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EURECOM, with whom I shared great times.

I have finally

Preface

This thesis comprises the work on Interpretable Machine Learning carried out over the duration of my PhD.

Chapter 1 is a gentle introduction to the gigantic field of interpretable machine learning. It summarizes the exploration work of the first part of my research, with interesting references to different fields, including human sciences, well aligned with my classical background and strongly related to the concept of explanations and interpretability. This preliminary phase has been crucial for identifying the direction of the thesis, that can be mainly divided into two distinct parts, focusing on interpretability of machine learning models (rule learning) and data representations (disentangled representation learning), respectively. In particular, Chapter 2 submits a unified view of transparent, rule learning approaches, with a critical review of their main problems and possible solutions. Chapter 3 builds on top of the considerations of Chapter 2 and details our proposal to overcome such issues. Chapter 6 concludes this thesis with a summary of the main themes and contributions, followed by a brief discussion on future work.

CHAPTER

ONE

INTERPRETABLE MACHINE LEARNING

Over the last decades, the terms interpretability and explainability have become popular in the machine learning research community. However, if we thought they were new concepts, we would be definitely wrong. Explanations have very ancient origins: philosophers have always tried to answer existential questions about why things happen, social scientists and psychologists have investigated the way humans communicate explanations to each other for years. Today, we are trying to extend those findings to mathematical models, in the hope of making them not only more intelligent and accurate, but also comprehensible to those who are not necessarily experts. This is particularly important when such models are used in critical application areas, where the decisions made by a machine may have severe consequences on human lives.

Overview

With the increasing availability of data and the recent technological advancements that allow people to access powerful hardware at accessible prices, machine learning has naturally become part of our everyday life. Nowadays, machine learning, and in particular deep learning models, are potentially adopted everywhere to solve practical problems. In some fields, such as computer vision, Aritificial Intelligence (ai) has already exceeded human capabilities, providing undeniable benefits. However, this huge diffusion has also highlighted important weaknesses: many ai applications, especially the ones that involve critical decision-making, see limited usage or are not appropriate, mainly due to ethical and legal problems, or the lack of trust from their users.

Motivated by the limitations above, the concept of interpretability of machine learning Chapter 1. Interpretable Machine Learning 2 models has seen a renewed interest in recent years. The basic idea is that by designing interpretable models, or by finding a way to explain opaque (black-box) models, the users can better understand their internal mechanisms and, as a consequence, trust these systems. There are, of course, other reasons for machine learning interpretability, including the need to comply with new laws and regulations.

Despite this intuitive definition, navigating through the immense literature about interpretable machine learning is quite complicated. Due to its intrinsic subjective nature that involves humans in the loop, the work on explainable ai covers different fields, not necessarily related to computer science or machine learning. If we want to design and implement intelligent systems that people can interpret, analyzing the process humans follow to explain decisions and evaluate explanations becomes essential. This takes us in the world of social sciences, that have studied human behavior for a long time, and represents the starting point to try to give a general and valid definition of interpretability in machine learning, identifying its properties and goals. Then, we propose a taxonomy to structure the work in the area. Chapter 1 is an indispensable step towards the next chapters: the time spent to explore and organize the literature helped us to mature a critical view of the field, moving us into specific research directions, leaving out others.

Outline of the chapter. In Section 1.2, we summarize the work carried out in social sciences about how and why humans explain things. This is preliminary to Section 1.3, where we focus on interpretability in the context of machine learning models, highlighting properties, desiderata and common types of explanations in the literature; we additionally report a general framework for evaluating explanations. In Section 1.4, we present a taxonomy of interpretable machine learning, mainly distinguishing between transparent models and post-hoc explainability techniques. We conclude the chapter with a discussion about what we think should be the future of interpretable machine learning; this section will also act as a bridge to the next chapters.

The Social Importance of Explaining Why

Despite its long history of research, that might be dated back to the invention of the first expert systems in the 1970s, there is not a formal and commonly accepted definition of machine learning interpretability, yet. A vast majority of recent work in the field assumes a personal view of what a good explanation is, neglecting many, if not all, the studies about human explanations. This might seem natural, considering the subjective nature of the concept of interpretability. Nevertheless ignoring the huge amount of work from sociology, psychology, and philosophy, about how humans define, communicate and evaluate explanations would be counterproductive. Therefore, we start our journey by reviewing some insights from social sciences [START_REF] Miller | Explanation in Artificial Intelligence: Insights from the Social Sciences[END_REF], so as to understand what people generally expect from explanations, and propose, in the next sections, a more rigorous definition of machine learning interpretability.

The Art of Explaining to Humans

In one of its philosophical papers, David K. Lewis claims that explaining an event means "providing some information about its causal history. In an act of explaining, someone who is in possession of some information about the causal history of some event tries to convey it to someone else" [START_REF] Lewis | Causal Explanation[END_REF]. In other words, an explanation is both a product and a process: on the one hand it is a product because it can be seen as an answer to a why-question, given a presupposition such as "they did that. Why did they do it?", on the other hand it might also be considered as the cognitive process of deriving an explanation. Philosophers and psychologists agree on the fact that explanations refer to a cause [START_REF] Salmon | Four Decades of Scientific Explanation[END_REF][START_REF] Woodward | Making Things Happen: A Theory of Causal Explanation[END_REF] (in this work, we will not consider non-causal explanations, answers to questions like "what happened"). However, there are also other important properties to consider when discussing about explanations. Many explanations are contrastive: people do not usually ask why event P happened, but why event P happened instead of a different event Q. Answering these questions is generally easier than providing complete explanations. Explanations may also be implicitly contrastive, which makes it harder (or even infeasible) to figure out the event Q the user is implicitly referring to. Explanations are selected : people do not ask for the complete cause of an event, but select one or two causes to be the explanation. Finally, explanations may be social : in this case, they should be seen as a conversation with the goal of transferring knowledge, hence they should take into account how people interact.

Interpretable explanations. Throughout the whole thesis, the terms interpretability and explainability are used interchangeably and invoke a measure of how understandable an explanation is. More formally, in [START_REF] Biran | Explanation and Justification in Machine Learning : A Survey[END_REF] interpretability is defined as the degree to which an observer may understand why a given decision has been taken. This means that a certain concept, used to explain a given decision, may be transmitted in different forms and different degrees of complexities, depending on the listener.

The reasons behind an explanation. An obvious reason to ask for explanations is to understand why something happened. In this case, explanations are seen as a need for humans to find meaning. Deeper logics involving social interactions, like creating a shared meaning of something, transferring knowledge, influencing people's beliefs, and so on [START_REF] Malle | How the Mind Explains Behavior: Folk Explanations, Meaning, and Social Interaction[END_REF] are outside the scope of this work. In general, explanations might be required to persuade someone that a given decision is right [START_REF] Lombrozo | The Structure and Function of Explanations[END_REF]: then, providing the true reason might become of secondary importance.

The structure of an explanation. Different questions require different explanations: for example, asking why a certain event happened is not the same as asking where it happened. In this work, we focus on why questions only. One of the oldest and most known explanation models in philosophy is the Aristotle's Four Causes model. According to the Greek philosopher, we know something (and we can explain it) when we are able to identify its causes, that is when we know why something exists and why it exists as it is. This translates into four causes or modes: the former two, material and formal, refer to its composition; the latter two, efficient and final, regard their origin and goal.

For instance, the material cause for a statue is the marble, the formal cause is the shape given to the marble, the essence cause is the sculptor's scalpel, and the final cause is the reason why the sculptor makes the statue. Each of these causes, either taken alone or all together, can be considered as reasonable explanations for why questions.

How people explain behavior. Research on social attribution, which studies how people explain behavior to others, constitutes the foundation for much of the work on explanations in general, and it is of great interest for ai explainability. [START_REF] Heider | An Experimental Study of Apparent Behavior[END_REF] are the first to demonstrate that humans tend to attribute folk psychological concepts, such as desire and intention, to objects. In one of their experiments, they asked the participants to watch a video with animated shapes moving around the screen, and to describe the scene. The participants described the movements of the objects as they were performed by humans. Then, Heider argued that the main difference between the human perception of objects and other humans is strongly related to the presence or lack of specific intentions. Many years later, in one of his most famous books [START_REF] Malle | How the Mind Explains Behavior: Folk Explanations, Meaning, and Social Interaction[END_REF], Malle proposes a conceptual framework for behavior explanations, formally distinguishing between intentional and unintentional behaviors: for unintentional behavior, people tend to offer only causes, while for intentional behavior people prefer more complex explanations, taking into account mental states, desires, background reasons and emotions.

Also norms and morals have a huge impact on social attributions. When people explain immoral behaviors or behaviors that go against commonly accepted "unwritten rules", they are likely to include their personal thoughts and judgements in the explanations. In other words, explanations are biased by social beliefs. Unfortunately, human behavior, personal and social opinions are hard to model and encode into ai explanations.

Selecting and Evaluating Explanations

Explanations can be seen as a cognitive process that guides the generation and reception of explanations. Such process can be split into three steps [START_REF] Miller | Explanation in Artificial Intelligence: Insights from the Social Sciences[END_REF]: i) causal connection, where we identify the main causes of an event; ii) explanation selection, where a small subset of the causes is selected as the explanation, iii) explanation evaluation, usually performed by people to whom the explanation is addressed.

Causal connection. It is the process of identifying the causes of a fact, inferring them from observation and/or prior knowledge. It is obvious that people cannot simulate back all possible events to understand the associated causes. They use heuristics based on several criteria: people tend to focus more on abnormal/unusual causes (abnormality of events), intentional events receive more consideration than unintentional ones (intention of events), a major focus is attributed to recent and controllable events, not coincidences, to identify the causes of a fact (timing and controllability of events); changing the perspective, the causes associated to an event typically change (perspective). In Section 1.3.2, we will see that most machine learning models learn associations rather than causal relationships.

Explanation selection. Even when it is possible to establish all possible causes of a fact, it would be impossible for a human to understand them. Explanation selection is the process of selecting a subset of the causes identified in the previous step to provide an explanation. The work in this area shows that people usually select explanations according to criteria that are very similar to the ones used to identify them: explanations taking into account differences with respect to other events, abnormal conditions and intentional causes are more likely to be selected. In general, necessary causes are preferred to sufficient ones; goals are generally better explanations than preconditions, but preconditions and goals together are sometimes preferred.

Explanation evaluation. When individuals receive an explanation, they determine its quality according to several criteria. In his Theory for Explanatory Coherence [START_REF] Thagard | Explanatory Coherence[END_REF], Thagard argues that humans judge positively explanations that are aligned and coherent with their prior beliefs. Moreover, high quality explanations are simple (few causes) and general (they explain multiple events). This simplicity principle is followed by many interpretable machine learning models, including libre (see Chapter 3 for more details). Surprisingly, while true and high probability causes are part of good explanations, they are not always related to explanations that people find useful [START_REF] Hilton | Mental Models and Causal Explanation: Judgements of Probable Cause and Explanatory Relevance[END_REF]. [START_REF] Vasilyeva | Goals Affect the Perceived Quality of Explanations[END_REF] also notice that explanations where the explanatory mode (material, formal, efficient, final) is well aligned with the goal of the question are preferred.

Communicating Explanations

According to the conversational model of explanation [START_REF] Hilton | Conversational Processes and Causal Explanation[END_REF], explanations can be seen as a two-stage process: i) the diagnosis of causality, where the explanation is actually "crafted" by identifying the main causes, and ii) the conversation, where the explanation is conveyed to someone. Because of this second step, explanations are subjected to the rules of conversations. Then, those explanations should contain causes that are relevant to the explainee, aligned both with his prior and shared knowledge between explainer and explainee.

Chapter 1. Interpretable Machine Learning 6 The Grice's maxims [START_REF] Greaves | What Is a Conversation Policy? Lecture Notes in Computer Science[END_REF]. They are a set of basic rules that should be followed to present an explanation. Although they are explicitly conceived for speeches, they naturally extend to any other conversation language. Grice identifies four classes of maxims that we summarize as follows. i) Quality: a) do not say things that you believe to be false, b) do not say things without sufficient evidence. ii) Quantity: a) make your contribution as informative as is required, b) do not make it more informative than is required. iii) Relation: a) Be relevant. iv) Manner : a) avoid obscurity of expression, b) avoid ambiguity, c) be concise and (d) be orderly. In a few words, an explanation should only contain necessary and relevant information.

Argumentation. A research study from [START_REF] Antaki | Explaining in Conversation: Towards an Argument Model[END_REF] shows that a considerable amount of statements in explanations are argumentative claim-backings.

When the explainer explicates or justifies something, he has to be ready to defend his claims. Interestingly, argumentation is dependent on what the explainee already knows, and focuses on abnormal factors as a way to empower the explanation. This confirms that good explanations must be relevant to both the question and the mental model of the explainee. Argumentative ai explanations are outside the scope of this thesis.

Interpretable Explanations in ai

When we talk about explainability and interpretability in machine learning, most of the concepts introduced in the previous section are valid and should rather be considered as necessary conditions to obtain "really interpretable" artificial intelligent systems.

Unfortunately, today we are still far from this ideal goal: although many works, maybe unknowingly, tackle some of the desiderata for effective explanations, there is currently no work that satisfies all the characteristics covered in the previous section. Such limitations can be traced back to the lack of a commonly accepted definition of interpretable machine learning: indeed, popular definitions are either contrasting or incomplete, as they only consider a subset of goals; goals in isolation are not a sufficient condition to make a model interpretable.

Toward a General Definition of Interpretable Machine Learning

In the machine learning literature, there has been a proliferation of definitions about interpretable ai starting from 2016. It is not a coincidence that, in the same year, the European Parliament has adopted, for the first time, a set of regulations for the collection, storage and use of personal information, the General Data Protection Regulation (gdpr).

In particular, Article 22 refers to automated individual decision-making, including profiling, and affirms a right to explanation, with a consequent strong impact on machine learning algorithms. With the gdpr, explainable ai becomes a real need also by law.
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"By explaining a prediction, we mean presenting textual or visual artifacts that provide qualitative understanding of the relationship between the instance's components and the model's prediction, [. . . ] as a solution to the trusting a prediction problem." [START_REF] Ribeiro | Explaining the Predictions of Any Classifier[END_REF].

"An interpretable explanation, or explanation, is a simple model, visualization, or text description that lies in an interpretable feature space and approximates a more complex model." [START_REF] Herman | The Promise and Peril of Human Evaluation for Model Interpretability[END_REF]. "In the context of machine learning models, we define interpretability as the ability to explain or to present in understandable terms to a human." (Doshi-Velez and [START_REF] Doshi-Velez | Towards A Rigorous Science of Interpretable Machine Learning[END_REF].

"To intuitively understand a machine learning model, we need to visualize it, make it accessible to the senses." [START_REF] Offert | I know it when I see it[END_REF].

"Explainable Artificial Intelligence will create a suite of machine learning techniques that enables human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partner." [START_REF] Gunning | DARPA's Explainable Artificial Intelligence (XAI) Program[END_REF].

These definitions have several drawbacks: i) they are sometimes too vague [START_REF] Offert | I know it when I see it[END_REF], ii) they are linked to a specific explanation type, like textual or visual, which are not the only alternatives, as we will see later; iii) they involve the concept of "understanding" which is completely dependent on the explainee; iv) they consider a subset of the desiderata of an explanation (we refer the reader to Section 1.3.2 for further details), such as informativeness and trust.

A general definition. With that in mind, [START_REF] Arrieta | Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI[END_REF] have recently proposed a more general and coherent definition: "Given an audience, an explainable Artificial Intelligence is one that produces details or reasons to make its functioning clear or easy to understand.", Here, the key is the presence of the three words "given an audience", that makes the concepts of clarity and simplicity specific for a given target explainee. Last but not least, this definition involves causal reasoning, that we identified as one of the main components of the explanation process, and "details" that refer to any other type of information we want to capture in the explanation.

Desiderata of Interpretable Explanations

Recent work from the literature on interpretable machine learning identify different desiderata for interpretable explanations. We have already seen that explanations can be considered as answers to "why-questions". If we restrict our focus on machine learning models, we might say that explanations answer the question "Why does the model give that output?". This question gives rise to a series of side-goals that, depending on the task and application area, might be the real reason why we need the explanation.

Informativeness. Every time we run a machine learning model to solve a given task, we obtain some information back, in the form of an output. However, by interpreting either the internal mechanisms of the model or the output (or both) we can obtain additional information, that can then be used by human decision makers to make better decisions. Interpretable machine learning aims at simplifying this process, making this "additional information" easier to understand, given the explainee and the solved task.

All work carried out in this area has the informativeness goal in mind.

Causality. Overall, machine learning algorithms are not guaranteed to learn causal relationships; they rather learn associations among input data. Indeed, there could always exist unobserved variables that the machine learning model cannot take into account and that actually represent the true causes. Even when causal inference [START_REF] Pearl | Causality[END_REF] is possible, it usually relies on strong assumptions, that are not always satisfiable in practice. It is also true that causation involves correlation; thus, we may hope that by designing interpretable models or interpreting models, we could generate hypotheses that scientists could then test experimentally. While causality is one of the main reasons for explanations, surprisingly there are not many works on interpretable machine learning that explicitly set it as their goal.

Trustworthiness. Interpretability has often been studied in the light of trust [START_REF] Ribeiro | Explaining the Predictions of Any Classifier[END_REF][START_REF] Lipton | The Mythos of Model Interpretability[END_REF]. Trustworthiness is defined as the confidence that a model will act as expected. It is a property that every machine learning model should ideally respect, but trusting a model does not necessarily imply that a model is interpretable.

Additionally, a perfect model, that always returns the exact output, is not automatically trustworthy; it might be the case for a model that makes "reasonable mistakes", for example in situations where also humans make mistakes.

Transferability. Transferability is another important goal for interpretable models [START_REF] Ribeiro | Explaining the Predictions of Any Classifier[END_REF][START_REF] Lipton | The Mythos of Model Interpretability[END_REF]. Being able to understand the decisions made by a model is a necessary condition to exploit the discovered knowledge in different contexts. In Section 2.4.2, we will see that this is true for rule-based systems, where Chapter 1. Interpretable Machine Learning 9 knowledge is encoded in the form of rules that can be continuously learned, removed, adapted to maintain their effectiveness even in presence of concept-drift [START_REF] Lu | Learning under Concept Drift: A Review[END_REF]. Disentanglement methods constitute another example of interpretable models, well suited for transfer learning tasks (see Section 4.4.2 for more details).

Fairness. Many works argue that interpretability is a practical way to increase fairness in machine learning models. We know that data is unfair, simply because society is unfair, too. The internal mechanisms of machine learning algorithms might amplify such problems. This is particularly relevant in sensible applications, where decisions made by a model impact human lives and cannot be based on ethical biases. The right to explanation, defined in the gdpr, regulates all cases where personal data are used: then, explanations must not only guarantee fairness, but also be provably correct and contestable. As will be discussed in Section 4.4.3, learning disentangled representations is a suitable way to achieve fair machine learning.

Interactivity. If we follow the view of explanations as conversations, some machine learning models [START_REF] Langley | Explainable Agency for Intelligent Autonomous Systems[END_REF] support interactions with the user who can question the model and obtain an answer. This implies the capability of the model to establish a dialogue and provide explanations.

Accessibility. Dealing with interpretable models also considerably affects their development process, from training to validation. Indeed, understanding how and why a given model returns a given output might allow even non-expert users to improve the model's performance, more easily than highly non-linear black-box models.

Other desiderata. Explanations and interpretable models have also been used to i) improve the stability of machine learning models [START_REF] Lakkaraju | Robust and Stable Black Box Explanations[END_REF], ii) increase the robustness against adversarial attacks (see Section 4.4.4), iii) preserve privacy when models process sensible information [START_REF] Baron | Interpretable Machine Learning for Privacy-Preserving Pervasive Systems[END_REF].

Properties of Interpretable Models

In the literature, there is a clear distinction between interpretable-by-design models, that are considered, to some degree, naturally interpretable, and black-box (or opaque) models, like neural networks, that, in contrast, require external techniques to interpret them, uncovering the meaning of their parameters. These two families of approaches are known as transparency and post-hoc interpretability, respectively. This is just a first level of distinction: transparent models can be further classified according to three properties that reflect different levels of transparency: simulatability, decompasability and algorithmic transparency. Post-hoc interpretability techniques can Chapter 1. Interpretable Machine Learning 10 also be discerned according to i) the type of explanation (text, visual, etc...), ii) their dependence (or independence) from specific models, iii) their ability to provide either local or global explanations. We remind the reader that, according to the conversational model of explanation [START_REF] Hilton | Conversational Processes and Causal Explanation[END_REF], every time we generate an explanation we may communicate it in different ways and format, thus using different techniques, depending on the audience.

Transparency. Not all transparent models are the same: some of them are more interpretable than others. Thus, it is worth establishing three different levels of transparency: simulatability, decompasability and algorithmic transparency, where each level is also covered by the previous ones. For example, a simulatable model is decomposable and algorithmically transparent, but a decomposable model is not necessarily simulatable.

• Simulatability. A model is simulatable if a user can "contemplate the entire model at once" [START_REF] Lipton | The Mythos of Model Interpretability[END_REF]. More precisely, given an input observation and the model's parameters, a user has to manually generate the output of the model, in reasonable time. This is possible only if the model is simple and compact. Simulatability suggests that no model is intrinsically interpretable: sparse linear models are more interpretable than the dense ones, but, for the same reason, a single perceptron neural network is more interpretable than a big decision tree.

• Decomposability. Even if users are not able to fully simulate the output of a model, they might still be able to follow and understand the output generation process. More formally, a model is decomposable if a user can intuitively explain each of its components: inputs, parameters and calculations. A simple and compact model that takes complex features as input is not decomposable.

• Algorithmic transparency. A model is algorithmically transparent if a user can totally explore it by means of mathematical analysis and methods. Linear models, independently from their size and sparsity, are algorithmically transparent as it is possible to reason about their loss shape. This is not the same for deep neural networks and their complex loss functions.

Post-hoc interpretability. Black-box models require external techniques to be interpreted. They can be classified according to three different levels:

• Explanation type. i) Text explanations provide explanations in textual format. This line of work also contains models that generate captions from images. ii)

Visual explanations aim at explaining what a model has learned by means of visualizations. Some methods use dimensionality reduction techniques to represent input observations on two or three dimensions; methods from the computer vision community highlight the portion of the image/video the target model is focusing on to generate its output. iii) Explanations by example rely on the assumption that a model should behave similarly when processing similar input observations. Then, the decision of a model is explained by means of one or more similar examples or proxies. iv) Feature relevance methods clarify the inner mechanisms of a model by computing a relevance score for each input feature: the higher the score, the higher the impact on the output.

• Local vs global. Local techniques consider a portion of the solution space, and provide explanations for a less complex subspace. Such techniques usually perturbate the input observation, for which we require an explanation, and approximate the target model with a simpler, interpretable one. Alternatively, it is possible to learn a transparent model that replicates the behavior of the entire target model.

• Model-specific vs model-agnostic. Some post-hoc interpretability techniques are constrained to work with a specific type or family of models, whereas others are model-independent (agnostic).

Evaluation Procedures

Doshi-Velez and [START_REF] Doshi-Velez | Towards A Rigorous Science of Interpretable Machine Learning[END_REF] are the first to formally propose a taxonomy of evaluation approaches for interpretability, distinguishing among application, human and functionlevel evaluation.

Application level evaluation (real task). It is the more specific and costly evaluation procedure. It involves conducting human experiments within a real application: a transparent model, or a black-box model combined with a post-hoc model, runs in a real scenario and is evaluated by humans, better if domain experts. The quality of the explanation is measured according to its practical utility to solve the task at hand, in terms, for example, of better identification of errors, less discrimination, and so on.

Human level evaluation (simple task). It can be seen as a simplified application level evaluation, where experiments are carried out with a lay person instead of domain experts. This is particularly convenient because it does not require high-profile testers, hence it is easier to find more testers, but it is also limiting because it impacts the essence of real end-tasks. Potential experiments might be, for instance, binary forced choices, where the testers are presented with pairs of explanations and have to choose the best one, or forward simulations, where, given an input and the corresponding explanation, the testers have to simulate the output of the model.

Function level evaluation (proxy task)

. This evaluation procedure is the easiest to automatize as it does not involve humans in the loop. It relies on some proxies to measure the interpretability of a model. Some models are better suited for this evaluation procedure than others. For example, a proxy for rule-based systems might be the number of rules, their size or a linear combination of them; a proxy for decision-trees might be their height, and so on, eventually penalizing models that lead to a significant performance drop. For other models, finding a good proxy is still an open problem.

A review of Explainability Approaches

On the basis of the taxonomy presented in the previous section, we will now review some of the most popular approaches for interpretable machine learning. A quick summary is illustrated in Figure 1.1. 

Transparent Models

One of the options to achieve machine learning interpretability is to use a subset of the models that are considered natively-interpretable, the so called transparent models. In this section, we are not going to present an extensive treatment of such methods, that are already well known; we will rather look to a representative subset of transparent models from an interpretability perspective, focusing on their transparency properties.

Linear/Logistic Regression. Linear regression [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] predicts a continuous target as a linear combination of the input features. If we analyze the weights, we can have an idea about the feature importance. When the number of input features is high, sparse linear models, like lasso [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF], are preferred because they push many weights to be close to zero, increasing the interpretability of the model. Logistic regression [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] is the equivalent of linear regression for (binary) classification tasks: rather than fitting a line (or hyperplane), logistic regression squeezes the output of the linear equation between zero and one, by applying the logistic function; the output can then be interpreted as the probability of a sample to belong to the positive class.

Again, the weights associated to each feature are linked to their importance. The linear assumption is, at the same time, the main strength and limitation of such models: i) it is one of the reasons of success not only in statistics but also in other fields like medicine, social sciences, and so on; ii) assuming that the relation among features is linear is too restrictive for many scenarios (in this cases, non-linearity has to be hand-crafted, affecting the final interpretability). Despite their simplicity, it is not rare to apply post-hoc explainability (mainly visualization) techniques to explain linear models to non-experts.

Generalized Linear Models (glm). In a linear regression model, the value of the target variable is assumed to follow a Gaussian distribution. Generalized Linear Models [START_REF] Mccullagh | Generalized Linear Models[END_REF] extend linear models by allowing outcome distributions from the exponential family. The expected value of such distributions is then computed as the result of a link function g, eventually non linear, applied to the weighed sum of features. Logistic regression is a special case of glm, with a Bernoulli distribution and the logit function as link function. Depending on the choice of the outcome distribution and link function, we can get more or less transparent models, usually with better performance than a simple linear model.

