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Dans cette thèse, nous étudions le problème d'optimisation séquentielle dans des environnements stochastiques. A chaque instant, nous pouvons interroger un point de l'environnement, et recevoir une récompense bruitée. Nous nous concentrons d'abord sur le cas où l'environnement est représenté par un nombre fini de points, et ensuite sur le cas plus général où l'environnement est composé d'un nombre infini dénombrable de points, voire continu. Dans les deux cas, le coût d'une requête pouvant être élevée, nous envisageons ainsi à repérer au plus vite le point (quasi)-optimal. Cette étude est motivée par de nombreux scénarios réels comme, entre autres, les essais cliniques, les tests A/B, ou l'optimisation des placements publicitaires. Ainsi pour terminer, nous nous intéressons en particulier à l'une de ces applications plus importantes pour la communauté d'apprentissage statistique, c'est-à-dire l'optimisation des hyper-paramètres.

Résumé des travaux de thèse 0.1 Contexte de la thèse 0.1.1 Qu-étudions-nous et pourquoi ?

Imaginons que nous ayons accès à un simulateur qui modélise le comportement d'une tâche numérique complexe. Considéré comme une boîte noire, nous ne pouvons obtenir des informations utiles qu'en exécutant le simulateur avec différentes entrées. Par exemple, le processus d'inférence de la structure 3D d'une protéine à partir de sa séquence d'acides aminés peut être considéré comme une tâche complexe, qui peut être modélisée par un simulateur. Les entrées du simulateur sont les séquences d'acides aminés et les sorties sont les structures 3D prédites. Une famille populaire de méthodes cherche à optimiser une fonction énergétique appropriée -produite par le simulateur -qui décrit la relation entre la structure d'une protéine et sa séquence d'acides aminés. Ces méthodes sont intéressantes car elles sont capables de construire des structures de protéines sans connaissance préalable des structures résolues (voir par exemple [START_REF] Zhang | Progress and challenges in protein structure prediction[END_REF].

Dans le contexte de cette thèse, nous modélisons un tel scénario comme le problème dit de l'optimisation séquentielle, dans lequel un agent alimente séquentiellement un environnement (le simulateur dans l'exemple précédent) avec des entrées et reçoit un retour (déterministe ou stochastique) appelé gain, récompense ou observation. L'agent doit produire une estimation de l'entrée optimale après un certain nombre d'essais. Dans certaines circonstances, une seule interaction avec l'environnement peut être extrêmement coûteuse. Par exemple, dans l'exemple de la prédiction de la structure des protéines, de vastes ressources informatiques sont nécessaires si le simulateur reçoit une très grande protéine (avec de longues séquences d'acides aminés). Il est donc très intéressant de choisir soigneusement l'entrée à chaque pas de temps en fonction des observations passées afin de réduire le nombre de simulations.

L'optimisation séquentielle dans des environnements stochastiques est un sujet de recherche actif dans les communautés des mathématiques appliquées et de l'informatique. Par exemple, le problème de planification dans un processus de décision markovien, sur lequel la récente percée de l'intelligence de jeu du Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF] est construite, est étroitement lié à l'optimisation séquentielle. Précisément, étant donné l'état actuel du jeu, l'intelligence de jeu est conçue pour maximiser une certaine fonction de valeur, dont les observations (bruitées) peuvent être obtenues en explorant des trajectoires bien choisies.

Un autre exemple, qui est aussi une motivation importante pour cette thèse, est celui de l'optimisation des hyper-paramètres des classifieurs d'apprentissage automatique. Les algorithmes modernes d'apprentissage automatique dépendent souvent de nombreux paramètres qui ne peuvent pas être appris par le processus d'apprentissage, mais qui doivent être spécifiés manuellement. Le réglage de ces hyper-paramètres est souvent considéré comme une partie fastidieuse d'une tâche d'apprentissage automatique. Il est v donc intéressant de concevoir des algorithmes qui automatisent le processus de choix de ces hyper-paramètres. L'optimisation des hyper-paramètres peut être considéré comme un problème d'optimisation boître noire où les évaluations de fonctions sont supposées être très coûteuses. En général, l'évaluation d'une fonction dans l'optimisation des hyperparamètres implique l'exécution complète de l'algorithme principal d'apprentissage automatique sur un ensemble de données important et hautement dimensionnel, ce qui prend souvent beaucoup de temps ou de ressources.

En outre, l'optimisation séquentielle peut également servir d'abstraction pour de nombreux problèmes du monde réel. Pour n'en citer que quelques-uns, on peut penser aux problèmes de sélection de portefeuille (averse au risque) en finance [START_REF] Ziemba | Stochastic Optimization Models in Finance[END_REF], à la conception de stratégies efficaces d'allocation de traitement en médecine [START_REF] Durand | Contextual bandits for adapting treatment in a mouse model of de Novo Carcinogenesis[END_REF], à la minimisation de l'énergie libre en génie chimique ou à la prédiction de la structure des protéines [START_REF] Floudas | Optimization in Computational Chemistry and Molecular Biology : Local and Global Approaches[END_REF], à la métamodélisation pour l'optimisation de la conception technique [START_REF] Wang | Review of metamodeling techniques in support of engineering design optimization[END_REF], à la estimation des paramètres (problème inverse) des voies biochimiques dynamiques non linéaires [START_REF] Moles | Parameter estimation in biochemical pathways: A comparison of global optimization methods[END_REF], à la distorsion du maillage en science des matériaux [START_REF] Agathe Charpagne | Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm[END_REF], et bien plus encore.

Pour résumer, un environnement peut simplement être considéré comme une fonction cible à optimiser. Cette fonction peut être discrète ou continue. Dans cette thèse, nous nous intéressons en particulier à l'optimisation de fonctions pour lesquelles aucune (ou peu) hypothèse de régularité est faite, et seules des évaluations de fonctions (interactions avec l'environnement) bruitées (ou stochastiques) peuvent être observées.

Comment traitons-nous le problème ?

L'outil principal que nous utilisons pour traiter le problème d'optimisation séquentielle dans cette thèse est un modèle statistique qui s'appelle le modèle de bandit à plusieurs bras. Ce modèle a été étudié pour la première fois par Thompson [1933], et peut être décrit de la manière suivante : On donne à un agent un ensemble fini de bras K et un horizon N. Tirer un bras conduit à une récompense stochastique qui suit une certaine distribution inconnue sous ce bras. À chaque pas de temps, l'agent peut choisir de tirer l'un des bras et observe une récompense échantillonnée à partir de sa distribution sousjacente correspondante.

Dans son article de référence, [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF] définit l'objectif d'un agent de bandits comme la maximisation des récompenses totales à long terme. On observe que l'agent doit simultanément acquérir de nouvelles informations en vue d'un bien-être potentiel futur (exploration), et optimiser la décision actuelle basée sur les observations passées (exploitation). Ce phénomène est le fameux dilemme de l'exploration et l'exploitation et est présent dans de nombreuses tâches du monde réel. Le modèle de bandits est donc populaire parmi différentes communautés, car les algorithmes font un compromis entre l'exploration et l'exploitation.

Cependant, l'exploitation ne fournit pas nécessairement des incitations significatives dans certaines applications réelles. Typiquement, dans les exemples précédents présentés dans la section 0.1.1, nous ne nous soucions pas vraiment des pertes potentielles encourues pendant toute la phase d'apprentissage. En effet, nous cherchons uniquement à trouver rapidement le (quasi-)optimum de la fonction cible. Dans ce contexte, il est plus naturel d'évaluer l'agent dans une optique d'optimisation. Ce cadre, souvent appelé identification du meilleurs bras, est donc plus fortement lié à ce que nous allons étudier dans cette thèse. L'identification du meilleurs bras a été étudié en premier lieu par Even-dar et al. [2003] et [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF] dans deux cadres différents que nous présentons en détail dans le chapitre 2.

Plus généralement, nous parlons de problèmes de l'exploration pure [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF], où l'agent est censé gagner autant d'informations possibles sur le modèle de bandit indépendamment des récompenses. L'identification du meilleurs bras est simplement une instance particulière de l'exploration pure, pour laquelle l'objectif d'apprentissage est de trouver le bras optimal. D'autres objectifs d'apprentissage existent également, comme trouver des bras qui dépassent un certain seuil prédéfini (voir par exemple [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF]). Cependant, nous nous concentrons principalement sur l'identification du meilleurs bras dans cette thèse car il a un large éventail d'applications.

Du bandit manchot à l'apprentissage par renforcement

Le modèle de bandits est populaire d'un autre point de vue car certains problèmes de bandits font partie d'un cadre plus général qui est l'apprentissage par renforcement (RL). Dans un modèle du RL, l'environnement est caractérisé par son état actuel et l'agent interagit avec l'environnement en prenant différentes actions. Chaque action conduit à une récompense de la part de l'environnement ainsi qu'à un changement d'état. La définition formelle et les résultats généraux du RL dépassent le cadre de cette thèse, les lecteurs peuvent se référer à [START_REF] Bertsekas | Approximate Dynamic Programming[END_REF]; [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] pour les études.

L'apprentissage par renforcement moderne combiné avec l'apprentissage profond a conduit à des avancées passionnantes, notamment AlphaGo [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF], AlphaStar [START_REF] Vinyals | Grandmaster level in Star-Craft II using multi-agent reinforcement learning[END_REF], etc. Cependant, il existe encore une grande lacune dans la compréhension de l'énorme succès de RL profond. Bandit manchot, en tant que modèle statistique fortement fondé par la théorie, peut potentiellement servir de première étape pour combler cette lacune dans la recherche sur le RL profond. Plus précisément, bandit manchot est parfois considéré comme la forme la plus simple de RL car les agents de bandits ne subissent aucun changement d'état (voir Fig. 1). Nous discuterons un peu plus du lien entre bandits et RL plus tard dans la conclusion générale 7 car les bandits contextuelles (bandits avec informations secondaires) -une variante du modèle classiquedécrit finalement mieux la façon dont le bandit manchot est lié au RL. 

Learner Environment

Bandit manchot multi-bras et optimisation

Cette thèse traite des problèmes d'optimisation séquentielle dans des environnements stochastiques en utilisant des outils de bandits. Un environnement stochastique se réfère à un environnement à partir duquel des retours stochastiques sont acquis lorsqu'une entrée est demandée depuis l'espace de recherche/action 1 X . Formellement, et sans perte 1 Ces termes peuvent être employés de manière interchangeable.

vii de généralité, notre objectif est de maximiser une fonction cible f : X → R, c'est-à-dire de trouver arg max

x∈X f (x) (1) 
en fonction d'une séquence de valeurs de la fonction f . Évidemment, sans aucune information préalable sur la fonction cible et/ou l'espace de recherche X , il s'agit d'une mission impossible. Cette thèse étudie plusieurs instances particulières de (1) avec différents espaces de recherche et/ou différentes hypothèses (de régularité) sur la fonction cible, et apporte de nouvelles perspectives théoriques et pratiques. Dans le reste de ce chapitre, je donne un aperçu informel des différents contextes étudiés dans cette thèse ainsi qu'un résumé de mes contributions à chaque contexte.

Une discussion plus approfondie sur la formulation du problème, en particulier sur la manière d'évaluer la performance des algorithmes dans différents contextes, est donnée dans le chapitre 2, qui constitue une introduction au modèle de bandit. L'objectif de ce chapitre introductif est de présenter le problème de bandits de manière plus formelle. Nous rappelons d'abord quelques notions de base ainsi que certains résultats fondamentaux pour les bandits stochastiques. Nous nous concentrons ensuite sur la façon dont différents cadres d'identification du meilleur bras sont formulés.

Identification du meilleurs bras dans un modèle de bandit stochastique

Le premier cadre d'intérêt consiste en un espace de recherche fini et unidimensionnel X = {x 1 , x 2 , • • • , x K }. Supposons que la distribution de récompense sous-jacente du bras x k soit caractérisée par sa moyenne µ k ∈ R, la fonction cible f peut être simplement interprétée comme une correspondance entre chaque bras et sa moyenne. L'agent cherche alors à trouver arg max

k∈[K] µ k (2)
étant donné une certaine condition d'arrêt. Il s'agit de l'identification du meilleur bras pour les bandits multi-bras stochastiques. Il existe plusieurs objectifs d'apprentissage pour ce genre de problèmes, parmi lesquels nous sommes particulièrement intéressés par le cas où le but est d'identifier le meilleur bras avec une confiance élevée avec un minimum d'évaluations de fonctions. Il s'agit du cadre dit de confiance fixée pour lequel la définition formelle, ainsi que celles pour d'autres objectifs d'apprentissage, sont fournies et discutées plus loin dans le chapitre 2. Les méthodes existentes de ce problème nécessitent la construction d'intervalles de confiance compliqués sur les récompenses moyennes. Dans cette thèse, nous profitons des outils bayésiens pour résoudre ce problème, qui est basée sur le célèbre Thompson sampling [START_REF] William | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], voir aussi Russo et al. 2018 pour un tutoriel). Thompson sampling est un algorithme bayésien bien connu pour l'objectif classique de maximisation de la récompense, pour lequel il est maintenant considéré comme un concurrent majeur des approches populaires de type UCB [Auer et al., 2002a]. Une question naturelle à se poser est de savoir si les méthodes bayésiennes peuvent également être un bon concurrent des approches classiques de l'identification du meilleurs bras basées sur des intervalles de confiance. Cependant, il est bien connu que l'utilisation directe de Thompson sampling ne permet pas d'obtenir une performance optimale pour l'identification du meilleurs tant d'un point de vue pratique que théorique. Plus précisément, elle ne peut pas atteindre une complexité d'échantillonage asymptotique qui correspond à une borne inférieure viii fournie par [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]. Une telle propriété est appelée optimalité asymptotique dont nous donnerons une définition formelle plus tard dans le chapitre 2.

Une adaptation telle que TTTS proposée par [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] est nécessaire : en choisissant entre deux bras candidats différents à chaque tour, elle impose l'exploration de bras sousoptimaux, qui seraient sous-échantillonnés par Thompson sampling original.

Dans le chapitre 3, nous proposons une nouvelle étude de TTTS, et fournissons de nouvelles compréhensions théoriques sur sa complexité d'échantillonnage. Plus précisément, nous montrons que TTTS atteint l'optimalité asymptotique qui répond alors à une question ouverte de Russo [2016]. Nous proposons en outre une amélioration computationnelle T3C de TTTS, tout en gardant les mêmes garanties. De plus, nous fournissons également de nouveaux résultats sur la convergence de la loi a posteriori de TTTS.

Extension à l'identification du meilleurs bras dans un modèle de bandit linéaire

Une extension du cadre précédent largement étudiée consiste à prendre un ensemble fini de K bras/contextes X = {x 1 , x 2 , • • • , x K } ⊂ R d comme espace de recherche. La récompense de chaque bras dans cette circonstance est supposée linéairement dépendante d'un paramètre de régression θ ∈ R d . La fonction cible f peut donc être considérée comme une correspondance entre chaque bras x et sa combinaison linéaire avec θ, et est donc appelée bandits linéaires. Précisément, l'agent cherche à trouver arg max

k∈[K] θ T x k . (3) 
Le paramètre θ est bien sûr inconnu de l'agent. Ce paramètre contextuel (linéaire) décrit mieux certains scénarios du monde réel. Un exemple typique est l'optimisation du placement des publicités, dans lequel un site Web cherche à identifier le modèle d'affichage publicitaire le plus performant. Dans de telles applications, les caractéristiques des utilisateurs peuvent être utilisées comme informations secondaires (contexte) pour aider à la conception de l'exploration (voir par exemple [START_REF] Li | A contextual-bandit approach to personalized news article recommendation[END_REF]). Une fois de plus, comme pour l'identification du meilleurs bras pour les bandits stochastiques, nous nous sommes intéressés au cadre de confiance fixée. Les algorithmes précédents sur ce sujet n'atteignent qu'une faible borne de complexité d'échantillon qui est liée à la G-optimalité de la théorie du plan d'expérience (voir par exemple [START_REF] Pukelsheim | Optimal Design of Experiments[END_REF]. Nous conjecturons que la G-optimalité ne décrit pas au mieux la complexité de l'identification du meilleurs bras pour les bandits lináires, et essayons donc d'adapter d'autres complexités plus appropriées.

Une ligne de recherche naturelle est alors de concevoir un algorithme asymptotiquement optimal. Une adaptation simple de Track-and-Stop [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] au cadre linéaire s'avère asymptotiquement optimale [START_REF] Jedra | Optimal best-arm identification in linear bandits[END_REF], mais reste défavorable sur le plan des resources computationnelles. Nous cherchons donc également à concevoir des algorithmes légers en complexité temporelle. Dans le chapitre 4, nous proposons une nouvelle complexité pour l'identification du meilleurs bras linéaire, et fournissons une comparaison complète des complexités existantes. Nous étudions ensuite à la fois les approches bayésiennes et les algorithmes basés sur les intervalles de confiance. En particulier, nous proposons plusieurs extensions différentes de TTTS et T3C au cadre linéaire. Malheureusement, nous montrons empiriquement qu'elles ne sont pas asymptotiquement optimales. Dans le même temps, nous développons une approche utilisant le point de selle qui conduit à un algorithme optimal LinGame.

Bandits infinis et optimisation boîte noire

Enfin, un problème plus général consiste à considérer un espace infini ou continu X , et chaque bras x ∈ X obtient sa récompense moyenne f (x) par la fonction de récompense f . On retrouve donc (1) : arg max x∈X f (x) .

Il s'agit du problème de l'optimisation globale ou optimisation boîte noire. Parfois, nous pouvons également parler de l'optimisation d'ordre zéro, par opposition à l'optimisation du premier ordre pour lequel des informations basées sur le gradient sont disponibles. Nous étudions le cas stochastique dans cette thèse. Les approches typiques pour traiter l'optimisation globale incluent l'optimisation bayésienne (voir par exemple [START_REF] Brochu | A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[END_REF], les algorithmes évolutionnaires et les bandits hiérarchiques (voir par exemple [START_REF] Bubeck | X-armed bandits[END_REF]). Dans cette thèse, nous nous concentrons sur les algorithmes de bandits hiérarchiques. Dans la littérature, nous faisons souvent référence aux bandits à bras infinis ou bien aux bandits à bras continus.

De toute évidence, on ne peut s'attendre qu'à une solution quasi-optimale dans le cas des bandits à bras continus. Nous utilisons donc une autre mesure de performance, à savoir le regret simple, qui est la différence entre la valeur de la fonction optimale réelle et la valeur de la fonction de notre estimation finale. La définition formelle est fournie plus loin dans le chapitre 2. Le regret simple diffère du regret cumulé qui sert de mesure de performance pour la maximisation de la récompense.

Dans le chapitre 5, nous explorons la possibilité de concevoir des algorithmes de bandit hiérarchique sans paramètre avec un minimum d'hypothèses. À cette fin, nous utilisons un shéma de validation croisée et construisons un algorithme appelé GPO. GPO est un méta-algorithme qui peut utiliser n'importe quel algorithme de bandit hiérarchique comme sous-routine. En particulier, GPO atteint presque la même garantie de regret simple que sa sous-routine. Comme résultat secondaire, nous montrons également que HCT est un algorithme sous-jacent valide pour GPO ainsi que pour POO proposé par Grill et al.

[2015].

Optimisation des hyper-paramètres

Enfin, nous abordons une question plus pratique : l'optimisation des hyper-paramètres. Comme présenté dans la section 0.1.1, le réglage efficace des hyper-paramètres pourrait être d'une grande importance pour les praticiens de l'apprentissage automatique. Comme indiqué, l'optimisation des hyper-paramètres peut être naturellement modélisée comme un problème d'optimisation séquentielle. L'espace de recherche dans ce cadre peut être à la fois discret (variables catégoriques, variables à valeur entière, etc.) et continu (variables à valeur réelle).

Inspirés par un algorithme récent Hyperband basé sur l'identification du meilleurs bras [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF], nous cherchons à proposer d'autres algorithmes pour l'optimisation des hyper-paramètres aussi basés là-dessus. En effet, Hyperband est construit sur un algorithme basé sur l'élimination et a de bonnes performances par rapport aux méthodes précédentes. D'autre part, nous nous intéressons à la possibilité d'adapter des algorithmes bayésiens tels que TTTS pour résoudre l'optimisation des hyper-paramètres. Notez que TTTS n'est conçu que pour les bandits à bras finis, un contournement appropriée est donc nécessaire. Not everyone has a chance in the life to write a whole piece of work that can be qualified as a real book. To some extent, a well-constructed PhD thesis can be deemed a such piece of work. But for me, it is more than a book: it is a memory of a fantastic journey with the company of a group of nice, lovely and supportive people, without whom the thesis can never ever be done. Therefore, it is a great chance and honor for me to express my gratitude to everyone that I have encountered during and also before that mesmerizing period2 .

Mes premiers mots vont à mes deux directeurs de thèse, Emilie et Michal. Ce fut un agréable temps de travailler avec vous pendant ces dernières années : ayant un goût mixte des maths et de l'informatique, vous m'avez fait découvrir un domaine tellement riche qui correspond à la fois à mes deux passions. J'ai appris énormément de choses à vos cotés dès le début de mon stage de fin d'études. Et surtout, quand j'étais un peu perdu au début, vous m'avez dirigé avec une grande patience tout en me laissant suffisemment de libertés pour que je puisse découvrir ceux que me plaisent plus.
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At the same time, a great work on the topic, namely Hyperband [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF], was published. Based on a simple best-arm identification (see Chapter 2 for a formal definition) algorithm Sequential-Halving [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF], Hyperband achieved both decent practical performances and nice theoretical guarantees. I thus turned my attention to the study of best-arm identification in the purpose of exploring further the potential of best-arm identification for hyper-parameter tuning. This effort then led to a dynamic algorithm D-TTTS for hyper-parameter optimization (Chapter 6). D-TTTS is constructed upon a Bayesian best-arm identification algorithm TTTS proposed by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF]. In the hope of providing an analysis of D-TTTS, which turns out to be sophisticated, I took a step back to revisit TTTS and managed to bring new theoretical insights about Bayesian best-arm identification (Chapter 3). Although the new insights still didn't shed light on the analysis of D-TTTS, they opened new way to other variants of best-arm identification.

In particular, I then studied best-arm identification with linear payoffs (Chapter 4).

The structure of this thesis does not necessarily follow the previous timeline. Indeed, the present manuscript rather follows a scientific logic, in the sense that we go through from the simplest setting to more complicated ones.

In this first chapter, I will introduce the different problem settings studied in this thesis from a high-level perspective. I will focus on motivating the settings and also summarizing my contributions to each of them.

Context of the Thesis

What do we study and why?

Imagine that we have access to a simulator that models the behaviour of some complex numerical task. Being considered as a black box, we can only get useful information by running the simulator with different inputs. For example, the process of inferring the 3D structure of a protein from its amino-acid sequence can be regarded as such a complex task, that can be modelled by a simulator. The inputs of the simulator are the amino-acid sequences and the outputs are the predicted 3D structures. A popular family of methods seek to optimize a suitable energy function -produced by the simulator -that describes the relation between the structure of a protein and its amino-acid sequence. These methods are of interest because they are able to build protein structures without prior knowledge on solved structures (see e.g. [START_REF] Zhang | Progress and challenges in protein structure prediction[END_REF]).

In the context of this thesis, we model such a scenario as the so-called sequential optimization1 problem where a learner sequentially feeds inputs to an environment (the simulator in the previous example) and from which they receive (deterministic or stochastic) feedback/payoffs/rewards/observations2 . The learner needs to output a guess for the optimal input after a number of trials. Under some circumstances, a single interaction with the environment could be extremely costly. For instance, in the example of protein structure prediction, vast computational resources are required if the simulator is given a very large protein (with long amino-acid sequences). It is therefore of great interest to carefully choose the input at each time step based on past observations to reduce the number of simulations.

Sequential optimization in a stochastic environment is an active research topic in both applied mathematics and computer science communities. For example, the planning problem in a Markov decision process (MDP), upon which the recent breakthrough of game intelligence of Go [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF]] is constructed, is closely related to sequential optimization. Precisely, given the current state of the game, the game intelligence is designed to maximize a certain value function, whose (noisy) observations can be obtained by exploring well-chosen trajectories.

Another example, which is also one important driving force that motivates this thesis, is hyper-parameter optimization (HPO) of machine learning classifiers. Modern machine learning algorithms often contain many parameters that cannot be learned through the learning process, but instead, need to be manually specified. Tuning those so-called hyper-parameters is often considered as a tedious part in a machine leanrning task. It is hence appealing to design HPO algorithms that automates the process of choosing those hyper-parameters. HPO can be viewed as a black-box optimization (BBO) problem where function evaluations are supposed to be very expensive. Typically, a function evaluation in HPO involves running the primary machine learning algorithm to completion on a large and high-dimensional dataset, which often takes a considerable amount of time or resources.

Besides, sequential optimization can also serve as an abstraction of numerous realworld problems. To name a few of them, we can think of (risk-averse) portfolio selection problems in finance [START_REF] Ziemba | Stochastic Optimization Models in Finance[END_REF], designing effective treatment allocation strategies in medicine [START_REF] Durand | Contextual bandits for adapting treatment in a mouse model of de Novo Carcinogenesis[END_REF], free-energy minimization in chemical engineering or protein structure prediction [START_REF] Floudas | Optimization in Computational Chemistry and Molecular Biology : Local and Global Approaches[END_REF], metamodelling for engineering design optimization [START_REF] Wang | Review of metamodeling techniques in support of engineering design optimization[END_REF], parameter estimation (inverse problem) of nonlinear dynamic biochemical pathways [START_REF] Moles | Parameter estimation in biochemical pathways: A comparison of global optimization methods[END_REF], mesh distortion in material science [START_REF] Agathe Charpagne | Accurate reconstruction of EBSD datasets by a multimodal data approach using an evolutionary algorithm[END_REF], and way more.

To summarize, an environment can simply be regarded as a target function to be optimized. This function can be discrete or continuous. In this thesis, we are in particular interested in optimization of functions for which none (or few) regularity assumptions are made, and only noisy (or stochastic) function evaluations (interactions with the environment) can be observed.

How do we approach the problem?

The main tool that we use to address the sequential optimization problem in this thesis is multi-armed bandits (MAB). The original MAB problem is first studied by Thompson [1933], and can be described in the following way: A learner is given a finite set of K arms and a time horizon N. Pulling an arm leads to a stochastic reward that follows some unknown distribution underpin that arm. At each time step, the learner can choose to pull one of the arms and observes a reward sampled from its corresponding underlying distribution.

In his seminal work, [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF] defines the objective of a MAB learner as maximizing the total rewards in the long run. An observation is that the learner is required to simultaneously acquire new information for potential future well-being (exploration), and optimize the current decision based on past observations (exploitation). Such phenomena is stated as the exploration-exploitation dilemma, and is present in many real-world tasks. The MAB model is thus popular among different communities as MAB algorithms trade-off between exploration and exploitation.

However, exploitation does not necessarily provide meaningful incentives in some real applications. Typically, in the previous working examples presented in Section 1.1.1, we do not really care about the potential losses incurred during the whole learning phase. Indeed, we only aim at finding the (near-)optimum of the target function quickly. In this context, it is more natural to assess the learner in an optimization fashion. This setting, often named as best-arm identification (BAI), is thus more closely related to what we are to investigate in this thesis. BAI has been firstly studied by Even-dar et al. [2003] and [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF] in two different frameworks that we introduce in detail in Chapter 2.

More generally, we talk about pure exploration problems [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF]] instead of BAI, where the learner is supposed to gain as much information about the bandit model regardless of rewards. BAI is merely a particular instance of pure exploration, for which the learning objective is to find the optimal arm. Other learning objectives also exist such as finding arms that surpass some pre-defined threshold (see e.g. [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF]). However, we mostly focus on BAI in this thesis since it has a wide range of applications.

From multi-armed bandits to reinforcement learning

The MAB model is popular from another perspective as some bandit problems are part of the more general reinforcement learning (RL) framework. In RL, the environment is characterized by its current state and the learner interacts with the environment by taking different actions. Each action leads to a reward from the environment as well as a change of states. Formal definition and general results of RL are beyond the scope of this thesis, readers can refer to [START_REF] Bertsekas | Approximate Dynamic Programming[END_REF]; [START_REF] Sutton | Reinforcement Learning: An Introduction[END_REF] for surveys.

Modern RL combined with deep learning (DL) has marked a handful of exciting breakthroughs including AlphaGo [START_REF] Silver | Mastering the game of Go with deep neural networks and tree search[END_REF], AlphaStar [START_REF] Vinyals | Grandmaster level in Star-Craft II using multi-agent reinforcement learning[END_REF], etc. However, a big gap still exists in understanding the huge success of Deep RL. MAB, as a strongly theoretically-grounded statistical model, can potentially serve as a first step towards filling that gap in Deep RL research. More precisely, MAB is sometimes considered as the simplest form of RL as MAB learners do not incur any change of states (see Fig. 1.1). We shall discuss a little more the link between MAB and RL later in the general conclusion Chapter 7 as contextual MAB (MAB with side information) -a variant of the vanilla MAB model -describes eventually better how MAB is related to RL. 
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Multi-Armed Bandits and Optimization

This thesis addresses sequential optimization problems under stochastic environments from a bandit point of view. A stochastic environment refers to an environment from which stochastic feedback are acquired when an input is queried from the search/action space3 X . Formally, and without loss of generality, we aim to maximize4 a target function f : X → R, i.e. find arg max

x∈X f (x) (1.1)
based on a sequence of function values of f . Obviously without any prior information on the target function and/or the search space X , it is just a find-a-needle-in-a-haystack mission. This thesis studies several particular instances of (1.1) with various search spaces and/or different (regularity) assumptions on the target function, and brings both novel theoretical and practical insights.

In the rest of this section, I provide a high-level overview of different settings investigated in this thesis along with a summary of my contributions to each setting.

More thorough discussion on the problem formulation, in particular how do we assess the performance of algorithms under different settings is given in an introductory Chapter 2 about the MAB model. The purpose of this introductory chapter is to present the MAB problem in a more formal way. We first recall some basic notions as well as some fundamental results for stochastic MAB. We then focus on how different best-arm identification/global optimization settings are formulated from a bandit point of view.

Best-arm identification for stochastic multi-armed bandits

The first setting of interest consists of a finite and one-dimensional search space X = {x 1 , x 2 , • • • , x K }. Assume that the underlying reward distribution of arm x k is characterized by its mean µ k ∈ R, the target function f can be simply interpreted as a mapping form each arm to its mean. The learner then aims to find arg max

k∈[K] µ k (1.2)
given some stopping condition. This is the best-arm identification for stochastic multiarmed bandits. Several learning objectives exist for a BAI problem, among which we are in particular interested in the setting of which the goal is to identify the best arm with high confidence based on a minimum of function evaluations. This is the fixed-confidence setting for whom the formal definition, along with those for other learning objectives, are provided and discussed later in Chapter 2.

Existing methods for BAI for stochastic MAB often requires construction of complicated confidence intervals of the mean estimates. We opt for Bayesian machinery to address this problem in this thesis, which is based on the famous Thompson Sampling (TS) [START_REF] William | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], see also [START_REF] Russo | A Tutorial on Thompson Sampling[END_REF] for a tutorial). TS is a Bayesian algorithm well known for the classical reward maximization objective, for which it is now seen as a major competitor to the popular UCB-typed approaches [Auer et al., 2002a]. A natural question to ask is whether Bayesian methods can be also a good competitor to classical BAI approaches constructed upon confidence intervals. However, it is well known that direct use of TS cannot yield optimal performance for BAI both in a practical and theoretical point of view. More precisely, it cannot achieve an asymptotic sample complexity that matches the lower bound provided by [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]. Such property is called asymptotic optimality that we shall give formal definition later in Chapter 2. An adaptation such as TTTS proposed by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] is needed: by choosing between two different candidate arms in each round, it enforces the exploration of sub-optimal arms, which would be under-sampled by vanilla TS due to its objective of maximizing rewards.

In Chapter 3, we revisit TTTS, and provide new theoretical understandings on its sample complexity. More precisely, we show that TTTS achieves asymptotic optimality on the sample complexity which then answers to one open question of [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF]. We further propose a computational improvement T3C of TTTS, whilst keeping the same guarantees. Besides, we also provide some new results on the posterior convergence of TTTS.

Extension to best-arm identification for linear bandits

Beyond the previous vanilla setting of BAI, a widely studied extension is to take a finite set of K arms/contexts/features5 X = {x 1 , x 2 , • • • , x K } ⊂ R d as the search space. The reward of each arm under this circumstance is assumed to depend linearly on a regression parameter θ ∈ R d . The target function f therefore can be considered as a mapping from each arm x to its linear combination with θ, and is thus called linear bandits. Precisely, the learner seeks to find arg max

k∈[K] θ T x k . (1.3)
The parameter θ is of course unknown to the learner. This (linear) contextual setting describes better some real-world scenarios. A typical example is advertising placement optimization in which a website seeks to identify the best-performing ad display design.

In such applications, user features can be used as side information (context) to help the design of exploration (see e.g. [START_REF] Li | A contextual-bandit approach to personalized news article recommendation[END_REF]). Again, like for vanilla BAI, we are interested in the fixed-confidence setting. Previous algorithms on this topic only achieve loose sample complexity bound which is linked to the G-optimality of experimental design theory (see e.g. [START_REF] Pukelsheim | Optimal Design of Experiments[END_REF]). We conjecture that G-optimality does not describe best the complexity of linear bandits BAI, and therefore try to opt for other more appropriate complexities.

One natural research line is then to design asymptotically optimal algorithm. A simple adaptation of Track-and-Stop [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] to the linear setting is shown to be asymptotically optimal [Jedra and Proutière, 2020], but remains computationally unfavorable. We thus also seek to design computational friendly algorithms.

In Chapter 4, we propose a new complexity notion for linear bandits BAI, and provide a comprehensive comparison of existing complexities. We then investigate both Bayesian approaches and confidence interval-based algorithms. In particular, we propose several different extensions of TTTS and T3C to the linear setting. Unfortunately, we show empirically that they are not asymptotically optimal. In the meantime, we develop a saddlepoint approach that leads to an optimal algorithm LinGame.

Infinitely-armed bandits and black-box optimization

Finally, a more general problem is to consider an infinite or continuous space X , and each arm x ∈ X gets its mean reward f (x) through the reward function f . We thus recover (1.1):

arg max x∈X f (x) .
This is the global optimization (GO) or BBO problem. Sometimes we can also refer to zeroth-order optimization (ZO), in contrast to first-order optimization for which gradientbased information is available.

We study the noisy setting in this thesis. Typical approaches to address GO include Bayesian optimization (BO) (see e.g. [START_REF] Brochu | A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning[END_REF], evolutionary algorithms and hierarchical bandits (see e.g. [START_REF] Bubeck | X-armed bandits[END_REF]. In this thesis, we focus on hierarchical bandits algorithms. In the literature of bandits, we often refer to infinitely-armed bandits or more precisely continuum-armed bandits.

Obviously, we can only expect a near-optimal solution under continuum-armed bandits. We thus opt for another performance measure, namely the simple regret, which is the difference between the true optimal function value and the function value of our final guess. The formal definition is provided later in Chapter 2.

In Chapter 5, we explore the possibility of designing parameter-free hierarchical-bandit algorithms with minimum (smoothness) assumptions and are adaptive to the smoothness. To this end, we use a cross-validation scheme and construct an algorithm called GPO. GPO is a meta-algorithm that can use any hierarchical bandit algorithms as subroutine. In particular, GPO almost achieves the same simple regret guarantee as its subroutine. As a side result, we also show that HCT is a valid underlying algorithm for GPO as well as for POO proposed by [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF].

Hyper-parameter optimization

Finally, we deal with a more practical question: hyper-parameter optimization. As introduced in Section 1.1.1, efficient hyper-parameter tuning could be of great importance for machine learning practitioners. As is stated, HPO can be naturally modelled as a sequential optimization problem.

The search space of HPO can be both discrete (categorical variables, integer-valued variables, etc) and continuous (real-valued variables). It is natural to ask if hierarchicalbandit algorithms are able to achieve competitive performances for HPO against classical BO algorithms.

Additionally, inspired by a recent BAI-based algorithm Hyperband [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF], we seek to propose other BAI-based algorithms for HPO. Indeed, Hyperband is constructed upon an elimination-based BAI algorithm and achieves state-of-the-art performances compared to previous methods. We, on the other hand, are interested in whether Bayesian algorithms like TTTS can also be adapted to tackle HPO problems. Note that TTTS is only designed for finitely-armed bandits, an appropriate workaround is hence needed.

In Chapter 6, we design a robust and dynamic algorithm D-TTTS based on TTTS, and show that such Bayesian-flavored algorithms can be good candidates for applications like hyper-parameter optimization. We also discuss a major drawback of D-TTTS, and propose a fix in the same chapter.

Publications of the PhD

The entire thesis is dedicated to one single problem -sequential bandit optimizationonly with different settings, although the full journey of my PhD also includes other work that are less relevant to optimization. I restrict myself to the sequential optimization problem in this manuscript as it is the main research line that has been motivating me so far.

The purpose of this section is to provide a summary of the publications that I have participated to just for the record.

List of papers (peer-reviewed publications or preprints) included in this thesis.

m Gamification of pure exploration for linear bandits. In Proceedings of the 37th International Conference on Machine Learning (ICML), 2020. [Degenne et al., 2020a] m Fixed-confidence guarantees for Bayesian best-arm identification. In Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics (AIStats), 2020. [Shang et al., 2020a] m Simple (dynamic) bandit algorithms for hyper-parameter optimization. Preprint, 2020. [Shang et al., 2020b] m A simple dynamic bandit algorithm for hyper-parameter tuning. In 6th Workshop on Automated Machine Learning at International Conference on Machine Learning (ICML-AutoML), 2019. [Shang et al., 2019b] m General parallel optimisation without a metric. In Proceedings of the 30th International Conference on Algorithmic Learning Theory (ALT), 2019. [Shang et al., 2019a] List of papers (peer-reviewed publications or preprints) not included in this thesis. The list below presents other work that are not included in this thesis since they do not really fit in with the scope of the main story line. 

Extensions of

The Multi-Armed Bandits Model

The problem of sequentially allocating resources to a defined set of actions (arms) based on successive partially observable (see Definition 2.1 and Remark 2.1 below) feedback refers to the MAB game in probability theory. The term bandit is named, by analogy, after slot machines (or one-armed bandits) in a casino. A sequential decision making problem comes up then when facing with several slot machines (multi-armed bandits).

The study of MAB problems can date back to as early as 1933 [START_REF] William | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF], and was originally proposed to model sequential clinical trials. For example, researchers testing the efficacy of potential vaccines for a new coronavirus have to choose a vaccine (arm) from the following 4 options as shown in Fig. 2.1 on each patient from an experimental group of N person. For each patient n ∈ [N], researchers receive a reward signal r n ∈ {0, 1}. r n = 1 indicates that the vaccine is effective, otherwise the vaccine fails. We thus assume that the efficacy of each vaccine follows some Bernoulli distribution that is unknown to the researchers. As stated in Chapter 1, a common learning objective for stochastic MAB is to maximize the total reward obtained given a sequence of observations. In the previous example, researchers need to decide which vaccine to employ for each patient depending on the previous success rates with the purpose of maximizing the total success rate N n=1 r n at the end. However, due to the complex nature of medical treatment, it turns out that the MAB model is hardly applied in real clinical trials despite its primary purpose [START_REF] Réda | Machine learning applications in drug development[END_REF]. Nevertheless, the model has been widely employed in many other applications recently, in particular online recommender systems for example (see e.g. Li In the next, we go a little beyond the intuition and provide the formal definition of the model. We also recall some fundamental results for the sake of self-containedness. Of course, we do not intend to write a survey of MAB, for which the content is far too rich for this thesis. Interested readers can refer to [START_REF] Bubeck | Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems[END_REF]; [START_REF] Lattimore | Bandit Algorithms[END_REF] or [START_REF] Slivkins | Introduction to Multi-Armed Bandits[END_REF] for further readings and more general results.
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Problem Formulation

From a mathematical point of view, a MAB model is a collection of K unknown probability distributions (ν k ) 1≤k≤K . At each time step n, the learner chooses a distribution ν I n where I n ∈ [K] and receive a reward r n that is generated from ν I n . We then recover the bandit learning cycle as shown in Fig. 2.2. We summarize such a sequential learning procedure in Definition 2.1. The way that the learner chooses the arm to pull is sometimes called a sampling rule or sampling strategy. Clearly, the sampling rule should make use of the past observations as well as the past external randomness if present. A very simple way to understand this intuition is to consider a bandit model with two arms with µ 1 = 1, µ 2 = 0. Suppose that the rewards are deterministic. In this case, if we consider a naive sampling strategy that uniformly pull the two arms would yield an expected reward of 50 after 100 rounds. However, if we pull each of the two arms once at the beginning and then start exploiting the large one (since the rewards are deterministic), we can achieve a total reward of 99 after 100 rounds. Ignoring past observations is clearly not reasonable.

In the rest of this manuscript, when ν k are some common probability distributions, we can simply call our MAB model by the corresponding probability distribution name. For example, if the underlying reward distributions are Bernoulli (resp. Gaussian, exponential, Poisson, etc) distributions, then we can simply use Bernoulli bandits (resp. Gaussian bandits, exponential bandits, Poisson bandits, etc) to represent our bandit model.

Some useful notation.

We present some useful notation that are frequently used in the rest of the thesis. First, we denote by µ i the true mean of arm i . We further denote by T n,i the number of selections of arm i before round n. Mathematically, T n,i can be written as

T n,i n-1 =1 1{I = i } .
(2.1) An unbiased estimate of the true mean µ i at time n is the empirical average reward which can be then written as

µ n,i = 1 T n,i n-1 =1 1{I = i }r I , .
(2.2)

Finally, let F n be the σ-algebra generated by (U 1 , I 1 , r 1 ,

• • • , U n , I n , r n ) where U i ∼ U ([0, 1]) for each i ∈ [n].

Common assumptions on the rewards

One important thing to take into consideration before starting any bandit game is to take care of the assumptions on the rewards. Intuitively, we shall have a minimum prior knowledge of the 'shape' of the rewards. Obviously, the less the learner knows about that shape, the more difficult the problem is. In this thesis, several different assumptions on the reward distributions are considered depending on the problem settings. In the next, we offer a brief overview of commonly used assumptions in the literature.

