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Résumé

Dans cette thèse, nous étudions le problème d’optimisation séquentielle dans des enviro-
nnements stochastiques. A chaque instant, nous pouvons interroger un point de l’enviro-
nnement, et recevoir une récompense bruitée. Nous nous concentrons d’abord sur le
cas où l’environnement est représenté par un nombre fini de points, et ensuite sur le
cas plus général où l’environnement est composé d’un nombre infini dénombrable de
points, voire continu. Dans les deux cas, le coût d’une requête pouvant être élevée, nous
envisageons ainsi à repérer au plus vite le point (quasi)-optimal. Cette étude est mo-
tivée par de nombreux scénarios réels comme, entre autres, les essais cliniques, les tests
A/B, ou l’optimisation des placements publicitaires. Ainsi pour terminer, nous nous in-
téressons en particulier à l’une de ces applications plus importantes pour la communauté
d’apprentissage statistique, c’est-à-dire l’optimisation des hyper-paramètres.

Abstract

In this thesis, we study the problem of sequential optimization under stochastic environ-
ments. At each round, we can query a data point from the environment, and receive a
noisy reward. We first focus on the case where the environment is abstracted as a finite
search space, then we investigate also on a more general setting where the environment
is composed of an infinite number of points or even continuous. In both cases, the cost
of a single query would be high, and we thus aim at identify the (near)-optimum as effi-
ciently as possible. The whole study is motivated by numerous real scenarios including,
but not limited to, clinical trial, A/B testing, advertisement placement optimization. We
therefore conclude by some particular focus on one of its most important contributions
for the machine learning community, i.e. hyper-parameter optimization.
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Résumé des travaux de thèse

0.1 Contexte de la thèse

0.1.1 Qu-étudions-nous et pourquoi ?

Imaginons que nous ayons accès à un simulateur qui modélise le comportement d’une
tâche numérique complexe. Considéré comme une boîte noire, nous ne pouvons obtenir
des informations utiles qu’en exécutant le simulateur avec différentes entrées. Par exem-
ple, le processus d’inférence de la structure 3D d’une protéine à partir de sa séquence
d’acides aminés peut être considéré comme une tâche complexe, qui peut être modélisée
par un simulateur. Les entrées du simulateur sont les séquences d’acides aminés et les
sorties sont les structures 3D prédites. Une famille populaire de méthodes cherche à op-
timiser une fonction énergétique appropriée - produite par le simulateur - qui décrit la
relation entre la structure d’une protéine et sa séquence d’acides aminés. Ces méthodes
sont intéressantes car elles sont capables de construire des structures de protéines sans
connaissance préalable des structures résolues (voir par exemple Zhang 2008).

Dans le contexte de cette thèse, nous modélisons un tel scénario comme le problème
dit de l’optimisation séquentielle, dans lequel un agent alimente séquentiellement un
environnement (le simulateur dans l’exemple précédent) avec des entrées et reçoit un
retour (déterministe ou stochastique) appelé gain, récompense ou observation. L’agent
doit produire une estimation de l’entrée optimale après un certain nombre d’essais. Dans
certaines circonstances, une seule interaction avec l’environnement peut être extrême-
ment coûteuse. Par exemple, dans l’exemple de la prédiction de la structure des pro-
téines, de vastes ressources informatiques sont nécessaires si le simulateur reçoit une très
grande protéine (avec de longues séquences d’acides aminés). Il est donc très intéressant
de choisir soigneusement l’entrée à chaque pas de temps en fonction des observations
passées afin de réduire le nombre de simulations.

L’optimisation séquentielle dans des environnements stochastiques est un sujet de
recherche actif dans les communautés des mathématiques appliquées et de l’informatique.
Par exemple, le problème de planification dans un processus de décision markovien, sur
lequel la récente percée de l’intelligence de jeu du Go [Silver et al., 2016] est construite,
est étroitement lié à l’optimisation séquentielle. Précisément, étant donné l’état actuel
du jeu, l’intelligence de jeu est conçue pour maximiser une certaine fonction de valeur,
dont les observations (bruitées) peuvent être obtenues en explorant des trajectoires bien
choisies.

Un autre exemple, qui est aussi une motivation importante pour cette thèse, est celui
de l’optimisation des hyper-paramètres des classifieurs d’apprentissage automatique. Les
algorithmes modernes d’apprentissage automatique dépendent souvent de nombreux
paramètres qui ne peuvent pas être appris par le processus d’apprentissage, mais qui
doivent être spécifiés manuellement. Le réglage de ces hyper-paramètres est souvent
considéré comme une partie fastidieuse d’une tâche d’apprentissage automatique. Il est
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donc intéressant de concevoir des algorithmes qui automatisent le processus de choix de
ces hyper-paramètres. L’optimisation des hyper-paramètres peut être considéré comme
un problème d’optimisation boître noire où les évaluations de fonctions sont supposées
être très coûteuses. En général, l’évaluation d’une fonction dans l’optimisation des hyper-
paramètres implique l’exécution complète de l’algorithme principal d’apprentissage au-
tomatique sur un ensemble de données important et hautement dimensionnel, ce qui
prend souvent beaucoup de temps ou de ressources.

En outre, l’optimisation séquentielle peut également servir d’abstraction pour de nom-
breux problèmes du monde réel. Pour n’en citer que quelques-uns, on peut penser aux
problèmes de sélection de portefeuille (averse au risque) en finance [Ziemba and Vickson,
2010], à la conception de stratégies efficaces d’allocation de traitement en médecine [Du-
rand et al., 2018], à la minimisation de l’énergie libre en génie chimique ou à la prédiction
de la structure des protéines [Floudas and Pardalos, 2000], à la métamodélisation pour
l’optimisation de la conception technique [Wang and Shan, 2007], à la estimation des
paramètres (problème inverse) des voies biochimiques dynamiques non linéaires [Moles
et al., 2003], à la distorsion du maillage en science des matériaux [Charpagne et al., 2019],
et bien plus encore.

Pour résumer, un environnement peut simplement être considéré comme une fonc-
tion cible à optimiser. Cette fonction peut être discrète ou continue. Dans cette thèse,
nous nous intéressons en particulier à l’optimisation de fonctions pour lesquelles aucune
(ou peu) hypothèse de régularité est faite, et seules des évaluations de fonctions (interac-
tions avec l’environnement) bruitées (ou stochastiques) peuvent être observées.

0.1.2 Comment traitons-nous le problème ?

L’outil principal que nous utilisons pour traiter le problème d’optimisation séquentielle
dans cette thèse est un modèle statistique qui s’appelle le modèle de bandit à plusieurs
bras. Ce modèle a été étudié pour la première fois par Thompson [1933], et peut être
décrit de la manière suivante : On donne à un agent un ensemble fini de bras K et un
horizon N. Tirer un bras conduit à une récompense stochastique qui suit une certaine
distribution inconnue sous ce bras. À chaque pas de temps, l’agent peut choisir de tirer
l’un des bras et observe une récompense échantillonnée à partir de sa distribution sous-
jacente correspondante.

Dans son article de référence, Robbins [1952] définit l’objectif d’un agent de bandits
comme la maximisation des récompenses totales à long terme. On observe que l’agent
doit simultanément acquérir de nouvelles informations en vue d’un bien-être potentiel
futur (exploration), et optimiser la décision actuelle basée sur les observations passées
(exploitation). Ce phénomène est le fameux dilemme de l’exploration et l’exploitation et
est présent dans de nombreuses tâches du monde réel. Le modèle de bandits est donc
populaire parmi différentes communautés, car les algorithmes font un compromis entre
l’exploration et l’exploitation.

Cependant, l’exploitation ne fournit pas nécessairement des incitations significatives
dans certaines applications réelles. Typiquement, dans les exemples précédents présen-
tés dans la section 0.1.1, nous ne nous soucions pas vraiment des pertes potentielles en-
courues pendant toute la phase d’apprentissage. En effet, nous cherchons uniquement à
trouver rapidement le (quasi-)optimum de la fonction cible. Dans ce contexte, il est plus
naturel d’évaluer l’agent dans une optique d’optimisation. Ce cadre, souvent appelé iden-
tification du meilleurs bras, est donc plus fortement lié à ce que nous allons étudier dans
cette thèse. L’identification du meilleurs bras a été étudié en premier lieu par Even-dar
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et al. [2003] et Bubeck et al. [2009] dans deux cadres différents que nous présentons en
détail dans le chapitre 2.

Plus généralement, nous parlons de problèmes de l’exploration pure [Bubeck et al.,
2011], où l’agent est censé gagner autant d’informations possibles sur le modèle de ban-
dit indépendamment des récompenses. L’identification du meilleurs bras est simplement
une instance particulière de l’exploration pure, pour laquelle l’objectif d’apprentissage est
de trouver le bras optimal. D’autres objectifs d’apprentissage existent également, comme
trouver des bras qui dépassent un certain seuil prédéfini (voir par exemple Locatelli
et al. 2016). Cependant, nous nous concentrons principalement sur l’identification du
meilleurs bras dans cette thèse car il a un large éventail d’applications.

0.1.3 Du bandit manchot à l’apprentissage par renforcement

Le modèle de bandits est populaire d’un autre point de vue car certains problèmes de
bandits font partie d’un cadre plus général qui est l’apprentissage par renforcement (RL).
Dans un modèle du RL, l’environnement est caractérisé par son état actuel et l’agent in-
teragit avec l’environnement en prenant différentes actions. Chaque action conduit à une
récompense de la part de l’environnement ainsi qu’à un changement d’état. La définition
formelle et les résultats généraux du RL dépassent le cadre de cette thèse, les lecteurs
peuvent se référer à Bertsekas [2011]; Sutton and Barto [1998] pour les études.

L’apprentissage par renforcement moderne combiné avec l’apprentissage profond a
conduit à des avancées passionnantes, notamment AlphaGo [Silver et al., 2016], AlphaS-
tar [Vinyals et al., 2019], etc. Cependant, il existe encore une grande lacune dans la com-
préhension de l’énorme succès de RL profond. Bandit manchot, en tant que modèle
statistique fortement fondé par la théorie, peut potentiellement servir de première étape
pour combler cette lacune dans la recherche sur le RL profond. Plus précisément, ban-
dit manchot est parfois considéré comme la forme la plus simple de RL car les agents
de bandits ne subissent aucun changement d’état (voir Fig. 1). Nous discuterons un peu
plus du lien entre bandits et RL plus tard dans la conclusion générale 7 car les bandits con-
textuelles (bandits avec informations secondaires) – une variante du modèle classique –
décrit finalement mieux la façon dont le bandit manchot est lié au RL.

Learner Environment

Action

Reward

Learner Environment

Action

Reward
State

Figure 1: Gauche: cycle d’apprentissage bandit vs. Droite: cycle d’apprentissage RL.

0.2 Bandit manchot multi-bras et optimisation

Cette thèse traite des problèmes d’optimisation séquentielle dans des environnements
stochastiques en utilisant des outils de bandits. Un environnement stochastique se réfère
à un environnement à partir duquel des retours stochastiques sont acquis lorsqu’une en-
trée est demandée depuis l’espace de recherche/action1 X . Formellement, et sans perte

1Ces termes peuvent être employés de manière interchangeable.
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de généralité, notre objectif est de maximiser une fonction cible f : X → R, c’est-à-dire
de trouver

argmax
x∈X

f (x) (1)

en fonction d’une séquence de valeurs de la fonction f . Évidemment, sans aucune in-
formation préalable sur la fonction cible et/ou l’espace de recherche X , il s’agit d’une
mission impossible. Cette thèse étudie plusieurs instances particulières de (1) avec dif-
férents espaces de recherche et/ou différentes hypothèses (de régularité) sur la fonction
cible, et apporte de nouvelles perspectives théoriques et pratiques.

Dans le reste de ce chapitre, je donne un aperçu informel des différents contextes
étudiés dans cette thèse ainsi qu’un résumé de mes contributions à chaque contexte.

Une discussion plus approfondie sur la formulation du problème, en particulier sur
la manière d’évaluer la performance des algorithmes dans différents contextes, est don-
née dans le chapitre 2, qui constitue une introduction au modèle de bandit. L’objectif de
ce chapitre introductif est de présenter le problème de bandits de manière plus formelle.
Nous rappelons d’abord quelques notions de base ainsi que certains résultats fondamen-
taux pour les bandits stochastiques. Nous nous concentrons ensuite sur la façon dont
différents cadres d’identification du meilleur bras sont formulés.

0.2.1 Identification du meilleurs bras dans un modèle de bandit stochas-
tique

Le premier cadre d’intérêt consiste en un espace de recherche fini et unidimensionnel
X = {x1, x2, · · · , xK}. Supposons que la distribution de récompense sous-jacente du bras
xk soit caractérisée par sa moyenne µk ∈ R, la fonction cible f peut être simplement in-
terprétée comme une correspondance entre chaque bras et sa moyenne. L’agent cherche
alors à trouver

argmax
k∈[K]

µk (2)

étant donné une certaine condition d’arrêt. Il s’agit de l’identification du meilleur bras
pour les bandits multi-bras stochastiques. Il existe plusieurs objectifs d’apprentissage
pour ce genre de problèmes, parmi lesquels nous sommes particulièrement intéressés
par le cas où le but est d’identifier le meilleur bras avec une confiance élevée avec un
minimum d’évaluations de fonctions. Il s’agit du cadre dit de confiance fixée pour lequel la
définition formelle, ainsi que celles pour d’autres objectifs d’apprentissage, sont fournies
et discutées plus loin dans le chapitre 2.

Les méthodes existentes de ce problème nécessitent la construction d’intervalles de
confiance compliqués sur les récompenses moyennes. Dans cette thèse, nous profitons
des outils bayésiens pour résoudre ce problème, qui est basée sur le célèbre Thompson
sampling (Thompson 1933, voir aussi Russo et al. 2018 pour un tutoriel). Thompson sam-
pling est un algorithme bayésien bien connu pour l’objectif classique de maximisation de
la récompense, pour lequel il est maintenant considéré comme un concurrent majeur des
approches populaires de type UCB [Auer et al., 2002a]. Une question naturelle à se poser
est de savoir si les méthodes bayésiennes peuvent également être un bon concurrent des
approches classiques de l’identification du meilleurs bras basées sur des intervalles de
confiance. Cependant, il est bien connu que l’utilisation directe de Thompson sampling
ne permet pas d’obtenir une performance optimale pour l’identification du meilleurs tant
d’un point de vue pratique que théorique. Plus précisément, elle ne peut pas attein-
dre une complexité d’échantillonage asymptotique qui correspond à une borne inférieure
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fournie par Garivier and Kaufmann [2016]. Une telle propriété est appelée optimalité
asymptotique dont nous donnerons une définition formelle plus tard dans le chapitre 2.
Une adaptation telle que TTTS proposée par Russo [2016] est nécessaire : en choisissant
entre deux bras candidats différents à chaque tour, elle impose l’exploration de bras sous-
optimaux, qui seraient sous-échantillonnés par Thompson sampling original.

Dans le chapitre 3, nous proposons une nouvelle étude de TTTS, et fournissons de
nouvelles compréhensions théoriques sur sa complexité d’échantillonnage. Plus précisé-
ment, nous montrons que TTTS atteint l’optimalité asymptotique qui répond alors à une
question ouverte de Russo [2016]. Nous proposons en outre une amélioration computa-
tionnelle T3C de TTTS, tout en gardant les mêmes garanties. De plus, nous fournissons
également de nouveaux résultats sur la convergence de la loi a posteriori de TTTS.

0.2.2 Extension à l’identification du meilleurs bras dans un modèle de
bandit linéaire

Une extension du cadre précédent largement étudiée consiste à prendre un ensemble
fini de K bras/contextes X = {x1,x2, · · · ,xK} ⊂ Rd comme espace de recherche. La ré-
compense de chaque bras dans cette circonstance est supposée linéairement dépendante
d’un paramètre de régression θ ∈Rd . La fonction cible f peut donc être considérée comme
une correspondance entre chaque bras x et sa combinaison linéaire avec θ, et est donc
appelée bandits linéaires. Précisément, l’agent cherche à trouver

argmax
k∈[K]

θTxk . (3)

Le paramètre θ est bien sûr inconnu de l’agent. Ce paramètre contextuel (linéaire) décrit
mieux certains scénarios du monde réel. Un exemple typique est l’optimisation du place-
ment des publicités, dans lequel un site Web cherche à identifier le modèle d’affichage
publicitaire le plus performant. Dans de telles applications, les caractéristiques des util-
isateurs peuvent être utilisées comme informations secondaires (contexte) pour aider à
la conception de l’exploration (voir par exemple Li et al. 2010).

Une fois de plus, comme pour l’identification du meilleurs bras pour les bandits stochas-
tiques, nous nous sommes intéressés au cadre de confiance fixée. Les algorithmes précé-
dents sur ce sujet n’atteignent qu’une faible borne de complexité d’échantillon qui est
liée à la G-optimalité de la théorie du plan d’expérience (voir par exemple Pukelsheim
2006). Nous conjecturons que la G-optimalité ne décrit pas au mieux la complexité de
l’identification du meilleurs bras pour les bandits lináires, et essayons donc d’adapter
d’autres complexités plus appropriées.

Une ligne de recherche naturelle est alors de concevoir un algorithme asymptotique-
ment optimal. Une adaptation simple de Track-and-Stop [Garivier and Kaufmann, 2016]
au cadre linéaire s’avère asymptotiquement optimale [Jedra and Proutière, 2020], mais
reste défavorable sur le plan des resources computationnelles. Nous cherchons donc
également à concevoir des algorithmes légers en complexité temporelle.

Dans le chapitre 4, nous proposons une nouvelle complexité pour l’identification du
meilleurs bras linéaire, et fournissons une comparaison complète des complexités ex-
istantes. Nous étudions ensuite à la fois les approches bayésiennes et les algorithmes
basés sur les intervalles de confiance. En particulier, nous proposons plusieurs exten-
sions différentes de TTTS et T3C au cadre linéaire. Malheureusement, nous montrons
empiriquement qu’elles ne sont pas asymptotiquement optimales. Dans le même temps,
nous développons une approche utilisant le point de selle qui conduit à un algorithme
optimal LinGame.
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0.2.3 Bandits infinis et optimisation boîte noire

Enfin, un problème plus général consiste à considérer un espace infini ou continu X , et
chaque bras x ∈ X obtient sa récompense moyenne f (x) par la fonction de récompense
f . On retrouve donc (1) :

argmax
x∈X

f (x) .

Il s’agit du problème de l’optimisation globale ou optimisation boîte noire. Parfois, nous
pouvons également parler de l’optimisation d’ordre zéro, par opposition à l’optimisation
du premier ordre pour lequel des informations basées sur le gradient sont disponibles.

Nous étudions le cas stochastique dans cette thèse. Les approches typiques pour
traiter l’optimisation globale incluent l’optimisation bayésienne (voir par exemple Brochu
et al. 2010), les algorithmes évolutionnaires et les bandits hiérarchiques (voir par exemple
Bubeck et al. 2010). Dans cette thèse, nous nous concentrons sur les algorithmes de ban-
dits hiérarchiques. Dans la littérature, nous faisons souvent référence aux bandits à bras
infinis ou bien aux bandits à bras continus.

De toute évidence, on ne peut s’attendre qu’à une solution quasi-optimale dans le cas
des bandits à bras continus. Nous utilisons donc une autre mesure de performance, à
savoir le regret simple, qui est la différence entre la valeur de la fonction optimale réelle et
la valeur de la fonction de notre estimation finale. La définition formelle est fournie plus
loin dans le chapitre 2. Le regret simple diffère du regret cumulé qui sert de mesure de
performance pour la maximisation de la récompense.

Dans le chapitre 5, nous explorons la possibilité de concevoir des algorithmes de ban-
dit hiérarchique sans paramètre avec un minimum d’hypothèses. À cette fin, nous util-
isons un shéma de validation croisée et construisons un algorithme appelé GPO. GPO est
un méta-algorithme qui peut utiliser n’importe quel algorithme de bandit hiérarchique
comme sous-routine. En particulier, GPO atteint presque la même garantie de regret sim-
ple que sa sous-routine. Comme résultat secondaire, nous montrons également que HCT
est un algorithme sous-jacent valide pour GPO ainsi que pour POO proposé par Grill et al.
[2015].

0.2.4 Optimisation des hyper-paramètres

Enfin, nous abordons une question plus pratique : l’optimisation des hyper-paramètres.
Comme présenté dans la section 0.1.1, le réglage efficace des hyper-paramètres pour-
rait être d’une grande importance pour les praticiens de l’apprentissage automatique.
Comme indiqué, l’optimisation des hyper-paramètres peut être naturellement modélisée
comme un problème d’optimisation séquentielle. L’espace de recherche dans ce cadre
peut être à la fois discret (variables catégoriques, variables à valeur entière, etc.) et con-
tinu (variables à valeur réelle).

Inspirés par un algorithme récent Hyperband basé sur l’identification du meilleurs
bras [Li et al., 2017], nous cherchons à proposer d’autres algorithmes pour l’optimisation
des hyper-paramètres aussi basés là-dessus. En effet, Hyperband est construit sur un
algorithme basé sur l’élimination et a de bonnes performances par rapport aux méth-
odes précédentes. D’autre part, nous nous intéressons à la possibilité d’adapter des al-
gorithmes bayésiens tels que TTTS pour résoudre l’optimisation des hyper-paramètres.
Notez que TTTS n’est conçu que pour les bandits à bras finis, un contournement appro-
priée est donc nécessaire.

Dans le chapitre 6, nous concevons un algorithme robuste et dynamique D-TTTS basé
sur TTTS, et montrons que de tels algorithmes à saveur bayésienne peuvent être de bons
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candidats pour des applications comme l’optimisation des hyper-paramètres. Nous dis-
cutons également d’un inconvénient majeur de D-TTTS, et proposons une solution dans
le même chapitre.
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CHAPTER 1. INTRODUCTION

The purpose of this thesis is to provide a summary of the main research line of my PhD
work carried out in between October 2017 and March 2021. During my PhD, I was hosted
at the Inria Lille-Nord Europe (France) research center, in the SequeL team (now becomes
Scool team). I was fortunate to be advised by Dr. Michal Valko, and also co-supervised by
Dr. Emilie Kaufmann. The research thematic of SequeL lies in sequential decision making
problems, to which all my contributions are devoted. In particular, this document mainly
investigates sequential decision making in optimization problems.

Timeline of the thesis. In the very beginning, the research was motivated by designing
efficient hyper-parameter tuning algorithms (Chapter 6). The starting point was to com-
pare hierarchical bandits approaches (Chapter 5) with traditional Bayesian optimization
algorithms. I could observe, however, that hierarchical bandits algorithms often suffer
from the curse of dimensionality, and also do not necessarily show superior performance
to their Bayesian competitors.

At the same time, a great work on the topic, namely Hyperband [Li et al., 2017], was
published. Based on a simple best-arm identification (see Chapter 2 for a formal defini-
tion) algorithm Sequential-Halving [Bubeck et al., 2009], Hyperband achieved both de-
cent practical performances and nice theoretical guarantees. I thus turned my attention
to the study of best-arm identification in the purpose of exploring further the potential
of best-arm identification for hyper-parameter tuning. This effort then led to a dynamic
algorithm D-TTTS for hyper-parameter optimization (Chapter 6). D-TTTS is constructed
upon a Bayesian best-arm identification algorithm TTTS proposed by Russo [2016]. In
the hope of providing an analysis of D-TTTS, which turns out to be sophisticated, I took
a step back to revisit TTTS and managed to bring new theoretical insights about Bayesian
best-arm identification (Chapter 3). Although the new insights still didn’t shed light on
the analysis of D-TTTS, they opened new way to other variants of best-arm identification.
In particular, I then studied best-arm identification with linear payoffs (Chapter 4).

The structure of this thesis does not necessarily follow the previous timeline. Indeed,
the present manuscript rather follows a scientific logic, in the sense that we go through
from the simplest setting to more complicated ones.

In this first chapter, I will introduce the different problem settings studied in this thesis
from a high-level perspective. I will focus on motivating the settings and also summariz-
ing my contributions to each of them.

1.1 Context of the Thesis

1.1.1 What do we study and why?

Imagine that we have access to a simulator that models the behaviour of some complex
numerical task. Being considered as a black box, we can only get useful information by
running the simulator with different inputs. For example, the process of inferring the 3D
structure of a protein from its amino-acid sequence can be regarded as such a complex
task, that can be modelled by a simulator. The inputs of the simulator are the amino-acid
sequences and the outputs are the predicted 3D structures. A popular family of methods
seek to optimize a suitable energy function – produced by the simulator – that describes
the relation between the structure of a protein and its amino-acid sequence. These meth-
ods are of interest because they are able to build protein structures without prior knowl-
edge on solved structures (see e.g. Zhang 2008).

2



CHAPTER 1. INTRODUCTION

In the context of this thesis, we model such a scenario as the so-called sequential opti-
mization1 problem where a learner sequentially feeds inputs to an environment (the sim-
ulator in the previous example) and from which they receive (deterministic or stochastic)
feedback/payoffs/rewards/observations2. The learner needs to output a guess for the op-
timal input after a number of trials. Under some circumstances, a single interaction with
the environment could be extremely costly. For instance, in the example of protein struc-
ture prediction, vast computational resources are required if the simulator is given a very
large protein (with long amino-acid sequences). It is therefore of great interest to carefully
choose the input at each time step based on past observations to reduce the number of
simulations.

Sequential optimization in a stochastic environment is an active research topic in
both applied mathematics and computer science communities. For example, the plan-
ning problem in a Markov decision process (MDP), upon which the recent breakthrough
of game intelligence of Go [Silver et al., 2016] is constructed, is closely related to sequential
optimization. Precisely, given the current state of the game, the game intelligence is de-
signed to maximize a certain value function, whose (noisy) observations can be obtained
by exploring well-chosen trajectories.

Another example, which is also one important driving force that motivates this the-
sis, is hyper-parameter optimization (HPO) of machine learning classifiers. Modern ma-
chine learning algorithms often contain many parameters that cannot be learned through
the learning process, but instead, need to be manually specified. Tuning those so-called
hyper-parameters is often considered as a tedious part in a machine leanrning task. It is
hence appealing to design HPO algorithms that automates the process of choosing those
hyper-parameters. HPO can be viewed as a black-box optimization (BBO) problem where
function evaluations are supposed to be very expensive. Typically, a function evaluation
in HPO involves running the primary machine learning algorithm to completion on a
large and high-dimensional dataset, which often takes a considerable amount of time or
resources.

Besides, sequential optimization can also serve as an abstraction of numerous real-
world problems. To name a few of them, we can think of (risk-averse) portfolio selection
problems in finance [Ziemba and Vickson, 2010], designing effective treatment allocation
strategies in medicine [Durand et al., 2018], free-energy minimization in chemical engi-
neering or protein structure prediction [Floudas and Pardalos, 2000], metamodelling for
engineering design optimization [Wang and Shan, 2007], parameter estimation (inverse
problem) of nonlinear dynamic biochemical pathways [Moles et al., 2003], mesh distor-
tion in material science [Charpagne et al., 2019], and way more.

To summarize, an environment can simply be regarded as a target function to be op-
timized. This function can be discrete or continuous. In this thesis, we are in particular
interested in optimization of functions for which none (or few) regularity assumptions
are made, and only noisy (or stochastic) function evaluations (interactions with the en-
vironment) can be observed.

1.1.2 How do we approach the problem?

The main tool that we use to address the sequential optimization problem in this thesis
is multi-armed bandits (MAB). The original MAB problem is first studied by Thompson
[1933], and can be described in the following way: A learner is given a finite set of K arms

1We thus do not consider parallelization in this thesis.
2Those terms can be interchangeably employed.
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and a time horizon N. Pulling an arm leads to a stochastic reward that follows some un-
known distribution underpin that arm. At each time step, the learner can choose to pull
one of the arms and observes a reward sampled from its corresponding underlying distri-
bution.

In his seminal work, Robbins [1952] defines the objective of a MAB learner as maximiz-
ing the total rewards in the long run. An observation is that the learner is required to si-
multaneously acquire new information for potential future well-being (exploration), and
optimize the current decision based on past observations (exploitation). Such phenom-
ena is stated as the exploration-exploitation dilemma, and is present in many real-world
tasks. The MAB model is thus popular among different communities as MAB algorithms
trade-off between exploration and exploitation.

However, exploitation does not necessarily provide meaningful incentives in some
real applications. Typically, in the previous working examples presented in Section 1.1.1,
we do not really care about the potential losses incurred during the whole learning phase.
Indeed, we only aim at finding the (near-)optimum of the target function quickly. In this
context, it is more natural to assess the learner in an optimization fashion. This setting,
often named as best-arm identification (BAI), is thus more closely related to what we are to
investigate in this thesis. BAI has been firstly studied by Even-dar et al. [2003] and Bubeck
et al. [2009] in two different frameworks that we introduce in detail in Chapter 2.

More generally, we talk about pure exploration problems [Bubeck et al., 2011] instead
of BAI, where the learner is supposed to gain as much information about the bandit model
regardless of rewards. BAI is merely a particular instance of pure exploration, for which
the learning objective is to find the optimal arm. Other learning objectives also exist such
as finding arms that surpass some pre-defined threshold (see e.g. Locatelli et al. 2016).
However, we mostly focus on BAI in this thesis since it has a wide range of applications.

1.1.3 From multi-armed bandits to reinforcement learning

The MAB model is popular from another perspective as some bandit problems are part
of the more general reinforcement learning (RL) framework. In RL, the environment is
characterized by its current state and the learner interacts with the environment by taking
different actions. Each action leads to a reward from the environment as well as a change
of states. Formal definition and general results of RL are beyond the scope of this thesis,
readers can refer to Bertsekas [2011]; Sutton and Barto [1998] for surveys.

Modern RL combined with deep learning (DL) has marked a handful of exciting break-
throughs including AlphaGo [Silver et al., 2016], AlphaStar [Vinyals et al., 2019], etc. How-
ever, a big gap still exists in understanding the huge success of Deep RL. MAB, as a strongly
theoretically-grounded statistical model, can potentially serve as a first step towards fill-
ing that gap in Deep RL research. More precisely, MAB is sometimes considered as the
simplest form of RL as MAB learners do not incur any change of states (see Fig. 1.1). We
shall discuss a little more the link between MAB and RL later in the general conclusion
Chapter 7 as contextual MAB (MAB with side information) – a variant of the vanilla MAB
model – describes eventually better how MAB is related to RL.

4



CHAPTER 1. INTRODUCTION

Learner Environment

Action

Reward

Learner Environment

Action

Reward
State

Figure 1.1: Left: a bandit learning cycle vs. Right: a reinforcement learning cycle.

1.2 Multi-Armed Bandits and Optimization

This thesis addresses sequential optimization problems under stochastic environments
from a bandit point of view. A stochastic environment refers to an environment from
which stochastic feedback are acquired when an input is queried from the search/action
space3 X . Formally, and without loss of generality, we aim to maximize4 a target function
f : X →R, i.e. find

argmax
x∈X

f (x) (1.1)

based on a sequence of function values of f . Obviously without any prior information
on the target function and/or the search space X , it is just a find-a-needle-in-a-haystack
mission. This thesis studies several particular instances of (1.1) with various search spaces
and/or different (regularity) assumptions on the target function, and brings both novel
theoretical and practical insights.

In the rest of this section, I provide a high-level overview of different settings investi-
gated in this thesis along with a summary of my contributions to each setting.

More thorough discussion on the problem formulation, in particular how do we as-
sess the performance of algorithms under different settings is given in an introductory
Chapter 2 about the MAB model. The purpose of this introductory chapter is to present
the MAB problem in a more formal way. We first recall some basic notions as well as some
fundamental results for stochastic MAB. We then focus on how different best-arm identi-
fication/global optimization settings are formulated from a bandit point of view.

1.2.1 Best-arm identification for stochastic multi-armed bandits

The first setting of interest consists of a finite and one-dimensional search space X =
{x1, x2, · · · , xK}. Assume that the underlying reward distribution of arm xk is characterized
by its mean µk ∈ R, the target function f can be simply interpreted as a mapping form
each arm to its mean. The learner then aims to find

argmax
k∈[K]

µk (1.2)

given some stopping condition. This is the best-arm identification for stochastic multi-
armed bandits. Several learning objectives exist for a BAI problem, among which we are in
particular interested in the setting of which the goal is to identify the best arm with high
confidence based on a minimum of function evaluations. This is the fixed-confidence
setting for whom the formal definition, along with those for other learning objectives, are
provided and discussed later in Chapter 2.

3Those terms can be interchangeably employed.
4Minimization is obviously the same problem.
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Existing methods for BAI for stochastic MAB often requires construction of compli-
cated confidence intervals of the mean estimates. We opt for Bayesian machinery to ad-
dress this problem in this thesis, which is based on the famous Thompson Sampling (TS)
(Thompson 1933, see also Russo et al. 2018 for a tutorial). TS is a Bayesian algorithm
well known for the classical reward maximization objective, for which it is now seen as
a major competitor to the popular UCB-typed approaches [Auer et al., 2002a]. A natural
question to ask is whether Bayesian methods can be also a good competitor to classical
BAI approaches constructed upon confidence intervals. However, it is well known that
direct use of TS cannot yield optimal performance for BAI both in a practical and theo-
retical point of view. More precisely, it cannot achieve an asymptotic sample complexity
that matches the lower bound provided by Garivier and Kaufmann [2016]. Such property
is called asymptotic optimality that we shall give formal definition later in Chapter 2. An
adaptation such as TTTS proposed by Russo [2016] is needed: by choosing between two
different candidate arms in each round, it enforces the exploration of sub-optimal arms,
which would be under-sampled by vanilla TS due to its objective of maximizing rewards.

In Chapter 3, we revisit TTTS, and provide new theoretical understandings on its sam-
ple complexity. More precisely, we show that TTTS achieves asymptotic optimality on the
sample complexity which then answers to one open question of Russo [2016]. We further
propose a computational improvement T3C of TTTS, whilst keeping the same guarantees.
Besides, we also provide some new results on the posterior convergence of TTTS.

1.2.2 Extension to best-arm identification for linear bandits

Beyond the previous vanilla setting of BAI, a widely studied extension is to take a finite set
of K arms/contexts/features5 X = {x1,x2, · · · ,xK} ⊂ Rd as the search space. The reward of
each arm under this circumstance is assumed to depend linearly on a regression parame-
ter θ ∈Rd . The target function f therefore can be considered as a mapping from each arm
x to its linear combination with θ, and is thus called linear bandits. Precisely, the learner
seeks to find

argmax
k∈[K]

θTxk . (1.3)

The parameter θ is of course unknown to the learner. This (linear) contextual setting
describes better some real-world scenarios. A typical example is advertising placement
optimization in which a website seeks to identify the best-performing ad display design.
In such applications, user features can be used as side information (context) to help the
design of exploration (see e.g. Li et al. 2010).

Again, like for vanilla BAI, we are interested in the fixed-confidence setting. Previous
algorithms on this topic only achieve loose sample complexity bound which is linked to
the G-optimality of experimental design theory (see e.g. Pukelsheim 2006). We conjec-
ture that G-optimality does not describe best the complexity of linear bandits BAI, and
therefore try to opt for other more appropriate complexities.

One natural research line is then to design asymptotically optimal algorithm. A sim-
ple adaptation of Track-and-Stop [Garivier and Kaufmann, 2016] to the linear setting is
shown to be asymptotically optimal [Jedra and Proutière, 2020], but remains computa-
tionally unfavorable. We thus also seek to design computational friendly algorithms.

In Chapter 4, we propose a new complexity notion for linear bandits BAI, and provide
a comprehensive comparison of existing complexities. We then investigate both Bayesian

5Those terms can be interchangeably employed in the context of this thesis.
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approaches and confidence interval-based algorithms. In particular, we propose several
different extensions of TTTS and T3C to the linear setting. Unfortunately, we show em-
pirically that they are not asymptotically optimal. In the meantime, we develop a saddle-
point approach that leads to an optimal algorithm LinGame.

1.2.3 Infinitely-armed bandits and black-box optimization

Finally, a more general problem is to consider an infinite or continuous space X , and each
arm x ∈X gets its mean reward f (x) through the reward function f . We thus recover (1.1):

argmax
x∈X

f (x) .

This is the global optimization (GO) or BBO problem. Sometimes we can also refer to
zeroth-order optimization (ZO), in contrast to first-order optimization for which gradient-
based information is available.

We study the noisy setting in this thesis. Typical approaches to address GO include
Bayesian optimization (BO) (see e.g. Brochu et al. 2010), evolutionary algorithms and hi-
erarchical bandits (see e.g. Bubeck et al. 2010). In this thesis, we focus on hierarchical
bandits algorithms. In the literature of bandits, we often refer to infinitely-armed bandits
or more precisely continuum-armed bandits.

Obviously, we can only expect a near-optimal solution under continuum-armed ban-
dits. We thus opt for another performance measure, namely the simple regret, which is
the difference between the true optimal function value and the function value of our final
guess. The formal definition is provided later in Chapter 2.

In Chapter 5, we explore the possibility of designing parameter-free hierarchical-bandit
algorithms with minimum (smoothness) assumptions and are adaptive to the smooth-
ness. To this end, we use a cross-validation scheme and construct an algorithm called
GPO. GPO is a meta-algorithm that can use any hierarchical bandit algorithms as subrou-
tine. In particular, GPO almost achieves the same simple regret guarantee as its subroutine.
As a side result, we also show that HCT is a valid underlying algorithm for GPO as well as for
POO proposed by Grill et al. [2015].

1.2.4 Hyper-parameter optimization

Finally, we deal with a more practical question: hyper-parameter optimization. As intro-
duced in Section 1.1.1, efficient hyper-parameter tuning could be of great importance for
machine learning practitioners. As is stated, HPO can be naturally modelled as a sequen-
tial optimization problem.

The search space of HPO can be both discrete (categorical variables, integer-valued
variables, etc) and continuous (real-valued variables). It is natural to ask if hierarchical-
bandit algorithms are able to achieve competitive performances for HPO against classical
BO algorithms.

Additionally, inspired by a recent BAI-based algorithm Hyperband [Li et al., 2017], we
seek to propose other BAI-based algorithms for HPO. Indeed, Hyperband is constructed
upon an elimination-based BAI algorithm and achieves state-of-the-art performances
compared to previous methods. We, on the other hand, are interested in whether Bayesian
algorithms like TTTS can also be adapted to tackle HPO problems. Note that TTTS is only
designed for finitely-armed bandits, an appropriate workaround is hence needed.

In Chapter 6, we design a robust and dynamic algorithm D-TTTS based on TTTS, and
show that such Bayesian-flavored algorithms can be good candidates for applications like
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hyper-parameter optimization. We also discuss a major drawback of D-TTTS, and propose
a fix in the same chapter.

1.3 Publications of the PhD

The entire thesis is dedicated to one single problem – sequential bandit optimization –
only with different settings, although the full journey of my PhD also includes other work
that are less relevant to optimization. I restrict myself to the sequential optimization
problem in this manuscript as it is the main research line that has been motivating me
so far.

The purpose of this section is to provide a summary of the publications that I have
participated to just for the record.

List of papers (peer-reviewed publications or preprints) included in this thesis.
« Gamification of pure exploration for linear bandits. In Proceedings of the 37th In-

ternational Conference on Machine Learning (ICML), 2020. [Degenne et al., 2020a]
« Fixed-confidence guarantees for Bayesian best-arm identification. In Proceedings

of the 23rd International Conference on Artificial Intelligence and Statistics (AIS-
tats), 2020.[Shang et al., 2020a]

« Simple (dynamic) bandit algorithms for hyper-parameter optimization. Preprint,
2020. [Shang et al., 2020b]

« A simple dynamic bandit algorithm for hyper-parameter tuning. In 6th Workshop
on Automated Machine Learning at International Conference on Machine Learning
(ICML-AutoML), 2019. [Shang et al., 2019b]

« General parallel optimisation without a metric. In Proceedings of the 30th Interna-
tional Conference on Algorithmic Learning Theory (ALT), 2019. [Shang et al., 2019a]

List of papers (peer-reviewed publications or preprints) not included in this thesis. The
list below presents other work that are not included in this thesis since they do not really
fit in with the scope of the main story line.

« UCB momentum Q-learning: Correcting bias without forgetting. In Proceedings
of the 38th International Conference on Machine Learning (ICML), 2021. [Ménard
et al., 2021]

« Stochastic bandits with vector losses: Minimizing infinite norm of relative losses.
Preprint, 2020. [Shang et al., 2020c]

Open source software.
« rlberry - A reinforcement learning library for research and education. Github Repos-

itory, 2021. [Domingues et al., 2021]
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Stochastic Multi-Armed Bandits

" Por que somos bandidos.

Pablo Escobar
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CHAPTER 2. STOCHASTIC MULTI-ARMED BANDITS

2.1 The Multi-Armed Bandits Model

The problem of sequentially allocating resources to a defined set of actions (arms) based
on successive partially observable (see Definition 2.1 and Remark 2.1 below) feedback
refers to the MAB game in probability theory. The term bandit is named, by analogy, after
slot machines (or one-armed bandits) in a casino. A sequential decision making problem
comes up then when facing with several slot machines (multi-armed bandits).

The study of MAB problems can date back to as early as 1933 [Thompson, 1933], and
was originally proposed to model sequential clinical trials. For example, researchers test-
ing the efficacy of potential vaccines for a new coronavirus have to choose a vaccine (arm)
from the following 4 options as shown in Fig. 2.1 on each patient from an experimental
group of N person. For each patient n ∈ [N], researchers receive a reward signal rn ∈ {0,1}.
rn = 1 indicates that the vaccine is effective, otherwise the vaccine fails. We thus assume
that the efficacy of each vaccine follows some Bernoulli distribution that is unknown to
the researchers.

Pzifer JensenAztraSenecaMadorna

70% current
success rate

65% current
success rate

90% current
success rate

55% current
success rate

Next choice?

Figure 2.1: An example of modelling clinical trials as a MAB problem.

As stated in Chapter 1, a common learning objective for stochastic MAB is to maximize
the total reward obtained given a sequence of observations. In the previous example,
researchers need to decide which vaccine to employ for each patient depending on the
previous success rates with the purpose of maximizing the total success rate

∑N
n=1 rn at

the end.
However, due to the complex nature of medical treatment, it turns out that the MAB

model is hardly applied in real clinical trials despite its primary purpose [Réda et al., 2020].
Nevertheless, the model has been widely employed in many other applications recently,
in particular online recommender systems for example (see e.g. Li et al. 2010; Zeng et al.
2016). Other application scenarios include network routing [Talebi et al., 2018], dynamic
pricing [Zhai et al., 2011], demand and supply management [Brégère et al., 2019], sensor
placement [Grant et al., 2019], auction bidding [Cesa-Bianchi et al., 2015], wireless com-
munications in Internet of Things [Besson, 2019], etc.

Those applications sometimes give birth to new variants of MAB. One of the most
studied variants is contextual bandits for which the average reward depend on some ex-
ternal context (see e.g. Krause and Ong 2011; Li et al. 2010). Linear bandits (see e.g. Abbasi-
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Yadkori et al. 2011) that we study further in detail in this thesis is typically a particular case
of contextual bandits. Other variants include combinatorial bandits in which a subset of
arms can be selected at each round (see e.g. Cesa-Bianchi and Lugosi 2012; Chen et al.
2014; Perrault et al. 2020); structured bandits for which prior knowledge on the structure
of the arm means is available (see e.g. Degenne et al. 2020b; Karnin 2016); adversarial
bandits where the payoffs are controlled by a stochastic process, but rather by a (poten-
tially oblivious) adversary (see e.g. Auer et al. 2002b); non-stationary bandits where the
rewards are changing over time (see e.g. Allesiardo et al. 2017; Mellor and Shapiro 2013);
multi-player bandits for which several learners exist and need to take decisions at some
pre-defined moments (see e.g. Besson and Kaufmann 2018); dueling bandits for which
the rewards are implicit pairwise comparison results (see e.g. Komiyama et al. 2015); de-
layed bandits where the rewards of current actions are not available immediately (see
e.g. Vernade et al. 2017) and so on and so forth.

In the next, we go a little beyond the intuition and provide the formal definition of the
model. We also recall some fundamental results for the sake of self-containedness. Of
course, we do not intend to write a survey of MAB, for which the content is far too rich for
this thesis. Interested readers can refer to Bubeck and Cesa-Bianchi [2012]; Lattimore and
Szepesvari [2018] or Slivkins [2019] for further readings and more general results.

2.1.1 Problem Formulation

From a mathematical point of view, a MAB model is a collection of K unknown probability
distributions (νk )1≤k≤K. At each time step n, the learner chooses a distribution νIn where
In ∈ [K] and receive a reward rn that is generated from νIn . We then recover the bandit
learning cycle as shown in Fig. 2.2. We summarize such a sequential learning procedure
in Definition 2.1.

Learner Environment

Arm 

Reward 

Figure 2.2: A bandit learning cycle.

Definition 2.1 (multi-armed bandit game). We are given a set of K arms {1, · · · ,K} that
follow K unknown distributions (νk )1≤k≤K, and a time horizon N. At each stage n ∈N,
the bandit game consists of the following steps:

• a vector of rewards (rn,1 ∼ ν1, · · · ,rn,K ∼ νK) is generated,
• the learner picks an arm In ∈ {1, · · · ,K}, and
• the learner observes the reward rn , rn,In .
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Remark 2.1. Rewards of unchosen arms at time n are not revealed, this partial feedback
setting is a special case of the online learning with experts setting.

The way that the learner chooses the arm to pull is sometimes called a sampling rule
or sampling strategy. Clearly, the sampling rule should make use of the past observations
as well as the past external randomness if present. A very simple way to understand this
intuition is to consider a bandit model with two arms with µ1 = 1,µ2 = 0. Suppose that
the rewards are deterministic. In this case, if we consider a naive sampling strategy that
uniformly pull the two arms would yield an expected reward of 50 after 100 rounds. How-
ever, if we pull each of the two arms once at the beginning and then start exploiting the
large one (since the rewards are deterministic), we can achieve a total reward of 99 after
100 rounds. Ignoring past observations is clearly not reasonable.

In the rest of this manuscript, whenνk are some common probability distributions, we
can simply call our MAB model by the corresponding probability distribution name. For
example, if the underlying reward distributions are Bernoulli (resp. Gaussian, exponen-
tial, Poisson, etc) distributions, then we can simply use Bernoulli bandits (resp. Gaussian
bandits, exponential bandits, Poisson bandits, etc) to represent our bandit model.

Some useful notation. We present some useful notation that are frequently used in the
rest of the thesis. First, we denote by µi the true mean of arm i . We further denote by Tn,i

the number of selections of arm i before round n. Mathematically, Tn,i can be written as

Tn,i ,
n−1∑
`=1

1{I` = i } . (2.1)

An unbiased estimate of the true mean µi at time n is the empirical average reward which
can be then written as

µn,i = 1

Tn,i

n−1∑
`=1

1{I` = i }rI`,` . (2.2)

Finally, let Fn be the σ-algebra generated by (U1, I1,r1, · · · ,Un , In ,rn) where Ui ∼U ([0,1])
for each i ∈ [n].

2.1.2 Common assumptions on the rewards

One important thing to take into consideration before starting any bandit game is to take
care of the assumptions on the rewards. Intuitively, we shall have a minimum prior knowl-
edge of the ‘shape’ of the rewards. Obviously, the less the learner knows about that shape,
the more difficult the problem is. In this thesis, several different assumptions on the re-
ward distributions are considered depending on the problem settings. In the next, we
offer a brief overview of commonly used assumptions in the literature.

Bounded rewards. The mostly considered assumption is whether the supports of the
reward distributions are bounded, and if so, whether the bounds are known to the learner.
In that latter case, we can assume without loss of generality that the rewards are supported
on [0,1]. Indeed, if the rewards are contained in an arbitrary bounded interval [a,b], then
we can simply apply a normalization trick to recover the [0,1] case.

The previous vaccine example of Fig. 2.1 with Bernoulli bandits is a typical example of
known bounded rewards. Bounded rewards are widely used in many MAB research work.
It is also the case for instance in Chapter 5 of this thesis.
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One-dimensional exponential family. Unbounded reward distributions are obviously
considered in the literature as well. An usual example of infinitely-supported reward dis-
tributions is Gaussian distribution. Therefore in the literature, we sometimes think of
a more general parametric framework, namely the exponential family. The exponential
family contains a large set of natural distributions as Bernoulli distributions and Gaus-
sian distributions, hence covers a wide range of both bounded and unbounded rewards.

In practice, we often further consider a specific sub-family of distributions that is
the one-dimensional exponential family or single-parameter exponential family. Typical
distributions in the one-dimensional exponential family include Bernoulli distributions,
Gaussian distributions with known variance, etc. Formally, given a random variable X
whose probability distribution belongs to the single-parameter exponential family, then
its probability density function (or probability mass function if X is discrete), depending
only on one single parameter θ, can be written as

pX(x | θ) = b(x)exp
[
η(θ) ·T(x)+A(θ)

]
, (2.3)

where T(X) is the natural sufficient statistic and b,η, A are known functions. A more formal
reminder of one-dimensional exponential family is given in Appendix A.

The MAB community is interested in exponential family not only because it covers a
large family of most common distributions, but also because it holds some nice proper-
ties for statistical analysis. For example, exponential family has sufficient statistics that
can summarize arbitrary amounts of independent and identically distributed (iid) data
with a finite number of samples, which is a great property in bandit analysis. Another
important fact is that exponential family distributions have conjugate priors, which is ex-
tremely useful in Bayesian statistics. The latter one is for example used in Chapter 3.

Beyond... More general reward distributions are also considered in the literature. To list
a few of them, we can think of sub-Gaussian distributions whose tails decay at least as
fast as Gaussian distributions (see Appendix A.1.2 for a reminder of the definition), and
also heavy-tailed distributions whose tails are not exponentially bounded (see e.g; Bubeck
et al. 2013; Yu et al. 2018). Those reward distributions also incite interesting theoretical
questions as well as applications, but are out of the scope of this manuscript.

2.1.3 Regret minimization

Once we have imposed some assumptions on the reward distributions, the next step is to
fix a learning goal and set an evaluation measure accordingly.

As previously stated that the classical learning objective of a MAB learner is to maxi-
mize the total return in the long run, hence trades-off between exploration and exploita-
tion. To achieve that goal, the learner needs to design a clever (in a precise sense) way
of pulling arms based on past observations, and we call this design an allocation strategy
or policy. To evaluate a strategy under this reward maximization setting, one can use the
metric often referred to as regret defined in the next.

Suppose that each unknown distribution νk is associated with a mean µk , and that
µ? is the mean of the optimal arm. One natural way to assess the quality of the given
policy would be minimizing the total loss w.r.t the optimal arm during the whole process,
which leads to the notion of cumulative regret (sometimes simply called regret if there is
no ambiguity).

