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1 Introduction

A great deal of my work is just playing with equations and seeing what
they give.

Paul Dirac

The Dirac equation is a quantum mechanical wave equation originally proposed by Paul Dirac in
1928 [1, 2] to describe all spin-1/2 relativistic particles in high-energy physics moving at a speed v close
to the speed of light c. It incorporates Einstein’s theory of special relativity in the framework of quan-
tum mechanics. The Dirac equation is thus a relativistic version of the Schrödinger equation that
governs the motion of non-relativistic particles in quantum mechanics, or conversely, the Schrödinger
equation is an approximate version of the Dirac equation when v � c.

In condensed matter physics, low-energy electrons moving at a speed v/c � 1 are soundly seen
as non-relativistic particles. One might think that the Schrödinger equation would su�ce to describe
electrons in solids and the relativistic e�ects are a small correction term such as spin-orbit coupling
(SOC) [3]. It seems that the ultra-relativistic, i.e., massless, Dirac equation (also known as the Weyl
equation [4]) was thought to be only applicable for high-energy elementary particles. Surprisingly, by
the interplay between the periodic crystal lattice potential and electrons, the massless Dirac equation
emerges in the low-energy description of the electronic structure of solids, yet another manifestation
of the idea “More is di�erent” by Anderson [5]. This is one of the most spectacular recent �ndings in
the realm of condensed matter physics. The relativistic massless Dirac equation or variations of it can
actually describe the physics around the Fermi level of real materials such as graphene [6, 7], Dirac/Weyl
semimetals [8, 9, 10], nodal-line semimetals [11], etc. These materials are named Dirac materials in
which the mathematical treatment for the electrons is perfectly identical to that of relativistic high-
energy elementary particles.

This discovery makes the high-energy physicists’ dream come true that one can access relativistic sys-
tems in a table-top device in which one can simulate relativistic experiments. One requires much less
experimental experimental conditions than the usual ones in traditional high-energy physics. There-
fore, high-energy physicists and �eld theorists now have a fascinating playground in these low-energy
systems where their theory can be applied and veri�ed.
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1 Introduction

Reciprocally, the idea that relativistic physics is manifest in condensed matter is not uniquely re-
warding for high-energy physicists. It is also enlightening for condensed matter physicists. Many un-
expected observations in Dirac materials are thus attributable to the special relativity embedded in the
Dirac equation. Described by the Dirac instead of Schrödinger equation, Dirac electrons must have
peculiar transport and spectroscopic properties di�erent from the usual Schrödinger ones. Especially,
the arsenal of theoretical tools to study them are already well-established thanks to huge e�orts made
by high-energy physicists. Working in condensed matter theory, high-energy formalism refreshes the
understanding of Dirac materials.

The discovery of Dirac materials accompanies also the development of the revolutionary concept
of topology encrypted in wavefunctions. For long time since the proposal of Bloch’s theorem [12],

condensed-matter physicists have been interested mostly in the electronic band structure of solids
and often forgotten information encoded in the wavefunctions apart from their symmetry proper-
ties which matter in optical transitions. The importance of wavefunctions is best illustrated by a
brain-refreshing example that two Hamiltonians with exactly the same energy spectrum could have
distinguishing electromagnetic responses as shown in the seminal paper of Haldane [13]! These two
Hamiltonian are now classi�ed as topologically di�erent phases of matter by an index called topolog-
ical invariant. The idea behind this is that the topology of a Hamiltonian describes how the energy
bands are coupled to each other so that only responses involving interband process such as the Hall
conductivity [14] can reveal the topological properties of matter. This is also the reason why people
have overlooked the topological aspect of Hamiltonians for a long time while considering only one
band alone, especially in semi-classical treatments [15]. Therefore, a matrix formulation of the Hamil-
tonian is necessary to study all the relevant bands together in order to capture the topological properties
of solids. The scalar Schrödinger Hamiltonian should be thus replaced by the matrix Dirac Hamilto-
nian.1 Hence, the Dirac equation and its variants are also suitable to describe the low-energy physics of
topological materials (including Dirac materials), namely materials having intriguing properties due
to the non-trivial topology of their Hamiltonian.

One of the tantalizing properties of topological materials is the bulk-edge correspondence which
means that topologically protected conducting edge states exist when the bulk Hamiltonian is topo-
logically non-trivial. These edge states are believed to enable the fabrication of more energy-e�cient mi-
croelectronic components, better catalysts, improved thermoelectric converters, new magnetic storage
media or even quantum computers [16]! The mechanism of emergence of the edge states of topologi-
cal materials is the band inversion meaning that the order of valence and conduction bands in energy
is inverted across the interface between materials and vacuum. To explicitly show the presence of the
edge states, the Dirac equation, which now becomes spatially dependent, is the unavoidable theoret-

1Especially, a linear conical band dispersion requires at least two bands where the use of the Pauli matrices are natural.
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1.1 Dirac equation in a nutshell

ical formalism. It is actually a unifying general approach to study all the surface states of topological
systems related to band inversions.

In summary, the Dirac equation occupies an essential position in the recent progress of condensed
matter physics. The reader will also �nd the Dirac equation throughout this thesis which is interested
in the spectroscopic properties of topological materials using the Dirac equation. In the present intro-
ductory chapter, I would like to �rst recapitulate the history of the Dirac equation. Then, I will show
some examples of Dirac materials of which the Hamiltonians are described by generalized versions of
the Dirac equation. As a paradigm of Dirac materials, graphene is the best to illustrate the idea of “do-
ing high-energy physics in low-energy systems” of which I will give three examples here. After that,
I will brie�y present topological band theory and topological materials using the model proposed by
Haldane [13], also known as a quantum anomalous Hall insulator. Within this model, the bulk-edge
correspondence manifests itself as a bulk insulating phase with topologically protected conducting
channels at its edges. This will be explained by a general argument based on the topological band the-
ory. Furthermore, I will derive the energy and the wavefunctions of these topological edge states with
the help of the Dirac equation by which the band inversion mechanism is explicitly shown. The sta-
bility of the edge states is understood by the Jackiw-Rebbi argument [17] or by the Aharonov-Casher
argument [18].

1.1 Dirac equation in a nutshell

* The historical aspect on the Dirac equation is entirely credited to Austin Kcon Cheng. I learned this
fascinating history totally from his thesis [19] and rephrase it in this section.

I cannot resist to sharing a historical perspective on the Dirac equation. In 1900, Max Planck pos-
tulated that electromagnetic energy could be emitted in quantized form, later known as photon, based
on his experimental observation of black-body radiation. This observation is now seen as the ignition
of the following explosion of knowledge on quantum mechanics. Twenty-six years later, to describe a
particle as a wave in an explicit way, Erwin Schrödinger [20] came up with one of the most important
equations in the Human history:

i~
∂

∂t
ψ(r, t) =

[
− ~2

2m
∇2 + V (r, t)

]
ψ(r, t) (1.1)

where ~ = h/2π is the reduced Planck constant, m is the mass of the particle of interest, V (r, t) is
the energy potential which the particle experiences at a given position r and time t and ψ(r, t) is the
wavefunction that fully determines the particle’s movement in a probabilistic way. This equation is
now given the name of Schrödinger’s equation. The right part in the square brackets can be seen as an

3



1 Introduction

operator known as the Hamiltonian acting on the wavefunction ψ. The eigenvalue of the Hamilto-
nian is the total energy of the particle including kinetic and potential energy. Solving the spectrum of
a given particle is �nding the eigenvalue of its corresponding Hamiltonian. By the principle of corre-
spondence, one can write the Hamiltonian for Eq. (1.1)

Ĥ = − ~2

2m
∇2 + V (r, t) =

p̂2

2m
+ V (r, t) (1.2)

where the momentum operator p̂ is introduced. In this form, it is clear that Schrödinger’s equation is
only valid for non-relativistic particles, e.g., electrons with moderate velocity compared to the speed of
light, because the kinetic energy part is p2/2m. Then, Eq. (1.1) becomes

i~
∂

∂t
ψ(r, t) = Ĥψ(r, t). (1.3)

However, in Einstein’s special relativity [21], the energy of a relativistic particle is

E2 = p2c2 +m2c4 (1.4)

where E is the energy of the particle, p is the momentum, m is the rest mass of the particle and c is
the speed of light. It is the famous Einstein’s energy-momentum relation. Furthermore, Einstein sug-
gested in his special relativity theory that the time dimension should play the same role as the spatial
dimensions. But, the Schrödinger equation isolates the time dimension as a special one. It has the sec-
ond derivative in space but only the �rst derivative in time. To write a relativistic equation for quantum
mechanics, it is tempting to replaceE by i~∂t and p by−i~∇ in Eq. (1.4). By doing so, one has

−~2 ∂
2

∂t2
ψ(r, t) =

[
−~2c2∇2 +m2c4

]
ψ(r, t) (1.5)

which is known as the Klein-Gordon equation [22, 23].2 It treats indeed the dimension of time and
space both with second derivative. However, this equation is more suitable to describe relativistic
bosons of integer spin. The use of this equation for fermions such as electrons is rather limited.

When Paul Dirac was facing the Klein-Gordon and Schrödinger equations, his solution was to trans-
form the spatial and time derivatives to �rst order. It turns out that the price to pay to make Eq. (1.5) a
�rst-order equation is that the equation must be written in matrix form. Paul Dirac introduced a four-

2As an anecdote, the proposal of the Klein-Gordon equation was in fact before the Schrödinger equation.
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1.1 Dirac equation in a nutshell

component wavefunction and four-by-four matrices that would allow him to deal with the square root
of the operators. The �nal form in the four-dimensional spacetime world was:

i~
∂

∂t
ψ(r, t) =

[
−i~cα ·∇ + βmc2

]
ψ(r, t), (1.6)

in terms of3

β =

[
σ0 0

0 −σ0

]
, αi =

[
0 σi

σi 0

]
, (1.7)

where σ0 is the two-by-two identity matrix and σi (i = 1, 2, 3) are the Pauli matrices4

σ1 =

[
0 1

−1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
. (1.8)

As for the Schrödinger equation, one can de�ne the associated Hamiltonian as

Ĥ = −i~cα ·∇ + βmc2 = ~cα · p̂+ βmc2, (1.9)

which is also called the Dirac Hamiltonian, so that Eq. (1.6) can be also written as Eq. (1.3). It is
sometimes useful to write the original Dirac equation in the covariant form

[
ic~γµ∂µ −mc2

]
ψ(r, t) = 0. (1.10)

which is invariant under Lorentz transformations. Here the notation implies summation over repeated
indices µ (Einstein convention). The indices take the values 0, 1, 2, 3 and correspond to the t, x, y, z
space-time dimensions, respectively, while∂µ is the covariant four-gradient andγµ are the four-by-four
matrices obeying the Cli�ord algebra

{γµ, γν} = 2ηµνI4 (1.11)

where ηµν = Diag(1,−1,−1,−1) is the metric tensor and I4 is the four-by-four identity matrix.
This anti-commutation ensures the square root of the operators is possible.

Here, I do not specify an explicit set of matrices for γµ because there are di�erent possibilities due
to the Lorentz invariance of Eq. (1.10). One can thus choose a set of γµ matrices, i.e., a coordinate

3This is only one of many basis, called the Dirac basis, in which the matrices αi and β are written. This will be further
explained in terms of γ matrices in the following.

4Depending on the context, I will also denote the three Pauli matrices as σi with i = x, y, z.
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system for the space-time dimensions in the convenience of the problem of interest. For example, if
the particle is massless, it is worthy to write the Dirac Hamiltonian (1.9) in the Weyl basis in which the
γµ matrices are

γ0 =

[
0 I2

I2 0

]
, γi =

[
0 σi

−σi 0

]
(1.12)

where i = 1, 2, 3 and I2 is the two-by-two identity matrix. The Weyl basis has the advantage that the
four-component spinor is divided into two decoupled two-component spinors with opposite handed-
ness or chirality. The four-by-four Dirac Hamiltonian decomposes into two two-by-two Weyl Hamil-
tonians

Ĥλ = λ~cσ · p̂ (1.13)

whereσ = (σ1, σ2, σ3) andλ is the chirality of the particle [24]. The corresponding equation is called
the Weyl equation [4].

1.2 High-energy physics in Dirac materials

Thanks to the periodicity and space group symmetry of some crystal lattices, the low-energy physics of
electrons in solids can be sometimes modeled by the Dirac-type Hamiltonians. In hindsight, the hints
for the previous fact are already given in Bloch’s theorem which states that the energy spectrum of
solids consists of several bands. In particular, if one considers excitations from valence to conduction
bands, a matrix formulation is inevitable. It is thus not surprising that the analogy of the notion of
particle and anti-particle [25] with that of electron and hole fascinated physicists in the great epoch of
semiconductors in the 1960s [26]. While the massive Dirac Hamiltonian easily �nds its application in
condensed matter physics, it is unexpected that the massless Dirac Hamiltonian can also emerge in real
materials. Although some theoretical predictions were already made in 1980s [27, 28], these studies did
not attract much attentions until the synthesis of graphene in 2004 [6].

Then begins the gold rush for Dirac materials. People are searching in the periodic table all the can-
didates whose low-energy band structure can be modeled by the variations of the Dirac Hamiltonian.5

The advent of graphene also inspires �eld theorists to verify in materials their theories initially proposed
for elementary particles in high-energy physics.

5Here, I call Dirac materials all the materials described by a Dirac-type Bloch Hamiltonian with only linear terms in mo-
mentum no matter whether they are gapped or gapless.
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1.2 High-energy physics in Dirac materials

In this section, I will present several Dirac materials which I will investigate further in the following
chapters. Some of them are widely surveyed and some of them have been realized only recently. Then, I
will take graphene as an example to demonstrate three relativistic phenomena already seen in materials.6

1.2.1 Zoology of Dirac materials

The genesis of Dirac materials starts at the synthesis of graphene thanks to Geim and Novoselov, two
Nobel prize laureates in physics of 2010. Graphene is a two-dimensional (2D) semimetal which pos-
sesses two in inequivalent band touching points in the �rst Brillouin zone at the charge neutral point.
In the vicinity of these band crossing points, the Hamiltonian to �rst order in momentum reads

H = ~v(ξkxσx + kyσy), (1.14)

where ξ = ± indicates two inequivalent valleys. The low-energy spectrum is known as the Dirac cones
(see Fig. 1.1). A full derivation of this Hamiltonian from the tight-binding model is given in Chapter
2. Here, one retrieves the 2D massless Dirac Hamiltonian in which the two sublattices of graphene’s
honeycomb lattice play the role of the pseudo-spin. The energy degeneracy of the band touching points
is simultaneously protected by the inversion and time-reversal symmetries. For example, graphene is
easily gapped by introducing a staggered potential on two sublattices whose material realization is the
hexagonal boron nitride h-BN with the Hamiltonian [27]

H = ~v(ξkxσx + kyσy) + ∆σz. (1.15)

While the derivation of the original Dirac equation (1.6) or Hamiltonian (1.9) is based on Einstein’s
theory of special relativity which has to preserve the Lorentz symmetry, there is no such a constraint
in the emergent Dirac Hamiltonian of Dirac materials. In particular, the velocity could be anisotropic
for in the x, y-plane or the Dirac cones could be tilted such that the Hamiltonian becomes

H = ~wkx + ~v(kxσx + kyσy) + ∆σz (1.16)

where the velocityw is the slope of tilt. See Fig. 1.1 for its energy spectrum. The massless version of the
2D tilted Dirac Hamiltonian can be realized in 8 − Pmmn borophene [30], quinoid-type graphene
[31, 32], the organic conductor α − (BEDT TTF)2I3 [33]. Therefore, the physics in Dirac materials
are even richer than the original Dirac Hamiltonian.

6There exist of course many other phenomena having a condensed matter representation, which are well-known in quan-
tum �eld theory such as parity anomaly [27] and chiral anomaly [29].

7



1 Introduction

Figure 1.1: Energy spectra of several types of Dirac materials. For 3D materials, the third momentum is set to be
zero. The blue plane represents the chemical potential which I choose to intersect with the conduc-
tion bands. The shape of the Fermi surface is depicted by the red dashed lines.
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1.2 High-energy physics in Dirac materials

The three-dimensional (3D) Weyl Hamiltonian (1.13) can also emerge in materials know as Weyl
semimetals (WSMs). The band touching points are called Weyl nodes. As shown by Nielsen and
Ninomiya in [34], later known as fermion doubling theorem or Nielsen-Ninomiya no-go theorem, the
number of the Weyl nodes of chirality λ = + must be equal to that of chirality λ = − in the
lattice realization of the Weyl equation.7 Unlike in graphene, the band touching points of WSMs
are generic and stable. This can be seen by considering the most general two-by-two Hamiltonian
H = f0 + fxσx + fyσy + fzσz whose spectrum is E = f0 + ±

√
f2
x + f2

y + f2
z . The valence

and conduction band touch if fx = fy = fz = 0 simultaneously. In 3D space, each coe�cient
fi depends on 3D momentum (kx, ky, kz) so that three equations with three variables yields always
solutions. Introducing a mass gap like ∆σz would not gap but only move the Weyl nodes in reciprocal
space. However, the band touching in 2D requires symmetries or �ne tuning. So, the term “generic
touching point” means that while it is not guaranteed to �nd any such touching events in an arbitrary
material, one should not be surprised to �nd them either. Nevertheless, inversion and time-reversal
symmetries play important roles for WSMs. If the inversion symmetry is present and time-reversal
symmetry is broken, the minimum model needs only two Weyl nodes. In contrast, if the inversion
symmetry is broken and time-reversal symmetry is present, the minimum model needs at least four
Weyl nodes. The reason is that one must verify the fermion doubling theorem while the time-reversal
operation preserves the chirality of the Weyl nodes and the inversion switches it. If the Hamiltonian
commutes with both inversion and time-reversal symmetries, then all bands are Kramers degenerate
already and any additional touchings would generate points of fourfold degeneracy known as Dirac
points. The associated material is called Dirac semimetal.

The �rst theoretical proposal of material realization of WSMs was given by Herring in 1937 [36].

More recently, the book by Volovik published in 2003 [37] has been in�uential in re-drawing the at-
tention of theorists to the Weyl physics in materials. Similar to the 2D massless Dirac Hamiltonian, the
anisotropy of velocity and the tilt are also allowed in the 3D Weyl Hamiltonian. For example, a tilted
WSM’s Hamiltonian reads

H = ~wkz + ~v(kxσx + kyσy + kzσz). (1.17)

Depending on the ratio |w/v|, WSMs are classi�ed into two phases [38]: type-I WSMs if |w/v| < 1

and type-II WSMs if |w/v| > 1. The crucial di�erence between the two types of WSMs is that the
Fermi surface is ellipsoid and closed for type-I but it is hyperbolic and opened for type-II (see Fig. 1.1).
The two shapes of the Fermi surface induce distinguishable responses to magnetic �eld as I will show
in Chapter 2.

7A more elementary proof is given in [35].
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Many materials are now theoretically and experimentally identi�ed as instances of the Weyl Hamil-
tonian. For example, as a representative of the transition metal monopnictide, TaAs is a non-magnetic
and non-centrosymmetric material and con�rmed to be an inversion-broken WSM with twelve pairs
of Weyl nodes (multiple of four) near the Fermi surface [39]. The examples of Dirac semimetals are
Cd3As2 [40] and Na3Bi [41]. In spite of the fact the time-reversal broken magnetic WSMs has the sim-
plest theoretical modeling [42], the material realization has not been recognized yet. Possible candidates
would be pyrochlore iridates [43].

In addition to Weyl and Dirac nodes, the band touching points can form a continuous line in recip-
rocal space in materials called nodal line semimetals [44] (see Fig. 1.1). They have been predicted and
observed via the angle-resolved photoemission spectroscopy (ARPES), for example, in ZrSiS [45, 46].

However, the combination of inversion and time reversal alone cannot protect the nodal line from
being gapped out if the SOC is included. The resulting phase of matter is thus called gapped nodal
line semimetal. An example that I will explain thoroughly in Chapter 2 and 3 is the transition metal
dipnictides NbAs2 described by a low-energy Hamiltonian

H = ~wkz + ~v(kxσx + kyσy) + ∆σz. (1.18)

Its energy pro�le is shown in Fig. 1.1.

As I have shown in this section, without the constraint of the Lorentz symmetry, a wide range of the
variations of the Dirac Hamiltonian is unleashed in the context of condensed matter. The freedom of
adding new terms in the Dirac Hamiltonian have blazoned the Dirac physics in materials. In Chapter
2, I will talk about the Landau quantization in most of Dirac materials mentioned above. In particu-
lar, the spectroscopic properties of the gapped nodal line semimetal NbAs2 are discussed in detail in
Chapter 3.

1.2.2 Relativistic phenomena in graphene

Nowadays, many relativistic phenomena have already been observed in Dirac materials via methods
that are well-known in the condensed matter community. Since the Hamiltonian of graphene matches
perfectly the original 2D massless Dirac Hamiltonian, it is the �rst material lab of high-energy exper-
iments. One of such examples is the Klein tunneling paradox according to which relativistic massless
electrons can tunnel through a potential step with perfect transmission. This particular phenomenon
has been shown to be relevant in electron scattering in graphene. When electrons pass through an
extremely narrow graphene bipolar junctions, the Klein tunneling manifests itself as the phase shift
observed in the conductance fringes at low magnetic �elds, a signature of the perfect transmission
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1.2 High-energy physics in Dirac materials

of normally incident electrons [47, 48]. A theoretical pedagogical review on the Klein tunneling in
graphene can be found in [49].

Another famous phenomenon in atomic physics to mention is termed “atomic collapse” [50, 51]: an
atom with an atomic number beyond a critical value (Z = 172) cannot exist because of the leakage to
the negative energy spectrum. To experimentally prove this theoretical prediction is extremely di�cult.
Looking at the periodic table, the highest atomic number that can be achieved by all the present high-
energy techniques is only below 120, still long way to go. However, atomic collapse is shown to be able
to be simulated in graphene with point charge impurities over it [52]. The experimental demonstration
is the observation of a resonant peak in the density of states in the hole band of graphene by scanning
tunneling microscope (STM) if atom collapse happens. These two examples already depict a promising
prospect of doing high-energy physics in a piece of Dirac materials.

The relativistic renormalization, a famous consequence of the Lorentz transformation, is also pre-
dicted to be able to see in graphene in the presence of crossed electric magnetic �eld [53]. One does not
need to contemplate the Galaxy using immense astronomical telescopes to see the relativistic renormal-
ization of electromagnetic �elds. As I will show in Chapter 2 and 3, a tiny piece of crystal will su�ce.
The manifestation of the relativistic renormalization in graphene is that the Landau level structure
collapses into a continuum in the presence of a magnetic �eld and an intense electric �eld given by
a high potential barrier induced on graphene sheet. An indirect experimental signature of the phe-
nomenon is that the oscillations of conductance are found to abruptly disappear when the strength of
the magnetic �eld is reduced below a certain critical value [54]. I will also elaborate the theory on the
relativistic renormalization in Dirac materials in Chapter 2 and 3 where I will show a more direct and
unambiguous experimental signature for it.

Although the projection of relativistic phenomena to Dirac materials is exciting, one must keep
in mind that the pseudo-relativity in Dirac materials is purely formal and mathematical. It does not
mean that the particles in our treatment are really relativistic. They are indeed in the non-relativistic
regime. For example, electrons in graphene move with the Fermi velocity far below the speed of light
(v/c ≈ 1/300). For the same reason, the analogy with special relativity is not always guaranteed
in Dirac materials. Additional terms, with no known relativistic counterpart, arise naturally in the
Hamiltonian describing general Dirac materials as I have shown previously. Although many high-
energy phenomena have their corresponding condensed matter representation, one should remember
that they must be understood in the language of condensed matter, that is non-relativistic. I will unfold
this point in Chapter 2.
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1.3 Topology in materials

Topology is initially a mathematical term to describe the geometrical properties of manifolds which
are robust to continuous deformations without any “violent event”. In algebraic topology, objects of
di�erent topology are classi�ed by discrete and countable numbers known as topological invariant. A
violent event is thus de�ned as a transformation on objects switching abruptly the topological invariant
from one value to another. At the moment of the violent event, the topological invariant is not well-
de�ned. For example, 3D objects can be classi�ed by the number of holes, i.e., the genus, though
themselves. The number of holes will not change if one just pinches the object without cutting it or
pasting together its parts, namely without violent events.

Unlike the Gaussian curvature which is a local property of manifold, topological properties are
global geometrical properties. Topology can be thus thought to be the integrated geometry of man-
ifolds. This idea is best illustrated by the Möbius strip which is formed by cutting a trivial strip as a
scotch tape, twisting one end by 180 degrees and then pasting the two ends together (see Fig. 1.2).8

Intuitively, the Möbius strip is topologically di�erent object from the trivial strip for a Human sur-
viving in 3D space. However, it is not evident for an ant living on the 2D strip which seems to only
feel the local curvature of the strips.9 Nevertheless, an ant knowing topology can distinguish the two
strips as illustrated in Fig. 1.2. It can mark its starting position and orientation in space before looping
on the strip. When it arrives for the �rst time back to its initial position, it will know on which strip
it has had this journey. If it �nds itself on the same side of the strip as the starting point, namely the
same orientation, it knows the strip is the trivial one. In contrast, if it �nds on the opposite side of the
strip, it must live on the Möbius strip. Another equivalent way to classify the two strips is to count the
winding number (a topological invariant), namely the number of times that an ant loops on the strip
to go back to its initial position on the same side of the strip as that of departure. The ant needs twice
for the Möbius strip but only once for the trivial one.

The previous idea can be applied in physics as shown by Berry in 1984 [55]. Given a parameter-
dependent HamiltonianH(φ), its corresponding wavefunction |ψ(φ)〉 depends thus also the param-
eter φ.10 When one changes adibatically φ along a closed path and back to the initial value in the
manifold for the parameter, the energy spectrum of the Hamiltonian H(φ) remains unchanged but
the wavefunction |ψ(φ)〉 accumulates a geometric phase exp(iθ) depending on the topology of the

8Cutting and pasting are the two violent events that change the topology of the strip.
9Here, the ant is considered as a point moving on the two sides of the strip. Although the strips are 2D objects, the dimen-

sion of the width of the strip is irrelevant in the discussion so that the strip is e�ectively considered as a 1D object.
10Note that an eigenstate multiplied by a phase factor is still an eigenstate of the same energy. Choosing the phase as a

function of φ is choosing a gauge for the eigenstates. The fact that all the observables should be independent of the
choice of gauge is one of the fundamental principles of quantum mechanics. However, it does not mean that the gauge
phase is not important as I will show in the following by the Aharonov-Bohm e�ect and all the topological e�ects.

12



1.3 Topology in materials

Figure 1.2: 3D illustration of the trivial and Möbius strip. The ant living on the strips is represented by the blue
arrow. The trajectories by the ant are represented by the red lines: dashed lines if the trajectory is
hidden behind the strip and solid lines if not. When the ant travels for one loop on the trivial strip, it
coincides with itself. However, when it travels for one loop on the Möbius strip, it �nds itself on the
opposite side of the strip.

closed path. The phase θ is now known as the Berry phase. The revolutionary message from Berry
in his seminal paper [55] is that the Berry phase θ is gauge-independent when the path tracked by the
parameter φ in its manifold is closed. In other words, the phase φ is in principle a physical observable.
The notion of the Berry phase may be more understandable if one compares it with the ant on the
strip. In that case, the position of the ant on the strip plays the role of the parameter φ, the ant itself is
regarded as the wavefunction and the strip is thus the manifold of the parameter-dependent Hamilto-
nian. Then, a closed path traveled by φ is equivalent to a loop by the ant. The Berry phase associated
to the closed path is 0 if the ant goes back to the initial position with the same orientation; the Berry
phase is π if the ant �nds itself upside down after a loop on the strip. Therefore, the two di�erent
Hamiltonians associated to the trivial and Möbius strip are called topologically trivial and non-trivial
Hamiltonian, respectively. Sometimes, the topologically non-trivial Hamiltonian is said to be twisted
by the analogy with the Möbius strip.

The �rst proposal and observation of the Berry phase can be traced back to the paper published in
1959 and in 1960 [56, 57] on the Aharonov-Bohm e�ect.11 In this case, the Berry phase is the phase
accumulated by a charged particle in the vector potential along a closed loop so that it is proportional

11As an anecdote, this result was too shocking to be accepted by the physicists of that time. There was even a paper with the
title “Nonexistence of the Aharonov-Bohm e�ect” published in 1978 [58].
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to the magnetic �ux. On the one hand, the Aharonov-Bohm e�ect demonstrates the wave nature of
electrons by interference. On the other hand, it also reveals the importance of the gauge in modern
theoretical physics and inspires the notion of the Berry phase.

In the Aharonov-Bohm e�ect, the parameter to change is the position in real space. One can thus
transplant this idea in reciprocal space in which the crystal momentum k is a natural choice of the
parameter. In this section, I will show how Berry phase arises in electronic band theory of solids while
studying Bloch Hamiltonians H(k). Then, I will present one of the important consequences of the
Berry phase e�ect, i.e., the bulk-edge correspondence. Besides general topological arguments, I will
provide a treatment by the Dirac equation to explain the bulk-edge correspondence.

1.3.1 Topological band theory and Berry phase

As shown by Bloch in 1929 [12], the energy of electrons in a periodic crystal lattice can be indexed by
the crystal momentum k, which yields electronic band structure.12 Given the Hamiltonian H , the
corresponding eigenstates |ψn(k)〉 of energyEn(k) can be written as

|ψn(k)〉 = eik·r|un(k)〉 (1.19)

where |un(k)〉 is the cell-periodic Bloch state. Via a unitary transformation, the Bloch Hamiltonian

H(k) = e−ik·rHeik·r (1.20)

has the same spectrumEn(k) asH and the corresponding eigenstates |un(k)〉 verify

H(k)|un(k)〉 = En(k)|un(k)〉. (1.21)

The crystal momentumk is thus the parameter to vary in the de�nition of Berry phase in topological
band theory. The quantity to measure the variation of the phase accumulated by |un(k)〉while varying
k is called Berry connection de�ned as

An(k) = i〈un(k)|∇kun(k)〉 (1.22)

12A pedagogical introduction of Bloch’s theorem can be found in [15, 59].
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1.3 Topology in materials

where n is the band index.13 By de�nition, the integration of Berry connection along a closed loop is
equal to Berry phase. One can also de�ne the associated Berry curvature as

Bn(k) = ∇×An. (1.23)

In the context of topological band theory, the closed path in reciprocal space often refers to paths going
though the �rst Brillouin zone. Therefore, the corresponding Berry phase θn of a band n is given by

θn =

∫
∂BZ

dk ·An(k) =

∫
BZ

d2k ·Bn modulo 2π. (1.24)

As implied by the notation, the Berry connection and curvature are said to be the vector potential and
magnetic �eld in reciprocal space, respectively.

The Berry phase is closely related to the topological invariant of materials whose de�nition depends
on the dimensionality of the parameter space. For example, the topological invariant for a 2D band of
index n is the �rst Chern number de�ned as

Cn =
θn
2π
∈ Z (1.25)

which must be an integer on lattice according to the Atiyah-Singer index theorem [34, 60, 61]. The
topological properties of a given Hamiltonian are thus determined by the sum of the Chern numbers
of all the �lled bands. Note that the Chern number is only well-de�ned in a gapped system. In the
case of degenaracies in multi-band systems, one can generalized the de�nition of Berry connection and
phase to a tensor form

Amn(k) = i〈um(k)|∇kun(k)〉 (1.26)

as in the Yang-Mills gauge theory where the non-abelian Wilson loop in a matrix form is more suitable
[24, 62]. In the following discussions, I suppose that all the bands are separated from each other and
there exists a gap between the bands. The Chern number is indeed one of the topological invariants
for 2D insulators [63]. If the Chern number is non-zero, the insulator is called topological insulator
(TI) [64]; otherwise, the insulator is trivial in terms of Chern number. But, this does not mean that
Hamiltonians with zero-Chern number are topologically trivial. The insulator of zero Chern number
can be topological because it can be further classi�ed by other topological invariants [63]. One can
further classify them using other topological invariant, such as Z2 invariant for Kane-Mele spinful
Hamiltonian and other time-reversal TI. Here, I stop the topological classi�cation at Chern number.

13Here, I assume the band n is separated from all other bands.
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The reader may wonder that the above expressions [see for example (1.22)] give the impression that
the topological properties encoded in the Berry curvature in the nth band only depends on a single
band contrary to what I have said at the beginning of the present chapter. Actually, this is only a
pseudo-paradox if one remembers that the �rst derivative of the vector �eld is orthogonal to itself, i.e.,
it can be written as a combination of vectors orthogonal to itself. To explicitly show that the Berry
curvature is related to virtual transitions between bands (at �xed k), one uses �rst-order perturbation
theory for wavefunction so that the Berry curvature for a 2D band reads

Bn(k) = i
∑
n′ 6=n

〈un|∂kxH|un′〉〈un′ |∂kyH|un〉
(En′ − En)2

+ c.c. (1.27)

where the energies En are supposed to be non-degenerate. The reader should now be convinced that
topological band theory is a band theory considering the coupling between bands via the virtual inter-
band transitions.

1.3.2 Bulk-edge correspondence: emergence of gapless surface states

The consequence of virtual interband transitions was proposed by Karplus and Luttinger in 1954 [65,

66] well before the paper by Berry [55]. They noticed that the velocity in ferromagnets acquires an
additional term later know as anomalous velocity, which is the origin of the anomalous Hall e�ect [67].

Nevertheless, a true understanding of the topology in band theory should wait until the discovery of
the integer quantum Hall e�ect by von Kliltzing et al. in 1980 [68] and its topological interpretation
by Thouless et al. in 1982 [14]. The integer quantum Hall e�ect is also seen as the paradigm of the
bulk-edge correspondence of topological phases.

The integer quantum Hall e�ect is that the Hall conductivity of a 2D electron gas in the presence
of a magnetic �eld is quantized into integer times of the conductivity quantum e2/h. As shown by
Thouless et al. in [14], the integer quantum Hall e�ect is present when the chemical potential is be-
tween Landau levels so that the Hall conductivity can be written as

σxy =
e2

h

�lled bands∑
n

Cn (1.28)

where Cn is the Chern number for the band n. This formula yields a topological invariant known
as T.K.N.N. invariant for 2D integer quantum Hall phases. As the manifestation of the bulk-edge
correspondence, the number of the conducting edge channels are determined by the topology of the
bulk system characterized by the topological invariant.
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The emergence of conducting edge states in an insulating bulk phase does not require necessarily a
magnetic �eld, as shown by Haldane in 1988 [13]. One only requires that the time-reversal symmetry is
broken in an insulator known as quantum anomalous Hall insulator or Haldane insulator [69].14 The
Hamiltonian of the Haldane insulator built from a honeycomb lattice reads

H = ~v(kxτzσx + kyσy) + ∆τzσz (1.29)

where the third Pauli matrix τz is the valley degrees of freedom. The time-reversal symmetry is broken
by a valley-resolved mass and the total Chern number C of �lled bands equals thus to 1 at the charge
neutral point. Most saliently, C does not change unless the gap is closed. This re�ects the fact that
the topological properties are robust to continuous deformation without violent events, which are the
gap closing events in this context. Since the vacuum can be seen as a trivial insulator with large gap,
the associated Chern number is zero. Therefore, the gap must be closed at the interface between the
Haldane insulator and vacuum because the Chern number has to change its value from one to zero
while moving out of the Haldane insulator into the vacuum. Gapless conducting edge states emerge
precisely at the position where the gap is closed. The Haldane insulator possesses one conducting
channel at its edge (C = 1) and the Hall conductivity in the absence of a magnetic �eld is e2/h, yet
another example of the bulk-edge correspondence. As long as the gap of the Haldane insulator is not
closed, the edge state is present. Here comes the notion of the protection by the gap.

Note that the above argument of the emergence of edge states is general and independent how to
model the edge. “You cannot get rid of the surface state. You take a hammer, you hit the sample, and
the surface state still remains.”15 The robustness of edge states is precisely the reason why topological
materials attract so much attention recently.

1.3.3 Topological heterojunction: Dirac equation approach

Although the general topological argument dictates already the presence of robust edge states at the
surface of topological insulators, it gives no information how it looks like. As �rst proposed by Jackiw
and Rebbi [17], one can use the Dirac equation with a spatially variant mass gap to explicitly show the
presence of edge states. This approach was �rst used in the Su-Schrie�er-Heeger model for polyacety-
lene [71]. Here, I adapt this method to the Haldane insulator.

14“Anomlaous” because it is a Hall e�ect in the absence of magnetic �eld.
15Quote from Bernevig, one of the founders [70] of topological band theory [16].

17



1 Introduction

For the reason of simplicity, I consider an interface between the Haldane insulator and a trivial one
in 2D described by a Hamiltonian of similar structure called Semeno� insulator [27, 69]. The Hamil-
tonian for the latter reads

H = ~v(kxτzσx + kyσy) + ∆σz (1.30)

where the mass gap remains the same value for two valleys. The spectrum of the Semeno� insulator is
exactly the same as that of the Haldane one. The Chern number at the charge neutral point for (1.30) is
zero meaning that the Semeno� insulator is topologically trivial and its Hall conductivity in the absence
of a magnetic �eld is zero. This is precisely a concrete example of what I have said at the beginning of
the chapter: two Hamiltonians of identical spectrum can have di�erent response to electric �eld.

An interface between two topologically di�erent phases is called topological heterojunction [72]. Sup-
pose that the interface between the two insulators is formed around x = 0 in space. When x→ −∞,
one �nds the Haldane insulator; when x → +∞, one �nds the Semeno� insulator. To model the
topological heterojunction connecting a Haldane and Semeno� insulator, one can replace the con-
stant mass gap by a position-dependent one

∆(x) =

∆0τz if x→ −∞

∆0 if x→ +∞.
(1.31)

The order in energy of valence and conduction bands is inverted in the valley τz = −1 (band inversion)
since the gap change its sign. Note that the mass gap is inverted only for τz = −1 so that one can focus
on the valley τz = −1. The resulting Hamiltonian reads

H = ~v(−kxσx + kyσy) + ∆(x)σz (1.32)

where

∆(x) =

−∆0 if x→ −∞

∆0 if x→ +∞
(1.33)

and kx should be considered as the derivative−i∂x. The wavefunction of the eigenstate of the Hamil-
tonian can be written as

ψ = eikyyχ(x). (1.34)
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1.3 Topology in materials

First, considering ky = 0, one can show that E = 0 is also an eigenvalue of the Hamiltonian [69,

73] with the two possible wavefunctions

χ±(x) = exp

[
±1

~v

∫ x

x0

dx′∆(x′)

](
1

±i

)
(1.35)

which is also the eigenstate of the Hamiltonian (1.32) with energy E = ∓~vky . However, only one
of the two wavefunction is square-integrable depeding on the sign of ∆0. Given ∆0 > 0, the only
physically viable solution is

χ−(x) = exp

[
− 1

~v

∫ x

x0

dx′∆(x′)

](
1

−i

)
(1.36)

with the energyE = +~vky . Therefore, only one edge mode is present at the surface of the Haldane
insulator. Most saliently, it propagates only in the positive ky-direction with a de�nite chirality given
by the spinorial part of its wavefunction. So, it is also called chiral state. Since there is no counter-
propagating partner nearby this edge mode, it is immune to the back-scattering.

The argument of the emergence of edge states using the Dirac equation is rather general. One only
relies on the fact that the mass gap ∆(x) changes its sign across the topological heterojunction so that
the bands are inverted. The only way to get rid of the edge state E = ~vky is to invert the gap of
one of the two bulk phases. Since this would cost large amount of energy, the edge state is stable and
protected by the gap.

Additional surface states called Volkov-Pankratov states can arise when the interface is smooth enough
as shown by Volkov and Pankratov in their work [74, 75]. Since the gap changes its sign across the topo-
logical heterojunction, one can generally linearize the gap function in the vicinity of the gap closing
point, e.g., x = 0. The wavefunction of the chiral state becomes

χ− ∼

{
e−

∆
~v`x

2 for |x| � `

e−
∆
~v |x| for |x| � `,

(1.37)

where ` is the length scale associated with the smoothness of the topological heterojunction. The
smoothness of the surface can be interpreted as a pseudo-magnetic �eld [72] so that the stability of
the chiral state is also understood by the argument given by Aharonov and Casher [18]. In their work,
they showed an universal presence of zero mode for the 2D Dirac Hamiltonian in the presence of a
magnetic �eld. More details on the smooth topological junction and additional surface states can be
found in Chapter 4 and 5.
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1 Introduction

1.4 Outline of the thesis

The present thesis is thus organized as follows. In the �rst part (Chapter 2 and 3), I elaborate how
the relativistic renormalization arises in the electrodynamics of Dirac materials. I also interpret the
relativistic phenomena using the language of condensed matter at the end of Chapter 2. In particu-
lar, I show in Chapter 3 how to reveal the relativistic renormalization by magneto-optics in a gapped
nodal line semimetal NbAs2. In the second part of the thesis (Chapter 4 and 5), I discuss Volkov-
Pankratov states in smooth topological heterojunctions. I give various explications on the origin of
Volkov-Pankratov states in Chapter 4. In particular, I am interested in the spectroscopic properties of
these states shown in Chapter 5, which o�er a smoking gun for their identi�cation by experiments.
Throughout the thesis, the Dirac equation appears everywhere. It is THE equation of my PhD.

For those who are interested in topics mentioned in the present chapter, I suggest the following
references on

• Berry phase [67, 73, 76],

• Quantum �eld theory for condensed matter [77]

• Quantum Hall e�ect [78, 79],

• Special relativity [80],

• Topological band theory [73, 76],

• Topological insulators and semimetals [8, 62, 64, 81]

• Topology in physics [61].
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2 Special relativity in Dirac materials

The mathematical education of the young physicist [Albert Einstein] was
not very solid, which I am in a good position to evaluate since he obtained
it from me in Zurich some time ago.

