d a half line in R2 containing x and y and oriented by the vector
joining x to y if x ‰ y. If x and y are distinct, the half line d is uniquely determined and
Dˆ Dz∆ can be embedded in K as a dense and open set. We define AngIpx, x, dq as the
variation of angle of the half lines dftpdq for t P r0, 1s. This number is well-defined and
extends AngI into a continuous function on K.

For rf “ pf, rφq P ĄDiff
1

ωpDq and two Hamiltonian isotopies I “ pftqtPr0,1s and I 1 “

pf 1tqtPr0,1s from id to f associated to rφ. The isotopies I 1 and I are homotopic so for every
couple px, yq P D2z∆ we have

ż

γ
dθ “

ż

γ1
dθ,

where γ : t ÞÑ ftpxq ´ ftpyq and γ1 : t ÞÑ f 1tpxq ´ f 1tpyq. Hence, we can define the angle
function Ang

rf
of rf by

Ang
rf
“ AngI .

We have the following lemma.

Lemma 3.2.1. Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq. For every px, yq P D2z∆ the number
Ang

rf
px, yq ´ rρprφq only depends on f .

Proof. Let us consider I 1 another isotopy from id to f .

There exists k P Z such that I 1 is homotopic to Rk2πI and by definition of Angh given
by equation 4.1 we have AngRk2πI

“ AngI ` k. Moreover I 1 is in the same homotopy
class of Rk2πI and we obtain AngI 1 “ AngI ` k. Since the rotation number also satisfies
rρpI 1|S1q “ rρpI|S1q ` k, the result follows.

Lemma 3.2.1 allows us to extend the Calabi invariant on the lifted group ĄDiff
1

ωpDq as
follows.

Theorem 3.2.2. Let us consider rf “ p rf, rφq P ĄDiff
1

ωpDq. The number

ĄCal2p rfq “

ż

D2z∆
Ang

rf
px, yqωpxqωpyq,

defines a morphism ĄCal2 : ĄDiff
1

ωpDq Ñ R and induces a morphism on Diff1
ωpDq defined by

Cal2pfq “ĄCal2p rfq ` Z,

where rf P ĄDiff
1

ωpDq is a lift of f .

Proof. First, ĄCal is well-defined since the angle function Ang
rf
is integrable on D2z∆.

Let us consider rf “ pf, rφq and rg “ pg, rφ1q two elements of ĄDiff
1

ωpDq and two isotopies
I “ pftqtPr0,1s P rIs from id to f associated to rφ and I 1 “ pgtqtPr0,1s from id to g associated
to rφ1. We consider the concatenation I ¨ I 1 of the isotopy I and I 1 which gives an isotopy
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from id to f ˝g associated to rφ˝rφ1 and we define the element rf ˝rg “ pf ˝g, rφ˝rφ1q P ĄDiff
1

ωpDq.
For each px, yq P D2z∆ we have

AngI¨I 1px, yq “ AngI 1px, yq `AngIpgpxq, gpyqq.

Hence we obtain
Ang

rf˝rg
px, yq “ Ang

rgpx, yq `Ang
rf
pgpxq, gpyqq.

We integrate the previous equality and since g preserves ω we deduce that ĄCal2 is a mor-
phism from ĄDiff

1

ωpDq to R.

Moreover, Lemma 3.2.1 assures that ĄCal2 induces the morphism Cal2 from Diff1
ωpDq to

T1.

Notice that the morphisms ĄCal2 and Cal2 satisfy the following commutative diagram

ĄDiff
1

ωpDq //

ĄCal2
��

Diff1
ωpDq

Cal2
��

R // T1

where the horizontal arrows are the covering maps.

This interpretation allows us to generalize the definition to other invariant measures of
the disk. Let us consider rf “ pf, rφq P ĄDiff

1
pDq and an isotopy I from id to f associated

to rφ. We consider a probability measure µ on D without atom which is f -invariant. We
define the number rCµpIq by

rCµp rfq “
ż ż

D2z∆
Ang

rf
px, yqdµpxqdµpyq.

By Lemma 3.2.1 we obtain the following corollary.

Corollary 3.2.3. Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq. For every px, yq P D2z∆ the
number rCµp rfq ´ rρprφq only depends on f .

Birkhoff ergodic theorem gives another way to compute rCµp rfq for rf “ pf, rφq P ĄDiff
1
pDq.

Let us consider an isotopy I “ pftqtPr0,1s from id to f associated to rφ. For px, yq P DˆDz∆
we have

AngInpx, yq “ AngIpx, yq `AngIpfpxq, fpyqq ` ...`AngIpf
n´1pxq, fn´1pxqq. (3.3)

The function AngI is bounded so the function

yAngIpx, yq “ lim
nÑ8

1

n
AngInpx, yq,

is defined µ ˆ µ almost everywhere and depends only on the homotopy class of I. Hence
we can define yAng

rf
“ yAngI . Thus we obtain the following equality

rCµp rfq “
ż ż

DˆD
yAng

rf
px, yqdµpxqdµpyq. (3.4)

We state the proposition of topological invariance, see [32].
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Proposition 3.2.4. Let us consider two probability measures µ1 and µ2 of D without
atom and two compactly supported elements of Diff1

µ1pDq and Diff1
µ2pDq denoted φ1 and φ2

such that there exists a homeomorphism h P Diff0
`pDq satisfying φ2 “ h ˝ φ1 ˝ h

´1 and
h˚pµ1q “ µ2. We have that

Cµ1pφ1q “ Cµ2pφ2q.

For a probability measure µ of the disk, there is the equivalent result to extend the
invariant Cµ.