13
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Definition 2.2 (cumulative regret). At the end of round N, a given policy which observes
a sequence of rewards (rn)1≤n≤N suffers from a cumulative regret:

R̂N , max
i=1···K

N∑
n=1

ri ,n −
N∑

n=1
rn .

In general, both rewards and choices of the learner might be stochastic, it is thus often
more convenient to consider a related pseudo-regret that involves only the mean rewards
µk .

Definition 2.3 (cumulative pseudo-regret). At the end of round N, a given policy which
observes a sequence of rewards (rn)1≤n≤N suffers from a cumulative pseudo-regret:

RN ,µ?N−
N∑

n=1
µIn .

Proposition 2.1. The expected value E[R̂N] of the cumulative regret and the expected
value E[RN] of the cumulative pseudo-regret are the same, where the expectation is
taken with respect to both rewards and choices from the learner.

Proof. Let us define a function that relates each arm to its mean reward

f : {1, · · · ,K} −→ R

In 7−→ µIn ,

then by the tower rule, we have

E[rn] = E[E[rn |In]] = E[ f (In)] =µIn .

In practice, people are essentially interested in bounding: (a) the expected cumulative
regret, or (b) the cumulative regret with high probability. One can notice that the two defi-
nitions of cumulative regret above are equivalent if their objective is to obtain an expected
regret bound. People therefore often only focus on the pseudo-regret.

Clearly, minimizing the cumulative regret is equivalent to maximizing the total re-
wards, whence comes the name ‘regret minimization’.

Since the seminal work of Robbins [1952], a significant number of research work has
been made to address the regret minimization problem. Two major research lines are
Upper-Confidence Bound (UCB)-type algorithms [Auer et al., 2002a; Cappé et al., 2013;
Honda and Takemura, 2015], and their Bayesian competitor TS [Agrawal and Goyal, 2013;
Kaufmann et al., 2012; Korda et al., 2013; Thompson, 1933]. There are also some recent
works that extend the problem to the non-parametric setting [Baransi et al., 2014; Baudry
et al., 2020; Chan, 2020]. Some of them even match an asymptotic lower regret bound
proved by [Lai and Robbins, 1985].
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2.1.4 Optimism and UCB

In the first chapter, we have mentioned that regret minimization is not always the most
appropriate learning objective under some circumstances, but we should rather study
MAB from an optimization point of view. However, before we jump into details of MAB
for optimization, it may still be relevant to briefly introduce some regret-minimization
methods. In particular, we recall UCB. Indeed, UCB is designed based on the optimism
in the face of uncertainty (OFU) principle, which is inspiring for a large amount of MAB
literature including ours (e.g. Chapter 4 and Chapter 5).

Before we introduce UCB in the next section, we first present a fundamental lemma
that form the basis of a large number of analyzes in regret minimization. The proof of the
lemma is quite straightforward and is omitted1.

Lemma 2.1 (regret decomposition). Given a finite or countable bandit model and a
horizon N, the cumulative regret of any strategy satisfies

RN =
K∑

i=1
∆iE

[
TN,i

]
.

The quantities (∆i )i∈[K] is called sub-optimality gap. The sub-optimality gap is an im-
portant notion in MAB since it often defines the difficulty of a bandit problem instance.
Its definition is given below.

Definition 2.4 (sub-optimality gap). The sub-optimality gap ∆i of arm i is given by:

∆i ,µ?−µi .

The algorithm of UCB is popularized by Auer et al. [2002a], is one of the first strategies
that achieves a uniform logarithmic regret over the horizon N. As we just mentioned, UCB
follows the OFU principle. That is to say, despite the lack of knowledge on which action is
the best, we can still construct an optimistic guess that picks an optimal arm in the most
favorable environments that are compatible with the observations. Here by ‘compatible
environments’ we mean the set of possible distributions of the arms that are likely to have
generated the observed rewards.

To translate OFU into mathematics, we can make use of the following upper-confidence
bound index defined as

UCBn,i ,µn,i +
√

3log(n)

2Tn,i

for arm i until round n.
The simplest version of UCB is then given in Algorithm 2.12. And the regret bound of

UCB can be obtained then by Lemma 2.1 and the use of Hoeffding’s inequality (see Ap-
pendix A.2 for details).

1Readers can refer to Chapter 4 of Lattimore and Szepesvari [2018] for a proof.
2The initial exploration phase of the algorithm is not mandatory.
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Algorithm 2.1 Algorithm of UCB
1: for n = 1..K do
2: Play arm n and observe the reward rn

3: Update the UCB index of arm i
4: end for
5: for n ← K+1, · · · ,N do
6: Choose arm by i = argmaxi∈[K] UCBn,i

7: Play arm i and observe the reward rn

8: Update the UCB index of arm i
9: end for

2.2 Best-Arm Identification

The rest of this chapter is dedicated to MAB for optimization. We aim to provide a formal
presentation of different problem settings and related performance metrics. We put a
specific focus of course on the settings to be investigated in this thesis. We begin by the
general best-arm identification setting.

2.2.1 Two frameworks of best-arm identification

Recall that for the vanilla problem setup of BAI, we consider a finitely-armed bandit model,
which is a collection of K probability distributions, called arms X , {x1, · · · , xK}, parame-
terized by their means µ1, · · · ,µK. When clear from the context, we can simply denote the
arms by {1,2, · · · ,K}. We assume the (unknown) best arm is unique and we denote it by
I?µ , argmaxi µi

3.
A BAI strategy or algorithm can be characterized by a triple (In , Jn ,τ) at each time step,

hence consists of three components:
• The first is a sampling rule, which selects an arm In ∈ [K]. Recall that in a MAB prob-

lem, a vector of rewards (rn,1, · · · ,rn,K) is generated for all arms independently from
past observations at each round, but only rn = rn,In is revealed to the learner. Note
that In is Fn−1-measurable, i.e., it can only depend on the past n −1 observations,
and some exogenous randomness, materialized into Un−1 ∼U ([0,1]);

• The second component is a Fn-measurable decision rule Jn , which returns a guess
for the best arm;

• And thirdly, the stopping rule τ, a stopping time with respect to (Fn)n∈N, decides
when the exploration is over.

In general, there are two learning frameworks of BAI: (1) fixed-confidence setting, first
studied by [Even-dar et al., 2003] and (2) fixed-budget setting, first proposed by [Audibert
and Bubeck, 2010].

Fixed-budget setting. In the fixed-budget setting, the learner tries to maximize the prob-
ability of returning the best (or ε-best) arm with a fixed horizon N. Therefore, the stopping
rule in this case can be simply written as τ= N. The protocol of fixed-budget BAI can be
summarized as below.

Definition 2.5 (fixed-budget best-arm identification). We are given a set of K arms
{1, · · · ,K} that follow K unknown distributions (νk )1≤k≤K, and a time horizon N. At
each time step n, the learning process consists of the following actions:

3The subscript µ can be omitted when clear from the context.
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• a vector of rewards (rn,1 ∼ ν1, · · · ,rn,K ∼ νK) is generated,
• the learner picks an arm In ∈ {1, · · · ,K} (according to the sampling rule),
• the learner observes the reward rn , rn,In ,
• the learner stops when n = N, and
• the learner outputs a guess for the best arm JN ∈ {1, · · · ,K} (according to the deci-

sion rule) when they stop.

The ultimate objective is thus to make the probability of JN not being the optimal arm,
i.e. P

[
JN 6= I?

]
, as small as possible. We postpone the discussion about the performance

measure to Section 2.5.3.

Fixed-confidence setting. In the fixed-confidence setting, the learner is given a confi-
dence level/risk δ about the quality of the returned guess of the best arm. The goal is to
reach a quality level of 1− δ with as few samples as possible. The learning protocol of
fixed-confidence BAI can be summarized as follow.

Definition 2.6 (fixed-confidence best-arm identification). We are given a set of K arms
{1, · · · ,K} that follow K unknown distributions (νk )1≤k≤K, a confidence level δ, and a
stopping time τw.r.t. the observations. At each time step n, the learning process consists
of the following actions:

• a vector of rewards (rn,1 ∼ ν1, · · · ,rn,K ∼ νK) is generated,
• the learner picks an arm In ∈ {1, · · · ,K} (according to the sampling rule),
• the learner observes the reward rn , rn,In ,
• the learner stops if P

[
Jτ 6= I?

]≤ δ, where I? is the optimal arm, and
• the learner outputs a guess for the best arm Jτ ∈ {1, · · · ,K} (according to the deci-

sion rule) when they stop.

The goal is to obtain a small expected number of samples Eµ [τ], where

µ, (µ1,µ2, · · · ,µK)

is the underlying bandit model associated to the given set of K arms. In the rest of this the-
sis, we ignore the subscripts µ for expectations and probabilities if there is no ambiguity.
We postpone the discussion about the performance measure to Section 2.5.2.

Remark 2.2. Note that these two frameworks are very different in general and do not
share transferable performance guarantees, readers can refer to Carpentier and Lo-
catelli [2016] for a detailed discussion on the topic.

2.2.2 Sampling rules

Designing smart sampling rules is the main focus of a large part of the thesis, thus we
only survey the related work in this chapter, and leave the technical details to subsequent
chapters.
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Fixed-budget designs. For fixed-budget BAI, the sampling rules depend on the budget
N. A first line of research propose to construct lower and upper confidence bounds on the
arm means, and then make use of the OFU principle to choose arms (somewhat similar to
UCB-type algorithms for regret minimization, see Section 2.1.4). Those methods include
UCB-E [Audibert and Bubeck, 2010], and UGapE [Gabillon et al., 2012]. Another way of
treating the problem is based on arm eliminations such as Successive-Reject [Audibert
and Bubeck, 2010], and Sequential-Halving [Karnin et al., 2013], where less promising
arms are gradually eliminated.

Fixed-confidence designs. For fixed-confidence BAI, the majority of existing sampling
rules rely on the confidence level δ: Again, some of them rely on confidence intervals
such as LUCB [Kalyanakrishnan et al., 2012], UGapE [Gabillon et al., 2012], KL-LUCB and
KL-Racing [Kaufmann and Kalyanakrishnan, 2013], lil’UCB [Jamieson et al., 2014]; oth-
ers are elimination-based like Successive-Elimination, Median-Elimination [Even-
dar et al., 2003], Exponential-Gap-Elimination [Karnin et al., 2013]. The first algo-
rithm that does not depend on δ, Track-and-Stop, is proposed by Garivier and Kauf-
mann [2016].

The fixed-confidence setting is an important topic of interest of this thesis, and will be
covered more thoroughly in particular in Chapter 3 and Chapter 4.

Anytime designs. The fact that the two frameworks produce sampling rules that depend
either on a confidence parameter δ or a budget parameter N is not desirable in some real
applications. To address this problem, Jun and Nowak [2016] propose to use a doubling
trick upon fixed-budget algorithms like Successive-Reject and Sequential-Halving,
or use a time-varying confidence parameter when dealing with the fixed-confidence set-
ting. This allows us to stop the learning process anytime we want. In other words, the
probability of not recommending the true best arm I?, when the learner stops, needs to
decay as fast as possible. Russo [2016] provides an interesting alternative that evaluates
sampling rules in a Bayesian perspective. We provide further insights on this topic in
Chapter 3.

2.2.3 Stopping rules

One can observe from Definition 2.6 and Definition 2.5 that stopping rules are more so-
phisticated in fixed-confidence BAI, as for fixed-budget BAI the learner stops simply when
the budget is exhausted even though the learner needs to know the budget in order to de-
sign the sampling rule.

One of the most applied stopping rules is constructed upon the generalized likelihood
ratio. The stopping rule was first studied by Chernoff [1959], and has recently been refor-
mulated by Garivier and Kaufmann [2016].

Chernoff stopping rule. Finding an appropriate stopping time τ is actually a classical
hypothesis test, namely generalized likelihood ratio test (GLRT), to decide whether we can
tell an arm is larger than another arm with a small risk δ based only on past observations.

Let µ′ denote a bandit model. For any pair of arms indexed by i , j ∈ [K], we consider
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the following generalized likelihood ratio statistic:

Zn,i , j , log

max
µ′

i≥µ′
j

pi

(
ri

Tn,i

)
p j

(
r j

Tn, j

)
max
µ′

i≤µ′
j

pi

(
ri

Tn,i

)
p j

(
r j

Tn, j

) ,

where ri
Tn,i

, {rt : It = i , t ≤ n} is the vector of observations of arm i up to round n and

pi (r1, · · · ,rn is the likelihood of n iid samples from the underlying distribution νi of arm
i . A more thorough discussion is given by Kaufmann and Garivier [2017].

A strong point of this statistic is that it has a closed-form expression for exponential
family bandit models. Indeed, we can define for all pairs of arm i , j a weighted average of
their empirical mean:

µn,i , j ,
Tn,i

Tn,i +Tn, j
µn,i +

Tn, j

Tn,i +Tn, j
µn, j ,

where we recall thatµn,i is the empirical mean of arm i . It can be shown that ifµn,i ≥µn, j ,
then the generalized likelihood ratio statistic can be rewritten as

Zn,i , j = Tn,i d(µn,i ,µn,i , j )+Tn, j d(µn, j ,µn,i , j ) .

and we also have Zn,i , j =−Zn, j ,i . The quantity d(a,b) denotes the KL-divergence between
two probability distributions characterized respectively by a and b (see Appendix A.3.2 for
a reminder). The following stopping rule thus emerges naturally:

τδ, inf
{
n ∈N : ∃i ∈X ,∀ j ∈X \ {i },Zn,i , j > dn,δ

}
= inf

{
n ∈N : max

i∈X
min

j∈X \{i }
Zn,i , j > dn,δ

}
, (2.4)

where dn,δ is an exploration rate that needs to be chosen carefully.

Other options. Other stopping rules also exist, but are often explicitly or implicitly equiv-
alent to the Chernoff stopping rule. For example, in Chapter 3, we introduce a Bayesian
stopping rule and we can show that it has implicitly the same behaviour as the Chernoff
one. It is also the case for many stopping rules in the linear bandits BAI literature, as we
show in Chapter 4 that they are explicitly equivalent to the Chernoff stopping rule up to
constant factors.

2.2.4 Decision rules

There exist several natural and simple decision rules that can be applied to most of the
existing BAI algorithms, namely empirical best arm (EBA), most played arm (MPA) and
empirical distribution of plays (EDP) [Bubeck et al., 2009].

We introduce first EBA which returns, according to its name, the arm with the largest
empirical average reward (see Definition 2.7. EBA is the most natural decision rule that
one can think of as the empirical mean is a good estimation of the true mean when the
corresponding arm is sufficiently pulled.
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Definition 2.7 (empirical best arm decision rule). At the end of round n, the learner
decides to recommend the arm with the best empirical average reward,

Jn = argmax
i∈[K]

µn+1,i .

Another possible decision is to output the most pulled arm (see Definition 2.8)4.

Definition 2.8 (most played arm decision rule). At the end of round n, the learner
decides to recommend the most played arm,

Jn = argmax
i∈[K]

Tn+1,i .

The learner can also recommend arm i with probability Tn,i /n, this is the EDP deci-
sion rule (see Definition 2.9).

Definition 2.9 (empirical distribution of plays decision rule). At the end of round n,
the learner decides to recommend arm i with probability Tn+1,i /(n +1), that is

Jn ∼ pn ,
(

Tn+1,1

n
,

Tn+1,2

n
, · · · ,

Tn+1,K

n

)
.

In practice, EBA is often used in the literature. A more detailed discussion of the three
decision rules can be found in the work of Bubeck et al. [2009]. We do not try to go further
on the topic in this thesis. Note, however, that the present rules are obviously not the only
options for decision rules. Specific rules can be adopted for certain sampling rules. We
will see that it is indeed the case in Chapter 3.

2.3 Extensions of Best-Arm Identification

For real-world applications, sometimes specific need should be met when applying BAI.
The problem formulation needs to be adapted with potentially additional assumptions.
Furthermore, as stated in Section 1.1.2, BAI can be studied within a more general context
of pure exploration. The purpose of this section is thus to provide a brief overview of
commonly studied extensions of BAI as well as other pure exploration problems. We pay
particular attention to BAI for linear bandits as it is the main topic of Chapter 4.

2.3.1 Pure-exploration game

A learner in a general pure-exploration game interacts with the environment by sequen-
tially taking actions to identify the answer to a pre-specified question. We denote by Θ

4This decision rule is, however, more natural with a regret-minimizing strategy.
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the set of possible mean parameters for a specific bandit problem. We further assume
that there is a finite set of answers I . For each parameter in Θ, a unique correct answer
is given by the function I? : Θ→ I among the |I | possible ones (the extension of pure
exploration to multiple correct answers is studied by Degenne and Koolen 2019).

While BAI is the mostly studied setting of pure-exploration game, other types of ques-
tion exist as well, e.g. threshold bandits [Locatelli et al., 2016], minimum threshold [Kauf-
mann et al., 2018], signed bandits [Ménard, 2019], pure exploration combinatorial ban-
dits [Chen et al., 2014], Monte-Carlo tree search [Teraoka et al., 2014], etc.

The learning protocol of a general pure exploration problem is summarized in Defini-
tion 2.10.

Definition 2.10 (pure-exploration game). We are given a set of K arms that is parame-
terized by a parameter vector µ ∈Θ. At each time step n, the learning process consists of
the following actions:

• a vector of rewards (rn,1, · · · ,rn,K) is generated,
• the learner picks an arm In ∈ {1, · · · ,K} (according to the sampling rule),
• the learner observes the reward rn , rn,In (possibly noisy),
• the learner stops according to the stopping rule τ, and
• the learner outputs a guess for the answer Jτ ∈I (according to the decision rule)

when they stop.

Notably, we can recover the BAI problem from a pure-exploration game by setting the
pre-specified question to be finding the best arm: I? = argmaxi∈[K]µi , and by setting the
answer set to be equal to the arm set: I =X .

2.3.2 Best-arm identification for linear bandits

In linear bandits BAI, we consider a finitely-armed5 linear bandit model, where a collec-
tion of K arms6 X , {x1, . . . ,xK} ⊂ Rd ., is given. d ∈ N is the dimension of the arm space.
Usually we assume that the arm set X spans Rd . Each arm i is parameterized again by its
(unknown) mean µi .

In the linear case, we assume that µi is given by a linear combination of the feature
vector and a parameter vector θ ∈Rd , that is

µi = xT
i θ .

θ is called regression parameter as it is unknown to the learner and needs to be approached
using linear regression methods during the bandit learning. The (unknown) best arm is
denoted by x?, argmaxx∈X xTθ, and indexed by I?.

At each time step n, the learner selects an arm In whose corresponding context is de-
noted by x̂n , xIn . The learner then receives a noisy observation of the inner product of
x̂n and θ as payoff,

rn = x̂T
nθ+εn ,

where εn is the noise. The learning protocol of linear bandits BAI is given in Defini-
tion 2.11.

5We can also generalize to an infinite number of arms. The setting appears to be much more intricate,
and is out of the scope of this thesis.

6Sometimes called contexts or feature vectors as well.
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Definition 2.11 (linear bandits best-arm identification). We are given a set of K arms
{x1, · · · ,xK} ∈ Rd that spans Rd . At each time step n, the learning process consists of the
following actions:

• a vector of rewards (rn,1 = xT
1θ+ε1,n , · · · ,rn,K = xT

Kθ+εK,n) is generated,
• the learner picks an arm In ∈ {1, · · · ,K} (according to the sampling rule),
• the learner observes the reward rn , rn,In with noise εn , εIn ,n ,
• the learner stops according to the stopping rule τ, and
• the learner outputs a guess for the best arm Jτ ∈ {1, · · · ,K} (according to the deci-

sion rule) when they stop.

Remark 2.3. One can observe that linear bandits BAI can be reduced to the vanilla BAI
setting if we consider a set of linearly independent feature vectors.

2.3.3 Other variants of best-arm identification

Linear bandits is merely a particular case of contextual bandits where the rewards are
determined by an arbitrary function applied on the arm rather than its inner product
with a regression parameter. BAI for general contextual bandits is much more intricate
than linear bandits BAI: for example, the sample complexity lower bound of Garivier and
Kaufmann [2016], that we discuss later in Section 2.5.2, has an explicit formula for linear
bandits BAI (see Chapter 4), but not for contextual bandits BAI. A relatively simpler set-
ting, namely generalized linear bandits, has been studied by Azizi et al. [2021]; Kazerouni
and Wein [2019]. To the best of my knowledge, BAI for general contextual bandits is only
studied by Deshmukh et al. [2019] in the context of simple regret that we define later in
Section 2.5.3.

Besides, many other variants mentioned in Section 2.1 can be studied in the context of
BAI as well. To name a few of them, we can think of BAI for combinatorial bandits [Chen
et al., 2021], BAI for adversarial bandits [Abbasi-Yadkori et al., 2018]. We can also refer to
other variants like Top-m identification where instead of finding a single best arm, we aim
to find the top-m best arm (see e.g. Kalyanakrishnan and Stone 2010; Réda et al. 2021).

2.4 Many-armed bandits

Now we elaborate a bit on another important extension, for which a large number of arms
are available. The arm space could be infinite, or even continuous so that it is not even
possible to sample each arm once.

Remember that there exists two general learning objectives in a bandit game: regret
minimization and pure exploration (see e.g. Kaufmann and Garivier 2017 for a survey).
While regret minimization is also an interesting topic for many-armed bandits, our focus
in this thesis is still on optimization. As introduced in Chapter 1, when the search space
is infinite, it is also called global optimization.

More precisely, we consider a (measurable) arm space X that contains infinitely-many
arms. The learning goal is to optimize an unknown function f : X → R based on N noisy
evaluations, that can be sequentially selected. Each arm x is essentially a data point in the
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arm space X , and it gets its mean reward f (x) through the reward function f , which is
the target function to be optimized. At each round n, the learner chooses an arm xn ∈X

and receives a reward rn . We study the noisy setting in which the obtained reward is a
noisy evaluation of f : rn , f (xn)+ εn , where εn is the noise. Note that in the context of
GO, practitioners are often more interested by the fixed-budget setting as the target func-
tion is usually extremely costly to evaluate, hence only a considerably limited number of
function evaluations are allowed. The learning protocol can thus be given as follow.

Definition 2.12 (global optimization). We are given a measurable arm space X , and
a budget of N function evaluations. At each time step n ∈ [N], the learning process
consists of the following actions:

• the learner picks a point xn from X ,
• the learner observes the noisy function value of xn as reward: rn , f (xn)+εn ,
• the learner stops if n = N, and
• the learner outputs a guess for the maximum when they stop.

It would be, however, impossible to obtain a sub-linear algorithm if no structure is
assumed on the arm space. Two different settings exist in the literature: (1) infinitely-
armed bandits, and (2) continuum-armed bandits.

The first one is initiated by Berry et al. [1997], where a specific case of Bernoulli bandits
is treated. In their paper, Berry et al. [1997] regard the Bernoulli parameters as indepen-
dent observations from a probability distribution, that we call a reservoir in subsequent
works. This setting is considered in Chapter 6.

Continuum-armed bandits setting, or sometimes also named as X -armed bandits
(see e.g. Bubeck et al. 2010), considers arms that lie in some metric space and their mean
rewards form a deterministic or stochastic function with some global or local smoothness
being assumed. This setting is the focus of Chapter 5.

2.5 Performance Measure

Now that we have described how the learning settings of MAB for optimization are formal-
ized, it remains to define appropriate metrics to assess the performance of the learner.

2.5.1 δ-correctness and PAC learning

In the fixed-confidence setting, a sampling rule is always accompanied by a δ-dependent
stopping rule τδ. As stated in Section 2.2.1, we seek to construct BAI strategies that output
the true best arm as the final guess with high confidence on any bandit models of interest.
This objective can be translated into building strategies that are δ-correct.

Definition 2.13 (δ-correct strategy). A BAI strategy (In , Jn ,τ) is called δ-correct if for
any bandit model µwith a unique optimal arm, it holds that

P [τδ <∞] = 1 and P
[

jτδ 6= I?µ
]
≤ δ .
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In reality, we can prove that with a well-chosen threshold in the Chernoff stopping
rule, a BAI strategy is δ-correct regardless of the choice of the sampling rule. This result
can be formally stated as Theorem 2.4, and will be discussed again in Chapter 3 with more
detail.

Theorem 2.4. With C gG a function that satisfies C gG (x) ' x + ln(x), we introduce the
threshold

dn,δ = 4ln(4+ ln(n))+2C gG

(
ln((K−1)/δ)

2

)
. (2.5)

Then, regardless of the sampling rule, the Chernoff stopping rule with threshold dn,δ

satisfy
P

[
τδ <∞∧ Jτδ 6= I?

]≤ δ .

In a more general setting where the arm space is continuous, we can opt for the prob-
ably approximately correct (PAC) learning framework [Valiant, 1984].

Definition 2.14 ((ε,δ)-PAC strategy). A BAI strategy (In , Jn ,τ) is called (ε,δ)-PAC if for
any bandit model, it holds that

P [τδ <∞] = 1 and P
[
µ?−µJτδ

≤ ε
]
≥ 1−δ .

2.5.2 Sample complexity

In fixed-confidence BAI, the goal is to design δ-correct sampling rules with minimum
samples E [τδ]. Garivier and Kaufmann [2016] provide the following lower bound on the
sample complexity when the sampling rule is δ-correct.

Theorem 2.5. [Theorem 1 of Garivier and Kaufmann 2016] Let δ ∈ (0,1), for any δ-
correct sampling rule and any bandit model µ, we have

Eµ [τδ] ≥ T?(µ)kl (δ,1−δ) .

In the theorem above, kl denotes the KL-divergence between two Bernoulli distri-
butions (see Appendix A.3.2). T?(µ) is a quantity that characterizes the optimal sample
complexity that we define in the next.

Let ΣK , {ω :
∑K

k=1ωk = 1} be the probability simplex of dimension K. We first define a
notion of alternative set in Definition 2.15.

Definition 2.15 (alternative set). For any bandit model µ, we define the alternative set,
denoted by ¬µ, as the set of bandit models whose true best arm is different from that of
µ, i.e.

¬µ,
{
µ′ : I?µ′ 6= I?µ

}
.
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Then the characteristic time T?(µ) is given by

T?(µ)−1 , sup
ω∈ΣK

inf
µ′∈¬µ

(
K∑

i=1
ωi d(µi ,µ′

i )

)
, (2.6)

where d is the KL-divergence (see Appendix A.3.2). This quantity will be extensively dis-
cussed in Chapter 3 and Chapter 4. For the moment, we only need to keep in mind its
presence.

One may observe that kl(δ,1−δ) converges to 0 when δ tends to 0. We can thus derive
an asymptotic sample-complexity lower bound:

liminf
δ→0

E [τδ]

ln(1/δ)
≥ T?(µ) .

Those lower bounds can serve as a good criterion for judging the behaviour of a fixed-
confidence BAI strategy.

2.5.3 Simple regret

In the context of continuum-armed bandits, there are two common performance criteria.
Depending on the applications, cumulative regret can be of interest. However, from an
optimization point of view, people are often more interested in the simple regret (also
called optimization error) defined below.

Definition 2.16 (simple regret). At the end of round N, a given policy which observes a
sequence of rewards (rn)1≤n≤N and a recommendation jN suffers from a simple regret:

SN ,µ?−µ jN .

Remark 2.6. As observed by Bubeck et al. [2009], a good cumulative regret naturally
implies a good simple regret. Indeed, if we recommend Jn according to the decision rule
EDP (see Definition 2.9), we immediately get

E [Sn] ≤ E [Rn]

n
.

The converse is not necessarily true.

Finally, one can observe that simple regret is also commonly used for fixed-budget BAI
for whom the goal is to minimize the error probability.
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Chapter 3

A Bayesian Study of Best-Arm
Identification

" Look for your choices, pick the
best one, then go with it.

Pat Riley
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CHAPTER 3. A BAYESIAN STUDY OF BEST-ARM IDENTIFICATION

3.1 Introduction

In this chapter we study the very fundamental and general setting of BAI. Recall that
we consider a finite-armed bandit model X , {1, · · · ,K}, parameterized by their means
µ1, · · · ,µK. And we focus on the fixed-confidence setting, introduced by Even-dar et al.
[2003], in which given a risk parameter δ, the goal is to ensure that the probability to
stop and recommend a wrong arm, P

[
Jτ 6= I?

]
, is smaller than δ, while minimizing the

expected total number of samples to make this accurate recommendation, E [τ].
As already elaborated in Chapter 2 that most of the existing sampling rules for the

fixed-confidence setting depend on the risk parameter δ, and they either rely on careful
construction of confidence intervals and use of OFU or arm eliminations. The first known
sampling rule for BAI that does not depend on δ is the tracking rules proposed by Garivier
and Kaufmann [2016], which is proved to achieve the minimal sample complexity when
combined with the Chernoff stopping rule as δ goes to zero. Such an anytime sampling
rule (neither depending on a risk δ or a budget N) is very appealing for applications, as
advocated by Jun and Nowak [2016], who introduce the anytime best-arm identification
framework.

In this chapter, we investigate the problem from a different perspective, and we are
in particular interested in another anytime sampling rule for BAI: Top-Two Thompson
Sampling (TTTS).

TTTS is inspired by the famous TS [Thompson, 1933] and studies BAI from a Bayesian
point of view. TS is a Bayesian algorithm well known for regret minimization, for which
it is now seen as a major competitor to UCB-typed approaches [Auer et al., 2002a; Bur-
netas and Katehakis, 1996; Cappé et al., 2013]. However, it is also well known that regret
minimizing algorithms cannot yield optimal performance for BAI [Bubeck et al., 2011;
Kaufmann and Garivier, 2017] and as we opt Thompson Sampling for BAI, then its adap-
tation is necessary. Such an adaptation, TTTS, was given by Russo [2016] along with the
other top-two sampling rules TTPS and TTVS. By choosing between two different candi-
date arms in each round, these sampling rules enforce the exploration of sub-optimal
arms, that would be under-sampled by vanilla TS due to its objective of maximizing re-
wards.

While TTTS appears to be a good anytime sampling rule for the fixed-confidence BAI
when coupled with an appropriate stopping rule, so far there is no theoretical support
for this employment. Indeed, the (Bayesian-flavored) asymptotic analysis of Russo [2016]
shows that under TTTS, the posterior probability that I? is the best arm converges almost
surely to 1 at the best possible rate. However, this property does not by itself translate into
sample complexity guarantees. Since the result of Russo [2016], Qin et al. [2017] proposed
and analyzed TTEI, another Bayesian sampling rule, both in the fixed-confidence setting
and in terms of posterior convergence rate. Nonetheless, similar guarantees for TTTS have
been left as an open question by Russo [2016]. In the present paper, we answer this open
question. In addition, we propose Top-Two Transportation Cost (T3C), a computationally
more favorable variant of TTTS and extend the fixed-confidence guarantees to T3C as well.

Contributions. 1) We propose a new Bayesian sampling rule, T3C, which is inspired by
TTTS but easier to implement and computationally advantageous. 2) We investigate two
Bayesian stopping and recommendation rules and establish their δ-correctness for a ban-
dit model with Gaussian rewards.1 3) We provide the first sample complexity analysis of
TTTS and T3C for a Gaussian model and our proposed stopping rule. 4) Russo’s posterior

1hereafter ‘Gaussian bandits’ or ‘Gaussian model’

28



CHAPTER 3. A BAYESIAN STUDY OF BEST-ARM IDENTIFICATION

convergence results for TTTS were obtained under restrictive assumptions on the models
and priors, which exclude the two mostly used in practice: Gaussian bandits with Gaus-
sian priors and bandits with Bernoulli rewards2 with Beta priors. We prove that optimal
posterior convergence rates can be obtained for those two as well.

+ This chapter is based on Shang et al. [2020a].

3.2 Bayesian BAI Strategies

In this section, we give an overview of the sampling rule TTTS and introduce T3C. We
provide details for Bayesian updating for Gaussian and Bernoulli models respectively, and
introduce associated Bayesian stopping and recommendation rules.

3.2.1 Sampling rules

Both TTTS and T3C employ a Bayesian machinery and make use of a prior distributionΠ1

over a set of parameters Θ, that contains the unknown true parameter vector µ. Upon ac-
quiring observations (rI1,1, · · · ,rIn−1,n−1), we update our beliefs according to Bayes’ rule
and obtain a posterior distribution Πn which we assume to have density πn w.r.t. the
Lebesgue measure. Russo’s analysis is restricted to strong regularity properties on the
models and priors that exclude two important useful cases we consider in this paper:
(1) the observations of each arm i follow a Gaussian distribution N (µi ,σ2) with com-
mon known variance σ2, with imposed Gaussian prior N (µ1,i ,σ2

1,i ), (2) all arms receive
Bernoulli rewards with unknown means, with a uniform prior on each arm.

Gaussian model. For Gaussian bandits with a N (0,κ2) prior on each mean, the poste-
rior distribution of µi at round n is Gaussian with mean and variance that are respectively
given by ∑n−1

`=1 1{I` = i }rI`,`

Tn,i +σ2/κ2
and

σ2

Tn,i +σ2/κ2
,

where Tn,i ,
∑n−1
`=1 1{I` = i } is the number of selections of arm i before round n. For the

sake of simplicity, we consider improper Gaussian priors with µ1,i = 0 and σ1,i = +∞ for
all i ∈X , for which

µn,i = 1

Tn,i

n−1∑
`=1

1{I` = i }rI`,` and σ2
n,i =

σ2

Tn,i
.

Observe that in that case the posterior mean µn,i coincides with the empirical mean.

Beta-Bernoulli model. For Bernoulli bandits with a uniform (Bet a(1,1)) prior on each
mean, the posterior distribution of µi at round n is a Beta distribution with shape param-
eters αn,i =∑n−1

`=1 1{I` = i }rI`,`+1 and βn,i = Tn,i −∑n−1
`=1 1{I` = i }rI`,`+1.

Now we briefly recall TTTS and introduce T3C.

2hereafter ‘Bernoulli bandits’
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Description of TTTS. At each time step n, TTTS has two potential actions: (1) with prob-
ability β, a parameter vector θ is sampled from Πn , and TTTS chooses to play

I(1)
n , argmax

i∈X

θi ,

(2) and with probability 1−β, the algorithm continues sampling new θ′ until we obtain a
challenger

I(2)
n , argmax

i∈X

θ′i

that is different from I(1)
n , and TTTS then selects the challenger.

Description of T3C. One drawback of TTTS is that, in practice, when the posteriors be-
come concentrated, it takes many Thompson samples before the challenger I(2)

n is ob-
tained. We thus propose a variant of TTTS, called T3C, which alleviates this computational
burden. Instead of re-sampling from the posterior until a different candidate appears, we
define the challenger as the arm that has the lowest transportation cost Wn(I(1)

n , i ) with
respect to the first candidate (with ties broken uniformly at random).

Let µn,i be the empirical mean of arm i and

µn,i , j ,
(Tn,iµn,i +Tn, jµn, j )

(Tn,i +Tn, j )
,

then we define

Wn(i , j ),
{

0 ifµn, j ≥µn,i ,
Wn,i , j +Wn, j ,i otherwise,

(3.1)

where

Wn,i , j ,Tn,i d
(
µn,i ,µn,i , j

)
for any i , j . One may notice that we actually recover the generalized likelihood ratio statis-
tic stated in Section 2.2.3.

Recall that we have closed-form expressions for the KL-divergence in some cases: in
the Gaussian case, d(µ;µ′) = (µ−µ′)2/(2σ2) while in the Bernoulli case d(µ;µ′) =µ ln(µ/µ′)+
(1−µ) ln(1−µ)/(1−µ′) (see Appendix A.3.2). For Gaussian bandits, we can further obtain
a nice closed-form expression for the transportation cost,

Wn(i , j ) = (µn,i −µn, j )2

2σ2(1/Tn,i +1/Tn, j )
1{µn, j <µn,i } .

The pseudo-code of TTTS and T3C are shown in Algorithm 3.1 and Algorithm 3.2. Note
that under the Gaussian model with improper priors, one should pull each arm once at
the beginning for the sake of obtaining proper posteriors.

Wn in Line 9 of Algorithm 3.2 is the transportation cost defined in (3.1).

3.2.2 Rationale for T3C

In order to explain how T3C can be seen as an approximation of the re-sampling per-
formed by TTTS, we first need to define the optimal action probabilities.
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Algorithm 3.1 Sampling rule of TTTS
1: Input: β
2: for n ← 1,2, · · · do
3: Sample θ∼Πn

4: I(1) ← argmaxi∈X θi

5: Sample b ∼Ber n(β)
6: if b = 1 then
7: Evaluate arm I(1)

8: else
9: Repeat sample θ′ ∼Πn

10: I(2) ← argmaxi∈X θ′i
11: until I(2) 6= I(1)

12: Evaluate arm I(2)

13: end if
14: Update mean and variance
15: t = t +1
16: end for

Algorithm 3.2 Sampling rule of T3C
1: Input: β
2: for n ← 1,2, · · · do
3: Sample θ∼Πn

4: I(1) ← argmaxi∈X θi

5: Sample b ∼Ber n(β)
6: if b = 1 then
7: Evaluate arm I(1)

8: else
9: I(2) ← argmini 6=I(1) Wn(I(1), i ), cf. (3.1)

10: Evaluate arm I(2)

11: end if
12: Update mean and variance
13: t = t +1
14: end for

Optimal action probability. The optimal action probability an,i is defined as the poste-
rior probability that arm i is optimal. Formally, lettingΘi be the subset ofΘ such that arm
i is the optimal arm,

Θi ,
{
θ ∈Θ

∣∣∣ θi > max
j 6=i

θ j

}
,

then we define

an,i ,Πn(Θi ) =
∫
Θi

πn(θ)dθ.

With this notation, one can show that under TTTS,

Πn
(
I(2)

n = j |I(1)
n = i

)= an, j∑
k 6=i an,k

. (3.2)

Furthermore, when i coincides with the empirical best mean (and this will often be the
case for I(1)

n when n is large due to posterior convergence) one can write

an, j 'Πn
(
θ j ≥ θi

)' exp
(−Wn(i , j )

)
,

where the last step is justified in Lemma 3.2 in the Gaussian case (and Lemma B.18 in
Appendix B.7.3 in the Bernoulli case). Hence, T3C replaces sampling from the distribu-
tion (3.2) by an approximation of its mode which is easy to compute. Note that directly
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computing the mode would require to compute an, j , which is much more costly than the
computation of Wn(i , j )3.

3.2.3 Stopping and decision rules

In order to use TTTS or T3C as sampling rule for fixed-confidence BAI, we need to addi-
tionally define stopping and decision rules. While Qin et al. [2017] suggest to couple TTEI
with the “frequentist” Chernoff stopping rule [Garivier and Kaufmann, 2016], we propose
in this section natural Bayesian stopping and recommendation rule. They both rely on
the optimal action probabilities defined above.

Bayesian recommendation rule. At time step n, a natural candidate for the best arm is
the arm with largest optimal action probability, hence we define

Jn , argmax
i∈X

an,i .

Bayesian stopping rule. In view of the recommendation rule, it is natural to stop when
the posterior probability that the recommended action is optimal is large, and exceeds
some threshold cn,δ which gets close to 1. Hence our Bayesian stopping rule is

τδ, inf

{
n ∈N : max

i∈X
an,i ≥ cn,δ

}
. (3.3)

Links with frequentist counterparts. Using the transportation cost Wn(i , j ) defined in
(3.1), the Chernoff stopping rule of Garivier and Kaufmann [2016] can actually be rewrit-
ten as

τCh.
δ , inf

{
n ∈N : max

i∈X
min

j∈X \{i }
Wn(i , j ) > dn,δ

}
. (3.4)

This stopping rule coupled with the recommendation rule Jn = argmaxi µn,i .
As explained in that paper, Wn(i , j ) can be interpreted as a (log) Generalized Likeli-

hood Ratio statistic for rejecting the hypothesis H0 : (µi < µ j ). Through our Bayesian
lens, we rather have in mind the approximationΠn(θ j > θi ) ' exp

{−Wn(i , j )
}
, valid when

µn,i >µn, j , which permits to analyze the two stopping rules using similar tools, as will be
seen in the proof of Theorem 3.2.

As shown later in Section 3.4, τδ and τCh.
δ

prove to be fairly similar for some corre-
sponding choices of the thresholds cn,δ and dn,δ. This endorses the use of the Chernoff
stopping rule in practice, which does not require the (heavy) computation of optimal ac-
tion probabilities. Still, our sample complexity analysis applies to the two stopping rules,
and we believe that a frequentist sample complexity analysis of a fully Bayesian BAI strat-
egy is a nice theoretical contribution.

Useful notation. We follow the notation of Russo [2016] and define the following mea-
sures of effort allocated to arm i up to time n,

ψn,i ,P [In = i |Fn−1] and Ψn,i ,
n∑

l=1
ψl ,i .

3the TTPS sampling rule [Russo, 2016] also requires the computation of an,i , thus we do not report sim-
ulations for this Bayesian sampling rule in Section 3.6
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In particular, for TTTS we have

ψn,i = βan,i + (1−β)an,i
∑
j 6=i

an, j

1−an, j
,

while for T3C

ψn,i = βan,i + (1−β)
∑
j 6=i

an, j
1{Wn( j , i ) = mink 6= j Wn( j ,k)}

#
∣∣∣argmink 6= j Wn( j ,k)

∣∣∣ .

Recall that ΣK = {ω :
∑K

k=1ωk = 1} is the probability simplex of dimension K.

3.3 Two Related Optimality Notions

In the fixed-confidence setting, we aim for building δ-correct strategies, i.e. strategies that
identify the best arm with high confidence on any problem instance (see Definition 2.13).

Amongδ-correct strategies, we seek the one with the smallest sample complexity E [τδ].
So far, TTTS has not been analyzed in terms of sample complexity; Russo [2016] focusses
on posterior consistency and optimal convergence rates. Interestingly, both the small-
est possible sample complexity and the fastest rate of posterior convergence can be ex-
pressed in terms of the following quantities.

Definition 3.1. Define for all i 6= I?

Ci (ω,ω′),min
x∈I

ωd(µI? ; x)+ω′d(µi ; x) ,

where d(µ,µ′) is the KL-divergence and I = R in the Gaussian case and I = [0,1] in
the Bernoulli case. We define

T?(µ)−1 , max
ω∈ΣK

min
i 6=I?

Ci (ωI? ,ωi ) ,

T?β (µ)−1 , max
ω∈ΣK
ωI?=β

min
i 6=I?

Ci (ωI? ,ωi ) . (3.5)

Note that the T?(µ) in Definition 3.1 is equivalent to the one defined in Definition 2.64.
The quantity Ci (ωI? ,ωi ) can be interpreted as a “transportation cost”5 from the origi-

nal bandit instance µ to an alternative instance in which the mean of arm i is larger than
that of I?, when the proportion of samples allocated to each arm is given by the vector
ω ∈ ΣK. As shown by Russo [2016], the ω that maximizes (3.5) is unique, which allows us
to define the β-optimal allocation ωβ in the following proposition.

Proposition 3.1. There is a unique solution ωβ to the optimization problem (3.5) sat-

isfying ωβI? = β, and for all i , j 6= I?, Ci (β,ωβi ) = C j (β,ωβj ).

Proof. We handle the existence and the uniqueness separately as below.

4Readers can refer to Section 2.2 of Garivier and Kaufmann [2016] for a proof.
5For which Wn(I?, i ) is an empirical counterpart.
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Existence: For any arm i 6= I?, Ci is a continuous function, so as to mini 6=I? Ci . Accord-
ing to the extreme value theorem, function mini 6=I? Ci (β, ·) must attain its maximum over
[0,1]K−1 which is compact. Suppose thatωβ is a such maximizer. We thus have

T?β (µ)−1 = max
ω:ωI?=β

min
i 6=I?

Ci (β,ωi ) = min
i 6=I?

Ci (β,ωβi ).

Let us assume that ωβ does not verify the second condition, which means there exists
some j 6= I? such that

C j (β,ωβi ) > Ci?(β,ωβi?) ,

where i?, argmini 6=I? Ci (β,ωβi ).

Now if we subtract a small quantity ε> 0, from C j (β,ωβj ), such that

ε≤
C j (β,ωβj )−Ci?(β,ωβi?)

2
,

and add ε/(K − 2) to Ci (β,ωβi ) for any i 6= j , I?, we would not change the order of the

Ci (β,ωβi ). Therefore, i? remains unchanged, however, the new Ci?(β,ωβi?) would be strictly

larger than the previous one which contradicts the definition ofωβ.

Uniqueness: We now need to show that the solution is unique. Suppose that two differ-
ent maximizersω andω′ exist, and there exists some i 6= I? such thatωi >ω′

i . Since Ci (β, ·)
is an strictly increasing function, thus we have Ci (β,ωi ) > Ci (β,ω′

i ). By consequence, for
any j 6= i and j ′ 6= i ,

C j (β,ω j ) = Ci (β,ωi ) > Ci (β,ω′
i ) = C j ′(β,ω′

j ′).

Therefore, for any j 6= I? and j ′ 6= I?, ω j >ω′
j , and∑

j 6=I?
ω j >

∑
j 6=I?

ω′
j .

However, we know that 1−∑
j 6=I?ω j =ωI? = β=ω′

I? = 1−∑
j 6=I?ω

′
j , contradiction!

For models with more than two arms, there is no closed form expression for T?
β

(µ)−1

or T?(µ)−1, even for Gaussian bandits with variance σ2 for which we have

T?β (µ)−1 = max
ω:ωI?=β

min
i 6=I?

(µI? −µi )2

2σ2(1/ωi +1/β)
.

Bayesian β-optimality. Russo [2016] proves that any sampling rule allocating a fraction

β to the optimal arm (Ψn,I?/n → β) satisfies 1−an,I? ≥ e
−n(T?

β
(µ)−1+o(1))

(a.s.) for large values
of n. We define a Bayesian β-optimal sampling rule as a sampling rule matching this lower

bound, i.e. satisfying Ψn,I?/n → β and 1−an,I? ≤ e
−n(T?

β
(µ)−1+o(1))

.
Russo [2016] proves that TTTS with parameter β is Bayesian β-optimal. However, the

result is valid only under strong regularity assumptions, excluding the two practically im-
portant cases of Gaussian and Bernoulli bandits. In this paper, we complete the picture
by establishing Bayesian β-optimality for those models in Section 3.5. For the Gaussian
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bandit, Bayesian β-optimality was established for TTEI by Qin et al. [2017] with Gaussian
priors, but this remained an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allo-

cation of measurement effort to the β-optimal allocation: Ψn,i /n →ω
β

i for all i , which is

equivalent to Tn,i /n →ω
β

i (cf. Lemma 3.4).

β-optimality in the fixed-confidence setting. In the fixed confidence setting, the per-
formance of an algorithm is evaluated in terms of sample complexity. A lower bound
given by Garivier and Kaufmann [2016] states that any δ-correct strategy satisfies E [τδ] ≥
T?(µ) ln(1/(3δ)).

Observe that T?(µ)−1 = maxβ∈[0,1] T?
β

(µ)−1. Using the same lower bound techniques,
one can also prove that under any δ-correct strategy satisfying Tn,I?/n → β,

liminf
δ→0

E [τδ]

ln(1/δ)
≥ T?β (µ) .

This motivates the relaxed optimality notion that we introduce in this paper: A BAI strat-
egy is called asymptotically β-optimal if it satisfies

Tn,I?

n
→ β and limsup

δ→0

E [τδ]

ln(1/δ)
≤ T?β (µ).

In the paper, we provide the first sample complexity analysis of a BAI algorithm based on
TTTS (with the stopping and recommendation rules described in Section 3.2), establishing
its asymptotic β-optimality.

As already observed by Qin et al. [2017], any sampling rule converging to the β-optimal

allocation (i.e. satisfying Tn,i /n → wβ

i for all i ) can be shown to satisfy

limsup
δ→0

τδ/ln(1/δ) ≤ T?β (µ)

almost surely, when coupled with the Chernoff stopping rule. The fixed confidence opti-
mality that we define above is stronger as it provides guarantees on E [τδ].

3.4 Fixed-Confidence Analysis

In this section, we consider Gaussian bandits and the Bayesian rules using an improper
prior on the means. We state our main result below, showing that TTTS and T3C are
asymptotically β-optimal in the fixed confidence setting, when coupled with appropri-
ate stopping and recommendation rules.

Theorem 3.1. With C gG the function defined by Kaufmann and Koolen [2018], which
satisfies C gG (x) ' x + ln(x), we introduce the threshold

dn,δ = 4ln(4+ ln(n))+2C gG

(
ln((K−1)/δ)

2

)
. (3.6)

The TTTS and T3C sampling rules coupled with either
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• the Bayesian stopping rule (3.3) with threshold

cn,δ = 1− 1p
2π

e
−

(p
dn,δ+ 1p

2

)2

and the recommendation rule Jt = argmaxi an,i

• or the Chernoff stopping rule (3.4) with threshold dn,δ and recommendation rule
Jt = argmaxi µn,i ,

form a δ-correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

limsup
δ→0

E [τδ]

log(1/δ)
≤ T?β (µ) .

We now give the proof of Theorem 3.1, which is divided into three parts. The first step
of the analysis is to prove the δ-correctness of the studied BAI strategies.

Theorem 3.2. Regardless of the sampling rule, the stopping rule (3.3) with the threshold
cn,δ and the Chernoff stopping rule with threshold dn,δ defined in Theorem 3.1 satisfy
P

[
τδ <∞∧ Jτδ 6= I?

]≤ δ.

To prove that TTTS and T3C allow to reach a β-optimal sample complexity, one needs
to quantify how fast the measurement effort for each arm is concentrating to its corre-
sponding optimal weight. For this purpose, we introduce the random variable

Tεβ, inf

{
N ∈N : max

i∈A
|Tn,i /n −ωβi | ≤ ε,∀n ≥ N

}
.

The second step of our analysis is a sufficient condition forβ-optimality, stated in Lemma 3.1.
Its proof is given in Appendix B.5. The same result was proven for the Chernoff stopping
rule by Qin et al. [2017].

Lemma 3.1. Let δ,β ∈ (0,1). For any sampling rule which satisfies E
[

Tε
β

]
< ∞ for all

ε> 0, we have

limsup
δ→0

E [τδ]

log(1/δ)
≤ T?β (µ) ,

if the sampling rule is coupled with stopping rule (3.3),

Finally, it remains to show that TTTS and T3C meet the sufficient condition, and there-
fore the last step, which is the core component and the most technical part our analysis,
consists of showing the following.

Theorem 3.3. Under TTTS or T3C, E
[

Tε
β

]
<+∞.

In the rest of this section, we prove Theorem 3.2 and sketch the proof of Theorem 3.3.
But we first highlight some important ingredients for these proofs.
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3.4.1 Core ingredients

Our analysis hinges on properties of the Gaussian posteriors, in particular on the follow-
ing tails bounds, which follow from Lemma 1 of Qin et al. [2017].

