
HAL Id: tel-03467937
https://theses.hal.science/tel-03467937

Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis of code-based post-quantum cryptosystems
Matthieu Lequesne

To cite this version:
Matthieu Lequesne. Analysis of code-based post-quantum cryptosystems. Cryptography and Security
[cs.CR]. Sorbonne Université, 2021. English. �NNT : 2021SORUS046�. �tel-03467937�

https://theses.hal.science/tel-03467937
https://hal.archives-ouvertes.fr

Sorbonne Université

École doctorale Informatique, Télécommunications et Électronique (Paris)

Inria / Équipe-projet COSMIQ

Analysis of code-based post-quantum cryptosystems

Thèse de doctorat d’informatique

présentée par

Matthieu Lequesne
dirigée par Nicolas Sendrier

soutenue publiquement le 25 mai 2021

devant un jury composé de
Magali Bardet Université de Rouen Normandie Examinatrice
Alain Couvreur Inria Examinateur
Philippe Gaborit Université de Limoges Rapporteur
Thomas Johansson Lund University Rapporteur
Antoine Joux CISPA Helmholtz Center Examinateur
Pierre Loidreau DGA-MI et Université de Rennes 1 Examinateur
Nicolas Sendrier Inria Directeur
Annick Valibouze Sorbonne Université Examinatrice

Remerciements

Les travaux réunis dans ce manuscrit sont l’aboutissement de quatre années
de travail, dont la dernière période a été marquée par la pandémie mondiale
de Covid. L’épreuve particulièrement difficile du confinement aura au moins
été l’occasion de confirmer, à quiconque en aurait douté, que le travail de
recherche est avant tout une entreprise collective.

C’est pourquoi, avant de présenter mes résultats scientifiques, qui ne sont
qu’une partie visible de l’aventure humaine que constitue la thèse, je tiens à re-
mercier les nombreuses personnes qui m’ont accompagné, conseillé, soutenu,
chacune à leur manière, ces dernières années. Que ce soit dans le cadre pro-
fessionnel, associatif ou privé, j’ai eu la chance d’être entouré de personnes ex-
ceptionnelles. Ces travaux n’auraient jamais abouti sans leur soutien. Qu’elles
en soient remerciées.

Mes premières pensées sont évidemment pour Nicolas, mon directeur de
thèse. Le sujet que tu m’as proposé pour mon stage de master m’a tout de suite
enthousiasmé et m’a permis de me plonger rapidement dans la cryptogra-
phie fondée sur les codes. J’ai ensuite eu tout le loisir d’explorer différentes
dimensions de ce domaine de recherche. Je te remercie pour la confiance que
tu m’as témoignée pendant ces quatre années. À chaque étape, tu t’es montré
disponible pour me guider et répondre à mes questions avec un intérêt certain.
Merci pour ta patience, ton sens du détail et ton calme à toute épreuve lors de
nos discussions.

Je remercie vivementAlain avec qui j’ai pris beaucoupde plaisir à collaborer.
Tu m’as transmis une vision nouvelle des attaques possibles sur les codes, qui
se retrouve dans ce manuscrit. Malgré tes responsabilités croissantes, tu as
toujours trouvé un créneau pour discuter d’une énième tentative (souvent
infructueuse) de venir à bout d’un cryptosystème. Que ça soit à Paris, à Saclay,
en visio (avec tes enfants) ou sur la terrasse virtuelle d’une plateforme pas
très RGPD-compatible, nos échanges réguliers ont nourri l’ensemble de mon
travail.

Je souhaite remercier les membres de mon jury, Annick Valibouze, Antoine
Joux, Magali Bardet, Pierre Loidreau et tout particulièrement les rapporteurs
Philippe Gaborit et Thomas Johansson qui ont pris le temps de lire entièrement

ce manuscrit. J’ai eu l’opportunité de vous croiser régulièrement ces dernières
années, vos travaux respectifs ont souvent été une source d’inspiration pour
moi et votre présence dans mon jury m’honore.

J’ai eu la chance de réaliser ma thèse entouré par une équipe soudée et
dynamique de collègues avec qui j’ai pu partager bien plus qu’un environ-
nement de travail. Je dois beaucoup à Anne, qui m’a dirigée vers Nicolas
lorsque je cherchais un stage, m’ouvrant ainsi les portes de l’équipe Secret.
Anne, je suis admiratif de ta capacité à combiner un emploi du temps de
ministre, une activité scientifique de pointe et un engagement sans faille pour
défendre les valeurs scientifiques et éthiques de l’équipe et de l’institut, tout en
veillant avec attention au bien-être de tes collègues. Je te remercie également
d’avoir toujours soutenu les activités de médiation, n’hésitant jamais à montrer
l’exemple en présentant la cryptographie à des jeunes, avec l’enthousiasme
communicatif qui te caractérise.

En tant que membre de l’équipe Secret, devenue Cosmiq, je dois égale-
ment énormément à Jean-Pierre. En m’inscrivant à ton cours de théorie de
l’information à l’X, je ne me doutais pas que j’allais passer plusieurs années à
travailler à tes côtés. Merci pour tes conseils réguliers, tes remarques franches et
toujours bienveillantes, qui incitent à persévérer pour produire un travail scien-
tifique toujours plus rigoureux. Merci également pour ton travail d’animation
du séminaire le plus select de Paris, qui est d’autant plus prestigieux qu’il est
particulièrement difficile de savoir quand et où aura lieu la prochaine réunion.

J’ai évidemment une pensée particulière pour mes collègues du bureau
“Tapdance”, avant-poste de l’équipe dans sa conquête du deuxième étage :
Valentin et Ferdinand, avec qui j’ai partagé quotidiennement ce bureau, mais
aussi les personnes que nous avons temporairement accueillies, Mathilde,
Daniel et Pierre, et qui ont chacunes pu contribuer à l’esprit Tapdance.

Je remercie chaleureusement Thomas, qui m’a épaulé dès mes premières
semaines dans l’équipe, toujours avide de partager avec moi son intérêt pour
les codes, et avec qui les longues discussions ont porté sur des sujets bien plus
larges que notre travail académique. Merci à Yann et Xavier quim’ont accompa-
gné lors de nombreuses pauses café, pour parler de recherche, d’enseignement,
de politique et de beaucoup d’autres choses.

Enfin je veux remercier l’ensemble de mes collègues que j’ai pu côtoyer au
quotidien et qui font de l’équipe Secret/Cosmiq un cadre de travail particulière-
ment agréable. Travailler au sein de cette équipe m’a permis de développer
des compétences transverses, telles que l’étude de la théologie byzantine ou
la courses de canoë entre les crocodiles. Merci à André (le jeune), André
(le sage), Andrea, Anthony, Antoine, Antonio, Augustin, Aurélie, Charles,
Christina, Christophe, Clara, Clémence, Étienne, Gaëtan, Ivan, Johanna, Jules,
Julia, Kaushik, Kevin, Léo, Lucien, María, Maxime, Nicolas, Pascale, Rémi,

Ritam, Rocco, Rodolfo, Sébastien, Shibam, Simona et Vivien. Cette liste ne
saurait être exhaustive et ce message s’adresse à l’ensemble des collègues que
j’ai croisé·e·s ces dernières années. J’ai une pensée particulière pour Christelle,
toujours là pour nous accompagner patiemment dans les méandres adminis-
tratifs et sans laquelle l’équipe cesserait instantanément de fonctionner. Enfin,
je n’oublie pas Thierry, Étienne et Bernard, les verbicrucistes attitrés de l’équipe,
y compris en temps de pandémie.

Je souhaite également saluer l’ensemble de mes collègues de la rue Si-
mone Iff, les chercheur·e·s mais aussi les équipes de soutien à la recherche.
J’ai évidemment une pensée pour les personnes du service médiation avec
lesquelles j’ai régulièrement interagi sur des projets divers. Je remercie égale-
ment mes collègues du CWI, qui m’ont accueilli alors que je terminais la
rédaction de ce manuscrit et avec qui je me réjouis de pouvoir travailler.

Au-delà, du cadre professionnel, j’ai passé une partie significative de mon
temps, avant et pendant cette thèse, à monter de nombreux projets associatifs.
Je commence évidemment par remercier la grande famille Animath et ses
innombrables bénévoles toujours heureux·ses de transmettre au plus grand
nombre le plaisir qu’iels trouvent dans la pratique des mathématiques et de
l’informatique. Je dois beaucoup àMartin, d’abord parce qu’Animath a joué un
rôle important dans mon orientation vers des études en mathématiques, mais
aussi et surtout pour la confiance qu’il m’a toujours exprimée, me permettant
de mener à bien des projets toujours plus grands, tout en m’encourageant à
pousser toujours plus loin mes études. Je remercie également Fabrice, avec
lequel, je l’espère, nous avons réussi à faire de cet état d’esprit un marqueur
fort de l’identité de l’association.

En remontant quelques années en arrière, je sais que je dois beaucoup
à plusieurs personnes avec qui j’ai pris un plaisir particulier à organiser et
développer les TFJM. Je remercie en particulier Bernardo, David, Igor, Gian-
carlo, Vincent et Joon, pour tous ces moments partagés, qui m’ont permis
d’avoir assez tôt un aperçu du travail de doctorant et un avant-goût de la
recherche. Plus récemment (quoique nous en soyons déjà à la 7e édition), nous
avons lancé la grande aventure du concours Alkindi et je remercie Mathias,
Razvan, Yann et Mélissa pour les longues séances de réflexion sur la manière
la plus pédagogique de faire découvrir la cryptographie à des dizaines de
milliers d’élèves. Je remercie au passage tou·te·s les collègues de la commu-
nauté française de crypto qui soutiennent le concours. Enfin, Animath a été
l’occasion de monter de nombreuses autres actions, toujours plus audacieuses,
que je ne saurais toutes citer ici. Je salue les centaines de bénévoles que j’ai
croisé·e·s partout en France, et dont certain·e·s sont devenu·e·s des ami·e·s
proches. Leur engagement collectif est une force incroyable et une source
infinie de motivation.

Sur une autre dimension, bien que l’intersection ne soit pas vide, je remercie
toutes les personnes que j’ai pu croiser lors des luttes et mobilisations, au sein
de différents mouvements, collectifs et associations. Après de nombreuses
années, je suis toujours surpris par la richesse des échanges et la force de
l’intelligence collective. De vous tou·te·s, j’ai beaucoup appris et j’ai encore
beaucoup à apprendre. À celles et ceux qui se reconnaîtront, sachez que vos
actions sont une source d’inspiration et d’espoir. Je salue en particulier mes
camarades de la Sphinx et des collectifs associés pour l’ensemble du travail que
nous avons mené et dont l’ampleur actuelle dépasse nos espérances initiales.

Je salue mes commerçant·e·s préféré·e·s, Steph, Thierry, Emmy ainsi que
Hans, pour leurs conseils toujours avisés et leurs produits de première qualité,
qui ont toujours fait l’unanimité auprès de mes ami·e·s.

Merci à mes parents et ma sœur qui m’ont toujours soutenu et encouragé
dans mes études.

Merci à tou·te·s les camarades de l’ASA, Clara, Denis, Geoffrey, José et les
nombreux·ses autres, avec qui j’ai pu passer des soirées inoubliables et qui
sont désormais disséminé·e·s aux quatre coins du globe.

Je remercie infiniment Aurore, Aymeric, Joseph, Léa et Roxane, pour leur
présence àmes côtés pendant toute cette thèse et pour l’ensemble desmoments
partagés ces dix dernières années que je ne tenterai pas de résumer ici.

Enfin mes derniers mots vont à Guillaume, qui éclaire ma vie au quotidien.
Merci pour ton soutien sans faille et tes encouragements permanents pendant
la longue période de rédaction de ce manuscrit.

À toutes et tous, je vous souhaite le meilleur et j’ai hâte de pouvoir vous
retrouver autour d’un café, d’une bière ou d’un whisky.

Contents

Remerciements 3

Contents 7

List of publications 13

1 Introduction 15
1.1 Introduction to cryptography 16

1.1.1 Early days of cryptography 16
1.1.2 Theorisation of cryptography 17
1.1.3 Modern cryptography 18
1.1.4 New trends in cryptography 21

1.2 Introduction to coding theory 25
1.2.1 Error-correcting codes 26
1.2.2 Encoding, decoding . 29
1.2.3 Decoding problems . 30
1.2.4 Bounds on codes . 31

1.3 Introduction to code-based cryptography 36
1.3.1 The McEliece scheme . 36
1.3.2 Other code-based encryption schemes 40
1.3.3 Code-based signature schemes 41

I Key-recovery attacks on post-quantum cryptosystems:
analysis of probabilistic constructions 45

2 Moderate density parity-check codes 47
2.1 Introduction to MDPC codes 48

2.1.1 LDPC codes . 48
2.1.2 MDPC codes . 49
2.1.3 The quasi-cyclic structure 49

2.2 Decoding MDPC codes . 51

2.2.1 The bit-flipping algorithm 51
2.2.2 The decoding failure rate 55
2.2.3 Other decoders . 56

2.3 QC-MDPC schemes . 56
2.3.1 QC-MDPC McEliece . 56
2.3.2 KEM vs. PKE . 59
2.3.3 Other MDPC-based schemes 59

2.4 Security of QC-MDPC schemes 60
2.4.1 Message security . 60
2.4.2 Key security . 61
2.4.3 Quantum security . 62
2.4.4 Side-channel attacks and DFR 62

3 Side-channel attacks on the QC-MDPC cryptosystem 63
3.1 Key recovery attack on the QC-MDPC scheme 64

3.1.1 Side-channel attacks . 64
3.1.2 The QC-MDPC scheme 65
3.1.3 The GJS reaction attack 66

3.2 Analysis . 70
3.2.1 Expected syndrome weight 70
3.2.2 Experimental measures 73
3.2.3 Required number of samples. 75

3.3 Attack on the syndrome weight 76
3.3.1 Attack model . 76
3.3.2 The attack . 77
3.3.3 Experimental results . 78

3.4 Attack on the iteration count . 78
3.4.1 Motivations and attack model 78
3.4.2 The attack . 81
3.4.3 Experimental results . 81
3.4.4 About spectrum reconstruction 82

3.5 Possible mitigations . 83
3.5.1 Ephemeral keys . 83
3.5.2 Parallel encryption . 84
3.5.3 Forcing a full spectrum: monomial codes 84
3.5.4 Lowering the DFR . 85

3.6 Conclusion . 87

4 Attack on the Edon-K cryptosystem 89
4.1 Rank metric and LRPC codes 90

4.1.1 Introduction to rank metric 90
4.1.2 Definitions . 91

4.1.3 Hard problems in rank metric 92
4.1.4 LRPC codes . 93

4.2 The Edon-K cryptosystem . 95
4.2.1 Notations . 95
4.2.2 Key generation . 96
4.2.3 Encapsulation . 97
4.2.4 Decapsulation . 97
4.2.5 Suggested parameters 98

4.3 Algebraic attack on the Edon-K scheme 98
4.3.1 Outline of the attack . 98
4.3.2 Reconstructing the parity-check matrix 99
4.3.3 The decoding step . 101

4.4 Concluding remarks . 103
4.4.1 Cost of the attack . 103
4.4.2 Without compression of the public key 103
4.4.3 Conclusion . 104

II Square-code attacks on GRS-based cryptosystems 107

5 GRS codes and public-key cryptography 109
5.1 Generalised Reed–Solomon codes 110

5.1.1 Definition and properties 110
5.1.2 Relation with other families of codes 112

5.2 GRS-based cryptosystems . 113
5.2.1 McEliece with GRS codes 113
5.2.2 Attacking the McEliece GRS cryptosystem 114
5.2.3 Other cryptosystems using GRS codes 114

5.3 Product of codes and square-code distinguisher 116
5.3.1 The star-product operation 116
5.3.2 The square-code distinguisher 117
5.3.3 Distinguishing shortened codes 119

5.4 Conclusion . 121

6 Attack on the RLCE cryptosystem 123
6.1 The RLCE scheme . 124

6.1.1 Presentation of the scheme 124
6.1.2 Suggested sets of parameters 127
6.1.3 Natural questions . 127

6.2 Dimension of the square code 128
6.2.1 Analysis of the different kinds of columns 129
6.2.2 Intermediate results . 134

6.2.3 Proof of the main theorem 140
6.2.4 When is the inequality an equality? 141
6.2.5 A distinguisher . 142

6.3 The attack . 144
6.3.1 An algorithm to find a set of twin positions 144
6.3.2 Identifying pairs of twin positions 146
6.3.3 Description of the attack 146
6.3.4 Retrieving the secret key 147
6.3.5 The case of degenerate twin positions 149
6.3.6 Complexity of the attack 149

6.4 Conclusion . 150

7 Subspace subcodes of Reed-Solomon codes 151
7.1 Subspace subcodes . 152

7.1.1 Motivations . 152
7.1.2 Definition and first properties 155
7.1.3 Expansion operator and representation 158
7.1.4 An instantiation of McEliece with SSRS codes 164
7.1.5 Further properties of the expansion operator 166

7.2 The XGRS cryptosystem . 169
7.2.1 The cryptosystem . 169
7.2.2 XGRS is a instance of SSRS 171

7.3 Twisted-square code and distinguisher 173
7.3.1 The twisted square product 174
7.3.2 Dimension of the twisted square of subspace subcodes 180

7.4 Attacking the SSRS scheme . 186
7.4.1 Further conjectures for the attack 186
7.4.2 The casem = 3 and λ = 2 186
7.4.3 The general case . 190
7.4.4 Summary of the attack 190
7.4.5 Complexity . 191
7.4.6 The guess-and-squeeze approach 192

7.5 Conclusion . 193

III Generic decoding 195

8 Binary syndrome decoding 197
8.1 The syndrome decoding problem 198

8.1.1 The problem . 198
8.1.2 Workfactor and asymptotic formulas 199
8.1.3 Number of solutions . 200

8.2 Combinatorial approach . 201
8.2.1 Exhaustive search . 201
8.2.2 Birthday decoding . 201
8.2.3 Average complexity to find one solution 202

8.3 Using linear algebra: Prange’s approach 202
8.3.1 Information sets . 202
8.3.2 Prange’s idea . 203
8.3.3 Prange’s information set decoding algorithm 203
8.3.4 Complexity of Prange’s algorithm 203

8.4 Combining both approaches . 205
8.4.1 General idea . 205
8.4.2 Generalised information set decoding algorithm 207
8.4.3 Using exhaustive search 209
8.4.4 Using birthday decoding 210

8.5 Further improvements of ISD 211
8.5.1 Recursive birthday algorithm 211
8.5.2 Using representations 211
8.5.3 Nearest neighbour search 214

9 Ternary syndrome decoding with large weight errors 217
9.1 Information set decoding for q > 3 218

9.1.1 Asymmetry of the non-binary case 218
9.1.2 Adaptation of Prange’s algorithm 219
9.1.3 Generalised information set decoding algorithms . . . 222
9.1.4 ISD for q →∞ . 224

9.2 Large weight ternary syndrome decoding 224
9.2.1 Reduction to subset sum 224
9.2.2 From large weight ISD to subset sum 225
9.2.3 Wagner’s algorithm . 226
9.2.4 Using representations 230

9.3 Applications . 234
9.3.1 Application to the Wave signature 234
9.3.2 Hardest instance of ternary large weight decoding . . . 237
9.3.3 Conclusion . 239

Conclusions and perspectives 241

Bibliography 245

List of publications

Publications
[ELPS18] Edward Eaton, Matthieu Lequesne, Alex Parent, and Nicolas

Sendrier. “QC-MDPC: A Timing Attack and a CCA2 KEM”.
In: Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018,
Proceedings. 2018, pp. 47–76.

[LT18] Matthieu Lequesne and Jean-Pierre Tillich. “Attack on the
Edon-K Key Encapsulation Mechanism”. In: 2018 IEEE Inter-
national Symposium on Information Theory, ISIT 2018, Vail, CO,
USA, June 17-22, 2018. 2018, pp. 981–985.

[CLT19] Alain Couvreur, Matthieu Lequesne, and Jean-Pierre Tillich.
“Recovering short secret keys of RLCE in polynomial time”.
In: Post-Quantum Cryptography 2019. Ed. by Jintai Ding and
Rainer Steinwandt. Vol. 11505. LNCS. Chongquing, China:
Springer, May 2019, pp. 133–152.

[BCDL19] Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and
Matthieu Lequesne. “Ternary SyndromeDecodingwith Large
Weights”. In: Selected Areas in Cryptography - SAC 2019 - 26th
International Conference, Waterloo, ON, Canada, August 12-16,
2019, Revised Selected Papers. Ed. by Kenneth G. Paterson and
Douglas Stebila. Vol. 11959. Lecture Notes in Computer Sci-
ence. Springer, 2019, pp. 437–466.

Preprints
[CL20] Alain Couvreur and Matthieu Lequesne. On the security of

subspace subcodes of Reed-Solomon codes for public key encryption.
2020.

Chapter1
Introduction

Cryptography aims at ensuring the secrecy and security of communications.
Although cryptography is nowadays considered as a part of computer science,
the need for confidentiality of information appeared long before computers
were invented. Hence, cryptography inherits a long history of practices which
were gradually formalized and turned into a scientific field.

In modern-day cryptography, the security of the systems is expected to
rely on the hardness of a small amount of well-studied mathematical prob-
lems. Code-based cryptography, which is the subject of this work, consists in
proposing cryptographic schemes based on problems inherited from coding
theory.

Before digging into the definition of code-based cryptography, let us in-
troduce the general notions related to cryptography on one side, and coding
theory on the other.

Contents
1.1 Introduction to cryptography 16

1.1.1 Early days of cryptography 16
1.1.2 Theorisation of cryptography 17
1.1.3 Modern cryptography 18
1.1.4 New trends in cryptography 21

1.2 Introduction to coding theory 25
1.2.1 Error-correcting codes 26
1.2.2 Encoding, decoding 29
1.2.3 Decoding problems 30
1.2.4 Bounds on codes 31

1.3 Introduction to code-based cryptography 36
1.3.1 The McEliece scheme 36
1.3.2 Other code-based encryption schemes 40
1.3.3 Code-based signature schemes 41

16 Chapter 1. Introduction

1.1 Introduction to cryptography
1.1.1 Early days of cryptography
With the appearance of the first written documents emerged a new problem:
how to make sure that the information would be understandable only by the
intended recipients? For centuries, the language itself was a barrier, since only
a very small elite could read and write. In this sense, writing was already a
way to make information incomprehensible. But some cases appeared where
one wanted to restrict the information to a small group. The first known
attempts to hide written information is attributed by David Kahn [Kah67,
p. 71] to a scribe in Ancient Egypt (1900 BC) who replaced some hieroglyphs
by others. But it seems that this was intended to make the religious content
of the message more mysterious and intriguing rather than really secret. Still,
this is a first example of a secret code. Note that, here, secret code is used in its
common acceptation, a code meaning that some words are replaced by others
in a predefined manner to hide the meaning. In the rest of this work, the
word codewill have a different definition (the mathematical definition of an
error-correcting code).

The emergence of alphabetical languages allowed the use of the first ciphers,
in the sense that the alphabet is used as a mathematical object on which one
can apply transformations. The oldest example is the scytale, used in ancient
Greece [Kah67, p. 82]. The scytale consists in a wooden cylinder aroundwhich
one wraps a strip of parchment to write the message. One needs a cylinder of
the same diameter to decrypt. An enemy would have to guess the dimensions
of the cylinder. This operation exactly amounts to applying a transposition on
the letters of the message. Another well known example of primitive cipher is
attributed by Suetonius to Caesar [Sue21, 56]. In his private communications,
the Roman emperor replaced each letter by the letter three positions further in
the alphabet (A becomes D, B becomes E, etc.). Here, each letter is shifted by
three positions, but the shift could be any arbitrary number. The number of
shifts is the secret key of this very primitive substitution cipher.

These two examples of early ciphers were used in a military context. For
centuries long, the military usage has been the principal use of cryptography.
For this reason, the history of cryptography is often closely tied to the most
significant military events.

With the first cryptosystems came the first attacks on cryptosystems, also
known as cryptanalysis. Given the low security of the ciphers described above,
one was certainly able to break them by exhaustively trying all the keys (there
are 26 possible keys in the case of Caesar’s cipher). But the first known system-
atic approach to break a cipher is due to the Arab scientist Al-Kindi. Al-Kindi
was a philosopher, mathematician and physician living in Bagdad in the 9th

1.1. Introduction to cryptography 17

century. In his book Manuscript on Deciphering Cryptographic Messages [Kin09],
he describes the frequency analysis method to find the key of a text encrypted
using Ceasar’s cipher. This approach combines mathematics and the use of
the structural properties of language to break the cryptosystem faster than
with an exhaustive search.

Over the years, new cryptosystems were proposed, such as the popular
Vigenère cipher, which can be seen as a generalisation of Ceasar’s cipher.
Scientists dedicated time and energy to try to break them [Kah67; Sin00]. It is
interesting to note that one of the most prominent of them, the British scientist
Charles Babbage, realised in the 19th century that it could be useful to automate
most computations, hence giving birth to the concept of computers. Indeed,
the security of cryptosystems depends on the ability of the enemy to perform
quickly a large number of computations. In this sense, it is not surprising that
the concept of computers first appeared as a tool for cryptanalysis.

This “classical” way of manually designing and applying cryptosystems
continued until World War II, with interesting examples using transpositions
and substitutions, such as the Playfair cryptosystem or the ADFGVX cryptosys-
tem [Sin00]. The well-known Enigma machine, used by the German army
during World War II, was the first large-scale use of an electro-mecanic device
to perform the encryption and decryption operations. This opened the way
for new family of cryptosystems, using more complex operations and a much
larger key space. The role of Turing’s cryptanalysis of Enigma in the outcome
of the conflict proved the crucial need of a rigorous scientific approach in the
design of cryptosystems and the study of their security.

1.1.2 Theorisation of cryptography
In the 19th century, the invention of the telegraph induced a radical change in
the way messages are convoyed. This transformed the nature of the problem.
Instead of having to ensure the security of a private conversation between two
persons, one now had to think of cryptography as a way to ensure the privacy
of all possible messages that could potentially be exchanged between two
individuals using the telegraphic network. Moreover, before being transmitted,
the messages are now encoded (whether using Morse code, Baudot code or,
later, bit encoding). This new definition of cryptography required a more
systematic, hence more abstract approach of the problem [Dur14].

Kerckhoffs’ principle. The first step towards theorisation of cryptography
is often attributed to the Dutch cryptographer August Kerckhoffs. In his essay
La Cryptographie Militaire, ou, Des chiffres usités en temps de guerre, he lists some
fundamental principles to design cryptosystems. Themost famous one, known
as Kerckhoffs’s principle, states that the security of the system should not rely

18 Chapter 1. Introduction

on the hypothesis that the enemy ignores how the cryptosystem works [Ker83,
p. 8]. Kerckhoffs design principle comes as a response to the military usage
of cryptography. With Kerckhoffs’ approach, the enemy may well capture a
soldier and learn how the cryptosystemworks. As the security relies in a small
secret (the key) and not in the whole description of the system, if the key is
compromised, one only needs to use another key, and not change the whole
cryptosystem as it was the case before.

In his article Communication Theory of Secrecy Systems published in 1949
[Sha49] (though a classified version had already been published in 1945),
Shannon explicitly expresses the need of abstraction. “As a first step in the
mathematical analysis of cryptography, it is necessary to idealize the situation suitably,
and to define in a mathematically acceptable way what we shall mean by a secrecy sys-
tem.” Influenced by his recent work on information theory [Sha48], Shannon
considers the plaintext as a sequence of symbols, regardless of their mean-
ing. Shannon reasserts Kerckhoff’s principle and makes a strong distinction
between steganography, which consists in concealing a message (using invis-
ible ink or any method where the enemy does not know that the message
exist), and cryptography, which he defines as “‘true’ secrecy systems where the
meaning of the message is concealed by cipher, code etc., although its existence is not
hidden”. Shannon insists that contrary to steganography, cryptography is a
technological problem.

One-time pad. In 1882, Miller proposed a cryptosystem corresponding to
Ceasar’s cipher but where one would change the shift number for each letter.
Miller’s definition included some warning when choosing the predefined list
of numbers that would be used to shift each letter [Mil82]. “The differences
between such numbers must not be regular. When a shift-number has been applied, or
used, it must be erased from the list and not used again.”

Miller’s cipher was later rediscovered and patented by Vernam in 1919
and is better known as Vernam’s cipher, or the one-time pad. This cipher is not
very convenient, since it requires a secret key that is as long as the message
itself. But Shannon proved that, for this cryptosystem, it is (mathematically)
impossible to recover the message without knowing the public key [Sha49].
In modern terms, this system is perfectly, or information-theoretically secure.
Moreover, Shannon proved that this property is only achievable if the key is at
least as long as the message.

1.1.3 Modern cryptography
Computational security. While the general idea of cryptography is that it
should be impossible to decrypt the ciphertext without the secret key, the one-
time pad solution is not fit for practical usage (apart very special cases like

1.1. Introduction to cryptography 19

the Moscow–Washington hotline during the Cold War). Therefore, Shannon
introduced the weaker notion of computational security (or practical secrecy in
his own terms [Sha49]). Following his work, instead of designing systems
where it would be impossible (in the sense of information theory) to decrypt
without the secret key, modern cryptography (only) requires that attacking
the cryptosystem is computationally hard. This means that one can design an
algorithm to decrypt without the secret key, but this algorithm has exponential
complexity and it requires a number of operations that is impossible to achieve,
even with access to a lot of resources (think of a national intelligence agency)
and a lot of time (hundreds of years).

In practice, the minimal attack cost (measured in number of operations)
required to consider that a cryptosystem is secure evolves in time and depends
of the threat model. One used to consider that 280 operations is unreachable,
but now the standard is 2128, or even 2256 for a more conservative approach.
The exponent is called the security level, or number of security bits. This can
be thought as a parameter of a cryptosystem: the cryptosystem should be
available in different sizes to match different security levels.

Hard problems. Modern-days cryptography relies on the notion of hard
problem. This idea can again be attributed to Shannon: “We may construct our
cipher in such a way that breaking it is equivalent to (or requires at some point in
the process) the solution of some problem known to be laborious” [Sha49, p. 704].
The idea is that instead of considering the algorithmic description of the
cryptosystem as a whole, and asking if it is secure as a whole, it is easier
to narrow down the critical part. The principle of a security reduction is to
say that if an enemy is able to (efficiently) decrypt a message without the secret
key, then this person is able to (efficiently) solve the problem P, where P is a well-
defined mathematical problem, unanimously regarded as hard to solve by
the community of mathematicians and computer scientists. By this manner,
we can design a large portfolio of cryptographic primitives (fitting different
needs) relying on a very small number of mathematical problems. A strong
attention is given to these problems, to make sure that they are indeed hard to
solve.

Key distribution and secret sharing. In the 1960s, banks and companies
started using computers. They needed to encrypt data to securely commu-
nicate between them. But cryptosystems required that the two parties had
previously agreed on the value of a shared secret key. This key could not be
transmitted using an insecure channel, hence it had to be convoyed physically
by a trusted person. And one had to use a different key for each interlocutor.
Hence, when the number of businesses using cryptography grew, the number

20 Chapter 1. Introduction

of keys to securely distribute grew quadratically. This key distribution pro-
cedure had a cost, and it soon became the main limitation of the civil use of
cryptography.

In 1976, Diffie and Hellman (with the help of Merkle) proposed a new
protocol to resolve this issue. They proved the following counter-intuitive
result: two persons can agree on a shared secret within an entirely public
discussion [DH76a]. With this scheme, people did not have to physically meet
anymore to agree on a secret key. This drastically reduced the cost of key
distribution. Today, the Diffie–Hellman secret sharing scheme is still widely
used between computers and servers to agree on a secret key.

Public key cryptography. One remaining issue was that, before sending a
private information to someone, one had to enter a (public) discussion to
agree on a secret key. One could not just straightforwardly send encrypted
data to a recipients without running the secret sharing procedure first. In
another article, Diffie and Hellman imagined a way to overcome this [DH76b].
In previous cryptosystems, the secret key used to encrypt and to decrypt is
the same. Diffie and Hellman proposed a family of cryptosystems where the
encryption key is different from the decryption key. Hence, the encryption
key can be made public (and is therefore called the public key). Of course,
the decryption key should remain secret (and is called the secret key). In this
setting, each person has a public key, associated with a secret key. Anyone
willing to securely communicate with this person can use the public key to
encrypt messages and send them. Only the owner of the secret key can decrypt.
This is known as asymetric or public-key cryptography.

However, Diffie and Hellman’s proposal was relying on the existence of
a trapdoor one-way function, i.e. a function that is easy to compute in one
direction and difficult to inverse, unless one knows a secret information (the
trapdoor). But they could not find any example of a functionwith this property.
In 1978, Rivest, Shamir and Adleman proposed to use exponentiation modulo
a product of large prime numbers to instantiate the trapdoor function [RSA78].
This became the famous RSA cryptosystem, which is still widely used today.

The GCHQ later revealed that similar ideas had been published by British
military cryptographers [Sin00, p. 279]. The principle of public-key cryptogra-
phy was discovered by Ellis in 1969. Cocks proposed a cryptosystem similar
to RSA in 1973. Finally, Williamson proposed a secret-sharing scheme in 1975.
This information remained classified until 1997.

Standardisation. With the key distribution problem solved, any two individ-
uals could suddenly communicate securely using any communication channel.
Still, they need to use the same encryption method. Moreover, people who

1.1. Introduction to cryptography 21

are not experts in cryptography need advice to decide which cryptosystem
they can safely use. For these reasons, it was decided that some cryptosystem
would become standards. This is all the more important since, nowadays,
cryptography does not only cover human to human interactions but the whole
network of computers and servers constantly exchanging information over the
internet. This could not be possible without common standards.

In 1975, America’s National Bureau of Standard announced the standardis-
ation of a first cryptosystem, known as the Data Encryption Standard (or DES).
This symmetric cryptosystem was soon used by most businesses. But criticism
from the academic community appeared, regarding the NSA’s involvement
in the design choice. Indeed, the choice of a standard is a sensitive issue, and
some actors may be tempted to influence the decision towards a cryptosystem
that they know how to break. For this reason, and to prevent suspicion, the
recent standardisation procedures strongly involve the international academic
community.

When DES became obsolete, America’s National Institute of Standards
and Technologies (NIST) announced in 1997 that it would organise an open
competition to decide of its successor. Researchers were asked to submit
different cryptosystems. After two rounds of competition, the new standard
(AES) was announced in 2001. Another similar competition was organised
by the NIST to standardise SHA3 in 2007. Recently, the NIST launched two
standardisation procedures, one for post-quantum cryptography in 2016 and
one for light-weight cryptography in 2018. Both are still ongoing.

Since the AES standardisation process, the academic community of cryp-
tographers plays a key role in proposing and auditing cryptosystems for stan-
dardisation. Still, in 2013, Snowden revealed the existence of a backdoor in a
pseudorandom number generator (Dual EC DRBG) standardised by the NIST
and other international organisations. This proves that the transparency of
the standardisation process is not enough to ensure the absence of external
influence in the decision. Cryptographers should remain particularly careful
that the decisions are only motivated by the will to offer the best possible
security.

1.1.4 New trends in cryptography
Today, cryptography is widely used to ensure the confidentiality of communica-
tions, i.e.preventing an adversary to have access to the content of a message.
But with the digitalisation of communication came two new classes of prob-
lems for cryptography to solve: authenticity and integrity. Authenticity is making
sure that a message was issued by the right person. If a banker receives a
transfer request, he needs to know that it was indeed issued by the account
owner. The cryptographic primitives to solve this problem are called digital

22 Chapter 1. Introduction

signatures. Integrity is making sure that the data was not altered during the
transmission and that the file that is received corresponds exactly to the file
that was sent. Hash functions can be used to detect if someone has tempered
with a message.

1.1.4.1 New challenges

The development of internet in the 21st century gave birth to plenty of new
applications of computer science, each with specific constraints. Cryptogra-
phy has to adapt to ensure confidentiality, authenticity and integrity in all
contexts. Here is a short and non-exhaustive list of challenges that 21st century
cryptography has to face.

Light-weight cryptography. Microprocessors are now everywhere: whether
in access badges or connected objects. These objects require cryptographic
algorithms to run on very small circuits with limited energy consumption.
Think of a pacemaker: it should achieve the highest security level, but one
cannot expect to change the batteries every week. Therefore, cryptographers
have to come upwith specially designed primitives to use theminimal possible
amount of resources. This is called light-weight cryptography.

Privacy-preserving computation. The amount of data gathered by comput-
ers grows exponentially. Exploiting these data can yield tremendous results,
for instance for biomedical research. But this should not be achieved at the
cost of a loss of confidentiality. For this reason, cryptographers came up with
the concept of homomorphic encryption, which is an idealised solution to this
problem. The basic concept is that one should be able to collect encrypted data
from different sources, perform a computation with the encrypted data, and
only decrypt the result of the computation, without ever having access to the
input. In practice, this property is difficult to achievewith reasonable efficiency,
but research in the last decade made a lot of progress in this direction.

Multiparty computation. Nowadays, most of our communications involve
multiple users and the collaborations are not necessarily bilateral. Therefore,
one has to design cryptosystem involving multiple users, such that the system
remains secure even if some of these users are malicious. In this paradigm,
the enemy is not external but is part of the legitimate users of the system. This
field is known as secure multiparty computation.

Quantum computers. Finally, the potential existence of (large and reliable)
quantum computers in a few decades impacts the field of cryptography. On

1.1. Introduction to cryptography 23

one hand, properties of quantum physics (such as the no-cloning theorem)
could be used to design cryptosystem with properties that can not be achieved
by classical systems. Quantum key distribution could provide a solution to the
key distribution problem that is information-theoretically secure. On the other
hand, the novel properties of quantum computing could be used to attack
the classical cryptosystems. Therefore, cryptographers have to come up with
cryptosystems (for classical computers) that remain secure, even if the enemy
has access to a quantum computer. This particular issue is developed in the
next section.

1.1.4.2 Post-quantum cryptography

Today, asymetric cryptography is widely used and relies on the hardness of two
mathematical problems: the discrete logarithm problem (for Diffie–Hellman
secret sharing scheme [DH76a]) and the factorization of a product of two large
prime numbers (for RSA [RSA78]). These two problems come from number
theory and can be seen as particular instances of a larger problem, known as
the hidden subgroup problem [Joz01].

In an article published in 1994, Shor proved that a quantum computer
could solve this problem in polynomial time [Sho94]. This means that if an
enemy one manages to build a (large and reliable) quantum computer, one
can break Diffie-Hellman and RSA. This is a huge threat for cryptography.
Fortunately, such large quantum computers do not exist. But in the last decade,
several companies (Google, Microsoft, IBM, etc.) launched important research
programs to develop quantum computers, while academic research keeps
making progress. There is no certainty regarding the fact that large quantum
computers will ever reach a state where they can be used to break RSA, but
it this were to happen, it would have tremendous consequences. Today, re-
searchers argue that there is a possibility that this would happen within the
next decades. Even if the probability is small, the risk is too high not to be
taken into account.

Moreover, there are two other factors to have in mind. First, the complexity
of classical (non-quantum) algorithms to solve the factorisation problem has
been improved in the last decade. Hence, independently of the quantum
threat, it is important to have cryptosystems relying on different mathematical
problems and not only factorisation. Secondly, one has to take into account
the time scale. If a secret communication is encrypted at time T0 and should
remain secret for a period δ, then one has to make sure that no technology is
able to break the encryption before T0 +δ. Otherwise, an enemy can record the
communication at time T0 and decrypt it later using modern technology. For
some applications, δ is equal to twenty or even fifty years. Hence it is crucial
to anticipate potential future improvements of cryptanalysis. This is all the

24 Chapter 1. Introduction

more important since deciding of new standards and deploying them takes at
least ten years.

For all these reasons, the NIST announced in 2017 its decision to launch a
process to standardise public-key cryptosystems that resist quantum attacks.
The NIST issued a call for proposals and researchers were invited to submit
their ideas. The NIST received 82 submissions, 64 were accepted to compete
in the first round: 19 signature schemes and 45 encryption schemes (and key
encapsulation schemes) [Moo19].

We can identify five families of hard problems onwhichmost post-quantum
schemes submitted at the NIST rely [BBD09].

Lattice Code Multivariate Other
Round 1 [2017] 21 17 2 5
Round 2 [2019] 9 7 0 1
Round 3 [2020] (finalists) 3 1 0 0
Round 3 [2020] (alternate) 2 2 0 1

Figure 1.1: Number of candidates (encryption and key encapsulation schemes)
in the different rounds of the NIST standardisation process [Moo19; Moo20].
Starting from round 2, the only remaining scheme in the “other” category is
the SIKE scheme based on isogenies)

Code-based cryptography. Code-based cryptography is the oldest alternative
to number-theoretic encryption schemes. Indeed, in 1978, the year of
publication of the RSA cryptosystem, Robert McEliece proposed another
hard problemwhich could be used to build a one-way trapdoor function,
and hence a public key cryptosystem [McE78]. His idea came from
the field of information theory, and more specifically error correction.
McEliece was designing codes, where redundant information was added
to the message so that potential errors due to the transmission could
be corrected. He remarked that correcting errors in a random code was
particularly hard, and that this could be used as a hard problem to design
cryptographic schemes. Still, his proposition suffered from a serious
drawback: the size of the public key. Indeed, McEliece’s cryptosystem
requires a public key of a few millions of bits, whereas the RSA key is
only of thousands of bits long. This is probably why it did not receive a
lot of attention at the time.

Lattice-based cryptography. A lattice is a discrete subgroup of Rn. These
objects have many interesting properties and several hard problems can
be derived from them. For instance, the shortest vector problem: given

1.2. Introduction to coding theory 25

a basis of a lattice Λ, what is the smallest vector of Λ? Or the closest
vector problem: given a point x ∈ Rn and a basis of lattice Λ, which
point of Λ is the closest to x? One of the first cryptosystems based of
lattice problems is the NTRU cryptosystem, proposed in 1998 [HPS98].

Hash-based cryptography. Hash-based cryptography is based on the hard-
ness of inverting hash functions. This branch is limited to signature
schemes. The seminal idea is due to Lamport [Lam79] and was later
extended using hash-tree by Merkle [Mer87].

Multivariate cryptography. Multivariate cryptography is based on the diffi-
culty of solving a system of multivariate (often quadratic) polynomial
equations over a finite field. The first multivariate signature scheme was
introduced by Matsumoto and Imai [MI88] and generalised by Patarin
[Pat96].

Isogeny-based cryptography. This is the most recent family of cryptosystems.
It relies on the hardness of finding isogenies between elliptic curves
[JD11].

In this work, our attention will be focused on code-based public-key en-
cryption schemes. Before considering the code-based cryptosystems, let us
introduce the definition and main properties of error-correcting codes.

1.2 Introduction to coding theory
In his landmark article A Mathematical Theory of Communication, Shannon
describes the fundamental problem of communication as “reproducing at one
point either exactly or approximately a message selected at another point” [Sha48].
The problem is that, whatever the communication channel, the message may
be altered in the transmission. The notion of noise describes the difference
between what is sent and what is received. A typical situation is a noisy radio
channel: to spell aword, one tends to use theNATOphonetic alphabet: “Alpha”
for “A”, “Bravo” for “B”, “Charlie” for “C” etc. This is all the more useful when
the message has no particular meaning (eg. a flight number, a license plate,
etc.) so the semantic cannot be used to correct the noise.

More abstractly, the principle is the following: instead of directly transmit-
ting the message (say, a flight number), the sender encodes the message using
a predefined code (here the NATO phonetic alphabet). This adds redundancy
to the message. This encoded message is sent over the channel (here, radio)
and some noise is added, which alters the message. The receiver interprets
the received message and decodes it to obtain something as close as possible in

26 Chapter 1. Introduction

the list of possible codewords. For instance, if the received message sounds
like “Novemba, Mango, Biskey”, the original message was likely “November,
Tango, Whiskey”, and will therefore be decoded as “NTW”.

Sender Encoding Decoding Receiverm c c + e m′
A,B,C

Alpha, Bravo,
Charlie

Arpha, Kravo,
Chablie A,B,C

Noise

e

Channel

Figure 1.2: Channel coding

Of course, if the noise is too high and the communication channels com-
pletely changes the information, the original message can not be retrieved.
The goal of error-correction is to design codes such that, if the error noise e is
small enough (for some precise definition of small to be determined), we have a
guarantee that m = m′.

Let us introduce definitions to formalise this concept.

1.2.1 Error-correcting codes
Definition. A code of length n over Fq is a subset of Fn

q . This subset can be
represented by an exhaustive list of all codewords. But this representation is
not very convenient. Hence, we will restrict our attention to linear codes.

Definition 1.1 (Linear codes). An [n, k]-linear code (or [n, k]-code) C over Fq

is a linear subspace of Fn
q of dimension k.

The parameter n is called the length of the code and k is its dimension. Note
that necessarily k 6 n.

The information rate of the code corresponds to the average number of
bits necessary to encode one bit of information of the message. It measures
expansion induced by the code.

Definition 1.2 (Information rate). The information rate of an [n, k]-code C is
defined as the ratio between the dimension and the length

R
def= k/n.

Representation. A linear code can be represented by a basis of codewords.
A basis of codewords (represented in rows) defines a generator matrix of the
code.

1.2. Introduction to coding theory 27

Definition 1.3 (Generator matrix). Amatrix G ∈ Fk×n
q is a generator matrix

of the [n, k]-linear code C if its rowspan is C , that is if

C =
{

xG |x ∈ Fk
q

}
.

Equivalently, a code can be defined as the kernel of a linear application. A
matrix of this application is called a parity-check matrix of the code.

Definition 1.4 (Parity-checkmatrix). Amatrix H ∈ F(n−k)×n
q is a parity-check

matrix of the [n, k]-linear code C if C is the kernel of H , that is if

C =
{

y ∈ Fn
q |Hyᵀ = 0kᵀ

}
.

Note that a code can be represented by different generator or parity-check
matrices. Two generator (or parity-check) matrices are said to be equivalent if
they represent the same code. The generator (resp. parity-check) matrix of a
code is unique up to left multiplication by a k × k (resp. an (n− k)× (n− k))
invertible matrix over Fq.

Performing a Gaussian elimination on amatrix amounts to left-multiplying
it by a non-singular matrix. Hence, any code admits a unique generator matrix
such that the left k × k sub-matrix corresponds to the identity. This generator
matrix is said to be in systematic form. Same thing applies to parity-check
matrices.

Duality. We can define the dual of a code.

Definition 1.5. The dual of a code C ⊆ Fn
q , denoted Dual(C) is the set of all

vectors of Fn
q that are orthogonal to all the codewords of C .

y ∈ Dual(C) ⇐⇒ ∀x ∈ C ,xyᵀ = 0 ∈ Fn
q .

If C is an [n, k]-code then Dual(C) is an [n, n− k]-code.

Proposition 1.6. Let G and H be a generator matrix and a parity-check of C respec-
tively. Then G is a parity-check matrix of Dual(C) and H is a generator matrix of
Dual(C).

Hamming metric. In this work, we will mainly focus on codes defined using
the Hamming metric.

Definition 1.7 (Support). Let x = (x1, . . . , xn) ∈ Fn
q . The support of x, de-

noted Support(x), is the set of non-zero indices of x.

Support(x) def= {i ∈ J1, nK, xi 6= 0}.

28 Chapter 1. Introduction

Definition 1.8 (Hamming weight). The Hamming weight wH(x) of a vector
x ∈ Fn

q is the size of its support, i.e. the number of its non-zero components.

wH(x) def= |Support(x)|.

The Hamming distance between two vectors is the weight of their differ-
ence.
Definition 1.9 (Hammingdistance). TheHammingdistance dH(x,y) between
two vector x and y ∈ Fn

q is defined as

dH(x,y) def= wH(y − x).

This distance is natural in this context, since it corresponds to the minimal
number of symbols that one has to change to transform the vector x in the
vector y.
Remark 1.10. There exist other metrics that can be used to define error-correcting
codes, especially the rank metric. Most definition can be adapted straightforwardly
from Hamming metric to rank metric. Rank-metric codes play an important role in
code-based cryptography. An example of rank-metric code-based scheme is introduced
in Chapter 4.

An important characteristic of a code is the minimal distance between two
codewords.
Definition 1.11 (Minimal distance). The minimal distance of a code C is
defined as

d
def= min {dH(x,y) |x,y ∈ C ,x 6= y} .

If C is a linear code, then

d = min {wH(c) | c ∈ C , c 6= 0} .

A linear code of length n, dimension k and minimal distance d is called an
[n, k, d]-code.

The minimal distance measures the (theoretical) error-correction capacity
of a linear code. Indeed, let t = b(d − 1)/2c, the balls of radius t centered
on codewords are all disjoint. Hence, any vector of Fn

q at distance at most
t of a codeword has a unique closest codeword. In other words, if an error
of Hamming weight at most t is added to a codeword, one can recover the
original message by finding the closest codeword. This formalises the property
that was expected at the end of the introductory section. Note that this is a
purely theoretic result since it does not provide an efficient way to find the
closest codeword.

1.2. Introduction to coding theory 29

1.2.2 Encoding, decoding
Encoding consists in mapping each vector of Fk

q to a codeword.

Definition 1.12 (Encoder). Let C be an [n, k]-code and G a generator matrix
of C .

Enc :
{

Fk
q −→ C ⊆ Fn

q

x 7−→ xG

is an encoder of C .

Definition 1.13 (Decoder). Let C be an [n, k]-code. A decoder for C is a
function Dec : Fn

q → C ∪ {⊥} such that

∀c ∈ C , Dec(c) = c.

The symbol ⊥ here denotes the fact that the decoding may fail to return
a codeword. It should be interpreted as “I do not know how to decode this
vector”. Sometimes it is useful to know that the decoder failed.

This definition of a decoder is not very interesting. For a decoder to be
useful, it has to respect some properties.

Definition 1.14. Let C be an [n, k]-code and Dec be a decoder of C . Let t be
an integer. We say that Dec is a t-bounded decoder (or that Dec can correct up
to t errors in C) if

∀c ∈ C ,∀y ∈ Fn
q , dH(c,y) 6 t =⇒ Dec(y) = c,

or equivalently

∀c ∈ C ,∀e ∈ Fn
q , wH(e) 6 t =⇒ Dec(c + e) = c.

Note that, formally (to be used as in Figure 1.2), the decoder should not
return a codeword c ∈ C but the element x ∈ Fk

q such that c = xG. But
for our later use of error-correcting codes in the context of cryptography, we
prefer to stick to this definition (which corresponds to a corrector rather than a
decoder properly speaking). Anyway, the interesting part of the decoding lies
in the error-correction. Once the codeword is obtained, it is easy to invert the
encoding.

Another notion that is very useful when considering the decoding of a
code is that of syndrome. Given the parity-check matrix H of a code C , by
definition, a vector c belongs to C if and only if Hcᵀ = 0n−kᵀ. Hence, let y be a
vector of Fn

q such that y = c+e with c ∈ C . Then, Hyᵀ = Hcᵀ+Heᵀ = Heᵀ.
This quantity is called the syndrome.

30 Chapter 1. Introduction

Definition 1.15 (Syndrome). The syndrome s ∈ Fn−k
q of a vector e ∈ Fn

q is
sᵀ = Heᵀ.

Given a noisy codeword y ∈ C of syndrome s ∈ Fn−k
q , the set of vectors

that have the same syndrome as y are exactly the cosets y + C and form a
partition of Fn

q . Hence, we can define a decoder that takes as input a syndrome
(instead of a noisy codeword) and returns the associated error.
Definition 1.16 (Syndrome decoder). Let C be an [n, k]-code and t an integer.
A t-bounded syndrome-decoder for C is a function SynDec : Fn−k

q → Fn
q such

that
∀e ∈ Fn

q , wH(e) 6 t =⇒ SynDec(Heᵀ) = e.

The two kinds of decoders are equivalent.
Proposition 1.17. A t-bounded decoder and a t-bounded syndrome decoder are
equivalent.
Proof. Let C be a code and H a parity-check matrix of C .

• Given a t-bounded syndrome decoder SynDec of C , let us construct a
t-bounded decoder. Let y ∈ Fn

q be a noisy codeword. Suppose that there
is c ∈ C and e ∈ Fn

q of weight wH(e) 6 t such that y = c + e. We want
to find c. First we compute the syndrome s such that Hyᵀ = sᵀ. Hence
SynDec(s) returns e and y − e yields c.

• Given a t-bounded decoder Dec of C , let us construct a t-bounded syn-
drome decoder. Let s ∈ Fn−k

q be a syndrome. Suppose that there is an
element e ∈ Fn

q of weight wH(e) 6 t such that Hevᵀ = sᵀ. We want to
find e. We can first consider any element y ∈ Fn

q such that Hyᵀ = sᵀ

(which is easily achievable using basic linear algebra). y and e have the
same syndrome, hence there exists c ∈ C such that y = c + e. Hence,
y −Dec(y) = e.

1.2.3 Decoding problems
Decoding a noisy codeword (that is, a codeword to which an error has been
added) is in general not an easy task. We can define the problem as follows.
Problem 1.18 (General Decoding Problem - GD(q,R,W)).

Instance: G ∈ Fk×n
q of full rank,

y ∈ Fn
q .

Output: c, e ∈ Fn
q such that y = c + e, c ∈ C and wH(e) = w,

where k def= dRne and w def= dWne.

1.2. Introduction to coding theory 31

Here, C denotes the code generated by the matrix G. An instance of the
problem consists of randomly choosing G and y. A solution to the prob-
lem does not necessarily exist. A decisional version of the problem consists
in deciding whether such a solution exists, without explicitly outputing a
solution.

Equivalently, we can define the syndrome decoding problem.

Problem 1.19 (Syndrome Decoding - SD(q,R,W)).
Instance: H ∈ F(n−k)×n

q of full rank,
s ∈ Fn−k

q (usually called the syndrome).
Output: e ∈ Fn

q such that wH(e) = w and Heᵀ = sᵀ,
where k def= dRne and w def= dWne.

Again, the two problems are equivalent, because of Proposition 1.17.
In an article published in 1978, Berlekamp, Massey and van Tilborg proved

that for almost every code, the syndrome decoding problem is NP-hard and
the decisional version of the problem is NP-complete [BMT78].

This result shows that the problem is hard in the worst case. However, the
syndrome decoding problem is also believed to be hard in the average case.
In [Ale03], Alekhnovich conjectured that decoding even an error of weight
w = nε in a code of length n is hard on average for any ε > 0.

The best algorithms designed to solve the syndrome decoding problem
are called information set decoding algorithms. Their complexity is exponential
in time. These algorithms are details in Chapter 8.

Because decoding is a difficult problem for a random code, the whole point
of coding theory is to design special families of codes for which there exist
efficient decoding algorithms up to some distance. For instance, there exists
families of codes for which one can decode O (n) errors in polynomial time.

In such a case, the decoding algorithm exploits the special structure of the
code. Here, we see the pattern of a problem which is difficult in general but
becomes hard for some particular instances. The structure of these particular
codes, necessary to decode efficiently, can be kept secret and serve as a trapdoor.
Hence, the decoding problem can be used as a one way trapdoor function to
create cryptographic primitives. This will be detailed in Section 1.3.

1.2.4 Bounds on codes
We have seen that we can encode a message of Fk

q in a codeword of Fn
q such

that we can correct errors on up to t positions of the vector. Hence there are
two parameters that we want to optimise. First, we do not want the encoded
message to be too long compared to the original message. This corresponds to

32 Chapter 1. Introduction

the rate R def= k/nwhich should remain as close as possible to 1. But we also
want to be able to correct as many errors as possible. We know that we can
decode unambiguously at most t 6 b(d− 1)/2c errors, where d is the minimal
distance of the code. Hence, let D def= d/n, we also want D to be as close as
possible to 1. In this case, we could theoretically correct errors on up to half of
the positions. In information theory, the communication channel is modeled
as a binary symmetric channel, which means that it adds errors independently
on each position of the vector with probability p. Hence, if D → 1 it means
that we can correctly decode almost all messages as soon as p < 1/2.

On one hand, we can easily build a family of codes such that R→ 0 and
D → 1. Think of the repetition code of dimension 1 and length n, where
0 is encoded in 0n and 1 is encoded in 1n. In this case, decoding amounts
to a majority vote on the bits. On the other hand, the parity-check code of
dimension n− 1 and length n (i.e. adding a bit at the end of each vector such
that the sum of all bits is even) yieldsR→ 1 butD → 0. But can we get bothR
andD close to 1? Intuitively, these goals are opposite, since it is the redundancy
of information that enables the correction. Coding theory is about finding
“good” codes, i.e. codes which attain a good trade-off between their rate and
their decoding radius. But not all combinations of R and D are reachable.
Here are some constrains on these parameters.

Entropy. To state asymptotic results, we need to introduce the notion of
entropy, which is central in information theory. This notion will be useful to
study the asymptotic complexity of generic decoding algorithms. Entropy is
defined as follows.

Definition 1.20 (Entropy function). The q-ary entropy function is defined as

hq

{
[0, 1] → R
x 7→ x logq(q − 1)− x logq x− (1− x) logq(1− x).

The Singleton bound. The simplest bound is knows as the Singleton bound.

Theorem 1.21 (Singleton bound). Let C be an [n, k, d]-code over Fq, then

k + d 6 n+ 1.

Proof. An algorithmic approach to this result is to think of it as a consequence
of Gaussian elimination. Indeed, consider G ∈ Fk×n

q a full-rank generator
matrix of the code C . All rows of G are codewords. We can apply a Gaussian
elimination to G to put it in row echelon form. The operations are just linear
operations on the rows so the new matrix is still a generator matrix of C . The

1.2. Introduction to coding theory 33

newmatrix is in systematic form, and hence the first row (which is a codeword)
has weight 6 n− k + 1.

A codes that reaches the Singleton bound is called a maximum distance
separable (MDS) code. Wewill see in Chapter 5 that generalised Reed–Solomon
codes are MDS codes.

We can easily extend the singleton bound to obtain an asymptotic result.

Corollary 1.22 (Asymptotic Singleton bound). Given a family of [ni, ki, di]-codes
of increasing size (ni →∞) and such that ki/ni → R and di/ni → D, we have

R+D 6 1.

The Hamming bound. The Hamming bound, or sphere-packing bound, is a
tighter upper bound on theminimumdistance given the length and dimension
of a code [Ham50]. It derives from the fact that the balls for which we can
decode unanbiguously to a given codeword are disjoint.

Theorem 1.23 (Hamming bound). Let C be an [n, k, d]-code over Fq. Then

t∑
i=0

(
n

i

)
(q − 1)i 6 qn−k,

where t = b(d− 1)/2c.

Proof. If the minimal distance of C is d, then, by triangular inequality, the balls
of radius t and centered in each codewords are disjoint. There are qk such
balls, each of volume

t∑
i=0

(
n

i

)
(q − 1)i.

The sum of these disjoint balls is contained in Fn
q , which is of size qn.

From this bound, we can derive the following asymptotic result [Cou20,
Lemma 4.5].

Corollary 1.24 (Asymptotic Hamming bound). Given a family of [ni, ki, di]-
codes of increasing size (ni → ∞) and such that ki/ni → R and di/ni → D, we
have

R 6 1− hq
(
D

2

)
.

34 Chapter 1. Introduction

The Gilbert-Varshamov bound. We have introduced two upper bounds on
d (for fixed n and k). We now state a lower bound: the Gilbert-Varshamov
bound [Gil52; Var57].

Theorem 1.25 (Gilbert-Varshamov bound). Let q, n, d be integers such that 2 6
d 6 n. Then, there exists a code C ⊆ Fn

q of length n and minimum distance d such
that

|C |
d−1∑
i=0

(
n

i

)
(q − 1)i > qn.

Proof. Among the codes of length n and minimal distance d over Fq, let C
have the maximal number of codewords. Consider all the balls of radius d− 1
and centered in the codewords of C . These balls must cover the whole space
Fn
q . Indeed, suppose that there exists one element x ∈ Fn

q that does not belong
to any of these balls, this element is at distance at least d of each codeword of
C and hence the code C ′

def= C ∪ {x} is also a code of length n and minimal
distance d. But then |C ′| > |C |, which contradicts the hypothesis on C .

This result can be extended to prove that there always exist a linear code
verifying this bound, using a counting argument on the number of generator
matrices [Dem97, Proposition 8.9].

Again, we can derive an asymptotic result [Cou20, Theorem 4.10].

Corollary 1.26 (Asymptotic Gilbert-Varshamov bound). There exists a sequence
of [ni, ki, di]-codes over Fq of increasing size (ni → ∞) and such that ki/ni → R
and di/ni → D, and such that

R > 1− hq (D) .

An important result (which is particularly useful for code-based cryptog-
raphy) is that, with high probability, the minimal distance of a random code
is close to the Gilbert-Varshamov bound. This results is formally stated as
follows [Cou20, Theorem 4.11].

Theorem 1.27. For 0 < D < 1 − 1
q , let ε > 0 and let C be a random code of

dimension k < (1− hq(D)− ε)n. Then, let d denote the minimum distance of C ,

P [d > Dn] > 1− qεn.

Hence, for a fixed rate R, the typical value D such that the minimum
distance of a random code of rateR is almost always> D verifies hq(D) = 1−R.
This is called the relative Gilbert-Varshamov distance.

1.2. Introduction to coding theory 35

Shannon’s theorem. Finally, let us conclude by a fundamental theorem of
coding theory. This result, due to Shannon [Sha48], answers the following
question: which amount of redundancy (hence which rate) is necessary to
(almost always) correctly recover the message? Of course, this depends on
the properties of the channel (how often errors occur etc.). Shannon defines
the notion of capacity of the channel, which reflects the maximal rate of a code
able to correct almost all errors added by this channel.

Shannon’s result can be informally stated as follows. Given a channel that
transmits elements ofFq and adds an error independently on each symbolwith
probability p, one needs a minimal proportion of hq(p) redundant symbols to
(almost always) correct the errors, where hq denotes the q-ary entropy function.
Hence, for a message of k symbols, we need n > k + hq(p)n, i.e.R > 1− hq(p).
This yields the formula for the capacity of the channel: C def= 1− hq(p). Then,

1. for R < C, there always exists a code of rate R such that the probability
of a wrong decoding is exponentially small ;

2. for R > C, all codes of rate R yield a probability for a vector to be
incorrectly decoded of at least one half.

More formally, the theorem can be stated as follows (from [Cou20], Theo-
rem 3.9).
Theorem 1.28 (Shannon’s theorem). For all 0 < p < 1 − 1/q and all 0 < ε <

1− 1/q − p, let C def= 1− hq(p), the following statements holds.
1. There exists δ > 0 such that, for any large enough n, there exists a code C of

length n and rate R = C − ε a decoder Dec such that

Pfail [C ,Dec] < q−δn.

2. For all large enough n and all pairs (C ,Dec) where C is a code of length n and
rate R = C + ε, and Dec is a decoder,

Pfail [C ,Dec] > 1
2 .

Here, Pfail denotes the probability, over all codewords c ∈ C chosen uni-
formly at random and all errors e ∈ Fn

q chosen among a Bernoulli distribution
of parameter p, that Dec(c + e) 6= c, and hq denotes the q-ary entropy function
defined as

hq(p)
def= p logq(q − 1)− p logq p− (1− p) logq(1− p).

This result also holds for non-linear codes.

