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Pour terminer, j’aimerais remercier ceux qui m’ont encouragé et soutenu
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Résumé

Adoptées depuis plus de 20 ans par le monde de l’industrie, les règles métiers
(business rules) offrent la possibilité à des utilisateurs non-informaticiens de
définir des politiques de prise de décision de manière simple et intuitive. Pour
faciliter leurs utilisations, des systèmes à base de règles, dits � systèmes de
gestion des règles métier �, ont été développés, séparant la logique métier
de l’application informatique. S’ils sont adaptés pour traiter des données
structurées et complètes, ils ne permettent pas aisément de travailler sur des
données probabilistes.

PROCOP (Probabilistic Rules Optimized COmPilation) est une thèse
proposant une nouvelle approche pour l’intégration de raisonnement prob-
abiliste dans IBM Operational Decision Manager (ODM)1, le système de
gestion des règles métier développé par IBM, notamment via l’introduction
d’une notion de risque global sur l’évaluation des conditions d’exécution d’une
action, complexifiant la phase de compilation du système mais augmentant
l’expressivité des règles métiers.

Diverses méthodes sont explorées, implémentées et comparées afin de per-
mettre l’utilisation d’une telle capacité de raisonnement à large échelle, no-
tamment afin de répondre aux problématiques liées à l’utilisation de modèles
graphiques probabilistes dans des réseaux complexes.

1https://www.ibm.com/fr-fr/products/operational-decision-manager
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Abstract

Widely adopted for more than 20 years in industrial fields, business rules
offer the opportunity to non-IT users to define decision-making policies in a
simple and intuitive way. To facilitate their use, rule-based systems, known
as business rule management systems, have been developed, separating the
business logic from the computer application. While they are suitable for
processing structured and complete data, they do not easily allow working
with probabilistic data.

PROCOP (Probabilistic Rules Optimized COmPilation) is a thesis propos-
ing a new approach for the integration of probabilistic reasoning in IBM
Operational Decision Manager (ODM)2, IBM’s business rules management
system, in particular through the introduction of a concept of global risk
on the evaluation of the execution conditions of an action, complicating the
compilation phase of the system but increasing the expressiveness of the busi-
ness rules.

Various methods are explored, implemented and compared in order to
allow the use of such a powerful reasoning capacity on a large scale, in par-
ticular in order to answer the problems linked to the use of probabilistic
graphical models in complex networks.

2https://www.ibm.com/products/operational-decision-manager
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Notations

PGMs

P a probability distribution
X a random variable, BN’s node or class attribute
X a set of random variables
C a PRM class
C a set of PRM classes
Val(X) the set of values of X, also called its domain
Val(X) a set obtained by the Cartesian product Val(X) =⊗X∈X Val(X)
#»G = (V ,A) a directed graph over nodes V and arcs A
G = (V ,E) an undirected graph over nodes V and edges E
Pa

#»G
X the parents of X in #»G

Tensors

T a tensor
T̃ε the ε-approximation of a tensor
‖A‖F Frobenius norm
A~B Hadamard product
A⊗B Kronecker product
A�B Partial Kronecker product
A×1 B Mode-(M,1) contracted product
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14 CHAPTER 1. INTRODUCTION

1.1 Context

Emulating the decision-making processes of experts is at the heart of arti-
ficial intelligence (AI) and the emergence of modern computers and high-
level programming languages at the end of the first half of the 20th century,
made this objective possible. Since 1965 and the introduction of Dendral
[Buchanan et al. 1968], a system helping organic chemists to identify un-
known organic molecules, by a pluridisciplinary research team of Stanford
University, many systems proposed to simulate, support or even improve
upon the decision-making process of experts. Since models are increasingly
precise and complex, this field of study is still relevant today.

1.1.1 Artificial Intelligence and Expert System

A rule-based expert system (RBS) is an AI tool designed to simulate the
reasoning of a specialist in a precise and well-delimited field, by exploiting
a certain amount of knowledge explicitly provided by those specialists in
the form of facts and rules into a knowledge base (KB). An inference engine
allows us to obtain deductions, conclusions but also to produce explanations
on how the results are obtained by repeating the following pattern :

1. Detection of relevant rules according to facts
2. Choosing of the rule to be instantiated
3. triggering the rule thus possibly modifying facts

Various algorithms can be used according to the defined rules. One can
search, given facts, for consequences, such approach is known as forward
chaining or data-driven as we reach to the goal using available data.

Conversely, with backward chaining, one can start from conclusions to
determine its causes. This approach is also called goal-driven, as a list of
goals decides which rules are selected and used.

Some component usually allows RBS to communicate with end-users to
help them develop or maintain knowledge base or to enter additional data.
An interface may display the conclusions made by the system, as shown in
Figure 1.1.
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Figure 1.1: Schematic representation of the functioning of a RBS

1.1.2 Applications of RBS

Without making an exhaustive list (as can be found in [Kokkinaki et al.
1993]), expert systems have been used in very different fields [Tzafestas 1993].
From medical diagnostics (Mycin [Buchanan and Shortliffe 1984]) where users
described their symptoms to a computer to obtain a diagnosis, incident mon-
itoring in nuclear reactors (REACTOR [Nelson 1982]) to exploring the use of
advanced automation in the mission operations arena during Shuttle mission
control (INCO [Rasmussen et al. 1990]).

One of the strengths of an expert system comes from the explicability of
its results and the traceability of its reasoning, which is decisive in this type
of processes. More generally, the explanability and interpretability of a result
are determining notions in AI, if impressive progress has been made using
so-called black box models (such as those used in deep learning), especially in
image processing and classification, their practical and theoretical flaws [Big-
gio and Roli 2018] should be an obstacle to an industrial and generalized use
in an increasingly automated world where transparency and accountability
in decision making processes are looked upon factors, as stated by multiple
reports and guidelines of European commissions [Scientific Foresight Unit
(STOA) 2019a; Madiega 2019; Scientific Foresight Unit (STOA) 2019b].
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1.1.3 Limitations

While such tools are still used in some advanced industries, such as Mistral
[Masera et al. 2015]1, an expert system monitoring the activity of hydroelec-
tric dams in Italy or Brazil, they are rigid and difficult to maintain. This
lack of flexibility, of a tool by and for expert domains, was a particularly
strong constraint for a business use of those systems.

1.1.4 The BRMS (r)evolution

Business Rules Management Systems (BRMS), such as IBM Operational De-
cision Manager (ODM), are developed since the 90’s to facilitate authoring,
testing, deploying and executing business policies by domain users, in the
form of conditions/actions rules. Syntactically close to the business lan-
guage, these ease the translation of decision-making and business strategies,
making them accessible to users with no programming experience. Along
with a more understandable syntax, these frameworks also provide a set of
tools that help define and monitor a system, making them suitable for busi-
ness uses where many institution policies/strategies can be described as set
of rules (we can think of the rules guiding whether or not a loan can be
granted or the different procedures that monitor the conformity of a good on
a production line).

1.2 Motivations

When developing intelligent systems, it may be inevitable to deal with uncer-
tainty. Having complete or certain information about a domain is, usually,
unrealistic. Reasoning with uncertainty is, in fact, at the core of many active
area of research in AI. This issue can have multiple origins such as measure-
ment errors, noisy automatic process or even the modelling process itself.
Handling such uncertainty in a BRMS could allow business user to represent
and reason with complex and real-world data.

1https://www.cesi.it/technical-papers/mistral-software-for-online-
monitoring-system/

https://www.cesi.it/technical-papers/mistral-software-for-online-monitoring-system/
https://www.cesi.it/technical-papers/mistral-software-for-online-monitoring-system/
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Numerous methods have been used in the rule-based system community
to deal with uncertainty, using certainty factors [Buchanan and Shortliffe
1984], likelihood ratio [Hart et al. 1978] or even fuzzy logic [Zadeh 1965]. How-
ever, there was some limitations using such approaches, mainly due to inter-
pretation being incoherent with probability theory [Heckerman and Shortliffe
1992] or inconsistency in the conclusions when performing chains of inference
[Ng and Abramson 1990]. Another solution could be to use models that com-
bine first-order logic and probabilistic reasoning, such as Markov logic net-
works [Richardson and Domingos 2006]. Bayesian techniques, mostly based
of Bayesian networks [Pearl 1988; Weber et al. 2012; Arru 2011], have been
used to model domains with uncertainty but are not suited for complex sys-
tems involving high design and maintenance costs [Koller and Pfeffer 1997].
To address this issue we will consider the use of Probabilistic Relational Mod-
els, PRM [Koller and Pfeffer 1998; Pfeffer 2000], an object-oriented extension
of BN, with business rules.

1.3 Running Example

To illustrate the proposals made in thesis we will look at the (fictional) case
of a state willing to monitor and manage its hospitals resources during a
pandemic due to a SARS-CoV. Using both rules and probabilistic reasoning
could help deciding whether or not a patient should be taken care of and,
if so, which institution it should be sent to according to multiple criteria to
avoid, as much as possible, for institutions to find themselves in situations
of critical sanitary tension (e.g. no emergency beds available or overworked
caregivers). The Figure 1.2 describes such a system.

A state is defined by a set of hospitals that contain a triage (reception
area that manages the flow and allocation of patients) and different units
(oncology, ICU, ...). Patients, assigned to physicians, may be in either of
these locations. The use of rules will regulate this influx according to the
intake capacities of the institutions while the underlying probabilistic graph-
ical models will allow characterizing the state of a particular patient. Given
a number of facts about the patient’s condition, symptoms or environment
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Hospital

Name
Units : [Unit]
Triage : [Patient]
...

State

Name : string
Population : int
Hospitals : [Hospital]
...

Unit

Occupied beds : [Patient]
Physicians : [Physicians]
Available beds : int
Inventory: [Stock]
...

Patient

Patient ID : int
Name : string
...

Physician

Physcian id
Name
Specialty
Patients : [Patient]
...

Stock

Type : String
Known stock : int

...

Figure 1.2: Schematic representation of our running example

they will allow to assess the potential severity of the consequences of his or
her infection caused by the virus. Inventories are present in each unit in
order to monitor their stocks of essential products and medicines.

1.4 Contribution and Outline

This manuscript is composed of three distinct parts. The first is devoted
to the state of the art. Chapter 2 deals with BRMS, their tools and the
description of the process of compiling business rules. Chapter 3 presents the
theory behind probabilistic graphical models (PGMs) and their advantages.
We conclude, in Chapter 4, with a review of the proposals made on the joint
use of BRMS and PGMs.

The second part is dedicated to the presentation of our practical and theo-
retical proposals. In the chapter 5 we introduce a new syntax for probabilistic
business rules. Easier to use, it required an extension of the compilation pro-
cess. This work was presented in [Ducamp et al. 2020a]. The use of PGMs in
a BRMS being limited by the complexity of the models, we propose, in the
section 5.4 a first approach to simplify it and make the inference scalable on
a large scale as presented in [Ducamp et al. 2020c]. Finally, in the chapter
6 we introduce a new method to represent the data necessary for probabilis-
tic calculations, allowing to limit the spatial complexity during an inference
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based on the use of a particular form of low rank tensors, the Tensor Train
format [Ducamp et al. 2020b].

The manuscript concludes with a critical analysis of our results and per-
spectives for future developments. In order to facilitate the reading of the
document and given the diversity of the topics covered, we have chosen to
include a bibliography at the end of each chapter.
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2.1 Business Rule Management Systems

As we have seen, the lack of flexibility would make it tedious, if not im-
possible, for a company in the 1980s to use expert systems. To address
this issue the principles of expert systems have been implemented in more
flexible and comprehensive environments, business rule management system
(BRMS). It is in a competitive context, where a company’s economic health
or even survival may depend on its ability to adapt to changing markets,
that business rules show their advantages [Tony 2002; Ross 2003b]. The
flexibility and agility of a BRMS allow to centralize, manage and automate
business decision within a dedicated system, helping companies to reduce
costs and improve both their performance and productivity. Consequently
the global Business Rules Management System market size is expected to
grow from USD 0.84 Billion in 2018 to USD 1.4 Billion USD by 20231. But
what are business rules ? What mechanisms and practical tools allow users
to automate the application of their business strategies ? Let us recall some
definitions, as given by [Agli 2017; Hay and Healy 2000].

Definition 2.1
Business policy A business policy is a statement of directions or guide-
lines that governs the decisions of an organization and controls its actions
scope.

In our hospital context, the drug inventory management processes of phar-
macies can be guided by a business policy. Instead of expecting for someone
to identify and order missing products, with the endogenous risks (e.g., a
shortage of critical materials) that it includes due to an error or negligence
in the performance of the task (misread values or lack of tracking of expiry
dates), such procedure could be automated with the help of rules.

1https://www.marketsandmarkets.com/Market-Reports/business-rules-
management-system-market-210469074.html

https://www.marketsandmarkets.com/Market-Reports/business-rules-management-system-market-210469074.html
https://www.marketsandmarkets.com/Market-Reports/business-rules-management-system-market-210469074.html
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Definition 2.2
Business rule A business rule (BR) is a compact, atomic, well-formed,
declarative statement that defines or constrains an aspect of the business
and its collaborators. It must be expressed against a domain ontology
(business policies vocabulary) in a natural-language that is understand-
able by whom it may concern, such as business and IT professional and
customer.

The business rules are the constituent units of policies, they capture the
different constraints applied to procedures that are dictated by such policies.
When translated in a set of action-conditions the latter can be automatically
orchestrated with the help of an inference engine, as we will show in Section
2.3.
Example 2.3

Check stocks
If the stock of Medecine A is below 600
Then order 2000 units

Example 2.4
Check expiry date
If some units of Medecine A have an outdated expiry date
Then destroy these units

For detailed views about business rules and BRMS, one can refer to [Ross
2003b;a; Graham 2007; Tony 2002] and especially the introduction made by
[Agli 2017].

2.1.1 Common Tools

To facilitate their adoption by non-IT users, BRMSs offer users different
interoperable modules to monitor a system, from the design of the first rules
and the deployment of the complete system, throughout its lifetime during
which it can be modified, fine-tuned, to be adjusted to changing business
policies.
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2.1.1.1 Comprehensive Environment

The main component of a BRMS with which its users interact is a devel-
opment environment, to edit rules and the underlying models, usually with
a comprehensive graphical interface. Nowadays BRMS provide such envi-
ronments directly through browsers. Lower level tools, such as plugins for
Eclipse (cf Figure 2.1), may also be available.

Figure 2.1: View of the Eclipse Rule Designer plugin

These environments can take place in more global management contexts,
where simulation and testing tools allow the models to be evaluated and fine
tuned, as shown in Figure 2.2.

Figure 2.2: ODM on Cloud programming interface
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2.1.1.2 Flexible Rule Definition and Monitoring

Business rules can be authored in multiple formats. If we are mainly inter-
ested in their textual forms, as we will see in 2.2, they can also be defined
using decision trees or tables, as shown in the Figure 2.3. A decision table
could, for example, contain minimum stock thresholds for each drug which,
in addition to being easily readable, makes it convenient to add new drugs or
manage changes in storage policies. The rules are centralized in a searchable
collaborative directory called rule base.

Figure 2.3: Example of decision table and rule preview

Most BRMS propose to specify, using a structure called ruleflow, how the
rules are related to each other. This form allows us to orchestrate a complex
problem in the form of tasks and sub-tasks and therefore ensure that a sub-
rule is activated. In our previous example, we could want the rule Check
expiry date (Example 2.4) to automatically trigger the rule Check stocks
(Example 2.3). A graphical editor usually allows the creation of these flows
in an intuitive way using drag and drop functions. Other more advanced
functionalities, such as event processing, allow to define more precisely the
interactions between rules, for example by defining a chronological order
between business processes.
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Check expiry
date

Check stocks

if some expired drugs
are destroyed

else

Figure 2.4: Ruleflow example

Another essential concept to rules execution is the Working Memory
(WM) which contains the facts of the system. It can be considered as the
knowledge of the system state, as a duality with the rule base. As we will see
in 2.3 such facts are used to select the rules that will be applied. In our run-
ning example, all the doctors, hospitals, patients as well as their features will
be in our WM. Tools allow to visualize and inspect the elements contained
within the WM.

2.1.2 Operational Benefits

The diversity and complementarity of tools present in a BRMS allow its users
to have a high degree of agility resulting in operational benefits that can be
characterized in a few points :

• Autonomy from IT : BRMS help business users with a code-free
approach by separating rules from their technical implementation. The
various resources for defining and monitoring the ruleset help to reduce
or remove reliance on IT departments for changes in live systems.

• Control over decision : Increased control over implemented decision
logic for compliance and better business management with the abil-
ity to express decision logic with increased precision, using a business
vocabulary syntax and graphical rule representations (decision tables,
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trees, scorecards and flows). Being able to easily update rules criteria
is important in a context where markets evolve rapidly, new regulations
are put in place or to align with the competition and the centralization
of decision-making processes ensures coordination between the different
agents working on the system.

• Endogenous risk minimisation : By automating such processes in
a precise, unambiguous and controlled way, endogenous issues due to
errors in judgement or misalignment between the business requirements
specification and their IT implementations making can be avoided (in
particular because tools allow a precise monitoring of the modifications
—of the evolution— of the models as well as a complex coordination
between the agents working on it).

2.2 ODM Rule Syntax

Each BRMS offers its own programming and execution environment and
every product has its own language to write rules technically, but most of
them provide a mechanism to write in a natural language-like format. ODM
offers business users to define their rules and models with two languages,
namely BAL and IRL.

2.2.1 Business Action Language

BAL, for Business Action Language, is close to natural language and is es-
sentially designed to help business professionals to enter BRs in a human
readable format. The rules that are defined using BAL are called action
rules and they are based on the well known IF/THEN-ELSE constructs.

if
the stock of ’medecine A’ in ICU is less than 600

then
place an order of 2000 units.

Figure 2.5: Example of rule in BAL
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2.2.2 ILOG Rule Language

In this thesis we will consider rules under their technical formalism, the
ILOG Rule Language (IRL). Rules defined with this Java-like language are
also made of a condition part and an action part, as we can see in the Figure
2.6. The condition part, which begins with the keyword when, binds variables
to objects and attribute values, and specifies tests on attribute values. The
action part, which begins with the keyword then, specifies the actions to be
carried out if the rule is executed. An optional second part which begins
with the keyword else, that applies only if the last evaluated statement in
the condition part is false.

rule stock.minimum medecine stock {
when {

hp : hospital();
u : Unit(u.name=="ICU") in hp.units;
s : Stock(s.type=="medicine A") in u.inventory;
evaluate ( s.known stock < 600);

} then {
p.addToMessages("Stock of medicine A below 600");
p.placeOrder(MedicineA,2000);

};

Figure 2.6: Example of the same rule in IRL

The main elements and keywords constituting the condition part of a rule
written in the IRL format are described below. An exhaustive presentation
of the grammar is available in ODM’s documentation 2.

While the syntax of the BAL is more suitable for the business user com-
munity, it is less refined than that of the IRL, its modelling capabilities are
more limited. As we will see in Section 2.4.2 the rules in BAL format are
actually rewritten in IRL format before being compiled.

2https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.
dserver.rules.ref.designer/lang_irl_ref_topics/tpc_irl_grammar_intro.html

https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.dserver.rules.ref.designer/lang_irl_ref_topics/tpc_irl_grammar_intro.html
https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.dserver.rules.ref.designer/lang_irl_ref_topics/tpc_irl_grammar_intro.html
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2.2.2.1 Class Condition

Class conditions are the simplest form of conditions. They bind a variable
(in the the following condition, phy) to an object from the working memory,
which consists of a type name (Physician) and, potentially, inside of paren-
theses, some constraints on the type attributes (specialty ==”anaesthetist”).

phy: Physician(specialty =="anaesthetist")

2.2.2.2 Existential Conditions

The keyword exists checks for the existence, in the WM, of an element sat-
isfying a specific condition. The condition below is satisfied whenever an
anaesthetist is found in the WM.

exists Physician(specialty =="anaesthetist")

Conversely, the not statement returns true if there is no WME matching
the condition. For example, the following condition is satisfied when there is
no physician in the WM that is anaesthetist.

not Physician(specialty =="anaesthetist")

2.2.2.3 From

The keyword from is used inside the rule to access ruleset parameters. These
are a special type of parameters that are used to exchange data between the
application and the ruleset. If we assume that physician is a ruleset input
parameter, which is previously defined, then the following condition binds
the variable phy to that parameter.

phy :Physician() from physician;
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2.2.2.4 In

The keyword in restricts the scope of a variable to a collection of values. All
the physicians in the hospital hp will be mapped to the variable phys in the
following condition.

hp : Hospital();
phys : Physician() in hp.physicians;

2.2.2.5 Aggregate Condition

One of the most complex condition format available in the language is the
aggregator one, which computes a value from a collection of values. Examples
of aggregations are the average, sum, or maximum of a numeric collection.
Here is an example of a condition that computes the number of patients
under the care of a physician who are over 80 years old. When we want to
condition the result of the aggregate, the key word where is used.

phy : Physcian();
agg:aggregate{

p:Patient() in phy.patients;
} do {

sum(p.age > 80)
} where { agg > 4}

}

2.2.2.6 Evaluate

The evaluate operator simply checks for the truth value of a statement.

phy : Physician()
evaluate ( phy.numberOfPatients < 5 )

We will see, in the chapters 4 and 5, how these different bricks of language
influence the rewriting of probabilistic rules.
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2.2.3 Object Model

As previously mentioned, business rules are applied to instances of objects
present in the working memory. The description of such objects are defined
by an object model (OM) whose syntax is very close to that of Java, as showed
in Figure 2.7. OM contains classes, type and attributes definitions as well as
function declaration (such as attribute getters and setters or constructors).

public class Physician {
public String name;
public String specialty;
public int age;
public int numberOfPatients;
...

}

Figure 2.7: Example of OM declaration

2.3 Inference Engine

As with expert systems, the orchestration of rule execution is done through
an inference engine. When based on the Rete algorithm [Forgy 1982] or
RetePlus, the ODM rule execution mode based on this algorithm 3, the en-
gine will seek to find rules whose conditions are compatible with the objects
present in the WM. A chosen rule will be applied on these objects with possi-
ble edge effects (this algorithm is designed to incremently manage every data
modification that are performed in the action part), updating the memory
and/or informing the user, as shown in the Figure 2.8. Specifically, it per-
mits to take into account rules chaining during the inference process. Other
execution modes can be used within ODM, depending on the business logic
(and the expected performances) 4.

3https://www.ibm.com/support/knowledgecenter/SSQP76_8.10.x/com.ibm.odm.
dserver.rules.designer.run/optimizing_topics/con_opt_execmodes_reteplus.
html

4https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.
dserver.rules.designer.run/optimizing_topics/tpc_opt_choose_execmode_
criteria.html

https://www.ibm.com/support/knowledgecenter/SSQP76_8.10.x/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/con_opt_execmodes_reteplus.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.10.x/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/con_opt_execmodes_reteplus.html
https://www.ibm.com/support/knowledgecenter/SSQP76_8.10.x/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/con_opt_execmodes_reteplus.html
https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/tpc_opt_choose_execmode_criteria.html
https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/tpc_opt_choose_execmode_criteria.html
https://www.ibm.com/support/knowledgecenter/SS7J8H/com.ibm.odm.dserver.rules.designer.run/optimizing_topics/tpc_opt_choose_execmode_criteria.html
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Figure 2.8: Schematic representation of the RetePlus mode

It is interesting to see the ruleset as a function whose parameters (the
WM) will define a service implemented no longer using classical procedural
code but with rules whose execution will be orchestrated by an inference
engine.