Lemma 3.2. For any i , j ∈A , if µn,i ≤µn, j

Πn
[
θi ≥ θ j

]≤ 1

2
exp

{
−

(
µn, j −µn,i

)2

2σ2
n,i , j

}
, (3.7)

Πn
[
θi ≥ θ j

]≥ 1p
2π

exp

{
−

(
µn, j −µn,i +σn,i , j

)2

2σ2
n,i , j

}
, (3.8)

where σ2
n,i , j ,σ2/Tn,i +σ2/Tn, j .

This lemma is crucial to control an,i and ψn,i , the optimal action and selection prob-
abilities.

3.4.2 Proof of Theorem 3.2

We upper bound the desired probability as follows

P
[
τδ <∞∧ Jτδ 6= I?

]≤ ∑
i 6=I?

P
[∃n ∈N : an,i > cn,δ

]
≤ ∑

i 6=I?
P

[∃n ∈N :Πn(θi ≥ θI?) > cn,δ,µn,I?≤µn,i
]

≤ ∑
i 6=I?

P
[∃n ∈N : 1− cn,δ >Πn(θI?> θi ),µn,I?≤µn,i

]
.

The second step uses the fact that as cn,δ ≥ 1/2, a necessary condition for Πn(θi ≥
θI?) ≥ cn,δ is that µn,i ≥µn,I? . Now using the lower bound (3.8), if µn,I? ≤µn,i , the inequal-
ity 1− cn,δ >Πn(θI? > θi ) implies

(µn,i −µn,I?)2

2σ2
n,i ,I?

≥
(√

ln
1p

2π(1− cn,δ)
− 1p

2

)2

= dn,δ,

where the equality follows from the expression of cn,δ as function of dn,δ. Hence to con-
clude the proof it remains to check that

P

[
∃n∈N :µn,i ≥µn,I?,

(µn,i−µn,I?)2

2σ2
n,i ,I?

≥dn,δ

]
≤ δ

K−1
. (3.9)

To prove this, we observe that for µn,i ≥µn,I? ,

(µn,i −µn,I?)2

2σ2
n,i ,I?

= inf
θi<θI?

Tn,i d(µn,i ;θi )+Tn,I?d(µn,I?;θI?)

≤ Tn,i d(µn,i ;µi )+Tn,I?d(µn,I?;µI?).

Corollary 10 of Kaufmann and Koolen [2018] then allows us to upper bound the prob-
ability

P
[∃n ∈N : Tn,i d(µn,i ;µi )+Tn,I?d(µn,I? ,µI?) ≥ dn,δ

]
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by δ/(K−1) for the choice of threshold given in (3.6), which completes the proof that the
stopping rule (3.3) is δ-correct. The fact that the Chernoff stopping rule with the above
threshold dn,δ given above is δ-correct straightforwardly follows from (3.9).

3.4.3 Sketch of the proof of Theorem 3.3

We present a unified proof sketch of Theorem 3.3 for TTTS and T3C. While the two analyses
follow the same steps, some of the lemmas given below have different proofs for TTTS and
T3C, which can be found in Appendix B.3 and Appendix B.4 respectively.

We first state two important concentration results, that hold under any sampling rule.

Lemma 3.3. [Lemma 5 of Qin et al. 2017] There exists a random variable W1, such that
for all i ∈A ,

∀n ∈N, |µn,i −µi | ≤σW1

√
log(e +Tn,i )

1+Tn,i
a.s. ,

and E
[
eλW1

]<∞ for all λ> 0.

Lemma 3.4. There exists a random variable W2, such that for all i ∈A ,

∀n ∈N, |Tn,i −Ψn,i | ≤ W2

√
(n +1)log(e2 +n) a.s. ,

and E
[
eλW2

]<∞ for any λ> 0.

Lemma 3.3 controls the concentration of the posterior means towards the true means
and Lemma 3.4 establishes that Tn,i andΨn,i are close. Both results rely on uniform devi-
ation inequalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that Tε
β

is upper

bounded by some random variable N which is a polynomial of the random variables W1

and W2 introduced in the above lemmas, denoted by Poly(W1,W2) , O (Wc1
1 Wc2

2 ), where
c1 and c2 are two constants (that may depend on arms’ means and the constant hidden in
the O ). As all exponential moments of W1 and W2 are finite, N has a finite expectation as
well, which concludes the proof.

The first step to exhibit such an upper bound N is to establish that every arm is pulled
sufficiently often.

Lemma 3.5. Under TTTS or T3C, there exists N1 = Poly(W1,W2) s.t. ∀n ≥ N1, for all i ,
Tn,i ≥

p
n/K, almost surely.

Due to the randomized nature of TTTS and T3C, the proof of Lemma 3.5 is significantly
more involved than for a deterministic rule like TTEI. Intuitively, the posterior of each
arm would be well concentrated once the arm is sufficiently pulled. If the optimal arm
is under-sampled, then it would be chosen as the first candidate with large probability.
If a sub-optimal arm is under-sampled, then its posterior distribution would possess a
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relatively wide tail that overlaps with or cover the somehow narrow tails of other overly-
sampled arms. The probability of that sub-optimal arm being chosen as the challenger
would be large enough then.

Combining Lemma 3.5 with Lemma 3.3 straightforwardly leads to the following result.

Lemma 3.6. Under TTTS or T3C, fix a constant ε> 0, there exists N2 = Poly(1/ε,W1,W2)
s.t. ∀n ≥ N2,

∀i ∈A , |µn,i −µi | ≤ ε .

We can then deduce a very nice property about the optimal action probability for sub-
optimal arms from the previous two lemmas. Indeed, we can show that

∀i 6= I?, an,i ≤ exp

{
−∆

2
min

16σ2

√
n

K

}

for n larger than some Poly(W1,W2). In the previous inequality, ∆min is the smallest mean
difference among all the arms.

Plugging this in the expression of ψn,i , one can easily quantify how fast ψn,I? con-
verges to β, which eventually yields the following result.

Lemma 3.7. Under TTTS or T3C, fix ε > 0, then there exists N3 = Poly(1/ε,W1,W2) s.t.
∀n ≥ N3, ∣∣∣∣Tn,I?

n
−β

∣∣∣∣≤ ε .

The last, more involved, step is to establish that the fraction of measurement alloca-

tion to every sub-optimal arm i is indeed similarly close to its optimal proportion ωβi .

Lemma 3.8. Under TTTS or T3C, fix a constant ε> 0, there exists N4 = Poly(1/ε,W1,W2)
s.t. ∀n ≥ N4,

∀i 6= I?,

∣∣∣∣Tn,i

n
−ωβi

∣∣∣∣≤ ε .

The major step in the proof of Lemma 3.8 for each sampling rule, is to establish that
if some arm is over-sampled, then its probability to be selected is exponentially small.
Formally, we show that for n larger than some Poly(1/ε,W1,W2),

Ψn,i

n
≥ωβi +ξ ⇒ ψn,i ≤ exp

{− f (n,ξ)
}

,

for some function f (n,ξ) to be specified for each sampling rule, satisfying f (n) ≥ Cξ
p

n
(a.s.). This result leads to the concentration of Ψn,i /n, thus can be easily converted to the
concentration of Tn,i /n by Lemma 3.4.

Finally, Lemma 3.7 and Lemma 3.8 show that Tε
β

is upper bounded by N,max(N3,N4),

which yields E[Tε
β

] ≤ max(E [N3] ,E [N4]) <∞.
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3.5 Optimal Posterior Convergence

Recall that an,I? denotes the posterior mass assigned to the event that action I? (i.e. the
true optimal arm) is optimal at time n. As the number of observations tends to infinity,
we desire that the posterior distribution converges to the truth. In this section we show
equivalently that the posterior mass on the complementory event, 1−an,I? , the event that
arm I? is not optimal, converges to zero at an exponential rate, and that it does so at
optimal rate T?

β
(µ)−1.

Russo [2016] proves a similar theorem under three confining boundedness assump-
tions (cf. Russo 2016, Asssumption 1) on the parameter space, the prior density and the
(first derivative of the) log-normalizer of the exponential family. Hence, the theorems in
Russo [2016] do not apply to the two bandit models most used in practise, which we con-
sider in this paper: the Gaussian and Bernoulli model.

In the first case, the parameter space is unbounded, in the latter model, the derivative
of the log-normalizer (which is eη/(1 + eη)) is unbounded. Here we provide two theo-
rems, proving that under TTTS, the optimal, exponential posterior convergence rates are
obtained for the Gaussian model with uninformative (improper) Gaussian priors (proof
given in Appendix B.6), and the Bernoulli model with Bet a(1,1) priors (proof given in
Appendix B.7).

Theorem 3.4. Under TTTS, for Gaussian bandits with improper Gaussian priors, it
holds almost surely that

lim
n→∞− 1

n
log(1−an,I?) = T?β (µ)−1 .

Theorem 3.5. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost
surely that

lim
n→∞− 1

n
log(1−an,I?) = T?β (µ)−1 .

3.6 Numerical Illustrations

3.6.1 Computation of the optimal error decay rate

We first describe how to approximate T?
β

(µ)−1 under any prior of 1-dimensional exponen-

tial family. We then also provide a way to compute numerically T?
β

(µ)−1 under Gaussian
prior since it can be computed more explicitly.

General case. For any i 6= I?, Ci (β,ωi ) is defined as the output to a convex minimization
problem for whom the unique solution has an analytic expression

β

β+ωi
µI? +

ωi

β+ωi
µi .
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Next, we define for any i 6= I?, a function

gi : [0,+∞[ → [0,+∞[

x 7→ βd

(
µI? ;

β

β+ωi
µI? +

ωi

β+ωi
µi

)
+xd

(
µi ;

β

β+ωi
µI? +

ωi

β+ωi
µi

)
.

In fact, gi is a strictly increasing function (see Garivier and Kaufmann 2016, Appendix A.2
for more details), so does its inverse function xi , g−1

i which is defined on [0,βd(µI? ;µi )[
as gi tends to 0 when x tends to 0 and tends to βd(µI? ;µi ) when x tends to +∞.

According to Proposition 3.1, the optimal proportion vector ωβ that we are searching
for satisfies the constraint that ∀i , j 6= I?,

gi (ωβi ) = g j (ωβj ) = T?β (µ)−1.

Since ωβi = g−1
i (Γ?

β
) = xi (Γ?

β
), and we know that

∑
i 6=I?ωi = 1−β, thus the problem of com-

puting Γ?
β

is equivalent to solve the following equation,∑
i 6=I?

xi (y) = 1−β.

This equation has a unique solution since
∑

i 6=I? is a strictly increasing function valued in
[0,+∞[. We can thus apply a bisection method to this function whose evaluation require
itself a bisection method applied on K−1 smooth scalar functions.

Gaussian case. In the context of this paper, we can do a more efficient approximation.
In the Gaussian case, we know that for any i , j 6= I?,

1

ω
β

j

+ 1

β
= (µI? −µ j )2

(µI? −µi )2

 1

ω
β

i

+ 1

β

 .

Denote xi , 1/ωβi + 1/β and a j i , (µI? −µ j )2/(µI? −µi )2, fix some i 6= I?, then we have

∀ j 6= I?, x j = a j i xi . Since
∑

j 6=I?ω
β

j = 1−β, we have

∑
j 6=I?

1

x j −1/β
= ∑

j 6=I?

1

a j i xi −1/β
= 1−β.

Thus we only need to find the unique solution to the equation

∑
j 6=I?

ai j

x −ai j /β
= 1−β,

that requires only one shot bisection method.

3.6.2 Empirical vs. theoretical sample complexity

In Fig. 3.1, we plot expected stopping time of T3C for δ= 0.01 as a function of T?
β

(µ) on 100
randomly generated problem instances. We see on this plot that the empirical stopping
time has the right linear scaling in T?

β
(µ) (ignoring a few outliers).
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Figure 3.1: Dots: empirical sample complexity; Solid line: theoretical sample complexity.

3.6.3 Results

This section is aimed at illustrating our theoretical results and supporting the practical
use of Bayesian sampling rules for fixed-confidence BAI.

We experiment with three different Bayesian sampling rules: T3C, TTTS and TTEI, and
we also include the Direct Tracking (D-Tracking) rule of Garivier and Kaufmann [2016]
(which is adaptive to β), the UGapE [Gabillon et al., 2012] algorithm, and a uniform base-
line. In order to make a fair comparison, we use the Chernoff stopping rule (3.4) and
associated recommendation rule for all of the sampling rules, including the uniform one,
except for UGapE which has its own stopping rule. Furthermore, we include a top-two
variant of the Best Challenger (BC) heuristic (see, e.g., Ménard, 2019).

BC selects the empirical best arm În with probability β and the maximizer of Wn (̂In , j )
with probability 1−β, but also performs forced exploration (selecting any arm sampled
less than

p
n times at round n). T3C can thus be viewed as a variant of BC in which no

forced exploration is needed to converge to ωβ, due to the noise added by replacing În

with I(1)
n .

We consider two simple instances with arms means given by

µ1 = [0.5 0.9 0.4 0.45 0.44999] and µ2 = [1 0.8 0.75 0.7]

respectively. We run simulations for both Gaussian (with σ = 1) and Bernoulli bandits
with a risk parameter δ = 0.01. Figure 3.2 reports the empirical distribution of τδ under
the different sampling rules, estimated over 1000 independent runs.

These figures provide several insights: (1) T3C is competitive with, and sometimes
slightly better than TTTS and TTEI in terms of sample complexity. (2) The UGapE algo-
rithm has a larger sample complexity than the uniform sampling rule, which highlights
the importance of the stopping rule in the fixed-confidence setting. (3) The fact that
D-Tracking performs best is not surprising, since it converges to ωβ? and achieves min-
imal sample complexity. However, in terms of computation time, D-Tracking is much
worse than other sampling rules, as can be seen in Table 3.1, which reports the average
execution time of one step of each sampling rule for µ1 in the Gaussian case. (4) TTTS
also suffers from computational costs, whose origins are explained in Section 3.2, unlike
T3C and TTEI. Although TTEI is already computationally more attractive than TTTS, its
practical benefits are limited to the Gaussian case, since the Expected Improvement (EI)
does not have a closed form beyond this case and its approximation would be costly. In
contrast, T3C can be applied for other distributions.
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Figure 3.2: Sample complexity of different BAI sampling rules over some random problem in-
stances. Black dots represent means and oranges lines represent medians.

Samp. rule T3C TTTS TTEI BC D-T Uniform UGapE
Exec. time (s) 1.6×10−5 2.3×10−4 1×10−5 1.4×10−5 1.3×10−3 6×10−6 5×10−6

Table 3.1: Average execution time in seconds for different BAI sampling rules.

3.7 Discussion

We have advocated the use of a Bayesian sampling rule for BAI. In particular, we proved
that TTTS and a computationally advantageous approach T3C, are both β-optimal in the
fixed-confidence setting, for Gaussian bandits. Our analysis applies to Gaussian bandits,
but could be extended to more distributions for which posterior tails bounds are available.

We further extended the Bayesian optimality properties established by Russo [2016] to
more practical choices of models and prior distributions.

For future work, it would also be meaningful to provide a fixed-budget analysis, in
particular in some potential application scenario of TTTS. For example, pure-exploration
bandit algorithms are widely used in HPO [Hoffman et al., 2014; Li et al., 2017] which is
the topic of Chapter 6.

Another important unsolved open question comes to the tuning of β. Indeed, if β is set
to β? = argmaxβ∈[0,1] T?

β
(µ)−1, a β-optimal strategy is also optimal. In practice of course

β? is unknown and so far TTTS cannot be asymptotically optimal without this knowledge.
However, note that Russo [2016] shows that Γ?1/2 ≥ Γ?/2, which provides a near-optimal
tuning of TTTS. Obviously, proposing an satisfying online tuning of β (other than the one
proposed in the TTTS paper) with provable fixed-confidence guarantees is another avenue
for future work.

There is another line of research that leverages a game theoretic point of view on the
pure exploration setting, that explores a statistic-computation trade-off ( Degenne et al.
2019; Ménard 2019, see also Chapter 4). It is also interesting to investigate whether TS-
based exploration can replace the current (complicated) optimistic approach.
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Chapter 4

Optimal Algorithms for Linear Best-Arm
Identification

" Il n’y a pas de hors-texte.

Jacques Derrida
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4.1 Introduction

Following the previous chapter, we study a natural extension of the vanilla BAI problem
in this chapter, namely linear bandits BAI. As already stated in Chapter 2, linear bandits
BAI studies the case where noisy linear payoffs depending on some unknown regression
parameter θ are assumed.

Bandits with linear payoffs (or more generally with contextual payoffs) are of great
interest in many real-world applications. Typically, we can think of advertisement dis-
play optimization where an e-content provider seeks to identify the best-performing ad-
vertisement display design. Other relevant applications include recommender systems,
path routing, power grid cost minimization, etc. It is arguable whether we need regret
minimization or best-arm identification for those situations: a reasonable guess is that it
is often subject to the real business needs.

Linear bandits were first investigated by Auer [2002] in the stochastic setting for re-
gret minimization and later considered for BAI problems in the fixed-confidence setting
by Soare et al. [2014]. In this chapter, we again focus on the fixed-confidence setting (see
Definition 2.6). A quick reminder that for fixed-confidence BAI, we search for algorithms
that are able to output the correct best arm with high confidence using as few samples as
possible.

Recall that vanilla fixed-confidence BAI problems are often treated by arm elimina-
tions such as Successive-Elimination [Karnin et al., 2013], or by confidence-based
methods such as UGapE [Gabillon et al., 2012]. Those algorithms have naturally been ex-
tended to the linear setting (we survey existing methods for linear bandits BAI in Sec-
tion 4.4). Before the work presented in this chapter, BAI for linear bandits has been previ-
ously studied by Fiez et al. [2019]; Kazerouni and Wein [2019]; Soare et al. [2014]; Tao et al.
[2018]; Xu et al. [2018]; Zaki et al. [2019]. They all consider the fixed-confidence setting.

Beside studying fixed-confidence sample complexity, Garivier and Kaufmann [2016]
and some subsequent works [Qin et al., 2017; Shang et al., 2020a] investigate a general
criterion of judging the optimality of a BAI sampling rule: Algorithms that achieve the
minimal sample complexity when δ tends to zero are called asymptotically optimal as
elaborated on in Chapter 3. Previous work do not seem to satisfy this (asymptotic) opti-
mality rule.

Since then, Ménard [2019] and Degenne et al. [2019] further study the problem from a
game theoretical point of view, and extend the asymptotic optimality to the general pure
exploration for structured bandits. Note that a naive adaptation of the algorithm pro-
posed by Degenne et al. [2019] may not work smoothly in the linear setting. Algorithms
that benefit better from the linear structure are needed.

The primary goal of this chapter is thus to investigate what is the key element that
impacts the optimality of an algorithm and how to design (asymptotically) optimal algo-
rithms for linear bandits BAI. A first set of candidates is the Bayesian algorithms presented
in Chapter 3: can they be extended in order to achieve optimality in the linear case? Other
potential options are considered as well, in particular methods that approach the lower
bound step by step (e.g. inspired by Garivier and Kaufmann 2016 or by Degenne et al.
[2019]).

Contributions. 1) We provide new insights on the complexity of BAI for linear bandits.
In particular, we relate the asymptotic complexity of the BAI problem and other measures
of complexity inspired by optimal design theory, which were used in prior work. 2) We
propose extensions of the Bayesian algorithms studied in Chapter 3 to the linear setting,
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and provide empirical evidence that they are not asymptotically optimal. 3) We develop a
saddle-point approach to the lower bound optimization problem, which also guides the
design of an algorithm LinGame for linear bandits BAI in the fixed-confidence regime. Its
sample complexity is asymptotically optimal and its empirical performance is competi-
tive with the best existing algorithms.

+ This chapter is partly based on some unpublished work, and partly base on De-
genne et al. [2020a].

4.2 Problem Setting and Assumptions

In this section, we recall the problem setting of linear bandits as well as linear bandits BAI.
In particular, we specify the assumptions used in this chapter.

Linear bandits. We consider a finitely-armed linear bandit problem, where the collec-
tion of arms X , {x1, · · · ,xK} ⊂ Rd is given with |X | = K, and spans Rd . When there is no
ambiguity, we can also use the index i ∈ [K] to represent arm xi . The (unknown) mean of
each arm is given by

µi = xT
i θ .

Assumption 4.1. We assume that ∃L > 0, ∀x ∈ X ,‖x‖ ≤ L, where ‖x‖ denotes the Eu-
clidean norm of the vector x.

The learning protocol (see also Definition 2.11) goes as follows: for each round n, the
learner chooses an arm x̂n ∈X and observes a noisy sample

rn = x̂T
nθ+εn ,

where εn is the noise and θ is the true regression parameter (unknown to the learner).

Assumption 4.2. We assume that εn ∼N (0,σ2) is conditionally independent from the
past .

For the sake of simplicity, we set σ2 = 1 in the rest of this paper.

Best-arm identification for linear bandits. We assume that θ belongs to some param-
eter set Θ ⊂ Rd known to the learner. Recall that in a pure exploration game, given a
parameter θ, the learner aims to find the correct answer I?(θ) ∈I by interacting with the
finite-armed linear bandit environment parameterized by θ (see also Section 2.3.1).

In particular, we are interested in BAI for which the objective is to identify the arm
with the largest mean. That is, the correct answer given θ is given by

I?(θ) = x?(θ), argmax
x∈X

xTθ

for θ ∈ Θ = Rd and the set of possible correct answers is I = X . When clear from the
context, we can simply denote x?(θ) by x.

47



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

Algorithm. Let Fn =σ(x̂1,r1, · · · , x̂n ,rn) be the information available to the learner after
n round. We restate the definition of a BAI algorithm under the fixed-confidence setting,
which is given by three components: (1) a sampling rule (x̂n)n≥1, where x̂n ∈ X is Fn−1-
measurable, (2) a stopping rule τδ, a stopping time for the filtration (Fn)n≥1, and (3) a
decision rule Jτ ∈X which is Fτδ-measurable.

δ-correctness and fixed-confidence objective. As already stated several times in the
previous chapters, we say that an algorithm is δ-correct if it predicts the correct best arm
with probability at least 1−δ, precisely if Pθ

[(
xJτ 6= I?(θ)

)≤ δ] and τδ <+∞ almost surely
for all θ ∈Θ. Our goal is to find a δ-correct algorithm that minimizes the sample complex-
ity, that is, Eθ[τδ] the expected number of sample needed to predict an answer.

Linear estimator. A crucial step in linear bandits is to estimate the regression parameter
θ. Let Xn = (x̂1, . . . , x̂n) be a sequence of sampled arms, and rn = (r1, . . . ,rn) be the corre-
sponding observations. To estimate θ? based on the adaptive sequence of observations
rn , one may use the regularized least-square estimation

θ̂
λ
n = (λ1d +AXn )−1bXn , (4.1)

where AXn and bXn are the design matrix and the response vector respectively given by

AXn ,
n∑

t=1
x̂t x̂T

t , bXn ,
n∑

t=1
x̂t rt ,

and λ ∈ R is the regularization parameter. When clear from the context, we can simply
denote AXn by An and bXn by bn .

Useful notation. The fixed-confidence optimality, as proved by Garivier and Kaufmann
[2016]; Russo [2016], is related to the proportion vector of pulls of each arm that we de-
note by ω = (ω1, . . . ,ωK), where ω ∈ ΣK. Given a vector of proportions ω, we can define a
counterpart of the design matrix

Λω,
K∑

i=1
ωi xi xT

i .

It is easy to switch between the design matrix and the proportion vector. Indeed, given
a sequence of sampled arms Xn , the corresponding proportion vector can be written as

∀i ∈ [K], ωn+1,i =
Tn+1,i

n
,

where recall that Tn,i ,
∑n−1

t=1 1{x̂t = i } is the number of pulls of arm i before round n.
Therefore, the corresponding design matrix can be written as AXn = nΛωXn

.
Another important notation that we employ ceaselessly is the Mahalanobis norm which

is defined, given a positive semi-definite matrix A ∈Rd×d , by

∀x ∈Rd , ‖x‖A =
p

xTAx.
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4.3 Fixed-Confidence Optimality and Complexities

Our primary goal is to propose a BAI strategy that outputs quickly and reliably a final guess
of the best arm. Formally, given a risk level δ, we want to show that

P
[

xJτδ
6= x?

]
≤ δ,

while minimizing the expected number of samples E [τδ] that is required. To achieve this
objective, we first investigate the lower bound of the sample complexity.

4.3.1 Lower bound

In this section we extend the lower bound of Garivier and Kaufmann [2016], to hold for
pure exploration in finitely-armed linear bandit problems.

Alternative. Recall the notion of alternative set which is already defined in Section 2.5.2
for BAI. For the general pure-exploration problem, the definition is given below.

Definition 4.1 (alternative set (pure exploration)). For any answer i ∈I we define the
alternative set of arm i , denoted by ¬i the set of parameters where the answer i is not
correct, i.e.

¬i , {θ ∈Θ : i 6= I?(θ)} .

Lower bound. A general result on the (non-asymptotic) sample-complexity lower bound
in the fixed-confidence regime [Garivier and Kaufmann, 2016], which we reviewed in Sec-
tion 2.5.2, states that for any δ-correct strategy, we have

E [τδ] ≥ T?(θ) log(
1

3δ
), (4.2)

for a given parameter θ and a given confidence level δ. And the characteristic time T?(θ)
is written as

T?(θ)−1 , max
ω∈ΣK

inf
θ′∈¬I?(θ)

1

2

∥∥θ−θ′∥∥2
Λω

, (4.3)

and it can be further particularized into (4.4) defined in Proposition 4.1 for linear bandits.

Proposition 4.1. In the linear case, the quantity T?(θ) is written as

T?(θ), inf
ω∈ΣK

max
x6=x?

2
∥∥x?−x

∥∥2
Λ−1
ω

(xTθ− (x?)Tθ)2 . (4.4)
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Proof. Using the alternative set of I?(θ), and by (4.3), we obtain

T?(θ)−1 = max
ω∈ΣK

inf
θ′∈¬I?(θ)

1

2

∥∥θ−θ′∥∥2
Λω

= max
ω∈ΣK

inf
θ′∈¬I?(θ)

K∑
i=1

ωi d(µi ;µ′
i )

= max
ω∈ΣK

min
x6=x?

inf
xTθ′>(x?)Tθ′

∥∥θ−θ′∥∥2
Λω

2
.

Then we introduce the Lagrangian with η as the Lagrange multiplier, and it then becomes

T?(θ)−1 = sup
ω∈ΣK

min
x6=x?

inf
θ′

sup
η>0

∥∥θ−θ′∥∥2
Λω

2
−η(x−x?)Tθ′,

and the inner expression attains its minimum when it comes

Λω(θ−θ′) = η(x?−x),

which implies

T?(θ)−1 = sup
ω∈ΣK

min
x6=x?

sup
η>0

η(x?−x)Tθ−
η2

∥∥x−x?
∥∥
Λ−1
ω

2σ2

= sup
ω∈ΣK

min
x6=x?

(
xTθ− (x?)Tθ

)2

2‖x?−x‖2
Λ−1
ω

.

Asymptotic optimality. We can define the asymptotic optimality upon T?(θ).

Definition 4.2. A BAI strategy is called optimal in the fixed-confidence setting if it sat-
isfies

limsup
δ→0

E [τδ]

ln(1/δ)
≤ T?(θ) .

Remark 4.1. Using the same lower-bound techniques, one can also prove that under
any δ-correct strategy satisfying Tn,I?/n → β for a given β,

liminf
δ→0

E [τδ]

ln(1/δ)
≥ T?β (θ) ,

where T?
β

(θ) is defined in the same way as T?(θ), but restricted to the constraintωI? = β,

T?β (θ), inf
ω∈ΣK ,ωI?=β

max
x6=x?

2σ2
∥∥x?−x

∥∥2
Λ−1
ω

(xTθ− (x?)Tθ)2 .

Essentially, we can recover the β-optimality defined in Chapter 3.
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4.3.2 Best-arm identification complexity

The inverse of the characteristic time of Proposition 4.1 can also be written as

T?(θ)−1 = max
ω∈ΣK

min
x6=x?

(
xTθ− (x?)Tθ

)2

2‖x?−x‖2
Λ−1
ω

for BAI.
Since the characteristic time involves many problem dependent quantities that are

unknown to the learner, previous work target loose problem-independent upper bounds
on the characteristic time. Soare et al. [2014] (see also Fiez et al. 2019; Tao et al. 2018) intro-
duce the G-complexity (denoted by X X ) which coincides with the G-optimal design of
experimental design theory (see Pukelsheim 2006) and the X Ydir-complexity (denoted
by X Ydir) inspired by the transductive experimental design theory [Yu et al., 2006],

X X = min
ω∈ΣK

max
x∈X

‖x‖2
Λ−1
ω

,

X Ydir = min
ω∈ΣK

max
y∈Ydir

∥∥y
∥∥2
Λ−1
ω

,

where Ydir is the set of directions induced by X :

Ydir , {x−x′ : (x,x′) ∈X ×X } .

For the G-optimal complexity we seek for a proportion of pulls ω that explores uni-
formly the means of the arms, since the statistical uncertainty for estimating xTθ scales
roughly with ‖x‖Λ−1

ω
. In the X Ydir-complexity we try to estimate uniformly all the direc-

tions x−x′, while a potentially more plausible quantity to maximize would be the charac-
teristic time itself. For the latter, we try to estimate all the directions x?−x scaled by the
squared gaps (x?−x)Tθ.

The fact that previous works maximize over loose upper bounds on the characteris-
tic time is potentially the main reason that they cannot achieve optimality. We can see
later (in Section 4.6) that directly maximizing the weighted gaps would indeed lead to an
asymptotically optimal algorithm.

Note that the characteristic time can also be seen as a particular optimal transductive
design. Indeed for

Y ?,
{

x?(θ)−x

|(x?(θ)−x)Tθ| : x ∈X /
{

x?(θ)
}}

,

it holds

T?(θ) = 2X Y ?(θ), 2 min
ω∈ΣK

max
y∈Y ?(θ)

∥∥y
∥∥2
Λ−1
ω

.

Besides, we have the following ordering on the complexities

T?(θ) ≤ 2
X Ydir

∆min(θ)2
≤ 8

X X

∆min(θ)2
= 8d

∆min(θ)2
, (4.5)

where∆min = minx6=x?(θ)(x?(θ)−x)Tθ and the last equality follows from the Kiefer-Wolfowitz
equivalence theorem [Kiefer and Wolfowitz, 1959].
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Remark 4.2. In order to compute all these complexities, it is sufficient to solve the fol-
lowing generic optimal transductive design problem: for Y a finite set of elements in
Rd ,

X Ydir = min
ω∈ΣK

max
y∈Y

∥∥y
∥∥2
Λ−1
ω

.

When Y =X we can use an algorithm inspired by Frank-Wolfe [Frank and Wolfe, 1956]
which possesses convergence guarantees [Ahipasaoglu et al., 2008; Atwood, 1969]. But
in the general case, up to our knowledge, there is no algorithm with the same kind of
guarantees. Previous works used an heuristic based on a straightforward adaptation of
the aforementioned algorithm for general sets Y but it seems to not converge on partic-
ular instances (see Section 4.3.3). We instead propose in the same section an algorithm
based on saddle-point Frank-Wolfe algorithm that seems to converge on the different
instances we tested.

Empirical evaluation. We use the following problem instance to illustrate how various
complexities differ in practice. In this instance, contexts are the canonical basis x1 =
e1,x2 = e2, · · · ,xd = ed , plus an additional disturbing context

xd+1 = (cos(α),sin(α),0, . . . ,0)T ,

and a true regression parameter which is proportional to e1: θ? = ce1. This instance is fre-
quently used in the literature of linear bandits BAI (see e.g. Soare et al. 2014; Xu et al. 2018)
and is considered as a hard instance to test the performance of linear BAI algorithms. In
this problem, the best arm is always e1, but when the angle α is small, the disturbing con-
text is hard to discriminate from e1. In this section, we set d = 2,c = 2,δ= 0.01 and α= 0.1.

In Table 4.1 we compare the different complexities previously mentioned: the char-
acteristic time T?(θ) and its associated optimal weights ω?

X Y ?(θ), the X Ydir-complexity

and its associated optimal design ω?
X Ydir

, the G-optimal complexity X X and its associ-

ated optimal designω?
X X

. For each weight vector

ω ∈
{
ω?

X Y ?(θ),ωX Ydir ,ωX X

}
,

we also provide the lower bound Tω given by (4.2), i.e.

Tω = max
x6=x?(θ)

(
(x?(θ)−x)Tθ

)2

2‖x?(θ)−x‖2
Λ−1
ω

log(1/δ) .

In particular we notice that targeting the proportions of pulls ωX Ydir ,ωX X leads to a
much larger lower bound than the one obtained with the optimal weights.

4.3.3 Computation of different complexities

As mentioned in Section 4.3.1, computing the solution to a specified optimization prob-
lem is required in many existing linear BAI algorithms. We survey some methods that can
potentially be useful to handle that issue.

We recall that the three notions of complexity X X ,X Ydir,X Y ?(θ) can be written in
a unified form,

X Y = min
ω∈ΣK

max
y∈Y

∥∥y
∥∥2
Λ−1
ω

, (4.6)
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ω?
X Y ? ω?

X Ydir
ω?

X X

x1 0.047599 0.499983 0.499983
x2 0.952354 0.499983 0.499983
x3 0.000047 0.000033 0.000033
Tω 369 2882 2882

T?(θ) 2X Ydir/∆2
min 8X X /∆2

min
Complexity 0.124607 32.0469 64.0939

Table 4.1: Optimal weights for various complexities with ∆min = 0.0049958.

where Y is the transductive set, i.e. a finite set of elements in Rd . Transductive sets corre-
sponding to different complexity types mentioned in this paper can be found in Table 4.2.

Allocation type Arm set Transductive set

(1) X X -allocation X X

(2) X Ydir-allocation X Ydir = {x−x′ : (x,x′) ∈X ×X }
(3) X Y ?(θ)-allocation X Y ?(θ) = {

(x?(θ)−x)/
∣∣(x?(θ)−x)Tθ

∣∣ : x ∈X /
{

x?(θ)
}}

Table 4.2: Some examples of different transductive sets.

Frank-Wolfe. We can use a Frank-Wolfe heuristic to compute the optimizer of (4.6) shown
in Algorithm 4.1. This heuristic is used for example by Fiez et al. [2019]. Note that it has
been proved to have a linear convergence guarantee when Y = X [Ahipasaoglu et al.,
2008]. It is not clear, however, that the same guarantee holds for other transductive sets.

A simple sanity check to test whether a solver works smoothly is to solve X Y ?(θ)
for classical multi-armed bandits (i.e. when X = {e1,e2, . . . ,ed }), for which a solver with
guarantee exists (see Garivier et al. 2018). In particular we found instances where Algo-
rithm 4.1 does not converge toward the optimal weights, for example: X = {e1,e2,e3},θ=
(0.9,0.5,0.5).

Algorithm 4.1 Frank-Wolfe heuristic for computing X X -design

Input: arm set X ⊂Rd , transductive set Y ⊂Rd , maximum iterations N
Initialize: ω← (1,1, . . . ,1) ∈RA,Λ← Id , t ← 0
while n < N do

x̃ ∈ argminx∈X maxy∈Y 〈x,y〉2
Λ−1

Λ←Λ+ x̃x̃T

ω← n
n+1ω+ 1

n+1 ex̃

n ← n +1
end while
Return ω

We propose a variant of the previous heuristic that takes into account a count for each
element in the transductive set Y . The pseudo-code of our method is displayed in Algo-
rithm 4.2. N ∈ N|Y | denotes the vector of counts for all b ∈ Y . Sanity check on various
MAB instances shows the correctness of our heuristic, its convergence guarantee remains
for the future work.
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Algorithm 4.2 Saddle Frank-Wolfe heuristic for computing generic X Y -design

Input: arm set X ⊂Rd , transductive set Y ⊂Rd , maximum iterations N
Initialize: ω← (1,1, . . . ,1) ∈Rd ,Λ̃← Id ,Λ← Id ,n ← 0
while n < N do

x̃ ∈ argmaxx∈X ‖x‖2
Λ−1Λ̃Λ−1

ỹ ∈ argmaxy∈Y

∥∥y
∥∥2
Λ−1

Λ←Λ+ x̃x̃T

Λ̃← Λ̃+ ỹỹT

ω← n
n+1ω+ 1

n+1 ex̃

n ← n +1
end while
Return ω

Entropic mirror descent. An entropic mirror descent alternative is used by Tao et al.
[2018] to compute X X . The entropic mirror descent approach requires the knowldge of
the Lipschitz constant of logdetΛω. Unfortunately, that Lipschitzness property does not
seem to hold. Lu et al. [2018] propose a solution to overcome the Lipschitz issue, but only
for X X -design. Whether it still works for general X Y -design remains an open question.

4.3.4 Some extensions

In this section, we present two relevant extensions of linear bandits BAI. We introduce the
settings from a pure-exploration point of view.

Bounded BAI. One straightforward extension is to consider the bounded BAI. In this
case, the set of parameters is

Θ, {θ ∈Rd : |argmax
x∈X

xTθ| = 1 and ‖θ‖ ≤ M}

for some M > 0. The set of possible answers is I =X and the correct answer is given by

I?(θ) = x?(θ), argmax
x∈X

xTθ .

This additional assumption reduces the characteristic time to

T?(θ)−1 = max
ω∈ΣK

min
x6=x?(θ)

inf
(x−x?)Tθ′>0
‖θ′‖≤M

∥∥θ−θ′∥∥2
Λω

.

Transductive BAI. Another very closely-related setting is the transductive BAI [Fiez et al.,
2019] where the learner wants to find the best arm of a different set Y that the one they
are allowed to pull. Precisely the set of parameters is

Θ,Rd /{θ ∈Rd : |argmax
y∈Y

yTθ| > 1} .

The set of possible answers is I =Y and the correct answer is given by

I?(θ) = y?(θ), argmax
y∈Y

yTθ .

54



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

The characteristic time in this case is

T?(θ)−1 = max
ω∈ΣK

min
y6=y?(θ)

(yTθ− (y?)Tθ)2

2
∥∥y?−y

∥∥2
Λ−1
ω

.

Note that the dependency on the arm set X here only appears through the matrixΛω.

4.4 Related Work

We survey previous work on linear BAI. The major focus is put on sampling rules in this
section. We stress that all the stopping rules employed in the linear BAI literature are
equivalent up to the choice of their exploration rate (More discussion in Appendix C.4). As
aforementioned, existing sampling rules for fixed-confidence linear BAI are either elimination-
based or gap-based. Elimination-based sampling rules usually operate in phases and pro-
gressively discard sub-optimal directions. Gap-based sampling rules always play the most
informative arm that reduces the uncertainty of the gaps between the empirical best arm
and the others.

X Y -Static and X Y -Adaptive. Soare et al. [2014] first propose a static allocation
design X Y -Static that aims at reducing the uncertainty of the gaps of all arms. More
precisely, it requires to either solve the X Ydir-complexity or use a greedy version that
pulls the arm

argmin
x∈X

max
y∈Ydir

∥∥y
∥∥2
Λ−1
ω

at the cost of having no guarantees. An elimination-like alternative called X Y -Adaptive
is proposed then to overcome that issue. We say elimination-like since X Y -Adaptive
does not discard arms once and for all, but reset the active arm set at each phase. These
two algorithms are the first one being linked to X X -optimality, but are not asymptoti-
cally optimal.

ALBA. ALBA is also an eliminations-based algorithm designed by Tao et al. [2018] that
improves over X Y -Adaptive by a factor of d in the sample complexity using a tighter
elimination criterion.

RAGE. Fiez et al. [2019] extend X Y -Static and X Y -Adaptive to a more general trans-
ductive bandits setting. RAGE is also elimination-based and requires the computation of
X Ydir-complexity at each phase.

LinGapE and variants. LinGapE [Xu et al., 2018] is the first gap-based sampling rule for
linear BAI. LinGapE is inspired by UGapE [Gabillon et al., 2012]. It is, however, not clear
whether LinGapE is asymptotically optimal or not. Similar to X Y -Static, LinGapE ei-
ther requires to solve a time-consuming optimization problem at each step, or can use a
greedy version that pulls arm

argmin
x∈X

∥∥xin −x jn

∥∥2
(An+xxT)−1

instead, again at the cost of losing guarantees. Here in = I?(θ̂n) and x̂ jn is the most am-
biguous arm w.r.t. x̂in , i.e.

argmax
j 6=in

(x j −x?(θ̂
λ
n))Tθ̂

λ
n +

∥∥∥x?(θ̂
λ
n)−x jn

∥∥∥
A−1

n

√
2dn,δ ,

55



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

with dn,δ the stopping rule threshold.
On the other hand, Zaki et al. [2019] propose a new algorithm based on LUCB. With a

careful examination, we note that the sampling rule of GLUCB is equivalent to that of the
greedy LinGapE using the Sherman-Morrison formula. Later, Kazerouni and Wein [2019]
provide a natural extension of LinGapE to the generalized linear bandits setting, where the
rewards depend on a strictly increasing inverse link function. GLGapE reduces to LinGapE
when the inverse link function is the identity function.

Summary. It is worth noting that all the sampling rules presented here depend on δ

(except X Y -Static), while we aim to design sampling rules that are δ-free which is ap-
pealing for applications as argued by Jun and Nowak [2016]. Also all the guarantees in
the literature are of the form C log(1/δ)+O

(
log(1/δ)

)
for a constant C that is strictly larger

than T?(θ)−1.
In the next, we present a set of algorithms using different design patterns that aim to

address linear bandits BAI in a (near) optimal way.

4.5 Bayesian Algorithms for the Linear Case

We first investigate a natural extension of the Bayesian algorithms from Chapter 3 to the
linear setting.

4.5.1 Direct adaptation of TTTS and T3C

We consider two Bayesian sampling rules inspired by TTTS and T3C called Linear-Top-
Two Thompson Sampling (L-T3S) and Linear-Top-Two Transportation Cost (L-T3C) re-
spectively. Both sampling rules make use of a prior distribution Π1 over a set of param-
eters Θ, that contains the unknown true regression parameter θ. Upon observing a se-
quence of payoffs (r1, , . . . ,rn−1), we update our beliefs over the regression parameter and
obtain a posterior distribution Πn whose density w.r.t. the Lebesgue measure is denoted
by πn .

L-T3S/L-T3C differ from TTTS/T3C in the choice of prior distribution and consequently
the deduction of posterior distribution. Indeed, in the linear case, we assume that θ is
sampled from N (0,κ21d ) with κ2 to be precised below. The posterior distribution Πn ,

given the sequence of sampled arms Xn , can be written as N (θ̂
λ
n ,Σ̂n) with

(Σ̂n)−1 = 1

κ2
1d + 1

σ2

n∑
t=1

x̂t x̂T
t and θ̂

λ
n = 1

σ2
Σ̂nbXn . (4.7)

Combining (4.7) and (4.1), we obtain κ2 = σ2/λ. One can also write Σ̂n = σ2(Bλ
n)−1 with

Bλ
n = λ1d +∑n

t=1 x̂t x̂T
t .

Description of L-T3S. At each time step n, L-T3S has two potential actions: (1) with
probability β, a parameter vector θ1 is sampled from Πn , and L-T3S chooses to play
x̂(1)

n , argmaxx∈X xTθ1, whose index is denoted by I(1)
n , (2) and with probability 1−β, the

algorithm continues sampling new θ2 until we obtain a challenger x̂(2)
n , argmaxx∈X xTθ2

indexed by I(2)
n that is different from I(1)

n , and L-T3S then selects the challenger.
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Description of L-T3C. We can also extend T3C, the computational-lightweight variant
of TTTS to the linear case which we call L-T3C. Instead of re-sampling from the poste-
rior until a different candidate appears, we define the challenger as the arm that has the
lowest transportation cost Wn(I(1)

n , i ) with respect to the first candidate (with ties broken
uniformly at random). The transportation cost is defined as

Wn(i , j ) =
(xT

i θ̂
λ
n −xT

j θ̂
λ
n)2

2
∥∥xi −x j

∥∥2
Σ̂n

1
{

xT
j θ̂

λ
n < xT

i θ̂
λ
n

}
. (4.8)

The pseudo-code of the two sampling rules are given in Algorithm 4.3.

Algorithm 4.3 Sampling rule of L-T3S/L-T3C
1: Input: β
2: for n ← 1,2, · · · do
3: Sample θ1 ∼Πn

4: x̂(1) ← argmaxx∈X xTθ1 (indexed by I(1))
5: Sample b ∼Ber n(β)
6: if b = 1 then
7: Evaluate arm I(1)

8: else
9: Repeat sample θ2 ∼Πn

10: x̂(2) ← argmaxx∈X xTθ2 (indexed by I(2)) . L-T3S
11: until I(2) 6= I(1)

12: I(2) ← argmini 6=I(1) Wn(I(1), i ), (see (4.8) for the definition) . L-T3C
13: Evaluate arm I(2)

14: end if
15: Update mean and variance according to (4.1) and (4.7)
16: n = n +1
17: end for

Optimal action probability. The optimal action probability αn,i is defined as the poste-
rior probability that arm i is optimal. Formally, denote Θi as the subset of Θ where arm i
is the optimal arm, we have

Θi ,
{
θ ∈Θ

∣∣∣ xT
i θ> max

j 6=i
xT

j θ

}
,

then we define

αn,i ,Πn(Θi ) =
∫
Θi

πn(θ)dθ.

Stopping rule and decision rule. As argued in Section 3.4, it is reasonable to use the
Chernoff stopping rule formalized by Garivier and Kaufmann [2016] in practice. Using the
transportation cost Wn(i , j ) defined in (4.8), the Chernoff stopping rule can be written as

τδ, inf

{
n ∈N : max

i∈[K]
min

j 6=i
Wn(i , j ) > dn,δ

}
, (4.9)

with dn,δ the threshold to be chosen neatly in practice.
This stopping rule is coupled with the decision rule

Jn = argmax
j

xT
j θ̂

λ
n . (4.10)
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4.5.2 L-T3S and L-T3C can fail

L-T3S and L-T3C may not be optimal for the linear case actually. To understand that,
we run some simulations with the two sampling rules on the problem instance of Sec-
tion 4.3.2 with d = 2,c = 2, and α = 0.01. Both algorithms appear to be alternating be-
tween sampling x1 and the disturbing context x2 and take very long time before stopping.
Note that in this instance, it would be more informative to select x2 a lot in order to lead
how to discriminate between x1 and x3 (which is what our competitor LinGapE is doing).
To explain why this happens, we display in Fig. 4.1 the confidence ellipsoid of the poste-
rior after how many 10000 iterations of L-T3C as a blue dot region. We can see that the
confidence region of the posterior is around the axe x = 2, thus a vector sampled from the
posterior will most of the time have a larger dot product with x1 and arm x3, and x2 will
seldom be chosen as the leader or the challenger.

3 2 1 0 1 2 3
3

2

1

0

1

2

3

x1

x2

x3

Pathological instance

Figure 4.1: A hard problem instance for linear best-arm identification.

4.5.3 A "greedy" fix of L-T3C

A potential fix of the previous issue is the greedy version of L-T3C whose pseudo-code is
displayed in Algorithm 4.4. It is inspired by the greedy rule already used in (a heuristic
version of) LinGapE [Xu et al., 2018], and is motivated by the following observation: in
order to learn to discriminate between some arm I(1) and a challenger I(2), it may be more
informative to select another arm. More specifically, the arm from which a new pull would
reduce the most the variance in the estimation of xI(1) −xI(2) . In a standard bandit, this is
simply the least pulled arm between I(1) and I(2), but in the linear case it may be another
arm!

4.5.4 LinGapE versus L-T3C-Greedy: Is one of them optimal?

Upon close examination, LinGapE and L-T3C-Greedy are very similar: they both rely on
the computation of a leader and a challenger followed by the greedy rule to decide which
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Algorithm 4.4 Sampling rule of L-T3C-Greedy
1: for n ← 1,2, · · · do
2: Sample θ1 ∼Πn

3: x̂(1) ← argmaxx∈X xTθ1 (indexed by I(1))
4: I(2) ← argmini 6=I(1) Wn(I(1), i ) (see (4.8) for the definition) . I(2) ← x̂(2)

5: Evaluate arm x̂, argminx∈X

∥∥x̂(1) − x̂(2)
∥∥

(AXn+xxT)−1

6: Update mean and variance according to (4.1) and (4.7)
7: n = n +1
8: end for

arm to explore/play, and they actually use the same stopping rule (up to possible tuning
of the threshold). The differences are:

• how they define the challenger once the leader is chosen;
• how they perform exploration: LinGapE performs exploration in the choice of the

challenger, which depends on some confidence bounds. L-T3C-Greedy performs
exploration in the choice of the leader, which is determined by Thompson sam-
pling.

Table 4.3 provides a more detailed comparison of the two algorithms for linear ban-
dits. We see in particular that the stopping rule coincide up to the choice Cn =√

2dn,δ.

LinGapE L-T3C-Greedy
Leader I(1)

n = argmaxi xT
i θ̂

λ
n I(1)

n = argmaxi xT
i θ̃n

with θ̂
λ
n the least square estimate with θ̃n ∼N (θ̂

λ
n ,Σ̂n)

Challenger I(2)
n = argmax

j 6=I(1)
n

(
x j −xI(1)

n

)T
θ̂
λ
n +

∥∥∥x j −xI(1)
n

∥∥∥
Σ̂n

Cn I(2)
n = argmin

j 6=I(1)
n

((
x j −xI(1)

n

)T
θ̂
λ
n

)2

2
∥∥∥x j −xI(1)

n

∥∥∥2

Σ̂n

1

{
xT

I(1)
n
θ̂
λ
n ≥ xT

j θ̂
λ
n

}

Stopping
(
xI(2)

n
−xI(1)

n

)T
θ̂
λ
n +

∥∥∥xI(2)
n
−xI(1)

n

∥∥∥
Σ̂n

Cn < 0 min
j 6=J(1)

n

((
x j −xJ(1)

n

)T
θ̂
λ
n

)2

2
∥∥∥x j −xJ(1)

n

∥∥∥2

Σ̂n

1

{
xT

J(1)
n
θ̂
λ
n ≥ xT

j θ̂
λ
n

}
> dn,δ

⇔
((

xI(1)
n
−xI(2)

n

)T
θ̂
λ
n

)2

2
∥∥∥xI(2)

n
−xI(1)

n

∥∥∥2

Σ̂n

> C2
n/2 ⇔ J(1)

n = argmax j xT
j θ̂

λ
n ,

((
xJ(1)

n
−xJ(2)

n

)T
θ̂
λ
n

)2

2
∥∥∥xJ(2)

n
−xJ(1)

n

∥∥∥2

Σ̂n

> dn,δ

Table 4.3: Comparison between the two algorithms.

