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General Introduction 
 

The liquid state is the most common on the surface of the Earth, it plays an essential role there, 

but it is also the least understood state of matter. The mesoscopic scale is certainly the scale at 

which the limits of our understanding are most visible. That these are spectacular shear-induced 

phase transitions [1], shear band appearances [2], flow instabilities or surface instabilities but 

also subtle interfacial contributions (liquid / solid or liquid / liquid), the nature of the substrate, 

these effects call into question cause a simple conception of the liquid state and point out the 

directions to be taken. Understanding the mesoscopic scale is essential, it is also the scale of 

microfluidics and physiological fluids, therefore of the living chain. 

The liquid nature did not allow of in-detail understanding, in contrary to solids and gasses. Due 

to lack of periodicity between liquid molecules, a similar theoretical study as for solids was 

excluded, making the fluidic approach of Maxwell (1876) [3] dominant. In this frame of 

dissipative systems, based on the fluctuation-dissipation theory, liquids dissipate any form of 

mechanical energy to their thermal molecular oscillations [4]. Later, Frenkel [5] proposed that 

liquids should support shear waves if the dynamics of the external excitation is faster than the 

molecular relaxation time, defining the Maxwell relaxation time as the time between two jumps 

of a particle from one equilibrium position to the new one. Thus, the critical frequency ωF = 

1/τM, is the inverse of a molecular relaxation time. For smaller frequencies (ω < ωF), the liquid 

behaves in a dissipative manner, while for ω > ωF, shear wave propagation leads to a solid-like 

response. The experimental verification of the theory arrived many years later with the 

technological advances, like large facilities [6, 7, 8, 9, 10].  

However, there is a wide range of materials exhibiting at the macroscopic scale, an intermediate 

response between viscous liquid and elastic response such as polymers, gels, micellar solutions, 

etc. Molecular theories have been proposed [11, 12, 13, 14, 15, 16, 17], inspired by the initial 

Maxwell model, where the characteristic relaxation time is not more that of a particle but that 

associated with the relaxation of the macromolecule (in terms of Rouse or reptation time 

depending on the length of the chain considered). This scheme, which is conventionally adopted 

in polymer rheology, has recently been called into question with the identification of low-

frequency shear elasticity at the mesoscopic scale, in particular in polymer melts [18, 19], [20, 

21, 22, 23, 24, 25]. Indeed, the existence of “static” elasticity shows that a description in terms 

of relaxation time is not relevant, but that elastic correlations should be taken into account, in 

other words the emergence of a solid-like behaviour at the mesoscopic scale. 

Various experimental reports have elucidated “static” solid-like behaviour of liquids. These 

studies were conducted for liquids and polymer melts at different scale, from nanometre [26, 

27], micrometre [18, 19], to sub-millimetre [20, 21, 22, 23]. In these studies, the mechanical 

excitation is in nearly equilibrium conditions, in the low frequency domain (Hz), many orders 

slower than the molecular dynamics (GHz – THz for small molecules). In these conditions, the 

liquid did not flow, but exhibited resistance, leading to measurable shear elasticity. As this 

observation was detected on a series of (relatively large) system sizes, the effect cannot be 

described as a boundary-induced only, but as a bulk property. This notion is contrary to the 

conventional viscoelastic description, where shear elasticity is zero in liquids at low frequency 

(in agreement with the Frenkel theory) and shows long-range correlations between the liquid 

molecules. Therefore, the viscoelastic response is not universal but can be strengthened by 

improving the fluid / surface boundary conditions and by the scale at which the fluid response 

is measured. Mesoscopic shear elasticity concerns both simple liquids (Van der Waals and H-

bond liquids), complex fluids (polymer melts, molecular glass formers, ionic liquids) and 

physiological fluids [18, 19, 20, 21, 22, 23, 26, 27]. Low-frequency elasticity shows the 
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existence of long-range elastic correlations between liquid molecules at the mesoscopic scale. 

At this scale, the behavior of liquids is no longer that of "bulk" although the dynamics concern 

a large number of molecules. There is therefore a strong need to review the theoretical models 

to take account of experimental reality. 

And indeed, from a theoretical point of view, Frenkel's theory has recently been revised. 

Trachenko et al showed that the propagation of shear waves in liquids is possible but, over a 

reduced distance 1 / k, defined by the propagation time of the wave in the considered medium 

(.c where  is Maxwell's time and c is the speed of sound) [28], while based on non-affine 

lattice dynamics, the scale dependence of shear elasticity in liquids has been also recently 

established [29]. Finally, a phonon theory of liquids based on Frenkel’s theory was proposed 

[30], while a linear low-frequency vibrational density of state for liquids was shown [31]. 

Due to the mesoscopic shear elasticity, fluids resist flow below an elastic threshold, the 

resistance of which depends on the scale considered. The immediate consequence is that a 

thermoelastic coupling becomes possible, calling into question the hypothesis of an 

instantaneous dissipation via the rapid lifetime of thermal fluctuations and justifying the search 

for another property of the solid: thermoelasticity. This is the objective of this experimental 

thesis. 

From a thermal point of view and without external heat source, molecular simulations predict 

an increase in temperature by viscous friction at the wall in nano-confined liquids under shear 

and pressure [32, 33]. The wall effect on different thermodynamic parameters has been 

extensively studied in confined liquids [34, 35, 36, 37, 38, 39, 40, 41, 42, 43] while at the 

macroscopic scale, the approach conventional theory (Maxwell) predicts an increase in 

temperature by viscous friction generated during oscillating shear at very high strain amplitude 

and under non-adiabatic conditions for molten polymers [44]. To our knowledge, there is no 

experimental data validating the temperature simulations. 

In this thesis, based on the recent identification of finite shear elasticity in sub-millimetre scale, 

we elucidate another solid-like property which is the thermoelastic coupling to the mechanical 

excitation. We present an in-detail thermal study of mesoscopically-confined liquids under low 

frequency oscillatory shear strain and step shear strain. We will highlight that a mechanical 

deformation can produce a thermal response without external heat source. The results might be 

counter intuitive based on the conventional frame, where a shear deformation should dissipate 

immediately on the molecular relaxation for slow dynamics (zero-shear elasticity limit), but 

reinforce the assumption of a finite shear elasticity, and this solid-like properties existing in 

mesoscopic liquids. Indeed, the coupling between thermodynamics (thermal response) with the 

mechanical excitation (mechanical response), is familiar in the context of solids as 

thermoelasticity. We highlight that an elastic in nature, oscillating thermal response is recorded, 

sharing the same frequency (with a phase shift) upon applying a mechanical shear excitation 

for various liquids (polypropylene glycol (PPG), glycerol, water). The liquid behaves as a 

dynamic thermoelastic medium. We study the evolution of the thermal effect as a function of 

the amplitude and frequency of the shear excitation and show the emergence of both cold and 

hot shear waves of several tens of micrometres widths.  For higher frequency and/or strain 

values, we observe the generation of thermal harmonics associated with non-linear effects. The 

gap dependence of the thermal effect is studied, showing a correlation with the scale size, which 

might be reminiscent of the scale dependence of shear elasticity. We show that the relaxation 

of the thermal effect shows a similar behaviour to its dielectric response [45]. Finally, since 

thermoelastic (solid-like) properties of liquids are highlighted, it becomes of interest to probe 

the liquid/surface interface in the frame of solid-liquid interaction utilized in the thermal 

measurement system. We study the effect of glycerol on an α-alumina (α-Al2O3) phonon 

dynamics with the help of inelastic x-ray scattering (IXS) performed in S.O.L.E.I.L.. 
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This thesis divides in five chapters. Chapter one describes the thermoelastic effect of solids and 

discusses several experimental and theoretical advances evidencing shear elasticity in 

(confined) liquids. In chapter two, we explain the experimental setup, parameters considered 

and treatment procedure. In chapter three, we study the thermo-mechanical coupling of 

glycerol, water and mostly PPG. We study the response of the fluids in a wide range of strain 

values (200% - 4000%) and frequencies (0.5 – 5 rad/s), for different gap thicknesses (100 – 

1000μm). Next, the stability of the thermal effect is confirmed, and the respective mechanical 

response is shown. In chapter four, we study the thermal and mechanical response of liquid 

glycerol to a step shear strain of various amplitudes (400% – 9500%) and scale (100 – 240μm). 

Then, we highlight a subsequent thermal relaxation. In chapter five, we highlight the impact of 

liquid film on the dynamics of the solid substrate (α-Al2O3) by performing IXS scattering.   
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Chapter 1 Elasticity  
 

Elasticity describes the ability of solids to resist flow under deformation and to return in their 

initial state as the deformation is removed. In this chapter, we present the basic concepts of 

mechanical analysis and its parameters and briefly review the connection of mechanical 

response to the thermodynamics of a periodic system. Mechanical analysis is part of Continuous 

Medium Physics, which aims to establish the constitutive laws between physical quantities by 

considering average quantities and a thermodynamic equilibrium assumption.  

We will point out that the common state of the art does not allow (static) elastic characteristics 

of liquids and does not consider a dimensional effect. We show how recent theoretical and 

experimental reports challenge the purely viscous description of fluids when the scale is 

reduced down to several tens microns.  

We will briefly define the basic laws and theories utilized for the experimental setup to 

understand the concept of the thermal measurements. All of the above will stand as the driving 

force for the interpretation and understanding of the studied thermal effects presented in this 

manuscript.   
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1.1 Stress and strain 
 

By definition, stress is defined as the rate of the force applied in a surface over the surface, 

while the surface becomes infinitesimal. Mathematically, it is defined as the traction or stress 

vector t(n) as follows [46, 47, 48, 49]:  

𝒕(𝒏) ≡ lim
𝛿𝛢→0

𝛿𝑭

𝛿𝛢
 

where, δF is the applied force which could vary from being parallel to being perpendicular to 

the surface, δΑ is the surface area (Figure 1.1a). As the unit normal vector n of the plane P is 

𝒏 = 𝑛1𝒆1 + 𝑛2𝒆2 + 𝑛3𝒆3, the traction vector can be written as: 

𝒕 = 𝑡1𝒆1 + 𝑡2𝒆2 + 𝑡3𝒆3 = 𝑡𝑖𝒆𝑖 

and then we get 𝑡𝑗(−𝒏) = −𝑡𝑗(𝒏), which is called Cauchy’s Lemma and is basically another 

demonstration of Newton’s third law [49]. It is an assumption with great importance for 

continuum mechanics. 

Figure 1.1: a) Stress at the point B. b) Three-dimensional general stress. Figures taken from [49]. 

In three dimensions, we define the stress components on a material as seen in Figure 1.1b, 

meaning that the stress vector is written as: 

𝒕(𝒆𝒊) = 𝜎𝑖𝑗𝒆𝒋  

where, 𝜎𝑖𝑗 is Cauchy’s stress tensor component. The components 𝜎𝑘𝑘, which are perpendicular 

to the surfaces are called normal stresses, while the remaining components are called shear 

stresses. All the stresses on the medium define the stress tensor: 

[𝜎𝑖𝑗] = [

𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

] 

 

(a) (b) 
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Figure 1.2: Displacement in the x – y plane. Figure taken from [46]. 

Strain is a quantity that describes the intensity of the deformation 𝑢𝑖 [48]. In the one-

dimensional case, it is the change of the length of a unit to the unit when it tends to be 

infinitesimal. For a three-dimensional material for small strains, we may define the strain tensor 

[46, 47, 48, 49],  

[𝜀𝑖𝑗] = [

𝜀11 𝜀12 𝜀13
𝜀21 𝜀22 𝜀23
𝜀31 𝜀32 𝜀33

] 

where, 𝜀𝑖𝑗 = 
1

2
(
𝜕𝑢𝑖

𝜕𝑥𝑗
−

𝜕𝑢𝑗

𝜕𝑥𝑖
). The 𝜀𝑘𝑘components are called normal or volumetric strain, which 

deform a material through expansion or compression, while the remaining components are 

named shear strain ones. Thus for the Figure 1.2, the shear strain tensor is 𝜀𝑥𝑦 =
1

2
𝛾𝑥𝑦 =

 
1

2
(
𝜕𝑢

𝜕𝑦
−

𝜕𝑣

𝜕𝑥
), where 𝛾𝑥𝑦 is the engineering shear strain. In this thesis, the studied liquids will be 

subjected to simple shear, which is pure shear plus rotation. 

Stress and strain play fundamental role in the description of the mechanical state of a material 

and their relationship is for decades of great interest not only from physical perspective, but 

also from engineering point of view. The study of stress-strain behaviour is extended in various 

field, from metals [50], solid surfaces [51], amorphous solids [52, 53, 54], glassy polymers 

[55], elastomers [56], fatigue of polymers composites [57], nanoscale studies of polymers [58], 

to even biological tissues [59, 60]. In a next section, we will introduce the basic equations of 

elastic, viscous and viscoelastic materials. 
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1.2 Conservation laws 
In the previous sector, we defined the stress, deformation, and strain in a medium. However, 

the above parameters are not able to completely define the material’s state. To describe 

mechanical and thermodynamic state of a material, conservation laws are needed [49]. Some 

conservation laws of interest to describe the mechanical and thermodynamic state of a material 

are: 

a) The conservation of momentum, which is basically the second law of Newton, meaning that 

the rate of change of momentum should be equal to the external forces [49]. For a continuum 

body, we can write the Cauchy’s equation of motion 

𝜎𝑗𝑖,𝑗 + 𝜌𝑓𝑖 = 𝜌
𝑑𝑣𝑖
𝑑𝑡

 

Where, 𝑓𝑖 are the external forces, 𝜌 the density, and 𝑣𝑖 = 𝑑𝑢𝑖/𝑑𝑡 the velocity vector. 

b) The conservation of energy, which is the first law of thermodynamics states that in a close 

system, the change of the internal energy of the system is related to the heat exchanged between 

the environment and the system and the work done on it. It is written as: 

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊 

For an adiabatic case, there is no heat exchange (𝑑𝑄 = 0), meaning that the internal energy 

change is only due to work to or from the system (𝑑𝑈 = 𝑑𝑊). From [61], we can write the 

equation in a time derivative form: 

𝑑𝑈

𝑑𝑡
=
𝑑𝑄

𝑑𝑡
+
𝑑𝑊

𝑑𝑡
 

                thus, making possible the comparison of the rates of internal energy, heat and work. 

c) The second law of thermodynamics states that the entropy change in a closed system is 

described by:  

𝑑𝑆 ≥
𝑑𝑄

𝑇
 

- The equality of the equation dS=dQ/T means that the process is reversible to its initial                                     

state after the perturbation and if the process is also adiabatic then it is called an isentropic 

process. An isentropic process is seen as ideal, and an approximation is considered.  

- In real systems (macroscopic level), any thermodynamic process respects the inequality and 

is described as an irreversible process.  

Other conservation laws such as the conservation of mass and electric charge are not discussed 

here. Conservation laws are fundamental for the understanding of the physical world. 
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1.3 Thermoelastic theory in solid systems  

 

In the previous sections, we defined stress, strain and fundamental conservation laws. Now, we 

couple these mechanical parameters to thermodynamic properties in the case of an elastic solid. 

Atoms in a solid material occupy certain equilibrium positions, from which they oscillate due 

to thermal energy. If an external force is applied, the deformation results to change of their 

equilibrium positions, as long as the excitation is present and thus it alters their in-between 

interaction. What follows is temperature change of the material, as described from the 

thermoelastic theory, which associates temperature changes of a solid due to strain load and 

vice-versa [49, 62, 63]. Starting point is the first law of thermodynamics per volume: 

𝑑𝑢 = 𝑑𝑞 + 𝑑𝑤 

with 𝑑𝑞 = 𝑇𝑑𝑠, where T is the temperature and s the entropy of the system, while 𝑑𝑤 =

𝜎𝑖𝑗𝑑𝜀𝑖𝑗  is the work done on the material due to the external strain, leading to storage of the 

energy due to the deformation [63]. After a series of calculations by defining, the Gibbs free 

energy 𝑔 = 𝑢 − 𝑇𝑠 − 𝜎𝑖𝑗𝜀𝑖𝑗 and describing the entropy as a function of 𝑠 = 𝑠(𝑇, 𝜎𝑖𝑗), we get 

the main result of the thermoelastic stress analysis (TSA) [62, 63]: 

𝛥𝛵 = −𝛵0
𝛼

𝜌𝐶𝜎
𝛥𝜎𝑘𝑘 

where, 𝛵0 the reference temperature, 𝛼 the thermal expansion coefficient, 𝜌𝐶𝜎 = (
𝜕𝑞

𝜕𝑇
)𝜎, with 

𝐶𝜎 the specific heat at constant stress or pressure, 𝜌 the density which is not constant since 
𝛥𝜌

𝜌
=

𝜀𝑘𝑘, with 𝜀𝑘𝑘 the volumetric strain tensor, while 𝛥𝜎𝑘𝑘 are the normal (principal) stresses of the 

medium.  

The thermal expansion coefficient is defined as 
𝜕𝜀𝑖𝑗

𝜕𝑇
= 𝛼𝑖𝑗  for the anisotropic case, while for an 

isotopic material is 𝛼𝑖𝑗 = 𝑎𝛿𝑖𝑗 . Depending on the nature of the load (compressive or extensive), 

the temperature change could result to cooling or heating. The fundamental result of the 

equation is that relates the temperature change of the medium to the microscopic state of the 

material due to external deformation. Specifically, the temperature change is related with 

changes of the volume and thus can be expressed in terms of normal stresses 𝛥𝜎𝑘𝑘, making the 

volumetric strain 𝜀𝑘𝑘, the parameter that couples mechanics with thermodynamics. Since, for 

small deformations, the stress-strain relation is a linear one, it results to a linear relation of strain 

with temperature. The connection of volumetric strain is not apparent in the final equation but 

can be seen indirectly at the density change and thermal expansion coefficient definition. 

Another equation that describes all the stresses in the medium shows the coupling of volumetric 

strain clearly is: 

𝜎𝑖𝑗 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗 +

𝛦

1 + 𝜈
𝜀𝑖𝑗 −

𝛼𝛦

(1 − 2𝜈)
𝛥𝛵𝛿𝑖𝑗  

where, E is the Young modulus and 𝜈 is the Poisson ratio. 

The thermoelastic equations hold for the adiabatic case, where 𝑑𝑞 = 0. In an experimental point 

of view, for the process to be considered adiabatic, it should be related with the heat 

conductivity of a material, of its environment and the time scale of the considered process.  
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1.4 Propagation of Mechanical waves in a medium 
 

There are two types of mechanical waves that propagate in a medium. The longitudinal waves 

and the transverse waves (Figure 1.3). In the longitudinal waves, the displacement of the atoms 

or molecules of the medium is parallel with the direction of the propagation of the wave. Since 

the longitudinal waves are related with pressure changes in the medium, they are often referred 

also as compressional waves. The longitudinal waves propagate in every state of a medium, 

from solids to gasses. 

 

Figure 1.3: Mechanical waves in a medium. Figure taken from [64]. 

In transverse waves, the displacement of the atoms/molecules is perpendicular to the direction 

of the propagation of the wave. Transverse waves are not supposed to propagate in every state 

of the medium. They are known to propagate in solids, due to the ability of the solid atoms to 

respond under a shear deformation, thus they are also known as shear waves. This ability is 

highlighted in the elastic model, where stress and strain are related via a linear relationship. For 

liquids, Maxwell’s viscoelastic model does not foresee any ability of shear wave propagation 

for slow dynamic excitation due to the liquids inability to resist to shear deformation, as seen 

by the stress – shear rate relation of viscous materials.  
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1.5 Viscoelastic model 
 

For the viscoelastic model, both elastic and viscous aspects of a material are considered. The 

behaviour in an elastic (solid) material is described mechanically by the spring analogy 

(Hookean spring) (Figure 1.4) and written as [65, 49]: 

𝜎 = 𝑘𝜀 

 The equation shows that the stress-strain relation is linear, defined by the spring constant k. In 

the elastic case, the main reason of deformation comes from the molecular stretching, causing 

the molecule to deviate from its equilibrium position as long as the force is acted and leads for 

the strain energy taken from the system to be stored. Thus, the unload of the energy will result 

to a return in an initial state.  

Figure 1.4: Elastic (Hookean) spring and viscous (Newtonian) dashpot. Figure taken from [65].  

For the viscous material, the stress is proportional with the shear rate 𝜀 : 

𝜎 = 𝜂𝜀  

Where, η is the viscosity, which describes the resistance of a material to flow. The viscous 

model is applied for fluids like gasses or liquids, where molecular interaction is not considered, 

and the energy dissipates into the molecular fluctuations. In the linear case, the fluids are called 

Newtonians, while a deviation from linearity leads to non-Newtonian fluids. 

Figure 1.5: Maxwell’s viscoelastic model. Figure taken from [65]. 

Introduction to the notion of relaxation times: 

The simplest viscoelastic model that can be considered is the Maxwell model (Figure 1.5). It 

contains of an elastic spring and a viscous dashpot in series. For this in series mechanical circuit, 

the stress in the spring and dashpot is the same, while the overall strain is the sum of the strains 

of the components, in analogy of an electrical circuit. These relations lead to the basic Maxwell 

equation [49, 65]: 

𝑘𝜀 = 𝜎 +
𝜂

𝑘
𝜎 

During stress relaxation, any excitation is removed, meaning that the above equation can be 

solved over time and gives: 

𝜎(𝑡) = 𝜎(0)𝑒−𝑡/𝜏𝑟𝑒𝑙 

Where, 𝜏𝑟𝑒𝑙 = 𝜂/𝑘 is the Maxwell’s relaxation time and it is a characteristic time of a material. 

Mathematically, it provides the time needed for the stress to be reduced by 66.7%, but 

physically it acts as a timescale where the system has relaxed and is referred as a characteristic 

time that shows the dynamics of the molecules of the material (Frenkel model). Maxwell 

relaxation time is of the order of 10-8 – 10-12s for liquids [66]. 

(1.1) 
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The fast relaxation dynamics of fluids leads to athermal theories. As seen above the provided 

energy to the fluidic system should dissipate, while for solids, the provided mechanical energy 

is stored due to their elastic properties. 

There is a variety of different models that describe viscoelasticity, like the generalized Maxwell 

model [47], the Kelvin – Voigt model [47, 48] and the Oldroyd – B model [67], but will not be 

discussed here. 

The viscoelastic behaviour of diluted polymer solutions was proposed by Rouse [12] and then 

advanced by Zimm neglecting interchain interactions [13]. On the model, a polymer chain was 

considered as a succession of N beads connected with elastic springs. The consideration of the 

model leads to a generalized Maxwell equation, which is defined by a distribution of relaxation 

times. The slowest of these relaxation times is called Rouse time τRouse ~ N2. This model holds 

as long as the polymer chains are not long. As the previous theories are dedicated for dilute 

solutions, new theories were needed for concentrated solution or polymers melts. The 

breakthrough was possible with theoretical works of de Gennes [14] with the introduction of 

the reptation time and later Edwards [15, 16].  

The simultaneous progress in instrumentation with the contribution of Weissenberg has enabled 

the creation of tools about 50 years ago, named rheometers, together with a discipline, schools 

of rheology with specific conferences and journals. The conventional rheology protocol is 

established and generalized. The general principle is the following one:  

In the ideal viscoelastic conditions, the shear stress response of a fluid to a periodic sin shear 

strain wave is given by the equation: 

𝜎(𝑡) = 𝜎0sin (𝜔𝑡 + 𝛿𝜑) 

Where, 𝛿𝜑 is the phase shift and 𝜎(𝑡) the shear stress. The phase is the parameter that 

characterizes the response of a material. When 𝛿𝜑 = 0, the response is a solid-like one (Figure 

1.6, top graph), for 𝛿𝜑 = 𝜋/2 it is purely viscous (Figure 1.6, bottom graph), while for 

intermediate values (𝛿𝜑~𝜋/4), the response is a viscoelastic one. 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1: Elasticity 

 

21 

 

Figure 1.6: Solid like response (top graphs). The stress and strain signals are in-phase, while the elastic 
modulus is frequency independent and greater than the viscous one. Viscous response (bottom 
graphs). The strain and stress are π/2 out of phase. The viscous modulus scales with frequency, while 
the elastic low frequency modulus is zero. Figures taken from [22]. 

From the previous dynamic evolution equations of strain and stress, we define the complex 

shear modulus: 

𝐺∗ =
𝜎(𝑡)

𝛾(𝑡)
= 𝐺′ + 𝑖𝐺′′ 

with 𝐺′ = (𝜎0/𝛾0)𝑐𝑜𝑠𝛿𝜑, the elastic modulus, while 𝐺′′ = (𝜎0/𝛾0)𝑠𝑖𝑛𝛿𝜑, the viscous 

modulus. Thus, the stress is written as [68]: 

𝜎(𝑡) = 𝛾0𝐺
′𝑠𝑖𝑛𝜔𝑡 + 𝛾0𝐺

′′𝑐𝑜𝑠𝜔𝑡 

The 𝐺′ is the in-phase part of shear stress and thus is also called as storage modulus, while 𝐺′′ 

is the out-of-phase component and referred as the loss modulus. These two shear moduli 

determine the behaviour of a material. For a solid-like response, 𝐺′ is greater than 𝐺′′, while 

for a liquid response the opposite takes place. A characteristic of polymers is the crossover of 

the moduli on the frequency domain (Figure 1.7). At low frequency, the loss modulus is higher, 

and a viscous behaviour is evident, while as the frequency increases, a crossover is reached 

where the elastic response dominates. The inverse of the frequency at the crossover is related 

with slower dynamics of the system, like the Maxwell’s relaxation time. In the case of 

polymers, Rouse and reptation time are considered. [12, 14]. As, it is absent from the 

viscoelastic theory, rheological protocol examines large sample thicknesses (scale invariant) 

and does not consider the liquid-substrate wettability. 
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Figure 1.7: Storage and loss moduli over the frequency range measured on PBuA at room temperature 
(macroscopic measurements e > 1 mm) from [24]. The interception of the G’ and G” scaling as omega 
square and omega is supposed to define the relaxation time of the polymer (the longest time before 

the system flows; i.e. G” is over G’ with G” scaling as .). We will see on section 1.6 that the viscoelastic 
response is not universal but depends on the scale at which it is measured, questioning the meaning of 
the viscoelastic relaxation time. 

1.5.1 Deborah and Reynolds number 
The Deborah number (De) is a dimensionless number, used in rheology to predict if the 

dynamic of the liquid (its molecular relaxation time) competes with the frequencies of probed 

dynamics [69]. It is defined as: 

𝐷𝑒 =
𝑟𝑒𝑙

𝑡𝑎𝑝𝑝𝑙
= 𝑟𝑒𝑙𝜔 

where, 𝑟𝑒𝑙  is the relaxation time of the material and 𝑡𝑎𝑝𝑝𝑙 is the time of the experiment (e.g. 

the inverse of the frequency ω). If De < 1, then the applied excitation (frequency) is much 

slower than the inverse of the relaxation time of the material, meaning that, the material has 

enough time to incorporate the external energy. Thus, a viscous behaviour is expected. If De > 

1, then a solid-like behaviour of the material is expected since, the material will not be able to 

relax during fast excitations.  

Reynolds number (Re) predicts the state of the flow of a fluid. It is the rate if inertial to viscous 

forces and defined as: 

𝑅𝑒 =
𝜌𝑢𝐿

𝜂
=
𝑖𝑛𝑒𝑟𝑡𝑖𝑎 𝑓𝑜𝑟𝑐𝑒𝑠

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒𝑠
 

Where, ρ is the density of the material, u the flow speed, L the characteristic length (e.g. of a 

pipe). For small Reynolds values (below a critical one), the flow of the fluid is a laminar one, 

while for large Reynolds values is a turbulent flow. The value the critical Reynold number 

depends on the geometry of the system where the system flows.  
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1.6 Low-frequency shear elasticity in liquids 
 

Based on Maxwell-Frenkel theory, liquids are not supposed to exhibit any low-frequency shear 

elasticity, since the excitation is smaller than the molecular relaxation time. However, 

experimental reports question this view by highlighting low frequency shear elastic response 

of polymer melts or liquids at nanoscale to sub-millimeter scale, thus showing that shear 

elasticity in viscoelastic/viscous fluids is a matter of scale.  

1.6.1 Confined liquids at nanoscale 
 

Experimental identification of solid-like responses of liquids, were first established with the 

use of the surface force apparatus, capable to measure electrostatic forces with great precession 

in the nanoscale [70]. The device was adjusted to carry dynamic measurements, such as 

oscillatory shears. Granick et al. were able to identify slow-down of the dynamics of few 

molecular layers of liquid [26, 27] and later identify a solid-like behaviour under oscillatory 

shear of a 2nm layer squalene confined between two solid interfaces at small deformation [71]. 

They measure a shear elastic response of three order magnitude smaller than the high frequency 

solid one (G) and attribute this behaviour to the confinement of the molecules between the 

solid surfaces. As the stress in the liquid or the size of the layer is increased, the conventional 

viscous behaviour is observed, meaning that there is a point, where the excitation is strong 

enough to make the liquid flow. 

Figure 1.8: Geometry of surface force apparatus. Figure taken from [70]. 

1.6.2 Confined liquids at micrometre scale 
 

Few years earlier than the nanoscale measurements (1985-90), Derjaguin and his group 

conducted “resonance measurements method” [19] with the use of a piezo-quartz [18, 19]. The 

liquid was placed above the piezo-quartz and while the quartz oscillates, it produces shear 

deformation to the studied liquid (Figure 1.9a). Before the measurements, the surface was 

properly cleaned, and the resonant frequency utilized was at around 73 kHz and contact 

measurements for various low viscosity liquid film thicknesses (1 – 5μm) of polymeric and 

small-molecule liquids. As seen in Figure 1.9b, shear elasticity becomes more apparent as the 

liquid film thickness decreases, while it decreases rapidly with the increase of the displacement. 