Because the rules are written in a high level language and since we are
going to propose to extend its syntax it is appropriate to present the mech-
anisms allowing a computer to interpret them.

The next section is devoted to a brief presentation of the different steps
of a classical compilation chain.

2.4 Compilation

In order to execute some high-level code on a various range of computers,
one need to make it readable by the targeted machine. This is the main role
of a compiler which is, simply stated, a program that reads code written in
one language, usually with a high level of abstraction, and translate into an
equivalent program in another language, usually close to level-machine.



2.4. COMPILATION 37

1
2
3
4
5
6
7
8
9

Compiler

public class Main
{
    public static void main(String[] args) {

        System.out.println('is this a secret ?');

    }
}

01001110 01101111 00100000
01101001 01110100 00100111
01110011 00100000 01100001
00100000 01100110 01110010
01100101 01100101 00100000
01100010 01100101 01100101
01110010 00100000 00100001

Figure 2.9: Example of the compilation of a high level language

If, from this definition, we could consider a lot of different compilers,
their structure and principles stay essentially the same [Wirth 1996]. In this
section we will briefly outline them. The adventurous reader might look upon
[Aho et al. 1986], a reference book about compilation technology, to have a
more in-depth view, both theoretical and practical, about this subject.

2.4.1 Toolchain

The compilation process, called toolchain, is divided into two phases, namely
front end and back end. Each phase is composed of several steps. The main
role of the front end is to translate the source code, written in a certain lan-
guage, into intermediate code. The back end will transform this intermediate
representation into code readable by the targeted machine, this phase will
generally do not depend on the source language and can therefore be shared
for different source code. If some languages, like C, require some specific
phases (like pre-processing, to support macro substitution and conditional
compilation) we will focus here on the phases shared by toolchains during
the front end phase.
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2.4.1.1 Lexical Analysis

The front end process starts with a lexical analysis. The purpose of this step
is to read the stream of characters making up the source program and split it
into a set of atomic units of the language called tokens. They correspond to
the keywords, identifiers or symbols that are the atomic unit of the languages.
This phase is also called scanning or lexing; the software, such as Lex [Lesk
and Schmidt 1990], that performs a lexical analysis is called a lexical analyzer
or scanner. The following example comes from [Aho et al. 1986].
Example 2.5

The statement position := initial + rate * 60 will be divided into
:

position := initial + rate * 60

2.4.1.2 Syntactic Analysis

During the syntactic analysis phase, tokens will be grouped so as to have
a collective meaning given a grammar specifying the syntax of the language
(called context-free [Chomsky 1956; Knuth 1968]), it’s generally based on the
construction of a tree structure, such as the one presented in Figure 2.10.

assignment
statement

identifier

position

:= expression

expression

identifier

initial

+ expression

expression

identifier

rate

* expression

number

60

Figure 2.10: Syntactic generated tree from Example 2.5
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This grammar can be described in several forms, such as the Backus-Naur
Form [Backus et al. 1963; Knuth 1964]. The analysis tree is often modified
and improved during the compilation process in order to optimize the process.

2.4.1.3 Semantic Analysis

Semantic analysis is the phase during which the compiler adds semantic
information to the analysis tree. This phase checks the type (type error
checking), or the binding object (associating variables and function references
with their definitions), or a defined task (all local variables must be initialized
before use), can issue warnings, or reject incorrect programs. Many errors
can be the cause of an incorrect program like a misspelled keyword (lexical
error), an arithmetic operation with misplaced parentheses (syntactic error),
an operator applied to an incompatible operand (semantic error). In the
example in Figure 2.11 and since the ’*’ operator is applied to real number
the type checker will convert integer to real using an inttoreal operation.

assignment
statement

identifier

position

:= expression

expression

identifier

initial

+ expression

expression

identifier

rate

* expression

number

inttoreal

60

Figure 2.11: Our syntactic tree after type checking
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2.4.1.4 Intermediate Code

Source codes are usually not directly compiled into a target language. Using
abstract intermediate code, independent of the target language, allows the
same front-end to be reused for different machines. Intermediate language-
specific optimizations can also be applied, as shown in Figure 2.12, where
the three-adresses intermediate code is simplified in order to eliminate un-
necessary operations.

temp1 := inttoreal(60)
temp2 := id3 * temp1
temp3 := id2 + temp2
id1 := temp3

(a) Intermediate code

temp1 := id3 * 60.0
id1 := id2 + temp1

(b) Optimized code

Figure 2.12: Intermediate code generation

2.4.1.5 Code Generation

The final phase in a compiler consist of generating target-specific code, again
using optimization techniques. Figure 2.13 shows how the previous interme-
diate code is rewritten in a Assembly-like language where values are moved
from one register to another with operations applying on them.

MOVF id3, R2
MULF #60.0, R2
MOVF id2, R1
ADDF R2, R1
MOVF R1, id1

Figure 2.13: Generated low-level code

In the case of ODM, the compilation chain transforms BAL/IRL code
into Java bytecode.
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2.4.2 ODM Toolchain

Figure 2.14 shows a simplified view of ODM’s toolchain. When business rules
are entered using the BAL, they are first translated into IRL rules. The rule-
set (and the OM) is then parsed and checked. Different rewriting operations
are performed on their semantic representation (SemRuleset). The rewrit-
ing of the ruleset includes —among other things— a step of renormalization
of the rules and another of optimization of the predictive terms. The tree
is compiled while taking into account the chosen inference algorithm before
being transformed into an intermediate Java-like language (IROS), where
debug code is added and exception handled. The code is rewritten one last
time into bytecode in an archive (JAR) using JavaCC [Kodaganallur 2004],
facilitating deployment and execution on the target machines.

Back-end	processes

IRL
parsing
cheking SemRuleset

Ruleset
rewriting SemRuleset

Algo.	specific
compilation

IROS

data process

BAL Rewriting JAR

Translation

Figure 2.14: Simplified view of the ruleset toolchain

2.5 Conclusion

In this chapter we briefly present what BRMS are, how their understand-
able syntax and adapted operating mechanisms help business users translate
business policies and automate decision making. While they address the
accessibility issues faced by early expert systems in order to be used by
non-computer specialists, their modelling capabilities are limited by the new
syntax.
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3.1 Introduction

As noted in the introduction, it may be difficult to properly model a real
application without taking into account the existence of random factors.
Measurement errors, structural uncertainty, or even the stochastic nature
of the models themselves make it necessary to take this uncertainty into ac-
count. Several publications deal with the different approaches regarding this
subject, such as [Halpern 2017] or [Shafer and Pearl 1990], a collection of
key papers about probabilistic expert systems, probability theory and the
Bayesian approach.

Probabilistic graphical models [Koller and Friedman 2009; Pearl 1988]
propose to combine both graph theory and probability theory into a frame-
work helping to represent and reason on complex probabilistic models. As
we will see, their graphical properties have two major advantages : computa-
tions in these models are simplified (not to say feasible) and such visualization
makes them easier to be understood and therefore accessible. In this chapter,
we present the basics of probability theory that allow us to appreciate these
models. After having introduced Bayesian networks, the keystone of PGMs,
and the different types of calculations they allow, we will discuss PRMs, an
object-oriented extension of the latter allowing the modelling of large scale
complex systems. Learning those models, which is just as crucial as inferring
within them, is not addressed in this thesis, the curious reader may refer to
[Koller and Friedman 2009; Neapolitan 2003] for more information on this
topic.

To illustrate the next sections, we will consider the case of patients pos-
sibly suffering from SARS-CoV infections. The disease caused by such a
virus, called SARS (for Severe Acute Respiratory Syndrome), presents mul-
tiple symptoms including muscle pain, headache, fever, dyspnoea or pneu-
monia, the use of PGMs could help to determine or not the severity of their
condition according those symptoms and observations about the patient (age,
sex, comorbidities, contact with others people, ...).
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In the simpler example that we will follow in this manuscript, taken from
the models described in [Fenton et al. 2020]1, the severity states of patients
will be determined by their age, whether or not they have risk factors and,
of course, whether or not they are infected with the virus. If this is the case,
certain symptoms may be observable and the presence of the virus detected
by one of the tests.

Inference in PGMs is similar to the concept of reasoning in ODM. The
definition proposed in Merriam-Webster for inference is “the act of passing
from one proposition, statement, or judgement considered as true to another
whose truth is believed to follow from that of the former”. In PGMs, inference
allows us to propagate evidence, knowing probabilities on so-called random
variables.

Many of the following definitions are given by [Koller and Friedman 2009],
a must-read reference for PGM enthusiasts.

3.1.1 Random Variables and Joint Distribution

In this section we will introduce some of the fundamental notions of the
probability theory.

3.1.1.1 Experiment Outcomes and Random Variables

We can define events by assuming that there is an accepted space of possible
outcomes, denoted by Ω. If we consider, for example, the possible outcomes
of a dice roll, we will set Ω = {1,2,3,4,5,6}. In the case of the evaluation of
a patient’s state, we will consider Ω = {none,asymptomatic,mild,severe}.

In addition, we assume that there is a set of measurable events S to which
we are willing to assign probabilities. Formally, each event α ∈ S is a subset
of Ω. In the die example, the event {1} represents the case where the die
shows 1, and the event {2,4,6} represents the case of an even outcome.

1raw data: http://www.eecs.qmul.ac.uk/˜norman/Models/covid19_for_contact_
tracing_paper.cmpx
processed data: https://gitlab.com/agrumery/pgmrepository/-/blob/master/bif/
covid19.bif

http://www.eecs.qmul.ac.uk/~norman/Models/covid19_for_contact_tracing_paper.cmpx
http://www.eecs.qmul.ac.uk/~norman/Models/covid19_for_contact_tracing_paper.cmpx
https://gitlab. com/agrumery/pgmrepository/-/blob/master/bif/covid19.bif
https://gitlab. com/agrumery/pgmrepository/-/blob/master/bif/covid19.bif
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The event space must satisfy three basic properties to be consistent w.r.t
the probabilistic theory :

• It contains the empty event ∅, and the trivial event Ω.

• It is closed under union. That is, if α,β ∈ S, then so is α∪ β.

• It is closed under complementation. That is, if α ∈ S, then so is Ω−α.

Given these properties, we can formally define probability distributions.
Definition 3.1

Probability Distribution A probability distribution P over (Ω,S) is
a mapping from events in S to real values that satisfies the following
conditions:

• P(α)≥ 0 for all α ∈ S : all the probabilities are not negative.

• P(Ω) = 1 : the ”trivial event”, which allows all possible outcomes,
has the maximal probability.

• If α,β ∈ S and α ∩ β = ∅, then P(α ∪ β) = P(α) + P(β) : the
probability that one of two mutually disjoint events will occur is
the sum of probabilities of each event.

Suppose that we want to reason about the state of a patient, to com-
pute its probability of being asymptomatic. We can use an event such as
StateAsymptomatic to denote the subset of infected patients that show no
symptoms and use it in our formulation. However, this discussion becomes
rather cumbersome if we also want to consider the patients with a mild or
severe state. The notion of random variables allows us to directly reports
the state of a patient in a clean, mathematical way. Suppose that we have a
random variable State that reports the state of a patient, then the statement
P(State= Asymptomatic) is another notation for P(StateAsymptomatic).



3.1. INTRODUCTION 49

Formally, a random variable, such as State, is defined by a function that
associates with each outcome in Ω a value. For example, State is defined by
a function fState that maps each person in Ω to his or her state. The event
State=mild is a shorthand for the event {ω ∈Ω : fState(ω) =mild}.

We can distinguish two types of random variables based on the set of
values that they can take. Discrete random variables, which may take on
only a countable number of distinct values and those that can take an infinite
number of them, whether enumerable or continuous. The result of a patient’s
test is discrete, it will be either positive or negative. His height is continuous
(it can however be discretized in several ranges). From now on we will denote
random variables by capitalized letters, Val(X) represents the set of possible
values for a random variable X and x refers to a generic value of X. We use
the notation x1, . . . ,xn, for n= |Val(X)| (the number of elements in Val(X)),
when we need to enumerate the specific values of X. The Table 3.1 describes
the random variables for our running example -which are all discrete- and
their possible values (also called domains).

X Val(X)
Cough (C) {yes,no}
Age (A) {<15, 15-49, 50-64, 65-80, >80}
Risk factors (F) {low, medium, high}
Infected with SARS-CoV (I) {yes, no}
Loss of taste or smell (L) {yes, no}
Test type (T) {CT-scan, PCR nasal, antibody, no test}
Tested result (R) {negative, positive, NA}
Current SARS status (S) {severe, mild, asymptomatic, none}

Table 3.1: Discrete random variables for within our SARS-CoV example

Once a random variable X is defined, we can consider the distribution
over events that can occur using X. Denoted by P(X), this distribution is
referred as the probability distribution of X. It is defined such that :

P(X) : Val(X) → [0,1]
x 7→ P(X−1(x))

(3.1)
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Consequently to the properties given by the Definition 3.1 we have ∀x ∈
Val(X),P(X = x)≥ 0 and ∑n

i=1P(X = xi) = 1.
The Figure 3.1 shows the probability distribution of our random variable

S, which characterize the severity of a patient’s condition. We will see, in
section 3.3.3 how to compute such values.

severe mild asymptomatic none

0,0008 0,0053 0,0438 0,9500

Curent SARS status

Figure 3.1: Probability of having a certain severity of disease, P(S)

3.1.1.2 Joint Distribution

We are usually interested in questions that involve the value of several ran-
dom variables. For example, we might consider the event ”A =< 15, I =
yes and S = serious”, (e.g. being young, infected with the virus and hav-
ing severe form of disease). To discuss such event, we need to introduce
the joint distribution over these two random variables. More generally, the
joint distribution over a set X = X1, . . . ,Xn of random variables is denoted
P(X1, . . . ,Xn) and is the distribution that assigns probabilities to events that
are specified in terms of these random variables. Formally, it can be defined
as :
Definition 3.2

Joint Distribution Let P(X1, . . . ,Xn) denote the joint distribution over
a set of random variable {X1, . . . ,Xn}, it verifies that :

P(X1, ...,Xn) : Val(X1)× ...×Val(Xn)→ [0,1]
(x1, ...,xn) 7→ P(⋂ni=1 X−1

i (xi))
(3.2)

The Figure 3.2 states, for example, that the probability of having a cough
and an asymptomatic form of the virus is equal to 0.04%.
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Cough severe mild asymptomatic none

no 0,0002 0,0018 0,0434 0,7600

yes 0,0006 0,0035 0,0004 0,1900

Curent SARS status

Figure 3.2: Probability of having a certain status and a cough: P(S,C)

As we will see in more detail in the section 3.20, we can always find the
marginal of a variable within a joint distribution by summing over the other
ones.

3.1.2 Conditional probability

A key concept in probability theory is that of conditional probabilities. Such
notion allows us to take into account knowledge about our model, for example
to compute the probability for a patient to have a particular form of disease
knowing that he lost his smell and have a cough, as in the Figure 3.3.

severe mild asymptomatic none

0,0215 0,1122 0,0002 0,8861

Curent SARS status

Figure 3.3: P(S|C = yes,L = yes)

Definition 3.3
Conditional probability The conditional probability of a a random
variable X given knowledge about the value of another Y, denoted P(X|Y)
is defined such as :

P(X|Y) = P(X,Y)
P(Y) ,

with P(Y) , 0.
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Interestingly, with this formulation, we see a logic similar to that of in-
ferences made with an expert system. Trying to characterize a diagnostic
variable according to a set of knowledge about a patient’s symptoms is sim-
ilar to what is done with the forward chaining of a rule engine.

By writing such a formula as P(X,Y) = P(Y)P(X|Y), we can, under no
further assumption, extend it to multiple variables using the so-called chain
rule.

Definition 3.4
Chain Rule Let P represents a joint distribution over a set of variable
{X1, . . . ,Xk}, P can be expressed as :

P(X1, . . . ,Xk) = P(X1)P(X2|X1) . . .P(Xk|X1, . . . ,Xk−1) (3.3)

Such a formulation holds for any joint distribution but since the condi-
tional probabilities in the factorization on the right-hand side are neither
natural nor compact, it is, at that point, not very helpful. Moreover, the
factorization is not unique, it depends on the chosen order of the variables.
However, we will show in section 3.2.3 how using conditional independencies
and some particular order, called topological order, can help such distribution
to be overly simplified.

3.1.3 Conditional Independencies

When throwing two dice, the value of the first throw doesn’t inform us about
the value of the second one, they are independent events. However, if a
random variable is, for example, associated with the sum of those dice, is
known, this assertion doesn’t hold, the value of the dice are not conditionally
independent knowing their sum.
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Definition 3.5
Probabilistic Conditional Independence Let X,Y,Z ⊂ V , we say
that X is conditionally independent of Y given Z, w.r.t P, and we write
(X ⊥P Y|Z), if and only if P(X,Y|Z) = P(X|Z). The variables in Z
are often said to be observed. When Z = ∅, we say that X and Y are
marginally independent and we write (X⊥P Y).

The intuition behind this definition is that two sets X and Y are con-
ditionally independent given a set Z when, given our knowledge about this
latter, our belief on X is not influenced by any knowledge we learn about Y.

3.1.4 Evaluation of probabilities in complex models

Computing these different metrics directly in the entire joint probability dis-
tribution of a model would be disaster in terms of performance, if not im-
possible. We would need, for example, to store 5760 values to encode the
joint law of our running example. In the more complex model showcased
in Appendix 2, we would need more than 1015 (one quadrillion !). Even if
we could store such data, one would need to marginalize over each values
in order to compute a variable’s posterior. Circumventing the problem of
complexity in terms of memory will not prevent the issue of time-related
cost. Furthermore, from a statistical point of view, if we want to find out
the distribution from data, it would take ridiculously large amounts of data
to estimate reliably these many parameters. Fortunately, properties such as
conditional independencies help to mitigate such complexity.
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3.2 Bayesian Networks

The examples above convince us that unless we are in an extremely simple
case, the exhaustive representation of the joint distribution is unmanageable
from every perspective. Storing - and manipulating - such models in mem-
ory would be too expensive, if not impossible. Perhaps even worse, it is
impossible to obtain so many numbers from a human expert; additionally,
the numbers are extremely small and do not correspond to events that people
can reasonably consider.

By representing the independence properties of the distributions and by
using an alternative parametrization exploiting these independences, Bayesian
networks, whose essential principles are presented here, make it possible to
tackle the aforementioned challenges.

3.2.1 Model

A Bayesian network provides a compact representation of the joint proba-
bility distribution of a set of random variables. These appear in the form of
nodes in a directed acyclic graph (DAG), denoted #»G , where the absence of
arcs represents some conditional independencies. Formally, we have :
Definition 3.6

Bayesian network A Bayesian network is a pair B = ( #»G ,P) where
#»G = (V ,A) is a DAG and P characterize the factorized joint probability
distribution that satisfies the chain rule for BN.

Definition 3.7
Chain Rule for BN Let B be a BN over the variables X1, . . . ,Xn. We
say that a distribution P over the same space factorizes according to #»G
if P can be expressed as the following :

P(X1, . . . ,Xn) =
n∏
i=1
P(Xi|Pa

#»G
Xi) (3.4)
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Practically, a Bayesian network B is associated with ( #»G ,P) where P is
given as the set of local conditional probabilities distributions of the vari-
ables given their parents in #»G : Θ = {P(Xi|Pa

#»G
Xi)}. When the variables

are discrete, each node is associated with a CPT, such as the one in Figure
3.4b, that contains the conditional probabilities of the random variable with
respect to its parents.

Figure 3.4a illustrates the underlying Bayesian network used in our run-
ning example. In this BN, the severity of a patient’s status (S) influences its
symptoms (C,L) as well as the result of his test (R). It is conditioned by its
age (A), some risk factors (F) and the fact that he’s been infected (I). We
will denote such graph by #»G SARS.

S

F IA

LC R

T

(a)

Current SARS-CoV Status no yes

severe 0,2900 0,7100

mild 0,3430 0,6570

asymptomatic 0,9900 0,0100

none 0,8000 0,2000

Cough

(b)

Figure 3.4: (a) SARS-CoV related BN. (b) C’s CPT

The resulting factorized representation substantially reduces the spatial
complexity of the model, particularly for sparse structures. In a distribution
over n binary random variables, the specification of the joint distribution
requires 2n − 1 independents parameters. If the distribution factorizes ac-
cording to a graph #»G where each node has at most k parents, the total
number of independents parameters will be less than n · 2k.
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Example 3.8

Using the chain rule for BN w.r.t #»G SARS allows us the redefine the joint
distribution of our running example as follows :

P(A,F, I,S,T,C,L,R) = P(A)P(F)P(I)
P(S|A,F, I)P(T)
P(C|S)P(L|S)P(R|S)

(3.5)

To represent such factorized distribution we would need 198 param-
eters instead of 5670. The saving in terms of spatial complexity is even
more convincing in the case of the largest version of the network, pre-
sented in Appendix 2. When more than 1015 values are necessary to
directly describe the joint distribution, only 777 are sufficient using such
property.

In the following section we will introduce some graphical vocabulary re-
garding Bayesian network in order to express the semantics of such represen-
tation and explain why it is far from being insignificant in terms of modelling
capabilities.

3.2.2 Graphical vocabulary

For any graph #»G , let V( #»G ) express the set of its nodes and A( #»G ) the set of
its arcs (in order to lighten the notation and if there is no ambiguity about
the DAG at hand, we will omit to specify #»G ). X ∈ V is said to be a parent
of Y ∈ V if the arc (X,Y) is in A.
Definition 3.9

Trail We will call trail in #»G the set {X1, ...,Xn+1} ⊂ V if either (Xi,Xi+1)
or (Xi+1,Xi) ∈ A,∀i ∈ {1, ...,n}.

Definition 3.10
Direct path When a trail from X1 to Xn is a set such that (Xi,Xi+1) ∈
A,∀i ∈ {1, ...,n} (i.e. , all the arcs are oriented towards Xn) it is called a
(directed) path.
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S

F IA

LC R

T

(a)

S

F IA

LC R

T

(b)

Figure 3.5: (a) The trail between C and T. (b) The direct path between I
and L

Defining the concept of trail allows us to introduce the notion of as-
cendance (and descendance) between two variables of a BN. For any pair
X,Y ∈ V , X is said to be a ancestor of Y (and Y a descendant of X) if there
is direct path from X to Y. As the Figure 3.5a shows, L is a descendant of I.
If we denote by DescendantsX (resp. AscendantsX) the set of its descendants
(resp. ascendants) we can let NonDescendantsX denote the variables in the
graph that are not descendants of X. As we have seen, an arbitrary choice
is made on the order of enumeration of variables when factorizing a joint
distribution with the equation 3.3. We will show in Example 3.14 how using
a constrained order, called topological, helps reduce the complexity of such
an equation.

Definition 3.11
Topological order An order {X1, ...,Xn} upon V is said to be topologi-
cal if, for all pair {Xi,Xj} within this order, the existence of a direct path
between Xi and Xj implies that i≤ j.
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3.2.3 Structural independences

The factorization of the joint distribution allowed by the equation 3.4 is
explained by the existence of a structural independence property on #»G , called
local Markov property, which can be defined using ancestry relationships
between the variables of such graph.

Property 3.12

Local Markov Property A DAG #»G that verifies the local Markov
property encodes a set of conditional independence assumptions, called
the local independencies, denoted by Il(

#»G ), such that :
For each variable Xi : (Xi ⊥P NonDescendantsXi |Pa

#»G
Xi)

In that regards, the structure of a Bayesian network can be seen as a set of
independence assertions while P is defined through the set of CPTs associated
with #»G . In this section we will show that these definitions are equivalent.
Indeed, a distribution P satisfies the local independencies associated with a
graph #»G if and only if P is representable as a set of CPTs associated with
such a graph.