Hermann Minkowski

The present chapter will show in detail how frame-dependent electrodynamics, known in Einstein’s
special relativity, can be also observed in Dirac materials. On the one hand, the reader will see the full
derivation of how relativistic electrodynamics emerges in graphene and how to solve it using so-called
hyperbolic transformations, a spinor representation of Lorentz boosts. On the other hand, I will show
how to extend the use of hyperbolic transformation to a generic problem in the condensed-matter
community: Landau quantization for Dirac Hamiltonians with tilting term.

I will start from the prototypical Dirac material, i.e., graphene, and discuss how an out-of-plane mag-
netic �eld and an in-plane electric �eld conspire to reconstruct the low-energy spectrum of graphene. I
will solve the problem in two di�erent ways: one is to map it to a problem in Einstein’s special relativity
and the other one is to solve it quantum mechanically using hyperbolic transformations. These two
methods are physically equivalent. However, the latter provide a general approach to solve a larger set
of problems: the energy spectrum of tilted Dirac materials in the presence of magnetic �eld. Besides,
it also provides wavefunctions that will be crucial for the next chapter on the spectroscopic properties
of Dirac materials. Apart from graphene, I will illustrate the application of hyperbolic transforma-
tions to the problem of Landau quantization with three other examples: tilted gapped graphene, tilted
Weyl semimetal and a gapped nodal-line semimetal, NbAs2. As for the latter material, I have studied
the role of the tilt in magneto-optical spectroscopy within a collaboration with Milan Orlita’s group
at the Grenoble High-Filed Lab (LNCMI). While previous studies focus on the gapless system like
Dirac/Weyl semimetals [82, 83], I am mostly interested in systems with gap.

After this more abstract relativistic description of Dirac materials, I will bring the discussion to
earth with my proper understanding by interpreting the pseudo-relativity in the language of condensed
matter and clarifying their mechanisms. This less fancier way of looking at these system is, in my view,
as important as the relativistic description. It emphasizes that the analogy with special relativity can
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2 Special relativity in Dirac materials

be viewed in simple geometric terms. The two conceptually di�erent perspectives are actually the two
sides of the same coin.

2.1 Special relativity in Graphene: crossed electric and
magnetic fields

Being the �rst experimental realization of Dirac materials, graphene is also the simplest one to study
both experimentally and theoretically. In particular, if one wants to study the energy spectrum of Dirac
materials in the presence of crossed electric and magnetic �elds [53, 78], it is the best candidate to begin
with. The system is two-dimensional so that only the out-of-plane components of the magnetic �eld
is relevant to the spectrum. For the same reason, the electric �eld can be supposed to be applied in
the plane of graphene because an out-of-plane electric �eld cannot induce any current but only dopes
the system changing the chemical potential. Since its low-energy Hamiltonian is isotropic, the electric
�eld is equivalently applied in each direction. All the traits justify selecting graphene as the starter of
the banquet.

In this section, I will �rst show how the Dirac equation emerges in graphene after a short intro-
duction to the Dirac equation in 2 + 1 space-time. Before introducing the electric �eld, the energy
spectrum with only a magnetic �eld will be shown to form a series of Landau levels indexed by an inte-
ger. Then, I will solve the spectrum when the electric �eld is also present by analogy to special relativity.
To be self-contained, a short reminder of electrodynamics in special relativity will be given in advance.

2.1.1 Unexpected massless Dirac equation in graphene

Graphene is an atomically thin monolayer of carbon atoms. Electrons of graphene live in a two-dimensional
space. To show the emergence of the Dirac equation in graphene, I will �rst derive the Dirac equation in
the 2+1 space-time dimensions. Then, I will compare it with the low-energy Hamiltonian of graphene
derived from the tight-binding model. The reader will see soon that the low-energy Hamiltonian of
graphene has exactly the same mathematical structure as the 2 + 1 Dirac equation.

Dirac equation in two dimensions

So far, the reader has encountered the Dirac equation in the form of Eq. (1.10) in the introduction for
3 + 1 (three spatial and one temporal) dimensions. Now I derive its 2 + 1 dimensional counterpart.
The equation has the same form as Eq. (1.10) but now µ = 0, 1, 2 ⇔ t, x, y. Furthermore, γµ only
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2.1 Special relativity in Graphene: crossed electric and magnetic fields

need to be two-by-two matrices1 to satisfy the respective anti-commutation relation by replacing I4 by
I2 in Eq. (1.11) and ηµν = Diag(1,−1,−1). A possible choice is to set

γ0 = σ3, γ1 = −iσ2, γ2 = −iσ1, (2.1)

so that the 2 + 1 Dirac equation reads

i~
∂

∂t
ψ(r, t) =

[
−i~cσ ·∇ +mc2σz

]
ψ(r, t). (2.2)

where I interchangeablely use the notation σi with i = x, y, z and 1, 2, 3 andσ = (σx, σy). Finally,
the corresponding Dirac Hamiltonian is

Ĥ = ~cσ · p̂+mc2σz. (2.3)

This is the Dirac Hamiltonian for a massive fermion living in the 2 + 1 space-time dimensions.

Low-energy theory of graphene: tight-binding model

The carbon atoms of graphene are arranged in a honeycomb-like two-dimensional lattice. Each unit-
cell has two atoms which form two hexagonal Bravais lattice, i.e., sublatticeA andB. In a given unit-
cell,A = (0, 0) andB = (0,−d) [see Fig. 2.1(a)]. The Bravais lattice vectors are:

a1 = a(1, 0), a2 = a

(
1

2
,

√
3

2

)
(2.4)

where a is the lattice constant and has a value of around 2.46 Å. Each carbon has three nearest neigh-
bors. Given a carbon atom, its nearest neighbors are situated at the positions

δ1 = d

(√
3

2
,
1

2

)
, δ2 = d

(
−
√

3

2
,
1

2

)
, δ3 = d(0,−1) (2.5)

where d = a/
√

3 is the nearest neighbor distance.
Electron-electron interaction is omitted so that electrons are considered independently in the peri-

odic background potential emanating from the carbon lattice. I am only interested in the low-energy
physics of graphene which are governed by the valence electrons of pz orbital of carbon atoms. Since
the typical Fermi wavelengthλF is much longer than the length of chemical bond between the nearest

1The dimension of γ matrices must be an even number since they obey Cli�ord algebra. One can prove that the dimension
should be 2[D/2] where [D/2] is the integer part of half of the space-time dimension [84].
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2 Special relativity in Dirac materials

Figure 2.1: (a) Honeycomb lattice of graphene. (b) Spectrum of the tight-binding model (2.6) with a zoom-in
at one of the K points to show the linear Dirac cone structure at low energy. Figures adapted from
[85].

carbon atoms and the typical amplitude of lattice ripple, the electrons are supposed to be con�ned in
two-dimensional space. It turns out that a tight-binding model considering only the nearest neighbor
hopping is able to capture the low-energy physics of graphene [86]. In the second quantization, the
tight-binding Hamiltonian is

H = −t
∑
R

[
c†R,AcR,B + c†R,AcR−a1,B + c†R,AcR+a2,B + H.c.

]
(2.6)

where c(†)
R,α is the annihilation (creation) operator of an electron in a pz orbital situated in the unit-

cell at a Bravais lattice point of R, t is the hopping amplitude, and H.c. stands for the Hermitian
conjugate taking into account the reversed hopping. By the lattice Fourier transformation, we can
write the Hamiltonian in reciprocal space in the basis of {ck,A, ck,B}

H(k) = −t

[
0

∑3
n=1 e

−ik·δn∑3
n=1 e

ik·δn 0

]
(2.7)

with the spectrum of two bands

E±(k) = ±t

∣∣∣∣∣
3∑

n=1

eik·δn

∣∣∣∣∣ (2.8)

As shown in Fig. 2.1(b), the two bands ofH(k) touch each other at two inequivalent points in the
�rst Brillouin Zone dubbedK andK ′ points:

K =
4π√
3a

(1, 0), K ′ =
4π√
3a

(−1, 0). (2.9)
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2.1 Special relativity in Graphene: crossed electric and magnetic fields

Since thepz orbitals are occupied by only one electron, the resulting band structure is half-�lled and the
Fermi energy is situated at the band touching points. To describe the low-energy electronic dynamics,
one can therefore expand the Hamiltonian (2.7) to linear order aroundK andK ′ points, with q =

k −K(′). This yields the low energy Hamiltonian of graphene aroundK andK ′ valleys:

Hξ(q) = ~vF (ξqxσx + qyσy), (2.10)

where ξ = ±1 stands for K and K ′ valley, respectively, and vF = 2ta/2~ ≈ c/300 is the Fermi
velocity.2 The spectrum of the Hamiltonian is linear:

E(q) = ±~vF |q|, (2.11)

which is isotropic around the Dirac point q = 0 and also electron-hole symmetric.

Comparing (2.10) with the 2+1 Dirac Hamiltonian (2.3), the low-energy Hamiltonian of graphene
coincides letter-by-letter with the 2 + 1 massless Dirac Hamiltonian simply after replacing the speed
of light c by the Fermi velocity vF . Hence, the low-energy electrons in graphene moving at the Fermi
velocity obey mathematically the same laws of physics as the truly relativistic massless fermions moving
at the speed of light. This emergent Lorentz symmetry at low energy is nowadays a paradigmatic ex-
ample of emergence in condensed matter physics [5]. In particular, the Lorentz invariance, a symmetry
property of Dirac equation, should manifest in graphene as shown in the following.

Graphene in the presence of a magnetic field: Landau levels

Before tackling the problem about graphene in the presence of crossed electric and magnetic �elds, I
recall how to deal solely with the magnetic �eld [79]. In the following discussions, I do not consider the
Zeeman e�ect and thus the spinless model (2.10) is applicable. With the help of the Peierls substitution
[87], one can describe electrons of graphene in a magnetic �eld by replacing the momentum by its
gauge-invariant form

p→ Π = p+ eA(r), (2.12)

where e is the absolute value of elementary charge andA(r) is the vector potential that gives rise to
the magnetic �eldB = ∇×A(r). Consider the Hamiltonian for valleyK and the results for valley

2One should not confound here the speed of light cwith the annihilation operator.
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2 Special relativity in Dirac materials

K ′ follow naturally once the problem for valleyK is solved. Henceforth, I set ~ = 1 to simplify the
calculations except when the restoration of ~ is mentioned explicitly.3 Then, the Hamiltonian reads

H(q) = vF [q + eA(r)] · σ (2.13)

where the momentum is equivalent to the wavevector. To explicitly do the calculations, I choose the
following Landau gauge for the vector potential

A(r) = B(0, x, 0), (2.14)

whereB > 0. The corresponding magnetic �eld is thusB = Bez . While qy remains a good quantum
number, qx should be treated as a derivative operator with respect to x. Remarkably, the o�-diagonal
terms can be written in terms of ladder operators as for quantum harmonic oscillator. The two ladder
operators are de�ned as

a =
1√
2

(
qx`B − i

x+ qy`
2
B

`B

)
, (2.15)

a† =
1√
2

(
qx`B + i

x+ qy`
2
B

`B

)
, (2.16)

and 1 = [a, a†], (2.17)

where the magnetic length `B =
√
~/eB is introduced. Using the ladder operators, the Hamiltonian

becomes

H =

√
2vF
`B

[
0 a

a† 0

]
(2.18)

so that its eigenvectors can be written as

|ψn〉 =

(
sinαn|n− 1〉

cosαn|n〉

)
if n ≥ 1, |ψn〉 =

(
0

|0〉

)
if n = 0 (2.19)

where |n〉 is the wavefunction of a one-dimensional quantum harmonic oscillator de�ned by the pre-
vious ladder operators, a†a|n〉 = n|n〉. The center of |n〉 is linear in qy

〈x〉 = −qy`2B. (2.20)

3For example, in numerical applications or experimentally relevant formula.
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2.1 Special relativity in Graphene: crossed electric and magnetic fields

Applying the Hamiltonian to a given |ψn〉, the matrix to diagonalize becomes

Hn =

√
2vF
`B

[
0
√
n

√
n 0

]
(2.21)

and its spectrum is

E±n = ±~vF
√

2n

`B
(2.22)

where ~ is restored (see Fig. 2.2).

If a staggered potential of type ∆σz is introduced in (2.10), the new Hamiltonian describes the low
energy band structure of graphitic boron nitride hBN. Adopting the same notation as for graphene,
the Hamiltonian of BN fo the valleyK in the presence of magnetic �eld reads

H =

√
2vF
`B

[
∆ a

a† −∆

]
(2.23)

with the Landau levels

E±n = ±
√

∆2 + ~2v2
F

2n

`2B
if n ≥ 1,

E0 = −∆ if n = 0. (2.24)

Note that the spectrum is not particle-hole symmetric, i.e., a manifestation of the parity anomaly of
the 2 + 1D Dirac equation [24, 27]. This pseudo-paradox is solved by considering together two valleys
K andK ′ whereE0 = ∆ forK ′ Fig. 2.2.

Discrete Landau levels are formed when the magnetic �eld is perpendicular to the graphene sheet.
If the magnetic �eld is not perpendicular but tilted with an angle θ to the plane of graphene, one only
needs to consider the out-of-plane part B sin θ. The in-plane magnetic �eld which can be generated
by an out-of-plane component of vector-potential does not couple to any in-plane momentum. Thus,
it will not show up in a Hamiltonian of two-dimensional system. As a result, the Landau levels for an
arbitrary magnetic �eld remain the same except that B is replaced by B sin θ in the de�nition of the
magnetic length.
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2 Special relativity in Dirac materials

Figure 2.2: Schematics of Landau levels for graphene and hBN. The zero energy is marked by blue dashed lines
in the plots for hBN. For illustration purpose only, I use a rather strong magnetic �eld so that the
Landau level spacing is even larger than the band gap of hBN (∼ 6 eV).

2.1.2 Refresher on special relativity

Before using the relativistic analogy to solve our problem, one needs the four-vector formalism used in
Einstein’s theory of special relativity. The reader can refer to App. A.1 and A.2 for a short summary of
the formalism.

Here, I recall some useful results. If a frameR′moves relative to the lab frameR at velocity v, then
the electric and magnetic �eld in the two frames transform in the following manner:

E ′‖ = E‖, E ′⊥ = γ(E⊥ + v ×B),

B′‖ = B‖, B′⊥ = γ

(
B⊥ −

1

c2
v × E

)
(2.25)

where the longitudinal and transverse directions are de�ned with respect to v and the Lorentz factor
γ = 1/

√
1− β2 with β = v/c.
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2.1 Special relativity in Graphene: crossed electric and magnetic fields

Using the electromagnetic �eld tensor, one can write two Lorentz invariants :

FµνF
µν = 2

(
B2 − E

2

c2

)
(2.26)

εµνρσF
µνF ρσ =

8

c
E ·B (2.27)

where E , B > 0 is the magnitude of �eld. The value of the two invariants is universal for all the inertial
frames. The �rst invariant says that if the magnitude of the magnetic �eld is larger or smaller than that
of the electric �eld (in Gaussian units) in one frame, then the inequality holds in all other frames. One
can thus distinguish two di�erent regimes: the magnetic regime forB > E/c and the electric regime
for for B > E/c [80]. The second invariant has a profound topological consequence in quantum
�eld theory [24, 77]. A non-vanishing value of E ·B is responsible for axion electrodynamics which
is theoretically shown to govern in topological materials [76, 88, 89]. Here, I am only interested in the
case where E ·B = 0, i.e., the magnetic �eld is perpendicular to the electric �eld. Notably, depending
on the sign of the �rst invariant, one can always �nd a frame where one of the two �elds is absent. For
example, if B > E/c (B < E/c), there exists a frame in which E = 0 (B = 0). At the critical
valueB = E/c, there is no frame in which one of the two �elds is zero while the other remains �nite.
This is coherent with the fact that light is Lorentz invariant and a transverse electromagnetic wave that
requires both an electric and a magnetic component.

2.1.3 Landau levels in the presence of crossed electric and magnetic fields

Now I am ready to solve the spectrum of graphene in the presence of crossed electric and magnetic
�elds, with an in-plane electric and an out-of-plane magnetic �eld, along the lines initially proposed by
Lukose et al. [53]. This con�guration of electric and magnetic �eld is exactly the one that I have just
discussed. To apply the previous results in Einstein’s special relativity in graphene, I just replace the
limiting speed, i.e., the speed of light c, by the Fermi velocity vF .

Since the Hamiltonian (2.10) is isotropic, one can suppose without losing generality that the electric
�eld is applied in thex-direction,E = Eex(E > 0). The magnetic �eldB is always in the z-direction,
perpendicular to the graphene sheet. Using the Landau gaugeA(r) = B(0, x, 0), the Hamiltonian
of graphene in the presence of crossed electric and magnetic �elds is

H(q) = eEx+ vF qxσx + vF (qy + eBx)σy, (2.28)

where the �rst term on the right is the potential energy of an electron exposed to an electric �eld E .
One might want to solve the spectrum by writing the Hamiltonian in terms of ladder operators as

29



2 Special relativity in Dirac materials

in the previous section. However, the �rst term would be proportional to i(a − a†) such that the
wavefunction expressed in Eq. (2.19) is no longer an eigenvector of the Hamiltonian. This problem
cannot be avoided by any unitary transformation on the Hamiltonian since the new term is scalar. I
will explain this fact in detail in the following section.

This problem may be solved elegantly by appealing to Lorentz invariance of the Dirac equation
[53]. Here, I reformulate this method in a more elementary way that leads to the spectrum of the
Hamiltonian without invoking explicitly the Dirac equation. Using the analogy with special relativity,
one is able to �nd a moving frame other than the lab frame where the Hamiltonian is written so that
the electric or the magnetic �eld is zero. In this moving frame, one can solve the problem that graphene
is subjected only to an electric or magnetic �eld. Finally, one does an inverse Lorentz transformation to
get the energy attached to the lab frame. Almost immediately from the result of the previous section,
one knows without any calculations that there are two possible regimes: the electric regime where the
electric �eld is stronger than the magnetic �eld (B < E/vF ) and the magnetic regime for the opposite
(B > E/vF ). From now on, I am only interested in the the magnetic regime where the magnetic �eld
is larger than a critical value set by the electric �eld,Bc = E/vF .4 There exists then a frame of reference
where one has E ′‖ = E ′⊥ = 0 in Eq. (2.25). As a result, the frame of referenceR′ in question moves
in the y-direction with the speed v = −E/Bey with respect to the lab frame. The Lorentz factor is
de�ned as

β = − E
vFB

ey = −vD
vF
ey, γ =

1√
1− β2

, (2.29)

where ||β|| < 1 is the modulus of the drift velocity vD = E/B divided by vF . Then, the magnetic
�eld in the moving frame is renormalized to B′ = B/γez . In the frame of referenceR′, electrons
are thus subjected to an out-of-plane magnetic �eld of magnitudeB/γ in the absence of electric �eld.
The energy spectrum inR′ can then simply be read o� from Eq. (2.22)

E′±n = ±~vF
`B

√
2n

γ
(2.30)

4The reason is that graphene is a (semi-)metal with no gap. An electric �eld should induce a current making the system in
non-equilibrium whereas the Hamiltonian only makes sense at equilibrium. However, tunneling phenomena such as
Klein tunneling are possible in the electric regime where the transmission coe�cient and the conductance are renormal-
ized by the magnetic �eld [90].
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2.2 Unitary and hyperbolic transformations

where the magnetic length is still de�ned byB in the lab frame. To get the spectrum in the lab frame,
it su�ces to do an inverse Lorentz transformation on the four-momentum from p′µ to pµ de�ned by

Λ−1 =


γ 0 γ||β||
0 1 0

γ||β|| 0 γ

 (2.31)

so that pµ = (Λ−1)µνp
′ν . Note that one has only 2 + 1 dimensional space-time. Finally, the energy

spectrum of graphene in the presence of crossed electric and magnetic �elds in the magnetic regime is
derived

E±n = ±~ vF
γ`B

√
2n

γ
− ~vFβqy, (2.32)

where β = vD/vF . To be complete, one anticipates here that the underlying Lorentz transformation
also transforms the Hamiltonian and the spinorial wavefunctions as shown later in this chapter. Nev-
ertheless, the spectrum of graphene is obtained without making hands dirty by solving analytically the
Hamiltonian (2.28).

Renormalization by Lorentz boost

As explicitly shown in Eq. (2.32), the spacing between Landau levels is renormalized down by a factor
of γ−3/2. In addition, the previous calculations show that the exponent of−3/2 is the sum of−1/2

and −1 stemming from the magnetic �eld and the four-momentum being renormalized when the
frame is changed, respectively. Compared to the completely �at Landau levels in the absence of the
electric �eld [see Eq. (2.22)], the spectrum acquires a dispersion in qy with a velocity−vDey . This is
precisely the drift velocity5 of a classical electron6 due to the Lorentz force created by crossed electric
and magnetic �elds.

To conclude, a relativistic renormalization e�ect characterized by the Lorentz factor γ can indeed
manifest in the energy spectrum of originally non-relativistic electrons!

2.2 Unitary and hyperbolic transformations

In this section, I will show the techniques to solve analytically general Hamiltonians of the form (2.28)
and obtain not only its spectrum but also its eigenstates. The latter will be necessary to discuss the spec-
troscopic properties of Dirac materials. It turns out that one can solve the problem elegantly thanks to

5This is also the reason why I call it drift velocity in the �rst place.
6The word classical is here the antonym of quantum mechanical.
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2 Special relativity in Dirac materials

the symmetry properties of the Dirac equation (or the Dirac Hamiltonian). One does not have to resort
to look into the di�erential equation but just two sets of transformations acting on the Hamiltonian.
These two kinds of transformations, i.e., the unitary and hyperbolic transformations, will consider-
ably simplify the calculations. The reason why these transformations work is that the Dirac equation
is Lorentz invariant but the spinors transform under the two transformations when the frame of ref-
erence is changed. So, solving the problem by the unitary and hyperbolic transformations is totally
equivalent to switching back and forth the frame of observation as in the previous section.

Here I adopt the attitude of “reinventing the wheel”, that is deriving the results well-known in group
theory [91, 92] according to the need and trying not to invoking too much group theory. This is a
practical approach: I need some tools to do the job so I try to rephrase it from zero.

2.2.1 Unitary transformations: rotations

A Dirac Hamiltonian only contains Pauli matrices which can be written as

H(x) = x · σ = x1σ1 + x2σ1 + x3σ3 (2.33)

where σi are the three Pauli matrices. Here, I want to �nd a unitary transformation U on H(x) so
that given a rotationR

UH(x)U † = H(Rx) (2.34)

whereH(Rx) reads

H(Rx) = (Rx) · σ = Rijxjσi = xi(R
−1)ijσj (2.35)

This result justi�es why one can organize the Pauli matrices in the form of vector in the previous Hamil-
tonian: σ acts like a real vector under rotations.

Since the spectrum of H(Rx) and H(x) are both ±||x||, valid matrices U belong to the group
U(2). So, I call transformations de�ned byU unitary transformations. One can even suppose matrices
U is in the groupSU(2) since additional phase factor of a unitary matrix is canceled by applying both
U andU †. GivenU ∈ SU(2), one can thus write

U = ei
θ
2
n̂·σ = cos

θ

2
I2 + i sin

θ

2
n̂ · σ (2.36)
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2.2 Unitary and hyperbolic transformations

where n̂ is the normalized vector of the axis of rotation and θ is the angle of rotation.7 One can check
this for a rotation of θ around the z-axis. The corresponding unitary transformation is de�ned as

U = ei
θ
2
σ3 =

[
ei
θ
2 0

0 e−i
θ
2

]
. (2.37)

This would give

(σ1, σ2, σ3)→ (cos θσ1 − sin θσ2, sin θσ1 + cos θσ2, σ3)

H(x1, x2, x3)→ H(cos θx1 + sin θx2,− sin θx1 + cos θx2, x3)

≡ H(x′1, x
′
2, x
′
3). (2.38)

which precisely do the rotation on x.

One may be curious why only half of the angle appears in the de�nition ofU . The reason is encoded
in the relation between the group SU(2) and SO(3). In group theory, SU(2) doubly covers SO(3),
meaning that for eachR(θn̂) one can �nd two di�erent SU(2) matrices doing the same transforma-
tion, namely±U(θn̂/2). This is precisely the meaning of half angle that θ/2 → (θ + 2π)/2 add a
negative sign in front ofU whileR(θ) = R(θ + 2π).

2.2.2 Hyperbolic transformations: Lorentz boost

In some problems like Eq. (2.28), the Hermitian Hamiltonian matrix can always be written as

H(x) = ηµνx
µσν = x0σ0 − x1σ1 − x2σ2 − x3σ3 (2.39)

where the two-by-two identity σ0 = I2 is present compared to above. The position of indices has a
meaning: contravariant if it shows as superscript and covariant if it shows as a lower index. So,

{σ0, σ1, σ2, σ3} ≡ {I2,−σx,−σy,−σz} (2.40)

{σ0, σ1, σ2, σ3} ≡ {I2, σx, σy, σz}. (2.41)

7The last equality can be veri�ed by expanding the exponential in the series.
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2 Special relativity in Dirac materials

In analogy with the above discussion,x is considered as a four-vector in the sense that its components
transform under the Λ matrices in the Lorentz group, i.e., SO(3, 1). I want to �nd a transformation
M onH(x) so that given a Lorentz transformation Λ

MH(x)M † = H(Λx), (2.42)

whereH(Λx) reads

H(Λx) = (Λx) · σ = ηµνΛµρx
ρσν = ηµνx

µΛρ
νσρ = x · (Λ−1σ). (2.43)

This result justi�es why one can organize σµ in the form of four-vector in the previous Hamiltonian.
Indeed, σ acts like a real four-vector under Lorentz transformations.

Concretely, Λ matrices are the matrices for Lorentz boosts and rotations. Since rotations have al-
ready been discussed, I focus on how to �nd a transformationM on σµ associated to a Lorentz boost
on xµ. Clearly,M cannot be a unitary matrix because a Lorentz boost alters x0 in front of I2 which is
invariant under any unitary transformations. One has to look for candidates in a larger group namely
SL(2,C), i.e., the complex special linear group. This group is actually the optimal choice one can have.
On the one hand, the Lorentz transformations preserves the Minkowski metricxµxµ which is also the
determinant of the Hamiltonian matrix. A matrixM preserving the determinant of the Hamiltonian
belongs toSL(2,C)×U(1). On the other hand, as before, since bothM andM † apply, one can only
deal withM with unity determinant, that is precisely the SL(2,C). GivenM ∈ SL(2,C), one can
write

M(φn̂φ, θn̂θ) = e(−
φ
2
n̂φ+i θ

2
n̂θ)·σ (2.44)

where n̂φ,θ are the normalized vector of the axis of boost and rotation and (φ, θ) are the rapidity of
boost and angle of rotation, respectively. Here, σ = (σx, σy, σz). Focusing on Lorentz boosts, one
sets θ = 0 so that

M = e−
φ
2
n̂·σ = cosh

φ

2
I2 − sinh

φ

2
n̂ · σ (2.45)

where hyperbolic functions appear, that is the reason whyM is called hyperbolic transformation. The
boost Λ determined by the hyperbolic transformationM shows how a four-vector x′ of the frameR′,
moving relative toRwith a speed v/c = tanhφez , is written in terms of x ofR.
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2.2 Unitary and hyperbolic transformations

One can check this for a Lorentz boost of rapidity φ along the z-axis. The corresponding matrix M
is exp(−φσz/2). ApplyingMHM † would give

(I2, σx, σy, σz)→ (coshφI2 − sinhφσz, σx, σy sinhφI2 − coshφσz)

(σ0, σ1, σ2, σ3)→ (coshφσ0 + sinhφσ3, σ1, σ2, sinhφσ0 + coshφσ3)

H(x0, x1, x2, x3)→ H(coshφx0 − sinhφx3, x1, x2,− sinhφx0 + coshφx3)

≡ H(x′0, x′1, x′2, x′3). (2.46)

This is exactly what does the given Lorentz boost to a four-vector x.

Similar to unitary transformations, only half rapidity appears in the de�nition of M because the
SL(2,C) group double covers the Lorentz group SO(3, 1) consisting of all the Lorentz transfor-
mation matrix Λ. The de�nition of M given here is called (0, 1/2) projective representation, thus
two-by-two matrices acting on spinors, of the SO(3, 1) group. In fact, the two possible de�nitions of
M(±φn̂φ, θn̂θ) map a matrix inSL(2,C) to a matrix inSO(3, 1). Unlike the mapping fromSU(2)

to SO(3), the two spin-1/2 projective representations, (0, 1/2) and (1/2, 0), with opposite sign in
front of φ in the de�nition of M are inequivalent. However, this fact is irrelevant for the practical
usage in the following.

The reader should now understand the relation between unitary transformations and rotations and
that between hyperbolic transformations and Lorentz boosts. Within each pair, the two di�erent op-
erations are the two di�erent representations of the same physical transformation acting on their cor-
responding mathematical objects. Talking about the transformation of the frame of reference, the
four-vector is transformed by the Lorentz boost Λ while the Hamiltonian and the spinorial wavefunc-
tions are transformed by the hyperbolic transformation M . In the jargon of group theory, Hamil-
tonian, spinorial wavefunctions and four-vectors provide di�erent representations of the same group
SO(3, 1).

2.2.3 Cheating sheet for unitary and hyperbolic transformations

To emphasize the di�erence between the unitary and hyperbolic transformations, I list the properties
of both transformations in this part. This would also facilitate the calculations without always doing
matrix product such as THT †.
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2 Special relativity in Dirac materials

Unitary transformations

Unitary transformations are two-dimensional representation of rotations. A matrixU of unitary trans-
formations is de�ned as

U = ei
θ
2
n̂·σ = cos

θ

2
I2 + i sin

θ

2
n̂ · σ (2.47)

with the following properties:

• When one applies a unitary transformation on a HamiltonianH , it means: UHU †.

• U conserves the spectrum of Hamiltonian.

• U is in general non-hermitian. U−1 = U † represents the inverse transformation.

• U forms a multiplicative group namely SU(2) such that the product of two unitary transfor-
mations is also a unitary transformation.

• IfU = exp(iθσi/2), then

UσjU
† = σj if i = j (2.48)

where σi,j are the Pauli matrices.

• Sometimes it is useful to think of unitary transformation U(θn̂) as a rotation R(θn̂) on σ so
thatσ′ = Rσ. This is done byU †σU (be careful to the order of matrices).

Hyperbolic transformations

Hyperbolic transformations are two-dimensional representation of Lorentz boosts. A matrix M of
hyperbolic transformations is de�ned as

M = e−
φ
2
n̂·σ = cosh

φ

2
I2 − sinh

φ

2
n̂ · σ (2.49)

with the following properties:

• When one applies a hyperbolic transformation on a HamiltonianH , it means: MHM †.

• M modi�es the spectrum of Hamiltonian as a Lorentz boost does to the component 0 of a
four-momentum namely energy.

• M is hermitian so that one can writeMHM † = MHM .

• M−1 6= M † represents the inverse transformation.

• The pure Lorentz boosts M do not form a multiplicative group so that the product of two
hyperbolic transformations are in general not another hyperbolic transformation. This is in line
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2.2 Unitary and hyperbolic transformations

with the fact that the product of two non-collinear Lorentz boosts is the product of another
Lorentz boost and a rotation called Thomas-Wigner rotation.8 Alternatively, if M is de�ned
by Eq. (2.44), they form a multiplicative group named SO(3, 1) including Lorentz boosts and
rotations.

• IfM = exp(−φσi/2), then

MσjM = σj if i 6= j (2.51)

where σs are the Pauli matrices.

• Sometimes it is useful to think of a hyperbolic transformationM(φn̂) as a Lorentz boost Λ(φn̂)

on σ ≡ (I2, σx, σy, σx) such that σ′ = Λσ. This is also done byMσM .

2.2.4 Generalized unitary and hyperbolic transformations: recipe

In the previous section, I considered only Pauli matrices since the Hamiltonian of interest can always
be decomposed into their linear combination. One might think that unitary and hyperbolic transfor-
mations are only useful for this form of Hamiltonians, but this is not the case. In this section, I will
extend the use of unitary and hyperbolic transformations to all the Dirac Hamiltonians that can always
be written as a linear combination of the tensor products of the Pauli matrices, in which the Lorentz
invariance is generally absent. Rather than a generalization of Lorentz transformations to general Dirac
Hamiltonians, it is more appropriate to think of Lorentz transformations as just one particular mani-
festation of hyperbolic transformation.

Nevertheless, the “generalization” allows us to solve all the Dirack ·pHamiltonians in the presence
of a crossed magnetic and electric �elds and alike with only linear momentum such as

H =
d∑
i=1

tiki +
d∑

i,j=1

vijkiMj (2.52)

whereMi are tensor products of the Pauli matrices and the two-by-two identity matrix I2.9 In particu-
lar, I give a recipe to �nd the unitary and hyperbolic transformations according to need. The core of this

8This can be seen by the Baker–Campbell–Hausdor� formula:

eAeB = eC with C = A+B +
1

2
[A,B] + · · · . (2.50)

If A,B are two di�erent Pauli matrices so that the commutator of A and B is two times the complex i times the third
Pauli matrix where a rotation emerges.

9One can even generalized further the Hamiltonian to allow the index j to have a di�erent range than i. Nevertheless, the
present Hamiltonian is su�ciently generalized for the discussions in the thesis.
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2 Special relativity in Dirac materials

recipe is to reduce the number of matrices in the Hamiltonian of interest by unitary transformations
and then solve the problem by a Lorentz boost de�ned by a hyperbolic transformation.

Before introducing any external �eld, one should render the k · pHamiltonian as simple as possi-
ble. A practical criterion for simplicity is that every non-identity matrix is only accompanied by one
component of the momentum. To do so, one factorizes the Hamiltonian by momentum ki and then
focuses on those components with two or more matrices associated, vijMj . Recall that two matrices
written in a tensor product of the Pauli matrices and I2 either commute or anti-commute. To merge
two matrices, sayM1 andM2, into a simple one by unitary transformation, they must anti-commute
so that there exist a matrix R that M1,M2, R form a Lie algebra like the Pauli matrices. In partic-
ular, M1M2 = iR. So the desired unitary transformation is de�ned by U = exp(iθR/2) where
θ is found by writing the coe�cients of M1 and M2 in trigonometric functions. For example, given
H = vxσx + vyσy and thusR = σz , one can write

vxσx + vyσy = v cos θσx + v sin θσy

with v =
√
v2
x + v2

y

tan θ =
vx
vy
.

The unitary transformation U = exp(iθσz/2) can thus simplify H to UHU † = vσx. One can
repeat this step for all the pairs of matrices in factor that anti-commute until the Hamiltonian cannot
be simpli�ed further.

Once the Hamiltonian is simpli�ed, one can introduce electric and magnetic �eld by the Peierls
substitution choosing a Landau gauge so that only one spatial coordinate appears in the Hamiltonian
which does not commute with one of the components of the momentum. Thus, the other compo-
nents ki remains good quantum numbers. When a real or an e�ective electric �eld is present, the
spatial coordinate appears in front of two matrices, say N1 and N2, that commute. To merge these
two matrices, one has to use a hyperbolic transformation T = exp(−φN/2). The choice of matrix
N depends on the coe�cient in front ofN1 andN2. If the coe�cient ofN1 is larger in absolute value,
then N = N1. Otherwise, N = N2. Here, one also determines the regime of the Hamiltonian of
interest, electric or magnetic regime. The rapidity φ is then found by writing the coe�cients in hyper-
bolic functions. Once all the steps are done, the transformed Hamiltonian has only either magnetic or
electric �eld and it is thus easy to solve. while this recipe might seen horribly abstract for the moment,
I will repeatedly illustrate it in the following part of this chapter as well as in Chapter 3, 4 and 5.
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2.3 Wavefunctions of Hamiltonian for graphene in crossed electric and magnetic fields

2.3 Wavefunctions of Hamiltonian for graphene in crossed
electric and magnetic fields

Let me illustrate the recipe mentioned in the previous section with the example of graphene in crossed
electric and magnetic �elds. Using the hyperbolic transformations, one can now solve the Hamiltonian
(2.28) in the magnetic regime which I recall here

H = eEx+ vF qxσx + vF (qy + eBx)σy = vFBx

(
vD
vF

+ σy

)
+ vF (qxσx + qyσy) (2.53)

where vD = E/B < vF and the Landau gauge Ay = Bx is used so that ky is a good quantum
number. Since one knows how to solve the case with only magnetic �eld, it is tempting to get rid of
eEx (or equivalently vD/vF ) using a hyperbolic transformation. Replacing vD/vF by− tanhφ, the
Hamiltonian becomes

H = vFBx(− tanhφ I + σy) + vF (qxσx + qyσy) (2.54)

= vF
B

coshφ
x(− sinhφ I + coshφ σy) + vF (qxσx + qyσy) (2.55)

where I emphasize the matrix structure by adding the general identity matrix I which is two-by-two in
the context. Here, one �nds the structure mentioned in Sec. 2.2.4 with the two commuting matrices
N1 = I and N2 = σy , since coshφ > sinhφ, the required hyperbolic transformation is generated
by σy ,

T = e
φ
2
σy . (2.56)

The trick to �nd quickly this transformation is to note that σy is the Pauli matrix in the exponential
because the hyperbolic transformation is e�ective only when the Pauli matrix in the exponential com-
mutes with the one of interest. The rapidityφ is already given in the form above. Finally, one just needs
to set the sign in front ofφ to be the opposite of the relative sign between the two terms in study. After
the hyperbolic transformation, we have

HT = THT = vF qy sinhφ+ vF qxσx + vF

(
qy coshφ+ e

B

coshφ
x

)
σy. (2.57)
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2 Special relativity in Dirac materials

SinceT does not conserve the spectrum ofH , one needs the relation between the spectra of two Hamil-
tonians. Given |ψ〉 an eigenstate of H , we can write THTT−1|ψ〉 = ET 2T−1|ψ〉. Thus, we can
de�ne |ψT 〉 = NT−1|ψ〉with a normalization factorN such that

HT |ψT 〉 = ET 2|ψT 〉 = E(coshφ+ sinhφσy)|ψT 〉 (2.58)

from which one �nds a Hamiltonian HE of eigenstate |ψT 〉, HE = (HT − E sinhφσy)/ coshφ,
having the same spectrum as the original HamiltonianH

HE = vF qy tanhφ+
1

coshφ

[
vF qxσx + vF

(
qy coshφ+ e

B

coshφ
x− E sinhφ

vF

)
σy

]
.

(2.59)

Even if the Hamiltonian HE depends itself on the energy E, I will show that the energy-dependent
term in HE is irrelevant to the spectrum but encoded in the wavefunction |ψT 〉. As only the mag-
netic �eld is present, the o�-diagonal terms can be also written in terms of energy-dependent ladder
operators. We de�ne

aE =

√
coshφ

2

(
qx`B − i

x+ qy`
2
B cosh2 φ− E

vF
`2B sinhφ coshφ

`B coshφ

)
, (2.60)

a†E =

√
coshφ

2

(
qx`B + i

x+ qy`
2
B cosh2 φ− E

vF
`2B sinhφ coshφ

`B coshφ

)
, (2.61)

1 = [aE , a
†
E ] (2.62)

where `B =
√

~/eB. Using the ladder operators,HE becomes

HE = vF qy tanhφ+
vF

`B coshφ

√
2

coshφ

[
0 aE

a†E 0

]
(2.63)

so that its eigenvectors can be written as

|ψn〉 =

(
sinαn|n− 1〉E

cosαn|n〉E

)
if n ≥ 1, |ψn〉 =

(
0

|0〉E

)
if n = 0 (2.64)
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2.3 Wavefunctions of Hamiltonian for graphene in crossed electric and magnetic fields

where |n〉E is the wavefunction of the one-dimensional quantum harmonic oscillator de�ned by the
previous ladder operators, a†EaE |n〉E = n|n〉E . The lower indexE indicates that the center of |n〉E
is energy-dependent namely

〈x〉E = −qy`2B cosh2 φ+
E

vF
`2B sinhφ coshφ (2.65)

where the energy-dependent term in HE is absorbed in the de�nition of the ladder operator so that
it is irrelevant to the spectrum. However, the center of the wavefunction depends on the energy. In
particular, the eigenstates for the same momentum qy for di�erent Landau levels are not orthogonal to
each other due to the mismatch of its energy-dependent guiding centers. This induces new selection
rules in Landau level spectroscopy which I will present in Chapter 3.

ApplyingHE on |ψn〉, the spectrum is found

E±n = ±~ vF
`B coshφ

√
2n

coshφ
+ ~vF qy tanhφ (2.66)

where~ is restored. The relation between hyperbolic transformations and Lorentz boosts is clear if one
compares this method using hyperbolic transformations with the relativistic argument in the previous
section of this chapter. Identifying coshφ = γ > 0 and tanhφ = β < 0, the spectrum solved with
the help of hyperbolic transformations is identical to (2.32). Furthermore, the hyperbolic transforma-
tion T can be seen as exp(−(−φ)σy/2). The physical meaning of T is a Lorentz boost that allows
to write a four-vector x′ of the moving frame in terms of x of the lab frame. x and x′ are two obser-
vations of the same physical quantity associated to the lab frame and the moving frame, respectively.
Mathematically, it means that x′ = Λ(−φ)x. This interpretation is useful if one works always in the
lab frame. However, if one wants to work in the moving frame, as I did in the previous section, one
should interpret it as a Lorentz boost that changes the frame of reference from σ ≡ {I2, σx, σy, σz}
of the lab frame to σ′ of the moving frame. This means that

σ′ = Λ(φ)σ. (2.67)

After this transformation, one works in the moving frame. The speed of the moving frame relative to
the lab frame is vF tanhφey namely−vDey . This is precisely the moving frame found in the previous
section to cancel the electric �eld. Hence, the hyperbolic transformation is the mathematical formalism
to incorporate the e�ect of a Lorentz boost on the Dirac Hamiltonian and its eigenstates.10

10One can derive hyperbolic transformation from calculating how Lorentz boost changes the eigenstates to keep Dirac
equation Lorentz invariant [91].
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2 Special relativity in Dirac materials

Another way to see this is to compare (2.59) with (2.28):

qy → qy coshφ− E sinhφ

vF
= γqy − γβ

E

vF
. (2.68)

This is exactly how qy momentum transforms under a Lorentz boost of rapidity φ in the y-direction,
namely relativistic Doppler e�ect [80]. Hence, the two methods presented in this chapter to solve the
problem are physically equivalent.