They argue that the results showcase existing shear bulk modulus in liquids even for excitation 

frequencies below the inverse of the Maxwell’s relaxation time (around 10-10 – 10-12s for such 
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liquids). Thus, they imply slower relaxation times that exist due to collective effects of the 

liquid molecules and they propose, “in the case of low-viscosity liquids, the nature of the 

viscous and elastic relaxation is essentially different from that of polymers” [19], because the 

elasticity of polymers is due to entanglements, thus specific to long chains. This is to our 

knowledge the first description of the liquid shear elasticity as intrinsic liquid property. 

Figure 1.9: a) Experimental setup of measurement. 1) Piezo-quartz working at 73 kHz, 2) Plate, 3) Liquid 
layer. b) Evolution of piezo-quartz frequency phase shift with the shear wave of diethylene glycol film 
at different thicknesses (1 – 4μm). Figures taken from [19].  

In the same spirit as the Derjaguin’s study, Martinoty and his group conducted measurement in 

the isotropic phase of liquid crystal polymers far from the I-N transition temperature with the 

use of an oscillating piezoelectric ceramic [72]. In this case, the liquid crystal film ranges from 

10 to 120μm and they observed a steady plateau of shear modulus at low frequency, instead of 

the expected vanishing low frequency shear modulus for fluids (Figure 1.10a). They also 

highlighted that the shear modulus value depends on the scale of the film, with higher film size 

leading to smaller values and ultimately to a viscous response. Lastly, they stressed the 

importance of the interaction of the liquid with the substrate. When the plates were treated to 

provide better anchoring then the solid-like response was evident, while for the non-treated 

substrates, the viscous response was greater. They report similar results for linear polymer melts 

(polystyrene) [73].  

Figure 1.10: a) Shear modulus depending on the geometry of the measurement b) Evolution of shear 
modulus with film size of a liquid-crystal polysiloxane. Graphs taken from [72]. 

a) b) 

a) b) 
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1.6.3 Accessing liquid shear elasticity liquid at sub-millimetre scale 
 

Noirez and her group also identified finite shear elasticity in a variety of fluids in the liquid 

state at larger scale, up the millimeter scale (from 20-1000μm) mainly using conventional 

rheometers and revisiting the protocol in order to optimize the chain stress transmission and in 

particular, the liquid/surface interaction forces using high energy surfaces. The type of the 

liquids ranges from high viscosity polymer melts at 300 - 1000μm [20, 21, 74], low molecular 

weight liquid crystals (8CB) at 45μm [75], liquid crystals polymer melts at 200μm [76], simple 

molecule glass formers like glycerol at 40μm [23] and water [22]. All measurements were 

conducted at temperatures, where the studied liquids were in their liquid phase away from any 

phase transition temperature.   

A consistent observation of finite low-frequency shear elasticity was established for a variety 

of Van-der-Waals and hydrogen-bond liquids, challenging the conventional molecular theories 

(theory of viscoelasticity for example), which consider that shear elasticity is zero and scale-

independent for liquids. For the interpretation of the results, they proposed that liquid molecules 

should interact and exhibit collective elastic correlations at small scales. 

Figure 1.11: Strain dependence of shear elastic modulus G’ and loss modulus G’’ of sub-millimetre 
confined liquids. Left inset shows the moduli evolution over frequency at the elastic regime. Right inset 
shows the moduli evolution over frequency at the conventional viscous regime. 

They showed that shear-elastic response is fragile and detectable when the amplitude of the 

deformation is considered. As seen in Figure 1.11, an elastic response is receivable for low 

strain amplitudes (blue shaded area of Figure 1.11). There, the elastic modulus is dominant and 

stable in the low frequency range (left inset), if the measurement is conducted under conditions 

as little perturbative as possible (low strain values, mesoscopic scales, strong liquid/substrate 

interactions). As the deformation increases, the studied liquid begins to flow gradually, leading 

to decrease of the elastic modulus and then to the interception of the moduli (border between 

blue and white shaded areas of Figure 1.11). What follows (white area of Figure 1.11) is the 

conventional flow regime, where elastic modulus becomes undetectable and flow properties 

dominate the liquid behavior at large strain amplitudes or at large gap thicknesses. The 

conventional viscoelastic behavior is thus the shear-thinning product (in the non-linear domain 

at large strain) of the shear elasticity versus frequency. The consequence of the experimental 

identification of shear elasticity at mesoscopic scale is that the conventional viscoelastic time, 

, is not the longest relaxation time of the material. The finite shear elasticity shows long-range 

correlation of liquid molecules, whose timescale is infinite.  
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1.7 Theoretical aspects of shear elasticity in liquids  

1.7.1 Frenkel theory: the high frequency model 
 

Even though Maxwell viscoelastic model was satisfying at describing macroscopic viscoelastic 

properties, this approach remains empirical and various physical problems were not resolved 

[25]. Y. Frenkel pointed out that the fluidic viscous approach of liquids is not satisfying and do 

not properly interpret their dynamic response [5]. He argued that the liquid molecules should 

be able to vibrate around an equilibrium position, similar to atomic vibration description. In 

this frame, he proposed that liquid molecule should be able to vibrate around an equilibrium 

position for a time τ and then the molecule would jump (diffuse) to a new equilibrium position, 

where it would be able to vibrate again. The equation, where Frenkel derives contains both 

elastic and viscous terms [77]: 

𝑑𝑠

𝑑𝑡
=
𝑃

𝜂
+
1

𝐺

𝑑𝑃

𝑑𝑡
 

where, 𝜂 is the viscosity, 𝐺 is shear modulus and 𝑃 shear stress. The time between the jumps is 

given as 𝜏 = 𝜏0𝑒
𝑊/𝑘𝑇, where W is the activation energy needed for the jump, k the Boltzmann 

constant. For shear strains faster than the molecule jumps (ωτ << 1) will not produce flow but 

will cause a shift of the equilibrium position of the liquid molecules, similar to atom positions 

in a solid. For slow excitations (ωτ >> 1), the force will diffuse and give rise to viscous flow. 

This way, he derives at the constitutive viscoelastic equation (Eq.1.1) that leads to the Maxwell 

relaxation time 𝜏 = 𝜂/𝑘, which proposed to be the time between a jump of a liquid molecule 

from one equilibrium position to a new one. The high-frequency elastic response has been 

experimentally proved in various instances [6, 7, 8] and in agreement with numerical 

calculations [78].  

 

1.7.2 Trachenko theory: the k-gap theory 
 

Frenkel’s works were considered as pioneering since it introduced a high-frequency solid-like 

nature of liquids about 70 – 80 years ago. Many years were needed for his theory to be verified 

experimentally, mostly due to Large Facilities experiments [79, 80, 81, 82, 83, 84, 10]. In the 

last decade, a new emphasis on Frenkel’s theory derived to extension of the theory [30, 77, 85, 

86, 87, 88, 89, 28]. A continuation of Frenkel’s theory established what is called as k-gap [85, 

89, 88]. For this theory, two approaches were established. In the first one (hydrodynamic 

approach), a generalized form of viscosity was written to take into account the elasticity and on 

the second one (solid approach), a generalized shear modulus to utilize flow.  For the 

hydrodynamic case, from the Navier-Stokes equation, it was derived that the real part solution 

of the frequency of the propagating waves is written as: 

𝜔 = √𝑐2𝑘2 −
1

4𝜏2
 

where, 𝑐 is the shear wave velocity, 𝑘 is the wave vector in the reciprocal space, Fourier 

transformation of the real space. For the equation to have real solutions, it necessitates for 𝑘 >
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𝑘𝑔 = 1/2𝑐𝜏, thus showing the existence of the k-gap. From the above, we may extract the 

propagation length 𝑑𝑒𝑙  of the shear wave in a liquid medium: 

𝑑𝑒𝑙 = 𝑐𝜏 

The propagation length describes the distance of the shear wave to propagate into the liquid 

medium before it is disrupted due to the diffusive in nature, change of equilibrium positions of 

the liquid molecules after a time τ. This way “a propagating wave does not require all particles 

it encounters during its propagation to be solid-like” [77]. This propagation length stands for 

ωτ >> 1 (at high frequency regime), where per Frenkel, the elastic-like behaviour is exhibited. 

In the low frequency regime (ωτ << 1), the propagation length is given as 𝑑𝑒𝑙 =
𝜆

2𝜋
, where 𝜆 is 

the wavelength, thus proposing limited propagation of low frequency waves.  

1.7.3 Shear elasticity in the context of non-affine lattice dynamics 
 

In the current (Frenkel) description of liquid dynamics. liquids are not expected to exhibit any 

elastic behaviour in low frequency regime; thus the observed finite low-frequency shear 

elasticity is challenging for interpretation. Zaccone and Trachenko proposed a theory to 

interpret the finite shear elasticity of confined liquids, using the non-affine lattice dynamics 

(NALD) theory, which is primarily used for amorphous materials like glassy polymers and 

glasses [29, 90, 91, 92].  

Figure 1.12: Representation of non-affine displacement in amorphous materials. Figure taken from 
[90]. 

Based on NALD, the studied object (e.g. atom, molecule, polymer chain), is submitted to an 

affine force field, induced by a shear strain. If the average of the neighbour forces on the object 

is not symmetric then the result can be seen in Figure 1.12. For the mechanical deformation to 

relax, a non-affine deformation takes place in the material. Thus, the equation of motion of a 

molecule that is affected from such net force is given by [29, 91]: 

𝑑3𝑥𝑖
𝑑𝑡2

+ 𝜈
𝑑𝑥𝑖
𝑑𝑡

𝑑𝑡 + 𝐻𝑖𝑗𝑥𝑗 = 𝛯𝑖,𝜅𝜒𝜂𝜅𝜒 

Where, 𝛯𝑖,𝜅𝜒 the Hessian matrix of the system, 𝜂𝜅𝜒 the strain tensor, 𝛯𝑖,𝜅𝜒 the force field and 𝜈 

the microscopic friction coefficient due to long-range correlations of the molecules. They 
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calculate a shear modulus for liquid, taking into account the longitudinal and transverse modes, 

the k-gap theory and conclude to: 

𝐺′ = 𝐺∞ −
𝛼

3
𝑘𝐷
3 +

𝛽

3
𝐿−3 

Where, 𝐺∞ is the shear bulk modulus at high frequency, 𝑘𝐷 is the Debye wavevector, where 

the highest vibration is achieved, 𝐿 the scale of the system and 𝛼, 𝑏 are numerical constants. 

The second term of the right side of the equation is the contribution of longitudinal waves, 

while the last term the contribution of transverse waves. We notice that only the transverse 

waves term is scale dependent and attributed this behaviour to 𝑘𝑔, which acts as a long-

wavelength cut-off, while 𝐺∞ is expected to be scale invariant. They conclude that the terms 

𝐺∞ and −
𝛼

3
𝑘𝐷
3  should cancel each other, such as zero elasticity in liquids holds true in the 

macroscopic case (𝐿 → ∞). Hence, at the microscopic scale, only transverse modes should 

produce a non-zero shear elasticity term: 

𝐺′ = 𝛽′𝐿−3 

Figure 1.13: Shear modulus evolution with scale from experimental results for short-chain liquid 
crystalline (LC) polymer liquid PAOCH3 (in the isotropic state) well above glass transition temperature 
Tg. Figure taken from [29]. 

Thus, they concluded to a scale dependent shear elasticity of confined liquids, which will 

become zero in the macroscopic limit. They plotted experimental results with the newly derived  

𝐿−3 law and found a good agreement of theory and experiments, which measure finite bulk 

shear elasticity in mesoscopic liquid samples.  

Baggioli et al. continued the NALD approach in the context of phonon theory of Goldstone 

bosons [93]. They showed that the non-affine displacement, that takes place for the material to 

reach mechanical equilibrium, is connecting with the resulting Goldstone phase relaxation. 

They argue that the k-gap theory, even if it produces correct results, it is phenomenological in 

nature. Then they try to interpret the results, accounting on the symmetries of the system. They 

propose that the Goldstone bosons have a phase relaxation rate Ω and propagate over a length 

l and the decay will be ~𝑒−𝛺𝑡.  
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Figure 1.14: Propagation of transverse (shear) waves in every medium based on k-gap theory and 
Goldstone phase relaxation. Figure taken from [93]. 

Based on k-gap theory and non-affine deformation dynamics, that shear waves can be 

interpreted by the Goldstone modes. A Goldstone mode exist in liquids due to non-affine 

deformation and it is possible to propagate in the liquid at length l (Figure 1.14). At higher 

length scales, a shear wave cannot propagate and thus the rigidity of the liquid is lost. The 

introduction of Goldstone modes is of great interest because this frame is consistent with the 

hydrodynamics of liquid in the low-frequency regime, since the phase relaxation does not 

impede the propagation of longitudinal waves in liquids and give rise to longer relaxation times 

than the Maxwell’s one, which is unable to interpret any elastic characteristics of confined 

liquids. 
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Chapter 2 From shear elasticity to thermo-

mechanical effects on mesoscopic liquids under 

oscillatory shear strain 
 

In the previous chapter, we proposed short overview of the current state of the art and basic 

terms on liquid and solid dynamics. The basic description of liquids was based on the fluidic 

approach, which was successful for the interpretation of numerous problems in the macroscopic 

level, like flow. The viscous description combined with lack of periodic features (“small 

parameter”) of liquid molecules made impossible, the complete understanding of liquids from 

theoretical point of view. Starting with Frenkel, a first elastic behaviour of liquids at high 

frequency was established and later experimentally proven. Lately, new experimental results 

showed that rigidity of liquids is accessible under low-frequency excitations when the liquid is 

confined. The size of confinement varies from nanometre to sub-millimetre scale, and its 

identification is strongly conditioned to the quality of the solid-liquid interactions. In parallel 

to these new experimental works, new theories were developed (k-gap theory, NALD) to 

interpret the ability of shear wave propagation in a liquid medium.  

The experimental work presented in this manuscript lies within the assumption of a “static” 

shear elasticity in liquids. Motivated from the elastic nature of confined liquids, we subject 

simple polymer or molecular liquids to a dynamic shear deformation, and we study the coupling 

of mechanics and thermodynamics, in a familiar frame of thermoelasticity in solids. The 

existence of such coupling will further strengthen the existence of shear elasticity in confined 

liquid and the systematic study will elucidate the different mechanisms that take place within 

the liquid. Moreover, thermal studies of liquids in confined spaces, is of great interest in the 

field of microfluidics and mostly on biological research (e.g. cells/organs-on-a-chip). The blood 

vessel walls are strongly interacting with the physiological fluid and of various sections 8μm 

to 25mm), a deep understanding from physical point of view is necessary [94].  

All the presented results are obtained without external heat source using strong wetting 

liquid/substrate conditions. We focus the impact of a dynamic mechanical field on the thermal 

stability of the liquid, under conditions similar as the viscoelastic measurements. 



Chapter 2: From shear elasticity to thermo-mechanical effects on 

mesoscopic liquids under oscillatory shear strain  

 

32 

Very few dynamic measurements have carried out to examine the thermal behavior of liquids 

under mechanical field. However, strong thermal changes have been reported in polymer melts 

under dynamic shear excitation. Specifically, Baroni, Bouchet and Noirez. [95, 96] have 

showed thermal results of various polymer melts, like polybutylacrylate (PBuA) of Mn = 

25.000 and 40.000 molecular weight and polybutadiene (Mn = 46,700) (Figure 2.1) as well as 

water under shear flow.  

 

Figure 2.1: Left figure: 2D thermal snapshot of a polybutadiene (Mn = 46,700 and 1.11 polydispersity, 
room temperature measurements) measured a under oscillatory shear strain (γ = 1500% and ω = 0.5 
rad/s, gap thickness 1 mm). The oscillatory shear produced a cold central band. Right figure: Under 
steady-state shear flow at 100 s−1, the continuous shear flow induces a strong hot central band of about 
0.5 °C.  

They show that polymer melts of 1mm gap thickness, confined between two plates, give rise to 

thermal changes under oscillatory mechanical excitation of frequency ω = 1 rad/s and shear 

flow. Specifically, the oscillatory motion induces a central cold band of about − 0.1 °C 

surrounded by two higher temperature bands. The measurements were conducted in room 

temperature conditions and without external heat source. The conversion of mechanical to 

thermal energy hints an elastic nature of the effect, while the generated cold band excludes an 

interpretation in the frame of viscous heating. The generated thermal bands might indicate 

regions of different stress states similar to vorticity banding known for various soft matter 

systems [97, 98]. However, even though elasticity is well established for polymer melts, the 

interpretation of the thermal effect is difficult due to the length of their polymer chains, since 

for the interpretation of the seen thermal effects, both intermolecular and intramolecular 

interactions may be considered. 

In this thesis, the challenge will be to probe low molecular liquids. We will focus our study on 

simple liquids (mostly glass formers because of their low evaporation rate), therefore exhibiting 

fast molecular dynamics (10-9s). The observation of thermal effects on liquids will definitively 

rule out the possibility of a coupling with molecular relaxation times. We will also use a more 

elaborated analysis consisting in a kinetic analysis of the thermal study. We will consider the 

frequency and amplitude of the mechanical deformation as well as the scale of the system.  
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2.1 Experimental considerations 
 

For the thermo-mechanical measurements, an elaborate setup was used to combine 

simultaneous thermal and mechanical measurements, as well as excellent transmission of the 

mechanical energy at the solid/liquid interface. We recorded both the mechanical and thermal 

response of the liquid gap under the external mechanical excitations (Figure 2.2). The 

mechanical excitation was achieved with the use of a strain-controlled ARES-II rheometer (TA-

Instruments). For the mechanical response, the strain, stress, and normal stress signals were 

recorded with the use of Keithley multimeters. This way, the live signal that the rheometer 

provides was recorded for an in-detail view. The thermal response was recorded with an 

infrared microbolometer array (IR camera).  

 

Figure 2.2: Graphical representation of the experimental setup used for the thermo-mechanical 
measurements [99]. 

For the liquid to be excited mechanically, we have to confine it between solid substrates first. 

This exactly is the procedure in a rheometer setup. The liquid is placed in between two 

substrates. The substrates are mounted on special fixtures, which are placed on an ARES-II 

strain-controlled rheometer. The fixtures are specially designed to ensure parallel position of 

the substrates and connect them with the sensor (top substrate) and motor (bottom substrate) of 

the rheometer. The rheometer provides excellent control of the applied shear strain with high 

precision. The chosen applied deformation studied on the next chapter is a periodic shear strain: 

𝛾 = 𝛾0sin (𝜔𝑡) 

The shear strain γ is defined as γ = δl/e, where δl is the displacement of the plate and e the gap 

thickness of the confined liquid. Thus, the important variables that we alter during the study is 

the strain amplitude and the frequency. The amplitude γ0 varies from 1% (linear regime) to even 

4000% (non-linear regime), when it is permitted by the limitations of the rheometer. The 

studied strain amplitudes could reach values much higher than the ones usually studied on the 

conventional rheology [100, 101]. In addition, each time we make sure that liquid is not ejected 

during the measurements, especially when the deformation is large. The liquid is not easily 

ejected on the side but remains in place due to the high energy surfaces, especially as the scale 

is decreased. The chosen frequency range is from 0.5 rad/s to 5 rad/s. We probe slow external 

excitations (ωexc ~ 1 Hz), much slower than the inverse of the molecular relaxation time of the 

(3.1) 

𝑧റ 

𝑦റ 
𝑥റ 

Stress sensor 
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studied liquids (ωrel ~ GHz). Thus, on the classical level, we expect no coupling of the excitation 

with the relaxation time. Another variable that does not appear directly to the equation (3.1) is 

the gap thickness of the liquid system. The measurements were carried out for different gap 

thickness to highlight the scale dependence of the phenomenon. The gap values range mainly 

from 100μm to 300μm, limited to the mesoscale, but also measurements on higher values (~ 

1mm) were conducted to connect the results with the macroscopic scale. As gap thickness 

decreases, the parallelism of the plates should be addressed with higher precision (for more 

information please see Appendix A). Each time when the gap was adjusted or a measurement 

was conducted, we permitted enough time to the liquid to reach an equilibrium state. The usual 

time interval between two measurements was between 15 - 30 minutes for the oscillatory 

measurements. This way, we ensure that the liquid has thermally relaxed and no connection 

between the measurements could be attributed. 

The liquid studied in this manuscript, are called Newtonian fluids. Based on the relation 

Re=ργ̇h2/η0 for Reynolds number in a rheometer setup [102], we calculate a number Re = 

0.0025, for e = 0.240mm and ω = 5 rad/s, which is small and does not produce turbulent flow. 

At low Re, we can exclude pure elastic turbulence [103] since in our experimental conditions, 

Weissenberg number is small (Wi < 10-5) and such an effect is observed in highly elastic 

materials. From the rheological results, we did not observe any secondary flows due to inertia 

since the shear stress response remain a perfect sin wave [104, 101].  
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2.2 Substrate consideration and treatment 
 

As discussed on the previous chapter, the substrate plays an important role on dynamic 

measurements of confined liquid. The important parameter considered on a solid-liquid 

interface is the wetting. Wetting is determined on the contact angle between the interfaces 

(Figure 2.3). If the angle is below 90°, then we have partial wetting, while for 0°, total wetting. 

In general, the contact angle is given by the Young’s equation [105]: 

𝛾𝑆𝑉 = 𝛾𝑆𝐿 + 𝛾𝐿𝑉𝑐𝑜𝑠𝜃 

With γ the surface tension, θ the contact angle and letters S,L,V stand for solid, liquid and vapor. 

The above equation dictates that the surface tension plays an important role on the wetting. 

However, in the last decades studies showed other parameters that determine the wetting of a 

substrate from a liquid like the surface roughness [106, 107, 108, 109, 40]. For rough surfaces, 

the slip is close to zero (no-slip condition) [107]. Another parameter is the free energy of the 

surface. High-energy surfaces are expected to be wetted by liquids [110]. Thus, for our 

experiments, we use high roughness and high-energy α-alumina surfaces. This substrate 

provides excellent total wetting of the tested liquids and ensure anchoring of the liquid 

molecules on the solid interface. This process stands important since a better transmission of 

the energy from the moving plate is secured.   

 

Figure 2.3: Top graph) Wetting conditions of a liquid on a solid substrate. Bottom graph) Contact 
angle versus time for liquid glycerol on aluminium (green points) and α-alumina substrates (red 
points) [111]. 

Medium energy surface:

Partial wetting

Very high energy surface:

Total wetting
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For the measurements, a conventional ARES-II, strain-controlled rheometer was used to apply 

a low-frequency shear strain oscillation to the tested liquids. Great focus was given to the 

substrates, between which the liquid was confined. The commonly used aluminium fixtures do 

not provide a strong liquid-surface interaction (contact angle of about 75° - 80°). High-energy 

α-alumina surfaces providing a better wetting were preferred. The plates were cleaned and 

heated to ensure total wetting of the liquid molecules on the alumina substrate, thus providing 

better transmission of the energy from the plates to the liquid. In the case of poor wetting, shear 

elasticity is hardly observable, and the viscous behaviour was dominant (Figure 2.4). Same 

observations were made for high strain values, where the liquid starts to flow.  

Figure 2.4: Low frequency dynamic glycerol response obtained using different substrates. Figure taken 
from [23]. G’ is the shear elastic modulus and G” is the loss modulus.  

The tested liquids were placed in between of two alumina (Al2O3) polycrystalline circular 

substrates of diameter d = 45mm, whose high free energy provided excellent wetting close to 

total wetting as seen in Figure 2.3. This characteristic of α-alumina substrate is one of the main 

reasons that is preferred to the standard aluminium plates. The substrates were systematically 

cleaned with ethanol and/or acetone inside an ultrasonic bath. Then, they were placed into an 

oven at 400-500°C for at least 3 hours to ensure that every hydrocarbon chemical component 

was removed. This process reduces the possibility of different compounds (e.g., water) to exist 

on the solid surface when the desired liquid is placed. The existence of such interfaces would 

cause additional interfacial slippage causing reduced transmission of the energy to the studied 

liquid [112, 113, 40]. To avoid re-pollution, the plates are mounted to the fixtures of the 

rheometers, as soon as are cooled down and then the studied liquid was added in less than 30 

minutes.   
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2.3 Thermal measurements 
 

Thermal measurements consist of a major part of the present study and thus an introduction is 

needed to elucidate the experimental procedure. Thermography has been widely used in the 

recent years, due to the evolution of better and cheaper infrared (IR) systems. For us, an 

utilization of such system like an IR “camera” (for simplicity) is of great importance, because 

it provides distant thermal measurements of a studied materials, without interacting with the 

material and thus allowing true study of its state. 

 

2.3.1 Basic concepts 
 

As known, solid atoms and liquid molecules have an equilibrium position (even though in liquid 

only this position changes over time), in which they oscillate around it in the form of thermal 

motion. This motion results to radiation of a material in the form of photons in the range of 

700nm – 1mm. Measuring the incoming thermal photons from a body provides information 

about the thermal condition of a material; i.e. its temperature or its thermal evolution. The ideal 

case of emitted radiation is the blackbody one. It is the radiation of an idealized body, which 

can emit and absorb radiation regardless frequency or direction [114]. While on thermal 

equilibrium, it can greatly emit in certain wavelengths or frequency based on Planck’s law [115, 

114]: 

𝑀𝜈(𝜈, 𝑇) =
2ℎ𝜈3

𝑐2
1

𝑒
ℎ𝜈
𝑘𝐵𝑇 − 1

 

𝑀𝜆(𝜆, 𝑇) =
2𝜋ℎ𝑐2

𝜆5
1

𝑒
ℎ𝑐

𝜆𝑘𝐵𝑇 − 1

 

with 𝐵𝜆 the wavelength dependent spectral radiance, 𝐵𝜈 the frequency dependent spectral 

radiance, 𝜈 the frequency, 𝑇 the temperature, ℎ Planck constant, 𝑐 speed of light and 𝑘𝐵 the 

Boltzmann constant. The previous equation results to a shape of distorted bell in the wavelength 

or frequency domain. The maximum of the bell is dependent on the temperature of the material 

as predicted from Wien’s displacement law [116, 114]:  

𝜈𝑚𝑎𝑥

𝑇
= 5.8785 ∗ 1010𝐻𝑧𝐾−1 

𝜆𝑚𝑎𝑥 ∗ 𝑇 = 2897.8 𝜇𝑚𝐾 
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Figure 2.5: Spectral radiance based on Planck’s law. Dotted red line connects the maxima as predicted 
from Wien’s law. Figure taken from [114]. The area between the black dotted lines represents the range 
seen from the infrared sensor. 

As seen in displacement law, the maximum shifts with temperature (Figure 2.5). For room 

temperature (300K), the maximum is located at around 8 – 10μm. That is the reason why we 

observe this wavelength region (long-wave infrared region) with the use of IR systems when 

we want to measure the thermal condition of a body. The used IR camera has a spectral range 

from 8 – 14μm. Glycerol and PPG exhibit absorption bands in this wavelength range and thus 

their thermal state can be studied (Figure 2.6). The overall emitted radiation per unit area is 

calculated from the Stefan – Boltzmann law as 𝑀(𝑇) = 𝜎𝑇4, where 𝜎 = 5.67 ∗

10−12 𝑊𝑚−2𝐾−4 [114]. The previous law concerns the whole wavelength range. For our case 

(8 – 14μm), the emitted radiation is roughly 42% of the total blackbody radiation [114]. 

Figure 2.6: Absorbance of glycerol (top graph) and propylene glycol (bottom graph) at the IR region. 
Data taken from NIST database [117, 118]. The area between the black dotted lines represents the 
range seen from the infrared sensor. 

Since the blackbody is an idealised one, a real material will emit less or at least will resemble 

a blackbody. Emissivity measures their emitted radiation in comparison with the black body. 

The maximum value is 1, for blackbody-like material while for values 0.7 – 0.9 the material is 

called as greybody. There are different parameters that determine the emissivity of a material, 

like the surface reflectivity, roughness, geometry and position of the IR camera. The tested 
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liquids exhibit emissivity value of approximately 0.9, which means that the temperatures 

indicated by the thermal sensor are close to absolute temperatures. 

2.3.2 Thermal experimental setup  

Figure 2.7: On top view of the experimental setup. Distances not on scale. 

The thermal response was recorded with an infrared microbolometer array with relay lenses (IR 

camera). The bolometer is similar to conventional ones [114]. The used microbolometer array 

is of 382 x 288 pixels, having a maximum thermal sensitivity for long wave Infrared bands 

(LWIR), i.e., ranging between 7 to 14 µm. The size of the elementary pixel is 20 µm. Its thermal 

sensitivity is +/- 0.02°C in a working range of 15-25°C.  The microbolometer is coupled to a 

home-made objective that is a combination of 12 Germanium lenses (Figure 2.8 illustrates only 

8/12 lenses for a sake of clarity), called relay lenses. The focal of this objective is 7.5mm. The 

numerical aperture is F/1 and the spatial resolution ellipsoid is 0.1mm. The bolometric sensor 

is placed about 50mm on the side of the solid substrate-liquid-solid substrate system (Figure 

2.2, bottom picture and Figure 2.7), thus reducing atmospheric absorbance and we consider it 

negligible for our measurements. The relay lenses were used to magnify the seen image and 

thus to access higher detail of the system on the z-direction. This setup provides a view of the 

liquid gap throughout the y-direction of about 5mm. On the x-direction, the field of depth 

depends on the liquid type. For glycerol, the penetration length is about 0.85mm. Thus, we can 

access the liquid bulk thermal response and we are not limited to the surface measurements as 

is the case for solids. The metallic fixtures, where the alumina plates are placed, are covered 

with a non-reflective tape to reduce any reflectivity artefacts from the high reflectivity-moving 

fixture. The whole system was covered to remove any reflectivity by external surfaces. 