Definition 3.13
Independencies in P Let P be a distribution over χ. We define I(P)
to be the set of independence assertions of the form (X ⊥P Z|Y) that
hold in P.

Using such a notation, the statement “P satisfies the local independencies
associated with #»G ” can be simply stated as Il(

#»G )⊂ I(P). We say that #»G is
an independency map for P, denoted I-map.
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Example 3.14

When applying the chain rule on #»G SARS using a topological order, the
resulting factorization can be simplified assuming that #»G SARS is an I-
map for P. Knowing, for example, that (C⊥P {A,F, I,T}|S), the follow-
ing equality holds P(C|A,F, I,S,T) = P(C|S). As a consequence, we can
rewrite such an equation :

P(A,F, I,S,T,C,L,R) = P(A)P(F|A)P(I|A,F)P(S|A,F, I)
P(T|A,F, I,S)P(C|A,F, I,S,T)
P(L|A,F, I,S,T,C)
P(R|A,F, I,S,T,C,L)

= P(A)P(F|A)P(I|A,F)P(S|A,F, I)
P(T|A,F, I,S)P(C|S)
P(L|A,F, I,S,T,C)
P(R|A,F, I,S,T,C,L)

By iteratively looking through the independences that holds in #»G SARS

we get back to the equation 3.5 given by the chain rule for BN.

The set of independences verified by the local independence property is
satisfied by P but the opposite is not necessarily true, some independences
may not be expressed by this assumption. In the next section we will present
an intuitive way to find other ones.

3.2.4 D-separation

The d-separation criterion (for directional separation)[Pearl 1986; Geiger
et al. 1989] detects, given three disjoint set of nodes X,Y,Z ∈ V , if X is
independent of Z given Y by testing if all trails from X to Z are blocked by
Y. This notion of blocked trail allows us to see the propagation of knowledge
in a probabilistic graphical model as a flow of information.

Given a set of nodes Y, a trail is called blocked if it contains a closed two-
arc trail given Y, the trail is said to be active otherwise. Before describing
under which condition a two-arc trail is said to be closed, it is necessary to
distinguish the different forms it can take. Consider a two-arc trail {X,Y,Z},
it can have three different structure (illustrated in Figures 3.6, 3.7 and 3.8) :
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• Sequential : X→ Y→ Z or X← Y← Z;

S

F IA

LC R

T

Figure 3.6: A sequential structure

• Divergent : X← Y→ Z;

S

F IA

LC R

T

Figure 3.7: A divergent structure

• Convergent (also known as v-structure) : X→ Y← Z;

S

F IA

LC R

T

Figure 3.8: A v-structure
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In the case of a sequential or divergent structure, the middle node blocks
the flow of information once it is observed. This implies that any evidence
over X will not change our beliefs about Z once Y is known. The third
case behaves differently. Indeed, a v-structure X→ Y← Z block informa-
tion between X and Z if Y is not observed : evidence on X (resp.Z) does
not change our beliefs about Z (resp. X). But if we have evidence over Y
or DescendantsY, then evidence about X (resp.Z) does influence our beliefs
about Z (resp.X) (recall the example of the sum of a dice throw in the section
3.1.3).

a trail {X1,X2,X3} closed given Y
Sequential or divergent X2 ∈Y
V-structure neither {X2} nor DescendantsX2 ⊂Y

Table 3.2: Conditions under which a two-arc trail is closed

Definition 3.15

d-separation Let X, Y and Z be disjoint sets of nodes in #»G . We say
that X an Z are d-separated by Y, written X ⊥ #»G Z|Y, iff every path
between a node in X and a node in Z is blocked by Y. We use I( #»G ) to
denote the set of independencies that correspond to d-separation :

I( #»G ) = {(X⊥ #»G Z|Y)}

Using such graphical criterion allows us to assert in a simple and yet
effective way whether two variables are probabilistically dependent given our
knowledge about another ones.

One may wonder whether for every two nodes X, Z d-separated by some
set Y, we have X is conditionally independent from Z given Y, w.r.t P. This
is the purpose of the following proposition :
Property 3.16

d-separation soundness Let B = ( #»G ,P) be a BN and X, Y and Z
be disjoint sets of nodes in V , then (X ⊥ #»G Z|Y) ⇒ (X ⊥P Z|Y), i.e.
I( #»G )⊆ I(P).
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This property is very useful from a modelling perspective. Indeed, to
obtain a valid BN we can specify direct dependencies and fill the resultant
CPTs to obtain a factorized probability distribution for which the BN graph
is an I-map. Consequently, defining a BN is a more simple and intuitive task.

Theorem 3.17

d-separation weak completeness Let #»G be a directed graph whose
nodes are a set of random variable X. If X and Z are not d-separated
given Y in #»G , then X and Z are dependent given Y in some distribution
P that factorizes over #»G .

This notion of weak completeness tells the d-separation cannot always
detect all the conditional independences that hold in P. Generally, the con-
ditional independences of P verify a number of properties called graphoid
axioms [Pearl and Paz 1986]. Several other methods allow to test condi-
tional independences implied by these axioms, we can for example mention
the u-separation [Butz et al. 2016] or the Markov separation [Lauritzen et al.
1990].

â Model Interpretation and Expert Knowledge

The absence/presence of an arc between two variables describes a depen-
dency relationship. From a quality perspective and while it does not exclude
the existence of a possible latent variable, unknown in the model, Bayesian
networks allow us to easily take into account a priori expert knowledge about
correlation between variables (e.g., a patient’s age influences the severity of
his or her infection) [de Campos and Castellano 2007]. From a quantitative
point of view, asking an expert to estimate a probability is much simpler
(and natural) with such a framework.
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3.3 Queries and inferences in PGMs

3.3.1 Usual queries

Several types of queries are supported by PGMs, algorithms to answer some
of them are presented in section 3.3.3.

3.3.1.1 Posterior Probability Distribution

The most common query in a PGM concerns the search for the probability of
a set of variables V being given observations on others. Let E be the subset
of variables of the model whose values are known, this subset represents
evidence on the model. (e,g, ’the patient is 27 years old’, ’the patient lost
his smell or taste’,’the patient CT scan is positive). This measure, called
posterior probability distribution, is noted P(V|E = e). In the examples in
Figure 3.9 and 3.10 we show the differences in the posterior probabilities
within our SARS-CoV example given knowledge about a patient. If we know
that a young patient has had a positive CT-scan and has lost his taste or
smell then the probability that he his mildly affected by the virus increases
from 0.53% to almost 69%.

Inference in   1.00ms

Figure 3.9: An inference without evidence
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Inference in   2.00ms

Figure 3.10: An inference with evidence (in orange)

3.3.1.2 Most Probable Explanation

This query tries to find the most probable instantiation of variables Q = V\E
given the evidence E = e. To put it another way, this amounts to find the
assignment of Q that maximizes P(Q|e) i.e., computing the quantity :

argmaxq∈QP(q|e)

3.3.1.3 Maximum A Posteriori

This is a more general case of MPE in the sense that while Q covers all
non evidence variables, it is now just a subset of variables for which we
therefore seek to find a high-probability joint assignment. It is also called the
marginal MAP, because this involves both marginalizing out some variables
and computing some argmax on others. More precisely, if W = V\{Q∪E},
MAP computes :

argmaxq∈Q
∑
w∈W

P(q,w|e)
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3.3.2 Operations Between Potentials

The data used to manipulate PGMs (notably their CPTs) are stored in so-
called potentials that can be viewed as multi-dimensional table where a value
is assigned to each instantiation of a set of variables X.

Definition 3.18
Potential A potential over a set of discrete random variables X is a
function φ such that φ : Val(X) 7→ R, where Val(X) = ⊗X∈X Val(X). X
is called the domain of φ and denoted dom(φ).

Most of the algorithms that will be described later in this document
involve two operations on potentials : a product and a marginalization op-
eration.

Definition 3.19
Product Let φ1 and φ2 be two potentials over X1,X2 and X2,X3 re-
spectively, with X1,X2 and X3 three disjoint sets of random variables
(possibly empty). The potential product of φ1 and φ2, denoted φ1× φ2,
is the potential ψ such that :

ψ : Val(X1,X2,X3) → R
(x1,x2,x3) 7→ φ1(x1,x2)×φ2(x2,x3)

Definition 3.20
Marginalization This operation eliminates a set of variables from a
potential. If we have a potential φ(X,Y) over two sets of variables X,Y,
marginalizing Y produces a new potential τ(X):

τ(x) =
∑
y
φ(x,y),

where the sum is over all joint assignments to the set of variables Y.
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Remark 3.21
τ refers to the marginalized potential. Even if φ was a CPT, the marginalized

potential does not necessarily correspond to a probability. For instance :

∑
X
P(X|Y) = 1Y

Cough Current SARS status

severe 0,0002

mild 0,0018 Current SARS status

asymptomatic 0,0434 0,0008 severe

none 0,7600 0,0053 mild

severe 0,0060 0,0438 asymptomatic

mild 0,0035 0,9500 none

asymptomatic 0,0004

none 0,1900

no

yes

Figure 3.11: Example of marginalization P(S) =∑
CP(C,S)

3.3.3 Inference algorithms

Numerous algorithms are used to compute the queries presented in Section
3.3. Two families of algorithms can be distinguished : exact algorithms,
some of which manipulate secondary graphical structures in order to compute
multiple queries at once, and approximated algorithms ones when the exact
algorithms can no longer be used because of the spatial complexity of the
models. Despite the various proposed optimizations and refined algorithms,
the inference in a PGM is NP-Hard [Cooper 1990; Dagum and Luby 1993].
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3.3.3.1 Exact Inferences

â Variable Elimination

Variable Elimination (VE) [Zhang and Poole 1994; Dechter 1999] is a
simple algorithm for exact inference within PGMs. As its name indicates it
consists in successively eliminating variables from a factorized joint distri-
bution in order to compute MAPs or marginal distributions. The algorithm
initializes a set of factors with the BN CPTs, then, each time a variable
needs to be eliminated, compute the product of factors that contains such
variable. The variable is then marginalized out from the combined factor.
By repeating this elimination process until no more variables need to be re-
moved, one can obtain the marginal distribution over any subset of variables.
The performance of such an algorithm is related to the elimination order of
the variables and finding such an optimal elimination order is, in itself, a
NP-Hard problem [Dechter 1999; Arnborg 1985].

â Exact inferences with junction trees

One of the limitations of using VE is that it only allows one value to be
calculated at a time. Algorithms based on the use of a secondary structure,
called a junction tree (sometimes a clique tree), make it possible to overcome
this problem.

Denoted T , a junction tree is a structure generated from a DAG #»G where
all of #»G ’s variables are grouped into clusters called cliques (yellow nodes
in Figure 3.12) connected by separators (in green) such that T verifies the
running intersection properties. Let T be a junction tree over a set of factors
Φ. We denote by V(T ) the vertices and by E(T ) its edges.

Property 3.22
Running intersection property T verifies the running intersection
property if, whenever there is a variable X such that X ∈ Ci and X ∈ Cj ,
then X is also in every clique, and separator, in the path between Ci and
Cj in T .
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(a)

3:STR

S

1:CS

S

2:FSIA

S

4:LS

(b)

Figure 3.12: (a) a Bayesian network. (b) a possible junction tree

To have a detailed description of the procedure transforming a Bayesian
network into a junction tree, one can refer to [Koller and Friedman 2009,
chap. 10]. We can however note that the generation of a JT is not unique
and even if heuristics are used to make it as simple as possible, the search
for an optimal JT is NP-hard [Verner Jensen and Jensen 2013].

â Message passing protocol within JT

Algorithms, such as Shafer-Shenoy [Shenoy and Shafer 1990], Hugin [Jensen
et al. 1990] or Lazy Propagation [Madsen and Jensen 2013], are based on a
message passing protocol between adjacent nodes of the junction tree. For
(i, j) ∈ E(T ) we denote ψi→j the potential associated with the separator Sij
which represents the message from i to j over Sij . Since messages will be
sent in both directions, we need to distinguish ψi→j from ψj→i. In order
to guarantee the correctness of computations, the message-passing protocol
needs that the message ψi→j should be sent only when clique i has received
messages from all of its neighbours except from j. Exchanging a message
from i to j in the junction tree will propagate toward j information that has
been gathered in i.
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3:STR

S

1:CS

S

2:FSIA

S

4:LS

P(T)P(R|S,T)φ3(S,T,R) =

P(F)P(S|F, I,A)P(I)P(A) = φ2(F,S, I,A)

P(L|S)φ4(L,S) =

P(C|S)φ1(C,S) =

P(C,S,F, I,A,T,R,L) = P(C|S) P(F)P(S|F, I,A)P(I)P(A) P(T)P(R|S,T) P(L|S)

Figure 3.13: Initialized junction tree

One way to organize messages computations is to perform two phases,
namely Collect and Distribute from a predetermined root r ∈ V(T ). Dur-
ing the Collect phase, messages are sent along edges from leaves toward r

(highlighted with a red node in figures 3.14 and 3.15).

3:STR

S

1:CS

S

2:FSIA

S

4:LS

ψ1→3 =∑
Cφ1(C,S) ψ2→3 =∑

FIAφ2(F,S, I,A)

ψ3→4 =∑
TRφ3(S,T,R)×ψ1→3×ψ2→3

Figure 3.14: Message passing during the collection phase

During the Distribute phase, messages are sent from r towards the leaves.
After propagating all the messages, in order to have the joint posterior dis-
tribution over the variables in Ci up to some normalization constant, all we
need is to compute the product φi×

∏
(k,i)∈E(T )ψk→i, where φi denotes the

potential associated with the clique Ci.
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3:STR

S

1:CS

S

2:FSIA

S

4:LS

ψ3→1 =∑
TRψ2→3×ψ4→3×φ3(S,T,R) ∑

TRψ1→3×ψ4→3×φ3(S,T,R) = ψ3→2

∑
Lφ4(L,S)×ψ3→4 = ψ4→3

Figure 3.15: Message passing during the distribution phase

To sum up, an exact inference with junction trees manipulates potentials
with two operations, a marginalization and a product (and a division in
the case of Hugin), the limiting factor in its feasibility being the size of
the potentials. Indeed, the complexity of an inference in a BN is NP-Hard
[Cooper 1990], growing exponentially in the tree-width of the network. In
the case of JT-based algorithm the tree-width is related to the size of its
largest clique, determined by the products of the domains of its variables
[Robertson and Seymour 1986].

As we will see in Chapter 6, if a more compact representation of the
information contained in the potentials can be found and aforementioned
operations redefined using such an embedding, we could make a more scalable
inference, at the cost of a controlled approximation.

3.3.3.2 Approximate Inference

Exact methods make it possible to answer requests in simple cases but when
models become more complex, it is quickly necessary to use approximate
algorithms that offer to limit the spatial complexity of the models at the cost
of an increase in computation time or a relaxation of the model constraints,
which introduces an error in the results of these calculations, sometimes
without offering any guarantee of convergence. We briefly outline here the
principles of such approaches and again invite the interested reader to refer
to [Koller and Friedman 2009, Chapters 11 and 12] for detailed explanation
about these subjects.
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â Loopy Belief Propagation

We saw that the junction tree algorithm has a running time that is po-
tentially exponential in the size of the largest clique and that sometimes, the
act of finding a tree minimizing this one is complicated, let alone inferring
in it. However, it is not always necessary to look for an exact solution as
provided by these algorithms; an approximation provided rapidly may be suf-
ficient. The Loopy Belief Propagation algorithm (LBP) [Pearl 1988] is one of
the traditional techniques that allows us to perform such an approximative
calculation on complex graph.

The general idea behind LBP is to iteratively apply a message propagation
algorithm (like the one presented before) but this time on a loopy graph in
which the nodes will not wait to receive their messages before sending theirs.
The algorithm will stop after a certain number of iterations of the message
passing protocol or when the differences introduced by the updates are no
longer significant.

This approach often works surprisingly well in practice [Murphy et al.
1999]. In general, however, convergence isn’t guaranteed. Empirically we
think that it probably converges on trees and on graphs with at most one
cycle. If the method does converge, its beliefs may not necessarily equal the
true marginals, although very often in practice they will be close. LBP can
be viewed as a structurally relaxed version of the junction tree algorithms
presented above.

â Sampling methods

Based on stochastic sampling, these methods (such as Gibbs Sampling or
Metropolis-Hastings) can be used to perform both marginal, MAP inference
queries as well as the computation of interesting quantities, such as expecta-
tions [Mackay 1998]. The general idea behind these approaches is no longer
to infer from a distribution P that would be too complex to evaluate, but to
draw samples from this distribution in order to, at some point, converge to
the targeted value.
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The main disadvantage of these methods is that the quality of the approx-
imation is directly related to the number of samples performed and therefore
to the time spent sampling. Furthermore, it is difficult to estimate when an
approximation will be accurate.

â Variational methods

Contrary to the methods presented above, variational approaches (such
as the Mean-Field approximation) will use optimization techniques in order
to approach a distribution. Variational techniques will try to solve an opti-
mization problem over a class of tractable distributions QQQ in order to find a
Q ∈ QQQ that is most similar to P. We will then query Q (rather than P) in
order to get an approximate solution. The formulation of inference as a con-
strained optimization problem opens the door to the application techniques
developed in the optimization literature (such as stochastic gradient opti-
mization, parallelization over multiple processors, and GPU acceleration). If
these methods have an increasing popularity [Blei et al. 2017; Zhang et al.
2018] they are nevertheless more complex to use, notably because several
design choices have to be made between the objective function that we aim
to optimize, the space of pseudo-distribution QQQ used as well as the algorithm
to choose to perform the optimization.

3.3.4 Large Scale BN and Expressivity

When attempting to model large scale problems, on an industrial scale for
example, with BN, we are confronted with a challenge : these are quickly
tedious to handle and loose expressiveness. Let’s consider, as showcased in
the example in Figure 3.16, that some random variables count the number of
patients with a severe form of disease for each physician (the green nodes).
If the reading of such a network is already complex in such a simple setting,
how could we easily model and monitor systems containing tens or hundreds
of patients ? Several models, such as OOBN [Bangsø and Wuillemin 2000]
and PRM [Koller and Pfeffer 1998; Pfeffer 2000; Torti et al. 2010], offer an
answer to this problem.
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Figure 3.16: BN representing a system with 3 physicians and 10 patients
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3.4 Probabilistic Relational Models

Probabilistic relational models (PRM) are combining notions from BNs and
from the paradigm of object-oriented languages, where the focus is set on
classes of objects and by defining relations among them. The expressiveness
gained when adding notions of random variables and conditional probabili-
ties to classes, attributes, relations, interface, inheritance and instantiations
makes graphical models reusable and scalable [Medina Oliva et al. 2010].

3.4.1 Model

The random variables of a PRM are grouped within classes, it is a means of
abstracting a certain complementarity between them. We will, for example,
speak of the Patient class or the Physician one. Each class can be seen as
an independent DAG, the variables characterizing the relationships within
a class are called attributes. To allow communication between attributes of
two different classes, it is possible to define references. We will show that
this abstraction allows us to easily instantiate a complex model to a specific
context. Now let us give formal definitions for PRM concepts. We will
illustrate such concepts with the help of a simple model, presented in Figure
3.17, from [Torti 2012].

X1 Y1

U1 V1

W1

U2 V2

W2

X2 Y2

U3 V3

W3

Figure 3.17: A BN with abstractable classes

Definition 3.23
Classes In PRM, the world consists of base entities, partitioned into
classes C1,C2, ...,Cn. Each class is associated with a set of attributes A(C)
and a set of reference slots R(C).
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Classes could be identified thanks to recurring patterns, as shown in Fig-
ures 3.17 and 3.18. In complex systems there are often many random vari-
ables sharing the same domain, thus by defining once an attribute’s type we
reduce the amount of redundant information that must be specified when
modeling the system.
Definition 3.24

Attribute’s type An attribute’s type τ describes a family of distinct
discrete random variables sharing the same domain τ = l1, · · · , ln, where
n is the domain size of τ .

Random variables such as Cough, Infected with SARS-CoV and Loss of
taste or smell described in the table 3.1, share the same type.
Definition 3.25

Attributes Let C be a class. An attribute X of a class C, denoted C.X
in case of ambiguity about its class, is a triplet < τX,Pa(X),φX >, where
τX is X’s type, Pa(X) its set of parents and φX a potential encoding its
probability distribution according to Pa(X).

Definition 3.26
Reference slots Let C and D be two classes. A reference slot C.ρ=D is
a pointer in C that refers to D and allows us to access one of its element.
We say that C is the domain of C.ρ denoted Domain(C.ρ) and D is the
range of C, denoted Range(C.ρ). A reference slot is simple if it relates
one class to one class and it is multiple if it relates one class to many.
The inverse of C.ρ is called inverse slot and is denoted D.ρ−1. We have
Range(D.ρ−1) =Domain(C.ρ) and Domain(D.ρ−1) =Range(C.ρ).

A class thus abstracts the interactions between the random variables it
contains and can be seen as a fragment of a BN on its attributes. The figure
3.18 shows the abstract classes from the figure 3.17 and the corresponding
reference slot (dashed parts). The mechanism of reference slot can be applied
recursively to allow one attribute to access attributes of different classes by
navigating through other classes, we call this path of reference a slot chain.
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X Y

U V

W

Figure 3.18: An abstraction of the BN in Figure 3.17

Definition 3.27
Slot chain PRM also define the concept of slot chain ρ1, ...,ρk as a
sequence of relation slots such that ∀i,Range[ρi] =Domain[ρi+1].

3.4.1.1 PRM Instantiation and Complex Networks

These notions make it possible to define the constituent elements of a PRM.
From these descriptions, one can easily define more or less complex systems
through a so called PRM system. An extended example of a PRM declaration
in the o3prm format can be found online 2.
Definition 3.28

Instance An instance c of a class C is an actual object of this class, i.e.
, a BN fragment whose attributes are random variables generated from
the class level template and where references slots refer to sets of their
range’s instances.

Definition 3.29
Relational Skeleton A relational skeleton S is a set of instances such
that for any instance c of class C and any reference slot C.ρ = D, there
exists at least one instance d ∈ S such that d is an instance of D and
d ∈Range(c.ρ).

2https://gitlab.com/agrumery/pgmrepository/-/blob/master/o3prm/
complexprinters_system.o3prm

https://gitlab.com/agrumery/pgmrepository/-/blob/master/o3prm/complexprinters_system.o3prm
https://gitlab.com/agrumery/pgmrepository/-/blob/master/o3prm/complexprinters_system.o3prm
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PRM system

(a) (b)

Figure 3.19: (a) a PRM system. (b) the relational skeleton of such system

3.4.1.2 PRM and Grounded BN

Now that these elements have been specified, we can formally define what
a PRM is and, interestingly, specify a procedure for generating a Bayesian
network, known as a grounded BN, from that PRM.
Definition 3.30

PRM A PRM M is a pair (C,S), where C is a set of classes and S is
a relational skeleton. It encodes the joint probability distribution over
A(S), the set of all instance attributes in S, as the following product:

P(A(S)) =
∏
C∈C

∏
i∈IS(C)

∏
i.X∈A(i)

P(i.X|Pa(i.X))

Given a PRM M = (C,S), its associated grounded Bayesian network is a
BN constructed using the following steps :

1. There is a node for every attribute i.X of every instance i ∈ S, named
i.X.

2. Each i.X depends probabilistically on parents of the form i.Y or j.Y
such that there exists a slot chain K with j ∈Range(i.K).