Besides o�ering the wavefunction, the advantage of hyperbolic transformation is not limited to a
speci�c problem such as the one treated in this section. For example, the Lorentz invariance of the
Dirac equation describing graphene is not necessary for the usage of hyperbolic transformations. In
other words, the problem to solve for Dirac materials is not limited to those having a high-energy cousin
as graphene having neutrino. As a mathematical tool, hyperbolic transformation can be extended to
solve a larger set of problems that I will show immediately.

2.4 Landau levels of generic DiracHamiltonian

Dirac Hamiltonians appear generically in the low-energy theory of Dirac materials such as Dirac and
Weyl semimetals. Unlike graphene or relativistic particles in high-energy physics, most low-energy
Hamiltonians of Dirac materials are anisotropic, meaning that the Fermi velocity depends on crys-
tal axis. Some acquire also a mass term. The following generic Hamiltonian can cover all the Dirac
materials I treated during my Ph.D. studies:

H(q) = w · q +
3∑

i,j=1

vijqiσj + ∆σ3 (2.69)

where ~ = 1, the velocityw is the tilted velocity, ∆σ3 is the Dirac mass term, and vij is a symmetric
velocity tensor. An immediate example of this model is graphene where w = ∆ = 0 and vij is
proportional to the Kronecker symbol δij . I would like to emphasize that the generic model serves
only as a uni�ed mathematical framework. In principle, it does not have a physical meaning until I
bestow one upon it in a particular material.
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2.4 Landau levels of generic Dirac Hamiltonian

In this section, I discuss the spectrum of the Hamiltonian (2.69) in the presence of a magnetic �eld.
By rescaling the Fermi velocity and also the applied magnetic �eld, one can always equivalently treat a
simpler isotropic model,

H(q) = wqz + vq · σ + ∆(sin θσx + cos θσz) (2.70)

or H(q) = wzqz + wxqx + vq · σ + ∆σz (2.71)

where two forms are exchangeable by a unitary transformation after rede�ning the axes (see in App.
B). Three models that will be discussed in this section are:

• Three-dimensional type-I and type-II Weyl semimetals (WSM):

H(q) = wqz + vq · σ (2.72)

where the energy isE± = wqz ± v||q||. Remember that for type-I WSMs, one has |w| < |v|,
while |w| > |v| for type-II WSMs.

• Two-dimensional tilted gapped graphene:

H(q) = wqx + vqxσx + vqyσy + ∆σz (2.73)

where the energy isE± = wqx ±
√
v2q2

x + v2q2
y + ∆2.

• Gapped dispersive nodal-line semimetals in 3D:

H(q) = wqz + vqxσx + vqyσy + ∆σz, (2.74)

where the energy isE± = wqz ±
√
v2q2

x + v2q2
y + ∆2.

In these models, I suppose for simplicity w, v,∆ are strictly positive. In the presence of a magnetic
�eld, an electric-�eld-like term appears in the Hamiltonian due to the tilting term, i.e, the one propor-
tional to the two-by-two identity. For example, by Peierls substitution,

wqx → w(qx − eBy) = wqx + eEe�y

where the e�ective electric �eld Ee� = −Bw is in the y-direction. If one adopts this point of view,
the Hamiltonian to solve is an analogue one to that of graphene in crossed electric and magnetic �elds.
Although the tilting termw · q excluding the e�ective electric �eld term cannot be incorporated into
a Lorentz invariant Dirac equation, the mathematical treatment makes no di�erence because it is di-
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2 Special relativity in Dirac materials

agonalized with respect to the matrix structure and also diagonal in q upon the appropriate choice of
the Landau gauge.

One can even push the discussion to include also a real electric �eld perpendicular to the applied
magnetic �eld. As a matter of text length, I will not include any real electric �eld in this discussion
because the Hamiltonian to solve has exactly the same mathematical structure after well-chosen unitary
transformations. Combined with unitary transformations, hyperbolic transformations serve to solve
the generic problem of the Landau levels in the presence of crossed electric and magnetic �elds of a
generic Dirac Hamiltonians.

2.4.1 Three-dimensionalWeyl semimetal: angle-dependent regime

The Landau quantization for tilted WSM was solved by Tchoumakov et. al. in 2016 [83]. Since a WSM
is a three-dimensional version of graphene, a magnetic �eld can in principle point in any direction of
the three-dimensional space. Thanks to the Hamiltonian (2.72) being isotropic in the x, y-plane, one
can suppose without losing generality thatB = B(cos θez + sin θex) = Be′z for 0 < θ < π/2.
Here, a new basis is de�ned

{e′x, e′y, e′z} = {cos θex − sin θez, ey, cos θez + sin θex}. (2.75)

If one writes the Hamiltonian in this new basis followed by a unitary transformationU = exp(iθσy/2),
it becomes

H(q) = w cos θqz − w sin θqx + q · σ. (2.76)

Choosing the Landau gaugeA = −Bye′x, the �nal Hamiltonian to solve is

H = −w sin θ(qx − eBy) + v(qx − eBy)σx + w cos θqz + v(qyσy + qzσz)

= eEy + v(qx − eBy)σx − w sin θqx + w cos θqz + v(qyσy + qzσz) (2.77)

where I remove the prime for q. One identi�es an e�ective electric �eld E = Bw sin θ applied in
the y-direction. Compared to (2.28), one manages to map this new problem to a problem that one
knows how to solve by hyperbolic transformations. Depending on the drift velocity of the problem
vD = w sin θ, the system is in the electric regime with a continuum spectrum if vD > v, or in the
magnetic regime described by Landau levels if vD < v. Thus, there are two control parameters to
distinguish the regimes. If the WSM is of type-I (w < v), it is in the magnetic regime regardless the
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2.4 Landau levels of generic Dirac Hamiltonian

orientation of the magnetic �eld. However, if the WSM is of type-II (w > v), there exists a critical
angle

sin θc =
v

w
(2.78)

beyond which the Landau levels collapse into a continuum. Experimentally, one can thus tweak the
system continuously from one regime to another by varying the angle θ ifw > v.

In the magnetic regime, the Landau levels are

E±n = w cos θqz ±
v

γ

√
q2
z +

2n

γ`2B
for n > 0

E0 = w cos θqz −
vqz
γ

for n = 0 (2.79)

where γ = 1/
√

1− β2 and β = w sin θ/v. The results are obtained with the help of a hyperbolic
transformation M = exp(φσx/2) where tanhφ = β. As in graphene, the spacing between the
Landau levels is renormalized by a factor ofγ−3/2. Since one considers only one Weyl node, the Landau
levels are not symmetric with respect to zero energy due to the parity anomaly.

2.4.2 Two-dimensional tilted gapped graphene: gap renormalization

Apart from the tilting, one also adds a gap to graphene’s two-dimensional Hamiltonian. This model
describes the low energy bands of an organic compoundα−(BEDT-TTF)2I3. The Landau quantiza-
tion in this material has been discussed by Sári et al. [82]. As in graphene, the only relevant direction for
magnetic �eld is perpendicular to the 2D plane namely in the z-direction. The resulting Hamiltonian
is thus

H(q) = w(qx − eBy) + v(qx − eBy)σx + vqyσy + ∆σz (2.80)

where one identi�es an e�ective electric �eld E = −Bw applied in the y-direction and thus the drift
velocityvD = −wex. The Hamiltonian is in the magnetic regime only ifw < v because the magnetic
�eld is �xed to be out-of-plane unlike in three-dimensional Weyl semimetals. Using the hyperbolic
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2 Special relativity in Dirac materials

Figure 2.3: (a) Schematic of the spectrum for 2D tilted gapped graphene at ky = 0 in the absence of magnetic
�eld. The direct band gap marked by red is 2∆ while the indirect band gap by green is 2∆′ = 2∆/γ.
(b) Landau levels of 2D tilted gapped graphene where I generalize the de�nition of n to include the
sign of energy.

transformationM = exp(φσx/2) where tanhφ = −w/v, the spectrum of the Hamiltonian in the
magnetic regime is

E±n = ±1

γ

√
∆2 +

2nv2

γ`2B
for n > 0

E0 = −∆

γ
for n = 0 (2.81)

where γ = 1/
√

1− β2 and β = −w/v [see Fig. 2.3(b)].

Only one valley in the gapped graphene is considered. Therefore, the spectrum is not particle-hole
symmetric due to the parity anomaly. The spacing between the Landau levels are also renormalized
by the same factor of γ−3/2. Most saliently, the Dirac mass is renormalized by a factor of γ−1 and so
does the gap measured by extrapolating the Landau levels to the zero �eld limit, 2∆′ = 2∆/γ. This
is analogue to the de�nition of relativistic mass in special relativity. However, as it is well-known in
solid state physics, one would measure 2∆ for the direct band gap of (2.73) by spectroscopy. It sounds
strange that the magnetic �eld modi�es the optical gap of the tilted Dirac Hamiltonian. If it was true,
one should have questioned the general method of gap measurements in Landau level spectroscopy.
As will be explained at the end of this chapter, 2∆/γ is actually the indirect gap of the band structure
[see Fig. 2.3(a)].
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2.4 Landau levels of generic Dirac Hamiltonian

2.4.3 Gapped dispersive nodal-line semimetal: gap closing

Now I consider the gapped nodal-line semimetal NbAs2, the low-energy Hamiltonian of which is
described by Eq. (2.74).11 Since Eq. (2.74) describes a system that is isotropic in the x, y-plane, one
sets with no loss of generality thatB = B(cos θez + sin θex) = Be′z for 0 < θ < π/2. Here, a
new basis is de�ned

{e′x, e′y, e′z} = {cos θex − sin θez, ey, cos θez + sin θex}. (2.82)

Writing the Hamiltonian in this new basis and choosing the Landau gauge A = −Byex, the
Hamiltonian becomes

H = w[cos θqz − sin θ(qx − eBy)] + v[cos θ(qx − eBy) + sin θqz]σx + vqyσy + ∆σz

(2.83)

where I also remove the prime. One can de�ne the e�ective electric �eld E = Bw sin θ applied in
the y-direction and the drift velocity vD = w sin θex. Since the limiting speed is v cos θ instead of
v, one needs to compare w sin θ with v cos θ to determine whether the system is in the magnetic or
electric regime. Compared to Weyl semimetals, the angle θ plays a more decisive role in the the gapped
nodal-line semimetal since the value of tan θ can take any real number. Although the material-related
parameter w/v cannot be varied experimentally, one can always �nd a critical angle θc below which
the Hamiltonian is in the magnetic regime. Conversely, the Landau levels can be continuously tuned
to extinction by increasing θ to θc. The critical angle called the angle of extinction is de�ned as

tan θc =
v

w
. (2.84)

Using the hyperbolic transformationsM = exp(φσx/2) with tanhφ = w tan θ/v, the spectrum
in the magnetic regime reads

E±n =
wqz
cos θ

± 1

γ

√
∆2 +

2nv2 cos θ

γ`2B
for n > 0

E0 =
wqz
cos θ

− ∆

γ
for n = 0 (2.85)

where γ(θ) = 1/
√

1− β2 and β(θ) = w tan θ/v. For the same reason as previously shown, the
Landau levels are not particle-hole symmetric and the spacing between them is renormalized by γ−3/2.

11More details on NbAs2 in Chapter 3 and App. C where I discuss also the magneto-optics of this gapped nodal-line
semimetal.
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2 Special relativity in Dirac materials

Moreover, the Dirac mass is renormalized by a factor of γ−1. The main di�erence is that γ now can be
tweaked by the angle θ. Therefore, the extrapolated gap depends on the orientation of the magnetic
�eld. Most saliently, the gap is closed when θ = θc. The gap closing is an unambiguous signature
to demonstrate special relativistic renormalization in a material like NbAs2. It is especially easy to
experimentally show since the orientation of the magnetic �eld is freely con�gurable. Concerning the
solid-state mechanism of this gap closing, I invite the readers to go to the next section.

In summary, hyperbolic transformations allow one to solve completely the problem of Landau
quantization for tilted Dirac Hamiltonians by giving the energy spectrum and wavefunctions. By the
Peierls substitution in the Landau gauge, an e�ective electric �eld is generated due to the presence of
tilting term. One can still make an analogy with special relativity as I did for graphene. However, this
analogy is only partially valid because the tilting term includes momentum (see, for example, 2D tilted
gapped graphene), which breaks the Lorentz invariance of Dirac equation. In other words, one cannot
write a Dirac equation associated with the generalized linear Hamiltonian in a Lorentz invariant form.
Another thing to pay attention to is that one might think the tilting speedw and the Fermi velocity v
as the drift velocity and the speed of light c, respectively. This is explicitly proved to be wrong in the
calculations for tilted Weyl semimetal where the de�nition of speed is angle-dependent. Hence, the
analogy with special relativity is only physically valid after the Peierls substitution and the identi�ca-
tion of an e�ective electric �eld. All these caveats make hyperbolic transformation even more tempting
for its multiple interpretations of calculations and elegance of simplicity.

2.5 Renormalization effect in the language of condensed
matter

In this section, I will elucidate the solid-state mechanism of the fancy relativistic renormalization in
Dirac materials, so far not yet discussed in the community. I will retrieve the energy spectrum of the
previous models by the semi-classical method. One can interpret the relativistic renormalization e�ect
as an anisotropy of the Fermi surface introduced by the tilting. The criterion for electric and magnetic
regime is whether the cross section of the Fermi surface perpendicular to the magnetic �eld is com-
pact, i.e., �nite and closed. Furthermore, I will explain the microscopic mechanism that leads to the
renormalization of the optical gap: the energy dispersion is �attened by Landau quantization.

2.5.1 Anisotropy of Fermi surface

Quantum oscillations are the phenomena related to response functions, for example magneto-resistance
and magnetic susceptibility, that oscillate as a function of magnetic �eld. They o�er information on
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2.5 Renormalization e�ect in the language of condensed matter

the Fermi surface of a given material by looking at the oscillation pattern since response functions are
related to the density of states at the Fermi level.12 The interpretation of quantum oscillations relies on
the formation of Landau levels. Semi-classically, the Onsager relation [94] or equivalently the Roth-
Gao-Niu relation [95, 96] provide a quantization condition to derive Landau levels from the geometry
of the Fermi surface:

S(EF ) = 2πeB[n+ γ(EF , B)], (2.86)

where S(EF ) is the reciprocal-space area of a closed cyclotron orbit at the Fermi level and γ(EF , B)

is a phase shift whose Taylor series inB is given by [97]

γ(EF , B) =
1

2
−M ′0(EF )− B

2
χ′0(EF )−

∑
p≥3

Bp−1

p!
R′p(EF ), (2.87)

where the �rst term is the Maslov index, the second term is the sum of Berry curvature and the derivative
of orbital magnetization, the third term is the derivative of magnetic susceptibility and the last term is
derivatives of other higher order response functions. In the following, I take γ(EF , B) ≈ 0 since I am
interested in Dirac Hamiltonians for whichM ′0(EF ) = 1/2. I also neglect further higher order terms
ofB. Here, it will be shown that the relation Eq. (2.86) can accurately give Landau levels in tilted Dirac
Hamiltonians and thus furnishing a complementary understanding of the relativistic renormalization
in Dirac materials, namely the induced anisotropy of Fermi surface.

two-dimensional tilted gapped graphene

Suppose the Fermi level is above the gap such that

EF = wqx +
√

∆2 + v2q2
x + v2q2

y . (2.88)

This equation de�nes the trajectory of a cyclotron motion in the reciprocal space. Given thatβ = w/v

and γ = 1/
√

1− β2, I transform this equation into a more explicit form

1 =
v2
(
qx + EF

v βγ
2
)2

γ4
(
E2
F −

∆2

γ2

) +
v2q2

y

γ2
(
E2
F −

∆2

γ2

) (2.89)

12This statement is actually true for the Shubnikov-de Haas oscillations of conductivity but not true for the de Haas-van
Alphen oscillations of magnetization [93].
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2 Special relativity in Dirac materials

which has the shape of the de�ning equation of an ellipse. Several conditions need to be ful�lled if this
equation actually describes an ellipse:

|β| < 1 and EF >
∆

γ
, (2.90)

where the �rst condition is precisely that for the magnetic regime, and the second condition says the
smallest gap of the system is 2∆/γ. Note that the center of the ellipse is not at q = 0 but shifted in
the qx-direction such that 2∆/γ denotes the indirect gap (see Fig. 2.3). With the area of the ellipse

S = πγ3
E2
F −

∆2

γ2

v2
= πγ

γ2E2
F −∆2

v2
, (2.91)

the Onsager relation gives

EF =
1

γ

√
∆2 +

2nv2

γ`2B
, (2.92)

in agreement with the above result (2.81) for Landau levels.
Ifw = 0, the Hamiltonian describes an isotropic gapped graphene. The equation of ellipse becomes

1 =
v2q2

x

E2
F −∆2

+
v2q2

y

E2
F −∆2

, (2.93)

which actually depicts a circle centered at q = 0. Therefore, the tilting term wqx squeezes the circu-
lar Fermi surface (contour) to an elliptic one along the x-direction by a factor of γ. This induces an
anisotropy of Fermi surface. Furthermore, the tilting term also modi�es the density of states so that the
Fermi energy is renormalized by another factor of γ for a �xed number of electron. These two e�ects
give together the factor of γ3 in the equation above.

Three-dimensional tiltedWeyl semimetal

To proceed the calculations for Weyl semimetal, one simply has to replace ∆ by vqz in the previous
calculations,13 The trajectory of cyclotron is now the contour of a cross section of the ellipsoid Fermi
surface of Weyl semimetal. The ellipsoid Fermi surface is described by

1 =
v2
(
qx + EF

v βγ
2
)2

γ4E2
F

+
v2q2

y

γ2E2
F

+
v2q2

z

γ2E2
F

(2.94)

13Here, I replacewqz bywqx in (2.72) which is another valid simple model to describe Weyl semimetals.
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2.5 Renormalization e�ect in the language of condensed matter

where β = w/v and γ = 1/
√

1− β2. Condition of an ellipsoid Fermi surface is |β| < 1. But
this is not necessary to �nd a closed orbit for cyclotron because the orientation of magnetic �eld mat-
ters. Depending the orientation of the magnetic �eld, one has to rewrite the previous equation to an
elliptic equation. Here, I show only two particular orientations: the magnetic �eld is in the z- or the
x-direction. The general geometric calculation can be found in the literature [98].

For a magnetic �eld in the z-direction, one just needs to replace ∆ by vqz in the results for two-
dimensional titled gapped graphene

EF =
1

γ

√
v2q2

z +
2nv2

γ`2B
. (2.95)

The condition for a closed orbit is |β| < 1.

For a magnetic �eld in the x-direction parallel to the tilting termwqx, qx remains a good quantum
number and thus wqx can be treated as an additive constant to the energy. The resulting spectrum is
given by Landau levels in a non-tilted WSM addingwqx. The calculations using the Onsager relations
are more involved since one need rewrite the ellipsoid equation considering qx as constant. This leads
to

1 =
v2q2

y

γ2E2
F

(
1−

v2
(
qx+

EF
v
βγ2

)2

γ4E2
F

) +
v2q2

z

γ2E2
F

(
1−

v2
(
qx+

EF
v
βγ2

)2

γ4E2
F

) (2.96)

with no conditions onw/v. The area enclosed by a cyclotron orbit in reciprocal space is

S = πγ2E
2
F

v2

1−
v2
(
qx + EF

v βγ
2
)2

γ4E2
F

. (2.97)

Finally, the Onsager relation gives the correct Landau levels

EF = wqx +

√
v2q2

x +
2nv2

`2B
. (2.98)

Gapped nodal-line semimetal

Starting from the Hamiltonian discussed previously

H = w(cos θqz − sin θqx) + v(cos θqx + sin θqz)σx + vqyσy + ∆σz, (2.99)

51
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I choose the magnetic �eld to be oriented in the z-direction. The cyclotron trajectory is described by

1 =
v2q̃2

x cos2 θ

γ4
(
EF − vβqz

sin θ

)2
− γ2∆2

+
v2q2

y

γ2
(
EF − vβqz

sin θ

)2
−∆2

(2.100)

where

β(θ) =
w

v
tan θ γ(θ) =

1√
1− β(θ)2

(2.101)

q̃x = qx +
(v2 + w2)qz sin θ cos θ − wEF sin θ

v2 cos2 θ − w2 sin2 θ
. (2.102)

This equation describes an ellipse when |β(θ)| < 1 andEF > ∆/γ+wqz/ cos θ. The �rst condition
gives rise to the critical angle beyond which Landau levels collapse. The second condition states that
the Fermi energy should be above the renormalized gap at a given momentum qz so that the carrier
density is non-zero. Invoking the Onsager relation, one gets the spectrum

EF =
w

cos θ
qz +

1

γ

√
∆2 +

2nv2 cos θ

γ`2B
(2.103)

which is perfectly in line with the results obtained quantum mechanically.

To conclude, the renormalization e�ect in tilted Dirac materials in the presence of a magnetic �eld
is a relativistic interpretation of the consequence of an anisotropic Fermi surface. The Lorentz factor
γ actually quanti�es the degree of anisotropy of Fermi surface induced by the tilting term. To some ex-
tent, the relativistic renormalization should be measurable in quantum oscillations experiments which
would probe a squeezed Fermi surface due to the tilting term. The Lorentz factor γ would emerge as
a multiplicative factor on the periodicity of quantum oscillations. However, in the language shared by
experimentalists, it is more understandable to talk about the anisotropy of Fermi surface rather than
the relativistic renormalization.

2.5.2 Direct gap vs. indirect gap

Anisotropic Fermi surfaces are ubiquitous in materials. However, when refering to anisotropy, di�er-
ent velocities or e�ective masses along the crystalline axis are considered. In parabolic bands, the tilting
has no e�ect on the shape of Fermi surface because it is absorbed in the quadratic term by rede�ning the
origin of momentum q. However, this is impossible in linear bands describing the low-energy physics
of Dirac materials. Most saliently, unlike the anisotropy in the Fermi velocity, the tilting term does not
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2.5 Renormalization e�ect in the language of condensed matter

only make the longitudinal and transverse directions inequivalent but can also modify the gap of the
system. To see this, one takes the tilted gapped graphene as a starting example [99].

In the absence of magnetic �eld, one can easily calculate the energy spectrum of (2.73)

E± = wqx ±
√
v2q2

x + v2q2
y + ∆ (2.104)

where the direct gap 2∆ is formed at q = 0. However, the smallest energy di�erence between valence
and conduction band is not the direct gap but the indirect gap. Direct calculation of the extrema of the
two bands shows the band edges of the valence and conduction band is at momenta vqx = ±γβ∆

and vqy = 0 where β = w/v and γ = 1/
√

1− β2. The energy di�erence between these two
band edges, i.e., the indirect gap, reads 2∆/γ. Without appealing to relativity one notices that the
indirect gap equals the direct gap renormalized by the Lorentz factor γ de�ned in the language of
special relativity. The relativistic gap renormalization is just a smaller indirect gap induced by the tilting
term! The optical gap measured in the absence of magnetic �eld is to �nd the smallest energy di�erence
between valence and conduction band conserving the same momentumq. However, in the presence of
magnetic �eld in the z-direction, qx and qy are no longer good quantum numbers so that it makes no
sense to de�ne a direct gap preserving the momentum qx and qy . In other words, the role of magnetic
�eld is to �atten the energy dispersion in the transverse direction qx and qy . Since the optical gap
measured in the presence of magnetic �eld is obtained by extrapolating the Landau levels to zero, the
measured gap is now an indirect gap.

Generalizing the argument from two to three dimensions, the gap measured by extrapolating the
Landau levels to zero �eld limit is the lowest energy di�erence between the two bands when varying
the two momenta perpendicular to the direction of the magnetic �eld. The longitudinal momentum
along the magnetic �eld is untouched by the Peierls substitution and the two transverse momenta are
no longer good quantum numbers. Therefore, the transverse dispersion is �atten by the magnetic �eld
and turns into Landau levels while the longitudinal dispersion is intact. For example, in the gapped
nodal-line semi-metal, the spectrum in the absence of magnetic �eld reads

E± = w(cos θqz − sin θqx)±
√
v2q2

y + ∆2 + v2(cos θqx + sin θqz)2 (2.105)

= w
qz

cos θ
− w sin θq̃x ±

√
v2q2

y + ∆2 + v2 cos2 θq̃2
x (2.106)

where qz is the longitudinal momentum, (qx, qy) are transverse ones and q̃x = qx + qz tan θ is the
recentered qx. While minimizing the energy di�erence between E+ and E−, qz is irrelevant and qy
must be zero. Since I want to �nd the smallest gap no matter whether it is direct or indirect, one can
separately maximizeE− and minimizeE+. Taking derivative ofE±, the condition of zero derivative
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2 Special relativity in Dirac materials

gives precisely the condition of the magnetic regime, i.e, |β| < 1. Most prominently, the minimal gap is
again found to be 2∆/γ, in line with the previous quantum mechanical calculations. In this example,
one realizes once more that the renormalized gap is merely the minimal gap of the energy dispersion
transverse to the magnetic �eld. This is the one probed by Landau level spectroscopy. Nevertheless, it
is still surprising that one can tune the indirect gap of a material by the orientation of magnetic �eld in
this particular model.

2.6 Summary

In this chapter, I have shown by several examples that the renormalization e�ect of relativistic electro-
dynamics can manifest itself in Dirac materials. Using unitary and hyperbolic transformations inspired
by the analogy to the special relativity, the Landau quantization in tilted Dirac materials is completed
solved. Traditional experimental techniques in condensed matter can thus demonstrate the relativistic
renormalization. For example, the gap renormalization is measurable by magneto-optics as I will show
in detail in the next chapter.

In the absence of magnetic �eld, only direct optical transitions are possible since the photon mo-
mentum is negligible. As shown in the next chapter, where I will discuss Landau level spectroscopy,
the magnetic �eld induces mismatch between wavefunctions of di�erent energy so that dipole tran-
sitions from one Landau level to another do not respect the usual selection rules. In other words,
photons probe the indirect gap.
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3 Theoretical approach to
spectroscopy

A theoretical physicist can spend his entire lifetime missing the intellectual
challenge of experimental work, experiencing none of the thrills and
dangers — the overhead crane with its ten-ton load, the flashing skull and
crossbones and danger, radioactivity signs. A theorist’s only real hazard is
stabbing himself with a pencil while attacking a bug that crawls out of his
calculations.

Leon M. Lederman

Optical properties of solids are tangible in daily life. For example, the color of materials is a manifesta-
tion of all the complex interactions between light and matter. In electromagnetism, light is considered
as an electromagnetic wave described by the Maxwell’s equations. As it is well-known from the basic
electrodynamics classes, the wide-ranging optical properties observed in materials are encoded in the
constitutive equations

D = ε0εrE

B = µ0µrH

j = σE

where the �eldsD,E,B,H are displacement, electric, magnetic and magnetizing �eld, respectively;
j is charge current density; the coe�cients ε0, εr, µ0, µr, σ are vacuum electric permittivity, relative
electric permittivity, vacuum magnetic permeability, relative magnetic permeability, conductivity, re-
spectively. These equations are valid when an incident light is not so intense that the response of mate-
rial to an incident electromagnetic wave is linear. However, these optical coe�cients are not measured
directly by spectroscopy but can be derived from other measurable optical constants such as refractive
index, extinction coe�cient, transmission and re�ectivity.
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3 Theoretical approach to spectroscopy

The frequency-dependent complex dielectric function ε(ω) or the complex conductivity σ(ω) are
directly related to the electronic energy band structure of solids. Therefore, light is an excellent probe to
resolve the band structure of materials. In fact, one can also use electrons in the spectroscopy encoded
also in the complex dielectric function. However, the momentum of electron is no longer negligible
with respect to the size of Brillouin zone, the dielectric function must be momentum-dependent, i.e.,
ε(q, ω).

In this chapter, I present succinctly the theoretician’s way to study the spectroscopic properties of
materials, namely how to calculate dielectric function and conductivity knowing the Hamiltonian.
Especially, I elaborate some known results in magneto-optics, which will be useful in Chapter 5. As an
illustration, I will apply the theoretical formalism in a real material that I have been recently working
on with experimentalists at LNCMI (Grenoble). Then, I will talk about the physics of plasmon and
how to measure it by spectroscopy.

3.1 Quantum theory of optical properties

In this section, I introduce the tool that theoreticians would use to study the optical properties of
materials, namely the optical conductivity σ(ω). The goal is not to develop the full construction of
the theory1 but to emphasize on key ingredients of the theory and mention the approximations used
in the theory.

In a complete quantum mechanical treatment, light is quantized in bosonic �elds known as pho-
tons. The light-matter interaction is then described by a vector potentialA(r, t) including the bosonic
ladder operators for the photons. This treatment is necessary when the number of photons is very small
such as in a single-photon source used in quantum optics [103, 104, 105]. In most cases in condensed
matter physics, one uses classical light sources so that light can be treated as an electromagnetic wave
because light is used as a probe of the electronic properties of materials rather than the object of a phys-
ical study itself. When the light source is not an intense laser, the light-matter interaction is modeled
as a small perturbation to the matter by the electromagnetic �eld. This approach is semi-classical in
the sense that light is modeled by an electromagnetic wave and matter is described by a fully quantum
mechanical Hamiltonian.

Generally, a crystal coupled to an electromagnetic �eld is described by the following Hamiltonian

H =
(p+ eA)2

2m0
+ V (r) (3.1)

1For the construction of theory from zero, I suggest the following references [100, 101, 102] from which I am inspired to
formulate this section.

56



3.1 Quantum theory of optical properties

where V (r) is a periodic lattice potential, e > 0 is the elementary charge and m0 is the rest mass of
the electron. The above Hamiltonian can be written as a sum of the Hamiltonian in the absence ofA
denotedH0, and a perturbation termH ′. To �rst order inA,H ′ reads

H ′ =
e

m0
p ·A (3.2)

where the Coulomb gauge ∇ ·A = 0 is used so thatp = −i~∇ andA commute. As an electromag-
netic wave,A is written in the following form

A(r, t) = A0 exp(ik · r − iωt) (3.3)

where A0 is in the direction of electric �eld indicating the polarization of light. In time-dependent
perturbation theory, Fermi’s golden rule tells that the transition rate from the state 1 to the state 2 is

W1→2 =
2π

~
|M12|2g(~ω) (3.4)

where g(~ω) is the density of states (DOS)2 andM12 is the matrix element

M12 = 〈2|H ′|1〉 =

∫
d3rψ∗2(r)H ′(r)ψ1(r). (3.5)

Note that the time-dependence in exp(−iωt) is already taken into account in Fermi’s golden rule.

3.1.1 Electric dipole approximation

Since the frequency domain that I am interested in is the visible-infrared regime where the wavelength
of light is much larger than the periodicity of lattice potential, one can legitimately omit the spatial
dependence inA, namely exp(ik · r) ∼ 1. In other words, the momentum of photon is negligible in
front of the lattice momentum of electron. In this approximation, the matrix element reads

M12 =
e

m0
〈2|p ·A0|1〉. (3.6)

2When the two involved states are two discrete levels, g(~ω) represents the DOS of photon. If one considers the transition
between k-dependent bands of solids, one should use the joint density of states summing over k.
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This is called electric dipole approximation. The name for this approximation is justi�ed by writing the
equation of motion of the position operator r. Note that p = m0dr/dt, the equation of motion
reads

p = m0
dr

dt
= m0

i

~
[H0, r] (3.7)

so that

M12 = ie
E2 − E1

~
〈2|r ·A0|1〉 (3.8)

whereE1,2 are the energy of two states. Since E0 = iωA0 and, if ~ω = E2−E1, the matrix element
becomes

M12 = 〈2|er · E0|1〉 (3.9)

where the perturbation term H ′ becomes the energy of an electric dipole in an electric �eld E0. The
corresponding transition is called electric dipole transition.

If one pushes the Taylor expansion of exp(ik · r) to higher orders, other types of transition are
possible. For example, ik · r yields magnetic dipole transition and (k · r)2 yields electric quadrupole
transition. These higher order corrections are 10−3 weaker than electric dipole transition in most cases
thanks to large wavelength of light. However, they are essential to explain the optical activity,3 when the
time-reversal symmetry is not broken, and the circular dichroism4 of chiral materials, which possesses
neither an inversion center nor a mirror plane [106, 107]. This can be understood by looking the �rst
order correction to the electric dipole approximation in Fermi’s golden rule

〈2|er · E0|1〉〈1|(er ×
p

m0
) ·B0|2〉 (3.10)

in which the second term is the magnetic dipole transition. If the system possesses an inversion center,
the eigenstates are either even or odd under inversion operation. Since the electric dipole is odd under
inversion, a non-zero electric dipole matrix element has to involve two states of di�erent parity. How-
ever, this would kill the magnetic dipole matrix element due to the angular momentum r × p being
invariant under inversion. If the system possesses a mirror plane, the eigenstates are either even or odd
under re�ection with respect to the mirror plane. Similarly, a polar vector as electric dipole and an axial

3Optical activity is the capability of a material to rotate the linear polarization of transmitted light.
4Circular dichroism is the property of materials whose absorption spectrum is di�erent for left and right handed circularly

polarized light.
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vector as magnetic dipole imposes incompatible symmetry constrictions on the eigenstates involved in
the transitions so that the �rst order correction to the electric dipole approximation is forbidden.

In organic chemistry, the optical activity is due to the chiral molecules. However, the optical activity
of crystalline quartz arises from the crystal structure. The unit cell of quartz belongs to the trigonal
crystal class labeled 32, which has no mirror symmetry, and is therefore chiral [101].

Nevertheless, the higher order corrections to electric dipole approximation is beyond the scope of
the thesis. In all the following discussions, I consider only electric dipole transitions in optical proper-
ties.

3.1.2 Linear response theory: Kubo formula

Light-matter interaction is considered as a perturbation to the system. If the electric �eld of light is not
too strong, which is the case I consider here, then the conductivity is independent of the electric �eld.
It only depends on the material properties in the absence of electric �eld (at equilibrium). This type
of response is called the linear response.

Linear response theory is developed through the Kubo formula [108]. It gives the expression of the
retarded correlation function (conductivity σ) that relates the perturbation Hamiltonian H ′ to the
observable of interest (current density j).5 I am interested in the conductivity at �nite frequencies,
the Fourier transform of which is also called optical or dynamical conductivity. The full derivation
of the Kubo formula for σ can be found in [108]. In general, one should consider the momentum
dependence in the conductivity σ(q, ω). In the electric dipole approximation, the momentum of
photon is omitted so that the optical conductivity becomes local (q = 0) and depends only onω.6 All
information on the optical properties of solids is encoded in the optical conductivity.7 Most saliently,
the optical conductivity can be easily retrieved from the transmission coe�cient and/or re�ectivity that
are directly measurable by experiments.8

5Here, the formulation of the perturbation is di�erent from that in the time-dependent perturbation theory. In real space

H ′ = −
∫
d3r j(r) ·A(r, t).

The current density has two parts, paramagnetic and diamagnetic. The latter plays an important role in superconductors
but not in the present discussions. Nevertheless, this formulation is physically equivalent to the previous one.

6Equivalent to the electric dipole approximation, this is justi�ed by the fact that the speed of light is typically several orders
of magnitude larger than the electrons’ velocity in materials.

7The transition rate given by Fermi’s golden rule is of course related to the optical conductivity. See details in [100].
8While the absorption method is viable for 2D thin �lms, the re�ectivity method is more suitable for 3D bulk materials.
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3 Theoretical approach to spectroscopy

The Kubo formula of the optical conductivity reads

σij(ω) =
i~e2

V

∑
n,n′,k

fD(En(k))− fD(En′(k))

En′(k)− En(k)
× 〈n′|v̂i|n〉〈n|v̂j |n′〉
En′(k)− En(k)− ~ω + i0+

(3.11)

whereV is the volume of system for normalization;n, n′ are the band index; i, j represent the direction
of polarization; v̂i is the velocity operator; fD(E) is the Fermi-Dirac distribution, and 0+ ensures the
causality of the response in the clean limit. In general, one can replace 0+ by ~/τ with a phenomeno-
logical relaxation time τ to encounter the peak broadening due to disorders. Note that this expression
includes both intra- and inter-band processes. When n = n′, the numerator and denominator of the
�rst fraction on the right hand side has a �nite limit. One would obtain the same results in the classical
Drude’s theory for metals [101].

In the following, I focus on the interband transition in solids caused by an incident light of energy
~ω. The absorption process is related to the real part of the optical conductivity thinking of the dissipa-
tive Joule’s e�ect. In the clean limit,9 the real part of the diagonal elements of the optical conductivity
for ω 6= 0 reads

<[σii(ω 6= 0)] =
πe2

ω

∑
n6=n′

∫
ddk

(2π)d
(fD(En)− fD(En′))|〈n′|v̂i|n〉|2δ[~ω − (En′ − En)]

(3.12)

where the dependence on k is not explicitly shown, and the subscript d is the dimension of the system
of study.

The formula (3.12) consists of three key ingredients of optical transitions:

1. The term fD(En)−fD(En′) is the mathematical formulation of Pauli blocking: only the tran-
sitions from an occupied to an empty state are possible. Thus, optical transitions are sensitive
to the position of the chemical potential.

2. The term 〈n′|v̂i|n〉 is the same matrix element as in Fermi’s golden rule remarking that v̂ =

p/m0. It encodes the symmetry properties of the wavefunction and thus it stipulates the con-

9Here, I use the relation:
1

x+ i0+
= P.V.(

1

x
)− iπδ(x)

where P.V. is the Cauchy principle value and δ is the Dirac distribution.
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3.1 Quantum theory of optical properties

strictions on the optical transitions dictated by group theory. Exactly like in atomic physics,
these constrictions are called selection rules. By de�nition, the velocity operator is given by

v̂ =
i

~
[r, H] (3.13)

where r is the position operator. In practice, it is easier to work in the basis of the cell-periodic
part of Bloch wavefunction to evaluate the matrix element. A crystal Hamiltonian

H =
p2

2m0
+ V (r) (3.14)

with a periodic lattice potential V (r) and the energy is En(k) for the Bloch wavefunction
|ψn,k〉, the k-dependent e�ective Hamiltonian, i.e., the Bloch Hamiltonian, reads

Hk = e−ik·rHeik·r =
(p+ ~k)2

2m0
+ V (r) (3.15)

with the same energyEn(k) for the eigenstate |un,k〉. The velocity operator in this basis reads

v̂k = e−ik·rv̂eik·r =
1

~
∇kHk. (3.16)

When working on k · pHamiltonians [26], this is the most suitable way to calculate the matrix
elements.

3. The term
∑
k δ[~ω − (En′ −En)] is called the joint density of states (JDOS) which is actually

the DOS of the di�erence between the two bands n and n′. The JDOS counts the number of
states available for an optical transition induced by an incident photon of energy ~ω. Like the
DOS, the JDOS is extremely sensitive to the dimension and the band dispersion. It determines
the functional form of the optical conductivity as a function of ω. A simple thumb rule

<[σ(ω)] ∼ JDOS
ω
× Selection rules (3.17)

can track the functional behavior of the optical conductivity. This is further corroborated by
Fig. 3.1 in which the optical conductivities for di�erent dispersion and dimensions are shown.
Note that the optical conductivity for parabolic bands in 2D and 3D is not divergent in the
vicinity of ~ω = Eg thanks to the regular functional form of the DOS in 2D and 3D for
parabolic bands.
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3 Theoretical approach to spectroscopy

Figure 3.1: Illustration on how the dimension of bands a�ects the optical conductivity for linear and parabolic
bands. Figure reprinted from [109].

The Kubo formula (3.12) of the diagonal part of the optical conductivity allows one to understand
many optical properties of solids. One of the most spectacular examples is the optical conductivity of
graphene which has a 2D linear dispersion at low energy. Since the JDOS scales as ω, the correspond-
ing optical conductivity is a constant! This yields a constant transmission coe�cient of a monolayer
graphene written only in terms of the �ne-structure constant [110, 111, 112].

3.1.3 Magnetic Faraday and Kerr rotation: off-diagonal term

Optical activity can be induced in non-chiral materials by applying a magnetic �eld that yields magneto-
optical phenomena. When a linearly polarized photon propagates through a material slab in the z-
direction of the magnetic �eld (see Fig. 3.2), the polarization of the transmitted light is rotated with
respect to the incident light. Depending on whether the rotation of the polarization is observed in
transmission or re�ection, these phenomena are called the magnetic Faraday rotation or the magneto-
optical Kerr rotation, respectively. If the medium is absorbing, the �eld can induce magnetic circular
dichroism, namely the polarization of the transmitted light is no longer linear but elliptic (see Fig. 3.2).
This is called Faraday ellipticity.
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3.1 Quantum theory of optical properties

Figure 3.2: Schematic to illustrate the magnetic Faraday rotation and ellipticity, magnetic Kerr rotation and el-
lipticity. Magnetic �eld or magnetization of materials is in the z-direction. Figure reprinted from
[113].

These magneto-optical phenomena are encrypted in the o�-diagonal part of the optical conductivity
tensor. Linear polarization is the equal weight sum of the left and right handed circular polarization.10

Reasoning in the circular polarization instead of linear one is equivalently doing a basis transformation
exp(iπσy/2)11 on the optical conductivity 2D matrix where I suppose the light propagates in the z-
direction. In the circular polarization basis, the diagonal part is not equal if σxy 6= σyx, which is the
cause of the magneto-optical phenomena.