Figure 2.8: Relay lenses setup used to magnify the thermal image. 

 

Microbolometer array 

covering a wavelength 

range of 7-14 µm. 
The focal plane is set on 

the surface of the liquid (in 

yellow) confined between 

two discs of alumina. 

Relay lenses 
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The video acquisition was done at 27 Hz. Faster dynamics would decrease the quality of the 

measurements since microbolometer cameras often are characterized by large response time 

[114]. 

Figure 2.9: Left figure) Random frame from a raw video measurement highlighting the total acquisition 
of the IR sensor (240μm). Right figure) Optical frame from a conventional camera of the experimental 
system (100μm).  

Figure 2.9 shows an example of a typical frame from the video acquisition. On the frame can 

be seen the alumina plates and the liquid placed in between. The alumina plates appear as 

brighter objects (and thus “hotter”), because their emissivity is of about εplate ~ 0.85, while for 

the liquid (glycerol, polypropylene glycol etc.), the typical value of emissivity is εliq ~ 0.9 close 

to a black body. The lower emissivity and the low thermal conductivity of the alumina 

substrates do not pollute the measurements since the value is not high enough to shadow the 

liquid emission. This would be the case if aluminium surfaces were used since the emissivity 

is εAl ~ 0.1.  

 

Figure 2.10: a) The liquid is confined between two high-energy plates (Alumina surfaces). At left, the 
real thermal image of the liquid is viewed at rest from the gap plane (xOz) (63 x 13 pixels (renormalized) 
thermal image of glycerol recorded at room temperature, e = 0.240mm gap). We examine the impact 
of a low frequency (~ Hz) mechanical shear strain on the liquid temperature is studied.  

In Figure 2.10a, we show a zoomed, coloured version of a frame of the liquid from a raw video 

file, as well as the geometry of the shear deformation, which originates with the displacement 

of the bottom plate. From the succession of the frames from an acquisition with the IR camera, 

we generate what we call as 2D thermal mapping. The 2D thermal mapping will be the main 

tool to demonstrate the thermal state throughout the liquid gap. To summarize, in a 2D thermal 

mapping, the x - axis represents the time. Each frame is a snapshot, and the acquisition time of 

each frame is 0.037037s. Thus, frames placed next to each other highlight the evolution with 

time. The y – axis of the mapping details the evolution over the gap, while the colour scale 

highlights the thermal variation intensity. 
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To study the created thermal bands in detail, they are selected as a line usually 3 - 5 pixels wide 

depending on the gap thickness. The extracted value over time is the intensity I. We can derive 

the temperature variation ΔΤ by using the relation 

𝛥𝛵 (𝐾) = 1.8 ∗ 𝛥𝛪 
𝑦

256
 

 where, ΔΙ is the intensity difference and y is a constant that varies from the camera setup 

settings. The typical value for these measurements is y ~ 2.5. The constant value 1.8 is used as 

a compensation of the lost emissivity due to the micro-lens equipped on the IR camera, which 

provides higher detail of the liquid gap (Figure 2.8) and reduced background emission. The 

radial geometry of the plates also contributes on the value, since its curved nature reduces 

emissivity seen by the camera due to focus loss (Figure 2.7).  
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2.4 From shear-elasticity to thermo-mechanical response: 

example of the liquid PPG 
 

New advances in theoretical and experimental aspects of liquid properties showed that the 

liquid state is not a separate intermediate state between solid and gas phases and cannot be 

grouped only in the fluids category along with gas phase. In thermal equilibrium, the liquid 

should have macroscopically a homogeneous temperature (down to the thermal fluctuations) 

without external fields affecting its dynamics. It is conventionally accepted that liquids have no 

ability to propagate any external shear wave, meaning that the shear wave energy will be 

instantaneously dissipated [119]. However, the liquid nature appears more complex and 

exhibits solid-like properties at mesoscopic scale as different theoretical and experimental 

works have shown. These properties are not restricted under extreme conditions like e.g., high 

pressure [120, 121, 122], high frequencies close to inverse of molecular relaxation time [123, 

6, 124] or temperatures close to liquid – solid transition [20]. For different liquids, from water 

to polymer melts, it is shown experimentally that elasticity exists in liquid systems at low 

frequencies for different system scales from nanoscale up sub-millimetre scale [125, 19, 18, 

71]. Moreover, theoretical aspects have suggested the propagation of shear elastic waves on 

low frequency region [30, 85, 77]. All the above acts as a driving force to further investigate 

the elastic properties. In the next two chapters, we focus on the thermal response of the liquids 

under different types of mechanical deformation and try to characterize the seen thermal effect. 

In this section, we will describe the fundamental result of our thermo-mechanical study in 

detail. For this purpose, we will use the results of PPG-4000 of various experimental runs at 

0.100mm - 0.500mm gap thickness, ω = 0.5 - 5 rad/s and γ = 1 - 4000%. The polymer glass 

former polypropylene glycol-4000 (PPG-4000) (H[OCH(CH3)CH2]nOH) (Sigma-Aldrich 

manufacturer), which was studied extensively in this chapter. The molecular weight is given 

3500-4500 g/mol, which corresponds to about 55 repetition units. That means that it is not a 

complex polymer melt with huge polymer chains, but an oligomer.  This is also highlighted 

from its properties. It is a viscous liquid at room temperature ( = 0.8 – 1.3 Pa.s) and its fast 

relaxation time (~ 10-9s) is out of the dynamic range of conventional mechanical tools, while 

its glass transition temperature is at Tg = -73 °C [126, 127]. All the measurements were 

conducted at room temperature, where the compound is in the liquid state far away from any 

critical point. It has low evaporation rate, meaning that during the measurements the loss of 

liquid due to evaporation is negligible and not considered. The samples were prepared for the 

measurements by systematic freezing and defreezing from -18°C. The transition from liquid to 

supercooled state ensures the remove of air bubbles trapped in the liquid state. Bubbles could 

be a considerable problem in rheological measurements since they dissipate part of the offered 

energy during excitations [128, 129]. Of course, the complete removal of bubbles in nanoscale 

is not feasible, but their reduction in size and number is important for greater control of 

experimental conditions. From everyday perspective, PPG and glycerol are used in various 

fields like cosmetics and food conservation.  
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2.4.1 Average thermal variation in the liquid gap  
 

First, we study what is the overall average temperature variation of the measurement during the 

external oscillation.  

Figure 2.11: Average thermal variation of the liquid gap of PPG-4000 e = 0.240mm, ω = 1rad/s, for 

various strain values γ0 = 1250 - 4000%. The zero of the thermal variation corresponds to the 

temperature of the total gap under equilibrium after the applied strain. Orange and black lines 

represent the thermal variation and shear strain respectively.  

In Figure 2.11, we observe the collective response of the liquid gap during the oscillatory shear 

strain. In this measurement type, shear strain amplitude starts from a small value (typically 

around 1%) and increases progressively after repeating few oscillations of certain amplitude 

before it is increased. The thermal noise does not allow to identify a signal until accessing large 

strain amplitudes (γ0 > 500%). 

Above these strain amplitudes (γ0 > 500%), the average temperature is not constant but evolves 

with the strain. The thermal variation appears almost synchronous with strain with δφaverage < 

π/4, while its amplitude increases with the strain amplitude. In figure 3.1, we observe the 

thermal response integrated over the total liquid (bulk response) for six strain values (γ0 = 1250, 

1500, 2000, 2500, 3150 and 4000%). The increase from one strain to another is continuous and 

we observe that thermal variation evolves with it. We see that the average temperature of the 

liquid system oscillates from hotter to colder temperatures than the equilibrium one. An 

important observation is that the thermal wave oscillates with the same frequency as the strain 

wave, implying a direct connection between those two parameters. In this chapter, we will study 

their connection and evolution. During the measurement, conduction between the liquid and 

the plates is possible even though α-alumina has a low thermal conductivity (~30W/mK), but 

it will be neglected, since the focus of this work is the emergent dynamic thermal effect of the 
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liquids. The measurements were conducted in absence of any external heat source and the only 

energy provided to the liquid system is the mechanical one due to shear deformation. 

These results stand of great surprise from a conventional liquid dynamics point of view, where 

the molecular relaxation time is short (~ 10-9s for the liquids used in our measurements). Thus, 

for the excitations applied on the measurements, demonstrated on this chapter, no response is 

expected to be seen since the excitation frequency ωexc = 0.5 – 5 rad/s = 0.08 – 0.8 Hz, is 

considerably slower than the inverse of relaxation time τrel ~ 10-9s, leading to a Deborah number 

De = τrel*ωexc << 1.  

Due to their relatively low viscosity (η ~ 0.9 – 1.4 Pa.s), the liquid exhibits indeed a Newtonian 

behaviour throughout the measurements as seen from their stress-strain relation (δφ = 90º, 

section 2.9), which produces an almost perfect circular Lissajous curve [130, 131]. Another 

indicator is the sin-wave character of the shear stress [132, 133, 134]. The Newtonian behaviour 

can be also derived theoretically from the Reynolds number. For the parallel plate geometry, 

the number is given as [135]: 

𝑅𝑒 =  
𝜌 𝛾 𝑒3

𝜂0𝑅
 

where, ρ is the density, 𝛾  is the shear rate, e the gap thickness, η0 the viscosity and R the radius 

of the alumina plates. For PPG, e = 240μm, shear strain from 0 to 4000% at ω = 1rad/s and R 

= 22.5mm, we calculate that Re = 2*10-5. This value is much smaller than the critical Reynolds 

value, where turbulence occurs, and secondary flows should be considered. From rheological 

point of view, PPG and glycerol exhibit purely viscous behaviour even when the applied shear 

excitation is so large that reaches the limits of the rheometer. 

As the standard description of the tested liquids is a viscous one, we next turn on viscous 

dissipation to interpret the results. For the observation window of the measurement, we do not 

detect any heating of the total liquid gap due to viscous dissipation. To deduce if viscous heating 

might play a role, we will rely on theoretical predictions. Viscous dissipation plays important 

role when the studied material has high viscosity, and the excitation is large [136]. Viscous 

heating is reported and discussed for high viscosity polymer melts [137]. For PPG, no 

systematic study came to our attention. Thus, viscous heating is expected to be negligible for 

our experimental results, but due to the extreme deformations applied, we study theoretically 

the expected viscous heating. PPG-4000 is an oligomer with viscosity comparable to glycerol 

(~ η0 = 1 Pas for PPG, η0 = 1.412 Pas for glycerol). A qualitative approximation of the 

significance of viscous heating might be done with the use of Nahme’s number developed for 

highly viscous fluids (molten polymers) [138]: 

𝑁𝑎 =  𝜂0𝛽ℎ
2𝛾 2/𝜅 <  1 

where η0 is viscosity, h gap thickness,  thermal conductivity, γ̇ is shear rate and β=-(1/ 

η0)(dη/dT) shows the dependence of viscosity with temperature. For the case of our studied 

liquid, the dependence is exponential-like. In our experimental conditions, we get Na ~ 6*10-6 

meaning that the viscous heating is negligible [139]. Based on Nahme’s number, we derived 

that viscous heating is not significant for our experimental conditions and not systematic 

temperature rise is observed in our measurement. A report from A. J. Giacomin et al. [140], on 

viscous heating at large amplitude oscillatory shear predicts the temperature variation of liquid 

due to viscous heating. This theoretical study on large amplitude oscillatory shear flow in 

between adiabatic walls, demonstrates that viscous heating is possible under shear, and it is 

considerable for polymer melts that exhibit high viscosity. However, this work focusses on 
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highly viscous polymer melts, as it is expected for viscous dissipation to be significant. The 

viscous heating consists of two terms, a time-average increase term and an oscillating one.  For 

our experimental conditions, based on their work, we calculate for PPG at ω = 0.5 - 5 rad/s and 

γ = 4000%, the average temperature increase is negligible. However, they predict the existence 

of an oscillating temperature term, which in our case translates to 0.0023 K during the 

mechanical oscillation. The result is one order smaller than the experimentally observed one, 

but the theoretical model does not consider the interaction between the liquid with the substrate, 

and it is based on the classical Maxwell approach of the liquid. Thus, the viscous origin of the 

liquid is unable to describe the origin of the thermal response, which shares the same 

fundamental frequency with the applied shear. Finally, it is very important to point out that the 

thermal signal contains both hot and cold waves. The identification of a cold part is the proof 

that non-dissipative effects take place that are mechanically induced. Correlatively, the hot 

wave should be thus also treated as a non-dissipative effect, both being local non-equilibrium 

thermodynamic states. Therefore, the present observation of a thermal response challenges the 

conventional description in terms of viscous behaviour and fast relaxation time. 
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2.4.2 Generated thermal bands under shear strain periodical 

deformation  

Figure 2.12: a) Micro-thermal mapping (gap view) of a liquid under low frequency oscillatory shear 

strain (room temperature measurements carried out on polypropylene glycol (PPG-4000) at 0.240mm 

gap thickness, ω=0.5 rad/s and γ = 4000% versus time (~679 frames), alumina substrate). Black line is 

an eye guide for the applied strain. b) 3D view of the thermal behaviour of Fig 1a. c) Temperature 

variation versus time Red, blue, green and orange data points represent the temperature variation 

localized at the bottom, middle, upper bands and total volume respectively and the continuous black 

line is an eye guide for the applied shear strain. Δφ is the phase shift between the thermal and strain 

wave.  

In the previous section, we studied the average temperature change of the bulk liquid gap. 

However, the liquid is not thermally homogeneous as seen in Figure 2.12, but is split in different 

thermal regions. Figure 2.12 contains the information extracted from the data treatment. In 

Figure 2.12a, we see the main result of the treatment, the 2D thermal mapping. The thermal 

mapping highlights the time evolution of the effect throughout the gap. The first observation is 

that the temperature of the liquid is not homogeneous along the gap, but bands of different 

temperatures coexist as the phenomenon occurs. These bands dynamically change along with 

the periodic strain. We notice that three thermal bands are created relative to the z – axis (y- 

axis of thermal mapping), which shows the evolution along the gap. Another presentation of 

the thermal effect can be seen in Figure 2.12b. In this one, a higher emphasis on the thermal 

variation is given. We categorize the thermal bands as follows: 

- “Bottom band” for the thermal band closer to the moving (oscillating) alumina plate 

(Figure 2.12a) 

- “Middle band” for the band located in the middle of the gap 

- “Upper band” for the band closer to the fixed top alumina plate 
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We observe that the bands change of temperature depending on the applied strain. Their 

evolution is periodic following the frequency of the applied strain. The thermal evolution of the 

bands can be seen in detail at Figure 2.12c. The figure was created by choosing three (3) pixels 

wide bands, which were located from the 2D mapping. This way, the edges of each thermal 

band were excluded since the border of the bands from each other is not clear. Figure 2.12c 

highlights a thermal variation ΔΤ, where zero was chosen as the temperature at equilibrium for 

each band after the experiment. This way, we deduce when the temperature evolves hotter or 

colder than the equilibrium. We observe that the bottom and upper band oscillate 

simultaneously, and their temperature variation is almost at the same amplitude (Figure 2.12c).  

The thermal variation ΔΤ from the maximum to minimum value in one period is 0.087K for 

the bottom band and 0.07K for the upper band. This variation is symmetric with respect the 

zero thermal variation, meaning that the bands oscillate around zero and achieve colder 

temperatures even if we apply work on the system. While the bottom and upper band oscillate 

with time, the middle band is mostly constant with a thermal variation within the experimental 

error bar. However, for some intermediate strain values the middle band appears to oscillate 

weakly, in an opposite manner from the other bands (Figure 2.13). When the bottom and upper 

bands get hotter, the middle gets colder and vice versa, showing different thermodynamic states 

in the liquid. 

Figure 2.13: Temperature variation versus time for PPG, e = 240μm, ω = 1rad/s, γ0 = 800%: Red, blue, 
green and orange data points represent the temperature variation localized at the bottom, middle, 
upper bands and total volume respectively and the continuous black line is an eye guide for the applied 
shear strain. 

An interfacial effect is expected to exist at some nanometres length, while the thermal bands 

are 50μm wide and around 15-30μm far from the interface. With the present experimental setup, 

a detailed study on the interface is not possible, due to limitations of the IR camera. In our 

experimental geometry, we approximate that the volume of the system is constant on the z-

direction (xy plane), thus the thermal variation of the bands indicates different non-equilibrium 

states of the liquid corresponding to slightly different densities and/or volume changes - on the 

free from walls - directions. In other words, the thermal bands implies that the liquid is locally 

compressible. Following the thermal response, the liquid in parts is compressed and then 

stretched as the shear strain oscillates. The compressed and stretched states of the liquid alter 

each time close to strain absolute maximums. Thus, the liquid remains in a compressed or 

stretched state as long as the shear stress is strong enough to provide the liquid the required 

energy to maintain/increase this non-equilibrium state. Close to maximum strain, the thermal 
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wave relaxes accordingly. With the new applied shear rate in the opposite direction switches to 

the other non-stable state in order to integrate or restore the provided shear energy.   

Figure 2.14: Data points (blue circles) corresponds to the thermal variation ΔΤ within PPG-4000 bottom 

band at 0.240mm, ω = 0.5 rad/s and γ0 = 4000%. The blue dotted line corresponds to a sin fit 𝑓(𝑡)  =

 𝐴0  +  𝐴1𝑠𝑖𝑛(𝜔𝑡 +  𝛿𝜑). 

The above mechanism becomes clearer, if we compare the thermal waves with the periodic 

shear strain and investigate the associated phase shift. The shape of each thermal band in the 

time domain is similar with the applied shear strain deformation. The thermal waves (each 

band) can be modeled by a simple sin wave (in the linear region) as T = T0 sin (t + δφ). In 

analogy with the viscoelastic analysis (Chapter 1), we determine the phase shift which will give 

information about the loss and of the stored energy during the process .In Figure 2.14 can be 

seen an example of the sin fit of the bottom band (which was displayed in fig, 3.3c). We 

calculate that the bands have the same frequency as the applied strain, but with a phase shift 

difference. Specifically, the phase shift is δφbottom ~ 39° ± 3° and δφupper ~ 43± 2°, for the bottom 

and upper bands respectively. We see that the phase shifts of each band are close, meaning that 

the bands are dependent to each other. The phase shift is not random but related with the 

mechanical excitation. Thus, an analogy is possible with a spring (T/ is the equivalent spring 

constant. We observe that the maximum increase or decrease of temperature is at maximum 

displacements (zero velocity) and ends at zero displacement (maximum velocity). This is 

repeated each time, meaning that the temperature variation of each band is related with the rate 

of energy given to the system. As the amount of energy is decreased, the bands are not capable 

to further increase their temperature and after a critical point, they decrease their temperature 

leading to the resulting phase shift. 

To elucidate the origin of the thermal effect, an interpretation is possible if we consider the 

elastic nature of the liquid, since the viscous one fails to explain as seen in the previous section. 

As theoretical reports displayed [29, 90], shear elasticity becomes relevant as the scale of the 

system is reduced as G’ ~ e-3. Thus, the elastic characteristics of the liquid, which are negligible 

at the macroscale, are noticeable even in mesoscale. As example rests the measured shear 

elasticity at sub-millimetre dimensions for low frequency weak oscillations, which vanishes as 

the strain increases. Of great interest are studies that show a continuity of the elastic behaviour 

of the liquid state from the high frequency regime (MHz, GHz) to the low frequency one (Hz) 

[85, 77]. Particularly it proves that shear waves should be able to propagate in the liquid 

medium even at low frequency with propagation length del = cτΜ, where c is the speed of sound 
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of the medium and τΜ is Maxwell’s relaxation time. For PPG and glycerol, we calculate the 

propagation length del ~ 3 – 4μm, meaning that the liquid is not completely blind to the shear 

energy, but could store it. In our study, the only source of energy for the liquid during the 

measurements is the work produced when the plate oscillates. Therefore, the only source of 

energy to the system is a shear one. Thus, the ability of the tested liquid to respond thermally 

to the shear excitation acts as an indirect proof of shear wave propagation in a liquid medium. 

Since, the propagation length is smaller (around 4μm) than the thermal bands (~ 50 – 80μm) or 

the total gap thickness (100 – 500μm), it is expected for the effect to be scale dependent.  

2.4.3 Strain dependence of thermo-mechanical effect 
 

In the previous sections, we displayed an example to introduce the observed thermal effect. The 

generation of bands is systematic for different shear strain values induced to the liquid system. 

 

Figure 2.15: a) Strain dependence of the maximum of the temperature variation amplitude (from 

maximum to minimum temperature) T(K) . Sample: PPG-4000 at gap thickness 0.240mm, ω=0.5 

rad/s, as extracted from the sin harmonic fit for bottom band: (•), middle band: (◼), upper band: (◆) 
and total gap: (▲) respectively - measurements below 400% are below the accuracy. b) Graph 
illustrates the thermal waves at same gap thickness for strain values 1500% (rose points), 2500% (dark 
red points) and 4000% (light red points) of the bottom band (0.240mm gap, ω=0.5rad/s). 

In Figure 2.15a, we show the evolution of the thermal variation (amplitude value from 

maximum to minimum temperature) of each thermal band for different shear strain values. The 

middle band’s thermal variation is much lower for most of the strain values in these 

experimental conditions and thus not depicted in the graph. For intermediate stain values, we 

measure a small periodic variation for the middle band opposite in nature in respect with the 

other two bands. We observe that both the bottom and upper bands and the average of the total 

liquid exhibit a linear relation with strain with a slight deviation of linearity at higher values 

reaching a constant value, where the thermal variation remains constant with strain. From the 

seen linearity, we can define a dimensionless thermo-(strain)elastic constant 

Θshear(T,)=(ΔΤ/Τ)/γ. This constant shows the resulted thermal variation of each band under a 

certain shear strain (stretching) and under a certain temperature value. For our case, all our 

measurements were conducted at room temperature (~ 300K). These values are about Θstrain = 

(6.66 ± 0.5)*10-6 for the hot band (red points) and about Θstrain = (5.83 ± 0.5)*10-6 for the upper 
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band (green points). Due to limitations of sensor resolution, we are not able to directly observe 

any thermal variation for strain values γ < 200%, while for 200% < γ < 800% the thermal 

response is noisy and close to the IR camera error bar. However, utilizing the linear relationship 

(Figure 2.15), we deduce that the thermal mechanism should occur for smaller shear strain 

values, as we suspect that the origin of the effect is an elastic one. The elastic origin of the effect 

allows an analogy with solids. Then, an equivalent of the dimensional constant can be derived 

for metals: Θelongational= (ΔΤ/T)/E  0.45 where E is the elongational strain in the case of steel-

sheets submitted to cycle strain fatigue [141]. The constant Θ is about four decades higher for 

the metal indicating that for the same temperature variation, smaller deformation is needed in 

a solid than in a liquid. The phenomenon encountered in solids is called thermoelastic stress 

analysis (TSA). There, upon applying a periodic strain (load), periodic thermal changes exhibit 

in “opposite” phase with the applied strain [142, 62]. The temperature variation ΔΤ in solid 

thermoelastic processes is given as: 

                                                            𝛥𝛵 = −𝛵0
𝛼

𝜌𝑐𝑝
𝛥𝜎 

where α the linear expansion coefficient, ρ the density of the material, T0 the reference 

temperature and cp the specific heat at constant pressure [62]. In the equation (3.3), we see the 

linear relation of the thermal variation with stress and not with strain as we demonstrate in our 

case. The resulting temperature variation is of the order of 0.001°C, and the resulting stress is 

of the order of MPa. However, the equivalent strain applied to the solids is much weaker than 

the strain applied in our measurements. The strain values that we apply could even cause to 

overcome the yield stress of a solid material, while for our liquid system, such a violent 

displacement is possible. 

 

Figure 2.15b shows the thermal evolution of bottom band for different strain values. The 

thermal evolution over time seems to be constant and equivalent to a sin wave for an excitation 

of ω = 0.5rad/s. We see the resulting thermal response of the bottom band superposed for 

different strain values, meaning that the sin waveform holds true as the deformation is 

increased, showing the linearity of the phenomenon. Thus, we may propose that the temperature 

oscillates symmetrically around its equilibrium, meaning that for a thermal variation of 0.07K, 

the hot and cold parts amplitude have the same value of 0.035K. We observe the periodic nature 

of the effect and its strong connection with the period of the strain deformation, highlighting 

the thermo-mechanical coupling of the studied effect. As the strain value is decreased, the sin 

wave shape of the thermal response becomes noisier, with R-values of the sin fit smaller than 

0.7.  

 

 

 

 

 

 

 

 

(3.3) 



Chapter 2: From shear elasticity to thermo-mechanical effects on 

mesoscopic liquids under oscillatory shear strain  

 

51 

 

 

Strain (%) δφbottom 

(degrees) 

δφmiddle 

(degrees) 

δφupper 

(degrees) 

δφaverage 

(degrees) 

400 3  12 14 

500 4  5 22 

630 5 23 3 8 

800 7 1 12 13 

1000 16 14 19 23 

1250 32  35 33 

1500 27  27 27 

2000 36  39 40 

2500 38  42 42 

3150 41  46 42 

4000 39  43 41 

 

Table 2.1: Phase shift values of the thermal bands and total liquid volume in respect with the applied 
strain for PPG, e = 0.240mm, ω = 0.5rad/s.  

In the Table 2.1, we observe the values of the phase shift of bands and the total liquid system 

(δφaverage) over strain. We see that the phase shift evolves as the strain increased. For strain 

values, where we begin to distinguish thermal oscillations (γ0 = 400 – 800%), we calculate a 

phase shift δφ ≤ 10º for all bands and total liquid volume. As the strain amplitude increases, so 

does the phase shift until it reaches a plateau of 40º – 45º for 2500 – 4000% strain values. This 

value highlights a direct relation between the shear-strain mechanical excitation with the 

resulting thermal response and it is characteristic of a solid-like response. For elastic materials 

like solids or polymers and liquid in the MHz and GHz region, such a behaviour is known as 

an elastic behaviour, while for viscous materials the phase shift is π/4 < δφ < π/2 between stress 

and strain. The observed thermal effect seems not to produce phase shift between thermal waves 

and strain that deviate at maximum from δφ ~ π/4, implying that the seen effect is primarily 

elastic in nature.  

Specifically, at lower strain values, the instant thermal response simulates an elastic response, 

while for higher strain, we observe a viscoelastic behaviour. The saturation of the thermal effect 

is not only observed by the phase shift plateau, but also from the constant thermal variation 

values for large strain values as seen in Figure 2.15a, implying that the excess shear energy is 

not stored after a point and partly dissipates in a higher rate.  
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2.4.4 Frequency dependence of the thermo-mechanical effect 
 

Figure 2.16: PPG-4000 confined in a 240µm gap (gap view), alumina substrate at room temperature 
measurements. a) Real-time mapping of the temperature γ = 4000% (gathering about ~640 frames):  at 

ω = 1 rad/s b) same at ω = 5 rad/s. c) Thermal waves recorded for the bottom (•), middle (◼), upper 

(◼) bands and total liquid volume (♦) respectively at γ = 4000% and  = 1 rad/s. The black continuous 

line illustrates the applied shear strain. d) Same for  = 5 rad/s. Fourier Transform signal of the waves 
depicted of e) Figure 2.12c, f) Figure 2.16c, g) Figure 2.16d.  

Next, we study the thermal effect for different frequencies. On Figure 2.16, we display the 

response for frequencies of 1 rad/s and 5 rad/s. Figure 2.16a & b show the thermal state of the 

whole gap during two oscillations for the same strain value (γ0 = 4000%). We observe that the 

2D mappings are qualitatively similar with the one of 0.5rad/s (Figure 2.12a), as a continuous 

alternation between cold and hot states is observed at top and bottom bands. However, the 

middle “bulk” band does not remain constant as reported in the 0.5rad/s case for 4000% strain 

but alternates its temperature as the frequency is increased. This behaviour becomes apparent 

for ω = 5rad/s, where the middle band oscillates weakly (ΔΤmax = 0.02K) in phase with the other 

bands. Even if the middle band response is weak and far from a sin wave, it shows that as the 

shear rate increases with frequency, the phenomenon propagates to the bulk area. 
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The 2D mapping show that the effect maintains the same characteristics in total, but in detail 

the thermal response differs with frequency. Particularly, the time evolution of the temperature 

deviates from the sin-wave form as the frequency increases. The comparison is evident if we 

compare Figure 2.12c (ω = 0.5 rad/s), Figure 2.16c (ω = 1 rad/s) and Figure 2.16d (ω = 5 rad/s). 

However, this change is not random, but the signal is composed from higher harmonics. As 

seen in Figure 2.16e, the Fourier decomposition of the thermal signal at ω = 0.5 rad/s, shows 

the existence of the first harmonic and a small contribution from the second one. For ω = 1 

rad/s, the contribution from the second harmonic becomes more significant, while a small 

contribution from the third one is noticed. For ω = 5 rad/s, the contribution from the first and 

second harmonic are comparable, while the third one is contributing considerably. The effect 

is not linear with frequency, implying that the liquid is not able to integrate the provided shear 

energy rate as the higher frequency increases, as the oscillating excitation reaches time scale 

close to the thermal relaxation time. Then, non-linear effects take place that leads to the 

generation of harmonics and to smaller thermal variations as seen for ω = 5 rad/s.  

