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Résumé

Nous cherchons a expliciter certains liens entre la topologie symplectique et I'étude des
systémes dynamiques a travers la notion de code barres d’homéomorphismes hamiltoniens
de surfaces et de I'invariant de Calabi de difféomorphismes hamiltoniens du disque unité.
Ces deux objets représentent de puissants invariants en topologie symplectique. Plus pré-
cisément, nous visons a mettre en avant une interprétation dynamique de ces objets.

Cette thése se divise en deux parties.

Dans une premiére partie nous étudierons les codes barres de Floer d’un point de vue dy-
namique. Notre motivation provient en particulier de I'utilisation récente des codes barres
en topologie symplectique permettant d’obtenir des résultats purement dynamiques. Ainsi,
nous expliciterons des constructions de codes barres pour certains homéomorphismes hamil-
toniens de surfaces & l'aide de la théorie des feuilletages transverses de Le Calvez. Notre
stratégie consistera a calquer la construction de ’homologie de Floer et de I'homologie de
Morse & 1’aide d’outils de systémes dynamiques tels que des feuilletages. Nous prouverons
en particulier que dans les cas les plus simples, nos constructions correspondent aux codes
barres de Floer.

Dans une seconde partie nous nous intéresserons a l'invariant de Calabi pour les dif-
féomorphismes hamiltoniens du disque unité. Usuellement, I'invariant de Calabi est bien
défini sur ’ensemble des difféomorphismes hamiltoniens & support compact du disque unité.
Inspirés par l'interprétation dynamique de cet object donné par Fathi dans sa thése, nous
étendrons la définition de ce dernier au groupe des C! difféomorphismes hamiltoniens du
disque. En particulier, cela nous permettra de calculer I'invariant de Calabi de certaines
pseudo-rotations irrationnelles du disque.






Abstract

The goal of this thesis is to give some links between sympletic topology and the study
of dynamical systems through the notion of barcodes of Hamiltonian homeomorphisms of
surfaces and the Calabi invariant of Hamiltonian diffeomorphisms of the unit disk. These
two objects represent powerful invariants in symplectic topology. More precisely, we aim
at giving a dynamical interpretation of these objects.

This thesis is divided into two parts.

In a first part we will study the Floer Homology barcodes from a dynamical point of
view. Our motivation comes from recent results in symplectic topology using barcodes to
obtain dynamical results. We will give some constructions of barcodes of some Hamiltonian
homeomorphisms of surfaces using Le Calvez’s transverse foliation theory. The strategy
consists in copying the construction of the Floer and Morse Homologies using dynamical
tools like Le Calvez’s foliations. In particular, we will prove that for the simplest cases,
our constructions coincide with the Floer Homology barcodes.

In a second part we will deal with the Calabi invariant of the Hamiltonian diffeomor-
phisms of the unit disk. Inspired by the dynamical interpretation of this object developed
by Fathi in his thesis, we will extend it to the group of C'' Hamiltonian diffeomorphisms of
the disk. In particular, we will be able to compute the Calabi invariant of some irrational
pseudo-rotations of the disk.
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Context

Let us begin with some basic definitions of symplectic geometry.

Let us consider (M?",w) a symplectic manifold, meaning that M is an even dimensional
manifold equipped with a closed non-degenerate differential 2-form w called the symplectic
form. In particular, if M is a symplectic surface, the symplectic form is an area form.

Let us consider a time-dependent vector field (X;)«r defined by the equation
dHt = OJ(Xt, ‘),

where H : R x M — R is a smooth function 1-periodic in ¢, meaning that Hy; 1 = H; for
every t € R. The function H is called a Hamiltonian function. If the vector field (X3)wer
is complete, it induces a Hamiltonian flow which is a family (f;)ier of diffeomorphisms of
M preserving w and satisfying the equation

0
aft(z) = Xi(fe(2)).

The time one map fi of the isotopy (fi)e[o,1] is called a Hamiltonian diffeomorphism. In
particular, a Hamiltonian diffeomorphism on a surface preserves the area.

The case of autonomous Hamiltonian diffeomorphisms can be kept in mind. Con-
sidering a C' function H on a surface, the previous hamiltonian formalism provides a
Hamiltonian flow which follows the level sets of H such that the flur passing through any
loop is zero. The time-one map of such a Hamiltonian flow will be called an autonomous
Hamiltonian diffeomorphism.

Birkhoff proved [10] a celebrated result, conjectured and proved in some cases by
Poincaré [65], known as the Poincaré-Birkhoff theorem, that asserts that an area-preserving
homeomorphism of a closed annulus that satisfies some "twist conditions" admits at
least two fixed points. Further generalizations have been obtained by Franks [31], using
Brouwer’s lemma on translation arcs, and other authors.

In one hand, the Poincaré-Birkhoff theorem led to many questions of symplectic geom-
etry such as the Arnold conjecture [2] and the developement of the Floer Homology theory
[26, 27, 28, 29, 30]. Floer introduced the Floer Homology by combining the variational
approach of Conley and Zehnder, the elliptic techniques of Gromov and the Morse-Smale-
Witten complex in order to answer the Arnold conjecture stated as follows.
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Conjecture 0.0.1. A Hamiltonian diffeomorphism of a symplectic manifold M must have
at least as many fized points as the minimal number of critical points of a smooth function
on M.

On the other hand, the Poincaré-Birkhoff theorem led to the study of periodic points
of homeomorphisms of surfaces and more generally to the study of the dynamics of such
homeomorphisms.

The main goal of this thesis is to study some links between the symplectic geometry
and the dynamical systems of surfaces. In a first part we will study barcodes for Hamilto-
nian homeomorphisms on surfaces. In a second part we will study the Calabi invariant for
Hamiltonian diffeomorphisms of the unit disk.

Both parts of the thesis contain their own introduction and preliminaries chapters.
They are independant.

12



Part |

Barcodes for Hamiltonian homeomorphisms
of surfaces
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Chapter 1

Introduction

1.1 Goals and motivations

Main question

In the first part of this thesis, we will think about the following question.

Question 1.1.1. Can we construct barcodes for Hamiltonian homeomorphisms of surfaces,
equal to the Floer homology barcodes, using dynamical objects as Le Calvez’s transverse
foliations?

Barcodes

Given a Hamiltonian function (Hy)e[o,1) on a symplectic manifold (M,w), we define
the action function Ay on the space of contractible loops of M by

1
Ag(y) = — JD uw¥w + L H(y(t))dt,

where u is an extension to the disk of the contractible loop 7 : $' — M, that is, a map
u: D = {z¢€C|lz| <1} — M such that u(e? ) = ~(¢). If we suppose that m(M) = 0,
the function Ap does not depend on the choice of u and it will always be the case in this
thesis. We will see in the preliminaries that for a Hamiltonian diffeomorphism f, the action
function Ay does not depend on the choice of the Hamiltonian function H which induces
[, hence it defines an action function Ay asociated to f.

For example, on surfaces, the difference of action between two points x and y fixed by
a Hamiltonian flow can be interpreted as the flux of this flow through any oriented path ~
joining = and y.

An important fact is that the critical points of an action function Ay are the trajecto-
ries of the contractible fixed points of f. The study of the critical values of A will play a
key role in this thesis.

The barcode of a Hamiltonian diffeomorphism f is a countable collection of intervals,

called bars whose extremities are the critical values of its action function Ay. In the par-
ticular case of a generic hamiltonian diffeomorphism, each critical value of A; is the end
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of one and only one bar.

The construction of these barcodes, recalled in Chapter 3, is based on the Floer Ho-
mology theory.

Let us begin with a simple example. We consider a Hamiltonian flow (f;)e[o,1] induced

by an autonomous Hamiltonian function H. In this case, for ¢t small enough, the barcode of
the Hamiltonian diffeomorphism f; is equal to the filtered Morse Homology (HMY (H))ser
of H.
To give more details about this example we explain how the filtered homology of H can
be interpreted as a collection of bars. In general, the bars of a barcode are of the form
I; = (aj,bj], aj € R,bj € R U {400} and satisfy certain finiteness assumptions. The ends
of these bars are in correspondence with the critical points of H and can be classified as
follows.

e There are the death points which are the critical points x of H ending some homology,
meaning that the dimension of the vector spaces (HML(H))scr decreases at H(x).

e There are the birth points which are the critical points x of H generating homology
in HM, H (z)(H), meaning that the dimension of the vector spaces (HM.(H))wer
increases at H(z). The value H(x) of a birth point = will be the begining of a bar.

The bars of a barcode can be described by the following classification of the birth points.

e A birth point can be "homological" and associated to the semi-infinite bar (H(s), +0)

(z)

in the barcode if the homology it generates in HMf persists in the vector spaces

(HML) 1> 11(s)-

e A birth point can be "bound to die" and associated to a death point y and a finite
bar (H(z), H(y)] in the barcode if the homology it generates in HMf(m) disapears in
H(y)
HM, .

The previous filtered homology is an example of a persistence module. In fact, we will
see that barcodes use to classify persistence modules up to isomorphisms. Roughly speak-
ing, it is equivalent to consider a barcode as a set of bars or as a filtered homology.

Following this idea, we associate, canonically, a barcode B(f) to every Hamiltonian
diffeomorphism f by considering the filtered Floer Homology of f where the filtration is
given by the action function Ay.

The barcode B(f) gives information about the structure of the set of fixed points and
the spectral invariants of f. The spectral invariants have been introduced by Viterbo [73].
They have been used in numerous deep applications and their theory has been developped
in many contexts, we can cite for example the work of Schwarz [?] and Oh [?]. They are
powerful tools which took an important place in the development of symplectic topology.
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The notion of Barcode provides, in some topology, a continuous invariant of conjugacy
on the set of smooth Hamiltonian diffeomorphisms of symplectic manifolds.

Hamiltonian homeomorphisms

In symplectic geometry, we can define the notion of Hamiltonian homeomorphism of
a surface Y by taking the closure of the Hamiltonian diffeomorphisms of Y. This defini-
tion comes from the Gromov-Eliashberg theorem [19] which states that if a sequence of
symplectomorphisms of a symplectic manifold (M,w) converges in the C¥ topology to a
diffeomorphism then this diffeomorphism is a symplectomorphism as well.

For a Hamiltonian homeomorphism of a surface, we are not able to consider directly its
Floer Homology as the construction requires at least a C? setting. Howeover, on surfaces,
the barcode B(f) depends continuously, in the uniform topology, on f and moreover, ex-
tends to Hamiltonian homeomorphisms, see [(1] for more details.

The barcode of a Hamiltonian homeomorphism f is defined by a limiting process and
it is natural to wonder if it is possible to describe a direct construction.

Moreover, the notion of Hamiltonian homeomorphism of surfaces is well-known in dy-
namical systems and has a dynamical interpretation thanks to the notion of rotation vec-
tors. On a symplectic surface (X,w), w is an area form which induces a Borel probability
measure p. We will say that a homeomorphism f of an oriented compact surface is Hamil-
tonian if it is isotopic to the identity and preserves a Borel probability measure p whose
support is the whole surface and whose rotation vector p(u) is zero.

Le Calvez’s transverse foliations

A key motivation for this thesis is to bring a dynamical interpretation of the barcodes
for Hamiltonian homeomorphisms of surfaces. Taking this direction, we will give some
constructions of barcodes, inspired by the Floer homology constructions, using Le Calvez’s
foliation theory.

Le Calvez’s foliations theory has many applications in the study of dynamical systems
of surfaces. For example in the study of prime ends by Koropecki, Le Calvez and Nassiri
[15], the study of homoclinic orbits for area preserving diffeomorphisms by Sambarino and
Le Calvez [52] or the results about the forcing theory of Le Calvez and Tal [53, 54].

Nowadays, Le Calvez’s foliations theory [19] represents one of the most important
dynamical tool in the study of the dynamics of homeomorphisms of surfaces. This the-
ory already found applications to Barcodes of Hamiltonian homeomorphisms of surfaces.
For example, for a homeomorphism f which preserves the area, Le Roux, Seyfaddini and
Viterbo in [61] used Le Calvez’s foliations theory to extract dynamical informations of the
barcode of f without Kislev-Shelukhin’s result [17].

Here are some details about transverse foliations. Let us consider a homeomorphism
f on a surface. There are sets X of fixed points of f, called maximal unlinked sets, such
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that there exists an isotopy, called mazimal isotopy, from id to f fixing all points of X and
which are maximal for the inclusion.

Le Calvez proved that given a maximal unlinked set X of fixed points of f and an iso-
topy I fixing all the fixed points of X, there exist oriented foliations F positively transverse
to the isotopy I. Roughly speaking, this means that, given a point in the complement of
X, its trajectory along the isotopy I is homotopic in ¥\ X to a path transverse to F.

Moreover, if we suppose that f is area-preserving, we will see in 2.3.7 that those fo-
liations are gradient-like. To keep it simple, this means that we can see such a foliation
as the gradient lines of a function defined on the surface. In particular, every leaf of a
gradient-like foliation is an injective path, called a connexion, between two singularities of
F and there is no cycle of connexions.

In the particular case where f has finitely many fixed points, by a result of Wang [71], the
notion of action function can be extended. A key point is that, for every leaf ¢ of F the
action function Ay of f satifsies Af(a(¢)) > Ar(w(9)).

To give an example, we can consider again a Hamiltonian diffeomorphism f induced
by an autonomous Hamiltonian function H on a surface. The induced Hamiltonian flow is
a maximal isotopy I of f and the gradient flow of H is a gradient-like foliation positively
transverse to I. In this case, the only maximal unlinked set of fixed points fixed by [ is
the set of critical points of H.

1.2 Results

We describe briefly the results of the first part of this thesis. We provide distinct construc-
tions of barcodes for Hamiltonian homeomorphisms of surfaces.

First construction

We will describe a first construction in Chapter 4 under some generic hypothesis which
is inspired from the Morse and Floer homology constructions. We will consider a Hamil-
tonian homeomorphism f of an oriented compact surface ¥ with a finite number of fixed
points which are, in a sense, non degenerate and such that the set of fixed points is unlinked,
meaning that there exists an isotopy I = (ft)se[o,1] from id to f fixing all the fixed points
of f. By Le Calvez’s theorem we can consider a gradient-like foliation F transverse to I.
We will suppose that F satisfies some "generic" hypothesis which allows us to construct a
chain complex inducing a filtered homology and then a barcode denoted Bgen (F).

We have the following theorem proved in Chapter 8.

Theorem 1.2.1. The Barcode Bgen(F) does not depend on the choice of the foliation
F e Fgen(I).

In the case of a Hamiltonian diffeomorphism close enough of the identity and generated
by an autonomous hamiltonian function we will obtain the following result.

18



Theorem 1.2.2. If we consider a Hamiltonian diffeomorphism f with a finite number of
fived points which is C?-close to the identity and generated by an autonomous Hamiltonian
function then the barcode Bgen(F) is equal to the Floer homology barcode of f.

Let us give the idea of the construction. Since f is area-preserving, we will see that
there are three kinds of singularities for the foliation F: sinks, sources and saddle points.
We will suppose that F is in the set Fgen(I) of "generic" foliations positively transverse
to I, meaning that there are finitely many leaves between sources and saddle points and
between sinks and saddle points. In the Morse Homology theory, the chain complex is
defined by counting modulo 2 the number of trajectories between the critical points of a
Morse function f. Following the same ideas we will be able to define a chain complex
associated to F by counting modulo 2 the number of leaves between singularities of F and
more precisely the number of leaves between sinks and saddle points and between sources
and saddle points.

A natural question appears.

Question 1.2.3. Can we generalize the construction to barcodes for every Hamiltonian
homeomorphisms of surfaces?

Second construction

In general there is no natural way to construct a chain complex from a positively trans-
verse foliation. The difficulties come from geometrical limitations of the foliations.

Nevertheless, given a Hamiltonian homeomorphism f, we will construct barcodes asso-
ciated to maximal unlinked sets of fixed points of F'.

Let us consider a maximal unlinked set X of fixed points of f, a maximal isotopy
I = (ft)ie[o,1) fixing all the fixed points of X, and a gradient-like foliation JF, positively
transverse to I. We will begin by associating a graph G(F) to the foliation F whose set
of vertices is equal to X and for every couple (x,y) of vertices there is an edge from z to
y if there is a leaf ¢ of F starting at = and ending at y.

In Chapter 5 we will construct an application 8 which associates a barcode to triplets
(G, A, i) where G is an oriented graph on the set of vertices X equipped with an action func-
tion A defined on X, meaning that for every edge e of G from x to y we have A(z) > A(y),
and an index function i : X — Z.

In Chapter 6, we will consider the barcode 3(G(F), Ay,ind(F,-)), denoted Bz, where
Ay is the action function of f and ind(F,-) the index function induced by F and prove
some useful properties.

We will prove in Chapter 8 the following result.

Theorem 1.2.4. The barcode Br does not depend on the choice of F and only depends
on the mazimal unlinked set of fixed points X .

Third construction
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To prove Theorem 1.2.4 we will construct another barcode associated to X as follows.

In Chapter 7, we will introduce an order on the fixed points of X. For two fixed points
x,y € X we will say that © > y if there exists an oriented path + from x to y of which
any lift  on the universal cover D? of ¥\ X is a Brouwer line for the natural lift fof I,
meaning that ¥ is the boundary of an attractor of f In the same ideas, we associate to
this order a graph G(>) whose set of vertices is equal to X and for every couple of vertices
x and y there is an edge from z to y if x > y.

We will consider the barcode B~ = (G(>), Af,ind(Z, -)) which depends only on X and
we will prove the following result in Chapter 8.

Theorem 1.2.5. For every foliation F positively transverse to the isotopy I we have

;8>:,3}'-

In the same chapter, we will prove the following result which enlighten the link between
the barcode associated to a maximal set of fixed points and the first construction in a more
generic case.

Theorem 1.2.6. Let us consider a Hamiltonian homeomorphism f on a compact surface
Y whose set of fized points is finite, unlinked, and such that each fized point x € Fix(f) is
not degenerate.
We consider a maximal isotopy I such that Sing(I) = Fix(f) then for a foliation F €
Foen(I) we have

Bgen(]:) = /3]-'-

In fact, Theorems 1.0.3, 77 and 1.0.4 will be consequences of the two previous theorems.
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Chapter 2

Preliminaries

2.1 Morse Homology

We give a quick presentation of Morse homology, largely inspired by the presentation of
M. Audin and M. Damian in [3].

We fix a n-dimensional compact smooth manifold M. For a function F' : M — R, a
point x is said to be a critical point if dF, = 0. The function F is said to be a Morse
function if each critical point  of F' is non degenerate, i.e. D?F} is non degenerate.

The local theory of critical points of Morse functions is well understood and we have
the following lemma.

Lemma 2.1.1. Let x € M a critical point of a Morse function F': M — R. There exists
a neighborhood U of x and a diffeomorphism ¢ : (U,x) — (R™,0), called a Morse chart,

such that
Fowfl(:cl,..., Z:c + Z x
Jj=i+1

The integer 7 is called the Morse index, denoted ind(F, x), of the critical point x and
does not depend on the choice of the diffeomorphism . We denote by Crit;(F') the set of
critical points of F' of index 1.

Let us consider a Morse function F': M — R. A pseudo gradient vector field adapted
to F'is a vector field X on M such that for all z € M we have dF,(X;) < 0 with equality
if and only if x is a critical point of F' and for a Morse chart near a critical point of F', the
vector field X is equal to the opposite of the gradient vector of F' for the canonical metric
on R™. That is to say that, in local coordinates, we have

X = 22;1:] Z 29%3:

j=i+1

Notice that such a vector field always exists. If we denote by ¢° the flow of X, for z a
critical point of F' we define its stable manifold to be

W (z) = {y € M| lim ¢°(y) = l‘}
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and its unstable manifold to be
W (z) = {y € M| lim ¢°(y) = ﬂf} :

Those manifolds satisfy dim(W*(x)) = codim(W?*(z)) = ind(F, x).

Let us consider a pseudo gradient vector field X adapted to a Morse function F' : M —
R. We say that X satisfies the Smale condition if all stable and unstable manifolds of its
critical points meet transversely.

Moreover Smale’s Theorem assures that we can find a vector field Y on M C*-close to
X which satisfies the Smale condition.

Let us describe the Morse chain complex C,(F') of a Morse function F' : M — R and
a pseudo gradient X of F' on M which satisfy the Smale condition. The i** group of the
chain complex C;(f) is given by

Ci(f) = Z Ay ys Ay € Z/2Z
yeCrit; (f)

We define the differential map ox : C;(f) — Ci_1(f) as follows. For two critical points
x4 and x_ of F' we define the set

M(x_,zy; F,X) = {x € M]tli)rfooét(x) = x+}.

We have that M(z_,z4; F, X) = W*(z_) n W¥(z4), so the transversality condition
assures that dim(M(z_,z4; F, X)) = ind(F,z_) — ind(F, z ).

For all ¢ € R, if z is in M(z_,z4; F,X) then we have limy 4o ¢!¢(2) = z4. So it
gives a free and proper action of R on M(z_,z4;F, X). Thus we can define the quo-
tient M(x_,z4; F, X) of M(x_,z4; F,X) by this action. The dimension of the manifold

—~

M(z_,x1; F, X) is equal to ind(F,z_) — ind(F,z;) — 1.
For all critical points z_ of F' of index i we define

aX(‘,I"—): 2 N($_,$+;F,X)'.’E+,

z4+€Crit; 1
where n(x_,x1; F, X) denotes the cardinal of ./(/l\(:z,, z4+; F, X) modulo 2.

Thus we have to verify that dx o dx = 0. First, for x € Crit;12(F) we compute

aXOaX(‘T): Z Z (n(m,y;F,X)Xn(y,z;F,X))-Z
z€Crit; (F') yeCrit; 11 (F)

To prove that the previous sum is zero it suffices to prove that given two critical points,
x of index ¢ + 2 and z of index ¢ the sum

> nl@y;F,X) xn(y, % F, X) (2.1)
yeCrit; 41 (F)
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is zero. This number equals the cardinal of the union

| M,y F.X) x M(y, % F, X))

yeCriti_H (F)

This union is a set of points and the idea is to prove that it is the boundary of a manifold
of dimension 1 which is an even number of points. We introduce the concept of broken
gradient trajectories.

Definition 2.1.2. A broken gradient trajectory between two critical points x_ and . is a
family (1, ...,xp) of points such that there exists a sequence (yi,...,Yp+1) of critical points
of F' satisfying

1. fOT all i, x; € X/l\(yl-,yHl;F,X)

2.1 =2 and Ypy1 = T4.
For two critical points x and z we denote //\/T(a:, z; F, X') the space of broken gradient
trajectories from x to z. We have the following two theorems.

Theorem 2.1.3. The space //\/l\(x, z; F, X)) is compact for all critical points © and z.

The topology on //\/l\(a:, z; F, X)) is induced by the topology on M. It admits a countable
fundamental system of open neighborhoods and the compactness is proved using sequences.
We refer to [3] for more details.

Theorem 2.1.4. Let us consider (z,y,z) € Critj11(F) x Crit;(F) x Crit;—1(F), o’ €
M(z,y; F, X) and 2" € M(y,z; F, X). There is a continuous embedding 1, differentiable
on the interior of its definition domain, from an interval [0,68), § > 0 to a neighborhood of

—

(', 2") in M(x,z; F, X)) such that

ey

1. 9(0) = (2, 2") e M(z,2; F, X),
2. ¢(s) e M(x, 2 F,X) for all s # 0.

Moreover, for any sequence (p)neN in M\(:c, z; F, X)) converging to (x',2") and for n large
enough, T, lies in the image of .

With some properties about the index, we obtain that
| M,y F,X) x My, 2 F, X) = 0M(x, 2 F, X)),
yeCrit; (F)

where (z,y,2) is defined as in the above theorem. Moreover, Aj/l\(x_,er; F,X)) is a one
dimensional manifold with boundary. His boundary is an even number of points and hence
we obtain that 0% = 0.

The Morse homolgy of a Morse function F will be denoted HM, (F) and HM (F) will
refer to the naturally filtered Morse homology induced.
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Remark 2.1.5. There is an important fact that we will use in the construction of barcodes
and persistence modules: given a Morse function F': M — R and a pseudo gradient vector
field adapted to F', the value of F' decreases along the flow of a point. Which means that,
for every non critical point x we have

F( lim ¢°(x)) = F( lim ¢°(x)).

§—>—00 §—+00

If we consider a Morse function F' of a surface Y then there are three categories of
critical points of F, the critical points of index 0 called the sinks, corresponding to the
local minimum, those of index 1 called the saddle points and those of index 2 called the
sources, corresponding to the maximum local.

2.2 Symplectic geometry

For the remainder of this section, we consider a connected symplectic surface (3, w) such
that m(M) = 0 and where w is a 2-form which is closed and nondegenerate. A symplectic
diffeomorphism is a diffeomorphism f : ¥ — ¥ such that f*w = w.

2.2.1 Hamiltonian diffeomorphisms

A Hamiltonian function on M is a time dependent function
H:S'x MR

The Hamiltonian function generates a Hamiltonian vector field X g defined by the equation
dH; = w(Xp,-),

where we denote Hy(z) = H(t,x). The flow (fi)se[o,1] of this vector field is called the
Hamiltonian isotopy generated by H. A Hamiltonian diffeomorphism is a symplectomor-
phism that can be written as the time 1 map of a Hamiltonian isotopy.

We consider two Hamiltonian diffeomorphisms f and g on a symplectic manifold (M, w).
We denote H : $! x M — R and G : $! x M — R two Hamiltonian functions such that
f and g are the time-one map of the induced Hamiltonian flows (ft)sefo,1] and (gt)sefo,1]-
Then the Hamiltonian K : $' x M — R given by

Ki(2) = Hy + Gy o f7(2),

induces a Hamiltonian flow such that fog is its time-one map. Moreover, the Hamiltonian
H :8' x M — R defined by B
Hy(2) = —Hy(f'(2)),

induces a Hamiltonian flow such that f~! is its time-one map.

Hence the set of Hamiltonian diffeomorphisms of a symplectic manifold is a group that
we denote Ham(M, w).
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2.2.2 Hamiltonian Action

Let us consider (M, w) a symplectic manifold and H : R x M — R a Hamiltonian function
which is periodic in ¢ and satisfies Hy;11 = H; for all t € R. We denote (¢');cr the Hamil-
tonian flow defined by H.

We consider a contractible loop v = (7(t))est in M and we denote by 2 the set of
loops in M. We can consider the expression

1
Ap(y) = — fD o+ jo H,y (1))t

where u is an extension of v : $! — M to the disk, that is, a map u : D = {z € C||z|] <
1} — M such that u(e*™) = ~(t).

The integral does not depend on the choice of the extension u. Indeed if we consider

another extension v then
f ufw —J viw = J w*w,
D D $2

where w is defined by gluing the two disks along their common boundary. Since we assume
that mo(M) = 0 we have that the previous equation is equal to zero.

The function Ag will be called the action function and satisfies the following property.

Proposition 2.2.1. A loop is a critical point of Ay if and only if t — ~(t) is a 1 periodic
solution of the Hamiltonian system y(t) = X¢(y(t)).

Let us sketch the proof. For a loop v € €, the tangent space T,£) at vy consists of
the smooth vector fields £ € C*(y*T'M) along ~ satisfying (¢t + 1) = £(t). Then the
computation of the action function at  in the direction of £ gives

1
dAp (7)€ = jo (0(3.€) + dH, (+(1))[€]dt,

which vanishes for every ¢ € T, if and only if the loop v is a solution of the Hamiltonian
system

V() = X (v (1))
The periodic solutions of the flow induced by H will be denoted Ppg.

2.2.3  Floer Homology

We sketch the construction of the Floer homology in this section. There are many difficul-
ties in making this construction and the purpurse of this section is only to give ideas of how
Floer homology works. Thus, we may ignore some of these difficulties to set an understand-
able and short introduction to Floer homology. The section is inspired by Audin-Damian
[3] and Hofer-Zehnder [10] presentations.
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Let us consider a symplectic manifold (M,w) and let us choose an almost complex
structure J on M compatible with w. The almost complex structure .J is a smooth endo-
morphism of TM, such that for all x € M, J, € L(T, M, T, M) satisfies J2 = —1 and such
that

g(&mn) =w(&, Jen), n,§ e T,M

defines a Riemannian metric g on M. We denote VH the gradient of H on M with respect
to the z-variable in the metric g. Note that we have VH = —J Xp.

The crucial objects are the solutions u : R x $' — M of the gradient flow equation
(also called the Floer equation)

ou ou

— +J(u)=—+VH(t,u) =0. 2.2

TSy + VH(Lw) 2.2
We denote by M the set of "bounded solutions" of equation 2.2. This set is defined

as the set of smooth solutions u : R x $* — M of equation 2.2 which are contractible, and

have finite energy, i.e. such that the number

LR T

is finite. Floer proved in [29] that the space M has a structure similar to the set of broken
trajectories defined in section 2.1. The group R acts naturally on M by shifting u(s,t) in
the s direction which defines a continuous flow on M. Moreover, for every bounded orbit
u € M there exists a pair x,y € Py such that u is a connecting orbit from y to z, i.e.,

2
M Xt

f,
0s ot

2
} dsdt (2.3)

lim wu(s,t) =y(t), lim wu(s,t)=z(t), (2.4)

§—>—00 §—+00

the convergence being uniform in ¢ as |s| — o0 and g—;‘ converging to zero again uniformly
in t. Given two periodic solutions z,y € Py we denote M (y, z) the set of solutions u € M
satisfying the asymptotic boundary conditions 2.4. Thus we have

M= | My,u).

Y, xEPH

For two critical points y, z, the set M(y,z) is an invariant subspace. The compactness
can be formulated analogously to the finite dimensional Morse theory that we developed
in section 2.1. We have the following proposition of Schwarz book [?].