36 Chapter 1. Introduction

Note that Shannon’s theorem is a theoretic result and (concerning the first
statement) does not explain how to construct such codes and the associated
decoding algorithms. It does not even say that such decoders are efficient,
they may well have exponential time and space complexity. A part of coding
theory is dedicated to finding families of codes with rates as close as possible
to the channel capacity but with efficient decoders.

1.3 Introduction to code-based cryptography
1.3.1 The McEliece scheme
In 1978, McEliece was working on coding theory. He was designing special
families of codes for which there exists an efficient decoding algorithm. Af-
ter reading Diffie and Hellman’s work introducing public key cryptography
[DH76a], he proposed to use such special codes as a one-way function to
design public-key cryptographic schemes [McE78]. Let us first present his
idea in an abstract way (as it is done in [Cou19]).

1.3.1.1 McEliece’s idea

As we have seen, in general, given a random linear code, decoding in this
code is a hard problem. But for certain families of codes (having some special
property), there exists a decoding algorithm that makes use of this special
property to decode efficiently. Moreover, the fact that a code has this property
is not necessarily apparent. A generator matrix of such a code might well look
exactly like the generator matrix of any other linear code.

McEliece’s idea is to use this as a one way function. It uses a family of codes
F , for which there exists an efficient (i.e.polynomial) decoding algorithm Dec,
and a function to construct these codes. This function takes some input s and
yields a code C (s) ∈ F that has the expected special property. Here, s will
serve as a secret. Let us denote S the space of s. The idea is that

S −→ F
s 7−→ C (s)

is a one-way function, i.e. it is hard to find s given C (s). Moreover, the
important property is that Dec only works if s is known. Here, s serves as a
trapdoor. From this, we can design a cryptosystem in the following way.

Key generation.

- First, randomly pick a secret s ∈ S.

1.3. Introduction to code-based cryptography 37

- Compute the corresponding code C
def= C (s) an [n, k]-code.

- Use s as the secret key and (Gpub, t) as the public key, where Gpub is a
generator matrix of C and t is the maximal number of error that Dec can
decode in C .

Encryption.

- The message m ∈ Fk
q in encrypted as

y
def= mGpub + e ∈ Fn

q ,

where e is a random vector of Fn
q of weight t.

Decryption.

- First correct the errors using the decoding algorithm: x
def= Dec(s,y) ∈ C .

- Then recover m ∈ Fk
q such that mG = x using linear algebra.

In his article [McE78], McEliece did not present the scheme for an abstract
family of codes F but for a particular instance. His idea was to use the family
of Goppa codes, which are known to have an efficient decoding algorithm.
Following his work, many proposals were made to replace Goppa codes with
other kinds of codes. All these proposals follow the same steps as McEliece,
just changing the family of codes (and the associated function to construct a
code from a secret input). Hence, they can all be generalised by presenting the
scheme in this way. All these cryptosystems are said to follow the McEliece
scheme.

1.3.1.2 The Niederreiter variant
Niederreiter proposed a variant of McEliece’s scheme in [Nie86]. The idea
stays the same: the ciphertext is a noisy codeword and the decryption phase
corresponds to decoding. The decoding is possible only if one knows the
secret. In McEliece’s approach, the plaintext is encoded in a codeword, to
which a random error weight t is added. Niederreiter proposes to encode the
plaintext in the error pattern: first a codeword is picked at random, to which
an error (encoding the plaintext) is added. For this, one needs a function ϕ
from the message space (say F`

q) to the space of vectors of Fn
q of weight t. This

function should be invertible. Such functions exist (see [Sen02]).
To decrypt a ciphertext y of the Niederreiter scheme, first one uses the

decoding algorithm to compute c = Dec(s,y) ∈ C , and then one can recover
the message m = ϕ−1(y − c).

38 Chapter 1. Introduction

In terms of security, the Niederreiter scheme is equivalent to the McEliece
scheme when used with the same code [LDW94]. The advantage of Niederre-
iter’s approach is that it reduces the public key size. Indeed, the public key of
the McEliece scheme is a generator matrix Gpub of the code, of size k × n. In
the Niederreiter setting, one can choose a particular generator matrix of the
code, namely the generator matrix that is in systematic form. Hence one only
needs to send the k × (n− k) sub-matrix corresponding to the non-identity
part. Because the codeword is chosen randomly, having access to a systematic
generator matrix does not change anything to the security of the system. This
trick can not be used in the McEliece setting because the public generator
matrix is used to encode the plaintext.

Because the security is equivalent, most of the time, we will not make a
distinction between the McEliece and Niederreiter settings and simply refer
to the McEliece scheme, to simplify the notations. However, most cryptosys-
tem that we will refer to as “following the McEliece scheme” in fact use the
Niederreiter setting in practice to obtain shorter public keys.

1.3.1.3 Security of the McEliece scheme

To decrypt a ciphertext encrypted using the McEliece scheme, an attacker has
two possibilities.

Message security. The first one is to try to decode the noisy codeword, inde-
pendently of the special properties induced by the fact that C ∈ F . This
amounts to having the ability to decode t errors in a random [n, k]-code.
This corresponds exactly to the general decoding problem introduced in Sec-
tion 1.2.3. As we have seen, this problem is considered to be intractable. This
is the fundamental security hypothesis of code-based cryptography. The best
knows algorithms to perform such attacks are the information set decoding al-
gorithms, such as Prange’s algorithm (see Chapter 8). Hence the parameters
should be chosen such that the best such algorithm takes 2κ operations to
solve the problem, with κ being the security parameter. This is known as the
message security.

Key security. The other approach consists in using the special properties
of the code, due to the fact that C ∈ F . The most straightforward approach
would be to find s such that C = C (s) and then decrypt using the decoder Dec.
This should not be feasible. More generally, the second security hypothesis
on which the security relies is that, given a public generator matrix Gpub, an
attacker should not be able to distinguish if it corresponds to a code C ∈ F or
a random [n, k]-code. Note that this hypothesis also covers the case where the

1.3. Introduction to code-based cryptography 39

attacker would not recover the value of s but use a weaker property of F to
make the decoding more efficient. This is known as the key security.

Remark 1.29. In general, the function C : s 7→ C (s) ∈ F is not injective so the
attacker tries to find any value s′ such that C = C (s′).

Note that there is a fundamental difference between these two security
hypothesis. The first hypothesis, the hardness of general decoding, does not
depend on the choice of a family F of codes to instantiate the scheme. On the
contrary, the second hypothesis, the indistinguishability of the code family F ,
is specific to a particular choice of F . Hence, there are families of codes for
which this hypothesis holds, others for which it does not. Attacks exploiting a
flaw in this hypothesis on a family F are also referred to as structural attacks
because they exploit the (supposedly hidden) structure of the codes in F .
Examples of such attacks are presented in Chapters 4, 5, 6 and 7.

Under these twohypothesis, theMcEliece scheme is proven secure [Sen11b].
Note that the security of the textbook scheme holds in the one-way chosen-
plaintext attack model (OW-CPA) but that some additional layers of security
transformations are necessary to obtain security in stronger attack models.

1.3.1.4 Good codes to instantiate McEliece

A good part of code-based cryptography is dedicated to finding the best
possible family of codes F to instantiate the McEliece scheme such that the key
security hypothesis is fulfilled, while achieving the best possible performances,
both in terms of encryption/decryption time and in terms of key size. The key
size of often the most significant issue, since it constitutes the major drawback
of code-based cryptosystems, compared to other post-quantum schemes.

We present here several attempts to instantiate the McEliece scheme. A
natural idea is to use codes with algebraic properties. These codes often enjoy a
large decoding radius (reaching the Singleton bound) with efficient decoders.
This yields a good transmission rate. Indeed, in the Niederreiter setting, the
plaintext is encoded in the error, so a code that corrects a larger number of
errors convoys more secret information.

Reed–Solomon codes. The (generalised) Reed–Solomon (GRS) codes are
enumeration codes. Each codeword corresponds to a polynomial. Hence, they
have all the necessary properties to make an efficient cryptosystem. Nieder-
reiter was the first person to suggest their use [Nie86]. But Sidelnikov and
Shestakov proved that the indistinguishability hypothesis does not hold for
these codes [SS92]. Different attempts using variants of GRS codes were pro-
posed, hoping to counter this attack, such as the RLCE [Wan17] and XGRS

40 Chapter 1. Introduction

cryptosystems [KRW21]. The study of GRS-based cryptosystems is the subject
of the second part of this work.

Goppa codes. The Goppa codes are a special family of subfield subcodes
of GRS codes. Binary Goppa codes are the codes proposed by McEliece to
instantiate his scheme [McE78]. This proposal is still considered secure today
[BLP08]. The Classic McEliece submission at the NIST standardisation process
uses such codes [BCLMM+19]. The only known weakness of Goppa codes is
the existence of a distinguisher on high-rate Goppa codes [FGOPT11]. Cryp-
tosystems using q-ary Goppa codes were also proposed [BLP10]. A partial
attack exists on these codes [COT14b].

Reed–Muller codes. Sidelnikov proposed to use Reed–Muller codes to in-
stantiate the scheme [Sid94] but this was proven insecure in [MS07].

Concatenated codes. Sendrier proposed to use concatenated codes for
McEliece [Sen94] but he later found a weakness in this scheme [Sen98].

Geometric codes. In [JM96], Janwa and Moreno suggested to use McEliece
with algebraic-geometric codes. This corresponds to a generalisation of GRS
codes to a higher genus. This was proved insecure, first for small genus [FM08]
and later for all curves [CMP17].

MDPC codes. In 2013, Misoczki, Tillich, Sendrier and Barreto proposed to
use a new class of codes, moderate-density parity-check codes [MTSB13]. This
proposal differs significantly from the others, because these codes do not have
any algebraic structure. They do have a particularly efficient decoding algo-
rithm, but this algorithm is probabilistic. The lack of structure is an advantage,
as it leaves less possibilities for structural attacks, but the probabilistic nature
of the decoding algorithm give rise to new kind of problems, as we will see
in Chapters 2 and 3. These codes, in their quasi-cyclic setting, are used in the
BIKE submission for the NIST standardisation process [ABBBB+17].

This list is not exhaustive and is restricted to Hamming-metric cryptosys-
tem. Most families of codes cited above have rank-metric equivalents, which
were also proposed to instantiate the McEliece scheme.

1.3.2 Other code-based encryption schemes
The McEliece scheme corresponds to the seminal article on code-based cryp-
tography and, as we have seen, can be instantiated using different families of

1.3. Introduction to code-based cryptography 41

codes. The security of the scheme relies on two security hypothesis: the hard-
ness of the general decoding problem, and a security hypothesis that depends
on the family of codes. The first hypothesis corresponds to a very generic and
well-studied mathematical problem, believed to be intractable, whereas the
second hypothesis is specific to an instantiation choice. This second hypothesis
appears to be weaker (although in the case of Goppa codes it has received a
lot of attention). Hence, there are proposals to build code-based cryptosystem
relying only on the hardness of the general decoding problem.

The main idea was proposed by Alekhnovich in [Ale03]. It uses the fact
that the scalar product of two binary vectors of length n and weight √n is
biased. Hence, using a clever protocol, it is possible to encrypt a plaintext as
an codeword, to which a mask is added. Each bit of this mask is computed as
a scalar product of two vectors of moderate weight. Hence the total weight of
the mask is not too high and the error can be corrected.

This idea was generalised and used in a quasi-cyclic setting to yield the
HQC cryptosystem [AABBB+17b] in Hamming metric, and its rank-metric
equivalent the RQC cryptosystem [AABBB+17a]. Both were submitted to the
NIST standardisation process.

1.3.3 Code-based signature schemes
For a long time, the existence of code-based digital signature schemes has
been an open problem. The first code-based signature, referred to as CFS,
was proposed in 2001 [CFS01]. But the parameters of this signature become
unreasonably large (public key of a few gigabytes) to reach 128 security bits.
Moreover, this signature uses Goppa codes in a high rate regime, for which
there exists a distinguisher [FGOPT11]. Although this does not provide a way
to reconstruct the secret key, it constitutes a significant weakness. Hence CFS
does not provide good candidate for secure code-based signature schemes.
Over the last decade, new signatures were proposed. We can classify these
attempts among different approaches.

Hash and sign. On one hand, there is the hash and sign approach. Just like
McEliece encryption, this relies on the fact that one can use encoding (or
equivalently computing a syndrome) as a trapdoor one-way function. Given a
parity-check matrix H of a code C , the function that takes as input a vector
e ∈ Fn

q of weight wH(e) = t and returns Heᵀ is hard to invert, if H is a
random matrix. But if one knows the special structure of the code C , it is
possible to efficiently decode the syndrome (hence finding a pre-image e for a
given output).

Hence, to sign a message m, the signature consists in displaying a vector
e ∈ Fn

q of weight t such that Heᵀ = H(m), where H denotes some hash

42 Chapter 1. Introduction

function. ThematrixH is public and hence anyone can verify that the signature
is valid, but only a person who knows the secret structure of the code can
produce a valid signature. Such signature schemes have large public keys but
rather compact signatures.

This approach is used in the CFS proposal [CFS01] with Goppa codes. The
RankSign signature [GRSZ14] also uses this paradigm, in rank metric. This
scheme was attacked in [DT18]. In lattice-based cryptography, this approach
in developed in [GPV08]. More recently, the Wave signature [DST19] was
introduced. This scheme uses ternary codes in Hamming metric, but the goal
is to decode errors of very large weight rather than small weight. This problem
is discussed in Chapter 9.

Fiat–Shamir. In 1986, Fiat and Shamir introduced a protocol to transform
an identification scheme into a signature. An identification scheme works as
follows. A prover wants to prove to a verifier that he knows a secret. The
prover first sends some initial information, a commitment. Then the verifier
sends him a challenge. The prover returns his response to the challenge. The
verifier can check that the response is consistent with the challenge and with
the initial commitment.

The idea of the Fiat–Shamir transform is to get rid of the interaction with
the verifier. Instead of having the verifier send a challenge, the challenge is
derived from the commitment using a hash function. Hence, the prover does
not choose the value of the challenge. This yields a signature scheme.

We can distinguish two families of signatures using the Fiat–Shamir trans-
form. First, the signatures using a zero-knowledge identification scheme. The
first code-based signature using this idea was proposed by Stern [Ste93], fol-
lowed by Veron [Vér96]. Such signatures enjoy a small public key, but the
main drawback is that each run of the identification protocol only proves that
the prover is the legitimate user with constant probability, e.g. with probability
2/3 in the case of Stern’s protocol. Hence the protocol has to be repeated
numerous times to amplify the result and ensure a negligible soundness error.
As a consequence, even with some improvements, this yields large signatures
(tenths of kilobytes for 128 security bits) [AGS11].

To overcome this pitfall, Lyubachevsky proposed that instead of trying to
obtain a signature as a series of independent binary challenges, one should
try to use the lattice structure to combine these into one single challenge,
awaiting for one single response, hence saving communication cost, which
yields more compact keys [Lyu09]. His framework works well for lattice-based
signatures. There has been several attempts to adapt this idea to Hamming-
metric code-based schemes [Per12; FRXKM+17; Per18; SHMWW20; LXY20].
All of these have been subject of attacks. There seems to be an inherent difficulty

1.3. Introduction to code-based cryptography 43

to “rerandomize” the instances. Hence, whether it is possible to adapt this
framework to create Hamming-metric code-based signature schemes remains
an open problem. For now, the only successful adaptation using codes in the
Durandal scheme [ABGHZ19] using rank-metric. This approach is promising
but the security relies on an ad hoc problem which requires further study.

Code-based cryptography is a rich field, both for the design and analysis
of cryptographic primitives. In the rest of this document, we will address
different aspects of the security of code-based encryption schemes.

PartI
Key-recovery attacks

on post-quantum cryptosystems:
analysis of probabilistic constructions

Chapters

2 Moderate density parity-check codes 47
2.1 Introduction to MDPC codes 48
2.2 Decoding MDPC codes . 51
2.3 QC-MDPC schemes . 56
2.4 Security of QC-MDPC schemes 60

3 Side-channel attacks on the QC-MDPC cryptosystem 63
3.1 Key recovery attack on the QC-MDPC scheme 64
3.2 Analysis . 70
3.3 Attack on the syndrome weight 76
3.4 Attack on the iteration count . 78
3.5 Possible mitigations . 83
3.6 Conclusion . 87

4 Attack on the Edon-K cryptosystem 89
4.1 Rank metric and LRPC codes 90
4.2 The Edon-K cryptosystem . 95
4.3 Algebraic attack on the Edon-K scheme 98
4.4 Concluding remarks . 103

Chapter2
Moderate density
parity-check codes

In the previous chapter, we have seen how error-correcting codes can be used
to create public key encryption schemes. The most important construction is
the McEliece scheme. This scheme relies on the choice of a particular family of
codes, having some internal structure to allow efficient decoding. The original
proposal is to instantiate the McEliece scheme using Goppa codes. But the
main drawback is the large size of the public key. Therefore, there has been
several proposals to instantiate the McEliece scheme with other families of
codes.

In this chapter, we introduce one of the most promising choices to replace
Goppa codes in the McEliece scheme: moderate density parity-check (MDPC)
codes. We explain how these codes are constructed, how to decode in these
codes, and the properties that make them good candidates to build efficient
post-quantum cryptosystems. In the next chapter, we will conduct a thorough
analysis of a cryptosystem relying on MDPC codes and study some possible
weakness of this scheme.
Contents

2.1 Introduction to MDPC codes 48
2.1.1 LDPC codes . 48
2.1.2 MDPC codes . 49
2.1.3 The quasi-cyclic structure 49

2.2 Decoding MDPC codes . 51
2.2.1 The bit-flipping algorithm 51
2.2.2 The decoding failure rate 55
2.2.3 Other decoders . 56

2.3 QC-MDPC schemes . 56
2.3.1 QC-MDPC McEliece 56
2.3.2 KEM vs. PKE . 59
2.3.3 Other MDPC-based schemes 59

2.4 Security of QC-MDPC schemes 60

48 Chapter 2. Moderate density parity-check codes

2.4.1 Message security 60
2.4.2 Key security . 61
2.4.3 Quantum security 62
2.4.4 Side-channel attacks and DFR 62

2.1 Introduction to MDPC codes
2.1.1 LDPC codes
MDPC codes find their origin in lowdensity parity-check (LDPC) codes, which
are very similar. Like most families of error-correcting codes, LDPC codes
originally appeared in the context of information theory. Theywere introduced
by Gallager in [Gal63]. Their name is pretty self-explanatory: LDPC codes are
linear codes admitting a particularly sparse parity-check matrix.

Definition 2.1 (LDPC codes [Gal63]). A low density parity-check (LDPC)
code is a binary linear code admitting a parity-check matrix for which the
number of 1’s on each line and column is bounded by some constants (very
small compared to the length of the code, usually 6 10).

The simplicity of this definition is striking, as well as the lack of structure,
compared to algebraic codes which were more usual at the time. From a
cryptographic point of view, this is certainly an advantage (we will come back
to that) but this was probably too unusual and certainly explains the lack of
interest for LDPC codes in the decades following their definition.

Despite their very competitive error-correction capacity and their efficient
decoding algorithm, LDPC codes were almost forgotten, until MacKay and
Neal “rediscovered” them in the 90’s [MN96]. Even at this time, they did not
draw a lot of attention, as most of the research of this field was dedicated to
the recently introduced turbo-codes [BGT93], that were used in new telecom-
munication standards. It is only in the early 2000’s that LDPC were found
more appealing than turbo-codes. Since then, LDPC codes found numerous
applications in telecommunication.

The idea of using such codes to instantiate the McEliece scheme is due to
Monico, Rosenthal and Shokrollahi in a 2000 paper [MRA00]. However, in
this paper, the authors note that if the rows of the parity-check matrix are too
sparse (and it is indeed the case for LDPC codes used in telecommunication),
it means that there exist codewords of extremely low weight in the dual of the
code, and hence can serve as a distinguisher.

2.1. Introduction to MDPC codes 49

2.1.2 MDPC codes
Following this unsuccessful attempt, two proposals were made to thwart this
attack [BC07; BBC08]. The general idea is to multiply the parity-check matrix
of the LDPC code by a sparse invertible matrix, hence increasing the weight
of the dual code. An unfortunate design choice for this invertible matrix led
to a cryptanalysis of the first such proposal in [OTD08] but the general idea
remains correct.

In 2013, Misoczki, Tillich, Sendrier and Barreto [MTSB13] proposed to
replace this two-step process (first generating a lowdensity parity-checkmatrix
and then multiplying it by a sparse invertible matrix) by directly considering
the code admitting a parity-check matrix with rows that would be sparse,
but still dense enough to avoid the attack. Their computation shows that the
row weight should scale in O(

√
n logn) for a code of length n, whereas the

parity-check matrix of LDPC codes has constant row weight. They name this
construction medium density parity-check (MDPC) codes.
Definition 2.2 (MDPC codes [MTSB13]). A moderate density parity-check
(MDPC) code is a binary linear code of length n admitting a parity-check
matrix with constant row weight w where w = O(

√
n logn).

Remark 2.3. In this work we will only consider binary MDPC codes, although the
definition could well be generalised to q-ary codes for a larger value of q.

It is important to note that the choice of increasing the rowweight lowers the
decoding capacity, compared to LDPC codes which achieve the best possible
trade-off. Hence, MDPC codes are not very interesting for telecommunication.
In such a sense, MDPC codes are the first family of error-correcting codes
designed exclusively for their application in cryptography.

Compared to “enhanced LDPC” codes proposed in [BBC08], generating
the parity-check matrix directly leaves less structure, and hence less room for
potential attacks (see for instance [APRS20] exploiting this weakness).

2.1.3 The quasi-cyclic structure
Remember that the main drawback of the McEliece scheme instantiated with
Goppa codes is the large size of the public key. To make MDPC codes a
competitive alternative, one needs to achieve significantly better public key
size. Here, the public key corresponds to a parity-check matrix of the code
that does not reveal enough structure to decode efficiently.

The interest of MDPC (and before them LDPC) codes relies on the fact
that one can use quasi-cyclic instances of these codes. Here, quasi-cyclic
means that its generator (resp. parity-check) matrix can be represented as the
concatenation of several circulant matrices.

50 Chapter 2. Moderate density parity-check codes

Definition 2.4 (Circulant matrix). An m × m square matrix is a circulant
matrix if for any i ∈ J2,mK, the i-th line is a cyclic shift of the (i− 1)-th line.

Due to this definition, a circulant matrix is entirely defined by its first line.

Definition 2.5 (Quasi-cyclic matrix). An n × k matrix M is a quasi-cyclic
matrix of orderm if it can be written as a block-matrix, where each block is
a circulant matrix of size m ×m, i.e. if there exist m ×m circulant matrices
(M i,j) such that

M =


M1,1 M1,2 · · · M1,n0

M2,1 M2,2 · · · M2,n0...
Mk0,1 Mk0,2 · · · Mk0,n0

 .
Definition 2.6 (Quasi-cyclic code). A linear code is a quasi-cyclic (QC) code
of order m if it admits a parity-check matrix that is a quasi-cyclic matrix of
orderm.

Proposition 2.7. Admitting a quasi-cyclic parity-check matrix is equivalent to ad-
mitting a quasi-cyclic generator matrix. This can be reformulated as: the dual of a
quasi-cyclic code is a quasi-cyclic code.

Remark 2.8. Note that, originally, the definition of a quasi-cyclic of orderm is a code
such that any cyclic shift of a codeword by m places is again a codeword. But, we
can easily see that, up to permutation of the columns, such a code has the quasi-cyclic
property stated in our definition.

A quasi-cyclic code can be represented by the first line of each circulant
submatrix. Hence, keeping in mind that the public key of a McEliece cryp-
tosystem is a parity-check matrix of the code, the size of the public key is
now linear in the size of the code, and not quadratic as it is when you have to
provide the full matrix. This properties is a clear motivation to use quasi-cyclic
codes in code-based cryptosystems. Moreover, the algebra ofm×m binary
circulant matrices is isomorphic to the algebra of polynomials moduloXm − 1
over F2, which yields efficient computations.

The idea of using quasi-cyclic (QC) codes in cryptography was first stated
by Gaborit in [Gab05] using subcodes of BCH codes, but was attacked in
[OTD08]. Quasi-cyclic alternant codes were proposed in [BCGO09], but an
attack was proposed in [FOPT10]. This shows that the quasi-cyclic structure
can create some weakness if applied to the wrong family of codes, especially
when used with algebraic codes. The first paper suggesting to use quasi-cyclic
LDPC codes is [BC07]. We already stated that this proposal is insecure but
this is due to the choice of LDPC codes and not to the quasi-cyclic structure.

2.2. Decoding MDPC codes 51

The later proposal [BBC08] and the seminal article introducing MDPC codes
[MTSB13] both consider quasi-cyclic codes to reduce the key size. Indeed, the
quasi-cyclic structure does not seem to affect the security reduction for MDPC
codes [Sen10].

Remark 2.9. A similar idea studied at the time in order to reduce the public key size is
to use quasi-dyadic codes, for instance in [MB09]. But this does not apply to MDPC
codes.

Notation 2.10. Quasi-cyclic MDPC (resp. LDPC) codes are denoted QC-MDPC
(resp. QC-LDPC) codes.

2.2 Decoding MDPC codes
We have seen that MDPC codes enjoy very little algebraic structure, together
with a good correction capacity. Moreover, in the quasi-cyclic setting, their
parity-check matrix can be described with a small amount of information,
i.e. they enjoy short public key.

This seems promising for potential use in a public key cryptosystem. But
we have seen that a key property for a family of codes to be used to instantiate
the McEliece scheme is to have an efficient decoding algorithm relying on the
structure of the code, that serves as trapdoor 1.3.1.

LDPC and MDPC codes have such a decoding algorithm, which we will
describe here.

2.2.1 The bit-flipping algorithm
The mail algorithm used to decode LDPC codes (and later MDPC) codes is
introduced by Gallager in [Gal63] and known as the bit-flipping algorithm.
The main idea is the following.

2.2.1.1 General idea

Given a noisy codeword y = c + e ∈ Fn
2 , where c ∈ C and e is a vector or

small Hamming weight w, and a sparse parity-check matrix H ∈ Fr×n
2 of the

code C , the goal is to find e. Here, we consider that H meets the criterion of
an LDPC code, i.e. each row has a very small weight.

We compute the value s ∈ Fr
2 such that sᵀ = Hyᵀ. This is called the

syndrome. Let us denote si the i-th bit of s. The value of si corresponds to the
scalar product 〈h(i),y〉, where h(i) denotes the i-th row of H .

52 Chapter 2. Moderate density parity-check codes

Note that because c ∈ C , sᵀ = Hyᵀ = Heᵀ. Hence si is equal to 〈h(i), e〉.
If e = 0, then s = 0. Hence, each bit set to 1 in s is due to some errors in e.
The goal is to find these errors.

For each i, the value of si indicates howmany errors bits in e are contained
in the support of the i-th row h(i) of H . More exactly, because the scalar
product is computed in F2, it indicates the parity of the number of error. But
two elements make this information useful. First, by definition of LDPC codes,
the support of each row of H is very small (6 10). Moreover, the error e is
sparse. Hence, if si = 〈h(i), e〉 = 1, with high probability this indicates that one
of the bits in the support of h(i) corresponds to an error in e. It could always
be three, or five, or any other odd number, but this is less likely. Anyway, at
least one of them contains an error. On the other hand, if si = 0, it means that
there is an even number of error positions in e contained in the support of h(i).
This number is likely zero, although it could still be a positive even number.
Therefore, when H and e are sparse enough, if si = 1, it is more likely that a
position of e in the support of h(i) is equal to 1.

Because we know the value of si for every i, we can use all these indicators
to assign to each bit of e a numbermeasuring the likelihood that this position is
an error. The most straightforward way to use this information is by counting,
for each position, howmany times it is involved in the support of an unsatisfied
equation, i.e. computing for each j ∈ J1, nK the quantity

σj
def= #{i ∈ J1, rK | si = 1 and j ∈ Support(h(i))}.

The higher the value σj is, the more likely it is that the j-th bit of e is equal
to 1. This is the key element of the bit-flipping algorithm. Then, there are
different variants depending on how to use this information. The most basic
form of the algorithm is the following:

1. compute the syndrome s;
2. compute σj for all j ∈ J1, nK,
3. flip the bit of e corresponding to the highest observed value of σj ,
4. repeat from step 1 until s = 0r.

More formally, we obtain Algorithm 1

Remark 2.11. Note that these algorithms is presented here for general LDPC/MDPC
codes, hence the entire parity-check matrix is provided as input, but when used for
quasi-cyclic codes, one only needs to provide the first line of the matrix as input, and
the rest of the matrix can be deduced by performing cyclic shifts.

2.2. Decoding MDPC codes 53

Algorithm 1: Step-by-step bit-flipping decoding algorithm
Input: y = (y1, . . . , yn) ∈ Fn

2 , H = (h(1), . . . ,h(n)) ∈ Fr×n
2

1 sᵀ ←H · cᵀ // compute the syndrome

2 while s 6= 0r do
3 for j ∈ J1, nK do
4 σj ← 0
5 for i ∈ J1, rK such that si = 1 do
6 for j ∈ Support(h(i)) do
7 σj ← σj + 1 // compute the counters σj

8 for j ∈ J1, nK such that σj = max`{σ`} do
9 yj ← yj ⊕ 1 // flip the jth bit

10 sᵀ ←H · yᵀ

11 return y

This description explains the name of the bit-flipping algorithm. It turns
out that this very simple algorithm performs extremely well on LDPC codes.
Moreover, the same algorithm works to decode MDPC codes.

Here are a few remarks about this algorithm.

1. This algorithm is extremely simple to understand and implement.

2. This is a probabilistic algorithm. There is a priori no certainty that the
algorithmwill end and output the smallest possible e such that y−e ∈ C .
Moreover, the algorithm may never terminate. We can only observe (or
prove under some hypothesis) that the algorithm terminates most of the
time with the expected output, under some sparseness conditions on
the input.

3. This is an iterative algorithm, the number of iterations is unknown and
differs depending on the entry.

The first remark is an advantage in the context of cryptography. But the
second (and to a lesser extent third) remark is a serious issue, which will be
addressed in the next section and extensively discussed in the next chapter.

Many variants of this algorithm exist, to improve its performance. For
instance, computing all the values si to flip only one bit at the end of the loop
does not seem very efficient. We present here a variant that flips multiple bits
in the same loop.

54 Chapter 2. Moderate density parity-check codes

2.2.1.2 Threshold algorithms

The idea is to flip all bits corresponding to positions for which σj is higher
than some threshold b, instead of only flipping the bit corresponding to the
maximal value of σj . The value of this threshold b is given as a parameter of
the algorithm. See Algorithm 2.

Algorithm 2: Threshold bit-flipping decoding algorithm
Input: y = (y1, . . . , yn) ∈ Fn

2 , H = (h(1), . . . ,h(n)) ∈ Fr×n
2 , b ∈ N

1 sᵀ ←H · cᵀ // compute the syndrome

2 while s 6= 0r do
3 for j ∈ J1, nK do
4 σj ← 0
5 for i ∈ J1, rK such that si = 1 do
6 for j ∈ Support(h(i)) do
7 σj ← σj + 1 // compute the counters σj

8 for j ∈ J1, nK such that σj > bt} do
9 yj ← yj ⊕ 1 // flip the jth bit

10 sᵀ ←H · yᵀ

11 return y

The threshold value should not be considered as a fixed value but more
as a function that may depend on every information available at the time. In
such a sense, the initial step-by-step can be considered as a special case, where
the threshold at each step is defined as the maximal value of the counters σj .
This corresponds to a rather conservative choice.

Another approach suggested in [MTSB13] is to take at each iteration the
maximal value of the counters, minus a small constant (the proposed value is
5) to speed up the process.

Another approach is to have a fixed precomputed threshold value (given
as input), which depends only on the iteration count. Indeed, during the
first iteration of the algorithm, most errors are corrected and the number of
incorrect equations drops significantly. Hence for the second iteration, it is
necessary to consider a lower threshold value. Therefore, it makes sense to
have the value of the threshold depend on the number of iterations. This
configuration is known as fixed threshold decoding. It is the configuration used
in [MTSB13] and [Cho16].

Another interesting possibility is tomake the value of the threshold depend
on the iteration counter but also on the syndrome weight. This choice, referred

2.2. Decoding MDPC codes 55

to as variable threshold decoding, improves the efficiency of the algorithm and
lowers the decoding failure rate, as explained in [CS16b].

2.2.2 The decoding failure rate
As we can see, the decoding algorithms of LDPC/MDPC codes include a while
loop, and the number of iterations to decode a word is uncertain. In fact, the
decoding of a word could even create an infinite loop. In practice, to avoid
infinite loops, after a certain number of iterations, the decoding algorithm
stops and returns an error.

Algorithm 3: Threshold bit-flipping decoding algorithm, with a
bounded number of iterations
Input: y = (y1, . . . , yn) ∈ Fn

2 , H = (h(1), . . . ,h(n)) ∈ Fr×n
2 , b ∈ N,

N ∈ N
1 sᵀ ←H · cᵀ // compute the syndrome

2 for t ∈ J1, NK do
3 Compute the σj ’s // See lines 3 to 7 in Alg. 2

4 for j ∈ J1, nK such that σj > bt} do
5 yj ← yj ⊕ 1 // flip the jth bit

6 sᵀ ←H · yᵀ

7 if s = 0m, then
8 return y

9 return ⊥

The parameters (weight of the error and thresholds) are chosen in such
a way that this event, which is called a decoding failure, is very rare. But one
should clarify the meaning of rare here. Indeed, from the user’s point of view,
an algorithm that would fail one out of a million times could be considered as
good enough in most use-cases. For instance, with the parameters proposed
in the first version of the BIKE submission claim a decoding failure rate (DFR)
of 10−7. This claim is based on experimental results.

Moreover, allowing a large number of loops reduces the decoding failure
rate (DFR) but makes the decoding algorithm more time consuming. There-
fore, one tries to reach a low DFR while keeping the number of iterations as
small as possible.

However, as we will see in the next chapter, decoding failures can lead to
serious security issues. Hence, to claim a security level of λ security bits for a
scheme, one should require a DFR of 2−λ. This is (by definition) out of reach

56 Chapter 2. Moderate density parity-check codes

of simulations. Hence one needs a theoretical estimate, if not a proof, of the
low DFR of a cryptosystem.

2.2.3 Other decoders
We will not go into the details but there is a long line of work on improving
the decoding algorithms for LDPC/MDPC codes.

In his original paper on LDPC codes [Gal63], Gallager also proposes a
soft-decision algorithm, i.e. instead of taking the (hard) decision to flip a bit or
not, the likelihood that a certain position of e is an error is represented by a real
value between 0 and 1. This is natural in this context of statistical decoding.
One of these soft-decision algorithms is the sum-product algorithm, but there
exist other ways to evaluate this likelihood. However, such soft-decision
algorithm have not been used in the context of code-based cryptography.

Nevertheless, the latest attempts to improve the MDPC decoders for a
cryptographical use (especially in order to reduce the decoding failure rate and
improve the efficiency)make some use of the idea of soft-decoding. Depending
the value of the threshold they partition the positions in different groups:
certain positions are most certainly to be flipped, others are considered as
probable errors but for which the decision is postponed. Some of these new
variants of decoders are discussed at the end of Chapter 3.

Finally, there are a lot of details regarding the implementation of these
algorithms that can have consequences. For instance the choice to update
the syndrome directly when a bit is flipped (in place decoding) or to flip the
bits and update the syndrome later (out of place decoding, as it is the case in
the examples of this section). We will see in the next chapter that this subtle
differences sometimes matter.

2.3 QC-MDPC schemes
2.3.1 QC-MDPC McEliece
We describe here the McEliece scheme using QC-MDPC codes. This cryptosys-
tem was first introduced in [MTSB13], then further studied in [BGGMP+17].
The “BIKE” [ABBBB+17] submission for the NIST post-quantum standardisa-
tion process mainly relies on this cryptosystem.

The general idea is to instantiate the McEliece scheme presented in Chap-
ter 1 with QC-MDPC codes of rate 1/2, i.e. codes for which there exists a parity-
check matrix consisting in the concatenation of two circulant block-matrices.
We provide here details about this cryptosystem.

2.3. QC-MDPC schemes 57

2.3.1.1 Parameters.
The QC-MDPC McEliece scheme uses four parameters:

• n the length of the code;
• k the dimension of the code;
• w the weight of each row of the sparse parity-check matrix of the code;
• t the number of errors.
The code is chosen such that n = 2k. The notation r = n− k is sometimes

used and has been used previously in this chapter, but in this case, r = k. We
have already stated that for MDPC codes, the row weight is usually chosen
such that w = O(

√
n). The number of errors tmust be chosen such that the

bit-flip decoder can efficiently decode t errors. This usually leads to tw = O(n),
hence t = O(

√
n). Note that k should be prime to prevent attacks exploiting

non-prime quasi-cyclicity such as [FL08]. Finally, w will be chosen to be an
even integer so that the weight of the rows can split evenly in both parts of the
quasi-cyclic parity-check matrix.

Table 2.1 shows the parameters suggested in [MTSB13].

Table 2.1: Parameters proposed for QC-MDPC McEliece [MTSB13]

security level n k w t

80 9602 4801 90 84
128 20326 10163 142 134
256 65542 32771 274 264

2.3.1.2 Key Generation
Note that in practice, there is no need to compute the full matrices H and
Q. The vector q can directly be computed from h0 and h1. The public key q
(resp. the secret key (h0,h1)) is enough to describe the matrix G (resp. H),
but considerably shorter. Here, the size of the public key is exactly n.

Moreover, G is a generator matrix of the code defined by the parity-check
matrix H . Hence both matrices describe exactly the same code. However, the
matrix H is sparse (it follows the definition of an MDPC code) whereas the
matrix G is dense.

2.3.1.3 Encryption
The encryption is exactly like any McEliece-based cryptosystem: we encode
the message and add a random error.

58 Chapter 2. Moderate density parity-check codes

Algorithm 4: QC-MDPC key generation
Input: Parameters (n, k, w, t) corresponding to the desired security

parameter.
Output: Public key pk, secret key sk.

1 Randomly generate h0,h1 ∈ Fk
2 , both of weight w/2.

2 Let H = [H0|H1] where H i denotes the k × k circulant matrix
obtained cyclically shifting hi.

3 Let G = [Ik|Q], where Ik is the k × k identity matrix and
Q = (H−1

1 H0)ᵀ. The matrix Q is a circulant matrix. Let q denote its
first row.

4 return Secret key = q, Private key = (h0,h1)

Algorithm 5: QC-MDPC encryption
Input: Public key q, message m ∈ Fk

2 .
Output: Ciphertext y ∈ Fn

2 .
1 Reconstruct G = [Ik|Q] from q.
2 Generate a random error vector e of weight t.
3 Set y = mG + e.
4 return y

2.3.1.4 Decryption

Just like in any McEliece-based cryptosystem, the decryption part consists in
decoding. Here, we use the bit-flipping algorithm to decode.

Algorithm 6: QC-MDPC decryption
Input: Public key q, private key (h0,h1), ciphertext y ∈ Fn

2 .
Output: Message m ∈ Fk

2 .
1 Reconstruct H = [H0|H1] and G = [Ik|Q] from the private and

public keys.
2 Run the bit-flipping algorithm to decode y with the MDPC matrix H

as input.
3 Let c be the output of the decoder.
4 return m such that c = mG.

Note that the knowledge of the private key is necessary to decrypt since
the bit-flipping algorithm requires the sparse public key to efficiently decode.
This acts as the trapdoor for this public-key encryption scheme.

2.3. QC-MDPC schemes 59

2.3.2 KEM vs. PKE
In the previous section, the QC-MDPC McEliece cryptosystem has been pre-
sented as a public key encryption scheme (PKE). However, [BGGMP+17] and
the NIST submission [ABBBB+17] describe a key encapsulation mechanism
(KEM) rather than a PKE. The difference is that a KEM is not used to directly
transmit a message chosen by the user but to agree on a random secret (usually
a key that will serve to transmit the message using symmetric encryption).
Hence, the two schemes are very similar, but in a KEM, the content of the
message is random by design and each key is only used once.

There is not much difference between what is described in [BGGMP+17;
ABBBB+17] and our description above, apart from the fact that they use the
Niederreiter setting to reduce the communication cost (see § 1.3.1.2).

But the cryptosystem as we have described it presents several weakness.
The first and foremost is the fact that it is not resistant to key reuse: encrypting
the same message several time with the same key leads to a trivial attack.
Moreover, it does not achieve CCA security. Indeed, one could change only a
few bits of the ciphertext (which is exactly equivalent to adding a few errors),
use the oracle to decode and recover the message.

To circumvent this problem, one can use the Fujisaki-Okamoto transfor-
mation [FO99; HHK17] to transform the CPA-secure PKE into a CCA-secure
KEM, hence achieving CCA security. This transformation forces the messages
to be random, so this yields a KEM, not a PKE. This is exactly what is done
in [BGGMP+17; ABBBB+17] and explains why these are key encapsulation
mechanisms. However, the security proof requires that the decoding failure
rate (DFR) should be < 2−κ where κ denotes the security parameter [SV20].
Therefore, lowering the DFR is particularly important to achieve CCA security.
This will be discussed further in the next chapter.

2.3.3 Other MDPC-based schemes
The QC-MDPC McEliece cryptosystem that we presented is the straightfor-
ward instantiation of the McEliece scheme with QC-MDPC codes. However,
there exist other similar code-based cryptosystems .

• The Ouroboros cryptosystem [DGZ17] is a variant of this scheme, using
a quasi-cyclic matrix with three circulant matrices instead of two. In the
initial version of the BIKE [ABBBB+17] submission, this was presented
as an alternative version of the cryptosystem (known as BIKE-III) but
the authors were then encouraged to propose a single scheme.

60 Chapter 2. Moderate density parity-check codes

• The LEDAcrypt cryptosystem [BBCPS19] submitted to the NIST uses
QC-LDPC codes multiplied by a sparse matrix (as described in § 2.1.2).
An attack on this cryptosystem was proposed in [APRS20].

• There exist rank-metric equivalents to MDPC codes, named low rank
parity-check (LRPC) codes [GMRZ13]. They can be used in a cryptosys-
tem such as the ROLLO scheme [ABDGH+19] submitted to the NIST.
These codes will be introduced in Chapter 4.

• Finally, there exist cryptosystems using random (non-MDPC) quasi-
cyclic codes, as in the Hamming Quasi-Cyclic (HQC) submission to the
NIST [AABBB+17b].

This list is non-exhaustive. For different reasons, all these submissions
were eliminated after the first or second round of the NIST standardisation
process. Only the BIKE submission using a QC-MDPC McEliece-based KEM
was selected to the third round.

2.4 Security of QC-MDPC schemes
Let us discuss the security of the QC-MDPC McEliece cryptosystem as we
presented it. The security of cryptosystems following the McEliece scheme
has already been addressed in § 1.3.1.3. In this chapter, we explained that the
security relies on two notions [Sen10]:

• the message security, i.e. the fact that decoding the message in the public
code (without knowing anything particular about its structural proper-
ties) is computationally hard;

• the key security, i.e. the fact that the public key does not reveal anything
about the structure of the code.

2.4.1 Message security
As explained in the introduction (§ 1.3.1.3), the message security is indepen-
dent of the family of structured codes at stake. Here, we assume that one does
not use anything specific to the secret structure of the code, hence the code
is considered to be a random code. Hence, the message security means that
decoding t errors in a random [n, k]-code is hard.

This is exactly the definition of the Syndrome Decoding problem intro-
duced in Section 1.2.3. We have seen that this problem is known to be NP-hard
[BMT78], and is conjectured to be hard on average [Ale11]. The most efficient

2.4. Security of QC-MDPC schemes 61

algorithm known to solve this problem are called information set decoding (ISD)
algorithm and are extensively discussed in Chapter 8. For given parameters,
one can compute the workfactor and check that the correct security level is
reached.

However, in the case of QC-MDPC code, the MDPC structure is hidden,
but the quasi-cyclic structure of the code is entirely public. Hence, the message
security means that decoding in a random quasi-cyclic code is hard. There-
fore, the security relies on a quasi-cyclic variation of the syndrome decoding
problem.

In the quasi-cyclic case, there is no known proof of NP-hardness. Still, the
only known difference with the general problem is that, in the quasi-cyclic
setting, one can try not only to decode the ciphertext but to decode any on
the cyclic shifts of the ciphertext. A solution to any of these attempts yields
the message. Such a situation is known as decoding one out of many (DOOM)
[Sen11a]. In this case, because there are k instances to solve, this provides a
speedup factor of

√
k in the exponent.

2.4.2 Key security
The key security is the fact that, given the public key, it is computationally hard
to distinguish whether the matrix G is taken from a distribution of QC-MDPC
code or from a distribution of random quasi-cyclic codes.

Problem 2.12 (Distinguishability of QM-MDPC codes - Decisional). Given
an instance q ∈ Fk

2 , does there exist vectors h0,h1 ∈ Fk
2 , with |h0| = |h1| = w/2,

such that the quasi-cyclic matrix H = [H0|H1] is a parity-check matrix of the code
generated by the matrix G = [Ik|Q], where H0,H1 and Q are the k × k circulant
matrices generated by shifting h0,h1 and q respectively.

This problem is believed to be hard, but there does not exist any theoret-
ical result to back up this idea. However, it is often the research version of
this problem that is stated. There is no proof of equivalence between the re-
search problem and the decisional problem, but in practice there is no known
approach to the decisional problem that does not consist in trying to find a
solution to the research problem.

Problem 2.13 (Distinguishability of QM-MDPC codes - Research). Given an
instance q ∈ Fk

2 , find vectors h0,h1 ∈ Fk
2 , with |h0| = |h1| = w/2, such that the

quasi-cyclic matrix H = [H0|H1] is a parity-check matrix of the code generated
by the matrix G = [Ik|Q], where H0,H1 and Q are the k × k circulant matrices
generated by shifting h0,h1 and q respectively.

62 Chapter 2. Moderate density parity-check codes

This problem is ad hoc toQC-MDPCcodes. But it is conjectured in [MTSB13]
that solving this problem is not easier than solving the (low-weight) codeword
finding problem, defined as follows.

Problem 2.14 (Codeword finding problem - Research). Given the generator
matrix of a code C , and an integer w, find a codeword of weight w in C .

This problem is equivalent to the syndrome decoding problem, and is
therefore NP-hard [MTSB13].

The best algorithm known to solve this problem are again the information
set decoding (ISD) algorithms (see Chapter 8). Just like for the message
security, the quasi-cyclic structure does not provide any known significant
advantage other than the fact that the problem has k solutions (corresponding
to the k cyclic shifts), hence the probability to find a solution is k times higher
than in the general case. Hence, the complexity exponent is divided by a factor
k.

2.4.3 Quantum security
We have seen that both aspects of security reduce to the Syndrome decod-
ing and Low weight codeword problems. For both problems, the most ef-
ficient classical algorithms are the ISD algorithms. And in both cases, the
only known significant improvement due to quantum computation consists in
using Grover’s algorithm to search the correct information sets in the ISD al-
gorithms [Ber10]. The complexity exponent remains exponential in the length
of the code, and hence the QC-MDPC scheme is considered to be resistant to
quantum attacks.

2.4.4 Side-channel attacks and DFR
Finally, we have stated that the QC-MDPC is currently proposed as a key-
encapsulation mechanism rather than a public key encryption scheme. This is
due to the fact that the decoding algorithm may fail. These failures are rare,
but not rare enough to avoid any security issue. Moreover, we have seen that
the decoding algorithm is an iterative algorithm. If not implemented carefully,
this algorithm can be subject to a type of attacks that is out of scope of the
classical theoretical concerns: side-channel attacks. This is the subject of the
next chapter.

Chapter3
Side-channel attacks on

the QC-MDPC cryptosystem

In the previous chapter we have seen that moderate density parity-check
(MDPC) codes can be used to replace Goppa codes in a McEliece scheme. This
yields acceptable public key sizes, good enough for most practical use-cases,
especially if one uses quasi-cyclic (QC)MDPC codes. Remember that the large
public key size is the main drawback of the original McEliece cryptosystem.
Hence, code-based cryptosystems based on QC-MDPC codes are good can-
didates for post-quantum cryptography. As a result, the BIKE cryptosystem
[ABBBB+17] which was submitted to the NIST post-quantum standardisation
process, was selected in the third round .

The main issue with MDPC-based cryptosystems it the fact that the de-
cryption phase may fail with very small, though non-negligible probability.
This is not an issue from a user’s perspective. For instance, a cryptosystem that
would fail once in a million time can be acceptable for practical use in many
situations. But in a 2016 paper, Guo, Johansson and Stankovski [GJS16] show
that this small decryption failure rate can be exploited to extract information
about the secret key, and therefore lead to security issues.

In this chapter, we analyse the parameters of the cryptosystem that are
correlated with a high decryption failure rate, especially the syndrome weight.
This analysis allows us to understand why the attack proposed in [GJS16]
works and to propose two new side-channel attacks exploiting these corre-
lations. Finally this analysis provides mitigation and guidelines for a safe
implementation of the cryptosystem.
Related publication: Eaton, Lequesne, Parent and Sendrier, QC-MDPC: A
Timing Attack and a CCA2 KEM, PQCrypto 2018 [ELPS18].

Contents
3.1 Key recovery attack on the QC-MDPC scheme 64

3.1.1 Side-channel attacks 64
3.1.2 The QC-MDPC scheme 65
3.1.3 The GJS reaction attack 66

64 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

3.2 Analysis . 70
3.2.1 Expected syndrome weight 70
3.2.2 Experimental measures 73
3.2.3 Required number of samples. 75

3.3 Attack on the syndrome weight 76
3.3.1 Attack model . 76
3.3.2 The attack . 77
3.3.3 Experimental results 78

3.4 Attack on the iteration count 78
3.4.1 Motivations and attack model 78
3.4.2 The attack . 81
3.4.3 Experimental results 81
3.4.4 About spectrum reconstruction 82

3.5 Possible mitigations . 83
3.5.1 Ephemeral keys . 83
3.5.2 Parallel encryption 84
3.5.3 Forcing a full spectrum: monomial codes 84
3.5.4 Lowering the DFR 85

3.6 Conclusion . 87

3.1 Key recovery attack on the QC-MDPC
scheme

3.1.1 Side-channel attacks
Despite the cryptographers work to assess the computational hardness of the
mathematical problems on which cryptographic schemes rely, there exists
a class of attacks that consists in obtaining information directly from the
monitoring of a device executing the cryptographic algorithm. For instance,
the running time, the power consumption or even the sound of the execution
of an algorithm can leak information about the value of some variables of the
algorithm, and hence the key. This notion is introduced by Kocher [Koc96]
who performed a timing attacks against RSA.

Such attacks are usually out of scope of the security models when one only
focuses on the hardness of the mathematical problems. Indeed, mitigations
exist to counter such attacks and are usually added at the implementation
level. The most generic one is known as “masking” and consists in splitting
the crucial information in several shares to prevent information leaks. But this

3.1. Key recovery attack on the QC-MDPC scheme 65

operation is costly. Therefore, it is important to understand which variables of
the algorithm carry significant information that should absolutely be made
inaccessible.

3.1.2 The QC-MDPC scheme
3.1.2.1 Parameters

In this chapter, we focus on the QC-MDPC cryptosystem as it was defined in
the original paper [MTSB13] and further discussed in [BGGMP+17]. This
scheme is detailed in the previous chapter and is at the core of the BIKE
candidate for the NIST standardisation process [ABBBB+17]. Results stated
in this chapter refer to the security levels corresponding to the parameter
sets presented in Table 3.1. These are the parameters proposed in [MTSB13]
(with a small modification in the parameters for 128 security bits as proposed
in [BGGMP+17]). The parameters used in the latest version of BIKE differ
slightly but are in the same range.

Table 3.1: Set of parameters for the QC-MDPC scheme used in this chapter.

Security level (bits) n k w t Public key size (kB)
80 9 602 4 801 90 84 0.60
128 20 326 10 163 142 134 1.27
256 65 542 32 771 274 264 4.10

3.1.2.2 Choice of decoder

In the previous chapter, we have seen that the decryption phase of the QC-
MDPC cryptosystem involves decoding in the QC-MDPC code, and that there
exist many variants of decoding algorithms for such codes. The main principle
remains that of Gallager’s original bit-flip decoder for LDPC codes [Gal63]. But
our goal is to study potential side-channel attacks, and such attacks are a priori
specific to a choice of decoder (and can even be specific to an implementation).
Therefore it makes sense to specify which variant of the decoder we will take
into account.

The decoding algorithms studied in this chapter correspond to the state of
the art decoders at the time of the first round of the NIST call for post-quantum
standardisation, detailed in [CS16b]. There are two main design choices for
such algorithms.

66 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

1. The thresholds. Some of these bit-flipping decoding algorithms have a
threshold which depends only on the iteration count. They are referred
to as fixed threshold decoders. Others have a threshold function that
depends on the iteration count and the syndrome weight. These are
referred to as variable threshold decoders. See Section 2.2 for details.

2. The implementation. An important implementation detail is whether the
computation of the syndrome is made in-place or out-of-place. Again,
the two variants have been detailed in Section 2.2.

For our analyses we mainly use the decoder denoted B in [MOG15] which
corresponds to Gallager’s original algorithm with an out-of-place implementa-
tion and fixed thresholds. But we also conducted some experiments on other
decoders, to prove that the observed behaviour is not specific to an implemen-
tation, but to a whole family of decoders. The results show that the efficiency
of the attacks will differ from one decoder to the other, and this information
can help making design choices. The observations involving in-place decoders
refer to decoder D1 fron [MOG15] which is the in-place equivalent of decoder
B.

As for the value of the thresholds, until now the thresholds were claimed
as experimental results with no generic explanation on the way they were
generated. Most of the time the thresholds are only proposed for one fixed
set of parameters. Therefore, we proposed in [ELPS18, Appendix B] a generic
way to derive fixed and variable thresholds for all parameter sizes. This is the
thresholds we use in our experiments. Applying these rules to the parameters
of Table 3.1 yields the following values for the fixed thresholds.

Table 3.2: Fixed threshold values used in the QC-MDPCdecoder in this chapter.
The i-th item of the sequence corresponds to the value of the threshold at the i-
th iteration. The dots mean that the last value is repeated as much as necessary.

Security level (bits) Sequence of fixed threshold values
80 30, 28, 26, 25, 23, . . .
128 46, 43, 41, 40, 39, 37, 36, . . .
256 83, 80, 77, 74, 72, . . .

3.1.3 The GJS reaction attack
A paper from Guo, Johansson and Stankovski [GJS16] makes use of the decod-
ing failure rate (DFR, defined in Section 2.2.2) to propose a reaction attack on

3.1. Key recovery attack on the QC-MDPC scheme 67

schemes involving the decoding of QC-MDPC codes. We refer to this as the
GJS attack. The attack model assumes that an adversary is able to tell when
such an error has occurred, for example because a request for resend is sent
back.

3.1.3.1 Principle
The idea of the GJS attack involves the notion of a distance being present in a
binary vector. Given a vector v ∈ Fn

2 , we say that the distance δ is present in
v = (v1, . . . , vn) when v admits two non-zero bits distant from δ, i.e. if there
exists i ∈ N such that vi = vi+δ = 1. The distance is counted cyclically, i.e. the
indices are considered modulo n.

The main idea of the GJS attack is the following.
Observation 3.1 (GJS, key observation). When a distance in the error vector used
in a QC-MDPC encryption matches a distance in the secret key, a decoding failure is
less likely to occur.

Based on this observation, the authors of GJS propose an attack in two
steps.

1. Observe a large number of error vectors that result in a decoding failure
and deduce from this observation which distances are in the secret key

2. Reconstruct the secret key based on this information.

3.1.3.2 The distance spectrum
The main tool introduced in [GJS16] is the distance spectrum of a binary vector.
Definition 3.2 (Distance Spectrum). The distance spectrum of a vector v ∈ Fr

2,
denoted ∆(v), is the binary vector of length b r2c such its δ-th entry ∆(v)[δ]
is equal to 1 if and only if the distance δ is present in v, i.e. if there exist two
non-zero bits of v at distance δ. The distance are counted cyclically.

∆(v)[δ] = 1 ⇐⇒ ∃(i, j),


0 6 i < j < r,
vi = vj = 1,
min{j − i, r − (j − i)} = δ

where vi denotes the ith entry of the binary vector v.
Example 3.3. Let v = (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0) ∈ F11

2 . Then we have ∆(v) =
(0, 1, 1, 1, 1).
Remark 3.4. Note that any cyclic shift or reversal of a vector will result in the same
distance spectrum.

68 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

3.1.3.3 The attack

Consider an instance of the QC-MDPC cryptosystem (defined in Section 2.3)
with the secret key (h0,h1). The main step of the GJS attack is to compute
∆(h0) using Algorithm 7, which is detailed below. From this, one is able to
compute the value of h0 and one can finally deduce h1 using elementary linear
algebra.

Algorithm 7 is used to obtain the distance spectrum of the first half of the
public key h0 by observing the decoding failures. For each distance δ, the
value of the ratio FailedDecoding[δ]/ObservedDecoding[δ] gives an estimate of
the decoding failure rate for error vectors containing the distance δ. Using
Observation 3.1, we can deduce from this if the distance delta is in the spectrum
of h0 or not.

Algorithm 7: The GJS CCA attack to find the distance spectrum
Input: An oracle O that, given a noisy codeword, returns > or ⊥

wether decoding succeeded or failed, , the number of samples
N , a threshold value T .

1 Create three tables ObservedDecoding, FailedDecoding and Spectrum of
length bk/2c and initialize their entries to zero

2 for i = 1 to N // Repeat for N random ciphertexts

3 do
4 Let m be a random message and e← [e0||e1] an error vector

drawn uniformly at random
5 Let c← QCMDPC.Enc(m, e) and b← O(c).
6 for δ = 1 to bk2c s.t.∆(e0)[δ] = 1 do
7 ObservedDecoding[δ]← ObservedDecoding[δ] + 1.
8 if b = ⊥ then
9 FailedDecoding[δ]← FailedDecoding[δ] + 1.

10 for δ = 1 to bk2c do
11 if FailedDecoding[δ]/ObservedDecoding[δ] < T then

// If the DFR is less than some threshold T

12 Spectrum[δ]← 1

13 return Spectrum

Then, reconstruction h0 from ∆(h0) (up to a reversal or cyclic shift) can be
done in reasonable time. This operation has been studied [GJS16; FHSZG+17]
and tested in practice.

3.1. Key recovery attack on the QC-MDPC scheme 69

3.1.3.4 Complexity

In a CCAmodel, the attacker can choose the error pattern. Hence it is possible
to choose error vectors where a particular distance δ arrives with an high
multiplicity. This choice provides very good data to deduce the value of the
spectrum efficiently. The authors of [GJS16] claim that observing N = 217

decoding is sufficient to find the secret key for the parameters claiming 80
security bits.

However this model is not very realistic, since in practice the QC-MDPC
scheme is implemented together with a semantically secure transformation
(such as the Fujisakiand–Okamoto transform [FO99]). With such a feature,
the error pattern is the result of a hash function and hence cannot be imposed
by the user. Therefore in the presentation of Algorithm 7 we considered that
the error pattern is random. In this model, the authors of [GJS16] found
that decoding N = 229 ciphertexts was sufficient to break the 80-bit classical
parameter set, using Gallager’s decoding algorithm.

In both cases, the complexity of the attack is dominated by the value N .
The second phase of the algorithm (reconstructing h0 from its spectrum) has
been analysed in [GJS16; FHSZG+17], and shown to be fairly fast and simple
as compared to the first step, and is an entirely offline computation, requiring
no communication.

Finally, in [GJS16] the author conjecture that using a more sophisticated
decoding algorithm, would mean that N would have to be increased by an
amount proportional to the difference in the decoding failure rate. They
also conjecture that higher parameter sets would not significantly alter the
effectiveness of the attack (for the same decoder), as the decoding failure rate
does not significantly change.

3.1.3.5 Distance spectrum with multiplicity

An additional tool defined in [GJS16], is the distance spectrum with multiplicity.
Although this is not directly needed to perform the attack, this object leads
to an interesting observation and is useful for further analysis. The idea is to
extend the definition of the distance spectrum to take into account the fact
that some distances may appear more than once. This yields the following
definition.

Definition 3.5 (Distance Spectrum with multiplicity). The distance spectrum
with multiplicity of a vector h ∈ Fr

2, denoted ∆+(h), is a integer vector of
length b r2c such that for every distance 1 6 δ 6

⌊
r
2
⌋, its δth component∆+(h)[δ]

is the number of existing sets of two non-zero bits of h at distance δ. The
distance are counted cyclically.

70 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Example 3.6. Let v = (0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0) ∈ F11
2 . Then we have ∆+(v) =

(0, 2, 1, 1, 2).

In general we can see that if a vector v ∈ Fr
2 has weightw, then the distance

spectrum with multiplicity of v will be a vector of size br/2c such that the
sum of the entries of ∆+(v) is (w2). The full knowledge of the spectrum with
multiplicity allows to reconstruct the vector more efficiently.

Finding the distance spectrum with multiplicity of the secret key can be
achieved by adapting Algorithm 7 to take into account the following observa-
tion.

Observation 3.7. For a fixed key, the decoding failure rate for error vectors with δ in
their distance spectrum is inversely proportional to the multiplicity of δ in the distance
spectrum of the key.

For large enough values of N , the decoding failure rate when the distance
δ is present in the error clearly separates into bands. These band exactly
correspond to the multiplicity of that distance in ∆+(h0). This allows an
attacker to recover ∆+(h0), and thus the secret key.

3.2 Analysis
Our goal is to analyse the QC-MDPC scheme and its decoding to understand
the causes of observations 3.1 and 3.7, as well as the evolution of the number
of observed decoding needed to distinguish the different multiplicities.

We show that these phenomena can be explained by focusing on one
variable: the weight of the syndrome. This parameter is somehow a natural
parameter to analyze since all the decoding algorithms start by computing
the syndrome, and some decoders are even designed to change the threshold
value depending on the syndrome weight at each iteration [CS16b]. Let us
see that we can explain Observations 3.1 and 3.7 with respect to this variable.

3.2.1 Expected syndrome weight
The QC-MDPC cryptosystem uses a parity-check matrix with two circulant
blocks. However, the GJS attack presented in the previous section works by
recovering the secret key on one block and then deduce the rest of the key.
This suggests that the observed phenomenon is local to each block. Therefore,
for the sake of simplicity of the analysis, in this section we will only consider a
parity-check matrix made of one single circulant block in H ∈ Fk×k

2 instead
of two. We will see later that the practical results are the same. We denote by

3.2. Analysis 71

h ∈ Fk
2 the first row of the matrix H . The variable t still represents the weight

of the error e, so here the numerical value of t should be half its usual value.
We will now compare the expected value of the syndrome weight in two

cases. In the first model, we do not make any hypothesis about the spectrum of
the error nor the key. In the second model, we suppose that there is a distance
that appears both in the spectrum of the key and in the spectrum of the error.
We analyse how this affects the expected syndrome weight. For the sake of
simplicity, we will study the case of distance 1 (i.e. two neighbour bits with
non-zero value) but in fact this does not make any difference in the analysis.

3.2.1.1 Model 1. Without any hypothesis.

Let us suppose that we do not have any information on the key. For a random
key vector h of size k and weight d and a random error vector e of size k and
weight t, denote by p(k, d, t) the probability that the scalar product in F2 is
odd parity.

p(k, d, t) def= P [〈h, e〉 = 1 mod 2] =
d∑
i=0
i is odd

(d
i

)(k−d
t−i
)(k

t

) .