Generalized Additive Models (gam). Generalized Additive Models [START_REF] Hastie | Generalized Additive Models[END_REF]) can be seen as a further generalization of Generalized Linear Models, where the weighted sum of features is substituted by a sum of arbitrary functions, eventually nonlinear, of each feature. These functions can be either fixed or learned automatically, and this implies adding another stage in the interpretation of such models.

Despite their performance (often worse than more complex models), they are considered interpretable and versatile enough to be used in many practical applications like finance, biology, healthcare.

Rule-based Models. Rule-based models are among the oldest and most studied models in machine learning [START_REF] Fürnkranz | Foundations of Rule Learning[END_REF]. They use conditional rules to encode the functional relation between input data and the target concept. It is possible to learn either independent rules (rule sets) or mutually-exclusive rules (rule lists).

Depending on the number and size of the rules, rule-based models can be simulatable, decomposable, or algorithmically transparent. Refer to Chapter 2 for more details.

Chapter 1. Interpretable Machine Learning 14 Decision Trees. Decision Trees are used for both regression and classification problems. In the literature, there are many different decision tree algorithms like cart [START_REF] Breiman | Classification and Regression Trees[END_REF], id3 [START_REF] Quinlan | Induction of Decision Trees[END_REF], c4.5 [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF]. They are very popular in decision making contexts because of their intuitive hierarchical structure. Given an input, we can follow the path from the root to the leaf to obtain the output. The path can be easily mapped to conditional rules, whose form is easily understandable by humans. Depending on their size, the number of used features and the complexity of the features, they can belong to any of the three layered transparent levels. Alternatively, it is possible to compute feature importance scores. There is also a considerable amount of work in decision tree simplification (Quinlan, 1987b). Unfortunately, they do not always guarantee high performance, which is why we have tree ensembles like random forest [START_REF] Breiman | Random Forests[END_REF] that are, however, not directly interpretable.

K-Nearest Neighbors (knn). K-Nearest Neighbors [START_REF] Cover | Nearest Neighbor Pattern Classification[END_REF]) is an instance-based classification method where input samples are classified by voting among the classes of its k nearest neighbors, according to a chosen distance measure. For regression problems, voting is an aggregate function, like mean or median. This approach resembles the way humans make similar decisions for similar events they experienced in the past. Again, knn falls within the category of transparent models. Depending on the value of K and the choice of more or less interpretable distance measures, it can be located in one of the three transparent categories.

Naive Bayes Classifier. Naive Bayes Classifier is a probabilistic model based on the Bayes' theorem with a strong (naive) independence assumption among features. In summary, given an input x = (x 1 , . . . , x n ) with n features, and a class C k , where k is the number of possible classes, it assigns to x the class probability p

(C k |x 1 , . . . , x n ) ∝ P (C k ) n i=1 p(x i |C k ).
The independence assumption makes this model interpretable as it is possible to evaluate the direct impact of each single feature on the target class.

Depending on the number of features and their complexity, the Naive Bayes Classifier can satisfy simulatability, decomposability and algorithmic transparency.

Post-Hoc Interpretability

When a machine learning method is not transparent, an external method has to be designed and applied to the opaque model to explain its output. In Section 1.3.3, we have seen that such techniques can be either model agnostic or designed to explain specific models only. On the basis of the same taxonomy, we will briefly review some popular post-hoc interpretability techniques: among the model specific techniques, we will focus on those that have been studied the most in the literature, particularly the ones that explain support vector machines, (tree) ensembles and neural networks. Model agnostic techniques. A considerable amount of work in interpretable machine learning has been carried out for model agnostic explainability techniques, designed to work with possibly any target model. The vast majority of these approaches aim at simplifying the target model, either globally or locally, to make its prediction procedure more transparent. Feature relevance and visualization approaches are popular, too.

• Explanation by simplification. The easiest way to explain a black-box model is to train a separate, more interpretable, explainer model that approximates its predictions, applying the so called teacher-student model [START_REF] Tan | Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation[END_REF], where the black-box has the role of a teacher and the interpretable model is a student that mimics the teacher's behavior. Decision trees and rule-based learners are popular student models but, in principle, any transparent model can be a suitable choice. When the student replicates the teacher locally, we have local explanations.

Among the most known contributions to this approach we find lime [START_REF] Ribeiro | Explaining the Predictions of Any Classifier[END_REF], that supports many methods as local approximators. In Figure 1.2, we report an example where lime uses super-pixels explanations to justify the output of a convolutional neural network. Alternatively, it is also possible to approximate the whole black-box model, finding a trade-off between predictive accuracy and simplicity. Similarly, a well-known approach in this case is g-rex [START_REF] Konig | G-REX: A Versatile Framework for Evolutionary Data Mining[END_REF], a rule-based genetic algorithm that extracts global rules from opaque models.

• Explanation by feature relevance. One of the possible ways to understand the decisions made by an algorithm is to measure the influence of each feature on its output. In a recent framework called shap (Shapley Additive Explanations) [START_REF] Lundberg | A Unified Approach to Interpreting Model Predictions[END_REF], a set of feature importance scores satisfying specific properties is computed for every prediction, showing better consistency with human intuition than previous approaches. The feature importance of individual prediction has also been studied through the lenses of coalitional game theory [START_REF] Strumbelj | An Efficient Explanation of Individual Classifications Using Game Theory[END_REF]Kononenko, 2010), local gradients (Robnik-Šikonja and[START_REF] Robnik-Šikonja | Explaining Classifications For Individual Instances[END_REF][START_REF] Baehrens | How to Explain Individual Classification Decisions[END_REF], sensitivity analysis [START_REF] Cortez | Opening black box Data Mining models using Sensitivity Analysis[END_REF], influence functions [START_REF] Koh | Understanding Black-Box Predictions via Influence Functions[END_REF] and saliency methods [START_REF] Dabkowski | Real Time Image Saliency for Black Box Classifiers[END_REF].

• Explanation by visualization. Many model-agnostic visualization techniques are based on feature relevance and visualize the impact of single features on the output of a model. A Partial Dependency Plot (pdp) [START_REF] Friedman | Greedy Function Approximation: A Gradient Boosting Machine[END_REF] for a given feature shows how the average prediction of the target model varies as a function of that feature. The same goal is attained by Accumulated Local Effects plots (ale) [START_REF] Apley | Visualizing the Effects of Predictor Variables in Black Box Supervised Learning Models[END_REF]. The equivalent to a pdp for individual instances is called Individual Conditional Expectation plot (ice) [START_REF] Goldstein | Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation[END_REF]. Other sets of visualization techniques can be found in Cortez andEmbrechts (2011, 2013).

Post-hoc interpretability of support vector machines. In the simplest setting, support vector machines (svm) [START_REF] Cortes | Support-Vector Networks[END_REF] learn a hyper-plane, in a high dimensional space, to separate instances belonging to two classes. The best hyperplane is the one allowing the largest separation, or margin. Despite their intuitive idea, support vector machines are considered, especially by non-experts, opaque models and require post-hoc techniques to be explained.

• Explanation by simplification. Rule-based learners appear to be the de-facto standard to simplify support vector machines. In [START_REF] Chaves | Fuzzy Rule Extraction from Support Vector Machines[END_REF]; [START_REF] Barakat | Eclectic Rule-Extraction from Support Vector Machines[END_REF]; [START_REF] Barakat | Rule Extraction from Support Vector Machines: A Sequential Covering Approach[END_REF], rules are extracted from support vectors; in [START_REF] Fu | Extracting the Knowledge Embedded in Support Vector Machines[END_REF] hyperplane and support vectors are used together to induce a set of rules; in [START_REF] Nuñez | Rule Extraction from Support Vector Machines[END_REF][START_REF] Nuñez | Rule-Based Learning Systems for Support Vector Machines[END_REF] support and prototype vectors are combined to generate hyper-rectangles in the input space, then mapped to rules.

• Explanation by visualization. Visualization techniques for svm are strictly linked to feature relevance and display the features that are most probably related to the predicted output. We find methods that can be applied for linear svm [START_REF] Rosenbaum | Interpreting Linear Support Vector Machine Models with Heat Map Molecule Coloring[END_REF], classification [START_REF] Gaonkar | Interpreting Support Vector Machine Models for Multivariate Group Wise Analysis in Neuroimaging[END_REF] and regression (Üstün et al., 2007) tasks.

Post-hoc interpretability of tree ensembles. Tree ensembles are among the most used and accurate machine learning models, especially for structured data. In a tree ensemble, multiple decision trees are trained on a (random) subset of input features and combined by mean of an aggregation function. The resulting model is much more robust to noise than a single weak learner and achieves better generalization [START_REF] Ho | The Random Subspace Method for Constructing Decision Forests[END_REF][START_REF] Breiman | Random Forests[END_REF]. Unfortunately, this is also the main source of issues when it comes to explaining such models.

• Explanation by simplification. A considerable portion of work to explain tree ensembles follows the simplification approach, where a simpler model is trained to replicate the behavior of the ensemble. The authors of Domingos (1998) use c4.5 [START_REF] Quinlan | C4.5: Programs for Machine Learning[END_REF] to learn a less complex model from a set of samples labeled by the ensemble. Theoretically, their approach also works with other opaque models. In [START_REF] Deng | Interpreting Tree Ensembles with inTrees[END_REF], a set of rules are extracted, cleaned and eventually refined from the ensemble, and are used to build a rule-based learner. In [START_REF] Hara | Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach[END_REF], a Bayesian model aims at learning the simplest, still accurate representation of a tree ensemble by simplifying its boundary.

• Explanation by feature relevance. Similarly to decision trees, it is possible to compute feature scores for tree ensembles as well. As far as we know, Breiman was the first to propose a feature importance measure for random forests [START_REF] Breiman | Random Forests[END_REF]. In [START_REF] Auret | Interpretation of Nonlinear Relationships between Process Variables by use of Random Forests[END_REF], significant features within a random forest are detected by including particular dummy variables in the system. In another work [START_REF] Tolomei | Interpretable Predictions of Tree-Based Ensembles via Actionable Feature Tweaking[END_REF], the authors design an algorithm that outputs which feature should be changed and how to transform an instance into the opposite class for a binary random forest classifier.

Post-hoc interpretability of neural networks. Neural networks and, in general, deep learning methods have been successfully applied to many fields, often achieving or overcoming human accuracy levels for certain prediction tasks. Despite their incredible predictive power, neural networks struggle to be adopted in critical fields due to their intrinsic opaque nature. Recently, there has been a proliferation of publications aiming at improving the explainability of these black-box models, not only single-layer and multilayer perceptrons (mlp), but also convolutional (cnn) and recurrent neural networks (rnn). Most of the proposed post-hoc interpretability techniques fall into the category of explanations by simplification, feature relevance and visualization. 2017), learned by GoogLeNet [START_REF] Szegedy | Going Deeper with Convolutions[END_REF], trained on the ImageNet dataset [START_REF] Deng | ImageNet: A Largescale Hierarchical Image Database[END_REF]. Deeper layers (left-to-right) learn more complex features.

• Explanation by feature relevance and visualization. Feature relevance and the associated visualization methods represent a particularly important family of post-hoc explainability methods for neural networks. The authors of [START_REF] Montavon | Explaining Nonlinear Classification Decisions with Deep Taylor Decomposition[END_REF] adopt what they call deep Taylor decomposition to map the relevance of output neurons to the top layer that, in their case, consists of pixels. The final explanation is a heat-map of relevance scores associated to the input pixels that try to understand the regions of the input image the model focuses on to generate its output. In the same manner, deeplift [START_REF] Shrikumar | Learning Important Features through Propagating Activation Differences[END_REF] [START_REF] Karpathy | Visualizing and Understanding Recurrent Networks[END_REF][START_REF] Arras | Explaining Recurrent Neural Network Predictions in Sentiment Analysis[END_REF], ii) modifying the rnn architecture to make it more intelligible [START_REF] Choi | RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism[END_REF][START_REF] Krakovna | Increasing the Interpretability of Recurrent Neural Networks Using Hidden Markov Models[END_REF].

• Text explanations. Some works propose to produce text explanations to clarify the output of neural networks, often cnn models. This methods usually rely on rnn models to generate appropriate text descriptions for images [START_REF] Hendricks | Generating Visual Explanations[END_REF][START_REF] Donahue | Long-Term Recurrent Convolutional Networks for Visual Recognition and Description[END_REF] or videos [START_REF] Dong | Improving Interpretability of Deep Neural Networks with Semantic Information[END_REF], eventually using attention mechanisms [START_REF] Xiao | The Application of Two-Level Attention Models in Deep Convolutional Neural Network for Fine-grained Image Classification[END_REF][START_REF] Xu | Show, Attend and Tell: Neural Image Caption Generation with Visual Attention[END_REF].

Discussion

Getting oriented in the world of explainable ai is really tough. In the previous sections, we have seen that several fields, not necessarily related to computer science and machine learning, consider interpretability as a core concept for many, often critical, applications.

Despite common belief, it is a very old research subject, that we tried to cover by providing a taxonomy and an overview of the most studied and popular approaches:

transparent methods and post-hoc interpretability techniques.

At this point, it should be clear that every family and sub-family of explainable methods has its own advantages and disadvantages. We will now discuss more formally their criticalities, trying to figure out what might be the most desirable direction for future work. We want to specify that this is our personal view of the field, which pushed us to work in specific directions, disregarding others. Readers are invited to make up their own mind, that might eventually be completely opposite to ours.

On the Reliability of Post-Hoc Explanations

Every time we use post-hoc interpretability techniques to explain black-box models, there is the implicit belief that black-box models are better, in terms of performance, with respect to alternative transparent models. This is motivated by the wrong assumption that interpretability always comes at the expenses of predictive performance. It might actually be true for some fields, like computer vision, where opaque deep learning models are the de-facto standard, but this should not prevent us from designing increasingly accurate, still interpretable methods. In most practical scenarios, the space of solutions is so wide that it might indeed be possible to find simple models whose performance is equivalent to much complex ones.

In general, post-hoc interpretability techniques do not produce reliable explanations.

If we focus on simplification methods for a moment, the goal is to train a transparent model that mimics the behavior of the black-box. Ideally, if the performance of the two is exactly the same, we would not need the black-box anymore. Unfortunately, even when performance is equal, we cannot be sure that the "reasoning" behind the decision made by the two models is the same. Indeed, the functions learned by the two models might generate the same output, still being different, that is using different features in different ways. On the other side, if the transparent model is only an approximation, there is no trivial way to trust its output as explanation. Simplification methods are not useless, but it might be misleading to consider them as completely truthful explanations.

Another interesting example of unreliability of post-hoc explanations is represented by all the feature relevance techniques that explain the output of opaque models, especially neural networks that process images, through saliency maps, heat-maps or other related visualization methods. The intuition is that, by figuring out which are the portions of the input where the network is focusing to generate its output, we can understand something about its decision process. Unfortunately, these techniques are able to reasonably recognize what part of the input is neglected by the model, but they do not provide any information about how the remaining information is used. [START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF] showed that when we use saliency maps to explain, for example, cnn classifiers, they give similar, if not identical, explanations for each class, including wrong classes, simply because they focus on edges and boundaries, as shown in Figure 1.4.

We might continue giving other examples; however, the main idea is that every time an external model is used to explain a target model, we should expect to face one of the problems described above.

Challenges and Opportunities

In the light of the discussion above, a natural way of avoiding the issues associated to posthoc explanations is to design directly transparent models, or models that satisfy specific interpretable properties by design, where explanations reflect the true decision process.

This leads to other challenges, not necessarily easier to solve, and new opportunities. 

Overview

The first references to rules in the literature date back at least to 1970s, with the rise of the first expert systems [START_REF] Jackson | Introduction to Expert Systems[END_REF][START_REF] Leondes | Expert Systems: The Technology of Knowledge Management and Decision Making for the 21st Century[END_REF]. Expert systems were employed as diagnostic tools especially in medicine and biology, emulating the decision-making ability of a human expert through if-then-else rules. Since then, research on rule-based systems has never stopped and rule learning has become, without a doubt, one of the most studied and well defined field in the data mining and machine learning community.

Rule learning can be broken in two main categories: descriptive rule discovery and predictive rule learning. The former aims at finding out patterns and regularities in the data for exploration purposes, while the latter focuses on discovering rules that Chapter 2. Rule Learning 24 identify particular targets or concepts of interest. Descriptive rule learning does not focus on predictive performance, but on the statistical significance of the discovered rules.

The two main tasks for descriptive rule learning are subgroup discovery [START_REF] Klösgen | Explora: A Multipattern and Multistrategy Discovery Assistant[END_REF][START_REF] Wrobel | An Algorithm for Multi-Relational Discovery of Subgroups[END_REF] where, as the name suggests, the purpose is to find subgroups according to a property of interest, and association rule discovery [START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF][START_REF] Pasquier | Discovering Frequent Closed Itemsets for Association Rules[END_REF][START_REF] Borgelt | An Implementation of the FP-growth Algorithm[END_REF], that extracts useful co-occurrences in the data.

In this work, we focus on predictive rule learning, that we investigate in the wider context of interpretable transparent models. Indeed, as anticipated in the previous chapter, the concepts learned by rule-based systems come in the form of rules that can be easily understood by humans, making them a suitable choice for critical applications.

Outline of the chapter. In Section 2.2, we formally define the main assumptions and concepts used to describe the rule learning task: we fix some notational conventions in terms of input data and rule representation. In Section 2.3, we present a unified view of the rule learning process that consists of three main steps: i) feature construction, ii) rule induction, and iii) hypothesis construction. The rule construction step necessarily implies rule evaluation, briefly reviewed in Section 2.3.3. In Section 2.3.5, we also report some popular techniques applied to avoid overfitting and obtain more general rules. Section 2.4 concludes the chapter with a concise but complete and critic view of the most popular and impacting rule-based methods. This analysis allows us to bring to light some of the most recurring problems in the field and acts as a bridge to the next chapter, where we actually propose our solution to these issues.

Problem Definition

Predictive rule learning can be defined, informally, as the task of learning rules from a training dataset with the goal of classifying new samples according to a given target.

Input samples in the training dataset consist of a set of feature values and a class label.

In the easiest settings, when a sample satisfies all the conditions of a rule, it is classified according to the class of that rule. Although the definition above is intuitive, it neglects important constraints for the learning task that are generally known as language bias of the learning problem: i) the data description language defining the input data format, and ii) the hypothesis description language describing the structure of the rules. Finally, a coverage function establishes the relation between data and hypothesis description language, allowing both to learn the relation between the features and the target, and to apply it to new data.

Data Description Language

The input data for the rule-based classifier consists of a set of records described by a set of features

F = {f 1 , • • • , f F } and a classification label c ∈ C. Then, each record x i
can be written in feature-value format as:

x i = (v 1i , . . . , v F i , c i )
, where v ji is the value that feature f j takes for the input record x i , and c i is the corresponding classification label. Input features can be either categorical or numerical. In order not to make things unnecessarily harder, we assume c ∈ {0, 1}. In Section 2.3.1, we will observe that the original features F are transformed, either implicitly or explicitly, into a binary set of features B: such binary features will be the building blocks of the learned rules.

Hypothesis Description Language

A rule learning model learns rules from feature-value datasets with the following form:

if condition 1 and . . . and condition L body

then target label head (2.1)
The condition part of the rule is called antecedent (or body), whereas the final part is called consequent or head. The antecedent consists of one or more Boolean conditions (or atoms) connected through the Boolean and operator. Each condition corresponds to a check on a particular property of the target class, expressed as a function of the input features: in the simplest formulation, rule conditions have the form f i op v, where v is a possible value for feature f i , and op is a comparison operator. For discrete features, op corresponds to the equality operator, while for numerical features it can be any operator among the following ones: =, =, <, >, ≤, ≥. Any ordinal relation can also be expressed in range format. One or more rules makes an hypothesis (or theory): in a rule set, all rules are equally important and are combined through the or operator; in a rule list (or decision list), on the contrary, rules are mutually-exclusive and can be seen as a list of if-elseif statements. If not specified, we refer to rule sets.

Coverage Function

A rule r covers a given sample if all its conditions are true for that sample. We indicate coverage with an upper hat and non-coverage with an upper bar. More precisely, if we denote by P a set of positive samples and N a set of negative samples, then P(r) and N (r) represent the set of positive and negative samples covered by rule r, respectively; 

Predictive Rule Learning

At this point, we can finally give a more formal definition of predictive rule learning.

Definition 2.2.1. Given a data description language, a hypothesis description language, a target class, a coverage function and a set of positive and negative samples according to the target class, predictive rule learning aims at finding a hypothesis (or theory) R in the hypothesis description language that describes the target class.

Completeness and Consistency. The target class is also known as target concept.

In ideal situations, without noise and errors, where positive and negative samples do not overlap, it is possible to learn a hypothesis, given a proper hypothesis description language, that is complete and consistent with the target concept (refer to Figure 2.1).

Definition 2.2.2. A hypothesis describing a target concept is: complete if it assigns the target class label to all the samples belonging to the target concept; consistent if it does not assign the target class label to samples that do not belong to the target class.

It is clear that, in realistic scenarios with noisy data and overlapping concepts, completeness and consistency are not only impossible to obtain, but also undesirable, as they would easily lead to overfitting. Even in the absence of noise, with perfectly separable samples according to the target concept, the chosen hypothesis description language might not allow to learn a complete and consistent set of rules. In practice, completeness and consistency are often relaxed and replaced by weaker conditions like partial coverage of the target samples, predictive accuracy, or other metrics.

Dealing with multiple classes. In the definitions above, we implicitly assumed to deal with binary classification problems, where the positive class is the target concept.

Therefore, learning a hypothesis for the target class is sufficient to fully characterize the non-target class, too. When we deal with more than two classes/concepts, it is possible to iteratively apply single concept learning to the different concepts, transforming the multiclass learning problem into multiple concept learning tasks. In this case, we might also need a strategy to manage conflicts, that is to decide the output class when different rules return different outputs.

Rule Learning Process

We present the rule learning process with a unified framework that allows us to analyze and compare most of the known rule-based methods. We split the rule learning process into three distinct steps:

• Feature Construction. The first step of any rule learning model is to transform the set of input attribute-value features in binary features. Some algorithms do this step implicitly, integrating it in the rule induction process; others have a separated feature construction operation before learning the rules.

• Rule Construction. This step, also known as rule induction or rule learning, establishes how single rules are learned. Each rule is typically induced for a specific target class or concept. Most of the rule learning methods learn the set of conditions by using heuristics, but smarter and more complex approaches are possible, of course. Rule construction inevitably involves rule evaluation.

• Hypothesis Construction. Multiple rules are usually needed to define a hypothesis. We can mainly choose to learn unordered rule sets or ordered rule lists (decision lists), each with their advantages and disadvantages.

In addition, many rule-based methods apply pruning techniques to fight overfitting and increase the generalization capabilities of the learned hypothesis. This can be considered either as a separate step after the hypothesis construction, or incorporated within the rule construction process. Predictive performance might be further improved by combining weak hypothesis with rule ensembles, often -but not always -sacrificing the interpretability of the final model.

Feature Construction

Any rule learning model performs, either explicitly [START_REF] Lavrač | Learning Nonrecursive Definitions of Relations with Linus[END_REF][START_REF] Lavrac | Inductive Logic Programming: Techniques and Applications[END_REF] or implicitly [START_REF] Clark | Induction in Noisy Domains[END_REF][START_REF] Cohen | Fast Effective Rule Induction[END_REF], a feature transformation operation to convert the original input features into binary features that are then used to build the antecedent of the rules. Binary features can be distinguished between propositional and relational features. f i op v, where f i ∈ F, op is a comparison operator, and v is a value in the domain of the input feature f i .

• Relational features. When a binary feature refers to multiple input features, we call it relational feature. We can have a simple comparison between two input features like f i op f j , or more complex conditions like g(f i , . . . , f j ), where g(•) can be any operation or transformation that returns true or false. In our work, we do not deal with relational features, but they can always be hand-crafted and included as additional binary features before rule induction, if feature construction and rule induction happen as separate steps.

From input to binary features. Constructing a good set of binary features is not an easy task: it is a domain dependent operation and might become computationally expensive, especially when most of the original features are numerical. We rely on covering tables to build binary features. A covering table (Figure 2.2) is a binary table where the original records are represented in terms of binary features.

In Algorithm 1, we report a simple algorithm [START_REF] Gamberger | Expert-Guided Subgroup Discovery: Methodology and Application[END_REF] to build propositional features for binary classification tasks. It can be shown that this algorithm generates a sufficiently reach binary feature set that allows to build a complete and consistent set of rules, if feasible (Fürnkranz et al., 2014, Section 4.4) the binary feature

f < v is built; f ≥ v otherwise. Algorithm 1 GenerateBinaryFeatures (D + , D -, F) B = ∅ for f ∈ F do V + = set of values of f appearing in the samples in D + V -= set of values of f appearing in the samples in D - if A is discrete then for v ∈ V + do B = B ∪ {f = v} for v ∈ V -do B = B ∪ {f = v} end if A is numerical then V = sort(V + ∪ V -) for i ∈ {1, • • • , |V| -1} do v = (v i + v i+1 )/2 if v i ∈ V + and v i+1 ∈ V -then B = B ∪ {f < v} if v i ∈ V -and v i+1 ∈ V + then B = B ∪ {f ≥ v} end end end return B
Missing values. By definition, covering tables contain true and false values only. However, the original features, especially in real datasets, may contain missing values too.

There are several strategies to deal with missing values. Here, we report the three main families: i) delete strategy: it removes all records containing at least one missing value with a consequent reduction of the training data; default value strategy: it replaces missing values with a default value that can be True, False or a special value; iii) guess value strategy: it replaces missing values either with the most common value (usually the mean or mode) or with the value predicted by a classifier separately trained for each feature (more complex strategies can eventually output a distribution of values). These approaches have all their advantages and disadvantages, whose discussion is out of the scope of this work. Multiple strategies can eventually be used together.

Rule Construction

The rule learning process is an optimization problem where the goal is to find the best rule(s) according to a given quality measure, by traversing a search space, also known as hypothesis space, made of all the possible rules [START_REF] Mitchell | Generalization as Search[END_REF].