Theorem 3.2.5. Let us consider an element rf P ĄDiff
1

µpDq. The number

rCµp rfq “
ż

D2z∆
Ang

rf
px, yqdµpxqdµpyq,

defines a morphism rCµ : ĄDiff
1

µpDq Ñ R which induces a morphism Cµ : Diff1
µpDq Ñ T1

defined for every f P Diff1
µpDq by

Cµpfq “ rCµp rfq ` Z,

where rf P ĄDiff
1

µpDq is a lift of f .

The proof of the previous theorem is basically the same as Theorem 3.2.2 and if we
consider the Lesbegue measure Leb then we have

rCLeb “
ĄCal2.

We have the following computation in the case of the rotations.

Lemma 3.2.6. For θ P R we consider rRθ “ pRθ, rrq P ĄDiff
1

ωpDq where Rθ is the rotation
DÑ D of angle θ. We have

ĄCal2p rRq “ rρprrq.

Proof. Let us consider R “ pRtqtPr0,1s the isotopy from id to Rθ given in section 2. For a
couple px, yq P DˆDz∆ we consider the complex z “ x´ y and we have for each t P r0, 1s
Rtpzq “ zeitθ and we can compute AngRpx, yq “ θ. By integration on DˆDz∆ we obtain

ĄCal2p rRθq “ θ “ rρprrq.

3.3 Hamiltonian function

In this section, the goal is to detail the construction of the Calabi invariant given by equa-
tion 1.3 in the case of compactly supported diffeomorphisms of the disk. This construction
leads to Theorem 1.0.5 and we explain the definition of ĄCal3 given by this theorem but we
refer to the next section for the proofs of certain results.

Let us consider f P Diff1
ωpDq and a Hamiltonian isotopy I “ pftqtPr0,1s from id to f . We

consider the Hamiltonian function pHtqtPR which induces the isotopy I. We denote pXtqtPR
the associated vector field. We have that for every t P R, Xt is tangent to S1. So each Ht

is constant on S1 and we can consider pHtqtPR the associated Hamiltonian function such
that

Ht|S1 “ 0.

We have the following lemma.
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Lemma 3.3.1. The integral

2

ż

zPD

ż 1

0
Htpzqωpzqdt´ rρpI|S1q,

depends only on f .

Proof. The result will be a corollary of Theorem 1.0.7.

Theorem 3.3.2. Let us consider an element rf “ pf, rφq P ĄDiff
1

ωpDq and a Hamiltonian
function H : S1 ˆ D Ñ R of f which induces the flow pφtqtPr0,1s such that the lift of φ1|S1

is equal to rφ and such that Ht is equal to 0 on S1 for every t P R. The number

ĄCal3p rfq “ 2

ż 1

0

ż

D
Htpzqωpzqdt,

does not depend on the choice of H. Moreover the map ĄCal3 : ĄDiff
1

ωpDq Ñ R is a morphism
and ĄCalp rfq ` Z depends only on f . It induces a morphism

Cal3pfq “ 2

ż 1

0

ż

D
Htpzqωpzqdt` Z,

defined on Diff1
ωpDq.

The proof comes from the equality between ĄCal2 and ĄCal3 which will be proven in the
next section. Moreover, the definition of Cal3 comes from Lemma 3.3.1 and we obtain
the following commutative diagram where the horizontal arrows are the universal covering
maps.

ĄDiff
1

ωpDq //

ĄCal3
��

Diff1
ωpDq

Cal3
��

R // T1
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Chapter 4

Proof of Theorem 1.0.7

In this section, we prove Theorem 1.0.7.

Theorem 4.0.1. The morphisms ĄCal2 and ĄCal3 are equal. For rf “ pf, rφq P ĄDiff
1

ωpDq we
have the following equality

ĄCal2p rfq “ Cal1pfq ` rρprφq.

Moreover Cal1, ĄCal2 and ĄCal3 are continuous in the C1 topology.

We separate the proof into two subsections, in the first one we establish the links
between the previous definitions then we prove the continuity of ĄCal2 and ĄCal3.

4.1 Equality between ĄCal2 and ĄCal3.

Proposition 4.1.1. The morphisms ĄCal2 and ĄCal3 are equal.

Proof. The proof is essentially the same as in [69], the only difference is that our sym-
plectic form is normalized and the Hamiltonian diffeomorphisms that we consider is not
compactly supported in the open unit disk. Nevertheless, we verify that the proof is still
relevant in our case.

Let us consider rf “ pf, rφq P ĄDiff
1

ωpDq and a Hamiltonian isotopy I “ pftqtPr0,1s from id

to f associated to rφ. For the proof we will give a definition of the angle function AngI in
complex coordinates as follows. We define a 1-form α by

α “
1

2π

dpz1 ´ z2q

z1 ´ z2
.

The imaginary part satisfies
dθ “ 2πImpαq,

where θ is the angle coordinate in radial coordinates. For an element Z “ pz1, z2q P D2z∆
we consider the curve IZ Ă Dˆ Dz∆ defined by

t ÞÑ IZptq “ pftpz1q, ftpz2qq,

for each t P r0, 1s and that for every element Z “ pz1, z2q P Dˆ Dz∆ we have

AngIpz1, z2q “
1

2π

ż

IZ

dθ. (4.1)
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Let us consider the Hamiltonian pHtqtPr0,1s which induces the flow of the isotopy I and
which is equal to 0 on the boundary of D. We consider the symplectic form ω “ i

2πdz^ dz
written in complex coordinates on D. We define ξt “ dzpXtq and then it satisfies

iXt

ˆ

i

2π
dz ^ dz

˙

“
i

2π
ξtdz ´

i

2π
ξtdz.