By Onsager’s reciprocal relation [114], the conductivity tensor should be symmetric when time-
reversal symmetry (TRS) is veri�ed. However, TRS is broken by the magnetic �eld yielding non-zero
opposite Hall conductivities σxy = −σyx. In other words, Faraday rotations are possible if TRS is
broken.

However, the inverse statement is not true because the optical activity is also present in chiral ma-
terials in the absence of magnetic �eld. A key di�erence between the optical activity in the presence
and in the absence of magnetic �eld is whether the TRS is broken. For example, preserving the TRS,
the optical activity manifests itself only in the transmitted light but not in the re�ected light, namely

10The convention of handedness is de�ned from the point of view of the source.
11One should not confound the Pauli matrix σy with the conductivity tensor σij
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3 Theoretical approach to spectroscopy

no Kerr e�ect is observed. When the direction of propagation is reversed, the rotation angle of linear
polarization does not invert its sign in the absence of TRS. But it does so in the presence of a magnetic
�eld, namely the TRS is broken. Therefore, only the optical activity induced by TRS-breaking is called
Faraday e�ect. One does not have to invoke the magnetic dipole moment to explain the optical activity
in the presence of a magnetic �eld, which is already present in the electric dipole approximation.

3.1.4 Landau quantization and selection rules

Intense magnetic �elds induce Landau quantization of the electronic bands in 2D, i.e., quantization
into separated levels indexed by n as elaborately shown in Chapter 2 for graphene.12 With a �xed
magnetic �eld, the optical conductivity has the shape of a series of peaks and each peak corresponds
to one possible transition between two Landau levels. The plot of the evolution of these peaks in the
optical conductivity upon variation of the photon energy and the magnetic �eld is called Landau fan
diagram. An example for graphene is shown in [115]. The trajectory of peaks depicts the energy of
Landau levels as a function of Landau level index and the magnetic �eld.

Suppose the magnetic �eld is applied in the z-direction, the selection rules between Landau levels
are [101, 116]:

Polarization Selection rules
circular: clockwise propagating in the z-direction n→ n+ 1

circular: anti-clockwise propagating in the z-direction n→ n− 1

linear: in the x, y-directions n→ n± 1

linear: in the z-direction n→ n

Somewhat surprisingly,13 the selection rules are the same for parabolic and linear bands. This is be-
cause the selection rules inherently originate from the symmetry of the Landau level wavefunctions. In
other words, it is a consequence of the conservation of angular momentum. The latter point of view
can be elaborated by incorporating the magnetic �eld though the vector potential in the symmetric
gauge. Besides the index n which indicates Landau levels of di�erent energy, another quantum num-
ber m emerges and counts the angular momentum Lz of the eigenstates if the rotation symmetry is
present. However, n and m are not decoupled. In a vertical transition, ∆m = ∆n. So, a circular
polarized photon carrying an angular momentum +~ (clockwise) can only excite an electron from an
initial state of angular momentumm to a �nal state of angular momentumm+1 by the conservation
of angular momentum. The same reasoning is applied for an anticlockwise circularly polarized photon

12Bands are quantized in Landau bands in 3D.
13If one uses the ordering rule of Landau levels, the obtained selection rules are di�erent. In certain literature [117], people

name the zeroth Landau level in my convention n = 1.
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3.2 Magneto-optics of a gapped nodal-line semimetal

Figure 3.3: Schematic of Faraday and Voigt geometry for a transverse electromagnetic wave propagating in the
z-direction.

carrying an angular momentum−~. This yields the selection rulesn→ n±1 for the two circular po-
larizations, respectively. Since the linear polarization is the composition of two circular polarizations,
the rules n→ n± 1 are both present.

Note that the selection rule for a photon polarized in the z-direction is distinct from other cases.
This is because the photon polarized in the direction of the magnetic �eld does not carry any angular
momentum in the z-direction14 so that the rule ism→ m and thusn→ n. There are thus two di�er-
ent geometries in the optical experiments: Faraday and Voigt geometry. The magnetic �eld is parallel
to the direction of light propagation in the Faraday geometry and perpendicular to the direction of
light propagation in the Voigt geometry (see Fig. 3.3). As shown by the selection rules, Voigt geometry
involves both the rules n → n ± 1 and n → n. In contrast, Faraday geometry involves only the rule
n→ n± 1 or even one of two possibilities if the circularly polarized light is used. This fact favors the
use of Faraday geometry in the investigation of the magneto-optical properties of unknown materials.

To illustrate the power of Kubo formula, I show in the next section an example of theoretical magneto-
optical study on a gapped nodal-line semimetal. The readers will see how the knowledge from Chapter
2 and 3 allows one to understand recent extraordinary and non-trivial magneto-optical experiments.

3.2 Magneto-optics of a gapped nodal-line semimetal

NbAs2 is a nodal-line semimetal which is gapped by the spin-orbit coupling (SOC). A pair of two
mirror-symmetric nodal lines extends across the whole Brillouin zone. As shown in Fig. 3.4, each
nodal-line has two optically relevant parts at infrared frequencies: a �at part and a dispersive part. The
latter is modeled by the Hamiltonian (2.74) and the former by the same type of Hamiltonian with a

14Lz = xpy − ypx.
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3 Theoretical approach to spectroscopy

Figure 3.4: Energy pro�le of NbAs2 tracing one of the two nodal lines. For incident photons of energy around
100 meV, only two parts are optically relevant as indicated in the �gure. Figure credited to my collab-
orator, Jan Wyzula, of the LNCMI in Grenoble.

di�erent value of gap and without thekz-dependent term. The details on NbAs2 and the construction
of its low-energy Hamiltonian are given in App. C. In particular, one �nds the relationship between
the crystal axes and the axes used in the Hamiltonian (2.74).

Recently, Shao et al. [118] have conducted a magneto-optical study on NbAs2. They have �tted the
experimental data with the optical conductivity derived from a low-energy Dirac Hamiltonian. The
results are satisfying for the data in the absence of a magnetic �eld. However, the magneto-optical
results have not been properly explained in their work. This is the motivation that encourages my
collaborators and me to study the magneto-optics of NbAs2.

Two observations are elusive in the magneto-optical re�ectivity data of NbAs2 when a magnetic
�eld is applied in the (001)-direction to the sample. First, the gap of the dispersive part measured from
the Landau fan diagram is smaller than that derived from the zero �eld data. But, the gap of the �at
part derived from the Landau fan diagram remains the same as that from zero �eld data (see Fig. 3.5).
Second, the dispersive part yields a blurred Landau fan diagram and the �at part yields a clear-cut one.
Most saliently, while Landau fan structure of the dispersive part is still visible if the incident photon is
polarized along the b-axis of the crystal, it is almost washed out if the polarization of photon is along the
a-axis, perpendicular to the b-axis (see Fig. 5 in [118]). The anisotropy in the Fermi velocity (va/vb ∼
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3.2 Magneto-optics of a gapped nodal-line semimetal

Figure 3.5: Measurement of the re�ectivity of NbAs2 for di�erent facets (m 0n), as a function of magnetic �eld
and photon energy. One notices the evolution of the optical gap while varying the orientation of the
magnetic �eld with respect to the nodal line. Figure credited to my collaborator of the LNCMI in
Grenoble.

0.5 [118]) is unlikely to explain this e�ect since it would still yield the same order of magnitude of optical
response (σaa/σbb ∼ 0.25 [118]).

Compared to the �at part, it is clear that the magneto-optical response from the dispersive part of
the nodal line is inherently di�erent due to the tilting term. The �rst and probably most striking obser-
vation is the experimental con�guration of the relativistic gap renormalization shown in Fig. 3.6(b),
2∆→ 2∆/γ [see Eq. (2.85)], as a function of the facet used in the re�ectivity data. Here, I will spend
more time on explaining the second observation.

3.2.1 Optical conductivity in the absence of magnetic field

Before explaining the magneto-optical observations, I want to show how well the conductivity calcu-
lated by Kubo formula can �t with that derived from the zero �eld data. One models the low-energy
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3 Theoretical approach to spectroscopy

Figure 3.6: (a) Optical conductivities of a sample of NbAs2 measured by my collaborators (solid lines) and those
obtained using Kubo formula (3.12) for the low-energy model given in App. C (dashed lines). The
�t is satisfying for energy below 0.3 eV. (b) Comparison between the experimentally measured gap
by our collaborators of the LNCMI in Grenoble (points with error bar) and the one predicted by
my theoretical calculations. The accuracy of the theory is highly satisfying. Figure honored to Jan
Wyzula of the LNCMI.

physics of NbAs2 by pasting together several Dirac Hamiltonian describing respectively di�erent seg-
ments of the nodal line (see in App. C). The greatest advantage of the model is that the optical con-
ductivity can be calculated analytically.

As shown in Fig. 3.6, the �t is mostly satisfying when the energy of photon is below 0.3 eV above
which the interband transitions are possible between bands other than gapped nodal-line [118]. The
Kubo formula manages to recover the two steps in the optical conductivity. Furthermore, one can
identify the cause of the two-step feature, namely the onsets of the dispersive and the �at part of the
nodal line with di�erent gap, respectively.15 The ratio between the optical conductivities for two po-
larizations is also accurately retrieved. This allows one to evaluate the anisotropy of Fermi velocity.
Here, I only consider the interband transitions so the Drude peak below 0.1 eV is not captured in Fig.
3.6(a). Nevertheless, one should be convinced by the predictive power of the Kubo formula (3.12) used
in these rather simple low-energy models.

3.2.2 Selections rules in the presence of a magnetic field

To understand the obscure magneto-optical observations for the dispersive part of the nodal line, one
must go back to the Hamiltonian (2.74) where I omit the anisotropy of the Fermi velocity. Since the
Landau fan structure is still present, the system is in the magnetic regime (see Chapter 2). The angle

15More details are shown in App. C.
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3.2 Magneto-optics of a gapped nodal-line semimetal

θ de�ned in (2.82) is thus smaller than the critical angle θc de�ned by (2.84). In the presence of a
magnetic �eld in the z-direction, the Hamiltonian reads

H = w(cos θqz − sin θ(qx − eBy)) + v(cos θ(qx − eBy) + sin θqz)σx + vqyσy + ∆σz

(3.18)

where~ = 1 (also in the following discussions) and the Landau gaugeA = (0,−eBy, 0) is used. The
HamiltonianH can be solved using the hyperbolic transformationM = exp(φσx/2) with tanhφ =

w tan θ/v following the same procedure in Chapter 2 for graphene in a crossed electric and magnetic
�eld. The transformed Hamiltonian reads:

HT = MHM

=
wv

v∗
qz +

w2 + v2

v∗
qz sin θ cos θσx + v∗(qx − eBy)σx + vqyσy + ∆σz (3.19)

where a new velocity v∗ is de�ned as

v∗2 = v2 cos2 θ − w2 sin2 θ with γ = coshφ =
v cos θ

v∗
(3.20)

where γ > 1 is the relativistic Lorentz factor. Note that HT does not have the same spectrum as H .
In the basis of |ψT 〉 = γ−1/2M−1|ψ〉 given the eigenstate |ψ〉 of H , one can construct from HT

another HamiltonianHE = (HT − E sinhφσx)/ coshφwith the same spectrum asH

HE =
wqz
cos θ

+
1

γ

[
∆

√
2vv∗

`B
aE√

2vv∗

`B
a†E −∆

]
(3.21)

where a pair of energy-dependent ladder operators is de�ned

aE = − `B√
2vv∗

(
v∗

`B
(y − 〈y〉E) + ivqy

)
(3.22)

a†E = − `B√
2vv∗

(
v∗

`B
(y − 〈y〉E)− ivqy

)
(3.23)

〈y〉E =
`2B
v∗

(
v∗qx + qz(w

2 + v2) sin θ cos θ − Ew sin θ

v∗

)
(3.24)

with [aE , a
†
E ] = 1. The subscriptE indicates the dependence on energyE. In particular, the center

of cyclotron 〈y〉E shifts with energy.
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Since the energy-dependent term in HE is absorbed in the de�nition of the ladder operator, the
energy spectrum is self-consistently found in the eigenstates of energyEλn [see (2.85)] in the form

|ψT,n,λ〉 =

(
sinαn,λ|n− 1, Eλn〉

cosαn,λ|n,Eλn〉

)
(3.25)

where αn,λ is an angle depending on n and the sign of energy λ = ±; |n′, Eλn〉 is the wavefunction
of one-dimensional quantum harmonic oscillator de�ned by the previous ladder operators. Given the
Landau level index n, n′ = n or n− 1. As shown in Fig. 3.6(b), the gap measured by magneto-optics
is indeed renormalized by γ, which depends on the orientation of the magnetic �eld.

To study the magneto-optical properties of NbAs2, one evaluates the matrix element 〈ψn|v̂k|ψm〉.
Indeed, it is more practical with the basis |ψT,n〉 already at hands by remarking that

〈ψn|∇kH|ψn′〉 = γ〈ψT,n|∇kHT |ψT,n′〉 (3.26)

thanks to the fact thatM is k-independent. So, in the basis |ψT 〉, the velocity operators forHT are

v̂T,x = v∗σx (3.27)

v̂T,y = vσy (3.28)

v̂T,z =
wv

v∗
+
w2 + v2

v∗
sin θ cos θ (3.29)

where one notice an emergent anisotropy of Fermi velocity induced by the magnetic �eld. For the
dispersive part in NbAs2, the x, y-directions in the model (2.74) correspond to the a, b crystalline
directions (see in App. C). The anisotropy of Fermi velocity yields a signi�cant discrepancy in the
optical conductivity16

σaa
σbb

=
sin2 θ σxx
σyy

∝ v∗2 sin2 θ

v2
=

sin2 θ cos2 θ

γ2
. (3.30)

Using the parameters in [118], the angle θ is ∼ π/3 and thus γ = 1.17. Taking into account the
inherent Fermi velocity va/vb ∼ 0.5, the optical conductivity for photon polarized along the a-axis is
more than 20 times smaller than that of a polarization along b-axis! Using the same scale of plots, the
Landau fan is thus apparent for σbb but di�cult to see for σaa.

16If one follows the same calculations on the �at part, one would �nd the ratio between the conductivities is cos2 θ. The
relativistic renormalization is again demonstrated by the additional Lorentz factor γ.
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3.2 Magneto-optics of a gapped nodal-line semimetal

Figure 3.7: Coupling strength between the eigenstates |ψT,n,λ〉 and |ψT,m,λ′〉where I consider only transitions
from valence (λ = −1) to conduction bands (λ = +1). (a) When θ = 0, the usual selection rules
n→ n± 1 are given. (b) When θ = π/3, many other transitions are also allowed.

With the velocity operators, one can a priori derive the selection rules. However, one encounters
another di�culty here. When one calculates the matrix elements such as 〈ψT,n|v̂T,x|ψT,m〉, one has
to deal with terms like 〈n′, En|m′, Em〉which is not 0 or 1 anymore because of the mismatch between
the their energy dependent orbital centers of the two states [see (3.24)]. In other words, one does not
have the usual dipolar selection rules anymore. Instead, all of the direct transitions are in principle
possible if Pauli’s principle is satis�ed. Peaks stemming from the selection rule other thann→ n±117

proliferate in the optical conductivity similarly to what has been predicted in 2D organics and 3D Weyl
semimetals [82, 83]. By the sum rule, this would dilute the prominent Landau fan which re�ects the
n→ n± 1 rule. Therefore, the usual clear-cut Landau fan is blurred.

The di�erent dipolar transitions di�er a lot in amplitude from each other. As shown in Fig. 3.7,
this can be seen by plotting the coupling strength, i.e., the square of the normalized matrix element
like |〈ψT,n|v̂T,x/v∗|ψT,m〉|2 [82].18 In Fig. 3.7(a) where θ = 0, only the selection rules n → n ± 1

are allowed. This is because the energy-dependence in the cyclotron center is canceled by sin θ [see in
(3.24)]. When the angle is non-zero, for example, θ = π/3, some loose selection rules emerge such
as n → 10n and n → n/10 as shown in Fig. 3.7(b). For example, the transitions 0 ↔ 2 are now
allowed. Yet, the transition 0→ 1 is always well de�ned.

In this section, I have illustrated the usage of the Kubo formula in a frontier research problem on
the magneto-optics of Dirac materials NbAs2. Analyzing the matrix element, the fact that NbAs2

17Here, Faraday geometry is implied.
18The technical trick to analytically evaluate the matrix element is given in the supplementary information of [83] and also

in App. C
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exhibits polarization-selective optical response is explained by the energy-dependent cyclotron center
induced by the hyperbolic transformation. Combined with the gap renormalization, NbAs2 is thus
an excellent candidate to experimentally show the relativistic renormalization e�ect in the condensed
matter systems.

3.3 Plasmon and electron energy loss spectroscopy

Metals consists of electrons at dynamic equilibrium, which move constantly creating local charge �uc-
tuations. Therefore, some small regions have an excess of charges. The charges in those regions would
be repelled away by the surrounding charges and acquire a velocity to overshoot their original position.
Then, they would be pushed back in the opposite direction by a restoring force. This process can lead
to oscillatory motion called plasma oscillations. Like any other oscillation, the plasma oscillations can
be quantized into quasi-particles called plasmon.

Plasmons can be measured by electron energy loss spectroscopy (EELS), in which the incident electron
scatters with the electrons in metals and thus loses a quantum amount of energy ~ωp, energy of the
plasmon. Details of technique can be found in [119, 120]. Recently, even the momentum dispersion of
plasmon energy has been resolved [121], which further boosts the study of plasmons in solids.

The physics of plasmons is encrypted in the polarization function χ(q, ω), i.e., the charge-charge
correlation function in linear response theory, which is related to the dielectric function ε(q, ω). The
theoretical way to study plasmon is then to calculate χ(q, ω) or ε(q, ω). However, this is di�cult
to do because the origin of plasmon is due to the Coulomb interaction between electrons, which is
notoriously intractable. Some approximations must be used.

The simplest approximation to demonstrate the existence of plasmons is the random phase approx-
imation (RPA) [122] applied on the dielectric function ε. It is exact if the electronic density is high.
The main idea behind the RPA is to suppose that the local charge �uctuation is induced as a response
of non-interacting electrons to a local potential, which is self-consistently determined by the sum of
the external and induced potential (see Fig. 3.8). This yields the following equations

φind = VCχφext (3.31)

φind = VCχ
(0)φloc (3.32)

φloc = φext + φind (3.33)
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3.3 Plasmon and electron energy loss spectroscopy

where φ represent electric potentials, χ(0) is the (non-)interacting charge susceptibility and VC is the
Coulomb potential. One thus �nds the RPA charge susceptibility

χRPA =
χ(0)

1− VCχ(0)
(3.34)

By de�nition,19

φext = εRPAφloc (3.35)

from which one retrieves the RPA dielectric function

εRPA = 1− VCχ
(0). (3.36)

The zero of εRPA is thus the plasmon mode, namely a long-lived charge oscillation (and thus a persistent
oscillation inφloc) induced by a vanishingly small external potential [see (3.35)]. In Chapter 5, I will use
the RPA to study surface plasmons arsing from Volkov-Pankratov states as well as their spectroscopic
signatures.

Figure 3.8: Illustration of the self-consistent approximations behind the RPA. 〈ρind〉 is the average value of in-
duced charge density. Since all other quantum �uctuations are neglected by taking the mean value,
the RPA is indeed a mean-�eld theory.

19Similarly, in electrodynamics,
D = εE = ε0Eext

where I distinguish Maxwell �eld and the external �eld. Eext plays the role of D.
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3 Theoretical approach to spectroscopy

3.4 Summary

In this chapter, I have introduced the arsenal of theoreticians to study the spectroscopic properties of
solids, including both magneto-optical visible-infrared spectroscopy and EELS. I have illustrated the
usage of theoretical formalism to rationalize the unraveled phenomena observed in a gapped nodal-line
semimetal NbAs2. My theoretical modeling of this material has been used namely in the identi�cation
of a relativistic renormalization of the magneto-optical gap, within a collaboration with the magneto-
optics group led by Milan Orlita at LNCMI in Grenoble. Our results are at present written up for
publication.

As shown in Chapter 5, the powerful theoretical tools also helps one to unequivocally identify the
nature of states and guides the search of new optical and plasmonic applications.
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4 Topological heterojunction:
emergence of Volkov-Pankratov
states

Every theoretical physicist who is any good knows six or seven different
theoretical representations for exactly the same physics. He knows that
they are all equivalent, and that nobody is ever going to be able to decide
which one is right at that level, but he keeps them in his head, hoping that
they will give him different ideas for guessing.

Richard P. Feynman

In the introduction, the reader has seen that topologically protected edge states emerge at the sur-
face of topological materials by means of gap closing. The wavefunction of topological edge states
can be explicitly shown within the Dirac equation including a spatially dependent mass gap, for ex-
ample ∆(x). Functional analysis indicates that the existence of an exponentially localized topological
edge states only requires an inverted gap across the interface. This is in line with general arguments
in topological band theory that do not rely on a particular form of ∆(x). Therefore, most studies on
topological edge states are justi�ed for using a sharp step-like ∆(x) for simplicity. However, the surface
of real materials is never perfectly cleaved so that the mass gap ∆(x) has to be a smooth function rather
than Heaviside function. For example, the surface of prototypical two-dimensional topological insu-
lator (TI), HgTe/(Hg,Cd)Te quantum well, is notoriously di�cult to handle [123, 124]. This solicits a
study on the e�ect of smoothness on the surface of topological materials, which is another work in my
thesis.

As I will show in this chapter, the study of smooth surfaces and interfaces is particularly rich. In ad-
dition to the topologically protected chiral states, massive surface states called Volkov-Pankratov (VP)
states [72, 74, 75] emerge at the surface of topological materials when the surface is smooth enough.
Indeed, they have been shown to arise not only in TIs [72, 124, 125, 126], but also in surfaces of Weyl
semimetals (WSMs) [127, 128], topological graphene nanoribbons [129] and topological superconduc-
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4 Topological heterojunction: emergence of Volkov-Pankratov states

tors [130]. Here, I only call the massive surface states other than the topological ones the VP states to
underline the particularities of the massive states.1 The experimental realization of a topological het-
erojunction could be done by smoothly varying the chemical composition of material in space. For
example, one can tune a 3DTI Bi2Se3 to a trivial one In2Se3 by continuously substituting Bi by In
[131].

In this chapter, I will �rst present the three theoretical models I will constantly use in this chapter
and the next one: a 2D toy model, a model for a realistic 3DTI and a model for a two-node WSM. The
smoothness of the surface (or interface) is incorporated in Dirac Hamiltonian by a gap parameter that
varies over a certain width ` across the interface. I will show that the exact functional form of ∆(x) is
unimportant and can be linearized if one is interested in localized states in the vicinity of surface. Then,
based on my work during my Ph. D., I will show by explicit calculations the emergence of VP states and
topological states from di�erent perspectives adopting certain well-chosen functional forms of the gap
parameter to facilitate the calculations. Each perspective gives a conceptually di�erent understanding
on the origin of VP states. Furthermore, these perspectives shed light on the properties of VP states.

4.1 Topological heterojunction: theoretical models

Since the smooth (inter)surface of a topological material acquires a �nite size, it may be more appro-
priate to call it a smooth junction connecting topological material and vacuum, which can be seen as
a trivial insulator with large band gap. The two phases being topologically di�erent, such junction is
called a topological heterojunction [72]. More generally, a topological heterojunction is a smooth inter-
face between two materials characterized by di�erent values of a topological invariant. In this section,
I present three models of topological heterojunctions.

4.1.1 Two-dimensional toy model

One of the simplest models of topological heterojunctions that one can propose consists of an interface
between a trivial Semeno� [27] and a topological Haldane insulator [13], both stemming from the low-
energy spinless model of graphene. They display both a band structure with two massive Dirac points,
in other words two valleys. Suppose the half-spacex < 0 is �lled by a Semeno� insulator and the other
half-space x > 0 by a Haldane insulator. The gap changes only its sign in one of the two valleys when
passing across the topological heterojunction [69]. Say, the sign change occurs at the K point. The
Dirac-type Hamiltonian for the valleyK reads

Hξ=+1 = ∆(x)σz + ~v(kxσx + kyσy) (4.1)
1In some literature [125], the topological surface state are sometimes called the topological/massless VP state.
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4.1 Topological heterojunction: theoretical models

where σα (α = x, y, z) are Pauli matrices that represent the sublattice (A and B), ξ = +1 denotes the
K valley [see Eq. (2.10)]. The interface is described by a position-dependent gap ∆(x), with ∆ < 0

for x < 0 and ∆ > 0 for x > 0. In the other valley K ′, the Hamiltonian is similar to that in the K
valley,

Hξ=−1 = ∆̃(x)σz + ~v(−kxσx + kyσy) (4.2)

where ∆̃(x) remains positive for both sides of the interface, even if its value may vary across the inter-
face, and ξ = −1 denotes the K ′ valley. So, I will only consider the Hamiltonian for K valley in the
following calculations.

The interface Hamiltonian has to match the bulk Hamiltonian when one is situated at a place far
away from the position where the gap is closed. In this example, the Hamiltonian becomes the bulk
Hamiltonian of Semeno� insulator in the limit x → −∞ and that of Haldane insulator when x →
+∞. Concretely, ∆(x) veri�es

∆(x) =

−∆0 if x→ −∞

∆0 if x→ +∞
(4.3)

where ∆0 > 0. To emphasize the fact that two topologically di�erent phases at x → −∞ and
x → +∞ cannot be distinguished from their spectrum, I have assumed additionally the gap of the
two insulating phases to be the same. I will also make the same assumption in the following models.
For interested readers, the case for di�erent gap is discussed in the references [72, 132]. In the vicinity of
x ∼ 0 where the gap varies, kx is no longer a good quantum number so that [x, kx] = i. One already
anticipates the quantization of the 2D bands into 1D bands.

Though this 2D toy model is simplistic, the present picture can however be generalized to the
Bernevig-Hughes-Zhang model of 2D time-reversal-symmetric TI [70] with spin degree of freedom,
sz = ±. One just replaces the valley index by sz and considers the model near the Γ point retaining
only linear terms.

4.1.2 Three-dimensional topological insulator

A 3D TI can be described within several di�erent Hamiltonians. For example, Bi2Se3 [133], known as a
prototype material of 3D Z2 TIs, can be described by a low-energy model thanks to Zhang et al. [134].

Inspired by this model, one can construct a Hamiltonian to describe a 3D topological heterojunction

H0 = ∆(z)τz + ~vkzτy + ~vτx(kyσx − kxσy) (4.4)
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4 Topological heterojunction: emergence of Volkov-Pankratov states

where the Pauli matrices τ and σ represent orbital and spin degrees of freedom, respectively. As in the
2D model, one forms a 3D topological heterojunction by replacing the constant bulk gap by a spatially
varying one which changes its sign across the interface along the z-axis.

For a 3D TI in Z2 classi�cation as Bi2Se3, the sign of ∆ is also the topological invariant: topological
if the gap is negative and trivial if positive [134]. Suppose the half-space z < 0 is �lled by topological
phase and the other half-space z > 0 �lled by trivial phase. As before, I assume a symmetric topological
heterojunction such that

∆(z) =

−∆0 if z → −∞

∆0 if z → +∞
(4.5)

where ∆0 > 0.

4.1.3 Two-nodesWeyl semimetal

The way to construct a Hamiltonian describing the smooth interface between a WSM and a trivial
insulator is slightly di�erent from that for TIs. One starts by the simplest Hamiltonian of a time-
reversal-broken two-node WSM [42]

H = ~v(kxσx + kyσy) +

(
k2
z

2m
−∆0

)
σz (4.6)

where ∆0,m > 0 and two Weyl nodes are placed at k = (0, 0,±
√

2m∆0) between which the gap is
inverted in reciprocal space. A topological transition occurs when two Weyl nodes of opposite chirality
are annihilated by merging them together [8]. A trivial insulator is thus formed beyond the merge of
two nodes by tuning the gap to zero and then to negative values. The desired Hamiltonian is modeled
as

H = ~v(kxσx + kyσy) +

(
k2
z

2m
−∆0 + ∆(x)

)
σz (4.7)

where ∆0 > 0 and

∆(x) =

0 if x→ −∞

2∆0 if x→ +∞.
(4.8)
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4.1 Topological heterojunction: theoretical models

The bulk Hamiltonian of the trivial insulating phase interfacing with WSM is then

H = ~v(kxσx + kyσy) +

(
k2
z

2m
+ ∆0

)
σz (4.9)

4.1.4 Linearization of the models

Until now, the only arti�cial hypothesis for the gap parameter is that the two sides of a topological
heterojunction have the same band gap. The condition on the gap parameter given above is to make the
interface Hamiltonian match correctly the bulk Hamiltonian of two phases atx→ ±∞. None of the
models imposes any explicit form for the position-dependent gap parameters. Yet, the above condition
implicitly requires a valid function of a gap parameter describing a topological heterojunction, for
example ∆(x) in the 2D toy model, to have the property that ∆(x) is vanishing somewhere at �nite
x only an odd number of times. Otherwise, the neighboring gap closing points can be annihilated
pairwise by continuous transformation (see green dots in Fig. 4.1). The gap can reopens consuming
a �nite amount of energy, that is not topologically protected. Therefore, from the topological point
of view, one is allowed to suppose without losing generality that the gap is closed only once at, for
example, x = 0. A plausible choice for the gap parameter could be ∆(x) = ∆0 tanh(x/`) where a
length scale for smoothness ` describing the size of the interface is introduced (see blue line in Fig. 4.1).

Since the gap changes its sign only once at x = 0, one can always do a Taylor expansion of ∆(x) in
the vicinity of the gap closing point where ∆(x) can be fairly supposed to be analytical at x = 0. This
amounts to write ∆(x) = ∆0x/` + O((x/`)2) where the typical size of the interface ` serves as a
cut-o�. Therefore, one can always use a linearized gap parameter at the gap closing point whenever one
focuses on the surface states localized in a topological heterojunction. In other words, the linearization
of model is universally possible in any topological heterojunction. Every valid functional form of gap
parameters is permitted to do such a linear expansion. For example, tanh(x/`) is linearized to x/` as
expected.

Introducing a length scale ` characterizing the smoothness of topological heterojunction, the lin-
earized version of the three models are

• 2D toy model:
H = ∆0

x

`
σz + ~vF (kxσx + kyσy) (4.10)

where the gap is closed at x = 0 and only one valley is considered.

• 3DTI:
H = ∆0

z

`
τz + ~vFkzτy + ~vF τx(kyσx − kxσy) (4.11)

where the gap is closed at z = 0.
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4 Topological heterojunction: emergence of Volkov-Pankratov states

Figure 4.1: Schematics of two gap functions ∆(x): one is described by a tangent hyperbolic function (blue line)
and another vanishes seven times across the interface (red line). Nevertheless, the neighboring gap
closing points (green dots) can be continuously merged together for annihilation so that only one is
left (red dot). If one focus on the physics of the interface, one can zoom in in the vicinity of the (last)
gap closing point and suppose a linear ∆(x) by introducing the size of interface `.

• Two-node WSM:

H = ~v(kxσx + kyσy) +

(
k2
z

2m
−∆0 + 2∆0

x

`

)
σz (4.12)

where the inverted gap of WSM is closed at x = `.

In all the models above, I consider that two topologically di�erent phases are semi-in�nite so that
only one interface is considered. This is valid when the typical size of two materials L is much larger
than the size of the interface `. The �nite-size e�ect will be discussed in the following sections of the
chapter.

4.2 Origin of Volkov-Pankratov states

Besides massless topological states, massive surface states also emerge in topological heterojunction
thanks to a smooth interface. These states are called Volkov-Pankratov (VP) states, being �rst theo-
retically predicted by Volkov and Pankratov in 1980s [74, 75]. The VP states have been rediscovered
recently by our group and collaborators [72, 124] with the advent of topological material.
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4.2 Origin of Volkov-Pankratov states

In this section, the Hamiltonians of topological heterojunctions consisting of TIs are solved both an-
alytically and numerically. Various methods are used and each of them re�ects a conceptually di�erent
perspective on the origin of VP states. I will discuss the energy spectrum of topological heterojunctions
made by TIs. The analysis for the surface states of WSM are postponed to the next chapter.

4.2.1 Smoothness as pseudo-magnetic field

I start with the simplest model, i.e., the 2D toy model, which bears all relevant phenomena that are all
present in the more complete models. Linearization of the gap parameter permits to solve analytically
the Hamiltonian with the help of unitary transformations presented in Chapter 2. After the unitary
transformation T = exp(−iπσx/4), the linearized Hamiltonian of the 2D toy model (4.10) reads:

HT = THT † = ~v

[
ky kx + i x`ξ

kx − i x`ξ −ky

]
(4.13)

where a characteristic length ξ = ~v/∆0 is de�ned. This length scale is intrinsic because its value de-
pends only on the Fermi velocity v and the gap parameter ∆0 given by the bulk material. The e�ect of
the unitary transformation is to interchange σz and σy Pauli matrices so that the x-dependence of the
linearized gap function is now placed in the o�-diagonal elements with kx. The Hamiltonian written
in the new basis is reminiscent of the Hamiltonian of gapped graphene in the presence of magnetic �eld
where the gap is replaced by ~vky which is a good quantum number. However, the linear term due to
the spatially varying gap parameter along with kx quantizes the motion in the x-direction in the same
way as a magnetic �eld does by the Peierls substitution. Hence, the smoothness of topological hetero-
junction can be seen as a pseudo-magnetic �eld. As a real magnetic �eld yields Landau quantization,
the pseudo-magnetic �eld should also induce energy levels indexed by an integer n.

To explicitly show this surprising analogy, one can de�ne a pair of ladder operators

â† =
`S√

2

(
kx + i

x

`2S

)
(4.14a)

â =
`S√

2

(
kx − i

x

`2S

)
(4.14b)
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4 Topological heterojunction: emergence of Volkov-Pankratov states

that satisfy [â, â†] = 1 and `S =
√
`ξ which plays the role of a pseudo-magnetic length associ-

ated with the pseudo-magnetic �eld, i.e., the smoothness. This is mostly evocative by comparing the
Hamiltonian

HT =

√
2~v
`S

[
ky`S√

2
â†

â −ky`S√
2

]
(4.15)

with (2.18). To solve this Hamiltonian, one thus proceeds in the same way as for graphene in a magnetic
�eld using harmonic oscillator basis de�ned by the ladder operators (see Chapter 2). The center of
harmonic oscillators 〈x〉 is precisely at the gap closing point x = 0. This is actually an artifact of
using an odd function of ∆(x). Nevertheless, the wavefunction should be localized at x = 0. Unlike
usual Landau level wavefunction, 〈x〉 is independent of ky making the resulting energy levels non-
degenerate.

The spectrum ofHT reads

E±n = ±~v
√
k2
y +

2n

`2S
if n ≥ 1

E0 = ~vky if n = 0 (4.16)

where n is a positive integer. As shown in the left panel of Fig. 4.2, instead of discrete Landau lev-
els that one would �nd for a gapped graphene in the presence of a magnetic �eld, the spectrum of
the 2D topological heterojunction in the presence of a pseudo-magnetic �eld created by the interface
smoothness consists of dispersing Landau bands indexed by an integer n. I will explain in detail in the
next part that the analogy of smoothness with magnetic �eld is partial and formal. They are actually
fundamentally di�erent quantizing �eld. This di�erence is encoded in the de�nition of the ladder op-
erators. The dispersion in ky is an appreciable characteristic of VP states which distinguishes them
from other disorder-induced surface states. This is the reason why spectroscopy could be a good tool
to unambiguously reveal VP states as shown in the next chapter.

Nevertheless, the analogy of smoothness with magnetic �eld is both convincing and inspiring. On
the one hand, the massless topological state, which emerges as the n = 0 Landau band, is soundly
included in the model describing a smooth junction. Most saliently, the massless state withE0 = ~vky
does not depend on any details of the interface, in particular the smoothness `, as it should do by
general topological argument. The massless state is chiral because it propagates only in the positive
y-direction. This is due to the fact that one considers only one side of a topological Haldane insulator.
The chiral state with opposite dispersion can be found if one takes into account the other side of a
�nite size TI. On the other hand, the emergence of massive VP states are explicitly shown by the states
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4.2 Origin of Volkov-Pankratov states

Figure 4.2: Spectrum for the 2D (left) and 3D (right) model including the chiral mode (red) the modesn = 1...4
(orange). The energy is measured in units of ∆0, i.e. half of the bulk gap. The modes n = 3 and
n = 4 are immersed in the purple area which represents the bulk spectrum. So, they cannot give
visible signal in experiments.

n ≥ 1 with n being any large value. At �rst sight, it might seem that there is no bound for n. It
might be tempting to think that the existence of the VP states would be universal on the surface of
every topological materials because the surface smoothness is at least limited from below by the atomic
length scale. This is however not the case and simply an artifact of the linearized model in which only
surface states are considered. The presence of the bulk system prohibits the existence of the VP states on
any surface of real samples above a certain value ofn (see the left panel of Fig. 4.2). Here, the spectrum
of the bulk system is±

√
~2v2(k2

x + k2
y) + ∆2

0. If the VP states with largen are immersed in the bulk
continuum, they will not be localized on the surface due to the coupling with the bulk. Alternatively,
only the VP states present in the gap is physically allowed and experimentally observable. Following
this logic, one can de�ne a critical length for smoothness only beyond which the interface is said to be
smooth and the n = 1 VP state emerges in the gap. This critical length is precisely the intrinsic length
scale ξ. The condition of the emergence of VP states in a topological heterojunction is thus ` � ξ.
This condition is ful�lled when the surface is very smooth (large `) or the bulk gap is large enough
(small ξ). For some large gap 3DTI, the intrinsic length scale is about 1 nm while the quintuple layer is
also around 1 nm [135, 136]. The realization of a smooth topological heterojunction is promising. The
above argument that the VP states of energy should be smaller that the bulk gap,

√
2n~v/`S < ∆0,

yields an estimate of the maximum number nmax of VP states that a given topological heterojunction
can display,

nmax ≈
`

ξ
. (4.17)

Another mathematical understanding of the limit on n is to solve the model with ∆(x) for a full
pro�le of space in which both the surface and bulk are considered [72]. Small value of ` admits only a

83



4 Topological heterojunction: emergence of Volkov-Pankratov states

�nite number of localized solutions to the di�erential equation. In comparison, one would prefer the
analysis using linearized models since the argument is universally applicable and the physical picture is
more intuitive.

It has been shown that the energy levels indexed by an integer n resemble Landau levels with dis-
persion justifying the similarity between smoothness and magnetic �eld. It is thus natural to ask how
this pseudo-magnetic �eld and a real magnetic �eld interplay on the surface of topological materials. I
invite the readers to go to the next chapter for this topic.

4.2.2 Smoothness-induced confinement: Dirac quantumwell

In this part, I will elaborate a point of view on the origin of VP states that is conceptually di�erent
from the analogy with magnetic �eld. I have already mentioned several attributes of VP states distinct
from Landau levels induced by a real magnetic �eld. The discrepancy is encoded in the de�nition of
the ladder operators, which are independent of ky . The VP states are thus non-degenerate, (d − 1)-
dimensional bands, indexed by n, if one considers a d-dimensional bulk system. For the same reason,
the energy spectrum is a function of ky but independent of kx. The most prominent distinction is
thus the dimensionality of the energy spectrum. Only one direction is quantized due to the position-
dependent gap parameter. The dimension of system is thus is reduced from d to d− 1, as one would
expect for the relation between surface and bulk. However, a real magnetic �eld quantizes the motion
in the plane perpendicular to itself so that the dimension is reduced from d to d− 2. In this sense, the
smoothness a�ects the spectrum in a similar way as a quantum con�ning e�ect in the direction along
which the gap varies.

Quantum con�nement needs a potential quantum well which is not explicitly present in the model
of the topological heterojunction. However, the Dirac Hamiltonian written in matrices can be de-
coded into a pair of conventional Schrödinger equations in a con�ning potential that arises from the
(linearly) varying gap parameter for the components of the spinors. I will illustrate this point by a topo-
logical heterojunction formed by 3DTI (4.4). Working in the so-called Weyl basis T = exp(iπτy/4),
the Hilbert space can be decomposed into an orthogonal direct sum of two subspaces with opposite
chiralities. The eigenstates |ψ〉 are four-component spinors,

|ψ〉 =

(
χ+(z)

χ−(z)

)
, (4.18)
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Figure 4.3: (a) Illustration of a single Dirac QW. (b) Illustration of a double Dirac QW. The spatially varying gap
∆(z) changes from positive sign to negative when one goes from the blue area (trivial phase) to the
red area (topological phase) and the gap is closed somewhere in between. l, l1 and l2 characterize the
smoothness of domain wall between phases. Figures adapted from the reference [137].

where χ± are themselves two-component spinors of chirality±. One obtains thus a set of two decou-
pled di�erential equations:(

E2 − ~2v2k2
‖

)
χλ = [∆(z) + λ~v∂z][∆(z)− λ~v∂z]χλ, (4.19)

where k2
‖ = k2

x+k2
y andλ = ± represents the chirality. Most saliently, the equations can be rewritten

as (
E2 − ~2v2k2

‖

)
χλ = Ẽ2

λχλ =
[
−~2v2∂2

z + Uλ(z)
]
χλ, (4.20)

the right hand side of which shows now a second-order derivative inz, as it is the case for a 1D Schrödinger
equation with a con�ning potential

Uλ(z) = ∆(z)2 + λ~v∂z∆(z), (4.21)

which itself depends on the chirality λ. One therefore has to deal e�ectively with the conventional
quantum mechanical problem of a particle in a 1D quantum well, which I call henceforth Dirac quan-
tum well (QW) [137]. A topological heterojunction is equivalent to two decoupled single Dirac QWs
with opposite chirality λ [see Fig. 4.3 (a)].