Figure 2.17: a) Strain dependence of the maximum of the temperature variation amplitude (from 

maximum to minimum temperature) T0(K)  versus shear strain as extracted from the sin harmonic 

fit for the bottom (•), the middle (■), upper (◼) bands and total liquid volume (♦) respectively at ω = 1 

rad/s, b) same at  = 5 rad/s. 

From solid point of view, generation of second harmonic wave from a principal shear wave is 

possible, when the fundamental shear wave is considered polarized and the solid is anisotropic 

[143, 144], which stands for the case of the liquid where no periodicity is located. Particularly, 

the second harmonic amplitude scales linearly with the square of the first harmonic. A rise of 

second order shear waves could eventually contribute to double frequency thermal waves. From 

fluidic point of view, the seen thermal harmonics maybe associated with oscillatory temperature 

variation due to viscous heating [140], even though the theoretical calculation is one order 

smaller than the observed variation. 
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Figure 2.18: Strain dependence of the hot part (above thermal equilibrium, filled points) and cold part 

(below thermal equilibrium, non-filled points) of the temperature variation T(K) as extracted from the 

sin harmonic fit for the bottom (•), upper (◼) bands and total liquid volume (♦) respectively at ω = 1 
rad/s. 

In Figure 2.17, the strain evolution of the thermal response is highlighted for two frequencies. 

For ω = 1rad/s, the thermal evolution is similar with the one of 0.5rad/s (Figure 2.15a). The 

thermal variation is increasing with strain in two linear regions (different slopes). The region 

swap takes place at 1500 – 2000%, while the thermal variation values are comparable for these 

two frequencies. A noisy but detectable thermal variation is possible for 400% <γ0 <1000%, 

while for γ0 < 400% no thermal variation is detected within the error bar. All of the above hold 

for bottom, upper band and the total volume, with the bottom band, which is close to the 

oscillating plate to exhibit the higher thermal values for every shear strain. For the middle band, 

the response is too weak close to the error bar and thus a satisfying systematic conclusion is not 

evident for these experimental conditions. In Figure 2.18, we separated the amplitudes of the 

hot and cold parts for the thermal variation, and we see their evolution with strain. In the first 

linear regime, the hot and cold parts are equal since the thermal response is a sin wave, but in 

the next regime, this does not hold. The hot part appears to increase faster, while the cold part 

is decreasing in amplitude. Such a behaviour further strengthens the possibility of viscous 

heating contribution in the thermal signal. As the viscous heating component has double 

frequency, it will increase the hot and cold parts of the signal. In Figure 2.17b, the thermal 

variation for 5rad/s is highlighted. Here, a measurable thermal variation is possible for γ0 > 

1000%. In this case, the bottom band gives a weaker response than the upper band, implying a 

great complexity in the thermal signal. Both bottom, upper band and total volume have a 

quadratic-like increase with strain and no linear region is present as in lower frequency values. 

In overall, the thermal response is weaker in respect with the lower frequencies, meaning that 

due to the fast excitation, the liquid cannot effectively integrate and store the provide energy. 

Finally, a thermal variation is measured for the middle band, which increase appear as linear, 

but it is weak in nature, further confirming that as the frequency increases, higher portion of the 

liquid is affected thermally. 
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Figure 2.19: Thermal waves of bottom band of PPG, e = 240μm, ω = 1rad/s oscillatory motion for a) γ0 
= 1000%, b) γ0 = 2500%, c) γ0 = 4000%. 

As seen in Figure 2.19, the shape of the thermal bands is not constant as the strain is increased 

for the case of 1rad/s. Instead, they progress from seemingly periodic sin waves to periodic 

waves, where the negative (“cold”) part of the oscillation is no more seen, leading to the 

generation of the harmonics. Thus, we notice that the non-linear effect responsible of the 

generation of the harmonics is not connected only with the applied frequency, but also with the 

applied shear strain. Combining these two parameters, we conclude that the shear strain rate is 

the main factor that defines the form of the thermal response when the scale of the system 

remains constant. The shear strain rate is the rate between the deformation that we wish to apply 

(strain) over the time needed for the deformation to be applied. In our measurements shear rate 

is not constant since we do not apply shear flow. It is oscillating from zero at the maximum 

strain values to a maximum value at zero strain. As we increase strain, the desired deformation 

is increased, while with increased frequency, the time needed to reach the desired strain, 

decreases. 

 

Strain (%) δφbottom (degrees) δφbulk (degrees) δφupper (degrees) 

400 13  - 

630 19 26 20 

800 25 26 27 

1000 22 16 26 

1250 25 27 23 

1500 30 31 34 

2000 30 31 34 

2500 31 34 37 

3150 34 35 37 

4000 36 38 40 

Table 2.2: Phase shift values of the thermal bands and total liquid volume in respect with the applied 
strain for PPG, e = 0.240mm, ω = 1rad/s. 

The phase shift between thermal signal and strain follows similar behaviour for ω = 1rad/s. As 

the strain increases so does the phase shift. However, in this case the phase shift starts with 

higher values at low strain and reaches lower values for high strain values (Figure 2.20). As 

seen in Figure 2.20, Table 2.1 and Table 2.2, there is a change of the slope of the phase shift 

with strain at around 1500%, leading to almost stable phase shift. Similar evolution is seen on 

the thermal variation versus strain graphs at around same strain value (Figure 2.15a & Figure 
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2.17a). This could mean that the departure from an elastic-like response (δφ ~ 0) to a non-linear 

viscoelastic-like response (δφ ~ π/4), leads to deviation from the linear evolution of thermal 

variation with strain by increasing dissipation. The above results elucidate that the origin of the 

phenomenon is elastic in nature, while non-linear effects possible viscous and/or elastic in 

nature impede the evolution of the effect. For ω = 5rad/s, the phase shift of the thermal signal 

does not change with strain. However, for this case a detectable signal is possible only for γ0 > 

1000%, which seems to be in agreement with the behaviour of the phase shift for lower 

frequencies at high strain values. The phase shift is δφ ~ 1º ± 15º. The error bar is large at fast 

frequency rate but the phase shift remains always below /4. 

Figure 2.20: Phase shift between thermal signal of bottom band and applied shear strain for PPG e = 

0.240mm, ω = 0.5rad/s (•) and ω = 1rad/s (■). 

The thermal behaviour has shown that the region mostly affected from the shear-induced 

temperature variation is the bottom band, which lies closer to the source of the shear energy. 

However, the top band, which is next to the fixed alumina plate is also affected, but in a weaker 

manner as the ΔΤ(Κ) = f(γ0) graphs show (e.g., Figure 2.17).  Moreover, the two bands oscillate 

almost in-phase, with occasions where the bottom band is in advance of about 4°. This 

discrepancy between the phases of the bands is close to the error bar but seems systematic for 

large thickness (e = 240μm). The in-phase respond of the bands show that the thermal variation 

takes place almost instantly in every region of the liquid, but if we account the measured phase 

shift, the delay is slower than the speed of sound in the medium. For a delay between the peaks 

of the bands of ~ 0.055s, d = 106m. This is expected since the shear wave propagation does not 

take place in the entirety of the liquid but only on the first few μm. However, since the 

propagation of shear takes place for a few μm, we would expect that any response should be 

local. Thus, another mechanism related to the storage of the shear energy and minimization of 

the new total free energy takes place, whose process seems slower in relation to wave 

propagation. The existence of such collective response of the liquid volume suggests that 

liquid’s molecules are long-range correlated [145]. For these kinds of correlations to be 

possible, slower relaxation processes are a necessity to exist. Such processes have been 

indirectly identified with the measured finite low-frequency shear elasticity and continue to 

exist even when the viscous rheological behaviour becomes dominant. Moreover, newly 

proposed theory of collective shear waves based on phase relaxation due to non-affine 

deformations give rise to relaxation times that could be much larger than the Maxwell molecular 

relaxation time [93].   
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2.4.5 Frequency dependence of average thermal variation  

Figure 2.21: a) Average thermal variation of the liquid gap of PPG at e = 0.240mm, ω = 1rad/s, versus 
strain from γ0 = 1250 to 4000%. b) Average thermal variation of the liquid gap of PPG e = 0.240mm, ω 
= 5rad/s, for various strain values γ0 = 2500 - 4000%. The zero of the thermal variation corresponds to 
the temperature of the total gap under equilibrium after the applied strain. The black continuous line 
corresponds to the applied strain.  
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In Figure 2.21, the average thermal response of the whole liquid in the gap is shown for two 

studied frequencies (ω = 0.5 & 5 rad/s). For the thermal oscillation, we observe that the negative 

part of the sin wave is three times smaller of the positive one for both frequencies. However, 

the periodicity of the thermal variation persists and its phase shift from the applied strain is δφ 

< π/4. Through the time scale of the measurements, there is no systematic increase of the 

average temperature apart from its oscillating form. Thus, as expected experimentally there is 

no observed systematic temperature rise (time average). The constant generation of stable 

thermal waves of the overall liquid system shows that it remains in non-equilibrium states as 

long as the shear strain is changing, and thus different energy rate is provided. This observation 

is in agreement with thermal diffusion time of the liquid in this scale, which is of about 0.82s 

based on τth.rel. ~ e2/D (DPPG = 0.07 mm2/s). Thus, for the overall thermal variation to return to 

equilibrium state due to thermal diffusion of the acquired thermal energy, we would need slower 

mechanic excitation (ω < 0.01 rad/s) but in such a case the amplitude of the thermal signal 

would be also weaker. 
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2.4.6 Highlighting strain and gap dependences of thermo-mechanical 

effect 

Figure 2.22: PPG-4000 confined (gap view), alumina substrate at room temperature measurements. a) 
Real-time mapping of the temperature γ = 2500% and ω = 1 rad/s (gathering about ~640 frames):  at e 

= 340μm b) same at e = 150μm. c) Thermal waves recorded for the bottom (•), middle (◼), upper (◼) 

bands and total liquid volume (♦) respectively at γ = 2500%,  = 1 rad/s and e = 340μm. The black 
continuous line illustrates the applied shear strain. d) Same for e = 150μm. e) Strain dependence of the 

maximum of the temperature variation amplitude (from maximum to minimum temperature) T(K) 

 versus shear strain as extracted from the sin harmonic fit for the bottom (•), the middle (■), upper 

(◼) bands and total liquid volume (♦) respectively at e = 340μm, f) same at e = 150μm.  

In Figure 2.22, we observe the thermal response of PPG for different gap thicknesses, e = 

340μm (Figure 2.22a, c & e) and e = 150μm (Figure 2.22b, d & f). The 2D mapping for e = 

340μm (Figure 2.22a) shares common behaviour with the one of e = 240μm (Figure 2.16a). A 

key difference is seen for the middle band, where for e = 340μm it appears to be larger in width. 

Nevertheless, its temperature does not change in a noticeable amount, if we consider that the 

band is stable in the y – axis position, as we do when measure each thermal band. If we consider 

that, the bands position may change then we notice a more considerable thermal variation (light 

blue to light green/white colours). This thermal variation is opposite in nature of the other two 

(a) 

Gap 

Time 
ωt 0 π 2π 

Upper band 
Middle band 

Bottom band  

0.1 

-0.1 

e=340μm ΔΤ(K) 

Oscillating plate 

Fixed plate 1rad/s 1rad/s e=150μm 

ωt π 3π 2π 

(b) 

(c) 

 

 

 

(e) 

 

(d) 

 

(f) 



Chapter 2: From shear elasticity to thermo-mechanical effects on 

mesoscopic liquids under oscillatory shear strain  

 

60 

bands (bottom and upper bands). When the middle band is cooling, then the other bands are 

heating and vice versa. The thermal waves of bottom, upper bands and total volume maintain a 

sin wave shape even for the highest strain possible for this gap thickness. For e = 150μm (Figure 

2.22b), the thermal mapping appears similar to Figure 2.16b, for e = 240μm, ω = 5rad/s. Thus, 

even for less violent excitations as the gap thickness is decreased, the relatively stable bulk 

band is diminished and establishes a weak behaviour but similar with the upper and bottom 

bands. The only difference comes to the thermal wave shape, which resembles a sin wave 

(Figure 2.22d), even if the cold part of the oscillation is weaker than the hot part. 

The strain dependence of PPG for e = 340μm (Figure 2.22e) is similar to the one of e = 240μm 

(Figure 2.17a). We notice a linear region for γ0 = 500 – 2000% and a decrease of the slope after. 

Unfortunately, the restrictions of the rheometer do not allow us to increase further the strain. 

For e = 150μm (Figure 2.22f), we notice the same linear region for γ0 = 500 – 2000%, but the 

expected second linear region has a zero-value slope instead of a smaller one, meaning that 

after a threshold, non-linear effect halt the temperature variation. The above stand for the 

bottom and upper bands as well as for the total volume. However, for e = 150μm, we also 

measure a weak but stable thermal response for the middle band for γ0  2000% yet again.  

Figure 2.23: a) Thermal waves recorded for the bottom (•), upper (◼) bands and total liquid volume (♦) 

respectively at γ = 4000%,  = 1 rad/s and e = 100μm. The black continuous line illustrates the applied 

shear strain. b) Strain dependence of the maximum of the temperature variation amplitude T(K) (from 
maximum to minimum temperature) versus shear strain as extracted from the sin harmonic fit for the 

bottom (•), upper (◼) bands and total liquid volume (♦) respectively at e = 100μm. Inlet: FFT analysis 
of the thermal response of the bottom band for γ0 = 2500%. 

As the gap thickness of the system is reduced, its thermal response alters. In Figure 2.23a, we 

can observe by eye the existence of harmonics. However, in this case we observe a double pick 

of the maximum temperature, while the cold part is left mostly unaffected. Moreover, the two 

maxima correspond to zero strain value, where the velocity of the liquid is larger, hinting a 

viscous heating contribution. Nevertheless, as seen in Figure 2.23b inlet, the thermal variation 

varies from a sin-form and second and third harmonics are identified in the signal. Thus, it is 

possible to obtain harmonics in the thermal signal not only be increasing the frequency of the 

excitation but also by decreasing the scale of the system. This behaviour implies that as the 

scale decreases the liquid cannot integrate the energy from slower excitation, meaning that its 

thermal relaxation time is increasing. This result is contrary to that thermal relaxation τth.rel. ~ 

e2/D, where D is thermal diffusion, reduces with decreasing the scale of the system and implies 

that existence of longer thermal relaxation times. 
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In Figure 2.23b, the strain dependence for e = 100μm is shown. The linear relation of thermal 

variation and strain is observed for this gap thickness too and a new region is observed at γ0 > 

2000%, where the thermal variation appears to decrease with strain. We conclude that the 

generated non-linear effects that lead to higher harmonics signal, are capable to even reduce 

the generated thermal variation under certain circumstances, like reducing scale, increasing 

deformation or/and increasing frequency. We should note that the maximum thermal variation 

|ΔΤ|max ~ 0.1K is seen for every gap thickness value, thus no strong relation between gap 

thickness and the maximum value of temperature oscillation can be concluded. The fact that 

|ΔΤ|max is constant with scale shows the limits of the liquid in terms of shear energy integration 

before exhibiting any non-linear effects. However, this thermal maximum is reached at different 

strain values for different system scale, meaning that sample volume plays a decisive role.  

Figure 2.24: Linear region of strain dependence of absolute value of thermal variation of the whole 
volume (half of maximum to minimum temperature) for a periodic strain excitation of ω = 1 rad/s. Red, 
blue green, orange and pink points correspond to gap thickness of 100μm, 150μm, 240μm,340μm and 
500μm respectively. The straight lines correspond to the respective linear fits.  

As mentioned, the thermal response is linear at γ0 ≤ 2000% for the gap thicknesses studied in 

this chapter.  

The behaviour is consistent, but the rate of average thermal variation increase is dependent on 

the gap as seen in Figure 2.24. From this linear region, we calculate the thermo-(strain)elastic 

constant Θshear(T/T,)=(ΔΤ/Τ)/γ and receive the table below: 

e (μm) Θshear(T/T,) (x 10-6) 

100 5.5 ± 0.5 

150 5.3 ± 0.3 

240 3.3 ± 0.2 

340 3.4 ± 0.3 

500 3.1 ± 0.3 

Table 2.3: Thermo-(strain)elastic constant Θshear(T,) as measured for different gap thicknesses for 
PPG at ω = 1rad/s. 
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We notice that Θshear is evolving with gap thickness. As the gap thickness decreases the Θshear 

increases. This is also observed from the fact that for the same shear strain value, the thermal 

variation increases with decreasing the gap thickness as seen in Figure 2.24. This behaviour 

appears to be in agreement with the notion to characterize the seen thermal effect as a thermo-

elastic one.  

 
Figure 2.25: Influence of the gap size: Strain dependence of the amplitude of the thermal wave at ω = 
1 rad/s at different gap thicknesses (values determined from the bulk thermal variation in the harmonic 
regime). Red, blue green, orange and pink points correspond to gap thickness of 100μm, 150μm, 
240μm, 340μm and 500μm respectively. The straight lines correspond to the respective linear fits 

assuming a thermoelastic behavior (T->=0 = 0). The insert shows the evolution of the temperature 

variation normalized by the strain (slope value) versus gap (µm). The dotted line is a L-3 fit of T->=0/0 
pointing out the analogy with the predicted evolution of the shear modulus [29]).  

As reported recently, not only the low-frequency shear modulus G’ is measurable for simple 

liquids (e.g. water, glycerol) [23, 22], but also the shear modulus follows a scaling law G’ ~ e-

3 [29, 90], meaning that for standard liquids, its elastic nature is more evident as the scale of the 

system is decreased, which is in agreement with the presented results. If we consider zero 

thermal change at zero strain, then we receive the points seen at Figure 2.25 inset and we see 

an e-3 evolution for the ΔΤ/γ0(e) slope. Another parameter to be considered for the tendency of 

increased slope is the volume of the system. As the volume is decreased, smaller and smaller 

quantity of liquid will incorporate the same given shear energy (same strain), giving a higher 

thermal response. This parameter would be considered for gap thicknesses, where the bulk 

middle band is not present (e ≤ 150μm). The vanishing of the thermal effect at large scale is in 

agreement with the common observation of absence of noticeable thermal macroscopic effects. 
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2.5 Large gap thickness thermal response 
 

In the previous section, we observed that the thermal response is related to the scale of the 

system for PPG. With higher thickness, we get weaker thermal response. Here, we will show 

that the scale dependence seems to be generic also observable for the case of glycerol.  

Figure 2.26: Thermal 2D mapping of glycerol for a) e = 1.1mm, ω = 1rad/s, γ0 = 500 - 800%. 

In this section, we study the thermal effect at higher scale. In Figure 2.26, are displayed the 

thermal evolution of glycerol at e = 1.1mm. We notice that the temperature does not change 

during the periodic strain oscillation except from the area close to the oscillating bottom plate. 

However, the thermal oscillation is weak and observable only at the highest strain value 

(800%), making difficult to conclude if a systematic thermal oscillation is possible at such gap 

thickness (Figure 2.26). As the thermal effect is not observed for high gap thickness, it is 

deducted that the effect is scale dependent since its response becomes greater for smaller 

excitation as the scale of the system is reduced. Of great interest would be if we implement 

higher strain values to large gap thickness systems, which is not feasible with the present 

instrumentation.   
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2.5.1 Stability of thermal signal 
 

Next, we study the stability of the thermal effect. We set an example as seen on Figure 2.27 of 

PPG-4000 at almost 1mm thickness and frequency of 1 rad/s. We notice that the gap thickness 

is large and thus the thermal response is weak relatively to lower gap. Specifically, the 

minimum to maximum amplitude is about 0.015K for the bottom band closer to the moving 

plate, further confirming the gap dependence of the thermal effect. For the other two bands 

(middle and top), we observe that the thermal variation is even more limited to 0.01K.  

Figure 2.27: Thermal response of PPG-4000 at e = 918μm, ω = 1rad/s at 3150% and 4000% strain values. 
a) Measurement before continuous shear rate. b) The same measurement after the liquid was 
subjected at a shear rate of 15s-1 for 180s.  

Later, we subjected the liquid under continuous shear rate of 15s-1 for 180s and then we 

conducted the same oscillatory measurement (Figure 2.27b). We observe that the thermal 

response of the whole gap does not change and remains nearly similar after the pre-shear. This 

result could be in agreement with the fact that the liquid responds thermally for different gap 

thicknesses even though at each gap thickness the oscillatory shear strain is large enough to 

make the liquid flow (e.g., solid-liquid slippage, liquid-liquid interfacial slippage due to 

generated shear bands). This stability of the thermal measurements seems to challenge the 

apparent viscous response measured by rheology at large strain amplitudes; shear elasticity 

measurements where the generated slippage due to high shear will be sufficient to destroy the 

transmission of stress from the moving plate to the liquid and thus elastic modulus would be 

devaluated or even immeasurable. Thermal measurements can consistently show an elastic 

response, without perfect conditions being present.  
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2.6 Time evolution of the thermo-elastic effect 
 

Figure 2.28: Time evolution of thermal response of bottom band close to oscillating plate in relation 
with applied shear strain. Glycerol, e = 240μm, ω = 1rad/s, γ0 = 3500% for 600s. Alumina plates diameter 
d = 40mm. 

Another question rises if we wonder about the time evolution of the thermo-mechanical effect 

studied in this chapter. In Figure 2.28, we see an example of a time experiment where we 

applied an oscillation shear strain γ0 = 3500%, ω = 1rad/s to a glycerol sample of e = 240μm 

enclosed between two alumina plates of diameter d = 40mm. Unlike the strain sweep 

experiments where the strain was increasing every two to three oscillations, here we start 
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instantly with a very large shear strain value and apply this value for a long time. We notice 

that the bottom band first is heated and for the first oscillations the phase between the thermal 

response and the strain is different from the one reported in this chapter. Instead of the thermal 

response to be in advance of the strain is in arrears (δφ ~ 50º). However, this behaviour does 

not appear to be constant. As we notice from the time progression in Figure 2.28, the phase 

shift is not constant but changes with time. Specifically, the phase shift is decreased gradually 

to zero value and then increases again but on the opposite side where the thermal response is in 

advance of strain, restoring the general picture that we observed during the various strain sweep 

measurements. Within the error bar of the measurement, we deduce that the thermal variation 

does not change even 10 minutes after the start of the oscillations, with the maximum thermal 

variation (from maximum to minimum values) being around 0.06 – 0.07K. However, we should 

keep in mind that the studied thermal band could displace slightly within the gap, while for this 

demonstration it was considered as spatially fixed over time. The constant nature of the thermal 

variation is also observed at the total volume response (Figure 2.29) and remarks the stability 

of the thermal effect. We notice that the waveform of the thermal response is not exactly a sin 

one but an asymmetric sin wave. The slope of the temperature increase region is bigger than 

the slope of the cooling counterpart. This mechanism is more noticeable at the response of the 

total volume of the same experiment (Figure 2.29). This implies that the thermal response is a 

non-linear one. However, the stability of the thermal response is maintained, showing that non-

linear effects emerge when the offered shear energy is over the limit that the liquid can accept. 

The limit is constant when the parameters do not change, like in this time measurement, but 

changes with scale. On the last graph of Figure 2.28, we record the end of the measurement. 

We observe that the rheometer stops the measurement at a random strain value since we are 

unable to impose the value ourselves. However, at this certain value, the band temperature is 

out of equilibrium. As soon as the strain is stopped (vertical black dotted line), the temperature 

appears to relax in an exponential manner to its equilibrium value. This result shows the 

existence of relaxation time of the thermal effect. A more in detail study will follow in the next 

chapter. 

Figure 2.29: Evolution of thermal response of the total volume of glycerol at e = 240μm, ω = 1rad/s and 
γ0 = 3500%. Red, blue and green line correspond to thermal oscillations at t = 0s, t = 300s and t = 580s 
from the start of the shear strain. 

An interesting result was observed for a measurement of same experimental conditions but 

shorter in duration (Figure 2.30). Here is noticed that the thermal response of the bottom band 
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is not a sin wave but a complex harmonic one. A significant change in respect with the Figure 

2.28 is the behaviour of the temperature at the start of the excitation. We first notice an increase 

of the temperature at the strain onset observed at the same strain for the two examples. 

However, in the second case, a strong cooling is achieved before the heating while in Figure 

2.28, only a hint of a cooling is observed. This could mean that the established thermal response 

could be dictated by the initial response of the system. In Figure 2.30, there is no observed 

phase shift, while the temperature variation is constant during the measurement with value at 

approximately 0.04 - 0.05 K. Figure 2.30 shows a slightly different mechanism of the thermal 

response from the one described initially and strongly resembles the response at lower 

thicknesses (Figure 2.23). The thermal response does not follow in this case the direction of the 

moving plate by increasing or decreasing continuously from minimum (negative) strain to 

maximum (positive) strain or vice versa, as reported in the majority of the reported responses. 

Thus, instead of one maximum and one minimum of the temperature along one period, two 

maxima and two minima are reported. The maximum values are achieved a little before zero 

strain, while the minimum temperature little before we arrive at peak strain value (as an absolute 

value). Thus, when the shear strain is increased (from zero to maximum value), the liquid 

decreases its temperature (stretching phase), while on the opposite direction it increases its 

temperature (compressed phase). The tendency to this behaviour is the main reason of the 

created harmonics. However, the behaviour is not observed if frequency or/and system scale 

requirements are not met because it is not favoured from energy point of view. To change the 

state of the liquid from a compressed to stretched state or vice versa, while the liquid has 

established maximum velocity at zero strain should be more costly from a change of 

thermodynamic state when the liquid is immovable temporally at maximum strain.   

  

Figure 2.30: Time evolution of thermal response of bottom band close to oscillating plate in relation 

with applied shear strain. Glycerol, e = 240μm, ω = 1rad/s, γ0 = 3500% for 35s. Alumina plates diameter 

d = 40mm. 
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2.7 Thermal response of glycerol and strain dependence: 
 

Figure 2.31: Strain dependence of the maximum of the temperature variation amplitude T(K) versus 

shear strain as extracted from the sin harmonic fit for the total liquid volume of PPG (•) and glycerol 
(◼), at e = 100μm and ω = 1rad/s. 

The glycerol (C3H8O3) is a well-known liquid due its extremely wide range of uses and its 

biocompatibility. It is a glass former which exhibits at room temperature of viscosity (η= 1.41 

Pa.s) and glass transition temperature at Tg = -93 °C. The molecular relaxation time (~ 10-9s) is 

far away from the dynamic range of mechanical tools, being accessible by Brillouin scattering 

at 7 GHz [146, 147]. In Figure 2.31, we observe the thermal response of the total volume for 

glycerol and PPG. It appears that the thermal response of glycerol is weaker than the one of 

PPG and it is more difficult to detect it as the strain value decreases. Then why the thermal 

amplitude appears different if glycerol and PPG have similar viscosity values (1.4Pas to 

0.98Pas respectively) and are both glass formers? What we could hypothesize, is that the 

interaction of glycerol molecules is different since PPG is an oligomer with polymer chains 

consisting of 68 repetitive units. This extra cohesion granted to PPG could possibly be 

responsible for this discrepancy of their thermal variation amplitude difference. 
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2.8 Thermal response of water 
 

In this section, some measurements were conducted on liquid water. However, water plays a 

dominant role in everyday life, especially to biology, where all body liquids have water as their 

main ingredient. Thus, its study is of great interest. Water (H2O) is a hydrogen bond polar 

molecule. At room temperature, its viscosity value is 0.89*10-4 Pa [148]. The relaxation time 

of water is of 10THz [149]. 

Water stands also as a great challenge to the thermal measurements due to its evaporation. 

Since, water has a high evaporation rate and the volume of liquid used small, the measurements 

should be conducted rapidly.  

Figure 2.32: Thermal waves exhibited by a liquid water layer confined between wetting surfaces (gap: 
200 µm, 1 rad/s, 4000%). Green, red and blue lines represent upper, bottom and middle waves 
respectively. The yellow line shows the average thermal variation in the layer (alumina substrate, room 
temperature measurements). 

In Figure 2.32, we observe the thermal response of water at thickness of 200μm and frequency 

of 1 rad/s. From the 2D thermal mapping (Figure 2.32a), we notice that the response to an 

oscillatory motion stands similar in respect with PPG-4000 and glycerol. We observe that the 

established thermal bands are two and are of the opposite nature in accordance with [150]. Top 

and bottom band oscillate in a synchronous matter, but they have opposite temperature 

response. This can be seen from the Figure 2.32b. Here, we observe that top and bottom bands 

oscillate with minimum to maximum variation of around 0.01K with the maxima and minima 

of the bands being synchronous. For smaller strain values, a thermal response is not detected 

within the experimental error bar. Lastly, the average temperature change in the water seems 

not to oscillate over time (Figure 2.32c), which is in agreement with the observation since the 

thermal bands compensate each other. Such a result means that in average, water does not 

change its average temperature, with this not being the case locally, where thermal bands can 

be generated when the conditions are appropriate. It also shows that the liquid can generate 

different thermal behaviors with different band locations, but all keeping in time and/or in 

space, the average sample temperature unaffected (in the linear range of strain amplitude). 
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Figure 2.33: Thermal response of water of e = 150μm, ω = 10 rad/s at 4000% oscillatory strain value. a) 
2D thermal mapping for γ0 = 4000%. Dashed vertical line shows the moment where the strain stops. b) 
Bottom band. c) Top band. d) Middle band. e) Average bulk response. 