Bounded rewards.

The mostly considered assumption is whether the supports of the reward distributions are bounded, and if so, whether the bounds are known to the learner.

In that latter case, we can assume without loss of generality that the rewards are supported on [0, 1]. Indeed, if the rewards are contained in an arbitrary bounded interval [a, b], then we can simply apply a normalization trick to recover the [0, 1] case. The previous vaccine example of Fig. 2.1 with Bernoulli bandits is a typical example of known bounded rewards. Bounded rewards are widely used in many MAB research work. It is also the case for instance in Chapter 5 of this thesis.

One-dimensional exponential family. Unbounded reward distributions are obviously considered in the literature as well. An usual example of infinitely-supported reward distributions is Gaussian distribution. Therefore in the literature, we sometimes think of a more general parametric framework, namely the exponential family. The exponential family contains a large set of natural distributions as Bernoulli distributions and Gaussian distributions, hence covers a wide range of both bounded and unbounded rewards.

In practice, we often further consider a specific sub-family of distributions that is the one-dimensional exponential family or single-parameter exponential family. Typical distributions in the one-dimensional exponential family include Bernoulli distributions, Gaussian distributions with known variance, etc. Formally, given a random variable X whose probability distribution belongs to the single-parameter exponential family, then its probability density function (or probability mass function if X is discrete), depending only on one single parameter θ, can be written as

p X (x | θ) = b(x) exp η(θ) • T(x) + A(θ) , (2.3)
where T(X) is the natural sufficient statistic and b, η, A are known functions. A more formal reminder of one-dimensional exponential family is given in Appendix A.

The MAB community is interested in exponential family not only because it covers a large family of most common distributions, but also because it holds some nice properties for statistical analysis. For example, exponential family has sufficient statistics that can summarize arbitrary amounts of independent and identically distributed (iid) data with a finite number of samples, which is a great property in bandit analysis. Another important fact is that exponential family distributions have conjugate priors, which is extremely useful in Bayesian statistics. The latter one is for example used in Chapter 3. Beyond... More general reward distributions are also considered in the literature. To list a few of them, we can think of sub-Gaussian distributions whose tails decay at least as fast as Gaussian distributions (see Appendix A.1.2 for a reminder of the definition), and also heavy-tailed distributions whose tails are not exponentially bounded (see e.g; [START_REF] Bubeck | Bandits with heavy tail[END_REF][START_REF] Yu | Pure exploration of multi-armed bandits with heavy-tailed payoffs[END_REF]. Those reward distributions also incite interesting theoretical questions as well as applications, but are out of the scope of this manuscript.

Regret minimization

Once we have imposed some assumptions on the reward distributions, the next step is to fix a learning goal and set an evaluation measure accordingly.

As previously stated that the classical learning objective of a MAB learner is to maximize the total return in the long run, hence trades-off between exploration and exploitation. To achieve that goal, the learner needs to design a clever (in a precise sense) way of pulling arms based on past observations, and we call this design an allocation strategy or policy. To evaluate a strategy under this reward maximization setting, one can use the metric often referred to as regret defined in the next.

Suppose that each unknown distribution ν k is associated with a mean µ k , and that µ is the mean of the optimal arm. One natural way to assess the quality of the given policy would be minimizing the total loss w.r.t the optimal arm during the whole process, which leads to the notion of cumulative regret (sometimes simply called regret if there is no ambiguity).

CHAPTER 2. STOCHASTIC MULTI-ARMED BANDITS Definition 2.2 (cumulative regret). At the end of round N, a given policy which observes a sequence of rewards (r n ) 1≤n≤N suffers from a cumulative regret:

R N max i =1•••K N n=1 r i ,n - N n=1 r n .
In general, both rewards and choices of the learner might be stochastic, it is thus often more convenient to consider a related pseudo-regret that involves only the mean rewards µ k .

Definition 2.3 (cumulative pseudo-regret). At the end of round N, a given policy which observes a sequence of rewards (r n ) 1≤n≤N suffers from a cumulative pseudo-regret:

R N µ N - N n=1 µ I n .
Proposition 2.1. The expected value E[ R N ] of the cumulative regret and the expected value E[R N ] of the cumulative pseudo-regret are the same, where the expectation is taken with respect to both rewards and choices from the learner.

Proof. Let us define a function that relates each arm to its mean reward

f : {1, • • • , K} -→ R I n -→ µ I n ,
then by the tower rule, we have

E[r n ] = E[E[r n |I n ]] = E[ f (I n )] = µ I n .
In practice, people are essentially interested in bounding: (a) the expected cumulative regret, or (b) the cumulative regret with high probability. One can notice that the two definitions of cumulative regret above are equivalent if their objective is to obtain an expected regret bound. People therefore often only focus on the pseudo-regret.

Clearly, minimizing the cumulative regret is equivalent to maximizing the total rewards, whence comes the name 'regret minimization'.

Since the seminal work of [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF], a significant number of research work has been made to address the regret minimization problem. Two major research lines are Upper-Confidence Bound (UCB)-type algorithms [Auer et al., 2002a;[START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF][START_REF] Honda | Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards[END_REF], and their Bayesian competitor TS [START_REF] Agrawal | Further optimal regret bounds for Thompson sampling[END_REF][START_REF] Kaufmann | Thompson sampling: An asymptotically optimal finite-time analysis[END_REF][START_REF] Korda | Thompson sampling for 1dimensional exponential family bandits[END_REF][START_REF] William | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF]. There are also some recent works that extend the problem to the non-parametric setting [START_REF] Baransi | Sub-sampling for multiarmed bandits[END_REF][START_REF] Baudry | Sub-sampling for efficient non-parametric bandit exploration[END_REF][START_REF] Peng | The multi-armed bandit problem: An efficient nonparametric solution[END_REF]. Some of them even match an asymptotic lower regret bound proved by [START_REF] Lai | Asymptotically efficient adaptive allocation rules[END_REF].

Optimism and UCB

In the first chapter, we have mentioned that regret minimization is not always the most appropriate learning objective under some circumstances, but we should rather study MAB from an optimization point of view. However, before we jump into details of MAB for optimization, it may still be relevant to briefly introduce some regret-minimization methods. In particular, we recall UCB. Indeed, UCB is designed based on the optimism in the face of uncertainty (OFU) principle, which is inspiring for a large amount of MAB literature including ours (e.g. Chapter 4 and Chapter 5).

Before we introduce UCB in the next section, we first present a fundamental lemma that form the basis of a large number of analyzes in regret minimization. The proof of the lemma is quite straightforward and is omitted1 . Lemma 2.1 (regret decomposition). Given a finite or countable bandit model and a horizon N, the cumulative regret of any strategy satisfies

R N = K i =1 ∆ i E T N,i .
The quantities (∆ i ) i ∈[K] is called sub-optimality gap. The sub-optimality gap is an important notion in MAB since it often defines the difficulty of a bandit problem instance. Its definition is given below. Definition 2.4 (sub-optimality gap). The sub-optimality gap ∆ i of arm i is given by:

∆ i µ -µ i .
The algorithm of UCB is popularized by Auer et al. [2002a], is one of the first strategies that achieves a uniform logarithmic regret over the horizon N. As we just mentioned, UCB follows the OFU principle. That is to say, despite the lack of knowledge on which action is the best, we can still construct an optimistic guess that picks an optimal arm in the most favorable environments that are compatible with the observations. Here by 'compatible environments' we mean the set of possible distributions of the arms that are likely to have generated the observed rewards.

To translate OFU into mathematics, we can make use of the following upper-confidence bound index defined as

UCB n,i µ n,i + 3 log(n) 2T n,i
for arm i until round n.

The simplest version of UCB is then given in Algorithm 2.12 . And the regret bound of UCB can be obtained then by Lemma 2.1 and the use of Hoeffding's inequality (see Appendix A.2 for details).

Algorithm 2.1 Algorithm of UCB 1: for n = 1..K do 2:

Play arm n and observe the reward r n 3:

Update the UCB index of arm i 4: end for 5:

for n ← K + 1, • • • , N do 6:
Choose arm by i = arg max i ∈[K] UCB n,i 7:

Play arm i and observe the reward r n 8:

Update the UCB index of arm i 9: end for

Best-Arm Identification

The rest of this chapter is dedicated to MAB for optimization. We aim to provide a formal presentation of different problem settings and related performance metrics. We put a specific focus of course on the settings to be investigated in this thesis. We begin by the general best-arm identification setting.

Two frameworks of best-arm identification

Recall that for the vanilla problem setup of BAI, we consider a finitely-armed bandit model, which is a collection of K probability distributions, called arms X {x 1 , • • • , x K }, parameterized by their means µ 1 , • • • , µ K . When clear from the context, we can simply denote the arms by {1, 2, • • • , K}. We assume the (unknown) best arm is unique and we denote it by I µ arg max i µ i3 .

A BAI strategy or algorithm can be characterized by a triple (I n , J n , τ) at each time step, hence consists of three components:

• The first is a sampling rule, which selects an arm I n ∈ [K]. Recall that in a MAB problem, a vector of rewards (r n,1 , • • • , r n,K ) is generated for all arms independently from past observations at each round, but only r n = r n,I n is revealed to the learner. Note that I n is F n-1 -measurable, i.e., it can only depend on the past n -1 observations, and some exogenous randomness, materialized into U n-1 ∼ U ([0, 1]); • The second component is a F n -measurable decision rule J n , which returns a guess for the best arm; • And thirdly, the stopping rule τ, a stopping time with respect to (F n ) n∈N , decides when the exploration is over. In general, there are two learning frameworks of BAI: (1) fixed-confidence setting, first studied by [START_REF] Even-Dar | Action elimination and stopping conditions for reinforcement learning[END_REF]] and (2) fixed-budget setting, first proposed by [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF].

Fixed-budget setting. In the fixed-budget setting, the learner tries to maximize the probability of returning the best (or ε-best) arm with a fixed horizon N. Therefore, the stopping rule in this case can be simply written as τ = N. The protocol of fixed-budget BAI can be summarized as below.

Definition 2.5 (fixed-budget best-arm identification). We are given a set of K arms {1, • • • , K} that follow K unknown distributions (ν k ) 1≤k≤K , and a time horizon N. At each time step n, the learning process consists of the following actions:

• a vector of rewards (r n,1 ∼ ν 1 , • • • , r n,K ∼ ν K ) is generated,
• the learner picks an arm I n ∈ {1, • • • , K} (according to the sampling rule),

• the learner observes the reward r n r n,I n ,

• the learner stops when n = N, and • the learner outputs a guess for the best arm J N ∈ {1, • • • , K} (according to the decision rule) when they stop.

The ultimate objective is thus to make the probability of J N not being the optimal arm, i.e. P J N = I , as small as possible. We postpone the discussion about the performance measure to Section 2.5.3.

Fixed-confidence setting. In the fixed-confidence setting, the learner is given a confidence level/risk δ about the quality of the returned guess of the best arm. The goal is to reach a quality level of 1 -δ with as few samples as possible. The learning protocol of fixed-confidence BAI can be summarized as follow.

Definition 2.6 (fixed-confidence best-arm identification). We are given a set of K arms {1, • • • , K} that follow K unknown distributions (ν k ) 1≤k≤K , a confidence level δ, and a stopping time τ w.r.t. the observations. At each time step n, the learning process consists of the following actions:

• a vector of rewards

(r n,1 ∼ ν 1 , • • • , r n,K ∼ ν K ) is generated,
• the learner picks an arm I n ∈ {1, • • • , K} (according to the sampling rule),

• the learner observes the reward r n r n,I n ,

• the learner stops if P J τ = I ≤ δ, where I is the optimal arm, and • the learner outputs a guess for the best arm J τ ∈ {1, • • • , K} (according to the decision rule) when they stop.

The goal is to obtain a small expected number of samples E µ [τ], where

µ (µ 1 , µ 2 , • • • , µ K )
is the underlying bandit model associated to the given set of K arms. In the rest of this thesis, we ignore the subscripts µ for expectations and probabilities if there is no ambiguity. We postpone the discussion about the performance measure to Section 2.5.2.

Remark 2.2. Note that these two frameworks are very different in general and do not share transferable performance guarantees, readers can refer to [START_REF] Carpentier | Tight (lower) bounds for the fixed budget best arm identification bandit problem[END_REF] for a detailed discussion on the topic.

Sampling rules

Designing smart sampling rules is the main focus of a large part of the thesis, thus we only survey the related work in this chapter, and leave the technical details to subsequent chapters.

Fixed-budget designs. For fixed-budget BAI, the sampling rules depend on the budget N. A first line of research propose to construct lower and upper confidence bounds on the arm means, and then make use of the OFU principle to choose arms (somewhat similar to The fixed-confidence setting is an important topic of interest of this thesis, and will be covered more thoroughly in particular in Chapter 3 and Chapter 4.

Anytime designs. The fact that the two frameworks produce sampling rules that depend either on a confidence parameter δ or a budget parameter N is not desirable in some real applications. To address this problem, [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF] propose to use a doubling trick upon fixed-budget algorithms like Successive-Reject and Sequential-Halving, or use a time-varying confidence parameter when dealing with the fixed-confidence setting. This allows us to stop the learning process anytime we want. In other words, the probability of not recommending the true best arm I , when the learner stops, needs to decay as fast as possible. [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] provides an interesting alternative that evaluates sampling rules in a Bayesian perspective. We provide further insights on this topic in Chapter 3.

Stopping rules

One can observe from Definition 2.6 and Definition 2.5 that stopping rules are more sophisticated in fixed-confidence BAI, as for fixed-budget BAI the learner stops simply when the budget is exhausted even though the learner needs to know the budget in order to design the sampling rule.

One of the most applied stopping rules is constructed upon the generalized likelihood ratio. The stopping rule was first studied by [START_REF] Chernoff | Sequential design of experiments[END_REF], and has recently been reformulated by [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF].

Chernoff stopping rule. Finding an appropriate stopping time τ is actually a classical hypothesis test, namely generalized likelihood ratio test (GLRT), to decide whether we can tell an arm is larger than another arm with a small risk δ based only on past observations.

Let µ denote a bandit model. For any pair of arms indexed by i , j ∈ [K], we consider the following generalized likelihood ratio statistic:

Z n,i , j log max

µ i ≥µ j p i r i T n,i p j r j T n, j max µ i ≤µ j p i r i T n,i p j r j T n, j
, where r i T n,i {r t : I t = i , t ≤ n} is the vector of observations of arm i up to round n and p i (r 1 , • • • , r n is the likelihood of n iid samples from the underlying distribution ν i of arm i . A more thorough discussion is given by Kaufmann and Garivier [2017].

A strong point of this statistic is that it has a closed-form expression for exponential family bandit models. Indeed, we can define for all pairs of arm i , j a weighted average of their empirical mean:

µ n,i , j T n,i T n,i + T n, j µ n,i + T n, j T n,i + T n, j µ n, j ,
where we recall that µ n,i is the empirical mean of arm i . It can be shown that if µ n,i ≥ µ n, j , then the generalized likelihood ratio statistic can be rewritten as

Z n,i , j = T n,i d (µ n,i , µ n,i , j ) + T n, j d (µ n, j , µ n,i , j ) .
and we also have Z n,i , j = -Z n, j ,i . The quantity d (a, b) denotes the KL-divergence between two probability distributions characterized respectively by a and b (see Appendix A.3.2 for a reminder). The following stopping rule thus emerges naturally:

τ δ inf n ∈ N : ∃i ∈ X , ∀ j ∈ X \ {i }, Z n,i , j > d n,δ = inf n ∈ N : max i ∈X min j ∈X \{i } Z n,i , j > d n,δ , (2.4) 
where d n,δ is an exploration rate that needs to be chosen carefully.

Other options. Other stopping rules also exist, but are often explicitly or implicitly equivalent to the Chernoff stopping rule. For example, in Chapter 3, we introduce a Bayesian stopping rule and we can show that it has implicitly the same behaviour as the Chernoff one. It is also the case for many stopping rules in the linear bandits BAI literature, as we show in Chapter 4 that they are explicitly equivalent to the Chernoff stopping rule up to constant factors.

Decision rules

There exist several natural and simple decision rules that can be applied to most of the existing BAI algorithms, namely empirical best arm (EBA), most played arm (MPA) and empirical distribution of plays (EDP) [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF]]. We introduce first EBA which returns, according to its name, the arm with the largest empirical average reward (see Definition 2.7. EBA is the most natural decision rule that one can think of as the empirical mean is a good estimation of the true mean when the corresponding arm is sufficiently pulled. Definition 2.7 (empirical best arm decision rule). At the end of round n, the learner decides to recommend the arm with the best empirical average reward,

J n = arg max i ∈[K] µ n+1,i .
Another possible decision is to output the most pulled arm (see Definition 2.8) 4 .

Definition 2.8 (most played arm decision rule). At the end of round n, the learner decides to recommend the most played arm,

J n = arg max i ∈[K] T n+1,i .
The learner can also recommend arm i with probability T n,i /n, this is the EDP decision rule (see Definition 2.9). Definition 2.9 (empirical distribution of plays decision rule). At the end of round n, the learner decides to recommend arm i with probability T n+1,i /(n + 1), that is

J n ∼ p n T n+1,1 n , T n+1,2 n , • • • , T n+1,K n .
In practice, EBA is often used in the literature. A more detailed discussion of the three decision rules can be found in the work of [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF]. We do not try to go further on the topic in this thesis. Note, however, that the present rules are obviously not the only options for decision rules. Specific rules can be adopted for certain sampling rules. We will see that it is indeed the case in Chapter 3.

Extensions of Best-Arm Identification

For real-world applications, sometimes specific need should be met when applying BAI. The problem formulation needs to be adapted with potentially additional assumptions. Furthermore, as stated in Section 1.1.2, BAI can be studied within a more general context of pure exploration. The purpose of this section is thus to provide a brief overview of commonly studied extensions of BAI as well as other pure exploration problems. We pay particular attention to BAI for linear bandits as it is the main topic of Chapter 4.

Pure-exploration game

A learner in a general pure-exploration game interacts with the environment by sequentially taking actions to identify the answer to a pre-specified question. We denote by Θ the set of possible mean parameters for a specific bandit problem. We further assume that there is a finite set of answers I . For each parameter in Θ, a unique correct answer is given by the function I : Θ → I among the |I | possible ones (the extension of pure exploration to multiple correct answers is studied by Degenne and Koolen 2019).

While BAI is the mostly studied setting of pure-exploration game, other types of question exist as well, e.g. threshold bandits [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF], minimum threshold [Kaufmann et al., 2018], signed bandits [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF], pure exploration combinatorial bandits [START_REF] Chen | Combinatorial pure exploration of multi-armed bandits[END_REF], Monte-Carlo tree search [START_REF] Teraoka | Efficient sampling method for monte carlo tree search problem[END_REF], etc.

The learning protocol of a general pure exploration problem is summarized in Definition 2.10. Definition 2.10 (pure-exploration game). We are given a set of K arms that is parameterized by a parameter vector µ ∈ Θ. At each time step n, the learning process consists of the following actions:

• a vector of rewards (r n,1 , • • • , r n,K ) is generated,
• the learner picks an arm I n ∈ {1, • • • , K} (according to the sampling rule),

• the learner observes the reward r n r n,I n (possibly noisy),

• the learner stops according to the stopping rule τ, and • the learner outputs a guess for the answer J τ ∈ I (according to the decision rule) when they stop.

Notably, we can recover the BAI problem from a pure-exploration game by setting the pre-specified question to be finding the best arm: I = arg max i ∈[K] µ i , and by setting the answer set to be equal to the arm set: I = X .

Best-arm identification for linear bandits

In linear bandits BAI, we consider a finitely-armed5 linear bandit model, where a collection of K arms6 X {x 1 , . . . , x K } ⊂ R d ., is given. d ∈ N is the dimension of the arm space. Usually we assume that the arm set X spans R d . Each arm i is parameterized again by its (unknown) mean µ i .

In the linear case, we assume that µ i is given by a linear combination of the feature vector and a parameter vector θ ∈ R d , that is

µ i = x T i θ .
θ is called regression parameter as it is unknown to the learner and needs to be approached using linear regression methods during the bandit learning. The (unknown) best arm is denoted by x arg max x∈X x T θ, and indexed by I . At each time step n, the learner selects an arm I n whose corresponding context is denoted by x n x I n . The learner then receives a noisy observation of the inner product of x n and θ as payoff, r n = x T n θ + ε n , where ε n is the noise. The learning protocol of linear bandits BAI is given in Definition 2.11.

Definition 2.11 (linear bandits best-arm identification). We are given a set of K arms

{x 1 , • • • , x K } ∈ R d that spans R d .

At each time step n, the learning process consists of the following actions:

• a vector of rewards (r n,1

= x T 1 θ + ε 1,n , • • • , r n,K = x T K θ + ε K,n ) is generated, • the learner picks an arm I n ∈ {1, • • • , K} (according to the sampling rule),
• the learner observes the reward r n r n,I n with noise ε n ε I n ,n ,

• the learner stops according to the stopping rule τ, and • the learner outputs a guess for the best arm J τ ∈ {1, • • • , K} (according to the decision rule) when they stop.

Remark 2.3. One can observe that linear bandits BAI can be reduced to the vanilla BAI setting if we consider a set of linearly independent feature vectors.

Other variants of best-arm identification

Linear bandits is merely a particular case of contextual bandits where the rewards are determined by an arbitrary function applied on the arm rather than its inner product with a regression parameter. BAI for general contextual bandits is much more intricate than linear bandits BAI: for example, the sample complexity lower bound of Garivier and Kaufmann [2016], that we discuss later in Section 2.5.2, has an explicit formula for linear bandits BAI (see Chapter 4), but not for contextual bandits BAI. A relatively simpler setting, namely generalized linear bandits, has been studied by Azizi et 

Many-armed bandits

Now we elaborate a bit on another important extension, for which a large number of arms are available. The arm space could be infinite, or even continuous so that it is not even possible to sample each arm once.

Remember that there exists two general learning objectives in a bandit game: regret minimization and pure exploration (see e.g. Kaufmann and Garivier 2017 for a survey). While regret minimization is also an interesting topic for many-armed bandits, our focus in this thesis is still on optimization. As introduced in Chapter 1, when the search space is infinite, it is also called global optimization.

More precisely, we consider a (measurable) arm space X that contains infinitely-many arms. The learning goal is to optimize an unknown function f : X → R based on N noisy evaluations, that can be sequentially selected. Each arm x is essentially a data point in the arm space X , and it gets its mean reward f (x) through the reward function f , which is the target function to be optimized. At each round n, the learner chooses an arm x n ∈ X and receives a reward r n . We study the noisy setting in which the obtained reward is a noisy evaluation of f : r n f (x n ) + ε n , where ε n is the noise. Note that in the context of GO, practitioners are often more interested by the fixed-budget setting as the target function is usually extremely costly to evaluate, hence only a considerably limited number of function evaluations are allowed. The learning protocol can thus be given as follow.

Definition 2.12 (global optimization). We are given a measurable arm space X , and a budget of N function evaluations. At each time step n ∈ [N], the learning process consists of the following actions:

• the learner picks a point x n from X ,

• the learner observes the noisy function value of x n as reward:

r n f (x n ) + ε n ,
• the learner stops if n = N, and • the learner outputs a guess for the maximum when they stop.

It would be, however, impossible to obtain a sub-linear algorithm if no structure is assumed on the arm space. Two different settings exist in the literature: (1) infinitelyarmed bandits, and (2) continuum-armed bandits.

The first one is initiated by [START_REF] Berry | Bandit problems with infinitely many arms[END_REF], where a specific case of Bernoulli bandits is treated. In their paper, [START_REF] Berry | Bandit problems with infinitely many arms[END_REF] regard the Bernoulli parameters as independent observations from a probability distribution, that we call a reservoir in subsequent works. This setting is considered in Chapter 6.

Continuum-armed bandits setting, or sometimes also named as X -armed bandits (see e.g. [START_REF] Bubeck | X-armed bandits[END_REF], considers arms that lie in some metric space and their mean rewards form a deterministic or stochastic function with some global or local smoothness being assumed. This setting is the focus of Chapter 5.

Performance Measure

Now that we have described how the learning settings of MAB for optimization are formalized, it remains to define appropriate metrics to assess the performance of the learner.

δ-correctness and PAC learning

In the fixed-confidence setting, a sampling rule is always accompanied by a δ-dependent stopping rule τ δ . As stated in Section 2.2.1, we seek to construct BAI strategies that output the true best arm as the final guess with high confidence on any bandit models of interest. This objective can be translated into building strategies that are δ-correct. Definition 2.13 (δ-correct strategy). A BAI strategy (I n , J n , τ) is called δ-correct if for any bandit model µ with a unique optimal arm, it holds that

P [τ δ < ∞] = 1 and P j τ δ = I µ ≤ δ .
In reality, we can prove that with a well-chosen threshold in the Chernoff stopping rule, a BAI strategy is δ-correct regardless of the choice of the sampling rule. This result can be formally stated as Theorem 2.4, and will be discussed again in Chapter 3 with more detail.

Theorem 2.4. With C g G a function that satisfies C g G (x) x + ln(x), we introduce the threshold

d n,δ = 4 ln(4 + ln(n)) + 2C g G ln((K -1)/δ) 2 .
(2.5)

Then, regardless of the sampling rule, the Chernoff stopping rule with threshold d n,δ satisfy

P τ δ < ∞ ∧ J τ δ = I ≤ δ .
In a more general setting where the arm space is continuous, we can opt for the probably approximately correct (PAC) learning framework [START_REF] Valiant | A theory of the learnable[END_REF].

Definition 2.14 ((ε, δ)-PAC strategy). A BAI strategy (I n , J n , τ) is called (ε, δ)-PAC if for any bandit model, it holds that P [τ δ < ∞] = 1 and P µ -µ J τ δ ≤ ε ≥ 1 -δ .

Sample complexity

In fixed-confidence BAI, the goal is to design δ-correct sampling rules with minimum samples E [τ δ ]. [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] provide the following lower bound on the sample complexity when the sampling rule is δ-correct.

Theorem 2.5. [Theorem 1 of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]] Let δ ∈ (0, 1), for any δcorrect sampling rule and any bandit model µ, we have

E µ [τ δ ] ≥ T (µ)kl (δ, 1 -δ) .
In the theorem above, kl denotes the KL-divergence between two Bernoulli distributions (see Appendix A.3.2). T (µ) is a quantity that characterizes the optimal sample complexity that we define in the next.

Let Σ K {ω : K k=1 ω k = 1} be the probability simplex of dimension K. We first define a notion of alternative set in Definition 2.15. Definition 2.15 (alternative set). For any bandit model µ, we define the alternative set, denoted by ¬µ, as the set of bandit models whose true best arm is different from that of µ, i.e.

¬µ µ : I µ = I µ .
Then the characteristic time T (µ) is given by

T (µ) -1 sup ω∈Σ K inf µ ∈¬µ K i =1 ω i d (µ i , µ i ) , (2.6)
where d is the KL-divergence (see Appendix A.3.2). This quantity will be extensively discussed in Chapter 3 and Chapter 4. For the moment, we only need to keep in mind its presence.

One may observe that kl(δ, 1 -δ) converges to 0 when δ tends to 0. We can thus derive an asymptotic sample-complexity lower bound:

lim inf δ→0 E [τ δ ] ln(1/δ) ≥ T (µ) .
Those lower bounds can serve as a good criterion for judging the behaviour of a fixedconfidence BAI strategy.

Simple regret

In the context of continuum-armed bandits, there are two common performance criteria. Depending on the applications, cumulative regret can be of interest. However, from an optimization point of view, people are often more interested in the simple regret (also called optimization error) defined below. Definition 2.16 (simple regret). At the end of round N, a given policy which observes a sequence of rewards (r n ) 1≤n≤N and a recommendation j N suffers from a simple regret:

S N µ -µ j N .
Remark 2.6. As observed by [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF], a good cumulative regret naturally implies a good simple regret. Indeed, if we recommend J n according to the decision rule EDP (see Definition 2.9), we immediately get

E [S n ] ≤ E [R n ] n .
The converse is not necessarily true.

Finally, one can observe that simple regret is also commonly used for fixed-budget BAI for whom the goal is to minimize the error probability. 

Introduction

In this chapter we study the very fundamental and general setting of BAI. Recall that we consider a finite-armed bandit model X {1, • • • , K}, parameterized by their means µ 1 , • • • , µ K . And we focus on the fixed-confidence setting, introduced by Even-dar et al. [2003], in which given a risk parameter δ, the goal is to ensure that the probability to stop and recommend a wrong arm, P J τ = I , is smaller than δ, while minimizing the expected total number of samples to make this accurate recommendation, E [τ].

As already elaborated in Chapter 2 that most of the existing sampling rules for the fixed-confidence setting depend on the risk parameter δ, and they either rely on careful construction of confidence intervals and use of OFU or arm eliminations. The first known sampling rule for BAI that does not depend on δ is the tracking rules proposed by Garivier and Kaufmann [2016], which is proved to achieve the minimal sample complexity when combined with the Chernoff stopping rule as δ goes to zero. Such an anytime sampling rule (neither depending on a risk δ or a budget N) is very appealing for applications, as advocated by [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF], who introduce the anytime best-arm identification framework.

In this chapter, we investigate the problem from a different perspective, and we are in particular interested in another anytime sampling rule for BAI: Top-Two Thompson Sampling (TTTS).

TTTS is inspired by the famous TS [START_REF] William | On the likelihood that one unknown probability exceeds another in view of the evidence of two samples[END_REF] and studies BAI from a Bayesian point of view. TS is a Bayesian algorithm well known for regret minimization, for which it is now seen as a major competitor to UCB-typed approaches [Auer et al., 2002a; Burnetas and Katehakis, 1996; [START_REF] Cappé | Kullback-Leibler upper confidence bounds for optimal sequential allocation[END_REF]. However, it is also well known that regret minimizing algorithms cannot yield optimal performance for BAI [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF][START_REF] Kaufmann | Learning the distribution with largest mean: two bandit frameworks[END_REF]] and as we opt Thompson Sampling for BAI, then its adaptation is necessary. Such an adaptation, TTTS, was given by Russo [2016] along with the other top-two sampling rules TTPS and TTVS. By choosing between two different candidate arms in each round, these sampling rules enforce the exploration of sub-optimal arms, that would be under-sampled by vanilla TS due to its objective of maximizing rewards.

While TTTS appears to be a good anytime sampling rule for the fixed-confidence BAI when coupled with an appropriate stopping rule, so far there is no theoretical support for this employment. Indeed, the (Bayesian-flavored) asymptotic analysis of [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] shows that under TTTS, the posterior probability that I is the best arm converges almost surely to 1 at the best possible rate. However, this property does not by itself translate into sample complexity guarantees. Since the result of Russo 

Contributions. 1)

We propose a new Bayesian sampling rule, T3C, which is inspired by TTTS but easier to implement and computationally advantageous. 2) We investigate two Bayesian stopping and recommendation rules and establish their δ-correctness for a bandit model with Gaussian rewards. 1 3) We provide the first sample complexity analysis of TTTS and T3C for a Gaussian model and our proposed stopping rule. 4) Russo's posterior convergence results for TTTS were obtained under restrictive assumptions on the models and priors, which exclude the two mostly used in practice: Gaussian bandits with Gaussian priors and bandits with Bernoulli rewards2 with Beta priors. We prove that optimal posterior convergence rates can be obtained for those two as well.

This chapter is based on Shang et al. [2020a].

Bayesian BAI Strategies

In this section, we give an overview of the sampling rule TTTS and introduce T3C. We provide details for Bayesian updating for Gaussian and Bernoulli models respectively, and introduce associated Bayesian stopping and recommendation rules.

Sampling rules

Both TTTS and T3C employ a Bayesian machinery and make use of a prior distribution Π 1 over a set of parameters Θ, that contains the unknown true parameter vector µ. Upon acquiring observations (r I 1 ,1 , • • • , r I n-1 ,n-1 ), we update our beliefs according to Bayes' rule and obtain a posterior distribution Π n which we assume to have density π n w.r.t. the Lebesgue measure. Russo's analysis is restricted to strong regularity properties on the models and priors that exclude two important useful cases we consider in this paper:

(1) the observations of each arm i follow a Gaussian distribution N (µ i , σ 2 ) with common known variance σ 2 , with imposed Gaussian prior N (µ 1,i , σ 2 1,i ), (2) all arms receive Bernoulli rewards with unknown means, with a uniform prior on each arm.

Gaussian model. For Gaussian bandits with a N (0, κ 2 ) prior on each mean, the posterior distribution of µ i at round n is Gaussian with mean and variance that are respectively given by n-1

=1 1{I = i }r I , T n,i + σ 2 /κ 2 and σ 2 T n,i + σ 2 /κ 2 , where T n,i n-1 =1 1{I = i } is the number of selections of arm i before round n.
For the sake of simplicity, we consider improper Gaussian priors with µ 1,i = 0 and σ 1,i = +∞ for all i ∈ X , for which

µ n,i = 1 T n,i n-1 =1 1{I = i }r I , and σ 2 n,i = σ 2 T n,i .
Observe that in that case the posterior mean µ n,i coincides with the empirical mean.

Beta-Bernoulli model. For Bernoulli bandits with a uniform (Bet a(1, 1)) prior on each mean, the posterior distribution of µ i at round n is a Beta distribution with shape parameters α n,i = n-1 =1 1{I = i }r I , + 1 and β n,i = T n,i -n-1 =1 1{I = i }r I , + 1. Now we briefly recall TTTS and introduce T3C.

Description of TTTS.

At each time step n, TTTS has two potential actions: (1) with probability β, a parameter vector θ is sampled from Π n , and TTTS chooses to play

I (1) n arg max i ∈X θ i ,
(2) and with probability 1 -β, the algorithm continues sampling new θ until we obtain a challenger

I (2) n arg max i ∈X θ i that is different from I (1)
n , and TTTS then selects the challenger.

Description of T3C.

One drawback of TTTS is that, in practice, when the posteriors become concentrated, it takes many Thompson samples before the challenger I (2) n is obtained. We thus propose a variant of TTTS, called T3C, which alleviates this computational burden. Instead of re-sampling from the posterior until a different candidate appears, we define the challenger as the arm that has the lowest transportation cost W n (I (1) n , i ) with respect to the first candidate (with ties broken uniformly at random).

Let µ n,i be the empirical mean of arm i and

µ n,i , j (T n,i µ n,i + T n, j µ n, j ) (T n,i + T n, j ) , then we define W n (i , j ) 0 if µ n, j ≥ µ n,i , W n,i , j + W n, j ,i otherwise, (3.1)
where

W n,i , j T n,i d µ n,i , µ n,i , j
for any i , j . One may notice that we actually recover the generalized likelihood ratio statistic stated in Section 2.2.3.

Recall that we have closed-form expressions for the KL-divergence in some cases: in

the Gaussian case, d (µ; µ ) = (µ-µ ) 2 /(2σ 2 ) while in the Bernoulli case d (µ; µ ) = µ ln(µ/µ )+ (1 -µ) ln(1 -µ)/(1 -µ ) (see Appendix A.3.2).
For Gaussian bandits, we can further obtain a nice closed-form expression for the transportation cost,

W n (i , j ) = (µ n,i -µ n, j ) 2 2σ 2 (1/T n,i + 1/T n, j ) 1{µ n, j < µ n,i } .
The pseudo-code of TTTS and T3C are shown in Algorithm 3.1 and Algorithm 3.2. Note that under the Gaussian model with improper priors, one should pull each arm once at the beginning for the sake of obtaining proper posteriors.

W n in Line 9 of Algorithm 3.2 is the transportation cost defined in (3.1).

Rationale for T3C

In order to explain how T3C can be seen as an approximation of the re-sampling performed by TTTS, we first need to define the optimal action probabilities.

Algorithm 3.1 Sampling rule of TTTS

1: Input: β 2: for n ← 1, 2, • • • do 3: Sample θ ∼ Π n 4: I (1) ← arg max i ∈X θ i 5: Sample b ∼ Ber n(β) 6: if b = 1 then 7:
Evaluate arm I (1) 8: else 9:

Repeat sample θ ∼ Π n 10:

I (2) ← arg max i ∈X θ i 11:
until I (2) = I (1) 12:

Evaluate arm I (2) 13:

end if 14:

Update mean and variance 15:

t = t + 1 16: end for Algorithm 3.2 Sampling rule of T3C 1: Input: β 2: for n ← 1, 2, • • • do 3: Sample θ ∼ Π n 4: I (1) ← arg max i ∈X θ i 5: Sample b ∼ Ber n(β) 6: if b = 1 then 7:
Evaluate arm I (1) 8: else 9:

I (2) ← arg min i =I (1) W n (I (1) , i ), cf. (3.1) 10:
Evaluate arm I (2) 11:

end if 12:

Update mean and variance 13: t = t + 1 14: end for Optimal action probability. The optimal action probability a n,i is defined as the posterior probability that arm i is optimal. Formally, letting Θ i be the subset of Θ such that arm i is the optimal arm,

Θ i θ ∈ Θ θ i > max j =i θ j ,
then we define

a n,i Π n (Θ i ) = Θ i π n (θ)dθ.
With this notation, one can show that under TTTS,

Π n I (2) n = j |I (1) n = i = a n, j k =i a n,k . (3.2)
Furthermore, when i coincides with the empirical best mean (and this will often be the case for I (1) n when n is large due to posterior convergence) one can write

a n, j Π n θ j ≥ θ i exp -W n (i , j ) ,
where the last step is justified in Lemma 3.2 in the Gaussian case (and Lemma B.18 in Appendix B.7.3 in the Bernoulli case). Hence, T3C replaces sampling from the distribution (3.2) by an approximation of its mode which is easy to compute. Note that directly computing the mode would require to compute a n, j , which is much more costly than the computation of W n (i , j )3 .

Stopping and decision rules

In order to use TTTS or T3C as sampling rule for fixed-confidence BAI, we need to additionally define stopping and decision rules. While Qin et al. [2017] suggest to couple TTEI with the "frequentist" Chernoff stopping rule [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF], we propose in this section natural Bayesian stopping and recommendation rule. They both rely on the optimal action probabilities defined above.

Bayesian recommendation rule.

At time step n, a natural candidate for the best arm is the arm with largest optimal action probability, hence we define

J n arg max i ∈X a n,i .
Bayesian stopping rule. In view of the recommendation rule, it is natural to stop when the posterior probability that the recommended action is optimal is large, and exceeds some threshold c n,δ which gets close to 1. Hence our Bayesian stopping rule is

τ δ inf n ∈ N : max i ∈X a n,i ≥ c n,δ . (3.3) 
Links with frequentist counterparts. Using the transportation cost W n (i , j ) defined in (3.1), the Chernoff stopping rule of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] can actually be rewritten as

τ Ch. δ inf n ∈ N : max i ∈X min j ∈X \{i } W n (i , j ) > d n,δ . (3.4)
This stopping rule coupled with the recommendation rule J n = arg max i µ n,i . As explained in that paper, W n (i , j ) can be interpreted as a (log) Generalized Likelihood Ratio statistic for rejecting the hypothesis H 0 : (µ i < µ j ). Through our Bayesian lens, we rather have in mind the approximation Π n (θ j > θ i ) exp -W n (i , j ) , valid when µ n,i > µ n, j , which permits to analyze the two stopping rules using similar tools, as will be seen in the proof of Theorem 3.2.

As shown later in Section 3.4, τ δ and τ Ch. δ prove to be fairly similar for some corresponding choices of the thresholds c n,δ and d n,δ . This endorses the use of the Chernoff stopping rule in practice, which does not require the (heavy) computation of optimal action probabilities. Still, our sample complexity analysis applies to the two stopping rules, and we believe that a frequentist sample complexity analysis of a fully Bayesian BAI strategy is a nice theoretical contribution.

Useful notation. We follow the notation of [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] and define the following measures of effort allocated to arm i up to time n,

ψ n,i P [I n = i |F n-1 ] and Ψ n,i n l =1 ψ l ,i .
In particular, for TTTS we have

ψ n,i = βa n,i + (1 -β)a n,i j =i a n, j 1 -a n, j
, while for T3C

ψ n,i = βa n,i + (1 -β) j =i a n, j 1{W n ( j , i ) = min k = j W n ( j , k)} # arg min k = j W n ( j , k) . Recall that Σ K = {ω : K k=1 ω k = 1}
is the probability simplex of dimension K.

Two Related Optimality Notions

In the fixed-confidence setting, we aim for building δ-correct strategies, i.e. strategies that identify the best arm with high confidence on any problem instance (see Definition 2.13). Among δ-correct strategies, we seek the one with the smallest sample complexity

E [τ δ ].
So far, TTTS has not been analyzed in terms of sample complexity; [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] focusses on posterior consistency and optimal convergence rates. Interestingly, both the smallest possible sample complexity and the fastest rate of posterior convergence can be expressed in terms of the following quantities. 

T (µ) -1 max ω∈Σ K min i =I C i (ω I , ω i ) , T β (µ) -1 max ω∈Σ K ω I =β min i =I C i (ω I , ω i ) . (3.5)
Note that the T (µ) in Definition 3.1 is equivalent to the one defined in Definition 2.6 4 . The quantity C i (ω I , ω i ) can be interpreted as a "transportation cost" 5 from the original bandit instance µ to an alternative instance in which the mean of arm i is larger than that of I , when the proportion of samples allocated to each arm is given by the vector ω ∈ Σ K . As shown by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF], the ω that maximizes (3.5) is unique, which allows us to define the β-optimal allocation ω β in the following proposition. 

ω β i ) = C j (β, ω β j ).
Proof. We handle the existence and the uniqueness separately as below. 4 Readers can refer to Section 2.2 of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] for a proof. 5 For which W n (I , i ) is an empirical counterpart.

Existence: For any arm i = I , C i is a continuous function, so as to min i =I C i . According to the extreme value theorem, function min i =I C i (β, •) must attain its maximum over [0, 1] K-1 which is compact. Suppose that ω β is a such maximizer. We thus have

T β (µ) -1 = max ω:ω I =β min i =I C i (β, ω i ) = min i =I C i (β, ω β i ).
Let us assume that ω β does not verify the second condition, which means there exists some j = I such that C j (β,

ω β i ) > C i (β, ω β i ) ,
where i

arg min i =I C i (β, ω β i ). Now if we subtract a small quantity ε > 0, from C j (β, ω β j ), such that ε ≤ C j (β, ω β j ) -C i (β, ω β i ) 2 ,
and add ε/(K -2) to C i (β, ω β i ) for any i = j , I , we would not change the order of the C i (β, ω β i ). Therefore, i remains unchanged, however, the new C i (β, ω β i ) would be strictly larger than the previous one which contradicts the definition of ω β .