3. i.X’s conditional probability distribution is a CPT generated from the
attribute’s CPT of the corresponding class.
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3.4.2 PRM Specific Inferences

All the inferences presented can be used on the grounded BN generated from
the instantiation of a PRM but it would be not using one of the character-
istics of PRMs: their structural redundancy. Some works have proposed, in
this perspective, to adapt classical algorithms to PRMs. Structured Vari-
able Elimination (SVE) [Pfeffer 2000] proposes an extension of VE exploits
structural repetition in open worlds systems to reduce the number of com-
putations. In [Torti and Wuillemin 2010; Wuillemin and Torti 2012], au-
thors proposed an adaptation of the Bayes-Ball algorithm [Shachter 1998],
to speed-up the computation.

3.5 Conclusion

In this chapter we have presented the tools that PGMs are, the theory be-
hind their definition and their interest, especially on a practical level, thanks
to their expressiveness or the richness of existing methods for their manip-
ulation. In the introduction we mentioned some practical and theoretical
limits related to the use of uncertain reasoning in RBS. We will now discuss
the various approaches studied within the IBM France Lab regarding the
use of PGM could allow users who are neither mathematicians nor computer
scientists to manipulate probabilistic rules.
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An internal study [Ait-Kaci and Bonnard 2011], several internships [Arru
2011; Perez 2013] and a PhD thesis [Agli 2017] have shown that a weak
coupling between ODM and probabilistic inference engines makes it possible
to reason on probabilistic data by introducing the notion of probabilistic
production rules.

4.1 PPR Studies

The main objective of [Arru 2011] was to introduce uncertain reasoning in
a BRMS throughout the development of a prototype integrated in JRules’
rule engine (JRules is the former name of ODM). One of the contributions
of this internship was the introduction of a probability operator in the engine
language, as shown in the following figure.

In the rest of the manuscript and for readability reasons, the random
variables present in the rules will be highlighted with teal.

rule planExaminationRule {
when {

p : Patient(probability(p.LungCancer) > 0.4);
} then {

planExamination(patient);
}

};

Figure 4.1: Example of original PPR rule

In order to map the random variables and class attributes of the problem,
JRules object model was extended with the help of annotations. In the de-
veloped prototype, each class containing probabilistic attributes was linked
to a Bayesian network with the annotation @PprClass and probabilistic at-
tributes linked to Bayesian variables with the annotations @PprVariable.
These annotations made it possible to query, at runtime, the probability in
the Bayesian engine when the rule evaluate the predicate including the prob-
ability operator. A first light coupling between the two engines was therefore
introduced.
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In addition to a comparison between different probabilistic inference en-
gines (SMILE [Druzdzel 1999], Hugin [Andersen et al. 1989], unBBayes [Mat-
sumoto et al. 2011], Bayesia [Conrady and Jouffe 2015], ProBT [Mekhnacha
et al. 2006]), the use of models other than BN, such as OOBN [Bangsø and
Wuillemin 2000] or PRM [Koller and Pfeffer 1998; Pfeffer 2000] were men-
tioned, particularly since the former are inadequate to represent large and
complex domains such as defined in JRules BRMS. This work concluded
that “limitation of Bayesian networks is a direct consequence of the fact that
they lack the concept of an object (or domain entity)” (i.e. , there is a mis-
match between the object model of the rule engine and the flat model of the
Bayesian network).

4.2 URBS

In this section we will focus on some of the contributions made in URBS
[Agli 2017] insofar as they are the starting point of the current thesis.

4.2.1 ARL-PRM Mapping

The contribution that we are most interested in concerns the use of PRM
instead of BN. As it has been shown, the structuring of the information
in PGMs is very close to the one in the object data model defined in the
rule engine. The conceptual similarities (classes, attributes, relationships)
between the two models ease the interaction between the two engines. In
this case it is no longer just a question of mapping the variables but of
defining the CPTs directly in the object model, so a PRM model could be
generated directly from the annotated version of the OM.

The example below shows an excerpt of what an OM declaration using
these annotations looks like. The Patient class will be translated in the PRM
using the @PrmClass annotation. It contains several random variables such
as status or is severe that describe the condition of a patient and indicate if
it is severe. These annotations (@PrmAttribute and @PrmAggregator) are
composed of the elements necessary for their creation (name of parents, cpt,
aggregation type, ...). Dependencies between classes are declared thanks to
@PrmReference and @PrmMultiReference annotations.
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@PrmRestrictedTypeClass(modalities={"severe","mild","asymp","none"})
public StatusType restricts int#[0,3];

@PrmClass
public class Patient {

public String name;

@PrmAttribute(parents={"infected","age","risk_factors"},cpt=...)
public StatusType status;

@PrmAttribute(parents={"status"},cpt={{1,1,1,0},
{0,0,0,1}})

public int is_severe;

...
}

@PrmClass
public class Physician {

@PrmMultiReference
public Patient[] pats;

public String name;

public String specialty;

@PrmAggregator(aggName="sum",attribute ="pats.is_severe",mod="")
public int number_of_severe_patients;

...
}

Figure 4.2: Example of the use of annotations during the declaration of a
system

It is important to note that this definition phase is agnostic of the chosen
probabilistic inference engine. This generality contributes to the looseness
of the coupling between the two engines and allows greater freedom of use
but leaving the task of determining which variables are probabilistic in the
model induces a selection bias that is not without consequence. This is one
of the limitations of the approach.
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4.2.2 IJTI

Since the working memory of a BRMS evolves incrementally, [Agli et al.
2016] proposed a new exact inference algorithm to take such property into
account. The key idea was to take into account previous computations within
a junction tree to optimize a new inference by computing only the parts of the
tree modified by the increment. This algorithm, well adapted for a combined
use of a BRMS and probabilistic graphical models, is no longer applicable
when the initial query is not computable (let us recall that one of the main
criteria of feasibility of an inference based on the use of a junction tree is the
size of its cliques).

4.2.3 Toolchain

Figure 4.3 shows how BIS, the plugin developed in URBS, fits into the
ODM compilation chain. Different semantic trees are generated there after
analysing and checking the syntax of the user file describing the rules and
objects of the model (IRL). In addition to producing the one describing the
rules (SemRuleset), this study proposed to use the object model to generate
a probabilistic relational model (SemPRM ), then to rewrite the probabilized
expressions of the rules in order to be able to make calls to an inference
engine using the generated file (PRM file).

IRL
Parsing
Cheking

SemRuleset
Ruleset
rewriting SemRuleset

BIS

Back-end	
processes JAR

data process

PRM	writer PRM	fileSemPRM

plugin	processes

Figure 4.3: BIS compilation process
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4.2.4 Runtime Engine Coupling

The evaluation of probabilistic queries and the monitoring of the PRM Sys-
tem is made possible by the use, at runtime, of a second engine, dedicated to
this type of computation. This engine is parameterized prior to compilation
and must support two types of interaction with the rule engine, as showed
in Figure 4.4:

• The BRE can request posteriors of query to the probabilistic engine,

• The BRE can inform the probabilistic engine of changes or observations
to keep the PRM system up-to-date. If a patient is attached to a new
physician, references must be updated within the PRM, for example.

Figure 4.4: BIS coupling

aGrUM has been choosen to be coupled with ODM’s rule engine for effi-
cency and accessibility reasons. The aGrUM [Gonzales et al. 2017]1 frame-
work, primarily developed in the LIP6, is a LGPL C++ library providing
state-of-the-art implementations of graphical models for decision making, in-
cluding Bayesian Networks, Markov Networks (Markov random fields), Influ-
ence Diagrams, Credal Networks and Probabilistic Relational Models thanks
to the o3prm syntax2. A custom Java wrapper of aGrUM was implemented
using SWIG [Beazley 1996].

1httpl://agrum.gitab.io
2http://o3prm.gitlab.io/

httpl://agrum.gitab.io
http://o3prm.gitlab.io/
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4.3 Discussion

By introducing new operators in the ODM syntax these studies allow the
computation of probabilities of atomic events during rule evaluation. They
have raised and answered some modelling problems related to such syntax
through the use of PRMs and have proposed solutions to make inference
scalable in such a system. However, two issues weren’t addressed in the
previous works :

• Business user friendliness: such rules can be difficult to define and
to understand by a business user, expressing a probability on particu-
lar conditions requiring a deep level of knowledge of the probabilistic
models used. This overly intricate mixture of the two models (rules
and probabilistic) is a problem insofar as it is not the same individuals
who would intervene on each of them.

• Performance: ODM provides the ability for users to define different
types of conditions (for example, using filters, aggregators, and nested
conditions). Neither these constructions, more complex, nor their im-
pacts on the performances have been studied.

In the following chapters of this document, we will present some initial
solutions to address these two challenges. First, we will introduce a more
general and, hopefully, more accessible syntax, allowing business users to use
probabilistic rules (Chapter 5). In a second time, we will examine the issue
of scalability by proposing a change in the data representation within PGMs
(Chapter 6).
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In this chapter we present a new syntax for a sub-part of the Ilog Rule
Language (Section 5.1). We describe the different rewriting procedures used
when compiling the rules alongside with the generation of a PRM (Section
5.2) as well as a first method to use this syntax in a context where execution
time and memory management are fundamental (Section 5.4).

5.1 Business-User Friendliness and Risk Def-
inition

Previous works [Ait-Kaci and Bonnard 2011; Agli 2017] have shown that
a loose coupling between a rule engine and probabilistic graphical models
(Bayesian networks initially, then PRM) allowed reasoning and making de-
cision with uncertain data. The introduction, in the ODM syntax, of several
operators as well as a mechanism allowing, at runtime, the communication
between the rule engine and the probabilistic one allows the use of a new
type of reasoning and thus enhances the reasoning capabilities of BR.

However, a number of problems have been raised with those approaches
[Ducamp et al. 2018], mainly related to accessibility issues for a business user,
the proposed syntaxes requiring a deep understanding of the probabilistic
model used. This complexity can be a hindrance to the use of these reasoning
capabilities by business users who are more interested in decision making
than in formulating probabilistic queries, they may be confused if they have
to deal directly with programming components or mathematical concepts.

To address this business user friendliness issue, we have redefined the
treatment of uncertainty in the expression of rules by replacing the prob-
ability thresholds attached to single variables by an aggregated notion of
acceptable risk on the evaluation of the conditions of the rule as a whole, as
shown in the Figure 5.1.

In this example, if we think (probability > 0.8 ) that a patient in the
waiting room of an hospital is a high-risk case (p.is severe == true) and a
physician is not overloaded with severe patients (p.nbr of severe patients <
2 ), then the physician will be assigned to care for the patient.
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rule PatientAssignement {
when {

hp : Hospital();
p : Patient(p.is_severe == true) in hp.triage;
phy : Physician(phy.nbr of severe patients < 2) in hp.physicians;

} [with probability > 0.8] then { // Assign him the patient }
};

Figure 5.1: A new syntax for probabilistic rule

â Threshold interpretation

This threshold, which conditions the eligibility of a rule, characterizes the
probability that a set of conditions are verified given the state of the working
memory (i.e. , the set of facts/evidence known about the monitored system).
Given the following formulation over n conditions, we will check if p(rule) is
greater than the fixed threshold.

p(rule) = p(c1, ..., cn|WM)

The probability operator can be seen as a generalization of the Boolean
case, for which rule actions are executed when the conjunction of the rule
conditions is satisfied. In this case, the threshold is simply equal to 1 (or
omitted) to express the fact that we are certain about the conditions.

â Threshold parametrization

The parametrization of the threshold depends on the business policies and
risk aversion of users. In case of high health tension a hospital department
might decide to take less risk on accepting people who could actually stay
at home. Conversely, when an institute has many beds and staff available it
might take the risk of accepting people whose condition is more uncertain.
If we consider the cases where the rule is executed (not executed) correctly,
denoted TP (resp. TN ) and those where it is executed (resp. not executed)
wrongly, FP (resp. FN ) as well as the gains gX or costs cX associated
with each of these cases, then we can see the choice of the threshold as an
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optimization problem. One could, for example, seek to fix the threshold so
as to maximize his gains (find x such as max(px ∗ gTP + (1− px) ∗ gTN )) or
to minimize his losses (min(px ∗ cFP + (1− px) ∗ cFN )). Some might even
use a combination of the latter, to establish a trade-off between gains and
losses. These very interesting aspects, however, are not part of the scope of
this thesis.

â Probabilistic query formulation

To be able to evaluate the threshold one have to formulate a probabilistic
query over the condition part. To achieve this, it is necessary to generate the
PRM not only from the defined object model, as in [Arru 2011; Agli 2017],
but also from the set of rules. Since the rule engine does not know how to
interpret a probability over a set of conditions it is necessary to change its
toolchain (compilation phase) and intervene during the rewriting phase to
make such rules usable.

As we will see in this chapter, we indirectly propose a link between PRMs
and first-order logic. If, as we said in the introduction, other models are
specifically made for this purpose (such as MLN [Richardson and Domin-
gos 2006]), the ease of manipulation/modification of PRMs and their inter-
pretability make them a good candidate for our business-oriented use.
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5.2 Rule Rewriting and PRM Enhancement

5.2.1 A Structural Approach

As we have seen in the Section 2.2.2, the condition part of a rule consists
of a set of unitary conditions which can take multiple forms, that of a sim-
ple condition, an existential condition or an aggregator, each of them with
predicates to help filter the objects they concern (a physician with a certain
specialty, the patients with a particular age within a waiting room, ...), as
showcased in Figure 5.2. These objects can either be found in the WM or
be declared as ruleset parameters but we only consider the first case in this
document as it is the most general one. Let us recall that Rete works by
looking incrementally for the elements of the WM verifying the conditions.

rule A {
when {

...
p : Patient(predicate);
...

} [with probability > x] then { // test and alert }
};

Figure 5.2: A rule with our new syntax

Each condition corresponds to a mapping between a variable and elements
present in the WM. These elements can be calculated from the WM for
constituting an aggregation of them, as we will see in Section 5.2.4.1, or
conditioned by a predicate which is composed of a set of atomic propositions
connected to each other by logical operators. In this work we will consider
two of them, the conjunction and the disjunction.

A first ”näıve” approach to handle the probability could be to encode all
predicates in a new class within the generated PRM, to use evidence within
this model to characterize the values of the deterministic attributes of the
found elements and query the posterior of the conjunction of those predicates
at the end of the condition part, as showcased in Figure 5.3 and 5.4 (for the
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sake of readability we will not display the PRM in its entirety, only the classes
and random variables concerned by the rule, the other variables/dependencies
being dashed). The exact formulation of such a request will be described in
the Section 5.2.3.

rule A {
when {

...
p : Patient();
...
// evaluation of probability(rule) > x;

} then { // test and alert }
};

Figure 5.3: Näıve rewriting of rule A

Patient

...

Rule A

predicate

...

and rule

patient

Figure 5.4: New class with the näıve approach

This method would not be flawless, not using predicates within rule would
be equivalent to not filtering the elements prior to the inference and thus
greatly increasing the number of probabilistic calculations. Probabilistic at-
tributes lie in the Bayesian domain while deterministic ones relate to logic, for
which rule engines are optimized. Even if a probabilistic engine could eval-
uate all types of conditions over probabilistic and deterministic attributes
(which could be characterized by CPTs filled with zeros and ones), it would
be at the price of highly degraded performances (the calculation of an in-
ference is rarely insignificant in terms of memory/time costs, so we try to
minimize their number as much as possible).
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5.2.1.1 Rewriting Procedure and Compilation Process

A more effective rewriting may be considered. Since we know which at-
tributes are probabilistic in predicates (they are annotated with @PRMat-
tribute in the Data model, as described in the Figure 4.2), we can use rewrit-
ing rules that allow us to encode only what is strictly necessary in the PRM
and keep as much filter as possible within the condition to limit the number
of element on which we will query the final probability. A brief description
of the rewriting process we have chosen to implement as a rule engine plugin
is the following :

Rewriting procedure

foreach probabilistic rules do
1. Create a class in the PRM representing the rule;
foreach probabilistic condition do

a. Enhance the PRM w.r.t. the condition;
b. Rewrite the condition;

2. Add a call to the probabilistic engine;

This procedure allows us to redefine the toolchain of the ODM rule en-
gine. Contrarily to previous proposals, where the PRM model was only
generated using the annotated user model, we will subsequently enhance it
with elements extracted from the probabilistic rules, reinforcing the coupling
between the two engines. Our plugin, called PRIME (for Probabilistic Rea-
soning Insight ModulE), operates such rewriting procedure and supports a
part of the technical language of the engine (extending the BAL-IRL conver-
sion tool would be possible but would be out of the scope of the thesis). The
action of the plugin on the toolchain is schematized on Figure 5.5.

The different possible cases supported by our prototype are described in
the following sections of the document. We will first address the treatment of
simple conditions that act as mapping between a variable and an object from
the WM regarding some filters (Section 5.2.2), then describe how probabilis-
tic queries are formulated (Section 5.2.3) to finally consider more complex
cases involving aggregators or existential conditions (Section 5.2.4).
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Figure 5.5: PRIME new compilation process

The first step during the rewriting of a probabilistic rule consists in adding
a new class in the PRM model, where we will encode the different references
to the objects as well as probabilistic conditions encountered. It is important
to note that it is the plasticity of PRMs, inherited from the object-oriented
paradigm, that allows us to easily adapt and enrich them without having to
modify the base model. We can, for example, easily add new classes and
references towards the base model and quickly instantiate many objects of
such classes within the PRM system. Such manipulations would have been
tedious —if not impossible— in a classical BN.

5.2.2 Condition Rewriting

Each type of condition can involve a predicate, simple or complex, which
will be used to select (or not) an element of working memory according to
its attributes. It is at this level that the notion of probability will propagate
and therefore that our rewriting will intervene. During the process of rewrit-
ing probabilistic rules we will sequentially go through each condition. Our
goal, by rewriting the conditions, is to keep, when possible, the determinis-
tic elements within the logical part of the evaluation (managed by the rule
engine), and to transfer the others to new variables of the PRM that will be
taken into account by the Bayesian engine. The different cases that can be
encountered and the corresponding actions required in these are outlined in
the Table 5.1.
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Predicate type Example Action
Deterministic is unconscious Don’t rewrite
Probabilistic status is severe Add in PRM
Conjunction is unconscious and in a severe condition Decompose
Disjunction is unconscious or in a severe condition Add in PRM
Complex tested positive or (severe and unconscious) Decompose

Table 5.1: Types of predicates used within IRL conditions

In the next pages we will describe precisely the rewriting rules for each of
the constructs presented in 2.2.2 and how PRIME modifies the PRM during
the PRM enhancement process. If the treatment of the so-called simple types
are only particular cases of the complex version, we thought it would be
useful to describe the mechanisms in these cases for illustrative purposes but
also because we believe that these cases would be the most commonly used.
Unless stated otherwise, a predicate without any comparison operator implies
that this predicate is equal to true (e.g., p.is severe is to be interpreted as
p.is severe == True). In the case of a purely deterministic condition, no
additional rewriting is necessary, the rule engine knows how to interpret it
as it stands.

5.2.2.1 Probabilistic Predicate

When a predicate involves a random variable, as with p.is severe in Figure
5.6, the rule engine cannot interpret it, it is up to the probabilistic engine to
do so.

rule B {
when {

...
p : Patient(p.is_severe);
...

} [with probability >= x] then {
// test and alert

}
};

Figure 5.6: Condition involving a probabilistic predicate
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The predicate is, consequently, added to the PRM class concerning the
rule, as shown in Figure 5.7, along with a reference patient linking to an
object of the Patient class. This reference is used to link, at runtime, a pa-
tient instance filtered by the rule engine and its reference within the Rule
B instance in the PRM system (as described in Section 5.2.3). The predi-
cate is then directly linked to a logical variable, the and node, that acts as
a conjunction between the different conditions encoded in the class (since
this variable only takes binary variables as parents, its CPT can be easily
generated).

Patient

...

is severe

Rule B

is severe ==
True

...

and

patient

rule

Figure 5.7: Enhanced PRM from the analysis of rule B

Once the PRM is completed, the predicate is removed from the original
condition of the rule, i.e. it will not no longer be managed by the rule
engine. In our previous example, the rule engine will, therefore, only search
for patients in the working memory (according to the previous conditions).
It will be up to the probabilistic engine to evaluate the probability of the
random variable rule at the end of the condition part, as shown in Figure
5.8. We will describe in Section 5.2.3 the context of such an evaluation as well
as the different parameters that it must take in order to properly compute
the probability of the rule.
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rule B {
when {

...
p : Patient();
...
evaluate(PRMengine.getPosterior("Rule B",

{patient:p;...},
{...}) > x);

} then {
// test and alert

}
};

Figure 5.8: Rewritten form of rule B

5.2.2.2 Conjunctive Predicate

When the condition is a conjunction of two predicates, one of which is prob-
abilistic, it is possible to keep part of the predicate within the rule (in the
example in Figure 5.9, the deterministic predicate is conscious == False).
Keeping as much deterministic information as possible limits the elements
that will be concerned by the probabilistic inference and may improve the
global performance.

rule C {
when {

...
p : Patient(p.is_severe and p.is_conscious == False);
...

} [with probability >= x] then {
// test and alert

}
};

Figure 5.9: Condition involving a conjunctive predicate

The probabilistic component of the conjunction is added in the PRM in
a similar fashion as before, as showcased in the Figure 5.10.
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Patient

...

is severe

Rule C

is severe ==
True

...

and

patient

rule

Figure 5.10: Enhanced PRM from the analysis of rule C

The interest of such a rewriting is noticeable in the example showcased
in Figure 5.11: if there is no object in the working memory that checks the
deterministic predicate (if no patient were unconscious) we would not need
to verify the rest of the rule, which limits the use of calls to the probabilistic
engine at runtime. Such savings wouldn’t be possible with the näıve approach
described above.

rule C {
when {

...
p : Patient(p.is_conscious);
...
evaluate(PRMengine.getPosterior("Rule C",

{patient:p,...},
{...}) > x);

} then {
// test and alert

}
};

Figure 5.11: Rewritten form of rule C

5.2.2.3 Disjunctive Predicate

In the case of a disjunction between a probabilistic element and a determin-
istic one (as in the Figure 5.12), however, the deterministic element cannot
be kept within the condition, as shown in Figure 5.14.
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rule D {
when {

...
p : Patient(p.is_severe or p.is_conscious == False);
...

} [with probability >= x] then {
// test and alert

}
};

Figure 5.12: Condition involving a disjunctive predicate

It is not possible to filter successively the elements that verify the de-
terministic part of the predicate (p.is conscious == False) and then, in this
subset, the elements that verify the probabilistic part (p.is severe). It is clear,
in our example, that the set of patients severely affected is not necessarily a
subset of the patients who are unconscious. The deterministic predicate is
therefore also added in the PRM and linked to the probabilistic predicate by
an automatically generated random variable or as showcased in the example
in Figure 5.13.

Rule A

is severe ==
True

...

and

patient

ruleor

is conscious

Patient

...

is severe

Rule D

is severe ==
True

...

and

patient

ruleor

is conscious

Figure 5.13: Enhanced PRM from the analysis of rule D

At runtime, an evidence on the truth value of the deterministic variable
is added depending on the elements filtered by the rule engine, as shown in
Figure 5.14.
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rule D {
when {

...
p : Patient();
...
evaluate(PRMengine.getPosterior("Rule D", {patient:p,...},

{is_conscious:p.is_conscious,...})
> x);

} then { // test and alert }
};

Figure 5.14: Rewritten form of rule D

In some cases, we could have a more sophisticated mechanism that would
start by checking the value deterministic predicate, since it is inherently
independent from the probabilistic one if it is true we would not need to check
the rest of the condition. In the case of our rule we would therefore avoid
calculating the probability that a patient is in a severe state if we already
know that he is unconscious. If other conditions require evaluation, the
Bayesian network could be pruned to remove the disjunction in question from
the and aggregator. However, the implementation of such an optimization is
not trivial since it would require to be able, on the rule engine side, to switch
between different types of probabilistic queries (with or without pruning)
at runtime. If such an optimization should work in simple cases it is no
guarantee that it will work in the general, more complex, case that we will
now present.

