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Chapter 1.  General Introduction 

1.1. Foreword 

Developing a machine that possesses human-like consciousness has been the 

ultimate goal of artificial intelligence (AI) since the computer was invented. During the 

past two decades, tremendous efforts have been put out to explore the models for 

artificial consciousness (Churchland, 1984; Crick & Clark, 1994; Block, 1995; 

Chalmers, 1996; Aleksander, 2001; Edelman & Tononi, 2003; Baars & Franklin, 2009; 

Fekete & Edelman, 2011). In recent years, it has already been applied to numerous areas 

such as autonomous cars, virtual personal assistants, smart hospitals, logistics robot and 

so on. Where, computer vision, natural language processing, sound recognition, expert 

system and some other technologies are the cornerstones supported these applications. 

These technologies are collectively referred to as AI technology. 

Generally, AI can be divided into two categories (Holland, 2009; Seth, 2009): weak 

artificial intelligence and strong artificial intelligence. The weak AI does not have the 

ability of reasoning and problem solving, can only process one specific kind of problem. 

The strong AI is the main goal of artificial intelligence research in recent years, it should 

have the ability to perform general smart behavior and can percept and aware like 

human beings in every aspect. At present, we are in the era of weak artificial intelligence 

turning to strong artificial intelligence. It is possible that adding conscious awareness, 

or information processing capabilities associated with the conscious mind, would open 

the door to a much more powerful and general AI technology (Reggia, 2013). 

There are two main demands of studying consciousness of machines, the first is to 

improve our comprehension of the nature of consciousness (Edelman & Tononi, 2003; 

Reggia, 2013), the second motivation for work in artificial consciousness is the 

expectation of creating an intelligent machine (McDermott, 2007). For the first 

demands, research works on artificial consciousness generally believe that the objective 
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methods of science will never be able to reveal the core of consciousness due to its 

subjective nature (McGinn, 2004). While researchers observe that computational 

modeling specific parts of the human brain (consciousness) might be useful for us to 

understand how does the brain works. For the second, designing and manufacturing 

machines with consciousness are the technological goal. While this expectation is 

obstructed of current AI techniques. Although benefit from the tremendous 

advancement of computer technology, neurobiology and neuropsychological, the 

application of intelligent machine dramatically increased in numerous domains in the 

past decades. However, the level of intelligence of these applications is far from 

reaching the human’s abilities. 

Regardless of the various applied scene, cognition of the surrounding environment 

is the key component for all machines with artificial consciousness. Cognition is one 

of the mechanisms of the human brain to process acquired information and make them 

understandable and repeatable. Providing such a human-like mechanism to machines 

or robots will effectively enhance their perceptual performance in a real environment 

as well as the level of intelligence. 

In general, cognition is the final goal of the brain for information processing, it 

contains three steps to realize the ultimate objective: 1) information acquisition or 

detection, 2) information recognition, and 3) respond to information. Human auditory 

and visual perception systems are the major channels of cognition to percept the 

environment. It is well known that these perception systems are a highly intelligent, 

efficient system that could perceive massive information or stimuli while sensing the 

surrounding environment at the same time. Yet, current research works are mainly 

focused on modeling human-like visual cognition and perception, the study of modeling 

auditory system is still in its infancy. This is because that establish a computational 

auditory cognition system is such a great challenge to artificial intelligence as well as 

the difficulties of processing complex environmental sounds in a biologically inspired 

way. Moreover, most of the existing research works which aim at establishing auditory 

models are just partial function modeling of the hearing system, like auditory attention 

models and sound recognition models. Consequently, the development of novel and the 



3 

comprehensive bio-inspired auditory system should be made to provide better cognition 

ability for artificial machines. 

The human brain is a sophisticated system consists of tremendous neurons. All the 

information obtained by visual and acoustic channels will be uninterruptedly processed 

by the brain. However, human beings are surrounded and exposed to a large amount of 

information at all times, even when we fall asleep, neural resources are limited in our 

brain and not all stimuli can be processed and need to be processed to the same extent. 

Mechanisms exist to prompt attention toward the specific conspicuous events, thus 

providing a weighted representation of our environment (Desimone & Duncan, 1995). 

This mechanism is the selective attention mechanism and is considered as a key 

component of cognition as it allows the perception in the auditory channel to work 

efficiently for information acquirement. In this thesis, this mechanism is used as the 

fundamental basis for the sounds detection module of the whole system, where novel 

techniques are researched to obtain better performance in sound events acquisition. 

Regarding the second process step of establishing an artificial auditory cognition 

system, deep learning-based algorithms are exploited. Deep learning-based techniques 

have been proved to be more efficient than conventional methods in solving complex 

classification problems in many domains. Multiple scientists choose deep learning 

models, such as CNN, in sound classification problems. CNN can solve the limitations 

of conventional classifiers in multiple learning and classification problems. However, 

there is still a long way to go when compared with CNN based image classification 

algorithms. For example, the longer temporal context information still cannot be 

captured by the original CNN. However, from the classification accuracy derived from 

the recently published works, it is clear that the CNN-based ESC systems still have 

great potentials for making further progress. Hence, novel CNN-based ESC techniques 

will be further researched in this thesis. 

Concerning computational modeling the third step of cognition, recent research 

works have shown that long-term life experiences affect the ability to hear in 

background noise (Anderson, White-Schwoch, Parbery-Clark, & Kraus, 2013). To be 

specific, compared with the unconsciously detected salient sound events, the sounds 
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which have been heard can attract our attention more easily. This result closely parallels 

theories from the ‘top-down’ attention mechanism, which points out that subjective 

consciousness also has a great influence on attention. For example, listeners can easily 

attend to one speaker in a multi-speaker environment (O’sullivan et al., 2014). This 

phenomenon is also known as the cocktail party problem which pointed out that prior 

knowledge should be regarded as a crucial component of realizing artificial auditory 

cognition. Consequently, the impact of experience or knowledge should be taken into 

consideration in modeling respond function for an artificial auditory cognition system. 

1.2. Biological Background 

Ears are the major sensory of human cognition system, they cope with a myriad 

stimulus of the surrounding environment into signals of nerve impulses which 

generated by different kinds of nerve cells at all time, even when we are falling asleep. 

Compared with visual signals, sound signals will enable mankind to be aware of and 

avoid danger beforehand or when human vision is not available in a certain environment. 

From a physical point of view, sounds are the pressure wave that propagates through a 

medium (such as the air) and can be perceived by the human or animal auditory system. 

A sound has three main physical attributes: pitch, loudness and timbre. These physical 

characteristics are measurable properties of the sound signal while cognition is the 

reflection of the listener's mind on the sound. 

Human is only consciously percept part of the ongoing stream of auditory 

information being received at each moment. The attention mechanisms select what we 

attend to and have the ability to focus on important aspects of sensory information. For 

example, listeners can easily attend to one speaker in a multi-speaker environment. 

Tremendous research in cognition and consciousness have proved that human attention 

is controlled by bottom-up attention and top-down attention (Buschman & Miller, 2007; 

Bayne, Cleeremans, & Wilken, 2014). These attention mechanisms process acquired 

information, weaken irrelevant neural activity and inhibit activity representing external 

objects (Kanwisher & Wojciulik, 2000; Reynolds & Chelazzi, 2004).  
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The bottom-up attention mechanism is also known as stimuli-driven attention, or 

saliency driven attention. It is the attention mechanism which transfers low-level 

information into higher-level information through many processing levels in the human 

brain. In this manner, human attention is elicited by conspicuous stimuli generated by 

the salient events in the environment, then, higher-level information such as response 

decision and next step activities could be achieved (C.-C. Liu, Doong, Hsu, Huang, & 

Jeng, 2009). On the contrary, top-down attention underlies our ability to concentrate on 

relevant stimuli and neglect irrelevant conspicuous events. The widely accepted opinion 

is that top-down, or goal-directed attention is undeniably important in volitionally 

selecting stimuli that match current task demands (Awh, Vogel, & Oh, 2006). Top-down 

modulation of sensory processing is not an intrinsic property of sensory cortices but 

rather relies on long-range inputs from and interactions with a network of ‘control’ 

regions in our brain (Gazzaley & Nobre, 2012). To be specific, life experience and 

memories can influence auditory cognition processing directly. 

Attention and cognition are not the same processes, yet, they are generally closely 

connected and interrelated. Thereupon, multiple research works concentrate on 

modeling artificial auditory cognition have engaged in modeling acoustic attention as 

the first step of establishing auditory cognition models is understandable. Early studies 

have established some models to illustrate selective attention mechanism exists in both 

visual and auditory cognition system. For example, the attention model (Cherry, 1953) 

and response selection model (Treisman, 1960). The major assumption of these models 

is the ability of information-processing mechanisms in the human brain is limited. 

Therefore, such models could avoid the “bottleneck” of cognition in cognitive 

psychology research by selecting only conspicuous auditory or visual stimuli to be 

processed by a higher-level processing mechanism. 

(Gray, Buhusi, & Schmajuk, 1997) claimed that the different processing provided 

to new stimuli is the key element in a stimulus entering cognition. It is pointed out in 

this work that a novel stimulus activates specific neural circuitry forming a separate 

novelty system that increases the attention system’s activity and facilitates learning. 

This transition from low-level attention to higher-level attention is considered as the 
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variation from unconscious processing to conscious processing. The model presented 

here has been mapped onto neuroanatomical structures, and it has been related to latent 

inhibition occurring during classical conditioning and to the cognitive abnormalities 

that are characteristic of schizophrenia (Gray et al., 1997).  

A model simulated the conscious processing occurs from the symbol grounding 

aspect of attention mechanisms is proposed by (Kuipers, 2005). It is described in this 

study that the cognition mechanism is surrounded by massive, continuous amounts of 

stimulus and events, it is a major problem of cognition processing to select the valuable 

information which deserves attention. In this work, the model applies symbolic memory 

storage and reasoning methods, this selective attention can be applied through a tracker. 

The tracker is a symbolic indicator of the data that preserves a relationship between 

low-level representation and symbolically, high-level representation in the data over 

time. In fact, this model partially simulates the attention mechanism through 

performing symbol grounding and symbolic representations to choose temporal-spatial 

segments of acquired data are efficient to mimic consciousness. The claim is that any 

system organized in this fashion, having both bottom-up and top-down attention 

mechanisms that create trackers along with a reasoning system of control laws that 

makes use of these grounded symbols, is a truly practical conscious model. 

Apart from these theoretical models in cognition modeling research, multiple 

researchers from various relevant domains believed that selective attention mechanism 

enables human beings to focus on the most salient events occurred in the surrounding 

environment unconsciously but fast. It could also be the most efficient mechanism in 

searching the expectation objects when we explorer the natural world (J. Wang, 2015). 

(C. Kayser, Petkov, Lippert, & Logothetis, 2005) proposed an auditory saliency 

detection model based on the auditory saliency-driven attention mechanism. This 

model converts sound waveforms to a time-frequency representation, which is called 

an “intensity map” in this work. Then, three acoustic features: intensity, frequency 

contrast and temporal contrast are extracted on different scales with different sets of 

filters. The center-surround mechanism and normalization are applied to promote those 

feature maps containing prominent values. These maps are combined across different 



7 

scales to yield the saliency maps for each feature sets. Finally, linear combined the three 

saliency maps of each feature to generate the final auditory saliency map. Experiment 

results showed that this model could mimic several basic properties of the human 

auditory perception mechanism.  

Afterward, based on Kayser’s work, two more similar auditory attention models 

were proposed by (Kalinli & Narayanan, 2007) and (Duangudom & Anderson, 2007). 

In these works, saliency is considered as the key component for the auditory attention 

mechanism in acquiring the surrounding information. However, it is a common 

experience that during we focus on one salient event, our attention can be involuntarily 

engaged by visual or acoustic changes occurring unexpectedly in the environment 

(Escera, Alho, Winkler, & Näätänen, 1998; Schröger, 1996). This attention shift 

phenomenon of our cognitive-perceptual mechanism could also be introduced as 

deviancy detection. It should be noticed that deviancy can only be defined in relation 

to something regular (Winkler & Schröger, 2015). A novel event is determined with 

deviancy should satisfy that such event breaks the existing status of the current 

environment which it appears. 

In the auditory system, deviations range from simple cases to complex ones, such 

as breaking a successive sound, and someone interrupting others' conversations. The 

deviancy should also take the environment into consideration because the environment 

is not the physical effects obtaining by the sensory of the observer. One’s experience of 

environments is also a major determining element of what we acquired as deviancy. 

This could be regarded as the top-down attention mechanism as well. Computational 

modeling such a mechanism for artificial auditory cognition is more important than in 

vision modality. It is because that the acoustic environment is ephemeral and it lacks 

the ability which can be repeated at any time. 

Deviance detection is an important mechanism as it represents new information 

that may require a response from the observer. Moreover, recent research works have 

shown that long-term life experiences affect the ability to hear in background noise 

(Anderson et al., 2013). To be specific, compared with the unconsciously detected 

salient sound events, the sounds which have been heard can attract our attention more 
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easily. This result closely parallels theories from the ‘top-down’ attention mechanism, 

which points out that subjective consciousness also has a great influence on attention. 

For example, listeners can easily attend to one speaker in a multi-speaker environment 

(O’sullivan et al., 2014), this phenomenon is also known as the cocktail party problem. 

This result pointed out that prior knowledge should be regarded as a crucial component 

of realizing artificial auditory cognition. Consequently, it is essential to establish novel 

artificial auditory cognition models that could simulate the human auditory mechanism 

where the deviant sound events can be identified and can respond to these events while 

neglecting the rest. 

1.3. Motivation and Objectives 

The motivation of this thesis is to achieve the ultimate goal of embedding artificial 

auditory cognition ability for intelligent machines, in order to precisely select the high 

valuable conspicuous sound events occurred in the environment and make an efficient 

response to them, thereby reducing the computational cost of the machines. As 

discussed above, the cognition consists of three major components: 1) information 

acquisition or detection, 2) information recognition, and 3) respond to information. 

Each element should be modeled to realize modeling the cognition mechanism. Most 

researchers exploit the saliency-driven attention principle as the basis of modeling 

sound information acquisition processing. In (Kaya & Elhilali, 2012), an auditory 

saliency map which treats the input signals as a one-dimensional temporal input was 

presented. In (Kim, Lin, Walther, Hasegawa-Johnson, & Huang, 2014), a saliency 

detection model based on the classification result was presented. (Tsuchida & Cottrell, 

2012) and (Schauerte & Stiefelhagen, 2013) introduced their novel auditory saliency 

map based on the theory of statistics to predict the saliency in soundscapes. 

In the meantime, the mechanism of deviancy detection is rarely considered in 

modeling auditory attention and current studies are focused on revealing how deviancy 

detection works and processes in the human brain. (Vachon, Labonté, & Marsh, 2017) 

conducted a systematic investigation whereby the impact of verbal deviants and spatial 
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deviants on verbal and spatial short-term memory was assessed. This study established 

that both verbal and spatial deviants can hinder both verbal and spatial order-

reconstruction. This work suggested that this would seem intuitive because that, the 

warning capacity of the auditory cognition system should ensure the brain attends to 

the deviant events while ignoring the currently attended goal, the informational value 

of the task-irrelevant sound and any coupling between relevant and irrelevant 

information. The author finally concluded that the deviancy reflects a general form of 

auditory distraction as interference took place both within and across domains and 

regardless of the processes engaged in the focal task. Therefore, the deviancy detection 

mechanism could be regarded as a supplement to saliency detection, computational 

modeling of the bottom-up attention mechanism which constitutes both detection 

manner can help machines to perceive the environment in a more efficient way. 

The information recognition processing can be also regarded as the processing of 

low-level information acquired from sensory convert into higher-level information in 

the human brain. With the popularity of using deep learning-based models in various 

categorization problems and they have been proved to be more robust than conventional 

methods, a growing number of researchers exploit such methods in sound recognition 

tasks in recent years. However, the most widely used acoustic features, such as MFCC, 

used for training deep learning-based models may lose some important information 

about environmental audio events. Meanwhile, most of the deep architectures cannot 

achieve satisfactory performance in categorizing the environmental sounds. 

In the past decades, many studies have presented a large number of models to 

simulate the human auditory cognition. It can be seen in these works that most of the 

proposed models could only achieve a partial function of the human auditory system. 

The systematic artificial auditory cognition model is still relatively rare. (J. Wang, 2015) 

proposed a bio-inspired perception system based on visual and auditory attention 

mechanism, in which the functions refer to find the abnormal events in complex 

environment through both audio and visual information. (Fuertes & Russ, 2002) design 

a perceptive awareness model for reaching perceptive awareness for automatic systems. 

The model can recognize the environment and select the appropriate response to the 
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current situation. Perception Data from both microphones and cameras are prior 

considered in this model. 

Motivated by the above-discussed research works and current obstructions in 

simulate human auditory cognition mechanism, the major purpose of my work is to 

provide machines with artificial auditory cognition that can perceive the surrounding 

environment in a human-like manner. Thereupon, such intelligent machines can 

continuously recognize the environment through the auditory channel if the visual 

channel is hindered. Consequently, the salient and deviant sound should be acquired 

efficiently and accurately. Then, the detected sound information will be further 

processed to obtain the higher-level information in an efficient way for realizing the 

artificial auditory cognition. The objectives of this thesis can be introduced in three 

major aspects: 

 Study the state-of-art auditory cognition, perception and attention models 

correspond to the environmental sounds analysis tasks. Develop novel 

biologically inspired auditory deviant detection model for complex 

environmental sound deviancy detection. 

 Explore the efficient acoustic feature sets and feature combination strategies, 

investigate the state-of-art environmental sounds classification (ESC) methods. 

Propose novel auditory features and deep learning-based sound classification 

model for ESC problems. 

 Establish a novel knowledge-based system for auditory event response 

decisions by taking both prior knowledge of environmental context and 

detected sound events into account. Integrating the proposed models to form 

an artificial auditory cognition system that can provide a human-like auditory 

mechanism in a complex environment. 

1.4. Contribution 

The overview framework of the proposed biologically inspired artificial auditory 

cognition system is shown in Figure 1. Three major information processing modules 
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are presented to illustrate how low-level sound information transforms into high-level 

acoustic information. 
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Figure 1. The overview framework of the proposed system 

 

In Figure 1 it can be seen that when sound events occur in the environment, the 

sound receiver will be triggered at first to perceive and preserve the sounds. Then, the 

sound will be processed by a deviant detection module to identify whether the novel 

sound event is salient or not. It should be noticed that the deviant is relative conception, 

sounds are determined with deviancy or not depending on the focal auditory tasks. This 

means if the current environment is silent, the novel sound events could be seen as 

salient or deviant sounds. Thereafter, the detected deviant sound will be identified 

through the environmental sound recognition module. Finally, the auditory event 

response decision module is deployed to determine whether the deviant sound needs 

attention or not with prior knowledge derived from the current environment. 

Several contributions relate to establishing the artificial auditory cognition for 

intelligent machines have been accomplished in this thesis: 

 The first contribution is the studying of state-of-art research works with respect 

to the auditory attention models, deep-learning-based environmental sound 

classification techniques and human auditory response mechanisms, which 

shed light on the current research status and complexities of achieving the 
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ultimate goal in this thesis. Such studies demonstrate the obstacles and 

disadvantages of existing research results, resulting in the motivation of 

modeling auditory deviant detection mechanisms to acquire novel sound 

events, applying convolutional neural networks to deal with categorizing the 

detected sounds and exploit the knowledge-based system to simulate human 

auditory response mechanism. 

 The second contribution is the proposition and realization of an auditory 

deviancy detection model, where features derived from temporal and spatial 

domains are extracted for sound deviancy detection. It should be emphasized 

that a sample entropy-based deviancy detection method is proposed to 

accurately extract the real deviant sounds in the temporal domain. In this 

method, the Shannon entropy is exploited to identify the most deviant sound 

peak point, and sample entropy is applied as a measurement to point out all the 

peak points belong to the deviant sound. Thus, the deviancy and saliency 

features derived from each domain are combined to yield the final result, which 

can be deployed in the real environment sound detection tasks. 

 The third contribution is the analysis of the performance of various kinds of 

acoustic features in deep learning-based environmental sound classification 

models. Six widely used features are evaluated with a 6-layer CNN on a real 

environmental sound dataset. These features including cepstral features and 

image representation features are all derived from mel and gammatone filters. 

Then, eight feature combination strategies are presented based on basic 

features. These aggregated features are evaluated with CNN on the same 

dataset as well. Among these feature sets, three combined features present to 

be suitable in real environmental sound categorization tasks and can achieve 

competitive classification accuracy when compared with existing methods. 

 The fourth contribution is the proposition of a two CNN fused environmental 

sound classification model, where DS evidence theory is applied as the fusion 

method. The CNN model is a novel designed 4-layer convolutional neural 

network while the two CNNs have the same parameters in each layer. Two 
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aggregated acoustic features evaluated in chapter 4 are applied to train these 

CNNs, separately. Then, the DS evidence theory is performed to fuse the 

softmax value derived from two CNN models. This deep learning-based sound 

classification architecture achieves an outstanding performance in real sound 

event taxonomic tasks, which demonstrated that this model is suitable for the 

auditory cognition requirement of intelligent machines in precepting the real 

environment. 

 The fifth contribution is the conception and realization of a knowledge-based 

system and human auditory response decision manner inspired artificial 

auditory event response decision model. Motivated by the top-down attention 

mechanism in the human attention system, the prior knowledge of sound scene 

and environment is considered as the database to judge whether the detected 

sounds need attention or not. Each normal and abnormal sound event that 

might occur in a sound scene is distributed a significance value. The detected 

deviant or salient sound in an environment will be first compared with the 

possible sound events to find out its corresponding significance value. On 

account of the basis that the same sound may have different significance values 

in different environments, hence, the proposed model will judge if the new 

sound event deserves attention. This model can be applied to various auditory 

perception and cognition tasks. It can simulate the human auditory cognition 

mechanism to some extent and makes the artificial cognition an achievable 

function for intelligent machines. 

1.5. Organization of Thesis 

This thesis is mainly composed of five chapters. From the first chapter to the fifth 

chapter, the readers will be presented the current studies and results that relates to the 

thesis, each technique that I proposed for different module of artificial auditory 

cognition system, and the realization of whole system which provide artificial auditory 

cognition to machines for solving multiple cognition problems in complex environment. 
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The specific details of each chapter can be described as follows: 

To help readers to fully understand the relevant biological inspirations of my work, 

interrelated background and research works are presented in Chapter 1 from the 

perspectives of human perception ability and characteristics. For the reason that the 

artificial cognition for an intelligent machine can be seen as the simulation of human 

consciousness, biological inspirations obtained from the human auditory cognition 

system are illustrated to give a comprehensive description of how I process the auditory 

information and establish the artificial auditory cognition system. 

Chapter 2 illustrates the overview of my research field along with the state-of-art 

techniques that inspire this thesis. It has illustrated the relevant research works and 

models with respect to this thesis in three aspects: 1) the review of auditory saliency 

and deviancy detection techniques which established for auditory cognition, 2) the 

review of the application of deep neural networks in sound signal recognition, where 

the neural network-based environmental sound classification techniques are the main 

research orientation, 3) the overview of research works focus on auditory cognition in 

either theoretical level or computational modeling level published in the past decades. 

Several distinct approaches and observations are presented, in order to provide the 

general consideration of the motivation of this work. Then, the discussion regarding the 

state-of-art publications is connected to the problems that are researched in this thesis. 

Chapter 3 focuses on auditory deviancy detection where a novel approach is 

proposed. It is mainly consisting of three modules. The first module is a novel approach 

for detecting the temporal deviancy based on the GFCC time domain curve to detect 

the local saliency of the sound signal. To detect the deviancy sound among those salient 

sound, a wavelet entropy and sample entropy-based temporal deviancy detection 

method are proposed. Thus, to accurately detect sounds saliency and deviancy, a 

module focus on frequency domain significance detection method based on the sound 

PSD to extract the saliency of sound in frequency domains is presented. Finally, an 

image indicator based on opponent color space is presented to give a better presentation 

of the deviant salient-sounds of sound signals. Two experiments were performed to 

verify the accuracy of the proposed model. 
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In chapter 4, the performances of several aggregated features for ESC tasks are 

evaluated. Since conventional sound event analysis mainly addresses time-frequency 

features or cepstral domain features only, and grounded on the fact that sometimes 

aggregate features from different domain may reduce classification accuracy. 

Considering that the classification performance of CNN as the classifier is sensitive to 

the hyperparameters and minor changes in parameters can lead to a large difference in 

classification results. Hence, features that comprehensively represent environment 

sounds and an appropriate CNN model should be carefully designed for ESC. Six basic 

acoustic features (Log-Mel Spectrogram, Mel Spectrogram, MFCC, Gammatone 

Spectrogram and GFCC) are used as features to evaluate the 6-layer CNN. Then, eight 

feature aggregate schemes that combined Chroma, Spectral Contrast and Tonnetz (CST) 

with the six basic features are presented. The performances of these feature 

combinations are tested on two datasets and the classification accuracy of each class 

include in these datasets is presented. 

Chapter 5 illustrates the realization of the artificial auditory cognition system. 

Firstly, to further improve the performance of the CNN-based ESC model, the TSCNN 

model is proposed to precisely identify the class of environmental sounds. It consists 

of two 4-layer convolutional neural networks which are trained by two combined 

acoustic features. Then, the outputs of the softmax layer of both networks are fused 

through DS evidence theory, the fusion results are the predicted categorize of an 

environmental sound. Thereafter, a knowledge-based system inspired auditory events 

response decision model is originally proposed to better describe the significant 

characteristic of acoustic information obtained from the environment. The proposed 

method is performed by comparing the prior knowledge-based significance of detected 

salient or deviant sounds with sound scenes information to determine whether the 

system needs to respond to the abnormal sound events. Thus, abnormal sounds will be 

further categorized into meaningful and meaningless events, which means that 

meaningful deviant sounds need to respond and meaningless events do not need to 

respond. Meanwhile, the meaningful events need to be judged whether their 

significance is higher than focal tasks. At last, the proposed artificial auditory cognition 
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system is performed on several simulated scenarios for validation, and the results show 

that multiple perception tasks could be accomplished by the presented system. 