Proposition 2.2.2. Let us consider a sequence (up)nen € M(y, ). Up to a subsequence,
the sequence (un)nen satisfies the following property: there is a sequence sheR of times,
Jj =1,2,....m, such that u,(s + s},) converges together with all derivatives uniformly on
compact sets to solutions ) € M(z?,27~1) where 7 € Py for j = 0,...,m, with 2° = x
and x™ = y.

We describe the previous proposition by the following Figure 2.1.
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Unp, ul

Figure 2.1: illustration of proposition 2.2.2

One may prove using Fredholm theory in the appropriate functional analytic setting
that for a "generic" choice of the pair (H,.J) the sets M(y,x) are smooth and finite di-
mensional manifolds such that the dimension of a set M(y,z) is equal to the difference
indez(y) — indoz(z), where indoz(z) is the Conley-Zehnder index of & whose definition
will be recalled in section 2.2.5.

Then we can define the homology groups associated to a pair (H,.J) on (M,w). The
grading of the chain complex (Cf)gez is given by the Conley-Zenhder index that we define
later in section 2.2.5 and for all k € Z we have

Cr = P{Z/2Z - x|z € Py & indey(z) = k},

where Py is the set of non degenerate contractible periodic orbits of H.

If we consider a pair y, x € Py such that indoz(y) —indoz(x) = 1 then M(y, x) is a one-
dimensional manifold and more precisely has finitely many components, each component
consists of a connecting orbit together with all its translates by the time s shift. We can
now define the differential map 0 : Cy, — Cir_1 for y € Py of index k as follows.

Oy = Y o

IE’PH‘indcz(x):kfl

where n(y, x) is the number of connected components of M(y, x) counted modulo 2.

Floer proved that 0y o dx41 = 0, for each k € Z. We explain the idea of the proof.
Assume that for three elements x € Ciiq, y € Cx and z € Cy_1 there is a connexion
u in M(z,y) and a connexion v in M(y, z). We may view the pair (u,v) as a "broken
trajectory" connecting z with z. In this case the set M(x, z) has dimension two. Floer
proved that by a pertubation argument called the gluing method [29] that there exists a
unique one parameter family of connexions in M(z, z). By taking the quotient by the R-
action of the time s-shift one finds a connected 1-dimensional manifold without boundaries
of unparametrized orbits which represents one component of M(x, z). Such a manifold is
either a circle or an interval with two ends. By Proposition 2.2.2 each end converges in a
suitable sense to a well-defined broken trajectory (u',v") € M(z,y") x M(y/, z) for some 3/’ €
Ck. One may prove by the same gluing arguments that there is a correspondence between
the "broken trajectories" and the ends of connected component of M(x, z). Thus the 1-
dimensional manifold M(x, z)/R has an even number of ends and the broken trajectories
between x and z occur in pairs. We obtain that
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O © Op41(x) = Z n(z,y)n(y, z) |

indez(2)=k—1 \indcz(y)=k

is equal to 0 modulo 2.

Figure 2.2

We can define the Floer homology groups (HFy (M, H, J))kez by
HF, (M, H,J) = Ker(0))/Im0j;41.

Remark 2.2.3. Notice that the energy of a solution u € M(y, x) is equal to E(u) = Ag(y)—
Ap(x) and is positive. We deduce that the action function Ay decreases along the solution
u. We can compare this result to Remark 2.1.5 where a Morse funtion F' on M is decreasing
along the solutions of a pseudo gradient vector field.

2.2.4 Filtered Floer Homology

Let us consider a non-degenerate Hamiltonian function H on a symplectic manifold (M, w)
which satisfies the hypothesis of the previous section 2.2.3 and let us fix J an almost
complex structure on M. We use the same notation as in Section 2.2.3 to define the
filtered Floer homology of H from the Floer homology of H.

We consider the natural filtered chain complex (C})gezer where Cf = D{Z/2Z -
x|z € Py, indoz(H,z) = k, Ag(x) < t} and the natural filtered differential application
0% : Cf — Cf_, defined as the restriction of dj, on Cf.

The filtered chain complex (C,f/,, 82)%27@@ induces an homology denoted (HF%,);cr. This
homology is referred to as the filtered Floer homology of the Hamiltonian H. One may
prove that the filtered Floer homology of H does not depend on the choice of the almost
complex structure J on M, see [3] for example.

We have the following property.

Proposition 2.2.4. We consider two Hamiltonian flows (¢3qo)te[0,1] and ((bl}{l)te[o,l] of
two Hamiltonian functions Hy and Hy on $' x M. Let us suppose that (Cf)l}[o)te[o,l] and
(<Z5iql)te[o,1] are homotopic relative to the endpoints in Ham(M,w). Then there exists a
constant c € R such that

HF! (Hy) = HFL ¢(Hy,1),Vt € R.
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2.2.5 Conley-Zehnder index and Maslov index

The Conley-Zehnder index is an important tool in the definition of Barcodes and we will
discuss some properties of this index in our constructions. We give a short version of the
definition although we will not use it directly.

Given a Hamiltonian function H of a symplectic manifold (M?",w) we want to define
the Conley-Zehnder index of any contractible 1-periodic solution z(t) of #(t) = X;(x).

We consider the symplectic manifold (R?",wg) where wp is the standard symplectic
form on R?" written in the coordinates z = (1, ..., Zn, Y1, ..., Yn) € R%" as follows

n
wo = Z dx; A dy;.
i=1

We denote Jy the 2n x 2n matrix

0o -1,
which represents a rotation by 7/2 and satisfies Jg = —19,. We denote the group of
symplectic matrices by

Sp(n) = {M e R*™ x R*™|MT JyM = Jy},

where M7 is the transpose matrix of M. We also denote SP(n) the set of paths 7 in Sp(n)
from id to a matrix A which do not have eigenvalue 1.

Let us consider a non degenerate orbit x. There are two steps to compute the index of
the critical point z. We associate to the orbit a path 1 : ¢t — A(t) of matrices in Sp(2n).
Then to a path 1 we associate an integer which is the Conley-Zenhder index of x.

First step

We fix the orbit z(t) = ¢'(x(0)) then we can choose a family of symplectic bases, see
[3] for example, Z(t) = (Z1(t), ..., Zan(t)) of TyyM that depends smoothly on ¢. For every
t € R, we can consider the matrix A(t) of the linear map T, )¢ in the bases Z(0) and
Z(t) and we obtain a path 1 : t — A(¢) such that A(0) = id and such that A(1) does not
have eigenvalue 1 because the orbit is supposed to be nondegenerate.

Second step

Definition 2.2.5. Let p : Sp(n) — S! be the continuous map defined as follows. Given
A € Sp(n), we consider its positive eigenvalues {\;}. For an eigenvalue A = ¢ € $1\{+1},
let m™(\) be the number of positive eigenvalues of the symmetric non degenerate 2-form
Q defined on the generalized eigenspace Ey by

Q:E\x E\,—>R:(2,2) > w(z?7?).
Hence we have ) )
p(A) = (15 T s, 2.5)

AeSI\{£1}
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where m™ s the sum of the algebraic multiplicities my) = dimcFE) of the real negative
etgenvalues.

Theorem 2.2.6. The map p : Sp(n) — $! satisfies the following properties:
1. determinant: if Ae U(n) = Sp(n) n O(2n), then

. X -Y
p(A) = dete(X +14Y), where A = <Y X ) .

2. invariance: p is invariant under conjugation, i.e. for all B € Sp(n) we have p(BAB™!) =

p(A);
3. normalisation: p(A) = +1 for matrices which have no eigenvalue on the unit circle;

4. multiplication: p behaves multiplicatively with respect to direct sums e.g if we consider
A € Sp(m) and B € Sp(n) then we have

o(y ) - )

Moreover, the set Sp*(n) = {A € Sp(n)|det(A — id) # 0} has two connected compo-
nents. There are the connected component Sp~(n) = {A € Sp(n)|det(A — id) < 0} which
contains the matrix —id, denoted W~, and the connected component Sp*(n) = {A €
Sp(n)|det(A — id) > 0} which contains the matrix diag(2,1/2,—1,...,—1), denoted W.
Notice that any loop in Sp*(n) is contractible in Sp(n).

Then any path ¢ : [0, 1] — Sp(n) in SP(n) such that (1) is in Sp*(n) can be extended
to a path ¢ : [0,2] — Sp(n) such that

L §(t) = (t) for t < 1;
2. J(t) is in Sp*(n) for any ¢t > 1,
3. P(2) € (W}

Since (p(id))2 = 1 and (p(W7))2 = 1 we have that p2 o1 : [0,2] — S! is a loop in St
Moreover one may prove that its degree does not depend on the extension v of 1.

Definition 2.2.7. The Maslov index of an element v of Sp(n) is defined by:
par = Sp(n) = Z | ¢ > deg(p? 0 1)), (2.6)
where 1; is an extension of ¢ as above.
Then we define the Conley-Zendher index of a critical point x of H as the Maslov index

of the path of symplectic matrices associated to = in the first step.

Remark 2.2.8. If we suppose that the Hamiltonian diffeomorphism f is given by the 1-time
map flow of an autonomous Hamiltonian function H : M — R which is C?-close to the
identity then the Conley-Zehnder index of a fixed point z of f is equal to the Morse index
of x where H is seen as a Morse function on M. One may refer to 65| for more details.
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2.3 Dynamical systems

From now we consider a connected, compact and oriented surface ¥ without boundary. Let
Homeo(X) be the space of homeomorphisms of 3 equipped with the topology of uniform
convergence on Y. For f € Homeo(X), Fix(f) represents the set of fixed points of f.

2.3.1 Isotopies and maximal Isotopies

An isotopy is a continuous path ¢ — f; from [0, 1] to Homeo(X). We say that f € Homeo(X)
is isotopic to the identity if there exists an isotopy I = (fi)se[o,1] such that fo = id and
fi = f. We denote by Homeog(X) the set of those homeomorphisms.

Given an isotopy I = (fi)ie[o,1] from id to f, we can extend it to an isotopy defined on
R by the periodic relation fi11 = fi o fi. We define the set of singularities Sing(I) of I as
follows.
Sing(I) = {x € | Vt € [0,1], fi(x) =x}.

The complement of Sing(/) in ¥ is called the domain of I and denoted Dom([).

For a point z € ¥, the arc v : [0,1] — ¥ where for each te [0,1], y(t) = fi(z) is
called the trajectory of z along the isotopy I. For every n > 0, we denote by 7,(z) the
concatenation of the trajectories of z, f(2), ..., f*~1(2).

We fix a homeomorphism f € Homeop(X). A set X < Fix(f) is say to be unlinked if
there exists an isotopy I = (ft)se[o,1] from id to f such that X is included in the set of
singularities of I.

We denote by Z(f) the set of couples (X, I) such that I is an isotopy from id to f and
X < Sing([). The set Z(f) is naturally equipped with a pre-order <, where

(X, 1) < (X", 1),

if X ¢ X’ and for each z € ¥\ X, its trajectory along I’ and I are homotopic in 3\ X.
The couple (X', I) is called an extension of (X,I). An isotopy I € T is called a mazimal
isotopy in T if the couple (Sing(I), I) is a maximal element of (Z, <).

A recent result by F. Béguin, S. Crovisier and F. Le Roux [3] asserts that for a home-
omorphism f € Homeog(X) isotopic to the identity there always exists a maximal isotopy
(a weaker result was previously proved by O. Jaulent |11]). We will often use Corollary
1.3 of [8] which we write as the following theorem:

Theorem 2.3.1. Let us consider f € Homeoy(X). For each element (X, 1) € Z(f) there is
a mazimal element (X', I") € Z(f) such that (X', I') is an extension of (X,I).

In the case of the 2-sphere $2 we have the following result, which can be found in [50],
about the homotopy classes of isotopies of an orientation preserving homeomorphism f of
the sphere $2. We consider the isotopy Ry = (n)te[m] where r; is the rotation of angle
27t i.e r¢(r,0) = (r,0 + 27t) in radial coordinates. The isotopy extends into an isotopy
R? i {00} on the sphere. For z € $2, we choose an orientation preserving homeomor-
phism h, : R? — $2\{z} and we define the isotopy R, = h, o Ry, o h; . If we consider
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two points z and 2’ of the sphere we choose an orientation preserving homeomorphism
h,. : R? — $%\{z} such that h, ,/(0) = 2’ and we define the isotopy R, ,» = hsz/ORooth_i/
which fixes the points z and 2’

Proposition 2.3.2. Let us consider an orientation preserving homeomorphism f of the
sphere $2.

1. For each fized point z € Fix(f), the set of isotopies from id to f which fix z is not
empty. For two such isotopies I and I', there exists a unique integer k € 7Z such that
I’ is homotopic to RET relatively to {z}.

2. If f has at least two fized points, then for each couple (z,2") of distinct fized points the
set of isotopies from id to f which fix z and z' is not empty. For two such isotopies,
there exists a unique integer k € Z such that I' is homotopic to le 1 relatively to

{z,2'}.

3. If f has at least three fized points, then for each triplet (z,2',2") of distinct fixed
points the set of isotopies from id to f which fix z, 2’ and 2" is not empty. All those
isotopies are homotopic relatively to {z,2',2"}.

2.3.2 Lefschetz index

For a homeomorphism f € Homeo(X) and an isolated fixed point z of f, we define the
Lefschetz index ind(f, z) of = as follows. let U be a chart centered at = and we denote by
I' a small oriented circle in U around z. For I' sufficiently small, the map

f(z) ==

> —

1 () — 2l

is well defined on I" and we denote by ind(f,z) the degree of this map.

2.3.3 Linking number

Let us consider an orientation preserving homeomorphism f of the plane isotopic to the
identity and I = ( ft)te[o,l] an isotopy from id to f. Let us suppose that there exists a
periodic point z* of f of period ¢ = 1. If z is a fixed point of f, the quotient of the map

ft(z") — fi(2)

"R = AT

defines a continuous function of the circle R/¢Z to $'. The degree of this application
is called the real linking number of z* and is denoted by I .«(2). It depends only on
the homotopy class of the isotopy I. For another isotopy I’ of f there exists k € Z
such that I’ is homotopic to R¥I, where RY was defined in section 2.3.1. We verify that
lpo+(2) = l1.x(2) — kq. Then the linking number Ly .«(z) = I« (2) + qZ € Z/qZ is
independent on the choice of the isotopy.
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2.3.4 Rotation vectors

Let f € Homeog(X) be the time one map of an isotopy I = (ft)se[o,1] from the identity to
f. Among the many ways to define the rotation vector, we restrict ourselves to positively
recurrent points. A point z € X is a positively recurrent point of f if for each neighborhood
U c ¥ of z there exists an integer n € N such that f"(z) € U. The integer n > 0 which
is minimal for the previous property is called the first return time and is denoted by 7(2).
The set of positively recurrent points is denoted by Rec™ (f).

Let z € ¥ be a positively recurrent point. Fix a 2-ball U < ¥ containing z and let
(f™(2))k=0 be a subsequence of the positive orbit of z obtained by keeping the iterates
of z by f that are in U. For any k > 0, choose an arc 7, in U from f™(z) to z. The
homology class [I'y] € Hi(X,Z) where I'y, is the concatenation of 7, —1(z) and 7; do not
depend on the choice of ;. We say that z has a rotation vector p(z) € H1 (X, R) if

lim ——[T] = p(2).

>+ N,

for any subsequence (f"*(z));>o which converges to z. Notice that the linking number of
a periodic point z* of an orientation preserving homeomorphism of the plane is equal to
the rotation number of 2* in R%\{z}.

In the case where f preserves a Borel probability measure u, one applies Birkhoff’s
ergodic theorem to the first return map in U and proves that p-a.e. point z is positively
recurrent and has a rotation vector p(z). Moreover, the measurable map p is bounded,
and one may define the rotation vector of the measure

p(p) = sz dp e Hi (X, R).

We say that f € Homeog(X) is a Hamiltonian homeomorphism if it preserves a Borel
probability measure whose support is the whole surface and rotation vector is zero. We
denote by Ham(X) the set of Hamiltonians on .

2.3.5 Local isotopies and local rotation set

Let ¥ be a connected oriented surface. We write f : (W, zg) — (W', zp) for an orientation
preserving homeomorphism between two neighborhoods W and W' of zy € ¥ such that
f(20) = 2z0. Such a local homeomorphism f is called an orientation preserving local homeo-
morphism at zp. We recall the definition of local isotopies of Le Calvez [50]: a local isotopy
I = (ft)ie[o,1] from id to f is a continuous family of local homeomorphisms (f;)e[o,1] fixing
zg such that

- each f; is a homeomorphism of a neigborhood V; € W of z into a neighborhood V; < W’
of z ;

- the sets {(z,t) € ¥ x [0,1]|z € V}} and {(z,t) € ¥ x [0,1] | z € V/} are open in ¥ x [0,1] ;

- the map (z,t) — fi(z) is continuous on {(z,t) € ¥ x [0,1] | z € V}} ;
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- the map (z,t) — f;!(2) is continuous on {(z,t) € ¥ x [0,1] | z€ V/} ;
- we have fp =idy, and f1 = fly, ;
- for all ¢ € [0, 1], we have fi(z0) = 2o.

Let us consider a local orientation preserving homeomorphism f : (W, z9) — (W', 29)
and I = (ft)se[o,1] @ local isotopy from id to f. We want to define the local rotation set of
the isotopy I at zg. Given two neighborhoods V' < U of zy included in W and an integer
n = 1 we define

BU,V,n)={zeU | 2¢V,f"(2) ¢ V,f'(z) e U for all 1 <i < n}.

We define the rotation set of I relative to U and V' by

puv(I) = (| |J{ea(2) | z€ EU,V,n)} & [~o0, 0],

m=1n=m

where p,,(2) is the average change of angular coordinate along the trajectory of z during
n iterates. We define the local rotation set of I to be

ps(Ia ZO) = ﬂUPU,V(I) - [—O0,00],
u v

where V < U < W are neighborhoods of z.

The local rotation set is an invariant of local conjugacy in the following sense: let us say
that an isotopy I’ = ( ft/)te[o,l] is locally conjugated to I if there exists a homeomorphism
¢ : W — W between two neighborhood of zy which preserves the orientation and fixes z
such that for each t € [0,1] we have f/ = ¢ o f,0¢~!. For each neighborhoods V and U of
zp such that V < U ¢ W we have

puyv (1) = psy.e)(@1d).

In particular we deduce that
ps<I> = ps((bj(z)il)'

Let us consider a homeomorphism of the plane f isotopic to the identity which preserves
the orientation and fixes the origin and an isotopy I = ( ft)te[o,l] from id to f which fixes
the origin. Recall that R = (Rt)te[o,l] is the isotopy of the rotation of angle 27 such that
Ry(z) = 2e*™ for each z € R? and t € [0,1]. We have the following result about the local
rotation set.

Lemma 2.3.3. For each p e Z and q € 7Z we have
ps(RpIq) = qps(I) +p.

We say that f satisfies the local intersection property at zy if we have:

For each non contractible loop v of W\{zp} we have f(v) n~v # . (P2.6)
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Ezample 2.3.4. Let us consider a fiber rotation hy, : (r,0) — (r,6+a(r)) on the plane where
a: (0,00) — R is continuous and an isotopy I = (h¢)se[o,1] such that hy(r, 0) = (r, 0 +ta(r))
for t € [0,1]. The local rotation set ps(I) of I at the origin is equal to the set of accumulation
points of « at 0.

F. Le Roux proved [56, 59] that a homeomorphism of the plane which preserves the
orientation and which fixes the origin has an empty local rotation set at 0 if and only if it
is locally conjugated to the following maps:

- the contraction z — 3,

- the expansion z — 2z,
- a holomorphic function z — e%r%z(l + 29") where q,7 € Nt and p € Z.

Remark 2.3.5. In particular, in the case where f is area-preserving, Gambaudo and Pécout
[34] proved that none of those above cases occurs, then the local rotation set is not empty.
Moreover, if we suppose that Fix(f) is finite, 0 is not accumulated by fixed points then
if the local rotation set is not empty it does not contain an integer in its interior. Notice
that the result holds if we suppose that f satisfies the local intersection property, meaning
that for each non contractible loop v of W\{z9} we have f(y) n vy # .

The rotation number classify the homotopy classes of the isotopies at zg. Let us con-
sider a local orientation preserving homeomorphism f : (W, zg) — (W, 2g) of a surface 2
such that f(20) = 20 and I = (ft)se[0,1] a local isotopy from id to f which fix z. Let us
consider a closed disk D < ¥ containing zo in its interior. For every point z € D\{zp} close
enough to zg, the trajectory of zy along I is a loop included in D\{zp}. There exists an
integer k € Z such that this trajectory is freely homotopic in D\{zo} to (0D)*. The integer
k depends only on the choice of the isotopy I, it is the rotation number k = p(I,zy) of
I at zg. We consider the isotopy Ro defined in the previous section 2.3.1. The isotopy
Ry extends into an isotopy on the sphere R? 1 {00} and we have p(Ry, ) = 1 while
p(Ry,0) = —1. We refer to [50] for more details.

2.3.6 The blow-up at a fixed point

Let us consider f : (W, zg) — (W', 20) an orientation preserving homeomorphism. We say
that f can be blown-up at zg, if we can "replace" zg by a unit circle $! and extend f [\ {20}
continuously to a homeomorphism between W\{zo} LS and W\ {20} u$!, see [59] for more
details. In particular, when f is a diffeomorphism, the extension can be induced by the
map

Df(zo)v

"D (o)

on the space of unit tangent vectors.

Let us suppose that f can be blown-up at zg, is isotopic to the identity and is not
conjugate to a contraction or an expansion. We denote by h the extension of f on $' and
by I = (ft)se[o,1] @ local isotopy of f. We choose a small disk D which contains 2o and we

consider the universal cover 7 : D — D\{zp}. We consider the isotopy (ft)te[o,l] from id to

f obtain by lifting I and we consider h the lift of h to R which is a continuous extension
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of ~f~1 We define the blown-up rotation number p(I,zp) € R to be the rotation number
of h. J-M. Gambaudo,P. Le-Calvez and E. Pécou [33]| proved that the blown-up rotation
numbers does not depend on the choice of h.

Naturally we have the following property [59].

Proposition 2.3.6. Let us consider an isotopy I = (ft)te[o,l] from id to a homeomorphism
of the plane f which preserves the orientation, fizes the origin and can be blown-up at 0.
If the local rotation set ps(I) is not empty then it is equal to the singleton {p(I,zp)}.

2.3.7 Positively transverse foliations

Let us consider an oriented topological foliation F on the complement of a compact set
X of a surface X. The set X will be called the set of singularities of F. An open flow
box of F is a couple (V,h), where V is an open set of ¥ and h : V — (—1,1)% is an
orientation-preserving homeomorphism that sends the foliation F|y on the vertical folia-
tion oriented with y decreasing. Writing p; : R? — R for the first projection, we say that
an arc vy : I — X is positively transverse to the foliation F if for every ¢y € I, there exists
an open flow-box (V,h) such that v(tp) € V and the map ¢ — pi(h(y(t))) defined in a
neighborhood of tj is strictly increasing.

Figure 2.3: An example of a flow box

For z € X, we write ¢, the leaf passing through z and ¢ for the positive half-leaf
from z. We consider an isolated singularity x of the foliation F, we can define the index
ind(F, x) of x for the foliation F as follows. We consider a sufficiently small open chart U
containing x and an orientation preserving homeomorphism h : U — D\{0} which sends
x to 0. We denote F, the image of the foliation F|y by h and we consider a simple loop
[ : 8! — D\{x}, one may cover I' by a finite family (V;);c; of flow-boxes of the foliation
Fp, included in D\{0}. We denote by (;S‘J;h . the positive half-leaf from 2 of the restricted
foliation Fp|y,. We can find a continuous map 1 defined from the loop I' to D;\{z} such
that ¢(z) € ¢J12,z for every i € J and any z € V;. The map

. w(r(®) - 1)
(T (8) T @)

is well defined on I" and ind(F, z) is the degree of this map.

0

We say that a singularity x of an oriented foliation F is a sink (resp. source) if there
is a neighborhood V' of z such that the omega-limit point (resp. the alpha-limit point)
of each leaf ¢ of F which is passing through V is equal to z. The sinks and sources of a
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foliation F have an index equal to 1. Let us draw an example of the neighborhood of a
sink on the left and a neighborhood of a source on the right of the following figure.

NN
AN N

Figure 2.4: An example of a sink and a source of a foliation

We say that a singularity x of an oriented foliation F is a saddle point of the foliation
F if the foliation is locally homeomorphic to a foliation as the one on Figure 2.5, we refer
to [59] for more details on saddle points. A maximal connected union of leaves such that
their alpha (resp. omega) limit is equal to z is called an unstable (resp. stable) cone of x.
A saddle point has 1 —ind(F, z) unstable cones and three stable cones which are alternated
in the cyclic order. In Figure 2.5 we draw an example of a foliation near a saddle point of

index —2.

Figure 2.5

A leaf of an oriented foliation F whose alpha-limit point and omega-limit point are
distinct singularities of F will be called a connexion.

Let us consider f € Homeop(Y) and a maximal isotopy I = (ft)se[o,1] from the identity
to f. A foliation F is said to be positively transverse to the isotopy I if Sing(I) = Sing(F)
and for every z € Dom([]), the trajectory 7(z) of z is homotopic in Dom(I), relatively to
its endpoints, to a path + which is positively transverse to the foliation F. The following
fondamental result of Le Calvez [19] asserts that for each maximal isotopy I there exists a
dynamically transverse foliation to the isotopy I.

Theorem 2.3.7. Let us consider a homeomorphism f € Homeog(X) and an isotopy
I = (fi)te[o) from id to f, such that Sing(I) is a mazimal unlinked set of fized points
of f. There exists a foliation F which is dynamically transverse to the isotopy I.

We denote by F(I) the set of foliations positively transverse to I. We will use the
following definition of gradient-like foliations.
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Definition 2.3.8. A foliation F is said to be gradient-like if
e The number of singularities is finite.
e Fuvery leaf defines a connexion.
e There is no closed leaf.
e There is no family (¢i)iezmz, k = 1 of leaves such that w(¢;) = a(pit1), i € Z/kZ.

For the remaining of the thesis, most of the transverse foliations we will meet will be
gradient-like foliations. The notion of connexion will be generalized in chapter 7, but until
this chapter, a connexion will always refer to a leaf of a gradient-like foliation.

We refer to |19] for the proof of the following important properties.

Proposition 2.3.9. Consider a Hamiltonian homeomorphism of a surface ¥ with a finite
number of fized points then for each mazximal isotopy I from id to f, a foliation F positively
transverse to I is gradient-like. Moreover we have

e ind(F,z) <1 for every point x € Sing(I).
e ind(F,z) =1 for every sink or source x € Sing([)

e ind(F,z) = ind(f,x) for every saddle point x € Sing(I), where ind(f,-) is the Lef-

schetz index.

o For every leaf ¢ € F, the action function Ay, defined later, of f satisfies Ar(a(¢)) >
Ap(w(9)).

For the remaining, we can keep in mind that, for a gradient-like foliation, there are
three kinds of singularities: sinks, sources and saddle points.

Remark 2.3.10. For a maximal isotopy I of a Hamiltonian homeomorphism f of a surface
¥ and a foliation F € F(I), if ¥ is not the sphere, then the index function ind(F, -) defined
on Sing(I) does not depend on the choice of F € F(I) and can be denoted ind(I, ).

Let us consider a gradient-like foliation F of a surface 3 and a leaf ¢ of 7. By definition,
the omega-limit set (resp. the alpha-limit set) of ¢ exists and is equal to a singleton {z}.
To simplify the notations, x will be called the omega-limit point also denoted w(¢) (resp.
the alpha-limit point also denoted a(¢)) of ¢.

2.3.8 Generalized Isotopies

In this section, we consider a Hamiltonian homeomorphism f of a compact surface ¥ such
that Fix(f) is finite.

We consider the compactification 3 = ¥ U {00} of 3 into a 2-sphere.
Let us consider a maximal isotopy I of f on ¥ and its natural lift Ton Y. The isotopy
I has an infinite number of singularities but for a non zero integer k € Z* and a fixed

point Z of f , Réf has a finite number of singularities and can be extended to an isotopy
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I of a homeomorphism f on ¥ which has a finite number of fixed points. The point at
infinity in ¥ becomes a fixed point of such a homeomorphism f and its rotation number
for I satisfies:

pi(x0) = —k.

An isotopy I from id to f which is homotopic to Rk I relatively to 3\{%, oo} such that
the rotation number of o is equal to —k is called a geneml@zed isotopy of f. We denote
by Iy, the set of couples (X, 1) where I is a generalized isotopy of f such that p i(0) = —k
and X < Sing(I). To simplify notations, we can consider I € Z;, which refers to the couple

(Sing(1), I).

The set 7, is naturally equipped with a pre-order <, where (X, f) < (X, f’) if oo €
X < X’ are unlinked sets of fixed points and for each z € E\X its trajectory along I’ and
I are homotopic in $\X. The couple (X', 1) is called an extension of (X, I). An isotopy
I € 7}, is called a mazimal generalized isotopy in 7y, if the couple (Sing(/ ) f) is a maximal
element of (Zy, <).

Lemma 2.3.11. Let us consider a generalized isotopy I € Iy, of f with k € Z*,

#Sing(I) < #Fix(f) + 1,

and for each z € Fix(f) we have

#(Sing(I) n 77 1(2)) < 1.

Proof. By contradiction we prove the second inequality, the first one will follow.