Uniqueness:

We now need to show that the solution is unique. Suppose that two different maximizers ω and ω exist, and there exists some i = I such that

ω i > ω i . Since C i (β, •) is an strictly increasing function, thus we have C i (β, ω i ) > C i (β, ω i ). By consequence, for any j = i and j = i , C j (β, ω j ) = C i (β, ω i ) > C i (β, ω i ) = C j (β, ω j ).
Therefore, for any j = I and j = I , ω j > ω j , and

j =I ω j > j =I ω j .
However, we know that 1

-j =I ω j = ω I = β = ω I = 1 -j =I ω j , contradiction!
For models with more than two arms, there is no closed form expression for T β (µ) -1 or T (µ) -1 , even for Gaussian bandits with variance σ 2 for which we have

T β (µ) -1 = max ω:ω I =β min i =I (µ I -µ i ) 2 2σ 2 (1/ω i + 1/β) .
Bayesian β-optimality. [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] proves that any sampling rule allocating a fraction β to the optimal arm (Ψ n,I /n → β) satisfies 1-a n,I ≥ e -n(T β (µ) -1 +o(1)) (a.s.) for large values of n. We define a Bayesian β-optimal sampling rule as a sampling rule matching this lower bound, i.e. satisfying Ψ n,I /n → β and 1a n,I ≤ e -n(T β (µ) -1 +o(1)) .

Russo [2016] proves that TTTS with parameter β is Bayesian β-optimal. However, the result is valid only under strong regularity assumptions, excluding the two practically important cases of Gaussian and Bernoulli bandits. In this paper, we complete the picture by establishing Bayesian β-optimality for those models in Section 3.5. For the Gaussian bandit, Bayesian β-optimality was established for TTEI by Qin et al. [2017] with Gaussian priors, but this remained an open problem for TTTS.

A fundamental ingredient of these proofs is to establish the convergence of the allocation of measurement effort to the β-optimal allocation: Ψ n,i /n → ω β i for all i , which is equivalent to T n,i /n → ω β i (cf. Lemma 3.4).

β-optimality in the fixed-confidence setting. In the fixed confidence setting, the performance of an algorithm is evaluated in terms of sample complexity. A lower bound given by Garivier and Kaufmann [2016] states that any δ-correct strategy satisfies

E [τ δ ] ≥ T (µ) ln (1/(3δ)).
Observe that T (µ) -1 = max β∈[0,1] T β (µ) -1 . Using the same lower bound techniques, one can also prove that under any δ-correct strategy satisfying T n,I /n → β,

lim inf δ→0 E [τ δ ] ln(1/δ) ≥ T β (µ) .
This motivates the relaxed optimality notion that we introduce in this paper: A BAI strategy is called asymptotically β-optimal if it satisfies

T n,I n → β and lim sup δ→0 E [τ δ ] ln(1/δ) ≤ T β (µ).
In the paper, we provide the first sample complexity analysis of a BAI algorithm based on TTTS (with the stopping and recommendation rules described in Section 3.2), establishing its asymptotic β-optimality.

As already observed by Qin et al. [2017], any sampling rule converging to the β-optimal allocation (i.e. satisfying T n,i /n → w β i for all i ) can be shown to satisfy

lim sup δ→0 τ δ / ln(1/δ) ≤ T β (µ)
almost surely, when coupled with the Chernoff stopping rule. The fixed confidence optimality that we define above is stronger as it provides guarantees on E [τ δ ].

Fixed-Confidence Analysis

In this section, we consider Gaussian bandits and the Bayesian rules using an improper prior on the means. We state our main result below, showing that TTTS and T3C are asymptotically β-optimal in the fixed confidence setting, when coupled with appropriate stopping and recommendation rules.

Theorem 3.1. With C g G the function defined by Kaufmann and Koolen [2018], which satisfies C g G (x) x + ln(x), we introduce the threshold

d n,δ = 4 ln(4 + ln(n)) + 2C g G ln((K -1)/δ) 2 . (3.6)
The TTTS and T3C sampling rules coupled with either 

lim sup δ→0 E [τ δ ] log(1/δ) ≤ T β (µ) .
We now give the proof of Theorem 3.1, which is divided into three parts. The first step of the analysis is to prove the δ-correctness of the studied BAI strategies. Theorem 3.2. Regardless of the sampling rule, the stopping rule (3.3) with the threshold c n,δ and the Chernoff stopping rule with threshold d n,δ defined in Theorem 3.1 satisfy

P τ δ < ∞ ∧ J τ δ = I ≤ δ.
To prove that TTTS and T3C allow to reach a β-optimal sample complexity, one needs to quantify how fast the measurement effort for each arm is concentrating to its corresponding optimal weight. For this purpose, we introduce the random variable

T ε β inf N ∈ N : max i ∈A |T n,i /n -ω β i | ≤ ε, ∀n ≥ N .
The second step of our analysis is a sufficient condition for β-optimality, stated in Lemma 3.1. Its proof is given in Appendix B.5. The same result was proven for the Chernoff stopping rule by Qin et al. [2017].

Lemma 3.1. Let δ, β ∈ (0, 1). For any sampling rule which satisfies E T ε β < ∞ for all ε > 0, we have

lim sup δ→0 E [τ δ ] log(1/δ) ≤ T β (µ) ,
if the sampling rule is coupled with stopping rule (3.3), Finally, it remains to show that TTTS and T3C meet the sufficient condition, and therefore the last step, which is the core component and the most technical part our analysis, consists of showing the following.

Theorem 3.3. Under TTTS or T3C, E T ε β < +∞.
In the rest of this section, we prove Theorem 3.2 and sketch the proof of Theorem 3.3. But we first highlight some important ingredients for these proofs.

Core ingredients

Our analysis hinges on properties of the Gaussian posteriors, in particular on the following tails bounds, which follow from Lemma 1 of Qin et al. [2017].

Lemma 3.2. For any i , j ∈ A , if µ n,i ≤ µ n, j Π n θ i ≥ θ j ≤ 1 2 exp - µ n, j -µ n,i 2 2σ 2 n,i , j , (3.7) Π n θ i ≥ θ j ≥ 1 2π exp - µ n, j -µ n,i + σ n,i , j 2 2σ 2 n,i , j , (3.8 
)

where σ 2 n,i , j σ 2 /T n,i + σ 2 /T n, j .
This lemma is crucial to control a n,i and ψ n,i , the optimal action and selection probabilities.

Proof of Theorem 3.2

We upper bound the desired probability as follows

P τ δ < ∞ ∧ J τ δ = I ≤ i =I P ∃n ∈ N : a n,i > c n,δ ≤ i =I P ∃n ∈ N : Π n (θ i ≥ θ I ) > c n,δ , µ n,I ≤ µ n,i ≤ i =I P ∃n ∈ N : 1 -c n,δ > Π n (θ I > θ i ), µ n,I ≤ µ n,i .
The second step uses the fact that as c n,δ ≥ 1/2, a necessary condition for

Π n (θ i ≥ θ I ) ≥ c n,δ is that µ n,i ≥ µ n,I . Now using the lower bound (3.8), if µ n,I ≤ µ n,i , the inequal- ity 1 -c n,δ > Π n (θ I > θ i ) implies (µ n,i -µ n,I ) 2 2σ 2 n,i ,I ≥ ln 1 2π(1 -c n,δ ) - 1 2 2 = d n,δ ,
where the equality follows from the expression of c n,δ as function of d n,δ . Hence to conclude the proof it remains to check that

P ∃n ∈N :µ n,i ≥ µ n,I , (µ n,i -µ n,I ) 2 2σ 2 n,i ,I ≥d n,δ ≤ δ K-1 . (3.9)
To prove this, we observe that for µ n,i ≥ µ n,I ,

(µ n,i -µ n,I ) 2 2σ 2 n,i ,I = inf θ i <θ I T n,i d (µ n,i ; θ i ) + T n,I d (µ n,I ; θ I ) ≤ T n,i d (µ n,i ; µ i ) + T n,I d (µ n,I ; µ I ).
Corollary 10 of Kaufmann and Koolen [2018] then allows us to upper bound the probability

P ∃n ∈ N : T n,i d (µ n,i ; µ i ) + T n,I d (µ n,I , µ I ) ≥ d n,δ
by δ/(K -1) for the choice of threshold given in (3.6), which completes the proof that the stopping rule (3.3) is δ-correct. The fact that the Chernoff stopping rule with the above threshold d n,δ given above is δ-correct straightforwardly follows from (3.9).

Sketch of the proof of Theorem 3.3

We present a unified proof sketch of Theorem 3.3 for TTTS and T3C. While the two analyses follow the same steps, some of the lemmas given below have different proofs for TTTS and T3C, which can be found in Appendix B.3 and Appendix B.4 respectively.

We first state two important concentration results, that hold under any sampling rule.

Lemma 3.3. [Lemma 5 of Qin et al. 2017]

There exists a random variable W 1 , such that for all i ∈ A ,

∀n ∈ N, |µ n,i -µ i | ≤ σW 1 log(e + T n,i ) 1 + T n,i a.s. ,
and E e λW 1 < ∞ for all λ > 0.

Lemma 3.4. There exists a random variable W 2 , such that for all i ∈ A ,

∀n ∈ N, |T n,i -Ψ n,i | ≤ W 2 (n + 1) log(e 2 + n) a.s. ,
and E e λW 2 < ∞ for any λ > 0.

Lemma 3.3 controls the concentration of the posterior means towards the true means and Lemma 3.4 establishes that T n,i and Ψ n,i are close. Both results rely on uniform deviation inequalities for martingales.

Our analysis uses the same principle as that of TTEI: We establish that T ε β is upper bounded by some random variable N which is a polynomial of the random variables W 1 and W 2 introduced in the above lemmas, denoted by Poly(W 1 , W 2 ) O (W

c 1 1 W c 2
2 ), where c 1 and c 2 are two constants (that may depend on arms' means and the constant hidden in the O ). As all exponential moments of W 1 and W 2 are finite, N has a finite expectation as well, which concludes the proof.

The first step to exhibit such an upper bound N is to establish that every arm is pulled sufficiently often. Lemma 3.5. Under TTTS or T3C, there exists

N 1 = Poly(W 1 , W 2 ) s.t. ∀n ≥ N 1 , for all i , T n,i ≥ n/K, almost surely.
Due to the randomized nature of TTTS and T3C, the proof of Lemma 3.5 is significantly more involved than for a deterministic rule like TTEI. Intuitively, the posterior of each arm would be well concentrated once the arm is sufficiently pulled. If the optimal arm is under-sampled, then it would be chosen as the first candidate with large probability. If a sub-optimal arm is under-sampled, then its posterior distribution would possess a relatively wide tail that overlaps with or cover the somehow narrow tails of other overlysampled arms. The probability of that sub-optimal arm being chosen as the challenger would be large enough then.

Combining Lemma 3.5 with Lemma 3.3 straightforwardly leads to the following result.

Lemma 3.6. Under TTTS or T3C, fix a constant ε > 0, there exists

N 2 = Poly(1/ε, W 1 , W 2 ) s.t. ∀n ≥ N 2 , ∀i ∈ A , |µ n,i -µ i | ≤ ε .
We can then deduce a very nice property about the optimal action probability for suboptimal arms from the previous two lemmas. Indeed, we can show that

∀i = I , a n,i ≤ exp - ∆ 2 min 16σ 2 n K
for n larger than some Poly(W 1 , W 2 ). In the previous inequality, ∆ min is the smallest mean difference among all the arms. Plugging this in the expression of ψ n,i , one can easily quantify how fast ψ n,I converges to β, which eventually yields the following result. Lemma 3.7. Under TTTS or T3C, fix ε > 0, then there exists

N 3 = Poly(1/ε, W 1 , W 2 ) s.t. ∀n ≥ N 3 , T n,I n -β ≤ ε .
The last, more involved, step is to establish that the fraction of measurement allocation to every sub-optimal arm i is indeed similarly close to its optimal proportion ω β i .

Lemma 3.8. Under TTTS or T3C, fix a constant ε > 0, there exists

N 4 = Poly(1/ε, W 1 , W 2 ) s.t. ∀n ≥ N 4 , ∀i = I , T n,i n -ω β i ≤ ε .
The major step in the proof of Lemma 3.8 for each sampling rule, is to establish that if some arm is over-sampled, then its probability to be selected is exponentially small. Formally, we show that for n larger than some Poly(1/ε, W 1 , W 2 ),

Ψ n,i n ≥ ω β i + ξ ⇒ ψ n,i ≤ exp -f (n, ξ) ,
for some function f (n, ξ) to be specified for each sampling rule, satisfying f (n) ≥ C ξ n (a.s.). This result leads to the concentration of Ψ n,i /n, thus can be easily converted to the concentration of T n,i /n by Lemma 3.4. Finally, Lemma 3.7 and Lemma 3.8 show that T ε β is upper bounded by N max(N 3 , N 4 ), which yields

E[T ε β ] ≤ max(E [N 3 ] , E [N 4 ]) < ∞.

Optimal Posterior Convergence

Recall that a n,I denotes the posterior mass assigned to the event that action I (i.e. the true optimal arm) is optimal at time n. As the number of observations tends to infinity, we desire that the posterior distribution converges to the truth. In this section we show equivalently that the posterior mass on the complementory event, 1-a n,I , the event that arm I is not optimal, converges to zero at an exponential rate, and that it does so at optimal rate T β (µ) -1 . Russo [2016] proves a similar theorem under three confining boundedness assumptions (cf. Russo 2016, Asssumption 1) on the parameter space, the prior density and the (first derivative of the) log-normalizer of the exponential family. Hence, the theorems in [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] do not apply to the two bandit models most used in practise, which we consider in this paper: the Gaussian and Bernoulli model.

In the first case, the parameter space is unbounded, in the latter model, the derivative of the log-normalizer (which is e η /(1 + e η )) is unbounded. Here we provide two theorems, proving that under TTTS, the optimal, exponential posterior convergence rates are obtained for the Gaussian model with uninformative (improper) Gaussian priors (proof given in Appendix B.6), and the Bernoulli model with Bet a(1, 1) priors (proof given in Appendix B.7).

Theorem 3.4. Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost surely that

lim n→∞ - 1 n log(1 -a n,I ) = T β (µ) -1 .
Theorem 3.5. Under TTTS, for Bernoulli bandits and uniform priors, it holds almost surely that

lim n→∞ - 1 n log(1 -a n,I ) = T β (µ) -1 .

Numerical Illustrations

Computation of the optimal error decay rate

We first describe how to approximate T β (µ) -1 under any prior of 1-dimensional exponential family. We then also provide a way to compute numerically T β (µ) -1 under Gaussian prior since it can be computed more explicitly.

General case.

For any i = I , C i (β, ω i ) is defined as the output to a convex minimization problem for whom the unique solution has an analytic expression

β β + ω i µ I + ω i β + ω i µ i .
Next, we define for any i = I , a function

g i : [0, +∞[ → [0, +∞[ x → βd µ I ; β β + ω i µ I + ω i β + ω i µ i + xd µ i ; β β + ω i µ I + ω i β + ω i µ i .
In fact, g i is a strictly increasing function (see Garivier and Kaufmann 2016, Appendix A.2 for more details), so does its inverse function x i g -1 i which is defined on [0, βd (µ I ; µ i )[ as g i tends to 0 when x tends to 0 and tends to βd (µ I ; µ i ) when x tends to +∞.

According to Proposition 3.1, the optimal proportion vector ω β that we are searching for satisfies the constraint that ∀i , j = I ,

g i (ω β i ) = g j (ω β j ) = T β (µ) -1 . Since ω β i = g -1 i (Γ β ) = x i (Γ β
), and we know that i =I ω i = 1 -β, thus the problem of computing Γ β is equivalent to solve the following equation,

i =I x i (y) = 1 -β.
This equation has a unique solution since i =I is a strictly increasing function valued in [0, +∞[. We can thus apply a bisection method to this function whose evaluation require itself a bisection method applied on K -1 smooth scalar functions.

Gaussian case.

In the context of this paper, we can do a more efficient approximation. In the Gaussian case, we know that for any i , j = I ,

1 ω β j + 1 β = (µ I -µ j ) 2 (µ I -µ i ) 2   1 ω β i + 1 β   . Denote x i 1/ω β i + 1/β and a j i (µ I -µ j ) 2 /(µ I -µ i ) 2
, fix some i = I , then we have

∀ j = I , x j = a j i x i . Since j =I ω β j = 1 -β, we have j =I 1 x j -1/β = j =I 1 a j i x i -1/β = 1 -β.
Thus we only need to find the unique solution to the equation

j =I a i j x -a i j /β = 1 -β,
that requires only one shot bisection method.

Empirical vs. theoretical sample complexity

In Fig. 3.1, we plot expected stopping time of T3C for δ = 0.01 as a function of T β (µ) on 100 randomly generated problem instances. We see on this plot that the empirical stopping time has the right linear scaling in T β (µ) (ignoring a few outliers). 

Results

This section is aimed at illustrating our theoretical results and supporting the practical use of Bayesian sampling rules for fixed-confidence BAI.

We experiment with three different Bayesian sampling rules: T3C, TTTS and TTEI, and we also include the Direct Tracking (D-Tracking) rule of Garivier and Kaufmann [2016] (which is adaptive to β), the UGapE [START_REF] Gabillon | Best arm identification: A unified approach to fixed budget and fixed confidence[END_REF] algorithm, and a uniform baseline. In order to make a fair comparison, we use the Chernoff stopping rule (3.4) and associated recommendation rule for all of the sampling rules, including the uniform one, except for UGapE which has its own stopping rule. Furthermore, we include a top-two variant of the Best Challenger (BC) heuristic (see, e.g., [START_REF] Ménard | Gradient ascent for active exploration in bandit problems[END_REF].

BC selects the empirical best arm I n with probability β and the maximizer of W n ( I n , j )

with probability 1 -β, but also performs forced exploration (selecting any arm sampled less than n times at round n). T3C can thus be viewed as a variant of BC in which no forced exploration is needed to converge to ω β , due to the noise added by replacing I n with I (1) n . We consider two simple instances with arms means given by µ 1 = [0.5 0.9 0.4 0.45 0.44999] and µ 2 = [1 0.8 0.75 0.7] respectively. We run simulations for both Gaussian (with σ = 1) and Bernoulli bandits with a risk parameter δ = 0.01. Figure 3.2 reports the empirical distribution of τ δ under the different sampling rules, estimated over 1000 independent runs. These figures provide several insights: (1) T3C is competitive with, and sometimes slightly better than TTTS and TTEI in terms of sample complexity. (2) The UGapE algorithm has a larger sample complexity than the uniform sampling rule, which highlights the importance of the stopping rule in the fixed-confidence setting. (3) The fact that D-Tracking performs best is not surprising, since it converges to ω β and achieves minimal sample complexity. However, in terms of computation time, D-Tracking is much worse than other sampling rules, as can be seen in Table 3.1, which reports the average execution time of one step of each sampling rule for µ 1 in the Gaussian case. (4) TTTS also suffers from computational costs, whose origins are explained in Section 3.2, unlike T3C and TTEI. Although TTEI is already computationally more attractive than TTTS, its practical benefits are limited to the Gaussian case, since the Expected Improvement (EI) does not have a closed form beyond this case and its approximation would be costly. In contrast, T3C can be applied for other distributions. 

Discussion

We have advocated the use of a Bayesian sampling rule for BAI. In particular, we proved that TTTS and a computationally advantageous approach T3C, are both β-optimal in the fixed-confidence setting, for Gaussian bandits. Our analysis applies to Gaussian bandits, but could be extended to more distributions for which posterior tails bounds are available. We further extended the Bayesian optimality properties established by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] to more practical choices of models and prior distributions.

For future work, it would also be meaningful to provide a fixed-budget analysis, in particular in some potential application scenario of TTTS. For example, pure-exploration bandit algorithms are widely used in HPO [START_REF] Hoffman | On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning[END_REF][START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF] which is the topic of Chapter 6.

Another important unsolved open question comes to the tuning of β. Indeed, if β is set to β = arg max β∈[0,1] T β (µ) -1 , a β-optimal strategy is also optimal. In practice of course β is unknown and so far TTTS cannot be asymptotically optimal without this knowledge.

However, note that Russo [2016] shows that Γ 1/2 ≥ Γ /2, which provides a near-optimal tuning of TTTS. Obviously, proposing an satisfying online tuning of β (other than the one proposed in the TTTS paper) with provable fixed-confidence guarantees is another avenue for future work.

There is another line of research that leverages a game theoretic point of view on the pure exploration setting, that explores a statistic-computation trade-off ( Degenne et al.

2019; Ménard 2019, see also Chapter 4). It is also interesting to investigate whether TSbased exploration can replace the current (complicated) optimistic approach.

Introduction

Following the previous chapter, we study a natural extension of the vanilla BAI problem in this chapter, namely linear bandits BAI. As already stated in Chapter 2, linear bandits BAI studies the case where noisy linear payoffs depending on some unknown regression parameter θ are assumed.

Bandits with linear payoffs (or more generally with contextual payoffs) are of great interest in many real-world applications. Typically, we can think of advertisement display optimization where an e-content provider seeks to identify the best-performing advertisement display design. Other relevant applications include recommender systems, path routing, power grid cost minimization, etc. It is arguable whether we need regret minimization or best-arm identification for those situations: a reasonable guess is that it is often subject to the real business needs.

Linear bandits were first investigated by [START_REF] Auer | Using confidence bounds for exploitation-exploration trade-offs[END_REF] in the stochastic setting for regret minimization and later considered for BAI problems in the fixed-confidence setting by [START_REF] Soare | Best-arm identification in linear bandits[END_REF]. In this chapter, we again focus on the fixed-confidence setting (see Definition 2.6). A quick reminder that for fixed-confidence BAI, we search for algorithms that are able to output the correct best arm with high confidence using as few samples as possible.

Recall that vanilla fixed-confidence BAI problems are often treated by arm eliminations such as Successive-Elimination The primary goal of this chapter is thus to investigate what is the key element that impacts the optimality of an algorithm and how to design (asymptotically) optimal algorithms for linear bandits BAI. A first set of candidates is the Bayesian algorithms presented in Chapter 3: can they be extended in order to achieve optimality in the linear case? Other potential options are considered as well, in particular methods that approach the lower bound step by step (e.g. inspired by Garivier and Kaufmann 2016 or by Degenne et al.

[2019]).

Contributions. 1)

We provide new insights on the complexity of BAI for linear bandits. In particular, we relate the asymptotic complexity of the BAI problem and other measures of complexity inspired by optimal design theory, which were used in prior work. 2) We propose extensions of the Bayesian algorithms studied in Chapter 3 to the linear setting, and provide empirical evidence that they are not asymptotically optimal. 3) We develop a saddle-point approach to the lower bound optimization problem, which also guides the design of an algorithm LinGame for linear bandits BAI in the fixed-confidence regime. Its sample complexity is asymptotically optimal and its empirical performance is competitive with the best existing algorithms. 

Problem Setting and Assumptions

In this section, we recall the problem setting of linear bandits as well as linear bandits BAI. In particular, we specify the assumptions used in this chapter.

Linear bandits. We consider a finitely-armed linear bandit problem, where the collection of arms

X {x 1 , • • • , x K } ⊂ R d is given with |X | = K,
and spans R d . When there is no ambiguity, we can also use the index i ∈ [K] to represent arm x i . The (unknown) mean of each arm is given by

µ i = x T i θ .
Assumption 4.1. We assume that ∃L > 0, ∀x ∈ X , x ≤ L, where x denotes the Euclidean norm of the vector x.

The learning protocol (see also Definition 2.11) goes as follows: for each round n, the learner chooses an arm x n ∈ X and observes a noisy sample

r n = x T n θ + ε n ,
where ε n is the noise and θ is the true regression parameter (unknown to the learner).

Assumption 4.2. We assume that ε n ∼ N (0, σ 2 ) is conditionally independent from the past .

For the sake of simplicity, we set σ 2 = 1 in the rest of this paper.

Best-arm identification for linear bandits. We assume that θ belongs to some parameter set Θ ⊂ R d known to the learner. Recall that in a pure exploration game, given a parameter θ, the learner aims to find the correct answer I (θ) ∈ I by interacting with the finite-armed linear bandit environment parameterized by θ (see also Section 2.3.1).

In particular, we are interested in BAI for which the objective is to identify the arm with the largest mean. That is, the correct answer given θ is given by

I (θ) = x (θ) arg max x∈X x T θ
for θ ∈ Θ = R d and the set of possible correct answers is I = X . When clear from the context, we can simply denote x (θ) by x.

Algorithm. Let F n = σ( x 1 , r 1 , • • • , x n , r n ) be the information available to the learner after n round. We restate the definition of a BAI algorithm under the fixed-confidence setting, which is given by three components: (1) a sampling rule ( x n ) n≥1 , where x n ∈ X is F n-1measurable, (2) a stopping rule τ δ , a stopping time for the filtration (F n ) n≥1 , and (3) a decision rule J τ ∈ X which is F τ δ -measurable.

δ-correctness and fixed-confidence objective. As already stated several times in the previous chapters, we say that an algorithm is δ-correct if it predicts the correct best arm with probability at least 1 -δ, precisely if P θ x J τ = I (θ) ≤ δ and τ δ < +∞ almost surely for all θ ∈ Θ. Our goal is to find a δ-correct algorithm that minimizes the sample complexity, that is, E θ [τ δ ] the expected number of sample needed to predict an answer. Linear estimator. A crucial step in linear bandits is to estimate the regression parameter θ. Let X n = ( x 1 , . . . , x n ) be a sequence of sampled arms, and r n = (r 1 , . . . , r n ) be the corresponding observations. To estimate θ based on the adaptive sequence of observations r n , one may use the regularized least-square estimation

θ λ n = (λ1 d + A X n ) -1 b X n , ( 4.1) 
where A X n and b X n are the design matrix and the response vector respectively given by

A X n n t =1 x t x T t , b X n n t =1
x t r t , and λ ∈ R is the regularization parameter. When clear from the context, we can simply denote A X n by A n and b X n by b n .

Useful notation. The fixed-confidence optimality, as proved by [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]; [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF], is related to the proportion vector of pulls of each arm that we denote by ω = (ω 1 , . . . , ω K ), where ω ∈ Σ K . Given a vector of proportions ω, we can define a counterpart of the design matrix

Λ ω K i =1 ω i x i x T i .
It is easy to switch between the design matrix and the proportion vector. Indeed, given a sequence of sampled arms X n , the corresponding proportion vector can be written as

∀i ∈ [K], ω n+1,i = T n+1,i n ,
where recall that T n,i n-1 t =1 1{ x t = i } is the number of pulls of arm i before round n.

Therefore, the corresponding design matrix can be written as

A X n = nΛ ω X n .
Another important notation that we employ ceaselessly is the Mahalanobis norm which is defined, given a positive semi-definite matrix A ∈ R d ×d , by

∀x ∈ R d , x A = x T Ax.

Fixed-Confidence Optimality and Complexities

Our primary goal is to propose a BAI strategy that outputs quickly and reliably a final guess of the best arm. Formally, given a risk level δ, we want to show that

P x J τ δ = x ≤ δ,
while minimizing the expected number of samples E [τ δ ] that is required. To achieve this objective, we first investigate the lower bound of the sample complexity.

Lower bound

In this section we extend the lower bound of [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF], to hold for pure exploration in finitely-armed linear bandit problems.

Alternative. Recall the notion of alternative set which is already defined in Section 2.5.2 for BAI. For the general pure-exploration problem, the definition is given below.

Definition 4.1 (alternative set (pure exploration))

. For any answer i ∈ I we define the alternative set of arm i , denoted by ¬i the set of parameters where the answer i is not correct, i.e. ¬i {θ ∈ Θ : i = I (θ)} .

Lower bound.

A general result on the (non-asymptotic) sample-complexity lower bound in the fixed-confidence regime [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF]], which we reviewed in Section 2.5.2, states that for any δ-correct strategy, we have

E [τ δ ] ≥ T (θ) log( 1 3δ ), (4.2) 
for a given parameter θ and a given confidence level δ. And the characteristic time T (θ) is written as

T (θ) -1 max ω∈Σ K inf θ ∈¬I (θ) 1 2 θ -θ 2 Λ ω , (4.3) 
and it can be further particularized into (4.4) defined in Proposition 4.1 for linear bandits.

Proposition 4.1. In the linear case, the quantity T (θ) is written as

T (θ) inf ω∈Σ K max x =x 2 x -x 2 Λ -1 ω (x T θ -(x ) T θ) 2 . (4.4)
Proof. Using the alternative set of I (θ), and by (4.3), we obtain

T (θ) -1 = max ω∈Σ K inf θ ∈¬I (θ) 1 2 θ -θ 2 Λ ω = max ω∈Σ K inf θ ∈¬I (θ) K i =1 ω i d (µ i ; µ i ) = max ω∈Σ K min x =x inf x T θ >(x ) T θ θ -θ 2 Λ ω 2 .
Then we introduce the Lagrangian with η as the Lagrange multiplier, and it then becomes

T (θ) -1 = sup ω∈Σ K min x =x inf θ sup η>0 θ -θ 2 Λ ω 2 -η(x -x ) T θ ,
and the inner expression attains its minimum when it comes

Λ ω (θ -θ ) = η(x -x), which implies T (θ) -1 = sup ω∈Σ K min x =x sup η>0 η(x -x) T θ - η 2 x -x Λ -1 ω 2σ 2 = sup ω∈Σ K min x =x x T θ -(x ) T θ 2 2 x -x 2 Λ -1 ω .
Asymptotic optimality. We can define the asymptotic optimality upon T (θ).

Definition 4.2. A BAI strategy is called optimal in the fixed-confidence setting if it satisfies

lim sup δ→0 E [τ δ ] ln(1/δ) ≤ T (θ) .
Remark 4.1. Using the same lower-bound techniques, one can also prove that under any δ-correct strategy satisfying T n,I /n → β for a given β,

lim inf δ→0 E [τ δ ] ln(1/δ) ≥ T β (θ) ,
where T β (θ) is defined in the same way as T (θ), but restricted to the constraint ω I = β,

T β (θ) inf ω∈Σ K ,ω I =β max x =x 2σ 2 x -x 2 Λ -1 ω (x T θ -(x ) T θ) 2 .
Essentially, we can recover the β-optimality defined in Chapter 3.

Best-arm identification complexity

The inverse of the characteristic time of Proposition 4.1 can also be written as

T (θ) -1 = max ω∈Σ K min x =x x T θ -(x ) T θ 2 2 x -x 2 Λ -1 ω for BAI.
Since the characteristic time involves many problem dependent quantities that are unknown to the learner, previous work target loose problem-independent upper bounds on the characteristic time. Soare et al. [2014] (see also [START_REF] Fiez | Sequential experimental design for transductive linear bandits[END_REF][START_REF] Tao | Best arm identification in linear bandits with linear dimension dependency[END_REF]) introduce the G-complexity (denoted by X X ) which coincides with the G-optimal design of experimental design theory (see [START_REF] Pukelsheim | Optimal Design of Experiments[END_REF]) and the X Y dir -complexity (denoted by X Y dir ) inspired by the transductive experimental design theory [START_REF] Yu | Active learning via transductive experimental design[END_REF],

X X = min ω∈Σ K max x∈X x 2 Λ -1 ω , X Y dir = min ω∈Σ K max y∈Y dir y 2 Λ -1 ω ,
where Y dir is the set of directions induced by X :

Y dir {x -x : (x, x ) ∈ X × X } .
For the G-optimal complexity we seek for a proportion of pulls ω that explores uniformly the means of the arms, since the statistical uncertainty for estimating x T θ scales roughly with x Λ -1 ω . In the X Y dir -complexity we try to estimate uniformly all the directions xx , while a potentially more plausible quantity to maximize would be the characteristic time itself. For the latter, we try to estimate all the directions xx scaled by the squared gaps (xx) T θ.

The fact that previous works maximize over loose upper bounds on the characteristic time is potentially the main reason that they cannot achieve optimality. We can see later (in Section 4.6) that directly maximizing the weighted gaps would indeed lead to an asymptotically optimal algorithm.

Note that the characteristic time can also be seen as a particular optimal transductive design. Indeed for

Y x (θ) -x |(x (θ) -x) T θ| : x ∈ X / x (θ) , it holds T (θ) = 2X Y (θ) 2 min ω∈Σ K max y∈Y (θ) y 2 Λ -1 ω .
Besides, we have the following ordering on the complexities

T (θ) ≤ 2 X Y dir ∆ min (θ) 2 ≤ 8 X X ∆ min (θ) 2 = 8d ∆ min (θ) 2 , ( 4.5) 
where ∆ min = min x =x (θ) (x (θ)-x) T θ and the last equality follows from the Kiefer-Wolfowitz equivalence theorem [START_REF] Kiefer | Optimum designs in regression problems[END_REF].

Remark 4.2. In order to compute all these complexities, it is sufficient to solve the following generic optimal transductive design problem: for Y a finite set of elements in

R d , X Y dir = min ω∈Σ K max y∈Y y 2 Λ -1 ω .
When Y = X we can use an algorithm inspired by Frank-Wolfe [START_REF] Frank | An algorithm for quadratic programming[END_REF] which possesses convergence guarantees [START_REF] Ahipasaoglu | Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids[END_REF][START_REF] Atwood | Optimal and efficient designs of experiments[END_REF]. But in the general case, up to our knowledge, there is no algorithm with the same kind of guarantees. Previous works used an heuristic based on a straightforward adaptation of the aforementioned algorithm for general sets Y but it seems to not converge on particular instances (see Section 4.3.3). We instead propose in the same section an algorithm based on saddle-point Frank-Wolfe algorithm that seems to converge on the different instances we tested.

Empirical evaluation. We use the following problem instance to illustrate how various complexities differ in practice. In this instance, contexts are the canonical basis and is considered as a hard instance to test the performance of linear BAI algorithms. In this problem, the best arm is always e 1 , but when the angle α is small, the disturbing context is hard to discriminate from e 1 . In this section, we set d = 2, c = 2, δ = 0.01 and α = 0.1. In Table 4.1 we compare the different complexities previously mentioned: the characteristic time T (θ) and its associated optimal weights ω X Y (θ) , the X Y dir -complexity and its associated optimal design ω X Y dir , the G-optimal complexity X X and its associated optimal design ω X X . For each weight vector

x 1 = e 1 , x 2 = e 2 , • • • , x d = e d ,
ω ∈ ω X Y (θ) , ω X Y dir , ω X X ,
we also provide the lower bound T ω given by (4.2), i.e.

T ω = max x =x (θ) (x (θ) -x) T θ 2 2 x (θ) -x 2 Λ -1 ω log(1/δ) .
In particular we notice that targeting the proportions of pulls ω X Y dir , ω X X leads to a much larger lower bound than the one obtained with the optimal weights.

Computation of different complexities

As mentioned in Section 4.3.1, computing the solution to a specified optimization problem is required in many existing linear BAI algorithms. We survey some methods that can potentially be useful to handle that issue.

We recall that the three notions of complexity X X , X Y dir , X Y (θ) can be written in a unified form, A simple sanity check to test whether a solver works smoothly is to solve X Y (θ) for classical multi-armed bandits (i.e. when X = {e 1 , e 2 , . . . , e d }), for which a solver with guarantee exists (see [START_REF] Garivier | Explore first, exploit next: The true shape of regret in bandit problems[END_REF]). In particular we found instances where Algorithm 4.1 does not converge toward the optimal weights, for example: X = {e 1 , e 2 , e 3 }, θ = (0.9, 0.5, 0.5). Algorithm 4.1 Frank-Wolfe heuristic for computing X X -design

X Y = min ω∈Σ K max y∈Y y 2 Λ -1 ω , (4.6) ω X Y ω X Y dir ω X
(1) X X -allocation X X (2) X Y dir -allocation X Y dir = {x -x : (x, x ) ∈ X × X } (3) X Y (θ)-allocation X Y (θ) = (x (θ) -x)/ (x (θ) -x) T θ : x ∈ X / x (θ)
Input: arm set X ⊂ R d , transductive set Y ⊂ R d , maximum iterations N Initialize: ω ← (1, 1, . . . , 1) ∈ R A , Λ ← I d , t ← 0 while n < N do x ∈ arg min x∈X max y∈Y 〈x, y〉 2 Λ -1 Λ ← Λ + x x T ω ← n n+1 ω + 1 n+1 e x n ← n + 1 end while Return ω
We propose a variant of the previous heuristic that takes into account a count for each element in the transductive set Y . The pseudo-code of our method is displayed in Algorithm 4.2. N ∈ N |Y | denotes the vector of counts for all b ∈ Y . Sanity check on various MAB instances shows the correctness of our heuristic, its convergence guarantee remains for the future work.

Algorithm 4.2 Saddle Frank-Wolfe heuristic for computing generic X Y -design

Input: arm set X ⊂ R d , transductive set Y ⊂ R d , maximum iterations N Initialize: ω ← (1, 1, . . . , 1) ∈ R d , Λ ← I d , Λ ← I d , n ← 0 while n < N do x ∈ arg max x∈X x 2 Λ -1 ΛΛ -1 y ∈ arg max y∈Y y 2 Λ -1 Λ ← Λ + x x T Λ ← Λ + y y T ω ← n n+1 ω + 1 n+1 e x n ← n + 1 end while Return ω
Entropic mirror descent. An entropic mirror descent alternative is used by [START_REF] Tao | Best arm identification in linear bandits with linear dimension dependency[END_REF] to compute X X . The entropic mirror descent approach requires the knowldge of the Lipschitz constant of log det Λ ω . Unfortunately, that Lipschitzness property does not seem to hold. [START_REF] Lu | Relatively-smooth convex optimization by first-order methods , and applications[END_REF] propose a solution to overcome the Lipschitz issue, but only for X X -design. Whether it still works for general X Y -design remains an open question.

Some extensions

In this section, we present two relevant extensions of linear bandits BAI. We introduce the settings from a pure-exploration point of view.

Bounded BAI. One straightforward extension is to consider the bounded BAI. In this case, the set of parameters is

Θ {θ ∈ R d : | arg max x∈X x T θ| = 1 and θ ≤ M}
for some M > 0. The set of possible answers is I = X and the correct answer is given by

I (θ) = x (θ) arg max x∈X x T θ .
This additional assumption reduces the characteristic time to

T (θ) -1 = max ω∈Σ K min x =x (θ) inf (x-x ) T θ >0 θ ≤M θ -θ 2 Λ ω .
Transductive BAI. Another very closely-related setting is the transductive BAI [START_REF] Fiez | Sequential experimental design for transductive linear bandits[END_REF] where the learner wants to find the best arm of a different set Y that the one they are allowed to pull. Precisely the set of parameters is

Θ R d /{θ ∈ R d : | arg max y∈Y y T θ| > 1} .
The set of possible answers is I = Y and the correct answer is given by

I (θ) = y (θ) arg max y∈Y y T θ .
The characteristic time in this case is

T (θ) -1 = max ω∈Σ K min y =y (θ) (y T θ -(y ) T θ) 2 2 y -y 2 Λ -1 ω .
Note that the dependency on the arm set X here only appears through the matrix Λ ω .

Related Work

We survey previous work on linear BAI. The major focus is put on sampling rules in this section. We stress that all the stopping rules employed in the linear BAI literature are equivalent up to the choice of their exploration rate (More discussion in Appendix C.4). As aforementioned, existing sampling rules for fixed-confidence linear BAI are either eliminationbased or gap-based. Elimination-based sampling rules usually operate in phases and progressively discard sub-optimal directions. Gap-based sampling rules always play the most informative arm that reduces the uncertainty of the gaps between the empirical best arm and the others. does not discard arms once and for all, but reset the active arm set at each phase. These two algorithms are the first one being linked to X X -optimality, but are not asymptotically optimal.

ALBA. ALBA is also an eliminations-based algorithm designed by [START_REF] Tao | Best arm identification in linear bandits with linear dimension dependency[END_REF] that improves over X Y -Adaptive by a factor of d in the sample complexity using a tighter elimination criterion. 

RAGE.

x i n -x j n 2 (A n +xx T ) -1
instead, again at the cost of losing guarantees. Here i n = I ( θ n ) and x j n is the most ambiguous arm w.r.t. x i n , i.e. arg max

j =i n (x j -x ( θ λ n )) T θ λ n + x ( θ λ n ) -x j n A -1 n 2d n,δ ,
with d n,δ the stopping rule threshold.

On the other hand, [START_REF] Zaki | Towards optimal and efficient best arm identification in linear bandits[END_REF] propose a new algorithm based on LUCB. With a careful examination, we note that the sampling rule of GLUCB is equivalent to that of the greedy LinGapE using the Sherman-Morrison formula. Later, [START_REF] Kazerouni | Best arm identification in generalized linear bandits[END_REF] provide a natural extension of LinGapE to the generalized linear bandits setting, where the rewards depend on a strictly increasing inverse link function. GLGapE reduces to LinGapE when the inverse link function is the identity function.

Summary.

It is worth noting that all the sampling rules presented here depend on δ (except X Y -Static), while we aim to design sampling rules that are δ-free which is appealing for applications as argued by [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF]. Also all the guarantees in the literature are of the form C log(1/δ) + O log(1/δ) for a constant C that is strictly larger than T (θ) -1 .

In the next, we present a set of algorithms using different design patterns that aim to address linear bandits BAI in a (near) optimal way.

Bayesian Algorithms for the Linear Case

We first investigate a natural extension of the Bayesian algorithms from Chapter 3 to the linear setting.

Direct adaptation of TTTS and T3C

We consider two Bayesian sampling rules inspired by TTTS and T3C called Linear-Top-Two Thompson Sampling (L-T3S) and Linear-Top-Two Transportation Cost (L-T3C) respectively. Both sampling rules make use of a prior distribution Π 1 over a set of parameters Θ, that contains the unknown true regression parameter θ. Upon observing a sequence of payoffs (r 1 , , . . . , r n-1 ), we update our beliefs over the regression parameter and obtain a posterior distribution Π n whose density w.r.t. the Lebesgue measure is denoted by π n .