The last chapter is the conclusion, where a summarized conclusion of all the 

research work conducted in this thesis is presented to the readers. Meanwhile, the 

perspectives of limitations, potential future work and ultimate goal with respect to the 

thesis are provided.  
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Chapter 2.  Environment Information Perception  

2.1. Introduction 

Auditory cognition is an essential component of the human consciousness which 

helps human to perceive the surrounding environment accurately. However, the 

processing capacity of the human brain is limited and not all the acquired environment 

stimulus can be processed simultaneously. After years of evolution, a surprisingly 

ability was generated in our brain, called selective attention mechanism. This attention 

mechanism makes us can focus on the conspicuous events around us while ignore the 

irrelevant events. Furthermore, it is a common experience that during we focus on one 

salient event, our attention can be involuntarily engaged by visual or acoustic changes 

occurring unexpectedly in the environment. This attention shift phenomenon of our 

cognitive perceptual mechanism could also be introduced as deviancy detection. 

Neurobiologist believes that these saliency-based selective attention mechanisms could 

be the fastest way for humans to make responses to prominent stimulus which received 

from surrounding environment. Therefore, the bio-inspired saliency and deviancy 

detection approaches could be regarded as a feasible way for computational modeling 

the human selective attention mechanisms for artificial intelligence. 

The saliency principle is generally used as the basis of artificial cognition models 

and bio-inspired human perception computational models. For computational modeling 

the human saliency principle, the current research works are mainly focus on the 

auditory saliency detection (ASD) rather than deviancy detection. It is because the ASD 

is the step before deviancy detection of auditory consciousness, and the ASD models 

could be established based on well-studied visual saliency detection models. Moreover, 

the researches of human auditory awareness mechanism are still at early stage. For 

many auditory mechanisms there are no precisely scientific and theoretical explanations 

of the processing details in human brain, such as “cocktail party effect” and the attention 
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shift phenomenon. These reasons make it harder to build exact computational models 

to mimic human auditory conscious. Meanwhile, though the techniques established for 

ASD are well researched when compared with other auditory mechanisms, and have 

been proved that can simulate human perception to some extent. However, the 

architectures of these models are all similar to the VSM model, on account of the 

characterizes of VSM and the feature used in this model, these aspects may lead to the 

loss of sound saliency information. Furthermore, there are no practically applied sound 

deviancy detection model that can simulate human attention shift mechanism till today. 

In real life experience, various salient acoustic events generated by different sound 

sources occur frequently when we focus on one prominent auditory event (such as 

human speech or music), which attract our attention from focal task to new salient 

events. However, these new prominent events are not always meaningful sounds. For 

example, when we are talking to a colleague in an office, the car horns form outdoor 

are the environment noise for speech, which should not pay attention. While the phone 

ringing and the door knocking is the newly appeared events that should be noticed and 

make responses. Therefore, in order to make machines can precisely percept the 

surrounding environment like human, the sound event classification model and context 

judgment model must be established as well, in addition to saliency principle 

computational modeling. 

Inspired by the perception mechanism of human beings, a practical solution is to 

apply the saliency principle for auditory feature extraction in different domains in order 

to obtain the saliency information in an audiovisual way. The initial characterization of 

saliency is to describe an event that is prominent relative to surrounding environments. 

This problem is well studied in human visual system and computer vison application, 

but less in auditory system. Till today, only few research works announced they have 

successfully embedding machine with human-like auditory cognition ability for 

autonomous environment perception. After considerable number of psychological 

acoustics experiments conducted by neurobiologists, they believe that mimicking the 

saliency principle and attention shift mechanism could be the potential way of modeling 

artificial auditory cognition. Hence, the related research works will be introduced first 
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as the fundamental basis in the following sections. 

After the salient and deviant sound events are detected, they should be recognized, 

in other words: the classification system should be applied to identify the class of the 

prominent sounds. Recently, a growing number of researchers have begun to apply deep 

neural networks for environment sound events classification and recognition (ESC). In 

the past decades, Support Vector Machine (SVM), Gaussian Mixture Model (GMM) 

and Hidden Markov Model (HMM) are widely used classifiers in sound classification 

problems. However, deep learning-based models have been proved to be more 

competitive than the traditional methods on solving complex learning problems in 

various domains. At present, the deep architectures have conquered the field of image, 

music and speech recognition, but the application in ESC tasks still falls behind. 

Moreover, as illustrated above, not all the conspicuous sound events which cause 

attention shift should be noticed and responded accordingly. In view of this fact, a 

decision-making system is also needed to decide whether the detected prominent sound 

events should be responded or not. The previous works of ESC will be illustrated, along 

with the research works related to decision making system based artificial cognition  

Since my work is inspired by the previous researches done in the fields of sound 

processing, deep learning-based ESC and decision making, the state-of-art works of 

each research filed will be introduced respectively. Although not all of the previous 

works are proved to be efficient to auditory cognition, they are still included in this 

thesis is for presenting a general review of related researches and to let readers have a 

better point of view of why and how I conduct my research work, which could be 

regarded as the motivation and methodology of my work as well. To be specific, the 

previous works focused on the acquisition of auditory salient information will be 

illustrated in section 2.2, including classical and improved auditory saliency detection 

models. In section 2.3, the theoretical research works of auditory attention shift and 

biological basis of deviancy detection will be presented. The deep learning-based 

environmental sound classification system will be discussed in section 2.4. Finally, the 

decision-making mechanism based artificially acoustic cognition will be discussed in 

section 2.5. 
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2.2. Auditory Saliency Detection 

Auditory saliency detection is one of the most important research fields of 

realizing machine awareness which aims at detecting the abnormal or conspicuous 

sound events in the real environment. For example, when a rescue robot encounters an 

emergency, such as an explosion, tremendous amounts of salient stimulus are received 

simultaneously by the sensors of both visual and auditory channels. However, if the 

image of target need for rescue is blocked by some objects in the field of view or the 

image quality is not good, the related sound signals to this incident could play a pivotal 

role in the process of environmental perception for intelligent awareness. 

A considerable amount of approaches has been presented to detect the auditory 

saliency property from sound signals over the past decades. Almost all the auditory 

saliency-driven awareness models are based on the idea of auditory saliency map 

(ASM). It should be noticed that, the ASM is basically established followed the 

pioneering research work of saliency-driven attention (Koch & Ullman, 1987) and the 

visual saliency map proposed by (Itti, Koch, & Niebur, 1998). This model is a visual 

attention system inspired by the behavior and the neuronal architecture of the early 

primate visual system. In this model, feature maps of color, intensity and orientations 

are extracted from image inputs at first. Then, the center-surrounding process and 

normalization are performed on each set of feature map. A biologically inspired 

normalization operator is proposed to promote maps where a small number of strong 

peaks of activity is present, while suppressing maps contain comparable peaks. With 

the normalization operator and across-scale combination, each set of feature maps are 

combined in to three saliency maps. These maps are then summed into one visual 

saliency map (VSM) followed by “winner-take-all” and inhibition of return processing 

to prevent the model to subsequently jump to salient locations spatially close to the 

currently attended location. The model is able to reproduce human performance to some 

extent and shows a better performance than conventional visual saliency detection 

models. 
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2.2.1. Classical Models 

A considerable research works conducts various experiments on the relevance of 

audio-visual perception information, point out that there are correlations between image 

processing and sound processing in human perception system. This is why the sound 

saliency can be transformed into visual representation, to be specific, visual and 

auditory perception channels have perceptual correlations in high-level perceptual 

processing of human brain. Moreover, the perception of auditory saliency could be 

converted into the perception of saliency of the visual channel. This result provides a 

theoretical basis and a method to realize computational models of ASD. Based on the 

success of VSM and the theoretical basis, almost all research works in auditory saliency 

field translate sound signals into two-dimension images (spectrograms), and use similar 

method to detect sound saliency. 

 

 
Figure 2. The auditory saliency map proposed by Kayser. 
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Several ASD models have been proposed for salient sound detection based on Itti’s 

visual saliency map. These models can be regarded as the classical ASD models since 

they use original concept of VSM in their works. (C. Kayser et al., 2005) first proposed 

an auditory saliency map (ASM). Afterward, based on Kayser’s work, two improved 

ASM approaches were proposed by (Kalinli & Narayanan, 2007) and (Duangudom & 

Anderson, 2007). 

The auditory saliency model proposed by Kayser converts sound waveforms to a 

time-frequency representation, which is called “intensity map” in this work. Then, three 

acoustic features: intensity, frequency contrast and temporal contrast are extracted on 

different scales with different sets of filters. The center-surround mechanism and 

normalization are applied to promote those feature maps containing prominent values. 

These maps are combined across different scales to yield the saliency maps for each 

feature sets. Finally, linear combined the three saliency maps of each feature to generate 

the final auditory saliency map. The structure of Kayser’s ASM which is identical to 

the visual saliency map is shown in Figure 2.  

 

 
Figure 3. The saliency maps of rain and crickets and dog barking sounds obtained 

from Kayser’s model 

 

This model is tested through two environmental recordings collected from real 

environment. Sound a is the rain and crickets, the crickets are the salient sound, and the 

background noise (rain) has almost same intensity with the salient events. Sound b is 

dog barking with children talking in which the barking is the salient events. The results 

Rain and Crickets Dog Barking
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are shown in Figure 3. From Figure 3 (a) we can find out that, when the intensity of 

background noise is high, the saliency map could not give a clearly representation of 

the salient sound events of cricket. The Figure 3 (b) pointed out that, when the intensity 

of background noise is low, this model could detect the sound saliency effectively. 

In order to improve the detection accuracy of ASM, (Kalinli & Narayanan, 2007) 

presented the second ASD model, which extract two more features: the orientation and 

the pitch. The information of orientation is extracted from the spectrum at angles of 45 

degrees and 135 degrees. Orientation features simulate the auditory neuron's response 

to dynamic ripples in the primary auditory cortex. Since the pitch is the most basic 

element of sound, therefore, Kalinli also considered extracting the pitch as an auditory 

feature. There are two hypotheses proposed by Shamma for the coding of pitch in the 

human auditory system: temporal and spectral (S. Shamma, 2001). In this model, the 

temporal hypothesis has been chosen to extract the pitch features and then project to 

the spectrogram frequency axis to obtain the feature map. 

(Duangudom & Anderson, 2007) proposed the third classical ASM in which the 

time-frequency receiver domain model and adaptive suppression were used to provide 

the final auditory saliency map. The model presented in this paper is basically the same 

as Kayser's auditory saliency map, but there are two main differences. The first is the 

acoustic features, where global energy, time modulation, spectral modulation and high 

temporal-spectral modulation are extracted in this model. The second is the processing 

schemes of the feature maps. First, the inhibition is performed to each individual map, 

resulting in the demotion of maps with no salient features. Then, the individual feature 

maps in each of the 4 categories are then combined into a “global” feature map for each 

class. At last, combined the 4 global maps through inhibition and summation to generate 

the final saliency map. 

2.2.2. Improved Models 

In order to improve the performance or auditory saliency detection, many 

researches have proposed several new ASD models during the past decades. Based on 
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the theory that, the auditory saliency of a sound event is obtained by measuring the 

difference in the time domain between the sound and its surrounding sounds, (Kaya & 

Elhilali, 2012) proposed a novel model which only defined over time. Unlike the 

previously mentioned three auditory saliency maps which transform the input sound 

events into the spectrogram at first, this auditory saliency map treats the input signals 

as a one-dimensional temporal input. The model uses rich high-dimensional feature 

space to define auditory events and each auditory dimension was processed across 

multiple scales but only considers the temporal saliency of the sound. Features have 

been selected in this ASM were: waveform envelope, spectrogram, rate, bandwidth, and 

pitch. All these features were obtained in eight scales. It should be noted that the 

waveform envelope and the pitch were kept in one dimension throughout whole 

processing, the rest of features were first computed in two dimensions. Followed 

processing steps were the same as Kayser’s ASM to achieve the final temporal auditory 

saliency map. The peak in the saliency map represents a prominent event of the sound 

signals. 

The experiment results derived from the three classical ASD models show that 

these methods can only achieve acceptable detection results when the salient sounds 

are short-term sound signals. For overcoming this drawback, (Botteldooren & De 

Coensel, 2009) proposed an auditory saliency map for detecting the saliency in long-

term sound signals. This model first formed a sonic environment by 1/3 octave band 

spectrograms of different sound signals and implemented the method proposed in 

(Zwicker, & Fastl, 2013) for calculating a simplified cochlea. Considering the energy 

masking effects, for one sound source, all the other sound sources can be considered as 

the background noise. Thus, the specific loudness versus time map contains only non-

zero values for those time and space portions of each source, which are not obscured 

by the sum of all other sources. Then, the same approach for extracting the multi-scale 

feature maps and the process of forming the final ASM proposed in classical approach 

mentioned above is applied to acquire the final saliency map. To provide the essential 

higher-level cognitive information, while referring to the limited knowledge of the 

attention mechanism, a simple feedback mechanism is applied to simulate top-down 
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attention mechanisms. In order to validate the efficiency of this model, it has been used 

to study the ability of typical urban parks to mask road traffic noise. Results showed 

that it can effectively mask the noise generated by traffics while this model showed how 

perceptual masking could work in addition to energetic or physiological masking to 

improve the mental image of a sonic environment. 

Except for Itti’s visual saliency map, there is another representative saliency map 

was presented in (L. Zhang, Tong, Marks, Shan, & Cottrell, 2008), called the Saliency 

Using Natural Statistic (SUN). This model measured saliency from natural image 

statistics, obtained from a collection of natural images. Based on this, (Tsuchida & 

Cottrell, 2012) proposed a novel auditory saliency map called the Auditory Saliency 

using Natural statistic (ASUN). ASUN uses the same method which has been applied 

in SUN to estimate the local statistics and compared it with learned statistics, in order 

to find if there are some differences between them. The differences could be treated as 

the sound saliency. Results showed that when the sounds were short time signals, it 

could reproduce psychophysical phenomena. 

In order to understand how does human divert our attention in different voices 

over time, (De Coensel & Botteldooren, 2010) proposed a model for mimicking human 

top-down and bottom-up attention mechanisms. The model consists of four parts. Each 

input sounds and their summation are first converted to spectrums through the 

Gammatone filterbank separately. Then, the spectrogram of signals summation is 

calculated by Kayser’s ASM to obtain the saliency map and Time-Frequency masks for 

the spectrograms of each sound resources was calculated at the same time. Afterward, 

T-F masked spectrograms and auditory saliency map are combined to yield the saliency 

score of each acoustic signal. Based on these, the author proposes an attention model 

which based on the saliency scores calculation, and the winner-takes-all competition is 

implemented to identify the most salient sound events. The model was tested with the 

traffic recordings and the experimental results indicate that, this model can mask 

undesired sounds in the real environment. 

Energy linear superposition theory was used in (Pan, Long, Cheng, & Chen, 2013) 

to detect the saliency of auditory. According to this theory, a mixed sound is the result 
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of multiple linear superpositions of individual sounds. Therefore, the energy of a salient 

sound could be obtained by subtracting the energy of background noises from the 

energy of the mixed sound signal in the energy domain. This model is similar to 

Kayser’s saliency model but only consider the features of intensity and orientation to 

simplify the model. The linear combination was applied on the two feature maps to 

yield the ASM while a prominent area is pointed out on it. The author assumed that the 

background noise will not change in a short time, the energy of background noise could 

be estimated by taking a short period before and after the salient area of the sound signal 

on the auditory saliency map. Based on this, the theory described above was used to 

acquire the salient area on the final ASM which is the auditory saliency detection result 

of the proposed model. Experimental results proved that the proposed method could 

achieve high performance on detecting salient sound in a smooth and steady 

background. 

(Schauerte & Stiefelhagen, 2013) proposed a Bayesian Surprise Model-based 

auditory saliency detection model to lower the computation time. The surprising means 

the statistical abnormal values based on the signal which is observed before. First, the 

time-frequency analysis and Bayesian probability frame of the sound signals was 

analyzed by fixed discrete cosine transform. Then, used the Gamma model and based 

on the prior experience and the current signal to detect the frequency saliency. 

Meanwhile, a decay factor was applied to reduce the confidence of the prior experience 

to ensure the computes efficiency. The mean value of saliency of each frequency was 

regarded as the final saliency. Finally, the oriented evaluation method was used to 

quantitative estimate the acquired frequency saliency, to analyze whether the saliency 

of each frequency was real. 

(Kim et al., 2014) considered the Bark-frequency loudness based optimal filtering 

for auditory salience detection and researched on the collecting annotations of salience 

in auditory data, in which linear discrimination was used. Though the experiment 

results shown 68.0% accuracy, the sound signals for validation are collected from 

meeting room recordings. This means that only indoor environment is considered. 

Inspired by the research results of bird auditory system, a task-related sound 
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locating method through interaural time difference and interaural level difference was 

presented in (Mosadeghzad, Rea, Tata, Brayda, & Sandini, 2015). After locating the 

input sounds, the Gammatone filterbank has been used to decompose the left and right 

inputs in the frequency domain. Then, a saliency score was acquired by multiplying the 

sum of the peaks with the number of peaks in spectrograms of all the frames. Finally, 

this saliency-based fusion framework was applied to the iCub robot and tested it in real 

time to identify the real speaker when two people were talking. Results showed that 

although the model is still inadequate, however, it is a feasible way to simulate the 

human cognitive characteristics to some extent. 

Almost all the models mentioned above could achieve acceptable or even 

prominent experiment results, however, the sound data used in their experiment is 

human voices, simple sound clips (short recordings with no background noises) or A 

few syllables played by one musical instrument. Meanwhile, the previously introduced 

auditory saliency models are mainly based on the local spatiotemporal contrast and little 

global saliency information has been taken into account. Considering the unstable and 

non-linear characteristics of environment sound, it is difficult to prove that these models 

are effective enough in salient sound detection tasks when the input is complex 

environment recordings. 

Therefore, some researchers start to consider other methods to successfully detect 

the auditory saliency in real environment. (J. Wang, Zhang, Madani, & Sabourin, 2015) 

proposed a bio-inspired model to detect the salient environment sounds for realizing 

intelligent perception. This approach first calculated the Short-term Shannon entropy 

to estimate the background noise level of the input signals over the entire time period. 

Meanwhile, aiming to reduce the impact from time length on the accuracy of saliency 

detection, Wang proposed an Inhibition of Return (IOR) based saliency select model. 

After calculating the Short-term Shannon entropy, the sound signal was divided into 

several significant sound clips and analyzed the temporal and frequency saliency of 

each clip. In the temporal domain, the saliency was obtained by analyzing the Mel 

Frequency Cepstral Coefficient (MFCC) curve. In the frequency domain, the model 

obtained the frequency saliency through the PSD curve of the sounds. The prominent 
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features of the temporal domain and frequency domain were then filtered by the IOR 

calculation model. Meanwhile, the image saliency was acquired by calculating the red-

green channel of opponent color space on the log scale spectrums of the input sound 

signals. Finally, each saliency map was combined through a heterogeneous information 

fusion method to produce the auditory saliency map. In the experiment, the model has 

been tested with environment sound, except background noise, which contains more 

than one conspicuous sound. Results showed that the accuracy of this model is much 

higher than Kayser’s model. 

To conclude, the conventional ASD models are based on the theory of saliency 

map while several improved models use the statistical method or bio-inspired approach 

to detect the prominent sounds. The conventional models which are based on local 

features have been proved to be effective to some extent, but it has to be noticed that 

the experimental data are simple recordings. The bio-inspired model presented in (J. 

Wang et al., 2015) validated its efficiency with real environment mixtures, however, the 

Shannon entropy-based approach will cost a lot of computational resources. Meanwhile, 

almost all the features mentioned in these models are manually selected which could 

not fully conform to the characteristics of human auditory system and will definitely 

lose some important information. 

2.3. Acoustic Deviancy Detection 

One of the important aspects of our acoustic perceptual skills is auditory deviancy 

detection. This acoustic mechanism allowed human beings to percept the novel 

stimulate while regardless of the processes engaged in the focal task. It seems like the 

definition of deviancy detection is similar to saliency detection, in fact, they are 

different in nature. The main purpose of saliency detection is to identify those features 

in a scene are conspicuous based on their context and are salient, and could attract 

attention. While the main purpose of deviancy detection is to identify the unusual or 

deviant events when we focused on the objects or events which attract attention at first. 
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A similar ability, imitating this auditory awareness mechanism will greatly improve the 

efficiency of artificial perception in complex environment. 

The current study mainly aims to reveal the theoretical basis and use the 

electroencephalograph (EEG) and the mismatch negativity (MMN) to find out how 

does auditory cortex process and responses the deviant signals. With carefully designed 

experiments, (Escera et al., 1998) point out that there are two different neural 

mechanisms in triggering involuntary attention to acoustic deviancy: a transient-

detector mechanism activated by auditory deviancy, and a stimulus-change detector 

mechanism activated by deviant tones and novel sound events. The attention shift 

signals derived from the activation of the two mechanisms trigged an effective 

engagement of attention. These results indicate that, small changes in the acoustic 

environment capture attention involuntarily by activating the stimulus-change detector 

mechanism reflected in the mismatch negativity (MMN).  

Through the study of anterior insula (AI) and considered it as a hub of a “salience 

network”, a possible framework of how does our brain response to stimulus is presented 

in (Menon & Uddin, 2010) for better understand brain mechanisms in important 

environmental stimuli detection tasks. This model helps to aggregate different findings 

into a common framework and suggests that AI could be a core component in cognition 

control. The author also proposes that a transient signal from the AI engages the brain’s 

attention, working memory and higher-order control processes while neglecting other 

systems that are not immediately task relevant could be a basic function within 

cognition control. 

The mechanisms underlying human auditory perception of environmental sound 

is a fundamental principle in soundscape design. A computational model for soundscape 

analysis was presented by (Oldoni et al., 2013), with the goal of simulating how 

listeners would switch their attention over time between different sounds. In this model, 

there are three mainly processing stage: a) peripheral auditory processing, b) co-

occurrence mapping of features, and c) modeling auditory attention. In the first stage, 

the sound wave is first transform to 1/3-octave band spectrogram followed by the same 

feature extraction strategy presented in (C. Kayser et al., 2005). Then, a measure for the 
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saliency of the sound at each timestep is calculated based on the scheme presented 

by(Kalinli & Narayanan, 2007), where the effects of spectral-temporal orientation and 

pitch are not considered. At last, a single saliency score at each timestep is calculated 

by summing all values of the saliency vector. In the second stage, an unsupervised 

learning strategy based on feature cooccurrence is used, which is implemented as a self-

organizing map (an abstract model of topographic mapping in the sensory cortex). In 

the last stage, an excitatory-inhibitory artificial neural network (ANN), simulating the 

auditory cortex, is applied to identify sounds that acquired of the trained self-organizing 

map. Although this model does not provide abundant detail, it still complements already 

existing models of attention-based auditory scene analysis, promoted the understanding 

of the attention shift mechanism as well. 

In (Kaya & Elhilali, 2013), a biologically motivated model which based on MMN 

and Kalman filters is proposed as a supplement to other sound relevant models that 

might need deviancy detection. Based on the “predictive coding” theory, in this model 

the MMN will be regarded as the representation of deviancy. To be specific, when a 

sound occurs and is different from the focal sound events, will elicit the MMN. The 

standard of the incoming sound feature is detected and for each detected stream, two 

Kalman trackers are triggered. One tracks the value of feature and one tracks the timing 

of the values. If no tracking Kalman filter has predicted this value will trigger the MMN. 

If the value has been predicted by a filter, then it will be compared with the time tracking 

Kalman filter, and the MMN will be elicited if the time occurrence is far from the 

prediction of the time filter. This model is tested by finding the deviant onset times of 

simple oddball paradigms and simple sound patterns.  

Two parallel but separate lines of research on auditory novelty detection is 

presented in (Escera & Malmierca, 2014), in order to give a better understanding of the 

functional organization of the auditory system. The first line is human studies of the 

MMN, and the second line is animal studies of single neuron recordings of stimulus-

specific adaptation (SSA). These two studies reveal that novelty detection should be a 

key principle consisting the auditory awareness, and the generation of MMN recorded 

from human studies show that when deviancy occurs with regard to a single physical 
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attribute of the acoustic input, a concatenation of processes taking place at different 

levels of the auditory system’s hierarchy. Based on the experiment results and compared 

with several recent results in other works, the author finally proposal that the auditory 

novelty system should be organized in a hierarchical manner. 

In (Escera, Leung, & Grimm, 2014), after review the evidence of three kinds of 

human brain response to deviant sounds along with animal studies on SSA, the author 

concluded that deviance detection is a basic principle of the functional organization of 

the auditory system. Furthermore, the phenomenon that conspicuous in complex 

environment cannot trigger the deviancy detection mechanism but MMN is elicited 

indicate that, regularity encoding based deviancy detection is organized in ascending 

levels of complexity along the auditory system. 

By assessing the sensitivity of Middle-Latency Responses (MLR) components to 

deviant probability manipulations, the study of (López-Caballero, Zarnowiec, & Escera, 

2016) further characterize the auditory hierarchy of novelty responses. MMNs and 

MLRs were recorded in 24 healthy participants, using an oddball location paradigm 

with three different deviant probabilities (5%, 10% and 20%), and a reversed-standard 

(91.5%). The differences in the MLRs elicited to each of the deviant stimuli and the 

reversed-standard are analyzed. The results verified that the deviancy detection 

occurred at the level of both MLRs and MMN. However, conspicuous differences for 

deviant probabilities only found in MMN. Which further pointed out that this process 

only occurs at higher stages of the auditory hierarchy.  

(Liao, Yoneya, Kidani, Kashino, & Furukawa, 2016) present a study shows that 

the human pupillary dilation response (PDR) is sensitive to the stimulus properties and 

irrespective whether attention is directed to the sounds or not. Three experiments were 

conducted in this work, the PDR of subjects were recorded while they listened to the 

auditory oddball sequence. When the participants only listen to the noise oddball, their 

pupils expand for approximately 4 seconds, but no PDR for 2000 Hz oddball tones. 

When the participants were expose to visual oddballs along with auditory strange 

recordings, they separated the auditory or visual oddballs when trying to ignore stimuli 

from another modality. When visual and auditory stimuli were presented to the subjects 
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asynchronous, the pupils dilated to both kind of tones. These results point out that the 

PDR can be regarded as a measurement for detection of deviant auditory stimuli. 