Next, we study the thermal response of water for 10 rad/s (Figure 2.33) for e = 150μm. This 

high frequency value is of interest since it corresponds to average heartbeat rate, and we know 

that blood plasma contains about 90% of water. We observe a slightly different thermal 

response, where two thermal bands are generated (Figure 2.33a). However, in this case the 

thermal bands are well defined spatially and not fluctuate at different height over time. The 

temperature amplitude of the bands and average bulk scales from 0.015K – 0.035K for strain 

values from 2000% - 4000%. The thermal bands exhibit harmonics as in the case of PPG-4000, 

5 rad/s, meaning that frequency plays like strain an important role in the thermal response. We 

notice that the thermal variation is of the same amplitude as the 1 rad/s, further showing that 

there is a maximum temperature variation, which is not strongly dependent on the frequency of 

the excitation. The phase shift of the thermal bands is about zero, like PPG-4000 5rad/s, 

meaning in-phase elastic behaviour, which deviates from the case for slower dynamics (e.g., 1 

rad/s). The average thermal variation of the bulk does not exhibit any oscillatory change. These 

thermal changes observable for high frequency (10 rad/s), are of interest to study since the 

experimental conditions are close to blood plasma circulation that contains 90% of water of 

blood vessels of various diameter from μm to cm. It reveals that even if the water has low 

viscosity, is still capable to express elastic collective behaviour. Of course, a more detailed and 
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elaborate set of experiments is needed to reach definitive conclusions. However, with the 

present experimental setup, an extensive and accurate study of liquid water under slow 

(relatively to the molecular dynamics) mechanical excitation is limited without evaporation rate 

control. For this reason, a more elaborate system should be used, and a possible candidate is a 

standard microfluidic channel. The microfluidic channel is closed, preventing evaporation and 

various channels with different widths and heights can be created. A consideration is that the 

top view of the chip should be transparent (fully or partially) to infrared radiation, for the 

acquisition of the thermal response. 
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2.9 Mechanical response 
 

2.9.1 Shear stress and thermal waves 
 

Figure 2.34: Storage and loss moduli of PPG-4000, e = 100μm, ω = 0.5rad/s, wetting substrate 
conditions (alumina). a) Shear strain dependence of the moduli. Left insert: Shear strain and stress 
evolution with time for shear strain amplitude in the elastic regime. Right insert: Shear strain and stress 
evolution with time for shear strain amplitude in the viscous regime. b) Strain dependence of storage 
and loss moduli of PPG-4000, e = 240μm, ω = 1rad/s.  

Figure 2.34 displays the strain-stress viscoelastic spectrum of PPG4000 at 1 rad/s and confined 

geometry (using the wetting protocol with alumina substrate). A shear elastic plateau is 

identified at low strain amplitude, visible at 100µm and almost at 240µm [23]. As seen in Figure 

2.34a, a shear elastic response is detected from small strain values up to 100% applying a low-

frequency excitation much smaller than then inverse of the basic relaxation time as defined 

from Maxwell theory (~ 10-9s). The elastic modulus is relatively constant in this area and greater 

than the viscous modulus (elastic regime); i.e., the stress response is nearly in-phase with the 

strain wave (left insert of Figure 2.34a). As the strain value grows, the liquid loses its ability to 

resist flow, as seen from the rapid decrease of the measured elasticity (viscous regime – right 

insert of Figure 2.34a).  

The regime at which the thermal waves are detected is at large strain amplitudes. It corresponds 

to a regime, where the shear elasticity is not accessible since the measurement indicates that the 

flow behaviour is dominant. Our main thermal observations are carried out in the so-called 

viscous regime of high shear strain (>250%), in a region where the flow (viscous) behaviour 

dominates (Figure 2.34a, thermal waves regime). How to conciliate the apparent viscous 

response and the identification of a thermal response? Even if shear elasticity is not dominant 

in the conditions of the thermal effect observation, being able to measure a finite shear elasticity 

value at low strain is important. It means that the shear elasticity at low-frequency regime and 

gap values below 200µm is not zero but finite. In other words, the viscous regime at large strain 

amplitudes might be the “strain-thinning” of the initial elastic response. Does it mean that the 

initial elasticity is strain-melted or that the viscoelastic measurement is not adapted to identify 

shear elasticity at large strain? 
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Since the thermal waves exhibit characteristics of an elastic-like mechanism (section 2.4.2), it 

might be possible that the elastic nature of the liquid is revealed via its thermodynamic state.  

We are not in a position to provide an experimental answer about the thermal response at strain 

amplitude lower than < 250%. However, we cannot conclude that no response exists in this 

region, because of the linear dependence of the thermal signal with respect to the strain 

amplitude, also verified at different gap thicknesses (Figure 2.25), the thermo-mechanical is 

proven to be linear. Thus, a thermal response may be present, but not detected due to the thermal 

noise limitation of the IR setup. As seen, there is a general tendency suggesting that the thermal 

response tends simply linearly to zero strain.  
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2.9.2 Shear and normal stress variations during thermo-elastic effect: 
 

As mentioned in the previous section, the thermal waves are observed for in the high shear 

strain regime (from 350% to even 9500%) amplitudes. This range corresponds typically for 

large amplitude oscillatory shear measurements to values that reach the rheometer’s limits at 

the certain gap thickness. At these strain values, the shear stress indicates the viscous response 

as seen from its mechanical response (Figure 2.34 and Figure 2.35a) 

Figure 2.35: a) Strain, normal stress and shear stress variations for PPG 0.340mm at ω = 1rad/s and γ = 

1500%, where thermal waves relate to sin waves (only fundamental harmonic). The shear stress is /2 
phase shifted with respect to the strain signal. b) Details of the normal stress (mPa) and shear stress 
(Pa) signal for PPG 0.340mm at ω = 1rad/s and γ = 1500%.  

In Figure 2.35, the mechanical response of PPG is highlighted at relatively high strain (γ = 

1500%), but within the linear region of thermal variation (see Figure 2.25). In Figure 2.35a, we 

compare the shear stress and the normal stress variations recorded during the thermal 

measurements detailed in 2.4.6. The stress response is a sin wave in advance with the strain 

wave, sharing the same frequency and a relative phase shift at around 90º. This is a typical 

viscous behavior, meaning that the stress behaviour is the standard one of a Newtonian liquid 

under low-frequency oscillatory shear. However, we have observed that in this flowing regime, 

the mechanical energy partially converted in thermal bands. This means that the conventional 

rheology is unable to detect internal stress changes revealed by the temperature differences, the 

bands should possess different stress states form each other.  

The normal stress variation is below the rheometer accuracy. However, they seem oscillate 

periodically. Its relative phase shift to strain is approximately 90º, meaning that it is on phase 

(but opposite amplitudes) with the shear stress. The maximum variation of the normal stress is 

less than 2% (~15mPa) in comparison with the variation of shear stress, meaning that the 

normal stress response is weak and negligible. The examination of the normal stress is 

nevertheless interesting. First, it confirms that the origin of the thermal waves is not due to any 

parallelism defect and thus the shear stress is at the origin of the thermal effects. 

Second, variations of normal stress are known within the context of vorticity banding seen in 

soft matter materials [97, 98]. In this case, bands of different stress states exhibit under shear 

rate giving rise to a normal stress. We could view our system in a familiar manner since the 

thermal bands are areas of different stress states. In these measurements, we are able to measure 
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the normal and shear stress over the whole volume and not for each band individually. 

Moreover, the measured normal stress is below the sensor limitation. How to understand the 

absence of significant normal variation in our case?  Actually, we have also observed that these 

different thermal states balance each other to minimize the total free energy. As a result, the 

nearly instantaneous compensation of the stresses (visible by the superposition of hot and cold 

bands in the thickness) diminishes strongly the global bulk stress, minimizing the normal stress. 

We show in the next chapter that it is no more the case in the conditions of a step strain 

experiment. 

In Figure 2.36a, we show the evolution of the normal force with strain as second thermal 

harmonics develop (Figure 2.36c). We observe generated harmonics as well for normal force 

with peaks at shear stress minimums and maximums (zero strain points), thus maintaining its 

relation to shear stress as in Figure 2.35. When, third thermal harmonics develop (Figure 2.36b, 

d), the normal force seems to be in phase with the thermal waves and deviates its response from 

the shear stress, which maintains its conventional π/2 shifted sin-wave form. At higher scale 

(0.240mm), part of the energy is dissipated on the bulk, allowing a smoother transition of 

temperature by maintaining an almost thermal sin-wave form, while at smaller scale dissipation 

on the liquid volume becomes restricted. When third thermal harmonics exhibit, the normal 

stress variation becomes non-linear, similar to the rise of normal stress of solids under shear, 

known as Poynting effect. Reports on the normal stress variation under shear strain is observed 

mainly on solids [151, 152, 153], while new reports highlight negative normal stress in 

biopolymer gels [154] that could eventually lead to rearrangement processes of the chain due 

to failure [155]. The present results hint that thermal variation, shear stress and normal stress 

may be connected as balance mechanisms. All the parameters are quantities that elucidate the 

efforts of the liquid to minimize its total free energy during the integration of the given shear 

energy by creating unstable non-equilibrium thermodynamic states prioritizing the regions near 

the interfaces. However, we should point out that shear and normal stress are measured over 

the whole liquid volume, and it is not possible to measure the stress of an individual thermal 

band, thus making the connection between stresses and thermal waves difficult. Moreover, 

great attention should be given on the normal stress since it is below the sensor limitation.  
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Figure 2.36: a) Normal and shear stress signal for PPG 0.240mm at ω = 1rad/s and γ = 2500%, where 
the thermal wave develops second harmonic. b) Same for 0.100mm, where the thermal wave develops 

second and third harmonics. c) Thermal waves recorded for the total liquid volume (♦) at γ = 4000%,  
= 1 rad/s and e = 240μm. The black continuous line illustrates the measured normal stress. d) Same for 
e = 100μm.  

A great challenge for the described thermal effect is the understanding of the stress in the 

different thermodynamic regions in the liquid. We are unable to measure the stress state of these 

regions since the measured shear stress is over the whole volume. Moreover, at high shear strain 

values slippage interfaces are generated between the liquid and substrates or even within the 

liquid, further reducing the measured stress. Deviation of the shear stress from the viscous 

conventional response was not reported (Figure 2.35). However, we observed weak changes on 

the normal stress (Figure 2.35), which may be coupled with the shear strain as discussed in 

previous paragraphs. A connection between normal stress and thermal variation is observed 

from the thermoelastic theory. The simple equation of stress in a thermoelastic isotropic solid 

is given as [49]: 

𝜎𝑖𝑗 =
𝜈𝐸

(1 + 𝜈)(1 − 2𝜈)
𝜀𝑘𝑘𝛿𝑖𝑗 +

𝛦

1 + 𝜈
𝜀𝑖𝑗 −

𝛼𝛦

(1 − 2𝜈)
𝛥𝛵𝛿𝑖𝑗  

where, εij  is the strain tensor, σij the stress tensor, εkk the dilatational components, E the bulk 

modulus, ν the Poisson ratio, α thermal expansion coefficient. This equation proposes that the 

volumetric strain εkk is the connection between thermodynamics and mechanics and relates 

temperature change with the normal stresses. To clarify, the above equation is not expected to 

stand true for the case of liquids in this form since other parameters should be taken also into 

account for the scale dependence of the thermal property, in mesoscopic liquids but stands as a 

(c) (a) 
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starting point to understand the mechanism of the seen thermal effect. Even if the measurements 

are below the device resolution, an interesting comparison might be attempted since in some 

cases, normal stress and temperature variations show similar harmonic evolution, since both 

normal stress and temperature seem to show harmonic behaviour (Figure 2.36). As shown in 

[44], at high shear amplitude, normal stresses are possible to generate with double the frequency 

of the excitation. These normal stresses could be connected with the oscillating part of 

temperature rise due to viscous dissipation [140], which also share the same frequency as the 

normal stresses. Thus, we may assume that the generated even harmonics (in our case, we 

identified only the 2nd harmonic contribution) of the thermal signal could relate to dissipation 

processes, while the odd harmonics with elastic processes (like Poynting effect). As mentioned, 

the measured normal stress is over the whole volume and below the limitation of the sensor, 

but nevertheless its evolution with the scale and its apparent connection with the evolution of 

harmonics of the thermal bands may hint that the described thermal effect is viscoelastic in 

nature.  
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Chapter 3 Thermo-mechanic response under step 

shear strain and thermal relaxation mechanisms 
 

In the previous chapter, we studied the thermo-mechanical response of fluids under oscillatory 

shear. When the motion stops, the moving plate goes back to its equilibrium position. As the 

equilibrium position is reached, the temperature of the thermal bands tends to its equilibrium 

temperature position. As described in Figure 3.1, the temperature (here bottom band) relaxes 

rapidly to the equilibrium temperature when the motion stops. However, we notice that its 

relaxation differs with gap thickness. For large gap thickness (Figure 3.1b), the relaxation seems 

nearly instantaneous, while for small gap thickness (Figure 3.1a), longer time is needed to reach 

the equilibrium temperature. Thus, questions arise on the nature of this thermal relaxation time, 

as well as its relationship with the sample size. We focus its study on a new type of measurement 

in the present chapter. 

Figure 3.1: Influence of the sample size on the thermal relaxation time (bottom band) of PPG-4000 right 
at the stop of the oscillatory excitation for a) e = 240μm, b) e = 918μm gap thickness. Black dotted line 
shows the time where the strain is removed. 

In the chapter, we try to investigate mechanisms of the thermo-mechanical effect in mesoscopic 

liquids introduced/evidenced in the previous chapter. For this study, we test the thermal stability 

of the liquid to a shear step strain. The interest is to examine the thermal response to this sudden 

deformation since the relaxation scales the different relaxation times that have been excited. 
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We use liquid glycerol at room temperature. Glycerol exhibits almost similar properties as PPG-

4000, a similar viscosity, a weak evaporation rate, a molecular polarity, and a glass transition 

temperature, but it is a molecular liquid (and not an oligomer). The use of glycerol is justified 

due to its popularity on various field applications and its “simplicity” as a molecule in relation 

to oligomer (PPG-4000) and polymer melts acts as a step to establish the seen thermal effect as 

a generic effect of the liquid matter. Here, we will investigate how the liquid glycerol is 

responding to a (shear) step strain step. The initial thermal response and its timescale will be 

investigated, as well as the relaxation mechanism that follows. 
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3.1 Experimental details 
 

The experimental setup is similar with the one utilized in the previous chapter. The two main 

changes are:  

a) The focused liquid is mainly glycerol. 

b) The type of the excitation is in shear geometry but approaches a shock wave.  

Figure 3.2: Applied (shear) step strain function (real data) as given from the rheometer. Inset: the same 
graph in logarithmic scale. 

We take advantage of the stress relaxation mode offered from the rheometer software, which is 

used in studies that investigate the relaxation of stress in viscoelastic materials (polymers, 

polymer melts, gels, emulsions) when shear strain is kept constant for long time (even hours) 

[156, 157]. We focus again on the thermal response to elucidate the thermodynamic response 

of the liquid. However, in these measurements, we do not provide continuously oscillatory 

shear energy to the liquid, but only for a very brief time in a form of shock wave. The applied 

deformation (step strain) is a (nearly) Heaviside function of time H(t), where 𝐻(𝑡) =

{
0,   𝑡𝑎𝑝 < 0

𝛾,   𝑡𝑎𝑝 > 0
 (Figure 3.2). Each step shear strain measurement can be divided into several time 

steps: 

a) The whole system (liquid and plates) is in equilibrium with its environment after 

remaining at rest for substantial amount of time (> 10 min). Thermal equilibrium with 

the environment is an important condition because it eliminates any other conduction 

and relaxation phenomena not related with the present measurements. Sample 

equilibrium is expected to be reached in less than 10 minutes in the case of a small 

molecule (glycerol) away from its glass transition (Tg = 190 K). 

b) The shear strain is applied to the system, so that the desired shear strain γ0 is achieved 

from zero strain, in very short time assimilated to a Heaviside function. From the 

limitations of inertia, the rheometer achieves an “instant” displacement in τshear ~ 0.03s. 

Thus, we can calculate the average shear strain rate 𝛾 = 𝛾0/𝜏𝑠ℎ𝑒𝑎𝑟. This rate is an 

approximation and not representative at the very start or end of the shear. During τshear, 

shear strain energy is provided to the liquid and is the only source of energy during the 

whole experiment. As the rheometer is a strain-controlled one, the desired strain is 

achieved in great precision without instabilities that can be generated from stress-

controlled rheometers [158].  
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c) After the desired shear strain is achieved, the moving bottom plate stops and maintain 

this position (a time of 20s is chosen for most of the present measurements). The system 

is under strain along this time, but no energy is offered to the liquid throughout this 

relaxation period. 

d) To stop the measurement, the moving plate returns to its initial position at trem. This 

movement is achieved with a slower backward motion. 

e) The system maintains the initial equilibrium (from strain perspective) position for 

several seconds. 

The shear strain measurements were conducted simultaneously with the thermal measurements 

for different scales and at different shear strain amplitudes to study the connection of the 

thermal response with scale. We once again take advantage of the ability of liquids to dissipate 

(at least partly) shear stress and withstand much higher strain values in comparison to solids. 

The shear value ranges from 20% to 9500%, depending on the gap thickness and approaching 

the limitations of the rheometer.  
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3.2 Liquid glycerol under step shear strain 
 

 

Figure 3.3: a) Real-time thermal mapping showing that the liquid glycerol emits a transient thermal 
signal by applying a step strain mechanical stimulus (shear step strain of γ=9500% applied at tap, 
followed by a backward motion to the equilibrium at trem (trem - tap=20s) during 0.18s, room temperature 
measurements). Forward and backward steps were achieved in 0.03s and 0.08s respectively by moving 
the bottom plate. X-axis is the time; z-axis is along the gap thickness (100µm). The colour index indicates 
the temperature variation with respect to the equilibrium temperature (at t < tap). b) Graphical 
representation of Fig.1a. Top (hot) band:, bottom (cold) band: .  

In Figure 3.3, we show a typical example of the thermal response of liquid glycerol at e = 

100μm to a step shear strain of γ0 = 9500%, maintained for 20s. In Figure 3.3a, the 2D thermal 

mapping is displayed, which highlights the evolution of the effect over time in the whole liquid 

volume. We observe: 

a) Before we apply the strain at tap, the liquid is in thermal equilibrium with the 

environment. 

b) Right after the step shear strain, where shear energy was provided, we observe that the 

liquid responds thermally. Specifically, it splits in two thermal regions of opposite 

temperature variation. In the bottom region, closer to the moving substrate, a strong 

cooling is observed, while in the top region a symmetrical heating is seen. As seen in 

Figure 3.3a & b, the two bands have equal thermal variation amplitude in absolute value 

(T = 0.04  0.01K). We measure that the maximum temperature from the equilibrium 

value is achieved in 0.19 ± 0.04s. The time where maximum temperature establishes is 

six times greater than τshear (~ 0.03s), meaning that the time to integrate the energy is 

higher than the time where the energy is established. 
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c) From t= tap to trem, the strain is maintained constant, the thermal evolution shows a 

symmetrical relaxation pattern for both thermal regions. Noticeable is that the thermal 

relaxation process is not instantaneous as it should be expected throughout the liquid. 

Specifically, in Figure 3.3b, we focus on the thermal bands, in the bulk of the liquid, 

and notice a slower relaxation compared to the liquid close to the walls. Possible 

explanations for this behaviour are different dynamic conditions due to the anchoring 

to the high energy surfaces or possible conduction with the solid walls in the interface.   

d) At t = trem, both bands seem to have reach the initial equilibrium temperature. The strain 

is released, and the bottom plate returns to its equilibrium position (backward motion). 

Thermally, the two regions respond thermally again, but the temperature variation is 

about 1/3 of the initial response. The displacement of the plate back to equilibrium does 

not correspond to a Heaviside function (τshear ~ 0.08s), meaning a slower backward 

motion and thus producing smaller thermal variation. The thermal response reports a 

first maximum at 0.15s and a higher second overshoot is seen 0.75s after the shear. 

e) Afterwards, the thermal bands again relax over time. 
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3.2.1 Initial thermal response 
 

In this chapter, we study in detail the initial thermal response and not the one produced by the 

backward motion to equilibrium position (trem). There are different reasons for this decision. 

The rheometer is designed for a forward step strain test controlling the strain, while we cannot 

impose the step strain for the backward motion (which does not follow a Heaviside-like 

function).  

Figure 3.4: Modelling of the thermal response of the hot (top) band of glycerol at 0.100mm, 9500%. 
Green and blue lines represent the fits with Eqs. (1) and (3) respectively Inset: Detail and fit of the early 
times (left of the dotted line) of the thermal overshoot (green line). 

In Figure 3.4, the initial thermal response of the hot band right after the step shear strain is 

reported. The response of the cold band is not studied, but we may proceed without loss of 

generality since the bands are symmetric in nature. We observe that the initial response is 

divided in two parts. First, it is observed an overshoot, where we receive the maximum 

temperature variation (in this example ΔT ~ 0.04K) and the time two achieve this variation is 

0.19s. Then follows a decrease of the temperature and before the first second a second smaller 

in scale is observed. The first second of the initial thermal response (left of the dotted line) can 

be described by a second order transfer function: 

𝐻𝑛𝑓(𝑠)  =  𝐻0 (
𝜔0
2

𝑠2 + 2𝜁𝜔0𝑠 + 𝜔0
2) 

where ω0 is the natural frequency, ζ is the damping ratio, s the Laplace variable and H0 the 

system gain. The mathematical solution is written as [159]: 

𝛥𝑇𝑓𝑖𝑡  (𝑡) = 𝐴[1 −
𝑒−𝜁𝜔𝑛𝑡

√1−𝜁2
cos(𝜔𝑛√1 − 𝜁2𝑡 − 𝜑)]   

where, A is a constant, φ is a phase shift and Tfit is the temperature variation based on the 

second order step response. Known equivalent systems that exhibit similar response are: an 

electronic RLC circuit [159], hydro-mechanical [160] or spring-mass-damper systems [161]. 

The equation (1) is fitted on the thermal response as seen at inset of Figure 3.4. As we can 

observe, the fitting is acceptable, but we are not able to retrieve the value of natural frequency 
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ωn with great accuracy because the fitting stops abruptly at 1s.   From the fitting of Eq. (1), we 

deduce: ζ = 0.35 ± 0.03, while ωn = 8 ± 0.3 rad/s. The scale of the order of the natural frequency 

ωn is of Hz; i.e. it describes a collective thermal effect. However, for a better approximation of 

natural frequency, we can utilize the peak time tp, which is the time needed for the system to 

reach its first peak. As mentioned before this time for our case is 0.19s. The peak time can be 

written as: 

𝑡𝑝 =
𝜋

𝜔𝑛√1 − 𝜁2
 

For the damping value calculated before, we get ωn = 17.65Hz or ωn =110.9rad/s. 

The characteristic overshoot is noticeable at 0.2s (inset of Figure 3.4), as expected for the 

underdamped case (ζ < 1) [159]. The steady state value (asymptotic value at long timescale) is 

derived from the overshoot value, with the equation [162]: 

𝑂𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑆𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒

𝑆𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑙𝑢𝑒
 = exp(−

𝜁𝜋

√1 − 𝜁2
) 

The Eq. (2) foresees an asymptotic value of Tt→ = 0.03°C, which stands as the gain of the 

system from the step excitation.  Figure 3.4 shows that after the first second, the thermal band 

does not maintain Tt→, but relaxes over time and returns to equilibrium.    The long-time 

thermal relaxation to equilibrium (both cold and hot bands relax symmetrically) can be 

modelled by a stretched exponential decay (Figure 3.4 right of the dotted line) 

 

𝛥𝛵 = 𝛥𝛵𝑚𝑎𝑥 (𝑒
−
𝑡
𝜏)

𝛽

 

In next section, we will discuss on how we estimate exponent β. For the current example 

(100μm, 9500%), we estimated a thermal relaxation time τthermal ~ 3s. We can estimate the 

thermal diffusion time τdiff ~ H2/D, where H the band thickness and D the thermal diffusivity. 

For glycerol, D = 0.098mm2/s, we get τdiff ~ 0.1s. We observe a significant discrepancy between 

the two times, with the thermal relaxation time being larger by two scales and ruling out a 

diffusive process. Thus, there is a need to interpret the slower thermal relaxation.  

In collaboration with A. Zaccone, we deploy knowledge from glass former systems. It is known 

that stretched exponential relaxation arises when there is a distribution of relaxation times in 

the system (e.g. from dynamical heterogeneity which is ubiquitous in glassy systems),  

exp(−𝑡/𝜏)𝛽 ≈ ∫ 𝜌(𝜏) exp(−𝑡/𝜏) 𝑑𝜏
∞

0

 

where 𝜌(𝜏) is a suitable distribution of relaxation times, which must satisfy few mathematical 

requirements [163]. Since τ in our system is related to the normal mode 𝜔𝑛 of the liquid system, 

the distribution 𝜌(𝜏) must be given by the distribution of vibrational normal modes in the liquid, 

𝜌(𝜔𝑛), also known in condensed matter physics as the vibrational density of states (VDOS). 

Hence, upon using the VDOS of a glassy liquid in Eq. (4) we obtain [45, 164, 165] 

∆𝑇(𝑡)~exp(−𝑡/𝜏)𝛽 ≈ ∫ 𝜌(𝜔𝑛) exp(−𝜁𝜔𝑛𝑡) 𝑑𝜔𝑛

∞

0

 

with 𝜏 = (𝜁𝜔𝑛)
−1. The validity of Eq. (6) for the case of glycerol in the supercooled liquid state 

was numerically verified in Ref. [45]. It was shown that the boson peak (excess of vibrational 

modes over the Debye level ~ 𝜔𝑛
2 ) in the VDOS represents a crucial requirement for Eq. (5) to 

produce a stretched-exponential relaxation in the measured dielectric response of glycerol. 

Therefore, the experimentally observed stretched-exponential profile in the current system may 

suggest the existence of low-energy transverse phonon modes of the kind that constitute the 

boson peak excess of low-energy modes in glasses [45]. In turn, this directly hints to the 

existence of long-range shear elastic waves in the sub-millimeter confined fluids. 

(2) 

(3) 

(4) 

(5) 
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3.2.2 Behaviour of the liquid gap 

Figure 3.5: a) Temperature variation profile across the gap (z-axis) at t = tap+Δt, averaged over three 

successive frames (ttot=0.11s) just after tap (Figure 3.3). The insert schemes the strain gradient viewed 

from the middle of the gap. b) Average temperature variation integrated over the whole gap versus 

time during the experiment (data of Figure 3.3a). 

Next, we study the evolution of the temperature in the gap right after the shear step strain 

(Figure 3.5a). The maximum heating and cooling are seen in the regions closest to the 

substrates, while around the middle, there is no thermal variation and acts as an intermediate 

zone (reversal point) between the hot and cold thermal bands. From Figure 3.5b, we get that 

the temperature of the whole volume does not alter during the measurement, even during the 

initial strong response and the relaxation process. Combined with the nature of the excitation, 

which provides work to the liquid and not heat, we can justify that the phenomenon is adiabatic 

within the experimental error bar. Taking into account, that the thermal bands return to 

equilibrium state after a certain period of time, we may hypothesize an isentropic-like process. 

Thus, we can justify the use of Anderson-Grüneisen parameter to describe the state of the bands. 

The parameter is [166]: 

𝛾 = −
𝑑 ln𝑇

𝑑 ln 𝑉
 

For glycerol, it is γ = 0.75. Thus, we may assume that the cold band is associated with regions 

where the liquid is locally expanded, whereas the hot band is associated with regions where the 

liquid is locally compressed. An approximation on the pressure change is possible by utilizing 

the thermal pressure: 

𝛾𝑉 = (
𝜕𝑃

𝜕𝑇
)
𝑉
= 𝛼𝛫𝛵 

where, α is the volumetric expansion coefficient and 𝛫𝛵 is the isothermal bulk modulus. For 

glycerol, we calculate that for 0.05K temperature change, it requires a pressure change of 

0.11MPa. However, it should be noticed that the calculations were made with conventional 

values and under the assumption that the volume remains constant. 

 

Another approach on the existence of the bands is possible by utilizing the normal modes that 

exist in the system. The bands are macroscopically large since they contain a huge number of 

molecules, hence it makes sense to define long-wavelength phonon modes that live in these 

regions. In the hot/compressed regions the volume V of the region gets reduced, whereas in the 

cold/expanded regions the volume V is enlarged. Then, we may write the microscopic 

definition of the Grüneisen parameter:  

 

(a) 

 

(b) 
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𝛾 = −
𝑑 ln𝜔𝑛

𝑑 ln 𝑉
 

   Since the Grüneisen parameter 𝛾 is positive for liquids [167], this relation gives (upon 

integration) that the phonon frequency 𝜔𝑛 increases as the volume V decreases, whereas 𝜔𝑛 

decreases as the volume V increases. Since the vibrational frequency is related to temperature, 

via 𝑇 = ℎ𝜔𝑛/𝑘𝐵, it is clear that T increases in the regions where V decreases (“compressed” 

regions), whereas T decreases in the regions where V increases (“expanded” regions), thus 

leading to a hot and a cold band for the compressed and the expanded regions, respectively.   
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3.3 Thermal relaxation time 
 

From step strain measurements of various strain values and different gap thicknesses, we fitted 

their exponential relaxation with Eq. (3), resulting to an exponent estimated at β ≈ 0.8 - 0.85. 

Then, the thermal relaxation time τthermal was measured and the results are displayed in Figure 

3.6. 

Figure 3.6: Relaxation time therm(s) of the top (hot) thermal band versus shear strain amplitude (after 

the step strain ramp (0.03s)) deduced from ∆𝑇(𝑡) = exp(−𝑡/𝜏)𝛽. Red, blue, green and yellow points 

correspond to 100μm, 150μm, 200μm and 250μm gap thickness respectively.  