By definition

dHt “ ´
BHt

Bz
dz ´

BHt

Bz
dz,

so we have
ξt “ ´2iπ

BHt

Bz
. (4.2)

We compute the integral of the angle function
ż

DˆDz∆
AngIpz1, z2qωpz1qωpz2q “

ż

DˆDz∆

ż

Ipz1,z2q

1

2π
dθ ωpz1qωpz2q

“ Im

˜

ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q

¸

.

The following computation is well-inspired by the proof in [69].
ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q “
1

2π

ż

DˆDz∆

ż

Ipz1,z2q

dpz1 ´ z2q

z1 ´ z2
ωpz1qωpz2q

“
1

2π

ż

DˆDz∆

ż 1

t“0

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q
dtωpz1qωpz2q,

“
1

2π

ż 1

t“0

ż

DˆDz∆

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q
ωpz1qωpz2qdt,

“ 2ˆ
1

2π

ż 1

t“0

ż

z2PD

ż

z1PDztz2u

ξtpz1q

z1 ´ z2
ωpz1qωpz2qdt

“
1

π

ż 1

0

ż

D

ż

Dztz2u
´2iπ

BHt

Bz

i

2π

dz1 ^ dz1

z1 ´ z2
ωpz2qdt

“ 2i

ż 1

0

ż

D

ż

Dztz2u

1

2iπ

BHt

Bz

dz1 ^ dz1

z1 ´ z2
ωpz2qdt.

The third equality is obtained by Fubini because the integral is absolutely integrable,
see Lemma 4.1.2 below. The fourth equality is due to the absolute integrability of both
terms. We established the penultimate with equation 4.2 and the definition of ω.

We use the Cauchy formula for smooth functions (see [41]). For any C1-function g :
DÑ C, we have

gpwq “
1

2iπ

ż

S1

gpzq

z ´ w
dz `

1

2iπ

ż

D

Bf

Bz

dz ^ dz

z ´ w
.

Moreover Ht is equal to zero on the boundary S1 and we have
ż

DˆDz∆

ż

Ipz1,z2q

α ωpz1qωpz2q “ 2i

ż 1

0

ż

D
Htpz2qωpz2qdt.
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It leads to
ż

DˆDz∆
AngIpz1, z2qωpz1qωpz2q “ 2

ż 1

0

ż

D
Htpzqωpzqdt.

To obtain the result it remains to prove the absolute integrability we used in the compu-
tation.

Lemma 4.1.2. We have the following inequality
ż

DˆDz∆

ż 1

t“0

ˇ

ˇ

ˇ

ˇ

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt ă 8.

Proof. The total measure of DˆDz∆ for ω and r0, 1s for the Lebesgue measure is finite so
by Tonnelli’s theorem it is sufficient to have the following inequalities
ż 1

t“0

ż

DˆDz∆

ˇ

ˇ

ˇ

ˇ

ξtpftpz1qq ´ ξtpftpz2qq

ftpz1q ´ ftpz2q

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt “

ż 1

t“0

ż

DˆDz∆

ˇ

ˇ

ˇ

ˇ

ξtpz1q ´ ξtpz2q

z1 ´ z2

ˇ

ˇ

ˇ

ˇ

ωpz1qωpz2qdt

ď 2

ż 1

t“0

ż

z1PD
|ξtpz1q|

ż

z2PDztz1u

1

|z1 ´ z2|
ωpz1qωpz2qdt

ď 8π

ż 1

t“0

ż

z1PD
|ξtpz1q|ωpz1qdt

ă 8.

To prove the second last inequality one may prove that
ż

z2PDztz1u

1

|z1 ´ z2|
ωpz2q ď 4π.

Remark 4.1.3. The number ĄCal2pf, rφq does not depend on the choice of the isotopy in the
homotopy class of I, we obtain the same result for the construction of ĄCal3pf, rφq which
completes the proof of Lemma 3.3.1.

Proposition 4.1.4. For each element rf “ pf, rφq P ĄDiff
1

ωpDq we have

ĄCal3p rfq “ Cal1pfq ` rρprφq.

Proof. Let us consider an element rf “ pf, rφq P ĄDiff
1

ωpDq and a Hamiltonian isotopy
I “ pftqtPr0,1s from id to f associated to rφ. There exists a unique Hamiltonian func-
tion pHtqtPR which induces the isotopy I and such that Ht is zero on the boundary S1 of
D for each t P R.

We know that Cal1 does not depend on the choice of the primitive of ω. We consider
the Liouville 1-form λ “ r2

2πdθ in radial coordinates. We consider a probability measure
µ PMpf |S1q.
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We describe the link between the action function of the first definition and the Hamil-
tonian of the third definition. We consider a C1 family of functions pAtqtPr0,1s, where
At : DÑ R satisfies for each t P r0, 1s

dAt “ f˚t λ´ λ,

and such that the map A1 is equal to Apf, λ, µq. So the isotopy pAtqtPr0,1s satisfies

d 9At “
d

dt
pf˚t λq

“ f˚t LXt
“ f˚t piXtpdλq ` dpλpXtqqq

“ dpHt ˝ ft ` λpXtq ˝ ftq.

Then, for every t P r0, 1s, there exists a constant ct such that

9At “ Ht ˝ ft ` λpXtq ˝ ft ` ct,

and the map A : DÑ R satisfies for each z P D

A1pzq “

ż 1

0
pHt ` iXtλqpftpzqqdt`

ż 1

0
ctdt.

We denote by C the constant
ş1
0 ctdt. Since the restriction of λ to S1 is equal to 1

2πdθ then
for every z P S1 we have

ż 1

0
iXtλpftpzqqdt “

1

2π

ż 1

0
dθp

B

Bt
ftpzqqdt.