If we reason like in the case of a (non quasi-cyclic) MDPC code where each
row of the matrix is independent, the average syndrome weight of an error
e and the parity-check matrix is k times the probability that a bit is non-zero
(see [Cha17, page 91]).

E [wH(H · eᵀ)] = k · p(k, d, t).

Note that the independence hypothesis is not true for QC-MDPC codes, as
all the rows of H are obtained by shifting h. It is as if each row of the matrix
was a random vector of length k and weight d. Still, this provides a good
approximation of the syndrome weight.

3.2.1.2 Model 2. Case of a common distance in the spectra.

Now, suppose the key vector h has ` times two consecutive non-zero bits,
i.e.∆+(h)[1] = `. Let us observe the shifts of the vector.

shift(h) = 1 1 u,wH(u) = d− 2 ` times

shift(h) = 1 0 u,wH(u) = d− 1 d− ` times
shift(h) = 0 1 u,wH(u) = d− 1 d− ` times
shift(h) = 0 0 u,wH(u) = d k − 2d+ ` times

72 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Consider an error vector e that has two consecutive non-zero bits, i.e. such
that ∆(e)[1] = 1. Up to permutation, we can suppose that these are the first
two bits of the vector.

e = 1 1 u,wH(u) = t− 2

To compute an estimate of the expected syndromeweight with this assump-
tion on the form of h and e, we suppose that the right-most part of the vector
(denoted u) behaves as if it was chosen uniformly at random among vectors
of length k− 2 and weight wH(u). This is equivalent to the row-independence
hypothesis formulated to compute the estimate in Model 1.

This yields the following estimate of the average syndrome weight of e
with respect to the the parity-check matrix H generated by cyclic shifts of h.

E [wH(H · eᵀ)] = ` p(k − 2, d− 2, t− 2)
+ 2(d− `) (1− p(k − 2, d− 1, t− 2))
+ (k − 2d+ `) p(k − 2, d, t− 2)

(3.1)

Again, it is important to stress that in both cases, the formulas are ap-
proximation. Indeed, in practice, the cyclic structure of the matrix induces a
dependence between each row and hence yields to a covariance between the
bits of the syndrome. Still, we will see that the approximation is close to the
real value and we can neglect the correction term for the rest of the study.

3.2.1.3 Consequences
Linkwith the previous observations. The results stated above for a distance
equal to one can be generalised to all other distances. Hence, the expression
3.1 is similar to Observation 3.7: for a distance δ in the spectrum of the error
pattern, the expected value of the syndrome weight behaves linearly with
respect to the multiplicity ` of the distance δ in the distance spectrum of the
key.

Link with decoding failure. Moreover, we can understand how a common
value in the distance spectrum of the key and the error is more prone to a
decoding failure. Indeed, for each row of the parity-check matrix, the number
of error positions involved in this equation is the size of the intersection be-
tween the support of a row and the support of the error. Due to the sparsity
of the rows of the parity-check matrix and that of the error, the size of this
intersection is often very limited. A non-zero bit in the syndrome means that
the size of this intersection is odd, but most of the time this intersection is equal
to 1, sometimes 3, rarely more. In such a case, there is one (or more) errors,

3.2. Analysis 73

and the non-zero bit in the syndrome contributes to the correction of this
error. On the other hand, when a bit of the syndrome is equal to zero, i.e. the
size of the intersection is even, this is usually due to an empty intersection
(i.e. this equation is not involved in any error) but it can also mean that the
intersection is of size two (rarely more). This is exactly the tricky case because
it corresponds to an error that will not be detected by the decoding algorithm.
Indeed, in such a case, the error is not taken into account in the counters, and
hence the error positions involved are less likely to be corrected. This increases
the possibility of decoding failures. And unsurprisingly, this case corresponds
exactly to the fact that a distance is present simultaneously in the spectrum of
the error and in the spectrum of the secret key.

3.2.2 Experimental measures
Suppose that we only consider error patterns starting with distance δ in their
spectrum. The syndrome weight is expected to be slightly different on average,
depending on ` = ∆+(h)[δ]. Moreover, the expected value of the syndrome
weight varies linearly with `. Therefore, if we observe enough values of the
syndrome weight, we can recover the value of `.
Definition 3.8 (Average syndrome weight with multiplicity). Let us denote
by D` the following set:

D`
def=
{

(h, e) ∈ Fk
2 × Fk

2,wH(h) = d,wH(e) = t,∆(e)[δ] = 1,∆+(h)[δ] = `
}
.

The average syndrome weight with multiplicity σ̄` is the expectation of the
syndrome weight for a uniform distribution of (h, e) over D`:

σ̄`
def= E(h,e)∼U(D`) [wH(H · eᵀ)] .

From Equation (3.1) we know that we can approximate σ̄` by

σ̄` = ` p(k − 2, d− 2, t− 2)
+ 2(d− `) (1− p(k − 2, d− 1, t− 2))
+ (k − 2d+ `) p(k − 2, d, t− 2).

with p(k, d, t) def=
d∑
i=0

i is of odd

(d
i

)(k−d
t−i
)(k

t

)
Comparison with measured values. The values of σ̄` correspond to the dif-
ferent clusters that we can see on the figures. According to the approximation,
the value of σ̄` is linear in the multiplicity: σ̄0 − σ̄` = ` · (σ̄0 − σ̄1). This is
consistent with what we observe..

74 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Figure 3.1: Attack on the syndrome weight (1 block) using the parameters for
80-bit security. For a fixed secret key, each data point represents the average
syndrome weight for random errors that admit this distance in their spectrum.
This attacks uses 105 error samples. The color of the distances indicate their
multiplicity in the key spectrum (black = 0, red = 1, blue = 2, green = 3) and
serve as a control.

With the usual parameters for 80-bit security, (here using t = 42 as there is
only one block) we obtain σ̄0 = 1324.23 and σ̄1 = 1323.28.

When comparing these values to those measured on Fig. 3.1, we can see
that the measured value of σ̄0 corresponds to the computed approximated
value. For σ̄1, the value given by Equation (3.1) is slightly higher than the
measured value. This difference reflects the independence hypothesis made to
obtain the formulas. When performing the same experiment on parameters for
LDPC codes, where the covariance between the is much smaller, the measures
correspond exactly to the computed values.

As a consequence, the real value of the distance σ̄0 − σ̄1 is smaller than the
one computed using Equation (3.1). Hence, the theoretical analysis gives an
interesting bound on the relative distance ε def= σ̄0−σ̄1

k .

3.2. Analysis 75

3.2.3 Required number of samples.
Each syndrome is the result of k scalar products between the error and a parity-
check equation. When the error contains a distance present in the spectrum
of the key with multiplicity `, the average syndrome weight is σ̄`, this means
that on average σ̄` of the k parity-check equations are not verified. Hence,
under the independence assumption, we can see each bit of the syndrome as a
Bernoulli trial satisfied with probability σ̄`

k .
Here, our goal is to decide for each distance δ whether or not ∆(h)[δ] = 1.

We do not care about the multiplicity. Formally, we want to distinguish D0

from ∪`>1D`. Let us denote D>1
def= ∪`>1D`. We can define σ̄>1 on D>1 just

like we defined σ̄` on D`. The sets are disjoint so we have σ̄>1 =
∑

`>1 σ̄`|D`|∑
`>1 |D`|

.
Hence, deciding whether a distance is in the spectrum of the key or not

is just like distinguishing a random binary variable with success probability
p0

def= σ̄0 from a random binary variable with success probability p1
def= σ̄>1.

This is a classic problem of hypothesis testing.

Remark 3.9. Note that for our parameters, the size of D` for ` > 2 is negligible
compared to D1, hence there is no practical need to distinguish σ̄1 from σ̄>1.

There is a lot of literature about hypothesis testing, and in particular a
theorem from Chernoff [Che+52] concerning such cases. We reproduce it
here as it is stated in [HMRR13, page 195].

Proposition 3.10 (Chernoff’s bound). Let 0 < p < 1, let X1, X2, . . . , XN be
independent binary random variables, with Pr[Xk = 1] = p and let SN =

∑N

k=1 Xk
N .

Then for any t > 0,
P [|SN − p| > t] 6 2e−2Nt2 .

This can be used to understand how the number of samples required to
find the key evolves. Here we want to distinguish p0 from p1, we will use
p0+p1

2 as the decision threshold. Chernoff’s bound states that we should have
N ∼ 1

ε2 repeated Bernoulli trials for the decision test to be relevant, where
ε = |p1 − p0| = σ̄0−σ̄1

k is the distance between the two outcomes.
To decide whether a particular distance δ is in the spectrum or not, we

need to compute the mean of N Bernoulli trials, but each syndrome weight is
already the sum of the results of k Bernoulli tests. Hence, we need to observe
the weight of Nk syndromes. These syndromes need to be in one of the D`, this
means that the distance δ needs to be in the spectrum of the error pattern that
generates the syndrome. As the error patterns are generated uniformly, we
proceed by rejection sampling to ensure this condition.

76 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Eve Alice

m
$←− Fk

2
e

$←− Fn
2 ,wH(e) = t c

def= mGA + e

sᵀ ←HAcᵀσ
def= wH(s)

Figure 3.2: Attack on the syndrome weight. GA denotes Alice’s public key
and HA her private key.

For a given distance δ, let α def= P [∆(e)[δ] = 1]. We need to estimate the
value of α. The number of vectors of length k and weight w that do not contain
δ in their spectrum is∏w−1

j=0 (k−3j). Hence, neglecting the cases of multiplicity,
we obtain a good approximation of α with the following formula.

1−
∏b t2c−1
j=0 (k − 3j)∏b t2c−1
j=0 (k − j)

.

Hence, to decide whether or not δ ∈ ∆(h), we need to observe the decoding
of N

αk syndromes, with N ∼ 1
ε2 . As we use the same data to decide for all

distances, this is the number of samples needed to recover the whole spectrum.

3.3 Attack on the syndrome weight
Following our analysis, we propose here a new attack.

3.3.1 Attack model
The scenario for our attack is the following. Eve can encrypt randommessages
using the QC-MDPC scheme described in 3.1 and Alice’s public key. She has
access to the plaintext but cannot choose themessages. She sends themessages
for decryption. Whenever the device decodes a message sent by Eve, she has
a way to observe the weight of the syndrome.

The attack we describe here is an abstraction. We do not focus on how,
or even if, Eve gets access to the data. It might be possible or not depending
on a particular implementation and on the abilities of the attacker. The point
is to establish through a simulation that some secret information leaks from
the syndrome weight and to compare the cost of that simulation with the
theoretical analysis of the previous section.

3.3. Attack on the syndrome weight 77

We suppose that Eve’s error patterns are randomly generated. Indeed, in
the scheme, semantically secure conversions ensure that the error patterns are
random [KI01]. If we allow Eve to choose the error patterns, this will only
make the attack easier, as in [GJS16].

Contrary to [GJS16], we collect information from all the error patters, not
only those leading to a decoding failure.

3.3.2 The attack
Our goal is to compute the distance spectrum of Alice’s private key. For each
distance δ between 1 and bk2cwe want to decide the value of ∆(hAlice[δ]). As
we have seen in 3.2, for each distance δ such that ∆(e)[δ] = 1, the expected
averageweight of the syndrome σ = wH(s), where s = HAlice·cᵀ = HAlice·eᵀ,
is expected to be different if ∆(hAlice)[δ] = 1.

Hence, the idea is, for each distance δ, to compute the average value of
the syndrome weight σ for error patterns e such that ∆(e)[δ] = 1. The er-
ror patterns are generated randomly and each error e can be used to obtain
information on all the distances in its spectrum. This leads to Algorithm 8.

Algorithm 8: Computing the distance spectrum using the syndrome
weight oracle
Input: An oracle O that, given a noisy codeword, returns σ its

syndrome weight, the number of samples N , a threshold value
T .

1 Create three tables SyndromeCount, OccurenceCount and Spectrum of
length bk/2c and initialize their entries to zero

2 for i = 1 to N // Repeat for N random ciphertexts

3 do
4 Let m be a random message and e← [e0||e1] an error vector

drawn uniformly at random
5 Let c← QCMDPC.Enc(m, e) and σ ← O(c).
6 for δ = 1 to bk2c s.t.∆(e)[δ] = 1 do
7 OccurenceCount[δ]← OccurenceCount[δ] + 1.
8 SyndromeCount[δ]← SyndromeCount[δ] + σ.
9 for δ = 1 to bk2c do

// If the DFR is less than some threshold T

10 if SyndromeCount[δ]/OccurenceCount[δ] < T then
11 Spectrum[δ]← 1

12 return Spectrum

78 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Following the discussion in Section 3.2.3, we will take threshold = σ̄0+σ̄1
2 .

3.3.3 Experimental results
The spectrum recovery algorithm was first tried on a simplified version of the
scheme using only one block, in order to compare to the expected behaviour.
The result is striking. Using the usual parameters for 80-bit security, with one
hundred thousand samples, the spectrum appears very clearly and we can
even see the multiplicities, that is, distances that appear several times in the
key, see Figure 3.1. When pushing to one billion samples, there is no room for
confusion.

When performing the same experiment on the real QC-MDPC scheme
with two blocks, we obtain similar results. The attack is performed on each
block separately, that is for each error pattern, we added the syndrome weight
to the counters of all distances present in the first half of the error to recover
the spectrum of the first block. Because there is no correlation between the two
halves of the error pattern, the presence of the second block acts as a random
noise added to the syndromeweight. Hence the only difference is that we need
more samples to reduce the variance and distinguish well which distances are
in the key spectrum. Note that it is possible to compute the spectrum of both
blocks at the same time, so there is no need to double the number of samples
to recover the second block.

For 80-bit security parameters, we can see on Figure 3.3 the spectrum ap-
pearing more and more distinctively when we increase the number of samples.
With 220 samples, we can fully distinguish the spectrum. The same attack
requires 223 samples for 128-bit security parameters and 225 for 256-bit security
parameters.

This attack was also performed when another error is added to the syn-
drome, like in the Ouroboros scheme [DGZ17] (with an additional error
of weight 3d). Again, this only adds random noise and we can recover the
spectrumwith around a fewmillion samples for the 80-bit security parameters.

3.4 Attack on the iteration count

3.4.1 Motivations and attack model
Now that we know that the syndromeweight leaks information, any parameter
correlated to this quantity could potentially be used to mount a side channel
attack. An interesting parameter that could be easy to measure is the number
of iterations of a loop.

3.4. Attack on the iteration count 79

Figure 3.3: Average syndrome weight per distance, (from left to right, from
top to bottom) 214, 216, 218 and 220 samples, 80-bit security QC-MDPC scheme.
The color of the distances indicate their multiplicity in the key spectrum (black
= 0, red = 1, blue = 2, green = 3, purple > 4)

The decoding algorithm for QC-MDPC codes is an iterative algorithmwith
no termination proof. The number of rounds needed to correct the errors
varies. This has been studied by in [CS16a]. As mentioned in Section 2.2.1.2,
the algorithm depends on the waywe chose the thresholds. For most instances,
using fixed or variable thresholds, the algorithm usually corrects the error
in 3 rounds, but some instances need 4, 5 or even more iterations. Usual
implementations abort after a certain number of rounds (around 10), this is
what was used for the attack in [GJS16].

Experimentally, we observe that the correlations between the spectrum of
the error and the spectrum of the key has an impact on the average decryption
time. The more distances appear both in spectrum of the error and in the
spectrum and the key, the fewer the number of iterations needed to decode
on average. This appears clearly on Fig. 3.4. We note that the correlation is
slightly more important on Fig. 3.4 when we use variable thresholds than with
fixed thresholds (the average value is lower for variable thresholds, but the
same scale is used for both figures).

This motivated us to try to perform an attack focusing on the iteration
count (Algorithm 9). The scenario is the same as previously, but instead of

80 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Figure 3.4: Average number of iterations needed for decryption, depending
on the size of the intersection of the spectrum of the error and the spectrum of
the key. 229 samples, 128-bit security QC-MDPC scheme, decoding with fixed
thresholds (left) and variable thresholds (right). Note that use of variable
thresholds results in stronger correlation.

Eve Alice

m
$←− Fk

2
e

$←− Fn
2 ,wH(e) = t c

def= mGA + e

i← #Iterations(Decode(c,HA))
i

Figure 3.5: Attack on the iteration count. GA denotes Alice’s public key and
HA her private key.

observing the syndrome weight, Eve can measure the number of iterations
needed to decode hermessage. To obtain the spectrum, Eve uses the exact same
data collection algorithm: for every distance in the spectrum, she computes
the average number of iterations needed to correct an error containing this
distance.

If the decoding algorithm is implemented in a textbook manner, the execu-
tion time evolves linearly with the number of iterations, and hence the number
of iterations can straightforwardly be deduced from the execution time of the
decoding. Hence, in such a case, this attack is a timing attack. However, we do
not intend to experiment a real timing attack (measuring the execution time),
as this result would be specific to an implementation. Instead, our goal here
is to demonstrate that an implementation that leaks any information related
to the number of iterations is a security threat. Therefore, one should aim at
an implementation for which the running time (and any other measurable

3.4. Attack on the iteration count 81

parameter) is independent of the number of iterations.

3.4.2 The attack
The previous algorithm can be adapted to this model and yields Algorithm 9.

Algorithm 9: Computing the distance spectrum using the number of
iterations
Input: An oracle O that, given a noisy codeword, returns P the

number of iterations needed to decode it using the bitflip
algorithm, the number of samples N , a threshold value T .

1 Create three tables IterationsCount, OccurenceCount and Spectrum of
length bk/2c and initialize their entries to zero

2 for i = 1 to N // Repeat for N random ciphertexts

3 do
4 Let m be a random message and e← [e0||e1] an error vector

drawn uniformly at random
5 Let c← QCMDPC.Enc(m, e) and P ← O(c).
6 for δ = 1 to bk2c s.t.∆(e)[δ] = 1 do
7 IteratisCount[δ]← IterationsCount[δ] + 1.
8 SyndromeCount[δ]← SyndromeCount[δ] + P .
9 for δ = 1 to bk2c do

// If the DFR is less than some threshold T

10 if IterationsCount[δ]/OccurenceCount[δ] < T then
11 Spectrum[δ]← 1

12 return Spectrum

3.4.3 Experimental results
We run Algorithm 9 and plot the value of IterationsCount[δ]/OccurenceCount[δ]
for all distances δ. The resulting plots, in Figure 3.6, look very similar to the
plots of the decoding failure rate that result from Algorithm 7. When the
bands are completely separated, the distance spectrum (and thus the secret
key) can be recovered in the same way it was in the GJS [GJS16] attack. We
performed the attack using two types of thresholds (see Section 2.2.1.2).

This attack performs well and it is possible to fully recover the distance
spectrum with variable thresholds using 225 samples on 80-bit security QC-
MDPC scheme, 225 samples for 128-bit security parameters (see Fig. 3.6) and

82 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

Figure 3.6: Attack using the number of decoding iterations, with 225 samples,
against parameters for 128-bit security QC-MDPC schemewith variable thresh-
old decoding. The color of the distances indicate their multiplicity in the key
spectrum (black = 0, red = 1, blue = 2, green = 3, purple > 4)

228 samples for 256-bit security parameters. For fixed thresholds, we manage
to recover the spectrum for 256-bit security with 228 samples.

Note that these this side-channel attacks are much faster to execute than
the GJS reaction attack. An intuitive explanation for the speedup is that the
number of iterations varies often, while decoding errors rarely happen. This
allows more information about the correlations to be collected per iteration of
the attack algorithm.

3.4.4 About spectrum reconstruction
Until here, the number of samples needed for a successful attack has been
characterised as the number of decryption to perform in order to obtain a plot
where the points corresponding to a distance absent of the spectrum (i.e.with
multiplicity 0) and the points of multiplicity > 0 are clearly distinct. This
means that there exist a threshold value T such that only points with value< T
have multiplicity > 0. Indeed, the vector reconstruction algorithm presented
in [GJS16] which reconstructs a vector from its spectrum takes as input the
full spectrum. More exactly, it only makes use of the positive information
(“distance δ is in the spectrum”) but does not use the negative information

3.5. Possible mitigations 83

(“distance δ is not in the spectrum”). However, such an information is as
important, and can be exploited to improve the algorithm.

More importantly, the knowledge of the full distance spectrum usually
overdetermines the solution. Hence, one could potentially reconstruct the key
from plots where the cluster of points corresponding to different multiplic-
ities are not distinct. Consider for instance the lower left plot of Figure 3.3,
corresponding to 220 samples. In such a situation, there are points for which
it is clear that their multiplicity is zero, some for which it is clear that the
multiplicity is > 0, and some for which it is impossible to decide. One could
imagine an algorithm that takes as input only a list of distance that are present
in the spectrum for sure (above a certain threshold T+), and a list of distances
absent from the spectrum for sure (bellow a certain threshold T−). The points
between T+ and T− do not provide any information. Depending on the num-
ber of points provided, this could be enough to yield a unique solution (up to
shift and reflection) or at least to drastically reduce searchspace.

Another approach would be to associate to each point a real value corre-
sponding to the level of confidence we have that they belong to one category
or the other. Finding a solution then becomes an optimisation problem. This
could be qualified as a soft approach to the problem.

The efficiency of these approaches has not been thoroughly studied but the
main point of this discussion is that even a partial leak of the distance spectrum,
or more exactly, providing the adversary with an access to a parameter that
can be exploited to recover even only a portion of the spectrum, is a security
issue.

3.5 Possible mitigations

3.5.1 Ephemeral keys
The first and obvious mitigation for such attacks is to prevent the reuse of the
same key. This means that the QC-MDPC can be safely used as a key encapsu-
lation mechanism (KEM), but not as a public key encryption (PKE) scheme,
where the above scenarios apply. In a key encapsulation mechanism, the goal
is to derive a shared secret, so the key will only be used once. This is the reason
why the BIKE scheme [ABBBB+17] submitted to the NIST standardisation
process is a KEM and not a PKE. However, this is more of a reduction of the
use-case than a mitigation. The goal is to be able to make the QC-MDPC
scheme CCA-secure to be able to reuse the keys safely.

84 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

3.5.2 Parallel encryption
A solution named ParQ and proposed in [ELPS18] is to use parallel encryption.
The idea is to perform P different encryption of the message. This constitutes
the ciphertexts. The receiver tries to decrypt all the ciphertexts but only needs
to successfully decrypt one of them to find the value of the plaintext. Hence,
in such a scheme, a decryption failure means that none of the P ciphertexts
could be successfully decrypted. Therefore, if the usual QC-MDPC scheme
has a decoding failure rate of 2−κ, then the ParQ scheme has a DFR of 2−Pκ,
as each ciphertext is enciphered with an independent error.

The details of this scheme can be found in [ELPS18]. The factor P can be
chosen such that Pκ is at least equal to the security level of the scheme. In
practice, with the QC-MDPC parameters presented in this chapter, the value
of P has to be chosen between 3 and 12 depending on the security level. This
has a significant impact on the performance. Indeed, the size of the ciphertext,
as well as the encryption and decryption time, are multiplied by a factor P .
This is not very satisfying, compared to other schemes. For instance this would
give an encryption time more than a hundred time slower than the classical
McEliece scheme [BCLMM+19] (which on the other hand suffers from its
large public key size).

3.5.3 Forcing a full spectrum: monomial codes
Another approach proposed in [SBCC18] is to design the secret key such that
all possible distances are in their spectrum. Their proposal relies on monomial
codes, which are QC-LDPC codes. Instead of having two circulant block
matrices, the idea is to have multiple small circulant block matrices (around
one hundred matrices in length and width), and make sure that for all blocks,
all distances exist in the spectrum. In such a case, it does not make sense
to perform such an attack, because the spectrum does not carry significant
information and because the reconstruction algorithm would fail. Indeed, in
such a configuration, the reconstruction algorithm as presented in [GJS16]
reduces to the problem of finding a clique in a graph, which is hard for such
parameters. Hence, this scheme can have a non-negligible DFRwhile defeating
GJS-like attacks.

However, this is not a satisfying solution. Apart from increasing the key
size, this scheme requires parameters that are very different from the classic
QC-MDPC scheme. The small block matrices induce more structure, which
could lead to new structural attacks. Moreover, the security analysis does not
take into account the multiplicities in the spectrum. An attacker could take
advantage of this. This scheme uses QC-LDPC codes, as in the LEDA scheme
[BBCPS19], which have been subject to recent attacks [APRS20]. Finally, this

3.5. Possible mitigations 85

does not change the fact that the scheme has a significant decoding failure
rate. Although this scheme resists attacks based on the distance spectrum,
an adversary could still observe the DFR and this may still leak some other
information about the key.

3.5.4 Lowering the DFR
The best solution to preserve the same key size while avoiding GJS-like attacks
seems to consist in modifying the decoder to obtain a DFR < 2−κ, where κ is
the number of security bits of the scheme (for instance 128 or 192). A recent
line of works has made promising progress in this direction.

3.5.4.1 Theoretical tools to compute low DFR

First, one has to find theoretical tools to assess that a decoder would reach such
a low DFR. One cannot rely on the classical simulation technique consisting in
decoding a large number of random errors and count the number of failures.
Indeed, by design such events are too rare to be measured. Two recent results
give some insight on how to overcome this pitfall and us understand how the
DFR evolves when increasing the length of the code.

• A theoretical model by Tillich [Til18] shows that asymptotically the
DFR decreases exponentially in the code length. This model focuses on
a classical bit-flip algorithm with two iterations and supposes that the
weight of the secret key and of the error vector grow in√nwhile classical
model rather consider increasing the code length for fixed weight of the
secret key and error vector. Still, this is the only asymptotical result of
this kind and it provides a good insight of the behaviour of the DFR.

• Another result from Sendrier and Vasseur [SV19] studies a simpler step-
by-step decoder, where bits are flipped one by one instead of performing
iterations on the whole vector. This decoder is modeled by a Markov
chain. The theoretical results are compared with simulations and behave
rather similarly, which validates this model. Again, the DFR seems to
asymptotically decrease exponentially with the code length.

Hence, one can plot the exponent of the DFR relatively to the code size for
small values (obtained through simulations), and this almost yields a affine
curve. These two results mean that it is reasonable to extend the line and
use it to extrapolate the DFR for larger code length. This approach gives a
conservative estimate of the required code length to reach a desired DFR.

86 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

3.5.4.2 New decoders

In the meantime, new variants of the decoding algorithm have been proposed.
Indeed, with threshold decoding, onewould be tempted to set a high threshold
(i.e.making conservative choices), and hence to only flip bits for which we
are very confident that they are in the support of the error. But this approach
may require to perform more iterations, since less bits are flipped at each
step. An iteration is a relatively costly operation, since one has to compute
the counters for all positions (tens of thousands of bits). On the other hand,
a lower threshold means that we are more likely to flip bits that are already
correct, and hence amplify the error.

An idea proposed in the first version of the BIKE submission is to define
two threshold, corresponding to two levels of confidence. Once the counters
are computed, all bits with counters higher that the high threshold are flipped.
These are bits for which we are almost sure that they were incorrect. These are
called “black” positions. The positions with counter values higher than the
lower threshold correspond to a lower level of confidence. These bits seem to
be incorrect but it is less certain. These are called “gray” positions. The idea is
to flip the black positions and to recompute the counters only for gray positions.
This is much cheaper than a new iteration. This approach, which is inspired
by soft decoding, is referred to as gray decoding [DGK20]. Another idea is to
check how the counters evolve after flipping some bits and undo some flips
if they have not improved the situation. Finally, one can even flip bits with
the intention to unflip them a few iterations later. This idea, called backflip
[SV20], allows to avoid some undesired error patterns with low counters.

Remark 3.11. With these new algorithms, the notion of “number of iterations” dis-
appears (or at least becomes less relevant). Indeed, the general spirit is to lesser the
number of full iterations (computing the counters for each bit and updating the error).
Instead, this operation is applied to a smaller subset of bits. Therefore, the side-channel
attacks presented in this chapter looses some of its meaning, because it relies on the
hypothesis that the running time of the algorithm reflects on the iterations.

However, one can adapt the general idea by considering the number of individual
counters that are computed instead of the number of iterations. In a non-constant-
time implementation, the running time certainly depends on this quantity, and it is
reasonable to believe that this quantity is still correlated with the syndrome weight
if one is not careful enough in the design of the algorithm. Therefore, all remarks in
this chapter should still be taken into account in the design of this new generation of
decoding algorithms.

3.6. Conclusion 87

3.5.4.3 Best trade-off

Several combinations of these new ideas have been proposed to improve the
efficiency of the decoder. The new theoretical results can be used to find the
DFR of these different variants. The underlying hypothesis is that all decoders
share the same behaviour: from a certain point, the exponent of the DFR
decreases linearly with the code length. Thus, given some code parameters,
one can compare different decoders, in order to find the best trade-off between
three criteria: the number of steps of the algorithm, the estimated DFR and
finally the performance of a constant time implementation of the decoder.

This comparison work is performed in [DGK20] and the authors con-
clude that the best trade-off is achieved by the “black-gray flip” decoder. This
choice of decoder has been included in the latest revision of the BIKE proposal
[ABBBB+17] for the final round of the NIST post-quantum standardisation
process, with a constant-time implementation.

3.6 Conclusion
The GJS attack [GJS16] is a general idea that can be adapted to several other
post-quantum schemes. Indeed, for most cryptographic schemes where the
decryption may fail, this failure happens when the error has a specific pattern,
correlated to the secret key. Hence, observing errors which yield decoding
errors provides information on the secret key. This attack has been adapted to
other code-based schemes: for QC-LDPC cryptosystems in [FHSZG+17], for
HQC in [GJ20], even for LRPC, the rank-metric equivalent ofMDPC codes (see
next chapter), in [AG19]. It has also been adapted to lattice-based schemes,
such as NTRU in [DGJNV+19] or LAC in [GJY19]. Even a non-careful use of
the generic semantically secure Fujisaki-Okamoto transformation in a scheme
can lead to such an attack as illustrated in [GJN20].

As for QC-MDPC schemes, the analysis of the GJS attack shows that it
does not depend of the details of the decoder. Hence, any decoding algorithm
involved in the QC-MDPC scheme should be implemented with constant num-
ber of iterations, or at least add some procedure to ensure that the number of
iterations is independent of the syndrome weight. If the notion of iteration
does not apply (as for instance for gray decoding, where only a small number
of counters are involved), this notion can be replaced by the number of coun-
ters computed (see Remark 3.11). The DFR should be lower than 2−κ where
κ is the number of security bits, in order to defeat all GJS-like attacks. There
is now a general consensus on how to compute the expected DFR, although
new theoretical arguments would be welcome. Finally, the hardware imple-
mentations should be thoroughly designed, to make sure that no parameter

88 Chapter 3. Side-channel attacks on the QC-MDPC cryptosystem

correlated to the syndrome weight can be observed by a curious attacker hav-
ing access to the hardware device. This last point requires further investigation.
If such conditions are all confidently met, then one could claim CCA security.

The general understanding of the properties of QC-MDPC decoders has
evolved quickly in the last years. Although the NIST considers BIKE as “one
of the most promising code-based candidates” for standardisation, they stress
in their recent report that there remain “serious questions about side-channel
protections and CCA security” [AAACD+20]. Our analysis improves the
general understanding of these issues and strengthens the general confidence
in the security of the BIKE scheme. The NIST announced in 2020 that they
decided to select BIKE for the third round of the standardisation process but as
an “alternate candidates” rather than a finalist. Indeed, theNIST acknowledges
the strong improvements in the decoding and understanding of the failure
rate, but estimates that more time is needed to fully address these concerns.
Hence, one can expect that within a few years, all conditions will be met for
BIKE to become a standardised algorithm.

Chapter4
Attack on the

Edon-K cryptosystem

One promising line of work to overcome the drawback of the large key size
in code based cryptography is to replace Hamming metric by another metric
in the definition of codes. Especially, the rank metric shares a lot of properties
with the Hamming metric.

Among the code based cryptosystems proposed as a response to the NIST
call for post-quantum standardization, the Edon-K cryptosystem [GG17] can
be analysedwith respect to the theory of rankmetric codes. Indeed, an analysis
of the scheme shows that the code used matches the properties of Low Rank
Parity Check codes, the rank-metric equivalent of MDPC codes.

Using the tools of rank metric, we propose a polynomial-time key recovery
attack against the Edon-K key encapsulation mechanism. This result was
published in [LT18] and led to the elimination of the Edon-K cryptosystem
from the standardisation process.
Related publication: Lequesne and Tillich, Attack on the Edon-K Key Encapsu-
lation Mechanism, ISIT 2018 [LT18].

Contents
4.1 Rank metric and LRPC codes 90

4.1.1 Introduction to rank metric 90
4.1.2 Definitions . 91
4.1.3 Hard problems in rank metric 92
4.1.4 LRPC codes . 93

4.2 The Edon-K cryptosystem 95
4.2.1 Notations . 95
4.2.2 Key generation . 96
4.2.3 Encapsulation . 97
4.2.4 Decapsulation . 97
4.2.5 Suggested parameters 98

4.3 Algebraic attack on the Edon-K scheme 98

90 Chapter 4. Attack on the Edon-K cryptosystem

4.3.1 Outline of the attack 98
4.3.2 Reconstructing the parity-check matrix 99
4.3.3 The decoding step 101

4.4 Concluding remarks . 103
4.4.1 Cost of the attack 103
4.4.2 Without compression of the public key 103
4.4.3 Conclusion . 104

4.1 Rank metric and LRPC codes
4.1.1 Introduction to rank metric
The theory of error correcting codes was originally developed in the context
of information theory, as a solution to the problem of symbol transmission
over a noisy channel. The most classical model of this problem is the binary
symmetric channel, and in this context the number of errors in measured by
the Hamming distance. Therefore, error correcting codes were defined with
respect to this metric.

However, the definition of error correcting codes can be extended to other
metrics. Indeed, in a cryptographical context, one is not bound by the direct
applications to signal transmission. Hence, studying codes with respect to
other metrics can be an interesting source of new hard problems on which
one could base new cryptographic primitives. This could typically be a way to
overcome the drawback of the large public key size of the classical McEliece
cryptosystem.

With this respect, rank metric appears to be one of the most interesting
alternative to the Hamming, with which is shares several similarities. This
rank metric of a vector x with entries in an extension field Fqm is defined as
the maximal number of entries of x that are linearly independent over Fq.

We can trace back the definition of this metric to a 1951 paper from Hua
[Hua51] which introduced the notion of “arithmetic distance” between matri-
ces over a field Fq: the distance between two matrices is defined as the rank of
their difference. In 1978, Delsarte [Del78] studies a similar distance (which he
calls the “q-distance”) over bilinear forms over Fq, which can equivalently be
seen as matrices. Delsarte studies the properties of the codes obtained using
this metric. He characterises the codes that meet the Singleton bound. These
codes are now called maximum rank distance (MRD) codes, which are the
rank-metric equivalent of the MDS codes.

In 1985, Gabidulin [Gab85] describes these codes in terms of vectors over
Fqm rather than matrices over Fq. Indeed, given a vector over Fqm , each entry

4.1. Rank metric and LRPC codes 91

of the vector can be expanded over a an Fq-basis, and hence represented by
its m coefficients. Hence, a vector of length n over Fqm leads to an m × n
matrix over Fq. As the rank does not depend on the choice of the basis, there
is an exact correspondence between these objects. The novelty in Gabidulin’s
approach is that he studies codes that are linear over Fqm (and not only Fq).
This choice allows for a much more compact representation and yields inter-
esting properties. In fact, this is the main reason why the rank metric based
McEliece schemes achieve significantly smaller key sizes. Moreover this vecto-
rial representation allows to view the known families of MRD codes as rank
metric analogues of Reed-Solomon codes and to obtain an efficient decoding
algorithm for them [Gab85].

Several attempts were made to use these codes in a McEliece cryptosystem
[GPT91; FL05] but were subject to attacks [Ove05; Ove08; GOT18; CC19]. A
few years later, other families of rank-metric codes with efficient decoding
algorithms were proposed, in particular the Low Rank Parity Check codes
(LRPC) [GMRZ13], which are the rank-metric analogues of MDPC codes. We
will focus on these codes in the rest of this chapter.

4.1.2 Definitions
Definition 4.1 (Rank metric). Let x = (x1, . . . , xn) ∈ Fn

qm and (β1, . . . , βm) be
a basis of Fqm viewed as anm-dimensional vector space over Fq. Each coordi-
nate xj ∈ Fqm is associated to a vector of Fm

q in this basis: xj =
∑m
i=1mi,jβi.

Them× nmatrix associated to x is given by M(x) def= (mi,j)16i6m,16j6n.
The rank weight wR(x) of x is defined as :

wR(x) def= Rank M(x).

The associated distance d(x,y) between elements x and y of Fn
qm is defined

by d(x,y) def= wR(x− y).

This definition does not depend on the choice of the basis B.

Definition 4.2 (Support of a word). Let x = (x1, . . . , xn) ∈ Fn
qm . The sup-

port of x, denoted Support(x), is the Fq-subspace of Fqm generated by the
coordinates of x:

Support(x) def= 〈x1, . . . , xn 〉Fq .

We have dim(Support(x)) = wR(x).

Definition 4.3 (Rank code). An Fqm-linear rank code C of dimension k and
length n is a subspace of dimension k of Fn

qm . C can be represented in two
equivalent ways: by a generator matrix G ∈ Fk×n

qm such that C = {xG s.t. x ∈

92 Chapter 4. Attack on the Edon-K cryptosystem

Fk
qm} and by a parity-check matrix H ∈ F(n−k)×n

qm such that C = {y ∈
Fn
qm s.t. Hyᵀ = 0n−k}.

4.1.3 Hard problems in rank metric
Similarly to codes in Hamming metric, the security of rank-based cryptosys-
tems can be reduced to a few simple problems that are expected to be hard.
The main problem is the generic decoding problem in the rank metric, which
can be described as follows.

Problem 4.4 (Generic decoding problem for the rankmetric). Let G be an k×n
matrix over Fqm , with k 6 n. Denote C the Fqm-linear code generated by G. Given
y = c + e where c ∈ C and e ∈ Fn

qm such that wR(e) 6 r, find c and e.

This problem can equivalently be stated in terms of syndrome decoding,
which is often more convenient for cryptography.

Problem 4.5 (Rank SyndromeDecoding (RSD)). Let H be an (n−k)×nmatrix
over Fqm , with k 6 n. Given s ∈ Fn−k

qm and an integer r, find y ∈ Fn
qm such that

Hyᵀ = sᵀ and wR(y) 6 r.

The generic decoding problem in rankmetric can also be seen as a particular
instance of the more general MinRank problem.

Problem4.6 (MinRank). GivenmatricesM1, . . . ,Mk ∈ Fm×n
q , an integer r and a

matrix M0 ∈ Fm×n
q , find (λ1, . . . , λk) ∈ Fk

q such that wR(
∑k
i=1 λiM i−M0) 6 r.

Indeed, given an instance of the generic decoding problem and a basis
of Fqm , the vector y can be expanded into an m × n matrix over Fq (which
will be M0) and each row of the generator matrix G can be expanded as an
m× nmatrix M i. Hence, the linear combination∑k

i=1 λiM i corresponds to a
codeword of C at rank-distance 6 r of y.

The MinRank problem is known to be NP-complete [Cou01]. However,
these two problems are not equivalent, because the Fqm-linearity of the rank
codes is not taken into account in the MinRank problem.

Attacks on the RSD problem have first been developed in [OJ02] and
then [GRS16]. Two recent articles [BBBGN+20; BBCGP+20] improve these
algebraic attacks by using a new way to model the problem as a system of mul-
tivariate equations and break several sets of parameters, though the complexity
of the problem remains exponential.

4.1. Rank metric and LRPC codes 93

4.1.4 LRPC codes
The Low Rank Parity Check (LRPC) codes are introduced in [GMRZ13] and
defined as follows.

Definition 4.7 (LRPC code). A Low Rank Parity Check (LRPC) code of rank
d, length n and dimension k over Fqm is a code that admits a parity-check
matrix H = (hi,j) ∈ F(n−k)×n

qm such that all its coefficients hi,j lie in an Fq-
subspace of Fqm of dimension at most d. This matrix will be called the low
rank parity-check matrix of the code.

Decoding LRPC codes. LRPC codes can be viewed as analogues of LDPC (or
MDPC) codes for the rank metric. Indeed, such codes do not have a particular
algebraic structure (compared for instance to geometric codes), apart from
the fact that there exists (randomly chosen) words of relatively small weight
in their dual. Just like LDPC/MDPC codes, LRPC codes enjoy an efficient
decoding algorithm based on their low rank parity-check matrix.

The main idea of the decoding algorithm, introduced in [GMRZ13], is that
if the entries of the low rank matrix are all in a subspace B = 〈β1, . . . , βd 〉Fq
of dimension d and the entries of e are all in a subspace E = 〈 ε1, . . . , εr 〉Fq of
dimension r, then the syndrome s = eHᵀ has all its entries in the product
space P def= B · E def= 〈 (βiεj)i,j 〉Fq of dimension 6 rd. It is reasonable to expect
that the entries of s span the whole subspace P when n − k > rd. Hence,
knowing y and H , one has access to B and P and can deduce the value of
E . Then it is possible to solve the system expressed in the subspace of small
dimension.

Proposition 4.8 ([GMRZ13], Theorem 1). Let H be an (n− k)× n parity-check
matrix of an LRPC code of rank d > 2, then Algorithm 10 decodes in polynomial time
a random error of rank r such that rd 6 n− k with failure probability q−(n−k+1−rd).

Remark 4.9. Just like in the case of MDPC codes, the decoding of LRPC codes may
fail with a small probability. The difference is that in this case there exists a bound on
the failure probability. Still, this decoding failure can lead to some reaction attacks
similar to the attack on MDPC codes exposed in the previous chapter, as explained in
[AG19].

Cryptosystems based on LRPC codes. The paper [GMRZ13] introducing
LRPC codes proposes an application to cryptography, in a cryptosystem fol-
lowing the McEliece scheme. The trapdoor is the low-rank parity-check matrix
of the code, which is key to decode efficiently. Hence, just like for MDPC
codes, the secret key is the low-rank parity-check matrix and the public key is

94 Chapter 4. Attack on the Edon-K cryptosystem

Algorithm 10: LRPC-Decoding(H, r,y) [GMRZ13]
Input: H ∈ F(n−k)×n

qm the low rank parity-check matrix of an LRPC
code, an integer r, y ∈ Fn

qm such that y = c + e where c is a
codeword and wR(e) 6 r.

Output: e ∈ Fn
qm .

1. Compute the syndrome s such that sᵀ = Hyᵀ = Heᵀ. Let
(s1, . . . , sn) denote the entries of s and S def= 〈 s1, . . . , sn−k 〉Fq the
associated subspace.

2. Let B be the subspace containing the entries of H and denote
(β1, . . . , βd) be a basis of B.

3. For i ∈ J1, dK, denote Si def= β−1
i S. Let E

def=
⋂d
i=1 Si.

4. Express Heᵀ = sᵀ as a linear system over Fq by expanding each
coordinate over the product space E · B. This yields a system with
nr unknowns (ev expressed in the basis E) and (n− k)rd equations
(the n− k equations expressed in the basis E · B).

5. Return e.

a (random) generator matrix of the code. The encryption consists in encoding
the message and adding an error corresponding to the decryption radius of
the LRPC code. To decrypt, one applies the decoding algorithm.

The security of such a scheme relies on the hardness of the generic decoding
(RSD) problem, as well on another security hypothesis specific to LRPC codes:
the indistinguishability of LRPC codes. More specifically, this supposes that
given a generator matrix, it is hard to find low rank codewords in the dual.
Indeed, collecting such vectors would yield a low rank parity-check matrix
and hence allow to use the decoding algorithm.

Problem 4.10 (LRPC problem). Given a generator matrix G of an LRPC code C
of rank d, find a vector of weight 6 d in the dual code of C .

Two schemes in this line of work have been submitted in response to the
NIST call for post-quantum standardization: a key encapsulation mechanism,
LAKE, and a public key encryption scheme LOCKER, later merged into a
single proposal named ROLLO [ABDGH+19]. However, the recent attacks
[BBBGN+20; BBCGP+20] break the parameters proposed by these schemes.

4.2. The Edon-K cryptosystem 95

4.2 The Edon-K cryptosystem
Edon-K [GG17] is a key encapsulation mechanism proposed by Danilo Glig-
oroski and Kristian Gjøsteen for the NIST post-quantum cryptography call.
Here we describe the key generation, encapsulation and decapsulation, omit-
ting some details that are not relevant for the attack. We refer to [GG17] for
the full description.

4.2.1 Notations
Hash function. The Edon-K scheme makes use of a hash function, denoted
H (·), corresponding to standard SHA2 functions (SHA-256 or SHA-384 de-
pending on the parameters). We denoteHi(·) def= H(. . .H(·))︸ ︷︷ ︸

i times

.

Quasi-orthogonality. Given two non-zero elements a, b ∈ F2m with a 6= b
and a binary matrix P = (pi,j) ∈ Fn×n

2 , let P a,b = (p̃i,j) ∈ Fn×n
2m denote the

matrix of the same size with coefficients in F2m where p̃i,j = a if pi,j = 0 and
p̃i,j = b if pi,j = 1.

Proposition 4.11. If P is orthogonal (i.e.P−1 = P ᵀ) and n is even, then

(P a,b)−1 = P c,d
ᵀ (4.1)

where c def= a
a2+b2 and d def= b

a2+b2 .

Example 4.12. Form = 4, let F2m = F2[α] where α is a primitive element of
minimal polynomial X4 +X + 1. Representing the element αi ∈ F2m by the
integer i, we have for n = 4, a = 5 and b = 7:

P =


1 0 1 1
1 1 1 0
0 1 1 1
1 1 0 1

 P a,b =


7 5 7 7
7 7 7 5
5 7 7 7
7 7 5 7

 P−1
a,b = (P c,d)ᵀ =


11 11 9 11
9 11 11 11
11 11 11 9
11 9 11 11


Proof. This is a consequence of the characteristic 2 of F2m . Let us compute the
coefficients of M

def= P a,bP c,d
ᵀ and show that this is the identity matrix.

For bi, bj ∈ F2, denote Li,j(bi, bj) def= |{k ∈ J0, n− 1K, (pi,k, pj,k) = (bi, bj)}|,
i.e. the number of columns for which the entry of the i-th row is bi and the
value of the j-th row is bj .

96 Chapter 4. Attack on the Edon-K cryptosystem

Then for 0 6 i, j < n, we have

(M)i,j =
n−1∑
k=0

(P a,b)i,k(P c,d)j,k

= ac · Li,j(0, 0) + ad · Li,j(0, 1) + bc · Li,j(1, 0) + bd · Li,j(1, 1).

Note that this operation is in F2m , hence in characteristic two. Thus, only the
parity of the Li,j coefficients matters.

When i = j, we have Li,j(0, 1) = Li,j(1, 0) = 0. As P is orthogonal,
Li,j(1, 1) is odd. And because n is even, Li,j(0, 0) is odd too. Hence,

(M)i,j = ac+ bd = 1.

When i 6= j, Li,j(1, 1) is even because P is orthogonal. As the weight of
each row of P is odd, Li,j(0, 1) and Li,j(1, 0) have to be odd. And because n is
even, Li,j(0, 0) is even too. Hence,

(M)i,j = ad+ bc = 2 ab

a2 + b2
= 0.

Concatenation. For two vectors (or matrices) x and y, we will denote x||y
their concatenation.

4.2.2 Key generation
Given the public parametersm,n, k, r, ν, λ such that n is even and k 6 r 6 n,
the keys are generated by the following procedure.

1. Let a and b denote two randomly chosen non-zero elements of F2m such
that a 6= b.

2. Let P ∈ Fn×n
2 be chosen uniformly at random among n× n orthogonal

matrices.
3. Let H ∈ Fr×n

2 denote a random binary matrix.
4. Define a subspace Vg ⊆ F2m of dimension ν by randomly choosing ν

elements g0, . . . , gν−1 ∈ F2m . Denote Bg def= (g0, . . . , gν−1). Bg is a basis
of Vg.

5. Choose G ∈ Fk×n
2m such that all entries of G are in Vg and GHᵀ = 0k×r.

6. Define Gpub
def= GP c,d

ᵀ, where c and d are defined as in Proposition 4.11.
7. The public key is Gpub, the secret key is (a, b,P ,H).

4.2. The Edon-K cryptosystem 97

4.2.3 Encapsulation
Given the public key and the public parameters.

1. Choose a random vector m ∈ Fk
2m .

2. Define a subspace Ve ⊆ F2m of dimension λ by choosing a basis Be def=
(ẽ0, . . . , ẽλ−1) ∈ Fλ

2m as follows:
• choose (ẽ0, ẽ1) randomly in F2m ;
• for 1 6 i 6 λ/2− 1, define (ẽ2i, ẽ2i+1) def= H (ẽ2i−2||ẽ2i−1).

Denote Ve the subspace of F2m spanned by the elements of Be.
3. Choose a random vector e ∈ Fn

2m such that Support(e) ⊆ Ve.

4. Let c
def= mGpub + e.

5. Let (s0, s1) def= H (ẽL−2||ẽL−1).
6. The shared secret isH (s0||s1||H (c)).

7. Let h def= H (s1||s0||H (c)). The ciphertext is (c, h).

4.2.4 Decapsulation
Given the ciphertext, the shared secret, and the public parameters.

1. Recover e by decoding c using the private matrix Hsec
def= HP a,b

ᵀ.
2. Deduce Ve the vector space spanned by the coefficients of the vector e.

3. For all (x, y) ∈ Ve × Ve, for 1 6 i 6 λ/2 − 1 compute (s′0, s′1) def=
Hi (x||y||H (c)). If H (s′1||s′0||c) = h, then the shared secret is obtained
by computingH (s′0||s′1||H (c)).

Remark 4.13. Note that step 2 relies on the hypothesis that Support(e) = Ve.
This is verified with high probability for n >> λ. More exactly, the probability that
Support(e) is of dimension< λ is

(
λ−1
λ

)N . For the parameters of edonk128ref this
probability is 2−37. One could also explicitly ask for this condition to be fulfilled in
step 3 of the encapsulation process.
Remark 4.14. The last step of the decapsulation brute-forces all possible couples of
elements of Ve. In total this operation requires O(λ22λ) operations. This requires that
the value of λ remains small.

98 Chapter 4. Attack on the Edon-K cryptosystem

4.2.5 Suggested parameters
The parameters for Edon-K are given in Table 4.1. In this chapter we often
refer to the parameters of edonk128ref, the reference version proposed for 128
security-bits.

Table 4.1: Parameters proposed for Edon-K

Name m n k r ν λ

edonk128ref 128 144 16 40 8 6
edonk128K16N80nu8L6 128 80 16 40 8 6
edonk128K08N72nu8L8 128 72 8 40 8 8
edonk128K32N96nu4L4 128 96 32 40 4 4
edonk128K16N80nu4L6 128 80 16 40 4 6
edonk192ref 192 112 16 40 8 8
edonk192K48N144nu4L4 192 144 48 40 4 4
edonk192K32N128nu4L6 192 128 32 40 4 6
edonk192K16N112nu4L8 192 112 16 40 4 8

4.3 Algebraic attack on the Edon-K scheme
4.3.1 Outline of the attack
Our attack is based on three observations

1. The ciphertext is a vector c such that

c = mGpub + e. (4.2)

This error e is of low rank, since its rank is at most λ.

2. This code Cpub generated by Gpub is a subcode of an LRPC code, namely
the code Csec with parity-check matrix Hsec

def= HP a,b
ᵀ. This code is

indeed an LRPC code of rank 2 since all the entries of Hsec belong to
〈 a, b 〉F2

. We have
Cpub ⊆ Csec (4.3)

4.3. Algebraic attack on the Edon-K scheme 99

since

GpubHsecᵀ = GP c,d
ᵀ(HP a,b

ᵀ)ᵀ

= GP c,d
ᵀP a,bH

ᵀ

= GHᵀ (from (4.1))
= 0k×r (by definition of G, see step 5 of key generation).

This equation also appears as Corollary 1 of [GG17, p.19]. We have given
its proof here for the convenience of the reader. Let k′ = n − r be the
dimension of Csec.

3. If we recover a parity-check matrix of rank 2 for Csec we will be able to
recover mGpub and e from c. Indeed, mGpub ∈ Csec and we can decode
in Csec using a variation of Algorithm 1 of [GMRZ13] and the knowledge
of the parity-check matrix, provided wR(e) 6 λ < (n − k′)/2 = r/2 is
verified, which is the case for the parameters of Edon-K.

Hence the attack proceeds in three steps.

1. constructing and solving a linear system of equations to find a parity-
check matrix for the code Csec;

2. decoding the ciphertext using a variation of Algorithm 1 of [GMRZ13];

3. recovering the secret from the error vector, following the decapsulation
procedure.

The first two steps are detailed in the rest of this section.

4.3.2 Reconstructing the parity-check matrix
4.3.2.1 Compressed public key

In order to reduce the public key size, the designers of Edon-K chose to rep-
resent the public key in a compressed form. They took advantage of the fact
that all the coefficients of Gpub live in the vector space Vpub defined as Vpub

def=
〈 cg1, . . . , cgν , dg1, . . . , dgν 〉F2

of dimension 2ν. Hence, the compressed public
key consists in two parts: first the basis Bpub

def= (cg1, . . . , cgν , dg1, . . . , dgν) ∈
F2ν

2m of the vector-space Vpub, then the entries of the matrix Gpub such that
each entry is represented by its coefficients in the basis Bpub. For example, if
an entry x of Gpub is equal to c

∑ν
i=1 γigi + d

∑ν
i=1 δigi with γi, δi ∈ F2, xwill

be represented by (γ1, . . . , γν , δ1, . . . , δν) ∈ F2ν
2 . There is another subtlety in

the compression that we do not mention here.

100 Chapter 4. Attack on the Edon-K cryptosystem

4.3.2.2 Finding a basis
The attacker does not have access to the value of a and b but can deduce the
value of ab−1 = cd−1 = (cg1)(dg1)−1 from Bpub as mentioned in paragraph
7.2.2 of the documentation of Edon-K [GG17].

Let us define
α

def= ab−1.

Notice that H ′ def= b−1Hsec is also a parity-check matrix of the LRPC code
Csec. This matrix has all its coefficients in 〈 1, α 〉F2

. We can use this information
to reconstruct such a parity-check matrix of the code Csec by solving a linear
system, similarly to what is done in [GRS16, Section IV B]. This system is
derived from the following facts:

(i) Gpub H ′ᵀ = 0K×R;

(ii) the entries of H ′ belong to 〈 1, α 〉F2
, where the value of α is known.

In other words, the possible rows x = (x1, . . . , xn) of H ′ are solutions of the
following system {

Gpubxᵀ = 0k
xi ∈ 〈 1, α 〉F2

for all i ∈ J1, nK. (4.4)

This system is linear over F2 and the solution set is an F2-linear subspace
which can be computed in O(kmn2) operations. A basis of this subspace can
then be used as rows for H ′.

4.3.2.3 The linear system
Let us now present in details how to transform the system defined by (4.4)
into a proper linear system over F2.

Actually in this section we will consider a more general version of (4.4).
Given a system

Axᵀ = bᵀ (4.5)
where A = (aij)16i6k,16j6n is a given matrix in Fk×n

2m and b is a given vector
in Fk

2m , and given V a subspace of dimension t of F2m (viewed as vector
space over F2 of dimension m), how to find the affine set of the solutions
x = (xi)16i6n ∈ Vn of the system?

We can rewrite the system (4.5) as
a11x1 + · · ·+ a1nxn = b1

· · · = · · ·
ak1x1 + · · ·+ aknxn = bk.

(4.6)

4.3. Algebraic attack on the Edon-K scheme 101

We introduce a basis (v1, . . . , vt) of V and express each unknown xj in this
basis in terms of t other unknowns xj1, . . . , xjt ∈ F2:

xj =
t∑
i=1

xjivi.

In other words, the system (4.5) is equivalent to
∑n
j=1

∑t
i=1 a1jvixji = b1
. . . = . . .∑n

j=1
∑t
i=1 akjvixji = bk.

(4.7)

Let (β1, . . . , βm) be an F2-basis of F2m , we introduce for 1 6 ` 6 m the
projection π` from F2m to F2 defined by:

π` : F2m −→ F2
a =

∑m
j=1 ajβj 7−→ a`.

(4.8)

The k equations of system (4.7) defined over F2m lead to km affine equa-
tions over F2 by applying π` for ` ∈ J1,mK:

∑n
j=1

∑t
i=1 π`(a1jvi)xji = π`(b1)
. . . = . . .∑n

j=1
∑t
i=1 π`(akjvi)xji = π`(bk).

(4.9)

We can solve this affine system in F2 to recover the solution of (4.5). The
system has km binary equations and tn unknowns, hence a complexity of
O(kmt2n2). If we apply this technique to (4.4), where t = 2, we obtain a basis
of the vector space in time O(kmn2).

4.3.3 The decoding step
The previous step recovers an k × n matrix H ′′ whose entries all belong to
〈 1, α 〉F2

. The matrices H ′ and H ′′ share the property that their rows form a
basis of solutions of (4.4). Therefore, there exists an r × r binary invertible
matrix Q such that

H ′′ = QH ′. (4.10)
We use H ′′ to decode and recover e from the ciphertext c. The vectors are

linked by the equation
c = mGpub + e. (4.11)

We use here a slight variation of Algorithm 10 to decode. Algorithm 10 would
consist in performing the following steps:

102 Chapter 4. Attack on the Edon-K cryptosystem

1. Compute sᵀ def= H ′′cᵀ and then V def= Support(s). Here we typically
have V = Support(e) · 〈 1, α 〉F2

when H ′′ is a random matrix.

2. Compute V ′ def= V ∩α−1V . This step typically recovers Support(e) when
V = Support(e) · 〈 1, α 〉F2

.
3. Once we have Support(e) we recover e = (e1, . . . , en) by solving the lin-

ear equation H ′′eᵀ = sᵀ with the additional constraints ei ∈ Support(e)
for i ∈ J1, nK. This is done by using the technique presented in Subsection
4.3.2.3.

However, in our case, V is not equal to Support(e) · 〈 1, α 〉F2
. This is due

to the special structure of H which contains only a’s and b’s . The following
result characterises this situation.
Proposition 4.15. We have for every e ∈ Fn

2m :

Support(H ′′eᵀ) ⊆ (1 + α)Support(e) +
〈

n∑
i=1

ei

〉
F2

.

Proof. From (4.10), we deduce that

Support(H ′′eᵀ) = Support(QH ′eᵀ) = Support(H ′eᵀ).

Let sᵀ def= H ′eᵀ. Denote the i-entry of s by si and the entry of H ′ in row i
and column j by hij . We have:

si =
n∑
j=1

hijej

=
∑

j s.t. hij=1
ej +

∑
j s.t. hij=α

αej

=
n∑
j=1

ej + (1 + α)
∑

j s.t. hij=α
ej .

This implies the proposition.
Hence, Proposition 4.15, states that Support(H ′′eᵀ) directly yields a sub-

space of dimension λ+ 1 that contains Support(e):

Support(e) ⊆ (1 + α)−1Support(H ′′eᵀ). (4.12)

A slight modification of Algorithm 1 of [GMRZ13] therefore yields e:

1. compute the syndrome sᵀ def= H ′′cᵀ and then V def= (1+α)−1Support(s);

4.4. Concluding remarks 103

2. The space V contains Support(e), so we can recover e = (e1, . . . , en) by
solving the linear equation H ′′eᵀ = sᵀ with the additional constraints
ei ∈ V for i ∈ J1, nK. This is done by using the technique given in
Subsection 4.3.2.3.

From there, one deduces the shared secret from the value of e just like in
the decapsulation.

Remark 4.16. Note that we can also skip step 2 and directly look for s0 and s1 in the
space V of dimension λ+ 1 instead of decoding exactly the value of e. In fact, this is
what is specified in the decapsulation of Edon-K [GG17].

4.4 Concluding remarks
4.4.1 Cost of the attack
We can analyse the cost of the three steps of the attack mentioned in Section
4.3.

Step 1 and 2 are polynomial in terms of the parameters of the code. Step
1 only uses linear algebra operations and has a complexity at most O(kmn2).
The complexity of step 2 is given by Theorem 1 of [GMRZ13] (using k = n− r,
r = λ, d = 2), hence is equal to λ2(16m + n2). The complexity of step 3 is
O(λ22λ). This is not polynomial in λ but λ is a very small parameter (4 6 λ 6 8
in the proposal). Moreover this third step is the same as the decapsulation
algorithm, so λ needs to stay small, otherwise the decapsulationwould become
too costly or even impossible (see Remark 4.14). So λ can be considered as a
constant 6 10 to allow a reasonable decapsulation. Hence, the complexity is
given by the most costly operation, which is step 1.

4.4.2 Without compression of the public key
This attack takes advantage of the compressed form of the public key that
allows a direct access to the value α = ab−1. One could think that this is the
origin of the attack, and decide to express the public key in its uncompressed
form to fix the attack. As a consequence, the public key would be of size
k × n×m bits instead of k × n× ν bits in the compressed form. In practice
the public key for edonk128ref would be 16 times longer (around 288 kbits).
This inflation of the key size could be avoided by sending out a random basis
of the space Vpub.

However, this is not enough to mitigate the attack. There is an even more
direct way to proceed, without the value of α. Indeed, instead of looking for a
matrix H ′′ with entries lying in 〈 1, α 〉F2

, we can use the following result.

104 Chapter 4. Attack on the Edon-K cryptosystem

Proposition 4.17. There exists a full rank (r − 1) × n binary matrix Hbin that
satisfies

GpubHbinᵀ = 0k×(r−1).

Proof. Let T be a binary full-rank matrix (r − 1)× r matrix that has rows of
even Hamming weight. For instance we can choose

T =


1 1 0 · · · 0

0 1 1 0
...

...
0 · · · 0 1 1

 .

We observe that T Hbin has all its entries in {0, a+ b}. This follows directly
from the fact that if we sum an even number of elements in {a, b}we either get
0 (if the number of a’s is even, and therefore also the number of b’s) or a+ b
(if the number of a’s is odd). From this, it follows immediately that

Hbin
def= 1

a+ b
T H

satisfies the property.
Obtaining such a matrix Hbin is straightforward. We just have to use the

algorithm given in Section 4.3.2 to recover a basis of dimension r− 1 of binary
vectors x satisfying

Gpubxᵀ = 0k.

We then use this matrix Hbin to compute the syndrome sᵀ = Hbincᵀ. Since
Hbincᵀ = Hbineᵀ we directly obtain with very high probability that

Support(e) = Support(s).

This reveals the support of the error and from there we can go directly to
the last step of the attack to reconstruct the shared secret.

4.4.3 Conclusion
This attack shows that there is a way to recover the secret of the edonk128ref
scheme from a public key without the private key in polynomial time. In
practice, the attack implemented with Sage on a personal computer recovers
the secret in less than a minute, so the scheme is far from achieving the 128-bits
security claimed in [GG17]. Hence this scheme is insecure for the intended
use. Moreover, the cost of this attack is polynomial in terms of the parameters,
so there is no proper way to increase the parameters to achieve the intended

4.4. Concluding remarks 105

security level while keeping a reasonably small key size. Following this attack,
the Edon-K scheme was removed from the NIST standardization process.