Let us consider a generalized isotopy I € T such that there exists x € Fix(f) satisfying
#(Sing(I) n 7= 1(z)) > 1 or #Sing(I) > Fix(f) + 2. We consider T the isotopy from id
to f whose compactlﬁcatlon is the isotopy I. There exists two singularities & T and 7 of I
which are in 7—1({z}). The linking number between & and & for the isotopy I is equal to
zZero.

We consider I’ a maximal isotopy from id to f which fixes z and we denote I’ the
isotopy obtained by lifting I’ on ¥. We have that I’ is homotopic to ngl relatively to

S\{z, 0}, see Proposition 2.3.2 for more details, and we have 7~ !({z}) c Sing(I’). So, the
linking number between Z and 2’ for the isotopy I I'is equal to zero but the linking number
between 2 and 7’ for the isotopy R~ Tis equal to —k. Hence we obtain our contradiction.

We deduce the inequality #Sing(I) < #Fix(f) + 1. O

Lemma 2.3.12. Let us consider a maximal genemlzzed isotopy I e1, of f where ke Z*.
There exists a foliation F on the 2- sphere such that F is positively transverse to I and
every foliation which is positively transverse to I is gradient-like.

Remark 2.3.13. i. For such a foliation F of a maximal generalized isotopy I, the action
function is decreasing along the leaves of F.

ii. The fixed point o0 is a source of F if k < 0 and a sink of F if k > 0.
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2.3.9 Intersection number

Let T and IV be two oriented, transverse and simple closed curves on an oriented surface
Y. The algebraic intersection number I' A IV is defined as the sum of the indices of the
intersection points of I" and I, where an index of an intersection point is +1 if the orien-
tation of the intersection agrees with the orientation of ¥ and —1 otherwise.

We keep the same notation I' A  for the algebraic intersection number between a loop
I' and a path v when it is defined, for example, when ~ is proper or when  is a compact
path whose extremities are not in I". Similarly, we write v A+’ for the algebraic intersection
number of two path « and " when it is defined, for example, when ~ and /' are compact
paths and the ends of v (resp. 74/) are not on ' (resp. 7).

2.3.10 Action function of a Hamiltonian homeomorphism

In this section we define dynamically the action function of a Hamiltonian homeomorphism
f of a compact surface ¥ with a finite number of fixed points. Notice that this definition ex-
tends the notion of action function defined in section 2.2.2 for Hamiltonian diffeomprhisms.

Let us consider two unlinked fixed points x, y € Fix(f) of f and an isotopy I = (ft)se[0,1]
from id to f such that x,y € Sing([). Let v be a simple path from x to y and define the
map pr~, on X by pr(2) =y A y(z) where v(z) is the trajectory of z under the isotopy I
and v A v(z) is the intersection number between v and (z). We define the difference of
action between y and x by

Ap(x) — Aply) = f pp(2)dz, (2.7)

which does not depend on the choice of 7. Notice that in general for a homeomorphism f,
the map py~ is not integrable. In our case, f admits a finite number of fixed points and
one may prove that the previous integral exists, see [19].

Unfortunately, if we consider two fixed points x,y € Fix(f) they may not be unlinked.
The previous arguments fail and to define the action difference between y and z we have
to consider the universal cover of 3. We denote by 3 the universal cover of Yo Py
the covering map and for a homeomorphism f we set G* the group of automorphisms of
Y which commute with the lift fof fon 3.

The following definition comes from a more general work of Wang [74]. The construc-
tion is more difficult, first we have to extend the linking number used in equation 2.7
then thanks to the work of Wang if the number of fixed points of f is finite then this link-
ing number exists and we can define the action function by integrating this linking number.

Extension of the linking number for a positively recurrent point

Let us consider f the time one map of an isotopy I = (ft)se[o,1] on % and f the time
1-map of the lifted identity isotopy I= (‘]‘N})te[o’l] to the universal cover 3 of . For every

distinct fixed points & and ¥ of f there exists a non-equivariant isotopy I, from id to f
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that fixes Z and 7.
Recall that the set of positively recurrent points is denoted by Rec™(f).

We consider z € Rec™ (f)\7({Z,7}) and an open disk U < X\ ({Z,7}) which contains
z. For each couple (2/,2”) € U%, we choose an oriented simple path 7,/ ,» in U from 2’ to
2". We define the function @ by:

7 Rect(f)) N (U) — 77 (Rec () n o™ (U)

) —
T fre(3),

where z = 7(2) and 7(z) is the first return map in U.  is the lifted function of the first
return map ® define on the recurrent points of U by ®(z) = f7)(z) where z € Rec™ (f)nU.

For any % € 7 1(U), write Us the connected component of 77! (U) that contains Z. For
every j > 1, recall that 7;(z) = Zg;& 7(®%(2)). For every n > 1, consider the following
curve in 3

T (2) (o~
I =" Vg 2,

where 2, € 7 1({z}) n (Nf&)n(g), and ¥ Von(2)z, 19 the lift of ygn(.) . which is contained in

U-x

Bn(3) We can define the infinite product

.= 11 s

m(2)=z2

In the annulus Az we can see F? as a multi-loop with finite homology. So, if we
1,2

consider ¥ an oriented path in S from ¥ to ¥, the intersection number 5 A F? is well
1,2

defined and does not depend on % nor the isotopy T 1 but depends on the open set U. We
have:

n—1
’7/\]??172 :’Ny/\ H F%,E_ 27/\1—“}173
w(2)=z2 7=0

For n > 1 we define the functions

by

where U < ¥\7({Z,y}). Again, the function L,, depends on U but not on the choice of
Yon(z),2-

Action function
Definition 2.3.14. Let us consider z € Rec™ (f)\n({Z,7}. We say that the linking number
i(f;2,7,2) € R is defined if

Lo, (f:7,7 -
tim LI 755 )
ko Tp,(2)
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for any subsequence {®" (2)}i>1 of {P"(z)}n=1 which converges to z.

J. Wang proved that the linking number z(f, Z,7, z) does not depend on U.

Let us consider p € M(f) such that p is ergodic or the support of p is the whole
surface X. In our particular case where I has a finite number of fixed points, the function
i(f; 2,9, ) is p-integrable and we define a function i,(f;Z, ) as follows.

iAﬁam=waw<f%§>
w({Z,7

Proposition 2.3.15. For any distinct fized points T,y and Z of f, we have

(J? )+Zu<f Y,z )+Zu(fzx)—0

So there exists a function [, : Fix(f) — R defined up to an additive constant, such that
le«(fv %7 g) = l#(f? ?7) - l#(f? %)

If f is a Hamiltonian homeomorphism then py, ;(Leb) = 0 for each isotopy I from id
to f on X and we have the following result.

Proposition 2.3.16. If we suppose that px (1) = 0, z“(f, z,T(T)) = 0 for every T €
Fix(f) and every automorphism T € G* then there exists a function L,(f,-) defined on
Fix(f) such that for every two distinct fized points T and y of f we have

iw(f:%,9) = Lu(f,7(@) — Lu(f, 7(®)).

The function Lu(f, -) is called the action function defined on Fix(f) for the measure
p. If y = Leb then the function L,(f,-) will be denoted Ay.

Proposition 2.3.17. Let us consider a smooth diffeomorphism f of a surface ¥. The
action function Ay is equal to the action function of section 2.2.2.

Action function along a leaf of a transverse foliation

In particular, if we consider a maximal isotopy I = (f;)e[o,1] from id to f and a foliation
F positively transverse to I we can give a short proof of the last point of Proposition 2.3.9
stated as the following lemma.

Lemma 2.3.18. For every leaf ¢ € F we have Af(a(g)) > Ap(w(e)).

Proof. We set x = a(¢) and y = w(¢). We give the ideas of the proof using Wang’s work.

Let us consider a small open disk U < ¥\ X. For almost every point z € U we can define
7(z) the first return map. Meaning that 7(z) is the first integer n > 0 such that f"(z) € U.
We consider the loop I'(z) = I7(®?)~1(2)~(z) where v(z) c U is a path which joins f7(*)(2)
to z. The algebraic intersection of I'(z) and ¢ does not depend on the choice of v and is
well defined. We will denote d(z) = I'(2) A ¢ the algebraic intersection number defined on U.
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There is a finite number of fixed points, so Wang proved that §/7 is bounded and then
integrable. We can define the limit of Birkhoff’s average functions §* and 7* of § and 7.
One may prove that the function n = 0*/7* is defined almost everywhere on U and does
not depend on the choice of U. So we obtain a function defined almost everywhere on
Y\ X such that, by the construction of Wang, its integral is equal to the action difference
between x and y. Thus, it is enough to prove that §(z) is positive and not zero to obtain
the result.

We consider the universal cover ﬁ of ¥\ X, which can be identify as the open disk
D.

We fix a lift 5 of ¢ on D, hence J§(z) is equal to the finite sum of the algebraic intersection
numbers of ¢ and the lifts of I'(2). Let us consider a lift f‘( ) of I'(z) whose algebraic
intersection number with (b is not zero. Roughly speaking, F( ) is _an oriented path going
from one side of ]D)k(;ﬁ to another. Moreover, qS is a Brouwer line for f , SO Iis going from the
right hand side of ¢ to the left hand side of qb Hence the intersection number F( ) A (b >0
and then we have 6(z) > 0.

O
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Chapter 3

Introduction to barcodes and persistence
modules

The notion of barcodes and persistence modules was used in topological data analysis, see
for example G. Carlsson in [15] or R. Ghrist in [35]. Barannikov already noticed the exis-
tence of a filtration of the Morse homology in [6] and we can find the notion of persistence
modules in Usher’s work [70, 71| but the barcodes have been introduced in symplectic
topology by Polterovich and Shelukhin [67]. The same year, without the terminology of
the barcodes Usher and Zang published some results about the persistent homology in [72].
Recently, the notion of barcodes appears as a great tool to study C? symplectic geometry,
let us cite for example the work of Buhovski-Humiliére-Seyfaddini [11], Jannaud [?] and
Le Roux-Viterbo-Seyfaddini [61].

Most of the following definitions and results are coming from [61]. One can also refer
to Chazal, De Silva, Glisse and Outdot’s book [16] or to [15].

Barcodes

Let us consider a special family of intervals B of the form ((a;, b;])jeq1,... 0}, With —c0 <
a; < bj < +o0, where we allow trivial intervals of the form (a, a]. We say that two families
are equivalent if removing all intervals of the form (a, a] from them yields the same family.

Definition 3.0.1. A barcode B is an equivalence class of family of intervals B.

By convenience, we will often identify a list of intervals with the corresponding barcode.

Let a < b, ¢ < d be four elements of Ru+{o0}. We set d((a,b], (¢, d]) = max{|c—al,|d—

b|}, with convention that d(co0,00) = 0. Note that ifc = d = "‘2”’, then d((a, b], (c,d]) = b_Ta.

Definition 3.0.2. Let B, By be barcodes and take representatives By = (I})jej, By =
(I?)kex - The bottleneck distance between By, Ba, denoted by dyot(B1, Ba), is the infimum
of the set of € such that there is a bijection o between two subsets J', K' of J, K with the
property that for every j € J', d(I]l,Ig(j)) < € and all the remaining intervals I;,I]% for
je JJ\J', ke K\K' have length less than 2e.
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We will denote Barcode the set of barcodes in the next sections.

Persistence module

Definition 3.0.3. A persistence module V' is a family (V;)wer of vector spaces equipped
with morphisms is; : Vs — Vi, for s <t, satisfying:

1.

2.

For all t € R we have ity = id and for every s <t < u we have i1, 045t = iy,

There exists a finite subset F' = R, often referred to the spectrum of V', such that i,
is an isomorphism whenever s,t belong to the same connected component of R\F,

For all t € R, litm tVS = Vi ; equivalently, for fized t, is; is an isomorphism for
s—t,s<

s < t sufficiently close to t.

Let us consider a persitence module (V};)er equipped with the morphisms (i5+)s<¢. For
any t € R, there exists € such that is, : Vi — V,, is an isomorphism if s,u € (t — €,t] or if
s,u € (t,t 4+ €). Choose t~ € (t — ¢, t] and t* € (t,t + €) and let j(t) = dim(Ker(i;— ;+)) +
codim(Im(4,- ;+)). Notice that j(t) is zero except for ¢ in the spectrum of V. We say that
V is generic if j(t) < 1 for all t € R.

Functorial relations between the barcodes and the persistence modules

To establish the link between the previous objects we consider two functors as follows.

(i)

(i)

Consider an interval I of the form (a,b] and define Q,(I) = Z/2Z, if t € I, and
Qs(I) = {0}, if s ¢ I. Qs(I) is a persistence module, with is; equal to id if s,t € I
and 0 otherwise. For a set of intervals Z for each ¢ € R we define

QUT) = D QD).

IeT

We define a functor 8 from the set of generic persistence modules into the set of
barcodes which associate to a generic persistence module V = (V)sgr a barcode.
We denote (is4)s<¢ the family of morphisms equipped with V. Let us consider the
set of ¢ in the spectrum of V' such that dim(Ker(i;- ;+)) = 1 and label its elements
b1, ...,b,. For each bj, there exists a unique a; € R with the following property: Let
x € V,- represents a non-zero element in Ker(i;- 4+ ), the element x is in the image
of ia;.“;].‘ but x is not in the image of iaj‘,bj" We label the remaining elements of
the spectrum of V by {c1, ..., ¢n}. The barcode 5(V) consists of the list of intervals:
((aj,b;], (cg, +0)), where 1 < j <nand 1 <k <m.

One may prove that the functor 5 extends to the set of persistence modules, we refer
to [61] for more details.

The following theorem holds.

Theorem 3.0.4. The functors defined above satisfy the following properties.
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L. ﬁ © Q = idBarcode-
2. B and Q are isometries for the interleaving distance (see next definition).
We define the interleaving distance.

Definition 3.0.5. Let V = (Vy)ser and W = (Wy)eer be two persistence modules, the
pseudo-distance din(V, W), called the interleaving distance, is defined as the infimum of
the set of € such that there are morphisms ¢s : Vs = Wi and s : Wy — Vi "compatible”
with the ¢, js¢ in the following sense:

¢87€ 'l,z)s ¢s+é
Ve W Vite Wst2e
ise,tel ljs,t ii5+6,t+e li5+2e,t+25
Pt—c Pt Dtte
‘/tfe Wt ‘/tJrC t+2e

where Y5 0 ¢s—e = ts—ct+e ANd Psie © Vs = Js s42¢ S.t. the diagrams commute for all s < t.

The Morse example. To give a good idea of what a barcode is, we describe the case

of a Morse function. Let ¥ be a compact surface and H : ¥ — R a Morse function. The
filtered Morse homology (Hx«({H < t}))«er is a persistence module where the set (is;)s<t
is given by the inclusions is; : Hi({H < s}) — H«({H < t}). The Figure 3.1 give an
example of the barcode of such a Morse function on the sphere.
In Figure 3.1 we consider the height function H on the 2-sphere which is a Morse function.
In this case, H admits six critical points: two sinks pi, p2, two saddle points z1,x2, and
two sources s1 and sy. If we compute the filtered homology of F' we obtain the bars which
are described on the right of the vertical axis. Notice that there are two semi-infinite bars,
one which starts at H(p;) and the other one which start at H(s1) and there are two finite
bars (H(p2), H(z1)] and (H (z2), H(s2)] as follows.

S1 H i
89
. ]
T I
b2
[ )
D1
Figure 3.1
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Chapter 4

The simplest case of barcode for
Hamiltonian homeomorphisms

In this chapter, we consider a Hamiltonian homeomorphism f on a closed surface ¥ which
satisfies the following assumptions.

1. The set of fixed points is finite and is unlinked, in particular every fixed point is
contractible.

2. The fixed points have distinct action values.

3. For every z € Fix(f), ind(f, z) is either 1 or —1.

Let I = (ft)se[o,1] be a maximal isotopy from identity to f. Let F € F(I) be a positively
transverse foliation associated to I which satisfies the following "generic" assumptions.

1. There is no leaf joining two saddles points.

2. For every saddle point x € Fix(f), there are exactly two unstable cones composed
of one leaf whose alpha-limit point is  and two stable cones composed of one leaf
whose omega-limit point is x.

The set of those foliations will be denoted Fgen(I). An important fact is that, for every
saddle point = of a foliation F € Fgen([), the dynamic of F in a neighborhood of z is
locally homeomorphic to a foliation as in the following figure.

i
M

Figure 4.1

We denote Ay the action functional of f defined on Fix(f).

We have the following result from [19)].
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Lemma 4.0.1. For every z € Fix(f) and every F € F(I) we have ind(f,z) = ind(F, x).
So if F € Fgen(I) then we have

e ind(f,z) =1 if x is a source or a sink of F.
e ind(f,z) = —1 if x is a saddle pont of F.

For the remainder of the section, we consider a foliation F € Fgen(f). Recall that
the foliation F is gradient-like and we will use the analogy between Morse Theory and
gradient-like foliations to construct a filtered homology from the foliation F. We define
a graph associated to the foliation F and we associate to this graph a chain complex in
order to compute its filtered homology and obtain a persistence module.

Remember that for a fixed point = of f, being a sink or a source of the foliation F does
not depend on the choice of F € F(I). We define the index indcz(f,-) on the set of fixed
points of f as follows. For z € Fix(f) we set

e indcz(f,x) =0 if x is a sink of F,
e indoz(f,x) = 1if z is a saddle point of F,
e indoz(f,x) =2 if z is a source of F.

The notation indgz of the index function refers to the Conley-Zehnder index function
as they are equals under these assumptions.

Definition 4.0.2. Let G(F) be the graph whose set of vertices is the set Fix(f) and
whose set of edges corresponds to the set of leaves ¢ of F such that indcz(f, a(d)) =

indez(f,w(9)) — 1.

For i € N we consider the set Fix;(f) of fixed points x € Fix(f) which satisfy indcz(f, z) =
i. Note that Fix;(f) = ¢ if i > 3. We define a chain complex associated to the graph
G(F) following the ideas from Morse homology .

Definition 4.0.3. Forte R and i € N, we define the chain complex

Ci= @ Z)2Z-z,
ZEFiXZ‘(f)
Af(z)<t

and the maps 0! : Ct — C!_| such that for every z € C!

A(z)= > n(zbb,

bEFiXi, 1 (f)

where n(z,b) is the number modulo 2 of edges from z to b in G(F). If i is distinct from 1
or 2 then 0! is equal to 0 for every t € R.

Remark 4.0.4. For a fixed point z € Fix(f), if there exists an edge from z to b in G(F)
then by Proposition 2.3.9 we have Af(z) > Af(b) and for every t > Af(z), the element
0! (z) belongs to C!_;. So the map 0! is well defined.
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We obtain that, for every ¢ € R, (C!, %) is a chain complex thanks to the following
property.

Proposition 4.0.5. For each t € R and every i € N the maps 0! satisfy 0t o 0t = 0.
We prove Proposition 4.0.5 after the following definition and lemma.

Definition 4.0.6. Let = € Fix(f) be a source of the foliation F, the subset | J{¢ €
F | a(p) =z} u{x} of ¥ will be called the repulsive basin of x and denoted W*(x).

For a source z of F, we want to describe W*(z). Let P, = C be the filled regular
polygon of vertices e%, with &k € {0, ...,2n — 1}. We have the following lemma.

Lemma 4.0.7. Let x € Fix(f) be a source of the foliation F. There exist n = 1 and a
continuous map d : P, — X such that

e d(int(P,)) is the repulsive basin of x.
. d(e%) is a sink of F if k is even and a saddle point of F if k is odd.

e The image of a side of P, is the closure of a leaf of F.

Proof of Lemma /4.0.7. Let us consider a source x € Fix(f) of F. There exists a homeo-
morphism A : D — W*¥(z) such that hA(0) = x and such that the leaves from z are the
images by h of the segments te?, t € [0,1]. For 6 € [0,27) we will denote ¢y the image by
h of the segment te®, t € [0, 1].

There are a finite number of angles (6x)xez/nz such that the omega-limit point of ¢y,
is a saddle point xj of F.

Moreover the attractive basin of a sink x of a foliation is the union of x and the leaves
whose omega-limit point is equal to x. The attractive basin of a sink is an open set. So,
by connectedness, for every k € Z/nZ there exists a sink of F, denoted s, such that for
every leaf ¢y of angle 6 € (0, 0x+1), the omega-limit point of ¢y is equal to si. We denote
Uy the union of the leaves ¢y, with 6 € (0, 0r11). We draw an example of such a set in
Figure 4.2. The set Uy is a topological open disk on ¥ whose boundary is the closure of
four distinct leaves of F: the leaves ¢g, and ¢y, , a leaf iy from zy to s and a leaf ¢y
from xp,1 to si. The existence of the leaves ¢ and vy is deduced from the dynamic of
the foliation near the saddle points xj and xy,1 described in Figure 4.1.

Th+1 P Sk

Uy,

¢9k+1

Tk
x ¢9k

Figure 4.2: Example of a set Uy,
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We obtain that the repulsive basin of z is equal to the union [¢g, U Uy U ¢g, v Us U
.U Up—1]u{z}. We define the map d : P, — ¥ given by Lemma 4.2 as follows. For every
ke {0,...,n— 1} we set

. d(e%’ff) = xg,

° d(emk;zl)ﬂ) = S.

The map d naturally extends to 0P, by sending the edges of the boundary of 0P, alter-
natively, in cyclic order, to the leaves ¢y, k € Z/nZ and the leaves ¢y, k € Z/nZ. Finally,
the map d extends naturally on the interior of P, as follows.

For k € Z/nZ, we consider the slice Sy of the polygon P, defined as the set of points of
P,, whose angle # in polar coordinates satisfies 0 € [ZkTﬂv @] We extend d by sending
the slice S, k € Z/nZ, of P, on the closure of the set Uy defined previously. The map d
is well-defined and continuous. Notice that d may not be injective (we give an example at

the end of the proof).

Let us draw a repulsive basin of a source x of the foliation F in Figure 4.3. We represent
the leaves of Uy and its boundary in red in Figure 4.3.

1 o 50
l \
o
Figure 4.3: The repulsive basin of a source z

Example. We give an example of a source x of a foliation such that the map d provided
by Lemma 4.0.7 is not injective. We consider the foliation F on the 2-sphere as in Figure
4.4, the repulsive basin of the source x of F is composed of all leaves of F except the
two leaves ¢1 and ¢9 whose alpha-limit points are equals to the saddle point y of . The
boundary of the repulsive basin of x is equal to the union ¢; U {y} U ¢2 and is represented
in blue on the Figure.
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A
p2¢2 o1

b1

Figure 4.4

The polygon P provided by Lemma 4.0.7 has four edges which are sent alternatively
on ¢1 and ¢o. We can represent P as in Figure 4.5.

p1
o) ¢1
Y Yy
®2 b2
D2
Figure 4.5

Now, we can give the proof of proposition 4.0.5.

Proof of proposition /.0.5. We consider ¢t € R since ¢! is 0 for 7 distinct from 1 or 2, it is
enough to prove that for every source s € Fix(f) we have 0% o dk(s) = 0.

Let = € Fix(f) be a source of the foliation F. Using the same notations of the proof of
Lemma 4.0.7, there exists an integer n > 0 and n leaves which were denoted (¢g, )rez nZ
whose omega-limit points, denoted (7 )yez/nz are exactly the saddle points of the foliation

F which are connected to . So we have d5(s) = Y725 w(ep, )-

Moreover, for every k € Z/nZ the leaves ¢p_1 and 1) of the proof of Lemma 4.0.7 are
exactly the leaves of the foliation F whose alpha-limit point is xx. So we can compute
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Hence we obtain the result of Proposition 4.0.5. O

Definition 4.0.8. The image of the persistence module Hy((C?,0%);+) under the functor

1771

B is called the barcode of f for the foliation F and we will denote it Bgen(f, F).

Remark 4.0.9. For a foliation F € Fgen(I), each value b of the action function Ay is the
end of a unique bar of the barcode Bgen(f, F).

Remark 4.0.10 (Similarities with the Morse example). Let us consider a Morse function H
on the 2-sphere as in Figure 4.6. We suppose that H induces a Hamiltonian diffeomorphism
f whose set of fixed points is equal to the set of critical points of H. In particular, Fix(f)
is unlinked. If we consider a Riemannian structure on X, the gradient flow of H induced
by the Riemannian metric defines a foliation F positively transverse to the natural isotopy
induced by the Hamiltonian function H. Moreover the action function Ay is given by
A¢(x) = H(z) for every x € Sing(F).

In this example f has six fixed points, two sinks pi1, ps two saddle points x1,z; and two
sources $1,s82. We draw the graph G(F) on the left side of the figure and the barcode
Bgen(f, F), as intervals of R, on the right side.
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P2 || P2
b1 p1
G(F) F Bgen(f. F)

Figure 4.6

In this example the barcode Bgen(f, F) is equal to the filtered Morse homology of the
function H.

This is a general phenomenon. Indeed, we will prove in section 8 the following two
results.

Proposition 4.0.11. The barcode Bgen(f,F) defined for a foliation F does not depend on
the choice of F € Fgen(f).

Hence we can denote Byen(f) = Bgen(f, F) for any choice of F € Fyen(f). With this
notation, we have the following theorem.

Theorem 4.0.12. If we consider a Hamiltonian diffeomorphism f with a finite number of
fized points which is C%-close to the identity and generated by an autonomous Hamiltonian
function then the barcode Bgen(f) is equal to the Floer homology barcode of f.

We would like to prove in a near future the more general result.

Question 4.0.13. Is the result of Theorem 4.0.12 holds if only consider a Hamiltonian
homeormorphism f whose set of fixed points is finite and unlinked?
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Chapter 5

First step into the non generic case,
construction of the map B

We give an algorithmic way to determine the barcode of certain type of finite graphs. We
consider the set G of elements (G, A,ind) such that G is a finite oriented and connected
graph equipped with a function, called action function, A : V — R decreasing along the
edges and a map ind : V — Z where V is the set of vertices of G. We construct a map

B : G — Barcode.

For an element (G, A,ind) € G, and a vertex z of G, we will say that x is a sink (resp.
a source) of the graph G if there is no edge which begins with x (resp. if there is no edge
which ends with z). For any other vertex x of G, we will say that x is a saddle point of
the graph G.

For an element (G, A,ind) € G, we could suppose that for a vertex x of G ind(z) is non
positive if z is a saddle point of G and ind(x) is equal to 1 if x is a sink or a source of G
as it will always be the case in our future applications. Howeover, we do not need to make
these assumptions to construct the map B.

Definition 5.0.1. Let us consider an element (G, A,ind) € G. For a subgraph G’ of G we
define

L(G") = min{A(z)|z € V n G'},
D(G') = max{A(z)|z e V n G'}.

Let us consider an element (G, A,ind) € G and let us denote by V' the set of vertices of
G. For t € R, we define two subgraphs G; and Gy as follows.

Definition 5.0.2. For t € R we denote by G; the maximal subgraph of G whose set of
vertices is V. n A7((—o0,t)).

Symmetrically, for t € R we denote by G} the mazimal subgraph of G whose set of vertices
is V.o A7L((t, +00)).

Let us consider ¢ € R such that there exists x € V satisfying A(x) = t. Since V
is finite, we can define the graphs G, = Gy, and G~ = G-, where ¢ > 0 satisfies
S(A) N ((t—et+€) = {t}.
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Definition 5.0.3. Let us considet t € R.

We denote by C; (resp. C;) the set of connected components of G; (resp. of connected
components of G ).

We denote by C,. the sel of connected components of G, and we denote by C;[ the set of
connected components of G:[.

Definition 5.0.4. The inclusions G, < G, and G < G induce natural maps j; :
¢, — C. and gr o G — C:[ where for C € C, , j(C) is the connected component of
G, which contains C and for C' € C, ji(C') is the connected component of G which
contains C'.

Now, we can give the definition of the map B. Given an element (G, A,ind) of G we
describe the bars of B(G, A,ind).

The map B. The barcode B(G, A,ind) is composed of the bars of the following four
categories.

Category 0. The bars (L(G),+0o0) and (D(G), +0) are bars of B(G, A,ind).

For every t € S(A) there are three categories of bars Category 1. For each element C
of C,; such that 77 1(C) is not empty, the barcode B(G, A, ind) contains #3, ' (C) — 1 bars
as follows.

We label C1, ..., C,, the elements of j;}(C') and we choose i € [1,n] an integer such that
L(Ciy) = miney ) L(Ci).
The bars of category 1 associated to ¢ are the bars (L(C;),t] for i # ip.

Category 2. For each element C” of C;[ such that jé_l(C’ ) is not empty, the barcode
B(G, A,ind) contains #j,~'(C") — 1 bars as follows.
We label CY, ..., C", the elements of j;~*(C’) and we choose ig € [1,n] an integer such that
D(Cj)) = maxe[1 ) D(C;).

The bars of category 2 associated to ¢ are the bars (¢, D(CY)] for i # io.

Category 3. We define k = Y {|ind(z)| | = saddle point, A(z) = t}. Let us denote &’
equal to k minus the number of bars of categories 1 and 2 associated to t. If ¥ > 0 then
the bars of category 3 associated to ¢ are k' bars (¢, +o0) and if &’ < 0 there is no bar of
category 3 associated to t.

Remark 5.0.5. We refer to Proposition 6.2.4 to enlight the definition of the bars of category
3.

Remark 5.0.6. By construction for every bar I = (a,b] or J = (¢,0) in the barcode
B(G, A,ind) we have that a,b and ¢ are values of the action function A.

Examples. We compute the barcode of two simple examples.

Ezxample 1. We consider (G, A,ind) € G as follows.
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x A(x)
n Ayr)
Y2 A(yz2)
G

The map ind satisfies ind(z) = —1 and ind(y;) = ind(y2) = ind(z) = 1. The values of
the map A are represented on the vertical line on the right of the graph.