Notice that the last integral is equal to the displacement function δ : RÑ R of rφ.

Moreover, the rotation number rρprφq of the isotopy I satisfies for each z P S1

rρprφq “ lim
nÑ8

1

n

n´1
ÿ

k“0

δprφkpzqq.

The map z ÞÑ δpzq is µ integrable and the Birkhoff ergodic theorem gives us
ż

S1
rρprφqdµpzq “

ż

S1
δpzqdµpzq.

We obtain
ż

S1

ż 1

0
iXtλpftpzqqdtdµpzq “

ż

S1
rρprφqdµpzq “ rρpI|S1q.

Moreover, the Hamiltonian Ht is equal to zero on S1. So if z P S1 it holds that A1pzq “
δpzq ` C and consequently

ż

S1
A1pzqdµpzq “ C ` rρprφq.
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So the condition on A implies that

C “ ´rρprφq.

Thus
ż

D
Apzqωpzq “

ż

D

ż 1

0
pHt ` iXtλqpftpzqqdtωpzq ´ rρprφq

“

ż

D

ż 1

0
Htpftpzqqdtωpzq `

ż

D

ż 1

0
iXtpλqpftpzqqdtωpzq ´ rρprφq.

We compute
ş

D
ş1
0 iXtpλqpftpzqqdtωpzq. Each 3-form is zero on the disk so we have

0 “ iXtpλ^ ωq

“ iXtpλqω ´ λ^ iXtpωq

“ iXtpλqω ´ λ^ dHt

“ iXtpλqω ` dHt ^ λ

“ iXtpλqω ` dpHtλq ´Htω.

We deduce that
ż

D

ż 1

0
iXtpλqpftpzqqdtωpzq “

ż

D

ż 1

0
pHtω ´ dpHtλqqdt

“

ż

D

ż 1

0
Htωdt´

ż 1

0

ż

S1
Htλdt

“

ż

D

ż 1

0
Htωdt,

where the first equality is due to the fact that ft preserves ω. Moreover Ht is equal to zero
on the boundary S1. We obtain

ż

D
Apzqωpzq “ 2

ż

D

ż 1

0
Htpzqωpzqdt´ rρprφq.

We know that rρ is a homogeneous quasi-morphism, it gives us the following corollary.

Corollary 4.1.5. The map Cal1 : Diff1
ωpDq Ñ R is a homogeneous quasi-morphism.

Proof. The result is straightforward because Cal1 is equal to the sum of a morphism and
a homogeneous quasi-morphism.

Notice that Lemma 3.2.6 ensures that the morphisms ĄCal (resp. Cal) is not zero, then
its kernel is a normal non trivial subgroup of ĄDiff

1

ωpDq (resp. Diff1
ωpDqq and we obtain the

following corollary.

Corollary 4.1.6. The groups ĄDiff
1

ωpDq and Diff1
ωpDq are not perfect.

127



4.2 Continuity of ĄCal.

For every continuous map f from D to C we set ||f ||8 “ maxxPD |fpxq|.
We denote d0 the distance between two maps f and g of Diff0pDq defined by

d0pf, gq “ maxp||f ´ g||8, ||f
´1 ´ g´1||8q.

We denote d1 the distance between two maps f and g of Diff1pDq defined by

d1pf, gq “ maxpd0pf, gq, ||Df ´Dg||8, ||Df
´1 ´Dg´1||8q,

where for every C1 diffeomorphism f of D, ||Df ||8 “ maxxPD ||Dxf ||.

The distances d0 and d1 define naturally two distances, denoted rd0 and rd1, on ĄDiff
1

ωpDq
defined as follows. Let us consider rf “ pf, rφq and rg “ pg, rψq in ĄDiff

1

ωpDq, we have
rd0p rf, rgq “ maxpd0pf, gq, ||rφ´ rψ||8, ||rφ

´1 ´ rψ´1||8q,

rd1p rf, rgq “ maxpd1pf, gq, ||rφ´ rψ||8, ||rφ
´1 ´ rψ´1||8q.

We denote rid “ pidD, idRq P ĄDiff
1

ωpDq. In this section we prove the following result.

Theorem 4.2.1. The map ĄCal : ĄDiff
1

ωpDq Ñ R is continuous in C1 topology.

We need some results about the angle function.

Lemma 4.2.2. Let us consider rf “ pf, rφq P Diff1
`pDq such that rd1p rf, ridq ď ε ď 1{2, then

for every px, yq P D2z∆, it holds that

| cosp2πAng
rf
px, yqq ´ 1| ď 2ε.

Proof of Lemma 4.2.2. The proof is a simple computation. Let us consider x, y P D such
that x ‰ y. One can write f “ id ` h where ||h||8 ď ε and ||Dh||8 ď ε. By the mean
theorem we have

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď ε. (4.3)

We have
cosp2πAng

rf
px, yqq “

B

fpyq ´ fpxq

|fpyq ´ fpxq|

ˇ

ˇ

y ´ x

|y ´ x|

F

,

where x.|.y is the canonical scalar product on R2. We compute

| cosp2πAng
rf
px, yqq ´ 1| “

ˇ

ˇ

ˇ

ˇ

B

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

y ´ x

|y ´ x|

Fˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

.

We compute
ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq ´ py ´ xq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

` |fpyq ´ fpxq|

ˇ

ˇ

ˇ

ˇ

1

|fpyq ´ fpxq|
´

1

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

|y ´ x| ´ |fpyq ´ fpxq|

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď 2

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 2ε.
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From Lemma 4.2.2, we deduce the following result.