In Algorithm 2, we summarize the main steps of a general algorithm to learn the best rule from a set of positive and negative training samples (D + , D -), characterized by a set of binary features B, according to a given quality measure computed within EvaluateRule. LearnBestRule starts with one or more candidate rules that are

Algorithm 2 LearnBestRule (D + , D -, B) r best = InitializeRule(D + , D -) h best = EvaluateRule(r best ) R = {r best } while R = ∅ do R cand = SelectCandidateRules(R, D + , D -) R = R \ R cand for r ∈ R cand do ρ(r) ∈ RefineRule(r, D + , D -) for r ∈ ρ(r) do if RuleStopCondition (r , D + , D -) then continue end h = EvaluateRule(r ) R = InsertSort(r , R) if h'>h' then h best = h r best = r end end end R = FilterRules(R, D + , D -) end return r best
stored in R, in ascending order according to the chosen quality metrics. At each iteration, a subset of the candidate rules is selected and slightly modified with a RefineRule operator that can, for example, add or remove conditions, or perform random operations.

Every time a rule is changed, it is evaluated and inserted into the sorted set R. Most of the algorithms also use a stop condition preventing the rule to be further modified.

Between consecutive operations, we can eventually apply FilterRules to reduce the size of R. At the end of the process, the best rule r best is returned.

The rule induction step of many rule-based models proposed in the literature can be described with Algorithm 2: they mainly differ in the implementation of the internal functions (in upper case). InitializeRule and RefineRule define the search strategy, SelectCandidateRules and FilterRules the search algorithm, and EvaluateRule characterizes the search heuristic; RuleStopCondition is usually used to avoid overfitting. We will analyze each of the following sub-modules in the next paragraphs.

Search Strategies. A search strategy defines how the search space is traversed to learn a new rule. Intuitively, we might start, for instance, with an empty rule, considered as the most general rule, and add conditions to make it more specific, such that it can cover as many positive samples and as few negative samples as possible. We might also follow the opposite strategy, that is to say to start from a very specific rule and make it more general. A more formal definition of these concepts is given below: Definition 2.3.1. Let r and r be two rules. If r covers all the samples covered by r , we say that r is more general than r and r is more specific than r .

We navigate the search space by applying the so called refinement operators, already encountered in the previous section. We can therefore implement different search strategies by using suitable rule initializers and refinement operators. Each of the following strategies has its own advantages and disadvantages that will be discussed in more detail in Section 2.4.1.

• Top-down strategy. Also known as general-to-specific strategy. InitializeRule returns one or more empty rules, whereas RefineRule implements a specialization operator. In the easiest case, the specialization operator adds a new condition to the antecedent, but more complex operations are possible. aq [START_REF] Michalski | The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains[END_REF], prism [START_REF] Cendrowska | PRISM: An Algorithm for Inducing Modular Rules[END_REF], cn2 [START_REF] Clark | The CN2 Induction Algorithm[END_REF], foil [START_REF] Quinlan | FOIL: A Midterm Report[END_REF], and ripper [START_REF] Cohen | Fast Effective Rule Induction[END_REF] are examples of widely used top-down learners.

• Bottom-up strategy. Also known as specific-to-general strategy. InitializeRule returns one or more randomly selected samples in the covering table (also called seed samples) belonging to the target label, whereas RefineRule implements a generalization operator. In the easiest case, the generalization operator removes a condition from the antecedent, but, again, more complex operations are possible.

Popular bottom-up learners are golem [START_REF] Muggleton | Efficient Induction of Logic Programs[END_REF]) and modlem [START_REF] Grzymala-Busse | Three discretization methods for rule induction[END_REF].

• Mixed strategy. Also known as bidirectional search. InitializeRule can return an empty rule, a seed sample, or a randomly generated rule. In other words, the rule induction process can start from any point of the search space. RefineRule can perform either a specialization or a generalization operation, or eventually both. Popular representatives of this strategy are jojo [START_REF] Fensel | Refinement of Rule Sets with JoJo[END_REF] and atris [START_REF] Mladenic | Combinatorial Optimization in Inductive Concept Learning[END_REF] Search Algorithms. A naive algorithm to implement LearnBestRule enumerates all possible rules, evaluates them, and returns the best solution according to a given evaluation measure. Although the ordering of the search space may allow to reduce the number of candidate rules and, consequently, the research time, exhaustive search algorithms are very inefficient: they might still be used when constrained to output rules with a small maximum rule length [START_REF] Rivest | Learning Decision Lists[END_REF]. That is why the vast majority of rule learning methods use heuristics, eventually with a randomness component, to prune the search space, aiming to find a trade-off between performance and simplicity, instead of learning the best rule ever. Several works [START_REF] Webb | Systematic Search for Categorical Attribute-Value Data-Driven Machine Learning[END_REF][START_REF] Quinlan | Oversearching and Layered Search in Empirical Learning[END_REF][START_REF] Janssen | A Re-Evaluation of the Over-Searching Phenomenon in Inductive Rule Learning[END_REF] verified that heuristic search, especially in datasets with noise, is less prone to overfitting and usually better than exhaustive search that suffers from the so called over-searching problem.

• Exhaustive search. Exhaustive search algorithms explore the whole search space to discover the best rule. In practice, they look for rules up to a given length and often employ stop conditions to prune the search space. There are three main approaches: best-first, ordered, and level-wise. Best-first approaches like progol [START_REF] Muggleton | Inverse entailment and Progol[END_REF] select the best candidate rule and try all possible refinements, without applying any FilterRules operator. Ordered approaches like opus [START_REF] Webb | OPUS: An Efficient Admissible Algorithm for Unordered Search[END_REF] assume a natural or artificial order in the search space (features are sorted according to their ability to discriminate the target concept) and traverse it by being sure to visit every rule once. Level-wise approaches like apriori [START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF]) generate all possible rules (feature sets) with a given feature length before considering the following length.

• Heuristic search. Hill-climbing is a popular method in this family: in Algorithm 2, only the output of the best refinement operator proceeds to the next iteration.

Although hill-climbing is highly efficient, it suffers from myopia. To overcome this problem, multiple refinement steps might be applied before selecting the best rule, like done in atris [START_REF] Mladenic | Combinatorial Optimization in Inductive Concept Learning[END_REF]. Other methods like aq [START_REF] Michalski | The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains[END_REF] and cn2 [START_REF] Clark | The CN2 Induction Algorithm[END_REF]) follow a beam search strategy, considering a beam of candidate solutions, instead of a single candidate, at each iteration.

• Stochastic search. In stochastic search algorithms, RefineRule is allowed to perform random operations that move the learning process in a completely different area of the search space. In this category, we find simulated annealing [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF]) and genetic algorithms-based [START_REF] Goldberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF] approaches.

Rule Evaluation

Rule evaluation metrics measure the quality of a rule and guide the rule learning process by selecting or discarding candidate rules. Intuitively, a good evaluation measure should prefer rules with high number of positive covered samples P (completeness) and negative uncovered samples N (consistency), as defined in Section 2.2. This is equivalent to minimizing N . Most widely used evaluation measures define a linear (or nonlinear) combination of P and N .

Measure

Formula

PositiveCoverage = P NegativeCoverage = N = N - N Sensitivity (Recall, TruePositiveRate) = P P = π Specificity (TrueNegativeRate) = N N = ν Support = P P +N Coverage = P + N P +N CoverageDifference = P - N Accuracy = P + N P +N RateDifference = π - ν LinearCost = a • P -b • N RelativeLinearCost = a • P P -b • N N = a • π -b • ν Precision (Confidence) = P P + N Exclusiveness = π π+ν InformationContent = -log P P + N Entropy -( P P + N • log P P + N + N P + N • log N P + N ) FMeasure = (β 2 +1)•Precision•Recall β 2 •Precision+Recall
Table 2.1: Popular predictive performance rule evaluation metrics.

Predictive performance metrics. Given a dataset with P positive and N negative samples, predictive performance metrics are defined in terms of P and N . The goal is to maximize P and N . In Table 2.1, we report some of the most known and used metrics.

A full review can be found in [START_REF] Fürnkranz | Foundations of Rule Learning[END_REF]. We can distinguish among:

• Elementary metrics. They are defined in terms of either P or N (or equivalently N ). In this list, we find positive coverage, negative coverage, their corresponding ratiossensitivity and specificity, also known in association rule discovery as positive and negative local support respectively -and support. Support and sensitivity are equivalent, they only differ in the normalization constant.

• Linear metrics. A good evaluation measure should also care about the complexity of a rule, often defined in terms of the number of conditions in its antecedent (rule length), such that short rules are preferred. In practice, we aim at finding rules with a good trade-off between predictive performance and complexity.

Hypothesis Construction

In Section 2.2, we defined a rule as a set of Boolean conditions connected through the Boolean and operator, also known as conjunction. It is clear that an hypothesis description language with a single rule is not expressive enough to fully characterize most of the target concepts, even the easiest ones (Fürnkranz et al., 2014, Section 8.1).

A way to increase the power of the hypothesis language is to allow disjunctions. In other words, we can describe a target concept with a disjunction of conjunction also called disjunctive normal form (dnf). A dnf is equivalent to a rule set where rules are connected through the Boolean or operator.

In a binary classification problem, a dnf characterizes the target positive concept. A sample that is not covered by any rule is automatically classified as negative. It means that we can negate the dnf to obtain an equivalent Boolean representation for the negative class. By applying the De Morgan's laws (look example in Figure 2.3), the dnf becomes a conjuctive normal form (cnf) where each term and Boolean operator is negated. Some algorithms like De [START_REF] Raedt | Interactive Theory Revision: An Inductive Logic Programming Approach[END_REF] can learn both dnf and cnf theories.

As an alternative to rule sets, it is also possible to learn rule lists (or decision lists), where consecutive rules are connected with an if-elseif-. . . -elseif-else structure. Unlike rule

Algorithm 3 LearnRuleSet (D + , D -, B) R = ∅ D cur + , D cur -= D + , D - while D cur + = ∅ do r = LearnBestRule(D cur + , D cur -, B) if TheoryStopCondition (R, D + , D -) then break end R = R ∪ r D cur + , D cur -= UpdateData(R, D cur + , D cur -) end R = PostProcessRules(R, D + , D -) return R
sets, where each rule is applied independently from the others, in a decision list every rule depends on the previous ones. For this reason, decision lists are less interpretable than rule sets [START_REF] Lakkaraju | Interpretable Decision Sets: A Joint Framework for Description and Prediction[END_REF]. In this work, we will focus on rule sets.

The separate-and-conquer algorithm. Looking at a dnf as a set of independent rules not only increases the interpretability of the hypothesis language, but it also simplifies the learning process by transforming rule learning in the task of learning multiple rules (conjunctions) instead of a unique more complex rule. The simplest and most popular algorithm to learn a set of dnf rules is described in Algorithm 3: it is known as separate-and-conquer or covering algorithm.

While there are positive samples to be covered, LearnRuleSet runs the LearnBe-stRule procedure, whose implementation is widely discussed in Section 2.3.2, to learn the best rule given the current set of positive and negative samples D + , D -. The new rule is included in the rule set and the set of positive and negative samples is updated by the UpdateData procedure. UpdateData can update either D + or D -, or both, by removing the positive and negative records covered by r, or by assigning a different weight to the covered samples such that covered samples will have a smaller impact on the subsequent rules (W. [START_REF] Cohen | A Simple, Fast, and Effective Rule Learner[END_REF][START_REF] Gamberger | Confirmation rule sets[END_REF][START_REF] Weiss | Lightweight Rule Induction[END_REF]. The algorithm can be eventually interrupted by a stop criterion, mainly to avoid overfitting. In many practical implementations, the final rule set is post-processed by applying some filtering and/or rule refinement before being returned.

Learning directly a rule set. Instead of learning multiple rules and combining them into a single dnf expression, it is also possible to learn directly a rule set.

If we extend the search space to the whole set of possible rule sets, we can in principle design a general framework to discover dnf formulas. Unfortunately, such space is much bigger than the rule space and additional constrains on both rule and rule set size must be fixed to make the rule set learning problem tractable [START_REF] Smyth | An Information Theoretic Approach to Rule Induction from Databases[END_REF][START_REF] Rijnbeek | Finding a Short and Accurate Decision Rule in Disjunctive Normal Form by Exhaustive Search[END_REF][START_REF] Su | Learning Sparse Two-Level Boolean Rules[END_REF][START_REF] Dash | Boolean Decision Rules via Column Generation[END_REF]. Alternatively, other methods [START_REF] Rückert | Stochastic Local Search in K-Term DNF Learning[END_REF][START_REF] Rückert | An Experimental Evaluation of Simplicity in Rule Learning[END_REF] resort to stochastic search to deal with the computational complexity of the search problem.

Another family of approaches comes from the instance learning world: all the samples belonging to the target class can be considered as single rules combined into an initial rule set that is consecutively generalized. Examples of these methods are near [START_REF] Salzberg | A Nearest Hyperrectangle Learning Method[END_REF], rise [START_REF] Domingos | Unifying Instance-Based and Rule-Based Induction[END_REF], bracid [START_REF] Napierala | BRACID: A Comprehensive Approach to Learning Rules from Imbalanced Data[END_REF].

The easiest approach consists in mapping a decision tree to a rule set. Indeed, every path from the root to the leaves of the tree can be seen as a conjunction and converted to a rule. Depending on the depth of the tree, a simple conversion would probably lead to complex and unreadable rules. That is why specific algorithms (Quinlan, 1987a;[START_REF] Chiang | Rules Generation from the Decision Tree[END_REF] have been designed to simplify the extracted rules by applying a post-processing step: the resulting rule set is not only simpler but also more accurate then the original tree.

From local patterns to global rule sets. The antecedent of a rule is, by definition, a Boolean expression that captures recurring patterns in the data and contains a portion of the knowledge encoded within samples. We can use such local patterns as aggregate Boolean features and use them to learn a global model. This is what lego approaches [START_REF] Knobbe | From Local Patterns to Global Models: The LeGo Approach to Data Mining[END_REF][START_REF] Bringmann | Pattern-Based Classification: A Unifying Perspective[END_REF][START_REF] Duivesteijn | Multi-label LeGo -Enhancing Multi-label Classifiers with Local Patterns[END_REF] do: as the name suggests, (a subset of) the patterns are put together to build more complex concepts.

In associative classification methods [START_REF] Liu | Integrating Classification and Association Rule Mining[END_REF][START_REF] Liu | Improving an Association Rule Based Classifier[END_REF][START_REF] Bayardo | Brute-Force Mining of High-Confidence Classification Rules[END_REF][START_REF] Jovanoski | Classification Rule Learning with APRIORI-C[END_REF][START_REF] Li | CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules[END_REF][START_REF] Yin | CPAR: Classification Based on Predictive Association Rules[END_REF], local patterns are discovered via standard data mining techniques like association rule discovery, that are usually combined according to some heuristics. In recent years, there has been a new explosion of lego approaches, with a more involved rule selection phase, often defining an integer optimization problem, eventually relaxed, to learn the final global model [START_REF] Chang | An Integer Optimization Approach to Associative Classification[END_REF]Wang et al., 2015;Wang and Rudin, 2015;[START_REF] Lakkaraju | Interpretable Decision Sets: A Joint Framework for Description and Prediction[END_REF][START_REF] Wang | A Bayesian Framework for Learning Rule Sets for Interpretable Classification[END_REF][START_REF] Yang | Scalable Bayesian Rule Lists[END_REF][START_REF] Chen | An Optimization Approach to Learning Falling Rule Lists[END_REF][START_REF] Angelino | Learning Certifiably Optimal Rule Lists for Categorical Data[END_REF].

Overfitting and Pruning

All machine learning methods without exceptions face overfitting issues, approximating the training set too closely and loosing their ability to generalize to unseen data. This happens for several reasons: the chosen model might be too complex for the problem at hand, the training set too small, not representative enough of the true data distribution,

Algorithm 4 PostPruning (D, split_threshold) D , D = SplitData(D, split_threshold) R = LearnTheory(D ) R = PruneTheory(D ) return R
or we might simply have a noisy dataset [START_REF] Hawkins | The Problem of Overfitting[END_REF].

Rule learning commonly solve overfitting by applying pre-pruning and post-pruning techniques: pre-pruning decides when a rule should not be specialized anymore during the rule-induction process, post-pruning simplifies the final set of rules at the end of the rule-induction process in order to increase their generalization power. Nobody prevents us from using both techniques.

Pre-pruning. Pre-pruning is implemented via filtering/stopping criteria. We can distinguish between rule stopping criteria and theory stopping criteria.

• Rule stopping criteria interrupt the specialization of a given rule (or remove the rule) when some conditions are satisfied. They are implemented within the RuleStopCondition method in Algorithm 2. Such conditions are often based on one or more coverage/precision constraints: we might, for example, decide to remove a rule that does not cover enough target samples, a rule whose accuracy is below a given threshold [START_REF] Pompe | SFOIL: Stochastic Approach to Inductive Logic Programming[END_REF], or with too many conditions.

• Theory stopping criteria interrupt the rule learning process without covering all possible target samples, preventing the discovery of a complete theory when some conditions are satisfied. They are implemented within the TheoryStopCondition method in Algorithm 3. In foil [START_REF] Quinlan | FOIL: A Midterm Report[END_REF], for example, a theory is interrupted when the best rule is below a certain threshold.

Post-pruning. Post-pruning techniques consider overfitting as an independent problem. They are widely used in decision tree algorithms [START_REF] Breiman | Classification and Regression Trees[END_REF][START_REF] Niblett | Learning Decision Rules in Noisy Domains[END_REF]Quinlan, 1987b), but they are also popular in rule learning [START_REF] Michalski | The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains[END_REF][START_REF] Brunk | An Investigation of Noise-Tolerant Relational Concept Learning Algorithms[END_REF][START_REF] Bergadano | Learning Two-Tiered Descriptions of Flexible Concepts: The POSEIDON System[END_REF]. Most of the proposals in the literature can be seen as a generalization of Algorithm 4 [START_REF] Pagallo | Boolean Feature Discovery in Empirical Learning[END_REF], where rules are first learned for a given subset of data and then generalized/filtered on a separate subset of data. Generalizing an existing theory is not easy: it involves pruning operators that remove conditions from one or more rules to increase the performance (according to a selected measure) of the whole rule set. This process is more computationally expensive than any pre-pruning technique, but it also ensures better performance. Depending on the implementation of PruneTheory, we might have reduced error pruning [START_REF] Brunk | An Investigation of Noise-Tolerant Relational Concept Learning Algorithms[END_REF], reduced error regrowth [START_REF] Cohen | Efficient Pruning Methods for Separate-and-Conquer Rule Learning Systems[END_REF], and so on.

Other techniques to fight overfitting. Incremental reduced error pruning [START_REF] Fürnkranz | Incremental Reduced Error Pruning[END_REF] integrates pre and post-pruning into a unique strategy that is both effective and efficient, compensating the disadvantages of the individual techniques. Every time a new rule is learned, it is immediately pruned. This can be seen as post-pruning from the rule perspective, and pre-pruning at the theory level.

Alternatively to pruning, rule set can be post-processed by relearning individual rules [START_REF] Cohen | Fast Effective Rule Induction[END_REF] or selecting a subset of the rules after having ranked them. In ensemble methods, it might also be useful to re-weight rules.

Discussion

In the previous sections we briefly summarized the main characteristics of rule-based methods, identifying several building blocks that, applied one after the other, produce a theory. Such theory consists of a set (or list) of rules that are used to classify new samples; theories with a limited number of short rules are considered to be interpretable and reflect the internal "reasoning" of the model in a compact way.

Unfortunately, not all rule-based methods are interpretable. Some approaches might be more interpretable than others but, in general, interpretability does not come for free: it has to be imposed during and/or after the rule learning process. Moreover, there are other factors to consider when learning a theory. As already noted in Section 2.3.4, rule set theories are known as disjunctions of conjunctions [START_REF] Hauser | Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets[END_REF]Wang et al., 2015), where each disjunct represents a rule. We can distinguish between small and large disjuncts depending on the number of correctly classified training samples.

In particular, small disjuncts are problematic since they have a much higher error rate than the other disjuncts, with a direct impact on the accuracy of the learned theory [START_REF] Weiss | A Quantitative Study of Small Disjuncts[END_REF]. It has also been observed that rare cases (samples that occur relatively infrequently in the training data) and imbalanced data (where the classes are not represented equally) tend to cause small disjuncts [START_REF] Weiss | Learning with Rare Cases and Small Disjuncts[END_REF][START_REF] Jo | Class Imbalances versus Small Disjuncts[END_REF]. When this happens, data fragmentation and class overlaps, that are quite common in most of the datasets, become more problematic, especially when they involve minority classes and rare samples [START_REF] Napierala | BRACID: A Comprehensive Approach to Learning Rules from Imbalanced Data[END_REF].

We will now proceed with a critical review of the field, focusing on the topics highlighted above, identifying open problems and interesting research directions.

A Critical Review of Rule Learning Methods

In rule learning, interpretability has not always been at the core of the learning process.

Data mining solutions. Many seminal rule learning methods come from the data mining community: cba and its extensions [START_REF] Liu | Integrating Classification and Association Rule Mining[END_REF][START_REF] Liu | Improving an Association Rule Based Classifier[END_REF], apriori-c [START_REF] Jovanoski | Classification Rule Learning with APRIORI-C[END_REF], cpar [START_REF] Yin | CPAR: Classification Based on Predictive Association Rules[END_REF] and cmar [START_REF] Li | CMAR: Accurate and Efficient Classification Based on Multiple Class-Association Rules[END_REF], for example, use mining to identify class association rules and then choose a subset of them according to a ranking to implement the classifier. In practice, these methods suffer from a huge number of rules, which negatively impacts interpretability.

Top-down vs. bottom-up learners. Another family of approaches includes methods like aq [START_REF] Michalski | The Multi-Purpose Incremental Learning System AQ15 and Its Testing Application to Three Medical Domains[END_REF], prism [START_REF] Cendrowska | PRISM: An Algorithm for Inducing Modular Rules[END_REF], cn2 [START_REF] Clark | The CN2 Induction Algorithm[END_REF], foil [START_REF] Quinlan | FOIL: A Midterm Report[END_REF], and ripper [START_REF] Cohen | Fast Effective Rule Induction[END_REF], whereby top-down learners build rules by greedily adding the condition that best explains the remaining data, according to some criteria. Top-down learners are well suited for noisy data and are known to find general rules [START_REF] Fürnkranz | Foundations of Rule Learning[END_REF], Section 2.5.2). They work well for the so called large disjuncts, but have difficulties to identify small-disjuncts and rare examples [START_REF] Holte | Concept Learning and the Problem of Small Disjuncts[END_REF], which are quite common in imbalanced settings.

In contrast, bottom-up learners like golem [START_REF] Muggleton | Efficient Induction of Logic Programs[END_REF] Hybrid approaches. Hybrid approaches such as near [START_REF] Salzberg | A Nearest Hyperrectangle Learning Method[END_REF], rise [START_REF] Domingos | Unifying Instance-Based and Rule-Based Induction[END_REF], and bracid [START_REF] Napierala | BRACID: A Comprehensive Approach to Learning Rules from Imbalanced Data[END_REF] combine rule learning and instance-based learning in a hybrid classification strategy: input samples are used to learn a set of rules, but every training sample is also seen as a maximally-specific rule that covers by definition only that sample. Thus, they achieve better generalization, also in imbalanced settings, but still generate many rules, penalizing interpretability.

Alternative approaches. Issues caused by small disjuncts and rare examples have been tackled acting at data-level -mainly doing data augmentation -and algorithmiclevel, relying on more appropriate rule evaluation measures to reduce the maximumgenerality bias, modifying the classification [START_REF] Grzymala-Busse | An Approach to Imbalanced Data Sets Based on Changing Rule Strength[END_REF] or selection [START_REF] Nguyen | An Imbalanced Data Rule Learner[END_REF] strategy to give more strength to minority rules, preferring rule ensembles with special focus on minority classes (classes with few samples) [START_REF] Blaszczynski | Integrating Selective Preprocessing of Imbalanced Data with Ivotes Ensemble[END_REF]. Unfortunately, none of the previous methods can be considered interpretable.

Chapter 2. Rule Learning 40 Modern solutions. Recent work focuses on marrying competitive predictive accuracy with high interpretability. As noted in the last paragraph of Section 2.3.4, a popular approach is to use the output of an association rule discovery algorithm, like fpgrowth [START_REF] Borgelt | An Implementation of the FP-growth Algorithm[END_REF] or apriori [START_REF] Agrawal | Fast Algorithms for Mining Association Rules in Large Databases[END_REF], and combine the discovered patterns in a small and compact set (or list) of rules with high predictive performance (lego approach). The combination process can be formalized either as an integer optimization problem or solved heuristically, explicitly encoding interpretability needs in the optimization function. Such approaches have been successfully applied to rule lists [START_REF] Klivans | Toward Attribute Efficient Learning of Decision Lists and Parities[END_REF][START_REF] Chang | An Integer Optimization Approach to Associative Classification[END_REF]Wang and Rudin, 2015;[START_REF] Yang | Scalable Bayesian Rule Lists[END_REF][START_REF] Chen | An Optimization Approach to Learning Falling Rule Lists[END_REF][START_REF] Angelino | Learning Certifiably Optimal Rule Lists for Categorical Data[END_REF] and rule sets (Wang et al., 2015;[START_REF] Lakkaraju | Interpretable Decision Sets: A Joint Framework for Description and Prediction[END_REF][START_REF] Wang | A Bayesian Framework for Learning Rule Sets for Interpretable Classification[END_REF]. Alternatively, rules can be directly learned from the data through an integer optimization framework [START_REF] Hauser | Disjunctions of Conjunctions, Cognitive Simplicity, and Consideration Sets[END_REF][START_REF] Malioutov | Exact Rule Learning via Boolean Compressed Sensing[END_REF][START_REF] Goh | Box Drawings for Learning with Imbalanced Data[END_REF][START_REF] Su | Learning Sparse Two-Level Boolean Rules[END_REF][START_REF] Dash | Boolean Decision Rules via Column Generation[END_REF].

Challenges and Opportunities

Despite the high volume of work on rule learning, many historical problems are still challenging to solve and new ones have arisen due to interpretability constraints.

In particular, both heuristic and integer-optimization based lego approaches underestimate the complexity and importance of finding good candidate rules (or patterns), and become expensive when the input dimensionality increases, unless some constraints are imposed on the size and support of the rules. Although such constraints favour interpretability, they have a negative impact on the predictive performance of the model.