The bars of category 0 are (A(y2), +0) and (A(z), +00).

The vertex z is the unique saddle point of the graph G. We describe the bars associated
to A(x) as follows.

The subgraph GZ(I) . has only one connected component C~ and jg(lx)({c—}) = G;l(w,
has two connected components C = {y1} and ¢’ = {y2}. In this example we have
L(C) = A(y1) > L(C') = A(y2) so by construction the bar (A(y1), A(x)] is the only
bar of category 1 of the barcode B(G, A4,ind).

The subgraph that Gz(x)_ has only one connected component C* and 5’ Z(lx)({CJr}) =

ng( . has one connected component C = {z}. So by construction there is no bar of cate-
x)

gory 2 in the barcode B(G, A, ind).

The index of  is equal to —1 and there is one bar of category 1 and zero bar of category
2 thus there is no bars of category 3 in the barcode B(G, A4, ind).

Finally we obtain the barcode
B(G, A,ind) = {(A(y2), +0), (A(y1), A(z)], (A(2),+0)}.

This example corresponds to the barcode of the example Figure 4.4 where the graph
corresponds to the connexions of the gradient of the Morse function. See next Chapter 6
for a more precise definition.

Ezample 2. We consider (G, A,ind) € G as follows.
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P A(z)
z A(z)
y A(y)
v A(w)

The map ind satisfies ind(z) = ind(y) = —1 and ind(z) = ind(w) = 1. The values of
the map A are represented on the vertical line on the right of the graph.

The bars of category 0 are the bars (A(w), +00) and (A(z), +0).

The vertex x and y are the saddle points of the graph G. We describe the bars associ-
ated to A(x) and A(y) as follows.

First we compute the bars associated to A(y). The subgraph GZ(y)+ has only one

connected component C,~ and j;gy)({c; }) = G;‘(y)_ has one connected component equal
to {w}. By construction there is no bar of category 1 associated to the saddle point y in
the barcode B(G, A, ind).

In this example Gz(y), has only one connected component C’ ; and j;l_(;)({(?’ ;r = Gz(y) N
has one connected component which contains the vertices z and x and one edge. Again,
by construction there is no bar of category 2 associated to y in the barcode B(G, A, ind).
The index of y is equal to —1 and there is no bar of category 1 and 2 thus there is a bar
(A(y), +0) of category 3 in the barcode B(G, A,ind).

Secondly we compute the bars associated to A(x). The subgraph G Alx)+ has only one

connected component C,; and jA_(lz)({C,; 5 =G, has one connected component which

(z)~
contains y and w. By construction there is no bar of category 1 associated to the saddle

point y in the barcode B(G, A, ind).

The subgraph GZ(:E)7 has only one connected component C’; and g;;(;)({c/;}) = Gz(z)Jr
has one connected component equal to {z}. So by construction there is no bar of category
2 associated to x in the barcode B(G, A, ind).

The index of = is equal to —1 and there is no bar of category 1 and 2 thus there is a bar
(A(z), +00) of category 3 in the barcode B(G, A, ind).

Finally we obtain
B(G,A,ind) = {(A(w), +0), (A(y),+0), (A(x),+0), (A(z),+0)}.

This example corresponds to the barcode associated to a Morse function on the 2-torus
where the graph is given by the connexions of the gradient lines.
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Chapter 6

The barcode of a gradient-like foliation

Let us consider a gradient-like foliation F, whose set of singularities X is finite, defined
on the complement of X in a compact surface . Recall that a gradient-like foliation is
a foliation such that every leaf is a connexion and where there is no cycle of connexions,
see section 2.3.7 of the preliminaries for more details. In particular, the singularities of
F are isolated and are classified in three categories: the sinks, the sources and the saddle
points. We suppose that the set of singularities X of F is equipped with an action function
A : X — R such that for each leaf ¢ we have A(a(¢)) > A(w(¢)).

We will consider the oriented graph G(F) of the foliation F whose set of vertices is X
and for every couple of vertices z and y of G(F) there exists an edge from x to y if and
only if there exists a leaf ¢ in F such that a(¢) = z and w(¢) = y. We want to study the
barcode B(G(F), A,ind(F,-)) associated to F defined in Chapter 5.

Notice that the graph G(F) is not constructed as the graph of a generic foliation as
in chapter 4 but it remains a finite oriented graph. The differences will be enlightened in
section 8.

In a first section we give some geometrical properties of the foliation F and in a second
section we prove some results about the barcode B(G(F), A,ind(F,-)).

6.1 Geometric properties of a gradient-like foliation

We introduce some useful definitions and notation.

Saturated set. A subset of ¥\ X is said to be saturated if it is equal to a union of
leaves of F. We will use the fact that the closure in ¥\ X of a saturated set is saturated.

Chain of connexions. A chain of connexions in Y is a finite union of the closure of
leaves 91, ..., of F such that a(v1) = x, w(¢i) = a(iy1) for every i € [1,k — 1] and
w(tp) = y. We will say that a chain of connexions is associated to the leaves 1, ..., .
If we consider two singularities z and y of F, we say that there is a chain of connexions
from x to y if there exists a chain of connexions, associated to leaves 1, ..., % such that
a(p1) = x and w(¢g) = y. In this case, x will be called the starting point of the chain and
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y its ending point.

Trivialization. Let us consider a saddle point z € X of 7. We denote by X the
union of leaves ¢ € F whose alpha-limit point is equal to 2 and by X} the union of leaves
1 € F whose omega-limit point is equal to z. We will call a trivialization of F at x a couple
(h, V') where V is a neighborhood of  such that X nV = {z} and h : V' — D is a map that
sends the foliation F |y to the model foliation described in the appendix of [59] proposition
B.5.4. which we now describe. To simplify the notations we set n = 1 — ind(F,z). In

this model foliation, for each leaf ¢ of F, ¢ n V is connected and h sends ¥ to n cones
2w (2k)
2n

where 0 < k <n —1. We have

centered around the angles where 0 < k < n — 1 and sends X} to n cones centered

27 (2k+1)
2n

around the angles

e The two sets X, and X} are composed of n connected components. Using the map
h we can label these connected components (07 Jo<k<n—1 and (0} Jo<k<n—1 in cyclic
order around .

e The connected components (0} )o<k<n—1 Will be called the unstable cones of x and
the connected components (a;’)oskgn,l will be called the stable cones of x.

e Every stable cone and an unstable cone which are consecutive, in cyclic order, are
separated by hyperbolic sectors of x. We denote U, 0 < k < 2n — 1 the hyperbolic
sectors such that we have in cyclic order V' = o, u Uy U O'ar vl u...ulUsg, 1.

o4

Figure 6.1: An example of a trivialization of a saddle point x of index —1

Notice that a stable or unstable cone of x can be composed of a unique leaf, see Figure
2.5 for example.

Local model. Let us consider a leaf ¢ of F. We describe in ¥ the leaves of F which
are close to ¢. It will be called the local model near ¢. We parametrize the leaves of F
near ¢ by a small arc v : (—1,1) — X\ X transversal to F such that v(0) € ¢. For every
t € (—1,1) we denote ¢; the leaf of F passing through ~(¢).
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We prove the following property.

Proposition 6.1.1. We have that the sets

r;=( U én adry =) {J o
)

€e>0te(0,¢ >0 te(—e,0)
are chains of connexions containing the leaf ¢ and there exists s € (0,1) such that

o Every leaf ¢y, t € (0,5s) satisfies: a(py) is equal to the start of F;ﬁ and w(¢y) 1s equal
to its end.

e Every leaf ¢¢, t € (—s,0) satisfies: () is equal to the start of Iy and w(¢y) is equal
to its end.

Proof. We prove the result for the leaves ¢, t > 0 as it is the same proof for the leaves ¢,
t<0.

We start by studying the "future" of the connexions (¢¢).e(o,1) and then, symmetrically,
we study the "past" of these connexions.

We will prove that there exists a chain of connexions contained in F;f passing through ¢
from z to a singularity y* such that for every ¢ > 0 small enough we have w(¢;) = y. The
omega-limit point x; of ¢ is a sink of F or a saddle point. If z; is a saddle point then ¢ is in
the interior of a stable cone of 1 or in its boundary. We split the discussion into three cases.

Case 1. Suppose that x; is a sink of F, since the set of leaves of which x; is the ending
point is open, there exists t; € (0, 1] such that for each ¢ € [0,¢1), w(¢¢) is equal to x; and
the chain of connexions we are looking for is associated to the leaf ¢.

Case 2. We suppose that x; is a saddle point and the leaf ¢ is in the interior of a stable
cone ot of x1. There exists 1 € (0,1] such that for each ¢ € [0,¢1), the leaf ¢; satisfies
w(¢¢) = 1. The chain of connexions we are looking for is associated to the leaf ¢.

Case 3. We suppose that x1 is a saddle point and the leaf ¢ is in the boundary of a
stable cone ot of x1. In this case, the leaf ¢ is in the boundary of the hyperbolic sector U
of x1 preceding o~. We can consider a trivialisation of F at z7 and ¢; € (0,1) such that
each leaf ¢, t € (0,¢1], is a leaf of the sector U. The closure of the union of the leaves
(th)te(o,tl] contains a leaf ¢ of the unstable cone of x which is adjacent to U. Notice that
we have a chain of connexions associated to the leaves ¢ and ¢;.

We do the same discussion about the omega limit point of ¢;. If the omega limit point
of ¢1 corresponds to the case 1 or the case 2, then we stop the process and if we are in
case 3 then, we do the same discussion with the leaf ¢2 provided by case 3. If so, a chain
of connexions is associated to the leaves ¢, ¢1, ¢2. Since the number of singularities of F
is finite, the process stops after a finite number of steps and we finally obtain a chain of
connexions [giure associated to a finite number of leaves ¢, ¢1, ..., ¢,. We denote y the
omega-limit point of the leave ¢, and there exists ¢, € (0,1) such that each leaf ¢; with
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t € (0,t,] satisfies w(¢y) = y*.

Let us draw an example of a chain of connexions provided by the previous process.
In Figure 6.2 the horizontal line represents the chain of connexions from x to w(¢,) and
each line above represents a leaf ¢y where ¢t € (0,1]. It is enough to re-parametrize the
trivialization h to obtain the result we are looking for.

n

Figure 6.2

By symmetrical arguments there is another chain of connexions I'pas¢ from a singularity
+

2T to w(g), passing through ¢, such that every leaf ¢, t > 0, satisfies a(¢;) = 27.
Moreover, by the previous construction, we obtain that F:g is a chain of connexions
and is equal to the union of I'past and I'ygure. SO 2T is its starting point and y* its ending

point.
O

Remark 6.1.2. The space of leaves of a gradient-like foliation F is a non-Hausdorff manifold.
The chains of connexions correspond to the set of non separated leaves.

Let us draw two examples of a local model of a leaf ¢.

We consider a first example in Figure 6.3. The leaves above ¢ represent the leaves ¢
with ¢ € (0,1) and the leaves below ¢ represent the leaves ¢; with ¢ € (—1,0). The chain
of connexions F;f is a chain from 2™ to y™ passing through ¢ and the chain of connexions

Fg is a chain of connexions from 2z~ to y~ passing through ¢.

Figure 6.3: First example of the local model of a leaf ¢

We draw a second example of a leaf ¢ in Figure 6.4. We consider 7 in blue and the
chains of connexions F; and F;f are both equal to ¢.
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W

T T Ty

Figure 6.4: Second example of the local model of a leaf ¢

The graph of the foliation F. We consider the oriented graph G(F) whose set of
vertices is equal to Sing(F) and for every couple of vertices x and y there exists an edge
from x to y if and only if there exists a leaf ¢ of F such that a(¢) = z and w(¢) = y. For
t € R we consider the subgraphs G; (F) (resp. G{ F)) which is the maximal subgraph of
G(F) whose set of vertices is X n A~((—0,t)) (resp. X n A~Y((¢, +0))).

Attractive basin. Let us consider t € R and a connected component C of G; (F).
We define the attractive basin of C, denoted W*(C), as the union of the leaves of F whose
omega-limit point is a singularity of C. Notice that it is a subset of X.

In particular we have
wee)= ) o).

zeX NC

Lemma 6.1.3. Let us consider a saddle point x in the frontier of W*(C). There exists
a neighborhood V' of x such that each hyperbolic sector U of x in V is either included in
W#(C) or disjoint of it.

Proof. Let us fix a neighborhood V' of . We consider an unstable cone o~ of x and U a
hyperbolic sector of z in V adjacent to 0~. We denote ¢ the leaf of F such that ¢ = 0~ nU.
Let v :[0,1) — U be a small arc transverse to the foliation F and such that «(0) € ¢. For
every t € [0,1) we denote ¢; the leaf of F passing through ~(¢).

We denote by y™ the ending point of F; =0 Use(o,6) @+-

By the local model there exists s € (0,1) such that every leaf ¢, t € (0, s), satisfies
w(ge) =y*.

So if y* is in C then every leaf ¢, t € (0,s), is in W*(C) and if y* is not in C then
no leaf ¢4, t € (0,s), is in W*(C). Hence, up to a smaller neighborhood V' of 2 we can
suppose that every leaf of the hyperbolic sector U in V' is either in W*(C) or disjoint of
it. Moreover, x has finitely many hyperbolic sectors so we can suppose that we have the
same property for each one of them and we obtain the result. O

In the next chapter we will need a precise description of W#(C). We describe it with
the following proposition. Let us consider a stable or unstable cone ¢ of a saddle point x
in the frontier of W#(C), we say that o is adjacent to W*5(C) if one and only one of the two
hyperbolic sectors adjacent to o is in W#(C) and we say that o is surrounded by W*(C) if
the two hyperbolic sectors of 2 which are adjacent to o is W*(C).
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Proposition 6.1.4. The set W*(C), is open, connected and its frontier is the closure of a
finite union of leaves of F contained in stable or unstable cones of saddle points.

More precisely, for each saddle point x in the frontier of W*(C), the stable and unstable
cones satisfy the following properties.

1. Let us consider a stable cone ot of x. If ot is surrounded by W*(C) then the leaves
of dot are the only leaves of ot in the frontier of W*(C). If o is adjacent to W*(C)
then the leaf of o™ n U, where U is the adjacent hyperbolic sector of x in W*(C)
adjacent to ot , is the only leaf of o™ in the frontier of W*(C). If none of the previous
situation holds then o is disjoint from the frontier of W*(C).

2. Let us consider an unstable cone o~ of x. There is a finite set of leaves of 0~ , possibly
empty if 0~ is not adjacent to W*(C), in the frontier of W*(C).

Every property of Proposition 6.1.4 is obvious except the finiteness property which is
deduced from Lemma 6.1.11.

The first point of Proposition 6.1.4 is a straigthforward consequence of the definition
of W*(C). Unfortunately, the second point of Proposition 6.1.4 can not be more precise
and we draw three examples to illustrate this. After these examples, we prove that W#(C)
is open in 3 and that there are finitely many leaves of F in its frontier.

First example. Let us consider a sink y of a gradient-like foliation F such that there
exists a saddle point z in the frontier of W#(y) as in the Figure 6.5. In this example we
draw in red the leaves of W?*(y) and in blue the leaves in its frontier whose omega-limit
point equals to z. There exists an unstable cone o~ of = surrounded by W#(y). The sectors
U and U’ of = which are adjacent to o~ are in W#(y) and by the first point of Proposition
6.1.4 there are two leaves ¢ and ¢’ in the stable cones of x which are adjacent to U and U’
and in the frontier of W*(y). In our example there exists a leaf ¢ of the cone o~ which is
in the frontier of W#(y). It is enough to suppose that A(z) > A(z) > A(y) to obtain this
example. In our example we choose to draw v in the boundary of the unstable cone o~
but it could be any leaf of o~.
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Figure 6.5

Second example. Let us consider a sink y of a gradient-like foliation F such that there
exists a saddle point z in the frontier of W*(y) as in the Figure 6.6. In this example we
draw in red the leaves of W¥(y) and in blue the leaves of its frontier whose alpha-limit
point is equal to z. The unstable cone o~ of z is adjacent to W#(y). In this example there
exist two leaves 1 and v’ of the unstable cone o~ from z to two singularities z and 2’
which are in the frontier of W*#(y).

L
x o y
U
U
Figure 6.6

Third example. Let us consider a sink y of a gradient foliation F such that there exists
a saddle point z in the frontier of W¥(y) as in Figure 6.7. In this example we draw in red
leaves of W#(y) and in blue the leaves on its frontier. The unstable cone o~ is not adjacent
to W#(y). In this example there exist leaves in the interior of o~ whose omega-limit point
is y and two leaves ¢ of do~ and v’ in the interior of ¢~ are in the frontier of W#(y) The
omega limit-points of ¢ and ¢’ are two saddle points z and 2’ of F.
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Figure 6.7

The remaining part of this chapter aims to give the proof of Proposition 6.1.4. The
proof is divided into several lemmas. Notice that the following lemma will be useful in the
next section.

Lemma 6.1.5. Let us consider a saddle point x of F. For each unstable cone o~ of x
there exists a unique connected component C of G;‘(I) (F) such that each leaf ¢ of the cone

o~ is in the attractive basin of C.

Proof. Let us consider an unstable cone ¢~ of x and ¢ a leaf of c~. We denote by C the
connected component of GAT(m) (F) which contains the singularity w(¢). By the local model
there exist two chains of connexions F(‘g and F;, whose ending points are denoted y* and
y~, containing ¢ such that each leaf 1) of o0~ close enough to ¢ satisfies w(¢)) = y™ or
w(?v) = y~. We have that I‘; and I'” contain ¢, so by definition yt and y~ are also in C
and we deduce that every leaf ¢ of 0~ close enough to ¢ is in W*(C).

Moreover, if we consider a leaf ¢’ € o~ in the closure of a sequence (¢}, )nen of leaves
in W#(C) then by the local model, there is a chain of connexions I' in the closure of the
sequence (¢}, )nen Which contains ¢’. Notice that A(w(¢')) < A(z) so w(¢’) and the ending
point of the chain I' are in the same connected component of GZ(z) (F). Sow(¢) isin C

and then ¢ is in W*(C).

Thus we obtain that the intersection of o~ and W#*(C) is open and closed in ¢~. So,
since o~ is connected we have that every leaf of o~ is in W*(C). O

Remark 6.1.6. Lemma 6.1.5 does not hold if A(x) is replaced by some ¢ < A(x). Indeed
if we only suppose that C is a connected component of G; (F) with ¢ < A(x) then the
unstable cone o~ is not necessarily included in the attractive basin of C. See example 6.6
above where the leaf 1)’ is not a leaf of the attractive basin of the connected component

{y} of GZ(y)‘F(‘F)'

We prove that the attractive basin of a connected component of Gy (F) with ¢ € R is
open with the two following lemmas.
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Lemma 6.1.7. Let us consider t € R and C a connected component of G; (F). Each
singularity x of C is in the interior of W*(C).

Proof. Let us consider a singularity « of F in C. It is either a sink, a source or saddle. We
separate those three cases.

1. If x is a sink, then each leaf in a neighborhood of x is in W*#(C).

2. If x is a source, then each leaf ¢ in a neighborhood of = satisfies A(w(¢)) < A(x)
and is in W*(C).

3. If x is a saddle point, we consider a trivialization (h, V') of F at x on a neighborhood
V given by Lemma 6.1.3. By definition of W*(C), each leaf of ¥ and ¥} is in W*(C).
Moreover, let us consider a leaf ¢ in the boundary of an unstable cone ¢~ of x and U the
hyperbolic sector adjacent to ¢, by the local model there exists a chain of connexions from
x to a singularity y such that every leaf of the hyperbolic sector U admits y as its omega
limit. By definition, the singularity y is in C hence the leaves of the hyperbolic sector U
are in W*(C). Since it holds for each hyperbolic sector of z we obtain the result.

O

Let us consider t € R and C a connected component of G; (F). We describe the
attractive basin of C and its frontier.

Lemma 6.1.8. The intersection of W*(C) and ¥\X is open.

Proof. We consider a leaf ¢ in W*(C), by the local model there exists a small neighborhood
V of ¢ and two chains of connexions ¢, ..., ¢ and ¢, ..., ¢}, of F which contain ¢ such that
each leaf ¢ passing through V satisfies w(v)) = w(¢x) or w(¢¥) = w(¢},). By construction
w(¢r) and w(¢y,) are in the same connected component of G, (F) and so every leaf passing
through V' is in W*(C). O

The following corollary is a consequence of Lemmas 6.1.7 and 6.1.8.
Corollary 6.1.9. The attractive basin of C is an open surface in 3.
We deduce the following lemma.
Lemma 6.1.10. The attractive basin of C is connected.

Proof. For every x € X nC, W#(§) is connected as it is arc-connected. Let us consider two
singularities x and y of C such that there exists an edge from x to y. So there is a leaf ¢
such that a(¢) = z and w(¢) = y. The point x is in the frontier of W*(y) and is either a
saddle point or a source. Since we proved previously that x is in the interior of W*(C) we
deduce that ¢ = W*(z) u W*(y).

We deduce easily that W*(C) = | J,cx~c W*(x) is connected. O

We prove a last result which concludes the proof of Proposition 6.1.4.

Lemma 6.1.11. The number of leaves included in the frontier of the attractive basin of C
1s finite.
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Proof of Lemma 6.1.11. Let us consider a leaf ¢ of the frontier of W#(C). The singularity
w(¢) can not be a sink nor a source so it is a saddle point. So ¢ is a leaf of a stable
cone of w(¢). So by the first point of Proposition 6.1.4 and the fact that the number of
singularities of F is finite, there exists a finite number of such leaves and we obtain the
result. O

Remark 6.1.12. Let us describe an example. We consider a foliation F on a 2-sphere
such that F has two sources si, s2, one saddle point & one sink p and the foliation is the
gradient-lines of the Morse function A : $2 — R represented in green in figure 6.8.

S1 A
52
b1 P2

X

Figure 6.8

We consider the connected component C = {p} of G (F) and we want to describe
the attractive basin of C. In our example, we see that each leaf ¢ of F satisfies w(¢) = p
except two leaves ¢ and ¢9 such that ¢, is a leaf between s1 and x and ¢» is a leaf between

so and z. Let us consider a trivialization (h, V') at x of the foliation F represented in figure
6.9.

o)

U, Uy
Us Uy
®2
Figure 6.9

In the example the four hyperbolic sectors Uy, ..., Uy of z are in W*(C) and in Figure
6.9 the leaves of W*(C) are represented in red. The frontier of W#(C) is the union of the
three singularities x,s1 and so and the two leaves ¢; and ¢2 in 2.

Remark 6.1.13. Each result about a connected components of G; (F), where ¢t € R, has its
symmetrical result for a connected component of Gy (F).
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6.2 Some properties of the Barcode B(G(F), A,ind(F, "))

Let us consider a gradient-like foliation F defined on the complement of a finite set X of
a compact surface Y. We suppose that X is equipped with an action function A : X —» R
such that for each leaf ¢ we have A(a(¢)) > A(w(¢)). We prove some properties about
the Barcode B(G(F), A,ind(F,-)), which will be denoted Br.

We set A, the minimum value of the action function A on X and Aj; its maximum
value.

Notice that, by construction of the map B, for every singularity z of F of index zero
there is no bar in B(G(F), A,ind(F, -)) one end of whose is equal to A(z). Indeed, the point
z does not connect distinct connected components of the graphs G, ) (F) and sz ()
so if we follow the construction in Chapter 5, there is no bar of category 1 or 2 induced by
z. So, since ind(F, z) = 0 there is no bar of category 3 induced by z neither.

We consider the graph G(F) associated to F and the subgraphs (Gy (F))wer and

(G (F))ter. We will use some notations from Chapter 5. For t € R we denote C; and C;"
the set of connected components of Gy (F) and G (F).
We set the maps j; : C; — C; and ji : ¢ — C where for C' € C, ji(C) is the
connected component of G5 which contains C' and for C" € C; j{(C”) is the connected
component of G;~ which contains C’. For a connected component C of G (F) we consider
L(C) = min{A(y) | y vertex of C}.

Lemma 6.2.1. For each sink y of F satisfying Ay < A(y) there exists at least one saddle
point x of F such that the barcode B contains a bar b = (A(y), A(x)].

For each source y of F satisfying A(y) < Anr there exists at least one saddle point x of F
such that the barcode B contains a bar b = (A(x), A(y)].

In the situation of Lemma 6.2.1 we say that the pair (z,y) is associated to the finite
bar b of BF.

Proof. Let us fix a value t > A,, of the action function A. We label y, ..., y, the sinks of
X whose action value is t. We prove that for every i € {1, ...,n} there exists a saddle point
x; of F such that the barcode Br contains a bar (A(yi), A(z;)].

For i € [1,n] there is a map ¢; : s — C; defined for s > ¢t where C? is the connected
component of the graph G (F) which contains y;.

For a value s > t such that A7!((t,s)) = &, the connected components C5, ...,CS are
distinct.

For s > t close to t, the elements ¢;(s), i € [1,n], are distincts and for s > Ay, we have
that ¢;(s) = G(F) for every i € [1,n], hence we have L(c;(s)) =t for s > 0 close to t and
L(ci(s)) = Ay, for t > Apy.

Thus, for every i € [1,n], there exists an action value, denoted s;, such that A(y;) =
L(ci(s;)) and t > L(js(ci(s;))). In other words, there exists a saddle point z; of F of action
s; such that
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o L(ci(si)) =t = Aly:)

e x; connects the connected component ¢;(s;) and another connected component C of
G5 (F) such that L(C) < t.

By construction of the barcode B there exists a bar (A(y;), s;] of category 1 (see Chapter
5).

Notice that the points x;, i € {1,...,n} are not sources. Indeed, by contradiction we
suppose that a source z of action s connects two distinct connected components C; and
Cy of the graph G (F). Thus, by hypothesis, there exist two singularities z1 € C; and
x9 € Cy in the frontier of W*(z). By Proposition 6.1.4, there exists a path of connexions I'
between x; and x9 such that every singularity y in I' satisfies A(y) < s, so z1 and zg are
in the same connected component of G (F) and we have a contradiction.

We obtain the symmetrical results for sources of F by considering bars of category
2. O

Remark 6.2.2. For a singularity y of F of index 1, there may exist two saddle points x and
x’ with A(x) = A(z’) such that the couples (z,y) and (z/,y) are associated to the same
bar b.

Lemma 6.2.3. We label y, ..., Yy, the sinks of F of action A,,. There exist n — 1 finite
bars Ji, ..., Jo_1 whose lower bound is equal to A, and upper bound is the action value of
a saddle point of F and one semi-infinite bar (A, ) in the barcode Br.

Proof. For s > A, such that A~Y((A,,,s)) = &, we denote C{ the connected component
of G (F) which contains the singularity y;.

For i € [1,n] there is a map ¢; : s — C; defined for s > ¢ where C? is the connected
component of the graph G (F) which contains y;.

For s > A, close to A,, we have C; = {y;}, i € [1,n].

Let us consider s > A,,, such that there exists a subset K of {1,...,n} of cardinal at
least two such that the connected components ¢;(s), i € K are distinct but the connected
component js(c;(s)), i € K, are equal. We have L(c;(s)) = A, for i € K so, by construc-
tion, it induces the existence of #K — 1 bars (A,,, s| in the barcode Br.

Moreover, for each i # j in {1, ...,n} there exists s > A, such that js(c;i(s)) = js(c;j(s))
and ¢;(s) # ¢j(s). Hence we obtain n — 1 finite bars such that A,, is the lower bound of
the bar.

The existence of a semi-infinite bar (A,,,) in the barcode B(G(F), A,ind(F,-)) is
provided by the construction of B : it is a bar of category 0. O

Let us consider a sink y,, of the foliation F such that A(y,,) = A, and a source yy;
of the foliation F such that A(yas) = Apr. We denote X9 < X the set of negative index
singularities of 7 and X7 < X the set of singularities of index 1.
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By Lemmas 6.2.1 and 6.2.3 there exists a map, which may be not unique,

L Xl\{ymvyM} - X<07 (61)

where ((y) = x is a saddle point = of the foliation F given by Lemmas 6.2.1 and 6.2.3 such
that the couple (z,y) is associated to a finite bar of Br.

In particular, if A is injective and each singularity x of X has an index equal to —1
then, every bar (a,b] of the barcode is naturally associated to a unique couple z,y € X
by Lemma 6.2.1. In this case, ¢ is unique and an injection. Indeed, by construction, for
every saddle point x of X there exists a unique bar one end of which is equal to A(zx).
notice that this bar is either a finite interval whose infimum is A(z), maximum is A(z) or
a semi-infinite interval whose infimum is A(z).

We have the following result.

Proposition 6.2.4. Let x be a saddle point of F of action value t € R such that A~'(t) =
{x}. We have
#ii(Co) + #57(Co) < |ind(F,2)] + 2,

where Cy (resp. Cl,) is the connected component of G (F) (resp. G~ (F)) which contains
T.

In general, Proposition 6.2.4 certifies that for a saddle point  of F such that A=!(t) =
{x}, there are |ind(f, z)| bars of which ¢ is an end. We can link this result to Proposition 28
of [61] which asserts that for a Hamiltonian function H on a manifold the number of bars
of which t € R is an ending value is given by the dimension of the local Floer Homology at
t.

Proof of Proposition 6.2.4. We set t = A(x) and 7 = ind(F, z). We label X7 the set of the
unstable cones of z and X the set of the stable cones of x. Both ¥ and X} are equipped
with a cyclic order and a natural cyclic transformation 7, : 3, v X5 — X7 U 3T which
sends X, into X and X} into X such that every element 0~ € ¥, (resp. ot € I}) is
sent to the element of ¥} (resp. ) right after it in cyclic order.