L-T3S/L-T3C differ from TTTS/T3C in the choice of prior distribution and consequently the deduction of posterior distribution. Indeed, in the linear case, we assume that θ is sampled from N (0, κ 2 1 d ) with κ 2 to be precised below. The posterior distribution Π n , given the sequence of sampled arms X n , can be written as

N ( θ λ n , Σ n ) with ( Σ n ) -1 = 1 κ 2 1 d + 1 σ 2 n t =1 x t x T t and θ λ n = 1 σ 2 Σ n b X n . (4.7)
Combining (4.7) and (4.1), we obtain κ 2 = σ 2 /λ. One can also write

Σ n = σ 2 (B λ n ) -1 with B λ n = λ1 d + n t =1 x t x T t .
Description of L-T3S. At each time step n, L-T3S has two potential actions: (1) with probability β, a parameter vector θ 1 is sampled from Π n , and L-T3S chooses to play

x (1) n arg max x∈X x T θ 1 , whose index is denoted by I (1) n , (2) and with probability 1 -β, the algorithm continues sampling new θ 2 until we obtain a challenger x (2) n arg max x∈X x T θ 2 indexed by I (2) n that is different from I (1) n , and L-T3S then selects the challenger.

Description of L-T3C. We can also extend T3C, the computational-lightweight variant of TTTS to the linear case which we call L-T3C. Instead of re-sampling from the posterior until a different candidate appears, we define the challenger as the arm that has the lowest transportation cost W n (I (1) n , i ) with respect to the first candidate (with ties broken uniformly at random). The transportation cost is defined as

W n (i , j ) = (x T i θ λ n -x T j θ λ n ) 2 2 x i -x j 2 Σ n 1 x T j θ λ n < x T i θ λ n . (4.8)
The pseudo-code of the two sampling rules are given in Algorithm 4.3.

Algorithm 4.3 Sampling rule of L-T3S/L-T3C

1: Input:

β 2: for n ← 1, 2, • • • do 3: Sample θ 1 ∼ Π n 4:
x Repeat sample θ 2 ∼ Π n 10:

x (2) ← arg max x∈X x T θ 2 (indexed by I (2) )
L-T3S

11:

until

I (2) = I (1)
12:

I (2) ← arg min i =I (1) W n (I (1) , i ), (see (4.8) for the definition)

L-T3C

13:

Evaluate arm I (2) 14:

end if 15:

Update mean and variance according to (4.1) and (4.7)

16:

n = n + 1 17: end for Optimal action probability. The optimal action probability α n,i is defined as the posterior probability that arm i is optimal. Formally, denote Θ i as the subset of Θ where arm i is the optimal arm, we have

Θ i θ ∈ Θ x T i θ > max j =i x T j θ , then we define α n,i Π n (Θ i ) = Θ i π n (θ)dθ.
Stopping rule and decision rule. As argued in Section 3.4, it is reasonable to use the Chernoff stopping rule formalized by [START_REF] Garivier | Optimal best arm identification with fixed confidence[END_REF] in practice. Using the transportation cost W n (i , j ) defined in (4.8), the Chernoff stopping rule can be written as

τ δ inf n ∈ N : max i ∈[K] min j =i W n (i , j ) > d n,δ , (4.9) 
with d n,δ the threshold to be chosen neatly in practice. This stopping rule is coupled with the decision rule

J n = arg max j x T j θ λ n . (4.10)

L-T3S and L-T3C can fail

L-T3S and L-T3C may not be optimal for the linear case actually. To understand that, we run some simulations with the two sampling rules on the problem instance of Section 4.3.2 with d = 2, c = 2, and α = 0.01. Both algorithms appear to be alternating between sampling x 1 and the disturbing context x 2 and take very long time before stopping. Note that in this instance, it would be more informative to select x 2 a lot in order to lead how to discriminate between x 1 and x 3 (which is what our competitor LinGapE is doing).

To explain why this happens, we display in Fig. 4.1 the confidence ellipsoid of the posterior after how many 10000 iterations of L-T3C as a blue dot region. We can see that the confidence region of the posterior is around the axe x = 2, thus a vector sampled from the posterior will most of the time have a larger dot product with x 1 and arm x 3 , and x 2 will seldom be chosen as the leader or the challenger. 

A "greedy" fix of L-T3C

A potential fix of the previous issue is the greedy version of L-T3C whose pseudo-code is displayed in Algorithm 4.4. It is inspired by the greedy rule already used in (a heuristic version of) LinGapE [START_REF] Xu | A fully adaptive algorithm for pure exploration in linear bandits[END_REF], and is motivated by the following observation: in order to learn to discriminate between some arm I (1) and a challenger I (2) , it may be more informative to select another arm. More specifically, the arm from which a new pull would reduce the most the variance in the estimation of x I (1)x I (2) . In a standard bandit, this is simply the least pulled arm between I (1) and I (2) , but in the linear case it may be another arm!

LinGapE versus L-T3C-Greedy: Is one of them optimal?

Upon close examination, LinGapE and L-T3C-Greedy are very similar: they both rely on the computation of a leader and a challenger followed by the greedy rule to decide which Algorithm 4.4 Sampling rule of L-T3C-Greedy

1: for n ← 1, 2, • • • do 2: Sample θ 1 ∼ Π n 3:
x (1) ← arg max x∈X x T θ 1 (indexed by I (1) ) 4: I (2) ← arg min i =I (1) W n (I (1) , i ) (see (4.8) for the definition) I (2) ← x (2) 5:

Evaluate arm x arg min x∈X x (1)x (2) (A X n +xx T ) -1 6:

Update mean and variance according to (4.1) and (4.7)

7:

n = n + 1 8: end for arm to explore/play, and they actually use the same stopping rule (up to possible tuning of the threshold). The differences are:

• how they define the challenger once the leader is chosen;

• how they perform exploration: LinGapE performs exploration in the choice of the challenger, which depends on some confidence bounds. L-T3C-Greedy performs exploration in the choice of the leader, which is determined by Thompson sampling. Table 4.3 provides a more detailed comparison of the two algorithms for linear bandits. We see in particular that the stopping rule coincide up to the choice C n = 2d n,δ .

LinGapE L-T3C-Greedy

Leader I (1) n = arg max i x T i θ λ n I (1) n = arg max i x T i θ n with θ λ n the least square estimate with θ n ∼ N ( θ λ n , Σ n ) Challenger I (2) n = arg max j =I (1) n x j -x I (1) n T θ λ n + x j -x I (1) n Σ n C n I (2) n = arg min j =I (1) n x j -x I (1) n T θ λ n 2 2 x j -x I (1) n 2 Σ n 1 x T I (1) n θ λ n ≥ x T j θ λ n Stopping x I (2) n -x I (1) n T θ λ n + x I (2) n -x I (1) n Σ n C n < 0 min j =J (1) n x j -x J (1) n T θ λ n 2 2 x j -x J (1) n 2 Σ n 1 x T J (1) n θ λ n ≥ x T j θ λ n > d n,δ ⇔ x I (1) n -x I (2) n T θ λ n 2 2 x I (2) n -x I (1) n 2 Σ n > C 2 n /2 ⇔ J (1) n = arg max j x T j θ λ n , x J (1) n -x J (2) n T θ λ n 2 2 x J (2) n -x J (1) n 2 Σ n > d n,δ
Table 4.3: Comparison between the two algorithms.

Experiments for classical bandits. L-T3C-Greedy can be particularized to the classic BAI setting (that corresponds to choosing the canonical basis as contexts). In that case, the selection rule in Line 6 of Algorithm 4.4 corresponds to choosing the least pulled arm between the two candidates.

We investigate whether L-T3C-Greedy could be optimal in the classical bandit setting with some experiments. In particular, we call the derived algorithm T3C-Greedy. See Fig. 4.2 for a comparison against the asymptotically optimal D-Tracking rule and the oracle. It is seemingly that L-T3C-Greedy is not very promising for being asymptotically optimal.

Empirical performance of L-T3C-Greedy

The usual hard instance. We compare the performance of L-T3C-Greedy to LinGapE over the aforementioned hard instance with d = 2, c = 2 and two values of α. More pre- cisely, we report in Table 4.4 the total number of pulls and also the number of pulls allocated to each arm for each of the sampling rules. The results confirm our intuition in the previous section.

L-T3C-Greedy LinGapE L-T3C (β = 1/2) L-T3C-Greedy LinGapE Arms with mild gaps. We can also provide more experimental illustrations on different types of problem. We construct a set of K arms proposed by [START_REF] Fiez | Sequential experimental design for transductive linear bandits[END_REF]:

x 1 = (1, 0) T , x 2 = (cos(3π/4), sin(3π/4)) T ,
and for k = 3, . . . , K,

x k = (sin(π/4 + φ k ), cos(π/4 + φ k )) T
where φ i ∼ N (0, 0.09). We fix the true regression parameter θ to be e 1 . This set of arms has some nice properties, that x 1 is the optimal arm, and x 2 is the arm that gives more information on identifying the best arm. We first report results with a moderate K = 6 as an example where the generated expected means are [1.0, -0.71, 0.84, -0.95, 0.93, 0.99].

Impact of the dimension. We also compare the impact of the dimension d over the performance of our sampling rule and LinGapE. We run experiments on the same instance with a value of the angle set to α = 0.1. This time we let the dimension d varying from 2 to 6. L-T3C is always better and the performance gap increases with the dimension. Thus, our algorithm seems to be more robust to the dimension.

L-T3C

L-T3C-Greedy LinGapE 

x 1 = (1, 0) T 170872

Rank-1 multivariate normal distribution sampling.

A technical point for the experiments in this section is to sample from a multivariate normal distribution (e.g. for L-T3C).

We can proceed by the following. Indeed, a random Gaussian vector

X = (X 1 , X 2 , . . . , X d ) T
of mean vector µ and covariance matrix Σ can be formally defined as following,

X ∼ N (µ, Σ) ⇐⇒ ∃µ ∈ R d , A ∈ R d ×d s.t. X = AZ + µ,
for Z i ∼ N (0, 1) i.i.d. with i ∈ {1, . . . , d }, and here Σ = AA T . To draw a sample from a multivariate normal distribution, according to the previous definition, one can first find any real matrix A such that AA T = Σ. Then draw a vector Z whose components independently follow standard normal distribution. Finally X = AZ+µ forms a valid sample. The main issue is thus how to find an appropriate matrix A.

In this section, we need to sample from N ( θ λ n , Σ n ), where the covariance matrix Σ n is a positive-definite matrix. A usual way is to apply the Cholesky decomposition, which is computationally inefficient if it were to be applied at each time step. Fortunately, we can apply rank-1 Cholesky decomposition in our case.

A Gamified Algorithm

The first attempt using Bayesian machinery does not end up with a satisfying output. In this section, we turn our thoughts to another idea and take inspiration from the zerosum game (see e.g. Degenne and Koolen 2019). We describe Linear Game (LinGame), detailed in Algorithm 4.5. As noted in the seminal work of [START_REF] Chernoff | Sequential design of experiments[END_REF], the complexity T (θ) -1 is the value of a fictitious zero-sum game between the learner choosing an optimal proportion of allocation of pulls ω and a second player, the nature, that tries to fool the agent by responding with the most confusing alternative θ leading to an incorrect answer. LinGame is an asymptotically optimal algorithm for linear bandits BAI. Note that the present algorithm is asymptotically optimal for the general pure exploration game, which is however not the main focus of this thesis. Lecturers can refer to Degenne et al. [2020a] for more details.

In this section, we make the following extra assumption.

Assumption 4.3. We assume that ∃M > 0, s.t. ∀θ ∈ Θ, θ ≤ M, where θ denotes the Euclidean norm of the vector θ.

Notation

In this section, besides the usual learner, we include an extra fictive player -the natureand we thus introduce some specific notation of counts for this section. At each round n the algorithm to be presented will play an arm x n and choose (fictitiously) an answer i n ∈ I . We denote by T x,i n n t =1 1 {( x n ,i n )=(x,i )} the number of times the pair (x, i ) ∈ X × I is chosen up to and including time n, and by T x n = i ∈I T x,i n and T i n = x∈X T x,i n the partial sums 1 . The vectors of counts at time n is denoted by T n (T x n ) x∈X and when it is clear from the context we will also denote by T x n = (T x,i n ) i ∈I and T i n = (T x,i n ) x∈X the vectors of partial counts. Recall that in the case of BAI, X = I .

The LinGame algorithm

The pseudo-code of LinGame is provided in Algorithm 4.5. We explain how it works in detail in the next.

Stopping rule and decision rule.

We follow the same stopping rule and decision rule as those of Section 4.52 : LinGame stops if a generalized likelihood ratio exceeds a threshold d n,δ . With the notation of this section, the stopping time can be written as

max i ∈I inf θ ∈¬i 1 2 θ λ n -θ 2 Λ T n > d n,δ , (4.11) 
and the decision rule is 

J n = arg max i ∈I inf θ ∈¬i θ λ n -θ 2 Λ T n /2 . ( 4 
if max i ∈I inf θ ∈¬i 1 2 θ λ n-1 -θ 2 Λ T n-1 ≥ d n-1,
d n,δ =   log 1 δ + d 2 log 1 + nL 2 λd + λ 2 M   2 , (4.13 
)

satisfy P θ τ δ < ∞ ∧ J τ = I (θ) ≤ δ .
Our contribution is a sampling rule that minimizes the sample complexity when combined with these stopping and decision rules. We now explain our sampling strategy to ensure that the stopping threshold is reached as soon as possible.

Saddle-point computation. Suppose in this paragraph, for simplicity, that the regression parameter θ is known to the learner. By the definition of stopping rule and generalized likelihood ratio, as long as the algorithm does not stop, we have

d n,δ ≥ inf θ ∈¬I (θ) x∈X T x n θ -θ 2 xx T /2 .
Now, let ω (θ) be the optimal pulling proportions given θ. If we manage to have T n ≈ nω (θ), then it follows d n,δ ≥ nT (θ) -1 and, solving that equation would lead to the asymptotic optimality.

At each time step, LinGame produces a guess i n for I (θ) and its analysis involves proving that the guess is wrong only finitely-many times in expectation.

The sampling rule implements a lower-bound game between a learner, playing at each stage n a pull-proportion/weight vector ω n in the probability simplex Σ K , and nature, who computes at each stage a response θ n ∈ ¬i n . We additionally ensure that T x n ≈ n t =1 ω t ,x , where ω n,x denotes the weight of x at stage n. The goal of the sampling rule is to ensure a ε-approximation of the saddle point of the lower-bound game.

To achieve that, we implement the saddle-point algorithm by using AdaHedge for the learner -a regret-minimizing algorithm of the exponential family -and using best-response for the nature, which plays after the agent. Precisely LinGame uses |I | (= K for BAI) learners L i ω , one for each possible guess of I (θ) with the gains. For i ∈ I , the learner L i ω is an

AdaHedge on the probability simplex Σ K with the gains (when the guess is i )

g θ n (ω) = 1 2 x∈X ω x θ -θ i n 2 xx T .
ε is then the sum of the regrets of the two players. Best-response has regret 0, while the 

regret
R n max ω∈Σ K n t =1 g t (ω) -g t (ω t ) ≤ 2η n log(K) + 16η(2 + log(K)/3) , where η = max t ≤n (max k∈[K] U k t -min k∈[K] U k t ).
Other combinations of learners are possible, as long as the sum of their regrets is sufficiently small. At each stage n ∈ N, both learners advance only by one iteration and as time progresses, the quality of the saddle-point approximation improves. This is in contrast with C-Tracking and D-Tracking of Garivier and Kaufmann [2016], in which an exact saddle point is computed at each stage, at a potentially much greater computational cost.

Optimism. The above saddle-point argument would be correct for a known game, while our algorithm is confronted to a game depending on the unknown parameter θ. Following a long tradition of stochastic bandit algorithms, we use the principle of OFU. Given an estimate θ n-1 , we compute upper bounds for the gain of the real learner at θ, and feed these optimistic gains to them. Precisely, given the best response θ i n ∈ ¬i , we define,

U x,i n = max ξ min ξ -θ i n 2 xx T , 4L 2 M 2 s.t. θ λ n-1 -ξ 2 Λ T n-1 +λI d ≤ 2h(n) ,
where h(n) = β(n, 1/n 3 ) is some exploration function.

We clipped the values, using Assumption 4.1 and Assumption 4.3 to ensure bounded gains for the learners (see Section 4.3.4 for description of bounded BAI).

Under the event that the true parameter verifies θ λ n-1 -θ 2 ≤ 2h(n), this is indeed an optimistic estimate of θθ i n 2 xx T . Note that U x,i n has a closed form expression, see Appendix C.3. The optimistic gain is then

g n (ω) = 1 2 x∈X ω x U x,i n n .
Tracking. In Algorithm 4.5, the learner plays weight vectors in a simplex. Since the bandit procedure allows only to pull one arm at each stage, our algorithm needs a procedure to transcribe weights into pulls. This is what we call tracking, following Garivier and Kaufmann [2016]. The choice of arm (or arm and answer) is

x n+1 ∈ arg min x∈X T x n -W n+1,x .
This procedure guarantees that for all n ∈ N, x ∈ X , we have

-log(|X |) ≤ T x n -W n,x ≤ 1. This result is due to Degenne et al. [2020b].
Theorem 4.3. For a regularization parameter 4 λ ≥ 2(1+log(K))KL 2 +M 2 , for the threshold d n,δ given by (4.13), for an exploration function h(n) = d n,1/n 3 , LinGame is δ-correct and asymptotically optimal. That is, it verifies for all θ ∈ Θ,

lim sup δ→0 E θ [τ δ ] log 1/δ ≤ T (θ) .
On the boundedness assumption. The boundedness assumption on the parameter set is shared by many works on linear bandits (not necessarily for BAI, but for regret minimization as well, see e.g. Abbasi-Yadkori et al. 2011; Soare et al. 2014). In Section 4.3.4 we show that adding a bound constraint on the parameter reduces the characteristic time T (θ). This is not surprising since we add a new constraint in the optimization problem, which would lead to an earlier stop of the algorithm. The counterpart of this improvement is that it is often difficult to compute the best response for nature. Indeed, for example, in BAI, there is an explicit expression of the best response, While it is not the case for the bounded case and one needs to solve an uni-dimensional optimization problem (see Lemma C.1). To devise an asymptotically optimal algorithm without the boundedness assumption remains an open problem.

A convexified variant. Degenne et al. [2020a] present another sampling rule LinGame-C

that is also asymptotically optimal in the fixed-confidence regime. The idea is to introduce a convex formulation of the problem, which leads to an algorithm with a more direct analysis than previous lower-bound inspired methods. The full description and analysis of LinGame-C is omitted as the primary goal here is just to show a feasible way of designing optimal sampling rules from a game-theoretical point of view. Lecturers can refer to Degenne et al. [2020a] for more details on LinGame-C. Nonetheless, we still include LinGame-C in the coming experiments.

Experiments

We provide experimental illustrations of LinGame. In addition to our algorithms, we also implement the following algorithms, all using the same stopping rule (more discussion given in Appendix C.4): uniform sampling, the greedy version of X Y -Static (including X X -allocation and X Y dir -allocation), X Y -Adaptive, and the greedy version of LinGapE. We skip GLUCB/GLGapE since they are more or less equivalent to LinGapE in the scope of this paper.

Implementation details. We give some details about each individual algorithm implemented to ensure reproducibility.

• For our algorithms LinGame and LinGame-C, we implemented the version with the boundedness assumption.

• For LinGapE We implemented the greedy version, that is, pull the arm arg min

x∈X x i n -x j n 2 (Λ T n +xx T ) -1 with i t = I ( θ λ n ) and j n = arg max j =i n (x j -x ( θ λ n )) T θ λ n + x ( θ λ n ) -x j n Λ -1 T n 2d n,δ .
Note that this version does not have a theoretical guarantee in the general case.

However, as we stated in Section 4.4, the GLUCB proposed by [START_REF] Zaki | Towards optimal and efficient best arm identification in linear bandits[END_REF] is equivalent to this greedy version of LinGapE, and they provided an analysis for the 2-arm and 3-arm case. LinGapE is designed for ε-best-arm identification, we set ε = 0 in our experiments to make sure that it outputs the optimal one.

• For X Y -Static, we implemented the greedy incremental version for both X Xallocation and X Y dir -allocation, that allows us to avoid the step of computing optimal design. To implement the non-greedy version, readers are invited to look at next Section 4.3.3 where we discuss in detail the computation of X Y -optimal design.

• For X Y -Adaptive, it requires a hyper-parameter that characterizes the length of each phase. We set that hyper-parameter to 0.1 as done by [START_REF] Soare | Best-arm identification in linear bandits[END_REF].

Implementation trick. Matrix inversion is a costly step that should be avoided at best. For linear bandits, in particular, we need to inverse the (regularized) design matrix B λ n , which is renewed with a rank-1 update at each time step. Applying Sherman-Morrison formula allows us thus to only update its inverse incrementally, that releases a huge burden of computation.

Indeed, beginning with B λ 0 λ1 d , we have ∀t ≥ 0, B λ t +1 = B λ t + x t +1 x T t +1 , thus using Sherman-Morrison formula we have

∀t ≥ 0, (B λ t +1 ) -1 = (B λ t ) -1 - (B λ t ) -1 x t +1 x T t +1 (B λ t ) -1 1 + x t +1 2 (B λ t ) -1
.

The posterior mean vector and covariance matrix can then be easily expressed in terms of (B λ t ) -1 . Let z t t s=1 y s x s , we obtain

θ λ n = (B λ t ) -1 z t and Σ n = σ 2 (B λ t ) -1 .
Experimental results. Sampling rules for classical BAI without any adaptation may not work for the linear case. This can be understood, again, on the well-studied hard instance mentioned in Section 4.3.2, which encapsulates the difficulty of BAI in a linear bandit, and thus is the first instance on which we test our algorithms. As already argued by [START_REF] Soare | Best-arm identification in linear bandits[END_REF], an efficient sampling rule for this problem instance would rather pull x 2 in order to reduce the uncertainty in the direction x 1x d +1 . Naive application of classical BAI algorithms cannot deal with that situation naturally. We further use a simple set of experiments to justify that intuition. We run LinGame (along with LinGame-C) and the one of Degenne et al.

[2019] that we call DKM over the problem instance whence d = 2, c = 2, δ = 0.01 and α = 0.1. We show the number of pulls for each arm averaged over 100 replications of experiments in Table 4.7. We see that, indeed, DKM pulls too much x 3 , while our LinGame focuses mostly on x 2 . Next, we benchmark our sampling rules against others from the literature. We test over two synthetic problem instances, with the first being the previous instance. We set d = 2, c = 2, α = π/6. Fig. 4.4 shows the empirical stopping time of each algorithms averaged over 100 runs, with a confidence level δ = 0.1, 0.01, 0.0001 from left to right. Our two algorithms show competitive performance (the two leftmost boxes on each plot), and are only slightly worse than LinGapE. For the second instance, we consider 20 arms randomly generated from the unit sphere S d -1 {a ∈ R d ; a 2 = 1}. We choose the two closest arms a, a and we set θ = a +0.01(aa) so that a is the best arm. This setting has already been considered by Tao et al. [2018].

LinGame LinGame-C DKM

We report the same box plots over 100 replications as before with increasing dimension in Fig. 4.5. More precisely, we set d = 6, 8, 10, 12 respectively, and always keep a same δ = 0.01. Our algorithms consistently show strong performances compared to other algorithms apart from LinGapE. 

Other Saddle-Point Approaches

Methods based on approaching the saddle point of the lower bound look promising, one concern about LinGame (or LinGame-C) could be its computational complexity though.

In BAI, the one step complexity of LinGame is dominated by the computation of the best response for nature, which requires a full matrix inversion. Alternatives that involve rank-1 updates should be considered.

We end this chapter by some more discussions on other possible saddle-point methods.

Linear Track-and-Stop

The linear version of Track-and-Stop seems to be another plausible candidate of being asymptotically optimal provided that a numerical solver for computing the optimal weights exists (proven recently by Jedra and Proutière 2020). Fortunately, the Algorithm 4.2 proposed in Section 4.3.2 seems to be one.

Track-and-Stop remains unchanged in the linear case, since it only cares about tracking the optimal weights. We hereby recall that the C-Tracking rule consists of playing

x ∈ arg max i ∈[K] n t =0 ω ε t i ( µ t ) -T t ,i , where ω ε is a L ∞ projection of ω onto the simplex Σ ε K {ω ∈ [ε, 1] K : K i =1 ω i = 1}.
The draw back of Track-and-Stop is that we need to compute a plug-in estimate of the optimal weights at each stage, which is computationally unfavorable.

Saddle-point Frank-Wolfe

On the other hand, the Frank-Wolfe heuristic in Algorithm 4.2 is an efficient rank-1 solver.

It is thus natural to investigate if it can be incorporated into existing algorithms.

In particular, we can propose two new algorithms by adding the solver on top of LinGapE and L-T3C that we call Saddle-Point Linear Gap-Based Exploration (SLinGapE) and Saddle-Point Linear-Top-Two Transportation Cost (SL-T3C) respectively, as shown in Algorithm 4.6 and Algorithm 4.7. We define a so called active transductive set as x ∈ arg max x∈X x 2 Λ -1 ΛΛ -1 5:

Y (x, θ) (x -x ) |(x -x ) T θ| : x ∈ X / x . ( 4 
x (1) ← arg max x∈X x T θ λ n 6:

x (2) ← arg max x = x (1) (x -x (1) ) T θ λ n + 2β(n, δ) x (1) -x Λ -1 7: B n ← max x = x (1) (x -x (1) ) T θ λ n + 2β(n, δ) x (1) -x Λ -1 8:
if B n ≤ 0 then 

Experimental illustrations

We compare our saddle-point-based algorithms against LinGapE. To make a fair comparison, we use always the same exploration rate for all the stopping rules. Indeed the stopping rules are equivalent if they keep the same exploration rate as argued in Appendix C.4. We use the previous hard instance with c = 1, the results are reported as box plots of average stopping time in Figure 4.6.

It seems that they can achieve the same level of empirical performance as LinGapE, their theoretical behaviour thus turns out to be an interesting research direction for the future. 
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Discussion

In this chapter, we designed the first practically usable asymptotically optimal sampling rules for the pure exploration game for finite-arm linear bandits. Whether the boundedness assumption is necessary to obtain optimal algorithms remains an open question. Note that since the publication of our work, several other algorithms have been proposed [ follows more or less the same approach as ours. Later, [START_REF] Yang | Towards minimax optimal best arm identification in linear bandits[END_REF] propose a minimax optimal algorithm for fixed-budget BAI.

More generally, however, the part of fixed-confidence pure exploration algorithms that needs an improvement the most is the stopping rule. While the one we used guarantees δ-correctness, it is very conservative. Indeed, the experimental error rates of algorithms using that stopping rule are orders of magnitude below δ. This means that the concentration inequality does not reflect the query we seek to answer. It quantifies deviations of the d -dimensional estimate in all directions (morally, along 2 d directions). However, for the usual BAI setting with d arms in an orthogonal basis, it would be sufficient to control the deviation of that estimator in d -1 directions to make sure that I (θ

) = I ( θ λ n ).
Finally, the good performance of LinGapE raises the natural question of whether it could be proven to have similar asymptotic optimality.

Chapter 5 Hierarchical Bandits for Black-Box Optimization

" By heavens! there is something after all in the world allowing one man to steal a horse while another must not look at a halter. Steal a horse straight out. Very well. He has done it. Perhaps he can ride. But there is a way of looking at a halter that would provoke the most charitable of saints into a kick. 

Joseph Conrad

Introduction

In this chapter, we adopt another perspective on sequential optimization. We are still interested in identifying the best arm, but this time among an infinite number of candidates. The search space can be countably infinite or even continuous. That is the global optimization.

GO has applications in several domains including hyper-parameter tuning [START_REF] Jamieson | Non-stochastic best arm identification and hyperparameter optimization[END_REF][START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF][START_REF] Samothrakis | Training gradient boosting machines using curve-fitting and information-theoretic features for causal direction detection[END_REF] which is the main topic of Chapter 6. GO usually consists of a data-driven optimization process over an expensiveto-evaluate function. It is also known as BBO since the inner behavior of a function is often unknown.

Contrary to Chapter 3 and Chapter 4, we are interested in a budgeted setting in this Chapter as we are subject to a high resource-consuming target, hence a pre-defined budget limit can be favored. In budgeted function optimization, a learner optimizes a function f : X → R depending on a number of function evaluations limited by N which are sequentially selected. For each of the N evaluations, at round n, the learner picks an element x n ∈ X and observes a real number r n , where

r n = f (x n ) + ε n ,
with ε n the noise. At the end, the learner is supposed to output a guess of the optimum and their performance is assessed by the simple regret (see Definition 2.16). The true function value f (x) can thus be interpreted as the arm mean of x using MAB terminology.

Based on ε n , we can distinguish deterministic feedback setting and stochastic feed setting. For deterministic feedback, the function evaluations are noiseless (see e.g. de Freitas et al. 2012 for motivation and applications). We pay our attention to the stochastic setting where the noise is assumed to be independent from past observations:

E [r n |x n ] = f (x n ).
Treating the problem without any further assumption would be a mission impossible. However, the setting gets easier if we assume a global smoothness of the reward function [START_REF] Agrawal | The continuum-armed bandit problem[END_REF][START_REF] Auer | Improved rates for the stochastic continuum-armed bandit problem[END_REF][START_REF] Cope | Regret and convergence bounds for a class of continuum-armed bandit problems[END_REF][START_REF] Kleinberg | Nearly tight bounds for the continuum-armed bandit problem[END_REF][START_REF] Kleinberg | Multi-armed bandit problems in metric spaces[END_REF][START_REF] Kleinberg | Bandits and experts in metric spaces[END_REF][START_REF] Slivkins | Multi-armed bandits on implicit metric spaces[END_REF]. A weaker condition is some local smoothness where only neighborhoods around the maximum are required to be smooth. In fact, local smoothness is sufficient for achieving near-optimality [START_REF] Gheshlaghi Azar | Online stochastic optimization under correlated bandit feedback[END_REF][START_REF] Bull | Adaptive-treed bandits[END_REF][START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF][START_REF] Valko | Stochastic simultaneous optimistic optimization[END_REF]. This is the continuum-armed bandits setting.

We base our work on optimistic tree-based optimization algorithms [START_REF] Gheshlaghi Azar | Online stochastic optimization under correlated bandit feedback[END_REF][START_REF] Munos | Optimistic optimization of deterministic functions without the knowledge of its smoothness[END_REF][START_REF] Preux | Bandits attack function optimization[END_REF][START_REF] Valko | Stochastic simultaneous optimistic optimization[END_REF] that approach the problem with a hierarchical partitioning of the arm space and take the optimistic principle. This idea comes from planning in MDP [START_REF] Grill | Blazing the trails before beating the path: Sample-efficient Monte-Carlo planning[END_REF][START_REF] Kocsis | Bandit-based Monte-Carlo planning[END_REF][START_REF] Munos | From Bandits to Monte-Carlo Tree Search: The Optimistic Principle Applied to Optimization and Planning[END_REF].

Our work is motivated by the Parallel Optimistic Optimization (POO) approach proposed by [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], that adapts to the smoothness without the knowledge of it.

POO is a meta-algorithm which can be used on top of any hierarchical optimization algorithm that knows the smoothness, that we call a subroutine. Not only does POO require only the mildest local regularity conditions, but it also gets rid of the unnecessary metric assumption that is often required. Local smoothness naturally covers a larger class of functions than global smoothness, yet still assures that the function does not decrease too fast around the maximum. We highlight that the analysis of POO is modular: Assuming the subroutine has a cumulative regret of order R N under a local smoothness assumption with respect to a fixed partitioning [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], Assumption 5.2, formally introduced in Section 5.2), POO run with such subroutine has a simple regret bounded by R N log N.

The analysis of POO heavily relies on the subroutine having guarantees on the cumulative regret. In the context of optimization where sometimes only simple regret guarantees are available, this is not always desirable as requirements. In this chapter, we provide a more general wrapper for algorithms that only have guarantees on their simple regret, called General Parallel Optimization (GPO). We show that with a cross-validation scheme instead of the original recommendation strategy, any hierarchical bandit algorithm with simple regret guarantee can be plugged into GPO with only a tiny increase in the resulting simple regret. Note that any subroutine that is able to underpin POO can do the same for GPO while the converse is not necessarily true. This can be explained by 2.6 as good cumulative regret guarantees imply good simple regret guarantees but not the converse.

To validate GPO, it is necessary to find a subroutine that achieves meaningful regret bound (can be either cumulative regret or simple regret) under Assumption 5.2. A natural candidate can refer to the subroutine of POO. POO was originally analyzed using Hierachical Optimistic Optimization (HOO) as its base algorithm. However, unlike what Grill et al.

[2015] hypothesize, it is non-trivial to provide a regret bound for HOO under Assumption 5.2. We elaborate on that in Section 5. 4. In order to validate POO as well as GPO, there needs to exist a subroutine with a regret guarantee that is provable under Assumption 5.2. This is another message that we deliver.

In particular, we prove that HCT-iid, denoted by High Confidence Tree (HCT) in the rest of the paper since we do not consider the correlated feedback setting, of Azar et al.

[2014] satisfies the required regret guarantee, and is, therefore, a desirable subroutine to be plugged in POO and GPO. Similar to HOO, HCT is a hierarchical optimization algorithm based on confidence intervals. However, unlike HOO, these confidence intervals are obtained by repeatedly sampling a representative point of each cell in the partitioning before splitting the cell. This yields partition trees that have a controlled depth, which are easier to analyze under a local smoothness assumption with respect to the partitioning.

Whether HOO has similar regret guarantees under the desired local metricless assumption remains an open question.

Contributions. 1)

We propose to use a cross-validation scheme to wrap up algorithms that only possess simple regret guarantees at the cost of a slight loss in the final regret bound. 2) We show that HCT can serve as a valid subroutine under desired assumptions.

3) We further provide numerical illustrations to show that HCT is empirically comparable to HOO as a subroutine.

This chapter is based on [START_REF] Shang | Adaptive black-box optimization got easier: HCT needs only local smoothness[END_REF]Shang et al. [ , 2019a]].

Required Assumptions

General assumptions

Let X be a measurable space. Our goal is to find the maximum of an unknown noisy function f : X → R of which the cost of evaluation is high, given a total budget of N evaluations. At each round n, a learner selects a point x n ∈ X and observes a reward r n f (x n ) + ε n . We make the following assumption on the noise in this thesis. More discussions on the role and impact of noise are provided by [START_REF] Peter | A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption[END_REF].

Assumption 5.1. [bounded, independent and conditionally centered noise] We assume that the noise ε n is bounded by [0, 1], independent from previous observations and such

that E [ε n |x n ] = 0 .
After N evaluations, the algorithm outputs a guess for the maximizer, denoted by x(N). x(N) is indeed the decision rule J N in the learning protocol of a general pure-exploration problem. We assume that there exists at least one x ∈ X s.t. f (x ) sup x∈X f (x), denoted by f in the following. We measure the performance by the simple regret. We can particularize Definition 2.16 of simple regret into the setting of this chapter:

S N f -f (x(N)) .
Likewise, we can also particularize the notion of cumulative regret into our setting:

R N N f - N n=1 f (x n ) .

Covering tree that guides the optimization

Hierarchical bandits rely on the existence of hierarchical partitioning P {P h,i } h,i defined recursively, where

P 0,1 = X , P h,i = K-1 j =0 P h+1,Ki -j .
Such a partition can be naturally represented by a tree, where K denotes the maximum number of children of a node in that tree. Many of known algorithms depend on a metric/dissimilarity over the search space to define the regularity assumptions that link the partitioning to some near-optimality dimension, that is independent of the partitioning. However, this was shown to be artificial [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF], since (i) the metric is not fully exploited by the algorithms and (ii) the notion of near-optimality dimension independent of partitioning is ill-defined. Hence, it is natural to make smoothness assumptions directly related only to the partitioning.

We now present the only regularity assumption on the target function f that is expressed in terms of the partitioning P given in Assumption 5.2.

Assumption 5.2. [local smoothness w.r.t. P ] For x be a global maximizer, we denote by i h be the index of the only cell at depth h that contains x . Then, there exist a global maximizer x and two constants

ν > 0, ρ ∈ (0, 1) s.t., ∀h ≥ 0, ∀x ∈ P h,i h , f (x) ≥ f -νρ h .
Note that this assumption is the same as the one of [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]. Multiple maximizers may exist, but this assumption needs to be satisfied only by one of them.

We stress again that requiring only a local smoothness assumption is an improvement since (i) it is a one-side local Lipschitz-type of assumption that naturally covers a larger class of functions, (ii) it only constrains f along the optimal path of the covering tree which is a plausible property in an optimization scenario, and (iii) shows that the optimization is actually easier than it was previously believed.

Besides, in this chapter, we aim to design algorithms that does not rely on any metric. Previous methods all depend on a metric, and their smoothness assumptions are summarized in Table 5 As first observed by [START_REF] Auer | Improved rates for the stochastic continuum-armed bandit problem[END_REF], the difficulty of a GO should depend on the size of near-optimal regions and on how fast they shrink. [START_REF] Auer | Improved rates for the stochastic continuum-armed bandit problem[END_REF] use a margin condition that quantifies this difficulty by the volume of near-optimal regions. In this work, we use a similar notion of near-optimality dimension1 instead. This notion is directly related to the partitioning. Definition 5.1. [near-optimality dimension w.r.t. P ] For any ν > 0, C > 1, and ρ ∈ (0, 1), we define the near-optimality dimension of f with respect to P as

d (ν, C, ρ) inf d ∈ R + : ∀h ≥ 0, N h (3νρ h ) ≤ Cρ -d h , where N h (ε) is the number of cells P h,i such that sup x∈P h,i f (x) ≥ f -ε.
N h (3νρ h ) can be thought as the number of cells that any algorithm needs to sample in order to find the maximum. A smaller d (ν, C, ρ) implies an easier optimization problem.

General Parallel Optimization

We present our new wrapper in this section. In order to get a better understanding, we start with a brief introduction of POO.

Generic parallel optimistic optimization

We introduce POO(A ) as a generic algorithm, taking as input any hierarchical optimization algorithm A = A (ν, ρ) requiring the smoothness parameters.

POO(A

) is a meta-algorithm that uses A that knows the smoothness as a subroutine, originally proposed by [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] for A = HOO. In this algorithm, several instances of A are run in parallel, each one using a different pair of parameters (ν, ρ) in a well-chosen grid G (defined in Line 4 of Algorithm 5.1). In the end, POO(A ) chooses the instance that has the largest empirical mean reward and returns one of the points evaluated by this instance, chosen uniformly at random. The pseudo-code of POO(A ) is shown in Algorithm 5.1. Additionally to the base algorithm itself, it requires two parameters ρ max and ν max that determine the range of instances A (ν, ρ) that we can compete with. However, these parameters can be set as a function of the number of evaluations as explained in details in Appendix C of Grill et al.

[2015], hence not mandatory in practice. An important remark is that given a budget N of function evaluations, the number of instances M run by POO(A ) depends on N, and each instance is run for N/M(N) times. Due to the doubling scheme used in Lines 2-10 of Algorithm 5.2, note however that POO(A ) does not need to know this total number of function evaluations. Hence, if the base algorithm A is anytime, so is POO(A ).

Algorithm 5.1 Algorithm of POO(A ) with base algorithm A 1: Input: base algorithm A , ν max ,ρ max , branching factor of the partitioning K 2: Initialization: D max ← ln K/ ln 1/ρ max , number of function evaluations n ← 0, current number of instances of A : N ← 1, S ← {(ν max , ρ max )} 3: while budget still available do 

A more general wrapper

The analysis of POO(A ) heavily relies on the fact that we control the cumulative regret of algorithm A (see Appendix D.2 for details). POO indeed exploits this property when selecting s as the instance with largest empirical cumulative rewards. In this section, we propose a simple modification of POO(A ) that allows using as base algorithms any hierarchical optimization algorithms that would only have simple regret guarantees.

The GPO(A ) algorithm, whose pseudo-code is shown in Algorithm 5.2, mostly needs to modify the model selection strategy of POO. There are two natural candidates: (i) Lepski's method which is a nested aggregation scheme [START_REF] Lepski | Asymptotically minimax adaptive estimation. I: Upper bounds. optimally adaptive estimates[END_REF][START_REF] Lepski | Optimal pointwise adaptive methods in nonparametric estimation[END_REF][START_REF] Locatelli | Adaptivity to smoothness in X-armed bandits[END_REF][START_REF] Locatelli | Adaptivity to noise parameters in nonparametric active learning[END_REF] that requires a single optimum, thus not directly applicable to our case, and (ii) a cross-validation scheme that we use and detail in the next. Given a total budget of n function evaluations, GPO(A ) runs several instances of A in parallel with parameters chosen in the same grid as that used by POO, each using the same number of evaluations to output a recommendation x i . One half of the budget is then dedicated to estimating the function values at those points, and the one with the highest estimated value is kept.

In Theorem 5.1, we provide a general analysis of the GPO algorithm, showing that it attains an (order)-optimal simple regret without knowing the parameter triple (ν , C , ρ ) provided that its base algorithm does. 

E S A (ν,ρ) N ≤ αC log N/N 1/(d (ν,C,ρ)+2) , (5.1)
for any function f satisfying Assumption 5.2 with parameters (ν, ρ), then there exists a constant β that is independent of ν max and ρ max such that

E S GPO(A ) N ≤ βD max (ν max /ν ) D max (log 2 N)/N) 1/(d (ν ,C ,ρ )+2) ,
for any function f satisfying Assumption 5.2 with parameters ν ≤ ν max and ρ ≤ ρ max .