(Vachon et al., 2017) conducted a systematic investigation whereby the impact of 

verbal deviants and spatial deviants on verbal and spatial short-term memory was 

assessed. This study established that both verbal and spatial deviants can hinder both 

verbal and spatial order-reconstruction. This work suggested that this would seem 

intuitive because that, the warning capacity of the auditory cognition system should 

ensure the brain attends to the deviant events while ignoring the currently attended goal, 

the informational value of the task-irrelevant sound and any coupling between relevant 

and irrelevant information. The author finally concluded that the deviancy reflects a 

general form of auditory distraction as interference took place both within and across 

domains and regardless of the processes engaged in the focal task. 

(Marchi, Vesperini, Squartini, & Schuller, 2017) presented a broad and extensive 

evaluation of state-of-the-art methods with a particular focus on novelty detection and 

recent unsupervised approaches based on RNN-based autoencoders. A broad evaluation 

on three different datasets is illustrated to present complete evaluation in the field of 

acoustic novelty detection. It is pointed out that RNN-based autoencoders outperform 

conventional methods in auditory novelty detection. Furthermore, combining the 

binary-LSTM autoencoder architecture with the nonlinear prediction scheme could 

achieve significant improvement in detecting accuracy. 

In general, deviancy detection is a key characteristic of the auditory system that 

allows pre-attentive discrimination of incoming stimuli irrespective the ongoing 

constant stimulation. Hence, providing artificial intelligence with such auditory 

mechanism will effectively enhance its perceptual performance in real environment. 

2.4. Modelling Auditory Cognition 

Auditory cognition is becoming a hot issue in recent years, which can be applied 

in many arears such as remote surveillance and mobile devices. This problem is mainly 
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consisting of three components: sound events detection model, environmental sound 

classification model and decision-making model. Although appropriate frameworks for 

automatic speech recognition (ASR) and music information retrieval (MIR) have been 

well established by a growing number of researchers (Juang & Rabiner, 2005; Klapuri 

& Davy, 2007; H. Xu et al., 2018; Yakar, Litman, Sprechmann, Bronstein, & Sapiro, 

2013), etc., the ESC research is still at the early stage. (Piczak, 2015b) has pointed out 

that environmental sounds are very diverse group of everyday audio events on account 

of considerably non-stationary characteristics that cannot be described as only speech 

or music. Hence, there is a strong need to establish suitable acoustic features and sound 

events categorization models for ESC tasks. Finally, after recognizing the sound events, 

they should be further categorized into two classes: valuable events and non-valuable 

events. It is because that, not all the environmental events present to be salient need 

acoustic attention, some salient sounds may also be the high-intensity noises relative to 

focal auditory tasks. That is reason why the decision-making system is required for 

establishing the artificial auditory cognition. Therefore, in this section we will introduce 

the state-of-art research works related to these three aspects. 

2.4.1. Acoustic Features 

According to the conclusion of (Chachada & Kuo, 2014), the feature extraction 

methods are established mainly based on two aspects: sound signal processing scheme 

and characteristics of features. For sound signal processing strategies, there are three 

commonly used schemes, which is framing-based processing, sub-framing-based 

processing and sequential processing. 1) In the framing-based processing scheme, 

sound signals are first divided into frames based on Hamming or Hanning window. 

Features are extracted from each frame and their combination is used as one feature set 

for training or testing. However, each frame gets a classification label, lead to 

successive frames may belong to different classes. Meanwhile, since some sound events 

are short-time signals and some are long, hence, it is hard to select a satisfied window 

length for all classes. These two aspects are the main drawbacks of this processing 
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scheme. 2) For sub-framing-based processing strategy, each frame obtained by framing-

based processing are further segmented into shorter sub-frames, features are extracted 

from these sub-frames. The extracted features are concatenated together as a feature 

vector or averaged to represent a single frame, which used to train classifiers. This 

signal processing scheme present to be more flexibility in segmenting consecutive 

sounds based on labels of sub-frames. 3) The sequential processing strategy still divides 

sound into smaller segments, which is generally of 20-30 ms long with 50% overlap. 

The classified decisions are made based on features extracted from these segments. This 

scheme is unique in its aims to acquire the correlation of intersegment and the long-

term variations of the sound signal, when compared with the other two strategies. 

Sounds can be analyzed in both temporal and frequency domain. From a physical 

point of view, both representations from these domains provide different perspectives 

of the signal. Temporal domain information provides exact measurable feature of sound 

signal, such as the vibrations. Frequency domain features describe the nature of the 

physical phenomenon constituting the signal. Furthermore, on account of the 

assumptions that whether the sound signals vary with time or not, the features could be 

divided in to non-stationary features and stationary features (Cowling & Renate, 2003). 

2.4.1.1. Stationary features 

Stationary features including both temporal and spectral features, such as the Zero-

Crossing Rate (ZCR), Short-Time Energy (STE), Sub-band Energy Ratio and Spectral 

Contrast, which are easy to compute and widely used in many arears (Gouyon, Pachet, 

& Delerue, 2000; Higashi, Kim, Jeon, & Ichikawa, 2010; Swee, Salleh, & Jamaludin, 

2010). Cepstral features are also generally used in ESC, the most famous one is Mel 

Frequency Cepstral Coefficient (MFCC) with its first and second order derivations 

( MFCC∆  and MFCC∆∆ ), which is often used in human voice or music related audio 

signal processing scenarios, such as speech recognition and music genre recognition 

tasks. Other widely used cepstral features including Gammatone Filterbank Cepstral 

Coefficient (GFCC), Linear Predictive Cepstral Coefficient (LPCC), Homomorphic 
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Cepstral Coefficients (HCC) and Bark-Frequency Cepstral Coefficients (BFCC) 

(Burgos, 2014; Hu, Mitchell, & Pang, 2012; Ittichaichareon, Suksri, & Yingthawornsuk, 

2012; Schafer, 2008; Zheng, Zhang, & Song, 2001). 

2.4.1.2. Non-stationary features 

However, real-life or environmental acoustic events have time vary characteristics, 

they are always non-stationary. Non-stationary features are referring to two categorizes, 

first is the time-frequency features derived from Short-time Fourier Transform (STFT) 

based spectrograms, or the features generated by Discrete Wavelet Transform (DWT) 

or Continuous Wavelet Transform (CWT) based scalogram. The second is Matching 

Pursuit (MP), Orthogonal Matching Pursuit (OMP) based sparse domain features(Chu, 

Narayanan, & Kuo, 2009; Uzkent, Barkana, & Cevikalp, 2012). Moreover, despite the 

species of features, (Chachada & Kuo, 2014) pointed out that, combined acoustic 

features always perform better than single features in ESC tasks. 

From the research works published in the past decades, we can notice that the 

MFCC is the most widely used acoustic feature in both speech, music and environment 

sound recognition problems. It is derived from STFT based spectrograms with framing-

based signal processing scheme. This feature is originally developed for speech and 

music recognition and achieve outstanding performance in these applications. (Chia Ai, 

Hariharan, Yaacob, & Sin Chee, 2012) conduct a series experiments in order to find out 

the optimal configuration of MFCC and LPCC in speech recognition problems. The 

experiment results showed that 25 MFCC features present the best accuracy of 92.55%. 

(Ali, Tran, Benetos, & d’Avila Garcez, 2018) propose a method to combine the learned 

features derived form neural networks and the MFCC features for speaker recognition 

task, which can be applied to audio scripts of different length. (Ghosal & Kolekar, 2018) 

combined MFCC with several conventional acoustic features to train a convolutional 

long short term memory neural network for music genre recognition. The results 

indicate that this approach can achieve the state-of-art performance. 

In addition, a considerable number of studies also reported that the robustness of 



36 

MFCC is not sufficient in noise-background while GFCC shows better performance 

and robustness (Zhao, Shao, & Wang, 2012; Zhao & Wang, 2013). GFCC is similar to 

MFCC, it is a sound feature for simulating human auditory characteristics as well. It 

mimics human auditory system which has different modalities of non-linear response 

to the different frequencies of signal components through a set of Gammatone 

Filterbank (Shao, Jin, Wang, & Srinivasan, 2009). It is also reported in (Chachada & 

Kuo, 2014) that GFCC has a strong ability in representing impulsive signals.  

(Zhao et al., 2012) employ the GFCC in speaker identification system (SID), 

where computational auditory scene analysis (CASA) is applied to separate the 

background noise and speech. With systematic investigation, the author pointed out that, 

nonlinear log rectification is the reason why GFCC shows superior noise robustness 

compared with conventional features. Inspired by the characteristics of human 

peripheral auditory systems, (Adiga, Magimai, & Seelamantula, 2013) proposed a 

GFCC and wavelet based features, called GWCC. The extraction method is similar to 

that of the MFCC, with the difference of replacing the mel filterbank in MFCC with a 

Gammatone wavelet filterbank. The experiment results showed that the GWCC 

performed better than MFCC at low signal-to-noise ratios (SNR). (J.-M. Liu et al., 2013) 

use GFCC in cough recognition problems. The accuracy of GFCC comparing with 

MFCC is evaluated on a designed cough dataset following a 10-fold cross-validation, 

where weighted SVM is applied as the base classifier. After aggregating GFCC and 

MFCC, this model presents a better performance in cough recognition tasks.  

The analysis of sound scenes or events is a relatively field of research in the 

context of sound signal analysis, meanwhile, the features used in speech or music 

processing often brings interesting insight on the content of environmental sound events. 

Hence, multiple researchers prefer to use these features and their combinations rather 

than develop new acoustic features in ESC tasks.  

(Rakotomamonjy & Gasso, 2015) propose a novel feature for classifying audio 

scene, which show a good performance in capturing relevant discriminative 

informations. The novel feature has been obtained by computing histogram of gradients 

of a constant Q-transform followed by an appropriate pooling. The experiment results 
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on several datasets proved that this feature can achieve outstanding classification 

accuracy. (Adavanne, Parascandolo, Pertilä, Heittola, & Virtanen, 2017) present a long 

short-term memory (LSTM) recurrent neural network (RNN) based automatic sound 

event detection (SED) model. Where log mel-band energies, pitch frequency and its 

periodicity, and time difference of arrival (TDOA) in sub-bands are extracted to form 

the feature vectors for training the proposed SED model. 

A considerable number of conventional sound event classification methods that 

mainly address local temporal-spectral patterns, (J. Ye, Kobayashi, & Murakawa, 2017) 

propose an aggregation scheme to combine both local and global acoustic features. In 

order to characterizing local patterns, the unsupervised feature learning method is 

performed. This model use dictionary to code representative patterns of sound events, 

followed by mapping to generate new features regard to the dictionary. Variability and 

recurrence are extracted as global features through long-term descriptive statistics. 

Finally, the mixture of experts model is exploited to aggregate the local and global 

features for classification. The experiment results indicate that this model can achieve 

superior performance compared with 3 other models.  

(Lian, Xu, Wan, & Li, 2017) exploit modified GFCC in underwater acoustic target 

classification. The author found the conventional GFCC is not suitable for underwater 

acoustic events since the background sounds are quite different from environment. 

Therefore, a sum-of-squares approach is used to replace the rectangular window in 

primary feature extraction stage. The experiment results proved that the modified 

GFCC features are more robust than conventional features for underwater sounds. 

A companion robot used in fire environments always work under low visibility 

conditions, where visual information is hard to be acquired. For solving this problem, 

the ESC techniques are applied in fire-fighting mobile robots by (Baum, Harper, Alicea, 

& Ordonez, 2018). In this system, the Mel-spectrogram, MFCC, chromagram of the 

power spectrogram, octave-based spectral contrasts and the tonal centroids are 

extracted as features to train the classifier. This model obtains classification results with 

an overall accuracy of 85.7%. 

(Serizel, Bisot, Essid, & Richard, 2018) presented an overview of the different 
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blocks of a standard feature extraction method. The first step in most feature extraction 

techniques is the choice of a suited time-frequency representation. The performance of 

using such representations will be limited to the quality of the representation used for 

training. Therefore, it is needed to studies of the advantages and drawbacks of certain 

representation to accurately describe and discriminate the useful information in sound 

scenes. Moreover, the most frequently used hand-crafted features are also described. 

The features used for sound scene and event analysis are mainly inspired from speech, 

music or image processing. However, they are often limited to describing only specific 

aspects of the time-frequency information. It is pointed out that combining a large 

variety of different features is often required to improve performance over features 

taken in isolation. 

2.4.2. Deep learning-based Environment Sound Classification 

Support-vector machines (SVM) and Gaussian mixture model (GMM) are two 

widely used classifiers in both ASR, MIR and ESC tasks in the past decades(Shao & 

Wang, 2008; J.-C. Wang, Wang, He, & Hsu, 2006). However, these conventional 

classifiers are designed to model small variations which result in the lack of time and 

frequency invariance. In recent years, deep neural network-based models have been 

proved to be more efficient than traditional classifiers on solving complex categorize 

problems. Deep neural networks, also known as deep learning, is part of a broader 

family of machine learning methods based on learning data representations, it is an 

algorithm that attempts to abstract high-level data using multiple processing layers 

consisting of complex structures or multiple nonlinear transformations. Deep learning 

architectures such as deep neural networks, convolutional neural networks, and 

recurrent neural networks have been applied to fields including computer vision, speech 

recognition and audio recognition, which show superior performance than conventional 

classifiers.  

(Mohamed, Dahl, & Hinton, 2012) applied the generative pre-trained input based 

deep belief networks (DBN) for acoustic modeling in phone recognition. (Gencoglu, 
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Virtanen, & Huttunen, 2014) proposed a novel feature-based acoustic events 

recognition method with the deep neural network (DNN) classifiers. The features 

consisted of Mel energy features and 4 more frames around it. The pre-trained DNN 

with 5 hidden layers performed well in the experiment when compared with several 

traditional approaches. (Espi, Fujimoto, Kinoshita, & Nakatani, 2015) proposed a deep 

learning (DL) based acoustic event detection model. In this literature, a high-resolution 

spectrograms patch is treated as the feature. The patch is a window of sound 

spectrogram frames stacked together and used as the input instead of the predefined 

features for deep neural networks (DNN). In order to detect the temporally overlapped 

environmental sound, (Cakir, Heittola, Huttunen, & Virtanen, 2015) propose a DNN 

based multi label neural networks use log-mel band energy as features for this problem. 

The DNN consists of two hidden layers, where maxout function and sigmoid function 

are applied as activation function for hidden layers and output layer, respectively. This 

system is compared with another model and improves the accuracy by 19% overall. 

(Krizhevsky, Sutskever, & Hinton, 2017) first use the CNN in image recognition 

and outperform all the traditional methods in the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC). CNN has been successfully used for ASR (Palaz, 

2015) and MIR(Ghosal & Kolekar, 2018). In recent years, the log-mel features and 

MFCC features of sounds which is represented by spectrograms are commonly used as 

inputs to train deep models for sound classification, hence, the convolutional neural 

networks (CNN), which able to extract higher-level features that are invariant to local 

spectral and temporal variations, based sound classification approaches have drawn a 

lot of attention in recent years. Based on this, (Piczak, 2015a) first evaluated the 

performance of using CNN in ESC tasks. In this work, an ESC system consists of 2-

layer CNN with max-pooling and 2 fully connected layers is proposed. Log-mel 

spectrograms are extracted as an auditory feature to train the neural network. The 

experiment results indicate that the classification accuracy of this model is 5.6% higher 

than traditional methods. Zhang et al.(H. Zhang, McLoughlin, & Song, 2015) propose 

to use CNN with smoothed and de-noised spectrogram image feature in sound 

recognition tasks. (Meyer, Cavigelli, & Thiele, 2017) present a CNN model using mel-
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spectrograms as features. The performance of three neural network layers as classifiers 

are investigated, which is a fully connected layer, convolutional layer and convolutional 

layer without max-pooling. The results indicate that using convolutional layer as 

classifier outperform the model applying fully connected layer as the classifier. 

(Takahashi, Gygli, Pfister, & Van Gool, 2016) present a 6-layer CNN model for acoustic 

event recognition. In this work, the log-mel spectrograms with their first order 

derivation and second order derivation are extracted for each recording without 

segmentation. Then, multiple instance learning is applied and the softmax layer is 

replaced by an aggregation layer to aggregate the outputs of each network. The data 

augmentation is applied to prevent over-fitting and improve the robustness of the model. 

CNN has a strong ability to extract features directly from raw inputs, which has been 

verified in various image recognition problems. Based on this, (Pons & Serra, 2018) 

propose to use CNN to extract features from raw waveform and use SVM or extreme 

learning machines as classifiers in ESC tasks. The results denote that this architecture 

outperforms the CNN trained by MFCC. However, the work presented by (Dai, Dai, 

Qu, Li, & Das, 2017) show that the accuracy is only 70.74% when using raw waveforms 

to train CNNs as well. In this work, the problem of how many layers are the most 

suitable for CNNs has been studied. With considerable experiments, it is pointed out 

that deeper layers do not give better performance. Meanwhile, the results also indicate 

that using waveform just achieve an approximative performance of models using log-

mel features.  

Traditional CNN models have several drawbacks in auditory recognition. For 

example, pooling layers are generally applied in CNN models for feature dimensional 

reduction, however, these processes can lead to information loss and hinder the 

performance of neural networks. Therefore, a considerable number of works attempt to 

use improved CNNs for ESC tasks. 

A sound events detection model consists of a stacked convolutional and recurrent 

neural network with two prediction layers is proposed by (Adavanne & Virtanen, 2017), 

where log-mel band energy is extracted as features. One of the prediction layers is for 

the strong label and one for predicting the weak label. A method is proposed to control 
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what the network learns from the weak and strong labels by different weighting for the 

loss computed in the two prediction layers. The experiment result indicate that this 

model can achieve acceptable detection accuracy. Dilated convolution layers are 

exploited for ESC (X. Zhang, Zou, & Shi, 2017; Chen, Guo, Liang, Wang, & Qian, 

2019) to avoid the above-discussed obstacles. Several research works exploit CNN 

models which originally developed for image recognition tasks, and achieve 

outstanding performance in ESC as well. (Boddapati, Petef, Rasmusson, & Lundberg, 

2017) the environment sound classification accuracy of AlexNet (Iandola et al., 2016) 

and GoogLeNet (Szegedy et al., 2015) are evaluated on UrbanSound8K, ESC-10 and 

ESC-50 (Piczak, 2015b) datasets. Spectrograms (Spec), MFCC and Cross Recurrence 

Plot (CRP) feature sets are extracted and concatenated as three-channel image feature 

to train both models. The experiment results indicate that the image recognition models 

could also obtain good taxonomic accuracy for sound recognition problems. (Tokozume 

& Harada, 2017) end-to-end ESC system using a convolutional neural network. In this 

model, raw waveforms are used as inputs and two convolution layers are applied to 

extract features. Then, three max-pooling layers are performed for feature dimensional 

reduction followed by two fully connected layers as the classifier. A VGGNet 

(Simonyan & Zisserman, 2014) based ESC system is presented (Z. Zhang, Xu, Cao, & 

Zhang, 2018), where the convolution filters are set to 1-D for learning frequency 

patterns and temporal patterns respectively. (Zhu et al., 2018) propose a CNN based 

model called WaveNet, which use multi-scale features to make CNN learns 

comprehensively information of environment sounds. First, features are extracted from 

one recording through the first convolution layer using three types of filter size. The 

second convolution layer uses corresponding pooling stride to equal the dimension of 

these features and then, the three features are concatenated to form the multi-scale 

features. This feature is further combined with log-mel spectrogram and perform better 

than other systems on ESC-50 dataset. The DS-CNN model presented by (S. Li et al., 

2018) also uses raw waveform and log-mel spectrogram as inputs to train CNN based 

ESC system. The difference between WaveNet and DS-CNN is: the WaveNet combined 

two kinds of features together while in DS-CNN, two different CNN use raw waveform 
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and log-mel spectrogram as inputs respectively, and the outputs are fused by DS theory. 

2.4.3. Artificial Auditory Perception 

Life experiences proved that deviancy from sound events generally break into our 

conscious even they are not attended previously. However, it is also illustrated by every-

day experience that, not all the deviant sound events are meaningful. Therefore, the 

detected and recognized deviant environmental sound events should be further 

identified whether they need attend or not. Decision making is a key component of 

cognition system of selecting an action or an event within a series of more alternatives 

(X.-J. Wang, 2008). Unlike visual cognition, physiological studies of decision making 

based auditory cognition are still at the theoretical research stage. Although multiple 

published works have claimed that their established models could mimic human 

auditory cognition processing, however, these models are just kind of primary 

simulating the basic functions of auditory cognition, such as sound event detection and 

sound scene analysis. These models are all lack of judgements about the content of 

detected events or stimulus and the ability to decide the action of next step. The auditory 

system can not only possess the ability to detect and classify the sound events, it also 

needs to make decision of following activation or reaction to the sound events. 

Therefore, they cannot be regarded as real auditory cognitive models. 

2.4.3.1. Theoretical Research Works 

The majority research works focus on auditory cognition are theoretical research, 

which try to answers how does our brain process the obtained stimulus and what is the 

neuronal underpinnings of auditory cognition. (Romo & Salinas, 2001) conduct a study 

on what components of the neural activity evoked by a stimulus are directly related to 

decision making, and how are they related. The experiment results suggest that the 

ability to make decisions occurs at the sensory-motor interface. (Roitman & Shadlen, 

2002) study the neural correlate of gradual decision formation by recording activity 
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from the lateral intraparietal cortex (area LIP) of rhesus monkeys during a combined 

motion-discrimination reaction-time task. (Binder, Liebenthal, Possing, Medler, & 

Ward, 2004) conduct an experiment where the blood oxygenation signals in the brain 

of human participants were recorded when they were asked to identify speech sounds 

masked by varying levels of noise. The results provide evidence for a functional 

distinction between sensory and decision mechanisms underlying auditory events 

identification. Meanwhile, it is also pointed out that there is a link between inferior 

frontal lobe activation and response-selection processes during auditory perception 

tasks. 

A review of human neuroimaging studies in conjunction with data analysis 

methods that can directly link decisions and signals in the human brain on a trial-by-

trial basis is presented by (Heekeren, Marrett, & Ungerleider, 2008). (X.-J. Wang, 2008) 

present a review of decision making in recurrent neuronal circuits from four aspects 

which are the computations at the core of decision processes as well: 1) the cellular 

basis of temporal accumulation of information, 2) the termination conditions for a 

deliberation process in neuron, 3) reward-based adaptation, 4) stochasticity inherent in 

choice behavior (this is mainly about to study what is the representation of uncertainty 

in our brain and what are the intrinsic neuronal sources of randomness in choice 

behavior). These computations are the key component of decision-making. Hence, it is 

essential to know their neuronal underpinnings or a biological foundation of decision 

making. An overview of research works concerning the neural basis of auditory scene 

analysis is presented by (S. A. Shamma & Micheyl, 2010). Three most significant 

questions are summarized in this review: do auditory streams emerge below, in, or 

beyond the auditory cortex, the role of temporally coherent, and how does attention 

influence auditory stream formation with neural. After a comprehensively investigation, 

the author briefly answered these questions. For the first question, the perception of 

sound sequences such as those used in studies of auditory streaming emerges from 

interactions between the auditory cortex. For the second one, the grouping of 

temporally coherent responses across neurons tuned to different frequencies or different 

stimulus attributes. Finally, the abundance of descending (efferent) connections in the 
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auditory system provides ample opportunity for “top-down” influences, and makes it 

quite possible that effects of selective attention affect early stages of the neural analysis 

of auditory scenes. 

In order to find out the specific and causal contributions of different brain regions 

in the ventral auditory pathway to auditory decisions, (Tsunada, Liu, Gold, & Cohen, 

2016) let monkeys to decide whether an auditory stimulus contained more low-

frequency or high-frequency tone bursts, and record from and microstimulated middle-

lateral and anterolateral sites. The results indicate that anterolateral directly and 

causally contributes sensory evidence used to form the auditory decision. (S. J. Kayser, 

McNair, & Kayser, 2016) believe that the qualities of perception depend not only on 

the sensory inputs but also on the brain state before stimulus presentation. For proving 

such assumption, behavioral and EEG data in human participants performing two 

auditory discrimination tasks relying on distinct acoustic features are collected. They 

find that, power in task-specific frequency bands affected the encoding of sensory 

evidence while phase has no influence on decision.  

2.4.3.2. Computational Modeling the Auditory Cognition 

Considering the application of auditory cognition on artificial machines will 

greatly improve its ability of recognizing the surrounding environment. The theoretical 

research results have already answered the question about where and how the auditory 

cognition processing in our brain to some extent. Based on these works, multiple 

researches have engaged in establishing computational auditory cognition models in 

recent years. 

(J. Wang, 2015) proposes a heterogeneous audio-visual information-based model 

for realizing artificial cognition, which consists of three main modules. The first 

module uses various saliency features obtained from both spectral and temporal 

domain to realize auditory saliency detection. A biologically inspired computational 

inhibition of return model is proposed to extract the salient temporal information, 

power spectral density is applied to extract spectral information. Then, a fuzzy vector 
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based acoustic feature is presented for real environment sound classification. The 

second module is about realizing a salient foreground object detection approach from 

visual channel. The third module is an information probability model based 

heterogeneous information fusion model, which fuse the salient auditory and visual 

information. 

A novelty detection algorithm detects abnormal acoustic events to alert the user of 

a possible emergency is presented by (Principi, Squartini, Bonfigli, Ferroni, & Piazza, 

2015). In this system, an acoustic novelty detector is employed in order to be able to 

deal with unknown sounds, thus not requiring an explicit modelling of emergency 

sounds. This detector is a machine earning model use Power Normalized Cepstral 

Coefficients, Critical Band-based Teager Energy Operator Autocorrelation Envelope 

and MPEG-7 as features with GMM as classifier. After an alert event is detected, the 

system integrates a VoIP infrastructure so that emergencies can be communicated to 

relatives or care centers. Two datasets are exploited to evaluate the efficiency, and the 

obtained results show that the adopted solutions are suitable for speech and audio event 

monitoring in a realistic scenario. 

2.5. Conclusion 

This chapter illustrates the overview of my research field along with the state-of-

art techniques that inspire this thesis. It has illustrated the relevant research works and 

models with respect to this thesis in three aspects: 1) the review of auditory saliency 

and deviancy detection techniques which established for auditory cognition, 2) the 

review of the application of deep neural networks in sound signal recognition, where 

the neural network-based environmental sound classification techniques are the main 

research orientation, 3) the overview of research works focus on auditory cognition in 

either theoretical level or computational modeling level published in the past decades. 

Several distinct approaches and observations are presented, in order to provide the 

general consideration of the motivation of this work. Then, the discussion regarding the 
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state-of-art publications are connected to the problems that are researched in this thesis. 