Experiments for classical bandits. L-T3C-Greedy can be particularized to the classic
BAI setting (that corresponds to choosing the canonical basis as contexts). In that case,
the selection rule in Line 6 of Algorithm 4.4 corresponds to choosing the least pulled arm
between the two candidates.

We investigate whether L-T3C-Greedy could be optimal in the classical bandit setting
with some experiments. In particular, we call the derived algorithm T3C-Greedy. See
Fig. 4.2 for a comparison against the asymptotically optimal D-Tracking rule and the
oracle. It is seemingly that L-T3C-Greedy is not very promising for being asymptotically
optimal.

4.5.5 Empirical performance of L-T3C-Greedy

The usual hard instance. We compare the performance of L-T3C-Greedy to LinGapE
over the aforementioned hard instance with d = 2, c = 2 and two values of α. More pre-
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Figure 4.2: T3C-Greedy vs. Track-and-Stop for different value of δ.

cisely, we report in Table 4.4 the total number of pulls and also the number of pulls allo-
cated to each arm for each of the sampling rules. The results confirm our intuition in the
previous section.

L-T3C-Greedy LinGapE
x1 = (1,0)T 1783.1 5844.4
x2 = (0,1)T 357009.0 1169260.5

x3 = (cos(0.01),sin(0.01)T) 1.0 1.0
Total 358793.1 1175105.9

Table 4.4: Average number of pulls of each arm (d = 2,δ= 0.1).

L-T3C (β= 1/2) L-T3C-Greedy LinGapE
x1 = (1,0)T 131.3 24.9 26.3
x2 = (0,1)T 3.3 60.8 63.4

x3 = (cos(π/4),sin(π/4)T) 133.4 1.0 1.0
Total 268.0 86.7 89.7

Table 4.5: Average number of pulls of each arm (d = 2,δ= 0.1).

Arms with mild gaps. We can also provide more experimental illustrations on different
types of problem.

We construct a set of K arms proposed by Fiez et al. [2019]:

x1 = (1,0)T,x2 = (cos(3π/4),sin(3π/4))T ,

and for k = 3, . . . ,K,
xk = (sin(π/4+φk ),cos(π/4+φk ))T

where φi ∼ N (0,0.09). We fix the true regression parameter θ to be e1. This set of arms
has some nice properties, that x1 is the optimal arm, and x2 is the arm that gives more
information on identifying the best arm. We first report results with a moderate K = 6 as
an example where the generated expected means are [1.0,−0.71,0.84,−0.95,0.93,0.99].

Impact of the dimension. We also compare the impact of the dimension d over the per-
formance of our sampling rule and LinGapE. We run experiments on the same instance
with a value of the angle set to α= 0.1. This time we let the dimension d varying from 2 to
6. L-T3C is always better and the performance gap increases with the dimension. Thus,
our algorithm seems to be more robust to the dimension.
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L-T3C L-T3C-Greedy LinGapE
x1 = (1,0)T 170872.19 1.06 1.13

x2 = (cos(3π/4),sin(3π/4))T 1.25 1.0 1.0

x3 = (sin(π/4+φ3),cos(π/4+φ3))T 92.18 28693.26 120657.6

x4 = (sin(π/4+φ4),cos(π/4+φ4))T 1.12 26197.03 110157.63

x5 = (sin(π/4+φ5),cos(π/4+φ5))T 77.04 1.0 1.0

x6 = (sin(π/4+φ6),cos(π/4+φ6))T 170892.82 1.36 1.83

Total 341936.6 54894.71 230820.19

Table 4.6: average number of pulls of each arm (d = 2,δ= 0.1).
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Figure 4.3: Comparison of the sample complexity of L-T3C-Greedy and LinGapE on the patho-
logical instance in Rd for different values of d .

Rank-1 multivariate normal distribution sampling. A technical point for the experi-
ments in this section is to sample from a multivariate normal distribution (e.g. for L-T3C).
We can proceed by the following.

Indeed, a random Gaussian vector

X = (X1,X2, . . . ,Xd )T

of mean vector µ and covariance matrix Σ can be formally defined as following,

X ∼N (µ,Σ) ⇐⇒ ∃µ ∈Rd ,A ∈Rd×d ′
s.t. X = AZ+µ,

for Zi ∼ N (0,1) i.i.d. with i ∈ {1, . . . ,d ′}, and here Σ= AAT.
To draw a sample from a multivariate normal distribution, according to the previous

definition, one can first find any real matrix A such that AAT = Σ. Then draw a vector Z
whose components independently follow standard normal distribution. Finally X = AZ+µ
forms a valid sample. The main issue is thus how to find an appropriate matrix A.

In this section, we need to sample from N (θ̂
λ
n ,Σ̂n), where the covariance matrix Σ̂n is

a positive-definite matrix. A usual way is to apply the Cholesky decomposition, which is
computationally inefficient if it were to be applied at each time step. Fortunately, we can
apply rank-1 Cholesky decomposition in our case.
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4.6 A Gamified Algorithm

The first attempt using Bayesian machinery does not end up with a satisfying output. In
this section, we turn our thoughts to another idea and take inspiration from the zero-
sum game (see e.g. Degenne and Koolen 2019). We describe Linear Game (LinGame), de-
tailed in Algorithm 4.5. As noted in the seminal work of Chernoff [1959], the complexity
T?(θ)−1 is the value of a fictitious zero-sum game between the learner choosing an opti-
mal proportion of allocation of pulls ω and a second player, the nature, that tries to fool
the agent by responding with the most confusing alternative θ′ leading to an incorrect an-
swer. LinGame is an asymptotically optimal algorithm for linear bandits BAI. Note that the
present algorithm is asymptotically optimal for the general pure exploration game, which
is however not the main focus of this thesis. Lecturers can refer to Degenne et al. [2020a]
for more details.

In this section, we make the following extra assumption.

Assumption 4.3. We assume that ∃M > 0, s.t. ∀θ ∈Θ, ‖θ‖ ≤ M, where ‖θ‖ denotes the
Euclidean norm of the vector θ.

4.6.1 Notation

In this section, besides the usual learner, we include an extra fictive player – the nature –
and we thus introduce some specific notation of counts for this section.

At each round n the algorithm to be presented will play an arm x̂n and choose (fic-
titiously) an answer in ∈ I . We denote by Tx,i

n ,
∑n

t=11{(x̂n ,in )=(x,i )} the number of times

the pair (x, i ) ∈ X ×I is chosen up to and including time n, and by Tx
n = ∑

i∈I Tx,i
n and

Ti
n = ∑

x∈X Tx,i
n the partial sums1. The vectors of counts at time n is denoted by Tn ,

(Tx
n)x∈X and when it is clear from the context we will also denote by Tx

n = (Tx,i
n )i∈I and

Ti
n = (Tx,i

n )x∈X the vectors of partial counts. Recall that in the case of BAI, X =I .

4.6.2 The LinGame algorithm

The pseudo-code of LinGame is provided in Algorithm 4.5. We explain how it works in
detail in the next.

Stopping rule and decision rule. We follow the same stopping rule and decision rule as
those of Section 4.52: LinGame stops if a generalized likelihood ratio exceeds a threshold
dn,δ. With the notation of this section, the stopping time can be written as

max
i∈I

inf
θ′∈¬i

1

2
‖θ̂λn −θ′‖2

ΛTn
> dn,δ , (4.11)

and the decision rule is

Jn = argmax
i∈I

inf
θ′∈¬i

‖θ̂λn −θ′‖2
ΛTn

/2. (4.12)

1Note that if i is the index of arm x, then Tx
n is simply Tn,i as defined in (2.1).

2It is easy to check that (4.11) and (4.12) are equivalent to (4.9) and (4.10) respectively.
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Algorithm 4.5 Algorithm of LinGame

1: Input: Learners for each answer (L i
ω)i∈I , threshold d

2: for n = 1 . . . do
3: // Stopping rule

4: if maxi∈I infθ′∈¬i
1
2

∥∥∥θ̂λn−1 −θ′
∥∥∥2

ΛTn−1

≥ dn−1,δ then

5: Stop

6: Return Jn = I?(θ̂
λ
n−1)

7: end if
8: // Empirical best guess

9: in = I?(θ̂
λ
n−1)

10: // Learner plays first
11: Getωn from L

in
ω

12: Update Wn = Wn−1 +ωn

13: // Best response of the nature

14: θ
in
n ∈ argminθ′∈¬in

∥∥∥θ̂λn−1 −θ′
∥∥∥2

Λωn

15: // Feed optimistic gains
16: Feed learner L

in
ω with gn(ω) =∑

x∈X ωxUx,in
n /2

17: // Track the weights
18: Pull x̂n ∈ argminx∈X Tx

n−1 −Wn,x

19: end for

Similarly to T3C/TTTS of Chapter 3, these stopping and decision rules ensure that the
LinGame is δ-correct regardless of the sampling rule used, see lemma below3 proved in
Appendix C.2.

Lemma 4.1. Regardless of the sampling rule, the stopping rule (4.11) with the threshold

dn,δ =
√

log

(
1

δ

)
+ d

2
log

(
1+ nL2

λd

)
+

√
λ

2
M

2

, (4.13)

satisfy
Pθ

[(
τδ <∞∧ Jτ 6= I?(θ)

)]≤ δ .

Our contribution is a sampling rule that minimizes the sample complexity when com-
bined with these stopping and decision rules. We now explain our sampling strategy to
ensure that the stopping threshold is reached as soon as possible.

Saddle-point computation. Suppose in this paragraph, for simplicity, that the regres-
sion parameter θ is known to the learner. By the definition of stopping rule and general-
ized likelihood ratio, as long as the algorithm does not stop, we have

dn,δ ≥ inf
θ′∈¬I?(θ)

∑
x∈X

Tx
n‖θ−θ′‖2

xxT/2.

3The fact that τδ <+∞ is a consequence of our analysis, see Appendix C.3.

63



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

Now, let ω?(θ) be the optimal pulling proportions given θ. If we manage to have Tn ≈
nω?(θ), then it follows dn,δ ≥ nT?(θ)−1 and, solving that equation would lead to the
asymptotic optimality.

At each time step, LinGame produces a guess in for I?(θ) and its analysis involves prov-
ing that the guess is wrong only finitely-many times in expectation.

The sampling rule implements a lower-bound game between a learner, playing at each
stage n a pull-proportion/weight vectorωn in the probability simplexΣK, and nature, who
computes at each stage a response θn ∈ ¬in . We additionally ensure that Tx

n ≈ ∑n
t=1ωt ,x,

where ωn,x denotes the weight of x at stage n. The goal of the sampling rule is to ensure a
ε-approximation of the saddle point of the lower-bound game.

To achieve that, we implement the saddle-point algorithm by using AdaHedge for the
learner – a regret-minimizing algorithm of the exponential family – and using best-response
for the nature, which plays after the agent. Precisely LinGame uses |I | (= K for BAI) learn-
ers L i

ω, one for each possible guess of I?(θ) with the gains. For i ∈I , the learner L i
ω is an

AdaHedge on the probability simplex ΣK with the gains (when the guess is i )

gθn(ω) = 1

2

∑
x∈X

ωx‖θ−θi
n‖2

xxT .

ε is then the sum of the regrets of the two players. Best-response has regret 0, while the
regret of AdaHedge is O(

p
n) for bounded gains, as seen in the following lemma, taken

from de Rooij et al. [2014].

Lemma 4.2. On the online learning problem with K arms and gains g t (ω) =∑
k∈[K]ωk Uk

t for t ∈ [n], AdaHedge, predicting (ωt )t∈[n], has regret

Rn , max
ω∈ΣK

n∑
t=1

g t (ω)− g t (ωt )

≤ 2η
√

n log(K)+16η(2+ log(K)/3) ,

where η= maxt≤n(maxk∈[K] Uk
t −mink∈[K] Uk

t ).

Other combinations of learners are possible, as long as the sum of their regrets is suffi-
ciently small. At each stage n ∈N, both learners advance only by one iteration and as time
progresses, the quality of the saddle-point approximation improves. This is in contrast
with C-Tracking and D-Tracking of Garivier and Kaufmann [2016], in which an exact
saddle point is computed at each stage, at a potentially much greater computational cost.

Optimism. The above saddle-point argument would be correct for a known game, while
our algorithm is confronted to a game depending on the unknown parameterθ. Following
a long tradition of stochastic bandit algorithms, we use the principle of OFU. Given an
estimate θ̂n−1, we compute upper bounds for the gain of the real learner at θ, and feed
these optimistic gains to them. Precisely, given the best response θi

n ∈¬i , we define,

Ux,i
n =

{
maxξ min

(‖ξ−θi
n‖2

xxT ,4L2M2
)

s.t. ‖θ̂λn−1 −ξ‖2
ΛTn−1+λId

≤ 2h(n)
,

where h(n) = β(n,1/n3) is some exploration function.

64



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

We clipped the values, using Assumption 4.1 and Assumption 4.3 to ensure bounded
gains for the learners (see Section 4.3.4 for description of bounded BAI).

Under the event that the true parameter verifies ‖θ̂λn−1 −θ‖2 ≤ 2h(n), this is indeed
an optimistic estimate of ‖θ−θi

n‖2
xxT . Note that Ux,i

n has a closed form expression, see
Appendix C.3. The optimistic gain is then

gn(ω) = 1

2

∑
x∈X

ωxUx,in
n .

Tracking. In Algorithm 4.5, the learner plays weight vectors in a simplex. Since the ban-
dit procedure allows only to pull one arm at each stage, our algorithm needs a procedure
to transcribe weights into pulls. This is what we call tracking, following Garivier and Kauf-
mann [2016]. The choice of arm (or arm and answer) is

x̂n+1 ∈ argmin
x∈X

Tx
n −Wn+1,x .

This procedure guarantees that for all n ∈ N,x ∈ X , we have − log(|X |) ≤ Tx
n −Wn,x ≤ 1.

This result is due to Degenne et al. [2020b].

Theorem 4.3. For a regularization parameter4 λ≥ 2(1+log(K))KL2+M2, for the thresh-
old dn,δ given by (4.13), for an exploration function h(n) = dn,1/n3 , LinGame is δ-correct
and asymptotically optimal. That is, it verifies for all θ ∈Θ,

limsup
δ→0

Eθ[τδ]

log1/δ
≤ T?(θ) .

On the boundedness assumption. The boundedness assumption on the parameter set
is shared by many works on linear bandits (not necessarily for BAI, but for regret mini-
mization as well, see e.g. Abbasi-Yadkori et al. 2011; Soare et al. 2014).

In Section 4.3.4 we show that adding a bound constraint on the parameter reduces
the characteristic time T?(θ). This is not surprising since we add a new constraint in the
optimization problem, which would lead to an earlier stop of the algorithm. The coun-
terpart of this improvement is that it is often difficult to compute the best response for
nature. Indeed, for example, in BAI, there is an explicit expression of the best response,
While it is not the case for the bounded case and one needs to solve an uni-dimensional
optimization problem (see Lemma C.1). To devise an asymptotically optimal algorithm
without the boundedness assumption remains an open problem.

A convexified variant. Degenne et al. [2020a] present another sampling rule LinGame-C
that is also asymptotically optimal in the fixed-confidence regime. The idea is to intro-
duce a convex formulation of the problem, which leads to an algorithm with a more direct
analysis than previous lower-bound inspired methods. The full description and analysis
of LinGame-C is omitted as the primary goal here is just to show a feasible way of de-
signing optimal sampling rules from a game-theoretical point of view. Lecturers can refer
to Degenne et al. [2020a] for more details on LinGame-C. Nonetheless, we still include
LinGame-C in the coming experiments.
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4.6.3 Experiments

We provide experimental illustrations of LinGame. In addition to our algorithms, we also
implement the following algorithms, all using the same stopping rule (more discussion
given in Appendix C.4): uniform sampling, the greedy version of X Y -Static (includ-
ing X X -allocation and X Ydir-allocation), X Y -Adaptive, and the greedy version of
LinGapE. We skip GLUCB/GLGapE since they are more or less equivalent to LinGapE in the
scope of this paper.

Implementation details. We give some details about each individual algorithm imple-
mented to ensure reproducibility.

• For our algorithms LinGame and LinGame-C, we implemented the version with the
boundedness assumption.

• For LinGapE We implemented the greedy version, that is, pull the arm

argmin
x∈X

∥∥xin −x jn

∥∥2
(ΛTn+xxT)−1

with it = I?(θ̂
λ
n) and

jn = argmax
j 6=in

(x j −x?(θ̂
λ
n))Tθ̂

λ
n +

∥∥∥x?(θ̂
λ
n)−x jn

∥∥∥
Λ−1

Tn

√
2dn,δ .

Note that this version does not have a theoretical guarantee in the general case.
However, as we stated in Section 4.4, the GLUCB proposed by Zaki et al. [2019] is
equivalent to this greedy version of LinGapE, and they provided an analysis for the
2-arm and 3-arm case. LinGapE is designed for ε-best-arm identification, we set
ε= 0 in our experiments to make sure that it outputs the optimal one.

• For X Y -Static, we implemented the greedy incremental version for both X X -
allocation and X Ydir-allocation, that allows us to avoid the step of computing op-
timal design. To implement the non-greedy version, readers are invited to look at
next Section 4.3.3 where we discuss in detail the computation of X Y -optimal de-
sign.

• For X Y -Adaptive, it requires a hyper-parameter that characterizes the length of
each phase. We set that hyper-parameter to 0.1 as done by Soare et al. [2014].

Implementation trick. Matrix inversion is a costly step that should be avoided at best.
For linear bandits, in particular, we need to inverse the (regularized) design matrix Bλ

n ,
which is renewed with a rank-1 update at each time step. Applying Sherman-Morrison
formula allows us thus to only update its inverse incrementally, that releases a huge bur-
den of computation.

Indeed, beginning with Bλ
0 , λ1d , we have

∀t ≥ 0, Bλ
t+1 = Bλ

t + x̂t+1x̂T
t+1,

thus using Sherman-Morrison formula we have

∀t ≥ 0, (Bλ
t+1)−1 = (Bλ

t )−1 − (Bλ
t )−1x̂t+1x̂T

t+1(Bλ
t )−1

1+‖x̂t+1‖2
(Bλ

t )−1

.

The posterior mean vector and covariance matrix can then be easily expressed in
terms of (Bλ

t )−1. Let zt ,
∑t

s=1 ys x̂s , we obtain

θ̂
λ
n = (Bλ

t )−1zt and Σ̂n =σ2(Bλ
t )−1 .
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Experimental results. Sampling rules for classical BAI without any adaptation may not
work for the linear case. This can be understood, again, on the well-studied hard instance
mentioned in Section 4.3.2, which encapsulates the difficulty of BAI in a linear bandit,
and thus is the first instance on which we test our algorithms.

As already argued by Soare et al. [2014], an efficient sampling rule for this problem
instance would rather pull x2 in order to reduce the uncertainty in the direction x1−xd+1.
Naive application of classical BAI algorithms cannot deal with that situation naturally. We
further use a simple set of experiments to justify that intuition. We run LinGame (along
with LinGame-C) and the one of Degenne et al. [2019] that we call DKM over the problem
instance whence d = 2,c = 2,δ = 0.01 and α = 0.1. We show the number of pulls for each
arm averaged over 100 replications of experiments in Table 4.7. We see that, indeed, DKM
pulls too much x3, while our LinGame focuses mostly on x2.

LinGame LinGame-C DKM
a1 1912 1959 1943
a2 5119 4818 4987
a3 104 77 1775

Total 7135 6854 8705

Table 4.7: Average number of pulls of LinGame and LinGame-C (against DKM) for each arm.

Next, we benchmark our sampling rules against others from the literature. We test
over two synthetic problem instances, with the first being the previous instance. We set
d = 2,c = 2,α = π/6. Fig. 4.4 shows the empirical stopping time of each algorithms aver-
aged over 100 runs, with a confidence level δ= 0.1,0.01,0.0001 from left to right. Our two
algorithms show competitive performance (the two leftmost boxes on each plot), and are
only slightly worse than LinGapE.
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Figure 4.4: Sample complexity of different linear BAI sampling rules over the usual counter-
example with δ= 0.1,0.01,0.0001 respectively. CG = LinGame-C, Lk = LinGame, RR = uniform sam-
pling, fix = tracking the fixed weights, GS = X Y -Static with X X -allocation, XYS = X Y -Static
with X Ydir-allocation, LG = LinGapE. The mean stopping time is represented by a black cross.

For the second instance, we consider 20 arms randomly generated from the unit sphere
Sd−1 , {a ∈Rd ;‖a‖2 = 1}. We choose the two closest arms a, a′ and we set θ= a+0.01(a′−
a) so that a is the best arm. This setting has already been considered by Tao et al. [2018].
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We report the same box plots over 100 replications as before with increasing dimension
in Fig. 4.5. More precisely, we set d = 6,8,10,12 respectively, and always keep a same
δ= 0.01. Our algorithms consistently show strong performances compared to other algo-
rithms apart from LinGapE.
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Figure 4.5: Sample complexity of different linear BAI sampling rules over random unit sphere vec-
tors with d = 6,8,10,12 from left to right.

4.7 Other Saddle-Point Approaches

Methods based on approaching the saddle point of the lower bound look promising, one
concern about LinGame (or LinGame-C) could be its computational complexity though.
In BAI, the one step complexity of LinGame is dominated by the computation of the best
response for nature, which requires a full matrix inversion. Alternatives that involve rank-
1 updates should be considered.

We end this chapter by some more discussions on other possible saddle-point meth-
ods.

4.7.1 Linear Track-and-Stop

The linear version of Track-and-Stop seems to be another plausible candidate of be-
ing asymptotically optimal provided that a numerical solver for computing the optimal
weights exists (proven recently by Jedra and Proutière 2020). Fortunately, the Algorithm 4.2
proposed in Section 4.3.2 seems to be one.

Track-and-Stop remains unchanged in the linear case, since it only cares about track-
ing the optimal weights. We hereby recall that the C-Tracking rule consists of playing

x̂ ∈ argmax
i∈[K]

n∑
t=0

ω
εt
i (µ̂t )−Tt ,i ,

where ωε is a L∞ projection of ω? onto the simplex ΣεK , {ω ∈ [ε,1]K :
∑K

i=1ωi = 1}. The
draw back of Track-and-Stop is that we need to compute a plug-in estimate of the opti-
mal weights at each stage, which is computationally unfavorable.

68



CHAPTER 4. OPTIMAL ALGORITHMS FOR LINEAR BEST-ARM IDENTIFICATION

4.7.2 Saddle-point Frank-Wolfe

On the other hand, the Frank-Wolfe heuristic in Algorithm 4.2 is an efficient rank-1 solver.
It is thus natural to investigate if it can be incorporated into existing algorithms.

In particular, we can propose two new algorithms by adding the solver on top of LinGapE
and L-T3C that we call Saddle-Point Linear Gap-Based Exploration (SLinGapE) and Saddle-
Point Linear-Top-Two Transportation Cost (SL-T3C) respectively, as shown in Algorithm 4.6
and Algorithm 4.7. We define a so called active transductive set as

Ŷ (x,θ),
{

(x−x′)
|(x−x′)Tθ| : x′ ∈X /

{
x
}}

. (4.14)

Algorithm 4.6 Algorithm of SLinGapE
1: Input: δ
2: Initialize: Λ̃← Id ,Λ← Id

3: for n ← 1,2, · · · do
4: x̂ ∈ argmaxx∈X ‖x‖2

Λ−1Λ̃Λ−1

5: x̂(1) ← argmaxx∈X xTθ̂
λ
n

6: x̂(2) ← argmaxx6=x̂(1) (x− x̂(1))Tθ̂
λ
n +√

2β(n,δ)
∥∥x̂(1) −x

∥∥
Λ−1

7: Bn ← maxx6=x̂(1) (x− x̂(1))Tθ̂
λ
n +√

2β(n,δ)
∥∥x̂(1) −x

∥∥
Λ−1

8: if Bn ≤ 0 then
9: return x̂(1)

10: end if

11: ŷ ← (x̂(1) − x̂(2))

(x̂(1) − x̂(2))Tθ
12: Λ←Λ+ x̂x̂T

13: Λ̃← Λ̃+ ŷŷT

14: Evaluate arm x̂
15: Update mean and variance according to (4.1) and (4.7)
16: n = n +1
17: end for

Algorithm 4.7 Sampling rule of SL-T3C

1: Initialize: Λ̃← Id ,Λ← Id

2: for n ← 1,2, · · · do
3: Sample θ∼Πn

4: x̂ ∈ argmaxx∈X ‖x‖2
Λ−1Λ̃Λ−1

5: ŷ ∈ argmaxy∈Ŷ (x̂,θ)

∥∥y
∥∥2
Λ−1

6: Λ←Λ+ x̂x̂T

7: Λ̃← Λ̃+ ŷŷT

8: Evaluate arm x̂
9: Update mean and variance according to (4.1) and (4.7)

10: n = n +1
11: end for
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4.7.3 Experimental illustrations

We compare our saddle-point-based algorithms against LinGapE. To make a fair compar-
ison, we use always the same exploration rate for all the stopping rules. Indeed the stop-
ping rules are equivalent if they keep the same exploration rate as argued in Appendix C.4.
We use the previous hard instance with c = 1, the results are reported as box plots of aver-
age stopping time in Figure 4.6.

It seems that they can achieve the same level of empirical performance as LinGapE,
their theoretical behaviour thus turns out to be an interesting research direction for the
future.
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Figure 4.6: Average stopping time (Left: d = 2,α= π/4,δ= 0.0000001, Right: d = 2,α= 0.1,δ= 0.1),
with SFW-T = SL-T3C, SFW-L = SLinGapE, T-G = L-T3C, LG = LinGapE.

4.8 Discussion

In this chapter, we designed the first practically usable asymptotically optimal sampling
rules for the pure exploration game for finite-arm linear bandits. Whether the bounded-
ness assumption is necessary to obtain optimal algorithms remains an open question.

Note that since the publication of our work, several other algorithms have been pro-
posed [Jedra and Proutière, 2020; Katz-samuels et al., 2020; Zaki et al., 2020]. Particularly,
Jedra and Proutière [2020] provide a first analysis of linear bandits BAI with a specific
continuous set of arms; Katz-samuels et al. [2020] also study the fixed-budget setting for
linear bandits BAI and propose a novel lower bound in terms of an experimental-design
objective based on the Gaussian-width of the underlying arm set; while Zaki et al. [2020]
follows more or less the same approach as ours. Later, Yang and Tan [2021] propose a
minimax optimal algorithm for fixed-budget BAI.

More generally, however, the part of fixed-confidence pure exploration algorithms that
needs an improvement the most is the stopping rule. While the one we used guarantees
δ-correctness, it is very conservative. Indeed, the experimental error rates of algorithms
using that stopping rule are orders of magnitude below δ. This means that the concen-
tration inequality does not reflect the query we seek to answer. It quantifies deviations of
the d-dimensional estimate in all directions (morally, along 2d directions). However, for
the usual BAI setting with d arms in an orthogonal basis, it would be sufficient to control

the deviation of that estimator in d −1 directions to make sure that I?(θ) = I?(θ̂
λ
n).

Finally, the good performance of LinGapE raises the natural question of whether it
could be proven to have similar asymptotic optimality.
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Chapter 5

Hierarchical Bandits for Black-Box
Optimization

" By heavens! there is something
after all in the world allowing one
man to steal a horse while another
must not look at a halter. Steal a
horse straight out. Very well. He
has done it. Perhaps he can ride.
But there is a way of looking at a
halter that would provoke the
most charitable of saints into a
kick.

Joseph Conrad
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5.1 Introduction

In this chapter, we adopt another perspective on sequential optimization. We are still
interested in identifying the best arm, but this time among an infinite number of candi-
dates. The search space can be countably infinite or even continuous. That is the global
optimization.

GO has applications in several domains including hyper-parameter tuning [Jamieson
and Talwalkar, 2016; Li et al., 2017; Samothrakis et al., 2013] which is the main topic of
Chapter 6. GO usually consists of a data-driven optimization process over an expensive-
to-evaluate function. It is also known as BBO since the inner behavior of a function is
often unknown.

Contrary to Chapter 3 and Chapter 4, we are interested in a budgeted setting in this
Chapter as we are subject to a high resource-consuming target, hence a pre-defined bud-
get limit can be favored. In budgeted function optimization, a learner optimizes a func-
tion f : X → R depending on a number of function evaluations limited by N which are
sequentially selected. For each of the N evaluations, at round n, the learner picks an ele-
ment xn ∈X and observes a real number rn , where

rn = f (xn)+εn ,

with εn the noise. At the end, the learner is supposed to output a guess of the optimum
and their performance is assessed by the simple regret (see Definition 2.16). The true
function value f (x) can thus be interpreted as the arm mean of x using MAB terminology.

Based on εn , we can distinguish deterministic feedback setting and stochastic feed set-
ting. For deterministic feedback, the function evaluations are noiseless (see e.g. de Freitas
et al. 2012 for motivation and applications). We pay our attention to the stochastic setting
where the noise is assumed to be independent from past observations: E [rn |xn] = f (xn).

Treating the problem without any further assumption would be a mission impossible.
However, the setting gets easier if we assume a global smoothness of the reward func-
tion [Agrawal, 1995; Auer et al., 2007; Cope, 2009; Kleinberg, 2004; Kleinberg et al., 2008,
2013; Slivkins, 2011]. A weaker condition is some local smoothness where only neigh-
borhoods around the maximum are required to be smooth. In fact, local smoothness is
sufficient for achieving near-optimality [Azar et al., 2014; Bull, 2015; Grill et al., 2015; Valko
et al., 2013]. This is the continuum-armed bandits setting.

We base our work on optimistic tree-based optimization algorithms [Azar et al., 2014;
Munos, 2011; Preux et al., 2014; Valko et al., 2013] that approach the problem with a hier-
archical partitioning of the arm space and take the optimistic principle. This idea comes
from planning in MDP [Grill et al., 2016; Kocsis and Szepesvári, 2006; Munos, 2014].

Our work is motivated by the Parallel Optimistic Optimization (POO) approach pro-
posed by Grill et al. [2015], that adapts to the smoothness without the knowledge of it.
POO is a meta-algorithm which can be used on top of any hierarchical optimization algo-
rithm that knows the smoothness, that we call a subroutine. Not only does POO require
only the mildest local regularity conditions, but it also gets rid of the unnecessary met-
ric assumption that is often required. Local smoothness naturally covers a larger class
of functions than global smoothness, yet still assures that the function does not decrease
too fast around the maximum. We highlight that the analysis of POO is modular: Assuming
the subroutine has a cumulative regret of order RN under a local smoothness assumption
with respect to a fixed partitioning (Grill et al. 2015, Assumption 5.2, formally introduced
in Section 5.2), POO run with such subroutine has a simple regret bounded by RN

√
logN.

The analysis of POO heavily relies on the subroutine having guarantees on the cumula-
tive regret. In the context of optimization where sometimes only simple regret guarantees
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are available, this is not always desirable as requirements. In this chapter, we provide a
more general wrapper for algorithms that only have guarantees on their simple regret,
called General Parallel Optimization (GPO). We show that with a cross-validation scheme
instead of the original recommendation strategy, any hierarchical bandit algorithm with
simple regret guarantee can be plugged into GPO with only a tiny increase in the result-
ing simple regret. Note that any subroutine that is able to underpin POO can do the same
for GPO while the converse is not necessarily true. This can be explained by 2.6 as good
cumulative regret guarantees imply good simple regret guarantees but not the converse.

To validate GPO, it is necessary to find a subroutine that achieves meaningful regret
bound (can be either cumulative regret or simple regret) under Assumption 5.2. A natural
candidate can refer to the subroutine of POO. POO was originally analyzed using Hierachical
Optimistic Optimization (HOO) as its base algorithm. However, unlike what Grill et al.
[2015] hypothesize, it is non-trivial to provide a regret bound for HOO under Assump-
tion 5.2. We elaborate on that in Section 5.4. In order to validate POO as well as GPO, there
needs to exist a subroutine with a regret guarantee that is provable under Assumption 5.2.
This is another message that we deliver.

In particular, we prove that HCT-iid, denoted by High Confidence Tree (HCT) in the
rest of the paper since we do not consider the correlated feedback setting, of Azar et al.
[2014] satisfies the required regret guarantee, and is, therefore, a desirable subroutine to
be plugged in POO and GPO. Similar to HOO, HCT is a hierarchical optimization algorithm
based on confidence intervals. However, unlike HOO, these confidence intervals are ob-
tained by repeatedly sampling a representative point of each cell in the partitioning be-
fore splitting the cell. This yields partition trees that have a controlled depth, which are
easier to analyze under a local smoothness assumption with respect to the partitioning.
Whether HOO has similar regret guarantees under the desired local metricless assumption
remains an open question.

Contributions. 1) We propose to use a cross-validation scheme to wrap up algorithms
that only possess simple regret guarantees at the cost of a slight loss in the final regret
bound. 2) We show that HCT can serve as a valid subroutine under desired assumptions.
3) We further provide numerical illustrations to show that HCT is empirically comparable
to HOO as a subroutine.

+ This chapter is based on Shang et al. [2018, 2019a].

5.2 Required Assumptions

5.2.1 General assumptions

Let X be a measurable space. Our goal is to find the maximum of an unknown noisy
function f : X → R of which the cost of evaluation is high, given a total budget of N
evaluations. At each round n, a learner selects a point xn ∈ X and observes a reward
rn , f (xn) + εn . We make the following assumption on the noise in this thesis. More
discussions on the role and impact of noise are provided by Bartlett et al. [2019].

Assumption 5.1. [bounded, independent and conditionally centered noise] We assume
that the noise εn is bounded by [0,1], independent from previous observations and such
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that
E [εn |xn] = 0.

After N evaluations, the algorithm outputs a guess for the maximizer, denoted by x(N).
x(N) is indeed the decision rule JN in the learning protocol of a general pure-exploration
problem. We assume that there exists at least one x? ∈ X s.t. f (x?) , supx∈X f (x), de-
noted by f ? in the following. We measure the performance by the simple regret. We can
particularize Definition 2.16 of simple regret into the setting of this chapter:

SN , f ?− f (x(N)) .

Likewise, we can also particularize the notion of cumulative regret into our setting:

RN ,N f ?−
N∑

n=1
f (xn) .

5.2.2 Covering tree that guides the optimization

Hierarchical bandits rely on the existence of hierarchical partitioning P , {Ph,i }h,i de-
fined recursively, where

P0,1 =X , Ph,i =
K−1⋃
j=0

Ph+1,Ki− j .

Such a partition can be naturally represented by a tree, where K denotes the maximum
number of children of a node in that tree. Many of known algorithms depend on a met-
ric/dissimilarity over the search space to define the regularity assumptions that link the
partitioning to some near-optimality dimension, that is independent of the partitioning.
However, this was shown to be artificial [Grill et al., 2015], since (i) the metric is not fully
exploited by the algorithms and (ii) the notion of near-optimality dimension indepen-
dent of partitioning is ill-defined. Hence, it is natural to make smoothness assumptions
directly related only to the partitioning.

We now present the only regularity assumption on the target function f that is ex-
pressed in terms of the partitioning P given in Assumption 5.2.

Assumption 5.2. [local smoothness w.r.t. P ] For x? be a global maximizer, we denote
by i?h be the index of the only cell at depth h that contains x?. Then, there exist a global
maximizer x? and two constants ν> 0, ρ ∈ (0,1) s.t.,

∀h ≥ 0,∀x ∈Ph,i?h
, f (x) ≥ f ?−νρh .

Note that this assumption is the same as the one of Grill et al. [2015]. Multiple maxi-
mizers may exist, but this assumption needs to be satisfied only by one of them.

We stress again that requiring only a local smoothness assumption is an improve-
ment since (i) it is a one-side local Lipschitz-type of assumption that naturally covers a
larger class of functions, (ii) it only constrains f along the optimal path of the covering
tree which is a plausible property in an optimization scenario, and (iii) shows that the
optimization is actually easier than it was previously believed.
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Besides, in this chapter, we aim to design algorithms that does not rely on any metric.
Previous methods all depend on a metric, and their smoothness assumptions are sum-
marized in Table 5.1.

global smoothness local smoothness
known smoothness Zooming, HOO DOO, HCT

unknown smoothness TaxonomyZoom SOO, StoSOO, ATB

Table 5.1: Smoothness assumptions for hierarchical bandits algorithms.

As first observed by Auer et al. [2007], the difficulty of a GO should depend on the size
of near-optimal regions and on how fast they shrink. Auer et al. [2007] use a margin condi-
tion that quantifies this difficulty by the volume of near-optimal regions. In this work, we
use a similar notion of near-optimality dimension1 instead. This notion is directly related
to the partitioning.

Definition 5.1. [near-optimality dimension w.r.t. P ] For any ν> 0, C > 1, and ρ ∈ (0,1),
we define the near-optimality dimension of f with respect to P as

d(ν,C,ρ), inf
{

d ′ ∈R+ : ∀h ≥ 0,Nh(3νρh) ≤ Cρ−d ′h
}

,

where Nh(ε) is the number of cells Ph,i such that supx∈Ph,i
f (x) ≥ f ?−ε.

Nh(3νρh) can be thought as the number of cells that any algorithm needs to sample in
order to find the maximum. A smaller d(ν,C,ρ) implies an easier optimization problem.

5.3 General Parallel Optimization

We present our new wrapper in this section. In order to get a better understanding, we
start with a brief introduction of POO.

5.3.1 Generic parallel optimistic optimization

We introduce POO(A ) as a generic algorithm, taking as input any hierarchical optimiza-
tion algorithm A =A (ν,ρ) requiring the smoothness parameters.

POO(A ) is a meta-algorithm that uses A that knows the smoothness as a subroutine,
originally proposed by Grill et al. [2015] for A = HOO. In this algorithm, several instances of
A are run in parallel, each one using a different pair of parameters (ν,ρ) in a well-chosen
grid G (defined in Line 4 of Algorithm 5.1). In the end, POO(A ) chooses the instance that
has the largest empirical mean reward and returns one of the points evaluated by this
instance, chosen uniformly at random.

The pseudo-code of POO(A ) is shown in Algorithm 5.1. Additionally to the base al-
gorithm itself, it requires two parameters ρmax and νmax that determine the range of in-
stances A (ν,ρ) that we can compete with. However, these parameters can be set as a
function of the number of evaluations as explained in details in Appendix C of Grill et al.

1The present definition is slightly different from the original POO paper, where a coefficient 3 is present
instead of 2 due to a technical detail.
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[2015], hence not mandatory in practice. An important remark is that given a budget N
of function evaluations, the number of instances M run by POO(A ) depends on N, and
each instance is run for bN/M(N)c times. Due to the doubling scheme used in Lines 2-10
of Algorithm 5.2, note however that POO(A ) does not need to know this total number of
function evaluations. Hence, if the base algorithm A is anytime, so is POO(A ).

Algorithm 5.1 Algorithm of POO(A ) with base algorithm A

1: Input: base algorithm A , νmax,ρmax, branching factor of the partitioning K
2: Initialization: Dmax ← lnK/ln

(
1/ρmax

)
, number of function evaluations n ← 0, cur-

rent number of instances of A : N ← 1, S ← {(νmax,ρmax)}
3: while budget still available do
4: while N ≤ 1

2 Dmax log
(
N/(logN)

)
do

5: for i ← 1, . . . ,N do
6: s ← (

νmax,ρmax
2M/(2i+1)

)
7: Initialize A (s) (if not already done before)
8: Continue running A (s) until it has given N

M rewards rs,1, . . . ,rs,N/M.
9: Compute µ̂[s] = M

N

∑N/M
i=1 rs,i .

10: end for
11: N ← 2N
12: M ← 2M
13: end while
14: Perform each A (s) once
15: Update µ̂[s]
16: N ← N+M
17: end while
18: s?← argmaxs∈S µ̂[s]
19: Return A point sampled u.a.r. from the points evaluated by A (s?)

5.3.2 A more general wrapper

The analysis of POO(A ) heavily relies on the fact that we control the cumulative regret
of algorithm A (see Appendix D.2 for details). POO indeed exploits this property when
selecting s? as the instance with largest empirical cumulative rewards. In this section,
we propose a simple modification of POO(A ) that allows using as base algorithms any
hierarchical optimization algorithms that would only have simple regret guarantees.

The GPO(A ) algorithm, whose pseudo-code is shown in Algorithm 5.2, mostly needs to
modify the model selection strategy of POO. There are two natural candidates: (i) Lepski’s
method which is a nested aggregation scheme [Lepski, 1992; Lepski and Spokoiny, 1997;
Locatelli and Carpentier, 2018; Locatelli et al., 2017] that requires a single optimum, thus
not directly applicable to our case, and (ii) a cross-validation scheme that we use and
detail in the next. Given a total budget of n function evaluations, GPO(A ) runs several
instances of A in parallel with parameters chosen in the same grid as that used by POO,
each using the same number of evaluations to output a recommendation x̃i . One half of
the budget is then dedicated to estimating the function values at those points, and the
one with the highest estimated value is kept.

In Theorem 5.1, we provide a general analysis of the GPO algorithm, showing that it
attains an (order)-optimal simple regret without knowing the parameter triple (ν?,C?,ρ?)
provided that its base algorithm does.
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Algorithm 5.2 Algorithm of GPO
1: Input: base algorithm A , budget n, ρmax,νmax, K
2: Initialization: Dmax ← lnK/ln

(
1/ρmax

)
, number of function evaluations N ← 0, cur-

rent number of instances of A M ← 1, S ← {(νmax,ρmax)}
3: Compute M = d(1/2)Dmax ln((M/2)/ln(M/2))e (the number of instances)
4: for i ← 1, . . . ,M do
5: s ← (

νmax,ρmax
2M/(2i+1)

)
6: Run A (s) for bN/(2M)c time steps
7: Recommend x̃s

8: Get bN/(2M)c noisy evaluations of f (x̃s)
9: Compute their average V[s]

10: end for
11: s?← argmaxs V[s]
12: Return x̃s?

Theorem 5.1. If for all (ν,ρ) the A (ν,ρ) algorithm has its simple regret bounded as

E
[

SA (ν,ρ)
N

]
≤ αC

((
logN/N

)1/(d(ν,C,ρ)+2)
)

, (5.1)

for any function f satisfying Assumption 5.2 with parameters (ν,ρ), then there exists a
constant β that is independent of νmax and ρmax such that

E
[

SGPO(A )
N

]
≤ βDmax(νmax/ν?)Dmax

(
(log2 N)/N)1/(d(ν?,C?,ρ?)+2)

)
,

for any function f satisfying Assumption 5.2 with parameters ν? ≤ νmax and ρ? ≤ ρmax.

Proof. We start by fixing some notation. Recall that M (that depends on N) is the number
of instances run in parallel. For j ∈ {1, . . . ,M}, we let x̃ j denote the point recommended

by the instance A (νmax,ρ j ) with ρ j = ρ
2M/(2 j+1)
max . Let (ri , j )1≤i≤N+ be the i.i.d. evaluations

of f (x̃ j ) used during the validation phase, with N+ , bN/(2M)c and µ̂N+, j = 1
N+

∑N+
i=1 ri , j be

the estimated value of f (x̃ j ) computed by the algorithm. We let

̂ = argmax
j

µ̂N+, j and ̃ = argmax
j

f (x̃ j )

be the index of the empirical best and true best among the recommended point. We no-
tice that for any j , {ri , j − f (x̃ j )}N+

i=1 is a bounded i.i.d. sequence with zero mean (condition-
ally to x̃ j ) thus using Hoeffding’s inequality one can show that for all ∆> 0,

P

[
N+∑
i=1

(ri , j − f (x̃ j )) > N+∆

]
≤ exp

(−2N+∆2),

therefore,
P

[
µ̂N+, j − f (x̃ j ) >∆]≤ exp

(−2N+∆2),

and we have immediately

P
[|µ̂N+, j − f (x̃ j )| >∆]≤ 2exp

(−2N+∆2).
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By integrating over ∆ ∈ [0,1], we get

∀ j ∈ {1, . . . ,M}, E
[|µ̂N+, j − f (x̃ j )|]≤ p

π/2p
N+ · (5.2)

As in the analysis of POO, the instance  defined as

 , argmin
j≤M:ρ j≥ρ?

[
d(νmax,C?,ρ j )−d(ν?,C?,ρ?)

]
shall play a crucial role. Indeed, inequality (5.1) is exactly what is needed in Appendix B.2
and Appendix B.3 of Grill et al. [2015] to control the simple regret of that instance in terms
of (ν?,C?,ρ?). Following the exact same steps, we can show that for some constant α,

E
[

S
A (νmax,ρ  )

(N/2M)

]
≤ αDmax(νmax/ν?)Dmax

(
(log2 N)/N)1/(d(ν?,C?,ρ?)+2)

)
. (5.3)

We now turn our attention to the simple regret of GPO(A ) after n function evaluations.

E
[
SGPO

N

]= E[
f ?− f (x̃ ̂ )

]= E[
f ?− f (x̃  )

]+E[
f (x̃  )− f (x̃ ̃ )

]+E[
f (x̃ ̃ )− f (x̃ ̂ )

]
. (5.4)

The first term in (5.4) is equal to the simple regret of the instance  that uses n/N samples,
which is upper bounded in (5.3). The second term in (5.4) is always negative by definition
of ̃ and the third term can be rewritten as

E
[

f (x̃ ̃ )− f (x̃ ̂ )
]= E[

f (x̃ ̃ )− µ̂N+, ̃
]+E[

µ̂N+, ̃ − µ̂N+, ̂
]+E[

µ̂N+, ̂ − f (x̃ ̂ )
]

. (5.5)

where the first and the third term of (5.5) are both upper bounded by (
p
π/2)/

p
N+ using

(5.2), and the second term is always negative by definition of ̂ . Putting things together
yields

E
[
SGPO

N

]≤ αDmax(νmax/ν?)Dmax
(
(log2 N)/N

)1/(d(ν?,C?,ρ?)+2) +O

(p
Mp
N

)
.

The conclusion follows by observing that the second term in the right-hand side is
negligible with respect to the first.

5.4 HCT under Local Smoothness w.r.t. P

Not let us turn our attention to finding a valid base algorithm for GPO. The first idea is to
refer to the original base algorithm of POO, namely HOO.

Analyzing HOO under Assumption 5.2, however, is not trivial. A key lemma in the analy-
sis of HOO (Lemma 3 by Bubeck et al. 2011) that controls the variance of near-optimal cells
is not true under local smoothness assumptions as Assumption 5.2. Indeed, HOO could
induce a very deep covering tree, while producing too many nodes that are neither near-
optimal nor sub-optimal. The concept of near-optimal and sub-optimal nodes is then
characterized by the sub-optimality gap of each node which measures the distance be-
tween the local maximum of the node and the global maximum. Intuitively, nodes that are
neither near-optimal nor sub-optimal represent the nodes of whom the sub-optimality
gap is neither too large nor too small.

To control the regret due to these nodes, Bubeck et al. [2011] use global smoothness
(weakly Lipschitz) assumption. Assumption 5.2 is weaker, only local, and does not offer
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such comfort. If we want to control the regret due to these nodes without Lemma 3 of
Bubeck et al. [2011], one possible way is to control the depth of the covering tree to ensure
that we do not have too many of them. In particular, another algorithm known as HCT
proposed by Azar et al. [2014] implies a controlled depth of the tree which allows it to be
analyzed under Assumption 5.2 as opposed to HOO. We now give a brief description of HCT
and present a new analysis of it.

5.4.1 Description of HCT

Algorithm 5.3 Algorithm of HCT
1: Input: K, ν> 0, ρ ∈ (0,1), c > 0, tree partitioning {Ph,i }, confidence δ
2: Initialization: T1 ← {(0,1), (1,1), . . . , (1,K)}, U1,1(1) ←···← U1,K(1) ←+∞
3: for n ← 1. . .N do
4: if n = n+ then
5: for (h, i ) ∈Tn do

6: Uh,i (n) ← µ̂h,i (n)+νρh + c

√
log

(
1/δ̃(n+)

)
Th,i (n)

7: end for
8: UpdateBackward(Tn ,n)
9: end if

10: (hn , in),Pn ← OptTraverse(Tn ,n)
11: Evaluate xhn ,in and obtain rn

12: Thn ,in (n) ← Thn ,in (n)+1
13: Update µ̂hn ,in (n)

14: Uhn ,in (n) ← µ̂hn ,in (n)+νρhn + c

√
log

(
1/δ̃(n+)

)
Thn ,in (n)

15: UpdateBackward(Pn ,n)

16: τhn (n) ←d c2 log(1/δ̃(n+))
ν2 ρ−2hn e

17: if Thn ,in (n) ≥ τhn (n) and (hn , in) is a leaf then
18: Expand the node (hn , in)
19: end if
20: end for

Algorithm 5.4 Snippet OptTraverse of HCT
1: Input: a tree T , round n
2: Initialization: (h, i ) ← (0,1); P ← {(0,1)}; T0,1(n) = τ0(n) = 1
3: while (h, i ) is not a leaf of T and Th,i (n) ≥ τh(n) do
4: j ← argmax

j∈{0,...,K−1}

{
Bh+1,Ki− j (n)

}
5: (h, i ) ← (h +1,Ki − j )
6: P ← P∪ {(h, i )}
7: end while
8: Return (h, i ) and P

The pseudo-code of HCT (Algorithm 5.3) and two detailed snippets (Algorithm 5.4 and
Algorithm 5.5) describe the process of traversing the covering tree. The algorithm stores a
finite subtree Tn at each round t which is initialized by T0 = {(0,1)}. Each cell is associated
with a representative point xh,i and the algorithm keeps track of some statistics regarding
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Algorithm 5.5 Snippet UpdateBackward of HCT
1: Input: a tree T , round n
2: note that Pn can also be considered as a tree, thus input of this function
3: for (h, i ) ∈T backward from each leaf of T do
4: if (h, i ) is a leaf of T then
5: Bh,i (n) ← Uh,i (n)
6: else

7: Bh,i (n) ← min

{
Uh,i (n), max

j∈{0,...,K−1}

{
Bh+1,Ki− j (n)

}}
8: end if
9: end for

this point. One of these statistics is the empirical mean reward µ̂h,i (n) which is the average
on the first Th,i (n) rewards received when querying xh,i . The HCT algorithm also keeps
track of an upper confidence bound U-value for the cell (h, i ),

Uh,i (n), µ̂h,i (n)+νρh + c

√
log(1/δ̃(n+))

Th,i (n)
,

where n+ , 2dlog2(n)e, δ̃(n),min{c1δ/t ,1/2}, and its corresponding B-value,

Bh,i (n),

 min

{
Uh,i (n), max

j∈{0,...,K−1}

{
Bh+1,Ki− j (n)

}}
if (h, i ) is an internal node,

Uh,i (n) otherwise,

which is designed to be a tighter upper confidence bound than the U-value. Here, c and
c1 are two constants, and νρh represents the resolution2 of the region Ph,i . Observe that
Uh,i (n) and Bh,i (n) are not updated at every round, but are constant on time intervals of
the form [2k ,2k+1).