Corollary 4.2.3. Let us consider rf P ĄDiff
1

ωpDq such that d1p rf, ridq ď ε ď 1{2. The angle
function satisfies

||Ang
rf
||8 ď

?
ε{π.

Proof. For every couple px, yq P D2z∆ there exists a unique k P Z such that Ang
rf
px, yq´k P

r´1{2, 1{2q. So by Lemma 4.2.2 we have

1 ě cosp|2πAng
rf
px, yq ´ k|q ě 1´ 2ε ě 0.

The function arccos is decreasing so we obtain

0 ď arccospcosp|2πAng
rf
px, yq ´ k|qq ď arccosp1´ 2εq.

Moreover the function arccos is defined on r0, 1s and of class C1 on r0, 1q such that for
every x P p0, 1s we have

parccosp1´ xqq1 “
1

?
2x´ x2

ď
1
?
x
.

We obtain that for every x P r0, 1s we have

arccosp1´ xq ď 2
?
x.

Hence we have
2π|Ang

rf
px, yq ´ k| ď 2

?
2ε.

And so

|Ang
rf
px, yq ´ k| ď

?
2ε

π
ă 1{2.

Moreover D2z∆ is path connected. Indeed, let us prove that every couple px, yq P D2z∆
is connected to pp0, 0q, p1, 0qq by a path as follows. We set d the line of D2 passing through
x and y. The line d intersects S1 in two points which we denote x̂ and ŷ such that x̂ is
closer to x than y and ŷ is closer to y than x as in figure 4.1

‚
x

‚
y

‚ x̂‚ŷ
d

Figure 4.1

Let us consider the path γy : r0, 1s Ñ D defined by γyptq “ tpŷ ´ yq ` y from y to ŷ.
The path Γy : tÑ px, γyptqq defined on r0, 1s sends the couple px, yq to px, ŷq.

Let us consider the path γx : r0, 1s Ñ D defined by γxptq “ p1 ´ tqx from x to p0, 0q.
The path Γx : tÑ pγxptq, ŷq defined on r0, 1s sends the couple px, ŷq to p0, ŷq.
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Now we consider Rα the rotation of D of angle α “ argpŷq. The rotation R´1
α sends ŷ

to p1, 0q. We denote pRtqtPr0,1s the isotopy from id to Rα such that for every t P r0, 1s Rt
is the rotation of angle tα.

Hence the composition of the path Γy, Γx and t Ñ pp0, 0q, R´1
t pŷqq sends px, yq to

pp0, 0q, p0, 1qq.

Moreover Ang
rf
is continuous on D2z∆ we deduce from the last inequality that k does

not depend on the choice of px, yq. The fact that rd1p rf, ridq ď ε ď 1{2 implies that k “ 0
and we obtain that for every px, yq P D2z∆

|Ang
rf
px, yq| ď

?
ε{π.

We now prove the continuity of Cal1 in C1 topology.

Proof of theorem 4.2.1. By Theorem 3.2.2 we know that ĄCal is a group morphism. So it
is sufficient to prove the continuity at the identity. Let us consider rf “ pf, rφq P ĄDiff

1

ωpDq
such that rd1p rf, ridq ď ε ď 1{2. By Corollary 4.2.3 we have for every couple px, yq P D2z∆

|Ang
rf
px, yq| ď

?
ε{π.

By integration on D2z∆ we obtain that

|ĄCalp rfq| ď

?
2ε

π
.

Hence ĄCal is continuous at the identity.

Moreover, it is well-known that the rotation number rρ : ČHomeo
`
pS1q Ñ R is continuous

and we deduce from Theorem 4.0.1 the following corollary.

Corollary 4.2.4. The map Cal1 : Diff1
ωpDq Ñ R is continuous in C1 topology.

Let us prove that the Calabi invariant is not continuous in C0 topology.

Proposition 4.2.5. The morphism ĄCal is not continuous in C0 topology.

We give a counterexample which also prove that the Calabi invariant defined in the
introduction is also not continuous in the C0 topology, this counterexample can be found
in [32]

Proof. Let us consider a sequence phnqně1 of smooth functions hn : r0, 1s Ñ R such that

1. hn is constant near the origin,

2. hnprq is zero for r ą 1{n,

3.
ş1
0 hnprq2πrdr “ 1.

We consider the Hamiltonian functions Hn : DÑ R by Hnpzq “ hnp|z|q. Each function
Hn defines a time independent vector field Xn, whose induced flow is denoted φtn. We have
the following property [32] about the computation of the Calabi invariant for compactly
supported and autonomous Hamiltonian functions
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Proposition 4.2.6. Let us consider H : D Ñ R a Hamiltonian function with compact
support. We denote φt the induced Hamiltonian flow and we have

Calpφtq “ ´2πt

ż

D
Hpzqωpzq,

where Cal is the Calabi invariant defined by equation 1.3.

This result allows us to compute the Calabi invariant for φ1
n and we obtain for each

n ě 1
Calpφ1

nq “ ´2π.

For each n ě 1 we consider pφ1
n, idq P

ĄDiff
1

ωpDq and we have

ĄCal2ppφ
1
n, idqq “ ´2π.

Moreover, φ1
n converges to the identity in C0 topology and we obtain the result.
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Chapter 5

Computation of Cal1 in some rigid cases

In this section, we prove several results about the Calabi invariant of irrational pseudo-
rotations.

5.1 A simple case of C1-rigidity

Let us begin by the simple computation of the Calabi invariant for periodic symplectic
maps.

Lemma 5.1.1. If f P Diff1
ωpDq has a finite order, then we have

Cal1pfq “ 0.

Proof. By assumption there exists p ě 1 such that fp “ id and so Cal1pf
pq “ p Cal1pidq “

0.