Based on the three above mentioned review works, there are three observations 

need to be emphasized. First of all, auditory cognition is one of the most important 

components of the human awareness system. The computational model of this system 

should consist of the sound events detection module, the recognition module and the 

following activation decision-making module. Saliency detection is the basic principle 

for auditory perception, which is the detector of auditory cognition. Aware of the most 

conspicuous objects or events will lead to a faster and simple procedure in the 

perception of the surrounding environment. Meanwhile, the deviancy detection 

mechanism could be regarded as a supplement to saliency detection, a bottom-up 

selection mechanism made up of both helping us to perceive the environment more 

precisely. However, the research issue of auditory deviancy detection is more complex 

than auditory saliency detection, because a sound event should be salient at first, then, 

it could be deviant. In other words, detected salient sound events should be judged 

whether it is deviant or not. This will increase the difficulty of computational modeling 

the detector of artificial cognition system. 

Secondly, although appropriate frameworks for automatic speech recognition 

(ASR) and music information retrieval (MIR) have been well established by a growing 

number of researchers, the ESC research is still at the early stage. This is because the 

environmental sounds are a very diverse group of everyday audio events on account of 

the considerably non-stationary characteristics that cannot be described as only speech 

or music. Furthermore, the environment sounds do not have meaningful patterns or sub-

structures, such as rhythm for music and phonemes for speech. It is reported that the 

use of these features generally fails to precisely describe the content of environment 

sounds, since they cannot comprehensively represent the information in environment 

mixtures individually, leading to the classification accuracy of ESC failing to reach the 

same level as visual events categorization. On the other hand, deep neural network-

based models have been proved to be more efficient than traditional classifiers on 

solving complex categorize problems. Despite various research works attempt to use 

deeper neural networks to improve the taxonomic accuracy like (Boddapati et al., 2017; 
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Dai et al., 2017; S. Li et al., 2018; Z. Zhang et al., 2018), however, the classification 

accuracy presented in these works is still unsatisfactory. Hence, there is a strong need 

to develop appropriate auditory features and novel neural network models to achieve 

high categorization accuracy for ESC tasks. 

Thirdly, a growing number of investigations and analyses have been made on 

decision-making based on auditory perception. However, the main achievements are 

almost all on the theoretical level, which tries to find out how does our brain process 

the obtained information and what is the neuronal underpinnings of auditory cognition 

like (Binder et al., 2004; Lotto & Holt, 2011). Only a few published works present 

applicable computational models. Meanwhile, it can be noticed that these models are 

either elementary simulation of human auditory perception (J. Wang, 2015) or 

developed for indoor conditions (Principi et al., 2015), which may be insufficient for 

environment perception. Consequently, in order to realize artificial auditory cognition 

for complex environment awareness, novel approaches need to be researched and 

established. 
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Chapter 3.  Computational Modeling of Environment 

Deviant Sound Detection 

3.1. Introduction 

Eyes and ears are the two major sensory organs of the human perception system, 

and they cope with myriad stimuli of the surrounding environment almost all day. 

Receiving these tremendous amounts of stimulus, our brains is capable to extract the 

pertinent information constructing our cognitive awareness about the environment in 

which we evolve. Research works relating cognitive psychology (Frintrop, Rome, & 

Christensen, 2010) have shown that the human’s saliency-based selective attention 

mechanism greatly contributes to human’s perception of surroundings and in his actions’ 

efficiency regarding his interactions with the environment. In other words, this 

cognitive perceptual mechanism acts as a foremost process in construction of our 

effective awareness about the surrounding environment, helping us to focus on the 

objects, sounds or events which is conspicuous to us and to reject those (objects, sounds 

or events) which appear as background noise regarding the target we deal with at a 

given time. Furthermore, it is a common experience that during we focus on one salient 

event, our attention can be involuntarily engaged by visual or acoustic changes 

occurring unexpectedly in the environment (Escera et al., 1998; Schröger, 1996). This 

attention shift phenomenon of our cognitive perceptual mechanism could also be 

introduced as deviancy detection. 

Compared with visual signals, sound signals will enable mankind to be aware of 

and avoid danger beforehand or when human vision is not available in certain 

environment. However, most of the auditory selective attention mechanism-based 

technologies mainly focus on sound saliency detection (Duangudom & Anderson, 2007; 

Kalinli & Narayanan, 2007; Kaya & Elhilali, 2012; C. Kayser et al., 2005; J. Wang et 

al., 2015). The research on acoustic deviancy detection is still in the theoretical research 

stage (Menon & Uddin, 2010; Vachon et al., 2017). 
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Deviancy detection aims at recognizing situations in which unusual events occur. 

It seems like the definition of deviancy detection is similar to saliency detection. In fact, 

they are different in nature. The main purpose of saliency detection is to identify those 

features in a scene are conspicuous based on their context and are salient, and could 

attract attention. While the main purpose of deviancy detection is to identify the unusual 

or deviant events when we focused on the objects or events which attract attention at 

first. For example, when we listen to music at home, someone knocked on the door, the 

attention will shift from the music to the knocking. The deviancy detection mechanism 

could be regarded as a supplement to saliency detection and a bottom-up selection 

mechanism made up of both helping us to perceive the environment more precisely. 

Anomalous sounds which could cause auditory attention shift possess two 

characteristics：1) It is salient in the entire sound clip; 2) It is deviant relative to the 

salient sounds that have been detected or focused before. Therefore, the purpose of our 

goal is to detect the sounds have both the above two properties and irrespective the 

prominent sound that has been already detected. 

For the auditory saliency detection part, since the research results of 

neuropsychology (Itti et al., 1998) proved that visual and auditory perception channels 

have perceptual correlations in high-level perceptual processing. Thus, it’s reasonable 

to expect that the perception of auditory saliency could be convert into the perception 

of saliency of the visual channel. Based on this, (C. Kayser et al., 2005) initially 

proposed an auditory saliency map for salient sound detection. Experiment results 

showed that this model could mimics several basic properties of human auditory 

perception mechanism. (Kalinli & Narayanan, 2007) proposed an innovative ASM in 

for improving the performance of Kayser’s model, the new model added the orientation 

and pitch as new sound features. (Duangudom & Anderson, 2007) proposed another 

ASD model in which the time-frequency receiver domain model and adaptive 

suppression were used to provide the final auditory saliency map. In (Kaya & Elhilali, 

2012), an auditory saliency map which treat the input signals as a one-dimensional 

temporal input was presented. In (Kim et al., 2014), a saliency detection model based 

on the classification result was presented. (Tsuchida & Cottrell, 2012) and (Schauerte 
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& Stiefelhagen, 2013) introduced their novel auditory saliency map to predict the 

saliency in soundscapes, based on the theory of statistics. In (J. Wang et al., 2015) 

proposed a composite system that combined parallel paths including: temporal analysis, 

spectral analysis and the image salience model. It is reported that this model provided 

better robustness to saliency detection especially in real noisy soundscapes then 

conventional methods. 

For the deviant sound detection part, the current study mainly aims to reveal the 

response and mechanism of auditory cortex to deviant sound through electro-

encephalograph (EEG) and mismatch negativity (MMN) auditory evoked potential. It 

is reported in (Escera et al., 1998) that small changes in the acoustic environment 

capture attention involuntarily by activating the stimulus-change detector mechanism 

reflected in the mismatch negativity (MMN). Through the study of the anterior insula 

(AI) which is considered as a hub of a “salience network”, a network model is presented 

in (Menon & Uddin, 2010) for better understand brain mechanisms in important 

environmental stimuli detection tasks. Two parallel but separate lines of research on 

auditory novelty detection is presented in (Escera & Malmierca, 2014) and indicated 

that auditory novelty system should be organized in a hierarchical manner. In (Escera 

et al., 2014), after reviewing the evidence of three kinds of human brain response to 

deviant sounds, the author concluded that deviance detection is a basic principle of the 

functional organization of the auditory system. By assessing the sensitivity of Middle-

Latency Responses components to deviant probability manipulations, the study of 

(López-Caballero et al., 2016) further characterized the auditory hierarchy of novelty 

responses. In (Kaya & Elhilali, 2013), a biologically motivated model is proposed to 

building a computational model of MMN based on Kalman filters. This model is tested 

by finding the deviant onset times of simple oddball paradigms and simple sound 

patterns. The study of the relationship between human pupillary dilation response (PDR) 

and deviant auditory stimuli (Liao et al., 2016) showed that a salient event which is 

deviant from the background attracts attention and reflected in the PDR. The 

experiment results presented in (Vachon et al., 2017) demonstrate that the deviation 

effect reflects a general form of auditory distraction as interference took place both 
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within and across domains and regardless of the processes engaged in the focal task. 

Motivated by the shortcomings and limitations of previous research works from 

both auditory saliency detection and deviancy detection, a computational model to 

capture the deviant salient-sound in the real environment which mimics human auditory 

attention shifting mechanism. This approach is based on the detection of deviant salient-

sounds in the temporal domain combined with the frequency domain saliency detection. 

Then it presents the detected deviant sound in the image domain at last. The model first 

obtains the local salient sounds in the time domain through a combined feature of 

Gammatone Filterbank Cepstral Coefficient (GFCC). Then, an entropy-based analysis 

method is applied to find the sound with deviancy which elicit the acoustic attention 

shift. Moreover, the sound saliency in the frequency domain is derived from the Power 

Spectral Density (PSD) based frequency saliency detection method and been 

considered as frequency deviancy of sounds. Finally, in the opponent color space, the 

gammatone spectrogram blue-yellow channel information is calculated as the indicator 

to present the deviant salient-sound which lead to the auditory attention shift. 

3.2. Overview of the Approach 

The environmental sound signals are varying in both temporal domain and 

frequency domain while the auditory deviancy detection has some similarity with 

auditory saliency detection to some extent. Hence, we will analysis the saliency and 

deviancy of sound signals in both of these domains. Since MFCC has been well studied 

in speech recognition and made great achievements, many researchers choose MFCC 

as features for sound saliency detection and sound event detection (Adavanne, 

Parascandolo, et al., 2017; Parascandolo, Heittola, Huttunen, & Virtanen, 2017; 

McLoughlin, Zhang, Xie, Song, & Xiao, 2015; Takahashi, Gygli, & Van Gool, 2017). 

However, many studies also reported the robustness of MFCC is not sufficient in noise-

background while GFCC (Gammatone Frequency Cepstral Coefficient) shows better 

performance and robustness (Zhao et al., 2012; Zhao & Wang, 2013). GFCC is similar 

to MFCC and it is a sound feature extraction method for simulating human auditory 
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characteristics as well. It mimics human auditory system which has different modalities 

of non-linear response to the different frequencies of signal components through a set 

of Gammatone Filterbank (Shao et al., 2009). It is also reported in (Chachada & Kuo, 

2014) that GFCC has a strong ability in representing impulsive signals. Therefore, the 

GFCC feature of sound signals is chosen to represent human auditory perception model 

for temporal saliency detection.  
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Figure 4. The proposed auditory deviancy detection model 

 

Afterwards, since entropy could measure the uncertainty of a signal while deviancy 

could be considered as the most surprising component of a signal, hence, an entropy-

based deviant salient-sound detection method is proposed to highlight the sound with 

deviancy in the temporal domain. Then, we calculate the Power Spectral Density (PSD) 
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of the sound signals to obtain the salient information derived from the frequency 

domain. Furthermore, the Gammatone Filterbank spectrogram is acquired in the 

opponent color space to eliminate background noise while prominent the salient part in 

the image domain. Finally, integrating the salient information both in temporal domain 

and frequency domain to point out the deviant salient-sounds, and present them in the 

image domain. The overview structure of the proposed model is shown in Figure 4. 

3.3. Heterogeneous Deviancy Features Extraction and Fusion 

3.3.1. GFCC 

The input sound is first decomposed into the time-frequency spectrogram through 

a bank of Gammatone filters in our model. Gammatone filterbank (GF) is derived from 

psychophysical and physiological observations of the auditory periphery and this 

filterbank is a standard model of cochlear filtering (Zhao et al., 2012). GFCC is similar 

to the MFCC, the main differences are the non-linear rectification step before DCT 

where MFCC uses log operation and GFCC uses cubic root, and MFCC use log scale 

where GFCC is based on the ERB scale (Glasberg & Moore, 1990): 

 ( ) 24.7 (4.37 1)
1000

fERB f = × +   (0.1) 

The GF impulse response in the time domain is shown as follows: 

 1 2( ) cos(2 )bn
cGamma n n e f nγ πα π φ− −= +   (0.2) 

where cf  is the center frequency, 𝜙𝜙 is the phase of the carrier, α  is the amplitude, 

𝑛𝑛  is the order of the filter, 𝑏𝑏  is the bandwidth of the filter and 𝑡𝑡  is time. The 

relationship between 𝑏𝑏 and cf  is: 

 24.7 (4.37 /1000 1)cb f= × +   (0.3) 

The input signal is processed by a n-channel Gammatone filterbank (GF). Its center 

frequency is usually setup between 50 Hz and 8 000 Hz. This center frequency is 

equally distributed on the ERB scale and the filters will have wider bandwidths with 

higher center frequencies. After processing by the filters, the signal still retains its 
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original sampling frequency. Therefore, alone the time dimension we refined the n-

channel filter response to 100 Hz. This yields a corresponding frame rate of 10 ms and 

the magnitudes of the down-sampled outputs are then loudness-compressed by a cubic 

root operation (Zhao et al., 2012): 

 1/3( ) ( , )m d sg i g i m−=   (0.4) 

where 𝑛𝑛 is the number of filters and 𝑖𝑖 = 0 …𝑛𝑛 − 1 and 𝑀𝑀 is the number of frames 

and  𝑚𝑚 =  0 …𝑀𝑀 − 1 . The 𝑔𝑔𝑚𝑚(𝑖𝑖)  form a matrix which represent a variant of 

cochleagram. Each frame of the cochleagram is a GF feature. When compared with 

spectrogram has the linear frequency resolution, cochleagram has the advantage of its 

resolution is better in the low frequency than the high frequency.  

The GFCC extraction method is similar to the MFCC extraction which applies the 

discrete cosine transform (DCT) to ( )mg i  for dimension and irrelevant components 

reduction. The dimension of GFCC is set to 22 in this chapter. 
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3.3.2. Temporal Deviancy Detection 

Human beings always intend to be attracted by the sounds with higher frequency 

components or higher loudness level. This phenomenon could be explained by the 

theory of the inhibition of return (Posner, Rafal, Choate, & Vaughan, 1985) and the 

conclusion presented in (Southwell et al., 2017) showed that attention mechanism 

prefers to perceive novel stimuli in the environment by an involuntary attention 

mechanism for efficiently percept the environment. This is the reason why we are 

sensitive to the emerging sound signals which are deviant to a current salient sound has 

been attended.  

To mimicking the acoustic saliency detection of human beings, the GFCC of sound 

is considered to be the main representation of human hearing system and the salient 

sound is indicated by the peak value of GFCC curve. The GFCC curve is computed by 
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sum each row of GFCC matrix. Since the sound signal is first processed by a n-channel 

GF, then each row is the GFCC feature of different GF channels. The GFCC curve is 

the sum of the GFCC of each channel with normalized to 0 and 1, which is defined as: 
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From the variation of sound signal in the temporal domain we can see that the 

GFCC curve could reflects the bionic characteristic of the human auditory perception. 

Meanwhile, the peak points of the GFCC curve could be regarded as the local salient 

components of a sound signal in the temporal domain. 

 

  

Figure 5. a) The GF spectrogram of sound example, b) The local saliency detection 

results of temporal domain 

 

Figure 5 a) shows the GF spectrogram of a sound sample which is recorded in the 

real environment. The sound sample consists of a siren exist from the beginning to the 

end and two consecutive track honks. The siren and track honks are both salient 

compared to the background noise. It is obvious that in this example, the siren is the 

first salient component which attracts auditory attention and the track honks are the 

deviant salient-sounds which elicit the auditory attention shift. However, through 

Figure 5 b) we can notice that the GFCC curve could not identify the horn sounds while 

ignoring other peak points. Therefore, we propose an entropy-based sound deviancy 

detection method to locate the true deviant salient-sound in the temporal domain. 

Gammatone spectrogram
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In Shannon's information theory, the concept of entropy is a measurement of 

uncertainty associated with a random variable (Shannon, 2001). The saliency 

components could be considered as a surprising component compared with its temporal 

neighborhoods within a time period. Since the deviant salient-sound should be surprised 

to the precepted salient sounds, we can image that it would presents a more uncertain 

value than the previous salient components in entropy domain. Hence, the highest 

Shannon entropy value could be considered as the deviant salient-sound of a sound 

signal. Here, the short-term wavelet packet Shannon entropy approach is applied to 

represent and estimate the saliency characteristic of real sound signals (J. Wang et al., 

2015). The sound signal is divided into short-term frames with overlap of 50% and the 

Shannon entropy of each frame is calculated to represent the average change of the 

sound signal. The 𝑗𝑗𝑡𝑡ℎ frame of signal 𝑆𝑆 is defined as: 

 2 2
, ,( ) log( )j i j i j

i
E S s s= −∑   (0.7) 

The short-term Shannon entropy of the entire signal is: 
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We normalized the entropy to 0 and 1. Figure 6. shows normalized the entropy of 

the sound signal while the max value of entropy is pointed out. However, as we 

illustrated above, the consecutive track honks which appeared twice would elicit 

auditory attention shift. Obviously, employing the max value of entropy as 

representation of the deviant sounds is still inefficient for deviancy detection. Since the 

deviant sound may appear continuously and should have the same attributes while the 

surprise value of rest deviant sounds is similar to the first one. Therefore, only if all the 

deviant components are identified, we can say that the deviancy of a sound signal have 

been detected. Here, a sample entropy-based method in order to find out the real deviant 

sounds is proposed. 
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Figure 6. The max value of normalized Shannon entropy of sound sample 

 

Sample Entropy (SampEn) (Richman & Moorman, 2000) is a traditional methods 

of measuring complexity, which determines the probability of finding specific patterns 

or resemblance between time series to examine the irregularity or the predictability of 

one particular time series. SampEn measures the negative logarithm of the conditional 

probability that two sequences that are similar for 𝑚𝑚 points remain similar at the next 

point, within a tolerance 𝑟𝑟, the sample entropy is given as: 

 ( , , ) ln ( ) / ( )m mSampEn m r N A r B r = −     (0.9) 

Where, 𝐴𝐴𝑚𝑚(𝑟𝑟)  is the probability that two sequences will match for 𝑚𝑚 + 1  points 

while 𝐵𝐵𝑚𝑚(𝑟𝑟) is the probability that two sequences will match for 𝑚𝑚 points, 𝑁𝑁 is the 

time series of a signal. 

Since SampEn measures the complexity of time series, as the background noise of 

a signal is strong, the value of SampEn will be large. Conversely, when the background 

noise is weak, the value of SampEn will be small. To be specific, when the deviant 

sounds could be precepted in high-intensity background noise with previous salient 

sounds, their values of entropy should be similar to the entropy value (max value) of 

the first detected deviant sound. Otherwise they could be masked by the background 

noise or by the current salient sounds which already attracted auditory attention. On the 
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other hand, when the deviancy is first precepted in low-intensity background noise, the 

entropy value of rest deviant sounds could change slightly wider than in high-intensity 

background noise situation. Moreover, in low-intensity background noise environment, 

the deviant salient-sound might be the only exist salient sounds. Therefore, the 

expectation value of deviancy in entropy domain can be calculated as: 

 
1, max( ( ))
0,

SampEn
i

i
if E E S e

D
else

− ≥ ×
= 


  (0.10) 

Where 𝐸𝐸𝑖𝑖 denotes the value of each point in entropy domain, 𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸(𝑆𝑆)� is the max 

value of entropy which also represents the first deviant salient-sound, 𝐷𝐷𝑖𝑖 is the point 

which represents the rest deviancy point in entropy domain. Eq. (3.10) gives the 

deviancy detection principle in entropy domain. Since the range of SampEn is 0 to 1, it 

is obvious that when the complexity of sound signal is high, only those points which 

have similar value with 𝑚𝑚𝑚𝑚𝑚𝑚�𝐸𝐸(𝑆𝑆)� could represent the deviancy.  

 

   

Figure 7. a) The entropy deviancy detection result; b) The deviant salient-sounds 

detection results in temporal domain 

 

If the complexity of sound signal is low, the values of the remaining abnormal 

sounds may fluctuate over an acceptable range. The corresponding time of each 

detected entropy deviancy point could be acquired as the entropy is calculated frame 

by frame. Therefore, if the local saliency points in temporal domain matches the 

deviancy points in entropy domain which means the sounds appeared in this period 
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possess both saliency and deviancy, these points are the representation of deviant 

salient-sounds in the temporal domain. 

3.3.3. Frequency Saliency Detection 

As we mentioned above, one of the characteristics of deviant sounds is saliency. 

Since the environment sounds are non-stationary, so merely via the saliency and 

deviancy detection in the temporal domain to acquire the deviant salient-sounds is 

inadequate. Thus, obtaining the salient frequency component as a complementary part 

to saliency detection is also necessary. Hence, we propose a Power Spectral Density 

(PSD) domain saliency detection method. The PSD estimation results give the energy 

distribution of sound signals at different frequencies, so the average of PSD estimation 

represents the average level of sound frequency change in the spectral domain. 

Therefore, the points of the PSD curve which are greater than the mean value of PSD 

estimation can be regarded as the potential salient components of sounds in the 

frequency domain. It can be illustrated by: 

 
1, ( )
0, ( )

peak avg
i

peak avg

P i P
P

P i P
≥=  <

  (0.11) 

Where  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑖𝑖) is the maximum point, 𝑃𝑃𝑝𝑝𝑎𝑎𝑎𝑎 is the mean of PSD curve and 𝑃𝑃𝑖𝑖 is the 

maximum point greater than 𝑃𝑃𝑝𝑝𝑎𝑎𝑎𝑎. 

Related research work pointed out the frequency range that the human auditory 

system can perceive is usually between 20 Hz and 20 kHz, but only a handful of people 

can hear the upper and lower frequency limits. For most adults, the frequency range 

that can be heard in real life is between 40Hz and 16 kHz. Thus, a salient frequency 

distribution band is defined from 40 Hz to 16 kHz, a conspicuous point below or above 

the frequency band will also be classified as non-saliency. According to the frequency 

masking we can know that a strong pure tone will mask weak tones that sound 

simultaneously in its vicinity. Meanwhile, a pair of sounds with different loudness can 

be distinguished if the physical level increases by 10 dB (Petit, El-Amraoui, & Avan, 

2013). Moreover, considering the concept of the critical band and computational cost, 



61 

each 𝑃𝑃𝑖𝑖  will be compared with 𝑃𝑃𝑖𝑖+1  and 𝑃𝑃𝑖𝑖−1  if their frequency gap is less then 

1kHz to identify the 𝑃𝑃𝑖𝑖 with real saliency. Hence, the final frequency salient point 𝑆𝑆𝑆𝑆,𝑖𝑖 

could be obtained by: 
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  (0.12) 

Where 𝑃𝑃𝑚𝑚𝑖𝑖, 𝑃𝑃𝑚𝑚𝑖𝑖−1 and 𝑃𝑃𝑚𝑚𝑖𝑖+1 is the location in frequency axis of 𝑃𝑃𝑖𝑖, 𝑃𝑃𝑖𝑖−1 and 𝑃𝑃𝑖𝑖+1. 

The first condition of Eq. (3.12) means when 𝑃𝑃𝑖𝑖 is the only point within the range of 

𝑃𝑃𝑚𝑚𝑖𝑖 ± 1kHz, it would not be masked. Therefore, those salient points with 𝑆𝑆𝑆𝑆,𝑖𝑖 = 1 are 

the real salient frequency components. If all of these points are equal to 0, it means that 

no salient frequency component exists. 

 

  

Figure 8. a) The frequency domain local saliency detection result; b) The frequency 

domain true saliency detection result 

3.3.4. Image Indicator 

The original spectrogram is transformed into the log scale to depress the effect of 

background noise and emphasize the salient sound signal components. From Figure. 

6(b) we can see that the log scale gammatone spectrogram of a sound signal which 

mainly consists of blue, green and yellow where yellow denotes the salient time-

frequency component. The yellow components are much easier to be perceived by the 

human visual perception system than the components presented in blue which represent 
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the background noise. However, the representation of color in traditional RGB color 

space is not the best choice for human visual perception system (Evangelopoulos, 

Rapantzikos, Maragos, Avrithis, & Potamianos, 2008). Meanwhile, the computational 

efficiency will be affected while the indication may not be obvious for further 

processing if the colorful log scale gammatone spectrogram is used to indicate the 

deviant sounds. Therefore, we prefer to simplify the log scale gammatone spectrogram 

in the opponent color space (van de Sande, Gevers, & Snoek, 2008). There were three 

types of photo receptors: white-black, yellow-blue and red-green (Anwer, Vázquez, & 

López, 2011). As the component of log scale gammatone spectrogram with yellow color 

are more salient to human among background noises with blue and green. Hence, we 

can apply the concept of opponent color space to reduce the three-layer log scale image 

into a single-layer image for a better indication of sound deviancy: 

 ( ( ) ( ) 2 ( )) / 6I c c cS I R I G I B= + −   (0.13) 

Where 𝐼𝐼𝑐𝑐 is the log scale gammatone spectrogram of a sound signal. 𝐼𝐼𝑐𝑐(𝑅𝑅), 𝐼𝐼𝑐𝑐(𝐺𝐺) 

and 𝐼𝐼𝑐𝑐(𝐵𝐵) are the red, green and blue color values of the pixels in the original RGB 

color space of 𝐼𝐼𝑐𝑐 . 𝑆𝑆𝐼𝐼  is the image indicator. Finally, the combined deviancy 

information and saliency information are presented on the image indicator to highlight 

the deviant salient-sounds. 
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Figure 9. a) The gammatone spectrogram of sound signal; b) the log scale gammatone 

spectrogram of sound signal; c) the image indicator of sound signal; d) the deviant 

salient-sounds presented in the image indicator 

3.3.5. Verification of the Proposed Model 

To verify the performance of the auditory deviancy detection framework proposed 

in this paper in dealing with the actual environment sound signals, an experiment was 

conducted using three samples recorded in different soundscapes. The background 

noise of these sound samples consists of environment sounds or urban sounds. All the 

samples have a salient sound could attract auditory attention that always exist. While a 

deviant salient-sound also exists, which lead to the auditory attention shift in each sound 

sample. 