 

From the graph, no clear dependence of τthermal with strain amplitude is apparent, since the data 

appear dispersed. However, a progressive increase of the relaxation time is observed as the gap 

decreases, implying a dependence of τthermal on the scale. Specifically, was measured that: the 

thermal relaxation time is τthermal  0.3 - 0.5s, for e = 240μm. The time evolves with thickness, 

and we measure a thermal relaxation time τthermal  0.5 - 1.8s for 150μm < e < 200μm, while the 

time is τthermal  2 - 5.5s for the smallest thickness measured here, e = 100µm). From the 

stretched exponential relaxation, we are able to relate the thermal relaxation time with the 

normal modes: 

∆𝑇(𝑡)~ exp(−𝜁𝜔𝑛𝑡)
𝛽 = exp(−𝑡/𝜏)𝛽 

 Then we define the characteristic relaxation time 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = (𝜁𝜔𝑛)
−1. According to this 

definition, the increase of 𝜏 upon decreasing the thickness e could be explained with the 

decrease of damping 𝜁 upon decreasing e. Since we relate the damping as a viscous 

characteristic, the decrease of ζ is indirectly related to the increase of rigidity. This observation 

is in agreement with experimental and theoretical works that show an increase of shear elasticity 

as the scale decreases [29, 18, 22, 23], even as G’ ~ e-3
 [90]. 
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3.4 Strain dependence of thermal overshoot 

Figure 3.7: Amplitude of the thermal overshoot variation versus strain at different gap thicknesses. 

Warm band: 100μm: (●), 150μm: (■), 200μm: (♦) and 250μm: (▲). Cold band: 100μm: (●), 150μm: (■), 

200μm: (♦), 250μm: (▲). Room temperature measurements. 

Figure 3.7 shows the influence of the strain amplitude on the temperature variation of the 

generated bands. The highlighted thermal variation is the maximum value exhibited for each 

measurement. The amplitude of the temperature variation increases nearly linearly with 

increasing strain for all gap thicknesses. We can thus define a thermo-(shear)elastic constant as 

the ratio of the temperature variation to the strain value. 

 

Gap(μm) Θshear (ΔT/T,γ0)(x10-8)  

hot band 

Θshear (ΔT/T,γ0)(x10-8)   

cold band 

100 1.1 ± 0.1 1.3 ± 0.1 

150 1.5 ± 0.3 1.4 ± 0.4 

200 1.5 ± 0.4 2.2 ± 1 

250 1.3 ± 0.2 0.8 ± 0.2 
Table 3.1: Evolution of thermo(strain)-elastic constant Θshear (ΔT,γ0) for different scale of the system 
based on the maximum temperature variation displayed on each measurement. 

As seen from Figure 3.7 and Table 3.1, the thermo(strain)-elastic constant Θshear (ΔT/T,γ0) = 

(ΔΤ/Τ)/γ is lower from the oscillatory measurements (Table 2.3), where the constant was 

calculated for the variation of the bands closer to the plates. The maximum temperature 

variation (both for cold and hot bands) is observed closer to the bulk (centre of the gap) and not 

close to the walls. Within the band, the maximum variation is located in its centre, showing that 

abrupt thermal gradients are not generated. Moreover, the dependence of thermal variation over 

strain is constant over different scale for the tested gap (within 100 - 250µm) indicating a 

stability of the thermoelastic constant. The evolution is symmetrical for the two thermally 

opposite regions over strain, leading to an approximately same magnitude for each strain value. 

This behaviour stands as an indication that the adiabatic nature of this effect stands true and 

local thermodynamic changes. 
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3.5 Viscous friction heating 
 

Literature reports effects of viscous friction heating that might occur due to the heat generated 

by friction and produces a local increase in temperature near the walls. This effect is mainly 

expected in high molecular weight fluids (e.g., polymer melt). As shown in Figure 3.5b, no 

local increase of the temperature is observed close to the surfaces, and no global heating of the 

liquid is present all along the step strain process, even during the strong thermal response at the 

start of the experiment. The temperature is constant over time.  

This result is in agreement with reports on high shear rates on glycerol [168]. It can be also 

verified numerically using the Nahme number, which gives an estimation of the importance of 

viscous heating in a system. As mentioned in the previous chapter, Nahme number is defined 

as [139, 169]: 

𝑁𝑎 =
𝜂0𝛽𝑒

2𝛾 2

𝜅
 

where, η0 the viscosity, β=-(1/ η0)(dη/dT), e gap thickness, κ thermal conductivity and 𝛾  shear 

rate. From the equation, it is clear the relation of viscous heating with the applied shear rate 

during the strain ramp of the excitation. For the highest shear rate (~ 3167s-1) applied during 

this short time (0.03s), Nahme number is much lower than 1 (Na=0.041  = 9500%), meaning 

that viscous heating is negligible in our experimental conditions.   

.   
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3.6 Peak time 

Figure 3.8: Time necessary to reach maximum temperature tpeak versus strain amplitude for various gap 
thicknesses after the step motion. The time is equivalent for both bands. Red, blue, green and yellow 
points correspond to 100μm, 150μm, 200μm and 250μm gap thickness respectively. 

We define a peak time as the time necessary for the liquid to reach the maximum temperature 

(hot and cold are similar). Figure 3.8 shows that the peak time is nearly constant: tpeak  0.19s 

for most of the gap thickness and strain values probed. Except for 250μm, the peak time is about 

0.15s, which is within the error bar of previously reported value (tpeak  0.19s). Thus, this delay 

appears as an intrinsic property of the liquid and is not strongly dependent on the width of the 

bands (30 – 80μm), but only for the upper limit. This peak time may be connected with the 

minimization of energy process of the liquid. It shows that the time needed to assimilate the 

shear energy and convert it in two (for the cases studied here) thermodynamic regions is 

constant.  
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3.7 Comparison of shear stress, thermal variation and 

normal force variations 
 

Figure 3.9: a) Measured shear stress (blue curve) and normal stress (ΔN) (black curve) during the step 
shear strain measurements (glycerol, 100μm, γ0 = 9500%), in comparison with the thermal variation of 
thermal hot band. b) Detail of Figure 3.9a pointing out a similar relaxation of the temperature (hot 
band) and of the normal stress (showed in double scale). Inset: Same measurements focused on the 
early time of the thermo-mechanical response versus normal force. 

Figure 3.9 compares the shear stress, normal stress variations and thermal variation of a 100µm 

glycerol layer to a step strain of 9500% (simultaneous measurements using three Keithley 

multimeters coupled to the rheometer and a microbolometer for the thermal acquisition). We 

observe a shear stress relaxation of the liquid of about 60Pa at maximum value that sharply 

decreases with time. A measurable shear stress relaxation might be surprising. However, 

similarly as for oscillatory measurements, the shear elastic component of fluids can be revealed 

by reinforcing wetting substrate (alumina). Shear stress moduli have been reported in liquid 

water and in glycerol at low gap thickness and applying small strain rate [22, 23].  

An interesting observation in Figure 3.9 is the chronology of the events. We notice that the first 

response of the liquid is the shear stress relaxation, followed by the thermal relaxation. 

Therefore, the thermal relaxation is the product of the shear stress relaxation. Moreover, the 

 

 

 

(a) 

(b) 
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examination of the normal stress variation (shown in details in Figure 3.9b) shows a slight 

variation occurring at the same time as the thermal relaxation. This variation is about 2% of the 

shear stress value and is close to the limitations of the rheometer (lower limit about 1.5Pa), thus 

we cannot provide quantitative discussions on it. However, several similarities appear in the 

thermal and the normal stress behaviors.  

Similarly to the temperature variation, the normal stress seems to exhibit an exponential 

relaxation to its equilibrium value after the overshoot. The similarity of the thermal and normal 

stress responses implies a connection between the quantities, even though the measured normal 

force is over the whole surface and thus is minimized integrating stresses related to both hot 

and cold thermal variations. Normal stress can be generated under pure shear for elastic systems 

[151, 152]. For the fixed volume case, shear forces lead to increase of the normal stresses in 

solids. Similar behaviour might be observed in our system, implying that the liquid strongly 

anchored to high-energy surfaces, exhibits via the normal stress, a typical solid-like feature 

when is subjected to high strain (non-linear region). The normal stress variation in liquid 

glycerol is an indirect confirmation of the exhibited shear elasticity. As argued in [152] for 

chemical elastic networks, a volumetric shear is created as an answer to the applied shear strain 

for the volume to remain constant, resulting to the observed normal stress. The existence of 

such shear could explain the compressed and stretched sub-volumes as demonstrated by the 

created thermal bands. Through the Grüneisen parameter, the volumetric strain relates to 

vibrational modes ωn of the liquid [152]. The resulting volumetric strain causes the vibrational 

modes to shift and as these are related with the temperature from 𝑇 = ℎ𝜔𝑛/𝑘𝐵, the temperature 

where the volumetric strain is applied will change, as seen from the highlighting thermal bands. 
This process interprets the symmetry breaking in the temperature, while only the bottom plate 

is moved. The bottom region of the liquid is stretched by the fast step shear strain, while the 

top region is compressed from the resulting volumetric shear, leading to the observed 

temperature variations.  

Figure 3.10: a) Measured normal stress variation (black line) during the step shear strain measurements 
(glycerol, 250μm, γ0 = 3900%), in comparison with the thermal variation of thermal hot band. b) Same 
for glycerol, 500μm, γ0 = 1500%. Graphical representation of Fig.1a. Bottom (closest to moving plate) 
band:◼, intermediate between bottom and middle regions band: ⚫, middle band: ⧫, intermediate 
between top and middle regions band: ▲ and top band: ▼. Black line is for normal stress variation. 

In Figure 3.10, we show the normal stress in respect with the temperature for higher scale. The 

normal stress seems to share the same response as the temperature, but its variation is weaker 

  

(a) (b) 
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compared to lower gap thickness. An expected result as the elastic nature of liquid should be 

decreased as the scale increases. 

3.8 Thermal response of glycerol at high gap thickness 
 

Figure 3.11: a) Thermal mapping at large liquid thickness (glycerol) under shear step strain of γ = 1500% 
applied at tap (room temperature measurements). Shear step was achieved in 0.03s by moving the 
bottom plate. X-axis is the time; z-axis is along the gap thickness (500µm). The colour index indicates 
the temperature variation with respect to the equilibrium temperature (at t < tap). b) Graphical 
representation of Fig.1a. Bottom (closest to moving plate) band:◼, intermediate between bottom and 
middle regions band: ⚫, middle band: ⧫, intermediate between top and middle regions band: ▲ and 
top band: ▼. 

Next, we study the evolution of the effect for higher thickness. In Figure 3.11, the response of 

a 500μm layer thickness of glycerol is shown. It is seen that the thermal response differs in 

respect with the number of generated bands. Three hot and two cold bands alternate 

respectively. This may hint the existence of an upper limit width of a thermal band.  For 

glycerol, the limit is about 100μm. The limit shows the maximum length over which the liquid 

molecules respond collectively (same temperature variation). If, we calculate the average 

temperature variation of the whole volume, it decreases during the initial thermal response right 

after the step strain (Figure 3.12). For the minimization of the internal energy, the liquid 

produces hot and cold bands which in total produce a decrease of the temperature (Figure 3.12) 

which indicates that the stretching effect dominates transiently. The temperature variation of 

the bands is estimated at ΔΤ ~ 0.02K for the hot bands and ΔΤ ~ -0.03K for the cold ones. Of 

course, the duration of the relaxation of the thermal bands is short and after a time of about a 

second, thermal equilibrium dominates again in the gap.  
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Figure 3.12: Average temperature variation integrated over the whole gap versus time during the step 
strain experiment at large gap (data of Figure 3.11a). 

As the gap of the system is increased, the thermal response becomes weaker and fades faster 

(Figure 3.13). As seen for a system of 960μm, the thermal response is detectable only on the 

low half of the liquid close to the shear source, while the temperature variation resembles more 

to a fast flash before it returns to thermal equilibrium. The value of the temperature change is 

weaker and less than ΔΤ < 0.02K. Thus, the influence of the elastic nature of the liquid fades 

with increased scale and tends to a conventional response, where shear energy is immediately 

dissipated in the liquid.   

Figure 3.13: a) Thermal mapping of liquid glycerol under shear step strain at very large gap thickness 
(960µm), of γ = 1800% applied at tap (room temperature measurements). Shear step was achieved in 
0.03s by moving the bottom plate. X-axis is the time; z-axis is along the gap thickness. The colour index 
indicates the temperature variation with respect to the equilibrium temperature (at t < tap). b) Graphical 
representation of Fig.1a. Bottom band: ⚫, middle band: ◼ and top band: ⧫. 
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In the previous sections, we studied the thermal response of glycerol to a sudden deformation 

(step shear strain), as well as its relaxation. Glycerol simplicity made this study possible. We 

also did a test with the 68 repetitive units PPG 4000 under the same mechanical conditions at 

230µm. Its thermal behavior is more complex.  
 

Figure 3.14: a) Thermal mapping of liquid PPG under shear step strain of γ = 5000% applied at tap (room 
temperature measurements). Shear step was achieved in 0.03s by moving the bottom plate. X-axis is 
the time; z-axis is along the gap thickness (230µm). The colour index indicates the temperature 
variation with respect to the equilibrium temperature (at t < tap). b) Graphical representation of cold 
band in during forward motion. c) Amplitude of the thermal overshoot variation versus strain of the 
cold band during forward motion for: 130μm: (●), 230μm: (■). d) Average thermal variation of the liquid 
gap (orange points) showing a rapid temperature drop at the onset of the relaxation. At tap = 0s, is the 
forward motion and at trem = 20s is the backward motion. 
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As seen in Figure 3.14a, right after the forward motion there is mainly only one cold band 

generated in the middle to top part of the liquid. As seen in Figure 3.14b, the resulting bulk 

evolution of thermal relaxation is similar to glycerol seems to be established after 20s (within 

the measurement accuracy). When the moving plate returns to its initial place (backward 

displacement), we observe a thermal response where three bands are generated. The two bands 

close to the surfaces are heated, while the middle one is cooling. In Figure 3.14c, we see the 

evolution of the temperature change of the cold band during the forward motion for two gap 

thicknesses. We observe that the thermal evolution is rather linear with strain, however the 

evolution does not tend to zero thermal variation for zero strain indicating that the liquid still 

stores some residual energy. The response of liquid PPG in stress relaxation measurement 

provides two different responses for excitations, opposite in their direction. A possible 

interpretation could lie in the in-between dynamics of the small polymer chains, meaning 

different ways of energy storage. 



 

 

 

 

 

 

 

 

Chapter 4 Evidencing the interfacial liquid/solid 

coupling in the THz domain  
 

In the previous chapters, we deal with a dynamic thermo-mechanical coupling in liquids. High 

wetting provided by the solid alumina surface played a crucial role to reveal this effect, as 

increased interaction between solid and liquid is required for maximum transmission of shear 

energy in the interface. What is the mechanism inducing an increased interaction? The interface 

is a specific zone where the energy is different from the bulk due to the imbalance between 

liquid molecule attraction and surface attraction. This transition zone where liquid-liquid and 

liquid-solid interactions compete, is intensively studied since decades and remains puzzling. In 

the specific case of alumina, it has been shown that this material has amphoteric properties, 

attracting both positively and negatively charges which is certainly an important parameter to 

explain its wetting properties (the isoelectric point being at pH = 8) [170]. The existence of an 

electric field produced by the oxide surface has been demonstrated inducing a local polarization 

of water dipoles in aqueous solutions extending up to several molecular layers [171].  

These are known surface effects. Much less is known concerning thermal effects. The 

temperature is generally treated in terms of heat transport and the possibility of inducing 

different temperatures without transport is not addressed since theoretical and experimental 

developments suppose that density fluctuations in quiescent liquids guaranty uniform 

temperatures at solid-liquid interfaces. It was demonstrated that quiescent liquids close to high 

energy/wetting substrates exhibit non-uniform temperatures at the vicinity of the solid surface 

[172]. Thus, questions are born for a possible energy balance between the liquid and the solid 

surface on the region. An investigation of the dynamics of solid substrate in interaction with a 

liquid has been carried out by inelastic x-ray scattering to probe the vibrational spectroscopy of 

the solid surface. Here, we present preliminary results from measurements conducted at the 

GALAXIES beamline at S.O.L.E.I.L (coll. J. Ablett, J.P. Rueff). 
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4.1 Basics of phonons 
 

In crystalline materials, atoms or molecules exhibit a well-defined periodic structure, which 

made possible their in-depth study with the rise of quantum mechanics and statistical physics. 

The atoms are not steady in their equilibrium position, but oscillate around them, and propagate 

their vibrations from close-to-close neighbors. The resulting collective vibrations of the atoms 

are called phonons [173] and can be treated as propagating sound waves. A classical mechanics 

counterpart is the vibrational normal mode. Phonons play an important role for the 

interpretation of several thermal phenomena like, thermal conductivity, thermal expansion and 

specific heat. As a quantum mechanics entity, phonons have quantized energy E = ℏω, where 

ω is the frequency of vibration and propagating waves that can be longitudinal (L) or transverse 

(T) ones. Based on the collective oscillation, a phonon is called acoustic (A) when the 

oscillation of the atoms is in-phase and optic (O), when it is out of phase. In a crystal lattice, a 

phonon can be any combination of LA, LO, TA and TO.  

Figure 4.1: Phonon dispersion within the Brillouin zone (left graph) and vibration density of states 
(right graph) of Al2O3 [174]. 

Similar phonons do not interact and can be described by the Bose – Einstein statistics  [173]: 

〈𝑛〉 =
1

𝑒
ℏ𝜔
𝑘𝐵𝑇 − 1

 

Following the Debye model, the phonon density of states increases in a parabolic manner with 

frequency, with a cutoff at Debye frequency ωD, which is the highest frequency were the atoms 

can oscillate. However, this theory is an approximation where only three acoustic branches are 

considered. The density of states can be very complex as seen in Figure 4.1. The density of 

state 𝑔(𝜔) can be calculated for a three dimensional solid following the equation [175]: 
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𝑔(𝜔)𝑑𝜔 = 𝑉∫
𝑑𝑆𝜔

|
𝜕
𝜕𝒒

𝜔|
𝑑𝜔

𝑆𝜔

 

with 𝑉 the volume, 𝑆𝜔 the surface of constant energy and 𝜕𝜔/𝜕𝒒, the gradient of frequency in 

the reciprocal space. For the acoustic branch, we retrieve again a parabolic evolution of 

𝑔(𝜔𝑎𝑐)~𝜔
2. Thermal properties of solids derive from phonon modes, thus measuring the 

phonon dispersion spectrum provides significant information on the dynamics of the system. 

At room temperature, phonon energy lies within the meV range, thus their frequency is of THz. 

The study of phonon spectrum provides immediate information on the dynamics (vibrational 

states) of a medium in the reciprocal space, while the infrared radiation is a consequence of the 

molecular motion. Accessing phonon dynamics is made possible with the development of 

inelastic x-ray scattering. 

4.1.1 Phonon theory of liquids 
 

While phonon lattice dynamics of crystalline materials is being just about 70 years old, studies 

of liquid phonons are rather scarce for liquid matter, with few exemptions [176]. From 

theoretical point of view, in the frame of an extension of the Frenkel’s theory, Trachenko and 

Brazhkin developed a phonon theory suitable for liquids [30]. They proposed that the energy 

of the liquid is given as: 

𝐸 = 𝐾𝑙 + 𝑃𝑙 + 𝐾𝑠(𝜔 > 𝜔𝐹) + 𝑃𝑠(𝜔 > 𝜔𝐹) + 𝐾𝑑 + 𝑃𝑑 

, meaning that the energy of the liquid is a sum of kinetic and potential components of 

longitudinal and transverse phonon energy, and energy of diffused molecules, as noted by 

Frenkel [5]. After of a series of calculation, where the authors utilize the virial theorem, the 

phonon free energy, the compressibility of the liquid and the Debye vibrational density of states, 

they concluded to a liquid energy: 

𝐸 = 𝑁𝑇 (1 +
𝑎𝑇

2
)(3𝐷 (

ℏ𝜔𝐷

𝑇
) − (

𝜔𝐹

𝜔𝐷
)
3

𝐷 (
ℏ𝜔𝐹

𝑇
)) 

Where 𝐷(𝑥) =
3

𝑥3
∫

𝑧3𝑑𝑧

𝑒𝑧−1

𝑥

0
, is the Debye function and 𝜔𝐷 the Debye frequency. The equation is 

valid in both classical and quantum regimes and results to the energy of solids 𝐸 = 3𝑁𝑇, when 

𝜔𝐹 = 0 and thermal expansion coefficient is 𝑎 = 0. They calculated the specific heat 𝑐𝑣 =
1

𝑁

𝑑𝐸

𝑑𝑇
 

for a variety of liquids, in classical and quantum regime for a wide range of temperature and 

reported close resemblance of the experimental results. They argue that the theory is a solid-

like approach of liquid thermodynamics being possible through phonon theory, even though 

the liquid molecules interactions are not yet understood. In this chapter, we will not try to study 

the phonon spectrum of liquids but study the effect of a liquid layer on a solid surface dynamics. 
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4.2 Basics of inelastic x-ray scattering (IXS) 
 

Inelastic x-ray scattering is an important tool for the display of atomic and molecular dynamics 

and structure. With the construction of high brilliance beam sources (3rd generation), highly 

resolved energy beams probing with high-energy x-ray provide the possibility to measure 

phonon dynamics. 

In an inelastic x-ray scattering process, a well-defined incident photon with wave vector ki, 

energy Ei and a polarization εi hits the sample and results to a new scattered phonon of wave 

vector kf, energy Ef and polarization εf. During the scattering process, energy and momentum 

(q) are transferred to the sample electrons, as known conventionally [177, 178, 179]: 

𝐸 = 𝐸𝑖 − 𝐸𝑓 = ħ𝜔𝑖 − ħ𝜔𝑓 = ħ𝜔 

𝒒 = 𝒌𝑖 − 𝒌𝑓 

𝑞2 = 𝑘𝑖
2 + 𝑘𝑓

2 − 2𝑘𝑖𝑘𝑓𝑐𝑜𝑠 (2𝜃)  

where 2θ is the scattering angle (Figure 4.2). 

Figure 4.2: Representation of an inelastic scattering process in transmission geometry 

For high energy x-ray scattering, E<<Ei, thus q from equation (5.3) is written 

𝑞 = 2𝑘𝑖sin𝜃 

IXS is divided into two main categories. The resonant IXS (RIXS), where the incident photon 

energy is adjusted to be in resonance close to absorption edges or near to an atomic transition. 

In general, experiments using RIXS are considered to be difficult since it is harder to extract 

the results using conventional theory models [180]. The non-resonant IXS (NRIXS) is a better-

suited method to extract atomic dynamics and structure, due to established theoretical 

knowledge. For a scattering event, the Hamiltonian of an electron system is: 

𝐻 = 𝐻0 +𝐻𝑖𝑛𝑡 

where, H0 describes the kinetic and potential energy of the electron and Hint describes the 

interaction between the electron and the electromagnetic field (incident photon). 

The non-relativistic interaction Hamiltonian is written [179, 181]: 

𝐻𝑖𝑛𝑡 =∑
𝑒2

2𝑚𝑐2
𝑨𝑗
2 +∑

𝑒

𝑚𝑐
𝒑𝑗 ∙ 𝑨𝑗

𝑗𝑗

 

where, j is the sum of electron, pj the momentum and Aj is a vector potential of the field. The 

first term is associated with the Thomson scattering of the electromagnetic radiation (photon) 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 
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by the valence electron and is strongly connected with NRIXS. The second term involves 

electronic transition and is connected with absorption or emission phenomena and RIXS. In 

this chapter, resonance phenomena will be neglected as the results are detained from NRIXS. 

The experimentally measured quantity is the double differential cross-section and for the IXS 

can be written as [178, 179]: 

𝑑2𝜎

𝑑𝛺𝑑ħ𝜔𝑓
= (

𝑑𝜎

𝑑𝛺
)
𝑇ℎ
𝑆(𝒒,𝜔) 

where (dσ/dΩ)Th is the Thomson scattering cross section, which describes the coupling between 

the photon and the electron. S(q,ω) is the dynamic structure factor which is the main quantity 

to describe the results from IXS and “describes the excitation strength of the scattering system 

from the initial state |i〉 to the final state | f〉” [177]. From first order perturbation theory, we can 

derive that 

(
𝑑𝜎

𝑑𝛺
)
𝑇ℎ

= 𝑟0
2(𝜺𝑖 ∙ 𝜺𝑓)

2 (
𝜔𝑓

𝜔𝑖
) 

where r0 = e2/mc2 is the electron radius. For the NRIXS case, ωf/ωi equals to 1, since the energy 

loss E for phonons (10-200 meV) is much smaller than the incident beam energy Ei (~ 11 keV). 

Thus, IXS results to no correlation between momentum and energy transfer.  

Based on Fermi’s golden rule, the dynamical structure factor is written [178]: 

𝑆(𝒒,𝜔) =∑|⟨𝑓|∑ 𝑒𝑖𝒒𝒓𝒋𝑗 |𝑖⟩|
2
𝛿(ħ𝜔 + 𝐸𝑖 − 𝐸𝑓)

𝑖.𝑓

=
1

2𝜋
∫𝑑𝑡𝑒−𝑖𝜔𝑡⟨𝑓|∑ 𝑒−𝑖𝒒𝒓𝒋(𝑡)𝑒𝑖𝒒𝒓𝒋(0)𝑗,𝑗′ |𝑖⟩ 

First term of equation (5.9a) shows the possibility for an excitation to take place from the initial 

to a final state on the momentum level, while the Dirac function shows, when this excitation is 

possible on the energy level. The equations (5.9a & b) are based on first order perturbation 

theory, which IXS always satisfies [177, 182]. Depending on the value of the transferred 

momentum and energy, the dynamical structure factor can describe various scattering 

processes, from collective ones such as phonons, excitons and plasmons to single particle 

contributions such as Compton scattering [183]. For the study of collective scattering processes 

the dynamic structure factor is often written as a function of dynamic susceptibility χ(q,ω) 

[178]: 

𝑆(𝒒,𝜔) = −
1

𝜋

1

1 − 𝑒−𝛽ħ𝜔
𝐼𝑚𝜒(𝒒,𝜔) 

 where β = 1/kBT.  

 

 

 

 

(5.7) 

(5.8) 

(5.9a) 

(5.9b) 

(5.10) 
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4.3 Experimental setup 
 

The IXS measurements took place on the GALAXIES beamline at S.O.L.E.I.L. synchrotron 

centre. Next, some details of the beam line will be presented as found at [184, 185]. The 

beamline provides a high flux X-ray beam that ranges from 2.3 – 12 keV. The main components 

of the beamline’s optical layout are depicted at Figure 4.3. The optical layout consist of an in-

vaccum 20mm-period undulator U20 (Nd2Fe14B). The undulator serves the energy range (2.3 

– 12 keV) with odd harmonics from 1 to 9 and reaches a maximum magnetic field of 1.04T at 

a minimmum gap of 5.5mm. 

Figure 4.3: Top) Configuration of the optical layout of GALAXIES beamline that is used to create a highly 

focus x-ray beam at energy range 2.3 – 12 keV. The horizontal scale is the distance in meters. The 

sample is placed as shown by the blue point in the circle. Picture taken from [185]. Bottom) Technical 

characteristics of the experimental setup as provided by Dr J. Ablett. 

The next optical component is the double-crystal monochromator (DCM). It is made out of 

silicon (1 1 1), which thermal expansion is low (1/3 of copper) and is cooled by liquid nitrogen. 

The cooling serves to dissipate the thermal power from the undulatory source. A second two-

bounce high-resolution monochromator (HRM) is inserted in the beam and provides resolution 

δE ~ 31 meV FWHM for the experimental configuration of our measurements. The 

monochromator utilises backscattering geometry to satisfy higher angular acceptance [180]. 

The HRM gives energy resolution of δΕ/E ~ 1.4 x 10-4 FWHM. 
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 Figure 4.4: IXS spectrometer of GALAXIES beamline (left side). Typical geometry of spherical analyser 

arranged for IXS (right side) [185]. 

The sample is placed on the sample holder (yellow dot of the left side picture in Figure 4.4). 

Then, it is sealed in a cage filled with helium. The incident monochromatic beam hits the 

sample, and the scattered beam is collected by the multi-analyser configuration (right picture 

of Figure 4.4). Each crystal analyser has a diameter of 10 cm and radii of curvature of 0.5m to 

1m. Each analyser is composed of various crystallites on a curved surface. The analysers are 

silicon-made and allows Bragg angle from 75.6º to 90º. For the present measurements, the 

analyser stays at fixed Bragg angle. For these set of IXS measurements, we utilize one analyser 

(Figure 4.4 right side) to ensure increased momentum resolution. The scattered beam is 

collected from the analyser to the detector. Between the sample, analyser and detector is placed 

a plastic bag filled with helium to reduce the absorption and the background noise from the air, 

since helium is x-ray transparent. The analyser and the detector are mounted to be in a Rowland 

circle geometry throughout the measurements (Figure 4.4 left side dotted red line). Each cube 

of the analyser serves as a dispersive optical element and the signal from the ~ 10000 cubes are 

combined into a single image on the detector. The image analysis provides a spectrum after 

calibration from pixel to meV. 
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Crystallographic description of the samples: 

 

Figure 4.5: Different planes of Al2O3 structure. Figure taken from 
https://www.globalsino.com/EM/page2591.html. 