We deduce the following properties

Proposition 5.1.2. Let us consider f P Diff1
ωpDq. If there exists a sequence of periodic

diffeomorphisms pgkqkPN in Diff1
ωpDq which converges to f fin C1 topology, then we have

Cal1pfq “ 0.

Proof. By Lemma 5.1.1 for each n P N we have Cal1pgnq “ 0 and we obtain the result by
the continuity of the map Cal1 in C1 topology.

Proposition 5.1.3. Let us consider f P Diff1
ωpDq. If there exists a sequence pqkqkPN such

that f qk converges to the identity in C1 topology then we have

Cal1pfq “ 0.

Proof. We have Cal1pf
qkq “ qkCal1pfq and Cal1pf

qkq converges to Cal1pidq “ 0 so Cal1pfq “
0.
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5.2 C0-rigidity

The following theorem is a stronger version of Corollary 5.1.3.

Theorem 5.2.1. Let us consider f P Diff1
ωpDq. If there exists a sequence pqkqkPN of

integers such that pf qkqkPN converges to the identity in C0 topology then we have

Cal1pfq “ 0.

To prove the previous statement we will give an estimation of the angle function of f qn
for a given isotopy I from id to f . For that we will consider two cases, the first one if x is
close to y and the other if x is not close to y. The following lemma gives us an evaluation
of what close means.

Lemma 5.2.2. Let us consider f a C1 diffeomorphism of the unit disc D, I an isotopy
from id to f . If d0pf, idq ď ε ď 1{4 then for every couple px, yq P D ˆ D which satisfies
|x´ y| ě

?
ε, we have

| cosp2πAngIpx, yqq ´ 1| ď 4
?
ε.

Proof. Let px, yq P D ˆ D be a couple such that |x ´ y| ě
?
ε. One can write f “ id ` h

where h : DÑ R2 satisfies ||h||8 ď ε and we have
ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 2
ε
?
ε
“ 2

?
ε. (5.1)

We use the equation

cosp2πAngIpx, yqq “
xfpyq ´ fpxq, y ´ xy

|fpyq ´ fpxq| |y ´ x|
(5.2)

Moreover, if we write 1 “ x y´x
|y´x| ,

y´x
|y´x|y we obtain

cospAngIpx, yqq ´ 1 “ x
fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|
,
y ´ x

|y ´ x|
y (5.3)

Equation 5.3 becomes

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq

|fpyq ´ fpxq|
´

y ´ x

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď |fpyq ´ fpxq|

ˇ

ˇ

ˇ

ˇ

1

|fpyq ´ fpxq|
´

1

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

fpyq ´ fpxq ´ py ´ xq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

|y ´ x| ´ |fpyq ´ fpxq|

|y ´ x|

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

|y ´ x|

ˇ

ˇ

ˇ

ˇ

ď 2

ˇ

ˇ

ˇ

ˇ

hpyq ´ hpxq

y ´ x

ˇ

ˇ

ˇ

ˇ

ď 4
?
ε.

We obtain the following lemma.

Lemma 5.2.3. Under the same hypothesis, there exists an integer k P Z, uniquely defined,
such that for every couple px, yq P Dˆ D such that |x´ y| ě

?
ε, we have

|AngIpx, yq ´ k| ď 2 4
?
ε{π ă 1{2. (5.4)
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Proof. We consider ε P p0, 1{16q and a couple px, yq P D such that |y ´ x| ě
?
ε. By

definition of the floor function there exists a unique k P Z such that 2πAngIpx, yq ´ 2πk P
r´π, πq and we have

1 ě cosp|2πAngIpx, yq ´ 2πk|q ě 1´ 4
?
ε ě 0.

The function arccos is decreasing so we obtain

0 ď arccospcosp|2πAngIpx, yq ´ 2πk|qq ď arccosp1´ 4
?
εq.

The function arccos is defined on r0, 1s and of class C1 on r0, 1q. Moreover we have for
every x P r0, 1q

parccosp1´ xqq1 “
1

?
2x´ x2

ď
1
?
x
.

We obtain that for every x P r0, 1s

arccosp1´ xq ď 2
?
x.

Hence we have

|2πAngIpx, yq ´ 2πk| ď arccosp1´ 4
?
εq

ď 4 4
?
ε.

Thus we have
|AngIpx, yq ´ k| ď 2 4

?
ε{π ă 1{2.

Now we prove that k does not depend of px, yq. Indeed the set of couples px, yq P D2 such
that |x´y| ě

?
ε is connected in D2. Indeed for a couple px, yq P D2 such that |x´y| ě

?
ε,

let us construct a path from px, yq to pp´1, 0q, p1, 0qq.
We set d the line of D2 passing through x and y. The line d intersects S1 in two points
which we denote x̂ and ŷ such that x̂ is closer to x than y and ŷ is closer to y than x as in
the previous figure 4.1.

Let us consider the path γx : r0, 1s Ñ D defined by γxptq “ tpx̂ ´ xq ` x from x
to x̂ and the path γy : r0, 1s defines by γyptq “ tpŷ ´ yq ` y from y to ŷ. So the path
Γ : t ÞÑ pγxptq, γyptqq defined on r0, 1s sends the couple px, yq to px̂, ŷq.

We consider a path Γ1 : tÑ px̂, γptqq which fixes x̂ and send ŷ on x̂ along the arc of S1

such that γptq P S1ztx̂u.

Now we consider Rα the rotation of D of angle α “ argpx̂q. Notice that the rotation
R´1
α sends x̂ to p1, 0q. We denote pRtqtPr0,1s the isotopy from id to Rα such that for every

t P r0, 1s Rt is the rotation of angle tα.