Specifically, the sound sample A is a 11s sound recorded in a restaurant, the human 

talking voices is the salient sound attract auditory attention at first. The auditory 

attention shift evoked around 5s caused by breakage of window. Sound sample B is the 

sound of two owl’s hooting recorded in the natural environment. This sample includes 

the sounds of owls as salient sounds and several other birds chirping as background 

noise. The difficulty of deviancy detection is to distinguish the second owl hooting from 

the first one. Sample C is recorded on a rainy day that consist of raining as background 

noise while the buzzing is the only salient sound in this sample. The sample C used here 

is to verify if there is no deviancy, whether the proposed model could detect the auditory 

saliency or not. 

Image Indicator The Auditory Deviancy Detection Result
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These sound samples are representatives which include recordings in different 

soundscapes. Hence, we could verify the performance of the proposed framework by 

the samples deviancy and saliency detection results. The frame length of 𝐸𝐸(𝑆𝑆) is 512 

with an overlap of 256 and the scale of gammatone filterbank is 23. The GFCC curve 

and entropy curve are all normalized and smoothed to stabilize the detection of peak 

points in each domain. 

 

  

Figure 10. The result of each domain and the deviancy detection result of sample A. 
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The results are shown in Figure. 10-12 The subgraphs (a) - (f) are the log scale 

Gammatone spectrogram, temporal local saliency detection result, entropy deviancy 

detection result, temporal domain deviancy detection result, frequency domain saliency 

detection result and the sound deviancy detection result respectively. 

Figure 10 shows the process and detection result of sound sample A. Obviously, 

from Fig. 10 (a) we can see that the human talking voice is salient to the background 

noise while the deviancy appeared around 6s is almost masked by the salient sound. 

The temporal local saliency detection could not identify the deviancy. However, after 

comparative analysis of entropy domain deviancy detection result, the temporal 

deviancy is successfully detected. Then, as illustrated in Figure 10 (e), the frequency 

domain true salient point is identified through Eq. (11) while the mismatch points are 

eliminated. Finally, the auditory attention shift caused by breakage of window is 

accurately presented in Figure 10 (f). 

The auditory deviancy is also detected in sound sample B and the process and result 

is showed in Figure 11. The deviant salient-sound which cause the human auditory 

attention shift is the second owl hooting appeared for about 6 seconds. The difficulty of 

deviancy detection in sample B is that the deviant salient-sound is overlapped with the 

first owl hooting. Meanwhile, they all sound from the same species which means the 

two sounds have the same features and properties. From Figure 11 (a) and (b) we can 

see that the second owl’s hooting is not presented clearly. The reason is that this sound 

is overlapped by the first owl’s hooting and is hard to identify in temporal domain and 

frequency domain. However, from Figure 11 (c) and 11 (d) it can be found that, through 

the proposed entropy-based deviancy detection method, it could successfully find the 

deviant sounds since it is a novel sound in this sample and has a higher uncertain value 

in entropy domain. Then, Figure 11 (e) illustrates that the frequency components of 

background noise around 2.4 kHz always exist have been accurately eliminated. The 

true deviant sound is correctly presented in the image indicator. 

The deviancy detection results of sound sample C are shown in Figure 12. This 

sound clip has no deviancy while the buzzing is the salient sound compared to the sound 

of rain. Despite the background noise do not show a high level in log scale gammatone 
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spectrogram, however, the noise almost masked the buzzing when listening to this 

snippet. Nevertheless, the most salient sound has been accurately detected, it is clearly 

demonstrated in Figure 12 (f) that the buzzing around 3.7 kHz is correctly highlighted. 

In other words, the proposed model is also applicable in salient sound detection tasks. 

 

 

Figure 11. The result of each domain and the deviancy detection result of sample B. 
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Figure 12. The result of each domain and the deviancy detection result of sample C. 

 

Since the GFCC curves presented in Figure 10. (d), Figure 11. (d) and Figure 12. 

(d) show a considerable performance in salient sound representation while inhibit the 

background noise, it has been proved that the GFCC is a robust feature for representing 

the unstable environment sounds while it is an appropriate choice in our model. The 

detection results derived from temporal domain deviancy verified the efficiency and 

accuracy of the proposed entropy-based deviant salient-sound detection method. 
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Meanwhile, the frequency saliency detection results of these sound clips illustrate that 

no authentic salient points exist after using the frequency saliency verification in Eq. 

(3.12). The detection results of sound sample C demonstrate that the model could also 

be exploited for saliency detection tasks. Therefore, it can be concluded that the 

proposed model could effectively simulate the human auditory attention shift 

mechanism. 

3.4. Experiments 

3.4.1. Experiment Set Up 

To test the validity of the model in a more quantitative manner, a set of 180 

recordings of sound snippets which are synthetic from various sources including the 

Freesound database and the SoundBible database. Each recordings of our own database 

is a synthetic mixture using isolated sound events from the two above mentioned 

databases. The synthesized sounds are consisting of three components: background 

noise, salient sound which always exist and the deviant sounds which could cause 

auditory attention shift. Scenes were normalized based on the root mean square (RMS) 

energy of the loudest 20% and 60% of each wave file for creating 90 weak background 

noise instances and 90 strong background noise instances. All the synthetic mixtures 

have the same sample rate: 44100 Hz and sample bit: 16 bits. An overview of all 

components included in this dataset is given in Table 1. 

We exploit Event-based metrics to compare system output and corresponding 

reference event by event (Mesaros, Heittola, & Virtanen, 2016). It is a widely used 

measurement to identify the efficiency of classification and recognition systems 

(Adavanne, Pertilä, & Virtanen, 2017; Cakir et al., 2015). Event-based metrics have no 

meaningful true negatives, except in the case when measuring actual temporal errors in 

terms of length, in which case the total length of time segments where both model 

output and reference contain no active events is measured. As the evaluation metric, F1 

score is calculated inside each sound sample. The statistics except true negative are 
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defined as follows: 

 true positive: a sound in the model output that has a temporal position 

overlapping with the temporal position of a sound with the same label in the 

reference. 

 false positive: a sound in the model output that has no correspondence to a sound 

with same label in the reference. 

 false negative: a sound in the reference that has no correspondence to a sound 

with the same label in the model output. 

The reference is the deviant sounds in each instance. For example, the sound 

snippet one is synthesized from Rain Forest (20%), Turkey and Dog Barging. The 

reference of this clip is the dog barging which appeared 4 times. Then, the true positive 

should be the position highlighted in image indicator that have the same position of the 

reference. Precision, Recall and F-score (Rijsbergen, 1979) are calculated as: 

 2, , score
TP TP PRP R F

TP FP TP FN P R
= = =

+ + +
  (0.14) 

The number of true positives (TP), the number of false positives (FP) and the 

number of false negatives (FN) are aggregated over the entire data, and the metrics are 

calculated based on the overall values. 

 

Table 1. List of the ninety synthesized audio clips 

Scene Salient Sound Deviant Sound 

Rain Forest (20%) 

Rain Forest (60%) 

Turkey 

Animals Hawk 

Small dog 

Ocean (20%) 

Ocean (60%) 

Owl 

Breakage of objects Speech 

Alarm 

Street (20%) 

Street (60%) 

Bells 

Car horns Siren 

Helicopter Pass 
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3.4.2. Results and Analysis 

Attributed to the different components of sound instances, the sound database is 

divided into four groups: urban scene sounds, nature scene sounds strong background 

scene and weak background scene. We choose MDSM to make a comparison for it 

shows better robustness and efficiency in environment sound saliency detection tasks 

then the conventional auditory saliency detection models. To some extent, the sound 

deviancy detection could be seen as saliency detection. Table 2, Figure 13 and Figure  

14 show the results obtained in different sound sets of the proposed model and model 

(multi-domain saliency map, MDSM) presented in (J. Wang et al., 2015). In particular, 

Table 2 reports the precision, recall and F-score of each sound group of two models. 

Comparing MDSM and proposed models, Table 2 clearly show that the proposed 

model achieves the best result in each sound group. The main idea of MDSM is to detect 

the most salient components in a sound clip. The deviant salient-sounds may be the 

most salient sound in sound snippets, however, as we illustrated in Section 3 that the 

deviant sound may appears more than once and should have the same attributes in both 

temporal domain and frequency domain. Hence, only detect the most salient sound is 

not sufficient. Since the proposed model applied entropy-based deviancy method, it 

could detect all the deviant salient-sounds in the most sound scene and shows a much 

better performance than sound saliency detection models. 

 

Table 2. Sound deviancy detection performance of MDSM and proposed model 

Model MDSM Proposed Model 

 Precision Recall F-score Precision Recall F-score 

Urban sound 79.31% 44.23% 56.79% 89.74% 88.98% 89.36% 

Nature sound 67.17% 30.32% 41.78% 68.01% 62.45% 65.11% 

Strong background 35.00% 10.29% 15.91% 49.89% 52.42% 51.12% 

Weak background 72.14% 41.39% 52.60% 79.37% 69.30% 73.99% 

Overall 61.00% 27.23% 37.65% 65.27% 62.00% 63.60% 
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In Figure 13 and Figure 14, the F-score of deviancy detection result in different 

sound groups derived from rhe two models are respectively shown. From Figure 13 we 

can see that the proposed model achieves the best performance than MSDM in each 

sound group. The proposed model shows excellent performance of deviancy detection 

in urban sound group which the F-score is 89.36% while the MDSM only achieve 56.79% 

which could be seen as no accuracy. This result further demonstrates the effectiveness 

of entropy-based deviancy detection method in improving the performance in different 

kinds of background noise. The performance of nature sound group in this experiment 

is notably worse than urban sound. There are several possible explanations for this. 

Firstly, the salient sound component and deviant sound component in nature sound are 

all unstable and transient sounds. Therefore, they all presented as local salient sound on 

GFCC curve. Secondly, as they are all intermittent appeared in the nature scene, the 

both of them show a high uncertainty value in entropy domain. Nevertheless, the result 

shows that the proposed model perform better than MDSM in this sound scene. 

 

 

Figure 13. F-score of urban scene sound deviancy detection result and nature scene 

sound deviancy detection result of MDSM and proposed model 

 

Figure 14 illustrates the deviancy detection result in strong and weak background 

noise scene and over all database. It is obviously that the proposed model is much 
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robustness and efficient than the MDSM model. Since the loudness of scene is high in 

strong background noise scene, the deviant salient-sounds almost masked by the 

background noise. This increases the difficulty of deviancy detection in such situation 

since the deviant salient-sounds are hard to be perceived by human acoustic. Despite 

this, the proposed model could still achieve a considerable result (F-score=51.12%) 

than the MDSM model (F-score=15.19%). 

 

 
Figure 14. F-score of sound deviancy detection results under strong and weak 

background noise with all data deviancy detection result derived from MDSM and 

proposed model 

 

3.5. Conclusion 

To make artificial intelligence could have a better performance of percept the 

complex environment, a computational model which mimic the human auditory 

cognitive characteristics of auditory attention shift is proposed in this chapter. It is 

mainly consisting of three modules. The first module is a novel approach for detecting 

the temporal deviancy based on the GFCC time domain curve to detect the local 

saliency of a sound signal. Meanwhile, a wavelet entropy and a sample entropy-based 
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presented by the points which both possess saliency and deviancy. Second, in order to 

accurately detect sounds saliency, a module focus on the frequency domain saliency 

detection method based on the sound PSD to extract the saliency of sound in frequency 

domains is presented. Finally, an image indicator based on opponent color space is 

presented to give a better presentation of the deviant salient-sounds of sound signals. 

Two experiments were performed to verify the accuracy of the proposed model. The 

verification of the proposed model shows the details of the deviancy detection process 

as well as the detection results of three representative sound snippets. From the results, 

it can be concluded that the GFCC is a robust representation of environment sound 

while the entropy method is an efficient way for sound deviancy detection. The 

experiment further demonstrates the performance of the proposed model in a more 

quantitative manner and illustrates that the proposed model could mimic human 

auditory attention effectively.  

Generally, the first step of artificial cognition (salient and deviant sounds detection) 

of environmental sound for machines is possible to be realized by applying the 

presented approach. Furthermore, the obtained result could be used as the input for the 

next auditory processing step, sound classification. 
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Chapter 4.  Analysis of Multiple Aggregated Acoustic 

Features for Environment Sound Classification 

4.1. Introduction 

Environmental sound classification (ESC) is a staple component of environment 

auditory cognition. Although appropriate frameworks for automatic speech recognition 

(ASR) and music information retrieval (MIR) have been well established by multiple 

researchers, such as (Juang & Rabiner, 2005; Klapuri & Davy, 2007; H. Xu et al., 2018; 

Yakar et al., 2013), etc., the ESC research is still at the early stage. (Piczak, 2015b) has 

pointed out that environmental sounds are very diverse group of everyday audio events 

on account of considerably non-stationary characteristics that cannot be described as 

only speech or music. Therefore, the algorithms originally established for ASR and 

MIR may not be sufficient for ESC. Furthermore, the environment sounds do not have 

meaningful patterns or sub-structures, such as rhythm for music and phonemes for 

speech. Meanwhile, it is nearly impossible to identify sound mixtures from a waveform. 

Hence, the main idea of ESC is first applying feature extractions to map the input sound 

waveforms into feature space, and then using the eigenvectors to train a classifier for 

categorizing of environmental sounds. The frequency domain, spectrograms (time-

frequency domain representations) and cepstral domain have been used in ESC for 

years. However, these features generally fail to precisely describe the content of 

environment sounds, since they cannot comprehensively represent the information in 

environment mixtures individually, leading to the classification accuracy of ESC failing 

to reach the same level as visual events categorization technologies. Hence, researchers 

have strived to maximize the information content with combination schemes of the 

three domains features in the past decades 

Acoustic features developed for speech and music analysis are based on 

psychoacoustic properties of auditory signals such as pitch, loudness and timbre which 

are easy to be computed and applied generally along with other features.(Chachada & 
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Kuo, 2014). (Dan-Ning Jiang, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, & Lian-Hong 

Cai, 2002) proposed the Octave-based Spectral Contrast features for music recognition. 

The experimental results indicated that these features are more efficient than MFCC for 

music signal classification tasks. (Xing et al., 2017) aggregated Chroma, Mel 

Spectrogram, MFCC, Spectral Contrast, Tonnetz and Tempogram to compose a hyper-

images for CNN based music recognition. (Ghosal & Kolekar, 2018) combined MFCC 

with delta and double delta coefficients, Mel Spectrogram with first and second order 

derivation, Chroma, Constant Q Chroma, Short Time Fourier Transform, Tonnetz and 

Tempogram for CNN-LSTM based music recognition. This framework outperforms on 

the GTZAN dataset. (Zhao et al., 2012) presented a detailed demonstration and analysis 

of the advantages and disadvantages of MFCC and GFCC, respectively. (Burgos, 2014) 

combined MFCC and GFCC, and then, principal component analysis (PCA) was 

performed to reduce the feature dimensions. The aggregated features performed better 

than single features in the ASR system. 

Even though the content of environmental sounds is more diverse than speech and 

music signals, the features established for ASR and MIR are still widely used in ESC 

due to their considerable performance. Several single feature-based or hybrid feature-

based approaches can be found in literatures. (Piczak, 2015a) first proposed a CNN 

with Log-Mel spectrogram for ESC. The spectrograms are split into segments of 41 

frames and combined with their deltas as a 2-channel input of the CNN. Two similar 

CNN-based frameworks that use Log-Mel spectrogram can be found in (Salamon & 

Bello, 2017) and (Takahashi et al., 2016). (H. Zhang et al., 2015) proposed a novel 

spectrogram image feature (SIF) for CNN based ESC system. They firstly extracted the 

spectrogram from a sound signal. Then, the spectrogram is smoothed in frequency, and 

the down-sample and de-noised of the new spectrogram are performed. At last, the time-

domain energy was computed for each frame, while the maximum energy indices with 

the six frames around each of them were used to form the SIF. (Boddapati et al., 2017) 

extracted spectrogram, MFCC and Cross Recurrence Plot (CRP) from sound signals 

and aggregated them in to a single channel color image. Two CNN-based models, 

AlexNet and GoogleNet, were applied to verify the performance of this feature on the 
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ESC-50 and UrbanSound8K datasets. The mixed Log-Mel and Gammatone 

spectrograms are used in (Z. Zhang et al., 2018) with a 8-layer CNN for environment 

sounds classification. (S. Li et al., 2018) proposed a stacked CNN for ESC where one 

uses Log-Mel spectrograms with their first order derivation as input and the second 

CNN uses raw waveforms. 

These research works indicate that, environmental sounds are different from human 

speeches or music signals, and the classification performance of environmental sound 

depends on the selection of audio features to a great extent. The conventional sound 

event analysis mainly addresses time-frequency features or cepstral domain features 

only, where some needed information is neglected. While combined acoustic features 

can contain more information than features extracted from a single domain. However, 

grounded on the fact that sometimes aggregate features from different domain may 

reduce classification accuracy, the feature combination strategies should be carefully 

designed. In view of the features developed for ASR and MIR that are well studied and 

have a certain effect in ESC tasks, the combinations of these features might perform 

well in representing the environmental sounds, while this assumption still needs further 

validation. Therefore, in this chapter, the performances of such acoustic feature 

aggregated strategies for environment sound taxonomy are ascertained.  

4.2. Overview of the Approach 

The ascertain work presented in this chapter consists of three general processing 

units, which are acoustic feature extraction unit, feature combination unit and 

performance of each feature sets in an environmental sound classification analysis unit.  

In addition to the appropriate features, a satisfied classifier is an essential 

component for ESC as well. Recent research shows that deep learning models are more 

effective than ordinary classifiers, such as the Gaussian Mixture Model (GMM), 

Hidden Markov Model (HMM) and Support Vector Machines (SVM) (Dai, 2016). 

Convolutional neural networks (CNNs) is one of the outstanding structures of deep 

neural networks. Therefore, CNN is also exploited as classifiers for aggregated feature 
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analyze. The overall processing method of the investigation is graphically illustrated in 

Figure 15, where the composition of each step is detailed presented. 

 

 
Figure 15. The framework of environmental sound classification. 

 

From Figure 15, it can be seen that through feature extraction algorithms, two kinds 

of acoustic features are extracted. The first category contains Chroma, Spectra Contrast 

and Tonnetz, which are originally developed for music signal recognition. These three 

features will be used as an entirety (called CST) in the rest of the thesis, since the 

dimension of each of them is very small and the performance of exploit them separately 

for ESC is extremely bad. The second class includes MFCC, Mel Spectrogram, Log-

mel Spectrogram, GFCC and Gammatone Spectrogram, which are generally applied 

for speech recognition. Thereafter, each feature belongs to the second feature category 

is combined with CST, individually.  

4.3. Feature Aggregation Schemes and CNN model 

The detailed introduction of each basic feature applied in our work and the 

aggregate schemes are presented at first. Then, the 6-layer CNN architecture with its 

parameter settings is introduced. Finally, the two datasets used for evaluating the 

performance of these features for ESC are illustrated. 
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4.3.1. Features 

4.3.1.1. General frequency features 

1. Chroma (Ewert, 2011): Chroma features are widely used in music analyze and 

recognition tasks (Bartsch & Wakefield, 2005; Müller, 2007). It is referred to as 

pitch class profiles and present to be very robust to variations in timbre and closely 

correlate to the musical aspect of harmony. Meanwhile, multiple results derived 

from research works related to music identification (Serra, Gómez, Herrera, & 

Serra, 2008) and audio matching (Müller, Kurth, & Clausen, 2005) indicate that 

chroma is a powerful mid-level feature representation in content-based audio 

retrieval. The details about chroma features are described as follows: assuming that 

the equal-tempered scale, the chromas correspond to the set #{ , , ,..., }C C D B  that 

consists of the twelve pitch spelling attributes as used in Western music notation. 

Then, a twelve-dimensional vector 1 2 12( , ,..., )Tx x x x=   is presented to represent 

the chroma feature, where 1x   correspond to chroma C  , 2x   correspond to 

chroma #C ， and so on. For feature extraction, a sound waveform is converted 

into a sequence of chroma features, and each sequence explains how the short-time 

energy of the signal is spread over the twelve chroma bands. 

2. Tonal centroid features (tonnetz) (Harte, Sandler, & Gasser, 2006): Tonnetz, also 

known as harmonic network is a representation of pitch which is first proposed by 

Euler (Cohn, 1998). The tonal centroid vector nt  of time frame n  is the result 

of multiplication of the chroma vector nc  and a transformation matrix T . Then, 

the nt   is divided by the 1L   norm of chroma vector to prevent numerical 

instability, and make sure that the tonal centroid vector dimension is always six. 

The tonal centroid vector is given as: 
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3. Spectral Contrast: The Spectral Contrast feature represents the strength of spectral 

peaks, valleys and their differences. The same extraction method presented in 

(Dan-Ning Jiang et al., 2002) is applied to extract spectral contrast features. The 

sound waves are first segmented into frames of 200ms with overlapping of 100ms. 

Then, FFT is performed to acquire the spectrum. Afterwards, the Octave-scale 

filters is applied to divide the frequency into sub-bands followed by estimating the 

strength of spectral peaks, valleys and their differences. At last, after the estimation 

results are translated into the Log domain, Karhunen-loeve transform is used to 

map the raw spectral contrast feature to an orthogonal space and eliminate the 

relativity among different dimensions. 

 

  

Figure 16. The Spectrograms of Chroma Tonnetz and Spectral Contrast. 

 

4.3.1.2. Mel filter and Gammatone filter based features 

The mel filterbank mimics the human auditory system's response more closely than 

the linearly-spaced frequency bands used in the normal cepstral. This characteristic 

makes the acoustic feature extracted based on such filterbank could be a better 

representation of sound. The MFCC generation process includes:  

a). Signal Pre-processing,  

b). Fourier transform is performed to obtain the signal spectrogram,  

c). Mapping of the spectrogram into mel-spectrogram through the triangular 

overlapping windows which center frequencies are distributed on the mel scale 

(Serizel et al., 2018): 
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d). Taking a log calculation on the mel-spectrogram,  

e). Applying DCT to the mel log power spectrogram to generate the cepstral 

features: 
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Where mX   is the log energy in thm   log mel spectrogram, c   is the index of the 

cepstral coefficient. 

Mel and Log-Mel Spectrograms: the same parameters for MFCC processing are 

used to compute the Mel and Log-Mel Spectrograms. The Mel Spectrogram is the result 

of Step c of the MFCC computation. The Log-Mel Spectrogram is the Mel log power 

spectrogram before the DCT step during the computation of MFCC. 

The processing methods of GFCC can be found in Section 3.3.1. Gammatone 

Spectrogram s the time-frequency representation of sound signals derived from the 

process of GFCC step 2. The Log-Mel, Mel and Gammatone Spectrograms are shown 

in Figure 17. 

 

 

Figure 17. Log-Mel Spectrogram, Mel Spectrogram and Gammatone Spectrogram. 
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4.3.2. Acoustic features aggregation schemes 

According to the pre-settings of Librosa, the dimension of Chroma, Spectral 

Contrast and Tonnetz is 7 n×  , 6 n×   and 12 n×  , separately. Meanwhile, lower 

eigenvectors could not adequately characterize the environmental sounds for the neural 

networks-based classification tasks. Therefore, these features can be combined as an 

integrated feature set at first, called CST. Then, the CST is aggregated with the other 

features described above in a linear way, and all of the combined eigenvectors are 2-D 

feature vectors. Eight combination strategies for acoustic features are proposed: 

1. LM-C: Log-Mel Spectrogram and CST 

2. M-C: MFCC and CST  

3. Mel-C: Mel Spectrogram and CST 

4. M-Mel-C: MFCC, Mel Spectrogram and CST 

5. M-LM-C: MFCC, Log-Mel Spectrogram and CST 

6. G-C: GFCC and CST 

7. GS-C: Gammatone Spectrogram and CST 

8. G-GS-C: GFCC, Gammatone Spectrogram and CST 

The same feature extraction method presented in (Piczak, 2015a) is performed in 

this work. All sound clips are converted to the monophonic wave files with 22050 Hz , 

and then divided into 41 frames with an overlap of 50% (each frame approximately 23 

ms). The gammatone filterbank based features are extracted based on the method 

proposed by (Slaney, 1994). Twenty-dimensional MFCC and GFCC with their first and 

second order derivatives are extracted, resulting in 60-dimensional vectors for both 

cepstral coefficient features. The channels of Mel Spectrogram, Log-Mel Spectrogram 

and Gammatone Spectrogram computation are respectively set to 60. Then all the 

spectrograms are represented as a 41 60×   matrix (corresponding to time and 

frequency). Meanwhile, the dimension of Chroma, Spectral Contrast and Tonnetz is 

7 n×  , 6 n×   and 12 n×  , separately. Hence, the dimension of CST is 41 25×  . The 

combination strategy of the proposed eight feature sets are linear. To be specific, each 

individual feature in the aggregate features is concatenated individually. Therefore, the 
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feature size of LMC, MC, MelC, GC and GSC is 41 85× . It should be noticed that, for 

three acoustic features combination, the first and second-order derivations of cepstral 

coefficient features (MFCC and GFCC) are not used. Hence, the feature size of MMelC, 

MLMC and GGSC is 41 105× . Image representations of each combined features are 

shown in Figure 18. 

 

 

Figure 18. The image representations of eight aggregated acoustic features. 

 

4.3.3. CNN 

The convolutional neural network is one of the most famous architecture for deep 

learning (Gu et al., 2018). It is a type of machine learning algorithm in which can learn 

how to perform classification tasks with images, video, text, or sounds (LeCun, Bengio, 

& Hinton, 2015). CNN is a feedforward neural network with convolutional 

computation and deep structure (Goodfellow, Bengio, & Courville, 2016). This 

architecture mimics the visual perception mechanism of biological organisms for 



84 

supervised learning and unsupervised learning. The convolution kernel parameter 

sharing and the sparseness of the inter-layer connection in the hidden layer enable the 

CNN to learn the grid-like topology features (such as pixels and audio waveforms) with 

a small amount of computation. In addition, pooling processing and the use of many 

layers are the rest two foundations of CNN that take advantage of the characteristics of 

natural signals. 