At each round n, the algorithm traverses the current covering tree along an optimistic
path Pn before choosing a point (OptTraverse function). This optimistic path Pn is ob-
tained by repeatedly selecting cells that have a larger B-value until a leaf or a node that is
sampled less than a certain number of times is reached. If a leaf is reached, then this leaf is
sampled and expanded (i.e., we split the leaf into K equal-sized regions and initialize their
U-values to +∞); otherwise, the node that is not sampled enough is re-sampled. All the
B-values along the optimistic path are then updated backwardly from the current node
to the root (UpdateBackward function). More precisely, HCT samples one node a certain
number of times τh(n) in order to sufficiently reduce the uncertainty before expanding
it. Hence, τh(n) is defined such that the uncertainty over the rewards in Ph,i is roughly
equal to the resolution of the node,

τh(n), dc2 log(1/δ̃(n+))

ν2
ρ−2he.

5.4.2 Analysis of HCT under a local metricless assumption

We now show that HCT is indeed a valid candidate underlying algorithm for GPO.

2The term resolution refers to the maximum variation in the cell. If it is too large, then we need to shrink
the volume, thus increase the resolution.
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We state our main result in Theorem 5.2. We prove that HCT achieves an expected
cumulative regret bound under Assumption 5.2 which matches the regret bound given
by Azar et al. [2014] up to constants.

Moreover, compared to that result, the near-optimality dimension d featured in Theo-
rem 5.2 is the one of Definition 5.1 that is defined with respect to the partitioning and not
with respect to a metric. For a fixed budget N, we introduce the notation HCT(ν,ρ) to refer
to the instance of HCT parameterized by ν, ρ, c = 2

√
1/(1−ρ) and δ= 1/N.

Theorem 5.2. Assume that function f satisfies Assumption 5.2. Then, setting δ, 1/N,
the cumulative regret of HCT(ν,ρ) after N function evaluations is upper bounded as

E[RHCT(ν,ρ)
N ] ≤ αC(logN)1/(d(ν,C,ρ)+2)N(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2) ,

where α is a numerical constant and C is the constant associated to d(ν,C,ρ).

As a consequence, according to Remark 2.6, we get the following simple-regret bound.

Corollary 5.3. The simple regret of HCT after N function evaluations under Assump-
tion 5.2 satisfies

E[SHCT(ν,ρ)
N ] ≤ αC(logN)1/(d(ν,C,ρ)+2)N−1/(d(ν,C,ρ)+2) .

Remark 5.4. One may notice that to validate GPO, we only need to bound the simple
regret of HCT. The reason that we provide a cumulative regret bound is that we can show
that HCT is also a valid base algorithm for POO, thus validate POO as well. As indeed the
problem raised in the analysis of HOO under Assumption 5.2 does make the validity of
POO questionable.

We now sketch the proof. The full proof is detailed in Appendix D.2. As mentioned
above, HCT has a controlled depth. Indeed, given the threshold τh(n) required at depth h,
in Section D.2.1, we prove that the depth of the covering tree is bounded as stated in the
following lemma:

Lemma 5.1. The depth of the covering tree produced by HCT after N function evalua-
tions satisfies

H(N) ≤ Hmax(N), d 1

2(1−ρ)
log

(
Nν2

c2ρ2

)
e .

Defining the mean reward µh,i , f (xh,i ), we introduce a favorable event under which the
mean reward of all expanded nodes is within a confidence interval,

ξn ,
{
∀(h, i ) ∈Ln , |µ̂h,i (n)−µh,i | ≤ c

√
log(1/δ̃(n))/Th,i (n)

}
,
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where Ln is the set of all possible nodes in trees of maximum depth Hmax(n).
We split the regret into two parts depending on whether ξn holds or not. We prove in

Appendix D.2.3 that the failing confidence term is with high probability bounded by
p

n.
In the case when ξn holds, we bound the regret in Appendix D.2.4 by treating separately
the two parts, ∆hn ,in and ∆̂n , of the instantaneous regret ∆n ,

∆n , f ?− rn = f ?− f (xhn ,in )+ f (xhn ,in )− rn =∆hn ,in + ∆̂n .

Next, we bound ∆̂n by Azuma-Hoeffding concentration inequality [Azuma, 1967]. Then,
we bound∆hn ,in with the help of the following lemma, which is the major difference com-
pared to the original HCT analysis by Azar et al. [2014]. In particular, the lemma states
that if Assumption 5.2 is verified then f ? is upper-bounded by the U-value of any optimal
node.

Lemma 5.2. Under Assumption 5.2 and under event ξn , we have that for any optimal
node (h?, i?), Uh?,i?(n) is an upper bound on f ?.

Proof. Since n+ ≥ n, we have

Uh?,i?(n), µ̂h?,i?(n)+νρh? + c

√
log(1/δ̃(n+))

Th?,i?(n)
≥ µ̂h?,i?(n)+νρh? + c

√
log(1/δ̃(n))

Th?,i?(n)
·

Moreover, as we are under event ξn , we also have

µ̂h?,i?(n)+ c

√
log(1/δ̃(n))

Th?,i?(n)
≥ f

(
xh?,i?

)
.

Therefore, Uh?,i?(n) ≥ f (xh?,i?)+νρh? ≥ f ?.

With the help of Lemma 5.2 (see Step 2 in Appendix D.2.4), we can then upper bound
∆hn ,in as

∆hn ,in ≤ 3c

√
log(2/δ̃(n))

Thn ,in (n)
·

To bound the total regret of the all nodes selected, we divide them into two categories,
depending on whether their depth is smaller or equal than H (to be optimized later) or
not.

For the nodes in depths h ≤ H, we use Lemma 5.2 again, now to show that OptTraverse
only selects nodes that have a parent which is (3νρhn−1)-optimal. For the nodes for which
h > H, we bound the regret using the selection rule of HCT.

The sums of the regrets from the two categories are proportional and inversely propor-
tional to an increasing function of H. By finding the value of H for which the sum of the
two terms reaches its minimum and adding the regret coming from the situations where
the favorable event does not hold, gives us the following cumulative regret for HCT: With
probability 1−δ,

RHCT(ν,ρ)
N ≤O

(
(log(N/δ))1/(d(ν,C,ρ)+2)N(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2)

)
.

However, the analysis of POO requires a bound on the expected regret of the underlying
subroutine. For that purpose, we simply set δ , 1/N and that gives us the statement of
Theorem 5.2, and consequently Corollary 5.3.
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5.4.3 Upper bound on the simple regret of PCT

Building on our new analysis of the HCT algorithm, we are able to provide theoretical guar-
antees for a new algorithm instance of POO, namely the POO(HCT) algorithm, as a side re-
sult. We refer to the new algorithm instance as Parallel Confidence Tree (PCT). More pre-
cisely we define PCT(δ) as POO run on top of HCT using confidence parameter δ.

Let (ν?,C?,ρ?) be a triple of parameters for which Assumption 5.2 is true, we prove
that PCT achieves a regret that is comparable to the one obtained by HCT.

Theorem 5.5. Assume that the target function f satisfies Assumption 5.2 andν? ≤ νmax

and ρ? ≤ ρmax. For δ = M(N)/N with M(N) = d(1/2)Dmax log(N/logN)e/N, the simple
regret of PCT(δ) after N function evaluations is bounded as

E[SPCT(δ)
N ] ≤ βDmax(νmax/ν?)Dmax

(
((log2 N)/N)1/(d(ν?,C?,ρ?)+2)

)
,

where β is a constant independent of νmax and ρmax.3

By Corollary 5.3, we know that the simple regret of HCT after N function evaluations

run with (ν?,C?,ρ?) is of order O
(
(logN/N)1/(d(ν?,C?,ρ?)+2)

)
. As a consequence, the per-

formance of PCT is at most a
√

logn factor away from that of the best HCT instance.
Theorem 5.5 follows from Corollary 5.3 and Proposition 5.1 below. This wrapper result

highlights how cumulative regret guarantees for any base algorithm translate into simple
regret guarantees for the corresponding POO(A ) algorithm. Its proof almost replicates the
analysis of POO(HOO) by Grill et al. [2015] and we provide it in Appendix D.3 for the sake of
completeness.

Proposition 5.1. If for all (ν,ρ) the A (ν,ρ) algorithm has its cumulative regret
bounded as

E
[

RA (ν,ρ)
n

]
≤ αC(logn)1/(d(ν,C,ρ)+2)n(d(ν,C,ρ)+1)/(c+2), (5.6)

for any function f satisfying Assumption 5.2 with parameters (ν,C,ρ), then there exists
a constant β that is independent of νmax and ρmax such that

E
[

SPOO(A )
n

]
≤ βDmax(νmax/ν?)Dmax

(
(log2 n)/n)1/(d(ν?,C?,ρ?)+2)

)
,

for any function f satisfying Assumption 5.2 with parameters ν? ≤ νmax and ρ? ≤ ρmax.

In Theorem 5.1, we provide a general analysis of the GPO algorithm, showing that it at-
tains an (order)- optimal simple regret without knowing the parameter triple (ν?,C?,ρ?)
provided that its base algorithm does. As a consequence GPO(HCT) is an alternative to PCT
with similar simple regret guarantees.

5.5 Experimental Illustrations

In this section, we provide some simple numerical illustrations that aim to compare the
performance of HCT and HOO as subroutines. We run experiments on several test functions
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comparing the original POO(HOO) against our new algorithm instance PCT with different ρ
values. In these experiments, we set ρmax = 0.9, and we add Gaussian noise to the function
evaluations with a relatively small variance (σ= 0.1).

Artificial landscapes. We test the algorithms on some functions from the artificial land-
scapes4, including (i) two functions with many local minima: Himmelblau function and
Rastrigin function, (ii) one valley-shaped function: Rosenbrock function, and (iii) Branin
function (see Figure 5.1). Note that the Rastrigin function shown is its 2D version. In our
experiments, we use a Rastrigin function in 5D.

(a) Branin (b) Himmelblau
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(c) Rosenbrock (d) Rastrigin in 2D

Figure 5.1: Benchmark functions for testing black-box optimization algorithms.

In Figure 5.2, we plot the simple regret of the algorithms as a function of the number of
evaluations. All the results are averaged over 5000 runs and we plot the simple regret after
500 function evaluations. Each instance of HOO or HCT would recommend a point picked
uniformly at random among those evaluated so that we have the same recommendation
strategy as POO and PCT.

The first observation is that PCT does match the performance of some single HCT in-
stances as expected. We also notice that PCT has comparable performance w.r.t. POO in
these plots, which justifies the choice of using HCT as a subroutine for the POO meta-
algorithm.

4Source: https://en.wikipedia.org/wiki/Test_functions_for_optimization
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Figure 5.2: Simple regret of POO and PCT run for different ρ values.

5.6 Discussion

We proposed GPO, a general framework for making any hierarchical bandit algorithm that
only has a simple regret guarantee adaptive to unknown smoothness. This improves over
the previous framework POO that requires cumulative regret guarantee for its subroutine.

Besides, we also studied PCT, a new implementation of POO on top of HCT. We proved
that HCT is a plausible subroutine for POO by adapting the analysis of HCT under a new
assumption w.r.t. a fixed partitioning, and is also a valid underlying subroutine for GPO by
consequence. However, whether it is possible to weaken the assumptions of HOO in the
same way as HCT while keeping similar regret guarantees remains open.

A subsequent work [Bartlett et al., 2019] further proposes new algorithms that adapts
to the noise. However, tree-based algorithms are well-known to suffer from high-dimensional
search spaces, which impedes quite a lot the using of hierarchical bandits in practice. An
important but yet unsolved problem is thus to investigate how to be adaptive to the di-
mension.
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Chapter 6

Bandits and Hyper-Parameter
Optimization

" True optimization is the
revolutionary contribution of
modern search to decision
processes.

George Dantzig
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6.1 Introduction

Training a machine learning algorithm often requires to specify several parameters. For
instance, for neural networks, it is the architecture of the network and also the parameters
of the gradient algorithm used or the choice of regularization. These hyper-parameters are
difficult to learn through the standard training process and are often manually specified.

When it is not feasible to design algorithms with a few hyper-parameters, we opt for
HPO. HPO is a crucial component of modern machine learning and automated machine
learning (AutoML). Recall that HPO can be viewed as a BBO/GO problem (see Chap-
ter 1.2.4) where the evaluation of the objective function is expensive as it is the accuracy
of a learning algorithm for a given configuration of hyper-parameters. Indeed, a typical
function evaluation involves training the primary machine learning algorithm to comple-
tion on a dataset, which often takes a considerable amount of time or resources, in par-
ticular for large DL models. For example, the training of language representation model
BERT-Large [Devlin et al., 2019] was performed on 16 Cloud TPUs (64 TPU chips in total),
and each pre-training took 4 days to complete. This vastly limits the number of evalu-
ations that can be carried out, which calls for a design of efficient high-level algorithms
that automate the tuning procedure.

In this chapter, we are interested in exploring how MAB, or more precisely BAI, can
guide the design of efficient HPO. Indeed, some bandit tools have already been employed
for GO (see Chapter 5) and HPO: First, in the field of Bayesian optimization, the GP-UCB
algorithm [Srinivas et al., 2010] is a Gaussian process extension of the classical UCB bandit
algorithm [Auer et al., 2002a]. Later, Hoffman et al. [2014] proposed to use BAI tools – still
with a Bayesian flavor – for automated machine learning, where the goal is to smartly try
hyper-parameters from a pre-specified finite grid.

However, in most cases, the number of hyper-parameter configurations to explore is
infinite. In this chapter, we investigate the use of bandit tools suited for an infinite number
of arms. There are two lines of work for tackling a very large or infinite number of con-
figurations (arms). The first is the continuum-armed bandits discussed in Chapter 5 (see
also Bartlett et al. 2019; Bubeck et al. 2010; Grill et al. 2015; Shang et al. 2019a). It makes
use of hierarchical bandit tools and aims at exploiting the (possibly unknown) smooth-
ness of the black-box function to optimize. To the best of our knowledge, these methods
have never been extensively tested in practice for HPO.

The second line of work does not assume any smoothness: At each round, the learner
may ask for a new arm from a reservoir distribution ν0 (pick randomly a new hyper-
parameter configuration) and add it to the current arm pool X , or re-sample one of the
previous arms (evaluate configuration already included in X ), in order to find an arm with
a good mean reward (i.e., a hyper-parameter configuration with a good validation accu-
racy). It is the infinitely-armed bandits setting. In particular, we study the stochastic case
in which observations are assumed to be independent. The stochastic infinitely-armed
bandits (SIAB) is studied by Berry et al. [1997]; Wang et al. [2008] for the rewards maxi-
mization problem while Aziz et al. [2018a]; Carpentier and Valko [2015] study the simple
regret problem, which is related to BAI. While most proposed algorithms consist of query-
ing an adequate number of arms from the reservoir before running a standard BAI algo-
rithm, Li et al. [2017] propose a more robust approach called Hyperband that uses several
such phases.

Contributions. 1) In this chapter, we go even further and propose the first dynamic algo-
rithm for BAI in SIAB, that at each round, may either query a new arm from the reservoir or
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re-sample arms previously queried. Our algorithm leverages a Bayesian model and builds
on TTTS. 2) We also introduce a variant of Hyperband where the Sequential-Halving
subroutine [Karnin et al., 2013] is replaced by TTTS. 3) Numerical studies are presented
to show the competitiveness and robustness of the proposed dynamic algorithm with re-
spect to state-of-the-art HPO methods.

+ This chapter is mainly based on Shang et al. [2019b] with some additional discus-
sions from Shang et al. [2020b] and my master thesis [Shang, 2017].

6.2 A Brief Survey of Automated Machine Learning

Although the focus of this chapter is HPO, it is worth mentioning that HPO has gradually
extended to more general AutoML, for whom the goal is to optimize the entire machine
learning pipeline from data preparation to model learning (see e.g. Feurer et al. 2015).
This effort has led to the development of a wide variety of efficient AutoML systems in the
past few years [Kotthoff et al., 2017; Mohr et al., 2018; Olson and Moore, 2019; Rakotoari-
son et al., 2019; Thornton et al., 2013].

In this section, we give a brief introduction of AutoML and we pay particular attention,
of course, to HPO.

We first provide a full-stack pipeline for an AutoML procedure as displayed in Fig-
ure 6.1 followed by a general taxonomy on different components of AutoML [He et al.,
2019; Hutter et al., 2019; Zöller and Huber, 2019].

6.2.1 The AutoML taxonomy

Data preparation. The very first step of a machine learning pipeline consists of collect-
ing and preparing clean data.

Data collection often relies on web searching. However, data could be ill-labeled or in-
accurate, thus semi-supervised or self-labeling methods are required. When not enough
data are available, data synthesis is needed, mainly with the help of data augmentation.

On the other hand, data cleaning is more or less standardized. Typical tricks include
normalization, scaling, binarization of numerical (discrete or continuous) attributes, one-
hot encoding for categorical attributes, imputation (e.g. with mean values), etc.

Feature engineering. Once the data are collected and tidied, the next step is dealing
with the features. Depending on the task, feature manipulation can contain three differ-
ent aspects.

Sometimes we need to reduce irrelevant or redundant features, thus builds a more
compact feature subset. This is feature selection. A typical feature selection process starts
with subset generation using some (random) search strategy like simulated annealing, ge-
netic algorithms, etc; followed by subset evaluation with filter methods, wrapper methods
or embedded methods such as deep neural networks, decision trees, etc; and finally ends
up with a validation step.

Another similar but not completely same trick is feature extraction. Feature extraction
aims at extracting more informative features using dimensionality reduction techniques
like PCA, ICA, LDA, etc. Recent autoencoder-based methods can be used as well.

Finally, we can also construct new features from the raw data to enhance the robust-
ness and generalizability of the model. Typical methods of feature construction include

89



CHAPTER 6. BANDITS AND HYPER-PARAMETER OPTIMIZATION

Figure 6.1: The full-stack pipeline of a machine learning task.

searching methods such as tree-based approaches, genetic algorithms; and annotation-
based approaches.

Pipeline generation. The previous two parts are not the focus of this chapter. We are
more interested in the third step, namely pipeline generation. Indeed HPO is one of the
main research topics in this domain.

The pipeline generation is sometimes modeled as a full model selection (FMS) or com-
bined algorithm selection and hyper-parameter optimization (CASH) problem, that is typ-
ically composed of a model/algorithm selection process and a HPO process. We focus on
HPO in this thesis. It is worth noting, however, that many HPO algorithms can also be
applied on the full model selection problem as a whole.

A particular instance of FMS or CASH is the neural architecture search (NAS) problem.
NAS is specific to large modern neural-network models and has become a very hot topic
recently (see e.g. Elsken et al. 2019; Kandasamy et al. 2018; Liu et al. 2019; Zoph et al.
2018). NAS can also be regarded as a HPO problem sometimes, but more often, we can
make use of extra information from its inner structure. Anyhow, it is also out of the scope
of this manuscript.
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Model evaluation and estimation. Last but not least, an evaluation of the model is needed
at the end. The classic way of evaluating a model is to wait until the completion of the
training before assessing its performance on a validation set. Recent work (see e.g. Li
et al. 2017) suggests that using a multi-fidelity estimation [Huang et al., 2006; Peherstorfer
et al., 2018; Wu et al., 2019] can tremendously reduce the time and resource consump-
tion. Multi-fidelity methods estimate the target function by low-resolution approxima-
tions (using only a subset of data for example).

Other methods exist as well that aim at increasing the efficacy of model evaluation and
estimation, such as early-stopping, surrogate model, weight sharing, etc. They are mostly
specifically designed for DL though.

6.2.2 Hyper-parameter optimization

We stress again that we only study HPO in this chapter. In particular, we do not take
care of the model evaluation part, but rather focus on designing efficient model selection
algorithms. That being said, we always consider complete training in this thesis, and we
do not restrict ourselves to DL.

Two naive but daily-used HPO methods are Grid-Search and Random-Search. More
sophisticated model-free methods address HPO as a sequential resource allocation prob-
lem, by adaptively choosing the next hyper-parameter(s) to explore, based on the results
obtained previously. For example, evolutionary optimization follows a process inspired
by the biological concept of evolution, which repeatedly replaces the worst-performing
hyper-parameter configurations from a randomly initialized population of configurations
(see e.g. Loshchilov and Hutter 2016) for an example of using CMA-ES for hyper-parameter
tuning. A major drawback of evolutionary optimization is its lack of theoretical under-
standing.

Model-based approaches also exist. For example, Bayesian optimization is an ap-
proach that leverages the sequential nature of the setting. BO depends on a prior belief
for the target function, typically a Gaussian process. This prior distribution can be up-
dated to a posterior given a sequence of observations. Several algorithms exploiting this
posterior distribution to decide where to sample next have been given (see e.g. Shahriari
et al. 2016, for a survey). Snoek et al. [2012] and Klein et al. [2017] provide Python packages
called Spearmint and RoBO to perform hyper-parameter tuning with BO methods. Similar
packages are available for PyTorch (BoTorch1) and TensorFlow (GPflowOpt by Knudde
et al. 2017). Among BO algorithms, TPE [Bergstra et al., 2011] and SMAC [Hutter et al., 2011]
were specifically proposed for HPO. A shortcoming of BO is that most algorithms select
where to sample next based on optimizing some acquisition function computed from the
posterior, e.g., the expected improvement [Jones et al., 1998]. This auxiliary task cannot be
solved analytically but needs to be performed itself by optimization procedures as L-BFGS
that make the process slow.

6.3 Hyper-Parameter Optimization Framework

In this chapter, we view HPO as a particular GO setting, for which the target function f
is a mapping from a hyper-parameter configuration to some measure of failure for the
machine learning algorithm trained with these hyper-parameters. Formally, we aim at

1https://botorch.org/
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solving an optimization problem of the form

f ? = min
{

f (λ) :λ ∈Ω}
,

where λ denotes a configuration of hyper-parameters chosen from a configuration space
Ω. A hyper-parameter optimizer is a sequential procedure, that at each round n, selects
a configuration λn to evaluate using some sampling rule, after which a (costly and noisy)

evaluation of f (λn) is observed. Besides, a hyper-parameter configuration λ̂
?

is recom-

mended as a guess for a close-to-optimal configuration at the end. The hope is that f (λ̂
?

)
is not far from f ?.

We restrict our attention to hyper-parameter tuning for supervised learning algorithms.
Given a training dataset Dtrain containing m labeled examples in X ×Y and a choice of
hyper-parameter configuration λ, a supervised learning algorithm (neural network, SVM,
gradient boosting, . . . ) produces a predictor ĝ (m)

λ
: X → Y . Note that there can be some

randomness in the training process (e.g., if stochastic gradient descent is used) so that
ĝ (m)
λ

may still be random for a given training set and hyper-parameters. The goal is to
build a predictor that generalizes well. If we had access to the distribution P that gener-
ated the data (i.e., assuming that data points in Dtrain are i.i.d. from P), this generaliza-

tion power would be measured by the risk f (λ) , E
[
`
(
Y, ĝ (m)

λ
(X)

)]
, where ` is some loss

function measuring the distance between two predictions and the expectation is taken on
(X,Y) ∼ P and the possible randomness in the training process.

In practice, however, the explicit evaluation of f is impossible, but there are several
methods for noisy evaluations. We can either compute the validation error of ĝ (n)

λ
on a

held-out validation set,
1

|Dvalid|
|Dvalid|∑

i=1
`(ĝ (m)

λ
(xi ),yi ) ,

or a cross validation error over the training set as an approximation of the objective.

6.4 Best-Arm Identification for Hyper-Parameter Tuning

HPO with pre-defined set of hyper-parameter configurations can be modeled as a BAI
game. Given a finite set of arms X , {1, . . . ,K}, when we select arm i , we get an in-
dependent observation from some unknown distribution νi with mean µi . A BAI al-
gorithm sequentially selects arms in order to identify the arm with the largest mean2,
I?, argmaxi∈A µi .

In the context of HPO, each arm models the quality of a given hyper-parameter con-
figurationλ. When the arm is sampled, a noisy evaluation of f (λ) is received, which is the
mean reward of that arm.

As stated in Section 6.1, standard BAI algorithms are not straightforwardly applicable
to HPO when the search space can be infinite and is often continuous. To handle such
cases, we rather turn our attention to SIAB. In this context, there is an infinite pool of
arms, whose means are assumed to be drawn from some reservoir distribution ν0. In
such a model, an algorithm maintains a list of arms that have been tried before. At each
round it can either query a new arm from the reservoir, add it to the list and sample it, or
sample an arm already in the list.

2Here we present BAI problems in a standard way for which we search for an arm with the largest mean.
For HPO, however, it is important to mention that we are searching for a hyper-parameter configuration
that minimizes the validation error. One can easily see that it does not change the problem in principle.

92



CHAPTER 6. BANDITS AND HYPER-PARAMETER OPTIMIZATION

A natural way to perform BAI in an infinite-many armed bandit model consists of first
querying a well-chosen number of arms from the reservoir and then running a standard
BAI algorithm on those arms [Carpentier and Valko, 2015]. However this ideal number
may rely on the difficulty of the learning task, which is hardly known in practice. The
Hyperband algorithm [Li et al., 2017] takes a step further and successively queries several
batches of arms from the reservoir, including a decreasing number of arms in each batch,
while increasing the budget dedicated to each of them. Sequential-Halving [Karnin
et al., 2013], a state-of-the-art fixed-budget BAI algorithm, is then run on each of these
batches of arms. This approach seems more robust in that it trades off between the num-
ber of arms that is needed to capture a good arm and how much measurement effort we
should allocate to each of them. However, a numerical study performed by Aziz et al.
[2018b] seems to reveal that an infinite bandit algorithm based on Sequential-Halving
should always query the maximal number of arms from the reservoir3.

In Table 6.1, we summarize how to cast HPO as a BAI problem with infinitely-many
arms.

BAI HPO

query ν0 pick a new configuration λ˙

sample an arm˙ train the classifier gλ

reward cross-validation loss

Table 6.1: Casting HPO as a BAI problem.

All existing algorithms are still subject to a pre-defined scheduling of how many arms
should be queried from the reservoir. The algorithm (D-TTTS) that we propose in the
next section does not need to decide in advance how many arms will be queried, and is
therefore fully dynamic.

Remark 6.1. Hyperband is proposed specifically for hyper-parameter tuning. Its orig-
inal philosophy is to adaptively allocate resources to more promising configurations.
Resources here can be time, dataset sub-sampling, feature sub-sampling, etc. In such a
setting, the classifier is not always trained into completion given a parameter configu-
ration, but is rather stopped early if it is shown to be bad so that we can allocate more
resources to other configurations. In this case, different evaluations of a single configu-
ration cannot be considered as i.i.d. anymore. Thus, HPO is stated as a non-stochastic
infinitely-armed bandit problem. This idea of early stopping is also further investi-
gated by combining Bayesian optimization with it [Falkner et al., 2018]. However, this
is about the model evaluation as defined in Section 6.2.2 and is out of the scope of this
thesis.

6.5 Active TTTS for Hyper-Parameter Optimization

In this section, we introduce a new algorithm for BAI in an infinite bandit model, that
is an adaptation of TTTS (see Chapter 3). Unlike Sequential-Halving that requires the

3This reference is a preliminary draft that has been withdrawn due to technical issues in the proofs. Yet
we believe the experimental section to be sound.
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knowledge of the total budget to operate, TTTS is particularly appealing as it does not
need to have it. Remember that such algorithms are referred to as anytime. Besides, it is
known to be optimal in a Bayesian (asymptotic) sense (see Chapter 3).

Recall that as a Bayesian algorithm, TTTS uses a prior distribution Π0 over the vector
of means of the K arms, µ, (µ1, · · · ,µK), which can be updated to a posterior distribution
Πn after n observations.

We consider Bernoulli bandit model in the rest of this chapter. Under Bernoulli ban-
dit model, arm i produces a reward rn,i = 1 with probability µi , and rn,i = 0 with prob-
ability 1−µi when sampled at round n. Given independent uniform prior for the mean
of each arm, the posterior distribution on µ is a product of K Beta distributions: Πn =⊗K

i=1 Beta(1+ Sn,i ,Nn,i − Sn,i + 1), where Nn,i is the number of selections of arm i until
round n and Sn,i is the sum of rewards obtained from that arm.

Why variants of TTTS? We further motivate experimentally in this section why we choose
to build new algorithms upon TTTS.

We compare TTTS against some fixed-budget BAI algorithms as benchmark, including
uniform allocation [Bubeck et al., 2009], UCB-E and Successive-Reject [Audibert and
Bubeck, 2010], UGapE [Gabillon et al., 2012], Sequential-Halving, TS with a MPA strat-
egy of decision (see Section 2.2.4), and one anytime algorithm AT-LUCB [Jun and Nowak,
2016].

We use 8 problem instances proposed by Audibert and Bubeck [2010], all settings con-
sider Bernoulli bandits, and we compare their trending simple regret (see Definition 2.16)
averaged on 1000 trials. The results are shown in Fig. 6.2.

Note that contrary to Chapter 3, we are interested in the fixed-budget setting in this
chapter, hence the present experimental study with simple regret as performance mea-
sure.

• Setting 1: µ1 = 0.5,µ2:20 = 0.4,budget = 2000
• Setting 2: µ1 = 0.5,µ2:6 = 0.42,µ7:20 = 0.38,budget = 2000
• Setting 3: µ= [0.5,0.3631,0.449347,0.48125839],budget = 2000
• Setting 4: µ= [0.5,0.42,0.4,0.4,0.35,0.35],budget = 600
• Setting 5: µ1 = 0.5,µi =µ1 −0.025i ,∀i ∈ {2 . . .15},budget = 4000
• Setting 6: µ1 = 0.5,µ2 = 0.48,µ3:20 = 0.37,budget = 6000
• Setting 7: µ1 = 0.5,µ2:6 = 0.45,µ7:20 = 0.43,µ7:20 = 0.38,budget = 6000
• Setting 8: µ1 = 0.5,µ2:6 = 0.45,µ7:20 = 0.43,µ7:20 = 0.38,budget = 12000
In these experiments, TTTS are always beating or at least performing as well as its com-

petitors. It thus seems to be a good candidate to be further investigated.
Note that TTTS can also be used for bandit settings in which the rewards are bounded

in [0,1] by using a binarization trick first proposed by Agrawal and Goyal [2012]: When a
reward rn,i ∈ [0,1] is observed, the algorithm is updated with a fake reward

r ′
n,i ∼ Bern(rn,i ) ∈ {0,1} .

TTTS can thus be used for BAI for a finite number of arms that with rewards in [0,1]. We
now present a simple way of extending TTTS to deal with an infinite number of arms,
namely Dynamic Top-Two Thompson Sampling (D-TTTS).

Dynamic TTTS. In an infinite bandit algorithm, at each round, we either query a new
arm from the reservoir and sample it, or re-sample a previous arm. In a Bayesian setting,
we can also imagine that at each round, an arm is queried from the reservoir and added
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(a) Problem 1 (b) Problem 2

(c) Problem 3 (d) Problem 4 (e) Problem 5

(f) Problem 6 (g) Problem 7 (h) Problem 8

Figure 6.2: Simple regret as a function of allocation budget for various BAI algorithms.

with a uniform prior to the list of queried arms, regardless of whether it is sampled or not.
Then, at round t , D-TTTS consists in running TTTS on these t arms, out of which several
are endowed with a uniform prior and have never been sampled.

Leveraging the fact the the maximum of k uniform distribution has a Beta(k,1) dis-
tribution and that TTTS only depends on the maxima of posterior samples, we give the
following equivalent implementation for D-TTTS (Algorithm 6.1). Letting Ln be the list of
arms that have been queried from the reservoir and sampled at least once before round t ,
at round t we run TTTS on the set Xn ,Ln∪{µ0} whereµ0 is a pseudo-arm with posterior
distribution Beta(n −kn ,1), where kn , |Ln |.

It remains to decide how to recommend the arm as our best guess. It is obviously not
a good idea to output the arm with the best empirical means since some lately sampled
arms may have very high empirical mean with no confidence. In this chapter, we choose
the most natural recommendation strategy for Bayesian algorithms that outputs the arm
with the largest optimal action probability (see Section 3.2). LetΘi be the subset of the set
Θ of possible mean vectors such that arm i is optimal, Θi ,

{
θ ∈ Θ |θi > max j 6=i θ j

}
, the

posterior probability that arm i is optimal after round t is defined as Πn(Θi ). At any time
n, we therefore recommend arm

Jn , argmax
i∈X

Πn(Θi ) .

Hyper-TTTS. We present here also another simple way of extending TTTS to deal with
an infinite number of arms, namely Hyper-TTTS or H-TTTS, a variant of Hyperband in
which SHA is replaced by TTTS. This algorithm, whose sampling rule is formally stated as
Algorithm 6.2, runs smax batches of TTTS with different number of arms n and each batch
with a same budget T = dB/smaxe with B the total budget. The number of arms within each
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Algorithm 6.1 Sampling rule of D-TTTS
1: Input: β; B (total budget); ν0

2: Initialization: µ1 ∼ ν0; t ← 0; X ← {µ0,µ1}; m ← 1; S0,N0 ← 0; S1 ∼ Bern(µ1), N1 ← 1
3: while n < B do
4: ∀i = 0, . . . ,m, θi ∼ Beta(Si +1,Ni −Si +1); U ∼U ([0,1])
5: I (1) ← argmaxi=0,...,m θi

6: if U > β then
7: while I (2) = I (1) do
8: ∀i = 0, . . . ,m,θ′i ∼ Beta(Si +1,Ni −Si +1)
9: I (2) ← argmaxi=0,...,m θ′i

10: end while
11: I (1) ← I (2)

12: end if
13: if I (1) 6= 0 then
14: Y ← Evaluate arm I (1); X ∼ Bern(Y)
15: SI (1) ← SI (1) +X; NI (1) ← NI (1) +1; S0 ← S0 +1
16: else
17: µm+1 ∼ ν0; X ←X ∪ {µm+1};
18: Y ← Evaluate arm m +1; X ∼ Bern(Y)
19: Sm+1 ← X; Nm+1 ← 1; m ← m +1
20: end if
21: t ← t +1
22: end while

bracket is decreasing with an exponential rate of γ. One inconvenience of this algorithm
is that smax and γ still need to be tuned (in practice, we use the same tuning as the one of
Hyperband). D-TTTS is thus proposed to circumvent this issue.
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Algorithm 6.2 Sampling rule of H-TTTS
1: Input: β; γ; B; smax; ν0

2: Initialization: T = bB/smaxc
3: for s ← smax to 0 do
4: K = d smax+1

s+1 γse
5: X ← {i = 1, . . . ,K :µi ∼ ν0}; t = 0
6: while t < T do
7: Sample θ∼Πn

8: I(1) ← argmaxi∈X θi

9: Sample b ∼ Bernoulli(β)
10: if b = 1 then
11: Y ← Evaluate arm I(1)

12: else
13: while I(2) = I(1) do
14: ∀i ∈X ,θ′i ∼ Beta(Si +1,Ni −Si +1)
15: I(2) ← argmaxi∈X θ′i
16: end while
17: I(1) ← I(2)

18: Y ← Evaluate arm I(1)

19: end if
20: X ∼ Bernoulli(Y)
21: SI(1) ← SI(1) +X; NI(1) ← NI(1) +1
22: t = t +1
23: end while
24: end for

6.6 Experiments

6.6.1 Some synthetic results

We first provide some synthetic experimental results comparing D-TTTS to Hyperband
and ISHA. For these experiments, the arms are Bernoulli distributed and the reservoir
distribution ν0 is fixed to some Beta(a,b) distribution.

ISHA is the extension of Sequential-Halving to the SIAB setting. It consists in run-
ning Sequential-Halving on a fixed number of arms drawn from the reservoir. Observe
that for a total budget B, there exists a maximum number of arms K? that can be pro-
cessed by Sequential-Halving, which satisfies B = dK? log2(K?)e. Following Aziz et al.
[2018b], we run ISHA with K? arms drawn from the reservoir.

We report in Fig. 6.3 the simple regret as a function of time for different algorithms and
four Beta reservoir distributions. H-TTTS and D-TTTS are run with β= 1/2 which is known
to be a robust choice [Russo, 2016]. Each point represents the expected simple regret
E[1−µI∗n ] estimated over 1000 replications for an algorithm run with budget n. D-TTTS is
very competitive on 3 reservoirs and H-TTTS is sometimes better, sometimes worse than
Hyperband. We also tried the SiRI algorithm [Carpentier and Valko, 2015] (with b as the
tail parameter when ν0 =Beta(a,b)) but obtained worse performance and therefore do
not report the results.

Note that in the implementation of Hyperband for this stochastic infinite bandit set-
ting, the elimination phase of the underlying Sequential-Halving algorithm is carried
out according to the averaged loss of previous samples (as samples from an arm are i.i.d.
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Figure 6.3: Simple regret of D-TTTS (against Hyperband) as a function of the number of arms eval-
uations for different Beta reservoir.

in this setting and not a converging sequence). In the next section, we apply our algorithm
to some real hyper-parameter optimization tasks.

6.6.2 Experiments on real datasets

We now benchmark our bandit-based strategy against different types of HPO algorithms,
namely, TPE, random search, Hyperband and H-TTTS, for the tuning of classifiers (SVM and
MLP) on 4 different classification tasks: wine, breast cancer, and adult datasets from UCI
machine learning repository [Dua and Taniskidou, 2017]; and the MNIST dataset [LeCun
et al., 1998].

For all the methods, a noisy evaluation of the black-box function f (see the termi-
nology introduced in Section 6.3) for a hyper-parameter configuration λ consists in per-
forming a shuffled 3-fold cross-validation on Dtrain. More precisely, given a random par-

titioning ∪3
j=1D

j
valid of Dtrain, where the folds are of equal size, we train a classifier ĝ ( j )

λ
on

Dtrain\D j
valid for each fold j and compute the average validation error defined as

e , 1/|Dtrain|
3∑

j=1

∑
i∈D

j
valid

1{ĝ ( j )
λ

(xi ) 6= yi } ,

which we report as a noisy estimate of the risk

f (λ),P(ĝ (n)
λ

(X) 6= Y), .

Observe that both the noisy evaluation and the value of f belong to [0,1]. Therefore we
can introduce an arm with rewards in [0,1] for each hyper-parameter λ. Sampling arm λ

produces reward r , 1− e ∈ [0,1] with a different random partitioning and random seed
for training for each selection. Arm λ is assumed to have mean of 1− f (λ). In an infinite
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arm setting, querying a new arm from the reservoir corresponds to selecting a new hyper-
parameter at random from the search space. With these two notions (arm sampling and
reservoir querying), our algorithm for infinite BAI applies to HPO.

For the experiments, we adapt the recommendation rule of D-TTTS to the HPO appli-
cations considered and always recommend the hyper-parameter configuration that has
produced the smallest cross-validation error so far (which is also the recommendation
rule used by other approaches, e.g., Hyperband). For all methods, we report the cross-
validation error for the recommended hyper-parameter configuration, as a function of
time. We stress again that, unlike in standard bandits, where we could use the simple re-
gret as a performance metric, we do not have access to the ground truth generalization
error in real classification tasks. Therefore, we only report a proxy of the true error rate
that we are interested in.

Results. We first benchmark4 our methods on a few simple UCI datasets using SVM from
scikit-learn as the classifier. We optimize over two hyper-parameters: the penalty pa-
rameter C and the kernel coefficient γ5 for an RBF kernel, for which the pre-defined search
bounds are both

[
10−5,105

]
.
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Figure 6.4: Mean cross-validation error of different HPO algorithms with (a) SVM run on the UCI
wine dataset, (b) SVM run on the UCI breast cancer dataset, (c) SVM run on the UCI adult dataset
and (d) MLP run on the MNIST dataset.

Fig. 6.4a shows the mean cross-validation error of SVM run on the UCI wine dataset
over 24 pulls6 averaged on 100 runs. The task is to predict the quality score of wine (be-
tween 0 and 10) given 11 attributes. Recall that one iteration corresponds to one arm pull.
In this experiment, D-TTTS improves over other benchmark algorithms. Fig. 6.4b is the
same experiment run on the UCI breast cancer dataset over 81 pulls. The task is to predict

4Code at http://researchers.lille.inria.fr/~valko/hp/publications/shang2019simple.
code.zip

5γ is the parameter of the RBF kernel defined as exp(−γ||x−x′||2)
6The number of pulls here and later is chosen exactly as in the work of Li et al. [2017]

99

http://researchers.lille.inria.fr/~valko/hp/publications/shang2019simple.code.zip
http://researchers.lille.inria.fr/~valko/hp/publications/shang2019simple.code.zip


CHAPTER 6. BANDITS AND HYPER-PARAMETER OPTIMIZATION

whether a patient has breast cancer based on 32 attributes. We repeat the experiment 100
times. This time, D-TTTS is slightly worse than Hyperband at the beginning, but improves
later. Finally, we optimize SVM on a relatively more complicated UCI adult dataset over 162
pulls, for which the result is shown in Fig. 6.4c. The task is to tell whether the income of an
individual is higher than 50k or not given 14 attributes. This experiment is also averaged
over 100 runs. D-TTTS is better than other algorithms at the beginning, but is outper-
formed by TPE towards the end. We see that, although not always the best, D-TTTS shows
a consistent, robust, and quite competitive performance in the 3 tasks.

We now carry out the classic MNIST digits classification task using multi-layer percep-
tron (MLP). We choose to optimize over three hyper-parameters: the size of hidden layer
(an integer between 5 and 50), the `2 penalty parameter α (between 0 and 0.9) and the ini-
tial learning rate (bounded in

[
10−5,10−1

]
). Fig. 6.4d shows the result of MLP run on MNIST

over 108 pulls, this time averaged over 20 runs. D-TTTS is slightly worse than Hyperband
and H-TTTS in the very beginning, but is performing well afterward.

6.7 Adaptivity to µ?

One drawback of the present D-TTTS is that it may not work well if we do not know the
oracle µ? (µ? is set to 1 in our previous experiments). Fig. 6.5 shows the expected simple
regret of D-TTTS compared to ISHA and TTTS under a Beta(0.5,0.5) reservoir shifted by
0.8, 0.6, 0.4, 0.2 and without shift respectively. A Beta distribution Beta(a,b) shifted by
µ? is obtained by re-scaling to [0,µ∗] the corresponding distribution. More formally, a
shifted Beta distribution on [0,µ∗], denoted by SBµ?(a,b) in the rest of the paper, is the
distribution of Xµ∗ where X ∼ Beta(a,b) (see Appendix 6.7 for more discussion on shifted
Beta distributions). We can see that the performance of D-TTTS is getting worse along
with the increasing shift.
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Figure 6.5: Simple regret of D-TTTS (against Hyperband) for shifted Beta reservoir.

As suggested by the implementation trick introduced in Section 6.5, all the k arms that
have been added but not effectively sampled can be seen as a virtual arm endowed with a
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Beta(k,1) posterior. Intuitively, if µ? < 1, than this virtual arm would force the algorithm
to sample too many new arms, thus would lack of attention on arms that are more likely to
be near-optimal. This intuition is supported by the illustration in Fig. 6.6a: the posterior
distributions of effectively sampled will eventually be supported mostly on the left of µ∗,
while the pseudo-arm still put a lot of mass near 1.

In Fig. 6.6b, we report the number of arms that have been played 1,2, . . . ,9 and more
than 10 times for D-TTTS run under Beta(0.5,0.5), SB0.8(0.5,0.5), SB0.6(0.5,0.5), SB0.4(0.5,0.5),
SB0.2(0.5,0.5) reservoir respectively, which confirms the over-exploration effect caused by
shifted reservoirs.

(a) posterior distributions of the effectively sam-
ples arms and the pseudo-arm

(b) number of effectively sampled arms, aver-
aged over 100 runs

Figure 6.6: Illustration of over-exploration of D-TTTS under shifted reservoirs.

We now propose a natural extension of D-TTTS to overcome the present issue. In this
section we assume that we have the knowledge of the maximum meanµ? of the reservoir.
The core idea is to keep the same algorithm but with a different prior distribution over
each queried arm, that is supported on [0,µ?] instead of [0,1].

Bernoulli bandits. We still assume a Bernoulli bandit model for the rewards (although
the algorithm is extended to any rewards bounded in [0,1] with the binarization trick):
An arbitrary arm produces at time t a reward 1 with probability θ and a reward 0 with
probability 1−θ. The likelihood can be written as follow:

p(s|θ) = θs(1−θ)1−s ; s ∈ {0;1}.

Sample from the shifted posterior. In order to implement the extension of D-TTTS, we
need to know how to sample from the "shifted" posterior, that is the posterior assuming a
uniform prior over [0,µ∗] instead of [0,1]. We now explain how to compute this posterior
distribution on θ given a sequence of observations Y1,Y2, · · · ,YN ∈ {0;1}. Define

{
a =∑N

i=1 Yi +1
b = N−∑N

i=1 Yi +1,
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then, according to the Bayes rule, we have

p(θ|Y1, · · · ,YN) = p(Y1, · · · ,YN|θ)p(θ)

p(Y1, · · · ,YN)

= p(Y1, · · · ,YN|θ)p(θ)∫ 1
0 p(Y1, · · · ,YN|θ′)p(θ′)1[0,µ?](θ′)dθ′

= θa−1(1−θ)b−11[0,µ?](θ)/B(a,b)∫ µ?
0 (θ′)a−1(1−θ′)b−1/B(a,b)dθ′

= θa−1(1−θ)b−11[0,µ?](θ)

B(a,b)Fa,b(µ?)
,

where Fa,b is the cumulative distribution function (cdf) of Beta(a,b). Thus the cdf of the
posterior is

P [θ≤ x|Y1, · · · ,YN] = Fa,b(x)

Fa,b(µ?)
,G(x).

Now the sampling is quite straightforward as G−1(u) can be computed as

G−1(u) = F−1
a,b(u ∗Fa,b(µ?)).

The computation of F−1
a,b and Fa,b is easily accessible via existing libraries in different pro-

gramming languages, and we can thus apply inverse transform sampling to obtain the
observations, since if U ∼U ([0,1]), then G−1(U) follows the posterior distribution.

Shifted Beta distribution. Recall that we defined a shifted Beta distribution SBµ?(a,b)

as the distribution of the random variable θ′ , µ?θ, where a,b are the shape hyper-
parameters of the Beta distribution and θ ∼ Beta(a,b). The probability density function
(pdf) of SBµ?(a,b) can be written as

p(θ′) = 1

B(a,b)

(θ′)a−1(µ?−θ′)b−1

(µ?)a+b−1
,

via the transformation θ′ =µ?θ. Here B is the Beta function7.
The previous expression is particularly useful if we want to use the same efficient im-

plementation trick that we employed in Algorithm 6.1, namely the order statistic trick.

Order statistic trick. Now we show that an "order statistic trick" still exists under a uni-
form prior over [0,µ∗], namely that the maximum of k random variables drawn from this
prior distribution still has a nice distribution.

Given n random variables X1,X2, · · · ,Xn , the order statistics X(1),X(2), · · · ,X(n) are also
random variables, defined by sorting the values of X1,X2, · · · ,Xn in an increasing order.
In this section we treat the special case where they are i.i.d samples from the same dis-
tribution with a cdf. FX. Following Gentle [2009], Chapter 1 Section 7, we know that the
cumulative distribution function of the k-th order statistic can be written as follow:

FX(k) (x) =
n∑

j=k
(FX(x)) j (FX(x))n− j .

7B(a,b), Γ(a)Γ(b)
Γ(a+b) , and Γ is the Gamma function
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Now, in our case, where the underlying distribution is the uniform distribution de-
fined over [0,µ?], we obtain the pdf of the order statistic X(k) as follow:

pX(k) (θ
′) = n!

(k −1)!(n −k)!
(µ?)n(θ′)k−1(µ?−θ′)n−k

= 1

B(k,n +1−k)

(θ′)k−1(µ?−θ′)n−k

(µ?)(k−1)+(n−k)+1
.

We recognize the density of a shifted Beta distribution with k and n +1−k as shape
hyper-parameters. In particular, in our case, the pseudo arm at time t is endowed with
the distribution SBµ?(t −kt ,1).

Some illustrations of the fix. Now we show some synthetic results after the previous
tricks. Fig. 6.7 shows the expected simple regret of D-TTTS compared to ISHA, again, un-
der Beta(0.5,0.5), SB0.8(0.5,0.5), SB0.6(0.5,0.5), SB0.4(0.5,0.5) and SB0.2(0.5,0.5) reservoir
respectively. We can see that the performance of D-TTTS for shifted cases has been signif-
icantly enhanced.
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Figure 6.7: Simple regret of D-TTTS for shifted Beta reservoir after the fix.

We can also compare the number of effectively sampled arms under shifted Beta reser-
voirs before and after the fix, as shown in Fig. 6.8. Fig. 6.8a is the same figure as Fig. 6.6b,
and Fig. 6.8b is the number of effectively sampled arms after the previous fix under a
Beta(0.5,0.5), SB0.8(0.5,0.5), SB0.6(0.5,0.5), SB0.4(0.5,0.5) and SB0.2(0.5,0.5) reservoir re-
spectively. Indeed, we can see that now the exploration effort of D-TTTS under shifted
Beta priors is more or less at the same level as that under a normal Beta reservoir.
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(a) shift (b) shift after fix

Figure 6.8: Distribution of effectively sampled arms of D-TTTS before and after the fix.

6.8 Discussion

We presented a way to use Thompson sampling for BAI for infinitely many-armed bandits
and explained how to use it for HPO. We introduced the first fully dynamic algorithm for
this setting and showed through an empirical study that it is a promising approach for
HPO.

It would be interesting to establish theoretical guarantees to support the good perfor-
mance of D-TTTS, with the hope to provide a finite-time upper bound on its probability of
error. We also plan to investigate variants of this algorithm for the non-stochastic bandits
for which Hyperband can be used, which would allow spending more time on the more
promising algorithms.
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Chapter 7

General Conclusion and Perspectives

" 将来现在将来，与现在有意
义，才与将来会有意义。

鲁迅
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CHAPTER 7. GENERAL CONCLUSION AND PERSPECTIVES

7.1 General Discussion

In this thesis, we studied the multi-armed bandit problem in an optimization fashion. In
particular, we investigated three different settings of best-arm identification (in a broad
sense) in the first three chapters.

We first studied BAI in its simplest formulation (Chapter 3), that is bandits with scalar
payoffs. We treated the problem with some Bayesian machinery and answered to one
open question raised by Russo [2016] on the sample complexity. By showing the (β)-
asymptotic optimality of TTTS and providing a computationally faster alternative T3C, we
further advocated the use of Bayesian algorithms for BAI.