In this treatment, solvingE for the Dirac Hamiltonian (4.4) is equivalent to solving

Ẽ2
λ ≡ E2 − ~2v2k2

‖ (4.22)

for this Schrödinger equation whose spectrum Ẽ2
λ must be non-negative. Be careful about the fact that

the spectrum and the potential in the Schrödinger-type equation (4.20) have the physical dimension of
a squared energy. To emphasize that I am working with such auxiliary quantities that do not have the
dimension of energy (but its square), I invent the term virtual energies in the context of the Schrödinger
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equation (4.20) to refer to the quantity Ẽ2
λ. The conversion relation from a virtual energy to a physical

energy reads
E±λ (k‖) = ±

√
Ẽ2
λ + ~2v2k2

‖. (4.23)

With the help of the conversion relation, one can thus get the spectrum of the original Dirac Hamil-
tonian after solving the virtual energy of the corresponding the system of two Schrödinger equations.
A given value of virtual energy corresponds to two opposite physical energies making the spectrum
particle-hole symmetric. This is a distinguishable characteristic of VP states from other surface states.
Though the particle-hole symmetry is an artifact of the Hamiltonian containing only linear terms in
k, it still applies for the low-energy spectrum especially for k‖ = 0.

To illustrate a single Dirac QW, it is instructive to study the linearized form of the gap parameter

∆(z) =


−∆0 if z < −`

∆0
z
` if z ∈ [−`, `]

∆0 if z > `,

(4.24)

where the bulk is also included [see Fig. 4.4(a)]. Within this choice of gap parameter, one considers
integrally a topological heterojunction consisting two semi-in�nite bulk phases and their smooth in-
terface. This choice of ∆(z) is by no means the best to describe the real experiments. But, it is the one
that allows a simple analytical solution of the problem of a single Dirac QW. It is also the building block
of the model for double Dirac QW. Most importantly, the functional behavior for all the parameters is
independent of the choice of a ∆(z) verifying general features discussed above. The spectrum is thus
quantitatively relevant (at least in the order of magnitude) compared to real situation in experiments.

A particularly interesting character of this choice could be that the gap parameter coincides with
the linearized model (4.11) for z ∈ [−`, `] where the gap is closed and the range of interface is de�ned.
In this region, the Schrödinger Hamiltonian has the form of the Hamiltonian for a 1D quantum har-
monic oscillator. This can be seen by formally substituting ∆0/v

2 → 2m and v/l → ωc/2 (or
equivalently ∆0/l

2 → mω2
c/2) in (4.20), such that the e�ective Schrödinger Hamiltonian reads

Ẽ2
λ

∆0
χλ =

(
− ~2

2m
∂2
z +

1

2
mω2

cz
2 + λ

~ωc
2

)
χλ (4.25)

where an energy shift depending on the chirality due to a vertical shift between U− and U+ is deter-
mined by the interface width `. Recall that the wavefunction of Landau levels in the Landau gauge is
a 1D quantum harmonic oscillator as it is for the VP states. So, the form (4.25) suggests an alternative
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4.2 Origin of Volkov-Pankratov states

Figure 4.4: (a) Interface pro�les described by a spatially varying gap ∆(z) for two values of characteristic in-
terface width `/ξ = 0.9, 2.3. (b) Pro�les of Dirac QWs for its corresponding ∆(z) and chirality
λ = ±. U− is represented by solid lines andU+ by dashed lines. Figures adapted from the reference
[137].

way to understand the analogy of smoothness with magnetic �eld. The spectrum of this Hamiltonian
of the linearized model is given by

Ẽ2
λ

∆0
= ~ωc

(
n+

1 + λ

2

)
(4.26)

or Ẽλ =

√
2
ξ

l

(
n+

1 + λ

2

)
∆0 (4.27)

wheren ≥ 0 is an integer andλ = ±. Only one zero mode exists with a de�nite chiralityλ = −while
all other levels possess two chiralities. Using the conversion relation (4.23), the zero mode corresponds
to the famed topologically protected single Dirac cone on the surface of 3DTI. The other Dirac cone
is presented on the other side of 3DTI which is not considered in this single boundary model so that
only one zero of one chirality is found here. The massive VP states manifest themselves as the non-zero
energy levels of a 1D harmonic oscillator. They are thus not protected by topology from back-scattering
[126].

The above solution is only correct if ∆(z) = ∆0z/` for all over the space along the z-direction.
Nevertheless, the reader already sees how a spatially variant gap parameter in Dirac Hamiltonian be-
comes a con�ning potential in the transformed Schrödinger Hamiltonian for the components of spinor.
One can thus easily complete the full pro�le of the con�ning potential induced by the gap parameter
(4.24). This is shown by Fig. 4.4 for two di�erent values of the smoothness parameter `/ξ.

Remember that I consider an odd function ∆(z), and ∆(z)2 and ∂z∆(z) are consequently even
functions so that Uλ(z) is a symmetric QW potential [see Fig. 4.4 (b)]. When the interface is abrupt
(`/ξ � 1), only the 1D QW for the fermions with λ = − is really con�ning [see the solid orange
line in Fig. 4.4(b)]. In contrast, fermions with chirality λ = + cannot be con�ned in the region
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4 Topological heterojunction: emergence of Volkov-Pankratov states

z ∈ [−`, `] because they can tunnel out of z ∈ [−`, `] where the potential is no longer con�ning [see
the dashed orange lines in Fig. 4.4 (b)]. An undergraduate level physics course [138] on 1D quantum
mechanics tells one that there must be a bound state for λ = −, but not necessarily for λ = +. The
virtual energy of bound states should be smaller than ∆2

0. Using (4.26), one estimates the number
of bound state in the gap that a topological heterojunction can host, which is exactly the thumb rule
(4.17).

Since the virtual energy potentialUλ is parabolic inside z ∈ [−`, `] and constant outside, the wave-
functionχλ forn = 0 behaves as a Gaussian within the interface and decays exponentially in the bulk.
The standard deviation of the Gaussian part is thus described by a length scale `S =

√
`ξ which de-

pends on the well width and the bulk gap, the same I have shown in the previous part. The width
and depth of Dirac QW are both determined by the smoothness of the surface, which is encoded
in ∆(z)2 and ∂z∆(z) [see the orange and green lines in Fig. 4.4]. This is essentially di�erent from
the conventional (square) QW of which one can independently engineer its depth and width. Most
saliently, a smoother interface gives rise to a wider but shallower Dirac QW which can nevertheless host
more bound states. This can be understood in terms of supersymmetric quantum mechanics as will
be shown in the next part.

It is satisfying to �nd the same results on the bound states using a full pro�le ∆(z) as that on the
localized states in the linearized model. Using ∆(z) = ∆0 tanh(z/l) will of course provide the same
conclusions [72, 74, 75]. This puts in evidence the argument that the band inversion mechanism allows
one to linearize the spatially varying gap at the interface. Indeed, the validity of the linearized model
to discuss the localized states is con�rmed in the framework of Dirac QW as well as the statement
that massive VP states can in principle emerge in any topological heterojunction when the interface is
su�ciently smooth. In the language of quantum well physics, the Dirac QW can host more bound
states if it is su�ciently wide.

4.2.3 Coupling between two surfaces: double Dirac quantumwell

Knowing the spectrum of a single Dirac QW, it is appealing to study the coupling between two Dirac
QWs. The con�guration of two adjacent Dirac QWs arises naturally when a 3DTI is sandwiched be-
tween two trivial insulators, as depicted in Fig. 4.3(b). A confusion of jargon could be that the sand-
wich heterostructure is conventionally said to be a topological QW but with two interfaces so that it
hosts two Dirac QWs. The thin �lm is thought to be a promising way to get rid of the metallic bulk
states in TIs, which are undesirable for applications that rely on conduction from only the surface
states [139]. In this part, I will show how the coupling strength between the states localized at di�erent
sides of a topological material depends on the thickness of the sample and also the smoothness of sur-
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4.2 Origin of Volkov-Pankratov states

face. As shown below in a concrete example, the double Dirac QW is intrinsically asymmetric re�ecting
the topological protection of the topological surface state which is little a�ected by the presence of an
adjacent Dirac QW. In contrast, the (virtual) energy of massive VP states are considerably shifted.

One chooses the following ∆(z) in the Hamiltonians (4.4) to model the above heterostructure:

∆(z) =



∆0 if z < −L
2 − `

−∆0
` (z + L

2 ) if z ∈ [−L
2 − `,−

L
2 + `]

−∆0 if z ∈ [−L
2 + `, L2 − `]

∆0
` (z − L

2 ) if z ∈ [L2 − `,
L
2 + `]

∆0 if z > L
2 + `

(4.28)

where L is the thickness of the 3DTI as indicated in Fig. 4.3(b). For a well-de�ned �nite size sample,
one should impose 2` < L. The gap parameter ∆(z) and its corresponding Schrödinger potential
Uλ(z) are given in Fig. 4.5. Since the Schrödinger potential is invariant under simultaneous inversion
of the chirality and spatial coordinate z, i.e, Uλ(z) = U−λ(−z), U+ hosts a zero mode of chirality
λ = + only at the right QW and U− hosts that of chirality λ = − only at the left QW. However,
since the gap parameter has the same sign at in�nity, the Jackiw-Rebbi argument given in Chapter 1
is no longer valid. One can thus already anticipate that the zero mode is not protected anymore and
acquires a non-zero energy. In terms of Dirac QW, it is understood as the possible tunneling between
two adjacent Dirac QWs separated by a �nite virtual energy potential barrier of height ∆2

0. For each
Uλ, the Schrödinger Hamiltonian can be solved analytically by the usual method used in wave me-
chanics. Just like the problem of particle in a box, it su�ces to transform the eigenvalue problem in an
energy-dependent di�erential equation whose general solutions are analytically known. The boundary
conditions then give rise to a secular equation that determines the spectrum. Here, I am only interested
in localized states and the details of calculations can be found in App. D.

Since the presence of the second Dirac QW can be seen as a perturbation term to a single Dirac QW,
especially for L � `, the energy spectrum of double Dirac QW will not deviate too much from that
of single Dirac QW. Therefore, only the energy shift due to the double QW con�guration is worth
a careful analysis which I present here. Denote the deviation of the energy at k‖ for each index n as
±∆En. Indeed, this deviation can be calculated with the help of the virtual energies Ẽ2,

∆En = ||Ẽ| − |E0
n(k‖ = 0)|| (4.29)

where the energies at k‖ = 0 of a single Dirac QW are represented henceforth by the superscript 0,
E0
n(k‖ = 0).
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4 Topological heterojunction: emergence of Volkov-Pankratov states

Figure 4.5: (a) Pro�le of the spatially varying gap ∆(z) for a 3DTI sandwiched between two trivial insulators
with `/ξ = 1 and L/ξ = 4. (b) Pro�les of two adjacent Dirac QWs for two chiralities. The two
dashed lines, blue and red, indicate the energy level (close to zero) of the n = 0 states of λ = ±,
respectively. Figures adapted from the reference [137].

For the zero mode n = 0 which is no longer topologically protected, surface Dirac cones acquire a
mass gap such that

E±n=0(k‖) = ±
√

∆E2
0 + ~2v2k2

‖. (4.30)

In contrast to the n = 0 states, the massive VP states are “split” in energy by±∆En with

E±n (k‖) = ±
√(

E0
n(k‖ = 0)±∆En

)2
+ ~2v2k2

‖, (4.31)

as a consequence of quantum tunneling between the two Dirac QWs and the resulting hybridization
of the QW states.

Two possible regimes are discussed separately.

Sharp interface

When `� ξ, only then = 0 modes exist at two sides of 3DTI and the presence of the other respective
side yields a small mass gap. They live in two decoupled potential Uλ so that they cannot hybridize
directly by quantum tunneling since their respective spinorial wavefunctions are orthogonal (see Fig.
4.5). One can only imagine an indirect tunneling with the help of the plane-wave bulk states that
open a gap. However, this is not the dominant mechanism that opens the mass gap. As shown in the
smooth surface regime where tunneling is even enhanced in the presence of VP states, it is more suitable
to understand it in perturbation theory due to the exponential tail of the wavefunction probing an
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4.2 Origin of Volkov-Pankratov states

adjacent Dirac QW nearby. In the sharp interface limit, one obtains by Taylor expansions of the secular
equation the mass gap for the n = 0 modes2

∆E0 = ∆0e
−L
ξ

√
1 +

4l2

3ξ2
, (4.32)

where the ratio L/ξ in the exponential illustrates the idea of topological protection by gap. Besides
the exponential decay with increasing thickness which benchmarks the result with those in literature
[140, 141, 142, 143], a correction arising from the smoothness of the surface is added. This formula gives
a good estimation in order of magnitude for, for example, a thin �lm of Bi2Se3. For Bi2Se3, taking ξ
as 1.5 nm [135, 136], one �nd a mass gap 2∆E0 = 0.03 eV close to the experimentally measured gap
0.05 eV [139]. In addition, this formula allows a quick estimation of the smoothness of the surface of
topological material from the measured mass gap.

Smooth surface

When ` > ξ, massive VP states are also present in the region of con�ning potential wells. The calcula-
tions show that the energy splitting ∆En depends non-trivially on `/ξ,L/ξ and the VP state index n
�xing other material-related parameter such as v and ∆0. I de�ne a reduced energyωr with dimension
of unity used in the following plots

ωr =

√
E2 − ~2v2k2

‖

∆2
0

∈ [0, 1]. (4.33)

For n = 0, ωr = ∆E0/∆0 [see Eq. (4.30)]. For n ≥ 1, ωr = |∆E0
n(k‖ = 0)±∆En|/∆0 [see Eq.

(4.31)]. I de�ne also

∆ωr =
∆En
∆0

. (4.34)

With ` = 6ξ �xed, the energy splitting of the topological state and the VP states depends on the
thickness of 3DTI L is shown in Fig. 4.6 [see solid lines in (a) and blue line in (b)]. The mass gap of
the n = 0 state decays exponentially with L as for sharp surfaces. The splitting of the VP states also
is exponentially small with increasing L/ξ showing no particular non-intuitive behavior. Also, the
energy splitting of the n = 0 state is 102 times weaker than that of the massive VP states with given
parameters.

2See in App. D.2
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Figure 4.6: ` = 6ξ is �xed. (a) Reduced energy ωr as a function of the distance between two Dirac QWs, L, for
the massive VP states n = 1 and 2. The results are obtained by solving the secular equation given
in App. D.1. Inset in (a): the reduced energy splitting ∆ωr decays exponentially with increasing L,
only shown for the massive VP states n = 1 and 2. The solid lines indicate the splitting from the
secular equation, while the crosses represent the results based on Eq. (4.36). The dotted lines show
results based on the same formula, where one has used the exact energies for the VP states of a single
Dirac QW instead of the approximate ones given in Eq. (4.26). (b) log10 ωr as a function ofL/ξ for
then = 0 topological state. The numerical results from the secular equation are represented by blue
line, that using Eq. (4.37) by orange line. Figures adapted from the reference [137].

FixingL/ξ = 20, the evolution of the energy splitting of the VP states as function of `/ξ is shown
in Fig. 4.7. The spectrum of massive VP states follows as predicted to a small relative error the behavior
ωr =

√
2nξ/` derived Eq. (4.26). Increasing the smoothness of the surface permits VP states with

large n to emerge in the gap, or equivalently, be localized in the con�ning potential. The larger the
index n is, the more prominent is the energy splitting.

The `/ξ-dependence of the energy splitting of the VP states and the topological state is given in
Fig. 4.8. In the range of `/ξ with L = 20ξ �xed, the splitting of the topological state is 104 times
smaller than that of the VP states. The mass gap of the topological state is increasingly enhanced by
the smoothness of the surface. The increase is likely to be exponential [see blue line in Fig. 4.8 (b)]. This
observation is consistent with the intuition that the e�ective separation of two Dirac QWs is L − 2`

therefore giving an exponential behavior in `/ξ. However, this argument cannot explain the non-trivial
behavior of the energy splitting of the VP states [see solid lines in Fig. 4.8 (a)]. For the n = 1, 2 and
3, the energy splitting is not a monotonically increasing function of `/ξ. Most saliently, it admits a
minimum at di�erent `/ξ for each n. Larger values of n yield larger `/ξ as the position of minimal
splitting. When n = 4, the dependence on `/ξ of the energy splitting becomes again monotonic.

One can explain the observations in the framework of the asymmetric double QW for a given chi-
rality as shown in Fig. 4.9 by a thought experiment. Consider initially a thick sample of 3DTI so that
the localized states in two complementary QWs feel little each other. Remember that all the energies
in terms of Dirac QW has the dimension of the square of a physical energy and thus are called virtual
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Figure 4.7: Reduced energyωr as a function of smoothness ` for the massive VP states n = 1 to 4 by solving the
secular equation (solid lines). The `-dependence ofωr is well described by Eq. (4.26) (crosses). Inset:
zoom-in to show the splitting for the VP state n = 1. Figures adapted from the reference [137].

energy [see Eq. (4.23)]. The virtual energy of the VP states are degenerate and the topological state
remains at zero virtual energy. Imagine now that two Dirac QWs are brought together gradually by
shrinking the thickness of the sample. Consequently, the tunneling becomes stronger and stronger
and delocalizes the states which have been con�ned in their corresponding Dirac QW at the beginning
of the thought experiment. States localized in two adjacent Dirac QWs hybridize to form new states
and thus the energy degeneracy is lifted. Since the hybridization is strongest when they have the same
energy, i.e., resonant hybridization, the massive VP states can hybridize strongly because their degen-
erate counterpart with the same energy living in the same Uλ is present in the adjacent Dirac QW.
In contrast to VP states, the zero mode of a given chirality in one Dirac QW is little a�ected because
the adjacent Dirac QW does not host a zero mode. This explains the huge di�erence in the order of
magnitude of the energy splitting between the VP states and the topological states.

Pursuing the idea of tunneling, one can in principle estimate the energy splitting in order of mag-
nitude using a heuristic formula. This formula is the result of a pedestrian exercise of undergraduate
level that the energy splitting due to the tunneling between adjacent �nite symmetric square QWs reads
[138]

2∆E =
~2π2

4m`2
4e−K(L−2`)

2K`
, (4.35)

where 2` is the width of a square QW, L the separation between the centers of the two square QWs
andK =

√
2mV0/~with the e�ective depth of the square QW,V0. The heuristic formula for double

Dirac QW is thus derived after replacing 2m by 1/v2 andV0 by (1−ω2
r )∆2

0 for the e�ective potential
depth for a surface state of reduced energy ωr. Since the energy splitting is that of the virtual energies
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Figure 4.8:L = 20ξ is �xed. (a) Reduced energy splitting ∆ωr as a function of smoothness ` for the massive VP
states n = 1 to 4. The solid lines show the splitting numerically obtained from the secular equation
and the crosses indicate the values obtained from the heuristic formula (4.36). The dotted lines show
results based on the same formula, where one has used the exact energies for the VP states of a single
Dirac QW instead of the approximate ones given in Eq. (4.26) (b)log10 ωr vs. ` for the n = 0
state and L/ξ = 20. The results from the secular equation are represented by blue line, that using
Eq. (4.37) by orange lines and that using the �rst-order perturbation theory by green line. Figures
adapted from the reference [137].

in the Dirac QW approach, one obtains actually a formula for ∆(E2
n) instead of ∆En. One has to

do an expansion of the virtual energies to linear order around the VP energies by writing ∆(E2
n) ≈

2En∆En to translate the splitting of virtual energy into that of physical energy. The wavevector that
describes the exponential suppression of the hybridization is given by K =

√
1− ω2

r /ξ. Since the
linearized version for the energy of the VP states matches the correct one to great accuracy, one can use
it for ωr so that the �nal formula reads

∆En =
π2

4

∆0√
2n

(
ξ

`

)5/2 e
−
√

1− 2nξ
`

(L−2`)/ξ√
1− 2nξ

`

(4.36)

for the VP states. As shown by dots and crosses in Figs. 4.6 (a) and 4.8 (a), the heuristic formula gives
a good approximation on the order of magnitude of energy splitting, especially for n = 1 and 2. Most
saliently, the non-trivial dependence on `/ξ is captured by the formula (4.36). The non-monotonic
behavior of energy splitting as a function of `/ξ can be thus understood in terms of the antagonistic
interplay between the e�ective separation of two Dirac QWsL− 2` and the single QW energy depen-
dence on `. A smooth interface, i.e. large ` stabilizes the massive VP states so that the tunneling process
should get through a higher potential barrier which prohibits the hybridization. However, it also re-
duces the e�ective distance between the two adjacent Dirac QWs so that the tunneling becomes more
probable. The competition between the two e�ects manifests itself as the existence of a minimal value
of the energy splitting while varying `. Since the formula (4.35) itself is only valid for the states of small
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Figure 4.9: Pro�les of two in�nitely separated Dirac QWs for two chiralities with `/ξ = 3: (a) for λ = + and
(b) for λ = −. The dashed lines, blue and red, indicate the energy level of chiral states and n = 1
VP states for λ = ±, respectively. Figures adapted from the reference [137].

n, the heuristic formula does not give a good approximation for the states of large n (here n = 4).
These states have an virtual energy close to the virtual energy edge of Dirac QW. In other words, these
VP states just emerge from the bulk continuum. In this case, the energy splitting of higher VP states
increases with `. The tunneling between two adjacent Dirac QWs is thus the reason to lift the degen-
eracy of the VP states. The formalism of Dirac QWs explicitly put in evidence the intuition on the
mechanism of energy splitting and captures the essence of physics.

One might want to follow the same argument to derive a heuristic formula for the state n = 0.
However, as I show in this paragraph, this approach yields an erroneous scaling of the energy splitting.
Since the unperturbed n = 0 state has zero virtual energy, one must push to the second order in ∆E0

unlike the n > 0 states, i.e.,∆(E2
0) = (∆E0)2. This would give a heuristic estimation

∆E0 =
π

2
∆0

(
ξ

`

)3/2

e−(L−2`)/2ξ (4.37)

which would describe the dependence of the mass gap for the topological state both on the smoothness
`/ξ and the thickness L/ξ. As shown in Figs. 4.6 (b) and 4.8 (b), the mass gap scales approximately
as exp(−(L − `)/ξ) instead of exp(−(L − 2`)/2ξ) predicted by the heuristic formula. Actually,
the tunneling on which the heuristic formula is based is not the predominant factor that opens a mass
gap for the topological state. The n = 0 state has no partner in the adjacent Dirac QW with the
same chirality so that tunneling is repressed. One has to �nd another mechanism than the resonant
hybridization to account for the splitting for the n = 0 state. Indeed, a treatment in perturbation
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Figure 4.10: Illustration of a topological superlattice and its corresponding a series of periodic Dirac QWs. The
parameters for the plot ofUλ are: LNI/ξ = 5,LTI/ξ = 4 and `/ξ = 1.5.

theory yields a better agreement in order of magnitude [see green line in 4.8 (b)]. The mass gap in this
�rst-order perturbation approach reads

∆E0 =
∆0

2π1/4

(
ξ

`

)5/4

e
−L−1.5`

ξ . (4.38)

where the e�ective separation is L − 1.5`. The calculations are reported in App. D.2. To the leading
order, the energy of then = 0 state is a�ected by the deviation inUλ(z) induced by the second adjacent
Dirac QW in the exponential tail of the wavefunction.

The absence of the resonant hybridization of wavefunctions explains why the the splitting forn = 0

states is by several orders of magnitude smaller than that for the n > 0 states. This is because a double
Dirac QW is inherently asymmetry in contrast to the symmetric double square QW. The asymmetry
in the double Dirac QW can be thus seen as another interpretation of topological protection.

Superlattice of Dirac quantumwell

As for thin �lm of topological material, there are both experimental [144, 145, 146, 147] and theoretical
[148] e�orts on topological superlattices which consists in alternating layers of topological and normal
insulators. Forming a superlattice from topological materials is a strategy to enhance the surface re-
sponse with respect to the bulk response in magneto-optics [146, 147]. In the framework of Dirac QW,
the modeling of topological superlattice, which is just a periodic series of QWs as shown in Fig. 4.10,
is conceptually intuitive and natural. One can use the knowledge of double Dirac QW to estimate the
spectrum of topological superlattice. If a topological superlattice is periodic and composed of many
layers, Bloch’s theorem is applied and the spectrum acquires also a dispersion in the z-direction. The
problem is thus converted to a 1D tight-binding model formed by Dirac QWs.

Suppose the layer thickness of TI isLTI and that of normal insulator (NI) isLNI. Two topologically
di�erent bulk phases are assumed to have the same bulk gap. The smoothness of interface is set to be
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`� ξ with 2`� LTI, LNI. WhenLTI = LNI, the periodicity of the superlattice isL = LTI = LNI.
The coupling between VP states at two surfaces of a NI is thus the same as that between VP states at
two surfaces of a TI. Given n, one thus realizes a 1D chain in which each interface represents a site and
the hopping amplitude is tn = ∆En(L) where ∆En(L) is the expression (4.36). So, the splitting for
VP states can be estimated

∆En = 2tn cos(kzL). (4.39)

If LTI 6= LNI, the periodicity of the superlattice is L = LTI + LNI so that each unit-cell contains
two interfaces TI/NI. The coupling between VP states at two surfaces of a NI is di�erent from that
between VP states at two surfaces of a TI. Givenn, the hopping amplitude between two surfaces of a TI
is tn = ∆En(LTI) and that between two surfaces of a NI is t′n = ∆En(LNI). One thus realizes a 1D
chain which can be described by the SSH model! Most saliently, the ratio between the hopping terms tn
and t′n are experimentally tunable simply by changing the thickness of TI and NI layer. Consequently,
the splitting for VP states reads

∆En = ±
√
t2n + t′2n + 2tnt′n cos(kzL). (4.40)

The estimation for the n = 0 state is more subtle. On the one hand, the n = 0 state has no partner
at the nearest neighbor Dirac QW but at the second nearest neighbor Dirac QW. The expression (4.37)
is thus valid by replacing L by LTI + LNI. On the other hand, the dominant mechanism to open a
mass gap is still described by the �rst-order perturbation theory, i.e., Eq. (4.38). Consequently, the
oscillating part due to the tunneling process is negligible compared to the term given by the �rst-order
perturbation theory. Thus, the mass gap of the n = 0 state should be still almost dispersionless.

In summary, the idea shown by the Dirac QW is as follows. The emergence of VP states is a hid-
den quantum con�nement e�ect which is explicitly revealed by the Dirac QW. Squaring the Dirac
Hamiltonian yields two decoupled Schrödinger equations for an e�ective quantum well given by the
chirality-dependent potential Uλ(z). The motion parallel to the surface remains plane-wave-like by
translation symmetry so that the problem to solve becomes a textbook 1D Schrödinger problem in
wave mechanics. Once one has solved the secular equation derived from imposing boundary condi-
tions on the wavefunction, one can retrieve the spectrum of the original Dirac Hamiltonian using
(4.23). A single interface in the form of a topological heterojunction is physically equivalent to a sin-
gle Dirac QW. Most saliently, the framework of Dirac QW is practical to treat the tunneling e�ect
between two complementary sides of a �nite-size topological material and of topological superlattice.
The topological protection is encoded in the inherently asymmetric double Dirac QW.
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4.2.4 Supersymmetry in Dirac equation

One might be astonished by the fact there exists always a localized solution at zero energy in Eq. (4.19).
In the linearized model, i.e, a 1D quantum harmonic oscillator, the zero mode is magically stipulated by
a chirality-dependent shift in the con�ning potential so that the energy of the zero-point movement
is compensated. As �rst remarked by Volkov and Pankratov et al. in their papers [74, 75, 117], the
reason is given in terms of supersymmetric quantum mechanics. In Eq. (4.19), the con�ning potential
is a linear combination of ∆(z)2 and ∂z∆(z) is called the Witten equation [149] in the literature for
supersymmetric quantum mechanics.

To brie�y illustrate the idea of supersymmetry, I consider only the band extrema where k‖ = 0 in
Eq. (4.20). The Hamiltonian in the Weyl basis becomes:

Hs = −∆(z)τx + ~vkzτy. (4.41)

In the context of supersymmetric quantum mechanics [61],Hs plays role of the supercharge operator
which connects linearly the subspaces of fermions and bosons (here two subspaces of chirality), and
H̃ = H2

s is thus the supersymmetric Hamiltonian. Containing only o�-diagonal Pauli matrices, Hs

maps χ+ to χ− and vice versa when it acts on χ−. A functional analysis stipulates that only χλ gets
a zero-energy mode with a de�nite chirality λ while χ−λ does not whenever ∆(z) has opposite sign
at z = ±∞. The massive VP states are thus the excited states in the boson-fermion correspondence.
More mathematically, they are all the other solutions of the di�erential equation Eq. (4.20) that veri�es
the boundary condition of being vanishing at the in�nity.

There is also a quasi-topological invariant called Witten index [149]:

IW := dim kerHs|V− − dim kerHs|V+ (4.42)

where dim kerH|V is the dimension of the kernel of a linear operatorH acting on a subspaceV andVλ
are the two Hilbert subspaces of opposite chirality. Thus, IW must be an integer and invariant under
continuous changes of ∆(z). It dictates also the number of zero mode, zero or one, at the interface.
The reader has just seen another beautiful example how a high-energy formalism, i.e., supersymmetry,
emerges naturally in a condensed matter system such as topological materials.

Supersymmetric quantum mechanics is not only a beautiful mathematical formalism but also helps
to understand something practical in Dirac QW formulation of the VP states. Recall that a smoother
interface induces a wider but shallower Dirac QW which can nevertheless host more bound states. This
can be understood in the language of supersymmetric quantum mechanics. If a non-zero mode χn,−
exists in V−, one can �nd a non-zero mode of same energy in V+ by χn−1,+ = Hsχn,− because Hs
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Figure 4.11: (a) Spectrum of the tight-binding model of a Chern insulator on a square lattice with `/ξ = 4 and
L/ξ = 20. (b) Zoomed-in spectrum for the massive VP states n = 1 (left) and n = 2 (right).

commutes with H̃ . Alternatively, if the potentialU− can host a bound state n = 1, the potentialU+

must host a bound state n = 0 of same energy [see for example (4.26)]. Due to the tunneling e�ect, a
bound state in the potentialU+ must have a virtual energy below ∆2

0. A smoother interface with larger
value of ` reduces exactly the vertical shift between the potentialsUλ and thus make the minimum of
the potentialU+ sink below ∆2

0 [see Fig. 4.4 (b)] so that a localized solution becomes viable. However,
this is a necessary but not su�cient condition for the existence of bound states because the zero-point
energy is �nite. Yet, a smoother interface can host more bound states.

4.2.5 Leakage from bulk: lattice model

Until now, all the discussions are restricted to low-energy continuum models. Especially, the role
played by the bulk system in a topological heterojunction is illusive. In this part, I will show how
the VP states emerge in a lattice model.

Here, a Chern insulator on a square lattice [150] is modeled within the tight-binding approach. Since
the low-energy surface physics are governed by the same chirality-dependent Schrödinger equation as
Eq. (4.20), the discussions in this model can be extended to general consideration of topological het-
erojunction. The 2D system is cut along the y-direction so that ky remains a good quantum number.
Two edges are set to have the same smoothness `/ξ = 4 and the thickness of the system isL/ξ = 20.

The spectrum is shown in Fig. 4.11 (a). Two topological states from di�erent edges cross at zero
energy. Besides the topological states, only two massive VP states appear in the bulk gap. Their energy
is consistent with the results shown in Fig. 4.7. The continuum model is thus validated by the lattice
model. Especially, it shows that the speci�c form of ∆(z) is not important as long as one can linearize
it at the band inversion point.

In Fig. 4.11 (b), the splitting of the massive VP states n = 1 and n = 2 is evaluated. The numerical
simulations shows a splitting of 0.001∆0 forn = 1 and 0.004∆0 forn = 2. Compared to Fig. 4.8 (a),
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4 Topological heterojunction: emergence of Volkov-Pankratov states

the splitting of the massive VP states is underestimated in the continuum model. A likely explanation
for the discrepancy could be due to the higher order terms in k in the lattice model which are not taken
into account in the continuum model. Actually, the non-linear terms in k a�ects the value of the mass
gap of the topological states due to �nite-size e�ects [137, 140, 141, 142]. Since the energy splitting of
the topological state is too weak to be captured in the numerical precision limited by a lattice cut-o�,
the mass gap for n = 0 is not visible in the spectrum of the lattice model.

Nevertheless, the lattice model not only con�rms many conclusions from the continuum model but
also clari�es how VP states descend from the bulk. As shown in Fig. 4.11 (a), the n = 1, 2 VP states
in the gap connect adiabatically to bulk states by varying ky . They are actually the consequence of the
bulk states pervading to the surface. They are localized when the surface acquires a �nite-size. One can
continuously push the VP states into the bulk continuum by varying `/ξ. This is essentially di�erent
from the topological states that the previous action is impossible. Since the VP states are the leakage of
the bulk states to the surface, they are bulk states in nature so that the bulk-edge correspondence does
not apply for them. This is also the reason why they are not topologically protected. But, this does not
mean that they are not topological in a general sense. Their topological properties are embedded in, for
example, the π Berry phase given by its massive Dirac fermion’s spectrum and wavefunction leading to
a quantized surface Hall conductivity [67].

4.3 Summary

In this chapter, I have shown several di�erent perspectives on the origin of the VP states that arise
in smooth topological heterojunctions. Each perspective reveals an aspect on the nature of the VP
states. First, smoothness can be seen as a source of a pseudo-magnetic �eld that gives rise to bands
indexed by n similar to Landau levels in a real magnetic �eld. This encourages a study of magneto-
optics on the VP states as I will shown in the next chapter. In the formulation of the topological
heterojunction in terms of the Dirac QW that stems from squaring the original Dirac Hamiltonian,
one interprets the topological protection of the topological zero modes in two parallel interfaces as the
absence of a resonant hybridization due to the inherently asymmetric double Dirac QW. Meanwhile,
the VP states are shown to be not topological. The fact that the two components of opposite chiralities
are simultaneously non-zero enables the resonant hybridization. An estimation of the energy splitting
is derived using the analogy to the tunneling problem for a symmetric square double QW. Furthermore,
the Dirac equation encoded in the VP states is the one studied in supersymmetric quantum mechanics
so that the VP states can be understood as excited states in the boson-fermion supersymmetric space.
Finally, I corroborate the existence of the VP states by a lattice model from which the VP states descends
from the bulk spectrum as a leakage of spectral �ow from bulk to surface. Since this spectral �ow can be
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4.3 Summary

continuously deformed into the bulk continuum, the VP states are not topological as already shown in
the other continuum approaches. My results on the double Dirac QW have been published in Physical
Review B [137].
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5 Spectroscopic properties of
Volkov-Pankratov states

A scientist can be productive in various ways. One is having the ability to
plan and carry out experiments, but the other is having the ability to
formulate new ideas, which can be about what experiments can be carried
out . . . by making [the] proper calculations. Individual scientists who are
successful in their work are successful for different reasons.

Linus Pauling

In this chapter, I will present my studies on the spectroscopic properties of Volkov-Pankratov (VP)
states. Two reasons pushed me to conduct my research in this direction. On the one hand, the spec-
troscopic properties are fundamentally appealing, because they allow one to understand the nature of
VP states by comparing directly with those of the topological surface states. On the other hand, the
calculated physical quantities related to spectroscopic properties are experimentally relevant. Every re-
sult of theoretical calculations has in principle its corresponding experiment to observe it. Sometimes,
the spectroscopic study opens a route to new potential applications in optics and plasmonics.

Three theoretical tools are used in this chapter to study the spectroscopic properties of VP states.
One is to calculate the optical conductivity of the VP states of topological heterojunctions in 2D and
3D. Then, I give a succinct description on the Faraday and Kerr rotation through a thin �lm of 3D
topological insulator (TI) in the presence of VP states. Furthermore, I discuss surface plasmon modes
in Weyl semimetals (WSMs) stemming from VP states that are measurable by electron energy loss spec-
troscopy (EELS). This is done by calculating the dielectric function in the random phase approxima-
tions (RPA).

This chapter is thus organized as follows. First, I will show the optical conductivity of a single topo-
logical heterojunction modeled by the Hamiltonians (4.10) and (4.11) for 2D and 3D, respectively,
both in the absence and presence of a real magnetic �eld.1 Most saliently, the speci�c features in the
optical response from VP states provide a smoking gun for their identi�cation. Then, I will brie�y

1Similar calculations have also been performed for WSMs within our group [151].

103



5 Spectroscopic properties of Volkov-Pankratov states

mention possible Faraday and Kerr e�ects for a thin �lm of 3DTI subject to an out-of-plane magnetic
�eld. Finally, I will show how previously unknown plasmon modes arise on the surface of WSMs. The
particular band structure of VP states in WSMs yields additional plasmon modes other than the one
from the Fermi-arc (FA) states.

5.1 Optical conductivity: smoking gun for the existence of
Volkov-Pankratov states

Previous theoretical predictions of the universal presence of VP states on the smooth surface of topo-
logical material motivates an experimental hunting for these states. In the high mobility strained het-
erostructure HgTe/CdHgTe (3DTI), our collaborators at LPENS (Paris) [124] observed additional
conductivity peaks and compressibility bumps in the bulk gap besides the ones attributed to the topo-
logical massless states [see Fig. 5.1(a)]. However, the results from transport measurement are only a
partial proof for the existence of VP states. Strictly speaking, it only proves the existence of surface
states other than the topological one. Surface states can generally arise at the interface of semiconduc-
tor heterostructures [152, 153]. Due to the mismatch of the valence and conduction bands between
two semiconductors, the bulk states of the one with smaller gap induce surface states in the gap of the
other semiconductor with larger gap. Another possible related mechanism is due to surface charges in-
duced by the formation of defects on the surface [154]. Surface charges bend the bulk bands resulting
in a con�ning potential at the surface and thus surface subbands. This e�ect was observed already in Si
[155]. These could lead to false-alarms for the identi�cation of VP states since the in-gap subbands also
has a dispersion in the direction perpendicular to the surface so that not every spectroscopic method,
for example, angle-resolved photoemission spectroscopy (ARPES) cannot provide an unambiguous
proof [136, 156, 157] [see Fig. 5.1(b)].

Therefore, one must focus on unique features embedded in the wavefunction of VP states. An
immediate proposal would be the particle-hole symmetry dictated by the duality between Dirac and
Schrödinger equation, i.e., the supersymmetry. This is not the case for the surface states induced by
the previous mechanisms. If the non-linear terms in k are considered, the particle-hole symmetry has
a generalized version that VP states always emerge in pairs with opposite e�ective mass out of the bulk
valence and conduction bands. The observation of this feature requires a very smooth surface or a large
bulk gap so that none of the two VP states in pair is immersed in the bulk spectrum.2

The symmetry of the wavefunction of VP states provides an even stronger way to identify VP states.
The matrix element in the de�nition of optical conductivity encodes precisely the symmetry of wave-

2However, the simultaneous appearance of conduction and valence subbands is still possible by surface band bending mech-
anism when the bulk bandwidth is small [158].
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Figure 5.1: (a) Quantum capacitance and conductance data (blue-red data points in the heterostructure
HgTe/CdHgTe as a function of the surface electronic density. The latter is varied with the help of a
backgate. VP states manifest as additional signals that cannot be attributed to the topological mass-
less states. (b) ARPES data on the surface of Bi2Se3 several hours after cleavage reveal a 2D massive
electron gas in addition to the topological 2D Dirac cone. Reminiscent of VP states formed due to a
smoothening of the surface during the aging process, the data is also well �tted by the surface states
induced by surface charges. Two �gures adapted from the references [124, 136], respectively.

function. Since the smoothness is interpreted as a pseudo-magnetic �eld, some optical selection rules
similar to those for the Landau levels in a real magnetic �eld should exist for the VP states. Further-
more, the interplay between smoothness and real magnetic �eld gives more de�ning features in the
magneto-optical response of VP states that can further substantiate their presence. Therefore, the
magneto-optical spectroscopy is believed to o�er a clear-cut signature of VP states. This is indeed my
original motivation to study the magneto-optical response from VP states.

In this section, I present �rst the calculated optical conductivity for the 2D toy model (4.10) in
the presence and absence of a magnetic �eld. Only the real part of the diagonal terms in the optical
conductivity tensor is given. While the calculation of the optical conductivity of edge states in the 2D
model may be of limited experimental interest, it allows us to illustrate the basic e�ects. Then, the
same calculations are also done for the more realistic, yet more involved 3DTI model (4.11). The use of
the linearized models is justi�ed since only optical transition between the surface states are considered
and the bulk system is gapped. As I will strengthen the argument by calculations in the following, the
transition between surface and bulk states will not wash out the key signature of the transition between
surface states. Finally, I will brie�y discuss the e�ect of an electric �eld perpendicular to the surface.
The temperature is set to be zero (T = 0). For simplicity, I also suppose the chemical potential to
coincide with the charge neutral point (µ = 0).

105



5 Spectroscopic properties of Volkov-Pankratov states

5.1.1 Two-dimensional toy model

Consider a very smooth surface ` � ξ for the topological heterojunction modeled by the linearized
2D toy model (4.10) whose form after transformation I recall below:

HT = THT † = ~v

[
ky kx + i x`ξ

kx − i x`ξ −ky

]
(5.1)

where the same notation as in Chapter 4 is adopted andky is a good quantum number. In the following
calculations, I �x the characteristic length of the interface smoothness to be ` = 5ξ for illustrations.