4.3.3.1. CNN components 

A CNN is consisted of a series layers including: input layer, hidden layer and output 

layer. The input layer can process multidimensional data like: 1D for signals and 

sequences, 2D for images and 3D for videos. Figure 19 present how does the feature 

learned by LeNet-5 (LeCun et al., 1989) convolutional neural network. 

 

 

Figure 19. The architecture of the LeNet-5 CNN model works with digit classification 

task and the visualization of features in the model (Gu et al., 2018). 

 

The function of the convolutional layer is to extract features from the input data, 

which contains multiple convolution kernels. All element that consists the convolution 
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kernel corresponds to a weight coefficient and a bias vector, similar to a neuron of a 

feedforward neural network (neuron). Neurons in a convolutional layer are organized 

in feature maps, each neuron of a feature map is connected to a region of neighboring 

neurons in the previous layer. These neighboring neurons are referred to as the neuron’s 

receptive field in the previous layer. The new feature map can be obtained by first 

convolving the input with a learned kernel and then applying an element-wise nonlinear 

activation function on the convolved results. The complete feature maps are obtained 

by using multiple kernels. The mathematical formula which expresses convolution 

process is defined as: 

 ,
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Where n  is the number of input feature maps from former layer, kX  is the input 

patch centered at location ( , )i j , kW  and kb  are the weight and bias vector of k -th 

filter. ( , )s i j  is the value of the corresponding position element of the output matrix 

corresponding to the convolution kernel kW . 

In order to make CNN, which is a multi-layer neural network can have a better 

understanding of nonlinear features, the activation function has been applied in CNN. 

ReLU (Nair & Hinton, 2010) is generally used in CNN which is defined as: 

 ( ) max(0, )f x x=   (0.19) 

Pooling processing aims at compressing each feature maps to realize feature 

selection and information filtering. For example, if the pooling stride is 2 2× , then, 

every 2 2×  elements in one feature map will be turned to be one element for consisting 

a new feature map as the input of next convolutional layer. Average pooling (T. Wang, 

Wu, Coates, & Ng, 2012) and max pooling (Boureau, Ponce, & LeCun, 2010) are the 

typical pooling operations. The kernels in the 1st convolutional layer are used to detect 

low-level features, while the kernels in higher layers are learned to encode more 

abstract features. With several convolutional and pooling layers, higher-level feature 

representations could be extracted. 
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In a deep neural network, as the feature is transmitted step by step within the hidden 

layer, its mean and standard deviation will change, resulting in a covariate shift 

phenomenon which is an important reason for the vanishing gradient in neural networks 

(Ioffe & Szegedy, 2015). Performing batch-normalization is a feasible way to solve this 

problem. The strategy is to first normalize the features in the hidden layer, then use two 

linear parameters to amplify the normalized features as new inputs, and the neural 

network updates its parameters during the learning process. 

After convolutional and pooling layers, one or more fully-connected layers which 

aim to perform high-level reasoning is used. They take all neurons in the previous layer 

and connect them to every single neuron of the current layer to generate global semantic 

information. Finally, the last layer of CNN is an output layer. For categorization tasks, 

softmax operator is widely used as output layer.  

In general, the main goal of a CNN model is to find the globally optimum 

parameters for a specific task, which can be achieved by minimizing an appropriate loss 

function defined on the task. Stochastic gradient descent (Bottou, 2010) and Adam 

(Kingma & Ba, 2014) are common solutions for optimizing CNN. 

4.3.3.2. Proposed CNN architecture 

Based on the basic components of CNN which has been described above, a 6-layer 

CNN model for ESC tasks is established. As shown in Figure 20, the CNN consists of 

six convolutional layers and a fully connected layer with softmax as the output layer. 

Every two layers can be treated as a convolutional block since they use the same 

parameters. Their difference is the max-pooling and dropout, which are performed on 

the second convolutional layer in one convolutional block. The architecture and 

parameters of the neural network are as follows: 

1. The first layer uses 32 kernels with a receptive field of 3 3×  and stride of 2 2×  

and batch-normalization is applied. The activation function is Rectified Linear 

Units (ReLU). 

2. The second layer uses the same parameters and activation function as the first layer. 

Then, batch-normalization is applied followed by a max-pooling layer with the 
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pool stride of 2 2×  to reduce the dimensions of the convolutional feature maps. 

3. The third layer uses 64 kernels with a receptive field of 3 3×  and stride of 2 2×  

with batch-normalization. ReLU is applied as the activation function. 

4. The fourth layer uses the same parameters and activation function as the third layer. 

Thus, batch-normalization and the 2 2×  max-pooling processing are applied. 

5. The fifth layer uses 128 kernels with a receptive field of 3 3×  and stride of 2 2×  

with batch-normalization and consideration of ReLU as activation function. 

6. The sixth layer uses the same parameters and activation function as the fifth layer, 

and the batch-normalization and 2 2×  max-pooling processing is applied on the 

output of this layer. 

7. The seventh layer is a fully connected layer with 1024 hidden units, and the 

activation function is Sigmoid. The output is 10 or 50 units according to the datasets, 

followed by the softmax activation function. 

The CNN is trained using a variant of stochastic gradient descent, Adam (Kingma 

& Ba, 2014). The batch size is set to 32, while all weight parameters are subjected to 

2L   regularization and learning rate are set to 0.001 with momentum of 0.9. At the 

training and test stages, the dropout rate is set to 0.5 and 1, respectively. Cross-entropy 

is performed as the loss function, which is generally applied for multi-classification 

tasks. 

 

 
Figure 20. 6-layer CNN architecture. 
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4.3.4. Database 

The UrbanSound8K (Salamon, Jacoby, & Bello, 2014) dataset includes 8732 

labelled urban sounds (the length is less than or equal to 4 seconds) collected from the 

real-world, totalling 9.7 hours. The dataset is separated into 10 audio event classes: air 

conditioner (ac), car horn (ch), children playing (cp), dog bark (db), drilling (dr), engine 

idling (ei), gunshot (gs), jackhammer (jh), siren (si) and street music (sm). 

The ESC-50 (Piczak, 2015b) dataset contains 2000 environmental recordings (the 

length is approximately 5 seconds) of 50 equally balanced categories, totalling 2.8 

hours. This dataset is divided in to 5 folds. Since ESC-50 contains a large number of 

audio classes, hence, in the following experiments the number of each class is used to 

represent each class: 

 No.1-10: dog, rooster, pig, cow, frog, cat, hen, insects, sheep, and crow 

 No.11-20: rain, sea waves, crackling fire, crickets, chirping birds, water drops, 

wind, pouring water, toilet flush, and thunderstorm 

 No.21-30: crying baby, sneezing, clapping, breathing, coughing, footsteps, 

laughing, brushing teeth, snoring, and drinking 

 No.31-40: door knock, mouse click, keyboard typing, wood creaks (door), can 

opening, washing machine, vacuum cleaner, clock alarm, clock tick, and glass 

breaking 

 No.41-50: helicopter, chainsaw, siren, car horn, engine, train, church bells, airplane, 

fireworks, and hand saw 

4.4. Experiment and analyze 

The features mentioned above can be divided into three categories according to 

their magnitude: 1) basic feature sets (B-fea), 2) two components aggregated features 

(2-fea), 3) three components feature combinations (3-fea). The dimension of the three 

classes features are 41 60×  , 41 85×   and 41 105×  , separately. B-fea class includes 

MFCC, Mel Spectrogram, Log-Mel Spectrogram, GFCC, Gammatone Spectrogram 
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and CST. Since the dimension of CST feature sets are lower than others and the 

performance of only using CST in ESC tasks is unsatisfactory (which can be seen in 

Table 4). Therefore, the computational cost of CST will not be illustrated. The 2-fea 

class includes LMC, MC, MelC, GC and GSC, while the 3-fea class includes MMelC, 

MLMC and GGSC. Table 3 presents the number of parameters and the memory cost of 

CNN with the three categorizes features. 

 

Table 3. Parameters and cost of memories for the 6-layer CNN with two size features. 

 B-fea 2-fea 3-fea 

Layer param memory param memory param memory 

input 0 2.5 K 0 3.5 K 0 4.3 K 

Conv 3×3-32 288 78.7 K 288 111.5 K 288 137.7 K 

Conv 3×3-32 9.2 K 78.7 K 9.2 K 111.5 K 9.2 K 137.7 K 

Conv 3×3-64 18.4 K 40.3 K 18.4 K 57.8 K 18.4 K 71.2 K 

Conv 3×3-64 36.8 K 40.3 K 36.8 K 57.8 K 36.8 K 71.2 K 

Conv 3×3-128 73.7 K 21.1 K 73.7 K 31 K 73.7 K 38 K 

Conv 3×3-128 147.5 K 21.1 K 147.5 K 31 K 147.5 K 38 K 

Fc 1024 6.3 M 1024 8.7 M 1024 11 M 1024 

Fc 10 10.2 K 10 10.2 K 10 10.2 K 10 

Total 6.6 M 281.4 K 8.9 M 401.6 K 11.3 M 495 K 

 

The 10-fold cross-validation and 5-fold cross validation are performed on 

UrbanSound8K and ESC-50 databases respectively to evaluate the performance of the 

proposed CNN model firstly. It should be noticed that random time delays, time 

stretching and pitch shifting are performed on the ESC-50 dataset for data augmentation. 

Table 4 presents a class-wise accuracy comparison of the six basic features on 

UrbanSound8K dataset. First, it can be noticed that the features derived from the Mel 

filter performe better than the Gammatone filter based features. It can be seen that, the 

performance of MFCC is the best and that the CST is the worst. As mentioned before, 
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the Librosa library pre-setting of Chroma, Spectral Contrast and Tonnetz leads to a low 

dimensional representation of sound signals, and thus an unsatisfied taxonomical 

accuracy for the CST feature set. In addition, Table 4 shows that the gunshot events are 

the most difficult class to classify. Only MFCC with the proposed framework can obtain 

an acceptable accuracy, 72.4%, whereas the classification accuracy of other features is 

less than 60%. However, for MFCC, successive sound (such as children playing, air 

conditioner, drilling, jackhammer, engine idling, siren and street music) are easier to be 

classified, and the categorization results of transient sounds (car horn, dog bark and 

gunshot) are unsatisfactory (accuracy less than 80.0%). 

 

Table 4. UrbanSound8K class-wise accuracy of six basic acoustic features. 

Class MFCC GFCC LM GS Mel CST 

ac 91.7% 92.7% 93.7% 96.7% 94.1% 69.8% 

ch 62.7% 82.1% 60.5% 79.5% 70.6% 37.6% 

cp 80.8% 73.0% 79.2% 89.2% 86.5% 59.3% 

db 78.2% 68.6% 78.5% 78.1% 85.0% 44.1% 

dr 87.7% 83.2% 89.3% 80.6% 75.4% 60.1% 

ei 93.6% 93.7% 90.2% 91.6% 94.4% 65.5% 

gs 72.4% 52.1% 37.2% 21.1% 26.5% 36.6% 

jh 87.0% 91.0% 92.7% 78.9% 77.3% 56.7% 

si 84.8% 83.9% 95.8% 95.2% 96.9% 63.8% 

sm 89.9% 68.7% 73.2% 75.5% 81.1% 42.8% 

Avg. 82.9% 78.9% 79.0% 78.6% 78.8% 53.6% 

 

MFCC achieves the best classification result (82.9%) among these features, which 

is 4%, 3.9%, 4.3%, 4.1 and 29.3% higher than other features separately. Meanwhile, 

the classification result of Log-mel spectrogram is 0.4% higher than Gammatone 

spectrogram and Mel spectrogram is 0.2% higher than GS. These results show that mel 

filterbank could be a better method than gammatone filter bank in ESC problems. 
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Furthermore, several research works (Dai, 2016; Juncheng Li, Dai, Metze, Qu, & Das, 

2017) point out that the performance of MFCC-based or CNN-based ESC system is 

considerably lower than their combination for ASR tasks. However, with the proposed 

6-layer CNN model, the result of MFCC is 10.2% higher than the accuracy of CNN-

based ESC system proposed by (Piczak, 2015a). In addition, except for CST, all the 

other basic features achieve higher classifications accuracy than the method proposed 

by (Piczak, 2015a). This indicates that the proposed CNN is an efficient model for ESC 

tasks. Figure 21 shows the box plot of the comparison of class-wise classification 

results obtained by each basic feature. 

 
Figure 21 The box plot of the comparison of class-wise classification results obtained 

by each basic feature. 

 

The class-wise classification results of the eight aggregate features on 

UrbanSound8K dataset are shown in Table 5. Each filter-based feature has been 

aggregated with the CST feature, and the cepstral coefficient features with spectrograms 

(derived from the same filter) are also combined with the CST feature set. 
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Table 5. UrbanSound8K class-wise accuracy of eight aggregate acoustic features. 

Class LM-C M-C Mel-C M-Mel-C M-LM-C G-C GS-C G-GS-C 

ac 96.4% 98.0% 98.8% 97.5% 97.6% 97.7% 97.3% 97.9% 

ch 87.3% 72.9% 85.1% 87.7% 90.0% 65.1% 83.7% 84.7% 

cp 94.3% 92.6% 90.6% 93.0% 95.0% 85.1% 91.7% 88.6% 

db 91.9% 88.0% 90.0% 85.1% 92.9% 83.1% 82.5% 85.8% 

dr 94.6% 93.2% 87.9% 94.3% 91.8% 91.5% 94.4% 98.2% 

ei 97.8% 97.8% 96.3% 96.8% 98.4% 98.3% 97.3% 97.1% 

gs 73.0% 77.1% 74.1% 80.3% 83.1% 64.2% 42.6% 41.9% 

jh 94.0% 90.7% 86.4% 87.7% 93.1% 94.3% 83.8% 86.9% 

si 98.9% 96.0% 98.0% 96.7% 99.0% 86.3% 93.2% 94.9% 

sm 94.8% 88.6% 91.3% 87.3% 93.4% 80.1% 87.4% 87.8% 

Avg. 92.3% 89.5% 89.8% 90.6% 93.4% 84.6% 85.4% 86.4% 

 

 
Figure 22. The comparison of class-wise classification results obtained by each 

aggregated feature set. 
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It can be demonstrated from Table 5 that with aggregation schemes, all the features 

have better classification results for ESC tasks than the previous single scheme. It 

should be noticed that, for Mel filter-based features, the Log-Mel Spectrogram performs 

better than Mel Spectrogram. The taxonomic accuracy of LM-C is 2.5% higher than 

that of Mel-C, and M-LM-C is 2.8% higher than M-Mel-C. Furthermore, it is clear that 

the performance of CST combined with both spectrogram and cepstral feature are better 

than that of CST combined with only spectrogram or cepstral feature. The M-LM-C is 

1.1% higher than LM-C and 3.9% higher than M-C. The G-GS-C is 1.8% higher than 

G-C and 1.0% higher than GS-C. Moreover, the performance of CST aggregated with 

features derived from Mel filter is better than the CST combined with Gammatone 

filter-based features. For the strategies of CST combined with Spectrogram, the 

classification accuracy of LM-C and Mel-C is 92.3%, and 93.4%, which is 6.9% and 

7% higher than the accuracy of GS-C. For the CST aggregated with cepstral features, 

the taxonomic result of M-C reaches 89.5%, which is 4.9% higher than the 84.6% of 

G-C. Figure 22 shows the box plot of the comparison of class-wise classification results 

obtained by each combined feature set. 

 

 

Figure 23. Confusion matrix for the M-LM-C feature with proposed CNN evaluated 

on the UrbanSound8K dataset. 

The highest classification result is achieved by the MFCC-LM-CST (93.4%) 
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feature combination, and each class has outstanding classification results as well. 

Except for the classes of gunshot, the classification accuracy of all the other categories 

are higher than or equal to 90%. However, the categorization of gunshot still achieves 

an acceptable accuracy (83.1%). The categorization results for four classes (air 

conditioner, children playing, engine idling and siren) are higher than 95%. Moreover, 

only M-LM-C reaches 90% on the car horn taxonomy. The confusion matrix of M-LM-

C with proposed CNN evaluated on the UrbanSound8K dataset is shown in Figure 23. 

 

 
Figure 24. Classification results of M-LM-C on the ESC-50 dataset. 

 

In Figure 24, the detailed taxonomy results obtained by M-LM-C are revealed. 

They illustrate that M-LM-C with the proposed CNN model can perform well on the 

ESC-50 dataset. For the M-LM-C feature set, 29 classes achieve a categorization 

accuracy higher than or equal to 90%, 11 classes reach 100%, and only 5 classes are 

lower than 60%. In all categories, classes No.11, No.12 and No.37, corresponding to 

rain, sea waves and vacuum cleaner respectively, have unsatisfactory taxonomic results. 

The classification of rain has the worst accuracy, only 5.0% for M-LM-C feature. The 

average classification accuracy for all the 50 classes is 85.6%. 

The proposed CNN based ESC framework using the most efficient feature 

combinations is compared with several existing models proposed by (Aytar, Vondrick, 

& Torralba, n.d.; S. Li et al., 2018; Piczak, 2015a; Salamon & Bello, 2017; Tokozume 

& Harada, 2017; X. Zhang, Zou, & Shi, 2017; Z. Zhang et al., 2018; Zhu et al., 2018), 

the comparison result is presented in Table 6. 
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With the ESC-50 dataset, the proposed framework can reach 85.6% for M-LM-C 

feature sets, which is 20.7% higher than the 64.9% of the (Piczak, 2015a) model. 

Moreover, our taxonomy result is higher than the 83.1% of the (S. Li et al., 2018) model, 

which has been the state-of-the-art classification result with the ESC-50 dataset in 

recent years. Furthermore, the proposed algorithm performance is also higher than 

human recognition accuracy, 81.3%. The confusion matrix of M-LM-C with proposed 

CNN evaluated on the ESC-50 dataset is shown in Figure 25. 

 

 

Figure 25. Confusion matrix for the M-LM-C with proposed CNN evaluated on the 

ESC-50 dataset. 

 

With the UrbanSound8K dataset, the proposed M-LM-C feature sets reached 
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93.4%, which is 20.7% higher than the (Piczak, 2015a) model. Moreover, the result 

derived from the proposed method is also higher than the recent works presented in 

Table 3. These results indicate that, the aggregated features (a combination of features 

developed for music signals and speech signals) have achieved significant enhancement 

in environmental sound classification. To our knowledge, the proposed feature 

combination strategy is currently one of the most efficient manually selected features 

for environmental sound taxonomy. 

 

Table 6. Comparison of classification accuracy with other models. 

Model Feature 
Mean Accuracy 

ESC-50 UrbanSound8K 

(Piczak, 2015a) LM 64.9% 72.7% 

(Salamon & Bello, 2017) - - 73.0% 

(Tokozume & Harada, 2017) Raw Data 71.0% 78.3% 

(X. Zhang et al., 2017) Mel 68.1% 81.9% 

(Aytar et al., n.d.) Raw Data 74.2% - 

(Z. Zhang et al., 2018) LM-GS 83.9% 83.7% 

(Zhu et al., 2018) Raw Data 79.1% - 

(S. Li et al., 2018). Raw Data-LM 83.1% 92.2% 

Our Model With M-LM-C MFCC-LM-CST 85.6% 93.4% 

Human Performance - 81.3% - 

4.5. Conclusion 

In this chapter, the performances of several aggregated features for ESC tasks are 

evaluated. Since the conventional sound event analysis mainly addresses time-

frequency features or cepstral domain features only, and grounded on the fact that 

sometimes aggregate features from different domain may reduce classification accuracy. 

Meanwhile, the classification performance of CNN as the classifier is sensitive to the 

hyperparameters. Minor changes in parameters can lead to a large difference in 
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classification results. Hence, features that comprehensively represent environment 

sounds and an appropriate CNN model should be carefully designed for ESC. The 

efficiency of the 6-layer CNN is evaluated at first, six basic acoustic features (Log-Mel 

Spectrogram, Mel Spectrogram, MFCC, Gammatone Spectrogram and GFCC) are used 

as features with the CNN on UrbanSound8K dataset. The results indicated that features 

such as MFCC which performed unsatisfactorily in other models (Dai, 2016; J. Li et 

al., 2017) could reach 82.9% with the 6-layer convolutional neural network. These 

results illustrate that the proposed CNN is sufficient for ESC tasks. Then, eight feature 

aggregate schemes that combined Chroma, Spectral Contrast and Tonnetz (CST) with 

the six basic features are presented. The performances of these feature combinations 

are tested on ESC-50 and UrbanSound8K datasets and the classification accuracy of 

each class include in these datasets is presented. These results indicate that the feature 

combination methods and 6-layer CNN can significantly improve the classification 

accuracy of environmental sounds. 

In general, the proposed feature of aggregation strategies can represent more 

environmental sound information than isolated features. Meanwhile, CNN is proved to 

be powerful in ESC problems as well. These features could be exploited with more 

efficient CNN architectures in ESC tasks for achieving higher taxonomic results, and 

can also provide a better judgment foundation for artificial auditory cognition. 
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Chapter 5.  Modeling Auditory Cognition 

5.1. Introduction 

Computational modelling the acoustic cognition to make artificial intelligence can 

percept surrounding environment has long bedeviled researchers. This is because that, 

the artificial acoustic cognition system is a composite system, which at least consists of 

three sub-modules: 1) auditory attention module, 2) sound recognizing module, 3) 

response module. The first component is used to detect the salient or deviant sound 

events among tremendous stimulus in the environment. Then, the detected signals can 

be recognized by the second module. At last, based on the recognition result, the third 

sub-system should judge whether such sound events are needed to attend or not. Each 

module should give accurate results to ensure that the whole system can simulate human 

auditory cognition. Compared with those methods which partly mimic the human 

auditory system, the difficulty of computational modelling auditory cognition system 

is significantly increased. 

Attention is a bi-direct process (Driver, 2001), it is composed of ‘bottom-up’ 

stimulus-driven factors and ‘top-down’ task-specific goals (Kaya & Elhilali, 2017). A 

number of conceptions have been proposed concerning neural models for 

understanding auditory attention. Most of these works are closely related to visual 

theories. In one perspective of view, the auditory attention is regarded as a filtering or 

selecting mechanism. This concept is directly related to the findings of receptive field 

characteristics in the cortex, where neurons are viewed as filters (S. Shamma & Fritz, 

2014). Another perspective of view is that, the attention is an integration mechanism, 

where attentional feedback acts as a prior to bias processing of certain stimuli of interest 

(Kaya & Elhilali, 2017). This conception is also widely accepted in many theories of 

auditory cognition, in which attention aggregate elements belonging to same sound 

event. 

Based on these theories and conceptions, multiple acoustic attention models have 
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been proposed in the past decades. (C. Kayser et al., 2005) initially proposed a bottom-

up auditory attention model for salient sound detection. Then, two innovative saliency-

driven attention models are presented by (Kalinli & Narayanan, 2007) and (Duangudom 

& Anderson, 2007). These models are built on the tradition in the visual modality, and 

they neglect some acoustic characteristics, and exploit visual domain-based attention 

model inherently limits the ability of auditory attention model. Therefore, a 

considerable number of models have been proposed to address these problems (Kaya 

& Elhilali, 2012, 2013; Principi et al., 2015; Tsuchida & Cottrell, 2012; J. Wang et al., 

2015). However, most of these works are attention models concerning auditory saliency 

detection, only a few studies realize deviancy detection mechanism for attention models. 

For sound recognition module, deep learning-based techniques have been proved 

to be more efficient than the conventional methods on solving complex classification 

problems in many domains. Multiple scientists choose deep learning model, such as 

CNN, in sound classification problems. The advantages of CNN have been illustrated 

in chapter 4 that CNN can solve the limitations of conventional classifiers in multiple 

learning and classification problems. However, there is still a long way to go when 

compared with CNN based image classification algorithms. For example, the longer 

temporal context information still cannot be captured by original CNN. Hence, many 

works propose to use merged neural networks to address the above-mentioned 

shortcomings through integrating information from the earlier steps (Adavanne, Pertilä, 

et al., 2017; Adavanne & Virtanen, 2017; S. Li et al., 2018; Parascandolo et al., 2017). 

In these methods, one or more CNNs are used to extract the spatial information with 

different acoustic features firstly. Then, the outputs are merged by concatenation and 

feed to recurrent neural network (RNN) layers or another CNN layers for temporal 

information extraction.  

Several research works exploit CNN models which originally developed for image 

recognition tasks, and achieve outstanding performance in ESC as well. (Boddapati et 

al., 2017) the environment sound classification accuracy of AlexNet (Iandola et al., 

2016) and GoogLeNet (Szegedy et al., 2015) were evaluated on UrbanSound8K, ESC-

10 and ESC-50 (Piczak, 2015b) datasets. (Tokozume & Harada, 2017) proposed an 



101 

end-to-end ESC system using a convolutional neural network. In this model, raw 

waveforms were used as inputs and two convolution layers are applied to extract 

features. A VGGNet (Simonyan & Zisserman, 2014) based ESC system was presented 

by (Z. Zhang et al., 2018), where the convolution filters were set to 1-D for learning 

frequency patterns and temporal patterns respectively. (Zhu et al., 2018) proposed a 

CNN based model called WaveNet, which uses multi-scale features to make CNN 

learns comprehensively information of environment sounds. 

Multiple works apply decision-level fusion in ESC tasks. The main idea of decision 

level fusion method is to fuse the softmax values acquired from different neural 

networks through mean calculation, or uncertainty reasoning algorithms such as 

Dempster-Shafer evidence theory (DS theory) and Bayesian Theory (S. Li et al., 2018; 

H. Ye et al., 2015). The experiment results indicate that merged neural networks with 

decision level fusion outperform single deep architectures in taxonomic tasks (Jing Li, 

Qiu, Wen, Xie, & Wen, 2018; S. Li et al., 2018; Y. Li, Chen, Ye, & Liu, 2016; H. Ye et 

al., 2015). Although these works have greatly improved the performance of ESC 

systems. However, from the classification accuracy derived from these recently 

published works, it is clearly that the CNN-based ESC systems still have great 

potentials for making further progress. 