In Figure 4.5, we show the structure of Al2O3. Green points represent the aluminium atoms, 

while red points the oxygen ones. For our measurement, we will use a monocrystalline α-

alumina sample with c-plane orientation. More specifically, we will scan the sample from the 

reciprocal plane (0 0 6) to (0 0 7). The penetration length of the x-ray beam will be at about 

80μm, meaning that we probe the bulk dynamics of the material.  
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4.4 Dynamic measurements 
 

  

Figure 4.6: a) Inelastic x-ray scattering scan of monocrystal α-alumina sample, with c-plane orientation 

at the reciprocal plane (0 0 6.1) wetted by a layer of glycerol, where the intensities are shifted for sake 

of clarity. The legend includes different scans over the course of hours, with the t=0min measurement 

being the first one after the glycerol deposition on the surface, while t=760min being the time of the 

latest one after the glycerol deposition. Glycerol on Kapton is the reference inelastic scattering 

spectrum of glycerol, since Kapton is transparent to the x-ray beam. b) Same graph as (a), for (0 0 6.95). 
Black lines are used as eye guides. 

 

 

(b) 

(a) 
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In this section, we will show some preliminary results conducted on wetted α-alumina surfaces. 

Specifically, we will demonstrate the evolution of the phonon dynamics of the bulk alumina 

when the surface is wetted by glycerol over a long period of time (several hours) for different 

positions (q values) as we probe the dynamics from the (0 0 6) to (0 0 7) reciprocal plane. 

In Figure 4.6, we observe the evolution of the alumina energy spectrum wetted by glycerol. 

Due to limited resolution (~ 31meV), we imposed that the highest intensity of the dry alumina 

close to 0 meV (quasi-elastic peak) as the plane (0 0 6) is a Bragg peak and thus would remain 

true for the selected q value (q = 0.1). The angle of the x-ray beam that hits the sample is 

sufficiently large to penetrate at 8μm inside the alumina surface, thus probing bulk response. 

Once glycerol is deposited on the surface (that is vertically mounted), we measure the IXS 

spectra for an extended time (time interval between same q value is about 40 minutes). We 

notice a gradual shift of the energy peaks over time for both q = 0.1 (Figure 4.6a) and q = 0.95 

values (Figure 4.6b). For q = 0.1, the energy shift of the peaks is about 22.5meV, while for q = 

0.95 the shift is about 35meV (Figure 4.7), hinting processes that took place due to the wetting 

of the alumina surface with glycerol. The results show that the wetting evolves with time for 

several hours, as the interactions between interfacial atoms and molecules is reinforced with 

the removal of bubble traps over a period of time. In the present measurement, we ensure 

pronounced interactions of the liquid glycerol with the monocrystal α-alumina surface since the 

current orientation (0 0 1) provides optimal wettability [186]. As seen from the previous 

reference, the wetting evolves with time, ensuring smaller contact angle over time. The different 

spectrum shift at different position of the Brillouin zone may hint an interfacial molecular 

orientation that is preferable, leading to orientation-based change of local dynamics. As the 

present measurements probe the bulk alumina, the newly established dynamics could not be 

ignored. An interpretation could be given on glycerol molecule polarization. Reports show that 

weak temperature gradients were identified at the vicinity of a wetting surface [172] indicating 

a polarization of the liquid molecules due to the surface (in absence of external thermal field), 

leading to induced electrostatic fields on the liquid [187] that substantially affect could affect 

the solid dynamics.  

Except from the energy shift, the alumina energy spectra seem to be unchanged within the 

resolution. Based on Raman scattering reports [188], tensile stress on a material could lead to 

energy shift of about 0.54meV/GPa. Thus, for our case, the glycerol – sapphire interface could 

induce stresses leading to a gradual tensile stress in the bulk of solid close to the surface as the 

wetting is improved. However, these results are preliminary and for complete understanding of 

the state of the solid, complementary measurements at various penetration lengths (closer to the 

surface) are required. Moreover, measurements depicting a weaker energy shift for alumina 

wetted by water was also observed, but not depicted on the current manuscript. Nevertheless, a 

detailed study for different kinds of liquids is a necessity to properly understand the evolution 

of the interfacial energy in solid dynamics. 
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Figure 4.7: Red points represent the energy shift over time of the maximum peak of the energy 
spectrum of Figure 4.6a (vertical solid black line), while the blue and green points represent the energy 
shift over time of the maximum peaks of the energy spectrum of Figure 4.6b (vertical solid and dashed 
black line respectively). The peak position was identified by plotting a Gaussian function on the energy 
spectrum for the spectra of Figure 4.6a and several ones for Figure 4.6b. 
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General conclusion and perspectives 
 

The recent identification of a finite shear elasticity in confined fluids (up to the sub-millimeter 

scale) has motivated the search for other solid-like properties. This is the aim of the present 

experimental PhD thesis, which uses the same experimental conditions to explore and identify 

new properties of confined liquids using mainly an innovative microthermal approach.  

The access to the sub-millimeter shear elasticity was achieved by taking into account the 

fluid/substrate interfacial forces in the protocol of dynamic mechanical analysis. A strong 

liquid/substrate interaction amplifies the fluid response and reveals a mesoscopic liquid shear 

elasticity (0.1-10Hz). As a result, the viscoelastic response is not universal but can be modulated 

by the fluid/surface boundary conditions and by the scale at which the fluid response is 

measured. The mesoscopic shear elasticity concerns both simple liquids (Van der Waals and 

H-bond liquids), complex fluids (polymer melts, molecular glass formers, ionic liquids) and 

physiological fluids [18, 19, 20, 21, 22, 23, 26, 27]. The experimental identification of a “static” 

liquid shear elasticity at sub-millimeter scale is in agreement with recent theoretical predictions, 

foreseeing, that liquids can support the propagation of shear waves above nanoscopic scales. 

Thus, validating the measurement of a solid-like response extended up to a finite length scale 

of 1/k where k is the wavevector over which shear elastic waves can propagate (k-gap model 

[30, 77, 85, 86, 87, 88, 89, 28, 29, 90]). The liquid shear elasticity has independently established 

by both an experimental and theoretical approaches; that is the mesoscale liquid state is 

dominated by long-range elastic intermolecular interactions.  

Because of the mesoscopic shear elasticity, fluids resist to flow below an elastic threshold 

whose resistance depends on the considered scale. The immediate consequence is that a thermo-

elastic coupling becomes possible, challenging the assumption of an instant dissipation via the 

fast lifetime of the thermal fluctuations and justifying the search of another solid property: the 

thermoelasticity.  

We have used the same experimental conditions (sub-millimeter scale, wetting substrate) to 

explore the stability of the thermal liquid equilibrium under a shear stress. Such a study has 

become possible due important recent instrumental progresses in the infrared detection that 

have enabled an accurate determination of the temperature in a wavelength range of 7-14µm. 

In accordance with the principle of viscoelastic measurements, we have applied a mechanical 

shear strain either oscillatory by modulating frequency and strain amplitudes or applying a step 

strain (Heaviside-like deformation). In both cases (low frequency oscillatory shear strain and 

step strain test), we have revealed a non-ambiguous dynamic thermal response of all tested 

liquids: PPG-4000, glycerol and liquid water (tested at one gap thickness).  

In the case of oscillatory shear strain, we show that the shear strain generates a thermal wave 

synchronous with the applied strain within a wide range of strain amplitudes, different 

frequency and for gap thicknesses varying from 100µm up to the millimeter. The thermal waves 

are multiple forming hot and cold thermal shear bands filling the sub-millimeter liquid gap.  

⚫ Two strain regimes have been observed defining a linear and a non-linear behavior of the 

thermal waves.  

- At low frequency and relatively low strain amplitude ( < 2000%), we observed that hot and 

cold thermal waves reproduce approximately the sin shape of the excitation and exhibit nearly 

a linear dependence to the mechanical shear strain.  
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The remarkable linear dependence of the thermal variation with respect to the strain amplitude 

indicates a direct thermo-strain coupling. Cold and hot wave amplitudes increase symmetrically 

with the strain rate obeying to the sin model oscillating around the equilibrium temperature 

defined by a zero-T. The symmetric evolution of the cold and the warm branch of the thermal 

wave indicates a strict compensation in terms energy gain and loss that fits with a simple sin 

model T(t) = TA. sin(.t +) where  is always found smaller than /4. The quantity 

reported to the strain value TA()/ is thus a constant that can be considered as the thermal 

analogue of the shear stress  reported to the shear strain, / which defines the shear elastic 

modulus following the Hooke’s law. The liquid ability to convert the shear wave energy in local 

thermodynamic states exhibits the characteristics of a conservative mechanism that is: 

- The linearity of the amplitude of the thermal wave as the shear strain increases (up to a shear 

strain value), 

- A synchronous response with the applied excitation,  

- A nearly instant thermal response to the strain,  

- A rapid return to the equilibrium temperature at the strain stop,  

- An absence of heat conduction between bands and with the environment.  

 

 

Simplified scheme illustrating a (simplified) behavior of the liquid thermal wave. The liquid is 

alternatively cold or hot with time. The thermal wave can be modelled by a sin wave whose amplitude 

is proportional to the applied strain, oscillating around the equilibrium temperature ensuring a global 

thermal balance (up to high strain amplitudes). The energy used to create a hot or cold band of similar 

temperature variations is equivalent. 

Therefore, we have shown that while the viscoelastic measurement indicates a viscous 

behavior, the simultaneous recording of the thermal behavior that evolves nearly in phase with 

the strain wave, indicates a non-dissipative behavior. These thermal features are non-dissipative 

in nature indicating that the viscous (supposedly dissipative) behavior measured by stress 

measurements is incomplete and hides actually the complexity of the liquid dynamic. 

 

- At larger strain values (typically above  > 2000% at 240µm) or by increasing the frequency, 

the thermal signal is no more linear with the strain amplitude. The applied excitation no longer 

allows the relaxation of the thermal effect between two successive oscillations. The shape of 

thermal signal transits from an almost perfect sin wave to an anharmonic wave where higher 

harmonics affect greatly the thermal response [189]. The higher harmonics (second and third 

harmonics) indicate the occurrence of a dissipative process that might be attributed to flow 

instabilities, for example, increasing phase shift between thermal bands, compressibility limits, 

dynamic stick-slip friction, formation of slippage layer, autophobicity [71], generating distorted 

thermal waves with double frequency of the applied excitation.  

⚫ The thermal waves are also scale dependent. The study versus gap thickness indicates that 

the amplitude of the thermal wave increases with a decrease of the gap size. Of interest is the 

similar plateau value reached at large strain amplitudes by the thermal variation for each gap 

thickness (section 2.4.6). From the measurements, the value is constant no matter the gap 

thickness (at around 0.1K), showing an upper limit of temperature change. The increase of the 
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thermal effect with decreased scale is in agreement with the increasing shear elasticity of liquids 

G’ ~ L-3 [29]. The non-linear region (γ0 > 2000%) seems affected by the system scale (Figure 

2.17a, Figure 2.22e & f, Figure 2.23b). As the gap decreases, the evolution changes from a 

constant profile to a decreasing one.  

⚫ The (shear) step strain study has also revealed that the confined liquid is able to respond 

thermally and nearly instantaneously to a step deformation. Both early time and relaxation of 

the studied thermal effect have been analyzed. The experiments show that, upon a shear step 

deformation at mesoscopic scale, the liquid loses its temperature stability, creates major hot and 

cold thermal bands, where the temperature deviates symmetrically from the equilibrium one. 

These mechanically induced thermodynamic rearrangements imply an ability of the liquid to 

store the strain energy. This process is adiabatic at small scale (100µm) for the glycerol as seen 

from the global temperature invariance while it generates a global cooling at larger thicknesses 

in agreement with an induced stretching state. The generated bands responded thermally 

similarly to a second order system like a RLC circuit to a sudden mechanical excitation, 

meaning that there is an exchange of energy between two storages. After the overshoot, the 

liquid loses the gain from the step shear strain, though constant strain is maintained. The thermal 

relaxation is described by a stretched exponential, behavior encountered on the dielectric 

response of glass formers (like glycerol). Thus, as a disordered system, the vibrational density 

of states of the liquids consists low-energy (frequency) modes greater than the Debye cut-off 

frequency [45].    

⚫ The examination of the shear stress wave confirms that from a viscoelastic point of view, the 

thermal waves are identified in a “viscous” regime which is in contradiction with the definition 

of a viscous flow supposed to be athermal and homogeneous. Therefore, the viscosity (and the 

viscoelastic) measurement is blind to adiabatic thermal changes occurring the liquid. The 

accurate examination of the normal force shows a weak variation of its value (2% of shear stress 

variation, close to the sensor limitations) but which nevertheless might be the stress signature 

of the thermal effect via another typical elastic effect which is shear dilatancy. This normal 

force variation is more pronounced in the case of the stress relaxation observed after a step 

strain test. The normal stress reproduces the shape of the thermal waves. In the case of thermal 

harmonics, the normal stress increased in amplitude and developed harmonics while being 

almost in-phase with the thermal waves. During step strain measurements, a clear second order 

response of the normal stress is evident at the same time as the thermal change occurs. All of 

the above results elucidate a direct connection of the normal stress rise with the studied 

temperature changes but stands a difficult topic for interpretation. Interpretation could be given 

in the frame of the shear elasticity [151, 152, 153] or vorticity banding [97, 98, 2]. Nevertheless, 

for the deeper understanding of the connection between normal stress rise and thermal effect, a 

quantitative experimental study of the normal stress would be of interest even if balance effects 

due to the antagonistic stresses (hot and cold waves balances in time or in the volume) lowers 

the impact.  

In the frame of the study of the influence of the substrate (the alumina supports used are poor 

thermal conductors), we have also shown that it is possible to generate liquid thermal waves on 

aluminum surfaces such as those conventionally used in rheology. The aluminium surface is 

not a suitable substrate if the liquid thermal behaviour is the focus of the study. Due to its high 

thermal conductivity, a great part of the energy is conducted to the plates within the 

experimental time period of the measurements. Due to its high reflectivity and emissivity, an 

accurate determination of the liquid temperature can be hardly done. Alumina plates used in 

most of our measurements, do not exhibit these drawbacks and are adequately adapted to the 

present study. Studying the effect of surfaces of different conductivities would elucidate the 

limit where the thermal effect is greatly limited in the liquid. 
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To conclude, in the present thesis, we have revealed thermo-mechanical effects in mesoscale 

liquids, focusing on the origin of the effect, its mechanism and its scale dependence. The study 

of the effect in complete adiabatic conditions is of interest. From our measurements, we may 

deduce that the effect is adiabatic in nature, but it implies that the dynamics are faster than heat 

transfer/conduction, to ensure in-phase relation between mechanical deformation and thermal 

variation (zero phase shift). Another perspective worth studying is the evolution of the thermo-

mechanical effect while a constant flow is applied, as it is the case in a microfluidic channel. 

Thermal study of various liquids (e.g., Van der Waals, etc.), polymers (different molecular 

weights), gels, and other soft materials would complete our understanding of the thermo-

mechanical effect. However, for several cases even if the elasticity increases (e.g., polymer 

melts), the study stands different challenges and possibly elucidates effects like the so-called 

viscous heating friction.  

Lastly, from theoretical perspective, the above results are not interpreted within the 

conventional Maxwell fluidic frame since the frequency of the external mechanical excitation 

do not couple with the molecular relaxation dynamics and thus only dissipation should occur. 

On the other hand, they demonstrate thermo-elastic effects in liquids, which can be explained 

in terms of the unsuspected ability of liquids to support low-frequency shear waves. The ability 

of liquids to propagate shear waves is described by the k-gap theory [79, 80, 81, 82, 83, 84, 10, 

87, 28, 29]. The theory reconsiders the concept of short-range interaction and introduces the 

notion of propagating solid-like shear waves defining a k-gap dispersion relation. The 

dispersion law indicates that the propagation of solid-like shear waves is made possible for k > 

kg=1/(2c·τ) (real solutions). The present observations carried out at mesoscopic scale provide 

experimental evidence in this direction. As mentioned in [77], “we consider a liquid as 

collection of dynamical regions of characteristic size c.τ where the solid-like ability to support 

shear waves operate”. These dynamical regions might coincide with the thermal bands. The 

quantity defined as propagation length of the shear waves del=c·τ corresponds in the case of 

glycerol to del ~ 3 μm (c=3000 m/s and τ=10−9 s given for density fluctuations at equilibrium), 

and thus the shear wave (exponential in nature: 𝑒−𝑥/2𝑑𝑒𝑙) should be dissipated at a distance of 

about 30μm. The predicted propagation length is of similar order to the width of the elementary 

bands (~ 25–80 μm), which might indicate the limit of the “correlated” interactions that lead to 

the generation of the thermal bands. The prediction of a finite propagation of the solid-like 

shear wave might explain why the liquid splits in several thermal bands, del being the ultimate 

liquid length supporting the shear wave. Over this limit, the conditions for a new shear 

mechanism take place and producing new (thermal) shear bands, each delimited by the finite 

propagation length.  

Another approach on the existence of the bands is possible by utilizing the normal modes that 

exist in the system. The bands are macroscopically large since they contain a huge number of 

molecules, hence it makes sense to define long-wavelength phonon modes that live in these 

regions. In the hot/compressed regions the volume V of the region gets reduced, whereas in the 

cold/expanded regions the volume V is enlarged. Then, we may write the microscopic 

definition of the Grüneisen parameter:  

𝛾 = −
𝑑 ln𝜔𝑛

𝑑 ln 𝑉
 

Since the Grüneisen parameter 𝛾 is positive for liquids [167], this relation gives (upon 

integration) that the phonon frequency 𝜔𝑛 increases as the volume V decreases, whereas 𝜔𝑛 

decreases as the volume V increases. Since the vibrational frequency is related to temperature, 

via 𝑇 = ℎ𝜔𝑛/𝑘𝐵, it is clear that T increases in the regions where V decreases (“compressed” 

regions), whereas T decreases in the regions where V increases (“expanded” regions), thus 
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leading to a hot and a cold band for the compressed and the expanded regions, respectively 

[190]. 
 

It is important to point out that thermal bands resemble also shear bands observed of soft matter 

flows, known as vorticity banding and for which the elastic origin remains unclear [97, 98]. 

The bands during vorticity banding exhibit different stress states for the same shear, which is 

similar with the case of the observed thermal bands.  
 

Finally, from the preliminary IXS measurements on the GALAXIES beamline at S.O.L.E.I.L., 

we have demonstrated the evolution of the phonon dynamics of the bulk alumina when the 

surface is wetted by glycerol over a long period of time (several hours). It was known that the 

liquid molecule energy is modified at the vicinity of a solid wall (the surface molecules explore 

other neighborhood and are in another thermodynamic state with respect to the bulk molecules). 

It seems from these preliminary results that the dynamics (phonons) of the solid is also modified 

in the presence of a wetting liquid, creating a new interfacial solid/liquid equilibrium. 

Liquid shear elasticity makes possible the identification of new non-equilibrium properties such 

as these strain-driven thermoelastic effects that we are just beginning to discover 

experimentally [191] and echo new theoretical predictions for liquid dynamics [29, 28, 93] and 

liquid thermal balance. The development of a thermoviscoelastic model, which considers 

viscous dissipation, scale dependent elastic storage of energy, and potentially solid-liquid 

interface would advance our understanding of liquids. 
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L'état liquide est le plus répandu à la surface de la Terre, il y joue un rôle essentiel mais c’est 

aussi l’état de la matière le moins compris. L'échelle mésoscopique est certainement l'échelle à 

laquelle les limites de notre compréhension sont les plus visibles. Qu’il s’agisse de transitions 

de phase spectaculaires induites par cisaillement [1], d’apparitions de bandes de cisaillement 

[2], d’instabilités d'écoulement ou d’instabilités de surface mais aussi de contributions 

interfaciales subtiles (liquide/solide ou liquide/liquide), de la nature du substrat, ces effets 

remettent en cause une conception simple de l’état liquide et pointent les directions à prendre. 

Comprendre l’échelle mésoscopique est primordial, c’est également l’échelle de la 

microfluidique et des fluides physiologiques donc de la chaîne du vivant. 

D’un point de vue théorique, l'état liquide ne permet pas une compréhension fine, contrairement 

aux solides et aux gaz. En raison du manque de périodicité entre les molécules liquides, une 

étude théorique similaire à celle des solides a été exclue, rendant l'approche fluidique de 

Maxwell (1876) [3] dominante. D’un point de point thermodynamique, les liquides sont 

supposés dissiper toute forme d’excitation mécanique à des échelles de temps supérieures à 

celles de leurs fluctuations thermiques (en accord avec le théorème de fluctuation-dissipation) 

[4]. Frenkel [5] a proposé que les liquides supportent les ondes de cisaillement si la dynamique 

de l'excitation est plus rapide que le temps de relaxation moléculaire, définissant le temps de 

relaxation de Maxwell comme le temps entre deux sauts d'une particule d'une position 

d'équilibre à la nouvelle position. Ainsi, la fréquence critique ωF = 1/τM, est l'inverse d'un temps 

de relaxation moléculaire. Pour des fréquences plus petites (ω < ωF), le liquide se comporte de 

manière dissipative, c’est le régime hydrodynamique. Tandis que pour ω > ωF, la propagation 

des ondes de cisaillement conduit à une réponse de type solide haute fréquence. La vérification 

expérimentale de l’élasticité haute fréquence est arrivée plus tard avec les avancées 

technologiques, comme les grandes infrastructures de recherche [6, 7, 8, 9, 10]. 

Cependant, il existe une large gamme de matériaux qui présentent à l’échelle macroscopique 

une réponse intermédiaire entre le liquide visqueux et la réponse élastique comme les 

polymères, les gels, les solutions micellaires, etc. Des théories moléculaires ont été proposées 

[11, 12, 13, 14, 15, 16, 17], inspirées du modèle initial de Maxwell, où le temps de relaxation 

caractéristique n’est plus celui d’une particule mais celui associé à la relaxation de la 

macromolécule (en termes de temps de Rouse ou de reptation suivant la longueur de chaine 

considérée). Ce schéma qui est conventionnellement adopté en rhéologie des polymères a 

récemment été remis en question avec l’identification d’élasticité de cisaillement à basses 

fréquences à l’échelle mésoscopique notamment dans les fondus de polymères melts [18, 19], 

[20, 21, 22, 23, 24, 25]. En effet, l’existence d’élasticité « statique » montre qu’une description 

en termes de temps de relaxation n’est pas pertinente, mais qu’il convient de prendre en compte 

des corrélations élastiques, autrement dit l’émergence d’un comportement de type solide à 

l’échelle mésoscopique. 

Divers travaux expérimentaux ont mis en évidence un comportement « statique » de type solide 

des liquides. Ces études ont été menées sur des liquides à différentes échelles, du nanomètre 

[26, 27], du micromètre [18, 19] au submillimétrique [20, 21, 22, 23]. Dans ces études, 

l'excitation mécanique de cisaillement est appliquée dans le domaine des basses fréquences 

(Hz), de plusieurs ordres plus lente que la dynamique moléculaire (GHz – THz pour les 

molécules simples). Dans ces conditions, il a été montré que le liquide résiste à l’écoulement 

avec une élasticité au cisaillement mesurable. Cette observation a été faite sur des échelles 

mésoscopiques relativement larges et sur une grande variété d’études dynamiques de liquides 

incluant la rhéologie des polymères. L'élasticité de cisaillement ne peut pas être décrit comme 
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une propriété induite par le substrat, mais comme une propriété intrinsèque. Cette notion 

s’oppose à la description viscoélastique classique, où l'élasticité de cisaillement s’évanouit dans 

les liquides à basse fréquence quelle que soit l’échelle (hypothèse du modèle de Frenkel). 

L'accès à l'élasticité de cisaillement submillimétrique a été réalisé en prenant en compte les 

forces interfaciales fluide/substrat dans le protocole d'analyse mécanique dynamique. Une forte 

interaction liquide/substrat amplifie la réponse fluide, et révèle l’élasticité de cisaillement 

mésoscopique (0.1-10Hz). De ce fait, la réponse viscoélastique n'est pas universelle mais 

modulée par les conditions aux limites fluide/surface et par l'échelle à laquelle la réponse fluide 

est mesurée. L'élasticité au cisaillement mésoscopique concerne à la fois les liquides simples 

(liquides de Van der Waals et H-bond), les fluides complexes (fondus de polymère, fondus de 

verre moléculaire, liquides ioniques) et les fluides physiologiques [18, 19, 20, 21, 22, 23, 26, 

27]. L’élasticité basse fréquence montre l’existence de corrélations élastiques à longue distance 

entre les molécules liquides à l’échelle mésoscopique. A cette échelle, le comportement des 

liquides n’est plus celui du « bulk » bien que la dynamique concerne un grand nombre de 

molécules. Il y a donc urgence à revoir les modèles théoriques pour tenir compte de la réalité 

expérimentale. 

Et de fait, d'un point de vue théorique, la théorie de Frenkel a été récemment révisée montrant 

que la propagation des ondes de cisaillement dans les liquides est possible mais sur une distance 

réduite 1/k définie par le temps de propagation de l’onde dans le milieu considéré (.c où  est 

le temps de Maxwell et c la vitesse du son) [28], tandis que sur la base de la dynamique de 

réseau non affine, la dépendance à l'échelle de l'élasticité de cisaillement dans les liquides a 

également été récemment établie [29]. L'identification expérimentale d'une élasticité de 

cisaillement liquide « statique » à l'échelle submillimétrique est donc en accord avec les 

prédictions théoriques récentes, prévoyant que les liquides peuvent favoriser la propagation des 

ondes de cisaillement au-dessus des échelles nanoscopiques. Ainsi, valider la mesure d'une 

réponse de type solide étendue jusqu'à une échelle de longueur finie de 1/k où k est le vecteur 

d'onde sur lequel les ondes élastiques de cisaillement peuvent se propager (modèle k-gap model 

[30, 77, 85, 86, 87, 88, 89, 28, 29, 90]). L'élasticité de cisaillement liquide a été établie 

indépendamment par des approches expérimentales et théoriques, la dynamique des liquides 

est dominée par des interactions intermoléculaires élastiques à l’échelle mésoscopique. 

Du fait de l'élasticité de cisaillement mésoscopique, les fluides résistent à l'écoulement en 

dessous d'un seuil élastique dont la résistance dépend de l'échelle considérée. La conséquence 

immédiate est qu'un couplage thermo-élastique devient possible, remettant en cause l'hypothèse 

d'une dissipation instantanée via la durée de vie rapide des fluctuations thermiques et justifiant 

la recherche d'une autre propriété du solide : la thermoélasticité. C'est l'objectif de la présente 

thèse expérimentale. 

D'un point de vue thermique et sans apport de chaleur extérieure, les simulations moléculaires 

prévoient une augmentation de la température par friction visqueuse à la paroi dans les liquides 

nano-confinés sous cisaillement et pression [32, 33]. L'effet de paroi sur différents paramètres 

thermodynamiques a été largement étudié dans les liquides confinés [34, 35, 36, 37, 38, 39, 40, 

41, 42, 43] tandis qu’à l’échelle macroscopique, l'approche théorique conventionnelle 

(Maxwell) prédit une augmentation de température par friction visqueuse générée lors d'un 

cisaillement oscillant à très grande amplitude de déformation et dans des conditions non-

adiabatiques pour les polymères fondus [44]. Il n’y a pas à notre connaissance de données 

expérimentales validant les simulations en température.  

Nous avons utilisé les mêmes conditions expérimentales (échelle submillimétrique, substrat 

mouillant) que celles utilisées pour accéder à l’élasticité de cisaillement et y avons couplé une 
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approche microthermique innovante. Une telle étude est devenue possible grâce à d'importants 

progrès instrumentaux récents dans la détection infrarouge qui ont permis une cartographie 

spatiale précise de la température dans une gamme de longueurs d'onde de 7 à 14 µm. 

Conformément au principe des mesures viscoélastiques, nous avons appliqué une déformation 

de cisaillement mécanique soit oscillatoire en modulant la fréquence et les amplitudes de 

déformation, soit en appliquant une déformation échelonnée (déformation de type Heaviside). 

Dans les deux cas (essai de contrainte de cisaillement oscillatoire à basse fréquence et essai de 

contrainte par étapes), nous avons révélé une réponse thermique dynamique non ambiguë de 

tous les liquides testés : PPG-4000, glycérol et eau liquide (testé à une épaisseur de fente). 

Dans le cas de la déformation de cisaillement oscillante, nous montrons que la déformation de 

cisaillement génère une onde thermique synchrone avec la déformation appliquée dans une 

large gamme d'amplitudes de déformation, de fréquences et pour des épaisseurs d'entrefer 

variant de 100 µm jusqu'au millimètre. Les ondes thermiques sont multiples formant des bandes 

de cisaillement thermique chaudes et froides remplissant l'espace submillimétrique. 

⚫ Deux régimes de déformation ont été observés définissant un comportement linéaire et non 

linéaire des ondes thermiques. 

- A basse fréquence et à amplitude de déformation relativement faible ( < 2000%), nous avons 

observé que les ondes thermiques chaudes et froides reproduisent approximativement la forme 

sinusoïdale de l'excitation mécanique et présentent une dépendance presque linéaire à 

l’amplitude de déformation. 