The idea behind Edon-K, consisting in using a secret key with entries in a
subspace of small dimension, hidden in a large field, enables compact key sizes
and interesting decoding properties. This idea is a the heart of the definition
of LRPC codes. However, it seems that this notion was known to the authors
of the Edon-K proposal, since the link with rank metric codes is not mentioned
in the description of the scheme. Unfortunately, the choice of the dimension of
the subspace in (dimension 2 or even 1) in the design of the Edon-K scheme
is too small to ensure security.

A more reasonable use of LRPC codes can lead to interesting cryptosystem
that are out of reach of such an attack. For instance, the key encapsulation
mechanism LAKE and the public key encryption scheme LOCKER (later
merged under the name “ROLLO”) [ABDGH+19] use LRPC codes. The
security of these scheme rely on the RSD problem (Problem 4.5) and the LRPC
problem (Problem 4.10). These schemes were selected for the second round
of the NIST standardization process. But recent algebraic attacks [BBBGN+20;
BBCGP+20] make use of a new model to state the rank decoding problem
in terms of multivariate equations and manage to break nearly all proposed
parameters of ROLLO.

As a result, these schemes were not selected for the third round of the NIST
process. Still, the NIST stated that LRPC codes remain an interesting tool for
cryptography. In its latest report, NIST judged that “the rankmetric cryptosystems
offer a nice alternative to traditional hammingmetric codes with comparable bandwidth”
[AAACD+20] and encouraged further study of this line of work.

PartII
Square-code attacks

on GRS-based cryptosystems

Chapters

5 GRS codes and public-key cryptography 109
5.1 Generalised Reed–Solomon codes 110
5.2 GRS-based cryptosystems . 113
5.3 Product of codes and square-code distinguisher 116
5.4 Conclusion . 121

6 Attack on the RLCE cryptosystem 123
6.1 The RLCE scheme . 124
6.2 Dimension of the square code 128
6.3 The attack . 144
6.4 Conclusion . 150

7 Subspace subcodes of Reed-Solomon codes 151
7.1 Subspace subcodes . 152
7.2 The XGRS cryptosystem . 169
7.3 Twisted-square code and distinguisher 173
7.4 Attacking the SSRS scheme . 186
7.5 Conclusion . 193

Chapter5
GRS codes and

public-key cryptography

This chapter introduces the notion of Generalised Reed–Solomon (GRS) codes
and their use in code-based cryptography. These codes have an algebraic
structure that allows for an efficient and deterministic decoding algorithm,
without decryption failures. This, among other properties, make them ap-
pealing for cryptographic use. Several cryptosystems similar to McEliece’s
scheme but relying on GRS codes have been proposed in the last decade. The
idea dates back to Niederreiter, who proposed to replace Goppa codes by
the use of raw GRS codes in McEliece’s scheme. But an attack was found by
Sidelnikov and Shestakov. Other proposals use codes derived from GRS codes
that seem to resist this approach, but the introduction of a new tool, the square
code distinguisher showed the weakness of these schemes. We describe this
distinguisher, on which we will rely in the next chapters to cryptanalyse two
recent GRS-based cryptosystems.

Contents
5.1 Generalised Reed–Solomon codes 110

5.1.1 Definition and properties 110
5.1.2 Relation with other families of codes 112

5.2 GRS-based cryptosystems 113
5.2.1 McEliece with GRS codes 113
5.2.2 Attacking the McEliece GRS cryptosystem 114
5.2.3 Other cryptosystems using GRS codes 114

5.3 Product of codes and square-code distinguisher 116
5.3.1 The star-product operation 116
5.3.2 The square-code distinguisher 117
5.3.3 Distinguishing shortened codes 119

5.4 Conclusion . 121

110 Chapter 5. GRS codes and public-key cryptography

5.1 Generalised Reed–Solomon codes
5.1.1 Definition and properties
Reed–Solomon codes were formally introduced by Reed and Solomon in 1960
[RS60] as polynomial codes. In fact, the same structure had already been
proposed eight years earlier by Bush as orthogonal arrays of index unity [Bus52]
(but not in the context of error correction). Generalised Reed–Solomon codes
were formally defined by Delsarte in [Del75] under the denomination modified
Reed–Solomon codes.

Definition 5.1 (Generalised Reed–Solomon codes). Let x ∈ Fn
q be a vector

whose entries are pairwise distinct and y ∈ Fn
q be a vector whose entries are all

nonzero. The generalised Reed–Solomon (GRS) code with support x and multiplier
y of dimension k is defined as

GRSk(x,y) def= {(y1f(x1), . . . , ynf(xn)) | f ∈ Fq[X]<k} .

When y = (1, . . . , 1), the code is a Reed–Solomon (RS) code, denoted
RSk(x).

Remark 5.2. For a given GRS code, the support and multiplier are not unique. For
instance, applying an affine transformation to x generates the same code, since the set
of polynomials of fixed degree is stable under this transformation. See Remark 1.29.

Reed–Solomon codes and their generalisation have interesting properties.
Therefore, they have been widely used in practice, for instance in the encoding
of CDs, DVDs and QR codes. Moreover, to describe the code, one only needs to
specify the vectors x and y (i.e. 2n elements of Fq), not the complete generator
matrix (which would require to send at least k(n− k) elements of Fqm if one
chooses to represent the generatormatrix in systematic form). In cryptographic
schemes, the GRS codes usually corresponds to (some part of) the secret key.
Therefore this compact way to describe the code gives short secret key, which
is one of the main improvements that new code-based cryptographic schemes
try to achieve. This explains the interest for GRS-based cryptosystems.

In this section, we detail some of the interesting properties of GRS codes.

5.1.1.1 MDS codes

First of all, GRS codes are maximal distance separable (MDS) codes, i.e. they
reach the Singleton bound (see Theorem 1.21).

Property 5.3. GRSk(x,y) is an [n, k, n− k + 1] code.

5.1. Generalised Reed–Solomon codes 111

Proof. The code GRSk(x,y) is the image of the map{
Fq[X]<k −→ Fn

q

f 7−→ (y1f(x1), . . . , ynf(xn)).

This application is injective. Indeed, the only polynomial of degree less
than k with n distinct roots is the null polynomial. Hence dimGRSk(x,y) = k.

Let c = (y1f(x1), . . . , ynf(xn)) be a non-zero codeword of GRSk(x,y).
The polynomial f is not null so it has at most k − 1 roots, hence c has at least
n− k + 1 non-zero entries. So the minimal distance of GRSk(x,y) is at least
n− k + 1. The Singleton bound asserts that this distance is at most n− k + 1,
hence we have an equality.

5.1.1.2 Decoding GRS codes

GRS codes benefit from efficient decoding algorithms. We present here an
algorithm due to Berlekamp and Welsch in 1986 [WB86] which can correct up
to t errors, where t def= bn−k2 c.

The Berlekamp Welsch decoder. Let v = (v1, . . . , vn) be a noisy codeword,
such that v = c + e with c ∈ RSk(x) and wH(e) 6 t. The value of v is
known as well as the value of x generating the code, the goal is to find c
and e. By definition, there exists a polynomial f ∈ Fq[X]<k such that c =
(f(x1), . . . , f(xn)).

Let us define the polynomial E such that E(X) def=
∏
i s.t. ei 6=0(X − xi). The

main idea of the Berlekamp Welsch algorithm is that for all i ∈ J1, nK, we have

viE(xi) = f(xi)E(xi).

Indeed, either ei = 0 and vi = f(xi), or E(xi) = 0. This gives a system of n
equations, where the values of vi and xi are known, hence the unknowns are
the coefficients of E and f . Note that the right-hand side is not linear but can
be linearised. This gives a system with k + 2t+ 1 coefficients. Any non-trivial
solution of the system gives a value of f and hence the value of v.

The algorithm is presented for RS codes but can be easily generalised for
GRS codes. Indeed, to decode a noisy codeword v = (v1, . . . , vn) = c+ewhere
c ∈ GRSk(x,y) andwH(e) 6 t one can equivalently decode (v1/y1, . . . , vn/yn)
in the code RSk(x) using this decoder.

This algorithm runs in time O(n3) (the resolution of the linear system). In
fact, it can be improved to run inO(n2) or evenO(n log(n)) using the Euclidian
algorithm instead of linear algebra ([MS86] Chapter 12).

112 Chapter 5. GRS codes and public-key cryptography

Note that these efficient decoding algorithms only works if the decoder has
access to the values of x and y. This will serve as a trapdoor for cryptosystems.

In the late 1990’s, works from Guruswami and Sudan [Sud97; GS98] al-
lowed to decode GRS codes efficiently beyond the decoding radius. In such
a case, one must expect more than one nearest codeword. This approach is
known as list decoding.

These properties makes GRS codes interesting for cryptographic purposes.
In cryptographic applications, the decryption phase usually involves decoding.
Having an efficient decoding algorithm makes decryption efficient. Besides,
the decoding algorithms for GRS codes are deterministic. They have no de-
coding failure and can easily be implemented to run in constant time, contrary
to the decoding of MDPC codes (see Chapter 3). This mitigates the risk of
side-channel attacks.

5.1.1.3 Dual of GRS codes
Lemma 5.4 ([MS86] Chapter 10, Theorem 4). The dual of a GRS code of length n
and dimension k is a GRS code of dimension n− k. More precisely:

GRSk(x,y)⊥ = GRSn−k(x,y′),

where y′i depends uniquely of x and y.

5.1.2 Relation with other families of codes
Generalised Reed–Solomon codes are a special case of the family of BCH codes.
They can also be interpreted as the family of algebraic geometry codes over
the projective line [VNT07].

GRS codes are also at the core of the definition of alternant codes. Indeed,
alternant codes are subfield subcodes of GRS codes and inherit some properties
of the GRS codes.

Definition 5.5 (Alternant codes). Let x and y denote a support and a mul-
tiplier defined over Fqm . Let r be an integer. The alternant code Ar,q(x,y) is
defined as

Ar,q(x,y) def= GRSr(x,y)⊥ ∩ Fn
q .

The Goppa codes, used in McEliece’s seminal code-based cryptographic
scheme, are a particular case of alternant codes, where y is chosen in a partic-
ular way to achieve better correction capacity. This scheme remains unbroken
today. It is therefore particularly interesting to understand attacks on cryp-
tosystems using GRS codes, especially subspace subcodes of GRS codes which
are a first step towards subfield subcodes. We will see in Chapter 7 an attempt

5.2. GRS-based cryptosystems 113

to cryptanalyse a family of codes halfway between GRS codes and alternant
codes.

5.2 GRS-based cryptosystems
5.2.1 McEliece with GRS codes
The idea of using Reed–Solomon instead of Goppa codes in McEliece’s scheme
is proposed by Niederreiter [Nie86]. Such a cryptosystem works as follows.

Key generation. Let q denote a prime power and chose integers k and n such
that k 6 n 6 q − 1. The values of q, k and n are public.

Pick x and y a support and a multiplier of a GRS code of length n over
Fq (as defined in § 5.1.1), chosen uniformly at random. Denote C the code
GRSk(x,y).

The following Vandermonde matrix is a generator matrix of the code C
which can easily be obtained from x and y:

V k,n(x,y) def=


y1 · · · yn
x1y1 · · · xnyn
... ...

xk1y1 · · · xknyn

 .
The goal is to use as the pubic key another generator matrix of C that does

not reveal the values of x and y. Indeed, decoding the GRS code knowing x
and y is very efficient. Therefore, we create another public key of C . Let S
be an invertible k × k matrix over Fq chosen uniformly at random. Denote
Gsec

def= V k,n(x,y) and Gpub
def= SGsec.

Let t def= bn−k2 c denote the error-correction capacity of C .
The public key is (Gpub, t). The private key is (x,y).

Remark 5.6. Contrary to the original proposal, we omit the right-multiplication by a
random permutation matrix as this does not make any difference in the distribution.

Encryption. The set of messages is Fk
q . For a givenmessage m, the ciphertext

is c
def= m ·Gpub + e, where e is chosen uniformly at random among the set of

elements of Fn
q such that wH(e) = t.

Decryption. Given a ciphertext c, we have c = (mS) · Gsec + e, where
wH(e) = t. Using x and y, one can decode using the Berlekamp Welsch
decoder to find the value of e and deduce m.

114 Chapter 5. GRS codes and public-key cryptography

5.2.2 Attacking the McEliece GRS cryptosystem
The security of this cryptosystem relies on the following problem.

Problem 5.7. For a GRS code C of length n and dimension k over Fq, given any
generator matrix of C , find a pair of vectors x and y such that C = GRSk(x,y).

This computational problem also admits a decisional variant.

Problem 5.8. LetD1 denote the distribution of matrices M
def= S ·V k,n(x,y), where

x and y are a support and a multiplier of a GRS code of length n over Fq, chosen
uniformly at random, and S is chosen uniformly at random among the set of invertible
k × k matrices. Let D2 denote the uniform distribution over k × n matrices over Fq

of rank k. Distinguish the distributions D1 and D2.

In 1992, Sidelnikov and Shestakov showed that Problem 5.7 can be solved
in polynomial time [SS92]. Their attack relies on the following remark.

Proposition 5.9 ([BL05], Corollary 1). Let B = (bi,j) denote the systematic
generator matrix of the code GRSk(x,y). Then for all i, j, u, v such that 1 6 i, j 6 k
and k + 1 6 u, v 6 n, the following relation holds

bi,ubj,v
bj,ubi,v

= (xj − xu)(xi − xv)
(xi − xu)(xj − xv)

.

The values bi,j are public since they can be obtained by putting the public
generator matrix in systematic form. Moreover, it is always possible to chose
arbitrarily three values of xi’s and one value of yi’s. Hence, using this relation,
one can solve the system and find vectors x′ and y′ such that GRSk(x,y) =
GRSk(x′,y′).

This makes Niederreiter’s cryptosystem insecure. However, the properties
ofGRS codes remain an appealing idea for short-key code-based cryptosystems.
Therefore, several proposals were made to mitigate the Sidelnikov–Shestakov
attack by introducing some randomness to hide the underlying GRS structure.

5.2.3 Other cryptosystems using GRS codes
Berger–Loidreau. In [BL05], Berger and Loidreau proposed using subcodes
of GRS codes as the public key. That is, they still define Gpub = SGsec but
instead on a k × k matrix, S is chosen as a random `× k matrix of rank `, for
an integer ` < k.

This cryptosystem was cryptanalysed by Wieschebrink in [Wie06a] and
[Wie10]. The first article simply generalises the Sidelnikov–Shestakov attack
in the case where ` is close to k. The second article introduces a new idea.

5.2. GRS-based cryptosystems 115

It proposes to study the square code and take advantage of a fact that the
square of the GRS code is also a GRS code. This breaks the Berger–Loidreau
cryptosystem completely.

Wieschebrink. In another paper [Wie06b], Wieschebrink proposed another
way to avoid the Sidelnikov–Shestakov attack by adding a few random columns
to the GRSmatrix. In the key generation phase, r random columns are inserted
between the columns of the Vandermonde matrix G, at random positions. The
matrix S is chosen as a random invertible (k + r)× (k + r) matrix. The rest of
the scheme is unchanged.

Wieschebrink’s scheme was broken in [CGGOT14]. The authors reuse the
square code idea, but in a quite different manner. Indeed, they do not use the
square code to directly recover the GRS code but they use its dimension as a
distinguisher to find the positions of the random columns. Once they have
found the positions of these columns, they just need to discard them and apply
the Sidelnikov–Shestakov attack on the columns corresponding to the GRS
code.

BBCRS. Another attempt to modify Niederreiter’s scheme was proposed
in [BBCRS16]. The difference with the original idea is that the matrix G is
right-multiplied by the inverse of a matrix of the form T + R, where T is a
sparse matrix with a very small average row/column weight denotedm < 2
and R is a matrix of small rank (in practice the rank is chosen to be exactly
one to keep a small key size).

A first version of the BBCRS cryptosystem [BBCRS11] (wherem = 1) was
attacked in [CGGOT14], and a second version (1 < m < 2) was broken in
[COTG15]. In both cases, the authors observe the dimension of products of
codes do distinguish the different rows and columns of the public matrix and
recover the underlying structure.

New proposals based on GRS codes. In recent years, new attempts were
made to use GRS codes in public-key cryptosystems.

• The RLCE cryptosystem [Wan17] was submitted by Wang to the NIST
call for post-quantum cryptography. This cryptosystem is a more ad-
vanced variant of Wieschebrink’s idea of introducing random columns.
The difference is that the random columns are mixed with columns from
the GRS matrix. The cryptosystem was attacked in [CLT19]. The scheme
and the attack are detailed in Chapter 6.

• The XGRS cryptosystem [KRW21] proposed by Khaturia, Rosenthal and
Weger, uses a different approach. It relies on the notion of subspace

116 Chapter 5. GRS codes and public-key cryptography

subcodes, introduced by Solomon and McEliece in [MS94], to propose
a variant of Niederreiter’s scheme. The cryptosystem was attacked in
[CL20]. The notion of subspace subcodes as well as the attack are de-
scribed in Chapter 7.

• In [BGKR19], Berger, Gueye, Klamti andRuatta introduce a cryptosystem
also based on subspace subcodes of GRS codes. But contrarily to the
XGRS scheme, in their proposal the underlying GRS code is not secret.
Therefore the security of the scheme does not depend on the secrecy of
the GRS structure. This scheme has not been subject to any attack for
now.

5.3 Product of codes and square-code distin-
guisher

As we will see, the idea introduced in [CGGOT14] of using the dimension
of the square code as a distinguisher is particularly interesting since it can
be generalised to different situations. In the paper [CGGOT14], the authors
even explain how to use product of codes to solve Problem 5.7 in polynomial
time, with a different approach than Sidelnikov–Shestakov. Their algorithm is
a bit more complex but generalises better. In particular, using this approach,
they managed to attack q-ary Goppa codes (called wild Goppa codes [BLP10])
described in [COT14a]. In this section, we will present the idea of the square-
code distinguisher, which will be used in the next chapters to attack the RLCE
and XGRS cryptosystems.

5.3.1 The star-product operation
Notation 5.10. The component-wise product (or Schur product) of two vectors a
and b in Fn

2 is denoted by

a ? b
def= (a0b0, . . . , an−1bn−1).

This definition extends to the product of codes, where the component-wise product
or ?–product of two K-linear codes A and B ⊆ Fn

2 spanned over a field K ⊆ F2 is
defined as

A ?K B
def= 〈a ? b | a ∈ A , b ∈ B 〉K .

When A = B, we denote by A ?2
K

def= A ?K A the square code of A spanned over K.

5.3. Product of codes and square-code distinguisher 117

Remark 5.11. The fieldK in Notation 5.10 is almost always equal to F2 the base field
on which the codes are defined. However, it may sometimes be a subfield. For the sake
of clarity, we make the value of K explicit only in the ambiguous cases. The rest of the
time we simply write A ?2 the square product of a code.

5.3.2 The square-code distinguisher
The quantity which is of particular interest for cryptanalysis is the dimension
of this product of codes.

5.3.2.1 Typical dimension of the square code
Proposition 5.12. Let A and B denote two linear codes of equal length n over Fq.
Then we have

dim A ?B 6 min
(
n, dim A · dim B −

(
dim A ∩B

2

))
.

In particular
dim A ?2 6 min

(
n,

(
dim A + 1

2

))
.

In fact, in the typical case, the last inequality is an equality, as show by
[CCMZ15]. Indeed, a first result states roughly that for a random code of
dimension n and length k, if n 6

(k+1
2
) then the square of the code is equal to

Fn
q with probability close to 1. Here is a formal statement.

Proposition 5.13 ([CCMZ15], Theorem 2.5). There exist constants c, c′ > 0
(depending only on q) such that if n : N→ N satisfies k 6 n(k) 6 c ·

(k+1
2
) for all

k ∈ N, then, for all large enough k,

Pr
(
dim C ?2 = n(k)

)
> 1− 2−c′k,

where C is chosen uniformly at random among [n(k), k]-codes over Fq.

Another result states that if n >
(k+1

2
) then the dimension of the square of

the code is equal to (k+1
2
)with probability close to 1. Here is a formal statement.

Proposition 5.14 ([CCMZ15], Theorem 2.3). There exists a constant c > 0 such
that if n : N→ N satisfies n(k) >

(k+1
2
) for all k ∈ N, then, for all large enough k,

Pr
(

dim C ?2 =
(
k + 1

2

))
> 1− 2−c(n(k)−(k+1

2)),

where C is chosen uniformly at random among [n(k), k]-codes over Fq.

118 Chapter 5. GRS codes and public-key cryptography

All these results can be summarised in the following informal statement
about random codes.
Theorem 5.15 (informal). For a linear code R chosen at random over Fq of dimen-
sion k and length n, the dimension of R?2 is typically min(n,

(k+1
2
)
).

Remark 5.16. It is important to understand that rewriting these results in such
an informal manner makes sense in the context of cryptanalysis. Indeed, for codes
used in cryptosystems, the probability not to have an equality in Proposition 5.12 is
extremely small. Moreover, in cryptanalysis, it does not matter if an attack fails with
small probability. The only important thing is that is successes with non-negligible
probability. A cryptosystem that could be broken even with small probability is not a
secure cryptosystem!

In the next chapters, we will generalise this statement to other families of codes
and describe attacks that use this informal statement (or equivalent results). It is
important to keep in mind that this statement comes from a probabilistic result over
random codes. We always conduct some experiments to check that the dimension
measured in practice matches the result with very high probability. Hence, there is
always a small possibility that the derived distinguisher fails for a particular instance
but this does not affect the efficiency of the attacks.

5.3.2.2 Square code of a GRS code
Concerning GRS codes, their behaviour is very different.
Proposition 5.17. Let n, k1, k2,x,y1 and y2 be as in Definition 5.1. Then,

GRSk1(x,y1) ?GRSk2(x,y2) = GRSk1+k2−1(x,y1 ? y2).

In particular,
(GRSk(x,y))?2 = GRS2k−1(x,y ? y).

Proof. Let c1, c1 be codewords ofGRSk1(x,y1) andGRSk2(x,y2) respectively.
Then there exists polynomials f1 and f2, such that degfi < ki and ci =
(yi,1fi(x1), . . . , yi,nfi(xn)) for i = 1, 2.

Hence, let g def= f1f2. The polynomial g is of degree < k1 + k2 and we have
c1 ? c2 = (y′1g(x1), . . . , y′ng(xn)), where y′

def= y1 ? y2.
Hence, GRSk1(x,y1) ?GRSk2(x,y2) ⊆ GRSk1+k2−1(x,y1 ? y2).
Conversely, the codeGRSk1+k2−1(x,y1 ? y2) is spanned by the words(

y1,1y2,1x
i
1, . . . , y1,ny2,nx

i
n

)
06i<k1+k2−1

,

each of which can be expressed as the star product of a word of GRSk1(x,y1)
and GRSk2(x,y2).

5.3. Product of codes and square-code distinguisher 119

Corollary 5.18.
dim (GRSk(x,y))?2 = min(n, 2k − 1).

5.3.2.3 The distinguisher

This behaviour of GRS codes is very different from what happens generically.
The square of a GRS code has a dimension which is linear in the dimension of
the original code, whereas the dimension of the square of a random code grows
quadraticaly in that of the code. This provides an efficient way to distinguish
GRS codes from random codes.

Proposition 5.19. For all k > 2, Problem 5.8 can be solved in polynomial time.

Proof. Let M ∈ Fk×n
q be a matrix. If k 6 n/2, compute the matrix correspond-

ing to the square of the associated code. If the dimension of this matrix is
strictly less than min(n,

(k+1
2
)
), then M defines a GRS code and was gener-

ated according to distribution D1. Else, M is a random code and comes from
distribution D2.

This distinguisher also works in the case k > n/2. Indeed, the dual of a
GRS code is also a GRS code (see Lemma 5.4) with length n and dimension
(n−k) < n/2. On the other hand, picking a random [n, k]-code and computing
its dual yields the same distribution as directly considering a random [n, n−k]-
code. Hence, one can apply the same criterion to the dual of the code.

In fact, this operation can also be used to distinguish between random codes
and other algebraically structured codes: it has been used for Reed–Muller
codes [CB14], polar codes [BCDOT16], high-rate Goppa codes [FGOPT13;
COT17] and algebraic geometry codes [CMP17].

5.3.3 Distinguishing shortened codes
The notion of puncturing and the dual notion of shortening are classical ways
to build new codes from existing ones. It happens that the square-code dis-
tinguisher generalises nicely to punctured/shortened codes. In the next two
chapters, we will see howwe can use these operations to adapt the square-code
distinguisher to codes where is cannot be applied directly. This will be useful
for the next chapters.

Let us first recall the definitions of such operators.

5.3.3.1 Definitions

Here, for a codeword c ∈ Fn
q , we denote by (c1, . . . , cn) its entries.

120 Chapter 5. GRS codes and public-key cryptography

Definition 5.20 (Punctured code). Let C ⊆ Fn
q and L ⊆ J0, n − 1K. The

puncturing of C at L is defined as the code

PunctL (C) def= {(ci)i∈J0,n−1K\L s.t. c ∈ C }.

Similarly, given a matrix M with n columns, one defines PunctL (M) as
the matrix whose columns with index in L are removed, so that puncturing a
generator matrix of a code yields a generator matrix of the punctured code.
Definition 5.21 (Shortened code). Let C ⊆ Fn

q and L ⊆ J0, n − 1K. The
shortening of C at L is defined as the code

ShortL (C) def= PunctL ({c ∈ C s.t. ∀i ∈ L, ci = 0}) .

Shortening a code is equivalent to puncturing the dual code, as explained
by the following proposition.
Proposition 5.22 ([HP03, Theorem 1.5.7]). Let C be a linear code over Fn

q and
L ⊆ J0, n− 1K. Then,

ShortL (Dual(C)) = Dual(PunctL (C))

and
Dual(ShortL (C)) = PunctL (Dual(C)) ,

where Dual(A) denotes the dual of the code A .

5.3.3.2 Shortening random codes
Puncturing and shortening random codes gives a random code of lesser length
and dimension. Hence, thanks to Proposition 5.12, we have
Corollary 5.23. Let C denote a code of length n and dimension k. Let L ⊆ J1, nK.
Then

dim (ShortL (C))?2 6 min
(
n− |L|,

(
dim ShortL (C) + 1

2

))
.

Moreover, if C is drawn uniformly at random among [n, k]-codes, then, with
probability close to 1 when k tends to infinity, we have

dim (ShortL (C))?2 = min
(
n− |L|,

(
k − |L|+ 1

2

))
.

As for puncturing of random codes, with probability close to 1 when k tends to
infinity, we have

dim (PunctL (C))?2 = min
(
n− |L|,

(
k + 1

2

))
.

5.4. Conclusion 121

5.3.3.3 Shortening GRS codes
Proposition 5.24. For a subset L ⊆ J1, nK such that |L| 6 k:

ShortL (GRSk(x,y)) = GRSk−|L|(x,y′),

where x′ = (xi)i 6∈L, y′ = (yi)i 6∈L.
Moreover, shortening |L| > k columns yields the trivial code of length n− |L|.

Proposition 5.25. For a subset L ⊆ J1, nK such that |L| 6 n− k:

PunctL (GRSk(x,y)) = GRSk(x′,y′),

where x′ = (xi)i 6∈L, y′ = (yi)i 6∈L.
Moreover, puncturing |L| > n− k columns yields the full code Fn−|L|

q .

Hence, using Proposition 5.24 and Corollary 5.18, we obtain the following
result.

Corollary 5.26. For a subset L ⊆ J1, nK,

dim (ShortL (GRSk(x,y)))?2 = max(min(n− |L|, 2(k − |L|)− 1), 0),

dim (PunctL (GRSk(x,y)))?2 = min(n− |L|, 2k − 1).

As we can see, the structure of random (resp. GRS) codes stays mainly
unaffected by the puncturing/shortening operation, and therefore the square-
code distinguisher can be applied efficiently on these shorter codes.

5.4 Conclusion
For a given code C , one can compute the dimension of (ShortL (C))?2 and
that of (ShortL (Dual(C)))?2 for different values of L and compare them to
the expected dimensions if C were a random code. Any unusual behaviour
(for a non-negligible number of samples) means that C can be distinguished
from a random code in polynomial time, and should therefore be avoided in a
McEliece-like cryptographic scheme. In [Cou19], Couvreur proposes that any
new code-based cryptosystem proposal should be tested for indistinguishabil-
ity with regards to this operation. Although this only provides a distinguisher,
the next two chapters provide concrete examples where such a distinguisher
can be turned into a key-recovery attack.

Since the original attack on the GRS encryption scheme [SS92], numerous
GRS-based cryptosystem have been propose to keep the appealing properties
of GRS codes while defeating these attacks. Sidelnikov and Shestakov’s attack

122 Chapter 5. GRS codes and public-key cryptography

[SS92]relies on the exactness of the equations, and is therefore quite easy
to circumvent, by adding some randomness. But the square-code approach
[Wie10; CGGOT14] is much more flexible (or robust, from a cryptanalytic
point of view). The next two chapters illustrate how this approach can be
adapted to new cryptosystems, even when they defeat the direct application
of the distinguisher.

Chapter6
Attack on the

RLCE cryptosystem

The Random Linear Code Encryption (RLCE) scheme is a code-based cryptosys-
tem introduced by Y. Wang in [Wan16] and submitted for the NIST’s call
for post-quantum cryptosystems under the name RLCE-KEM [Wan17]. This
scheme works similarly to McEliece’s cryptosystem but Goppa codes are re-
placed by another family of codes, constructed from GRS codes. As we have
seen, using GRS codes as the secret key is tempting, because these codes offer
good decoding properties and permit short secret keys, however the raw use
of GRS codes is insecure. In [Wie06b], Wieschebrink proposed to add some
random columns at random positions of the public-key matrix. This proposal
was broken in [CGGOT14], where the authors manage to distinguish the
columns of the GRS code and the random columns.

Wang’s RLCE scheme can be considered as a way to push Wieschebrink’s
idea further bymixing each random columnswith a column from theGRS code.
With this operation, the randomness spreads and each column considered
individually seem to share the same characteristics. Therefore, it is not subject
to the attack described in [CGGOT14].

However, this is not enough. Aswewill see, the fact that two columns share
the same randomness can actually be used to derandomize one of them. Based
on this property, we will adapt the square-code distinguisher to distinguish
RLCE codes from random codes. We then use this distinguisher to mount a
key-recovery attack. Contrary to the GRS case, the distinguisher only works for
some parameter ranges. Hence, we will have to reduce the parameters of the
code, using puncturing and shortening operations, so that the distinguisher
can be applied.

In this chapter, after presenting the RLCE scheme in details, wewill explain
how to use the square code distinguisher to recover such pairs of columns,
and how to use this tool to derive the polynomial-time key-recovery attack on
the RLCE scheme. We will also characterise the parameters which resist this
attack.
Related publication: Couvreur, Lequesne and Tillich, Recovering short keys of

124 Chapter 6. Attack on the RLCE cryptosystem

RLCE in polynomial time, PQCrypto 2019 [CLT19].

Contents
6.1 The RLCE scheme . 124

6.1.1 Presentation of the scheme 124
6.1.2 Suggested sets of parameters 127
6.1.3 Natural questions 127

6.2 Dimension of the square code 128
6.2.1 Analysis of the different kinds of columns 129
6.2.2 Intermediate results 134
6.2.3 Proof of the main theorem 140
6.2.4 When is the inequality an equality? 141
6.2.5 A distinguisher . 142

6.3 The attack . 144
6.3.1 An algorithm to find a set of twin positions 144
6.3.2 Identifying pairs of twin positions 146
6.3.3 Description of the attack 146
6.3.4 Retrieving the secret key 147
6.3.5 The case of degenerate twin positions 149
6.3.6 Complexity of the attack 149

6.4 Conclusion . 150

6.1 The RLCE scheme
6.1.1 Presentation of the scheme
Key generation . Let q denote a prime power and chose integers n, k and w
such that 0 < k,w 6 n 6 q − 1. The values of q, n, k and w are public.

1. Pick x and y a support and a multiplier of a GRS code of length n over
Fq (as defined in § 5.1.1), chosen uniformly at random.

2. Denote V k,n(x,y) ∈ Fk×n
q the Vandermonde matrix generating the gen-

eralised Reed–Solomon codeGRSk,n(x,y). Let S denote a random k×k
invertible matrix. Define G0

def= SV k,n(x,y). This matrix is a random
generator matrix of the code GRSk,n(x,y). Denote by g1, . . . , gn the
columns of G0.

6.1. The RLCE scheme 125

3. Let r1, . . . , rw be column vectors of length k with entries chosen inde-
pendently and uniformly at random in Fq. Denote by G1 the matrix
obtained by inserting the random columns between GRS columns at the
end of G0 as follows:

G1
def= [g1, . . . , gn−w, gn−w+1, r1, . . . , gn, rw] ∈ Fk×(n+w)

q .

4. LetQ1, . . . ,Qw be 2×2matrices chosen uniformly at random inGL2(Fq).
Let Q be the block–diagonal non singular matrix

Q
def=


In−w (0)

Q1
. . .

(0) Qw

 ∈ F(n+w)×(n+w)
q .

We denote G2
def= G1Q.

5. Let π ∈ Sn+w be a randomly chosen permutation of J1, n + wK and
P the corresponding (n + w) × (n + w) permutation matrix. Denote
Gpub

def= G2P ∈ Fk×(n+w)
q .

6. The public key is (Gpub, t) where t def= bn−k2 c denotes the error correction
capacity of the codeGRSk,n(x,y). The private key is (x,y, (Qi)0<i6w, π).

Encryption. For a message m ∈ Fk
q , the cipher text is c = mGpub + e where

e ∈ Fn+w
q is a random error vector of weight t.

Decryption. Let c = mGpub + e denote an encrypted message. Let c′
def=

P−1Q−1c. We have c′ = mG1 + e′. Then, we remove positions corresponding
to random columns. Define c′′ = PunctL (c′) where L = {n − w + 2s | s ∈
J1, wK}. We have c′′ = mG0 + e′′ with wH(e′′) 6 t. Hence, c′′ can be decoded
in GRSk,n(x,y) to find m.

Remark 6.1. This presentation of the scheme is not exactly the same as in the orig-
inal specifications of RLCE [Wan17]. It is however equivalent. Indeed, the scheme
described in [Wan17] includes an additional permutation of the columns of the matrix
G0. As already mentioned in Remark 5.6, this step is useless and does not change the
probability distribution of the public keys.

126 Chapter 6. Attack on the RLCE cryptosystem

G0|R =

n w

kGRS R
G0

$←− GRS(Fq, k, n)

R
$←− Fk×w

q

G1 = G1
def= mix(G0,R)

G2 = GRS PR PR PR PR

Qi
$←− GL2(Fq)

Q
def=


In−w (0)

Q1
. . .

(0) Qw


G2

def= G1Q

Gpub = P
$←− Sn+w

Gpub
def= G2P

Figure 6.1: The RLCE scheme

6.1. The RLCE scheme 127

6.1.2 Suggested sets of parameters
In [Wan17] the author proposes 2 groups of 3 sets of parameters. The first
group (referred to as odd ID parameters) corresponds to parameters such that
w ∈ [0.6(n− k), 0.7(n− k)], whereas in the second group (even ID parameters)
the parameters satisfy w = n − k. The parameters of these two groups are
listed in Tables 6.1 and 6.2.

The matrix Gpub is a k × (n + w) matrix over Fq. To transmit the public
key, one can perform a Gaussian elimination to write this matrix in systematic
form and discard the identity part. Therefore, the size of the public key is
k(n+ w − k) log2(q) bits.

Our attack will recover in polynomial time any secret key when parameters
lie in the first group.

Table 6.1: Set of parameters for the first group : w ∈ [0.6(n− k), 0.7(n− k)].

Security bits ID [Wan17] n k t w q Public key size (kB)
128 ID 1 532 376 78 96 210 118
192 ID 3 846 618 114 144 210 287
256 ID 5 1160 700 230 311 211 742

Table 6.2: Set of parameters for the second group : w = n− k.

Security bits ID [Wan17] n k t w q Public key size (kB)
128 ID 0 630 470 80 160 210 188
192 ID 2 1000 764 118 236 210 450
256 ID 4 1360 800 280 560 211 1232

6.1.3 Natural questions
In Section 5.3 we have characterised the dimension of the square of a GRS code
and the dimensions of the square of a random code (in the generic case). As
we have seen, these dimensions are not equal, and this difference can be used
to mount some attacks.

The public code of the RLCE cryptosystem (i.e. the code generated by the
matrix Gpub) lies by construction somewhere between GRS codes and random
codes. Indeed, it is built from a GRS codes, with random columns added. The
attack [CGGOT14] on Wieschebrink’s scheme [Wie06b] proves that adding

128 Chapter 6. Attack on the RLCE cryptosystem

random columns is not enough to hide the GRS structure. In a way, we can
say that the randomness is too localized. The simple operation of puncturing
one of the random columns cancels the effect of the additional randomness
and this is easily noticeable. Hence, the idea behind the design of the RLCE
scheme is to spread the randomness by mixing each random column with a
GRS column: each random column in paired with a columns from the original
GRS code and they are replaced by linear combinations of the columns. This
is the role of the matrix Qi.

Some questions come naturally from a cryptanalytic point of view.

1. Is there a polynomial algorithm to distinguish public keys of the RLCE
scheme from random k × (n+ w) matrices over Fq?

2. What is the dimension of the square of the code generated by Gpub?
More exactly, we have seen that the square-code distinguisher applies
easily to shortened codes. Therefore we would like to characterise the
exact dimension of any shortening of the code generated by Gpub. Note
that if the dimension of the square code is different from that of a random
code, this provides an answer to question 1.

3. If such a distinguisher exists, is there a way to use it to reconstruct the
private key (or an equivalent private key) starting from the public key?

The next section is dedicated to answering question 2. The consequences
of this result regarding questions 1 and 3 will be discussed in the third section.

6.2 Dimension of the square code
Question 2 finds its answer in the following Theorem. This section is dedicated
to proving this result.

Theorem 6.2. LetC be a code overFq of length n+w and dimension k with generator
matrix Gpub which is the public key of an RLCE scheme that is based on a GRS code
of length n and dimension k. Let L ⊂ J1, n+ wK. Then,

dim (ShortL (C))?2 6 min(n+ w − |L|, 2(k + w − |L|)− 1).

Remark 6.3. We will see in § 6.2.5 that under some conditions on the parameters
n, k, w and |L| which we can characterise, the inequality established in Theorem 6.2
seems to be an equality with probability close to 1. This observation is based on
computer experiments. See Remark 6.27 for further details.

Remark 6.4. It is interesting to note that the dimension of (ShortL (C))?2 only
depends of the cardinality of L and does not depend of the nature of the columns that

6.2. Dimension of the square code 129

are shortened. Indeed, in the RLCE schemes, some columns are inherited directly
from the GRS code and other are the result of a mixing with random columns. A full
characterisation will be given in § 6.2.1. One could have expected that shortening
different kinds of column would lead to different dimensions.

For the sake of simplicity, we will make the following assumption in this
section. This will especially simplify the notations to prove Theorem 6.2.

Assumption 6.5. The permutation matrix P is the identity matrix.

This assumption does not change the general result thanks to the following
lemma.

Lemma 6.6. For any permutation σ of the code positions J1, n+ wK we have

dim (ShortL (C))?2 = dim (ShortLσ (C σ))?2 ,

where C σ is the set of codewords in C permuted by σ, that is C σ = {cσ : c ∈ C }
where cσ

def= (cσ(i))i∈J1,n+wK and Lσ
def= {σ(i) : i ∈ L}.

6.2.1 Analysis of the different kinds of columns
6.2.1.1 Notation and terminology
Before proving the result, let us introduce some notation and terminology.
Indeed, the columns of Gpub are of different nature.

• Some columns are directly inherited from thematrixG0, which generates
the GRS code GRSk,n(x,y). We will call them GRS columns.

• Other columns come by pairs, corresponding to a matrix Qi. These pairs
of columns share some properties. We will refer to them as twin columns.

• These twin columns are obtained by the linear combination of a GRS
column and a random column. But they are not independent, hence we
will call them pseudo-random (PR) columns.

• In some cases, some coefficients of the matrix Qi may be equal to zero.
This is especially problematic if one coefficient corresponding to the
random part is zero. Indeed, as we will see, the fact that two twin
columns share the common randomness is a key property that makes
them not independent. We will refer to these cases as degenerate cases.
In this special case, we will say that the column with no random part
belongs to the category of GRS columns, and its twin column will be
called a random column.

130 Chapter 6. Attack on the RLCE cryptosystem

τ τ τ τ τ

G1 =

a, b, c, d ∈ F×q
×(
a b
c d

) ×(
0 b
c d

) ×(
a 0
c d

) ×(
a b
0 d

) ×(
a b
c 0

)

Gpub =

I1
GRS =

IT =

ID =

I2
GRS =

IGRS =

IPR =

IR =

Figure 6.2: Different sets of positions for an example of RLCE scheme for
n = 13, w = 5, where a, b, c and d denote non-zero elements of Fq.

We will formalise this distinction in the rest of this subsection. Figure 6.2
illustrates the definitions.

6.2. Dimension of the square code 131

6.2.1.2 Twin positions

Definition 6.7. The set of twin positions, denoted IT, corresponds to columns
that result in a mix of a random column and a GRS one. This set has cardinality
2w and is equal to:

IT
def= {i ∈ J1, n+ wK |π−1(i) > n− w}.

Under Assumption 6.5, this becomes: IT
def= Jn− w + 1, n+ wK.

Definition 6.8. Each position in IT has a unique corresponding twin position
which is the position of the column with which it was mixed. For all s ∈ J1, wK,
π(n− w + 2s− 1) and π(n− w + 2s) are twin positions. Under Assumption
6.5, the positions n− w + 2s− 1 and n− w + 2s are twins for all s in J1, wK.

For convenience, we introduce the following notation.

Notation 6.9. The twin of a position i ∈ IT is denoted by τ(i).

6.2.1.3 Random columns define linear forms

A convenient way to represent the random columns is to think of them as
linear forms defined on the set of polynomials. Indeed, each codeword of the
GRS code is the evaluation of a polynomial over the points of the support. The
matrix G0 is a generator matrix of GRSk,n(x,y), hence for each row of the
matrix there exists a polynomial f ∈ Fq[X]<k such that the row corresponds to
(y1f(x1), . . . , ynf(xn)). And because the rows of the matrix form a basis of the
GRS code, the set of corresponding polynomials form a basis ofFq[X]<k. Let fj
denote the polynomial corresponding to the j-th row of G0. For each random
column rs added to G0, there exists a unique linear form ψs : Fq[x]<k → Fq,
such that for all j ∈ J1, kK, ψs(fj) = rs[j] (see § 6.1.1, Step 3).

Hence, each random column added to the matrix G0 assigns a random
coefficient to each element of the basis of Fq[X]<k, and by linear combination,
this defines a linear form on Fq[X]<k.

Therefore, to any random column rs is associated a unique linear form
ψs : Fq[x]<k → Fq, such that the code generated by G1 is of the form

{(x1f(y1), . . . , yn−w+1f(xn−w+1), ψ1(f), . . . , xnf(xn), ψw(f)) | f ∈ Fq[X]<k} .

Notation 6.10. For any s ∈ J1, wK, we denote(
as bs
cs ds

)
def= Qs. (6.1)

132 Chapter 6. Attack on the RLCE cryptosystem

Proposition 6.11. To any twin pair {i, τ(i)} = {π(n−w+2s−1), π(n−w+2s)}
with s ∈ J1, wK, for any codeword v ∈ C , we have

vi = asyjf(xj) + csψs(f)
vτ(i) = bsyjf(xj) + dsψs(f), (6.2)

where j = n− w + s.
Definition 6.12. The set of degenerate pairs of positions, is the set of positions
where one of the columns has no random component, that is such that cs or
ds is equal to zero. We will see in Lemma 6.19 why this defines a special case,
that will be addressed in § 6.3.5.

ID
def=

⋃
s∈J1,wK s.t. csds=0

{π(n− w + 2s− 1), π(n− w + 2s)}. (6.3)

6.2.1.4 GRS positions
Definition 6.13. The set of GRS positions of the first kind, denoted I1

GRS, corre-
sponds to GRS columns which have not been associated to a random column.
This set has cardinality n− w and is given by

I1
GRS

def= {i ∈ J1, n+ wK |π−1(i) 6 n− w}. (6.4)

Under Assumption 6.5, this becomes: I1
GRS

def= J1, n− wK.
This set is called this way, because at a position i ∈ I1

GRS, any codeword
v ∈ C has an entry of the form

vi = yif(xi). (6.5)
From (6.2), we see that we may obtain more GRS positions: indeed vi =

asyjf(xj) if cs = 0 or vτ(i) = bsyjf(xj) if ds = 0. We will call these GRS
positions of the second kind.
Definition 6.14. The set GRS positions of the second kind, denoted I2

GRS, is
defined as
I2

GRS
def= {π(n− w + 2s− 1) | cs = 0} ∪ {π(n− w + 2s) | ds = 0}. (6.6)

Under Assumption 6.5, this becomes:
I2

GRS = {n− w + 2s− 1 | cs = 0} ∪ {n− w + 2s | ds = 0}. (6.7)
We can join these two sets in one set of GRS positions.

Definition 6.15. The set of GRS positions, denoted IGRS, is defined as

IGRS
def= I1

GRS ∪ I2
GRS. (6.8)

6.2. Dimension of the square code 133

6.2.1.5 Pseudo-random positions
For twin columns such that csds 6= 0, the twin pairs are correlated in the sense
that both columns carry the same randomness. Aswewill see in Lemma 6.19, if
one shortens the code in such a position its twin becomes a GRS position. This
property will be useful to distinguish them. We therefore call such positions
pseudo-random positions.
Definition 6.16. The set of pseudo-random positions (PR in short), denoted IPR,
is given by

IPR
def=

⋃
s∈J1,wK s.t. csds 6=0

{π(n− w + 2s− 1), π(n− w + 2s)}. (6.9)

Under Assumption 6.5, this becomes:
IPR =

⋃
s∈J1,wK s.t. csds 6=0

{n− w + 2s− 1, n− w + 2s}. (6.10)

6.2.1.6 Random positions
The random positions are the twin columns of the GRS positions of the second
kind. Indeed, even if they are the sum of a GRS column and a random column
from the matrix G1, the randomness part is not shared with its twin column.
Hence it will not be possible to recover the GRS part (to derandomise using
Lemma 6.19). Therefore, these columns are completely random. We call them
random positions.
Definition 6.17. The set of random positions, denoted IR, is defined as

IR
def= {π(n− w + 2s− 1) | ds = 0} ∪ {π(n− w + 2s) | cs = 0}. (6.11)

Under Assumption 6.5, this becomes:
IR = {n− w + 2s− 1 | ds = 0} ∪ {n− w + 2s | cs = 0}. (6.12)

Cardinality. We finish this subsection with a lemma.
Lemma 6.18. |I2

GRS| = |IR| and |IPR| = 2(w − |IR|).
Proof. Using (6.10), (6.7) and (6.12) we see that, under Assumption 6.5,

Jn− w + 1, n+ wK = IPR ∪ I2
GRS ∪ IR (6.13)

and the above union is disjoint. Next, there is a one-to-one correspondence
relating I2

GRS and IR. Indeed, still under Assumption 6.5, if cs = 0 for some
s ∈ J1, wK, then n− w + 2s− 1 ∈ I2

GRS and n− w + 2s ∈ IR and conversely if
ds = 0. This proves that |I2

GRS| = |IR|, which, together with (6.13) yields the
result.

134 Chapter 6. Attack on the RLCE cryptosystem

6.2.2 Intermediate results
Before proceeding to the proof of Theorem 6.2, let us state and prove some
intermediate results. We will start by Lemmas 6.19, the derandomisation lemma,
that proves that twin pairs of pseudo-random positions behave in a very par-
ticular way: after shortening one position, its twin becomes a GRS position.
Then we prove a short lemma on subcodes of GRS codes, Lemma 6.22. These
two results will be useful to prove Proposition 6.23 on the structure of short-
ened RLCE codes, by induction on the number of shortened positions. This
proposition be the core of the proof of Theorem 6.2. Finally, we will prove a
general result on modified GRS codes with additional random columns.

6.2.2.1 Derandomisation
This lemma explains that, after shortening a PR position, its twin will behave
like a GRS position. This is actually a crucial lemma that explains why PR
columns in G do not really behave like random columns after shortening the
code at the corresponding position.
Lemma 6.19. Let i be a PR position and L a set of positions that neither contains i
nor τ(i). Let C ′

def= ShortL (C). The position τ(i) behaves like a GRS position
in the code Short{i} (C ′). That is, the τ(i)–th column of a generator matrix of
Short{i} (C ′) has entries of the form

ỹjf(xj)

for some j in Jn− w + 1, nK and ỹj in Fq.
Proof. Let us assume that i = n−w+ 2s− 1 for some s ∈ {1, . . . , w}. The case
i = n− w + 2s can be proved in a similar way. At position i, for any c ∈ C ′,
from (6.2), we have

ci = ayjf(xj) + cψs(f),
where j = n − w + s. By shortening, we restrict our space of polynomials
to the subspace of polynomials in Fq[x]<k satisfying ci = 0. Since i is a PR
position, c 6= 0 and therefore

ψs(f) = −c−1ayjf(xj).

Therefore, at the twin position τ(i) = n−w+2s and for any c ∈ Short{i} (C ′),
we have

cτ(i) = byjf(xj) + dψj(f)
= yj(b− dac−1)f(xj).

6.2. Dimension of the square code 135

Remark 6.20. This lemma does not hold for a random position, since the proof requires
that c 6= 0. It is precisely because of this that we have to make a distinction between
twin pairs, i.e. pairs for which the associated matrix Qs is such that csds 6= 0 and
pairs for which it is not the case. This explains the definition of degenerate positions
(see Definition 6.12).

This lemma allows us to get some insight on the structure of the shortened
code ShortL (C). Before giving the relevant statement let us first recall the
following result.

6.2.2.2 A lemma on GRS subcodes
Definition 6.21. Let C ⊆ Fn

q andL ⊆ J1, nK. The restriction of C toL is defined
as a variant of puncturing, keeping only the positions in the subset L.

RestrL (C) def= PunctJ1,nK\L (C) .

Lemma 6.22. Consider a linear code A over Fq s.t.RestrL (A) is a subcode of a k–
dimensional GRS code. Let i be an element of L. Then RestrL\{i}

(
Short{i} (A)

)
is a subcode of a (k − 1)–dimensional GRS code.

Proof. By definition, the restriction of A to L is a GRS code so it can be written
of the form

RestrL (A) =
{

(yjf(xj))j∈L : f ∈ L
}
,

where the yj ’s are nonzero elements of Fq, the xj ’s are distinct elements of
Fq and L is a subspace of Fq[X]<k. Clearly the restriction of Short{i} (A) to
L \ {i} can be written as

RestrL\{i}
(
Short{i} (A)

)
=
{

(yjf(xj))j∈L\{i} : f ∈ L, f(xi) = 0
}
.

The polynomials f(X) in L such that f(xi) = 0 can be written as f(X) =
(X −xi)g(X) where degg = degf − 1 and g ranges in this case over a subspace
L′ of polynomials of degree < k − 1. We can therefore write

RestrL\{i}
(
Short{i} (A)

)
=
{

(yj(xj − xi)g(xj))j∈L\{i} : g ∈ L′
}
.

This implies our lemma.

6.2.2.3 Structure of a shortened RLCE code
In order to prove Theorem 6.2, we need to describe exactly what happens
when we shorten the code generated by Gpub. Especially, to give an upper
bound on the dimension of the square code, we want to show that some part

136 Chapter 6. Attack on the RLCE cryptosystem

of the shortened code is a subcode of a GRS code. Indeed, we know that the
dimension of the square code of a GRS code (or a subcode of a GRS code) is
much lower than for a random code. Therefore, in order to obtain a bound
as tight as possible, we want to find the largest set of positions such that the
shortened code restricted to these positions is a subcode of a GRS code.

Using Lemmas 6.19 and 6.22, we can prove the following result by induction.
This result is the key proposition for proving Theorem 6.2.

Proposition 6.23. Let L be a subset of J1, n+ wK and let L0,L1,L2 and L3 be the
partition of L defined as

• L0 the set of GRS positions (see (6.4), (6.6) and (6.8) for a definition) of L:

L0
def= L ∩ IGRS;

• L1 the set of PR positions (see (6.9)) of L that do not have their twin in L:

L1
def= {i ∈ L ∩ IPR | τ(i) 6∈ L};

• L2 the set of PR positions of L whose twin position is also included in L:

L2
def= {i ∈ L ∩ IPR | τ(i) ∈ L};

• L3 the set of random positions of L:

L3
def= IR ∩ L.

Let C ′ be the restriction of ShortL (C) to J def= (IGRS \ L0) ∪ τ(L1). Then, C ′ is a
subcode of a GRS code of length |IGRS| − |L0|+ |L1| and dimension k− |L0| − |L2|

2 ·

Proof. Let us prove by induction on ` = |L| that C ′ is a subcode of a GRS code
of length |IGRS|−|L0|+ |L1| and dimension k−|L0|− |L2|

2 ·Note that the result
on the length is straightforward because |J | = |IGRS| − |L0| + |L1|. Let us
prove the result on the dimension.

This statement is clearly true if ` = 0, i.e. if L is the empty set. Assume that
the result is true for all L up to some size ` > 0. Consider now a set L of size
`+ 1. We can write L = L′ ∪ {i}where L′ is of size `.

Let L0,L1,L2 be subsets of L as defined in the statement and L′0,L′1,L′2 be
the subsets of L′ obtained by replacing in the statement L by L′. There are
now several cases to consider for i.

6.2. Dimension of the square code 137

Gpub =

τ τ τ τ τ

(∗)

L = 0 0 0 0 01 2 2 3

J1, n+ wK \ L = J J J J J J

Figure 6.3: Illustration of the partition of L defined in Proposition 6.23, with
the example from Figure 6.2. The positions in L indexed with a number
i ∈ {0, 1, 2, 3} belong to the set Li. The positions in J1, n + wK \ L indexed
with J belong to the set J . Note that the column (∗) has been derandomised
according to Lemma 6.19.

Case 1: i ∈ L0. In this case, L0 = L′0 ∪ {i}, L1 = L′1 and L2 = L′2.
We can apply Lemma 6.22 with A = ShortL′ (C). By the induction
hypothesis, its restriction to J ′′ def= (IGRS \ L′0) ∪ τ(L′1) is a subcode of a
GRS code of dimension k − |L′0| − |L

′
2|

2 ·
Hence, the restriction of the shortened code ShortL (C) = Short{i} (A)
to J ′′ \{i} = J is a subcode of a GRS code of dimension k−|L′0|− |L

′
2|

2 −
1 = k − |L0| − |L2|

2 ·

Case 2: i ∈ L1. In this case, L0 = L′0,L1 = L′1∪{i} and L2 = L′2. This implies
that L′ does not contain i nor τ(i).
We can therefore apply Lemma 6.19 withC ′ = ShortL′ (C). Lemma 6.19
states that the position τ(i) behaves like aGRSposition inShort{i} (C ′) =
ShortL (C). The column τ(i) behaves like one more columns of the GRS
code, whose dimension stays unchanged. By induction hypothesis, the
restriction of the code C ′ to (IGRS \ L′0) ∪ τ(L′1) is a subcode of a GRS
code of dimension k − |L′0| − |L

′
2|

2 = k − |L0| − |L2|
2 ·

Therefore the restriction of Short{i} (C ′) = ShortL (C) to (IGRS \L0)∪
τ(L1) = (IGRS \ L′0) ∪ τ(L′1) ∪ {τ(i)} is a subcode of a GRS code of
dimension k − |L0| − |L2|

2 .

Case 3: i ∈ L2. In this case, L0 = L′0,L1 = L′1 \ {τ(i)} and L2 = L′2 ∪{i, τ(i)}.
In fact, this case can only happen if ` > 1 and we will rather consider the
induction with respect to the set L′′ = L \ {i, τ(i)} of size `− 1 and the
sets L′′0,L′′1,L′′2 such that L′′0 = L0,L′′1 = L1,L′′2 = L2 \ {i, τ(i)}.

138 Chapter 6. Attack on the RLCE cryptosystem

By induction hypothesis on L′′, the restriction of C ′′
def= ShortL′′ (C) to

(IGRS \ L′′0) ∪ τ(L′′1) is a subcode of a GRS code of dimension k − |L′′0| −
|L′′2 |

2 = k − |L0| − |L2|
2 + 1.

Following Assumption 6.5, we can write without loss of generality that
i = n− w + 2s− 1 for some s ∈ {1, . . . , w}. The case i = n− w + 2s can
be proved in a similar way.

Denote As =
(
a b
c d

)
the non-singular matrix and j = n−w+ s. For any

c ∈ C ′, at positions i and τ(i) we have

ci = ayjf(xj) + cψs(f),
cτ(i) = byjf(xj) + dψs(f).

Shortening C ′′ at {i, τ(i)} has the effect of requiring to consider only
the polynomials f for which f(xj) = ψs(f) = 0. The dimension of the
GRS decreases by one. Therefore the restriction of Short{i,τ(i)} (C ′′) =
ShortL (C) at (IGRS\L′′0)∪τ(L′′1) is a subcode of aGRS code of dimension
k − |L0| − |L2|

2 + 1− 1 = k − |L0| − |L2|
2 ·

Case 4: i ∈ L3. In this case L0 = L′0,L1 = L′1 and L2 = L′2. Using the
induction hypothesis yields directly that A = ShortL′ (C) is a subcode
of a GRS code of length |IGRS| − |L′0|+ |L′1| = |IGRS| − |L0|+ |L1| and
dimension k − |L′0| − |L

′
2|

2 = k − |L0| − |L2|
2 · This is also clearly the case

for ShortL (C) = Short{i} (A).

This proves that the induction hypothesis also holds for |L| = ` + 1 and
finishes the proof of the proposition.

6.2.2.4 Adding columns to subcodes of GRS codes
We have seen in the previous section that a restriction of the public code (or
the shortened public code) is a subcode of a GRS code. Hence, the public code
is a concatenation of a subcode of a GRS code and some additional columns.
We need a general result to bound the dimension of the square of codes of this
form. Such a lemma is already proved in [CGGOT14, Lemma 9]. We repeat
its proof below for convenience and in order to provide further details about
the equality case, which is of particular interest to us.

Lemma 6.24. Consider a linear code A over Fq with generator matrix of the form
G =

(
GSCGRS Grand

)
P of size k × (n + r) where GSCGRS is a k × n generator

matrix of a subcode of a GRS code of dimension kGRS over Fq, Grand is an arbitrary

6.2. Dimension of the square code 139

matrix in Fk×r
q and P is the permutation matrix of an arbitrary permutation σ ∈

Sn+r. We have
dim A ?2 6 2kGRS − 1 + r. (6.14)

Moreover, if the equality holds, then for every i ∈ J1, n+ wK we have:

if i ∈ Jn+ 1, n+ rK, dim Punct{σ(i)}
(
A ?2

)
= dim A ?2 − 1,

else if i ∈ J1, nK and kGRS > 1, dim Punct{σ(i)}
(
A ?2

)
= dim A ?2.

Remark 6.25. According to Proposition 5.12, given a code of dimension k, the di-
mension of its square code is bounded by (k+1

2
). Hence, to achieve equality in Equa-

tion (6.14), a necessary condition is to have

2kGRS − 1 + r 6

(
k + 1

2

)
. (6.15)

Proof. Without loss of generality, we may assume that P is the identity ma-
trix since the dimension of the square code is invariant by permuting the
code positions (see Lemma 6.6). Let B be the code with generator matrix(
GSCGRS 0k×r

)
, where 0k×r is the zero matrix of size k × r. We also define

the code B′ generated by the generator matrix
(
0k×n Grand

)
. We obviously

have
A ⊆ B + B′.

Therefore

(A)?2 ⊆
(
B + B′

)?2
⊆ B?2 +

(
B′
)?2 + B ?B′

⊆ B?2 +
(
B′
)?2

,

where the last inclusion comes from the fact that B ?B′ is the zero subspace
sinceB andB′ have disjoint supports. The codeB?2 has dimension6 2kGRS−
1 whereas dim (B′)?2 6 r.

Next, if dim A ?2 = 2kGRS − 1 + r, then

A ?2 = B?2 ⊕ (B′)?2, dim B?2 = 2kGRS − 1 and dim(B′)?2 = r.

A necessary condition to have dim B?2 = 2kGRS − 1 is that n > 2kGRS − 1,
hence n > kGRS provided kGRS > 1. Therefore, the code B?2 restricted to its
n leftmost positions is a subcode of a GRS code of length n and dimension
2kGRS − 1, and such a code admits no codeword of weight 1. Hence, the code

140 Chapter 6. Attack on the RLCE cryptosystem

A ?2 has no codeword of weight 1 with support on the n leftmost positions, so
puncturing one of these positions does not decrease the dimension of A ?2.

Concerning B′, since the size of the support is equal to r, this means that
(B′)?2 = {(0n, c), c ∈ Fr

q} and hence, any word of weight 1 supported by the
r rightmost positions is contained in A ?2. Therefore, puncturing this position
decreases the dimension by one.

6.2.3 Proof of the main theorem
We will now proceed to the proof of Theorem 6.2.
Proof. By using Proposition 6.23, we know that the restriction of ShortL (C)
to J def= (IGRS \L0)∪τ(L1) is a subcode of a GRS code of length |IGRS|−|L0|+
|L1| = n − w + |I2

GRS| − |L0| + |L1| and dimension kGRS
def= k − |L0| − |L2|

2 ,
where:

• L0
def= IGRS ∩ L;

• L1 is the set of PR positions of L that do not have their twin in L;

• L2 is the union of all twin PR positions that are both included in L;

• L3
def= IR ∩ L.

We have

J1, n+ wK = L t J t (IPR \ (L ∪ τ(L1))) t (IR \ L3),

where t denotes the disjoint union. We can apply Lemma 6.24 to ShortL (C)
and derive from it the following upper bound:

dim (ShortL (C))?2 6 2kGRS − 1 + |IPR \ (L ∪ τ(L1))|+ |IR \ L3|.(6.16)

Finally, we can simplify this expression using Lemma 6.18. We get

dim (ShortL (C))?2

6 2
(
k − |L0| −

|L2|
2

)
− 1 + 2 (w − |IR|)− 2|L1| − |L2|+ |IR| − |L3|

6 2 (k + w − |L0| − |L1| − |L2| − |L3|)− 1 + (|L3| − |IR|) (6.17)
6 2 (k + w − |L|)− 1. (6.18)

The other upper bound on dim (ShortL (C))?2 which is dim (ShortL (C))?2 6
n+ w − |L| follows from the fact that the dimension of this code is bounded
by its length. Putting both bounds together yields the theorem.

6.2. Dimension of the square code 141

6.2.4 When is the inequality an equality?
Let us analyse the proof of Theorem 6.2, to see under which condition the
upper bound can be met. There are actually two steps in the reasoning where
the inequality is not necessarily sharp.

1. To go from Equation (6.17) to Equation (6.18), one supposes that |L3| −
|IR| = 0 which means that IR ⊆ L. Because we want our result to hold
for any choice of L and depend only of the cardinality of the set L, this
implies that IR = ∅. This corresponds exactly to the fact of having no
degenerate pairs of positions.