Additionally, these methods do not explicitly consider class imbalance issues: i) they take the pattern discovery process for granted and have no guarantees that the discovered patterns will be useful to generate rules that characterize the minority classes. Our novel solution to these historical problems will be proposed in the next chapter.

Other issues emerge when rule-learning models process streams of data that change with time. In this case, rules are continuously learned, removed, adapted according to several criteria as done in stagger [START_REF] Schlimmer | Incremental Learning from Noisy Data[END_REF], flora [START_REF] Widmer | Learning in the Presence of Concept Drift and Hidden Contexts[END_REF] and more modern systems such as rudolf [START_REF] Milo | Interactive Rule Refinement for Fraud Detection[END_REF] and goldrush [START_REF] Jarovsky | GOLDRUSH: Rule Sharing System for Fraud Detection[END_REF]. Discussing in detail about incremental rule learning is out of the scope of this work, but we think it might become a trending topic in the next few years.
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LEARNING INTERPRETABLE BOOLEAN RULE ENSEMBLES

For a long time, it has been thought that rule learning, and in general interpretable models are less accurate than the so called black-box models: "interpretability comes at the cost of predictive performance" is a recurrent sentence in many publications.

While this is actually true for some fields like computer vision, where black-box models (especially neural networks) attain overwhelming performance, even superior to humans, the difference in performance might be negligible, if not absent, for many other data types, like structured data. However, rule learners have many critical issues too, ranging from the NP-hard computational complexity to the ability of managing minority target classes. We present libre, a novel ensemble method to learn an interpretable rule-based classifier that overcomes the aforementioned limitations. libre efficiently strikes the right balance between prediction accuracy, which is competitive with black-box methods, and interpretability, which is often superior to alternative methods from the literature.

Overview

We can refine the rule learning concept defined in the previous chapter by putting interpretability as an explicit constraint. According to this view, the goal of rule learning is to learn a set of rules from the training set that i) effectively predicts a given target, ii) generalizes to unseen data, iii) is interpretable, i.e., it consists in a small number of short rules. The first objective is particularly difficult to meet in presence of imbalanced data.

In this case, most rule learners (and in general many machine learning methods) fail at characterizing the minority class, that is usually of primary interest. As anticipated in Section 2.4, imbalanced data often leads to additional issues that hinder the application of rule-based methods [START_REF] Weiss | Mining with Rarity: A Unifying Framework[END_REF]: data fragmentation (especially in case of small-disjuncts [START_REF] Holte | Concept Learning and the Problem of Small Disjuncts[END_REF], overlaps between imbalanced classes, and presence of rare examples. The challenge is to satisfy all these requirements at the same time.

The key idea in our work is to exploit the known advantages of bottom-up learners in imbalanced settings, and improve their generalization and noise-tolerance through an ensembling technique that does not sacrifice interpretability. As a result, we produce a rule-based method that is (i) versatile and effective in dealing with both balanced and imbalanced data, (ii) interpretable, as it produces small and compact rule sets, and (iii) scalable to big datasets.

Outline of the chapter. In Section 3.2, we present a real, industrial problem that motivated us to opt for rule-based methods first, and to design then a new proposal that could overcome the practical limitations we experienced with state-of-the-art approaches.

In Section 3.3, we introduce background knowledge and definitions about Boolean functions, monotone Boolean functions and their main properties. This allows us to redefine the binary classification problem as the problem of finding a boundary within a "special" binary lattice space, a partially ordered set. Section 3.4 is the core of the chapter: first, we describe the algorithm that implements a bottom-up learner, inspired by [START_REF] Muselli | Reconstructing positive Boolean functions with shadow clustering[END_REF], but with a dramatically lower computational complexity.

Such algorithm, based on monotone Boolean function synthesis, is designed to learn a small number of compact binary strings, that are naturally mapped to Boolean rules.

Then, we analyze the properties of this baseline algorithm, and design a new algorithm that overcomes its limitations. We finally propose libre, a novel ensemble method that, unlike other ensemble proposals in the literature (W. [START_REF] Cohen | A Simple, Fast, and Effective Rule Learner[END_REF][START_REF] Friedman | Predictive Learning via Rule Ensembles[END_REF][START_REF] Dembczyński | ENDER: A Statistical Framework for Boosting Decision Rules[END_REF], is interpretable. Each weak learner uses our baseline, and candidate rules are combined with a simple union, to obtain a final interpretable rule set. The idea of ensembling is crucial to improve generalization, while using bottom-up weak learners allows to generate meaningful rules even when the target class has few available samples. In Section 3.5, we perform an extensive experimental validation indicating that libre scales to large datasets, has competitive predictive performance compared to state-of-the-art approaches (even black-box models), and produces few and simple rules, often outperforming existing interpretable models. Section 3.6 concludes the chapter with a critical analysis of libre, and in general rule-base methods, and some interesting future work.

A real industrial use case

The rule-based model we are going to detail in the next sections is the result of a real need we had while facing an industrial use case. Describing this project and its requirements, highlighting the challenges we faced, is functional to our discussion.

Context and objectives

sap is a software corporation that develops enterprise software to manage business operations and customer relations. The project we were involved in is placed within the broad context of data-driven predictive maintenance of it services, and, in particular, in the context of one of the major offering of sap services, the in-memory storage solution called sap hana.

General context. sap periodically collects relevant information about the monitored sap hana database systems and stores them into a data lake. Collected data is heterogeneous in nature: it includes time series information about services and hosts, such as cpu utilization, ram availability, disk and network utilization, database and table sizes; tabular data regarding configuration settings and parameters; textual data containing notes from the sap personnel dedicated to predictive maintenance and optimization of services, and so on. sap provides a diagnostic service to his sap hana users. Such service, called Early-Watch Alert (ewa), monitors the database systems, processes their data, and produces one report per system. Each report can be interpreted as the status of the system that, for the sake of simplicity, can be summarized as "anomalous" or "normal". sap engineers analyze these reports to identify and solve eventual problems.

Objectives and requirements. ewa is a monolithic, centralized anomaly detection system, that encodes years of sap knowledge about database services maintenance into a huge piece of code, written in abap, a sap proprietary language. Modifications to ewa, mostly related to the creation and or updated of checks to detect new anomalies, imply a manual intervention on the existing code. Clearly, the more changes you do, the higher is the risk of generating bugs. Moreover, ewa is unique for every customer and system. This is a consequence of the limitations above: in practice, it is not feasible to write customer-specific code snippets, as it would not scale to the thousands of sap customers.

sap aims at substituting ewa, with a machine learning-based ewa, trained to learn the precious knowledge encoded into the monitoring data and reports. Machine learning systems have the advantage of automatically learning from data; it also becomes possible to have separate models for separate customers. Furthermore, machine learning models can be designed to adapt to data changes, reducing the effort of manual intervention in the system (although some human operations are still required).

Additionally, sap requires for the machine learning model to be understandable by the personnel. Indeed, ewa is an important component of the maintenance life cycle: it should detect the presence of anomalies, but also help the personnel to figure out why anomalies have been detected, simplifying the search for a solution.
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Proposed solution

This sap project entails evident challenges. The first issue is related to input data: reporting the details is out of the scope of this thesis, although we made a great effort to structure the huge amount of data into a format that could be used by different machine learning models. Preliminary data analysis highlighted the second, expected problem: anomalies represented only a small percentage of data. Last, but not least, interpretability was an explicit and indispensable requirement.

After several meetings with the sap personnel, rule-based models emerged as a possible practical solution: rules are intuitive to understand and can be seen as a preliminary explanation of the reasons behind anomalies. Unfortunately, the results of several rulebased and transparent state-of-the-art models were unsatisfactory, both in terms of interpretability and predictive performance (especially compared to black-box models).

Further analysis highlighted criticalities already known in the literature: top-down methods were usually able to learn general and compact rules, but faced issues to cover minority subgroups of anomalies; bottom-up methods were having the opposite problem.

We report experimental results, later in the chapter, in Section 3.5.

Having found no satisfactory answers in the existing literature led us to design a new method that could provide high predictive performance, be interpretable and applicable to strongly imbalanced settings.

Preliminaries

Our methodology targets binary classification, although it can be extended to multi-class settings. For the sake of building interpretable models, we focus on Boolean functions for the mapping between inputs and labels, which are amenable to a simple interpretation.

Boolean functions can be used as a model for binary classifiers f (x) = y, where x ∈ {0, 1} d , y ∈ {0, 1}. The function f induces a separation of {0, 1} d in two subsets N and P, where N = {x ∈ {0, 1} d : f (x) = 0} and P = {x ∈ {0, 1} d : f (x) = 1}. We call such subsets positive and negative subsets, respectively. Clearly, N ∪ P = {0, 1} d corresponds to the full truth table of the classification problem. We restrict the input space {0, 1} d to be a partially ordered set (poset): a Boolean lattice on which we impose a partial ordering relation, as defined next.

Definition 3.3.1. Let , , ¬ be the and, or, and not logic operators respectively. A Boolean lattice is a 5 tuple ({0, 1} d , , , 0, 1). The lack of the ¬ operator implies that a lattice is not a Boolean algebra. Let ≤ be a partial order relation such that

x ≤ x ⇐⇒ x x = x . Then, ({0, 1} d , ≤) is a poset, a set on which a partial order relation has been imposed.

The theory of Boolean algebra ensures that the class B d of Boolean functions f : {0, 1} d → {0, 1} can be realized in terms of , , and ¬. Nevertheless, if {0, 1} d is a Boolean lattice, ¬ is not allowed and only a subset M d of B d can be realized. The class M d coincides with the collection of monotone Boolean functions. The lack of the ¬ operator may limit the family of functions we can reconstruct. However, by applying a suitable transformation of the input space, we can enforce the monotonicity constraint [START_REF] Muselli | Approximation Properties of Positive Boolean Functions[END_REF]. Then, it is possible to find a function f ∈ M d that approximates f ∈ B d arbitrarily well.

Definition 3.3.2. Let (X , ≤) and (Y, ≤) be two posets. Then, f : X → Y is called monotone if x ≤ x implies f (x) ≤ f (x ). Definition 3.3.3. Given x ∈ {0, 1} d , let I m be the set of the first m positive integers {1, . . . , m}. T (x) = {i ∈ I m : x(i) = 1}. The inverse of T is denoted as t(T (x, m)) = x.
Theorem 1. [START_REF] Wegener | The Complexity of Boolean Functions[END_REF] Let f ∈ M d be a monotone Boolean function. Then, it exists a partially ordered set A such that f can be written as: f (x) = a∈A j∈T (a) x(j).

The monotone Boolean function f is specified in disjunctive normal form (dnf), and is univocally determined by the set A and its elements. Thus, given N and P, learning f amounts to finding a particular set of lattice elements A defining the boundary In other words, a boundary point is a lattice element that is smaller than or equal to at least one positive element in P, but larger than all negative elements N . In practical applications, however, we usually have access to a subset of the whole space, a training set of positive and negative samples, D + ⊆ P and D -⊆ N respectively. The goal of the algorithms we present next is to approximate the boundary A, given D + and D -. We show that boundary points, and binary samples in general, naturally translate into classification rules. Indeed, let R be the set of rules corresponding to the discovered boundary. R(•)

represents a binary classifier: R(x) = {1 if ∃r ∈ R : r(x) = 1; 0 otherwise}. Then, x is classified as positive if there is at least one rule in R that is true for it.

Boolean Rule Sets

We presented a theoretical framework that casts binary classification as the problem of finding the boundary points for D + ⊆ P and D -⊆ N . Next, we use such framework to design our interpretable classifier.

In Section 3.4.1, we first clarify some required assumptions on the input data and how to satisfy them. In Section 3.4.2, we describe a base, bottom-up method -which will be used as a weak learner later -that illustrates how to move inside the Boolean lattice to find boundary points. However, the base method does not scale to large datasets, and tends to overfit. Thus, in Section 3.4.3, we present libre, an ensemble classifier that overcomes such limitations by running on randomly selected subset of features. libre is interpretable as it combines the output of an ensemble of weak learners with a simple union operation. Finally, in Section 3.4.4, we illustrate a procedure to select a subset of the generated points -the ones with the best predictive performance -and reduce the complexity of the boundary.

Assumptions on the Input Data

We assume that the input dataset is a poset and that the function we want to reconstruct is monotone. This is ensured by applying inverse-one-hot-encoding on discretized features, and concatenating the resulting binary features, as done in [START_REF] Muselli | Switching Neural Networks: A New Connectionist Model for Classification[END_REF]. Given 

The Base, Bottom-up Method

We develop an approximate algorithm that learns the set A for (D + , D -). The algorithm strives to find lattice elements such that both |A| and |T (a)| , ∀a ∈ A are small, translating in a small number of sparse boundary points (short rules).

Algorithm Design. In order to proceed with the presentation of our algorithm, we need the following definitions: If we think about binary samples in terms of rules -the process to translate binary samples into rules is explained at the end of this section -a positive sample can be seen as a maximally-specific rule that covers by definition only that particular sample.

Flipping-off bits is nothing more than generalizing that rule. Our goal is to do as many flip-off operations as possible before running into a conflict.

Retrieving the complete set of boundary points requires an exhaustive search, which is expensive, restricting its application to small, low-dimensional datasets. It is easy to show that the computational complexity of the exhaustive approach is O(n 2 2 d ), where n is the number of distinct training samples, and d is the dimension of the Boolean lattice. Efficient procedures to synthetize monotone boolean functions exist in interactive learning environments [START_REF] Kovalerchuk | Interactive Learning of Monotone Boolean Functions[END_REF][START_REF] Torvik | Minimizing the Average Query Complexity of Learning Monotone Boolean Functions[END_REF], where we are allowed to access an oracle to which we can present specific samples and get the correct label. Unfortunately, this is not the case. In this work, we propose an approximate heuristic for the FindBoundaryPoint procedure.

Finding Boundary Points. The key idea is to find a subset of all possible boundary points, steering their selection through a measure of their quality. A boundary point is considered to be "good" if it contributes to decreasing the complexity of the resulting boundary set, which is measured in terms of its cardinality |A| and the total number of positive bits a∈A |T (a)|. In practice, |A| can be decreased by choosing boundary points that cover the largest number of elements in S. To do this, we iteratively select the best candidate index i ∈ I according to a measure of potential coverage. Decreasing a∈A |T (a)| implies finding boundary points with low number of 1s.

Before proceeding, we define a notion of distance between lattice elements: Definition 3.4.4. Given x, x ∈ {0, 1} d , the distance d l (x, x ) between x and x is defined as:

d l (x, x ) = d i=1 |x(i) -x (i)| + , where | • | + is equal to 1 if (•) ≥ 0, 0 otherwise.
Definition 3.4.5. In the same way, we can define the distance between a lattice element

x and a set V as:

d l (x, V) = min x ∈V d l (x, x ).
Every boundary point a for (D + , D -) has distance d l (a, D -) = 1; in fact, boundary points are all lattice elements for which a flip-off would generate a conflict. In the iterative selection process of the best index i ∈ I to be flipped-off, indexes having high Algorithm 6 FindBoundaryPoint (A, D + , D -, S, I, J )

d l (t(I ∪ J ), D - 0 i ) are preferred, where D - 0 i = {x ∈ D -: x(i) = 0},
For each i ∈ I compute |S 0 i |, |D + 0 i |, d l (t(I ∪ J ), D - 0 i ) while I = ∅ do
Move from I to J all i with d l (t(I ∪ J ), D -

0 i ) = 1 if I = ∅ then break end Choose the best index i ∈ I Remove i from I foreach i ∈ I do update d l (t(I ∪ J ), D - 0 i ) end end if there is no a ∈ A : t(J ) ≥ a then Set A = A ∪ t(J ) end
When I is empty, t(J ) is added to the boundary set A if it does not contain already an element covering t(J ). Note that, in Algorithm 6, the distance is computed only once, and updated at each iteration. This is because only one bit is selected and removed from I; then, t(I ∪ J ) new = t((I ∪ J ) old \ {i}). Formally, we apply Definition 3.4.4 exclusively for i = i best . 

| = 2, |D + 0 3 | = 0, |D + 0 5 | = 1. D - 0 1 = ∅, D - 0 3 = {11010}, D - 0 5 = {10110, 11010}. Consequently: d l (t(I ∪J ), D - 0 1 ) = undef ined, d l (t(I ∪ J ), D - 0 3 ) = 2, d l (t(I ∪ J ), D - 0 5 ) = 1.
Bit 5 is moved to J . Bit 1 has the higher value of |D + 0 i | and is selected as best candidate to be flipped-off. The distance is recalculated and the procedure continues until the set of candidate bits I is empty.

The time complexity of Algorithm 5, when it runs Algorithm 6, is O(n 2 d 2 ). This is faster than the exhaustive algorithm, and better than the O(n 2 d 3 ) complexity of [START_REF] Muselli | Reconstructing positive Boolean functions with shadow clustering[END_REF] (the difference between our proposal and [START_REF] Muselli | Reconstructing positive Boolean functions with shadow clustering[END_REF] is detailed in Appendix A.1). We also point out that most sequential-covering algorithms repeatedly remove the samples covered by the new rules, forcing the induction phase to work in a more partitioned space with less data, especially affecting minority rules, which already rely on few samples. The problem is mitigated in our solution: despite S cannot avoid this behavior, our heuristics keep a global and constant view of both D -, in the conflict detection, and D + , in the discrimination of the best bits to flip.
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From boundary set to rules. Each element a of the boundary set A can be practically seen as the antecedent of an if-then rule having as target the positive class. When a binary sample x is presented to a, the rule outputs 1 only if x has a 1 in all positions where a has value 1, that is if a ≤ x. Then, the antecedent of the rule is expressed as a function of the input features in the original domain.

Example 3.4.4. Consider a dataset with two continuous features, f 1 and f 2 , discretized as follows: [[0, 40), [40,100]] and [[0, 30), [30, 60), [60,100]] respectively. We also apply inverse-one-hot encoding as explained in Section 3.4.1 and obtain a dataset of 6-dimensional binary strings. Assuming that our algorithm outputs a boundary set A = {01 100}, we obtain, from the boundary point, a rule as follows: the first two bits referring to feature f 1 -01 -are mapped to "if f 1 ∈ [0, 40)", while the bits referring to f 2 -100 -are mapped to "if f 2 ∈ [30, 100]", where the two consecutive intervals have been combined. The zeros determine the ranges in the if conditions. The final rule is therefore "if f 1 ∈ [0, 40) and f 2 ∈ [30, 100] then label = 1".

The libre Method

The base approach generates boundary points by generalizing input samples, i.e., by flipping-off positive bits if no conflict with negative samples is encountered. The hypothesis underlying this procedure is that when no conflicts are found, a boundary point induces a valid rule. However, such rule might be violated when used with unseen data.

Stopping the flipping-off procedure as soon as a single conflict is found has two main effects: i) we obtain very specific rules, that might be simplified if the approach could tolerate a limited number of conflicts; ii) the rules cover no negative samples in the training set and tend to overfit.

To address these issues, a simple method would be to introduce a measure for the number of conflicts and use it as an additional heuristic in the learning process. However, this would dramatically increase the complexity of the algorithm.

A more natural way to overcome such challenges is to make the algorithm directly work on (random) subsets of features; in this way, the learning process produces more general rules by construction. Randomization is a well-known technique to implement ensemble methods that provide superior classification accuracy, as demonstrated, for example, in random forests [START_REF] Ho | The Random Subspace Method for Constructing Decision Forests[END_REF][START_REF] Breiman | Random Forests[END_REF]. By using randomization, we can directly use the methodology described in the previous sections, without modifying the search procedure. The new approachlibre -is an interpretable ensemble of rules that operates on a randomized subset of features.

Formally, let E be the number of classifiers in the ensemble. For each classifier j ∈ {1, . . . , E}, we randomly sample k j features of the original space and run Algorithm 5 to produce a boundary set A j for the reduced input space. A j can be generated in parallel, since weak learners are independent from each other. At this point, to make the ensemble interpretable, we crucially do not apply a voting (or aggregation) mechanism to produce the final class prediction, we do a simple union instead, such that A = E j=1 A j .

We note that libre addresses the problems outlined above, as we show experimentally.

By training an ensemble of weak learners that operate on a small subset of features, we artificially inflate the probability of finding negative examples. Each weak learner is constrained to run on less features not only reducing the impact of d on the execution time, but also having an immediate effect on the interpretability of the model that is forced to generate simpler rules, exactly because it operates on fewer input features.

Note that there are no guarantees that elements of A j will actually be boundary points in the full feature space: weak learners have only a partial view of the full input space and might generate rules that are not globally true. Thus, it is crucial to filter out the points that are clearly far from the boundary by using the selection procedure described in the next section.

Producing the Final Boundary

The model learned by our greedy heuristic materializes as a set A, which may contain a large number of elements and, in case of libre, it might also contain elements that cover many negative samples. In this section, we explain how to produce a boundary set A * with a good trade-off between complexity and predictive performance. This can be cast as a weighted set cover problem. Since exploring all possible subsets of elements in A can be computationally demanding, we use a standard greedy weighted set cover algorithm. At each iteration, the element a with the highest weight is selected; if there is more than one, the element with the highest number of zeros is preferred. All samples that are covered by the selected element are removed, and the weights are recalculated.

Each element

The process continues until either all samples are covered or a stopping condition is met.

In imbalanced settings, α will be close to 1 to increase the strength of minority rules.

Before running the selection procedure, with the aim of speeding up execution times, we eventually apply a filtering procedure to reduce the size of the initial set to a small number of good candidates: as proposed by [START_REF] Gu | Association Rule Discovery with Unbalanced Class Distributions[END_REF], we select the top K rules according to exclusiveness and local support (defined in Table 2.1), that are more sensible than confidence and support for imbalanced settings. Then, the final boundary set is naturally mapped to a set of rules, as explained in the previous section. an example of compact rule set learned by libre for the uci dataset liver. Other rule sets can be found in Appendix A.5.

Experiments

We evaluate libre in terms of predictive performance, interpretability, and scalability, and compare it with other rule-based and black-box methods.

Experimental Settings

Datasets. We report the results for thirteen publicly available datasets from the uci repository [START_REF] Dua | UCI machine learning repository[END_REF] and two real industrial it datasets -proprietary of sap.

These datasets cover several domains, have different imbalance ratios, number of records and features, as summarized in Comparison with other methods. We compare libre with two recent works: Scalable Bayesian Rule Lists (s-brl) [START_REF] Yang | Scalable Bayesian Rule Lists[END_REF] and Bayesian Rule Sets (brs) [START_REF] Wang | A Bayesian Framework for Learning Rule Sets for Interpretable Classification[END_REF]. We also report the results for a weka [START_REF] Hall | The WEKA Data Mining Software: An Update[END_REF] implementation of ripper [START_REF] Cohen | Fast Effective Rule Induction[END_REF] and modlem (Grzymala-busse and Stefanowski, 2001) -as representative of top-down and bottom-up approaches -and scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine Learning in Python[END_REF] implementations of Decision Tree (dt) [START_REF] Breiman | Classification and Regression Trees[END_REF], Support

Vector Machine with RBF kernel (rbf-svm) [START_REF] Cortes | Support-Vector Networks[END_REF]), and random forests (rf) [START_REF] Breiman | Random Forests[END_REF]. rbf-svm and rf are selected as popular black-box models;

rf is also a representative ensemble method. Other relevant methods are not publicly available (cg [START_REF] Dash | Boolean Decision Rules via Column Generation[END_REF]), are only partially implemented (bracid [START_REF] Napierala | BRACID: A Comprehensive Approach to Learning Rules from Imbalanced Data[END_REF]), or the implementation provided by the authors does not work properly most probably because of some programming errors (ids [START_REF] Lakkaraju | Interpretable Decision Sets: A Joint Framework for Description and Prediction[END_REF]).

Data preprocessing. Before running rbf-svm, we apply the scikit-learn standard scaler to the input data to get better results. The remaining methods have no benefits from standardization in our experiments. For s-brl and libre, we apply ChiMerge discretization algorithm [START_REF] Kerber | ChiMerge: Discretization of Numeric Attributes[END_REF] with three discretization threshold: 4, 4.6, 6; in brs, discretization is instead controlled by an internal parameter. In both cases, discretization is optimized during training. The remaining algorithms have no explicit need for discretization. For the methods requiring binarization, we apply one-hot encoding, except for libre that uses inverse one-hot encoding.

Parameter tuning. The initial set of candidate rules for s-brl and brs is generated by running fpgrowth with a minimum support of 1 and a maximum mining length of 5.

We also optimize brs and s-brl's prior hyper-parameters by cross validation. For brs, we run 2 chains of 500 iterations. For ripper, we change the number of optimization steps between 1 and 5, and activate pruning. For modlem, we try all available classification strategies and condition measures. For rbf-svm, we optimize C and γ. For dt and rf, we optimize the maximum depth in {5, 10, 20, N one}, we try all possible options for max_features and use a number of trees in {20, 50, 100} for rf. For libre, we vary the number of weak learners in E ∈ {5, 20, 50}. Each weak learner uses up to 5 features.

Additionally, we try the two heuristics H 1 and H 2 , as defined in Section 3.4.2, to generate rules and vary α in {.5, .7, .9} for weighted set cover. Parameters not reported above are all fixed to recommended or default values.

Evaluation metrics. All results refer to nested 5-fold cross validation, where the same splits are used for all methods. We use F1-score to compare the predictive performance of the classifiers, as it is well-suited to evaluate the capability to characterize the target class both in balanced and imbalanced settings. For rule-based methods, we use standard metrics from the literature to evaluate the interpretability of the rule sets, namely the number of rules that implement a model, and the average number of atoms per rule.

For dt, we extract the rules following the paths from root to leaves: this captures the perception of a user who looks at the tree to understand the output of the model. For s-brl, the number of atoms in a rule is equal to the sum of the atoms in the previous rules, highlighting the fact that a user has to go through all the rules up to the one that returns the label. For all rule-based methods, we change inequalities (<, ≤, >, ≥)

to ranges to have a fair comparison. For example,

f 1 ≥ 3 is converted to f 1 ∈ [3, max].

Experimental Results

Predictive performance evaluation. Table 3.2 shows the means and standard deviations of the F1-score for the tested algorithms (best results in bold) and the rank of their average performance. We additionally report the results for libre when it is constrained to generate at most 3 rules (libre 3).