Recent research works have shown that long-term life experiences affect the ability 

to hear in background noise (Anderson et al., 2013). To be specific, compared with the 

unconsciously detected salient sound events, the sounds which have been heard can 

attract our attention more easily. This result closely parallels theories from ‘top-down’ 

attention mechanism, which points out that subjective consciousness also has a great 

influence on attention. For example, listeners can easily attend to one speaker in a multi-

speaker environment (O’sullivan et al., 2014), this phenomenon is also known as 

cocktail party problem. This result pointed out that prior knowledge should be regarded 

as a crucial component of realizing artificial auditory cognition. Inspired by this, (J. Xu, 

Shi, Liu, Chen, & Xu, 2018) propose a model about auditory selection with attention 

and memory, where the top-down task-specific attention and the bottom-up stimulus-

driven attention are all realized for speech identification. In addition, decision making 
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is another key component of cognition system of selecting an action or an event within 

a series of more alternatives (X.-J. Wang, 2008). (Romo & Salinas, 2001) conducted a 

study on what components of the neural activity evoked by a stimulus are directly 

related to decision making, and how are they related. (Heekeren et al., 2008) conducted 

a review work on conjunction with data analysis methods that can directly link 

decisions and signals in the human brain on a trial-by-trial basis. Through observing 

the monkey’s responses, (Tsunada et al., 2016) learned the specific and causal 

contributions of different brain regions in the ventral auditory pathway to auditory 

decisions.  

In the exploration of surrounding environment, artificial intelligence will definitely 

expose to tremendous sound events while response to all the detected sound events will 

cost much computational resources. Hence, it is essential to only identify the valuable 

events and response to them while neglect the rest. Although the above-discussed 

theoretical works have pointed out that prior knowledge and decision making are 

essential and crucial components of auditory cognition. However, it is hard to see 

related researches on establishing such models for environmental sound signals. Hence, 

novel approach should be researched for better recognizing sounds occurred in the 

complex environment and make response to it. 

5.2. Overview of the Approach 

Motivated by the mentioned shortcomings of current approaches and the practical 

requirement of intelligent environment auditory cognition, an artificial auditory 

cognition system is proposed. The deviancy detection model presented in chapter 3 is 

used as the attention module, which is applied to detect the salient or deviant sounds in 

the environment. To be specific, when there is only one salient sound exist in the 

environment, this algorithm could be regarded as a saliency detection model. While, if 

there is more than one sound exist with saliency or an abnormal sound event occurs, it 

could be applied to detect the deviant sound in the environment. After deviant sound 

signals are detected, it should be further processed to identify their categorizations. 
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In order to precisely categorize the detected salient or deviant sound events, a novel 

four-layer stacked CNN architecture based on two combined auditory features and DS 

theory-based information fusion method is proposed. The proposed system consists of 

three steps: sound deviancy detection, sound identification and DS theory-based 

decision-level fusion. Two combined features (i.e. LMC and MC feature sets) presented 

in chapter 4 have been used here to train CNN models. The outputs derived from the 

softmax layer of these two CNNs are fused by DS theory. 
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Figure 26. The architecture of proposed artificial acoustic cognition model. 

 

Finally, a knowledge-based system inspired auditory events response decision 

(AERD) is presented to demonstrate the relationships between sound scenes and 

occurred sound events. Inspired by the perceptual process of human cognition 

mechanism, the proposed method is performed by comparing the prior knowledge-

based significance of detected salient or deviant sounds with sound scenes information 

to determine whether the system needs to respond to the abnormal sound events. To be 
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specific, it is assumed that the surrounding sound scene or environment of the artificial 

machine is determined, and each normal and abnormal sound event which 

experimentally would occur in an environment is assigned a level of significance under 

prior knowledge. Then, the abnormal sounds will be further categorized into 

meaningful and meaningless events, which means that meaningful deviant sounds need 

to respond and meaningless events do not need to respond. Finally, the detected sound 

will be recognized by TSCNN and then, the AERD model will determine whether 

machines needs to respond to it. The diagram of proposed auditory cognition system is 

presented in Figure 26. 

5.3. DS Evidence based Two-Stream CNN Fusion Method 

In this section, the combined features used here are described at first. Then, the 

structure of 4-layer convolutional neural network model and DS theory-based 

information fusion algorithm will be presented. Several experiments are conducted to 

evaluate the efficiency of the proposed ESC module. 

5.3.1. Feature aggregation 

Selecting a series number of acoustic features to represent the characteristics of 

environmental sound signals is one of the main obstacles of ESC problems. A 

comparison of the performance of multiple auditory features in ESC tasks is presented 

in chapter 4. The experiment results derived from chapter 4 shows that the MLMC 

feature sets obtained the best classification results among eight aggregated features. 

Meanwhile, LMC and MC features also present outstanding efficiency in ESC tasks, 

and the performance is just slightly lower than MLMC. To be specific, MLMC could 

be regarded as a linear combination of LMC and MC where Chroma, Spectral Contrast 

and Tonnetz are only used once. Therefore, in order to take advantages of each acoustic 

feature, LMC and MC are chosen to train two CNN models, separately. Detailed 

descriptions of feature combination strategies can be found in chapter 4 section 3. The 

image representation of these two features is shown in Figure 27. 
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Figure 27. The image representations of LMC and MC feature sets. 

 

5.3.2. Structure of the MCNet and LMCNet 

The two networks of TSCNN both contain four convolution layers and one fully 

connected layer. The framework of the proposed four-layer CNN is shown in Figure 28, 

the architecture of the model is as follows: 

1) The first layer uses 32 kernels with 3 3×  receptive field and the stride step is 

set to 2 2×  and batch-normalization is performed. The Rectified Linear Units 

(ReLU) is exploited as the activation function. 

2) The second layer uses the same settings as the first layer, where 32 convolution 

kernels with receptive filed of 3 3×   and stride step of 2 2×  . The batch-

normalization is performed and activation function is ReLU as well. The 

difference is that the second layer applies max-pooling for dimensionality 

reduction of feature maps. 

3) The third layer uses 64 convolution kernels with a receptive field of 3 3×  and 

the stride step is also 2 2× , where batch-normalization is used. Followed by 
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the activation function, ReLU. 

4) The fourth layer 64 convolution kernels with receptive filed of 3 3×  and stride 

step of 2 2× . The batch-normalization is performed and activation function is 

ReLU. 

5) The fifth layer is the fully connected layer with 1024 hidden units and the 

activation function is Sigmoid.  

6) The output is 10 units based on the datasets, followed by the softmax activation 

function. 

At the training stage, we use a 0.5 dropout probability for the second layer, fourth 

layer and the fully connected layer to prevent overfitting. The CNN is trained through 

a variant of stochastic gradient descent, Adam (Kingma & Ba, 2014). The batch size is 

set to 32, while all weight parameters are subjected to 2L  regularization and learning 

rate are set to 0.001 with the momentum of 0.9. The cross-entropy is applied as the loss 

function. At the testing stage, all parameters are the same as the training stage, while 

the dropout will not be implemented. 

 

 

Figure 28. The architecture of proposed 4-layer CNN. 
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5.3.3. Dempster-Shafer evidence theory-based information fusion 

Dempster-Shafer evidence theory (DS theory) is originally established by (Shafer, 

1976), it is also known as belief function theory. The DS theory is mainly about 

quantified beliefs like Bayesian probability. The main idea of this theory is the notion 

of evidence and how different pieces of evidence should be combined in order to make 

inferences (Reineking, 2014). 

The basis of DS theory is to establish a frame of discernment Θ  and a subset of 

hypothesis 1 2{A , A  ... A }n ⊆ Θ , where n  is the number of hypothesis. Ai  is an 

element of the power set ( )P Θ . Mass function or basic probability assignment M  

is a mapping: [ ]( ) 0,1P Θ →  distribute a mass value to each hypothesis Ai ⊆ Θ . The 

mass function represents the trust level of each element itself. There are two constraints 

of mass function: 

1) ( ) 1
A

M A
⊆Θ

=∑ , which means the sum of each probability in subset A  is 1. 

2) ( ) 0M ∅ = , this indicate that the mass function cannot allocate any value to an 

empty set. Meanwhile, a mass function with this characteristic is called 

normalized mass function. 

In this work, the category of sounds in the dataset can be treated as an element in 

subset A  under the frame of discernment Θ . Here, 10n =  according to the classes 

number of UrbanSound 8K and each element are independent. For solving reasoning 

problems, the mass function representing different part of evidence must be combined 

in a meaningful way. Here, we use Dempster's rule to combine the two mass functions 

derived from each CNN. This combination rule allows combining normalized mass 

function that are obtained over the same frame of discernment. 

The outputs of softmax of LMCNet and MCNet are used as the mass function 

1( )M B  and 2 ( )M C . The combination of mass function ( 1 2 1 2M M M⊕ = ⊕ ) based on 

Dempster's rule ⊕  is defined as: 
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 1 2 1 2( ) ( ) ( ), ,D i i
B C

M A M B M C A Aα⊕
∩ =∅

= ∀ ⊆ Θ ≠∅∑   (0.20) 

 1 2 ( )=0M ⊕ ∅   (0.21) 

 
1 2

1=
( ) ( )D

i i
B C

M B M C
α

∩ =∅
∑

  (0.22) 

Where, Dα  is a normalization constant indicating the mass function is normalized. 

1 2 ( )M A⊕  is a mass function as well and satisfied 1 2 ( ) 1
A

M A⊕
⊆Θ

=∑ , which is the final 

probability assignment of 1( )M B   and 2 ( )M C  , it is also the result of the fusion 

process of LMCNet and MCNet. 

With the LMCNet, MCNet and the DS theory-based information fusion method, 

we propose the TSCNN. The overall framework of the this ISR system is shown in 

Figure 29. 

 

 

Figure 29. The overall framework of the DS theory based ISR system. 

 

From Figure 29, it can be seen that, MFCC, Log-Mel Spectrogram, Chroma, 

Spectral Contrast and Tonnetz features are extracted from sound waveforms at first. 

Then, MFCC and Log-Mel Spectrogram is combined with the rest three features, 

separately. The MFCC-CST feature set is used to train the MCNet and LM-CST is used 
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to train the LMCNet. Finally, the softmax value derived from each neural network are 

fused through DS evidence theory to form the sound classification results. 

5.3.4. Experiment 

The UrbanSound8K (Salamon et al., 2014) dataset includes 8732 labeled urban 

sounds (the length is less than or equal to 4 seconds) collected from the real-world, 

totaling 9.7 hours. The dataset is separated into 10 audio event classes: air conditioner 

(ac), car horn (ch), children playing (cp), dog bark (db), drilling (dr), engine idling (ei), 

gunshot (gs), jackhammer (jh), siren (si) and street music (sm). Waveform and 

spectrogram of each audio class are shown in Figure 30. 

 

Air Conditioner Car Horn Children Playing Dog Bark Drilling

Engine Idling Gunshot Jackhammer Siren Street Music  

Figure 30. Waveform and Spectrogram of each audio class 

 

5.3.4.1. Experiment Setup 

The same feature extraction method presented by (Piczak, 2015a) is used in this 

work. All sound clips are converted to the single channel wave files with the frequency 
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of 22050 Hz . Then, they are divided into 41 frames with an overlap of 50% (each frame 

is about 23 ms). We use the pre-setting channels of Librosa to extract the Chroma, 

Spectral Contrast and Tonnetz features. For the MFCC extraction, the values of first 

twenty channels with their first and second order derivatives are used, resulting in 60-

dimensional feature vectors. The channels of Log-Mel Spectrogram are set to 60, in 

order to make the dimension to be equal with MFCC. Then all the spectrograms are 

represented as a matrix with a size of 41 60× . The feature size of chroma, tonnetz and 

spectral contrast is 41 7× , 41 6×  and 41 12× , separately. Therefore, the size of LMC 

and MC are all 41 85× . Figure 31 shows the graphically representation of how does the 

feature learned by the proposed 4-layer CNN. 

 

 

Figure 31. The architecture and size of feature maps in each convolutional layer. 

 

It can be seen from Figure 31 that, the feature maps derived from first and second 

convolutional layer have the same size as input feature. After 2 2×   max pooling 

processing, the size of input feature maps for third convolutional layer is 21 43× . Since 

the max pooling is not performed after convolutional layer 3, so that the size of input 

features for 4th convolutional layer is 21 43×  as well. Then, features with a size of 

11 22×  are derived from the last hidden layer and feed to the fully-connected layer 

which has 1024 hidden units. The output is a 1 10×  tensor according to the number of 

classed of UrbanSound8K dataset is 10. 

For each experiment, the 10-fold cross-validation is performed to evaluate the 
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proposed ISR model on UrbanSound8K dataset. The combined features and 4-layer 

CNN architecture are two main contributions of this work. Hence, we first analyze the 

efficiency of the CNN model train with combined features. Meanwhile, the influence 

of the different number of convolution layers (six and eight) on CNN-based ESC system 

is also investigated. The additional convolution layers in the CNNs for comparison use 

the same receptive fields of 3 3×  and stride step of 2 2× , batch-normalization is 

performed on each layer with ReLU as the activation function. Dropout with a rate of 

0.5 is exploited for the sixth and eighth convolution layer in the two additional CNN 

models respectively. Table 7 presents the number of parameters and the memory cost 

of CNN with different number of convolutional layers. 

 

Table 7. Parameters and memory of CNN with different convolution layers. 

 4-layer 6-layer 8-layer 

Layer param memory param memory param memory 

input 0 3.5 K 0 3.5 K 0 3.5 K 

Conv 3×3-32 288 111.5 K 288 111.5 K 288 111.5 K 

Conv 3×3-32 9.2 K 111.5 K 9.2 K 111.5 K 9.2 K 111.5 K 

Conv 3×3-64 18.4 K 57.8 K 18.4 K 57.8 K 18.4 K 57.8 K 

Conv 3×3-64 36.8 K 57.8 K 36.8 K 57.8 K 36.8 K 57.8 K 

Conv 3×3-128 0 0 73.7 K 31 K 73.7 K 31 K 

Conv 3×3-128 0 0 147.5 K 31 K 147.5 K 31 K 

Conv 3×3-256 0 0 0 0 294.9 K 4.6 K 

Conv 3×3-256 0 0 0 0 589.8 K 4.6 K 

Fc 1024 15.9 M 1024 8.7 M 1024 4.7 M 1024 

Fc 10 10.2 K 10 10.2 K 10 10.2 K 10 

Total 15.9 M 339.6 K 8.9 M 401.6 K 5.9 M 413.4 K 
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5.3.4.2. Experiment Result 

The classification performance of the feature level fusion method is also 

considered. Since MLMC can be regarded as the linear combination of LMC and MC 

features, hence, MLMC is employed as feature-level fusion method to make a further 

investigation of the influence of various feature combination strategies in 4-layer CNN 

based ESC system. The detailed combination method and image representation of 

MLMC is shown in chapter 4 section 4, the feature size of MLMC is 41 145× . The 

class-wise classification accuracy and the average accuracy of 10-fold cross-validation 

obtained by LMCNet, MCNet and MLMC-CNN contains different number of 

convolutional layers and the proposed TSCNN model on UrbanSound8K dataset is 

presented in each table. 

 

Table 8. Class-wise classification accuracy of four models with 4-layer CNN. 

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN 

ac 98.6% 99.9% 99.2% 99.9% 

ch 93.9% 91.4% 93.2% 94.2% 

cp 97.3% 93.9% 96.1% 97.5% 

db 92.6% 90.4% 94.2% 95.3% 

dr 94.8% 95.0% 95.7% 97.2% 

ei 98.9% 99.6% 98.5% 99.6% 

gs 88.6% 91.1% 85.9% 95.4% 

jh 93.2% 95.9% 91.1% 97.1% 

si 98.6% 98.3% 98.5% 98.9% 

sm 95.0% 97.4% 94.1% 96.9% 

Avg. 95.2% 95.3% 94.6% 97.2% 

 

Table 8 describes the experiment results of each method with 4-layer CNN models. 

We can find that the feature combination of LMC and MC performs well in the 4-layer 

CNN based ISR system. Five classes taxonomic accuracy of LMCNet and six classes 
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taxonomic accuracy of MCNet are higher than 95%. It can be seen that the MLMC 

which aggregated of all feature sets cannot improve the performance, the taxonomic 

result derived from MLMC-CNN is 0.6% and 0.7% worse than LMCNet and MCNet. 

LMCNet and MCNet achieve 95.2% and 95.3%, which is 22.5% and 22.6% higher than 

the model presented in (Piczak, 2015a), respectively. In addition, although MLMC-

CNN has the worst performance among the four models, however, it is still 21.9% 

higher than the 72.7% of Piczak’s model. It can be seen that for both methods, the 

classification accuracy of all categories is higher than 90% except for gunshot of LMC 

and MLMC. The proposed TSCNN model reaches 97.2% which is 24.5% higher than 

Piczak’s work, and it significantly improved the classification accuracy of gunshot 

(95.4%). The box plot of comparison between four models with 4-layer CNN on 

UrbanSound8K is presented in Figure 32. 

 

 

Figure 32. Comparison of four models with 4-layer CNN on UrbanSound8K. 

 

In order to further illustrate whether the proposed TSCNN model outperform 

LMCNet, MCNet and 4-layer CNN using MLMC feature sets, we show the standard 

deviation and time cost of each model in Table 9. The classification accuracy obtained 

by TSCNN is 2% and 1.9% higher than LMCNet and MCNet. It is also shown in Table 
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3 that the standard deviation of TSCNN is much less than three other methods, which 

further demonstrate that the fusion model outperforms three other single models. The 

mean time cost for LMCNet, MCNet, MLMC and TSCNN is 0.023s, 0.024s, 0.028s 

and 0.077s, separately. It should be pointed out that the time consuming is the single 

sound classification time in the test stage, and the model loading time is not considered. 

The test is conducted in Python under Microsoft Windows 10 x64 OS on a computer 

with Intel Core i7-8700 CPU, two GTX 1080 GPU (the memory of each GPU is 8 GB) 

and 32 GB RAM. Although the time cost of the proposed model is almost three times 

longer than single neural networks, the computational cost of TSCNN is still well 

acceptable for ESC tasks in real time. 

 

Table 9. Statistics analyze and time cost of 4-layer CNN based models 

 Mean N Std Deviation Time cost 

LMCNet 0.9515 10 0.03121 0.023 

MCNet 0.9529 10 0.03352 0.024 

MLMC 0.9465 10 0.03812 0.028 

TSCNN 0.9720 10 0.01788 0.077 

 

It can be seen in Table 10 that, the 6-layer CNN based models performs slightly 

worse than the methods use 4-layer CNN. The LMCNet, MCNet, MLMC-CNN and 

TSCNN is 2.2%, 6.0%, 1.9% and 2.3% worse when compared with the 4-layer CNN 

based models. The categorization accuracy of gunshot for both methods is less than 90% 

and it is less than 80% for LMC and MC feature sets. Classification accuracy of dog 

barking with MCNet failed to reach 90%, and taxonomic accuracy on children playing 

of MCNet dramatically reduced to 69.4%. The MLMC feature cannot improve the 

classification performance as well, where the accuracy of children playing and gunshot 

failed to reach 90%. The same situation also appear on TSCNN model. Nevertheless, 

the proposed TSCNN model still achieves the best classification result (94.9%) among 

the four models. The box plot of comparison between four models with 6-layer CNN 
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on UrbanSound8K is shown in Figure 33. 

 

Table 10. Class-wise classification accuracy of four models based on 6-layer CNN. 

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN 

ac 98.9% 98.9% 97.5% 99.9% 

ch 90.2% 69.4% 87.9% 89.2% 

cp 94.8% 91.1% 93.6% 96.4% 

db 91.3% 88.0% 91.6% 93.1% 

dr 93.8% 90.9% 91.5% 95.5% 

ei 98.2% 97.7% 98.1% 99.1% 

gs 77.2% 77.2% 81.7% 85.1% 

jh 92.6% 91.6% 93.4% 97.1% 

si 99.0% 96.1% 99.0% 98.9% 

sm 94.3% 92.1% 92.9% 94.7% 

Avg. 93.0% 89.3% 92.7% 94.9% 

 

 

Figure 33. Comparison of four models with 6-layer CNN on UrbanSound8K. 

 

From Table 11 we can find that the performance of all methods is unsatisfactory 
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with the 8-layer CNN. Most of the categories and all methods obtain a taxonomic result 

that less than 90%. This indicates that using deeper layers may not give a better result 

for deep architectures, while appropriate layers and suitable parameter settings are the 

most important components of deep learning architectures. The box plot of comparison 

between four models with 8-layer CNN on UrbanSound8K is shown in Figure 34. 

 

Table 11. Class-wise classification accuracy of four models based on 8-layer CNN. 

Class LMC (LMCNet) MC (MCNet) MLMC TSCNN 

ac 94.8% 91.5% 93.2% 98.2% 

ch 76.1% 47.3% 88.1% 69.9% 

cp 84.0% 80.9% 87.9% 88.0% 

db 79.9% 73.3% 86.8% 80.8% 

dr 87.8% 87.4% 87.0% 91.6% 

ei 96.8% 94.8% 95.3% 97.4% 

gs 57.2% 63.4% 45.4% 67.8% 

jh 89.8% 74.7% 85.9% 87.6% 

si 97.8% 88.3% 96.5% 96.3% 

sm 85.3% 71.8% 90.3% 80.3% 

Avg. 84.9% 77.3% 85.7 % 85.8% 

 

In general, we can find out that the applied LMC and MC features present to be 

efficiency with the proposed ESC system, which clarifies the advantage of the proposed 

feature combination strategies in ESC tasks. The TSCNN model outperforming other 

models for both CNN architectures with different convolution layers. Then, the four-

layer CNN achieves the best taxonomic accuracy when compared with other CNN 

architectures. Meanwhile, the taxonomic accuracy of both methods with the proposed 

4-layer CNN are higher than existing models. These results demonstrate the efficiency 

of the proposed 4-layer CNN and DS theory fusion method based TSCNN model. 
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Figure 34. Comparison of four models with 8-layer CNN on UrbanSound8K. 

 

In order to make a comprehensively comparison, we also investigate the two-

stream CNN with layer stack method. This model combined the outputs of the second 

convolution layer of both CNN and the concatenate feature maps are than used as inputs 

for the next convolution layers. We test this stacked CNN with 4, 6 and 8 layers as well. 

The parameter settings of each convolution layers and fully connected layers are equal 

to the 4-, 6- and 8-layer CNN described above. The classification accuracy of these 

stacked CNNs on UrbanSound8K dataset are shown in Table 12. 

 

Table 12. The ESC results of stacked CNNs with 4, 6 and 8 convolution layers. 

Model Accuracy 

Stacked 4-layer CNN 86.4% 

Stacked 6-layer CNN 79.8% 

Stacked 8-layer CNN 80.1% 

 

It is clearly that the stacked 4-layer CNN models achieve the highest (86.4%) 

classification accuracy among the three models. Which is 6.6% and 6.3% higher than 

stacked six- and eight-layer CNN respectively. This result further proves that the proper 
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number of layers and parameters is the key to the deep learning model based ISR system, 

where the advantage of the proposed 4-layer CNN is further proved as well. 

At last, we compare our TSCNN model with several existing CNN based ISR 

models as presented by (Piczak, 2015a), (Tokozume & Harada, 2017), (X. Zhang et al., 

2017), (Z. Zhang et al., 2018), Li(S. Li et al., 2018) and (Boddapati et al., 2017). The 

results are shown in Table 13.  

 

Table 13. Comparison of performance with other models on UrbanSound8K datasets. 

Model Feature Accuracy 

Piczak (Piczak, 2015a) LM 72.7% 

Tokozume(Tokozume & Harada, 

2017) 

Raw Data 78.3% 

Zhang X(X. Zhang et al., 2017) Mel 81.9% 

Zhang Z(Z. Zhang et al., 2018) LM-GS 83.7% 

Li(S. Li et al., 2018). Raw Data-LM 92.2% 

Boddapati(Boddapati et al., 2017) Spec -MFCC-CRP 93% 

LMCNet LM-C 95.2% 

MCNet M-C 95.3% 

TSCNN MC & LMC 97.2% 

 

The LMCNet use LMC feature sets achieve an accuracy of 95.2%, which is 22.5% 

higher than the (Piczak, 2015a) model use LM features. Meanwhile, it is 11.5% higher 

than the (X. Zhang et al., 2017) model use LM and Gammatone Spectrogram combined 

feature. Furthermore, the performance of LMCNet is slightly higher (3%) than the 

model presented by (S. Li et al., 2018), which also applies DS theory as fusion method 

to fuse two CNN models. The classification accuracy of MCNet is 95.3%, which is 

much higher than the 72.7% of the model proposed by (Piczak, 2015a), and is 2.3% 

higher than the (Boddapati et al., 2017) model which also use MFCC based aggregated 

features. Finally, the proposed DS theory based TSCNN model obtains the highest 
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taxonomic accuracy (97.2%) among all the ESC models. The performance of our 

algorithm is much higher than the (Piczak, 2015a) model and is also 5% higher than the 

(S. Li et al., 2018) model which uses same fusion strategy. As far as I know, this is the 

first time that the categorization accuracy has reached over 95% on UrbanSound8K 

dataset and is the highest accuracy compared with existing models. 

5.4. Knowledge based System for Auditory Cognition 

5.4.1. Auditory Perception 

Auditory perception is the ability to understand the information contained in the 

sounds. A sound begins as a physical vibration in the atmosphere which propagates to 

the ear. Then, the sound will be transduced into neural stimuli followed by analyzation, 

categorization and selection into events with meaningful characteristics. Constant 

interaction exists among top-down attention, bottom-up attention and perception. The 

selection and filtering operation take lots of constantly variable event and compress 

them into relative number of events according to categorizes.  
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Figure 35. The brief illustration of sound processing in auditory system. 

 

Expectations and memories can influence the formation of sound patterns, and 

they continuously interact with selection and filtering process, which will affect the 

class of sound events forward to perception. For example, people are more likely to 

perceive the voice of their acquaintances in a crowd. This is because that the top-down 
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and bottom-up mechanism to the selection and filtering operation is unidirectional 

processing since neither the conscious nor the memory access sound waveform directly. 

Bottom-up perception is the mechanism to detect targets and target-triggered 

attentional processing by the salience or deviancy of the targets, and their ability to 

trigger attention through exploiting cortical areas in a bottom-up pathway (Sarter, 

Givens, & Bruno, 2001). However, previous work has not supported a direct role for 

salience detection regions and processes in the enhancement of memory for salient 

stimuli (Santangelo & Macaluso, 2013). A fMRI study conducted by (Wills et al., 2016) 

pointed out that salience detection regions in the human brain have not been activated 

during the encoding of contingently salient stimuli. While activation in frontoparietal 

regions has been found which thought to enhance task representations, trigger cognitive 

control and task goals to prioritize information in memory. This result explained that 

the bottom-up manner could be regarded as the enhancement to top-down attention. 