2. The proof uses Lemma 6.24 to obtain Equation (6.16). Aswe have seen in
Remark 6.25, a necessary condition to have an equality in Equation (6.16)
is given by Equation (6.15). Assuming there are no degenerate pairs of
positions, this condition becomes

2(k + w − |L|)− 1 6

(
dim ShortL (C) + 1

2

)
,

And because dim ShortL (C) 6 k − |L|, we obtain

2(k + w − |L|)− 1 6

(
k − |L|+ 1

2

)
. (6.19)

We can now formulate the following conjecture.

Conjecture 6.26. Under these two conditions, the inequality of Theorem 6.2 is an
equality with high probability.

P
[
dim (ShortL (C))?2 = min(n+ w − |L|, 2(k + w − |L|)− 1)

]
−→

n,k→∞
1

Remark 6.27. To check if this conjecture holds for the parameters used in the cryp-
tosystem, we ran the following simulations using ID 1 parameters (see Table 6.1): for
three hundred random independent public keys, we computed dim (ShortL (C))?2
for |L| ranging over J`min, `maxK, as defined in (6.25). For more than 99% of the
cases, inequality (6.16) is an equality. In particular, this means that the inequality
of Theorem 6.2 is almost always an equality whenever IR is the empty set, i.e. when
there are no degenerate pairs. In § 6.3.5, we explain how to deal with the rather rare
issue of degenerate positions by transforming them into the generic case.

142 Chapter 6. Attack on the RLCE cryptosystem

6.2.5 A distinguisher
We can now address the first question asked in Section 6.1.3: is there a polyno-
mial algorithm to distinguish public keys of the RLCE scheme from random
k × (n+ w) matrices over Fq ?

Theorem 6.2 shows that the public keys of the RLCE cryptosystem have
a behaviour which is different from random k × (n + w) matrices over Fq

regarding the dimension of their square code.
Indeed, let CRLCE be an [n + w, k] code over Fq whose generator matrix

Gpub is the public key of an RLCE scheme. Let L denote a subset of J1, n+wK.
We suppose that the code contains no degenerate positions and that it fulfills
the condition (6.19). Then, according to Theorem 6.2 and Conjecture 6.26,
with high probability,

dim (ShortL (CRLCE))?2 = min (n+ w − |L|, 2(k + w − |L|)− 1) .

On the other hand, according to Corollary 5.23, if CRand is drawn uniformly at
random among [n+ w, k]-codes, then, with high probability,

dim (ShortL (CRand))?2 = min
(
n+ w − |L|,

(
k − |L|+ 1

2

))
.

Computing a square code is a polynomial time operation. Hence, for given
parameters (k, n, w), if there exists an integer ` ∈ J0, kK such that these two
formulas give different results, then by choosing a subset L of size `, we obtain
a polynomial time distinguisher.

So we want to find the valued of (n, k, w) such that there exists an ` such
that

min (n+ w − `, 2(k + w − `)− 1) < min
(
n+ w − `,

(
k − `+ 1

2

))
.

(6.20)
Condition (6.19), which is necessary due to Conjecture 6.26, cannot be an

equality, and hence becomes

2(k + w − `)− 1 <
(
k − `+ 1

2

)
. (6.21)

The other necessary condition to obtain (6.20) is that
2(k + w − `)− 1 < n+ w − `. (6.22)

On the other hand, equations (6.21) and (6.22) are sufficient to obtain
(6.20).

Now, for a fixed value of n, k, w, let us find the values ` for which the
inequalities (6.21) and (6.22) are satisfied.

6.2. Dimension of the square code 143

First inequality. In order to determine when the first inequality (6.21) is
verified, let us denote

k′
def= k − `.

Inequality (6.21) becomes 4k′ − 2 + 4w < k′2 + k′, or equivalently k′2 −
3k′ − 4w + 2 > 0, which after a resolution leads to k′ > 3+

√
16w+1
2 ·

Hence, we have:
` < k − 3 +

√
16w + 1
2 · (6.23)

Second inequality. The second inequality (6.22) is equivalent to

` > w + 2k − n. (6.24)

Conditions to verify both inequalities. Putting inequalities (6.23) and (6.24)
together gives that ` should satisfy

w + 2k − n 6 ` < k − 3 +
√

16w + 1
2 ·

We can therefore find an appropriate L if and only if

w + 2k − n < k − 3 +
√

16w + 1
2 ,

which is equivalent to

n− k > w + 3 +
√

16w + 1
2 = w +O(

√
w).

In other words, the distinguisher works up to values of w that are close to the
second choice n− k = w. From now on, we set

`min
def= w + 2k − n and `max

def=
⌈
k − 3 +

√
16w + 1
2 − 1

⌉
· (6.25)

Practical results. We have run experiments using Magma [BCP97] and Sage.
For the parameters of Table 6.1, here are the intervals of possible values of ` so
that the code ShortL (C)?2 has a non generic dimension:

• ID 1: n = 532, k = 376, w = 96, ` ∈ J316, 354K;

• ID 3: n = 846, k = 618, w = 144, ` ∈ J534, 592K;

• ID 5: n = 1160, k = 700, w = 311, ` ∈ J551, 663K.

144 Chapter 6. Attack on the RLCE cryptosystem

The interval always coincides with the theoretical interval J`min, `maxK.
On the contrary, the parameters of the second group (listed in Table 6.2)

are chosen such that w = n− k. For these parameters, there exists no value of
` verifying inequalities (6.23) and (6.24). Thus, the distinguisher cannot be
applied for keys generated with these parameters.

We have seen that for some parameters (and especially for the parameters
of the first group) there is a way to distinguish RLCE matrices from random
matrices. Still, this does not provide a proper way to attack the scheme and
recover the key. As we will see in the next section, a smart use of this distin-
guisher can be turned into an attack.

6.3 The attack
In this section, given a public keyGpub of an instance of the RLCE cryptosystem,
we will show how to find an equivalent private key (x,y,Q,P) defining the
same code. This allows to decode and recover the original message like a
legitimate user.

Remark 6.28. In the present section where we the goal is to recover the permutation,
we no longer work under Assumption 6.5.

6.3.1 An algorithm to find a set of twin positions
The idea to distinguish different columns is to rely on the result of Lemma 6.24,
especially in the equality case. Indeed, we see that the dimension evolves
differently if one punctures a column in GSCGRS than if one punctures a
column in Grand. We obtain the following result.

Lemma 6.29. Let C denote the public key of the public code of an instance of the
RLCE scheme. Let L denote a subset of J1, n+wK. Let J denote the set (IGRS \L0)∪
τ(L1) (following the notations from § 6.2.3). Suppose that L is such that such that
Lemma 6.24 applied to ShortL (C) (where the columns of index in J correspond to
GSCGRS) gives an equality.

Then Algorithm 8 returns in polynomial time the set

TL
def=

⋃
{i,τ(i)}⊆J1,n+wK\L

{i, τ(i)}.

Proof. Let C denote the public key of the public code of an instance of the
RLCE scheme. We have seen in the proof of Theorem 6.2 that for a subset
L ⊆ J1, n+ wK, we can apply Lemma 6.24 to ShortL (C), where the columns

6.3. The attack 145

Algorithm 11: TwinSet(C ,L)
Input: The public RLCE code C , a set L ⊆ J1, n+ wK
Output: The set TL

1 TL ← ∅
2 C ′ ← ShortL (C)
3 d←

(
C ′?2

)
4 for i ∈ J1, n+ wK \ L do
5 C ′′ ← Punct{i} (C ′)
6 if dim

(
C ′′?2

)
6= d then

7 TL ← TL ∪ {i}

8 return TL

corresponding to the subcode of a GRS code are the columns of the set J def=
(IGRS \ L0) ∪ τ(L1) (following the notations from § 6.2.3).

Suppose that the subsetL is chosen such that Equation (6.14) of Lemma6.24
is an equality. For all positions i in J1, n+wK\L, let us compare the dimension
of (ShortL (C))?2 with the dimension of

(
Punct{i} (ShortL (C))

)?2.
• If i ∈ IGRS, then i ∈ J so puncturing does not affect the dimension of

the square code:

dim (ShortL (C))?2 = dim
(
Punct{i} (ShortL (C))

)?2
.

• If i ∈ IPR and τ(i) ∈ L, then i ∈ τ(L1) ⊆ J . Indeed, according to
Lemma 6.19, the position i is “derandomised” in ShortL (C) and hence
behaves like a GRS position in the shortened code. Therefore, very
similarly to the previous case, the dimension does not change.

• If i ∈ IPR and τ(i) 6∈ L, in ShortL (C), then i 6∈ J . Indeed, in this case,
the two corresponding columns behave like random ones. Hence, punc-
turing ShortL (C)?2 at i (resp. τ(i)) reduces its dimension. Therefore,

dim
(
Punct{i} (ShortL (C))

)?2
= dim (ShortL (C))?2 − 1,

dim
(
Punct{τ(i)} (ShortL (C))

)?2
= dim (ShortL (C))?2 − 1.

This provides a way to identify any position in J1, n+wK \L having a twin
which also lies in J1, n+ wK \ L: by searching zero columns in a parity–check

146 Chapter 6. Attack on the RLCE cryptosystem

matrix of ShortL (C)?2, we obtain the set TL ⊂ J1, n+wK\L of even cardinality
of all the positions having their twin in J1, n+ wK \ L:

TL
def=

⋃
{i,τ(i)}⊆J1,n+wK\L

{i, τ(i)}.

6.3.2 Identifying pairs of twin positions
Once these positions are identified, we can associate each such position to its
twin. This can be achieved through Algorithm 6.

Lemma 6.30. Under the assumptions of Lemma 6.29, let PL denote the result of
Algorithm 6, then

PL = { {i, τ(i)} , i ∈ TL}.

Algorithm 12: FindTwins(C ,L)
Input: The public RLCE code C , a set L ⊆ J1, n+ wK
Output: The set PL

1 PL ← ∅
2 TL ← TwinSet(C ,L)
3 for i ∈ TL do
4 T (i)

L ← TwinSet(C ,L ∪ {i})
5 PL ← PL ∪ {TL \ T (i)

L }
6 return PL

Proof. For i ∈ TL, compute TL∪{i}. The column corresponding to the twin
position τ(i) has been derandomised and hence will not give a zero column in
a parity–checkmatrix of

(
ShortL∪{i} (C)

)?2, so puncturing the corresponding
column will not affect the dimension. Hence, TL∪{i} = TL \ {i, τ(i)}.

This process can be iterated by using various shortening sets L until ob-
taining w pairs of twin positions. It is readily seen that considering O(1) such
sets is enough to recover all pairs with very large probability.

6.3.3 Description of the attack
In summary, the attack works as follows.

6.3. The attack 147

1. Compute the interval J`min, `maxK as defined in § 6.2.5 and choose ` in
the middle of the interval. Ensure ` < `max.

2. Apply Algorithm 6 for several sets of indices L ⊆ J1, n+ wK such that
|L| = `. Repeat this process until identifying all pairs of twin positions,
as detailed in § 6.3.2.

3. Puncture the twin positions in order to get a GRS code and recover its
structure using the Sidelnikov Shestakov attack [SS92].

4. For each pair of twin positions, recover the corresponding 2 × 2 non-
singular matrix Ai, as explained in Section 6.3.4.

5. Finish to recover the structure of the underlying GRS code.

6.3.4 Retrieving the secret key
We explain here the steps 3 to 5 of the attack in order to obtain a key equivalent
to the secret key.

Recovering the remainder of the code. As soon as all the pairs of twin posi-
tions are identified, consider the code PunctIPR (C) punctured at IPR. Since
the randomised positions have been punctured this code is nothing but a GRS
code and, applying the Sidelnikov Shestakov attack [SS92], we recover a pair
a, b such that PunctIPR (C) = GRSk(a, b).

Joining a pair of twin positions. To recover the remaining part of the code
we will consider iteratively the pairs of twin positions. We recall that IPR
corresponds to the set of positions having a twin. Let {i, τ(i)} be a pair of twin
positions and consider the code

C (i) def= PunctJ1,nK\(IGRS∪{i,τ(i)}) (C) .

In this code, any position is GRS but positions i and τ(i). Hence, for any
codeword c ∈ C (i) we have:

ci = ayjf(xj) + cψj(f)
cτ(i) = byjf(xj) + dψj(f) (6.26)

for some integer j ∈ Jn− w + 1, nK, where ψj and Q =
(
a b
c d

)
are defined as

in (6.2) and (6.1).
Note that we do not need to recover exactly (x,y,Q,P). We need to recover

a 4–tuple (x′,y′,Q′,P ′) which describes the same code (see Remark 1.29).

148 Chapter 6. Attack on the RLCE cryptosystem

Thus, without loss of generality, after possibly replacing a by ayj and b by byj ,
one can suppose that yj = 1. Moreover, after possibly replacing ψj by dψj , one
can suppose that d = 1. Recall that in this section we suppose that cd 6= 0.

Thanks to these simplifying choices, (6.26) becomes

ci = af(xj) + cψj(f)
cτ(i) = bf(xj) + ψj(f).

Shortening C (i) to recover xj . If we shorten C (i) at the τ(i)-th position,
according to Lemma 6.19, it will derandomise the i-th position (it implies
ψj(f) = −bf(xj)) and any c ∈ Short{τ(i)}

(
C (i)

)
verifies

ci = (a− bc)f(xj).

Since the support xj and multiplier yj are known at all the positions of
C (i) but the two PR ones, for any codeword c ∈ Short{τ(i)}

(
C (i)

)
, one can

find the polynomial f ∈ Fq[x]<k whose evaluation provides c. Therefore, by
collecting a basis of codewords in Short{τ(i)}

(
C (i)

)
and the corresponding

polynomials, we can recover the values of xj and a− bc.

Recovering the entries of the Q matrix. Once we have xj we need to recover
the matrix

Q =
(
a b
c 1

)
.

Note that, its determinant det Q = a − bc has already been obtained in the
previous section. First, one can guess b as follows. Let G(i) be a generator ma-
trix of C (i). As in the previous section, by interpolation, one can compute the
polynomials f1, . . . , fk whose evaluations provide the rows of G(i). Consider
the column vector

v
def=

f1(xj)
...

fk(xj)


and denote by vi and vτ(i) the columns of G(i) corresponding to positions ci
and cτ(i):

vi =

af1(xj) + cψj(f1)
...

afk(xj) + cψj(fk)

 and vτ(i) =

bf1(xj) + ψj(f1)
...

bfk(xj) + ψj(fk)

 .

6.3. The attack 149

Next, search λ ∈ Fq such that vi − λvτ(i) is collinear to v. This relation of
collinearity can be expressed in terms of cancellation of some 2 × 2 determi-
nants which are polynomials of degree 1 in λ. Their common root is nothing
but c.

Finally, we can find the pair (a, b) by searching the pairs (λ, µ) such that

libel=(i) λ− cµ = det Q;

liibel=(ii) vi − λv and vτ(i) − µv are collinear.

Here the relation of collinearity will be expressed as the cancellation of 2 × 2
determinants which are linear combinations of λ, µ and λµ and elementary
elimination process provides us with the value of the pair (a, b).

6.3.5 The case of degenerate twin positions
Recall that a pair of twin positions i, τ(i) is such that any codeword c ∈ C has
i–th and τ(i)–th entries of the form:

ci = ayjf(xj) + bψj(f) cτ(i) = cyjf(xj) + dψj(f).

This pair is said to be degenerate if either b or d is zero. In such a situation,
some of the steps of the attack cannot be applied. In what follows, we explain
how this rather rare issue can be addressed.

If either b or d is zero, then one of the positions is actually a pure GRS
position while the other one is PR so Algorithm 6 does not manage to associate
the two twin columns.

Suppose without loss of generality that b = 0. When applying Algorithm 8,
the position τ(i) will be identified as PR but Algorithm 6 will not find its
twin sister a priori. To find its twin sister, we can proceed as follows. For
any GRS position j replace the j–th column vj of a generator matrix G of
C by an arbitrary linear combination of vj and the τ(i)–th column, this will
“pseudo–randomise” this column and if the j–th column is the twin of the
τ(i)–th one, this will be detected by the process of shortening, squaring and
searching zero columns in the parity check matrix.

6.3.6 Complexity of the attack
The most expensive part of the attack is the step consisting in identifying pairs
of twin positions. Recall that, from [CGGOT14], the computation of the square
of a code of length n and dimension k costs O(k2n2) operations in Fq. We
need to compute the square of a code O(w) times, because there are w pairs of
twin positions. Hence this step has a total complexity of O(wn2k2) operations

150 Chapter 6. Attack on the RLCE cryptosystem

in Fq. Note that the actual dimension of the shortened codes is significantly
less than k and hence the previous estimate is overestimated.

The cost of the Sidelnikov Shestakov attack is that of a Gaussian elimination,
namely O(nk2) operations in Fq which is negligible compared to the previous
step. The cost of the final part is also negligible compared to the computation
of the squares of shortened codes. This provides an overall complexity in
O(wn2k2) operations in Fq.

6.4 Conclusion
In this chapter, we have seen how the square-code distinguisher can be adapted
to distinguish in polynomial time another public key encryption scheme in-
volving a GRS structure, and how to use this new distinguisher to mount
an attack on the cryptosystem. In this situation, the distinguisher does not
work for all possible parameters. We therefore have a polynomial time attack
that breaks all the so-called odd ID parameters suggested in [Wan17], but the
even ID parameters, remain out of the reach. Namely, the distinguisher works
when the number w of random columns is strictly less than n − k, and our
analysis suggests that, for this kind of distinguisher by squaring shortenings
of the code, the case w = n − k is the critical one. After the publication of
this attack in [CLT19], the RLCE cryptosystem was withdrawn from the NIST
post-quantum standardization process.

Chapter7
Subspace subcodes of
Reed-Solomon codes

We have seen in Chapter 5 that the instantiation of McEliece’s scheme with
generalised Reed–Solomon codes is insecure, and that most similar proposals
involving variants of GRS codes (among which the RLCE scheme studied
in Chapter 6) are subject to attacks. Conversely, as presented in Chapter 1,
McEliece’s original proposal to instantiate his scheme using binary Goppa
codes is still considered secure after forty years of cryptanalysis attempts.

But Goppa codes have a strong connection to GRS codes. Indeed, Goppa
codes are a special family of alternant codes, which are subfield subcodes of
GRS codes. In this chapter, we consider the spectrum with (full) GRS codes
on one end and their subfield subcodes (i.e. alternant codes) on the other. The
intermediary case is that of subspace subcodes of Reed–Solomon (SSRS) codes.
This notion was originally introduced without any cryptographic motivation
by Solomon, McEliece and Hattori.

This chapter is dedicated to discussing the security of McEliece’s encryp-
tion scheme instantiated with subspace subcodes of Reed–Solomon codes. We
introduce such a cryptosystem and show that it generalises the XGRS cryp-
tosystem fromKhaturia, Rosenthal andWeger. Then, we adapt the square-code
distinguisher over this new family of codes, by introducing a new tool called
the twisted product. Finally we show that this distinguisher can be used to
build an efficient attack on this scheme when the dimension of the subspace is
large enough. In particular, this attack breaks some parameters of the XGRS
cryptosystem.
Related publication: Couvreur and Lequesne, On the security of subspace sub-
codes of Reed–Solomon codes for public-key encryption (preprint) [CL20].

Contents
7.1 Subspace subcodes . 152

7.1.1 Motivations . 152
7.1.2 Definition and first properties 155
7.1.3 Expansion operator and representation 158

152 Chapter 7. Subspace subcodes of Reed-Solomon codes

7.1.4 An instantiation of McEliece with SSRS codes . . . 164
7.1.5 Further properties of the expansion operator . . . 166

7.2 The XGRS cryptosystem . 169
7.2.1 The cryptosystem 169
7.2.2 XGRS is a instance of SSRS 171

7.3 Twisted-square code and distinguisher 173
7.3.1 The twisted square product 174
7.3.2 Dimension of the twisted square of subspace sub-

codes . 180
7.4 Attacking the SSRS scheme 186

7.4.1 Further conjectures for the attack 186
7.4.2 The casem = 3 and λ = 2 186
7.4.3 The general case . 190
7.4.4 Summary of the attack 190
7.4.5 Complexity . 191
7.4.6 The guess-and-squeeze approach 192

7.5 Conclusion . 193

7.1 Subspace subcodes
7.1.1 Motivations
7.1.1.1 Subspace subcodes in cryptography

The significant size of the public key in McEliece’s original scheme using
binary Goppa codes has encouraged cryptographers to propose the use of
other families of codes to instantiate the scheme. As we have seen in the
previous chapters, GRS codes have appealing properties that make them a
tempting candidate to use in a McEliece scheme. But over the years, almost all
attempts of cryptosystem involving variations on GRS codes has proved to be
insecure.

In summary, forty years of research on the use of algebraic codes for public
key encryption boil down to the following observations.

(1) On one hand, the raw use of GRS codes as well as most of the variants
using these codes lead to insecure schemes.

(2) On the other hand, Goppa codes or more generally alternant codes remain
robust decades after they were initially proposed by McEliece.

7.1. Subspace subcodes 153

Here, it is important to recall that alternant codes are constructed from
GRS codes. Indeed, alternant codes are subfield subcodes of GRS codes (see
Definition 5.5). Therefore, in order to better understand the hardness of dis-
tinguishing Goppa codes, it is interesting to consider GRS codes and alternant
codes as the two ends of a continuous spectrum, where the intermediary case
is that of subspace subcodes of Reed–Solomon codes.

A subspace subcode of a Reed–Solomon code (SSRS) is a subset of a parent
Reed-Solomon code over Fqm consisting of the codewords whose components
all lie in a fixed λ-dimensional Fq-vector subspace of Fqm , for some λ 6 m.

Definition 7.1 ([HMS98]). Given a linear code C defined over a field Fqm ,
and a λ-dimensional subspace S of Fqm (0 6 λ 6 m), the subspace subcode
C|S is defined to be the set of codewords of C whose components all lie in S.

C|S
def= {c ∈ C | ∀i ∈ J0, n− 1K, ci ∈ S} ⊆ Fn

qm .

As we can see from the definition, when the parent code C is a GRS code,
the case λ = 1 corresponds to alternant codes (see Definition 5.5), as any
subspace of dimension 1 is a subfield. On the other hand, the case λ = m
corresponds to the usual case of GRS codes, studied in Chapter 5. The notion
of subspace subcodes permits a modulation of the parameter λ.

λ
0 1 m

subspace-subcodes of GRS codes

alternant codes, Goppa codes
(believed secure)

GRS codes
(known insecure)

Figure 7.1: Spectrum representing subspace-subcodes of GRS codes of increas-
ing dimension.

We remark that the use of subspace subcodes for cryptography first appears
in the context of rank metric. In [GL05; GL08], Gabidulin and Loidreau who
propose to use subspace subcodes of Gabidulin codes for a rank-metric based
cryptosystem. This can be seen as a rank-metric equivalent of our motivations.

Concerning Hamming-metric public key cryptography, two recent works
exploring different approaches appeared in the recent years. First, Berger,
Gueye, Klamti and Ruatta are the first to propose a McEliece scheme based on
subspace subcodes of Reed–Solomon codes in [BGKR19]. As they intend to
reduce the key size, their work focuses more specifically on low-dimensional

154 Chapter 7. Subspace subcodes of Reed-Solomon codes

subcodes of quasi–cyclic SSRS codes. In another line of work, in the article
“Encryption Scheme Based on Expanded Reed-Solomon Codes” [KRW21], Khathuria,
Rosenthal andWeger propose an encryption scheme using expanded subspace
subcodes of GRS codes instead of Goppa codes. Throughout the document,
we will refer to this scheme as the XGRS scheme (where the X stands for
expanded).

Consequently, the study of SSRS codes is of particular interest for two
reasons.

(1) Subspace subcodes may provide interesting codes for encryption with
λ > 1, providing shorter keys than the original McEliece scheme.

(2) Their security analysis encompasses that of Goppa and alternant codes
and may help to better understand the security of McEliece encryption
scheme. Such a security analysis is of crucial interest since Classic McEliece
lies among the very few candidates selected by the NIST for the last round
of the post-quantum standardisation process.

7.1.1.2 Subspace subcodes in information theory

It is important to recall that, as most tools in code-based cryptography, the
notion of subspace subcodes finds its origin in information theory and was
first studied as a way to construct codes with good transmission and error-
correction properties. The interest from cryptographic perspective is very
recent.

Therefore, we explain here the origin of this notion and the motivation
behind this line of research.

Trace-shortened codes. The idea behind subspace subcodes, which consists
in keeping only the subset of codewords that are defined over a subspace of
the field, first appears in a paper by Solomon [Sol93]. In a joint work with
McEliece [MS94], they define the notion of trace-shortened codes, which is a
special case of subspace subcodes where λ = m− 1 and where the considered
subspace S is the kernel of the trace map.

SSRS codes. In his thesis [Hat95] and in [HMS98], Hattori studies the dimen-
sion of subspace subcodes of Reed–Solomon codes. Some of his conjectures
are later proved by Spence in [Spe04].

This initial work on subspace subcodes is motivated by the fact that the
SSRS construction provides long codes with good parameters over alphabets
of moderate size, in the spirit of alternant codes [MS86, Chapter 12]. This
makes these codes interesting from an information-theoretic point of view.

7.1. Subspace subcodes 155

An example. The following example comes directly from [HMS98] and
explains the interest on these codes from an information-theoretic point of
view.

Consider C the Reed–Solomon code over F24 of length 15 and dimension
9. This code has minimum distance 7. Any element of F24 can be decomposed
over the F2-basis (1, α, α2, α3), where α is a root of the irreducible polynomial
X4 +X + 1. Let S be the subspace spanned by (1, α, α2). The code C|S is the
subset of codewords of C that have no component in α3. Hence, if one uses
this code for communication, there is no need to send the α3 component, since
it is always zero.

So this subspace subcode can be seen as an F2-linear code of length 15
over the set of binary 3-tuples. But the code is not a linear code over F23 .
The minimum distance of C|S is at least 7, because it cannot be less than the
minimum distance of the parent code. The number of codewords in C|S is
222. As a comparison, one other way to create a code of length 15 over binary
3-tuples is by shortening the generalised BCH code [63, 52, 7] over F23 . This
gives a [15, 4,> 7] code over F23 which has 212 codewords.

SSRS vs SSGRS. Hattori’s work and the later articles focus uniquely on
subspace subcodes of Reed–Solomon codes, not on generalised Reed–Solomon.
But this point of view turns out to be the most general one since a subspace
subcode of a GRS code can always be regarded as a subspace subcode of an
RS code by changing the subspaces as we will see in Corollary 7.8. Therefore,
we will only talk about subspace-subcodes of RS codes but it is important to
keep in mind that this notion encompasses that of GRS codes.

Generalisation. The notion of subspace subcodes is generalised to any kind
of subspace and any code by Jensen in [Jen95] under the name subgroup
subcodes. Later, in [Wu11] Wu proposes a more constructive approach of these
codes using the equivalent of the expansion operator that we will introduce in
§ 7.1.3.

7.1.2 Definition and first properties
We refer the reader to Chapter 1 for general definitions about codes, as well as
Chapter 5 for definitions concerning GRS codes and the star-product operation.
We emphasize that in this Chapter we will sometimes make use of the star-
product spanned over a subfield, as defined in Notation 5.10 and Remark 5.11.

The definition of a subspace subcode has been stated in Definition 7.1. It is
important to note that the code C|S is an Fq–linear subspace of Fn

qm which
is generally neither Fqm–linear nor linear over some intermediary extension.

156 Chapter 7. Subspace subcodes of Reed-Solomon codes

Since each entry of a codeword can be represented as λ elements of Fq, the
code could be converted into a code over the alphabet Fλ

q . Such a code would
form an additive subgroup over (Fλ

q)n (hence the name subgroup subcode given
by Jensen in [Jen95]). In a context of message transmission, this natural way
to represent such a subspace subcode is detailed further in § 7.1.3.

7.1.2.1 Dimension of subspace subcodes

Proposition 7.2. Let C be a linear code of length n and dimension k over Fqm and
S ⊆ Fqm be a subspace of dimension λ 6 m. Then

dimFq C|S > km− n(m− λ). (7.1)

This result derives naturally from the representation of subspace subcodes
expanded over a basis of S as we will see in § 7.1.3. Therefore its prove will be
given at the end of the section.

The inequality (7.1) is typically an equality (and can therefore be consid-
ered as such for cryptanalysis, see Remark 5.16).

Proposition 7.3. Let R be a uniformly random code among the codes of length n
and dimension k over Fqm . Let S0, . . . ,Sn−1 be Fq–subspaces of Fqm of dimension
λ. Suppose that km > n(m− λ). Then, for any integer `, we have

P
[
dimFq R|S > km− n(m− λ) + `

]
6 q−`

(1
1− q−mn + 1

qkm−n(m−λ)

)
.

In particular, for fixed values of q,m and λ, this probability is inO(q−`) when n→∞.

Proof. Let Grand be a uniformly random variable among the full rank matrices
in Fk×n

qm and

R
def= {mGrand |m ∈ Fk

qm}.

The code R is uniformly random among the set of [n, k] codes over Fqm

([Cou20, Lemma 3.12]). Let Φ be the Fq–linear canonical projection

Φ : Fn
qm −→

n−1∏
i=0

Fqm/S.

Then, R|S is the kernel of the restriction of Φ to R and hence,

7.1. Subspace subcodes 157

E
[
|R|S |

]
= E

 ∑
m∈Fk

qm

1Φ(mGrand)=0


=

∑
m∈Fk

qm

P [Φ(mGrand) = 0]

= 1 +
∑

m∈Fk
qm
\{0}

P [Φ(mGrand) = 0] . (7.2)

Since Grand is uniformly random among the full–rank matrices, then for
any m ∈ Fk

qm \ {0}, the vector mGrand is uniformly random in Fqm \ {0}
([Cou20, Lemma 3.13]) and hence

∀m ∈ Fk
qm \ {0}, P [Φ(mGrand = 0)] = |ker Φ \ {0}|∣∣∣Fn

qm \ {0}
∣∣∣

= |
∏
i Si| − 1
qmn − 1

= qλn − 1
qmn − 1 6 q−n(m−λ) · 1

1− q−mn ·

Thus, applied to (7.2),

E
[
|R|S |

]
6 1 + |Fk

qm \ {0}| · q−n(m−λ) · 1
1− q−mn

6 1 + qkm−n(m−λ) · 1
1− q−mn ·

Finally, using Markov inequality, we get

P
[
dimFq(R|S) > km− n(m− λ) + `

]
= P

[
|R|S | > qkm−n(m−λ)+`

]
6

E
[
|R|S |

]
qkm−n(m−λ)+`

6 q−`
(1

1− q−mn + 1
qkm−n(m−λ)

)
.

7.1.2.2 Subspace subcode with different subspaces
We can generalise the definition of subspace subcodes with different subspaces
for each entry. This idea is first mentioned in [DT99].

158 Chapter 7. Subspace subcodes of Reed-Solomon codes

Definition 7.4. Given a linear code C of length n over a field Fqm , and the
λ-dimensional subspaces (S0, . . . ,Sn−1) of Fqm (0 6 λ 6 m), the subspace
subcode C|(S0,...,Sn−1) is defined to be the set of codewords of C such that the
i-th components lies in Si.

C|(S0,...,Sn−1)
def= {c ∈ C | ∀i ∈ J0, n− 1K, ci ∈ Si}.

Remark 7.5. When S0 = · · · = Sn−1 = Fq, then we find the usual definition of
subfield subcode.

Remark 7.6. It is even possible to give a more general definition where the Si’s do
not have the same dimension λ. However, such a broader definition would be useless
for our study.

The previous results concerning the dimension of subspace subcodes re-
main exactly the same for subcodes with different subspaces. In fact, it will be
the case for most results that we will see in this chapter. Therefore, in order to
simplify the notations, we will often write the proofs considering a that all the
subspaces Si are equal to the same subspace S .

The following proposition explains how the different subspaces behave
when multiplying each entry of the code by a scalar. As a corollary, we see
that with this definition of subspace subcodes with different subspaces, the
subspace subcodes of generalised Reed–Solomon codes can be rewritten as
subspace subcodes of Reed-Solomon codes. Hence, the notion of subspace
subcodes of RS codes encompasses that of GRS codes.

Proposition 7.7. Let C ⊆ Fn
qm , S0, . . . ,Sn−1 ⊆ Fqm be Fq subspaces and let

a ∈ (F×qm)n. Then,

(C ? a)|(S0,...,Sn−1) = C|(a−1
0 S0,...,a

−1
n−1Sn−1) ? a.

Corollary 7.8. Let x,y ∈ Fn
qm be a support and a multiplier and S0, . . . ,Sn−1 ⊆

Fqm , then

GRSk(x,y)|(S0,...,Sn−1) = RSk(x)|(y−1
0 S0,...,y

−1
n−1Sn−1) ? y.

7.1.3 Expansion operator and representation
With our definition, subspace subcodes are not linear codes over Fqm . This
is not very convenient, especially if we want to implement computations in-
volving such codes. Therefore we will represent them as linear codes over
the subfield Fq with a higher length. This representation requires to choose a
specific basis of the subspace S , on which the code will be expanded. Hence,

7.1. Subspace subcodes 159

the same subspace subcode can be represented in different ways depending
on the choice of the basis.

For this sake we introduce the expansion operator and give some of its
properties. The main result, Lemma 7.30, will state that subspace subcodes
are equivalent to shortened expanded codes and provide a way to construct
their parity-check matrix.

Note that expanding codes, in particular Reed–Solomon codes, over the
base field has been studied since the 1980’s. For instance, in [KL85; KL88],
Kasami and Lin investigate the weight distribution of expanded binary Reed–
Solomon codes. Sakakibara, Tokiwa and Kasahara extend their work to q-ary
Reed–Solomon codes [STK89].

7.1.3.1 Bases and trace map
First, let us introduce the trace map. The trace is a linear form over Fqm and is
therefore a natural tool to study subfield subcodes.
Definition 7.9 (Trace map). Let q be a prime power and m an integer. The
trace map is defined as

Tr :
{

Fqm −→ Fq

x 7−→
∑m−1
i=0 xq

i
.

Definition 7.10 ([LN97, Definition 2.30]). Let B = (b0, . . . , bm−1) be an Fq-
basis of Fqm . There exists a unique basis B∗ = (b∗0, . . . , b∗m−1), such that :

∀0 6 i, j 6 m− 1, Tr(bib∗j) =
{

1 if i = j,
0 otherwise.

This basis will be referred to as the dual basis of B and denoted B∗.
Given an Fq–basis B = (b0, . . . , bm−1) of Fqm and x an element of Fqm .

Then the expression of x as an Fq–linear combination of the elements of B
writes as

x = Tr(b∗0x)b0 + · · ·+ Tr(b∗n−1x)bn−1 (7.3)
where B∗ = (b∗0, . . . , b∗m−1) denotes the dual basis of B.

7.1.3.2 The expansion operator
Definition 7.11 (Expansion of a vector). For a basis B of Fqm , let ExpVecB
denote the expansion of a vector over the basis B defined by

F`
qm −→ Fm`

q

(x0, . . . , x`−1) 7−→ (Tr(b∗0x0), . . . ,Tr(b∗m−1x0), . . . ,
Tr(b∗0x`−1) . . . ,Tr(b∗m−1x`−1)),

160 Chapter 7. Subspace subcodes of Reed-Solomon codes

where B∗ = (b∗0, . . . , b∗m−1) denotes the dual basis of B. Note that we will apply
this operator to vectors of different lengths `.

As seen in (7.3), regarding an element x ∈ Fqm as the vector (x) of length
1, let (x0, . . . , xm−1) def= ExpVecB((x)) ∈ Fm

q , then x =
∑m−1
i=0 xibi.

Definition 7.12 (Expansion of a code). For a linear codeC of length n overFqm

and a basis B of Fqm , denote ExpCodeB(C) the linear code over Fq defined
by

ExpCodeB(C) def= {ExpVecB(c) | c ∈ C }.

We can also define the expansion operator over matrices.

Definition 7.13 (Expansion of a matrix). Given B = (b0, . . . , bm−1) an Fq-basis
of Fqm . Let ExpMatB denote the following operation.



Fk×n
qm −→ Fmk×mn

q
m0,0 m0,1 · · · m0,n−1
m1,0 m1,1 · · · m1,n−1
...

mk−1,0 mk−1,1 · · · mk−1,n−1

 7−→


M0,0 M0,1 · · · M0,n−1
M1,0 M1,1 · · · M1,n−1

...
Mk−1,0 Mk−1,1 · · · Mk−1,n−1


where

M i,j
def=


Tr(b0b∗0mi,j) Tr(b0b∗1mi,j) . . . Tr(b0b∗m−1mi,j)
Tr(b1b∗0mi,j) Tr(b1b∗1mi,j) . . . Tr(b1b∗m−1mi,j)

...
Tr(bm−1b

∗
0mi,j) Tr(bm−1b

∗
1mi,j) . . . Tr(bm−1b

∗
m−1mi,j)

 ∈ Fm×m
q ,

and B∗ = (b∗0, . . . , b∗m−1) denotes the dual basis of B (Definition 7.10).

Remark 7.14. Caution, applying ExpMatB to an 1×nmatrix returns anm×nm
matrix. It is not equivalent to applying ExpVecB to the vector corresponding to this
row.

Remark 7.15. ExpMatB∗(M) = (ExpMatB(Mᵀ))ᵀ.

Proposition 7.16 ([KRW21, Proposition 1]). Let C be a linear code of dimension
k and length n over Fqm . Let G denote a generator matrix of C and H denote a
parity-check matrix of C . Then, for any fixed Fq-basis B of Fqm , the following hold.

(i) For allx ∈ Fk
qm , we haveExpVecB(x ·G) = ExpVecB(x) ·ExpMatB(G).

7.1. Subspace subcodes 161

(ii) For all y ∈ Fn
qm , we have ExpVecB((H · yᵀ)ᵀ)ᵀ = ExpMatB∗(H) ·

ExpVecB(y)ᵀ.

Proof. We will prove the first statement. Denote (x0, . . . , xk−1) the entries of
x and (gi,j) the entries of G. Let B = (b0, . . . , bm−1) be the basis and B∗ =
(b∗0, . . . , b∗m−1) its dual basis. For i ∈ J0, n − 1K and j ∈ J0,m − 1K, we show
that the entry in position im + j (i.e. j-th entry of the i-th block) of the two
expressions are equal. Denote [·]` the `-th entry of a vector.

[ExpVecB (x · G)]im+j

= Tr(b∗j [x · G]i)

= Tr

b∗j k−1∑
`1=1

x`1g`1,i


= Tr

b∗j k−1∑
`1=1

m−1∑
`2=1

Tr(b∗`2x`1)b`2

 g`1,i


=
k−1∑
`1=1

m−1∑
`2=1

Tr(b∗`2x`1)Tr(b`2b∗jg`1,i)

=
k−1∑
`1=1

m−1∑
`2=1

[ExpVecB(x)]`1m+`2 [ExpMatB(G)]`1m+`2,im+j

= [ExpVecB(x) · ExpMatB(G)]im+j

Corollary 7.17. Let G and H be a generator and a parity-check matrix of C respec-
tively. Let B denote an Fq-basis of Fqm . Then ExpMatB(G) and ExpMatB∗(H)
are respectively a generator matrix and a parity-check matrix of ExpCodeB(C).

Definition 7.18 (Block). Given a vector v ∈ Fn
qm , an Fq–basis B of Fqm and a

non negative integer i < n, the i–th block of the expanded vectorExpVecB(v) ∈
Fmn
q is the lengthm vector composed by the entries of indexmi,mi+1, . . . ,mi+

m− 1 of ExpVecB(v). It corresponds to the decomposition over B of the i-th
entry of v. We extend this definition to matrices, where the i-th block of an
expanded matrix means the mk ×m matrix whose rows correspond to the
i-th block of each row of the expanded matrix.

In particular, the expansion in a basis B of some x ∈ Fn
qm is the concatena-

tion of n blocks of lengthm.

162 Chapter 7. Subspace subcodes of Reed-Solomon codes

7.1.3.3 Expansion over various bases
We have seen in Definition 7.4 that we could define a subspace subcode with
different subspaces for each entry. Similarly, we can define an expansion with
regard to a different basis for each entry. All the previous definitions extend
naturally as follows.
Definition 7.19. Given ` bases (B0, . . . ,B`−1) of Fqm , let ExpVec(Bi)i denote
the expansion of a vector of length `, such that the ith column is expanded
over the basis Bi:

ExpVec(Bi)i(x0, . . . , x`−1) =
(Tr(b∗0,0x0), . . . ,Tr(b∗0,m−1x0), . . . ,Tr(b∗`−1,0x`−1) . . . ,Tr(b∗`−1,m−1x`−1)),

where Bi = (bi,0, . . . , bi,m−1).
Definition 7.20. For a linear code C of length n over Fqm and n bases (Bi)i of
Fqm , denote ExpCode(Bi)i(C) the linear code over Fq defined by:

ExpCode(Bi)i(C) def= {ExpVec(Bi)i(c) | c ∈ C }.

Definition 7.21. Given n+ 1 bases (B0, . . . ,Bn−1, B̄) of Fqm , let ExpMatB̄(Bj)j
denote the expansion of a matrix



Fk×n
qm −→ Fmk×mn

q
m0,0 m0,1 · · · m0,n−1
m1,0 m1,1 · · · m1,n−1
...

mk−1,0 mk−1,1 · · · mk−1,n−1

 7−→


M0,0 M0,1 · · · M0,n−1
M1,0 M1,1 · · · M1,n−1

...
Mk−1,0 Mk−1,1 · · · Mk−1,n−1


where

M i,j
def=


Tr(b̄0b∗j,0mi,j) Tr(b̄0b∗j,1mi,j) . . . Tr(b̄0b∗j,m−1mi,j)
Tr(b̄1b∗j,0mi,j) Tr(b̄1b∗j,1mi,j) . . . Tr(b̄1b∗j,m−1mi,j)

...
Tr(b̄m−1b

∗
j,0mi,j) Tr(b̄m−1b

∗
j,1mi,j) . . . Tr(b̄m−1b

∗
j,m−1mi,j)

 .
With this definition, the properties of Proposition 7.16 still hold for various

bases.
Remark 7.22. Note that contrary to the expansion of codes, the expansion of a matrix
depends on the choice of a basis B̄ for the vertical expansion. When considering the
code spanned by an expansion matrix, different choices of B̄ yield the same code, so we
will omit the vertical expansion base in the expansion matrix operator.

7.1. Subspace subcodes 163

7.1.3.4 Squeezing: the inverse of expansion

We can define an operation that performs the “inverse” of the expansion
operator: given a basis, it reduces a block of m entries over Fq to one entry
over Fqm . We call this operation squeezing as it reduces the length of the code.

Definition 7.23 (Squeezing Operator). Let B = (b0, . . . , bm−1) be a basis of
Fqm . Let x = (x0,0, . . . , x0,m−1, . . . , xn−1,0, . . . , xn−1,m−1) ∈ Fmn

q . We define
the squeezed vector of x with respect to the basis B as

SqueezeVecB(x) def=
(m−1∑
j=0

x0,jbj , . . . ,
m−1∑
j=0

xn−1,jbj

)
∈ Fn

qm .

Let C be an [m × n, k]–code over Fq. We define the squeezed code of C with
respect to the basis B as

SqueezeCodeB(C) def= {SqueezeVecB(c) | c ∈ C } .

Proposition 7.24. Let C be an [n, k] code over Fqm . Let B = (b0, . . . , bm−1) be a
basis of Fqm . Then the following equality holds.

SqueezeCodeB(ExpCodeB(C)) = C .

Finally we can define squeezing over a matrix.

Definition 7.25 (Squeezingmatrices). LetB = (b0, . . . , bm−1) be a basis of Fqm .
Let M ∈ Fmk×mn

q denote an mk × mn matrix. Then SqueezeMatB(M) ∈
Fmk×n
q denotes the matrix whose rows are obtained by squeezing each row of

the matrix M over B.

Remark 7.26. Note that this matrix does not necessarily have full rank. In par-
ticular, if M is obtained by expanding a matrix of rank r over the basis B, then
SqueezeMatB(M) will be of rank r. It is also worth noting that for a matrix
M ∈ Fk×n

qm , then SqueezeMatB(ExpMatB(M)) is a km× n matrix and hence
is not equal to M but generates the same code.

Remark 7.27. Similarly to the expansion operators, we can define the squeezing
operators with a different basis for each block.

7.1.3.5 Representation of subspace subcodes

Let C be a code of length n and dimension k over the field Fqm and S denote
an Fq-subspace of Fqm of dimension λ 6 m. Let BS = (b0, . . . , bλ−1) ∈ Fλ

qm be

164 Chapter 7. Subspace subcodes of Reed-Solomon codes

an Fq-basis of S. Then any vector c = (c0, . . . , cn−1) ∈ Sn, i.e.whose entries
are all in S can be expanded as

ExpVecBS (c) def= (c0,0, . . . , c0,λ−1, . . . , cn−1,0, . . . , cn−1,λ−1),

where the ci,j ′s are the coefficients of the decomposition of ci in the BS .

Remark 7.28. Note that the previous definition makes sense only for vectors in Sn.

Next, the subspace subcode C|S can be represented as

ExpCodeBS (C|S) def= {ExpVecBS (c) | c ∈ C|S}.

Here again, as noticed in Remark 7.28, the notion is well–defined only for
codes with entries in S.

It is important to stress that ExpCodeBS (C|S) is exactly the subspace sub-
code represented as an Fq-linear code since we can reconstruct C|S from it
by applying the SqueezeCode operator (Proposition 7.24 adapted for an
incomplete basis).

Similarly to Definition 7.18, a block refers to a set of the form Jiλ, (i+1)λ−1K.
That is to say, a set of λ = dimS consecutive indexes of the expanded code,
corresponding to the decomposition of a single entry in S in the basis BS .

7.1.4 An instantiation of McEliece with SSRS codes
Let us first present a generic encryption scheme based on subspace subcodes
of GRS codes. This cryptosystem will be referred to as the Subspace Subcode
of Reed–Solomon (SSRS) scheme. We will later prove that the cryptosystem of
[KRW21] is a sub-instance of the SSRS scheme.

In Section 7.1.3 we explained that the same subspace subcode could be
represented as an expanded code in different ways depending on the choice of
the expansion basis. For all results present in the previous section, the choice
of the expansion basis had no influence. In particular, we could easily write
the descriptions in the special case where all subspaces (and all expansion
basis) are the same, and this would generalise straightforwardly to the case of
different subspaces (and different basis).

The idea of the SSRS cryptosystem is to use as public key the expanded
code of a subspace subcode, while the subspaces at stake (and the expansion
basis chosen for the representation) remains secret. The security of these cryp-
tosystems relies on the fact that the expansion basis are hidden. In particular,
different subspaces are used to expand each entry of the code. Therefore, in
what follows it is important to use the notations with different subspaces and
different basis.

7.1. Subspace subcodes 165

Parameters. The cryptosystem is publicly parametrised by:
- q a prime power;
- m an integer;
- λ such that 0 < λ < m;
- n, k such that 0 6 k < n 6 qm and km > (m− λ)n.

Key generation.

- Generate a uniformly random vector x ∈ Fn
qm with distinct entries.

- Choose n uniformly random λ–dimensional vector subspaces denoted
S0, . . . ,Sn−1 ⊆ Fqm with respective bases BS0 , . . . ,BSn−1 .

- Let Gpub ∈ F(km−n(m−λ))×λn
q denote a generator matrix of the code

Cpub
def= ExpCode(BS0 ,...,BSn−1)

(
RSk(x)|(S0,...,Sn−1)

)
.

If Gpub is not full-rank, abort and restart the process. See Section 7.2.2
for the practical computation on Gpub.

- The public key is Gpub and the secret key is (x,BS0 , . . . ,BSn−1).
Lemma 7.29 (public key size). The public key is a matrix of sizem(n− k)× λn
over Fq. Only the systematic part is transmitted. Hence the public key size in bits is

m(n− k)(λn−m(n− k)) log2(q).

Encryption. Let m ∈ Fmk−(m−λ)n
q be the plaintext. Denote

t
def= bn− k2 c.

Choose e ⊆ F(m−λ)n
q uniformly at random among vectors of F(m−λ)n

q with
exactly t non-zero blocks (see Definition 7.18).

Decryption. From y ∈ Fλn
q , construct a vector y′ ∈ Fmn

q by completing each
block of size λwithm− λ entries set to zero. Denote

y′′ = SqueezeVec(Bi)i(y
′).

According to the definition of e, the vector y′′ ∈ Fn
qm is at distance t of the

code RSk(x). Hence, by decoding, one computes the unique c ∈ RSk(x) at
distance 6 t from y′′ and the expansion of c yields mGpub.

166 Chapter 7. Subspace subcodes of Reed-Solomon codes

7.1.5 Further properties of the expansion operator
Now that we have seen that the subspace subcodes can be seen as shortened
expanded codes, it is useful to study more thoroughly the properties of the
expansion operator. More precisely, we study how this operator behaves
with respect to other operations (especially those used in the key generation):
puncturing/shortening, computing the dual, changing the expansion basis. In
the next section, we will use these results to show that the expanded generalised
Reed-Solomon codes presented in the XGRS cryptosystem [KRW21] are in fact
a special instantiation of subspace subcodes of Reed–Solomon codes. We also
consider the relation with the square product operation, as this is a natural
distinguisher for GRS-based codes.

In this section, for the sake of clarity, all properties will be defined consid-
ering the same basis for each entry, but everything works exactly the same way
if one considered expansion with a different basis for each entry, as different
columns of Fqm (or blocks of columns of Fq corresponding to the expansion
of same column of Fqm) do not interact.

7.1.5.1 Subspace subcodes as shortening of expanded codes
This lemma explains how to construct the parity-check matrix of a subspace
subcode from the parity-check matrix of the parent code. This result is impor-
tant to perform computations over the subspace subcodes.
Lemma 7.30. For integers n and λ < m, denote J (λ,m) the subset of J0,mn− 1K
consisting of the lastm− λ entries of each block of lengthm

J (λ,m) def= {im+ j, i ∈ J0, n− 1K, j ∈ Jλ,m− 1K} . (7.4)
Let B = (b0, . . . , bm−1) be an Fq-basis of Fqm such that BS = (b0, . . . , bλ−1) is a
basis of S . Then,

ExpCodeBS (C|S) = ShortJ (λ,m) (ExpCodeB(C)) .

Moreover, let H ∈ Fk×n
qm denote a parity–check matrix of C . Complete the ba-

sisBS = (b0, . . . , bλ−1)withm−λ additional elements (bλ, . . . , bm−1) ∈ Fm−λ
qm such

thatB = (b0, . . . , bm−1) forms anFq–basis ofFqm . Then, the codeExpCodeBS (C|S)
admits as parity-check matrix the matrix PunctJ (λ,m) (ExpMatB∗(H)).
Remark 7.31. Proposition 7.2 follows directly from this result.
Remark 7.32. Of course, what precedes extends straightforwardly to various sub-
spaces and bases.

Thanks to this result, we can now write the commutative diagram of Fig-
ure 7.2.

7.1. Subspace subcodes 167

C C|S

ExpCodeB(C) ExpCodeBS (C|S)

(·)|S

ExpCodeB ExpCodeBS

ShortJ (λ,m)(·)

Figure 7.2: Expanding the subspace subcode is equivalent the shortening the
expansion of the parent code (Lemma 7.30).

7.1.5.2 Puncturing and shortening

Lemma 7.33. Let C be an [n, k] code over Fqm . Let L denote a subset of J0, n− 1K.
Then the following equalities hold.

ExpCodeB(PunctL (C)) = PunctL′ (ExpCodeB(C)) ,

ExpCodeB(ShortL (C)) = ShortL′ (ExpCodeB(C)) ,

where L′ denotes the set of all columns generated from expanding columns in L, that
is

L′
def=
⋃
i∈L
{i+ j, 0 6 j < m}.

Proof. The result is straightforward for puncturing. The expansion operation
is independent for each column, hence puncturing a column before expanding
is equivalent to puncturing the corresponding block of m columns. As for
shortening, the shortening operation is the dual of puncturing operation, hence
the result is a consequence of the next lemma.

7.1.5.3 Dual code

Lemma 7.34 ([Wu11], Lemma 1). Let B be a basis and B∗ denote the dual basis.
For all x,y ∈ Fn

qm , if x and y are orthogonal, i.e. x · yᵀ = 0, then ExpVecB(x)
and ExpVecB∗(y) are orthogonal

ExpVecB(x) · (ExpVecB∗(y))ᵀ = 0.

Proof. Denote x = (x0, . . . , xn−1), y = (y0, . . . , yn−1), and for i ∈ J0, n − 1K,
xi =

∑m−1
j=0 xi,jbj and yi =

∑m−1
j=0 yi,jb

∗
j , where B = (bj) and B∗ = (b∗j).

168 Chapter 7. Subspace subcodes of Reed-Solomon codes

0 = x · yᵀ

=
n−1∑
i=0

xiyi

=
n−1∑
i=0

m−1∑
j=0

xi,jbj

m−1∑
j=0

yi,jb
∗
j


=

n−1∑
i=0

n−1∑
j=0

xi,jyi,j

= ExpVecB(x) · (ExpVecB∗(y))ᵀ.

Corollary 7.35. Let C be an [n, k] code over Fqm . Let B = (b0, . . . , bm−1) be a basis
of Fqm . Then the following equality holds.

Dual(ExpCodeB(C)) = ExpCodeB∗(Dual(C)),
where B∗ denotes the dual basis of B.

7.1.5.4 Changing the expansion basis
Lemma 7.36. Let C be an [n, k] code over Fqm . Let B = (b0, . . . , bm−1) be an Fq–
basis of Fqm . Let Q ∈ Fm×m

q denote an invertible m ×m matrix. The following
equality holds.

ExpCodeB·(Q−1)ᵀ(C) = ExpCodeB(C) ·

Q
. . .

Q

 .
Proof. Let c be a codeword of C . We only focus on the first entry of c. Denote
x ∈ Fqm this entry and (x0, . . . , xm−1) = ExpVecB((x)) ∈ Fm

q . By definition,
x =

∑m−1
i=0 xibi. Let D = (d0, . . . , dm−1) be the basis B ·

(
Q−1

)ᵀ. For all
i ∈ J0,m − 1K, we have bi =

∑m
j=0 djqi,j where Q = (qi,j)06i,j<m. Replacing

the bi’s by this formula, we obtain

x =
∑
i

xi

(∑
j

djqi,j

)
=
∑
j

(∑
i

xiqi,j

)
dj .

Therefore,
ExpVecB(x) ·Q = ExpVecD(x).

This holds for any entry of any codeword c ∈ C .

7.2. The XGRS cryptosystem 169

Lemma 7.37. Let C be an [n, k] code over Fqm . Let (Bi)i be n bases of Fqm . Let
(Qi) ∈ (Fm×m

q)n denote n invertiblem×m matrices. The following equality holds.

ExpCode(Bi·(Q−1
i)ᵀ)i(C) = ExpCodeBi(C) ·

Q0
. . .

Qn

 .
7.1.5.5 Scalar multiplication in Fqm

Lemma 7.38. Let C be an [n, k] code over Fqm . Let (Bi)i be n basis of Fqm . Let
a = (a0, . . . , an−1) ∈ Fn

qm denote a vector of length n over Fqm . The following
equality holds.

ExpCode(Bi)i(C) = ExpCode(aiBi)i({(c ? a) | c ∈ C })
= ExpCode(aiBi)i(C ? a).

7.2 The XGRS cryptosystem
In this section, we define the eXpanded Generalised Reed–Solomon (XGRS) cryp-
tosystem introduced in [KRW21] and explain why it is a sub–instance of the
SSRS cryptosystem.

7.2.1 The cryptosystem
Remark 7.39. An initial version of the XGRS cryptosystem, was submitted on ArXiv
[KRW19]. In this version, the classical square-code distinguisher could be applied to
the cryptosystem and lead to an attack. The authors changed the cryptosystem in order
to avoid such attacks. Here we present the latest version of the XGRS proposal.

Parameters. The cryptosystem is publicly parametrised by:
- q a prime power;
- m an integer;
- λ such that 2 6 λ < m;
- n, k such that 0 6 k < n 6 qm and km > (m− λ)n.

Remark 7.40. As suggested by the parameters in Table 7.1,m is a small integer. The
preprint version of the paper [KRW19] proposed to usem = 2 with a slightly modified
key generation. The proposed parameters are nowm = 3 andm = 4.

170 Chapter 7. Subspace subcodes of Reed-Solomon codes

q m λ n k Public Key Size (kB)
13 3 2 1258 1031 579
7 4 2 1872 1666 844

Table 7.1: Parameters proposed for the XGRS scheme [KRW21]

Key Generation

- Generate uniformly random vectors (x,y) ∈ Fn
qm × (F×qm)n such that x

has distinct entries. Denote C = GRSk(x,y) and let Hsec be a parity-
check matrix of C .

- Choose γ, a primitive element of Fqm/Fq, i.e. a generator of the field
extension. We consider the basis Bγ = (1, γ, . . . , γm−1) of Fqm .

- Set H
def= ExpMatB∗γ (Hsec) ∈ Fm(n−k)×mn

q which is a parity-check ma-
trix ExpCodeBγ (C).

- For any i ∈ J0, n− 1K, choose Li a random subset of J(i− 1)m, im− 1K
of size |Li| = m− λ. Set L = ∪iLi.

- Set HL
def= PunctL (H) ∈ Fm(n−k)×λn

q .

- For any i ∈ J0, n−1K, choose Qi a random λ×λ invertible matrix. Denote
by Q the block-diagonal matrix having Q0, . . . ,Qn−1 as diagonal blocks.

- Denote by S the invertible matrix of Fq such that S · HL · Q is in
systematic form.

- Set Hpub
def= S · HL · Q.

- The public key is Hpub, the private key is (x,y,Q,L, γ).

Remark 7.41. Compared to the cryptosystem presented in [KRW21], we omitted the
block permutation. Indeed, applying a block permutation after expanding is equivalent
to applying the permutation before the expansion and then expanding. As we start
with a GRS code chosen uniformly at random, applying a permutation on the columns
does not change the probability distribution of the public keys.

Encryption. Recall that t def= bn−k2 c the error–correcting capacity of a GRS
code of length n and dimension k. The message is encoded as a vector y ∈ Fλn

q

7.2. The XGRS cryptosystem 171

whose support is included in t blocks of length λ, i.e. there exist positions
i0, . . . , it−1 ∈ J0, n− 1K, such that

Support(y) ⊆
⋃

06`6t−1
Jλ(i` − 1), λi` − 1K.

The ciphertext is then defined as cᵀ = Hpub · yᵀ.

Decryption. In order to decrypt the ciphertext, a user knowing the private
key should:

- generate Hsec from x and y.
- compute c′ = c · S−1ᵀ;
- compute c′′ = SqueezeVecBγ (c′);
- find y′′ ∈ Fn

qm of weight |y′′| 6 t such that c′′ᵀ = Hsecy′′
ᵀ (i.e.decode in

C);

- compute y′ = PunctL
(
ExpVecBγ (y′′)

)
;

- finally recover y = y′ ·
(
Q−1

)ᵀ.
7.2.2 XGRS is a instance of SSRS
Now we will prove that the XGRS cryptosystem is in fact a sub-instance of
the SSRS cryptosystem presented in Section 7.1.4. Although at this point it
may seem obvious from the results in the previous section, we recall that the
original formulation of the XGRS cryptosystem [KRW21] does not mention
the concept of subspace subcodes, only expanded codes. Moreover, the basis
used in the XGRS encryption is the same for each entry, whereas different
subspace and basis are used in the SSRS scheme. The following statement
explains exactly how XGRS relates to SSRS.
Proposition 7.42. The XGRS scheme with secret key (x,y,Q,L, γ) is equivalent to
the SSRS scheme with secret key (x,S0, . . . ,Sn−1) where the subspaces Si are defined
as follows.

- Let B(0)
i

def= PunctLi (Bγ) ∈ Fλ
qm where Li

def= {j −mi,∀j ∈ L ∩ Jim, (i +
1)m− 1K}.

- Set B(1)
i

def= y−1
i B

(0)
i · (Q

−1
i)ᵀ.

- Si is the subspace of Fqm spanned by the elements of B(1)
i .

172 Chapter 7. Subspace subcodes of Reed-Solomon codes

Proof. Let Cpub denote the public code of an instance of the XGRS scheme with
private key (x,y,Q,L, γ), i.e.Cpub is the code over Fq that admits the public
key Hpub as parity-check matrix. We have

Cpub = Dual
(〈

Hpub
〉

Fq

)
= Dual

(
〈HL ·Q 〉Fq

)
.

Let us define Q(1) def=
(
Q−1

)ᵀ. This is still a block-diagonal matrix com-
posed of n blocks of size λ× λ. We can rewrite this

Cpub = Dual
(
〈HL 〉Fq

)
·Q(1).

We can replace HL by its definition: PunctL
(
ExpMatB∗γ (Hsec)

)
. Next, we

can swap the Dual and Punct operators according to Proposition 5.22:

Cpub = ShortL
(
Dual

(
ExpCodeB∗γ

(
〈Hsec 〉Fq

)))
·Q(1).

We can then swap the Dual and ExpCode operators according to Corol-
lary 7.35.

Cpub = ShortL
(
ExpCodeBγ

(
Dual

(
〈Hsec 〉Fq

)))
·Q(1).

Let Gsec be a generator matrix of the secret code Dual
(
〈Hsec 〉Fq

)
, i.e. a

generator matrix of the code GRSk(x,y). We have

Cpub = ShortL
(
ExpCodeBγ

(
〈Gsec 〉Fq

))
·Q(1).

Let us denote Q(2) the block-diagonal matrix obtained by replacing each
λ× λmatrix of Q(1) by them×mmatrix obtained by inserting “an identity
row/column” at the positions corresponding toL. For instance, ifm = 3, λ = 2
and the first element ofL equals 1, whichmeans that the column 1 is shortened,
we add a column and a row in the middle of Q

(1)
0 , i.e.

if Q
(1)
0 =

(
q00 q01
q10 q11

)
, then Q

(2)
0 =

 q00 0 q01
0 1 0
q10 0 q11

 .
Hence, we can write

Cpub = ShortL
(〈

ExpMatBγ (Gsec) ·Q(2)
〉

Fq

)
.

7.3. Twisted-square code and distinguisher 173

We define Q
(3)
i as the matrix obtained from Q

(2)
i by permuting the columns so

that the inserted columns are them− λ rightmost ones. For instance in the
previous example, we would have

Q
(3)
0 =

 q00 q01 0
0 0 1
q10 q11 0

 .
Therefore, Q(3) = Q(2)P where P is a block–diagonal matrix whose diagonal
blocks are m × m permutations matrices. Then, we replace L by the set
J (λ,m) = {mi+ j | 0 6 i < n, λ 6 j < m}. Hence, we get

Cpub = ShortJ (λ,m)

(〈
ExpMatBγ (Gsec) ·Q(3)

〉
Fq

)
.

We can apply the basis change explained in Lemma 7.36.

Cpub = ShortJ (λ,m)

(〈
ExpMat(B′i)i

(Gsec)
〉

Fq

)
,

whereB′i
def= Bγ ·

(
(Q(3)

i)−1
)ᵀ for all i ∈ J0, n−1K. Finally, we apply Corollary 7.8

and Lemma 7.38 to replace the code GRSk(x,y) by RSk(x). Hence,

Cpub = ShortJ (λ,m)

(〈
ExpMat(Bi)i(G

′
sec)

〉
Fq

)
,

where G′sec is a generator matrix ofRSk(x) and Bi def= y−1
i B′i for all i ∈ J0, n−1K.