5.2.2.4 Complex Predicate Rewriting

More generally, a predicate can involve numerous logical operators linking
attributes in an arbitrarily complicated manner. Let us consider the condi-
tion in Figure 5.15, where the predicates d1,d2,d3 are deterministic and p1 is
probabilistic. We recall that our plugin supports the rewriting of binary and
and or that we assume to be always commutative. If other operations are
possible (notably with n-ary operators), we have restricted ourselves to the
most classical —not to say basic— ones, the idea being to iteratively enrich
the capabilities of our plugin in the future.



5.2. COMPILATION 109

rule E {
when {

...
c : ClassC(d1 and ((p1 or d2) and d3));
...

} [with probability > x] then {
// test and alert

}
};

Figure 5.15: Complex condition

To ease their reading and their manipulation, such conditions can be
shaped in the form of a tree that we call predicate tree.
Definition 5.1

Predicate Tree A predicate tree is a structure encoding a complex
condition as a binary tree where the root and internal nodes are logical
operators (and/or) and leaves are predicates.

The condition shown in the Figure 5.15 can be represented with the fol-
lowing tree:

Figure 5.16: Predicate tree based on the condition in rule E

Proposition 1
Any complex condition can be decomposed into a conjunction of two
sub-conditions, a purely deterministic one that will be used to filter the
elements concerned by the probabilistic query encoded in the second one.
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To operate such a transformation we have defined a procedure T which,
given a predicate tree τ will produce a new predicate tree τ ′ whose root
will be a binary operator denoted ∧

D|P
, which acts like a classical logic ∧ but

constrains its left hand operand, τ ′l, to contain only deterministic elements
while the right hand one, τ ′r, contains all the probabilistic elements. We
recall that the main goal is to isolate deterministic terms in order for the
rule engine to evaluate them first and, if necessary, request for the evalu-
ation of probabilistic ones. Before describing the transformation process in
more detail (Algorithm 2), we will illustrate the different possible rewriting
scenarios in the sub-language that we support.

â Leaves transformation

When the rewriting procedure concerns a leaf f , it will be transformed
so as to be placed on either side of a new predicate tree according to its
nature (on the left side if deterministic, right if probabilistic), as shown in
the Figure 5.17. The operator at the root of this tree, a ∧

D|P
, will be associated

to its neutral element, denoted >, to preserve the value associated with the
evaluation of this tree.

T(f) =


> ∧

D|P
f if f is a probabilistic attribute

f ∧
D|P
> otherwise

(a) (b)

Figure 5.17: (a) T applied on a deterministic attribute. (b) T applied on a
probabilistic one.
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â Conjunction rewriting

Our second case describes the rewriting process of a conjunction. Once
the operands of the tree are themselves transformed (and thus described
using ∧

D|P
), the procedure transfers the deterministic (resp. probabilistic)

component of the new operands to the left (resp. right) of the conjunction,
as depicted in the Figure 5.18.

T(l∧ r) = (T(l)l ∧T(r)l) ∧D|P(T(l)r ∧T(r)r)

Figure 5.18: τ applied on a conjunction

â Disjunction rewriting

When we seek to transform the disjunction of two predicate trees, l and
r, themselves already transformed, we must verify if their probabilistic parts
are both equal to > (i.e. , if T(l)r => and T(r)r =>), if and only if this is
the case then we will switch the whole disjunction into the left part of a new
tree whose operator will be ∧

D|P
and the right part >, as shown in the Figure

5.19a. If not, the disjunction will be encoded to the right of the new tree, as
shown in the Figure 5.19b.

T(l∨ r) =


> ∧

D|P
(T(l)∨T(r)) if T(l)r or T(r)r is different from >

(T(l)∨T(r)) ∧
D|P
> otherwise
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(a) (b)

Figure 5.19: (a) T applied on a purely deterministic disjunction. (b) T
applied on a probabilistic one.

Transform T(τ) - Predicate tree transformation procedure

Input : a predicate tree τ
Output : a predicate tree
if τ is a leave then

if τ is deterministic then
return τ ∧

D|P
>;

else
return > ∧

D|P
τ ;

else
Set l as τ ’s left operand;
Set r as τ ’s right operand;
l′←Transform(l);
r′←Transform(r);
if τ is a conjunction then

return (l′l ∧ r′l) ∧
D|P

(l′r ∧ r′r);

if τ is a disjunction then
if l′r ==> and r′r ==> then

return (l′ ∨ r′) ∧
D|P
>;

else
return > ∧

D|P
(l′ ∨ r′);
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Figure 5.20: Rewritten predicate tree of condition in rule E

As illustrated in the Figure 5.20, using such procedure on the predicate
tree allows us to move as much deterministic predicates as possible to the
left side of the tree. Once the rewritten predicate tree has been simplified
(in order to make the neutral elements disappear), the left branch will be
used in the condition to filter in the matching elements (”d1 and d3” in our
example), the right part will be encoded in the PRM (”p1 or d2”), as shown
in Figure 5.21. If there are deterministic elements in the right hand part of
the tree, their values will be used as evidence during inference.

ClassC

...

p1

Rule E

p1 ==
True

...

and

refC

ruleor

d2

Figure 5.21: Enhanced PRM based on the analysis of rule E

We will now describe how the probabilistic query is formulated at the end
of the condition part.

5.2.3 Probabilistic Query

Once the conditions of a probabilistic rule have been rewritten according to
their nature, the mechanism allowing the probabilistic engine to be asked for
the requested value must be formulated. In order to do so, we rely on the use
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rule E {
when {

...
c : ClassC(d1 and d3);
...
evaluate(PRMengine.getPosterior("Rule E", {...,refC:c,...},

{...,d2:c.d2,...}) > x);
} then { // test and alert }

};

Figure 5.22: Rewritten version of rule E

of the evaluation function included in the language and presented in Section
2.2.2.6. This function will compare the result of a call to the probabilistic
inference engine, using the method PRMengine.getPosterior(), and the value
chosen to trigger the rule. Several parameters are used in this method, as
shown in Figure 5.23, mainly to specify to the probabilistic engine the context
in which the PRM should be instantiated:

• The name of the PRM class corresponding to the current rule to be
instantiated (e.g., Rule D),

• The context of object variables to be used in the probabilistic engine as
a mapping between the elements identified in the WM and the names of
their references slots in the PRM class (e.g., p in the rule and patient),

• A mapping between the deterministic elements necessary to character-
ize random variable within the PRM class and their values according
to the WM (e.g., the value of p.is conscious for the patient p).

evaluate( PRMengine.getPosterior( Rule D,{patient : p},
{is conscious : p.is conscious})

> threshold );

Figure 5.23: Example of probabilistic query within a rewritten rule
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5.2.4 Complex Condition Rewriting

As discussed in the Section 2.2.2.5, more complex forms of conditions exist
in IRL. If these complex constructions are widely used, they have not been
discussed in previous works. We distinguish existential ones (exists or not)
that verifies conditions without binding variables and aggregation conditions
that perform calculations on sets of values in order to return one (an average
age, for example). We will begin this section by describing the process of
rewriting the latter.

5.2.4.1 Aggregate Condition

Rewriting probabilistic aggregators is inherently more challenging than or-
dinary conditions. As mentioned in section 2.2.2, we can distinguish three
parts within an aggregator :

1. A generative part, which will look for elements in the working memory
given a set of conditions,

2. An aggregation function, which will be applied to these elements or
their attributes,

3. And optionally a filter on the aggregation result

However we will only consider the cases of probabilistic generative part
(1) as well as of probabilistic functions that are used with filters on their
results (2 and 3). Unfiltered aggregators are generally used within the action
part of rules to update parameters in the working memory or, more generally,
to perform an action or treatment on it (e.g. , sending a notification to a
list of customers). Without a filter acting as a predicate upon the result, a
probabilistic function wouldn’t be useful to evaluate the probability of the
conditions.

We will now describe the different mechanisms that allow us to manage
such interesting formulations, as these functions can be seen as ”rules within
rules” whose complexity of evaluation will represent the main challenge for
a large scale use of probabilistic rules.
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â Probabilistic generative function

When the generative function —which defines the nature of the elements
matched in the working memory— involves probabilistic predicates, it is
necessary, as illustrated in the rule in Figure 5.24, to add a new probabilistic
threshold on it as we are going to filter elements locally. This probability
is to be interpreted in the same way as the global probability defined on
the condition part of the rule. In the rule below, we are going to apply
the actions that if we think, among other things, to find patients whose
severity is -almost- certain awaiting treatment in the triage of a hospital. If
other conditions involve probabilistic elements, it is still necessary to define
a threshold on the rule (probability > .8 in the example below).

rule F {
when {

hp : Hospital();
agg : aggregate {

p: Patient(p.is_severe) in hp.triage;
} [with probability > .9] do {

agg = new ArrayList<Patient>{p};
}
...

} [with probability > .8] then { ... }
};

Figure 5.24: Rule with a probabilistic generative function

If this formulation of nested probabilities complicates the definition and
interpretation of the rule, we have nevertheless deemed it necessary to pro-
pose a rewriting procedure. This rewriting is done in the same way as for
simple conditions except that we will no longer encode the conditions in the
class of the rule but in a new class specific to the aggregator, as shown in
Figure 5.25 resulting from the enhancement of the PRM. Naturally, if other
probabilistic conditions exist outside the aggregator, they will be rewritten
according to their nature.
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Rule F agg Patient

...

is severe

Rule F

and

ruleagg

is severe ==
True

patient ...

Figure 5.25: Enhanced PRM from the analysis of rule F

rule F {
when {

hp : Hospital();
agg : aggregate {

p: Patient() in hp.triage;
evaluate(PRMengine.getPosterior("Rule F agg",

{patient : p},
{}) > .9);

} do {
agg = new ArrayList<Patient>{p};

}
...
evaluate(PRMengine.getPosterior("Rule F",{...},{...})

> .8);
} then { ... }

};

Figure 5.26: Rewritten version of rule F

At runtime, and for each set of elements verifying the deterministic con-
ditions within the generative part, an intermediate call to the probabilistic
engine will be made, as described in the Figure 5.27. It is important to note
the multiplication of calls to the probabilistic inference engine introduces is-
sues regarding time performance that could be a bottleneck preventing the
use of such a syntax: in addition to being less obvious to interpret, these
formulations multiplies the number of inferences and make the rule more
complex to be evaluated.
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getPosterior("Rule F agg",{patient:p1},{});

...

getPosterior("Rule F agg",{patient:p2},{});

getPosterior("Rule F",},{...},{...});

Rule evaluation

Aggregator evaluation

Figure 5.27: Runtime calls to the probabilistic engine

â Filtered probabilistic aggregation function

An aggregation function can be described as function that takes an un-
bounded number of values as parameters and returns only one (a more formal
definition will be given in Section 5.4). ODM proposes to use some classical
functions in its rules, they will be applied on the elements filtered by the gen-
erative part of an aggregator. The aggregation functions available in ODM
are described in the table below which indicates which ones are also available
within aGrUM.

Function aGrUM
Exists yes
Not yes
Sum yes
Count yes
Median yes
Mean no
Min/Max yes
List/Multiset no

Table 5.2: Main aggregation functions supported by ODM and their
existence in aGrUM
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Some aggregators do not exist as is in aGrUM, the aggregation function
exists requires to set its modality, when it is equal to true it is to be inter-
preted as ODM’s exists, when it is equal to false, it is equivalent to ODM’s
not. If aggregators in PRM take an unbounded number of parents it is how-
ever necessary to set their output domains. This constraint of the PRM
language comes in particular from the need for the direct descendants of an
attribute to know its modalities in order to be able to define their CPTs, as
described in the section 3.25. If this is naturally the case for exist/not (that
are either true or false) or min/max (parametrized w.r.t input’s domain), it
is not the case for the sum which will have to be truncated. This limitation
is, however, not a problem, since the results of the aggregators that we use
are filtered, it is possible to use these filters during the generation of the
PRM in order to characterize the domains of the aggregators.

When it comes to the functions that aggregates objects into lists or mul-
tisets, aGrUM doesn’t support them. This kind of operation is not classical
in probabilistic graphical models, firstly because their results are, by nature,
unbounded, but also because the elements they would manipulate would not
correspond to usual inputs for a random variable. Similarly, a mean aggre-
gator isn’t definable as it would require the output to be continuous.

If the result of an aggregation is not filtered but is used in other conditions
our plugin raises an error. If this is not the case, we consider the aggregation
to be neutral with respect to pattern matching, so it can be removed, as our
plugin does not support the use of probability distribution in the action part
of a rule (this could however be used as development work). It is interesting
to note that business users do not always use the most efficient formulations
for their conditions, some of them could, for example, generate lists and
compute their cardinalities instead of using an aggregator count, therefore
it would be appropriate to identify these formulations in order to allow our
plugin to optimize them.

In the rule presented in Figure 5.28 we will try, among other things, to
verify if more than 5 patients with severe complications are in the triage of
a hospital. Since the aggregation function (sum) relates to a probabilistic
attribute (is severe of patient p), it will have to be rewritten by our plugin.
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rule G {
when {

hp : Hospital();
agg : aggregate {

p: Patient() in hp.triage;
} do {

sum(p.is_severe)
} where { agg >= 5 }
...

} [with probability > .9] then { ... }
};

Figure 5.28: A rule using a probabilistic sum as an aggregation function
and a filter on its results

If the aggregation function has no equivalent on the PRM side our plugin
raises an error. Otherwise it is encoded into the rule class, as shown in
Figure 5.29, along with a predicate over the value of is severe for any p in
the reference slot patients as well as the aggregation filter (sum >= 5).

Patient

...

is severe

Rule G

...

sum >= 5

and

sumis severe ==
True

ppatients

rule

Figure 5.29: Enhanced PRM according to the compilation of rule G

In order to instantiate the reference slot patients in the PRM class of
the rule above and be able to effectively calculate the return value of this
aggregation function, it is necessary to inform the probabilistic engine of all
the objects that will be concerned by the function (in our case, the list of pa-
tients in the triage). To this regard, the rule is rewritten in order to generate
such a list using the instruction agg = new ArrayList <Patient>{p temp}, as
shown in the Figure 5.30.
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The rule engine is therefore no longer in charge of evaluating the ag-
gregation function, but of constituting the list of elements on which the
probabilistic engine will do so.

rule G {
when {

hp : Hospital();
agg : aggregate {

p: Patient() in hp.triage;
} do {

agg = new ArrayList<Patient>{p};
}
evaluate(PRMengine.getPosterior(Rule G,{patients:agg},{})

> .9);
} then { ... }

};

Figure 5.30: Rewritten form of rule G

As we will see in the Section 5.4 the use of aggregators in out PRMs (and
PGMs in general) is not without consequences on the performance of our
algorithms. If the use of probability in the generative part of the rule multi-
plies the number of calls without necessarily making them more complex, the
use of probabilistic aggregation functions can very quickly make inference -
and thus its use within our rules - intractable.

5.2.4.2 Existential Condition

The keyword exists is used in the condition part of a rule to test whether
any object in the working memory matches the condition. The usage of such
keyword is similar to the one of a classical condition except that the condition
does not discriminate which object was matched, you cannot bind an exists
statement to an external variable. In the rule described in Figure 5.31, we are
looking to determine if there is a conscious patient who cough and has lost
his sense of smell or taste in the triage of a hospital with no SARS-infected
cases. If this is the case, a testing and isolation procedure could be put in
place to identify cases as early as possible and take the necessary measures
in order to limit the spread of the virus.
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rule H {
when {

hp : Hospital(hp.SARS_alert == False);
exists Patient(is_conscious and loss_of_smell and cough)

in hp.triage;
} [with probability >.9] then {

// test and alert
}

};

Figure 5.31: A rule with a probabilistic existential condition

To be able to rewrite a probabilistic existential condition it is necessary,
as shown in Figure 5.33, to replace it by an aggregation function that will
construct a list containing the elements of the working memory verifying the
deterministic part of the condition. This process is needed in order to keep
in memory the elements that will have to be tested in the PRM, as parents
of the node exists as pictured in the Figure 5.32.

Patient

...

loss of smell

Rule H

loss of smell 
== True

exists rule

cough cough
== True

and

ppatients

Figure 5.32: Enhanced PRM according to the compilation of rule H

In the new condition part of our rule, the set of patients found at a
hospital triage (p temp: Patient(is conscious) in hp.triage) is added within
a list (tmp). Since the predicate of the condition is complex (according to the
definition given in section 5.2.2.4), its deterministic part is used to help limit
the number of elements added in such a list. When adding the evaluation,
the list will be used to instantiate the multiple references patients in the
PRM class.
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rule H {
when {

hp : Hospital(hp.SARS_alert == False);
tmp : aggregate {

p_temp = Patient(p_temp.is_conscious) in hp.triage;
} do {

tmp = new ArrayList<Patient>{p_temp};
}
evaluate(PRMengine.getPosterior("Rule H",

{patients:tmp},
{}) > .9);

} then {
// test and alert

}
};

Figure 5.33: Rewritten form of rule H

An analogous reasoning is applied in the case of the not function except
that the exists aggregator will be parametrized to false.

These different rewriting rules allow PRIME to extend the reasoning ca-
pabilities of the engine to a sub-language of instructions using a simple syntax
that we believe to be easily understood by business users. The use of these
rules is however not without impact on runtime performance.

5.3 Runtime Evaluation

When the condition part of one of our rules is evaluated and the deterministic
conditions are all verified, then the probability encoded in the PRM must be
calculated. In this section we will follow the different interactions between
the two engines that allow such an evaluation. We recall that, in a general
way and similarly to what was proposed in previous work (cf. Figure 4.4),
the rule engine can require the calculation of a probability and indicate to
the probabilistic engine the modifications of the WM that have an impact on
the PRM system. If the interactions are the same, the mechanisms allowing
the computation of the probabilities are different and we will present and
illustrate the different steps here.
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5.3.1 Probabilistic Query

In this section, we will illustrate the interaction mechanisms linking the two
engines at runtime. We will follow the evaluation of the rule presented in
Figure 5.34. In this rule, a doctor who doesn’t have many patients will be
assigned with a new one if we are almost certain that this new patient is
thought to be in a serious state or unconscious.

rule I {
when {

hp : Hospital();
p : Patient(p.is_severe || p.is_conscious == False) in hp.triage;
phy : Physician(phy.nbr_of_patients < 3) in hp.physicians;

} [with probability > 0.8] then {
// Assign him the patient

}
};

Figure 5.34: An example probabilistic rule

Figure 5.35 shows how this rule is rewritten by applying the procedures
previously described in the manuscript. When the probabilistic engine is
called and in addition to the name of the class to be instantiated, the rule
engine communicates the different references to be instantiated as well as the
value of deterministic attributes encoded within the class.

rule I {
when {

hp : Hospital();
p : Patient() in hp.triage;
phy : Physician(phy.nbr_of_patients < 3) in hp.physicians;
evaluate(PRMengine.getPosterior("Rule I",

{patient:p},
{is_conscious:p.is_conscious})> .8)

} then {// Assign him the patient }
};

Figure 5.35: Rewritten version of rule I
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In the PRM system that we will track (cf. Figure 5.36), 2 doctors (phy1

and phy2) are taking care of 5 patients. 4 others, unassigned (p6,p7,p8,p9),
correspond to patients waiting for triage at a hospital (if the class does not
contain probabilistic elements it does not need to exist on the PRM repre-
sentation of the system).

PRM system

Figure 5.36: The PRM system of our example and its relational skeleton

In order to easily follow the evolution of both systems (WM and PRM)
it is necessary to have a mapping between the elements they contain (the
elements of the PRM system are a subset of the WM elements). The Table
5.37b illustrates such a mapping.

Physician@1801
  Name : Michaëla Quinn
  Sex : Female
  Number of patients : 2
  Specialty : GP
  

Physician@1801
  Name : John Doe
  Sex : Male
  Age : 54
  Is Conscious : False
  ....

Patient 0x1548Patient 0x1548
  Name : John Doe
  Sex : Male
  Age : 54
  Is Conscious : False
  ....

Patient@1548
  Name : John Doe
  Sex : Male
  Age : 54
  Is Conscious : False
  ....

Patient 0x1548Patient 0x1548
  Name : Byron Sully
  Sex : Male
  Age : 44
  Is Conscious : False
  ....

Patient@1547

  Name : Michaëla Quinn
  Number of patients : 2
  Specialty : Family medecine
  Patients : [Patient@1542,@1543]
  ....

Physician@1801

Physician@1801
  Name : Penrose Hospital
  Location : Colorado Springs
  Physicians : [Physician@1801,...]
  Triage : [Patient@1547,...]
  ....

Hospital@1408

(a)

WM ids PRM ids
Patient@1542 p1
... ..
Patient@1547 p6
... ..
Physician@1801 phy1
Physician@1802 phy2
Hospital@1408 doesn’t exists here

(b)

Figure 5.37: (a) WM state. (b) Table of equivalence
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â Addition of rule instance and edition of references

When the RETE looks through the rule and evaluates the conditions it
iteratively forms tuples of objects which, collectively, verify them. The engine
could for example contain, once arrived at the probability assessment of the
rule 5.35, these elements from the WM :

• hp ← Hospital@1408

• p ← Patient@1547

• phy ← Physician@1802

When the probabilistic query is made using the method :

getPosterior(”Rule I”,{patient:p},{is conscious:p.is conscious}),

the PRM system is modified in order to instantiate an object of the class
indicated in parameter, in our case an object of type Rule I (called r in the
example in Figure 5.38). The second parameter indicates the correspondence
between the variable in the rule and its reference in the PRM, the reference
slot r.patient must point to the object p matched by the RETE, i.e. , the
Patient@1547 (identified by p6 in the PRM system).

PRM system

Figure 5.38: PRM system after adding the rule instance and the edition of
references
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â Knowledge as evidence

Once all the references of r have been edited, the question of the valuation
of the deterministic predicates encoded in it arises. Since at this moment
the patient p is known (Patient@1547) it is possible to add an evidence
on the variable is conscious, in our case the rule engine will indicate to
the probabilistic one that is conscious == Patient@1547.is conscious
(which is False, according to the figure 5.37a).

Rule I

is severe ==
True

patient

ruleor

is conscious

Figure 5.39: Addition of evidence in the PRM.

â Grounded BN and inference

When all the relevant information for the evaluation of r has been taken
into account by the probabilistic engine, it is finally possible to ground the
PRM (as described in the Section 3.4.1.2) in order to compute the probability
of the variable rule, i.e. , p(r.rule== True).

p6.Infected with
SARS-CoV

p6.Tested result

p6.Current 
SARS status

p6.age p6.risk factors

p6.Test type

p6.Coughp6.Loss of taste
or smell

p6.Is severe r.is severe 
== True

r.rule

r.or r.is conscious

Figure 5.40: Grounded BN generated from 5.39
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The result will then be compared to the threshold of the condition part
(e.g. , 80% in the case of the rule 5.35). Once the inference is complete, any
changes made to the PRM system are removed.

â Side-effect and PRM update
The action part of a rule can have repercussions on the state of the

working memory, so it is necessary to give the rule engine mechanisms to
indicate these changes to the inference engine, if needed. Lets recall that
three kind of updates are possible :

• A structural change implying a modification of references in the PRM
system (e.g. , the transfer of a patient from one physician to another).