The optical conductivity in the clean limit for this Hamiltonian is thus

σij(ω) = i~e2
∑
m,n∈N
λ,λ′

∫
dky
2π

fD(Eλn)− fD(Eλ
′

m)

Eλ′m − Eλn − ~ω + i0+

〈ψλ′m |v̂i|ψλn〉〈ψλ
′
m |v̂j |ψλn〉∗

Eλ′m − Eλn
(5.2)

where λ = ± indicates if a band belongs to valence or conduction bands;3 the index i, j = x, y

represents the linear polarization of the photon;4 the two positive integers m,n are the band index
and |ψλn〉 is the corresponding Bloch wavefunction;. Taking the real part of the optical conductivity,
the diagonal term reads

<[σii(ω 6= 0)] =
πe2

ω

∑
m,n∈N
λ,λ′

∫
dky
2π

[
fD(Eλn)− fD(Eλ

′
m)
]
|〈ψλ′m |v̂i|ψλn〉|2

× δ
[
~ω − (Eλ

′
m − Eλn)

]
(5.3)

where δ is the Dirac distribution. As explained in Chapter 3, the matrix elements encode the selection
rules and

∑
δ
[
~ω − (Eλ

′
m − Eλn)

]
is the joint density of states (JDOS), which determines the shape

of the optical conductivity σ by the thumb rule

σ ∼ JDOS
ω

. (5.4)

Here, the HamiltonianHT (5.1) is in practice derived byk ·p perturbation theory [26]. One should
replace the ket |ψλn〉 by its cell-periodic part |uλn〉. In the basis of |uλn〉 and the velocity operator (see
Chapter 3) thus reads

v̂k =
1

~
∇kHk (5.5)

3One should not confound it with the chirality λ in Chapter 4.
4One should not confound it with the complex i at the beginning of the formula.
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where Hk is the Bloch k · pHamiltonian in the basis |uλn〉. The analytical expressions of the optical
conductivity are given in App. E.

In the following plots, I suppose a very smooth interface ` = 5ξ and I set the magnetic �eld (if
present) to be `B = 1.5`S which corresponds toB = 20.8 T if 2∆0 = 0.3 eV and v = 2.5 eV · Å.
The parameters are of typical magnitude for Bi2Se3[135, 136]. I choose a rather strong magnetic �eld
for illustration, to render the shift of the peaks visible in the plots.

In the absence of a magnetic field

When the magnetic �eld is absent, the spectrum of (5.1) reads

Eλn = λ~v

√
k2
y +

2n

`2S
if n ≥ 1

E0 = ~vky if n = 0, (5.6)

and the velocity operators are

v̂x = vσx and v̂y = vσz. (5.7)

Since σx is o�-diagonal and σz diagonal, the selection rules are di�erent for the two polarizations:

Polarization along x: n→ n± 1

Polarization along y: n→ n,

so that the absorption spectra depend on the polarization of the incident photon. The o�-diagonal
elements of the conductivity must vanish, σxy = σyx = 0, for the selection rules are incompatible
for the two polarizations. Being a 2D Hamiltonian in the 3D space, photons that can interact with the
system propagate in the out-of-plane direction to probe the surface states. The above selection rules
match with those in the Voigt geometry (see in Chapter 3) in the presence of a magnetic �eld in the
y-direction, justifying the analogy of smoothness with magnetic �eld.

As shown in Fig. 5.2 by the blue lines, the real part of optical conductivity consists of a series of
peaks with decaying tail to higher frequency. The decreasing rate is proportional to ω−

3
2 as expected

for the optical conductivity of a 1D massive Dirac band (see in Chapter 3) since the DOS of a 1D
parabolic band scales as ω−

1
2 and the de�nition of optical conductivity contributes the other ω−1.

The onsets of the peaks indicates the optical gap of di�erent transitions. For<[σxx] [see blue lines in
Fig. 5.2(a)], except the �rst step-like peak, all the peaks represent singularities in the clean limit because
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Figure 5.2: (a)<[σxx] and (b)<[σyy] for the 2D model, in the absence (blue) and presence (orange) of a mag-
netic �eld, measured in units ofσ0 = e2/h, while the excitation energy is represented in units of ∆0.
The sharp peaks are singularities and their corresponding optical transitions are labeled above. The
dashed perpendicular line denotes the onset of absorption by bulk states, for ω ≥ 2∆0. The peaks
in the purple shaded area are immersed in the bulk spectrum and thus cannot be seen experimentally.

the interband transition between VP states atky = 0 has a diverging JDOS. They have di�erent heights
because of �nite mesh points in the plot. The �rst regular peak originates from the transition between
the massless n = 0 topological state and the n = 1 VP state whose JDOS is not diverging thanks to
the chiral linear dispersion of the topological state. This is also the reason why its decay rate of the tail
is slower. Similar to <[σxx], <[σyy] [see blue lines in Fig. 5.2(b)] has the same shape of peaks placed
at di�erent frequencies because of the di�erent selection rules. Since optical transitions involving the
massless state are forbidden by the selection rule n→ n, all the peaks are singular for the 1D diverging
JDOS of the VP bands.

While the diverging peaks at high frequency are immersed in the bulk continuum represented by
the purple shaded area, the peaks in the gap are supposed to be observable. Especially, thanks to the
polarization-dependent selection rules, one can continuously measure the optical conductivity, for
example from <[σxx] to <[σyy], by rotating the linear polarization of photon. The selection rules
are a manifestation of the pseudo-magnetic �eld interpretation of the origin of VP states, unlike any
other defect-induced trivial in-gap surface states. Therefore, this can serve as a smoking gun for the
unequivocal identi�cation of VP states.

In the presence of a magnetic field parallel to the interface

The application of a real magnetic �eld o�ers richer features of VP states helping to understand further
the similarities and di�erences between smoothness and magnetic �eld. Since the Hamiltonian (5.1)
describes a 2D system, only an out-of-plane magnetic �eld is relevant. By the Peierls substitution, one
chooses the Landau gauge A = (0, Bx, 0) with (B > 0) to preserve the translational invariance
along the y-axis. After replacing ky by ky + x/`2B , where `B =

√
~/eB is the magnetic length, one
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clearly notices here the similarity between the smoothness via the linear variation of the gap and the
magnetic �eld: both couple linearly to the space coordinate of the x-direction, but through di�erent
Pauli matrices. The Hamiltonian (5.1) then becomes

H = ~v
x

`2T
(sin θσz − cos θσy) + ~v(kxσx + kyσz) (5.8)

where a characteristic length `T and an angle θ are de�ned by

1

`4T
=

1

`4S
+

1

`4B
⇐⇒ B2

tot = B2
pseudo +B2

real (5.9a)

cos θ =
`2T
`2S

(5.9b)

sin θ =
`2T
`2B
. (5.9c)

With this form, the recipe given in Chapter 2 shows that the unitary transformationT = exp(iθσx/2)

simpli�es further the Hamiltonian to:

HT = ~v

 ky cos θ kx + i
(
x
`2T

+ ky sin θ
)

kx − i
(
x
`2T

+ ky sin θ
)

−ky cos θ

. (5.10)

such that one can diagonalize the Hamiltonian again with the help of a pair of ladder operators,

â† =
`T√

2

[
kx + i

(
x

`2T
+ ky sin θ

)]
(5.11a)

â =
`T√

2

[
kx − i

(
x

`2T
+ ky sin θ

)]
(5.11b)

that satisfy [â, â†] = 1. The spectrum of this Hamiltonian thus reads

Eλn = λ~v

√
k2
y cos2 θ +

2n

`2T
if n ≥ 1

E0 = ~vky cos θ if n = 0 (5.12)

whereλ = ±. Comparing this result to that in the absence of a magnetic �eld (5.6), the velocity of the
massless n = 0 state is contracted by a factor of cos θ and the spacing between the bands is ampli�ed
because the characteristic length `T , which assembles the in�uence from smoothness and magnetic
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�eld, is strictly smaller than `S . The de�nition of an angle θ suggests that the smoothness and the
magnetic �eld are two perpendicular components of a total magnetic �eld in the direction de�ned by
θ with respect to the plane. This is compatible with what is suggested before. The total magnetic �eld
is geometrically composed of a pseudo-magnetic �eld in the y-direction and a real magnetic �eld in the
z-direction.

However, the statement is not true in all the aspects because the selection rules

Polarization along x: n→ n± 1

Polarization along y: n→ n and n→ n± 1

disprove it. A magnetic �eld along the direction neither parallel nor perpendicular to the polarization
of photon should not only allow the transition n → n ± 1. The result can be understood in the
following manner. The velocity operators associated with the Hamiltonian (5.10) are,

v̂x = vσx and v̂y = v cos θσz − v sin θσy, (5.13)

and the unitary transformation T thus mixes the σy- and σz-components of the Hamiltonian so that
v̂y acquires an o�-diagonal part while v̂x is untouched. The selection rules for the polarization in the
x-direction are therefore una�ected by the magnetic �eld while those in the y-direction acquires an
additional dipolar componentn→ n±1. For the same reason, the conductivity tensor is a priori not
diagonal.

The real part of the optical conductivity in the presence of a magnetic �eld is represented by orange
lines in Fig. 5.2. Comparing with those in the absence of a magnetic �eld, the peaks in the presence
of a magnetic �eld have the same shape but the spacing between the two nearest peaks is larger. This
re�ects the enhanced spacing at ky = 0 of the surface bands [see Eq. (5.12)]. Furthermore, one notices
that the optical conductivity is larger when the magnetic �eld is switched on. This is due to the band
dispersion that is contracted by cos θ, in other words, the JDOS is enhanced by the same amount. As
a consequence of the supplementary n → n ± 1 selection rules due to the unitary transformation,
additional peaks appear in<[σyy] at the same energies of the peaks in<[σxx]. Theses peaks are all the
more intense for a stronger magnetic �eld. Indeed, one can retrieve the selection rules n→ n± 1 for
both polarization, x and y, matched with those in the Faraday geometry by takingB →∞ for which
the quantization by smoothness is totally washed out.

In spite of the simplicity of the 2D toy model, it is already informative about the key signatures
of the optical responses from VP states, i.e., the speci�c selection rules similar to those for Landau
levels in a real magnetic �eld. Applying a real magnetic �eld does not change radically the shape of
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the signals but mixes the selection rules and shifts the peaks. This is due to the alliance between the
smoothness and the magnetic �eld, which is encoded in `T . Therefore, the intricate interplay between
interface smoothness and magnetic �eld allows in principle for a detailed experimental identi�cation
and investigation of VP states. As shown later, the results of the 2D model can be easily extended to
the realistic 3DTI model.

5.1.2 Three-dimensional topological insulator

Proceeding exactly the same way as for 2D toy model, the matrix form of the Hamiltonian (4.11) after
a unitary transformation T = exp(iπτy/4) reads

H = ~v


0 ky + ikx

√
2

`S
â 0

ky − ikx 0 0
√

2
`S
â

√
2

`S
â† 0 0 −ky − ikx

0
√

2
`S
â† −ky + ikx 0

 (5.14)

where the wavevector components kx,y remain good quantum numbers and the ladder operators â
and â† are de�ned as

â† = − `S√
2

(
z

`2S
− ikz) (5.15a)

â = − `S√
2

(
z

`2S
+ ikz) (5.15b)

with
[
â, â†

]
= 1.

The optical conductivity in the clean limit for this Hamiltonian is

σij(ω) = i~e2
∑
m,n∈N
λ,λ′

∫∫
dkxdky

4π2

fD(Eλn)− fD(Eλ
′

m)

Eλ′m − Eλn − ~ω + i0+

〈ψλ′m |v̂i|ψλn〉〈ψλ
′
m |v̂j |ψλn〉∗

Eλ′m − Eλn
(5.16)

where the index for the polarization of photon now runs over the three components i, j = x, y, z,
and the other notations have the same meaning as for the 2D toy model. Taking the real part of the
diagonal term of the conductivity tensor, one has

<[σii(ω 6= 0)] =
πe2

ω

∑
m,n∈N
λ,λ′

∫
dkxdky

4π2

[
fD(Eλn)− fD(Eλ

′
m)
]
|〈ψλ′m |v̂i|ψλn〉|2

× δ
[
~ω − (Eλ

′
m − Eλn)

]
. (5.17)
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For the reasons explained previously for 2D toy model, one should replace the ket |ψλn〉 by its periodic
part |uλn〉 and the velocity operators are just k-derivatives of the Bloch Hamiltonian. The analytic
results of the optical conductivity are given in the supplementary material of our work [159].

As for the 2D toy model, the following �gures are plotted with a very smooth interface ` = 5ξ.

In the absence of a magnetic field

The spectrum of (5.1) is obtained by diagonalizing it in the harmonic oscillator wavefunctions:

Eλn = λ~v

√
k2
x + k2

y +
2n

`2S
if n ≥ 1

Eλ0 = λ~v
√
k2
x + k2

y if n = 0 (5.18)

where the n = 0 state represents precisely the famed single Dirac cone on the surface of a 3DTI and
the n ≥ 1 states are the massive VP states which are twice spin-degenerate. The velocity operators are

v̂z = vτy, v̂x = −vτzσy and v̂y = vτzσx. (5.19)

Since τy is o�-diagonal and τz diagonal, the selection rules for the polarization in the z-direction are
di�erent from those for the polarization in the x, y-directions as shown below

Polarization along z: n→ n± 1

Polarization along x, y: n→ n.

The selection rules in the absence of a magnetic �eld in the 3DTI model are similar to the 2D model
wheren→ n±1 for the polarization perpendicular to the interface andn→ n for that parallel to the
interface. The selection rules for the polarization in thex- and y-directions must be identical due to the
rotational symmetry of the Hamiltonian around the z-axis. Unlike the 2D toy model, the polarization-
dependent selection rules cannot �t in any con�guration of a real magnetic �eld, neither Faraday nor
Voigt, since the two polarizations have the n→ n rule. It again shows the intrinsic di�erence between
smoothness and magnetic �eld.

Fig. 5.3 shows the optical conductivity in the absence of a magnetic �eld for di�erent polarizations.
The singularities in the 2D toy model become �nite step-like peaks in the 3DTI model. This is due to
the change in the dimensionality of the surface bands. Their 2D character now yields an essentially �at
JDOS and thus steps in the conductivity that decays as ω−1. In<[σzz] [see Fig. 5.3(c)], the response
from the 0 → 1 and −1 → 0 transition has di�erent forms from others due to the DOS of the
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n = 0 band scaling asω. The behavior of the n = 0 DOS has an even more spectacular manifestation
in <[σxx,yy] where the 0 → 0 transition is allowed [see Fig. 5.3(a,b)]. The additional ω−1 factor
in the Kubo formula thus yields a constant optical conductivity, as it is known for graphene, where
the frequency-independent absorption is given in terms of the �ne-structure constant α ' 1/137

of quantum electrodynamics [111, 160]. In fact, this is the signature of the optical transition in the 2D
Dirac cone. This constant optical conductivity can be expressed only by the intrinsic physical constant:

σc =
π

8
σ0 (5.20)

for a single cone, with σ0 = e2/h.

In the presence of a magnetic field parallel to the interface

Suppose now that a magnetic �eld is applied parallel to the interface, for example, in the x-direction.
For illustration purposes, I have chosen a �eld strength so that `B = 1.5`S . Choosing the gauge
A = (0,−Bz, 0), the Hamiltonian (5.14) after the Peierls substitution becomes:

H = −~v
(
z

`2S
τx +

z

`2B
τzσx

)
+ ~vkzτy + ~vτz(kyσx − kxσy). (5.21)

After a unitary transformation T = exp(−iθτyσx/2) found by the recipe given in Chapter 2, the
Hamiltonian reads:

HBx = ~v


0 ky cos θ + ikx

√
2

`T
â 0

ky cos θ − ikx 0 0
√

2
`T
â

√
2

`T
â† 0 0 −ky cos θ − ikx

0
√

2
`T
â† −ky cos θ + ikx 0

 (5.22)

where the angle θ is the same as the one introduced in Eq. (5.9) and the ladder operators are de�ned as

â† =
`T√

2

(
ky sin θ − z

`2T
+ ikz

)
(5.23a)

â =
`T√

2

(
ky sin θ − z

`2T
− ikz

)
(5.23b)
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Figure 5.3: (a) <[σxx], (b) <[σyy] and (c) <[σzz] for the 3DTI model, in the absence (blue) and presence (or-
ange) of a parallel magnetic �eld given `B = 1.5`S , measured by unity of σ0 = e2/h and excitation
energy by the half bulk gap. The corresponding optical transitions of each peak are labeled above.
The blue and orange peaks in the light-purple shaded area, where the bulk responses are plotted as
purple dot-dashed line, are immersed in the bulk responses and thus cannot be seen experimentally.
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which satisfy [â, â†] = 1. The spectrum of this Hamiltonian is

Eλn = λ~v

√
k2
x + k2

y cos2 θ +
2n

`2T
if n ≥ 1

Eλ0 = λ~v
√
k2
x + k2

y cos2 θ if n = 0 (5.24)

where λ = ±. The impact of a parallel magnetic �eld in the 3D model is similar to that in the 2D
model. The velocity of the massless topological state is contracted by a factor of cos θ along ky while
the dispersion in the kx-direction (that is the direction of the magnetic �eld) is una�ected. The equi-
energy pro�le of the Dirac cones becomes oval and the spacing between the Landau bands increases
since the characteristic length `T is shorter than `S as discussed in the 2D toy model.

The e�ect of a parallel magnetic �eld in the 3D model on the selection rules is also similar to the 2D
model as shown below:

Polarization along z: n→ n± 1

Polarization along x: n→ n

Polarization along y: n→ n and n→ n± 1.

It mixes the rules n → n ± 1 and n → n for the photon polarized along the y-axis, while those in
the x, z-directions remain the same as in the absence of a magnetic �eld. This also can be understood
in terms of the unitary transformation T = exp(−iθτyσx/2) that adds a new Pauli matrix in v̂y .
Indeed, the velocity operators now read

v̂z = vτy, v̂x = −vτzσy and v̂y = v cos θτzσx + v sin θτx. (5.25)

As shown in Fig. 5.3 by orange lines, the enhanced level spacing yields a shift of the the optical
conductivity to higher energy. The plateau in <[σxx] [see Fig. 5.3(a)] before the �rst peak is also
enhanced in a magnetic �eld with

σcB =
σc

cos θ
=
`2S
`2T
σc. (5.26)

Furthermore, <[σyy] acquires additional peaks as a consequence of the unitary transformation that
admixes a σzz component to<[σyy] [see Fig. 5.3(b)]. As in the 2D toy model, a parallel magnetic �eld
does not change radically the shape of the optical conductivity but mixes the selection rules and shifts
the peaks.
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In the presence of a magnetic field perpendicular to the interface

Since the system is 3D, it is physically relevant to apply a magnetic �eld perpendicular to the interface,
i.e., in the z-direction. For example, I set here `B = 2.15`S .5 The situation changes drastically. Taking
a gauge A = (0, Bx, 0) to apply a magnetic �eld B = Bez (B > 0), the Hamiltonian (5.14)
becomes

HBz =
√

2~v


0 b̂

`B
â
`S

0
b̂†

`B
0 0 â

`S
â†

`S
0 0 − b̂

`B

0 â†

`S
− b̂†

`B
0

 (5.27)

where â and â† are de�ned in (5.14) and the applied magnetic �eld yields now a second pair of ladder
operators:

b̂† =
`B√

2

(
ky − ikx +

x

`2B

)
(5.28a)

b̂ =
`B√

2
(ky + ikx +

x

`2B
), (5.28b)

which satisfy [b̂, b̂†] = 1. Note that the operators â and b̂ act on the two orthogonal directions so they
commute with each other. In other words, they yield two independent quantum numbers n and m.
The velocity operators are still given by Eq. (5.19), and the spectrum of this Hamiltonian reads

Eλn,m = λ~vF

√
2n

`2S
+

2m

`2B
(5.29)

where λ = ± and n,m ∈ N. One notices that the spectrum is now completely quantized by the
two e�ects, smoothness and perpendicular magnetic �eld, and labeled by the two decoupled quantum
numbers, n and m, respectively. As explained in Chapter 4, smoothness as a quantum con�nement
e�ect quantizes the motion only in the z-direction while magnetic �eld quantizes the motion in the
x, y-directions. Comparing (5.29) with (5.24), one can already anticipate that the optical conductivity
for a dispersionless energy spectrum consists of a series of Dirac peaks with no tail. To calculate the
optical conductivity, one should replace the integral of kx,y in Eq. (5.17) by the density of magnetic
�ux quanta nB = eB/h.

5This choice for the magnitude of the magnetic �eld allows the readers to clearly associate the optical response with their
corresponding interband transition.
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It is instructive to juxtapose the selection rules for the two quantum numbers n and m according
to the polarization of photon as shown below:

Polarization along z: m→ m, n→ n± 1

Polarization along x, y: n→ n, m→ m± 1.

One �nds the usual selection rules for transitions between the Landau levels under magnetic �eld
for the quantum number m, while the quantum number n describing the smoothness as a pseudo-
magnetic �eld respects a di�erent but complementary set of selection rules. This underlines that smooth-
ness and magnetic �eld are two distinct quantization �elds. Since the selection rules are incompatible
for the two sets of polarization, the tensor σij is diagonal.

The results of our analytical calculations are shown in Fig. 5.4. One does not have to depict<[σyy],
which is identical to <[σxx] because the perpendicular magnetic �eld does not break the isotropy in
the x− y plane. Since the spectrum (5.29) is now composed of discrete energy levels, the optical con-
ductivity consists of a set of Dirac peaks that are represented by Lorentzian functions of �nite width
for visibility. The width of the Lorentzian function encodes phenomenologically the peak broadening
by disorders. For a magnetic �eld such that `B � `S , one should identify di�erent groups among all
the Dirac peaks. To illustrate this phenomenon, I plot separately di�erent groups of peaks in di�er-
ent colors so that the whole optical conductivity should be the sum of all peaks. For <[σzz] [see Fig.
5.4(b)], the blue peaks correspond to the transition between the n = 0 and n = 1 levels and the or-
ange peaks to the transition between n = 1 and n = 2. Each of these transitions which are associated
with smoothness is now split into additionalm→ m transitions that are separated by a characteristic
energy of ~v/`B due to Landau level quantization by the physical magnetic �eld. The two groups of
peaks are interleaved with each other like two hair combs. Likewise, for <[σzz] [see Fig. 5.4(a)], the
blue peaks correspond to the transition between the n = 0 levels, the orange peaks to the transition
between the n = 1 levels and the green ones to the transition between the n = 2 levels. More and
more peaks will overlap if n is increased.

In this part, I have discussed the e�ect of a parallel and perpendicular magnetic �eld to the in-
terface. If magnetic �eld is along an arbitrary direction, it can always be decomposed to a compo-
nent perpendicular to the interface and the other component parallel to the interface. Suppose that
the magnetic �eld forms an angle φ with respect to the interface plane. By using the gauge A =

(0, Bx sinφ − Bz cosφ, 0), the problem is divided into the two problems whose solution I have
already provided.

Besides the in-gap features shared also by the 2D toy model, the optical conductivity in the 3DTI
model depend crucially on the orientation of the magnetic �eld. A magnetic �eld parallel to the inter-
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5 Spectroscopic properties of Volkov-Pankratov states

Figure 5.4: Di�erent groups of signal of (a) <[σxx] and (b) <[σzz] for 3D model in the presence of a perpen-
dicular magnetic �eld given `B = 2.15`S , measured by unity of σ0 = e2

h and excitation energy by
half of the bulk gap ∆0. I make Dirac distributions visible by replacing them by Lorentzian func-
tions with width 0.001 which can be seen as broadening e�ects by �nite temperature or disorders.
Di�erent groups of peaks are colored and their corresponding optical transitions are labeled. The
bulk signals are plotted as purple dot-dashed line. The surface signal which are immersed in the bulk
spectrum cannot be seen experimentally.

face simply changes the position of the peaks and slightly modi�es the optical selection rules, whereas
a magnetic �eld perpendicular to the interface fully quantizes the surface bands and thus yields promi-
nent peaks. The orientation of magnetic �eld is therefore an excellent probe of both massless and mas-
sive surface states. Therefore, the other perspicuous way to reveal the VP states by magneto-optical
spectroscopy is to monitor the spectra of absorption while rotating the magnetic �eld from parallel
to perpendicular direction. The shape of the optical conductivity will evolve continuously from a
step-like function of photon energy into a series of Lorentzian peaks during this rotation. This trans-
formation of the shape of the optical conductivity by rotating the magnetic �eld is a smoking gun to
distinguish the VP states from other in-gap surface states.

5.1.3 Bulk-surface transitions

The surface-to-surface transitions are not the only contribution to the optical response below the gap.
Optical transitions are also possible between delocalized bulk states and localized surface states. These
transitions also yield the sub-gap signal in the optical conductivity. Thus, it is necessary to consider
the relative magnitude of the bulk-surface transitions compared to the surface-surface transitions and
their modi�cation to the shape of the optical conductivity. Here, I numerically calculate the optical
conductivity of the bulk-surface transitions for a topological heterojunction modeled by (5.14) in the
absence of a magnetic �eld. The conclusions are general for other systems hosting VP states.

To treat this problem, I model the bulk states as plane waves [161] considering an interface in the z-
direction at z = 0 between two very large systems of sizeL� ` so that one can still model it by a single
topological heterojunction. Although the bulk spectrum of these two systems is exactly the same, their
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eigenstates which encode their topological properties are certainly di�erent. So, one has to separate the
space into two parts, z > 0 and z < 0 to calculate the overlap between the wave-functions. The Kubo
formula reads:

σij(ω) = i~e2L
∑
n∈N

(n,λ,λ′)

∫∫∫
dkxdkydkz

8π3

fD(Eλn)− fD(EB,λ′)

EB,λ′ − Eλn − ~ω + i0+

〈ψλ′B |v̂i|ψλn〉〈ψλ
′

B |v̂j |ψλn〉∗

EB,λ′ − Eλn

(5.30)

where the superscript B for energy means the energy of the bulk. Note that the optical conductiv-
ity is still for two dimensions even though one considers here a 3D system. Since the bulk states are
inherently 3D and the surface states are essentially 2D, one should limit the de�nition of the optical
conductivity in 2D in order to have compatibility in the thermodynamic limit. Therefore, L in the
prefactor is crucial because the matrix elements have another factor of 1/L from the normalization of
the bulk states. As a result, the �nal expression of the optical conductivity for the bulk-surface transi-
tions is in the unit of e2/h and independent of the size of the bulk. This also allows one to compare
its magnitude with the magnitude of the surface-surface transitions.

Suppose as before that the chemical potential is at the charge neutral point, the temperature is zero
and ` = 5ξ. As shown in Fig. 5.5, the contribution from bulk-surface transitions starts to be visible at
the half band gap (ω ≈ ∆0) and it is a continuous function of photon energy with three kink spots.
Each of the kink spots is the onset of one kind of transitions. For example, the �rst one is due to the
transition between the bulk states and the chiral states and the second one stems from the transition
between the bulk states and the n = 1 massive VP states. Only three kinks exist because only one
massless state and two massive VP states are present in the band gap. Fortunately, even though the
magnitude of the bulk-surface transition is not negligible as compared to that of the surface-surface
transition especially for energy near the gap, the total optical conductivity still has step-like feature
thanks to the continuity of the bulk-surface contribution as a function of photon energy.

In the optical conductivity from the transition between two states with dispersion of di�erent di-
mensions, the singularities from lower-dimensional states are integrated out due to higher dimensional
state. This is due to the fact that the JDOS, which determines the functional shape of the optical con-
ductivity, has a higher-dimensional behavior. For example, when one considers a transition from a 2D
surface state to a 3D bulk one, the JDOS is

∑
δ[~ω−E3D(k3D)+E2D(k2D)] so that the JDOS is es-

sentially 3D. Comparing the contribution of bulk-surface transitions and that of surface-surface ones
in Fig. 5.5, the step-like feature from 2D surface states are smeared out by integrating kz , a parameter
for 3D bulk states [see Eq. (5.30)]. Thus, the bulk-surface contribution is a continued function of
energy but with kinks with no jumps (see orange lines in Fig. 5.5).
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5 Spectroscopic properties of Volkov-Pankratov states

Figure 5.5: Di�erent contributions in (a) <[σxx] and (b) <[σzz] for 3D model for ` = 5ξ: surface-surface
(blue), bulk-surface (orange) and total contribution (green), measured by unity of σ0 = e2

h and
excitation energy by the half bulk gap. The bulk signals are plotted as purple dot-dashed line. The
signal which are immersed in the bulk spectrum cannot be seen experimentally.

Similar arguments should also apply to the case in the presence of a perpendicular magnetic �eld
where the surface states are 0D, i.e., dispersionless, and the bulk states are 1D. The total optical con-
ductivity should have additional one-dimensional band contributions with onsets at energies corre-
sponding to the bulk-surface transitions. However, the hair-comb-like shape should still be visible and
thus remains a valid signature for the identi�cation of VP states. More interestingly, in the presence of
a parallel magnetic �eld, the surface states are 2D whereas the bulks states are 1D. As a result, the con-
tribution from the bulk-surface transition is a series of steps. Therefore, additional steps will appear in
the total conductivity. This is indeed another spectroscopic signature of the VP states.

To conclude, the features of the VP states in magneto-optical spectroscopy due to the surface-surface
transition are still palpable even the bulk-surface transitions are considered.

5.1.4 Electric field perpendicular to the interface: relativistic
renormalization

I brie�y discuss in this part the case of an electric �eld perpendicular to the interface. In a topological
heterojunction modeled by 3DTI, the Hamiltonian including an electric �eld E in the z-direction
reads

H = eEzI + ~vkzτy + ~vτz(kyσx − kxσy)−∆0
z

`
τx (5.31)

where I is the identity matrix. Here, I de�ne not only `S =
√
`ξ characterizing the smoothness but

also a length characterizing the electric �eld `E =
√
~v/eE . The Hamiltonian can be rewritten as

H = −~v
(
z

`2S
τx −

z

`2E
I
)

+ ~vkzτy + ~vτz(kyσx − kxσy). (5.32)
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This is the form suitable for a hyperbolic transformation which can merge I into τx if the electric �eld
is weak (see Chapter 2). The critical electric �eld is de�ned by `S = `E . One �nds again the electric
and magnetic regimes as for NbAs2 in Chapter 3 and as for graphene in a crossed electric and magnetic
�elds in Chapter 2. If the electric �eld is too strong, the VP states no longer exist and the spectrum
becomes a continuum due to the electric breakdown. For a subcritical electric �eld, the mismatch of
the centers around which the wavefunctions are localized yields the proliferation of peaks exactly as for
NbAs2 in Chapter 3. The presence of a magnetic �eld perpendicular to the interface will not change
the argument since the corresponding ladder operators commute with all the z-dependent terms. If
the applied magnetic �eld is parallel to the interface, one just needs to use the same argument after
replacing `S by `T , the length scale encoding both smoothness and magnetic �eld.

Before going to the next part, I want to mention that the study of the optical conductivity has also
been done for WSMs [151]. As a metal, the chemical potential turns out to be another tunable param-
eter that gives even richer feature to characterize the VP states in WSMs. The e�ect of an electric �eld
is also discussed for WSMs in [128].

5.2 Faraday and Kerr rotation

In this section, I brie�y discuss other magneto-optical e�ects, namely Faraday and Kerr rotations, due
to the presence of VP states. Using the results already known in the literature on 3DTI [162, 163, 164,

165], I would like to simply point out another possible way to identify VP states in magneto-optical
spectroscopy.

When time-reversal symmetry is broken by an out-of-plane magnetic �eld, a conventional 2D elec-
tron gas yields quantized magnetic Faraday and Kerr e�ects due to the Landau quantization [166].

3DTI �lms have also been shown to exhibit interesting magneto-optical Faraday and Kerr e�ect [162,

163]. Thanks to surface Hall conductivity arising from surface Dirac cone, the magnetic Faraday rota-
tion angle is quantized as multiples of the �ne-structure constant α = 1/137 and the magnetic Kerr
rotation angle is surprisingly large and close to π/2 for normal incidence. These e�ects are observable
in experiments if:

• The thickness of 3DTI �lm is smaller than the wavelength so that the electric components in an
electromagnetic wave are nearly constant through the whole sample;

• The system is in the quantum Hall regime and thus the longitudinal conductivity is vanishing
if the chemical potential is in the gap;

• The frequency of incident wave is smaller than any gap including Zeeman gap and the cyclotron
gap ~ωc so that no interband transitions are allowed.
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Alternatively, the wavelength of the incident wave is the largest one of all the length scales of the system.
It turns out that the wavelength is in the far infrared regime for typical parameters in practice [162].

Here, it is also important to neglect any residual bulk conductivity and the coupling between two
surfaces. In other words, the 3DTI �lm is just a stacking of two surface Dirac cones quantized by an
out-of-plane magnetic �eld.

When the above conditions are ful�lled, the Faraday and Kerr angles read

θF = tan−1[(νT + νB)α] ≈ (νT + νB)α (5.33)

θK = − tan−1

[
1

(νT + νB)α

]
≈ −π

2
(5.34)

where νT,B are the �lling factor of the top and bottom surface and α = 1/137 is the �ne structure
constant. The details of the derivation can be found in [164]. Note that νT,B can be di�erent if two sur-
faces di�erently doped or gated. Recent experiments have demonstrated the possibility of controlling
separately the chemical potential of two surfaces of 3DTIs [167].

One can perfectly extend the arguments above to 3DTI thin �lms with smooth surfaces (` > ξ)
when VP states are present in the bulk gap. The smoothness ` should be much smaller than the thick-
ness of the sample so that the coupling between the two surfaces of the �lm can be neglected.

As shown by Eq. (5.29), Landau levels are indexed by two quantum numbers n and m associated
with the smoothness and the magnetic �eld, respectively. So, the �lling factor ν counts at the same
time n and m. An interesting situation arises when `B � `S . Tuning continuously the chemical
potential from the charge neutral point to positive values, one would �nd increments of the Faraday
angle θF given only by n when the chemical potential is still smaller than ~v/`B . This is yet another
possible way to corroborate the existence of VP states.

Note that time-reversal symmetry can be also broken by an exchange �eld, i.e., a Zeeman gap. The
single Dirac cone would open a gap and the spin degeneracy of VP states is lifted. Since all the states
are now non-degenerate 2D massive Dirac fermions which are known to have 1/2 Chern number [67],

Faraday and Kerr rotations should yield interesting behavior varying the surface chemical potential
[162, 168]. From this perspective, the topological properties of VP states are encoded in the spinor
structure of wavefunctions as for 2D massive Dirac fermion.

Although an elaborate discussion on the Faraday and Kerr rotations of topological heterojunction
is out of the scope of this part, I just want to point out that this could be a promising direction for
future research.
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5.3 Surface plasmons ofWeyl semimetals

Until now, I have only discussed the single-particle physics of VP states. In this section, I will discuss
how electron-electron interactions enrich the spectroscopic properties of VP states, one of which is
the surface plasmon. Two reasons have encouraged me to study plasmon physics. On the one hand,
a plasmon is measurable by EELS and it could be useful for future plasmonic applications. On the
other hand, the calculations of the dielectric function by which plasmon is theoretically predicted is in
principle analytically tractable using the RPA.

It has been well-known in the community that the FA states can induce a chiral linear FA surface
plasmon with total non-reciprocity [169, 170, 171, 172, 173, 174, 175], i.e., it propagates only in one di-
rection determined by the chirality of the FA dispersion. Linear dispersion and total non-reciprocity
are highly desirable for further plasmonic applications. This is why WSMs are chosen to be the system
to study surface plasmons arising from surface states. The study of surface plasmons in WSMs in the
presence of VP states are thus valuable both from a fundamental and from an applied point of view.

In this part, I will �rst show how to solve the Hamiltonian of a topological heterojunction modeled
by WSM. The analogy of smoothness with magnetic �eld is more plausible in WSMs than TIs. Then, I
will apply the RPA to the Hamiltonian of interest. In particular, I will prove that in the long wavelength
limit the RPA leads to a scalar dielectric function while considering only the FA state and the �rst VP
states. Finally, I will bestow the physical meaning upon the numerical results on plasmon modes using
the analytical expressions.

5.3.1 Hamiltonian, spectrum andwavefunctions

Consider a single boundary problem, i.e., a smooth interface in thex-direction between a time-reversal
breaking two-node WSM and a trivial insulator modeled by the Hamiltonian (4.12) in Chapter 4,
which I recall here

H = ~v(kxσx + kyσy) +

(
k2
z

2m
−∆0 + 2∆0

x

`

)
σz (5.35)

where the inverted gap of WSM is closed at x = `. The Hamiltonian (4.12) after a unitary transfor-
mation T = exp(iπσx/4) reads:

HT = ~v

[
−ky

√
2

`S
â

√
2

`S
â† ky

]
(5.36)
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where the characteristic length `S =
√
`~v/2∆0. The creation and annihilation operators, a† and a,

are constructed from linear combinations of the kx- and the x-dependent terms and read

â† =
`S√

2

(
kx + i

x− 〈x〉
`2S

)
, (5.37a)

â =
`S√

2

(
kx − i

x− 〈x〉
`2S

)
, (5.37b)

with
〈x〉 = `

∆− k2
z/2m

2∆
(5.37c)

where 〈x〉 determines the average position of the surface state. Compared to the ladder operators de-
�ned for TIs, for example, Eq. (4.14), the ladder operators de�ned here depend on the surface momen-
tum kz through 〈x〉. Therefore, the analogy of smoothness with magnetic �eld is more appropriate
in WSMs. From Eq. (5.36), one can already anticipate that the spectrum is only dispersive in ky . The
3D dispersive energy spectrum of WSMs is quantized to be 1D, exactly like what a true magnetic �eld
would do. One can identify here a Weyl cone chirality-resolved pseudo-magnetic �eld in they-direction
withBp = ±2∆/ev`ey [128]. This is further con�rmed by analyzing the selection rules [151]. The
selection rules for light polarized along the y-axis are n → n (Voigt geometry) while those for light
polarized along the x, z-axes are n→ n± 1 (Faraday geometry).

The eigenstates are thus of the form as

|ψλn〉 =
1√
2

(
un,λ(ky)|n− 1, kz〉
λvn,λ(ky)|n, kz〉

)
if n ≥ 1

|ψ0〉 =

(
0

|0, kz〉

)
if n = 0 (5.38)

where λ indicating valence (λ = −) or conduction (λ = +) band; un,λ(ky) and vn,λ(ky) are two
ky-dependent spinor coe�cients; |n, kz〉 are the eigenstates of quantum harmonic oscillator de�ned
by â†(kz) and â(kz). I explicitly mark kz in the notations to emphasize the dependence on kz in the
ladder operators and the spinor components |n, kz〉. The n = 0 state is precisely the famed FA state,
which is chiral also in the sense that one of the spinor components is zero. The n ≥ 1 states are the
VP states emerging on the smooth surface of WSMs.
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Figure 5.6: Comparison of density of states of the VP states with that of the bulk. The dotted vertical line denotes
the onset of the bulk continuum. Figure adapted from [151].

The energy spectrum is thus

Eλn = λ
√

(~vky)2 + ne2
0 if n ≥ 1

E0 = ~vky if n = 0 (5.39)

where the VP band gap e0 =
√

2~v/`S , which is the separation between the n = 0 and n = 1 bands
at k = 0, sets the characteristic energy scale of this surface model. On the one hand, the FA state
(n = 0) has linear dispersion in ky breaking the parity symmetry ky → −ky , while its counterpart
with opposite sign of the dispersion is localized at the other surface of the WSM that I do not consider
here. The VP states has parity symmetry. On the other hand, the FA state is independent of the surface
details such as its smoothness, i.e., the band dispersion does not depend on `, indicating its topological
nature. In contrast, the n ≥ 1 VP bands depend strongly on the surface modeling. In the sharp-
surface limit (`→ 0), the VP bands rise up in energy and eventually merge with the bulk states when
e0 ∼ ∆0, while the FA state survives. These two facts re�ect the non-topological nature of VP states.

Compared to the spectrum of a topological heterojunction modeled by 3DTI [see Eq. (5.18)], al-
though the eigenstates live on a two-dimensional manifold (ky, kz), their energies disperse only in the
ky-direction, i.e., the direction perpendicular to the interface and the line connecting the two Weyl
nodes at kz = ±

√
2m∆0 in the reciprocal space. The bands are thus quasi-1D and the DOS of the

VP states diverges at the band extremum (see Fig. 5.6). The dependence on kz is only encoded in the
wavefunctions, more precisely the cyclotron center of |n, kz〉. Indeed, this strong anisotropy in the
energy dispersion induces the peculiar properties of plasmon due to the edge states as shown immedi-
ately.
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5 Spectroscopic properties of Volkov-Pankratov states

5.3.2 Non-interacting dynamical polarization and quasi-two-dimensional
random phase approximation

The details of full derivation of the RPA is given in the supplementary material of [176]. Here, I brie�y
summarize the results. As shown in Chapter 3, the non-interacting dynamical polarization, i.e., non-
interacting charge susceptibility is the building block for the RPA. For a multi-band system, the non-
interacting dynamical polarization denoted by χ(0)

i,j is [177, 178]

χ
(0)
i,j (q, ω) =

1

V

∑
k

fD(Ei(k))− fD(Ej(k + q))

ω + Ei(k)− Ej(k + q) + i0+
|Fi,j(k,k + q)|2, (5.40)

where the i, j indices are shorthand notations for both band labels n and λ. In general, the overlap
matrixFi,j is not diagonal because of the aforementionedkz-dependence of the eigenstates so thatχ(0)

i,j

is generally a tensor (see in the supplementary material of [176]). However, for qz = 0, the particle-
hole excitations are also 1D and Fi,j becomes diagonal meaning that only excitations from n to n are
possible. χ(0)

i,j can be thus treated as a scalar. Although the contribution from the bulk states is not
explicitly taken into account, the VP states interpreted as leakage of bulk states include implicitly this
contribution.