In otherwords,Cpub = RSk(x)|(S0,...,Sn−1), whereSi is the subspace spanned by
the λ first elements of Bi. This is indeed an instance of the SSRS cryptosystem.

7.3 Twisted-square code and distinguisher
In this section, our goal is to adapt results such as the square code distinguisher
presented in Chapter 5 to the case of subspace subcodes. Intuitively, we would
like to see if the dimension of the square code of a subspace subcode sometimes
differs from the dimension of the square code of the subspace subcode of a
random code.

But because subspace subcodes (defined as codes over Fqm) are not linear
codes, the only codes that we can manipulate are the expanded subspace sub-
code which are linear code over Fq. Therefore, we need to define an operation
to be performed over the expanded code that mimics the effects of the star-
product operation applied to the parent code. We call this operation the twisted

174 Chapter 7. Subspace subcodes of Reed-Solomon codes

star-product and we use it to define the twisted square code of an expanded sub-
space subcode. Note that this notion appears implicitly in Randriambololona’s
work on asymptotically good square codes [Ran13].

We point out that in the case of subspace subcodes, it is particularly interest-
ing to compute the product of codes. Indeed, given a code whose components
are restricted to a subspace S of dimension λ, the components of the products
of two codewords lie in the subspace S2 which is typically of dimension (λ+1

2
).

Hence we increased the size of the subspace. When λ is large enough, S2 can
span the whole space Fqm . This can be particularly useful in a cryptanalysis
because we somehow gain access to dimensions of the parent code that are not
part of the subspace subcode. The smallest such example is form = 3, λ = 2.
We will start by explaining our definitions in this special setting and will
provide a general definition of twisted-square codes later.

In the second part of the section, we will compute the typical dimension of
the twisted square code of a subspace subcode of a Reed–Solomon code (as
in the SSRS scheme) and compare it to the typical dimension of the twisted
square code of a subspace subcode of a random codewith the same parameters.
We will see that this provides us with a distinguisher and how applying the
shortening operation can extend the range of this distinguisher.

For the sake of simplicity, all the results of this section are stated using the
same subspace and expansion basis for all blocks but they can be straightfor-
wardly generalised to the case of various subspaces and expansion bases.

7.3.1 The twisted square product
The first thing we would like to do is to extend the commutative diagram of
Figure 7.2 to include the squaring operation and its equivalent on the expanded
code. We would like to obtain something that would look like Figure 7.3.

C C|S
(
C|S

)?2

ExpB(C|S) ExpBS (C|S) Exp?(C ?2
|S)

(·)|S

ExpB

?

ExpBS Exp?

ShortJ (λ,m)(·) ?

Figure 7.3: Expanding the squaring operation to subspace subcodes. Here,
Exp stands for ExpCode.

7.3. Twisted-square code and distinguisher 175

Several things are to be defined in order to obtain such a result. First, we
should specify the meaning of the squaring operation applied on the subspace
subcode. Indeed, in the definition of the squaring operation (see Notation 5.10
and Remark 5.11), the product of two codes is defined as the space generated
by all the component-wise products of codewords, spanned over the basefield
of the code. It is important to recall that the subspace subcodeC|S is not anFqm-
linear code like C . Therefore,

(
C|S

)?2 is the span over Fq of the star-products
of codewords of C|S . We will denote it

(
C|S

)?2
Fq
.

This clarifies the meaning of the top-right arrow. Now, we have find the
proper operation for the bottom-right arrow and the proper expansion basis
for the right arrow to obtain a proper commutative diagram.

7.3.1.1 The case m = 3, λ = 2
Let us first focus on the smallest non-trivial casem = 3, λ = 2. We will explain
a posteriori why this special case carries a lot of interesting properties that
simplify the reasoning and the notations. Note that this case is not just a simple
toy example as it corresponds to the parameters of the XGRS cryptosystem.

Let us introduce a definition that is needed in the sequel.

Definition 7.43. Let S ⊆ Fqm be an Fq–vector space, we define the square
subspace

S2 def= 〈 ab | a, b ∈ S 〉Fq .

Lemma 7.44. Let S be a subspace of Fqm of dimension 2. Let BS = (γ0, γ1) be a
basis of S . Let a, b ∈ S such that

ExpVecBS ((a)) = (a0, a1) and ExpVecBS ((b)) = (b0, b1).

Then,
ExpVecBS2 ((ab)) = (a0b0, a0b1 + a1b0, a1b1),

where BS2 = (γ2
0 , γ0γ1, γ

2
1).

Note that BS2 is a basis of Fqm . Indeed, we have the following property.

Proposition 7.45. Form = 3 and λ = 2, for any subspace S ⊆ Fqm of dimension
λ, we have S2 = Fqm .

Proof. Let (γ0, γ1) be a basis of S, if γ2
0 , γ0γ1 and γ2

1 were not Fq-independent,
denoting ζ def= γ1/γ0, then 1, ζ and ζ2 would not be Fq-independent either.
Hence ζ would have degree 6 2 over Fq. But by definition ζ 6∈ Fq.

176 Chapter 7. Subspace subcodes of Reed-Solomon codes

This motivates the following definition.

Definition 7.46 (Twisted product). Let a and b in F2n
q whose components are

denoted
a = (a(0)

0 , a
(1)
0 , a

(0)
1 , a

(1)
1 , . . . , a

(0)
n−1, a

(1)
n−1);

b = (b(0)
0 , b

(1)
0 , b

(0)
1 , b

(1)
1 , . . . , b

(0)
n−1, b

(1)
n−1).

We define the twisted product of a and b as

a ?̃ b
def= (a(0)

i b
(0)
i , a

(0)
i b

(1)
i + a

(1)
i b

(0)
i , a

(1)
i b

(1)
i)06i6n−1 ∈ F3n

q .

This definition extends to the product of codes, where the twisted product of
two codes A and B ⊆ F2n

q is defined as

A ?̃B
def= 〈a ?̃ b | a ∈ A , b ∈ B 〉Fq .

In particular, A ?̃2 denotes the twisted square code of a code A : A ?̃2 def= A ?̃A .

With this definition, we can rewrite Lemma 7.44 for vectors in the following
way.

Lemma 7.47. Let S be a subspace of Fqm of dimension 2. Let BS = (γ0, γ1) be a
basis of S . Let a, b ∈ Fn

qm such that all their entries lie in S. Then,

ExpVecBS (a) ?̃ExpVecBS (b) = ExpVecBS2 (a ? b), (7.5)

where BS2 = (γ2
0 , γ0γ1, γ

2
1).

This results shows that the definition of the twisted star-product reaches
our goal stated at the beginning of this section: it reflects on the expanded
code the effects of the star-product operation applied to the parent code.

We can extend this result to codes and obtain the following theorem (still
form = 3, λ = 2).

Theorem7.48. LetC be an [n, k] code overFqm andS a subspace ofFqm of dimension
λ. Let BS be an Fq–basis of S such that BS = (γ0, γ1). Then,(

ExpCodeBS (C|S)
)?̃2

= ExpCodeBS2

((
C|S

)?2
Fq

)
, (7.6)

where BS2 = (γ2
0 , γ0γ1, γ

2
1). This results generalises straightforwardly to an expan-

sion over various subspaces.

Proof. This is a direct consequence of Lemma7.47 bydefinition of theExpCode
operator and by Fq-linearity of ExpVec.

7.3. Twisted-square code and distinguisher 177

There are two important remarks concerning this results.
1. Because S2 = Fqm form = 3, λ = 2, on the right-hand side of equation

(7.6), BS2 is a full basis of Fqm .

2. Given a generator matrix of the expanded subspace subcode, one can
compute the generator matrix of the expanded square code by applying
the twisted-square operation. This operation is independent of the choice
of expansion basis, hence one can perform the computation even if one
does not know which basis were used for the expansion. This will be
important for the cryptanalysis, we will come back to this point later.

We now have a well-defined commutative diagram, as illustrated in Fig-
ure 7.4.

C C|S
(
C|S

)?2
Fq

ExpB(C) ExpBS (C|S) ExpBS2

((
C|S

)?2
Fq

)

(·)|S

ExpB

(·)?2
Fq

ExpBS
ExpBS2

ShortJ (λ,m)(·) (·)?̃2

Figure 7.4: Expanding the squaring operation to subspace subcodes (case
m = 3, λ = 2). Here, Exp stands for ExpCode.

7.3.1.2 General definition of the twisted square code
In what follows we will be interested in generalising this result. Indeed, the
casem = 3, λ = 2 has two special properties.

1. We have seen in Proposition 7.45 that in this special case, we always have
S2 = Fqm . The consequence of this is that we obtain a code expanded
over a full basis of Fqm . But in general, S2 ⊆ Fqm but the inclusion
is a priori strict. In what follows, we will restrict our analysis to the
case S2 = Fqm . Note that this restriction excludes the case of subfield-
subcodes.

2. When S is a subspaces of Fqm of dimension λ, the subspace S2 is of
dimension min(

(λ+1
2
)
,m). The property S2 = Fqm implies that (λ+1

2
)
>

m. In the previous case (m = 3, λ = 2) we were in the special case where

178 Chapter 7. Subspace subcodes of Reed-Solomon codes

(λ+1
2
)

= m. Hence, BS2 (all the combinations of two elements of BS)
provides a basis of S2 = Fqm . For other parameters (m,λ) such that(λ+1

2
)

= m, Theorem 7.48 generalises straightforwardly. But for other
values of (m,λ), we may have (λ+1

2
)
> m. In such a case, the set BS2 will

not be a basis of S , only a generating set. Therefore we need to keep only
m elements of BS2 . This situation leads to some cumbersome notations
to generalise the definitions and results properly, but the general spirit is
exactly the same.

For arbitrary integerm > λ > 2, let us have the following definition.
Definition 7.49 (Twisted square product, general case). Let a and b in Fλn

q

whose components are denoted
a = (a0,0, . . . , a0,λ−1, a1,0, . . . , a1,λ−1, . . . , an−1,0, . . . , an−1,λ−1),
b = (b0,0, . . . , b0,λ−1, b1,0, . . . , b1,λ−1, . . . , bn−1,0, . . . , bn−1,λ−1).

We define the twisted product a ?̃ b ∈ F(λ+1
2)n

q of a and b such that for any
i ∈ J0, n− 1K and for r, s such that 0 6 r 6 s 6 λ− 1,

(a ?̃ b)
i(λ+1

2)+(s+1
2)+r

def=
{
ai,rbi,s + ai,sbi,r if r < s

ai,rbi,r if r = s.

This definition extends to the product of codes, where the twisted product of
two codes A and B ⊆ Fλn

q is defined as

A ?̃B
def= 〈a ?̃ b | a ∈ A , b ∈ B 〉Fq .

In particular, A ?̃2 denotes the twisted square code of a code A : A ?̃2 def= A ?̃A .
Now, in order to generalise Theorem 7.48, we need to deal with the case(λ+1

2
)
> m by shortening the redundant component. This yields the following

statement.
Lemma 7.50. Let S be a subspace of Fqm of dimension λ such that S2 = Fqm . Let
BS = (γ0, . . . , γλ−1) be an Fq-basis of S. Let BS2 denote the first m elements of
(γ2

0 , γ0γ1, . . . , γ0γi, γ1γi, . . . , γ
2
i , . . . , γ

2
λ−1). Let a, b ∈ Fn

qm whose entries all lie in
S. Denote c the vector of length (λ+1

2
)
n over Fq defined as

c
def= ExpVecBS (a) ?̃ExpVecBS (b).

Let K(λ,m) denote the set J
(
m,
(λ+1

2
)), i.e.

K(λ,m) def=
{(λ+1

2
)
i+ j, i ∈ J0, n− 1K, j ∈ Jm,

(λ+1
2
)
− 1K

}
. (7.7)

If

7.3. Twisted-square code and distinguisher 179

(i) for any i ∈ K(λ,m), the i-th entry of c is zero,
(ii) BS2 is a basis of Fqm ;

then,
PunctK(λ,m) (c) = ExpVecBS2 (a ? b). (7.8)

Proof. Let c be defined as in the statement. We want to prove that

SqueezeVecBS2 (PunctK(λ,m) (c)) = a ? b.

This is equivalent to Equation (7.8) because BS2 is a basis of Fqm . Without
loss of generality, we only need to focus on the block corresponding to the first
entry in Fqm .

Let (a0, . . . , aλ−1) and (b0, . . . , bλ−1) denote the decomposition of the first
entries of a (resp. b) over BS . The first entry of a ? b is(∑

i

aiγi

)∑
j

ajγj

 =
∑

06i6j<λ
ci,jγiγj ,

where the coefficients ci,j match exactly the definition of the twisted square
product, hence correspond to the entries of c.

Let Bfull denote the family (γ2
0 , γ0γ1, . . . , γ0γi, γ1γi, . . . , γ

2
i , . . . , γ

2
λ−1). The

last entries of each block of c are equal to zero. This corresponds exactly to
the elements of Bfull that are not in BS2 . We therefore have

SqueezeVecBS2 (PunctK(λ,m) (c)) = SqueezeVecBfull(c) = a ? b.

Remark 7.51. Note that it is an arbitrary choice to define BS2 as the firstm elements
of Bfull (which is of size

(λ+1
2
)). We could choose any subset of sizem. Especially, if

the set BS2 obtained is not a basis of Fqm , one could try with a different subset until a
basis is found. The definition of K(λ,m) should be adapted accordingly. Because Bfull
is a generating set of Fqm , there always exists a subset of sizem that is a basis. Hence,
condition (ii) can always be matched with a good choice of subset.

This leads to the following main statement, which is the generalisation of
Theorem 7.48.
Theorem7.52. LetC be an [n, k] code overFqm andS a subspace ofFqm of dimension
λ such that S2 = Fqm . Let BS be an Fq–basis of S such that BS = (γ0, . . . , γλ−1).
Then,

ShortK(λ,m)

((
ExpCodeBS (C|S)

)?̃2)
⊆ ExpCodeBS2

((
C|S

)?2
Fq

)
, (7.9)

180 Chapter 7. Subspace subcodes of Reed-Solomon codes

where BS2 and K(λ,m) are defined as in Lemma 7.50, provided BS2 is a basis of Fqm .
This result generalises straightforwardly to an expansion over various subspaces and
bases.

Proof. We intend to apply Lemma 7.50. This lemma has two conditions.
The first condition is met by shortening the left-hand term. Indeed, the

effect of shortening is that we keep only the words whose entries indexed by
K(λ,m) are all equal to zero.

The second condition (BS2 being a basis) is a hypothesis. Again, Re-
mark 7.51 applies.

Compared to Lemma 7.50 and its proof, one should be careful that in gen-
eral ShortK(λ,m)

(
A ?̃2

)
(where A denotes ExpCodeBS (C|S)) is not spanned

by words of the form PunctK(λ,m) (a?̃b) with a, b ∈ ExpCodeB(A) but by
linear combinations, i.e.words of the form

PunctK(λ,m) (a0?̃b0 + · · ·+ as?̃bs) , for a0, . . . ,as, b0, . . . , bs ∈ A .

Therefore, one needs to apply the very same reasoning as that of the proof of
Lemma 7.50 replacing a?̃b by a sum of such vectors. This is not a problem and
the proof generalises straightforwardly, since all the involved operators are
linear.

Finally, because of the shortening operation, we only obtain an inclusion
and not an equality.

Remark 7.53. In the special case (λ+1
2
)

= m, K(λ,m) = ∅, therefore the shortening
is useless and the inclusion in (7.9) is an equality.

Remark 7.54. In the sequel, we will see that under a reasonable conjecture and some
condition, the inclusion in (7.9) is an equality. In such a case, we obtain the diagram
of Figure 7.5.

7.3.2 Dimension of the twisted square of subspace sub-
codes

Now that we have defined the twisted star-product, we intend to see if the
twisted square code of an expanded subspace subcode of a Reed–Solomon
code (like the public key of the SSRS cryptosystem) behaves like a random code.
More exactly, we aim at distinguishing the parent code (a Reed–Solomon code
in the case of SSRS) from a random code. Therefore we apply the same con-
struction (taking a subspace subcode, expanding and computing the twisted
square code) to an RS code and a random code and see if the dimensions
differ.

7.3. Twisted-square code and distinguisher 181

C C|S
(
C|S

)?2
Fq

ExpB(C) ExpBS (C|S) ExpBS2

((
C|S

)?2
Fq

)

(·)|S

ExpB

(·)?2
Fq

ExpBS
ExpBS2

ShortJ (λ,m)(·) ShortK(λ,m)((·)?̃2)

Figure 7.5: Expanding the squaring operation to subspace subcodes (general
case, when S2 = Fqm). Here, Exp stands for ExpCode.

This section is therefore an equivalent of 5.3.2 but for subspace subcodes
instead of full GRS codes. We will first compute the typical dimension of the
twisted square code for a random code and obtain a tight upper bound. We
do the same for the twisted square of SSRS codes and obtain a different upper
bound. This provides us with a distinguisher.

7.3.2.1 Typical dimension of the twisted square of a random sub-
space subcode

Similarly to Theorem 5.15 on squares of random codes, we expect that twisted
squares of random codes typically have the largest possible dimension. For
this reason, we state the following conjecture which is confirmed by our ex-
perimental observations using the computer algebra software Sage.

Conjecture 7.55. For any positive integer k such that 2k 6 n, any Fq–subspace
S ⊆ Fn

qm of dimension λ > 2 such that S2 = Fqm and any Fq–basis BS of S, let R
denote an [n, k] code chosen uniformly at random, then

P
[
dimFq

(
ExpCodeBS (R|S)

)?̃2
= min

{ (λ+1
2
)
n,(km−n(m−λ)+1

2
) }] −→

k→∞
1.

It is worth noting that in general (λ+1
2
)
> m. In such a case, as already

mentioned before stating Lemma 7.50, the code
(
ExpCodeBSR|S

)?̃2 repre-
sents something which is not an expansion of a code with respect to a basis of
Fqm but rather a kind of expansion with respect to a family of generators of
the set S2. This family is denoted Bfull in the proof of Lemma 7.50. This set
spans S2 but is not linearly independent in general. Hence, given a vector with
entries in Fn

qm , the decomposition with respect to this family of generators is

182 Chapter 7. Subspace subcodes of Reed-Solomon codes

not unique. For this reason, it is difficult to identify the twisted square code
with the expansion of another code.

To ensure the unique decomposition, the key idea is to proceed as in
the statement of Theorem 7.52 and to shorten the twisted square code on the
positions of the setK(λ,m) introduced in (7.7), i.e. shortening the last (λ+1

2
)
−m

positions of each block of length (λ+1
2
). According to Theorem 7.52, a codeword

in ShortK(λ,m)
(
ExpCodeBS (R|S)?̃2

)
is the expansion of a codeword of R?2

in a given basis of Fqm . The latter property is in general not satisfied by
codewords of ExpCodeBS (R|S)?̃2. Therefore, this shortened code turns out
to be a more relevant object of study and its dimension is of particular interest
in the sequel. This dimension is the purpose of the following statement.

Corollary 7.56. Let R be a uniformly random [n, k] code over Fqm and S ⊆ Fqm

be a subspace such that S2 = Fqm . Denote by K(λ,m) the set introduced in (7.7).
Then, under Conjecture 7.55, we typically have

dimFqShortK(λ,m)
(
ExpCodeBS (R|S)?̃2

)
>

min
{
mn,

(
km− n(m− λ) + 1

2

)
− n

((
λ+ 1

2

)
−m

)}
.

(7.10)

7.3.2.2 Typical dimension of the twisted square of a subspace sub-
code of a RS code

On the other hand, subspace subcodes of Reed–Solomon codes have a different
behaviour. Indeed, Theorem 7.52 yields the following result.

Corollary 7.57. Given a GRS code C = GRSk(x,y) and an Fq–subspace S ⊆ Fqm

of dimension λ < m such that S2 = Fqm . Denote by K(λ,m) the set introduced
in (7.7). Then,

dimFq

(
ShortK(λ,m)

(
ExpCodeBS (C|S)

)?̃2)
6 min{mn,m(2k−1)}. (7.11)

7.3.2.3 The distinguisher

Putting the previous statements together, the twisted product provides a dis-
tinguisher between expanded subspace subcodes of GRS codes and expanded
subspace subcodes of random codes.

Theorem 7.58. Let k be a positive integer, S ⊆ Fn
qm of dimension λ > 2 an Fq–

subspace such thatS2 = Fqm ,BS anFq–basis. LetD be defined asExpCodeBS (C|S),

7.3. Twisted-square code and distinguisher 183

where C is either a random [n, k] code over Fqm or an [n, k] GRS code over Fqm .
Suppose also that

m(2k − 1) < min
{
mn,

(
km− n(m− λ) + 1

2

)
− n

((
λ+ 1

2

)
−m

)}
.

(7.12)
Then, assuming Conjecture 7.55, the computation of dimFq ShortK(λ,m)

(
D ?̃2

)
provides a polynomial-time algorithm which decides whether C is an RS code or a
random code and succeeds with high probability. This extends straightforwardly to the
case of multiple spaces and bases.

Remark 7.59. Condition (7.12) entails in particular 2k 6 n, which is a necessary
condition for the distinguisher to succeed. Indeed, if 2k > n, the square code of the
GRS code spans the whole space Fn

qm . Hence it cannot be distinguished from a random
code. When this condition is not met, it is sometimes possible to shorten the code so
that the shortened code meets this condition. This is addressed in Section 7.3.2.5.

7.3.2.4 Experimental results

Using the computer algebra software Sage, we tested the behaviour of the
dimension of the twisted square (shortened at K(λ,m)) of subspace subcodes
either of random codes or of RS codes. For each parameter set (see Table 7.2),
we ranmore than 100 tests and none of them yielded dimensions of the twisted
square that was different from the bounds given either by Conjecture 7.55 or
by Corollary 7.57.

In particular, these experiments show that bounds (7.10) and (7.11) are
typically equalities. Note that this observation is not necessary to distinguish
the codes but it will be useful for the attack presented in Section 7.4.

Remark 7.60. Here again, we discussed the case of a single subspace S with a unique
basis B for the sake of simplicity, but the distinguisher straightforwardly extends to
the case of multiple spaces of dimension λ whose squares fill in Fqm together with
multiple bases.

7.3.2.5 Broadening the range of the distinguisher by shortening

Similarly to what we presented concerning GRS codes in Section 5.3.3 (and
for RLCE in Section 6.2.5), it is tempting to attempt to broaden the range of
the distinguisher by shortening the public code. This can hopefully make the
distinguisher work in some cases when 2k > n. The main idea is to shorten
some blocks of length λ (corresponding to a given position of the original
code in Fn

qm). For each shortened block the degree k is decreased by 1. Indeed,

184 Chapter 7. Subspace subcodes of Reed-Solomon codes

Parent code q m λ n k
Bounds on Actual

the dimension Dimension
of ShortK(λ,m)

(
C ?̃2

)
of ShortK(λ,m)

(
C ?̃2

)
Random 7 3 2 120 55 > 360 360

RS 7 3 2 120 55 6 327 327
Random 7 5 3 160 75 > 800 800

RS 7 5 3 160 75 6 745 745

Table 7.2: Parameter sets for the tests. The code C is the shortening atm− λ
positions per block of the expansion of a parent code. The parent code is
either random or a Reed–Solomon code, as indicated in the first column of
the table. The penultimate column gives the bounds on the dimension of the
twisted square code shortened at K(λ,m): a lower bound for random codes
(Corollary 7.56) and an upper bound for SSRS codes (Corollary 7.57). The last
column gives the actual dimension of the twisted square code computed using
Sage. For each set of parameters, at least 100 tests were run and the actual
dimension never differed from the bounds. We observe in particular that the
bounds stated in Corollaries 7.56 and 7.57 are typically equalities.

from Lemma 7.33 shortening a whole block corresponds to shortening the
corresponding position of the parent code over Fqm .

Let us investigate the condition for this to work. Let s0 be the least positive
integer such that 2(k − s0)− 1 < n− s0, i.e.

s0
def= 2k − n.

If one shortens the public code at s > s0 blocks, which corresponds to s(m−λ)
positions, we can apply Theorem 7.58 on the shortened code. The condition of
the theorem becomes

m(2(k − s)− 1) < min
{

m(n− s),(m(k−s)−(n−s)(m−λ)+1
2

)
− (n− s)

((λ+1
2
)
−m

)} .
(7.13)

Example 7.61. Consider the parameters of XGRS in the first row of Table 7.1.
Suppose we shorten s = 820 blocks of the public key (i.e. 1260 positions of
the parent GRS code). It corresponds to reduce to n′ = n − s = 438 and
k′ = k − s = 211. The shortened public key will have dimension 195.

Thus, the twisted square of the shortened public key will have typical
dimension 1263 while the twisted square of an expanded subspace subcode of
a random code would have full length, i.e. 3(n− s) = 1314.

7.4. Twisted-square code and distinguisher 185

7.3.2.6 Limits of the distinguisher: the “m/2 barrier”.
When trying to apply the distinguisher, we observe that it is ineffective when
λ 6 m/2. This bound is stronger than the (λ2) 6 m bound that we had before.
We explain here why this new bounds is unavoidable with this distinguisher.

Suppose that λ 6 m
2 and let C be a GRS code of dimension k and S a

subspace of dimension λ such that the SSRS code reaches the typical dimension
(see Propositions 7.2 and 7.3), i.e. dimFq C|S = km− n(m− λ).

For this dimension to be positive, we must have

k > n

(
1− λ

m

)
>
n

2 ·

This is incompatible with the necessary condition 2k < n (see Remark 7.59)
and cannot be overcome by shortening blocks as described in Section 7.3.2.5.
Hence, whenever λ 6 m/2, the distinguisher is ineffective.

Remark 7.62. In [COT14b; COT17] a distinguisher on so–called wild Goppa codes
over quadratic extensions is established using the square code operation after a suitable
shortening. This corresponds precisely to the case λ = 1 andm = 2 which, according
to the previous discussion, should be out of reach of the distinguisher. The reason why
this distinguisher is efficient for these parameters is precisely because the dimension of
such codes significantly exceeds the lower bound of Proposition 7.2 (see [SKHN76;
COT14a]).

Theorem 7.52
Sh
(

Exp(C|S)
)?̃2
⊆ Exp

((
C|S

)?2

Fq

)
Conjecture 7.63

Sh
(

Exp(C|S)
)?̃2
⊇ Exp

((
C|S

)?2

Fq

)Conjecture 7.55
Typical dimension
of Exp

(
R|S

)?̃2

Sh
(

Exp(C|S)
)?̃2

= Exp
((

C|S

)?2

Fq

)Corollary 7.57
Upper bound
for RS codes

Corollary 7.56
Lower bound

for random codes

Theorem 7.58
Distinguisher

Conjecture 7.65
P
[(

C|S

)?2

Fq
= C ?2

|S2

]
→ 1

Sh
(

Exp(C|S)
)?̃2

= Exp
(
C ?2

|S2

)
Theorem 7.66

[BGK19]

Attack

Figure 7.6: Informal summary of the statements. Any statement is the conse-
quence of the statements pointing to it.

186 Chapter 7. Subspace subcodes of Reed-Solomon codes

7.4 Attacking the SSRS scheme
In this section, we describe how to use these tools to attack the SSRS scheme.
Just like in Section 7.3.1, for the sake of convenience, we first focus on the
parameters withm = 3, λ = 2 and then discuss the general case.

7.4.1 Further conjectures for the attack
As explained in Section 7.3.2.4 our experiments show that Inequalities (7.10)
and (7.11) are typically equalities. This encourages us to state the following
two conjectures.
Conjecture 7.63. Let S,BS ,BS2 ,K(λ,m) be as in Theorem 7.52 and suppose that
Equation (7.12) is satisfied. If C is an [n, k] GRS code, then, with high probability,
the inclusion of Equation (7.9) is an equality, i.e.

ShortK(λ,m)

((
ExpCodeBS (C|S)

)?̃2)
= ExpCodeBS2

((
C|S

)?2
Fq

)
.

In addition, the right–hand term of the last equality satisfies the following
inclusion.
Lemma 7.64. Let C ⊆ Fn

qm and S ⊆ Fqm be an Fq–vector space. Then(
C|S

)?2
Fq
⊆
(
C ?2

)
|S2

. (7.14)

Proof. It suffices to observe that the result holds on Fq–generators. Let a, b ∈
C|S . Then, a ? b ∈ C ?2. In addition, for any i ∈ {0, . . . , n − 1}, we have
(a ? b)i ∈ S2. Thus, a ? b ∈ (C ?2)|S2 .

Moreover, Inclusion (7.14) turns out to be typically an equality in the case
of GRS codes as suggested by the following conjecture.
Conjecture 7.65. Let S,BS ,BS2 ,K(λ,m) be as in Theorem 7.52 and suppose that
Equation (7.12) is satisfied. If C is an [n, k] GRS code, then, with high probability,
the inclusion of Equation (7.14) is an equality, i.e.(

C|S
)?2

Fq
=
(
C ?2

)
|S2

.

7.4.2 The case m = 3 and λ = 2
7.4.2.1 Constructing the square code
Let Cpub be the public code of an instance of the SSRS scheme. This code is
described by a generator matrix Gpub which is the only data we have access

7.4. Attacking the SSRS scheme 187

to. We know that there exist unknown spaces S0, . . . ,Sn−1 with bases BSi =
(bi,0, bi,1) and an RS code over Fqm such that

Cpub = ExpCode(BSi)i

(
RSk(x)|(Si)i

)
.

We can compute the generator matrix of the twisted square code C ?̃2
pub,

which according to Theorem 7.48 is equal to

ExpCode(
BS2

i

)
i

((
RSk(x)|(Si)i

)?2
Fq

)
,

where BS2
i

def= (b2i,0, bi,0bi,1, b2i,1). Moreover, assuming Conjecture 7.65, this code
is likely to be equal to

ExpCode(
BS2

i

)
i

(RS2k−1(x)) .

It is important to stress that, at this stage, we do not know the value of x
nor the BSi or the BS2

i
.

7.4.2.2 Finding the value of x

We now have access to a fully expanded RS code (and not a subspace subcode)
and want to use this to find the value of x. In fact, the authors of [BGK19]
propose an algorithm to solve this problem, by using a generalisation of the
algorithm of Sidelnikov and Shestakov [SS92] to recover the structure of GRS
codes.
Theorem 7.66. [BGK19, § IV.B] Let x = (x0, . . . , xn−1) ∈ Fn

qm be a vector with
distinct entries and B0, . . . ,Bn−1 be an n–tuple of Fq–bases of Fqm . Let

C = ExpCode(Bi)i(RSk(x)).

There exists a polynomial time algorithm which
takes as inputs C , three distinct elements x′0, x′1, x′2 ∈ Fqm and an Fq–basis
B′0 of Fqm ;
and returns x′3, . . . , x′n−1 ∈ Fn

qm and Fq–bases (B′1, . . . ,B′n−1) of Fqm such
that

C = ExpCode(B′0,...,B′n−1)(RSk((x′0, . . . , x′n−1))).

The principle of the algorithm is very similar to that of Sidelnikov Shestakov.
Starting from a systematic generator matrix of an expanded Reed–Solomon
code, the hidden structure of the RS code is deduced from relations satisfied
by them×m blocks of the right hand side of this systematic generator matrix
(as in Proposition 5.9).

188 Chapter 7. Subspace subcodes of Reed-Solomon codes

Remark 7.67. Theorem 7.66 asserts in particular that the choice of three values of
the support together with one basis uniquely determines a pair (x, (Bi)i) describing a
code ExpCode(Bi)i(x).

Using this Theorem 7.66, we obtain a vector x′ and Fq–bases B′i of Fqm

such that
C ?̃2
pub = ExpCode(B′i)i

(RS2k−1(x′)).

Remark 7.68. Note that the value ofx′ is not necessarily the same as the one contained
in the secret key but we are looking for an equivalent secret key, i.e. we only need a
code description which allows us to decode. See Remark 1.29.

7.4.2.3 Recovering a secret key
Once x′ is found, there remains to find bases BS′0 , . . . ,BS′n−1

of 2–dimensional
subspaces S ′0, . . . ,S ′n−1 ⊆ Fqm such that

Cpub = ExpCode(
BS′

i

)
i

(RSk(x′)).

These bases can be obtained by solving a linear system. They are the pairs

BS′0 = (b(0)
0 , b

(1)
0), . . . ,BS′n−1

= (b(0)
n−1, b

(1)
n−1)

such that
SqueezeCode(

BS′
i

)
i

(Cpub) ⊆ RSk(x′),

which can be equated as follows. Let H be a parity–check matrix of RSk(x)
and Gpub a generator matrix of Cpub. Let

B =



b
(0)
0 (0)
b
(1)
0

b
(0)
1
b
(1)
1

. . .
b
(0)
n−1

(0) b
(1)
n−1


∈ F2n×n

q3 .

The unknown entries of B are the solutions of the linear system

GpubBHᵀ = 0. (7.15)

There are

7.4. Attacking the SSRS scheme 189

• 2n unknowns in Fq3 which yields 6n unknowns in Fq;
• for (3k − n)(n− k) = O(n2) equations.

Thus, the matrix B is very likely to be the unique solution up to a scalar
multiple. From this, we obtain a complete equivalent secret key, which allows
to decrypt any ciphertext.
Remark 7.69. After presenting a polynomial time recovery of the structure of ex-
panded GRS codes in [BGK19, § IV.B], the extension to expanded SSRS codes is
discussed [BGK19, § VI.C]. The suggested approach consists in performing a brute–
force search on the expansion bases B0, . . . ,Bn−1. But the cost of such an approach
is exponential in n and λ. Our use of the twisted square code permits to address the
same problem in polynomial time.

7.4.2.4 Extending the reach of the attack by shortening blocks
As explained in Section 7.3.2.5, it may happen that C ?̃2

pub = F3n
q , i.e. the twisted

square of the public code equals the whole ambient space. In such a situation,
the distinguisher fails and so does the attack. To overcome this issue, it is
sometimes possible to shorten a fixed number s of blocks of Cpub and apply
the previous attack to this block–shortened code.

More precisely, let I ⊆ J0, 2n − 1K be a set of indices corresponding to a
union of blocks, i.e. of the form I = {2i0, 2i0 +1, . . . , 2is, 2is+1}. We apply the
previous algorithm to the code ShortI

(
Cpub

)
which returns ((x′i)i/∈I , (B′i)i 6∈I)

such that
ShortI

(
Cpub

)?̃2
= ExpCode(B′i)i/∈I ((x

′
i)i/∈I).

Then, one can re-apply the same process with another set of blocks I1 such
that there are at least 3 blocks that are neither in I0 nor in I1, i.e. |(J1, nK \ I0)∩
(J1, nK \ I1)| > 3. Up to permutation of the blocks, we use these positions in
common to play the role of x′0, x′1, x′2 in Theorem 7.66. Recall that the choice of
three of the x′i’s and one of the Bi’s entirely determines the other ones. Hence,
this allows to deduce new values for x′i’s for i ∈ I \ I1 that are consistent with
the previously computed values of x′. We repeat this operation until x′ is
entirely computed. Then, we proceed as in Section 7.4.2.3 to recover the rest of
the secret key.

7.4.2.5 Application: attacking some parameters of the XGRS sys-
tem

The proposed attack permits to break efficiently any parameters of Type I
proposed in [KRW21] (i.e.with λ = 2 and m = 3). Using a Sage implemen-
tation, the calculation of C ?̃2

pub takes a few minutes. Next, we obtained a full

190 Chapter 7. Subspace subcodes of Reed-Solomon codes

key recovery using the “guess and squeeze” approach described further in
Section 7.4.6 followed by a usual Sidelnikov Shestakov attack. The overall
attack runs in less than one hour for keys corresponding to a claimed security
level of 256 bits. The previously described approach consisting in applying
directly the algorithm of [BGK19, § VI.B] on C ?̃2

pub has not been implemented
but is probably even more efficient.

7.4.3 The general case
The attack presented in Section 7.4.2 generalises straightforwardly (up to the
following details) when the conditions of Conjecture 7.63 are met.

• According to Theorem 7.52, we should no longer work with C ?̃2
pub but

with ShortK(λ,m)
(
C ?̃2
pub
)
, where K(λ,m) is defined in Lemma 7.50 (7.7).

Assuming Conjectures 7.63 and 7.65, we deduce that this code is the
expansion of a GRS code. Hence, the algorithm of [BGK19, § VI.B] can
be applied to it.

• The recovery of the subspaces and bases described in Section 7.4.2.3
involves a matrix B ∈ Fλn×n

q with λn nonzero entries, which will be the
unknowns of the system (7.15). Hence, this system has λn unknowns
in Fqm , i.e.λmn unknowns in Fq for (mk − n(m − λ))(n − k) = O(n2)
equations. As the value ofm (and hence λ) remain very small compared
to n, there is still in general a unique solution up to a scalar multiple.

7.4.4 Summary of the attack
The attack can be summarised by Algorithms 13 and 14, depending on the
values of k and n.

Algorithm 13: The attack when 2k 6 n

1. Compute ShortK(λ,m)
(
C ?̃2
pub
)
, where K(λ,m) is the the union of the

last (λ+1
2
)
−m positions of each block (see Lemma 7.30 (7.4));

2. Apply the algorithm of [BGK19, § VI.B] to recover a support x of the
parent Reed–Solomon code;

3. Apply the calculations of Section 7.4.2.3 to recover the bases Bi.

Remark 7.70. In the case λ = 2 andm = 3, (λ+1
2
)

= m and hence K(λ,m) = ∅.

7.4. Attacking the SSRS scheme 191

Algorithm 14: Attack when 2k > n

1. Choose a number s of blocks to shorten satisfying condition (7.13) so
that the distinguisher succeeds.

2. Pick a union of s blocks I and

(a) Compute ShortK(λ,m)′

(
ShortI

(
Cpub

)?̃2), where K(λ,m)′ is
the union of the last (λ+1

2
)
−m positions of each block;

(b) Apply the algorithm of [BGK19, § VI.B] to recover a partial sup-
port (xi)i/∈I ;

(c) Repeat this process with another I until you got the whole sup-
port x.

3. Apply the calculations of Section 7.4.2.3 to recover the bases Bi.

7.4.5 Complexity
For the complexity analysis and according to the parameters proposed in
[KRW21], we suppose thatm = O(1), λ = O(1) and k = Θ(n).

7.4.5.1 Step 1, the twisted square computation

First let us evaluate the cost of the computation of the twisted square of the
code Cpub ⊆ Fλn

q of dimension k0
def= (mk − n(m− λ))).

1. Starting from a k0 × λn generator matrix of Cpub, any non ordered pair
of rows provides a generator of the twisted square. Hence there are(k0+1

2
)

= O(n2) generators to compute, each computation costing n(λ+1
2
)

operations. This is an overall cost of O(n3) operations in Fq.

2. Then, deducing a row echelon generator matrix of this twisted square
from these O(n2) generators has the cost of the computation of the row
echelon form of a O(n2) × O(n) matrix, which requires O(nω+1) op-
erations in Fq (see [BCGLL+17, Théorème 8.6]), where ω 6 3 is the
complexity exponent of operations of linear algebra.

Thus, the overall cost of the computation of this twisted square code is
O(nω+1). In addition, in the situation where 2k− 1 > n, we need to iterate the
calculation on a constant number of shortenings of the public code, which has
no influence on the complexity exponent.

192 Chapter 7. Subspace subcodes of Reed-Solomon codes

7.4.5.2 Step 2, recovering x

The second step of the attack, i.e.performing the algorithm of [BGK19, § VI.B]
to recover x is not that expensive. A quick analysis of this algorithm permits
to observe that the most time consuming step is the calculation of the system-
atic form of the generator matrix, which has actually been performed in the
previous step. Therefore, this second step can be neglected in the complexity
analysis.

7.4.5.3 Step 3, recovering the bases
Finally, the last step of the attack, consisting in recovering the bases Bi, boils
down to the resolution of a linear system of O(n2) equations and O(n) un-
knowns, which costs O(nω+1) operations.
Summary. The overall cost of the attack is of O(nω+1) operations in Fq.

7.4.6 The guess-and-squeeze approach
To conclude this section, we present an alternative approach to detect the
hidden structure of expanded codes and recover the expansion bases. This
method applies to the expansion of any code. It can in particular apply to
the twisted square of SSRS codes. As explained in Section 7.4.2.5, this is the
approach we implemented. The interest of this approach is that it may apply
to expansions of codes which are not RS codes and hence may be an interesting
tool for other cryptanalyses.

Given a code C ⊆ Fn
qm and bases B0, . . . ,Bn−1 of Fqm , suppose you only

know a generator matrix of

Cexp
def= ExpCode(Bi)(C).

The goal is to guess the Bi’s iteratively instead of brute forcing any n–tuple of
bases, which would be prohibitive.

1. Shorten Cexp at k − 1 blocks (which corresponds tom(k − 1) positions).
This yields a code whose dimension most of the times equals m. Ac-
cording to Lemma 7.33, this is the expansion of a code of dimension 1
obtained by shortening C at k − 1 positions.

2. Puncture this shortened code in order to keep only two blocks. We get a
[2m,m] code which we call Cexp,tiny ⊆ F2m

q . This code is the expansion
of a [2, 1] code called Ctiny ⊆ F2

qm obtained from C by shortening k − 1
positions and puncturing the remaining code in order to keep only 2
positions.

7.5. Conclusion 193

3. Now, for any pair of bases (B0,B1) of Fqm , compute
SqueezeCode(B0,B1)(Cexp,tiny).

The point is that, for a wrong choice of bases, we get a generator matrix
withm rows and 2 columns which is very likely to be full rank. Hence a
wrong choice provides the trivial code F2

qm . On the other hand, a good
choice of bases provides the code Ctiny which has dimension 1. This
property permits to guess the bases.

Actually, according to Lemma 7.38, if one guesses the bases a0B0, a1B1
for some a0, a1 ∈ F×qm , the squeezing will provide Ctiny ? (a0, a1) which also
has dimension 1. Therefore, it is possible to first guess the bases up to a
scalar multiple in F×qm . Therefore, the cost of computing these two bases is in
O(q2m(m−1)) operations.

Once the first two bases are known, one can restart the process by with
another pair of blocks involving one of the two blocks for which the basis is
already known, which requires O(qm(m−1)) operations. This yields an overall
complexity of O(q2m(m−1) + nqm(m−1)) operations in Fq for this guess and
squeeze algorithm.
Remark 7.71. Note that in the attack of XGRS scheme, the bases to guess are known
to be of the form (1, γ, γ2, . . . , γm−1) for some generator γ ∈ Fqm . This additional
information permits to significantly improve this search and reduce the cost of the
calculation of the n bases to O(q2m + nqm) operations.
Remark 7.72. Proceeding this way, only permits to get back the code C ? a ⊆ Fn

qm

for an unknown vector a ∈ (F×qm)n. However, this is an important first step. For
instance, if C is a Reed–Solomon, we obtain a generalised Reed–Solomon code whose
structure is computable using the classical Sidelnikov and Shestakov attack. It is then
possible to decode.

7.5 Conclusion
In this chapter, we extended the line of work on square-code distinguishers to
the case of subspace subcodes. For this, we had to adapt the square-product
operation to expanded codes, with a tool that we call the twisted square-
product. This yields a polynomial-time distinguisher on subspace subcodes of
Reed–Solomon codes, under some conditions on the parameters. We are hence
able to distinguish SSRS codes from random ones as soon as the dimension
λ of the subspaces exceeds m

2 . From this distinguisher, we derived an attack
breaking in particular the parameter set λ = 2 andm = 3 of the XGRS system
[KRW21].

194 Chapter 7. Subspace subcodes of Reed-Solomon codes

These results contribute to better understanding the McEliece encryption
scheme instantiated using algebraic codes. On one hand, we have generalised
Reed–Solomon codes, which are known to be insecure since the early 90’s.
On the other hand, alternant codes seem to resist to any attack except some
Goppa codes with an extension degreem = 2 [COT17; FPP14]. The present
work provides an analysis of a family of codes including these two cases as
the two extremities of a spectrum. Concerning the subspace subcodes lying in
between, we show an inherent weakness of SSRS codes when λ > m/2 (see
Figure 7.7). The case λ = m/2 is in general out of reach of our distinguisher,
but remains border line as testified by some attacks on the cases λ = 1,m = 2
in the literature [COT17; FPP14].

λ
0 1 m

m/2
proved insecurein this chapter

alternant codes, Goppa codes
(believed secure)

GRS codes
(known insecure)

Figure 7.7: The twisted square-code distinguisher attack presented in this
chapter covers the cases wherem/2 < λ 6 m.

A question which remains open is the actual security of the cases 1 < λ <
m/2 which are out of reach of the twisted square code distinguisher. These
codes, which include alternant codes, deserve to have a careful security analy-
sis in the near future. Indeed, if they turn out to be resistant to distinguishing
attack, they could provide an alternative to Classic McEliece [BCLMM+19],
presumably with shorter key sizes. On the other hand, if one finds a distin-
guisher for such codes, this could impact the security of Classic McEliecewhich
is a crucial question in the near future.

PartIII
Generic decoding

Chapters

8 Binary syndrome decoding 197
8.1 The syndrome decoding problem 198
8.2 Combinatorial approach . 201
8.3 Using linear algebra: Prange’s approach 202
8.4 Combining both approaches . 205
8.5 Further improvements of ISD 211

9 Ternary syndrome decoding with large weight errors 217
9.1 Information set decoding for q > 3 218
9.2 Large weight ternary syndrome decoding 224
9.3 Applications . 234

Chapter8
Binary syndrome decoding

The syndrome decoding problem is the central problem upon which code-
based cryptography is built. This problem is equivalent to decoding in a
random code, and the security of most code-based primitives rely on the
hypothesis that this problem is hard. Although this problem is proven to be
NP-hard, there is no result concerning its average complexity. Still, a forty
years long line of research has tried to come up with the best algorithms, and
solving it remains exponentially hard. The best known algorithm use of the
information set decoding technique. This chapter is a succinct introduction to
the state-of-the-art results in this direction. As most of these studies concern
binary linear codes, we will restrict our survey to this case. We will see in the
next chapter the difference induced by the use of a larger basefield.

Contents
8.1 The syndrome decoding problem 198

8.1.1 The problem . 198
8.1.2 Workfactor and asymptotic formulas 199
8.1.3 Number of solutions 200

8.2 Combinatorial approach . 201
8.2.1 Exhaustive search 201
8.2.2 Birthday decoding 201
8.2.3 Average complexity to find one solution 202

8.3 Using linear algebra: Prange’s approach 202
8.3.1 Information sets . 202
8.3.2 Prange’s idea . 203
8.3.3 Prange’s information set decoding algorithm . . . 203
8.3.4 Complexity of Prange’s algorithm 203

8.4 Combining both approaches 205
8.4.1 General idea . 205
8.4.2 Generalised information set decoding algorithm . 207
8.4.3 Using exhaustive search 209

198 Chapter 8. Binary syndrome decoding

8.4.4 Using birthday decoding 210
8.5 Further improvements of ISD 211

8.5.1 Recursive birthday algorithm 211
8.5.2 Using representations 211
8.5.3 Nearest neighbour search 214

8.1 The syndrome decoding problem
8.1.1 The problem
The syndrome decoding problem has been introduced in Chapter 1. It is one
of the oldest problems in coding theory and cryptography [McE78]. We recall
here its definition.

Problem 8.1 (Syndrome Decoding - SD(q,R,W)).
Instance: H ∈ F(n−k)×n

q of full rank,
s ∈ Fn−k

q (usually called the syndrome).
Output: e ∈ Fn

q such that wH(e) = w and Heᵀ = sᵀ,
where k def= dRne and w def= dWne.

We have seen in Chapter 1 that this problem is equivalent to the general
decoding problem.

Moreover, it is known to be NP-complete [BMT78] and conjectured to be
hard on average [Ale11]. Finally, this problem is believed to remain hard in
the presence of a quantum adversary, which makes code-based cryptography
a serious solution for post-quantum cryptography.

The problem SD(q,R,W) is parametrised by three parameters.

1. the field size q. In this chapter we will restrict our description to the case
q = 2 and hence denote SD(R,W) def= SD(2, R,W).

2. The rate R ∈ [0, 1] of the code.

3. The relative weightW ∈ [0, 1].

Remark 8.2. In the binary case, SD(R,W) can be reduced to SD(R, 1−W). Indeed,
given an instance (H, s) of SD(R,W), we can solve (H, s + 1Hᵀ) where 1 denotes
the vector with all its components equal to 1. This is an instance of SD(R, 1 −W)
which gives the same solution. Hence the problem is symmetric with respect toW ,
and we can therefore restrict our study to the caseW ∈ [0, 1/2]. This is specific to the
binary case. The general case withW > 1/2 will be discussed in Chapter 9.

8.1. The syndrome decoding problem 199

Remark 8.3. The matrix length n is not considered as a parameter of the problem
since we are only interested in the asymptotic complexity (see below). Still, when
talking about a particular instance, the length of the code matters and we will be talking
about an instance of SD(R,W) of length n.

8.1.2 Workfactor and asymptotic formulas
In this chapter, as in most of the literature on the subject, we will only consider
the asymptotic complexity of the syndrome decoding problem. Indeed, the
algorithms solving this problem have exponential complexity, and the main
issue in cryptography is to see how this complexity scales with the parameters.
This approach requires some appropriate definitions.

Hence, our interest will be focused on the asymptotic exponent of the
complexity of the algorithms solving the problem SD(q,R,W). This will be
referred to as the workfactor of the algorithm, denoted F(R,W).

Definition 8.4 (Workfactor [CG90]). For an algorithm A solving the syn-
drome decoding problem SD(q,R,W), let TA (q, n, k, w) denote the average
time complexity for algorithm A to solve an instance of SD(q,R,W) of length
n, with k = dRne and w = dWne, the workfactor FA(q,R,W) is defined as

FA(q,R,W) def= lim
n→∞

1
n

logq TA (q, n, dRne, dWne) .

This definition fulfills our need to focus on the asymptotic exponent, since
we can write

TA (q, n, k, w) = Õ
(
qn(FA(q,R,W)+o(1))

)
,

where the coefficient F only depends on R andW .

For the complexity analysis, we will often make use of the entropy function
hq, introduced in Definition 1.20. The binary entropy function h2 will often
simply be denoted by h. Note that the entropy function is continuous and
strictly increasing between hq(0) = 0 and hq(1 − 1/q) = 1. Hence we will
sometimes use the notation h−1

q to denote the inverse of the entropy function
on this interval. The function h−1

q is defined over [0, 1].

Finally, let us recall the classic consequence of Stirling’s formula which is
particularly useful for asymptotic complexity analysis:

(
αn

βn

)
=
√

α

2πβ(α− β)2αh(β/α)n−o(n) = Θ̃
(
2αh(β/α)n

)
.

200 Chapter 8. Binary syndrome decoding

8.1.3 Number of solutions
For a fixed value R, the number of solutions to SD(R,W) greatly varies with
the value of W . Informally, we can see that when W is close to zero, the
number of solutions is at most one, and probably zero. On the other hand,
forW close to 1/2, the number of solutions is on average (nw)/2n−k which is
exponentially large. Moreover, because we study this problem in the context
of cryptanalysis, we always suppose that the instance is defined such that a
solution exists. Hence, the number of solutions of an instance of SD(R,W) of
length n is given by

S(n, k, w) = max
{

1,
(n
w

)
2n−k

}
.

The value of w bellow which the number of solutions is (at most) one
is easy to characterise. This is known as the Gilbert-Varshamov bound (see
Theorem 1.27).

Definition 8.5 (Gilbert-Varshamovdistance). For k 6 n, theGilbert-Varshamov
distance for [n, k]-codes is defined as the largest integer w such that

w−1∑
d=0

(
n

d

)
6 2n−k.

We denote wGV (n, k) this distance.

Asymptotically, we obtain the following result.

Definition 8.6. For R ∈ [0, 1], let the relative Gilbert-Varshamov distance for
codes of rate R be defined as

lim
n→∞

wGV (n, dnRe)/n.

Stirling’s formula yields

WGV (R) def= h−1(1−R),

where h2 denotes the binary entropy function.

Hence, when W < WGV (R), we expect to have (at most) one solution,
whereas there are exponentially many solutions in the caseW > WGV (R). We
will see that for a fixed value ofR, the regimewithW close toWGV corresponds
to the hardest case of the problem.

8.2. Combinatorial approach 201

8.2 Combinatorial approach
Let us first state the combinatorial approaches to solve the SD(R,W) problem.

8.2.1 Exhaustive search
The naive algorithm to solve the decoding problem is to exhaustively try all
error patterns of weightw. For syndrome decoding, this means trying all sums
of w columns of the matrix H and see if one matches the syndrome s.

The complexity of this approach is dominated by the term (n
w

), which leads
to a workfactor of

FExhaustive = h(W).

With this approach, we directly obtain all solutions to the problem.

8.2.2 Birthday decoding
A classical algorithmic improvement for this kind of problems is to use the
birthday paradox to look for collisions. Namely, instead of reaching for a single
target s, one can construct two lists and look for a collision between the two
lists.

Let us split the matrix H in two halves H1 and H2. Enumerate the sets

L1 = {e1H1
ᵀ | e1 ∈ Fn/2

2 ,wH(e1) = w/2},

L2 = {e2H2
ᵀ + s | e2 ∈ Fn/2

2 ,wH(e2) = w/2}.

If L1 ∩ L2 6= ∅, let v be in the intersection, then v = e1H1
ᵀ = e2H2

ᵀ + s.
Hence (e1, e2)Hᵀ = s and the vector (e1, e2) is a solution to the problem.

The time complexity of such an algorithm (using hashtables) is 2|L| +
|L|2/2n−k where |L| = (n/2

n/2
) is the size of each list.

But this algorithm only succeeds if there exists a solution which splits
evenly in two halves. In such a case, all such solutions are found. On the other
hand, in there is no such solution, one can rerun the algorithm after permuting
the columns of H .

The probability of success is (n/2
w/2
)2
/
(n
w

). Asymptotically, this probability is
close to one, so on average there should be no much need to run the algorithm
more than once. Reruning the algorithm only adds a polynomial factor.

Hence, the workfactor of this algorithm is

FBday = max{h(W)/2, h(W)− (1−R)}.

202 Chapter 8. Binary syndrome decoding

Note thatwhenW 6WGV , the right hand part is zero, hence theworkfactor
is

FBday = h(W)/2,

which corresponds to a quadratic gain compared to exhaustive search.

8.2.3 Average complexity to find one solution
It is important to note that in both cases, the complexity computed corresponds
to obtaining all solutions to the problem. If we are in the regime where the
expected number of solutions is greater than one (W > WGV), then we obtain(n
w

)
/2n−k solutions with this complexity.
To quantify this, we can compute the average complexity per solution

obtained. Indeed, if we have an algorithm that obtainsM solution in time T ,
we say that it finds one solution in amortized time T/M .

Especially, using the birthday decoding in the case W > WGV , because
the number of solutions is asymptotically equal to the complexity, then this
algorithm can be used to find solutions in amortized time O (1).

8.3 Using linear algebra: Prange’s approach
The approach presented until here is purely combinatorial and ignores all the
linear algebraic structure of the codes. A different approach making use of
this properties was introduced by Prange in 1962 [Pra62].

8.3.1 Information sets
The idea of Prange relies on the concept of information sets. For an [n, k]-code
C , an information set is a subset of positions of C that uniquely defines each
codeword, i.e. a set I ⊆ J1, nK such that |I| = k and

∀m ∈ Fk
2, ∃!c ∈ C , cI = x,

where cI denotes the restriction to the positions indexed by I.
Because C is a vector space of Fn

2 of dimension k, there exists such sets. In
practice, for a given generator matrix G of the code, it corresponds to sets I
such that the square submatrix GI formed by the columns indexed by I is
invertible.

For a random binary code (i.e. a randommatrix G ∈ Fk×n
2), the probability

that a subset of k columns forms an invertible matrix is ∏k
i=1(1 − 2i) which

tends towards a constant value ' 0.289 when k tends to infinity. Hence, a
constant proportion of the subsets of positions of a code are information sets.

8.3. Using linear algebra: Prange’s approach 203

8.3.2 Prange’s idea
Prange’s idea can be stated very simply. We have a noisy codeword y of the
form y = c + e, with c ∈ C and wH(e) = w. To find c, choose an information
set I and find the unique codeword c′ ∈ C such that yI = c′I .

If we are lucky in the choice of I , none of the positions of I contain errors,
i.e. eI = 0k. In this case, c′I = cI and by definition of information sets, c′ = c.
This can be checked easily by checking that y − c′ is of weight w as expected
for e. If not, it means that the choice of I contains an error, and we should
retry with another information set I until a solution is found.

8.3.3 Prange’s information set decoding algorithm
The transposition of Prange’s idea to the syndrome decoding problem is the
following. The columns of the parity-check matrix are permuted such that the
columns corresponding to the information set I correspond to the k right-most
columns, and the n− k columns corresponding to J def= J1, nK \ I are on the
left-hand side.

HP = HJ HI sᵀ =

eP = 0 0| · | = w

Because we suppose that there if no error on the columns corresponding
to I, then we must find a combination of w columns of the square matrix HJ
which add up to form the syndrome s. An easy way to find these columns,
provided they exist, is to perform a Gaussian elimination on this part of the
matrix (and to apply the same row transformation to the syndrome).

If the guess is correct, then the syndrome after Gaussian elimination will
be of weight w. Otherwise, one should repeat the process with a different
information set, i.e. a different permutation, until it succeeds.

8.3.4 Complexity of Prange’s algorithm
Let us discuss the complexity of this algorithm. This algorithm relies on the
fact that at some point we will be successful in picking an information set I
containing no errors. In such a case, the algorithm succeeds.

204 Chapter 8. Binary syndrome decoding

SHP =

1

1

SHI Ssᵀ =

eP = 0 0| · | = w

Algorithm 15: Prange’s algorithm
Input: H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

1 while true do
2 Choose P a random (n− k)× (n− k) permutation matrix.
3 Let S be the invertible matrix such that SHP is in systematic form.
4 if wH(sSᵀ) = w then
5 return (sSᵀ, 0− 0)P−1 ∈ Fn

2

Let us denote P this probability. It is the probability, for a random instance
H and s = Heᵀ with wH(e) = w, that a random subset I ⊆ J1, nK of size k
verifies eI = 0k.

The probability to find the solution when it is unique is the following.

P =
(n−k
w

)(n
w

)
But in the case where there exist many solutions to the problem, i.e.when

W > WGV , there is an exponential number of solutions, namely (nw)/2n−k, so
the probability of success is multiplied by the number of existing solutions
to the problem. Hence, we obtain the following formula which encompasses
both cases.

P =
(n−k
w

)
min{

(n
w

)
, 2n−k}

Each run of the loop has a polynomial cost (performing a Gaussian elimi-
nation), which is negligible compared to the success probability. Therefore
the total complexity to find a solution using Prange’s algorithm is Õ (P−1).
Hence we obtain the following workfactor.

FPrange = min{(1−R), h(W)} − (1−R)h
(

W

1−R

)

8.4. Combining both approaches 205

It is important to note that whenW = (1−R)/2, the inverse of the success
probability becomes polynomial, hence the algorithm runs in polynomial time
and the workfactor is exactly equal to 1. Indeed, if we force k bits to be equal
to zero, because of the randomness assumptions, the remaining part of the
vector (subvector of size n− k) will typically have half of its bits equal to 1,
which gives a relative weight of (1−R)/2.

Moreover, when w > (n − k)/2, we can reduce the problem to this case.
Indeed, instead of forcing positions of the information set to have a zero error,
we can force some positions to contain an error. To do this, we just add the
corresponding columns to the targeted syndrome. Hence, when trying to
solve the problem with w > (n − k)/2, we can apply this to w − (n − k)/2
positions and reduce to the case w = (n− k)/2 which runs in polynomial tine.
Therefore, forW ∈ [1−R

2 , 1
2], the algorithm solves the problem in polynomial

time.
In summary, we see in Figure 8.1 the complexity of Prange’s algorithm

depending on the value ofW for the caseR = 0.5, and depending on the value
of R forW = WGV (R). Note that other values of R give similar curves.

8.4 Combining both approaches
8.4.1 General idea
Now we have on one hand Prange’s algorithm that uses the linear algebraic
structure of the problem but succeeds with low probability, on the other hand
a combinatorial approach which is more costly in general, but as we have seen,
this approach can be efficient in certain special regimes, namely when the rate
is large (R close to 1) and when we are looking for a large number of solutions.

In order to improve the complexity of the algorithm, two parameters of
Prange’s information set decoding algorithm were relaxed.

1. As we have seen, the complexity of Prange’s algorithm comes directly
from the extremely low probability that a random information set con-
tains no error position. Hence, a possibility is to relax the constraint on
the partition of the errors, in order to increase the success probability of
Prange’s algorithm. Instead of looking for an information set containing
none of the error positions, we accept information sets that contain a
small, though non-zero, number of errors p.

2. Another possible generalisation is to consider a subset of positions larger
than an information set. Hence, instead of having a proper information
set, i.e. a subset of positions I of size k that uniquely defines each code-
word, we consider a subset I of k + ` positions and look for codewords

206 Chapter 8. Binary syndrome decoding

Figure 8.1: Workfactor of Prange’s algorithm: for R = 0.5 and variable W
(above) and for different variableRwithW = WGV (R) = h−1(1−R) (below).

at distance p on this subset. This idea alone would only decrease the
success probability, but combined with the previously stated generalisa-
tion which allows the information set to contain a few errors, this can
help improve the complexity by taking advantage of the efficiency of the
combinatorial approach for specific decoding regimes.

Hence, given a noisy codeword y of the form y = c + e, with c ∈ C and
wH(e) = w, to find c, we proceed as follows.

1. Pick a random subset I ⊆ J1, nK of size k + `. Suppose that there are at
most p error positions in I, i.e.wH(eI) = p.

8.4. Combining both approaches 207

2. Decode in the code restricted to I , i.e.find all possible codewords c′ ∈ C
such that wH(c′I − yI) = p.

3. For each of these codewords, check if wH(c′ − y) = w. If none of them
fulfills the constraint, start again from step 1 with a different choice of I.

Note that Step 2 is exactly equivalent of decoding at distance p on the
subcode of length k+ ` defined as the restriction to the positions of I . The rate
of this code is (k+ `)/k which is close to 1, hence the combinatorial techniques
introduced earlier can be applied. Moreover, in this setting we look for all
solutions, hence can benefit from the numerous number of solutions if the
parameters are chosen properly.

The hope is that the extra cost induced by this step of decoding an error of
very low weight in a subcode of high rate will be compensated by the gain in
the probability of success.

8.4.2 Generalised information set decoding algorithm
In terms of syndrome decoding, the ideas described here adapts as follows.
Instead of a full Gaussian elimination we perform a partial Gaussian elimina-
tion (corresponding to the positions not in the information set). This yields
Algorithm 16.

Algorithm 16: Generalised information set decoding
Input: H ∈ F(n−k)×n

2 , s ∈ Fn−k
2 , w ∈ N

1 while true do
2 Choose P a random (n− k)× (n− k) permutation matrix.
3 Let S be an invertible matrix such that SHP has an n− k − `

identity matrix on the top left side.
4 Define H ′,H ′′, s′, s′′ as on Figure 8.2.
5 Compute S = {e′′ ∈ Fk+`

2 |H ′′e′′ᵀ = s′′ᵀ and wH(e′′) = p}.
6 for e′′ ∈ S do
7 Let e′ = e′′H ′ᵀ + s′′.
8 if wH(e′) = w − p then
9 return (e′, e′′)P ᵀ ∈ Fn

2

Correctness. The algorithm returns a solution of the form e = (e′, e′′)P ᵀ.
Let us check that this is indeed a solution to the syndrome decoding problem.