• The addition/withdrawal of a new item in the WM (a patient arriving
or leaving the hospital).

• The addition of evidence on a probabilistic attribute (the result of a
PCR test or the age of a patient, for example)

In our example, if the probability associated with the patient Patient@1547
being in a severe state is greater than the threshold, he can be assigned to the
physician Physician@1802, this information must also be taken into account
within the PRM system (and therefore indicate that p6 is in the list of the
reference slot phy2.patients, for example).

PRM system

Figure 5.41: Evolution of the PRM system when p6 is assigned to phy2 in
the WM
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5.3.2 Inferences and Bottleneck

To summarize, when the rule engine reaches the end of rule evaluation, it
asks the probabilistic engine to make an inference given a certain context.
The result of such inference will be used to decide whether or not to activate
the rule. If our rewriting procedure is done in a flexible and inexpensive
way, the evaluation of probabilistic requests could, however, be a limiting
factor for the use of such rules. These studies were presented during two
doctoral consortiums of a conference focused on rules and logical reasoning :
RuleML+RR [Ducamp et al. 2018; 2020a].

Beyond the significant increase in the number of calculations, it is mainly
the use of aggregation functions in PGMs that could be problematic. In the
rest of this chapter, we will present a first approach to overcome related to
the use of aggregators when they verify certain mathematical properties.

5.4 Self Decomposable Aggregators : a Graph-
ical Approach

We saw in Section 5.2.4.1.2 that our syntax offers users the possibility to
instantiate probabilistic aggregators with many parents very easily. How-
ever, if the definition of aggregators over tens, hundreds of variables is made
accessible thanks to their functional definition and the automatic mappings
between WM and the PRM system, we will show that the evaluation of
such models isn’t possible. As it stands, the syntax is too powerful for our
inference capabilities.

To illustrate such a use case -and the related combinatorial explosion-
we will stay within the framework of hospital management but this time
we will focus on the stock control of essential supplies. In the context of a
SARS pandemic it is necessary, for example, for a hospital to regularly ensure
that it has a sufficient stock of masks for medical workers. We will however
assume that some stocks may be poorly identified (because of theft, loss or
badly anticipated expiration dates), using a probabilistic graphical model
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could help to better estimate stocks and coupled with rules, automatically
avoid critical cases of shortages.

rule Stock Control {
when {

hp : Hospital();
agg : aggregate {

u: Unit() in hp.units;
s: Stock(s.type=="N95 masks") in u.inventory;

} do {
sum(s.estimated_stocks)

} where { agg <= 50 }
} [with probability > .7] then { ... }

};

Figure 5.42: A rule using a probabilistic sum as an aggregation function
and a filter on its results

In the example in Figure 5.42, we will go through all the stocks of N95
masks present in the inventories of the different units of a hospital in order
to verify that the estimated stocks are above a certain critical threshold (the
rewritten form of such rule is shown in Figure 5.44). We will simplify the
problem by assuming that a stock is evaluated on a scale of 0 (none) to 10
(full stock).

Stock

estimated
stock

Rule Stock Control

...

known
stock

pinventories

sum sum <=
50 rule

Figure 5.43: Enhanced PRM based on the analysis of rule Stock Control
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rule Stock Control {
when {

hp : Hospital();
agg : aggregate {

u: Unit() in hp.units;
s: Stock(s.type=="N95 masks") in u.inventory;

} do {
agg = new ArrayList<Patient>{p};

}
evaluate(PRMengine.getPosterior("Rule Stock Control",

{stocks:agg},{})
> .7);

} then { ... }
};

Figure 5.44: Rewritten form of rule Stock Control

In the case of the aggregator sum in the PRM class Rule Stock Control
(showcased in the Figure 5.43), if we suppose that, during the evaluation, 7
units are in the reference slot inventories (with each variable estimated stock
characterized by 11 values), we will need to store 51 · 117 values to fully
characterize sum’s CPT (its output value is in [[0,50]]).

Table 5.3 shows the inference time using Lazy Propagation algorithm
[Madsen and Jensen 1999] and generated file size (from the grounded BN),
allowing us to have an idea of the space and time complexity of such cases,
even for a small number of parents. Let’s recall that we denote the set of x’s
parents as Pax and |Pax | the cardinality of such set.

|Pasum | time file size
3 2.1e-3s 147Ko
4 8.7e-3s 1.5Mo
5 4.7e-2s 16.8Mo
6 1.35s 184.3Mo
7 17.0s 2.03Go
8 − 22.29Go

Table 5.3: Inference time to compute the probability of the rule Stock
Control and size of the generated file, depending on |Pasum |
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These first results show that even for a limited number of parents, the ex-
ponential growth in the size of the CPT characterizing the aggregation func-
tion prevents our inference from being made. In our example, 8 parents are
enough to exceed the memory capacity of our test machine (32go of RAM),
if the model weighs ”only” 22Go, the majority of this space is only used
to characterize the potential associated with the aggregator. Such potential
being multiplied with others during the initialization of an exact inference
based on the use of a junction tree (as described in Section 3.3.3.1.3) to form
cliques’ own potentials, it is easy to identify the limits of such an approach
not to mention the fact that these potentials can, for certain functions, be
extremely sparse.

This section adapts and extends a part of the work presented in [Ducamp
et al. 2020b] in which we were looking for a first solution to this application
problem which may make it impossible for ODM users to define probabilistic
rules with our syntax. In particular, the examples have been modified in
order to make them more consistent this manuscript.

5.4.1 Aggregators and Combinatorial Explosion

As we suggested earlier, aggregation functions can be considered as a way to
summarize information over a set of data. If the relevant literature lingers on
their use in distributed data algorithms [Jesus et al. 2015] none are specific
to the particular case of aggregation in PGMs. For probabilistic aggregation
we need to provide, for each possible instantiation of the aggregated objects,
a value in its CPT. Here, we provide more precise definitions, some (5.2 and
5.5) given or adapted from [Jesus et al. 2015], and consider that the process
consists in the computation of an aggregation function defined by:
Definition 5.2

Aggregation function An aggregation function f takes a multiset of
elements from a domain I and produces an output of a domain O:

f : NI 7→O
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The use of multiset as input implies, among other things, that the order
in which the elements are aggregated does not matter. A multiset M can be
formally defined as a 2-tuple (A,m) where A is the set of distinct elements,
also called support of M , and m is a function indicating, for each x ∈ A, the
number of occurrences of x in M .

Definition 5.3
Probabilistic aggregation function An aggregate function g is said
to be a probabilistic aggregate function if :

g :NI ×O 7→ [0,1],∀x ∈ NI ,
∑
y∈O

g(x,y) = 1

The aggregators that can be used in ODM have the particularity of having
deterministic output values, so we can restrict our previous definition to a
certain case of probabilistic aggregators whose CPTs will consequently be
composed only of 0 and 1.

Definition 5.4
Deterministic aggregators A probabilistic aggregate function Af :
NI×O 7→ [0,1] is a deterministic aggregate if it exists a function f : NI →
O such that :

Af (y,x1, · · · ,xd) = 1y=f(x1,··· ,xd)

Having to specify the CPT of a probabilistic aggregator implies that even
if the cardinality of the output domain usually takes much less space than
the set to be aggregated (because we aim to summarize the information),
the encoding of such table is very consuming in terms of memory (which will
have a direct impact on inference time). For an aggregator with n parents,
whose input domain size is |I|, the CPT is defined using |O|∗|I|n parameters.
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5.4.2 Self-Decomposable Aggregation Functions

Some deterministic aggregators can be, however, evaluated by computing the
aggregate for subsets, and then aggregating these results, reducing the size of
the concerned CPTs. Similarly to [Jesus et al. 2015], we call such aggregators
self-decomposable.

Definition 5.5
Self-decomposable aggregation function A deterministic aggrega-
tion function f : NI → O is said to be self-decomposable if, for some
merge operator � and all non-empty multisets X and Y:

f(X]Y) = f(X) � f(Y)

In the above, ] denotes the multiset sum. For two multisets M1 =
(A1,m1) and M2 = (A2,m2), their sum M3 = (A3,m3) is defined by A3 =
A1∪A2 and for all x ∈ A3,m3(x) =m1(x) +m2(x) (with m(x) = 0 if x < A).
Given that the aggregation result is the same for all possible partitions of
a multiset, it follows that the operator � has to be both commutative and
associative.

Many probabilistic aggregators such as MIN, MAX and SUM are self-
decomposable, as shown below :

sum({x}) = x, sum(X]Y) = sum(X) + sum(Y)
min({x}) = x, min(X]Y) = min(min(X),min(Y))

To face our issue with aggregation being a bottleneck we propose to manipu-
late the grounded BN before the generation of its attributes’ CPTs (aGrUM
allows us to declare aggregators with their functional definition and to in-
stantiate their CPTs only at inference time). When the BN contains a self-
decomposable aggregator n with |Pa(n)|> 2 we can create intermediate ag-
gregators between its parents (green nodes in Figure 5.45b), grouping them
by pairs, then linking these aggregators by pairs themselves (similarly with
the divorcing method [von Waldow and Röhrbein 2015]).
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Figure 5.45 shows how such manipulation is changing a simple BN with
one sum aggregator having 5 parents. In this example, each attribute xi ∈
{x1, ...,xn} can take 10 values. In the decomposed counterpart the largest
CPT contains 2500 times less parameters than in the original one.

(a) (b)

Figure 5.45: (a) is a BN before its decomposition, its largest CPT contains
50 · 105 values. (b) is the same BN, after decomposition. Its largest CPT

contains 50 · 40 · 10 values.

There is a trade-off between the number of parents of the intermediate
aggregators and the depth of the tree. Intuitively, increasing the depth of
the tree seems to complexify the model linearly in the number of parameters,
while a ”horizontal” expansion due to an additional parents would complexify
the model exponentially, consequently we choose to limited the number of
parents to 2.

Table 5.4 shows the time needed to decompose and compute marginals in
our example. As expected reducing the size of the aggregator’s node helped
us reducing the complexity of the inference, we are now able to perform them
in more acceptable times, even with an important number of parents.
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| Pa | decomposition inference file size
5 6.6e-4s 3.9e-3s 109Ko
10 1.9e-3s 4.9e-2s 1,5Mo
25 4.6e-3s 1.6e-1s 1,5Mo
50 1.0e-2s 4.1e-1s 3.3Mo
75 1.7e-2s 5.9e-1s 5.2Mo
100 2.0e-2s 7.5e-1s 6.8Mo

Table 5.4: Decomposition and inference time to compute the probability of
the rule Stock Control and size of the generated file, depending on |Pa |

5.4.3 Discussion

If this simple method is effective it does not answer all the challenges related
to the scalability of PGMs:

• First of all, not all aggregators are self-decomposable (like the median);

• We move from a functional representation, free in terms of space, to a
digital representation which are by nature more expensive, even if we
limit their complexity. Moreover, these structures are generally very
sparse, a lot of memory is needed to contain only a little information;

• Non-observable variables (intermediate aggregators) are added in the
model, affecting its readability;

• Finally, we must insist on the fact that beyond aggregators, any ran-
dom variable can have an arbitrarily high number of parents and can
therefore cause a modelling issue even before being one in inference.

The problem of scalability is therefore more general than simply related
to the use of aggregators. As discussed in section 3.3, some approximate
inference algorithms propose solutions to overcome such a challenge, but
neither at no computational cost, nor totally reliably.
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5.5 Conclusion

In this chapter we have proposed a simpler and more accessible syntax for
business users to use probabilistic reasoning with their business rules. This
syntax has been tested experimentally through a functional prototype on a
sub-language of ODM technical language, IRL, and integrated in its compi-
lation chain. While the results are encouraging, the syntax is too powerful
for our reasoning capabilities, notably because of the very simplified use of
aggregators. A first application solution to limit this complexity has been
proposed.

In the rest of this document, we will present a new possible solution to
address this issue, but this time based on a change in the way potentials are
represented.
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We have previously seen that one of the constraints to the algorithms
in PGMs is the complexity of the studied models and that such complexity
was directly related to the size of the CPTs associated with each of their
random variables. Consequently, when exact algorithms suffer from space
complexity in large-scale models, approximate ones can only offer a trade-off
between time complexity and precision, sometimes without a guarantee of
convergence toward a stationary distribution. The objective of this chapter
is to show that the use of low-rank tensor methods might be a possible way
to mitigate the curse of dimensionality for discrete high-dimensional models.

The use of tensor decomposition in PGMs is not unheard of. In previous
works, [Savický and Vomlel 2007] proposed to manipulate the structure of
a Bayesian network and use tensor rank-one decomposition to approximate
some special forms of CPTs, [Vomlel and Tichavský 2014] use CP decom-
position of tensors corresponding to CPTs of threshold functions, exactly
l-out-of-k functions, and their noisy counterparts. In a more general case,
tensor methods combined with exact algorithms could provide a new ap-
proach to deal with complex PGM in a controlled and tractable way. It is
important to note that this approach is not limited to Bayesian networks nor
to inference algorithms. Every representation of a high-dimensional multi-
variate function as a product of multivariate factors, every algorithm that
operates on a commutative semiring of such multivariate factors are limited
by the dimension of these very factors and then could benefit from this com-
pact representation with controlled approximation, our approach is intended
to be more general than those proposed in the work cited above.

As an example of the use of low-rank tensor representation for PGM,
we propose in this chapter to focus on probabilistic inference in Bayesian
networks using the Tensor Train format.

This chapter adapts, corrects and completes the work presented in [Ducamp
et al. 2020].
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6.1 Tensors

Tensor methods have become a prominent tool for solving high-dimensional
problems arising in physics, financial mathematics, statistics, uncertainty
quantification, data science, and many other fields involving the approxi-
mation of high-dimensional functions or multidimensional arrays. For an
introduction to tensor methods and their applications in numerical analysis
and machine learning, the reader is referred to the monograph [Hackbusch
2019] and the surveys [Kolda and Bader 2009; Nouy 2017; Bachmayr et al.
2016; Cichocki et al. 2016; 2017; Ji et al. 2019].

6.1.1 Definitions and Metrics

In this manuscript we define tensors as a generalization of the notions of
scalars, vectors and matrices to a larger number of dimensions, i.e. , as
multidimensional arrays. While vectors have entries vi with one index and
matrices have entries Mij with two indices, tensors will carry d indices. Such
number of indices is called the order of the tensor.

(a) (b) (c) (d)

Figure 6.1: Example of tensors with (a) d= 0 (b) d= 1 (c) d= 2 (d) d= 3

We denote by Rn1×···×nd the space of tensors of order d and size n1 ×
. . .× nd. The entries of a tensor T ∈ Rn1×···×nd are denoted by T(i1, . . . , id)
(sometimes Ti1,...,id), 1≤ iν ≤ nν , 1≤ ν ≤ d where the index iν is related to
the ν-th mode (or dimension) of the tensor.

A tensor T can be identified with a vector vec(T) whose entries are
vec(T)(i1, . . . , id) = T(i1, . . . , id), with i1, . . . , id = id+(id−1−1)nd+ . . .+(i1−
1)n2 . . .nd.
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When the order is small it is easy to conceptualize the manipulated ob-
jects since they correspond to scalars, vectors, matrices or even 3D matrices,
as shown in the Figure 6.1. But what about higher dimensions ? To illus-
trate the document and facilitate its reading we will sometimes use a graphic
notation called Tensor Diagram Notation1 [Penrose 1971; Bridgeman and
Chubb 2017] where tensors are notated by solid shapes, and tensor indices
are notated by lines emanating from these shapes.

(a) (b) (c) (d)

Figure 6.2: (a) a vector vi. (b) a matrix Mij . (c) a tensor Tijk (d) a tensor
Ti1,...,id

6.1.2 Operations Between Tensors

In order to manipulate tensors, we need to introduce a number of elementary
operations on them. For a more detailed and exhaustive list, the reader
may refer to [Lee and Cichocki 2018; Hackbusch 2019]. We will take this
opportunity to observe equivalences between tensor algebra and potential
algebra. The first two operations on tensors that we need to introduce are
the Kronecker product and its partial counterpart.
Definition 6.1

Kronecker product The Kronecker product (denoted ⊗) of two tensors
A ∈ RI1×...×IN and B ∈ RJ1×...×JN yields a tensor C = A⊗B of size
I1J1× ·· ·× INJN with entries

C(i1j1, . . . , iN jN ) = A(i1, . . . , iN )B(j1, . . . , jN ) (6.1)

1https://tensornetwork.org/diagrams/

https://tensornetwork.org/diagrams/
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We will use Kronecker’s product rather than the more general outer prod-
uct because it allows a conservation of orders (while the outer product con-
serves the ranks), as showcased in the Figure 6.3. This characteristic is
important for us since the representation of tensors that we will work with
thereafter only uses order-3 tensors. One can nevertheless notice the equiv-
alence between these two operations, as Remark 6.2 shows.

[
a11 a12
a21 a22

]
⊗
[
b11 b12
b21 b22

]
=


a11

[
b11 b12
b21 b22

]
a12

[
b11 b12
b21 b22

]

a21

[
b11 b12
b21 b22

]
a22

[
b11 b12
b21 b22

]


=


a11b11 a11b12 a12b11 a12b12
a11b21 a11b22 a12b21 a12b22
a21b11 a21b12 a22b11 a22b12
a21b21 a21b22 a22b21 a22b22


Figure 6.3: Example of Kronecker product between two order-2 tensors

resulting in another order-2 tensor

Remark 6.2
Let U ∈ R3 and V ∈ R2 denotes two order-1 tensors. If we denote by
⊗outer the outer product, it holds that :

U⊗V =



u1v1

u1v2

u2v1

u2v2

u3v1

u3v2


,U⊗outer V =


u1v1 u1v2

u2v1 u2v2

u3v1 u3v2



As we can see, in the case of order-1 tensors, the Kronecker product
can be viewed as a form of vectorization (or flattening) of their outer
product.
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Definition 6.3
Partial Kronecker product The partial Kronecker product of two
tensors along the modes α is denoted �α. The product �{1,...,M} along
modes {1, . . . ,M} for two tensors A ∈ RR1×···×RM×I1×···×IN and B ∈
RS1×···×SM×I1×···×IN yields a tensor C = A�{1,...,M} B of size R1S1 ×
·· ·×RMSM × I1× ·· ·× IN with sub-tensors

C(:, . . . , :, i1, . . . , iN ) = A(:, . . . , :, i1, . . . , iN )⊗B(:, . . . , :, i1, . . . , iN ) (6.2)

[
a11 a12
a21 a22

]
�{1}

[
b11 b12
b21 b22

]
=


a11b11 a12b12
a11b21 a12b22
a21b11 a22b12
a21b21 a22b22



Figure 6.4: Example of partial Kronecker product along first mode (rows)
between two order-2 tensors

Remark 6.4
Let’s consider the case where we have P(A,B,C) and (A⊥P B|C). Thus,
we would have P(A,B,C) = P(A|C)P(B,C). If we denote by T{A,B,C}
the tensor based on the potential P(A,B,C) and T{A|C} (resp. T{B,C})
the one associated with P(A|C) (resp. P(B,C)) it holds that :

T{A,B,C} = T{A|C}�{2}T{B,C}

The last operation we need is the contracted product which corresponds
to a contraction between two tensor indices. In our case it will always be
between the last (Mth) mode of the first tensor and the first mode of the
second one tensor.
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Definition 6.5
Mode-(M,1) contracted product The mode-(M,1) contracted prod-
uct (denoted ×1) of tensors A ∈ RI1×...×IM and B ∈ RJ1×...×JN with
IM = J1 yields a tensor C = A×1 B of size I1×·· ·×IM−1×J2×·· ·×JN
with entries

C(i1, . . . , iM−1, j2, . . . , jN ) =
IM∑
iM=1

A(i1, . . . , iM )B(iM , j2, . . . , jN ) (6.3)

[
a11 a12 a13
a21 a22 a23

]
×1

b11 b12
b21 b22
b31 b32

=
[
(a11b11 + a12b21 + a13b31) (a11b12 + a12b22 + a13b32)
(a21b21 + a22b21 + a23b31) (a21b11 + a22b22 + a23b32)

]

Figure 6.5: Example of Mode-(M,1) contracted product between two
order-2 tensors

The Figure 6.6 illustrates such operation using the Tensor Diagram No-
tation, where connected index lines implies a contraction, or summation over
the connected indices.

Figure 6.6: Mode contracted product over two tensors Aij and Bjkl.
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Remark 6.6
It is interesting to note that this operation is the one used when one
marginalizes a common variable in the result of a product of potentials!
Let A,B,C and D be random variables and φ(A,B,C), φ(C,D) denote
potentials over these variables. If we denote by T{A,B,C} (resp. T{C,D})
the tensor associated with φ(A,B,C) (resp. φ(C,D)), we have :

T{A,B,C}×1 T{C,D} =
∑
C
φ(A,B,C)×φ(C,D)

Now that we have defined the operations necessary for our calculations,
we have to find a representation for our tensors that allows us to reduce their
dimensionality.

6.2 Low-Rank Tensor Formats

In this section we will introduce some tools to circumvent the main limitation
related to the use of full tensors. Since the number of entries of such a tensor
grows exponentially with the order d —and so does the storage consump-
tion and computational complexity of basic multilinear algebra operations
between tensors—, it is essential to consider structured tensor formats, such
as low-rank tensor formats, for handling high-order tensors.

6.2.1 Tensor Ranks and Related Tensor Formats

An elementary tensor T = T(1)⊗ . . .⊗T(d) is the tensor product of d order-1
tensors (vectors) T(ν) ∈ Rnν , whose entries are T(i1, . . . , id) = T(1)(i1) . . .T(d)(id).
It is noteworthy that if we consider a set of marginals of random variables
all independent of each other, the potential associated with the product of
these marginals is an elementary tensor. The canonical rank of a tensor T,
denoted rank(T), is the minimal integer r such that the tensor can be written
as a sum of r elementary tensors.
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Every tensor T can be represented as a linear combination of r order-
1 tensors, such representation is called Canonical Polyadic Decomposition
[Hitchcock 1927] (and sometimes referred as CANDECOMP [Carroll and
Chang 1970] or PARAFAC [Harshman 1970]). This format was notably
used in [Savický and Vomlel 2007; Vomlel and Tichavský 2014] in order to
factorize some CPTs during probabilistic inferences. However, computing
the canonical rank of such tensor is NP-Hard [Hillar and Lim 2013, Theorem
1.13]. We will see that other representations, more complex but also more
structured, can be defined.

For any subset α ⊂ {1, . . . ,d} := D and its complementary subset αc =
{1, . . . ,d}\α, a tensor T can be identified with a matrixMα(T) whose entries
are —up to a permutation of indices—:

Mα(T)((iν)ν∈α,(iν)ν∈αc) = T(i1, . . . , id).

The map Mα, called the α-matricisation operator, is a bijection from
Rn1×···×nd to RNα×Nαc , where Nβ =∏

ν∈β nν . The rank of the matrixMα(T)
is called the α-rank of T, and denoted rankα(T). By convention, the D-rank
and ∅-rank of a tensor are equal to 1.

Letting S ⊂ 2D be a set of subsets of D, we define the S-rank of a tensor T
as the tuple (rankα(T))α∈S ∈ N|S|. For a given set S and a tuple r = (rα)α∈S ,
a tensor format T Sr is defined as the set of tensors with S-rank less than r,

T Sr = {T ∈ Rn1×···×nd : rankα(T)≤ rα,α ∈ S}

When S is a dimension partition tree over D (with root D and leaves
{ν},1 ≤ ν ≤ d) or a subset of such a tree, T Sr is called a tree-based tensor
format [Falcó et al. 2018]. Such format includes the Tucker format for a
trivial tree (where S = {{1, . . . ,d},{1}, . . . ,{d}}), the Hierarchical Tucker
(HT) format [Hackbusch and Kuhn 2009] for a binary tree, and the Tensor
Train format described below.