Proof. We start by fixing some notation. Recall that M (that depends on N) is the number of instances run in parallel. For j ∈ {1, . . . , M}, we let x j denote the point recommended by the instance A (ν max , ρ j ) with ρ j = ρ 2M/(2 j +1) max

. Let (r i , j ) 1≤i ≤N + be the i.i.d. evaluations of f ( x j ) used during the validation phase, with N + N/(2M) and µ N + , j = 1 N + N + i =1 r i , j be the estimated value of f ( x j ) computed by the algorithm. We let

 = arg max j µ N + , j and  = arg max j f ( x j )
be the index of the empirical best and true best among the recommended point. We notice that for any j , {r i , jf ( x j )} N + i =1 is a bounded i.i.d. sequence with zero mean (conditionally to x j ) thus using Hoeffding's inequality one can show that for all ∆ > 0,

P N + i =1 (r i , j -f ( x j )) > N + ∆ ≤ exp -2N + ∆ 2 , therefore, P µ N + , j -f ( x j ) > ∆ ≤ exp -2N + ∆ 2 ,
and we have immediately

P | µ N + , j -f ( x j )| > ∆ ≤ 2 exp -2N + ∆ 2 .
By integrating over ∆ ∈ [0, 1], we get

∀ j ∈ {1, . . . , M}, E | µ N + , j -f ( x j )| ≤ π/2 N + • (5.2)
As in the analysis of POO, the instance  defined as

 arg min j ≤M:ρ j ≥ρ d (ν max , C , ρ j ) -d (ν , C , ρ )
shall play a crucial role. Indeed, inequality (5.1) is exactly what is needed in Appendix B.2 and Appendix B.3 of [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] to control the simple regret of that instance in terms of (ν , C , ρ ). Following the exact same steps, we can show that for some constant α,

E S A (ν max ,ρ  ) (N/2M) ≤ αD max (ν max /ν ) D max (log 2 N)/N) 1/(d (ν ,C ,ρ )+2) .
(5.3)

We now turn our attention to the simple regret of GPO(A ) after n function evaluations.

E S GPO N = E f -f ( x  ) = E f -f ( x  ) + E f ( x  ) -f ( x  ) + E f ( x  ) -f ( x  ) .
(5.4)

The first term in (5.4) is equal to the simple regret of the instance  that uses n/N samples, which is upper bounded in (5.3). The second term in (5.4) is always negative by definition of  and the third term can be rewritten as

E f ( x  ) -f ( x  ) = E f ( x  ) -µ N + ,  + E µ N + ,  -µ N + ,  + E µ N + ,  -f ( x  ) . (5.5)
where the first and the third term of (5.5) are both upper bounded by ( π/2)/ N + using (5.2), and the second term is always negative by definition of . Putting things together yields

E S GPO N ≤ αD max (ν max /ν ) D max (log 2 N)/N 1/(d (ν ,C ,ρ )+2) + O M N .
The conclusion follows by observing that the second term in the right-hand side is negligible with respect to the first.

HCT under Local Smoothness w.r.t. P

Not let us turn our attention to finding a valid base algorithm for GPO. The first idea is to refer to the original base algorithm of POO, namely HOO.

Analyzing HOO under Assumption 5.2, however, is not trivial. A key lemma in the analysis of HOO (Lemma 3 by [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF]) that controls the variance of near-optimal cells is not true under local smoothness assumptions as Assumption 5.2. Indeed, HOO could induce a very deep covering tree, while producing too many nodes that are neither nearoptimal nor sub-optimal. The concept of near-optimal and sub-optimal nodes is then characterized by the sub-optimality gap of each node which measures the distance between the local maximum of the node and the global maximum. Intuitively, nodes that are neither near-optimal nor sub-optimal represent the nodes of whom the sub-optimality gap is neither too large nor too small.

To control the regret due to these nodes, [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF] use global smoothness (weakly Lipschitz) assumption. Assumption 5.2 is weaker, only local, and does not offer such comfort. If we want to control the regret due to these nodes without Lemma 3 of [START_REF] Bubeck | Pure exploration in finitely-armed and continuous-armed bandits[END_REF], one possible way is to control the depth of the covering tree to ensure that we do not have too many of them. In particular, another algorithm known as HCT proposed by Azar et al. [2014] implies a controlled depth of the tree which allows it to be analyzed under Assumption 5.2 as opposed to HOO. We now give a brief description of HCT and present a new analysis of it.

Description of HCT

Algorithm 5.3 Algorithm of HCT 1: Input: K, ν > 0, ρ ∈ (0, 1), c > 0, tree partitioning {P h,i }, confidence δ 2: Initialization:

T 1 ← {(0, 1), (1, 1), . . . , (1, K)}, U 1,1 (1) ← • • • ← U 1,K (1) ← +∞ 3: for n ← 1 . . . N do 4: if n = n + then 5: for (h, i ) ∈ T n do 6: U h,i (n) ← µ h,i (n) + νρ h + c log 1/ δ(n + ) T h,i (n) 7:
end for 8:

UpdateBackward(T n , n) 9:
end if 10:

(h n , i n ), P n ← OptTraverse(T n , n) 

T h n ,i n (n) ← T h n ,i n (n) + 1 13: Update µ h n ,i n (n) 14: U h n ,i n (n) ← µ h n ,i n (n) + νρ h n + c log 1/ δ(n + ) T h n ,i n (n)
15:

UpdateBackward(P n , n)

16:

τ h n (n) ← c 2 log(1/ δ(n + )) ν 2 ρ -2h n 17: if T h n ,i n (n) ≥ τ h n (n) and (h n , i n ) is a leaf then 18:
Expand the node (h n , i n )

19:

end if 20: end for Algorithm 5.4 Snippet OptTraverse of HCT 1: Input: a tree T , round n 2: Initialization: (h, i ) ← (0, 1); P ← {(0, 1)}; T 0,1 (n

) = τ 0 (n) = 1 3: while (h, i ) is not a leaf of T and T h,i (n) ≥ τ h (n) do 4: j ← arg max j ∈{0,...,K-1} B h+1,Ki -j (n) 5: (h, i ) ← (h + 1, Ki -j ) 6:
P ← P ∪ {(h, i )} 7: end while 8: Return (h, i ) and P The pseudo-code of HCT (Algorithm 5.3) and two detailed snippets (Algorithm 5.4 and Algorithm 5.5) describe the process of traversing the covering tree. The algorithm stores a finite subtree T n at each round t which is initialized by T 0 = {(0, 1)}. Each cell is associated with a representative point x h,i and the algorithm keeps track of some statistics regarding Algorithm 5.5 Snippet UpdateBackward of HCT 1: Input: a tree T , round n 2:

note that P n can also be considered as a tree, thus input of this function 3: for (h, i ) ∈ T backward from each leaf of T do

4: if (h, i ) is a leaf of T then 5: B h,i (n) ← U h,i (n) 6: else 7: B h,i (n) ← min U h,i (n), max j ∈{0,...,K-1} B h+1,Ki -j (n) 8:
end if 9: end for this point. One of these statistics is the empirical mean reward µ h,i (n) which is the average on the first T h,i (n) rewards received when querying x h,i . The HCT algorithm also keeps track of an upper confidence bound U-value for the cell (h, i ),

U h,i (n) µ h,i (n) + νρ h + c log(1/ δ(n + )) T h,i (n) ,
where n + 2 log2 (n) , δ(n) min{c 1 δ/t , 1/2}, and its corresponding B-value,

B h,i (n)    min U h,i (n), max j ∈{0,...,K-1} B h+1,Ki -j (n) if (h, i ) is an internal node, U h,i (n) otherwise,
which is designed to be a tighter upper confidence bound than the U-value. Here, c and c 1 are two constants, and νρ h represents the resolution 2 of the region P h,i . Observe that U h,i (n) and B h,i (n) are not updated at every round, but are constant on time intervals of the form [2 k , 2 k+1 ).

At each round n, the algorithm traverses the current covering tree along an optimistic path P n before choosing a point (OptTraverse function). This optimistic path P n is obtained by repeatedly selecting cells that have a larger B-value until a leaf or a node that is sampled less than a certain number of times is reached. If a leaf is reached, then this leaf is sampled and expanded (i.e., we split the leaf into K equal-sized regions and initialize their U-values to +∞); otherwise, the node that is not sampled enough is re-sampled. All the B-values along the optimistic path are then updated backwardly from the current node to the root (UpdateBackward function). More precisely, HCT samples one node a certain number of times τ h (n) in order to sufficiently reduce the uncertainty before expanding it. Hence, τ h (n) is defined such that the uncertainty over the rewards in P h,i is roughly equal to the resolution of the node,

τ h (n) c 2 log(1/ δ(n + )) ν 2 ρ -2h .

Analysis of HCT under a local metricless assumption

We now show that HCT is indeed a valid candidate underlying algorithm for GPO.

We state our main result in Theorem 5.2. We prove that HCT achieves an expected cumulative regret bound under Assumption 5.2 which matches the regret bound given by Azar et al.

[2014] up to constants. Moreover, compared to that result, the near-optimality dimension d featured in Theorem 5.2 is the one of Definition 5.1 that is defined with respect to the partitioning and not with respect to a metric. For a fixed budget N, we introduce the notation HCT(ν,ρ) to refer to the instance of HCT parameterized by ν, ρ, c = 2 1/(1 -ρ) and δ = 1/N. Theorem 5.2. Assume that function f satisfies Assumption 5.2. Then, setting δ 1/N, the cumulative regret of HCT(ν,ρ) after N function evaluations is upper bounded as

E[R HCT(ν,ρ) N ] ≤ αC(log N) 1/(d (ν,C,ρ)+2) N (d (ν,C,ρ)+1)/(d (ν,C,ρ)+2) ,
where α is a numerical constant and C is the constant associated to d (ν, C, ρ).

As a consequence, according to Remark 2.6, we get the following simple-regret bound.

Corollary 5.3. The simple regret of HCT after N function evaluations under Assumption 5.2 satisfies

E[S HCT(ν,ρ) N ] ≤ αC(log N) 1/(d (ν,C,ρ)+2) N -1/(d (ν,C,ρ)+2) .
Remark 5.4. One may notice that to validate GPO, we only need to bound the simple regret of HCT. The reason that we provide a cumulative regret bound is that we can show that HCT is also a valid base algorithm for POO, thus validate POO as well. As indeed the problem raised in the analysis of HOO under Assumption 5.2 does make the validity of POO questionable.

We now sketch the proof. The full proof is detailed in Appendix D.2. As mentioned above, HCT has a controlled depth. Indeed, given the threshold τ h (n) required at depth h, in Section D.2.1, we prove that the depth of the covering tree is bounded as stated in the following lemma: Lemma 5.1. The depth of the covering tree produced by HCT after N function evaluations satisfies

H(N) ≤ H max (N) 1 2(1 -ρ) log Nν 2 c 2 ρ 2 .
Defining the mean reward µ h,i f (x h,i ), we introduce a favorable event under which the mean reward of all expanded nodes is within a confidence interval,

ξ n ∀(h, i ) ∈ L n , | µ h,i (n) -µ h,i | ≤ c log(1/ δ(n))/T h,i (n) ,
where L n is the set of all possible nodes in trees of maximum depth H max (n). We split the regret into two parts depending on whether ξ n holds or not. We prove in Appendix D.2.3 that the failing confidence term is with high probability bounded by n. In the case when ξ n holds, we bound the regret in Appendix D.2.4 by treating separately the two parts, ∆ h n ,i n and ∆ n , of the instantaneous regret ∆ n ,

∆ n f -r n = f -f (x h n ,i n ) + f (x h n ,i n ) -r n = ∆ h n ,i n + ∆ n .
Next, we bound ∆ n by Azuma-Hoeffding concentration inequality [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF]. Then, we bound ∆ h n ,i n with the help of the following lemma, which is the major difference compared to the original HCT analysis by Azar et al. [2014]. In particular, the lemma states that if Assumption 5.2 is verified then f is upper-bounded by the U-value of any optimal node. Lemma 5.2. Under Assumption 5.2 and under event ξ n , we have that for any optimal node (h , i ), U h ,i (n) is an upper bound on f .

Proof. Since n + ≥ n, we have U h ,i (n) µ h ,i (n) + νρ h + c log(1/ δ(n + )) T h ,i (n) ≥ µ h ,i (n) + νρ h + c log(1/ δ(n)) T h ,i (n) •
Moreover, as we are under event ξ n , we also have

µ h ,i (n) + c log(1/ δ(n)) T h ,i (n) ≥ f x h ,i . Therefore, U h ,i (n) ≥ f (x h ,i ) + νρ h ≥ f .
With the help of Lemma 5.2 (see Step 2 in Appendix D.2.4), we can then upper bound ∆ h n ,i n as

∆ h n ,i n ≤ 3c log(2/ δ(n)) T h n ,i n (n) •
To bound the total regret of the all nodes selected, we divide them into two categories, depending on whether their depth is smaller or equal than H (to be optimized later) or not.

For the nodes in depths h ≤ H, we use Lemma 5.2 again, now to show that OptTraverse only selects nodes that have a parent which is (3νρ h n -1 )-optimal. For the nodes for which h > H, we bound the regret using the selection rule of HCT.

The sums of the regrets from the two categories are proportional and inversely proportional to an increasing function of H. By finding the value of H for which the sum of the two terms reaches its minimum and adding the regret coming from the situations where the favorable event does not hold, gives us the following cumulative regret for HCT:

With probability 1 -δ, R HCT(ν,ρ) N ≤ O (log(N/δ)) 1/(d (ν,C,ρ)+2) N (d (ν,C,ρ)+1)/(d (ν,C,ρ)+2) .
However, the analysis of POO requires a bound on the expected regret of the underlying subroutine. For that purpose, we simply set δ 1/N and that gives us the statement of Theorem 5.2, and consequently Corollary 5.3.

Upper bound on the simple regret of PCT

Building on our new analysis of the HCT algorithm, we are able to provide theoretical guarantees for a new algorithm instance of POO, namely the POO(HCT) algorithm, as a side result. We refer to the new algorithm instance as Parallel Confidence Tree (PCT). More precisely we define PCT(δ) as POO run on top of HCT using confidence parameter δ.

Let (ν , C , ρ ) be a triple of parameters for which Assumption 5.2 is true, we prove that PCT achieves a regret that is comparable to the one obtained by HCT.

Theorem 5.5. Assume that the target function f satisfies Assumption 5.2 and ν ≤ ν max and ρ ≤ ρ max . For δ = M(N)/N with M(N) = (1/2)D max log(N/ log N) /N, the simple regret of PCT(δ) after N function evaluations is bounded as

E[S PCT(δ) N ] ≤ βD max (ν max /ν ) D max ((log 2 N)/N) 1/(d (ν ,C ,ρ )+2) ,
where β is a constant independent of ν max and ρ max . 3 By Corollary 5.3, we know that the simple regret of HCT after N function evaluations run with (ν , C , ρ ) is of order O (log N/N) 1/(d (ν ,C ,ρ )+2) . As a consequence, the performance of PCT is at most a log n factor away from that of the best HCT instance. 

E R A (ν,ρ) n ≤ αC(log n) 1/(d (ν,C,ρ)+2) n (d (ν,C,ρ)+1)/(c+2) , (5.6) 
for any function f satisfying Assumption 5.2 with parameters (ν, C, ρ), then there exists a constant β that is independent of ν max and ρ max such that

E S POO(A ) n ≤ βD max (ν max /ν ) D max (log 2 n)/n) 1/(d (ν ,C ,ρ )+2) ,
for any function f satisfying Assumption 5.2 with parameters ν ≤ ν max and ρ ≤ ρ max .

In Theorem 5.1, we provide a general analysis of the GPO algorithm, showing that it attains an (order)-optimal simple regret without knowing the parameter triple (ν , C , ρ ) provided that its base algorithm does. As a consequence GPO(HCT) is an alternative to PCT with similar simple regret guarantees.

Experimental Illustrations

In this section, we provide some simple numerical illustrations that aim to compare the performance of HCT and HOO as subroutines. We run experiments on several test functions comparing the original POO(HOO) against our new algorithm instance PCT with different ρ values. In these experiments, we set ρ max = 0.9, and we add Gaussian noise to the function evaluations with a relatively small variance (σ = 0.1).

Artificial landscapes.

We test the algorithms on some functions from the artificial landscapes 4 In Figure 5.2, we plot the simple regret of the algorithms as a function of the number of evaluations. All the results are averaged over 5000 runs and we plot the simple regret after 500 function evaluations. Each instance of HOO or HCT would recommend a point picked uniformly at random among those evaluated so that we have the same recommendation strategy as POO and PCT.

The first observation is that PCT does match the performance of some single HCT instances as expected. We also notice that PCT has comparable performance w.r.t. POO in these plots, which justifies the choice of using HCT as a subroutine for the POO metaalgorithm. 

Discussion

We proposed GPO, a general framework for making any hierarchical bandit algorithm that only has a simple regret guarantee adaptive to unknown smoothness. This improves over the previous framework POO that requires cumulative regret guarantee for its subroutine.

Besides, we also studied PCT, a new implementation of POO on top of HCT. We proved that HCT is a plausible subroutine for POO by adapting the analysis of HCT under a new assumption w.r.t. a fixed partitioning, and is also a valid underlying subroutine for GPO by consequence. However, whether it is possible to weaken the assumptions of HOO in the same way as HCT while keeping similar regret guarantees remains open.

A subsequent work [START_REF] Peter | A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption[END_REF] further proposes new algorithms that adapts to the noise. However, tree-based algorithms are well-known to suffer from high-dimensional search spaces, which impedes quite a lot the using of hierarchical bandits in practice. An important but yet unsolved problem is thus to investigate how to be adaptive to the dimension.

Introduction

Training a machine learning algorithm often requires to specify several parameters. For instance, for neural networks, it is the architecture of the network and also the parameters of the gradient algorithm used or the choice of regularization. These hyper-parameters are difficult to learn through the standard training process and are often manually specified.

When it is not feasible to design algorithms with a few hyper-parameters, we opt for HPO. HPO is a crucial component of modern machine learning and automated machine learning (AutoML). Recall that HPO can be viewed as a BBO/GO problem (see Chapter 1.2.4) where the evaluation of the objective function is expensive as it is the accuracy of a learning algorithm for a given configuration of hyper-parameters. Indeed, a typical function evaluation involves training the primary machine learning algorithm to completion on a dataset, which often takes a considerable amount of time or resources, in particular for large DL models. For example, the training of language representation model BERT-Large [START_REF] Devlin | BERT: Pre-training of deep bidirectional transformers for language understanding[END_REF] was performed on 16 Cloud TPUs (64 TPU chips in total), and each pre-training took 4 days to complete. This vastly limits the number of evaluations that can be carried out, which calls for a design of efficient high-level algorithms that automate the tuning procedure.

In this chapter, we are interested in exploring how MAB, or more precisely BAI, can guide the design of efficient HPO. Indeed, some bandit tools have already been employed for GO (see Chapter 5) and HPO: First, in the field of Bayesian optimization, the GP-UCB algorithm [START_REF] Srinivas | Gaussian process optimization in the bandit setting: No regret and experimental design[END_REF]] is a Gaussian process extension of the classical UCB bandit algorithm [Auer et al., 2002a]. Later, [START_REF] Hoffman | On correlation and budget constraints in model-based bandit optimization with application to automatic machine learning[END_REF] proposed to use BAI tools -still with a Bayesian flavor -for automated machine learning, where the goal is to smartly try hyper-parameters from a pre-specified finite grid.

However, in most cases, the number of hyper-parameter configurations to explore is infinite. In this chapter, we investigate the use of bandit tools suited for an infinite number of arms. There are two lines of work for tackling a very large or infinite number of configurations (arms). The first is the continuum-armed bandits discussed in Chapter 5 (see also [START_REF] Peter | A simple parameter-free and adaptive approach to optimization under a minimal local smoothness assumption[END_REF][START_REF] Bubeck | X-armed bandits[END_REF][START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF]Shang et al. 2019a). It makes use of hierarchical bandit tools and aims at exploiting the (possibly unknown) smoothness of the black-box function to optimize. To the best of our knowledge, these methods have never been extensively tested in practice for HPO.

The second line of work does not assume any smoothness: At each round, the learner may ask for a new arm from a reservoir distribution ν 0 (pick randomly a new hyperparameter configuration) and add it to the current arm pool X , or re-sample one of the previous arms (evaluate configuration already included in X ), in order to find an arm with a good mean reward (i.e., a hyper-parameter configuration with a good validation accuracy). It is the infinitely-armed bandits setting. In particular, we study the stochastic case in which observations are assumed to be independent. The stochastic infinitely-armed bandits (SIAB) is studied by [START_REF] Berry | Bandit problems with infinitely many arms[END_REF]; [START_REF] Wang | Algorithms for infinitely many-armed bandits[END_REF] for the rewards maximization problem while Aziz et al. [2018a]; [START_REF] Carpentier | Simple regret for infinitely many armed bandits[END_REF] study the simple regret problem, which is related to BAI. While most proposed algorithms consist of querying an adequate number of arms from the reservoir before running a standard BAI algorithm, [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF] propose a more robust approach called Hyperband that uses several such phases.

Contributions. 1)

In this chapter, we go even further and propose the first dynamic algorithm for BAI in SIAB, that at each round, may either query a new arm from the reservoir or re-sample arms previously queried. Our algorithm leverages a Bayesian model and builds on TTTS. 2) We also introduce a variant of Hyperband where the Sequential-Halving subroutine [START_REF] Karnin | Almost optimal exploration in multiarmed bandits[END_REF] is replaced by TTTS. 3) Numerical studies are presented to show the competitiveness and robustness of the proposed dynamic algorithm with respect to state-of-the-art HPO methods. This chapter is mainly based on Shang et al. [2019b] with some additional discussions from Shang et al. [2020b] and my master thesis [START_REF] Shang | Hierarchical bandits for black-box optimization and Monte-Carlo tree search[END_REF].

A Brief Survey of Automated Machine Learning

Although the focus of this chapter is HPO, it is worth mentioning that HPO has gradually extended to more general AutoML, for whom the goal is to optimize the entire machine learning pipeline from data preparation to model learning (see e.g. [START_REF] Feurer | Efficient and robust automated machine learning[END_REF]. This effort has led to the development of a wide variety of efficient AutoML systems in the past few years [Kotthoff et In this section, we give a brief introduction of AutoML and we pay particular attention, of course, to HPO.

We first provide a full-stack pipeline for an AutoML procedure as displayed in Figure 

The AutoML taxonomy

Data preparation. The very first step of a machine learning pipeline consists of collecting and preparing clean data.

Data collection often relies on web searching. However, data could be ill-labeled or inaccurate, thus semi-supervised or self-labeling methods are required. When not enough data are available, data synthesis is needed, mainly with the help of data augmentation.

On the other hand, data cleaning is more or less standardized. Typical tricks include normalization, scaling, binarization of numerical (discrete or continuous) attributes, onehot encoding for categorical attributes, imputation (e.g. with mean values), etc.

Feature engineering. Once the data are collected and tidied, the next step is dealing with the features. Depending on the task, feature manipulation can contain three different aspects.

Sometimes we need to reduce irrelevant or redundant features, thus builds a more compact feature subset. This is feature selection. A typical feature selection process starts with subset generation using some (random) search strategy like simulated annealing, genetic algorithms, etc; followed by subset evaluation with filter methods, wrapper methods or embedded methods such as deep neural networks, decision trees, etc; and finally ends up with a validation step.

Another similar but not completely same trick is feature extraction. Feature extraction aims at extracting more informative features using dimensionality reduction techniques like PCA, ICA, LDA, etc. Recent autoencoder-based methods can be used as well.

Finally, we can also construct new features from the raw data to enhance the robustness and generalizability of the model. Typical methods of feature construction include searching methods such as tree-based approaches, genetic algorithms; and annotationbased approaches.

Pipeline generation. The previous two parts are not the focus of this chapter. We are more interested in the third step, namely pipeline generation. Indeed HPO is one of the main research topics in this domain.

The pipeline generation is sometimes modeled as a full model selection (FMS) or combined algorithm selection and hyper-parameter optimization (CASH) problem, that is typically composed of a model/algorithm selection process and a HPO process. We focus on HPO in this thesis. It is worth noting, however, that many HPO algorithms can also be applied on the full model selection problem as a whole.

A particular instance of FMS or CASH is the neural architecture search (NAS) problem. NAS is specific to large modern neural-network models and has become a very hot topic recently (see e.g. Elsken 2018). NAS can also be regarded as a HPO problem sometimes, but more often, we can make use of extra information from its inner structure. Anyhow, it is also out of the scope of this manuscript.

Model evaluation and estimation. Last but not least, an evaluation of the model is needed at the end. The classic way of evaluating a model is to wait until the completion of the training before assessing its performance on a validation set. Recent work (see e.g. [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF]) suggests that using a multi-fidelity estimation [START_REF] Huang | Sequential kriging optimization using multiple-fidelity evaluations[END_REF][START_REF] Peherstorfer | Survey of multifidelity methods in uncertainty propagation, inference, and optimization[END_REF][START_REF] Wu | Practical multi-fidelity Bayesian optimization for hyperparameter tuning[END_REF] can tremendously reduce the time and resource consumption. Multi-fidelity methods estimate the target function by low-resolution approximations (using only a subset of data for example).

Other methods exist as well that aim at increasing the efficacy of model evaluation and estimation, such as early-stopping, surrogate model, weight sharing, etc. They are mostly specifically designed for DL though.

Hyper-parameter optimization

We stress again that we only study HPO in this chapter. In particular, we do not take care of the model evaluation part, but rather focus on designing efficient model selection algorithms. That being said, we always consider complete training in this thesis, and we do not restrict ourselves to DL.

Two naive but daily-used HPO methods are Grid-Search and Random-Search. More sophisticated model-free methods address HPO as a sequential resource allocation problem, by adaptively choosing the next hyper-parameter(s) to explore, based on the results obtained previously. For example, evolutionary optimization follows a process inspired by the biological concept of evolution, which repeatedly replaces the worst-performing hyper-parameter configurations from a randomly initialized population of configurations (see e.g. Loshchilov and Hutter 2016) for an example of using CMA-ES for hyper-parameter tuning. A major drawback of evolutionary optimization is its lack of theoretical understanding.

Model-based approaches also exist. For example, Bayesian optimization is an approach that leverages the sequential nature of the setting. BO depends on a prior belief for the target function, typically a Gaussian process. This prior distribution can be updated to a posterior given a sequence of observations. Several algorithms exploiting this posterior distribution to decide where to sample next have been given (see e.g. [START_REF] Shahriari | Taking the human out of the loop: A review of Bayesian optimization[END_REF], for a survey). [START_REF] Snoek | Practical Bayesian optimization of machine learning algorithms[END_REF] and [START_REF] Klein | RoBO: A flexible and robust Bayesian optimization framework in Python[END_REF] provide Python packages called Spearmint and RoBO to perform hyper-parameter tuning with BO methods. Similar packages are available for PyTorch (BoTorch1 ) and TensorFlow (GPflowOpt by [START_REF] Knudde | GPflowOpt: A Bayesian optimization library using TensorFlow[END_REF]). Among BO algorithms, TPE [START_REF] Bergstra | Algorithms for hyperparameter optimization[END_REF] and SMAC [START_REF] Hutter | Sequential model-based optimization for general algorithm configuration[END_REF] were specifically proposed for HPO. A shortcoming of BO is that most algorithms select where to sample next based on optimizing some acquisition function computed from the posterior, e.g., the expected improvement [START_REF] Jones | Efficient global optimization of expensive black-box functions[END_REF]]. This auxiliary task cannot be solved analytically but needs to be performed itself by optimization procedures as L-BFGS that make the process slow.

Hyper-Parameter Optimization Framework

In this chapter, we view HPO as a particular GO setting, for which the target function f is a mapping from a hyper-parameter configuration to some measure of failure for the machine learning algorithm trained with these hyper-parameters. Formally, we aim at solving an optimization problem of the form

f = min f (λ) : λ ∈ Ω ,
where λ denotes a configuration of hyper-parameters chosen from a configuration space Ω. A hyper-parameter optimizer is a sequential procedure, that at each round n, selects a configuration λ n to evaluate using some sampling rule, after which a (costly and noisy) evaluation of f (λ n ) is observed. Besides, a hyper-parameter configuration λ is recommended as a guess for a close-to-optimal configuration at the end. The hope is that f ( λ ) is not far from f . We restrict our attention to hyper-parameter tuning for supervised learning algorithms. Given a training dataset D train containing m labeled examples in X × Y and a choice of hyper-parameter configuration λ, a supervised learning algorithm (neural network, SVM, gradient boosting, . . . ) produces a predictor g (m) λ : X → Y . Note that there can be some randomness in the training process (e.g., if stochastic gradient descent is used) so that g (m) λ may still be random for a given training set and hyper-parameters. The goal is to build a predictor that generalizes well. If we had access to the distribution P that generated the data (i.e., assuming that data points in D train are i.i.d. from P), this generalization power would be measured by the risk f (λ) E Y, g (m) λ (X) , where is some loss function measuring the distance between two predictions and the expectation is taken on (X, Y) ∼ P and the possible randomness in the training process.

In practice, however, the explicit evaluation of f is impossible, but there are several methods for noisy evaluations. We can either compute the validation error of g (n) λ on a held-out validation set, 1

|D valid | |D valid | i =1 ( g (m) λ (x i ), y i ) ,
or a cross validation error over the training set as an approximation of the objective.

Best-Arm Identification for Hyper-Parameter Tuning

HPO with pre-defined set of hyper-parameter configurations can be modeled as a BAI game. Given a finite set of arms X {1, . . . , K}, when we select arm i , we get an independent observation from some unknown distribution ν i with mean µ i . A BAI algorithm sequentially selects arms in order to identify the arm with the largest mean2 , I arg max i ∈A µ i . In the context of HPO, each arm models the quality of a given hyper-parameter configuration λ. When the arm is sampled, a noisy evaluation of f (λ) is received, which is the mean reward of that arm.

As stated in Section 6.1, standard BAI algorithms are not straightforwardly applicable to HPO when the search space can be infinite and is often continuous. To handle such cases, we rather turn our attention to SIAB. In this context, there is an infinite pool of arms, whose means are assumed to be drawn from some reservoir distribution ν 0 . In such a model, an algorithm maintains a list of arms that have been tried before. At each round it can either query a new arm from the reservoir, add it to the list and sample it, or sample an arm already in the list.

A natural way to perform BAI in an infinite-many armed bandit model consists of first querying a well-chosen number of arms from the reservoir and then running a standard BAI algorithm on those arms [START_REF] Carpentier | Simple regret for infinitely many armed bandits[END_REF]. However this ideal number may rely on the difficulty of the learning task, which is hardly known in practice. The Hyperband algorithm [START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF]] takes a step further and successively queries several batches of arms from the reservoir, including a decreasing number of arms in each batch, while increasing the budget dedicated to each of them. Sequential-Halving [START_REF] Karnin | Almost optimal exploration in multiarmed bandits[END_REF], a state-of-the-art fixed-budget BAI algorithm, is then run on each of these batches of arms. This approach seems more robust in that it trades off between the number of arms that is needed to capture a good arm and how much measurement effort we should allocate to each of them. However, a numerical study performed by Aziz et al.

[2018b] seems to reveal that an infinite bandit algorithm based on Sequential-Halving should always query the maximal number of arms from the reservoir 3 .

In Table 6.1, we summarize how to cast HPO as a BAI problem with infinitely-many arms.

BAI HPO

query ν 0 pick a new configuration λṡ ample an arm˙train the classifier g λ reward cross-validation loss Table 6.1: Casting HPO as a BAI problem.

All existing algorithms are still subject to a pre-defined scheduling of how many arms should be queried from the reservoir. The algorithm (D-TTTS) that we propose in the next section does not need to decide in advance how many arms will be queried, and is therefore fully dynamic. Remark 6.1. Hyperband is proposed specifically for hyper-parameter tuning. Its original philosophy is to adaptively allocate resources to more promising configurations. Resources here can be time, dataset sub-sampling, feature sub-sampling, etc. In such a setting, the classifier is not always trained into completion given a parameter configuration, but is rather stopped early if it is shown to be bad so that we can allocate more resources to other configurations. In this case, different evaluations of a single configuration cannot be considered as i.i.d. anymore. Thus, HPO is stated as a non-stochastic infinitely-armed bandit problem. This idea of early stopping is also further investigated by combining Bayesian optimization with it [START_REF] Falkner | BOHB: Robust and efficient hyperparameter optimization at scale[END_REF]. However, this is about the model evaluation as defined in Section 6.2.2 and is out of the scope of this thesis.

Active TTTS for Hyper-Parameter Optimization

In this section, we introduce a new algorithm for BAI in an infinite bandit model, that is an adaptation of TTTS (see Chapter 3). Unlike Sequential-Halving that requires the knowledge of the total budget to operate, TTTS is particularly appealing as it does not need to have it. Remember that such algorithms are referred to as anytime. Besides, it is known to be optimal in a Bayesian (asymptotic) sense (see Chapter 3).

Recall that as a Bayesian algorithm, TTTS uses a prior distribution Π 0 over the vector of means of the K arms, µ (µ 1 , • • • , µ K ), which can be updated to a posterior distribution Π n after n observations.

We consider Bernoulli bandit model in the rest of this chapter. Under Bernoulli bandit model, arm i produces a reward r n,i = 1 with probability µ i , and r n,i = 0 with probability 1 -µ i when sampled at round n. Given independent uniform prior for the mean of each arm, the posterior distribution on µ is a product of K Beta distributions:

Π n = K i =1 Beta(1 + S n,i , N n,i -S n,i + 1
), where N n,i is the number of selections of arm i until round n and S n,i is the sum of rewards obtained from that arm.

Why variants of TTTS?

We further motivate experimentally in this section why we choose to build new algorithms upon TTTS.

We compare TTTS against some fixed-budget BAI algorithms as benchmark, including uniform allocation [START_REF] Bubeck | Pure exploration in multi-armed bandits problems[END_REF], UCB-E and Successive-Reject [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF], UGapE [START_REF] Gabillon | Best arm identification: A unified approach to fixed budget and fixed confidence[END_REF], Sequential-Halving, TS with a MPA strategy of decision (see Section 2.2.4), and one anytime algorithm AT-LUCB [START_REF] Jun | Anytime exploration for multi-armed bandits using confidence information[END_REF].

We use 8 problem instances proposed by [START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF], all settings consider Bernoulli bandits, and we compare their trending simple regret (see Definition 2.16) averaged on 1000 trials. The results are shown in Fig. 6.2.

Note that contrary to Chapter 3, we are interested in the fixed-budget setting in this chapter, hence the present experimental study with simple regret as performance measure.

• In these experiments, TTTS are always beating or at least performing as well as its competitors. It thus seems to be a good candidate to be further investigated.

Note that TTTS can also be used for bandit settings in which the rewards are bounded in [0, 1] by using a binarization trick first proposed by [START_REF] Agrawal | Analysis of Thompson sampling for the multi-armed bandit problem[END_REF]: When a reward r n,i ∈ [0, 1] is observed, the algorithm is updated with a fake reward

r n,i ∼ Bern(r n,i ) ∈ {0, 1} .
TTTS can thus be used for BAI for a finite number of arms that with rewards in [0, 1]. We now present a simple way of extending TTTS to deal with an infinite number of arms, namely Dynamic Top-Two Thompson Sampling (D-TTTS).

Dynamic TTTS. In an infinite bandit algorithm, at each round, we either query a new arm from the reservoir and sample it, or re-sample a previous arm. In a Bayesian setting, we can also imagine that at each round, an arm is queried from the reservoir and added with a uniform prior to the list of queried arms, regardless of whether it is sampled or not.

Then, at round t , D-TTTS consists in running TTTS on these t arms, out of which several are endowed with a uniform prior and have never been sampled.

Leveraging the fact the the maximum of k uniform distribution has a Beta(k,1) distribution and that TTTS only depends on the maxima of posterior samples, we give the following equivalent implementation for D-TTTS (Algorithm 6.1). Letting L n be the list of arms that have been queried from the reservoir and sampled at least once before round t , at round t we run TTTS on the set X n L n ∪{µ 0 } where µ 0 is a pseudo-arm with posterior distribution Beta(nk n , 1), where k n |L n |.

It remains to decide how to recommend the arm as our best guess. It is obviously not a good idea to output the arm with the best empirical means since some lately sampled arms may have very high empirical mean with no confidence. In this chapter, we choose the most natural recommendation strategy for Bayesian algorithms that outputs the arm with the largest optimal action probability (see Section 3.2). Let Θ i be the subset of the set Θ of possible mean vectors such that arm i is optimal, Θ i θ ∈ Θ | θ i > max j =i θ j , the posterior probability that arm i is optimal after round t is defined as Π n (Θ i ). At any time n, we therefore recommend arm

J n arg max i ∈X Π n (Θ i ) .
Hyper-TTTS. We present here also another simple way of extending TTTS to deal with an infinite number of arms, namely Hyper-TTTS or H-TTTS, a variant of Hyperband in which SHA is replaced by TTTS. This algorithm, whose sampling rule is formally stated as Algorithm 6.2, runs s max batches of TTTS with different number of arms n and each batch with a same budget T = B/s max with B the total budget. The number of arms within each Algorithm 6.1 Sampling rule of D-TTTS 1: Input: β; B (total budget); ν 0 2: Initialization: µ 1 ∼ ν 0 ; t ← 0; X ← {µ 0 , µ 1 }; m ← 1; S 0 , N 0 ← 0; S 1 ∼ Bern(µ 1 ), N 1 ← 1 3: while n < B do 

µ m+1 ∼ ν 0 ; X ← X ∪ {µ m+1 }; 18: Y ← Evaluate arm m + 1; X ∼ Bern(Y) 19: S m+1 ← X; N m+1 ← 1; m ← m + 1 20: end if 21:
t ← t + 1 22: end while bracket is decreasing with an exponential rate of γ. One inconvenience of this algorithm is that s max and γ still need to be tuned (in practice, we use the same tuning as the one of Hyperband). D-TTTS is thus proposed to circumvent this issue. end while 24: end for 6.6 Experiments

Some synthetic results

We first provide some synthetic experimental results comparing D-TTTS to Hyperband and ISHA. For these experiments, the arms are Bernoulli distributed and the reservoir distribution ν 0 is fixed to some Beta(a, b) distribution.

ISHA is the extension of Sequential-Halving to the SIAB setting. It consists in running Sequential-Halving on a fixed number of arms drawn from the reservoir. Observe that for a total budget B, there exists a maximum number of arms K that can be processed by Sequential-Halving, which satisfies B = K log 2 (K ) . Following Aziz et al.

[2018b], we run ISHA with K arms drawn from the reservoir.

We report in Fig. 6.3 the simple regret as a function of time for different algorithms and four Beta reservoir distributions. H-TTTS and D-TTTS are run with β = 1/2 which is known to be a robust choice [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF]. Each point represents the expected simple regret E[1 -µ I * n ] estimated over 1000 replications for an algorithm run with budget n. D-TTTS is very competitive on 3 reservoirs and H-TTTS is sometimes better, sometimes worse than Hyperband. We also tried the SiRI algorithm [START_REF] Carpentier | Simple regret for infinitely many armed bandits[END_REF] (with b as the tail parameter when ν 0 =Beta(a, b)) but obtained worse performance and therefore do not report the results.

Note that in the implementation of Hyperband for this stochastic infinite bandit setting, the elimination phase of the underlying Sequential-Halving algorithm is carried out according to the averaged loss of previous samples (as samples from an arm are i.i.d. in this setting and not a converging sequence). In the next section, we apply our algorithm to some real hyper-parameter optimization tasks.

Experiments on real datasets

We now benchmark our bandit-based strategy against different types of HPO algorithms, namely, TPE, random search, Hyperband and H-TTTS, for the tuning of classifiers (SVM and MLP) on 4 different classification tasks: wine, breast cancer, and adult datasets from UCI machine learning repository [START_REF] Dua | UCI Machine Learning Repository[END_REF]; and the MNIST dataset [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]]. For all the methods, a noisy evaluation of the black-box function f (see the terminology introduced in Section 6.3) for a hyper-parameter configuration λ consists in performing a shuffled 3-fold cross-validation on D train . More precisely, given a random partitioning ∪ 3 j =1 D j valid of D train , where the folds are of equal size, we train a classifier g

( j )
λ on D train \D j valid for each fold j and compute the average validation error defined as

e 1/|D train | 3 j =1 i ∈D j valid 1{ g ( j ) λ (x i ) = y i } ,
which we report as a noisy estimate of the risk f (λ) P( g (n) λ (X) = Y), .

Observe that both the noisy evaluation and the value of f belong to [0, 1]. Therefore we can introduce an arm with rewards in [0, 1] for each hyper-parameter λ. Sampling arm λ produces reward r 1e ∈ [0, 1] with a different random partitioning and random seed for training for each selection. Arm λ is assumed to have mean of 1f (λ). In an infinite arm setting, querying a new arm from the reservoir corresponds to selecting a new hyperparameter at random from the search space. With these two notions (arm sampling and reservoir querying), our algorithm for infinite BAI applies to HPO.

For the experiments, we adapt the recommendation rule of D-TTTS to the HPO applications considered and always recommend the hyper-parameter configuration that has produced the smallest cross-validation error so far (which is also the recommendation rule used by other approaches, e.g., Hyperband). For all methods, we report the crossvalidation error for the recommended hyper-parameter configuration, as a function of time. We stress again that, unlike in standard bandits, where we could use the simple regret as a performance metric, we do not have access to the ground truth generalization error in real classification tasks. Therefore, we only report a proxy of the true error rate that we are interested in.

Results. We first benchmark 4 our methods on a few simple UCI datasets using SVM from scikit-learn as the classifier. We optimize over two hyper-parameters: the penalty parameter C and the kernel coefficient γ5 for an RBF kernel, for which the pre-defined search bounds are both 10 -5 , 10 5 . In this experiment, D-TTTS improves over other benchmark algorithms. Fig. 6.4b is the same experiment run on the UCI breast cancer dataset over 81 pulls. The task is to predict whether a patient has breast cancer based on 32 attributes. We repeat the experiment 100 times. This time, D-TTTS is slightly worse than Hyperband at the beginning, but improves later. Finally, we optimize SVM on a relatively more complicated UCI adult dataset over 162 pulls, for which the result is shown in Fig. 6.4c. The task is to tell whether the income of an individual is higher than 50k or not given 14 attributes. This experiment is also averaged over 100 runs. D-TTTS is better than other algorithms at the beginning, but is outperformed by TPE towards the end. We see that, although not always the best, D-TTTS shows a consistent, robust, and quite competitive performance in the 3 tasks.