Top-down attention underlies our ability to concentrate on relevant stimuli and 

neglect irrelevant conspicuous events. The widely accepted opinion is that top-down, 

or goal-directed attention is undeniably important in volitionally selecting stimuli that 

match current task demands (Awh et al., 2006). Top-down modulation of sensory 

processing is not an intrinsic property of sensory cortices, but rather relies on long-

range inputs from and interactions with a network of ‘control’ regions in our brain 

(Gazzaley & Nobre, 2012). To be specific, the life experience and memories can 

influence auditory cognition processing directly. Hence, both of these attention 

pathways should be considered in modeling artificial auditory cognition system. 

5.4.2. Knowledge Based System 

Knowledge based system (KBS) has been an important theme in information 

systems research for decades (Giboney, Brown, Lowry, & Nunamaker Jr, 2015). It is a 

computer application of Artificial Intelligence which simulates the performance of a 

human expert in a specific filed. KBS could be regarded as a computer-based technique 

that facilitate managerial decision-making by presenting various effective alternatives. 



121 

This algorithm has been applied in many domains, such as medical diagnosis (Naser & 

ALmursheidi, 2016; Nilashi, Ibrahim, Ahmadi, & Shahmoradi, 2017), credibility 

assessment (Jensen, Lowry, Burgoon, & Nunamaker, 2010) and recommendation 

(Vijayakumar, Vairavasundaram, Logesh, & Sivapathi, 2019). 

The core components of knowledge-based systems are knowledge-database and 

inference/reasoning mechanisms (Huang, 2009). Such a problem processing system 

which aims at retrieving information from a knowledge database and use associated 

information to present answers for assisting humans in decisions making. (Dhaliwal & 

Benbasat, 1996) defined four main elements of KBS: 1) knowledge-base, 2) inference 

engine, 3) knowledge engineering tool, and 4) specific user interface. Subsequently, 

(Chau & Albermani, 2002) compress the components of KBS to three: 1) knowledge-

base, 2) context and 3) inference mechanism. The most widely used method to realize 

a knowledge-based system is the “if (condition) – then (action)” rule. The diagram of 

basic KBS is shown in Figure 36. 
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Figure 36. The schematic diagram of knowledge-based system 
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5.4.3. Auditory Events Response Decision Model 

Generally speaking, bottom-up and top-down perception represent overlapping 

organizational principles rather than dichotomous constructs, and these two processes 

interact with each other to optimize attentional performance (Egeth & Yantis, 1997). In 

line with the above-presented findings and results, the knowledge-based system for 

auditory events response decision (AERD) which take advantages of both top-down 

and bottom-up mechanism is proposed to simulate the selection and filtering operation 

in auditory cognition processing. The diagram of proposed AERD model is presented 

in Figure 37.  
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Figure 37. The diagram of AERD model. 

 

From Figure 37, it can be seen that there are three “if - then” judgment steps and 

two solutions. The salient or deviant sound events will be compared with the knowledge 

to judge whether it is a normal or abnormal event at first. If it is a normal event, the 
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AERD model would decide to keep searching new events. Otherwise, the input will be 

further judged that if this sound event is meaningful or not according to the prior set 

significance and attention threshold. If the abnormal sound event is meaningless, the 

model will decide to launch keep searching operation. Otherwise, the significance 

judgment rule will be performed to judge whether the significance of meaningful 

abnormal events is higher than the prominence of the focal task. If the answer is yes, 

the AERD model will suggest cognition system pay attention to such sound events, 

otherwise, the system will turn to search new abnormal sound events. The mathematical 

description of the operation mode of AERD model is presented as follows: 

Assuming that the scenario jScene  is already known, each normal sound events 

1 2 3( , , ,..., )j j j j
nN N N N   and abnormal sound events 1 2 3( , , ,..., )j j j j

mAN AN AN AN   are 

distributed a probability, where j
nN  represents the thn  normal events in thj  scene 

and j
mAN   represents the thm   abnormal events in jScene  . Letting j

ix   denote the 

recognized sound events in thj  scene, the first judgment rule can be elaborate as: 

 1 2 3

1 2 3

, ( , , ,..., )
, ( , , ,..., )

j j j j j j
i i n
j j j j j j

i i m

x is normal event if x N N N N
x is abnormal event if x AN AN AN AN

 ∈


∈
  (0.23) 

If j
ix   is determined an abnormal sound event, the second judgment rule will be 

triggered to decide whether j
ix  is meaningful or meaningless: 

 
( )
( )

,

,

j j
i i P

j j
i i P

x is meaningful if P x

x is meaningless if P x

α

α

 ≥


<
  (0.24) 

Where P   denote the level of significance of a sound event, Pα   is the attention 

threshold. Since one sound can be normal or abnormal in different scenarios, and its 

saliency or deviancy can vary with the scene, which means that the significance of same 

sound event might be different in different scenes. Hence, ( )j
iP x   represents the 

significance of sound event j
ix  in thj  environment. Finally, the meaningful abnormal 
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sound event j
ix  will be determined if its probabilistic is higher than previous sound 

event: 

 
( ) ( )
( ) ( )

,

,

j j
i i

j j
i i

if P x P y attend

if P x P y keep searching

 ≥


<
  (0.25) 

Where ( )j
iP y  is the significance of previously salient sound which attract attention 

in jScene . 

5.4.4. Experiment Validation 

5.4.4.1. Experiment setup 

To validate the effectiveness of proposed KBS based auditory events response 

decision model as well as the artificial auditory cognition system (AAC), typical 

perception tasks are built to cover the characteristics of classical environment scenes. 

An office scene is considered in the experiment with four sound scene conditions, which 

is: 1) only one sound event exists, 2) meaningless abnormal sound events occurred, 3) 

meaningful abnormal sound events occurred while the significance is lower than focal 

task, and 4) meaningful abnormal sound events occur with higher significance than 

focal task. 

  

Figure 38. The Nao robot and data processing equipment. 
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Nao robot is exploited as the platform to perceive the surrounding environment on 

account of such robot posse four microphones. It should be noticed that, according to 

the storage condition and processing ability, it is nearly impossible to embed all 

modules that belong to AAC to Nao robot. Therefore, the robot is mainly applied as a 

sound events observer and most of the computation works will be conducted on 

computers.  

 

Table 14. The composition of normal and abnormal sound events in an office 

Environment Office 

Sound Events 

Normal Sound Events Abnormal Sound Events 

talking (0.9), knocking (0.6) 

keyboard tapping (0.3) 

footstep (0.8), pouring water (0.3) 

air conditioner (0.2), … 

siren (1.0), car horn (0.3) 

crackling fire (0.9) 

dog (0.2), crickets (0.3) 

thunderstorm (0.2), … 

 

The office scenario is chosen to verify the efficiency of the proposed system, 

where Table 14 presents portion of normal and abnormal sound events in office 

environments. The values in parentheses of objects denote the level of significance of 

the sound event in office scenario. For example, “talking (0.9)” means that the sound 

event of “talking” is a normal sound event in office environment, and the level of 

significance of such a signal is 0.9. The value “1.0” represents the most meaningful 

sound while the most meaningless sound is represented by “0.1”. Meanwhile, the 

ellipsis symbols in Table 5 represent that more objects can be considered as probable 

candidates which exist in the scene and the presented objects are limited examples in 

the scene. The attention threshold α  is set to 0.5 in the following experiments. 

5.4.4.2. Experiment Results 

For the purpose of validate the effectiveness of the proposed artificial cognition 

framework, simulated perception tasks correlate to each sound situation in an office 
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environment scene will be designed. The NAO robot platform uses Python 

programming language to obtain sound data by calling the interface of the microphone 

module, and the collected sound information is stored in a computer and Python is used 

to process them. Meanwhile, the computer is used to display each normal and abnormal 

sound event, since several abnormal events rarely appear under normal conditions. 

Consequently, in order to verify the efficiency of the proposed system in different 

conditions, it is needed to simulate the generation of some events that rarely appear. 

Furthermore, in order to reduce the interference caused by non-human factors in the 

experiments, the background noise of the experimental environment is controlled at a 

low level, so that the sound signals apply in the experiment are significant signals.  

Experiment 1 

The first experiment aims at testing AAC system when only one sound event exists 

in the office. Footstep sound signal is displayed at first and Nao robot records this signal 

and stored it in the processing computer. Then, the deviancy detection module of AAC 

system is triggered. The results indicate that the deviancy detection module successfully 

detected the footstep, the spectrogram and image indicator of deviancy detection result 

are shown in Figure 39. 

 

 
Figure 39. The deviancy detection results in experiment 1. 

 

Thereafter, the sound is processed through TSCNN model to recognized the class 

of the deviant sound, followed by response judgment through AERD model. The results 
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are shown in Figure 40. It is clearly shown in Figure 15 that the ESC module can 

precisely identify the categorize of the displayed sound event. In the first experiment, 

since the footstep sound is a normal sound event in the office scene according to Table 

14, hence, the AERD model gives the result of “keep searching”. 

 

 
Figure 40. Environmental sound event cognition results under first scene condition. 

 

Experiment 2 

The second experiment aims at testing AAC system when meaningless abnormal 

sound events occurred in the office. Dog barking sound event is used in this experiment. 

When the sound is displayed, the robot recorded this event and the deviancy detection 

module is performed to analyze the signal. The results are shown in Figure 41, in which 

it can be seen that the dog bark is detected. 

 

 
Figure 41. The deviancy detection results in experiment 2. 
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Subsequently, TSCNN model is triggered to identify the class of the sound event. 

TSCNN can accurately identify the signal’s category, which is dog barking. On account 

of the level of significance presented in Table 14, and according to Eq. (5.5), the 

significance of dog barking in office environment is: 

 ( ) 0.5office
dogP x <   (0.26) 

Therefore, the AERD model suggests “keep searching” in such scene. The classification 

and judgment results are shown in Figure 42. 

 

 
Figure 42. Environmental sound event cognition results under second scene condition. 

 

Experiment 3 

The third experiment aims at testing AAC system when meaningful abnormal 

sound events occurred in the office while the probability is lower than the focal task.  

 

 
Figure 43. The deviancy detection results in experiment 3. 
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Two sound events are played one by one, the first is knocking and the second is 

dog barking. These sounds are analyzed through deviancy detection module 

simultaneously and the results are shown in Figure 43. It can be seen that the dog 

barking event is identified as a deviant sound event among these two events. Thereafter, 

the sound is processed through TSCNN model to recognized the class followed by 

response judgment through AERD model. From Table 14 it can be noticed that, 

although dog barking is the deviant sound in this condition, however, the significance 

level of such sound event is lower than previous event: 

 ( ) ( )office office
dog knockingP x P x<   (0.27) 

Hence, the AERD model give the solution of “keep searching” in this scene. The 

classification results derived from TSCNN and judgment result presented by AERD 

module through Python programming language is shown in Figure 44. 

 

 

Figure 44. Environmental sound event cognition results under third scene condition. 

 

Experiment 4 

The fourth experiment aims at testing AAC system when meaningful abnormal 

sound events appeared in the office with a higher probability than the focal task. In this 

assumed condition, air conditioner and siren sound events are exploited. The air 

conditioner is displayed at first followed by siren. These sound events are analyzed 

through deviancy detection module simultaneously, where Figure 45 presents the 
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deviancy detection results. 

 

 
Figure 45. The deviancy detection results in experiment 4. 

 

It is clearly shown in Figure 45 that the second sound event is the deviant sound 

in this scene. Then, the class the sound is processed through TSCNN model to 

recognized the class followed by response judgment through AERD model. The results 

are shown in Figure 46. It can be noticed that the siren is precisely identified. Finally, 

according to Table 14 and Eq. (5.6), the relation of the significance of both sounds is: 

 ( ) ( )office office
siren air conditionerP x P x>   (0.28) 

Therefore, the AERD model suggests “please be aware” to the siren sound events in 

such scene. The classification and judgment results are shown in Figure 46. 

 

 

Figure 46. Environmental sound event cognition results under fourth scene condition. 
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Experiment 5 

In order to test the validity of the AAC system in a more quantitative manner, 

comprehensively perception tasks correlate to each sound situation of the office scene 

are conducted. As the for experiments presented above, in this experiment, there are 

also four sound situations: 1) The first one is only one sound event exists in the office, 

and the sound clips of air conditioner are used here. 2) The second situation is only 

meaningless abnormal sound events occurred, and the sound of jackhammer is applied 

as the deviant sound. 3) The third one is the meaningful abnormal sound events 

occurred in the office while the probability is lower than the focal task, and the knocking 

is focal task while the dog barging is the meaningful abnormal sound events. 4) The 

fourth situation is when meaningful abnormal sound events appeared in the office with 

a higher probability than the focal task. A series acoustic segments of siren select from 

the UrbanSound8K dataset are chosen to test the accuracy of the proposed system in 

the 4th situation. The office scene is chosen as soundscape in this experiment and the 

sound of air conditioner is selected as normal sound events. The details including sound 

class, number of total segments, number of correct and incorrect detected segments and 

the incorrect sound classes of each situation are shown in Table 15. The abbreviations 

in Table 15 refer to: air conditioner (ac), children playing (cp), dog bark (db), drilling 

(dr), jackhammer (jh), siren (si) and street music (sm). In the column “Incorrect class”, 

the superscript indicates the number of occurrences of this class of sound. 

 

Table 15. The details of each sound situation in experiment 5 

 Sound class 
Total 

segments 

Correct 

segments 

Incorrect 

segments 

Incorrect 

class 

Situation 1 ac 100 100 0  

Situation 2 jh 96 91 5 cp1, dr1, sm3 

Situation 3 db 100 92 8 ac7, cp1 

Situation 4 si 71 68 3 cp2, db1 
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Table 15 shows the results obtained from the preliminary analysis of experiment 

5. It is apparent from this table that very few incorrect detection results occur in each 

sound situation. In sound situation 1, it can be seen that all the tested 100 sounds (air 

conditioner) have been correctly detected in the office scene. In second situation, 96 

meaningless abnormal sound events of jackhammer have been used in this test. 91 clips 

are correctly recognized and only 5 segments are incorrectly classified. Among these 

errors, one clip is recognized as children playing and one is detected as drilling, three 

segments are classified as street music. In sound situation 3, 100 sound segments of dog 

barging are applied, and 92 of them have been correctly detected, 8 are not detected 

correctly. One of the incorrectly classified sound events is considered to be children 

playing while the rest is recognized as the sound of air conditioner. In the last situation, 

71 segments of siren are used as meaningful abnormal sound events that appeared in 

the office with a higher probability than the focal task. Only 3 of them are incorrectly 

detected, two of them are classified as children playing while the other one is considered 

to be dog barging. These results indicate that the proposed AAC system is very 

robustness in different sound detection tasks. The statistical detection results are shown 

in Figure 47. 

 
Figure 47. The statistical detection results of four sound situations in the office scene. 

 

In Figure 47 we can see that in first sound case, where only one normal sound 
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event occurred, the sound clips of air conditioner could be detected accurately in the 

office scene. In the second case, where only meaningless abnormal sound events 

(jackhammer) occurred, the AAC system achieves a detection rate, which is 94.79%. In 

the third soundscape, where meaningful abnormal sound events occurred in the office 

while the probability is lower than the focal task. It can be seen from Figure 47 that the 

recognition rate of deviant sound events of dog barging achieves 92% in such condition. 

In the last soundscape, the recognition performance of deviant sound of siren, which 

arouses the auditory attention shift, can achieve a high accuracy of 95.77%. These 

results clearly point out that the proposed AAC system could get a considerable 

performance in different auditory artificial cognition tasks. 

5.5. Conclusion 

In this chapter, the artificial auditory cognition system which contains three 

modules including deviancy detection module, environmental sound classification 

module and acoustic event response module is initially proposed to achieve complex 

perception tasks. To be specific, in order to further improve the performance of the 

CNN-based ESC model, the TSCNN model is proposed to precisely identify the class 

of environmental sounds. It consists of two 4-layer convolutional neural networks, the 

LMCNet and MCNet trained by two combined features, LMC and MC feature sets, 

respectively. Then, the outputs of the softmax layer of both networks are fused through 

DS evidence theory, the result is the predicted categorize of an environmental sound. 

The performance of two CNN with the novel combined feature sets and the entire 

framework is tested on the UrbanSound8K dataset and compared with existing models 

published in recent years. Both LMCNet and MCNet can obtain better classification 

accuracy when compared with existing methods that use the same features (LM or 

MFCC) to form a combined eigenvector. These results indicate that the proposed CNN 

architecture is more effective for environment sounds classification tasks according to 

the appropriate parameter settings and comprehensive representation of sound 

recordings through the combined feature sets. Finally, TSCNN achieves 97.2% on the 
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UrbanSound8K dataset, which is 4.2% higher than the state-of-art methods (the 

(Boddapati et al., 2017) model), and is 5% higher than the (S. Li et al., 2018) model 

where the same fusion algorithm is exploited in this work. These results indicate that 

the proposed TSCNN model present to be more efficient and robustness than existing 

models in ESC tasks. 

Thereafter, a knowledge-based system inspired auditory events response decision 

model is originally proposed to better describe the significant characteristic of acoustic 

information obtained from the environment. Inspired by the perceptual process of 

human cognition mechanism, the proposed method is performed by comparing the prior 

knowledge-based significance of detected salient or deviant sounds with sound scenes 

information to determine whether the system needs to respond to the abnormal sound 

events. Thus, abnormal sounds will be further categorized into meaningful and 

meaningless events, which means that meaningful deviant sounds need to respond and 

meaningless events do not need to respond. Meanwhile, the meaningful events need to 

be judged whether their significance is higher than focal tasks. If so, such events should 

be focused on. Otherwise, they will be neglected. By using the AERD model, the 

detected sound events can be judged whether they are valuable focused or not. 

At last, four major perception tasks are designed to verify the performance of the 

proposed framework. As objects can be subjectively characterized into normal and 

abnormal according to the environment, the abnormal events can be effectively 

perceived and recognized through deviancy detection module and TSCNN. Due to the 

usage of the auditory events response decision model, various kinds of situations that 

could happen during perception can be correctly processed. The experimental results of 

simulated perception tasks have shown that the proposed artificial auditory cognition 

system can efficiently aware of the surrounding environment with prior scene 

knowledge. 

It can be also supported by the experiments that the proposed framework could 

cover most of the perception requirements. Particularly, the real deviant sound could 

be distinguished among multiple environmental events by applying deviancy detection 

model and could be precisely identified through TSCNN model. Therefore, the 
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proposed approach is considered to be promising for achieving intelligent perception 

ability in complex environments. 
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Chapter 6.  General Conclusion 

Conclusion 

Cognition of the surrounding environment using auditory information should be an 

important function of intelligent machines. Considering that the realization of bio-

inspired auditory cognition is a complex systematic research work, it will be quite 

difficult to model such a mechanism directly. Consequently, the artificial auditory 

cognition modeling work is divided into three steps in this thesis. Which is modeling 

the human auditory attention mechanism-based information acquisition module at first. 

Then, the realization of the sound event recognition method simulates the 

transformation of low-level information to high-level information in the human brain. 

Thus, establish the auditory response decision model to judge the significance of sound 

events. Finally, these modules are combined to realize the artificial auditory cognition. 

According to the comprehensive review works of the state-of-art studies presented 

in Chapter 2, it can be seen that auditory saliency and deviancy detection mechanism 

can be used as the most efficient principle in obtaining the novel sound events. The 

deviancy detection mechanism could be regarded as a supplement to saliency detection, 

a bottom-up selection mechanism made up of both helping us to perceive the 

environment more precisely. However, the research issue of auditory deviancy 

detection is more complex than auditory saliency detection, because a sound event 

should be salient at first, then, it could be deviant. Hence, novel bio-inspired attention 

models aim at detecting the sound deviancy should be proposed. Moreover, the research 

work of environmental sound classification is still at an early stage. This is because that 

the environmental sounds are a very diverse group of everyday audio events on account 

of the considerably non-stationary characteristics that cannot be described as only 

speech or music, leading to the classification accuracy of existing models that cannot 

reach a satisfactory level. In order to comprehensively simulate human auditory 

cognition, the capability of responding to an auditory event should be considered as 
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well. However, the main achievements are almost all focused on shed light on the 

theoretical basis of such ability. Only a few published works present applicable 

computational models with response mechanism, yet it can be found that these models 

are insufficient for environment perception. 

For conquering the above-mentioned obstacles and realizing the artificial auditory 

cognition, the solutions and novel models are presented in Chapters 3 to 5. In Chapter 

3, a computational model is proposed to mimic such a human auditory attention 

mechanism, where saliency principle and deviancy principle are used as the theoretical 

basis. The prosed model consists of two modules: temporal deviancy detection and 

frequency saliency detection. Combining the information issued from each of the 

aforementioned modules, the proposed model generates the image indicator that 

identifies the deviant salient-sound which elicit auditory attention shifts. The sounds 

recorded from the real environment have been used for verifying the advantages of the 

proposed model. The results show that the proposed model is able to point out the 

deviant salient-sound in a mixture of a sound clip and shows acceptable robustness and 

accuracy. Furthermore, a more comprehensive experiment is performed and illustrates 

that the proposed model could effectively simulate the human auditory attention 

mechanism. 

In Chapter 4, considering that accurate classification of acoustic events is one of 

the foundations of environment acoustic awareness that has a strong correlation with 

the selected features. Therefore, a performance analysis work of different acoustic 

features aggregation schemes in ESC tasks is presented. This work aims at finding the 

best feature aggregate strategies to overcome the challenging problem of elevating the 

classification accuracy of environmental sounds. Six basic acoustic features derived 

from the frequency domain and two kinds of perceptually motivated acoustic features 

with a 6-layer convolutional neural network (CNN) model. Then, eight feature 

aggregate schemes were presented and evaluated on the proposed model, where the best 

classification accuracy is acquired by the MFCC-Log-Mel Spectrogram-CST (M-LM-

C) feature sets. The categorizing accuracy of the proposed aggregate feature M-LM-C 

feature with CNN can reach 85.6% on ESC-50 and 93.4% on UrbanSound8K, 
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respectively, and is 19.7% and 20.7% higher than the (Piczak, 2015a) model. 

In Chapter 5, the TSCNN model is proposed at first to precisely identify the class 

of environmental sounds with two aggregated features. The TSCNN is consists of two 

identical 4-layer CNN use LMC and MC as features, separately. CNN uses LMC 

features is the LMCNet and the other is the MCNet. Softmax outputs of both CNNs are 

fused through DS evidence theory, the fusion result is the predicted categorize of an 

environmental sound. he performance of two CNN with the novel combined feature 

sets and the entire framework is tested on the UrbanSound8K dataset and compared 

with existing models published in recent years. Both LMCNet and MCNet can obtain 

better classification accuracy when compared with existing methods that use the same 

features (LM or MFCC) to form a combined eigenvector. These results indicate that the 

proposed CNN architecture is more effective for environment sounds classification 

tasks according to the appropriate parameter settings and a comprehensive 

representation of sound recordings through the combined feature sets. Finally, TSCNN 

achieves 97.2% on the UrbanSound8K dataset, which is 4.2% higher than the state-of-

art methods ((Boddapati et al., 2017) model), and is 5% higher than (S. Li et al., 2018) 

model where same fusion algorithm is exploited in this work. These results indicate that 

the proposed TSCNN model present to be more efficient and robustness than existing 

models in ESC tasks.  

An auditory events response decision model is proposed to judge the significant 

characteristic of acoustic information obtained from the environment is proposed in 

Chapter 5 as well. Inspired by the perceptual process of human cognition mechanism, 

the proposed method is performed by comparing the detected salient or deviant sounds 

with sound scenes information which has previous distributed significance value to 

determine whether the system needs to respond to the abnormal sound events. Thus, 

abnormal sounds will be further categorized into meaningful and meaningless events, 

which means that meaningful deviant sounds need to respond and meaningless events 

do not need to respond. The meaningful events need to be judged whether their 

significance is higher than focal tasks to further determine if it is worth attention or not. 

At last, these proposed modules are combined to yield the final artificial auditory 



140 

cognition system. In order to verify the efficiency of the framework, the simulated 

perception task correlates to each sound situation in an office environment scene are 

designed. The experimental results of these perception tasks have shown that the 

proposed system can efficiently aware of the surrounding environment. 

Perspectives 

In this thesis, an artificial auditory cognition system consists of a deviancy 

detection based auditory attention model, TSCNN sound classification model and 

auditory events response decision model is presented for complex environmental 

auditory cognition. Although this bio-inspired system has achieved competitive results 

for the intelligent machine, the following perspectives could be considered in the future. 

As for the deviancy detection model, though various acoustic features and sample 

entropy-based sound event deviancy detection method have been proposed for deviant 

environmental sounds detection, the proposed method present to be unsatisfactory 

when the level of intensity of background noise is high. Thus, noise reduction 

techniques can be introduced in the pre-processing stage to reduce the impact of noise. 

Moreover, dynamic information of sounds could also be exploited in deviancy detection. 

Since it has been described in Chapter 1 that a novel event is determined with deviancy 

should satisfy that such event breaks the existing status of the current environment 

which it appears. However, the deviant sound might turn out to be a normal sound event 

in the environment as time goes by. Thus, considering this characteristic can make this 

model take advantage of both short-term information and long-term information in 

precepting the real environment. 

Regarding the environmental sound classification tasks, the DS theory could 

substantially improve the taxonomic performance of a single CNN model in ESC 

problems. However, it can be seen that the accuracy of repeated discrete sounds (car 

horn, dog barging and gunshot) is worse than other sound classes. This is may cause by 

the number of convolutional layers, which make the model cannot extract enough 

feature maps to comprehensively represent important information of sound signals. 
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Another probability is the feature (LC and MC) may neglect some needed information 

for representing such discrete sound signals. To improve the categorization accuracy on 

these kinds of sounds with the TSCNN-DS model will be the future works. Both of new 

feature extraction methods and novel CNN architectures should be established for 

conquering these problems and improve the classification performance. Meanwhile, the 

computation cost should also be considered to make the ISR model can be applied in 

real-time. 

The ultimate goal of this thesis is to establish a practical artificial auditory 

cognition system for the intelligent machine to aware of the environment with auditory 

information. Even though the experiments designed in Chapter 5 have illustrated the 

effectiveness of the proposed fusion framework in dealing with different simulated 

scenes. The system should be tested in the real environment on intelligent machines or 

robots and should have the ability to deal with acoustic information on time. 
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