By Lemma 6.1.5, for every o~ € ¥ there is a connected component C~of G, (F) such
that w(¢) is a vertex of C~ for every leaf ¢ € 6. So we can define a map w : ¥, — C, (F)
given by w(c™) =C~.

Symmetrically, for every ot € 3} there is a connected component C*of G} (F) such
that a(¢) is a vertex of C* for every leaf ¢ € . So we can define a map a : ¥} — C," (F)
given by a(oct) =C*.

We will denote by Im(a) and Im(w) the image sets of a and w and the result consists
in establishing the inequality

#Im(a) + #Im(w) < i+ 2. (6.2)

We introduce a combinatorial context to facilitate the proof.
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Let us consider two sets E* and E~ and a couple of maps o : ¥+ — ET andw¥ ™ — E~
defined on sets ¥ < X, 37 < 3, such that there is, in cyclic order, alternatively an
element of X1 and an element of ¥~ in ¥ U XY . In particular, ¥* and ¥~ have the same
cardinal and are naturally equipped with a cyclic transformation 7. We define some useful
notation.

Let ¢ be in the image of w. We set J = w™!(c) and we will say that

e An element ot € 7T is adjacent to J in X7 if one and only one of the two elements
7(c*) and 77 (o) is in J. More precisely we will say that an element o+ € X7 is
adjacent and before J in X if 7(0) is in J and 77(0") is not. Symmetrically we
will say that an element o € X% is adjacent and after J in X+ if 771 (o) is in J
and 7(c™) is not.

e Anelement o € X7 is surrounded by J in X7 if the two elements 7(c*) and 771 (o)
are in J.

A maximal set of consecutive elements of J in >~ will be called a maximal interval of .J.

We prove the following lemma about the maps a and w.

Lemma 6.2.5. Suppose that for every ¢ € Im(w) and every o™ € ¥ adjacent to w1 (c)
in XF, there exists o't € X\{o"} adjacent to w=t(c) in Lt such that a(c’") = a(ct).
Then we have

#Im(a) + #Im(w) < i + 2,

where i + 1 is the cardinal of the sets ¥ and ¥~ .

Proof. Let i = 0, for a couple (a,w) defined on sets 7 and ¥~ of cardinal equal to 1, the
inequality is trivial.

Let ¢ = 1, we suppose by induction that couples defined on sets of cardinal less than ¢
satisfying the hypothesis of Lemma 6.2.5 satisfy the result.

We consider a couple (o,w) defined on sets ¥ and X~ of cardinal equals to 7 + 1
satisfying the hypothesis of Lemma 6.2.5. We prove that #Im(«) + #Im(w) < i + 2.

We divide the proof of the inequality into three cases.

Case 1. Suppose that w is constant. In this case we have by definition #Im(w) = 1
and #Im(a) < i+ 1 so the result is trivial.

Case 2. Suppose that for each ¢ € Im(w) we have #w~!(c) = 1. By hypothesis, we
obtain that « is constant on ©*. So we compute

#Im(a) + #lm(w) =1+ (i + 1),

and we obtain the result.

Case 3. Suppose that there exists ¢ € Im(w) such that i + 1 > #w™(c) > 1. We will
modify the couple (o, w) into another couple (aq,w) defined on subsets of X and ¥~ and
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we prove that the couple (aq,wq) satisfies the hypothesis of Lemma 6.2.5.

We denote J = w™!(c) and we define new maps on ¥; = X\J and ] = SF\7(J).
We set wy : 3] — E~\{c}, defined as the restriction of w.
We define oy : 57 — Et /a(r(J)AT71(J)), where we have

e 7(J)A7T71(J) is the symmetric difference of 7(J) and 771(J).
e EF/a(r(J)AT71(J)) is the set obtained by identifiyng the elements of a(7(J)AT~1(J)).
e « is the natural map induced by .

Notice that the set 7(J)A7~1(J) is composed of the elements of ¥ which are adjacent to
J. Moreover, the sets ] and X{ are not empty.

We prove that (aq,w;) satisfies the hypothesis of Lemma 6.2.5.

Let us consider ¢; € Im(w;). We set J; = w; ' (c1) and we consider o, € ¥] adjacent
to Ji in X, Our goal is to find an element of ¥ distinct from o and adjacent to J; in
Ef whose aq value is equal to the a; value of af )

The element o} may not be adjacent to J; in X*. There are two possibilities.

1) of is adjacent to Jy in X7.

2) o is adjacent and before a maximal interval K of J in ¥ and there exists o't eJ
which is adjacent and after the interval K of J in ¥ and adjacent and before J; in X7.

We separate these two cases.

In case 1), by hypothesis, there exists o5 € XT\{o;} adjacent to J; in T such that

a(o]) = a(oy). Again, there are two possibilities.

i) If o5 ¢ 7(J) then oy is adjacent to J; in £7 and aq(0]") = ai(03) by definition.
We obtain the result.

ii) If o € 7(J) then o5 is adjacent and after a maximal interval Ks of J in ¥. So o5
is before an interval K; of J; in ¥ and after the interval Ky of J in ©7. We consider ¢’ ;
in X% just before the interval Ko in ¥, We have that o’ ¢ 7(J) and o’3 # o). Indeed,
if we supposed that o] = o ; then since o is adjacent to J; in X7 it is after an interval
K{ of J; in ¥7 and just before the interval K of J in 3. Hence in the cyclic order we
have in ¥ *

/ + 1+ +
Ki,of =0'5,Ks,04,K;.
So in X] we obtain in the cyclic order
1+
Ko, K.

Meaning that o is surrounded by J; in X] and so it contradicts the fact that o is
adjacent to Jp in Ef.

Moreover, by hyothesis, a(o]) = a(o)) € a(r(J)AT71(J)) so by construction (o)) =
a1(0’3) and we obtain the result.
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In case 2), 0’7 is just before a maximal interval K} of .J; in ©*. Moreover, by hypoth-
esis, there exists o5 € ©F\{co'T} adjacent to J; in * such that a(o’]) = a(0g). Again,
there are two possibilities.

i) If o5 ¢ 7(J) then of is adjacent to J; in ¥ and distinct from o . Indeed, if we
suppose that U; = Jf then Uf is before the maximal interval K of J in X% and after a
maximal interval K7 of J; in ¥ 7. Hence, in X1, we have and in the cyclic order

+ + 1+ /
Ki,00 =05,K,01,K].
So in X] we obtain in the cyclic order
+ /
Ki,0, K.

Meaning that oy is surrounded by J; in %] and it contradicts the fact that o is adjacent
to Jy in 2.

Moreover, by hypothesis, a(c'y) = a(of) € a(r(J)Ar1(J)) and by definition a(o;) €
a(r(J)AT7L(J)). So, by construction, we have oy (0]") = a1(oy ) and we obtain the result.

ii) If o5 € 7(J) then o5 is adjacent and after a maximal interval Ko of J in XT. We
consider 0’3 in ¥ just before the interval Ky in ©*. We have K # K then 0’3 # of
and a(o’3) = a(o7). Indeed, if we suppose that Ko = K then it contradicts the fact that

o5 # ¢'3 and we obtain the result.

Now, we prove that #Im(a) + #Im(w) < i+ 2.

The image of w is the union of the image of w; and the singleton {c}. So we have
#Im(w) = #Im(wq) + 1.

Let us consider the natural projection p : E* — ET/a(r(J)AT71(J)), we have the
following diagram

nF o E*

E* fa(r(J)AT™H(J))
We denote e € E* /a(7(J)AT~1(J)) such that p(a(c)) = e, for every p(c) € 7(J)ATL(J).
The image of « satisfies
Im(a) = a(r(J) vt H(J)) U a(EZT\{7(J) U T HD)}).

By definition, we have

So, we deduce



We denote by K the number of maximum intervals of J.Since J # X ¥, we have #7(J)A7~(J) =
2K and #(7(J) n771(J)) = #J — K. Indeed, the set 7(J)A7~1(J) is the set of elements

of £ which are adjacent to J and the set 7(J) n71(.J) is the set of elements of ¥ which

are surrounded by J.

By hypothesis, for every element o+ € 7(J)A7~1(.J) there exists another element o’" €
7(J)AT~1(J) such that a(oc™) = a(o’"). So we obtain

#a(r(J)AT7HT)) < % < K.

Hence we compute

#a(r(J) v T 1)) < #a(r()ATH)) + #a(r(J) n 7))
<K+#J-K
< #J.

It remains to estimate the cardinal of C' = Im(a)\{a(7(J)uT1(J)})}. For every c e C
and o € a~!(c), we have o ¢ a(7(J) U7 1(J)). So in particular, o € X and p(c) # e. We
deduce that

p(c) = ai(o).
It implies that
p(C) < Im(an)\{e}.

Moreover, by definition C' n p~!(e) = &, so p|c is a bijection and, since {e} € Im(ay), we
obtain

#C < #Im(ay) — 1.

Thus we have
Im(a) < #J + #Im(a;) — 1.

The couple (aq,w1) is defined on a set of cardinal i — #.J + 1 and satisfies the hypothesis
of Lemma 6.2.5, so we compute

#Im(ao) + #Im(w) < (#J + #Im(ag) — 1) + #Im(wy) + 1
#Im(al) + #Im(wl) + #J

(i —#J +2)+#J

INCINCIN N

+.
~

where the third inequality is given by the induction step.

O

Notice that if J is composed of at least 2 maximal intervals, the previous inequality is
strict.

To complete the proof of Proposition 6.2.4 we will prove that the couple of maps
a: X - G (F) and w : X — C; (F) defined at the begining of the proof satisfies the

7



hypothesis of Lemma 6.2.5.

Let C be a connected component of G; (F) in the image of w. We denote B = W#(C)
and we want to desingularize its frontier Fr(B) as follows.

Desingularization. We cut the surface X along Fr(B) (see [11] for example) to obtain
a manifold with boundary B and a natural projection 7 : B — B such that

e 7(0B) = Fr(B).
e 7(B\0B) ~ B

Let us draw simple examples to explain what we are doing.

First example. In Figure 6.10, we consider on the left a saddle point y in Fr(B) such
that

e There are two hyperbolic sectors U’ and U” separated by a cone o in B . We denote
¢ and ¢” the leaves of U’ and U” in Fr(B).

e There exists a leaf ¢ in o n Fr(B).

We draw in red the leaves in B and in blue the leaves in Fr(B). We cut along leaves of
Fr(B) in blue to obtain B on the right and we have

o m'(y) = {41, 92}

o 7 (¢) = {¢hr, ¢} -
o 7 1(¢") = {¢'}.

o 71(¢) = {¢"}.

Figure 6.10

Second example. In Figure 6.11 we consider a saddle point y in Fr(B) such that
e There is a stable cone surrounded by B which contains two leaves ¢; and ¢ in Fr(B).

e There are two leaves ¢’ and ¢” of stable cones of y in Fr(B).
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We draw in red the leaves in B, in blue the leaves in Fr(B). We cut along the leaves of
Fr(B) to obtain B on the right and we have

.7'1'1

y) = {71,792}
Yapr) = {h1}.

—(
—(
o) = {dha}
N
—(

°
3

°
3

°
3

He") = {9},
T (@) = {¢"}.

¢/ QZB//
1 \|) ¥ D\ /s

Figure 6.11

We have that B is a manifold with boundary whose boundary is a union of disjoint
circles. By Proposition 6.1.4, each circle of 0B is composed of chains of connexions of the
foliation F such that for every leaf ¢ in Fr(B) we have

o #11(¢) = 1if ¢ is adjacent to B.
o #m~1(¢) =2 if ¢ is in the interior of B.

Remark 6.2.6. As we saw in the second example with the leaves ¢ and 2, a leaf ¢ can
be adjacent to B and in a stable cone of a saddle point of Fr(B) which is surrounded by B

We set J = w™1(C) and recall that we set t = A(x) at the begining. By definition, the
saddle point x is in the boundary of B. We consider a stable cone o™ € ¥ of x adjacent
to J in X*. To prove that the applications o and w satisfy the hypothesis of Lemma 6.2.5
it is sufficient to prove that there exists another stable cone ¢’ of z adjacent to J in X+
such that a(o’") = a(o™t).

The cone ot is adjacent to B so, by Proposition 6.1.4, there is a unique leaf d)ar in
ot AFr(B). The cone o+ is adjacent to J in £+, so we can denote 7' (¢ ) = {7} < 0B.

Moreover, x is the only singularity of action ¢, so each singularity g of 63\7r*1(x) satis-
fies Af(m(y)) > t. So, if we consider a circle v of 0B, the singularities in a same connected
component of Y\7~!(z) are the lift of singularities which are in the same connected com-
ponent of G (F). Notice that v\7~!(x) may be composed of more than one connected
components.
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We consider the circle g of 0B containing gga“ . The connected component of vo\m~!(z)

.2 . e ; .
containing ¢ contains a leaf ¢/, distinct from ¢g such that w(m(¢'y)) = x. There are two
cases.

1) If w(¢/,) is in a stable cone of z adjacent to J in ¥* then we obtain the result.

2) Suppose that 7(¢/,) is in a stable cone o] of z surrounded by J in ¥*. By con-

. . n D1 . T n .
struction, there exists another leaf ¢ € 0B distinct from ¢/, such that m(¢]), which may

My L
be equal to 7(¢/y ), is in o .

By Lemma 6.1.5, we have that a(m(¢7)) = a(ﬂ'(gZ;'(J)r)). So we apply the same argu-
ments to (;ASIF and then there exists a leaf d;’ :— < 0B such that (;3’ Ir and QSI’ are in the same

connected component of v1\{7~!(x)} and w(ﬁ(é’r)) =z . If ¢/{ is in a stable cone of z
adjacent to J in X1 we stop the process and if not we do the same discussion for ¢’ f as
we did for ¢/¢ in case 2).

Since x has finitely many stable cones, the process stops after a finite number of times
and we obtain a leaf ¢/t in the frontier of the attractive basin of C distinct from ¢+ which
is in a stable cone ¢’" of x adjacent to J in ©F such that a(o’") = a(c*) and this ends
the proof of Proposition 6.2.4. O

By construction of B, we deduce the following corollary.

Corollary 6.2.7. Let us suppose that the singularities of F have distinct action values
and consider a saddle point x of F. There exist exactly —ind(f,z) bars Ju, ..., J_jnq(t.2) Of
which A(x) is an end point.

Moreover, for each source or sinky of X there exists exactly one bar J of which A(y) is
an end point.

Proof. Let us consider a saddle point = of F of action t. We denote C, (resp. C, the
connected component of G (F) (resp. G, (F)) which contains z. By construction, there
are #j; 1(C,) bars of category 1 such that A(x) is the maximum and #5'71(CL) bars of
category 2 such that A(z) is the infimum. Finally, by Proposition 6.2.4 we have k =
lind(F, )| — #4; 1(C) — #4;(CL) = 0 so there exists k bars (A;(x), +o0) of category 3.
Thus there are exactly —ind(F, z) bars of which Af(x) is an end. O

Recall that X< is the set of singularities of X of negative index and X7 the set of sin-
gularities of X of index 1. We set S—o = A(X<p) and we consider a sink y,,, of the foliation
F such that A(y,) = A, and a source yys of the foliation F such that A(yys) = Ay and
an application ¢ : X\{ym,ynm} — X<o given by 6.1. We will prove the following result
about the semi-infinite bars of Br.

Lemma 6.2.8. There exist exactly 2g + 2 semi-infinite bars in Br, where g is the genus
of X.

Proof. By Lemma 6.2.1 for each value t € S the number of finite bars of which one end
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is the action value of ¢ is equal to

M@t dey -0+ > @O -

- +
CeC C’eC”

Moreover, the existence of the application ¢ asserts that the total number of finite bars
is equal to the number of singularities of index 1 minus two. So we compute

di1=2+ > ind(F,y)

yeXi yeX1\{ym,ym }
(6.3)
=2+ > | D) @Ae) -+ Y #HC) -

- +
teS<o \ Ccec;, cecr

Moreover, we have

2—2¢g = Z ind(F, x)
reX

=2+ > ind(F,ax).
z€X\{ym,ynrr}

=2+ ) imd(F2)+ D, ind(F,y).

zeX g yeX1\{ym,ynr}

Where the last equality is given by separating the fixed points of negative index and the
fixed points of index 1.

For t € Sy we define
ke=— ). ind(F,z).

(EGX<0
A(z)=t

By equation 6.3, we get

2—-2g=2+ Z Z ind(F, z)
teS<o reX <o
A(z)=t

+ 30 Y @t e -+ Y @ - 1)

teS<o CeC crect

=2- 3 (k- X @O D X @A) - D)

teS<o cec;, crec

= 2 — (#{semi-infinite bars} — 2).

The last equation is given by the construction of the bars of category 3 in the construction
of B. Indeed, for action value ¢, the number of bars (¢,+0) in the barcode is equal, by
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definition, to k; — ZCeC; (#3571 ({C)) — 1) — Zc/ectt(#(j/t_l({cl}) —1). The —2 comes
from the two semi-infinite bars (A4,,, +00) and (Aps, +0). So the number of semi-infinite
bars is equal to 2¢g + 2. O

Remark 6.2.9. Let us suppose that for each value ¢ in the image of A, the set A=({t}) is
a singleton and each singularity = of Xy has index —1. In this case the proof is simpler
to understand because ¢ is an injection.

The number of semi-infinite bars is equal to #(Xo\Im(¢)) + 2 and we compute

2-2g= ) ind(F,z)

zeX
=24 ) ind(Fy)+ ) ind(F,2)
yeX1\{ym,yn} zeX <o
=2+ Z 1-— 2 1 — (#{semi-infinite bars} — 2)
yeX1\{ym,ynr} zelm(e)

= 4 — #{semi-infinite bars}.

We obtain the result.
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Chapter 7

A barcode with an order on a maximal
unlinked set of fixed points

We consider a homeomorphism f of a compact surface ¥ with a finite number of fixed
points. We fix a maximal unlinked set of fixed points X of f. We denote by D the unit
disk.

For a set U < D we will denote by Adhp(U) its closure in D and by Adhg2U its closure
in R?. A line v will be a proper oriented topological embedding of the interval (0,1). If an

oriented line 7 : (0,1) — D separates D in two connected components, we will consider its
left hand side, denoted L(7), and its right-hand side, denoted R(¢).

Let us consider a maximal isotopy I from id to f such that Sing(I) = X. We equipped

Y\X with a hyperbolic metric m such that the universal cover EY)J( of ¥\ X with the pull
back metric is isomorphic to D.

We consider a singularity € X and a path ~ : [0,1] — X such that lim;_,; y(t) = =
and v((0,1]) = ¥\X. We fix a lift 7 : (0,1) — D of 7|,1). We consider a horospherical
neighborhood V of z in (¥\X,m). Meaning that 7=1(V) is a disjoint union of horodisks
where a horodisk is a disk internally tangent to the unit circle. Notice that V U {z} is a
topological neighborhood of z in 3.

Moreover, 5((0, €]) is connected so there exists a unique horoball V < 7~1(V)) which
contains ¥((0, €]). By definition, the closure of a horoball intersects the boundary $' of D
in exactly one point and we set & = Adhg2(V) n $!. Since the alpha-limit point of ¥ is a
point of $! we obtain that lim; o ¥(t) = 7.

Thus, if we consider a path 7 : [0,1] — ¥ such that a(y) =z € X, w(y) =y € X and
~v((0,1)) < ¥\ X, then for every lift 5 of  is line in D such that there are two points T and
7 of 8! which satisfy

lim (1) = %, and lim3(1) = .

~

The point Z (resp. ) will be denoted «(5) (resp. w(¢)). We refer to Ratcliffe’s book [?],
chapter 9.8 for more details.
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For two distinct points 2 and % of $', we define [#,%] = S! the arc joining Z to ¥ for
the usual orientation. We set (Z,9) = [Z,7]\{Z, 7}

Let us consider two proper paths ¢ : [0,1] — ¥\X and ¢ : [0,1] — X\X whose al-
pha and omega limit points are in X and satisfy ¢((0,1)) < ¥\X and ¢'((0,1)) = X\ X.
We say that ¢ and ¢’ strongly intersect if there exist two lifts ¢ and ¢’ of ¢ and ¢’ as follows.

If we denote

o a¢)

o w(¢) =17,
o o) =7,
o w(@) =7,

then we have

~

e 7, y, ¥, ¥ are distinct,

.{%/e( 7)

7,y
~ ~ ~+ OI
v e@,2)

The homeomorphism ]? can be extended on the closed unit disk Adhg2(D). A line
~v < D is said to be a Brouwer line of f if it separates D in two connected components such
that the one on the left-hand side, denoted L(v), contains f(v) and the one on the right-
hand side, denoted R(7), contains f~'(v). In particular, we have f(Adhp(L(v))) < L(7).

We have the following definition.

Definition 7.0.1. For a couple x,y € X, an oriented path v : [0,1] — X such that
a(y) =z € X, w(y) =ye X and 7((0,1)) € X\X is called a connezion from x to y if
every lift % of v is an oriented Brouwer line of f.

Remark 7.0.2. If we consider a maximal isotopy I = (ft)se[o,1] from id to f and a foliation
F positively transverse to I then each leaf ¢ gf F is a connexion in the previous sense.
Indeed, if we consider a leaf ¢ of F, then a lift ¢ of ¢ is an oriented line which separates D

~ ~ ~ ~

in two connected components L(¢) and R(¢) such that f(¢) < L(¢) and we deduce that

~ ~ A~

f(Adhp(L(9))) = L(9)).

We will prove the following lemma which will be useful in Chapter 8.

Lemma 7.0.3. Let us consider x,x',y,y € X fized points of f such that there exist a
connezion ¢ from x to y and a connexion ¢ from x’' toy'. If ¢ and ¢’ strongly intersect
then there exists a connexion from x to y' and a connexion from x’ to y.

Remark 7.0.4. The result stands for non area-preserving homeomorphisms isotopic to
the identity and no foliations are involved in the statement. Moreover, the fixed points
x,y, 7',y do not have to be distincts to obtain the result. Nevertheless, if we suppose that
f is a Hamiltonian homeomorphism, then for every connexion ¢ between two fixed points
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x and y, we have A¢(x) > A¢(y) where Ay is the action function of f, see 2.3.18 in the
preliminaries. So, if we consider four fixed points satisfying the hypothesis of Lemma 7.0.3,
then, by hypothesis, we have x # y and z’ # 3/ and the result implies that = # v’ and
x #y.

We will need a result of Kerékjarto [16] which asserts that each connected component
of the intersection of two Jordan domains is a Jordan domain. A Jordan domain is the
relatively compact connected component of the complement of a simple closed curve of the
plane, called a Jordan curve. We refer to [55] for the proof of the following result.

Theorem 7.0.5. Let U and U’ be two Jordan domains of the plane. Every connected
component of U n U’ is a Jordan domain.

We now prove Lemma 7.0.3.

Proof of Lemma 7.0.5. We consider the lifts gE and 5’ of ¢ and ¢’ given by the hypothesis.
We denote

. a(9)

o w(@) =7,

o a(¢) =7,
o w(@) =7

By symmetry we can suppose that 7’ € (7, Z) as in Figure 7.1.

We consider the oriented loops Iy = U [7, 2] and Iy = ¢ U [7,2'] in R2. The loops

I'; and I';, are the frontier of the domains Adhgs (L(¢)) and Adhg2(L(¢')) and are Jordan

curves.

For every 2 = e € (7, %) there exist € > 0 and 1 > 0 such that
0/ —6) <pand1—e<r<1=re? e L().
Symmetrically, for every Z = e e (3,2") there exist € > 0 and 7 > 0 such that
0/ =0l <npand 1—e<r<1=re? e L().

We denote 3 = e and § = € with 8 < a < 8 + 27. There exists a continuous map
¥ (B,a) — [0,1] such that for every 0 € (3, ), we have

W(O) <r <1=re? € L(¢) n L(P).
We will consider the small croissant K < DD, as in figure 7.1, defined by
K={z=r?0¢e(B,a), v©O) <r <1}

By Theorem 7.0.5, the connected component U of L(gg’ N L(gg’) which contains K is a
Jordan domain in R?. Since K < U, the boundary of Adhg2(U) is the union of an arc in
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$! and an oriented curve J in D from 2’ to 7.

Sincejg and ¢ are Brouwer lines of . we have thath(Ath(U )) is connected and
satisfies f(Adhp(U)) < L(¢) n L(¢'). Moreover, we have f(K) < U, so we deduce

~

F(Adhp(U)) € U.

In other words, the line J is a Brouwer line for f~ Hence J induces a connexion in ¥ from
x' to y.

By considering the intersection R(qz) ) R(qg’ ), with the same arguments we obtain a
connexion in ¥ from x to ¥’

Figure 7.1

O

For the remainderof the section, we also suppose that f is a Hamiltonian homeomor-
phism, we will define a barcode associated to X.

The notion of connexion induces an order on X where, for x,y € X, we say that x > y
if there exists a connexion from z to y.

We saw in section 2.3.7 that the index function ind(F, -) defined on X does not depend

on the choice of the foliation F positively transverse to I and we denote this index function
ind(7,-). We will study the following barcode.
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Definition 7.0.6. We define the graph of connexion G(>) whose set of vertices is equal
to X and in which there is an edge between two vertices x and y if and only if x > y in 3.
We denote by B~ the barcode B(G(>), Af|x,ind(I,-)).

Remark 7.0.7. If we consider a foliation F € F(I), the graph G(F) is a subgraph of G(>).

Remark 7.0.8 (The Morse example). Let us consider a Morse function H on the 2-sphere
as in Figure 4.6. We suppose that H induces a Hamiltonian diffeomorphism f with a finite
number of fixed points such that Fix(f) is unlinked. On Figure 7.2, we draw on the left
the graph G(>) associated to the isotopy I = (fi)e[o,1] induced by H. Notice that this
graph is distinct from the graph G(F) of Figure 4.6 which were associated to a foliation
F € F(I) positively transverse to I. To simplify the reading of the graph, the connexions
between sources and sinks are represented by dotted edges. We draw on the right part the
barcode B of this example. We can also notice that the barcode B~ of Figure 7.2 is equal
to the barcode Bgen(F) of Figure 4.6.

81 S1 Af i
55

: |
|

D2

b1
f:S2—>S2 B>

Figure 7.2
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Chapter 8

Equalities of the previous constructions and
independence of the foliation

In this chapter, we fix a Hamiltonian homeomorphism f of a closed and oriented surface
Y with a finite number of fixed points. Let X < Fix(f) be a maximal unlinked set of
fixed points and I = (fi)se[o,1] an isotopy from id to f such that Sing(/) = X. The action
functional of f will be denoted Ay.

For a foliation F positively transverse to the isotopy I, we denote by G(F) the graph, de-
fined in Chapter 6, whose set of vertices is the set X such that for every couple of vertices
x and y of G(F) there exists an edge from x to y if and only if there exists a leaf in F
from z to y. We will also consider the subgraphs (G (F))ier and (G} (F))wer given by
the natural filtration of G(F) by Ay.

We will use some notation of Chapter 5. For t € R we denote C; and C; the sets of
connected components of G (F) and G} (F) and for a connected component C of Gy (F)
we define L(C) = min{A(y) | y vertex of C}.

We consider the graph of connexion G(>), defined in Chapter 7, whose set of vertices
is equal to X such that there is an edge between two vertices = and y if and only if there
exists a connexion between x and y in 3.

We will consider the barcode B(G(F), Af|x,ind(F,-)), denoted B, constructed in
Chapter 6 and associated to the foliation F. Recall that the index function ind(F,-) de-
fined on X does not depend on the choice of F € F(I) and we denote this index function
ind(I,-). We will consider the barcode B(G(>), Af|x,ind(I,-)), denoted B, defined in
Chapter 7.

In the first section, we compare these two barcodes and in the second section we compare
the barcode B with the barcode constructed in Chapter 4 in the generic case.

8.1 Equality between the barcode 37 and the barcode 8-

In this section, we prove the following theorem.
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Theorem 8.1.1. The barcode Br does not depend on the choice of F € F(I) and satisfies
Br = B>.

For the proof, we fix a foliation F € F(I) positively transverse to the isotopy I. We
will need the following lemma.

Lemma 8.1.2 (Fundamental). For each t € R, the set of connected components of Gy (F)
defines the same partition of X N A;l((—oo,t)) than the set of connected components of

Gy (>)-

If we suppose Lemma 8.1.2 true, the proof of Theorem 8.1.1 is straigthforward since the
action functions and the index functions are equals and the constructions of the barcodes
B~ and Br in Chapter 5 depend only on the connected components of the graphs G(F)
and G(>) and the action and index values of the singularities of X.

Proof of Lemma 8.1.2. For t € R and for each fixed points z,y € X of action less than ¢,
we want to prove the equivalence of the following two properties.

(i) The elements z,y are in the same connected component C-~ of G; (>),

(ii) The elements z,y are in the same connected component Cr of G, (F).

(i1) = (i). Since z and y are in the same connected component C of G (>), there
exists a family (x;)o<i<k of singularities of X such that

e 1o =x and x = y.
o As(x;) <t foreveryie{0,..,k}

e For every i € {1, ..., k} there exists a leaf ¢; of F either from x; to x;—1 or from x;_;
to x;

Moreover, each leaf of the foliation F is by definition a connexion, so (¢;)o<i<k 1S a
family of connexions and then the singularities z;, i € {0, ..., k}, are in the same connected
component of G; (>) and we obtain the result.

(i) = (ii). We will prove the following lemma.

Lemma 8.1.3. Let us consider F € F(I) and (z,y) € X%. If x > y then x and y are in
the same connected component of Gy (F) for everyt > Ag(x).

Let us assume that Lemma 8.1.3 is true and consider z,y € X and t > A(x) such that
(1) is satisfied, we prove that (i7) holds.