In the next chapter (Chapter 4), we studied the linear setting with the hope of extend-
ing previous Bayesian algorithms while keeping the same sample-complexity guarantee.
We argued that previous notion of complexities for linear bandits BAI did not allow us
to achieve the asymptotic optimality. Although the result was not satisfying regarding the
Bayesian extensions, we managed to propose an alternative LinGame using a saddle-point
approach that is asymptotically optimal whilst remaining computationally-friendly.

The third part (Chapter 5) consists of a rather different setting where we aimed to opti-
mize a target function over a continuous-armed space with minimum regularity assump-
tions. We were interested in designing algorithms that are adaptive to the smoothness.
Taking inspiration from POO, we proposed a new general cross-validation scheme GPO.
Compared to POO that is only able to encapsulate hierarchical-bandit algorithms with a
cumulative-regret guarantee, GPO is able to encapsulate algorithms with simple-regret
guarantees.

The first chapters mostly came up with strongly theoretically grounded algorithms in
the context of different sequential optimization settings, while in Chapter 6 we also ex-
plored a more practical topic, namely hyper-parameter optimization. Existing methods
often require to fix an ad hoc number of configurations to test, while we managed to pro-
pose a dynamic algorithm D-TTTS that do not need such a workaround. It is worth noting
that D-TTTS can also simply serve as a heuristic for infinitely-armed bandits, but without
any theoretical guarantees. Analysis of D-TTTS appears to be difficult due to its dynamic
nature, and is left for future work.

7.2 Future Perspectives

Follow-ups of the previous research. A prominent follow-up is to further investigate
whether both theoretically and practically efficient Bayesian algorithms exist for linear
BAI (or even more general structure). As discussed in Chapter 4, our first attempts to ex-
tend TTTS to the linear setting leads to a dead end from a theoretical point of view, but still
shows some promising experimental performance. I think it is worth putting some efforts
on the topic as Bayesian methods could probably avoid resolving complicated optimiza-
tion problems that is required in most of the current existing state-of-the-art algorithms.

On the other hand, as advocated for example by Locatelli et al. [2016], the fixed-budget
and fixed-confidence settings are drastically different. In the future, I would like to put
more focus on the fixed-budget setting, and ideally propose finite-time analysis for TTTS.

Further investigation on hyper-parameter tuning. Even if the motivation of this thesis
was to design efficient HPO algorithms, the present thesis does not explore the topic very
deeply. A main reason is that I find it hard to propose new task-agnostic algorithms that
improve over existing methods significantly. Indeed, the most important contribution of
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Hyperband is to introduce a more clever evaluation mode that allocates more resources to
more promising configurations. This trick has given way to a considerable improvement
over previous methods, in particular on tasks using large DL models. Since Hyperband,
however, with a lot of recent work trying to advance the state-of-the-art (see Section 6.2),
no real breakthrough has been achieved in the field.

In my opinion, the future (or even ongoing) trend of the domain would be to focus
on designing more efficient task-specific algorithms. Specific methods could eventually
achieve better performance on specific tasks than more general approaches. To some
extent, the recent progress on NAS is one running example to support this intuition as RL
methods have been successfully applied on NAS (see e.g. Zoph and Le 2017).

A future direction that attracts me a lot is thus to explore the potential of HPO tech-
niques in different industrial applications. For example, one important business need of
companies dealing with microchips is the compiler optimization. The methodology will
thus be a bit different: we need to design algorithms based on the task itself rather than
proposing a general algorithm and testing it on different tasks.

On the other hand, sample-efficient HPO remains an active research field since there
is not only neural networks that need automated hyper-parameter tuning. Indeed, in
many data science challenges with real-world datasets, classical machine learning meth-
ods (in particular ensemble methods like XGBoost) often dominate. Bandit-inspired HPO
methods can still be plausible candidates for those tasks and I am very interested in dis-
covering further in this direction.

Link to reinforcement learning. Beyond MAB, I would also like to work more on RL in
the future, whether it is about the theoretical foundation or finding real applications of
RL. RL is a richer and more challenging domain than MAB, yet has strong links with MAB,
in particular linear bandits. Indeed, RL extends upon contextual bandits by allowing for
long-term consequences. More precisely, for contextual (linear) bandits, the actions only
affect the current reward, whereas for RL, they can also affect the future rewards through
the evolution of the context.

One possible topic that I would like to investigate – a topic that is also highly related
to BAI – is the problem of best-policy identification (BPI) in MDPs. Similar to BAI, the
goal of BPI is to devise learning algorithms that are able to return the best policy as early
as possible. Marjani and Proutiere [2020] adapt Track-and-Stop to BPI in discounted
MDPs, with the help of a generative model. It is interesting to see if our algorithms for lin-
ear bandits BAI can help design sound BPI algorithms in a more general context (without
generative model).

In the long term, I will be interested in filling the gap between RL theory and practical
usable RL. For example, a large number of recent theoretical RL work has adopted a linear
function approximation assumption first studied by Jin et al. [2019] to various RL problem
settings. This assumption is interesting from a theoretical point of view, but remains quite
unrealistic in practice. It would be interesting to find a more realistic assumption while
keeping (or improving) the current guarantees.

Societal impact. Last but not least, there is an emerging attention that has been paid
on the societal impact recently. I value also a lot these societal factors or constraints that
should be leveraged in the current machine learning research. I am particularly interested
in safety which is often required in many real business projects (see e.g. Garcelon et al.
2020; Leurent et al. 2020), and also fairness that plays an crucial role in empowering the
inclusion.
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Some of my recently finished or on-going projects focus on some of those aspects (in
particular, safety for linear bandits Shang et al. 2021 and a novel bandit setting designed
upon fairness considerations Shang et al. 2020c) and it is something that I definitely want
to take into account in my future work.
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Appendix A

Mathematical Tools

A.1 Some Reminders on Probability

We recall some important probability tools in this section. For the record, in the main text
of the thesis, U ([a,b]) denotes a uniform distribution on the support [a,b], and Beta(a,b)
denotes a Beta distribution with shape parameters a and b.

A.1.1 One-dimensional exponential family

In the literature of bandits, we are often interested in the exponential family probability
distributions.

Definition A.1. Give a random variable X parameterized by θ, we say that it belongs to
the one-dimensional exponential family if it can be written as

pX(x | θ) = b(x)exp
[
η(θ) ·T(x)+A(θ)

]
, (A.1)

where T(X) is the natural sufficient statistic, η, A are known functions of θ and b is a
known function of x.

Note that the function b must be non-negative. Besides, the support of pX(x | θ) does
not depend on θ1. In the whole thesis, we mainly used the following distributions from
the one-dimensional exponential family.

• Ber(·) denotes a Bernoulli distribution.
• B(·) denotes a Binomial distribution.
• N (·, ·) denotes a normal distribution. Note that only normal distributions with

known variance are in the one-dimensional exponential family.

A.1.2 Sub-Gaussian distributions

1This property can be used to exclude some parametric distributions from exponential family such as
Pareto distributions.
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Definition A.2 (sub-Gaussian). Let X be a random variable defined over a probability
space (Ω,F ,P). X is sub-Gaussian if there exists a constant a ≥ 0 such that for any λ ∈R,
we have

E
[
exp(λX)

]≤ exp

{
a2λ2

2

}
.

And X is called a-sub-Gaussian.

A.1.3 Martingales

A martingale is a stochastic process for which the conditional expectation of its value at
time n+1 is equal to its present value, regardless of all prior values. The formal definition
of a discrete-time martingale is given below.

Definition A.3. a discrete-time martingale is a sequence of random variables X1,X2, · · ·
such that

∀n,E [Xn] <∞ and E [Xn+1|X1,X2, · · · ,Xn] = Xn .

We can further define the notion of discrete-time submartingales (resp. supermartin-
gales) as a sequence of integrable random variables such that for any time n,

E [Xn+1|X1,X2, · · · ,Xn] ≥ (resp. ≤)Xn .

Martingale is the base of many concentration inequalities (see e.g. the next section)
that found the bandit theory.

A.2 Concentration Inequalities

Concentration inequalities are a omnipresent tool in MAB as they can serve as a way to
bound the deviation of random variables with respect to some value (typically the ex-
pected value). In this section, we present two famous inequalities, that have been em-
ployed in this thesis.

A.2.1 Hoeffding’s inequality

(Chernoff)-Hoeffding’s inequality is probably the most known concentration inequality
which is first studied by Hoeffding [1963]. We state the Hoeffding’s inequality for bounded
random variables below.

Theorem A.1. Let X1,X2, · · · ,Xn be a sequence of independent random variables
bounded in the intervals [ai ,bi ] for each i ∈ [n] respectively, then the following inequal-
ities hold

P
[

X−E
[

X
]
≥ t

]
≤ exp

{
− 2n2t 2∑n

i=1(bi −ai )2

}
,

P
[∣∣∣X−E

[
X
]∣∣∣≥ t

]
≤ 2exp

{
− 2n2t 2∑n

i=1(bi −ai )2

}
,
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where (X) denotes the empirical mean of those random variables,

X ,
1

n
(X1 +X2 +·· ·+Xn) .

A generalization of the previous inequalities to sub-Gaussian random variables also
exists. We do not provide details in this thesis, interested readers can refer to Vershynin
[2018].

A.2.2 Azuma’s inequality

Another important inequality that has been used in this thesis is Azuma-(Hoeffding)’s
inequality [Azuma, 1967]. The vanilla form of Azuma’s inequality is stated as follow.

Theorem A.2. Let (X0,X1,X2, · · · ) be a sequence of random variables, and we assume
that it forms a martingale (or a super-martingale). Suppose that for any i ∈N,

|Xi −Xi−1| ≤ ci a.s. ,

with (ci )i∈N a sequence of constants. Then for any positive integer n and any real ε, the
following inequality holds,

P [Xn −X0 ≥ ε] ≤ exp

{
−ε2

2
∑n

i=1 c2
i

}
.

Symmetrically, if the sequence form a sub-martingale, then the following inequality
holds,

P [Xn −X0 ≤−ε] ≤ exp

{
−ε2

2
∑n

i=1 c2
i

}
.

The two parts of Theorem A.2 can be combined together using a union bound to ob-
tain the following two-side bound.

Corollary A.3. Let (X0,X1,X2, · · · ) be a martingale such that for any i ∈N,

|Xi −Xi−1| ≤ ci a.s. .

Then we have

P [Xn −X0 ≤−ε] ≤ exp

{
−ε2

2
∑n

i=1 c2
i

}
.

125



APPENDIX A. MATHEMATICAL TOOLS

A.3 Information Theory

In this section, we briefly recall some fundamental notions and results of information
theory that are unceasingly used in the technical proofs of this thesis. Readers can refer
to Cover and Thomas [2006] for more details.

A.3.1 Entropy

Given a random variable X : Ω → X , the entropy X measures its uncertainty, and also
defines the ultimate data compression. When the random variable is discrete, its entropy
H(X) is defined as follow.

Definition A.4 (entropy). Let X be a discrete random variable defined over a probability
space (Ω,F ,P) to an arbitrary space X , with probability mass function pX, then its
entropy H(X) is defined by

H(X),− ∑
x∈X

pX(x) log pX(x) .

The previous definition can be extended to continuous random variables, namely dif-
ferential entropy.

Definition A.5 (differential entropy). Let X be a continuous random variable defined
over a probability space (Ω,F ,P), with probability density function f , then its differen-
tial entropy h(X) is defined by

h(X),−
∫

f (x) log f (x)d x .

A.3.2 Kullback-Leibler divergence

important concept is the relative entropy or Kullback-Leibler divergence (KL divergence),
which measures the difference between two probability distributions.

Remark A.4. KL divergence is not a distance since it does not satisfy the symmetry prop-
erty in an usual distance definition.

Before properly defining the KL divergence, let us first give the definition of an impor-
tant prerequisite notion of absolutely continuous probability measures.

Definition A.6 (absolutely continuous probability measures). Let P and Q be two
probability measures defined on a measurable space (Ω,F ). If for any event F ∈ F

such that Q(F) = 0, we have also P(F) = 0, then one says that P is absolutely continuous
w.r.t Q, and is denoted as P¿Q.
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The KL divergence is then defined as follow.

Definition A.7 (KL divergence). For two probability measures P and Q, if P¿Q, then
the KL divergence is defined as

KL(P‖Q),
∫

log(
dP

dQ
)dP.

A very important property of KL divergence is its non-negativity, which is established
by Gibbs’ theory.

Theorem A.5 (Gibbs’ inequality). For two probability measuresP andQ, ifP¿Q, then
KL(P‖Q) ≥ 0. The equality holds if and only if P=Q P-almost everywhere.

A.3.3 Two special cases: Gaussian and Bernoulli

For probability distributions in the one-dimensional exponential family, we can simply
represent the KL-divergence by their means. For example, if µ1 and µ2 are respectively
the means of P and Q, then we can write

KL(P;Q) = d(µ1;µ2) .

For some particular probability distributions, simple closed-form expressions can be
deduced. In Example A.1 and Example A.2, we show the expressions for Gaussian and
Bernoulli distributions.

Example A.1 (KL-divergence between two Gaussian distributions). We compute the
KL divergence between two normal distributions P∼N (µ1,σ1) and Q∼N (µ2,σ2).

KL(P‖Q) = log
σ2

σ1
+ σ2

1 + (µ1 −µ2)2

2σ2
2

− 1

2
.

In particular, if σ , σ1 = σ2, then the two distributions are parameterized by their
means, we can thus denote by

d(µ1;µ2),KL(P‖Q) = (µ1 −µ2)2

2σ2
.

Example A.2 (KL divergence between two Bernoulli distributions). We compute the
KL divergence between two Bernoulli distributions P ∼ Ber(µ1) and Q ∼ Ber(µ2), we
denote by

kl (µ1;µ2),KL(P‖Q) =µ1 ln

(
µ1

µ2

)
+ (1−µ1) ln

(
1−µ1

1−µ2

)
.
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Appendix B

Additional Proofs of Chapter 3

B.1 Notation

Table B.1: Table of notation for Chapter 3

Notation Meaning

ψn,i ,P [In = i |Fn−1] probability of arm i being chosen at time n
Ψn,i ,

∑n
l=1ψl ,i sum of probability of arm i being chosen until time n

ψn,i ,
Ψn,i

n average of probability of arm i being chosen until time n
Tn,i number of pulls of arm i before round n
Tn vector of the number of arm selections
I?n , argmaxi∈A µn,i empirical best arm at time n
∆min ,mini 6= j |µi −µ j | minimum mean gap
∆max ,maxi 6= j |µi −µ j | maximum mean gap
J(1)

n , argmax j an, j index of the largest optimal action probability

J(2)
n , argmax j 6=J(1)

n
an, j index of the second largest optimal action probability

• Note that J(1)
n coincides with the Bayesian recommendation index Jn .

• For any a,b > 0, we define a function Ca,b s.t. ∀y ,

Ca,b(y), (a +b −1)kl (
a −1

a +b −1
; y) .

• Two real-valued sequences (an) and (bn) are are said to be logarithmically equiva-
lent if

lim
n→∞

1

n
log

(
an

bn

)
= 0,

and is represented as an
.= bn .

B.2 Technical Lemmas

The whole fixed-confidence analysis for the two sampling rules are both substantially
based on two lemmas: Lemma 5 of Qin et al. [2017] and Lemma 3.4. We prove Lemma 3.4
in this section.
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Lemma 3.4. There exists a random variable W2, such that for all i ∈A ,

∀n ∈N, |Tn,i −Ψn,i | ≤ W2

√
(n +1)log(e2 +n) a.s. ,

and E
[
eλW2

]<∞ for any λ> 0.

Proof. The proof shares some similarities with that of Lemma 6 of Qin et al. [2017]. For
any arm i ∈A , define ∀n ∈N,

Dn ,Tn,i −Ψn,i ,

dn ,1{In = i }−ψn,i .

It is clear that Dn =∑n−1
l=1 dl and E [dn |Fn−1] = 0. Indeed,

E [dn |Fn−1] = E[
1{In = i }−ψn,i |Fn−1

]
=P [In = i |Fn−1]−E [P [In = i |Fn−1] |Fn−1]

=P [In = i |Fn−1]−P [In = i |Fn−1] = 0.

The second last equality holds since P [In = i |Fn−1] is Fn−1-measurable. Thus Dn is a
martingale, whose increment are 1-sub-Gaussian as dn ∈ [−1,1] for all n.

Applying Corollary 8 of Abbasi-Yadkori et al. [2012]1, it holds that, with probability
larger than 1−δ, for all n,

|Dn | ≤
√√√√2(1+n) ln

(p
1+n

δ

)
which yields the first statement of Lemma 3.4.

We now introduce the random variable

W2 ,max
n∈N

max
i∈A

|Tn,i −Ψn,i |√
(n +1)ln(e2 +n)

.

Applying the previous inequality with δ= e−x2/2 yields

P

[
∃n ∈N? : |Dn | >

√
(1+n)

(
ln(1+n)+x2

)]≤ e−x2/2,

P

[
∃n ∈N? : |Dn | >

√
(1+n) ln

(
e2 +n

)
x2

]
≤ e−x2/2,

where the last inequality uses that for all a,b ≥ 2, we have ab ≥ a +b.
Consequently ∀x ≥ 2, for all i ∈A

P

max
n∈N

|Tn,i −Ψn,i |√
(n +1)log

(
e2 +n

) ≥ x

≤ e−x2/2.

1We could actually use several deviation inequalities that hold uniformly over time for martingales with
sub-Gaussian increments.
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Now taking a union bound over i ∈A , we have ∀x ≥ 2,

P [W2 ≥ x] ≤P
max

i∈A
max
n∈N

|Tn,i −Ψn,i |
(n +1)log

(p
e2 +n

) ≥ x


≤P

 ⋃
i∈A

max
n∈N

|Tn,i −Ψn,i |
(n +1)log

(p
e2 +n

) ≥ x


≤ ∑

i∈A

P

max
n∈N

|Tn,i −Ψn,i |
(n +1)log

(p
e2 +n

) ≥ x


≤ Ke−x2/2.

The previous inequalities imply that ∀i ∈A and ∀n ∈N, we have

|Tn,i −Ψn,i | ≤ W2

√
(n +1)log(e2 +n)

almost surely. Now it remains to show that ∀λ> 0,E
[
eλW2

]<∞. Fix some λ> 0.

E
[

eλW2
]
=

∫ ∞

x=1
P

[
eλW2 ≥ x

]
dx =

∫ ∞

y=0
P

[
eλW2 ≥ e2λy

]
2λe2λy dy

= 2λ
∫ 2

y=0
P

[
W2 ≥ 2y

]
e2λy dy +2λ

∫ ∞

y=2
P

[
W2 ≥ 2y

]
e2λy dy

≤ 2λ
∫ 2

y=0
P

[
W2 ≥ 2y

]
e2λy dy︸ ︷︷ ︸

=e4λ−1

+2λC1

∫ ∞

y=2
e−y2/2e2λy dy︸ ︷︷ ︸
<∞

<∞,

where C1 is some constant.

B.3 Fixed-Confidence Analysis for TTTS

This section is entirely dedicated to TTTS.

B.3.1 Sufficient exploration of all arms

We prove Lemma 3.5 for TTTS. To prove this lemma, we introduce the two following sets
of indices for a given L > 0: ∀n ∈N we define

UL
n , {i : Tn,i <

p
L},

VL
n , {i : Tn,i < L3/4}.

It is seemingly non trivial to manipulate directly TTTS’s candidate arms, we thus start by
connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling
rule presented by Russo [2016] for which the two candidate samples are defined as in
Appendix B.1, we recall them in the following.

J(1)
n , argmax

j
an, j , J(2)

n , argmax
j 6=J(1)

n

an, j .

Lemma 3.5 is proved via the following sequence of lemmas.
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Lemma B.1. There exists L1 = Poly(W1) s.t. if L > L1, for all n, UL
n 6= ; implies J(1)

n ∈ VL
n

or J(2)
n ∈ VL

n .

Proof. If J(1)
n ∈ VL

n , then the proof is finished. Now we assume that J(1)
n ∈ VL

n , and we prove
that J(2)

n ∈ VL
n .

Step 1. According to Lemma 3.3, there exists L2 = Poly(W1) s.t. ∀L > L2,∀i ∈ UL
n ,

|µn,i −µi | ≤σW1

√
log(e +Tn,i )

1+Tn,i

≤σW1

√
log(e +p

L)

1+p
L

≤σW1
∆min

4σW1
= ∆min

4
.

The second inequality holds since x 7→ log(e+x)
1+x is a decreasing function. The third inequal-

ity holds for a large L > L2 with L2 = . . ..

Step 2. We now assume that L > L2, and we define

J?n , argmax
j∈UL

n

µn, j = argmax
j∈UL

n

µ j .

The last equality holds since ∀ j ∈ UL
n , |µn,i −µi | ≤∆min/4. We show that there exists L3 =

Poly(W1) s.t. ∀L > L3,

J?n = J(1)
n .

We proceed by contradiction, and suppose that J?n 6= J(1)
n , then µn,J(1)

n
< µ

n,J?n
, since J(1)

n ∈
VL

n ⊂ UL
n . However, we have

an,J(1)
n

=Πn

[
θJ(1)

n
> max

j 6=J(1)
n

θ j

]
≤Πn

[
θJ(1)

n
> θ

J?n

]
≤ 1

2
exp

−
(µn,J(1)

n
−µ

n,J?n
)2

2σ2(1/Tn,J(1)
n
+1/T

n,J?n
)

 .

The last inequality uses the Gaussian tail inequality (3.7) of Lemma 3.2. On the other
hand,

|µn,J(1)
n
−µ

n,J?n
| = |µn,J(1)

n
−µJ(1)

n
+µJ(1)

n
−µ

J?n
+µ

J?n
−µ

n,J?n
|

≥ |µJ(1)
n
−µ

J?n
|− |µn,J(1)

n
−µJ(1)

n
+µ

J?n
−µ

n,J?n
|

≥∆min − (
∆min

4
+ ∆min

4
)

= ∆min

2
,
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and
1

Tn,J(1)
n

+ 1

T
n,J?n

≤ 2p
L

.

Thus, if we take L3 s.t.

exp

{
−
p

L3∆
2
min

16σ2

}
≤ 1

2K
,

then for any L > L3, we have

an,J(1)
n

≤ 1

2K
< 1

K
,

which contradicts the definition of J(1)
n . We now assume that L > L3, thus J(1)

n = J?n .

Step 3. We finally show that for L large enough, J(2)
n ∈ VL

n . First note that ∀ j ∈ VL
n , we have

an, j ≤Πn

[
θ j ≥ θJ?n

]
≤ exp

{
−L3/4∆2

min

16σ2

}
. (B.1)

This last inequality can be proved using the same argument as Step 2. Now we define
another index J?n , argmax j∈UL

n
µn, j and the quantity cn ,max(µn,J?n ,µ

n,J?n
). We can lower

bound an,J?n as follows:

an,J?n ≥Πn

[
θJ?n ≥ cn

] ∏
j 6=J?n

Πn
[
θ j ≤ cn

]
=Πn

[
θJ?n ≥ cn

] ∏
j 6=J?n ; j∈UL

n

Πn
[
θ j ≤ cn

] ∏
j∈UL

n

Πn
[
θ j ≤ cn

]
≥Πn

[
θJ?n ≥ cn

] 1

2K−1
.

Now there are two cases:
• If µn,J?n >µ

n,J?n
, then we have

Πn

[
θJ?n ≥ cn

]
=Πn

[
θJ?n ≥µn,J?n

]
≥ 1

2
.

• If µn,J?n < µ
n,J?n

, then we can apply the Gaussian tail bound (3.8) of Lemma 3.2, and

we obtain

Πn

[
θJ?n ≥ cn

]
=Πn

[
θJ?n ≥µ

n,J?n

]
=Πn

[
θJ?n ≥µn,J?n + (µ

n,J?n
−µn,J?n )

]
≥ 1p

2π
exp

−1

2

1−
√

Tn,J?n

σ
(µn,J?n −µ

n,J?n
)


2

= 1p
2π

exp

−1

2

1+
√

Tn,J?n

σ
(µ

n,J?n
−µn,J?n )


2 .
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On the other hand, by Lemma 3.3, we know that

|µn,J?n −µ
n,J?n

| = |µn,J?n −µJ?n +µJ?n −µ
J?n
+µ

J?n
−µ

n,J?n
|

≤ |µJ?n −µ
J?n
|+σW1

√√√√ log(e +Tn,J?n )

1+Tn,J?n

+σW1

√√√√ log(e +T
n,J?n

)

1+T
n,J?n

≤ |µJ?n −µ
J?n
|+2σW1

√√√√ log(e +Tn,J?n )

1+Tn,J?n

≤∆max +2σW1

√√√√ log(e +Tn,J?n )

1+Tn,J?n

.

Therefore,

Πn

[
θJ?n ≥ cn

]
≥ 1p

2π
exp

−1

2

1+
√

Tn,J?n

σ

∆max +2σW1

√√√√ log(e +Tn,J?n )

1+Tn,J?n




2
≥ 1p

2π
exp

−1

2

1+
√p

L

σ

∆max +2σW1

√
log(e +p

L)

1+p
L

2
≥ 1p

2π
exp

{
−1

2

(
1+ L1/4∆max

σ
+2W1

√
log(e +

p
L)

)2}
.

Now we have

an,J?n ≥ max

((
1

2

)K

,

(
1

2

)K−1 1p
2π

exp

{
−1

2

(
1+ L1/4∆max

σ
+2W1

√
log(e +

p
L)

)2})
,

and we have ∀ j ∈ VL
n , an, j ≤ exp

{−L3/4∆2
min/(16σ2)

}
, thus there exists L4 = Poly(W1) s.t.

∀L > L4, ∀ j ∈ VL
n ,

an, j ≤
an,J?n

2
,

and by consequence, J(2)
n ∈ VL

n .
Finally, taking L1 = max(L2,L3,L4), we have ∀L > L1, either J(1)

n ∈ VL
n or J(2)

n ∈ VL
n .

Next we show that there exists at least one arm in VL
n for whom the probability of being

pulled is large enough. More precisely, we prove the following lemma.

Lemma B.2. There exists L1 = Poly(W1) s.t. for L > L1 and for all n s.t. UL
n 6= ;, then

there exists Jn ∈ VL
n s.t.

ψn,Jn ≥ min(β,1−β)

K2
,ψmin.

Proof. Using Lemma B.1, we know that J(1)
n or J(2)

n ∈ VL
n . On the other hand, we know that

∀i ∈A ,ψn,i = an,i

(
β+ (1−β)

∑
j 6=i

an, j

1−an, j

)
.
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Therefore we have

ψn,J(1)
n

≥ βan,J(1)
n

≥ β

K
,

since
∑

i∈A an,i = 1, and

ψn,J(2)
n

≥ (1−β)an,J(2)
n

an,J(1)
n

1−an,J(1)
n

= (1−β)an,J(1)
n

an,J(2)
n

1−an,J(1)
n

≥ 1−β
K2

,

since an,J(1)
n

≥ 1/K and
∑

i 6=J(1)
n

an,i /(1−an,J(1)
n

) = 1, thus an,J(2)
n

/(1−an,J(1)
n

) ≥ 1/K.

The rest of this subsection is quite similar to that of Qin et al. [2017]. Indeed, with the
above lemma, we can show that the set of poorly explored arms UL

n is empty when n is
large enough.

Lemma B.3. Under TTTS, there exists L0 = Poly(W1,W2) s.t. ∀L > L0, UL
bKLc =;.

Proof. We proceed by contradiction, and we assume that UL
bKLc is not empty. Then for any

1 ≤ `≤ bKLc, UL
`

and VL
`

are non empty as well.
There exists a deterministic L5 s.t. ∀L > L5,

bLc ≥ KL3/4.

Using the pigeonhole principle, there exists some i ∈ A s.t. TbLc,i ≥ L3/4. Thus, we have
|VL

bLc| ≤ K−1.

Next, we prove |VL
b2Lc| ≤ K−2. Otherwise, since UL

`
is non-empty for any bLc+1 ≤ ` ≤

b2Lc, thus by Lemma B.2, there exists J` ∈ VL
`

s.t. ψ`,J` ≥ψmin. Therefore,∑
i∈VL

`

ψ`,i ≥ψmin,

and ∑
i∈VL

bLc

ψ`,i ≥ψmin

since VL
`
⊂ VL

bLc. Hence, we have

∑
i∈VL

bLc

(Ψb2Lc,i −ΨbLc,i ) =
b2Lc∑

`=bLc+1

∑
i∈VL

bLc

ψ`,i ≥ψminbLc.

Then, using Lemma 3.4, there exists L6 = Poly(W2) s.t. ∀L > L6, we have∑
i∈VL

bLc

(Tb2Lc,i −TbLc,i ) ≥ ∑
i∈VL

bLc

(Ψb2Lc,i −ΨbLc,i −2W2

√
b2Lc log(e2 +b2Lc))

≥ ∑
i∈VL

bLc

(Ψb2Lc,i −ΨbLc,i )−2KW2

√
b2Lc log(e2 +b2Lc)

≥ψminbLc−2KW2C2bLc3/4

≥ KL3/4,
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where C2 is some absolute constant. Thus, we have one arm in VL
bLc that is pulled at least

L3/4 times between bLc+1 and b2Lc, thus |VL
b2Lc| ≤ K−2.

By induction, for any 1 ≤ k ≤ K, we have |VL
bkLc| ≤ K − k, and finally if we take L0 =

max(L1,L5,L6), then ∀L > L0, UL
bKLc =;.

We can finally conclude the proof of Lemma 3.5 for TTTS.

Proof of Lemma 3.5 Let N1 = KL0 where L0 = Poly(W1,W2) is chosen according to Lemma B.3.
For all n > N1, we let L = n/K, then by Lemma B.3, we have UL

bKLc = Un/K
n is empty, which

concludes the proof.

B.3.2 Concentration of the empirical means

We prove Lemma 3.6 for TTTS. As a corollary of the previous section, we can show the
concentration of µn,i to µi for TTTS2.

By Lemma 3.3, we know that ∀i ∈A and n ∈N,

|µn,i −µi | ≤σW1

√
log(e +Tn,i )

Tn,i +1
.

According to the previous section, there exists N1 = Poly(W1,W2) s.t. ∀n ≥ N1 and ∀i ∈A ,
Tn,i ≥

p
n/K. Therefore,

|µn,i −µi | ≤
√

log(e +p
n/K)p

n/K+1
,

since x 7→ log(e + x)/(x + 1) is a decreasing function. There exists N′
2 = Poly(ε,W1) s.t.

∀n ≥ N′
2, √

log(e +p
n/K)p

n/K+1
≤

√
2(n/K)1/4

p
n/K+1

≤ ε

σW1
.

Therefore, ∀n ≥ N2 ,max{N1,N′
2}, we have

|µn,i −µi | ≤σW1
ε

σW1
.

B.3.3 Measurement effort concentration of the optimal arm

In this section we show that the empirical arm draws proportion of the true best arm for
TTTS concentrates to βwhen the total number of arm draws is sufficiently large. We prove
Lemma 3.7 for TTTS.

The proof is established upon the following lemmas. First, we prove that the empiri-
cal best arm coincides with the true best arm when the total number of arm draws goes
sufficiently large.

2this proof is the same as Proposition 3 of Qin et al. [2017]
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Lemma B.4. Under TTTS, there exists M1 = Poly(W1,W2) s.t. ∀n > M1, we have I?n =
I? = J(1)

n and ∀i 6= I?,

an,i ≤ exp

{
−∆

2
min

16σ2

√
n

K

}
.

Proof. Using Lemma 3.6 with ε=∆min/4, there exists N′
1 = Poly(4/∆min,W1,W2) s.t. ∀n >

N′
1,

∀i ∈A , |µn,i −µi | ≤ ∆min

4
,

which implies that starting from a known moment, µn,I? >µn,i for all i 6= I?, hence I?n = I?.
Thus, ∀i 6= I?,

an,i =Πn

[
θi > max

j 6=i
θ j

]
≤Πn [θi > θI?]

≤ 1

2
exp

{
− (µn,i −µn,I?)2

2σ2(1/Tn,i +1/Tn,I?)

}
.

The last inequality uses the Gaussian tail inequality of (3.7) Lemma 3.2. Furthermore,

(µn,i −µn,I?)2 = (|µn,i −µn,I? |)2

= (|µn,i −µi +µi −µI? +µI? −µn,I? |)2

≥ (|µi −µI? |− |µn,i −µi +µI? −µn,I? |)2

≥
(
∆min −

(
∆min

4
+ ∆min

4

))2

= ∆2
min

4
,

and according to Lemma 3.5, we know that there exists M2 = Poly(W1,W2) s.t. ∀n > M2,

1

Tn,i
+ 1

Tn,I?
≤ 2p

n/K
.

Thus, ∀n > max{N′
1,M2}, we have

∀i 6= I?, an,i ≤ exp

{
−∆

2
min

16σ2

√
n

K

}
.

Then, we have

an,I? = 1− ∑
i 6=I?

an,i ≥ 1− (K−1)exp

{
−∆

2
min

16σ2

√
n

K

}
.

There exists M′
2 s.t. ∀n > M′

2, an,I? > 1/2, and by consequence I? = J(1)
n . Finally taking

M1 ,max{N′
1,M2,M′

2} concludes the proof.

Before we prove Lemma 3.7, we first show that Ψn,I?/n concentrates to β.

Lemma B.5. Under TTTS, fix a constant ε > 0, there exists M3 = Poly(ε,W1,W2) s.t.
∀n > M3, we have ∣∣∣∣Ψn,I?

n
−β

∣∣∣∣≤ ε.
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Proof. By Lemma B.4, we know that there exists M′
1 = Poly(W1,W2) s.t. ∀n > M′

1, we have

I?n = I? = J(1)
n and ∀i 6= I?,

an,i ≤ exp

{
−∆

2
min

16σ2

√
n

K

}
.

Note also that ∀n ∈N, we have

ψn,I? = an,I?

(
β+ (1−β)

∑
j 6=I?

an, j

1−an, j

)
.

We proceed the proof with the following two steps.

Step 1. We first lower bound Ψn,I? for a given ε. Take M4 > M′
1 that we decide later, we

have ∀n > M4,

Ψn,I?

n
= 1

n

n∑
l=1

ψl ,I? =
1

n

M4∑
l=I?

ψl ,I? +
1

n

n∑
l=M4+1

ψl ,I?

≥ 1

n

n∑
l=M4+1

ψl ,I? ≥
1

n

n∑
l=M4+1

al ,I?β

= β

n

n∑
l=M4+1

(
1− ∑

j 6=I?
al , j

)

≥ β

n

n∑
l=M4+1

1− (K−1)exp

−∆
2
min

16σ2

√
l

K




= β− M4

n
β− β

n

n∑
l=M4+1

(K−1)exp

−∆
2
min

16σ2

√
l

K


≥ β− M4

n
β− (n −M4)

n
β(K−1)exp

−∆
2
min

16σ2

√
M4

K


≥ β− M4

n
β−β(K−1)exp

−∆
2
min

16σ2

√
M4

K

 .

For a given constant ε> 0, there exists M5 s.t. ∀n > M5,

β(K−1)exp

{
−∆

2
min

16σ2

√
n

K

}
< ε

2
.

Furthermore, there exists M6 = Poly(ε/2,M5) s.t. ∀n > M6,

M5

n
β< ε

2
.

Therefore, if we take M4 ,max{M′
1,M5,M6}, we have ∀n > M4,

Ψn,I?

n
≥ β−ε.
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Step 2. On the other hand, we can also upper bound Ψn,I? . We have ∀n > M3,

Ψn,I?

n
= 1

n

n∑
l=1

ψl ,I?

= 1

n

n∑
l=1

al ,I?

(
β+ (1−β)

∑
j 6=I?

al , j

1−al , j

)

≤ 1

n

n∑
l=1

al ,I?β+
1

n

n∑
l=1

al ,I?(1−β)
∑

j 6=I?

al , j

1−al , j

≤ β+ 1

n

n∑
l=1

(1−β)
∑

j 6=I?

al , j

1−al , j

≤ β+ 1

n

n∑
l=1

(1−β)
∑

j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

} .

Since, for a given ε> 0, there exists M8 s.t. ∀n > M8,

exp

{
−∆

2
min

16σ2

√
n

K

}
< 1

2
,

and there exists M9 s.t. ∀n > M9,

(1−β)(K−1)exp

{
−∆

2
min

16σ2

√
n

K

}
< ε

4
.

Thus, ∀n > M10 ,max{M8,M9},

Ψn,I?

n
≤ β+ 1−β

n

M10∑
l=1

∑
j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

} +
n∑

l=M10+1

∑
j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

}


≤ β+ 1−β
n

M10∑
l=1

∑
j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

} +2(1−β)(K−1)exp

−∆
2
min

16σ2

√
M10

K



≤ β+ 1−β
n

M10∑
l=1

∑
j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

} + ε

2
.

There exists M11 = Poly(ε/2,M10) s.t. ∀n > M11,

1−β
n

M10∑
l=1

∑
j 6=I?

exp

{
−∆2

min
16σ2

√
l
K

}
1−exp

{
−∆2

min
16σ2

√
l
K

} < ε

2
.

Therefore, ∀n > M7 ,max{M3,M11}, we have

Ψn,I?

n
≤ β+ε.
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Conclusion. Finally, combining the two steps and define M3 , max{M4,M7}, we have
∀n > M3, ∣∣∣∣Ψn,I?

n
−β

∣∣∣∣≤ ε.

With the help of the previous lemma and Lemma 3.4, we can finally prove Lemma 3.7.

Proof of Lemma 3.7 Fix an ε> 0. Using Lemma 3.4, we have ∀n ∈N,∣∣∣∣Tn,I?

n
−Ψn,I?

n

∣∣∣∣≤ W2
√

(n +1)log(e2 +n)

n
.

Thus there exists M12 s.t. ∀n > M12,∣∣∣∣Tn,I?

n
−Ψn,I?

n

∣∣∣∣≤ ε

2
.

And using Lemma B.5, there exists M′
3 = Poly(ε/2,W1,W2) s.t. ∀n > M′

3,∣∣∣∣Ψn,I?

n
−β

∣∣∣∣≤ ε

2
.

Again, according to Lemma B.2, there exists M′
3 s.t. ∀n > M′

3,

Ψn,I?

n
≤ β+ ε

2
.

Thus, if we take N3 ,max{M′
3,M12}, then ∀n > N3, we have∣∣∣∣Tn,I?

n
−β

∣∣∣∣≤ ε.

B.3.4 Measurement effort concentration of other arms

In this section, we show that, for TTTS, the empirical measurement effort concentration
also holds for other arms than the true best arm. We prove Lemma 3.8 for TTTS.

We first show that if some arm is overly sampled at time n, then its probability of being
picked is reduced exponentially.

Lemma B.6. Under TTTS, for every ξ ∈ (0,1), there exists S1 = Poly(1/ξ,W1,W2) such
that for all n > S1, for all i 6= I?,

Ψn,i

n
≥ωβi +ξ ⇒ ψn,i ≤ exp{−ε0(ξ)n} ,

where ε0 is defined in (B.2) below.
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Proof. First, by Lemma B.4, there exists M′′
1 = Poly(W1,W2) s.t. ∀n > M′′

1 ,

I? = I?n = J(1)
n .

Then, following the similar argument as in Lemma B.17, one can show that for all i 6= I?

and for all n > M′′
1 ,

ψn,i = an,i

(
β+ (1−β)

∑
j 6=i

an, j

1−an, j

)

≤ an,iβ+an,i (1−β)

∑
j 6=i

an, j

1−an,J(1)
n

= an,iβ+an,i (1−β)

∑
j 6=i

an, j

1−an,I?

≤ an,iβ+an,i (1−β)
1

1−an,I?

≤ an,i

1−an,I?

≤ Πn [θi ≥ θI?]

Πn
[∪ j 6=I?θ j ≥ θI?

]
≤ Πn [θi ≥ θI?]

max
j 6=I?

Πn
[
θ j ≥ θI?

] .

Using the upper and lower Gaussian tail bounds from Lemma 3.2, we have

ψn,i ≤
exp

{
− (µn,I? −µn,i )2

2σ2
(
1/Tn,I? +1/Tn,i

)}

exp

−min
j 6=I?

1

2

 (µn,I? −µn, j )

σ
√(

1/Tn,I? +1/Tn, j
) −1


2

=
exp

{
−n

(µn,I? −µn,i )2

2σ2
(
n/Tn,I? +n/Tn,i

)}

exp

−n

min
j 6=I?

(µn,I? −µn, j )√
2σ2

(
n/Tn,I? +n/Tn, j

) − 1p
2n


2

,

where we assume that n > S2 = Poly(W1,W2) for which

(µn,I? −µn,i )2

σ2
(
1/Tn,I? +1/Tn,i

) ≥ 1

according to Lemma 3.5. From there we take a supremum over the possible allocations to
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lower bound the denominator and write

ψn,i ≤
exp

{
−n

(µn,I? −µn,i )2

2σ2
(
n/Tn,I? +n/Tn,i

)}

exp

−n

 sup
ω:ωI?=Tn,I?/n

min
j 6=I?

(µn,I? −µn,i )√
2σ2

(
1/ωI? +1/ω j

) − 1p
2n


2

=
exp

{
−n

(µn,I? −µn,i )2

2σ2
(
n/Tn,I? +n/Tn,i

)}
exp

{
−n

(√
Γ?Tn,I?/n

(
µn

)− 1p
2n

)2} ,

where µn , (µn,1, · · · ,µn,K), and (β,µ) 7→ Γ?
β

(µ) represents a function that maps β and µ to
the parameterized optimal error decay that any allocation rule can reach given parameter
β and a set of arms with means µ. Note that this function is continuous with respect to β
and µ respectively.

Now, assuming Ψn,i /n ≥ ω
β

i + ξ yields that there exists S′
2 , Poly(2/ξ,W2) s.t. for all

n > S′
2, Tn,i /n ≥ωβi +ξ/2, and by consequence,

ψn,i ≤ exp


−n

 (µn,I? −µn,i )2

2σ2
(
n/Tn,I? +1/(ωβi +ξ/2)

) −Γ?Tn,I?/n

(
µn

)− 1

2n
+

√√√√2Γ?Tn,I?/n

(
µn

)
n


︸ ︷︷ ︸

εn (ξ)


.

Using Lemma 3.7, we know that for any ε, there exists S3 = Poly(1/ε,W1,W2) s.t. ∀n > S3,
|Tn,I?/n−β| ≤ ε, and ∀ j ∈A , |µn, j −µ j | ≤ ε. Furthermore, (β,µ) 7→ Γ?

β
(µ) is continuous with

respect to β and µ, thus for a given ε0, there exists S′
3 = Poly(1/ε0,W1,W2) s.t. ∀n > S′

3, we
have ∣∣∣∣∣∣εn(ξ)−

 (µI? −µi )2

2σ2
(
1/β+1/(ωβi +ξ/2)

) −Γ?β
∣∣∣∣∣∣≤ ε0.

Finally, define S1 ,max{S2,S′
2,S′

3}, we have ∀n > S1,

ψn,i ≤ exp{−ε0(ξ)n} ,

where

ε0(ξ) = (µI? −µi )2

2σ2
(
1/β+1/(ωβi +ξ/2)

) −Γ?β +ε0 . (B.2)

Next, starting from some known moment, no arm is overly allocated. More precisely,
we show the following lemma.

Lemma B.7. Under TTTS, for every ξ, there exists S4 = Poly(1/ξ,W1,W2) s.t. ∀n > S4,

∀i ∈A ,
Ψn,i

n
≤ωβi +ξ.
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Proof. From Lemma B.6, there exists S′
1 = Poly(2/ξ,W1,W2) such that for all n > S′

1 and for
all i 6= I?,

Ψn,i

n
≥ωβi +

ξ

2
⇒ ψn,i ≤ exp{−ε0(ξ/2)n} .

Thus, for all i 6= I?,

Ψn,i

n
≤ S′

1

n
+

n∑
`=S′

1+1

ψ`,i1

(
Ψ`,i

n
≥ωβi +

ξ

2

)
n

+

n∑
`=S′

1+1

ψ`,i1

(
Ψ`,i

n
≤ωβi +

ξ

2

)
n

≤ S′
1

n
+

n∑
`=1

exp{−ε0(ξ/2)n}

n
+

`n (ξ)∑
`=S′

1+1

ψ`,i1

(
Ψ`,i

n
≤ωβi +

ξ

2

)
n

,

where we let `n(ξ) = max
{
`≤ n :Ψ`,i /n ≤ωβi +ξ/2

}
. Then

Ψn,i

n
≤ S′

1

n
+

n∑
`=1

exp{−ε0(ξ/2)n}

n
+Ψ`n (ξ),i

≤ S′
1 + (1−exp(−ε0(ξ/2))−1

n
+ωβi +

ξ

2

Then, there exists S5 such that for all n ≥ S5,

S′
1 + (1−exp(−ε0(ξ/2))−1

n
≤ ξ

2
.

Therefore, for any n > S4 , max{S′
1,S5}, Ψn,i ≤ ω

β

i + ξ holds for all i 6= I?. For i = I?, it is
already proved for the optimal arm.

We now prove Lemma 3.8 under TTTS.

Proof of Lemma 3.8 From Lemma B.7, there exists S′
4 = Poly((K−1)/ξ,W1,W2) such that

for all n > S′
4,

∀i ∈A ,
Ψn,i

n
≤ωβi +

ξ

K−1
.

Using the fact that Ψn,i /n and ωβi all sum to 1, we have ∀i ∈A ,

Ψn,i

n
= 1− ∑

j 6=i

Ψn, j

n

≥ 1− ∑
j 6=i

(
ω
β

j +
ξ

K−1

)
=ωβi −ξ.

Thus, for all n > S′
4, we have

∀i ∈A ,

∣∣∣∣Ψn,i

n
−ωβi

∣∣∣∣≤ ξ.
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And finally we use the same reasoning as the proof of Lemma 3.7 to link Tn,i andΨn,i . Fix
an ε> 0. Using Lemma 3.4, we have ∀n ∈N,

∀i ∈A ,

∣∣∣∣Tn,i

n
−Ψn,i

n

∣∣∣∣≤ W2
√

(n +1)log(e2 +n)

n
.

Thus there exists S5 s.t. ∀n > S5, ∣∣∣∣Tn,I?

n
−Ψn,I?

n

∣∣∣∣≤ ε

2
.

And using the above result, there exists S′′
4 = Poly(2/ε,W1,W2) s.t. ∀n > S′′

4 ,∣∣∣∣Ψn,i

n
−ωβi

∣∣∣∣≤ ε

2
.

Thus, if we take N4 ,max{S′′
4 ,S5}, then ∀n > N4, we have

∀i ∈A ,

∣∣∣∣Tn,i

n
−ωβi

∣∣∣∣≤ ε.

B.4 Fixed-Confidence Analysis for T3C

This section is entirely dedicated to T3C. Note that the analysis to follow share the same
proof line with that of TTTS, and some parts even completely coincide with those of TTTS.
For the sake of simplicity and clearness, we shall only focus on the parts that differ and
skip some redundant proofs.

B.4.1 Sufficient exploration of all arms

We prove Lemma 3.5 for T3C. To prove this lemma, we still need the two sets of indices for
under-sampled arms like in Appendix B.3.1. We recall that for a given L > 0: ∀n ∈ N we
define

UL
n , {i : Tn,i <

p
L},

VL
n , {i : Tn,i < L3/4}.

For T3C however, we investigate the following two indices,

J(1)
n , argmax

j
an, j , J̃(2)

n , argmin
j 6=J(1)

n

Wn(J(1)
n , j ).

Lemma 3.5 is proved via the following sequence of lemmas.

Lemma B.8. There exists L1 = Poly(W1) s.t. if L > L1, for all n, UL
n 6= ; implies J(1)

n ∈ VL
n

or J̃(2)
n ∈ VL

n .

Proof. If J(1)
n ∈ VL

n , then the proof is finished. Now we assume that J(1)
n ∈ VL

n ⊂ UL
n , and we

prove that J(2)
n ∈ VL

n .
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Step 1 Following the same reasoning as Step 1 and Step 2 of the proof of Lemma B.1, we
know that there exists L2 = Poly(W1) s.t. if L > L2, then

J?n , argmax
j∈UL

n

µn, j = argmax
j∈UL

n

µ j = J(1)
n .

Step 2 Now assuming that L > L2, and we show that for L large enough, J̃(2)
n ∈ VL

n . In the

same way that we proved (B.1) one can show that for all ∀ j ∈ VL
n ,

Wn(J(1)
n , j ) = (µn,I? −µn, j )2

2σ2
(

1

Tn,I?
+ 1

Tn, j

) ≥ L3/4∆2
min

16σ2
.

Again, denote J?n , argmax j∈UL
n
µn, j , we obtain

Wn(J(1)
n , J?n ) =


0 if µn,J?n ≥µn,J(1)

n
,

(µn,J(1)
n
−µn,J?n )2

2σ2

(
1

Tn,J(1)
n

+ 1

Tn,J?n

) else.

In the second case, as already shown in Step 3 of Lemma B.1 we have that

|µn,J?n −µ
n,J?n

| ≤∆max +2σW1

√√√√ log(e +Tn,J?n )

1+Tn,J?n

≤∆max +2σW1

√
log(e +p

L)

1+p
L

,

since J?n ∈ UL
n . We also know that

2σ2

(
1

Tn,J(1)
n

+ 1

Tn,J?n

)
≥ 2σ2

Tn,J?n

≥ 2σ2

p
L

.

Therefore, we get

Wn(J(1)
n , J?n ) ≤

p
L

2σ2

∆max +2σW1

√
log(e +p

L)

1+p
L

2

.

On the other hand, we know that for all j ∈ VL
n ,

Wn(J(1)
n , j ) ≥ L3/4∆2

min

16σ2
.

Thus, there exists L3 s.t. if L > L3, then

∀ j ∈ VL
n , Wn(J(1)

n , j ) ≥ 2Wn(J(1)
n , J?n ).

That means J̃(2)
n ∉ VL

n and by consequence, J̃(2)
n ∈ VL

n .

Finally, taking L1 = max(L2,L3), we have ∀L > L1, either J(1)
n ∈ VL

n or J̃(2)
n ∈ VL

n .
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Next we show that there exists at least one arm in VL
n for whom the probability of being

pulled is large enough. More precisely, we prove the following lemma.

Lemma B.9. There exists L1 = Poly(W1) s.t. for L > L1 and for all n s.t. UL
n 6= ;, then

there exists Jn ∈ VL
n s.t.

ψn,Jn ≥ min(β,1−β)

K2
,ψmin.

Proof. Using Lemma B.8, we know that J(1)
n or J̃(2)

n ∈ VL
n . We also know that under T3C, for

any arm i , ψn,i can be written as

ψn,i = βan,i + (1−β)
∑
j 6=i

an, j
1{Wn( j , i ) = mink 6= j Wn( j ,k)}∣∣argmink 6= j Wn( j ,k)

∣∣ .