For the same reason, if qz = 0, the Coulomb interacting matrix becomes a scalar. The RPA dielec-
tric function then retrieves its usual form

εRPA(qy, ω) = 1− V2D(qy)χ
(0)(qy, ω), (5.41)

where a 2D Coulomb interaction V2D(qy) = e2/2ε0εr|qy| is used with vacuum permittivity ε0, and
the static screening is encoded in the environmental dielectric constant εr. The reader may be curious
why the application of the RPA to a 3D system uses a 2D Coulomb interaction. This is because I dis-
cuss here surface states that are localized at the interface. Their spatial extension is cut o� by `S . For
smooth interfaces with `� `S , the dominant contribution to the Coulomb matrix comes from the re-
gion where q(〈x〉−〈x′〉)� 1. The Coulomb potential is e�ectively 2D in the long wavelength limit,
i.e., q`S � 1. This is the reason why I qualify the RPA used in the section quasi-two-dimensional.

When qz 6= 0, the overlap matrix element Fi,j(k,k + q) is mathematically more involved. How-
ever, in the long-wavelength limit, the o�-diagonal term Fi,j is proportional to q|ni−nj |z so that the
n → n excitations still remain the leading contributions to the charge susceptibility. Nevertheless,
due to the complicated form of the o�-diagonal terms, the Coulomb interaction is no longer a scalar
even in the long-wavelength limit when several VP bands are present. However, if one considers only
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5.3 Surface plasmons of Weyl semimetals

the chiral FA and the twon = 1 VP bands (three-band model), the RPA dielectric function for qz 6= 0

is simpli�ed to

εRPA(q, ω) = 1− V2D(q)χ(0)(q, ω), (5.42)

which is again a scalar equation.

5.3.3 Plasmon in the three-band model

Now I investigate in detail the simpli�ed three-band model where I consider the two n = 1 VP bands
in addition to the chiral state (n = 0). The zero of the real part of εRPA in the (q, ω) phase space
determines the dispersion relation of the plasmon. All the analytical results for the three-band model
are reported in the supplementary material of our work [176] in which we show that the analytical cal-
culations result in a complicated transcendental equation even in the long wavelength limit. The main
di�culty comes from the system being multi-band, leading to some features that one cannot account
for by considering separately the FA and VP states. So, I numerically do the calculations to �nd the
plasmon dispersion and analyze the results to interpret them with the help of analytical expression. Be-
cause of the log-divergence at the plasma edge in the dynamical polarization, the numerical evaluation
of the analytical expression requires a �ne mesh in the vicinity of the position of divergence, which
requires long execution time and large amount of memory. The trick is to do a linear interpolation
in the integral that keeps the �ngerprint of the log-divergence and largely accelerates the calculations
[179]. The details on analytical calculations are shown in the supplementary material of our work [176].

Excitationwith qz = 0

Setting qz = 0, the pro�le of −Im(χ(0)) in the (qy > 0, ω > 0)-plane, for di�erent values of the
chemical potential µ > 0 and a given disorder amplitude by replacing 0+ with 0.001 in Eq. (5.40), is
shown in Fig. 5.7. The imaginary part of χ(0) bears important information about possible electronic
excitations and therefore Laudau damping region for the plasmon modes. The dispersion of plasmon
is indicated by the red dashed lines (zeros of the real part of εRPA). The plasmon modes are only long-
lived and undamped in the black regions where Im(χ(0)) = 0. Within the three-band model, one
obtains three particle-hole continua, with−Im(χ(0)) 6= 0, shown in Fig. 5.7.

When the chemical potential is below the band edge of the �rst VP band, two domains of particle-
hole continua exist. One of them extends linearly in the (qy > 0, ω > 0)-plane, i.e., the signature
of FA particle-hole continuum. Due to the linear dispersion of the FA state, its particle-hole con-
tinuum is independent of µ. The second particle-hole spectrum is delimited from below by ω >√

4e2
0 + ~2v2q2

y due to interband excitations involving the two n = 1 VP conduction and valence
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5 Spectroscopic properties of Volkov-Pankratov states

Figure 5.7: Pro�le of the imaginary part of the non-interacting dynamical polarization−Im(χ(0)) in the (qy, ω)
phase space atµ = 0.01e0, 0.90e0, 1.01e0 and 1.30e0 for qz = 0. The zeros of the real part of εRPA

(red dashed lines) indicate the plasmon modes. The �xed parameters are chosen to be v = 1 eV · Å,
` = 10 Å, ∆ = 1 eV and k0 = 10 Å−1.

bands. However, it vanishes at small momenta because the eigenstates associated with the VP conduc-
tion and valence bands are orthogonal at q = 0. Since only the interband excitations are involved, the
particle-hole continuum for VP states is also invariant of µ as long as the chemical potential is in the
VP band gap.

As one increases µ above the VP conduction band, the particle-hole continuum of FA excitations
remains unchanged due to the linearity of the FA dispersion whereas that of VP states gets heavily
modi�ed due to Pauli blocking at the conduction band minima. The particle-hole continuum shifts
to higher frequency and larger momentum. Most saliently, the intraband excitations of the VP con-
duction band induce a third particle-hole continuum at low frequencies. With µ > e0 just above
the conduction band minimum, the VP band is approximately parabolic, and its quasi-1D character
is apparent in the form of the particle-hole intraband spectrum with its typical exclusion dome for
q`S < 2kF with kF de�ned as µ =

√
~2v2k2

F + e2
0.

In the qz = 0 limit, two plasmon modes are present for µ < e0 as shown by red dashed lines
in Fig. 5.7. The �rst one is the linearly dispersing FA plasmon with a gap at qy = 0, in agreement
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5.3 Surface plasmons of Weyl semimetals

with theoretical approaches using classical electrodynamics [169], hydrodynamic description [174], or
quantum-mechanical calculations [170, 172, 173, 175]. From the zeros of the real part of the equation
εRPA(qy, ω) = 0, the FA-plasmon dispersion reads

~ω ≈ sgn(qy)
k0e

2

4π2ε0εr
+

1 +
2kF√
k2
F + 2

`2S

δnF ,1

~vqy (5.43)

where 2k0 = 2
√

2m∆0 is the separation between two Weyl nodes in the bulk, δi,j is the Kronecker δ-
function and nF is the integer part of the ratio between µ and e0. If nF = 0 (µ < e0), for positive ω,
the FA plasmon is allowed to propagate only in the direction of positive qy , due to the FA being chiral.
For the usual 2D electron gas or graphene, recall that their plasmon dispersion is square-root due to
the Coulomb potential being 2D [180, 181, 182]. In spite of the the quasi-1D nature of the FA, the
Coulomb potential remains 2D here, and one might naively expect a square-root plasmon dispersion.
Surprisingly, this is not the case, and one �nds a linear gapped plasmon mode thanks to its chiral nature.
As simple as it is, Eq. (5.43) accurately describes the mode found numerically in Fig. 5.7. The result is
the same if considering the FA states alone because the in�uence from the interband transition between
VP states is prohibited for small qy . I emphasize that the experimentally measurable FA plasmon gap,

γFA =
k0e

2

4π2ε0εr
, (5.44)

yields direct information about the separation 2k0 between the bulk Weyl nodes knowing the dielectric
constant of the substrate εr.

VP intraband excitations signi�cantly modify the dispersion of the FA plasmon when nF = 1

(µ > e0). The plasmon gap sticks to the same value γFA. The dispersion of FA plasmon at large qy
remains almost linear with the same velocity v.6 At small qy , the FA plasmon acquires an enhanced
velocity that can be further boosted by increasing the chemical potential [see Eq. (5.43)]. However,
the change of velocity for �nite qy , as seen in Fig. 5.7, is not captured by Eq. (5.43) since the long
wavelength limit is approaching its limit.

The second plasmon mode in Fig. 5.7, is the VP interband plasmon, which stems mostly from the
VP interband excitations. It is also gapped and starts at a �nite momentum for the same reason that the
spectral weight of the particle-hole continuum is vanishingly small at qy ∼ 0, which makes sustained
plasmonic oscillations impossible. The interband VP plasmon mode lies in the VP interband particle-
hole region and is thus Landau-damped. However, since the amplitude of −Im(χ(0)) drops at high
energy, this plasmon may be visible as an additional bump in EELS as shown later.

6Here, what I mean large is to approach qy`S ∼ 1 while assuming that the long wavelength limit is still valid.
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5 Spectroscopic properties of Volkov-Pankratov states

The third plasmon mode emerges when µ > e0. This mode exists in a region delimited by the
particle-hole continua of the FA and the VP conduction bands. It starts at small but �nite momentum
and its energy disperses along with the upper boundary of the intraband continuum and eventually gets
merged in it at larger momentum. One may naively think that this VP intraband plasmon originates
only from intraband excitations and has a square-root dispersion at small momenta (see yellow dashed
lines in Fig. 5.9). However, the numerical calculations invalidate this picture. This is because one needs
to take into account the other particle-hole continua, namely the linear one associated with the FA,
which prohibits such a square-root dependence of an undamped plasmon (see in the supplementary
material of our work [176]). Moreover, when the chemical potential crosses a VP conduction band,
remote VP interband excitations cannot simply be accounted in εr because of the diverging density of
states. This signi�cantly modi�es the dynamical screening. Thus, the VP intraband plasmon acquires
positive energy only at non-zero �nite momentum and disperses linearly with a velocity smaller than
v. The terminating point of the plasmon dispersion is indicated by red dots in Fig. 5.7. Increasing µ
from 1.01 to 1.3e0, the exclusion dome at low frequencies becomes wider. The available phase space
for the VP intraband plasmon between the FA and the VP intraband continua is reduced even further
making this plasmon less visible at larger values of µ.

Excitationwith qz 6= 0

Since the bands are e�ectively 1D, the particle-hole continua are independent of qz if the coupling
between FA and VP bands is omitted. It is indeed legitimate to neglect this coupling in the long-
wavelength limit where it scales as∼ (qz`S)2. As shown in Fig. 5.8, most of the conclusions for the
case qz = 0 are applicable for qz 6= 0 except that the dispersion of FA plasmon gets strongly modi�ed
for qy < qz due to the qz-dependence of the Coulomb interaction.

Neglecting a small hybridization between the VP bands and the FA state, the FA-plasmon gap at
small momenta becomes

γ′FA = γFA
qy√
q2
y + q2

z

. (5.45)

When qz = 0, Eqs. (5.45) and (5.44) coincide, and the FA plasmon is gapped as shown earlier. How-
ever, when qz 6= 0, the gap vanishes at qy = 0 as a consequence of the strong anisotropy of the FA state,
which is only quasi-1D but embedded in a 2D manifold. When qy � qz , the FA plasmon disperses
again linearly with slope v. This is then validated by the numerical calculations shown in Fig. 5.8. The
FA plasmon gap vanishes when q = qzez . This singular behavior of the gap at q = 0 is also reported
in the literature [169, 170, 172, 173, 174, 175]. Therefore, one would always measure a gapless plasmon
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5.3 Surface plasmons of Weyl semimetals

Figure 5.8: Pro�le of the imaginary part of the non-interacting dynamical polarization−Im(χ(0)) in the (qy, ω)
phase space. The parameters are kept to be the same as Fig. 5.7 except for qz`S = 0.2. The zeros of
the real part of εRPA (red dashed lines) indicate the plasmon modes.

mode stemming from the FA plasmon in experiments since it is di�cult to limit qz = 0. Notwith-
standing, the FA-plasmon gap can be retrieved by extrapolating the linear dispersion with slope v at
qy`S ∼ 1 to qy = 0 so that the intercept gives the value of γFA.

Non-reciprocity of plasmon

To show what one can see in experiments, the electron loss function−=[1/εRPA], directly measurable
by EELS, is plotted in Fig. 5.9 in the (qy, ω > 0)-plane with intensity indicated by colorbar. One of
the intriguing properties of FA is the non-reciprocity of the FA plasmon, re�ecting the chiral nature
of the FA state. Therefore, one should also study −=[1/εRPA] for (qy < 0, ω > 0). The result
for ω < 0 can be easily retrieved by reversing simultaneously the sign of ω and q in known results.
As shown in Fig where µ = 1.01e0, the FA plasmon is completely absent when qy < 0 as well as the
corresponding particle-hole continuum. Being non-reciprocal, the FA plasmon only propagates in one
direction with �xed velocity, highly desirable for applications. Strikingly, the VP intraband plasmon is
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5 Spectroscopic properties of Volkov-Pankratov states

Figure 5.9: Electron loss function atµ = 1.01e0 for qy`S ∈ [−2.0, 2.0]: (a) for qz = 0 and (b) for qz`S = 0.2.
Yellow dashed lines show the symmetric VP intraband plasmon in the absence of the FA state. Three
plasmon modes are all non-reciprocal and visible.

also non-reciprocal even if it involves the ky ↔ −ky symmetry of the VP bands [see Eq. (5.39)]: it has
a di�erent dispersion for qy < 0, which can be calculated analytically

ω ≈ sgn(−qy)v

|qy|+ 2kF√
k2
F + 2n

`2S

√
q2
y + q2

z

. (5.46)

Contrary to qy > 0, it starts from the origin of (qy, ω) and disperses with a velocity larger thanvwhich
can be enhanced further by increasing µ. This non-reciprocity is a consequence of the hybridization
with the FA mode and particle-hole continuum, which is in close vicinity of the intraband VP plasmon
for qy > 0 but further well separated in energy for qy < 0 (see in the supplementary material of our
work [176]). The chirality of the FA modes thus induces non-reciprocity in other excitations due to
their mutual coupling. This can also be seen in the VP interband plasmon, where the starting point
moves to higher frequency and larger momentum. As anticipated above, the VP interband plasmon is
submerged amid the particle-hole continuum but nevertheless visible on EELS.

In this section, the e�ect of surface smoothness on the charge oscillation spectrum of a WSM sur-
face has been investigated. Within quasi-2D RPA, I have shown the emergence of two collective modes
stabilized by the inter- and intra-VP band excitations, in addition to the FA plasmon. The plasmons
exhibit anisotropy and non-reciprocity inherited from the underlying surface model. The �ndings
could be veri�ed experimentally in EELS, which could probe the chirality of the FA and o�er an alter-
native way to prove the presence of the VP states. Furthermore, the FA-plasmon gap gives us a direct
experimental measure of the separation between the Weyl nodes.
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5.4 Summary

5.4 Summary

In this chapter, I have shown all the theoretical results on the spectroscopic properties of VP states that
I have obtained during my PhD.

First, I have calculated the optical conductivity of VP states. Playing with the polarization of inci-
dent photon and the orientation of magnetic �eld, the optical response from VP states has rich features.
First, additional absorption peaks appear below the gap aside from those due to topological states. Fur-
thermore, the shape of peaks, which is intimately determined by the dimensionality-sensitive DOS, are
tunable by the orientation of the magnetic �eld which modi�es the dimensionality of VP bands. In
particular, the in-plane magnetic �eld and the smoothness quantization conspire to form a composed
magnetic �eld which keeps the shape of peaks but yields new peaks for photons of certain polariza-
tion. Therefore, these speci�c features from VP states in the optical conductivity are a smoking gun
to identify the existence of VP states in TIs. These results have been published in Europhysics Letters
[159]. I have also suggested that interesting phenomena in Faraday and Kerr rotations could occur in
the presence of VP states. Finally, I have given a �rst taste of how Coulomb interactions could enrich
the physics of VP states by showing multiple plasmon modes in WSMs. This work has been recently
published in Physical Review B [176]. All these spectroscopic properties of VP states would inspire
both fundamental and applied research on VP states in the future.
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6 Conclusions and perspectives

The important thing is to never stop questioning [or learning].

Albert Einstein

The Dirac equation, originally derived for particle physics, has been the guideline of this thesis whose
topic belongs to condensed matter theory. The bene�t of the application of the Dirac equation in con-
densed matter is mutual. Thanks to the interplay between lattice potential and electrons, the Dirac
equation, even the ultra-relativistic one, emerges unexpectedly in the low-energy description of Dirac
materials. Many theoretically predicted high-energy phenomena, which cannot be tested in particle
physics experiments due to inaccessible experimental conditions and astronomical costs, are conceiv-
able in materials with convenient tunability and a�ordable costs. Even those which have not yet been
discovered in high-energy physics, such as supersymmetry [75], �nd their representation in condensed
matter physics. Most saliently, the low-energy Hamiltonian of Dirac materials is not restricted by the
Lorentz symmetry in contrast to elementary particles. The imagination of theorists is thus further
freed. One can legitimately consider the variations of the original Dirac equation with no associated
elementary particles that exist in nature. However, they may exist in condensed matter physics.

Reciprocally, the condensed matter community bene�ts the formalism that are well established in
the context of particle physics. It o�ers a rejuvenating and complementary understanding for the elec-
tronic properties of materials. Various unusual observations in Dirac materials, which cannot be ex-
plained by the Schrödinger equation, are elegantly explained by the Dirac equation and its inherent
symmetries. The application of the formalism further boosts the discovery of various Dirac materials.
Most saliently, it is one of the momenta to give birth to topological band theory, a ground-breaking
progress in solid-state physics. Many surprising properties of matter such as the bulk-edge correspon-
dence in topological materials are also captured by the Dirac equation.

Therefore, my thesis has been also unfolded in these two aspects. In the �rst part, I have shown how
Einstein’s theory of special relativity applies on the electrodynamics in Dirac materials. In Chapter 2,
I have reviewed previous works on the magnetic-�eld-induced relativistic renormalization in graphene
subject to crossed electric �eld and magnetic �eld. Based on this simple example, I have introduced the
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unitary and hyperbolic transformations which can be further extended to other Dirac materials such
as Weyl semimetals, tilted gapped graphene and gapped nodal line semimetals. While previous works
have been concerned with the gapless system, my contribution is to reveal the gap renormalization in
the gapped system. Furthermore, I also provide an interpretation of the relativistic renormalization by
the language of condensed matter physics, which completes the understanding of the phenomena of
interest.

In Chapter 3 where I have included a short introduction to theoretical approaches to spectroscopy,
I have elaborated the theoretical study on the magneto-optics a gapped nodal line semimetal, NbAs2.
This is a project in collaboration with my colleagues of the LNCMI in Grenoble who have made indus-
trious e�orts and conducted wonderful magneto-optical measurements on NbAs2. The most exciting
moment of this project has come recently when the gap renormalization in NbAs2 was clearly observed
by our collaborators and the results �t extremely well with our theory.

In the second part, I have shown that the Dirac equation is a unifying theoretical framework to
study the surface states of topological materials. Especially, additional massive Volkov-Pankratov states
emerge in smooth topological heterojunctions. In Chapter 4, I have o�ered di�erent perspectives to
understand the origin of Volkov-Pankratov states. I have started by showing a point of view given by
previous work by Sergueï Tchoumakov, who initiated the work on surface states in our group during
his thesis, that the smoothness plays the role of pseudo-magnetic �eld quantifying surface bands to
Landau bands. Then, I have challenged this perspective by the dimensionality reduction, which has
inspired me to interpret the origin of Volkov-Pankratov states in terms of quantum well physics de-
noted as Dirac quantum well. One of the advantages of this complementary perspective is to permit
me to discuss the tunneling between Volkov-Pankratov states of two sides of topological materials in an
intuitive way. Especially, the topological protection of topological states is interpreted as the absence
of resonant tunneling. To be complete, I have also shared the point of view of mathematician-physicist
who may treat the problem by identifying a di�erential equation in supersymmetry. Finally, a tight-
binding approach has been given to further con�rm the presence of Volkov-Pankratov states.

In Chapter 5, I have discussed the spectroscopy properties of Volkov-Pankratov states using the
techniques presented in Chapter 3. The key signature in (magneto-)optical conductivity revealing the
presence of Volkov-Pankratov states has been shown to be a smoking gun to distinguish them from
trivial surface states. I have also studied plasmonics on the surface of Weyl semimetal. In addition
to the well-know Fermi-arc plasmon, Volkov-Pankratov states yield inter- and intra-band plasmons.
Unexpectedly, the hybridization between the Fermi-arc and Volkov-Pankratov plasmons attributes the
non-reciprocity to Volkov-Pankratov plasmons, which are supposed to be reciprocal.

There are many other research topics that I have conceived for future. One possible branch is to
pursue the idea of “doing high-energy physics in low-energy systems”. An interesting branch is to ap-
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ply not only special relativity but also general relativity to materials. There are already some pioneering
works on Weyl semimetal going in this direction. Another possible branch is to further investigate the
possibilities given by Volkov-Pankratov states. For example, the �at bands in twisted bilayer graphene
can be interpreted as pseudo-Landau levels [183, 184]. In the continuum model for twisted bilayer
graphene [185], the emergence of the �at bands is the consequence of the twisted boundary condition,
which inherently constitutes a smooth boundary between di�erent domains in real space. It seems
thus plausible to re-interpret the �at bands in terms of Volkov-Pankratov states, which are generaliz-
able to other twisted systems. Here, I have discussed only the spectroscopic properties. The transport
properties of Volkov-Pankratov states are worth to be further investigated. Finally, I have given �rst
hints on the promising physics induced by electron-electron interactions by looking at the physics of
plasmon. Nevertheless, the interaction e�ects in the presence of Volkov-Pankratov states remain also
unclear and wait for future investigations.
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A Short review on special relativity

In 1905, Einstein postulated in his seminal work on the theory of special relativity that the speed of light
is the same to all observers at rest in inertial frames of references and the laws of nature are identical
in all inertial frames of reference. An important consequence of his statement is that the spatial and
temporal dimensions must be interwoven. This four dimensional space where time is merely another
dimension just like space is called space-time. A complete introduction on special relativity could be
found in [80, 186].

A.1 Lorentz boost and four-vectors

I �rst show a direct consequence of the two assumptions above. Say a �ash of light is emitted at t = 0

from the spatial origin in the point-of-view of the frameR. The trajectory of the light signal propa-
gating spherically at the speed of light (�rst axiom) should verify

c2t2 − x2 − y2 − z2 = 0 (A.1)

where (t, x, y, z) is the space-time coordinate of the front of the light wave inR. Therefor, the trajec-
tory of the light in another inertial frameR′ is characterized by the same equation (second axiom)

c2t′2 − x′2 − y′2 − z′2 = 0. (A.2)

By the fact that the space is homogeneous and isotropic, one can prove that the transformation law be-
tween the space-time coordinates of di�erent inertial frames of reference is linear known as the Lorentz
boost or transformation. For example, if the frameR′moves at the speed v < c in the x-direction rel-
ative toR, the coordinate (t′, x′, y′, z′) is written as the linear combination of (t, x, y, z) as

ct′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1



ct

x

y

z

 (A.3)
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where β and γ called Lorentz factor are de�ned

β =
v

c
, γ =

1√
1− β2

. (A.4)

Generally, one can write

x′µ = Λµνx
ν (A.5)

where the Λ matrix represents the Lorentz transformation in the four-dimensional vector space.

The four-dimensional vector space is a pseudo-Euclidean space called the Minkowski space-time
because the Minkowski inner product is not positive-de�nite. The Minkowski inner product is de�ned
as

u · v = ηµνu
µvν = uT ηv (A.6)

where u, v are two four-vectors and η = Diag(1,−1,−1,−1).1 As the rotations are isometries of
three-dimensional Euclidean space that preserve the Euclidean scalar product, the Lorentz transforma-
tions are isometries of the Minkowski four-dimensional space-time that preserve the Minkowski inner
product. Note that rotations acting on the three spatial dimensions of four-vector are also isometries
of the Minkowski space-time. The isometries preserving the Minkowski inner product form a group
called the Lorentz group. The elements of the Lorentz group are Lorentz transformation containing
both rotations and Lorentz boosts. If translations are included, the larger group is called the Poincaré
group.

Practically, all the quantities that can be written as a total contraction of upper and low indices
such as uαβγvαβγ are invariant under the Lorentz transformations. Such quantities are called Lorentz
invariant. For example, c2t2−r2 for a given event of coordinate (ct, r) in the frameR is independent
of the choice of frames. Depending its sign, the event is time-like if positive, space-like if negative and
light-like if zero.

Pursuing the logic in this four-dimensional vector space, other physical quantities can also be ar-
ranged in four-vector form. The physical quantities that can be expressed in four-vector, say in group
theory, furnish a four-vector representation of the Lorentz group and transforms by Lorentz trans-
formations when changing the frame of reference. Remarkably, these physical quantities follows the
Lorentz transformation while changing the frame of reference: coordinates of di�erent frame are re-

1ηµν = ηµν = Diag(1,−1,−1,−1)
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lated to each other by a linear transformation Λ. I list a set of physical quantities, that will be useful in
the following, in the contravariant form:

rµ = (ct, r) four-position (A.7)

∂µ =

(
1

c

∂

∂t
,−∇

)
four-gradient (A.8)

pµ =

(
E

c
,p

)
four-momentum (A.9)

kµ =
(ω
c
,k
)

four-wavevector (A.10)

Jµ = (ρc,J) four-current (A.11)

Aµ =

(
φ

c
,A

)
four-potential (A.12)

where µ = {0, 1, 2, 3} in which index 0 corresponds to the temporal dimension and and indices
1, 2, 3 are the spatial ones.

A.2 Maxwell’s equations are Lorentz invariant

One can write Maxwell’s equations in a form of four-vector (or more precisely, four-tensor). In terms
of electric and magnetic �eld (E,B), Maxwell’s equations are written as

∇ · E =
ρ

ε0
(A.13)

∇ ·B = 0 (A.14)

∇× E = − ∂

∂t
B (A.15)

∇×B = µ0J + µε0
∂

∂t
E (A.16)

and the electric and magnetic �eld is gradient of potential:

E = − ∂

∂t
A−∇φ (A.17)

B = ∇×A. (A.18)
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A Short review on special relativity

It turns out that both �elds can be gathered in an anti-symmetric four-tensor called the electromagnetic
�eld tensor:

Fµν = ∂µAν − ∂νAµ =


0 −Exc −Eyc −Ezc
Ex
c 0 −Bz By
Ey
c Bz 0 −Bx
Ez
c −By Bx 0

. (A.19)

With the help of the electromagnetic �eld tensor and other four-vectors given previously, Maxwell’s
equations are written in a Lorentz covariant form

∂µF
µν = µ0J

ν (A.20)

∂µε
µνρσFρσ = 0 (A.21)

where εµναβ is the Levi-Civita anti-symmetric tensor. Using this Lorentz covariant form, one can
derive how electric and magnetic �eld transforms under the Lorentz transformations. For example, a
frameR′ moves relative to the lab frameR at velocity v, then

E ′‖ = E‖, E ′⊥ = γ(E⊥ + v ×B) (A.22)

B′‖ = B‖, B′⊥ = γ

(
B⊥ −

1

c2
v × E

)
. (A.23)

The signi�cation of this Lorentz covariant form is that Maxwell’s equations are exactly the same for
every inertial frame of reference using the four-vectors attached to itself. In other words, Maxwell’s
equations are Lorentz invariant.
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B Simplification of the generic model

The goal of the present appendix is to simplify the generic model (2.69), which I recall below

H(q) = w · q +

3∑
i,j=1

vijqiσj + ∆σ3. (B.1)

As shown below, one can legitimately use on an isotropic model to discuss the Landau quantization
of the generic Hamiltonian (2.69). The anisotropy of velocity is erased by rescaling the wavevectors
and the magnetic �eld.

B.1 Diagonalization of the symmetric velocity tensor

The �rst step is to �nd the principle axes de�ned by the eigenvectors of the real symmetric tensor vij ,
which can be diagonalized as a matrix

v = Rv∗RT (B.2)

where R ∈ SO(3) is an orthogonal rotation matrix and the diagonal matrix v∗ contains the three
eigenvalues v∗i . Therefore, in the new basis of space de�ned by R, the velocity tensor vij is diagonal
with the coe�cients v∗i and the wavevector q is written as

q∗ = RTq (B.3)

so that

3∑
i=1

vijqi = v∗j q
∗
j . (B.4)
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B Simplification of the generic model

The Hamiltonian becomes

H(q∗) = w∗ · q∗ +
3∑
i=1

v∗i q
∗
i σi + ∆σ3 (B.5)

where

w∗ = RTw. (B.6)

In the following, I will use the basisR as the starting Cartesian coordinate system.

B.2 Rescaling of the wavevectors and the magnetic field

Now getting rid of the star ∗ for simplicity and replacing i = 1, 2, 3 by i = x, y, z, the Hamiltonian
to be rescaled becomes

H(q) = w · q +

3∑
i=x,y,z

viqiσi + ∆σz. (B.7)

After the rescaling

vq′i = viqi, w′iq
′
i = wiqi and thus w′i = wi

v

vi
, (B.8)

the Hamiltonian becomes

H(q′) = w′ · q′ + vq′ · σ + ∆σz. (B.9)

Note that one is free to choose the value of v which would not alter the specturm of the Hamiltonian.

When a magnetic �eld is applied to the system, the Peierls substitution with the

qi → qi + eAi (B.10)

becomes

q′i → q′i + eA′i with A′i = Ai
vi
v

(B.11)

144



B.3 Direction of the tilting term

where the vector potentialA is also rescaled by the rescaling of the wavevectors. The magnetic �eldB
is rescaled by

Bk = εijk∂iAj → B′k = εijk∂
′
iA
′
j (B.12)

where

∂′i =
vi
v
∂i. (B.13)

In this way, I transform an anisotropic model in the presence of a magnetic �eld B to an isotropic
model in the presence of a rescaled magnetic �eldB′. The relation betweenB andB′ is

B′k =
vivj
v2

εijk∂iAj =
vivj
v2

Bk (B.14)

where i, j are two other indices than k and i 6= j. Note that this derivation is gauge-independent.

B.3 Direction of the tilting term

One can simplify further the Hamiltonian (B.9) by writing

w · q = wq̃z (B.15)

where the prime ′ is omitted andw is the modulus ofw. This de�nes a new basis in which q is written
as q̃ and they are related by q̃ = Tq with T ∈ SO(3). After a unitary transformation de�ned by T ,
the Hamiltonian (B.9) becomes

H(q̃) = wq̃z + vq̃ · σ + ∆(cos θσz + sin θσx) (B.16)

where the angle θ is also given by T .
Finally, removing the tilde, the simpli�ed Hamiltonian reads

H(q) = wqz + vq · σ + ∆(cos θσz + sin θσx) (B.17)

or sometimes another form is also useful in practice [see (2.74) wherewx = 0]

H(q) = wxqx + wzqz + vq · σ + ∆σz. (B.18)
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C Gapped nodal line semimetal niobium
di-arsenide

This appendix provides supplementary information on the crystal structure of the gapped nodal line
semimetal NbAs2 discussed in Chapter 2 and 3. The details on the theoretical modeling and the deriva-
tion of velocity operators are also given in the present appendix. To simplify the notation, I use ~ = 1.

C.1 Crystal structure

The nodal-line semi-metal NbAs2 belongs to the transition metal di-pnictides family whose atoms are
arranged in a monoclinic unit-cell classi�ed in the centrosymmetric space groupC12/m1. As shown in
Fig. C.1, the unit-cell has four copies of NbAs2. By convention in crystallography, the b-axis is de�ned
as the axis that is perpendicular to the two other axis,a and c, between which the angleβ is 119.42°[187].

This is also the convention used in [118]. The lattice parameters are [187]:

a 9.368(2)Å
b 3.396(1)Å
c 7.799(3)Å

Table C.1: Lattice parameter for NbAs2 unit-cell.

By the previous convention in real space, the three k-vectors in the reciprocal space are de�ned with
respect to the a-, b- and c-axis as ka, kb and kc. kb is perpendicular to ka and kc and the angle formed
between ka and kc equals to β (or equivalently π− β). The Brillouin zone of NbAs2 marked by high
symmetry point is shown in Fig. C.2(a) where the two yellow lines are tracking the position of the two
nodal lines of NbAs2 in k-space. Along the nodal lines, Z − I1 is the dispersive part and Y − X1 is
the �at part. Here,Z − I1 and Y −X1 are segments in k−space perpendicular to the nodal line.
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C Gapped nodal line semimetal niobium di-arsenide

Figure C.1: Crystal structure of NbAs2: B1 and B2 represent As atoms and A is Nb atom. Picture reprinted
from [188].

C.2 Low EnergyModel for two nodal lines

In this section, I will show how to build a low-energy model for two nodal lines in NbAs2. First, I
restrict the analysis to an energy domain within 0.3 eV where the two nodal lines are the only relevant
parts of the band structure for optical measurements in optical measurements [see Fig. C.2(b)].

C.2.1 Position of the nodal lines

The two nodal lines are symmetric with respect to the mirror plane Γ−Z−Y . They are well-separated
in k-space so that one can treat these two lines separately by assigning a valley index to them. The
position of the two nodal lines in reciprocal space is shown in Fig. C.3. The two lines are weakly
wiggling along the direction F1 − Z near the plane F1 − Z − I1. The wiggling amplitude is 0.1 Å−1

which is much smaller than the length of the lines (∼ 1 Å−1) [118]. In the �rst approximation, the nodal
lines can be thought to be parallel to the directionF1−Z on the the planeF1−Z−I1 (or equivalently
the a, c-plane) (see Fig. C.3). More accurately, one has to use the natural coordinate system along the
line and consider our approximation as a projection on the direction F1 − Z as shown by the purple
triad in the lower panel of Fig. C.3.

C.2.2 Low-energyHamiltonian

As shown in Shao et al.’s work [118], the nodal lines have a �at part and a linearly dispersive part which
yield di�erent contributions in the (magneto-)optical responses. In Fig. C.4, the energy pro�le along
one of the two nodal lines is plotted where only half of the full line is shown. The other half can be
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C.2 Low Energy Model for two nodal lines

Figure C.2: (A) Brillouin zone of NbAs2 expanded by ka, kb and kc vectors; (B) Band structure of NbAs2 cal-
culated by density functional theory (DFT) with and without spin-orbit coupling (SOC). Figures
reprinted from [118].

found by mirror and inversion symmetry of the crystal. In our modeling, each nodal line is divided
into four parts: ZA, AB, BC and CY segments. Among the four segments, ZA and CY are �at
whileAB andBC are dispersive.

Nevertheless, the energy pro�le of all the four segments can be described by the Hamiltonian below
(~ = 1)

H(k) = ε(kα)I2 + ∆(kα)σz + v(ξkβσx + kγσy) (C.1)

where σx,y,z are Pauli matrices, ξ = ±1 is the valley index and ε(kα) is de�ned with respect to the
chemical potential. In the following, I consider only one line ξ = +1 and the result for the line ξ = −1
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C Gapped nodal line semimetal niobium di-arsenide

Figure C.3: Schematic illustration of the position of the nodal lines in k-space. The upper panel shows the po-
sition of the nodal lines with respect to the real space crystal axes a, b, c and their corresponding
reciprocal space axes ka, kb, kc. The lower panel shows the local axes along the nodal line: eα is
parallel to the line and eβ,γ is orthogonal to the line. In the �rst approximation, eβ is parallel to the
b-axis and eα,γ is orthogonal to the b-axis.
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C.2 Low Energy Model for two nodal lines

Figure C.4: Energy pro�le along the nodal line after �tting. k0 indicates the increment following the nodal line
in k-space. The subscript ± indicates the two nodal lines according to their position in the the
coordinate system (kx, ky, kz). The positions ofZ± and Y± are given by [118].

can be easily deduced for that of ξ = +1. Given the parameters ∆A,B,C and EA,B,C as indicated in
Fig. C.4, one can thus determine the exact form of ∆(kα) and ε(kα) by doing a linear interpolation
between the points Z,A,B,C, Y . ε(kα) is constant for the �at parts and linearly dispersive for the
dispersive parts. ∆(kα) is de�ned in the same way as ε(kα). For example, the Hamiltonian for the
segmentAB is

H(k) = EA +
EB − EA
kB − kA

(kα − kA)I2 +

[
∆A +

∆B −∆A

kB − kA
(kα − kA)

]
σz

+ v(ξkβσx + kγσy)

where kA/B are the coordinates of the pointsA/B along the nodal line, respectively. Here, I consider
an isotropic model where vβ = vγ = v. The anisotropy of the Fermi velocity can be added a posteriori
as a tuning parameter in the �t of the optical conductivity.
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C.3 Optical conductivity in the absence of a magnetic field

In this section, I will give the analytical expression of the optical conductivity in the absence of a mag-
netic �eld. Since the nodal lines consist of the four segments in our model, one can separately and
analytically calculate the optical conductivity for each segment and sum them all to get the �nal total
optical conductivity.

One only needs to calculate<[σββ(ω)] and<[σαα(ω)] and<[σββ(ω)] = <[σγγ(ω)] by isotropy.
In the absence of a magnetic �eld,

<[σββ(ω)] =
e2

4π

∫
dkα

4∆2 + ω2

8ω2
[f(ε(kα)− ω/2)− f(ε(kα) + ω/2)]

×Θ(ω − 2∆) (C.2)

<[σαα(ω)] =
e2

4πv2

∫
dkα

(
∂∆

∂kα

)2ω2 −∆2

4ω2
[f(ε(kα)− ω/2)− f(ε(kα) + ω/2)]

×Θ(ω − 2∆) (C.3)

wheref is the Fermi-Dirac distribution and Θ is the Heaviside function. Since the dispersion in ∆(kα)

is small, the contribution from σαα is negligible in practice. To retrieve the optical conductivity in the
SI units, one only has to multiply ~−1. In practice, one calculates the optical conductivity only for
the half of one of the two nodal lines as shown in Fig. C.4 and then multiply by a factor of 4 as the
consequence of the mirror and inversion symmetries.

In the re�ectivity measurements, incident photons are linearly polarized to the a- and b-axis so that

σaa = cos2 θaσαα + sin2 θaσγγ (C.4)

σbb = cos2 θbσαα + sin2 θbσββ (C.5)

where θa,b is the angle between eα and the a, b-axes, respectively. The angles θa,b are determined by
the position ofA,B,C in reciprocal space (see Fig. C.5).

To take into account the anisotropy of the Fermi velocity, one can add a multiplicative constant
r such that σββ = rσγγ . The ration r depends on the segments of the nodal line. For example,
rAB 6= rBC .

C.4 Fitting

After �tting, the position of the nodal line in reciprocal space is shown below.
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C.5 Selection rules in the presence of a magnetic field

Figure C.5: Position of the nodal line in k-space after �tting. kx,y,z are given in Fig. C.3

The optical conductivities measured by experiments and those by analytical calculations are shown
below. In addition, the contributions from di�erent segments of the nodal line are separately plotted.

Figure C.6: Optical conductivities measured by experiments σ1,aa/bb and those by analytical calculations
<[σaa/bb].

C.5 Selection rules in the presence of a magnetic field

Suppose that the gapped nodal line is modeled by the following isotropic Hamiltonian

H(k) = wkαI2 + ∆σz + v(kβσx + kγσy) (C.6)

wherew < v and the subscripts α, β, γ indicate the local triad shown in Fig. C.3.
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C.5.1 Landau levels

Since Eq. (C.6) is isotropic in theβ, γ-plane, one sets with no loss of generality thatB = B(cos θeα+

sin θeγ) = Bez for 0 < θ < π/2. Here, a new basis is de�ned (see the lower panel of Fig. C.3)

{ex, ey, ez} = {cos θeγ − sin θeα,−eβ, cos θeα + sin θeγ}. (C.7)

Writing the Hamiltonian in this new basis and choosing the Landau gauge A = −Byex, the
Hamiltonian becomes1

H = w[cos θkz − sin θ(kx − eBy)] + v[cos θ(kx − eBy) + sin θkz]σx

− vkyσy + ∆σz. (C.8)

The Hamiltonian H can be solved using the hyperbolic transformation M = exp(φσx/2) with the
rapidity β = tanhφ = w tan θ/v. The transformed Hamiltonian reads

HT = MHM

=
wv

v∗
kz +

w2 + v2

v∗
kz sin θ cos θσx + v∗(kx − eBy)σx − vkyσy + ∆σz (C.9)

where a new velocity v∗ is de�ned as

v∗2 = v2 cos2 θ − w2 sin2 θ with γ =
1√

1− β2
= coshφ =

v cos θ

v∗
(C.10)

where γ > 1 is the relativistic Lorentz factor. Note that HT does not have the same spectrum as H .
In the basis of |ψT 〉 = γ−1/2M−1|ψ〉 given the eigenstate |ψ〉 of H , one can construct from HT

another HamiltonianHE = (HT − E sinhφσx)/ coshφwith the same spectrum asH

HE =
wkz
cos θ

+
1

γ

[
∆

√
2vv∗

`B
a†E√

2vv∗

`B
aE −∆

]
(C.11)

1Compared to the Hamiltonian in the main text, the additional negative sign in front of the ky term is to keep the triad
x, y, z to be a right-hand system. There is no in�uence for the �nal conclusions if the two mirror-symmetric lines are
simultaneously considered.
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C.5 Selection rules in the presence of a magnetic field

where a pair of energy-dependent ladder operators is de�ned

aE = − `B√
2vv∗

(
v∗

`B
(y − 〈y〉E) + ivky

)
a†E = − `B√

2vv∗

(
v∗

`B
(y − 〈y〉E)− ivky

)
〈y〉E =

`2B
v∗

(
v∗kx + kz(w

2 + v2) sin θ cos θ − Ew sin θ

v∗

) (C.12)

with [aE , a
†
E ] = 1. The subscriptE indicates the dependence on energyE. In particular, the center

of cyclotron 〈y〉E shifts with energy.
Since the energy-dependent term in HE is absorbed in the de�nition of the ladder operators, the

energy spectrum is self-consistently found in the eigenstates of energyEλn in the form

|ψT,n,λ〉 =

(
cosαn,λ|n,Eλn〉

sinαn,λ|n− 1, Eλn〉

)
(C.13)

where αn,λ is an angle depending on n and the sign of energy λ = ±; |n′, Eλn〉 is the wavefunction
of the one-dimensional quantum harmonic oscillator de�ned by the previous ladder operators. Given
the Landau level index n, n′ = n or n− 1. The energy spectrum is thus

E±n =
wkz
cos θ

± 1

γ

√
∆2 +

2nv2 cos θ

γ`2B
for n > 0

E0 =
wkz
cos θ

+
∆

γ
for n = 0 (C.14)

C.5.2 Velocity operators

To study the magneto-optical properties of NbAs2, one evaluates the matrix element 〈ψn|v̂k|ψm〉.
Indeed, it is more practical with the basis |ψT,n〉 already in hands by remarking that

〈ψn|∇kH|ψn′〉 = γ〈ψT,n|∇kHT |ψT,n′〉 (C.15)

thanks to the fact thatM is k-independent. So, in the basis |ψT 〉, the velocity operators forHT are

v̂T,x = v∗σx (C.16)

v̂T,y = −vσy (C.17)

v̂T,z =
wv

v∗
+
w2 + v2

v∗
sin θ cos θ (C.18)
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where one notices an emergent anisotropy of Fermi velocity induced by the magnetic �eld.
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D Calculations for double Dirac
quantumwell

This appendix shows the details of calculations of how to derive the spectrum of the double Dirac
quantum well (QW) modeled in Chapter 4. In particular, I derive the energy splitting for the topolog-
ical n = 0 states for sharp and smooth surfaces.