The vectors e′, e′′ are chosen such that the following conditions are fulfilled.

208 Chapter 8. Binary syndrome decoding

SHP =

1

1

0

H ′

H ′′

Ssᵀ =
s′

s′′

eP = e′ e′′

wH(e′) = w − p wH(e′′) = p

n− k − ` k + `

n− k − `

`

Figure 8.2: Generalised information set decoding algorithm

{
e′ᵀ = s′ᵀ + H ′e′′ᵀ

H ′′e′′ᵀ = s′′ᵀ

With this conditions, we have Heᵀ = sᵀ.{
e′ᵀ + H ′e′′ᵀ = s′ᵀ

H ′′e′′ᵀ = s′′ᵀ
⇐⇒

(
In−k−` H ′

0 H ′′

)(
e′ᵀ

e′′ᵀ

)
=
(

s′ᵀ

s′′ᵀ

)

⇐⇒ SHP (e′, e′′)ᵀ = Ssᵀ

⇐⇒ Heᵀ = sᵀ

Concerning the weight constraint, the algorithm yields wH(e′) = w − p
and wH(e′′) = p, hence wH((e′, e′′)) = w and the permutation does not affect
the weight. Hence this algorithm provides a correct solution to the syndrome
decoding problem.

A general scheme. As we can see, this is a generalisation of Prange’s algo-
rithm, which corresponds to the choice of parameters p = 0, ` = 0.

Note that the search step corresponding to the 5th line of Algorithm 16 does
not specify which method is used to search for these elements. The complexity
of the subroutine used at this step impacts the choice of p and ` to reach the
best complexity trade-off.

Hence, the algorithm presented here is a general scheme and different
choices of subroutine yield to different complexities.

8.4. Combining both approaches 209

8.4.3 Using exhaustive search
Lee and Brickell. The first generalisation of Prange’s information set decod-
ing algorithm was introduced by Lee and Brickell [LB88] and corresponds to
the special case ` = 0 (i.e. only using the first improvement). It uses exhaustive
search to perform the search step.

Each call to the search step enumerates all (kp) possible values of e′′. Hence
each run of the while look takes time T = O

((k
p

)).
The probability of success of one loop run is the probability that a random

error of weight w splits in a subvector of length k and weight p and a subvector
of length n− k and weight w − p, namely

P =
(k
p

)(n−k
w−p

)(n
w

) .

Hence the overall average complexity is T /P which yields the following
workfactor.

FLB = h(W)− (1−R)h
(
W − P
1−R

)
,

where P def= p/n denotes the relative value corresponding to p.
An optimised choice of p improves the running time compared to Prange’s

original algorithm.

Leon. The first mention of the second generalisation (` > 0) is due to Leon
[Leo88] in the context of small weight codeword finding. His algorithm
slightly differs from Algorithm 16 because it supposes that the p errors in
the information set are not among the ` additional positions. Still, forgetting
about this difference, we can make a complexity analysis of the generalises
information set decoding algorithm with exhaustive search.

Each call to the search step enumerates all (k+`
p

) possible values of e′′.
Hence each run of the while look takes time T = O

((k+`
p

)).
The probability of success of one loop run is

P =
(k+`
p

)(n−k−`
w−p

)(n
w

) .

Hence the overall average complexity is T /P which yields the following
workfactor.

FLeon = h(W)− (1−R− L)h
(

W − P
1−R− L

)
,

210 Chapter 8. Binary syndrome decoding

where P def= p/n and L def= `/n are the relative notations for p and ` respectively.

8.4.4 Using birthday decoding
But further improvements comes when the birthday decoding algorithm is
used in the search step of the information set decoding. This idea was intro-
duced independently by Stern [Ste88] and Dumer in [Dum89]. As Leon in
[Leo88], they were supposing that the ` additional positions of the information
set did not contain any of the p errors but this does not make a big difference.
An intermediary approach known as ball-collision decoding [BLP11] consid-
ers a fixed small amount of error among the ` additional positions. Finally,
the generalised information set decoding as presented in Algorithm 16 using
birthday decoding in the search step corresponds to the proposal from Finiasz
and Sendrier [FS09]. This more general version is what is today often referred
to as the Stern and Dumer’s algorithm, since the general idea of using birthday
decoding in the search step was theirs.

In this algorithm, each run of the while loop corresponds to the birthday
algorithm introduced in Section 8.2.2. The matrix H ′′ is divided in two halves
H ′′

1 and H ′′
2 , and the following sets are constructed.

L1 = {e1H ′′
1
ᵀ | e1 ∈ F(k+`)/2

2 ,wH(e1) = p/2},

L2 = {e2H ′′
2
ᵀ + s′′ | e2 ∈ F(k+`)/2

2 ,wH(e2) = p/2}.

The set S corresponds to all collisions, i.e.S = L1 ∩ L2.
Each run of the loop has time complexity T = O

(
max(|L|, |L|2/2`)

)
, where

|L| =
((k+`)/2

p/2
) is the size of L1, L2. This yields |L|2/2` solutions to the sub-

problem. The memory complexity is O (L). For this approach to be the most
efficient, we need to choose p and ` such that |L| = 2` which yields

L = R+ L

2 h

(
P

R+ L

)
. (8.1)

The probability of success is the probability that an error of weight w splits
correctly, that is with p errors evenly distributed among the two halves of the
information set, and w − p errors in the remaining n− k − ` positions. This
gives

P =
((k+`)/2

p/2
)2(n−k−`

w−p
)(n

w

) .

Hence, we obtain the following workfactor.

8.5. Further improvements of ISD 211

FDumer = h(W) + L− (R+ L)h
(

P

R+ L

)
− (1−R− L)h

(
W − P

1−R− L

)
,

with the constraint binding L and P mentioned in Equation (8.1). Note
thatwith this equation, we can directly computeP for a fixed value ofL. Hence,
for a given R andW , we can try all values of L to optimise the workfactor. In
practice, the workfactor is a unimodal function of L hence one can efficiently
find the optimal value.

This method approach, with the right optimisation of the parameters P
and L, improves the asymptotic coefficient, as we can see on Figure 8.3.

8.5 Further improvements of ISD
Dumer’s algorithm is a reference algorithm that generalises Prange’s approach
and improves its asymptotic complexity. In the last decades, several new
proposals were made to further reduce the complexity exponent by adding
some changes to Dumer’s idea. We present here different possibilities of
improvement.

All these improvements concern the search step of the algorithm. Hence,
the scheme of the generalised information set decoding scheme remains the
same, as presented above. A change of the algorithm used in the search step
usually induces a change in the equations binding the parameters, and hence
(hopefully) achieves a lower total complexity.

8.5.1 Recursive birthday algorithm
Stern and Dumer’s idea to use birthday collision search to solve the search
step of the information set decoding can be generalised. The main idea of the
birthday decoding is to divide the matrix H ′′ in two halves, construct two
lists and find collisions between the two. But to construct the two initial lists,
one can recursively apply the birthday algorithm (hence dividing H ′′ in 4,
8, etc.). This idea is first stated by Wagner in [Wag02] and used in [CJ04]
to cryptanalyse a code-based signature. This approach will be introduced in
more details in Chapter 9.

8.5.2 Using representations
Another possible improvement that directly comes from the study of the
knapsack problem. Birthday decoding consists in searching for an error e′′ ∈
Fk+`

2 of weight pwritten as the sum of two vectors of weight p/2, with disjoint

212 Chapter 8. Binary syndrome decoding

Figure 8.3: Workfactor of Prange and Dumer’s algorithms: for R = 0.5 and
variableW (above) and for different variableRwithW = WGV (R) = h−1(1−
R) (below).

supports: one vector has all its non-zero entries on the left half, the other on
the right half, as illustrated in Figure 8.4.

In [HJ10], the authors propose to improve birthday decoding by looking
the error of weight p as the sum of two vectors of weight p/2, but whose
support is not restricted to the left or right half. This is illustrated in Figure 8.5.

Intuitively, this operation increases the search space, so it should not lower
the complexity. However, a consequence of this choice is that for each vector
e′′ ∈ Fk+`

2 of weight p, there are many combinations of vectors e′′1, e
′′
2 each of

weight p/2 that verify e′′1 + e′′2 = e′′. A pair of such vectors (e′′1, e′′2) is called a
representation of e′′. We can compute the number of representations of each

8.5. Further improvements of ISD 213

H ′′
1 H ′′

2s′′ = H ′′ =

e′′ = p

0p/2

0 p/2

=

+

Figure 8.4: Classical birthday decoding with disjoint supports

vector, namely (pp/2).
But there is no need to find all representation of each vectors, since they

would all lead to the same solution. Therefore, we add an additional criterion
that the representations should fulfill, and design it such that, on average, we
find exactly one representant of each vector e′′. This is usually referred to as
“filtering”.

For instance, if the number of representations of each vector is 2r, we keep
only the representations such that the corresponding syndrome fits a prede-
fined target value on its first r bits. Because of the randomness assumption
on the code, with this criteria there will only be one representation of e′′ on
average. But with this simple “filtering” criterion, we are already one step
closer to the goal (matching the target syndrome) because we already ensure
that the syndrome will be matched on r bits. Hence, this changes the balance
between the parameters and we gain something. Then, a thorough complexity
analysis and a wise choice of parameters permits to make sure that this gain
compensates the loss due to the increase of the search space.

e′′ = p

p/2

p/2

=

+

Figure 8.5: Birthday decoding without support restriction [MMT11]

In [BCJ11], the authors remark that on average, the sum of two vectors

214 Chapter 8. Binary syndrome decoding

e′′ = p

p/2 + ε

p/2 + ε

=

+

Figure 8.6: Birthday decoding as in [BJMM12]

of weight p/2 (with no restriction on the support, as in [MMT11]) is slightly
less than p. Indeed, there might be an overlap in the support of e′′1 and e′′2 and
hence the two 1s cancel out. Hence, in order to maximise the chances to obtain
a vector of weight p at the end, one should pick e′′1 and e′′2 as vectors of weight
p/2 + ε, with ε a small positive value, as in Figure 8.6.

This “1 + 1 = 0” trick is included in the search step of the information
step algorithm in [BJMM12], together with a 3-level recursion in the birthday
algorithm as suggested above.

This yields an improvement over Dumer’s algorithm. We compare the com-
plexity in Figure 8.7. Here the complexity of the BJMM algorithm [BJMM12]
is computed using the CaWof software [Can16].

8.5.3 Nearest neighbour search
Finally, a recent line of work [MO15; BM17; BM18] proposes to use nearest
neighbour search instead of collision search in the search step of the ISD
algorithm. Instead of looking for collisions in two lists, one looks for a couple
of elements (one in each list) that are close in terms of Hamming distance.
The collision search is just a special case where we require neighbours to be at
distance zero.

According to the results of these papers, this yields an improvement in the
workfactor, compared to [BJMM12]. However, this approach adds a super-
polynomial factor to the complexity, which is not reflected in the asymptotic
exponent but could still be very significant in practice. For now, it is not clear if
this approach is a gain of complexity to solve instances of cryptographic size.

8.5. Further improvements of ISD 215

Figure 8.7: Workfactor of Prange and Dumer and BJMM’s algorithms: for
R = 0.5 and variable W (above) and for different variable R with W =
WGV (R) = h−1(1−R) (below).

Chapter9
Ternary syndrome decoding

with large weight errors

We have seen that the syndrome decoding problem is at the core of most code-
based cryptosystems. In Chapter 8, we have presented the main algorithms to
solve this problem over F2. In this chapter, we study this problem over Fq for
an integer q > 3, and we will especially focus on the ternary case. We will see
that there is a fundamental difference with the previous chapter. In the binary
case, we have the syndrome decoding problem is symmetric with respect to
the weight parameterW ∈ [0, 1]. Hence we can restrict the study to the case
W < 1/2. This does not apply anymore in the case q > 3.

We will see that the algorithms presented in Chapter 8 generalise to the
caseW < 1/2, but we have to come up with a new proposal of algorithm for
the case of large weightW > 1/2. The problem of ternary syndrome decoding
in large weight has been introduced in the Wave signature scheme. In this
work, we perform the first algorithmic study of this problem. As a result of
our analysis, we will see that the original parameter proposed for the Wave
scheme do not reach the claimed security, and we propose new parameters.
More importantly, we show that for a fixed key size, the ternary syndrome
decoding problem in large weight is harder than its binary counterpart.
Relatedpublication: Bricout, Chailloux, Debris-Alazard andLequesne, Ternary
Syndrome Decoding with Large Weight, International Conference on Selected
Areas in Cryptography 2019 [BCDL19].

Contents
9.1 Information set decoding for q > 3 218

9.1.1 Asymmetry of the non-binary case 218
9.1.2 Adaptation of Prange’s algorithm 219
9.1.3 Generalised information set decoding algorithms 222
9.1.4 ISD for q →∞ . 224

9.2 Large weight ternary syndrome decoding 224
9.2.1 Reduction to subset sum 224

218 Chapter 9. Ternary syndrome decoding with large weight errors

9.2.2 From large weight ISD to subset sum 225
9.2.3 Wagner’s algorithm 226
9.2.4 Using representations 230

9.3 Applications . 234
9.3.1 Application to the Wave signature 234
9.3.2 Hardest instance of ternary large weight decoding 237
9.3.3 Conclusion . 239

9.1 Information set decoding for q > 3
9.1.1 Asymmetry of the non-binary case
The syndrome decoding problem has been introduced in Chapter 1 and dis-
cussed in Chapter 8. This problem has been thoroughly studied in its binary
setting, because most code-based cryptosystem rely on the hardness of binary
syndrome decoding as a security hypothesis.

As explained in Remark 8.2, in the case q = 2, the problem SD(2, R,W)
withW > 1/2 can be reduced to SD(2, R,W ′) withW ′ = 1−W < 1/2. Hence,
the problem is symmetric with respect to the variableW . As a consequence,
the literature focuses on optimising the algorithms to solve the problem for
small values of W and especially W < (1 − R)/2 where the problem has
exponential complexity. The caseW > 1/2 is strictly equivalent.

But for the syndrome decoding problem defined over Fq with q > 2 the
property that ensures symmetry does not hold, and as we will see, the large
weight case behaves differently from the small weight case. This is illustrated in
Figure 9.1. The loss of symmetry is easily understandable since the Hamming
metric is very poor: it only distinguishes between the zero and non-zero values.
In the binary case, this corresponds to 0 and 1. But in the q-ary case, there are
q − 1 possible non-zero values. Hence, when q > 3, we can see that there is an
inherent asymmetry between having small and large weight.

It is worth noting that the case q > 3 has received much less attention than
the binary case, and no attention at all was given to the large weight regime.
One possible explanation for this is that there were only few cryptographic
applications for the general case. Hence, the claims of worst case complexities
in the literature only refer to the case of weightW < 1/2, but as we can see on
Figure 9.1 the worst case complexity is in general achieved for large weight.

However, in 2019, a new signature scheme named Wave was proposed in
[DST19], based on the difficulty of syndrome decoding on a ternary alphabet
and with large weight. This scheme is the first cryptographic scheme that
relies on the hardness of largeweight syndrome decoding.

9.1. Information set decoding for q > 3 219

Figure 9.1: Workfactor of Prange’s algorithm: for R = 0.5 and variableW , for
q = 2 and q = 3.

9.1.2 Adaptation of Prange’s algorithm
9.1.2.1 Algorithm

In Section 8.3, we presented Prange’s algorithm for binary syndrome decoding.
Prange’s approach adapts straightforwardly to the q-ary case. This generalisa-
tion was originally presented by Coffey and Goodman in [CG90].

Let us recall the main idea behind Prange’s algorithm. We perform a Gaus-
sian elimination on the parity-check matrix H . Let us write the error vector in
two parts, e′ corresponding to the identity part and e′′ corresponding to the
remaining part. Here, we omit the matrices corresponding to the permutation
(P) and Gaussian elimination (S) introduced in Section 8.3 and focus on the
core of the algorithm.

H =

1

1

H ′ sᵀ =

e = e′′e′

If we fix a particular value for e′′ ∈ Fk
q , there exist one unique solution

e′ ∈ Fn−k
q such that Heᵀ = sᵀ. Indeed, we have e′ = s− e′′H ′′ᵀ. Because H

220 Chapter 9. Ternary syndrome decoding with large weight errors

and s are chosen randomly, for a fixed choice of e′′, the value of e′ follows a
uniform distribution over Fn−k

q . Hence, the weight distribution of e′ is the
sum of n− k Bernoulli trials of success probability (q − 1)/q. On average, we
will find a solution e′ of weight (q−1)

q (n− k).
Therefore, the weight of e is on average wH(e′′) + (q−1)

q (n−k). The weight
of e′′ ∈ Fk

q depends entirely of our choice of e′′ and can be anything between 0
and k. This provides a polynomial time algorithm to find a solution of weight
w ∈ J q−1

q (n− k), q−1
q (n− k) + kK. One should proceed as follows.

1. Randomly choose a value e′′ ∈ Fk
q of weight w − q−1

q (n− k);

2. Compute the value e′ such that Heᵀ = sᵀ;

3. If this value is of weight q−1
q (n − k), which is often the case, then e =

(e′, e′′) provides a solution, otherwise restart from step 1 after randomly
permuting the columns of H .

9.1.2.2 Complexity

This algorithm returns a solution e of weight w ∈ J q−1
q (n− k), q−1

q (n− k) + kK
in polynomial time.

If we are looking for a solution of weight w < q−1
q (n − k), we can use

the exact same algorithm with the choice of e′′ as the zero vector, but the
probability to obtain e′ of weight w is exponentially small, hence we have to
run the algorithm an exponential number of time. Similarly, if we are looking
for a solution of weight w > q−1

q (n − k) + k, we have to choose e′′ as a full-
weight vector and run the algorithm an exponential number of time until
we luckily obtain e′ of weight w − k. Both cases yield an exponential time
algorithm.

We can compute the success probability in each case. Let w′ and w′′ denote
the weights that we attribute to e′ and e′′ in each of the three cases. Namely:

• if w < q−1
q (n− k), we set w′ def= w, w′′ def= 0;

• ifw ∈ J q−1
q (n−k), q−1

q (n−k)+kK, we setw′ def= q−1
q (n−k), w′′ def= w−w′;

• if w > q−1
q (n− k) + k, we set w′ def= w − k, w′′ def= k;

In all caseswe havew = w′+w′′. The probability of success of the algorithm
is the probability that for a choice of e′′ of weight w′′, the value e′ obtained
is indeed of weight w′. As we said, because of the randomness assumption

9.1. Information set decoding for q > 3 221

on H and s, vector e′ follows a uniform distribution over Fn−k
q , hence the

probability that its weight is equal to w′ is(n−k
w′
)
(q − 1)w′

min{qn−k,
(n
w

)
(q − 1)w} .

Here, the numerator is just the number of vectors of length n − k and
weight w′, and the numerator qn−k corresponds to enumerating all words of
length n. But because we know that the vector e′ is a subvector of the solution
e of length n and weight w, for small values of w this condition restricts the
search space. Hence the minimum in the numerator.

The inverse of this probability yields the complexity of the algorithm. From
this, we can deduce the workfactor of Prange’s algorithm.

FPrange(q,R,W) = min {(1−R) log2(q), h2(W) +W log2(q − 1)}

− (1−R)h2

(
W ′

1−R

)
−W ′ log2(q − 1).

Here,W ′ = W forW < q−1
q (1−R) andW ′ = W−R forW > q−1

q (1−R)+R.
For the intermediate weight, the workfactor is zero because the algorithm is
polynomial. This is how we obtain the result of Figure 9.1 in the case R = 1/2.
The workfactor for q = 3 for different rates is illustrated on Figure 9.2.

Figure 9.2: Workfactor of Prange’s algorithm: for q = 3 and variableW , for
different values of R.

222 Chapter 9. Ternary syndrome decoding with large weight errors

9.1.2.3 Gilbert-Varshamov bound for large weight
In Chapter 8, we have seen that for q = 2 andW < 1/2, the complexity reaches
a maximum forW such that 1−R = h2(W). This exactly corresponds to the
case where the two terms in the minimum are equal. We have seen that this
corresponds to the Gilbert-Varshamov bound, where on average there exists
exactly one solution that matches the syndrome.

For q > 3, this extends straightforwardly for small weight: when W <
(q−1)
q (1−R), the complexity is exponential and reaches a maximum, when the

two terms of the minimum are equal, in the workfactor equation. Again, this
corresponds to the settings where there exists on average exactly one solution
to the problem, i.e. (nw)qw = qn−k. We can therefore extend the definition of
the relative Gilbert-Varshamov bound for q-ary codes:

WGV = h−1
q (1−R),

where hq denotes the q-ary entropy function (Definition refdef:entropy).
Here, h−1

q (y) denotes the value x ∈ [0, 1
q] such that hq(x) = y.

Moreover, as we can see on Figure 9.2, the workfactor also reaches a max-
imum value for high weights. For certain rates, we see a change of scope,
due to the exact same reason as for small weight: at some point, due to the
combinatorics, when the weight is too high, the search space is reduced (this is
reflected by the minimum in the denominator). Hence, we can quantify this as
the Gilbert-Varshamov bound for high weight, defined as the w > q−1

q (n− k)
such that (nw)qw = qn−k.

Hence, we can define of the relative Gilbert-Varshamov bound for high
weight for q-ary codes as

WGV+ = h−1
q (1−R),

where h−1
q (y) denotes the value x ∈ [q−1

q , 1] such that hq(x) = y. For a fixed
value of R, the maximum workfactor for high weight is reached whenW =
WGV+, if this value is well-defined.

For some higher rates, the workfactor is strictly increasing with respect
toW . In this case, the definition ofWGV+ does not hold and the maximum
complexity is reached whenW = 1.

9.1.3 Generalised information set decoding algorithms
In Chapter 8, we presented the different improvement of Prange’s algorithm.
All of them extends to q-ary code for small weight. Stern and Dumer’s algo-
rithm was adapted by Peter in [Pet10]. Meurer adapted the BJMM algorithm
in his dissertation thesis [Meu17]. Hirose [Hir16] proposed a generalization

9.1. Information set decoding for q > 3 223

of Stern’s algorithm with May-Ozerov’s approach (using nearest neighbors)
and showed that for q > 3 this does not improve the complexity compared
to Stern’s classical approach. Later, Gueye, Klamti and Hirose [GKH17] ex-
tended the BJMM algorithm with May-Ozerov’s approach and improved the
complexity of the general SD problem. Again, note that these papers focus
solely on the SD problem for small weight (W < 0.5).

The general scheme of the information set decoding algorithms has been
stated in Section 8.4.2, particularly in Algorithm 16 and Figure 8.2. This scheme
still holds for q-ary codes, even for high weight decoding.

Again, a key factor for the complexity is the probability that a solution of
the sub-problem (i.e. an element e′′ found at step 5 of Algorithm 16) yields a
solution e of weight w. Let us analyse this probability for q-ary codes.
Notation 9.1. On an input (H, s) uniformly drawn at random, suppose that we
have a vector e′′ such that H ′′e′′ᵀ = s′′ᵀ and |e′′| = p. Let e′ᵀ = s′ᵀ −H ′e′′ᵀ. We
will denote

Pp,`
def= P

(
|e′| = w − p | |e′′| = p

)
.

Proposition 9.2. We have, up to a polynomial factor,

Pp,` =
(n−k−`
w−p

)
(q − 1)w−p

min
(
qn−k−`,

(n
w

)
(q − 1)wq−`

) .
Proof. This result is similar to what we had in the binary case. The numerator
corresponds to the number of vectors e′ of weight w − p. The denominator
reflects the probability that e′ᵀ = s′ᵀ −H ′e′′ᵀ. For a typical random behavior,
this is equal to qn−k−`. But here we know that there is at least one solution.
Therefore, we know that the number of vectors of weight w − p is bounded
from above by the number of vectors e such that H ′′e′′ᵀ = s′′ᵀ. This explains
the second term of the minimum.
Proposition 9.3. Assume that we have an algorithm that finds in time T a set S of
solutions e′′ of weight p such that H ′′e′′ᵀ = s′′ᵀ. The average running time of the
generalised information set decoding algorithm is, up to a polynomial factor,

T ·max
(

1, 1
|S| · Pp,`

)
.

Again, as we can see, all the parameters are entwined. The success proba-
bility Pp,` depends of p and `, as well as the time T to find the set S of solutions.

The different improvements of Prange’s algorithm all respect this general
scheme. They differ by using different sub-algorithms to find the set S of
solutions at step 5. We will see in the next section that we can also use this
general framework to find solutions to the high weight problem.

224 Chapter 9. Ternary syndrome decoding with large weight errors

9.1.4 ISD for q →∞
Finally, let us state a result from Canto-Torres [Can17] about the general de-
coding of q-ary codes. This result states that all ISD-based algorithms (Prange,
Stern-Dumer, MMT, BJMM) converge to the same asymptotic complexity when
q → ∞. This means that for large values of q, the complexity improvement
due to generalised ISD algorithms becomes negligible and the complexity
converges to that of Prange’s algorithm. Hence, the case q = 3 is the most inter-
esting one, in the sense that this is the case where the difference in complexity
obtained by using different ISD algorithms is the most significant.

This result is to be related with the fact that the Hamming metric becomes
less meaningful as q grows larger. Indeed, the Hamming weight only counts
the number of non-zero elements but not their partition. Hence, the Hamming
weight loses a significant amount of information for large values of q. Therefore,
q = 3 seems to be the best candidate to understand the structure of the non-
binary case without losing too much information. Therefore, in the rest of this
Chapter, we will focus on the case q = 3.

9.2 Large weight ternary syndrome decoding
9.2.1 Reduction to subset sum
In step 5 of Algorithm 16, we have a matrix H ′′ ∈ F`×(k+`)

q , a vector s′′ ∈ F`
q

and we want to compute a set S ⊆ Fk+`
q of solutions e′′ of H ′′e′′ᵀ = s′′ᵀ such

that |e′′| = p.
At first sight, this looks exactly like a Syndrome Decoding problem with

inputs H ′′ and s′′ so we could just recursively apply the best SD algorithm
on this sub-instance. But the main difference is that, in this case, we want to
find many solutions to the problem and not just one. We can state this as the
Sub-ISD problem.

Problem 9.4 (Sub-ISD problem - Sub-SD(q,m, `, p, L)).
Instance: m vectors xi ∈ F`

q for 1 6 i 6 m, a target vector s ∈ F`
q.

Output: L solutions b(j) = (b(j)1 , . . . , b
(j)
m) ∈ Fm

q for 1 6 j 6 L,
such that for all j,∑m

i=1 b
(j)
i xi = s and wH(b(j)) = p.

We see that the step 5 of Algorithm 16 is exactly Sub-SD(q, k + `, `, p, |S|).

9.2.1.1 The subset sum problem

This problem is very close to another well known problem in the literature:
the subset sum problem. The subset sum problem is defined as follows.

9.2. Large weight ternary syndrome decoding 225

Problem 9.5 (Subset Sum problem - SS(q,m, `, L)).
Instance: m vectors xi ∈ F`

q for 1 6 i 6 m, a target vector s ∈ F`
q.

Output: L solutions b(j) = (b(j)1 , . . . , b
(j)
m) ∈ {0, 1}m for 1 6 j 6 L,

such that for all j,∑m
i=1 b

(j)
i xi = s.

We see that this problem differs from the Sub-ISD problem in two ways.
First, the coefficients b(j)i are in {0, 1} and not in Fq. Secondly, there is no more
weight constraint.

There is an extensive literature about the Subset Sum problem for specific
parameter ranges. The number of solutions to the subset problem is on average
2m/q`. The most studied case is L = 1, q = 2m, ` = 1 [HJ10; BCJ11]. These
parameters correspond to the case where there is on average one solution,
which is the hardest case.

The difficulty of the problem (for ` = 1) decreases when the number of
solutions becomes larger. For instance, when q = O (m), the complexity is
polynomial [CFG89; GM91]. An intermediary case corresponds to a choice
of q = O (() 2mε) for 0 < ε < 1. In this case, there is an exponential number
of solutions. In [Lyu05] an algorithm is proposed to solve this problem in
subexponential time.

9.2.2 From large weight ISD to subset sum
Now, recall that our goal is to adapt the general information set decoding
algorithm for large weight. We explained in Section 9.1.2.2 that Prange’s
algorithm can be used in the largeweight case by looking for a solution e′′ ∈ Fk

q

of full weight, i.e.wH(e′′) = k. For the same reason, in the generalised ISD
scheme, we are looking for a set S of vectors e′′ ∈ Fk+`

q of weight p = k + `, in
order to maximise the probability of success.

Hence, the search phase, corresponding to step 5 of Algorithm 16, corre-
sponds exactly to Sub-SD(q, k + `, `, k + `, |S|).

In the particular case of q = 3, looking for vectors e′′ of full weight means
that the entries of e′′ are to be taken among the two non-zero elements of F3:
e′′ ∈ {1, 2}k+`. We see here the parallel with the subset sum problem. We can
write the reduction formally.

Lemma 9.6. If we have an algorithm that solves SS(3, k + `, `, L then we have an
algorithm that solves Sub-SD(3, k + `, `, k + `, L) with the same complexity.

Proof. Let A be an algorithm that solves SS(3, k + `, `, L) and consider an
instance (x1, . . . ,xk+`), s of Sub-ISD(3, k + `, `, k + `, L). We want to find
b1, . . . , bk+` ∈ {1, 2} (where F3 = {0, 1, 2}) such that∑k+`

i=1 bixi = s. Let s′ =
2s+

∑
i xi and let us runA on input (x1, . . . ,xk+`), s′. We obtain b′1, . . . , b′k+` ∈

226 Chapter 9. Ternary syndrome decoding with large weight errors

{0, 1} such that∑k+`
i=1 b

′
ixi = s′. Take bi = b′i−1

2 for 1 6 i 6 k + `, where the
division is done in F3 and return (b1, . . . , bk+`).

Indeed, this gives a valid solution to the problem: the elements bi belong
to {1, 2} and we have:

k+∑̀
i=1

bixi =
k+∑̀
i=1

b′i − 1
2 xi = s′

2 −
∑k+`
i=1 xi
2 = s.

Hence, in order to solve SD in large weight using Algorithm 16, it is suffi-
cient to solve SS(3, k + `, `, |S|).

Recall that the ISD problem is parametrised by two values, p and `. We
explained that we choose p = k + ` to solve the large weight case. This fixes
the parameter p. We still need to choose the parameter `. If we take ` = o(n),
asymptotically this will boil down to Prange’s algorithm as we presented
before. Hence, if we wish to obtain a gain in the asymptotic complexity, we
have to choose ` = Θ(n) = Θ(k) (as R = k/n is fixed).

Therefore, we are in a regime where solving the subset sum problem
requires exponential complexity. But we want to use the fact that we are in
a situation where we are looking for many solutions. The more solutions we
have to the Sub-SD problem, the higher the probability that one of them is a
solution to the general SD problem. Hence, our approach consists in trying
to find as many solutions as possible in the minimum amount of time. This
approach is comparable with what is done in Dumer’s algorithm in the low
weight case. We are looking for L solutions in time O (L), i.e.we are looking
for solutions in amortised time O (1). We present here how to achieve this
using Wagner’s algorithm.

9.2.3 Wagner’s algorithm
We are trying to solve SS(3, k + `, `, L). We are interested in the average case,
which means that all the vectors xi are independent and follow a uniform law
over F`

3.

9.2.3.1 Presentation of the algorithm
Wagner’s algorithm, introduced in [Wag02], consists in recursively applying
birthday search. We will denote a ∈ N∗ the number of recursion levels. The
classical birthday search (a = 1) consists in dividing the vectors xj in two sets.
In our case we start by dividing them in 2a sets containing (k + `)/2a vectors
each. Each such set consists of the vectors {xj , j ∈ Ii}, where Ii is defined as
follows.

9.2. Large weight ternary syndrome decoding 227

Notation 9.7. For i ∈ J1, 2aK, denote by Ii the sets Ii
def= J1 + (i−1)(k+l)

2a , i(k+l)
2a K.

The sets Ii form a partition of J1, k + `K.
The first step of Wagner’s algorithm is to compute for each i ∈ J1, 2aK a list

of L random linear combinations of elements of {xj , j ∈ Ii}. We define the 2a
lists (Li)16i62a of size L such that:

∀i ∈ J1, 2aK, Li ⊆

∑
j∈Ii

bjxj : ∀j ∈ Ii, bj ∈ {0, 1}

 and |Li| = L. (9.1)

Each list Li consists of L random elements of the form∑
j∈Ii bjxj where

the randomness is on bj ∈ {0, 1}. By construction, we make sure that given
y ∈ Li we have access to the coefficients (bj)j∈Ii such that y =

∑
j∈Ii bjxj . The

running time to build theses lists is O(L). Note that this constructions yields
the constraint

L 6 2(k+`)/2a . (9.2)
Once we have computed these lists, we merge the lists two by two to obtain

2a−1 lists of size L. For every p ∈ J1, 2a−1K, create a list L2p−1,2p from L2p−1
and L2p such that:

L2p−1,2p
def=
{

y2p−1 + y2p : yi ∈ Li and the last t bits of y2p−1 + y2p are 0s.
}
.

If we want L2p−1,2p to be typically of size L, we need to choose t such that
L2

3t = L,

which yields
L = 3t. (9.3)

Note that the construction of the last list L2a−1,2a differs. We ask for the
last t bits to be equal to those of s.

We now have 2a−1 lists of size L. We repeat the merging operation a− 1
more times, until we obtain one single list of size L. By construction, elements
of this list will be equal to s on their last at bits. For these elements to be
solutions, we need to choose

t = `/a. (9.4)
Hence,

L = 3`/a. (9.5)
At each step, the running time to build the lists is O (L). This operation is

repeated a times, with a a small integer. We can therefore state the following
result.

228 Chapter 9. Ternary syndrome decoding with large weight errors

Set of solutions

Merging on `/2 bits
according to s

s`/2 `/20`/2

L1 L2 L3 L4

Merging on `/2 bits
according to s

Merging on `/2 bits

Figure 9.3: Wagner’s algorithm with a = 2.

Theorem 9.8. Fix k, ` ∈ N∗ and let a be any non zero integer such that

3`/a 6 2(k+`)/2a . (9.6)

The associated SS(3, k + `, `, 3`/a) problem can be solved in average time and
space O(3`/a).

Note that the constraint 3`/a 6 2(k+`)/2a comes from Equations (9.2) and
(9.5). Since k and ` are fixedparameters of the problem, this restrains the choice
of a. In practice, one will choose the largest integer a such that Equation (9.6)
holds. But as we can see on Figure 9.4, the fact that a has to be an integer
induces some discontinuity in the scope of the workfactor.

9.2.3.2 Smoothing of Wagner’s Algorithm

We show here a refinement of Theorem 9.8 that reduces the discontinuity.

Proposition 9.9. Let a be the largest integer such that 3`/(a−1) < 2(k+`)/2a−1 . If
a > 3, the above algorithm can find 2λ solutions in time O(2λ) with

λ = ` log(3)
a− 2 −

k + `

(a− 2)2a−1 .

We see that we retrieve the result of Theorem 9.8 when 3`/a = 2(k+`)/2a .
Let us prove the proposition.

9.2. Large weight ternary syndrome decoding 229

Figure 9.4: Workfactor of Wagner’s algorithm: for q = 3, R = 0.5 and variable
W .

Proof. The parameters k and ` are fixed. Let a be the largest integer such that
3`/(a−1) < 2(k+`)/2a−1 . Suppose that a > 3. In the classical version of Wagner’s
algorithm presented above, each list Li at the bottom of the tree is of size L and
represents only a subset of the 2(k+`)/2a possible combinations of the (xj)j∈Ii .
This explains the gap and the discontinuity.

Therefore, we consider a variant of Wagner’s algorithm on a levels but with
one difference: the lists at the bottom of the tree are of the maximal possible
size: 2(k+`)/2a . At all other levels of the tree, we want lists of size 2λ for some
value λ to be determined.

Hence, the first step ofmerging is performed on t bits, such that themerging
two lists of size 2(k+`)/2a yields a list of size 2λ. Therefore, we have to choose t
such that

(
2(k+`)/2a

)2

3t = 2λ i.e. 2(k + `)
2a − t log2(3) = λ. (9.7)

The other (a− 1) merging steps are designed such that merging two lists
of size 2λ gives a new list of size 2λ, which means that we merge on λ/ log2(3)
bits. However, in the final list we want to obtain solutions to the problem,
which means that in total we have to put a constraint on all bits. Therefore, λ
and t have to verify:

t+ (a− 1) λ

log2(3) = `. (9.8)

230 Chapter 9. Ternary syndrome decoding with large weight errors

Combining Equations (9.7) and (9.8) yields

λ = ` log2(3)
a− 2 − k + `

(a− 2)2a−1 ·

It is easy to check that under the conditions 3`/(a−1) < 2(k+`)/2a−1 and a > 3, λ
and t are positive which concludes the proof.

Figure 9.5: Workfactor of the smoothed variant of Wagner’s algorithm: for
q = 3, R = 0.5 and variableW .

We can observe on Figure 9.5 the gain induced by smoothing.

9.2.4 Using representations
9.2.4.1 Ternary representations

Just like we have seen in Section 8.5.2 that we can further improve the effi-
ciency of Dumer’s algorithm by introducing representations, as explained in
[BJMM12], we can improve Wagner’s algorithm by using the same idea.

We explained in the binary setting that the idea of representations is to get
rid of the constraint that the support should be disjoint. Let us see what this
means in the ternary setting and in the context of Wagner’s algorithm.

If we look at the list tree of Wagner’s algorithm (see Figure 9.3) from top
to bottom, we split each list in two, according to what is called the left-right
procedure. This means that if we want to have a set S = {

∑
j∈JA,BK bjxj :

|bj | = p} at some level, we decompose each element of y ∈ S as y = y1 + y2

9.2. Large weight ternary syndrome decoding 231

where y1 ∈ S1 and y2 ∈ S2, where

S1
def=


∑

j∈JA,bB+A
2 cK

bjxj : bj ∈ {0, 1}, |b| = p/2


S2

def=


∑

j∈JbB+A
2 c+1,BK

bjxj : bj ∈ {0, 1}, |b| = p/2

 .
Such a decomposition does not always exist, but it exists with probability at
least 1

p . Indeed, the probability that a vector of weight p can be split this way is

(n/2
p/2
)2(n

p

) >
1
p
.

Wagner’s algorithm uses this principle. When looking for vectors b con-
taining the same number of 0’s and 1’s, it looks for b in the form b = b1 + b2,
where the second half of b1 and the first half of b2 are only zeros. The first
half of b1 and the second half of b2 are expected to have the same number of
0s and 1s. This ensures that Support(b1) ∩ Support(b2 = ∅. Hence, for each
vector b, there is (at most) a unique way to write it as b = b1 + b2 with b1 and
b2 matching the support constraints.

The idea of representations is to follow Wagner’s approach of list merging
while allowingmore possibilities towrite b as the sumof twovectors b = b1+b2.
We remove the constraint that b1 has zeros on its right half and b2 has zeros
on its left half. We replace it by a less restrictive constraint: we fix the number
of 0s, 1s and 2s (as elements of F3) in b1 and b2.

More precisely, we consider the set

S(p1, p2) =

 ∑
j∈JA,BK

bjxj : bj ∈ F3, |{bj = 1}| = p1 and |{bj = 2}| = p2


(9.9)

for some weights p1 and p2 and we want to decompose each y into y1 + y2
such that y1,y2 ∈ S(p1, p2). On the example of Figure 9.6, we have p = 4,
p1 = 3 and p2 = 1.

Notice that in this definition of S(p1, p2), the elements bj belong to the
set F3 and not {0, 1}, even though we want to obtain a binary solution. This
ternary structure increases the number of representations as shown in Figure
9.6. This approach may seem unusual, but it is actually the high number
of possible representations that yields a gain in complexity, as we already

232 Chapter 9. Ternary syndrome decoding with large weight errors

1 0 0 1 0 0 0 0
+

0 0 0 0 0 1 0 1
=

1 0 0 1 0 1 0 1

1 0 2 0 0 1 1 0
+

0 0 1 1 0 0 2 1
=

1 0 0 1 0 1 0 1

1 0 1 1 0 0 2 0
+

0 0 2 0 0 1 1 1
=

1 0 0 1 0 1 0 1
(1) (2)

Figure 9.6: Same vector (1) using left-right split and (2) using representations

discussed in the binary setting. Indeed, just like we explained for [BJMM12],
the key idea is that each element y ∈ S accepts many decompositions (the
so-called representations) y1 + y2 where y1,y2 ∈ S(p1, p2). We make sure that
(on average) only one such representation is present by merging on some bits.

Of course, the values p1 and p2 should be chosen very carefully so that
y1 + y2 ∈ S with a relatively high probability. Moreover, most elements of the
form y1 + y2 will not match the expected weight constraints. These elements
are called badly-formed elements and must be discarded. To compensate these
discarded sums, one can slightly lower the number of agreement bits when
merging the lists, in order to obtain on average the desired number of elements
in the merged list. The whole point of this approach is that the large number
of ways to represent each element can compensate the fact that most sums are
badly-formed.

We see that the representation technique introduces a lot of newparameters.
One should decide the values p1, p2 at each level of the search tree. Contrary
to the binary case, our search tree is deeper (often 7 or 8 levels). Moreover,
the equations linking the parameters from one level to the other can become
be quite cumbersome, and it is hard to correctly optimize all parameters to
find the right equilibrium in the general case.

For this reason, we will not introduce representations at each level, only at
the bottom of the search tree. Moreover, if we relieve too many constraints and
allow too many representations of a solution, it may happen that we end up
with multiple copies of the same solution. In order to avoid this situation, we
use partial representations, which is an intermediate approach between left-right
splitting and using representations, as illustrated in Figure 9.7.

9.2. Large weight ternary syndrome decoding 233

Figure 9.7: Decomposing a vector using partial representations.

9.2.4.2 The algorithm

We presented the general idea of how to use representations to improve Wag-
ner’s algorithm. We explained that using representations opens the way for
numerous parameter choices, especially the numbers of 1s and 2s in each
representation, which are difficult to optimize. In the algorithm we present
here, some design choices were made to restrict the number of parameters
to optimize. The parameters have been obtained mostly by trial and error, in
order to optimize the complexity.

We are still relying on the generalised information set decoding algorithm
detailed in Algorithm 16. We take p = k+ ` because we are in the high weight
regime. Moreover, our experiments yield ` = 0.060835n as a convenient choice.

For the search step, we use Wagner’s algorithm with 5 to 7 floors. From
bottom to top, we have first one floor of left-right splits, then two floors using
partial representations, and finally two to four floors using left-right splits
again. This is illustrated in Figure 9.8, in the case a = 7, where yellow lists
correspond to partial representations and blue lists to left-right splits.

Figure 9.8: Representation of the Wagner tree for a = 7

As we already stated, the presence of representations at one floor yields

234 Chapter 9. Ternary syndrome decoding with large weight errors

badly-formed element at the floor above. Hence, having representations at
floors 5 and 6 (for the case a = 7), we expect to have badly-formed elements
at floors 4 and 5. These have to be dealt with by filtering, and the number
of merging bits has to be adapted accordingly to preserve the size of the list.
Figure 9.9 illustrated the bottom part of the Wagner tree, with badly-formed
elements displayed in red.

Figure 9.9: Detail of the bottom floors of Figure 9.8

The number of 1s and 2s in each floor, as well as the number of merge bits,
depend on the parameters R andW . We will explicit some choices specific to
the parameters used in the Wave signature scheme in the next section.

Finally, the size of the leaves can be adapted using the idea of smoothing
introduced earlier.

9.3 Applications
In this section, we present two applications of the algorithms previously intro-
duced.

9.3.1 Application to the Wave signature
Wave is a new code-based signature scheme proposed in [DST19]. It uses
a hash-and-sign approach and follows the paradigm introduced in [GPV08].
To forge a signature, one has to solve the syndrome decoding problem in
large weight SD(q,R,W) with q = 3, R = 0.676 and W = 0.948366. To see
the impact of our algorithm on the Wave scheme, we detail our choice of
parameters for this specific regime.

9.3. Applications 235

9.3.1.1 Parametrisation of the algorithm
We claim that the algorithm presented in Section 9.2.4 can solve SD(3, R,W)
with R = 0.676 andW = 0.948366 with complexity Õ (20.0176). Indeed, our
algorithm solves SS(3, k + `, `, L) in amortised time O(1) with ` = 0.060835
and L = 20.0176n. This means that if finds O(L) solutions in time O(L).

The algorithm has a = 7 floors. At all levels, we want lists of size L. Only
the leaves are smaller (of size 20.0139n), because of the smoothing technique.
Here is a complete description.

• At the top, we want to find L solutions.
• Levels 1 to 4 consist of left-right splits, like in the classical setting of

Wagner’s algorithm.
• At levels 5 and 6, we use partial representations. More exactly, we divide

each vector in two parts that are treated separately. On one part, we will
only use representations for level 5 and then the usual left-right split for
level 6. This part represents a proportion λ1 = 0.7252 of each vector. For
remaining part of the vector, we use representations on both levels.

• In practice, at level 4 we had 16 lists of the form Li containing sums of
elements xj with j ∈ Ii def= J1+ (i−1)(k+`)

16 , i(k+`)
16 K, for i ∈ J1, 16K. At level

5 and 6, we split the lists Ii in two, according to Figure 9.10.
• Hence, we have different densities of 0s, 1s and 2s, in the parts corre-

sponding to one layer of representations (in proportion λ1) and the part
where we apply two layers of representations (in proportion λ2). We
denote ρ1, ρ2, ρ3 the different densities, as in Figure 9.10.

– For ρ1, we ask for 74.8% of 0s, 25.1% of 1s and 0.1% of 2s
– For ρ2, we ask for 74.2% of 0s, 25.4% of 1s and 0.4% of 2s.
– For ρ3, we ask for 86.9% of 0s, 13.1% of 1s and 0.0% of 2s.

• The expected number of badly-formed elements can be computed theo-
retically. These computations are stated in full details in the appendix
of [BCDL19]. This is important to adapt the number of bits on which
we merge, to maintain lists of size L while discarding badly-formed
elements. We obtain the following results.

– The number of badly-formed elements at level 4 is 20.0116n and we
therefore merge on 20.0055n bits.

– The number of well-formed elements at level 5 is 20.0174n. Therefore,
we merge on 20.0173n bits to obtain lists of size L at level 4.

236 Chapter 9. Ternary syndrome decoding with large weight errors

• From level 6 to level 5, all lists are of size L with no badly-formed ele-
ments, so we merge on L = 20.0176n bits.

• Finally, because the bottom lists of level 7 are of size 20.0139n due to
smoothing, we only merge on 20.0032n bits to create level 6.

Remark 9.10. Here, we say that we merge on t bits, because it is convenient to
count in base two, but we should keep in mind that in practice the vectors are in F3
and therefore the real operation amounts to making sure that log2(3)t symbols (in F3)
of the vectors are equal to the desired value.

Figure 9.10: Detail of the partial representations

One can check that in total we merge on of 20.0964n bits, which is exactly
equal to 3`. This ensures that the list obtained at the top indeed contains
solutions to the subset sum problem.

Moreover, using the results of [BCDL19] on the number of ternary repre-
sentations, we can also check that in this setting, each solution to the subset
sum problem admits 20.4915n representations. Because there are 2k+`/3` =
20.6404n solutions to the subset sum problem, this yields 20.6404n × 20.4915n =
21.1319n representations leading to one solution of the problem. The merg-
ing constraints filter 21.1143n solution vectors, and hence we obtain as stated
21.1319n/21.1143n = 20.0176n solutions at the end.

9.3.1.2 Parameters for the Wave signature
Forging a signature in the Wave scheme amounts to solving the syndrome
decoding problem. The public key is a pseudo-random parity-check matrix H
of size (n− k)× n and the signature of a message m is an error e of weight w
such that eHᵀ = H(m) withH a hash function. However, instead of trying to
forge a signature for one message of our choice, a natural idea is to try to forge
one message among a selected set of messages. This context leads directly
to a slight variation of the classical syndrome decoding problem: instead of

9.3. Applications 237

having one syndrome, there is a list of possible syndromes and the goal is to
decode one of them. This problem is known as the Decoding One Out of Many
(DOOM) problem [Sen11a].

The difference induced by DOOM is that it increases the search space.
Namely, instead of searching e of weight w in the space {e |Heᵀ = sᵀ}, we
search in {e | ∃i ∈ J1,MK,Heᵀ = si

ᵀ}.
The idea to solve this problem with Wagner’s approach is to takeM > q`/a

and replace the bottom-right list of the tree (the list L2a) by a list containing all
the syndromes. Hence, there are only 2a − 1 lists to generate from the search
space. Therefore, the constraint of Theorem 9.8 becomes

q`/a 6 2(k+`)/(2a−1).

In practice, we have a = 7 so the change from 2a to 2a − 1 has a negligible
impact.

The parameters proposed in the first version of the Wave signature scheme
[DST18] are derived from the complexity of a key attack. Our new algorithms
introduced in Section 9.2 provide another attack to consider. In Table 9.1,
we computed the minimal parameters of a code (supposedly random) with
a rate equivalent to the rate of the Wave signature, and such that our best
algorithm has a time complexity of at least 2128. The parameters n, k and w
denote respectively the length of the code, its dimension and the weight of the
signature. These results have been taken into account to propose parameters
for the latest version of the Wave signature scheme [DST19].

(n, k, w) Public key size (in MB) Signature length (in kB)
(7236,4892,6862) 2.27 1.434

Table 9.1: Parameters for a code in the same regime as the Wave signature
scheme and achieving 128 security-bits with regards to our attack.

9.3.2 Hardest instance of ternary large weight decoding
We have tried to optimize the algorithms for the parameters of the Wave
signature scheme, as this is the only cryptographic scheme that relies on
ternary large weight decoding for now. We have seen that this corresponds to
a regime where there is an exponential number of solutions to the decoding
problem.

Another interesting question is to understand, with our current knowledge
of the decoding algorithms in large weight, for which choice of R andW the

238 Chapter 9. Ternary syndrome decoding with large weight errors

problem is the hardest. Indeed, Figure 9.2 (showing the complexity of Prange’s
algorithm) shows that for appropriate parameter choice, the ternary decoding
problem can be harder with large weight than with small weight.

As we can see on Figure 9.2, there are two cases to consider. For some
rates, the complexity is strictly increasing with the weight, and the hardest
case corresponds to W = 1. This is the case for the examples R = 0.5 and
R = 0.676 that we studied. But for some lower rates, we observe a peak in the
complexity. We explained in Section 9.1.2.3 that this corresponds to a large
weight equivalent of the Gilbert-Varshamov bound, where there is on average
one unique solution.

Hence, the hardest complexity for fixed R is attained in W = hGV+(R)
when it exists, andW = 1 otherwise. This allows us to compute the hardest
complexity only depending on the variable R.

Unsurprisingly, the maximal complexity (overR andW) is reached exactly
at the limit between the two cases, when the peak is in WGV+ = 1. This
corresponds to the rate R such that R = 1− logq(q − 1). For q = 3 this yields
R ' 0.36907.

This allows us to compare the best exponents of the algorithms to solve
the hardest instance of the problem, in the binary and ternary cases. This
yields Table 9.2. In the binary case, the hardest instance corresponds to the
(usual) Gilbert-Varshamov bound for small weight. For the ternary case, we
optimised Wagner’s algorithm with a two-level tree, including one layer of
representations. This yields the exponent 0.247. Using a larger tree did non
give any improvement.

Algorithm q = 2,W = WGV (R) q = 3 andW = 1

Prange 0.121 (R = 0.454) 0.369 (R = 0.369)
Dumer/Wagner 0.116 (R = 0.447) 0.269 (R = 0.369)

BJMM/Wagner with repr. 0.102 (R = 0.427) 0.247 (R = 0.369)

Table 9.2: Best exponents with associated rates.

The ternary syndrome decoding in large weight appears significantly
harder than its binary counterpart. But in the context of cryptography, one
tries to achieve the best trade-off between the complexity and the key size. This
is not reflected in our comparison. For instance, for the ternary problem, the
key is a matrix with elements in F3 rather than F2 so this naturally increases
the information by a factor log2(3), for fixed matrix dimensions n and k. It
could be that the ternary problem has hardest instances, but the larger public
keys size make the trade-off less interesting.

Hence, we have to ask the question differently. Considering the asymp-

Ternary syndrome decoding with large weight errors 239

totic complexity exponents, what is the smallest input size of the syndrome
decoding problem for which the algorithms need at least 2128 operations to
decode?

The input of syndrome decoding problem is the matrix H ∈ F(1−R)n×n
q

(the syndrome s ∈ F(1−R)n
q corresponds to one additional column and can be

neglected). To lower the input size, this matrix is represented in systematic
form. This means that we write H = (I(1−R)n|H ′). The only relevant part
that needs to be specified is H ′. This requires R(1−R)n2 log2(q) bits.

In Table 9.3, we show that, even in this metric, the ternary syndrome
decoding problem is harder, i.e. requires 2128 operations to decode inputs of
smaller sizes.

Algorithm q = 2 q = 3 andW > 0.5

Prange 275 (R = 0.384) 44 (R = 0.369)
Dumer/Wagner 295 (R = 0.369) 83 (R = 0.369)

BJMM/Wagner with representations 374 (R = 0.326) 99 (R = 0.369)

Table 9.3: Minimum input sizes (in Kbits) for a time complexity of 2128

Note that in the binary case, the best trade-off is obtained for lower rates
than the hardest case, because this reduces the key size. In the ternary case, this
does not happen because the complexity decreases quickly when R decreases.

9.3.3 Conclusion
In this chapter, we explained a fundamental difference between the cases q = 2
and q > 3 of the syndrome decoding problem. Before this work, the syndrome
decoding problem for q > 3 had only been considered for small weight and
the large weight case had never been addressed. The Wave signature scheme,
which relies on this problem for its security, motivated us to conduct a study
of the complexity of the syndrome decoding in this regime.

We proposed algorithms to solve the large weight problem with a similar
approach to what is achieved by Prange, Dumer and BJMM for small weight.
This work is still preliminary, and there could still be room for improvements
of these algorithms, especially with the representations that require ad hoc
design choices.

But the fact that the instances in large weight are harder that in the small
weight (even for equivalent key size) is a very promising result. This should
encourage cryptographers to propose new code-based cryptosystems, signa-
tures, or other primitives, relying on the large weight syndrome decoding
problem. These should yield smaller key sizes for the same security level.

Conclusions and perspectives

Throughout this work, we have come to address most of the aspects of the
security of code-based cryptosystems: from the generic decoding algorithms
that serve as a reference for the message security, to the possibility to recover
the secret key from the algebraic structure of the public key, as well as the
exploitation of information leaking from the physical implementation of the
decryption algorithm.

While this work was being conducted, the National Institute of Standards
and Technologies (NIST) was advancing on its post-quantum standardisation
process. The procedure is not over yet, but in July 2020 the NIST announced
the remaining candidates selected for the third round [AAACD+20]. The
NIST selected seven “finalists” and eight “alternate candidates”. Out of the
four public-key encryption systems selected as “finalists”, we find the code-
based Classic McEliece cryptosystem introduced in Chapter 1, as well as three
lattice-based proposals: CRISTAL-KYBER, NTRU and SABER. The selection
of the McEliece scheme is not a surprise, since it is the oldest post-quantum
proposal and it still inspires confidence after forty years of research. However,
as we already stated, this cryptosystem has very large public keys which make
it unfit for general use (for instance for internet protocols). The three other
selected finalists have a better profile for this use but all rely on lattice-based
security assumptions. We see here that, in order to obtain some diversity in the
solutions, a code-based cryptosystem with competitive parameter size would
be appreciated.

The BIKE cryptosystem, presented in Chapter 2, is the most promising
candidate to fit these criteria. However, the issue of the decoding failure, which
we extensively addressed in Chapter 3, makes its CCA security still uncertain.
For this reason, the NIST decided to select BIKE as an alternate candidate in its
third round, rather than a finalist. Another code-based candidate, HQC, also
based on quasi-cyclic codes, was selected as an alternate candidate, because
its performance are not as good as the comparable lattice cryptosystems.

As for signatures, no code-based signature was submitted to the process
in the first place. The lack of diversity in the signatures selected as finalists
is a current concern of the NIST. The Institute explicitly stated its interest for

242 Conclusions and perspectives

new digital signature schemes “not based on structured lattices”.
These temporary conclusions of the NIST are very encouraging for code

based cryptography, which appears to be the most promising way to obtain
post-quantum primitives not based on lattice problems. The recent improve-
ments in the analysis of the decoding failure ofMDPC codes, as well as the new
code-based signature proposal Wave based on large weight decoding, bring
code-based cryptography one step closer to providing secure and practical
solutions for post-quantum security.

Prevention of side channel attacks on code-based cryptosystems. If code-
based cryptosystem are to be become standards, these will immediately be
implemented. We have seen in Chapter 3 that the decoding algorithmofMDPC
codes may leak significant information. Hence, one should be particularly
careful when implementing the bit-flipping algorithm, and especially make
sure that no variable correlated with the syndrome weight is accessible to a
malicious user.

McEliece-like cryptosystem based on GRS codes. We have seen two cases
of cryptosystem based on GRS codes, which can be attacked up to some
threshold: the RLCE cryptosystem (in Chapter 6) is still secure for w > n−k

2
and the XGRS scheme (in Chapter 7) is secure for λ 6 m

2 . In both cases, there
is either a possibility to attack the scheme in these regimes, or it means that we
can build secure GRS-based cryptosystems. Understanding such thresholds
is important. This could also yield interesting constructions for multiparty
computation and threshold cryptography. The case of XGRS cryptosystem
with small value λ is particularly interesting since it is very close to the Goppa
McEliece scheme. If it is indeed secure, we can propose a cryptosystem very
close to the original McEliece proposal but potentially achieving smaller key
size. On the other hand, any progress in the cryptanalysis of these codes would
be of interest for the security of the Classic McEliece scheme. Further study in
this direction should be conducted.

Ternary decoding with large weight. We proposed in Chapter 9 an analysis
of the hardness of a new mathematical problem on which one could build
cryptographic primitives: the (well-known) decoding problem in the (new)
regime of large-weight errors. This idea was first introduced and used in the
Wave signature scheme. Our study shows that for equivalent complexity, the
instances of the ternary decoding in large weight have smaller size. This opens
the way for new cryptosystems with smaller key size, which is one of the main
challenges of code-based cryptography. We hope that new encryption systems

Conclusions and perspectives 243

(or other cryptographic primitives) exploiting this idea will appear in the
coming years.

Decoding challenge and practical complexity of information set decoding
algorithms. Chapters 8 and 9 have been dedicated to the study of information
set decoding algorithms. These algorithm solve the generic decoding problem,
that is, decoding a noisy codeword, regardless of the structure of the code.
Most code-based primitives rely on the hardness of this problem to make
security claims. Hence, the proposed parameters (and hence the key size) are
often optimised under the constraint that the best information set decoding
cannot decode in less than 2κ operations, where κ is the security parameter. A
good understanding of the complexity of these algorithms is therefore crucial.

As we have seen, the study of the complexity of these algorithms mostly
focuses on the asymptotic complexity. The algorithms achieving the best
asymptotic efficiency (using representations, such as BJMM’s algorithm) are
the result of a fine optimisation of numerous parameters. However, the latest
algorithms are getting more and more complex, to achieve a small gain in
the exponent. As a result, there is no implementation of the most recent
algorithms. There are several questions about these algorithms for which we
do not have an answer. The most natural question is: for a fixed hardware
configuration and running time, what is the largest instance of the syndrome
decoding that we can solve in practice? But there are other interrogations. For
instance, the new algorithms with lower asymptotic complexity may come
with larger polynomial factors. Hence they do not perform best on small
instances. For which instance size does it become more efficient to use the
algorithms that achieve the lowest asymptotic complexity? Another question
arises when it comes to optimising the parameters (`, p, εi) of information
set decoding algorithms. When studying the asymptotic complexity, these
are considered as continuous parameters, but in practice, they correspond to
integer values (a certain number of rows/columns). How does this restriction
in the optimisation affect the performance of the algorithms?

To a larger extent, if ones wants code-based cryptography to be part of the
next generation of standards, one should make sure that a large community of
scientists are convinced that it relies on solid ground. It is usual to consider
that a problem is all the more secure if it has been existing for a long time with
no significant improvement in the cost of the resolution, and this is indeed the
case of the syndrome decoding problem. But the confidence in the hardness
of a problem also depends on the number of persons who attempted to solve
it. Therefore, there is a need to broaden the community of people trying to
actively solve instances of the syndrome decoding problem. This can only
increase the confidence of a larger audience in the security of code-based

244 Conclusions and perspectives

cryptography. In the case of code-based cryptography, this should not be too
difficult since the syndrome decoding problem is very easy to state.

The best way to do so is to publish a series of challenges, corresponding to
instances of the syndrome decoding problem of increasing size, for anyone to
solve. Such an approach is usual in cryptography: the RSA factoring challenge
[Lab91] has been introduced by RSA Laboratories to encourage the study
of the practical difficulty of factoring integers, and hence prove the strength
of the RSA cryptosystem. Other branches of post-quantum cryptography
have launched such challenges: lattice-based cryptography [LRBN14] and
multivariate cryptosystems [YDHTS15].

For these reasonswe launched theDecoding challenge [ALL19] in 2019. We
hope that this will serve as an incentive for people to implement information
set decoding algorithms. This can also serve as a reference to benchmark
different implementations and compare design choices. The next step is to
come up with a reference implementation of the latest algorithms, in order
to answer some of the questions listed above. We are confident that this is an
important step to strengthen the confidence of a large community of computer
scientists in code-based cryptographic schemes.

Bibliography

[AAACD+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-
Tone. Status Report on the Second Round of the NIST Post-Quantum
Cryptography Standardization Process. 2020 (cit. on pp. 88, 105, 241).

[AABBB+17a] C. Aguilar Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy,
J.-C. Deneuville, P. Gaborit, and G. Zémor. RQC. NIST Round
1 submission for Post-Quantum Cryptography. https://pqc-
rqc.org. Nov. 2017 (cit. on p. 41).

[AABBB+17b] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc
Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Ga-
borit, Edoardo Persichetti, and Gilles Zémor. HQC. NIST Round
1 submission for Post-Quantum Cryptography. https : / / pqc -
hqc.org/. Nov. 2017 (cit. on pp. 41, 60).

[ABBBB+17] N. Aragon, P. Barreto, S. Bettaieb, Loic Bidoux, O. Blazy, J.-C.
Deneuville, P. Gaborit, S. Gueron, T. Güneysu, C. Aguilar Mel-
chor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich, and G.
Zémor. BIKE. NIST Round 1 submission for Post-Quantum Cryp-
tography. https://bikesuite.org. Nov. 2017 (cit. on pp. 40, 56,
59, 63, 65, 83, 87).