If we look at the average rank, libre emerges as the best method, beating both rbf-svm and rf, demonstrating its versatility in both balanced and imbalanced settings. libre 3 is better than the other rule-based competitors, despite being constrained to generate at most 3 rules. dt, modlem, s-brl and ripper show similar performance, even though modlem is usually worse for balanced settings. brs is the worst method.

If we focus more on the single datasets, we notice that, except for australian, heart, and sonar, libre obtains consistently the highest F1-score. In bank, ilpd, and transfusion the gap between libre and the closest competitor is significant; the gap is even larger in comparison to alternative rule learners. For the remaining datasets, the differences with the competitors are less pronounced but still significant. In particular, Chapter 3. Learning Interpretable Boolean Rule Ensembles 57 Interpretability evaluation. Next, using Tables 3.3 and 3.4, we perform a function level evaluation as defined in Section 1.3.4, and measure interpretability in terms of quantity and size of the rules: models with a low number of short rules are simple, hence more interpretable. Rules have been manually checked and their interpretability assessed by human experts only for the industrial sap datasets. In our analysis, we also refer to Table 3.2, to measure the trade-off that exists between interpretability and predictive performance. We highlight in bold the most interpretable results.

On average, in terms of number of rules, libre is better than ripper, a top-down learner that is known to generate very general rules. libre overcomes the limitations of bottom-up learners like modlem, that is, by contrast, the worst method together with dt. s-brl is competitive for small datasets, but the number of rules increases considerably for bigger datasets like adult, bank, and sap. Overall, brs generates compact rule sets, with only one rule for half of the tested datasets. However, we should also notice that, except for liver, these are the same datasets that give F1-score close to zero. libre 3 outperforms other methods and produces the most compact rule sets for the three larger datasets, with a small impact on predictive performance.

Table 3.4 shows that all the tested methods have a similar average number of atoms.

Only s-brl has issues when the number of rules is significant (like in adult, bank, and sap datasets): as a matter of fact, in rule lists every rule depends on the previous ones, and the number of atoms easily explodes. libre 3 is the second best method; libre comes immediately after with an average rule size of 3.7 atoms.

F1-score vs Interpretability. From the previous analysis, libre, brs and ripper emerge as the most interpretable rule-based methods. When libre is constrained to output at most 3 rules, it can keep up with the competitors without a significant drop in performance in most of the tested datasets. In this section, we explicitly show that libre can generate more compact rule sets than the competitors, still giving superior predictive performance. We compare the rule sets leading to the best F1-scores for ripper and brs (we also report s-brl) with a few configurations for libre: as a general rule of thumb, libre learns both interpretable and accurate rule sets when it is trained with as many estimators as possible, with few input features per estimator.

In Figure 3.2, we report the average number of rules as a function of the F1-score:

points at the bottom-right side of each plot are preferable since they correspond to compact and high predictive rule sets. Results refer to four datasets: ilpd, liver, pima and transfusion. The plots on the remaining datasets can be found in the Appendix A.4. As we see, libre can be tuned to score higher than the competitors with a complexity that is same if not lower. This is mainly done by varying the maximum allowed number of rules, but other parameters have a considerable impact on the final Scalability evaluation. Table 3.5 shows the training time for libre and three representative rule-based competitorsripper, modlem, brs -on synthetic balanced datasets with 10 features and a varying number of records: from 10'000 to 1'000'000.

For each configuration, we randomly generate the dataset 3 times and report the average training time and standard deviation. All methods are tested with their default parameters and run sequentially. For libre, the time refers to one weak learner, which is also a good approximation for the computing time of E parallel weak learners. The symbol "-" identifies out-of-memory errors. In Appendix A.3, we also analyze the impact of the number of features and the class imbalance ratio on the training time.

modlem and brs fail with an out-of-memory error with 500'000 and 1'000'000 records datasets. They also show much higher run times for smaller datasets w.r.t. ripper and libre, that are instead able to complete their training in a few minutes also for the large datasets. Note that each weak learner in libre works with D + and D -that consist of distinct records: although the original dataset has millions of entries, the number of binary records processed by the algorithm is much lower, especially when the number of input features of each weak learner is relatively low. We also point out that, for practical applications where interpretability is needed, it is convenient to limit the number of features and train a bigger ensemble with more learners to quickly generate understandable rules.

Conclusion

Model interpretability has recently become of primary importance in many applications.

In this work, we focused on the task of learning a set of rules which specify, using Boolean expressions, the classification model. We devised a practical method based on monotone Boolean function synthesis to learn rules from data. Our approach uses an ensemble of bottom-up learners that generalizes better than traditional bottom-up methods, and that works well for both balanced and imbalanced scenarios: the bottom-up weak learners learn rules that are specific enough to cover samples from the minority class, but also short and general by construction, because they operate on different small subsets of features. Discovered rules are combined with a simple union to produce an interpretable rule-set. Interpretability needs are also easily encoded in the rule generation and selection procedure that produces short and compact rule sets.

Our experiments show that libre strikes the right balance between predictive performance and interpretability, often outperforming alternative approaches from the literature.

CHAPTER

FOUR

DISENTANGLED REPRESENTATION LEARNING

In the previous chapters, we focused on the interpretability of machine learning models.

We implicitly assumed that input data and, more specifically, the features taken as input by the models are interpretable. When this is not true, even the simplest transparent model can be incomprehensible. In view of the considerations above, interpretability of data representations becomes central in our discussion on machine learning interpretability.

In some cases, it is feasible to rely on feature engineering techniques and human experts to hand-craft understandable and useful features. In other cases, it might be more difficult, if not impossible, owing to the complexity and high-dimensionality of the data, lack of experts, resources, or any other reason. Ideally, we would like to have some tools to automatically learn features from data, to which we can assign easily interpretable meanings. This is, in short, the goal of disentangled representation learning. Disentangled representations are not only meaningful, but also permit to use simpler models to solve downstream tasks, for the benefit of the whole predictive chain.

Overview

Disentangled representation learning is located within the immense field of representation learning (also known as feature learning), that replaces the traditional, manual feature engineering for complex data-types, such as images and video, where it is usually hard to define specific features.

The discussion about what constitutes a good representation has lead to a series of properties, summarized in [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF], on which many researchers and practitioners seem to agree. All these properties, including interpretability, are satisfied by disentangled representations, that permit us to extend our work on interpretable machine learning from models to data representations. We remind the reader that transparency, as defined in Section 1.3.3, is strongly dependent on the input data.

Many approaches aimed at learning disentangled representations rely on generative models to learn a representation of the input observations that reflects the true generative, statistically independent ground-truth factors. Those factors, corresponding to semantically meaningful, hence interpretable, concepts, are assumed to generate the observations.

Recent works have made precious theoretical contributions to formally define disentangled representations, creating a connection with symmetry transformation in physics (Higgins et al., 2018a), and identifying consistency and restrictiveness as building blocks of disentanglement [START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF]. This is essential to solve several controversial points and accelerate the progress on disentangled representation learning.

Outline of the chapter. Section 4.2 is a short introduction to representation learning.

It is useful to motivate the work on disentangled representations. In Section 4.3, we present the two most complete and general theoretical framework available today to define disentangled representations, together with popular approaches and measures to evaluate the quality of learned representations in terms of disentanglement. In Section 4.4 we report many applications that benefit from disentangled representation.

Section 4.5 concludes the chapter with a discussion on the current status of the research on disentangled representation learning and introduces the next chapter.

Representation Learning in a Nutshell

The performance of machine learning algorithms strongly depends on data representation.

Feature engineering techniques have always been used not only as a solution to the curse of dimensionality problem, but also to build better data representations, by incorporating human and prior knowledge into the model learning process. However, these approaches are time consuming and expensive, as they often require the intervention of experts on the target topics. Representation learning is the answer to the real need to make machine learning models less dependent on the input data representation, such that they can learn useful features by themselves. More formally, representation learning aims at "learning data representations such that it is easier to extract useful information when building classifiers or other predictive tasks" [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. [START_REF] Barlow | Finding Minimum Entropy Codes[END_REF] advocate, probably for the first time, the utility of learning data representations consisting of statistically independent factors. They denote this concept as factorial code discovery. According to their intuition, representations where each dimension is independent of any of the others would have lead to significant benefits in terms of downstream tasks. Along this line of work, we also mention the contributions on independent component analysis (ica) [START_REF] Comon | Independent Component Analysis, a New Concept?[END_REF][START_REF] Hyvärinen | Nonlinear Independent Component Analysis: Existence and Uniqueness Results[END_REF].

Deep learning approaches, in particular generative models, such as generative adversarial networks [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] and auto-encoders (Kingma and Welling, 2014;[START_REF] Rezende | Stochastic Backpropagation and Approximate Inference in Deep Generative Models[END_REF], are other suitable choices to automatically learn representations from data.

Despite statistical independence is recognized by many as a desirable property of good representations, there are other interesting characteristics at the core of disentangled representations, that will be investigated in the next sections.

What Makes a Representation Good

Theoretically, any representation that is useful to simplify subsequent downstream tasks can be considered a good representation. [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF] identify a list of additional properties that good representations should satisfy.

• Expressiveness. A representation is expressive if, given a reasonable size, it allows to distinguish among a high number of different input configurations. For example, a one-hot encoding representation of size N encodes N configurations at most; a representation of the same size, learned by an auto-encoder, encodes many more configurations and it is therefore more expressive.

• Abstractness. A representation is abstract if it captures high-level concepts.

Deep architectures and, in general, models that build features through composition of functions are known to learn more abstract concepts than flat architectures [START_REF] Mahendran | Understanding Deep Image Representations by Inverting Them[END_REF].

• Invariance. Abstract representations also ensure another important property: they are invariant to local changes. For example, a representation that successfully encodes in its dimensions the identity of the corresponding observations should be invariant to rotations, or any other transformation that do not change the identity of the object.

• Interpretability. A representation is interpretable if we can i) easily assign semantically meaningful concepts to its dimensions, ii) understand how changes in one or more dimensions are reflected by the corresponding observation.

Disentangling Factors of Variation

Disentangled representations satisfy all the above properties. Intuitively, a disentangled representation is aligned to some independent, conceptually meaningful, factors of variations, also known as ground-truth factors, that are assumed to generate the input observations. Similarly to factorial analysis and ica, disentangled representations consider independence as a useful property. The ground-truth factors can be seen as high-level features, invariant to local changes and interpretable. More precisely, a disentangled representation is an optimal representation, in that it is the most compact, general, and interpretable one.

To the best of our knowledge, the notion of disentangled representations has been introduced for the first time in [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. Before that, several works, especially from the computer vision community, tried to learn specific factors of variations from data, without explicitly mentioning disentanglement. Only in the last few years, learning disentangled representations has become one of the hottest topic in machine learning.

Defining and Evaluating Disentangled Representations

Disentangled representation learning is currently in its infancy, hence continuously evolving. The first contributions to the topic were based on intuitive definitions of disentanglement, some approaches explored paths that have been later proved to be unsuccessful. Evaluating these models without necessarily having access to ground-truth labels is still an open problem. The practical utility of disentangled representation has to be fully proved, yet, although recent works show evidence of that.

In the following sections, we present one of the first attempts to formally define disentangled representations. Higgins et al. (2018a) use group theory to show that there exists a formal connection between symmetry transformation and disentangled representations.

We also make some references to the work of [START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF] that, few years later, propose a theoretical framework that defines disentangled representations in terms of two distinct concepts: consistency and restrictiveness. We postpone the discussion about whether and how disentangled representations can be learned to the next chapter.

Symmetry Transformations and Disentanglement

In physics, symmetry transformations, often described by means of group theory, are at the basis of many fundamental theories that explain the world dynamics. Intuitively, a symmetry of a physical system or object is a transformation that preserves certain properties of the object. This is also the mathematical definition of invariance. If we consider, for example, a general object such as a stone, we know that it maintains its physical properties even if we move it from one point to another or rotate it; therefore, we say that the stone is invariant with respect to translation and rotation. Equivalently, translation and rotation are symmetries for the stone.

The importance of symmetries. The study and research on structure-preserving transformations has lead to important findings in our history. In 1871, the chemist and inventor Dmitri Ivanovich Mendeleev, noting gaps within the periodic table of chemical elements, predicted the properties of missing elements, that he named ekaboron, eka-aluminium, eka-manganese, and eka-silicon. These properties emerged to be good predictors of the properties of scandium, gallium, technetium, and germanium, respectively. Symmetry transformations have been extended to many other domains, demonstrating their utility and generalization power.

A toy world. Higgins et al. (2018a) are the first to relate symmetry transformations with disentangled representations. In machine learning, we do not deal with physical objects but with observations. We consider images as observations, as they allow a better understanding of the covered topics. In Figure 4.1, we report an example of a toy world, a simplified version of dsprites (Higgins et al., 2017a), where a circular object is allowed From world states to observations. Let assume that the toy world described above is the result of a generative process that transforms world states into observations. At there is no constraint on the dimensionality of each sub-group. Nevertheless, although disentanglement is linked to a specific sub-group decomposition, disentangled group actions can generally be decomposed into different disentangled sub-groups, with different degrees of utility depending on the target task. It can reasonably be assumed that there exists a "natural" decomposition we are interested in, that can be discovered through active perception. Then, we implicitly assume to search for a representation that is aligned with such a natural sub-group decomposition. Figure 4.2 shows a representation that is disentangled with respect to horizontal position, vertical position and size.

Even in the simplest setting where each dimension of the learned representation affects only a specific property of the observations, it might be complex to describe how it happens. We would like to increase, for example, the value of the dimension encoding the horizontal position of our toy world state and see the observation moving from left to right. In general, we should be able to easily understand how changes in one sub-group influence the resulting observation. This is possible if we impose a linearity constraint.

Definition 4.3.2. (Higgins et al., 2018a) A vector representation is called a linear disentangled representation with respect to a particular decomposition of a symmetry group into sub-groups, if it is a disentangled representation with respect to the same group decomposition, and the actions of all the sub-groups on their corresponding sub-spaces are linear.

Disentanglement and Group Theory

The previous section was an informal introduction to symmetry transformation and their connection to disentangled representations. Here, we use group theory to provide a more formal definition of the concepts seen above: disentangled group and sub-group actions, disentangled and linear disentangled representations.

Disentangled group and sub-group action. Let us assume to have a group action

• : Γ × X → X,
where X is the space of observations (world space) and Γ is the group that acts on X. Any action changes the world state and generates a new object in the same world space. Let us further assume that the group Γ can be decomposed into n sub-groups

Γ i : Γ = Γ 1 × • • • × Γ n .
The corresponding sub-group action is denoted by

• i .
Then, the action is disentangled with respect to the sub-group decomposition of Γ, if there exists a decomposition X = X 1 × • • • × X n and actions

• i : Γ i × X i → X i , i ∈ {1, • • • , n}
such that:

(γ 1 , • • • , γ n ) • (x 1 , • • • , x n ) = (γ 1 • 1 x 1 , • • • , γ n • n x n ). (4.1) 
In other words, every property i of the observation space is invariant to the action of 

Γ j , j = i,
γ • f (w) = f (γ • w), ∀γ ∈ Γ, w ∈ W. (4.2)
The equation above means that applying the group action γ on the representation learned by the model f (w) is equivalent to applying the same group action γ to the world state w first, and then applying the mapping f . Hence, f is an equivariant map. When Equation 4.2 is satisfied, given a group decomposition into n sub-groups Γ = Γ 1 ו • •×Γ n , the agent's representation is disentangled with respect to this decomposition if the action

• on Z is disentangled according to Equation 4.1.

Linear disentangled representation. A group action that transforms the disentangled sub-space linearly considerably increases the interpretability of the learned representation and is beneficial for downstream tasks. In this case, we talk about linear disentangled representations. The reasoning and definitions are similar as before, with the only difference that i) both the group action and the sub-group actions in Equation 4.1 are assumed to be linear, and ii) the group action that acts on Z is linear, too.

Consistency, Restrictiveness, Disentanglement

An alternative theory on disentangled representation decomposes disentanglement into two distinct concepts: consistency and restrictiveness [START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF]. People who are not familiar with group theory might find the next definitions more intuitive.

Let us refer to our toy world as in Figure 4.1 and let assume that a generative model is trained to learn a representation that reflects the original world state. If the first dimension z 1 of the learned representation is disentangled with respect to the size, a visual inspection of z 1 would show the following: i) when z 1 is fixed, the size of the generated object does not change, ii) when z 1 varies, only the size of the generated object changes. According to [START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF], these two properties are known as generator consistency and generator restrictiveness. If this is true for the horizontal and vertical position as well, then the generative model has learned a (fully) disentangled representation. We point out that consistency and restrictiveness are aligned with the mathematical definition of invariance that motivated the theory by Higgins et al. (2018a).

More formally, let us assume that target observations are the result of a true generative model h * = (p * (s), g * , e * ), where p * (s) represents the distribution over the ground-truth factors s, g * is a generator function that maps the ground-truth factor state to the observation space, e * is the encoder function that maps from the observation to the ground-truth factor state space. The goal is to learn a model h = (p, g, e), whose learned representation z disentangles the true ground-truth factor state of h * .

Generator consistency. Let I denote a set of indices (\I is its complement) and p I denote the generating process that consists in sampling z I ∼ p(z I ) once, and conditionally sampling z \I , z \I ∼ p(z \I |z I ) in a i.i.d. fashion. We say that z I is consistent with s I if:

E p I d(e * I • g(z I , z \I ), e * I • g(z I , z \I )) = 0, (4.3) 
where e * I is the encoder of h * restricted to the indices I, d(•, •) is an appropriate distance function, and • is the function composition operator. Equation 4.3 states that, when z I is fixed, the representation retrieved by the true encoder model e * , restricted to indices I, is invariant to changes in z \I .

Generator restrictiveness. Let I denote a set of indices (\I is its complement) and p \I denote the generating process that consists in sampling z \I ∼ p(z \I ) once, and conditionally sampling z I , z I ∼ p(z I |z \I ) in a i.i.d. fashion. We say that z I is restricted to s I if:

E p \I d(e * \I • g(z I , z \I ), e * \I • g(z I , z \I )) = 0, (4.4) 
where e * \I is the encoder of h * restricted to the indices \I. Equation 4.4 states that, when z \I is fixed, the representation retrieved by the true encoder model e * , restricted to indices \I, is invariant to changes in z I .

Generator disentanglement. Let I denote a set of indices, C(I) and R(I) are Boolean functions representing consistency and restrictiveness for the set I, respectively.

We say that z I disentangles s I if:

D(I) = C(I) ∧ R(I). (4.5) 
Equations 4.3 to 4.5 can equivalently be expressed from the perspective of a learned encoder. If we want z to disentangle s, Equation 4.5 has to be true for all the groundtruth factors. It should be noted that, similarly to Higgins et al. (2018a), i) there is no constraint on the number of dimensions assigned to each ground-truth factor; ii) all the definitions above implicitly define consistency, restrictiveness and disentanglement with respect to a "natural" set of ground-truth factors.

Evaluating Disentanglement

For many years, visual inspection has been the only way to evaluate disentangled representations. Latent traversal used to be a popular technique to visualize the effects that each portion of the learned representation has on the corresponding observation.

In the simplest settings, every dimension is varied, in turn, within a range of values, keeping the others fixed. The purpose is to investigate whether the inspected dimension disentangles one or more ground-truth factors. In Figure 4.3, we report an example of latent traversal for a content-style disentanglement model (Kingma et al., 2014) that has learned a representation that separately encodes class digit and writing style from mnist observations. When the portion of the representation related to the content is varied, the digit changes but the style remains coherent. Even though visual inspection techniques provide a qualitative evaluation of disentanglement methods, it is evident that they require human intervention to verify disentanglement and suffer from scalability issues. These issues pushed the researchers to design practical metrics to quantitatively measure disentanglement. Despite several attempts to propose standard evaluation frameworks, there is not a globally accepted procedure yet. In this section, we report some of the most popular disentanglement metrics, with a special focus on their properties and limitations.

Beta score. The idea behind the beta score (Higgins et al., 2017a) is that a disentangled representation should consist of latent dimensions that are both independent and interpretable. Here, interpretability means that every latent can be easily associated to one of the true, semantically meaningful factors that generate the input observations.

Assuming a full access to the generative process, the authors propose to fix a random ground-truth factor k and sample two mini batches of observations from the corresponding generative model. The encoder is then used to obtain a learned representation from the observations (with the ground-truth factor k in common). The dimension-wise absolute difference between the two representations is computed and a simple linear classifier is used to predict the fixed ground-truth factor k. This is repeated batch_size times and the accuracy of the predictor becomes the disentanglement metric score. In a perfectly disentangled representation, a fixed factor of variation corresponds to an absolute difference of zero: the linear classifier would then learn to map the index of the zero value to the index of the ground-truth factor.

Factor score. Despite being intuitive, the beta score has several weaknesses: i) it uses a linear classifier that, by definition, can learn only a linear mapping between multiple dimensions of the learned latent space and the single ground-truth factors, ii) it is susceptible to hyper-parameter tuning of the linear classifier, iii) it returns a maximum score even when only K -1 out of the K ground-truth factors are disentangled. For such reasons, [START_REF] Kim | Disentangling by Factorising[END_REF] 

D i = 1 -H K (P i• )
, where H K (P i• ) = -K-1 k=0 P ik log K P ik denotes the entropy and

P ij = R ij / K-1
k=0 R ik denotes the probability that the latent dimension i is predictive about ground-truth factor j; R is an importance matrix. Then, D i = 1 if dimension i is significant to predict a single ground-truth factor; D i = 0 if it is equally important to predict every ground-truth factor. ii) Each ground-truth factor is assigned a completeness score C j = 1 -H D (P •j ), where H D (P •j ) = -D-1 d=0 P dj log D P ij . C j = 1 if ground-truth factor j is predictable via a single dimension of the learned representation; C j = 0 if it is equally predictable by any dimension of the learned representation. iii) The informativeness score is computed for the whole representation and measures the amount of information useful to capture the ground-truth factors: it is computed as the prediction error of predicting the ground-truth factors from the learned representation.

Modularity and Explicitness. Similarly to [START_REF] Eastwood | A Framework for the Quantitative Evaluation of Disentangled Representations[END_REF], [START_REF] Ridgeway | Learning Deep Disentangled Embeddings With the F-Statistic Loss[END_REF] identify three properties for representations: modularity, compactness, and explicitness, corresponding to the previously defined disentanglement, completness, and informativeness. However, they argue that compactness (completness) should not characterize disentangled representations. A representation is modular if each dimension of the learned representation depends on at most one ground-truth factor. [START_REF] Ridgeway | Learning Deep Disentangled Embeddings With the F-Statistic Loss[END_REF] propose to measure modularity as the average normalized squared difference of the mutual information of the factor of variations with the highest and second-highest mutual information with a dimension of the learned representation. A representation is explicit if it is easy to predict a factor of variation. To compute explicitness, they train a one-versus-rest logistic regression classifier to predict the ground-truth factor of variation and measure its ROC-AUC.

Other measures. The work by [START_REF] Ridgeway | Learning Deep Disentangled Embeddings With the F-Statistic Loss[END_REF] has been recently extended by [START_REF] Do | Theory and Evaluation Metrics for Learning Disentangled Representations[END_REF], who suggest three relevant properties for disentangled representations: informativeness, separability, and interpretability. A learned representation is informative about the corresponding observation if their mutual information is high.

Two dimensions of the learned representation are separable if they do not share common information about the corresponding input observation. A dimension of the learned space is interpretable with respect to a given ground-truth factor if it only contains information about it. [START_REF] Zhou | Evaluating the Disentanglement of Deep Generative Models through Manifold Topology[END_REF] are the first to propose an unsupervised disentanglement measure that does not require access to the ground-truth factors and exploits topological similarity of conditional sub-manifolds in the learned representation.

Practical Applications

The value of disentangled representations is not only due to their interpretability. Learning a representation that reflects the generative factors of input data offers several practical advantages: many works argue that disentangled representations simplify downstream tasks and improve training efficiency [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]Locatello et al., 2019bLocatello et al., , 2020bLocatello et al., , 2019a;;[START_REF] Van Steenkiste | Are Disentangled Representations Helpful for Abstract Visual Reasoning[END_REF]Locatello et al., 2020a); their benefits are also evident in transfer learning (Higgins et al., 2017b(Higgins et al., , 2018b;;[START_REF] Laversanne-Finot | Curiosity Driven Exploration of Learned Disentangled Goal Spaces[END_REF][START_REF] Gondal | On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset[END_REF][START_REF] Dittadi | On the Transfer of Disentangled Representations in Realistic Settings[END_REF], fair machine learning [START_REF] Creager | Flexibly Fair Representation Learning by Disentanglement[END_REF]Locatello et al., 2019a), and many other tasks. Disentangled representations have also shown superior robustness against adversarial attacks [START_REF] Willetts | Improving VAEs' Robustness to Adversarial Attack[END_REF].

Simplifying Downstream Tasks

Disentanglement has always been recognized as a desirable property in learned representations to solve downstream tasks [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF][START_REF] Peters | Elements of Causal Inference: Foundations and Learning Algorithms[END_REF][START_REF] Tschannen | Recent Advances in Autoencoder-Based Representation Learning[END_REF]Locatello et al., 2019bLocatello et al., , 2020bLocatello et al., , 2019a;;[START_REF] Van Steenkiste | Are Disentangled Representations Helpful for Abstract Visual Reasoning[END_REF]Locatello et al., 2020a). Intuitively, a representation where ground-truth factors are encoded into different dimensions should make subsequent tasks, which depend on those factors, easier. Indeed, disentangled representations have been shown to be more sample-efficient (Higgins et al., 2018b), less sensitive to nuisance variables [START_REF] Lopez | Information Constraints on Auto-Encoding Variational Bayes[END_REF], and to lead to better generalization performance (Higgins et al., 2017b;[START_REF] Eastwood | A Framework for the Quantitative Evaluation of Disentangled Representations[END_REF][START_REF] Steenbrugge | Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations[END_REF].