Since z and y are in the same connected component C of G; (>), there exists a family
(x)o<i<k of singularities of X such that

e 1o =x and x = y.
o As(x;) <t forevery i€ {0,..,k}

e For every i € {1, ..., k} there exists a connexion ¢; either from x; to x;—; or from x;_;
to x;
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Moreover, by Lemma 8.1.3 x;_; and z; are in the same connected component of G; (F)
for every i € {1, ..., k} so x and y are also in the same connected component of G; (F). O

To complete the proof of Lemma 8.1.2, it remains to prove Lemma 8.1.3.

Proof of Lemma 8.1.3. We consider two fixed points x,y € X such that x > y. Every
attractive or repulsive basin in this proof will be defined relatively to the foliation F. We
will divide the proof in three cases, in the first one x will be a sink of F, in the second one
x will be a saddle and in the last one x will be a source of F.

First case. We suppose that x is a sink. We will prove that there is no connexion from
x to another singularity of F.

We say that the orbit of a g-periodic point z of f is contractible if the concatenation of
the trajectories of the points f*(2), k € {0, ..., ¢ — 1}, along the isotopy I is a contractible
loop , denoted «,, in 3. The loop 7, is called the trajectory of the periodic orbit of z.
We say that a contractible g-periodic orbit has type (p,q) associated to I at = € Fix(f)
if its trajectory along I is homotopic to pI' in X\Sing(I), where I' is the boundary of a
sufficiently small Jordan domain containing .

We will use the following version of a result of Yan and we refer to [75], Theorem 1.1,
for a proof.

Theorem 8.1.4. Let us consider a fized point z of f of Lefschetz index equal to 1 fixed
by the isotopy I, and such that the rotation set ps(I,z) is reduced to {0}. The point z is
accumulated by periodic points. More precisely, the following property holds: there exists
€ > 0, such that, for every neighborhood of z, either for every irreducible p/q € (0,¢€), or for
every irreducible p/q € (—¢,0), there exists a contractible periodic orbit O, of type (p,q).

Let us prove that there is no connexion from x to another singularity of 7. We suppose
that there exists a connexion ¢ from x to another singularity y of F, we want to find a
contradiction.

The singularity x is a sink of the foliation F which is positively transverse to the isotopy
I, so the local rotation set ps r(z) of x, introduced in section 2.3.5, is included in (—0, 0].
Moreover, it is not difficult to prove that the existence of the connexion ¢ implies that the
rotation set ps r(x) of x is included in [0, +00). Indeed, locally, a connexion whose alpha-
limit is x is a positive arc, which means that in polar coordinates where ~y corresponds to
the semi-line {# = 0}, for every point z close enough to z, the variation of 6 along the
trajectory is positive. We refer to Theorem 3.2.4 and section 2.4 of [59] for more details.
So the local rotation set of x for the isotopy I is reduced to the integer {0}.

If the Lefschetz index of z is not equal to 1, by a result of Le Roux, see [59] Theorem
4.1.1, the foliation F and the homeomorphism f have the same index at x for the isotopy
I. But, by hypothesis, z is a sink of the foliation F so ind(F,z) = 1 and we obtain a
contradiction.
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If the Lefschetz index of x is equal to 1 then we can apply Theorem 8.1.4. More pre-
cisely, the singularity x is a sink of F so there exists ¢ > 0 such that z is accumumated by
periodic orbits O, of type (p,q) where p/q € (0,¢). So the rotation number pg () is not
reduced to {0} and we obtain a contradiction.

Second case. We suppose that x is a saddle point. We prove the result by contradiction.

We suppose that there exists a connexion v : [0, 1] — X from x to some y and that x and
y are not in the same connected component of G;lf @)+ (F). We denote by W*(C; ) < X the

attractive basin of C;, where C is the connected component of szlf(:vﬁ (F) which contains

z. By Lemma 6.1.7, the fixed point x is in the interior of W#*(C; ) and every singularity z
of F in the frontier of W*(C; ) satisfies Af(2) > A¢(x). The existence of the connexion

T

implies that A¢(x) > Af(y) so the fixed point y is not in the frontier of W*(C; ) and is in

Y\Ws(Cx ).

We consider the universal cover ﬁ( of ¥\X which is identified to the unit disk D and
7 : D — ¥\ X the universal covering map. Let U be a connected component of 7~1(C;\ X)
and 7 a lift of the connexion v such that there exists ¢ > 0 such that 5((0,¢)) < U. By
hypothesis on y, there exists ¢ > 0 such that ¥((1 —¢€,1)) ¢ U.

Recall that 7 naturally extends to $!. Moreover, we saw that lim; .o J(t) and lim;_,q 5(¢)
are well-defined on $' and will be denoted Z and 7.

The set U is an open connected set of D whose frontier is a union of lifted leaves. Then
there exists a lifted leaf ¢ of Fr(U) which separates D such that U is on one side and ¥ is
in the other. By hypothesis, the points w(gz) and a(&) are distinct from 2 and 7, indeed,
x is in the interior of W*(C;) and y ¢ Fr(W*(C;)). Since ¢ is the lift of a connexion,
we obtain that 1 and ~ are two connections which intersect strongly, hence by Lemma
7.0.3 there exists a connexion from x to w(t) which is impossible because by definition

w(t) € Fr(W*(C;)) and then A¢(w(v)) > Af(x).

Third case. Suppose that x is a source of F. The point y is either in the frontier of the
repulsive basin W"(x) of = or in the complement of W*(z). We separate these two cases.

1) We suppose that y is in the frontier of W*(z). There exists a chain of connexions
from = to y and so we deduce the result. Indeed, by definition, the singularity y is ac-
cumulated by leaves (¢;);es of W*(x) whose alpha-limit point is x. By the local model
described in Chapter 6.1, the closure of these leaves contains a chain of connexions which
starts at = and also contains y.

2) We suppose that y is in the complement of W*(z). We consider U a connected com-
ponent of 7~ (W%(z)\{z}) where 7 : D — ¥\ X the covering map defined in the second
case. We can consider a lift ¥ of the connexion v such that there exists ¢ > 0 such that
7((0,€)) < U. By hypothesis on y, there exists ¢ > 0 such that 5((1 — €’,1)) ¢ U. The
limits limy_,0¥(¢) and lim;_,; J(¢) are well-defined on $' and will be denoted % and .

We apply similar arguments as in the second case. The set U is an open connected
set of D whose boundary is a union of lifted leaves. Then there exists a lifted leaf ¢ of
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Fr(U) separating D such that U is on one side and ¥ is on the other. By hypothesis, the
points w(¢) and a(¢) are distinct from ¥ and §, indeed, z is in the interior of W*(C;)
and y ¢ Fr(W#(C;)). Since @Z is the lift of a connexion, we obtain that i) and = are two
connections which intersect strongly, hence by Lemma 7.0.3 there exists a connexion from
(1) to y. The singularity «(¢) can not be a source nor a sink so it is a saddle point
of F, hence we apply the result of the second case which asserts that the existence of a
connexion from «(v) to y implies that «(1)) and y are in the same connected component of
G;f(a( o)+ (F). Moreover, by hypothesis, a(1) and z are in the same connected component

of Gy v+ (F) thus we deduce that z and y are also in the same connected component of
£ (@)

Gfgf (z)* (F). -

8.2 Equality between the barcode 87 and the barcode Bgen(f, F) in the
generic case

We consider a Hamiltonian homeomorphism f of a closed and oriented surface ¥ with a
finite number of fixed points. We suppose that Fix(f) is finite and unlinked, each fixed
point z € Fix(f) satisfies ind(f,z) € {—1,1} and that the action function Ay : Fix(f) — R
is injective. Let I = (ft)te[o,l] be a maximal isotopy from id to f fixing all fixed points of
f. We denote Ay the action functional of f.

Recall that a foliation F € Fgen(I) does not have connexions between saddle points,
and the stable and unstable cones of a saddle point x of F are both composed of a unique
leaf which will be referred to as the stable and unstable leaves of x.

Let us consider the graph Ggen(F) given by Definition 4.0.2. Remember that Ggen(F)
is the graph whose set of vertices is the set Fix(f) and whose edges correspond to leaves
¢ of F such that indez(f, a(¢)) = indez(f,w(¢)) — 1, where indez(f,-) is the Conley-
Zehnder index, defined in Chapter 4, equals to 1 on sources and sinks and equals to —1 on
saddle points. Notice that Ggen is distinct from the graph G(F) given in the introduction
of this chapter.

In this section we want to compare the barcode Bgen(F) to the barcode
B(G(f)v Af|X7 ind(]:a ))7
denoted Br, constructed in Chapter 6. We will prove the following result.

Theorem 8.2.1. Let us consider a Hamiltonian homeomorphism f on a compact surface
Y. We suppose that Fix(f) is finite and unlinked, each fized point x € Fix(f) satisfies
ind(f,z) € {—1,1} and the action function is injective. We consider a mazximal isotopy I
such that Sing(I) = Fix(f) then for a foliation F € Fgen(I) we have

Bgen(]:) = /3.7:-

We recall the definition of the functor 8. Let V = (V;)4er be a persistence module. Let
us consider the set of ¢ € R in the spectrum of V' such that dim(Ker(i;- ;+)) is equal to 1
and label its elements b1, ..., b,. For each b;, there exists a unique a; € R with the following
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property: Let x € V}- represents a non-zero element in Ker(it—ﬁ) = 1, the element z is in
J
the image of i+ ,— but x is not in the image of 7~ ,—; if we label the remaining elements
5 %5 5275

of the spectrum of V by {ci, ..., ¢, } then the barcode 5(V) consists of the list of intervals
(aj,bj] and (cg, +0), where 1 < j <nand 1 <k <m.

We will consider G, ,(F), Ggen 4 (F) the associated filtered graphs and we denote by
(H.)ter the persistence module of the chain complex (Cf)ieq0,1,2)1er of Definition 4.0.3.
Finally, we denote by Bgen(F) the barcode B((HL)tr) where B is the functor defined in

Chapter 3.

To avoid any confusion, we will always refer to the chain complex by C! where i €
{0,1,2} and t € R. We will refer to connected components of the graph G(F) by C or C’
and to a connected component of the graph Ggen(F) by Cgen. For t € R and a connected
component C of G; (F) we denote L(C) the minimum of the action function on the sinks
of C and for t € R and a connected component C’ of G (F) we denote D(C') the maximum
of the action function on the sources of C’. Moreover, to simplify the notation, we provide
the filtered chain complex (C});e(0,1,2},ter With a natural scalar product (.|.) associated to
the canonical basis. Meaning that we consider the bilinear function {.|.) on the space C}
such that for every couple of fixed points = and y of f in C}, we have (z,y) = 1 if and only
if x = y and {(z,y) = 0 otherwise.

Theorem 8.2.1 allows us to prove Property 4.0.11 of Chapter 4 which states that the
barcode Bgen(f, F) does not depend on the choice of F € Fgen(I). We recall that assump-
tions of Theorem 8.2.1 are satisfies in this particular case.

Proof of Proposition 4.0.11. By Theorem 8.2.1, for each foliation F € Fgen(I) we have that
Bgen(F) = Br . Moreover, by Theorem 8.1.1, the barcode 87 does not depend on the
choice of the foliation F € Fgen(l). So we obtain that Bgen(f, F) does not depend on the
choice of F € Fgen(I) which is the result. O

We fix a foliation F € Fge, for the remaining of the section.

Proof of Theorem 8.2.1. By Remark 4.0.9, each action value of Ay is the end of a unique
bar of the barcode Bgen (F) and by Corollary 6.2.7, we have the same result for the barcode
BF so it is enough to prove the inclusion Br < Bgen(F) to prove that these barcodes are
equal.

Moreover, Corollary 6.2.7 states that exactly one end point of every bar of the barcode
BF, except the bars (min Ay, +00) and (max Ay, +00), is the action value of a saddle point
of F. So it is enough to prove that finite bars of the barcode 3x are also bars of the bar-
code Bgen to prove the inclusion 87 < Bgen(F). Indeed, the remaining bars of the barcode
would be the same semi-infinite bars as they would be associated to the same saddle points.

We will prove that for every saddle point z of f, if the bar J of B, of which Af(x) is an
end, is a finite bar, then it is also a bar of the barcode Bgen(F). Notice that, by construc-
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tion, the bars (min Af, +00) and (max Ay, +00) of B are also bars of the barcode Bgen (F).

For the remainder of the proof, we consider a saddle point x of f, we denote by ¢ its
action value and by C, the connected component of G, (F) which contains z. By Lemma
6.2.4 the set of connected components of G, (F) which are included in C,, which were
labeled j;, 1(C$) in Chapter 5, has one or two elements. We separate those two cases.

Case 1. The set j; *(C,) consists of two connected components of G (F) denoted C and
C'. By symmetry, we can suppose that L(C) > L(C’) and, by the construction described
in Chapter 5, there is a bar (L(C),t] in the barcode 8. Let us prove that this bar is also
a bar of the barcode Bgen(F). It means that there is an element of Ker(i,- ,+) which is in
the image of iy )+~ but not in the image of iz )~ ;-

By hypothesis, the omega-limit points of the unstable leaves of x are distinct sinks y
and 3/ of F where y € C and ' € C'. We have @' (z) = y + ' so the element y + 3/ € C'(t)+
satisfies [y + 1] € Ker(i;— 4+). It remains to prove that [y 4 y'] is in the image of iy )+ ;-
and not in the image of iz c)-;~. For that, we will consider another cycle in Cé+ repre-
senting [y + ¥'] in homology.

We will use some geometric lemmas.

We will call a path of leaves a path I" in ¥ which is the concatenation of leaves of F.
The singularities of a path of leaves will refer to the alpha-limit points and omega-limit
points of those leaves.

Lemma 8.2.2. Let us consider s € R, and two sinks y1 and ys of F in the same connected
component Cs of G5 (F). There exists a path of leaves from y1 to ya whose singularities
are alternatively sinks and saddle points of Cs.

Proof of Lemma 8.2.2. By definition of the connected component C, of G, there exists a
path of leaves I" from y; to y9 in X. The path I' may contain sources. For a source z in I’
we will modify I" into a path which does not contain z.

If there is a source z in I, there exist two leaves ¢; < I and ¢ < I" whose alpha-limit
points are equal to z and omega-limit points are either saddle points or sinks of F that we
denote x1 and xo. The singularities 1 and z9 are in the repulsive basin of z for F so, by
Lemma 4.0.7, there exists a path 7 of leaves of G (F) from z; to x2 whose singularities
are alternatively saddle points and sinks of F.

We cut the union ¢; U {z} U ¢ from the path T' and replace this portion by the path ~
given by Lemma 4.0.7. We obtain a new path I from y to 3’ such that the source z is not
in I'.

We do the same process for every source of I' and we finally obtain a path from y to 3/
as wanted. O

We prove the following lemma.

95



Lemma 8.2.3. For every s € R and every couple of sinks y1 and ys of F in the same
connected component Cs of G5 (F) we have [y1] = [y2] in Hf.

Proof of Lemma 8.2.3. Let us consider s € R, and two sinks ¢; and yo of F in the same
connected component Cs of G (F). By Lemma 8.2.2 there exists a path of leaves in ¥
from y; to y2 whose singularities are alternatively sinks and saddle points of Cs. We denote
by (%i)o<i<n] the saddle points of the path I' and by a simple computation we obtain

01 (Z $z> = y1 + Y.

=0
So, by definition, [y1] = [y2] in H . O

Let us come back to the first case of the proof of Theorem 8.2.1. By Lemma 8.2.3 each

sink z € C of F (resp. each sink 2z’ € C' of F) satisfies [z] = [y] (resp. [Z/] = [¥/]) in
HY{. So for every couple of sinks z € C and z € C’ of F, the element z + 2’ € C satisfies
[z + 2] = [y +¢'] € Ker(i;- 4+). We denote by z¢ and z¢: the sinks of C and C’ such that
Af(ze) = L(C), Af(zcr) = L(C).
We supposed that A¢(z¢) = L(C) > Af(zcr) = L(C') so the sink z¢ is not a cycle in C’OL(C)i
so the element [z¢ + z¢/] is not in the image of ¢ L(c)-,—- Moreover, the sinks z¢ and z¢/
are not in the same connected component of G;—(F) and so we deduce that [z¢ + z¢/] is
in the image of ir,c)+ -

So, by construction, there exists a bar (L(C),t] in the barcode Bgen(F).

Case 2. The set j;l(Cx) is a unique element. We will consider the connected compo-
nents of the subgraphs (G )ser instead of connected components of the subgraphs (G} )icr.
We consider the connected component C}, of G}~ (F) which contains . By Lemma 6.2.4
the set of connected components of G5 (F) included in C.,, which were labeled j;~*(C;) in
Chapter 5, is composed of 1 or 2 elements. We separate those two cases.

1) Suppose that j;'(C%) is composed of one connected component, then, by construc-
tion, there is no finite bar J in the barcode Bx of which ¢ is an end point. We have nothing
to prove in this case.

2) Now we suppose that j; '(C.) is composed of two connected components of the
graph G:l (F) denoted C and C’. By symmetry we can suppose that D(C) < D(C’) and by
construction there is a bar (¢, D(C)] in the barcode Bx. Let us prove that this bar is also a
bar of the barcode Bgen(F). It means that there is an element in Ker(ip(c)- p(c)+) which
is in the image of 44+ p(c)- but not in the image of i, p()-. We will need the following
lemma about the repulsive basin W?*(C) of C.

Lemma 8.2.4. We label x4, ...,x, the saddle points in the frontier of W$(C). Then, for
every T > D(C), the element Y =, ,ec y of CI satisfies

Yy source

n

=1
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Proof. For each source y of C, by definition, 0% () is equal to the sum of the saddle points
in the frontier of the repulsive basin of y. These saddle points have either one or both of
their stable leaves in W#(C). We separate those cases.

Firstly, we label x1, ..., x,, the saddle points of F of which only one stable leaf have its
alpha-limit point in C. For every i € [0,n] we have (33 (Y)|z;) = 1 for every i € [0,n].
Moreover, the action values of these saddle points is less then or equal to ¢t and it is simple

to see that this belong to the frontier of W#(C).

Secondly, we label 2, ..., 2], the saddle points such that both stable leaves have their
alpha-limit points in C. For every i € [0,m] we have (01 (Y))|z!) = 2. Those saddle points
are nondegenerate saddle points of F so that they are in the interior W*(C) and not in its
frontier. Indeed, both stable cones of a saddle point = whose action satisfies A¢(z) >t are
leaves of F whose alpha-limit points are in the same connected component of G} (F).

Finally, we compute 01 (Y) as follows.

HBY)= > 0@
yeC,
Yy source

n m
= Z x; + Z 2$;
i=1 =1

n
Z T
=1

And we obtain the result. O

Let us denote ¢ = D(C), we will consider the element ¥ = >, ¢ ¥ in Ccs'. By

y source
Lemma 8.2.4, Y satisfies

5 )= Y
=1

where 1, ..., 2, are the saddle points of the frontier of W$(C). So we have [}, z;] €
Ker (i .+).

By hypothesis, the saddle point z is one of the saddle points (x;);e[1,,] and each w; sat-

isfies A(z;) < A(z) since C is a connected component of G; (F). So we have that [/ | z;]
is in the image of 4+ ..

Moreover, the singularity  is not homologous in C{ to a chain of singularities of C? .
Indeed, if it was the case then, by definition, it would exist X’ € Cf and Y’ € C§ such
that = X' + 05 (Y').

We set y, € C and ), € C’ the only two sources of F such that z is in the frontier of the
sets W"(y,) and W¥(y,). The equality z = X' + 05 (Y') would imply that (Y'|y,) = 1
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or (Y'|y.> = 1, which is impossible because, by hypothesis, A¢(y,) > Af(y) = c¢. In-

deed, if we have 05 (Y') = x — X’ then, there exists a source y such that (Y|y) = 1 and

(05 (y)|x) =1, which means that z is in the frontier of W*(y). So y is either equal to y,
/

or Y.

So, we have the same result for > | z; and so [>;" ; #;] ¢ Im(i;- ).

Thus, by construction, there exists a bar (A(x), D(C)] in the barcode Bgen(F).
Now we can prove Theorem 4.0.12 from Chapter 4 stated as follows.

Theorem 8.2.5. If we consider a Hamiltonian diffeomorphism f with a finite number of
fized points which is C?-close to the identity and generated by an autonomous Hamiltonian
function then the barcode Bgen(F) is equal to the Floer homology barcode of f.

Proof. If we suppose that the autonomous Hamiltonian function H is C? close to a con-
stant then the Floer homology of H is equal to the Morse homology of H, we refer to [3]
for a proof. We deduce that the Morse Homology barcode S(HM. (H))ser) of H is equal
to the Floer Homology barcode B(HF.(H))«r) of H, where 3 is the functor defined in
Chapter 3 which associate a persistence module to its barcode.

The time one map f; = f of the Hamiltonian flow is C! close the the identity and its
set of fixed points is unlinked.

Moreover, the gradient-lines of H provides a C! foliation F positively transverse to
the natural Hamiltonian isotopy induces by H. This isotopy is maximal and so fixes every

fixed points of f. The foliation F is gradient-like and there is no cone of leaves at the
saddle points of F.

Moreover, the construction of the map B in Chapter 5 follows the ideas of the Morse ho-
mology theory then we can assert that the barcode B is equal to the barcode B(HM. (H))ser,

Thus, by Theorem 8.2.1 we have

Bgen(f) = Br = BHM (H))ser = SHF,(H))cr.

So we obtain the result. O
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Chapter 9

Perspectives

Let us consider a Hamiltonian homeomorphism f of a surface with a finite number of fixed
points. In the previous chapter, every construction of barcodes depends on the choice of a
maximal unlinked set of fixed points X of f. A natural question remains.

Question 9.0.1. Can we construct a barcode associated to f which is equal to the Floer
Homology barcode in the case of a generic diffeomorphism?

We have some ideas to study this question. In this short chapter we explain the diffi-
culties to generalize our constructions and the objects we may use in a near future.

Conley-Zehnder index

The first problem we will have to deal with is the Conley-Zehnder index. The Floer
Homology is indexed by the Conley-Zehnder index, denoted indcz(+), which is well-defined
for C'! diffeomorphisms.

Nevertheless, the Conley-Zehnder index can be extended for Hamiltonian homeomor-
phisms at isolated fixed points. We found an interesting way to describe this extension
using generalized isotopies, defined in the preliminaries. Let us recall a quick definition.
If we consider a Hamiltonian homeomorphism f on ¥, we denote 3 the universal cover of
¥ and we can consider its compactification into a 2-sphere $2 by adding a point o0, then
a lift ]? of f can be compactified into a homeomorphism f of $2. An isotopy from id to
f on $! which fixes oo is called a generalized isotopy. In the next section we will see why
considering generalized isotopies can be useful in our studies.

Moreover, let us consider the Floer homology barcode of a Hamiltonian diffeomorphism
f. We denote Ay the action function of f. For every finite bar J = (Af(x), Af(y)] where
x,y € Fix.(f), we have indoz(y) — indoz(x) = 1. We refer to the construction of Floer
Homology for more details [3].

Now, let us consider a Hamiltonian homeomorphism f with a finite number of fixed
points, a maximal unlinked set of fixed points X of f and an isotopy I from id to f which
fixes X and a foliation F positively transverse to I. We denote indcz(+) the extension of
the Conley-Zehnder index defined on Fix.(f). For every fixed point z € X one may prove
that we have

e if indeoz(z) = 1, then z is a saddle point for F,
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e if indoz(x) # 1, then z is either a sink or a source for F.

So, the barcode Br defined in Chapter 6 may have finite bars J = (Af(x), A¢(y)] such
that indcz(y) —indoz(z) # 1. Indeed, it can be the case if Fix.(f) is not unlinked. Thus
it is not enough to work only with maximal isotopies of f.

Torsion-low isotopies

Let us consider of a Hamiltonian homeomorphism f on a surface ¥. Yan |70] introduced
the notion of torsion-low isotopies. Roughly speaking, an isotopy I from id to f is said to
be torsion-low at x € Sing([) if ps(I,z) < [—1,1], where ps(I,z) is the local rotation set
of = for I, defined in the preliminaries.

Now, we consider a maximal generalized isotopy I of a Hamiltonian homeomorphism
f on X. Every fixed point Z of I is a lift of a fixed point x of f. The isotopy I is said
to be a maximal torsion-low generalized isotopy if I is torsion-low at every fixed point of
Sing(]) except at o and I is a maximal isotopy.

A result of Yan [76] asserts the existence of maximal torsion-low generalized isotopies.

Moreover, for a maximal torsion-low generalized isotopy I of f, the Conley-Zehnder
indices of the points of Sing(I)\{oo} is linked to the rotation number of the point co.
Indeed, one may prove that if the rotation number of co for the isotopy I is equal to —F,
then it holds that:

e every saddle point T of I is the lift of a fixed point x of f such that indoz(z) = 2k+1,
e every sink 7 of I is the lift of a fixed point x of f such that indoz(z) = 2k,

e every source ¥ of I is the lift of a fixed point z of f such that indoz(x) = 2k + 2.

We can consider a gradient-like foliation F positively transverse to the maximal torsion-
low generalized isotopy I. Moreover, F is equipped with the action function Ay of f and

A

an index function ind(F, ).

Thus, we can consider the barcode 8z associated to F as defined in Chapter 6. We
can prove that for every finite bar J of B £, there exist x,y € Fix.(f) and lifts ¥, 7 of x and
y fixed by I such that J = (Af(x), A¢(y)] and indez(y) — indoz(z) = 1.

In a near future, we hope to define a Barcode using the barcodes associated to maximal
torsion-low generalized isotopies but two important questions remain.

Question 9.0.2. We consider a Hamiltonian diffeomorphism f and a bar J of its Floer
homology barcode. Does there exist a torsion-low generalized isotopy of f such that for a
positively transverse foliation F, J is a bar of B¢

If we consider every torsion-low generalized isotopy of a Hamiltonian diffeomorphism
f and every bar of their associated barcodes, then we may have too many bars to obtain
a barcode equal to the Floer homology barcode of f.

Question 9.0.3. Is there a natural way to select the "good" bars to keep?
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Chapter 1

Introduction

In this second part of the thesis, we study the Calabi invariant on the unit disk usually
defined on compactly supported Hamiltonian diffeomorphisms of the open disk. In partic-
ular we extend the Calabi invariant to the group of C' diffeomorphisms of the closed disk
which preserves the standard symplectic form. We also compute the Calabi invariant for
some diffeomorphisms of the disk which satisfy some rigidity hypothesis.

Let us begin with some basic definitions of symplectic geometry.

Let us consider (M?",w) a symplectic manifold, meaning that M is an even dimensional
manifold equipped with a closed non-degenerate differential 2-form w called the symplectic
form. We suppose that mo(M) = 0 and that w is exact, meaning that there exists a 1-form
A, called a Liouville form, which satisfies dA = w.

Let us consider a time-dependent vector field (X;)cr defined by the equation
dH; = w(Xy,.), (1.1)
where
H:RxM->R
(t,x) — Hy(x)

is a smooth function 1-periodic on ¢, meaning that H;,1 = H; for every ¢t € R. The function
H is called a Hamiltonian function. If the vector field (X;),er is complete, it induces a
family (f¢)wer of diffeomorphisms of M that preserve w, also called symplectomorphisms
or symplectic diffeomorphisms, satisfying the equation

0
fo = id and aft(z) = Xt(ft(z))

In particular the family I = (f;)sc[o,1] defines an isotopy from id to fi. The map f is
called a Hamiltonian diffeomorphism. It is well known that the set of Hamiltonian diffeo-
morphisms of a symplectic manifold M is a group which we denote Ham(M,w), we refer
to [62] for more details.

Let us consider (M,w) a symplectic manifold which is boundaryless, o (M) = 0 and
such that w is exact. We say that H is a compactly supported Hamiltonian function if
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there exists a compact set K < M such that H; vanishes outside K for every t € R.
A compactly supported Hamiltonian function induces a compactly supported Hamiltonian
diffeomorphism f. Such a map is equal to the identity outside a compact subset of M.
Let us consider a compactly supported Hamiltonian diffeomorphism f and A a Liouville
form on M. The form f*\ — X is closed because f is symplectic but we have more, it is
exact. More precisely there exists a unique compactly supported function Ay : M — R,
also called action function, such that

dA; = f*A = A,

In the literature the Calabi invariant Cal(f) of f is defined as the mean of the function
Ay and we have

Cal(f) = jM Apm, (1.2)

where w" = w A ... A w is the volume form induced by w, see [62] for more details. We will
prove later that the number Cal(f) does not depend on the choice of A.

Let us give another equivalent definition of the Calabi invariant for a compactly sup-
ported Hamiltonian diffeomorphism f. We note H a compactly supported Hamiltonian
function defining f. The Calabi invariant of f can also be defined by the equation

1
Cal(f) = (n+1) L fM Hydt. (1.3)

To prove that §, Asw™ does not depend on the choice of the Liouville form X, one may
use the fact that the action function Ay satisfies

1

Ap(2) :f (XN + Ho) o f,(2)ds, (1.4)
0

where (X;)ser is the time dependent vector field induced by H by equation (1.1) and

(fs)ser is the isotopy induced by the vector field (X;)ser. Moreover, S(l) §yy Hiw"dt does

not depend on the compactly supported Hamiltonian function H defining f.

The function Cal defines a real valued morphism on the group of compactly supported
Hamiltonian diffeomorphisms of M and thus it is a conjugacy invariant. It is an important
tool in the study of difficult problems such as the description of the algebraic structure of
the groups Ham (M, w): A.Banyaga proved in [5] that the kernel of the Calabi invariant is
always simple, which means that it does not contain nontrivial normal subgroups.