[ABDGH+19] Nicolas Aragon, Olivier Blazy, Jean-Christophe Deneuville,
Philippe Gaborit, Adrien Hauteville, Olivier Ruatta, Jean-Pierre
Tillich, Gilles Zémor, Carlos Aguilar Melchor, Slim Bettaieb, Loïc
Bidoux, Bardet Magali, and Ayoub Otmani. ROLLO (merger of
Rank-Ouroboros, LAKE and LOCKER). Second round submission to
the NIST post-quantum cryptography call. NIST Round 2 submis-
sion for Post-Quantum Cryptography. https://pqc-rollo.org.
Mar. 2019 (cit. on pp. 60, 94, 105).

[ABGHZ19] Nicolas Aragon, Olivier Blazy, PhilippeGaborit, AdrienHauteville,
and Gilles Zémor. “Durandal: a rank metric based signature
scheme”. In: Advances in Cryptology - EUROCRYPT 2019 - 38th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19-23, 2019,
Proceedings, Part III. Vol. 11478. LNCS. Springer, 2019, pp. 728–758
(cit. on p. 43).

https://pqc-rqc.org
https://pqc-rqc.org
https://pqc-hqc.org/
https://pqc-hqc.org/
https://bikesuite.org
https://pqc-rollo.org

246 Bibliography

[AG19] Nicolas Aragon and Philippe Gaborit. “A key recovery attack
against LRPC using decryption failures”. In: WCC 2019 - Work-
shop on Coding Theory and Cryptography. 2019 (cit. on pp. 87, 93).

[AGS11] Carlos Aguilar, Philippe Gaborit, and Julien Schrek. “A new zero-
knowledge code based identification scheme with reduced com-
munication”. In: Proc. IEEE Inf. Theory Workshop- ITW 2011. IEEE,
Oct. 2011, pp. 648–652 (cit. on p. 42).

[Ale03] Michael Alekhnovich. “More on average case vs approximation
complexity”. In: 44th Annual IEEE Symposium on Foundations of
Computer Science, 2003. Proceedings. IEEE. 2003, pp. 298–307 (cit. on
pp. 31, 41).

[Ale11] Michael Alekhnovich. “More on Average Case vs Approximation
Complexity”. In: Computational Complexity 20.4 (2011), pp. 755–786
(cit. on pp. 60, 198).

[ALL19] Nicolas Aragon, Julien Lavauzelle, and Matthieu Lequesne. decod-
ingchallenge.org. http://decodingchallenge.org. 2019 (cit. on
p. 244).

[APRS20] Daniel Apon, Ray A. Perlner, Angela Robinson, and Paolo Santini.
“Cryptanalysis of LEDAcrypt”. In:Advances in Cryptology - CRYPTO
2020, Part III. Ed. by Daniele Micciancio and Thomas Ristenpart.
Vol. 12172. Lecture Notes in Computer Science. Springer, 2020,
pp. 389–418 (cit. on pp. 49, 60, 84).

[BBBGN+20] Magali Bardet, Pierre Briaud, Maxime Bros, Philippe Gaborit, Vin-
cent Neiger, Olivier Ruatta, and Jean-Pierre Tillich. “An Algebraic
Attack on Rank Metric Code-Based Cryptosystems”. In: Advances
in Cryptology - EUROCRYPT 2020 - 30th Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, May 10-14, 2020. Proceedings. 2020 (cit. on pp. 92,
94, 105).

[BBC08] Marco Baldi, Marco Bodrato, and Franco Chiaraluce. “ANewAnal-
ysis of the McEliece Cryptosystem Based on QC-LDPC Codes”. In:
Proceedings of the 6th international conference on Security and Cryp-
tography for Networks. SCN ’08. Amalfi, Italy: Springer-Verlag, 2008,
pp. 246–262 (cit. on pp. 49, 51).

[BBCGP+20] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit,
Ray Perlner, Daniel Smith-Tone, Jean-Pierre Tillich, and Javier Ver-
bel. “Improvements of Algebraic Attacks for solving the Rank
Decoding and MinRank problems”. In: Advances in Cryptology -
ASIACRYPT 2020, International Conference on the Theory and Applica-
tion of Cryptology and Information Security, 2020. Proceedings. 2020,
pp. 507–536 (cit. on pp. 92, 94, 105).

http://decodingchallenge.org

Bibliography 247

[BBCPS19] Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo
Pelosi, and Paolo Santini. LEDAcrypt. Second round submission
to the NIST post-quantum cryptography call. https : / / www .
ledacrypt.org. Jan. 2019 (cit. on pp. 60, 84).

[BBCRS11] Marco Baldi, Marco Bianchi, Franco Chiaraluce, JoachimRosenthal,
and Davide Schipani. Enhanced public key security for the McEliece
cryptosystem. submitted. 2011 (cit. on p. 115).

[BBCRS16] Marco Baldi, Marco Bianchi, Franco Chiaraluce, Joachim Rosen-
thal, and Davide Schipani. “Enhanced Public Key Security for the
McEliece Cryptosystem”. In: J. Cryptology 29.1 (2016), pp. 1–27
(cit. on p. 115).

[BBD09] Daniel J. Bernstein, Johannes Buchmann, and Erik Dahmen, eds.
Post-Quantum Cryptography. Springer-Verlag, 2009 (cit. on p. 24).

[BC07] Marco Baldi and Franco Chiaraluce. “Cryptanalysis of a new in-
stance of McEliece cryptosystem based on QC-LDPC Codes”. In:
Proc. IEEE Int. Symposium Inf. Theory - ISIT. Nice, France, June 2007,
pp. 2591–2595 (cit. on pp. 49, 50).

[BCDL19] Rémi Bricout, André Chailloux, Thomas Debris-Alazard, and
Matthieu Lequesne. “Ternary Syndrome Decoding with Large
Weights”. In: Selected Areas in Cryptography - SAC 2019 - 26th Interna-
tional Conference, Waterloo, ON, Canada, August 12-16, 2019, Revised
Selected Papers. Ed. by Kenneth G. Paterson and Douglas Stebila.
Vol. 11959. Lecture Notes in Computer Science. Springer, 2019,
pp. 437–466 (cit. on pp. 217, 235, 236).

[BCDOT16] Magali Bardet, Julia Chaulet, VladDragoi, AyoubOtmani, and Jean-
Pierre Tillich. “Cryptanalysis of theMcEliece Public KeyCryptosys-
tem Based on Polar Codes”. In: Post-Quantum Cryptography 2016.
LNCS. Fukuoka, Japan, Feb. 2016, pp. 118–143 (cit. on p. 119).

[BCGLL+17] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Gré-
goire Lecerf, Bruno Salvy, and Éric Schost. Algorithmes Efficaces en
Calcul Formel. French. 686 pages. Imprimé par CreateSpace. Aussi
disponible en version électronique. Palaiseau: Frédéric Chyzak
(auto-édit.), Sept. 2017 (cit. on p. 191).

[BCGO09] Thierry P. Berger, Pierre-Louis Cayrel, PhilippeGaborit, andAyoub
Otmani. “Reducing Key Length of the McEliece Cryptosystem”. In:
Progress in Cryptology - AFRICACRYPT 2009. Ed. by Bart Preneel.
Vol. 5580. LNCS. Gammarth, Tunisia, June 2009, pp. 77–97 (cit. on
p. 50).

[BCJ11] Anja Becker, Jean-Sébastien Coron, and Antoine Joux. “Improved
Generic Algorithms for Hard Knapsacks”. In: Advances in Cryptol-
ogy - EUROCRYPT 2011 - 30th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings. 2011, pp. 364–385 (cit. on pp. 213,
225).

https://www.ledacrypt.org
https://www.ledacrypt.org

248 Bibliography

[BCLMM+19] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich,
Rafael Mizoczki, Ruben Niederhagen, Edoardo Persichetti, Chris-
tiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, and
Wang Wen. Classic McEliece: conservative code-based cryptography.
https://classic.mceliece.org. Second round submission to
theNIST post-quantum cryptography call. Mar. 2019 (cit. on pp. 40,
84, 194).

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. “The Magma
Algebra System I: The User Language”. In: J. Symbolic Comput.
24.3/4 (1997), pp. 235–265 (cit. on p. 143).

[Ber10] Daniel J. Bernstein. “Grover vs. McEliece”. In: Post-Quantum Cryp-
tography 2010. Ed. by Nicolas Sendrier. Vol. 6061. LNCS. Springer,
2010, pp. 73–80 (cit. on p. 62).

[BGGMP+17] Paulo S. L. M. Barreto, Shay Gueron, Tim Güneysu, Rafael Mis-
oczki, Edoardo Persichetti, Nicolas Sendrier, and Jean-Pierre Tillich.
“CAKE:Code-BasedAlgorithm forKeyEncapsulation”. In:Cryptog-
raphy and Coding - 16th IMA International Conference, IMACC 2017,
Oxford, UK, December 12-14, 2017, Proceedings. Vol. 10655. LNCS.
Springer, 2017, pp. 207–226 (cit. on pp. 56, 59, 65).

[BGK19] Thierry P. Berger, Cheikh ThiécoumbaGueye, and Jean Belo Klamti.
“Generalized subspace subcodes with application in cryptology”.
In: IEEE Trans. Inform. Theory 65.8 (2019), pp. 4641–4657 (cit. on
pp. 185, 187, 189–192).

[BGKR19] Thierry P. Berger, Cheikh Thiécoumba Gueye, Jean Belo Klamti,
and Olivier Ruatta. “Designing a Public Key Cryptosystem Based
on Quasi-cyclic Subspace Subcodes of Reed–Solomon Codes”. In:
International Conference on Algebra, Codes and Cryptology. Springer.
2019, pp. 97–113 (cit. on pp. 116, 153).

[BGT93] Claude Berrou, Alain Glavieux, and Punya Thitimajshima. “Near
Shannon limit error-correcting coding and decoding: Turbo-codes.
1”. In: Proceedings of ICC’93-IEEE International Conference on Com-
munications. Vol. 2. IEEE. 1993, pp. 1064–1070 (cit. on p. 48).

[BJMM12] Anja Becker, Antoine Joux, AlexanderMay, andAlexanderMeurer.
“Decoding Random Binary Linear Codes in 2n/20: How 1 + 1 = 0
Improves Information Set Decoding”. In: Advances in Cryptology
- EUROCRYPT 2012. LNCS. Springer, 2012 (cit. on pp. 214, 230,
232).

[BL05] Thierry P. Berger and Pierre Loidreau. “How toMask the Structure
of Codes for a Cryptographic Use”. In: Des. Codes Cryptogr. 35.1
(2005), pp. 63–79 (cit. on p. 114).

[BLP08] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Attacking
and Defending the McEliece Cryptosystem”. In: Post-Quantum
Cryptography 2008. Vol. 5299. LNCS. 2008, pp. 31–46 (cit. on p. 40).

https://classic.mceliece.org

Bibliography 249

[BLP10] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Wild
McEliece”. In: Selected Areas in Cryptography. Ed. by Alex Biryukov,
Guang Gong, and Douglas R. Stinson. Vol. 6544. LNCS. 2010,
pp. 143–158 (cit. on pp. 40, 116).

[BLP11] Daniel J. Bernstein, Tanja Lange, and Christiane Peters. “Smaller
decoding exponents: ball-collision decoding”. In: Advances in Cryp-
tology - CRYPTO 2011. Vol. 6841. LNCS. 2011, pp. 743–760 (cit. on
p. 210).

[BM17] Leif Both and Alexander May. “Optimizing BJMMwith Nearest
Neighbors: Full Decoding in 22/21n and McEliece Security”. In:
WCC Workshop on Coding and Cryptography. on line proceedings,
see http://wcc2017.suai.ru/Proceedings_WCC2017.zip. Sept.
2017 (cit. on p. 214).

[BM18] Leif Both and Alexander May. “Decoding Linear Codes with High
Error Rate and Its Impact for LPN Security”. In: Post-Quantum
Cryptography 2018. Ed. by Tanja Lange and Rainer Steinwandt.
Vol. 10786. LNCS. Fort Lauderdale, FL, USA: Springer, Apr. 2018,
pp. 25–46 (cit. on p. 214).

[BMT78] Elwyn Berlekamp, Robert McEliece, and Henk van Tilborg. “On
the inherent intractability of certain coding problems”. In: IEEE
Trans. Inform. Theory 24.3 (May 1978), pp. 384–386 (cit. on pp. 31,
60, 198).

[Bus52] KennethABush. “Orthogonal arrays of index unity”. In:The Annals
of Mathematical Statistics (1952), pp. 426–434 (cit. on p. 110).

[Can16] Rodolfo Canto Torres. CaWoF, C library for computing asymptotic
exponents of generic decoding work factors. https://gforge.inria.
fr/projects/cawof/. 2016 (cit. on p. 214).

[Can17] Rodolfo Canto Torres. “Asymptotic Analysis of ISD algorithms for
the q−ary case”. In: Proceedings of the Tenth International Workshop
on Coding and Cryptography WCC 2017. Sept. 2017 (cit. on p. 224).

[CB14] Ivan V. Chizhov and Mikhail A. Borodin. “Effective attack on the
McEliece cryptosystem based on Reed-Muller codes”. In: Discrete
Math. Appl. 24.5 (2014), pp. 273–280 (cit. on p. 119).

[CC19] Daniel Coggia andAlainCouvreur. “On the security of a Loidreau’s
rank metric code based encryption scheme”. In: WCC 2019 - Work-
shop on Coding Theory and Cryptography. Saint Jacut de la mer,
France, Mar. 2019 (cit. on p. 91).

[CCMZ15] Igniacio Cascudo, Ronald Cramer, Diego Mirandola, and Gilles
Zémor. “Squares of Random Linear Codes”. In: IEEE Trans. Inform.
Theory 61.3 (Mar. 2015), pp. 1159–1173 (cit. on p. 117).

[CFG89] Mark Chaimovich, Gregory Freiman, and Zvi Galil. “Solving dense
subset-sum problems by using analytical number theory”. In: J.
Complexity 5.3 (1989), pp. 271–282 (cit. on p. 225).

https://gforge.inria.fr/projects/cawof/
https://gforge.inria.fr/projects/cawof/

250 Bibliography

[CFS01] Nicolas Courtois, Matthieu Finiasz, and Nicolas Sendrier. “How to
Achieve a McEliece-based Digital Signature Scheme”. In: Advances
in Cryptology - ASIACRYPT 2001. Vol. 2248. LNCS. Gold Coast,
Australia: Springer, 2001, pp. 157–174 (cit. on pp. 41, 42).

[CG90] John T Coffey and Rodney M Goodman. “The complexity of infor-
mation set decoding”. In: IEEE Trans. Inform. Theory 36.5 (1990),
pp. 1031–1037 (cit. on pp. 199, 219).

[CGGOT14] Alain Couvreur, Philippe Gaborit, Valérie Gauthier-Umaña, Ayoub
Otmani, and Jean-Pierre Tillich. “Distinguisher-based attacks on
public-key cryptosystems using Reed-Solomon codes”. In: Des.
Codes Cryptogr. 73.2 (2014), pp. 641–666 (cit. on pp. 115, 116, 122,
123, 127, 138, 149).

[Cha17] Julia Chaulet. “Étude de cryptosystèmes à clé publique basés sur
les codes MDPC quasi-cycliques”. PhD thesis. University Pierre et
Marie Curie, Mar. 2017 (cit. on p. 71).

[Che+52] Herman Chernoff et al. “A measure of asymptotic efficiency for
tests of a hypothesis based on the sum of observations”. In: The
Annals of Mathematical Statistics 23.4 (1952), pp. 493–507 (cit. on
p. 75).

[Cho16] Tung Chou. “QcBits: Constant-Time Small-Key Code-Based Cryp-
tography”. In: CHES 2016. Ed. by Benedikt Gierlichs and Axel Y.
Poschmann. Vol. 9813. LNCS. Springer, 2016, pp. 280–300 (cit. on
p. 54).

[CJ04] Jean-Sebastien Coron and Antoine Joux. Cryptanalysis of a provably
secure cryptographic hash function. IACR Cryptology ePrint Archive,
Report 2004/013. 2004 (cit. on p. 211).

[CL20] Alain Couvreur and Matthieu Lequesne. On the security of subspace
subcodes of Reed-Solomon codes for public key encryption. 2020 (cit. on
pp. 116, 151).

[CLT19] Alain Couvreur, Matthieu Lequesne, and Jean-Pierre Tillich. “Re-
covering short secret keys of RLCE in polynomial time”. In: Post-
Quantum Cryptography 2019. Ed. by Jintai Ding and Rainer Stein-
wandt. Vol. 11505. LNCS. Chongquing, China: Springer, May 2019,
pp. 133–152 (cit. on pp. 115, 124, 150).

[CMP17] Alain Couvreur, Irene Márquez–Corbella, and Ruud Pellikaan.
“Cryptanalysis of McEliece Cryptosystem Based on Algebraic Ge-
ometry Codes and Their Subcodes”. In: IEEE Trans. Inform. Theory
63.8 (Aug. 2017), pp. 5404–5418 (cit. on pp. 40, 119).

[COT14a] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. “New
Identities Relating Wild Goppa Codes”. In: Finite Fields Appl. 29
(2014), pp. 178–197 (cit. on pp. 116, 185).

Bibliography 251

[COT14b] Alain Couvreur, Ayoub Otmani, and Jean-Pierre Tillich. “Polyno-
mial Time Attack on Wild McEliece over Quadratic Extensions”.
In: Advances in Cryptology - EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Vol. 8441. LNCS. Springer Berlin
Heidelberg, 2014, pp. 17–39 (cit. on pp. 40, 185).

[COT17] Alain Couvreur, Ayoub Otmani, and Jean–Pierre Tillich. “Polyno-
mial Time Attack on Wild McEliece over Quadratic Extensions”.
In: IEEE Trans. Inform. Theory 63.1 (Jan. 2017), pp. 404–427 (cit. on
pp. 119, 185, 194).

[COTG15] Alain Couvreur, Ayoub Otmani, Jean–Pierre Tillich, and Valérie
Gauthier-Umaña. “A Polynomial-Time Attack on the BBCRS
Scheme”. In: Public-Key Cryptography - PKC 2015. Ed. by J. Katz.
Vol. 9020. LNCS. Springer, 2015, pp. 175–193 (cit. on p. 115).

[Cou01] Nicolas Courtois. “Efficient zero-knowledge authentication based
on a linear algebra problem MinRank”. In: Advances in Cryptology -
ASIACRYPT 2001. Vol. 2248. LNCS. Gold Coast, Australia: Springer,
2001, pp. 402–421 (cit. on p. 92).

[Cou19] Alain Couvreur. “Codes algébriques et géométriques, applications
à la cryptographie et à l’information quantique”. Accreditation
to supervise research. Université Paris Diderot, Dec. 2019 (cit. on
pp. 36, 121).

[Cou20] Alain Couvreur. Introduction to coding theory. Lecture notes avail-
able on http://www.lix.polytechnique.fr/~alain.couvreur/
doc_ens/lecture_notes.pdf. 2020 (cit. on pp. 33–35, 156, 157).

[CS16a] Rodolfo Canto-Torres and Nicolas Sendrier. “Analysis of Informa-
tion Set Decoding for a Sub-linear Error Weight”. In: Post-Quantum
Cryptography 2016. LNCS. Fukuoka, Japan, Feb. 2016, pp. 144–161
(cit. on p. 79).

[CS16b] Julia Chaulet and Nicolas Sendrier. “Worst case QC-MDPC de-
coder for McEliece cryptosystem”. In: IEEE Conference, ISIT 2016.
IEEE Press, 2016, pp. 1366–1370 (cit. on pp. 55, 65, 70).

[Del75] Philippe Delsarte. “On subfield subcodes of modified Reed-
Solomon codes”. In: IEEE Trans. Inform. Theory 21.5 (1975), pp. 575–
576 (cit. on p. 110).

[Del78] Philippe Delsarte. “Bilinear Forms over a Finite Field, with Appli-
cations to Coding Theory”. In: J. Comb. Theory, Ser. A 25.3 (1978),
pp. 226–241 (cit. on p. 90).

[Dem97] Michel Demazure. Cours d’algèbre: primalité, divisibilité, codes. Vol. 1.
Cassini Paris, 1997 (cit. on p. 34).

[DGJNV+19] Jan-Pieter D’Anvers, Qian Guo, Thomas Johansson, Alexander
Nilsson, Frederik Vercauteren, and Ingrid Verbauwhede. “Decryp-
tion failure attacks on IND-CCA secure lattice-based schemes”. In:
IACR International Workshop on Public Key Cryptography. Springer.
2019, pp. 565–598 (cit. on p. 87).

http://www.lix.polytechnique.fr/~alain.couvreur/doc_ens/lecture_notes.pdf
http://www.lix.polytechnique.fr/~alain.couvreur/doc_ens/lecture_notes.pdf

252 Bibliography

[DGK20] Nir Drucker, Shay Gueron, and Dusan Kostic. “QC-MDPC De-
coders with Several Shades of Gray”. In: PQCrypto 2020. Ed. by
Jintai Ding and Jean-Pierre Tillich. Vol. 12100. LNCS. Springer,
2020, pp. 35–50 (cit. on pp. 86, 87).

[DGZ17] Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor.
“Ouroboros: A Simple, Secure and Efficient Key Exchange Protocol
Based on Coding Theory”. In: Post-Quantum Cryptography - 8th
International Workshop, PQCrypto 2017, Utrecht, The Netherlands, June
26-28, 2017, Proceedings. Vol. 10346. LNCS. Springer, 2017, pp. 18–
34 (cit. on pp. 59, 78).

[DH76a] Whitfield Diffie and Martin Hellman. “New directions in cryp-
tography”. In: IEEE transactions on Information Theory 22.6 (1976),
pp. 644–654 (cit. on pp. 20, 23, 36).

[DH76b] Whitfield Diffie and Martin E Hellman. “Multiuser cryptographic
techniques”. In: Proceedings of the June 7-10, 1976, national computer
conference and exposition. 1976, pp. 109–112 (cit. on p. 20).

[DST18] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.
Wave: A New Code-Based Signature Scheme. Cryptology ePrint
Archive, Report 2018/996. Oct. 2018 (cit. on p. 237).

[DST19] Thomas Debris-Alazard, Nicolas Sendrier, and Jean-Pierre Tillich.
“Wave: A New Family of Trapdoor One-Way Preimage Sampleable
Functions Based on Codes”. In: Advances in Cryptology - ASI-
ACRYPT 2019. LNCS. Kobe, Japan: Springer, Dec. 2019 (cit. on
pp. 42, 218, 234, 237).

[DT18] T. Debris-Alazard and J.-P. Tillich. “Two attacks on rank metric
code-based schemes: RankSign and an Identity-Based-Encryption
scheme”. In: ASIACRYPT. 2018 (cit. on p. 42).

[DT99] Marten van Dijk and Ludo Tolhuizen. “Efficient encoding for a
class of subspace subcodes”. In: IEEE Trans. Inform. Theory 45.6
(1999), pp. 2142–2146 (cit. on p. 157).

[Dum89] Il’ya Dumer. “Two decoding algorithms for linear codes”. In: Probl.
Inf. Transm. 25.1 (1989), pp. 17–23 (cit. on p. 210).

[Dur14] Marie-José Durand-Richard. “Du message chiffré au système
cryptographique”. In: Cryptologie et mathématiques : une mutation
des enjuex. Ed. by Philippe Guillot Marie-José Durand-Richard.
L’Harmattan, 2014 (cit. on p. 17).

[ELPS18] Edward Eaton, Matthieu Lequesne, Alex Parent, and Nicolas
Sendrier. “QC-MDPC: A Timing Attack and a CCA2 KEM”. In:
Post-Quantum Cryptography - 9th International Conference, PQCrypto
2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings. 2018,
pp. 47–76 (cit. on pp. 63, 66, 84).

Bibliography 253

[FGOPT11] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. “A Distinguisher for High Rate
McEliece Cryptosystems”. In: Proc. IEEE Inf. Theory Workshop-
ITW 2011. Paraty, Brasil, Oct. 2011, pp. 282–286 (cit. on pp. 40, 41).

[FGOPT13] Jean-Charles Faugère, Valérie Gauthier, Ayoub Otmani, Ludovic
Perret, and Jean-Pierre Tillich. “A Distinguisher for High Rate
McEliece Cryptosystems”. In: IEEE Trans. Inform. Theory 59.10 (Oct.
2013), pp. 6830–6844 (cit. on p. 119).

[FHSZG+17] Tomás Fabsic, Viliam Hromada, Paul Stankovski, Pavol Zajac, Qian
Guo, and Thomas Johansson. “A Reaction Attack on the QC-LDPC
McEliece Cryptosystem”. In: Post-Quantum Cryptography - 8th In-
ternational Workshop, PQCrypto 2017, Utrecht, The Netherlands, June
26-28, 2017, Proceedings. Vol. 10346. LNCS. Springer, 2017, pp. 51–
68 (cit. on pp. 68, 69, 87).

[FL05] Cédric Faure and Pierre Loidreau. “A New Public-Key Cryptosys-
tem Based on the Problem of Reconstructing p-Polynomials”. In:
Coding and Cryptography, International Workshop, WCC 2005, Bergen,
Norway, March 14-18, 2005. Revised Selected Papers. 2005, pp. 304–315
(cit. on p. 91).

[FL08] Pierre-Alain Fouque andGaëtan Leurent. “Cryptanalysis of a Hash
Function Based onQuasi-cyclic Codes”. In: Topics in Cryptology - CT-
RSA 2008, The Cryptographers’ Track at the RSA Conference 2008, San
Francisco, CA, USA, April 8-11, 2008. Proceedings. Vol. 4964. LNCS.
Springer, 2008, pp. 19–35 (cit. on p. 57).

[FM08] Cédric Faure and Lorenz Minder. “Cryptanalysis of the McEliece
cryptosystem over hyperelliptic curves”. In: Proceedings of the
eleventh International Workshop on Algebraic and Combinatorial Coding
Theory. Pamporovo, Bulgaria, June 2008, pp. 99–107 (cit. on p. 40).

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. “Secure integration of
asymmetric and symmetric encryption schemes”. In: Annual Inter-
national Cryptology Conference. Springer. 1999, pp. 537–554 (cit. on
pp. 59, 69).

[FOPT10] Jean-Charles Faugère, Ayoub Otmani, Ludovic Perret, and Jean-
Pierre Tillich. “Algebraic Cryptanalysis of McEliece Variants with
Compact Keys”. In: Advances in Cryptology - EUROCRYPT 2010.
Vol. 6110. LNCS. 2010, pp. 279–298 (cit. on p. 50).

[FPP14] Jean-Charles Faugère, Ludovic Perret, and Frédéric de Portzam-
parc. “Algebraic Attack against Variants of McEliece with Goppa
Polynomial of a Special Form”. In: Advances in Cryptology - ASI-
ACRYPT 2014. Vol. 8873. LNCS. Kaoshiung, Taiwan, R.O.C.:
Springer, Dec. 2014, pp. 21–41 (cit. on p. 194).

254 Bibliography

[FRXKM+17] Kazuhide Fukushima, Partha Sarathi Roy, Rui Xu, Shinsaku Kiy-
omoto, Kirill Morozov, and Tsuyoshi Takagi.RaCoSS (RandomCode-
based Signature Scheme). First round submission to the NIST post-
quantum cryptography call. NIST Round 1 submission for Post-
Quantum Cryptography. https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/round-1/
submissions/RaCoSS.zip. Nov. 2017 (cit. on p. 42).

[FS09] Matthieu Finiasz and Nicolas Sendrier. “Security Bounds for the
Design of Code-based Cryptosystems”. In: Advances in Cryptology
- ASIACRYPT 2009. Ed. by M. Matsui. Vol. 5912. LNCS. Springer,
2009, pp. 88–105 (cit. on p. 210).

[Gab05] Philippe Gaborit. “Shorter keys for code based cryptography”. In:
Proceedings of the 2005 International Workshop on Coding and Cryptog-
raphy (WCC 2005). Bergen, Norway, Mar. 2005, pp. 81–91 (cit. on
p. 50).

[Gab85] Ernest M. Gabidulin. “Theory of codes with maximum rank dis-
tance”. In: Problemy Peredachi Informatsii 21.1 (1985), pp. 3–16 (cit.
on pp. 90, 91).

[Gal63] Robert G. Gallager. Low Density Parity Check Codes. Cambridge,
Massachusetts: M.I.T. Press, 1963 (cit. on pp. 48, 51, 56, 65).

[GG17] Danilo Gligoroski and Kristian Gjøsteen. Edon-K. First round
submission to the NIST post-quantum cryptography call. https:
/ / csrc . nist . gov / CSRC / media / Projects / Post - Quantum -
Cryptography/documents/round- 1/submissions/EdonK.zip.
Nov. 2017 (cit. on pp. 89, 95, 99, 100, 103, 104).

[Gil52] Edgar N Gilbert. “A comparison of signalling alphabets”. In: The
Bell system technical journal 31.3 (1952), pp. 504–522 (cit. on p. 34).

[GJ20] Qian Guo and Thomas Johansson. “A New Decryption Failure
Attack Against HQC”. In: International Conference on the Theory and
Application of Cryptology and Information Security. Springer. 2020,
pp. 353–382 (cit. on p. 87).

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. “A key-
recovery timing attack on post-quantum primitives using the
Fujisaki-Okamoto transformation and its application on Frodo-
KEM”. In: Annual International Cryptology Conference. Springer.
2020, pp. 359–386 (cit. on p. 87).

[GJS16] Qian Guo, Thomas Johansson, and Paul Stankovski. “A Key Recov-
ery Attack on MDPC with CCA Security Using Decoding Errors”.
In: Advances in Cryptology - ASIACRYPT 2016. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Vol. 10031. LNCS. 2016, pp. 789–815
(cit. on pp. 63, 66–69, 77, 79, 81, 82, 84, 87).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RaCoSS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RaCoSS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/RaCoSS.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/EdonK.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/EdonK.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/EdonK.zip

Bibliography 255

[GJY19] Qian Guo, Thomas Johansson, and Jing Yang. “A novel CCA attack
using decryption errors against LAC”. In: International Conference
on the Theory and Application of Cryptology and Information Security.
Springer. 2019, pp. 82–111 (cit. on p. 87).

[GKH17] Cheikh Thiécoumba Gueye, Jean Belo Klamti, and Shoichi Hirose.
“Generalization of BJMM-ISDUsingMay-OzerovNearestNeighbor
Algorithm over an Arbitrary Finite Field \mathbb F_q”. In: Codes,
Cryptology and Information Security - Second International Conference,
C2SI 2017, Rabat, Morocco, April 10-12, 2017, Proceedings - In Honor
of Claude Carlet. 2017, pp. 96–109 (cit. on p. 223).

[GL05] Ernst M Gabidulin and Pierre Loidreau. “On subcodes of codes in
rank metric”. In: Proc. IEEE Int. Symposium Inf. Theory - ISIT. IEEE.
2005, pp. 121–123 (cit. on p. 153).

[GL08] Ernst M. Gabidulin and Pierre Loidreau. “Properties of subspace
subcodes of Gabidulin codes”. In: Adv. Math. Commun. 2.2 (2008),
pp. 147–157 (cit. on p. 153).

[GM91] Zvi Galil and Oded Margalit. “An Almost Linear-Time Algorithm
for the Dense Subset-Sum Problem”. In: SIAM J. Comput. 20.6
(1991), pp. 1157–1189 (cit. on p. 225).

[GMRZ13] Philippe Gaborit, Gaétan Murat, Olivier Ruatta, and Gilles Zémor.
“Low Rank Parity Check codes and their application to cryptog-
raphy”. In: Proceedings of the Workshop on Coding and Cryptography
WCC’2013. Bergen, Norway, 2013 (cit. on pp. 60, 91, 93, 94, 99, 102,
103).

[GOT18] Philippe Gaborit, Ayoub Otmani, and Hervé Talé-Kalachi. “Poly-
nomial-time key recovery attack on the Faure-Loidreau scheme
based on Gabidulin codes”. In: Des. Codes Cryptogr. 86.7 (2018),
pp. 1391–1403 (cit. on p. 91).

[GPT91] Ernst M. Gabidulin, A. V. Paramonov, and O. V. Tretjakov. “Ideals
over a non-commutative ring and their applications to cryptog-
raphy”. In: Advances in Cryptology - EUROCRYPT’91. LNCS 547.
Brighton, Apr. 1991, pp. 482–489 (cit. on p. 91).

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trap-
doors for hard lattices and new cryptographic constructions”. In:
Proceedings of the fortieth annual ACM symposium on Theory of com-
puting. ACM. 2008, pp. 197–206 (cit. on pp. 42, 234).

[GRS16] Philippe Gaborit, Olivier Ruatta, and Julien Schrek. “On the Com-
plexity of the Rank Syndrome Decoding Problem”. In: IEEE Trans.
Information Theory 62.2 (2016), pp. 1006–1019 (cit. on pp. 92, 100).

[GRSZ14] P. Gaborit, O. Ruatta, J. Schrek, and G. Zémor. “RankSign: An
Efficient Signature Algorithm Based on the Rank Metric”. In: Post-
Quantum Cryptography. 2014 (cit. on p. 42).

256 Bibliography

[GS98] Venkatesan Guruswami and Madhu Sudan. “Improved decoding
of Reed–Solomon and algebraic-geometric codes”. In: Proceedings
39th Annual Symposium on Foundations of Computer Science (Cat. No.
98CB36280). IEEE. 1998, pp. 28–37 (cit. on p. 112).

[Ham50] RichardWHamming. “Error detecting and error correcting codes”.
In: The Bell system technical journal 29.2 (1950), pp. 147–160 (cit. on
p. 33).

[Hat95] Masayuki Hattori. “Subspace Subcodes of Reed–Solomon Codes”.
PhD thesis. California Institute of Technology, 1995 (cit. on p. 154).

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A modu-
lar analysis of the Fujisaki-Okamoto transformation”. In: Theory of
Cryptography Conference. Springer. 2017, pp. 341–371 (cit. on p. 59).

[Hir16] Shoichi Hirose. “May-Ozerov Algorithm for Nearest-Neighbor
Problem over Fq and Its Application to Information Set Decoding”.
In: Innovative Security Solutions for Information Technology and Com-
munications - 9th International Conference, SECITC 2016, Bucharest,
Romania, June 9-10, 2016, Revised Selected Papers. 2016, pp. 115–126
(cit. on p. 222).

[HJ10] Nicholas Howgrave-Graham and Antoine Joux. “New generic al-
gorithms for hard knapsacks”. In: Advances in Cryptology - EURO-
CRYPT 2010. Ed. by Henri Gilbert. Vol. 6110. LNCS. Sringer, 2010
(cit. on pp. 212, 225).

[HMRR13] Michel Habib, Colin McDiarmid, Jorge Ramirez-Alfonsin, and
Bruce Reed. Probabilistic methods for algorithmic discrete mathematics.
Vol. 16. Springer Science & Business Media, 2013 (cit. on p. 75).

[HMS98] Masayuki Hattori, Robert J. McEliece, and Gustave Solomon. “Sub-
space subcodes of Reed–Solomon codes”. In: IEEE Trans. Inform.
Theory 44.5 (1998), pp. 1861–1880 (cit. on pp. 153–155).

[HP03] W. Cary Huffman and Vera Pless. Fundamentals of error-correcting
codes. Cambridge University Press, Cambridge, 2003, pp. xviii+646
(cit. on p. 120).

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. “NTRU:
A Ring-Based Public Key Cryptosystem”. In: Algorithmic Number
Theory, Third International Symposium, ANTS-III, Portland, Oregon,
USA, June 21-25, 1998, Proceedings. Ed. by Joe Buhler. Vol. 1423.
LNCS. Springer, 1998, pp. 267–288 (cit. on p. 25).

[Hua51] Loo-Keng Hua. “A theorem on matrices over a field and its appli-
cations”. In: J. Chinese Math. Soc. 1.2 (1951), pp. 109–163 (cit. on
p. 90).

[JD11] David Jao and LucaDe Feo. “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies”. In: International
Workshop on Post-Quantum Cryptography. Springer. 2011, pp. 19–34
(cit. on p. 25).

Bibliography 257

[Jen95] JørnM. Jensen. “Subgroup subcodes”. In: IEEETrans. Inform. Theory
41.3 (1995), pp. 781–785 (cit. on pp. 155, 156).

[JM96] Heeralal Janwa and Oscar Moreno. “McEliece Public Key Cryp-
tosystems Using Algebraic-Geometric Codes”. In: Des. Codes Cryp-
togr. 8.3 (1996), pp. 293–307 (cit. on p. 40).

[Joz01] Richard Jozsa. “Quantum factoring, discrete logarithms, and the
hidden subgroup problem”. In: Computing in science & engineering
3.2 (2001), pp. 34–43 (cit. on p. 23).

[Kah67] D. Kahn. The Codebreakers: The Story of Secret Writing. Macmillan,
1967 (cit. on pp. 16, 17).

[Ker83] August Kerckhoffs. La cryptographie militaire, ou, Des chiffres usités
en temps de guerre: avec un nouveau procédé de déchiffrement applicable
aux systèmes à double clef. Extrait du Journal des sciences militaires.
Librairie militaire de L. Baudoin, 1883 (cit. on p. 18).

[KI01] Kazukuni Kobara and Hideki Imai. “Semantically Secure McEliece
Public-Key Cryptosystems-Conversions for McEliece PKC”. In:
Public-Key Cryptography - PKC 2001. Ed. by Kwangjo Kim. Vol. 1992.
LNCS. Cheju Island, Korea: Springer, Feb. 2001, pp. 19–35 (cit. on
p. 77).

[Kin09] Abu Yūsuf Ya’qūb ibn ’Ishāq as-Sabbāh al-Kindı̄. Manuscript on
Deciphering Cryptographic Messages. 9th century (cit. on p. 17).

[KL85] Tadao Kasami and Shu Lin. On the binary weight distribution of some
Reed–Solomon codes. Tech. rep. NASA, 1985 (cit. on p. 159).

[KL88] Tadao Kasami and Shu Lin. “The binary weight distribution of
the extended (2m, 2m− 4) code of the Reed–Solomon code over
GF (2m) with generator polynomial (x− α)(x− α2)(x− α3)”. In:
Linear Algebra and its Applications 98 (1988), pp. 291–307 (cit. on
p. 159).

[Koc96] Paul C Kocher. “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems”. In: Annual International
Cryptology Conference. Springer. 1996, pp. 104–113 (cit. on p. 64).

[KRW19] Karan Khathuria, Joachim Rosenthal, and Violetta Weger. Encryp-
tion Scheme Based on ExpandedReed–SolomonCodes. ArXiv:1906.00745
(Version 2). 2019 (cit. on p. 169).

[KRW21] Karan Khathuria, Joachim Rosenthal, and Violetta Weger. “En-
cryption scheme based on expanded Reed-Solomon codes”. In:
Advances in Mathematics of Communications 15 (2021), p. 207 (cit. on
pp. 40, 115, 154, 160, 164, 166, 169–171, 189, 191, 193).

[Lab91] RSA Laboratories. RSA Factoring Challenge. https://web.archive.
org/web/20131110040730/http://www.emc.com/emc- plus/
rsa- labs/historical/the- rsa- factoring- challenge.htm.
1991 (cit. on p. 244).

https://arxiv.org/pdf/1906.00745v2.pdf
https://web.archive.org/web/20131110040730/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
https://web.archive.org/web/20131110040730/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm
https://web.archive.org/web/20131110040730/http://www.emc.com/emc-plus/rsa-labs/historical/the-rsa-factoring-challenge.htm

258 Bibliography

[Lam79] Leslie Lamport. Constructing digital signatures from a one way func-
tion. Tech. rep. CSL-98. SRI International, Oct. 1979 (cit. on p. 25).

[LB88] Pil J. Lee and Ernest F. Brickell. “An Observation on the Security of
McEliece’s Public-Key Cryptosystem”. In: Advances in Cryptology -
EUROCRYPT’88. Vol. 330. LNCS. Springer, 1988, pp. 275–280 (cit.
on p. 209).

[LDW94] Yuan Xing Li, Robert H. Deng, and Xin Mei Wang. “On the equiv-
alence of McEliece’s and Niederreiter’s public-key cryptosystems”.
In: IEEE Trans. Inform. Theory 40.1 (1994), pp. 271–273 (cit. on p. 38).

[Leo88] Jeffrey Leon. “A probabilistic algorithm for computing minimum
weights of large error-correcting codes”. In: IEEE Trans. Inform.
Theory 34.5 (1988), pp. 1354–1359 (cit. on pp. 209, 210).

[LN97] Rudolf Lidl and Harald Niederreiter. Finite fields. Second. Vol. 20.
Encyclopedia of Mathematics and its Applications. With a fore-
word by P.M. Cohn. Cambridge University Press, Cambridge, 1997,
pp. xiv+755 (cit. on p. 159).

[LRBN14] R Lindner, M Rückert, P Baumann, and L Nobach. TU Darmstadt
Lattice Challenge. 2014 (cit. on p. 244).

[LT18] Matthieu Lequesne and Jean-Pierre Tillich. “Attack on the Edon-K
Key Encapsulation Mechanism”. In: 2018 IEEE International Sym-
posium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22,
2018. 2018, pp. 981–985 (cit. on p. 89).

[LXY20] Zhe Li, Chaoping Xing, and Sze Ling Yeo. A New Code Based Signa-
ture Scheme without Trapdoors. Cryptology ePrint Archive, Report
2020/1250. 2020 (cit. on p. 42).

[Lyu05] Vadim Lyubashevsky. “On Random High Density Subset Sums”.
In: Electronic Colloquium on Computational Complexity (ECCC) 1.007
(2005) (cit. on p. 225).

[Lyu09] Vadim Lyubashevsky. “Fiat-Shamir with aborts: Applications to
lattice and factoring-based signatures”. In: International Conference
on the Theory and Application of Cryptology and Information Security.
Springer. 2009, pp. 598–616 (cit. on p. 42).

[MB09] Rafael Misoczki and Paulo Barreto. “Compact McEliece Keys from
Goppa Codes”. In: Selected Areas in Cryptography. Calgary, Canada,
Aug. 2009 (cit. on p. 51).

[McE78] Robert J. McEliece. “A Public-Key System Based on Algebraic Cod-
ing Theory”. In: DSN Progress Report 44. Jet Propulsion Lab, 1978,
pp. 114–116 (cit. on pp. 24, 36, 37, 40, 198).

[Mer87] Ralph C Merkle. “A digital signature based on a conventional
encryption function”. In: Conference on the theory and application of
cryptographic techniques. Springer. 1987, pp. 369–378 (cit. on p. 25).

Bibliography 259

[Meu17] Alexander Meurer. “A Coding-Theoretic Approach to Cryptanal-
ysis”. PhD thesis. Ruhr University Bochum, Nov. 2017 (cit. on
p. 222).

[MI88] Tsutomu Matsumoto and Hideki Imai. “Public quadratic poly-
nomial-tuples for efficient signature-verification and message-
encryption”. In: Workshop on the Theory and Application of of Crypto-
graphic Techniques. Springer. 1988, pp. 419–453 (cit. on p. 25).

[Mil82] Frank Miller. Telegraphic Code to Insure Privacy and Secrecy in the
Transmission of Telegrams. C.M. Cornwell, 1882 (cit. on p. 18).

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. “Decod-
ing random linear codes in O(20.054n)”. In: Advances in Cryptology
- ASIACRYPT 2011. Ed. by Dong Hoon Lee and Xiaoyun Wang.
Vol. 7073. LNCS. Springer, 2011, pp. 107–124 (cit. on pp. 213, 214).

[MN96] David JC MacKay and Radford M Neal. “Near Shannon limit per-
formance of low density parity check codes”. In: Electronics letters
32.18 (1996), pp. 1645–1646 (cit. on p. 48).

[MO15] Alexander May and Ilya Ozerov. “On Computing Nearest Neigh-
bors with Applications to Decoding of Binary Linear Codes”. In:
Advances in Cryptology - EUROCRYPT 2015. Ed. by E. Oswald and
M. Fischlin. Vol. 9056. LNCS. Springer, 2015, pp. 203–228 (cit. on
p. 214).

[MOG15] Ingo VonMaurich, Tobias Oder, and TimGüneysu. “Implementing
QC-MDPC McEliece Encryption”. In: ACM Trans. Embed. Comput.
Syst. 14.3 (Apr. 2015), 44:1–44:27 (cit. on p. 66).

[Moo19] Dustin Moody. The 2nd Round of the NIST PQC Standardization
Process-Opening Remarks at PQC 2019. https://csrc.nist.gov/
Presentations / 2019 / the - 2nd - round - of - the - nist - pqc -
standardization-proc. 2019 (cit. on p. 24).

[Moo20] Dustin Moody. NIST PQC Standardization Update - Round 2 and
Beyond. https://csrc.nist.gov/Presentations/2020/pqc-
update-round-2-and-beyond. 2020 (cit. on p. 24).

[MRA00] Chris Monico, Joachim Rosenthal, and Amin A. Shokrollahi. “Us-
ing low density parity check codes in the McEliece cryptosystem”.
In: Proc. IEEE Int. Symposium Inf. Theory - ISIT. Sorrento, Italy, 2000,
p. 215 (cit. on p. 48).

[MS07] Lorenz Minder and Amin Shokrollahi. “Cryptanalysis of the
Sidelnikov cryptosystem”. In: Advances in Cryptology - EURO-
CRYPT 2007. Vol. 4515. LNCS. Barcelona, Spain, 2007, pp. 347–360
(cit. on p. 40).

[MS86] Florence J. MacWilliams and Neil J. A. Sloane. The Theory of Error-
Correcting Codes. Fifth. Amsterdam: North–Holland, 1986 (cit. on
pp. 111, 112, 154).

https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2019/the-2nd-round-of-the-nist-pqc-standardization-proc
https://csrc.nist.gov/Presentations/2020/pqc-update-round-2-and-beyond
https://csrc.nist.gov/Presentations/2020/pqc-update-round-2-and-beyond

260 Bibliography

[MS94] Robert J. McEliece and Gustave Solomon. “Trace-Shortened Reed-
Solomon Codes”. In: The Telecommunications and Data Acquisition
Progress Report 42-117 (1994), p. 119 (cit. on pp. 116, 154).

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo
S. L. M. Barreto. “MDPC-McEliece: NewMcEliece variants from
Moderate Density Parity-Check codes”. In: Proc. IEEE Int. Sympo-
sium Inf. Theory - ISIT. 2013, pp. 2069–2073 (cit. on pp. 40, 49, 51,
54, 56, 57, 62, 65).

[Nie86] Harald Niederreiter. “Knapsack-type cryptosystems and algebraic
coding theory”. In: Problems of Control and Information Theory 15.2
(1986), pp. 159–166 (cit. on pp. 37, 39, 113).

[OJ02] Alexei V. Ourivski and Thomas Johansson. “New Technique for
Decoding Codes in the RankMetric and Its Cryptography Applica-
tions”. English. In: Problems of Information Transmission 38.3 (2002),
pp. 237–246 (cit. on p. 92).

[OTD08] Ayoub Otmani, Jean-Pierre Tillich, and Léonard Dallot. “Crypt-
analysis of McEliece Cryptosystem Based on Quasi-Cyclic LDPC
Codes”. In: Proceedings of First International Conference on Symbolic
Computation and Cryptography. LMIB Beihang University. Beijing,
China, Apr. 2008, pp. 69–81 (cit. on pp. 49, 50).

[Ove05] Raphael Overbeck. “A New Structural Attack for GPT and Vari-
ants”. In: Mycrypt. Vol. 3715. LNCS. 2005, pp. 50–63 (cit. on p. 91).

[Ove08] Raphael Overbeck. “Structural Attacks for Public Key Cryptosys-
tems based on Gabidulin Codes”. In: J. Cryptology 21.2 (2008),
pp. 280–301 (cit. on p. 91).

[Pat96] Jacques Patarin. “Hidden Fields Equations (HFE) and Isomor-
phisms of Polynomials (IP): Two New Families of Asymmetric
Algorithms”. In: Advances in Cryptology - EUROCRYPT ’96, Inter-
national Conference on the Theory and Application of Cryptographic
Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding. Ed. by
Ueli M. Maurer. Vol. 1070. LNCS. Springer, 1996, pp. 33–48 (cit. on
p. 25).

[Per12] Edoardo Persichetti. “Improving the efficiency of code-based cryp-
tography”. PhD thesis. ResearchSpace@ Auckland, 2012 (cit. on
p. 42).

[Per18] Edoardo Persichetti. “Efficient one-time signatures from quasi-
cyclic codes: A full treatment”. In: Cryptography 2.4 (2018), p. 30
(cit. on p. 42).

[Pet10] Christiane Peters. “Information-Set Decoding for Linear Codes
over Fq”. In: Post-Quantum Cryptography 2010. Vol. 6061. LNCS.
Springer, 2010, pp. 81–94 (cit. on p. 222).

[Pra62] Eugene Prange. “The use of information sets in decoding cyclic
codes”. In: IRE Transactions on Information Theory 8.5 (1962), pp. 5–9
(cit. on p. 202).

Bibliography 261

[Ran13] Hugues Randriambololona. “Asymptotically good binary linear
codes with asymptotically good self-intersection spans”. In: IEEE
transactions on information theory 59.5 (2013), pp. 3038–3045 (cit. on
p. 174).

[RS60] Irving S. Reed and Gustave Solomon. “Polynomial codes over cer-
tain finite fields”. In: Journal of the society for industrial and applied
mathematics 8.2 (1960), pp. 300–304 (cit. on p. 110).

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. “A
Method for Obtaining Digital Signatures and Public-Key Cryp-
tosystems”. In: Commun. ACM 21.2 (1978), pp. 120–126 (cit. on
pp. 20, 23).

[SBCC18] Paolo Santini, Marco Baldi, Giovanni Cancellieri, and Franco Chiar-
aluce. “Hindering reaction attacks by using monomial codes in the
McEliece cryptosystem”. In: 2018 IEEE International Symposium on
Information Theory (ISIT). IEEE. 2018, pp. 951–955 (cit. on p. 84).

[Sen02] Nicolas Sendrier. “Cryptosystèmes à clé publique basés sur les
codes correcteurs d’erreurs”. In: Mémoire d’habilitation à diriger des
recherches, Université Paris 6. 2002 (cit. on p. 37).

[Sen10] Nicolas Sendrier. “On the use of structured codes in code based
cryptography”. In: Coding Theory and Cryptography III. Ed. by
L. Storme S. Nikova B. Preneel. The Royal Flemish Academy of
Belgium for Science and the Arts. 2010, pp. 59–68 (cit. on pp. 51,
60).

[Sen11a] Nicolas Sendrier. “Decoding One Out of Many”. In: Post-Quantum
Cryptography 2011. Vol. 7071. LNCS. 2011, pp. 51–67 (cit. on pp. 61,
237).

[Sen11b] Nicolas Sendrier. “The tightness of security reductions in code-
based cryptography”. In: Proc. IEEE Inf. Theory Workshop- ITW 2011.
IEEE, 2011, pp. 415–419 (cit. on p. 39).

[Sen94] Nicolas Sendrier. “On the structure of a randomly permuted con-
catenated code”. In: EUROCODE’94. 1994, pp. 169–173 (cit. on
p. 40).

[Sen98] Nicolas Sendrier. “On the Concatenated Structure of a Linear
Code”. In: Appl. Algebra Eng. Commun. Comput. (AAECC) 9.3
(1998), pp. 221–242 (cit. on p. 40).

[Sha48] Claude E Shannon. “A mathematical theory of communication”.
In: The Bell system technical journal 27.3 (1948), pp. 379–423 (cit. on
pp. 18, 25, 35).

[Sha49] Claude Elwood Shannon. “Communication theory of secrecy sys-
tems”. In: The Bell system technical journal 28.4 (1949). The material
in this paper appeared in a confidential report "A Mathematical
Theory of Cryptography" dated Sept.1, 1946,which has now been
declassified, pp. 656–715 (cit. on pp. 18, 19).

262 Bibliography

[SHMWW20] Yongcheng Song, Xinyi Huang, Yi Mu, Wei Wu, and Huaxiong
Wang. “A code-based signature scheme from the Lyubashevsky
framework”. In: Theoretical Computer Science 835 (2020), pp. 15–30
(cit. on p. 42).

[Sho94] Peter W. Shor. “Algorithms for quantum computation: Discrete
logarithms and factoring”. In: FOCS. Ed. by S. Goldwasser. 1994,
pp. 124–134 (cit. on p. 23).

[Sid94] VladimirMichilovich Sidelnikov. “A public-key cryptosytem based
on Reed-Muller codes”. In: Discrete Math. Appl. 4.3 (1994), pp. 191–
207 (cit. on p. 40).

[Sin00] S. Singh. The Code Book: The Secret History of Codes and Codebreaking.
Fourth Estate, 2000 (cit. on pp. 17, 20).

[SKHN76] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, and Toshi-
hiko Namekawa. “Further results on Goppa codes and their ap-
plications to constructing efficient binary codes”. In: it 22 (1976),
pp. 518–526 (cit. on p. 185).

[Sol93] Gustave Solomon. “Non-linear, non-binary cyclic group codes”. In:
Proc. IEEE Int. Symposium Inf. Theory - ISIT. IEEE. 1993, pp. 192–192
(cit. on p. 154).

[Spe04] Sarah A. Spence. “Identifying high-dimension subspace subcodes
of Reed-Solomon codes”. In: IEEE Transactions on Information Theory
50.6 (2004), pp. 1280–1282 (cit. on p. 154).

[SS92] Vladimir Michilovich Sidelnikov and S.O. Shestakov. “On the in-
security of cryptosystems based on generalized Reed-Solomon
codes”. In: Discrete Math. Appl. 1.4 (1992), pp. 439–444 (cit. on
pp. 39, 114, 121, 122, 147, 187).

[Ste88] Jacques Stern. “A method for finding codewords of small weight”.
In: Coding Theory and Applications. Ed. by G. D. Cohen and J. Wolf-
mann. Vol. 388. LNCS. Springer, 1988, pp. 106–113 (cit. on p. 210).

[Ste93] Jacques Stern. “A New Identification Scheme Based on Syndrome
Decoding”. In: Advances in Cryptology - CRYPTO’93. Ed. by D.R.
Stinson. Vol. 773. LNCS. Springer, 1993, pp. 13–21 (cit. on p. 42).

[STK89] Katsumi Sakakibara, Kin-Ichiroh Tokiwa, and Masao Kasahara.
“Notes on q-ary expanded Reed–Solomon codes over GF (qm)”.
In: Electronics and Communications in Japan (Part III: Fundamental
Electronic Science) 72.2 (1989), pp. 14–23 (cit. on p. 159).

[Sud97] Madhu Sudan. “Decoding of Reed–Solomon Codes beyond the
Error–Correction Bound”. In: J. Complexity 13.1 (1997), pp. 180–193
(cit. on p. 112).

[Sue21] Gaius Suetonius Tranquillus. “Vita divi Iuli”. In: De vita Caesarum.
Vol. 1. 121 (cit. on p. 16).

Bibliography 263

[SV19] Nicolas Sendrier and Valentin Vasseur. “On the Decoding Failure
Rate of QC-MDPC Bit-Flipping Decoders”. In: Post-Quantum Cryp-
tography 2019. Ed. by Jintai Ding and Rainer Steinwandt. Vol. 11505.
LNCS. Chongquing, China: Springer, May 2019, pp. 404–416 (cit.
on p. 85).

[SV20] Nicolas Sendrier and Valentin Vasseur. “About Low DFR for QC-
MDPC Decoding”. In: Post-Quantum Cryptography 2020. Ed. by
Jintai Ding and Jean-Pierre Tillich. Vol. 12100. LNCS. Springer,
2020 (cit. on pp. 59, 86).

[Til18] Jean-Pierre Tillich. “The Decoding Failure Probability of MDPC
Codes”. In: 2018 IEEE International Symposium on Information Theory,
ISIT 2018, Vail, CO, USA, June 17-22, 2018. 2018, pp. 941–945 (cit. on
p. 85).

[Var57] RomRubenovich Varshamov. “Estimate of the number of signals in
error correcting codes”. In: Docklady Akad. Nauk, SSSR 117 (1957),
pp. 739–741 (cit. on p. 34).

[Vér96] Pascal Véron. “Improved identification schemes based on error-
correcting codes”. In: Appl. Algebra Eng. Commun. Comput. 8.1
(1996), pp. 57–69 (cit. on p. 42).

[VNT07] Serge Vladut, Dmitry Nogin, and Michael Tsfasman. “Algebraic
geometric codes: basic notions”. In: (2007) (cit. on p. 112).

[Wag02] David Wagner. “A generalized birthday problem”. In: Advances
in Cryptology - CRYPTO 2002. Ed. by Moti Yung. Vol. 2442. LNCS.
Springer, 2002, pp. 288–303 (cit. on pp. 211, 226).

[Wan16] Yongge Wang. “Quantum resistant random linear code based pub-
lic key encryption scheme RLCE”. In: Proc. IEEE Int. Symposium Inf.
Theory - ISIT 2016. Barcelona, Spain: IEEE, July 2016, pp. 2519–2523
(cit. on p. 123).

[Wan17] Yongge Wang. RLCE–KEM. http://quantumca.org. First round
submission to the NIST post-quantum cryptography call. 2017 (cit.
on pp. 39, 115, 123, 125, 127, 150).

[WB86] Lloyd RWelch and Elwyn R Berlekamp. Error correction for algebraic
block codes. US Patent 4,633,470. Dec. 1986 (cit. on p. 111).

[Wie06a] Christian Wieschebrink. “An attack on a modified Niederreiter
encryption scheme”. In: Public-Key Cryptography - PKC 2006. Ed.
by Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malk.
Vol. 3958. LNCS. Springer, 2006, pp. 14–26 (cit. on p. 114).

[Wie06b] Christian Wieschebrink. “Two NP-complete Problems in Coding
Theory with an Application in Code Based Cryptography”. In:
Proc. IEEE Int. Symposium Inf. Theory - ISIT. 2006, pp. 1733–1737
(cit. on pp. 115, 123, 127).

http://quantumca.org

264 Bibliography

[Wie10] Christian Wieschebrink. “Cryptanalysis of the Niederreiter Public
Key Scheme Based on GRS Subcodes”. In: Post-Quantum Cryptogra-
phy 2010. Vol. 6061. LNCS. Springer, 2010, pp. 61–72 (cit. on pp. 114,
122).

[Wu11] YingquanWu. “On expanded cyclic and Reed–Solomon codes”. In:
IEEE Trans. Inform. Theory 57.2 (2011), pp. 601–620 (cit. on pp. 155,
167).

[YDHTS15] Takanori Yasuda, Xavier Dahan, Yun-Ju Huang, Tsuyoshi Tak-
agi, and Kouichi Sakurai. Fukuoka MQ Challenge. https://www.
mqchallenge.org/. 2015 (cit. on p. 244).

https://www.mqchallenge.org/
https://www.mqchallenge.org/

	Remerciements
	Contents
	List of publications
	Introduction
	Introduction to cryptography
	Early days of cryptography
	Theorisation of cryptography
	Modern cryptography
	New trends in cryptography

	Introduction to coding theory
	Error-correcting codes
	Encoding, decoding
	Decoding problems
	Bounds on codes

	Introduction to code-based cryptography
	The McEliece scheme
	Other code-based encryption schemes
	Code-based signature schemes

	Key-recovery attacks on post-quantum cryptosystems: analysis of probabilistic constructions
	Moderate density parity-check codes
	Introduction to MDPC codes
	LDPC codes
	MDPC codes
	The quasi-cyclic structure

	Decoding MDPC codes
	The bit-flipping algorithm
	The decoding failure rate
	Other decoders

	QC-MDPC schemes
	QC-MDPC McEliece
	KEM vs. PKE
	Other MDPC-based schemes

	Security of QC-MDPC schemes
	Message security
	Key security
	Quantum security
	Side-channel attacks and DFR

	Side-channel attacks on the QC-MDPC cryptosystem
	Key recovery attack on the QC-MDPC scheme
	Side-channel attacks
	The QC-MDPC scheme
	The GJS reaction attack

	Analysis
	Expected syndrome weight
	Experimental measures
	Required number of samples.

	Attack on the syndrome weight
	Attack model
	The attack
	Experimental results

	Attack on the iteration count
	Motivations and attack model
	The attack
	Experimental results
	About spectrum reconstruction

	Possible mitigations
	Ephemeral keys
	Parallel encryption
	Forcing a full spectrum: monomial codes
	Lowering the DFR

	Conclusion

	Attack on the Edon-K cryptosystem
	Rank metric and LRPC codes
	Introduction to rank metric
	Definitions
	Hard problems in rank metric
	LRPC codes

	The Edon-K cryptosystem
	Notations
	Key generation
	Encapsulation
	Decapsulation
	Suggested parameters

	Algebraic attack on the Edon-K scheme
	Outline of the attack
	Reconstructing the parity-check matrix
	The decoding step

	Concluding remarks
	Cost of the attack
	Without compression of the public key
	Conclusion

	Square-code attacks on GRS-based cryptosystems
	GRS codes and public-key cryptography
	Generalised Reed–Solomon codes
	Definition and properties
	Relation with other families of codes

	GRS-based cryptosystems
	McEliece with GRS codes
	Attacking the McEliece GRS cryptosystem
	Other cryptosystems using GRS codes

	Product of codes and square-code distinguisher
	The star-product operation
	The square-code distinguisher
	Distinguishing shortened codes

	Conclusion

	Attack on the RLCE cryptosystem
	The RLCE scheme
	Presentation of the scheme
	Suggested sets of parameters
	Natural questions

	Dimension of the square code
	Analysis of the different kinds of columns
	Intermediate results
	Proof of the main theorem
	When is the inequality an equality?
	A distinguisher

	The attack
	An algorithm to find a set of twin positions
	Identifying pairs of twin positions
	Description of the attack
	Retrieving the secret key
	The case of degenerate twin positions
	Complexity of the attack

	Conclusion

	Subspace subcodes of Reed-Solomon codes
	Subspace subcodes
	Motivations
	Definition and first properties
	Expansion operator and representation
	An instantiation of McEliece with SSRS codes
	Further properties of the expansion operator

	The XGRS cryptosystem
	The cryptosystem
	XGRS is a instance of SSRS

	Twisted-square code and distinguisher
	The twisted square product
	Dimension of the twisted square of subspace subcodes

	Attacking the SSRS scheme
	Further conjectures for the attack
	The case m = 3 and lambda = 2
	The general case
	Summary of the attack
	Complexity
	The guess-and-squeeze approach

	Conclusion

	Generic decoding
	Binary syndrome decoding
	The syndrome decoding problem
	The problem
	Workfactor and asymptotic formulas
	Number of solutions

	Combinatorial approach
	Exhaustive search
	Birthday decoding
	Average complexity to find one solution

	Using linear algebra: Prange's approach
	Information sets
	Prange's idea
	Prange's information set decoding algorithm
	Complexity of Prange's algorithm

	Combining both approaches
	General idea
	Generalised information set decoding algorithm
	Using exhaustive search
	Using birthday decoding

	Further improvements of ISD
	Recursive birthday algorithm
	Using representations
	Nearest neighbour search

	Ternary syndrome decoding with large weight errors
	Information set decoding for q >= 3
	Asymmetry of the non-binary case
	Adaptation of Prange's algorithm
	Generalised information set decoding algorithms
	ISD for q to infinity

	Large weight ternary syndrome decoding
	Reduction to subset sum
	From large weight ISD to subset sum
	Wagner's algorithm
	Using representations

	Applications
	Application to the Wave signature
	Hardest instance of ternary large weight decoding
	Conclusion

	Conclusions and perspectives
	Bibliography