In the easiest setting, most of the disentanglement metrics from the literature can be seen as a proxy for the performance of a simple downstream task, i.e., matching each latent dimension with the corresponding ground-truth factor. However, there is relatively few work on their applicability to more difficult, real problems. Recently, [START_REF] Barrett | Measuring Abstract Reasoning in Neural Networks[END_REF] have found out that standard deep neural network architectures struggle to solve complex reasoning tasks. More specifically, the authors were focusing on abstract reasoning, where the goal is to learn abstract relationships among multiple objects (for example images, or objects within images), and generalize such knowledge to new settings, a task that humans naturally do during their life. Motivated by those findings, [START_REF] Steenbrugge | Improving Generalization for Abstract Reasoning Tasks Using Disentangled Feature Representations[END_REF][START_REF] Van Steenkiste | Are Disentangled Representations Helpful for Abstract Visual Reasoning[END_REF] showed that models with high disentanglement scores lead to better downstream performance in less time and with less samples, compared to models with the same architecture but specifically trained to solve the abstract-reasoning tasks.

Transfer Learning

The goal of transfer learning is to exploit the knowledge learned while solving a given problem, to solve a different, but related one. If a model learns a disentangled representation, we expect the transfer process to be easier and more effective: intuitively, the ground-truth factors should be useful to solve many different tasks.

One of the first methods that tried to exploit disentangled representation for transfer learning is darla (Higgins et al., 2017b), a reinforcement learning method where the agent is able to deal with changes to the input distribution (domain adaptation) by learning a disentangled, task-independent representation of the world. More recent works Chapter 4. Disentangled Representation Learning 74 (Locatello et al., 2019b(Locatello et al., , 2020b) ) show experimental evidence that, at least for synthetic datasets, models with high disentanglement scores are better suited for transfer learning. [START_REF] Gondal | On the Transfer of Inductive Bias from Simulation to the Real World: a New Disentanglement Dataset[END_REF]; [START_REF] Dittadi | On the Transfer of Disentangled Representations in Realistic Settings[END_REF] focus on more realistic settings by proposing both a synthetic and realistic dataset: those works show that model's parameters learned from a simulated dataset are effective in the real dataset, although a direct transfer of representations does not seem to work.

Increasing Fairness in Predictions

When machine learning is applied to solve specific tasks, sensitive protected attributes like race, gender, skin color and so on, can have undesirable impacts in many different ways. The algorithm design might cause discrimination towards protected groups, the data itself might be biased either because the collection process is biased or simply because society is unfair. The goal of fair machine learning is to learn a predictor that solves a given task without being biased by some sensitive factors. Every time a sensitive factor has a negative impact, in terms of discrimination, for the target task solved by a machine learning model, we say that such model is not fair with respect to that sensitive factor. In the literature, we have several notions of fairness: demographic parity [START_REF] Calders | Building Classifiers with Independency Constraints[END_REF], individual fairness [START_REF] Dwork | Fairness through Awareness[END_REF], equal opportunity [START_REF] Hardt | Equality of Opportunity in Supervised Learning[END_REF], and causal reasoning concepts [START_REF] Kilbertus | Avoiding Discrimination through Causal Reasoning[END_REF]. Locatello et al. (2019b) suggest a possible connection between disentangled representations and fair machine learning. Disentanglement methods learn representations with low mutual information among different dimensions encoding the ground-truth factors; this should encourage the downstream predictor to look only at the dimensions that are directly linked to the target task, discarding information coming from sensitive factors. Locatello et al. (2019a) propose a theorem asserting that even a perfect classifier might be unfair (in terms of demographic parity), when sensitive and non-sensitive factors are entangled. Then, they show empirically that general purpose representations are highly unfair; there is rather a strong correlation between disentanglement and fairness on downstream tasks for a wide range of datasets. [START_REF] Creager | Flexibly Fair Representation Learning by Disentanglement[END_REF] propose a flexibly-fair version of vae, where sensitive attributes are encoded into independent portions of the latent space. Again, they show that such representations lead to more fair results, in terms of demographic parity.

Higher Robustness against Adversarial Attacks

Deep learning models are subjected to adversarial attacks. In short, the attacker's goal is to apply the smallest amount of distortion (often not perceivable by humans) to input observations, attempting to fool the model to return a different output from what it is expected. Unfortunately, generative models are vulnerable to adversarial attacks too [START_REF] Tabacof | Adversarial Images for Variational Autoencoders[END_REF][START_REF] Gondim-Ribeiro | Adversarial Attacks on Variational Autoencoders[END_REF][START_REF] Kos | Adversarial Examples for Generative Models[END_REF]: the most effective attack mode consists in distorting the input such that its latent representation is reconstructed in a different target. This attack is problematic in applications where the latent representation is used to perform one or more downstream tasks.

We expect disentangled representations to be more robust to this kind of attacks: indeed, the imperceptible distortions applied by the attacker on the input observations can be seen as small local changes that should not have a considerable impact on the latent representation, if it is disentangled. [START_REF] Willetts | Improving VAEs' Robustness to Adversarial Attack[END_REF] is the first work who finds a strict relation between disentanglement and robustness. They first show that β-tcvae is more robust to adversarial attacks than a standard vae. Besides, the authors introduce a hierarchical version of β-tcvae that further increases robustness.

Other Applications

A large body of work on disentanglement originates from the computer vision community, where the purpose is to disentangle content from pose in images [START_REF] Tenenbaum | Separating Style and Content with Bilinear Models[END_REF][START_REF] Hinton | Transforming Auto-Encoders[END_REF][START_REF] Zhu | Multi-View Perceptron: A Deep Model for Learning Face Identity and View Representations[END_REF][START_REF] Reed | Learning to Disentangle Factors of Variation with Manifold Interaction[END_REF][START_REF] Kulkarni | Deep Convolutional Inverse Graphics Network[END_REF][START_REF] Yang | Weakly-Supervised Disentangling with Recurrent Transformations for 3D View Synthesis[END_REF], and pose from motion in videos [START_REF] Goroshin | Learning to Linearize Under Uncertainty[END_REF][START_REF] Denton | Unsupervised Learning of Disentangled Representations from Video[END_REF][START_REF] Villegas | Decomposing Motion and Content for Natural Video Sequence Prediction[END_REF][START_REF] Hsieh | Learning to Decompose and Disentangle Representations for Video Prediction[END_REF][START_REF] Li | Disentangled Sequential Autoencoder[END_REF] in order to better solve specific tasks like segmentation and classification. Such kind of data allows visual inspection of the latent space and a direct understanding of the impact of each dimension of the learned representation, in the absence of appropriate disentanglement metrics.

In this context, full disentanglement of all possible ground-truth factors has not been considered of primary importance.

Discussion

The concept of interpretable representations opened a whole research field, of which disentangled representations are only a part. In this chapter, we discussed the status of theoretical formalization of disentangled representations, evaluation methods and applications. We have not gone into detail about how to obtain disentangled representations, yet, but it is already clear that there is huge space for improvements and contributions.

If we focus on the problem statement, we realize that the definition itself of disentangled representations is immature: assuming that observations are the result of a transformation of independent ground-truth factors might be unrealistic. In practical scenarios, it is usually more convenient to consider a certain degree of causal relation among groundtruth factors and design new frameworks that support causal disentanglement. Let consider the example in Figure 4.4, where a swinging pendulum generates a shadow when hit by a light source. Clearly, the position and size of the shadow are not independent, as would be a natural extension, considering that there are already works that relax the independence assumption and try to learn causal relations among ground-truth factors [START_REF] Yang | CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models[END_REF]. This would necessarily lead to alternative evaluation measures that are coherent with the new definitions.

There is also a lot to investigate about the benefits of disentanglement. Most of the experiments that justify the employment of disentangled representations to solve downstream tasks, simplify transfer learning, and so on, are carried out either for simple, synthetic datasets where the generative process is known, or realistic datasets with welldefined ground-truth factors. Results are promising, but there is room for improvements.
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AN IDENTIFIABLE DOUBLE VAE FOR DISENTANGLED REPRESENTATIONS

A large part of the literature on disentangled representation learning focuses on variational autoencoders (vae). Recent developments demonstrate that disentanglement cannot be obtained in a fully unsupervised setting without inductive biases on models and data. However, [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] suggest that employing a particular form of factorized prior, conditionally dependent on auxiliary variables complementing input observations, can be one such bias, resulting in an identifiable model with guarantees on disentanglement.

Working along this line, we propose a novel vae-based generative model with theoretical guarantees on identifiability. We obtain our conditional prior over the latents by learning an optimal representation, which imposes an additional strength on their regularization.

We also extend our method to semi-supervised settings. Experimental results indicate superior performance with respect to state-of-the-art approaches, according to several established metrics proposed in the literature on disentanglement.

Overview

In disentangled representation learning, the main assumption is that high-dimensional observations x are the result of a transformation, possibly nonlinear, applied to a low dimensional latent variable of independent generative factors, called ground-truth factors, capturing semantically meaningful concepts. Input observations can be thought of as the result of a probabilistic generative process, where latent variables z are first sampled from a prior distribution p(z), and then the observations x are sampled from p(x|z).

The goal is to learn a representation of the data that captures the generative factors. As defined in Section 4.3, multiple dimensions of the learned representation can theoretically be mapped to a single factor. Nevertheless, in the simplest settings each dimension of a disentangled representation refers to a single factor of variation.

We closely examine deep generative models to learn disentangled representations, and in particular those based on variational autoencoders (vae). A well known theoretical result asserts that disentanglement is essentially impossible in a fully unsupervised setting, without inductive biases on models and data (Locatello et al., 2019b). However, inducing a disentangled structure into the latent space where z lies is feasible by incorporating auxiliary information u about the ground-truth factors in the model. The type and amount of supervision define different families of disentanglement methods, often classified as supervised, semi-supervised, and weakly-supervised. In most of these methods, the auxiliary variables u become an integral part of the latent space. However, recent work [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] indicates that there are alternative strategies to benefit from auxiliary information, such as using it to impose a structure on the latent space. In their proposal, this is done by learning a prior distribution on the latent space, where the crucial aspect is that this is conditioned on auxiliary information u that is coupled with every input observations. Under mild assumptions, it is possible to show that such form of conditioning implies model identifiability, allowing one to recover the original ground-truth factors and therefore providing principled disentanglement.

In this work, we propose a novel generative model that, like [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF], uses a conditional prior and has theoretical identifiability guarantees. We show that our method naturally imposes an optimality constraint, in information theoretic terms, on the conditional prior: this improves the regularization on the function that maps input observations to latent variables, which translates in tangible improvements of disentanglement in practice. Since assuming to have access to auxiliary variables for each input observations, both at training and testing time, is not practical in many applications, we also propose a semi-supervised variant of our method.

Outline of the chapter In Section 5.2, we give background on model identifiabiliy and disentanglement; then, in Section 5.3, we report a detailed overview of vae-based disentanglement methods using a unified notation. Our focus is on the role of the regularization term. We introduce a distinction between direct matching approaches, in which ground-truth factors are directly matched to the latent space, and indirect matching approaches, where a prior distribution over the latents is used to structure the learned latent space. In Section 5.4, we propose a new method to learn disentangled representations -that we call Identifiable Double vae (idvae) since its ELBO can be seen as a combination of two variational autoencoders -that is identifiabile, in theory, and that learns an optimal conditional prior, which is truly desirable in practice. We additionally propose a semi-supervised version of idvae to make our method applicable also when auxiliary information is available for a subset of the input observations only. In Section 5.5, we design an experimental protocol that uses four well-known datasets, and established disentanglement metrics. Finally, by comparing our method to several several state-of-the-art competitors, we demonstrate that idvae achieves superior disentanglement performance across most experiments.

Preliminaries

Model Identifiability and Disentanglement

Let x ∈ R n be some input observations, which are the result of a transformation of independent latent ground-truth factors z ∈ R d through a function f : R d → R n . Then, we have that x = f (z) + , where is a Gaussian noise term:

∼ N (0, Σ), and independent of z. Let consider the following generative model:

p θ (x, z) = p θ (x|z)p θ (z), (5.1) 
where θ ∈ Θ is a vector of model parameters, p θ (z) = d i=1 p θ (z i ) represents the factorized prior probability distribution over the latents and p θ (x|z) is the conditional distribution to recover x from z. The decoder function f (z) (plus the noise ) determines the way z is transformed into x within p θ (x|z).

Assume to observe some data D = {x (1) , • • • , x (N ) } generated by p θ * (x, z) = p θ * (x|z)p θ * (z), where θ * are the true, but unknown parameters. The goal is to learn θ ∈ Θ such that:

p θ (x, z) = p θ * (x, z).
(5.2) When Equation 5.2 holds, it is then possible to recover the generative ground-truth factors. Unfortunately, by observing x alone, we can estimate the marginal density p θ (x) ≈ p θ * (x), but there are no guarantees about learning the true generative model p θ * (x, z). This is only feasible for models satisfying the following implication:

∀(θ, θ ) : p θ (x) = p θ (x) =⇒ θ = θ .
(5.3) When Equation 5.3 holds, the estimated and the true marginal distribution match, and their parameters match too. Then, the model is identifiable [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] and, as a consequence, it allows one to recover the latent ground-truth factors and obtain a disentangled representation:

p θ (x) = p θ (x) =⇒ p θ (x, z) = p θ (x, z).
(5.4)

A practical goal is to aim for model identifiability up to trivial transformations, such as permutation and scaling; as long as ground-truth factors can be identified, their order and scale is irrelevant.

Connections with Independent Component Analysis (ica)

In the traditional formulation of both linear and nonlinear ica, the goal is to recover the ground-truth factors (more commonly called sources or components in this context) from a set of observations. The independent components (except perhaps one) must be non-Gaussian. The function f , called mixing function, that maps sources to observations, is usually deterministic, although noisy formulations are also possible.

Linear ica In linear ica, the mixing function f is invertible and linear, that is each observation is a linear combination of the sources. Thus, the generative model in Equation 5.2 is an under-specified linear system. For simplicity, the number of observations and components is often assumed to be the same: f is then a square mixing matrix and finding f -1 is equivalent to find its inverse. A known result of linear ica [START_REF] Comon | Independent Component Analysis, a New Concept?[END_REF] is that the statistical independence of the sources is a sufficient condition for identifiability (or in alternative terminology the "sources can be separated") up to a permutation and scaling of the sources [START_REF] Hyvärinen | Independent Component Analysis: Algorithms and Applications[END_REF].

Nonlinear ica When the mixing function f is nonlinear, we talk about nonlinear ica.

Although the remaining settings and final goal are the same, nonlinear ica is much more complicated than linear ica: the statistical independence of the sources is no longer a sufficient condition to recover them. For the first time, [START_REF] Hyvärinen | Nonlinear Independent Component Analysis: Existence and Uniqueness Results[END_REF] demonstrate that i) when the space of mixing functions is not limited and ii) observations are i.i.d., there exists an infinity of solutions, and indeterminacies are not trivial as in the linear case. Thus, additional constraints are needed to resolve these ambiguities.

The first attempts towards identifiability used to put strong, often unrealistic, constraints on f . More successful approaches rely on the relaxation of i.i.d. hypothesis: a relevant amount of work focuses on time-series, where it is possible to exploit the temporal structure of the data [START_REF] Harmeling | Kernel-Based Nonlinear Blind Source Separation[END_REF][START_REF] Sprekeler | An Extension of Slow Feature Analysis for Nonlinear Blind Source Separation[END_REF]Hyvärinen andMorioka, 2016, 2017). Practical solutions for non-temporal data are also proposed [START_REF] Tan | Nonlinear Blind Source Separation Using a Radial Basis Function Network[END_REF][START_REF] Harmeling | Kernel-Based Nonlinear Blind Source Separation[END_REF][START_REF] Almeida | MISEP -Linear and Nonlinear ICA Based on Mutual Information[END_REF] but principled and more general approaches are pretty recent [START_REF] Hyvärinen | Nonlinear ICA Using Auxiliary Variables and Generalized Contrastive Learning[END_REF][START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF].

vae-based Disentanglement Methods

A large body of work on disentangled representations is based on generative models, especially vae-based approaches (Kingma and Welling, 2014;[START_REF] Rezende | Stochastic Backpropagation and Approximate Inference in Deep Generative Models[END_REF].
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Unsupervised Disentanglement Learning

A standard vae learns the parameters of Equation 5.1 by introducing an inference model q φ (z|x) to derive an ELBO as follows:

L vae = E q φ (z|x) [log p θ (x|z)] -KL(q φ (z|x)||p(z)), (5.5) 
where, by abuse of notation, we write x in place of x (i) . This avoids clutter in the presentation of vae-based models, but, clearly, the marginal log-likelihood is composed of a sum of such ELBO terms, one for each observation x (i) (Kingma and Welling, 2014).

The distribution p θ (x|z) has the role of a decoder, whereas q φ (z|x) can be seen as an encoder, and it is generally assumed to be a factorized Gaussian with a diagonal covariance matrix. Both distributions are parameterized with neural networks, with parameters θ and variational parameters φ. The prior p(z) is generally a factorized, isotropic unit Gaussian.

The first term of Equation 5.5 relates to the reconstruction of the input data using latent variables sampled from the variational approximation of the true posterior. The second one is a regularization term, which pushes the approximate posterior q φ (z|x)

to match the prior on the latent space. Maximizing Equation 5.5 across observations implies learning the parameters such that the reconstruction performance is high, and the regularization term is small. In other words, a vae learns a latent representation z ∼ q φ (z|x) that efficiently transmit information about the input observations x, such that the x can be reconstructed from z.

Since both terms that appear in the regularization of Equation 5.5 are factorized Gaussians with diagonal covariance, one way to interpret the individual components z i of the latent space is to view them as independent white noise Gaussian channels [START_REF] Burgess | Understanding disentangling in β-VAE[END_REF]. Clearly, when the KL term is zero, the latent channels z i have zero capacity (µ i = 0, σ i = 1) because they do not transmit useful information for the reconstruction task: this happens when the approximate posterior q φ (z|x) matches exactly the prior p θ (z). Figure 5.1 shows that broad posterior distributions with close means (close to zero) decrease the KL diverge with the prior. Nevertheless, a sample x from distribution q(z 2 |x 2 ) is more likely to be confused with a sample from q(z 1 |x 1 ), with a consequent increase of the cost in terms of log likelihood. In order to increase the capacity of the latent channels and improve the reconstruction quality, the approximate posterior must deviate from the isotropic unit Gaussian prior by decreasing the overlap between channels, and reducing their variances.

The above understanding of the regularization term is at the basis of many variants of the original vae model, that strive to increase the pressure on the regularization term, or et al., 2017).

elements thereof, to achieve disentanglement, without sacrificing reconstruction properties too much. For example, Higgins et al. (2017a) propose β-vae, which modifies Equation 5.5 by introducing a hyper-parameter β to gauge the pressure on the regularization term throughout the learning process:

L β-vae = E q φ (z|x) [log p θ (x|z)] -βKL(q φ (z|x)||p(z)).

(5.6)

When β > 1, the encoder distribution q φ (z|x) is pushed towards the unit Gaussian prior p(z). In light of the discussion above, the strong penalization of the KL term in β-vae affects the latent channel distribution, by reducing the spread of their means, and increasing their variances.

Many methods build on β-vae [START_REF] Burgess | Understanding disentangling in β-VAE[END_REF][START_REF] Kim | Disentangling by Factorising[END_REF][START_REF] Kumar | Variational Inference of Disentangled Latent Concepts from Unlabeled Observations[END_REF]Chen et al., 2018;[START_REF] Zhao | InfoVAE: Balancing Learning and Inference in Variational Autoencoders[END_REF][START_REF] Esmaeili | Structured Disentangled Representations[END_REF], rewriting the ELBO in slightly different ways. A generalization of the KL term decomposition proposed by [START_REF] Hoffman | Elbo Surgery: Yet Another Way to Carve Up the Variational Evidence Lower Bound[END_REF]; [START_REF] Makhzani | PixelGAN Autoencoders[END_REF] is the following (Chen et al., 2018):

E x [KL(q φ (z|x)||p(z))] = I(x; z) + KL(q(z)|| j q(z j ))) + j KL(q(z j )||p(z j )) (5.7)
where q(z) is the aggregated posterior and I(x; z) is the mutual information between

x and z. Penalizing I(x; z) can be harmful to reconstruction purposes, but enforcing a factorized aggregated posterior encourages independence across the dimensions of z, favouring disentanglement. The dimensional independence in the latent space is encouraged by the second term, known as total correlation (TC). The third term is a further regularization, preventing the aggregate posterior to deviate too much from the factorized prior.

Note that unsupervised vae-based approaches approximate the data marginal distribution p θ (x), but there are no guarantees to recover the true joint probability distribution p θ (x, z), having access to the input observations x only [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF].

Pushing the model to learn a representation with statistically independent dimensions is not sufficient to obtain full disentanglement. These considerations have been recently

formalized in the impossibility result (Locatello et al., 2019b), but they were already known in the nonlinear ica literature [START_REF] Comon | Independent Component Analysis, a New Concept?[END_REF][START_REF] Hyvärinen | Nonlinear Independent Component Analysis: Existence and Uniqueness Results[END_REF].

Auxiliary Variables and Disentanglement

In order to overcome the above limitations, a key idea is to incorporate an inductive bias in the model. The choice of the variational family and prior distribution can be one of such bias [START_REF] Mathieu | Disentangling Disentanglement in Variational Autoencoders[END_REF][START_REF] Kumar | On Implicit Regularization in β-VAEs[END_REF]. Alternatively, it is possible to rely on additional information about the ground-truth factors, which we indicate as u ∈ R m . When auxiliary observed variables u are available, they can be used jointly with z to reconstruct the original input x. These methods are usually classified under the semi/weakly supervised family. More specifically [START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF] identify three commonly used forms of weak supervision: restricted labeling (Kingma et al., 2014;[START_REF] Cheung | Discovering Hidden Factors of Variation in Deep Networks[END_REF][START_REF] Siddharth | Learning Disentangled Representations with Semi-Supervised Deep Generative Models[END_REF][START_REF] Klys | Learning Latent Subspaces in Variational Autoencoders[END_REF], match/group pairing [START_REF] Bouchacourt | Multi-Level Variational Autoencoder: Learning Disentangled Representations from Grouped Observations[END_REF][START_REF] Hosoya | Group-based Learning of Disentangled Representations with Generalizability for Novel Contents[END_REF]Locatello et al., 2020a), and rank pairing (Chen and Batmanghelich, 2020a,b). When all ground-truth factors are known for all the input samples, we label them as supervised disentanglement methods.

As for unsupervised counterpart, methods relying on auxiliary observed variables u differ in how the regularization term(s) are designed. Some approaches use a "supervised" regularization term to directly match z and the available ground-truth factors u: we refer to this form of regularization as direct matching. An example is what here we call fullvae method (Locatello et al., 2020b), which optimizes the following ELBO: 

L fullvae = L β-vae -γR s (q φ (z|x), u), ( 5 
L ivae = E q φ (z|x,u) [log p θ (x|z)] -βKL(q φ (z|x, u)||p θ (z|u)).
(5.9)

In Equation 5.9, we recognize the usual structure of a reconstruction, and a regularization term. A remarkable advancement of ivae relates to its identifiability properties: next, we present a new identifiable model to learn disentangled representations, by using an optimal factorized prior, conditionally dependent on auxiliary information. We also extend our method to deal with more realistic semi-supervised settings.

idvae -Identifiable Double vae

Let x ∈ R n , and u ∈ R m be two observed random variables, and z ∈ R d a low-dimensional latent variable, with d ≤ n. Then, consider the following generative models:

p θ (x, z|u) = p f (x|z)p T,η (z|u), (5.10) p f (x|z) = p (x -f (z)), (5.11) p T,η (z|u) = i h i (z i )g i (u) exp T i (z i ) η i (u) , (5.12) 
and

p ϑ (z, u) = p ϑ (u|z)p(z), (5.13) 
where θ = (f , T, η) and ϑ are model parameters. Equation 5.10 corresponds to the process of generating x given the latents z. Equation 5.11 implies that x = f (z) + , with ∼ N (0, Σ). We approximate the injective function f with a neural network.

Equation 5.12 is an exponential conditionally factorial distribution [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF], where

h i is the base measure, g i (u) is the normalizing constant, T i = [T i,1 , • • • , T i,k ] are the sufficient statistics, and η i (u) = [η i,1 , • • • , η i,k
] are the corresponding parameters. The dimension of each sufficient statistic k is fixed. Equation 5.13 formalizes the additional process to obtain u given z through p ϑ (u|z), where p(z) is a prior over the latents, usually a factorized, isotropic unit Gaussian.

Given a dataset D = {(x (1) , u (1) ), • • • , (x (N ) , u (N ) )} of observations generated according to Equations 5.10 to 5.13, we are interested in finding a variational bound L for the marginal data log-likelihood p(x, u), which we derive as follows:

log p(x, u) = KL(q φ (z|x, u)||p θ (z|x, u)) + L(θ, φ),
where, by abuse of notation, we write x and u in place of x (i) and u (i) , which we do hereafter as well.

Since the KL term is non-negative, we have the following variational lower bound: log p(x, u) ≥ L(θ, φ). Now, we can write the ELBO, which resembles that of Equation 5.9, but includes an additional term:

L(θ, φ) = E q φ (z|x,u) [log p f (x|z)] -βKL(q φ (z|x, u)||p T,η (z|u)) + log p(u), (5.14) 
where we introduce the parameter β to gauge the pressure on the KL term. Next, focusing on the generative model in Equation 5.13, we derive the following variational lower bound for log p(u) in Equation 5.14, log p(u) ≥ L prior (ϑ, ψ):

L prior (ϑ, ψ) = E q ψ (z|u) [log p ϑ (u|z)] -KL(q ψ (z|u)||p(z)), (5.15) 
By combining Equation 5.14 and Equation 5.15, we obtain:

L idvae (θ, φ, ϑ, ψ) = E q φ (z|x,u) [log p f (x|z)] -βKL(q φ (z|x, u)||p T,η (z|u)) 1 + E q ψ (z|u) [log p ϑ (u|z)] -KL(q ψ (z|u)||p(z)) 2 
.

(5.16)

We refer the reader to Appendix B.1 for the full derivation of Equations 5.14 to 5.16. We call our method idvae, Identifiable Double vae, because it can be seen as the combination of two variational autoencoders 1 and 2 , with independent parameters. In principle, when we optimize the ELBO by summing across all datapoints, e.g. using a doubly stochastic approach [START_REF] Titsias | Doubly Stochastic Variational Bayes for non-Conjugate Inference[END_REF] and automatic differentiation, we could treat the two parts separately. However, nothing would prevent p T,η (z|u) and q ψ (z|u) to converge to different distributions. Thus, we further make the modeling assumption of constraining the conditional prior in 1 to be exactly the variational approximation learned in 2 , which belongs to the exponential family: in our current implementation, they are both Gaussian distributions, hence we can simply do momentmatching. idvae is trained by alternating optimization of Equation 5.16, where we update part 2 , then use the conditional prior to update the part 1 , and loop.
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Identifiability Properties

Next, we set up notations and definitions for a general theory of identifiability of generative models [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF], and show that idvae, under mild conditions, is identifiable.