La remarquable dépendance linéaire de la variation thermique par rapport à l'amplitude de 

déformation indique un couplage thermo-déformation direct. Les amplitudes des ondes froides 

et chaudes augmentent symétriquement avec l’amplitude de déformation oscillant autour de la 

température d'équilibre. L'évolution symétrique des bandes froides et chaudes de l'onde 

thermique indique une compensation stricte en termes de gain et de perte d'énergie qui 

correspond à un modèle sinusoïdal simple de type : T(t) = TA. sin(.t +) où le déphasage 

 est toujours inférieur à π/4. La quantité rapportée au taux de déformation TA()/ est donc 

une constante qui caractérise le liquide et peut être considérée comme l'analogue thermique de 

la contrainte rapportée à la déformation de cisaillement, / qui définit le module élastique 

suivant la loi de Hooke . La capacité du liquide à convertir l'énergie des ondes de cisaillement 

dans des états thermodynamiques locaux présente les caractéristiques d'un mécanisme non-

dissipatif qui sont : 

- La dépendance linéaire de l'amplitude de l'onde thermique avec l’amplitude de la déformation 

de cisaillement, 

- Une réponse synchrone avec l'excitation appliquée, 

- Une réponse thermique quasi instantanée à la contrainte, 

- Un retour rapide à la température d'équilibre à l'arrêt de la déformation (relaxation), 

- Une absence de conduction thermique entre les bandes et avec l'environnement, 
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Schéma simplifié représentant le comportement (simplifié) de l'onde thermique liquide à l’échelle 

mésoscopique. Le liquide est alternativement froid ou chaud avec le temps (et dans le gap). L'onde 

thermique peut être modélisée par une onde sinusoïdale dont l'amplitude est proportionnelle à la 

déformation appliquée, oscillant autour de la température d'équilibre assurant un bilan thermique 

global (jusqu'à des amplitudes de déformation élevées). L'énergie utilisée pour créer une bande chaude 

ou froide de variations de température similaires est équivalente. 

La comparaison avec les données rhéologiques a montré que si la mesure rhéologique indique 

un comportement visqueux, donc dissipatif, l'observation simultanée d’ondes chaudes et froides 

thermiques évoluant presque en phase avec la contrainte oscillante, indique que le 

comportement thermique est non dissipatif. Le comportement thermique indique que le 

comportement visqueux mesuré par les mesures dynamiques est incomplet et masque en fait la 

véritable complexité de la dynamique du liquide. 

- A des valeurs de déformation plus élevées (typiquement au dessus de γ0 > 2000%) ou à des 

fréquences élevées, le signal thermique n'est plus linéaire avec l'amplitude de déformation. 

L'excitation appliquée ne permet plus la relaxation thermique entre deux oscillations 

successives. La forme du signal thermique passe d'une onde sinusoïdale presque parfaite à une 

onde anharmonique où les harmoniques plus élevées affectent grandement la réponse thermique 

[189]. Les harmoniques les plus élevées (deuxième et troisième harmoniques) indiquent 

l'apparition d'un processus dissipatif qui pourrait être attribué à des instabilités d'écoulement, 

par exemple, un déphasage croissant entre les bandes thermiques, des limites de 

compressibilité, un frottement dynamique de glissement, la formation d'une couche de 

glissement, l'autophobie [71], générant des ondes thermiques déformées à double fréquence de 

l'excitation appliquée. 

⚫ Les caractéristiques de l’onde thermique dépendent également de l'échelle. L'étude en 

fonction de l'épaisseur de l'échantillon indique que l'amplitude de l'onde thermique augmente 

avec une diminution de la taille de l'entrefer. Une même valeur asymptotique d’amplitude 

thermiques est atteinte à de grandes amplitudes de déformation pour chaque épaisseur (section 

2.4.6). Cette valeur est constante quelle que soit l'épaisseur de l'échantillon (environ T  0,1 

K), montrant une limite supérieure de changement de température. L'augmentation de l'effet 

thermique avec la diminution de l'échelle est en accord avec l'augmentation de l'élasticité de 

cisaillement des liquides et est conforme au modèle théorique prévu par Zaccone et Trachenko 

en G' ~ L-3 [29].La région non linéaire (γ0 > 2000%) semble également affectée par l'échelle du 

système (Figure 2.17a, Figure 2.22e & f, Figure 2.23b).  

⚫ L'étude de la réponse du liquide à un saut de déformation en cisaillement (fonction de 

Heaviside) a également révélé la capacité du liquide à répondre thermiquement et presque 

instantanément à ce type de déformation soudaine. Le temps court et la relaxation de l'effet 

thermique ont été analysés. Les expériences montrent que, lors d'une déformation de 

cisaillement soudaine, le liquide crée simultanément des bandes thermiques chaudes et froides 

importantes, où la température s'écarte symétriquement de celle d'équilibre. Ces réarrangements 

thermodynamiques induits mécaniquement démontrent la capacité du liquide à stocker l'énergie 

de déformation. Ce processus est adiabatique à petite échelle (100µm) pour le glycérol compte 

tenu de l'invariance globale de la température alors qu'il génère un refroidissement à des 
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épaisseurs plus importantes en accord avec un état d'étirement induit. La réponse thermique a 

les caractéristiques d’un système du second ordre (circuit RLC) à une excitation mécanique 

soudaine, ce qui signifie qu'il y a un échange d'énergie entre deux types de stockage. Après 

l’« overshoot », le liquide perd l’énergie de contrainte de cisaillement par paliers, sous 

déformation constante. La relaxation thermique est décrite par une exponentielle étirée, 

comportement observé en réponse diélectrique des « glass formers » (comme le glycérol), dont 

la densité d’état vibrationnel est constituée de modes de basse énergie (fréquence) supérieurs à 

la fréquence de coupure de Debye [45]. 

⚫ Nous avons également examiné l’évolution de la contrainte de cisaillement simultanément à 

l’étude thermique. Cette étude confirme que les ondes thermiques sont identifiées dans un 

régime « visqueux » ce qui est en contradiction avec la définition d'un écoulement visqueux 

supposé dissipatif, athermique et homogène. Par conséquent, les mesure de viscosité (et de 

viscoélasticité sont aveugles aux changements thermiques adiabatiques se produisant au sein 

du liquide. L'examen précis de la force normale montre une faible variation de sa valeur (qui 

constitue 2% de variation de la contrainte de cisaillement et en dessous des limites de mesure 

indiquée par le fabricant) mais qui néanmoins pourrait être la signature de l'effet thermique via 

un autre effet élastique typique qui est la dilatance de cisaillement. Cette variation de force 

normale est plus prononcée dans le cas de la relaxation de contrainte observée après un saut de 

déformation. La contrainte normale reproduit en effet la forme des ondes thermiques. Dans le 

cas des harmoniques thermiques, la contrainte normale augmente en amplitude et développe 

des harmoniques tout en étant quasiment en phase avec les ondes thermiques. Pour les mesures 

en saut de déformation, une réponse claire de second ordre de la contrainte normale est mise en 

évidence en même temps que le changement thermique se produit. Tous les résultats ci-dessus 

élucident un lien direct entre l'augmentation normale de la contrainte et les changements de 

température étudiés, mais constituent un sujet difficile à interpréter. L'interprétation pourrait 

être donnée dans le cadre de l'élasticité de cisaillement [151, 152, 153] ou de la formation de 

bandes cisaillement, notamment de vorticité  [97, 98, 2]. Néanmoins, pour une meilleure 

compréhension du lien entre l'élévation de la contrainte normale et l'effet thermique, une étude 

expérimentale quantitative de la contrainte normale serait intéressante même si les effets 

d'équilibre dus aux contraintes antagonistes (ré-équilibrage des ondes chaudes et froides dans 

le temps ou dans le volume) en réduisent l'impact. 

Dans le cadre de l’étude de l’impact de la surface (les supports en alumine utilisés sont peu 

conducteurs thermique), nous avons également montré qu’il est possible de générer des ondes 

thermiques liquides sur des surfaces d'aluminium telles que celles conventionnellement 

utilisées en rhéologie. La surface en aluminium n'est pas un substrat approprié pour une étude 

du comportement thermique du liquide. En raison de sa conductivité thermique élevée, 

l’aluminium conduit une grande partie de l'énergie produite au cours de la déformation du 

liquide. Par ailleurs, en raison de sa réflectivité et de son émissivité élevées, la détermination 

précise de la température du liquide peut difficilement être effectuée. Les surface en alumine 

utilisées pour la grande majorité de cette étude, ne présentent pas ces inconvénients et sont 

adéquatement adaptées à la présente étude. L'étude de l'impact de la conductivité thermique des 

surfaces permettrait de déterminer les conditions pour lesquelles l'effet thermique serait 

fortement limité dans le liquide. 

Pour conclure, dans la présente thèse, nous avons mis en évidence des effets thermomécaniques 

dans les liquides à l’échelle mésoscopique en nous concentrant sur l'origine de l'effet, son 

mécanisme et sa dépendance à l'échelle. L'étude de l'effet thermique dans des conditions 

adiabatiques est riche. De nos mesures, nous pouvons déduire que l'effet thermique est 

également de nature adiabatique, local, dynamique et élastique. Cela implique que l’effet 
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thermique apparait quasiment instantanément, le déphasage entre la déformation mécanique et 

la variation thermique est négligeable. Il ne peut donc pas être interprété en termes de transfert 

(conduction) de chaleur mais en termes de changement de température hors équilibre 

(équivalent à un déplacement dans le diagramme de phase pression-température). Une autre 

perspective à étudier est l'évolution de l'effet thermomécanique alors qu'un débit constant est 

appliqué, comme c'est le cas dans un canal microfluidique. L'étude thermique de divers liquides 

(par exemple, Van der Waals, etc.), des polymères (de différents poids moléculaires), des gels 

et d'autres matériaux mous compléterait notre compréhension de l'effet thermomécanique. 

Cependant, même si l'élasticité augmente (par exemple dans le cas d’un polymère fondu), 

l'étude relève de nouveaux différents défis comme l’occurrence de frictions visqueuses (ou non) 

Enfin, d'un point de vue théorique, les résultats ci-dessus ne sont pas interprétés dans le cadre 

fluidique de Maxwell conventionnel car la fréquence de l'excitation mécanique externe ne se 

couple pas avec la dynamique de relaxation moléculaire et donc seule la dissipation devrait se 

produire. D'autre part, les effets thermoélastiques ne peuvent s'expliquer que par la capacité des 

liquides à supporter des ondes de cisaillement à basse fréquence. La capacité des liquides à 

propager des ondes de cisaillement est décrite par la théorie du k-gap [79, 80, 81, 82, 83, 84, 

10, 87, 28, 29]. La théorie reconsidère le concept d'interaction à courte portée et introduit la 

notion de propagation d'ondes de cisaillement de type solide définissant une relation de 

dispersion k-gap. La loi de dispersion indique que la propagation des ondes de cisaillement de 

type solide est rendue possible pour k > kg=1/(2c·τ) (solutions réelles). Les présentes 

observations réalisées à l'échelle mésoscopique fournissent des preuves expérimentales qui 

vont dans ce sens. Comme mentionné dans [77], « nous considérons un liquide comme une 

collection de régions dynamiques de taille caractéristique c.τ où opère la capacité de type solide 

à supporter les ondes de cisaillement ». Ces régions dynamiques pourraient coïncider avec les 

bandes thermiques. La longueur de propagation des ondes de cisaillement del=c·τ correspond 

dans le cas du glycérol à del ~ 3 µm (c=3000 m/s et τ=10−9s donnés pour des fluctuations de 

densité à l'équilibre), et ainsi l'onde de cisaillement (de nature exponentielle : 𝑒−𝑥/2𝑑𝑒𝑙) doit 

être dissipée à une distance d'environ 30μm. La longueur de propagation prédite est d'ordre 

similaire à la largeur des bandes élémentaires (~ 25–80 μm), ce qui pourrait indiquer la limite 

des interactions « corrélées » qui conduisent à la génération des bandes thermiques. La 

prédiction d'une propagation finie de l'onde de cisaillement de type solide pourrait expliquer 

pourquoi le liquide se divise en plusieurs bandes thermiques, del étant la longueur ultime de 

liquide supportant l'onde de cisaillement. Au-delà de cette limite, les conditions d'un nouveau 

mécanisme de cisaillement se produisent et produisent de nouvelles bandes de cisaillement 

(thermiques), chacune délimitée par la longueur de propagation finie. 

Une autre approche sur l'existence des bandes thermiques est possible en utilisant les modes 

normaux qui existent dans le système. Les bandes sont macroscopiquement grandes car elles 

contiennent un grand nombre de molécules, il est donc logique de définir des modes de phonons 

à grande longueur d'onde dans ces régions. Dans les régions chaudes/comprimées, le volume V 

de la région est réduit, tandis que dans les régions froides/dilatées, le volume V est agrandi. 

Ensuite, nous pouvons écrire la définition microscopique du paramètre de Grüneisen : 

𝛾 = −
𝑑 ln𝜔𝑛

𝑑 ln 𝑉
 

Puisque le paramètre de Grüneisen γ est positif pour les liquides [167], cette relation donne 

(après intégration) que la fréquence des phonons 𝜔𝑛 augmente lorsque le volume V diminue, 

alors que 𝜔𝑛 diminue lorsque le volume V augmente. La fréquence vibrationnelle étant liée à 

la température, via 𝑇 = ℎ𝜔𝑛/𝑘𝐵, il est clair que la température augmente dans les régions où 

le volume diminue (régions « compressées »), alors qu’elle diminue dans les régions où le 
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volume augmente (régions « dilatées »), conduisant ainsi à une bande chaude et une bande 

froide pour les régions comprimées et expansées, respectivement [190]. 

L’observation de bandes thermiques pourrait par ailleurs être associée aux bandes de 

cisaillement observées dans les fluides complexes sous cisaillement continu, appelées bandes 

de vorticité et dont l'origine reste discutée [97, 98]. Les bandes de vorticité présentent des états 

de contraintes différents pour le même cisaillement, ce qui est similaire à l’alternance des 

bandes thermiques froides et chaudes observées. 

Enfin, à partir des mesures préliminaires IXS sur la ligne GALAXIES à S.O.L.E.I.L., nous 

avons démontré que la dynamique des phonons du support solide (alumine) est modifiée 

lorsque la surface est en contact avec un liquide sur une longue période de temps (plusieurs 

heures). On savait que l'énergie des molécules liquides est modifiée au voisinage d'une paroi 

solide (les molécules de surface explorent d'autres voisinages et sont dans un autre état 

thermodynamique par rapport aux molécules en vrac). Il ressort de ces premiers résultats que 

la dynamique (phonons) du solide est également impactée en présence d'un liquide mouillant, 

créant un nouvel équilibre solide/liquide de part et d’autre de l’interface. 

Nous avons donc montré dans cette thèse que la prise en compte de l'élasticité de cisaillement 

des liquides permet l'identification de nouvelles propriétés à l’échelle mésoscopique telles que 

ces effets thermoélastiques induits par la déformation que nous commençons tout juste à 

découvrir expérimentalement et qui font écho à de nouvelles prédictions théoriques pour la 

dynamique [29, 28, 93]. Le développement d'un modèle dynamique, qui prend en compte la 

dissipation visqueuse et la conversion de l’énergie élastique, dépendantes de l'échelle et de 

l'environnement (interface solide-liquide), ferait progresser notre compréhension des propriétés 

liquides, mais aussi de l’interface solide. 
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Appendix A: Parallelism considerations 
 

An important factor in our measurements is the correct positioning of the alumina plates on the 

fixtures that connect them with the rheometer’s motor and sensor. The ideal geometry for the 

rheometer is the one depicted in Figure App. 1a. The plates should be mounted on the fixtures 

and been adjusted in a manner where when they touch each other at a zero-gap test, their total 

surface area touch the other. Then, the plates are parallel and ready for correct rheological 

measurements (Figure App. 1a). Practically, the perfect parallelism is not possible, but the 

plates are tilted in respect with each other. This leads to different values of the gap in the system. 

On the one side, we get the apparent gap H and the actual one H+ε (Figure App. 1b & c). The 

misaligned plates cause problems on rheological measurements and do not allow for reliable 

measurements [192, 193, 102, 194]. In this geometry, the strain is related with the distance from 

the centre of the surface. The non-parallelism causes non-homogeneous strain for points that 

have the same distance from the centre r < R.  

Figure App. 1: a) Diagram of typical geometry of a rheometer. The plates are placed parallel to each 
other. b) When the plates are non-parallel, at zero gap they will touch only on one side. c) Scheme of 
the geometry when the liquid is placed. The lack of parallelism will lead to non-homogeneous height of 
the gap. Scheme taken from [139].  

To make sure that the effect of non-parallelism is not important for our measurements, we use 

the IR sensor as follows. We mount one surface on its fixture and place the fixture on the recess 

that is connected with the motor. Then, we command the motor to rotate at fast rotation and 

with the IR camera, we capture this rotation on video. From the video, we deduce if there is 

any perpendicular motion of the plate, due to the placement of the IR sensor in respect with the 

plates (Figure 2.2 bottom scheme). We repeat the procedure until both plates do not move 

perpendicularly on the IR sensor. With this method, we can significantly reduce the gap error 

to ε < 8 μm. This value corresponds to the size of each pixel. However, a secondary possible 

source of error that we should take account is the mount of each fixture to the rheometer’s 

sensor or motor respectively. The fixtures are made to perfectly fit and stand perpendicular. 

Thus, we should assure that the best connection by cleaning the connection area from dirt. 
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Appendix B: Data treatment  
 

Each raw video captured during the measurements is treated to extract the information needed 

in a clear and easily understandable presentation. The quantity, measured from these 

measurements, is the omitted radiation in the form of intensity. The selected video was input in 

the software in grayscale mode and the liquid region at the centre of the video and part of the 

plates were selected from the rest. The exclusion of parts on the edges was made due to the 

radial geometry of the plates. The surface of the plates is a circle, meaning that the focus of the 

camera in the centre causes distortion on the edges. The determination of the bands is possible 

by utilizing the previous method (2D mapping) first. The method also acts as a median to check 

any reflectivity issues related with the background.  

Another challenge is the connection of thermal and mechanical measurements. The 

measurements are independent and thus they do not share a common time start. A connection 

will allow to compare those measurements together. To achieve that we used the time where 

the measurements end. For the thermal measurement, the end can be seen on the video and the 

exact time can be allocated with an error of two slides, meaning ~ 0.07s. This error arises 

problems for the determination of the phase shift between the thermal and mechanical 

measurements. To understand if this error is significant, we should compare it with the period 

of the mechanical measurement. If the period is 1.25s (ω = 5rad/s), then the error to period rate 

is 5.6%. If the period is 12.56s (ω = 0.5rad/s), then the error to period rate is 0.56% and an 

evaluation of the phase shift is acceptable. 
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Appendix C: Specific features of the infrared 

emissivity – importance of the choice of the substrate 
 

In this appendix, we describe the studied system (aluminium/alumina plates + liquid) at rest, 

where the equilibrium has been established.  

 

Figure App. 2: a) Raw infra-red snapshot of the alumina plate-liquid- alumina plate system at rest. b) 
Raw infra-red snapshot of the aluminium plate-liquid- aluminium plate system at rest. c) Comparison 
of the emissivity profiles (vertical cut) of the gap of the alumina plate-liquid- alumina plate and 
aluminium plate-liquid- aluminium plate system at rest. Gap value 250μm. 

c) 

Top plate 

Bottom plate Shadow 

 

a) b) 

Top plate 

Bottom plate 

a) 
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In Figure App. 2a, we observe a raw IR image recorded by the sensor of the alumina/liquid 

system at rest. Figure App. 2b is the raw IR image in the case of a liquid confined between 

aluminum plates. Figure App. 2c shows a vertical cut of the images. The difference between 

the two profiles is due to their difference in emissivity. In the case of aluminium plates (Figure 

App. 2b), the difference of intensity between the plates and liquid is much higher due to the 

reflective nature of the aluminium surface. Thermal measurements with the use of standard 

aluminium substrates, instead of the high-energy alumina ones, stand as a great challenge. 

Aluminium and alumina plates have different properties, such as the thermal conductivity (kAl 

= 237W/m*K, kAl2O3 = 30 W/m*K), emissivity and reflectivity. Particularly, aluminium 

substrates conduct heat rapidly and reflect greatly heat from a nearby heat source. 

A careful examination of the liquid profile (Figure App. 2c) indicates that a slight variation of 

the temperature (< 0.005°C/mm) can be detected near the walls. This static wall effect is a 

physical effect due to the energy imbalance of the liquid molecules at the vicinity of the surface 

that exerts an attractive field as precisely described in [172]. This small effect has been 

nevertheless systematically taken into account in the data treatment by recording a series of 

images at rest, prior each series of dynamic measurements.   

 

Figure App. 3: a) 2D thermal mapping of top fixed aluminium plate and PPG-4000 during oscillatory 
strain measurements (e = 915μm, ω = 1 rad/s, γ0 = 800 – 1000%). b) Same for alumina substrate. 2D 
mappings not on the same colour scale.  

The properties of aluminium stand troublesome for the study of any thermal effect in the 

confined liquid. For the aluminium plate case, we must also consider the conduction between 

the plates and the liquid, in the time scale of the measurements. In Figure App. 3, we show the 

evolution of the fixed top plate and the liquid over the course of an oscillatory measurement. 

We observe that for the aluminium case (Figure App. 3a), the top plate close to the liquid 

oscillates thermally over time. For alumina (Figure App. 3b), no thermal change is visible in 

the plate within the experimental error bar. The various lines of slightly different, but constant 

temperature in the area of the top plate, is due to roughness effect. As the plates are not perfectly 

smooth, the roughness causes different reflection values and thus changing the emissivity of 

the area, making it to appear as slightly cooler or hotter than the neighbour regions. The 

(moving) bottom plate is not depicted. We observe from the 2D mapping that for the aluminium 
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case, the liquid thermal bands changes can be spotted without severe shadow effects from the 

plate. The bulk behaviour appears to be comparable for the two different substrates, with the 

aluminium case to appear slightly stronger, but deviates greatly from a sin wave response, with 

the appearance of second harmonics leading to double the frequency of the thermal wave, 

hinting viscous heating effects. For the alumina case, the bulk response remains as a simple sin 

wave.   

 Figure App. 4: a) Emissivity variation of top fixed aluminium plate and PPG-4000 during oscillatory 
strain measurements (e = 260μm, ω = 1 rad/s, γ0 = 3150 - 4000%). b) Same for alumina substrate (e = 
240μm). The solid and liquid temperatures are not comparable due to the different emissivity 
coefficients. 

In Figure App. 4, we show the response of the system to an oscillatory excitation, with the 

liquid thickness of around 250μm.  

For the aluminium case (Figure App. 4a), we notice a similar behaviour of the top plate as for 

920μm. The thermal response of the liquid is more difficult to be studied. We notice shadow of 

the aluminium plates to the edges of the liquid, due to the high reflectivity. We are unable to 

study in detail the liquid response and we are restricted to limited (to the centre) space of the 

liquid. As seen in Figure App. 4a, the thermal response of the top plate is simultaneous with 

the bulk liquid temperature. Such behaviour further strengthens conduction effect and 

reflectivity of the plate.  

The alumina plate (Figure App. 4b), about seven times less thermally conductive, does not 

respond thermally to the excitations (purple line). As seen in Figure App. 4b, the portion of the 

plate closest to the liquid exhibits steady temperature while the liquid thermally oscillates. For 

both substrates, the bulk liquid changes its temperature based on the applied excitation. For the 

aluminium case, this change deviates greatly from a sin wave than the alumina counterpart.  

From the presented figures, we conclude that we can generate a thermal response on a confined 

liquid (here PPG-4000) independently of the substrate (aluminium or alumina). However, 

aluminium plates hinder the in-depth study of the desired liquid due to its great conductivity 

and reflectivity. Its large conductivity results to energy exchange between the plate and the 

liquid, meaning that it should be considered during the thermal study of the liquid. Its great 

reflectivity results to shadowing of the nearby areas, such as the edges of the confined liquid 

(Figure App. 4a) and makes difficult the evaluation of its actual thermal change. Finally, the 

liquid-solid interfacial forces being different, the conditions of slippage and liquid/solid friction 

are different. 
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Annex A: Published articles and conference 

participations 
 

In the frame of the current PhD thesis, four articles are published in scientific journals. In detail 

these scientific papers are: 

1) Kume, E., Baroni, P. & Noirez, L. Strain-induced violation of temperature uniformity in 

mesoscale liquids. Sci Rep 10, 13340 (2020). https://doi.org/10.1038/s41598-020-69404-1. 

2) Eni Kume, Alessio Zaccone, Laurence Noirez. Unexpected thermo-elastic effects in liquid 

glycerol by mechanical deformation. Physics of Fluids 33, 072007 (2021); 

https://doi.org/10.1063/5.0051587. 

3) Kume, E., Noirez, L. Identification of Mechanical-stimuli Thermal Response in Mesoscopic 

Liquids: from Harmonic to non-Harmonic Thermal Wave. J. Phys. Chem. B 2021, 125, 30, 

8652–8658. https://doi.org/10.1021/acs.jpcb.1c04362. 

The paper was chosen as the cover art of Volume 125, Issue 30 of J. Chem. Phys. B. 

4) Eni Kume, Patrick Baroni, Laurence Noirez. Highlighting Thermo-Elastic effects in 

Confined Fluids. Polymers 2021, 13(14), 2378; https://doi.org/10.3390/polym13142378. 

Below the list of conference participations where work related with this manuscript was 

presented: 

1) European Polymer Congress (EPF2019), Crete, Greece, oral communication. 

2) European/Japanese Molecular Liquid Group Conference (EMLG/JMLG 2019), Kutna Hora, 

Czech Republic, oral communication. 

3) Annual European Rheology Conference (AERC2021), virtual, oral communication. 

4) Liquid Matter Conference (LMC2021), virtual, poster presentation.  

https://doi.org/10.1038/s41598-020-69404-1
https://doi.org/10.1063/5.0051587
https://doi.org/10.1021/acs.jpcb.1c04362
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Titre : Mise en évidence de l'effet thermoélastique induit par déformation de cisaillement dans les liquides 

mésoscopiques 

Mots clés : liquides confinés, élasticité de cisaillement, couplage thermomécanique, ondes thermiques, loi 

d’échelle 

Résumé : La compréhension approfondie des 

liquides constitue un grand défi. Leur dynamique 

moléculaire rapide conduit à l'incapacité de 

supporter les ondes transversales (cisaillement) de 

basses fréquences qui se dissipent dans le milieu. 

Cependant, des rapports expérimentaux et 

théoriques récents semblent s'opposer à cette notion 

et mettent en évidence une élasticité de cisaillement 

finie dans les liquides à l'échelle mésoscopique. Dans 

le cadre de cette élasticité de cisaillement, nous 

étudions la réponse thermique à une déformation en 

cisaillement. Les liquides sont confinés à des 

épaisseurs variantes entre 100 et 1000 µm entre des 

surfaces à haute énergie et sollicités dans une 

gamme de fréquences de 0,5 à 5 rad/s (0,08 à 0,8 Hz). 

Nous montrons que l'onde de cisaillement génère 

des ondes thermiques froides et chaudes quasi 

instantanées et réversibles dont l'amplitude et la 

forme sont modulées par la déformation de 

cisaillement, conduisant à la génération d'un signal 

thermique non linéaire (harmoniques) à grande 

amplitude ou fréquence. Nous mettons également 

en évidence une relaxation thermique 

exponentielle étirée lors de la déformation-échelle 

ainsi qu'une dépendance d'échelle similaire à celle 

de l'élasticité de cisaillement. Les effets thermiques 

observés indiquent que les liquides mésoscopiques 

sont capables de convertir l'énergie de cisaillement 

mécanique dans des états thermodynamiques non 

uniformes, et sont donc dotés de thermoélasticité, 

une propriété identifiée jusqu'à présent dans les 

solides. Enfin, dans le cadre de l'étude dynamique 

de l'interface solide-liquide, nous révélons par 

diffusion inélastique de rayons X, l'impact du 

mouillage sur la dynamique de surface solide. 

 

 

Title : Highlighting strain-induced thermoelastic effect in mesoscopic liquids 

Keywords : confined liquids, shear elasticity, thermo-mechanical coupling, thermal waves, scale dependence  

Abstract : In depth understanding of liquids stand as 

a great challenge. Their fast molecular dynamics lead 

to inability of supporting transverse (shear) waves, 

which energy should dissipate in a liquid medium. 

However, recent experimental and theoretical reports 

argue against this notion and highlight finite shear 

elasticity in mesoscale (semi-confined) liquids. In the 

frame of finite shear elasticity in mesoscopic liquids, 

we probe the thermal response under mechanical 

oscillatory shear excitation within the conventional 

viscous regime for a frequency range of 0.5 – 5 rad/s 

(0.08 – 0.8 Hz). The studied liquids (glycerol, 

polypropylene glycol and water) are confined 

between high-energy surfaces with thickness gap 

varying between 100 – 1000μm. We show that the 

applied shear strain generates nearly instant and 

reversible (hot and cold) thermal waves, whose 

amplitude and shape are linearly modulated by the 

shear strain at moderate shear strain and frequency, 

while leading to the generation of a non-linear  

thermal signal (harmonics) at large amplitude or 

larger frequency. We also examine the stability of 

the thermal equilibrium while the liquid is 

submitted to a sudden step shear strain. We 

evidence fast thermal changes reaching +0.04°C 

and -0.04°C amplitude that relax following a 

stretched-exponential while keeping the global 

temperature unchanged. Finally, we highlight a 

scale dependence of the thermal wave similar to 

that of the shear elasticity. The observed thermal 

effects indicate that mesoscopic liquids are able to 

convert (partly) the mechanical shear energy in 

non-uniform and non-equilibrium thermodynamic 

states, thus are endowed with thermoelasticity, a 

property so far identified in solids. Finally, in the 

frame of the dynamic study of the solid-liquid 

interface, we reveal via inelastic x-ray scattering, 

the impact of wetting on the solid surface 

dynamics. 

 

 