The Figure 6.7 show the standard Tucker decomposition of a tensor
T(i1, . . . , i8) into a core tensor (red circle) and eight factor matrices (blue
circles). In this case, T = T ×1 T(1) · · · ×8 T(8), where T is an order-8 ten-
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sors, T(i) the ith order-2 tensor and ×i denotes the i-mode (matrix) product.
Its transformation into an equivalent Hierarchical Tucker model using inter-
connected smaller size 3rd-order core tensors and the same factor matrices is
also presented.

(a)

(b)

(c)

Figure 6.7: Example of tensor in the (a) full format (b) Tucker format (c)
HT format
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6.2.2 Tensor Train Format

The Tensor Train format has been introduced in [Oseledets 2009; Oseledets
and Tyrtyshnikov 2009] in the context of numerical analysis. It was already
known in quantum physics as Matrix Product State (see, e.g., [Schollwöck
2011]). This format corresponds to the tensor format T Sr with S = {∅,{1},
{1,2}, . . . ,{1, . . . ,d−1},D}. Given a tuple of integers r = (r0, r1, . . . , rd), with
r0 = rd = 1, a tensor T in the tensor format T Sr admits the representation :

T(i1, . . . , id) =
r1∑

k1=1
· · ·

rd−1∑
kd−1=1

T(1)(1, i1,k1) · · ·T(d)(kd−1, id,1) (6.4)

where the T(i) ∈ Rri−1×ni×ri are order-3 tensors called TT cores. The
minimal integers (r0, r1, . . . , rd) such that T has a representation (according
to Equation 6.4) is called the TT-rank of T. The Figure 6.8 illustrates such
a format (r0 and rd are usually omitted since r0 = rd = 1).

... ...

Figure 6.8: A tensor T(i1, . . . , ij , . . . , id) in the Tensor Train format

Property 6.7
Storage Complexity The storage complexity of a tensor with TT ranks
bounded by R and mode sizes bounded by N is in O(dNR2). This tensor
format allows us to circumvent the curse of dimensionality for classes of
tensors with TT-rank uniformly bounded or growing polynomially with
d.
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6.2.3 Approximation in Tensor Train Format

Every tensor has an exact representation in the Tensor Train format [Os-
eledets 2011] although without any compression (possibly with high repre-
sentation ranks). The Figure 6.9 show a tensor T(i1, . . . , i6) converted within
a Tensor Train format where (r1, . . . , r5) are its representation ranks.

=

Figure 6.9: A full tensor and its TT representation

In order to control their sizes, many algorithms have been proposed to
not only transform but also compress full tensors into tensor in the Ten-
sor Train format. The algorithm described below, introduced in [Oseledets
2011][p. 2301], allows us to obtain an approximation T̃ε in the Tensor Train
format of a given tensor T with a prescribed relative precision ε, i.e. ,∥∥∥T− T̃ε

∥∥∥
F
≤ ε‖T‖F , where ‖·‖F denotes the Frobenius (or canonical) ten-

sor norm (if T ∈ R{n1,··· ,nd}, ‖T‖2F =∑
i1,··· ,id T2

i1,··· ,id). The algorithm relies
on standard singular value decompositions of matrices. For more details on
the Tensor Train format and its applications, see, e.g. , [Gelß 2017]. The
algorithm is here described for the case where the input T is full tensor (a
multidimensional array) but a version where the input is directly in the TT
format also exists [Oseledets 2011][p. 2305].
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Compress(T, ε) - Higher-order truncated SVD for the approximation in
TT format

Input : Tensor T ∈ Rn1×···×nd and tolerance ε
Output Approximation T̃ε of T in TT format with cores U(1), . . . ,U(d)

and ranks r0, . . . , rd
Set r0 = 1 and rd = 1. Set A ∈Rr0×n1×...×nd such that

A(1, i1, . . . , id) = T(i1, . . . , id)
foreach ν = 1, . . . ,d− 1 do

A←M{1,2}(A) ∈R(rν−1nν)×(nν+1...nd);
Compute SVD of A, i.e. A= UΣV T with Σ = diag(σ1, . . . ,σd) ∈ Rs×s,
U ∈ R(rν−1nν)×s and V ∈ R(nν+1...nd)×s;

Set rν ≤ s to the smallest index such that σ2
rν+1 + . . .+σ2

s ≤ ε2

(d−1) ;
Discard rows and columns of U,Σ, and V corresponding to singular

values σrν+1 , . . . ,σs;
Define the ν-th core U(ν) =M−1

{1,2}(U) ∈ Rrν−1×nν×rν ;
Define A =M−1

{1}(ΣV
T ) ∈ Rrν×nν+1×...×nd

Define the d-th core U(d) =M−1
{1}(A)

It is possible to define a similar procedure where, instead of a tolerance
ε, we compress a tensor T ∈ R(r1×...×rd) w.r.t a maximum value for rmax
such that ∀i ∈ (1, . . . ,d− 1), ri ≤ rmax. The Figure 6.10 illustrates such a
procedure. The maximum number of parameter necessary to describe this
new tensor will consequently change from d ·N ·R2 to d ·N · r2

max with N

being the max mode size in T.

Figure 6.10: Rank based compression of a tensor in the TT format with
ri =R for all i ∈ (1, . . . ,5) and rmax = r (and r ≤R)
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6.3 BN and TT Format

Using the TT format seems to be a promising approach to reduce the mem-
ory consumption of potentials in PGMs. Such format make it possible to go
from having a representation of potentials that evolves no longer exponen-
tially with the number of parents but linearly, with a control on the induced
approximation when they are further compressed. Given the context of this
thesis, we decided to focus on an experimentation around an inference that
would manipulate potentials as tensors in the Tensor Train format instead of
multidimensional arrays. Proposing a reinterpretation of the Shafer-Shenoy
inference (presented in Section 3.3.3.1.3) as a first experiment was straight-
forward since it requires redefining only a few operations and that it will be
simple to compare our new approach with this standard algorithm. Let’s
summarize the benefits of such a format :

1. This shift in data representation could be interesting not only for in-
ferences but for all algorithms that manipulate large potentials.

2. An approximation with controlled precision can be obtained using the
Compress procedure;

3. An approximation can be found using an upper limit for TT ranks,
allowing to easily control memory usage;

Before redefining Shafer-Shenoy elementary operations for tensors in the
TT format and, finally, the complete algorithm, we have to introduce another
operation on tensor trains, the Hadamard product. For comparison purposes,
we give the definition of such operation for full tensors.
Definition 6.8

Hadamard product The Hadamard product (denoted~) of two tensors
A and B of same size n1× . . .×nd yields a tensor C = A~B with entries

C(i1, . . . , id) = A(i1, . . . , id)B(i1, . . . , id) (6.5)
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6.3.1 Hadamard Product in TT Format

Let’s recall that a tensor T with the representation in TT format (Equation
6.4) can be written

T = T(1)×1 · · · ×1 T(d).

If A and B are two tensors with the same size and with representations
in TT formats A = A(1)×1 · · ·×1 A(d) and B = B(1)×1 · · ·×1 B(d), then their
Hadamard product A~B has a representation in TT format :

A~B = (A(1)�{1,3}B(1))×1 · · · ×1 (A(d)�{1,3}B(d)) (6.6)

where �{1,3} is the partial Kronecker product along modes 1 and 3, de-
fined in Equation 6.1. The Figure 6.11 illustrates such operation.

=

Figure 6.11: Hadamard product of two tensors in the TT format

Remark 6.9

Let A(i) ∈ Rr
A
i−1×nAi ×rAi and B(i) ∈ Rr

A
i−1×nBi ×rBi denotes the tensor cores of

A and B for all i ∈ (1, . . . ,d). To be able to compute the partial Kronecker
product A(i)�{1,3}B(i) we need to make sure that nAi = nBi . For this purpose
and to avoid having to manipulate the position of the cores during inference
we will force an arbitrary order on the variables within a potential (and for the
sake of simplicity we will use a topological one).
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6.3.2 Potentials Algebra with TT Format

Using the Compress procedure, we are now able to compress any tensor as-
sociated with a multivariate function (Conditional Probability Distribution,
CPT, potentials, etc.) in a Tensor Train format controlled by a given relative
error. In order to build algorithms for PGM using this compressed format,
we now need to define the operations used by such algorithms. In our case,
the clique-separator product and a marginalization.
6.3.2.1 Clique-Separator Product

The product of the potential φ of a clique with one of its separators ψ can
be obtained using a Hadamard product between tensors. However, this re-
quires φ and ψ to be tensors with the same order and size. Since separa-
tor’s variables form a subset of the clique’s variables, ψ has to be identified
with a tensor ψ′ with the order and size of φ. It is sufficient to consider
the case where φ is a tensor of order d and size n1 × . . . × nd depending
on variables (i1, . . . , id) and ψ is a tensor of order d− 1 depending on vari-
ables (i1, ..., iν−1, iν+1, ..., id). Then ψ′ is the tensor of order d such that
ψ′(i1, ..., id) = ψ(i1, ..., iν−1, iν+1, ..., id), and the Hadamard product φ~ψ has
to be interpreted as φ~ψ′.
Property 6.10

If ψ has a representation in TT format with cores T(µ) and representation
ranks rν , µ ∈ {1, . . . ,ν−1,ν+1, . . . ,d}, then ψ′ has a representation in TT
format with cores T’(µ) = T(µ) for µ ∈ {1, . . . ,ν−1,ν+1, . . . ,d} and T’(ν) ∈
Rrν−1×nν×rν such that T’(ν)(kν−1, iν ,kν) = δkν−1,kν , where δ represents
the Kronecker delta.

Let φ and ψ ∈ Ri1×...×...,id be two tensors in the TT format with φ(i) ∈
Rr

φ
i−1×ni×r

φ
i and ψ′(i) ∈ Rr

ψ′
i−1×ni×r

ψ′
i for all i ∈ {1, . . . ,d} then if we denote

φ′ tensor in the TT format that equals to φ ~ ψ and because of the in-
ternal partial Kronecker products used (cf Equation 6.6), we have φ′(i) ∈

R(rφi−1×r
ψ′
i−1)×ni×(rφi ×r

ψ′
i ). Given the (usually) large number of clique-separator

products and in order to limit the growth of φ′ internal ranks it is necessary
to recompress each of these results using the Compress procedure.
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Figure 6.12 illustrates such a process.

Figure 6.12: Sequence of operations during a clique-separator product of
two tensors in the TT format, φ (the clique) and ψ (the separator). It holds

that rψ1 = rψ
′

1 , r
ψ
2 = rψ

′

2 = rψ
′

3 = rψ
′

4 and rψ5 = rψ
′

5 . Furthermore, for all
i ∈ {1, . . . ,5}, rφ̃εi ≤ r

φ
i × r

ψ′

i .
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6.3.2.2 Marginalization

Adapting the marginalization operation (3.20) to the case of potentials in
the form of a tensor trains is more straightforward. Variables in a separator
ψi→j between two cliques Ci and Cj being a subset of Ci and Cj ’s variables,
we can marginalize the tensor φ associated with Ci in order to form ψi→j . If
φ has a representation in TT format with cores T(ν), ν ∈ {1, . . . ,d} and ψi→j
is a separator over (i1, ..., iν−1, iν+1, ..., id), then ψi→j has a representation in
TT format with cores T’(ν) = T(ν) for ν ∈ {1, . . . ,ν− 1,ν + 2, . . . ,d} and, for
a right marginalization :

T’(ν+1) =
∑
iν

T(ν)(:, iν , :)×1 T(ν+1)

This operation is (usually) less expensive than its equivalent on full ten-
sors. In the following algorithms we will denote by Marginalize(φ,ψi→j)
the operation that marginalize φ over the variables that are not in ψi→j .

6.3.3 Shafer-Shenoy with Tensor Train Format

We can now redefine the Shafer-Shenoy algorithm, a classical message pass-
ing algorithm described in Section 3.3.3.1.3, using the TT format and our
newly defined operations. Let B = ( #»G ,P) be a Bayesian network with P

characterized by Θ = {P(X|Pa
#»G
X ),∀X ∈ V( #»G )}. Before initializing a Junc-

tion Tree T according to B, we can construct a new set of potentials Θ′,
that will be used to generate the potentials associated with each cliques (as
picture in Figure 3.13), such that :

Θ′ = {θ′X|θ′X = Compress(P(X|Pa
#»G
X ), ε),∀X ∈ V( #»G )}

This phase is not particularly expensive and could be done prior to in-
ference (in order to store and reuse the tensorized model, for example). The
following algorithms describe how our inferences work for a given Junction
Tree T , root r within such tree and tolerance ε.
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CollectTT(T , i, j, ε)

Input : an initialized JT T , i, j ∈ V(T ) and a tolerance ε
Output: recursively computed ψi→j

φ← φi;
foreach k ∈Adj(i)\{j} do

CollectTT(T ,k, i, ε);
φ←Compress(φ~ψk→i, ε);

ψi→j ←Marginalize(φ,ψi→j);

DistributeTT(T , i, j, ε)

Input : an initialized JT T , i, j ∈ V(T ) and a tolerance ε
Output : recursively computed ψi→j

φ← φi;
foreach k ∈Adj(i)\{j} do

φ←Compress(φ~ψk→i, ε);
ψi→j ←Marginalize(φ,ψi→j);
foreach l ∈Adj(j)\{i} do

DistributeTT(T , j, l);

Shafer-ShenoyTT(T , r, ε)

Input : a JT T of B = ( #»G ,Θ′), a root r ∈ V(T ) and a tolerance ε
Output : a JT T with messages in both directions on all the separators
foreach X ∈ V( #»G ) do

Assign θ′X to a clique C s.t (X∪Pa
#»G
X )⊆ C;

CollectTT(T , r,r, ε);
DistributeTT(T , r,r, ε);

This new version of the Shafer Shenoy algorithm is very close to the
classical version based on the use of multidimensional arrays (see Appendix
7.2.2). If the various elementary operations are not as memory intensive
as their full tensors counterpart, we will see that the systematic calls to
the compression algorithm after each product is a limitation. However, we
believe that this problem could be overcome, as suggested in [Kressner and
Perǐsa 2017].
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6.4 Experimental Results

In order to obtain experimental results, we develop a first implementation
using several packages : T3F [Novikov et al. 2018] 2 for the manipulation of
tensors in TT format, TensorFlow Abadi et al. [2015] 3 for tensors related
operations and pyAgrum for the manipulation of Bayesian networks, junction
trees and potentials. But for stability and practicality reasons, we then
switched to another package to manipulate tensors in the TT format, Tensap
[Nouy and Grelier 2020]4. Our code is available as a Python package called
TenGeRine 5.

For the discussion, we compare 2 implementations : Shafer-Shenoy (called
SS) and Shafer-Shenoy with Tensor Train format (called SSTT). The two
implementations are identical as much as possible except that the first one
manipulates potentials (model and operations implemented in C++) and the
second one manipulates tensors in Tensor Train format (model and operations
implemented in TensorFlow or Tensap with mixed python and C++). We
compare both inference time (denoted TSS for SS, TSSTT for SSTT) as well
as the number of parameters (in cliques and separators) at the end of each
inferences (#SS for SS, #SSTT for SSTT) and the compression factor between
them ( #SS

#SSTT
, denoted τ). All the tests have been performed on a dual E5-

2630v2@2.60GHz with 32Go of RAM. We do not yet take advantage of the
ease of calculation offered by tensor frameworks at the moment (GPGPU
and parallelization).

6.4.1 Models from the Literature

We will first compare SSTT and SS on classical models from the literature
6. Our objective here is to verify that the use of tensor trains does allow
to reduce the memory space without introducing too many errors due to
approximation in the calculated potentials.

2https://t3f.readthedocs.io
3www.tensorflow.org
4https://anthony-nouy.github.io/tensap/
5https://gitlab.com/agrumery/tengerine
6https://gitlab.com/agrumery/pgmrepository

https://t3f.readthedocs.io
www.tensorflow.org
https://anthony-nouy.github.io/tensap/
https://gitlab.com/agrumery/tengerine
https://gitlab.com/agrumery/pgmrepository
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6.4.1.1 Inference Time and Compression Factor

Table 6.1 showcases how using our approach on classical BNs can improve
memory usage of inferences, especially within complex networks. Instead of
looking at the number of nodes/arcs in the models, we considered it more
relevant to look at the size of the cliques, especially the largest ones, as this
is the discriminant criterion for inferences based on junction trees.

BN #C dCmax dC dsCmax dsC Tr τ
Alarm 27 9 5.0 5.8e+03 9.6e+02 114.6 0.86
Asia 6 6 4.2 64 26 91.9 0.6
Barley 36 16 9.0 9.6e+14 3.52e+13 1.71 35.8
Carpo 48 10 3.6 1.0e+03 8.7e+01 365.51 0.78
Child 17 6 4.0 1.3e+03 2.4e+02 152.05 0.72
Diabetes 337 12 7.8 1.6e+13 3.8e+11 41.31 2.03
Hailfinder 43 16 6.7 2.1e+09 5.6e+07 170.15 0.94
Insurrance 18 14 8.6 1.1e+07 1.1e+06 89.5 3.21
Link 592 68 14.1 4.9e+27 8.4e+24 207.1s -
Mildew 29 16 9.1 2.7e+15 9.3e+13 2.4 19.9
Munin1 159 20 8.1 1.2e+13 1.1e+11 0.05 2148.21
Pigs 367 19 6.7 1.2e+09 8.5e+06 65 37.79
Water 19 19 10.1 6.5e+10 3.8e+09 3.5 187.48

Table 6.1: Inference time ratio Tr (TSSTTTSS
) and compression factor τ

( #SS
#SSTT

) for classical BNs (ε= 0.001). The number of cliques (#C), their
max (resp. mean) number of dimensions dCmax (resp. dC) as well as the

maximum (resp. mean) number of parameters dsCmax (resp dsC) are
indicated, singular values are highlighted in bold.

The TT format does not seem to be helpful when the JT have small
cliques, like in Asia or Alarm. Indeed, when the cliques and separators are
small (regarding their domain sizes dsC), the tensor train format can increase
the number of parameters needed to describe them. In the case of Asia, for
example, the largest clique, is an order-6 tensor with only 64 values. It is
consequently not really surprising to see the number of parameters grows
when converting such a tensor into 6 order-3 tensors. Such results indicates
that there should be a lower limit in the dimensionality of potentials from
which using TT format would be counterproductive.
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However, in case of complex network such as Munin1, the tensor train
format greatly helps reducing the number of parameters (by a factor of 2148
!). In the case of Link (592 cliques, including one with 20 dimensions), our
Shafer-Shenoy implementation couldn’t finish the inference, due to a lack of
memory (SSTT took 207 seconds). Memory savings don’t seem to imply a
reduction of the inference time, as Barley shows, but this is not surprising
since, as mentioned above, our prototype does not use all possible optimiza-
tions related to the use of tensor frameworks. Furthermore, operations on
TT are, in their actual form, quite complex and computationally expensive.
Fortunately, we think there is a lot of room for improvement from an al-
gorithmic point of view, as suggested in [Kressner and Perǐsa 2017], where
the authors propose effective strategies to limit the computational costs as-
sociated with the use of Hadamard products between tensors in the Tucker
format.

6.4.1.2 Approximation Error

Let’s recall that when using the Compress algorithm, the tolerance param-
eter ε is used within the successive truncations of SVDs to reduce the size
of the initial tensor by removing as much as possible irrelevant information.
This deletion introduces, consequently, an error in the calculations, which
should be discussed.

In that regards we compare in Table 6.2 the exact value of each probability
p in each posterior and its approximated version with SSTT p̂ associated with
the inferences from the table 6.1. We observe the absolute error |p− p̂| as
well as the relative one |p−p̂|p . If other evaluation criteria a Kullback–Leibler
divergence between p and p̂ have been considered, they seemed to us to be
the easiest ones to interpret.

While absolute errors seem to be contained for a tolerance of ε = 1e−
3, within the range of one percent, relative errors can be high, suggesting
that small probabilities are poorly approximated. In the case of Mildew, for
example, the maximum relative error occurs when a probability of 1,35e−11
is approximated with 4,60e− 08. Fortunately, as shown in Figure 6.13, the
lower the tolerance, the smaller the errors.
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Absolute error Relative error
BN name Maximum Mean Maximum Mean
Alarm 3,78e-04 4,10e-05 9,73e-03 3,53e-04
Asia 3,96e-04 1,98e-04 3,96e-02 4,56e-03
Barley 4,09e-04 2,18e-05 9,99e-01 9,04e-03
Carpo 7,76e-04 7,68e-05 9,80e-01 8,20e-03
Child 7,69e-05 3,69e-06 1,53e-03 3,43e-05
Diabetes 8,25e-04 5,46e-05 1,00e+00 7,27e-03
Hailfinder 2,76e-04 5,68e-06 8,09e-04 2,11e-05
Insurance 4,97e-04 4,13e-05 8,40e-01 1,10e-02
Mildew 2,43e-04 1,32e-05 3,40e+03 4,60e+00
Munin1 3,19e-03 2,30e-04 6,84e+02 1,16e+00
Pigs 3,33e-15 6,29e-16 1,33e-14 2,25e-15
Water 8,85e-04 6,88e-05 1,00e+00 3,27e-03

Table 6.2: Absolute (|p− p̂|) and relative ( |p−p̂|p ) errors for classical BN
(ε= 0.001)
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Figure 6.13: Evolution of maximum errors for Mildew according to multiple
tolerance thresholds

The case of Pigs, showcased in the Figure 6.14, is very interesting. This
model, complex by its size (and by the presence of a few large cliques) com-
presses very well (by a factor of 38) without introducing noticeable errors (in
the order of machine epsilon).
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Figure 6.14: Evolution of maximum errors Pigs according to multiple
tolerance thresholds

A first analysis suggests that this could be due to the fact that Pigs’ CPTs
are very deterministic: in this case, we expect the full tensors associated with
each potentials to be sparse and therefore easily compressed with truncated
SVDs.

If these first results are encouraging, we wanted to place ourselves in
arbitrarily more complex cases to ensure the scalability of our approach.

6.4.2 SSTT Within Complex Networks

In order to generate BN with growing complexity, we relied on Dynamic
Bayesian Network (dBN) [Dagum et al. 1992], dBNs are a generalisation of
Markov Chain and can be seen as BNs that relate variables to each other
over adjacent time steps (called time slices). Once the relation between two
time slices is defined (in a graph called 2TBN), they can be easily deployed
(unrolled) for a particular number of steps. When we create a junction tree
from an unrolled dBN, the cliques tend to be very large, often making exact
inference intractable [Murphy 2002].
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(a) (b) (c)

Figure 6.15: 2TBN of : (a) dBN1, (b) dBN2, (c) dBN3

For our experiments, we have defined 3 dBNs, whose related 2TBN are
presented in Figure 6.15. Each variable’s domain size is 10 and CPT were
randomly generated. The dBN1 (Figure 6.15.a) is expected to be the worst
case for our Tensor Train based algorithm : it is exactly five Markov chains
and all the cliques have a size of 2 while dBN2 and dBN3 (Figure 6.15.b and
6.15.c) are growing in complexity, with more and more arcs intra/inter slices.