Notation. Concerning the exponential conditionally factorial distribution in Equation 5.12, we denote by T(z) the vector of concatenated sufficient statistics defined as follows:

T(z) = [T 1 (z 1 ) , • • • , T d (z d ) ] ∈ R dk .
We denote by η(u) the vector of its parameters defined as follows:

η(u) = [η 1 (u) , • • • , η d (u) ] ∈ R dk .
Definition 5.4.1. Let ∼ be an equivalence relation on the parameter space Θ. We say that Equation 5.

1 is ∼-identifiable if p θ (x) = p θ * (x) =⇒ θ ∼ θ * .
Definition 5.4.2. Let ∼ be the equivalence relation on Θ defined as follows: ii The function f is injective.

(f , T, η) ∼ (f , T , η ) ⇔ ∃A, c : T(f -1 (x)) = AT (f -1 (x)) + c, ∀x ∈ X ,
iii The sufficient statistics T i,j in Equation 5.12 are differentiable almost everywhere, and linearly independent on any subset of X of measure greater than zero.

iv Being k the dimensionality of the sufficient statistics T i in Equation 5.12 and d the dimensionality of z, there exist dk + 1 distinct points u 0 , ..., u dk such that the dk × dk matrix E defined as follows is invertible:

E = (η(u 1 ) -η(u 0 ); • • • ; η(u dk ) -η(u 0 )) (5.17)
Then the parameters θ = (f , T, η) are ∼ A -identifiable.

Theorem 2 (proof in Appendix B.3) guarantees a general form of identifiability for idvae. Under more restrictive conditions on f and T, following the same reasoning of [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF], it is also possible to reduce A to a permutation matrix.

Note that, in practice, all the vae-based methods we discuss in this work are approximate.

When using a simple, synthetic dataset, where the generative process is controlled, full disentanglement can be verified experimentally [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF]. However, in a realistic setting, the modeling choice for both q φ (z|x, u) and q ψ (z|u) can have an impact on disentanglement. Even when recognition models have enough capacity to fit the data (in our experiments they are Gaussian with diagonal covariance), theoretical guarantees might still fall short, despite the availability of auxiliary variables for all input observations. This could be due to, for example, suboptimal solutions found by the optimization algorithm or to the finite data regime.

Learning an Optimal Conditional Prior

In this work, we advocate for a particular form of a conditional prior, that is the result of learning an optimal representation z, of auxiliary, observed variables u.

In general, an optimal representation, for a generic task y (in our case, we aim at reconstructing u) is defined in terms of sufficiency and minimality: z is sufficient for the task y if I(u; y) = I(z; y), where I(•; •) is the mutual information; z is minimal if it compresses the input such that it discards all variability that is not relevant for the task [START_REF] Achille | Information Dropout: Learning Optimal Representations Through Noise[END_REF]. As shown in [START_REF] Tishby | The Information Bottleneck Method[END_REF], the so called Information Bottleneck (IB) can be used to learn an optimal representation z for the task y, which amounts to optimizing the following Lagrangian:

L IB = H(y|u) + βI(u; z), (5.18)

where we denote the entropy by H(•), with the constant β controlling the trade-off between sufficiency and minimality. It is easy to show that Equation 5.18 and Equation 5.15 are equivalent (with β = 1) when the task is reconstruction [START_REF] Achille | Information Dropout: Learning Optimal Representations Through Noise[END_REF].

In idvae, we learn the conditional prior q ψ (z|u) in part 2 of Equation 5.16, and use it in part 1 by setting p T,η (z|u) = q ψ (z|u). In light of above discussion, this is equivalent to imposing an additional constraint on the conditional prior such that it can learn an optimal representation z from u; the KL term of part 1 pushes q φ (z|x, u) toward the optimal conditional prior, which results in superior regularization quality.

Note that Theorem 2 requires auxiliary variables u to be expressive enough to recover all the independent factors through the parameters η(u). In information theoretic terms, u must be sufficient to recover the ground-truth factors, but there is no explicit need for the extra optimality constraint on p T,η (z|u). While Theorem 2 remains valid for an optimal conditional prior, we experimentally demonstrate that, when variational approximations, sub-optimal solutions, or finite data size spoil theoretical results, learning an optimal conditional prior is truly desirable.

A Semi-supervised Variant of idvae

So far, we have worked under the assumption that the auxiliary information u is consistently available for every x. In real scenarios, it is more likely to observe u for a subset of the input observations. Thus, we propose a variation of idvae for a semisupervised setting. We consider a new objective that consists of two terms (Kingma et al., 2014):

L ss-idvae = (x,u)∼p l L l (x, u) + x∼pu L u (x) + αE (x,u)∼p l [log q ζ (u|x)], (5.19) L l (x, u) = L idvae (x, u), (5.20) L u (x) = E q ζ (u|x) [L l (x, u)] + H(q ζ (u|x)), (5.21) 
where L l and L u are the labeled and unlabeled terms respectively; q ζ (u|x) in Equation 5.21 is used to derive u from x when u is not provided as input. In Equation 5.19 we include a third term -αE (x,u)∼p l [log q ζ (u|x)], where α controls the relative weight between generative and purely discriminative learning -such that the distribution q ζ (u|x) can learn also from labeled data. Clearly, this method also applies to the work from [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF]. In our experiments, we set α = 0.1N .

Experiments

Experimental Settings

Methods. We compare idvae with three disentanglement methods: β-vae, fullvae, ivae. β-vae (Higgins et al., 2017a) is a baseline for indirect matching methods where no ground-truth factor is known at training time and the only way to enforce a disentangled representation is by increasing the strength of the regularization term through the hyperparameter β. fullvae (Locatello et al., 2020b) is the representative of direct matching methods: it can be considered as a standard β-vae with an additional regularization term, weighted by an hyper-parameter γ, to match the latent space to the target ground-truth factors. As done in the original implementation, we use a binary cross entropy loss for fullvae, where the targets are normalized in [0, 1]; we also set β = 1, to measure the impact of the supervised loss term only. ivae [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] is another indirect matching method where the regularization term, weighted again by β, involves a conditional prior. We additionally report the results for the semi-supervised versions of fullvae, ivae, and idvae, which we denote as ss-fullvae, ss-ivae1 , ss-idvae, respectively. Variational approximations, and the conditional priors, Disentanglement metrics. In the literature, several metrics have been proposed to measure disentanglement, with known advantages and disadvantages, and ability to capture different aspects of disentanglement. We report the results for some of the most popular metrics: beta score (Higgins et al., 2017a), MIG (Chen et al., 2018), SAP [START_REF] Kumar | Variational Inference of Disentangled Latent Concepts from Unlabeled Observations[END_REF], modularity and explicitness [START_REF] Ridgeway | Learning Deep Disentangled Embeddings With the F-Statistic Loss[END_REF], all with values between 0 and 1. The implementation of the metrics is based on Locatello et al. (2019b).

We refer the reader to Appendix B.5 for further details.

Experimental protocol. In order to fairly evaluate the impact of the regularization terms, we rely on a solid experimental protocol where all models are trained with the same convolutional architecture, optimizer, hyper-parameters of the optimizer and batch size, that are empirically known to be good for the datasets we tested. The latent dimension z is fixed to the true number of ground-truth factors. The conditional prior in ivae is a MLP network; in idvae we use a simple MLP vae. The same architecture is taken for the conditional prior of the semi-supervised counterparts. Moreover, q ζ (u|x) is implemented by a convolutional neural network. Refer to Appendix B.4 for more details. .3: Beta score and explicitness (the higher the better). 1=β-vae, 2=ss-idvae (1%), 3=ss-idvae (10%), 4=idvae, 5=ss-ivae (1%), 6=ss-ivae (10%), 7=ivae, 8=ssfullvae (1%), 9=ss-fullvae (10%), 10=fullvae. Percentage of labeled samples in parenthesis.

Disentanglement Evaluation. In Figure 5.3, we report, for each method and for each dataset, the ranges of the beta score and explicitness values with a box-plot. The variance of the box-plots is due to the random seeds and regularization strengths, which are the only parameters we vary. Furthermore, Figure 5.3 includes the results for ss-idvae, ss-ivae and ss-fullvae (trained with 1% and 10% labeled samples), with different shades of green, blue, and red, respectively. The remaining evaluation metrics can be found in Appendix B.6, but they are essentially all correlated, as also noted in Locatello et al. (2019b).

Overall, we observe, as expected, that β-vae is often the worst method. Indeed, it has no access to any additional information at training time except the data itself. Despite this, β-vae disentanglement performance is surprisingly not that far from fullvae that directly matches the latent space with the ground-truth factors. In some cases, β-vae obtains very high beta scores (see outliers), such as for dsprites and cars3d datasets, confirming the sensitivity to random initialization of unsupervised methods (Locatello et al., 2019b). Note also that fullvae exhibits inconsistent performance across the four datasets.

idvae turns out to be the best method across several disentanglement metrics, except for smallnorb, where fullvae's beta score is slightly better. For this specific dataset and metric, there are no considerable differences among methods, since most of the box-plots overlap. We note that idvae outperforms ivae: considering that the two methods differ for the way the conditional prior is learned, our experiments show that an Chapter 5. An Identifiable Double vae For Disentangled Representations optimal conditional prior, as we propose in this work, offers substantial benefits in terms of disentanglement and it is the only reason for idvae superiority. Finally, although both ivae and idvae have theoretical guarantees on disentanglement and use the full set of ground-truth factors as input, they do not always obtain the maximum evaluation score, in practice. This is in line with the considerations in Section 5.4.1.

The analysis above remains valid if we consider the semi-supervised versions of the tested methods, too. We observe that, with the exception of smallnorb, ss-idvae's disentanglement performance coherently increases when it observes more labeled instances.

The same trend is generally followed by ss-ivae. ss-fullvae, instead, seems to be less susceptible to the number of labeled instances. In general, even a small percentage of labeled instances (1%) is enough for ss-idvae to outperform β-vae and to keep up with fullvae that is, however, a fully supervised method. This suggests that ss-idvae is a valid choice for applications where collecting additional information about the training data is difficult or expensive.

Impact of the regularization strength. The disentanglement performance of each method might change drastically as a function of the regularization strength: some approaches might work significantly better in some ranges and very badly in others. In Figure 5.4, we plot, for each method and for each dataset, the median of the beta score and explicitness evaluation values as a function of the regularization strength. This is also useful to see if there are methods that consistently dominate others. In this case, we

Chapter 5. An Identifiable Double vae For Disentangled Representations 93 do not report the results for ss-idvae, ss-ivae, and ss-fullvae to make the plots more easily readable. Additional disentanglement score results, including the semi-supervised versions, can be found in Appendix B.6.

Across all the datasets, idvae achieves the best median scores for a wide range of regularization strengths. In dsprites, cars3d, and shapes3d, idvae dominates all the other methods (idvae is largely dominant also considering the remaining evaluations metrics). The performance of ivae and fullvae can match that of idvae in some datasets, but the behavior is not consistent: if we focus on beta score, ivae is the second best method in cars3d and shapes3d, whereas in dsprites and smallnorb, performance drops when we increase the regularization strength -even β-vae performs better; fullvae behaves well for dsprites and smallnorb, but it is on pair only with β-vae in cars3d and shapes3d.

By observing the evolution of the disentanglement scores, it appears that there is no clear strategy to choose the regularization strength. For idvae, in datasets such as dsprites and cars3d, the regularization strength does not significantly affect the beta score; in shapes3d and smallnorb, we note instead a decreasing monotonic trend. The situation is similar if we look at the explicitness, but it differs if we consider other disentanglement metrics. It is plausible to deduce that the regularization strength is both model and data specific, and it also depends on the disentanglement metric.

Limitations

In our experimental campaign we use the same convolutional architecture for all the methods we compare. We do not vary the optimization hyper-parameters and the dimension of the latent variables. Hence, we cannot ensure that every method runs in its best conditions. Nevertheless, our experimental protocol is in line with the standards in the literature of disentangled representation learning, makes our analysis independent of method-specific optimizations, and has the benefit of reducing training times.

We use the whole set of ground-truth factors as auxiliary variables, in the semi-supervised settings too, whereas it is possible to study the impact of only a subset of the factors to be available. Moreover, idvae and ivae can use any kind of auxiliary variables, as long as they are informative about the ground-truth factors: they are not restricted to using, e.g., labels corresponding to input data, as we (and several studies) do.

Finally, we do not study the implications and benefits of disentanglement for solving complex downstream tasks, which is an interesting task we leave for future work. It should be noted, however, that most of the disentanglement metrics can be seen as a proxy for the performance of a simple downstream task, i.e., matching each latent dimension with the corresponding ground-truth factor.
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Conclusion

In this work, we went a step further in the design of identifiable generative models to learn disentangled representations. idvae uses a prior that encodes ground-truth factor information captured by auxiliary observed variables. The key idea was to learn an optimal representation of the latent space, defined by an inference network on the posterior of the latent variables, given the auxiliary variables. Such posterior is then used as a prior on the latent variables of a second generative model, whose inference network learns a mapping between input observations and latents. We also proposed a semi-supervised version of idvae that can be applied when auxiliary variables are available for a subset of the input observations only. Experimental results offer evidence that idvae and ss-idvae often outperforms existing alternatives to learn disentangled representations, according to several established metrics.

CHAPTER

SIX

CONCLUSIONS

Interpretable machine learning unifies under one umbrella many research fields that, despite being profoundly different, share the same goal: making machine learning understandable and accessible to humans. This is a difficult challenge that we have to win in order to proceed our road toward explainable ai. We conclude this thesis with a summary of the main themes and contributions presented in the previous chapters, with a special focus on future work directions.

Themes and Contributions

We summarize the main themes and contributions of this work as follows:

Overview of interpretable machine learning. The main challenge when approaching old and continuously evolving fields like interpretable machine learning is to find the way through the huge amount of work, often coming from different research communities, and using inconsistent notations to refer to the same concepts. In the first chapter of the thesis, we gave a unified view of the main approaches to interpretable machine learning, with a shared notation and a common taxonomy. It was a huge effort, considering also that relevant old work did not make explicit reference to "interpretability"

or "explainability" in the title. In Chapter 1, aside from the standard categorization between transparent models and post-hoc interpretability techniques, we studied interpretable machine learning from two points of view: interpretability of the models and interpretability of the data representations.
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A unified and critical view of rule learning approaches. Regarding the interpretability of machine learning models, predictive rule learning belongs to the family of transparent models and aims at discovering interesting and highly predictive patterns in the data in the form of if-then-else rules. The rule learning process consists of distinct steps, each with its own challenges: feature construction, rule construction, hypothesis construction, and eventually post-pruning. Different implementations of these building blocks result in different methods, that we analyzed in Chapter 2 to highlight their criticalities, mainly related to computational complexity, small disjuncts, predictive performance-interpretability tradeoff.

A novel method to learn interpretable rule sets. In Chapter 3, we proposed an ensemble of bottom-up learnerslibre -that is: i) versatile and effective with both balanced and imbalanced data, ii) interpretable, iii) scalable to high-dimensional datasets. The key intuition was to exploit the known advantages of bottom-up learners in imbalanced settings, and improve their generalization capabilities through an interpretable ensembling technique that, in our case, is simply a union. Our experimental campaign

shows the superiority of libre, in terms of predictive performance, interpretability and scalability, when compared to state-of-the-art competitors and black-box models.

A unified and critical view of disentanglement methods. Regarding the interpretability of data representations, disentangled representation learning is a branch of representation learning that has the goal of learning representations that are aligned with a series of statistically independent and semantically meaningful ground-truth factors that are assumed to generate the input observations. In Chapter 4, we presented the most recent theoretical frameworks to define and evaluate disentangled representations, reporting applications were disentangled representations ensure practical benefits.

A novel method to learn disentangled representations. In Chapter 5, we followed the formalization of disentanglement presented in the previous chapter to review the state-of-the-art of vae-based disentanglement methods, highlighting the role of the regularization term and inductive biases on disentanglement. We studied the connection between model identifiability and disentanglement, and proposed idvae, a method that exploits a factorized prior, conditionally dependent on auxiliary variables complementing input observations, to improve the regularization quality on the learned representation, and obtain theoretical guarantees on model identifiability, hence disentanglement. idvae, and its semi-supervised version, outperforms related state-of-the-art-methods according to several well-established disentanglement metrics.
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Future Work

It is not an exaggeration to say that, at this moment, interpretable machine learning has an edge over any other machine learning field. While I am writing this thesis, there is an uncountable number of remarkable works that would deserve to be discussed. All this to say that interpretable machine learning is a "work-in-progress". In this section, we list interesting directions for future research we believe to be relevant to the theoretical community and practical aspects of interpretable machine learning, with a focus on rule learning and disentangled representation learning. We remind the reader that an extensive discussion about challenges and future work can be found at the end of Chapters 1, 2 and 4.

Interpretable machine learning. The gap between human explanations and ai explanations is significant which is why we should work to reduce it. We suppose that transparent models are the future of interpretable machine learning, and might help to avoid all the issues derived from post-hoc interpretability techniques, as discussed in Section 1.5. We are aware that defining interpretability for specific domains and methods is difficult: for instance, the number and size of rules are standard proxies for interpretability in rule-based methods, but it is not equally clear how to encode and measure interpretability in computer vision methods (although there have been already

successful results [START_REF] Chen | This Looks Like That: Deep Learning for Interpretable Image Recognition[END_REF]). In this context, also disentangled representation learning is a way to natively incorporate interpretability constraints in the development of generative models.

Rule learning. Rule learning is a mature field with known advantages and historical problems investigated throughout this work that we tried to solve by proposing libre.

The optimization problem of discovering rules, eventually including interpretability constraints, is known to be computationally hard. Solving it, or providing approximate solutions, by leveraging new theoretical techniques and advances in hardware is still an open problem. Dealing with class imbalance problems is another fundamental challenge of machine learning that always calls for new approaches. Incremental rule learning [START_REF] Schlimmer | Incremental Learning from Noisy Data[END_REF] and Bayesian rule learning [START_REF] Wang | A Bayesian Framework for Learning Rule Sets for Interpretable Classification[END_REF][START_REF] Yang | Scalable Bayesian Rule Lists[END_REF] are two other interesting future directions that aim at extending rule learning to data streams and probabilistic settings.

Disentangled representation learning. Learning disentangled representations is hard even in the easiest formulation with independent ground-truth factors. Despite non-negligible advancements, recent methods usually do not work well for real datasets.

There have been attempts to learn disentangled representations for multiple objects [START_REF] Greff | Multi-Object Representation Learning with Iterative Variational Inference[END_REF], hierarchical representations [START_REF] Singh | FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery[END_REF], and representations Chapter 6. Conclusions 98 with causal relation among ground-truth factors [START_REF] Yang | CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models[END_REF]. Nevertheless, before considering more complicated formulations, we believe it is crucial to i) obtain consistent results for toy settings first, ii) investigate alternative methods that lead to general theoretical guarantees on disentanglement, not necessarily valid in the limit of infinite data only, iii) design new disentanglement evaluation measures, well aligned with the corresponding theoretical definition of disentanglement and that do not require (a full) apriori knowledge on the generative process or ground-truth factors.

bit i ∈ I to flip. We instead compute the distance only once outside the while loop, and update it iteratively for i best only (the complexity of the update is O(n) instead of O(nd)). Indeed, we flip one bit at a time and there is no need to re-compute the distance from scratch for the other bits. Thus, we lower the total complexity from O(n 2 d 3 ) to O(n 2 d 2 ).

A.2 Parallel and Distributed Implementation

libre is amenable to parallel and distributed implementations. Indeed, it processes one positive sample at a time. An exhaustive version of the FindBoundaryPoint procedure is embarrassingly parallel and it is easily parallelizable on multi-core architectures: it is sufficient to spawn a UNIX process per positive sample, and exploit all available cores.

In contrast, the approximate procedure requires a slightly more involved approach.

Indeed, the approximate FindBoundaryPoint procedure processes positive records libre can be easily distributed such that it can run on a cluster of machines, using for example a distributed computing framework such as Apache Spark [START_REF] Zaharia | Apache Spark: A Unified Engine for Big Data Processing[END_REF]. This approach, called data parallelism, splits input data across machines, and let each machine execute, independently, a weak learner. The data splitting operation shuffles random subsets of the input features to each worker machine. Once each worker finishes to generate the local rule sets, they are merged in the "driver" machine, which eventually applies the filtering and executes the rule selection procedure to produce the final boundary.

A.3 Scalability Evaluation

Here, we extensively test the scalability of libre. We use up to 50 features and investigate also the impact of class imbalance on the execution time.

Chapter A. Additional details and results about libre 1 Different rule sets may be obtained depending on how folds are randomly built during cross validation.
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Chapter 2 and

 2 Chapter 3 extend the work presented in: Graziano Mita, Paolo Papotti, Maurizio Filippone, Pietro Michiardi. libre: Learning Interpretable Boolean Rule Ensembles. Proceedings of the 23rd International Conference on Artificial Intelligence and Statistics, AISTATS, 2020.

Chapter 4 and

 4 Chapter 5, expand on: Graziano Mita, Maurizio Filippone, Pietro Michiardi. An Identifiable Double vae For Disentangled Representations. Under review by the 38th International Conference on Machine Learning, ICML, 2021. Chapter 4 defines the problem of learning disentangled representations, reporting quantitative measures to evaluate disentanglement and practical examples where disentanglement is beneficial. Chapter 5 reviews the main vae-based approaches from the literature to learn disentangled representation and analyzes the relation between model identifiability and disentanglement. ix x Moreover, it delineates our proposal to learn disentangled representation with theoretical guarantees.
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 1 Figure 1.1: A taxonomy of machine learning interpretability approaches.

( a )

 a Original image. (b) Electric guitar. (c) Acoustic guitar. (d) Labrador.

Figure 1 . 2 :

 12 Figure 1.2: Example reported in Ribeiro et al. (2016). Google's Inception neural network generates the following predictions for the image in Figure 1.2a: electic guitar (p = 0.32), acoustic guitar (p = 0.24), labrador (p = 0.21). Figures 1.2b to 1.2d show the explanations provided by lime for each prediction.

Figure 1 . 3 :

 13 Figure 1.3: Feature visualization from Olah et al. (2017), learned by GoogLeNet[START_REF] Szegedy | Going Deeper with Convolutions[END_REF], trained on the ImageNet dataset[START_REF] Deng | ImageNet: A Largescale Hierarchical Image Database[END_REF]. Deeper layers (left-to-right) learn more complex features.

Figure 1 . 4 :

 14 Figure 1.4: Example reported in[START_REF] Rudin | Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead[END_REF]. Saliency maps are not reliable explanation tools, because they provide similar explanations for different predictive outputs.

P

  (r) = | P(r)| and N (r) = | N (r)| represent their size. Equivalently, P(r) and N (r) denote the set of positive and negative samples not covered by rule r, respectively; P (r) = | P(r)| and N (r) = N (r) indicate their size. Given the total number of positive and negative samples, P = |P| and N = |N |, we also define: π = P P (true positive rate), ν = N N (false positive rate), π = P P (false negative rate), ν = N N (true negative rate).

Figure 2 . 1 :

 21 Figure 2.1: Completeness and consistency of rule-set R. Target concept in black.

  . It receives as input the set of positive and negative training samples (D + , D -) and the set of original features F. Then, if a feature f is discrete, it generates binary features f = v for all the values appearing in the positive samples (v ∈ V + ), and f = v for all the values in the negative samples (v ∈ V -). If a feature f is numerical, it first sorts all possible values of f , identifies couples of consecutive values v i , v i+1 belonging to different classes, computes the mean v = (v i + v i+1 )/2 and then generates binary features as follows: if the smaller value v i belongs to the positive class (and the greater value v i+1 to the negative class)

  and modlem[START_REF] Grzymala-Busse | Three discretization methods for rule induction[END_REF], start directly from very specific rules (the examples themselves) and generalize them until a given criteria is met. Such methods are susceptible to noise, and tend to induce a very high number of specific rules, but are better suited for cases where only few examples characterize the target class(Fürnkranz et al., 2014, Section 2.5.2).

  separating positive from negative samples. More formally: Definition 3.3.4. Given a ∈ {0, 1} d = P ∪ N , if a ≤ x for some x ∈ P, and y ∈ N : a ≤ y, and ∃y ∈ N : b ≤ y , ∀b < a, then a is a boundary point for (P, N ). The set A of boundary points defines the separation boundary. If a a and a a , ∀a , a ∈ A, a = a , then the separation boundary is irredundant.

z

  ∈ I m = {1, ..., m}, inverse-on-hot encoding produces a binary string b of length m, where b(i) = 1 for i = z, b(i) = 0 for i = z. More details can be found in Appendix A.1. Example 3.4.1. Consider a dataset with two continuous features, f 1 and f 2 , both taking values in the domain [0, 100]. Suppose that, a discretization algorithm outputs the following discretization ranges for the two features: [[0, 40), [40, 100]] and [[0, 30), [30, 60),[60, 100]] respectively. Once all records are discretized, we apply inverse one-hot encoding, as previously defined. For example, f 1 = 33.1, f 2 = 44.7 is first discretized as f 1 = 1, f 2 = 2, and then binarized as 01 101. In other words, each feature of a record is encoded with a number of bits equal to its discretized domain, and can have only one bit set to zero.