In this article, we study the case of the dimension two and more precisely the case of the
closed unit disk which is a surface with boundary. We denote by [|.|| the usual Euclidian
norm on R?, by I the closed unit disk and by $' its boundary. The group of C'* orientation
preserving diffeomorphisms of I will be denoted by Diff} (D). We consider Diff},(D) the
group of C'! symplectomorphisms of ID which preserve the normalized standard symplectic
form w = %du A dv, written in cartesian coordinates (u,v). In the case of the disk, the
group Diff] (D) is contractible, see [39] for a proof, and coincides with the group of Hamil-
tonian diffeomorphisms of ). Moreover, the 2-form w induces the Lebesgue probability
measure denoted by Leb and the symplectic diffeomorphisms are the C! diffeomorphisms
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of D which preserve the Lebesgue measure and the orientation.

Let us begin by the case of the unit open disk D. The open disk is boundaryless hence
we already have two equivalent definitions of the Calabi invariant given by equations 1.2
and 1.3 on the set of compactly supported symplectic diffeomorphisms of D. Let us give a
third one. A. Fathi in his thesis [22] gave a dynamical definition which is also described by
J.-M. Gambaudo and E. Ghys in [32]: if we consider an isotopy I = (ft)ieqo,17 from id to f,
there exists an angle function Ang; : D x D\A — R where A is the diagonal of D x D such
that for each (z,y) € D x IB)\A, the quantity 2w Ang;(x,y) is the variation of angle of the
vector fi(y) — fi(x) between t = 0 and ¢t = 1. If f is a compactly supported C'* symplectic
diffeomorphism then this angle function is integrable (see section 3) and it holds that

Cal(f) = J]f)) B Ang;(z,y)dLeb(z)dLeb(y), (1.5)

where the integral does not depend on the choice of the isotopy.

In this article we will give an answer to the following question.
Question 1.0.1. How to define an extension of the Calabi invariant to the group Diff}d (D)?

M. Hutchings [13] extended the definition given by equation 1.3 to the C! symplectic
diffeomorphisms which are equal to a rotation near the boundary. In another point of
view, V. Humiliére |12] extended the definition given by equation 1.3 to certain group of
compactly supported symplectic homeomorphisms of an exact symplectic manifold (M, w)
where a compactly supported symplectic homeomorphism f of M is a C limit of a se-
quence of Hamiltonian diffeomorphisms of M supported on a common compact subset of
M.

In the case of the open disk, for a compactly supported symplectomorphism f, the
choice of the isotopy class of f is natural. But if f is a symplectic diffeomorphism of the
closed disk such that its restriction to the open disk is not compactly supported then there
is no such natural choice of an isotopy from id to f.

The rotation number is a well-known dynamical tool introduced by Poincaré in [60]
on the group Homeo, ($') of homeomorphisms of $! which preserve the orientation. Let
us consider the set of homeomorphisms § : R — R such that g(xz + 1) = g(z), denoted
I—io\rngo+(81). One may prove that there exists a unique p € R such that for each z € R and
n € Z we have |§"(z) — z — np| < 1. The number p = p(q) is called the rotation number of
g. Let us consider g € Homeo, ($!) and two lifts § and §’ of g in }f(ﬁ_e/oJr(Sl), there exists
k € Z such that § = §' + k and so p(g) = p(§') + k. Consequently we can define a map
p : Homeo ($1) — T*! such that p(g) = p(§) + Z where § is a lift of g. The number p(g) is
called the rotation number of g. We give further details about the rotation number in the
next section.

We now state the results of this article. The following proposition allows us to consider
a natural choice of an action function of a symplectomorphism of the closed disk.
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Proposition 1.0.2. Let us consider f € Diff} (D), Af:D — R a C! function such that
dAy = f*A—X and p an f invariant Borel probability measure supported on S'. Then the
number SSI Ayrdp does not depend on the choice of i and X.

The first theorem follows.

Theorem 1.0.3. For each f € Diff} (D) there exists a unique function Af :ID — R such
that dAy = f*X — X and SSI Ardp = 0 where X is a Liouwville form and p a f-invariant
probability measure on $'. The map Caly : Diff} (D) — R defined by

Caly (f) = f A(2)w(2)
D
does not depend on the choice of A and p. Moreover the map Caly is a homogeneous
quasi-morphism that extends the Calabi invariant.
In another direction, the definition given by equation 1.3 and the definition given by

equation 1.5 are based on isotopies. Then we consider the universal cover ]%‘i(ID)) of
Diff} (D) which is composed of couples f = (f,[I]) where f € DiffL (D) and [I] is an
homotopy class of isotopies from id to f. We will prove that for f € Diff} (D) and I an
isotopy from id to f, the angle function Ang; does not depend on the choice of I € [I].

Hence, for f = (f,[I]) € ]5\1Ffi(]D)) we can denote Angy = Ang; for I € [1].

Moreover, for a diffeomorphism f € Diff!(ID) two isotopies I = ( f)ero,] and I' = (ff)seqo,1]
from id to f are homotopic if and only if their restriction I|g1 and I’|g1 to $* are homotopic
and so define the same lift ]?\\S: of f|g1 on the universal cover of $1. Hence it is equivalent

to consider ]ﬁi(]l))) as the set of couples f = (f, @) where f € Diff} (D) and ¢ a lift of
flg1 to the universal cover of $.

~ 1
Theorem 1.0.4. Let us consider an element f of Diff ,(D). The number

~

Gala( ) - |

Ang iz, y)w(z)w(y),
D2\A

defines a morphism Caly : f):ﬁ’i(ﬂ])) — R which induces a morphism Caly : Diffl (D) — T*
defined for every f e Diffl (D) by

Caly(f) = Caly(f) +Z,
where ]? is a lift of f to ]ﬁi(]l)))

Along the same lines, we have the following result.

~ o~
Theorem 1.0.5. Let us consider an element (f, ¢) of Diff ,(D). There exists a Hamiltonian
function H : T' x M — R such that Hy is equal to 0 on $1~for every t € R which induces
an isotopy (¢t)sefo,1] from id to f where the lifted isotopy (¢t )selo,1] satisfies o1 = ¢ . The
number

Gais1.) = [ [ s,

does not depend on the choice of such a Hamiltonian function H. Moreover the map
~ o~
Cals : Diff,py — R 15 @ morphism and induces a morphism Cals : Diﬂ"i(D) — T defined
by

Cals(f) = Cals(f, ¢) + Z.
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Remark 1.0.6. We have the following commutative diagram

Diff (D) —~ Diff\ (D)

R U T!

where i € {2, 3}.

The link between these three extensions is given by the following result:

Theorem 1.0.7. The morphisms Caly and Cals are equal and for f = (f, qg) € IS:E‘LIU(D)
we have the following equality

Cala(f) = Cali(f) + (6).
Moreover the maps Caly, 62{12, Cals, Cﬁ?\aJlg and Calg are continuous in the C* topology.

In the following, @2 and @3 will be denoted Cal. Since the morphism Cal and the
quasi-morphism Cal; are not trivial we obtain the following corollary about the perfectness
of the groups ]ifin (D) and Diffl (D). Recall that a group G is said to be perfect if it is
equal to its commutator subgroup [G, G| which is generated by the commutators [f,g] =
f~tg7'fg where f and g are elements of G.

~ 1
Corollary 1.0.8. The groups Diff (D) and Diffl (D) are not perfect.

The non simplicity of those groups was already known since the group of compactly
supported Hamiltonian diffeomorphisms is a non trivial normal subgroup of Diffl (D).
The questions of the simplicity and the perfectness of groups of diffecomorphisms and
Hamiltonian diffeomorphism have a long story, especially the case of the group of area-
preserving and compactly supported homeomorphisms of the disk . The question appears

on McDuff and Salamon’s list of open problems in [62] and we can refer for example to
[5, 11,20, 21, 58, 57, 63, 64]. Recently D. Cristofaro-Gardiner, V. Humiliére, S. Seyfaddini
in [17] proved that the connected component of id in the group of area-preserving home-

omorphisms of the unit disk D is not simple. The proof requires the study of the Calabi
invariant on the group of compactly supported Hamiltonian of D but also strong arguments
of symplectic geometry as Embedded Contact Homology (also called ECH) developed by
M. Hutchings and D. Cristofaro-Gardiner in [17].

To give an illustration of the extension we compute the Calabi invariant Cal; of non
trivial symplectomorphisms in Sections 5 and 6. We study the Calabi invariant Cal; of some
wrrational pseudo-rotations. An irrational pseudo-rotation of the disk is an area-preserving
homeomorphism f of D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number @ ¢ Q/Z, called the rotation
number of f that measures the rotation number of every orbit around 0 and consequently
is equal to the rotation number of the restriction of f to $'. We refer to the next section
for more details.

The following results of this paper are well-inspired by M. Hutchings’s recent work.
M. Hutching proved as a corollary in [13] that the Calabi invariant Cals of every C®
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irrational pseudo-rotation f of the closed unit disk D such that f is equal to a rotation
near the boundary is equal to the rotation number of f. This means that for an irrational
pseudo-rotation f which is equal to a rotation near the boundary, Cal;(f) is equal to 0.
The proof uses strong arguments of symplectic geometry such as the notion of open-books
introduced by Giroux (see |37] for example) and the Embedded Contact Homology theory.
We want to adopt a more dynamical point of view and we partially answer the following
question.

Question 1.0.9. Is the Calabi invariant Caly(f) equal to 0 for every C' irrational pseudo-
rotation f of D?

With the continuity of Cal in the C! topology, we can deduce the first result of C'1-
rigidity as the following result.

Theorem 1.0.10. Let f be a C* irrational pseudo-rotation of D. If there exists a sequence
(gn)nen in DiffL (D) of C diffeomorphisms of finite order which converges to f for the C
topology, then

Cah(f) = 0.

Corollary 1.0.11. Let f be a C' irrational pseudo-rotation of D. If there exists a sequence
(nk)ken such that f™ converges to the identity in the C* topology, then we have

Cah (f) = 0.

The morphisms Cal and Cal are not continuous in the C° topology, see proposition
4.2.5. Nevertheless, by a more precise study of the definition of Cal we obtain a C°-rigidity
result as follows.

Theorem 1.0.12. Let f be a C* irrational pseudo-rotation of D. If there exists a sequence
(nk)ken of integers such that (f™)ren converges to the identity in the CO topology, then
we have

Caly (f) = 0.

There are already general results of C°-rigidity of pseudo-rotations. Bramham proved
[12] that every C® irrational pseudo-rotation f is the limit, for the C° topology, of a se-
quence of periodic C* diffeomorphisms. Bramham [13] also proved that if we consider an
irrational pseudo-rotation f whose rotation number is super Liouville (we will recall what
it means later) then f is C’-rigid. That is, there exists a sequence of iterates f™ that
converges to the identity in the C°-topology as nj — . Le Calvez [51] proved similar
results for C! irrational pseudo-rotation f whose restriction to $' is C' conjugate to a
rotation.

Then for f a C! pseudo-rotation of the disk I the results of Bramham and Le Calvez
provide a sequence of periodic diffeomorphisms (g, )neny which converges to f, the diffeo-

morphism g, may not be area-preserving but let us hope to completely answer question
1.0.9.

In the last section we give examples where the rotation number of a pseudo-rotation

satisfies some algebraic properties and where the hypothesis of Theorem 1.0.12 and Corol-
lary 1.0.11 are satisfied.
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Organization

We begin to give some additional preliminaries in chapter 1. In a second chapter we
give the formal definitions of the Calabi invariant of equations 1.2, 1.3 and 1.5 and their
natural extensions given by Theorems 1.0.3, 1.0.4 and 1.0.5. In chapter 3 we give the proof
of the link between these extensions given by Theorem 1.0.7. The last chapter concerns
the results about the computation of the Calabi invariant for pseudo-rotations.
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Chapter 2

Preliminaries

This chapter aims to complete the preliminaries of part I. To simplify the reading, some
notions and notation are re-introduced.

Invariant measures. Let us consider f a homeomorphism of a topological space X.
A Borel probability measure p is f-invariant if for each Borel set A we have

In other terms, the push forward measure f,u is equal to . We denote by M(f) the set
of f-invariant probability measures on X. It is well-known that the set M(f) is not empty
if X is compact.

For a probability measure p on D we will note Diffb(D) the subgroup of Diff! (D) that
is the set of orientation preserving C' diffeomorphisms which preserve p.

Quasi-morphism. A function F' : G — R defined on a group G is a homogeneous
quasi-morphism if

1. there exists a constant C' = 0 such that for each couple f, g in G we have |F(fog) —
F(f) = F9l <,

2. for each n € Z we have F(f™) = nF(f).

Rotation numbers of homeomorphisms of the circle. The rotation number is
defined on the group Homeo ($1) of homeomorphisms of $* which preserve the orientation.
We begin to give the definition of the rotation number on the lifted group MO+($1)
which is the set of homeomorphisms § : R — R such that g(z + 1) = g(x) + 1. There
exists p € R such that for each z € R and n € Z we have |§"(z) — z — np| < 1, see |15] for
example. The number p is called the rotation number of g and denoted p(g). It defines a
map p : HFOEEOJr(Sl) - R.

Moreover, p(g) naturally lifts a map p : Homeo, ($') — T!. Indeed, if we consider
g € Homeo, ($!) and two lifts § and § of g there exists k € Z such that §’ = § hence we
have p(§') = p(g) + k. By the Birkhoff ergodic theorem for every g-invariant measure p we
have

p(g) = | ddp.
Sl
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We denote by 4 : R — R the displacement function of § where 6(z) = §(z) — 2 is one-
periodic and lifts a function d such that for every § € Homeo, ($!) lifting a homeomorphism
g and every g-invariant measure p we have

n

o 1 Z.
p@) = | ddu = ,}ggoni;é(g (2)),

for every z € $'.
The map p is the unique homogeneous quasi-morphism from ]5\11?1?1(31) to R which takes
the value 1 on the translation by 1, see [30] for example. More precisely for each f ,gJ €
Homeo. ($') it holds that |p(f) — p(§)| < 1 and for each n € Z we have p(f™) = np(f).
Let us describe why p is not a morphism and only a quasi-morphism. A homeomor-
phism of the circle has a fixed point if and only if its rotation number is zero, see [15] chapter
11 for more details. Below we give an example of two homeomorphisms ¢ and v of $! of
rotation number zero such that the composition ¢ o gives us a homeomorphism as in Fig-
ure 2.2 without fixed point and so the rotation number of the composition is not equal to 0.

Let us consider the two homeomorphisms of rotation number 0 with one fixed point as
in Figures 2.1 and 2.2.

-

Figure 2.1

-

poy

Figure 2.2

For g € Homeo, ($!) there is a bijection between the lifts of g to R and the isotopies
from id to g as follows. Let I = (g¢)e[0,1] be an isotopy from id to g, the lifted isotopy

I = (9t)tefo,1] of I defines a unique lift g1 of g. Then for an isotopy I from id to g, let us

denote g the time-one map of the lifted isotopy T on R, we can define the rotation number
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p(I) € R of I to be the rotation number p(g) of g. If we consider f a homeomorphism of the
disk isotopic to the identity and I = (f;)e[o,1] an isotopy from id to f then we will denote
p(I)s1) € R the rotation number of the restriction of the isotopy I to $'. If we consider
another isotopy I’ from id to g one may prove that there exists an integer k € Z such that
I’ is homotopic to R*I where the isotopy R = (Rt)ie[o,1) satisfies Ri(z) = 2™ for every
z € 8! and every ¢ € [0,1]. We consider T the lifted isotopy of I’ and we denote ¢’ its time-
one map. Hence § and g’ are two lifts of g such that § = g+ k and p(g’) = p(9) + k and
so the number p(I) does not depend on the choice of the isotopy in the homotopy class of I.

Irrational pseudo-rotation. An irrational pseudo-rotation is an area-preserving
homeomorphism f of D that fixes 0 and that does not possess any other periodic point.
To such a homeomorphism is associated an irrational number o € R/Z\Q/Z, called the
rotation number of f, characterized by the following : every point admits « as a rotation
number around the origin. To be more precise, choose a lift f of f |D\{0} to the universal

covering space D =Rx (0,1]. There exists & € R such that & + Z = « and for every
compact set K < D\{0} and every € > 0, one can find N > 1 such that

~

p2(f"(2) —p2(2) .

Vn=N, er YK)n (7 Y(K)) = | —al <k,
n

where 7 : (r,0) — (7 cos(270), rsin(270)) is the covering projection and pa : (r,0) — 6 the
projection on the second coordinate. If moreover f is a C* diffeomorphism 1 < k < +o0
we will call f a C* irrational pseudo-rotation.

Notice that the rotation number « of an irrational pseudo-rotation f is equal to p(flg1).

One can construct irrational pseudo-rotations with the method of fast periodic ap-

proximations, presented by Anosov and Katok [I|. One may see [23, 24, 25, 38, 60] for
further developments about this method and see [9, 7] for other results on irrational pseudo-
rotations.
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Chapter 3

Three extensions

In this section we will explain why the functions Caly, 65712 and 65713 are well-defined and
we will establish the relations between them. The full statement like the continuity or the
quasi-morphism property will be proved in the next section.

3.1 Action function

Let us consider f € Diff} (D) and X\ a Liouville 1-form such that d\ = w. The fact that
HY(D,R) = 0 implies that the closed 1-form f*\ — X\ is exact. More precisely its integral
along each loop v < D is zero. Consequently the map z — S% f*A—Xis a C! primitive of
f*A = A, equal to 0 at the origin, where for every z € D the path v, : [0,1] — D is such
that v,(t) = tz.

If we suppose that f is compactly supported on D then it is natural to consider the
unique C! function A : D — R that is zero near the boundary of ID and that satisfies

dA = f*X — . (3.1)
Without the compact support hypothesis we have the following proposition.

Proposition 3.1.1. If we consider a C' function A : D — R such that dA = f*\— X then

the number
., Alevds
Sl

does not depend on the choice of p in M(f|g1).

Proof. To prove the independence over p there are two cases to consider.

o If there exists only one f|gi-invariant probability measure on $* the result is obvious.
In this case f|g is said to be uniquely ergodic.

o If f|g1 is not uniquely ergodic then by Poincaré’s theory p(f|g1) = % + Z is rational
with p A ¢ = 1. The ergodic decomposition theorem, see [15] for example, tells us that an

flg1-invariant measure is the barycenter of ergodic f|gi-invariant measures. Moreover, each
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ergodic measure of f|g: is supported on a g-periodic orbit as follows. For z a g-periodic
point of f|g1, we define the probability measure p, supported on the orbit of z by

where 6, is the Dirac measure on the point z € $!. Hence it is sufficient to prove that
SD (f, A\, ptz)w does not depend on the choice of a periodic point z € $!.

Let us consider two periodic points z and w of f|gi. We consider an oriented path
v c 8! from z to w. We compute

-1

‘[ Aduz—l[ Adpy = = S A(F*(2)) — A(F*(w))
gl g1

ko

qk OLk

199
_ *(A) — A
qk;)ff’“(v)f *)

- ;(Lq('y) o Jv)\)

=0

where the last equality is due to the fact that f9(y) is a reparametrization of the path
7. =

Proposition 3.1.1 allows us to make a natural choice of the action function to define an
extension of the Calabi invariant as follows.

Theorem 3.1.2. For each f € Diffi(D) we consider the unique C function Ay of f such
that dAy = f*A—X and S$1 Aypdp = 0 where X is a Liowville form of w and p an f-invariant
probability measure on $'. The number

%un=LMuw@

does not depend on the choice of \ or .

Proof. The independence on the measure p comes from Proposition 3.1.1 and it remains
to prove the independence on .

Let us consider another primitive A\’ of w. We denote A and A’ the two functions such
that dA = f*A — X and dA” = f*) — X and such that for each p € M(f|g1) we have
Sg1 Adp = §1 Aldp = 0.

The 1-form A — )\ is closed because d\ — d)N = w —w = 0. So there exists a smooth
function u : D — R such that X = X\ + du. We compute
dA" = f*(X +du) — (X + du)
=f*A=XA+d(uo f—u)
=dA+d(uo f—u).
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Thus there exists a constant ¢ such that
A=A+uof—u+tec

For a measure € M(f|g1) the condition {¢; A'dp =0 = (¢ Adp implies that

J A’duzf Adu—l—f (wo flg —u)du+c=J Adp,
St St St St
Howeover §q, (uo fls1 — u)dpu = 0 since f|g1 preserves p we have

c=0.

Finally f preserves w hence {(uo f —u)w = 0 and we can conclude that
f Alw = f Aw.
D D

We show that the extension Cal; vanishes on rotations of the disk.

Proposition 3.1.3. For 6 € R the rotation Ry of angle 6 satisfies
Call(R(;) =0.

Proof. For the Liouville form A = %dQ of w we have RjA — A = 0 thus the action function
A is constant. So it is equal to 0 and we obtain the result. O

3.2 Angle function

The following interpretation is due to Fathi in his thesis [22] in the case of compactly sup-
ported symplectic diffeomorphisms of the unit disk. This interpretation is also developped
by Ghys and Gambaudo in [32].

Let us consider f € Diff} (D) and I = (ft)iefo,1] an isotopy from id to f. For z,y € D
distinct we can consider the vector v; from fi(x) to fi(y) and we denote by Ang;(z,y) the
angle variation of the vector v, for ¢ € [0, 1] defined as follows.

We have the polar coordinates (r,6) and a differential form

udv — vdu

do =
u? + 2

)

where (u,v) are the cartesian coordinates. For every couple (z,y) € D*\A we define

1
Angy(a,y) = o [ ab 32
Y

where v : t — fi(x) — fi(y).
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The function Ang; is continuous on the complement of the diagonal of D x ID. More-
over, if f is at least C' then the function Ang; can be extended on the diagonal into a
bounded function on D x . Indeed, we consider K the compact set of triplets (x,y, d)
where (z,y) € D x D and d a half line in R? containing  and y and oriented by the vector
joining = to y if x # y. If x and y are distinct, the half line d is uniquely determined and
D x D\A can be embedded in K as a dense and open set. We define Ang;(x,z,d) as the
variation of angle of the half lines df;(d) for ¢ € [0,1]. This number is well-defined and
extends Ang; into a continuous function on K.

~

~ ~ 1
v f = (f,¢) € Diff ,(D) and two Hamiltonian isotopies I = (ft)se[o1] and I' =
( ft)te[O, from id to f associated to qb The isotopies I’ and I are homotopic so for every
couple (z,y) € D*\A we have
f df = J de,

where v : t — fi(z) — fi(y) and 7' : t — f/(x) — f{(y). Hence, we can define the angle
function Ang 7 of f by
Angf = Ang;.

We have the following lemma.
~ ~ o~
Lemma 3.2.1. Let us consider f = (f,$) € Diff (D). For every (x,y) € D\ A the number
Angf(x,y) — p(¢) only depends on f.
Proof. Let us consider I’ another isotopy from id to f.

There exists k € Z such that I’ is homotopic to R'gﬂl and by definition of Ang; given
by equation 4.1 we have AngRg ; = Ang; + k. Moreover I’ is in the same homotopy

class of R5 I and we obtain Ang; = Ang; + k. Since the rotation number also satisfies
p(I'lg1) = p(I|g1) + k, the result follows. O

Lemma 3.2.1 allows us to extend the Calabi invariant on the lifted group ]STl_C/fi(]D)) as
follows.

~ o~~~
Theorem 3.2.2. Let us consider f = (f,¢) € Diff ,(D). The number

~

Gala(f) = | | Awpte plo(@ty)

defines a morphism Cal : ]iiffi (D) — R and induces a morphism on Diffl (D) defined by
Caly(f) = Caly(f) + Z

where f € ]/)\lf/fi(D> is a lift of f.

Proof. First, Cal is well-defined since the angle function Ang 7 is integrable on D2\ A.

~ ~ ~ ~ 1
Let us consider f = (f,¢) and § = (g,¢’) two elements of Diff (D) and two isotopies
I = (ft)sefo,) € [1] from id to f associated to ¢ and I' = (g¢)se[o,1] from id to g associated

to ¢'. We consider the concatenation I - I’ of the isotopy I and I’ which gives an isotopy

118



~ o~ ~ ~ o~~~
from id to fog associated to ¢po¢’ and we define the element fog = (fog, pod’) € Diff (D).
For each (z,y) € D*\A we have

Ang;.p(z,y) = Angp(z,y) + Angr(g(x), g(v))-

Hence we obtain
Ang; .(z,y) = Angg(z,y) + Ang(g(x), 9(y))-

We integrate the previous equality and since g preserves w we deduce that 6\21/12 is a mor-
—~ 1
phism from Diff (D) to R.

Moreover, Lemma 3.2.1 assures that Caly induces the morphism Caly from Diff} (D) to
T O

Notice that the morphisms 6?{12 and Caly satisfy the following commutative diagram

Diff. (D) — Diff (D)

(/]\ailz l \LCalg

R T!

where the horizontal arrows are the covering maps.

This interpretation allows us to generalize the definition to other invariant measures of

~ ~ o~

the disk. Let us consider f = (f,¢) € Diff (D) and an isotopy I from id to f associated
to ¢. We consider a probability measure p on D without atom which is f-invariant. We
define the number C,(I) by

~ o~

Cull) = [ [, Azt dn(duty)

By Lemma 3.2.1 we obtain the following corollary.

Corollary 3.2.3. Let us consider f=(f9) € ]Siffi,(]]])) For every (z,y) € D?\A the
number C,,(f) — p(¢) only depends on f.

~ o~ ~ ~ o~
Birkhoff ergodic theorem gives another way to compute C,(f) for f = (f, ¢) € Diff (D).
Let us consider an isotopy I = (ft)se[o,1] from id to f associated to ¢. For (z,y) € D x D\A
we have

Angpn(z,y) = Ang(z,y) + Ang/(f(2), f(y)) + ... + Ang,(f"H(z), "7 (z)).  (3.3)
The function Ang; is bounded so the function
Ang[(ma y) = nh—{%o ﬁAngI" (IE? y)a

is defined p x p almost everywhere and depends only on the homotopy class of I. Hence
we can define Ang F= Ang; . Thus we obtain the following equality

~ o~

= || Rngyedute)duty). (3.4
DxD
We state the proposition of topological invariance, see [32].
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Proposition 3.2.4. Let us consider two probability measures p1 and po of D without
atom and two compactly supported elements of Diff}“(]D)) and DiﬂLQ (D) denoted ¢1 and ¢2
such that there exists a homeomorphism h € Diff?r(]D)) satisfying ¢ = h o ¢1 o h™! and
hs(p1) = pa. We have that

C,ul (¢1) = C,uz (¢2)

For a probability measure p of the disk, there is the equivalent result to extend the
invariant C,,.

~ o~
Theorem 3.2.5. Let us consider an element f € Diff (D). The number
CT) = |, Angjlo)du@)du(y)
D2\A

defines a morphism 5# : ﬁfi(]@) — R which induces a morphism C,, : Diﬁ’L(]D) — Tt
defined for every f € Diﬂ"L(]D)) by

~ o~

Cu(f) = Cu(f) + Z,
where fe ]ﬁi(ﬂ)) is a lift of f.

The proof of the previous theorem is basically the same as Theorem 3.2.2 and if we
consider the Lesbegue measure Leb then we have

CLen = Caly.
We have the following computation in the case of the rotations.

~ 1
Lemma 3.2.6. For 6 € R we consider Ry = (Ry,7) € Diff ,(D) where Ry is the rotation
D — D of angle 8. We have .

Cala2(R) = p(7).
Proof. Let us consider R = (Ry)[0,1] the isotopy from id to Ry given in section 2. For a
couple (z,y) € D x D\A we consider the complex z = x — y and we have for each ¢ € [0, 1]

Ri(2) = z¢® and we can compute Angp(z,y) = 0. By integration on D x D\A we obtain

Cala(Rg) = 0 = p(7).

3.3 Hamiltonian function

In this section, the goal is to detail the construction of the Calabi invariant given by equa-
tion 1.3 in the case of compactly supported diffeomorphisms of the disk. This construction
leads to Theorem 1.0.5 and we explain the definition of anlg given by this theorem but we
refer to the next section for the proofs of certain results.

Let us consider f € Diff! (D) and a Hamiltonian isotopy I = ( ft)ie[o,1] from id to f. We
consider the Hamiltonian function (H;)sr which induces the isotopy I. We denote (X})wcr
the associated vector field. We have that for every t € R, X; is tangent to $'. So each H;
is constant on $! and we can consider (H;)pr the associated Hamiltonian function such
that

Ht|$1 = 0.

We have the following lemma.
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Lemma 3.3.1. The integral

2 | HL ()t — ),

depends only on f.

Proof. The result will be a corollary of Theorem 1.0.7. O

Theorem 3.3.2. Let us consider an element f = (f,¢) € IS:FI'LIU(ID) and a Hamiltonian
function H : $* x D — R of f which induces the flow (Pt)iefo,1] such that the lift of ¢1]s

1s equal to <;~5 and such that Hy is equal to 0 on $' for every t € R. The number
L 1
Cals(f) = QJ J Hy(z)w(z)dt,
0 JD

~ o~
does not depend on the choice of H. Moreover the map Cals : Diff ,(D) — R is a morphism
and Cal(f) + Z depends only on f. It induces a morphism

1
Cals(f) = 2 L fD Hy(2)w(2)dt + Z,

defined on Diff (D).

The proof comes from the equality between 6?3412 and 6?3413 which will be proven in the
next section. Moreover, the definition of Calg comes from Lemma 3.3.1 and we obtain
the following commutative diagram where the horizontal arrows are the universal covering
maps.

Diff. (D) — Diff (D)

(rj\;;13l \LCalg

R T!
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Chapter 4

Proof of Theorem 1.0.7

In this section, we prove Theorem 1.0.7.