D.1 Derive and solve the secular equation for double Dirac
quantumwell

In this section, I solve Eq. (4.20) for ∆(z) described by Eq. (4.28). In all the following discussions,
the subscriptL andRmean the left and right Dirac QW. One should not confoundL in the subscript
with the separation between two adjacent Dirac QWsL.

If z < −L/2− ` or z > L/2 + ` or z ∈ [−L
2 + `, L2 − `], the equation reads

∂2
zχλ −K2χλ = 0 (D.1)

where K2 = (1 − ω2
r )/ξ2. Recall that ξ = ~v/∆0. The solutions are a linear combination of

exp (Kz) and exp (−Kz). If z ∈ [−L
2−`,−

L
2 +`], one can carry out a change of variable z+L/2 =

αtL and α2 = `ξ/2. The equation then reads

∂2
tL
χλ −

(
1

4
tL

2 + aL,λ

)
χλ = 0 (D.2)

where
aL,λ = −λ

2
− `

2ξ
ω2

r . (D.3)

157



D Calculations for double Dirac quantum well

Eq. (D.2) is the standard form of the Weber di�erential equation whose solution is parabolic cylinder
function [189, 190]. By concern for symmetry of the wavefunction, I represent the solution in terms of
con�uent hypergeometric functionM(a; b; z) [189, 190]. The even and odd solutions read

uS(aL,λ; tL) = e−
t2L
4 M

(
1

2
aL,λ +

1

4
;
1

2
;
t2L
2

)
uA(aL,λ; tL) = tLe

− t
2
L
4 M

(
1

2
aL,λ +

3

4
;
3

2
;
t2L
2

)
(D.4)

where S andAmean symmetric and anti-symmetric, respectively.

If z ∈ [L2 − `,
L
2 + `], one can solve the di�erential equation and represent the solutions in the

similar way. After a change of variable z − L/2 = αtR,

∂2
tR
χλ −

(
1

4
tR

2 + aR,λ

)
χλ = 0 (D.5)

where
aR,λ =

λ

2
− `

2ξ
ω2

r . (D.6)

Similarly, the solutions for Eq. (D.5) are

uS(aR,λ; tR) = e−
t2R
4 M

(
1

2
aR,λ +

1

4
;
1

2
;
t2R
2

)
uA(aR,λ; tR) = tRe

− t
2
R
4 M

(
1

2
aR,λ +

3

4
;
3

2
;
t2R
2

)
(D.7)

Using the fact that the wavefunction is vanishing at in�nity and it is continuous as well as its derivative,
one can match the solution in di�erent regions at their common point along the z−direction. For
simplicity, I note

uS/A,L/R,λ = uS/A

(
aL/R,λ;

√
2`

ξ

)

vS/A,L/R,λ =
∂

∂tL/R
uS/A

(
aL/R,λ; tL/R)

∣∣
tL/R=

√
2`
ξ

. (D.8)
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D.2 Energy splitting for the topological state

Since λ = ± are equivalent when one considers double Dirac QW, I will omit λ in the following
discussion. The �nal secular equation reads(√

`(1− ω2
r )

ξ
uS,L + vS,L

)
×

(√
`(1− ω2

r )

ξ
uA,L + vA,L

)

×

(√
`(1− ω2

r )

ξ
uS,R + vS,R

)
×

(√
`(1− ω2

r )

ξ
uA,R + vA,R

)

= e
−2

√
1−ω2r
ξ

(L−2`)
(
`(1− ω2

r )

ξ
uS,RuA,R − vS,RvA,R

)(
`(1− ω2

r )

ξ
uS,LuA,L − vS,LvA,L

)
(D.9)

One can try several particular solution to check the validity of the model. Suppose now ωr = 0

which it is in principle impossible to be a solution for �niteL and non-zero `. Eq. (D.9) would become

`

2ξ
e
− 2(L−2`)

ξ (. . . )(. . . ) = 0 (D.10)

which cannot be true except when the surface is sharp (` � ξ) and the distance between two QWs
is large (L � `, ξ). In fact, when ` → 0, there are only three domains along the z−direction:
z < −L/2, z ∈] − L/2, L/2[ and z > L/2. So, there are only two continuity relations for four
coe�cients, which means two degenerate solutions for ωr = 0. Another interesting value for ωr is
ωr = 1. One can check that ωr = 1 is always a solution of Eq. (D.9) for any parameters. So, one also
retrieves automatically the bulk spectrum,E = ±

√
~2v2k2

‖ + ∆2
0, within the model.

D.2 Energy splitting for the topological state

I consider �rst a sharp surface when `� ξ and derive a formula to evaluate the mass gap of the chiral
mode. To do so, one can develop Eq. (D.9) in terms `/ξ and suppose in the �rst approximation that
ωr is at most of same order of

√
`/ξ. After some algebra, one has

2∆E = 2∆0e
−L
ξ

√
1 +

4`2

3ξ2
. (D.11)

Next, I calculate the energy splitting for the n = 0 state for a smooth surface (` > ξ) to the �rst-
order in perturbation theory. As explained in the main text, the leading order of perturbation to open
a gap is given by the process that the chiral state is weakly a�ected by the deviation of the potential
Uλ(z) from ∆2

0 in the exponential tail.
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D Calculations for double Dirac quantum well

Consider, for example, the chirality λ = +, in which the n = 0 state is located in the left QW. The
wavefunction is centered at z = −L/2 of form

χ0
+ ∼

{
e−(z+L/2)2/2ξ` for |z + L/2| < `

e−|z+L/2|/ξ for |z + L/2| > `,
(D.12)

This wavefunction represents the exact zero-energy state when the QW potential is constant when
z > −L/2 + ` so thatU+(z > −L/2 + `) = ∆2

0, i.e., when there is no second QW. The other QW
at z = L/2 therefore gives rise to a deviation

∆U+(z) = ∆2
0

[(
ξ

`
− 1

)
+

(
2z − L

2`

)2
]
, (D.13)

and the deviation in energy of the zero mode can be calculated as

∆E2
0 =

∫ ∞
−∞

dz χ0∗
+ (z)∆U+(z)χ0

+(z). (D.14)

In terms of ∆ω2
r , the formula reads

∆ω2
r = A2 ξ

3

2`2
e
− 2L−`

ξ

[
sinh

(
2`

ξ

)
− 2`

ξ
e
− 2`
ξ

]
(D.15)

whereA is the normalization factor of the wavefunction χ0
+:

A−2 =
√
π`ξ erf

(√
`

ξ

)
+ ξ e

− `
ξ (D.16)

where erf(x) is the error function. When `/ξ � 1, we have

∆E0 =
∆0

2π1/4

(
ξ

`

)5/4

e
−Le�

ξ (D.17)

where Le� is now L − 1.5`. One can easily remark that this formula captures the exponential decay
of E0 as a function of L/ξ. In the other hand, the formula (D.17), though limited at the �rst order
of perturbation, gives a rather good approximation to the result by the secular equation Eq. (D.9)
especially when `/ξ is not too large [green line in Fig. 4.8(b)]. The reason for the discrepancy is that
higher order contributions in perturbation theory are non-negligible whenLe� becomes smaller. In a
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D.2 Energy splitting for the topological state

tunneling point of view, since the energy spacing between the n = 1 VP states and the chiral state is a
decreasing function of `/ξ, the hybridization between them is thus stronger with increasing `/ξ.
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E Magneto-optical conductivity of 2D
topological heterojunction

In this appendix, I show the details of calculations of the optical conductivity of the 2D toy model given
in Chapter 4 in the absence and the presence of a magnetic �eld. The idea is to show how the machinery
of the Kubo formula (3.12) works in a concrete example. The calculations for 3D heterojunctions have
been exactly performed in the same way as shown in detail in the supplementary material of [159].

For notational simplicity, ~ = 1. The temperature is set to be zero and the chemical potential is at
the charge neutrality point.

E.1 Wavefunctions of the 2D toy model

E.1.1 In the absence of a magnetic field

The Hamiltonian to study is

HT = v

[
ky

√
2

`S
â†

√
2

`S
â −ky

]
(E.1)

The eigenstates have the shape of

|ψλn〉 =

(
aλ1,n|n〉

aλ2,n|n− 1〉

)
if n ≥ 1

|ψ0〉 =

(
a1,0|0〉

0

)
if n = 0 (E.2)

with λ = ±. In this basis, the Hamiltonian becomes

HT,n = v

[
ky

√
2n
`S√

2n
`S

−ky

]
= v

√
k2
y +

2n

`2S

[
cosαn sinαn

sinαn − cosαn

]
(E.3)
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where

if n ≥ 1 cosαn =
ky√

k2
y + 2n

`2S

sinαn =

√
2n
`S√

k2
y + 2n

`2S

,

if n = 0 cosα0 = 1

sinα0 = 0

so that αn ∈ [0, π]. The corresponding eigenvectors are

ψ+
n =

(
cos αn2
sin αn

2

)
if n ≥ 1 (E.4)

ψ−n =

(
− sin αn

2

cos αn2

)
(E.5)

ψ0 =

(
1

0

)
if n = 0 (E.6)

E.1.2 In the presence of a magnetic field

The Hamiltonian is

HT = v

[
ky cos θ

√
2

`T
â†

√
2

`T
â −ky cos θ

]
(E.7)

where the de�nition of `T is given by (5.9). The eigenstates have the form of

|ψλn〉 =

(
aλ1,n|n− 1〉
aλ2,n|n〉

)
if n ≥ 1

|ψ0〉 =

(
0

a2,0|0〉

)
if n = 0 (E.8)

The Hamiltonian in this basis reads

HT,n = v

[
ky cos θ

√
2n
`T√

2n
`T

−ky cos θ

]
= v

√
k2
y cos2 θ +

2n

`2T

[
cosβn sinβn

sinβn − cosβn

]
(E.9)
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where

if n ≥ 1 cosβn =
ky cos θ√

k2
y cos2 θ + 2n

`2T

sinβn =

√
2n
`T√

k2
y cos2 θ + 2n

`2T

,

if n = 0 cosβ0 = 1

sinβ0 = 0

so that βn ∈ [0, π]. The corresponding eigenvectors are

ψ+
n =

(
cos βn2
sin βn

2

)
if n ≥ 1 (E.10)

ψ−n =

(
− sin βn

2

cos βn2

)
(E.11)

ψ0 =

(
1

0

)
if n = 0 (E.12)

E.2 Derivation of the selection rules

E.2.1 In the absence of a magnetic field

The velocity operators are

v̂x = ∇kxHT = vσx (E.13)

v̂y = ∇kyHT = vσz (E.14)

The matrix elements are evaluated below

〈ψλ′m |v̂x|ψλn〉 = v(aλ
′

1,ma
λ
2,nδm,n−1 + aλ

′
2,ma

λ
1,nδm−1,n) (E.15)

〈ψλ′m |v̂y|ψλn〉 = v(aλ
′

1,ma
λ
1,nδm,n − aλ

′
2,ma

λ
2,nδm−1,n−1). (E.16)
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The selection rules are thus

Polarization along the x-axis: n→ n± 1 (E.17)

Polarization along the y-axis: nλ → n−λ (E.18)

E.2.2 In the presence of a magnetic field

The velocity operators read

v̂x = ∇kxHT = vσx (E.19)

v̂y = ∇kyHT = v cos θ σz − v sin θ σy (E.20)

The matrix elements then have the form of

〈ψλ′m |v̂x|ψλn〉 = v(aλ
′

1,ma
λ
2,nδm−1,n + aλ

′
2,ma

λ
1,nδm,n−1) (E.21)

〈ψλ′m |v̂y|ψλn〉 = v[cos θ(aλ
′

1,ma
λ
1,n − aλ

′
2,ma

λ
2,n)δm,n

+ i sin θ(aλ
′

1,ma
λ
2,nδm−1,n + aλ

′
2,ma

λ
1,nδm,n−1)] (E.22)

The selection rules are

Polarization along the x-axis: n→ n± 1

Polarization along the y-axis: nλ → n−λ

n→ n± 1

E.3 Optical conductivity in the absence of a magnetic field

E.3.1 Polarization along the x-axis

The Kubo formula is

<[σxx(ω 6= 0)] =
πe2

ω

∑
m,n∈N

(n,λ),(m,λ′)

∫ +∞

−∞

dky
2π

(fD(Eλn)− fD(Eλ
′

m))|〈ψλ′m |v̂x|ψλn〉|2

× δ
[
ω − (Eλ

′
m − Eλn)

]
. (E.23)
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E.3 Optical conductivity in the absence of a magnetic field

This expression is an even function of ω, one can thus suppose ω > 0 and focus on the absorption
(Eλ′m > Eλn). Since the temperatureT = 0, the Fermi-Dirac distributionfD is the Heaviside function.
The sum can be divided into three parts:

∑
m,n∈N

(n,λ),(m,λ′)

∫ +∞

−∞

dky
2π

. . . =
∑
m,n≥1

(n,−),(m,+)

∫ +∞

−∞

dky
2π
· · ·+

∑
(0,0),(m,+)

∫ 0

−∞

dky
2π

. . .

+
∑

(n,−),(0,0)

∫ +∞

0

dky
2π

. . . .

Therefore, one can evaluate them separately.

The �rst contribution is∑
m,n≥1

(n,−),(m,+)

. . . =
∑
m,n≥1

(n,−),(m,+)

v2(a+
1,ma

−
2,nδm,n−1 + a+

2,ma
−
1,nδm−1,n)2δ

[
ω − (E+

m − E−n )
]

=
∑
m,n≥1

(n,−),(m,+)

v2(cos
αm
2

cos
αn
2
δm,n−1 − sin

αm
2

sin
αn
2
δm−1,n)2δ

[
ω − (E+

m − E−n )
]

=
∑
m≥1

v2 cos2 αm
2

cos2 αm+1

2
δ
[
ω − (E+

m + E+
m+1)

]
+
∑
n≥1

v2 sin2 αn
2

sin2 αn+1

2
δ
[
ω − (E+

n + E+
n+1)

]
=
∑
n≥1

v2

2
(cosαn cosαn+1 + 1)δ

[
ω − v

√
k2
y +

2n

`2S
− v

√
k2
y +

2(n+ 1)

`2S

]

Using the identity δ(f(x)) =
∑

i
δ(x−xi)
|f ′(xi)| where thexi are the simple roots of the function f(x), one

can do the integrals. I note here

fn(r) = ω − v

(√
r2 +

2n

`2S
+

√
r2 +

2(n+ 1)

`2S

)
(E.24)

with the roots
rn,± = ± 1

2`2Sωv

√
`4Sω

4 − 4(2n+ 1)`2Sω
2v2 + 4v4 (E.25)

and

|f ′n(rn,+)| = |f ′n(rn,−)| = vrn,+

 1√
r2
n,+ + 2n

`2S

+
1√

r2
n,+ + 2(n+1)

`2S

 (E.26)
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These roots exist if and only if the photon energy can overcome the gap. Finally, one has

∑
m,n≥1

(n,−),(m,+)

∫ +∞

−∞

dky
2π

. . . =
∑
n≥1

∫ +∞

−∞

dky
2π

v2

2
(cosαn cosαn+1 + 1)

× δ

[
ω − v(

√
k2
y +

2n

`2S
+

√
k2
y +

2(n+ 1)

`2S
)

]

=
∑
n≥1

∫ +∞

−∞

dky
2π

v2

2
(cosαn cosαn+1 + 1)

δ(ky − rn,+) + δ(ky − rn,−)

|f ′n(rn,+)|

×Θ

(
ω −
√

2v

`S
(
√
n+
√
n+ 1)

)

=
∑
n≥1

v2

4π|f ′n(rn,+)|
[(cosαn(rn,+) cosαn+1(rn,+) + 1)

+ (cosαn(rn,−) cosαn+1(rn,−) + 1)]×Θ

(
ω −
√

2v

`S
(
√
n+
√
n+ 1)

)

=
∑
n≥1

v2

2π|f ′n(rn,+)|
(cosαn(rn,+) cosαn+1(rn,+) + 1)

×Θ

(
ω −
√

2v

`S
(
√
n+
√
n+ 1)

)

Similar calculations lead to the two other contributions to the total optical conductivity. The second
contribution is

∑
(0,0),(m,+)

∫ 0

−∞

dky
2π

. . . =
∑

(0,0),(m,+)

∫ 0

−∞

dky
2π

v2(a+
1,ma2,0δm,−1 + a+

2,ma1,0δm−1,0)2

× δ
[
ω − (E+

m − E0)
]

=

∫ 0

−∞

dky
2π

v2 sin2 α1

2
δ

[
ω − v

√
k2
y +

2

`2S
− v|ky|

]

=

∫ 0

−∞

dky
2π

v2 sin2 α1

2
× δ(ky − r0,+) + δ(ky − r0,−)

|f ′0(r0,+)|
×Θ

(
ω −
√

2v

`S

)

=
v2

2π|f ′0(r0,+)|
sin2 α1(r0,−)

2
×Θ

(
ω −
√

2v

`S

)
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The third contribution is

∑
(n,−),(0,0)

∫ +∞

0

dky
2π

. . . =
∑

(n,−),(0,0)

∫ +∞

0

dky
2π

v2(a1,0a
−
2,nδ0,n−1 + a2,0a

−
1,nδ−1,n)2

× δ
[
ω − (E0 − E−n )

]
=

∫ +∞

0

dky
2π

v2 cos2 α1

2
δ

[
ω − v

√
k2
y +

2

`2S
− v|ky|

]

=

∫ +∞

0

dky
2π

v2 cos2 α1

2
× δ(ky − r0,+) + δ(ky − r0,−)

|f ′0(r0,+)|
×Θ

(
ω −
√

2v

`S

)

=
v2

2π|f ′0(r0,+)|
cos2 α1(r0,+)

2
×Θ

(
ω −
√

2v

`S

)

The �nal expression for<[σxx] becomes

<[σxx(ω > 0)] =
e2v2

2ω

∑
n∈N

(cosαn(rn,+) cosαn+1(rn,+) + 1)

×
Θ
(
ω −

√
2v
`S

(
√
n+
√
n+ 1)

)
|f ′n(rn,+)|

(E.27)

E.3.2 Polarization along the y-axis

The Kubo formula for<[σyy] reads

<[σyy(ω 6= 0)] =
πe2

ω

∑
m,n∈N

(n,λ),(m,λ′)

∫ +∞

−∞

dky
2π

(fD(Eλn)− fD(Eλ
′

m))|〈ψλ′m |v̂y|ψλn〉|2

× δ
[
ω − (Eλ

′
m − Eλn)

]
=
πe2

ω

∑
n∈N∗

∫ +∞

−∞

dky
2π
|〈ψ+

n |v̂y|ψ−n 〉|2δ(ω − 2E+
n )

(E.28)

The matrix element reads

|〈ψ+
n |v̂y|ψ−n 〉|2 = v2(2 cos

αn
2

sin
αn
2

)2

= v2 sin2 αn

(E.29)
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Denote

gn(r) = ω − 2E+
n = ω − 2v

√
r2 +

2n

`2S
. (E.30)

The corresponding roots are

rn,± = ±

√
`2Sω

2 − 8nv2

2`Sv
(E.31)

and

|g′n(rn,+)| = |g′n(rn,−)| = 2v

√
1− 8nv2

`2Sω
2

(E.32)

The integral to do becomes∫ +∞

−∞

dky
2π
|〈ψ+

n |v̂y|ψ−n 〉|2δ(ω − 2E+
n ) =

∫ +∞

−∞

dky
2π

v2 sin2 αn
δ(ky − rn,+) + δ(ky − rn,−)

|g′n(rn,+)|

×Θ

(
ω − 2

√
2nv

`S

)

=
v2

π|g′n(rn,+)|
sin2 αn ×Θ

(
ω − 2

√
2nv

`S

)

Finally, the real part of σyy is

<[σyy(ω > 0)] =
e2v2

ω

∑
n∈N∗

sin2 αn ×
Θ
(
ω − 2

√
2nv
`S

)
|g′n(rn,+)|

(E.33)

E.4 Optical conductivity in the presence of a magnetic field

E.4.1 Polarization along the x-axis

The Kubo formula has exactly the same form as (E.23). Similarly, one can divide the sum into three
parts:

∑
m,n∈N

(n,λ),(m,λ′)

∫ +∞

−∞

dky
2π
· · · =

∑
m,n≥1

(n,−),(m,+)

∫ +∞

−∞

dky
2π
· · ·+

∑
(0,0),(m,+)

∫ 0

−∞

dky
2π
· · ·+

∑
(n,−),(0,0)

∫ +∞

0

dky
2π

. . .
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E.4 Optical conductivity in the presence of a magnetic field

The �rst part is∑
m,n≥1

(n,−),(m,+)

. . . =
∑
m,n≥1

(n,−),(m,+)

v2(a+
1,ma

−
2,nδm−1,n + a+

2,ma
−
1,nδm,n−1)2δ(ω − (E+

m − E−n ))

=
∑
n≥1

v2

2
(cosβn cosβn+1 + 1)

× δ

(
ω − v

√
k2
y cos2 θ +

2n

`2T
− v

√
k2
y cos2 θ +

2(n+ 1)

`2T

)

Denote

pn(r) = ω − v
√
r2 +

2n

`2T
− v

√
r2 +

2(n+ 1)

`2T
(E.34)

The corresponding roots are

rn,± = ± 1

2`2Tωv

√
`4Tω

4 − 4(2n+ 1)`2Tω
2v2 + 4v4 (E.35)

and

|p′n(rn,+)| = |p′n(rn,−)| = vrn,+

 1√
r2
n,+ + 2n

`2T

+
1√

r2
n,+ + 2(n+1)

`2T

 (E.36)

When one do a change of variable ky cos θ → ky in the integral, the integral has exactly the same
form by a multiplicative factor as that without a magnetic �eld (E.23). However, one has to use a new
de�nition:

cosαn =
ky√

k2
y + 2n

`2T

.

The �nal result reads

<[σxx(ω > 0)] =
e2v2

2ω cos θ

∑
n∈N

(cosαn(rn,+) cosαn+1(rn,+) + 1)

×
Θ
(
ω −

√
2v
`T

(
√
n+
√
n+ 1)

)
|p′n(rn,+)|

(E.37)

where the factor 1/ cos θ is the consequence of the change of variable ky cos θ → ky in the integral.
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E.4.2 Polarization along the y-axis

The matrix element reads

|〈ψλ′m |v̂y|ψλn〉|2 = v2[cos2 θ(aλ
′

1,ma
λ
1,n − aλ

′
2,ma

λ
2,n)2δm,n

+ sin2 θ(aλ
′

1,ma
λ
2,nδm−1,n + aλ

′
2,ma

λ
1,nδm,n−1)2].

(E.38)

The second term in the matrix element yields σxx with a prefactor sin2 θ in σyy . Thus, one only
needs to focus on the �rst term in the matrix element which gives rise to a contribution in the optical
conductivity

πe2

ω

∑
n∈N∗

∫ +∞

−∞

dky
2π

v2 cos2 θ sin2 βnδ(ω − 2E+
n )

Denote

qn(r) = ω − 2E+
n = ω − 2v

√
r2 +

2n

`2T
. (E.39)

The corresponding roots are

rn,± = ±

√
`2Tω

2 − 8nv2

2`T v
(E.40)

and

|q′n(rn,+)| = |q′n(rn,−)| = 2v

√
1− 8nv2

`2Tω
2

(E.41)

Proceed in exactly the same way as before. One can easily retrieve <[σyy] in the presence of a
magnetic �eld using the expression in the absence of a magnetic �eld after the change of variable
ky cos θ → ky . Compared to (E.28), the contribution of the �rst term is

πe2

ω

∑
n∈N∗

∫ +∞

−∞

dky
2π

v2 cos2 θ sin2 βnδ(ω − 2E+
n ) = cos2 θ × e2v2

ω cos θ

∑
n∈N∗

sin2 αn(rn,+)

×
Θ
(
ω − 2

√
2nv
`T

)
|q′n(rn,+)|

(E.42)

with

sinαn =

√
2n
`2T√

k2
y + 2n

`2T

.
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Finally, the real part of σyy reads

<[σyy(ω > 0)] =
e2v2 sin2 θ

2ω cos θ

∑
n∈N

(cosαn(rn,+) cosαn+1(rn,+) + 1)

×
Θ
(
ω −

√
2v
`T

(
√
n+
√
n+ 1)

)
|p′n(rn,+)|

+
e2v2 cos θ

ω

∑
n∈N∗

sin2 αn(rn,+)

×
Θ
(
ω − 2

√
2nv
`T

)
|q′n(rn,+)|

(E.43)

or alternatively,

<[σyy(ω > 0)] = sin2 θ ×<[σxx(ω > 0)]

+
e2v2 cos θ

ω

∑
n∈N∗

sin2 αn(rn,+)×
Θ(ω − 2

√
2nv
`T

)

|q′n(rn,+)|
(E.44)
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Synthèse en français

La pensée n’est qu’un éclair au milieu d’une longue nuit, mais c’est cet
éclair qui est tout.

Henri Poincaré

C’est l’une des découvertes récentes les plus spectaculaires dans le domaine de la physique de la
matière condensée : l’équation de Dirac relativiste pour des particules sans masse ou ses variantes peu-
vent décrire la physique autour du niveau de Fermi de matériaux réels tels que le graphène, les semi-
métaux de Dirac/Weyl, les semi-métaux de lignes nodales, etc. Ces matériaux sont appelés matériaux
de Dirac dans lesquels le traitement mathématique des électrons est parfaitement identique à celui des
particules élémentaires relativistes de la physique des hautes énergies.

L’application de l’équation de Dirac aux matériaux n’est pas seulement béné�que pour la physique
de la matière condensée, mais féconde aussi la physique des hautes énergies. Grâce à l’interaction entre
les électrons et leur réseau cristallin sous-jacent, l’équation de Dirac, même ultrarelativiste, émerge de
manière inattendue dans la description à basse énergie des matériaux de Dirac. Des expériences fonda-
mentales de la physique des particules, qui ne peuvent pas être réalisées en raison des conditions expéri-
mentales inaccessibles ou des coûts astronomiques, deviennent alors concevables dans des matériaux
dans des conditions plus pratiques et économiques. Ainsi des phénomènes qui n’ont pas encore été dé-
couverts en physique des hautes énergies, comme la supersymétrie, peuvent être réalisés en physique de
la matière condensée. En outre, l’hamiltonien de basse énergie des matériaux de Dirac n’est pas limité
par la symétrie de Lorentz contrairement aux particules élémentaires. L’imagination des théoriciens est
ainsi davantage libérée. On peut légitimement considérer des variantes de l’équation originale de Dirac
sans que celles-ci correspondent à des particules élémentaires existantes. Cependant, rien n’empêche
leur apparition en physique de la matière condensée.

Réciproquement, la communauté de la physique de la matière condensée pro�te du formalisme
mathématique déjà établi en physique des particules. Il o�re une compréhension rajeunissante et com-
plémentaire des propriétés électroniques des matériaux. Diverses observations inhabituelles dans les
matériaux de Dirac, qui ne peuvent pas être expliquées dans le cadre de l’équation de Schrödinger, trou-
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vent une explication naturelle et concise par l’équation de Dirac et ses symétries inhérentes. L’application
du formalisme stimule davantage la découverte de divers matériaux de Dirac. En particulier, c’est l’une
des forces motrices pour donner naissance à la théorie des bandes topologiques, un progrès révolution-
naire en physique du solide. De nombreuses propriétés surprenantes, par exemple la correspondance
volume-bord dans les matériaux topologiques, sont également capturées par l’équation de Dirac.

Ces deux aspects de l’équation de Dirac – l’apparition de nouvelles particules et la correspondance
volume-bord dans des matériaux topologiques – constituent l’objet de cette thèse dont l’équation de
Dirac est donc le �l rouge. Dans la première partie, je montre comment la théorie de la relativité re-
streinte s’applique à l’électrodynamique dans les matériaux de Dirac. Dans le chapitre 2 après une
introduction à l’aspect historique de l’équation de Dirac, je passe en revue les travaux antérieurs sur la
renormalisation relativiste dans le graphène soumis à un champ électrique et un champ magnétique
croisés [53]. Sur la base de cet exemple simple, j’introduis les transformations unitaires et hyperboliques
qui se généralisent à d’autres matériaux de Dirac tels que les semi-métaux de Weyl, le graphène avec gap
et inclinaison et les semi-métaux de lignes nodales dispersives avec gap. Alors que des travaux antérieurs
se sont intéressés au système sans gap, cette thèse se concentre sur la renormalisation des énergies dans
le système avec gap. On trouve en utilisant correctement le formalisme mathématique que le gap du
système semble renormalisé en présence d’un champ magnétique par le facteur de Lorentz, γ, qui est
déterminé par l’inclinaison dans le hamiltonien. Paradoxalement, le gap est une des propriétés intrin-
sèques du matériau qui ne devrait pas être modi�ée par une perturbation extérieure faible. Surtout,
dans certains semi-métaux de lignes nodales dispersives avec gap, la renormalisation du gap dépend de
l’orientation du champ magnétique par rapport aux lignes nodales. Autrement dit, le gap du système
est contrôlable par le champ magnétique. Pour comprendre ce paradoxe, j’explique la renormalisation
relativiste dans le langage de la physique de la matière condensée, ce qui complète la compréhension
des phénomènes d’intérêt. D’une part, quand on applique un champ magnétique, le spectre du sys-
tème est quanti�é sous la forme des niveaux de Landau. Ces derniers peuvent être retrouvés semi-
classiquement en utilisant la relation d’Onsager qui relie la quanti�cation en orbites des cyclotrons à la
surface de Fermi. La renormalisation des énergies est donc interprétée comme la retouche de la forme
de la surface de Fermi par le terme de l’inclinaison dans le hamiltonien des matériaux de Dirac. D’autre
part, la renormalisation du gap est en e�et le résultat de l’existence des deux types de gap, direct et in-
direct, induite par l’inclinaison. Par exemple, pour un cône de Dirac 2D gappé et incliné [voir Fig.
1(a)], le gap direct est 2∆ mais la séparation minimale entre les bandes de valence et de conductions est
2∆/γ, i.e., le gap indirect. Quand le champ magnétique est présent, les bandes deviennent les niveaux
de Landau. Après avoir extrapolé le champ magnétique à zéro, le gap extrait est donc le gap indirect,
d’où la renormalisation du gap [voir Fig. 1(b)]. Expérimentalement, le gap direct est sondé par la spec-
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troscopie infra-rouge sans champ magnétique. En revanche, le gap indirect n’est que mesurable par la
spectroscopie magnéto-optique, d’où la motivation de l’étude des propriétés spectroscopiques.

Figure 1: (a) Spectre du graphène gappé et incliné pour ky = 0 sans champ magnétique. Le gap direct marqué
en rouge est 2∆ et le gap indirect en vert est 2∆′ = 2∆/γ. (b) Niveaux de Landau du graphène gappé
et incliné.

Dans le chapitre 3, j’inclus de façon succincte une introduction aux approches théoriques de la spec-
troscopie. En particulier, j’y élabore l’étude théorique de la spectroscopie magnéto-optique d’un semi-
métal de lignes nodales avec gap, NbAs2. Il s’agit d’un projet en collaboration avec mes collègues du
LNCMI de Grenoble qui ont réalisé des mesures magnéto-optiques fascinantes de NbAs2. Dans ce
cadre, la renormalisation des gaps dans ce matériau a été clairement observée (voir Fig. 2), en accord
quantitatif avec nos résultats théoriques

∆mesuré =
∆direct
γ(θ)

où γ dépend de l’orientation du champ magnétique appliqué dé�nie par l’angle θ. Dans le même
chapitre, je présente aussi la physique du plasmon et l’approche théorique pour l’étudier, i.e., approxi-
mation des phases aléatoires. Cette méthode est utile pour discuter le plasmon de surface sur la surface
des semi-métaux de Weyl dans le dernier chapitre.

Dans la deuxième partie, je montre que l’équation de Dirac est un cadre théorique uni�cateur pour
étudier les états de surface des matériaux topologiques surtout des états de Volkov-Pankratov. Ces
derniers sont des états de surface massifs qui émergent à des surfaces douces des matériaux topologiques
en plus des états de surface topologiques. Leur présence est en principe universelle dans toutes les
hétérojonctions topologiques, i.e. dans des interfaces douces entre une phase topologique et une phase
topologiquement triviale. Dans le chapitre 4, je propose des perspectives particulières pour compren-
dre l’origine des états de Volkov-Pankratov. Je commence par montrer un point de vue donné par les
travaux antérieurs de Sergueï Tchoumakov [132], qui a initié les travaux sur ces états massifs dans notre
groupe au cours de sa thèse : la douceur de la surface joue le rôle d’un pseudo-champ magnétique quan-
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Figure 2: Comparaison entre le gap mesuré par nos collaborateurs du LNCMI à Grenoble (points avec barre
d’erreur) et celui prédit par les calculs théoriques. Figure dû à Jan Wyzula du LNCMI.

ti�ant les bandes de surface en bandes de Landau. Ensuite, j’élabore cette perspective en regardant la
réduction de la dimensionnalité, ce qui m’a inspiré à interpréter l’origine des états de Volkov-Pankratov
en termes de puits quantiques appelés puits quantiques de Dirac [137]. Cette dernière perspective,
complémentaire du concept hétérojonctions topologiques [72], a l’avantage de permettre de discuter de
manière intuitive l’e�et tunnel entre les états de Volkov-Pankratov situés aux deux côtés d’une tranche
d’un matériau topologique. En particulier, la protection topologique des états topologiques est in-
terprétée comme l’absence d’e�et tunnel résonant (voir Fig. 3). En outre, je développe aussi le point
de vue d’un mathématicien-physicien qui pourrait traiter ce problème en étudiant une équation dif-
férentielle dans le cadre de la supersymétrie. En�n, une approche de liaisons fortes est présentée pour
mettre en évidence davantage la présence des états de Volkov-Pankratov et l’hybridation entre les états
de Volkov-Pankratov localisés sur les deux surfaces d’un isolant topologique 3D d’épaisseur �nie.

Dans le chapitre 5, je discute les propriétés spectroscopiques des états de Volkov-Pankratov en util-
isant les techniques présentées au chapitre 3. La signature dans la conductivité (magnéto-)optique
révélant la présence d’états de Volkov-Pankratov s’avère être une preuve irréfutable pour les distinguer
des états de surface triviaux [159]. En particulier, quand un champ magnétique s’oriente à la direction
perpendiculaire à la surface, la conductivité optique se transforme des signaux réguliers en une série
des pics divergents (voir Fig. 4). Finalement, j’étudie la plasmonique à la surface du semi-métal de Weyl
[176]. En plus du plasmon d’arc de Fermi bien connu, les états de Volkov-Pankratov produisent des
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Figure 3: Illustration du double puits de Dirac. Les états chiraux topologiques ont une chiralité dé�nitive,
représentée par deux couleurs di�érentes. Par contre, les états de Volkov-Pankratov ont à la fois deux
chiralités opposées. Pour une chiralité donnée, l’e�et tunnel est donc résonant entre les états de Volkov-
Pankratov, ce qui n’est pas le cas des états chiraux.

plasmons inter- et intra-bandes. De façon inattendue, l’hybridation entre l’arc de Fermi et les plasmons
de Volkov-Pankratov transfère la non-réciprocité de l’arc de Fermi aux plasmons de Volkov-Pankratov,
qui devraient être réciproques sans cette hybridation. Concrètement, le plasmon se propage avec une
vitesse di�érente dans les directions opposées.

Figure 4: Conductivité optique de la surface douce d’un isolant topologique 3D en présence d’un champ mag-
nétique perpendiculaire à la surface.

Il y a plusieurs rami�cations possibles de ma recherche e�ectuée dans le cadre de cette thèse. Une
branche possible consiste à poursuivre l’idée de « faire de la physique des hautes énergies dans des
systèmes à basse énergie ». Une branche intéressante consiste à appliquer non seulement la relativité
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restreinte mais aussi la relativité générale aux matériaux. Une autre branche possible consiste à appro-
fondir les possibilités o�ertes par les états de Volkov-Pankratov. Dans cette thèse, je n’ai discuté que
leurs propriétés spectroscopiques. Les propriétés de transport des états de Volkov-Pankratov méritent
d’être étudiées en détail dans un futur proche. Finalement, les e�ets d’interaction en présence d’états
de Volkov-Pankratov pourraient être l’objet de futures études.
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Acronyms

0,1,2,3D 0,1,2,3 dimensions
ARPES angle-resolved photoemission spectroscopy
DFT density functional theory
DOS density of states
EELS electron energy loss spectroscopy
FA Fermi arc
hBN hexagonal boron nitride
JDOS joint density of states
NI topologically trivial normal insulator
QW quantum well
RPA random phase approximation
SOC spin-orbit coupling
STM scanning tunneling microscope
TI topological insulator
TRS time-reversal symmetry
VP Volkov-Pankratov
WSM Weyl semimetal
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List of Symbols

θ, φ Angles
{A,B} Anti-commutator {A,B} = AB +BA

A Berry connection
B Berry curvature
〈ψ|, |ψ〉 Bra and ket of the eigenstate ψ
[A,B] Commutator [A,B] = AB −BA
σij Conductivity tensor
ωc Cyclotron frequency
ε Dielectric function
vD Drift velocity
E Electric �eld
e Elementary charge
E Energy
v, vF Fermi velocity
fD Fermi-Dirac distribution function
c†, c Fermionic creation and annihilation operators
γµ Gamma matrices in the Dirac equation
Ĥ,H Hamiltonian operator, matrix
~ Reduced Planck constant
H.c. Hermitian conjugate
i Complex number with i2 = −1

I2, I4 Two-by-two, four-by-four identity matrix
a†, a, b†, b Bosonic creation and annihilation operators
γ Lorentz factor
B Magnetic �eld
`B Magnetic length
ηµν Minkowski metric
p Momentum

183



List of Symbols

∇ Nabla operator
|n〉 Number state de�ned by the corresponding ladder operators
σi, τj Pauli matrices with i, j = 1, 2, 3 or x, y, z
⊥, ‖ Perpendicular and parallel
π 3.141592657. . .
r Position
V (r, t) Electric potential at position r and time t
A Potential vector
ω Angular frequency
β Rapidity
<,= Real and imaginary part
∆ Dirac mass and/or half of the band gap
ωr Reduced energy
` Characteristic length scale of smoothness
c Speed of light
χij Charge susceptibility tensor
w Tilting speed
n̂ Unit vector
ψ(r, t) Wavefunction at position r and time t
q,k Wavevectors
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Titre: Propriétés spectroscopiques des matériaux topologiques étudiées à l’aide de l’équation de Dirac

Mots clés: Matériaux topologiques, Équation de Dirac, Spectroscopie magnéto-optique, États de surface

Résumé: L’équation de Dirac et ses variantes sont om-
niprésentes dans la description à basse énergie des matéri-
aux topologiques incluant les isolants topologiques et les
semi-métaux topologiques mais aussi leurs états de surface
protégés. Leurs propriétés spectroscopiques pourraient être
étudiées théoriquement en se basant sur le Hamiltonien de
Dirac correspondant. D’une part, grâce à la symétrie de
Lorentz sous-jacente des Hamiltonians de Dirac, la renor-
malisation relativiste se manifeste sous la forme de la renor-
malisation de gap qui o�re une signature expérimentale
claire et directe dans la spectroscopie magnéto-optique.

D’autre part, la théorie de la réponse linéaire appliquée
au Hamiltonien de Dirac correspondant prédit une signa-
ture magnéto-optique des états de surface massifs au-delà
des états de surface chiraux et topologiquement protégés.
Ces états de surface massifs, qui sont aussi appelés états
de Volkov-Pankratov, émergent génériquement aux surfaces
douces des matériaux topologiques. L’origine de leur appari-
tion peut être considérée de façon équivalente comme une
conséquence soit d’un pseudo-champs magnétique soit d’un
e�et du con�nement quantique.

Title: Dirac equation approach to the spectroscopic properties of topological materials

Keywords: Topological materials, Dirac equation, Magneto-optics, Surface states

Abstract: The Dirac equation and its variants are ubiq-
uitous in the low-energy description of topological materi-
als ranging from topological insulators to semimetals as well
as their topologically protected surface states. Their spectro-
scopic properties can be studied theoretically with the help
of the corresponding Dirac Hamiltonian. On the one hand,
thanks to the underlying Lorentz symmetry of the Dirac
Hamiltonians, the relativistic renormalization manifests it-
self as the renormalization of the band gap resulting in a

clear-cut experimental signature in magneto-optics. On the
other hand, the magneto-optical signature of additional mas-
sive surface states of topological materials are also predicted
using linear response theory and the corresponding Dirac
Hamiltonians. These massive states called Volkov-Pankratov
states arise generically on a smooth surface of topological ma-
terials. Their emergence can be equivalently seen as a conse-
quence of a pseudo-magnetic �eld and/or of a quantum con-
�nement e�ect.
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