  Definition 3.4.1. Given two lattice elements x, x ∈ {0, 1} d , we say that x covers x, if and only if x ≤ x, according to the standard ordering in the Boolean lattice. Definition 3.4.2. Given a lattice element x ∈ {0, 1} d , flipping off the k-th element of x produces an element z such that z(i) = x(i) for i = k and z(i) = 0 for i = k. Algorithm 5 FindBoundary (D + , D -) Set A = ∅ and S = D + while S = ∅ do Choose x ∈ S Set I = P(x), J = ∅ FindBoundaryPoint(A, D + , D -, S, I, J ) Remove from S the elements covered by a, ∀a ∈ A end Definition 3.4.3. Given a positive binary sample x ∈ D + , we say that a flip-off operation produces a conflict if the lattice element z resulting from the flip-off is such that ∃x ∈ D -: z ≤ x .Then, a boundary point is a lattice element that covers at least one positive sample, and for which a flip-off operation would produce a conflict, as defined above.Algorithm 5 presents the main steps of our algorithm, where A is the boundary set, enlarged progressively, and S = {s ∈ D + : a ∈ A, a ≤ s} is the set of elements in D + that are not covered by a boundary point in A. I is the set of indexes of the components of the current positive sample x that can be flipped-off, and J is the set of indexes that generate a conflict with D -if they are flipped-off. The role of I and J will be clear later in Algorithm 6. Until S is not empty, an element x is picked from S. Then, the procedure FindBoundaryPoint generates one or more boundary points by flipping-off the candidate bits of x. According to Definition 3.4.2, a boundary point is generated when an additional flip-off would lead to a conflict, given Definition 3.4.3. When the FindBoundaryPoint procedure completes its operation, both A and S are updated.Example 3.4.2. Let D + = {11001} and D -= {01101, 01101}. Take the positive sample 11001, for which I = {1, 2, 5} and J = ∅ at the beginning. Suppose that FindBoundaryPoint flips-off the bits in I from left to right. Flipping-off the first bit generates 01001 ≤ 01101 ∈ D -. The first bit is moved to J and kept to 1. Flipping-off the second bit generates 10001 ≤ 10101 ∈ D -. Also the second bit is moved to J . We finally flip-off the last bit and obtain 11000 that is not in conflict with any element in D -. 11000 is therefore a boundary point for (D + , D -).

  since they are the ones that contribute most to reduce the number of 1s of a potential boundary point. Algorithm 6 illustrates our approximate procedure, where S 0 i = {s ∈ S : s(i) = 0} and D + 0 i = {p ∈ D + : p(i) = 0} are proxies for the potential coverage of flipping-off a given bit i. The first step of the algorithm computes, for each index i ∈ I, the terms |S 0 i | and |D + 0 i | indicating its potential coverage, and d l (t(I ∪ J ), D - 0 i ). Until the set I is not empty, indexes inducing a unit distance to D -are moved to J . Then, we choose the best index i best among the remaining indices in I, using our greedy heuristics: we can chose to optimize either for the tuple H 1 = (|S 0 i |, |D + 0 i |, d l (t(I ∪ J ), D - 0 i )) or for the tuple H 2 = (d l (t(I ∪ J ), D - 0 i ), |S 0 i |, |D + 0 i |) in lexicographic order. H 1 prioritizes a lower number of boundary points, while H 2 tends to generate boundary points with fewer 1s.

  Example 3.4.3. Let D + = {10101, 01101, 01110} and D -= {10110, 11010}. We describe the procedure for few steps and only for the first positive sample 10101. Suppose to optimize the tuple (|S 0 i |, |D + 0 i |, d l (t(I ∪ J ))). For 10101 we have I = {1, 3, 5} and J = ∅. At the beginning S = D + . |D + 0 1

  a ∈ A is initially assigned a weight w(a) = α| D+ (a)| -(1 -α)| D-(a)| that is proportional to the number of positive and negative covered samples, | D+ (a)| and | D-(a)| respectively. The importance of the two contributions is governed by a parameter α.

  Figure 3.1: Example of rule set learned by libre for liver.
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 32 Figure 3.2: Interpretable rule sets for ilpd, liver, pima and transfusion.
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 41 Figure 4.1: Example of a toy world, where an object moves vertically and horizontally within a grid. The object can also change its size. It can be seen as a simplified version of dsprites.

  to move vertically and horizontally within a grid, and change its size. The horizontal and vertical position, together with the size, constitute a world state. Every change in at least one of the three dimensions affects the world state. Clearly, when the size of the object increases or decreases, it has no effects on the identity of the object, that remains a circle, it does not even affect its position. The same happens if the horizontal or vertical positions change. Those actions that modify a certain aspect of the world state, while keeping the other fixed are called disentangled group actions. Disentangled group actions can be further decomposed into disentagled sub-groups: in this case, horizontal position, vertical position, and size.

Figure 4 . 2 :

 42 Figure 4.2: Toy world example. Latent traversal of a representation that is disentangled with respect to the following sub-group action decomposition: size (z 1 ), horizontal position (z 2 ), vertical position (z 3 ).

  this point, we can try to learn a representation of the world observations by training a model, for example an auto-encoder. In certain circumstances, we might be able to find a mapping from the observations to the learned representation, and vice-versa, that preserves the original disentangled group actions. If the mapping exists, it gives a disentangled representation. Definition 4.3.1. (Higgins et al., 2018a) A vector representation is called a disentangled representation with respect to a particular decomposition of a symmetry group into sub-groups, if it decomposes into independent sub-spaces, where each subspace is affected by the action of a single sub-group, and the actions of all other sub-groups leave the subspace unaffected. Definition 4.3.1 clarifies doubts emerged from previous work, where it was not clear how many dimensions should encode a given sub-group. According to the definition above,

  and it is affected only by the corresponding sub-group action Γ i . Disentangled representation. Let us denote by W the set of world states. Observations O are the result of a generative process g : W → O. An external agent learns a representation Z through the mapping e : O → Z. Let f = e • g represent the composition of e and g, where we first obtain observations from world states through g, and the agent learns its own representations from the observations through e. Let us also consider a group of symmetry transformations associated with W via the group action • : Γ × W → W . The goal is to find an equivalent group action • : Γ • Z → Z. This is possible if:

Figure 4 . 3 :

 43 Figure 4.3: Visual Inspection of a content-style disentanglement method (Kingma et al., 2014) trained on mnist. If we move from left to right, we observe the effects that the content portion of the learned representation has on the corresponding observation.

  suggest a few modifications to the beta score, ending up with a new disentanglement measure: the factor score. The factor score uses a majority vote classifier to predict the index of the fixed ground-truth factor based on the index with the smallest variance. A majority vote classifier does not require any parameter tuning; moreover, it assigns the lowest variance to a given factor, avoiding the failure mode of the beta score. In a perfectly disentangled representation, the fixed factor of variation corresponds to a variance of zero in the dimension encoding that factor. SAP -Separated Attribute Predictability. With the beta score as a reference, Kumar et al. (2018) design a new disentanglement measure that does not require any additional parameter tuning for the classifier. They propose the Separated Attribute Predictability -SAP score -that is computed from a score matrix, where each entry is the linear regression or classification score (in case of discrete factors) of predicting a given ground-truth factor with a given dimension of the learned representation. The SAP score is the average difference of the prediction error of the two most predictive learned dimensions for each factor. For regression, they use the R 2 score obtained with fitting a line minimizing the linear regression error. A high SAP score indicates that each ground-truth factor is mostly captured by one latent dimension only. MIG -Mutual Information Gap. The mutual information gap -MIG score -(Chen et al., 2018) is computed as the average, normalized difference between the highest and second highest mutual information of each ground-truth factor with the dimensions of the learned representation. Similarly to the SAP score, the MIG score needs to know the ground-truth factors, without having explicit access to the generative process. It reaches its maximum when each latent dimension is informative of a single ground-truth factor. DCI Disentanglement. Eastwood and Williams (2018) define three properties for representations: disentanglement, completeness and informativeness. i) Each of the K dimensions of the learned representation is assigned a disentanglement score

Figure 4

 4 Figure 4.4: A swinging pendulum that creates a shadow when hit by a light source.
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 51 Figure 5.1: Minimizing the KL divergence increases the posterior overlaps[START_REF] Burgess | Understanding disentangling in β-VAE[END_REF].

  where A is a dk × dk matrix and c is a vector of dimension dk. If A is invertible, we denote this relation by ∼ A . Definition 5.4.2 establishes a specific equivalence relation that allows to recover the sufficient statistics of our model up to a linear matrix multiplication.Theorem 2.[START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] Assume we observe data sampled from p θ (x, z|u) = p f (x|z)p T,η (z|u), where p f (x|z) as in Equation5.11 and p T,η (z|u) as in Equation5.12, with parameters θ = (f , T, η). Assume the following holds: i The set {x ∈ X : φ (x) = 0} has measure zero, where φ is the characteristic function of the density p defined in p f (x|z) = p (x -f (z)).

  Figure5.3: Beta score and explicitness (the higher the better). 1=β-vae, 2=ss-idvae (1%), 3=ss-idvae (10%), 4=idvae, 5=ss-ivae (1%), 6=ss-ivae (10%), 7=ivae, 8=ssfullvae (1%), 9=ss-fullvae (10%), 10=fullvae. Percentage of labeled samples in parenthesis.
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 54 Figure 5.4: Beta score and explicitness median (the higher the better) as a function of the regularization strength.

  that have not yet been covered by any boundary point. Hence, a global view on the set S is required. We experimented with two alternatives. The first is to place S in a shared, in-RAM datastore, as UNIX processes -unlike threads -do not have shared memory access. The second alternative is to simply let each individual process to hold their own version of S, thus sacrificing a global view. Our experiments indicate that the loss in performance due to a local view only is negligible, and largely out-weighted by the gain in performance, since the execution time decreases linearly with the number of spawned UNIX processes. Moreover, both D + and D -remain consistent throughout the whole induction phase.

  Figure A.5: Example of rule set learned by libre for haberman.
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 8 Figure A.8: Example of rule set learned by libre for liver.

  Figure A.9: Example of rule set learned by libre for pima.

Figure B. 4 :

 4 Figure B.4: Beta score, MIG, modularity, explicitness and SAP median (the higher the better) as a function of the regularization strength, for each method on dsprites, cars3d, shapes3d, smallnorb.

  Example of covering table with three input samples and B binary features.

		Samples		Binary Features
	ID LABEL	b 1	b 2	b 3	. . .	b B
	1	True	False True False . . . True
	2	True	True False False . . . False
	3	False	False False False . . . True
	Figure 2.2:					

• Propositional features. When a binary feature refers to a single input feature, we call it propositional feature. A propositional feature is usually in the form

  From dnf to cnf by applying De Morgan's laws.

	Theory for positive class Theory for negative class
	if condition 11	if not(condition 11 )
	or condition 21	and not(condition 21 )
	or condition 31	and not(condition 31 )
	then positive class	then negative class
	else negative class	else positive class
	Figure 2.3:	

They are linear combinations of elementary metrics. Examples of linear metrics are: coverage, coverage difference, accuracy, rate difference; linear cost and relative linear cost generalize coverage difference and rate difference.

• Nonlinear metrics. They are defined as a nonlinear combination of elementary metrics. The most popular ones are precision, exclusiveness, information content, entropy, and FMeasure that controls the trade-off between precision and recall.

Table 3

 3 

.1. Some of these datasets have been used to evaluate methods for class imbalance

[START_REF] Van Hulse | Experimental Perspectives on Learning from Imbalanced Data[END_REF] 

and present characteristics that make them difficult to learn: overlapping classes, noisy and rare examples. All datasets have, or were transformed to have, a binary class. The sap datasets consist of monitoring data collected across sap hana database systems. They have 45 features, hand-crafted by domain experts based on low-level system metrics. sap runs a predictive maintenance system on this data and notifies customers who confirm or discard the warnings: we use these as binary labels. sap-c is the clean version of sap-f, where we removed records with one missing value or more.
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	Dataset	#records #features imbalance_ratio target_class
	adult	48'842	14	.23	>50k
	australian	690	14	.44	2
	balance	625	4	.08	B
	bank	45'211	17	.12	yes
	haberman	306	3	.26	died
	heart	270	13	.51	presence
	ilpd	583	10	.28	liver patient
	liver	345	5	.51	drinks>2
	pima	768	8	.35	1
	sonar	208	60	.53	R
	tictactoe	958	9	.65	positive
	transfusion	748	5	.24	yes
	wisconsin	699	9	.34	malignant
	sap-c	287'031	45	.01	crash
	sap-f	1'554'227	45	.01	crash

.1: Characteristics of evaluated datasets.
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	requirement automatically treating missing values as special values, while ripper, brs,
	and modlem natively manage missing values for categorical features only, but require an
	additional pre-processing for continuous features. Despite the huge number of missing
	values, results for libre are comparable to other rule learners when executed on sap-c.

.2: F1-score (st. dev. in parenthesis). balance seems to be problematic for most of the tested methods: only the bottom-up learners modlem and libre discover useful patterns. Additionally, ripper, brs and sbrl do not learn anything helpful to predict the positive class in ilpd; modlem performs considerably better. From a deeper analysis, it emerges that ilpd is an imbalanced dataset with overlapping classes: rules learned by libre have an error rate close to 50% on the training set, which is a consequence of the class imbalance. ripper does not learn these rules, whereas brs and s-brl does not include such rules in the final set even when they are in the set of candidate mined rules. With sap-c, libre 3 performs better than brs but limiting the number of rules to 3 causes a significant drop in F1-score w.r.t. libre. The situation is different for sap-f, the version of the dataset with missing values. From Table

3

.1, sap-f is more than five times bigger than sap-c, indicating that missing values are not a negligible problem in real scenarios. A method that runs without additional pre-processing is thus truly desirable. Only libre and s-brl fit this
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	Dataset	dt	ripper	modlem	s-brl	brs	libre	libre 3
	adult	9.3(0.0)	4.4(0.3)	4.3(0.1)	87.0(3.2) 3.3(0.1)	7.8(1.0)	6.5(0.7)
	australian	2.0(0.0)	2.4(0.3)	2.3(0.1)	7.1(1.0)	3.5(0.3)	4.4(1.8)	4.4(1.3)
	balance	4.4(2.9)	0.0(0.0)	3.5(0.0)	0.0(0.0)	4.0(0.0)	2.1(0.0) 2.1(0.0)
	bank	9.5(0.0)	3.0(0.2)	3.0(0.0)	89.0(7.8)	3.2(0.4)	4.7(0.5)	2.0(0.1)
	haberman	4.6(3.3)	1.8(0.4)	2.2(0.1)	3.7(1.0)	3.2(0.7)	2.1(0.3)	2.1(0.3)
	heart	6.2(0.3)	2.1(0.3)	2.3(0.1)	8.1(1.3)	3.3(0.2)	7.7(0.7)	6.1(2.7)
	ilpd	8.5(1.6)	2.1(1.3) 2.1(0.0)	4.4(0.4)	2.8(0.4)	3.3(1.5)	3.0(0.6)
	liver	8.7(1.0)	1.3(0.4)	2.1(0.1)	3.0(0.3)	3.4(0.5)	2.5(1.0)	1.3(0.4)
	pima	6.9(2.5)	2.4(0.5)	2.1(0.1)	6.3(0.8)	3.6(0.5)	2.5(0.7)	2.5(0.7)
	sonar	3.8(1.5)	2.1(0.2)	1.4(0.0)	8.2(2.1)	4.0(0.0)	3.7(1.0)	2.2(0.8)
	tictactoe	6.7(0.1)	2.1(0.2)	3.5(0.0)	21.8(1.6)	3.5(0.1)	3.8(0.8)	3.0(0.0)
	transfusion	6.9(2.5)	2.8(0.4)	2.3(0.0)	3.8(0.6)	3.0(0.6)	2.8(0.7)	2.8(0.7)
	wisconsin	6.1(0.4)	2.0(0.2)	2.2(0.1)	5.9(1.0)	3.3(0.3)	3.2(1.0)	2.8(1.0)
	sap-c	15.2(1.0)	3.8(0.3)	3.4(0.1)	75.4(4.0)	3.9(0.4)	3.3(0.2)	3.0(0.1)
	sap-f	-	-	-	85.6(9.7)	-	4.7(0.3)	4.2(0.2)
	Rank	5.8(1.6)	2.3(1.4) 2.3(1.0)	6.2(1.0)	4.2(1.3)	3.7(1.5)	2.5(1.7)

.3: #rules (st. dev. in parenthesis).
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.4: #atom (st. dev. in parenthesis).

Table 3 .

 3 5: Average training time in seconds (st. dev. in parenthesis).

  Chapter 5. An Identifiable Double vae For Disentangled Representations 84 what they define as consistency and restrictiveness (see Section 4.3.3). To obtain full disentanglement, a method must satisfy both properties on all the latent dimensions.A recent work by[START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF] establishes a theoretical framework to obtain model identifiability, which is related to disentanglement. They propose a new generative model called ivae, that learns a disentangled representation using a factorized prior from the exponential family, crucially conditioned on u. In practical applications, the conditional prior is chosen to be a Gaussian location-scale family, where the mean and variance of each latent dimension z i are expressed as a function of u. Hence, it is possible to derive the following ELBO for the ivae model:

	.8)
	where R s (•) is a loss function between the latent and the ground-truth factors (in the
	original implementation it is a binary cross entropy loss). Other approaches employ a
	KL divergence term between the posterior and the prior over the latents: we refer to this
	form of regularization as indirect matching. In other words, direct matching methods

require explicit knowledge of one or more ground-truth factors, whereas indirect matching can also use weak information about them.

[START_REF] Shu | Weakly Supervised Disentanglement with Guarantees[END_REF] 

have demonstrated that indirect matching methods can enforce some properties in the latent space, leading to

Table 5 .

 5 1: Main characteristics of the datasets.

are Gaussian distributions with diagonal covariance. All methods have been implemented in PyTorch

[START_REF] Paszke | PyTorch: An Imperative Style, High-Performance Deep Learning Library[END_REF]

.

Datasets. We consider four common datasets in the disentanglement literature, where observations are images built as a deterministic function of known generative factors:

dsprites

(Higgins et al., 2017a)

, shapes3d

[START_REF] Kim | Disentangling by Factorising[END_REF]

, cars3d

(Reed et al., 2015) 

and smallnorb

[START_REF] Lecun | Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting[END_REF]

. We have full control on the generative process and explicit access to the ground-truth factors. All ground-truth factors are normalized in the range [0, 1]; for discrete factors, we implicitly assume an ordering before applying normalization. All images are reshaped to a 64×64 size. A short description of the datasets is reported in Table

5

.1. Implementations of the generative process for each dataset are based on the code provided by

Locatello et al. (2019b)

.

The original work(Khemakhem et al., 

2020) is not semi-supervised. We extended it for our comparative analysis.
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We tried six different values of regularization strength associated to the target regularization term of each methodβ for β-vae, ivae and idvae, and γ for fullvae: [1,2,4,6,8,16]. These are recurring values in the disentanglement literature. For each model configuration and dataset, we run the training procedure with 10 random seeds,

given that all methods are susceptible to initialization values. After 300'000 training iterations, every model is evaluated according to the disentanglement metrics described above. For fullvae, ivae and idvae, all ground-truth factors are provided as input, although ivae and idvae work with a subset of them (or with any other additionally observed variable) as well. We apply the same protocol for the semi-supervised experiments too, where we provide, at training time, all the ground-truth factors for a subset of the input observations only, 1% and 10% respectively. At testing time, u is instead estimated from q ζ (u|x).

Experimental Results

Qualitative Evaluation. Latent traversal is a simple approach to visualize disentangled representations, by plotting the effects that each latent dimension of a randomly selected sample has on the reconstructed output. In Figure 5.2, we evaluate a configuration (single seed) of our idvae model trained on dsprites (other datasets in Appendix B.6). Every row of the figure represents a latent dimension we vary in the range [-3, 3], while keeping the other dimensions fixed. We can see that z 1 has learned orientation reasonably well; z 2 is responsible of the object scale; z 4 and z 5 reflect changes on the vertical and horizontal axis, respectively. z 3 tried to learn, without success, shape changes. This means that idvae has the capability of learning an interpretable disentangled representation, where every dimension of the latent variable z not only is independent from the others, but also corresponds to a true, semantically meaningful ground-truth factor. Next, we rely on disentanglement metrics to make a quantitative comparison among the tested methods.

A ADDITIONAL DETAILS AND RESULTS ABOUT LIBRE

A.1 The Base Method Step-by-step

In this section, we detail the main steps of the base algorithm, by using a concrete example. Consider the scenario of forecasting the failure condition of an it system from two values representing the cpu and main memory (mem) utilization, as depicted in the first two columns of and go down to find binary elements -located on the boundary -that divide positive and negative samples. While we navigate the Boolean lattice, nodes are labelled according to the cover test against the negative samples. As soon as a conflict is found, we can avoid going down from that node, but there is still the possibility to explore that path from another binary sample. This recursive procedure corresponds to up-and-down movements in the lattice. However, if at each iteration we are able to select the best candidate bit and to avoid conflicts, we only allow steps down in the Boolean lattice. We use the heuristic described in Section 3.4.2 to choose the best candidate bit to flip-off.
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We already know that flipping-off either the first or the second bit to 0 would lead to a conflict: thus, we directly flip-off the fifth bit to obtain the boundary point 110 00, independently from the value of |D + 0 5 |. Element 110 00 is added in the set of boundary points A.

For the second positive record χ 3 = 101 10, we have: Differences with [START_REF] Muselli | Reconstructing positive Boolean functions with shadow clustering[END_REF]. Our base method is similar to [START_REF] Muselli | Reconstructing positive Boolean functions with shadow clustering[END_REF] that we took as a reference since it presents interesting properties: it is a bottom-up method, easily parallelizable, incorporating interpretability goals in the induction process. To better analyze the differences with our proposal, we refer to a technical report [START_REF] Muselli | Shadow Clustering : A Method for Monotone Boolean Function Synthesis[END_REF] where the authors provide more details about their shadow clustering algorithm. Looking at the pseudo-code (Figure 4 of [START_REF] Muselli | Shadow Clustering : A Method for Monotone Boolean Function Synthesis[END_REF]) we can firstly notice that our heuristics H 1 and H 2 are 3-length tuples (instead of 4-length) where we avoid to compute what [START_REF] Muselli | Shadow Clustering : A Method for Monotone Boolean Function Synthesis[END_REF] indicate as |B 1 i | (we verified experimentally that it has no impact in practice). The main improvement, however, is related to the computation of the distance d l (t(I ∪J), D - 0 i ) which complexity is O(nd). In [START_REF] Muselli | Shadow Clustering : A Method for Monotone Boolean Function Synthesis[END_REF], such distance is computed within a while loop (of length d in the worst case), for every candidate Synthetic Dataset. For the scalability evaluation, we synthetically generate a dataset with 1 000 000 records and 50 continuous features with randomly generated values in the domain [0, 100]. Then, we randomly generate four sets of binary labels with a class imbalance ratio of 0.001, 0.01, 0.1, and 0.5 respectively.

Settings. We vary the number of records (10'000, 100'000, 500'000, 1'000'000), features (10,20,50), and class imbalance ratio (0.001, 0.01, 0.1, 0.5): for each dataset configuration, libre runs up to 100 times with different randomly generated subsets of features of size 10, 20, and 50; the average execution time in seconds is reported as a sum of two contributions: rule generation and simplification times. Times refer to one weak learner only: if N weak learners run in parallel, the reported time is still a good estimate. Before executing libre, we discretize the dataset with a discretization threshold equal to 6, that we empirically find out to be a good value. The simplification procedure runs on the top 500 rules, if more are generated.

Results. As shown in Figure A.3, the execution time is dominated by the rule generation term. Given a class imbalance ratio, execution time increases as long as we increase the number of records and features. The generation time also depends on which features are fed into the model for two main reasons: i) ChiMerge encodes bad predictive features with bigger domains, increasing the search space; ii) the generation procedure will struggle more to generate rules when it runs on features that are not that useful to predict the target class. This explains the high variance in the results. Intuitively, as long as the class imbalance ratio gets close to 0.5, the number of processed records increases, together with the execution time. However, we experimentally verified that this effect is somehow compensated by the higher number of negative records. We run the rule generation procedure up to 50 features just for experimental purposes: for practical applications, if interpretability is a need, it is more convenient to limit the number of features and train an ensemble with more learners in order to generate compact rules in a reasonable time. 
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where: 

By combining Equations B.1 to B.3 we obtain L ss-idvae , where it is clear that we use the sum over the data samples instead of the expectation. As stated in the Section 5.4.3, we add a term -E (x,u)∼p l [log q(u|x)] -such that it can learn also from labeled data.

B.3 Proof of Theorem 1

In this section, we report the proof of Theorem 1, following the same strategy of [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF]. The proof consists of three main steps.

In the first step, we use assumption (i) to demonstrate that observed data distributions are equal to noiseless distributions. Supposing to have two sets of parameters (f , T, η)

and ( f , T, η), with a change of variable x = f (z) = f (z), we show that:

pT,η,f,u (x) = p T,η, f ,ũ (x), (B.4)

where:

In the second step, we use assumption (iv) to remove all the terms that are a function of

x or u. By substituting p T,η with its exponential conditionally factorial form, taking the log of both sides of Equation B.5, we obtain dk + 1 equations. Then:

In the last step, assumptions (i) and (iii) are used to show that the linear transformation is invertible and so (f , T, η) ∼ ( f , T, η). This concludes the proof.

For further details, we point the reader to section B of the supplement in [START_REF] Khemakhem | Variational Autoencoders and Nonlinear ICA: A Unifying Framework[END_REF], which holds also for our variant of the theorem.
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B.4 Model architectures and parameters

All the selected methods (including the semi-supervised variants) share the same convolutional architecture. The conditional prior in ivae is a MLP network, in idvae we use a simple MLP vae, both with leaky ReLU activation functions. The ground-truth factor learner implementing q ζ (u|x) in ss-idvae and ss-ivae is a cnn.

Encoder Decoder

Input 

B.5 Implementation of disentanglement metrics

As explained in Section 5.5.1, the implementation of the selected disentanglement evaluation metrics is based on Locatello et al. (2019b). We report the main parameters in Table B.5.

Disentanglement metrics Parameters

Beta score train_size=10'000, test_size=5'000, batch_size=64, predictor=logistic_regression MIG train_size=10'000, n_bins=20

Modularity and Explicitness train_size=10'000, test_size=5'000, batch_size=16, n_bins=20

SAP score train_size=10'000, test_size=5'000, batch_size=16, predictor=linearSVM, C=0.01

Table B.5: Disentanglement metrics and their parameters.

B.6 Full experiments

In this section, we illustrate the full set of experiments, including reconstructions and latent traversals. 1=β-vae, 2=ss-idvae (1%), 3=ss-idvae (10%), 4=idvae, 5=ss-ivae (1%), 6=ss-ivae (10%), 7=ivae, 8=ss-fullvae (1%), 9=ss-fullvae (10%), 10=fullvae. Percentage of labeled samples in parenthesis.