Note that (ψn,i )i sums to 1,

∑
i
ψn,i = β+ (1−β)

∑
j

an, j
∑
i 6= j

1{Wn( j , i ) = mink 6= j Wn( j ,k)}∣∣argmink 6= j Wn( j ,k)
∣∣

= β+ (1−β)
∑

j
an, j = 1.

Therefore, we have

ψn,J(1)
n

≥ βan,J(1)
n

≥ β

K
on one hand, since

∑
i∈A an,i = 1. On the other hand, we have

ψ
n,J̃(2)

n
≥ (1−β)

an,J(1)
n

K

≥ 1−β
K2

,

which concludes the proof.

The rest of this subsection is exactly the same to that of TTTS. Indeed, with the above
lemma, we can show that the set of poorly explored arms UL

n is empty when n is large
enough.

Lemma B.10. Under T3C, there exists L0 = Poly(W1,W2) s.t. ∀L > L0, UL
bKLc =;.

Proof. See proof of Lemma B.3 in Appendix B.3.1.

We can finally conclude the proof of Lemma 3.5 for T3C in the same way as for TTTS in
Appendix B.3.1.

B.4.2 Concentration of the empirical means

We prove Lemma 3.6 for T3C. As a corollary of the previous section, we can show the con-
centration of µn,i to µi , and the proof remains the same as that of TTTS in Appendix B.3.2.
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B.4.3 Measurement effort concentration of the optimal arm

Next, we show that the empirical arm draws proportion of the true best arm for T3C
concentrates to β when the total number of arm draws is sufficiently large. We prove
Lemma 3.7 for T3C.

This proof also remains the same as that of TTTS in Appendix B.3.3.

B.4.4 Measurement effort concentration of other arms

In this section, we show that, for T3C, the empirical measurement effort concentration
also holds for other arms than the true best arm. We prove Lemma 3.8 for T3C. Note that
this part differs from that of TTTS.

We again establish first an over-allocation implies negligible probability result as fol-
low.

Lemma B.11. Under T3C, for every ξ≤ ε0 with ε0 problem dependent, there exists S1 =
Poly(1/ξ,W1,W2) such that for all n > S1, for all i 6= I?,

Ψn,i

n
≥ωβi +2ξ ⇒ ψn,i ≤ (K−1)exp

{
−∆

2
min

16σ2

√
n

K

}
.

Proof. Fix i 6= I? s.t. Ψn,i /n ≥ωβi +2ξ, then using Lemma 3.4, there exists S2 = Poly(1/ξ,W2)
such that for any n > S2, we have

Tn,i

n
≥ωβi +ξ.

Then,

ψn,i ≤ βan,i + (1−β)
∑
j 6=i

an, j1{Wn( j , i ) = min
k 6= j

Wn( j ,k)}

≤ βan,i + (1−β)

( ∑
j 6=i ,I?

an, j +an,I?1{Wn(I?, i ) = min
k 6=I?

Wn(I?,k)}

)
≤ ∑

j 6=I?
an, j +1{Wn(I?, i ) = min

k 6=I?
Wn(I?,k)}.

Next we show that the indicator function term in the previous inequality equals to 0.
Using Lemma 3.3 and Lemma 3.7 for T3C, there exists S3 = Poly(1/ξ,W1,W2) such that

for any n > S3, ∣∣∣∣Tn,I?

n
−β

∣∣∣∣≤ ξ2 and ∀ j ∈A , |µn, j −µ j | ≤ ξ2.

Now if ∀ j 6= I?, i , we have Tn, j /n >ωβj , then

n −1

n
= ∑

j∈A

Tn, j

n

= Tn,I?

n
+ Tn,i

n
+ ∑

j 6=I?,i

Tn, j

n

> β−ε2 +ωβi +ε+
∑

j 6=I?,i

ω
β

j ≥ 1,
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which is a contradiction.
Thus there exists at least one j0 6= I?, i , such that Tn, j0 /n ≤ωβj . Assuming n > max(S2,S3),

we have

Wn(I?, i )−Wn(I?, j0) = (µn,I? −µn,i )2

2σ2
(

1

Tn,I?
+ 1

Tn,i

) − (µn,I? −µn, j0 )2

2σ2
(

1

Tn,I?
+ 1

Tn, j0

)
≥ (µI? −µi −2ξ2)2

2σ2

 1

β−ξ2
+ 1

ω
β

i +ξ

 − (µI? −µ j0 +2ξ2)2

2σ2

 1

β+ξ2
+ 1

ω
β

j0


︸ ︷︷ ︸

Wξ
i , j0

.

According to Proposition 3.1, Wξ
i , j0

converges to 0 when ξ goes to 0, more precisely we
have

Wξ
i , j0

= (µI? −µi )2

2σ2

 β

β+ωβi

2

ξ+O(ξ2) ,

thus there exists a ε0 such that for all ξ < ε0 it holds for all i , j0 6= I?, Wξ
i , j0

> 0. It follows
then

Wn(I?, i )−min
k 6=I?

Wn(I?,k) ≥ Wn(I?, i )−Wn(I?, j0) > 0,

and 1{Wn(I?, i ) = mink 6=I? Wn(I?,k)} = 0.
Knowing that Lemma B.4 is also valid for T3C, thus there exists M1 = Poly(4/∆min,W1,W2)

such that for all n > M1,

∀ j 6= I?, an, j ≤ exp

{
−∆

2
min

16σ2

√
n

K

}
,

which then concludes the proof by taking S1 ,max(M1,S2,S3).

The rest of this subsection almost coincides with that of TTTS. We first show that, start-
ing from some known moment, no arm is overly allocated. More precisely, we show the
following lemma.

Lemma B.12. Under T3C, for every ξ, there exists S4 = Poly(1/ξ,W1,W2) s.t. ∀n > S4,

∀i ∈A ,
Ψn,i

n
≤ωβi +2ξ.

Proof. See proof of Lemma B.7 in Appendix B.3.4. Note that the previous step does not
match exactly that of TTTS, so the proof would be slightly different. However, the differ-
ence is only a matter of constant, we thus still choose to skip this proof.

It remains to prove Lemma 3.8 for T3C, which stays the same as that of TTTS.
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Proof of Lemma 3.8 for T3C See proof of Lemma 3.8 for TTTS in Appendix B.3.4.

B.5 Proof of Lemma 3.1

Finally, it remains to prove Lemma 3.1 under the Gaussian case before we can conclude
for Theorem 3.1 for TTTS or T3C.

Lemma 3.1. Let δ,β ∈ (0,1). For any sampling rule which satisfies E
[

Tε
β

]
< ∞ for all

ε> 0, we have

limsup
δ→0

E [τδ]

log(1/δ)
≤ T?β (µ) ,

if the sampling rule is coupled with stopping rule (3.3),

For the clarity, we recall the definition of generalized likelihood ratio. For any pair of
arms i , j , We first define a weighted average of their empirical means,

µ̂n,i , j ,
Tn,i

Tn,i +Tn, j
µ̂n,i +

Tn, j

Tn,i +Tn, j
µ̂n, j .

And if µ̂n,i ≥ µ̂n, j , then the generalized likelihood ratio Zn,i , j for Gaussian noise distribu-
tions has the following analytic expression,

Zn,i , j ,Tn,i d(µ̂n,i ; µ̂n,i , j )+Tn, j d(µ̂n, j ; µ̂n,i , j ).

We further define a statistic Zn as

Zn ,max
i∈A

min
j∈A \{i }

Zn,i , j .

The following lemma stated by Qin et al. [2017] is needed in our proof.

Lemma B.13. For any ζ> 0, there exists ε s.t. ∀n ≥ Tε
β

, Zn ≥ (Γ?
β
−ζ)n.

To prove Lemma 3.1, we need the Gaussian tail inequality (3.7) of Lemma 3.2.

Proof. We know that

1−an,I? =
∑

i 6=I?
an,i

≤ ∑
i 6=I?

Πn [θi > θI?]

= ∑
i 6=I?

Πn [θi −θI? > 0]

≤ (K−1)max
i 6=I?

Πn [θi −θI? > 0] .
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We can further rewrite Πn [θi −θI? > 0] as

Πn
[
θi −θI? >µn,i −µn,I? +µn,I? −µn,i

]
.

We choose ε sufficiently small such that the empirical best arm I?n = I?. Then, for all n ≥ Tn
β

and for any i 6= I?, µn,I? ≥ µn,i . Thus, fix any ζ ∈ (0,Γ?
β

/2) and apply inequality (3.7) of

Lemma 3.2 with µn,I? and µn,i , we have for any n ≥ Tε
β

,

1−an,I? ≤ (K−1)max
i 6=I?

1

2
exp

{
−

(
µn,I? −µn,i

)2

2σ2
n,i ,I?

}

= (K−1)exp{−Zn}

2

≤
(K−1)exp

{
−(Γ?

β
−ζ)n

}
2

.

The last inequality is deduced from Lemma B.13. By consequence,

∀n ≥ Tεβ, ln
(
1−an,I?

)≤ ln
K−1

2
− (Γ?β −ζ)n.

On the other hand, we have for any n,

1− cn,δ =
δ

2n(K−1)
p

2πe exp


√

2ln
2n(K−1)

δ


.

Thus, there exists a deterministic time N s.t. ∀n ≥ N,

ln
(
1− cn,δ

)= ln
δ

(K−1)
p

8πe
− lnn −

√
2ln

2n(K−1)

δ

≥ ln
δ

2(K−1)
p

2πe
−ζn.

Let C3 , (K−1)2
p

2πe, we have for any n ≥ N0 ,Tε
β
+N,

ln
(
1−an,I?

)− ln
(
1− cn,δ

)≤ ln
C3

δ
− (Γ?β −2ζ)n, (B.3)

and it is clear that E [N0] <∞.
Let us consider the following two cases:

Case 1 There exists n ∈ [1,N0] s.t. an,I? ≥ cn,δ, then by definition,

τδ ≤ n ≤ N1.

Case 2 For any n ∈ [1,N0], we have an,I? < cn,δ, then τδ ≥ N0 +1, thus by Equation B.3,

0 ≤ ln
(
1−aτδ−1,I?

)− ln
(
1− cτδ−1,δ

)
≤ ln

C3

δ
− (Γ?β −2ζ)(τδ−1),
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and we obtain

τδ ≤
ln(C3/δ)

Γ?
β
−2ζ

+1.

Combining the two cases, and we have for any ζ ∈ (0,Γ?
β

/2),

τδ ≤ max

{
N0,

ln(C3/δ)

Γ?
β
−2ζ

+1

}

≤ N0 +1+ ln(C3)

Γ?
β
−2ζ

+ ln(1/δ)

Γ?
β
−2ζ

.

Since E [N1] <∞, therefore

limsup
δ

E [τδ]

log(1/δ)
≤ 1

Γ?
β
−2ζ

,∀ζ ∈ (0,Γ?β /2),

which concludes the proof.

B.6 Proof of Posterior Convergence for Gaussian Bandits

B.6.1 Proof of Theorem 3.4

Theorem 3.4. Under TTTS, for Gaussian bandits with improper Gaussian priors, it
holds almost surely that

lim
n→∞− 1

n
log(1−an,I?) = T?β (µ)−1 .

From Theorem 2 in Qin et al. [2017], any allocation rule satisfying Tn,i /n → ω
β

i for each
i ∈A , satisfies

lim
n→∞− 1

n
log(1−an,I?) = Γ?β .

Therefore, to prove Theorem 3.4, it is sufficient to prove that under TTTS,

∀i ∈ {1, . . . ,K}, lim
n→∞

Tn,i

n
a.s= ω

β

i . (B.4)

Due to the concentration result in Lemma 3.4 that we restate below (and proved in Ap-
pendix B.3), which will be useful at several places in the proof, observe that

lim
n→∞

Tn,i

n
a.s= ω

β

i ⇔ lim
n→∞

Ψn,i

n
a.s= ω

β

i ,

therefore it suffices to establish the convergence ofψn,i =Ψn,i /n toωβi , which we do next.
For that purpose, we need again the following maximality inequality lemma.
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Lemma 3.4. There exists a random variable W2, such that for all i ∈A ,

∀n ∈N, |Tn,i −Ψn,i | ≤ W2

√
(n +1)log(e2 +n) a.s. ,

and E
[
eλW2

]<∞ for any λ> 0.

Step 1: TTTS draws all arms infinitely often and satisfies Tn,I?/n → β. More precisely,
we prove the following lemma.

Lemma B.14. Under TTTS, it holds almost surely that

1. for all i ∈A , limn→∞ Tn,i =∞.

2. an,I? → 1.

3. Tn,I?/n → β.

Proof. Our first ingredient is a lemma showing the implications of finite measurement,
and consistency when all arms are sampled infinitely often. Its proof follows standard
posterior concentration arguments and is given in Appendix B.6.2.

Lemma B.15. [Consistency and implications of finite measurement] Denote with I the
arms that are sampled only a finite amount of times:

I = {i ∈ {1, . . . ,k} : ∀n,Tn,i <∞} .

If I is empty, an,i converges almost surely to 1 when i = I? and to 0 when i 6= I?. If I is
non-empty, then for every i ∈I , we have liminfn→∞ an,i > 0 a.s.

First we show that
∑

n∈NTn, j =∞ for each arm j . Suppose otherwise. Let I again be
the set of arms to which only finite measurement effort is allocated. Under TTTS, we have

ψn,i = an,i

(
β+ (1−β)

∑
j 6=i

an, j

1−an, j

)
,

so ψn,i ≥ βan,i . Therefore, by Lemma B.15, if i ∈ I , then liminf an,i > 0 implies that∑
nψn,i = ∞. By Lemma 3.4, we then must have that limn→∞ Tn,i = ∞ as well: contra-

diction. Thus, limn→∞ Tn,i =∞ for all i , and we conclude that an,I? → 1, by Lemma B.15.
For TTTS with parameter β this implies that ψn,I? → β, and since we have a bound on

|Tn,i /n −ψn,i | in Lemma 3.4, we have Tn,I?/n → β as well.

Step 2: Controlling the over-allocation of sub-optimal arms. The convergence of Tn,I?/n
to β leads to following interesting consequence, expressed in Lemma B.16: if an arm is
sampled more often than its optimal proportion, the posterior probability of this arm to
be optimal is reduced compared to that of other sub-optimal arms.
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Lemma B.16. [Over-allocation implies negligible probability]3 Fix any ξ> 0 and j 6= I?.
With probability 1, under any allocation rule, if Tn,I?/n → β, there exist ξ′ > 0 and a
sequence εn with εn → 0 such that for any n ∈N,

Tn, j

n
≥ωβj +ξ⇒

an, j

maxi 6=I? an,i
≤ e−n(ξ′+εn ).

Proof. We have Πn(Θ∪i 6=I?) = ∑
i 6=I? an,i = 1− an,I? , therefore maxi 6=I? an,i ≤ 1− an,I? . By

Theorem 2 of Qin et al. [2017] we have, as Tn,I?/n → β,

limsup
n→∞

− 1

n
log

(
max
i 6=I?

an,i

)
≤ Γ?β .

We also have the following from the standard Gaussian tail inequality, for n ≥ τ after which
µn,I? ≥µn,i , using that θi −θI? ∼N (µn,i −µn,I? ,σ2

n,i +σ2
n,I?) and σ2

n,i +σ2
n,I? =σ2(1/Tn,i +

1/Tn,I?),

an,i ≤Πn(θi ≥ θI?) ≤ exp

( −(µn,i −µn,I?)2

2σ2(1/Tn,I? +1/Tn,i )

)
= exp

(
−n

(µn,i −µn,1)2

2σ2(n/Tn,I? +n/Tn,i )

)
.

Thus, there exists a sequence εn → 0, for which

an, j

maxi 6=I? an,i
≤

exp

{
−n

(
(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
−εn/2

)}
exp

{
−n

(
Γ?β +εn/2

)}
)

= exp

{
−n

(
(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
−Γ?β −εn

)}
.

Now we take a look at the two terms in the middle:

(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
−Γ?β .

Note that the first term is increasing in Tn, j /n. We have the definition from Qin et al.
[2017], for any j 6= I?,

Γ?β = (µ j −µI?)2

2σ2
(
1/ωβI? +1/ωβj

) ,

and we have the premise

Tn, j

n
≥ωβj +ξ.

Combining these with the convergence of the empirical means to the true means (consis-
tency, see Lemma B.15), we can conclude that for all ε> 0, there exists a time n0 such that
for all later times n ≥ n0, we have

(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
≥ (µ j −µI?)2

2σ2
(
1/β+n/Tn, j

) −ε≥ (µ j −µI?)2

2σ2
(
1/β+1/(ωβj +ξ)

) −ε> Γ?β ,
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where the first inequality follows from consistency, the second from monotonicity in Tn, j /n.
That means that there exist a ξ′ > 0 such that

(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
−Γ?β > ξ′,

and thus the claim follows that when
Tn, j

n ≥ωβj +ξ, we have

an, j

maxi 6=I? an,i
≤ exp

{
−n

(
(µn, j −µn,I?)2

2σ2(n/Tn,I? +n/Tn, j )
−Γ?β −εn

)}
≤ e−n(ξ′+εn ).

Step 3: ψn,i converges toωβi for all arms. To establish the convergence of the allocation
effort of all arms, we rely on the same sufficient condition used in the analysis of Russo
[2016], that we recall below.

Lemma B.17. [Sufficient condition for optimality]4 Consider any adaptive allocation
rule. If we have

ψn,I? → β, and
∑

n∈N
ψn, j 1

{
ψn, j ≥ωβj +ξ

}
<∞, ∀ j 6= I?,ξ> 0, (B.5)

then ψn →ψβ.

First, note that from Lemma B.14 we know that Tn,I?/n → β, an by Lemma 3.4 this im-
plies ψn,I? → β, hence we can use Lemma B.17 to prove convergence to the optimal pro-

portions. Thus, we now show that (B.5) holds under TTTS. Recall that J(1)
n = argmax j an, j

and J(2)
n = argmax j 6=J(1)

n
an, j . Since an,I? → 1 by Lemma B.14, there is some finite time τ

after which for all n > τ, J(1)
n = I?. Under TTTS,

ψn,i = an,i

(
β+ (1−β)

∑
j 6=i

an, j

1−an, j

)

≤ an,iβ+an,i (1−β)

∑
j 6=i an, j

1−an,J(1)
n

≤ an,iβ+an,i (1−β)

∑
j 6=i an, j

an,J(2)
n

≤ an,iβ+an,i (1−β)
1

an,J(2)
n

≤ an,i

an,J(2)
n

,

where we use the fact that for j 6= J(1)
n , we have an,J(1)

n
≥ an, j and an,J(2)

n
≤ 1−an,J(1)

n
. For n ≥ τ

this means that ψn,i ≤ an,i /max j 6=I? an,i for any i 6= I?.
By Lemma B.16, there is a constant ξ′ > 0 such and a sequence εn → 0 such that

Tn,i /n ≥ wβ

i +ξ⇒
an,i

max j 6=I? an, j
≤ e−n(ξ′−εn ).
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Now take a time τ large enough, such that for n ≥ τwe have |Tn, j /n−ψn, j | ≤ ξ (which can
be found by Lemma 3.4). Then we have

1
{
ψn, j ≥ψβ

j +ξ
}
≤1

{
Tn, j

n
≥ωβj +2ξ

}
Therefore, for all i 6= I?, we have∑

n≥τ
ψn,i1

{
ψn, j ≥ψβ

j +ξ
}
≤ ∑

n≥τ
ψn,i1

{
Tn, j

n
≥ωβj +2ξ

}
≤ ∑

n≥τ
e−n(ξ′−εn ) <∞.

Thus (B.5) holds and the convergence to the optimal proportions follows by Lemma B.17.

B.6.2 Proof of auxiliary lemmas

Proof of Lemma B.15 Let I be nonempty. Define

µ∞,n , lim
n→∞µn,i , and σ2

∞,i , lim
n→∞σ

2
n,i ,

and recall that for i ∈A for which Tn,i = 0, we have µni =µ1,i = 0 and σ2
n,i =σ2

1,i =∞, and
if Tn,i > 0, we have

µn,i = 1

Tn,i

n−1∑
`=1

1{I` = i }Y`,I` , and σ2
n,i =

σ2

Tn,i
.

For all arms that are sampled infinitely often, we therefore have µ∞,i = µi and σ2
∞,i = 0.

For all arms that are sampled only a finite number of times, i.e. i ∈ I , we have σ2
∞,i > 0,

and there exists a time n0 after which for all n ≥ n0 and i ∈I , we have Tn,i = Tn0,i . Define

Π∞ ,N (µ∞,1,σ2
∞,1)⊗N (µ∞,2,σ2

∞,2)⊗ . . .⊗N (µ∞,k ,σ2
∞,k ) = ⊗

i 6∈I

δµi ⊗
⊗
i∈I

Πn0 .

Then for each i ∈A we define

a∞,i ,Π∞
(
θi > max

j 6=i
θ j

)
.

Then we have for all i ∈I , a∞,i ∈ (0,1), since σ2
∞,i > 0, and thus a∞,I? < 1.

When I is empty, we have an,I? =Πn(θI? > maxi 6=I? θi ), but since Π∞ = ⊗
i∈A δµi , we

have a∞,I? = 1 and a∞,i = 0 for all i 6= I?.

B.7 Proof of Posterior Convergence for Bernoulli Bandits

B.7.1 Preliminaries

We first introduce a crucial Beta tail bound inequality. Let FBeta
a,b denote the cdf of a Beta

distribution with parameters a and b, and FB
c,d the cdf of a Binomial distribution with pa-

rameters c and d , then we have the following relationship, often called the ‘Beta-Binomial
trick’,

FBeta
a,b (y) = 1−FB

a+b−1,y (a −1),
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so that we have

P [X ≥ x] =P[
Ba+b−1,x ≤ a −1

]=P[
Ba+b−1,1−x ≥ b

]
.

We can bound Binomial tails with Sanov’s inequality:

e−nd(k/n,x)

n +1
≤P[

Bn,x ≥ k
]≤ e−nd(k/n,x),

where the last inequalities hold when k ≥ nx.

Lemma B.18. Let X ∼Bet a(a,b) and Y ∼Bet a(c,d) with 0 < a−1
a+b−1 < c−1

c+d−1 . Then we
have P [X > Y] ≤ De−C where

C = inf
a−1

a+b−1≤y≤ c−1
c+d−1

Ca,b(y)+Cc,d (y),

and

D = 3+min

(
Ca,b

(
c −1

c +d −1

)
,Cc,d

(
a −1

a +b −1

))
.

Note that this lemma is the Bernoulli version of Lemma 3.2.

Theorem B.1. Consider the Beta-Bernoulli setting. For β ∈ (0,1), under any allocation

rule satisfying Tn,I?/n →ω
β

I? ,

lim
n→∞− 1

n
log(1−an,I?) ≤ Γ?β ,

and under any allocation rule satisfying Tn,i /n →ω
β

i for each i ∈A ,

lim
n→∞− 1

n
log(1−an,I?) = Γ?β .

Proof. Denote again with I again the set of arms sampled only finitely many times. For
I empty, we thus have µ∞,i , limn→∞µn,i =µi . The posterior variance is

σ2
n,i =

αn,iβn,i

(αn,i +βn,i )2(αn,i +βn,i +1)

= (1+∑n−1
`=1 1{I` = i }Y`,I`)(1+Tn,i −∑n−1

`=1 1{I` = i }Y`,I`)

(2+Tn,i )2(2+Tn,i +1)
.

We see that when I is empty, we have σ2
∞,i , limn→∞σ2

n,i = 0, i.e., the posterior is con-
centrated.
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Step 1: A lower bound when some arms are sampled only finitely often. First, note
that when Tn,i = 0 for some i ∈A , the empirical mean for that arm equals the prior mean
µn,i = α0,i /(α0,i +β0,i ), and the variance is strictly positive:

σ2
n,i = (α0,iβ0,i )/

(
(α0,i +β0,i )2(α0,i +β0,i +1)

)> 0.

When I is not empty, then for every i ∈ I we have σ2
∞,i > 0, and a∞,i ∈ (0,1), implying

a∞,I? < 1, and thus

lim
n→∞− 1

n
log

(
1−an,I?

)=− 1

n
log

(
1−a∞,I?

)= 0.

Step 2: A lower bound when every arm is sampled infinitely often. Suppose now that
I is empty, then we have

max
i 6=I?

Πn(θi ≥ θI?) ≤ 1−an,I? ≤
∑

i 6=I?
Πn(θi ≥ θI?) ≤ (k −1)max

i 6=I?
Πn(θi ≥ θI?).

Thus, we have 1−an,I? ≤ (k −1)maxi 6=I?Πn(θi ≥ θI?) and also 1−an,I?
.= maxi 6=I?Πn(θi ≥

θI?). We have

Γ? = max
w∈W

min
i 6=I?

Ci (ωI? ,ωi ),

Γ?β = max
w∈W;ωI?=β

min
i 6=I?

Ci (β,ωi ), with

Ci (ωI? ,ωi ) = min
x∈R

ωI?d(θI? ; x)+ωi d(θi ; x) =ωI?d(θI? ;θ)+ωi d(θi ;θ),

where θ ∈ [θi ,θI?] is the solution to

A′(θ) = ωI?A′(θI?)+ωi A′(θi )

ωI? +ωi
.

Since every arm is sampled infinitely often, when n is large, we have µn,I? > µn,i . Define
Sn,i ,

∑n−1
`=1 1{I` = i }Y`,I` . Recall that the posterior is a Beta distribution with parameters

an,i = Sn,i + 1 and βn,i = Tn,i − Sn,i + 1. Let τ ∈ N be such that for every n ≥ τ, we have
Sn,i /(Tn,i + 1) < Sn,I?/(Tn,I? + 1). For the sake of simplicity, we define for any i ∈ A the
interval

Ii ,I? ,
[

Sn,i

Tn,i +1
,

Sn,I?

Tn,I? +1

]
.

Then using Lemma B.18 with a = Sn,i +1,b = Tn,i −Sn,i +1,c = Sn,I?+1,d = Tn,I?−Sn,I?+1,
we have

Πn(θi −θI? ≥ 0) ≤ Dexp

{
− inf

y∈Ii ,I?
CSn,i+1,Tn,i−Sn,i+1(y)+CSn,I?+1,Tn,I?−Sn,I?+1(y)

}
.

This implies

1

n
log

 Πn(θi ≥ θI?)

exp
{
− infy∈Ii ,I?

CSn,i+1,Tn,i−Sn,i+1(y)+CSn,I?+1,Tn,I?−Sn,I?+1(y)
}
≤ 1

n
log(D),

which goes to zero as n goes to infinity. Indeed replacing a,b,c,d by their values in the
definition of D we get

D ≤ 3+ (Tn,i −1)kl

(
Sn,i

Tn,i +1
;

Sn,I?

Tn,I? +1

)
≤ 3+ (n +1)kl

(
0;

n

n +1

)
= (n +1)log(n +1) .
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Hence,

Πn(θi ≥ θI?)
.= exp

{
− inf

y∈Ii ,I?
CSn,i+1,Tn,i−Sn,i+1(y)+CSn,I?+1,Tn,I?−Sn,I?+1(y)

}
.

We thus have for any i ,

1−an,i
.= max

j 6=I?
Πn

[
θ j ≥ θI?

]
.= max

j 6=I?
exp

{
− inf

y∈I j ,I?
CSn, j+1,Tn, j−Sn, j+1(y)+CSn,I?+1,Tn,I?−Sn,I?+1(y)

}
.= exp

{
−n min

j 6=I?
inf

y∈I j ,I?

Tn, j +1

n
kl

(
Sn, j

Tn, j +1
; y

)
+ Tn,I? +1

n
kl

(
Sn,I?

Tn,I? +1
; y

)}

≥ exp

{
−n max

ω
min
j 6=I?

inf
y∈I j ,I?

ωi kl

(
Sn, j

Tn, j +1
; y

)
+ωI?kl

(
Sn,I?

Tn, j +1
; y

)}
.

Fix some ε> 0, then there exists some n0(ε) such that for all n ≥ n0(ε), we have for any j ,

I j ,I? =
[

Sn, j

Tn, j +1
,

Sn,I?

Tn,I? +1
,

]
⊂ [

µ j +ε,µI? −ε
]
, I?j ,ε,

and because KL-divergence is uniformly continuous on the compact interval I?j ,ε, there
exists an n1 such that for every n ≥ n1 we have

kl

(
Sn, j

Tn, j +1
; y

)
≥ (1−ε)kl

(
µ j ; y

)
,

for any y and for all j ∈A . Therefore, we have

1−an,i
.= exp

{
−n max

ω
min
j 6=I?

inf
y∈I j ,I?

ω j kl

(
Sn, j

Tn, j +1
; y

)
+ωI?kl

(
Sn,I?

Tn,I? +1
; y

)}

≥ exp

{
−n max

ω
min
i 6=I?

inf
y∈I?j ,ε

ωi kl (µ j ; y)+ωI?kl (µI? ; y)

}
.

Therefore, we have

limsup
n→∞

− 1

n
log(1−an,i ) ≤ Γ?.

If Tn,i /n →ω?i for each i ∈A , we have

lim
n→∞ inf

y∈Ii ,I?

Tn,i +1

n
kl

(
Sn,i

Tn,i +1
; y

)
+ Tn,I? +1

n
kl

(
Sn,I?

Tn,i +1
; y

)
= inf

y∈[µi ,µI?]
ω?i kl (µi ; y)+ω?I?kl (µI? ; y)

= Γ?,

and thus

1−an,i
.= exp

{
−n max

ω
min
j 6=I?

inf
y∈I?ε

ωi kl (µ j ; y)+ωI?kl (µI? ; y)

}
.= exp

{−nΓ?
}

,
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implying

lim
n→∞− 1

n
log

(
1−an,i

)= Γ?.

Everything goes similarly when ωI? = β ∈ (0,1), so under any sampling rule satisfying
Tn,I?/n → β we have

limsup
n→∞

− 1

n
log(1−an,i ) ≤ Γ?β

and under any sampling rule satisfying Tn,i /n →ω
β

i for each i ∈A , we have

lim
n→∞− 1

n
log(1−an,i ) = Γ?β .

B.7.2 Proof of Theorem 3.5

Theorem 3.5. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost
surely that

lim
n→∞− 1

n
log(1−an,I?) = T?β (µ)−1 .

From Theorem B.1 we know that under any allocation rule satisfying Tn,i /n →ω
β

i for every
i ∈A , we have

lim
n→∞− 1

n
log

(
1−an,I?

)= Γ?β .

Thus, we only need to prove that under TTTS, for all i ∈A , we have

lim
n→∞

Tn,i

n
a.s= ω

β

i .

Just as for the proof of the Gaussian case, we can use Lemma 3.4 (proof in Appendix B.6.2),
which implies

lim
n→∞

Tn,i

n
a.s= ω

β

i ⇔ lim
n→∞

Ψn,i

n
a.s= ω

β

i .

Therefore, it suffices to show convergence for ψn,i =Ψn,i /n to ωβi , which we will do next,
following the same steps as in the proof for the Gaussian case.

Step 1: TTTS draws all arms infinitely often and satisfies Tn,I?/n → β. We prove the
following lemma.

Lemma B.19. Under TTTS, it holds almost surely that

1. for all i ∈A , limn→∞ Tn,i =∞.

2. an,I? → 1.

3.
Tn,I?

n → β.
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Proof. First, we give a lemma showing the implications of finite measurement, and con-
sistency when all arms are sampled infinitely often, which provides a proof for 2. The
proof of this lemma follows from the proof of Theorem B.1, and is given in Appendix B.7.3.

Lemma B.20. [Consistency and implications of finite measurement] Denote with I the
arms that are sampled only a finite amount of times:

I = {i ∈ {1, . . . ,k} : ∀n,Tn,i <∞}.

If I is empty, an,i converges almost surely to 1 when i = I? and to 0 when i 6= I?. If I is
non-empty, then for every i ∈I , we have liminfn→∞ an,i > 0 a.s.

Now we can show 1. of Lemma B.19: we show that under TTTS, for each j ∈ A, we have∑
n∈NTn, j =∞. The proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have

ψn,i = an,i

(
β+ (1−β)

∑
j 6=i

an, j

1−an, j

)
,

soψn,i ≥ βan,i , therefore, by Lemma B.15, if i ∈I , then liminf an,i > 0 implies that
∑

nψn,i =
∞. By Lemma 3.4, we then must have that limn→∞ Tn,i =∞ as well: contradiction. Thus,
limn→∞ Tn,i =∞ for all i , and we conclude that an,I? → 1, by Lemma B.15.

Lastly we prove point 3. of Lemma B.19. For TTTS with parameter β, the above im-
plies that ψn,I? → β, and since we have a bound on |Tn,i /n −ψn,i | in Lemma 3.4, we have
Tn,I?/n → β as well.

Step 2: Controlling the over-allocation of sub-optimal arms. Following the proof for
the Gaussian case again, we can establish a consequence of the convergence of Tn,I?/n to
β : if an arm is sampled more often than its optimal proportion, the posterior probability
of this arm to be optimal is reduced compared to that of other sub-optimal arms. We can
prove this by using ingredients from the proof of the lower bound in Theorem B.1.

Lemma B.21. [Over-allocation implies negligible probability]5 Fix any ξ> 0 and j 6= I?.
With probability 1, under any allocation rule, if Tn,I?/n → β, there exist ξ′ > 0 and a
sequence εn with εn → 0 such that for any n ∈N,

Tn, j

n
≥ωβj +ξ =⇒ an, j

maxi 6=I? an,i
≤ e−n(ξ′+εn ).

Proof. By Theorem B.1, we have, as Tn,I?/n → β,

limsup
n→∞

− 1

n
log

(
max
i 6=I?

an,i

)
≤ Γ?β ,

since maxi 6=I? an,i ≤ 1− an,I? . We also have from Lemma B.18 a deviation inequality, so
that we can establish the following logarithmic equivalence:

an, j ≤Πn(θ j ≥ θI?)
.= exp

{−nC j
(
wn,I? ,ωn, j

)} .= exp
{−nC j

(
β,ωn, j

)}
,

160



APPENDIX B. ADDITIONAL PROOFS OF CHAPTER 3

where we denote ωn, j ,
Tn, j

n . We can combine these results, which implies that there
exists a non-negative sequence εn → 0 such that

an, j

maxi 6=I? an,i
≤ exp

{−nC j
(
β,ωn, j

)−εn/2
}

exp
{
−n(Γ?

β
+ε/2)

} = exp
{
−n

(
C j

(
β,ωn, j

)−Γ?β )
−εn

}
.

We know that C j

(
β,ωβj

)
is strictly increasing in ω

β

j , and C j

(
β,ωβj

)
= Γ?

β
, thus, there exists

some ξ′ > 0 such that

ωn, j ≥ωβj +ξ =⇒ C j
(
β,ωn, j

)−Γ?β > ξ′.

Step 3: ψn,i converges toωβi for all arms. To establish the convergence of the allocation
effort of all arms, we rely on the same sufficient condition used in the analysis of Russo
[2016], restated above in Lemma B.17, and we will restate it here again for convenience.

Lemma B.22. [Sufficient condition for optimality] Consider any adaptive allocation
rule. If

ψn,I? → β, and
∑

n∈N
ψn, j 1

{
ψn, j ≥ωβj +ξ

}
<∞, ∀ j 6= I?,ξ> 0, (B.6)

then ψn →ψβ.

First, note that from Lemma B.19 we know that
Tn,I?

n → β, and by Lemma 3.4 this im-
plies ψn,I? → β, hence we can use the lemma above to prove convergence to the opti-
mal proportions. This proof is already given in Step 3 of the proof for the Gaussian case,
and since it does not depend on the specifics of the Gaussian case, except for invoking
Lemma B.15 (consistency), which for the Bernoulli case we replace by Lemma B.20, it
gives a proof for the Bernoulli case as well. We conclude that (B.5) holds, and the conver-
gence to the optimal proportions follows by Lemma B.17.

B.7.3 Proof of auxiliary lemmas

Proof of Lemma B.18

P [X > Y] = E [P [X > Y|Y]] ≤ E
[
1{Y < a −1

a +b −1
}+1{Y ≥ a −1

a +b −1
}P [X > Y|Y]

]
≤ exp

{
−(c +d −1)kl

(
c −1

c +d −1
;

a −1

a +b −1

)}
+E

[
exp

{
−(a +b −1)kl

(
a −1

a +b −1
;Y

)}
1{Y ≥ a −1

a +b −1
}

]
,

Using the Beta-Binomial trick in the second inequality. Then we have (call the second half
A)

A ≤ E
[
1{

a −1

a +b −1
≤ Y ≤ c −1

c +d −1
}

]
exp

{
−(a +b −1)kl

(
a −1

a +b −1
;Y

)}
+exp

{
−(a +b −1)kl

(
a −1

a +b −1
;

c −1

c +d −1

)}
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(call the first half B). Denote with f the density of Y, then

B =
∫ c−1

c+d−1

a−1
a+b−1

exp

{
−(a +b −1)kl

(
a −1

a +b −1
; y

)}
f (y)dy.

Via integration by parts we obtain

B =
[

exp

{
−(a +b −1)kl

(
a −1

a +b −1
; y

)}
P

[
Y ≤ y

]] c−1
c+d−1

a−1
a+b−1

+
∫ c−1

c+d−1

a−1
a+b−1

(a +b −1)
d

dy
kl

(
a −1

a +b −1
; y

)
exp

{−Ca,b(y)
}

P(Y ≤ y)dy

≤
∫ c−1

c+d−1

a−1
a+b−1

(a +b −1)
d

dy
kl

(
a −1

a +b −1
; y

)
exp

{−(Ca,b(y)+Cc,d (y))
}

dy

+exp

{
−(a +b −1)kl

(
a −1

a +b −1
;

c −1

c +d −1

)}
,

where the first inequality uses the Binomial trick again. Let

C = inf
a−1

a+b−1≤y≤ c−1
c+d−1

(a +b −1)kl

(
a −1

a +b −1
; y

)
+ (c +d −1)kl

(
c −1

c +d −1
; y

)
= inf

a−1
a+b−1≤y≤ c−1

c+d−1

Ca,b(y)+Cc,d (y),

then note that in particular we have

C ≤ min

(
(a +b −1)kl

(
a −1

a +b −1
;

c −1

c +d −1

)
, (c +d −1)kl

(
c −1

c +d −1
;

a −1

a +b −1

))
= min

(
Ca,b

(
c −1

c +d −1

)
,Cc,d

(
a −1

a +b −1

))
.

Then

B ≤ e−C
∫ c−1

c+d−1

a−1
a+b−1

(a +b −1)
d

dy
kl (

a −1

a +b −1
; y)dy +e−C

=
[

(a +b −1)kl

(
a −1

a +b −1
;

c −1

c +d −1

)
+1

]
e−C.

Thus we have

P [X > Y] ≤
(
3+ (a +b −1)kl

(
a −1

a +b −1
;

c −1

c +d −1

))
e−C.

By symmetry, we have

P [X > Y] ≤
(
3+min

(
Ca,b

(
c −1

c +d −1

)
,Cc,d

(
a −1

a +b −1

)))
e−C,

where

C = inf
a−1

a+b−1≤y≤ c−1
c+d−1

(a +b −1)kl

(
a −1

a +b −1
; y

)
+ (c +d −1)kl

(
c −1

c +d −1
; y

)
.
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Proof of Lemma B.20 Let I be empty, then we have µ∞,i , limn→∞µn,i = µi . The pos-
terior variance is

σ2
n,i =

αn,iβn,i

(αn,i +βn,i )2(αn,i +βn,i +1)
= (1+∑n−1

`=1 1{I` = i }Y`,I`)(1+Tn,i −∑n−1
`=1 1{I` = i }Y`,I`)

(2+Tn,i )2(2+Tn,i +1)
,

We see that when I is empty, we have σ2
∞,i , limn→∞σ2

n,i = 0, i.e., the posterior is con-
centrated.

When Tn,i = 0 for some i ∈ A , the empirical mean for that arm equals to the prior
mean µn,i = α1,i /(α1,i +β1,i ), and the variance is strictly positive:

σ2
n,i = (αn,iβn,i )/

(
(α1,i +β1,i )2(α1,i +β1,i +1)

)> 0.

When I is not empty, then for every i ∈ I we have σ2
∞,i > 0, and α∞,i ∈ (0,1), implying

α∞,I? < 1, hence the posterior is not concentrated.
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Appendix C

Additional Proofs of Chapter 4

C.1 Notation

Table C.1: Table of notation for Chapter 4.

Notation Meaning

Θ set of parameters
M upper bound on the norm of θ
X finite set or arms
K number of arms
Y transductive set
B number of elements in the transductive set
I finite set of answers
A number of answers
L upper bound on the norms of the arms
θ parameter in Θ
x̂n arm pulled at time n
Tx

n =∑n
t=11{x̂t=x} number of draws of arm x up to time n

Tn,i number of draws of arm indexed i up to time n
Tn = (Tx

n)x∈X vector of number of draws
Tx,i

n =∑n
t=11{x̂t=x,it=i } number of draws of arm x for a given answer i

λ regularization parameter

θ̂
λ
n regularized least square estimate

C.2 Technical Lemmas

C.2.1 Lagrangian lemma

Lemma C.1. For θ,θ′ ∈ Rd , ω in the interior of the probability simplex
◦
ΣK, y ∈ Rd , x ∈ R,

we have
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inf
θ′: yTθ′≥x

∥∥θ−θ′∥∥2
Λω

2
=


(x −yTθ′)2

2
∥∥y

∥∥2
Λ−1
ω

if x ≥ yTθ′

0 otherwise

.

Proof. We consider the Lagrangian of the problem, and we obtain

inf
θ′: yTθ′≥x

∥∥θ−θ′∥∥2
Λω

2
= sup

λ≥0
inf
θ′∈Rd

∥∥θ−θ′∥∥2
Λω

2
+λ(x −yTθ′)

= sup
λ≥0

λ(x −yTθ)−λ2

∥∥y
∥∥2
Λ−1
ω

2

=


(x −yTθ′)2

2
∥∥y

∥∥2
Λ−1
ω

if x ≥ yTθ′

0 otherwise

,

where the infimum in the first equality is reached at θ′ = θ+λΛ−1
ω y and the supremum in

the last equality is reached at

λ=


(x −yTθ)∥∥y

∥∥2
Λ−1
ω

if x ≥ yTθ

0 otherwise

.

C.2.2 Concentration results

We restate here the Theorem 20.4 (in combination with the Equation 20.10) by Lattimore
and Szepesvari [2018].

Theorem C.1. For all λ> 0 and δ ∈ (0,1),

Pθ

[
∃n ∈N,

1

2

∥∥∥θ̂λn −θ
∥∥∥2

ΛTn+λId
≥ dn,δ

]
≤ δ ,

where

dn,δ,

√
log

(
1

δ

)
+ d

2
log

(
1+ nL2

λd

)
+

√
λ

2
M

2

= log

(
1

δ

)
+ d

2
log

(
1+ nL2

λd

)
+M

p
λ

√
2log

(
1

δ

)
+d log

(
1+ nL2

λd

)
+ λM2

2
.

C.2.3 Other technical lemmas

We regroup in this section some other useful technical lemmas.

Lemma C.2. For all α, y ≥ 0, if for some x ≥ 0 if holds y ≥ x −αpx then

x ≤ y +αpy +α2 .
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Proof. Just note that for z =p
x we have

z2 −αz − y ≤ 0,

thus

x ≤ 1

4

(
α+

√
α2 +4y

)2

≤ y + α2

2
+ α

2

√
α2 +4y ≤ y +αpy +α2 .

We then state a result derived from the concavity ofΛ 7→ logdet(Λ).

Lemma C.3. Let (wt )t≥1 be a sequence in ΣK and λ> 0 then

t∑
s=1

∑
x∈X

w s
x ‖x‖2

Ws+λId
≤ d log

(
1+ tL2

dλ

)
.

where Wt =∑t
s=1 ws .

Proof. Define the function f (W) = logdet(ΛW +λId ) for any W ∈ (R+)K. It is a concave
function since the function Λ 7→ logdet(Λ) is a concave function over the set of posi-
tive definite matrices (see Exercise 21.2 of Lattimore and Szepesvari 2018). And its partial
derivative with respect to the coordinate a at W is

∇x f (W) = ‖x‖2
(W+λId )−1 .

Hence using the concavity of f we have∑
x∈X

w s
x ‖x‖2

(ΛWs +λId )−1 = 〈Ws −Ws−1,∇x f (Ws)〉 ≤ f (Ws)− f (Ws−1) .

Which implies that

t∑
s=1

∑
x∈X

w s
x ‖x‖2

ΛWs +λId
≤ f (Wt )− f (W0) = log

(
det(ΛWt +λId )

det(λId )

)
≤ d log

(
1+ tL2

dλ

)
,

where for the last inequality we use the inequality of arithmetic and geometric means in
combination with Tr(Wt ) ≤ tL2 .

A simple consequence of the previous lemma follows.

Lemma C.4. For all t ,

t∑
s=1

∑
x∈X

w̃ x
s ‖x‖2

(ΛTs−1+λId )−1 ≤ 2h(t ) = 2dt ,1/tα

t∑
s=1

∑
x∈X

w x
s ‖x‖2

(ΛTs−1+λId )−1 ≤ 2h(t ) .

Proof. According to the tracking procedure of Degenne et al. [2020b], we know that Tx
s−1 ≥

W̃x
s−1 − log(KA). Thus, in combination with the choice of λ we can replace counts by

weights

ΛTs−1 +λId ≥ΛW̃x
s
−Λw̃ x

s
− log(KA)Λ1K +λId ≥ΛW̃x

s
− (log(K)+1)Λ1K +λId ≥ΛWs +

λ

2
Id ,
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where 1K = (1, . . . ,1) ∈RK. Hence we obtain

‖x‖2
(ΛTs−1+λId )−1 ≤ ‖x‖2

(ΛW̃x
s
+(λ/2)Id )−1 ,

and applying Lemma C.3 leads to

t∑
s=1

∑
x∈X

w̃ x
s ‖x‖2

(ΛTs−1+λId )−1 ≤ d log

(
1+ tL2

dλ

)
≤ 2h(t ) .

The exact same proof holds for w x
s instead of w̃ x

s since thanks to the tracking we have also
in this case Tx

s−1 ≥ Wx
s−1 − log(K) ≥ Wx

s−1 − log(KA).

C.3 Sample Complexity of LinGame

C.3.1 Events

We fix a constant α> 2 and define the event

Et =
{
∀s ≤ t :

1

2

∥∥θ̂s −θ
∥∥2
ΛTs +λId

≤ h(t ), dt ,1/tα

}
.

This event holds with high probability

Lemma C.5. For all t ≥ 1

Pθ
[(

E c
t

)]≤ 1

tα−1
.

We now prove that we can construct, on this event, upper confidence bounds on the
loss given to the learners.

Lemma C.6. On the event Et , for all (x, i ) ∈X ×I and θ′ ∈¬i , for all s ≤ t ,∥∥θ−θ′∥∥2
xxT ≤ min

(
max±

(
〈θ̂s −θ′,x〉±

√
2h(t )‖x‖(ΛTs +λId )−1

)2
,4M2

)
Proof. First, note that since θ,θ′ ∈M , their norms are bounded by M, thus it holds∥∥θ−θ′∥∥2

xxT = 〈θ−θ′,x〉2 ≤ ∥∥θ−θ′∥∥2 ∥∥θ′∥∥2 ≤ 4M2L2 .

Furthermore on Et we have∥∥θ−θ′∥∥2
xxT = 〈θ−θ′,x〉2 ≤ sup{

θ′:
∥∥θ̂s−θ′

∥∥2
(ΛTs +λId )−1≤2h(t )

}〈θ′−θ′,x〉2

= max±

(
〈θ̂s −θ′,x〉±

√
2h(t )‖x‖(ΛTs +λId )−1

)2
.

Combining the two inequalities above allows us to conclude.

We thus define the upper confidence Ux,i
s on the coordinate (x, i ) of the loss at time

s ≤ t ,

Ux,i
s = min

(
max±

(
〈θ̂s−1 −θ′,x〉±

√
2h(t )‖x‖(ΛTs−1+λId )−1

)2
,4M2

)
. (C.1)

The first step of our analysis is to restrict it to the event Et , as is done by Degenne et al.
[2019]; Garivier and Kaufmann [2016].
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Lemma C.7. Let Et be an event and T0(δ) ∈N be such that for t ≥ T0(δ), Et ⊆ {τδ ≤ t }. Then

E[τδ] ≤ T0(δ)+
+∞∑

t=T0(δ)
P(E c

T)

≤ T0(δ)+
+∞∑
t=1

1

tα−1
.

We need to prove that if Et holds, there exists such a time T0(δ).

C.3.2 Analysis under concentration

In this section we assume that the event Et holds. And we set I? = I?(θ) and define the
following quantities

w i
t =1{it=i }wt Wi

t =
t∑

s=1
w i

s Tt ,i =
t∑

s=1
1{x̂t = x, it = i } .

C.3.3 When is = I?.

If the algorithm does not stop at stage t we have

dt ,δ ≥
1

2
max
i∈I

inf
θ′i∈¬i

‖θ̂t −θ′i‖2
ΛTt

≥ 1

2
inf

θ′∈¬I?(θ)
‖θ̂t −θ′‖2

ΛTt
,

Let θ′i ,w (θ) ∈ argminθ′∈¬i ‖θ−θ′‖Λw , such that we have dt ,δ ≥ 1
2‖θ̂t −θ′I?,Tt

(θ̂t )‖2
ΛTt

. We

first transform that norm into a sum over the rounds of divergences from θ̂s−1 (instead of
θ̂t ).

Lemma C.8. If Et holds, then an algorithm using C-Tracking ensures that

1

2
‖θ̂t −θ′I?,Tt

(θ̂t )‖2
ΛTt

+20A

(√
h(t )g (t )

1

2
‖θ̂t −θ′I?,Tt

(θ̂t )‖2
ΛTt

+2h(t )g (t )

)

≥ 1

2

t∑
s=1

‖θ̂s−1 −θ′I?,Tt
(θ̂t )‖2

Λw̃s
.

Proof. Using the triangular inequality,

‖θ− θ̂t‖ΛTt
+‖θ̂t −θ′I?,Tt

(θ̂t )‖ΛTt
≥ ‖θ−θ′I?,Tt

(θ̂t )‖ΛTt
.

We obtain

1

2
‖θ̂t −θ′I?,Tt

(θ̂t )‖2
ΛTt

≥ 1

2

(
‖θ−θ′I?,Tt

(θ̂t )‖ΛTt
−‖θ̂t −θ‖ΛTt

)2

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

−‖θ̂t −θ‖ΛTt
‖θ−θ′I?,Tt

(θ̂t )‖ΛTt
.