—~ —~ ~ ~ 1
Theorem 4.0.1. The morphisms Caly and Calg are equal. For f = (f,¢) € Diff ,(D) we
have the following equality L R
Calz(f) = Cali(f) + p(¢).

Moreover Caly, @2 and @3 are continuous in the C topology.

We separate the proof into two subsections, in the first one we establish the links
between the previous definitions then we prove the continuity of Caly and Cals.

4.1 Equality between 63712 and 6\?;13.

Proposition 4.1.1. The morphisms évalg and 6\2113 are equal.

Proof. The proof is essentially the same as in [09], the only difference is that our sym-
plectic form is normalized and the Hamiltonian diffeomorphisms that we consider is not
compactly supported in the open unit disk. Nevertheless, we verify that the proof is still
relevant in our case.

Let us consider fz (f, (E) € ﬁ\ffi(]D)) and a Hamiltonian isotopy I = (ft)e[o,1] from id

to f associated to 5 For the proof we will give a definition of the angle function Ang; in
complex coordinates as follows. We define a 1-form « by

_ 1 d(Zl—ZQ)
o 21 — 29

The imaginary part satisfies
df = 27Im(«),

where @ is the angle coordinate in radial coordinates. For an element Z = (z1, 22) € D*\A
we consider the curve Iy < D x D\A defined by

t— IZ(t) = (ft(zl)a ft('z?))v
for each ¢ € [0,1] and that for every element Z = (21, 22) € D x D\A we have

1
Ang;(z1, 22) = 2L de. (4.1)
zZ

™
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Let us consider the Hamiltonian (H¢).e[o,1] which induces the flow of the isotopy I and

which is equal to 0 on the boundary of . We consider the symplectic form w = %dz AdzZ
written in complex coordinates on D. We define & = dz(X;) and then it satisfies

i 1 i -
ix, <27rdz A dz) = gftdf - %&dz.

By definition
0H, 0H,
dH; = ———dz — —d
T 0z 7

so we have oH
& = _2”7; (4.2)

We compute the integral of the angle function

JDXD\A Ang;(z1, 29)w(z1)w(z2) = JDXD\AL %de w(z1)w(z2)

(21,22)

- (fDxID)\A L(Zl o) (Z2)> '

The following computation is well-inspired by the proof in [69].

d(z1 — 22)
J;D»dD)\A L<zl 29) Zl 22 27T J;D»dD)\A L<21 2o) 21— R2 W(Zl)UJ(ZQ)
B boa(fi(z) — &(fi(z2) ooz
S N I o e el S )
B &i(fi(21)) = &(fi(22)
- L ofDxD\A fe(z1) = fi(z2 wla)wle)dt
(

)
=2 x J f J &lz1) w(z1)w(z2)dt
27 Ji=0 Jzped Jarep\ (20} 21 — 22
1 . —
= 1J f J —QiWa}{tidzl A dzlw(zg)dt
D\{20} 0Z 21 21 — 29

1 0H,
_ 2ZJ j J OHy dz A dz w(zs)dt.
]D)\{zg} 22’/’1’ 8z Z1 — %9

The third equality is obtained by Fubini because the integral is absolutely integrable,
see Lemma 4.1.2 below. The fourth equality is due to the absolute integrability of both
terms. We established the penultimate with equation 4.2 and the definition of w.

We use the Cauchy formula for smooth functions (see [11]). For any C'-function g :
D — C, we have

1 g9(2) P 1 ﬁdeAcF

g(w " 2ir g1 2 —wW 2im Jp 02 2 —w

Moreover H; is equal to zero on the boundary $' and we have

J;D)><]D>\AJ;

w(z1)w (ZQ)_zzf J Hy(22)w(zs)dt.

(21,22)
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It leads to

1
JDXD\A Ang;(z1, 22)w(z1)w(z2) = QL JD Hy(z)w(z)dt.

To obtain the result it remains to prove the absolute integrability we used in the compu-
tation.

Lemma 4.1.2. We have the following inequality

J f & (fi(21)) — & (fi(22))
DxD\A Ji=0

fi(z1) — fi(z2)
Proof. The total measure of D x D\A for w and [0, 1] for the Lebesgue measure is finite so
by Tonnelli’s theorem it is sufficient to have the following inequalities

§e(fe(21)) — &(fe (22))‘ _ §i(21) — &i(22)
L ofDxD\A fi(z1) = fe(22) wlarJulz)di = Jt OJ]DX}DJ\A 21— 22

’w(zl)w(:@)dt < 0.

w(z1)w(z2)dt

1
2 f j &(=)] ezt
t=0 Jz1eD 2eD\{z1} |21 — 22|

1
<8 f - f el

< Q0.

To prove the second last inequality one may prove that

1
J ————w(29) < 4.
zeD\(z1} |21 — 22
O
]

Remark 4.1.3. The number 63712( 1 <1~5) does not depend on the choice of the isotopy in the
homotopy class of I, we obtain the same result for the construction of Cals(f,¢) which
completes the proof of Lemma 3.3.1.

Proposition 4.1.4. For each element f = (f,¢) € ]/)Tf/fi(}D)) we have
Caly(f) = Caly (f) + p(9).

Proof. Let us consider an element f = (f, gz~5) € lf)\lﬁ’i(]D)) and a Hamiltonian isotopy
I = (fi)ie[o) from id to f associated to ¢. There exists a unique Hamiltonian func-
tion (Hy)wer which induces the isotopy I and such that Hy is zero on the boundary Sl of
D for each t € R.

We know that Cal; d0e2s not depend on the choice of the primitive of w. We consider
the Liouville 1-form A\ = 5-df in radial coordinates. We consider a probability measure

pe M(fls1).
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We describe the link between the action function of the first definition and the Hamil-
tonian of the third definition. We consider a C' family of functions (At)te[0,1], Where
A; : D — R satisfies for each ¢ € [0, 1]

dAy = fi'A— ),
and such that the map Aj is equal to A(f, A, 1). So the isotopy (A¢)se[o,1] satisfies
. d
dAy = %(ft*)‘)
= ft*EXt

= f{ (ix,(dX) + d(A(X3)))
=d(H¢o fr + M(X3t) o fr).

Then, for every t € [0, 1], there exists a constant ¢; such that
Ay =Hio fy + A(Xt) o fi + et

and the map A : D — R satisfies for each z € D

1

1
Ay(z) = J (Hy + i, ) (fo(2))dt + f cud.

0 0

We denote by C' the constant Sé cydt. Since the restriction of A to $! is equal to %d& then
for every z € $' we have

1 1
[ ixats@na = o [ aoig e

0

Notice that the last integral is equal to the displacement function § : R — R of Js

Moreover, the rotation number ﬁ(g?b) of the isotopy I satisfies for each z € $!
53) - tim L5 63
TR0
The map z — 0(z) is p integrable and the Birkhoff ergodic theorem gives us

|, @) = | 5:)auc).
gl g1

We obtain

1 ~
f j ix A(fu(2))dtdu(z) = f HB)du(z) = Ils).
st Jo Gl

Moreover, the Hamiltonian H; is equal to zero on $!. So if z € $! it holds that A;(z) =
d(z) + C and consequently

Ll A1(2)dulz) = C + 7).
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So the condition on A implies that
C=—p).

Thus

LA@M@=jjhﬂH&Mm@mww—m@

JJMﬁ Vdtw( JJU& (fi(2))dtw(z) — ().

We compute { Sé ix,(A)(fi(2))dtw(z). Each 3-form is zero on the disk so we have

We deduce that

JDfolz'Xt(A)( )i (2 jf (Hyw — d(H\)dt
_ jD fol Hywdt — JO |, Hoxdt
[

where the first equality is due to the fact that f; preserves w. Moreover H; is equal to zero
on the boundary S'. We obtain

gAwma=zg£wa@w—m@

We know that p is a homogeneous quasi-morphism, it gives us the following corollary.

O

Corollary 4.1.5. The map Cal; : Diﬁ’i}(ID)) — R is a homogeneous quasi-morphism.

Proof. The result is straightforward because Cal; is equal to the sum of a morphism and
a homogeneous quasi-morphism. O

Notice that Lemma 3.2.6 ensures that the morphisms Cal (resp. Cal) is not zero, then

1
its kernel is a normal non trivial subgroup of Diff (D) (resp. Diffl (D)) and we obtain the
following corollary.

~1
Corollary 4.1.6. The groups Diff (D) and DiffL (D) are not perfect.
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4.2 Continuity of Cal.

For every continuous map f from D to C we set || f||c = maxzep |f(z)].
We denote dy the distance between two maps f and g of DiEO(D) defined by

do(f,9) = max(||f — gllo, IF 7 = 97 [oo)-
We denote d; the distance between two maps f and g of Diff! (D) defined by
di(f,g) = max(do(f, 9),||Df = Dyglleo, [|Df " = Dg"|oo),
where for every C! diffeomorphism f of D, ||Df||c = maxuep || D f]]-

The distances dy and d; define naturally two distances, denoted c?o and 671, on If)TFfi (D)
defined as follows. Let us consider fz (f, qg) and § = (g, 1;) in ]%‘Llu (D), we have

do(f.5) = max(do(f,9), |6 — ¥/l |67 — 7 |oo),
di(f,5) = max(di(f, 9), |6 — /oo |67 — 7Y |oo)-

~ —~ 1
We denote id = (idp, idg) € Diff ,(ID). In this section we prove the following result.

~ ~1
Theorem 4.2.1. The map Cal : Diff (D) — R is continuous in C' topology.
We need some results about the angle function.

Lemma 4.2.2. Let us consider f = (f,¢) € Diff' (D) such that di(f,id) < e < 1/2, then
for every (z,y) € D?\A, it holds that

|cos(27rAngf(:1;,y)) — 1] < 2e.

Proof of Lemma 4.2.2. The proof is a simple computation. Let us consider z,y € D such
that © # y. One can write f = id + h where ||h||x < € and ||Dh||, < €. By the mean
theorem we have

lmw—hu>

y—x

<e (4.3)

We have

fly) = flx) | y—=
cos(2mAng x(z,y)) = <
(g0 = [ty = 7)1 ly = o
where {.|.) is the canonical scalar product on R?. We compute

(G-

|cos(27rAngf(:n y))—1| =

(y) — f(x)
(y f@)] Iy—l‘l Iy—x|>‘
‘ (y) — flx) y-—=
|f(y) — w)l ly — ||
We compute
fy) —fl@)  y—u fy) — flz) = (y — =) 1
oo ol <P 150~ 1) o e
<‘h(y)—h ’Iy—wl \‘
Sy — Iy—ﬂ
th@%—M@
y—x
< 2e.
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From Lemma 4.2.2, we deduce the following result.

~ ~—1 ~ ~
Corollary 4.2.3. Let us consider f € Diff (D) such that di(f,id) < e < 1/2. The angle
function satisfies

1Ang; |l < ve/r.

Proof. For every couple (z,y) € D?\A there exists a unique k € Z such that Ang J;(:U, y)—ke
[—1/2,1/2). So by Lemma 4.2.2 we have

1> cos(|27rAngf(:U,y) —kl)=1-2e=0.
The function arccos is decreasing so we obtain

0< arccos(cos(|27rAngf(ac, y) — k|)) < arccos(1 — 2e¢).

Moreover the function arccos is defined on [0, 1] and of class C! on [0,1) such that for
every z € (0, 1] we have

(arccos(l — z)) = ———= < —.

We obtain that for every x € [0, 1] we have
arccos(1 — ) < 2¢/x.
Hence we have
2W]Angf(a;,y) — k| < 2V 2e.
And so

Angioy) — k< Y2 <172
™

Moreover D?\A is path connected. Indeed, let us prove that every couple (z,y) € D*\A
is connected to ((0,0), (1,0)) by a path as follows. We set d the line of D? passing through
x and y. The line d intersects $' in two points which we denote Z and 4 such that & is
closer to x than y and g is closer to y than x as in figure 4.1

Q ﬁ i
Figure 4.1
Let us consider the path v, : [0,1] — D defined by v, (t) = t(y — y) + y from y to g.
The path I'y : t — (x,7,(t)) defined on [0, 1] sends the couple (z,y) to (z, 7).
Let us consider the path v, : [0,1] — D defined by 7,(¢t) = (1 — )z from z to (0,0).
Y

The path T : t — (7.(t), §) defined on [0, 1] sends the couple (z,9) to (0,7).
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Now we consider R, the rotation of D of angle a = arg(y). The rotation R, sends g
to (1,0). We denote (R;)se[o,1] the isotopy from id to R, such that for every t € [0,1] R;
is the rotation of angle ta.

Hence the composition of the path Ty, T'; and ¢ — ((0,0), R, '(¢)) sends (x,y) to

((0,0), (0,1)).

Moreover Ang 7 is continuous on D*\A we deduce from the last inequality that k does

not depend on the choice of (x,y). The fact that Jl(f, 1?1) < e < 1/2 implies that k = 0
and we obtain that for every (z,y) € D*\A

|Ang;(z, y)| < Ve/T.

We now prove the continuity of Cal; in C! topology.

Proof of theorem 4.2.1. By Theorem 3.2.2 we know that Cal is a group morphism. So it
~ ~ o~

is sufficient to prove the continuity at the identity. Let us consider f = (f,¢) € Diff (D)

such that di(f,id) < e < 1/2. By Corollary 4.2.3 we have for every couple (z,y) € D*\A

|Ang;(z,y)| < Ve/m.

By integration on D*\A we obtain that

G < Y.

T
Hence Cal is continuous at the identity. O
+

(

Moreover, it is well-known that the rotation number p : Homeo $!) — R is continuous

and we deduce from Theorem 4.0.1 the following corollary.

Corollary 4.2.4. The map Cal; : Diff} (D) — R is continuous in C* topology.
Let us prove that the Calabi invariant is not continuous in C° topology.

Proposition 4.2.5. The morphism Cal is not continuous in C° topology.

We give a counterexample which also prove that the Calabi invariant defined in the
introduction is also not continuous in the C° topology, this counterexample can be found
in [32]

Proof. Let us consider a sequence (hy,)n>1 of smooth functions h,, : [0,1] — R such that
1. h,, is constant near the origin,
2. hy(r) is zero for r > 1/n,
3. Sé ho(r)2mrdr = 1.

We consider the Hamiltonian functions Hy, : D — R by H,,(z) = hy(|z]). Each function
H,, defines a time independent vector field X,,, whose induced flow is denoted ¢%. We have
the following property [32] about the computation of the Calabi invariant for compactly
supported and autonomous Hamiltonian functions
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Proposition 4.2.6. Let us consider H : D — R a Hamiltonian function with compact
support. We denote ¢ the induced Hamiltonian flow and we have

Cal(gh) — —2rt fD H(2)w(2),

where Cal is the Calabi invariant defined by equation 1.5.

This result allows us to compute the Calabi invariant for ¢} and we obtain for each
n=1
Cal(¢l) = —2m.

For each n > 1 we consider (¢},id) € ]ﬁi(ﬂ)) and we have
Galy (6L, id)) = —2n.

Moreover, ¢} converges to the identity in C° topology and we obtain the result. O
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Chapter 5

Computation of Caly in some rigid cases

In this section, we prove several results about the Calabi invariant of irrational pseudo-
rotations.

5.1 A simple case of C'-rigidity

Let us begin by the simple computation of the Calabi invariant for periodic symplectic
maps.

Lemma 5.1.1. If f € DiffL (D) has a finite order, then we have
Cali(f) = 0.

Proof. By assumption there exists p > 1 such that fP = id and so Cal;(f?) = p Caly(id) =
0. O

We deduce the following properties

Proposition 5.1.2. Let us consider f € Diff} (D). If there ewists a sequence of periodic
diffeomorphisms (gi)pen in DiffL (D) which converges to f fin C topology, then we have

Cah (f) = 0.

Proof. By Lemma 5.1.1 for each n € N we have Cal;(g,) = 0 and we obtain the result by
the continuity of the map Cal; in C' topology. O

Proposition 5.1.3. Let us consider f € DiffL (D). If there exists a sequence (qi)ren such
that fa converges to the identity in C' topology then we have

Caly (f) = 0.

Proof. We have Caly (f) = q;Cal;(f) and Caly (f%) converges to Cal; (id) = 0so Caly(f) =
0. O
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5.2 Crigidity
The following theorem is a stronger version of Corollary 5.1.3.

Theorem 5.2.1. Let us consider f € Diffl (D). If there exists a sequence (qi)ren Of
integers such that (f%)gen converges to the identity in CO topology then we have

Cah (f) =0.

To prove the previous statement we will give an estimation of the angle function of fi»
for a given isotopy I from id to f. For that we will consider two cases, the first one if x is
close to y and the other if z is not close to y. The following lemma gives us an evaluation
of what close means.

Lemma 5.2.2. Let us consider f a C' diffeomorphism of the unit disc D, I an isotopy
from id to f. If do(f,id) < € < 1/4 then for every couple (x,y) € D x D which satisfies
|z —y| = /€, we have

| cos(2mAng;(z,y)) — 1| < 44/e.

Proof. Let (x,y) € D x D be a couple such that |z — y| = 4/e. One can write f =id + h
where h : D — R? satisfies ||h||s < € and we have

KOELCTR
y—x |

€

V%:2¢a (5.1)

We use the equation

ly) = flx),y —x)
)~ F @) Iy =) 5:2)

=5 we obtain

cos(2m Ang; (2, ) =

Moreover, if we write 1 = <|y ik ‘y ]

f(y)—f(x) . Yy—x Yy—
|f(y) — f(2)] ’y—x!’!y—x]> (5.3)

cos(Ang(z,y)) —1 =

Equation 5.3 becomes

fy) —fl@) y—= 1 1 fly) = fl@) = (y — =)
ORI EE I DA <> 6] w—x\+‘ vz
ly— 2] - o) 2)
‘ w—wl ’ ‘y—ﬂ
\4mw—hu>
y—x

We obtain the following lemma.

Lemma 5.2.3. Under the same hypothesis, there exists an integer k € Z, uniquely defined,
such that for every couple (z,y) € D x D such that |z — y| = /€, we have

|Ang;(x,y) — k| < 23/e/m < 1/2. (5.4)
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Proof. We consider € € (0,1/16) and a couple (z,y) € D such that |y — z| > 4/e. By
definition of the floor function there exists a unique k € Z such that 2rAng;(z,y) — 27k €
[—7, ) and we have

1 = cos(|2mAng;(z,y) — 27k|) = 1 — 44/ = 0.
The function arccos is decreasing so we obtain
0 < arccos(cos(|2mrAng; (z,y) — 2mk]|)) < arccos(1 — 4+/¢).
The function arccos is defined on [0, 1] and of class C! on [0,1). Moreover we have for

every z € [0,1)
1

1
S i —
Vor —a2 Az

(arccos(1 —z)) =
We obtain that for every x € [0, 1]
arccos(1 — z) < 24/w.
Hence we have

|2 Ang; (z,y) — 27k| < arccos(1 — 44/€)

a4/,

NN

Thus we have
|Ang;(z,y) — k| < 23/e/m < 1/2.

Now we prove that k does not depend of (x,%). Indeed the set of couples (x,%) € D? such
that |z —y| > /e is connected in D2. Indeed for a couple (x,y) € D? such that |z —y| = /e,
let us construct a path from (z,y) to ((—1,0), (1,0)).

We set d the line of D? passing through x and 3. The line d intersects $' in two points
which we denote & and g such that Z is closer to  than y and g is closer to y than z as in
the previous figure 4.1.

Let us consider the path v, : [0,1] — D defined by ~,(t) = t(z — z) + = from z
to & and the path 7, : [0,1] defines by ~,(t) = t(§ — y) + v from y to g. So the path
I':t — (72(t),y(t)) defined on [0, 1] sends the couple (z,y) to (Z,7).

We consider a path T” : t — (£,7(t)) which fixes # and send § on % along the arc of $*
such that v(t) € $*\{2}.

Now we consider R, the rotation of D of angle av = arg(#). Notice that the rotation
R; ! sends # to (1,0). We denote (Rt)sefo,1] the isotopy from id to R, such that for every
t € [0,1] Ry is the rotation of angle tov.

Hence the composition of the path T, Gamma' and the path t — (R;'(2), Ry (7))
sends (.’E, y) to ((17 0)7 (_17 0))

Moreover, 2 {/e/m < 1/2 so k does not depend on the choice of (z,y) € D such that
5=yl > Ve
O
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With these two lemmas we can give a proof of Theorem 5.2.1.

Proof of Theorem 5.2.1. We can consider I = (f¢)se[0,1] an isotopy from id to f which fixes

a point of D. Up to conjugacy we can suppose that I fixes the origin and we denote I|g
the restriction of I on $'. We lift I|g:1 to an isotopy (#t)sefo,1] on the universal covering

space R of $! such that ¢y = id and set ¢ = ¢1. We will prove that (f]jadlg(f, 5) = ,5(5) and
from Theorem 4.0.1 we will obtain

Caly(f, ) — p(¢) = Caly(f) = 0.

For ¢ € N we define the isotopy 17 from id to f9 as follows. We write I9 = (f{)i[0,1]

and for every z€ D and t € [%, g] we set

f(2) = fat—ks10(fo..of).
-

k—1 times

We will denote €, = do(f?,id). For every k € Z we can separate the difference between
the integral of the angle function of f9 and k into two parts as follows

SSDX]D) Angfqn (l’, y)w(y)w(x) — k= SID) (SBﬁ(x) Ang]qn (l', y)w(y) — k) w(x)

5.9
+in (SB\C/Q(I) Angja. (7, y)w(y) — k) w(z), )

where Bf/a(x) is the complementary of B, () in D.

We can suppose that €, < 1/16 and by Lemma 5.2.3, there exists a unique k,, € Z such
that for each couple (z,y) € D x D such that |y — z| > /¢, we have

|Ang an (2,y) — kn| < 23/en/T. (5.6)

Moreover, by definition of the rotation number there exists a sequence (&, )nen of 1-periodic
functions &, : R — R such that ||¢,||s < 1 for every n € N and such that for every y € $*
and every lift 7 € R of y we have

~.

Angra, (0,9) = 7 (§) — T = aup(9) + &a(D)-

So, for every y € $' we have

|ANg 14, (0,9) — En| = [qnp(®) + En(§) — kn| < 24/en/m,

where 7 is a lift of y. Hence we obtain

|GnP (D) — kn| < 24/en/m + 1.

Thus we have .
p(¢) = lim .

n—=0 (n

By equation 5.6 we obtain

fm (J ¢ (@) (Angyan (2,9) = ’fn)w(y)> w(z)

Ve

< 23/en /T (5.7)
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We know that for every couple (z,y) € D*\A and for every n € N we have

Angpa, (z,y) = Angg(z,y) + Ang;(f(2), f(y)) + ... + Ang(f" (@), 7 (). (5.8)

Hence for every n € N the angle function satisfies

||Ang jan [loo < gnllAng;||oo- (5.9)

We can estimate the first integral of equation 5.5 as follows

f <f (Anggon (2,y) kn>w<y>> w(z)
D B /e (2)

So we can deduce from the previous equations a new estimation of the Calabi invariant

< €n(qn||Ang;||oo + [Fnl)- (5.10)

] [ [ ang et -k,

< 24/en/m + en(qnl|Angyllco + [Knl)- (5.11)

By definition we obtain

—~ ~ kTL 2 4 En kn
’Calz(f,cb)— < 2o o Ang e + e inl. (5.12)
dn gnT dn
Hence we have
o N P U T A T
Gala(£,8) — (3)| < |Gal(f,8) = *| + () —

1 k
+ enHAnngoo + —+ en—| n|
dn

n

< 4 ¢/e,,
gnT

By taking the limit on n € N, we conclude that

~.

Cala(f, ) = P(@).
O

~ ~ 1
Remark 5.2.4. If we consider a sequence (gn, = (gn, Pn))nen € Diff ,(ID) which converges to
~ ~ o~
f = (f, #) € Diff (D) in C topology where for each n € N, g, is a periodic diffeomorphism
of the disk and f is an irrational pseudo-rotation, then the previous method fails to prove
that Cala(gn, ¢n) converges to Cala(f, ¢). It is easy to see that Angf is close to Angy, but

if we compute the difference é\z;l(gn, qzwbn) - 67{1( 7, gz~5), as we did in equation 5.5, we do not
have a control of ||Ang;, || so we cannot estimate properly the integral

f f B Angg, (&, y)w(@)w(y),
e dyen

en(x

where €, = ||gn, — f]|oo-
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Chapter 6

Examples

In this section, we will be interested in irrational pseudo-rotations with specific rotation
numbers.

Best approximation: Any irrational number oo € R\Q can be written as a continued
fraction where (a;);>1 is a sequence of integers > 1 and ag = |a]. Conversely, any sequence
(a;)ien corresponds to a unique number . We define two sequences (pp)nen and (gn)nen
as follows

DPn = QpPn—1 + Pn, for n = 2, Po = ag, p1 = apay + 1

qn = nqpn—1 + gn—2 for n > 2, g =1, q1 = ay.

The sequence (pn/qn)nen is called the best approzimation of «a and for every n > 1 we
have
{Qn—la} < {ka}a Vk < qn

where {x} is the fractional part of x € R. And for every n € N we have

1 1
—————— < (—1)"(a = pn/tn,) <
QH(Qn + QnJrl) ( ) ( n/ " )

The numbers ¢, are called the approzimation denominators of c.

dndn+1 '

6.1 An example of C-rigidity, the super Liouville type

In this section, we show that a C! irrational pseudo-rotation with a super Liouville rotation
number satisfies the assumptions of Theorem 5.2.1.

Super Liouville. A real number o € R\Q is called super Liouville if the sequence (gp )nen
of the approximation denominators of « satisfies

limsup ¢, ' log(gn11) = +0. (6.2)

If we consider a real o € R which has super Liouville type then for each k € Z the
real a + k is also super Liouville and to simplify the notations we will say that an element

139



a e T! is super Liouville.

Bramham already showed in [13] that any C™ irrational pseudo-rotation f of the disk
with super Liouville rotation number is C° rigid, meaning that f is the C%-limit of a
sequence of periodic diffeomorphisms. More recently Le Calvez [51] proved that any C*
irrational pseudo-rotation which is C' conjugated to a rotation on the boundary is C°
rigid. These results go as follows.

Theorem 6.1.1. Let us consider either a C* irrational pseudo-rotation or a C* irrational
pseudo-rotation f which is C1 conjugated to a rotation on the boundary. We consider o € R
such that o + 7Z is equal to the rotation number of f. For a sequence of rationals (f]’—:)neN
which converges to a there exists a sequence (gn)nen : D — D of g, -periodic diffeomorphims
of the unit disk which converges to f for the CY topology.

Moreover there exists a constant C' depending on f such that for every n € N we have

N

do(f,9n) < C(gna — pn)2.

We deduce the following corollary.

Corollary 6.1.2. Let us consider either a C® irrational pseudo-rotation or a C' irrational
pseudo-rotation f which is C' conjugated to a rotation on the boundary. If the rotation
number of f is super Liouville then we have

Cah (f) = 0.

Proof of Corollary 6.1.2. Let us consider f which is either a C™ irrational pseudo-rotation
or a C! irrational pseudo-rotation. We consider a € R such that a + Z is equal to the
rotation number of f. We will prove that f satisfies the hypothesis of Theorem 5.2.1. We
consider a € R such that a + Z is equal to the rotation number of f and we consider
the sequence of rationals (pn/gn)nen, defined above, which converges to a such that gy,
satisfies equation 6.1. Let (g )nen be the sequence of ¢, periodic diffeomorphisms given by
Theorem 6.1.1 associated to f and the sequence (py, /gy )nen. We denote by K the C! norm
of f and we set €, = C(gno — p,)/? where C is the constant given by Theorem 6.1.1.

For all £k € N and each n € N the following inequality holds

do(f*, gy) < K"ep. (6.3)

By equation 6.1 we can majorate ¢, by —C + to obtain for k = g, the inequality

(gn+1)2

d(fqn’ Zd) < an L

6.4
(Qn-i-l) ( )

N

Equation 6.2 assures that

limsup — = = 0.
n (Qn+1)1/2

Thus we obtain that
limsup dp(f,id) = 0.
n
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Hence up to a subsequence we can suppose that
do(fq", Zd) — 0.
So f satisfies the hypothesis of Theorem 5.2.1 and we conclude

Cah (f) = 0.

6.2 An example of C'-rigidity, the non Bruno type

Bruno type. A number a € R\Q will be said to be Bruno type if the sequence (g, )nen of
the approximation denominators of « satisfies

i log(‘]n+1)

dn

< +o00.

n=0

If we consider a € R which is not Bruno type then for each k € Z the real o + k is also
not Bruno type and to simplify the notation we will say that an element & € T! is non
Bruno type.

Avila, Fayad, Le Calvez, Xu and Zhang proved in [!] that if we consider a number
a € R\Q which is not Bruno type, for H > 1 there exists a subsequence g, of the
sequence of the approximation denominators of o such that for every n€ N ¢, , > H anj
and there exists an infinite set J < N such that for every j € J we have

‘an

{gn;0} <e 3. (6.5)
We can also find the following result in the same paper.

Proposition 6.2.1. Let us consider a C? irrational pseudo-rotation f € Diff}u (D). Suppose
that p(f|s1) is not Bruno type, then the sequence qy, satisfies

dy(f7 ,Id) — 0.

Hence a C? irrational pseudo-rotation f € Diffl (D) satisfies the hypothesis of Corollary
5.1.3 and we obtain the following corollary.

Corollary 6.2.2. Let us consider a C? irrational pseudo-rotation f € Diffi)(]D), Suppose
that p(f) is not Bruno type, then we have

Cah (f) =0.
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