Hence the composition of the path Γ, Gamma1 and the path t ÞÑ pR´1
t px̂q, R

´1
t pŷqq

sends px, yq to pp1, 0q, p´1, 0qq.

Moreover, 2 4
?
ε{π ă 1{2 so k does not depend on the choice of px, yq P D such that

|x´ y| ą
?
ε.
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With these two lemmas we can give a proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. We can consider I “ pftqtPr0,1s an isotopy from id to f which fixes
a point of D̊. Up to conjugacy we can suppose that I fixes the origin and we denote I|S1
the restriction of I on S1. We lift I|S1 to an isotopy prφtqtPr0,1s on the universal covering
space R of S1 such that rφ0 “ id and set rφ “ rφ1. We will prove that ĄCal2pf, rφq “ rρprφq and
from Theorem 4.0.1 we will obtain

ĄCal2pf, rφq ´ rρprφq “ Cal1pfq “ 0.

For q P N we define the isotopy Iq from id to f q as follows. We write Iq “ pf qt qtPr0,1s
and for every z P D and t P rk´1

q , kq s we set

f qt pzq “ fqt´k`1 ˝ pf ˝ ... ˝ fq
looooomooooon

k´1 times

.

We will denote εn “ d0pf
qn , idq. For every k P Z we can separate the difference between

the integral of the angle function of f qn and k into two parts as follows

ş ş

DˆD AngIqn px, yqωpyqωpxq ´ k “
ş

D

´

ş

B?εn pxq
AngIqn px, yqωpyq ´ k

¯

ωpxq

`
ş

D

ˆ

ş

Bc?
εn
pxqAngIqn px, yqωpyq ´ k

˙

ωpxq,
(5.5)

where Bc?
εn
pxq is the complementary of B?εnpxq in D.

We can suppose that εn ă 1{16 and by Lemma 5.2.3, there exists a unique kn P Z such
that for each couple px, yq P Dˆ D such that |y ´ x| ě

?
εn we have

|AngIqn px, yq ´ kn| ď 2 4
?
εn{π. (5.6)

Moreover, by definition of the rotation number there exists a sequence pξnqnPN of 1-periodic
functions ξn : RÑ R such that ||ξn||8 ď 1 for every n P N and such that for every y P S1

and every lift ry P R of y we have

AngIqn p0, yq “
rφqnpryq ´ ry “ qnrρprφq ` ξnpryq.

So, for every y P S1 we have

|AngIqn p0, yq ´ kn| “ |qnrρp
rφq ` ξnpryq ´ kn| ď 2 4

?
εn{π,

where ry is a lift of y. Hence we obtain

|qnrρprφq ´ kn| ď 2 4
?
εn{π ` 1.

Thus we have
rρprφq “ lim

nÑ8

kn
qn
.

By equation 5.6 we obtain
ˇ

ˇ

ˇ

ˇ

ˇ

ż

D

˜

ż

Bc?
εn
pxq
pAngIqn px, yq ´ knqωpyq

¸

ωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 4
?
εn{π. (5.7)
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We know that for every couple px, yq P D2z∆ and for every n P N we have

AngIqn px, yq “ AngIpx, yq `AngIpfpxq, fpyqq ` ...`AngIpf
qn´1pxq, f qn´1pyqq. (5.8)

Hence for every n P N the angle function satisfies

||AngIqn ||8 ď qn||AngI ||8. (5.9)

We can estimate the first integral of equation 5.5 as follows
ˇ

ˇ

ˇ

ˇ

ˇ

ż

D

˜

ż

B?εn pxq
pAngIqn px, yq ´ knqωpyq

¸

ωpxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď εnpqn||AngI ||8 ` |kn|q. (5.10)

So we can deduce from the previous equations a new estimation of the Calabi invariant

ˇ

ˇ

ˇ

ˇ

ż ż

DˆD
AngIqn px, yqωpyqωpxq ´ kn

ˇ

ˇ

ˇ

ˇ

ď 2 4
?
εn{π ` εnpqn||Angf ||8 ` |kn|q. (5.11)

By definition we obtain
ˇ

ˇ

ˇ

ˇ

ĄCal2pf, rφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

ď
2 4
?
εn

qnπ
` εn||Angf ||8 ` εn

|kn|

qn
. (5.12)

Hence we have

ˇ

ˇ

ˇ

ĄCal2pf, rφq ´ rρprφq
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

ˇ

ĄCalpf, rφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

rρprφq ´
kn
qn

ˇ

ˇ

ˇ

ˇ

ď
4 4
?
εn

qnπ
` εn||Angf ||8 `

1

qn
` εn

|kn|

qn
.

By taking the limit on n P N, we conclude that

ĄCal2pf, rφq “ rρprφq.

Remark 5.2.4. If we consider a sequence prgn “ pgn, rφnqqnPN P ĄDiff
1

ωpDq which converges to
rf “ pf, rφq P ĄDiff

1

ωpDq in C0 topology where for each n P N, gn is a periodic diffeomorphism
of the disk and f is an irrational pseudo-rotation, then the previous method fails to prove
that ĄCal2pgn, rφnq converges to ĄCal2pf, rφq. It is easy to see that Ang

rf
is close to Ang

rgn but

if we compute the difference ĄCalpgn, rφnq ´ĄCalpf, rφq, as we did in equation 5.5, we do not
have a control of ||Ang

rgn ||8 so we cannot estimate properly the integral
ż

x

ż

yPB?
εnpxq

Ang
rgnpx, yqωpxqωpyq,

where εn “ ||gn ´ f ||8.
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Chapter 6

Examples

In this section, we will be interested in irrational pseudo-rotations with specific rotation
numbers.