By definition of the event Et we know that 1
2‖θ̂t − θ‖2

ΛTt
≤ h(t ) where h(t ) is of order

O(log(t )). Thus we get

1

2
‖θ̂t −θ′I?,Tt

(θ̂t )‖2
ΛTt

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

−
√

4h(t )
1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

,
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which leads to, using Lemma C.2,

dt ,δ+
√

4h(t )dt ,δ+4h(t ) ≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

. (C.2)

We now continue the proof by finding a lower bound for the right hand sum. Using a
tracking property from Degenne et al. [2020b] to state that for all a, − log(A) ≤ Tx

t −Wx
t ≤ 1,

we get

1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

− log(A)

2

∑
x∈X

‖θ−θ′I?,Tt
(θ̂t )‖2

xxT

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

− log(A)

2

√√√√ ∑
x∈X

Tx
t ‖θ−θ′I?,Tt

(θ̂t )‖2
xxT

∑
a:Tx

t ≥1

1

Tx
t

= 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

− log(A)

2

√√√√‖θ−θ′I?,Tt
(θ̂t )‖2

ΛTt

∑
a:Tx

t ≥1

1

Tx
t

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

− log(A)

2

√
A‖θ−θ′I?,Tt

(θ̂t )‖2
ΛTt

.

Combining the last inequality with (C.2) yields

dt ,δ+
√

4h(t )dt ,δ+4h(t )+ log(A)

2

p
2A

√
dt ,δ+

√
4h(t )dt ,δ+4h(t )

≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

.

Some simplifications, using the fact that h(t ) ≥ 1, give us

dt ,δ+6A
(√

h(t )dt ,δ+2h(t )
)
≥ 1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

. (C.3)

We now go from θ to each θ̂s for s ≤ t in the right hand term of the inequality above

1

2
‖θ−θ′I?,Tt

(θ̂t )‖2
ΛWt

= 1

2

t∑
s=1

‖θ−θ′I?,Tt
(θ̂t )‖2

Λws

≥ 1

2

t∑
s=1

(
‖θ̂s−1 −θ′I?,Tt

(θ̂t )‖2
Λws

−2‖θ− θ̂s−1‖Λws
‖θ̂s−1 −θ′I?,Tt

(θ̂t )‖Λws

)
≥ 1

2

t∑
s=1

‖θ̂s−1 −θ′I?,Tt
(θ̂t )‖2

Λws

−
√√√√ t∑

s=1
‖θ− θ̂s−1‖2

Λws

t∑
s=1

‖θ̂s−1 −θ′I?,Tt
(θ̂t )‖2

Λws
. (C.4)

We need to upper bound the quantity
∑t

s=1 w x
s ‖θ− θ̂s−1‖2

xxT . By definition of the event Et

we have

‖θ− θ̂s−1‖2
xxT = 〈θ− θ̂s−1,x〉2

≤ ∥∥θ− θ̂s−1
∥∥2
ΛTs−1+λId

‖a‖2
(ΛTs−1+λId )−1

≤ 2h(t )‖x‖2
(ΛTs−1+λId )−1 .
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Thus thanks to Lemma C.4 we get

t∑
s=1

∑
x∈X

w x
s ‖θ− θ̂s−1‖2

xxT ≤ 2h(t )
t∑

s=1

∑
x∈X

w̃ x
s ‖x‖2

(ΛTs−1+λId )−1 ≤ 2h(t )g (t ) .

Going back to (C.4) in combination with (C.3) and Lemma C.2 leads to

dt ,δ+20A
(√

h(t )g (t )dt ,δ+2h(t )g (t )
)
≥ 1

2

t∑
s=1

‖θ̂s−1 −θ′I?,Tt
(θ̂t )‖2

Λw̃s
. (C.5)

Lemma C.8 introduces a sum of gains/losses on which our algorithms for pulling and

for Nature interact. By definition of the best response θ̃
i
s = infθ′∈¬i ‖θ̂s−1 −θ′‖2

w̃ i
s
, we have

1

2

t∑
s=1

‖θ̂s−1 −θ′I?,Tt
(θ̂t )‖2

Λw̃s
≥ 1

2
inf

θ′∈¬I?

∑
s
‖θ̂s−1 −θ′‖2

Λ
wI?

s

≥ 1

2

t∑
s=1

inf
θ′∈¬I?

‖θ̂s−1 −θ′‖2
Λ

wI?
s

= 1

2

t∑
s=1

∑
x∈X

w x,I?
s ‖θ̂s−1 − θ̃I?

s ‖2
xxT (C.6)

Note that our algorithm computes θ̃
I?

s only when w I?
s 6= 0, i.e. only when is = i∗.

We now introduce the upper confidence bounds

Ux,i
s = min

(
max±

(
〈θ̂s−1 − θ̃i

s), a〉±
√

2h(t )‖x‖(ΛTs +λId )−1

)2
,4L2M2

)
.

Lemma C.9. The upper confidence bounds are such that, under Et ,

1

2

t∑
s=1

∑
x∈X

w x,I?
s ‖θ̂s−1 − θ̃I?

s ‖2
xxT ≥ 1

2

t∑
s=1

∑
x∈X

w x,I?
s Ux,I?

s −h(t )g (t )

−2
√

h(t )g (t )

√√√√1

2

t∑
s=1

∑
x∈X

w x,I?
s ‖θ̂s−1 − θ̃I?

s ‖2
xxT

Proof.

Ux,i
s −‖θ̂s−1 − θ̃i

s‖2
xxT ≤ max±

(
〈θ̂s−1 −θ′,x〉±

√
2h(t )‖x‖(ΛTs−1+λId )−1

)2 −‖θ̂s−1 − θ̃i
s‖2

xxT

≤ 2h(t )‖x‖2
(ΛTs−1+λId )−1 +2

√
2h(t )‖x‖(ΛTs−1+λId )−1 |〈θ̂s−1 −θ′,x〉| .
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Hence summing over times and using the Cauchy-Schwarz inequality we obtain

1

2

t∑
s=1

∑
x∈X

w x,I?
s

(
Ux,I?

s −‖θ̂s−1 − (θ′)I?
s ‖2

xxT

)
≤

t∑
s=1

∑
x∈X

w x,I?
s h(t )‖x‖2

(ΛTs−1+λId )−1 +w x,I?
s

√
2h(t )‖x‖(ΛTs−1+λId )−1 |〈θ̂s−1 −θ′,x〉|

≤ h(t )
∑

x∈X

t∑
s=1

w x,I?
s ‖x‖2

(ΛTs−1+λId )−1

+
√

2h(t )

√√√√ ∑
x∈X

t∑
s=1

w x,I?
s ‖x‖2

(ΛTs−1+λId )−1

√√√√ t∑
s=1

∑
x∈X

w x,I?
s ‖θ̂s−1 − θ̃I?

s ‖2
xxT

≤ h(t )g (t )+2
√

h(t )g (t )

√√√√1

2

t∑
s=1

∑
x∈X

w x,I?
s ‖θ̂s−1 − θ̃I?

s ‖2
xxT ,

where in the last inequality we used Lemma C.4.

Thus combining the previous inequality with (C.6) and Lemma C.8 yields, with some
simplifications,

dt ,δ+40A
(√

h(t )g (t )dt ,δ+2h(t )g (t )
)
≥ 1

2

t∑
s=1

∑
x∈X

w x,I?
s Ux,I?

s . (C.7)

Now we control the regret of the learner L I?
w , thanks to the bound for AdaHedge, see

Lemma 4.2, we have

sup
w∈ΣK

1

2

t∑
s=1

1{it=I?}

∑
x∈X

w xUx,I?
s − 1

2

t∑
s=1

∑
x∈X

w x,I?
s Ux,I?

s ≤ C′√Tt ,i ≤ C′pt .

Then using this inequality in combination with the fact that the losses are optimistic we
obtain

dt ,δ+40A
(√

h(t )g (t )dt ,δ+2h(t )g (t )
)
+C′pt ≥ sup

w∈ΣK

1

2

t∑
s=1

1{is=I?}

∑
x∈X

w xUx,I?
s

≥ sup
w∈ΣK

1

2

t∑
s=1

1{is=I?}

∑
x∈X

w x
∥∥∥θ− (θ′s)I?

∥∥∥2

xxT

= Tt ,I? sup
w∈ΣK

1

Ti∗
t

t∑
s=1

1{is=I?}
1

2

∥∥∥θ− (θ′)I?
s

∥∥∥2

Λw

Now remark that 1
Ti?

t

∑t
s=11{is=I?}

1
2

∥∥∥θ− (θ′)I?
s

∥∥∥2

Λw
is the expectation under some distribu-

tion of 1
2

∥∥∥θ− (θ′)I?
s

∥∥∥2

Λw
.

dt ,δ+40A
(√

h(t )g (t )dt ,δ+2h(t )g (t )
)
+C′pt ≥ Tt ,I? inf

q∈P (¬I?)
sup

w∈ΣK

1

2
Eθ′∼q

∥∥θ−θ′∥∥2
Λw

= Tt ,I?T?(θ)−1 ,

where in the last line we use the theorem of Sion, see...Note that the last inequality holds
also if Tt ,I? = 0. It remains to show that Tt ,I? = t −O(

p
t ).
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C.3.4 When is 6= I?.

Theorem C.2. For i ∈I and t ∈N, let Tt ,i =∑t
s=1 I{is = i }. Then under event Et ,

T∗
t ≥ t −p

t − 16

∆2
min

(
(I−1)C′pt + (1+

p
I−1)2h(t )g (t )

)
.

Since θ ∈¬i for all i 6= i∗, under Et

h(t )g (t ) ≥
t∑

s=1

∑
x∈X

w x
s

1

2
‖θ− θ̂s−1‖2

xxT ≥ ∑
s≤t ,is 6=i∗

∑
x∈X

w x
s

1

2
‖θ− θ̂s−1‖2

xxT

≥ ∑
j 6=i∗

inf
θ′∈¬ j

t∑
s=1

∑
x∈X

w j ,x
s

1

2
‖θ′− θ̂s−1‖2

xxT .

As previously done for i∗, we obtain for all j 6= i∗,

inf
θ′∈¬ j

t∑
s=1

∑
x

w j ,x
s

1

2
‖θ′− θ̂s−1‖2

xxT ≥
√√√√1

2
max
x∈X

t∑
s=1

1{is= j }Ux
s −C′pt −

√
h(t )g (t )

2

.

We show that the sum on the right is proportional to its number of terms n = t −T∗
t ,

then use that the sum on the left is O (
p

t ). We obtain that n =O (
p

t ).

Lemma C.10. If the event Et holds, then for all s ≤ t , if i∗(θ̂s) 6= i∗(θ) then there exists an
arm x ∈X such that

Ux
s ≥ 2h(s)xTΛ−1

Ts
x ≥∆2

min/4 .

Proof. If i∗(θ̂s) 6= i∗(θ), then there exists an arm x ∈X such that

θ̂
T
s (x−x?(θ)) ≥ 0 ⇒(θ̂s −θ)T(x−x?(θ)) ≥∆min

⇒|(θ̂s −θ)Tx|+ |(θ̂s −θ)Tx?(θ)| ≥∆min

Hence either

|(θ̂s −θ)Tx| ≥ ∆min

2
,

or

|(θ̂s −θ)Tx?(θ)| ≥ ∆min

2
.

By consequence, there exists an arm x′ such that

|(θ̂s −θ)Tx′| ≥ ∆min

2
.

With the Cauchy-Schwarz inequality, there exists x ∈X such that

∆min

2
≤

√
‖θ̂s −θ‖2

ΛTs
xTΛ−1

Ts
x .

Under the event Et we obtain

∆min

2
≤

√
2h(s)xTΛ−1

Ts
a ≤

√
Ux

s .
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Lemma C.11. If we have

2h(t )xTΛ−1
Tt

x ≥ x ,

then the following holds ∑
s≤t

Ux
s ≥ x

∑
s≤t

h(s)/h(t ) .

For i 6= i∗, let t ′ = max{s ≤ t , is = i }. Let a′ be an arm such that 2h(t ′)xTΛ−1
Nt ′

a ≥∆2
min/4.

Then

max
x∈X

∑
s≤t ,is=i

Ux
s ≥

∑
s≤t ,is=i

Ux′
s ≥ ∆2

min

4

∑
s≤t ,is=i

h(s)/h(t )

≥ ∆2
min

4

∑
p

t≤s≤t ,is=i

h(s)/h(t )

≥ ∆2
min

4

∑
p

t≤s≤t ,is=i

1

2

= ∆2
min

8
(Tt ,i −Nip

t
)

We get that
∑

i 6=i∗ maxx∈X
∑

s≤t ,is=i Ux
s ≥

∆2
min
8 (t −T∗

t −p
t ) .

h(t )g (t ) ≥ ∑
j 6=i∗

√√√√1

2
max
x∈A

t∑
s=1

1{is= j }Ux
s −C′pt −

√
h(t )g (t )

2

≥ ∑
j 6=i∗

√
∆2

min

16
(Tt , j −N jp

t
)−C′pt −

√
h(t )g (t )

2

= ∆2
min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt

−2
√

h(t )g (t )
∑

j 6=i∗

√
∆2

min

16
(Tt , j −N jp

t
)−C′pt + (I−1)h(t )g (t )

≥ ∆2
min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt

−2
√

(I−1)h(t )g (t )

√√√√ ∑
j 6=i∗

(
∆2

min

16
(Tt , j −N jp

t
)−C′pt )+ (I−1)h(t )g (t )

= ∆2
min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt

−2
√

(I−1)h(t )g (t )

√
∆2

min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt )+ (I−1)h(t )g (t )

=
√

∆2
min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt )−

√
(I−1)h(t )g (t )

2

.

174



APPENDIX C. ADDITIONAL PROOFS OF CHAPTER 4

∆2
min

16
(t −T∗

t −p
t +N∗p

t
)− (I−1)C′pt ≤ (1+

p
I−1)2h(t )g (t )

⇒t −T∗
t ≤p

t + 16

∆2
min

(
(I−1)C′pt + (1+

p
I−1)2h(t )g (t )

)
.

C.4 A Fair Comparison of Stopping Rules

We investigate closely the stopping rules employed in existing linear BAI algorithm. We
first make a synthesized table that resembles stopping rules and decision rules of all ex-
isting algorithms, including ours, in Table C.2. We denote by X̂n the active arm set for
elimination-based algorithms, and by iX̂n

the only arm left in X̂n when |X̂n | = 1.
We show that they are all the same up to the choice of the exploration rate. Note that

in Table C.2, we have replaced all the exploration term by dn,δ, and we have also listed
the original terms (with their original notation, thus may be in conflict with notation of
the current paper). In the following, we always use the same exploration rate dn,δ for all
stopping rules.

Algorithm Stopping rule Decision rule

X Y -Static ∃x ∈X ,∀x′ 6= x,
∥∥x−x′

∥∥
Λ−1

Tn

√
2dn,δ ≤ 〈θ̂λn ,x−x′〉 Jn = I?(θ̂

λ
n)

X Y -Adaptive
|X̂n | = 1, where all arms x ∈X s.t.

∃x′ ∈X ,
∥∥x−x′

∥∥
Λ−1

Tn

√
2dn,δ ≤ 〈θ̂λn ,x′−x〉 are discarded

Jn = iX̂n

ALBA

|X̂n | = 1, where all arms x ∈X s.t.∥∥∥x?(θ̂
λ
n)−x

∥∥∥
Λ−1

Tn√
1/2dn,δ

≤ 〈θ̂λn ,x?(θ̂
λ
n)−x〉 are discarded

Jn = iX̂n

RAGE
|X̂n | = 1, where all arms x ∈X s.t.

∃x′ ∈X ,2−t−2 ≤ 〈θ̂λn ,x′−x〉 are discarded
Jn = iX̂n

LinGapE
〈θ̂λn ,x jn −x?(θ̂

λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x jn

∥∥∥
Λ−1

Tn

√
2dn,δ < 0

with jn = argmax j∈I 〈θ̂λn ,x j −x?(θ̂
λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x j

∥∥∥
Λ−1

Tn

√
2dn,δ

Jn = I?(θ̂
λ
n)

GLGapE
〈θ̂λn ,x jn −x?(θ̂

λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x jn

∥∥∥
Λ−1

Tn

√
2dn,δ < 0

with jn = argmax j∈I 〈θ̂λn ,x j −x?(θ̂
λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x j

∥∥∥
Λ−1

Tn

√
2dn,δ

Jn = I?(θ̂
λ
n)

GLUCB
maxi∈I infθ′∈¬i

∥∥∥θ̂λn −θ′
∥∥∥2

ΛTn

2
≥ dn,δ

Jn = I?(θ̂
λ
n)

LinGame
maxi∈I infθ′∈¬i

∥∥∥θ̂λn −θ′
∥∥∥2

ΛTn

2
≥ dn,δ

Jn = in+1

LinGame-C
maxi∈I infθ′∈¬i

∥∥∥θ̂λn −θ′
∥∥∥2

ΛTn

2
≥ dn,δ

Jn = I?(θ̂
λ
n)

Table C.2: Stopping rules for different linear BAI algorithms.

LinGame. We first notice that using the same argument as the proves of Lemma C.1 and
Proposition 4.1, the stopping rule of LinGame (and also the one of GLUCB) can be rewritten
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as

min
i 6=I?(θ̂

λ
n )

〈θ̂λn ,xi −x?(θ̂
λ
n)〉2

2
∥∥∥xi −x?(θ̂

λ
n)

∥∥∥2

Λ−1
Tn

1
{

x?(θ̂
λ
n)Tθ̂

λ
n ≥ xT

i θ̂
λ
n

}
> dn,δ .

Now we compare it with other stopping rules.

LinGame ⇒ X Y -Static. If LinGame stops at time t , then for x = x?(θ̂
λ
n), we have

∀x′ 6= x,
∥∥x−x′∥∥

Λ−1
Tn

√
2dn,δ ≤ 〈θ̂λn ,x−x′〉 ,

and X Y -Static stops as well.

X Y -Static ⇒ X Y -Adaptive. Suppose that X Y -Static stops at time t under its
stopping rule, then

∃x ∈X ,∀x′ 6= x,
∥∥x−x′∥∥

Λ−1
Tn

√
2dn,δ ≤ 〈θ̂λn ,x−x′〉 .

It is clear that if such x exists, then it can only be the empirical best arm x?(θ̂
λ
n). Thus,

∀x′ 6= x?(θ̂
λ
n),

∥∥∥x?(θ̂
λ
n)−x′

∥∥∥
Λ−1

Tn

√
2dn,δ ≤ 〈θ̂λn ,x?(θ̂

λ
n)−x′〉 ,

and all arms different from x?(θ̂
λ
n) would be discarded under X Y -Adaptive. Further-

more, x?(θ̂
λ
n) would never be discarded since

∀x′ 6= x?(θ̂
λ
n),〈θ̂λn ,x′−x?(θ̂

λ
n)〉 < 0 ≤

∥∥∥x?(θ̂
λ
n)−x′

∥∥∥
Λ−1

Tn

√
2dn,δ ,

and X Y -Adaptive stops.

X Y -Adaptive⇒ ALBA Now if X Y -Adaptive stops at time t , then all arms but x?(θ̂
λ
n)

are discarded, and

∀a 6= x?(θ̂
λ
n),

∥∥∥x?(θ̂
λ
n)−x′

∥∥∥
Λ−1

Tn

√
2dn,δ =

∥∥∥x?(θ̂
λ
n)−x

∥∥∥
Λ−1

Tn√
1/2dn,δ

≤ 〈θ̂λn ,x?(θ̂
λ
n)−x〉 .

Therefore, those arms would also be discarded under ALBA, and ALBA stops.

ALBA ⇒ LinGapE and GLGapE. Next, suppose that ALBA stops at time n under its stop-

ping rule, then the only arm left would be x?(θ̂
λ
n), and

∀x 6= x?(θ̂
λ
n),

∥∥∥x?(θ̂
λ
n)−x

∥∥∥
Λ−1

Tn√
1/2dn,δ

≤ 〈θ̂λn ,x?(θ̂
λ
n)−x〉 .

And in particular, we get

〈θ̂λn ,x jn −x?(θ̂
λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x jn

∥∥∥
Λ−1

Tn

√
2dn,δ < 0.

Thus LinGapE/GLGapE stops under its stopping rule.
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LinGapE ⇒ LinGame Finally, we suppose that LinGapE stops at time n, then it comes

jn = argmax
j∈I

〈θ̂λn ,x j −x?(θ̂
λ
n)〉+

∥∥∥x?(θ̂
λ
n)−x j

∥∥∥
Λ−1

Tn

√
2dn,δ

= argmin
j∈I

〈θ̂λn ,x?(θ̂
λ
n)−x j 〉−

∥∥∥x?(θ̂
λ
n)−x j

∥∥∥
Λ−1

Tn

√
2dn,δ .

By consequence,

min
i 6=I?(θ̂

λ
n )

〈θ̂λn ,xi −x?(θ̂
λ
n)〉2

2
∥∥∥xi −x?(θ̂

λ
n)

∥∥∥2

Λ−1
Tn

1
{

x?(θ̂
λ
n)Tθ̂

λ
n ≥ xT

i θ̂
λ
n

}
= 〈θ̂λn ,x jn −x?(θ̂

λ
n)〉2

2
∥∥∥x jn −x?(θ̂

λ
n)

∥∥∥2

Λ−1
Tn

≥ dn,δ ,

and LinGame stops as well.
In conclusion, all the stopping rules are equivalent if we set their exploration term to

the same, though formulated in different manners.
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Appendix D

Additional Proofs of Chapter 5

D.1 Notation

Table D.1: Table of notation for Chapter 5.

Notation Meaning

c1 , (ρ/(3ν))1/8 constant
c , 2

√
1/(1−ρ) constant

Ih(n) set of nodes created by HCT at level h up to step n
I+

h (n) subset of Ih(n) which contains only the internal nodes
(hn , in) node selected by the algorithm at each step n
Ch,i , {n = 1, · · · ,N : (hn , in) = (h, i )} all the time that (h, i ) is selected by the algorithm
C +

h,i ,
⋃

j∈{0,...,K−1}
Ch+1,Ki− j set of child nodes of (hn , in)

nh,i ,maxn∈Ch,i n last time (h, i ) has been selected
ñh,i ,maxn∈C +

h,i
n last time when one of its children has been selected

nh,i ,min{n : Th,i (N) ≥ τh(n)} time when (h, i ) is expanded
x̂n arm pulled at time n
Tx

n =∑n
t=11{x̂t=x} number of draws of arm x at time n

Tn = (Tx
n)x∈X vector of number of draws

Tx,i
n =∑n

t=11{x̂t=x,it=i } number of draws of arm x for a given answer i
λ regularization parameter

θ̂
λ
n regularized least square estimate

We further introduce some additional notation that are needed for the proof of Theo-
rem 5.2.

• For any t , let yn , (rn , xn) be a random variable, we define the filtration Fn as a
σ-algebra generated by (y1, . . . , yn).

• Another important notion in HCT is the threshold τh on the number of pulls needed
before a node at level h can be expanded. The threshold τh is chosen such that the
two confidence terms in Uh,i are roughly equivalent, that is,

νρh ' c

√
log(1/δ̃(n+))

τh(n)
.
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Therefore, we choose

τh(n), dc2 log(1/δ̃(n+))

ν2
ρ−2he .

Since n+ is defined as 2dlog(n)e, we have n ≤ n+ ≤ 2n. In addition, log is an increasing
function, thus we have

c2

ν2
ρ−2h ≤ c2 log(1/δ̃(n))

ν2
ρ−2h ≤ τh(n) ≤ c2 log(2/δ̃(n))

ν2
ρ−2h , (D.1)

where the first inequality follows from the fact that 0 < δ̃(n) ≤ 1/2.

D.2 Detailed regret analysis for HCT under Assumption 5.2

We begin our analysis by bounding the maximum depth of the trees constructed by HCT.

D.2.1 Maximum depth of the tree (proof of Lemma 5.1)

Lemma 5.1. The depth of the covering tree produced by HCT after N function evalua-
tions satisfies

H(N) ≤ Hmax(N), d 1

2(1−ρ)
log

(
Nν2

c2ρ2

)
e .

Proof. The deepest tree that can be constructed by HCT is a linear one, where at each level
one unique node is expanded. In such case, |I+

h (N)| = 1 and |Ih(N)| = K for all h < H(N).
Therefore, we have

N =
H(N)∑
h=0

∑
i∈Ih (N)

Th,i (N)

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

Th,i (N)

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

Th,i (nh,i )

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

τh(nh,i ) (D.2)

≥
H(N)−1∑

h=0

c2

ν2
ρ−2h (D.3)

≥ (cρ)2

ν2
ρ−2H(N)H(N) (D.4)

≥ (cρ)2

ν2
ρ−2H(N) .

In the previous reasoning, (D.2) is based on the definition of nh,i , (D.3) is due to inequal-
ity (D.1), and (D.4) holds since h ≤ H(N)−1.
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By solving this expression, we obtain

H(N) ≤ 1

2
log

(
Nν2

c2ρ2

)
/log(1/ρ)

≤ 1

2(1−ρ)
log

(
Nν2

c2ρ2

)
(D.5)

≤ d 1

2(1−ρ)
log

(
Nν2

c2ρ2

)
e

,Hmax(N).

where (D.5) follows from log(1/ρ) ≥ 1−ρ.

D.2.2 High-probability event

In Section 5.4.2, we described the favorable event ξn . We now define it precisely. We first
define a set Ln that contains all possible nodes in trees of maximum depth Hmax(n),

Ln ,
⋃

T :depth(T )≤Hmax(n)
Nodes(T )

and we recall the definition of the favorable event

ξn ,

∀(h, i ) ∈Ln , |µ̂h,i (n)−µh,i | ≤ c

√
log(1/δ̃(n))

Th,i (n)

·

Next, we prove that our favorable event holds with high probability.

Lemma D.1. With c1 and c defined in Section 5.2, for any fixed round n,

P [ξn] ≥ 1− 4δ

3n6
.

Proof. Let µ̂h,i ,s be the empirical mean reward of the first s noisy evaluations of f in xh,i ,
we upper-bound the probability of the complementary event ξc

n as

P
[
ξc

n

]≤ ∑
(h,i )∈Ln

n∑
s=1

P

|µ̂h,i ,s −µh,i | ≥ c

√
log(1/δ̃(n))

s

 (D.6)

≤ ∑
(h,i )∈Ln

n∑
s=1

2exp
(−2c2 log(1/δ̃(n))

)
(D.7)

= 2exp
(−2c2 log(1/δ̃(n))

)
n|Ln |

= 2(δ̃(n))2c2
n|Ln |

≤ 2(δ̃(n))2c2
n2Hmax (n)+1

= 2(δ̃(n))2c2
n2

d 1
2(1−ρ) log

(
nν2

c2ρ2

)
e+1

(D.8)

≤ 8n(δ̃(n))2c2
(

tν2

c2ρ2

) 1
2(1−ρ)
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≤ 8n

(
δ

n
(ρ/(3ν))1/8)

8
1−ρ

)(
nν2(1−ρ)

4ρ2

) 1
2(1−ρ)

(D.9)

= 8n

(
δ

n

) 8
1−ρ ( ρ

3ν

) 1
1−ρ

n
1

2(1−ρ)

(
ν
√

1−ρ
2ρ

) 1
1−ρ

≤ 4

3
δn

−2ρ−13
2(1−ρ)

≤ 4δ

3n6
.

Here, (D.6) is derived using a union bound, and (D.7) is due to the Hoeffding inequality
(see Appendix A.2 for details). (D.8) is a result of Lemma 5.1 and finally (D.9) is obtained
by plugging in values of c and c1.

D.2.3 Failing confidence bound

We decompose the regret of HCT into two terms depending on whether ξn holds. Let us
define ∆n , f ?− rn . Then, we decompose the regret as

RHCT
N =

N∑
n=1

∆n =
N∑

n=1
∆n1ξn +

N∑
n=1

∆n1ξc
n
= RξN +Rξ

c

N .

The failing confidence term Rξ
c

N is bounded by the following lemma.

Lemma D.2. With c1 and c defined in Section D.1, when the favorable event does not
hold, the regret of HCT is with probability 1−δ/(5N2) bounded as

Rξ
c

N ≤
p

N.

Proof. We split the term into rounds from 1 to
p

N and the rest,

Rξ
c

N =
N∑

n=1
∆n1ξc

n
=

p
N∑

n=1
∆n1ξc

n
+

N∑
n=pN+1

∆n1ξc
n

.

The first term can be bounded trivially by
p

N since |∆n | ≤ 1. Next, we show that the
probability that the second term is non zero is bounded by δ/(5N2).

P

[
N∑

n=pN+1

∆n1ξc
n
> 0

]
=P

[
N⋃

n=pN+1

ξc
n

]

≤
N∑

n=pN+1

P
[
ξc

n

]
(D.10)

≤
N∑

n=pN+1

δ

n6
(D.11)

≤
∫ ∞
p

N

δ

n6
dn

= δ

5N5/2
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≤ δ

5N2
.

In the previous reasoning, (D.10) is achieved again by a simple union bound, and (D.11)
can be obtained by Lemma D.1

D.2.4 Proof of Theorem 5.2

Theorem 5.2. Assume that function f satisfies Assumption 5.2. Then, setting δ, 1/N,
the cumulative regret of HCT(ν,ρ) after N function evaluations is upper bounded as

E[RHCT(ν,ρ)
N ] ≤ αC(logN)1/(d(ν,C,ρ)+2)N(d(ν,C,ρ)+1)/(d(ν,C,ρ)+2) ,

where α is a numerical constant and C is the constant associated to d(ν,C,ρ).

For the sake of simplicity, we denote d(ν,C,ρ) as d in the rest of this section. We study the
regret under events {ξn}n and prove that

RHCT(ν,ρ)
N ≤ 2

√
2Nlog(

4N2

δ
)+3

(
23d+7νd KCρd

(1−ρ)2

) 1
d+2

(
log

(
2N

δ
8

√
3ν

ρ

)) 1
d+2

N
d+1
d+2

holds with probability 1−δ. We decompose the proof into 3 steps.

Step 1: Decomposition of the regret. We start by further decomposing the instanta-
neous regret into two terms,

∆n = f ?− rn = f ?− f (xhn ,in )+ f (xhn ,in )− rn =∆hn ,in + ∆̂n .

The regret of HCT when confidence intervals hold can thus be rewritten as

RξN =
N∑

n=1
∆hn ,in 1ξn +

N∑
n=1

∆̂n1ξn ≤
N∑

n=1
∆hn ,in 1ξn +

N∑
n=1

∆̂n = R̃ξN + R̂ξN. (D.12)

We notice that the sequence {∆̂n}N
n=1 is a bounded martingale difference sequence since

E
[
∆̂n |Fn−1

]= 0 and |∆̂n | ≤ 1. Thus, we apply the Azuma’s inequality on this sequence and
obtain

R̂ξN ≤
√

2Nlog

(
4N2

δ

)
(D.13)

with probability 1−δ/(4N2).

Step 2: Preliminary bound on the regret of selected nodes and their parents. Now we
proceed with the bound of the first term R̃ξN. Recall that Pn is the optimistic path traversed

by HCT at round t . Let (h′, i ′) ∈ Pn and (h
′′
, i

′′
) be the node which immediately follows

(h′, i ′) in Pn . By definition of B-values and U-values, we have

Bh′,i ′(n) ≤ max
j∈{0,...,K−1}

{
Bh′+1,Ki ′− j (n)

}= Bh′′ ,i ′′ (n), (D.14)
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where the last equality follows from the fact that the subroutine OptTraverse selects the
node with the largest B-value. By iterating the previous inequality along the path Pn until
the selected node (hn , in) and its parent (hp

n , i p
n ), we obtain

∀(h′, i ′) ∈ Pn ,Bh′,i ′(n) ≤ Bhn ,in (n) ≤ Uhn ,in (n),

∀(h′, i ′) ∈ Pn \ {(hn , in)} ,Bh′,i ′(n) ≤ Bh
p
n ,i

p
n

(n) ≤ Uh
p
n ,i

p
n

(n).

Since the root, which is an optimal node, is in Pn , there exists at least one optimal node
(h?, i?) in path Pn . As a result, we have

Bh?,i?(n) ≤ Uhn ,in (n), (D.15)

Bh?,i?(n) ≤ Uh
p
n ,i

p
n

(n). (D.16)

We now expand (D.15) on both sides under ξn . First, we have

Uhn ,in (n), µ̂hn ,in (n)+νρhn + c

√
log(1/δ̃(n+))

Thn ,in (n)

≤ f (xhn ,in )+νρhn +2c

√
log(1/δ̃(n+))

Thn ,in (n)
(D.17)

and the same holds for the parent of the selected node,

Uh
p
n ,i

p
n

(n) ≤ f (xh
p
n ,i

p
n

)+νρh
p
n +2c

√√√√ log(1/δ̃(n+))

Th
p
n ,i

p
n

(n)
.

By Lemma 5.2, we know that Uh?,i?(n) is a valid upper bound on f ?. If an optimal node
(h?, i?) is a leaf, then Bh?,i?(n) = Uh?,i?(n) is also a valid upper bound on f ?. Otherwise,
there always exists a leaf which contains the maximum for which (h?, i?) is its ancestor.
Now, if we propagate the bound backward from this leaf to (h?, i?) through (D.14), we
have that Bh?,i?(n) is still a valid upper bound on f ?. Thus for any optimal node (h?, i?),
at round n under ξn , we have

Bh?,i?(n) ≥ f ?. (D.18)

We combine (D.18) with (D.15) and (D.17) to obtain

∆hn ,in , f ?− f (xhn ,in ) ≤ νρhn +2c

√
log(1/δ̃(n+))

Thn ,in (n)
·

The same result holds for its parent,

∆h
p
n ,i

p
n
, f ?− f (xh

p
n ,i

p
n

) ≤ νρh
p
n +2c

√√√√ log(1/δ̃(n+))

Th
p
n ,i

p
n

(n)
·

We now refine the two above expressions. The subroutine OptTraverse tells us that HCT
only selects a node when Th,i (N) < τh(n). Therefore, by definition of τhn (n), we have

∆hn ,in ≤ 3c

√
log(2/δ̃(n))

Thn ,in (n)
· (D.19)

On the other hand, OptTraverse tells us that Th
p
n ,i

p
n

(n) ≥ τh
p
n

(n), thus

∆h
p
n ,i

p
n
≤ 3νρh

p
n ,

which means that every selected node has a parent which is (3νρhn−1)-optimal.
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Step 3: Bound on the cumulative regret. We return to term R̃ξN and split it into different

depths. Let 1 ≤ H ≤ H(N) be a constant that we fix later. We have

R̃ξN ,
N∑

n=1
∆hn ,in 1ξn

≤
H(N)∑
h=0

∑
i∈Ih (N)

N∑
n=1

∆h,i 1(hn ,in )=(h,i )1ξn

≤
H(N)∑
h=0

∑
i∈Ih (N)

N∑
n=1

3c

√
log(2/δ̃(n))

Th,i (n)
1(hn ,in )=(h,i ) (D.20)

=
H∑

h=0

∑
i∈Ih (N)

N∑
n=1

3c

√
log(2/δ̃(n))

Th,i (n)
1(hn ,in )=(h,i )

+
H(N)∑

h=H+1

∑
i∈Ih (N)

N∑
n=1

3c

√
log(2/δ̃(n))

Th,i (n)
1(hn ,in )=(h,i )

≤
H∑

h=0

∑
i∈Ih (N)

τh (nh,i )∑
s=1

3c

√
log(2/δ̃(nh,i ))

s
+

H(N)∑
h=H+1

∑
i∈Ih (N)

Th,i (N)∑
s=1

3c

√
log(2/δ̃(nh,i ))

s

≤
H∑

h=0

∑
i∈Ih (N)

∫ τh (nh,i )

1
3c

√
log(2/δ̃(nh,i ))

s
ds

+
H(N)∑

h=H+1

∑
i∈Ih (N)

∫ Th,i (N)

1
3c

√
log(2/δ̃(nh,i ))

s
ds

≤
H∑

h=0

∑
i∈Ih (N)

6c
√
τh(nh,i ) log(2/δ̃(nh,i ))+

H(N)∑
h=H+1

∑
i∈Ih (N)

6c
√

Th,i (N)log(2/δ̃(nh,i ))

= 6c


H∑

h=0

∑
i∈Ih (N)

√
τh(nh,i ) log(2/δ̃(nh,i ))︸ ︷︷ ︸

(a)

+
H(N)∑

h=H+1

∑
i∈Ih (N)

√
Th,i (N)log(2/δ̃(nh,i ))︸ ︷︷ ︸

(b)

 .

In particular, (D.20) is due to inequality (D.19).
We bound separately the terms (a) and (b). Since nh,i ≤ N, we have

(a) ≤
H∑

h=0

∑
i∈Ih (N)

√
τh(N)log(2/δ̃(N))

≤
H∑

h=0
|Ih(N)|

√
τh(N)log(2/δ̃(N)).

Notice that the covering tree is K-ary and therefore |Ih(N)| ≤ K|Ih−1(N)|. Recall that HCT
only selects a node (hn , in) when its parent is 3νρhn−1-optimal. Therefore, by definition of
the near-optimality dimension,

|Ih(N)| ≤ |KIh−1(N)| ≤ KCρ−d(h−1),

where d is the near-optimality dimension. As a result, for term (a), we obtain that

(a) ≤
H∑

h=0
KCρ−d(h−1)

√
τh(N)log(2/δ̃(N))
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=
H∑

h=0
KCρ−d(h−1)

√
c2 log(2/δ̃(N))

ν2
ρ−2h log(2/δ̃(N)) (D.21)

= KCρd c log(2/δ̃(N))

ν

H∑
h=0

ρ−h(d+1) .

where (D.21) is deduced from inequality (D.1). Consequently, we bound (a) as

(a) ≤ KCρd c log
(
2/δ̃(N)

)
ν

ρ−H(d+1)

1−ρ · (D.22)

We proceed to bound the second term (b). By the Cauchy-Schwarz inequality,

(b) ≤
√√√√ H(N)∑

h=H+1

∑
i∈Ih (N)

log
(
2/δ̃

(
nh,i

))√√√√ H(N)∑
h=H+1

∑
i∈Ih (N)

Th,i (N)

≤
√√√√n

H(N)∑
h=H+1

∑
i∈Ih (N)

log
(
2/δ̃

(
nh,i

))
,

where we trivially bound the second square-root factor by the total number of pulls. Now
consider the first square-root factor. Recall that the HCT algorithm only selects a node
when Th,i (n) ≥ τh(n) for its parent. We therefore have Th,i (ñh,i ) ≥ τh(ñh,i ) and the follow-
ing sequence of inequalities,

N =
H(N)∑
h=0

∑
i∈Ih (N)

Th,i (N)

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

Th,i (N)

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

Th,i (ñh,i ) (D.23)

≥
H(N)−1∑

h=0

∑
i∈I+

h (N)

τh(ñh,i )

≥
H(N)−1∑

h=H

∑
i∈I+

h (N)

τh(ñh,i )

=
H(N)−1∑

h=H

∑
i∈I+

h (N)

c2 log(1/δ̃(ñ+
h,i )))

ν2
ρ−2h

≥
H(N)−1∑

h=H

∑
i∈I+

h (N)

c2 log(1/δ̃(ñ+
h,i )))

ν2
ρ−2H

= c2ρ−2H

ν2

H(N)−1∑
h=H

∑
i∈I+

h (N)

log(1/δ̃(ñ+
h,i )))

= c2ρ−2H

ν2

H(N)−1∑
h=H

∑
i∈I+

h (N)

log(1/δ̃(
[
max(nh+1,2i−1,nh+1,2i )

]+)) (D.24)
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= c2ρ−2H

ν2

H(N)−1∑
h=H

∑
i∈I+

h (N)

log(1/δ̃(max(n+
h+1,2i−1,n+

h+1,2i ))) (D.25)

= c2ρ−2H

ν2

H(N)−1∑
h=H

∑
i∈I+

h (N)

max(log(1/δ̃(n+
h+1,2i−1)), log(1/δ̃(n+

h+1,2i )))

≥ c2ρ−2H

ν2

H(N)−1∑
h=H

∑
i∈I+

h (N)

log(1/δ̃(n+
h+1,2i−1))+ log(1/δ̃(n+

h+1,2i ))

2

= c2ρ−2H

ν2

H(N)∑
h=H+1

∑
i∈I+

h−1(n)

log(1/δ̃(n+
h,2i−1))+ log(1/δ̃(n+

h,2i ))

2
(D.26)

= c2ρ−2H

2ν2

H(N)∑
h=H+1

∑
i∈I+

h (N)

log(1/δ̃(n+
h,i )) .

Note that in (D.23), ñh,i is well defined for i ∈ I+
h (N). In the above derivation, (D.24)

holds since ñh,i = max(nh+1,2i−1,nh+1,2i ), and (D.25) holds since ∀n1,n2, [max(n1,n2)]+ =
max(n+

1 ,n+
2 ). Besides, (D.26) is simply due to a change of variables. Finally, the last equal-

ity relies on the fact that for any h > 0, I+
h (N) covers all the internal nodes at level h and

therefore its children cover Ih+1(N). We thus obtain

H(N)∑
h=H+1

∑
i∈I+

h (N)

log(1/δ̃(n+
h,i )) ≤ 2ν2ρ2HN

c2
· (D.27)

On the other hand, we have

(b) ≤
√√√√n

H(N)∑
h=H+1

∑
i∈Ih (N)

log(2/δ̃(nh,i ))

≤
√√√√n

H(N)∑
h=H+1

∑
i∈Ih (N)

2log(1/δ̃(nh,i ))

≤
√√√√n

H(N)∑
h=H+1

∑
i∈Ih (N)

2log(1/δ̃(n+
h,i )) .

The last seep holds in the above since nh,i ≤ n+
h,i . By plugging (D.27) into the expression

above, we get

(b) ≤ 2νρHN

c
· (D.28)

Now if we combine (D.28) with (D.22), we bound R̃ξN as

R̃ξN ≤ 6ν

[
KCρd c2 log(2/δ̃(N))

ν2

ρ−H(d+1)

1−ρ +2ρHN

]
. (D.29)

We choose H to minimize the above bound by equalizing the two terms in the sum and
obtain

ρH =
(

KCρd c2 log(2/δ̃(N))

2n(1−ρ)ν2

) 1
d+2

, (D.30)
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which after being plugged into (D.29) gives

R̃ξN ≤ 24ν

(
KCρd c2 log(2/δ̃(N))

2(1−ρ)ν2

) 1
d+2

N
d+1
d+2 . (D.31)

Finally, combining (D.31), (D.13), and Lemma D.2, we obtain

RHCT
N ≤

p
N+

√
2Nlog(

4N2

δ
)+24ν

(
2KCρd

(1−ρ)2ν2

) 1
d+2

(
log

(
2N

δ
8

√
3ν

ρ

)) 1
d+2

N
d+1
d+2

=
p

N+
√

2Nlog(
4N2

δ
)+3

(
23d+7νd KCρd

(1−ρ)2

) 1
d+2

(
log

(
2N

δ
8

√
3ν

ρ

)) 1
d+2

N
d+1
d+2

≤ 2

√
2Nlog(

4N2

δ
)+3

(
23d+7νd KCρd

(1−ρ)2

) 1
d+2

(
log

(
2N

δ
8

√
3ν

ρ

)) 1
d+2

N
d+1
d+2

with probability 1−δ.

D.3 General analysis of POO

We prove Proposition 5.1 in this section. The analysis of POO originally proposed by Grill
et al. [2015] consists in two main parts, that can be adapted to any base algorithm satisfy-
ing assumption (5.6) on its cumulative regret. In the following, we assume that ν? ≤ νmax

and ρ? ≤ ρmax.
The first part of the analysis consists in proving that there exists a parameter ρ such

that (νmax,ρ) ∈ G and the instance A (νmax,ρ) has its simple regret bounded in terms of
the true parameters (ν?,ρ?). One important ingredient is the following lemma, which
upper bounds the difference between the near-optimality dimension d(νmax,C,ρ) and
d(ν?,C?,ρ?) for ρ> ρ?.

Lemma D.3 (Appendix B.1 of Grill et al. 2015). Under Assumption 5.2, for any choice of ρ?

and ρ s.t. 0 < ρ? < ρ< 1, we have

d(νmax,C,ρ)−d(ν?,C?,ρ?) ≤ logK

(
1

log(1/ρ)
− 1

log(1/ρ?)

)
.

Lemma D.3 endorses the choice of grid G = {(νmax,ρ2M/(2i+1)
max )i }, which ensures that

ρ, argmin
ρi≥ρ?

[
d(νmax,Ci ,ρi )−d(ν?,C?,ρ?)

]
.

satisfies d(νmax,C,ρ)−d(ν?,C?,ρ?) ≤ Dmax/N, where C is associated to ρ. A close exami-
nation of Appendix B.2 and B.3 of Grill et al. [2015] shows that under the assumption

logE
[

SA (νmax,ρ)
n

]
≤ logα+ logC(νmax,ρ)

d(νmax,C,ρ)+2
− log(n/logn)

d(νmax,C,ρ)+2
, (D.32)

the simple regret of A (νmax,ρ) can also be related to (ν?,C?,ρ?): for some constant α′,

E
[

SA (νmax,ρ)
n

]
≤ α′Dmax(νmax/ν?)Dmax

(
(log2 n)/n)1/(d(ν?,C?,ρ?)+2)

)
(D.33)
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under assumption described by (5.6) on the cumulative regret of the base algorithms.
Note that (D.32) holds as the recommendation rule ensures that E [Sn] = E [Rn]/n.

The second part of the analysis controls the simple regret of POO(A ) by showing that
the error made when choosing s? 6= (νmax,ρ) is negligible. We highlight that for this part,
having cumulative regret guarantees is crucial. Denoting by (xi , j )1≤i≤N/M the successive
points selected by algorithm j and (ri , j )1≤i≤N/M the reward observed, the final output of
POO(A ) can be written as

x̂ = xI, ̂ where I ∼U ({1, . . . ,N/M}) and ̂ = argmax
j

µ̂ j

with

µ̂ j = M

N

N/M∑
i=1

ri , j .

One can also define ̃ = argmax j µ j with

µ j = M

N

N/M∑
i=1

f (xi , j )

and  to be the index of the instance such that ρ  = ρ. First, some concentration results

(see Appendix B.4 of Grill et al. 2015) show that for all j , E
[|µ̂ j −µ j |

] ≤ C/
p

N/M. The
simple regret can then be upper bounded as

E
[

SPOO(A )
N

]
= E

[
f ?− f (x̂)

]= E[
f ?− M

N

N/M∑
i=1

f (xi , ̂ )

]
= E[

f ?−µ ̂
]

= E
[

f ?−µ 
]+E[

µ  −µ ̃
]+E[

µ ̃ − µ̂ ̃
]+E[

µ̂ ̃ − µ̂ ̂
]+E[

µ̂ ̂ −µ ̂
]

The second and fourth terms in this sum are negative by definition of j̃ and ĵ respec-
tively, while the third and last terms are O(

p
N/n) using the concentration result men-

tioned above. As for the first term, one has

E
[

f ?−µ 
]= M

N
E

[
T∑

t=1
( f ?− ri ,  )

]
= M

N
E
[

RA (νmax,ρ)
N/M

]
= E

[
SA (νmax,ρ)

N/M

]
,

where again the recommendation rule matters. Using the upper bound (D.33) obtained
in the first part of the analysis permits to conclude by noting that the first term is actually
the leading term.
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Appendix E

Acronyms

AutoML automated machine learning. 88, 89

BAI best-arm identification. 4–7, 16–25, 43, 49, 62, 64, 65, 67, 70, 88, 92–94, 104, 106, 107

BBO black-box optimization. 3, 7, 72, 88

BO Bayesian optimization. 7, 91

BPI best-policy identification. 107

CASH combined algorithm selection and hyper-parameter optimization. 90

DL deep learning. 4, 88, 91, 107

EBA empirical best arm. 19

EDP empirical distribution of plays. 19

FMS full model selection. 90

GLRT generalized likelihood ratio test. 18

GO global optimization. 7, 72, 75, 88, 91

HCT High Confidence Tree. 73, 79–85, 179, 180, 182–186, 188

HOO Hierachical Optimistic Optimization. 73, 75, 78, 79, 81, 83–85

HPO hyper-parameter optimization. 3, 7, 43, 88–93, 104, 106, 107

iid independent and identically distributed. 13, 19

MAB multi-armed bandits. 3–6, 10, 15, 88, 107, 124

MDP Markov decision process. 3, 107

MPA most played arm. 19

NAS neural architecture search. 90, 107
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ACRONYMS

OFU optimism in the face of uncertainty. 15

PAC probably approximately correct. 24

POO Parallel Optimistic Optimization. 72, 75, 76, 78, 81–85, 106

D-TTTS Dynamic Top-Two Thompson Sampling. 94, 104, 106

GPO General Parallel Optimization. 73, 76–78, 80, 81, 83, 85, 106

LinGame Linear Game. 62–67, 106

L-T3C Linear-Top-Two Transportation Cost. 56

L-T3S Linear-Top-Two Thompson Sampling. 56

PCT Parallel Confidence Tree. 83–85

SLinGapE Saddle-Point Linear Gap-Based Exploration. 69

SL-T3C Saddle-Point Linear-Top-Two Transportation Cost. 69

T3C Top-Two Transportation Cost. 28, 56, 106

RL reinforcement learning. 4, 107

SIAB stochastic infinitely-armed bandits. 88, 92, 97

TS Thompson Sampling. 6, 14, 28, 43

TTTS Top-Two Thompson Sampling. 28, 29, 43, 56, 89, 93–95, 106, 131, 135–137, 140,
142, 143, 152

UCB Upper-Confidence Bound. 14–16

ZO zeroth-order optimization. 7
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Appendix F

Glossary

alternative set . 24, 49

asymptotic optimality . 6

Bayesian stopping rule . 19

continuum-armed bandits . 7, 23, 72

cumulative regret . 13

decision rule . 16

differential entropy . 126

entropy . 126

exploration-exploitation dilemma . 4

finitely-armed bandits . 7

fixed-budget setting . 16

fixed-confidence setting . 5, 16

generalized likelihood ratio . 18

generalized linear bandits . 22

G-optimality . 6

hyper-parameters . 3, 88

infinitely-armed bandits . 7, 23, 88, 106

natural sufficient statistic . 13

near-optimality dimension . 74, 75, 81

one-dimensional exponential family . 13
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GLOSSARY

probability density function . 13

probability mass function . 13

pure exploration . 4

regression parameter . 6

regularized least-square estimation . 48

reservoir . 23, 88, 92

sample complexity . 6

sampling rule . 12, 16

sequential optimization . 3

simple regret . 7, 22, 25, 94

single-parameter exponential family . 13

stopping rule . 16

sub-optimality gap . 15

X -armed bandits . 23
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