6.4.2.1 Inference Time and Memory Usage

Comparing inference time of Shafer-Shenoy and our algorithm confirms that
the more complex and memory intensive an inference is, the more interesting
is the usage of the Tensor Train format, as shown in the Table 6.3. In the
case of dBN1, a decomposition is unnecessary since the size of potentials
won’t change, only their number will linearly grow with the number of time
slices. With dBN2, on the other hand, the TT version of Shafer-Shenoy shows
how much compressing potentials can help to scale inference. Finally, in the
case of dBN3, memory lacks are observed over 7 time slices for the standard
algorithm when the TT version can easily scale linearly to 150 time slices.
The limiting factor being the treewidth of the junction tree, using a low-
rank representation for potentials, such as the TT format, greatly improves
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memory usage, as shown in Table 6.4. For a tolerance factor ε of 0.05, the
number of parameters in our model uses less than a hundredth of the space
used by the exact one, with a maximum relative error of 0.12.

dBN1 dBN2 dBN3
Nb. Time slices TSSTT

TSS
TSSTT
TSS

TSSTT
TSS

TSSTT
4 179.89 61.07 7.79 2.95 s
5 69.14 38.83 1.46 4.31 s
7 69.47 1.47 - 21.07 s
15 64.24 0.38 - 57.40 s
50 55.40 0.33 - 167.42 s
75 45.97 0.27 - 318.71 s
100 34.59 0.26 - 382.31 s
150 32.68 0.21 - 522.02 s

Table 6.3: Ratio between inference times for SSTT and SS (ε= 0.05)

Nb. Time slices SS SSTT τ
4 3.33e+05 4.15e+04 8.0
5 1.04e+06 1.75e+05 5.9
7 1.71e+07 1.16e+05 147.8
15 1.09e+08 6.81e+05 160.5
50 5.05e+08 4.63e+06 109.1
75 8.01e+08 4.57e+06 175.4
100 1.07e+09 9.20e+06 115.9
150 1.66e+09 1.29e+07 128.8

Table 6.4: Number of parameters and compression factor (τ) in SS and
SSTT (dBN2, ε= 0.05)

6.4.2.2 Error of Approximation using SSTT

To evaluate the errors introduced by the compression, we performed infer-
ences ten times on dBN2 with 50 time slices and randomized CPTs for each
iteration. Figures 6.16 and 6.17 shows that, as expected, a lower tolerance
ε in the Compress algorithm decreases the maximum relative and absolute
errors but increases the inference time.
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Figure 6.16: Evolution of the maximum relative error ( |p−p̂|p ) and inference
time in dBN2 with 50 timeslices
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Figure 6.17: Evolution of the maximum absolute error (|p− p̂|) and
inference time in dBN2 with 50 timeslices

Interestingly, Figure 6.18 shows that the maximum error is almost con-
stant with the number of time slices (when one might have expected them to
be amplified when the number of times slices increases). It seems to indicate
that there is few error propagation along the JT branches.
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Figure 6.18: Evolution of the mean error ( |p−p̂|p ) in posteriors (ε = 0.05)

These first experimental results on complex models are very encouraging;
they tend to confirm that the use of low-rank tensor formats allow inferences
to scale with a controllable error in cases where an exact inference would be
impossible due to a lack of memory.

6.4.3 Comparison with Another Approximate Infer-
ence

In order to extend our comparison, we have compared our approach against
another approximate inference, Loopy Belief Propagation (LBP) [Murphy
et al. 1999], rather than sampling methods that offer no guarantee in terms
of inferences times. The preliminary results presented in the table 6.5 show
us two things :

• Our approach offers better results with respect to absolute error,

• A reduction of the tolerance used during truncation allows us to have
overall much better relative errors than LBP on this set of models.
When LBP’s results better best it is usually only marginally, with the
exception of Mildew whose very small marginals are noised by our
approximation.
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Maximum absolute error Maximum relative error
BN 1e-3 1e-5 LBP 1e-3 1e-5 LBP

Alarm 3.78e-04 1.38e-06 2.85e-02 9.73e-03 4.29e-05 3.48e-01
Asia 3.96e-04 6.40e-09 1.10e-03 3.96e-02 1.42e-08 2.27e-03
Barley 4.09e-04 1.30e-06 1.58e-02 9.99e-01 1.11e-02 1.08e+01
Carpo 7.76e-04 7.28e-06 8.63e-03 9.80e-01 8.57e-03 1.24e-01
Child 7.69e-05 5.50e-09 5.69e-03 1.53e-03 1.55e-08 3.46e-02
Diabetes 8.25e-04 1.77e-05 2.28e-02 1.00e+00 9.99e-01 2.65e-01
Hailfinder 2.76e-04 5.45e-07 1.87e-03 8.09e-04 2.17e-06 6.91e-03
Insurrance 4.97e-04 3.31e-06 1.57e-02 8.40e-01 2.52e-01 1.03e-01
Mildew 2.43e-04 1.77e-06 4.41e-03 3.40e+03 3.64e+00 4.66e-01
Munin1 3.19e-03 1.28e-05 1.20e-02 6.84e+02 9.99e-01 4.44e-01
Pigs 3.33e-15 3.33e-15 4.45e-03 1.33e-14 1.33e-14 1.24e-02
Water 8.85e-04 5.20e-06 6.36e-04 1.00e+00 9.77e-01 1.25e-01

Table 6.5: Maximum errors between SSTT with multiple tolerances and
LBP

Furthermore, and although LBP is faster than our algorithm, it does not
guarantee to converge and, in fact, does not allow to estimate the quality
of the approximation. These first results are encouraging, if the use of our
algorithm is, in the current state, more time-consuming than this classical
approximate inference algorithm, it seems nevertheless to propose a scalable
and controlled approximation.

6.4.4 Aggregators in the TT Format

This section is the result of a prospective (unpublished) work with Anthony
Nouy with whom we worked on [Ducamp et al. 2020]. So far we have con-
sidered the transformation of a full tensor into a tensor in the tensor train
format. However, as we have seen in Section 5.4, aggregators can be de-
scribed in a functional way in order to avoid exhaustive elicitation of their
parameters which would quickly make their manipulation impossible. In this
section we will propose, for a certain number of aggregators —or type of
aggregators—, an explicit and exact representation in the TT format.
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Let’s recall that, for each random variable X, we denote with Val(X) the
(finite, in our case) set of values that X can take. Moreover, if a node Y in
a BN is an aggregator, the number of its parents X1, . . . ,Xd is indeterminate
at the time of modelling and there is a function

A : Val(Y)×
d�
i=1

Val(Xi)→ [0,1]

such that :

P(Y = y|X1 = x1, · · · ,Xd = xd) =A(y,x1, · · · ,xd) (6.7)

We can distinguish, in a general way, several types of aggregations.

â Deterministic aggregators

As mentioned earlier, deterministic aggregators are probabilistic aggrega-
tors whose output values are certain given their parents, i.e. , ∃f :

�d
i=1 Val(Xi)→

Val(Y) then
Af (y,x1, · · · ,xd) = 1y=f(x1,··· ,xd) (6.8)

All logic gates are of this type. More generally, we distinguish self-
decomposable aggregators, which we discussed in the section 5.4 (min, max,
or, sum, etc) and deterministic aggregators that are not (l-out-of-k, median,
etc).

â Non deterministic aggregators

Contrary to the former, the outputs of the so-called non deterministic
aggregators can take any value in [0,1]. In order to avoiding the problem of
specifying large CPTs, a common trick is to assume some model of interaction
among causes (parent influences) that defines the effect’s (child node’s) CPT.
The most popular class of model in this category is based on the concept
known as causal independence or independence of causal influences (ICI)
[Heckerman and Breese 1996; Zagorecki and Druzdzel 2006]. It includes
gates such as the noisy-OR and the noisy-AND.
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Certain other types of probabilistic aggregators should be noted, in par-
ticular, if Y is binary (Val(Y) = {0,1}), a type of probabilistic aggregator
seems relevant:

∃γ :
d�
i=1

Val(Xi)→ [0,1],γ(x1, · · · ,xd) = P(Y = 1|X1 = x1, · · · ,Xd = xd)

And thus,

Aγ(y,x1, · · · ,xd) = y · γ(x1, · · · ,xd) + (1− y) · (1− γ(x1, · · · ,xd)) (6.9)

In this category, we can find :

• Logistic regression : γ(x1, · · · ,xd) = ew0+w·x

1+ew0+w·x

• Artificial neuron : γ(x1, · · · ,xd) = σ(1 +w · x) where σ : R→ [0,1] is a
sigmoid-like function.

To show the interest of such an approach, going directly from a functional
form to a tensor train based one, we decided to focus on decomposable ag-
gregators and the memory gains from such a transformation insofar as they
can be used in the context of probabilistic business rules that use the syntax
defined in Chapter 5.

6.4.4.1 TT Factorization of a Self-Decomposable Aggregator

Let’s recall that we defined an aggregation function f as a self-decomposable
one if, for some merge operator � and all non-empty multisets X and Y,
f(X ]Y) = f(X) � f(Y) where ] denotes the multiset sum. The tensor
train factorization is quite natural insofar as the structure of a comb-wised
decomposed aggregator as shown in the Figure 6.19 recalls that of a tensor
train —contrary to the tree-shaped one proposed in Section 5.4 that recalls
tensors in the HT format (cf, Figure 6.7) —.

The purpose of this section is to show that it is possible to find an exact
representation of a self-decomposable aggregators into tensor trains directly
from their functional definition (i.e. , without their full CPTs).
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(a) (b)

Figure 6.19: (a) a self-decomposable aggregator node with 5 parents. (b)
the same aggregator after its decomposition

Proposition 2
A self-decomposable aggregator admits an exact representation in Tensor-
Train format with ranks (r1, . . . , rd) such that ri ≤ ni, with ni the number
of possible values taken by Yi = f(X1, . . . ,Xi).

Proof : Let Y = f(X1, · · · ,Xd) and f being self-decomposable. We propose
a train-like decomposition of this aggregator : let Y1 = f(X1) and for all
0≤ i < d,Yi+1 = Yi � f(Xi) = f(Yi,Xi). Finally Y = f(Yd).

P(Y|X1, · · · ,Xd) =
∑
Y1

· · ·
∑
Yd
P(Y,Y1, · · · ,Yd|X1, · · · ,Xd)

and

P(Y,Y1, · · · ,Yd|X1, · · · ,Xd) = P(Y1|X1, · · · ,Xd)
·P(Y2|Y1,X1, · · · ,Xd)
·P(Y3|Y1,Y2,X1, · · · ,Xd)
· · ·
·P(Y|Y1, · · · ,Yd,X1, · · · ,Xd)

Since the Local Markov Property (Property 3.12) states that a variable
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is independent from its non-descendants given its parents, it follows :

P(Y,Y1, · · · ,Yd−1|X1, · · · ,Xd) = P(Y1|X1)
d−1∏
i=1
P(Yi+1|Yi,Xi) ·P(Y|Yd)

and consequently

P(Y|X1, · · · ,Xd) =
∑
Y1

· · ·
∑
Yd
P(Y1|X1) ·

d−1∏
i=1
P(Yi+1|Yi,Xi) ·P(Y|Yd).

It ensues a TT-decomposition of any self-decomposable aggregator with
tensors


T(1)(1,X1,Y1) = P(Y1|X1)
T(d+1)(Yd,Y,1) = P(Y|Yd)
∀1≤ i < d,T(i)(Yi,Xi,Yi+1) = P(Yi+1|Yi,Xi)

(6.10)

Let us now look at the complexity of such a representation and more
particularly for an exact one.

Let NAf denotes the complexity of an aggregator Af in the TT format
over {X1, · · · ,Xd}. According to the Equation 6.4, it holds that :

NAf =
d∑
i=1
|Val(Xi)| · ri−1 · ri (6.11)

with r0 = rd = 1 and ri = rank{1,··· ,i}(Af ).
Let Yα = f(Xα), denote by Valα the set of values taken by Yα. We can

find an upper bound for the the α-ranks of Af , with α = {1, . . . , i}, 1≤ i≤ d.
Proposition 3

For any α⊂ {1, . . . ,d}, we have

rankαAf ≤ |Valα |

Proof : The result simply follows from the decomposition Af (x1, . . . ,xd,y) =
1f(x)=y = 1f(xα)�f(xαc)=y =

∑
k∈Valα 1f(Xα)=k1k�f(xαc)=y.
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Proposition 4
A self-decomposable aggregator Af (x1, . . . ,xd,y) = 1y=f(x) admits an ex-
act tensor train decomposition with a complexity NAf =O(dNR2) where
R = |Val(Y)| and N =max|Val(Xi)| for all i ∈ {0, · · · ,d}.

Proof : From equation 6.11 and proposition 3 it holds that :

NAf =
∑d
i=1 |Val(Xi)| · ri−1 · ri and ∀i,ri = rankYi(Af )≤ |Vali |

and consequently that NAf = O(d ·max|Val(Xi)| · |Val(Y)|2) for all
i ∈ {0, · · · ,d}.

The storage complexity of a self-decomposable aggregator in the TT for-
mat is therefore growing polynomially with its number of entries. Partic-
ularly, if the inputs and the aggregator are binary, the complexity of the
aggregator is in O(8 · d) instead of in O(2d+1) !

It is therefore easy —and inexpensive— to switch from a functional repre-
sentation to a representation in the form of a tensor train. If this transforma-
tion is still done through CPTs, as described in 6.10, they are of reasonable
size, with at most |Val(X)| · |Val(Y)|2 parameters each. If not introducing
auxiliary variables as we do in Section 5.4 is a good thing (the model does
not change and does not lose readability) it is above all the consequent de-
crease of the memory complexity that makes this result so important and
extending this logic to the noisy counterpart of such aggregators would be
highly profitable.

6.5 Conclusion and Discussion

We have shown the interest of using such a compressed representation for
potentials and although a lot of theoretical and practical work remains to
be done (addressed in the next section), we truly believe that this approach
is promising. As we have seen in Section 3.4, PRMs are particularly well
suited to modelling systems on an industrial scale, complex networks can
therefore be generated very quickly and the question of the choice of an
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appropriate inference algorithm arises. Furthermore, we have seen that the
syntax proposed in Chapter 5 allows business users to build very easily —
perhaps even without knowing it— aggregators that are very complex to
represent and evaluate. When used during the evaluation of probabilistic
rules, our tensor train based approach could help to take over in the most
complex cases. Moreover, in these circumstances, the modification of the user
model adds variables whose CPTs are very deterministic (predicates) and our
first experimental results lead us to believe that such sparse structures are
well compressed using tensor trains.
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Falcó, A., Hackbusch, W., and Nouy, A. (2018). Tree-based tensor formats.
SeMA Journal.

Gelß, P. (2017). The Tensor-Train Format and Its Applications. PhD thesis,
Freien Universität Berlin.

Hackbusch, W. (2019). Tensor Spaces and Numerical Tensor Calculus.
Springer Series in Computational Mathematics. Springer International
Publishing.

Hackbusch, W. and Kuhn, S. (2009). A new scheme for the tensor represen-
tation. Journal of Fourier analysis and applications, 15(5):706–722.

Harshman, R. (1970). Foundations of the parafac procedure: Models and
conditions for an ”explanatory” multi-model factor analysis.

Heckerman, D. and Breese, J. (1996). Causal independence for probability
assessment and inference using bayesian networks. 26(6):826–831.



BIBLIOGRAPHY 175

Hillar, C. and Lim, L.-H. (2013). Most tensor problems are np-hard.

Hitchcock, F. L. (1927). The expression of a tensor or a polyadic as a sum
of products. Journal of Mathematics and Physics, 6(1-4):164–189.

Ji, Y., Wang, Q., Li, X., and Liu, J. (2019). A survey on tensor techniques
and applications in machine learning. IEEE Access, PP:1–1.

Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500.
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7.1 Conclusions

During this thesis we investigated whether it was possible to define a more
understandable and accessible syntax for probabilistic business rules (Chap-
ter 5). Based on previous practical work and by modifying the compilation
chain of an industrial BRMS, ODM, our prototype support this new syntax,
on a sub-language of the system complete enough to be relevant to a business
user. If such syntax is more business user friendly, its execution can be more
challenging, especially because it supports the use of very memory-intensive
forms of operation : aggregators. A first method (presented in Section 5.4),
based on the graphical decomposition of the latter, allowed us to solve some
instances of this problem in a fast and exact way, but it did not solve the
problem in a general way.

We then explored the use of a new representation for the data used in
probabilistic calculations based on low-rank decomposition of tensors. By
compressing the information present in the potentials within so-called tensor
trains we have shown that it is possible to calculate inferences in complex
networks with a controlled approximation. We have shown that it is possible
to convert the aggregators presented in the Section 5.4 from their functional
form directly into tensors in TT format, which is a very encouraging result
form the usability of such a method.

7.2 Perspectives

Many questions have been raised in this thesis, we hereby conclude this
document with a non-exhaustive list of perspectives that could guide the
developments of future works. We distinguish between those relating to the
world of rules and those relating to PGMs, although these may be of common
interest.



7.2. PERSPECTIVES 179

7.2.1 On the Rule Side

If our work has led to the development of a functional prototype consis-
tent with the objective of making the use of probabilistic rules simpler for a
business user, other extensions could go in this direction:

• Set the threshold according to objectives: ODM allows users to
test their ruleset in order to evaluate the impact of their execution. As
we said in the introduction of the Chapter 5, it might be possible to set
the probabilistic threshold of our rule in relation to gain maximization,
loss limit or other strategies. Given a ruleset and a test WM one
could find the parameters that best fit these different objectives whose
characterization could be more intuitive for a business user.

• Learning the probabilistic models used: For the moment, the user
is asked to specify, using annotation, the probabilistic model used in his
model. It could be interesting to propose a tool generating (learning)
such a model given the elements present in the WM and their attributes.
Such an approach could also help a modeller to identify (and correct)
the selection biases discussed in the section 4.2.1 by identifying un-
annotated random variables.

Conversely, more complex execution modes exist for rules and proposing
a probabilistic extension could enrich their modelling capabilities:

• Probabilistic rules for complex event processing: Some BRMS
propose the execution of temporal rules 1, where one can follow the
evolution of elements over time and parameterize the rules according
to intervals of times or timestamp, as in the example in 2. It would
be interesting to try to adapt our approach to this problem known
as Complex Event Processing, for example by proposing a temporal
extension of PRMs.

1https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.
odm.itoa.overview/topics/con_what_is_i2a.html

2https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.
odm.itoa.overview/topics/tpc_bike_hire_use_case.html

https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.odm.itoa.overview/topics/con_what_is_i2a.html
https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.odm.itoa.overview/topics/con_what_is_i2a.html
https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.odm.itoa.overview/topics/tpc_bike_hire_use_case.html
https://www.ibm.com/support/knowledgecenter/en/SSQP76_8.10.x/com.ibm.odm.itoa.overview/topics/tpc_bike_hire_use_case.html
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7.2.2 On the PGM Side

Thanks to the implementation done in our proof of concept, we have already
identified development axes linked to the use of techniques specific to tensor
frameworks (GPU computing) and to the complexity of certain operations
(recompression of elements after Hadamard products). Additional develop-
ments, just as interesting, are possible:

• Hybrid inference: We have seen that, in some cases, it was use-
less (even counterproductive) to transform multidimensional arrays into
tensor trains. It could then be appropriate to ”tensorize” only poten-
tials with a dimension above a certain threshold. Such an hybrid infer-
ence would manipulate both multidimensional arrays and tensor trains
and could help inferring when models become more complex when both
the number and the sizes of cliques increases.
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Figure 7.1: Theoretical cases where each inference would be appropriate

• ε induced error bounding: The use of the compression algorithm
introducing an error, it might be possible to estimate, given the pa-
rameterized tolerance ε, an upper bound for it.

• ICI models with TT: Searching for an exact representation of such
functions as tensor trains, similarly to what was done in section 6.4.4.1
for decomposable aggregators, would be relevant.
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• Memory constrained inference: As we have seen it is possible to
set parameters of the Compress algorithm to use a maximum size for
the ranks of a tensor train instead of a tolerance ε. Given a memory
limit dedicated to inference it might be possible to find the best repre-
sentations of the tensor train. This approach could, for example, allow
complex inferences to be made in embedded systems where resources
are scarce or constrained.

• Tensorized PRM specific inference: For the moment we have ex-
perimented the use of TT for BNs specific inferences but, as we have
seen at the end of part 3.4.2, it is possible to use the structural redun-
dancy of PRM in order to limit the cost of such an operation. Conse-
quently adapting such inferences to use a tensor trains framework could
be useful in our context of use with BRMS.

• Tree based tensor: Tensor trains are only one particular form of a
more general family of structures called tensor trees (which also include
the Tucker and Hierarchical Tucker tensor formats). If the constrained
form of the tensor train format helped us to redefine an inference by
avoiding, once the potentials have been transformed, to manipulate
their structure, others could help to further improve the compression
and limit the induced errors.
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Complex BN Example

Figure 2 illustrates a more extensive Bayesian network to better identify in-
dividuals suspected of being infected by a SARS-CoV. Although the number
of symptoms taken into account is greater, it is mainly the history and the
living environment of the person that allows the model to be more accurate.
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Figure 2: A more complex version of our SARS-CoV model
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OM Annotations

These different annotations describe the constituent elements of the PRM
that will be generated in the first part of the compilation phase (cf, Section
4.2.1). The different parameters are displayed.

â @PrmClass

Specify that the class exists in the PRM Model

@PrmClass
public class Physician {

...
}

â @PrmRestrictedTypeClass<modalities>
Define an attribute type using modalities as modalities.

@PrmRestrictedTypeClass(modalities={"severe","mild","asymp","none"})
public StatusType restricts int#[0,3];

â @PrmAttribute<parents, cpt>
Specify that the attribute exists as a PRM class in the PRM with the at-
tributes in parents as parents and cpt as cpt.

@PrmAttribute(parents={"status"},cpt={{1,1,1,0},
{0,0,0,1}})

public int is_severe;

â @PrmSingleReference

Specify that the reference is as a reference slot in the PRM

@PrmSimpleReference
public Physician physician;
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â @PrmMultiReference
Specify that the reference is as a multiple reference slot in the PRM

@PrmMultiReference
public Patient[] pats;

â @PrmAggregator<aggName, attribute, modality>
Specify that the attribute is an aggregator in the PRM with aggName as
aggregation function and uses the element in the reference slot attribute as
parents. If a modality is required, modality can be used (to specify that an
existential aggregation function is expected to be true, for example).

@PrmAggregator(aggName="sum",attribute ="pats.is_severe",mod="")
public int number_of_severe_patients;
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Multidimensional array based Shafer-Shenoy
pseudocode

Collect(T , i, j)

Input : an initialized JT T and i, j ∈ V(T )
Output : recursively computed ψi→j

φ← φi;
foreach k ∈Adj(i)\{j} do

Collect(T ,k, i);
φ← φ×ψk→i;

ψi→j ←
∑
X∈Ci\Sij φ;

Distribute(T , i, j)

Input : an initialized JT T and i, j ∈ V(T )
Output : recursively computed ψi→j

φ← φi×
∏
k∈Adj(i)\{j}ψk→i;

ψi→j ←
∑
X∈Ci\Sij φ;

foreach l ∈Adj(j)\{i} do
Distribute(T , j, l);

Shafer-Shenoy(T , r)

Input : a JT T of B = ( #»G ,Θ), a root r ∈ V(T )
Output : a JT T with messages in both directions on all the separators
foreach X ∈ V( #»G ) do

Assign P(X|PaX) to a clique C s.t (X∪Pa
#»G
X )⊆ C;

Collect(T , r,r);
Distribute(T , r,r);
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