Best approximation: Any irrational number α P RzQ can be written as a continued
fraction where paiqiě1 is a sequence of integers ě 1 and a0 “ tαu. Conversely, any sequence
paiqiPN corresponds to a unique number α. We define two sequences ppnqnPN and pqnqnPN
as follows

pn “ anpn´1 ` pn2 for n ě 2, p0 “ a0, p1 “ a0a1 ` 1

qn “ anqn´1 ` qn´2 for n ě 2, q0 “ 1, q1 “ a1.

The sequence ppn{qnqnPN is called the best approximation of α and for every n ě 1 we
have

tqn´1αu ď tkαu, @k ă qn

where txu is the fractional part of x P R. And for every n P N we have

1

qnpqn ` qn`1q
ď p´1qnpα´ pn{qn, q ď

1

qnqn`1
. (6.1)

The numbers qn are called the approximation denominators of α.

6.1 An example of C0-rigidity, the super Liouville type

In this section, we show that a C1 irrational pseudo-rotation with a super Liouville rotation
number satisfies the assumptions of Theorem 5.2.1.

Super Liouville. A real number α P RzQ is called super Liouville if the sequence pqnqnPN
of the approximation denominators of α satisfies

lim sup
n

q´1
n logpqn`1q “ `8. (6.2)

If we consider a real α P R which has super Liouville type then for each k P Z the
real α` k is also super Liouville and to simplify the notations we will say that an element
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rα P T1 is super Liouville.

Bramham already showed in [13] that any C8 irrational pseudo-rotation f of the disk
with super Liouville rotation number is C0 rigid, meaning that f is the C0-limit of a
sequence of periodic diffeomorphisms. More recently Le Calvez [51] proved that any C1

irrational pseudo-rotation which is C1 conjugated to a rotation on the boundary is C0

rigid. These results go as follows.

Theorem 6.1.1. Let us consider either a C8 irrational pseudo-rotation or a C1 irrational
pseudo-rotation f which is C1 conjugated to a rotation on the boundary.We consider α P R
such that α ` Z is equal to the rotation number of f . For a sequence of rationals ppnqn qnPN
which converges to α there exists a sequence pgnqnPN : DÑ D of qn-periodic diffeomorphims
of the unit disk which converges to f for the C0 topology.
Moreover there exists a constant C depending on f such that for every n P N we have

d0pf, gnq ă Cpqnα´ pnq
1
2 .

We deduce the following corollary.

Corollary 6.1.2. Let us consider either a C8 irrational pseudo-rotation or a C1 irrational
pseudo-rotation f which is C1 conjugated to a rotation on the boundary. If the rotation
number of f is super Liouville then we have

Cal1pfq “ 0.

Proof of Corollary 6.1.2. Let us consider f which is either a C8 irrational pseudo-rotation
or a C1 irrational pseudo-rotation. We consider α P R such that α ` Z is equal to the
rotation number of f . We will prove that f satisfies the hypothesis of Theorem 5.2.1. We
consider α P R such that α ` Z is equal to the rotation number of f and we consider
the sequence of rationals ppn{qnqnPN, defined above, which converges to α such that qn
satisfies equation 6.1. Let pgnqnPN be the sequence of qn periodic diffeomorphisms given by
Theorem 6.1.1 associated to f and the sequence ppn{qnqnPN. We denote by K the C1 norm
of f and we set εn “ Cpqnα´ pnq

1{2 where C is the constant given by Theorem 6.1.1.

For all k P N and each n P N the following inequality holds

d0pf
k, gknq ă Kkεn. (6.3)

By equation 6.1 we can majorate εn by C

pqn`1q
1
2
to obtain for k “ qn the inequality

dpf qn , idq ă Kqn C

pqn`1q
1
2

. (6.4)

Equation 6.2 assures that

lim sup
n

Kqn

pqn`1q
1{2
“ 0.

Thus we obtain that
lim sup

n
d0pf

qn , idq “ 0.
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Hence up to a subsequence we can suppose that

d0pf
qn , idq Ñ 0.

So f satisfies the hypothesis of Theorem 5.2.1 and we conclude

Cal1pfq “ 0.

6.2 An example of C1-rigidity, the non Bruno type

Bruno type. A number α P RzQ will be said to be Bruno type if the sequence pqnqnPN of
the approximation denominators of α satisfies

8
ÿ

n“0

logpqn`1q

qn
ă `8.

If we consider α P R which is not Bruno type then for each k P Z the real α` k is also
not Bruno type and to simplify the notation we will say that an element rα P T1 is non
Bruno type.

Avila, Fayad, Le Calvez, Xu and Zhang proved in [4] that if we consider a number
α P RzQ which is not Bruno type, for H ą 1 there exists a subsequence qnk of the
sequence of the approximation denominators of α such that for every n P N qnj`1 ě Hqnj

and there exists an infinite set J Ă N such that for every j P J we have

tqnjαu ă e
´
qnj

j2 . (6.5)

We can also find the following result in the same paper.

Proposition 6.2.1. Let us consider a C2 irrational pseudo-rotation f P Diff1
ωpDq. Suppose

that ρpf |S1q is not Bruno type, then the sequence qnj satisfies

d1pf
qnj , Idq Ñ 0.

Hence a C2 irrational pseudo-rotation f P Diff1
ωpDq satisfies the hypothesis of Corollary

5.1.3 and we obtain the following corollary.

Corollary 6.2.2. Let us consider a C2 irrational pseudo-rotation f P Diff1
ωpDq. Suppose

that ρpfq is not Bruno type, then we have

Cal1pfq “ 0.
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