We now carry out the classic MNIST digits classification task using multi-layer perceptron (MLP). We choose to optimize over three hyper-parameters: the size of hidden layer (an integer between 5 and 50), the 2 penalty parameter α (between 0 and 0.9) and the initial learning rate (bounded in 10 -5 , 10 -1 ). Fig. 6.4d shows the result of MLP run on MNIST over 108 pulls, this time averaged over 20 runs. D-TTTS is slightly worse than Hyperband and H-TTTS in the very beginning, but is performing well afterward.

Adaptivity to µ

One drawback of the present D-TTTS is that it may not work well if we do not know the oracle µ (µ is set to 1 in our previous experiments). Fig. 6.5 shows the expected simple regret of D-TTTS compared to ISHA and TTTS under a Beta(0.5,0.5) reservoir shifted by 0.8, 0.6, 0.4, 0.2 and without shift respectively. A Beta distribution Beta(a,b) shifted by µ is obtained by re-scaling to [0, µ * ] the corresponding distribution. More formally, a shifted Beta distribution on [0, µ * ], denoted by SB µ (a, b) in the rest of the paper, is the distribution of Xµ * where X ∼ Beta(a,b) (see Appendix 6.7 for more discussion on shifted Beta distributions). We can see that the performance of D-TTTS is getting worse along with the increasing shift. As suggested by the implementation trick introduced in Section 6.5, all the k arms that have been added but not effectively sampled can be seen as a virtual arm endowed with a Beta(k,1) posterior. Intuitively, if µ < 1, than this virtual arm would force the algorithm to sample too many new arms, thus would lack of attention on arms that are more likely to be near-optimal. This intuition is supported by the illustration in Fig. 6.6a: the posterior distributions of effectively sampled will eventually be supported mostly on the left of µ * , while the pseudo-arm still put a lot of mass near 1.

In Fig. 6.6b, we report the number of arms that have been played 1, 2, . . . , 9 and more than 10 times for D-TTTS run under Beta(0.5,0.5), SB 0.8 (0.5, 0.5), SB 0.6 (0.5, 0.5), SB 0.4 (0.5, 0.5), SB 0.2 (0.5, 0.5) reservoir respectively, which confirms the over-exploration effect caused by shifted reservoirs. We now propose a natural extension of D-TTTS to overcome the present issue. In this section we assume that we have the knowledge of the maximum mean µ of the reservoir. The core idea is to keep the same algorithm but with a different prior distribution over each queried arm, that is supported on [0, µ ] instead of [0, 1].

Bernoulli bandits. We still assume a Bernoulli bandit model for the rewards (although the algorithm is extended to any rewards bounded in [0, 1] with the binarization trick): An arbitrary arm produces at time t a reward 1 with probability θ and a reward 0 with probability 1 -θ. The likelihood can be written as follow:

p(s|θ) = θ s (1 -θ) 1-s ; s ∈ {0; 1}.
Sample from the shifted posterior. In order to implement the extension of D-TTTS, we need to know how to sample from the "shifted" posterior, that is the posterior assuming a uniform prior over [0, µ * ] instead of [0, 1]. We now explain how to compute this posterior distribution on θ given a sequence of observations Y 1 , Y 2 ,

• • • , Y N ∈ {0; 1}. Define a = N i =1 Y i + 1 b = N -N i =1 Y i + 1,
then, according to the Bayes rule, we have

p(θ|Y 1 , • • • , Y N ) = p(Y 1 , • • • , Y N |θ)p(θ) p(Y 1 , • • • , Y N ) = p(Y 1 , • • • , Y N |θ)p(θ) 1 0 p(Y 1 , • • • , Y N |θ )p(θ )1 [0,µ ] (θ )d θ = θ a-1 (1 -θ) b-1 1 [0,µ ] (θ)/B(a, b) µ 0 (θ ) a-1 (1 -θ ) b-1 /B(a, b)d θ = θ a-1 (1 -θ) b-1 1 [0,µ ] (θ) B(a, b)F a,b (µ ) ,
where F a,b is the cumulative distribution function (cdf ) of Beta(a,b). Thus the cdf of the posterior is

P [θ ≤ x|Y 1 , • • • , Y N ] = F a,b (x) F a,b (µ ) G(x).
Now the sampling is quite straightforward as G -1 (u) can be computed as

G -1 (u) = F -1 a,b (u * F a,b (µ )).
The computation of F -1 a,b and F a,b is easily accessible via existing libraries in different programming languages, and we can thus apply inverse transform sampling to obtain the observations, since if U ∼ U ([0, 1]), then G -1 (U) follows the posterior distribution. 

Shifted

p(θ ) = 1 B(a, b) (θ ) a-1 (µ -θ ) b-1 (µ ) a+b-1
, via the transformation θ = µ θ. Here B is the Beta function7 . The previous expression is particularly useful if we want to use the same efficient implementation trick that we employed in Algorithm 6.1, namely the order statistic trick.

Order statistic trick. Now we show that an "order statistic trick" still exists under a uniform prior over [0, µ * ], namely that the maximum of k random variables drawn from this prior distribution still has a nice distribution.

Given n random variables X 1 , X 2 , • • • , X n , the order statistics X (1) , X (2) , • • • , X (n) are also random variables, defined by sorting the values of X 1 , X 2 , • • • , X n in an increasing order. In this section we treat the special case where they are i.i.d samples from the same distribution with a cdf. F X . Following [START_REF] Gentle | Computational Statistics[END_REF], Chapter 1 Section 7, we know that the cumulative distribution function of the k-th order statistic can be written as follow:

F X (k) (x) = n j =k (F X (x)) j (F X (x)) n-j .
Now, in our case, where the underlying distribution is the uniform distribution defined over [0, µ ], we obtain the pdf of the order statistic X (k) as follow:

p X (k) (θ ) = n! (k -1)!(n -k)! (µ ) n (θ ) k-1 (µ -θ ) n-k = 1 B(k, n + 1 -k) (θ ) k-1 (µ -θ ) n-k (µ ) (k-1)+(n-k)+1 .
We recognize the density of a shifted Beta distribution with k and n + 1k as shape hyper-parameters. In particular, in our case, the pseudo arm at time t is endowed with the distribution SB µ (tk t , 1). Some illustrations of the fix. Now we show some synthetic results after the previous tricks. Fig. 6.7 shows the expected simple regret of D-TTTS compared to ISHA, again, under Beta(0.5,0.5), SB 0.8 (0.5, 0.5), SB 0.6 (0.5, 0.5), SB 0.4 (0.5, 0.5) and SB 0.2 (0.5, 0.5) reservoir respectively. We can see that the performance of D-TTTS for shifted cases has been significantly enhanced. We can also compare the number of effectively sampled arms under shifted Beta reservoirs before and after the fix, as shown in Fig. 6.8. Fig. 6.8a is the same figure as Fig. 6.6b, and Fig. 6.8b is the number of effectively sampled arms after the previous fix under a Beta(0.5,0.5), SB 0.8 (0.5, 0.5), SB 0.6 (0.5, 0.5), SB 0.4 (0.5, 0.5) and SB 0.2 (0.5, 0.5) reservoir respectively. Indeed, we can see that now the exploration effort of D-TTTS under shifted Beta priors is more or less at the same level as that under a normal Beta reservoir. 

Discussion

We presented a way to use Thompson sampling for BAI for infinitely many-armed bandits and explained how to use it for HPO. We introduced the first fully dynamic algorithm for this setting and showed through an empirical study that it is a promising approach for HPO.

It would be interesting to establish theoretical guarantees to support the good performance of D-TTTS, with the hope to provide a finite-time upper bound on its probability of error. We also plan to investigate variants of this algorithm for the non-stochastic bandits for which Hyperband can be used, which would allow spending more time on the more promising algorithms.

General Discussion

In this thesis, we studied the multi-armed bandit problem in an optimization fashion. In particular, we investigated three different settings of best-arm identification (in a broad sense) in the first three chapters. We first studied BAI in its simplest formulation (Chapter 3), that is bandits with scalar payoffs. We treated the problem with some Bayesian machinery and answered to one open question raised by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] on the sample complexity. By showing the (β)asymptotic optimality of TTTS and providing a computationally faster alternative T3C, we further advocated the use of Bayesian algorithms for BAI.

In the next chapter (Chapter 4), we studied the linear setting with the hope of extending previous Bayesian algorithms while keeping the same sample-complexity guarantee. We argued that previous notion of complexities for linear bandits BAI did not allow us to achieve the asymptotic optimality. Although the result was not satisfying regarding the Bayesian extensions, we managed to propose an alternative LinGame using a saddle-point approach that is asymptotically optimal whilst remaining computationally-friendly.

The third part (Chapter 5) consists of a rather different setting where we aimed to optimize a target function over a continuous-armed space with minimum regularity assumptions. We were interested in designing algorithms that are adaptive to the smoothness.

Taking inspiration from POO, we proposed a new general cross-validation scheme GPO. Compared to POO that is only able to encapsulate hierarchical-bandit algorithms with a cumulative-regret guarantee, GPO is able to encapsulate algorithms with simple-regret guarantees.

The first chapters mostly came up with strongly theoretically grounded algorithms in the context of different sequential optimization settings, while in Chapter 6 we also explored a more practical topic, namely hyper-parameter optimization. Existing methods often require to fix an ad hoc number of configurations to test, while we managed to propose a dynamic algorithm D-TTTS that do not need such a workaround. It is worth noting that D-TTTS can also simply serve as a heuristic for infinitely-armed bandits, but without any theoretical guarantees. Analysis of D-TTTS appears to be difficult due to its dynamic nature, and is left for future work.

Future Perspectives

Follow-ups of the previous research. A prominent follow-up is to further investigate whether both theoretically and practically efficient Bayesian algorithms exist for linear BAI (or even more general structure). As discussed in Chapter 4, our first attempts to extend TTTS to the linear setting leads to a dead end from a theoretical point of view, but still shows some promising experimental performance. I think it is worth putting some efforts on the topic as Bayesian methods could probably avoid resolving complicated optimization problems that is required in most of the current existing state-of-the-art algorithms.

On the other hand, as advocated for example by [START_REF] Locatelli | An optimal algorithm for the thresholding bandit problem[END_REF], the fixed-budget and fixed-confidence settings are drastically different. In the future, I would like to put more focus on the fixed-budget setting, and ideally propose finite-time analysis for TTTS.

Further investigation on hyper-parameter tuning. Even if the motivation of this thesis was to design efficient HPO algorithms, the present thesis does not explore the topic very deeply. A main reason is that I find it hard to propose new task-agnostic algorithms that improve over existing methods significantly. Indeed, the most important contribution of Hyperband is to introduce a more clever evaluation mode that allocates more resources to more promising configurations. This trick has given way to a considerable improvement over previous methods, in particular on tasks using large DL models. Since Hyperband, however, with a lot of recent work trying to advance the state-of-the-art (see Section 6.2), no real breakthrough has been achieved in the field.

In my opinion, the future (or even ongoing) trend of the domain would be to focus on designing more efficient task-specific algorithms. Specific methods could eventually achieve better performance on specific tasks than more general approaches. To some extent, the recent progress on NAS is one running example to support this intuition as RL methods have been successfully applied on NAS (see e.g. Zoph and Le 2017).

A future direction that attracts me a lot is thus to explore the potential of HPO techniques in different industrial applications. For example, one important business need of companies dealing with microchips is the compiler optimization. The methodology will thus be a bit different: we need to design algorithms based on the task itself rather than proposing a general algorithm and testing it on different tasks.

On the other hand, sample-efficient HPO remains an active research field since there is not only neural networks that need automated hyper-parameter tuning. Indeed, in many data science challenges with real-world datasets, classical machine learning methods (in particular ensemble methods like XGBoost) often dominate. Bandit-inspired HPO methods can still be plausible candidates for those tasks and I am very interested in discovering further in this direction.

Link to reinforcement learning. Beyond MAB, I would also like to work more on RL in the future, whether it is about the theoretical foundation or finding real applications of RL. RL is a richer and more challenging domain than MAB, yet has strong links with MAB, in particular linear bandits. Indeed, RL extends upon contextual bandits by allowing for long-term consequences. More precisely, for contextual (linear) bandits, the actions only affect the current reward, whereas for RL, they can also affect the future rewards through the evolution of the context.

One possible topic that I would like to investigate -a topic that is also highly related to BAI -is the problem of best-policy identification (BPI) in MDPs. Similar to BAI, the goal of BPI is to devise learning algorithms that are able to return the best policy as early as possible. Marjani and Proutiere [2020] adapt Track-and-Stop to BPI in discounted MDPs, with the help of a generative model. It is interesting to see if our algorithms for linear bandits BAI can help design sound BPI algorithms in a more general context (without generative model).

In the long term, I will be interested in filling the gap between RL theory and practical usable RL. For example, a large number of recent theoretical RL work has adopted a linear function approximation assumption first studied by [START_REF] Jin | Provably efficient reinforcement learning with linear function approximation[END_REF] to various RL problem settings. This assumption is interesting from a theoretical point of view, but remains quite unrealistic in practice. It would be interesting to find a more realistic assumption while keeping (or improving) the current guarantees.

Societal impact. Last but not least, there is an emerging attention that has been paid on the societal impact recently. I value also a lot these societal factors or constraints that should be leveraged in the current machine learning research. I am particularly interested in safety which is often required in many real business projects (see e. where (X) denotes the empirical mean of those random variables,

X 1 n (X 1 + X 2 + • • • + X n ) .
A generalization of the previous inequalities to sub-Gaussian random variables also exists. We do not provide details in this thesis, interested readers can refer to [START_REF] Vershynin | High-Dimensional Probability[END_REF].

A.2.2 Azuma's inequality

Another important inequality that has been used in this thesis is Azuma-(Hoeffding)'s inequality [START_REF] Azuma | Weighted sums of certain dependent random variables[END_REF]. The vanilla form of Azuma's inequality is stated as follow.

Theorem A.2. Let (X 0 , X 1 , X 2 , • • • ) be a sequence of random variables, and we assume that it forms a martingale (or a super-martingale). Suppose that for any i ∈ N,

|X i -X i -1 | ≤ c i a.s. ,
with (c i ) i ∈N a sequence of constants. Then for any positive integer n and any real ε, the following inequality holds,

P [X n -X 0 ≥ ε] ≤ exp -ε 2 2 n i =1 c 2 i .
Symmetrically, if the sequence form a sub-martingale, then the following inequality holds,

P [X n -X 0 ≤ -ε] ≤ exp -ε 2 2 n i =1 c 2 i .
The two parts of Theorem A.2 can be combined together using a union bound to obtain the following two-side bound.

Corollary A.3. Let (X 0 , X 1 , X 2 , • • • ) be a martingale such that for any i ∈ N, |X i -X i -1 | ≤ c i a.s. . Then we have P [X n -X 0 ≤ -ε] ≤ exp -ε 2 2 n i =1 c 2 i .
Lemma 3.4. There exists a random variable W 2 , such that for all i ∈ A ,

∀n ∈ N, |T n,i -Ψ n,i | ≤ W 2 (n + 1) log(e 2 + n) a.s. ,
and E e λW 2 < ∞ for any λ > 0.

Proof. The proof shares some similarities with that of Lemma 6 of Qin et al. [2017]. For any arm i ∈ A , define ∀n ∈ N,

D n T n,i -Ψ n,i , d n 1{I n = i } -ψ n,i . It is clear that D n = n-1 l =1 d l and E [d n |F n-1 ] = 0. Indeed, E [d n |F n-1 ] = E 1{I n = i } -ψ n,i |F n-1 = P [I n = i |F n-1 ] -E [P [I n = i |F n-1 ] |F n-1 ] = P [I n = i |F n-1 ] -P [I n = i |F n-1 ] = 0.
The second last equality holds since .

P [I n = i |F n-1 ] is F n-1 -measurable.
Applying the previous inequality with δ = e -x 2 /2 yields

P ∃n ∈ N : |D n | > (1 + n) ln (1 + n) + x 2 ≤ e -x 2 /2 , P ∃n ∈ N : |D n | > (1 + n) ln e 2 + n x 2 ≤ e -x 2 /2 ,
where the last inequality uses that for all a, b ≥ 2, we have ab ≥ a + b.

Consequently ∀x ≥ 2, for all i ∈ A P   max n∈N |T n,i -Ψ n,i | (n + 1) log e 2 + n ≥ x    ≤ e -x 2 /2 .

Now taking a union bound over

i ∈ A , we have ∀x ≥ 2, P [W 2 ≥ x] ≤ P   max i ∈A max n∈N |T n,i -Ψ n,i | (n + 1) log e 2 + n ≥ x   ≤ P   i ∈A max n∈N |T n,i -Ψ n,i | (n + 1) log e 2 + n ≥ x   ≤ i ∈A P   max n∈N |T n,i -Ψ n,i | (n + 1) log e 2 + n ≥ x   ≤ Ke -x 2 /2 .
The previous inequalities imply that ∀i ∈ A and ∀n ∈ N, we have

|T n,i -Ψ n,i | ≤ W 2 (n + 1) log(e 2 + n)
almost surely. Now it remains to show that ∀λ > 0, E e λW 2 < ∞. Fix some λ > 0. where C 1 is some constant.

B.3 Fixed-Confidence Analysis for TTTS

This section is entirely dedicated to TTTS.

B.3.1 Sufficient exploration of all arms

We prove Lemma 3.5 for TTTS. To prove this lemma, we introduce the two following sets of indices for a given L > 0: ∀n ∈ N we define

U L n {i : T n,i < L}, V L n {i : T n,i < L 3/4 }.
It is seemingly non trivial to manipulate directly TTTS's candidate arms, we thus start by connecting TTTS with TTPS (top two probability sampling). TTPS is another sampling rule presented by [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] for which the two candidate samples are defined as in Appendix B.1, we recall them in the following.

J (1) n arg max j a n, j , J (2) n arg max j =J (1) n a n, j .
Lemma 3.5 is proved via the following sequence of lemmas.

Lemma B.1. There exists

L 1 = Poly(W 1 ) s.t. if L > L 1 , for all n, U L n = implies J (1) n ∈ V L n or J (2) n ∈ V L n .
Proof. If J (1) n ∈ V L n , then the proof is finished. Now we assume that J (1) n ∈ V L n , and we prove that J (2) n ∈ V L n .

Step 1. According to Lemma 3.3, there exists L 2 = Poly(W 1 ) s.

t. ∀L > L 2 , ∀i ∈ U L n , |µ n,i -µ i | ≤ σW 1 log(e + T n,i ) 1 + T n,i ≤ σW 1 log(e + L) 1 + L ≤ σW 1 ∆ min 4σW 1 = ∆ min 4 .
The second inequality holds since x → log(e+x) 1+x

is a decreasing function. The third inequality holds for a large L > L 2 with L 2 = . . ..

Step 2. We now assume that L > L 2 , and we define

J n arg max j ∈U L n µ n, j = arg max j ∈U L n µ j .
The last equality holds since ∀ j ∈ U L n , |µ n,i -µ i | ≤ ∆ min /4. We show that there exists L 3 = Poly(W 1 ) s.t. ∀L > L 3 , J n = J (1) n . We proceed by contradiction, and suppose that J n = J (1) n , then µ n,J (1)

n < µ n,J n , since J (1) n ∈ V L n ⊂ U L n . However, we have a n,J (1) n = Π n θ J (1) n > max j =J (1) n θ j ≤ Π n θ J (1) n > θ J n ≤ 1 2 exp    - (µ n,J (1) n -µ n,J n ) 2 2σ 2 (1/T n,J (1) n + 1/T n,J n )    .
The last inequality uses the Gaussian tail inequality (3.7) of Lemma 3.2. On the other hand,

|µ n,J (1) n -µ n,J n | = |µ n,J (1) n -µ J (1) n + µ J (1) n -µ J n + µ J n -µ n,J n | ≥ |µ J (1) n -µ J n | -|µ n,J (1) n -µ J (1) n + µ J n -µ n,J n | ≥ ∆ min -( ∆ min 4 + ∆ min 4 ) = ∆ min 2 , and 1 T n,J (1) n + 1 T n,J n ≤ 2 L .
Thus, if we take L 3 s.t.

exp - L 3 ∆ 2 min 16σ 2 ≤ 1 2K ,
then for any L > L 3 , we have

a n,J (1) n ≤ 1 2K < 1 K ,
which contradicts the definition of J (1) n . We now assume that L > L 3 , thus J (1) n = J n .

Step 3. We finally show that for L large enough, J

(2) n ∈ V L n . First note that ∀ j ∈ V L n , we have a n, j ≤ Π n θ j ≥ θ J n ≤ exp - L 3/4 ∆ 2 min 16σ 2 . (B.1)
This last inequality can be proved using the same argument as Step 2. Now we define another index J n arg max j ∈U L n µ n, j and the quantity c n max(µ n,J n , µ n,J n ). We can lower bound a n,J n as follows:

a n,J n ≥ Π n θ J n ≥ c n j =J n Π n θ j ≤ c n = Π n θ J n ≥ c n j =J n ; j ∈U L n Π n θ j ≤ c n j ∈U L n Π n θ j ≤ c n ≥ Π n θ J n ≥ c n 1 2 K-1 .
Now there are two cases:

• If µ n,J n > µ n,J n , then we have

Π n θ J n ≥ c n = Π n θ J n ≥ µ n,J n ≥ 1 2 . • If µ n,J n < µ n,J n
, then we can apply the Gaussian tail bound (3.8) of Lemma 3.2, and we obtain

Π n θ J n ≥ c n = Π n θ J n ≥ µ n,J n = Π n θ J n ≥ µ n,J n + (µ n,J n -µ n,J n ) ≥ 1 2π exp      - 1 2   1 - T n,J n σ (µ n,J n -µ n,J n )    2      = 1 2π exp      - 1 2   1 + T n,J n σ (µ n,J n -µ n,J n )    2      .
On the other hand, by Lemma 3.3, we know that

|µ n,J n -µ n,J n | = |µ n,J n -µ J n + µ J n -µ J n + µ J n -µ n,J n | ≤ |µ J n -µ J n | + σW 1 log(e + T n,J n ) 1 + T n,J n + σW 1 log(e + T n,J n ) 1 + T n,J n ≤ |µ J n -µ J n | + 2σW 1 log(e + T n,J n ) 1 + T n,J n ≤ ∆ max + 2σW 1 log(e + T n,J n ) 1 + T n,J n .
Therefore,

Π n θ J n ≥ c n ≥ 1 2π exp      - 1 2   1 + T n,J n σ   ∆ max + 2σW 1 log(e + T n,J n ) 1 + T n,J n      2      ≥ 1 2π exp    - 1 2   1 + L σ   ∆ max + 2σW 1 log(e + L) 1 + L     2    ≥ 1 2π exp - 1 2 1 + L 1/4 ∆ max σ + 2W 1 log(e + L) 2 . Now we have a n,J n ≥ max 1 2 K , 1 2 K-1 1 2π exp - 1 2 1 + L 1/4 ∆ max σ + 2W 1 log(e + L) 2 ,
and we have ∀ j ∈ V L n , a n, j ≤ exp -L 3/4 ∆ 2 min /(16σ 2 ) , thus there exists L 4 = Poly(W 1 ) s.t.

∀L > L 4 , ∀ j ∈ V L n , a n, j ≤ a n,J n 2 ,
and by consequence, J

(2) n ∈ V L n . Finally, taking L 1 = max(L 2 , L 3 , L 4 ), we have ∀L > L 1 , either J (1) n ∈ V L n or J (2) n ∈ V L n .
Next we show that there exists at least one arm in V L n for whom the probability of being pulled is large enough. More precisely, we prove the following lemma.

Lemma B.2.

There exists L 1 = Poly(W 1 ) s.t. for L > L 1 and for all n s.t. U L n = , then there exists

J n ∈ V L n s.t. ψ n,J n ≥ min(β, 1 -β) K 2 ψ min .
Proof. Using Lemma B.1, we know that J (1) n or J (2) n ∈ V L n . On the other hand, we know that

∀i ∈ A , ψ n,i = a n,i β + (1 -β) j =i a n, j
1a n, j .

B.3.2 Concentration of the empirical means

We prove Lemma 3.6 for TTTS. As a corollary of the previous section, we can show the concentration of µ n,i to µ i for TTTS2 .

By Lemma 3.3, we know that ∀i ∈ A and n ∈ N,

|µ n,i -µ i | ≤ σW 1 log(e + T n,i ) T n,i + 1 .
According to the previous section, there exists N 1 = Poly(W 1 , W 2 ) s. 

n/K + 1 ≤ 2(n/K) 1/4 n/K + 1 ≤ ε σW 1 .
Therefore, ∀n ≥ N 2 max{N 1 , N 2 }, we have

|µ n,i -µ i | ≤ σW 1 ε σW 1 .

B.3.3 Measurement effort concentration of the optimal arm

In this section we show that the empirical arm draws proportion of the true best arm for TTTS concentrates to β when the total number of arm draws is sufficiently large. We prove Lemma 3.7 for TTTS.

The proof is established upon the following lemmas. First, we prove that the empirical best arm coincides with the true best arm when the total number of arm draws goes sufficiently large. Proof. Using Lemma 3.6 with ε = ∆ min /4, there exists N

1 = Poly(4/∆ min , W 1 , W 2 ) s.t. ∀n > N 1 , ∀i ∈ A , |µ n,i -µ i | ≤ ∆ min 4 ,
which implies that starting from a known moment, µ n,I > µ n,i for all i = I , hence I n = I . Thus, ∀i = I ,

a n,i = Π n θ i > max j =i θ j ≤ Π n [θ i > θ I ] ≤ 1 2 exp - (µ n,i -µ n,I ) 2 2σ 2 (1/T n,i + 1/T n,I ) .
The last inequality uses the Gaussian tail inequality of (3.7) Lemma 3.2. Furthermore,

(µ n,i -µ n,I ) 2 = (|µ n,i -µ n,I |) 2 = (|µ n,i -µ i + µ i -µ I + µ I -µ n,I |) 2 ≥ (|µ i -µ I | -|µ n,i -µ i + µ I -µ n,I |) 2 ≥ ∆ min - ∆ min 4 + ∆ min 4 2 = ∆ 2 min 4 ,
and according to Lemma 3.5, we know that there exists M

2 = Poly(W 1 , W 2 ) s.t. ∀n > M 2 , 1 T n,i + 1 T n,I ≤ 2 n/K . Thus, ∀n > max{N 1 , M 2 }, we have ∀i = I , a n,i ≤ exp - ∆ 2 min 16σ 2 n K .
Then, we have

a n,I = 1 - i =I a n,i ≥ 1 -(K -1) exp - ∆ 2 min 16σ 2 n K .
There exists M 2 s.t. ∀n > M 2 , a n,I > 1/2, and by consequence I = J (1) n . Finally taking M 1 max{N 1 , M 2 , M 2 } concludes the proof.

Before we prove Lemma 3.7, we first show that Ψ n,I /n concentrates to β. Lemma B.5. Under TTTS, fix a constant ε > 0, there exists

M 3 = Poly(ε, W 1 , W 2 ) s.t. ∀n > M 3 , we have Ψ n,I n -β ≤ ε.
Proof. By Lemma B.4, we know that there exists M 1 = Poly(W 1 , W 2 ) s.t. ∀n > M 1 , we have I n = I = J (1) n and ∀i = I ,

a n,i ≤ exp - ∆ 2 min 16σ 2 n K .
Note also that ∀n ∈ N, we have

ψ n,I = a n,I β + (1 -β) j =I a n, j
1a n, j .

We proceed the proof with the following two steps.

Step 1. We first lower bound Ψ n,I for a given ε. Take M 4 > M 1 that we decide later, we have ∀n > M 4 ,

Ψ n,I n = 1 n n l =1 ψ l ,I = 1 n M 4 l =I ψ l ,I + 1 n n l =M 4 +1 ψ l ,I ≥ 1 n n l =M 4 +1 ψ l ,I ≥ 1 n n l =M 4 +1 a l ,I β = β n n l =M 4 +1 1 - j =I a l , j ≥ β n n l =M 4 +1   1 -(K -1) exp    - ∆ 2 min 16σ 2 l K      = β - M 4 n β - β n n l =M 4 +1 (K -1) exp    - ∆ 2 min 16σ 2 l K    ≥ β - M 4 n β - (n -M 4 ) n β(K -1) exp    - ∆ 2 min 16σ 2 M 4 K    ≥ β - M 4 n β -β(K -1) exp    - ∆ 2 min 16σ 2 M 4 K    .
For a given constant ε > 0, there exists M 5 s.t. ∀n > M 5 ,

β(K -1) exp - ∆ 2 min 16σ 2 n K < ε 2 . Furthermore, there exists M 6 = Poly(ε/2, M 5 ) s.t. ∀n > M 6 , M 5 n β < ε 2 .
Therefore, if we take M 4 max{M 1 , M 5 , M 6 }, we have ∀n > M 4 ,

Ψ n,I n ≥ β -ε.
Step 2. On the other hand, we can also upper bound Ψ n,I . We have ∀n > M 3 ,

Ψ n,I n = 1 n n l =1 ψ l ,I = 1 n n l =1 a l ,I β + (1 -β) j =I a l , j 1 -a l , j ≤ 1 n n l =1 a l ,I β + 1 n n l =1 a l ,I (1 -β) j =I a l , j 1 -a l , j ≤ β + 1 n n l =1 (1 -β) j =I a l , j 1 -a l , j ≤ β + 1 n n l =1 (1 -β) j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K .
Since, for a given ε > 0, there exists M 8 s.

t. ∀n > M 8 , exp - ∆ 2 min 16σ 2 n K < 1 2 ,
and there exists M 9 s.t. ∀n > M 9 ,

(1 -β)(K -1) exp - ∆ 2 min 16σ 2 n K < ε 4 .
Thus, ∀n > M 10 max{M 8 , M 9 },

Ψ n,I n ≤ β + 1 -β n     M 10 l =1 j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K + n l =M 10 +1 j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K     ≤ β + 1 -β n M 10 l =1 j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K + 2(1 -β)(K -1) exp    - ∆ 2 min 16σ 2 M 10 K    ≤ β + 1 -β n M 10 l =1 j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K + ε 2 .
There exists M 11 = Poly(ε/2, M 10 ) s.t. ∀n > M 11 ,

1 -β n M 10 l =1 j =I exp - ∆ 2 min 16σ 2 l K 1 -exp - ∆ 2 min 16σ 2 l K < ε 2 .
Therefore, ∀n > M 7 max{M 3 , M 11 }, we have

Ψ n,I n ≤ β + ε.
Proof. First, by Lemma B.4, there exists M 1 = Poly(W 1 , W 2 ) s.t. ∀n > M 1 ,

I = I n = J (1) n .
Then, following the similar argument as in Lemma B.17, one can show that for all i = I and for all n > M 1 ,

ψ n,i = a n,i β + (1 -β) j =i a n, j 1 -a n, j ≤ a n,i β + a n,i (1 -β) j =i a n, j 1 -a n,J (1) n = a n,i β + a n,i (1 -β) j =i a n, j 1 -a n,I ≤ a n,i β + a n,i (1 -β) 1 1 -a n,I ≤ a n,i 1 -a n,I ≤ Π n [θ i ≥ θ I ] Π n ∪ j =I θ j ≥ θ I ≤ Π n [θ i ≥ θ I ] max j =I Π n θ j ≥ θ I .
Using the upper and lower Gaussian tail bounds from Lemma 3.2, we have

ψ n,i ≤ exp - (µ n,I -µ n,i ) 2 2σ 2 1/T n,I + 1/T n,i exp      -min j =I 1 2    (µ n,I -µ n, j ) σ 1/T n,I + 1/T n, j -1    2      = exp -n (µ n,I -µ n,i ) 2 2σ 2 n/T n,I + n/T n,i exp      -n   min j =I (µ n,I -µ n, j ) 2σ 2 n/T n,I + n/T n, j - 1 2n    2     
, where we assume that n > S 2 = Poly(W 1 , W 2 ) for which

(µ n,I -µ n,i ) 2 σ 2 1/T n,I + 1/T n,i ≥ 1
according to Lemma 3.5. From there we take a supremum over the possible allocations to lower bound the denominator and write

ψ n,i ≤ exp -n (µ n,I -µ n,i ) 2 2σ 2 n/T n,I + n/T n,i exp      -n    sup ω:ω I =T n,I /n min j =I (µ n,I -µ n,i ) 2σ 2 1/ω I + 1/ω j - 1 2n    2      = exp -n (µ n,I -µ n,i ) 2 2σ 2 n/T n,I + n/T n,i exp -n Γ T n,I /n µ n - 1 2n 2 ,
where 

µ n (µ n,1 , • • • , µ n,K ),
ψ n,i ≤ exp                  -n     (µ n,I -µ n,i ) 2 2σ 2 n/T n,I + 1/(ω β i + ξ/2) -Γ T n,I /n µ n - 1 2n + 2Γ T n,I /n µ n n     ε n (ξ)                  .
Using Lemma 3.7, we know that for any ε, there exists S 3 = Poly(1/ε, W 1 , W 2 ) s.t. ∀n > S 3 , |T n,I /n-β| ≤ ε, and ∀ j ∈ A , |µ n, j -µ j | ≤ ε. Furthermore, (β, µ) → Γ β (µ) is continuous with respect to β and µ, thus for a given ε 0 , there exists S 3 = Poly(1/ε 0 , W 1 , W 2 ) s.t. ∀n > S 3 , we have

ε n (ξ) -   (µ I -µ i ) 2 2σ 2 1/β + 1/(ω β i + ξ/2) -Γ β   ≤ ε 0 .
Finally, define S 1 max{S 2 , S 2 , S 3 }, we have ∀n > S 1 ,

ψ n,i ≤ exp {-ε 0 (ξ)n} ,
where

ε 0 (ξ) = (µ I -µ i ) 2 2σ 2 1/β + 1/(ω β i + ξ/2) -Γ β + ε 0 . (B.2)
Next, starting from some known moment, no arm is overly allocated. More precisely, we show the following lemma.

Lemma B.7. Under TTTS, for every ξ, there exists

S 4 = Poly(1/ξ, W 1 , W 2 ) s.t. ∀n > S 4 , ∀i ∈ A , Ψ n,i n ≤ ω β i + ξ.
Proof. From Lemma B.6, there exists S 1 = Poly(2/ξ, W 1 , W 2 ) such that for all n > S 1 and for all i = I ,

Ψ n,i n ≥ ω β i + ξ 2 ⇒ ψ n,i ≤ exp {-ε 0 (ξ/2)n} .
Thus, for all i = I ,

Ψ n,i n ≤ S 1 n + n =S 1 +1 ψ ,i 1 
Ψ ,i n ≥ ω β i + ξ 2 n + n =S 1 +1 ψ ,i 1 
Ψ ,i n ≤ ω β i + ξ 2 n ≤ S 1 n + n =1 exp {-ε 0 (ξ/2)n} n + n (ξ) =S 1 +1 ψ ,i 1 
Ψ ,i n ≤ ω β i + ξ 2 n ,
where we let n (ξ) = max ≤ n :

Ψ ,i /n ≤ ω β i + ξ/2 . Then Ψ n,i n ≤ S 1 n + n =1 exp {-ε 0 (ξ/2)n} n + Ψ n (ξ),i ≤ S 1 + (1 -exp(-ε 0 (ξ/2)) -1 n + ω β i + ξ 2 
Then, there exists S 5 such that for all n ≥ S 5 ,

S 1 + (1 -exp(-ε 0 (ξ/2)) -1 n ≤ ξ 2 .
Therefore, for any n > S 4 max{S 1 , S 5 }, Ψ n,i ≤ ω β i + ξ holds for all i = I . For i = I , it is already proved for the optimal arm. We now prove Lemma 3.8 under TTTS.

Proof of Lemma 3.8 From Lemma B.7, there exists S 4 = Poly((K -1)/ξ, W 1 , W 2 ) such that for all n > S 4 ,

∀i ∈ A , Ψ n,i n ≤ ω β i + ξ K -1 .
Using the fact that Ψ n,i /n and ω β i all sum to 1, we have ∀i ∈ A ,

Ψ n,i n = 1 - j =i Ψ n, j n ≥ 1 - j =i ω β j + ξ K -1 = ω β i -ξ.
Thus, for all n > S 4 , we have

∀i ∈ A , Ψ n,i n -ω β i ≤ ξ.
which is a contradiction. Thus there exists at least one j 0 = I , i , such that T n, j 0 /n ≤ ω β j . Assuming n > max(S 2 , S 3 ), we have

W n (I , i ) -W n (I , j 0 ) = (µ n,I -µ n,i ) 2 2σ 2 1 T n,I + 1 T n,i - (µ n,I -µ n, j 0 ) 2 2σ 2 1 T n,I + 1 T n, j 0 ≥ (µ I -µ i -2ξ 2 ) 2 2σ 2   1 β -ξ 2 + 1 ω β i + ξ   - (µ I -µ j 0 + 2ξ 2 ) 2 2σ 2   1 β + ξ 2 + 1 ω β j 0   W ξ i , j 0 .
According to Proposition 3.1, W ξ i , j 0 converges to 0 when ξ goes to 0, more precisely we have

W ξ i , j 0 = (µ I -µ i ) 2 2σ 2   β β + ω β i   2 ξ + O(ξ 2 ) ,
thus there exists a ε 0 such that for all ξ < ε 0 it holds for all i , j 0 = I , W

ξ i , j 0 > 0. It follows then W n (I , i ) -min k =I W n (I , k) ≥ W n (I , i ) -W n (I , j 0 ) > 0, and 1{W n (I , i ) = min k =I W n (I , k)} = 0.
Knowing that Lemma B.4 is also valid for T3C, thus there exists M 1 = Poly(4/∆ min , W 1 , W 2 )

such that for all n > M 1 ,

∀ j = I , a n, j ≤ exp - ∆ 2 min 16σ 2 n K ,
which then concludes the proof by taking S 1 max(M 1 , S 2 , S 3 ).

The rest of this subsection almost coincides with that of TTTS. We first show that, starting from some known moment, no arm is overly allocated. More precisely, we show the following lemma.

Lemma B.12. Under T3C, for every ξ, there exists

S 4 = Poly(1/ξ, W 1 , W 2 ) s.t. ∀n > S 4 , ∀i ∈ A , Ψ n,i n ≤ ω β i + 2ξ.
Proof. See proof of Lemma B.7 in Appendix B.3.4. Note that the previous step does not match exactly that of TTTS, so the proof would be slightly different. However, the difference is only a matter of constant, we thus still choose to skip this proof.

It remains to prove Lemma 3.8 for T3C, which stays the same as that of TTTS.

and we obtain

τ δ ≤ ln(C 3 /δ) Γ β -2ζ + 1.
Combining the two cases, and we have for any ζ ∈ (0, Γ β /2),

τ δ ≤ max N 0 , ln(C 3 /δ) Γ β -2ζ + 1 ≤ N 0 + 1 + ln(C 3 ) Γ β -2ζ + ln(1/δ) Γ β -2ζ . Since E [N 1 ] < ∞, therefore lim sup δ E [τ δ ] log(1/δ) ≤ 1 Γ β -2ζ , ∀ζ ∈ (0, Γ β /2),
which concludes the proof. Proof. Denote again with I again the set of arms sampled only finitely many times. For I empty, we thus have µ ∞,i lim n→∞ µ n,i = µ i . The posterior variance is

B.6 Proof of Posterior

σ 2 n,i = α n,i β n,i
(α n,i + β n,i ) 2 (α n,i + β n,i + 1)

= (1 + n-1 =1 1{I = i }Y ,I )(1 + T n,i -n-1 =1 1{I = i }Y ,I )
(2 + T n,i ) 2 (2 + T n,i + 1) .

We see that when I is empty, we have σ 2 ∞,i lim n→∞ σ 2 n,i = 0, i.e., the posterior is concentrated.

Step 1: A lower bound when some arms are sampled only finitely often. First, note that when T n,i = 0 for some i ∈ A , the empirical mean for that arm equals the prior mean µ n,i = α 0,i /(α 0,i + β 0,i ), and the variance is strictly positive: σ 2 n,i = (α 0,i β 0,i )/ (α 0,i + β 0,i ) 2 (α 0,i + β 0,i + 1) > 0 .

When I is not empty, then for every i ∈ I we have σ 2 ∞,i > 0, and a ∞,i ∈ (0, 1), implying a ∞,I < 1, and thus Step 2: A lower bound when every arm is sampled infinitely often. Suppose now that I is empty, then we have

max i =I Π n (θ i ≥ θ I ) ≤ 1 -a n,I ≤ i =I Π n (θ i ≥ θ I ) ≤ (k -1) max i =I
Π n (θ i ≥ θ I ).

Thus, we have 1a n,I ≤ (k -1) max i =I Π n (θ i ≥ θ I ) and also 1a n,I . = max i =I Π n (θ i ≥ θ I ). We have T n, j + 1 ; y .

Γ = max
Fix some ε > 0, then there exists some n 0 (ε) such that for all n ≥ n 0 (ε), we have for any j , I j ,I = S n, j

T n, j + 1 , S n,I

T n,I + 1 , ⊂ µ j + ε, µ I -ε I j ,ε , and because KL-divergence is uniformly continuous on the compact interval I j ,ε , there exists an n 1 such that for every n ≥ n 1 we have kl S n, j

T n, j + 1 ; y ≥ (1 -ε)kl µ j ; y , for any y and for all j ∈ A . Therefore, we have n . We can combine these results, which implies that there exists a non-negative sequence ε n → 0 such that a n, j max i =I a n,i ≤ exp -nC j β, ω n, j -ε n /2 exp -n(Γ β + ε/2) = exp -n C j β, ω n, j -Γ β -ε n .

We know that C j β, ω β j is strictly increasing in ω β j , and C j β, ω β j = Γ β , thus, there exists some ξ > 0 such that ω n, j ≥ ω β j + ξ =⇒ C j β, ω n, j -Γ β > ξ .

Step 3: ψ n,i converges to ω β i for all arms. To establish the convergence of the allocation effort of all arms, we rely on the same sufficient condition used in the analysis of [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF], restated above in Lemma B.17, and we will restate it here again for convenience. First, note that from Lemma B.19 we know that T n,I n → β, and by Lemma 3.4 this implies ψ n,I → β, hence we can use the lemma above to prove convergence to the optimal proportions. This proof is already given in Step 3 of the proof for the Gaussian case, and since it does not depend on the specifics of the Gaussian case, except for invoking Lemma B.15 (consistency), which for the Bernoulli case we replace by Lemma B.20, it gives a proof for the Bernoulli case as well. We conclude that (B.5) holds, and the convergence to the optimal proportions follows by Lemma B.17.

B.7.3 Proof of auxiliary lemmas

Proof of Lemma B.18

P [X > Y] = E [P [X > Y|Y]] ≤ E 1{Y < a -1 a + b -1 } + 1{Y ≥ a -1 a + b -1 }P [X > Y|Y] ≤ exp -(c + d -1)kl c -1 c + d -1 ; a -1 a + b -1 + E exp -(a + b -1)kl a -1 a + b -1 ; Y 1{Y ≥ a -1 a + b -1 } ,
Using the Beta-Binomial trick in the second inequality. Then we have (call the second half A)

A ≤ E 1{ We then state a result derived from the concavity of Λ → log det(Λ). The exact same proof holds for w x s instead of w x s since thanks to the tracking we have also in this case T x s-1 ≥ W x s-1log(K) ≥ W x s-1log(KA).

Lemma

C.3 Sample Complexity of LinGame

C.3.1 Events

We fix a constant α > 2 and define the event

E t = ∀s ≤ t : 1 2 θ s -θ 2 Λ T s +λI d ≤ h(t ) d t ,1/t α .
This event holds with high probability Lemma C.5. For all t ≥ 1

P θ E c t ≤ 1 t α-1 .
We now prove that we can construct, on this event, upper confidence bounds on the loss given to the learners.

Lemma C.6. On the event E t , for all (x, i ) ∈ X × I and θ ∈ ¬i , for all s ≤ t , Combining the two inequalities above allows us to conclude.

We thus define the upper confidence U We show that the sum on the right is proportional to its number of terms n = t -T * t , then use that the sum on the left is O ( t ). We obtain that n = O ( t ).

Lemma C.10. If the event E t holds, then for all s ≤ t , if i * ( θ s ) = i * (θ) then there exists an arm x ∈ X such that With the Cauchy-Schwarz inequality, there exists x ∈ X such that

∆ min 2 ≤ θ s -θ 2 Λ T s x T Λ -1 T s x .
Under the event E t we obtain 

∆

C.4 A Fair Comparison of Stopping Rules

We investigate closely the stopping rules employed in existing linear BAI algorithm. We first make a synthesized table that resembles stopping rules and decision rules of all existing algorithms, including ours, in Table C.2. We denote by X n the active arm set for elimination-based algorithms, and by i X n the only arm left in X n when | X n | = 1. We show that they are all the same up to the choice of the exploration rate. Note that in Table C.2, we have replaced all the exploration term by d n,δ , and we have also listed the original terms (with their original notation, thus may be in conflict with notation of the current paper). In the following, we always use the same exploration rate d n,δ for all stopping rules. LinGame. We first notice that using the same argument as the proves of Lemma C.1 and Proposition 4.1, the stopping rule of LinGame (and also the one of GLUCB) can be rewritten By consequence,

min i =I ( θ λ n ) 〈 θ λ n , x i -x ( θ λ n )〉 2 2 x i -x ( θ λ n ) 2 Λ -1 T n 1 x ( θ λ n ) T θ λ n ≥ x T i θ λ n = 〈 θ λ n , x j n -x ( θ λ n )〉 2 2 x j n -x ( θ λ n ) 2 Λ -1 T n ≥ d n,δ ,
and LinGame stops as well.

In conclusion, all the stopping rules are equivalent if we set their exploration term to the same, though formulated in different manners. We further introduce some additional notation that are needed for the proof of Theorem 5.2.

Appendix D Additional Proofs of Chapter 5 D.1 Notation

• For any t , let y n (r n , x n ) be a random variable, we define the filtration F n as a σ-algebra generated by (y 1 , . . . , y n ).

• Another important notion in HCT is the threshold τ h on the number of pulls needed before a node at level h can be expanded. The threshold τ h is chosen such that the two confidence terms in U h,i are roughly equivalent, that is, νρ h c log(1/ δ(n + )) τ h (n) .

Step 3: Bound on the cumulative regret. We return to term R Notice that the covering tree is K-ary and therefore |I h (N)| ≤ K|I h-1 (N)|. Recall that HCT only selects a node (h n , i n ) when its parent is 3νρ h n -1 -optimal. Therefore, by definition of the near-optimality dimension,

|I h (N)| ≤ |KI h-1 (N)| ≤ KCρ -d (h-1) ,
where d is the near-optimality dimension. As a result, for term (a), we obtain that (a) ≤ H h=0 KCρ -d (h-1) τ h (N) log(2/ δ(N))
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 21 Figure 2.1: An example of modelling clinical trials as a MAB problem.
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  [2016], Qin et al. [2017] proposed and analyzed TTEI, another Bayesian sampling rule, both in the fixed-confidence setting and in terms of posterior convergence rate. Nonetheless, similar guarantees for TTTS have been left as an open question by Russo [2016]. In the present paper, we answer this open question. In addition, we propose Top-Two Transportation Cost (T3C), a computationally more favorable variant of TTTS and extend the fixed-confidence guarantees to T3C as well.

Definition 3. 1 .

 1 Define for all i = I C i (ω, ω ) min x∈I ωd (µ I ; x) + ω d (µ i ; x) , where d (µ, µ ) is the KL-divergence and I = R in the Gaussian case and I = [0, 1] in the Bernoulli case. We define

Proposition 3. 1 .

 1 There is a unique solution ω β to the optimization problem (3.5) satisfying ω β I = β, and for all i , j = I , C i (β,

Figure 3

 3 Figure 3.1: Dots: empirical sample complexity; Solid line: theoretical sample complexity.

  Figure 3.2: Sample complexity of different BAI sampling rules over some random problem instances. Black dots represent means and oranges lines represent medians.

  [START_REF] Karnin | Almost optimal exploration in multiarmed bandits[END_REF], or by confidence-based methods such as UGapE[START_REF] Gabillon | Best arm identification: A unified approach to fixed budget and fixed confidence[END_REF]. Those algorithms have naturally been extended to the linear setting (we survey existing methods for linear bandits BAI in Section 4.4). Before the work presented in this chapter, BAI for linear bandits has been previously studied byFiez et al. [2019]; Kazerouni and Wein [2019]; Soare et al. [2014]; Tao et al. [2018]; Xu et al. [2018]; Zaki et al. [2019]. They all consider the fixed-confidence setting. Beside studying fixed-confidence sample complexity, Garivier and Kaufmann [2016] and some subsequent works [Qin et al., 2017; Shang et al., 2020a] investigate a general criterion of judging the optimality of a BAI sampling rule: Algorithms that achieve the minimal sample complexity when δ tends to zero are called asymptotically optimal as elaborated on in Chapter 3. Previous work do not seem to satisfy this (asymptotic) optimality rule. Since then, Ménard [2019] and Degenne et al. [2019] further study the problem from a game theoretical point of view, and extend the asymptotic optimality to the general pure exploration for structured bandits. Note that a naive adaptation of the algorithm proposed by Degenne et al. [2019] may not work smoothly in the linear setting. Algorithms that benefit better from the linear structure are needed.

  This chapter is partly based on some unpublished work, and partly base on Degenne et al. [2020a].

  plus an additional disturbing context x d +1 = (cos(α), sin(α), 0, . . . , 0) T , and a true regression parameter which is proportional to e 1 : θ = ce 1 . This instance is frequently used in the literature of linear bandits BAI (see e.g.[START_REF] Soare | Best-arm identification in linear bandits[END_REF][START_REF] Xu | A fully adaptive algorithm for pure exploration in linear bandits[END_REF] 

  X Y -Static and X Y -Adaptive.[START_REF] Soare | Best-arm identification in linear bandits[END_REF] first propose a static allocation design X Y -Static that aims at reducing the uncertainty of the gaps of all arms. More precisely, it requires to either solve the X Y dir -complexity or use a greedy version that pulls of having no guarantees. An elimination-like alternative called X Y -Adaptive is proposed then to overcome that issue. We say elimination-like since X Y -Adaptive

  1) ← arg max x∈X x T θ 1 (indexed by I (1) ) 5: Sample b ∼ Ber n(β)

Figure 4 .

 4 Figure 4.1: A hard problem instance for linear best-arm identification.
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 42 Figure 4.2: T3C-Greedy vs. Track-and-Stop for different value of δ.

x 1 =Table 4 . 4 :

 144 (1, 0) T 1783.1 5844.4 x 2 = (0, 1) T 357009.0 1169260.5 x 3 = (cos(0.01), sin(0.01) T ) Average number of pulls of each arm (d = 2, δ = 0.1).

  Average number of pulls of each arm (d = 2, δ = 0.1).

Figure 4 . 3 :

 43 Figure 4.3: Comparison of the sample complexity of L-T3C-Greedy and LinGapE on the pathological instance in R d for different values of d .

ω

  with g n (ω) = x∈X ω x U x,i n n /2 17: // Track the weights 18: Pull x n ∈ arg min x∈X T x n-1 -W n,x 19: end for Similarly to T3C/TTTS of Chapter 3, these stopping and decision rules ensure that the LinGame is δ-correct regardless of the sampling rule used, see lemma below 3 proved in Appendix C.2. Lemma 4.1. Regardless of the sampling rule, the stopping rule (4.11) with the threshold

Figure 4 . 4 :

 44 Figure 4.4: Sample complexity of different linear BAI sampling rules over the usual counterexample with δ = 0.1, 0.01, 0.0001 respectively. CG = LinGame-C, Lk = LinGame, RR = uniform sampling, fix = tracking the fixed weights, GS = X Y -Static with X X -allocation, XYS = X Y -Static with X Y dir -allocation, LG = LinGapE. The mean stopping time is represented by a black cross.

Figure 4 . 5 :

 45 Figure 4.5: Sample complexity of different linear BAI sampling rules over random unit sphere vectors with d = 6, 8, 10, 12 from left to right.

  Sampling rule of SL-T3C 1: Initialize: Λ ← I d , Λ ← I d 2: for n ← 1, 2, • • • do mean and variance according to (4.1) and (4.7) 10: n = n + 1 11: end for

Figure 4 . 6 :

 46 Figure 4.6: Average stopping time (Left: d = 2, α = π/4, δ = 0.0000001, Right: d = 2, α = 0.1, δ = 0.1), with SFW-T = SL-T3C, SFW-L = SLinGapE, T-G = L-T3C, LG = LinGapE.

  Jedra and Proutière, 2020; Katz-samuels et al., 2020; Zaki et al., 2020]. Particularly, Jedra and Proutière [2020] provide a first analysis of linear bandits BAI with a specific continuous set of arms; Katz-samuels et al.[2020] also study the fixed-budget setting for linear bandits BAI and propose a novel lower bound in terms of an experimental-design objective based on the Gaussian-width of the underlying arm set; while[START_REF] Zaki | Explicit best arm identification in linear bandits using no-regret learners[END_REF] 
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8 :

 8 A (s) (if not already done before) Continue running A (s) until it has given N M rewards r s,1 , . . . , r s,N/M . + M 17: end while 18: s ← arg max s∈S µ[s] 19: Return A point sampled u.a.r. from the points evaluated by A (s )

Algorithm 5. 2

 2 Algorithm of GPO 1: Input: base algorithm A , budget n, ρ max , ν max , K 2: Initialization: D max ← ln K/ ln 1/ρ max , number of function evaluations N ← 0, current number of instances of A M ← 1, S ← {(ν max , ρ max )} 3: Compute M = (1/2)D max ln((M/2)/ ln(M/2)) (the number of instances) 4: for i ← 1, . . . , M do 5:s ← ν max , ρ max 2M/(2i +1) (2M) noisy evaluations of f ( x s ) 9:Compute their average V[s] 10: end for 11: s ← arg max s V[s] 12: Return x s Theorem 5.1. If for all (ν, ρ) the A (ν, ρ) algorithm has its simple regret bounded as

  Theorem 5.5 follows from Corollary 5.3 and Proposition 5.1 below. This wrapper result highlights how cumulative regret guarantees for any base algorithm translate into simple regret guarantees for the corresponding POO(A ) algorithm. Its proof almost replicates the analysis of POO(HOO) by Grill et al. [2015] and we provide it in Appendix D.3 for the sake of completeness. Proposition 5.1. If for all (ν, ρ) the A (ν, ρ) algorithm has its cumulative regret bounded as

  , including (i) two functions with many local minima: Himmelblau function and Rastrigin function, (ii) one valley-shaped function: Rosenbrock function, and (iii) Branin function (see Figure 5.1). Note that the Rastrigin function shown is its 2D version. In our experiments, we use a Rastrigin function in 5D.

Figure 5 . 1 :

 51 Figure 5.1: Benchmark functions for testing black-box optimization algorithms.

  Figure 5.2: Simple regret of POO and PCT run for different ρ values.

  6.1 followed by a general taxonomy on different components of AutoML [He et al., 2019; Hutter et al., 2019; Zöller and Huber, 2019].

Figure 6 . 1 :

 61 Figure 6.1: The full-stack pipeline of a machine learning task.

  Setting 1: µ 1 = 0.5, µ 2:20 = 0.4, budget = 2000 • Setting 2: µ 1 = 0.5, µ 2:6 = 0.42, µ 7:20 = 0.38, budget = 2000 • Setting 3: µ = [0.5, 0.3631, 0.449347, 0.48125839], budget = 2000 • Setting 4: µ = [0.5, 0.42, 0.4, 0.4, 0.35, 0.35], budget = 600 • Setting 5: µ 1 = 0.5, µ i = µ 1 -0.025i , ∀i ∈ {2 . . . 15}, budget = 4000 • Setting 6: µ 1 = 0.5, µ 2 = 0.48, µ 3:20 = 0.37, budget = 6000 • Setting 7: µ 1 = 0.5, µ 2:6 = 0.45, µ 7:20 = 0.43, µ 7:20 = 0.38, budget = 6000 • Setting 8: µ 1 = 0.5, µ 2:6 = 0.45, µ 7:20 = 0.43, µ 7:20 = 0.38, budget = 12000

Figure 6 . 2 :

 62 Figure 6.2: Simple regret as a function of allocation budget for various BAI algorithms.

4 :

 4 ∀i = 0, . . . , m, θ i ∼ Beta(S i + 1, N i -S i + 1); U ∼ U ([0, 1]) 5: I (1) ← arg max i =0,...,m θ i 6: if U > β then7: while I (2) = I (1) do 8: ∀i = 0, . . . , m, θ i ∼ Beta(S i + 1, N i -S i + 1) 9: I (2) ← arg max i =0,...,m θ i Evaluate arm I (1) ; X ∼ Bern(Y) 15: S I (1) ← S I (1) + X; N I (1) ← N I (1) + 1; S 0 ← S 0 + 1 16: else 17:

Algorithm 6. 2 14 :

 214 Sampling rule of H-TTTS1: Input: β; γ; B; s max ; ν 0 2: Initialization: T = B/s max 3: for s ← s max to 0 do 4: K = s max +1 s+1 γ s 5:X ← {i = 1, . . . , K : µ i ∼ ν 0 }; ∀i ∈ X , θ i ∼ Beta(S i + 1, N i -S i + 1)15:I (2) ← arg max i ∈X θ i 1) ← S I (1) + X; N I (1) ← N I (1)

  Figure 6.3: Simple regret of D-TTTS (against Hyperband) as a function of the number of arms evaluations for different Beta reservoir.

Figure 6 . 4 :

 64 Figure 6.4: Mean cross-validation error of different HPO algorithms with (a) SVM run on the UCI wine dataset, (b) SVM run on the UCI breast cancer dataset, (c) SVM run on the UCI adult dataset and (d) MLP run on the MNIST dataset.

Fig. 6 .

 6 Fig.6.4a shows the mean cross-validation error of SVM run on the UCI wine dataset over 24 pulls 6 averaged on 100 runs. The task is to predict the quality score of wine (between 0 and 10) given 11 attributes. Recall that one iteration corresponds to one arm pull.

  Figure 6.5: Simple regret of D-TTTS (against Hyperband) for shifted Beta reservoir.

  Figure 6.6: Illustration of over-exploration of D-TTTS under shifted reservoirs.

  Beta distribution. Recall that we defined a shifted Beta distribution SB µ (a, b) as the distribution of the random variable θ µ θ, where a, b are the shape hyperparameters of the Beta distribution and θ ∼ Beta(a,b). The probability density function (pdf) of SB µ (a, b) can be written as

Figure 6 . 7 :

 67 Figure 6.7: Simple regret of D-TTTS for shifted Beta reservoir after the fix.

Figure 6 . 8 :

 68 Figure 6.8: Distribution of effectively sampled arms of D-TTTS before and after the fix.

  g.[START_REF] Garcelon | Adversarial Attacks on Linear Contextual Bandits[END_REF];[START_REF] Leurent | Robust-Adaptive Control of Linear Systems: beyond Quadratic Costs[END_REF], and also fairness that plays an crucial role in empowering the inclusion. Some of my recently finished or on-going projects focus on some of those aspects (in particular, safety for linear bandits Shang et al. 2021 and a novel bandit setting designed upon fairness considerationsShang et al. 2020c) and it is something that I definitely want to take into account in my future work.

E e λW 2 = ∞ x=1 P 2 y=0P

 x=12 e λW 2 ≥ x dx = ∞ y=0 P e λW 2 ≥ e 2λy 2λe 2λy dy = 2λ W 2 ≥ 2y e 2λy dy + 2λ

Lemma B. 4 .

 4 Under TTTS, there exists M 1 = Poly(W 1 , W 2 ) s.t. ∀n > M 1 , we have I n = I = J(1) n and ∀i = I , a n,i ≤ exp -

4 . 4 )

 44 Under TTTS, for Gaussian bandits with improper Gaussian priors, it holds almost surely that lim n→∞ -1 n log(1a n,I ) = T β (µ) -1 . From Theorem 2 in Qin et al. [2017], any allocation rule satisfying Tn,i /n → ω β i for each i ∈ A , satisfies lim n→∞ -1 n log(1a n,I ) = Γ β .Therefore, to prove Theorem 3.4, it is sufficient to prove that under TTTS, ∀i ∈ {1, . . . , K}, lim n→∞ Due to the concentration result in Lemma 3.4 that we restate below (and proved in Appendix B.3), which will be useful at several places in the proof, observe that lim n→∞ it suffices to establish the convergence of ψ n,i = Ψ n,i /n to ω β i , which we do next. For that purpose, we need again the following maximality inequality lemma. so that we haveP [X ≥ x] = P B a+b-1,x ≤ a -1 = P B a+b-1,1-x ≥ b .We can bound Binomial tails with Sanov's inequality:e -nd (k/n,x) n + 1 ≤ P B n,x ≥ k ≤ e -nd (k/n,x) ,where the last inequalities hold when k ≥ nx.Lemma B.18. Let X ∼ Bet a(a, b) and Y ∼ Bet a(c, d ) with 0 < a-1 a+b-1 < c-1 c+d -1 . Then we have P [X > Y] ≤ De -C where C = inf a-1 a+b-1 ≤y≤ c-1 c+d -1 C a,b (y) + C c,d (y),andD = 3 + min C a,b c -1 c + d -1 , C c,d a -1 a + b -1 .Note that this lemma is the Bernoulli version of Lemma 3.2. Theorem B.1. Consider the Beta-Bernoulli setting. For β ∈ (0, 1), under any allocation rule satisfying T n,I /n → ω β a n,I ) ≤ Γ β , and under any allocation rule satisfying T n,i /n → ω β i for each i ∈ A , a n,I ) = Γ β .

  a ∞,I = 0.

  w∈W min i =I C i (ω I , ω i ), Γ β = max w∈W;ω I =β min i =I C i (β, ω i ), with C i (ω I , ω i ) = min x∈R ω I d (θ I ; x) + ω i d (θ i ; x) = ω I d (θ I ; θ) + ω i d (θ i ; θ), where θ ∈ [θ i , θ I ] is the solution to A (θ) = ω I A (θ I ) + ω i A (θ i ) ω I + ω i .Since every arm is sampled infinitely often, when n is large, we haveµ n,I > µ n,i . Define S n,i n-1 =1 1{I = i }Y ,I .Recall that the posterior is a Beta distribution with parameters a n,i = S n,i + 1 and β n,i = T n,i -S n,i + 1. Let τ ∈ N be such that for every n ≥ τ, we have S n,i /(T n,i + 1) < S n,I /(T n,I + 1). For the sake of simplicity, we define for any i ∈ A the intervalI i ,I S n,i T n,i + 1 , S n,IT n,I + 1 .Then using Lemma B.18 witha = S n,i +1, b = T n,i -S n,i +1, c = S n,I +1, d = T n,I -S n,I +1, we have Π n (θ i -θ I ≥ 0) ≤ D expinf y∈I i ,I C S n,i +1,T n,i -S n,i +1 (y) + C S n,I +1,T n,I -S n,I +1 (y) . θ i ≥ θ I ) expinf y∈I i ,I C S n,i +1,T n,i -S n,i +1(y) + C S n,I +1,T n,I -S n,I +1 (y) zero as n goes to infinity. Indeed replacing a, b, c, d by their values in the definition of D we get D ≤ 3 + (T n,i -1)kl S n,i T n,i + 1 ; S n,I T n,I + 1 ≤ 3 + (n + 1)kl 0; n n + 1 = (n + 1) log(n + 1) .

Lemma B. 22 .

 22 [Sufficient condition for optimality] Consider any adaptive allocation rule. If ψ n,I → β, and n∈Nψ n, j 1 ψ n, j ≥ ω β j + ξ < ∞, ∀ j = I , ξ > 0, (B.6) then ψ n → ψ β .

C

  a -1 a + b -1 ≤ Y ≤ c -1 c + d -1 } exp -(a + b -1)kl a -1 a + b -1 ; Y + exp -(a + b -1)kl a -1 a + b -1 ; c -1 c + d -1 (call the first half B). Denote with f the density of Y, then B = a + b -1)kl a -1 a + b -1 ; y f (y) dy.Via integration by parts we obtainB = exp -(a + b -1)kl a -1 a + b -1 ; y P Y ≤ y a + b -1 ; y exp -C a,b (y) P(Y ≤ y) dy ≤ a + b -1 ; y exp -(C a,b (y) + C c,d (y)) dy + exp -(a + b -1)kl a -1 a + b -1 ; c -1 c + d -1 ,where the first inequality uses the Binomial trick again. LetC = inf a-1 a+b-1 ≤y≤ c-1 c+d -1 (a + b -1)kl a -1 a + b -1 ; y + (c + d -1)kl c -1 c + da,b (y) + C c,d (y),then note that in particular we haveC ≤ min (a + b -1)kl a -1 a + b -1 ; c -1 c + d -1 , (c + d -1)kl c -1 c + d -1 ; a -1 a + b -1 = min C a,b c -1 c + d -1 , C c,d a -1 a + ba + b -1 ; y) dy + e -C = (a + b -1)kl a -1 a + b -1 ; c -1 c + d -1 + 1 e -C .Thus we haveP [X > Y] ≤ 3 + (a + b -1)kl a -1 a + b -1 ; c -1 c + d -1 e -C .By symmetry, we haveP [X > Y] ≤ 3 + min C a,b c -1 c + d -1 , C c,d a -1 a + b -1 e -C , where C = inf a-1 a+b-1 ≤y≤ c-1 c+d -1 (a + b -1)kl a -1 a + b -1 ; y + (c + d -1)kl c -1 c + d -1 ; y .Proof. Just note that for z = x we have z 2 -αzy ≤ 0 4y ≤ y + α y + α 2 .

θ -θ 2 xx

 2 T ≤ min max ± 〈 θ s -θ , x〉 ± 2h(t ) x (Λ T s +λI d ) -1 2 , 4M 2Proof. First, note that since θ, θ ∈ M , their norms are bounded by M, thus it holdsθθ 2 xx T = 〈θ -θ , x〉 2 ≤ θθ 2 θ 2 ≤ 4M 2 L 2 .Furthermore on E t we haveθθ 2 xx T = 〈θ -θ , x〉 2 ≤ sup θ : θ s -θ 2 (Λ T s +λI d ) -1 ≤2h(t ) 〈θ -θ , x〉 2 = max ± 〈 θ s -θ , x〉 ± 2h(t ) x (Λ T s +λI d ) -1 2 .

  U x s ≥ 2h(s)x T Λ -1 T s x ≥ ∆ 2 min /4 .Proof. If i * ( θ s ) = i * (θ), then there exists an arm x ∈ X such thatθ T s (xx (θ)) ≥ 0 ⇒( θ s -θ) T (xx (θ)) ≥ ∆ min ⇒|( θ s -θ) T x| + |( θ s -θ) T x (θ)| ≥ ∆ min Hence either |( θ s -θ) T x| ≥ ∆ min 2 , or |( θ s -θ) T x (θ)| ≥ ∆ min 2 .By consequence, there exists an arm x such that|( θ s -θ) T x | ≥ ∆ min 2 .

n

  ∃x ∈ X , ∀x = x, xx Λ -1 Tn 2d n,δ ≤ 〈 θ λ n , xx 〉 J n = I ( θ λ n ) X Y -Adaptive | X n | = 1, where all arms x ∈ X s.t. ∃x ∈ X , xx Λ -1 Tn 2d n,δ ≤ 〈 θ λ n , x -x〉 are discarded J n = i X n ALBA | X n | = 1, where all arms x ∈ X s.t. x〉 are discarded J n = i X n RAGE | X n | = 1, where all arms x ∈ X s.t. ∃x ∈ X , 2 -t -2 ≤ 〈 θ λ n , x -x〉 are discarded J n = i X n LinGapE 〈 θ λ n , x j nx ( θ λ n )〉 + x ( θ λ n )x j n Λ -1 Tn 2d n,δ < 0 with j n = arg max j ∈I 〈 θ λ n , x jx ( θ λ n )〉 + x ( θ λ n )x j Λ -1 Tn 2d n,δ J n = I ( , x j nx ( θ λ n )〉 + x ( θ λ n )x j n Λ -1 Tn 2d n,δ < 0 with j n = arg max j ∈I 〈 θ λ n , x jx ( θ λ n )〉 + x ( θ λ n )x j Λ 2:Stopping rules for different linear BAI algorithms.

n

  > d n,δ . Now we compare it with other stopping rules.LinGame ⇒ X Y -Static. If LinGame stops at time t , then for x = x ( θ λ n ), we have∀x = x, xx Λ -1 T n 2d n,δ ≤ 〈 θ λ n , xx 〉 ,and X Y -Static stops as well.X Y -Static ⇒ X Y -Adaptive. Suppose that X Y -Static stops at time t under its stopping rule, then∃x ∈ X , ∀x = x, xx Λ -1 T n 2d n,δ ≤ 〈 θ λ n , xx 〉 .It is clear that if such x exists, then it can only be the empirical best arm x ( θ λ n ). Thus, x 〉 , and all arms different from x ( θ λ n ) would be discarded under X Y -Adaptive. Furthermore, x ( θ λ n ) would never be discarded since∀x = x ( θ λ n ), 〈 θ λ n , xx ( θ λ n )〉 < 0 ≤ x ( δ ,and X Y -Adaptive stops.X Y -Adaptive ⇒ ALBA Now if X Y -Adaptive stops at time t , then all arms but x ( θ arms would also be discarded under ALBA, and ALBA stops.ALBA ⇒ LinGapE and GLGapE. Next, suppose that ALBA stops at time n under its stopping rule, then the only arm left would be x ( x〉 .And in particular, we get〈 θ λ n , x j nx ( θ λ n )〉 + x ( θ λ n )x j n Λ -1 T n 2d n,δ < 0 .Thus LinGapE/GLGapE stops under its stopping rule.

LinGapE⇒

  LinGame Finally, we suppose that LinGapE stops at time n, then it comesj n = arg max x j 〉x ( θ λ n )x j Λ -1 T n 2d n,δ .

.

  h=H+1 i ∈I h (N) T h,i (N) log(2/ δ(n h,i ))In particular, (D.20) is due to inequality (D.19).We bound separately the terms (a) and (b). Since n h,i ≤ N, we have(a) ≤ H h=0 i ∈I h (N) τ h (N) log(2/ δ(N)) ≤ H h=0 |I h (N)| τ h (N) log(2/ δ(N)).
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  Those applications sometimes give birth to new variants of MAB. One of the most studied variants is contextual bandits for which the average reward depend on some external context (see e.g.Krause and Ong 2011; Li et al. 2010). Linear bandits (see e.g. Abbasi-Yadkori et al. 2011) that we study further in detail in this thesis is typically a particular case of contextual bandits. Other variants include combinatorial bandits in which a subset of arms can be selected at each round (see e.g. Cesa-Bianchi and Lugosi 2012; Chen et al. 2014; Perrault et al. 2020); structured bandits for which prior knowledge on the structure of the arm means is available (see e.g.

	Degenne et al. 2020b; Karnin 2016); adversarial
	bandits where the payoffs are controlled by a stochastic process, but rather by a (poten-
	tially oblivious) adversary (see e.g. Auer et al. 2002b); non-stationary bandits where the
	rewards are changing over time (see e.g. Allesiardo et al. 2017; Mellor and Shapiro 2013);
	multi-player bandits for which several learners exist and need to take decisions at some
	pre-defined moments (see e.g. Besson and Kaufmann 2018); dueling bandits for which
	the rewards are implicit pairwise comparison results (see e.g. Komiyama et al. 2015); de-
	layed bandits where the rewards of current actions are not available immediately (see
	e.g. Vernade et al. 2017) and so on and so forth.
	et al. 2010; Zeng et al.
	2016). Other application scenarios include network routing [Talebi et al., 2018], dynamic
	pricing [Zhai et al., 2011], demand and supply management [Brégère et al., 2019], sensor
	placement [Grant et al., 2019], auction bidding [Cesa-Bianchi et al., 2015], wireless com-
	munications in Internet of Things [Besson, 2019], etc.

  UCB-type algorithms for regret minimization, see Section 2.1.4). Those methods include UCB-E[START_REF] Audibert | Best arm identification in multi-armed bandits[END_REF], and UGapE[START_REF] Gabillon | Best arm identification: A unified approach to fixed budget and fixed confidence[END_REF].

	Another way of
	treating the problem is based on arm eliminations such as Successive-Reject [Audibert
	and Bubeck, 2010], and Sequential-Halving [Karnin et al., 2013], where less promising
	arms are gradually eliminated.
	Fixed-confidence designs. For fixed-confidence BAI, the majority of existing sampling
	rules rely on the confidence level δ: Again, some of them rely on confidence intervals
	such as LUCB [Kalyanakrishnan et al., 2012], UGapE [Gabillon et al., 2012], KL-LUCB and
	KL-Racing [Kaufmann and Kalyanakrishnan, 2013], lil'UCB [Jamieson et al., 2014]; oth-
	ers are elimination-based like Successive-Elimination, Median-Elimination [Even-
	dar et al., 2003], Exponential-Gap-Elimination [Karnin et al., 2013]. The first algo-
	rithm that does not depend on δ, Track-and-Stop, is proposed by Garivier and Kauf-
	mann [2016].

  To name a few of them, we can think of BAI for combinatorial bandits [Chen et al., 2021], BAI for adversarial bandits [Abbasi-Yadkori et al., 2018]. We can also refer to other variants like Top-m identification where instead of finding a single best arm, we aim to find the top-m best arm (see e.g. Kalyanakrishnan and Stone 2010; Réda et al. 2021).

al. [2021]; Kazerouni and Wein [2019]. To the best of my knowledge, BAI for general contextual bandits is only studied by Deshmukh et al. [2019] in the context of simple regret that we define later in Section 2.5.3.

Besides, many other variants mentioned in Section 2.1 can be studied in the context of BAI as well.

  and the recommendation rule J t = arg max i a n,i • or the Chernoff stopping rule (3.4) with threshold d n,δ and recommendation rule J t = arg max i µ n,i , form a δ-correct BAI strategy. Moreover, if all the arms means are distinct, it satisfies

	• the Bayesian stopping rule (3.3) with threshold	
	c n,δ = 1 -	1 2π	e	-	2 d n,δ + 1	2

Table 3

 3 

.1: Average execution time in seconds for different BAI sampling rules.

Table 4 .

 4 1: Optimal weights for various complexities with ∆ min = 0.0049958.where Y is the transductive set, i.e. a finite set of elements in R d . Transductive sets corresponding to different complexity types mentioned in this paper can be found in Table4.2.

	X

Table 4

 4 

.2: Some examples of different transductive sets.

Frank-Wolfe. We can use a Frank-Wolfe heuristic to compute the optimizer of (4.6) shown in Algorithm 4.1. This heuristic is used for example by

[START_REF] Fiez | Sequential experimental design for transductive linear bandits[END_REF]

. Note that it has been proved to have a linear convergence guarantee when Y = X

[START_REF] Ahipasaoglu | Linear convergence of a modified Frank-Wolfe algorithm for computing minimum-volume enclosing ellipsoids[END_REF]

. It is not clear, however, that the same guarantee holds for other transductive sets.

  [START_REF] Fiez | Sequential experimental design for transductive linear bandits[END_REF] extend X Y -Static and X Y -Adaptive to a more general transductive bandits setting. RAGE is also elimination-based and requires the computation of X Y dir -complexity at each phase. LinGapE and variants. LinGapE[START_REF] Xu | A fully adaptive algorithm for pure exploration in linear bandits[END_REF] is the first gap-based sampling rule for linear BAI. LinGapE is inspired by UGapE[START_REF] Gabillon | Best arm identification: A unified approach to fixed budget and fixed confidence[END_REF]. It is, however, not clear whether LinGapE is asymptotically optimal or not. Similar to X Y -Static, LinGapE ei-

	ther requires to solve a time-consuming optimization problem at each step, or can use a
	greedy version that pulls arm
	arg min
	x∈X

  Learners for each answer (L i ω ) i ∈I , threshold d 2: for n = 1 . . . do

	3:	// Stopping rule
	4:	

.12) Algorithm 4.5 Algorithm of LinGame 1: Input:

Table 4 .

 4 

	a 1	1912	1959	1943
	a 2	5119	4818	4987
	a 3	104	77	1775
	Total	7135	6854	8705

7: Average number of pulls of LinGame and LinGame-C (against DKM) for each arm.

  .1.

		global smoothness local smoothness
	known smoothness	Zooming, HOO	DOO, HCT
	unknown smoothness	TaxonomyZoom	SOO, StoSOO, ATB

Table 5 .

 5 1: Smoothness assumptions for hierarchical bandits algorithms.

  al., 2017; Mohr et al., 2018; Olson and Moore, 2019; Rakotoarison et al., 2019; Thornton et al., 2013].

  et al. 2019; Kandasamy et al. 2018; Liu et al. 2019; Zoph et al.

  Applying Corollary 8 of Abbasi-Yadkori et al. [2012] 1 , it holds that, with probability larger than 1 -δ, for all n,

	|D n | ≤ 2 (1 + n) ln	1 + n δ
	which yields the first statement of Lemma 3.4.	
	We now introduce the random variable	
	W 2 max	

Thus D n is a martingale, whose increment are 1-sub-Gaussian as

d n ∈ [-1, 1] for all n. n∈N max i ∈A |T n,i -Ψ n,i | (n + 1) ln(e 2 + n)

  and (β, µ) → Γ β (µ) represents a function that maps β and µ to the parameterized optimal error decay that any allocation rule can reach given parameter β and a set of arms with means µ. Note that this function is continuous with respect to β and µ respectively. Now, assuming Ψ n,i /n ≥ ω

	n > S 2 , T n,i /n ≥ ω	β i + ξ yields that there exists S 2 Poly(2/ξ, W 2 ) s.t. for all i + ξ/2, and by consequence, β

  Π n (θ i ≥ θ I ) . = expinf y∈I i ,IC S n,i +1,T n,i -S n,i +1 (y) + C S n,I +1,T n,I -S n,I +1 (y) . +1,T n, j -S n, j +1 (y) + C S n,I +1,T n,I -S n,I +1 (y)

	Hence,							
	We thus have for any i ,					
	1 -a n,i	. = max j =I	Π n θ j ≥ θ I				
		. = max j =I C S n, j . exp -inf y∈I j ,I = exp -n min j =I inf y∈I j ,I T n, j + 1 n	kl	S n, j T n, j + 1	; y +	T n,I + 1 n	kl	S n,I T n,I + 1	; y
		≥ exp -n max ω	min j =I	inf y∈I j ,I	ω i kl	S n, j T n, j + 1	; y + ω I kl	S n,I

  a n,i ) ≤ Γ . If T n,i /n → ω i for each i ∈ A , we have

			j =I	inf y∈I j ,I	ω j kl	S n, j T n, j + 1	; y + ω I kl	S n,I T n,I + 1	; y
	≥ exp -n max				
	Therefore, we have						
	lim sup n→∞ log(1 lim -1 n n→∞ inf y∈I i ,I T n,i + 1 n kl S n,i T n,i + 1 ; y +	T n,I + 1 n	kl	S n,I T n,i + 1	; y
	= inf y∈[µ i , µ I ]	ω i kl (µ i ; y) + ω I kl (µ I ; y)
	= Γ ,						
	and thus						
	1 -a n,i	. = exp -n max			

1a n,i . = exp -n max ω min ω min i =I inf y∈I j ,ε ω i kl (µ j ; y) + ω I kl (µ I ; y) . ω min j =I inf y∈I ε ω i kl (µ j ; y) + ω I kl (µ I ; y) . = exp -nΓ , where we denote ω n, j T n, j

  C.3. Let (w t ) t ≥1 be a sequence in Σ K and λ > 0 then Define the function f (W) = log det(Λ W + λI d ) for any W ∈ (R + ) K . It is a concave function since the function Λ → log det(Λ) is a concave function over the set of positive definite matrices (see Exercise 21.2 of Lattimore and Szepesvari 2018). And its partial derivative with respect to the coordinate a at W is ∇ where for the last inequality we use the inequality of arithmetic and geometric means in combination with Tr(W t ) ≤ t L 2 .A simple consequence of the previous lemma follows. K = (1, . . . , 1) ∈ R K . Hence we obtain

			x 2 (Λ T s-1 +λI d ) -1 ≤ x 2 (Λ W x s	+(λ/2)I d ) -1 ,
	and applying Lemma C.3 leads to	
		t s=1 x∈X	w x s x 2 (Λ T s-1 +λI d ) -1 ≤ d log 1 +	t L 2 d λ	≤ 2h(t ) .
			t s=1 x∈X	w s x x 2 W s +λI d ≤ d log 1 +	t L 2 d λ	.
	where W t = t s=1 w s .			
	Proof. Which implies that			
	t s=1 x∈X	w s x x 2 Λ W s +λI det(λI d )	≤ d log 1 +	t L 2 d λ	,
	Lemma C.4. For all t ,			
			t s=1 x∈X	w x s x 2 (Λ T s-1 +λI d ) -1 ≤ 2h(t ) = 2d t ,1/t α
			t s=1 x∈X	w x s x 2 (Λ T s-1 +λI d ) -1 ≤ 2h(t ) .

x f (W) = x 2 (W+λI d ) -1 .

Hence using the concavity of f we have

x∈X w s x x 2 (Λ W s +λI d ) -1 = 〈W s -W s-1 , ∇ x f (W s )〉 ≤ f (W s )f (W s-1 ) . d ≤ f (W t )f (W 0 ) = log det(Λ W t + λI d )

Proof. According to the tracking procedure of Degenne et al.

[2020b], we know that T x s-1 ≥ W x s-1log(KA). Thus, in combination with the choice of λ we can replace counts by weights

Λ T s-1 + λI d ≥ Λ W x s -Λ w x slog(KA)Λ 1 K + λI d ≥ Λ W x s -(log(K) + 1)Λ 1 K + λI d ≥ Λ W s + λ 2 I d ,

where 1

  -2 θθ s-1 Λ w s θ s-1 -θ I ,T t ( θ t ) Λ w s T s-1 +λI d ) -1 ≤ 2h(t )g (t ) .Lemma C.8 introduces a sum of gains/losses on which our algorithms for pulling and for Nature interact. By definition of the best response θ The upper confidence bounds are such that, underE t , (Λ T s-1 +λI d ) -1 |〈 θ s-1 -θ , x〉|Now we control the regret of the learner L I w , thanks to the bound for AdaHedge, see As previously done for i * , we obtain for all j = i * ,

	Λ W t We need to upper bound the quantity t = 1 2 t s=1 θ -θ I ,T t ( θ t ) 2 Λ w s ≥ 1 2 t s=1 θ s-1 -θ I ,T t ( θ t ) 2 Λ w s ≥ 1 2 t s=1 θ s-1 -θ I ,T t ( θ t ) 2 Λ w s -t s=1 θ -θ s-1 2 Λ w s t s=1 θ s-1 -θ I ,T t ( θ t ) 2 Λ w s s=1 w x s θ -θ s-1 2 xx T . By definition of the event E t . (C.4) we have θ -θ s-1 2 t s=1 x∈X w x s θ -θ s-1 2 xx T ≤ 2h(t ) t s=1 x∈X w x s x 2 (Λ Going back to (C.4) in combination with (C.3) and Lemma C.2 leads to d t ,δ + 20A h(t )g (t )d t ,δ + 2h(t )g (t ) ≥ 1 2 t s=1 θ s-1 -θ I ,T t ( θ t ) 2 Λ w s . (C.5) 1 2 Λ w s ≥ 1 2 inf θ ∈¬I s θ s-1 -θ 2 Λ w I s ≥ 1 2 t s=1 inf θ ∈¬I θ s-1 -θ 2 Λ w I s = 1 2 t s=1 x∈X w x,I s θ s-1 -θ I s 2 xx T (C.6) Note that our algorithm computes θ We now introduce the upper confidence bounds U x,i s = min max 2 , 4L 2 M 2 . Lemma C.9. 1 2 t s=1 x∈X w x,I s θ s-1 -θ I s 2 xx T ≥ 1 2 t s=1 x∈X w x,I s U x,I s -h(t )g (t ) -2 h(t )g (t ) 1 2 t s=1 x∈X w x,I s θ s-1 -θ I s 2 xx T Proof. Hence summing over times and using the Cauchy-Schwarz inequality we obtain 1 2 t s=1 x∈X w x,I s U x,I s -θ s-1 -(θ ) I s 2 xx T ≤ t s=1 x∈X w x,I s h(t ) x 2 (Λ T s-1 +λI d ) -1 + w x,I s 2h(t ) x ≤ h(t ) x∈X t s=1 w x,I s x 2 (Λ T s-1 +λI d ) -1 + 2h(t ) x∈X t s=1 w x,I s x 2 (Λ T s-1 +λI d ) -1 t s=1 x∈X w x,I s θ s-1 -θ I s 2 xx T ≤ h(t )g (t ) + 2 h(t )g (t ) 1 2 t s=1 x∈X w x,I s θ s-1 -θ I s 2 xx T , simplifications, d t ,δ + 40A h(t )g (t )d t ,δ + 2h(t )g (t ) ≥ 1 2 t s=1 x∈X w x,I s U x,I s . (C.7) Lemma 4.2, we have sup w∈Σ K 1 2 t s=1 1 {i t =I } x∈X w x U x,I s -1 2 t s=1 x∈X w x,I s U x,I w∈Σ K 1 2 t s=1 1 {i s =I } x∈X w x U x,I s ≥ sup w∈Σ K 1 2 t s=1 1 {i s =I } x∈X w x θ -(θ s ) I 2 xx T = T t ,I sup w∈Σ K 1 T i * t t s=1 1 {i s =I } 1 2 θ -(θ ) I s 2 Λ w Now remark that 1 T i t t s=1 1 {i s =I } 1 2 θ -(θ ) I s 2 Λ w is the expectation under some distribu-tion of 1 2 θ -(θ ) I s 2 Λ w q∈P (¬I ) sup w∈Σ K 1 2 E θ ∼q θ -θ 2 Λ w xx Thus thanks to Lemma C.4 we get w i s , we have where in the last inequality we used Lemma C.4. Thus combining the previous inequality with (C.6) and Lemma C.8 yields, with some inf θ ∈¬ j t s=1 x w j ,x s 1 2 θ -θ s-1 2 xx T ≥  t  1 2 max s=1 x∈X 1 {i

x,i s on the coordinate (x, i ) of the loss at time s ≤ t , U x,i s = min max

± 〈 θ s-1 -θ , x〉 ± 2h(t ) x (Λ T s-1 +λI d ) -1 2 , 4M 2 . (C.1)

The first step of our analysis is to restrict it to the event E t , as is done by Degenne et al.

[2019]; Garivier and Kaufmann

[2016]

.

Λ T t .

Combining the last inequality with (C.2) yields

d t ,δ + 4h(t )d t ,δ + 4h(t ) + log(A) 2 2A d t ,δ + 4h(t )d t ,δ + 4h(t ) ≥ 1 2 θθ I ,T t ( θ t ) 2 Λ W t

. Some simplifications, using the fact that h(t ) ≥ 1, give us

d t ,δ + 6A h(t )d t ,δ + 2h(t ) ≥ 1 2 θθ I ,T t ( θ t ) 2 Λ W t . (C.3)

We now go from θ to each θ s for s ≤ t in the right hand term of the inequality above

1 2 θθ I ,T t ( θ t ) 2 T = 〈θ -θ s-1 , x〉 2 ≤ θθ s-1 2 Λ T s-1 +λI d a 2 (Λ T s-1 +λI d ) -1 ≤ 2h(t ) x 2 (Λ T s-1 +λI d ) -1 . i s = inf θ ∈¬i θ s-1 -θ 2 t s=1 θ s-1 -θ I ,T t ( θ t ) 2

I s only when w I s = 0, i.e. only when i s = i * .

± 〈 θ s-1 -θ i s ), a〉 ± 2h(t ) x (Λ T s +λI d ) -1 U x,i s -θ s-1 -θ i s 2 xx T ≤ max ± 〈 θ s-1 -θ , x〉 ± 2h(t ) x (Λ T s-1 +λI d ) -1 2 -θ s-1 -θ i s 2 xx T ≤ 2h(t ) x 2 (Λ T s-1 +λI d ) -1 + 2 2h(t ) x (Λ T s-1 +λI d ) -1 |〈 θ s-1 -θ , x〉| . s ≤ C T t ,i ≤ C t .

Then using this inequality in combination with the fact that the losses are optimistic we obtain

d t ,δ + 40A h(t )

g (t )d t ,δ + 2h(t )g (t ) + C t ≥ sup . d t ,δ + 40A h(t )g (t )d t ,δ + 2h(t )g (t ) + C t ≥ T t ,I inf = T t ,I T (θ) -1 , where in the last line we use the theorem of Sion, see...Note that the last inequality holds also if T t ,I = 0. It remains to show that T t ,I = t -O( t ). s = j } U x s -C th(t )g (t )   2 .

  , let t = max{s ≤ t , i s = i }. Let a be an arm such that 2h(t )x T Λ -1

	Lemma C.11. If we have			
										2h(t )x T Λ -1 T t x ≥ x ,
	then the following holds			
										∆ 2	U x s ≥ x	h(s)/h(t ) .
										s≤t	s≤t
	For i = i N t	a ≥ ∆ 2 min /4.
	Then								
			max x∈X s≤t ,i s =i	U x s ≥	s≤t ,i s =i	U x s ≥	∆ 2 min 4 s≤t ,i s =i	h(s)/h(t )
										≥	∆ 2 min 4	t ≤s≤t ,i s =i	h(s)/h(t )
										≥	∆ 2 min 4	t ≤s≤t ,i s =i	1 2
										=	∆ 2 min 8	(T t ,i -N i	t )
	We get that i =i j =i *   1 2	max x∈A	s=1 t	 1 {i  2
	≥	j =i *	 	min 16 ∆ 2	(T t , j -N	j	t	) -C t -h(t )g (t )	  2
	=	∆ 2 min 16	(t -T *			
						j =i *		∆ 2 min 16	(T t , j -N	j	t	) -C t + (I -1)h(t )g (t )
	≥	∆ 2 min 16	(t -T * t -t + N *	t ) -(I -1)C t
	-2 (I -1)h(t )g (t )	j =i *	(	∆ 2 min 16	(T t , j -N	j	t	) -C t ) + (I -1)h(t )g (t )
	=	∆ 2 min 16	(t -T * t -t + N *	t ) -(I -1)C t
	-2 (I -1)h(t )g (t ) (t -T = ∆ 2 min 16   ∆ 2 min 16 (t -T  2 	.

min 2 ≤ 2h(s)x T Λ -1 T s a ≤ U x s . * * max x∈X s≤t ,i s =i U x s ≥ ∆ 2 min 8 (t -T * tt ) . h(t )g (t ) ≥ s = j } U x s -C th(t )g (t ) tt + N * t ) -(I -1)C t -2 h(t )g (t ) * tt + N * t ) -(I -1)C t ) + (I -1)h(t )g (t ) * tt + N * t ) -(I -1)C t ) -(I -1)h(t )g (t )

min (I -1)C t + (1 + I -1) 2 h(t )g (t ) .

Table D .

 D 1: Table of notation for Chapter 5. set of nodes created by HCT at level h up to step nI + h (n) subset of I h (n) which contains only the internal nodes (h n , i n )node selected by the algorithm at each step n C h,i {n = 1, • • • , N : (h n , i n ) = (h, i )} all the time that (h, i ) is selected by the algorithm C +

			Notation	Meaning
	c 1 (ρ/(3ν)) 1/8		constant
	c 2 1/(1 -ρ)		constant
	I h (n)		
		h,i	j ∈{0,...,K-1}	C h+1,Ki -j	set of child nodes of (h n , i n )
	n h,i max n∈C h,i n	last time (h, i ) has been selected
	n h,i max n∈C + h,i	n	last time when one of its children has been selected
	n h,i min{n : T h,i (N) ≥ τ h (n)}	time when (h, i ) is expanded
	x n			arm pulled at time n
	T x n = n t =1 1 { x t =x} T n = (T x n ) x∈X T x,i n = n t =1 1 { x t =x,i t =i }	number of draws of arm x at time n vector of number of draws number of draws of arm x for a given answer i
	λ			regularization parameter
	θ	λ n			regularized least square estimate

ξ

  N and split it into different depths. Let 1 ≤ H ≤ H(N) be a constant that we fix later. We haveR (h n ,i n )=(h,i ) 1 ξ n

	ξ N	N n=1	∆ h n ,i n 1 ξ n				
		H(N)	N			
	≤ ∆ h,i 1 ≤ h=0 i ∈I h (N) n=1 H(N) h=0 i ∈I h (N) N n=1 3c log(2/ δ(n)) T h,i (n)	1 (h n ,i n )=(h,i )	(D.20)
	=	H h=0 i ∈I h (N)	N n=1	3c		log(2/ δ(n)) T h,i (n)	1 (h n ,i n )=(h,i )
	+	H(N) h=H+1 i ∈I h (N)	N n=1	3c	log(2/ δ(n)) T h,i (n)	1 (h n ,i n )=(h,i )
	≤	H h=0 i ∈I h (N)	τ h (n h,i ) s=1	3c	log(2/ δ(n h,i )) s	+	H(N) h=H+1 i ∈I h (N)	T h,i (N) s=1	3c	log(2/ δ(n h,i )) s
	≤	H h=0 i ∈I h (N)	1	τ h (n h,i )	3c	log(2/ δ(n h,i )) s	ds
	+	H(N) h=H+1 i ∈I h (N)		1	T h,i (N)	3c	log(2/ δ(n h,i )) s	ds
	≤	H h=0 i ∈I H(N) h=H+1 i ∈I h (N)	6c T h,i (N) log(2/ δ(n h,i ))
									
	= 6c	     						

h (N) 6c τ h (n h,i ) log(2/ δ(n h,i )) + H h=0 i ∈I h (N) τ h (n h,i ) log(2/ δ(n h,i ))

Disclaimer: the paragraphs are intentionally written in several languages to share my most sincere thoughts to different groups of people.

We thus do not consider parallelization in this thesis.

Those terms can be interchangeably employed.

Those terms can be interchangeably employed.

Minimization is obviously the same problem.

Those terms can be interchangeably employed in the context of this thesis.

Readers can refer to Chapter 4 of Lattimore and Szepesvari [2018] for a proof.

The initial exploration phase of the algorithm is not mandatory.

The subscript µ can be omitted when clear from the context.

This decision rule is, however, more natural with a regret-minimizing strategy.

We can also generalize to an infinite number of arms. The setting appears to be much more intricate, and is out of the scope of this thesis.

Sometimes called contexts or feature vectors as well.

hereafter 'Gaussian bandits' or 'Gaussian model'

hereafter 'Bernoulli bandits'

the TTPS sampling rule[START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF] also requires the computation of a n,i , thus we do not report simulations for this Bayesian sampling rule in Section 3.6

Note that if i is the index of arm x, then T x n is simply T n,i as defined in (2.1).

It is easy to check that (4.11) and (4.12) are equivalent to (4.9) and (4.10) respectively.

The fact that τ δ < +∞ is a consequence of our analysis, see Appendix C.3.

The present definition is slightly different from the original POO paper, where a coefficient 3 is present instead of

due to a technical detail.

The term resolution refers to the maximum variation in the cell. If it is too large, then we need to shrink the volume, thus increase the resolution.

Source: https://en.wikipedia.org/wiki/Test_functions_for_optimization

https://botorch.org/

Here we present BAI problems in a standard way for which we search for an arm with the largest mean.For HPO, however, it is important to mention that we are searching for a hyper-parameter configuration that minimizes the validation error. One can easily see that it does not change the problem in principle.

This reference is a preliminary draft that has been withdrawn due to technical issues in the proofs. Yet we believe the experimental section to be sound.

Code at http://researchers.lille.inria.fr/~valko/hp/publications/shang2019simple. code.zip

γ is the parameter of the RBF kernel defined as exp(-γ||xx || 2 )

The number of pulls here and later is chosen exactly as in the work of[START_REF] Li | Hyperband: Bandit-based configuration evaluation for hyperparameter optimization[END_REF] 

B(a, b) Γ(a)Γ(b) Γ(a+b) , and Γ is the Gamma function

This property can be used to exclude some parametric distributions from exponential family such as Pareto distributions.

We could actually use several deviation inequalities that hold uniformly over time for martingales with sub-Gaussian increments.

this proof is the same as Proposition

of Qin et al.[2017] 

A.1.1 One-dimensional exponential family

In the literature of bandits, we are often interested in the exponential family probability distributions.

Definition A.1. Give a random variable X parameterized by θ, we say that it belongs to the one-dimensional exponential family if it can be written as

where T(X) is the natural sufficient statistic, η, A are known functions of θ and b is a known function of x.

Note that the function b must be non-negative. Besides, the support of p X (x | θ) does not depend on θ 1 . In the whole thesis, we mainly used the following distributions from the one-dimensional exponential family.

• Ber(•) denotes a Bernoulli distribution.

• B(•) denotes a Binomial distribution.

• N (•, •) denotes a normal distribution. Note that only normal distributions with known variance are in the one-dimensional exponential family.

A.1.2 Sub-Gaussian distributions

Definition A.2 (sub-Gaussian). Let X be a random variable defined over a probability space (Ω, F , P). X is sub-Gaussian if there exists a constant a ≥ 0 such that for any λ ∈ R, we have

And X is called a-sub-Gaussian.

A.1.3 Martingales

A martingale is a stochastic process for which the conditional expectation of its value at time n + 1 is equal to its present value, regardless of all prior values. The formal definition of a discrete-time martingale is given below.

Definition A.3. a discrete-time martingale is a sequence of random variables X 1 , X 2 ,

We can further define the notion of discrete-time submartingales (resp. supermartingales) as a sequence of integrable random variables such that for any time n,

Martingale is the base of many concentration inequalities (see e.g. the next section) that found the bandit theory.

A.2 Concentration Inequalities

Concentration inequalities are a omnipresent tool in MAB as they can serve as a way to bound the deviation of random variables with respect to some value (typically the expected value). In this section, we present two famous inequalities, that have been employed in this thesis.

A.2.1 Hoeffding's inequality

(Chernoff)-Hoeffding's inequality is probably the most known concentration inequality which is first studied by [START_REF] Hoeffding | Probability inequalities for sums of bounded random variables[END_REF]. We state the Hoeffding's inequality for bounded random variables below.

Theorem A.1. Let X 1 , X 2 , • • • , X n be a sequence of independent random variables bounded in the intervals [a i , b i ] for each i ∈ [n] respectively, then the following inequalities hold

A.3 Information Theory

In this section, we briefly recall some fundamental notions and results of information theory that are unceasingly used in the technical proofs of this thesis. Readers can refer to [START_REF] Cover | Elements of Information Theory[END_REF] for more details.

A.3.1 Entropy

Given a random variable X : Ω → X , the entropy X measures its uncertainty, and also defines the ultimate data compression. When the random variable is discrete, its entropy H(X) is defined as follow.

Definition A.4 (entropy). Let X be a discrete random variable defined over a probability space (Ω, F , P) to an arbitrary space X , with probability mass function p X , then its entropy H(X) is defined by

The previous definition can be extended to continuous random variables, namely differential entropy. Definition A.5 (differential entropy). Let X be a continuous random variable defined over a probability space (Ω, F , P), with probability density function f , then its differential entropy h(X) is defined by h(X)f (x) log f (x)d x .

A.3.2 Kullback-Leibler divergence

important concept is the relative entropy or Kullback-Leibler divergence (KL divergence), which measures the difference between two probability distributions.

Remark A.4. KL divergence is not a distance since it does not satisfy the symmetry property in an usual distance definition.

Before properly defining the KL divergence, let us first give the definition of an important prerequisite notion of absolutely continuous probability measures.

Definition A.6 (absolutely continuous probability measures). Let P and Q be two probability measures defined on a measurable space (Ω, F ). If for any event F ∈ F such that Q(F) = 0, we have also P(F) = 0, then one says that P is absolutely continuous w.r.t Q, and is denoted as P Q.

The KL divergence is then defined as follow.

Definition A.7 (KL divergence). For two probability measures P and Q, if P Q, then the KL divergence is defined as

A very important property of KL divergence is its non-negativity, which is established by Gibbs' theory.

Theorem A.5 (Gibbs' inequality). For two probability measures P and Q, if P Q, then KL(P Q) ≥ 0. The equality holds if and only if P = Q P-almost everywhere.

A.3.3 Two special cases: Gaussian and Bernoulli

For probability distributions in the one-dimensional exponential family, we can simply represent the KL-divergence by their means. For example, if µ 1 and µ 2 are respectively the means of P and Q, then we can write

For some particular probability distributions, simple closed-form expressions can be deduced. In Example A.1 and Example A.2, we show the expressions for Gaussian and Bernoulli distributions.

Example A.1 (KL-divergence between two Gaussian distributions). We compute the KL divergence between two normal distributions P ∼ N (µ 1 , σ 1 ) and Q ∼ N (µ 2 , σ 2 ).

KL(P

In particular, if σ σ 1 = σ 2 , then the two distributions are parameterized by their means, we can thus denote by

Example A.2 (KL divergence between two Bernoulli distributions). We compute the KL divergence between two Bernoulli distributions P ∼ Ber(µ 1 ) and Q ∼ Ber(µ 2 ), we denote by 
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• Two real-valued sequences (a n ) and (b n ) are are said to be logarithmically equivalent if

and is represented as a n . = b n .

B.2 Technical Lemmas

The whole fixed-confidence analysis for the two sampling rules are both substantially based on two lemmas: Lemma 5 of Qin et al.

[2017] and Lemma 3.4. We prove Lemma 3.4 in this section.

Therefore we have

since i ∈A a n,i = 1, and

The rest of this subsection is quite similar to that of Qin et al. [2017]. Indeed, with the above lemma, we can show that the set of poorly explored arms U L n is empty when n is large enough.

Lemma B.3. Under TTTS, there exists

Proof. We proceed by contradiction, and we assume that U L KL is not empty. Then for any 1 ≤ ≤ KL , U L and V L are non empty as well.

There exists a deterministic L 5 s.t. ∀L > L 5 ,

Using the pigeonhole principle, there exists some i ∈ A s.t. T L ,i ≥ L 3/4 . Thus, we have

Otherwise, since U L is non-empty for any L + 1 ≤ ≤ 2L , thus by Lemma B.2, there exists J ∈ V L s.t. ψ ,J ≥ ψ min . Therefore,

Then, using Lemma 3.4, there exists L 6 = Poly(W 2 ) s.t. ∀L > L 6 , we have

where C 2 is some absolute constant. Thus, we have one arm in V L L that is pulled at least L 3/4 times between L + 1 and 2L , thus |V L 2L | ≤ K -2. By induction, for any 1 ≤ k ≤ K, we have |V L kL | ≤ Kk, and finally if we take L 0 = max(L 1 , L 5 , L 6 ), then ∀L > L 0 , U L KL = .

We can finally conclude the proof of Lemma 3.5 for TTTS.

Proof of Lemma 3.5 Let N 1 = KL 0 where L 0 = Poly(W 1 , W 2 ) is chosen according to Lemma B.3. For all n > N 1 , we let L = n/K, then by Lemma B.3, we have U L KL = U n/K n is empty, which concludes the proof.

Conclusion.

Finally, combining the two steps and define M 3 max{M 4 , M 7 }, we have

With the help of the previous lemma and Lemma 3.4, we can finally prove Lemma 3.7.

Proof of Lemma 3.7 Fix an ε > 0. Using Lemma 3.4, we have ∀n ∈ N,

Thus there exists M 12 s.t. ∀n > M 12 ,

And using Lemma B.5, there exists M 3 = Poly(ε/2, W 1 , W 2 ) s.t. ∀n > M 3 ,

Again, according to Lemma B.2, there exists M 3 s.t. ∀n > M 3 ,

Thus, if we take N 3 max{M 3 , M 12 }, then ∀n > N 3 , we have

B.3.4 Measurement effort concentration of other arms

In this section, we show that, for TTTS, the empirical measurement effort concentration also holds for other arms than the true best arm. We prove Lemma 3.8 for TTTS.

We first show that if some arm is overly sampled at time n, then its probability of being picked is reduced exponentially. Lemma B.6. Under TTTS, for every ξ ∈ (0, 1), there exists S 1 = Poly(1/ξ, W 1 , W 2 ) such that for all n > S 1 , for all i = I ,

where ε 0 is defined in (B.2) below.

And finally we use the same reasoning as the proof of Lemma 3.7 to link T n,i and Ψ n,i . Fix an ε > 0. Using Lemma 3. 

Thus, if we take N 4 max{S 4 , S 5 }, then ∀n > N 4 , we have

B.4 Fixed-Confidence Analysis for T3C

This section is entirely dedicated to T3C. Note that the analysis to follow share the same proof line with that of TTTS, and some parts even completely coincide with those of TTTS.

For the sake of simplicity and clearness, we shall only focus on the parts that differ and skip some redundant proofs.

B.4.1 Sufficient exploration of all arms

We prove Lemma 3.5 for T3C. To prove this lemma, we still need the two sets of indices for under-sampled arms like in Appendix B.3.1. We recall that for a given L > 0:

For T3C however, we investigate the following two indices,

Lemma 3.5 is proved via the following sequence of lemmas.

Lemma B.8. There exists

Proof. If J (1) n ∈ V L n , then the proof is finished. Now we assume that J (1) n ∈ V L n ⊂ U L n , and we prove that J (2) n ∈ V L n .

Step 1 Following the same reasoning as Step 1 and Step 2 of the proof of Lemma B.1, we know that there exists L 2 = Poly(W 1 ) s.t. if L > L 2 , then

Step 2 Now assuming that L > L 2 , and we show that for L large enough, J (2) n ∈ V L n . In the same way that we proved (B.1) one can show that for all

Again, denote J n arg max j ∈U L n µ n, j , we obtain

In the second case, as already shown in Step 3 of Lemma B.1 we have that

Therefore, we get

On the other hand, we know that for all j ∈ V L n ,

Thus, there exists L 3 s.t. if L > L 3 , then

Next we show that there exists at least one arm in V L n for whom the probability of being pulled is large enough. More precisely, we prove the following lemma. Lemma B.9. There exists L 1 = Poly(W 1 ) s.t. for L > L 1 and for all n s.t. U L n = , then there exists

Proof. Using Lemma B.8, we know that J (1)

We also know that under T3C, for any arm i , ψ n,i can be written as

Therefore, we have

K on one hand, since i ∈A a n,i = 1. On the other hand, we have

which concludes the proof.

The rest of this subsection is exactly the same to that of TTTS. Indeed, with the above lemma, we can show that the set of poorly explored arms U L n is empty when n is large enough.

Lemma B.10. Under T3C, there exists

We can finally conclude the proof of Lemma 3.5 for T3C in the same way as for TTTS in Appendix B.3.1.

B.4.2 Concentration of the empirical means

We prove Lemma 3.6 for T3C. As a corollary of the previous section, we can show the concentration of µ n,i to µ i , and the proof remains the same as that of TTTS in Appendix B.3.2.

B.4.3 Measurement effort concentration of the optimal arm

Next, we show that the empirical arm draws proportion of the true best arm for T3C concentrates to β when the total number of arm draws is sufficiently large. We prove Lemma 3.7 for T3C.

This proof also remains the same as that of TTTS in Appendix B.3.3.

B.4.4 Measurement effort concentration of other arms

In this section, we show that, for T3C, the empirical measurement effort concentration also holds for other arms than the true best arm. We prove Lemma 3.8 for T3C. Note that this part differs from that of TTTS.

We again establish first an over-allocation implies negligible probability result as follow.

Lemma B.11. Under T3C, for every ξ ≤ ε 0 with ε 0 problem dependent, there exists S 1 = Poly(1/ξ, W 1 , W 2 ) such that for all n > S 1 , for all i = I ,

, then using Lemma 3.4, there exists S 2 = Poly(1/ξ, W 2 ) such that for any n > S 2 , we have

Then,

Next we show that the indicator function term in the previous inequality equals to 0.

Using Lemma 3.3 and Lemma 3.7 for T3C, there exists

Proof of Lemma 3.8 for T3C See proof of Lemma 3.8 for TTTS in Appendix B.3.4.

B.5 Proof of Lemma 3.1

Finally, it remains to prove Lemma 3.1 under the Gaussian case before we can conclude for Theorem 3.1 for TTTS or T3C.

Lemma 3.1. Let δ, β ∈ (0, 1). For any sampling rule which satisfies E T ε β < ∞ for all ε > 0, we have

if the sampling rule is coupled with stopping rule (3.3),

For the clarity, we recall the definition of generalized likelihood ratio. For any pair of arms i , j , We first define a weighted average of their empirical means,

And if µ n,i ≥ µ n, j , then the generalized likelihood ratio Z n,i , j for Gaussian noise distributions has the following analytic expression,

We further define a statistic Z n as

The following lemma stated by Qin et al. [2017] is needed in our proof.

Lemma B.13. For any

To prove Lemma 3.1, we need the Gaussian tail inequality (3.7) of Lemma 3.2.

Proof. We know that

We choose ε sufficiently small such that the empirical best arm I n = I . Then, for all n ≥ T n β and for any i = I , µ n,I ≥ µ n,i . Thus, fix any ζ ∈ (0, Γ β /2) and apply inequality (3.7) of Lemma 3.2 with µ n,I and µ n,i , we have for any

The last inequality is deduced from Lemma B.13. By consequence,

On the other hand, we have for any n,

Thus, there exists a deterministic time N s.t. ∀n ≥ N, ln 1c n,δ = ln δ

Let us consider the following two cases:

Case 1 There exists n ∈ [1, N 0 ] s.t. a n,I ≥ c n,δ , then by definition,

Case 2 For any n ∈ [1, N 0 ], we have a n,I < c n,δ , then τ δ ≥ N 0 + 1, thus by Equation B.3,

Lemma 3.4. There exists a random variable W 2 , such that for all i ∈ A ,

and E e λW 2 < ∞ for any λ > 0.

Step 1: TTTS draws all arms infinitely often and satisfies T n,I /n → β. More precisely, we prove the following lemma.

Lemma B.14. Under TTTS, it holds almost surely that

2. a n,I → 1.

Proof. Our first ingredient is a lemma showing the implications of finite measurement, and consistency when all arms are sampled infinitely often. Its proof follows standard posterior concentration arguments and is given in Appendix B.6.2.

Lemma B.15. [Consistency and implications of finite measurement]

Denote with I the arms that are sampled only a finite amount of times:

If I is empty, a n,i converges almost surely to 1 when i = I and to 0 when i = I . If I is non-empty, then for every i ∈ I , we have lim inf n→∞ a n,i > 0 a.s.

First we show that n∈N T n, j = ∞ for each arm j . Suppose otherwise. Let I again be the set of arms to which only finite measurement effort is allocated. Under TTTS, we have

1a n, j , so ψ n,i ≥ βa n,i . Therefore, by Lemma B.15, if i ∈ I , then lim inf a n,i > 0 implies that n ψ n,i = ∞. By Lemma 3.4, we then must have that lim n→∞ T n,i = ∞ as well: contradiction. Thus, lim n→∞ T n,i = ∞ for all i , and we conclude that a n,I → 1, by Lemma B.15.

For TTTS with parameter β this implies that ψ n,I → β, and since we have a bound on |T n,i /n -ψ n,i | in Lemma 3.4, we have T n,I /n → β as well.

Step 2: Controlling the over-allocation of sub-optimal arms. The convergence of T n,I /n to β leads to following interesting consequence, expressed in Lemma B.16: if an arm is sampled more often than its optimal proportion, the posterior probability of this arm to be optimal is reduced compared to that of other sub-optimal arms.

Lemma B.16. [Over-allocation implies negligible probability]

3 Fix any ξ > 0 and j = I . With probability 1, under any allocation rule, if T n,I /n → β, there exist ξ > 0 and a sequence ε n with ε n → 0 such that for any n ∈ N,

Proof. We have

. By Theorem 2 of Qin et al.

[2017] we have, as T n,I /n → β,

We also have the following from the standard Gaussian tail inequality, for n ≥ τ after which µ n,I ≥ µ n,i , using that

Thus, there exists a sequence ε n → 0, for which

Now we take a look at the two terms in the middle:

Note that the first term is increasing in T n, j /n. We have the definition from Qin et al.

[2017], for any j = I ,

, and we have the premise

Combining these with the convergence of the empirical means to the true means (consistency, see Lemma B.15), we can conclude that for all ε > 0, there exists a time n 0 such that for all later times n ≥ n 0 , we have

where the first inequality follows from consistency, the second from monotonicity in T n, j /n. That means that there exist a ξ > 0 such that

and thus the claim follows that when

Step 3: ψ n,i converges to ω β i for all arms. To establish the convergence of the allocation effort of all arms, we rely on the same sufficient condition used in the analysis of [START_REF] Russo | Simple Bayesian algorithms for best arm identification[END_REF], that we recall below. 

Lemma B.17. [Sufficient condition for optimality]

First, note that from Lemma B.14 we know that T n,I /n → β, an by Lemma 3.4 this implies ψ n,I → β, hence we can use Lemma B.17 to prove convergence to the optimal proportions. Thus, we now show that (B.5) holds under TTTS. Recall that J (1) n = arg max j a n, j and J (2) n = arg max j =J (1) n a n, j . Since a n,I → 1 by Lemma B.14, there is some finite time τ

after which for all n > τ, J (1) n = I . Under TTTS,

where we use the fact that for j = J (1) n , we have a n,J (1) n ≥ a n, j and a n,J (2)

For n ≥ τ this means that ψ n,i ≤ a n,i / max j =I a n,i for any i = I . By Lemma B.16, there is a constant ξ > 0 such and a sequence ε n → 0 such that

Now take a time τ large enough, such that for n ≥ τ we have |T n, j /n -ψ n, j | ≤ ξ (which can be found by Lemma 3.4). Then we have

Therefore, for all i = I , we have

Thus (B.5) holds and the convergence to the optimal proportions follows by Lemma B.17.

B.6.2 Proof of auxiliary lemmas

Proof of Lemma B.15 Let I be nonempty. Define

and recall that for i ∈ A for which T n,i = 0, we have µ n i = µ 1,i = 0 and σ 2 n,i = σ 2 1,i = ∞, and if T n,i > 0, we have

For all arms that are sampled infinitely often, we therefore have µ ∞,i = µ i and σ 2 ∞,i = 0. For all arms that are sampled only a finite number of times, i.e. i ∈ I , we have σ 2 ∞,i > 0, and there exists a time n 0 after which for all n ≥ n 0 and i ∈ I , we have T n,i = T n 0 ,i . Define

Then for each i ∈ A we define

Then we have for all i ∈ I , a ∞,i ∈ (0, 1), since σ 2 ∞,i > 0, and thus a ∞,I < 1. When I is empty, we have a n,I = Π n (θ I > max i =I θ i ), but since Π ∞ = i ∈A δ µ i , we have a ∞,I = 1 and a ∞,i = 0 for all i = I . Thus, we only need to prove that under TTTS, for all i ∈ A , we have

B.7 Proof of Posterior Convergence for Bernoulli Bandits

Just as for the proof of the Gaussian case, we can use Lemma 3.4 (proof in Appendix B.6.2), which implies

Therefore, it suffices to show convergence for ψ n,i = Ψ n,i /n to ω β i , which we will do next, following the same steps as in the proof for the Gaussian case.

Step 1: TTTS draws all arms infinitely often and satisfies T n,I /n → β. We prove the following lemma.

Lemma B.19. Under TTTS, it holds almost surely that

1. for all i ∈ A , lim n→∞ T n,i = ∞.

a n,I → 1.

3.

T n,I n → β.

Proof. First, we give a lemma showing the implications of finite measurement, and consistency when all arms are sampled infinitely often, which provides a proof for 2. The proof of this lemma follows from the proof of Theorem B.1, and is given in Appendix B.7.3.

Lemma B.20. [Consistency and implications of finite measurement]

Denote with I the arms that are sampled only a finite amount of times:

If I is empty, a n,i converges almost surely to 1 when i = I and to 0 when i = I . If I is non-empty, then for every i ∈ I , we have lim inf n→∞ a n,i > 0 a.s. Now we can show 1. of Lemma B.19: we show that under TTTS, for each j ∈ A, we have n∈N T n, j = ∞. The proof is exactly equal to the proof for Gaussian arms.

Under TTTS, we have Step 2: Controlling the over-allocation of sub-optimal arms. Following the proof for the Gaussian case again, we can establish a consequence of the convergence of T n,I /n to β : if an arm is sampled more often than its optimal proportion, the posterior probability of this arm to be optimal is reduced compared to that of other sub-optimal arms. We can prove this by using ingredients from the proof of the lower bound in Theorem B.1.

Lemma B.21. [Over-allocation implies negligible probability]

5 Fix any ξ > 0 and j = I . With probability 1, under any allocation rule, if T n,I /n → β, there exist ξ > 0 and a sequence ε n with ε n → 0 such that for any n ∈ N,

Proof. By Theorem B.1, we have, as T n,I /n → β,

since max i =I a n,i ≤ 1a n,I . We also have from Lemma B.18 a deviation inequality, so that we can establish the following logarithmic equivalence:

Proof of Lemma B.20 Let I be empty, then we have µ ∞,i lim n→∞ µ n,i = µ i . The posterior variance is

We see that when I is empty, we have σ 2 ∞,i lim n→∞ σ 2 n,i = 0, i.e., the posterior is concentrated.

When T n,i = 0 for some i ∈ A , the empirical mean for that arm equals to the prior mean µ n,i = α 1,i /(α 1,i + β 1,i ), and the variance is strictly positive:

When I is not empty, then for every i ∈ I we have σ 2 ∞,i > 0, and α ∞,i ∈ (0, 1), implying α ∞,I < 1, hence the posterior is not concentrated. 
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Proof. We consider the Lagrangian of the problem, and we obtain inf

, where the infimum in the first equality is reached at θ = θ + λΛ -1 ω y and the supremum in the last equality is reached at

C.2.2 Concentration results

We restate here the Theorem 20.4 (in combination with the Equation 20.10) by [START_REF] Lattimore | Bandit Algorithms[END_REF].

Theorem C.1. For all λ > 0 and δ ∈ (0, 1),

C.2.3 Other technical lemmas

We regroup in this section some other useful technical lemmas.

Lemma C.2. For all α, y ≥ 0, if for some x ≥ 0 if holds y ≥ x -α x then

x ≤ y + α y + α 2 .

Lemma C.7. Let E t be an event and T 0 (δ) ∈ N be such that for t ≥ T 0 (δ),

We need to prove that if E t holds, there exists such a time T 0 (δ).

C.3.2 Analysis under concentration

In this section we assume that the event E t holds. And we set I = I (θ) and define the following quantities

C.3.3 When i s = I .

If the algorithm does not stop at stage t we have which leads to, using Lemma C.2,

We now continue the proof by finding a lower bound for the right hand sum. Using a tracking property from Degenne et al. [2020b] to state that for all a,log(A)

Since n + is defined as 2 log(n) , we have n ≤ n + ≤ 2n. In addition, log is an increasing function, thus we have

where the first inequality follows from the fact that 0 < δ(n) ≤ 1/2.

D.2 Detailed regret analysis for HCT under Assumption 5.2

We begin our analysis by bounding the maximum depth of the trees constructed by HCT.

D.2.1 Maximum depth of the tree (proof of Lemma 5.1)

Lemma 5.1. The depth of the covering tree produced by HCT after N function evaluations satisfies

Proof. The deepest tree that can be constructed by HCT is a linear one, where at each level one unique node is expanded. In such case, |I + h (N)| = 1 and |I h (N)| = K for all h < H(N). Therefore, we have

In the previous reasoning, (D.2) is based on the definition of n h,i , (D.3) is due to inequality (D.1), and (D.4) holds since h ≤ H(N) -1.

By solving this expression, we obtain

where (D.5) follows from log(1/ρ) ≥ 1 -ρ.

D.2.2 High-probability event

In Section 5.4.2, we described the favorable event ξ n . We now define it precisely. We first define a set L n that contains all possible nodes in trees of maximum depth H max (n),

and we recall the definition of the favorable event

Next, we prove that our favorable event holds with high probability.

Lemma D.1. With c 1 and c defined in Section 5.2, for any fixed round n,

Proof. Let µ h,i ,s be the empirical mean reward of the first s noisy evaluations of f in x h,i , we upper-bound the probability of the complementary event ξ c n as

Here, (D.6) is derived using a union bound, and (D.7) is due to the Hoeffding inequality (see Appendix A.2 for details). (D.8) is a result of Lemma 5.1 and finally (D.9) is obtained by plugging in values of c and c 1 .

D.2.3 Failing confidence bound

We decompose the regret of HCT into two terms depending on whether ξ n holds. Let us define ∆ n fr n . Then, we decompose the regret as

The failing confidence term R

N is bounded by the following lemma.

Lemma D.2. With c 1 and c defined in Section D.1, when the favorable event does not hold, the regret of HCT is with probability 1 -δ/(5N 2 ) bounded as

Proof. We split the term into rounds from 1 to N and the rest,

The first term can be bounded trivially by N since |∆ n | ≤ 1. Next, we show that the probability that the second term is non zero is bounded by δ/(5N 2 ).

In the previous reasoning, (D. 

where α is a numerical constant and C is the constant associated to d (ν, C, ρ).

For the sake of simplicity, we denote d (ν, C, ρ) as d in the rest of this section. We study the regret under events {ξ n } n and prove that R

holds with probability 1 -δ. We decompose the proof into 3 steps.

Step 1: Decomposition of the regret. We start by further decomposing the instantaneous regret into two terms,

The regret of HCT when confidence intervals hold can thus be rewritten as

(D.12)

We notice that the sequence { ∆ n } N n=1 is a bounded martingale difference sequence since E ∆ n |F n-1 = 0 and | ∆ n | ≤ 1. Thus, we apply the Azuma's inequality on this sequence and obtain

with probability 1 -δ/(4N 2 ).

Step 2: Preliminary bound on the regret of selected nodes and their parents. Now we proceed with the bound of the first term R ξ N . Recall that P n is the optimistic path traversed by HCT at round t . Let (h , i ) ∈ P n and (h , i ) be the node which immediately follows (h , i ) in P n . By definition of B-values and U-values, we have

where the last equality follows from the fact that the subroutine OptTraverse selects the node with the largest B-value. By iterating the previous inequality along the path P n until the selected node (h n , i n ) and its parent (h

Since the root, which is an optimal node, is in P n , there exists at least one optimal node (h , i ) in path P n . As a result, we have

We now expand (D.15) on both sides under ξ n . First, we have

and the same holds for the parent of the selected node,

By Lemma 5.2, we know that U h ,i (n) is a valid upper bound on f . If an optimal node (h , i ) is a leaf, then B h ,i (n) = U h ,i (n) is also a valid upper bound on f . Otherwise, there always exists a leaf which contains the maximum for which (h , i ) is its ancestor. Now, if we propagate the bound backward from this leaf to (h , i ) through (D.14), we have that B h ,i (n) is still a valid upper bound on f . Thus for any optimal node (h , i ), at round n under ξ n , we have B h ,i (n) ≥ f . (D.18)

We combine (D.18) with (D.15) and (D.17) to obtain

The same result holds for its parent,

We now refine the two above expressions. The subroutine OptTraverse tells us that HCT only selects a node when T h,i (N) < τ h (n). Therefore, by definition of τ h n (n), we have

On the other hand, OptTraverse tells us that T h p n ,i

which means that every selected node has a parent which is (3νρ h n -1 )-optimal. 

where we trivially bound the second square-root factor by the total number of pulls. Now consider the first square-root factor. Recall that the HCT algorithm only selects a node when T h,i (n) ≥ τ h (n) for its parent. We therefore have T h,i ( n h,i ) ≥ τ h ( n h,i ) and the following sequence of inequalities,

Note that in (D.23), n h,i is well defined for i ∈ I + h (N). In the above derivation, (D.24) holds since n h,i = max(n h+1,2i -1 , n h+1,2i ), and (D.25) holds since ∀n 1 , n 2 , [max(n 1 , n 2 )] + = max(n + 1 , n + 2 ). Besides, (D.26) is simply due to a change of variables. Finally, the last equality relies on the fact that for any h > 0, I + h (N) covers all the internal nodes at level h and therefore its children cover I h+1 (N). We thus obtain H(N)

On the other hand, we have

The last seep holds in the above since n h,i ≤ n + h,i . By plugging (D.27) into the expression above, we get

We choose H to minimize the above bound by equalizing the two terms in the sum and obtain

which after being plugged into (D.29) gives

(D.31) Finally, combining (D.31), (D.13), and Lemma D.2, we obtain

with probability 1 -δ.

D.3 General analysis of POO

We prove Proposition 5.1 in this section. The analysis of POO originally proposed by [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] consists in two main parts, that can be adapted to any base algorithm satisfying assumption (5.6) on its cumulative regret. In the following, we assume that ν ≤ ν max and ρ ≤ ρ max .

The first part of the analysis consists in proving that there exists a parameter ρ such that (ν max , ρ) ∈ G and the instance A (ν max , ρ) has its simple regret bounded in terms of the true parameters (ν , ρ ). One important ingredient is the following lemma, which upper bounds the difference between the near-optimality dimension d (ν max , C, ρ) and d (ν , C , ρ ) for ρ > ρ . the simple regret of A (ν max , ρ) can also be related to (ν , C , ρ ): for some constant α ,

under assumption described by (5.6) on the cumulative regret of the base algorithms. Note that (D.32) holds as the recommendation rule ensures that E [S n ] = E [R n ] /n.

The second part of the analysis controls the simple regret of POO(A ) by showing that the error made when choosing s = (ν max , ρ) is negligible. We highlight that for this part, having cumulative regret guarantees is crucial. Denoting by (x i , j ) 1≤i ≤N/M the successive points selected by algorithm j and (r i , j ) 1≤i ≤N/M the reward observed, the final output of POO(A ) can be written as One can also define  = arg max j µ j with

and  to be the index of the instance such that ρ  = ρ. First, some concentration results (see Appendix B.4 of [START_REF] Grill | Black-box optimization of noisy functions with unknown smoothness[END_REF] show that for all j , E | µ j -µ j | ≤ C/ N/M. The simple regret can then be upper bounded as

The second and fourth terms in this sum are negative by definition of j and j respectively, while the third and last terms are O( N/n) using the concentration result mentioned above. As for the first term, one has

, where again the recommendation rule matters. Using the upper bound (D.33) obtained in the first part of the analysis permits to conclude by noting that the first term is actually the leading term.

Appendix E Acronyms

AutoML automated machine learning.